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Simulation et optimisation de phénomènes complexes

dans des écoulements multiphasiques

Résumé: Dans cette thèse, nous étudions des phénomènes complexes présents
dans les écoulements multiphasiques en utilisant diverses méthodes et modèles
numériques. L'accent est mis, tout d'abord, sur le problème diphasique de Stefan,
un problème de changement de phase où le mouvement de l'interface est lié au
saut des �ux conductifs de chaleur. Les formes complexes de l'interface dans la
croissance cristalline, en présence d'e�ets d'anisotropie, sont prédites avec précision
grâce à notre méthode d'ensemble de niveaux couplée à une nouvelle méthode de
cellules coupées pour le transport di�usif. Une procédure d'optimisation de la forme
de cette interface, basée sur la dérivation de l'adjoint sous forme continue, avec
une fonction de coût de type suivi d'interface, est ensuite construite et testée sur
di�érentes con�gurations physiques. En considérant les équations de Navier-Stokes
dans l'approximation de Boussinesq, une étude sur l'apparition de l'instabilité de
Rayleigh-Bénard en présence d'une frontière de fusion est également réalisée. Dans
la deuxième partie, nous étudions les problèmes de lignes de contact dynamiques,
où une interface �uide-�uide est en contact avec une frontière solide. Plusieurs
nouveaux modèles sont mis en place au sein d'une méthode du volume de �uide,
tel que la condition limite généralisée de Navier, où la vitesse de la ligne de contact
dépend de la contrainte de Young non compensée, ou encore le modèle-jouet, où
le �ux massique existant dans les méthodes à interface di�use est mis en relation
avec la courbure de l'interface, résultant en une simple relation d'angle de contact
dynamique.

Mots-clés: problèmes de Stefan, adjoint continu, méthode d'ensemble de niveaux,
méthode de cellules coupées, lignes de contact, méthode du volume de �uide



Simulation and optimization of complex

phenomena in multiphase �ows

Abstract: In this thesis, we study complex phenomena in multiphase �ows
using various new numerical methods and models. The focus is, �rst, set on
the two-phase Stefan problem, a phase-change problem where the motion of the
interface is related to the jump in conductive heat �uxes. The complex interfacial
shapes in crystal growth, in the presence anisotropy e�ects, are accurately predicted
thanks to our level set method coupled with a novel Cut Cell method for di�usive
transport. A shape optimization procedure with a tracking-type cost functional
based on a continuous adjoint derivation is then built and tested on various physical
setups, yielding favorable results. Considering the Navier-Stokes equations in
the Boussinesq approximation, a study of onset of Rayleigh-Bénard instability in
the presence of a melting boundary is also carried out. In the second part, we
investigate dynamic contact line problems, where a �uid-�uid interface meets a
solid boundary. Various novel methods are implemented in a Volume-Of-Fluid
framework, such as the generalized Navier boundary condition, where the speed of
the contact line depends on the uncompensated Young's stress, or the toy model,
where the existing mass �ux in di�use interface models is related the interface
curvature, resulting in a simple dynamic angle relation.

Keywords: Stefan problems, continuous adjoint, level set method, Cut Cell
method, contact lines, Volume-Of-Fluid method
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Introduction

The study of �uid �ows has been a lasting human endeavor, pursued to gain a
further understanding of Nature and industrial processes. From a mathematical
point of view, these systems are modeled by partial di�erential equations where the
`unknowns' are both space and time dependent. Due to the highly complex nature of
the phenomena arising from these �ows � even in seemingly simple systems � these
equations are practically unsolvable by analytical techniques. Numerical analysis,
however, is an approach that is well suited to study these systems, by using discrete
approximations of the partial di�erential equations. In the context of multiphase
�ows � as subset of �uid �ows corresponding to the simultaneous �ow of materials
with two or more thermodynamic phases � the main di�culty comes from the high
non-linearity introduced by the interface and speci�c numerical methods are required
to track the interface with accuracy.

In this work we will study di�erent physical systems using several original numer-
ical methods and models. In the �rst part, we will consider phase-change problems �
so-called Stefan problems � involving thermal energy exchanges between a solid and
a liquid phase. In the second part, we will investigate problems involving dynamic
contact lines, where a �uid-�uid interface moves over a solid substrate.

Two-phase Stefan problems Stefan problems, named after the Austrian mathe-
matician Joseph Stefan [Stefan 1891, �arler 1995] due to his substantial contribution
to research on moving and free boundaries, model transport and transfer phenomena,
in particular solid-liquid phase change in evaporating or chemically reacting �ows.
Such phenomena govern the interface motion in many engineering related problems
such as dendritic solidi�cation [Osher & Sethian 1988, Juric & Tryggvason 1996],
phase transformation in metallic alloys [Segal et al. 1998], and solid fuel combus-
tion [Hassan et al. 2021].

In the applications of interest to this study, the Stefan condition arises from the
interaction of liquid and solid phases � both considered incompressible � resulting in
a moving liquid-solid interface, typically freezing or melting front. The speed of the
front is directly related to the jump in the conductive heat �ux across the interface.

In one dimension, this problem has been studied in depth using various
numerical algorithms [Brattkus & Meiron 1992, Rose 1993, Javierre et al. 2006].
In higher dimensions, various methods have been used such as the
level set method [Osher & Sethian 1988, Limare et al. 2023] and front-tracking
method [Juric & Tryggvason 1996]. One of the main challenges associated with
modeling such problems in multiple dimensions is due to the unstable dentritic
pattern formation [Mullins & Sekerka 1964, Langer 1980, Woods 1992]. In crystal
growth, for example, under-cooling triggers an instability mechanism, causing the
solid phase of the material to grow into the liquid phase in a �nger-like or dendritic
fashion, resulting in complex interfacial shapes, which are challenging to predict
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numerically. In addition, parameters such as anisotropy and surface tension or cur-
vature e�ect (Gibbs-Thomson) are shown to have a large impact on the dendritic
shape of the crystal, which in turn need to be modeled accurately for the simulations
to remain predictive. In this work, we present a general framework for tracking and
modeling crystal growth in the presence of curvature e�ects. This algorithm then
serves as a vessel to materialize the second, and main, objective of this study which
is extracting optimization strategies to control the resulting solidi�cation process.

The shape of the interface strongly e�ects the outcome and time-frame of the
production process in many industrial applications involving phase change. As a
result, while predicting and modeling the resulting solidi�cation process remains at
the forefront of many research areas, it is as desirable to extract e�cient control
strategies to manipulate the motion of the interface, for instance, by tracking a
prescribed trajectory.

Two major types of optimization methods in use today are (i) gradient-based,
and (ii) derivative free methods. While an e�cient class of generic algorithms � be-
longing to the class of derivative free methods � based on the surrogate management
framework [Marsden et al. 2008] and arti�cial neural networks [Pierret et al. 2007]
have been used for optimization in �uid mechanics, mainly in the area of aero-
dynamic shape optimization, these often require many function evaluations, for
training purposes for example. When detailed simulations of interfacial �ows are
concerned, each function evaluation commands a full � potentially unsteady � Com-
putational Fluid Dynamics (CFD) simulation, causing gradient-based methods to
be at an advantage.

Most common methods in extracting the gradient information, on the other
hand, are analytical or use �nite di�erences, neither of which are suited to the
con�guration of interest to this work. Adjoint-based algorithms present a suitable
alternative, as they allow the determination of the gradient at a cost comparable to
a single function evaluation [Giles & Pierce 2000]. The use of adjoint methods for
design and optimization has been an active area of research which started with the
pioneering work of Pironneau [Pironneau 1974] with applications in �uid mechanics,
and has been extensively used in aeronautical shape optimization by Jameson and
co-workers [Jameson 1988, Jameson et al. 1998]. Ever since these groundbreaking
studies, adjoint-based methods have been widely used in �uid mechanics particularly
in the areas of aero- and thermo-acoustics [Juniper 2010, Lemke et al. 2013].

More recently �ow regimes dominated by nonlinear dynamics, such
as separation and mixing have also been analysed using adjoint-based
techniques [Duraisamy & Alonso 2012, Schmidt et al. 2013, Foures et al. 2014,
Rabin et al. 2014]. Adjoint-based methods have also been employed for the pur-
pose of sensitivity analysis or control in �ows in the presence of large gradi-
ents [Ou & Jameson 2011, Braman et al. 2015, Lemke et al. 2019, Fikl et al. 2020]
� for example in �ames or interfaces � showing great promise, and therefore are
adopted here to carry out the optimization procedure.

In the context of Stefan problems, various control strategies have been em-
ployed to track the location of the interface. In a one-dimensional setting, for
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example, set-valued �xed point equations [Ho�mann & Sprekels 1982] or linear-
quadratic defect minimization [Knabner 1985] have been used to control the lo-
cation of the front. Adjoint-based algorithms have also been applied to a Ste-
fan problem caused by heterogeneous reactions on a surface of a one-dimensional
solid particle [Hassan et al. 2021] to extract sensitives with respect to various ki-
netic parameters. Alternatively, in a two-dimensional setting, adjoint-based algo-
rithms have been utilized previously together with �nite element and �nite di�er-
ence approaches to track and control the location of interface by imposing heat
�ux (or temperature) at the boundary in order to realize the desired interface mo-
tion [Kang & Zabaras 1995, Yang 1997, Hinze & Ziegenbalg 2007]. In particular,
Bernauer and Herzog [Bernauer & Herzog 2011], making use of shape calculus tools,
derived the set of adjoint equations to extract control strategies for Stefan problems
with a sharp representation of the interface.

Similar to the approach of [Bernauer & Herzog 2011] shape calculus tools have
been employed in this work to extract the corresponding adjoint equations. However,
contrary to the previous studies, control strategies are extracted here to suppress
instabilities � as dentritic formation � of the solidi�cation process. The addition
of curvature e�ects on the interface � Gibbs-Thomson relation � and the complex
shapes encountered during the growth of the crystal require dedicated numerical
algorithms capable of modeling both the highly nonlinear forward problem � cor-
rect representation of the resulting interface � and the resulting adjoint equations.
In addition, while previous studies mostly concentrated on actuation by imposing
temperature or heat �ux at the boundaries, alternative control strategies using the
length of interface are also investigated here, to identify the most relevant and
e�ective numerical control strategies in the context of melting and solidi�cation
processes [Fullana et al. 2023].

As an extension of the classical two-phase Stefan problem, we will consider the
convective motion induced by a �ow in the �uid phase [Quirós Rodríguez et al. 2022]
in a di�erent setting than the adjoint-based optimization framework de�ned previ-
ously. In that case, the Navier-Stokes equations in the Boussinesq approximation �
de�ned later � will be solved in order to model the buoyancy phenomenon, where the
�uid exerts a force that opposes the weight of a solid phase. In particular, we will
study the melting process of a solid where an initial �uid layer is heated from below.
This motion will entrain the onset of Rayleigh-Bénard instability � where convection
cells appear depending on the wave length of the layer � and a parametric study on
the e�ect of the Rayleigh number, similar to the ones of Favier [Favier et al. 2019]
and Limare [Limare et al. 2023], will be carried out.

Dynamic contact lines The contact line formed at the intersection of a �uid-�uid
and a solid boundary � so-called the triple point � is a key element of many natu-
ral and several technological processes, as desribed in [Blake & Shikhmurzaev 2002,
Wilson et al. 2006, Marston et al. 2009]. The dynamic contact line poses � since
the early work of Huh and Sriven [Huh & Scriven 1971] � a remarkable problem
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because of the contradiction between the no-slip condition on the substrate and the
motion of the contact line. A �xed contact line, for example, is in contradiction with
simple observations of a spreading drop on a surface. Mathematically, this paradox
introduces a stress singularity at the contact line and the numerical models to prop-
erly predict the motion of the triple point are still debated to this day [Cox 1986,
Shikhmurzaev 1994, Blake et al. 1999, Eggers 2004, Eggers & Evans 2005].

In the context of continuum mechanics, in sharp-interface models, the sim-
plest way to relax the singularity is to introduce a Navier boundary condition
(NBC) � by allowing the contact line to slide over the substrate � character-
ized by a slip length of the order of the molecular length. This model has
been proven to accurately reproduce the motion of the contact line in various
physical setups by either �tting the slip length with molecular dynamics re-
sults [L	acis et al. 2020, L	acis et al. 2022] or choosing an appropriate slip related
to experimental observations [Fullana et al. 2020].

Another essential parameter to consider is the variation of the angle formed
by the �uid-�uid interface with the solid � the dynamic contact angle � as the
contact line moves. In the classical Cox-Voinov relation [Voinov 1976, Cox 1986],
the dynamic angle is a function of the equilibrium angle � a property of the
substrate � and the contact line speed. Inspired by the work of Legendre and
Maglio [Legendre & Maglio 2015], where they tested di�erent dynamic angle mod-
els, we will implement and benchmark them against experiments of a spreading
squalane drop [Lavi & Marmur 2004].

In an attempt to further understand the physics involved in this problem, we
develop new and original numerical methods for dynamic contact lines. The two
previously described models � NBC and dynamic angle, called classical models in
this dissertation � will serve as a basis for the implementation of the advanced ones.

In the super-slip model, a further regularization of the contact line is provided
through a second-order slip length. This model, in analogy with porous media
theory [Devauchelle et al. 2007], allows a relaxation of the capillary pressure present
in the NBC. A study on the e�ect of the second-order slip in the case of a spreading
drop will be carried out.

The second advanced model is the generalized Navier boundary condition
(GNBC). By considering the e�ect of the uncompensated Young's stress we allow
an angle deviation with respect to the equilibrium angle. This boundary condition,
originally derived for di�use interface models [Qian et al. 2003b, Qian et al. 2006]
has been proven to be well-posed in the sharp interface limit [Fricke 2020]. The
GNBC will be implemented in our Volume-Of-Fluid framework and we will study
its e�ect on the onset of wetting failure � where a meniscus transitions to a liquid
�lm � in a withdrawing plate setup.

Finally, we will use a toy model to establish a relation between the mass �ux
present in the Phase-Field (PF) model [Jacqmin 2000, Amberg 2003, Carlson 2012]
to a curvature relation at a given distance of the contact line. Through simple
boundary conditions in VOF model, we will be able to reproduce the di�usion-
driven wetting motion existing in the PF, at a much lower cost.
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Original contributions in this work One of the major contributions of our
work is the derivation of the continuous adjoint two-phase Stefan problem in the
presence of curvature e�ects and the construction of the corresponding adjoint-based
algorithm. The numerical methods described in Chapters 3 and 4 constitute a nov-
elty with respect to the existing ones, in particular, the Cut Cell method for di�usive
transport. The aforementioned methods and test cases are coded in Flower.jl (see
Chapter 5 and Appendix C for further details), a new Julia package developed as
part of this work. All the contact line models � NBC, dynamic contact angle, super-
slip, GNBC, toy model � are implemented in Basilisk, an existing platform for the
solution of partial di�erential equations (presented in Chapter 9).

Outline The �rst part of this work will be focused on the optimization of two-
phase Stefan problems. In Chapter 1, the governing equations in continuous form
in a level set framework will be described. Additionally, the �uid �ow extension will
be described. In Chapter 2, we present the derivation of the continuous adjoint of
the Stefan problem in presence of surface tension e�ects and the resulting adjoint-
based optimization algorithm. In Chapter 3, the newly developed Cut Cell method
for di�usive transport and its numerical implementation will be presented in depth.
Chapter 4 presents the rest of the numerical methods used to solve both the forward
and adjoint Stefan problems. In Chapter 5, a numerical validation of our scheme
against analytical solutions will be provided. Moreover, we will carry out studies on
dendritic crystal grows and on the onset of Rayleigh-Bénard convection cells with a
melting boundary. Finally, in Chapter 6, we will present shape optimization cases �
with variable complexity � of melting and solidi�cation processes and compare the
results obtained with the adjoint-based algorithm with a derivative-free one.

In the second part, focus will be set on the dynamic contact line. In Chap-
ter 7, the one-�uid formulation of the two-phase Navier-Stokes equations and the
Phase-Field extensions will be described. Chapter 8 discusses the paradoxes and
singularities present in dynamic contact line problems. In Chapter 9, the Volume-
Of-Fluid method and the implementation of the classical models for contact lines
are described. Theses models will be tested on di�erent physical systems. Finally, in
Chapter 10, the newly developed advanced models for contact lines will be detailed
and, again, tested on various physical problems.



Part I

Shape optimization of melting and

solidi�cation processes



Chapter 1

The two-phase Stefan problem
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1.1 Classical two-phase Stefan problem formulation

A Stefan problem is a speci�c type of `free boundary problem' characterized by
the temperature distribution of two di�erent phases. The position of the interface
between those two phases is a priori unknown and will be part of the solution of
partial di�erential equations describing this system. As a �rst approximation, we
will consider the two-phase Stefan problem in the presence of two immiscible phases
with matching densities (one liquid and the other solid).

We de�ne a domain Ω partitioned into two time-dependent subdomains Ω1 (t)

and Ω2 (t) occupied by the liquid (1) and solid (2) phases, respectively. The external
boundary of the domain, denoted ∂Ω, is �xed whereas the interface separating both
phases Γ (t) = Ω1 (t) ∩ Ω2 (t) evolves in time. A schematic of this con�guration is
shown in Figure 1.1.

Liquid phase
Ω1(t)

Solid phase
Ω2(t)

Interface
Γ(t)

Figure 1.1: Schematic of the liquid and solid subdomains considered in the Stefan problem.

The energy transport mechanism in each phase is the heat produced by a dif-
ference in temperature. The partial di�erential equation governing this quantity
is the heat equation. Let Ti : (x, t) → R+ denote the temperature �eld in either
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phase (i = 1, 2), where x = (x, y) is the Cartesian coordinate vector. When the
densities ρ1 and ρ2 are equal, convective heat transfer vanishes. In addition, when
the background pressure is assumed constant, the heat transport equation simpli�es
to

∀i ∈ J1, 2K , ρici
∂Ti
∂t

= ∇ · (ki∇Ti) , t > 0, x ∈ Ωi, (1.1)

where ρi, ci and ki denote the density, the speci�c heat capacity at constant pressure,
and the thermal conductivity, for each phase.

As the phase change phenomena occurs, there will appear a latent heat which
either is absorbed or released. The condition of heat conservation at a given point
on the moving interface corresponds to the rate at which heat is generated at the
boundary balanced by the rate at which this heat �ows in either phase. Therefore,
along the interface, energy balance states that

vS = −L91
H

(
k1
∂T1
∂n
− k2

∂T2
∂n

)
, x ∈ Γ, (1.2)

where LH denotes the latent heat of solidi�cation and n is the outward normal unit
vector at the interface. This jump is taken from phase 1 to phase 2 with ∂Ti/∂n
denoting the normal component of the temperature gradient in phase i. Equation 1.2
is commonly referred to as the Stefan condition.

In classical Stefan problem, the temperature is set to TD(x, t) = TM at the in-
terface where TM is a constant equal to the melting temperature of the material.
For problems involving crystal growth however [Langer 1980], surface tension e�ects
must be added to the thermodynamic boundary condition by introducing a depen-
dence in the curvature at the front. For example, in the formation of crystals (Figure
1.2), a reduction of the melting temperature for small particles through the surface
tension e�ects provides the necessary stabilizing forces allowing the creation of pat-
terns. Moreover, from molecular kinetic theories, we know that the melting tempera-
ture might also depend on the speed at which the interface moves. For that purpose,
we use the classical Gibbs-Thomson relation, as de�ned in Chen [Chen et al. 1997]

TD(x, t) = TM − εV vS − εκκ, x ∈ Γ, (1.3)

where κ denotes the curvature at the interface (positive if the center of curvature lies
in the solid phase), vS the velocity of the interface, εκ the surface tension coe�cient,
and εV the molecular kinetic coe�cient. Unless stated otherwise, in the rest of this
dissertation, both εκ and εV are considered to be constants, and the heat capacities,
thermal conductivities and latent heat are all set to unity. In addition, to ease the
notation, the jump in gradient of temperature is denoted as [∇T ]12 (also de�ned in
Equation 1.2). This set of equations characterize the two-phase Stefan problem.
When solving the system numerical, the main di�culty arises from the treatment
of the interface due to the non-linear relation between the Stefan condition and the
two domains where the heat equations are solved.
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Initial crystal

Secondary
branches

Primary
branches

Figure 1.2: Photography of a crystal growing in an under-cooled liquid bath exhibiting a
pattern formation with primary and secondary branches [Fujioka 1978].

1.2 The level set method

When dealing with the numerical approximation of interfacial �ows, two classes of
methods are commonly used to represent the interface, namely

� Lagrangian or `front-tracking' methods,

� Eulerian or `front-capturing' methods.

The former uses a parameterisation of the interface location (e.g. markers or moving
meshes), and has already been used in Stefan problems [Juric & Tryggvason 1996]
but has not been adopted in this work due to the inherent di�culty of deriving
the continuous adjoint equations with such methods (see Chapter 2). The latter
can broadly speaking be divided into two categories: Volume-Of-Fluid (VOF) and
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Level Set methods. The VOF method will be described in the second part of this
dissertation when dealing with moving contact lines (see Chapter 9).

In adjoint-based optimization, the VOF method [Fikl et al. 2020] may lead to
numerical complications due to the piece-wise linear reconstruction of the interface.
On the other hand, the level set method, where the interface is implicitly de�ned as
a continuous function, has been proven to be well suited in continuous adjoint-based
optimization, speci�cally for Stefan problems [Bernauer & Herzog 2011]. More-
over, this method has been shown to accurately reproduce dendritic pattern for-
mation [Chen et al. 1997, Limare et al. 2023].

An implicit signed distance strategy has therefore been used here to represent
the interface. A level set function ϕ : (x, t) → R is constructed, such that, at any
time t, the front is equal to the zero level set of the function

Γ(t) = {x ∈ Ω : ϕ(x, t) = 0}. (1.4)

The level set function is initially set to the signed distance function, with d the
distance to the front, such that

ϕ(x, 0) =


+d, x ∈ Ω2,

0, x ∈ Γ,

−d, x ∈ Ω1.

(1.5)

Figure 1.3: View of the level set signed distance function ϕ. The interface corresponds to
the interface of ϕ and the 0-level plane.

In practice, the level set function is a function of dimension D + 1, where D
is the dimension of the problem considered (D = 2 in this case). The intersection
between ϕ and the 0-level plane corresponds to the interface (Figure 1.3). One of
the advantages of this method is the direct de�nition of the normal vector and the
curvature, quantities that are necessary to compute the Stefan condition and the
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Gibbs-Thomson relation. The normal unit vector n is de�ned by

n =
∇ϕ(x, t)
|∇ϕ(x, t)|

, x ∈ Γ (t) , (1.6)

and the curvature κ by

κ = ∇ ·
(
∇ϕ(x, t)
|∇ϕ(x, t)|

)
, x ∈ Γ (t) . (1.7)

In two dimensions, the curvature κ at the front is computed in a non-conservative
form using

κ =

(
ϕ2yϕxx − 2ϕxϕyϕxy + ϕ2xϕyy

)(
ϕ2x + ϕ2y

)3/2 , (1.8)

where ϕx, ϕxx, ϕy, ϕyy denote the �rst and second derivative of ϕ with respect to x
and y. The interface is moved through the level set advection equation, where F is
a speed function de�ned everywhere

∂ϕ

∂t
+ F |∇ϕ| = 0. (1.9)

ϕ(x, t) < 0

T2(x, t), x ∈ Ω2

ϕ(x, t) > 0

T1(x, t), x ∈ Ω1

∂Ω

vS = −[∇Ti]
1
2

TD = TM − εV vS − εκκ

ϕ(x, t) = 0

Γ Interface :

n

Figure 1.4: Schematic of the two-phase Stefan problem in the level set framework.

In the Stefan problem, the velocity is only de�ned at the interface (Equation
1.2). The velocity is numerically extended in the normal direction of the interface,
around a `narrow band' (de�ned in Chapter 4). By combining Equations 1.2 and
1.9 and using the normal de�nition (Equation 1.6), we obtain the following equation
of motion

∂ϕ

∂t
= −[∇T ]12 · ∇ϕ. (1.10)

Equation (1.10) will move ϕ with the speed such that Γ remains close to the zero level
set of ϕ. In practice, and this is one of the main drawbacks of this method, the level
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set function needs to be reinitialized such that it retains its signed distance function
properties. The resulting two-phase Stefan problem in the level set framework is
described in Figure 1.4.

1.3 Thermal convection and �uid �ow extension

The model de�ned so far assumes that the �ow in the �uid phase can be neglected.
This is an appropriate hypothesis when considering equal densities in the �uid and
solid phases. However, in some applications, this assumption is too restrictive. In
Figure 1.5, an example of Rayleigh-Bénard convection cells appearing in a layer
moving upwards is shown.

Figure 1.5: Photography of an atmospheric surface layer [Pandey et al. 2018].

To model such phenomena, one has to take into account both convection and the
Navier-Stokes equations in the Boussinesq approximation in the �uid phase. In this
work, we will focus on the same setup as [Favier et al. 2019], where they consider
the evolution of a horizontal layer heated from below and comprised between two
walls at a distance H apart. The gravity is pointing downwards g = −gey and the
horizontal size of the domain is bH where b is the aspect ratio. The temperature
at the bottom wall is T = T 1

wall and the one at the top wall is T = T 0
wall such that

T 0
wall < TM < T 1

wall where TM is the melting temperature. An schematic of this
con�guration is shown in Figure 1.6. The governing dimensionless equations in the
�uid phase are now

Pr−1

(
∂u

∂t
+ u · ∇u

)
= −∇P +RaTey +∇2u,

∇ · u = 0,
∂T

∂t
+ u · ∇T = ∇2T,

(1.11)
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where u is the liquid velocity u = (ux, uy), P is the pressure and T is the
temperature in liquid phase.

H

bH

gSolid

Liquid

Melt direction

T = T 1
wall

T = TM

T = T 0
wall

H

Figure 1.6: Schematic of the melting boundary problem.

The dimensionless numbers governing this equation are the Prandlt number

Pr =
ν

k1
, (1.12)

de�ned by the ratio of the liquid kinematic viscosity ν and thermal di�usivity in
the liquid phase k1, and the Rayleigh number

Ra =
gαt∆TH

3

νk1
, (1.13)

where g is the constant gravitational acceleration, αt the coe�cient of thermal ex-
pansion and ∆T = T 1

wall − T 0
wall the di�erence in temperature between the two

plates. In the solid phase, when considering the non-isothermal general case, with
T 0
wall ̸= TM , the heat equation applies

∂T

∂t
= ∇2T. (1.14)

In this con�guration, we will be able to study the onset of the Rayleigh convection
cells and the changes in topology as the interface melts through the solid (Sec-
tion 5.4). In the next chapter, we present the optimization procedure involving the
derivation of the continuous adjoint of the two-phase Stefan problem in the absence
of �uid �ow.
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Adjoint-based optimization
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2.1 Minimization problem

This chapter presents the optimization procedure for the two-phase Stefan problem
described in Section 1.1 together with the respective cost functional and the corre-
sponding adjoint equations. The control variable is a Neumann boundary condition
that acts on the domain boundary. The adjoint heat equations and adjoint level set
equations are derived in the same fashion as [Bernauer & Herzog 2011]. The result-
ing gradient-based optimization algorithm, as well as the derivative-free methods,
used throughout the various cases considered in this study are described. By consid-
ering the two-phase Stefan problem with the Gibbs-Thomson relation, the generic
forward two-phase Stefan problem (FP) can be recast in the level set framework
given below, which is later used in the adjoint derivation.
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Find a function T : Ω× [0, tf ]→ R and a function ϕ : Ω× [0, tf ]→ R such that

∂T1
∂t

= ∇2T1 in Ω1(t) (FP.a)

∂T2
∂t

= ∇2T2 in Ω2(t) (FP.b)

T (x, 0) = T0 (x) in Ω (FP.c)

∂T (x, t)

∂n
= w (x, t) on ∂Ω (FP.d)

T (x, t) = TM − εV vS − εκκ on Γ(t) (FP.e)

∂ϕ

∂t
= −[∇Ti]12 · ∇ϕ on Γ(t) (FP.f)

ϕ(x, 0) = ϕ0 (x) in Ω (FP.g)

(FP)

Here, Ti denotes the restrictions of T to Ωi (t), and T0 and ϕ0 are the initial con-
ditions at t = 0 of the temperature �eld and the level set function. The �rst two
equations FP.a and FP.b correspond to the heat equations in phases 1 and 2 respec-
tively. Equations FP.c and FP.g correspond to the initial temperature distribution
in the whole domain and the initial position of the front respectively. The equa-
tion FP.d correspond to the control variable w, the heat �ux acting on the domain
boundary. Equation FP.e is the Dirichlet boundary condition at the interface with
the Gibbs-Thomson relation taken into account. Finally, FP.f corresponds to the
advection equation of the level function as de�ned in Equation 1.10 where −[∇Ti]12
is the Stefan condition.

The next step is to de�ne the desired temperature �eld T d and the desired
position of the interface ϕd. The control variable w is then de�ned trough the
optimization procedure to reach these desired quantities.
These conditions are known a priori and will drive our cost functional towards its
minimum. The following tracking-type cost functional provides a mathematical
description of the control goals stated above

J (T, ϕ, w) =
β1
2

ˆ
Ω

∣∣∣T f − T d
∣∣∣2 dx+

β2
2

ˆ
Γf

∣∣∣ϕf − ϕd∣∣∣2 ds
+
β3
2

ˆ
Γf

ds+
β4
2

ˆ tf

0

ˆ
∂Ω
|w|2ds dt,

with constants β1 to β4 acting as weights, T f and ϕf the �nal temperature �eld and
level set function of the FP and Γf the �nal position of the interface (0-level set of
ϕf ).
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Desired

0-level set

Final

0-level set

Figure 2.1: Schematic of the computation of the second term of the cost functional. The
values of ϕf and ϕd are computed in the mixed cells (black dots) determined by the 0-level
set of the �nal level set function. The dotted lines represent the -2,-1,1,2 level sets of both
functions.

� The �rst term monitors the �nal temperature distribution and is mostly used
as an initializer for the adjoint temperature �eld for the adjoint problem (see
Section 2.2).

� The second term controls the relative position of the level set function with
respect to the desired one. Taking advantage of the signed distance function
property of both ϕd and ϕf , the discrete form is simply the square of the
di�erence between both functions computed in the points belonging to the
�nal interface Γf . An example of the computation is shown in Figure 2.1.
The weight β2 associated to the interface position is always larger than β1
as the position of the interface dictates not only the shape itself but also the
location of both domains Ω1 and Ω2 thus in�uencing directly the temperature
distribution.

� The third term controls the length of the interface. It is used in cases where
instabilities cause an increase in interface length, for example when controlling
the Mullins-Sekerka instability (see Chapter 6).

� Finally, the last term penalizes the control cost and leads to the gradient
equation in the adjoint problem.



18 Chapter 2. Adjoint-based optimization algorithm

Algorithm 1 summarizes the steps needed to compute J . We assume that each
choice of the control variable w leads to unique states T (w) and ϕ(w). Therefore,
the minimization problem (MP) reads

minw J (T (w), ϕ(w), w)
subject to (FP).

(MP)

Algorithm 1: Cost functional computation

input : u, T f , T d ϕf , ϕd, β1, β2, β3, β4, tf
output: J
J = 0, X
for x ∈ ∂Ω do

for t ∈ [0, tf ] do
J += β4w(x, t)

2

end
end
for x ∈ Ω do

J += β1

(
T f (x)2 − T d(x)2

)
if x ∈ Γf then

J += β2

(
ϕf (x)2 − ϕd(x)2

)
Store the interface centroid position in X

end
end

Compute the total length of the interface L = arclength(X)

J += β3L

2.2 Continuous adjoint derivation

2.2.1 Lagrange functional

In this work we chose the "di�erentiate-then-discretize" approach to solve the min-
imization problem (MP). We derive the corresponding adjoint problem in a contin-
uous way and discretize afterwards. Let Θ be the adjoint temperature and ψ the
adjoint level set function. In order to compute the gradient of J (w), we introduce
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the following Lagrange functional L (dx, dt and ds are omitted for brevity)

L (T, ϕ, w,Θ,ΘD,ΘI , ψ) = J (T, ϕ, w)

−
ˆ tf

0

ˆ
Ω1

(
∂T1
∂t
−∇2T1

)
Θ1

−
ˆ tf

0

ˆ
Ω2

(
∂T2
∂t
−∇2T2

)
Θ2

−
ˆ tf

0

ˆ
∂Ω

(T − w)ΘD

−
ˆ tf

0

ˆ
Γ
(T − (TM − εV vS − εκκ))ΘI

−
ˆ tf

0

ˆ
Γ

(
∂ϕ

∂t
+ [∇Ti]12 · ∇ϕ

)
ψ.

(2.1)

Similarly to the temperature �eld, Θi : (x, t)→ R+ denotes the adjoint temperature
�eld in either phase (i = 1, 2). The Lagrange multipliers ΘD and ΘI are used for
the boundary conditions on the domain and the interface respectively.

The adjoint system is obtained by setting to zero the derivatives of the Lagrange
functional with respect to T and ϕ : LT (·) = Lϕ(·) = 0. Setting the initial conditions
to

T (x, 0) = T0(x),

ϕ(x, 0) = ϕ0(x),
(2.2)

leads to δT (x, 0) = δϕ(x, 0) = 0 when calculating the derivatives in the direction δT
and δϕ. In the following sections, we detail the procedure of extracting the adjoint
Stefan problem (AP) using the Lagrange function L (Equation 2.1).

2.2.2 Adjoint temperature

We start by deriving the adjoint temperature equations by setting LT (·) = 0

LT δT = −
ˆ
Ω
β1

(
T f − T d

)
δT f

−
ˆ tf

0

ˆ
Ω1

(
∂δT1
∂t
−∇2δT1

)
Θ1

−
ˆ tf

0

ˆ
Ω2

(
∂δT2
∂t
−∇2δT2

)
Θ2

−
ˆ tf

0

ˆ
∂Ω
δTΘD

−
ˆ tf

0

ˆ
Γ
δTΘI

−
ˆ tf

0

ˆ
Γ
ψ [∇δTi]12 · ∇ϕ.
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As expected, the terms in the Lagrangian that do not depend on the temperature
vanish. We now move the spatial and temporal derivatives towards the adjoint state
Θ. We apply integration by parts, once with respect to time (using the Reynolds
transport theorem A) and twice with respect to space (using Green's formula)

LT δT = −
ˆ
Ω
β1

(
T f − T d

)
δT f

−
ˆ
Ωf

1

δT fΘf
1 +

ˆ
Ω0

1

δT 0Θ0
1

−
ˆ tf

0

ˆ
Ω1

∂Θ1

∂t
δT +

ˆ tf

0

ˆ
∂Ω1

δTΘ1vS1

+

ˆ tf

0

ˆ
∂Ω1

∂δT

∂n
Θ1 −

ˆ tf

0

ˆ
Ω1

∇δT∇Θ1

−
ˆ
Ωf

2

δT fΘf
2 +

ˆ
Ω0

2

δT 0Θ0
2

−
ˆ tf

0

ˆ
Ω2

∂Θ2

∂t
δT +

ˆ tf

0

ˆ
∂Ω2

δTΘ2vS2

+

ˆ tf

0

ˆ
∂Ω2

∂δT

∂n
Θ2 −

ˆ tf

0

ˆ
Ω2

∇δT∇Θ2

−
ˆ tf

0

ˆ
∂Ω
δTΘD −

ˆ tf

0

ˆ
Γ
δTΘI

−
ˆ tf

0

ˆ
Γ
ψ [∇δTi]12 · ∇ϕ

⇐⇒ LT δT = −
ˆ
Ω
β1

(
T f − T d

)
δT f

−
ˆ
Ωf

1

δT fΘf
1 +

ˆ
Ω0

1

δT 0Θ0
1

−
ˆ tf

0

ˆ
Ω1

∂Θ1

∂t
δT +

ˆ tf

0

ˆ
∂Ω1

δTΘ1vS1

+

ˆ tf

0

ˆ
∂Ω1

∂δT

∂n
Θ1 −

ˆ tf

0

ˆ
∂Ω1

∂Θ1

∂n
δT +

ˆ tf

0

ˆ
Ω1

δT∇2Θ1

−
ˆ
Ωf

2

δT fΘf
2 +

ˆ
Ω0

2

δT 0Θ0
2

−
ˆ tf

0

ˆ
Ω2

∂Θ2

∂t
δT +

ˆ tf

0

ˆ
∂Ω2

δTΘ2vS2

+

ˆ tf

0

ˆ
∂Ω2

∂δT

∂n
Θ2 −

ˆ tf

0

ˆ
∂Ω2

∂Θ2

∂n
δT +

ˆ tf

0

ˆ
Ω2

δT∇2Θ2

−
ˆ tf

0

ˆ
∂Ω
δTΘD −

ˆ tf

0

ˆ
Γ
δTΘI

−
ˆ tf

0

ˆ
Γ
ψ [∇δTi]12 · ∇ϕ,
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with vS1 and vS2 the velocities of the control volumes Ω1 and Ω2 respectively with
vS1 = v⃗S · n and vS2 = −v⃗S · n. These two terms are only non-zero on Γ. Sorting
the terms by their domain of integration and setting δT 0 = 0, we obtain

LT δT =

ˆ tf

0

ˆ
Ω1

(
∂Θ1

∂t
+∇2Θ1

)
δT

+

ˆ tf

0

ˆ
Ω2

(
∂Θ2

∂t
+∇2Θ2

)
δT

−
ˆ
Ω1

(
Θf

1 − β1
(
T f − T d

))
δT f

−
ˆ
Ω2

(
Θf

2 − β1
(
T f − T d

))
δT f

+

ˆ tf

0

ˆ
∂Ω

(
−∂Θ
∂n

δT +
∂δT

∂n
(Θ−ΘD)

)
+

ˆ tf

0

ˆ
Γ

(
Θ1v⃗S · n−Θ2v⃗S · n−

∂Θ1

∂n
+
∂Θ2

∂n
−ΘI

)
δT

+

ˆ tf

0

ˆ
Γ
(Θ− ψ|∇ϕ|) [∇δT ]12 · n ∀δT = 0,

where the second to last term, corresponds to the normal jump in adjoint tempera-
ture, which gives ΘI = −[∇Θ]12 ·n because Θ1 = Θ2 on Γ. By altering the directions
of variations and eliminating certain terms, we obtain the adjoint temperature prob-
lem



−∂Θ1

∂t
= ∇2Θ1 in Ω1(t)

−∂Θ2

∂t
= ∇2Θ2 in Ω2(t)

Θ(x, tf ) = β1(T
f − T d) in Ω

∂Θ(x, t)

∂n
= 0 on ∂Ω

Θ(x, t) = ψ|∇ϕ| on Γ(t)

ΘI = −[∇Θ]12 · n on Γ(t)

(AT)

The �rst two equations of the adjoint temperature problem (AT) are the heat equa-
tions in reverse time. The third equation is the initial condition for the adjoint
temperature �eld, that depends on the desired temperature distribution T d. The
fourth equation is a homogeneous Neumann boundary condition for the adjoint �eld
mapped from equations FP.d. The second to last equation is the Dirichlet bound-
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ary condition at the interface that now depends on the value of the adjoint level set
function ψ. We can already note that the adjoint level set function will not behave
as a signed distance function but as an auxiliary variable that acts on the tempera-
ture �eld through the Dirichlet boundary condition at the interface Γ. Finally, the
last equation states that the multiplier ΘI , de�ned on Γ, must be equal to the jump
in normal gradient of Θ.

2.2.3 Adjoint level set

The geometric non-linearity induced by ϕ on the domains of integration requires
a careful treatment of each term as described in [Bernauer & Herzog 2011]. We
denote DJH(ϕ); δϕK the variation of H(·) in the direction δϕ. The adjoint level set
equations, derived by setting Lϕ(·) = 0, then reads

Lϕδϕ = D JJ (T, ϕ, w); δϕK

+D

sˆ tf

0

ˆ
Ω

(
∂T

∂t
−∇2T

)
Θ; δϕ

{

−D
sˆ tf

0

ˆ
∂Ω

(
∂T

∂n
− u
)
ΘD; δϕ

{

−D
sˆ tf

0

ˆ
Γ
(T − TM − εV vS − εκκ)ΘI ; δϕ

{

−D
sˆ tf

0

ˆ
Γ

(
∂ϕ

∂t
+ [∇Ti]12 · ∇ϕ

)
ψ; δϕ

{
.

We divide the contributions of the adjoint level set term-by-term. The contribution
from the cost functional, removing the terms that do not depend on ϕ, simpli�es to

D JJ (T, ϕ, w); δϕK = D

s
β2
2

ˆ
Γf

|ϕf |2; δϕ
{
+D

s
β3
2

ˆ
Γf

1; δϕ

{
.

By using the theorem on the derivative of a boundary integral (Theorem B), we
obtain

D JJ (T, ϕ, w); δϕK = −β2
2

ˆ
Γf

δϕf

|∇ϕ|

(
∂|ϕf |2

∂n
+ κ|ϕf |2

)
− β3

2

ˆ
Γf

δϕf

|∇ϕ|
κ

= −β2
2

ˆ
Γf

δϕf

|∇ϕ|

(
∂|ϕf |2

∂n
+ κ

(
|ϕtf |

2 +
β3
β2

))
.

By specifying that δϕ = 0 on δΩ, the second and third terms are then equal to
zero. For the fourth term, we need to assume that the adjoint level set ϕ and the
multiplier ΘI are de�ned on all of Ω. Under such assumptions, we can apply the
same boundary integral theorem (Theorem B)

−D
sˆ tf

0

ˆ
Γ
(T − TM − εV vS − εκκ)ΘI ; δϕ

{
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= −
ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂ (T − TM − εV vS − εκκ)

∂n
+ κ (T − TM − εV vS − εκκ)

)
ΘI .

The value of the temperature on Γ is always equal to T−TM−εV vS−εκκ. Moreover,
using the fact that TM is constant along the interface, the above equation simpli�es
to

−D
sˆ tf

0

ˆ
Γ
(T − TM − εV vS − εκκ)ΘI ; δϕ

{
= −

ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂ (T − εV vS − εκκ)

∂n

)
ΘI

= −
ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂T

∂n
− εV

∂vS
∂n
− εκ

∂κ

∂n

)
ΘI .

Looking at the resulting terms in the integral, we have

� ∂T/∂n corresponding to the normal derivative of the temperature, which is
well de�ned in all Ω,

� ∂vS/∂n that is constant as the velocity of the interface will be extended nu-
merically in the normal direction by a procedure de�ned in Chapter 4,

� ∂κ/∂n, the normal derivative of the curvature exists in the level set framework
and can be computed in all of Ω but has no true "physical" meaning hence
we ignore this term when advecting the variables, leading to an incomplete
adjoint derivation. Nevertheless, the optimization results obtained in Chapter
6, in cases where εκ is non-zero, con�rm that this assumption is acceptable.

Finally, by applying the same boundary integral theorem together with the chain
rule, the last term simpli�es to

−D
sˆ tf

0

ˆ
Γ

(
∂ϕ

∂t
+ [∇Ti]12 · ∇ϕ

)
ψ; δϕ

{

= −
ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂

∂n

((
∂ϕ

∂t
+ [∇Ti]21 · ∇ϕ

)
ψ

)
+ κ

(
∂ϕ

∂t
+ [∇Ti]21 · ∇ϕ

)
ψ

)
+

ˆ tf

0

ˆ
Γ

(
∂δϕ

∂t
+ [∇Ti]21 · ∇δϕ

)
ψ

= −
ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|
∂

∂n

(
∂ϕ

∂t
+ [∇Ti]21 · ∇ϕ

)
ψ +

ˆ tf

0

ˆ
Γ

(
∂δϕ

∂t
+ [∇Ti]21 · ∇δϕ

)
ψ.

By using the assumption of constant velocity vS extended in the normal direction
on all of Ω, we obtain that

−D
sˆ tf

0

ˆ
Γ

(
∂ϕ

∂t
+ [∇Ti]12 · ∇ϕ

)
ψ; δϕ

{
= −

ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂δϕ

∂t
+ [∇Ti]21 · ∇δϕ

)
ψ.

In order to obtain the adjoint Stefan condition, we need to move the derivatives
from δϕ to ψ. Assuming that ψ is de�ned on all of Ω, we can use the corollary C
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on integration by parts in time on a moving surface

−
ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂ϕ

∂t
+ [∇Ti]21 · ∇ϕ

)
ψ = −

ˆ
Γf

δϕfψf +

ˆ
Γ0

δϕ0ψ0

−
ˆ tf

0

ˆ
Γ

(
δϕ
∂ψ

∂t
+∇(δϕ ψ) · vS + δϕ ψ divΓ vS + ψ[∇Ti]21 · ∇δϕ

)
= −

ˆ
Γf

δϕfψf +

ˆ
Γ0

δϕ0ψ0 −
ˆ tf

0

ˆ
Γ
δϕ
∂ψ

∂t

−
ˆ tf

0

ˆ
Γ
δϕ (∇(ψ) · vS + ψ divΓ vS) +

ˆ tf

0

ˆ
Γ

(
ψ[∇Ti]21 · ∇δϕ− ψ∇δϕ · vS

)
.

The last term cancels due to the fact that [∇Ti]21 = vS on Γ. The resulting terms of
the adjoint level set, using δϕ0 = 0, give

Lϕδϕ = −β2
2

ˆ
Γf

δϕf

|∇ϕ|

(
∂|ϕf |2

∂n
+ κ

(
|ϕf |2 + β3

β2

))
−
ˆ tf

0

ˆ
Γ

δϕ

|∇ϕ|

(
∂T

∂n
− εV

∂vS
∂n

)
ΘI

−
ˆ
Γf

δϕfψf −
ˆ tf

0

ˆ
Γ
δϕ
∂ψ

∂t

−
ˆ tf

0

ˆ
Γ
δϕ (∇(ψ) · vS + ψ divΓ vS) .

By regrouping the terms by their domains of integration and requiring Lϕδϕ = 0

∀ δϕ, we obtain that

ψf = − 1

|∇ϕ|
β2
2

(
∂|ϕf |2

∂n
+ κ

(
|ϕf |2 + β3

β2

))
−∂ψ
∂t

= ∇ψ · vS + ψ divΓ vS +
1

|∇ϕ|

(
∂T

∂n
− εV

∂vS
∂n

)
ΘI .

Recalling that ΘI was de�ned in the adjoint temperature and that vS is constant in
the normal direction, we have

ψf = − 1

|∇ϕ|
β2
2

(
∂|ϕf |2

∂n
+ κ

(
|ϕf |2 + β3

β2

))
∂ψ

∂t
+ div(ψvS) =

1

|∇ϕ|

(
∂T

∂n
− εV

∂vS
∂n

)
[∇Θ]12 · n

This equation can be interpreted as a �rst-order conservation law on Γ and the
source term on the right-hand-side can be extended in the neighborhood of Γ.
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2.2.4 The gradient equation

The last term to complete the adjoint Stefan problem is the gradient equation. By
setting Lwδw = 0 in Equation 2.1, we have

Lwδw =

s
β4
2

ˆ tf

0

ˆ
∂Ω
|w|2; δw

{
−

sˆ tf

0

ˆ
∂Ω

(
∂T

∂n
− w

)
ΘD; δw

{

=

ˆ tf

0

ˆ
∂Ω

(β4|w| −Θ) δw,

thus obtaining at the gradient equation 0 = β4w + Θ on ∂Ω. Here, we used the
previously de�ned multiplier ΘD that is identically equal to Θ on ∂Ω (see adjoint
temperature derivation in Section 2.2.2). We now gather the adjoint temperature
and level set with the gradient equation to construct the adjoint Stefan problem
(AP) below.

Find a function Θ : Ω× [tf , 0]→ R and a function ψ : Ω× [tf , 0]→ R such that

−∂Θ1

∂t
= ∇2Θ1 in Ω1(t) (AP.a)

−∂Θ2

∂t
= ∇2Θ2 in Ω2(t) (AP.b)

Θ(x, tf ) = β1(T (tf )− Ttf ) in Ω (AP.c)

∂Θ(x, t)

∂n
= 0 on ∂Ω (AP.d)

Θ(x, t) = ψ|∇ϕ| on Γ(t) (AP.e)

∂ψ

∂t
+ div(ψv⃗S) =

1

|∇ϕ|

(
∂T

∂n
− εV

∂vS
∂n

)
[∇Θi]

1
2 · n on Γ(t) (AP.f)

ψ(x, tf ) = −β2
2

(
∂

∂n
|ϕtf |2 + κ

(
|ϕtf |2 +

β3
β2

))
in Ω (AP.g)

0 = β4w +Θ on ∂Ω (AP.h)

(AP)

� Equations AP.a and AP.b correspond to the heat equations in reverse time.

� Equation AP.c is used to initialize the adjoint temperature �eld in both phases.

� In Equation AP.e, the in-homogeneous Neumann boundary condition imposed
on ∂Ω existing in the forward problem (FP) is mapped to an homogeneous
alternative.

� The Dirichlet boundary condition at the interface is de�ned in Equation AP.f
where the adjoint temperature is equal to the adjoint level set value ψ aug-
mented by the Hamiltonian of the level set function |ϕ|.



26 Chapter 2. Adjoint-based optimization algorithm

� In Equation AP.f, the adjoint level set advection equation is de�ned. The
source term corresponds to the adjoint Stefan condition and takes into account
the normal jump in gradient of adjoint temperature across the interface.

� The adjoint level set function is initialized using Equation AP.g.

� The last Equation (AP.h) represents the optimality condition, where the left-
hand side represents the gradient used to update the control variable w.

2.3 Gradient-based optimization procedure

In optimization problems where the information on the gradient can be extracted
through the adjoint, the convergence is strongly improved and this will be shown
when comparing our adjoint-based procedure with a derivative-free one. In the fam-
ily of the adjoint-based methods, the gradient-based ones are the methods of choice
to prove that the optimal control approach is reasonable due to their straight forward
implementation. Therefore, we chose to solve the minimization problem (MP) by
using the limited memory BFGS (L-BFGS) method, a quasi-Newton method orig-
inally described in [Liu. & Nocedal 1989]. The main characteristic of this method
is that it determines the descent direction by preconditioning the gradient with an
approximation of the Hessian matrix. This information is obtained using past ap-
proximations (the number of approximations is determined by the memory length
parameter which is set to m = 10 in all our optimization test cases) as well as
the gradient. As an initial guess for the initial Hessian, we use the scaled identity
matrix as described in [Wright & Nocedal 2006]. Algorithm 2 summarizes the L-
BFGS method used in our numerical examples. The algorithm is stopped at a given
iteration n if one of the following criteria is ful�lled

� The relative di�erence in control variable
∣∣∣∣wn−1 − wn

wn

∣∣∣∣ < 10−8.

� The relative di�erence in cost functional
∣∣∣∣J n−1 − J n

J n

∣∣∣∣ < 10−8. This criterion

can be relaxed to allow temporary increase of the cost functional, for example
to `escape' a local minimum.

� The norm of the gradient |∇J n| < 10−6.

In the next Chapter, we will present a novel Cut Cell method to solve di�usive
transport. The heat equations in both the forward and adjoint problem will be
solved by this method that modi�es the standard �nite di�erence formula to take
into account the boundary conditions of a given interface in the underlying Cartesian
grid.
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Algorithm 2: Optimization procedure using the L-BFGS method
input : w0, m = 10
output: w, T , ϕ, Θ, ψ

k ← 0, l← 0
while not converged do

Solve the forward Stefan problem (FP) for T k and ϕk

Solve the adjoint Stefan problem (AP) for Θk and ψk

Compute the gradient:
∇J k = β4w

k +Θk

if k ≥ 1 then
sk−1 = σk−1dk−1 gk−1 = ∇J k −∇J k−1

if (sk−1)T gk−1 ≤ 0 then
l← 0

else if (sk−1)T gk−1 > 0 then
l→ l + 1
if l > m then

Remove {sl−m, gl−m}
end
Add {sl−m, sl−m}

end
end

Choose an initial approximation to the inverse of the Hessian Hk
0

Construct the direction dk = −Hk∇J k

Determine σk using a Line Search algorithm with backtracking where
σk = argminJ (wk + σkdk)

Update wk+1 = wk + σkdk

k → k + 1
end
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3.1 Discrete Cut Cell operators

3.1.1 Motivation

This section motivates the choices underlying the design of the proposed Cut Cell
operators. The focus is set on the numerical solution of the Poisson problem

∇2T = σ, (3.1)

where σ is a speci�ed source term and T is also subject to a Dirichlet boundary
condition D. Simply put, the question addressed here is: what is the minimal
amount of geometric information required to discretize the Poisson equation on a
Cartesian grid but on an arbitrary domain, while guaranteeing that the discrete
Laplacian operator

1. Preserves a classical three-point star-shaped stencil, and

2. Guarantees �rst order accuracy in the mesh-aligned cases.
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Many numerical methods have been developed to handle complex geometries. Un-
structured meshes are one common way to work around simulations with arbitrary
complex geometries. Such mesh elements are usually triangular or quadrilateral and
naturally allow for local adaptivity, but generating high-quality unstructured meshes
continues to be a challenge. The e�ciency and robustness of such algorithms remain
the key issues in this area of research [Mavriplis 1995]. Other widely used methods
include so-called overset (or chimera) grids. However, conservation can generally
not be achieved for these methods due to the extensive use of interpolation between
the various grid levels. Similarly, provable stability properties are di�cult to ob-
tain [Sherer & Scott 2005].

Another class of approaches to complex geometries include immersed bound-
ary methods. Immersed boundary methods can be separated into two large classes
with di�use or sharp interface representations. Historically, di�use interfaces have
been used in IB methods, starting with the work of Peskin [Peskin 1972]. Early
adaptations of the IB method required arbitrary tuning parameters either for de-
scribing the forcing e�ect of the immersed boundary [Peskin 1972, Peskin 1977,
Goldstein et al. 1993, Lai & Peskin 2000, Beyer & Leveque 2006] or characterizing
the boundary velocity [Peskin 2003]. The second branch of IB methods require the
strong imposition of boundary condition at a sharp interface. These are also known
as Cut Cell methods. Calhoun and Leveque [Calhoun & Leveque 2000] developed a
widely used �nite volume algorithm for complex geometries for solving scalar equa-
tions in a collocated grid. More recently, Cheny and Botella [Cheny & Botella 2010]
developed a fully conservative cut-cell method on staggered grids. The common
trade-o� in cut-cell methods is between explicit handling of many special cases in
which a computational cell can be intersected by object boundaries and making use
of black-box least-squares methods to construct derivatives. The second method
can be shown to lack the desired conservation properties.

The level set function, de�ned in Chapter 1, is used there to compute geo-
metric moments, such as the centroid coordinates of wet volumes or the area of
wet faces. One advantage of the proposed method is that these geometric �elds
are the only information required to modify classical �nite di�erences formulas
in the vicinity of boundaries, while recovering well-known second-order formulas
away from them and accommodating any stretching. The de�nition of these ge-
ometric �elds and their number is determined from accuracy considerations. It
will be shown, in particular, that the proposed operators degenerate to classi-
cal formulas for the mesh-aligned boundaries. The discrete calculus of Morin-
ishi [Morinishi et al. 1998, Morinishi 2010] is leveraged to provide concise expres-
sions for the discrete operators, whether for Dirichlet or Neumann boundary condi-
tions. In this work, we will only focus on the Dirichlet case. Validation are provided
that assess the scheme's second order accuracy, stability and ability to accurately
represent transfers.
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3.1.2 Governing principles

A subset of the operators de�ned by [Morinishi et al. 1998] is reemployed, namely
the second order di�erentiation, interpolation, and permanent product operators on
unitary grids de�ned respectively as

δϕ

δξx

∣∣∣∣
i+1/2,j

= ϕi+1,j − ϕij , (3.2)

ϕ
x
∣∣∣
i+1/2,j

=
ϕi+1,j + ϕij

2
, (3.3)

and
ϕ̃ψ

x
∣∣∣
i+1/2,j

=
ϕi+1,jψij + ψi+1,jϕij

2
. (3.4)

These de�nitions are straightforward to extend to either staggered (ϕi+1/2,j) and
(ϕi,j+1/2) or nodal (Φi+1/2,j+1/2) �elds. Likewise, operators acting upon the second

direction, δ(·)/δξy, (·)
y
and (̃·, ·)

y
, are de�ned in the same manner. Finally, the

restrictions to the one-dimensional case is obtained by dropping the last index.
These operators will be used in the subsequent formula when deriving the discrete
operators.

Cut Cell Methods are �rmly grounded in the Finite Volume Method, which
de�nes the primary discrete variables as cell-wise averages over mesh elements (as
opposed to point-wise values in the Finite Di�erence Method, for example). The
design of the Finite Volume operators is then based on the application of Stokes'
theorem. For example, given a scalar �eld T , this theorem states that in a Cartesian
coordinate system, the x component of the gradient q ≡ ∇T averaged over a cell Ω
may be computed as

|Ω| qx =

ˆ
Ω

∂T

∂x
dV =

˛
∂Ω
Tex · dS (3.5)

where |·| denotes the measure operator, dS the outward-pointing surface element,
ex the unit vector along the x direction and (∂·) the contour operator.

For the sake of presentation, the case displayed in Figure 3.1a is considered,
where Ω consists of the intersection of a phase domain and a computational cell
(a right hexahedron). The contour ∂Ω then consists of the union of the three
planar faces A−

x , A−
x and A−

y as well as the boundary surface Γ. A piece-wise

linear approximation of Γ, denoted Γ̃, of length
∣∣∣Γ̃∣∣∣ and unit normal (nx, ny), can be

de�ned as done in Figure 3.1b. Applying Equation 3.5 to Ω̃ with T = 1 then yields
ˆ
Ω̃

∂1

∂x
dV =

∣∣A+
x

∣∣− ∣∣A−
x

∣∣+ nx

∣∣∣Γ̃∣∣∣ = 0,
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(a) Exact (b) Approximate

Figure 3.1: Example of an exact and approximate representation of a Cartesian cell cut
by the interface.

which highlights the existence of a fundamental relation, sometimes referred to as a
Surface Conservation Law (SCL)∣∣A+

x

∣∣− ∣∣A−
x

∣∣ = −nx ∣∣∣Γ̃∣∣∣ . (3.6)

In other words, the knowledge of (|Aα|)α∈{x,y,z} implicitly de�nes a piece-wise
linear approximation to the boundary. As a consequence, this surface information,
henceforth referred to as the surface capacities, may serve to approximate the right-
hand side of Equation 3.5. If the unknowns

(
T±
x/y

)
are de�ned as averages over the

wet areas
(∣∣∣A±

x/y

∣∣∣), the formula
˛
∂Ω̃
Tex · dS =

∣∣A+
x

∣∣T+ −
∣∣A−

x

∣∣T− −
(∣∣A+

x

∣∣− ∣∣A−
x

∣∣)D,
is exact provided D is the Dirichlet condition averaged over the approximate bound-
ary Γ̃. To complete the de�nition of the averaged x-component of the gradient, the
volume capacity V ≡ |Ω| is also required, which results in the following tentative
gradient operator

qv1x ≃
(∣∣A+

x

∣∣T+ −
∣∣A−

x

∣∣T− −
(∣∣A+

x

∣∣− ∣∣A−
x

∣∣)D) /V.
It is worth stressing that the use of the SCL (Equation 3.6) in qv1x guarantees that
the discrete gradient vanishes when the solution and boundary values are matching
constants (T+ = T− = D). This notation can be generalized to arbitrary dimensions
for any boundary geometry using the di�erentiation operator δ · /δξα, α ∈ {x, y}



3.1. Discrete Cut Cell operators 33

(de�ned in Equation 3.2), as follows

∀α ∈ {x, y} , gradv1α (Tα, D) =
1

V

(
δAαTα
δξα

− δAα

δξα
D

)
, (3.7)

where all components of the discrete vector �eld Q = (qα), α ∈ {x, y, z}, are collo-
cated with D. In this �rst version of the gradient operator, the primary unknowns
Tα are collocated with the surface areas Aα, whereas the Dirichlet boundary condi-
tion D is staggered in-between.

This construction, referred to as Arakawa E-grid [Arakawa & Lamb 1977], relies
on the de�nition of multiple temperature �elds. Such a grid con�guration is not
the one adopted by the MAC approach [Harlow & Welch 1965], which favors the
C-grid that de�nes a single temperature �eld collocated with the D �eld here. A
C-grid however means that the temperature unknowns T and surface capacities Aα

are staggered, in which case the latter together with V should be interpolated as
follows

∀α ∈ {x, y} , gradv2α (T,D) =
1

V
α

(
δA

α
T

δξα
− δAα

δξα
D

α
)
, (3.8)

which uses the interpolation operator ·α, α ∈ {x, y, z} (de�ned in Equation 3.3).

3.1.3 Loss of accuracy with interpolation

It should be pointed out that formulas other than Equation 3.8 can also be writ-
ten without interpolation of the geometric capacities, for example by collocating
all surface capacities (Aα) with the primary variable T . However in the context of
a second order operator such as the scalar Laplacian (Equation 3.1), the need for
interpolation will resurface in the approximation of the divergence operator.

This section therefore focuses on the limitations of the second tentative formula
(Equation 3.8), more speci�cally its failure to revert to a classical �rst order approx-
imation of the second order derivative in the limit where the boundary is orthogonal
to the direction of interest. This is the central point of the proposed cut-cell method,
namely the enhancement of the geometric description of the boundary by means of
additional volume and surface capacities to revise the gradient and divergence oper-
ators so as to achieve �rst-order accuracy in the vicinity of mesh-aligned boundaries.

To illustrate the limitation of the tentative gradient formula (Equation 3.8),
the discretization of the second-order derivative along x in the mesh-aligned two-
dimensional con�guration displayed in Figure 3.2 is considered, where the �uid
occupies the rightmost cells. This con�guration is characterized by V0 = 0, V1 =

(hx − g)hy, V2 = hxhy, A1/2 = 0 and A3/2 = A5/2 = hy (here, A stands for Ax

since only the x contribution is considered). Using these expressions, Equation 3.8
simpli�es to q−1/2 = 0,

q1/2 =
T1 −D1

g
, (3.9)
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and

q3/2 =
T2 − (T1 +D1) /2

(g + hx) /2
. (3.10)

Figure 3.2: Insu�cient geometric information resulting in loss of accuracy in mesh-aligned
geometries.

This approximation of the gradient is problematic for two reasons. At the boundary,
the x-gradient value (q1/2) is under predicted by a factor of 2, since the denominator
of the right-hand side of Equation 3.9 stands at g when it should match the distance
between the points where D1 and T1 are de�ned, g/2. Away from the boundary,
the x-gradient value (q3/2) depends on the boundary condition D1, when one would
simply expect the di�erence (T2−T1) to appear in the numerator of the right-hand
side of Equation 3.10.

This simple exercise highlights the loss of accuracy associated with the interpo-
lation of the geometric capacities. This can be associated with the fact that the
capacities are de�ned as volume and surface integrals of the characteristic function
of the �uid domain Ωf ⊂ Ω, de�ned as

∀x ∈ Ω, Hf (x) ≡
ˆ
y∈Ωf

δ (x− y) dV, (3.11)

where Ω denotes the computational domain and δ the multi-dimensional Dirac delta
function. Hf is not di�erentiable in the classical sense, and one should tread care-
fully not to interpolate or di�erentiate its surface- or volume-averaged values.

3.1.4 Additional geometric information to restore accuracy

An intuitive idea to alleviate the interpolations in Equation 3.8 is to add new infor-
mation where the volume (cell-centered and denoted V ) and surface (face-centered
and denoted (Aα)) capacities were previously interpolated. These new quantities,
referred to as second-kind capacities, complement the already used �rst-kind capaci-
ties V and (Aα), also come in volume (face-centered and denoted (Wα)) and surface
(cell-centered and denoted (Bα)) forms for arbitrary geometries. This additional
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quantities yield the �nal gradient formula

∀α ∈ {x, y} , gradα (T,D) =
1

Wα

[
δBαT

δξα
+
δ(Aα

α −Bα)D

δξα
− δAα

δξα
D

α
]
, (3.12)

that supersedes grad(v1)α and grad
(v2)
α .

Figure 3.3: Enhanced geometric information restoring accuracy in mesh-aligned geome-
tries.

To show how the addition of the second-kind capacity restores �rst-order accuracy
in the gradient computation, the con�guration displayed in Figure 3.3 is considered.
Since only x derivatives are considered, A again will stands for Ax, whereasW and B
will respectively stand forWx and Bx. Bearing this in mind, the con�guration under
study is characterized by V0 = 0, V1 = 2fhy and V2 = hxhy, A−1/2 = A1/2 = 0,
A3/2 = A5/2 = hy, B0 = 0, B1 = B2 = hy and �nally W−1/2 = 0, W1/2 = fhy,
W3/2 = ghy and W5/2 = hxhy. Using these expressions, Equation 3.12 simpli�es to
q−1/2 = 0 and

q1/2 =
T1 −D1

f
,

q3/2 =
T2 − T1

g

and
q5/2 =

T3 − T2
hx

.

T0 does not appear since it is outside of the �uid domain, and the boundary condition
(D) appears only in the faces adjacent to the boundary. The formulas obtained from
Equation 3.12 are classical formulas since f , g and hx are the distances over which
the di�erences T1−D1, T2−T1 and T3−T2 are de�ned. Finally, in the �uid domain
and away from the boundaries, Equation 3.12 simply reverts to the classical gradient
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formula
qx,i+1/2 =

Ti+1 − Ti
xi+1 − xi

.

In fact, the addition of the second-kind capacities is also su�cient to de�ne the
(cell-centered) volume-weighted divergence operator, which consists of the sum of
the following contributions ∀α ∈ {x, y} where Nα denotes the boundary value of qα.
If one sets the divergence to the product of the volume V with the local value of the
source term σ as in the original Poisson problem (Equation 3.1), the con�guration
displayed in Figure 3.3 yields the trivial equation 0 = 0 in the �rst cell, and

hy
(
q3/2 −N1/2

)
= 2fhyσ1,

hy
(
q5/2 − q3/2

)
= hxhyσ2,

in the others. Again classical formulas that degenerate to the classical formula

hy
(
qi+1/2 − qi−1/2

)
= hy

(
xi+1/2 − xi−1/2

)
σi,

in the �uid domain away from the boundary. Finally, the unknown N = (Nα) can
be eliminated by substituting the gradient formula (Equation 3.12) in the divergence
formula de�ned below

divα
(
q,N

)
=
δAαQα

δξα
+
δ(Bα −Aα)Nα

δξα
− δBα

δξ
Nα

α

. (3.13)

The boundary contribution (the last two terms in the right-hand side of Equa-
tion 3.13) are set to

∑
α

[
δ(Bα −Aα)Nα

δξα
− δBα

δξ
Nα

α
]
=
∑
α

[
δ(Bα −Aα)Qα

δξα
− δBα

δξ
Qα

α
]
,

which amount to identifying the heat �ow through the boundary to the normal com-
ponent of the temperature gradient. In the con�guration displayed in Figure 3.3
this yields only one non-trivial equation, N1 = q1. Putting it all together, the pro-
posed gradient and divergence operators, de�ned for arbitrary boundary geometries
in Equations 3.12 and 3.13, discretize the Poisson problem (Equation 3.1) in the
con�guration displayed in Figure 3.3 as 0 = 0,

hy

(
T2 − T1

g
− T1 −D

f

)
= 2fhyσ1,

and

hy

(
T3 − T2
hx

− T2 − T1
g

)
= hxhyσ2,
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in the three cells displayed, while reverting to the classical formula

hy

(
Ti+1 − Ti
xi+1 − xi

− Ti − Ti−1

xi − xi−1

)
= hxhyσi,

in the �uid domain away from the boundary. As a consequence, formulas Equa-
tions 3.12 and 3.13 can be interpreted as generalizations of the classical second-order
formulas to accommodate the presence of arbitrary boundaries while preserving �rst-
order accuracy in the presence of mesh-aligned cases. The next section clari�es the
notation employed thus far, in particular the de�nition of volume and surface ca-
pacities of the �rst and second kinds.

3.2 Volume and surface capacities

3.2.1 Mesh and geometry input

As far as the Cartesian mesh is concerned, a rectilinear mesh with nx × ny cells is
de�ned by specifying the following sets of user-de�ned abscissas

x1/2 < x3/2 < · · · < xnx+1/2,

y1/2 < y3/2 < · · · < yny+1/2.

Importantly, the mesh need not be uniform. Any given cell Ωij , identi�ed by a
multi-index ij, (i, j) ∈ J1, nxK× J1, nyK, corresponds to the set of points (x, y) that
simultaneously satisfy xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2. Regarding the
boundary description, there exists a wide range of techniques to de�ne a �uid do-
main, such as simplicial meshes or Constructive Solid Geometry (CSG) primitives
and operations. Implicit representations by means of a void fraction or distance
function (Level Set) are also commonly used. Regardless of the method employed,
the assembly of the cut cell operators requires the computation of areas and vol-
umes that correspond to the intersection of the �uid domain with Cartesian elements
(faces or cells), as displayed in Figure 3.4. In this work, these computations are per-
formed using a Marching Squares algorithm, that only requires the level set function
values at the computational cells (detailed in the following section). Following the
computation of the capacities, the geometry input is discarded.

3.2.2 Capacities of the �rst kind

Consider the Cartesian mesh displayed in Figure 3.4, partitioned into �uid (Ωf )
and solid (Ωs) domains separated by a boundary (Γ). In a �nite volume setting,
the primary variables Φij consist of averages of any given continuous �eld (x, y) 7→
ϕ (x, y) over the intersection of the �uid domain with any given hexahedral cell,
de�ned as follows

Vij ≡
ˆ
Ωij

ϕ (x)Hf (x) d2x,
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Figure 3.4: Intersection of the �uid domain with Cartesian elements.

ϕijVij ≡
ˆ
Ωij

ϕ (x)Hf (x) d2x,

where Hf is the �uid characteristic function de�ned in Equation 3.11. The set
V ≡ (Vij) is referred to as the volume capacities of the �rst kind.

When the �eld under consideration is linear, these averages coincide with the
values at the �uid center of mass, displayed in Figure 3.5, de�ned for cells fully or
partially occupied by the �uid (referred to as mixed cells). Although it does not
appear explicitly in the Cut Cell operators, the coordinates of the �uid center of
mass (displayed with crosses in Figure 3.5) are still required to de�ne the second
kind capacities, and are therefore temporarily stored. They are denoted as X and
Y and de�ned for any cell Ωij as(

Xij

Yij

)
Vij ≡

ˆ
Ωij

(
x

y

)
Hf (x) d2x.

The second step consists in computing the area of each of the faces wet by the �uid.
Because the mesh is Cartesian, the faces adjacent to each cell are labelled based
on the direction they are orthogonal to. These quantities, referred to as surface
capacities, are staggered and denoted (Aα) (α ∈ {x, y}). They are de�ned as

Ax
i+1/2,j ≡

ˆ yj+1/2

yj−1/2

Hf
(
xi+1/2, y

)
dy,

and
Ay

i,j+1/2 ≡
ˆ xi+1/2

xi−1/2

Hf
(
x, yj+1/2

)
dx.
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Figure 3.5: First kind capacities: V (�lled areas), A1 (dashed vertical lines), A2 (dashed
horizontal lines) and X and Y (crosses).

3.2.3 Capacities of the second kind

The coordinates of the �uid center of mass are used as follows. For each direction,
the volume information is enriched by measuring how much �uid lies between each
center of mass. This yields as many sets of staggered volumes, namely

W x
i+1/2,j ≡

ˆ yj+1/2

yj−1/2

ˆ Xi+1,j

Xij

Hf (x) d2x,

and

W y
i,j+1/2 ≡

ˆ Yi,j+1

Yij

ˆ xi+1/2

xi−1/2

Hf (x) d2x,

that will be denoted (Wα), α ∈ {x, y}, and referred to as volume capacities of the
second kind. The capacities W x and W y are represented as colored areas in the
con�guration displayed in Figure 3.6a and 3.6b, respectively. Likewise, the area wet
by the �uid for the mesh-aligned faces that intercept the �uid center of mass will
be required in each cell. This yields an additional set of cell-centered quantities,

Bx
ij =

ˆ yj+1/2

yj−1/2

Hf (Xij , y) dy,

and
By

ij =

ˆ xi+1/2

xi−1/2

Hf (x, Yij) dx,

referred to a surface capacities of the second kind. The capacities Bx and By are
represented as colored dashed lines in the con�gurations displayed in Figure 3.6a
and 3.6b, respectively.
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(a) W1 (�lled areas), B1 (dashed vertical
lines) and X and Y (crosses).

(b) W2 (�lled areas), B2 (dashed horizon-
tal lines) and X and Y (crosses).

Figure 3.6: Schematic of the second kind capacities.

3.3 Marching squares algorithm

The computation of areas and volumes is carried out by using a marching squares
algorithm using the values of the level set. This algorithm is used to determine
one of the 16 di�erent possible cases in two dimension (Figure 3.7), thus allowing
the computation of the crossing points between the interface and the edges. As
a preliminary step, we want to locate the mixed cells in our domain. We look at
values of the level set function which are of di�erent sign than the neighbors in each
direction. With this condition, we ensure that we are `close' to the interface. Note
that this is not su�cient to determine if the cell is mixed or not as one could tag
the cells adjacent to the mixed ones. Once this �rst sub-set of cells is known, we
can apply the marching squares algorithm. The algorithm works as follows

1. The values of the corners of a cell, characterized by these 4 cardinal positions
(south-west, south-east, north-east, north-west), are computed using a bi-
quadratic interpolation.

2. Given the signs of the corners, the unique isovalue of the cell is computed by
the formula

iso = SW+2SE+4NE+8NW . (3.14)

3. Depending on the isovalue (case), the intersection points are located re-using
the bi-quadratic interpolation.

To determine the values of the corners, we perform a bi-quadratic interpolation on
the 3 × 3 stencil centered on the cell of interest. For this exercise, we assume a
constant spacing of the Cartesian grid in all dimensions. We want to calculate the
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Case 0 Case 1 Case 2 Case 3

Case 4 Case 5 Case 6 Case 7

Case 8 Case 9 Case 10 Case 11

Case 12 Case 13 Case 14 Case 15

Figure 3.7: The 16 di�erent cases of the marching squares algorithm.

interpolation matrix M given by

ϕ(x, y) =
2∑

i=0

2∑
j=0

mijx
iyj

=
[
x2 x 1

]  m2,2 m2,1 m2,0

m1,2 m1,1 m1,0

m0,2 m0,1 m0,0

 y2

y

1


= XMY T ,

with ϕ(x, y) the set of known data points of the level set function, yielding

Φ = GMGT ϕ91,91 ϕ91,0 ϕ91,1
ϕ0,91 ϕ0,0 ϕ0,1
ϕ1,91 ϕ1,0 ϕ1,1


Φ

=

 (91)2 91 1

02 0 1

12 1 1


G

 m2,2 m2,1 m2,0

m1,2 m1,1 m1,0

m0,2 m0,1 m0,0


M

 (91)2 0 (1)2

91 0 1

1 1 1


GT

.
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The interpolation matrix M can now directly be computed by

M = G91Φ
(
GT
)91

= G91Φ
(
G91

)T
,

with the matrix G91 de�ned as

G91 =

 0.5 91 0.5

90.5 0 0.5

0 1 0

.
Once the interpolation matrix is determined, we have the interpolated values of the
level set function at the corner nodes ϕi±1/2,j±1/2 (ie. at the points (x = ±0.5,
y = ±0.5)). The isovalue corresponding to the cell is then determined by the
relation described in Equation 3.14. Note that cases 5 and 10 do not exist, as
we assume that the interface is crossing the underlying Cartesian grid only once
per cell. The same interpolation matrix is then used to �nd the location of the
intersection point by �nding the zeros of the bi-quadratic interpolation along the
edges of interest. With the crossing points, we can determine the centroid of the
wetted area by using the following formula. Given a polygon de�ned by n vertices
(x0, y0), (x1, y1), ..., (xn−1, yn−1), the point C = (Cx,Cy) is the centroid where

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi),

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi),

and A is the signed area de�ned by the shoelace formula

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi).

The location of the centroid of the cell will not only be used in the computation of
the second kind capacities but also in the initialization of the temperature �eld in the
fresh cells when the interface uncovers new cells as the front moves (see Chapter 4).
Moreover, we de�ne the interface centroid as the mid point of the segment crossing
the cell which will be used in the computation of the Stefan condition. Algorithm 3
summarizes the steps presented in this section.

The purpose of this algorithm is two-folded : (i) it constructs the discrete Lapla-
cian operators using the faces and volume capacities, and (ii) it locates the interface
in our Cartesian grid as well as the cell and interface centroids; informations which
will be used in most of the numerical steps of solving the Stefan problem.
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Algorithm 3: Cut Cell method pseudo-code
input : ϕ, N (size of the domain)
output: L (Laplacian operator)
for (i, j) ∈ (2 : N 9 1, 2 : N 9 1) do

if ϕi,jϕi±1,j±1 < 0 then
Construct the 3× 3 stencil Φ
Compute the interpolation matrix M = G91Φ

(
G91

)T
Determine the sign of the vertices located at
(90.5, 90.5)SW, (0.5, 90.5)SE, (0.5, 0.5)NE, (90.5, 0.5)NW

Compute the isovalue iso = SW+2SE+4NE+8NW
if iso ̸= 0 and iso ̸= 15 then

Store the indices (i, j) of the mixed cell
Locate the intersection points depending on the case
Compute and store the cell centroid on both sides of the interface
Compute and store the interface centroid
Compute the faces and volume capacities of �rst kind A1, A2, V
and second kind B1, B2, W1, W2

end
end

end

Construct the Laplacian operator L

3.4 Validation on stationary geometries

With the discrete Laplacian operators (one for each phase) now constructed, we can
solve the heat equations on both domains

∂T

∂t
= LT, (3.15)

on both domains. Here, L is the discrete linear operator. We couple the Cut
Cell space discretization with a Crank-Nicolson time discretization, where τ is the
time step, ∆ the uniform grid spacing and n the current iteration, resulting in the
following discrete system

Tn − Tn−1

τ
=

1

2

[
1

∆2
LTn +

1

∆2
LTn−1

]
, (3.16)

which requires the solution of a linear system forming a pentadiagonal matrix. We
validate the method in di�erent stationary setups. A convergence study is carried
out for these cases, where the reference solution is taken as the simulation with the
highest number of points per dimension. We look at the L 9 2 norm of the error in
mixed cells, full cells (cells that are not mixed) and in all the cells. In each case, the
initial temperature �eld is set to zero and we impose a Dirichlet boundary condition
at the interface. The ratio τ/∆2 = 0.5 is kept constant as we increase the number
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of points. We consider the following test cases:

1. A solid circle of radius R = 0.85, initialized in a 2 × 2 domain. The level set
function is de�ned as

ϕ(x, y) =
√
x2 + y2 −R.

The Dirichlet TD = 1 boundary condition is imposed at the interface. We
solve only for the phase inside of the circle until a �nal time tf = 0.03125.
The simulation is carried out for di�erent resolutions N = 16, 32, 64, 128
corresponding to 4, 16, 64, 256 iterations, respectively. The reference solution
is taken for N = 256. The results are summarized in Figure 3.8. As expected,
the order of convergence of the error in full cells is close to 2 while the order of
convergence in mixed cells is slightly less than 2. This drop in order in mixed
cells is due to the assumption of a piece-wise linear interface approximation
as well as the accumulation of errors of the bi-quadratic interpolation. The
maximal errors are localized in cells where the wetted area is small (typically
smaller than 5% of ∆2). Nevertheless, the global order of convergence in all
cells is exactly 2.

2. Similar to the �rst case, we initialize a solid circle of radius R = 0.75. The
domain size are the same as well as the considered grid resolutions than in the
previous. This time, we solve outside of the circle with a Dirichlet boundary
condition TD = 1 at the interface and insulated boundary conditions at the
domain boundary. The results, presented in Figure 3.9 are similar to case 1
with a slight drop in absolute error. This is due to the fact that there are less
points per diameter than previously. This case validates the implementation
of the Neumann boundary condition imposed at the domain boundaries.

3. In this third case, we initialize a square of area 1.6 × 1.6 in a 2 × 2 domain.
The level set function is de�ned as

ϕ(x, y) = max((x− 0.8), 9(x+ 0.8), (y − 0.8), 9(y + 0.8).

We impose a Dirichlet boundary condition TD = 1 and solve inside of the
square until the same �nal time tf = 0.03125 with the same resolutions con-
sidered previously. In Figure 3.10, we can see that the maximal errors are
located at the corners. The order of convergence for full cells is similar to
the circle cases as well as for all cells. This case exhibits the robustness of the
method when dealing with mesh aligned geometries as explained in Section 3.2.

4. Finally, in the last case, we consider a crystal in a 2 × 2 domain where the
level set function is de�ned as

ϕ(x, y) =
√
x2 + y2 −R− 0.2 cos (6α) ,

where α is the angle of the interface with respect to the x axis and R = 0.7.
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At the interface, we impose the Gibbs-Thomson relation

TD = εκκ,

with κ the curvature and εκ = 0.01. The resulting temperature �eld will now
depend on the sign and amplitude of κ. We solve only for the phase inside
of the circle until a �nal time tf = 0.0078125. The simulation is performed
for di�erent resolutions N = 32, 64, 128, 256 corresponding to 4, 16, 64,
256 iterations respectively. The reference solution is taken for N = 512. In
Figure 3.11, we can observe a drop in order of convergence for full cells with
respect to the cases where TD was constant. This is explained by the accuracy
of the curvature computation (Equation 1.8). The error is maximal in regions
where the radius of curvature is large, where the interface is quasi aligned with
the grid.

With these validation cases, we close the chapter on the Cut Cell method for di�usive
transport. In the next chapter, we describe the rest of the numerical steps of the
two-phase Stefan problem.
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Figure 3.8: Convergence study of the Cut Cell method coupled with a Crank-Nicolson
scheme when solving the heat equation inside a stationary circle with a Dirichlet boundary
condition TD = 1 imposed at the interface. The top �gures show the position of the interface
in red and the temperature �eld at �nal time tf = 0.03125 for N = 16, 32, 64, 128. The
middle �gure show the normalized error in temperature �eld with respect to the reference
solution taken for N = 256. The bottom �gure shows the convergence rate of the method
in mixed cells, full cells and in all cells.
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Figure 3.9: Convergence study of the Cut Cell method coupled with a Crank-Nicolson
scheme when solving the heat equation outside a stationary circle with a Dirichlet boundary
condition TD = 1 imposed at the interface and insulated boundary conditions. The top
�gures show the position of the interface in red and the temperature �eld at �nal time
tf = 0.03125 for N = 16, 32, 64, 128. The middle �gure show the normalized error in
temperature �eld with respect to the reference solution taken for N = 256. The bottom
�gure shows the convergence rate of the method in mixed cells, full cells and in all cells.
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Figure 3.10: Convergence study of the Cut Cell method coupled with a Crank-Nicolson
scheme when solving the heat equation inside a stationary square with a Dirichlet boundary
condition TD = 1 imposed at the interface. The top �gures show the position of the interface
in red and the temperature �eld at �nal time tf = 0.03125 for N = 16, 32, 64, 128. The
middle �gure show the normalized error in temperature �eld with respect to the reference
solution taken for N = 256. The bottom �gure shows the convergence rate of the method
in mixed cells, full cells and in all cells.
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Figure 3.11: Convergence study of the Cut Cell method coupled with a Crank-Nicolson
scheme when solving the heat equation inside a stationary crystal with a Dirichlet boundary
condition TD = εκκ imposed at the interface. The top �gures show the position of the
interface in red and the temperature �eld at �nal time tf = 0.0078125 for N = 32, 64, 128,
256. The middle �gure show the normalized error in temperature �eld with respect to the
reference solution taken for N = 512. The bottom �gure shows the convergence rate of the
method in mixed cells, full cells and in all cells.
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4.1 Algorithm for solving the forward Stefan problem

In this chapter, the methods used to solve both the forward and the adjoint Stefan
problems are discussed.

The solution algorithm of the classical two-phase Stefan problem is split into
seven main steps:

1. Computation of the geometrical information.

2. Solution of the heat equation in each phase.

3. Computation of the Stefan condition.

4. Extension of the velocity �eld normal to the interface.

5. Propagation of the level-set function.

6. Reinitialization of the level-set function (so as to satisfy the signed distance
property).

7. Handling of the dead and fresh cells.
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It should be noted that in cases where the �ow in the liquid phase is considered,
the algorithm is modi�ed such that the Navier-Stokes equations in the Boussinesq
approximation are solved prior to the convection-di�usion equation (Equation 1.11);
thus before the second step. The solution of the Navier-Stokes equations in the Cut
Cell framework are detailed in Appendix B.

Each of these steps and their corresponding convergence properties are presented
in the following sections and summarized in Algorithm 4. While solving the forward
problem, we store the temperature �eld, the interface position and the phase-change
velocity for use in the adjoint algorithm(see Algorithm 6).

Algorithm 4: Generic algorithm for the solution of the forward problem
input : T 0, TD, w, ϕ

0, u0, P 0, tf
output: T, ϕ

Initialize the level set function with ϕ0 and the temperature �eld with T 0

Set the boundary conditions for T (Equation FP.d)
if �uid �ow then

Initialize the velocity �eld with u0 and the pressure �eld with P 0

Set the boundary conditions for u and P
end
repeat

1. Compute the capacities and centroids (Section 3.3)
if �uid �ow then

2a. Solve the Navier-Stokes equations ũn ← un91 (Appendix B)

2b. Solve the convection-di�usion equation T̃n ← Tn91, ũn, TD
else

2. Solve the heat equations T̃n ← Tn91, TD (Section 3.4)
end

3. Compute the Stefan condition vnS ← [∇T̃n]12 (Section 4.2.1)

4. Extend the velocity �eld Fn ← vnS (Section 4.2.2)

5. Solve the advection equation ϕ̃n ← ϕn91, Fn (Section 4.3.1)

6. Reinitialize the level set function ϕn ← ϕ̃n (Section 4.4.1)
if �uid �ow then

7. Clean or Initialize dead or fresh cells Tn, un ← T̃n, ũn

else

7. Clean or Initialize dead or fresh cells Tn ← T̃n (Section 4.4.2)
end

until �nal time tf ← 0;
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4.2 Phase-change velocity

4.2.1 Discrete Stefan condition

As stated previously, the motion of the interface is solely dependent on the jump in
the temperature gradient. It is therefore important to compute the normal gradient
in temperature of each phase accurately, and to this end, the Johansen-Colella
method [Johansen & Colella 1998] is used

∇T |Γ =
1

dB − dA

(
dB
dA

(TD − T ∗
A)−

dA
dB

(TD − T ∗
B)

)
, (4.1)

with TD the Dirichlet value imposed at the interface, T ∗
A and T ∗

B the interpolated
values of the temperature �eld on points A and B respectively, and dA and dB the
distances between the interface centroid to A and B respectively. The algorithm for
computing the gradient in one phase is as follows:

1. A shifted 3× 3 stencil is chosen, as shown in Figure 4.1.

2. A line from the interface centroid is cast in the normal direction n.

3. The crossing points A and B of this line and the vertical (or horizontal, de-
pending on the normal orientation) segments of the neighboring 3 points are
identi�ed and the distances dA and dB are computed.

4. The values T ∗
A and T ∗

B are interpolated using T 1
A, T

2
A, T

2
A and T 1

B, T
2
B, T

2
B, re-

spectively

Once the normal gradient is computed in each phase, using Equation. 4.1, the jump
is computed as

[∇T ]12 = ∇T1|Γ −∇T2|Γ. (4.2)

The discrete velocities of the front in the partial cells are initialized with this jump
and will be used as the boundary condition in the velocity extension algorithm. To
validate the method within our Cut Cell framework, we consider a stationary circle
of radius R = 0.5 in a 1 × 1 domain and we initialize the temperature �eld with a
similarity solution of the heat equation

T (r) =

 T∞

(
1− f(r)

f(R)

)
, r > R

0, r < R
(4.3)

with T∞ = −0.5 a given under-cooling temperature, and

f(r) = E1(1/4 r
2)

where

E1(t) =

ˆ ∞

x

e−t

t
dt
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T 1
A T 1

B

T 2
A T 2

B

T 3
A T 3

B

n
TD

T ∗
A

T ∗
B

dBdA

Solid Liquid

Figure 4.1: Schematic of gradient calculation. The Dirichlet value Td is imposed at the
interface centroid in the partial cell and the temperatures TA and TB are determined via
a quadratic interpolation from the neighboring 3 points in the vertical direction (dotted
lines).

The discrete velocities at the front are computed for di�erent resolutions N = 32, 64,
128, and the resolution 256×256 is used as the reference solution for the convergence
study. Figure 4.2 shows that the gradient extraction algorithm coupled with the
interface location method results in close to second-order accuracy in both L2 and
L∞ norms.

4.2.2 Normal extension of the velocity �eld

As highlighted in Section 1.2, the front velocity needs to be extended away from
the interface. The most natural algorithm is to let vS be a constant along the
lines normal to Γ. To achieve this, the method described in [Peng et al. 1999] is
adopted here. Using this approach, the velocity is extended in the normal direction
by solving the following hyperbolic partial di�erential equation

∂F

∂t⋆
+ S(ϕ)

∇ϕ
|∇ϕ|

· ∇F = 0 in Ω

F (x, 0) = vS on Γ
(4.4)
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Figure 4.2: L2 and L∞ norms of the error in the gradient computation with the Johansen-
Colella method.

where F is the extended velocity �eld equal to vS at the front, t⋆ denotes a pseudo-
time and S(ϕ) is the signature function

S(ϕ) =


−1 if ϕ < 0

0 if ϕ = 0

+1 if ϕ > 0

(4.5)

Equation 4.4 is then discretized using a �rst order upwind scheme and integrated in
time by a forward Euler method until steady state. Taking n as the normal vector
de�ned as

n = (nx, ny) =
(
ϕx/
√
(ϕ2x + ϕ2y), ϕy/

√
(ϕ2x + ϕ2y)

)
, (4.6)

the discretisation leads to

Fn+1
ij =Fn

ij − τ⋆
((
Sijn

x
ij

)+ Fij − Fi−1j

∆
+
(
Sijn

x
ij

)− Fi+1j − Fij

∆

+
(
Sijn

y
ij

)+ Fij − Fij−1

∆
+
(
Sijn

y
ij

)− Fij+1 − Fij

∆

) (4.7)

where ∆ is the uniform grid spacing, (x)+ = max(0, x) and (x)− = min(0, x),
and the time step τ⋆ is chosen so that τ⋆/∆2 = 0.45. The pseudo-time spawn in
the velocity extension algorithm is purely �ctitious and the number of iterations
in Equation 4.7 corresponds to the width of the narrow-band (NB) around the 0-
level set where the velocities are initialized. Figure 4.3 shows an example of an
initial velocity �eld for di�erent narrow-band widths, after one iteration of the heat
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equation, where the temperature at the interface TD = εκκ depends only on the
curvature. The computed discrete velocities are positive in the kinks and negative
in the tips driving the initial crystal towards a circular shape.

Figure 4.3: Velocity �elds of a crystal-shape geometry. The red curves represent the
interface location and the velocity �elds correspond, from left to right, to narrow bands
widths of 0, 6 and 12.

4.3 The advection equation

4.3.1 Forward-Backward di�usion scheme

A semi-implicit scheme described in [Mikula et al. 2014, Mikula & Ohlberger 2010]
is used here to solve the level set advection equation (Equation 1.9). Using this
method, the equation is written in an alternative form

∂ϕ

∂t
+ F

∇ϕ
|∇ϕ|

· ∇ϕ = 0, (4.8)

which is then divided into conservative and non-conservative terms

∂ϕ

∂t
+∇ ·

(
Fϕ
∇ϕ
|∇ϕ|

)
︸ ︷︷ ︸

a

−ϕ∇ ·
(
F
∇ϕ
|∇ϕ|

)
︸ ︷︷ ︸

b

= 0, (4.9)

resulting in a second order partial di�erential equation akin to a weighted di�usion
equation. The �rst term (a) has a di�usion coe�cient Fϕ that depends on the
solution and represents a nonlinear curvature �ow whereas in the second term (b)
the solution is multiplied by the curvature of its level-sets. The main idea behind
this scheme is to distinguish two cases: if the product Fϕ is negative (positive,
respectively) then a represents a forward (backward, respectively) di�usion and b

represents a backward (forward, respectively) di�usion. The forward di�usion is
treated implicitly while the backward di�usion is treated explicitly leading to a
semi-implicit scheme with a di�usive CFL number.
In order to discretize Equation 4.9, we use the same notation as
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in [Mikula et al. 2014]. Consider p to be a �nite volume of a cell and epq
the edge between p and q, q ∈ N (p) where N (p) is the set of neighboring �nite
volumes. The length of epq is normalized to 1. Let npq be the outer normal vector
to epq with respect to p. Finally, let us denote ϕ̄p the constant reconstruction of ϕp
in the �nite volume p and ϕ̄pq the constant reconstruction of ϕ on epq. Integrating
volume p, Equation 4.9 yields

ˆ
p

∂ϕ

∂t
dx+

ˆ
p
∇ ·
(
Fϕ
∇ϕ
|∇ϕ|

)
dx−

ˆ
p
ϕ∇ ·

(
F
∇ϕ
|∇ϕ|

)
dx = 0. (4.10)

Applying Stokes' theorem and using the constant reconstructions of ϕ, we obtain
ˆ
p

∂ϕ

∂t
dx+

∑
q∈N (p)

ϕ̄pq

ˆ
epq

F
1

|∇ϕ|
∇ϕ · npqds

−
∑

q∈N (p)

ϕ̄p

ˆ
epq

Fϕ
1

|∇ϕ|
∇ϕ · npqds = 0.

Let us denote |∇ϕpq| the reconstructed Hamiltonian |∇ϕ| on the edge epq and
(ϕq − ϕp) /1 the normal derivative ∇ϕ · npq on the same edge. We obtain the
following expression

ˆ
p

∂ϕ

∂t
dx+

∑
q∈N (p)

Fϕ̄pq
|∇ϕpq|

(ϕq − ϕp)

−
∑

q∈N (p)

Fϕ̄p
|∇ϕpq|

(ϕq − ϕp) = 0,

leading to ˆ
p

∂ϕ

∂t
dx+

∑
q∈N (p)

F (ϕ̄p − ϕ̄pq)
|∇ϕpq|

(ϕp − ϕq) = 0. (4.11)

Looking at the term F (ϕ̄p − ϕ̄pq), we can distinguish two cases:

� If the term is positive, we have a `forward di�usion' or in�ow towards the cell.

� If the term is negative, we have a `backward di�usion' or out�ow from the cell.

We therefore de�ne the di�usion coe�cient apq as

apq =
F (ϕ̄p − ϕ̄pq)
|∇ϕpq|

, (4.12)

and the related dominant forward and backward di�usion parts as

afpq = max(apq, 0), abpq = min(apq, 0). (4.13)

Using a backward Euler time discretization, taking the forward contribution ex-
plicitly and the backward contribution implicitly, Equation 4.11 gives the following
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linear system

ϕnp +
τ

∆2

∑
q∈N (p)

afpq(ϕ
n
p − ϕnq)︸ ︷︷ ︸

implicit

= ϕn91p +
τ

∆2

∑
q∈N (p)

abpq(ϕ
n91
p − ϕn91q )

︸ ︷︷ ︸
explicit

(4.14)

where τ is the time step, ∆ the uniform grid spacing and n a given time
step. The question remaining is how to tackle the reconstruction of ϕ̄p, ϕ̄pq
and |∇ϕpq|. The latter is constructed using the diamond-cell strategy described
in [Mikula & Ohlberger 2010]. Consider ϕ1pq and ϕ2pq the values of ϕ located at the
end points x1pq and x2pq of the edge epq as shown in Figure 4.4. ϕ1pq and ϕ2pq are
de�ned as the average of the 4 adjacent values of ϕ. Bearing this in mind, we can
de�ne the reconstructed Hamiltonian as

|∇ϕpq| =

[(
ϕp − ϕq

∆

)2

+

(
ϕ1pq − ϕ2pq

∆

)]1/2
(4.15)

xp xq

x2pq

x1pq

npq

afpq

abpq

Figure 4.4: Schematic of the diamond-cell strategy for the calculation of the Hamiltonian.
The red arrow corresponds to the forward coe�cient and the blue arrow to the backward
coe�cient.

The remaining reconstructions are carried out as follows:

1. As a �rst step we consider the simplest reconstruction

ϕ̄p = ϕp, ϕ̄pq =
1

2
(ϕp + ϕq). (4.16)
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2. For every �nite volume p we determine the characteristic of the di�usion co-
e�cient by computing the sum of the forward and backward contributions

Sf
p =

∑
q∈N (p)

afpq, Sb
p =

∑
q∈N (p)

abpq. (4.17)

3. If the forward di�usion is dominant (ie. Sf
p > 9Sb

p) then no further steps are
needed as the discretization will lean towards the implicit part.

4. On the other hand, if the backward di�usion is dominant (ie. Sf
p < 9Sb

p),
we need to smooth the reconstructed solution for stability, using the following
formula

ϕ̄p =
1

4

∑
q∈N (p)

(ϕp + ϕq + ϕ1pq + ϕ2pq), ϕ̄pq =
1

4

∑
q∈N (p)

ϕpq. (4.18)

In case of step 4, the di�usion coe�cients are recomputed using the new reconstruc-
tions. Algorithm 5 summarizes the steps to construct the linear system at each time
step. The resulting matrix is a pentadiagonal matrix as in the Cut Cell method
coupled with a Crank-Nicolson scheme (see Section3.4).

4.3.2 Numerical validation

This scheme allows us the relaxation of the CFL condition, usually present in most
of level set methods. To check the robustness of the method for a τ/∆2 ratio
exceeding the usual CFL condition, we consider an initial level set function ϕ0 in a
2× 2 domain, given by

ϕ0(x, y) =
√
x2 + y2 −R, (4.19)

with R = 0.8 the radius of the 0-level set. The velocity �eld is set to F = −1 in
the whole domain and we run the simulation until the �nal time tf = 0.3625 for
di�erent resolutions N = 16, 32, 64 and di�erent CFL numbers ranging from 1 to
16. The L2 norm of the error with respect to the analytical solution is computed
in the whole domain. Results in Figure 4.5 show a second-order accuracy for any
given CFL number for the retracting circle case.
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Algorithm 5: Forward-Backward di�usion scheme
input : ϕn91, F
output: ϕn

Set the boundary conditions for ϕn91

foreach element xp ∈ Ω\∂Ω do
Use the reconstructions

ϕ̄p = ϕp, ϕ̄pq =
1

2
(ϕp + ϕq)

Compute the Hamiltonian using the diamond-cell strategy

|∇ϕpq| =

[(
ϕp − ϕq

∆

)2

+

(
ϕ1pq − ϕ2pq

∆

)]1/2
Compute the forward and backward di�usion coe�cients

apq =
F (ϕ̄p − ϕ̄pq)
|∇ϕpq|

afpq = max(apq, 0), abpq = min(apq, 0)

Compute the dominant contribution

Sf
p =

∑
q∈N (p)

afpq, Sb
p =

∑
q∈N (p)

abpq

if Sf
p < 9Sb

p then
Use the reconstructions

ϕ̄p =
1

4

∑
q∈N (p)

(ϕp + ϕq + ϕ1pq + ϕ2pq), ϕ̄pq =
1

4

∑
q∈N (p)

ϕpq

Recompute the forward and backward di�usion coe�cients

apq =
F (ϕ̄p − ϕ̄pq)
|∇ϕpq|

afpq = max(apq, 0), abpq = min(apq, 0)

end
end
Solve the linear system

ϕnp +
τ

∆2

∑
q∈N (p)

afpq(ϕ
n
p − ϕnq) = ϕn91p +

τ

∆2

∑
q∈N (p)

abpq(ϕ
n91
p − ϕn91q )
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Figure 4.5: The top �gures represent the normalized error �eld for di�erent CFL = 1,
4, 16 and �xed N = 64. The red (white, respectively) curve represents the initial (�nal,
respectively) 0-level set. In the bottom �gure the error in L2 norm is plotted for di�erent
resolutions and CFL numbers. The vertical blue lines correspond to a �xed number of
points for varying CFL numbers.

4.4 Reinitialization and initialization steps

4.4.1 Reinitialization algorithm

Depending on the case, usually after one or more iterations of the time advancement
scheme, the level set function will cease to be an exact signed distance function,
necessitating a reinitialization step to enforce this criterion at the front Γ (t). Given
a function ϕ0, which is not a signed distance function, it can be evolved into a
function ϕ by solving the Eikonal equation

∂ϕ

∂t⋆
= S (ϕ0) (1− |∇ϕ|) in Ω,

ϕ(x, τ) = 0 on Γ (t) ,
(4.20)
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where t⋆ again denotes a pseudo-time, S(ϕ0) is the signature function (Equation 4.5),
and ϕ the signed distance function (once steady-state is reached). There exist many
numerical methods for solving the Eikonal equation and, here we have adopted that
of Min [Min 2010], also recently used in the work of Limare [Limare et al. 2023].
This approach relies on a second order ENO spatial discretization with sub-cell
resolution near the interface. The one-sided ENO �nite di�erence (in the x direction
only) yields

D+
x ϕij =

ϕi+1,j − ϕij
∆

− ∆

2
minmod (Dxxϕij , Dxxϕi+1,j) ,

D−
x ϕij =

ϕi,j − ϕi−1,j

∆
+

∆

2
minmod (Dxxϕij , Dxxϕi−1,j) ,

(4.21)

where Dxxϕij = (ϕi−1,j − 2ϕij + ϕi+1,j) /∆
2 is the second order derivative of ϕij and

the `minmod' limiter is zero when both arguments have opposite signs, and takes
the argument of smallest absolute value otherwise. The numerical Hamiltonian |ϕ|
is computed as follows

|∇ϕ|ij ≃ HG

(
D+

x ϕij , D
−
x ϕij , D

+
y ϕij , D

−
y ϕij

)
, (4.22)

where function Hg is given by

HG(a, b, c, d) =


√
max

(
(a−)2 , (b+)2

)
+max

(
(c−)2 , (d+)2

)
when S

(
ϕ0
)
⩾ 0,√

max
(
(a+)2 , (b−)2

)
+max

(
(c+)2 , (d−)2

)
when S

(
ϕ0
)
< 0.

(4.23)
Near the interface, the �nite di�erences need to be modi�ed in order to impose ϕ = 0

where ϕ0 = 0. To this end, a quadratic ENO polynomial interpolation gives

D+
x ϕij =

0− ϕij
∆+

− ∆+

2
minmod (Dxxϕij , Dxxϕi+1,j) , (4.24)

where

∆+ =


∆

1

2
+
ϕ0ij − ϕ0i+1,j − S

(
ϕ0ij − ϕ0i+1,j

)√
D

ϕ0xx

 where
∣∣ϕ0xx∣∣ > ε,

∆
ϕ0ij

ϕ0ij − ϕ0i+1,j

elsewhere,

(4.25)
with

ϕ0xx = minmod
(
ϕ0i−1j − 2ϕ0ij + ϕ0i+1,j , ϕ

0
ij − 2ϕ0i−1,j + ϕ0i−2j

)
,

and
D =

(
ϕ0xx/2− ϕ0ij − ϕ0i−1,j

)2 − 4ϕ0ijϕ
0
i−1,j .
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The negative one-sided ENO di�erence D−
x is obtained similarly. A forward Euler

scheme is then used for time advancement. This Hamiltonian extraction will also
be used for check-pointing in the adjoint problem (Equations AP.e and AP.f) when
needed. We validate the method by initializing a perturbed solution, similar to the
test case found in [Min 2010], in a 4× 4 domain

ϕ0(x, y) = ((x− 1)2 + (y − 1)2 + 0.1)× (
√

(x± a)2 + y2 −R), (4.26)

where R = 1 and a = 0.7. Figure 4.6 shows the initial perturbed level set function
in a 128 × 128 grid converging towards a signed distance function with increasing
number of iterations in pseudo-time.

Figure 4.6: The -2 to 1 level sets of the function ϕ are shown with a 0.1 step. The red
curve represents the 0-level set. After 90 iterations the level set function is a true signed
distance function.

4.4.2 Fresh and dead cells

The last step of the method presented in this study is the treatment of fresh and dead
cells. As the interface moves through the Cartesian grid, the temperature �eld needs
to be initialized according to the front position. Two cases can be distinguished

� A full or partial cell becomes an empty cell.

� An empty cell becomes a partial cell.

In the �rst case, the previous temperature value is simply set to 0. In the second
case, the temperature previously non-existing needs to be initialized. The algorithm
is similar to that of the Stefan condition (Section 4.2.1)

1. A shifted 3× 3 stencil is chosen, as shown in Figure 4.7.

2. A line from the interface centroid is cast in the opposite normal direction 9n.

3. The crossing points A and B of this line and the vertical (or horizontal de-
pending on the normal orientation) segments of the neighboring 3 points, are
identi�ed.
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vS

Liquid Solid

Stencil at time tn

: full cells : mixed cells : empty cells

n

T 1
B T 1

A

T 2
B T 2

A

T 3
B T 3

A

nTnew

TB

TA

Stencil at time tn+1

Figure 4.7: Example of empty cells becoming partial cells from the point of view of the
solid phase. The interface at time tn moves in the normal direction with speed V . At time
tn+1, the newly initialized value Tnew located at the partial cell centroid is extrapolated
from TA and TB.
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2
B respec-

tively.

5. The coordinates o = (xnew, ynew) of the barycenter of the cell to initialize is
located.

The last step is done by using the discrete face capacities de�ned in Section 3.3.
An orthonormal coordinate system R = (o, (x′,n)) similar to the parabola-�tted
curvature found in [Popinet 2009] is then de�ned. Finally, the new temperature
value, Tnew, is linearly extrapolated by solving for a0 and a1 in the resulting system
of equations {

T ∗
A = a0x

′
A + a1,

T ∗
B = a0x

′
B + a1,

(4.27)

where a1 = Tnew.

4.5 Algorithm for solving the adjoint Stefan problem

We present here the algorithm for solving the adjoint problem (Equation AP). The
adjoint variables Θ and ψ are solved backward in time in order to compute the
gradient equation (Equation AP.h). These variables are initialized with the forward
variables at �nal time. As mentioned in Chapter 2, the adjoint level set ψ is no
longer a signed distance function but an auxiliary variable that enters in the Dirichlet
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boundary condition of the adjoint temperature Θ at the interface. The location of
the interface at a given time step n is known thanks to ϕn, an information that is
stored during the forward resolution of the problem (Algorithm 4). Moreover, the
constructed Laplacian at the same time step n, computed thanks to Alogrithm 3, is
re-used to solve the adjoint heat equations. The steps required to solve the adjoint
problem are described in Algorithm 6.

Algorithm 6: Algorithm for the solution of the adjoint problem
input : T, ϕ, εV , tf
output: Θ0

Initialize the adjoint temperature �eld Θf (Equation AP.c)

Initialize the adjoint level set function ψf (Equation AP.g)

Set the boundary conditions for Θ (Equation AP.d)
repeat

1. Checkpoint the faces, volumes and centroids with ϕn

2. Compute the adjoint Stefan condition [∇Θ̃n]12 ← Θn

3. Solve the adjoint advection equation
ψn−1 ← ψn, Tn, ϕn, vns , [∇Θ̃n]12, εV (Equation AP.f)

4. Solve the adjoint heat equations Θ̃n−1 ← Θ̃n, ψn−1, ϕn

5. Clean or Initialize dead or fresh cells Θn−1 ← Θ̃n−1

until initial time 0← tf ;

Finally, we focus on the solution of the �rst-order conservation law (Equation AP.f)
on Γ. Solving this �rst-order equation on a time time moving surface can be a
numerical challenge. Fortunately, all the derivatives can be extended on all of Ω.
Leading to the following equation,

∂ψ

∂t
+ div(ψv⃗S) = rhs in Ω, (4.28)

where the right hand side

rhs =
1

|∇ϕ|

(
∂T

∂n
− εV

∂vS
∂n

)
[∇Θi]

1
2 · n,

is computed beforehand. Numerically, Equation 4.28 is solved using the same
Forward-Backward di�usion scheme presented in Section 4.3.1.

With this, we close the Chapter on numerical methods for both the forward
and adjoint Stefan problems. In the next Chapter, we present numerical results of
the forward problem as well as validations on analytical solutions of the two-phase
Stefan problem.
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5.1 Flower.jl an in-house Julia package

In this Chapter, we validate our numerical scheme with respect to analytical so-
lutions of the two-phase Stefan problem. Moreover, we present numerical results
of growing crystal in an under-cooled liquid bath and Rayleigh-Bénard convection
with a melting boundary.
The code is written in Julia [Bezanson et al. 2017] a high level scienti�c program-
ming language. The key features of the Julia language are:

� Just-In-Time compilation: the code is compiled during execution of a program,
at run time.

� Multiple dispatch: dispatch process to choose which of a function's methods
to call based on the number of arguments given, and on the types of all of the
function's arguments.

� Broadcasting : applies a given function element-wise on a multi-dimensional
array without using extra memory.

� Shared-memory parallelization: easy implementation multi-threading in the
main loops.

https://julialang.org/
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The numerical schemes presented in Chapter 4 are coded in an in-house package
Flower.jl (see Appendix C for more details). Each time step of the forward or
adjoint two-phase Stefan problem requires the solution of 2 + 1 linear systems:

1. The two heat equations (one for each phase) using the Cut Cell method coupled
to the semi-implicit Crank-Nicolson scheme (Equation 3.15).

2. The level set advection equation using the Forward-Backward di�usion scheme,
either in the forward problem (Equation 4.14) or in the adjoint case (Equa-
tion 4.28).

The linear systems are solved using the Conjugate Gradient iterative method im-
plemented in the Iterative.jl package. In the case of �uid �ow, the viscous term
in the Navier Stokes equations (see Appendix B) is solved using PETSc (Portable,
Extensible Toolkit for Scienti�c Computation) [Balay et al. 1997]. This C library is
wrapped in the Julia language in PETSc.jl .

The optimization cases presented in Chapter 6 are carried out using the L-BFGS
method (adjoint-based) or the Particule Swarm algorithm (derivative-free) imple-
mented in the Optim.jl package [Mogensen & Riseth 2018].

5.2 Analytical solutions of two-dimensional problems

5.2.1 Planar interface

We validate our numerical methods for Stefan problems against analytical solutions.
As a �rst benchmark, we consider a moving planar interface bounded by two walls.
This case is taken from [Limare et al. 2023], where they benchmark their hybrid
embedded-level set boundary method, and from [Crank 1987] (original test case).
An initial ice layer is melting from the top where we impose a positive temperature
T 1
wall. The melting temperature is set to TM = 0 and we only solve for the liquid

phase. The Stefan number is set to

St =
cL(T

1
wall − TM )

LH
= 2.85,

where cL is the liquid heat capacity and LH the latent heat. The initial temperature
in the liquid phase, only depending in the y coordinate, is set to

TL(y, t0) =

erf

(
1− y
2
√
t0

)
erf(l)

, (5.1)

where t0 is the initial time at which the simulation is started and l = 0.9. The
analytical position of the interface is given by the following formula

y = 1− 2l
√
t. (5.2)

https://github.com/flnt/Flower.jl
https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://petsc.org/release/
https://github.com/JuliaParallel/PETSc.jl
https://github.com/JuliaNLSolvers/Optim.jl


5.2. Analytical solutions of two-dimensional problems 69

Figure 5.1: Convergence of the temperature �eld in the planar interface case. L2 and
L∞ norms of the error in temperature in all cells as a function of the number of points per
dimension.

The simulation is started at t0 = 0.03 such that there are enough cells to compute the
Stefan condition (Equation 4.1). The simulations is run until a �nal time tf = 0.1 for
di�erent number of points per dimension N = 16, 32 and 128. The ratio τ/∆2 = 0.5

is kept constant as we increase the spatial resolution. In Figure 5.1, we show the L2

and L∞ error norm of the temperature �eld with respect to the analytical solution
(Equation 5.1). The method shows an second order convergence in both norms.
This case validates the initialization of fresh cells since, as the ice layer melts, it
unveils previously non-existing cells in the liquid phase which need to be properly
initialized (fresh-cell problem).

5.2.2 Growing Frank's spheres

The growth of an ice sphere surrounded by an under-cooled liquid was initially
studied by Frank [Frank 1950] where he showed that the initial sphere radius evolved
in a self-similar manner as the square-root of time. This problem can be used to
validate the accuracy of the numerical scheme by comparing the results with an
analytical solution. In this con�guration, the temperature �eld is given by

T (r, t) = T (s) =

 T∞

(
1− F (s)

F (S)

)
, s > S,

0, s < S,
(5.3)
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where r =
√
x2 + y2 and s = r/t1/2. T∞ is a given under-cooling temperature, and

F (s) denotes the similarity solution of the heat equation

F (s) = E1(1/4 s
2).

As the sphere expands, numerical errors may lead to an unwanted alteration of the
initial shape due to the Mullins-Sekerka instability [Mullins & Sekerka 1964], where
a perturbed solution can lead to unstable dendritic growth in the case of zero melting
temperature (TM = 0). We therefore test the robustness of our method using the
initial parameters recommended in Almgren [Almgren 1993].

The initial level set function is a circle of radius R0 = 1.56 in a 8 × 8 domain
surrounded by an initial negative temperature �eld (Equation 5.3 with T∞ = −0.5).
The initial time is set to 1 and the simulation is advanced until a �nal time tf = 2.
We carry out the simulations with di�erent grids N = 32, 64 and 128. The results
of this study are summarized in the following �gures.

Figure 5.2: Convergence of the radius towards the analytical solution as a function of
time for the growing Frank sphere.

Figure 5.2 shows the convergence of the radius towards the analytical solution.
Figure 5.3 shows the �nal error map in temperature �eld as well as the interface
positions at di�erent times t = 1, 1.5, 2. We can clearly see that the initial sphere
tends towards the analytical �nal shape as we increase the number of points. The
intrinsic regularization of our method allows the level set function to retain its initial
circular shape, avoiding spurious interface oscillations. In Figure 5.4, we present
the error norm in temperature �eld for the di�erent type of cells. The order of
convergence is close to 1.5 for cells that are not mixed. The following test cases will
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focus on the dendritic growth of an initial crystal shape in a uniform under-cooled
temperature �eld.

Figure 5.3: Positions of the interface at times t = 1, 1.5, 2 for the di�erent grids. The
dotted lines correspond to the initial radius R(t = 1) = 1.56 and the analytical radius
at �nal time R(t = 2) = 2.206. The heat map corresponds to the normalized error in
temperature �eld for the highest resolution N = 128.
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Figure 5.4: Convergence of the temperature �eld in the growing Frank sphere case. L2

norm of the error in temperature for mixed, full and all cells as a function of the number
of points per dimension.

5.3 Crystal growth in an under-cooled liquid bath

5.3.1 Surface tension e�ects

Crystal growth is an unstable phenomenon that occurs spontaneously in nature. Its
appearance is the result of a competition between the natural growth due to the
Stefan condition (Equation 1.2), which tends to stretch the tips, and the surface
tension e�ect present in the Gibbs-Thomson relation (Equation 1.3), which tends
to restore the �atness of the interface (see [Langer 1980] for further details).

Numerical reproduction of such patterns is a challenge, since the dendritic growth
depends on the smallest resolved length scale. Moreover, in the absence of surface
tension, the numerical noise and the Mullins-Sekerka instability will lead to an
unphysical growth of the initial crystal. An example of crystal growth without
surface tension e�ects is shown in Figure 5.5. The initial 4-folded crystal expands
in an unordered fashion with numerically produced dendrites. On the other hand,
when taking into account the surface tension e�ects, the solution is regularized
(Figure 5.6).



5.3. Crystal growth in an under-cooled liquid bath 73

Figure 5.5: Example of numerical instabilities in crystal growth due to the absence of
surface tension e�ects. The initial condition is a solid crystal at temperature T = 0 sur-
rounded by an under-cooled temperature �eld with T∞ = −0.5. The color map represents
the �nal temperature �eld.



74 Chapter 5. Numerical simulations of two-phase Stefan problems

Figure 5.6: Example of the regularization introduced by the surface tension e�ects in
crystal growth. The initial solid crystal at a temperature T = 0 is surrounded by an under-
cooled temperature �eld with T∞ = −0.5. The color map represents the �nal temperature
�eld.
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In order to validate our method and to qualitatively describe the e�ect of the Gibbs-
Thomson relation, a case similar to that of Chen [Chen et al. 1997] is considered,
where an initial solid crystal is surrounded by an under-cooled liquid. The level set
function is initialized in a 2× 2 domain as

ϕ0(x, y) =
√
x2 + y2 × (0.1 + 0.02 cos(4α)− 0.01), (5.4)

where α is the angle of the interface with respect to the x axis, and T∞ = −0.5.

Figure 5.7: E�ect of the surface tension coe�cient on the dendrite growing tips for the
indicated coe�cients. The initial solid crystal at a temperature T = 0 is surrounded by
an under-cooled temperature �eld with T∞ = −0.5. The color map represents the �nal
temperature �eld.

The surface tension coe�cient is varied from 0.0004 to 0.001 for a �xed N = 200

with the kinetic coe�cient set to εV = 0. Figure 5.7 clearly demonstrates the sta-
bilizing e�ect of the Gibbs-Thomson relation. The tip-splitting disappears as the
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surface tension increases. This behavior is explained by a stronger regularization
due to higher surface tension coe�cient, reducing the growth rate of the instabil-
ity, and is in agreement with the observations in similar regimes [Chen et al. 1997,
Juric & Tryggvason 1996].

5.3.2 Grid re�nement e�ects

The simulation presented in the previous section were carried out with a relatively
high number of points per dimension (N = 200). As a second validation, the e�ect
of the grid resolution on the solution (Figure 5.8) is assessed.

Figure 5.8: E�ect of grid re�nement on the dendrite growing tips. The initial solid
crystal at a temperature T = 0 is surrounded by an under-cooled temperature �eld with
T∞ = −0.5. The color map represents the �nal temperature �eld. The �nal time is tf = 0.5
and the interface is plotted with a time step of 0.025.

The surface tension coe�cient is �xed at εκ = 0.0004, and kinetic coe�cient is set
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to εV = 0. The simulations are advanced with insulated boundary conditions until
a �nal time tf = 0.5 for di�erent grid resolutions N = 50, 100, 150, 200. Figure 5.8
shows that as the grid size decreases, the tip-splitting appears earlier and the length
of the dendrites increases. The �nal shape converges towards an 8-fold symmetric
crystal shape.

5.3.3 E�ect of the molecular kinetic coe�cient

Figure 5.9: E�ect of the molecular kinematic coe�cient on the dendrite growing tips. The
initial solid crystal at a temperature T = 0 is surrounded by an under-cooled temperature
�eld with T∞ = −0.5. The color map represents the �nal temperature �eld. The �nal time
is tf = 0.4 and the interface is plotted with a time step of 0.02.

In this test case, we asses the e�ect of the molecular kinetic coe�cient. We take the
same initial condition than in Section 5.3.1, we �x the surface tension εκ = 0.001 and
we run the simulation until a �nal time tf = 0.4. Figure 5.9 shows the e�ect of the
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kinematic coe�cient as we vary εV from 0 to 0.0016. As the coe�cient is increased,
the tip of the dendrites move faster from the initial shape. At the tip, where the
initial velocity is maximal, due to the Stefan condition, the melting temperature is
reduced by an εV vS factor thus further entraining the growing motion.

5.3.4 Anisotropy e�ects

In order to accurately reproduce the crystal shapes produced by dendritic growth,
we introduce a variable surface tension coe�cient, similar to [Tan & Zabaras 2006]
and [Limare et al. 2023], in the Gibbs-Thomson relation (Equation 1.3) to account
for anisotropy e�ects

ε̄κ(α) = εκ

(
1 +A

[
8

3
sin4

(
1

2
M (α− α0)

)
− 1

])
, (5.5)

where εκ is the surface tension coe�cient, A represents the weight of the anisotropy
e�ect, M the mode number, α the angle of the interface with respect to the x-axis
and α0 the prescribed angle of symmetry on which the dendrites will grow.

To validate the anisotropy e�ects, we initialize a six-fold crystal in an under-
cooled liquid with T∞ = −0.8 and a �xed velocity coe�cient εV = 0. The anisotropic
weight is �xed at A = 0.4 and mode number M = 6. The simulations are carried
out for two di�erent prescribed angles α0 = π/2, π/4 until a �nal time tf = 0.09 in
a 2× 2 domain with N = 300.

Figure 5.10 shows the crystal growing in the direction of the prescribed angle
α0 = π/2, when the angle of symmetry is aligned with the initial branches. The
minimal surface tension e�ect along the symmetry lines allows the the primary
branches to grow further away from the initial crystal. We can also observe sec-
ondary branches appearing and propagating. When α0 = π/4 (di�erent from the
initial orientation of the branches) the crystal rotates towards the prescribed di-
rection (Figure 5.11). These results validate our implementation of the anisotropy
e�ects.
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Figure 5.10: Anisotropy e�ects on the crystal growth for a prescribed angle of symmetry
α0 = π/2. The initial condition is a six-fold solid at temperature T = 0 surrounded by
an under-cooled temperature �eld with T∞ = −0.8. The color map represent the �nal
temperature �eld. The �nal time is tf = 0.09 and the interface is plotted with a time step
of 0.0045.
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Figure 5.11: Anisotropy e�ects on the crystal growth for a prescribed angle of symmetry
α0 = π/4. The initial condition is a six-fold solid at temperature T = 0 surrounded by
an under-cooled temperature �eld with T∞ = −0.8. The color map represent the �nal
temperature �eld. The �nal time is tf = 0.09 and the interface is plotted with a time step
of 0.0045.
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5.4 Rayleigh-Bénard convection with a melting bound-

ary

In this section, we investigate the formation of convection cells when considering
a �uid �ow in the two-phase Stefan problem. The global Rayleigh number (Equa-
tion 1.13) will control the onset of the Rayleigh-Bénard instabilities. We use the
setup described in Section 1.3, where a initial �uid layer of height h0 is bounded
by two walls in a [0 : bH] × [0 : H] domain with b the aspect ratio. We consider
an isothermal solid phase such that the temperature in the solid phase is set to the
melting temperature TM = 0.

We de�ne an e�ective Rayleigh number similarly to Favier [Favier et al. 2019]
and Limare [Limare et al. 2023] as

Rae = Ra(1− TM )h̄3, (5.6)

where h̄ is the average �uid height de�ned as

h̄(t) =
1

b

ˆ b

0
h(x, t)dx. (5.7)

When the e�ective Rayleigh number reaches the well-known critical value Rac =
1707.76, the initial di�usion-driven motion is transformed into a convection-driven
one. We carry out simulations for di�erent Ra = 103, 104, 105 and106 with a Stefan
number set to St = 0.25. The aspect ratio is set to b = 8 and the grid used in our
simulation is 512 × 64. The simulation are run until the maximum height reaches
0.9H.

Figure 5.12 shows the e�ective Rayleigh number as a function of time for the
di�erent cases. When Ra = 103 and Ra = 104 the critical Rayleigh number is
not reached and the motion of the �uid layer is not a�ected, thus remaining a
di�usion-driven one, similarly to the planar motion described in Section 5.2.1. In
the Ra = 105 and Ra = 106 cases, however, we see Rae crossing the threshold
indicating the onset of the instability. This onset is visible in Figure 5.13, where the
average height strongly increases when the convection-driven motion takes over.

Figure 5.14 shows a time series of the temperature �eld and interface position
for the Ra = 106 case. In that case, the critical Rayleigh number is reached at
t⋆ = 0.1034 and the �rst bifurcation appears, creating the convection cells. The size
of the convection cells will then vary with the secondary bifurcations mechanism.
When the averaged height h̄ matches the characteristic wavelength of the convection
rolls, the convection cells have su�cient time to merge and then stabilize. We also
note that the interface is deformed according to the shape of the cells.



82 Chapter 5. Numerical simulations of two-phase Stefan problems

Figure 5.12: E�ective Rayleigh number in logarithmic scale as a function of time for the
indicated global Rayleigh numbers. The dotted black line indicates the critical Rayleigh
number.
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Figure 5.13: Average height as a function of time for the indicated global Rayleigh num-
bers. The black dots indicate the moment the Rac is reached for the Ra = 105 and Ra = 106

cases.
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(a) t⋆ = 0.0611

(b) t⋆ = 0.1034

(c) t⋆ = 0.1705

(d) t⋆ = 0.2211

(e) t⋆ = 0.2809

(f) t⋆ = 0.3474

(g) t⋆ = 0.3761

(h) t⋆ = 0.4501

(i) t⋆ = 0.5197

Figure 5.14: Times series of the temperature �eld and interface position in the Ra = 106

case. The Rayleigh-Bénard convection cells appear at t⋆ = 0.1034.
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6.1 Actuation function parametrization

A range of optimization cases for the Stefan problem with varying complexity are
presented here. The results and performance of the adjoint-based algorithm (Algo-
rithm 2) are analyzed and compared to a derivate-free algorithm (with no gradient
requirement) for these di�erent setups.

In all of the cases the desired temperature �eld, T f , and desired level set, ϕf ,
are computed beforehand, and are used to drive the control variable w that acts as a
Neumann (or Dirichlet) boundary condition on the domain boundary. The actuator
w is parametrized with a Fourier basis

w =
n∑

p=1

ap cos (pπx) +
n∑

p=1

bp sin (pπx) , (6.1)

where x corresponds to the bounds of the domain and a and b to the basis coe�-
cients. The number of coe�cients to �t is 2n, with n being the order of each basis
function. Through the optimization process, the amplitude of each basis function is
determined using the gradient equation (Equation AP.h).

By opting for a parameterized distribution we ensure the smoothness of the
actuation function. Due to the high sensitivity of the cost functional with respect
to the basis considered � too many parameters will create multiple local minima �
the number of parameters are kept at a low enough value to ensure the convexity of
the problem while allowing spatial variation of the actuation function.
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Figure 6.1: Example of convex cost functional as a function of two parameters a1 and b1.

An example of cost functional J as a function of the two coe�cients that
parametrize the actuator is shown in Figure 6.1. In that simple case, the convexity
of the cost functional is clear and the gradient equation will drive J towards the
global minimum. Moreover, in all of the optimization cases considered, the initial
guess � the starting point in our cost functional space � is set to w = 0 in order not
to add a bias regarding the initial descent.

6.2 Adjoint-based optimization cases

6.2.1 Asymmetric melting of a solid circle

In the �rst case, we consider an asymmetric expansion and retraction of an initial ice
circle of radius R = 0.75 in a 2×2 domain. The surface tension coe�cient is constant
and set to εκ = 0.002 while εV = 0. The non-zero surface tension coe�cient is added
to further regularize the level set function. The number of points per dimension is
N = 64 and the �nal time is set to tf = 0.1.

The control w acts on the whole domain boundary and is of Dirichlet type. The
adjoint boundary condition, on the other hand, remains a homogeneous Neumann
boundary condition. The actuator w is parameterized as

u =
2∑

p=1

ap cos (pπx) +
2∑

p=1

bp sin (pπx) . (6.2)
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The coe�cients in the cost functional (Equation 2.1) are set to β1 = 1, β2 = 10 and
β4 = 1093. In this case, the term controlling the interface length β3 is set to zero.

Figure 6.2 shows the level set of the forward problem evolving towards the desired
shape after 16 iterations corresponding to 66 solutions of the forward problem (FP)
and 16 solutions of the adjoint problem (AP). The algorithm is able to recover both
the retraction and the expansion of the initial circle.

Figure 6.2: Iterations 0, 3, 10 and 16 of the optimization procedure for the circle test
case. The blue curve represents the desired shape and the red one the �nal position of the
interface at a given iteration. The �nal time is tf = 0.1 and the interface is plotted with a
time step of 0.01. The color map corresponds to the error in temperature �eld. The inset
shows the actuator w at a given iteration (red) and the desired one (blue).
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Figure 6.3 shows the evolution of the normalized cost functional J /J0 as a
function of the iterations. At iteration 6, we see the descent slowing down and
almost stopping, indicating the presence of a local minimum. Nevertheless, the
algorithm manages to overcome it and continue its descent.

Figure 6.3: Normalized cost functional as a function of the iterations of the L-BFGS
optimization procedure for the melting circle case.

6.2.2 Controlling the Mullins-Sekerka instability

In this second case, we consider a perturbed initial planar shape in a 2× 2 domain
such that the initial level set function is given by,

ϕ0(x, y) = y + 0.6 +A cos(2πx), (6.3)

and the temperature �eld by,

T0(x, y) =

{
−1 + e−T∞ϕ0(x,y), ϕ0 > 0,

0, ϕ0 < 0,
(6.4)

with an amplitude of the perturbation A = 0.05 and an under-cooling temperature
T∞ = 1.2. The surface tension and velocity coe�cients are set to zero in this case.

As described in Chapter 5, an initial perturbation such as that prescribed in
this problem leads to a Mullins-Sekerka type instability [Mullins & Sekerka 1964,
Chen et al. 1997] characterized by unstable dendritic growth. The purpose of this
optimization test case is to reduce the instability by imposing an optimal actuation
on the top boundary counter-acting the motion of the tips. The control variable w
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is of Neumann type and we set the �nal time tf = 0.5 with N = 64. Similar to the
previous case the actuation is parametrized as

w =
4∑

p=1

ap cos (pπx) +
4∑

p=1

bp sin (pπx) . (6.5)

In this case, we can add four extra basis function in the actuator parametrization
and still recover the global minimum. The extra term in the cost functional which
controls the length of the interface is also included and set to β3 = 0.1 while the
other coe�cients are β1 = 1, β2 = 10 and β4 = 1094.

Figure 6.4: Iterations 0, 2, 3 and 9 of the optimization procedure for the Mullins-Sekerka
test case. The blue curve represents the desired shape and the red one the �nal position
of the interface at a given iteration. The �nal time is tf = 0.5 and the interface is plotted
with a time step of 0.05. The color map corresponds to the error in temperature �eld. The
inset shows the actuator w at a given iteration (red) and the desired one (blue).
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In Figure 6.4, we can observe how the initial tip splitting is reduced as we go
through the optimization procedure. The minimum is attained after 10 iterations
of the optimization algorithm corresponding to 54 solutions of the forward problem
(FP) and 10 solutions of the adjoint problem (AP).

Figure 6.5: Normalized cost functional as a function of the iterations of the L-BFGS
optimization procedure for the Mullins-Sekerka case.

The variation of the cost functional (Figure 6.5) is similar to the previous one,
with an initial steep descent after a few iterations that eventually plateaus. In
this case, the optimization algorithm is stopped by the criterion on the gradient
|∇J | < 1096.

6.2.3 Growing crystals with topology changes

In this last case, we consider three crystals asymmetrically disposed in an under-
cooled liquid. The crystals will grow and eventually merge. The objective of this
optimization is to drive the �nal shape towards the desired one by acting on the
boundaries of the whole domain, and thereby to suppress the anisotropy e�ects.
The surface tension coe�cient is set to εκ = 0.0005 and the velocity coe�cient to
εV = 0.002.

We choose a relatively small surface tension coe�cient with respect to the ve-
locity one in order to allow for strong dendritic formation and to examine the opti-
mization algorithm in a challenging case where the topology remains complex. The
anisotropy e�ects are added by setting α0 = π/2 and M = 4 in Equation 5.5. The
heat �ux induced through actuation will have to compete with these e�ects in order
to drive the interface towards the desired one.
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The simulations are run in a 4 × 4 domain with N = 100 until a �nal time
tf = 0.45. The under-cooling initial temperature is set to T∞ = −0.6 and the
control variable w is of Neumann type. In contrary to the previous case, we need
to restrict the basis used for the actuator (by �tting only two parameters) in order
to descend towards the global minimum. The following parametrization is used

u(x, p) = p1((1 + cos(π/8x))/2)4 + p2((1 + sin(π/8x))/2)4. (6.6)

Figure 6.6: Iterations 0, 15, 17 and 20 of the optimization procedure for the growing
crystals test case. The blue curve represents the desired shape and the red one the �nal
position of the interface at a given iteration. The �nal time is tf = 0.45 and the interface is
plotted with a time step of 0.045. The color map corresponds to the error in the temperature
�eld. The inset shows the actuator w at a given iteration (red) and the desired one (blue).
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Figure 6.6 shows the evolution of the surface. The minimum is attained after
20 iterations of the optimization algorithm corresponding to 25 solutions of the
forward problem (FP) and 20 solutions of the adjoint problem (AP). It can be seen
that initially the crystal is driven towards the domain corners by the anisotropy
parameters. Through the optimization procedure however, the �nal crystal shape
tends towards the desired one. Moreover, the topology changes are implicitly taken
into account thanks to the level set method.

Figure 6.7: Normalized cost functional as a function of the iterations of the L-BFGS
optimization procedure for the growing crystals case.

Looking at the variation of the cost functional through the optimization proce-
dure (Figure 6.7), we can notice an initial plateau until iteration 15. This is caused
by the large di�erence in the initial shape � at iteration 0 with w = 0 � and the
desired one. By starting elsewhere in the parameter space of J , the descent towards
the minimum might occur faster. Table 6.1 summarizes the results obtained for
each case.

Case Optimization parameters Results
β1 β2 β3 β4 J calls ∇J calls Jfinal/J0

Melting circle 1 10 0 1093 66 16 1.81× 1093

Mullins-Sekerka 1 10 0.1 1094 54 10 1.89× 1093

Growing crystals 1 1 0 1092 25 20 3.21× 1093

Table 6.1: Optimization parameters and �nal results of the di�erent considered cases.
The columns J and ∇J correspond to the number of FP and AP calls respectively.
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6.3 Comparison with derivative-free methods

In the previous section, we showed that the adjoint-based optimization procedure
appears to be a robust algorithm to control the shape of a melting or solidi�cation
front, even in the presence of dendritic instabilities and anisotropic e�ects. We
now compare the results to a derivative-free method (where no information on the
gradient is required), the Particle Swarm optimization algorithm [Zhan et al. 2009].
This method attempts to improve global convergence by switching between four
evolutionary states: exploration, exploitation, convergence, and jumping out. In
the jumping out state it tries to take the best particle and move it away from its
local optimum, to improve the ability to �nd a global one.

We test the derivative-free optimization procedure on the same three cases
presented previously using the same parameters β1 to β4 for the cost functional.
Table 6.2 summarizes the comparison between both methods. As expected, the
derivative-free one attains a lower minimum at a cost of a much higher number of
function evaluation (one order of magnitude higher).

Case L-BFGS Particle Swarm
J calls ∇J calls Jfinal/J0 J calls Jfinal/J0

Melting circle 66 16 1.81× 1093 1012 2.04× 1094

Mullins-Sekerka 54 10 1.89× 1093 933 9.13× 1095

Growing crystals 25 20 3.21× 1093 2120 1.11× 1094

Table 6.2: Comparison between the L-BFGS and the Particle swarm method for the three
considered cases.

As a future work, one could solve optimization cases where the �ow in the liquid
phase is considered. The control of the onset of the Rayleigh-Bénard instability
through the global Rayleigh number could be one the goals. The derivation of
the continuous adjoint in that case might required some simpli�cations. The �ow
velocity u would only be solved in the forward problem, leading to an incomplete
adjoint derivation.
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7.1 Two-phase �ows in the one-�uid formulation

In the �rst part of this work, we studied melting and solidi�cation processes, modeled
by the two-phase Stefan problem (Chapter 1), where the motion of the interface was
solely a function of the heat transfer across the interface between a �uid and a solid
phase. In that case, when considering the �ow in the �uid phase, we solved the
Navier-Stokes equations in the Boussinesq approximation. In this second part of
the dissertation, we will study physical problems governed by the incompressible
two-phase Navier-Stokes equations.

Flows of immiscible �uids are ubiquitous in Nature and in everyday life; for ex-
ample in sea waves, rain drops or in bubbles rising in a glass of sparkling water. The
air-water �ows are characterized by large density and viscosity ratios as well as high
surface tension. This interfacial force is an energy per area that resists the creation
of new interface. These disparities in the material properties across the interface
will tend to generate complex phenomena involving di�erent spatial and tempo-
ral scales. The particular case of the motion of a �uid-�uid interface over a solid
substrate [Shikhmurzaev 1994, Blake et al. 1999, Eggers 2004, Wilson et al. 2006,
Fullana et al. 2020, L	acis et al. 2020, L	acis et al. 2022] will be the focus our study
and will be detailed in Chapter 8.

In the context of numerical methods for partial di�erential equations, the reso-
lution of the the incompressible two-phase Navier-Stokes equations remains a chal-
lenge. The incompressibility constraint must be taking into account at each instant
and the high density and viscosity ratios in presence of distorted interfaces leads to
ill-conditioned linear systems. Moreover, in order to avoid any imbalance between
discrete surface tension and pressure gradient terms, an accurate representation of
the interfacial force is required [Scardovelli & Zaleski 1999, Tryggvason et al. 2011,
Popinet 2018].



96
Chapter 7. Two-phase Navier-Stokes equations and Phase-Field

extensions

The incompressible, variable-density, Navier-Stokes equations with surface ten-
sion can be written as the momentum equation augmented with the capillary e�ect

ρ (∂tu+ u · ∇u) = −∇p+∇ · (2µD) + σκδsn+ g, (7.1)

supplemented by the divergence-free condition

∇ · u = 0, (7.2)

and a transport equation for the density

∂tρ+∇ · (ρu) = 0, (7.3)

with u the �uid velocity, ρ the �uid density, µ the �uid viscosity and D the defor-
mation tensor de�ned as Dij = (∂iuj + ∂jui)/2, σ the surface tension coe�cient, κ
the curvature, δs the Dirac distribution expressing the fact that the surface tension
term is concentrated at the interface, n the unit normal to the interface and g the
acceleration of gravity.

Fluid 1 Fluid 2

ρ = ρ1

µ = µ1

ρ = ρ2

µ = µ2

c = 1 c = 0c = 0.5

ρ = 0.5ρ1 + 0.5ρ2

µ = 0.5µ1 + 0.5µ2

Figure 7.1: Example of the discrete representation of the density and viscosity in the
one-�uid formulation.

In the one-�uid formulation, a color function c(x, t) is used to characterize the
interface location and the �uid properties (density and viscosity). The volume frac-
tion c(x, t) will be chosen as the volume fraction occupied by a reference phase. The
density and viscosity are now de�ned by

ρ(c) ≡ cρ1 + (1− c)ρ2,
µ(c) ≡ cµ1 + (1− c)µ2,

(7.4)

with ρ1, ρ2 and µ1, µ2 the densities and viscosities of the �rst and second �uids
respectively. Figure 7.1 shows an example of the discrete representation of the
density and viscosity. The advection of the density (Equation 7.3) is then naturally
replaced by the advection equation for the color function

∂tc+∇ · (cu) = 0. (7.5)
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In part 1 of this work, this equation was solved using an implicit-explicit scheme
to advect a level set function (Chapter 4). In the context of the two-phase Navier-
Stokes equations, when considering the sharp-interface model � as opposed to the
di�use interface model described in the following section � Equation 7.5 will be solved
using a conservative, non-di�usive geometric Volume-Of-Fluid (VOF) scheme. The
VOF method and the treatment of the boundary conditions will be detailed in
Sections 9.1 and 9.2.

7.2 Phase-Field extensions

In the Phase-Field method, the governing equations are derived from the thermo-
dynamic potentials of the system, together with the assumption of a surface energy
associated with an interface [Amberg 2003]. It is, therefore, possible to consider dif-
ferent physical situations with relative ease. It is also straightforward to implement
numerically, since interfaces are not tracked explicitly. Instead, a variable is intro-
duced that has di�erent constant values in the two phases with a steep transition
between the two in the di�use interface [Jacqmin 2000, Carlson 2012]. One of the
major drawbacks of this method, however, is that width of the interface ε must be
small to match the proper interface dynamics.

Similarly to the one-�uid formulation, the Phase-Field model introduces a phase
variable C(x, t) ranging from 1 to −1. This phase-�eld variable C(x, t) is governed
by a convection-di�usion equation

∂C

∂t
= Fd − Fc, (7.6)

where Fd is the di�usive �ux and Fc is the convective �ux. The latter, in the context
of incompressible �ows, takes the simple form

Fc = u · ∇C, (7.7)

and the di�usive �ux is
Fd = −M ∇ϕ, (7.8)

where M is a proportionality coe�cient called the Phase-Field mobility and ϕ the
chemical potential de�ned as

ϕ = βΨ′ (C)− α∇2C. (7.9)

In the chemical potential, we have two parameters α and β, which are related to
the surface tension σ and the characteristic thickness of the di�use interface ε as

σ =
2

3

√
2αβ, ε =

√
α

β
. (7.10)
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In addition, it contains the derivative of the standard double-well potential

Ψ(C) =
(C + 1)2 (C − 1)2

4
. (7.11)

With the de�nitions above (Equations 7.6 to 7.11), the convection-di�usion equa-
tion, referred to as the Cahn-Hilliard equation [Cahn & Hilliard 1958], can be writ-
ten as

∂C

∂t
= ∇ ·

[
M∇

(
βΨ′ (C)− α∇2C

)]
− u · ∇C. (7.12)

Equation 7.12 is the Phase-Field analog of Equation 7.5. The boundary conditions
for this fourth-order partial di�erential equation will be detailed in our study of
dynamic wetting by the Phase-Field method (Section 10.3.1). Taking the same
notation as in Equation 7.1, the momentum equation in the Navier-Stokes equations
becomes

ρ (∂tu+ u · ∇u) = −∇p+∇ · (2µD)− C∇ϕ+ g, (7.13)

where −C∇ϕ corresponds to the surface tension force and acts over the di�use
interface region. This form of the surface tension forcing is the so called potential
form [Jacqmin 1999]. Moreover, the density and viscosity are now de�ned through
the Phase-Field variable C as

ρ(C) ≡ ρ1
C + 1

2
+ ρ2

C − 1

2
,

µ(C) ≡ µ1
C + 1

2
+ µ2

C − 1

2
.

(7.14)

We now state the boundary conditions in the presence of a contact line
(see Chapter 8) on a solid, characterized by its equilibrium angle (the angle
between the �uid-�uid interface and the wall). The convection-di�usion equa-
tion (Equation 7.12) is a fourth-order partial di�erential equation and requires
two boundary conditions. First, we impose a non-equilibrium wetting condi-
tion [Jacqmin 2000, Qian et al. 2003b] on the solid wall,

−µfε
(
∂C

∂t
+ u · ∇C

)
= α∇C · n− σ cos θe g′ (C) , (7.15)

where µf is a contact line friction parameter, having the same units as bulk dynamic
viscosity. Here, θe is the equilibrium contact angle and

g (C) = 0.5− 0.75C + 0.25C3, (7.16)

is a switching function describing a smooth transition between both phases. The
unit normal vector n is directed from the �uid to the surrounding solid.

If one sets µf = 0, the contact angle is always enforced to the equilibrium angle
θe. This will be the case in the toy model with comparing PF to VOF simulations
(Section 10.3). Non-zero contact line friction allows the dynamic contact angle to
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evolve naturally as a function of contact line speed. The second boundary condition
for the phase function is a zero di�usive �ux of chemical potential through the
boundaries

∇ϕ · n = 0. (7.17)

In the following chapter, we will present the main topic of our study: the dynamic
contact lines, the singularities involved and the models to accurately simulate the
motion of the �uid-�uid-solid intersection point.
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8.1 The static contact line

Wetting of solids by liquids, in which a liquid displaces another �uid on a solid sub-
strate, is an ubiquitous phenomenon with applications ranging from coating and tear
�lms on the cornea to micro-layer formation in wall boiling and CO2 sequestration.
However, despite the abundance of applications, the precise mechanism of wetting is
only partially understood. From the numerical modeling point of view, di�culties
arise due to the highly multi-scale nature of the problem (scales extending from
macroscopic to molecular lengths). One of the main challenges in continuum theory
is the e�ective representation of molecular phenomena close to the contact line.

σSG

σSL

σLG

Solid

Liquid

Gas

θe

Figure 8.1: Schematic of the static contact line. The contact line formed at the intersection
of a gas-liquid and a solid boundary is element of many natural and several technological
processes. In the static case, the equilibrium angle is determined by Young's law.

In the static case, for a droplet at equilibrium (Figure 8.1), the equilibrium
contact angle is well known to be determined by Young's law

σSG − σSL = σLG cos(θe) (8.1)
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where σSG, σSL and σLG are the solid-gas, solid-liquid and liquid-gas surface tensions
respectively. Numerically, while still being subject spurious currents depending on
the characteristics of the system (see Appendix D), the static case does not pose
any particular issues.

8.2 Paradoxes and singularities in the dynamic case

The di�culties arise when considering a dynamic contact line. In fact, the motion
of the contact line poses, since Huh and Sriven [Huh & Scriven 1971] a remarkable
problem because of the contradiction between the no-slip condition on the substrate
and the motion of the contact line. Under these assumptions, one naturally ends
up with an immobile contact line that is inconsistent with simple observations (for
a example a water drop sliding on a leaf). This no-slip paradox induces a stress
singularity at the contact line, summarized in the words of Huh and Sriven:

Not even Hercules could sink a solid [...]

This paradox does not exist in di�use interface models, such as Phase-Field (Sec-
tion 7.2), as the contact line advances through di�usion even in the no-slip scenario.
However a special treatment of the boundary condition at the wall is required for
sharp interface models, such as Volume-Of-Fluid (Section 7.1). One the �rst meth-
ods that was proposed to relieve the force singularity at the contact line was to
simply relax the no-slip condition. In the slip length theory, expressed as a Navier
boundary condition (NBC), a term, proportional to the shear velocity pro�le, is
added in the boundary condition such that

ux|y=0 − λ
∂ux
∂y
|y=0 = 0, (8.2)

where ux|y=0 is the tangential velocity at the wall (located at y = 0) and λ the
slip length. Translating this boundary condition into a relation for the contact line
speed yields

UCL ∼ λ
∂u

∂y
|y=0, (8.3)

where UCL is the contact line speed. This simple slip model has
proven to be su�cient to solve the contact line motion in some hydrody-
namic cases [Wilson et al. 2006, Liu et al. 2016, Liu et al. 2018, Fullana et al. 2020,
L	acis et al. 2020]. In Section 9.2.1, we will present our results on a curtain coating
setup using the Navier boundary condition.

Nonetheless, the slip model still su�ers from a logarithmic divergence of the
capillary pressure as shown in [Devauchelle et al. 2007]. A further regularization
of the solution is possible by considering a second-order slip (in analogy with the
porous media theory)

UCL ∼ λ
∂u

∂y
|y=0 + λ2

∂2u

∂y2
|y=0. (8.4)



8.2. Paradoxes and singularities in the dynamic case 103

In that case the contact line speed is also proportional to the curvature of the
velocity pro�le in the vertical direction. In our work, this model will be referred to
as the super-slip model (Section 10.1).

Another parameter to take into account is the contact angle. When the contact
line enters in motion, the angle formed by the �uid-�uid interface and the solid
substrate varies, becoming a dynamic contact angle, denoted θd. The modeling of
this angle is very controversial among experts, there is no consensual theory on
whether it is an predictable quantity � a function of the contact line speed and
the bulk parameters � or an output of the system [Cox 1986, Shikhmurzaev 1994,
Blake et al. 1999, Blake & Shikhmurzaev 2002, Eggers 2004, Eggers & Evans 2005].
In the Cox-Voinov theory, the dynamic contact angle is a function of the normalized
contact line CaCL

g (θd) = g (θe) + CaCL log

(
L

l

)
, (8.5)

where g is function describing the curved interface (de�ned later). The other pa-
rameters are L and l corresponding to two distinct length scales. A comparison
between di�erent options for L and l can be found in [Legendre & Maglio 2015].
They concluded that the models incorporating dynamic contact angles with a nu-
merical cuto� length l better represent some experiments. In Section 9.3.2, we will
use a dynamic angle model implemented in our VOF framework and compare it to
a spreading drop experiment.

Moreover, in [Fricke et al. 2019] the authors demonstrated that there exists a
second paradox related to that dynamic contact angle. From kinematics relations,
they showed that the shear velocity at the contact line is proportional to the variation
of the dynamic contact angle θd

∂u

∂y
|y=0 ∼

dθd
dt
. (8.6)

Considering now a steady state motion where the contact line speed is not null with
a slip model (Equation 8.2), we have

UCL ∼ λ
dθd
dt
. (8.7)

In steady state, the angle is constant, implying that

dθd
dt

= 0, (8.8)

which contradicts previous assumption on the contact line speed UCL ̸= 0. The way
to relax this singularity is to allow a deviation between the dynamic contact angle
and the equilibrium one (θe). In the generalized Navier boundary condition (GNBC),
derived from thermodynamics considerations [Qian et al. 2003b, Qian et al. 2006],
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the uncompensated Young's stress is introduced as an additional term in the NBC

UCL ∼ λ
∂u

∂y
|y=0 +

σ

µ
(cos θd − cos θe) , (8.9)

where σ is the surface tension and µ the viscosity of the primary �uid. This boundary
condition will be tested in a withdrawing plate setup where an accurate modeling
of the dynamic contact line is crucial to predict the onset wetting failure.

In the following chapters we will present the implementation of the models and
their application to physical setups. In Chapter 9, the classical slip and dynamic
angle models will be described in depth and tested on di�erent problems. In Chap-
ter 10, the super-slip and GNBC models will be presented as well as the toy model,
where we will relate the mass �ux present in the Phase-Field model to a simple slip
and dynamic angle relation in the VOF method.
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9.1 The Volume-Of-Fluid method

The VOF method for representing �uid interfaces coupled with a �ow solver is
well-known to be suited for solving interfacial �ows [Scardovelli & Zaleski 1999,
Popinet & Zaleski 1999, Tryggvason et al. 2011]. However, this method, such as
others, is subject to spurious currents, with or without contact lines (Appendix D).
These currents are lower when considering high capillary numbers, which is usually
the case in the context of moving contact lines.

In our study on the moving contact line, we use the free soft-
ware Basilisk , a platform for the solution of partial di�erential equations
on adaptive Cartesian meshes, developed by Stéphane Popinet and co-
authors [Afkhami & Bussmann 2008, Afkhami & Bussmann 2009, Popinet 2009,
Popinet 2015, Afkhami et al. 2017, Popinet 2018].
As mentioned in Chapter 7, we consider the incompressible Navier-Stokes equations
with variable density and surface tension:

ρ (∂tu+ u · ∇u) = −∇p+∇ · (2µD) + σκδsn+ g,

∂tρ+∇ · (ρu) = 0,

∇ · u = 0

(9.1)

with u the �uid velocity, ρ the �uid density, µ the �uid viscosity and D the defor-
mation tensor de�ned as Dij = (∂iuj + ∂jui)/2, σ the surface tension coe�cient, κ
the curvature, δs the Dirac distribution function used for the sharp interface model,

http://basilisk.fr/
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n the unit normal to the interface and g the acceleration of gravity.
For a two-phase �ow, the volume fraction c(x, t) is de�ned as the integral of the �rst
�uid's characteristic function in the control volume. The volume fraction c(x, t) is
used to de�ne the density and viscosity in the control volume

ρ(c) ≡ cρl + (1− c)ρg,
µ(c) ≡ cµl + (1− c)µg,

(9.2)

with ρl, ρg and µl, µg the densities and viscosities of the liquid phase and the gas
phase respectively.
The advection equation for the density is then replaced by the equation for the
volume fraction

∂tc+∇ · (cu) = 0

The projection method is used to solve the incompressible Navier-Stokes equations
combined with a Bell-Collela-Glaz advection scheme and a VOF method for inter-
face tracking.
The resolution of the surface tension term is directly dependent on the accuracy of
the curvature calculation. The Height-Function methodology is a VOF-based tech-
nique for calculating interface normals and curvatures [Afkhami & Bussmann 2008,
Afkhami & Bussmann 2009]. About each interface cell, �uid `heights' are calculated
by summing �uid volume in the grid direction closest to the normal of the interface.

h0

h1

h2

y

x

Figure 9.1: Construction of the 2D height-functions near the contact line
[Afkhami & Bussmann 2008].

In two dimensions, a 7 × 3 stencil around an interface cell is constructed and the
heights are evaluated by summing volume fractions horizontally (Figure 9.1)

hj =

k=i+3∑
k=i−3

cj,k∆,

with cj,k the volume fraction and ∆ the grid spacing. The heights are then used to
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compute the the interface normal n and the curvature κ

n = (hx,−1),

κ =
hxx

(1 + h2x)
3/2

,
(9.3)

where hx and hxx are discretized using second-order central di�erences.
It is important to note that a numerical speci�cation of the contact angle a�ects the
overall �ow calculation in two ways:

� It de�nes the orientation of the VOF reconstruction in cells that contain the
contact line.

� It in�uences the calculation of the surface tension term by a�ecting the cur-
vature computed in cells at and near the contact line.

The orientation of the interface, characterized by the contact angle � the angle be-
tween the normal to the interface at the contact line and the normal to the solid
boundary � is imposed in the contact line cell.
We now present some of the characteristics of the Volume-of-Fluid Navier-Stokes
solver. For further details, we refer the reader to [Scardovelli & Zaleski 1999,
Popinet & Zaleski 1999, Popinet 2009, Popinet 2015, Popinet 2018]. A staggered
in time discretization of the volume-fraction/density and pressure combined with a
time-splitting projection method leads to the following time discretization

ρn+ 1
2

[
u∗ − un

∆t
+ un+ 1

2
· ∇un+ 1

2

]
= ∇ ·

[
µn+ 1

2
(Dn +D∗)

]
+ (σκδsn)n+ 1

2
,

cn+ 1
2
− cn− 1

2

∆t
+∇ · (cnun) = 0,

un+1 = u⋆ −
∆t

ρn+ 1
2

∇pn+ 1
2
,

(9.4)
which requires the solution of the Poisson equation

∇ ·

[
∆t

ρn+ 1
2

∇pn+ 1
2

]
= ∇ · u⋆. (9.5)

The momentum equation can be rewritten as

ρn+ 1
2

∆t
u⋆ −∇ ·

[
µn+ 1

2
D⋆

]
= ∇ ·

[
µn+ 1

2
Dn

]
+ (σκδsn)n+ 1

2
+ ρn+ 1

2

[un

∆t
− ,

un+ 1
2
· ∇un+ 1

2

]
,

(9.6)

where the right-hand side depends only on values at time n and n+1/2. This equa-
tion is solved using a multilevel Poisson solver. The velocity advection term un+ 1

2
·
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4
3

2

1

0

Figure 9.2: Example of the quadtree discretization and the corresponding tree represen-
tation.

∇un+ 1
2
is estimated using the Bell-Collela-Glaz [Bell et al. 1989, Popinet 2003]

second-order upwind scheme. Space is discretized using a quadtree partitioning
in 2D (Figure 9.2).
All the variables are collocated at the center of each square discretization volume.
Consistently with a �nite-volume formulation, the variables are interpreted as the
volume-averaged values for the corresponding discretization volume. A projection
method is used for the spatial discretization of the pressure correction equation and
the associated divergence in the Poisson equation.
To solve the advection equation the geometrical VOF scheme is used and proceeds
in two steps:

1. Interface reconstruction.

2. Geometrical of �ux estimation and interface advection.

ui+1/2j∆t

ui+1/2j

C Ca

Figure 9.3: Example of geometrical �ux estimation.

The reconstruction is a `piecewise linear interface calculation' (PLIC), followed by a
Lagrangian advection. In the PLIC technique, given a volume fraction c(x, t) and an
approximate normal vector n, a linear interface is constructed within each interface
cell, which corresponds exactly to c(x, t) and n. In Figure 9.3, we illustrate the
principle of geometrical �ux estimation. The total volume which will be �uxed to
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the right-hand neighbor is delimited with a dashed line. The fraction of this volume
occupied by the �rst phase is indicated by the dark grey triangle.

9.2 Classical models for contact lines

9.2.1 The Navier boundary condition

The dynamic contact line introduces a paradox at the triple point, where the no-slip
boundary condition or Dirichlet boundary condition at the solid interface induces a
non-integrability of the solution. Nevertheless, in the VOF method such a contradic-
tion does not take place as the volume fraction is advected using the velocity half-a-
cell away from the wall. In their paper, the authors of [Afkhami et al. 2017], showed
that there exists a `numerical slip' that is mesh dependent. In order to control such
slip, it is useful to introduce a Navier boundary condition (NBC) to explicitly de�ne
a physical slip length λ, that will be used as a �tting parameter in our simula-
tions [Legendre 2013, Sui et al. 2014, Legendre & Maglio 2015, Fullana et al. 2020,
L	acis et al. 2020, L	acis et al. 2022].
The NBC corresponding to a slip model in a 2D con�guration with the substrate at
y = 0 can be written as follows

ux|y=0 − λ
∂ux
∂y
|y=0 = U,

uy|y=0 = 0,

(9.7)

with ux|y=0 and uy|y=0 the x and y component of the velocity at the solid boundary,
λ the slip length, and U the prescribed velocity of the moving substrate.

x

y
No-Slip

ux = 0
λ ux = λ

∂ux

∂y

Slip

uij

uij+1 ui+1
j+1

ui+1
j

ui−1
j+1

ui−1
j

ui−1
j−1 uij−1 ui+1

j−1

ughost values are imposed

Figure 9.4: Left side : velocities pro�les at the solid interface for the no-slip and slip
boundary conditions. Right side : 3x3 stencils with the ghost boundary layer used to
impose the boundary condition.
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Stencils located close enough to the boundaries of the domain will extend beyond
it (Figure 9.4). The stencil values outside the domain (ghost values) need to be
initialized. These values that depend on the values inside the domain are set in
order to provide the discrete equivalent of the NBC as follows

ux[ghost] + ux[ ]

2
+ λ

ux[ghost]− ux[ ]
∆

= U,

⇐⇒ ux[ghost] =
2∆

2λ+∆
U +

2λ−∆

2λ+∆
ux[ ],

with ux[ghost] the tangential velocity at the ghost cell, ux[ ] the tangential velocity
of the cell inside the domain, ∆ the grid spacing and λ the slip length.
As u is solution of the Poisson equation, we also need to de�ne the discrete homo-
geneous counterpart of the NBC

uhx[ghost] =
2λ−∆

2λ+∆
ux[ ].

We will show that the Navier boundary condition coupled with a constant contact
angle is su�cient to model the contact line motion. In Section 9.3.1, we study the
onset of wetting failure in a curtain coating system, where a liquid falls on a moving
plate and starts coating the surface. We are able to reproduce the non-monotonic
behaviour of the critical velocity as the liquid �ow-rate increases.
Moreover, in [L	acis et al. 2020], we benchmarked our VOF simulations with phase-
�eld (PF) and molecular dynamics (MD) simulations in a nanoscopic sheared droplet
setup. In that case we used the slip length and the constant contact angle as �tting
parameters. The slip had to be localized near the contact line point. The boundary
condition for the tangential component in the NBC was modi�ed as follows

ux|y=0 − f
(x
ε

)
λ
∂ux
∂y
|y=0 = U, (9.8)

where f
(x
ε

)
is a bell function de�ned as

f

(
d

ε

)
=


[
1 + cos (πd/ε)

2

]2
|d| < ε,

0 |d| ≥ ε,
(9.9)

where d is the distance to the contact line point and ε the width of the bell function
(related to interface width in the phase-�eld model).

9.2.2 Cox-Voinov relation for dynamic contact angles

The theory of the moving contact line at small capillary numbers was founded by
Voinov [Voinov 1976] and generalized to arbitrary viscosity ratios by Cox [Cox 1986].
The latter clari�ed the structure of low capillary number problems in terms of the
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ratio L/l between the two length scales where L numerical factor to be determined.
From a general analysis, Cox obtained

g (θd) = g (θe) + CaCL log

(
L

l

)
, (9.10)

where θd is the dynamic numerical angle imposed at the contact line, θe is a static
equilibrium contact angle, a property of the substrate and the capillary number is
expressed as a function of the contact line speed UCL

CaCL =
µl UCL

σ
, (9.11)

where µl is the �uid viscosity and σ the surface tension. When the surrounding �uid
is of lower viscosity, the function g(θ) simpli�es to

g(θ) =

ˆ θ

0

x− sinx cosx

2 sinx
dx. (9.12)

In Section 9.3.2, we compare our model with experiments of a spreading squalane
drop.

9.3 Application to physical systems

9.3.1 Onset of wetting failure in a curtain coating setup

The �rst system considered is the curtain coating [Fullana et al. 2020]. In the cur-
tain coating system (Figure 9.5), a liquid is falling with a velocity V on a plate
moving at velocity U .

When the liquid reaches the solid substrate, it starts coating the free surface,
as shown in the time series example (Figure 9.6). A steady-state solution is only
obtained for given sets of physical parameters and the onset of wetting failure can
be predicted by studying a range of capillary and Reynolds numbers by varying U
and V .

We will make the same assumption as Liu [Liu et al. 2016]: a constant contact
angle coupled with a Navier boundary condition is su�cient to model the dynamic
wetting system, provided that the air stresses are taken into account.

In our model, these stresses are directly taken into account in the two-phase
Navier-Stokes solver. A constant contact angle θm is imposed through height
functions [Afkhami & Bussmann 2008, Afkhami & Bussmann 2009] and we use the
Navier boundary condition for the tangential velocity at the wall. The multi-scale
nature of the curtain coating con�guration can lead to numerical di�culties, in par-
ticular on the resolution of the smallest length scale, the slip length λ.
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hc

dc

U

V

ρl, µl ρg, µgθm
IP

Figure 9.5: Schematic of the curtain coating con�guration. The system parameters are:
hc the curtain height, dc the curtain width, ρl, ρg and µl, µg the densities and viscosities
of the liquid phase and the gas phase respectively, U the substrate velocity, V the feed �ow
velocity and θm the imposed contact angle. The in�ection point noted IP corresponds to
the point at which the curvature of the interface is zero. The distance from the triple point
to the IP will be used as a control quantity.

(a) t⋆ = 1.25 (b) t⋆ = 8.75 (c) t⋆ = 13.25

(d) t⋆ = 20 (e) t⋆ = 27.5 (f) t⋆ = 67.5

Figure 9.6: Time series of a curtain coating simulation for Re = 12, Ca = 1.33. The
dimensionless time t⋆ is scaled with the viscous time scale tµ = µl/ρlh

2
c .
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Moreover, the regularization of the contact line paradox is directly dependent
on the accuracy of the solution near the contact line. The adaptive mesh re�nement
allows a good resolution of the interface at the triple point. We will study the
convergence of the solution of the Liu [Liu et al. 2016] con�guration as we increase
the number of grid points per slip length λ/∆. The system will then be extended
to compare with experiments of [Blake et al. 1999] and [Marston et al. 2009].
As a �rst step, to validate our model, we reproduce the curtain coating con�guration
described in [Liu et al. 2016]. We consider a small curtain height hc = 10−2m and
small curtain width dc = 10−3m with a large slip length λ = 10−5m. As the accuracy
of the interface reconstruction depends on the resolution of the smallest length scale,
these previous considerations drastically decrease the computational cost of this
multi-scale problem.
The �uid properties, corresponding to glycerinated water and air, are the following

ρl = 1000kg.m93, ρg = 1.2kg.m93,

µl = 25mPa.s, µg = 0.018mPa.s,

with the surface tension set to σ = 70mN.m91. The viscosity ratio µg/µl = 7.2 10−4

is kept constant in our computations. The substrate velocity U is varied from 0.1
to 10 m.s−1 and the feed �ow velocity V from 0.1 to 1 m.s−1. The dimensionless
numbers governing the �ow are: the capillary number

Ca =
µlU

σ
,

varying from 0.1 to 2.5, the Reynolds number

Re =
ρlV dc
µl

,

varying from 1 to 40 and the Bond number

Bo =
(ρlg
σ

)(dcV
U

)2

,

varying from 10−3 to 10−1. The contact angle is kept constant, θm = 90°.
To determine whether the simulation with a given set of physical parameters reaches
the steady-state solution, we set a very large �nal time and compute, at each time
step, the di�erence on the velocity �eld between two subsequent time steps. If the
di�erence is lower than a given threshold, we can conclude that the �ow has reached
a steady state and that there is no wetting failure.
In Figure 9.7, we show an example of a VOF simulation for a grid ∆ = 0.156 µm,
corresponding to 64 grid spacings per slip length. The adaptive mesh re�nement
allows a good resolution of the interface at the triple point. In this particular case,
for Re = 30 and Ca = 2.6, a steady state solution is reached.
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Figure 9.7: Example of resolution of the contact line for λ = 10 µm with 64 grid spacing
per slip length. The color map corresponds to the x-component of the velocity �eld. Top:
foot of the curtain. Bottom: from left to right, successive zooms on the contact line.

(a) (b) (c)

Figure 9.8: Steady state solutions for the three di�erent �ow con�gurations. From left to
right: bead pulling (Re = 12, Ca = 1.33), beneath the liquid curtain (Re = 30, Ca = 2.6),
heel formation (Re = 35, Ca = 1.36).
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By varying the substrate velocity and the feed �ow velocity, we are able to recover
the same qualitative �ow con�gurations: bead pulling, right beneath the liquid
curtain and heel formation (Figure 9.8) and a similar coating window (Figure 9.9)
as in [Liu et al. 2016].

The hydrodynamic assist has the most impact (ie. the moving plate velocity U
is maximum) when the contact line is beneath the liquid curtain. This con�guration
allows a stronger pressure due to the liquid inertia at the triple point preventing the
formation of bubbles and therefore preventing the wetting failure from occurring.
To determine the coating window, we look for the �rst unsteady solution while
increasing the Ca number for a given Re number. The error bar relates to the
di�erence in Ca values between the last steady solution and the �rst unsteady one.

Figure 9.9: Stability analysis of the reduced curtain coating system and comparison with
computations of Liu [Liu et al. 2016].

A convergence study of the resolution of the interface is conducted for this con-
�guration. As the maximal level of re�nement is increased, the resolution of the
interface at the contact line is improved. The microscopic contact angle tends to
the prescribed one of 90° as the smallest cell size is decreased from 10 µm to 0.156
µm, corresponding to a number of grid points per slip length increasing from 1 to
64. We choose the 64 grid points per slip length solution as the reference solution for
the contact line position. In Figure 9.10, we plotted the relative error of the contact
line position and the relative error of the distance from the contact line position
to the in�ection point as a function of ∆ for the Re = 30, Ca = 2.6 case, which
is close to the stability limit. The results obtained for both quantities considered
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show a second-order convergence of the VOF method. Moreover, the distance from
the contact line position to the in�ection point of the reference solution is 50 µm.
This result compares favorably with the experimental techniques used to compute
the contact angle [Blake et al. 1999, Blake & Shikhmurzaev 2002]. We have demon-
strated that for a su�cient resolution of the interface, our VOF model with a Navier
boundary condition on the moving substrate coupled to an imposed contact angle
is able to reproduce the main stability results of the curtain coating con�guration
of Liu [Liu et al. 2016]. Moreover, this is done with far fewer points per slip length
than in the �nite element computations suggesting a higher accuracy and robustness
of the VOF method with height functions.
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(a) Error (%) in contact line position.
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(b) Error (%) in�ection point distance.

Figure 9.10: Convergence study of the reduced curtain coating system for Re = 30, Ca
= 2.6 and λ = 10 µm. The reference solution is taken for 64 grid points per slip length.

We now compare our model prediction with the two experimental observations of
Blake [Blake et al. 1999] and Marston [Marston et al. 2009]. In each case, the values
of experimental parameters of the system are taken as inputs for our simulations
(curtain height, liquid viscosity, equilibrium surface tension, and imposed contact
angle).
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Comparison with the Blake experiments We choose the physical slip length
used in [Liu et al. 2018] is λ = 5nm. In this case, the slip length is not well-resolved
as ∆ = 230nm and there is an implicit numerical slip of ∆/2. Therefore, the mod-
i�cation of the slip length does not a�ect the substrate velocity and induces no
modi�cation in the stability window in the numerics as the smallest ∆ attainable
is larger than λ. The stability limit curve of the VOF model is computed by in-
terpolating between a stable and unstable solution, showed by the error bars, for
a �xed feed �ow rate Q = V dc (Figure 9.11). The numerical results show a maxi-
mum �ow feed velocity V of 3 cm/s for a plate velocity U of 90 cm/s whereas the
experimental results from [Blake et al. 1999] give a maximum �ow feed velocity of
2.15 cm/s for a plate velocity of 80.8 cm/s. The discrepancy between experimental
observations and numerical results may be a consequence of the poor resolution of
the smallest length scale in this case but also of the simpli�cations made at the
boundary. The microscopic contact angle could depend on the parameters control-
ling the �ow [Blake & Shikhmurzaev 2002, Shikhmurzaev 1994, Wilson et al. 2006,
Eggers & Evans 2005]. A further regularization of the contact line singularity with
a generalized Navier boundary condition [Qian et al. 2003a], where the contact an-
gle is a dynamic one, might be needed. Even though the numerical results do not
quantitatively match the experiments, we are still able to recover the shape of the
stability-limit curve. The non-monotonic behavior of the system is still preserved.

Comparison with the Marston experiments In this con�guration, ∆ =

230nm, so we are able to resolve the slip length determined in [Marston et al. 2009]
of the order of hundreds of nanometers. By increasing λ, the substrate velocity
increases and the stability window is shifted towards the left, meaning that for the
maximum substrate velocity the solution becomes unstable. We found that the
best slip value was the one used in [Liu et al. 2018], λ = 450nm. As we can see
in Figure 9.12, the VOF model results are in good agreement with the experimen-
tal observations and almost perfectly match previous numerical computations. As
noted in [Liu et al. 2018], the very large value of slip length found may come from
the condition on the substrate. The substrate is pre-wetted in Marston experi-
ments [Marston et al. 2009] whereas it is dry in our simulations.
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Figure 9.11: Stability analysis and comparison with the experiments of Blake and com-
putations of Liu. The model parameters are: µl = 25 mPa.s, µg = 0.018 mPa.s, σ = 64
mN.m−1, hc = 3 cm, θm = 67° and λ = 5 nm.

Figure 9.12: Stability analysis and comparison with the experiments of Marston and
computations of Liu. The model parameters are: µl = 117 mPa.s, µg = 0.018 mPa.s, σ =
67 mN.m−1, hc = 2.6 cm, θm = 67° and λ = 450 nm.
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9.3.2 Squalane drop spreading with dynamic contact angle

In this study, we use the model `Dyn3' described in [Legendre & Maglio 2015]. The
slip length λ is �xed to∆/2 and l is a small length scale of the order of the nanometer.
At each time step, the dynamic contact angle θd is computed and imposed through
the height functions. Equation 9.10 gives

θd = g91
(
g (θS) + CaCL log

(
L

l

))
. (9.13)

In practice, g and g91 can be approximated by a �tting polynomial as described
in [Dupont & Legendre 2010]

g(x) =
1

9
x3 − 0.00183985 x4.5 + 1.845823× 1096 x12.258487,

g91(x) =
1

4.33
x1/3 + 0.0727387 x − 0.0515388 x2 + 0.00341336 x3.

We compare our VOF dynamic angle model with experiments from Lavi and Mar-
mur [Lavi & Marmur 2004]. They consider the spreading of a squalane drop on a
solid substrate. The drop of volume V = 4πR0/3 is initialized on a wall with no
initial velocity. The Ohnesorge number characterizing the �ow is

Oh =
µl

ρlσR0
= 0.21,

and static contact angle is θS = 41.5°.
We carry out simulations using the same nanoscopic length l = 1099m as
in [Legendre & Maglio 2015]. In Figure 9.13, we present the comparison between
our simulations and the experimental data for di�erent grids. The level of re�nement
corresponds to the smallest grid size in the quadtree partitioning of the computa-
tional domain. Levels 4 to 6 corresponds to 8, 16 and 32 grid points per diameter.
For low level of re�nement, the contact line eventually gets pinned and the motion
is stopped. At level 6, the �nal radius matches the experimental one. Moreover, in
transient state, we can see a good agreement between both, validating our imple-
mentation of the dynamic angle model in VOF framework.
In the next chapter, we present the newly developed in models for moving contact
lines:

1. The super-slip model with a further regularization of the velocity by introduc-
ing a second order slip length.

2. The generalized Navier boundary condition where the uncompensated Young's
stress is taken into account.

3. The toy model where we relate the mass di�usion existing in the phase-�eld
to a simple dynamic angle relation.
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Figure 9.13: Comparison between VOF simulations and the experiments of Lavi and
Marmur for a spreading squalane drop. The time is normalized with the viscous time scale
and the radius by the �nal radius rf .
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10.1 The super-slip model

10.1.1 The porous substrate analogy

As shown in Chapter 9, the Navier boundary condition �coupled to a constant or
dynamic contact angle� is su�cient to regularize the solution at the contact line in
some cases. The no-slip paradox is relaxed and the numerical slip in simulations
can be used as a �tting parameter.

Nevertheless, Devauchelle, Josserand and Zaleski [Devauchelle et al. 2007]
pointed out (in Appendix B) that the NBC fails to suppress all the singularities
at the contact line. In particular, the capillary pressure diverges at the triple point.
By studying the interfacial slip in porous media, they showed that from the
Brinkman equations and the Darcy law in the case of a thin boundary layer, one
can derive the following boundary condition for the tangential velocity at the wall

ux − λ
∂ux
∂y
− a λ2∂

2ux
∂y2

= U, (10.1)

where ux is the x-component of the velocity, λ the slip length, a a positive coe�cient
of order one and U the wall velocity. By introducing two separate slip lengths λ1
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and λ2, Equation 10.1 becomes

ux − λ1
∂ux
∂y
− λ2

∂2ux
∂y2

= U. (10.2)

This formulation allows us to independently vary the �rst order-slip λ1 and second-
order slip λ2 to investigate the e�ect of each term. The numerical implementation
and validation of the super-slip model in the VOF framework are presented in Ap-
pendix E.

10.1.2 Application to a spreading drop

To study the e�ect of the super-slip model on the dynamic contact line, we consider
a drop initialized with a θ0 = 90° contact angle on a static substrate (U = 0). We
impose an constant angle θe = 60° that will determine the equilibrium shape. The
e�ect of λ1 and λ2 will only appear in the transient state.
The viscosities and densities in both phases (µl, µg, ρl, ρg), and the surface tension
σ are equal and set to one. The initial radius is R0 = 0.5 and all the simulations are
run until a �nal time tf = 10 with a �xed grid spacing ∆ = 0.0078125 corresponding
to 128 points per initial diameter. We consider four di�erent cases

1. λ1 = 0 and λ2 = 0 corresponding to the homogeneous Dirichlet boundary
condition ux = 0 (no-slip) at the wall.

2. λ1 = 0.1 and λ2 = 0 corresponding to a Navier boundary condition as de-
scribed in Section 9.2.1.

3. λ1 = 0 and λ2 = 0.01 where only the second-order slip modi�es the spreading
motion.

4. λ1 = 0.1 and λ2 = 0.01 where λ2 = λ21 as in Equation 10.1.

In the following �gures, we look at the drop displacement, the contact line speed,
the contact angle and the shear stress as a function of time for the four cases.

� In Figure 10.1, we plotted the radius as function of time. The �rst notable
e�ect is the fact that cases 2,3 and 4 overshoot the �nal static solution. In those
cases, the contact line position relaxes back to the equilibrium one whereas
in case 1 (no-slip), it always remains below the latter. This is one of the
natural characteristics of the slip models; allowing the contact line to slip over
the substrate results in a faster motion that may pass over the equilibrium
position. Interestingly, it appears that the second-order slip is the leading
order term. The `bump' is larger in case 3 (second order slip) than in case 2
(�rst order slip). Moreover, we can see that the e�ect of both slips is added
as the bump is maximal in the fourth case. In all the cases the contact line
eventually relaxes to its equilibrium position as expected.
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Figure 10.1: Dimensionless radius as a function of the dimensionless time in logarithmic
scale for λ1 = 0, 0.1 and λ2 = 0, 0.01.

Figure 10.2: Local capillary number depending on the contact line speed as a function of
the dimensionless time in logarithmic scale for λ1 = 0, 0.1 and λ2 = 0, 0.01.
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Figure 10.3: Contact angle as a function of the dimensionless time in logarithmic scale
for λ1 = 0, 0.1 and λ2 = 0, 0.01.

Figure 10.4: Shear stress at the contact line as a function of the dimensionless time in
logarithmic scale for λ1 = 0, 0.1 and λ2 = 0, 0.01.
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� Figure 10.2 shows the local capillary number (Equation 9.11) computed in the
contact line cell as the drop is spreading. The contact line speed is initially
zero, increases until a maximal value before tending to zero as the static shape
is reached. In cases 2, 3 and 4 the speed becomes negative after overshoot-
ing the equilibrium position clearly indicating that the contact line motion is
reversed to reach the equilibrium. In the �rst case, however, CaCL is always
positive or equal to zero. The highest CaCL is attained in case 4, indicating
again, the addition of the e�ects of λ1 and λ2. In the no-slip case, we can
observe oscillations of the speed as it is tending to zero. These oscillations are
related to grid e�ects. As the contact line crosses a cell boundary, the newly
computed volume fraction is very small. This induces a loss of accuracy in the
computation of the surface tension term. The oscillations, although smaller,
are also present in the slip case whereas they are almost entirely removed in
cases 3 and 4 (where λ2 ̸= 0). This last observation illustrates the regularizing
e�ect of the second-order slip.

� In Figure 10.3, we show the variation of the contact angle as a function of time.
The angle is computed at each time step in the contact line cell. The �rst
noticeable thing to observe is the correlation between oscillations in contact
line speed and contact angle. This is in agreement with the previous remarks
on the loss of accuracy when the contact line crosses a cell boundary. Indeed, as
detailed in Section 9.1, the contact angle directly in�uences the calculation of
the curvature term therefore modifying the value of the velocity when solving
the two-phase Navier-Stokes equations. We also note that the �nal contact
angle is slightly di�erent from the imposed equilibrium angle θe = 60°. There
is a di�erence between the `imposed' angle through height functions and the
`extracted' angle. This ∆θnum, that exists in all of our contact line simulation,
seems to depend on the �ow characteristics and the grid resolution, and is still
being investigated.

� Finally, in Figure 10.4, we look at the shear stress ∂ux/∂y at the contact line
as a function of time. This last comparison between the cases is essential
to understanding the regularizing e�ect of the second-order slip. In the no-
slip simulation, the shear stress strongly oscillates and changes sign as the
drop reaches the equilibrium shape. The change in sign indicates a strong
modi�cation of the �ow around the contact line position. These oscillations �
although with no change in sign � are still present in case 2 whereas in cases
3 and 4 (λ2 ̸= 0), the shear stress is smooth out.

All these considerations demonstrate the regularizing e�ect of the second-order slip.
Nonetheless, the super-slip model still needs to be tested on physical systems. The
newly considered systems would need to allow a (very) high number of grid points
per slip λ1 as λ2 = λ21 and λ1 ≪ 1.
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10.2 The generalized Navier boundary condition

10.2.1 The uncompensated Young stress

The main idea of the generalized Navier boundary condition (GNBC) is to add the
uncompensated Young stress to the NBC in order to allow a deviation between
the dynamic contact angle and the equilibrium one. This stress comes from the
deviation of the �uid-�uid interface from the static con�guration [Qian et al. 2003b,
Qian et al. 2006]. Although the GNBC was formulated in a di�use interface model,
Fricke [Fricke 2020] showed that the model is well-posed in the sharp interface limit.
The boundary condition for the tangential velocity is

ux − λ
∂ux
∂y

= U + f
(x
ε

) σ

µl
(cos(θd)− cos(θe)) , (10.3)

where µl is the liquid viscosity, σ the surface tension, θd the dynamic contact angle,
θe the prescribed contact angle and f

(x
ε

)
a bell function de�ned as

f
(x
ε

)
=

(
1− tanh2

(x
ε

))
ε

. (10.4)

Note that this bell function is di�erent than the one de�ned in Section 9.2.1. The
width ε is now related to the di�use interface model.

The relation between the contact angle and the velocity of the contact line is now
CaCL = f(θd). This means that the contact angle should be a solution of the �ow
instead of being prescribed, as it was the case until now. In the VOF method such
`non-imposition' of the angle is not possible at �rst glance. Indeed, even if we were
not to impose an angle through the height functions, the homogeneous Neumann
boundary condition on the volume fraction at the wall

∂c

∂y
|y=0 = 0

would still be required. This symmetry boundary condition imposes � by default �
a 90° contact angle for the interface.

Fortunately, from kinematic relations on the dynamic contact line, the authors
of [Fricke et al. 2018, Fricke et al. 2019] derived a relation between the numerical
contact angle and an `apparent' angle, a speci�c distance away from the wall. The
numerical angle can be extrapolated using the following formula

θext = θapp +
3

2
∆
κ
√

1 + hy

sin(θapp)
(10.5)

where θext is the extrapolated angle, θapp the apparent angle, ∆ the grid spacing,
κ the curvature and hy the �rst order derivative of the height function in the y
direction (normal to the wall). A schematic of this extrapolation is presented in



10.2. The generalized Navier boundary condition 127

Figure 10.5. Once the extrapolated angle is computed, we impose it through height
functions, as if we would for a regular constant contact angle

θd = θext

This method allows us to have `free' dynamic contact angle in the sense that it is
now a solution of the �ow. A validation of the extrapolation method is provided in
Appendix F.

h0

h1

h2

θd

n⃗

n⃗

y

x

3

2
∆

θapp

Figure 10.5: Extrapolation of the contact angle using the apparent angle located 3/2 ∆
away from the wall.

10.2.2 Forced dewetting and �lm transition

We study the e�ect of the GNBC on the onset of �lm transition in a forced dewetting
setup [Afkhami et al. 2017]. We consider a solid substrate that is withdrawn from
a viscous liquid pool. The interface may either sustain a stationary state meniscus,
if below a critical capillary number, Cac, or continue to move up the substrate until
depositing a thin �lm to arbitrary heights. An example of a steady state meniscus
is shown in Figure 10.6.

In [Afkhami et al. 2017], the authors used a Dirichlet boundary condition for
the tangential velocity and showed that there exists an implicit grid-dependent slip
controlling the transition to a liquid �lm. In an attempt to demonstrate that the
GNBC is grid-independent � provided that the width ε of the bell function is well
resolved � we will carry out similar simulations for di�erent widths, grids, capillary
numbers and equilibrium angles.

The solid plate on the left is withdrawn at a speed U and the computational
domain is a L × L box where L = 9lc with lc = 1 the capillary length. The liquid
density is set to ρl = 1 and the gas density to ρg = 0.2. The liquid and gas viscosities
are equal and set to µl = µg = U , such that, with σ = 1, we have the relation

U =
√
Ca



128 Chapter 10. Advances in models for contact lines

Figure 10.6: Example of steady state meniscus for Ca = 0.03. The solid substrate on the
left is moving up at a speed U . The color map shows the volume fractions with the red
phase corresponding to the viscous liquid being withdrawn.

Moreover, the acceleration of gravity, set to g = −1.25 ey, is opposing the upwards
movement of the liquid. The initial liquid pool is �at and the interface is localed
at a height h0 = 3.1. The simulations are carried out until a �nal time 8 tc with
tc = lc/U the capillary time scale.

Study of the e�ect of the width ε As a �rst step, in order to investigate the
e�ect of the width ε and the ratio ε/∆, we �x the capillary number to Ca = 0.1

and an width ε0 = 0.078125 that will serve as a base. We run the simulation for 18
di�erent cases, corresponding to 2 equilibrium angles, 3 widths and 3 grid spacings:

� θe = 80°, 90°,

� ε = ε0, 2ε0, 4ε0,

� ∆ = ε0/8, ε0/4, ε0/2.

The number of grid points per width ε/∆ will therefore range from 2 to 8 in the
case ε = ε0, from 4 to 16 in the case ε = 2ε0 and from 8 to 32 in the case ε = 4ε0.
Additionally, the slip length is set λ = ε in order to have a unique microscopic length
scale to control.
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In the following results, we will investigate the contact line height and the contact
angle as a function of time as well as the shear stress at �nal time.

� Figure 10.7 shows the normalized contact line height (h−h0)/lc as a function
of time. In all of the cases, the contact line reaches a steady state position
implying that Ca = 0.1 < Cac. In the θe = 80° cases the �nal height is higher
than for the θe = 90° cases which is expected as a more hydrophobic substrate
(θe = 80°) will force the contact line towards the top of the domain. When
decreasing ε, the e�ect of the uncompensated Young stress is further localized
around the contact line and the slip length is decreased. The �nal position of
the contact line is maximal for the smallest ε. Looking at the ratio ε/∆, we
can see a clear convergence pattern. The height at highest resolution converges
towards a certain value comprised between the 2 other resolutions. However,
looking the ε = ε0 with 2 grid points per width cases (dotted black lines), we
can observe a signi�cant drop in the �nal position with respect to the 4 and 8
grid points per width cases. This clearly shows that 2 points per width is not
enough to resolve the smallest length scale. This assertion is in accordance
with the previous study on the Navier boundary condition (Section 9.3.1).

� Figure 10.8 shows the contact angle as a function of time in logarithmic scale.
Note that this angle is not the one we impose through the extrapolation
method (Equation 10.5). It is the extracted angle at the contact line cell
(similarly to Figure 10.3). Consider �rst the θe = 80° cases. The angle starts
from 90°, crosses the the equilibrium angle and eventually settles towards a
�nite value. When the dynamic angle crosses this threshold, the sign of the
uncompensated Young stress changes, as cos(θd) − cos(θe) is negative when
θd > θe and positive when θd < θe. This transition appears relatively fast,
meaning that the e�ect the stress pushes further the contact line in the di-
rection of the moving plate. In the 80° cases, the angle is always below the
threshold except for ε = ε0 with 2 grid points per width. In that speci�c case,
one can observe signi�cant oscillations of the angle that are in accordance with
the previous remarks on the �nal height. Indeed, the �nal values of the angles
are almost the same regardless of the number points per width meaning that
these oscillations, only appearing in transient state, still in�uence the steady
state solution. If we now consider the di�erences induced by modifying the
absolute value of ε, we can observe that the �nal angle seems to converge
towards a certain value as the e�ect of the Young stress is further localized.

� Finally, in Figure 10.9 we look at the shear stress at �nal time as a function
of the y position of the wall. We can clearly see the e�ect of the reduction of
the width. For large ε, the shear stress, while still reaching a maximum at the
contact line position, is further spread out than for small ε. One interesting
observation is the non-monotonic variation of the stress in the smallest ε cases.
There is an in�exion appearing at certain distance away from the contact line.
This e�ect still needs to be investigated.
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From these results, we can draw two conclusions

1. A small value of ε with respect to the macroscopic length scale � the capillary
length in this case � appears as the natural way of treating the GNBC in the
sharp interface limit. This is understandable as ε is related to the interface
width in the di�use interface model.

2. ε needs to be well-resolved in order to obtain converged results. As expected,
the smallest length scale needs to be much larger than the grid spacing ∆≪ ε.

Bearing these conclusions in mind, we can now compare our GNBC simulations to
the no-slip simulations in order to investigate the grid-dependence � or independence
� of the models.

Comparison between the no-slip and GNBC models We consider the same
setup, this time with Ca = 0.03, two di�erent equilibrium angles θe = 60°, 90° and a
�xed width ε = 0.078125. The grids considered are ∆ = ε/4 = 0.01953125 (coarse
grid), ∆ = ε/8 = 0.009765625 (medium grid) and ∆ = ε/16 = 0.004882813 (�ne
grid).. Figure 10.10a shows the results obtained with the no-slip model (ux = U).
In the 90° cases, the liquid pool reaches steady state and the transition to a �lm
does not occur. There is, as expected, a grid-dependence of the model, as the �nal
height is increased when ∆ is decreased. This dependence is ampli�ed in the 60°

cases. The transition now occurs in the �ne grid case whereas it does not in the
other cases. As the grid is decreased, the numerical slip appearing in the no-slip
model is decreased as well, therefore tending to a true `no-slip' motion where the
transition would exist for small values of Ca. These observations are in agreement
with the ones of [Afkhami et al. 2017].
Figure 10.10b shows the results obtained with our GNBC model. It is clear, from
the results that, in this particular case, that the GNBC model exhibits a true grid-
independent behavior. In the θe = 60° case there is no transition to a �lm formation
even with a �ne grid.
From this comparison and the previous study on the e�ect of the width, we can
conclude that, in this particular case with Ca = 0.03, our GNBC model is an im-
provement with respect to the no-slip model. However, we need to further investigate
this behavior by simulating a wide range of capillary numbers and looking at the
e�ect of the uncompensated Young stress independently of the slip (λ = 0).
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(a) θe = 80°.

(b) θe = 90°.

Figure 10.7: Normalized contact line position as a function of the dimensionless time for
Ca = 0.1 and θe = 80°, 90°.
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(a) θe = 80°.

(b) θe = 90°.

Figure 10.8: Contact angle as a function of the dimensionless time in logarithmic scale
for Ca = 0.1 and θe = 80°, 90°. The blue lines correspond to the equilibrium angles.
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(a) θe = 80°.

(b) θe = 90°.

Figure 10.9: Shear stress at �nal time as a function of x for Ca = 0.1 and θe = 80°, 90°.
The blue line indicates that ∂uy/∂x = 0.
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(a) No-slip boundary condition with a constant contact angle θe.

(b) Generalized Navier boundary condition.

Figure 10.10: Comparison between the no-slip model and the GNBC in the with-
drawing plate setup. The capillary number is Ca = 0.03 and the equilibrium an-
gles θe = 60°, 90°. The coarse, medium and �ne grids correspond to grid spacings
∆/lc = 0.01953125, 0.009765625, 0.004882813 respectively.
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10.3 The toy model: mimic Phase-Field at lower cost

10.3.1 Relating mass �ux to curvature

Practical simulation of real dynamic wetting �ows are still challeng-
ing [Huh & Scriven 1971, Bonn 2009, Snoeijer & Andreotti 2013]. In the
Phase-Field (PF) method, the Cahn-Hilliard equations are formulated from
the thermodynamics of an immiscible two-component mixture and a phase function
is used to represent the moving interface. The velocity �eld can satisfy a no-slip
condition at the contact line, and the contact line moves due the di�usive mass
transport that is present in a two-component system [Yue & Feng 2011]. While
the PF method has the advantage of needing less empirical �tting than the VOF
method, it is considerably more expensive.
In this study, we show how to obtain results that are essentially equivalent to results
from the PF method, by doing much cheaper VOF simulations. We introduce a
computational boundary at a speci�ed short distance from the wall in the VOF
simulation. There we apply a NBC for tangential velocity, and an dynamic contact
angle relation that accounts for the interface curvature at the wall. The basis for
the model is a theoretical relation between total di�usive mass transport across the
interface and curvature at the wall.
We compare full phase �eld simulations with VOF simulations using these boundary
conditions. The input parameters for the VOF simulations are the same as for the
full PF solution and the VOF solutions reproduce the PF solutions, at a much
lower cost.
We start be taking the dimensionless incompressible two-phase Navier-Stokes
equations in the Phase-Field approximation (de�ned in Chapter 7). As reference
quantities we choose U , L, L/U and µlU/L for velocity, length, time and pressure,
with L denoting a macroscopic length, for example the droplet radius.
The dimensionless numbers that appear are the Reynolds number

Re =
ρlUL

µl
,

the Peclet number
Pe =

UL

α
,

where α = Mσ/ε is the mass di�usion coe�cient. The Cahn number � or dimen-
sionless interface width � is de�ned as

Cn =
ε

L
.

CaF = µFU/σ is the line friction capillary number, based on the line friction pa-
rameter µF . In the rest of this study, we consider the line friction coe�cient to be
zero (µF = 0), in order to enforce the dynamic contact angle to the equilibrium one.
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The dimensionless equations therefore read

ρl

(
∂u

∂t
+ u · ∇u

)
= − 1

Re
∇P +

1

Re
∇2u+

1

Re Cn Ca
ϕ∇C, (10.6)

∂C

∂t
+ u · ∇C =

1

Pe
∇2ϕ, (10.7)

with
ϕ = −Cn2∇2C +Ψ′ (C) , (10.8)

and
Ψ′ (C) = (C2 − 1)C.

The wetting boundary condition, with µF = 0, is now

3

2
√
2
Cn∇C · n = cos(θe)g

′(C),

with

g(C) =
2 + 3C − C3

4
.

Assume a length scale δ for di�usion, which is also coupled to the �ow �eld. Assume
a viscous balance in the momentum equation, and that the velocity is properly scaled
(dimensionless |u| ∼ 1). Estimates of the relevant terms Equations 10.6 to 10.8 give

1

Re

1

δ2
∼ 1

CaCnRe

ϕ

δ
,

and
1

δ
∼ 1

Pe

ϕ

δ2
.

Solving for δ yields

δ =

√
CaCn

Pe
, (10.9)

which agrees with the scaling of Yue-Zhou-Feng [Yue et al. 2007]. We now derive
expression for chemical potential on a curved interface.

The �rst step is to calculate the value of the chemical potential on a curved
interface. For a droplet, C approaches +1 inside the droplet, and −1 outside.
Assuming a planar geometry and a circular interface of radius R, the chemical
potential as de�ned in Equation 10.8 can be written as

ϕ = −Cn2
(
∂2C

∂r2
+

1

r

∂C

∂r

)
+Ψ′ (C) . (10.10)

Since the dimensionless interface width is Cn≪ 1, the solution to this equation has
a boundary layer character, and we introduce a new radial coordinate p such that
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r = R+Cn ·p and expand Equation 10.10 at zero and �rst order

C = C0 +Cn ·C1 +O(Cn2),

ϕ = ϕ0 +Cn ·ϕ1 +O(Cn2).

The problems for the zeroth and �rst order are now

ϕ0 = −
∂2C0

∂p2
+Ψ′ (C0) , (10.11)

and

ϕ1 = −
(
∂2C1

∂p2
− 1

R

∂C0

∂p

)
+ C1Ψ

′′ (C0) . (10.12)

The zeroth order equation 10.11 gives the equilibrium solution as C0 =

− tanh(p/
√
2), with ϕ0 = 0.

Multiplying the �rst order equation 10.12 by ∂C0/∂p and partially integrating, a
solvability condition is obtained for the �rst-order value of the chemical potential

ˆ
ϕ1C0,pdp = −

ˆ
(C0,pC1,pp + C1(Ψ

′(C0)),p)dp−
1

R

ˆ
(C0,p)

2dp, (10.13)

where , p denotes derivative with respect to p. The chemical potential is continuous
at the interface, so the �rst order chemical potential ϕ1 is a constant in equa-
tion 10.12. By partially integrating the �rst term on the right hand side that is seen
to be zero. Using that ˆ

ϕ1C0,pdp = −2,

and ˆ
(C0,p)

2dp =
2
√
2

3
,

the result gives the value of the chemical potential at the interface

ϕ = Cnϕ1 =
1

2

2
√
2

3

Cn

R
. (10.14)

We will now apply the same perturbation approximation to Equation 10.7. Again,
the zeroth order gives the equilibrium concentration pro�le, but the �rst order be-
comes

−u · Pe ·C0,p = (−C1,pp + C1Ψ
′′(C0)),pp −

1

R
C0,ppp. (10.15)

In order to derive a relation between the mass �ux on the left hand side and the
curvature, we multiply this equation by

F =

ˆ p

0
C0dp. (10.16)

By successive partial integrations, the �rst term in the right hand side is shown to
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vanish, and the end result is
ˆ
u · Pe ·FFppdp =

1

R

ˆ
FFppppdp, (10.17)

with ˆ
FFppdp = 2

√
(2)(1− ln 2) = 0.8679,

and ˆ
FFppppdp =

2
√
2

3
= 0.9428.

In Equation 10.17, a factor δ, the YZF distance to the stagnation point, is introduced
on the left hand side to account for an integration in the vertical direction. The
velocity pro�le on the left hand side goes to zero beyond δ, but the right hand side
comes from the di�usion �eld around the contact line which can have contributions
from further away.

We now consider the Navier-Stokes equations (Equation 10.6) to couple this to
the velocity �eld. Assuming a balance between the viscous term and the capillary
term, we estimate the relevant terms in the Navier-Stokes equation as

1

Re

a u

δ
∼ 1

R

2
√
2

3

1

CaCnRe
.

Here a dimensionless parameter a is introduced to account for the viscous stress τ
as

τ =
au

δ
.

Putting everything together yields the following relations: the chemical potential ϕ
is related to the radius of curvature R at equilibrium by

ϕ =
1

2

2
√
2

3

Cn

R
, (10.18)

and the local curvature is a function of the �ow parameters

R =
2
√
2

3

1√
0.8679

√
Cn

PeCa a
. (10.19)

Translating these equations in terms of boundary condition for the dynamic apparent
angle θapp, yields

cos(θapp) = cos(θe) +
3

2
√
2
CaCL a. (10.20)

This apparent angle relation exists at the stagnation point � a distance +δ away
from the wall � where δ is

δ =
1√

0.8679

√
CaCn a

Pe
.
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10.3.2 Phase-Field simulations of dynamic wetting by the Volume-

of-Fluid method

We consider a drop spreading over a no-slip motionless substrate � located at y = 0

� where the equilibrium angle θe governs the �nal shape of the drop. Using the
relations described above, we compare full PF simulations � in the sense that the
full domain is solved � with VOF simulations using the toy model approximation.
In the toy model, the bottom boundary is now a computational boundary that is
located a distance +δ away from the wall. The domain comprised between the wall
y = 0 and the computational boundary y = δ is not simulated. There, we apply
the dynamic angle relation (Equation 10.20), where the apparent angle θapp is now
a dynamic contact angle θd

θd = cos91
(
cos θe +

3

2
√
2
CaCL a

)
, (10.21)

with CaCL the contact line capillary number. Moreover, in order to simulate a true
no-slip condition at the wall, we use δ as the slip length for the tangential velocity
(again located at the computational boundary)

ux|y=δ − δ
∂ux
∂y
|y=δ = 0. (10.22)

When considering a spreading drop with this model, we need to relax the imper-
meability condition in the NBC by allowing a mass �ux through the computational
boundary. This sinking velocity vsink is related to the amount of mass that we lose
� in the case of θe < θ0 � or gain � in the case of θe > θ0. The boundary condition
for the normal component of the velocity at the wall is now

uy|y=δ = vsink. (10.23)

A validation of the numerical implementation of vsink is provided in Appendix G.
Figure 10.11 shows the computational domains of both PF and VOF setups with
the respective boundary conditions.

The initial radius of the drop is R0 = 0.5 with an initial contact angle θ0 = 90°.
The equilibrium angle is set to θe = 70°. The viscosities and densities ratio between
both phases are

µ̄ =
µg
µl

= 1092,

ρ̄ =
ρg
ρl

= 1092.
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Wetting BC
3

2
√
2
Cn∇C · n = cos(θe)g

′(C)

C = 1C = 91

+δ

Stagnation pointsNavier-Stokes
Cahn-Hilliard

(a) Full PF setup.

Slip ux − δ
∂ux
∂y

= 0 and sink velocity uy = vsink

c = 1c = 0

+δ

Navier-Stokes
Dynamic angles

θd = cos91
(
(cos(θe) +

3

2
√
2
CaCL a

)

(b) Toy model VOF.

Figure 10.11: Schematic of the full PF and the toy model VOF computational domains
with their respective boundary conditions.
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The dimensionless parameters governing the �ow are set to

Ca = 0.0212,

Re = 3.978,

Cn = 0.01,

Pe = 1.

Note that the choice of Peclet number agrees with the sharp interface limit approx-
imation of Yue and Feng [Yue & Feng 2011]

Pe = 1 < 16
√
µ̄
Ca

Cn
= 3.392.

The geometrical factor accounting for the viscous �ow is set to a = 3. This value was
found by �tting the radius of curvature and the right hand side of Equation 10.19.
The PF simulations are carried out using FreeFEM-NS-CH, a script compilation for
FreeFEM [Hecht 2012] to solve the coupled system of Navier-Stokes Cahn-Hilliard
equations developed, by U. L	acis and S. Bagheri. The grid size used in the PF
simulation is ∆PF = 0.0625 ε and the one in the VOF simulation is ∆VOF = 0.577 δ.
The results obtained are summarized in the following �gures.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

D
im

en
si

on
le

ss
 d

ia
m

et
er

Dimensionless time

VOF
PF

 1.011

 1.012

 1.013

 1.014

 1.015

 0  0.001  0.002

Figure 10.12: Dimensionless diameter as a function of time for the PF and VOF sim-
ulations. The inset shows the spurious initial oscillation of the displacement in the VOF
simulation.

https://github.com/UgisL/FreeFEM-NS-CH
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Figure 10.12 shows the diameter of the drop as a function of time for the PF and the
VOF simulations. In oder to compare the displacement, the position of the contact
line in the VOF setup is projected back to the wall y = 0 using the extracted
apparent angle located at y = δ + ∆, in order to avoid the di�erence in imposed-
extracted angles ∆θnum at y = δ, as detailed in Section 10.1.2. From the comparison
between both models, we can observe that the displacement curves superimpose
almost perfectly. The �nal equilibrium position of the contact line is the same in
both cases, implying that the sinking velocity vsink allowed us to accurately represent
the mass �ux through the computational boundary. In transient state, however,
we see a slight di�erence between times 0.1 and 0.3 where the VOF simulation
overshoots the solution. This behavior is similar to ones observed previously in the
super-slip model and is related to the e�ect of the slip. The inset of Figure 10.12
shows the displacement zoomed-in at initial time. We can observe a spurious initial
oscillation in the VOF model that is damped in a few iterations. This oscillation
comes from the initial condition on the dynamic angle θd that is too strong.

Figure 10.13: PF and VOF interfaces at times t = 0, 0.05, 0.1, 0.15, 0.2 and 0.4. The
dotted black line corresponds to the location of the computational boundary in VOF toy
model.

Figure 10.13 shows the interfaces for both models at times 0, 0.05, 0.1, 0.15, 0.2
and 0.4. The dotted black line corresponds to the location of the computational
boundary. In the VOF simulation, the domain is cut at y = δ and anything below
it is not simulated. The superposition of the PF and VOF interfaces show good
agreement. In Figure 10.14, we show the same interfaces zoomed at the contact line.
The �rst observation is the appearance of a discontinuity in the last VOF fragment.
Again, this showcases the numerical di�erence ∆θnum, where the actual angle is
always di�erent from the one imposed through height functions the ghost layer
(Section 9.3.1). Nevertheless, the VOF interfaces show a relatively good agreement
with respect to the PF ones.
As a next step, one should carry out PF simulations for di�erent Peclet numbers
and compare them the VOF toy model to observe if a change in mass di�usion
coe�cient can be reproduced through our newly developed simple Navier boundary
condition and dynamic contact angle relation.



10.4. Summary of models and applications 143

Figure 10.14: Zoom around the contact line on the PF and VOF interfaces at times t
= 0, 0.05, 0.1, 0.15, 0.2 and 0.4. The dotted black line corresponds to the location of the
computational boundary in VOF toy model.

10.4 Summary of models and applications

We now summarize the implemented models and their applications. The di�er-
ent models can, �rst, be categorized by their type of boundary condition for the
tangential velocity, namely:

1. The slip model or Navier boundary condition (NBC), Equation 9.7 in Sec-
tion 9.2.1.

2. The local slip model, Equation 9.8 in Section 9.2.1.

3. The super-slip model, Equation 10.2 in Section 10.1.1.

4. The generalized Navier boundary condition (GNBC), Equation 10.3 in Sec-
tion 10.2.1.

The second categorization corresponds to the numerical treatment of the contact
angle:

1. A constant contact angle, Section 9.1. In this case the angle imposed through
height functions is arbitrarily �xed and can be used as a �tting parameter.

2. A dynamic contact angle, Equation 9.10 in Section 9.2.2. In this case, however,
the angle is a function of the �ow at the contact line and the equilibrium angle.

3. A free contact angle, Equation 10.5 in Section 10.2.1. In this �nal case, the
contact angle is considered to be a solution of the �ow. The notion of free



144 Chapter 10. Advances in models for contact lines

contact angle, developed in this work, is used in combination with the GNBC
� and with the no-slip model for numerical validation, see Appendix F). The
GNBC can be viewed as a boundary condition for the momentum equation
with an extracted angle � as opposed to imposed � that is measured at each
time step.

In Figure 10.15, we present a table of the di�erent models with the aforemen-
tioned categorizations. The color code is as follows:

� In green, the models implemented and tested in the VOF framework that are
presented in Chapter 9 and Chapter 10. The toy model is a special type of slip-
dynamic angle combination were the the computational boundary is lifted o�
the solid substrate and necessitates a special treatment of the normal velocity
component in the boundary condition (Appendix G).

� In blue, the models the were implemented and tested but not presented in
this dissertation. In particular, the GNBC patch method [Fullana 2019] was
the �rst iteration of the GNBC where we modi�ed the velocities around the
contact line without changing the Navier boundary condition. In that case, a
constant contact angle was used.

� In red, the models that are yet to be tested.

� In grey, the combinations of boundary conditions and contact angles that have
no `meaning' in our numerical framework. For example, in the case of a GNBC
with a dynamic contact angle, the fact that, on one hand the contact line speed
CaCL is a function of the dynamic angle θd, but on the other hand θd is itself
a function of the contact line speed CaCL clearly leads to a paradox. The
free dynamic contact angle in the case of a slip or super-slip model leads to
an ill-posed problem, where the condition on the contact angle is lacking and
does not enter the boundary condition of the momentum equation.
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Figure 10.15: Summary of the di�erent models for the dynamic contact line.





Conclusion

In the �rst part of this dissertation, we proposed a level set method coupled with a
novel Cut Cell approach to tackle two-phase Stefan problems as well as an adjoint-
based optimization procedure. The key features of the level set related algorithms
are, (i) an implicit-explicit scheme to solve the level set advection allowing us to
relax the usual CFL condition, (ii) the high-order Johansen-Colella method used to
compute the normal gradient across the interface, and (iii) the sub-cell resolution
reinitialization procedure to retain the signed distance function property as the
interface moves. Moreover, we use the Cut Cell method coupled with a Crank-
Nicolson time integrator that allows us to solve the two-phase problem for any given
geometry. The method was then extended to solve the Navier-Stokes equations in
the �uid phase, and compares favorably with previous computations on the onset
of Rayleigh-Bénard instabilities. This Cut Cell method is currently being extended
to higher dimensions.

In the context of classical two-phase Stefan problems, the adjoint-based opti-
mization procedure is shown to be a robust algorithm to control the shape of a
melting or solidi�cation front, even in the presence of dendritic instabilities and
anisotropic e�ects. The comparison with derivative-free methods yields favorable
results, as the gradient-based method converge faster. Nevertheless, the �nal value
of the cost functional is, as expected, lower in the derivative-free cases. As a future
work, one could consider to employ hybrid optimization methods, such as the G-
DYCORs (Gradient-enhanced DYnamic COordinate search using Response Surface
models).

The derivation of the continuous adjoint in the presence of a �ow in the liquid
phase could also be a direction to follow. In that case, the use of an incomplete
adjoint � were the velocity �eld is a `known' quantity in the adjoint problem �
might be required. In this particular case, to avoid any substantial simpli�cations,
one could also consider the `discretize-then-di�erentiate' approach were a discrete-
adjoint-based optimization algorithm � as opposed to a continuous one � would be
built.

In the second part of this work we presented several contact line models in a
Volume-Of-Fluid framework. These models were validated and tested on physical
setups. Describing the physics of the dynamic contact line with sharp-interface
method is still a challenge. The models yield di�erent results depending on the
physical problems considered and a consensus on the `best' approach to adopt is
still debated. Our work is an attempt to enrich the �eld with various new numerical
methods for contact lines.

In particular, the GNBC based on the VOF method, were the angle is a func-
tion of the �ow, presents attractive grid-independent properties, provided that the
smallest length scale is well-resolved. On the other hand, the toy model model is an
interesting way of modeling evaporation � mechanism driving of the motion of the
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contact line � through simple boundary conditions in the VOF method. This model
still needs to be tested on a wider range of problems.

As a �nal remark, one could implement these models in our level set method, thus
modeling phase-change phenomena in the presence of contact lines. An interesting
advantage would be to use the already existing adjoint-based � or derivative-free
� optimization procedures and test them on case where the control variable is, for
example, the contact angle.
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Appendices



Appendix A

Transport and shape calculus

theorems

In this section, we present the transport and shape calculus theorems, similarly
to [Bernauer & Herzog 2011], that are used in the continuous adjoint derivation
(Chapter 2).

Theorem A (Reynolds transport theorem) The derivative of the quantity

F (t) :=

ˆ
Ω(t)

f(x, t)dx,

is given by
dF

dt
(t) =

ˆ
Ω(t)

∂f

∂t
+ div(f V ) dx

=

ˆ
Ω(t)

df

dt
+ f div(V ) dx

=

ˆ
Ω(t)

∂f

∂t
dx+

ˆ
∂Ω(t)

f V · n ds,

where V is the velocity �eld in which the control volume Ω(t) moves.

Corollary A (Integration by Parts in Time in Moving Domains) For g =

g(x, t) and h = h(x, t), we have

ˆ tf

0

ˆ
Ω(t)

g ht dx dt =

ˆ
Ω(tf )

g(x, tf ) h(x, tf ) dx−
ˆ
Ω(0)

g(x, 0) h(x, 0) dx

−
ˆ tf

0

ˆ
Ω(t)

gt h dx dt−
ˆ tf

0

ˆ
∂Ω(t)

g h V · n ds dt.

Theorem B (Derivative of boundary integral) Let J(Ω) =
´
Γ fds be a bound-

ary integral, the derivative is given by

dJ(Ω;V ) =

(
d

dλ

ˆ
Γλ

f dsλ

)∣∣∣∣
λ=0

= −
ˆ
D

δϕ

|∇ϕ|

(
∂f

∂n
+ f κ

)
ds,

where V is the velocity �eld and κ is the mean curvature of Γ.
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Theorem C (Surface transport theorem) Let f(·, t) : St → R be a scalar �eld
de�ned on the moving surface St. Then

d

dt

ˆ
St

f(x, t) dSt =
ˆ
St

ḟ(x, t) + f(x, t) divSt w(x, t) dSt,

where w is the normal velocity of the moving surface St and ḟ is the parameter-time
derivative of f . If f(·, t) is the restriction of a function f̂(·, t) to St, then

ḟ(x, t) = w(x, t) · ∇f̂(x, t) + ∂

∂t
f̂(x, t).

Corollary C (Integration by Parts in Time on a Moving Surface)

ˆ T

0

ˆ
St

ĝ(x, t) ĥt(x, t) dSt dt =
ˆ
ST

g(x, T ) h(x, T ) dST −
ˆ
S0

g(x, 0) h(x, 0) dS0

−
ˆ T

0

ˆ
St

ĝt(x, t) ĥ(x, t) +w(x, t) · ∇(ĝ(x, t) ĥ(x, t))

+g(x, t) h(x, t) divSt w dSt dt,

where g and h are restrictions of ĝ and ĥ to St.



Appendix B

Cut Cell method for

Navier-Stokes equations

This section presents the proposed discretization of the incompressible Navier-
Stokes equations for an isotropic Newtonian �uid in the context of the Cut Cell
method. Details of this discretization � for stationary geometries � can be found
in [Quirós Rodríguez et al. 2022]. The equations readρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ · (2µs) + ρg,

∇ · u = 0,

where u and p respectively denote the �uid's velocity and pressure �elds, ρ its
constant density and g the gravitational acceleration. Additionally, µ denotes the
�uid's constant dynamic viscosity and

s ≡ ∇u+ (∇u)⊤

2
,

the strain-rate tensor. P = (Pij) represents the (cell-centered) pressure �eld, and

U = (Ux, Uy) =
(
(Ux

i+1/2,j), (U
y
i,j+1/2)

)
,

the (staggered) Cartesian components of the velocity �eld. Finally, D = (Dx, Dy)

denotes the (staggered) boundary conditions to be applied on the velocity �eld.

Velocity divergence and pressure gradient Let Ωf
ij = Ωij∩Ωf denote the sub-

set of Ωij wet by the �uid, u the continuous �uid velocity �eld and d the boundary
condition. Then, Stokes' divergence theorem

ˆ
Ωf

ij

∇ · u =

ˆ
∂Ωf

ij\Γ
u · n+

ˆ
∂Ωf

ij∩Γ
d · n,

states that the volume integral of the velocity divergence matches the net volume
�uxes, summed over the surfaces immersed in the �uid itself and adjacent to the
boundary. The former term, referred to as homogeneous, quanti�es the exchange of
volume with the neighboring �uid elements, and the latter, referred to as heteroge-
neous, quanti�es this exchange with the exterior domain through the boundary.
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This decomposition is re�ected at the discrete level by discretizing the volume-
integrated velocity divergence as

cont (U,D) ≡
∑
α

(
δAαUα

δξα
+
δ
(
Bα

α −Aα

)
Dα

δξα
− δBα

δξα
Dα

α

.

)
. (B.1)

The divergence free condition, then, is expressed as

cont (U,D) = 0,

and the (volume integrated) α component of the pressure gradient, a linear operator
denoted as presα, is simply de�ned as the negative transpose of the Jacobian of
Equation B.1 with respect to Uα, namely

∀α ∈ {x, y} , ∂ presα
∂P

= −
(
∂ cont

∂Uα

)⊤

Uβ ̸=α,D

, (B.2)

which yields

∀α ∈ {x, y} , presα (P ) ≡ Aα
δP

δξα
.

This construction is rooted in the geometric interpretation of the incompressible
Navier-Stokes equations [Arnold 1966], which exposes the dual role of the pressure
in imposing the divergence-free condition, and commonly used in both structured
and unstructured settings [Cheny & Botella 2010, Perot 2011].

Strain-rate tensor The components of the diagonal element of the strain-rate
tensor are cell-centered discrete counterparts of

sαα =
∂uα
∂xα

, α ∈ {x, y} ,

de�ned based upon the gradient formula Equation 3.12. First, the surface and vol-
ume capacities W = (Wβ), A = (Aβ) and B = (Bβ) are replaced by those after
shifting the mesh in half a grid spacing along direction α de�ned in Section 3.1,
namely Wα = (Wαβ), Aα = (Aαβ) and B = (Bαβ). Second, the dependent �eld T
and the Dirichlet boundary condition D are substituted with Uα and Dα, respec-
tively. This �nally yields

∀α ∈ {x, y} , strainαα (U,D) =

1

Wαα

[
δBααUα

δξα
+
δ
(
Aαα

α −Bαα

)
Dα

δξα
− δAαα

δξα
Dα

α
]
. (B.3)
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This process is repeated for the components of the o�-diagonal elements of the
strain-rate tensor, de�ned in the continuous case as

sαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
, α ̸= β,

and in the discrete case as the node-centered �eld

∀ (α, β) ∈ {x, y}2 , α ̸= β, strainαβ (U,D) =

1

2Wαβ

δBαβUα

δξβ
+
δ
(
Aαβ

β −Bαβ

)
Dα

δξβ
−
δAαβ

δξβ
Dα

β


+
1

2Wβα

[
δBβαUβ

δξα
+
δ
(
Aβα

α −Bβα

)
Dβ

δξα
−
δAβα

δξα
Dβ

α
]
. (B.4)

It should �nally be noted that the latter formula (Equation B.4) is also valid in the
diagonal case (α = β), in which case it simply reduces to Equation B.3.

Viscous transport term Prior to proceeding with the discretization of the vis-
cous transport term, it should �rst be noted that, in the case where the second
argument (N) of the divergence operator (Equation 3.13 summed over α) matches
the �rst argument (Q), Equation 3.13 may be simpli�ed using the identities pre-
sented by [Morinishi 2010] as

div (Q,Q) =
∑
β

Bβ
δQβ

δξβ
. (B.5)

Therefore, the discretization of the viscous transport term, ∇ · (2µs), is performed
similarly to that of the strain-rate operator, by translating the de�nition of the
capacities to yield

∀α ∈ {x, y} , viscα (S) =
∑
β

Bαβ
δSαβ
δξβ

,

where S = (Sαβ) is de�ned as a function of U and D by Equations B.3 and B.4.

Convective transport term The convective term in the momentum transport
equation along α ∈ {x, y} is rewritten in conservative form using the divergence-free
condition,

(u · ∇)u = ∇ · (u⊗ u)−∇ · u = ∇ · (u⊗ u) ,

which in discrete form can be written as

convα

(
U,U†,D,D†

)
=
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∑
β

δAβUβ
α
U †
α

β

δξβ
+

δ
(
Bβ

β −Aβ

)
Dβ

α

δξβ
−
δBβ

δξβ
Dβ

β
α
 U †

α +D†
α

2

 . (B.6)

This multilinear operator is typically evaluated at U† = U and D† = D but the
distinction might bear signi�cance, in the context of Picart linearization for exam-
ple where a distinction applies between U which is typically frozen whereas U† is
updated. This discretization can be considered as the generalization of the cen-
tered scheme to the cut cell method, which can be demonstrated as follows. In the
continuous case,

∀ (α, β} ∈ {x, y}2 , uα
∂uβuα
∂xβ

=
∂uβu

2
α/2

∂xβ
+
u2α
2

∂uβ
∂xβ

, (B.7)

which, upon summation over α, yields a similar equation for the speci�c kinetic
energy k ≡ ∥u∥2/2, ultimately conserved in the inviscid limit. The proposed dis-
cretization of the convective transport term (Equation B.6) preserves this property
at the discrete level. Using the identities presented by [Morinishi 2010], it can be
be shown that

∀ (α, β) ∈ {x, y}2 , U †
α

δAβUβ
α
U †
α

β

δξβ
=
δAβUβ

α
Ũ †
αU

†
α

β

/2

δξβ
+
U †2
α

2

δAβUβ
α

δξβ
, (B.8)

where ·̃ denotes the permanent product

ϕ̃ψ
x
∣∣∣
i+1/2,j

=
ϕi+1,jψij + ψi+1,jϕij

2
, (B.9)

also introduced by [Morinishi 2010] and easily extended to other dimensions and
arrangements as previously done for di�erentiation and interpolation. Equation B.8,
together with the continuity operator (Equation B.1), can be used to show that
∀α ∈ {x, y}

U †
α convα

(
U,U†,D,D†

)
=

∑
β

δAβUβ
α
Ũ †
αU

†
α

β

/2

δξβ
+

δ
(
Bβ

β −Aβ

)
Dβ

α

δξβ
−
δBβ

δξβ
Dβ

β
α
 U †

αD
†
α

2


+
U †2
α

2
cont (U,D)

α
. (B.10)

This identity can be interpolated in each direction α, and summed over α, to ulti-
mately state the proposed discretization (Equation B.6) conserves kinetic energy, in



157

the sense that the rate of change of the discrete kinetic energy

kinetic
(
U†
)
≡
∑
α

1

2
VαU

†
αU

†
α

α
,

is a result of an exchange with the neighboring �uid elements (�rst term in the
right-hand side of Equation B.10) and across the boundary (second term).

Semi-discrete system The face-centered mass matrices appearing in front of the
rate of change and body forces are diagonal with coe�cients V = (Vα) (the volume
of the staggered control volumes, de�ned in Section 3.1) and are denoted as

∀ {x, y} , Mα ≡ diag (Vα) .

Gathering all the terms, the proposed semi-discrete momentum equations then read
(α ∈ {x, y})

ρ

[
Mα

dUα

dt
+ convα (U,U,D,D)

]
= −presα (P ) + viscα (2µS) + ρMαg, (B.11)

with divergence-free condition

cont (U,D) = 0. (B.12)

The system is closed with the discrete strain-rate tensor S, de�ned as a function of
U and D as follows,

∀ (α, β) ∈ {x, y}2 , Sαβ = strainαβ (U,D) , (B.13)

where the operators strainαβ are de�ned by Equations B.3 and B.4.
All of the operators appearing in Equations B.11, B.12 and B.13 are linear in all

dependent variables (P , U and S) and boundary condition D with the exception
of the convective transport operators ((convα) de�ned in Equation B.6) which is
quadratic when evaluated at U† = U and D† = D.

Projection method The discretization of the aforementioned incompress-
ible Navier-Stokes equations results in a saddle point system of equa-
tions [Benzi et al. 2005], sometimes also called Karush-Kuhn-Tucker (KKT) sys-
tem [Nocedal & Wright 2006] in optimization. A wide range of algorithms have
been devised to e�ciently solve saddle point systems (or approximation thereof).
In the �eld of �uid mechanics, a common approach is the fractional step
method [Chorin 1968]. In the present work, the method referred to as projection
method II (PmII) by [Brown et al. 2001], which ensures a second order discretization
of the equations, is employed.

In this projection method, the convective term is discretized using the explicit
second-order Adams-Bashforth scheme and the viscous term is discretized using the
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implicit Crank-Nicolson scheme. The �rst step of the method consists of obtaining
an intermediate velocity �eld U⋆ by solving

ρMα
U⋆
α − Un

α

τ
+

3ρ

2
convα (U

n,Un,Dn,Dn)

− ρ

2
convα

(
Un−1,Un−1,Dn−1,Dn−1

)
= −presα

(
Pn−1/2

)
+ viscα (µS

⋆) + viscα (µS
n) + ρMαg, (B.14)

where τ denotes the time step and the superscript n the iteration number. The
boundary conditions applicable to U⋆ (the predicted velocity �eld) and used in S⋆

are those of the velocity �eld at the next time step (D⋆ = Dn+1)

∀ (α, β) , Sn
αβ = strainαβ (U

n,Dn) and S⋆
αβ = strainαβ

(
U⋆,Dn+1

)
.

In the projection step, the velocity �eld is updated by projecting U⋆ using the
intermediate pressure �eld Φn+1, which is obtained by solving the following Poisson
equation

τ cont
(
pres

(
Φn+1

)
,0
)
= cont

(
U⋆,Dn+1

)
, (B.15)

with a homogeneous Neumann boundary conditions being used for the intermediate
pressure (0). The velocity �eld is ultimately corrected as

Un+1
α = U⋆

α − τ presα
(
Φn+1

)
. (B.16)

The pressure is �nally updated as

Pn+1/2 = Pn−1/2 +Φn+1 − τµ

2ρ
cont

(
pres

(
Φn+1

)
,0
)
, (B.17)

where the last term ensures the second order accuracy of the pressure �eld.
Thus far, only Dirichlet boundary conditions for the velocity �eld have been

considered, which are paired with homogeneous boundary conditions for the pressure
in the projection step. Cases will be considered in the following section where
Neumann boundary condition are required along the out�ow boundaries. Along
their vicinity, a Dirichlet boundary condition for the pressure is employed in order
to uphold the compatibility equation B.2.

Finally, the use of periodic and/or Neumann boundary conditions gives rise to
a rank de�ciency in the Laplacian operator. This results in the pressure �eld being
known up to a constant. This knowledge is exploited in the iterative solution of the
Poisson equation by projecting the updates in the space of zero-mean solutions.



Appendix C

Flower.jl package description

In this section, we detail the Julia code Flower.jl used in the �rst part of the
dissertation. The code architecture can be summarized as follows:

� The numerical and physical parameters � de�ned by the user when initializing
a problem � the meshes, discrete operators and �elds are contained in di�erent
mutable data structures that enter the main solving functions.

� Two main functions, with options determining the type of problem to consider,
are de�ned. The �rst one � run_forward(...) � solves the forward Stefan
problem (Algorithm 4) and the second one � run_backward(...) � solves the
adjoint Stefan problem (Algorithm 6).

We now present a typical Julia �le that uses Flower.jl to solve, for example, the
Rayleigh-Bénard convection case (Section 5.4). We start by de�ning the numerical
and physical variables contained in the num structure:

� �
using Flower # Load the structures and functions contained in the package

L0 = 1.0 # Size of the domain
H0 = 0.05 # Initial height of the fluid layer
R = 8 # Aspect ratio
nx = R*64 # Number of points in the x-direction
ny = 64 # Number of points in the y-direction

x = LinRange(0.0, R*L0, nx+1) # x and y segements with the origin at (0,0)
y = LinRange(0.0, L0, ny+1)

# Define the numerical and physical parameters
num = Numerical(CFL = 0.5, # CFL condition, defines the time step

x = x, # Set x in num
y = y, # Set y in num
NB = 4, # Narrow band width
reinit_every = 5, # Reinitialize the level set every 5 time steps
TEND = 1.0, # Final time of the simulation
save_every = 100, # Save the data every 100 time steps
u_inf = 0.0, # Initial velocity field
T_d = 0.1, # Melting temperature
ε_k = 0.0, # Surface tension coeffcient
ε_v = 0.0, # Molecular kinematic coeffcient
Ra = 10ˆ6, # Global Rayleigh number
L_H = 2.0, # Latent heat of solidification
T1 = 1.0, # Bottom wall temperature
T2 = 0.0 # Top wall temperature

)� �
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Next, the meshes (gp, gu, gv), Cut Cell operators in both phases (opS, opL), �elds
in both phases (phS, phL), a structure to save the data as the `forward' simulation
progresses (fwd) and the level set function (gp.phi) are initialized:

� �
# Initialize the meshes (centered, stagerred in x, stagerred in y)
gp, gu, gv = init_meshes(num)

# Initialize the discrete operators and fields in both phases
opS, opL, phS, phL, fwd = init_fields(num, gp, gu, gv);

# Define the initial level set function phi as a plane located at y = H0
@. gp.phi = -gp.y + H0� �
The boundary conditions for the level set function, temperature, velocity and pres-
sure �elds in both phases are set as follow (if not speci�ed, the boundary conditions
are of homogeneous Neumann type on all the domain boundaries):

� �
# Set the boundary conditions for the different fields
# If not specified, the boundary condition is a homogeneous Neumann BC

# Liquid temperature field
BC_TL = Boundaries(

bottom = Boundary(t = dir, val = num.T1) # Dirichlet at the bottom wall
)

# Solid temperature field
BC_TS = Boundaries(

top = Boundary(t = dir, val = num.T2) # Dirichlet at the top wall
)

# x component of the velocity field in the liquid phase
BC_uL = Boundaries(

bottom = Boundary(t = dir, val = 0.0), # Dirichlet at the bottom wall
top = Boundary(t = dir, val = 0.0) # Dirichlet at the top wall

)

# y component of the velocity field in the liquid phase
BC_vL = Boundaries(

bottom = Boundary(t = dir, val = 0.0), # Dirichlet at the bottom wall
top = Boundary(t = dir, val = 0.0) # Dirichlet at the top wall

)� �
We can now run the simulation using the main function run_forward(...). In this
case, we solve:

� The heat equation (Equation 1.1) in the solid phase.

� The Stefan condition (Equation 1.2) at the interface.

� The di�usion-convection equation and the Navier-Stokes equations with the
Boussinesq approximation (Equation 1.11) in the liquid phase.
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� �
# Run the simulation
run_forward(num,

gp, gu, gv,
opS, opL,
phS, phL,
fwd,
BC_TL = BC_TL, # Set the boundary conditions for the solver
BC_TS = BC_TS,
BC_uL = BC_uL,
BC_vL = BC_vL,

periodic_x = true, # Periodic in the x-direction
# Overwrites the homogeneous Neumann BC

stefan = true, # Stefan condition at the interface

advection = true, # Level set advection equation

heat = true, # Solve the heat equations
heat_convection = true, # with the convective term
heat_liquid_phase = true, # in the liquid phase
heat_solid_phase = true, # and in the solid phase

navier_stokes = true, # Solve the NS equations
ns_advection = true, # with the convective term
ns_liquid_phase = true, # only in the liquid phase
ns_solid_phase = false,

adaptive_t = true, # Adaptive time step

verbose = true, # Show simulation statistics
)� �





Appendix D

Spurious currents study for static

drops

The presence of spurious currents when studying �ows at low capillary number are
a known issue in the CSF-VOF method [Popinet 2018], as well as for other methods
(level set, front-tracking). Nevertheless, some improvements in the balance of surface
forces and discrete pressure gradients are still possible. In [Abu-Al-Saud et al. 2018],
the authors presented a new numerical scheme to model surface tension for an
interface represented by a level-set function that conserves �uid momentum and
recovers Laplace's equilibrium exactly.

In this section, we look at the spurious currents for a static drop in a closed
domain. The system is characterized by the Laplace number, representing the ratio
of surface tension to the viscous dissipation

La =
σρD

µ2
,

where D is a characteristic length scale of the system, the diameter of the drop in
our case. Similarly to [Abu-Al-Saud et al. 2018], we will look at the e�ect of the
Laplace number and the grid resolution on the spurious currents by measuring the
maximal velocity as simulation proceeds in time. In addition to that, we will study
the e�ect of an initial shift in the x-direction � therefore modifying the volume
fraction in the interfacial cells � and the e�ect of a 90° contact angle imposed at the
bottom wall. We will consider 6 (2× 3) cases (presented in Figure D.1)

� A drop initialized in the middle of the domain (no-contact) or in contact with
the substrate.

� A initial shift in the x-direction (0, ∆/4 or ∆/2) with ∆ the grid size.

In each case, we will vary

� The Laplace number : La = 200, 400, 800, 1200

� The grid resolution : D/∆ = 16, 32, 64

In our simulations, the drop is initialized with a diameter D = 1 in a 2× 2 domain.
The densities of both phases and the surface tension are set to 1. The viscosity
(equal in both phases) will vary as

µ =
1√
La
.
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The simulations are run until a �nal time t/tµ = 100 where tµ = D2/µ is the viscous
time scale. We look at the evolution in time of the maximal dimensionless velocity
scaled with the capillary number

Camax =
µ|u|∞
σ

.

In Figures D.2 to D.4, the results will be compared two by two (no-contact or
contact) the show the e�ect of the boundary condition on the spurious currents.

Figure D.2 shows the spurious currents in the case where no shift is applied.
For all the combination of parameters, the maximum velocity eventually converges
to zero within machine precision. The �rst clear observation is that the damping
time in which the spurious currents are killed is strongly dependent on the Laplace
number. As expected, as La increases (lines from black to purple), the time to reach
machine precision decreases. In Figure D.2a (no-contact), for La = 200, we observe
a clear convergence as the grid size is decreased. In Figure D.2b (contact), the time
to damping is greatly ampli�ed in the D/∆ = 16 cases. This might come from
numerical errors in the height functions due to an insu�cient resolution.

Figure D.3 shows the spurious currents in the case where a ∆/4 shift is applied.
The previously grid aligned volume fractions, where c = 1, are now displaced. In the
no-contact case, we see similar results than in the previous �gure. However, the grid
convergence is a�ected as the highest resolution cases are not the ones with smaller
damping times. In Figure D.3b, we see spurious currents that do not vanish as time
proceeds. For La = 200, at the highest resolution D/∆ = 64, the maximal velocity
does not converge towards machine accuracy. This is an example of problematic
spurious currents. In practical simulations, the �ow around the contact line could
be considerably a�ected leading to an accumulation of numerical errors.

In Figure D.4 (∆/2 shift), however, we notice the opposite situation. The contact
with the substrate seems to have a regularizing e�ect on the solution as all the
velocities tend to machine precision. In the no-contact case, all the simulations with
a grid D/∆ = 32 exhibit non-vanishing spurious currents regardless of the Laplace
number. This counter-intuitive case might be an example of `special case' where the
combination of these speci�c shift, grid size and initial position of the drop leads to
numerical errors in the computation of the curvature and therefore in the surface
tension term.
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(a) Base case without contact (b) Base case with contact

(c) Quarter of a cell shift without contact (d) Quarter of a cell shift with contact

(e) Half a cell shift without contact (f) Half a cell shift with contact

Figure D.1: Initialization of a 2D drop of diameter D = 1 in a 2 × 2 domain without
contact (left �gures) or with contact with the bottom boundary (right �gures). From top
to bottom, the shift in the x-direction is 0, ∆/4 and ∆/2. The color map corresponds to
the volume fraction c.
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(a) No shift without contact.

(b) No shift with contact.

Figure D.2: Evolution of the maximal dimensionless velocity as a function of time for the
Laplace numbers and grid resolutions indicated for a static drop with no initial shift, and
with or without contact.
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(a) ∆/4 shift without contact.

(b) ∆/4 shift with contact.

Figure D.3: Evolution of the maximal dimensionless velocity as a function of time for the
Laplace numbers and grid resolutions indicated for a static drop with a ∆/4 initial shift,
and with or without contact.
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(a) ∆/2 shift without contact.

(b) ∆/2 shift with contact.

Figure D.4: Evolution of the maximal dimensionless velocity as a function of time for the
Laplace numbers and grid resolutions indicated for a static drop with a ∆/2 initial shift,
and with or without contact.



Appendix E

Numerical implementation of the

super-slip model

We present here the implementation of the discrete super-slip model and its valida-
tion on a Poiseuille �ow. Using the same notations than in Chapter 9 and recalling
the super-slip boundary condition in continuous form

ux − λ1
∂ux
∂y
− λ2

∂2ux
∂y2

= U,

we can de�ne the discrete equivalent as

u[ghost] + u[ ]

2
+ λ1

u[ghost]− u[ ]
∆

+ λ2
u[ghost]− 2u[ ] + u[1]

∆2
= U

⇐⇒ u[ghost] =
2∆2

∆2 + 2∆λ1 + 2λ2
U − ∆2 − 2∆λ1 − 4λ2

∆2 + 2∆λ1 + 2λ2
u[ ]

− 2λ2
∆2 + 2∆λ1 + 2λ2

u[1],

with ux[ghost] the tangential velocity at the ghost cell, ux[ ] the tangential velocity
of the cell inside the domain, ux[1] the tangential velocity of the cell one grid point
away from the wall and ∆ the grid spacing.

We validate the numerical implementation by considering a Poiseuille �ow in a
channel bounded by two walls y ∈ [−0.5, 0.5] where we apply a constant pressure
gradient in the x-direction, such that

∂2u

∂y2
= 91.

By applying the super-slip boundary condition on both walls

u(90.5) = −λ1
∂u

∂y
|y=90.5 − λ2

∂2u

∂y2
|y=90.5,

u(0.5) = −λ1
∂u

∂y
|y=0.5 − λ2

∂2u

∂y2
|y=0.5,

we obtain the following analytical solution for the velocity �eld as function of y

u(y) =
1

2

(
0.25 + λ1 + 2λ2 − y2

)
.
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Figure E.1: Velocity pro�les of a Poiseuille �ow for the indicated values of λ1 and λ2.

Figure E.1 is an example of di�erent numerical velocity pro�les obtained for λ1 =

0, 0.1 and λ2 = 0, 0.1, 0.2.
We carry out a convergence study by computing the L-2 norm of the error

in velocity �eld for λ1 = 0, ∆ and λ2 = 0, ∆2. Figures E.2 and E.3 show a
second-order convergence rate for all the cases indicating that the implemented
super-slip boundary condition does not a�ect the convergence of the �ow solver.
The case λ1 = ∆, λ2 = 0 also validates the Navier boundary condition presented in
Section 9.2.1.
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(a) λ1 = 0, λ2 = 0

(b) λ1 = ∆, λ2 = 0

Figure E.2: Validation of the super-slip implementation on a Poiseuille �ow with λ1 = 0,∆
and λ2 = 0.
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(a) λ1 = 0, λ2 = ∆2

(b) λ1 = ∆, λ2 = ∆2

Figure E.3: Validation of the super-slip implementation on a Poiseuille �ow with λ1 = 0,∆
and λ2 = ∆2.



Appendix F

Kinematic transport of the

contact angle

In this Section, we present a validation of the of the implementation of the free
contact angle as de�ned in Equation 10.5. The idea is to obtain by extrapolation
a numerical contact angle θext at the wall using an apparent angle θapp located one
cell above the contact line. The dynamic contact angle θd at the wall is then set to
this extrapolated value. This method allows θd to be a solution of the �ow (instead
of being imposed). Algorithm 7 summarizes the steps needed to compute θext at a
given instant.

Algorithm 7: Angle extrapolation pseudo-code

for each cell do
Locate the cell one grid point above the contact line
Compute the apparent angle θapp using the unit normal n
Compute the �rst order derivative of the height function hx
Compute the interface curvature κ
Compute the extrapolated angle

θext = θapp +
3

2
∆
κ
√
1 + hy

sin(θapp)

end

Apply the extrapolated angle at the wall through height functions

θd = θext

From kinematic considerations, Fricke [Fricke 2020] derived an analytical solution for
the transport of the contact angle in the case of an incompressible �ow. Using this
relation, we validate our extrapolation method in the VOF framework by carrying
simulations of an oscillating drop for di�erent grid sizes. We consider a drop of
diameter D = 1 in a 2 × 2 domain that is initialized over a static substrate with a
contact angle θ0 = 90°. The velocity �eld in the whole domain, is set to

ux = a cos (πt)x,

uy = 9a cos (πt) y,
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where a is a positive constant. In this study, we only consider the advection equation
of the color function

∂tc+∇ · (cu) = 0.

The prescribed incompressible velocity �eld will induce oscillations of the drop in
both vertical and horizontal directions. The angle formed at the contact line will
be a�ected by this motion and vary in time. We will compare the observed nu-
merical contact angle with the analytical one θexact, given by the following rela-
tion [Fricke 2020]

θexact =
π

2
+ tan91

(
−1

tan θ0
e2aS

)
,

with

S =
sin(πt)

π
.

We carry out two sets of simulations in order to assess the method. In the �rst one,
the contact angle is constant and set to 90° whereas in the second one, we impose
the extrapolated angle. The �nal time is set to tf = 2 and the grid sizes considered
range from 16 to 128 points per diameter.
Figure F.1 summarizes the results obtained. The convergence of the contact angle
with respect to the analytical solution is only obtained in the θd = θext case thus
validating the extrapolation method.
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(a) Imposed 90° contact angle.

(b) θd = θext.

Figure F.1: Validation of the angle extrapolation method. The contact angle as a function
of time is compared to the analytical formula for the indicated grids.
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Relaxation of the impermeability

condition in the toy model

In the toy model (Section 10.3), a computational boundary is introduced at a dis-
tance +δ from the wall where we apply a Navier boundary condition. When con-
sidering a spreading drop, the impermeability condition (uy|y=δ = 0) needs to be
relaxed in order to take into account the mass �ux through that computational
boundary. To that end, we introduce a sink velocity vsink, such that

uy|y=δ = vsink.

To calculate the amount of mass lost during one time step, we compute the area of
the polygon formed by the two contact line points, at times tn−1 and tn, and their
linear projection onto the actual wall (at y = 0). In practice, the angle used for the
projection is an apparent angle located one cell above the contact line (similarly to
the extrapolation angle method described in Appendix F). The computed area is
then translated to the sink velocity by the simple formula

vsink =
1

τ

A
L
,

where τ is the time step, L the length of the wall and A the singed area � de�ned
later. Algorithm 8 summarizes the required steps at a given instant.

We validate the method by considering a drop spreading over a substrate for
di�erent values of δ. The drop is initialized with a diameter D = 1 in a 2 × 2

domain and we apply a constant contact angle θe = 70°. The viscosities, densities
and the surface tension are set to 1. The simulations are run until the equilibrium
position is reached. In Figure G.1, we show the total mass as a function of time
when applying the sink velocity for δ = 0.2, 0.05, 0.02. The initial mass inside the
drop decreases as spreading occurs. In Figure G.2, we compare the �nal interfaces
for three cases: (i) toy model with sink velocity (ii) toy model without sink velocity
(iii) full domain. From the results, we can observe the sink velocity allows us to
match to the �nal true equilibrium shape (full domain). The error in �nal interface
is a function of δ. As δ is increased, the linear extrapolation procedure � that does
not take into account the curved interface at the contact line � induces a higher
di�erence in �nal shapes. In practice, when using the toy model on a real setup, δ
is small compared to the domain size.



178
Appendix G. Relaxation of the impermeability condition in the toy

model

Algorithm 8: Sink velocity pseudo-code

for each cell do
Locate the cell one grid point above the contact line
Compute the contact line position xnCL at y = δ +∆
Compute the apparent angle θapp using the unit normal n
Project the contact line position

x̃nCL = xnCL + (δ +∆) tan
(π
2
− θapp

)
Compute the polygon area A formed by the points

(xnCL, δ +∆), (x̃nCL, 0), (x̃
n−1
CL , 0), (xn−1

CL , δ +∆)

where xn−1
CL and x̃n−1

CL were stored in the previous time step
Determine the sink velocity

vsink =
1

τ

A
L

Store xn−1
CL = xnCL and x̃n−1

CL = x̃nCL

end

Figure G.1: Total mass of the drop as a function of time with or without sink velocity
for di�erent computational boundaries placed at +δ with δ = 0.02, 0.05, 0.2.
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(a) δ = 0.02

(b) δ = 0.05

(c) δ = 0.2

Figure G.2: Validation of the sink velocity imposed at the computational boundary placed
at +δ with δ = 0.02, 0.05, 0.2 denoted by the dotted black lines in the �gures. The
equilibrium angle is θe = 70° for the three cases considered.
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