
HAL Id: tel-04053391
https://theses.hal.science/tel-04053391

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Category theory for consistency between multilevel
system modeling (MBSE) and safety (MBSA)

Julien Vidalie

To cite this version:
Julien Vidalie. Category theory for consistency between multilevel system modeling (MBSE) and
safety (MBSA). Automatic. Université Paris-Saclay, 2023. English. �NNT : 2023UPAST020�. �tel-
04053391�

https://theses.hal.science/tel-04053391
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
DO

CT
OR

AT
N
N
T
:2
02
3U

PA
ST
02
0

Category theory for consistency between
multilevel system modeling (MBSE) and

safety (MBSA)
Théorie des Catégories pour la cohérence des modèles

multi-niveaux systèmes (MBSE) et sûreté de
fonctionnement (MBSA)

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦573 interfaces : matériaux, systèmes, usages
(INTERFACES)

Spécialité de doctorat: Ingéniérie des systèmes complexes
Graduate School : Sciences de l’ingénierie et des systèmes,

Référent : CentraleSupélec

Thèse préparée dans l’unité de recherche Laboratoire Quartz—ISAE Supméca,
sous la direction de Jean-Yves CHOLEY, Professeur, le co-encadrement de

Faïda MHENNI, maîtresse de conférences, du co-encadrant ou de la
co-encadrante et le co-encadrement de Michel BATTEUX, Docteur

Thèse soutenue à Paris-Saclay, le 08 février 2023, par

Julien VIDALIE

Composition du jury
Membres du jury avec voix délibérative
Frédéric KRATZ Président
Professeur des universités, INSA Centre Val de
Loire
Pierre SAQUI-SANNES Rapporteur & Examinateur
Professeur des universités, ISAE-SUPAERO
Abdelfattah MLIKA Rapporteur & Examinateur
Professeur des universités, Université de Sousse
Claude BARON Examinatrice
Professeure des universités, LAAS-CNRS
Antoine RAUZY Examinateur
Professeur des universités, Norwegian University
of Science and Technology

Summary

Summary i

List of Figures v

List of Tables ix

Acknowledgements xi

Introduction 1
1 Need for models synchronization and a formal framework 1
2 The S2ML+Cat mathematical framework 4
3 Summary of the thesis . 5

Chapter 1: State of The Art 7
1.1 Systems Engineering . 7

1.1.1 History . 7
1.1.2 Definition of Systems engineering 8
1.1.3 Design cycle, the V-Model . 9
1.1.4 Standards . 9
1.1.5 Models . 12
1.1.6 System Architecture . 13
1.1.7 Architecture frameworks . 14
1.1.8 Model-Based System Engineering 18
1.1.9 Harel Statecharts . 19

1.2 Dependability . 20
1.2.1 History . 20
1.2.2 Definition . 21
1.2.3 Concepts . 22
1.2.4 Standards . 23
1.2.5 Tools andmethodologies for safety assessment 27

1.2.5.1 Tools for safety assessment 27
1.2.5.2 Safety Assessment methodology 32

1.3 Models . 33
1.3.1 Definition . 33
1.3.2 Syntax and semantics . 34

i

ii SUMMARY

1.3.3 Structural models and behavioral models 35
1.3.4 Model consistency . 35
1.3.5 SmartSyncMethodology . 37
1.3.6 S2ML - System StructureModeling Language 38
1.3.7 Multiphysics models . 39

1.4 Category theory . 39
1.4.1 History and interest . 40
1.4.2 Basic concepts: Categories and functors 40
1.4.3 Useful concepts . 42
1.4.4 Use of category theory in Systems engineering 44

Chapter 2: A case study: The landing gear 45
2.1 The Landing Gear System . 45

2.1.1 Motivations and approach . 45
2.1.2 Presentation of the system . 46

2.2 Modeling the Landing Gear . 47
2.2.1 MBSEModeling . 47

2.2.1.1 Methodology . 47
2.2.1.2 Modeling . 49

2.2.2 MBSAModeling . 50
2.2.2.1 Methodology . 50
2.2.2.2 Modeling . 50

2.2.3 State Machines . 52
2.2.3.1 Gear lights state machine 52
2.2.3.2 Redundant system . 53

2.3 Synchronization of themodels . 54
2.3.1 Translation to S2ML . 56
2.3.2 Comparison with SmartSync 60
2.3.3 Results of the comparison and actions taken on themodels 62
2.3.4 Need for consistency assessment and amathematical frame 63

Chapter 3: MBSE andMBSA SystemModels Differences 65
3.1 Typology of theMBSE andMBSAModels Differences 65

3.1.1 Model comparison . 66
3.1.2 Types of differences . 68
3.1.3 Discussion . 69

3.2 Structural state machine consistency 70
3.2.1 MBSEandMBSAStateMachines synchronizationmappings 70

3.2.1.1 PrimaryMapping . 70
3.2.1.2 Advancedmapping 71

3.2.2 Gear Lights comparison . 73
3.2.2.1 Primarymapping . 73
3.2.2.2 Advancedmapping 74

3.2.3 Redundant system comparison 75

SUMMARY iii

3.2.3.1 Primarymapping . 75
3.2.3.2 Advancedmapping 76

3.2.4 Discussion . 77

Chapter 4: The S2ML+Cat framework 79
4.1 The S2ML+Cat idea . 79

4.1.1 Simplified S2ML+Cat models 80
4.1.2 Relation between themodels 82

4.2 Mathematical representation of a structural model 84
4.2.1 Catports, Catconnections and Catblocks 85
4.2.2 Models . 91
4.2.3 Relations between the models: Belonging and reference

morphisms . 93
4.2.4 A few notions necessary to introduce S2ML+Cat: Injec-

tions, orders and elementary blocks 94
4.2.5 S2ML+Cat . 95

4.3 Important properties in S2ML+Cat 97
4.3.1 The S2ML+Cat and S2ML equivalence 97
4.3.2 The Cantor-Bernstein property of models 101
4.3.3 Equivalence of S2MLmodels 104

4.4 Consistency relation . 106
4.5 Simplifying comparison with versioning 109

Chapter 5: Application example: The blood delivery drone 111
5.1 Presentation of the case study . 111

5.1.1 Modeling the case study . 112
5.2 Applying SmartSync to the Study Case 115

5.2.1 Comparison with SmartSync 116
5.2.2 Categorical Point of View . 120

5.3 Discussion . 122
5.3.1 Pragmatics . 125
5.3.2 Composition . 126
5.3.3 Connections . 128
5.3.4 Connections and tuples . 128

Conclusions and Perspectives 129

Bibliography 133

Appendices 142

Appendix A: Publications 143

Appendix B: Landing gearmodels 145

iv SUMMARY

B.1 AltaRica 3.0 code for the landing gear 145
B.2 S2ML code for theMBSEmodel . 148
B.3 S2ML code for theMBSAmodel . 151
B.4 Comparison results . 154

Appendix C: Blood delivery dronemodels 161
C.1 AltaRica 3.0 code for the Blood delivery drone 161
C.2 SCOLA code for the Blood delivery drone 163
C.3 S2ML code for theMBSEmodel . 166
C.4 S2ML code for theMBSAmodel . 169
C.5 S2ML code for the SCOLAmodel . 171
C.6 S2ML code for theModelica model 174
C.7 Comparison results . 176

Appendix D: Category visualisation script 181

Résumé étendu en français 185

Abstracts 187

List of Figures

Introduction 1
1 Positioning of the S2C project (Illustration from the S2C project

contractual definition) . 2
2 Approach of the comparison with S2ML+Cat 5

Chapter 1 Background on System Engineering, Dependability, Mod-
els and Category Theory 7

1.1 The V-Model . 9
1.2 IEEE 1220 systems engineering process. SEP decomposes into

eight subprocesses with their associated tasks, general process
flows, and activities. [34] . 10

1.3 IEEE 15288 system life cycle processes [70] 11
1.4 EIA 632 Process [83] . 12
1.5 DoDAF viewpoints [33] . 15
1.6 Pyramid of the CESAM architecture framework [73] 16
1.7 Capella big picture [102] . 17
1.8 State chart with composite state D encapsulating states A and C

[56] . 20
1.9 State chartwithorthogonal stateYencapsulating statesAandD[56] 20
1.10 Taxonomy of dependability [76] . 23
1.11 Overall safety lifecycle of the IEC 61508 series [71] 25
1.12 Exemple of a small fault tree for a battery 28
1.13 example of a graph representing aMarkov chain 29
1.14 Simulationmatrix for theMarkov chain from Fig. 1.13. 29
1.15 Petri Net for aWorking/Failed component. 30
1.16 example of the AltaRica3.0 representation of a GTS 32
1.17 Model synchronisation approach. 36
1.18 Model synchronization process using SmartSync [95] 38
1.19 Model synchronization process using SmartSync [95] 41
1.20 Illustration of a natural transformation 42
1.21 Illustration of a cone (Q) and the limit (Z) 43
1.22 Structure of the pullback . 44

v

vi LIST OF FIGURES

Chapter2 Acasestudy: The landinggear: 45
2.1 Global Architecture of the Landing Gear System [24] 46
2.2 Architecture of the Hydraulic part [24] 47
2.3 Block Definition Diagram of the Landing Gear System 48
2.4 Internal Block Diagram of the Landing Gear System 49
2.5 Class NonRepairableComponent in AltaRica 3.0 50
2.6 example of an assertion in AltaRica 3.0 50
2.7 Block Landing System in AltaRica 3.0 (some assertions were hid-

den for clarity) . 51
2.8 Class ElectroValve in AltaRica 3.0 . 52
2.9 Class Cylinder in AltaRica 3.0 . 52
2.10 SysML state machine of the gear light behavior 52
2.11 AltaRica 3.0 model of the gear light use case 53
2.12 SysML state machine of the redundant system 54
2.13 AltaRica 3.0 model of the redundant system use case 55
2.14 The SysML pilot Interface (a) and its translation in the S2ML

model (b). 57
2.15 TheAltaRica 3.0 pilot Interface (a) and its translation in the S2ML

model (b). 58
2.16 The instanciated AltaRica 3.0 Pilot Interface 59

Chapter3 Studyof the inconsistenciesbetweenmodels: 65
3.1 S2ML representation of a connection with the primarymapping . 71
3.2 S2ML representation of a transition with the advancedmapping . 72
3.3 State machine with deep state . 72
3.4 S2ML code of a state machine with a deep state using the ad-

vancedmapping . 73
3.5 S2MLabstractions for the gear light statemachineswith primary

mapping . 73
3.6 S2ML abstractions for the gear light state machines with ad-

vancedmapping . 75
3.7 S2ML abstractions for the cold redundancy with primarymapping 75
3.8 S2ML abstractions for the cold redundancy system state ma-

chines with advancedmapping . 76
3.9 Product of the state machines for redundant system’s components 77

Chapter 4 S2ML+Cat, a category theory framework for structural
model consistency 79

4.1 Simple representation of themetamodel for an S2MLmodel . . . 80
4.2 S2ML representationof a connection situated in ablockdifferent

from its ports . 81

LIST OF FIGURES vii

4.3 Thepilot interface S2MLmodel translated fromMBSE, represen-
ted using the simplified representation 81

4.4 Structure for binary consistency relations 83
4.5 The pilot interface S2ML model translated from MBSE and

MBSA, represented using the simplified representation, with
their common skeleton in red . 84

4.6 Example of a systemmodel . 88
4.7 Structure of a connection with two ports in a block/model 88
4.8 Diagram of the system block from Fig. 4.6 89
4.9 The Pilot interface S2ML block translated fromMBSE, represen-

ted as a S2MLmodel category . 90
4.10 Diagram of the systemmodel from Fig. 4.6 92
4.11 ThePilot interface S2MLmodel translated fromMBSE, represen-

ted as an S2MLmodel category . 92
4.12 An injection between twomodels . 94
4.13 The structure of a binary consistency relation 106
4.14 Reminder of the structure for binary consistency relations 108
4.15 Functors between iterations of themodel consistency structure . 109
4.16 Mapping version n to version n+1 . 110

Chapter5 Anapplicationexample: Theblooddeliverydrone: 111
5.1 Illustration of the Zipline Flyer drone. 113
5.2 Product Breakdown Structure of the Blood Delivery Drone Sys-

tem (BDD) . 113
5.3 Physical Architecture of the Blood Delivery Drone System (IBD) . 114
5.4 Class NRComponent and ComponentIO in AltaRica 3.0 115
5.5 Representation of the architecture in the SCOLAmodel 115
5.6 Modelica Graphical view of the Drone 116
5.7 A part of the SysML model (b) and its translation in the S2ML

model (a). 117
5.8 Apartof theAltaRica3.0model (b) and its translation in theS2ML

model (a). 118
5.9 A part of the Modelica model (b) and its translation in the S2ML

model (a). 119
5.10 A part of the SCOLA model (b) and its translation in the S2ML

model (a). 120
5.11 Diagrams for the S2ML models of the fixed-wing drone during

iterations of SmartSync over the architecture and safety models. . 122
5.12 Diagrams for the A′ and B ′ S2MLmodels of the fixed-wing drone

at the final comparison step. 124
5.13 The pullback of Acomp and Bcomp with regards to the dictionary . . 126
5.14 The categories for both possible level of abstraction of the gear

motor . 127

viii LIST OF FIGURES

5.15 An example of block diagrams for a system with composed con-
nections (left) that could be consistent with one connection (right)127

5.16 Diagrams of the categories for the block diagrams from Fig. 5.15 . 128

List of Tables

Introduction 1

Chapter 1 Background on System Engineering, Dependability, Mod-
els and Category Theory 7

1.1 Chronology of events during the emergence of Dependability . . 21
1.2 Levels of SIL in IEC 61508 . 24
1.3 Levels of DAL in DO-178B . 26
1.4 Criticality levels in diverse industries 26
1.5 Minimal cut sets for the fault tree from Fig. 1.12 28

Chapter2 Acasestudy: The landinggear: 45
2.1 Mapping between concepts for translation between SysML and

S2ML . 56
2.2 Correspondance of concepts for translation between SysML and

S2ML . 57
2.3 First output file of the SmartSync comparison 61
2.4 Processed file for the first step of comparison 62

Chapter3 Studyof the inconsistenciesbetweenmodels: 65
3.1 Typology of the differences between MBSE and MBSA system

models . 69
3.2 Primarymapping of concepts . 71
3.3 Advancedmapping of concepts . 72
3.4 Naming correspondence between MBSE and MBSA models for

Gear lights behavior . 74
3.5 Naming correspondence between MBSE and MBSA models for

redundant system behavior . 78

Chapter 4 S2ML+Cat, a category theory framework for structural
model consistency 79

ix

x LIST OF TABLES

4.1 Correspondance table for the dictionary relation between the Pi-
lot interface parts of the MBSE andMBSAmodels of the landing
gear . 82

4.2 Mapping for the belonging morphism between the Handle and
the Pilot_Interface . 92

Chapter5 Anapplicationexample: Theblooddeliverydrone: 111
5.1 Correspondence table for the first iteration of the comparison

between the SysML and AltaRica 3.0 models 123

ACKNOWLEDGEMENTS

Write down everything that
happens in the story, and then
in your second draft make it
look like you knewwhat you
were doing all along

Neil Gaiman

La thèsen’estpasunexercicede tout repos. Elle confronte ledoctorant àdes
défis techniques et scientifiques, mais également humains, face auxquels il se
sentparfois assez seul. Enplusdesdifficultés inhérentesàce travail, le contexte
difficile qui l’a accompagné, avec notamment l’apparition de la pandémie du
COVID, n’ont pas fait de mon doctorat une période facile. Cependant j’ai
toujours pu compter sur mon entourage, proche et professionnel pour me
soutenir face aux difficultés rencontrées. Il convient donc de remercier tous
ceux qui ont, d’une manière ou d’une autre, contribué à la réussite de ces
travaux.

Cette thèse a été accueillie par l’IRT SystemX. Je suis reconnaissant à cet
institut ainsi qu’à ses membres pour la confiance qui m’a été accordé en me
proposant ces travaux. Elle a été financée dans le cadre du projet S2C, grâce
à la participation des partenaires industriels et académiques du projet ainsi
que le soutien de l’ANR. Cela m’a permis de travailler dans un environnement
professionnel de grande qualité.

J’ai ainsi eu la chance de côtoyer l’équipe S2C, Anouk Dubois, Hanane
Fadiaw, Stephen Creff, Sylvain Champion, Colin Poubel, qui ont été des
collègues formidables, m’ont énormément appris, et avec lesquels j’ai
également partagé de bonsmoments de convivialité.

L’IRT SystemXaccueille denombreux thésards, qui constituent aujourd’hui
une communauté unie. Lorsque je suis arrivé les doctorants avaient encore
relativement peu de contacts entre eux en dehors des projets. Pascal Un et

xi

xii ACKNOWLEDGEMENTS

ClarisseLawsonontalorspris l’initiativedenous réunir etdecréer l’association
DOCSX qui a permis le rapprochement de doctorants de projets differents
ayant des spécialités diverses. Je tiens à les remercier pour cela. Je remercie
également l’ensemble des doctorants de l’IRT pour tous les bons moments
passés ensembles, pour toutes les discussions scientifiques et personnelles.
Merci également d’avoir supporté et répondu à mes sollicitations pour le
séminaire des doctorants de l’association pour l’organisation duquel je pense
que ma succession est assurée. Je pense en particulier à Maria Hanini, Victor
Pellegrain, Tjark Gall, Mariana Reyes, Emmanuel Meunier avec qui nous
avons constitué deux bureaux successifs de l’association. J’ai également eu la
chance de rencontrer Natkamon Tovanitch. Thank you, my friend, for all the
conversations we had. Thank you for having me discover Bo Bun, for showing
me that even through the difficulties the Ph.D.was not impossible to finish and
thank you of course for the beautiful cup that I preciously keep.

Durant cette thèse, j’ai aussi été accueilli par le laboratoire Quartz à l’ISAE
Supméca. Si j’ai été moins présent en ce lieu, j’y ai cependant également fait
de belles rencontres. Je remercie donc toute l’équipe IS2M, qui m’a accueilli,
et qui, pour certains membres de l’équipe avaient également participé à ma
formation d’ingénieur avant la thèse. Mes travaux s’appuient sur l’utilisation
de la théorie des catégories. Ce sujet est apparu dans l’équipe au travers
du travail mathématique de Stéphane Dugowson. Ce sont les discussions
menéesaveccedernierquim’ontpermisd’avoirunemeilleurecompréhension
de la théorie des catégories et de son potentiel. Les conversations avec
Régis Plateaux, Olivia Penas, Nourhene Abdeljabbar et Mouna Fradi m’ont
également beaucoup aidé. De plus j’ai reçu, tout au long de ces trois
années l’aide précieuse de Christel Compagnon dans toutes mes démarches
administratives. Par son travail au laboratoire et sa personnalité elle apporte
un lien fort entre les personnels de Supméca, notamment par l’organisation
des séminaires d’hiver « Les fermes du Vercland », dont je n’ose imaginer le
coût en temps. L’évocation de ce séminaire me permet également d’avoir une
pensée pour toutes les personnes que j’apprécie beaucoup à Supméca, que j’ai
eu la chance de rencontrer grâce à ces événements, notamment Salem quim’a
appris à skier.

Je remercie toutes les personnes qui ont anonymement permis à ce travail
de thèse de s’effectuer dans les meilleures conditions : Les personnels de
ménage, les membres des services informatiques, RH et toute autre fonction
support que j’aurai maladroitement oublié, les conducteurs de bus et de
trains, les personnels du restaurant inter entreprise. Sans toutes ces personnes
les chercheurs ne seraient pas en mesure de travailler et le contenu de ce
manuscrit n’aurait jamais vu le jour.

J’ai été également accompagné par de nombreux amis que je ne saurai
assez remercier pour leur soutien et le temps passé ensemble. Alexandre,
Donatien, Cédric, vous avez été des piliers pour moi sur lesquels j’ai toujours

xiii

pu m’appuyer dans les moments difficiles, j’ai la chance d’avoir pu compter
sur vous pour de nombreuses relectures et autres conseils scientifiques, mais
également pour des défis sportifs ou ludiques. Michel, en sus d’être notre
expert en informatique, tu es un ami sur lequel on peut toujours compter et
je t’en suis extrêmement reconnaissant. Louis, Johanna, Cindy, Lucas, Julie,
Charles, merci d’être de si bons amis. Valoux, Eloïse, Marie, Arnaud, Romain,
Quentin,Maxime,Cécile,mercipour tous lesbonsmomentspassés surdiscord
ainsi que nos quelques entrevues IRL, vous avez été les soleils de l’année 2022,
qui a été la plus difficile dema vie, je ne pense pas que j’aurai pu aller jusqu’au
bout de ces travaux sans vous.

Je tiens également à remercier les membres de mon jury de thèse, Pierre
de Saqui-Sannes, Abdelfattah Mlika, Claude Baron, Antoine Rauzy et Frédéric
Kratz d’avoir accepté d’évaluer mes travaux.

Je ne saurai exprimer toute la reconnaissance que j’ai envers mes
encadrants, Michel Batteux et FaïdaMhenni, ainsi quemon directeur de thèse
Jean-Yves Choley. Vous m’avez fait confiance en me chargeant de ce travail de
thèse. J’ai énormément appris grâce à vous, aussi bien sur le plan scientifique
qu’humain. J’espère faire honneur dans la suite dema carrière à l’opportunité
que vousm’avez offerte ainsi qu’à la qualité de votre encadrement.

Je réserve les derniers mots de ces longs remerciements à ma famille.
J’ai la chance d’avoir deux sœurs formidables, Camille et Marie, que j’aime
énormément. Mes parents ont toujours été un soutien sans faille et c’est grâce
à eux que j’ai pu avancer dans mes études jusqu’à être accepté en thèse. Mes
nombreux cousins, cousines, oncles et tantes que je vois malheureusement
moins souvent, mais avec qui je partage toujours des moments de qualité. Ce
sont votre présence, vos encouragements, vos conseils, qui m’ont permis de
devenir l’homme que je suis aujourd’hui, et de mener à bien ce beau projet
qu’est la thèse.

INTRODUCTION

1 Need for models synchronization and a
formal framework

During recent decades, systems have become more complex as they evolved
towards having multiple features due to the rise of mechatronic design.
This complexity leads to a need to create numerous models during system
design [22]. These models are used to represent the product for the sake of di-
verse modeling intents, thus allowing the analysis of specific properties.

Among these models, we find systems engineering models used to appre-
hendcomplexity in the system. Systemsengineeringencompassesmanymod-
els, including requirement and architecture, safety, andmulti-physicsmodels.
These models are written by different people, using various tools and form-
alisms. This induces an independence between the models that can lead to
problems with consistency between the models. As several models represent
one system, we fear somemodelsmay contain errors,making them incompat-
ible with the designed system. Such inconsistencies are concerning in the case
of safety-critical systems and their safety models, and manual reviews of the
models is time expensive. These systems include cars, trains, aircrafts, nuclear
plants and others. An undetected error in the safety model could lead to not
considering some of the system’s potential failure events. Such errors would
then result in the system being unsafe for the user. When systems have to be
certified to be accepted into the market, e.g., for aircrafts, the safety assess-
ment methodology needs to be accepted by safety authorities. This requires
great trust in the safety assessment process and, therefore, the consistency of
themodels.

This thesis takes place in the S2C (System to Safety Continuity) project at
the Institut de Recherche Technologique (IRT) SystemX. The S2C project is a
four-yearproject launched inApril 2019, incollaborationbetween IRTSystemX

1

2 INTRODUCTION

(Palaiseau) and IRT St-Exupéry (Toulouse). The project involves other part-
ners, which are institutional (DGA), academic (IRIT, LAAS-CNRS,ONERA, Sup-
méca), and industrial (Airbus Defence and Space, APSYS, Dassault Aviation,
LGM, Liebherr, MBDA, Samares Engineering, Thales). The project seeks to ad-
dress continuity between the System Engineering and the Safety Assessment
processes. It is divided into four tasks:

• Task 1: Global Process and lifecycle

• Task 2: Consistencymethodology at a given system level

• Task 3: Consistencymethodology between system level

• Task 4: Safety modelingmethodology

Figure 1: Positioning of the S2C project (Illustration from the S2C project con-
tractual definition)

This thesis is in relation to tasks 2 and 3. Whereas the project encom-
passes all System Engineering and Safety Assessment disciplines, the thesis
focuses onModel-Based System Engineering andModel-Based Safety Assess-
mment. These disciplines address the increase in complexity of systems, and
even though they are not yet widely adopted in industry, their use is rising.

1. NEED FORMODELS SYNCHRONIZATION AND A FORMAL FRAMEWORK3

Dassault Aviation’s Falcon 7X is an excellent example of this phenomenon,
as its electric commands were the first aeronautic system to be certified using
MBSA tools [112].

The systems engineering community proposes different methodologies
suchasmodel federation [54] orproof theory approach [45] to assert andmain-
tain consistency between thesemodels to face the challenge ofmodel consist-
ency. Amongst these methodologies, we also find synchronization methodo-
logies [79]. [79] defines synchronizationmethodologies with three steps:

1. Abstraction: Themodels are translated to a common formalism.

2. Comparison: Themodels are compared in this common formalism.

3. Concretization: The comparison results are carried back to the ori-
ginal models.

Although thesemethodologies exist and providemeans tominimize the num-
ber of contradictions between themodels, there is no formal definition of con-
sistency widely accepted in the community. We primarily understand con-
sistency as the absence of contradiction between the models, but this is not a
criterion that single-handedly allows amethodology’s efficiency to be demon-
strated. Thus, this thesis proposes a formal definition of a binary consistency
relation and a mathematical framework within which we can specify a syn-
chronizationmethodology: the SmartSyncmethodology.

This thesis work is hosted by the IS2M (Ingénierie des Systèmes Mécatro-
niques et Multi-physiques) team in Quartz Laboratory at ISAE-Supméca. Be-
fore working on this thesis, I was an engineering student in ISAE Supméca; at
the end of my term there, I underwent a six months internship at Safran Tech
within the Complex System Engineering team.

During this internship, I worked on the topic of MBSE to MBSA continuity
from a different angle. Using Safran’s Cameo System Modeler plugin, we de-
veloped an extension that allowed us to use the MBSE model. It could also be
overloadedwith safety artifacts, to generate AltaRicamodels. Althoughwe had
a working solution at the end of my internship, some points made me unsat-
isfied with this tool and led me to continue the work with this thesis. The first
point is that this plugin heavily depended on Safran’s Architecture grid. This
plugin could only be used with a model developed by Safran Engineers, using
the Safran plugin and the Cameo System Modeler tool. MBSE models come
with various tools and architecture grids, so we only tackled a specific case of
the problem. The second point is that, although theMBSAmodel we obtained
was consistentwith the architecture by construction, the safety analystswould
heavilymodify it tomake itfit to their specificneed. TheMBSEandMBSAmod-
els aremeant to evolve and for engineers to iterateon them. Thismeanswehad
consistent models at the beginning of the process, but we had no way to verify

4 INTRODUCTION

that they remained consistent. This is whywe need synchronization, to get the
models consistent in thefirst place andkeep themconsistent for thenext steps.

2 The S2ML+Cat mathematical frame-
work

In this work, we propose to use category theory to specify model synchroniza-
tion through a mathematical framework. SmartSync [12] is a synchronization
methodology that was developped by a team that includes the supervisors of
this thesis, which uses S2ML (System Structure Modeling Language [14]) as a
comparison language.

Themathematical framework associated to SmartSync defines S2MLmod-
els as quintuples, in this work we intend to give a new theoretical perspective
over this methodology, through another theory. This is why we propose a new
mathematical framework, where we explore the idea to specify SmartSync and
S2MLmodels through category theory.

In S2ML, the structure of the model is represented using three concepts:
blocks, ports, and connections. These concepts are sufficient to represent any
structural model [100]. To define the categorical framework, we provide a cat-
egorical representation of the S2ML concepts of block, port, and connection.
From thesemathematical definitions, we are able to build a categorical repres-
entation ofmodels. We then provide the proof that we can associate these rep-
resentations to the original S2MLmathematical framework. Thus, we are able
to propose a definition of consistency between these categorical specifications
of structuralmodels in thecontext of SmartSync. Weapply thisdefinition to the
SmartSyncmethodology through the study ofmodel consistency in the design
workflowof an autonomous critical system, a fixed-wing blood delivery drone.

Synchronizationmethodologies are based on the abstraction, comparison,
and concretization steps. In this work, we give a formal meaning to the com-
parison step of SmartSync through the mathematical framework. To that in-
tent, we provide a way to specify structural models as categories by represent-
ingmodel elements as category objects and their relationships as morphisms.
Between such mathematical objects, we can define consistency relations, al-
lowing us to identify themodels’ common skeletons. Therefore, we are able to
detect differences between themodels. Compared to the SmartSyncmethodo-
logy, we add a formal layer that allowsmathematical proofs and computations.
This layer does not affect the end user but it allows to demonstrate the exact
comparison results that will be output by the methodology, not only for one
case study but in the general case. This layer is illustrated in Fig. 2.

3. SUMMARY OF THE THESIS 5

Figure 2: Approach of the comparison with S2ML+Cat

3 Summary of the thesis
The rest of this thesis is composed of five chapters:

• Chapter 1 "State of The Art"
Thisfirst chapter is a state-of-the-art of thenotions related to the thesis. It
introduces SystemEngineering and Safety assessmentmajor concepts. It
describes the existing work aroundmodels and their consistency. Finaly,
it introduces category theory.

• Chapter 2 "A case study: The landing gear"
In this second chapter, we describe the modeling of a landing gear sys-
tem. MBSE and MBSA models are designed with the SysML formalism
and AltaRica 3.0 modeling language respectively. We then compare and
synchronize them using the SmartSync methodology. This case study is
then used as a working example to explain the notions we introduce in
the following chapters.

• Chapter 3 "MBSE andMBSA SystemModels Differences"
In this third chapter, we study the differences between MBSE and MBSA
models. We propose a typology of these differences, which allows us to
distinguish between inconsistencies and other kinds of differences that
should not be eliminated. We also study the feasibily and relevance of
structural consistency betweenMBSE andMBSA state machines.

• Chapter 4 "The S2ML+Cat framework"
This fourth chapter proposes a mathematical framework, S2ML+Cat,
based on category theory. This framework allows for formal representa-
tion of structural models, based on the S2ML language. We define binary

6 INTRODUCTION

consistency relations between two structuralmodels. We also discuss the
possibility of using the S2ML+Cat framework to simplify the synchroniz-
ation whenever previous versions of the models have already been syn-
chronized, and a change history exists.

• Chapter 5 "Application example: The blood delivery drone"
This fifth and final chapter presents themodeling of a second case study,
the blood delivery drone. We use this case study to apply the mathem-
atical framework from chapter 4. We design MBSE, MBSA, multiphysics,
and scenariomodels of the drone. We then operate a SmartSync compar-
isonof eachdomain-specificmodelwith theMBSEmodel. Finally, we ex-
press these comparisonswithin S2ML+Cat to explain how the SmartSync
methodology can bemodeled with S2ML+Cat.

CHAPTER 1

STATE OF THE ART

Before we dive into the depths of model comparison and mathematical ana-
lysis, it is helpful to remind the basic and less basic concepts used in this thesis.

This chapter is divided into four sections. First, we discuss systems engin-
eering, followedby safety assessment. We then focusonmodels and their com-
parison, especially with model synchronization. We finally give an introduc-
tion to the bases of category theory.

1.1 Systems Engineering
The subject of this thesis is consistency betweenModel-Based Systems Engin-
eering (MBSE) andModel-Based Safety AssessmentMBSAmodels. In this first
section of the state of the art we introduce Systems Engineering. Systems En-
gineering is commonly defined as amultidisciplinary field that focuses on the
design of complex systems.

1.1.1 History
Systems engineering emmerged through the work of NASA (National Aero-
nautics and Space Administration) and USAF (United States Air Force) in the
60s [73]. New approacheswere developed in the context of the Apollo program
to offer possibilities of an in-depth, systematic study of the systems.

The Apollo 1 disaster was one of the events that enlightened the need for
better study and traceability over complex systems design. The integration of
designs from theMercury andGemini space programs led to the use of a hatch
design thatmade it difficult to exit themodule. At the same time, no possibility
of a pre-flight incident was taken into account in the safety studies [5]. During
a ground test, an incident caused a fire in the module, leading to the death of

7

8 CHAPTER 1. STATE OF THE ART

flight commanderGusGrissom, astronaut EdwardWhite, and astronaut Roger
Chaffee. A system approach could have avoided this disaster by considering
the astronauts’ needs in the capsule.

Although the beginning of Systems engineering is often associatedwith the
Apollo program, the termwas, in fact, first usedbyBell Telephone Laboratories
in the 1940s [107].

The International Council on Systems Engineering (INCOSE) was founded
in1990. Thisorganizationpromotes international collaboration inSystemsen-
gineering through publications, formation and certification of systems engin-
eers, and centralization of the knowledge over Systems engineering.

TheAssociationFrançaise d’Ingénierie Système (AFIS)was founded in 1998
with similar objectives. The AFIS works with INCOSE to propagate System En-
gineering in France.

Together, INCOSE and AFIS maintain the SE Handbook [63] and SEBoK
(Systems Engineering Body of Knowledge) [5].

1.1.2 Definition of Systems engineering
Multiple definitions of Systems engineering have been given over time by IN-
COSE, AFIS, and othermembers of the System Engineering community. A first
and basic definition is the following one, coming from the INCOSE [63].

"An interdisciplinary approach andmeans to enable the realization
of successful systems"

This definition was completed in the 2012 edition of the SEBoK [64].

"Systems Engineering (SE) is an interdisciplinary approach and
means to enable the realization of successful systems. It focuses on
holistically and concurrently understanding stakeholder needs; ex-
ploring opportunities; documenting requirements; and synthesiz-
ing, verifying, validating, and evolving solutions while considering
the complete problem, from system concept exploration through
system disposal."

The INCOSE official definition, however, was recently updated [5].

"A transdisciplinary and integrative approach to enable the suc-
cessful realization, use, and retirement of engineered systems, us-
ing systems principles and concepts, and scientific, technological,
andmanagement methods."

As a recap, systems engineering has the role of fedarating all engineer-
ing disciplines in order to design systems that meet all stakeholder require-
ments [79].

1.1. SYSTEMS ENGINEERING 9

1.1.3 Design cycle, the V-Model
TheV-Model is omnipresent in Systemdevelopment. It is said tohave emerged
in the1960’s [117], butonlybecamean industry-standard in the1980’s [23]. The
V-Model is built as a more robust alternative to the waterfall model [103].

The idea of the V-Model is to have two separate branches in the iterative
design process. The first branch is a partitioning phase, inwhich requirements
andasystemare specified. Thesecondbranch is an integrationphase, inwhich
parts are integrated and validated. Both branches are linked through a verific-
ation and validation process. These branches can be seen as descending and
ascending respectively, as depicted in Fig. 1.1.

Stakeholder
Requirements

System Specification

Preliminary Design

Component Archi-
tecturing/Production

Product Integration

System Deployment

Business Case
Realisation

V&V

V&V

V&V

Partitionning Int
egr
atio

n

Figure 1.1: The V-Model

The V-Model is an iterative approach, as Verification & Validation (V&V)
shall be operated after each step andmay require going back to previous steps.

1.1.4 Standards
The foundations of systems engineering are defined in standards. The IEEE
1220 IEEE Standard for Application and Management of the Systems Engineer-
ing Process "defines the inter-disciplinary tasks that are required throughout
a system’s life cycle to transform stakeholder needs, requirements, and con-
straints into a system solution" [34]. It is a product-oriented standard that ap-
plies to systemssuchas transportationand informationsystems. This standard
describes eight processes linked together in an iterative process, with require-
ments analysis and validation, functional analysis and verification, synthesis
and design verification being operated in parallel with trade studies and as-
sessments of requirements, functional and design, as illustrated in Fig. 1.2.

The ISO/IEC/IEEE 15288 Systems Engineering—System Life Cycle Pro-
cesses [1] is focused at processes and lifecycle. It replaced the previous MIL-

10 CHAPTER 1. STATE OF THE ART

Figure 1.2: IEEE 1220 systems engineering process. SEP decomposes into eight
subprocesses with their associated tasks, general process flows, and activit-
ies. [34]

STD 499A standard that was canceled on February 27th, 1995; this standard
was an essential influence in the IEEE 15288 and IEEE 1220 [105]. The life cycle
processes are organized in four sections:

• Agreement processes

• Organizational Project-Enabling Processes

• Technical Management Processes

• Technical Processes
These processes are illustrated in Fig 1.3.
Together, IEEE 15288 and IEEE 1220 provide the practices for the sound

design of a system solution.
EIA 632 Processes for engineering a system [51] describes the process and

activities that shall be operated to engineer a system [83]. The standard de-
scribes thirteen processes to design a system that are reported in five sections:

• Technical Management

• Acquisition & Supply

1.1. SYSTEMS ENGINEERING 11

Figure 1.3: IEEE 15288 system life cycle processes [70]

12 CHAPTER 1. STATE OF THE ART

• SystemDesign

• Product Realization

• Technical Evaluation
These processes are described in Fig. 1.4.

Figure 1.4: EIA 632 Process [83]

1.1.5 Models
Models aremade for a purpose; wewill further discuss what this implies in 1.3,
but there is a point to be made here about why we create models in System

1.1. SYSTEMS ENGINEERING 13

Engineering.
We choosewhichmodel to use depending onwhy andwhatwewant to rep-

resent. Depending on the motivation for their creation, we can identify three
kinds of models [79]:

• Models built for communication purposes: These representations are
meant to be used as means to give information over a system to other
people. They can be used for intents such as traceability with tools like
SysML [91].

• Models buit for computation purposes: Computation models, such as
Modelica, are used to represent a particular system behavior and com-
pute indicators.

• Models built for generation purposes: We can also use models that can
generate a solution to a problem. An example of a generation model is
code generation.

1.1.6 System Architecture
With the rise of programming andmicro-informatics, systemarchitectures be-
cameacritical topic in thenineties [74]. Although in thefirst time thediscipline
was first developped for software, it was then extended to complex systems.

One proposition for a definition of system architecture is given in [31]:
"System architecture is an abstract description of the entities of a
system and the relationships between those entities."

System architecture is defined around three principal points of view, de-
scribed by AFIS [30] and INCOSE [5]:

• Operationnal point of view
Represents the capture of stakeholder needs for the system in its op-

erational context during its lifecycle. It identifies the stakeholders and ex-
ternal systems, use cases and operationnal scenarios.

TheBlack box viewdefines the boundary and environment of the sys-
temaswell as its goal. In this view the system is defined through its inputs
andoutputs. Its internals arenot specified, as thedesigners arenot yet in-
terested in what the system does or how it is made.

• Functionnal point of view
Shows the functional requirements through functional modes and

functional structures.
Whiteboxviewthatdefines thesystemand itsoperationatahigh level

of abstraction. In this view the system functions are defined, the design-
ers describe what the system does.

14 CHAPTER 1. STATE OF THE ART

• Physical point of view
Shows the way physical requirements are impemented through ma-

terial configurations, organs, and components allocated to functions.
White box view defines subsystems and components as well as their

structure in a concrete way, allowing to implement the functions. In this
view, the components of the system are defined, the designers describe
how the system is made.

1.1.7 Architecture frameworks
The points of view in System Architecture are characterized by architec-
ture frameworks [5]. Architecture frameworks are defined in ISO/IEC/IEEE
42010 [69] as:

"Conventions, principles, andpractices for the description of archi-
tectures establishedwithin a specific domain of application and/or
community of stakeholders."

Someof themostwell-known frameworks are theDoDAF,DAF,NAF,CESAM
grid, Arcadia, but other researchers have also proposed such methodologies.
These frameworks describe how systems should be designed

Department of Defense Architecture Framework (DoDAF)
The United States Department of Defense developed the DoDAF to provide

an architecture framework for the design of architectures inUSDepartment of
Defense projects. This includes bothweapons development and other kinds of
military technologies.

The DoDAF revolves around viewpoints [33] illustrated in Fig. 1.5:

• All Viewpoint: Describes the important aspects of the architecture across
the different viewpoints.

• Data and InformationViewpoint: Describes the data flows in the system’s
architecture.

• Standards Viewpoint: Describes the system’s normative environment,
which applies to requirements, systems engineering and services.

• Capability Viewpoint: Describes the system’s requirements, capabilities,
and timings.

• Operational Viewpoint: Describes the operational scenarios, activities,
and requirements for the system’s capabilities.

1.1. SYSTEMS ENGINEERING 15

• Services Viewpoint: Describes services and their interconnections for
providing and supporting the system’s functions.

• Systems Viewpoint: Describes the subsystems that provide and support
the functions. Describes their interfaces, ressources, and functionalities.

• ProjectViewpoint: Describes the relationsbetween the requirements and
the project implementation

Figure 1.5: DoDAF viewpoints [33]

CESAMES Systems ArchitectingMethod
The Center of Excellence on Systems Architecture, Management, Economy,

andStrategy (CESAMES)proposed theCESAMESSystemsArchitectingMethod
(CESAM). This methodology is based on the operational, functional, and con-
structional visions, as illustrated in Fig. 1.6.

Eachof these views is basedon requirements, expectations over the system,
and descriptions that answer the requirements.

• Constructional vision: The modeling begins with understanding the
stakeholder’s needs, the environment, missions, and scenarios the sys-
temwill face.

16 CHAPTER 1. STATE OF THE ART

• Functional vision: Functional requirements of the system are declared
("The <component of the system> shall <do something>"). Functional
diagramsaredrawn todescribe the functions that the systemshouldhave
to comply with the functional requirements.

• Operational vision: Constructional requirements are declared ("The
<component of the system> shall <be something>"). Technical diagrams
are drawn to describe the component that should constitute the system,
and their interactions, to comply with the constructional requirements
and operate the system’s functions.

Figure 1.6: Pyramid of the CESAM architecture framework [73]

ArcadiaMethod
The Arcadia methodology is an architecture framework specially designed

for the Capella tool. This methodology revolutes around the three viewpoints,
each associated to specific diagram [102]:

• Operational needs: The Operational Architecture Blank diagram repres-
ents the allocation of Operational Activities to Operational Entities.

• System Analysis: Dataflow diagrams represent the system to show func-
tional chains and the information dependancy between them.

• Logical architecture: Fonctions are represented in architecture diagrams
and their relations. Scenariodiagramscanalsobeused to represent func-
tional scenarios.

1.1. SYSTEMS ENGINEERING 17

• Physical architecture: Subsystems and Components are represented in
architecture diagrams, with tree diagrams representing system break-
downs.

Theseviewpoints aremodeled inan iterativeprocess andcoupled throughper-
formance, safety, and cost viewpoints, with bridges towards these disciplines.

An overview of themethodology is given in Fig. 1.7.

Figure 1.7: Capella big picture [102]

Some other examples
We can find other examples of architecture frameworks proposed by re-

searchers and software editors that do not call themselves Architecture frame-
works but rather Model-Based System Engineering methodologies. A more
complete survey of these frameworks can be found in [42].

Rational Harmony for System Engineering is a SysML-based methodology
that encompasses the V-Cycle [60]. It revolves around threemain processes:

• Requirements analysis: An analysis of the process input. The stakeholder
requirements areanalyzedand refined, anda"StakeholderRequirements
Specification" is created.

• System functional analysis: The functional system requirements are
transformed into adescriptionof system functions. This analysis is based
on use cases.

• Design synthesis: A physical architecture that can perform the functions
is developed. Design synthesis is a top-down approach that begins with

18 CHAPTER 1. STATE OF THE ART

architectural analysis, then architectural design (with iterations between
these two first steps at each level of decomposition), and finally, detailed
architectural design.

TheObject-Oriented Systems EngineeringMethod (OOSEM) is a top-down
methodology that uses SysML [42]. Thismethodology, presented in section 9.4
of the INCOSE System Engineering Handbook [61] includes six activities: Ana-
lyze stakeholder needs, Define system requirements, Define logical architec-
ture, Synthesize candidate allocated architectures, Optimize and evaluate al-
ternatives and Validate and verify the system. It aims to support the analysis,
specification, design, and verification of systems [49]

Mhenni et al. [88] describe a methodology for the design of mechat-
ronic systems using SysML diagrams. First, black-box analysis is performed
to identify a set of requirements. The global mission of the system is defined,
alongwith its lifecycle, context, external interfaces, the services it provides, and
its functional scenarios. This leads to requirements specification and traceab-
ility. Then aWhite-box analysis is performed to design the system’s functional,
logical and physical architecture.

Themagic grid framework [7] was proposed by the editor NoMagic as guid-
ance to using its tool MagicDraw. The system is modeled through Require-
ments, Behavior, Structure, and Parameters at the Problem, Solution, and Im-
plementation levels. This is done through the black box (the system’s internals
are not specified) andwhite box (the system’s internals are specified) perspect-
ives and with operational, functional, and physical points of view.

Knowing these frameworks allows us to understand how complex systems
are designed. Although we have described a few of them, we do not compare
them, as the work presented in this thesis does not rely on one of them but
seeks to be agnostic of the architecture framework.

1.1.8 Model-Based System Engineering
The usual approaches for Systems engineering have been using documents
to describe the system’s requirements, environment, architecture, and other
views. Although those documents are sometimes created in tools such as Excel
or Doors, they are textual and rely on natural language.

The model-based approach in Systems engineering originates in model-
based software development [42]. Software developers use such approaches
to represent software architecture, with tools such as the UML notation [90].
This language was derived into the SysML notation [91], which system engin-
eers use to describe complex systems. Another MBSE notation is CAPELLA,
which is associated with the Arcadia architecture framework.

Themodel-basedSystemsengineering tools suchasSysMLorCAPELLAuse
diagrams to represent different system views. Structural and behavioral as-

1.1. SYSTEMS ENGINEERING 19

pects are represented, with diagrams such as requirement diagrams allowing
for representation of the requirements, activities diagrams allowing for repres-
entation of the functions, and block definition and internal block diagrams al-
lowing for representation of the architecture. The MBSE languages present a
lack of semantics [115], which causes ambiguities without using a third-party
methodology. Therefore architecture frameworks (see section 1.1.7), provide
guidelines to create systems.

Although we often use MBSE for such diagrammatic models, Systems en-
gineering encompasses various disciplines. Therefore, some domain-specific
languages (DSL), such as languages formulti-physics or safety assessment, can
also be interpreted as part of MBSE.

1.1.9 Harel Statecharts
The MBSE models can include a behavioral description of the system. In the
case of SysML, part of this behavior is represented through Harel Statecharts.

As specified in [91], the SysML concept of State Machine is derived from
the state machines found in the UML language [90]. These State Machines are
mostly based on Harel’s Statecharts, a broad extension of conventional state
machines and state diagrams. A complete description of the Statechart form-
alism can be found in [56], with a description of a semantic for the formalism
in [57].

Statecharts are a visual formalism that extends the usual state machines
and state diagrams. In the sameway as traditional statemachines, a Statechart
is composed of states that are connected through transitions, each transition
having a source and a target state.

In addition, the Statechart formalism provides a way of expressing depth in
themodelwith composite states. A composite state is a state that can encapsu-
late other states, as pictured in figure 1.8. The composite state can be entered
by entering one of the encapsulated states. It can also be entered by being the
target of a transition, in which case an initial state has to be declared and will
be entered. The composite state can be the source of a transition, thus leaving
any internal state that the Statechart was in if the transition is fired.

Finally, Statecharts have orthogonal states that are composite states with
multiple "orthogonal components" such as, when entering the orthogonal
state, the Statechart enters one state in each orthogonal component. An ex-
ample of orthogonality is found in figure 1.9. In this example, an orthogonal
state Y encapsulates states A and D, when Y is entered, state A and B are entered
and therefore states B and F are entered as they are the initials states of respect-
ively A and D—this is shown by thembeing the target of the transitionwith the
black point as its source.

20 CHAPTER 1. STATE OF THE ART

Figure 1.8: State chartwith composite stateD encapsulating states A andC [56]

Figure 1.9: State chartwith orthogonal state Y encapsulating states A andD[56]

1.2 Dependability
The subject of this thesis is consistency between Model-Based Systems En-
gineering (MBSE) and Model-Based Safety Assessment MBSA models. This
second section of the state of the art introduces dependability, which MBSA
is a part of. Dependability is an engineering field that aims at making systems
reliable and safe.

1.2.1 History
Dependability emerges from the necessity to assess the reliability and safety of
a product. This need is not new, but the techniques used to carry on analyses
have widely evolved in the last century.

Until the renaissance, itwasbelieved that a chain’sweakest linkwas itsmain
defining element. Dependability would therefore be simply conduced by rein-

1.2. DEPENDABILITY 21

forcing that element. Many events during the late nineteenth and early twen-
tieth centuries led to the emergence of safety analyses.

The InterSection magazine of November 2004 [40] lists some of these
events; we sum them up, along with a few other events, in table 1.1.

1842 • Versailles rail accident
1903 • Parisianmetropolitan fire
1912 • Sinking of the Titanic

until 1930’s • Intuitive approach: reinforce
the weakest link

1930’s • Beginning of air transports
• Statistic approach with failure

rates
1940’s • Murphy’s law : "Anything that

can go wrong will go wrong."
1950 • Advisory Group on the

Reliability of Electronic
Equipment (AGREE)

• Mean Time Between
Failures(MTBF)

1960’s • Failure modes and Effects
Analysis (FMEA)

• Fault trees
1967 • Appolo 1 disaster
1970’s • Risk assessment
1986 • Tchernobyl accident
1990’s • Model-Based Safety

Assessment (MBSA)

TABLE 1.1 Chronology of events during the emergence of Dependability

1.2.2 Definition
Alain Villemeur [114] defines dependability by

"la sûreté de fonctionnement consiste à évaluer les risques po-
tentiels, prévoir l’occurrence des défaillances et tenter de minim-
iser les conséquences des situations catastrophiques lorsqu’elles se
présentent."
"Dependability consists in evaluating potential risks, predicting
failure occurrences and trying to minimize consequences of cata-
strophic situations when they happen."

22 CHAPTER 1. STATE OF THE ART

Another definition, given by IEC 60300-3-4 [67] is:

"Dependability is the ability to perform as and when required. A
dependable item is one with justified confidence that it operates as
desired and satisfies agreed stakeholder expectations."

While agreeing with the latter definition,Marvin Rausand and Arnljot Høy-
land [97] consider dependability as a characteristic of the system that can be
measured through:

• Mean Time To Failure (MTTF)

• Number of failures per time unit (failure rate)

• The probability that the itemdoes not fail in a time interval (0, t] (survival
probability)

• The probability that the item is able to function at time t (availability at
time t)

A dependable system will not fail more often than it is acceptable to fail. To
achieve the dependability of the system, analyses are operated to compute
chosendependability parameters and estimate howoften itwill fail. Redesigns
can be made to improve the system. In the following parts of this section, we
detail how this process is operated.

1.2.3 Concepts
Avizienis and Laprie [76] proposed a dependability taxonomy, organised with
the three following concepts :

• Attributes are system parameters that can be assessed to evaluate their
dependability. They includeavailability, reliability, safety, integrity,main-
tainability, and confidentiality.

• Means are methods and technics meant to optimize attributes; they aim
at making the systemmore dependable.

• Threats are events that affect the system’s dependability. They include
faults, errors, and failures.

These concepts and their implications are summed up in Fig. 1.10.
As these concepts are mainly safety oriented, it is essential to note the dis-

tinction between safety and security. Safety is the system’s resilience to acci-
dental harm, whereas security is its resilience tomalicious harm [85]. This dis-
tinction is essential, as this results in two engineering fields, which, although

1.2. DEPENDABILITY 23

Dependability

Attributes Means Threats

Availability

Fiability

Security-Safety

Confidentiality

Integrity

Maintainability

Fault prevention

Fault resilience

Fault elimination

Fault prediction

Faults

Errors

Failures

Figure 1.10: Taxonomy of dependability [76]

they sharemany resemblances, are separate and usually operated through dif-
ferent tools and teams [46]. We have used the term Threat in the taxonomy, as
it is widely used in the literature, but this word can be misleading as it implies
an attacker. A better word would be Hazard, which is the safety equivalent of
a threat, i.e., a dangerous situation [11]. In the same way, in the safety vocabu-
lary, we talk about failures for events where the system functions are not fully
functional. In contrast, the corresponding security conceptwould be an incid-
ent.

In this thesis, we are interested in the systems’ safety and will not consider
security concepts.

1.2.4 Standards
The ISO/IEC 61508 [71] describes the general methodology used for the safety
assessment process of electrical/electronic/programmable electronic systems
(E/E/PES). This standard considers that since zero risk cannot be reached, the
probability of failure should be known and lowered asmuch as possible.

To achieve functional safety, the IEC 61508 uses three safety lifecycles [19]:

• Overall Safety Lifecycle

• E/E/PES Safety Lifecycle

• Software Safety Lifecycle

24 CHAPTER 1. STATE OF THE ART

The E/E/PS Safety Lifecycle and Software Safety Lifecycle are parts of the
Overall Safety Lifecycle. They include a definition of safety requirements spe-
cific to E/E/PES and Software, their validation, and the design and integration
of the E/E/PES and Software parts of the system.

The Overall Safety Lifecycle is illustrated in Fig. 1.11. The idea behind this
lifecycle is to make the approach so that a check is made after each phase to
confirm that the required outputs have been produced [26]. This is achieved
through methodical planning of the functional safety activities, with inputs
and outputs defined for each phase.

The approach preconized by the IEC 61508 is to develop the system and its
functions and then operate a Preliminary Risk Analysis (PRA) over the system.
During thisPRA,Safety IntegrityLevels (SIL) areattributed toeachpossible fail-
ure of the system.

ASIL is a criticality level for a failureof the system. It is attributeddepending
on the level of danger associated with the failure and corresponds to a target
failure measure. Target failure measures are themeasured probability that the
failures will happen per hour.

These target failuremeasures are defined depending on the demandmode.
Low demand mode is when the frequency of demands for the function is less
than once per year and less than twice the proof-test frequency (meaning that
the system is checked between each function use). High demand or continu-
ousmode is when the frequency of demands is more than once a year or twice
the proof-test frequency.

Description of the SIL can be found in table 1.2. IEC 61508 does not expli-
citly state the safety integrity levels requirements for safety functions, as they
widely depend on the applicative context.

The different fields of engineering use either the IEC 61508 standard or spe-
cific standards that are derived from IEC 61508; these standards are detailed in
table 1.4.

Level Target failuremeasure Target failuremeasure
in low demandmode in continuous or high demandmode

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5

Table 1.2: Levels of SIL in IEC 61508

In the aeronautic context, DO-178B [104], summarized in [110], declares
five levels of criticality called Design Assurance Level (DAL). They are equival-
ents of the IEC 61508’s SIL. These five levels are detailed in table 1.3.

1.2. DEPENDABILITY 25

Figure 1.11: Overall safety lifecycle of the IEC 61508 series [71]

26 CHAPTER 1. STATE OF THE ART

Level Name Failure Rate
A Catastrophic 10−9/h
B Hazardous 10−7/h
C Major 10−5/h
D Minor 10−3/h
E No Effect n/a

Table 1.3: Levels of DAL in DO-178B

ADAL level is attributed to a failuremode through its effects. ARP 4761 [62]
defines these effects as such:

• Catastrophic: All failure condition that prevent continued safe flight and
landing

• Hazardous: Large reduction in safety margins or functional capabilities.
Higher workload or physical distress such that the crew could not be re-
lied upon to perform tasks ccurately or completely. Adverse effects upon
occupants.

• Major: Significant reduction in safety margins or functional capabilities.
Significant increase in crewworkload or in conditions impairing crew ef-
ficiency. Some discomfort to occupants.

• Minor: Slight reduction in safety margins. Slight increase in crew work-
load. Some inconvenience to occupants.

• No Effect: The failure does not affect the flight safety
[21] does a survey of the categories used for criticality in diverse industries.

We detail the equivalents of SIL and DAL in table 1.4.

Industry Criticality Levels Standard
Automotive Automotive Safety Integrity Level (ASIL) IEC 61508 [71], ISO

26262 [68]
Railway Safety Integrity Level (SIL) EN 50129 [6]
Nuclear Plant Condition Categories (PCCs) IEC 61226 [65],

IEC 61838[66]
Aeronautics Design Assurance Level (DAL) DO-178B [104]

Space 3 categories ECSS Q30 [43],
ECSS Q40 [44]

Table 1.4: Criticality levels in diverse industries

1.2. DEPENDABILITY 27

1.2.5 Tools and methodologies for safety assess-
ment

1.2.5.1 Tools for safety assessment
FailureModes and Effects Analysis (FMEA):
The failure modes and effects analysis is one of the first systematic meth-

odologies for safety assessment. It was first introduced by the US military in
MIL-P-1629 [113], later revised inMIL-P-1629A [8].

TheFMEAanalyzes each system’s functionwith the attributionof every fail-
ure mode. These failure modes include:

• Loss of the function

• No answer to solicitation

• Partial loss of the function

• Intempestive triggering of the function

The effects of each failure are declared in the FMEA table, and criticality is at-
tributed to them depending on the danger they represent. This criticality is
usually part of one of the norms cited in 1.2.4, such as SIL, ASIL, PCCs or DAL
levels.

Fiability diagrams:
A fiability diagram is an alternative vision to the fault tree. It focuses on the

systemand its states rather thanevents. Afiability diagram is composedof [92]:

• An entry E, a diagram body, and an exit S;

• A flux transmitted from E to S, going through the diverse paths;

• Failures of some entities block the flux at the failed component.

If there is no path from E to S, the system is failed; otherwise, it is functional.

Fault trees:
Fault tree analysis (FTA) uses logic trees that allow to compute causality in

the occurence of diverse events and a failure condition. The Bell Telephone
Laboratories first introduced it in the development of the Minuteman missile
in the 1960’s ([116] cited by [118]).

Fault trees are composed of events, leafs of the tree, and logical gates that
lead to the tree’s root. The tree’s root represents a failure conditionof the system
that the fault tree focuses on. Fault trees allow us to split the failure conditions

28 CHAPTER 1. STATE OF THE ART

into detailed events [109]. Events of the tree represent basic events of the sys-
tem, such as component failures. An example of a generic fault tree is shown
in Fig. 1.12. This fault tree is equivalent to the logical proposition:

F ai lur eCondi t i on ≡ (Event1∨Event2)∧ (Event3∧Event4)

Failure rates are attributed to the events; in this case, an exponential law of
parameter λ= 10−6, i.e., for t > 0, the probability of a failure at time t is:

f (x) =λe−λt = 10−6e−10−6t

Through the logical gates, the fault tree allows to computewhich combinations
of events lead to the failure condition andwithwhich rate; these combinations
are called cuts.

Figure 1.12: Exemple of a small fault tree for a battery

A cut that no longer leads to the failure condition being true if any event
is removed is called a minimal cut. For the the fault tree from figure 1.12, the
minimal cuts are listed in table 1.5. We call order of a cut the number of events
in this cut.

Cut order Event set minimal cut
3 {Event1, Event3, Event4} yes
3 {Event2, Event3, Event4} yes
4 {Event1, Event2, Event3, Event4} no

Table 1.5: Minimal cut sets for the fault tree from Fig. 1.12

1.2. DEPENDABILITY 29

Markov Chains:
Markov chains represent the diverse possible states of the system and their

relations. They implement the notion of reconfiguration, i.e., the ability to
repair the system after a failure. They also allow the evaluation of fiability,
through probabilistic computations.

Andrei Markov introduced Markov chains in 1906 as an extension of the
Bernoulli model [50]. They are sequences of random variables within which
the probability of moving to the next step only depends on the present state
and not on the previous ones.

Figure 1.13: example of a graph representing aMarkov chain

We can describe a Markov chain through an oriented graph with weighted
edges. The graph in Fig. 1.13 represents a Markov chain with four states; the
weights of the edges are the probability of moving onto the next state. We can
also see this Markov chain as thematrix from Fig. 1.14.

0.5 0.5 0 0
0 0.2 0.2 0.6

0.3 0 0.7 0
0 0 0 1


Figure 1.14: Simulationmatrix for theMarkov chain from Fig. 1.13.

Petri nets:
Petri nets were first introduced in Carl Adam Petri’s Ph.D. thesis [94] in 1962.

A Petri net is an oriented graph with two types of vertices, places and trans-
itions. The edges of the petri net can run from a place to a transition or from

30 CHAPTER 1. STATE OF THE ART

a transition to a place. A place can contain tokens that are consumed when a
transition is fired from that place and created when a transition is fired to that
place.

Mathematically, a Petri net is a tuple N = (P,T,F,W,m0) where:

• P and T are disjoint sets of places and transitions

• F ⊆ (P ×T)∪ (T ×P) is the flow relation, i.e., the set of arcs of the oriented
graph.

• W : ((P ×T)∪ (T ×P)) →N it the arc weight mapping

• m0 : P →N is the initial marking, i.e., the initial distribution of tokens.

A transition can only be fired if all incoming arcs have weights lower than the
number of tokens in their source places. Fig. 1.15 shows a Petri net withWork-
ing and Failed places and Failure and Repair transitions. The working place
contains a token, meaning that the failure transition with a weight of 1 can be
fired.

Figure 1.15: Petri Net for aWorking/Failed component.

Since the 80’s petri nets have been used as behavioral models for Monte-
Carlo simulations [92]. Stochastic Petri nets are Petri nets within which delays
are allocated to the transitions. They can be used to model the dysfunctional
behavior of components.

Model-Based Safety Assessment:
Similarly to MBSE, the field of safety analysis is faced with the challenge of

complexity. The traditional approaches, suchasPetri nets, reliability blockdia-
grams, event trees, and fault trees, are models that are very close to mathem-
atical equations and lack structure or lack expressivity power. They also are

1.2. DEPENDABILITY 31

very abstract compared to the system specification. The model-based safety
assessment (MBSA) approaches aims at answering these limitations.

There are two very different approaches toMBSA [80]:

• Defining safety assessment through the extension of the models used in
system development.
Examples of such approaches are [59] where the SysML model is used
to produce a FMEA or [29] where the SysML model can be used to pro-
duce fault trees. Saqui-Sannes et al [106] also propose a methodology
where they use a software called TTool along with SysML to enrich the
MBSEmodel with safety and security properties and check whether they
are compliant or not with the requirements. Lai et al. [75] make a liter-
ature review of these approaches. Such approaches will produce safety
artifacts that are consistent with the architecture by construction. How-
ever, they require overloading the systems engineering model with ar-
tifacts with different modeling intents than the original System Engin-
eering. Hierarchically PerformedHazardOrigin and Propagation Studies
(HiP-HOPS) [93] is a MBSA tool that is based on simulink.

• Performing safety assessment based on dedicatedmodels.

In this work, we focus on dedicatedMBSAmodels.
The MBSA models have a high expressivity, they represent systems with

a point of view closer to their architecture. The gain on expressive power
is obtained by going from Boolean formalisms to state or event formalisms.
There are three different kinds of model-based risk and safety assessment
formalisms [16], including specialized profiles of MBSE tools such as [87], ap-
proaches that extend fault trees or reliability block diagrams such as dynamic
fault trees [35] and model-based safety and reliability assessment modeling
languages. In this work, we are interested in MBSA modeling languages, such
as SAML [53], Figaro [25], and especially AltaRica 3.0 [15].

AltaRica 3.0 is the third version of the AltaRica language; it is based on the
mathematical framework of guarded transition systems (GTS) [98], which are
state automata.

Guarded Transition Systems The AltaRica 3.0 language [15] is designed
around the concept of Guarded Transition Systems (GTS). The GTS formalism
generalizes Blocks diagrams and Petri nets, as described in [98].

A GTS can contain variables, more precisely state variables to represent
the states of the system, and flow variables to represent elements exchanged
between components of the system; events, transitions and assertions.

Anevent allows for the triggeringof a transition,whichwill change thevalue
of state variables. E.g. if a variable s is defined over a set of values {OK, KO} and
initiated toOK, thenwecandefineaneventfailureassociatedwitha transition

32 CHAPTER 1. STATE OF THE ART

changing the value of state from OK to KO. The domain of the variable s is de-
clared using the keyword domain. We can also declare Real, Boolean, or other
common types as values for state variables or parameters. For example we de-
clare Booleans input and output with reset value true. This is illustrated in
figure 1.16.

Finally, assertions are used to constrain the variables of the system. For ex-
ample, in Fig. 1.16 we set up the output value to be equal to input if the system
state is OK and false if the system state is KO.

domain systemstate {OK, KO}
block system
systemstate s (init = OK);
Boolean input, output (reset = true);
event failure;
transition
failure : s == OK -> s := KO;
assertion
output := if s == OK then input else

false;
end

Figure 1.16: example of the AltaRica3.0 representation of a GTS

It is possible to compose GTS. In that way, we can definemultiple compon-
ents in a system, each associatedwith oneGTS. The composition of twoGTS is
defined as their free product as depicted in [98] and results in a GTS. AltaRica
3.0 models withmultiple components are shown in section 2.2.3.

1.2.5.2 Safety Assessmentmethodology
In the aeronautics field, a system’s dependability must be thouroughly ex-
amined to comply with certification authorities’ guidelines. The productmust
be safe, as passengers are unlikely to survive a crash, and a plane can carry tens
or even more than a hundred people. Thus, aircraft manufacturers carry out
very thorough safety analyses of their systems.

The ARP4761 [62] provides recommended practices for the safety assess-
ment of an aircraft. These practices are widely followed by aircraft and aircraft
enginemanufacturers and are currently themost exacting safety analyses car-
riedout onengineered systems. Other engineeringfields, suchas the automot-
ive and railway industries or the nuclear industry, also carry out safety studies
using part of the tools we cite.

Functionnal Hazard Assessment (FHA):
FHA is thefirst step of safety assessment. Systems functions and risks related

1.3. MODELS 33

to them are listed. Failure conditions are identified, and a severity is allocated
to each, depending on its effects. A maximal failure rate requirement is then
allocated to each failure conditionaccording to its severity. This process results
in an FMEA table.

Preliminary System Safety Assessment (PSSA)
PSSA is the second step of safety assessment. It is an iterative process within

which engineers assess the system’s conformity with the safety requirements
of the FHA. Based on the FHA results, fault tree analysis is usually used to com-
pute which sets of events can result in failure conditions.

System Safety Assessment (SSA):
SSA is the third and final step of the Safety assessment. It is a validation ap-

proach for thedesign, similar toPSSA.SSAdiffers fromPSSAbybeingabottom-
up approach, as opposed to the top-downPSSA. By allocating occurrence rates
to events in the FTA, the occurrence rates of the failure conditions can be com-
puted. These failure rates are compared to the safety requirements to assess
the system’s safety.

Common Cause Analysis (CCA):
CCA is conducted in parallel with FHA, PSSA, and SSA. It aims to evaluate

the architecture’s sensitivity to events with common causes or modes. CCA
is achieved through particular risk, zonal safety, and common cause risk ana-
lyses.

1.3 Models
Because we are interested in models, and especially models consistency, they
are the topic of this third section of the State of TheArt. In this sectionwebegin
with adefinitionofwhat amodel is andan introduction tomodels, andwe then
focus onmodel consistency and comparison.

1.3.1 Definition
A model is an abstraction of reality. Models can be of different nature. For ex-
ample, they can be [79]:

• An abstract representation such as a mathematical description such as
equation systems

• A graphical description such as diagrams or schematics

• An informatic model such as a language or an algorithm

34 CHAPTER 1. STATE OF THE ART

In this work, many of the models we consider are conceptual or informa-
tion models. An information model represents concepts, relationships, con-
straints, rules, and operations to specify data semantics for a chosen domain
of discourse [78]. We also work with some simulation models that allow us to
represent the system and compute some of its indicators.

We explained in 1.1.5 that we can dividemodels into three kinds depending
on theirmotivation: Communicate, compute andgenerate. Thesemotivations
drive themodel designers’ choice of which representation they will use. Com-
munication will often use graphical or physical models, whereas computation
and generation require more formal models such as mathematical or inform-
atic ones.

1.3.2 Syntax and semantics
In order to design models unambiguously, we need languages that allow us to
define them.

Such languages require a syntax, which is elements used to express con-
cepts and a way to combine them to create structure in the language.

It also requires a semantic in order to give it meaning.
Syntax and semantics are the two pillars of formal languages used in mod-

eling. David Harel and Behrnard Rumpe give one definition of syntax in [58]:

"Depending on the language type, syntactic elements canbewords,
sentences, statements, boxes, diagrams, terms, models, clauses,
modules, and so on."

The syntax is the language’s words and the form that the programormodel will
have.

Semantics is more challenging to define. They attribute meaning to the
things that are written using syntax. Of course, they are linked to syntax and
cannot exist without it. Robert Floyd proposes an approach for the definition
of semantics to assignmeaning to programms [47]:

"A semantic definition of a programming language, in our ap-
proach, is founded on a syntactic definition. It must specify which
of the phrases in a syntactically correct program represent com-
mands, andwhat conditionsmust be imposed on an interpretation
in the neighborhood of each command."

Together, syntaxandsemanticsprovide rules towrite a correctmodel. How-
ever, it is important to note that a model can be both syntactically correct and
semantically wrong. Examples of that idea can be found in natural language.

"The teapot ate my cat."

1.3. MODELS 35

This sentence is grammatically correct; it follows the construction rules for
a phrase in the English language. However, it is semantically incorrect, as it
makes no sense since a teapot does not eat things.

Through complete syntax and semantics, we obtain a language that allows
unambiguously expressing a set of concepts. In a perfect world, any language,
whether written or graphic, should have complete syntax and semantics; we
can call such a language "formal". However, that is not always the case, and
many languages are not formal. For example, natural languages usually have
incomplete semantics and result inpossible ambiguities. Similarly, somemod-
eling languages do not have complete semantics. Most MBSE languages, such
as SysML, have incomplete semantics, and it is impossible to specify these
models [115] formally.

1.3.3 Structural models and behavioral models
The MBSE andMBSAmodels are two different kinds of models that represent
the same systems with two different modeling intents. The modeling intent is
the primary constraint on the representation of the system in thesemodels.

In [17], the authors state that models are composed of behavior and struc-
ture. Thismeansmodeling languages are composed of amathematical frame-
work and structural construction. Depending on the modeling intent, engin-
eers use different models that allow for the representation of diverse behavi-
ors. Because of the need for these diverse points of view over the behavior, and
becausewe do not always obtain amodel through the composition of two het-
erogeneousmodels, the diversity of models is irreducible [100].

Thereforewe cannot avoid the creationofmultiplemodels representing the
samesystemand, therefore, the samestructure, albeitwithdifferentbehaviors.
This leads to the problem of asserting consistency between these models. In
this work, we are interested in comparing the structure of the models, as we
want to show that the architectures of the systems represented by the models
are the same.

1.3.4 Model consistency
Different approaches exist to assert consistency between heterogeneousmod-
els. The model federation [54] approach uses a database to store all data from
a system’s models. Within that database, the user can assert consistency and
traceability between themodels.

Proof theory is used by [45] in their inconsistency management approach.
Thismethodologydefinesmodels asfirst-order logics, identifying inconsisten-
cies through a computer-aided proof tool.

36 CHAPTER 1. STATE OF THE ART

Figure 1.17: Model synchronisation approach.

Another approach toheterogeneousmodel consistency ismodel synchron-
isation [79]. The synchronization consists of a three-step process, which is il-
lustrated in Figure 1.17:

• Abstraction:
Themodels are translated into a common formalism.

• Comparison:
The comparison is operated in the abstracted models. Writing the com-
paredmodels in a standard formalismmakes the comparison easier than
with heterogeneousmodels.

• Concretization:
The comparison results are carried back to the original models. Concret-
ization can be achieved by correcting the models, annotations, or other
means.

Since they are written in heterogeneous languages, it is impossible to com-
pare the models as is. This is why they are translated to a common formalism
that supports the artifacts required for comparison. In this common formal-
ism, the models can be compared, i.e. we can find the correspondances and
differences between them. Finally, as we want to have consistent models, the
concretization step is meant to eliminate the inconsistencies, based on the
comparison results.

The model synchronization approach is the base for different methodolo-
gies. In this work, we intend to specify them in amathematical framework.

The SmartSync synchronization framework [13], is a synchronization
methodology. Its authors provide a methodology and tools for synchronizing

1.3. MODELS 37

the MBSE and MBSA models [12]. The comparison is operated on abstracted
models written with the S2ML language, described in subsection 1.3.6.

SmartSync relies on the user to manually align model elements, as de-
scribed in Section 5.2.1.

The directed graphmethodology from [20] is also a synchronizationmeth-
odology. It does rely on the abstraction of the models towards graphs. In the
graphs, vertices represent parts and ports from SysML and blocks and classes
fromAltaRica; edges represent connectors fromSysMLand assertions fromAl-
taRica. This framework allows for using graph search algorithms to traverse the
graphs, and the use of concepts such as graph and sub-graph isomorphisms to
compare themodels.

The consistency links methodology [32] is another synchronization ap-
proach that creates links betweenMBSE andMBSAmodels. Thismethodology
mainly focuses on the functional aspect of the system.

The three latest methodologies provide a structural comparison between
Systems engineering and safetymodels. They rely on comparisonmodels that
follow the block, ports, and connection structure described in Section 1.3.3,
with different ways to represent them.

1.3.5 SmartSyncMethodology
The SmartSync approach is the one we use in this thesis’s case studys. It is op-
erated through the following steps [95]:

1. Transformation of models into S2ML (today is done manually, can be
automated)

2. Basic comparison of S2ML Models (automatic), the tool provide a list of
themodel elements at the first system level

3. Analysis of the generated report and creation of a matching file from the
report (manual)

4. Comparison of S2MLmodels with amatching file (automatic)

5. Analysis of the generated report and population of thematching file with
new correspondences (manual)

6. Comparison with a populatedmatching file (automatic) and so on. . .

These steps are illustrated in Fig. 1.18.
If an element has no equivalent in the other model, the user can give it the

attribute forget if he can justify why it is not an inconsistency.
The SmartSync tool takes two S2ML compiled models (in the XML format)

as input and outputs a CSV comparison file. The user aligns the elements from

38 CHAPTER 1. STATE OF THE ART

Figure 1.18: Model synchronization process using SmartSync [95]

both models in the CSV file, then re-iterates the SmartSync comparison with
the two S2ML compiled models and the CSV file as an additional input. The
SmartSync tool can then identify the children’s elements and provides a new
CSV comparison file to the user for the next iteration.

1.3.6 S2ML - System StructureModeling Language
As its name subtly suggests, the System Structure Modeling Langage
(S2ML) [14] is amodeling language dedicated to the representation of systems’
structures. This language is the foundation of the S2ML+X paradigm [100].
The S2ML+X paradigm relies on the thesis (explained in 1.3.3) that models
are composed of structure and behavior. S2ML is the structural basis for a set
of modeling languages that implement different behaviors over a common
structural paradigm. These languages include AltaRica 3.0 and SCOLA, which
we use in this thesis. Although those languages are not derived from it, we can
also see S2ML as a paradigm for other structuring languages, such as Lustre
or Modelica. In this thesis, we demonstrate in Chapter 5 that we can consider
synchronizingModelica models withMBSE by translating them to S2ML.

The S2ML language is built around basic elements: blocks, ports, and
connections. These three basic concepts, although very restricted, allow for
a robust conceptualization of systems. Many languages can be interpreted
through them, such as SysML, AltaRica, Modelica, and Lustre.

The S2ML models can be mathematically described as a quintuple
< P,C ,B ,α,r > [18], where:

1.4. CATEGORY THEORY 39

• P and B are sets of symbols called ports and blocks, respectively;

• C is a multiset of subsets of P called connections;

• α is a subset of B × (P ∪C ∪B) such as any element of (P ∪C ∪B) that is
associatedwith, atmost, auniqueelementofBcalled itsparent, and there
exists a unique block r ∈ B with no parent.

1.3.7 Multiphysics models
We explained in 1.3.3 that we need two different models when facing two dif-
ferent modeling intents. This results in diverse physical phenomena happen-
ing to the system being simulated using different models. This makes sense
as, for example, the aerodynamics of an airfoil are a physical phenomenon en-
tirely different from its deformation. Nonetheless, the deformation of an air-
foil depends on the forces applied to it and, therefore, on the aerodynamic
forces. Similarly, its aerodynamics depends on its geometry andmight change
when deformed. The multiphysics simulation domain seeks to answer this is-
sue by providingmeans to correlate the computation of indicators that are in-
terlinked [72].

Even though couplingmodels is an integral part ofmultiphysics, it requires
computation times that are those of the simulations it uses. During the design
of a system, it is often required to obtain quick results over its parameters, even
if theywill havea lesserprecision. This results in theexistenceofmeans forpre-
sizing, which allows for simplification of the problem and multiphysics simu-
lation. Some of these tools are simulink [84] and modelica [9]. They allow for
simple multiphysics modeling of systems based on differential equations.

In the last case study of this thesis (Chapter 5) we useModelicamodels of a
drone in theconsistency study. Through thatexampleweshowthatSmartSync,
and also the mathematical framework – S2ML+Cat – that we have designed in
this thesis, allow for comparison of suchmodels on top of theMBSE andMBSA
ones.

1.4 Category theory
Category theory is the mathematical theory that we use to represent model
consistency in this thesis. This last section of the State of TheArt gives an intro-
duction to category theory and to the categorical concepts used in the thesis.

40 CHAPTER 1. STATE OF THE ART

1.4.1 History and interest
Category theory is a branch of mathematics that finds its origins in the work
of Samuel Eilenberg and Saunders Mac Lane in the early 1940s. Together they
introduced the concept of category in their 1945 paper [39]. Mac Lane later
wrote "Categories for the Working Mathematician " [81] which is now widely
reguarded as the reference book in category theory.

Category theory aims at unifying mathematics, especially by creating a
bridgebetweenTopologyandAlgebra. After category theorywasused formany
years to redefine existing concepts, Alexander Grothendieck built some com-
pletely new mathematical objects based on it [52]. Due to its high level of ab-
straction and because it took a long time before concrete applications were
found, category theory has often been called "abstract nonsense" by themath-
ematic community [82].

Nowadays, category theory is often used in conjunction with logic. Olivia
Caramelloproposes the idea that category theory, andespeciallyGrothendieck
toposes, can be used as bridges to unify mathematics [27].

In this thesis, we finally used elements of category that are less complex
than grothendieck’s toposes, but the idea of using category theory for MBSE
and MBSA model consistency stemmed from this translating potential that
Olivia Caramello explored.

In this work, we use category theory to describe objects through their rela-
tions. We detail in this section some basic knowledge of category theory that is
required to understand the thesis. A more complete yet well-written and eas-
ily understandable introduction to category theory can be found in courses
and books such as [81], [111](for non mathematician scientists), [10], [101],
[77], [96] (in french), [28](advancednotions around the grothendieck toposes),
[89](from a programmer point of view), andmany others.

1.4.2 Basic concepts: Categories and functors
A category is composed of objects and sets of morphisms between these ob-
jects. Morphisms are often also called arrows.
Definition 1.1. Category [10]

A category C is composed of:

• A class Ob(C) of objects

• for x, y ∈Ob(C), the set HomC (x, y) of morphisms from x to y
This set is called the Homset of x and y.

A category must respect the following rules:

• Composition: If f ∈ HomC (x, y) and g ∈ HomC (y, z), then g ◦ f ∈ HomC (x, z).

1.4. CATEGORY THEORY 41

Figure 1.19: Model synchronization process using SmartSync [95]

• Associativity: If f, g, h are morphisms such as g ◦ f and h ◦ g exist, then (h ◦
g)◦ f = h ◦ (g ◦ f)

• Identity: for each x ∈Ob(C), there exists an identity morphism I dx : x −→ x

We can give a graphical representation of a category through an oriented
graph. This representation is called a diagram over the category. Vertices rep-
resent the objects of the category, and edges represent the morphisms. A dia-
gram does not have to be exhaustive over the category. Thus, we can draw a fi-
nite diagram over a category containing an infinity of objects. We often do not
show identities and morphisms resulting from diagrams’ composition, which
allows better readability. Although there is a formal definition of what a dia-
gram is, that can be found for example in Section 5.1 of [10], in this thesis we
consider the diagrams in an intuitive way, as a graph within which the ver-
tices are some objects of a category and the edges are some of the morphisms
between these objects. An example of a diagram over a category that has three
objects A, B and C, and two morphisms f: A −→ B and g: B −→ C can be found
in Figure 1.19.

Just like other mathematical objects, we can link categories to eachother
through applications called functors.

Definition 1.2. Functor
For two categories C, D, a functor F is an application F : C −→ D composed of:

• A function FOb : Ob(C) −→Ob(D)

• For each x, y ∈Ob(C), a function Fx,y : HomC (x, y) −→ HomD (FOb(x),FOb(y))

We can note F(x) or F(f) the images of an object x and a morphism f respect-
ively. A functor F : C −→ D satisfies the following properties:

• identities are preserved by F, i.e. for x ∈Ob(C), F (I dx) = I dF (x)

• Composition is preserved by F, i.e. for x, y, z ∈ Ob(C) and f ∈ HomC (x, y),
g ∈ HomC (y, z), we have F (g ◦ f) = F (g)◦F (f)

There exist applications between functors called natural transformations.
Natural transformations aremappings for each object andmorphism of a cat-
egory between the images of their images by two functors. In this aspect, they
allow transforming a functor into another functor. They are essential in defin-
ing the equivalences of categories.

42 CHAPTER 1. STATE OF THE ART

Figure 1.20: Illustration of a natural transformation

Definition 1.3. Natural transformation
Let C and D be two categories.
Let F : C −→ D andG : C −→ D two functors.
A natural transformation α : F −→ G is composed, for each x ∈ Ob(C) of

a morphism αx : F (x) −→ G(x) in D, such as for each y ∈ Ob(C), for each f ∈
HomC (x, y), we have:

G(f)◦αx =αy ◦F (f)
This corresponds to saying that the diagram over the category D given in fig-

ure 1.20 commutes.

1.4.3 Useful concepts
We have defined the basic concepts of category theory; we will now focus on
some properties of interest to this work.

In the sameway as functions can be injective, surjective, or both (bijective),
there are similar concepts for functors between categories.

Definition 1.4. Full and Faithful functors
Let F : C −→ D be a functor.
We say that F is Full if for any x, y ∈ Ob(C), Fx,y : HomC (x, y) −→

HomD (F (x),F (y)) is a surjection. We say that F is Faithful if for any x, y ∈ Ob(C),
Fx,y : HomC (x, y) −→ HomD (F (x),F (y)) is an injection.

We can also define the concept of equivalence between two categories.

Definition 1.5. Equivalence of categories
Let C and D be categories.
An equivalence of categories is a functor F : C −→ D such as there exists:

• a functorG : D −→C

• natural transformations α : I dC −→G ◦F and α′ : I dD −→ F ◦G

The pullback is also an interesting concept for our purpose. Prerequisites
for this notion are cones and limits, so we shall define them first. Before de-
fining these prerequisites, one must note that what is called a "triangle" in a

1.4. CATEGORY THEORY 43

Figure 1.21: Illustration of a cone (Q) and the limit (Z)

diagram corresponds to three objects, withmorphisms between them. For ex-
ample we would have objects A, B and C, andmorphisms f from A to B, g from
B to C, and h from A to C. We say that the triangle commutes if g ◦ f = h.

Definition 1.6. Cone
Let C be a category.
Let there be a diagram over C.
A cone over this diagram is anobjectQwithmorphisms fromZ to every object

of the diagram, such as any newly formed triangle commutes.

A limit is a universal cone, i.e., a cone such as, for any other cone, a unique
path exists from the limit to the other objects in the diagram through the cone.

Definition 1.7. Limit
Let C be a category.
Consider a diagram over C.
A limit on this diagram is a cone Z such as for any other cone Q we have a

uniquemorphismψ : Q −→ Z such as all triangles includingψ commute.

Cones and limits are illustrated in Fig. 1.21. The considered diagram is con-
stituted of the A, B, C and D objects and morphisms between them. Z and Q,
assuming that compositions of morphisms of the diagram with the dotted ar-
rows commute, are cones. Q is a limit of the diagram if for any cone Z, there is a
uniquemorphismΨ : Q −→ Z thatmakes everything commute. It means that a
limit is a universal cone, because for each cone there is a unique way to obtain
this cone from the limit, through theψmorphism.

Definition 1.8. Pullback
Let A, B and C three objects of a category.
Let f and g twomorphisms from A and B to C.
A pullback in a category is the limit AxC B of the diagram constituted of A, B,

C, and g and f, illustrated in Fig. 1.22.

44 CHAPTER 1. STATE OF THE ART

Figure 1.22: Structure of the pullback

The pullback is an object with morphisms towards two other objects that
respects constraints with a third object. This can be interpreted as the biggest
object that respects the constraints.

1.4.4 Useof category theory inSystemsengineering
Because category theory is a tool that encompasses abstraction levels and in-
teractions between objects, some approaches have used this mathematical
framework to represent of complex systems.

Fundamental mathematical approaches give highly theoretical represent-
ations of systems. Schultz [108] represents dynamic systems using the concept
of sheaves, which are functors fromacategory to the category of setswith com-
pelling topological properties (The category of sets is the category whose ob-
jects are all the sets, and the morphisms are the applications between sets).
This allows to represent interactions between multiple dynamic systems. An-
drée Ehresmann [38], [37] uses category theory to represent systems in a way
that allows for straightforward representation of hierarchy levels, the evolution
of the system, and interactions betweenmultiple systems.

Some approaches are closer to the Systems engineering point of view. For
instance, [41] uses ontologies and category theory to represent MBSEmodels.
Authors in [2] and [3] establish a category-based meta-model of Systems en-
gineering and safety assessment.

CHAPTER 2

A CASE STUDY: THE LANDINGGEAR

This chapter introduces the landing gear case study, whichweuse as aworking
example in the thesis. The first section presents the landing gear system and
explains its use. We then present the modeling of the case study with MBSE
and MBSA tools. Finally, we discuss the synchronization process of the mod-
els using the SmartSync methodology. This example is used in chapter 3 and
chapter 4 to exemplify our proposed concepts.

2.1 The Landing Gear System

2.1.1 Motivations and approach
In this thesis, especially in chapter 4, we present concepts with high abstrac-
tion. In order to give a down-to-earth image of these concepts to the reader,
we will use the example of a landing gear system. In this chapter, we present
this case study, introduced in the literature by Boniol and Wiels [24], and the
models that we have built with the assistance of an internship trainee at the
ISAE-Supmeca Quartz Laboratory.

In order to provide a simple yet representative case study, we modeled the
MBSE and MBSA points of view of the Landing Gear. We operated their com-
parisonusing the SmartSyncmethodology and tool. TheMBSEmodelwas cre-
atedwithMohamed-SamiKendel using the SysML toolMagicDraw. Inparallel,
I wrote theMBSAmodel using the AltaRica 3.0 modeling language.

We use this system as a demonstration of the MBSE and MBSA modeling
methodologies and an application example to help understand the thesis. In
Chapter 5, we use a second case study, a blood-delivery fixed-wing drone, to
demonstrate the S2ML+Cat methodology introduced in this thesis.

45

46 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

2.1.2 Presentation of the system

The landing gear case study was described in [24] and served as a benchmark
for techniques and tools for the assertion of system behavior. This system is
a standard aircraft landing gear composed of three gears (front, rear-left, and
rear-right). Figure 2.1 illustrates the global architecture of the system. The sys-
tem is composed of the system pilot interface, its mechanical and hydraulic
parts, and its digital control part. A more detailed depiction of themechanical
and hydraulic part of the system is found in Figure 2.2.

This system is also relevant to anMBSA study since aeronautic systems are
required to complywithCS25 regulations – an aeronautic recommendedprac-
tice describing safety analyses that are authorized to be completed on aircraft
equipment for certification.

Figure 2.1: Global Architecture of the Landing Gear System [24]

For this work, twomodels of this systemwere created. The first one aims at
modeling the system architecture, made with the Cameo SystemModeler tool
implementing the SysML language [48]. The second is a safety analysis view
created using the OpenAltaRica tool implementing the AltaRica 3.0 modeling
language [16]. To comply with the aeronautic certification requirement, these
models must be separated and made by separated people. This allows safety
analysis to independently verify the compliance of the architecture described
in theMBSEmodel. In thiswork,we reproduceda realisticworkflowwithmod-
els written by two different people and did not eliminate differences before the
final review. With this protocol, we want our workflow to present realistic dif-
ferences and not avoid inconsistencies by not having independence between
bothmodels. The creation of theMBSAmodel was based on theMBSEmodel,
and we aim to detect differences that occurred in this creation.

2.2. MODELING THE LANDING GEAR 47

Figure 2.2: Architecture of the Hydraulic part [24]

2.2 Modeling the Landing Gear

2.2.1 MBSEModeling

2.2.1.1 Methodology

In our study, the MBSE modeling was realized following the SysML methodo-
logydescribed in [86]. Thismethodologyfirst focuses onablackbox analysis of
the systemdescribing requirements, systemcontext, lifecycle, and operational
scenarios. Then some white box views of the system represent its functional
and physical structure in addition to its behavior.

Our interest is in the structural and behavioral features of ourmodels. They
are contained within the white box views of the system, which is why for syn-
chronization of theMBSAmodel, we only focus on these views.

48 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

Figure 2.3: Block Definition Diagram of the Landing Gear System

2.2. MODELING THE LANDING GEAR 49

2.2.1.2 Modeling
The system architecture is modeled around its three main subsystems, which
can be observed in the Block Definition Diagram (BDD) shown in Fig.2.3.

This BDD shows the system’s breakdown structure. Arrows in the diagram
represent composition links, meaning that one block (or system) is composed
of the components to which the arrow points. This view of the system shows
us its structure but does not entirely define its architecture, as connections and
flowsbetween the components are not given. They are specified in the Internal
Block Diagram (IBD) in Fig. 2.4.

Figure 2.4: Internal Block Diagram of the Landing Gear System

In this IBD, we can observe the relations between components. The con-
nections’ names give us information about their type of flows. Finally, they can
also contain typed variables. It is important to note that this model does not
intend to simulate our system but is rather a communication tool over it and
a means for traceability. Therefore, naming on this model is highly important
andcarriesmuch informationcompared tousual simulationmodelswhere the
content of variables, flows, and other quantitative values are the essential in-
formation carried by themodel.

The two views we previously described are the ones that will be interesting
in the context of MBSE/MBSA synchronization for the scope of this work.

50 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

2.2.2 MBSAModeling

2.2.2.1 Methodology

The MBSA model we made for this work was created using the OpenAltaRica
platform, based on the AltaRica 3.0 modeling language. It represents the sys-
tem through its structure and dysfunctional behavior.

2.2.2.2 Modeling

The MBSA modeling was achieved using the article from Boniol [24] present-
ing the system as a reference document and based on theMBSEmodeling. We
here considered the MBSE model as a specification document of the system
and expect to verify its compliance with safety requirements through MBSA
modeling. Except for a fewdifferences, whichwill be talked about in section IV,
the model has a very similar structure to the one presented in the SysML IBD
and BDD in Fig. 2.3 and Fig. 2.4 respectively.

domain nrpState {OK, KO}
class NonRepairableComponent
nrpState s (init = OK);
parameter Real lambda = 1.0e-5;
event failure (delay = exponential (lambda));
transition
failure: s == OK -> s := KO;

end

Figure 2.5: Class NonRepairableComponent in AltaRica 3.0

In AltaRica 3.0, we represent the system by amain "block"; a container that
will be considered and simulated by the AltaRica 3.0 compiler. The compon-
ents of our system are described in classes that are instantiated in the main
block. Fig. 2.7 gives the code of the main block representing the system, and
Fig. 2.8 and Fig. 2.9 describe the class ElectroValve and the class Cylinder re-
spectively which are components of the landing gear system. Instances of
those components are linked in the system to allow for retraction and exten-
sion of the landing gear. Assertions such as the one presented in Fig. 2.6 allow
for the input of the cylinder to be at all times equal to the value of the output of
the electrovalve.

digitalPart.CPIOM1.input:= pilotInterface.udHandle.output;

Figure 2.6: example of an assertion in AltaRica 3.0

2.2. MODELING THE LANDING GEAR 51

All components inour systemareextending theNonReparaibleComponent
class presented in Fig. 2.5. This class describes the state machine for the fail-
ure of a component. Delays characterize those failure events. This allows the
execution to compute the time after which the transition shall be fired. Delays
are described using probability distributions such as, in our case study, an ex-
ponential distribution. They also allow computation of the probability of an
event happening for the generation of fault trees in the case of static systems.

We derive all system components from this general class, specializing this
class by adding new variables that represent the ports of our components and
assertions that represent connections between these variables. As an example
Fig. 2.6 represents such a connection. It means that the output value of the
udHandle component of the pilot interface is given to the input of the CPIOM1
component of the digital part.

This means that during the execution, the value of the output of the ud-
Handle component,which is thehandleusedby thepilot toactuate the landing
gear, will be affected to the input of the first CPIOMunit of the digital part. As-
sertions can also be used to give values to variables based on component state
or other information.

The interest of having this formal representation of the system rather than
using a notation such as SysML is that it allows for formal computation over
the system safety. Thanks to this model, we can compute minimal cut sets of
the systemwith their probabilities. Wecanalso execute a stochastic simulation
of the system with failures and identify propagation paths of the failures. This
would not be possible if there were any ambiguity in the representation of the
system. This is not an issue for human communication with theMBSEmodel.

block LandingSys
PilotInterface pilotInterface;
MechaHydraulicalPart mechahydraulicPart;
DigitalPart digitalPart;
assertion
digitalPart.CPIOM1.input := pilotInterface.udHandle.output;
[...]

end

Figure 2.7: Block Landing System in AltaRica 3.0 (some assertions were hidden
for clarity)

52 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

class ElectroValve
extends NonRepairableComponent (lambda = 1.0e-6);
Boolean input, output, order (reset = false);
assertion
output := if s == OK then input and order else false;

end

Figure 2.8: Class ElectroValve in AltaRica 3.0
class Cylinder
extends RepairableComponent;
Integer input (reset = 0);
Boolean output (reset = 0);
assertion
output := if s == OK then input else false;

end

Figure 2.9: Class Cylinder in AltaRica 3.0

2.2.3 State Machines
2.2.3.1 Gear lights statemachine
The first state machine example that we will consider represents the status
lights for the landing gear. This example was first introduced as part of the
landing gear reference architecture in [24], structural comparisonofMBSEand
MBSAmodels for this architecture can be found in section 2.3.

Figure 2.10: SysML state machine of the gear light behavior

Three lights indicate to the pilot the status of all three gears using the fol-
lowing code:

2.2. MODELING THE LANDING GEAR 53

block systemLight
GearLight light;
end

domain GearLightState {off, green, orange
, red, failed}

class GearLight
GearLightState s (init = off);
event openingSequenceStarts, openingSequenceEnds,
openingSequenceFails, closingSequenceStarts,
closingSequendEnds, closingSequenceFails, failsopen,
failsclosed, failsred, failsorange, failsgreen, failsoff;

transition
openingSequenceStarts: s == off -> s := orange;
openingSequenceEnds: s == orange -> s := green;
openingSequenceFails: s == orange -> s := red;
closingSequenceStarts: s == green -> s := orange;
closingSequendEnds: s == orange -> s := off;
closingSequenceFails: s == orange -> s := red;
failsopen: s == green -> s := red;
failsclosed: s == off -> s := red;
failsred: s == red -> s := failed;
failsorange: s == orange -> s := failed;
failsgreen: s == green -> s := failed;
failsoff: s == off -> s := failed;

end

Figure 2.11: AltaRica 3.0 model of the gear light use case

• Green light: "Gear locked down";

• Orange light: "Gear maneuvering";

• Red light: "Landing gear system failure";

• No light: "Gear locked up".

The MBSE view of this state machine is given in figure 2.10 and the MBSA
view ing figure 2.11.

2.2.3.2 Redundant system
the second case study we will use is a generic redundant system composed of
two components: the main unit that is normally used and a spare unit that is
used when themain one is down.

54 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

Figure 2.12: SysML state machine of the redundant system

The MBSE models the system’s behavior through a general state machine
that shows the system’sglobalbehavior,which is given infigure2.12. TheMBSA
code for the system is represented in figure 2.13.

It can be noticed that the MBSA model instantiates two components that
represent themain and spare units of the system. These components both em-
bed a GTS that has "WORKING", "FAILED" and "STANDBY" states and trans-
itions from WORKING to FAILED, from STANDBY to WORKING, and from
STANDBY to FAILED. Compilation of thismodel will result on the composition
of both these statemachines. Note that those statemachines are very different
in their structures. The first one shows the system’s global behavior, and the
second computes global behavior by the composition of the behaviors of the
two components.

2.3 Synchronization of themodels

Once the MBSE and MBSA models are built, we want to assert consistency
between them. This assertion is done using the SmartSync methodology and
tool (see section 1.3.5).

This consistency assessment between the MBSE and MBSA models of the
landing gear results in the study presented in section 3.1. We will also use this
consistency assessment as our working example in Chapter 4.

2.3. SYNCHRONIZATIONOF THEMODELS 55

domain UState {WORKING, FAILED, STANDBY}

class Unit
UState vsState (init = WORKING);
Boolean vfDemanded (reset = false);
parameter Real pFailure = 1.0e-5;
parameter Real pFailureOnStart = 1.0e-4;
event evFailure (delay = exponential(pFailure));
event evStart (delay = Dirac(0.0),
expectation = 1 - pFailureOnStart);
event evFailedToStart (delay = Dirac(0.0), expectation =
pFailureOnStart);

transition
evFailure: vsState == WORKING -> vsState := FAILED;
evStart: vfDemanded and vsState == STANDBY -> vsState :=
WORKING;

evFailedToStart: vfDemanded and vsState == STANDBY -> vsState
:= FAILED;

Boolean vfInput, vfOutput (init = false);
assertion
vfOutput := vfInput and vsState == WORKING;

end

block System
Unit Umain;
Unit Uspare(vsState.init = STANDBY);
Boolean vfOutput (reset = false);
assertion
Umain.vfDemanded := true;
Uspare.vfDemanded := Umain.vfOutput == false;
Umain.vfInput := true;
Uspare.vfInput := true;
vfOutput := Umain.vfOutput or Uspare.vfOutput;
observer Boolean oTE = vfOutput == false;

end

Figure 2.13: AltaRica 3.0 model of the redundant system use case

56 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

2.3.1 Translation to S2ML
The first step for consistency assessment of the MBSE and MBSA models is to
translate them to the S2ML formalism. Although it should be possible in the
future to automate the translation, it currently needs to be donemanually.

SysML to S2ML translation:
As we intend to compare the architecture of the landing gear, we are not in-

terested in the whole SysML model. We only need to translate the content of
the IBD (Fig 2.4) and BDD (Fig 2.3).

We translate thedifferentmodel elements fromSysMLto thecorresponding
concepts in S2ML, following the correspondence table 2.1.

SysML S2ML
partproperty block

port port
connection connection

Table 2.1: Mapping between concepts for translation between SysML and
S2ML

As an example, we can study the translation of the PilotInterface part-
property, which is illustrated in Fig 2.14.

In SysML this block contains four other partproperties : the Handle and
Gearlight1, Gearlight2 and Gearlight3. The Handle contains two ports,
Manual_Cmd and Man_Cmd, and each Gearlight contains a port Lsig.

We translate the PilotInterface to a S2ML block PilotInterface, which
contains the four blocks Handle and Gearlight1,2,3. The block Handle con-
tains ports Manual_Cmd and Man_Cmd, and each Gearlight1,2,3 a port Lsig.

The complete translated S2MLmodel can be found in Appendix B.2.
Because the SmartSync tool does not consider the connections, we do not

include them in this translation. However, examples of translation of the con-
nections for SysMLandAltaRica3.0 canbe found inChapter 5, alongwith some
leads as to how connections could be included in the comparison.

AltaRica 3.0 to S2ML translation:
Contrary to the SysML model, we translate the whole AltaRica model to

S2ML. We, however, eliminate some elements, such as domains, state vari-
ables, events, and transitions. In this case for simplicity we do not translate
the safety specific elements, we do it in the second case study presented in
chapter 5. Ideas for translations and comparison of state machines between

2.3. SYNCHRONIZATIONOF THEMODELS 57

(a)

block Pilot_interface
block Handle
port Manual_Cmd;
port Man_Cmd;

end
block Gearlight1
port Lsig;

end
block GearLight2
port Lsig;

end
block Gearlight3
port Lsig;

end
end

(b)

Figure 2.14: TheSysMLpilot Interface (a) and its translation in the S2MLmodel
(b).

SysML and S2ML can be found in section 3.2. In the same way, we use corres-
pondence table2.2 tomanually translate themodel elements from theAltaRica
3.0 model to S2ML.

AltaRica 3.0 S2ML
block block
variable port
assertion connection

Table 2.2: Correspondance of concepts for translation between SysML and
S2ML

Although the AltaRica 3.0 model’s translation is more direct as AltaRica 3.0
and S2ML share the same structure [100], it requires more work. The original
AltaRica 3.0 model contains classes that are instantiated as blocks; therefore,
we need to instanciate the model to translate it to S2ML for comparison (or to
translate it to S2ML and then instanciate the S2MLmodel).

The AltaRica 3.0 and its S2ML translation can be found in Fig 2.15. As pre-
viously claimed, we can observe that the AltaRica 3.0 model contains classes
that are not yet blocks.

We instanciate the AltaRica 3.0 code to the code found in Fig 2.16. The
instanciation process consists of instantiating all the blocks declared in the
model that refers to classes.

As an example, the declaration "Gearlight frontGearLight" in class Pi-
lotInterface becomes a block "frontGearLight" that contains the Booleans
input and output, as well as an assertion from the class GearLight. Because
this class extends the class NonRepairableComponent, it also contains the state
variable nrpState s, the event failure and the transition failure. Once the

58 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

domain nrpState {OK, KO}
class NonRepairableComponent
nrpState s (init = OK);
event failure (delay = Dirac(0));
transition
failure: s == OK -> s := KO;

end

class PilotInterface
GearLight frontGearLight;
GearLight leftGearLight;
GearLight rightGearLight;
UpDownHandle udHandle;
AnalogicalSwitch analogicalSwitch;

end

class GearLight
extends NonRepairableComponent;
Boolean input, output (reset = false);
assertion
output := if s == OK then input else

false;
end

class UpDownHandle
extends NonRepairableComponent;
Integer output (reset = 0);
Integer position (reset = 1);
assertion
output := if s == OK then position

else 0;
end

class AnalogicalSwitch
extends NonRepairableComponent;
Boolean recentChange (reset = false);
Boolean output (reset = false);
assertion
output := if s == OK then

recentChange else false;
end

block pilotInterface
block frontGearLight
port input;
port output;

end
block leftGearLight
port input;
port output;

end
block rightGearLight
port input;
port output;

end
block udHandle
port output;
port position;

end
block analogicalSwitch
port recentChange;
port output;

end
end

(a)

Figure 2.15: The AltaRica 3.0 pilot Interface (a) and its translation in the S2ML
model (b).

instanciation of themodel is complete, we can translate it to S2ML in a similar
way to the SysMLmodel.

The block frontGearLight from the AltaRica 3.0 model is translated to a
S2ML block frontGearLight that contains a port input and a port output. As
we explained before, because they are not relevant to the comparison, we do
not transcript the state variable, event, and transition.

We could translate the assertion "output := if s == OK then input
else false;" to a connection "connection [input, output](type = "as-
sertion")". Because we want to keep things simple in this example, and the
SmartSync tool does not yet consider connections, we choose not to translate
the connections.

The complete translatedmodel can be found in annex B.3.

2.3. SYNCHRONIZATIONOF THEMODELS 59

block PilotInterface
block frontGearLight
nrpState s (init = OK);
Boolean input, output (reset = false);
event failure (delay = Dirac(0));
assertion
output := if s == OK then input else false;

transition
failure: s == OK -> s := KO;

end
block leftGearLight
nrpState s (init = OK);
Boolean input, output (reset = false);
event failure (delay = Dirac(0));
assertion
output := if s == OK then input else false;

transition
failure: s == OK -> s := KO;

end
block rightGearLight
nrpState s (init = OK);
Boolean input, output (reset = false);
event failure (delay = Dirac(0));
assertion
output := if s == OK then input else false;

transition
failure: s == OK -> s := KO;

end
block udHandle
nrpState s (init = OK);
Integer output (reset = 0);
Integer position (reset = 1);
event failure (delay = Dirac(0));
assertion
output := if s == OK then position else 0;

transition
failure: s == OK -> s := KO;

end
block analogicalSwitch
nrpState s (init = OK);
Boolean recentChange (reset = false);
Boolean output (reset = false);
event failure (delay = Dirac(0));
assertion
output := if s == OK then recentChange else false;

transition
failure: s == OK -> s := KO;

end
end

Figure 2.16: The instanciated AltaRica 3.0 Pilot Interface

60 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

2.3.2 Comparison with SmartSync
Once the translation to S2ML is complete, we can compare the models using
the SmartSync platform. In this thesis, all comparisonwork done using Smart-
Sync was done with the SmartSync platform v0.0.1, hence some shortcomings
of the tool that will arise in this example, whichmay be corrected in future ver-
sions.

A comparison using the SmartSync tool is done iteratively, through the pro-
cess described in section 1.3.5 and illustrated in Fig. 1.18. A more down-to-
earth version of these steps can be expressed as follows.

• The S2ML Compiler is used to compile the SmartSync textual models to
compiled XML files.

• The XMLfiles are given as inputs to the S2MLComparator, and an output
file is specified

• The SmartSync comparator outputs a CSV file containing three columns:
Type: This column contains the model element type, which can be a

block, a port, or a connection
Model1: This column contains the model element name for the first

XMLmodel input
Model2: This column contains the model element name for the

second XMLmodel input
This file contains the model elements at the first level of abstraction of
the model, i.e., direct subsystems, ports that are contained by no other
block than the main block, and connections that are contained by no
other block than themain block. They are not yet aligned.

• The user aligns each element of columnModel1 to its corresponding ele-
ment in columnModel2. Theattribute"forget" canbegiven toelements
that do not have a counterpart when the user can justify why they do not.

• The processed CSV file is given as an input to the SmartSync tool, along
with the XMLmodels

• The SmartSync tool outputs a newCSV file containing the same columns
with children elements of the ones that have already been aligned.

• The user processes the CSV file as before and iterates with the SmartSync
tool until no newmodel element is found.

• Model elements that have no counterpart and were not assigned the
"forget" attribute in the last processed CSV file are considered incon-
sistent.

2.3. SYNCHRONIZATIONOF THEMODELS 61

Whenwefirst input theXMLmodels for the landing gear system, the Smart-
SyncTooloutputs the table2.3. In this example,wechooseModel1as theMBSE
model andModel2 as theMBSAmodel.
Type Model1 Model2

main.Landing_gear_systeme main.landingSys
port main.Landing_gear_systeme.ElectricPower
port main.Landing_gear_systeme.Electrical_Cmd
port main.Landing_gear_systeme.Hydraulic_power
port main.Landing_gear_systeme.Manual_Cmd
port main.Landing_gear_systeme.Mech_Aircraft
port main.Landing_gear_systeme.Mech_Ground
block main.Landing_gear_systeme.Digital_part1
block main.Landing_gear_systeme.Digital_part2
block main.Landing_gear_systeme.Pilot_interface
block main.Landing_gear_systeme.mecahydraulic_part
block main.landingSys.digitalPart
block main.landingSys.mechahydraulicPart
block main.landingSys.pilotInterface

Table 2.3: First output file of the SmartSync comparison

We notice that the MBSE model contains ports at the system’s frontier,
whereas the MBSA model does not. These ports correspond to interfaces
between the system and its environment, for example, its power input. In this
case, we deemed it normal not to consider them in the safety study and gave
them the attribute "forget". In a "real-world" safety study, it cool be argued
that we need to consider the use cases where they fail. This highlights that the
engineers need to operate this part of themodel comparison. This choice can-
not be automated.

We can align theMBSEmodel’s "Pilot_Interface" and "mecahydraulic_-
part" to theMBSAmodel’s "pilotInterface" and "mechahydraulicPart".

We note that the "Digital_part1" and "Digital_part2" from the MBSE
model only correspond to the "digitalPart" of the MBSA model. This is be-
cause theMBSAmodel encapsulates CPIOM1andCPIOM2 (Core Processing&
Input/Output Modules) inside the Digital part at a lower abstraction level. In
contrast, the MBSEmodel considers redundancy at this abstraction level. The
SmartSync tool currently does not allow to consider such exceptions; we sug-
gest that this could be overcome by adding a keyword "skip" that would allow
skipping to the children elements. The mathematical framework introduced
in chapter 4 would allow to specify such a feature.

For the rest of this example we considered the digital part out of the scope
of the comparison. We could also correct one of themodels to change the level
of abstraction and operate the comparison or create standalonemodels of the
DigitalPart1/DigitalPart2 and CPIOM1/CPIOM2 and operate the comparison
over thesemodels.

62 CHAPTER 2. A CASE STUDY: THE LANDING GEAR

This first step of comparison results in the processed table 2.4.

Type Model1 Model2
main.Landing_gear_systeme main.landingSys

port main.Landing_gear_systeme.ElectricPower forget
port main.Landing_gear_systeme.Electrical_Cmd forget
port main.Landing_gear_systeme.Hydraulic_power forget
port main.Landing_gear_systeme.Manual_Cmd forget
port main.Landing_gear_systeme.Mech_Aircraft forget
port main.Landing_gear_systeme.Mech_Ground forget
block main.landingSys.digitalPart
block main.Landing_gear_systeme.Digital_part1
block main.Landing_gear_systeme.Digital_part2
block main.Landing_gear_systeme.Pilot_interface main.landingSys.pilotInterface
block main.Landing_gear_systeme.mecahydraulic_part main.landingSys.mechahydraulicPart

Table 2.4: Processed file for the first step of comparison

We iterate this process for each abstraction level of themodels; this corres-
ponds to four iterations. The final result table can be found in appendix C.7.

Some model elements have the mention MCB as their type. This means
the tool output "Missing Corresponding Block" when we aligned them be-
cause they were aligned to a block in another branch of the Product Break-
down. In the same way as before, even though SmartSync cannot currently
handle this case, our mathematical framework can do so by reaching back to
the closest common ancestor of both blocks. Therefore this case could prob-
ably be handled in future versions of SmartSync.

2.3.3 Results of the comparison and actions taken
on themodels

After the comparison’s fourth iteration, we detected several inconsistencies.
Twenty elements of theMBSEmodel have no counterpart in theMBSAmodel.
Twenty-three elements of the MBSA model have no counterpart in the MBSE
model. These inconsistent elements can be found at the bottom of the table
in appendix C.7. They are the ones with empty cases for either the Model1 or
Model2 element.

Wewill not analyze all the inconsistencies and solutions here but only focus
on one example of a misunderstanding resulting in inconsistencies. An ana-
lysis of the differences (not to be confused with inconsistencies) between the
models we found during the comparison can be found in section 3.1.

The MBSE model describes separate electro-valves for actuation of the
front, right, and left landing gears, each time one for extension and one for re-
tractation. The MBSA model describes one extension electro-valve, and one

2.3. SYNCHRONIZATIONOF THEMODELS 63

retractation electro-valve, that operate all three gears. The same description is
done for the electro-valves used for opening and closing the gear doors.

The original paper by Boniol and Wiels [24] describes the hydraulic archi-
tecture with one extension valve and one retraction valve for all three gears
(see Fig. 2.2), which allows for the synchronized use of the gears. During our
design of themodels, we considered this article as the specification of the sys-
tem. Therefore we deem that there is an error in theMBSEmodel.

We correct the MBSE model by removing the valves and replacing them
with unique opening/closing Gear Electro-valves and opening/closing Door
Electro-valves.

2.3.4 Need for consistency assessment and amath-
ematical frame

The comparison we operated between the MBSE and MBSA models for the
landing gear shows that many inconsistencies can appear in the design of a
system’s models.

In this case, 43 model elements are deemed inconsistent after the compar-
ison. Considering that this is not a real-life system, we can consider that these
are small models, and we did not consider connections in the comparison.

The inconsistencies we detected highlight the need for consistency assess-
mentbetweenMBSEandMBSA.Synchronizationmethodologies canalsohave
flaws, aswehave shownwith SmartSync thatwehaddifficulties encompassing
some differences in the abstraction of the models. We also understand that
SmartSync does not consider the connections and that, in general, synchron-
izationmethodologies have a scope of inconsistencies that they address.

This thesis aims to contribute to synchronizationmethodologies byprovid-
ing amathematical framework based on category theory. With this framework,
we intend to make it possible to formally demonstrate the efficiency of a syn-
chronizationmethodologyby showingwhichelements are comparedbasedon
which criteria. In this context, in Chapter 4, we propose the S2ML+Cat frame-
work, built based on the concepts of ports, blocks and connections of S2ML. In
Chapter 5, we exemplify this framework with the SmartSync tool, to show that
our framework is compatible with the SmartSyncmethodology.

CHAPTER 3

MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

In this chapter, we study the differences betweenMBSE andMBSAmodels. We
want to introduce the notion of inconsistency in a way that allows us to sep-
arate it from other differences. For that purpose, we propose a typology of the
differences we observed in comparing the landing gear models.

We also remark that the models contain structural and behavioral aspects,
and our consistency assessment has only concerned the structural aspect.
Therefore we study the possibility of a consistency assessment over the state
machines contained in bothMBSE andMBSAmodels.

3.1 Typology of theMBSE andMBSAMod-
els Differences

MBSE and MBSA are two parts of the system’s design, that serve two different
purposes. Thus, differences occur between those models. Whether for lack of
communicationbetween the teamsormore fundamental reasons linked to the
nature of thosemodels.

Thesedifferences could lead tomodels representing twodistinct anddiffer-
ent systems insteadof the sameones. Wecall thesedifferences inconsistencies.
Synchronization betweenMBSE andMBSAmodels is thus necessary to ensure
consistency. It is also important to note that not all differences between the
models are inconsistencies.

This section proposes a typology of the differences between MBSE and
MBSA models. Through this typology, we understand better the mechanisms
that lead to differences. We also clarify the distinctionbetween inconsistencies
and the rest of the differences.

65

66 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

3.1.1 Model comparison
We reviewed both MBSE and MBSA models together and searched for all dif-
ferences between them. This review, described in Section 2.3, allowed us to
identify types of differences. We do not cite all the differences here, but we list
all the different kinds we encountered.

Naming differences:
The first differences that occur when reviewing themodels are in the names

of the elements of the model. The names can vary between both models. For
example, the handle from the pilot interface is called “Handle” in the MBSE
model and “udHandle” in theMBSAmodel.

Naming differences result from the system engineer and the safety analyst
calling the same elements differently.

They can happen because of their different technical backgrounds or nam-
ing practices (upper/lower cases, shortcuts. . .). Other naming differences
come from the naming rules in both tools. These rules can be either restric-
tions or simply “best practices”. For example, the pilot interface subsystem is
called “Pilot interface” in the MBSEmodel and “pilotInterface” in the AltaRica
3.0 model. This difference results from the differences in uses of the twomod-
els: AltaRica 3.0 is a formal modeling language that allows the computation of
reliability or safety indicators. Thus objects are represented in one character
sequence that follows strict rules and cannot contain a space. SysML is used
to declare and communicate. As a consequence, there are no restrictions on
model elements names.

It also happens that some elements of both models can sometimes not be
named, whereas their counterpart in the othermodel is. Assertions in AltaRica
3.0 are unnamed. They serve the purpose of simulation, defining rules for cal-
culating variables’ values. AltaRica 3.0 variables must be named. On the con-
trary, connections in the SysML model can be named. For example, using the
typeof flowor actions they convey. However, the engineer oftendoesnot name
the ports they connect; they are automatically named p1, p2, pk by the mod-
eling tool. Such differences result from the different intents of the twomodels
and themodeling habits of both engineers.

Variable types differences:
The systemengineer and the safety analyst do not have the same viewon the

system. Therefore they do not represent system variables in the same way.
Variable types are sometimes not assigned to the ports in the SysMLmodel

but rather to the connections, depending on the engineer’s modeling habits.
The systemengineerwants toprove that the systemanswers requirements that
can be linked to those values. Thus, MBSE variables are usually typed as their
physical unit. Because they aremainly interested in knowing whether they are

3.1. TYPOLOGY OF THEMBSE ANDMBSAMODELS DIFFERENCES 67

nominal or dysfunctional and not by their accurate values, safety analysts of-
ten type variables with booleans or discreet domains such as [OK, KO] or even
domainswithmultiple values such as [OK, KO, ERRONEOUS]. Thus,most vari-
ables in the AltaRicamodel are typed with discrete values.

Structural differences:
We also observe diverse structural differences between themodels.
The first one is that some subsystems are specified at different levels of ab-

straction. For example, the arborescence for the first digital part is “Landing
gear System/Digital Part” in the MBSE model and “LandingSys/digital-
Part/CPIOM1” in the MBSAmodel (note that there is also a significant naming
difference).

In the same way, the arborescence for the electro-valve
that brings hydraulic pressure to the door extension cylin-
ders is "Landing gear system/mecahydraulic part/Hydraulic
part/Open door Electro-Valve" in the MBSE model and
"LandingSys/mechahydraulicPart/hydraulicSys/DoorHydraulicSys/ex-
tensionDoorElectroValve".

Wehavespoken insection2.3.3aboutan inconsistency in thehydraulicpart
representation, which we suppose solved here.

Although the naming differs, subsystem levels between those pathsmatch,
apart from the “DoorHydraulicSys” level in the MBSA model that does not
match any subsystem in the MBSEmodel. This difference originates from the
Safety analyst grouping parts differently. He may want only to consider the
failure of a group of parts rather than every unique part. It could also happen
that theMBSAmodel only specified “DoorHydraulicSys”withoutmodeling the
electro-valve inside it.

Some components are also specified at different places in the Product
Breakdown Structure. This is the case with the cylinders in our comparison.
The system engineer considered them part of the hydraulic parts, whereas the
safety analyst put them in the landing sets along with the gears/doors they are
connected to. Such differences could be caused by a different point of view
over the system or by a modeling error. In this case, we considered the mod-
els to be consistent. Finally, in the Internal Block Diagram, we observe some
connections to the outside of the system that are not considered in the AltaR-
icamodel. For example, it is the case of the “Electric Power” input. The system
engineer must represent the interactions between the system and its environ-
ment. However, even though this connection has a tangible impact on the sys-
tem, it was not considered relevant for the safety analysis of the landing gear
system and thus notmodeled with AltaRica. This difference can be either con-
sidered amodeling error or not, depending onwhether that connection has an
impact or not on safety analysis.

Although it is not the case in our models, some connections could have

68 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

been placed between ports that do not necessarily exist in the MBSE or MBSA
representations of the system. This could either occur bymodeling error or be-
cause those values are irrelevant to one or the other modeling intent.

3.1.2 Types of differences
We are interested in understanding how differences arise between MBSE and
MBSAmodels. Althoughweneed to identify inconsistenciesbetween themod-
els, as they are a source of errors in the design, themodels cannot be identical.
The absence of differences would mean that they contain the same exact in-
formation. Whatever use can be achieved with one would also be achievable
with the second. There would be no need for two separate models. To under-
stand these differences, we analyze their sources.

From the comparison, we deduce three main types of differences in our
model related to the cause of the differences between the models. Along with
the kind of differences that we observed, these types can be found in Table 3.1.
Some of those differences result frommodeling errors and lead to the models
describing different systems; we call them inconsistencies. However, we also
note differences that are not problematic and sometimes necessary.

Differences due toModeling tools and practices:
The first type of difference is related to differences caused by the different

modeling tools andpractices. Examples of this are different naming rules, con-
nections between ports, or assertions that relate to variables carrying names
differently. This type of difference could be handled by modeling practices or
rules in some instances, for example, the implementation of naming rules in
SysML similar to those in formal modeling languages. It could also be con-
sidered in thecomparisonbynot taking intoaccountnames thathavenocoun-
terpart or by cleverly comparing them, for example, connections names in
SysML to variables names in AltaRica. Note that the naming differences may
be reduced through the company quality process.

Differences due tomodeling intent:
The second type of differences thatwe denote are differences linked tomod-

eling intent. For example,weobserveddifferences inabstractionbetweenboth
models, as illustrated with the electro-valve. It is also the case with some vari-
ables and connections with physical unit types inMBSE and boolean/discrete
types in MBSA. These differences are necessary for the system engineer and
safety analyst towork in a soundmodeling environment. Their existence is the
reason for having two separatemodels rather thanmodeling all information in
one global model.

3.1. TYPOLOGY OF THEMBSE ANDMBSAMODELS DIFFERENCES 69

Type Observed differences

Due toModeling tools
and Practices

Different naming rules
Different namemeaning
No naming counterpart
Different abstractions of subsystems

Due toModeling Intent
Different variable types
Different model arborescence
Different interactions/connections in
and with outside the system

Due toModeling Errors
Wrongmodel arborescence
Wrong Variable Values/Types
Wrong connections between system
components

Table 3.1: Typologyof thedifferencesbetweenMBSEandMBSAsystemmodels

Differences due tomodeling errors:
The third type of differences is differences caused bymodeling errors. Model

synchronization aims to eliminate those differences. They can be different
naming, wrong values, incorrect links between components, etc. We believe
these inconsistencies to be more difficult to recognize from the second type
of differences (modeling intent) than the first (modeling practices and tools).
For example, the differences in structure that we observed can often be inter-
preted as inconsistencies or differences due tomodeling intent, depending on
whether we estimate them to be relevant.

We also raise another interesting way to classify differences. We en-
countered differences between the models related to a particular system ele-
ment, such as a naming difference or a variable type difference. We also en-
countered differences related to themodel’s structure, such as abstraction dif-
ferences, different placement of an element in the Product Breakdown Struc-
ture, or faulty connections between component ports/variables. These two
types of differences are also interesting because they have different interpret-
ations in amathematical framework around themodels.

3.1.3 Discussion
This typology shows that differences between MBSE and MBSA models can
be sorted by their causes. These sources of differences are the use of different
modeling tools and practices, different modeling intents, and, finally, model-
ing errors.

Differencesdue tomodeling intents and standards are essential to themod-
els since they are the reason two models are used instead of one and should
be preserved. On the contrary, inconsistencies due to modeling errors should

70 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

be eliminated from the model. Engineers might also want to reduce differ-
ences due to different modeling tools and practices as much as possible. For
example, the unification of naming conventions between systems engineering
and safety assessment could be used to reduce naming differences.

3.2 Structural statemachine consistency
Behavioral consistency is one of the difficulties raised by the need for syn-
chronization between system architecture and safety analysis. The system ar-
chitecture and safety models represent the system behavior but with different
intents, making these representations very different. The SysML notation, one
of themost widely usedMBSE languages, does providemultiple diagrams that
allow for behavioralmodeling. One of these diagrams is state charts, which are
refined state machines. Similarly, the AltaRica 3.0 language, an MBSA formal-
ism, uses guarded transition systems (GTS) to represent the system’s behavior.
In this section, we study the structural comparisonof these statemachines. We
do not intend to provide a behavioral comparison methodology for MBSE to
MBSA consistency. Instead, we study the possibility of structurally synchron-
izing two artifacts representing behavior.

To operate this synchronization, we use a synchronization methodology
similar to the SmartSync methodology, along with two mappings of concepts
from state machines to the S2ML language.

3.2.1 MBSE and MBSA State Machines synchroniz-
ationmappings

To structurally compare state machines, we suggest a methodology based on
the model synchronization SmartSync platform. Thus we first abstract our
models to S2MLmodels, then we compare thesemodels. Finally, based on the
comparison results, we decide the actions that have to be taken on the original
state machines to ensure consistency.

In this section,wepresent twomappingsof Statechart andAltaRica3.0 state
machines concepts to S2ML that we will then compare through case studys in
section 3.2.2 and 3.2.3.

3.2.1.1 PrimaryMapping
The first mapping of concepts is the basic vision of seeing a state machine as
states linked through transitions. Therefore this mapping follows the corres-
pondence presented in table 3.2. Note that in the case of statecharts, states are
encapsulated in components but can also be encapsulated in other states.

3.2. STRUCTURAL STATEMACHINE CONSISTENCY 71

SysML S2ML AltaRica 3.0
Component Block block

State Block State
Transition Connection and port Transition + event

Table 3.2: Primarymapping of concepts

To represent a transition, we create ports in both states that are the source
and the target of the transition, andwe thencreate a connectionbetween those
two ports encapsulated in the source state. For example, figure 3.1 represents
a system Syst, with State A and State B linked by transition "trans".

block Syst
block A
port trans;
end
block B
port trans;
end
connection [A.trans, B.trans];
end

Figure 3.1: S2ML representation of a connection with the primarymapping

This conceptual mapping is basic. It does not convey all the properties
that could be put inside either a SysML State Chart or an AltaRica 3.0. For this
reason, we also suggest a more advancedmapping.

3.2.1.2 Advancedmapping
Because of the simplicity of the primary mapping, we have designed a more
advanced mapping that conveys more properties of the state machines. This
second mapping also modifies how we conceptually model states. This more
advancedmapping is detailed in table 3.3.

Note that in this mapping, we represent states using ports. This is a better
translation of the atomic concept of state, as ports are also atomic elements
of the S2ML formalism, i.e., they cannot be decomposed intomoremodel ele-
ments. Consequently, transitions are expressed by connections between the
ports representing their source and target states. Thus the previous state A to
state B "trans" transition is nowwritten as illustrated in Fig. 3.2.

Because of thismodification, although this newmapping ismore complex,
it also allows formore concisemodeling of simple statemachines. We can also
easily represent depth in the state machines by representing composite states

72 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

SysML S2ML AltaRica 3.0
Component Block block

State port State
Transition Connection Transition
initial state "init = true" attribute initial state
final state "final = true" attribute —

sub-machine state New block with inside —
states as ports

detailed historic "dHist = true" attribute —
succinct historic "Hist = true" attribute —
orthogonal state two ormore blocks state machines

in different components

Table 3.3: Advancedmapping of concepts

block Syst
port A;
port B;
connection trans [A; B];
end

Figure 3.2: S2ML representation of a transition with the advancedmapping

as blocks. For example, the state machine in Fig. 3.3 can bemodeled as shown
in Fig. 3.4.

Figure 3.3: State machine with deep state

To model the transition entering state B, we write a connection between A
and the initial state of the B sub-machine state B1. This also allows us tomodel
cases where a transition would target a non-initial state of B as its target.

3.2. STRUCTURAL STATEMACHINE CONSISTENCY 73

block Model
port A (init = true);
block B
port B1 (init = true);
port B2;
connection [B1; B2];
end
connection trans [A; B.B1];
end

Figure 3.4: S2ML code of a statemachine with a deep state using the advanced
mapping

3.2.2 Gear Lights comparison
3.2.2.1 Primarymapping
To operate the comparison, we first translated the MBSE and MBSA state ma-
chines presented in section 2.2.3 to S2ML following the primarymapping from
section 3.2.1.1. This translation results in the code shown in figure 3.5.

Figure 3.5: S2ML abstractions for the gear light state machines with primary
mapping

We then compare these codes by producing a naming correspondence
between themodels. This correspendance is illustrated in table 3.4.

We then compare the states and transitions of the state machines. From
this comparison, we observe some differences between our MBSE and MBSA
models:

• Theorange state in theAltaRicamodelhasa transitionClosingSequence-
Fails that has no correspondent in the SysMLmodel;

• The Device_failure transition in theSysMLmodel is unique for all states
while it is not in the AltaRicamodel;

74 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

MBSE MBSA
Start_opening openingSequenceStarts
End_opening openingSequenceEnds
Start_closing closingSequenceStarts
End_closing closingSequendEnds

Closing_failure failsopen
no correspondance closingSequenceFails
Device_failure failsorange

failsred
failsgreen
failsoff

Opening_failure openingSequenceFails
failsopen

Table 3.4: Naming correspondence betweenMBSE andMBSAmodels for Gear
lights behavior

• Naming differences: lower case or upper case first letter differences
between namings in the models, no space between words in AltaRica
model.

The comparison results provide us with knowledge of the differences
between these state machines. Because these differences may not be incon-
sistencies, the system architect and safety analyst shall decidewhether each of
these differences is to be corrected or not. Therefore they must declare which
actions are to be taken to correct them. In our case, we decide:

• A Closing_failure transition is added to theMBSEmodel;

• We consider the correspondence ofmultiple Device_failure transitions
with different FailsColor transitions a formalism difference since the
different naming in AltaRica corresponds to a same event which is the
failure of the component. Therefore no further action is taken;

• Naming differences are deemed acceptable in the system as the names
convey similar meanings.

3.2.2.2 Advancedmapping
In the same way, as we did before, we first translate the models to S2ML, now
using the mapping from table 3.3. As a result, we obtain the code displayed in
figure 3.6. The naming correspondence we deduce is the same that we have
shown in 3.4. We can also observe the same differences as with the primary
mapping. We then apply the same corrections to the original models.

3.2. STRUCTURAL STATEMACHINE CONSISTENCY 75

Figure 3.6: S2ML abstractions for the gear light state machines with advanced
mapping

3.2.3 Redundant system comparison

3.2.3.1 Primarymapping

Figure 3.7: S2ML abstractions for the cold redundancy with primarymapping

The primary mapping for the redundant system use case results on the
codes found in figure 3.7.

Fromthis code,wecanobservea fundamentaldifferencebetween themod-
els we compare. The MBSE model contains a system-level block called CRSys
that corresponds to the MBSA model System block. However, in the MBSE
model, the blocks representing states are directly contained in the CRSysblock,
whereas in theMBSAmodel, the states are contained in sub-blocks of the Sys-
tem block.

76 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

This is due to the difference in the level of abstraction described in subsec-
tion 2.2.3.2. As we describe the behavior at the system level in MBSE and the
component level inMBSA, there is no direct correspondence between the ele-
ments described in both models. Since our translation methodology does not
carrymore information, it does not enable us to perform a comparison for this
kind of state machine (including orthogonal states).

3.2.3.2 Advancedmapping

Figure 3.8: S2ML abstractions for the cold redundancy system state machines
with advancedmapping

In the same way, the translation using advanced mapping (figure 3.8) does
not allow the direct creation of a correspondence table. However, this meth-
odology allows comparison because we have a more refined representation of
the state machine.

Through computation of the Cartesian product of both components’ state
machines, we obtain a new statemachine representing the system’s global be-
havior. This is done as follows:

• The initial state is a couple containing the initial states of both state ma-
chines, here (Umain.WORKING, Uspare.STANDBY);

• The transitions are those from either state machines with one of the two
states as their source, here Umain.evFailure and Uspare.evStart;

• The target states of these transitions are couples composed of the ori-
ginal target state of the transition and the other unchanged state. E.g.
for the Umain.evFailure transition the target state is (Umain.FAILED,
Uspare.STANBY);

• We then iterate on the new states until we reach only existing states.

Considering the guard conditions to eliminate unreachable states, we fi-
nally obtain the statemachinedepicted infigure3.9. Note that this comparison

3.2. STRUCTURAL STATEMACHINE CONSISTENCY 77

is no longer structural, as we had to compute the cartesian product, which re-
quires understanding of the execution of the state machine.

In this code, we name the state by combining the initials of the two states
they contain, therefore (Umain.WORKING, Uspare.STANBY) is called WS. Trans-
itions were also assigned arbitrary names to avoid redundancy. After this com-
putational phase, we can establish a correspondence table between theMBSE
andMBSA state machines, which is given in table 3.5.

On this basis, we can now observe a few differences between theMBSE and
MBSAmodels:

• The MBSE IDLE state and transitions coming out from and back to this
state do not exist in theMBSAmodel;

• The MBSA FM2 transition that allows going directly from the FS state –
where the main unit is failed, and the spare unit is in standby – to the FF
state – where both units are failed – does not exist inMBSE.

block System
port WS (init = True);
port FS;
port FW;
port FF;
connection FM [WS, FS];
connection SS [FS, FW];
connection FM2 [FS, FF];
connection FS2 [FW, FF];
end

Figure 3.9: Product of the state machines for redundant system’s components

We can correct these differences by :

• Initialising the main unit to STANDBY in the MBSA model and adding a
transition going from WORKING to STANDBY in both units;

• Adding transition Spare failed to start to theMBSEmodelwith source
MainFailed and target SpareFailed.

3.2.4 Discussion
Fromtheseusecases,wecanconclude that, although thefirstmapping is relev-
ant for simple statemachines, it does not provide enough information to com-
paremore complex statemachines, such as thosewith orthogonality. This lack
is addressed by the secondmapping, which is more advanced.

78 CHAPTER 3. MBSE ANDMBSA SYSTEMMODELS DIFFERENCES

MBSE MBSA
IDLE

MainWorking WS
MainFailed FS

Spare FW
SpareFailed FF
MainOn

MainBackToIDLE
MainFails FM
SpareOn SS

SpareBackToIDLE
SpareFails FS2

FM2

Table 3.5: Naming correspondence between MBSE and MBSA models for re-
dundant system behavior

Nevertheless, this proves the limitation of structural comparison towards
state machine consistency, as we cannot deal with different abstraction levels
without considering the execution. In 3.2.3.2, we computed the product of the
state machines attributed to the main and spare components. However, we
also considered the guards to eliminate unreachable states that would pollute
the comparison. Eliminating these unreachable states requires us to be aware
of how the statemachine is executedandcanbemore complicated than shown
in our case study. Therefore we believe that structural comparison is insuffi-
cient to assert consistency betweenMBSE andMBSA state machines. Further
work on comparison linked to their executionwould be needed to supplement
the structural aspect.

Finally, the reader should note that we only propose a way to synchron-
ize MBSE and MBSA state machines. This is not a methodology for MBSE
andMBSA behavior synchronization. On the one hand,MBSE formalism does
provide tools other than state machines to model behavioral artifacts, such as
use case diagrams. On the other hand, this methodology strictly compares
state machines. However, the MBSA will usually model behavior with states
that indicates whether the system is functionnal or not and complete the be-
havioralmodel with other indicators that denote the functional behavior. This
also needs to be considered to achieveMBSE andMBSA behavioral synchron-
ization.

CHAPTER 4

THE S2ML+CAT FRAMEWORK

In this chapter,we introduce themaincontributionof the thesis: theS2ML+Cat
mathematical framework. This framework allows to represent S2ML models,
andby extension, structuralmodels, through categories. In this framework, we
define the concept of binary consistency relations, which are binary relations
over the set of S2ML+Cat categories. The binary consistency relations respect
some axioms, which makes it so that they imply the existence of some com-
mon structure between the related models. This implies that we can identify
differences between themodels thanks to these relations.

In the first section of this chapter, we present a simplified overview of the
concept for thismathematical framework and the idea behind it. In the second
section, we describe the mathematical concepts we use to represent S2ML
models with categories, and the S2ML+Cat category, which is the universe of
S2ML models. In the third section, we present some useful theorems and the
definition of S2ML models equivalence. The theorems are either used for the
definitionof equivalenceor thedefinitionof aConsistency relation. The fourth
section describes the concept of a binary consistency relation between S2ML
models. The fifth section discusses the use of the S2ML+Cat category to sim-
plify the comparison of new versions of previously synchronizedmodels.

4.1 The S2ML+Cat idea
In the first section of this chapter we propose a general overview of our math-
ematical framework that will be detailed in the following sections. To do so, we
present a simplified version of the framework, corresponding to the original
idea we had during its conceptualization. However, this representation is in-
complete, it will be further defined in Section 4.2 by giving formal definitions
of all themathematical objects.

79

80 CHAPTER 4. THE S2ML+CAT FRAMEWORK

The framework relies on a categorical representation of the S2ML models.
This representation is not meant to replace the original algebraic definition of
S2MLmodels that was presented in Section 1.3.6. It rather proposes an altern-
ative, categorical point of view.

4.1.1 Simplified S2ML+Catmodels
Wepropose touse categories to represent structuralmodels such as thosewrit-
ten in the System StructureModeling Language (S2ML, see Section 1.3.6).

Thesemodels are structured around three concepts:
• Blocks: Blocks are containers that define the arborescence of the system.

• Ports: Ports are atomic elements, such as variables or states.

• Connections: Connections allow for establishing constraints over one or
multiple ports. A simple example of a connection between two ports A
and B of type integer would be "A = B".

We identify two types of relations between thesemodel elements:
• Belonging relation: A block, port, or connection is contained in a block

• Reference relation: A port participates in a connection.
This allows us to define a metamodel category for structural models, illus-

trated as a graph in Fig. 4.1.

Figure 4.1: Simple representation of themetamodel for an S2MLmodel

This representation could be considered as a very simple category: The
blocks, ports, and connections are the objects of the category, while the ref-
erence and belonging relations are the morphisms. However, in a category,
morphisms can be composed. This means that if a port is referenced in a con-
nection that belongs to a block, then there is a morphism in the category from

4.1. THE S2ML+CAT IDEA 81

the port to the block. If the port does not belong to that specific block, the res-
ultingmorphism is neither a belonging nor a reference.

Although this situation can seemweird and unlikely, it is possible to define
such a connection, as illustrated in Fig. 4.2.
block Syst
block A
block A1
port p1;

end
block A2
port p2;

end
end
block B
connection [main.A.A1.p1, main.A.A2.p2];
end
end

Figure 4.2: S2ML representation of a connection situated in a block different
from its ports

This means that the representation described here is not a category. Be-
cause we need the composition properties of category theory and because it
allows for a more precise description of the models, we complete this defini-
tion in Section 4.2.

Figure 4.3: The pilot interface S2MLmodel translated fromMBSE, represented
using the simplified representation

Even though it is not a category, this simplification illustrates themathem-
atical framework’s intent of usingblocks, ports, and connections as objects and
belongings and references as morphisms. We also tried to define all the con-
cepts in a graph theory vision that would match this representation, which al-
lowed us to implement similar theorems and proofs. However, the composi-
tionallowedbycategory theory simplifies the representationof levels of system
abstraction, which we believemakes it more appropriate.

82 CHAPTER 4. THE S2ML+CAT FRAMEWORK

In the case of the landing gear, if we refer to the S2ML code for the MBSE
representation of the pilot_interface part, presented in Fig 2.14 (In Sec-
tion 2.3.1). We add the connection "connection [Manual_Cmd, Man_Cmd]" to
the block Handle, for the sake of showing a connection. This represents a de-
pendency between the input and output of the handle. We obtain the math-
ematical structure represented in Fig. 4.3.

MBSE MBSA
Pilot_interface pilotInterface

Pilot_interface.Handle pilotInterface.udHandle
Pilot_interface.Handle.Manual_Cmd pilotInterface.udHandle.position
Pilot_interface.Handle.Man_Cmd pilotInterface.udHandle.output

Pilot_interface.GearLight1 pilotInterface.frontGearLight
Pilot_interface.GearLight1.Lsig pilotInterface.frontGearLight.input

pilotInterface.frontGearLight.output
Pilot_interface.GearLight2 pilotInterface.rightGearLight

Pilot_interface.GearLight2.Lsig pilotInterface.rightGearLight.input
pilotInterface.rightGearLight.output

Pilot_interface.GearLight3 pilotInterface.leftGearLight
Pilot_interface.GearLight3.Lsig pilotInterface.leftGearLight.input

pilotInterface.leftGearLight.output
pilotInterface.analogicalSwitch

pilotInterface.analogicalSwitch.recentChange
pilotInterface.analogicalSwitch.output

Table 4.1: Correspondance table for the dictionary relation between the Pilot
interface parts of theMBSE andMBSAmodels of the landing gear

4.1.2 Relation between themodels
Wemainly intend to comparemodels’ structures, which is why themathemat-
ical representation of themodels heavily relies on this structure.

Our strategy to compare the structure is to identify a common skeleton
between bothmodels. Once we have identified this common skeleton, we can
say that the model elements that are not in it constitute differences between
themodels that shall be reviewed.

Various criteria can be used to identify this common skeleton, which can
have more or fewer constraints. For example, we can consider a dictionary re-
lationship that would associate the model elements two by two between the
models and not consider any connections or belonging relations. We create
comparison models by eliminating everything that is not useful to the com-
parison. In the caseof thedictionnary relation,weonly consider themodel ele-
ments’ names, andallign them twoby two. This results in the categories having

4.1. THE S2ML+CAT IDEA 83

Figure 4.4: Structure for binary consistency relations

no morphisms since only the blocks and ports names will be considered, but
neither the connections nor the belongingmorphisms. Thus we obtain lists of
blocks and ports. We can then create a comparison table associating the ele-
ments two by two.

If we apply this reasoning to the pilot interface, we obtain table 4.1.
This table can be interpreted as the representation of two applications

between themodels. If the representationswe showed for S2MLmodels in Sec-
tion 4.1.1 were really categories, those applications would be functors.

We will provide in the rest of the chapter definitions that allows to create a
consistentmathematical frameworkbasedon these concepts. Fornowweonly
manipulated them for the sake of explication, but they are not yet complete.

Let us call AComp (resp BComp) the comparison "categories" for the MBSE
(resp MBSA) models. We call A and B the "categories" for the original MBSE
and MBSA models. We call A’ and B’ the "categories" constituted of only the
elements associated with an element of the other model. We can define func-
tors F : A′ −→ B ′ and G : B ′ −→ A′, where F associates each element of the first
column of table 4.1 to the element of the same row in the second column, and
conversely for G.We can define functors that inject A’ in AComp , and AComp in A
(idem for B’, BComp and B). These functors are fully described in Section 4.2.4,
in definition 4.7.

The objects that are not associatedwith an element of the othermodel con-
stitute the differences we detect between themodels.

This mathematical construction of creating comparison models (AComp

and BComp) and compared models (A’ and B’) constitutes the consistency re-
lation that we establish between the two models. This relation is illustrated in
Fig. 4.4

If we consider the SmartSync comparison, which compares both arbores-

84 CHAPTER 4. THE S2ML+CAT FRAMEWORK

cence and elements of themodel, excluding the connections, we obtain AComp

and BComp categories depicted in Fig. 4.5

Figure 4.5: The pilot interface S2ML model translated fromMBSE and MBSA,
represented using the simplified representation, with their common skeleton
in red

The redpartof thecategories corresponds to theA’ andB’ categories, as they
are the common skeleton between bothmodels.

In the rest of this chapter, we will define precisely how we represent S2ML
models through categories and use this mathematical construction to define
the concept of binary consistency relation between S2MLmodels.

4.2 Mathematical representation of a
structural model

In this section, we assume that amodel that carries structural information can
be described with the following elements:

• Blocks

• Ports

• Connections

This is the case with the comparison formalisms used in the synchroniza-
tionmethodologies fromsubsection 1.3.4, although they arenameddifferently
in theConsistency linksmethodology. In [18], the S2MLmodels are formalized

4.2. MATHEMATICAL REPRESENTATIONOF A STRUCTURALMODEL 85

with a quintuple composed of sets of ports and blocks, a multiset of connec-
tions, a composition relation, and a unique block with no parents regarding
the relation.

Even though this description is rigorous, we propose a new representation
inspiredby category theorywhich allows for the definition of functors between
the models. To give a categorical representation of S2ML models, we need to
define four concepts corresponding to S2ML’s ports, connections, blocks and
models: Catports, Catconnections, Catblocks, and then Catmodels.

4.2.1 Catports, Catconnections and Catblocks
Definitions:
In this section, when we use set theory vocabulary, such as "a set", "a

singleton", etc., wemean touse thesenotionswith their naive set theorymean-
ing. The ports are atomic elements of the model. They can be used to express
variables in themodel, states of a component, or other properties. Weuse sym-
bols to represent this property; the symbol could be understood as the port’s
name.

Definition 4.1. "Catport"
We consider a countable set of symbols P.

A Catport is a category CP where:

• Ob(CP) is a singleton containing a symbol p ∈ P .

• The only morphism is the identity on p.

Note that in this definition, the notation C P refers to "Catport" and not to
the set P .

This definition means that to any p ∈ P , we can associate a Catport C at (p)
withOb(C at (p)) = p and the uniquemorphism I dp ∈ Hom(p, p).

In S2MLmodels, ports are interlinked through connections. Wedefine con-
nections as sets of ports.

Definition 4.2. "Catconnection"
A Catconnection is a category CC where:

• Ob(CC) is a non-empty, finite set of Catports.

• The only morphisms in CC are the identities.

86 CHAPTER 4. THE S2ML+CAT FRAMEWORK

This means that if we have two Catports, p1 and p2, a connection between
these two ports is the set {p1, p2} along with the identities over these Catports.

Catports andCatconnections have no othermorphisms than the identities.
Such categories are called discrete categories. They can be seen as their object
set although for the sake of homogeneity wemake them categories.

We can now define the blocks with ports and connections, which are con-
tainers in the model. A block is a container that holds other blocks, ports, and
connections.

Definition 4.3. "Catblock"
A Catblock CB is defined as:

1. Ob(C B) is a finite set of Catblocks, Catports, and Catconnections

2. For each Catconnection C ∈ Ob(C B), if a Catport P1 ∈ Ob(C B) is such as
P1 ∈ Ob(C), then there exists two morphisms rP1,C : P1 −→ C and r ′

P1,C :
C −→ P1 in B, such as the component on objects of rP1,C maps p ∈Ob(P1) to
P1 ∈Ob(C) and anymorphism to the corresponding identity, and the com-
ponent on objects of r ′

P1,C maps every object of C to p ∈ Ob(P1) and every
morphism to I dp .

3. For each Catblock B1 ∈Ob(C B):
- For each CatconnectionC ∈Ob(B1), we haveC ∈Ob(C B) and there is a

morphismαC ,B1 : C −→ B1 in B thatmaps each object of C toC ∈Ob(B1) and
eachmorphism to the corresponding identity

- For each Catport P ∈ Ob(B1), we have P ∈ Ob(C B) and there is a
morphism αP,B1 : P −→ B1 in B that maps p ∈ Ob(P) to P ∈ Ob(B1) and the
identity on p to itself in B1

- For each Catblock B2 ∈ Ob(B1), we have B2 ∈ Ob(C B) and there is a
morphism αB2,B1 : B2 −→ B1 that maps every object of B2 to itself in B1 and
does the same withmorphisms

For each X in Ob(B1), there exist a unique Catblock B ′ ∈ C B (possibly
B1), such as there is no Catblock B ′′ ∈ B ′ such as X ∈ B ′′, we also have either
B ′ = B1 or B ′ ∈Ob(B1)

4. There are no other morphisms in the Catblock than those described here
and themorphisms that derive from category theory axioms, i.e., identities
and compositions.

5. for x, y ∈Ob(C B), we note Hom(x, y) the set ofmorphisms from x to y in CB.

4.2. MATHEMATICAL REPRESENTATIONOF A STRUCTURALMODEL 87

Because Catblocks can contain Catblocks, this definition can seem like a
Catblockmay not be finite. However, the set of objects of the Catblock is finite,
and if it contains a Catblock, then it contains everything that is in the Catb-
lock. This means that we will always at some point find Catblocks that only
contain Catports and Catconnections, and therefore any Catblock is finite and
the definition allows to build Catblocks by induction.

Proposition 4.1. A Catblock is a category.

Proof. To prove that a Catblock is a category, as it includes the identities, we
need to show that we can compose themorphisms, and that this composition
is associative.

Let C be a Catblock, let x, y, z ∈ Ob(C), we assume x , y and y , z, as com-
positions with the identities are trivial.

Let f ∈ Hom(x, y), g ∈ Hom(y, z), with f and g morphisms defined in the
points 2 and 3 of the definition.

If x, y, z are Catports or Catconnections, then we are in the case of the ap-
plications described in the second point of the definition. This means that f
and g are functors, as Catports and Catconnections are categories; therefore,
we can compose them.

Morphisms that have Catblocks as their source always have Catblocks as
their target, therefore if y is aCatblock then z is aCatblock, and if x is aCatblock,
then y and z are Catblocks.

We assume that z is a Catblock.
If y is a Catconnection, then x is a Catblock.
Therefore we have:
Ob(x) is a singleton and the only morphism of x is the identity over Ob(x)’s

only element, let us call it a. fob(a) = x where x ∈ ob(y), and fa,a(I da) = I dx .
As specified in point 3 of the definition, gob(x) = y and gx,x(I dx) = I dy .
Therefore gob(fob(a)) = y and gx,x(fa,a(I da)) = I dy .
We have fully constructed g ◦ f therefore it exists.
If y is a Catport then x is a Catconnection.
Thismeans that for any a ∈Ob(x), fob(a) = p where p is the single element of

Ob(y), and fa,a(I da) = I dp .
As specified in point 3 of the definition, gob(p) = y , with y ∈ Ob(z) and

gp,p (I dp) = I dy .
Therefore, for any a ∈Ob(x), gob(fob(a)) = y and gp,p (fa,a(I da)) = I dy .
We have fully constructed g ◦ f therefore it exists.
The last case is if y is a block.
Then for any a,b ∈Ob(x), thereare a′,b′ ∈Ob(y) suchas fob(a) = a′, fob(b) = b′,

and for any h ∈ Hom(a,b) there is a h′ ∈ Hom(a′,b′) such as fa,b(h) = h′.
If x is a Catport or a Catblock this is the identity, if x is a Catconnection this

maps everything to x and I dx .

88 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.6: Example of a systemmodel

Figure 4.7: Structure of a connection with two ports in a block/model

As specified in point 3 of the definition, gob(a′) = a′, gob(b′) = b′ and ga,b(h′) =
h′.

Therefore gob(fob(a)) = a′, gob(f ob(b)) = b′ and ga′,b′(fa,b(h)) = h′.
We have fully constructed g ◦ f therefore it exists.
Thus we have compositions in Catblocks.

Let a,b,c,d ∈C , f ∈ Hom(a,b), g ∈ Hom(b,c), h ∈ Hom(c,d).
We obtain associativity because fob, gob, and hob are set applications, there-

fore their composition is associative, and, for x, y ∈ Ob(a), fx,y ,g fob (x), fob (y), and
hgob (fob (x)),gob (fob (y)) set applications, therefore their composition is associative.

Thus the composition of morphisms in Catblocks is associative since all
their components are associative.

Therefore the Catblocks are categories.
□

This definition carries the properties of a block to the world of categories.
Thus each point of the definition can be explained straightforwardly.

Considering a Catconnection C and a Catport P1 that the Catconnection
refers to. If the Catport is contained in the same Catblock B as the connec-
tion, we define twomorphisms rP1,C : P1 −→C and r ′

P1,C : C −→ P1 in B between
theCatconnection and theCatport, and theCatport and theCatconnection re-
spectively. These morphisms represent the relation between the Catport and
the Catconnection. The Catport is part of the Catconnection, and the Catcon-
nection refers to it. The typical structure of a Catconnection in a Catblock is
depicted in Fig 4.7; it corresponds to the connection from Fig. 4.6. We do not
assume that all ports of a connection are contained in the parent block of the
connection, but we will eventually find an ancestor block containing all the
connection’s ports in a model. However, connections are usually going from
one block to another. Thus there is no reason for all Catports to be contained
in any Catblock that contains the Catconnection.

4.2. MATHEMATICAL REPRESENTATIONOF A STRUCTURALMODEL 89

Figure 4.8: Diagram of the system block from Fig. 4.6

In Fig. 4.7, the plain arrows represent the rP1,C ,r ′
P1,C ,rP2,C and r ′

P2,C morph-
isms, and the dotted arrows represent their compositions. We have morph-
isms from the Catports to the Catconnection and from the Catconnection to
the Catports. Therefore, we also have morphisms between Catports particip-
ating in the same Catconnection because of composition. In the same way, let
us assume we have three Catports, P1, P2, and P3, and two Catconnections,
C1 between P1 and P2 and C2 between P2 and P3; because of composition, we
will havemorphisms between P1 and P3, indicating an indirect Catconnection
between these Catports.

The third point of the definition does translate the belonging relation in
S2ML models. We define a morphism between a Catblock, a Catport, or a
Catconnection and a Catblock that contains it. In the case of Catblocks, this
morphism is the identity; it maps every object of the Catblock to its parent
or ancestor. This means that everything in the Catblock is also contained in
its ancestors. For Catconnections, this relation will absorb the content of the
Catconnection to itself since theCatconnection conceptually only refers to the
Catports rather than being a container that they are a part of. This also helps to
disambiguate the difference between a Catport being in a Catconnection that
belongs to a different Catblock and a direct belonging morphism from a Cat-
port to a Catblock. The last property of that point expresses that a model ele-
ment has a unique parent, either the Catblock itself or a Catblock within it. All
other Catblocks that contain it are its ancestors and will contain this parent.

An example of the category depicting the system Catblock from Fig. 4.6 is
depicted in Fig. 4.8. This category indeed contains everything that is contained
in the systemCatblock. In this case, this includes the A and BCatblocks, the P1
and P2 Catports, and the C Catconnection.

An example of a block with the Pilot Interface:
Ifwedetail the category for theMBSEblockpilot interfacewith thismathem-

atical representation, with the added connection between the handle’s ports,
we obtain a graph similar to the one from Fig 4.3. The main difference is the
absence of a "Pilot_Interface" block. In this representation, a Catblock does
not contain itself. The second difference is in the Catconnection, where we
have morphisms both from the Catports to the Catconnection and from the
Catconnection to the Catports. This category is illustrated in Fig. 4.9.

90 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.9: The Pilot interface S2ML block translated fromMBSE, represented
as a S2MLmodel category

Let us call this category PIC at ; we have:
Ob(PIC at) = {M anual_C md ,

M an_C md ,
Connecti on,
H andl e,
Gear Li g ht1,
Gear Li g ht2,
Gear Li g ht3,
Gear Li g ht1.Lsi g ,
Gear Li g ht2.Lsi g ,
Gear Li g ht3.Lsi g }

Where Gear Li g ht1, Gear Li g ht2 and Gear Li g ht3 are categories with
Ob(Gear Li g htk) = {{Lsi g }} and nomorphisms other than the identities.

H andl e is a category with:
Ob(H andl e) = {M anual_C md ,

M an_C md ,
Connecti on}

andmorphisms
rM anualC md ,C : M anual_C md −→Connecti on}

rC ,M anualC md : Connecti on −→ M anual_C md

rM an_C md ,C : M an_C md −→Connecti on

rC ,M an_C md : Connecti on −→ M an_C md

The H andl e category is the categorical representation of the Handle block
that contains two ports, Manual_Cmd and Man_Cmd, represented by Catports
containing symbols. It also contains a connection between both ports, repres-

4.2. MATHEMATICAL REPRESENTATIONOF A STRUCTURALMODEL 91

ented by the Catconnection containing both Catports. The Catports and the
Catconnection are linked by morphisms as described in the definition of Cat-
block.

PIC at contains the samemorphisms as Handle, andmorphisms represent-
ing the fact that blocks, ports, andconnectionsbelong toblocks. Thesemorph-
isms are the identity over a Catport or a Catblock, and a constant morphism
over the Catconnection, towards the Catconnection itself. Of course, any com-
position of these morphisms is also a morphism of PIC at . These composed
morphisms are not represented in Fig. 4.9, as they would be redundant and
make the graph difficult to read.

4.2.2 Models
Definition:
We have defined all elements of the models: Catblocks, Catports, and Cat-

connections; we can now use these concepts to define the model itself. The
model contains the Catblocks, Catports, and Catconnections and is structured
as its root (main) Catblock, with the difference that it also contains the root
Catblock and morphisms between elements of the root Catblock and the root
Catblock.
Definition 4.4. "Catmodel"

A Catmodel is a category M such as:
• Ob(M) is a finite set of Catblocks, Catports, and Catconnections

• there exist a Catblock R called the root of M such as Ob(R) = Ob(M) \ {R},
and for each x, y ∈Ob(R), HomM (x, y) = HomR (x, y)

• Themorphisms described between each object and aCatblock in the defin-
ition of a Catblock also hold between the objects of M and the Catblock R

• There are no other morphisms in the model than those described here and
the morphisms derived from category theory axioms, i.e., identities and
compositions.

Catmodels are indeed categories, as the morphisms and objects that com-
pose them are the same as Catblocks. Therefore the demonstration for com-
position and associativity is the same.

The root object in themodel does contain all other objects; therewill always
be a belongingmorphism from an object to the root object.

We can draw diagrams over S2MLmodels like diagrams are drawn over any
other categories. In order to make these diagrams easy to read and faithful
to the system, we only show the direct belonging morphisms and morphisms
between Catports and Catconnections. Any morphism that is a composition
or identity still exists in the category, butwe do not show them in the diagrams.

92 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.10: Diagram of the systemmodel from Fig. 4.6

Example with the Pilot Interface:
In this example, we consider the Pilot Interface from the Landing Gear as

a standalone model. The category associated to this model is represented in
Fig. 4.11.

Compared to the Catblock category, the Pi lot_Inter f ace Catblock is ad-
ded; it corresponds to the PIC at Catblock that we described in Fig. 4.9. Morph-
isms from the H andl e, Gear Li g ht1, Gear Li g ht2, and Gear Li g ht3 Catblocks
towards the Pi lot_Inter f ace Catblock and their compositions with the others
are also added. Let us detail the morphism αH andl e,Pi lot_Inter f ace : H andl e −→
Pi lot_Inter f ace. Table 4.2 associate to each object of the Catblock it’s image
through αH andl e,Pi lot_Inter f ace in the Catmodel.

Catblock Catmodel
Handle Handle

Manual_Cmd Manual_Cmd
Man_Cmd Man_Cmd
Connection Connection

Table 4.2: Mapping for the belonging morphism between the Handle and the
Pilot_Interface

Figure 4.11: The Pilot interface S2ML model translated fromMBSE, represen-
ted as an S2MLmodel category

4.2. MATHEMATICAL REPRESENTATIONOF A STRUCTURALMODEL 93

The morphismmapping follows the same idea of mapping a morphism in
the Catblock to itself in themodel. This is the archetype of the belongingmap-
pings in S2ML+Cat, a formal definition of suchmapping and, therefore, how to
recognize it is given in the next section.

4.2.3 Relations between themodels: Belonging and
referencemorphisms

We have defined morphisms between the objects of the models. Although
these morphisms can always be composed, they, in a way, are typed, as their
properties can be used to explain the relationship they express between the
objects. Thebelongingmorphisms express that an object is contained in aCat-
block.

Definition 4.5. "Belonging morphism", "Direct belonging morphism", "An-
cestor", "Parent"

Let M be a Catmodel, let A,B ∈Ob(M), with A! = B , let f : A −→ B amorphism
in M .

We call f a belongingmorphism if and only if B is a Catblock, and:

• A is a Catblock, and f is the identity over this Catblock

• A is a Catport, and fOb maps p ∈Ob(A) to A ∈Ob(B)

• A is a Catconnection, and fOb maps any x ∈Ob(A) to A ∈Ob(B)

If f is a belongingmorphism, we say that B is an ancestor of A.
We call f adirect belongingmorphismif it is abelongingmorphismand there

is no Catblock B ′ ∈Ob(B) such as A ∈Ob(B ′).
If f is a direct belongingmorphism, we say that B is the parent of A.

We call a morphism a belonging morphism if its target is a Catblock, and it
either is similar to the identity when its source is a Catblock or a Catport, or it
maps everything to the Catconnection itself if the source is a Catconnection.

The other significant kind ofmorphisms are referencemorphisms. The ref-
erence morphism shows the relation between a Catport and the catonnection
in which the Catport participates.

Definition 4.6. "Reference morphism"
Let M be a Catmodel, let P,C ∈Ob(M) such as P is a Catport and C a Catcon-

nection, let f : P −→C amorphism in M .
We call f a reference morphism if and only if f maps p ∈Ob(P) to P ∈Ob(C).

94 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.12: An injection between twomodels

4.2.4 A few notions necessary to introduce
S2ML+Cat: Injections, orders and elementary
blocks

We call injections a certain kind of functors between Catmodels. These func-
tors represent the fact that a Catmodel is a part of another Catmodel.

Definition 4.7. "Injection"
Let A, B be two Catmodels, let F : A −→ B a functor.
We call F an injection if and only if

• F is injective on objects and faithful

• F lets object’s andmorphism’s properties unchanged, i.e.:
Catports, Catblocks, and Catconnections are respectively mapped to

Catports, Catblocks, and Catconnections
reference and belonging morphisms are respectively mapped to refer-

ence and belongingmorphisms

A graphical illustration of injection between two Catmodels can be found
in Figure 4.12

If we recall the Catblock Pilot_Interface represented in Fig. 4.9 and the
Catmodel Pilot_Interface represented in Fig. 4.11, the Catblock is a part of
the category, therefore it can be easily injected inside it. The identity functor is
an injection from Pi lot_Inter f aceBl ock to Pi lot_Inter f aceModel :

I dPIBl ock ,PIModel : Pi lot_Inter f aceBl ock −→ Pi lot_Inter f aceModel

X 7−→ X

Interesting properties of the objects can also be defined, which we use in
the demonstrations of theorems.

4.2. MATHEMATICAL REPRESENTATIONOF A STRUCTURALMODEL 95

The order of an object is the number of depth levels in the system break-
down separating this object from the root object of themodel. We also call the
order of the model the number of depth levels of the system breakdown of the
model. The notion of order is an indicator of the size of a Catmodel, as it de-
termines thenumberof abstraction levels, it allows tomakedemonstrationsby
mathematical inductionoverCatmodels. It is also away tomesure thedistance
between an object of the Catmodel, and the root object.

Definition 4.8. "Order" of amodel object, "order" of amodel
Let M be a Catmodel, let X ∈Ob(M).
We call the order of X its distance to the root object, i.e., the number of direct

belongingmorphisms that must be composed to obtain amorphism f : X −→ R.
We call the order of M the upper bound of the orders of its objects.

Definition 4.9. "Elementary Catblock"
We call an elementary Catblock any Catblock that contains no other Catb-

lock.

4.2.5 S2ML+Cat
The Catmodels with the injections are a category that we call S2ML + C at .
S2ML +C at is the frame within which we will study the characteristics of the
models.

Definition 4.10. "S2ML +++C at"
We define S2ML+C at as being composed of:

• Ob(S2ML+C at), the set of allCatmodels. Wecall themtheobjects of S2ML+
C at .

• for each X ,Y ∈Ob(S2ML +C at), Hom(X ,Y) is the set of the injections from
X to Y .

Proposition 4.2. S2ML+C at is a category.

Proof. To prove that S2ML +C at is a category, we need to prove the existence
of the Identities and the composition and Associativity of morphisms.

• Identity:
Let X ∈ S2ML+C at

The morphisms of S2ML+Cat are the injections between S2ML models;
therefore if the identity I dX is an injection, it exists in Hom(X , X).

96 CHAPTER 4. THE S2ML+CAT FRAMEWORK

The identity is injective on objects andmorphisms.
For any x ∈ Ob(X), I dX ,Ob(x) = x, therefore if x is a Catport (resp. a Catb-
lock or a Catconnection), its image is also a Catport (resp. a Catblock or a
Catconnection).
For any x, y ∈ Ob(X), for any f ∈ Hom(x, y), I dX ,(x,y)(f) = f , therefore if f is
a reference (resp. belonging), then its image is a reference (resp. belong-
ing).
Thus I dX lets object’s andmorphism’s properties unchanged.
I dX is an injection. Therefore I dX ∈ HomS2ML+C at (X , X).

• Composition:
Let X ,Y , Z ∈ S2ML + C at , let F ∈ HomS2ML+C at (X ,Y) and G ∈
HomS2ML+C at (Y , Z).
F andG are injections.
GOb◦FOb is an injectiveapplicationbecause it is a compositionof injective
applications and, thus, an injective application.
For any x, y ∈ Ob(X), GFOb (x),FOb (y) ◦Fx,y is an injective application because
it is a composition of injective applications and, thus, an injective applic-
ation.
For any x ∈ Ob(X), if x is a Catport (resp. a Catblock or a Catconnection),
then FOb(x) is a Catport (resp a Catblock or a Catconnection) because F
is an injection; therefore because G is an injection GOb(FOb(x)) is also a
Catport (resp. a Catblock or a Catconnection).
G ◦F lets object’s properties unchanged.
For any x, y ∈Ob(X), for any f ∈ Hom(x, y), if f is a belonging (resp. a refer-
ence), then Fx,y (f) is a belonging (resp. a reference) because F is an injec-
tion; therefore, becauseG is an injectionGFOb (x),FOb (y)(Fx,y (f)) is a belong-
ing (resp. a reference).
G ◦F lets morphism’s properties unchanged.
ThusG ◦F is an injection
Therefore H =G ◦F ∈ HomS2ML+C at (X , Z).

• Associativity:
Injections are functors between categories. The composition of functors
is associative.
Therefore the composition of injections is associative.

S2ML+C at presents identitymorphisms, itsmorphisms can be composed,
and their composition is associative. Therefore S2ML+C at is a category. □

4.3. IMPORTANT PROPERTIES IN S2ML+CAT 97

We have defined a category that allows for the mathematical representa-
tion of S2ML models. Under the hypothesis that any structural model can be
representedwith blocks, ports, and connections, thismathematical represent-
ation readily applies to any suchmodel. This is the basis for ourmathematical
framework.

4.3 Important properties in S2ML+Cat

4.3.1 The S2ML+Cat and S2ML equivalence
The definition we have given here allows a unique categorical representation
of any S2MLmodel that was defined as a quintuplet. The quintuplet definition
of S2MLmodels [18] is given in the state of the art of this thesis, in Section 1.3.6.

Theorem 4.1. Any Catmodel ofOb(S2ML+C at) can be associated to amodel of
the set of the quintuples from [18] in a revertible way, up to the choice of symbols
for blocks, and conversely.

Proof. Let S2ML be the set of all quintuplets from [18].
First, let us show that we can build a Catmodel from a S2ML model. To

that purpose, we build F, an application that associate a Catmodel to any S2ML
model.

Let F : S2ML →Ob(S2ML+C at)

X 7→ Xcat

with X =< P,C ,B ,α,r >

Where Xcat is such as:

• Ob(Xcat) contains:
- for each p ∈ P , the Catport P ′ withOb(P ′) = {p}

- for each c = {p1, ..., pn} ∈ C , the Catconnection c ′ such as Ob(c ′) =
{P ′

1, ...,P ′
n} with, for any k ∈ [|1,n|], P ′

k the Catport withOb(P ′
k) = {pk }.

- for each block b ∈ B , the Catblock b′ that contains all associated Cat-
blocks, Catports, and Catconnections that are under b in the transitive
closureof theα relation (i.e., anyCatblock, Catport, Catconnectionx such
as there are b1,..., bn such as (b,b1), (b1,b2), ..., (bn,x) ∈ α (possibly n=0 and
(b, x) ∈α)).

• Themorphisms in X are themorphisms described in definition 4.4.

The Catblock b′ that we define is unique because it can be built by induction:

98 CHAPTER 4. THE S2ML+CAT FRAMEWORK

• first we build the elementary Catblocks, i.e. Catblocks that contain no
Catblocks (the Catconnection and Catports being trivially unique, these
Catblocks also are)

• then we build Catblocks of the next level of abstraction for the α relation

• we iterate on the second step until we have built all Catblocks that are
contained in b′.

F allows us to convert any model from S2ML to a Catmodel in Ob(S2ML +
C at).

Now let us show that we can build a S2MLmodel from a Catmodel. To that
purpose, we build G, an application that associate a S2ML model to any Cat-
model.

We assume that we have amean to associate a symbol b′ to a Catblock b.

LetG : Ob(S2ML+C at) → S2ML

X 7→ Xqui nt

Where Xqui nt is themodel < P,C ,B ,α,r > from S2ML, such as:

• P = { p ∈Ob(PC at) | PC at ∈Ob(X) is a Catport }

• B = { b′ | b′ is a symbol associated to b ∈Ob(X) which is a Catblock }

• C = { c ′ | c ′ = {p ∈Ob(Pcat) forPcat ∈ c | c ∈Ob(X)where c is aCatconnection}}

• α = { (x ′, y ′) ∈ P ∪B ∪C ×B | HomX (x, y) contains a direct belongingmorph-
ism, where x, y are the pre images of x ′ and y ′ with the three first points
}

• r is the symbol associated to the root of X

Now we want to show that these two applications are the inverses of each-
other, up to the choice of symbols for the Catblocks.

For that we first show that the image of a S2MLmodel throughG ◦F .
Let Xqui nt =< P,C ,B ,α,r > be a S2MLmodel.
Let X ∈Ob(S2ML+C at), with X = F (Xqui nt)
Let X1,qui nt =G(X) =< P1,C1,B1,α1,r1 >
Ob(X) = P ′∪C ′∪B ′ where:

• P ′ = {p ′ | p ′ is the Catport such asOb(p ′) = p, for p ∈ P}

• C ′ = {{p ′
1, ..., p ′

n} | For any k ∈ [|1,n|], p ′
k the Catport such asOb(p ′

k) = pk , for
pk ∈ c, with c = {p1, ..., pn} ∈C }

4.3. IMPORTANT PROPERTIES IN S2ML+CAT 99

• B ′ = {b′ | b′ is theCatblock that contains all associatedCatblocks, Catports,
and Catconnections that are under b in the transitive closure of the α re-
lation , with b ∈ B}

Therefore by definition ofG:
• P1 = { p ∈ Ob(PC at) | PC at ∈ Ob(X) is a Catport} = P , since the Catports of X
are defined as the Catports that have the ports of Xqui nt as their unique
object.

• C1 = { c ′ | c ′ = {p ∈ Ob(Pcat) for Pcat ∈ c | c ∈ Ob(X) where c is a Catconnec-
tion}} = C , since the Catconnections of X are defined as the Catconnec-
tions that have as objects the Catports associated to the ports of the con-
nections of Xqui nt .

• B1 = { b′ | b′ is a symbol associated to b ∈Ob(X)which is a Catblock}, there-
fore, if we choose b′ as the symbol of the block that b was associated to
through F , B1 = B .
Pragmatically, this means that we choose a convenient name for the
blocks, but that anymodel that is identical to Xqui nt up to thechoiceof the
names of the blocks could also be associated to X , this is what is meant
by "Up to the choice of symbols for blocks".

• α1 = { (x ′, y ′) ∈ P∪B∪C×B |HomX (x, y) contains a direct belongingmorph-
ism, where x, y are the pre images of x ′ and y ′ with the three first points
}
AnyCatblock b of X contains exactly theCatblocks, Catports andCatcon-
nections that are under it in the transitive closure of the α relation.
Weconsider anobject x ∈Ob(b), either there is adirectbelongingbetween
b and x ∈Ob(X), or there is ablock b1 ∈Ob(b) suchas x ∈Ob(b1), which im-
plies that thepre image x ′ of x is under thepre image b1′ of b1 in the trans-
itive closure (i.e. children elements and their children) of α and therefore
(x ′,b′) ∉α (with b′ pre image of b).
This means that there is a direct belonging between x and b if and only if
the pre images x ′ and b′ of x and b are such as (x ′,c ′) ∈α.
Thus (x ′,c ′) ∈α1 if and only if (x ′,c ′) ∈α: α1 =α

• r 1 is the symbol associated to the root of X .
The root of X is a Catblock that contains every other Catblock, Catport
and Catconnection of X .
Therefore its pre image is a block of Xqui nt that is over any other block,
port and connection in the transitive closure ofα, the only corresponding
block is r , the only block with no parent.
Thus r 1 = r .

100 CHAPTER 4. THE S2ML+CAT FRAMEWORK

This means that, up to the choice of symbols for the blocks, we have
G(F (Xqui nt)) =G(X) = Xqui nt , i.e.,G ◦F = I d .

Now, let us show that F ◦G = I d .
Let X ∈Ob(S2ML+C at).
Let Xqui nt =G(X) =< P,C ,B ,α,r >.
Let X ′ = F (Xqui nt = F ◦G(X).
Ob(X ′) = P ′∪B ′∪C ′ where:

• P ′ = {p ′ | p ′ is the Catport such asOb(p ′) = p, for p ∈ P}
However the p ∈ P are the p such as there is a Catport P" ∈ Ob(X) such as
Ob(P") = {p}.
Thus the Catports inOb(X ′) are exactly the Catports inOb(X).

• C ′ = {{p ′
1, ..., p ′

n} | For any k ∈ [|1,n|], p ′
k the Catport such asOb(p ′

k) = pk , for
pk ∈ c, with c = {p1, ..., pn} ∈C }.
However the c ∈ C are the connections c = {p ∈ Ob(Pcat) for Pc at ∈ c ′ with
c ′ ∈Ob(X). Thus the Catconnections inOb(X ′) are exactly the Catconnec-
tions inOb(X).

• B ′ = {b′ | b′ is theCatblock that contains all associatedCatblocks, Catports,
and Catconnections that are under b in the transitive closure of the α re-
lation , with b ∈ B}
However, the α relation is { (x ′, y ′) ∈ P ∪B ∪C ×B | HomX (x, y) contains a
direct belongingmorphism,where x, y are thepre images of x ′ and y ′with
the three first points }, i.e, Catblocks of Ob(X ′) contain eachothers and
Catports/Catconnections exactly in the same way as Catblocks ofOb(X).
Therefore the Catblocks of Ob(X ′) and the Catblocks of Ob(X) are the
same.

Thus,Ob(X) =Ob(X ′).
Themorphisms in X ′ are themorphisms described in definition 4.4, there-

fore, they are the same as themorpisms in X .
This means that X ′ = F ◦G(X) = X .
F ◦G = I d .
Therefore we have a way to map each element of S2ML to an element of

Ob(S2ML+C at). We also have away tomap each element ofOb(S2ML+C at) to
a set of elements of S2ML. Finally, both thesemappings are each-other inverse
up to the choice of symbols for the blocks.

□

4.3. IMPORTANT PROPERTIES IN S2ML+CAT 101

4.3.2 The Cantor-Bernstein property of models
A remarkable property is that when two models can be injected into one an-
other, they have the same structure; this can be expressed as follows.
Theorem 4.2. Let A,B ∈ Ob(S2ML +C at), such as there exist two injections F :
A −→ B andG : B −→ A.

Then there exists an injectionG ′ : B −→ A such asG ′ ◦F = I dA and F ◦G ′ = I dB

Remark 4.1. Theorem 4.2 is a generalization of the Cantor–Schröder–Bernstein
theorem to Catmodels.

Lemma 4.1. Let M1, M2 ∈ Ob(S2ML +C at) such as there exist two injections F :
M1 −→ M2,G : M2 −→ M1.

Let R1 be the root object of M1, R2 the root object of M2.
Then R2 = F (R1) and R1 =G(R2)

Proof. Let M1, M2 ∈Ob(S2ML+C at) such as there exist two injections F : M1 −→
M2,G : M2 −→ M1.

F andG are injective on objects, therefore car d(Ob(M1)) = car d(Ob(M2)).
Let R1 be the root object of M1, R2 the root object of M2.
Any belonging morphism between an object and its parent in M1 will also

bemapped to a belongingmorphism in M2 between the object’s image and its
parent’s image. Therefore, as F is injective, any object of M1 with a parent is
mapped to an object of M2 which also has a parent.

Therefore all objects ofM2 that have a parent are the images of objects ofM1

that have a parent, since car d(Ob(M1)) = car d(Ob(M2)).
Thus, since F is injective on objects, R2 = F (R1). □

Lemma 4.2. Let M1, M2 ∈ Ob(S2ML +C at) such as there exist two injections F :
M1 −→ M2,G : M2 −→ M1.

Then Order(M1) = Order(M2)

Proof. Let M1, M2 ∈Ob(S2ML+C at) such as there exist two injections F : M1 −→
M2,G : M2 −→ M1.

Let X ∈Ob(M1) of order k.
By definition, there exists X1, ..., Xk−1 ∈ Ob(M1) and r1 : X −→ X1, ..., rk :

Xk−1 −→ R1 such as the ri are direct belongingmorphisms.
Therefore there exists X ′, ..., X ′

k−1 = F (X), ...,F (Xk−1) and r ′
1 : X ′ −→ X ′

1, ..., r ′
k−1 :

X ′
k−1 −→ R2, where the r ′

i are belonging morphisms which are the images by F
of the ri .

This means thatOr der (X ′) ≥Or der (X).
If we take the objects of maximum order in M1 and M2, we obtain

Or der (M1) ≥Or der (M2) and inversely.
ThereforeOr der (M1) =Or der (M2). □

102 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Lemma 4.3. Let M1, M2 ∈ Ob(S2ML +C at) such as there exist two injections F :
M1 −→ M2,G : M2 −→ M1.

Let k =Or der (M1) =Or der (M2).
For any i ∈ [|0;k|] M1 and M2 have the same number of objects of order i . Any

object of order i in M1 (resp. M2) is mapped through F (resp. G) to an object of
order i .

Proof. Let M1, M2 ∈Ob(S2ML+C at) such as there exist two injections F : M1 −→
M2,G : M2 −→ M1.

Let k =Or der (M1) =Or der (M2).
Letn be thenumberof objects of order k inM1, thenM2 has at leastn objects

of order k, sinceOr der (F (X)) ≥Or der (X).
Since the same holds for G, we have that M2 also has exactly n objects of

order k.
Assume thatM1 andM2 have the samenumber of objects of a specific order

and objects are mapped to objects of the same order for any order above i ∈
[|0;k|].

Let X ∈Ob(M1) be an object of order i , thenOr der (F (X)) ≥Or der (X).
Any object of M2 of order superior to i already is the image of an object of

M1 of order superior to i .
ThereforeOr der (F (X)) =Or der (X) = i .
We know that the property holds for objects of order k.
For i ∈ [|0;k|], if it holds for any order of [|i +1,k|], then it holds for order i .
Thus by complete induction, it holds for any i ∈ [|0;k|]. □

Lemma 4.4. Let M1, M2 ∈ Ob(S2ML +C at) such as there exist two injections F :
M1 −→ M2,G : M2 −→ M1.

The image by FOb (resp GOb) of a Catconnection is a Catconnection with the
same number of Catports.

Proof. Let M1, M2 ∈Ob(S2ML+C at) such as there exist two injections F : M1 −→
M2,G : M2 −→ M1.

LetC be a Catconnection of M1.
car d(Ob(FOb(C))) ≥ car d(Ob(C)): indeed, if Ob(C) = {P1, ...,Pn} and

Ob(FOb(C)) = {P ′
1, ...,P ′

m}, thenwe have, for each i ∈ [|1,n|] a l such as FOb(Pi) = P ′
l ,

because F preserves the referencemorphisms, thus m ≥ n
Thismeans thatM2 hasmoreCatconnections thanM1 for a specificnumber

of Catports.
In the sameway as objects’ order, we obtain that the image of a Catconnec-

tion by F andG is a Catconnection with the same number of Catports. □

Proof. Theorem 4.2
Let M1, M2 ∈Ob(S2ML+C at) such as there exist two injections F : M1 −→ M2,

G : M2 −→ M1.
Let us show by complete induction that we can build an inverse of F .

4.3. IMPORTANT PROPERTIES IN S2ML+CAT 103

Let n be the order of M1 and M2.
Let R1 be the root object of M1, R2 the root object of M2.
For n = 0, M1 and M2 only contain their root objects, which are elementary

Catblocks that have no Catport or Catconnection.
Therefore F and G are entirely defined by F (R1) = R2 and G(R2) = R1; they

are trivially inverse of each other.

Let n > 0, assume that for any k < n, for any models M1,k , M2,k ∈ Ob(S2ML +
C at) of order k such as there exist two injections Fk : M1,k −→ M2,k ,Gk : M2,k −→
M1,k , we can build an inverse of F .

Then:
• F maps R1 to R2 and vice versa.
• F maps each Catblock B ∈ Ob(M1) of order 1 to a Catblock B ′ ∈ Ob(M2) of
order 1.
The component of F on B and its descendants corresponds to an injec-
tion FB between themodels (of order < n) that have B and B ′ as their root
objects.
Thus we can associate an inverseG ′

B to this injection.
• M1 andM2 have the samenumbersofCatports of order 1andconnections
of order 1.

- LetC ∈Ob(M1) be a Catconnection of order 1.
We know that F (C) has the same number of Catports as C and that the
images of the Catports ofC are the Catports of F (C).
Therefore we can define an inverse to the component of F on C and its
ports, and this inverse is compatible with the ones defined for Catblocks
of order 1.

- We can associate two by two the remaining Catports.
Whenweadd thecompositions to these components,weobtaina functor
G ′ : M2 −→ M1, which is the inverse of F .
Therefore we have shown theorem 4.2 by strong induction.

□

A direct corollary of theorem 4.2 is the following one.
Corollary 4.1. Let A,B ∈ Ob(S2ML + C at), such as there exists injections
F : A −→ B andG : B −→ A.

Then F is an equivalence of categories.
As a reminder, the definition of an equivalence of categories is given in the

state of the art of this manuscript, in Section 1.4.3.

104 CHAPTER 4. THE S2ML+CAT FRAMEWORK

4.3.3 Equivalence of S2MLmodels
We can therefore give a simple definition of the equivalence of Catmodels.

Definition 4.11. "Equivalence of Catmodels"
Let A,B ∈ S2ML+C at .
We say that A andB are equivalent if there exist F : A −→ B andG : B −→ A two

injections.

Theorem 4.3. The equivalence of Catmodels is an equivalence relation over
Ob(S2ML+C at).

Proof. Weneed to show that this relation is reflexive, symmetric, and transitive.

• Reflexivity:
Let A be a Catmodel.
A is equivalent to A because the identity I dA is an injection. Therefore
F = G = I dA and α composed of, for each x ∈ A, αx : F (x) −→ G(x) with
α= i dx suits.

• Symmetry:
A is equivalent to B , so the injections F : A −→ B and G : B −→ A exist.
Thereforewehave two injectionsbetweenB and A, and as such,B is equi-
valent to A.
The relation is symmetric.

• Transitivity:
Let A, B , andC three Catmodels, with A equivalent to B and B equivalent
toC .
Let FA,B ,GB ,A, be the equivalence injections for A, B and FB ,C ,GC ,B be the
equivalence injections for B ,C .
Then F : A −→C = FB ,C ◦FA,B andG : C −→ A =GB ,A ◦GC ,B are two injections
between A andC , because the composition of injection is an injection, as
shown in the proof of proposition 4.2. Therefore A andC are equivalent.

□

4.3. IMPORTANT PROPERTIES IN S2ML+CAT 105

Anotherpropertyof injection is that they, in away, represent that onemodel
is bigger than another since it is a part of it.
Definition 4.12. "Injection relation"
For A,B ∈Ob(S2ML+C at), we say that a Catmodel A is injected into a Catmodel
B if there exists an injection F : A −→ B .

We call this relation the injection relation over the set of Catmodels.
Theorem 4.4. The injection relation is a partial order relation over the set of
Catmodels, given equivalences between Catmodels.

Proof. We need to show that the injection relation is reflexive, antisymmetric,
and transitive.

• Reflexivity:
Let X be a Catmodel, let I dx be the identity over X , i.e. the image of x ∈
Ob(X) is x and for g ∈ HomX (x, y) with x, y ∈Ob(X) the image of g is g .
Then I dX is trivially an injection.
Therefore X is injected into X .

• Antisymmetry:
Assuming X ,Y , twoCatmodels, suchas X is injected inY andY is injected
in X , with F : X −→ Y andG : Y −→ X such injections.
Then we have two injections between X and Y ; therefore X and Y are
equivalent.

• Transitivity:
Let X , Y , Z be Catmodels.
Let F : X −→ Y ,G : Y −→ Z be injections.
Let H : X −→ Z be the composition of F andG on objects andmorphisms,
i.e., composed of:{

HOb : Ob(X) −→Ob(Z)
x →G ◦F (x)

and for each x, y ∈Ob(X),{
Hx,y : HomX (x, y) −→ HomZ (HOb(x), HOb(y))

f →GFOb (x),FOb (y) ◦Fx,y (x)

Because each of the applications defined here are the composition of in-
jective applications, they are injections. Therefore H is an injection; thus
X is injected in Y .

Therefore theexistenceof these injectionsbetweenCatmodelsdefinesapartial
order relation. □

106 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.13: The structure of a binary consistency relation

4.4 Consistency relation
Now that we have explained the category in which we are working, we can
define a consistency relation between two S2MLmodels.

Definition 4.13. "Binary consistency relation"
Let ∼ be a binary relation overOb(S2ML+C at), for A,B ∈Ob(S2ML+C at)we

note A ∼ B if (A,B) ∈∼, i.e. if A is in relation with B .
∼ is aBinary consistency relation if andonly if for A,B ∈Ob(S2ML+C at), there

exist A′,B ′ ∈Ob(S2ML+C at) such as these injections exist:

• f A : A′ −→ A

• fB : B ′ −→ B

• F : A′ −→ B ′

• G : B ′ −→ A′

and F andG respect the following properties:

• F ◦G = I dB ′

• G ◦F = I dA′

This definition means that the two Catmodels are in a consistency relation
if the structure shown in Figure 4.13 existswith fa , fb, F , andG being injections.
All themorphisms being injections and the compositions of F andG being the
identities of A′ and B ′. Note that theorem4.2 implies that if this structure exists
without the compositions of F and G being the identities, then we can find G ′

such as F andG ′ compose into the identities.
Such a relation is too general to describe a relevant specification of consist-

ency between two Catmodels. To illustrate this idea, we can create a binary
consistency relation such as any couple of Catmodels would be in the relation:

Proposition 4.3. Let ∼al l be the binary relation over Ob(S2ML +C at) with no
other restriction than being a binary consistency relation.

Let A,B ∈Ob(S2ML+C at).
Then A ∼al l B .

4.4. CONSISTENCY RELATION 107

Proof. Let A,B ∈ S2ML+C at .
We have A ∼al l B if there exists A′, B ′ in Ob(S2ML +C at) such as there exist

injections f A : A′ −→ A, fB : B ′ −→ B , F : A′ −→ B ′, G : B ′ −→ A′ such as F ◦G = I dB ′

andG ◦F = I dA′ .
Because A and B are Catmodels, there exists unique Catblocks r A ∈ Ob(A)

and rB ∈ B such as there are no morphisms in A (resp B) with domain r A (resp
rB).

Let A′ be the S2ML model with only one object r A and no morphisms, and
B ′ be the Catmodel with only one object rB and nomorphisms.{

f A : A′ −→ A
r A → r A

is trivially an injection. (We only present the injections
through theirmappings overOb(X)here since themodels have nomorphisms)

We define fB using the same construction.
Let

{
F : A′ −→ B ′

r A → rB
and

{
G : B ′ −→ A′

rB → r A
.

F and G are injections, and F ◦G =
{

B ′ −→ B ′

rB → rB
= I dB ′ and similarly G ◦F =

I dA′ .
Therefore A ∼al l B . □

Our definition of a binary consistency relation describes the existence of a
similarity between A and B . This similarity is the shared structure of A′ and B ′.

Because the definition is general, the fact that A and B are Catmodels in-
duces a similarity: The existence of the main element of the Catmodel, namely
r A and rB , unique elements of the Catmodels with no parents. This results in
any couple of Catmodels being in relation.

This means that not all binary consistency relations are interesting for Cat-
model comparison.

Themain idea behind this definition is that we can complete it with restric-
tions to assert consistency over specific properties of the Catmodels. As an ex-
ample, we define the dictionary consistency relation between two Catmodels:

Definition 4.14. "Dictionary consistency relation"
We call a Dictionary consistency relation a binary consistency relation ∼di c

such as for A,B ∈Ob(S2ML+C at), A ∼di c B implies:
A′ and B ′ are two Catmodels injected in Acomp and Bcomp ; where Acomp and

Bcomp are two Catmodels such as, appart for their root Catblock,Ob(Acomp) and
Ob(Bcomp) contain only elementary Catblocks and Catports.

Such a relation consists of matching objects from one Catmodel to cor-
responding objects on the other, except for some elements that are kept un-
matched. Therefore this method can detect elements from one Catmodel that
have no equivalent in the otherCatmodel; they are the objects of Acomp that are
not in A′ (idem on the B side).

108 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.14: Reminder of the structure for binary consistency relations

As before, it could be argued that any couple of models is in relation using
this definition, as we could also take the Catmodels with only the main ele-
ments. For example, this could be solved by having a unique "name" attrib-
ute in our objects and considering that objects linked by the dictionary should
carry the same name. However, that would hide the real problem since there is
no guarantee that elements arenamed the sameway in theoriginalCatmodels.
The reality is that such a dictionary would have to be created by the engineers,
as the Catmodel elements carry a meaning that the computer cannot under-
stand. Generally, the way to express a "good" consistency relation is to have a
maximality condition on the A′ and B ′ models. One way to achieve this max-
imality is through the use of a pullback. We discuss these ideas in section 5.3.1.

While defining the dictionary relation, we used the Acomp and Bcomp Cat-
models as an intermediary step between A/B and A′/B ′. We use these Catmod-
els to eliminate the elements we do not intend to compare in our binary con-
sistency relation between A and B . In this way, the differences detected by the
binary consistency relation are the objects from Acomp and Bcomp that are not
in A′ and B ′.

Therefore one possible structure to build a binary consistency relation over
an existing synchronization methodology is the one found in Figure 4.4, a re-
minder of this figure is found here in Fig. 4.14. S2ML +C at could also be re-
placed by an equivalent construction over another common formalism.

4.5. SIMPLIFYING COMPARISONWITH VERSIONING 109

Figure 4.15: Functors between iterations of themodel consistency structure

4.5 Simplifying comparison with version-
ing

The S2ML+Cat framework allows us to give mathematical definitions of con-
sistency relations, butwebelieve that it is not theonlyway that it couldbehelp-
ful. During the design and safety assessment of the system, iterations aremade
over themodels. Because themodels evolve,multiple consistencyassessments
are required each time a new version of the Catmodels is used for consistency
assessment.

We believe that once an assessment has beenmade over the first version of
themodels,wecan simplify the subsequent comparisons, using theknowledge
that most of the models remain unchanged and therefore do not need to be
compared again. Take the construction from Fig. 4.14 for the nth version of
the Catmodels. We call An and Bn the S2ML models, Acomp,n and Bcomp,n the
comparisonCatmodels, and A′

n and B ′
n the comparedCatmodels as a category,

letus call itVn. Weshouldbeable todefinea functorFn : Vn −→Vn+1 to represent
the correspondences between the nth and n+1th versions of theCatmodels, as
depicted in Fig. 4.15.

This functor would have components on each of the categories of Vn, map-
ping An to An+1 etc. These components wouldmap each Catmodel element of

110 CHAPTER 4. THE S2ML+CAT FRAMEWORK

Figure 4.16: Mapping version n to version n+1

version n to its corresponding element in version n + 1. Obviously, we have a
problem if an element is deleted. Therefore this new idea requires a bit of work
on the original concept of S2ML+Cat; we should be able to solve this issue by
adding a new object, for example, {;}, and mapping the deleted elements to
this new object.

CHAPTER 5

APPLICATION EXAMPLE: THE BLOODDELIVERY
DRONE

In this chapter, we present the blood delivery drone case study and apply the
S2ML+Cat framework to the SmartSync synchronization of itsmodels as proof
of concept.

With the help of an intern at the Quartz - Supméca laboratory, we reverse-
engineered MBSE, MBSA, multi-physics, and scenario models of the Zipline
blood delivery drone. We considered the MBSE model as the specification
of the system and synchronized the MBSA, multi-physics, and scenario mod-
els with MBSE. Thanks to a python script, we can compute and visualize the
S2ML+Cat categories corresponding to each step of the synchronization pro-
cess.

The first section presents the case study and the modeling of the MBSE,
MBSA, Multi-Physics, and Scenario models. The second section applies the
SmartSync methodology to the case study and shows how S2ML+Cat can be
applied to the methodology. The third section discusses the results of this ex-
periment through the angles of pragmatics, composition in the models, and
connections.

5.1 Presentation of the case study
The study uses a fixed-wing drone as its applicative example. This drone is in-
spired by the Zipline company blooddelivery drone [4]. The specific use of this
drone is the delivery of blood packages to different hospitals and clinics across
a large area from a blood storage center. This drone is a fixed-wing drone,
meaningadrone similar to aplane. Its powertrainhas twocoaxialmotors, each
linked to a propeller. The drone also presents redundancy in its ailerons, used
to control direction. A control processing unit is placed in the drone’s remov-

111

112 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

able battery and given the flight plan before each flight. A QR code allows for
identifying the blood package once installed in the drone cargo compartment
until it is parachuted down to the delivery site. The drone takes off by being
catapulted; then, it flies to the drop area. Cargo can be parachuted up to an 80
km radius, with a maximum time to the objective of 45 min. The drone then
comes back to the storage site. It lands by being caught by a recovery system,
a sling between two 10-m high towers that attaches to a hook on the drone.
Figure 5.1 illustrates the drone’s external architecture and flight scenario.

Themodeling of this dronewasmadewith the assistance of ImaneBouhali,
an intern at the Supmeca Quartz Laboratory at the time.

5.1.1 Modeling the case study
We consider a SysML architecture model as the specification of the system.
From this architecture, we derived threemodels for different intents:

• Safety assessment: AnAltaRica 3.0model represents themodel for safety
assessment.

• Scenario: A SCOLA (SCenario Oriented LAnguage) model represents the
functional scenarios.

• Multi-physics: AModelica model represents the multi-physics behavior
of the drone’s power electronics and aerodynamics.

We asserted consistency over this design using SmartSync to synchronize
these threemodels with the architecture model.

MBSE:
The MBSE modeling of the drone was conducted through the same pro-

cess as the Landing Gear case study (see Section 2.2.1), using themethodology
from [86]. In this section, we are only interested in the drone’s architecture.

The drone is decomposed into different parts: Unit, Avionic, Controller,
Radar, Inertial Unit, Powertrain, and Battery, which are then decomposed into
components. This decomposition, described by the BDD, can be found in
Fig. 5.2.

We then built the IBD (found in Fig. 5.3) to represent how these different
parts interact.

TheUnit contains thewingsandAileronsof the system, aswell as the rudder
and the cargo bay. The powertrain contains the motors and propellers. Most
parts of the system are connected to the controller.

5.1. PRESENTATIONOF THE CASE STUDY 113

Figure 5.1: Illustration of the Zipline Flyer drone.

Figure 5.2: Product Breakdown Structure of the Blood Delivery Drone System
(BDD)

MBSA:
The MBSAmodel is based on an NRComponent class similar to the NonRe-

pairableComponent class we defined for the landing gear in Section 2.2.2.
This class that contains the basic OK/KO guarded transition system de-

clined in each component of the drone is completed through a ComponentIO
class that contains connected input andoutput variables. Those classes canbe
found in Fig. 5.4.

The complete AltaRicaModel can be found in Appendice C.1.

Scenario:
Weuse the SCOLA to represent scenarios over the system. The SCOLAmodel

contains a very simplified architecture of the system, found in Fig. 5.5, along

114 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

Figure 5.3: Physical Architecture of the Blood Delivery Drone System (IBD)

with a scenario that dynamicallymodifies the architecture. The scenario is de-
tailed in appendice C.2.

As an example, the block "colis" (which is french for shipment) contains
a boolean variable initialized at true; when the scenario enters the task "lan-
guage" (drop), this variable is changed to false, as the payload is no longer in
the drone.

Multi-Physics:
The multi-physics model is built with Modelica, a modeling language asso-

ciated with a graphic interface. The graphical view of the model is illustrated
in Fig. 5.6.

The Modelica model contains two motors, along with two propellers, that
are associatedwith their electrical andaerodynamicequations. It also contains
the wings and their aerodynamics. The motors are controlled by a PID that
aims at keeping the drone at a fixed altitude.

TheModelicamodel intends toprove that thedrone’s performance allows it
toflyat itsdesignatedaltitudeandspeed. Wecanalsodeteriorate thedrone (for
example, turn off one of themotors) and verify if the drone’s performances are
still enough to accomplish the mission. The model contains computation ar-
tifacts unrelated to the drone’s architecture; for example, the "World" is a fixed
element that allows computing the drone’s position.

5.2. APPLYING SMARTSYNC TO THE STUDY CASE 115

class NRComponent
Boolean is_working (init = true);
parameter Real lambda = 10e-6;
event failure (delay = exponential(lambda));
transition
failure : is_working == true -> is_working := false;

end

class ComponentIO
extends NRComponent;
Boolean in, out (reset = false);
assertion
out := if is_working then in else false;

end

Figure 5.4: Class NRComponent and ComponentIO in AltaRica 3.0

domain ETAT_GPS {ARRV_base, ARRV_dest, NONARRV_base, NONARRV_dest}
end

block drone
block GPS
end
block colis
Boolean in true

end
block GroupeMoteur
Boolean inPower1 false
Boolean inPower2 false

end
end

Figure 5.5: Representation of the architecture in the SCOLAmodel

5.2 Applying SmartSync to the Study Case

This section applies the mathematical framework to a case study through the
SmartSync approach. We show how the application of SmartSync on this case
study can be expressed in our framework, but the mathematical definition of
SmartSync within our framework is yet to come. This will be discussed in Sec-
tion 5.3. In the first subsection, we show how we assert consistency between
themodels, using SmartSync. Then, subsection 5.2.2 provides a categorical ex-
pression of the SmartSync comparison steps.

116 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

Figure 5.6: Modelica Graphical view of the Drone

5.2.1 Comparison with SmartSync
Before conducting each comparison, we first had to abstract the SysMLmodel.
The abstraction was made towards the S2ML language used in the Smart-
Syncmethodology.

We translated the information fromtheBDDandthe IBDtoconduce theab-
straction. The S2ML model followed the BDD’s hierarchy and the IBD’s struc-
ture. We representedSysML “partProperties”, i.e., components of the system
in the S2MLmodel, with blocks. We also used S2ML ports to represent SysML
ports and S2ML connections to represent SysML connections.

Anexampleof the transformationoverpart of theSysMLmodel (namely the
battery and drivetrain) is shown in Figure 5.7. This translation is similar to the
one operated on the LandingGearmodels in Section 2.3.1, the complete S2ML
model is found in appendice C.3.

Oncewe translated the SysMLmodel, we operated the comparisonwith the
AltaRica model and the Modelica model. This was done by translating those
models, then operating the SmartSync comparison.

MBSE/MBSA:
To compare the SysMLmodel and the AltaRica 3.0model, we first translated

the AltaRica 3.0model to S2ML. This processwas not complicated because the
structural part of the AltaRica 3.0 languages is S2ML. Blocks were translated
to blocks, variables to ports, and assertions to connections. An example of this
translation canbe found in Figure 5.8. In this example, it canbe seen that some
attributes givingmore information on the AltaRicamodel were included in the
S2MLmodel (e.g., “type = “Boolean””); these attributes are not currently used

5.2. APPLYING SMARTSYNC TO THE STUDY CASE 117

block DRONE
block Battery
port Elec_energy;
port Energy;

end
block PowerTrain
block Rear_E
port Action;
port control;

end
block Rear_p
port Action;

end
block Front_E
port Action;
port control;

end
block Front_p
port Action;

end
port propulsive_effort;
port Energy;
connection [Front_motor.Action,

Front_propeller.Action];
connection [Rear_motor.Action,

Rear_propeller.Action];
end

(a) (b)

Figure 5.7: A part of the SysMLmodel (b) and its translation in the S2MLmodel
(a).

in the SmartSync comparison. This translation is similar to the one operated
on the LandingGearmodels in Section 2.3.1, the complete S2MLmodel can be
found in appendice C.4.

Once the translationwasdone, themodelswere given to the SmartSync tool
as inputs. The tool then took an element of eachmodel that it knew to corres-
pond to one another. This was the main element of the models for the first
step, i.e., the blocks representing the whole system. The tool then asked the
user to align children of these two elements from both models. The user can
align elements or give them the "forget" attribute —meaning the element is
not supposed to have a counterpart in the other model — or do neither. The
tool then iterated on each couple of aligned elements until all elements were
either aligned or forgotten. When no element could be aligned anymore, the
remaining elements with no counterpart were considered inconsistent.

In this case, the comparison between the architecture and AltaRica 3.0
models was made through 4 comparison steps. It shows that theMBSAmodel
lacks some elements of the system. The missing elements are the redundant
ailerons and the rudder airfoil. This is due to a communication issue when
the safety model was designed based on an outdated version of the architec-
ture model. Correction of these inconsistencies was conducted by adding the
missing elements to the AltaRica 3.0 model.

Note that all safety artifacts were ignored in this comparison, such as state

118 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

block Avionics
block Comms_module
port is_working (type = ‘‘Boolean’’,

kind = ‘‘init’’, value =
‘‘true’’);

port lambda (type = ‘‘Real’’, value
= 10e-6);

port failure (type = ‘‘event’’,
delay = ‘‘exponential(lambda)’’);

connection [failure, is_working,
is_working] (type =
‘‘connection’’, expr = ‘‘true ->
false’’);

port in4G (type = ‘‘Boolean’’, kind
= ‘‘reset’’, value = true);

port inCalculator (type =
‘‘Boolean’’, kind = ‘‘reset’’,
value = ‘‘false’’);

port outData (type = ‘‘Boolean’’,
kind = ‘‘reset’’, value = true);

port outCalculator (type =
‘‘Boolean’’, kind = ‘‘reset’’,
value = true);

connection [outData, is_working,
in4G](type = ‘‘assertion’’);

connection [outCalculateur,
is_working, in4G](type =
‘‘assertion’’);

end

(a)

block Avionics
block Comms_module
extends NRComponent;
Boolean in4G (reset = true);
Boolean inCalculator (reset = false);
Boolean outData (reset = false);
Boolean outCalculator (reset = true);
assertion
outData := if is_working then

in4G and inCalculator else
false;

outCalculator := if is_working
then in4G else false;

end

(b)

Figure 5.8: A part of the AltaRica 3.0 model (b) and its translation in the S2ML
model (a).

variables, events, etc. The comparison of the models also has shown that in-
teractions with the environment, such as gravity, 4G network, etc., have not
been considered in theMBSAmodel. We deemed this normal in this work, but
it could be argued that it should be added; therefore, consistency assessment
would have resulted in adding these interactions to theMBSAmodel. Such de-
cisions are non-trivial and should be undertaken by the system engineer and
safety analyst; this is why the consistency assessment cannot be fully automat-
ized. Of course, after modification of the model, a new comparison should be
operated to assert that the correction did not introduce new inconsistencies.

MBSE/Multi-Physics:
We needed tomake a second comparison to assert the global consistency of

our design with the Modelica/SysML comparison. The translation fromMod-
elica to S2ML was done following the process described in [13], with the dif-
ference that we consideredModelica’s variables. Part of this translation can be
found in Figure 5.9 with the translation of the motor class. Modelica classes
were abstracted to S2ML classes, with model instances being translated to
blocks. Modelica variables were translated to S2MLports, and connect clauses
were translated to connections. The complete S2ML model can be found in
appendice C.5.

5.2. APPLYING SMARTSYNC TO THE STUDY CASE 119

class motor
port pin, pin_n, flange_b;
block resistor
port _in, _out;
port r (value=‘‘0.299’’);

end
block inductor
port _in, _out;
port l (value=‘‘8e-5’’);

end
block emf
port _in, _out, flange;
port const (value=‘‘0.0302’’);

end
block inertia
port _in, _out;
port J (value=‘‘1.42e-5’’);

end
connection [pin, resistor._in];
connection [resistor._out, inductor._in];
connection [inductor._out, emf._in];
connection [emf._out, pin_n];
connection [emf.flange, inertia._in];
connection [inertia._out, flange_b];

end

(a) (b)

Figure 5.9: A part of the Modelica model (b) and its translation in the S2ML
model (a).

Once this translation was conducted, we compared the models with the
SmartSync tool. A first iteration showed that the structure of themodels is very
different. For ease of comparison, we added drivetrain and cell blocks to
the models, respectively, containing the motors and propellers and the fusel-
age and wings. We then translated again and compared themodels.

After four comparison steps, we had three conclusions:

• Most components of the drone are missing in the Modelica model. This
canbeexplainedby the fact thatwearehereonly interested in thepropul-
sion and aerodynamics of the drone; therefore, components related to
other functions are not represented.

• In somespecificcases, theModelica representation, ismoredetailed than
the architecture model. This is the case of the motors since the SysML
model only considers them through a black box view, whereas the Mod-
elica view shows the inner parts of themotor for calculations.

• There is an inconsistency between the models. This inconsistency is the
presence of the fuselage within the Modelica model, which is modeled
for aerodynamic purposes, but unrepresented in the architecturemodel.
This inconsistency is corrected by adding the fuselage to the architecture
model.

120 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

MBSE/Scenario A third comparison is dedicated toMBSE/SCOLA synchron-
ization. Because the SCOLA language is derived from S2ML, the translation is
straightforward. We translate blocks to blocks and ports to ports in the archi-
tecture. We also translated the scenario part of the model, although it is not
very interesting for comparison. The scenario was modeled as a block, and so
were tasks and branches. Nexts were translated as connections between the
states, which were translated as ports.

An example of the translation of the blockGPS from the architecture can be
found in Fig. 5.10.

block GPS
ComponentState Recept_GPS STOPPED
EtatGPS Position BASE

end

(a)

block GPS (type="{block, scenario, task}",
value="block")
port Recept_GPS (type="{INSTALLED,

MISSING, STOPPED,
EN_MARCHE}",value="STOPPED");

port Position (type="{BASE, DEST,
Route_Retour_BASE,
Route_vers_DEST}",value="BASE");

end

(b)

Figure 5.10: A part of the SCOLA model (b) and its translation in the S2ML
model (a).

The SmartSync comparison between the SCOLA andMBSEmodels is com-
pleted after three comparison steps. The comparison results are interesting
because the SCOLAmodel only covers a small part of the architecture. There-
fore, most model elements from theMBSEmodel aremarked as "forget". On
thecontrary, all elements fromtheSCOLAmodel are found in theMBSEmodel,
except for two exceptions: GPS and Soute. These elements are lacking because
they are found at a different level of abstraction in the MBSE model; this can
be easily corrected in the comparison by adding an intermediate subsystem to
the SCOLA model. However, it would be better for SmartSync to encompass
this case, as will be discussed in section 5.3.2.

Of course, the scenario from the SCOLAmodel has no equivalent found in
the SysML model. Although we could create a scenario through a sequence
diagram and translate it to S2ML, we consider that in a realistic workflow, this
scenario would only be created in one of the models. Finally, some variables
from the SCOLA model do not have an equivalent in the MBSE model, for ex-
ample, "batterie.charged". Thesevariablesare indicatorsof thecomponents
related to the scenario.

5.2.2 Categorical Point of View
In this subsection, we analyze the comparisonsmade in subsection 5.2.1 in the
context of themathematical framework we defined in Chapter 4. We intend to

5.2. APPLYING SMARTSYNC TO THE STUDY CASE 121

show how we can specify the SmartSync comparison of the drone models in
the S2ML+Cat framework.

Visualisation of S2ML + Cat Catmodels with NetworkX:
In order to achieve this goal, we used oriented graphs that give a visual rep-

resentation of the categorical S2MLmodels.
We created this representation at each step during the comparison to visu-

alize which parts of the model the comparison traversed. Because SmartSync
makes the comparison in a way that resembles a breadth-first search, this cor-
responds to taking the model with only its first level of abstraction (the main
and its children) and then adding a level of abstraction for each iteration.

To obtain the graph representations, wewrote a python script that converts
the CSV files created by the SmartSync tool to directed graphs over the under-
lying S2ML + Cat Catmodels. This script used the NetworkX package [55] as its
basis for graph classes and visualizationmethods. This package is a library for
the study of graphs and networks. It features classes for the representation of
graphs and digraphs andmethods for graph analysis and visualisation.

The graphs we show here over the S2ML + Cat Catmodels only show dir-
ect belongingmorphisms, Catblocks, and Catports. The absence of composed
morphisms is because we wanted to minimize the number of edges to allow
for good readability. The absence of connections is related to the comparison
made by SmartSync, which does not consider them yet.

For each iteration, the script also computed a correspondence matrix
betweenobjects of bothmodels, which corresponds to giving theF andG func-
tors from Figure 4.4. This matrix is represented as a table. Its element An+1,m+1

will contain −1 if the nth element of the first Catmodel or the mth element of
the second has the attribute forget, 1 if they are aligned and 0 otherwise. The
first columnand lineof the table, respectively, contain thefirst and secondCat-
model elements’ names,meaning An+1,0 contains the name of the nth element
of the first Catmodel, and A0,m+1 the name of the mth element of the second
one, with the elements being arbitrarily numbered.

In this aspect, we can say that for each iteration, we have constructed the
AComp and BComp S2ML + Cat Catmodels for the elements that were already
aligned and the F and G functors. The A’ and B’ S2ML + Cat Catmodels are ob-
tained by removing the objects with the attribute forget and the morphisms
with these objects as the source or target.

The script can be found in appendice D.

Comparison with the S2ML + Cat Catmodels:
Figure 5.11 shows said graphs for comparing the fixed-wing drone’s SysML

and AltaRica 3.0 models. Blocks are represented with green vertices and ports
with blue ones, and different concentric ellipses show diverse abstraction
levels in themodels of vertices.

122 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

The figure shows the graphs representing the Catmodels for the objects of
the models that have been considered by the SmartSync tool. They represent
thefirst, the second, and the last (fourth) comparison steps in theMBSE/MBSA
comparison.

Figure 5.11: Diagrams for the S2ML models of the fixed-wing drone during it-
erations of SmartSync over the architecture and safety models.

Table 5.1 provides the correspondence matrix for the fixed-wing drone
between the SysML and AltaRica 3.0 S2ML models. It can be observed that
many ports are present in the SysML representation, whereas they are not in
the AltaRica 3.0 model. This corresponds to the interfaces outside of the sys-
tem discussed in Section 5.2.1.

From the final step of the comparison between the SysML and AltaRica 3.0
models, we canobtain theA’ andB’Catmodels fromFigure 4.4. TheseCatmod-
els are shown in Figure 5.12; this figure is obtained by giving as input the XML
corresponding to the results found in appendice C.7 as an input to the visu-
alization script. We observe that although these graphs have different names
for their vertices, they are the same graphs, meaning we indeed found a com-
mon skeleton between both Catmodels. This property characterizes the way
wemathematically define a binary consistency relation.

5.3 Discussion
Although this mathematical framework does not provide a new synchroniz-
ation methodology, it allows us to observe the SmartSync methodology from

5.3. DISCUSSION 123

Zi
pp
yF
ly
er

Av
io
ni
cs

Ba
tte
ry

Ca
lcu

la
to
r

Ce
ll

In
er
tia
l_m

ea
su
re
m
en
t_
un

it

Po
we

r_
un

it

Ra
da
r

Alternative_1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AirAction -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.1
Battery 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Data_in -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.1
Data_out -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.1
Ener_elec -1.0 -1.0 -1.0 0.0 -1.0 -1.0 -1.0 -1.1
Gravity -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Obstacle_image -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Orientation -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Blood_bag -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
4G_network -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Geolocation_signak -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Avionics 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Calculator 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Cell 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Inertia_measurement_unit 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
Power_unit 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
radar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 5.1: Correspondence table for the first iteration of the comparison
between the SysML and AltaRica 3.0 models

124 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

Figure 5.12: Diagrams for the A′ and B ′ S2ML models of the fixed-wing drone
at the final comparison step.

5.3. DISCUSSION 125

a new point of view. In light of this new point of view, we get a new com-
prehension of some of the characteristics of the SmartSync methodologies.
This framework also allows us to formally show which exact characteristics of
the models are compared through the synchronization methodology. We also
show some current limitations such as not taking the connections into consid-
eration, or the inability to consider objects that are at a different level of ab-
straction, and we can give ideas for improvement. In this section, we discuss
how the S2ML+Cat framework helps us understand the topics of pragmatics,
composition, and connections in the context of SmartSync.

5.3.1 Pragmatics
In SmartSync, and more generally in the methodologies we presented in sec-
tion 1.3.4, the user is required to align themodel elementsmanually. Although
this seems like a bothersome and time-consuming step, we believe it is almost
impossible to do otherwise in general. Even though models have syntax and
semantics that allow them to be interpreted by a computer, they also carry
a meaning that only makes sense to humans. This meaning is called prag-
matics. Pragmatic models, such as the MBSE models, carry a meaning that
is lost if model elements are replaced with abstract names, such as described
in [100]. The interested readermayfindmore informationonpragmatics in the
book [99].

The SmartSync tool deals with the pragmatic aspect ofmodels by creating a
form of a dictionary – the CSV file. In the general definition of consistency that
wehavegiven in thispaper,wedonot force theconsistency relation to consider
pragmatics. Nevertheless, SmartSync still deals with pragmatics, so we should
explain how that makes sense in the S2ML+Cat Framework.

One way to include pragmatics in the S2ML+Cat framework is the idea that
weshouldbuild thebiggest commonskeleton forbothmodels that respects the
user’s dictionary. This canbeachievedby constructing aCatmodelDi cti onar y
that represents the dictionary. We shall then define functors towards this Cat-
model fromboth Acomp andBcomp , and then, building thepullbackof Acomp and
Bcomp will allow us to represent the alignment of objects by the user. Therefore,
as depicted in Fig. 5.13, the A’ and B’ categories would be the pullback of Acomp

and Bcomp . F2A and F2B are the injections from A′ ≡ B ′ to Acomp and Bcomp re-
spectively, in the pullback.

Weneed to defineDi cti onar y precisely if wewant to operate the computa-
tion of the pullback or even prove that it always exists. An idea for that would
be to build it from Acomp and Bcomp with these constraints:

• Ob(Di cti onar y) is a set of Catblocks, Catports and Catconnections, such
as we have pob : Ob(Acomp) −→ Ob(Di cti onar y), qob : Ob(Bcomp) −→
Ob(Di cti onar y) such as for each x ∈ Ob(Acomp) and y ∈ Ob(Bcomp), we
have p(x) = q(y) if and only if the elements have been aligned by the user.

126 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

Figure 5.13: The pullback of Acomp and Bcomp with regards to the dictionary

• pob and qob are injective applications

• We give Di cti onar y the form of a model by building the morphisms
needed to have images of the morphisms of Acomp and Bcomp when we
enrich p and q tomake them functors.

We canmake it so that this category is unique by choosing the symbols for the
ports judiciously. However, it is unimportant, as any such category would suf-
fice to represent that we aligned objects of Acomp and Bcomp .

Althoughwe do not care for the category structure in the dictionary, we can
build it. The components over the objects of the p and q functors carry the
essential information, i.e., the alignment of model elements.

5.3.2 Composition
The aspect of composition in category theory is of high interest in the concepts
that we define.

Themorphisms in the categories of S2ML+Cat define relations between the
model elements to allow us both to apprehend the direct and composed re-
lations. In [12], the definition of S2ML does provide a composition relation
that only links an element and its parent. In S2ML+Cat, however, the belong-
ing morphisms define the transitive closure of this relation. This allows us to
identify all the ancestors of an object.

It is not yet considered in themethodology thatwehave testedwith the case
study. However, this means that the binary consistency relation that we define
can encompass caseswhere amodel element is at a certain level of abstraction
in one model and another level of abstraction in the second model. A simple
example of such a difference is if we represent a gear motor in the system. We
can, in one model, have a gear motor block that contains a motor block and
a gear block, and, in the other model, directly represent the motor and gear
blocks without the gear motor level.

This would result in the categories shown in Fig. 5.14. These diagrams
identify the direct belongings with the black arrows and their composition to

5.3. DISCUSSION 127

the dotted arrows. We can easily understand that the dotted arrows in the first
case correspond to the black ones in the second; therefore, these models can
be deemed consistent.

Figure 5.14: The categories for both possible level of abstraction of the gear
motor

The second kind of relations that we have in the models are those between
the ports and the connections they participate in. Because of how we defined
the morphisms between ports and connections, and thanks to composition,
we obtain morphisms between ports that participate in the same connection,
as shown in Fig. 4.7.

We also obtain morphisms between indirectly connected ports, i.e., in the
case where we have three ports, with two connections between them. Such a
structure will lead tomorphisms between the two ports that are not part of the
same connections. This allows us to apprehend indirect connections between
ports. Thus we could consider the case in which one connection on one side
corresponds tomultiple ones on the other side.

Figure 5.15: An example of block diagrams for a system with composed con-
nections (left) that could be consistent with one connection (right)

An example of such a case is given in Fig. 5.15. Some system engineers
consider the representation on the left best practice: a connection should not
cross the frontierof ablock; therefore, there shouldbe intermediaryportswhen
crossing to a different abstraction level. In a model dedicated to computa-
tion, such as theMBSAmodel, doing this is a problem because it increases the
amount of computation to execute the system. Thus the representation on the
left alsomakes sense to represent the system.

The categories for the two blocks diagrams from Fig. 5.15 can be found in
Fig. 5.16. Thanks to the composition detailed above, we obtain the dotted ar-

128 CHAPTER 5. APPLICATION EXAMPLE: THE BLOODDELIVERY DRONE

rows that can be aligned in model comparison from the categorical point of
view.

Figure 5.16: Diagrams of the categories for the block diagrams from Fig. 5.15

5.3.3 Connections
We discussed in section 5.3.2 the fact that composition allows for better con-
sideration of the connection. SmartSync does not yet consider connections, so
we have not demonstrated this in the case study.

It is interesting to note that it should theoretically not be difficult to add
support of connections. The ports are already aligned in SmartSync. We could
consider the Catports of a Catconnection in the Catmodel A and verify if their
counterparts in the Catmodel B also are connected.

5.3.4 Connections and tuples
In section 4, we defined the connections as sets of ports. Although this defini-
tion is consistent with the quintuplet definition of S2MLmodels from [12], the
reader could argue that the order of ports in a connection can be significant,
for example, if there is a direction to the connection. This could be considered
in the quintuplet definition using tuples rather than sets to define the connec-
tions.

In the case of the categorical definition of S2MLmodels, we could consider
this property by defining connections as categories, with ports being the ob-
jects of the category andmorphisms from a port A to a port B if the port A pre-
cedes the port B in the connection.

CONCLUSIONS AND PERSPECTIVES

In the context of system complexification, the way systems are modeled has
to be rethought to consider this complexity. In the systems engineering do-
main, the classical document-based approaches are meant to be replaced by
the Model-Based System Engineering (MBSE) approach. Similarly, the tradi-
tional approaches for safety assessment, such as Fault Tree Assessment (FTA),
shall be replaced by Model-Based Safety Assessment (MBSA). MBSA provides
models closer to the architecture and can account for complex phenomena
such as reconfigurations.

Because the MBSAmodel aims to assert that the system is safe, this model
must represent the right architecture. Therefore consistency assessment
between theMBSE andMBSAmodels is a significant challenge.

In this work, we first wanted to understand the critical distinction between
differences and inconsistencies. Therefore we decided to study the differences
between MBSE and MBSA models through the consistency assessment of a
case study: the landing gear. This led us to establish a typology where we iden-
tified three different kinds of differences related to their origin:

• Differences due tomodeling tools and practices;

• Differences due tomodeling intend;

• Differences due tomodeling errors.

Out of these differences, only the latest has to be eliminated. The others are
important to the models as they allow them to represent different behaviors
toward different aims.

To tackle the challenge of consistency, researchers designedmethodologies
calledmodel synchronization. They allowus to comparemodels andeliminate
inconsistencies through pivotmodels – translations from theMBSE andMBSA
models – written in a common formalism. This thesis focused on the Smart-
Sync methodology, which uses the S2ML modeling language as its common

129

130 CONCLUSIONS AND PERSPECTIVES

formalism. Through the comparison of the models of the landing gear using
SmartSync, we show the importance of consistency assessment. Even though
the methodology allows us to detect most inconsistencies between the mod-
els, it still has some limitations. We believe a formal frame aroundmodel syn-
chronization could help with these limitations.

Thuswe propose S2ML+Cat, amathematical framework based on category
theory. In this framework, we define a way to represent any S2MLmodel with
category theory, and, by extension, any structural model. We call S2ML+Cat
the category with these models as objects and injections between the models
as morphisms. We specify injections, which are relations between the models
that express that onemodel contains the other.

We have a need to assert consistency between models, SmartSync, along
with S2ML, answers this need. Through category theory, we interpret the S2ML
concepts that are relevant tomodel consistency. This is a newperspective over
SmartSync, i.e. an interpretation within category theory, that is equivalent to
the original definition proposed by SmartSync’s authors. With this new point
of viewweapply amathematical theory thatwewanted to studyona realworld
application. We also intend to provide a definition of consistency that we hope
can be generalised in the future, to methodologies other that SmartSync.

Within S2ML+Cat, we define what we call a binary consistency relation.
This relation is defined by the existence of a certain structure between two
models. This structure contains comparison models, the models where we
eliminatedanyelement thatwedonot intend tocompare, andcomparedmod-
els, which are models where only the common skeleton of both models re-
mains. This definition is very general, the idea is that we could define diverse
consistency relationsusing it; in thisworkweonlyuse it toworkwith theSmart-
Syncmethodology.

We provide a second case study, the blood delivery drone, which we use
to apply S2ML+Cat to the SmartSync methodology. Based on this study, we
can suggest that, except for the abstraction limitations we detected in Smart-
Sync, in the general case, SmartSync builds the biggest common skeleton to
twomodels. This common skeleton includes allmodel elements except for the
connections. We also give leads to how the abstraction limitations can be over-
come and how connections could be taken into account in further versions of
SmartSync. We believe that further work to integrate S2ML+Cat in SmartSync
would allow for improvements to themethodology.

This thesis is entitled "Category theory for consistency between multilevel
system modeling (MBSE) and safety (MBSA)". However, we have shown that
we can apply our work to Modelica and SCOLA models. Most models include
some representation of the system’s architecture, and any such model can be
translated to a structural language such as S2ML. Therefore we argue that our
work can be used to comparemost models that would share a common archi-
tecture. In the case ofMBSEandMBSA, thatmeans that although the examples

131

chosen in this memoir are written using SysML and AltaRica 3.0, other MBSE
andMBSA languages, such as Capella, Cecilia OCAS, SIMFIA Neo, HipHOPPS,
Figaro, and others, could be easily compatible. This means that most scient-
ists that need to compare the system architecture contained in heterogeneous
models should be able to use a synchronizationmethodology and give itmath-
ematical foundations using S2ML+Cat.

We also note that S2ML+Cat allows comparing the results of diverse syn-
chronizationmethodologies, as we can comparewhich inconsistencies will be
detected. It might also be possible to use S2ML+Cat tomerge synchronization
methodologies. Along with the S2ML+Cat category and definition of models,
weprovide themathematical proofs required to show that S2MLmodels canbe
specifiedwithnoambiguity as categories and that the framework ismathemat-
ically sound. In this work, we only considered S2ML+Cat through the scope of
theSmartSyncmethodology. However,webelieve that furtherworkcouldshow
that S2ML+Cat is a sound framework to consider consistency, and therefore it
could support other methodologies. In this case, this framework is not inten-
ded to be visible to the end user; it rather would be a means for the researcher
to show that a methodology is robust and to prove that it will give the expec-
ted comparison results. Therefore, the framework would benefit from being
applied to an industrial example and other methodologies, such as the Con-
sistency Links, that were developed in the S2C (System to Safety Continuity)
project.

Tools are sometimes uncorrelated from their underlying theoretical frame-
works. Any informatic tool uses an algorithm, and algorithms rely on theoret-
ical frameworks. Thus, toolsmustbe associatedwith theories. WithS2ML+Cat,
we give a mathematical ground to prove the results of SmartSync. This math-
ematical framework allows us to show the correctness of the results formally.
An important perspective of this thesis would be to show that S2ML+Cat can
be applied to other methodologies and be a framework for model consistency
in general.

We believe that a significant perspective of this mathematical framework
is to work on the idea of simplifying the comparison in iterations of the mod-
els. Because we cannot entirely automatize the comparison, it can be a very
time-consuming process, as engineers have to operate the alignment ofmodel
elements by hand. The MBSE and MBSA models (generally any models) are
meant toevolveduring thedesignprocess. Afirst versionof the system ismade,
safety assessment over this version is operated, and based on the results, or
other factors, a new architecture will be created, and its safety will be assessed.
This means that successive versions of themodels are to be compared. An im-
portant part of these new versions will probably be identical to the original
models and, therefore, should not need a new consistency assessment. If we
can identify this part through versioning, we could reduce the time required
for the second – and further – iterations of consistency assessment. We believe

132 CONCLUSIONS AND PERSPECTIVES

that this could be achieved throughminormodifications to thewaywe repres-
ent S2MLmodels to allow the suppression of model elements.

BIBLIOGRAPHY

[1] ISO/IEC/IEEE International Standard – Systems Engineering – System
Life Cycle Processes. ISO/IEC 15288 First edition 2002-11-01, pages 1–70,
2002.

[2] Nourhene Abdeljabbar, FaïdaMhenni, and Jean Yves Choley. A categor-
ical framework for Safety critical mechatronic systems modeling. 2020
21st International Conference on Research and Education in Mechatron-
ics, REM 2020, 2020.

[3] Nourhene Abdeljabbar, FaïdaMhenni, and Jean Yves Choley. A Categor-
ical Framework for Collaborative Design of Safety Critical Mechatronic
Systems. ISSE 2021 - 7th IEEE International Symposium on Systems En-
gineering, Proceedings, 2021.

[4] Evan Ackerman and Michael Koziol. The blood is here: Zipline’s med-
ical delivery drones are changing the game in Rwanda. IEEE Spectrum,
56(5):24–31, 2019.

[5] RAdcock, BWells, S Jackson, J Singer, andDHybertson. Guide to the Sys-
tems Engineering Body of Knowledge (SEBoK), version 2.5. (October),
2021.

[6] AFNOR. EN 50129 Applications ferroviaires - Systèmes de signalisation,
de télécommunications et de traitement - Systèmes électroniques de sé-
curité pour la signalisation, 2010.

[7] Aiste Aleksandraviciene and Aurelijus Morkevicius. Magic Grid Book of
Knowledge : A Practical Guide to SystemModeling using MagicGrid from
NoMagic. Vitae Litera, nomagic edition, 2018.

[8] US Army. MIL-STD-1629A Procedures for performing a failuremode, ef-
fects, and criticality analysis, 1980.

133

134 BIBLIOGRAPHY

[9] Modelica Association. Modelica ® AUnified Object-Oriented Language
for SystemsModeling Language Specification, 2022.

[10] John Baez. Category Theory Course. 2019.

[11] Maria Bartnes. Safety vs. Security? Proceedings of the Eighth Inter-
national Conference on Probabilistic Safety Assessment & Management
(PSAM), (May 2006):1202–1210, 2010.

[12] MichelBatteux, Jean-yvesCholey, FaïdaMhenni, LucaPalladino, Tatiana
Prosvirnova, Antoine Rauzy, andMaurice Theobald. Synchronization of
system architecture, multi-physics and safety models. 2019.

[13] Michel Batteux, Jean-yves Choley, Faïda Mhenni, Tatiana Prosvirnova,
and Antoine Rauzy. Synchronization of System Architecture and Safety
Models : a Proof of Concept. 2019.

[14] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. System Struc-
tureModeling Language (S2ML). 2015.

[15] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. AltaRica 3.0
Language Specification. page 126, 2017.

[16] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. AltaRica 3 . 0 in
10 Modeling Patterns. International Journal of Critical Computer Based
Systems (IJCCBS)., 2018.

[17] MichelBatteux, TatianaProsvirnova, andAntoineRauzy. FromModelsof
Structures to Structures ofModels. In 4th IEEE International Symposium
on Systems Engineering, ISSE 2018 - Proceedings, 2018.

[18] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. Model syn-
chronization: A formal framework for the management of heterogen-
eousmodels. LectureNotes inComputer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
11842 LNCS:157–172, 2019.

[19] RonBell. Introduction to IEC61508.Conferences inResearchandPractice
in Information Technology Series, 55:3–12, 2005.

[20] Aroua Berriche, Faïda Mhenni, Abdelfattah Mlika, and Jean-Yves Cho-
ley. Towards Model Synchronization in Model Driven Engineering of
Mechatronic Systems. 2019.

[21] JPBlanquart and JMAstruc. Criticality categories across safety standards
in different domains. Erts-2012, . . . , (6), 2012.

BIBLIOGRAPHY 135

[22] Simon Bliudze, Sébastien Furic, Joseph Sifakis, and Antoine Viel. Rigor-
ous design of cyber-physical systems: Linking physicality and computa-
tion. Software and SystemsModeling, 18(3):1613–1636, 2019.

[23] BWBoehm. Verifying andValidating SoftwareRequirements andDesign
Specifications. IEEE Software, 1(1):75–88, 1984.

[24] FrédéricBoniol andVirginieWiels. TheLandingGearSystemCaseStudy.
In Frédéric Boniol, Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter
Schewe, editors, ABZ 2014: The Landing Gear Case Study, pages 1–18,
Cham, 2014. Springer International Publishing.

[25] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte. Knowledge
Modelling and Reliability Processing: Presentation of the Figaro Lan-
guage and Associated Tools. IFAC Proceedings Volumes, 24(13):69–75,
1991.

[26] S. J. Brown. Overview of IEC 61508: Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems. Nuclear Engin-
eer, 42(2):39–44, 2001.

[27] Olivia Caramello. The unification of Mathematics via Topos Theory.
pages 1–42, 2010.

[28] Olivia Caramello. Topos-theoretic background. 2014.

[29] Kester Clegg, David Stamp, and JohnMcDermid. Binding Fault Logic to
SystemDesign: A SysML Approach. (July):880–887, 2021.

[30] Collectif AFIS. Conception des architectures: Chapitre 8, le système
est le résultat d’une conception. In DÉCOUVRIR ET COMPRENDRE
L’INGÉNIERIE SYSTÈME. Collection AFIS, 2012.

[31] Edward Crawley, O Weck de, Steven Eppinger, Christopher Magee, Joel
Moses, Warren Seering, Joel Schindall, David Wallace, Daniel Whitney,
and Olivier De Weck. The Influence of Architecture in Engineering Sys-
tems. Engineering SystemsMonograph, pages 1–30, 2004.

[32] Romaric Demachy and Sébastien Guilmeau. Short paper - Structural
consistency of MBSE andMBSAmodels using Consistency Links. pages
1–4.

[33] DepartmentofDefense (DoD). TheDoDAFArchitectureFrameworkVer-
sion 2 . 02. DoDAF Journal, page 289, 2011.

[34] T Doran. IEEE 1220: for practical systems engineering. Computer,
39(5):92–94, 2006.

136 BIBLIOGRAPHY

[35] Joanne Bechta Dugan, Salvatore J. Bavuso, and Mark A. Boyd. Dynamic
Fault-Tree Models for Fault-Tolerant Computer Systems. IEEE Transac-
tions on Reliability, 41(3):363–377, 1992.

[36] Julien Le Duigou, Vincent Chapurlat, and Jean-Luc Garnier. AFIS
Academy-Industry Forum 2020 in Compiègne. INSIGHT, 24(4):9–11,
2021.

[37] Andrée Ehresmann. Genèse de l’approche catégorique des systèmes
évolutifs à mémoire (MES). 2015.

[38] AndréeC. Ehresmann. MENS, an info-computationalmodel for (Neuro-
)Cognitive systems capable of creativity. Entropy, 14(9):1703–1716, 2012.

[39] Samuel Eilenberg and Saunders Mac Lane. General theory of nat-
ural equivalences. Transactions of the American Mathematical Society,
58(2):231–194, 1945.

[40] Schneider Electric. La Sûreté de Fonctionnement (SdF). 2004.

[41] DominiqueErnadote.MB2SE : ATheoretical Foundation for SystemsEn-
gineering -Une fondation theoriquepour l’ingenierie systeme. PhDthesis,
2020.

[42] J. A. Estefan. Survey of Model-Based Systems Engineering (MBSE). Jet
Propulsion, 2008.

[43] EuropeanCooperation for Space StandardizationECSS. ECSS-Q-ST-30C
Rev.1 – Dependability, 2017.

[44] EuropeanCooperation for Space StandardizationECSS. ECSS-Q-ST-40C
Rev.1 – Safety, 2017.

[45] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Incon-
sistency handling in multi-perspective specifications. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 717 LNCS(X):84–99, 1993.

[46] DonaldG. Firesmith. CommonConceptsUnderlying Safety Security and
Survivability Engineering. Technical report, CARNEGIE-MELLONUNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 2003.

[47] Robert W. Floyd. Assigningmeanings to programs. pages 19–32, 1967.

[48] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML. 2008.

BIBLIOGRAPHY 137

[49] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML - The SystemsModeling Language. Elsevier, 2015.

[50] Paul A Gagniuc. Historical Notes, chapter 1, pages 1–9. John Wiley and
Sons, Ltd, 2017.

[51] Government Electronics and Information Technology Association
(GEIA) and Electronic Industries Alliance (EIA). EIA-632 Processes For
Engineering a System, 2003.

[52] Alexandre Grothendieck. Sur quelques points d’algébre homologique.
TohokuMathematical Journal, 9(2):119–183, 1957.

[53] Matthias Güdemann and Frank Ortmeier. A framework for qualitat-
ive and quantitative formal model-based safety analysis. Proceedings of
IEEE International Symposium on High Assurance Systems Engineering,
pages 132–141, 2010.

[54] Christophe Guychard, Sylvain Guerin, Ali Koudri, Antoine Beugnard,
and Fabien Dagnat. Conceptual interoperability through Models Fed-
eration. (OCTOBER):1–22, 2013.

[55] Aric Hagberg, Dan Schult, and Pieter Swart. NetworkX Reference (Py-
thon). Python package, page 464, 2011.

[56] DavidHarel. Statecharts: a visual complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[57] David Harel and Amnon Naamad. The STATEMATE Semantics of Stat-
echarts. ACM Transactions on Software Engineering and Methodology,
5(4):293–333, 1996.

[58] DavidHarel and Bernhard Rumpe. Meaningfulmodeling: What’s the se-
mantics of "semantics"? Computer, 37(10):64–72, 2004.

[59] Myron Hecht and David Baum. Use of SysML for the creation of FMEAs
for Reliability, Safety, and Cybersecurity for Critical Infrastructure. IN-
COSE International Symposium, 29(1):145–158, 2019.

[60] Hans-Peter Hoffmann. Systems engineering best practices with the Ra-
tional Workbench for Systems and Software Engineering. Technical re-
port, IBM Corporation, 2010.

[61] INCOSE. INCOSESystemsEngineeringHandbook: AGuide for SystemLife
Cycle Processes and Activities, 4th Edition. Wiley, 2015.

138 BIBLIOGRAPHY

[62] SAE International. Guidelines and methods for conducting the safety
assesment process on civil airborne systems and equipment ARP4761.
Technical report, SAE International, 1996.

[63] International Council on Systems Engineering INCOSE. Systems Engin-
eering Handbook: A "what To" Guide for All SE Practitioners. 2004.

[64] International Council on SystemsEngineering INCOSE. Guide to the Sys-
tems Engineering Body of Knowledge v1.4. 2012.

[65] International Electrotechnical Commision IEC. IEC 61226:2020 Nuc-
lear power plants - Instrumentation, control and electrical power sys-
tems important to safety - Categorization of functions and classification
of systems, 2009.

[66] International Electrotechnical Commision IEC. IEC/TR61838 Nuclear
power plants - Instrumentation and control important to safety - Use of
probabilistic safety assessment for the classification of functions. Tech-
nical report, 2009.

[67] International Electrotechnical Commision IEC. IEC 60300-3-4, 2022.

[68] International Organization for Standardization ISO. ISO 26262 Road
vehicles – Functional safety, 2011.

[69] InternationalOrganization for Standardization ISO. ISO/IECWD142020
– Architecture processes. (1), 2015.

[70] International Organization for Standardization ISO. ISO/IEC/IEEE
15288 - International Standard - Systems and software engineering - Sys-
tem life cycle processes. ISO/IEC/IEEE 15288 First edition 2015-05-15,
2015.

[71] International Organization for Standardization ISO and International
Electrotechnical Commision IEC. ISO/IEC 61508 Functional safety of
electrical/electronic/programmable electronic safety-related, 1990.

[72] David E. Keyes, Lois C. McInnes, Carol Woodward, William Gropp, Eric
Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Con-
nors, Emil Constantinescu, Don Estep, Kate Evans, Charbel Farhat, Am-
mar Hakim, Glenn Hammond, Glen Hansen, Judith Hill, Tobin Isaac,
Xiangmin Jiao, Kirk Jordan, Dinesh Kaushik, Efthimios Kaxiras, Alice
Koniges, Kihwan Lee, Aaron Lott, Qiming Lu, John Magerlein, Reed
Maxwell, Michael McCourt, Miriam Mehl, Roger Pawlowski, Amanda P.
Randles, Daniel Reynolds, Beatrice Rivière, Ulrich Rüde, Tim Scheibe,
John Shadid, Brendan Sheehan, Mark Shephard, Andrew Siegel, Barry

BIBLIOGRAPHY 139

Smith, Xianzhu Tang, Cian Wilson, and Barbara Wohlmuth. Multiphys-
ics simulations: Challenges and opportunities. International Journal of
High Performance Computing Applications, 27(1):4–83, 2013.

[73] Daniel Krob. CESAM: CESAMES Systems Architecting Method A Pocket
Guide. (January), 2017.

[74] Karl E. Kurbel. The Making of Information Systems. In The Making of
Information Systems, 2008.

[75] Kimberly Lai, Thomas Robert, David Shindman, and Alison Olechow-
ski. Integrating Safety Analysis into Model-Based Systems Engineering
for Aircraft Systems: A Literature Review andMethodology Proposal. IN-
COSE International Symposium, 31(1):988–1003, 2021.

[76] Jean-CLaudeLaprie and JeanArlat.Guidede la sûreté de fonctionnement.
Cépaduès-Editions, 1995.

[77] F. William Lawvere and Stephen F. Schanuel. Conceptual Mathematics :
a first introduction to categories. 1997.

[78] Yung-TsunLee. InformationModeling: FromDesign to Implementation.
1999.

[79] Anthony Legendre. Ingénierie système et Sûreté de fonctionnement :
Méthodologie de synchronisation desmodèles d’architecture et d ’ analyse
de risques. PhD thesis, 2018.

[80] Oleg Lisagor, TimKelly, andRuNiu. Model-based safety assessment: Re-
view of the discipline and its challenges. ICRMS’2011 - Safety First, Reli-
ability Primary: Proceedings of 2011 9th International Conference on Re-
liability, Maintainability and Safety, pages 625–632, 2011.

[81] Saunders Mac Lane. Categories for theWorkingMathematician. 1978.

[82] Saunders Mac Lane. Perspective The PNAS way back then. Proceed-
ings of the National Academy of Sciences of the United States of America,
94(June):5983–5985, 1997.

[83] J NMartin. Overview of the EIA 632 standard: processes for engineering
a system. In 17thDASC. AIAA/IEEE/SAE. Digital Avionics Systems Confer-
ence. Proceedings (Cat. No.98CH36267), volume 1, pages B32–1, 1998.

[84] Mathworks. Matlab & Simulink, Simulink Reference. Technical report,
2022.

[85] Meine Meulen. Definitions for Hardware and Software Safety Engineers.
Springer London, 2000.

140 BIBLIOGRAPHY

[86] Faïda Mhenni. Safety analysis integration in a systems engineering ap-
proach for mechatronic systems design. PhD thesis, Ecole Centrale Paris,
2014.

[87] Faïda Mhenni, Jean-Yves Choley, Nga Nguyen, and Christophe Frazza.
FlightControl SystemModelingwith SysML to Support Validation, Qual-
ification and Certification. IFAC-PapersOnLine, 49(3):453–458, 2016.

[88] Faïda Mhenni, Jean-Yves Choley, Olivia Penas, Régis Plateaux, and
Moncef Hammadi. A SysML-based methodology for mechatronic sys-
tems architectural design. AdvancedEngineering Informatics, 28(3):218–
231, 2014.

[89] BartoszMilewski. Category Theory for Programmers. page 467, 2019.

[90] OMG. OMGUnifiedModeling Language, Version 2.5.1. Technical report,
OMG, 2017.

[91] OMG. OMG Systems Modeling Language (OMG SysML™). OMG, oct
2018.

[92] Claire Pagetti. Module de sûreté de fonctionnement, 2012.

[93] Yiannis Papadopoulos and JohnA.McDermid. Hierarchically performed
hazard origin and propagation studies. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 1698(September 1999):139–152, 1999.

[94] C A Petri. Kommunikation mit Automaten. Schriften des Rheinisch-
Westfälischen Institutes für Instrumentelle Mathematik an der Uni-
versität Bonn. Rheinisch-Westfälisches Institut f. instrumentelle Math-
ematik an d. Univ., 1962.

[95] Tatiana Prosvirnova, Michel Batteux, and Antoine Rauzy. SmartSync
platform v0.0.1. Technical report, AltaRica Association, 2020.

[96] Alain Prouté. Introduction à la Logique Catégorique. pages 1–416, 2010.

[97] Marvin Rausand and Arnljot Høyland. System reliability theory: models,
statistical methods, and applications. Wiley-Interscience, Hoboken, NJ,
2004.

[98] Antoine Rauzy. Guarded transition systems: A new states/events form-
alism for reliability studies. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, 222(4):495–505, 2008.

[99] Antoine Rauzy. Model-Based Reliability Engineering. 2022.

BIBLIOGRAPHY 141

[100] Antoine Rauzy and Cecilia Haskins. Foundations for model-based sys-
tems engineering and model-based safety assessment. Systems Engin-
eering, 22(2):146–155, 2019.

[101] Emily Riehl. Category Theory in Context. 2016.

[102] Pascal Roques. MBSE with the ARCADIA Method and the Capella Tool.
8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), page 11, 2016.

[103] Winston Royce. Managing the development of large software systems:
concepts and techniques. In ICSE ’87, 1987.

[104] RTCA. DO-178B Software Considerations in Airborne Systems and
Equipment Certification, 1992.

[105] AndrewP Sage and StevenMBiemer. Processes for SystemFamily Archi-
tecting, Design, and Integration. IEEE Systems Journal, 1(1):5–16, 2007.

[106] Pierre De Saqui-sannes, Ludovic Apvrille, Rob Vingerhoeds, Pierre De
Saqui-sannes, Ludovic Apvrille, Rob Vingerhoeds, Checking Sysml, and
Models Against. Checking SysML Models Against Safety and Security
Properties To cite this version : HAL Id : hal-03423073 Checking SysML
Models against Safety and Security Properties. 2021.

[107] Kenneth J Schlager. Systenas Engineering-Key toModernDevelopment.
Ire Transactions on EngineeringManagement, pages 1953–1955, 1953.

[108] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou. Dynam-
ical Systems and Sheaves. Applied Categorical Structures, 28(1):1–57,
2020.

[109] D.J. Sherwin and A. Bossche. The reliability, availability and productive-
ness of systems. Springer Dordrecht, 1993.

[110] Ankit Singh and Siemens Healthineers. Rtca do-178b (eurocae ed-12b).
(March), 2017.

[111] David I Spivak. Category theory for the sciences. TheMIT Press, 2014.

[112] Duo Su, Chang Feng, Qi Gong, and Yan Li. Application and research on
model-based safety analysis. Proceedings of 2015 the 1st International
Conference on Reliability Systems Engineering, ICRSE 2015, 2015.

[113] US Army. MIL-P-1629 Procedure for Performing a Failure Mode Effect
and Criticality Analysis, 1949.

142 BIBLIOGRAPHY

[114] Alain Villemeur. Sûreté de fonctionnement des systèmes industriels : fiab-
ilité, facteurs humains, informatisation. Collection de la Direction des
études et recherches d’Electricité de France 67. 1988.

[115] Paul Wach and Alejandro Salado. The Need for Semantic Extension of
SysML to Model the Problem Space. Recent Trends and Advances in
Model Based Systems Engineering, (October):279–289, 2020.

[116] H.A.Watson. Launch control safety study. Technical report,MurrayHill,
NJ, USA, 1961.

[117] TimWeilkiens, JeskoG. Lamm, StephanRoth, andMarkusWalker. B: The
V-Model, pages 343–352. JohnWiley and Sons, Ltd, 2015.

[118] Liudong Xing and Suprasad V Amari. Fault Tree Analysis, pages 595–620.
Springer London, London, 2008.

APPENDIX A

PUBLICATIONS

Four conference publications and one journal article were written during this
thesis.

LambdaMu22: Vidalie, J., Batteux, M., Choley, J.-Y., Mhenni, F., Kendel, M.-S.
Typology of the differences Between Model-Based System Engineering (MBSE)
and Safety Assessment (MBSA) models: Analysis of a Reference System. Congrès
Lambda Mu 22, Institut pour la Maîtrise des Risques, Oct 2020, Le Havre (e-
congrès), France. 〈hal-03453551〉

IEEE ISSE 2021: Vidalie, J., Kendel, M.-S., Mhenni, F., Batteux, M., Choley, J.-
Y., State Machines Consistency between Model Based System Engineering and
Safety AssessmentModels, 2021 IEEE International Symposiumon Systems En-
gineering (ISSE), 2021, pp. 1-8, doi: 10.1109/ISSE51541.2021.9582470.
The LambdaMu22 and IEEE ISSE 2021 publications can be identified in

work presented in Chapter 2 and Chapter 3 of the thesis. They respectively
present a typology of the differences betweenMBSEandMBSAmodels and the
studyof structural consistencybetweenMBSEandMBSAstatemachines. Both
of these studies use the Landing Gear case study that we present in Chapter 2.

ESREL 2021: Vidalie, J., Batteux, M., Mhenni, F., Choley, J.-Y. Model-Based
Safety Assessment of an Insulin Pump Systemwith AltaRica 3.0. Proceedings of
the 31st EuropeanSafety andReliabilityConference (ESREL), Sep2021, Angers,
France. 〈hal-03429161〉
We do not present the work from the ESREL 2021 paper in this thesis. This

paper presents theMBSAmodeling and safety assessment of an insulin pump.
This study is relevant to themodel comparisonbetweenMBSEandMBSAsince
it concerns a safety-critical system. However, because we already present the
Landing Gear and Blood Delivery Drone case studys, we believe it would be
redundant to add a third example to this memoir.

143

144 APPENDIX A. PUBLICATIONS

MDPI Applied-Science: Vidalie, J., Batteux, M., Mhenni, F., Choley, J.-Y. Cat-
egory Theory Framework for System Engineering and Safety Assessment Model
Synchronization Methodologies. Applied Sciences. 2022; 12(12):5880. ht-
tps://doi.org/10.3390/app12125880
TheMDPI Applied-Science publication corresponds to the work presented

in Chapter 4 and the case study in Chapter 5. In this journal article, we intro-
duce the S2ML+Cat framework and apply it to synchronizing the models of a
blood delivery drone with the SmartSyncmethodology.

IEEE ISSE 2022: Vidalie, J., Bouhali, I., Mhenni, F., Batteux, M., Choley, J.-Y.
Consistency of multiple system engineering models of a fixed wing drone (ISSE
IEEE 2022)
The IEEE ISSE 2022 publication focuses on the comparison of the blood de-

livery dronemodels from Chapter 5.
This thesis was also the object of many internal and external presenta-

tions. Amongst these presentations, two short popular science presentations
received awards:

• A "Ma thèseen180 secondes" (My thesis in180 seconds)presentationob-
tained the second price at the AFIS (Association Française de l’Ingénièrie
Système) doctoral day in december 2020 [36];

• A "Ma thèse en6minutes" (My thesis in 6minutes) presentationobtained
the third price of the IRT SystemX PhD day in july 2022.

These successes are the result of a special interest for popular science and
sharingmy work outside the system engineering and safety communities.

APPENDIX B

LANDINGGEARMODELS

B.1 AltaRica 3.0 code for the landing gear
This section contains the code for the AltaRica 3.0 model of the landing gear.
This code is composed of themain block that instantiates the threemain parts
of the landing gear: the pilot interface, the mecha-hydraulic part, and the di-
gital part. The rest of themodel comprises classes for each subsystem, subsub-
system, ..., and component. Each model element is instantiated as a block by
its parent, from a class.

All system components are associated with a guarded transition system
defined in the nrpState class.
block LandingSys
PilotInterface pilotInterface;
MechaHydraulicalPart mechahydraulicPart;
DigitalPart digitalPart;
assertion
digitalPart.CPIOM1.input := pilotInterface.udHandle.output;
digitalPart.CPIOM2.input := pilotInterface.udHandle.output;
digitalPart.CPIOM1.analogicalSwitchFlag := pilotInterface.analogicalSwitch.output;
digitalPart.CPIOM2.analogicalSwitchFlag := pilotInterface.analogicalSwitch.output;
digitalPart.CPIOM1.gearLocked := mechahydraulicPart.gearLocked;
digitalPart.CPIOM2.gearLocked := mechahydraulicPart.gearLocked;
digitalPart.CPIOM1.doorLocked := mechahydraulicPart.doorLocked;
digitalPart.CPIOM2.doorLocked := mechahydraulicPart.doorLocked;
mechahydraulicPart.hydraulicSys.generalElectroValve.order :=

digitalPart.CPIOM1.outputGeneralValve;
mechahydraulicPart.hydraulicSys.doorHydraulicSys.order := digitalPart.CPIOM1.outputDoor;
mechahydraulicPart.hydraulicSys.gearHydraulicSys.order := digitalPart.CPIOM1.outputGear;

end
__

// Pilot Interface : Cockpit interface for the pilot, that includes landing gear status indicator
lights and the actuation handle.

__

domain nrpState {OK, KO}
class NonRepairableComponent
nrpState s (init = OK);
event failure (delay = Dirac(0));
transition

145

146 APPENDIX B. LANDING GEARMODELS

failure: s == OK -> s := KO;
end

class PilotInterface
GearLight frontGearLight;
GearLight leftGearLight;
GearLight rightGearLight;
UpDownHandle udHandle;
AnalogicalSwitch analogicalSwitch;

end

class GearLight
extends NonRepairableComponent;
Boolean input, output (reset = true);
assertion
output := if s == OK then input else false;

end

class UpDownHandle
extends NonRepairableComponent;
Boolean output (reset = true);
Boolean position (reset = true);
assertion
output := if s == OK then position else false;

end

class AnalogicalSwitch
extends NonRepairableComponent;
Boolean recentChange (reset = true);
Boolean output (reset = true);
assertion
output := if s == OK then recentChange else false;

end
__

//Mechanical & Hydraulic Parts : Mechanical systems allowing actuation of the landing gear, and
hydraulic systems powering the mechanical part.

__

class MechaHydraulicalPart
LandingSet frontLandingSet;
//LandingSet rightLandingSet;
//LandingSet leftLandingSet;
HydraulicSys hydraulicSys;
Boolean gearLocked (reset = true);
Boolean doorLocked (reset = true);
assertion
frontLandingSet.doorCylinder.input := if

hydraulicSys.doorHydraulicSys.extensionDoorElectroValve.output then true else if
hydraulicSys.doorHydraulicSys.retractionDoorElectroValve.output then true else false;

//rightLandingSet.doorCylinder.input := if
hydraulicSys.doorHydraulicSys.extensionDoorElectroValve.output then true else if
hydraulicSys.doorHydraulicSys.retractionDoorElectroValve.output then true else false;

//leftLandingSet.doorCylinder.input := if
hydraulicSys.doorHydraulicSys.extensionDoorElectroValve.output then true else if
hydraulicSys.doorHydraulicSys.retractionDoorElectroValve.output then true else false;

frontLandingSet.gearCylinder.input := if
hydraulicSys.gearHydraulicSys.extensionGearElectroValve.output then true else if
hydraulicSys.gearHydraulicSys.retractionGearElectroValve.output then true else false;

//rightLandingSet.gearCylinder.input := if
hydraulicSys.gearHydraulicSys.extensionGearElectroValve.output then true else if
hydraulicSys.gearHydraulicSys.retractionGearElectroValve.output then true else false;

//leftLandingSet.gearCylinder.input := if
hydraulicSys.gearHydraulicSys.extensionGearElectroValve.output then true else if
hydraulicSys.gearHydraulicSys.retractionGearElectroValve.output then true else false;

gearLocked := /*if frontLandingSet.gear.rightPos == rightLandingSet.gear.rightPos ==
leftLandingSet.gear.rightPos then frontLandingSet.gear.rightPos else false*/
frontLandingSet.gear.rightPos;

doorLocked := /*if frontLandingSet.door.rightPos == rightLandingSet.door.rightPos ==
leftLandingSet.door.rightPos then frontLandingSet.door.rightPos else false*/
frontLandingSet.door.rightPos;

end

B.1. ALTARICA 3.0 CODE FOR THE LANDING GEAR 147

//LandingSet : une unite de train

class LandingSet
UplockBox uplockBox;
Door door;
Cylinder doorCylinder;
Cylinder gearCylinder;
Gear gear;
assertion
door.input := doorCylinder.output;
gear.input := gearCylinder.output;

end

class UplockBox
extends NonRepairableComponent;
Boolean rightpos, input (reset = true);
assertion
rightpos := if s == OK then input else false;

end

class Cylinder
extends NonRepairableComponent;
Boolean input (reset = true);
Boolean output (reset = true);
assertion
output := if s == OK then input else false;

end

class Door
extends NonRepairableComponent;
Boolean input, rightPos (reset = true);
assertion
rightPos := if s == OK then input else false;

end

class Gear
extends NonRepairableComponent;
Boolean input, rightPos (reset = true);
assertion
rightPos := if s == OK then input else false;

end

//Hydraulic System : The hydraulic system powering the actuators of the landing gear system

class HydraulicSys
PressureSensor pressureSensor;
ElectroValve generalElectroValve;
DoorHydraulicSys doorHydraulicSys;
GearHydraulicSys gearHydraulicSys;
assertion
doorHydraulicSys.input := generalElectroValve.output;
gearHydraulicSys.input := generalElectroValve.output;

end

domain pressureSensorState {OK, notOK}

class PressureSensor
extends NonRepairableComponent;
Boolean input, output (reset = true);
assertion
output := if s == OK then input else false;

end

//Door Hydraulic System : The part of the hydraulic systems powering the landing gear doors.

class DoorHydraulicSys
Boolean input (reset = true);
Boolean order (reset = true);
ElectroValve retractionDoorElectroValve;
ElectroValve extensionDoorElectroValve;
assertion

148 APPENDIX B. LANDING GEARMODELS

retractionDoorElectroValve.input := input;
extensionDoorElectroValve.input := input;
retractionDoorElectroValve.order := order;
extensionDoorElectroValve.order := order;

end

//Gear Hydraulic System : The part of the hydraulic system powering the landing gear gears.

class GearHydraulicSys
Boolean input (reset = true);
Boolean order (reset = true);
ElectroValve retractionGearElectroValve;
ElectroValve extensionGearElectroValve;
assertion
retractionGearElectroValve.input := input;
extensionGearElectroValve.input := input;
retractionGearElectroValve.order := order;
extensionGearElectroValve.order := order;

end

class ElectroValve
extends NonRepairableComponent;
Boolean input (reset = true);
Boolean output (reset = true);
Boolean order (reset = true);
assertion
output := if s == OK then input and order else false;

end
__

//Digital Part : Computing units of the landing gear system.
__

class DigitalPart
CPIOM CPIOM1;
CPIOM CPIOM2;

end

class CPIOM
extends NonRepairableComponent;
Boolean analogicalSwitchFlag (reset = true);
Boolean input (reset = true);
Boolean outputGeneralValve (reset = true);
Boolean outputGear (reset = true);
Boolean outputDoor (reset = true);
Boolean gearLocked (reset = true);
Boolean doorLocked (reset = true);
assertion
outputGear := if analogicalSwitchFlag == true and s == OK then input else false;
outputDoor := if analogicalSwitchFlag == true and s == OK then input else false;
outputGeneralValve := if analogicalSwitchFlag == true and s == OK then input else false;

end

B.2 S2ML code for theMBSEmodel
This section contains the code for the S2ML translation of the MBSE model.
We translated the model manually, although it would be possible to automat-
ize this process, for example, through a java plugin for Cameo SystemModeler,
the modeling tool we used. This translation corresponds to the IBD and BDD
diagrams. We translated Partproperties to blocks, ports to ports, and connec-
tions to connections.
block Landing_gear_systeme
__

B.2. S2ML CODE FOR THEMBSEMODEL 149

//DigitalPart : Digital part of the landing gear that controls the system
__

block Digital_part1
block Monitoring
port Lsig;
port Dstat;
port Gstat;

end
block Electrical_command
port Electrical_Cmd;
port E_Cmd_GEV;
port E_Cmd_EGEV;
port E_Cmd_RGEV;
port E_Vmd_CdEV;
port E_Cmd_OdEV;

end
port ElectricPower;

end
block Digital_part2
block Monitoring
port Lsig;
port Dstat;
port Gstat;

end
block Electrical_command
port Electrical_Cmd;
port E_Cmd_GEV;
port E_Cmd_EGEV;
port E_Cmd_RGEV;
port E_Vmd_CdEV;
port E_Cmd_OdEV;

end
port ElectricPower;

end
__

//MechaHydraulicPart : Mechanical and Hydraulic parts of the landing gear system
__

block mecahydraulic_part
block Right_landing_box
block Right_Gear
port Mech;
port Status;
port Mech_Ground;

end
block Right_door
port Mech;
port Status;
port Mech_Aircraft;

end
end
block Front_landing_box
block Front_Door
port Mech;
port Status;
port Mech_Aircraft;

end
block Front_Gear
port Mech;
port Status;
port Mech_Ground;

end
end
block Left_landing_box
block Left_Door
port Mech;
port Status;
port Mech_Aircraft;

end
block Left_Gear

150 APPENDIX B. LANDING GEARMODELS

port Mech;
port Status;
port Mech_Ground;

end
end
block Hydraulic_part
block Right_Door_cylinder
port HP_Close;
port HP_Open;
port Mech;

end
block Front_Door_cylinder
port HP_Close;
port HP_Open;
port Mech;

end
block Left_door_cylinder
port HP_Close;
port HP_Open;
port Mech;

end
block Open_door_Electro-Valve
port HPin;
port E_Cmd_OdEV;
port HPout;

end
block Close_door_Electro-valve
port HPin;
port E_Vmd_CdEV;
port HPout;

end
block General_electro_valves
port Elec_Cmd;
port Man_Cmd;
port Hydraulic_power;
port Hydraulic_Pwr_Out;

end
block Retract_Gear_Electro_valve
port HPin;
port E_Cmd_RGEV;
port HPout;

end
block Extend_Gear_Electro-Valve
port HPin;
port E_Cmd_EGEV;
port HPout;

end
block Right_Gear_Cylinder
port HP_extend;
port HP_retract;
port Mech;

end
block Front_Gear_cylinder
port HP_extend;
port HP_retract;
port Mech;

end
block Left_Gear_cylinder
port HP_extend;
port HP_retract;
port Mech;

end
end

end
__

//PilotInterface : Interface between the pilot and the landing gear
__

block Pilot_interface
block Handle
port Manual_Cmd;
port Man_Cmd;

B.3. S2ML CODE FOR THEMBSAMODEL 151

end
block Gearlight1
port Lsig;

end
block GearLight2
port Lsig;

end
block Gearlight3
port Lsig;

end
end
port Manual_Cmd;
port Hydraulic_power;
port Electrical_Cmd;
port ElectricPower;
port Mech_Ground;
port Mech_Aircraft;

end

B.3 S2ML code for theMBSAmodel
This section contains the code for the S2ML translation of the AltaRica 3.0
model. We translated the model manually, although it would be possible to
automatize this process. We translated blocks to blocks and variables to ports.
In this example, we ignored all model elements related to the guarded trans-
ition systems and not the architecture, as wewere not interested in comparing
these artifacts. We also ignored the assertions because the SmartSync meth-
odology does not encompass them; this allows better readability of the S2ML
model and has no impact on the comparison results.
//LandingSys : block representant le systeme train d’atterissage et integrant l’IHM, la partie

controle et les parties meca/hydrau
block landingSys
__

//PilotInterface : Interface between the pilot and the landing gear
__

block pilotInterface
block frontGearLight
port input;
port output;

end
block leftGearLight
port input;
port output;

end
block rightGearLight
port input;
port output;

end
block udHandle
port output;
port position;

end
block analogicalSwitch
port recentChange;
port output;

end
end

__

//MechaHydraulicPart : Mechanical and Hydraulic parts of the landing gear system
__

152 APPENDIX B. LANDING GEARMODELS

block mechahydraulicPart
block frontLandingSet
block upLockBox
port rightpos;
port input;

end
block door
port input;
port rightPos;

end
block doorCylinder
port input;
port output;

end
block gearCylinder
port input;
port output;

end
block gear
port input;
port rightPos;

end
end
block leftLandingSet
block upLockBox
port rightpos;
port input;

end
block door
port input;
port rightPos;

end
block doorCylinder
port input;
port output;

end
block gearCylinder
port input;
port output;

end
block gear
port input;
port rightPos;

end
end
block rightLandingSet
block upLockBox
port rightpos;
port input;

end
block door
port input;
port rightPos;

end
block doorCylinder
port input;
port output;

end
block gearCylinder
port input;
port output;

end
block gear
port input;
port rightPos;

end
end
block hydraulicSys
block pressureSensor
port input;
port output;

end

B.3. S2ML CODE FOR THEMBSAMODEL 153

block generalElectroValve
port input;
port output;
port order;

end
block doorHydraulicSys
block retractionDoorElectroValve
port input;
port output;
port order;

end
block extensionDoorElectroValve
port input;
port output;
port order;

end
port input;
port order;

end
block gearHydraulicSys
block retractionGearElectroValve
port input;
port output;
port order;

end
block extensionGearElectroValve
port input;
port output;
port order;

end
port input;
port order;

end
end
port gearLocked;
port doorLocked;

end
__

//DigitalPart : Digital part of the landing gear that controls the system
__

block digitalPart
block CPIOM1
port analogicalSwitchFlag;
port input;
port outputGeneralValve;
port outputGear;
port outputDoor;
port gearLocked;
port doorLocked;

end
block CPIOM2
port analogicalSwitchFlag;
port input;
port outputGeneralValve;
port outputGear;
port outputDoor;
port gearLocked;
port doorLocked;

end
end

end

154 APPENDIX B. LANDING GEARMODELS

B.4 Comparison results
This section contains the comparison results after the last step of the Smart-
Sync comparison of the MBSE and MBSA models for the landing gear. Each
row contains one element of the system and its representations in eachmodel
if it exists.

The first column indicates the element type, which can be either a port or a
block. The inscription "MCB" indicates that the SmarSync tool output "Miss-
ing Corresponding Block" for this alignment; this is because the tool currently
does not allow to align twomodel elements if their parents are not aligned.

The second row contains the name of the model element in the MBSE
model.

The third row contains the name of themodel element in theMBSAmodel.
Type Model1 Model2

main. Landing_gear_systeme main. landingSys
port ElectricPower forget
port Electrical_Cmd forget
port Hydraulic_power forget
port Manual_Cmd forget
port Mech_Aircraft forget
port Mech_Ground forget
block Pilot_interface pilotInterface
block mecahydraulic_part mechahydraulicPart
port Digital_part1. ElectricPower forget
block Pilot_interface. GearLight2 pilotInterface. leftGearLight
block Pilot_interface. Gearlight1 pilotInterface. frontGearLight
block Pilot_interface. Gearlight3 pilotInterface. rightGearLight
block Pilot_interface. Handle pilotInterface. udHandle
port forget mechahydraulicPart. door-

Locked
port forget mechahydraulicPart. gear-

Locked
block mecahydraulic_part. Front_-

landing_box
mechahydraulicPart. front-
LandingSet

block mecahydraulic_part. Hy-
draulic_part

mechahydraulicPart. hydraulic-
Sys

block mecahydraulic_part. Left_land-
ing_box

mechahydraulicPart. leftLand-
ingSet

block mecahydraulic_part. Right_-
landing_box

mechahydraulicPart. rightLand-
ingSet

B.4. COMPARISON RESULTS 155

port Pilot_interface. GearLight2. Lsig pilotInterface. leftGearLight. in-
put

port Pilot_interface. Gearlight1. Lsig pilotInterface. frontGearLight.
input

port Pilot_interface. Gearlight3. Lsig pilotInterface. rightGearLight.
input

port Pilot_interface. Handle. Man_-
Cmd

pilotInterface. udHandle. out-
put

port Pilot_interface. Handle.
Manual_Cmd

pilotInterface. udHandle. posi-
tion

block mecahydraulic_part. Front_-
landing_box. Front_Door

mechahydraulicPart. front-
LandingSet. door

block mecahydraulic_part. Front_-
landing_box. Front_Gear

mechahydraulicPart. front-
LandingSet. gear

block mecahydraulic_part. Hy-
draulic_part. Front_Door_-
cylinder

mechahydraulicPart. front-
LandingSet. doorCylinder

block mecahydraulic_part. Hy-
draulic_part. Front_Gear_-
cylinder

mechahydraulicPart. front-
LandingSet. gearCylinder

block mecahydraulic_part. Hy-
draulic_part. Left_Gear_cyl-
inder

mechahydraulicPart. leftLand-
ingSet. gearCylinder

block mecahydraulic_part. Hy-
draulic_part. Left_door_cyl-
inder

mechahydraulicPart. leftLand-
ingSet. doorCylinder

block mecahydraulic_part. Hy-
draulic_part. Right_Door_-
cylinder

mechahydraulicPart. rightLand-
ingSet. doorCylinder

block mecahydraulic_part. Hy-
draulic_part. Right_Gear_-
Cylinder

mechahydraulicPart. rightLand-
ingSet. gearCylinder

block mecahydraulic_part. Left_land-
ing_box. Left_Door

mechahydraulicPart. leftLand-
ingSet. door

block mecahydraulic_part. Right_-
landing_box. Right_Gear

mechahydraulicPart. rightLand-
ingSet. gear

block mecahydraulic_part. Right_-
landing_box. Right_door

mechahydraulicPart. rightLand-
ingSet. door

port mecahydraulic_part. Front_-
landing_box. Front_Door. Mech

mechahydraulicPart. front-
LandingSet. door. input

156 APPENDIX B. LANDING GEARMODELS

port mecahydraulic_part. Front_-
landing_box. Front_Door.
Mech_Aircraft

forget

port forget mechahydraulicPart. front-
LandingSet. door. rightPos

port mecahydraulic_part. Front_-
landing_box. Front_Gear. Mech

mechahydraulicPart. front-
LandingSet. gear. input

port mecahydraulic_part. Front_-
landing_box. Front_Gear.
Mech_Ground

forget

port forget mechahydraulicPart. front-
LandingSet. gear. rightPos

MCB mecahydraulic_part. Hy-
draulic_part. Front_Door_-
cylinder

forget

MCB mecahydraulic_part. Hy-
draulic_part. Front_Gear_-
cylinder

forget

MCB mechahydraulicPart. front-
LandingSet. doorCylinder

forget

MCB mechahydraulicPart. front-
LandingSet. gearCylinder

forget

MCB mechahydraulicPart. leftLand-
ingSet. gearCylinder

forget

MCB mechahydraulicPart. leftLand-
ingSet. doorCylinder

forget

MCB mechahydraulicPart. rightLand-
ingSet. doorCylinder

forget

MCB mechahydraulicPart. rightLand-
ingSet. gearCylinder

forget

port mecahydraulic_part. Left_land-
ing_box. Left_Door. Mech

mechahydraulicPart. leftLand-
ingSet. door. input

block mecahydraulic_part. Left_land-
ing_box. Left_Gear

mechahydraulicPart. leftLand-
ingSet. gear

MCB mecahydraulic_part. Hy-
draulic_part. Left_door_cyl-
inder

forget

MCB mecahydraulic_part. Hy-
draulic_part. Left_Gear_cyl-
inder

forget

port mecahydraulic_part. Right_-
landing_box. Right_Gear. Mech

mechahydraulicPart. rightLand-
ingSet. gear. input

B.4. COMPARISON RESULTS 157

port mecahydraulic_part. Right_-
landing_box. Right_door. Mech

mechahydraulicPart. rightLand-
ingSet. door. input

MCB mecahydraulic_part. Hy-
draulic_part. Right_Door_-
cylinder

forget

MCB mecahydraulic_part. Hy-
draulic_part. Right_Gear_-
Cylinder

forget

port mecahydraulic_part. Left_land-
ing_box. Left_Gear. Mech

mechahydraulicPart. leftLand-
ingSet. gear. input

block digitalPart
block Digital_part1
block Digital_part2
block pilotInterface. analogicalSwitch
port pilotInterface. leftGearLight.

output
port pilotInterface. frontGearLight.

output
port pilotInterface. rightGearLight.

output
port pilotInterface. analogicalSwitch
block mechahydraulicPart. front-

LandingSet. upLockBox
block mecahydraulic_part. Hy-

draulic_part. Close_door_-
Electro_valve

block mecahydraulic_part. Hy-
draulic_part. Extend_Gear_-
Electro_Valve

block mecahydraulic_part. Hy-
draulic_part. General_elec-
tro_valves

block mecahydraulic_part. Hy-
draulic_part. Open_door_-
Electro_Valve

block mecahydraulic_part. Hy-
draulic_part. Retract_Gear_-
Electro_valve

block mechahydraulicPart. hydraulic-
Sys. doorHydraulicSys

block mechahydraulicPart. hydraulic-
Sys. gearHydraulicSys

158 APPENDIX B. LANDING GEARMODELS

block mechahydraulicPart. hydraulic-
Sys. generalElectroValve

block mechahydraulicPart. hydraulic-
Sys. pressureSensor

block mechahydraulicPart. leftLand-
ingSet. upLockBox

block mechahydraulicPart. rightLand-
ingSet. upLockBox

port mecahydraulic_part. Front_-
landing_box. Front_Door.
Status

port mecahydraulic_part. Front_-
landing_box. Front_Gear. Status

block mechahydraulicPart. front-
LandingSet. upLockBox

block mecahydraulic_part. Hy-
draulic_part. Close_door_-
Electro_valve

block mecahydraulic_part. Hy-
draulic_part. Extend_Gear_-
Electro_Valve

block mecahydraulic_part. Hy-
draulic_part. General_elec-
tro_valves

block mecahydraulic_part. Hy-
draulic_part. Open_door_-
Electro_Valve

block mecahydraulic_part. Hy-
draulic_part. Retract_Gear_-
Electro_valve

block mechahydraulicPart. hydraulic-
Sys. doorHydraulicSys

block mechahydraulicPart. hydraulic-
Sys. gearHydraulicSys

block mechahydraulicPart. hydraulic-
Sys. generalElectroValve

block mechahydraulicPart. hydraulic-
Sys. pressureSensor

port mecahydraulic_part. Left_land-
ing_box. Left_Door. Mech_Air-
craft

B.4. COMPARISON RESULTS 159

port mecahydraulic_part. Left_land-
ing_box. Left_Door. Status

port mechahydraulicPart. leftLand-
ingSet. door. rightPos

block mechahydraulicPart. leftLand-
ingSet. upLockBox

port mecahydraulic_part. Right_-
landing_box. Right_Gear.
Mech_Ground

port mecahydraulic_part. Right_-
landing_box. Right_Gear. Status

port mechahydraulicPart. rightLand-
ingSet. gear. rightPos

port mecahydraulic_part. Right_-
landing_box. Right_door.
Mech_Aircraft

port mecahydraulic_part. Right_-
landing_box. Right_door. Status

port mechahydraulicPart. rightLand-
ingSet. door. rightPos

block mechahydraulicPart. rightLand-
ingSet. upLockBox

port mecahydraulic_part. Left_land-
ing_box. Left_Gear. Mech_-
Ground

port mecahydraulic_part. Left_land-
ing_box. Left_Gear. Status

port mechahydraulicPart. leftLand-
ingSet. gear. rightPos

APPENDIX C

BLOODDELIVERY DRONEMODELS

C.1 AltaRica 3.0 code for the Blood deliv-
ery drone

This section contains the code for the AltaRica 3.0 model of the blood delivery
drone. This code is composedof themainblock that instantiates themain sub-
systems of the drone. Contrary to the Landing Gear model from appendix B.1,
components and subsystems are modeled as blocks rather than using specific
classes.

Those blocks extend either the NRComponent class, which contains the
standardOK/KO guarded transition systemused in eachmodel component or
the ComponentIO class, which instantiates the NRComponent class and adds
input and output variables with an assertion linking them.
block ZippyFlyer
block Cell
block Fuselage
extends NRComponent;

end

block Wing
extends NRComponent;

end

block Bunker
block Actuator
extends NRComponent;
Boolean inBattery, inCalculator, out (reset = false);
assertion
out := if is_working then inCalculator and inBattery else false;

end

block Door
extends NRComponent;
Boolean in, pos (reset = false);
assertion
pos := if is_working then in else false;

end
assertion

161

162 APPENDIX C. BLOODDELIVERY DRONEMODELS

Door.in := Actuator.out;
end

Aileron Aileron1;
Aileron Aileron2;

end

block Avionics
block Comms_module
extends NRComponent;
Boolean in4G (reset = true);
Boolean inCalculator (reset = false);
Boolean outData (reset = false);
Boolean outCalculator (reset = true);
assertion
outData := if is_working then in4G and inCalculator else false;
outCalculator := if is_working then in4G else false;

end

block GPS_module
extends ComponentIO;
assertion
in := true;

end
end

block Battery
extends ComponentIO;
assertion
in := true;

end

block Radar
extends ComponentIO;
assertion
in := true;

end

block Drivetrain
block Motor1
extends ComponentIO;

end
block Motor2
extends ComponentIO;

end
block Propeller1
extends ComponentIO;

end
block Propeller2
extends ComponentIO;

end
assertion
Propeller1.in := Motor1.out;
Propeller2.in := Motor2.out;

end

block Inertial_measurement_unit
extends NRComponent;
Boolean inAttitude, inRadar, inGPS, out (reset = false);
assertion
inAttitude := true;
out := if is_working then inAttitude and inRadar and inGPS else false;

end

block Calculator
extends NRComponent;
Boolean inPlanVol (init = true);
Boolean inCentraleInertielle, inBattery, inGPS, outLargage, outComm, outMotor (reset =

false);
Boolean inComm (reset = true);

end

C.2. SCOLA CODE FOR THE BLOODDELIVERY DRONE 163

assertion
Inertial_measurement_unit.inRadar := Radar.out;
Inertial_measurement_unit.inGPS := Avionics.GPS_module.out;
Calculator.inGPS := Avionics.GPS_module.out;
Calculator.inBattery := Battery.out;
Calculator.inCentraleInertielle := Inertial_measurement_unit.out;
Calculator.inComm := Avionics.Comms_module.outCalculator;
Avionics.Comms_module.inCalculator := Calculator.outComm;
Drivetrain.Motor1.in := Calculator.outMotor;
Drivetrain.Motor2.in := Calculator.outMotor;
Cell.Bunker.Actuator.inCalculator := Calculator.outLargage;

observer Boolean oPuissanceNominale = Drivetrain.Motor1.out and Drivetrain.Motor2.out;
observer Boolean oPuissanceDegradee = not (Drivetrain.Motor1.out and Drivetrain.Motor2.out) and

(Drivetrain.Motor1.out or Drivetrain.Motor2.out);
end

class NRComponent
Boolean is_working (init = true);
parameter Real lambda = 10e-6;
event failure (delay = exponential(lambda));
transition
failure : is_working == true -> is_working := false;

end

class ComponentIO
extends NRComponent;
Boolean in, out (reset = false);
assertion
out := if is_working then in else false;

end

class Aileron
extends NRComponent;

end

C.2 SCOLA code for the Blood delivery
drone

This section contains the SCOLA code for the blooddelivery drone. Thismodel
is divided into two parts. First, the block drone contains the architecture of the
drone, with blocks representing the subsystems and components. Second, a
scenario is defined,with states that contain tasks. The tasks are computeddur-
ing the execution of the model; they can impact the architecture of the drone,
for example, bymodifying the values of the variables or by creating new block-
s/variables or deleting them.
domain EtatGPS {BASE, DEST, Route_Retour_BASE, Route_vers_DEST} end
domain ComponentState {INSTALLED, MISSING, STOPPED, EN_MARCHE} end
domain STATE_Porte_soute {OPENED, CLOSED} end

block drone
block GPS
ComponentState Recept_GPS STOPPED
EtatGPS Position BASE /*initialement, le drone se trouve dans la base*/

end
block Soute
ComponentState colis MISSING /*initialement, le colis n’est pas encore

chargee dans le drone*/
block Actionneurs
ComponentState Actionneurs_state STOPPED
end
block Porte

164 APPENDIX C. BLOODDELIVERY DRONEMODELS

STATE_Porte_soute Porte_soute OPENED /*initialement, la porte de la soute est ouverte
pour pouvoir charger le colis de sang*/

end
end
block GroupeMotopropulseur
block Moteur_Avant
Boolean F1 false /*les moteurs sont initialement en arret*/
end
block Moteur_Arriere
Boolean F2 false
end
block Helice_Avant
ComponentState HeliceAvant_state STOPPED /*les helices sont initialement en arret*/
end
block Helice_Arriere
ComponentState HeliceArriere_state STOPPED
end

end
block batterie
ComponentState batterie_state MISSING /*initialement, la batterie n’est pas encore

chargee dans le drone*/
Boolean Charged true

end
block Calculateur
ComponentState calculateur STOPPED

end
end

scenario DRONE as drone
state Initial /*a l’etat initial on entre

les donnees de la mission*/
scenario preparation_mission
task chargement /*la tache de chargement de

batterie et colis*/
set Soute.colis INSTALLED /*le colis est chargee apres

avoir terminee la tache du chargement*/
set batterie.batterie_state INSTALLED /*la batterie est chargee apres avoir terminee

la tache du chargement*/
set GPS.Recept_GPS EN_MARCHE /*le recepteur GPS se met en

marche juste apres le chargement*/
set Calculateur.calculateur EN_MARCHE
set Soute.Porte.Porte_soute CLOSED /*apres avoir chargee le

colis, l’operateur ferme la porte de la soute*/
end
state lecture_code_QR
choice verification_code_QR
branch code_bon
branch QR_different

end
state erreur
state confirmation

next chargement lecture_code_QR
next lecture_code_QR verification_code_QR
next verification_code_QR.code_bon confirmation
next verification_code_QR.QR_different erreur

end

task Decollage
set GroupeMotopropulseur.Moteur_Avant.F1 true /*les moteurs se mettent en marche pour

propulsion*/
set GroupeMotopropulseur.Moteur_Arriere.F2 true
set GPS.Position Route_vers_DEST /*le drone est maintenant

en route vers la destination*/
set GroupeMotopropulseur.Helice_Avant.HeliceAvant_state EN_MARCHE /*les helices commencent

a tourner grace aux moteurs*/
set GroupeMotopropulseur.Helice_Arriere.HeliceArriere_state EN_MARCHE

end

C.2. SCOLA CODE FOR THE BLOODDELIVERY DRONE 165

state Vol

scenario MOTEUR_AVANT
state initial
choice Etat_moteur_avant
branch Fct
branch Dysfct

end
task dysfonctionnement_moteur_avant
set GroupeMotopropulseur.Moteur_Avant.F1 false

end
state fonctionnement_moteur_avant
state fin_test

next initial Etat_moteur_avant
next Etat_moteur_avant.Fct fonctionnement_moteur_avant
next Etat_moteur_avant.Dysfct dysfonctionnement_moteur_avant
next fonctionnement_moteur_avant fin_test
next dysfonctionnement_moteur_avant fin_test
end

scenario MOTEUR_ARRIERE
state initial
choice Etat_moteur_arriere
branch Fct
branch Dysfct

end
task dysfonctionnement_moteur_arriere
set GroupeMotopropulseur.Moteur_Arriere.F2 false

end

state fonctionnement_moteur_arriere
state fin_test

next initial Etat_moteur_arriere
next Etat_moteur_arriere.Fct fonctionnement_moteur_arriere
next Etat_moteur_arriere.Dysfct dysfonctionnement_moteur_arriere
next fonctionnement_moteur_arriere fin_test
next dysfonctionnement_moteur_arriere fin_test
end

test Test_Moteurs
case Dysfonct_Moteur_avant (and (eq GroupeMotopropulseur.Moteur_Avant.F1 false)(eq

GroupeMotopropulseur.Moteur_Arriere.F2 true))
case Dysfonct_Moteur_arriere (and (eq GroupeMotopropulseur.Moteur_Avant.F1 true)(eq

GroupeMotopropulseur.Moteur_Arriere.F2 false))
case Dysfonct_2_moteurs (and (eq GroupeMotopropulseur.Moteur_Avant.F1 false)(eq

GroupeMotopropulseur.Moteur_Arriere.F2 false))
case FCT_2_moteurs (and (eq GroupeMotopropulseur.Moteur_Avant.F1 true)(eq

GroupeMotopropulseur.Moteur_Arriere.F2 true))
end

scenario Guidage as GPS /*pendant le vol, le GPS
calcule toujours la position (un sous-scenario du GPS)*/

state calcul
choice Info_GPS
branch DEST /*le drone est arrivee a la destination*/
branch Route_vers_DEST /*le drone est en encore en route vers la destination*/
branch Route_Retour_BASE /*le drone est en route pour retourner a la base*/
branch BASE /*le drone est arrivee a la base*/

end
task arrive_dest
set Position DEST
set owner.Soute.Porte.Porte_soute OPENED /*si le drone est arrivee a la

destination, les actionneurs vont se mettre en marche pour ouvrir la porte*/
set owner.Soute.Actionneurs.Actionneurs_state EN_MARCHE

end
task arrive_base
set Position BASE

end

next calcul Info_GPS

166 APPENDIX C. BLOODDELIVERY DRONEMODELS

next Info_GPS.DEST arrive_dest
next Info_GPS.BASE arrive_base

end

task largage
set Soute.colis MISSING /*apres le largage, le colis est livree*/
set GPS.Position Route_Retour_BASE /*le drone retourne a la base*/
set Soute.Porte.Porte_soute CLOSED /*la porte est fermee*/

end
state VolRetour

task Atterrissage
set GroupeMotopropulseur.Moteur_Avant.MoteurAvant_state STOPPED
set GroupeMotopropulseur.Moteur_Arriere.MoteurArriere_state STOPPED
set GroupeMotopropulseur.Helice_Avant.HeliceAvant_state STOPPED
set GroupeMotopropulseur.Helice_Arriere.HeliceArriere_state STOPPED
set Calculateur.calculateur STOPPED
set GPS.Position BASE

end
choice Inspection
branch maintenance /*si le drone a besoin de maintenance*/
branch accept /*si le drone n’a pas besoin de maintenance*/
branch reject /*fin de vie*/

end
task maintenance end
state Perte_puissance
state Chute
state Terminal

next Initial preparation_mission.chargement
next preparation_mission.confirmation Decollage
next Decollage Test_Moteurs
next Test_Moteurs.FCT_2_moteurs Vol
next Test_Moteurs.Dysfonct_Moteur_avant Perte_puissance
next Test_Moteurs.Dysfonct_Moteur_arriere Perte_puissance
next Test_Moteurs.Dysfonct_2_moteurs Chute
next Perte_puissance Terminal
next Chute Terminal

next Vol Guidage.calcul
next Guidage.Info_GPS.Route_vers_DEST Vol
next Guidage.arrive_dest largage
next Guidage.arrive_base Atterrissage
next largage VolRetour
next VolRetour Guidage.calcul
next Guidage.Info_GPS.Route_Retour_BASE VolRetour
next Atterrissage Inspection
next Inspection.maintenance maintenance
next Inspection.accept preparation_mission.chargement
next maintenance preparation_mission.chargement
next Inspection.reject Terminal
end

C.3 S2ML code for theMBSEmodel
This section contains the S2ML code translation of the MBSE model for the
blood delivery drone. The translation was operated manually, SysML part
properties were translated to blocks, ports to ports and connections to con-
nections.
block Alternative_1
block Batterie
port Ener_elec;
port Energie;

end
block groupe_Motopropulseur

C.3. S2ML CODE FOR THEMBSEMODEL 167

block Moteur_Arr
port Action;
port pilotage;

end
block Helice_Arr
port Action;

end
block Moteur_Av
port pilotage;
port Action;

end
block Helice_Av
port Action;

end
port effort_propulsion;
port Energie;
connection [Moteur_Arr.Action, Helice_Arr.Action];
connection [Moteur_Av.Action, Helice_Av.Action];

end
block centrale_inertielle
port Orientation;
port position_obstacle;
port position;
port trajectoire;

end
block radar
port Image_obstacle;
port position_obstacle;

end
block avionique
block module_de_communication
port Reseau_4G;
port Information;
port Data_out;

end
block module_de_geolocalisation
port Signaux_geolocalisation;
port position;

end
port Energie;

end
block cellule
block aile_d
port effort_portance;

end
block aile_g
port effort_portance;

end
block aileron_d
port effort_directionnel;
port Action_aileron;

end
block aileron_g
port effort_directionnel;
port Action_aileron;

end
block aileron_d2
port effort_directionnel;
port Action_aileron;

end
block aileron_g2
port effort_directionnel;
port Action_aileron;

end
block actionneurs_Ailerons
port Action_aileron;
port Commande_de_vol;

end
block gouverne_de_direction
port Commande_de_vol;

end
block soute
block actionneurs

168 APPENDIX C. BLOODDELIVERY DRONEMODELS

port Energie;
port ordre_ouverture;
port Ordre_largage;

end
block Porte_soute
port ordre_ouverture;

end
port Poche_de_sang;
connection [actionneurs.ordre_ouverture, Porte_soute.ordre_ouverture];

end
port Gravitee;
port effort_trainee;
connection [actionneurs_Ailerons.Action_aileron, aileron_d.Action_aileron];
connection [actionneurs_Ailerons.Action_aileron, aileron_d2.Action_aileron];
connection [actionneurs_Ailerons.Action_aileron, aileron_g.Action_aileron];
connection [actionneurs_Ailerons.Action_aileron, aileron_g2.Action_aileron];

end
block calculateur
port Energie;
port pilotage;
port Ordre_largage;
port Commande_de_vol;
port Information;
port plan_de_vol;
port position;
port trajectoire;

end
port Gravitee;
port ActionAir;
port Poche_de_sang;
port Ener_elec;
port Orientation;
port Image_obstacle;
port Data_in;
port Reseau_4G;
port Signaux_geolocalisation;
port Data_out;
connection [Gravitee, cellule.Gravitee];
connection [ActionAir, groupe_Motopropulseur.effort_propulsion];
connection [Ener_elec, Batterie.Ener_elec];
connection [Data_in, calculateur.plan_de_vol];
connection [Orientation, centrale_inertielle.Orientation];
connection [Image_obstacle, radar.Image_obstacle];
connection [ActionAir, cellule.effort_trainee];
connection [calculateur.pilotage, groupe_Motopropulseur.Moteur_Arr.pilotage];
connection [calculateur.pilotage, groupe_Motopropulseur.Moteur_Av.pilotage];
connection [Reseau_4G, avionique.module_de_communication.Reseau_4G];
connection [Signaux_geolocalisation,

avionique.module_de_geolocalisation.Signaux_geolocalisation];
connection [avionique.module_de_communication.Data_out, Data_out];
connection [avionique.module_de_communication.Information, calculateur.Information];
connection [avionique.module_de_geolocalisation.position, centrale_inertielle.position];
connection [avionique.module_de_geolocalisation.position, calculateur.position];
connection [radar.position_obstacle, centrale_inertielle.position_obstacle];
connection [centrale_inertielle.trajectoire, calculateur.trajectoire];
connection [ActionAir, cellule.aile_d.effort_portance];
connection [ActionAir, cellule.aile_g.effort_portance];
connection [ActionAir, cellule.aileron_d.effort_directionnel];
connection [ActionAir, cellule.aileron_d2.effort_directionnel];
connection [ActionAir, cellule.aileron_g.effort_directionnel];
connection [ActionAir, cellule.aileron_g2.effort_directionnel];
connection [Poche_de_sang, cellule.soute.Poche_de_sang];
connection [calculateur.Ordre_largage, cellule.soute.actionneurs.Ordre_largage];
connection [calculateur.Commande_de_vol, cellule.actionneurs_Ailerons.Commande_de_vol];
connection [calculateur.Commande_de_vol, cellule.gouverne_de_direction.Commande_de_vol];
connection [Batterie.Energie, cellule.soute.actionneurs.Energie];
connection [Batterie.Energie, calculateur.Energie];
connection [Batterie.Energie, avionique.Energie];
connection [Batterie.Energie, groupe_Motopropulseur.Energie];

end

C.4. S2ML CODE FOR THEMBSAMODEL 169

C.4 S2ML code for theMBSAmodel
This section contains the code for the S2ML translation of the AltaRica 3.0
model. We translated the model manually, although it would be possible to
automatize this process. We translated blocks to blocks and variables to ports.
Contrary to the translation for the landing gear in appendix B.3, we translated
the whole model, including safety artifacts only related to the Guarded Trans-
ition Systems and assertions.

Assertions and transitions are translated using connections. Annotations
are used in this to give precise information over the ports and connections, for
example a connectionwill be annotated (type = "connection") if it is a trans-
ition, and (type = "assertion") if it is an assertion. The information con-
tained in the annotations is not used by the SmartSync tool but can be read by
the engineers.
block ZippyFlyer
block Cellule
block Fuselage
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
end
block Aile
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection");

end
block Soute
block Actionneur
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port inBatterie (type = "Boolean", kind = "reset", value = "false");
port inCalculateur (type = "Boolean", kind = "reset", value = "false");
port out (type = "Boolean", kind = "reset", value = "false");
connection [out, is_working, inCalculateur, inBatterie](kind = "assertion");

end
block Porte
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in (type = "Boolean", kind = "reset", value = false);
port pos (type = "Boolean", kind = "reset", value = false);
connection [pos, is_working, in](type = "assertion");

end
connection [Porte.in, Actionneur.out](type = "assertion");

end
block Aileron1
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
end
block Aileron2
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);

170 APPENDIX C. BLOODDELIVERY DRONEMODELS

port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
end

end
block Avionique
block Module_communication
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in4G (type = "Boolean", kind = "reset", value = true);
port inCalculateur (type = "Boolean", kind = "reset", value = "false");
port outData (type = "Boolean", kind = "reset", value = true);
port outCalculateur (type = "Boolean", kind = "reset", value = true);
connection [outData, is_working, in4G](type = "assertion");
connection [outCalculateur, is_working, in4G](type = "assertion");

end
block Module_GPS
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");
connection [in](type = "assertion");

end
end
block Batterie
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true -> false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");
connection [in](type = "assertion");

end
block Radar
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true -> false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");
connection [in](type = "assertion");

end
block Groupe_motopropulseur
block Motor1
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");

end
block Motor2
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");

end
block Propeller1

C.5. S2ML CODE FOR THE SCOLAMODEL 171

port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");

end
block Propeller2
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true ->

false");
port in (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [out, is_working, in](type = "assertion");

end
connection [Propeller1.in, Motor1.out](type = "assertion");
connection [Propeller2.in, Motor2.out](type = "assertion");

end
block Centrale_inertielle
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true -> false");
port inAttitude (type = "Boolean", kind = "reset", value = false);
port inRadar (type = "Boolean", kind = "reset", value = false);
port inGPS (type = "Boolean", kind = "reset", value = false);
port out (type = "Boolean", kind = "reset", value = false);
connection [inAttitude](type = "assertion");
connection [out, is_working, inAttitude, inRadar, inGPS](type = "assertion");

end
block Calculateur
port is_working (type = "Boolean", kind = "init", value = "true");
port lambda (type = "Real", value = 10e-6);
port failure (type = "event", delay = "exponential(lambda)");
connection [failure, is_working, is_working] (type = "connection", expr = "true -> false");
port inPlanVol (type = "Boolean", kind = "reset", value = true);
port inCentraleInertielle (type = "Boolean", kind = "reset", value = false);
port inBatterie (type = "Boolean", kind = "reset", value = false);
port inGPS (type = "Boolean", kind = "reset", value = false);
port inComm (type = "Boolean", kind = "reset", value = false);
port outLargage (type = "Boolean", kind = "reset", value = false);
port outComm (type = "Boolean", kind = "reset", value = false);
port outMotor (type = "Boolean", kind = "reset", value = false);

end
connection [Centrale_inertielle.inRadar, Radar.out](type = "assertion");
connection [Centrale_inertielle.inGPS, Avionique.Module_GPS.out](type = "assertion");
connection [Calculateur.inGPS, Avionique.Module_GPS.out](type = "assertion");
connection [Calculateur.inBatterie, Batterie.out](type = "assertion");
connection [Calculateur.inCentraleInertielle, Centrale_inertielle.out](type = "assertion");
connection [Calculateur.inComm, Avionique.Module_communication.outCalculateur](type =

"assertion");
connection [Avionique.Module_communication.inCalculateur, Calculateur.outComm](type =

"assertion");
connection [Groupe_motopropulseur.Motor1.in, Calculateur.outMotor](type = "assertion");
connection [Groupe_motopropulseur.Motor2.in, Calculateur.outMotor](type = "assertion");
connection [Cellule.Soute.Actionneur.inCalculateur, Calculateur.outLargage](type = "assertion");

end

C.5 S2ML code for the SCOLAmodel
This section contains the code for the S2ML translation of the SCOLA model.
The translation of the architecture part is straightforward, with blocks trans-
lated to blocks and variables to ports. We also translated the scenario part of

172 APPENDIX C. BLOODDELIVERY DRONEMODELS

themodel, although it is not very interesting for comparison. The scenariowas
modeled as a block, and so were tasks and branches. The "nexts"were trans-
lated as connections between the states, which were translated as ports.

Annotations are used the same way as in the MBSA to S2ML translation.
They carry information that can be used by the engineers but is not considered
by the SmartSync tool.
block main
block drone (type="{block, scenario, task}", value="block")
block GPS (type="{block, scenario, task}", value="block")
port Recept_GPS (type="{INSTALLED, MISSING, STOPPED, EN_MARCHE}",value="STOPPED");
port Position (type="{BASE, DEST, Route_Retour_BASE, Route_vers_DEST}",value="BASE");
end
block Soute (type="{block, scenario, task}", value="block")
port colis (type="{INSTALLED, MISSING, STOPPED, EN_MARCHE}",value="MISSING");
block Actionneurs (type="{block, scenario}", value="block")
port Actionneurs_state (type="{INSTALLED, MISSING, STOPPED,

EN_MARCHE}",value="STOPPED");
end
block Porte (type="{block, scenario, task}", value="block")
port Porte_soute (type="{OPENED, CLOSED}",value="OPENED");

end
end
block GroupeMotopropulseur (type="{block, scenario, task}", value="block")
block Moteur_Avant (type="{block, scenario}", value="block")
port Working(type="Boolean",value="false");
end
block Moteur_Arriere (type="{block, scenario, task}", value="block")
port Working (type="Boolean",value="false");
end
block Helice_Avant (type="{block, scenario, task}", value="block")
port HeliceAvant_state (type="{INSTALLED, MISSING, STOPPED,

EN_MARCHE}",value="STOPPED");
end
block Helice_Arriere (type="{block, scenario, task}", value="block")
port HeliceArriere_state (type="{INSTALLED, MISSING, STOPPED,

EN_MARCHE}",value="STOPPED");
end

end
block batterie (type="{block, scenario, task}", value="block")
port batterie_state (type="{INSTALLED, MISSING, STOPPED, EN_MARCHE}",value="MISSING");
port Charged (type="Boolean",value="true");
end
block Calculateur (type="{block, scenario, task}", value="block")
port calculateur (type="{INSTALLED, MISSING, STOPPED, EN_MARCHE}",value="STOPPED");
end

end
block scenario_drone (type="{block, scenario, task}", value="scenario")

port Initial, Terminal, lecture_code_QR,erreur, confirmation, Vol, VolRetour,
Perte_puissance, Chute;

block verification_code_QR (type="{block, scenario, task}", value="task")
port default, code_bon, QR_different;
end
block preparation_mission (type="{block, scenario, task}", value="task")

block chargement (type="{block, scenario, task}", value="task")
port _in,_out;
connection [Soute.colis] (type="set", value="INSTALLED");
connection [batterie.batterie_state] (type="set", value="INSTALLED");
connection [GPS.Recept_GPS] (type="set", value="EN_MARCHE");
connection [Calculateur.calculateur] (type="set", value="EN_MARCHE");
connection [Soute.Porte.Porte_soute] (type="set", value= "CLOSED");
end
connection [chargement._out, lecture_code_QR];
connection [lecture_code_QR, verification_code_QR.default];
connection [verification_code_QR.code_bon, confirmation];
connection [verification_code_QR.QR_different, erreur];

end
block Decollage (type="{block, scenario, task}", value="task")
port _in, _out;

C.5. S2ML CODE FOR THE SCOLAMODEL 173

connection [GroupeMotopropulseur.Moteur_Avant.Working] (type="set", value="true");
connection [GroupeMotopropulseur.Moteur_Arriere.Working] (type="set", value="true");
connection [GPS.Position] (type="set", value="Route_vers_DEST");
connection [GroupeMotopropulseur.Helice_Avant.HeliceAvant_state] (type="set",

value="EN_MARCHE");
connection [GroupeMotopropulseur.Helice_Arriere.HeliceArriere_state] (type="set",

value="EN_MARCHE");
end
block Guidage (type="{block, scenario, task}", value="scenario")
port calcul;
block Info_GPS
port default,DEST, Route_vers_DEST, Route_Retour_BASE, BASE;

end
block arrive_dest (type="{block, scenario, task}", value="task")
port _in,_out;
connection [GPS.Position] (type="set", value="DEST");
connection [Soute.Porte.Porte_soute] (type="set", value="OPENED");
connection [Soute.Actionneurs.Actionneurs_state] (type="set", value="EN_MARCHE");

end
block arrive_base (type="{block, scenario, task}", value="task")
port _in, _out;
connection [GPS.Position] (type="set", value="BASE");

end

connection [calcul, Info_GPS.default];
connection [Info_GPS.DEST, arrive_dest];
connection [Info_GPS.BASE, arrive_base];

end

block largage (type="{block, scenario, task}", value="task")
port _in, _out;
connection [Soute.colis] (type="set", value="MISSING");
connection [GPS.Position] (type="set", value="Route_Retour_BASE");
connection [Soute.Porte.Porte_soute] (type="set", value="CLOSED");

end

block Atterrissage (type="{block, scenario, task}", value="task")
port _in, _out;
connection [GroupeMotopropulseur.Moteur_Avant.Working] (type="set", value="false");
connection [GroupeMotopropulseur.Moteur_Arriere.Working] (type="set", value="false");
connection [GroupeMotopropulseur.Helice_Avant.HeliceAvant_state] (type="set",

value="STOPPED");
connection [GroupeMotopropulseur.Helice_Arriere.HeliceArriere_state] (type="set",

value="STOPPED");
connection [Calculateur.calculateur] (type="set", value="STOPPED");
connection [GPS.Position] (type="set", value="BASE");

end

block Inspection (type="{block, scenario, task}", value="task")
port default, maintenance, accept, reject;

end
block TEST_MOTEURS (type="{block, scenario, task}", value="scenario")
port Default, Fct, Dysfct1, Dysfct2, Dysfct;
connection [GroupeMotopropulseur.Moteur_Avant.Working.false,

GroupeMotopropulseur.Moteur_Arriere.Working.true, Dysfct1];
connection [GroupeMotopropulseur.Moteur_Avant.Working.true,

GroupeMotopropulseur.Moteur_Arriere.Working.false, Dysfct2];
connection [GroupeMotopropulseur.Moteur_Avant.Working.false,

GroupeMotopropulseur.Moteur_Arriere.Working.false, Dysfct];
connection [GroupeMotopropulseur.Moteur_Avant.Working.true,

GroupeMotopropulseur.Moteur_Arriere.Working.true, Fct];
end

connection [Initial, preparation_mission.chargement._in];
connection [preparation_mission.confirmation, Decollage._in];
connection [Decollage._out, TEST_MOTEURS.Default];
connection [TEST_MOTEURS.Fct, Vol];
connection [TEST_MOTEURS.Dysfct1, Perte_puissance];
connection [TEST_MOTEURS.Dysfct2, Perte_puissance];
connection [TEST_MOTEURS.Dysfct, Chute];
connection [Perte_puissance, Terminal];
connection [Chute, Terminal];

174 APPENDIX C. BLOODDELIVERY DRONEMODELS

connection [Vol, Guidage.calcul];
connection [Guidage.Info_GPS.Route_vers_DEST, Vol];
connection [Guidage.arrive_dest, largage._in];
connection [Guidage.arrive_base, Atterrissage._in];
connection [largage._out, VolRetour];
connection [VolRetour, Guidage.calcul];
connection [Guidage.Info_GPS.Route_Retour_BASE, VolRetour];
connection [Atterrissage._out, Inspection.default];
connection [Inspection.maintenance, maintenance];
connection [Inspection.accept, preparation_mission.chargement];
connection [maintenance, preparation_mission.chargement];
connection [Inspection.reject, Terminal];

end
end

end

C.6 S2ML code for theModelicamodel
This section contains the code for the S2ML translation of themodelicamodel.
Modelica classes were abstracted to S2ML classes, withmodel instances being
translated to blocks. Modelica variables were translated to S2ML ports, and
connect clauses were translated to connections. This translationwas operated
following the protocol described in [13].
class moteur
port pin, pin_n, flange_b;
block resistor

port _in, _out;
port r (value="0.299");

end
block inductor

port _in, _out;
port l (value="8e-5");

end
block emf

port _in, _out, flange;
port const (value="0.0302");

end
block inertia

port _in, _out;
port J (value="1.42e-5");

end
connection [pin, resistor._in];
connection [resistor._out, inductor._in];
connection [inductor._out, emf._in];
connection [emf._out, pin_n];
connection [emf.flange, inertia._in];
connection [inertia._out, flange_b];
end

class helice
port frame_a, flange_a;
block revolute (type="liaison")
port b, a, flange;

end
block Blade_1
port a, b;

end
block Blade_2
port a, b;

end
block torque (type="couple")
port _in, flange_b;

end
block Poussee (type="force")
port _in, frame_b;

C.6. S2ML CODE FOR THEMODELICAMODEL 175

end
block gain
port u, y;
port v (value="7e-6");

end
block gain1
port u, y;
port v (value="2e-7");

end
block product
port u1, u2, y;

end
block speedSensor (type="sensor")
port flange, w;

end
block fixedTranslation (type="liaison")
port a, b;

end

connection [frame_a, revolute.b];
connection [revolute.a, fixedTranslation.a];
connection [fixedTranslation.b, Blade_1.a, Blade_2.a];
connection [revolute.flange, flange_b, speedSensor.flange];
connection [speedSensor.w, product.u1, product.u2];
connection [product.y, gain.u, gain1.u];
connection [gain.y, Poussee._in];
connection [gain1.y, torque._in];
connection [Poussee.frame_b, frame_a];
connection [torque.flange_b, flange_a];

end

block drone_modelica

moteur moteur1, moteur2;
helice helice1, helice2;

block SignalVoltage1 end
block SignalVoltage2 end
block constant1
port Volt (value="20");

end
block const1
port Volt (value="20");

end

block Front_Fuselage
port a, b;

end
block Rear_Fuselage
port a, b;

end
block Left_Wing
port a, b;

end
block Right_Wing
port a, b;

end
block Trainee (type="force")
port _in, frame_b;

end
block Portance (type="force")
port _in, frame_b;

end
block Vx (type="sensor")
port frame, V;

end
block Height_Y (type="sensor")
port frame, y;

end
block product
port u1, u2, y;

176 APPENDIX C. BLOODDELIVERY DRONEMODELS

end
block product1
port u1, u2, y;

end
block gain
port u, y;
port v (value="0.2");

end
block gain1
port u, y;
port v (value="-0.01");

end
block Desired_Height
port _out;
port y (value="400");

end
block pid
port u_s, u_m, y;

end

connection [helice1.frame_a, helice2.frame_a, Front_Fuselage.a, Rear_Fuselage.b, Left_Wing.a,
Right_Wing.a, Trainee.frame, Portance.frame];

connection [Front_Fuselage.b, Vx.frame];
connection [Vx.V, product.u1, product.u2];
connection [product.y, gain.u, gain1.u];
connection [gain1.y, Trainee._in];
connection [gain.y, product1.u1];
connection [Desired_Height._out, pid.u_s];
connection [Height_Y.y, pid.u_m];
connection [pid.y, product1.u2];
connection [product1.y, Portance._in];

end

C.7 Comparison results
This section contains the comparison results after the last step of the Smart-
Sync comparison of theMBSE andMBSAmodels for the blood delivery drone.
Each row contains one element of the system and its representations in each
model if it exists.

The first column indicates the element type, which can be either a port or a
block. The inscription "MCB" indicates that the SmarSync tool output "Miss-
ing Corresponding Block" for this alignment; this is because the tool currently
does not allow to align twomodel elements if their parents are not aligned.

The second row contains the name of the model element in the MBSE
model.

The third row contains the name of themodel element in theMBSAmodel.
These results were used to generate the graphical views of the categories

shown in Section 5.2.2.
Type Model1 Model2

main. Alternative_1 main. ZippyFlyer
port main. Alternative_1. Cell.

Cargo_bay. Door_Cargo_bay.
Open_signal

main. ZippyFlyer. Cell. Cargo_-
bay. Door. in

C.7. COMPARISON RESULTS 177

port main. Alternative_1. Cell.
Cargo_bay. Actuators. Energy

main. ZippyFlyer. Cell. Cargo_-
bay. Actuator. inBattery

port main. Alternative_1. Cell.
Cargo_bay. Actuators. Open_-
bay_signal

main. ZippyFlyer. Cell. Cargo_-
bay. Actuator. inCalculator

port main. Alternative_1. Cell.
Cargo_bay. Actuators. Open_-
signal

main. ZippyFlyer. Cell. Cargo_-
bay. Actuator. out

port main. Alternative_1. Avionics.
Comms_module. Data_out

main. ZippyFlyer. Avionics.
Comms_module. outData

port main. Alternative_1. Avionics.
Comms_module. Information

main. ZippyFlyer. Avionics.
Comms_module. inCalculator

port main. Alternative_1. Avionics.
Comms_module. 4G_network

main. ZippyFlyer. Avionics.
Comms_module. in4G

port main. Alternative_1. Avionics.
Comms_module. Information

main. ZippyFlyer. Avionics.
Comms_module. outCalculator

port main. Alternative_1. Avionics.
Geolocation_module. Signaux_-
geolocalisation

main. ZippyFlyer. Avionics.
Module_GPS. in

port main. Alternative_1. Avionics.
Geolocation_module. position

main. ZippyFlyer. Avionics.
Module_GPS. out

block main. Alternative_1. Cell.
Cargo_bay. Door_Cargo_bay

main. ZippyFlyer. Cell. Cargo_-
bay. Door

block main. Alternative_1. Cell.
Cargo_bay. Actuators

main. ZippyFlyer. Cell. Cargo_-
bay. Actuator

port main. Alternative_1. Power_-
unit. Propeller_Rear. Action

main. ZippyFlyer. Power_unit.
Propeller2. in

port main. Alternative_1. Power_-
unit. Propeller_Front. Action

main. ZippyFlyer. Power_unit.
Propeller1. in

port main. Alternative_1. Power_-
unit. Motor_Rear. Action

main. ZippyFlyer. Power_unit.
Motor2. out

port main. Alternative_1. Power_-
unit. Motor_Rear. pilotage

main. ZippyFlyer. Power_unit.
Motor2. in

port main. Alternative_1. Power_-
unit. Motor_Front. Action

main. ZippyFlyer. Power_unit.
Motor1. out

port main. Alternative_1. Power_-
unit. Motor_Front. pilotage

main. ZippyFlyer. Power_unit.
Motor1. in

port main. Alternative_1. Battery.
Ener_elec

main. ZippyFlyer. Battery. in

port main. Alternative_1. Battery.
Energy

main. ZippyFlyer. Battery. out

178 APPENDIX C. BLOODDELIVERY DRONEMODELS

block main. Alternative_1. Avionics.
Comms_module

main. ZippyFlyer. Avionics.
Comms_module

block main. Alternative_1. Avionics.
Geolocation_module

main. ZippyFlyer. Avionics.
Module_GPS

port main. Alternative_1. Calculator.
Commande_de_vol

main. ZippyFlyer. Calculator.
outComm

port main. Alternative_1. Calculator.
Energy

main. ZippyFlyer. Calculator. in-
Battery

port main. Alternative_1. Calculator.
Information

main. ZippyFlyer. Calculator. in-
Comm

port main. Alternative_1. Calculator.
Open_bay_signal

main. ZippyFlyer. Calculator.
outJettison

port main. Alternative_1. Calculator.
pilotage

main. ZippyFlyer. Calculator.
outMotor

port main. Alternative_1. Calculator.
Flight_plan

main. ZippyFlyer. Calculator. in-
FlightPlan

port main. Alternative_1. Calculator.
position

main. ZippyFlyer. Calculator. in-
GPS

port main. Alternative_1. Calculator.
Trajectory

main. ZippyFlyer. Calculator.
inInertial_measurement_unit

block main. Alternative_1. Cell.
Wing_r

main. ZippyFlyer. Cell. Wing

block main. Alternative_1. Cell. Ail-
eron_r

main. ZippyFlyer. Cell. Aileron1

block main. Alternative_1. Cell. Ail-
eron_r2

main. ZippyFlyer. Cell. Aileron2

block main. Alternative_1. Cell.
Cargo_bay

main. ZippyFlyer. Cell. Cargo_-
bay

port main. Alternative_1. Inertial_-
measurement_unit. Orientation

main. ZippyFlyer. Inertial_-
measurement_unit. inAttitude

port main. Alternative_1. Inertial_-
measurement_unit. position

main. ZippyFlyer. Inertial_-
measurement_unit. inGPS

port main. Alternative_1. Inertial_-
measurement_unit. obstacle_-
position

main. ZippyFlyer. Inertial_-
measurement_unit. inRadar

port main. Alternative_1. Inertial_-
measurement_unit. Trajectory

main. ZippyFlyer. Inertial_-
measurement_unit. out

block main. Alternative_1. Power_-
unit. Propeller_Rear

main. ZippyFlyer. Power_unit.
Propeller2

block main. Alternative_1. Power_-
unit. Propeller_Front

main. ZippyFlyer. Power_unit.
Propeller1

C.7. COMPARISON RESULTS 179

block main. Alternative_1. Power_-
unit. Motor_Rear

main. ZippyFlyer. Power_unit.
Motor2

block main. Alternative_1. Power_-
unit. Motor_Front

main. ZippyFlyer. Power_unit.
Motor1

port main. Alternative_1. radar.
Obstacle_image

main. ZippyFlyer. Radar. in

port main. Alternative_1. radar.
obstacle_position

main. ZippyFlyer. Radar. out

block main. Alternative_1. Battery main. ZippyFlyer. Battery
block main. Alternative_1. Avionics main. ZippyFlyer. Avionics
block main. Alternative_1. Calculator main. ZippyFlyer. Calculator
block main. Alternative_1. Cell main. ZippyFlyer. Cell
block main. Alternative_1. Inertial_-

measurement_unit
main. ZippyFlyer. Inertial_-
measurement_unit

block main. Alternative_1. Power_unit main. ZippyFlyer. Power_unit
block main. Alternative_1. radar main. ZippyFlyer. Radar

APPENDIX D

CATEGORY VISUALISATION SCRIPT

This appendix contains the script used to generate categories anddisplay them
based on the CSV files output by the SmartSync tool.

The csv2catmethodoutputs a 3-tuple containing the category formodel 1,
the category for model 2 and the correspondance matrix between the models
elements. The input for this method is the csv file output by SmartSync.

The ListToCatmethod is used by csv2cat to transform a list of model ele-
ments into a S2MLmodel category.

Finally the afficherCat allows to display a S2MLmodel category.
This script uses the NetworkX python package, which allows to represent

and display graphs. By overloading the graphs we are able to make them con-
tain enough information to represent the S2MLmodel categories.
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np

def csv2cat(aFile):
theFile = open(aFile, ’r’).readlines()
theCat1Elements = []
theCat2Elements = []
for theElement in theFile:
theObject = theElement.split(’;’)
if theObject[0].strip() != ’Type’:
if theObject[1].strip() != "forget" and theObject[1].strip() != ’’:
if theObject[0].strip() != ’’:
theCat1Elements.append((theObject[1].strip().replace(’main.’, ’’),

theObject[0].strip()))
else:
theCat1Elements.append((theObject[1].strip().replace(’main.’, ’’), ’block’))

if theObject[2].strip() != "forget" and theObject[2].strip() != "":
if theObject[0].strip() != ’’:
theCat2Elements.append((theObject[2].strip().replace(’main.’, ’’),

theObject[0].strip()))
else:
theCat2Elements.append((theObject[2].strip().replace(’main.’, ’’), ’block’))

theCat1Elements.sort()
theCat2Elements.sort()
theCat1 = ListToCat(theCat1Elements)
theCat2 = ListToCat(theCat2Elements)
theFunctor = np.zeros((len(theCat1[0].nodes()), len(theCat2[0].nodes())))

181

182 APPENDIX D. CATEGORY VISUALISATION SCRIPT

for theLine in theFile:
theElementCouple = theLine.split(’;’)
if theElementCouple[0] != ’Type’ and theElementCouple[1].strip() != ’’ and

theElementCouple[1].strip() != ’forget’ and theElementCouple[2].strip() != ’forget’
and theElementCouple[2].strip() != ’’:
theFunctor[list(theCat1[0].nodes()).index(theElementCouple[1].strip().replace(’main.’,

’’)), list(theCat2[0].nodes()).index(theElementCouple[2].strip().replace(’main.’,
’’).replace(’\n’, ’’))] = 1

for theLine in theFile:
theElementCouple = theLine.split(’;’)
if theElementCouple[1].strip() == ’forget’:
for i in range(0, len(list(theCat1[0].nodes())) - 1):
theFunctor[i,

list(theCat2[0].nodes()).index(theElementCouple[2].strip().replace(’main.’,
’’).replace(’\n’, ’’))] = -1

if theElementCouple[2].strip() == ’forget’:
for i in range(0, len(list(theCat2[0].nodes())) - 1):
theFunctor[list(theCat1[0].nodes()).index(theElementCouple[1].strip(’

’).replace(’main.’, ’’)), i] = -1
return (theCat1, theCat2, theFunctor)

def ListToCat(aListofElements):
theCat = nx.DiGraph()
theLabels = {}
theLabelsofEdges = {}
theBlocks = []
thePorts = []
theConnections = []
thePortsofConnections = []
theColorMap = []
theColorMapofEdges = []
ncon = 0
n = 0
theColors = []
theNodes = []
theTypes = {}
for a in aListofElements:

if a[1] == "port":
theCat.add_node(a[0], color = "lightblue")
thePorts.append(a[0])
theNodes.append(a[0])
theTypes[a[0]] = "port"

elif a[1] == "block":
theCat.add_node(a[0], color = "green")
theBlocks.append(a[0])
theNodes.append(a[0])
theTypes[a[0]] = "block"

elif a[1] == "connection":
ncon += 1
connection = a[0].split(’ ’)
connection[0] = connection[0]+".connection"+str(ncon)
theCat.add_node(connection[0], color = "red")
theConnections.append(connection[0])
thePortsofConnections.append(connection)
theNodes.append(connection[0])
theTypes[connection[0]] = "connection"

nx.set_node_attributes(theCat, theTypes, name = "type")

for node in theCat:
word = node.split(".")
if node not in theConnections:
theLabels[node] = word[len(word) - 1]

else:
if len(word[len(word) - 1]) == 12 :
theLabels[node] = ’c’ + word[len(word) - 1][10] + word[len(word) - 1][11]

else :
theLabels[node] = ’c’ + word[len(word) - 1][10]

target = ’’
for i in range(0, len(word)-1):
if target == ’’:
target = word[i]

else:

183

target = target + "." + word[i]
if target != ’’:
theCat.add_edge(node, target, color = ’purple’)

theLabelsofEdges[(node, target)] = "parent"
#theColorMapofEdges.append(’purple’)

for con in thePortsofConnections:
for i in range(1,len(con)):
theCat.add_edge(con[i], con[0], color = ’r’)
theLabelsofEdges[(con[i], con[0])] = "appartient"
#theColorMapofEdges.append(’red’)

theColorMapofEdges = [theCat[u][v][’color’] for u,v in theCat.edges()]

for node in theCat:
if node in thePorts:
theColorMap.append(’lightblue’)
theColors.append(node)

elif node in theBlocks:
theColorMap.append(’green’)
theColors.append(node)

elif node in theConnections:
theColorMap.append(’red’)
theColors.append(node)

return (theCat, theColorMap, theColorMapofEdges, theLabels, theTypes)

def afficherCat(aCat, aColor_map, aEdge_color_map, aListofLabels):
thePositions = nx.networkx.drawing.nx_pydot.graphviz_layout(aCat, prog=’twopi’)
nx.draw(aCat, thePositions, node_color = aColor_map, edge_color = aEdge_color_map)
#nx.draw_networkx_labels(aCat, thePositions, labels = aListofLabels)
plt.show()

RÉSUMÉ ÉTENDU EN FRANÇAIS

Dans un contexte où les systèmes sont de plus en plus complexes, il a fallu
revoir la façon dont ils sont modélisés pour prendre en compte la global-
ité de leurs caractéristiques. Ainsi, dans le domaine de l’ingénièrie système,
les approches documentaires classiques sont vouées à être remplacées par
l’approchediteMBSE,pourModel-BasedSystemEngineering, l’ingénièrie sys-
tèmebasée sur lesmodèles. Cesmodèles sont constituésdediversdiagrammes
qui représentent les exigences vis à vis du système, son environnement, son
cycle de vie, ses fonctions ou encore son architecture. Cette thèse se place
dansuncontexteaéronautique, dans lequel il est crucial dedémontrer la sûreté
des systèmes avant de pouvoir les mettre sur le marché. Pour cela les ap-
proches MBSA – Model-Based Safety Assessment – d’analyse de sûreté basée
sur les modèles propose une vision moins abstraite que les approches tradi-
tionnelles telles que les arbres de défaillance, elle permettent d’appréhender
des phénomènes complexes tels que les reconfigurations.

Évidemment, cesmodèles n’ont d’intérêt pour la conceptions que si ils sont
justes. Si cette affirmation nous paraît trivial, il n’est pour autant pas toujours
facile de vérifier que lesmodèles ne contiennent pas d’erreur. Dans cette thèse
nous nous intéressons au cas de la cohérence de ceux-ci entre eux. Il s’agit de
vérifier qu’il n’y ait pas, dans un modèle d’information qui en contredise un
autre, c’est à dire que les modèles représentent bien le même système.

Avant toute chose, il est importantdebiencomprendreque toutedifference
entre les modèles n’est pas une incohérence, dans ce manuscrit nous identi-
fions expérimentalement trois sources de différences entre les modèles:

• Les différences dues aux outils et pratiques demodélisation;

• Les différences dues aux intentions demodélisation;

• Les différences dues aux erreurs demodélisation.

Seules ces dernières doivent être éliminées, les autres étant cruciales a une

185

modélisation utile et efficace, en effet chaquemodèle a pour but demodéliser
un comportement différent du système, dans un but précis.

Des méthodes dites de synchronisation des modèles ont étés développées
dans lebut dedétecter les incohérences entremodèlesMBSEetMBSA, et de les
éliminer. Dans ce travail nous nous appuyons sur laméthodologie SmartSync,
qui utilise le langage demodélisation S2ML comme formalisme pivot dans le-
quel lesmodèles sont comparés. Au travers d’une étudede cas, nousmontrons
la nécessité de la synchronisation, ainsi que certaines limites actuelles de la
méthodologie. Nous nous proposons alors de définir un cadre mathématique
qui permettre d’apporter une interprétation formelle aux méthodologies de
synchronisation, demanière a pouvoir démontrer les résultats qu’elles renvoi-
ent, et éventuellement proposer des pistes d’amélioration.

Pour cela on définit une manière de représenter tout modèle S2ML sous
forme de catégorie – un artefact mathématique dans lequel on distingue des
objets et des morphismes qui sont des relations entre les objets. A partir de
là, on propose d’appeler S2ML+Cat la catégorie dans laquelle les objets sont
les modèles S2ML, et les morphismes sont les injections entre modèles S2ML,
une relation qui indique qu’unmodèle est contenu dans un autre. En constru-
isant une structure dans laquelle on élimine les éléments de modèle que l’on
ne souhaite pas comparer, puis ceux qui sont différents entre deux modèles,
on donne une définition dans S2ML+Cat de ce qu’on appelle une relation bin-
aire de cohérence. Finalement nous appliquons ce cadre mathématique sur
SmartSync au travers d’un second cas d’étude afin de montrer que S2ML+Cat
nous permet bien demodéliser uneméthodologie de synchronisation. On est
alors capable de suggérer quel est le résultat de smartsync dans le cas général,
en précisant des améliorations possibles en réactions aux limitations quenous
avions observées.

Nous utilisons également d’autres langages demodélisation, tels queMod-
elica et SCOLA, cela nous permet de démontrer que notre cadre math-
ématique, ainsi que laméthodologie SmartSync, ne permettent pas seulement
decomparerdesmodèlesSysMLetAltaRica3.0commenous l’avionsoriginale-
ment fait, oùdesmodèlesMBSEetMBSA,mais plus globalement tousmodèles
qui fasse apparaître l’architecture du système.

187

Titre: Théorie des catégories pour la cohérence des modèles multi-niveaux systèmes (MBSE) et sûreté
de fonctionnement (MBSA)
Mots clés: Ingénierie système, Sûreté de fonctionnement, MBSE, MBSA, Cohérence, Théorie des
catégories

Résumé: La thèse s’intéresse au sujet de la
cohérence des modèles d’architecture système
(MBSE) et de sûreté de fonctionnement (MBSA).
En effet, si ces modèles s’attachent à représenter
un système à deux intentions différentes, d’un
côté la représentation de son architecture, et
de l’autre la validation de sa sûreté, il est né-
cessaire de prouver qu’ils représentent effective-
ment tous deux le même système, c’est-à-dire
qu’ils sont cohérents l’un avec l’autre. Il existe
différentes méthodologies qui cherchent à vérifier
la cohérence de ces modèles ainsi qu’à les syn-
chroniser. Dans ces travaux de thèse, nous pro-
posons un cadre mathématique dans lequel on
peut représenter ces modèles, ainsi qu’une défin-

ition de ce qu’est de manière générale une rela-
tion de cohérence. L’objectif est de proposer à
travers ce cadre, une façon mathématique de re-
présenter les méthodologies de synchronisation de
modèles MBSE et MBSA, de manière à contribuer
à la démonstration mathématique de l’efficacité
de ces méthodes. Cette thèse est effectuée
dans le cadre du projet S2C (https://www.irt-
systemx.fr/projets/s2c/), projet collaboratif entre
l’IRT SystemX (organisme d’hébergement de la
thèse) et l’IRT St Exupery. Ce projet est réalisé en
partenariat avec des entités académiques, industri-
elles et institutionnelles, en particulier intéressées
par le domaine de l’aéronautique.

Title: Category theory for consistency between multilevel system modeling (MBSE) and safety (MBSA)
Keywords: System engineering, Safety assessment, MBSE, MBSA, Consistency, Category theory

Abstract: The thesis focuses on the topic of sys-
tem architecture to safety analysis models con-
sistency. Those models aim at representing a
same system towards two different modeling in-
tents, representation of the architecture and safety
validation of the system. It is therefore neces-
sary to show that both models indeed represent
the same system, namely that they are consistent
with each-other. There exist different methodolo-
gies that allow for consistency assertion and syn-
chronisation of models. In this work we propose
a mathematical frame within which such models

can be represented, and a general definition of
what is a consistency relation between such math-
ematical objects. This intention of this thesis
is to provide means to formally represent MB-
SE/MBSA models synchronisation methodologies
and to do mathematical proofs that such a meth-
odology is efficient. This thesis is part of the S2C
project (https://www.irt-systemx.fr/projets/s2c),
which is a collaborative project between IRT Sys-
temX and IRT St Exupery. This project is done in
partnership with academic, industrial and institu-
tional entities.

	Summary
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Need for models synchronization and a formal framework
	The S2ML+Cat mathematical framework
	Summary of the thesis

	State of The Art
	Systems Engineering
	History
	Definition of Systems engineering
	Design cycle, the V-Model
	Standards
	Models
	System Architecture
	Architecture frameworks
	Model-Based System Engineering
	Harel Statecharts

	Dependability
	History
	Definition
	Concepts
	Standards
	Tools and methodologies for safety assessment
	Tools for safety assessment
	Safety Assessment methodology

	Models
	Definition
	Syntax and semantics
	Structural models and behavioral models
	Model consistency
	SmartSync Methodology
	S2ML - System Structure Modeling Language
	Multiphysics models

	Category theory
	History and interest
	Basic concepts: Categories and functors
	Useful concepts
	Use of category theory in Systems engineering

	A case study: The landing gear
	The Landing Gear System
	Motivations and approach
	Presentation of the system

	Modeling the Landing Gear
	MBSE Modeling
	Methodology
	Modeling

	MBSA Modeling
	Methodology
	Modeling

	State Machines
	Gear lights state machine
	Redundant system

	Synchronization of the models
	Translation to S2ML
	Comparison with SmartSync
	Results of the comparison and actions taken on the models
	Need for consistency assessment and a mathematical frame

	MBSE and MBSA System Models Differences
	Typology of the MBSE and MBSA Models Differences
	Model comparison
	Types of differences
	Discussion

	Structural state machine consistency
	MBSE and MBSA State Machines synchronization mappings
	Primary Mapping
	Advanced mapping

	Gear Lights comparison
	Primary mapping
	Advanced mapping

	Redundant system comparison
	Primary mapping
	Advanced mapping

	Discussion

	The S2ML+Cat framework
	The S2ML+Cat idea
	Simplified S2ML+Cat models
	Relation between the models

	Mathematical representation of a structural model
	Catports, Catconnections and Catblocks
	Models
	Relations between the models: Belonging and reference morphisms
	A few notions necessary to introduce S2ML+Cat: Injections, orders and elementary blocks
	S2ML+Cat

	Important properties in S2ML+Cat
	The S2ML+Cat and S2ML equivalence
	The Cantor-Bernstein property of models
	Equivalence of S2ML models

	Consistency relation
	Simplifying comparison with versioning

	Application example: The blood delivery drone
	Presentation of the case study
	Modeling the case study

	Applying SmartSync to the Study Case
	Comparison with SmartSync
	Categorical Point of View

	Discussion
	Pragmatics
	Composition
	Connections
	Connections and tuples

	Conclusions and Perspectives
	Bibliography
	Appendices
	Publications
	Landing gear models
	AltaRica 3.0 code for the landing gear
	S2ML code for the MBSE model
	S2ML code for the MBSA model
	Comparison results

	Blood delivery drone models
	AltaRica 3.0 code for the Blood delivery drone
	SCOLA code for the Blood delivery drone
	S2ML code for the MBSE model
	S2ML code for the MBSA model
	S2ML code for the SCOLA model
	S2ML code for the Modelica model
	Comparison results

	Category visualisation script
	Résumé étendu en français
	Abstracts

