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La leçon des poètes

« Il faut apprendre auprès de ceux qui ont travaillé sur cet écart entre le sentiment et
l’expression, entre le langage muet de l’émotion et l’arbitraire de la langue, auprès de ceux qui

ont tenté de faire entendre le dialogue muet de l’âme avec elle-même, qui ont engagé tout le
crédit de leur parole dans le pari de la similitude des esprits. »

– Jacques Rancière, Le maître ignorant, Cinq leçons sur l’émancipation intellectuelle, 2004,
10/18, p. 116 (Chapitre III, La raison des égaux)
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RÉSUMÉ EN FRANÇAIS

Avertissement : les définitions précises des objets mentionnés dans ce résumé seront don-

nées dans les chapitres suivants de la thèse.

Les structures projectives considérées dans cette thèse sont des surfaces localement mode-
lées sur des ouverts de la sphère de Riemann P1. Puisque le groupe des automorphismes de
celle-ci est égal à celui des transformations de Möbius,

Aut(P1) = { f : P1! P1 | f ([z1 : z2]) = [az1 +bz2 : cz1 +dz2],

(a,b,c,d) ∈ C4, ad−bc 6= 0},

cela revient à dire qu’il s’agit d’une surface de Riemann, mais avec une contrainte plus forte
que la simple holomorphie de ses changements de cartes : précisément celle d’être des homo-
graphies.

Prenons par exemple un ouvert U de la sphère de Riemann et supposons qu’il soit invariant
sous une action libre et proprement discontinue d’un groupe de transformations de Möbius Γ.
Alors, les inverses locaux de l’application quotient associée U !U/Γ, qui est un revêtement,
forment un atlas projectif sur l’espace quotient. En particulier, le théorème d’uniformisation de
Poincaré-Koebe munit toute surface de Riemann C d’une structure projective canonique ; il en
existe une infinité d’autres dès lors que C est différente de P1.

Considérons une structure projective P. Les prolongements analytiques d’une carte pro-
jective initiale ϕ0 le long de chemins parcourant la surface donnent naissance à une fonction
multivaluée, qui peut être uniformisée par passage au revêtement universel. On obtient ainsi
une fonction holomorphe immersive f à valeur dans la sphère de Riemann, appelée application
développante, qui « globalise » la carte initiale. Cette application développante est équivariante
par rapport à la représentation de monodromie

ρ f : π1(P)−! Aut(P1)

de ϕ0. Celle-ci « globalise » les changements de cartes projectifs.
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Résumé en français

P

U0γ
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U jUi

ϕi
ϕ j

ϕi jP1

P1

U1

FIGURE 1 – Si les ϕi j := ϕi ◦ ϕ
−1
j désignent les changements de cartes tout comme les

transformations de Möbius qui leur sont associées, alors la monodromie le long du chemin
γ recouvert par les cartes U0, . . . ,Un s’obtient en composant les ϕi j de proche en proche :
ρ f (γ) = ϕn,(n−1) ◦ · · · ◦ϕ2,1 ◦ϕ1,0.

L’application développante f , et par suite la représentation ρ f qui lui est associée, dépendent
de la carte projective initiale ϕ0. Toutefois, la classe de conjugaison de la représentation de
monodromie, elle, n’en dépend pas. De cette manière, une structure projective détermine une
classe de conjugaison de représentations de son groupe fondamental dans le groupe des auto-
morphismes de la sphère de Riemann, définie comme celle de la représentation de monodromie
d’une carte arbitraire.

Étant donnée une surface différentiable réelle orientée connexe compacte S, on considère le
plus souvent l’ensemble des structures projectives sur S (induisant une structure différentiable
et une orientation compatibles avec celles de S), dont chaque élément définit donc une représen-
tation du groupe π1(S), à conjugaison près. Ceci revient à se fixer un genre g et une orientation.
Deux structures projectives sur S peuvent être isomorphes sans que leurs représentations de mo-
nodromie soient conjuguées : en ce sens, la monodromie n’est pas un invariant. Pour y remédier
et définir un véritable invariant, on introduit la notion d’isomorphisme (ou d’équivalence) de
structures projectives marquées : il s’agit d’un isomorphisme qui de plus est isotope à l’identité
de S. On note P(S) l’ensemble des classes d’isomorphisme de structures projectives marquées
sur S. Ceci permet de définir l’application de monodromie

MonS : P(S)−!R(S) := Hom(π1(S),Aut(P1))/Aut(P1).
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Résumé en français

À un objet géométrique, cette application associe un objet algébrique. Elle jette un pont entre
deux types d’objets mathématiques de natures différentes, et on peut espérer voir la résolution
de certains problèmes les concernant facilitée par l’adoption de la perspective la plus commode
des deux, c’est-à-dire par le franchissement du pont, si toutefois c’est possible dans les deux
sens. Dans cette optique, deux questions s’imposent naturellement :

1. À quelle condition une classe de représentations est-elle la classe de représentations de

monodromie d’une structure projective?

2. Deux structures projectives marquées définissant la même classe de représentations de

monodromie sont-elles nécessairement isomorphes?

La première question est celle de la caractérisation de l’image de l’application MonS. Elle
a été complètement résolue par Gallo, Kapovich et Marden [GKM00]. La deuxième question,
celle de l’injectivité de MonS, admet en général une réponse négative. Ainsi, la représentation
de monodromie ne caractérise pas complètement la structure projective. Toutefois, plusieurs
résultats d’injectivité affaiblie sont connus. Dès les travaux de Poincaré, il apparaît que pour
toute structure complexe C sur S, l’application MonS est injective en restriction à l’ensemble
des structures projectives compatibles avec C.

On peut également munir les ensembles P(S) et R(S) d’une topologie, et même d’une
structure de variété réelle ou complexe, et se poser une version locale de la deuxième question
(et de la première, en un sens). L’application de monodromie est régulière, et Hejhal a montré
en 1975 que si le genre de S est supérieur ou égal à 2, alors il s’agit d’un C ∞-difféomorphisme
local [Hej75, Thm 1 p. 20]. Quelques années plus tard, Earle et Hubbard l’ont redémontré
indépendamment dans le cadre holomorphe [Ear81 ; Hub81]. Le cas des surfaces de genre 1 se
traite différemment mais donne lieu à un énoncé analogue ; on pourra consulter [LM09, Sec.
1.4.] à ce sujet.

Un point de vue alternatif sur les structures projectives est celui des (G,X)-structures, puis-
qu’elles correspondent au cas particulier du groupe G = Aut(P1) et de la variété X = P1. En
fait, l’application de monodromie peut être définie dans le cadre général plus large des (G,X)-
structures et les arguments d’Ehresmann et Thurston [Thu80, Prop. 5.1] montrent que l’appli-
cation de monodromie est encore un homéomorphisme local (voir aussi [Gol21, Thm. 7.2.1.] et
[Gol10, Sec. 7] pour un bref historique et des références supplémentaires).

Le résultat principal de cette thèse, le Théorème 4.3.1, est une généralisation du théorème
de Hejhal aux structures projectives méromorphes, c’est-à-dire comportant des pôles en un sens
que l’on précisera bientôt.
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Résumé en français

Les structures projectives ont été étudiées dès le XIXe siècle en relation avec les équations
schwarziennes et leur monodromie, ainsi que le problème d’uniformisation (voir [Sai10]). Les
équations schwarziennes sont les équations linéaires homogènes d’ordre deux de la forme

y′′+
q(x)

2
y = 0,

où q est une fonction méromorphe sur un domaine du plan complexe. Un bref calcul montre
que le quotient ϕ = y1/y2 de deux solutions linéairement indépendantes d’une telle équation
satisfait

S (ϕ) :=
(

ϕ ′′

ϕ ′

)′
− 1

2

(
ϕ ′′

ϕ ′

)2

= q (1)

où S (ϕ) est la dérivée schwarzienne de ϕ (introduite par Lagrange). Les propriétés élémen-
taires de celle-ci entraînent que deux solutions diffèrent d’une homographie agissant au but :
ainsi, de telles fonctions ϕ définissent un atlas projectif.

Les propriétés en question sont les suivantes : tout d’abord, la dérivée schwarzienne d’une
fonction immersive est identiquement nulle si et seulement si cette fonction est la restric-
tion d’une homographie. Intuitivement, cette dérivée mesure donc à quel point une immersion
échoue à être une homographie. De plus, la relation de composition S ( f ◦ g) = (g′)2S ( f ) ◦
g+S (g) qu’elle vérifie, appliquée aux changements de variables projectifs g (pour lesquels
S (g) ≡ 0), devient exactement celle du changement de variable pour une forme différentielle
quadratique globale.

En fait, l’ensemble des structures projectives sur une surface de Riemann compacte C don-
née est muni d’une structure d’espace affine sur l’espace vectoriel des formes différentielles
quadratiques sur C. Les cartes projectives de la translation de P par φ sont définies comme suit :
si x est une carte de P dans laquelle φ = q(x)

2 dx⊗dx, alors les cartes de P+φ sont les solutions
de l’équation (1). D’un autre côté, la différence entre deux structures projectives est mesurée par
une forme différentielle quadratique définie localement par la dérivée schwarzienne de la dif-
férence entre deux cartes, une de chacune des structures projectives en jeu. C’est cette relation
entre structures projectives et formes différentielles quadratiques qui permet de munir l’espace
de modules P(S) d’une structure de variété complexe lisse (plus précisément : d’une structure
de fibré affine holomorphe au-dessus de l’espace de Teichmüller, pour le fibré vectoriel des
formes différentielles quadratiques).

Ainsi, une structure projective peut être conçue comme une « équation différentielle scalaire
globale sur une variété », c’est-à-dire une connexion.
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Résumé en français

Le point de vue sur les structures projectives qui s’avère être le plus fructueux dans le cadre
de cette thèse est celui des opers (définis par Beilinson et Drinfeld). À une structure projective
sur S, on peut associer de manière canonique un G-oper sur la surface de Riemann sous-jacente
C, pour le groupe G = PGL(2,C), et réciproquement. Il s’agit d’un triplet (π : Q! C,F ,σ)

constitué d’un P1-fibré π , d’un feuilletage holomorphe F sur Q transverse aux fibres de π et
d’une section σ du fibré π transverse au feuilletage F . Un tel feuilletage est dit de Riccati par
rapport à π , car il est induit par une équation différentielle de Riccati dans toute trivialisation
locale de ce P1-fibré. Les feuilletages de Riccati jouent un rôle prééminent dans la théorie des
feuilletages holomorphes.

Une démonstration du théorème de Hejhal basée sur ce point de vue est esquissée par Loray
et Marín [LM09] ; les idées mises en œuvre remontent en fait aux travaux d’Ehresmann et de
Thurston. Nous avons complété cette démonstration et l’avons adaptée au cas des structures
projectives méromorphes.

Signalons qu’une généralisation du théorème de Hejhal du point de vue des G-opers (sans
singularité), et valable pour des groupes G plus généraux, a été donnée par Sanders [San18,
Thm. 6.3].

La relation entre structures projectives et formes différentielles quadratiques est également
essentielle à la définition précise des structures projectives à pôles. Considérons une structure
projective P sur C. Une structure projective méromorphe sur C peut être définie comme la
translation de P par une forme différentielle quadratique φ méromorphe sur C (en dehors des
pôles de cette dernière). Les pôles pi de P, ainsi que leurs ordres ni, sont par définition ceux
de φ .

Aux structures projectives méromorphes correspondent les PGL(2,C)-opers méromorphes,
c’est-à-dire aux triplets (π : Q! C,F ,σ) comme ci-dessus, mais où cette fois-ci (π : Q!

C,F ) est un feuilletage de Riccati singulier. Cette correspondance n’est toutefois pas biuni-
voque, contrairement au cas non singulier : deux opers non holomorphiquement équivalents
peuvent définir la même structure projective méromorphe. Il existe toutefois un unique oper
minimal associé à une structure projective méromorphe, au sens ou son diviseur des pôles est
minimal à transformation de jauge biméromorphe près.

La définition de l’application de monodromie est bien plus délicate que dans le cas non-
singulier. Notons Σ l’ensemble des pôles d’une structure projective méromorphe P sur C. La
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Résumé en français

représentation de monodromie de P est définie comme celle de la structure projective non sin-
gulière que P induit sur C∗ =CrΣ. Elle comprend la monodromie issue de la topologie de S,
mais aussi les monodromies locales, autour de chaque point singulier. À cela s’ajoute, pour les
pôles d’ordre supérieur ou égal à 3, les données de Stokes, pour former ce qu’on appelle les don-
nées de monodromie généralisées. Cet ajout est inspiré par la théorie des connexions linéaires
méromorphes, dont les feuilletages de Riccati sont des versions projectivisées. Remarquons tout
de suite que la représentation de monodromie d’une structure projective méromorphe est aussi
celle du feuilletage de Riccati associé.

En fait, tout feuilletage de Riccati singulier est la projectivisation d’une connexion linéaire
de rang 2 méromorphe (E,∇), c’est-à-dire d’une équation différentielle linéaire globale. Sa-
chant cela, on peut utiliser les travaux existants sur les connexions linéaires et en déduire
des résultats analogues sur les feuilletages de Riccati. C’est notamment dans le contexte des
connexions linéaires que l’on trouve le plus souvent, dans la littérature, les constructions des
espaces de modules et des déformations isomonodromiques. Gardons toutefois à l’esprit que,
dans notre travail, aucune nécessité mathématique n’impose le passage par les connexions li-
néaires. De la même façon, un PGL(2,C)-oper se relève en un GL(2,C)-oper, c’est-à-dire un
triplet (E,∇,L) constitué d’un fibré vectoriel holomorphe de rang 2 sur C, d’une connexion
méromorphe ∇ sur E et d’un sous-fibré en droites L de E satisfaisant une condition de transver-
salité.

Le type de « pont » établi par l’application de monodromie est bien connu pour les connexions
linéaires : c’est la correspondance de Riemann-Hilbert. L’étude de la monodromie permet dans
ce domaine une étude qualitative des équations différentielles dans le champ complexe sans
avoir à les résoudre explicitement, ce que l’on sait rarement faire. Dans le cas des connexions
méromorphes, il est nécessaire, pour établir une telle correspondance bijective, d’adjoindre des
données supplémentaires à la représentation de monodromie. Il s’agit notamment des matrices
de Stokes, aux pôles d’ordre supérieur ou égal à 2. L’analyse des pôles révèle en effet une forte
dichotomie dans le comportement des solutions – et par suite dans la classification analytique
locale des équations – suivant que les ordres de ces singularités sont égaux à 1 ou strictement
supérieurs (ceci est connu sous le nom de phénomène de Stokes, découvert au XIXe siècle par
Stokes). On parle de singularités régulières (ou modérées) et irrégulières (ou sauvage), respec-
tivement. L’espace des modules des données de monodromie généralisées est appelé variété de
caractères sauvage.

Il en va de même pour les structures projectives méromorphes (pour les pôles d’ordre plus
petit que 2 ou plus grand que 3, cette fois). Allegretti et Bridgeland ont construit une variété
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Résumé en français

de caractères lisse (possiblement non séparé) X ∗(S,M) (en utilisant les coordonnées de Fock-
Goncharov [FG06]) contenant ces données de monodromie généralisées ainsi qu’un framing, et
ont montré que l’application de monodromie

MonS,M : P∗(S,M)−!X ∗(S,M) (2)

est holomorphe [AB20]. Ici, P∗(S,M) désigne l’espace de modules des (classes d’équivalence
de) structures projectives méromorphes marquées par (S,M), signées et sans singularité ap-
parente. Le marquage d’une structure projective méromorphe sur S par une surface réelle S à
bord avec points marqués M est un marquage de la surface obtenue par éclatement réel de S

en chaque singularité irrégulière, avec points marqués correspondant aux points singuliers ré-
guliers et aux directions de Stokes sur cette éclatée. Le signage, quant à lui, encode un choix
de point fixe de la monodromie locale aux singularités régulières, nécessaire à la définition de
l’application de monodromie de Allegretti et Bridgeland (pour définir les framings). En dehors
de quelques cas spéciaux (toujours en genre 0 et avec un petit nombre de pôles comptés avec
multiplicité), P∗(S,M) est une variété complexe lisse.

Dans cette thèse, nous fixons de plus une valeur λ
(i)
−1 pour le résidu de chaque pôle pi (ainsi

qu’un signage), même aux singularités irrégulières. L’espace de modules associé

P◦(S,M,(λ
(i)
−1))

est encore lisse. En particulier, le nombre de pôles d et leurs ordres (ni) sont fixés.

Plusieurs auteurs ont développé indépendamment des constructions alternatives des données
de monodromie généralisées et des variétés de caractères sauvages pour les connexions linéaires
[BMM06; PS09 ; Boa14 ; PR15 ; CMR17 ; CMR18]. Pour obtenir un espace des modules lisse,
il est nécessaire d’imposer de bonnes conditions sur les données de monodromie (stabilité, non-
dégénérescence...).

D’un autre côté, Inaba [Ina16] a construit un espace de modules lisse pour les connexions
linéaires. Ici aussi, il faut en réalité se restreindre aux connexions satisfaisant une condition
de stabilité. On peut voir les GL(2,C)-opers comme une famille spéciale de connexions, sa-
tisfaisant une condition spéciale : celle d’admettre un sous-fibré en droites transverse. Nous
allons montrer que cette condition implique notamment qu’elles sont stables au sens d’Inaba.
Autrement dit, le lieu des opers est lisse. Or, l’espace des modules d’Inaba (lorsqu’on fixe la
courbe C, le diviseur des pôles et les données formelles des connexions) est en bijection avec un
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sous-ensemble de la variété de caractères sauvage via la correspondance de Riemann-Hilbert
irrégulière. En fixant en plus la connexion trace sur le déterminant du fibré, on en déduit un
espace de module lisse pour les PGL(2,C)-opers, et on peut appliquer la correspondance de
Riemann-Hilbert irrégulière, dans sa version concernant les feuilletages de Riccati singuliers.
C’est de cette façon que nous obtenons une variété de caractères lisse

R̄∗(S,M,(λ
(i)
−1)),

sans avoir à formuler de condition directement sur les données de monodromie.

Notons que l’application de monodromie des structures projectives méromorphes diffère de
l’application de Riemann-Hilbert, puisque contrairement à cette dernière la structure complexe
sur S n’est pas fixée et que l’on ne considère que des connexions bien particulières : les opers.

Notre résultat principal n’énonce ainsi :

Théorème 4.3.1 Supposons que si g = 0, alors |M| ≥ 3, et que si g = 1, alors |M| ≥ 1. Dans

ce cas, l’application de monodromie

Mon
S,(ni),(λ

(i)
−1)

: P◦(S,M,(λ
(i)
−1))−! R̄∗(S,M,(λ

(i)
−1))

est un biholomorphisme local.

Notre théorème généralise et unifie un certain nombre de résultats analogues qui étaient déjà
connus auparavant dans des cas plus restreints, et qui avaient été obtenus avec des approches
assez variées. Citons les travaux de Bakken [Bak77] (cf. [Sib75, p. 198]) en genre g= 0, avec un
unique pôle d’ordre n≥ 5 ; Iwasaki [Iwa91, Thm. 5.9] pour les structures projectives admettant
un nombre fixé de singularités apparentes ; Luo [Luo93] pour le cas où toutes les singularités
sont régulières (d’ordre exactement 2) avec un indice θ ∈CrZ (les indices pouvant varier libre-
ment dans cet ensemble), c’est-à-dire avec monodromie locale non-triviale et non-parabolique ;
Hussenot Desenonges [Hus19] pour le cas où toutes les singularités sont régulières (d’ordre 2)
avec un indice fixé θ = 0∈Z et une monodromie locale parabolique ; Mj et Gupta [GM21] pour
le cas des singularités toutes irrégulières (dont les indices varient librement dans C). Récem-
ment, LeBarron Alley [All21] a étudié les SL(n,C)-opers méromorphes cycliques admettant un
pôle unique sur la sphère de Riemann et conclu que l’application de monodromie associée est
une immersion holomorphe si l’ordre du pôle est un multiple de n.
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Ingrédients de la démonstration. Outre les travaux d’Allegretti et Bridgeland et d’Inaba,
notre démonstration repose sur la construction des déformations isomonodromiques des connexions
par Heu [Heu10]. Nous construisons localement sur P◦(S,M,(λ

(i)
−1)) une famille analytique de

PGL(2,C)-opers méromorphes qui se plonge localement dans la famille universelle des feuille-
tages de Riccati singuliers issue du travail d’Inaba. C’est ensuite le flot isomonodromique qui
permet de rétracter l’un sur l’autre deux opers proches ayant mêmes données de monodromie
généralisées. Ceci donne un isomorphisme de structures projectives méromorphes, entraînant
l’injectivité locale de l’application de monodromie. Le théorème Theorem 4.3.1 découle alors
de l’holomorphie de l’application de monodromie, grâce au théorème de l’application ouverte.

Propriétés et questions supplémentaires. Tout comme dans le cas des structures projec-
tives sans pôle, la caractérisation de l’image de l’application de monodromie des structures
projectives méromorphes n’est pas évidente. Elle a été résolue récemment pour les structures
projectives à pôles irréguliers par Mj et Gupta [GM20, Thm 1.1.], et dans des cas réguliers par
plusieurs auteurs, notamment [Nas21], [FG21] et [Fil21].

Hejhal a également démontré que dans le cas holomorphe, l’application de monodromie
n’est pas un revêtement sur son image, mais qu’elle l’est au-dessus d’une restriction convenable
de son image [Hej75, Thm. 8, 9 page 21].

La question de savoir si l’application de monodromie est un symplectomorphisme a égale-
ment été étudiée (voir [Lou15] et les références déjà citées).

Présentation du plan de la thèse. Le premier chapitre de cette thèse est consacré à une
introduction aux structures projectives méromorphes, tandis que le deuxième chapitre détaille
leur relation avec les PGL(2,C)-opers méromorphes. Nous décrivons notamment les modèles
birationaux minimaux de ces derniers. Dans le chapitre 3, nous montrons que le lieu des opers
dans l’espace des modules des connexions d’Inaba est lisse. Le chapitre 4 se conclut par la
démonstration du théorème principal.
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INTRODUCTION

The projective structures considered is this thesis are surfaces locally modeled on open
subsets of the Riemann sphere P1. Since the automorphism group of the latter is equal to the
group of Möbius transformations,

Aut(P1) = { f : P1! P1 | f ([z1 : z2]) = [az1 +bz2 : cz1 +dz2],

(a,b,c,d) ∈ C4, ad−bc 6= 0},

this amounts to saying they are Riemann surfaces, but with a constraint stronger than the mere
holomorphy of the coordinate changes: precisely, they must be linear fractional transformations.

Let us pick for instance an open subset U of the Riemann sphere and assume that it is
invariant under a free and properly discontinuous action of a group of Möbius transformations Γ.
Then, the local inverses af the associated quotient map U ! U/Γ, which is a covering map,
form a projective atlas on the quotient space. In particular, the Poincaré-Koebe uniformization
theorem endow any Riemann surface C with a canonical projective structure; there is an infinite
number of distinct projective structures on C as soon as it is different from P1.

Let us consider a projective structure P. The analytic continuations of an initial projective
chart ϕ0 along paths traveling across the surface give rise to a multivalued function, that can
be uniformized by passing to the universal covering. We thus obtain a holomorphic immersive
function f with values in the Riemann sphere, called developing map, that "globalizes" the
initial chart. This developing map is equivariant with respect to the monodromy representation

ρ f : π1(P)−! Aut(P1)

of ϕ0. The latter "globalizes" the projective changes of coordinates.
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Figure 2 – If the ϕi j := ϕi ◦ϕ
−1
j denote the change of coordinate charts as well as the associated

Möbius transformations, then the monodromy along the path γ covered by the charts U0, . . . ,Un

is obtained by composition of the ϕi j: ρ f (γ) = ϕn,(n−1) ◦ · · · ◦ϕ2,1 ◦ϕ1,0.

The developing map f , and in turn the associated representation ρ f , depend on the initial
projective chart ϕ0. However, the conjugacy class of the monodromy representation does not.
In this way, a projective structure determines a conjugacy class of representations of its funda-
mental group into the automorphism group of the Riemann sphere.

Given an oriented connected compact smooth real surface S, we generally consider the set
of projective structures on S (inducing a differentiable structure and an orientation compatible
with the one of S), each element of which defines a representation of the group π1(S), up to
conjugacy. This amounts to fix a genus g and an orientation. Two projective structures on S can
be isomorphic even if their monodromy representations are not conjugated: in that sense, the
monodromy is not an invariant. To remedy this and define a true invariant, we introduce the
notion of an isomorphism (or equivalence) of marked projective structure: it is an isomorphism
that is moreover isotopic to the identity of S. We denote by P(S) the set of equivalence classes
of marked projective structures on S. This allows us to define the monodromy map

MonS : P(S)−!R(S) := Hom(π1(S),Aut(P1))/Aut(P1).

To a geometric object, this map associate an algebraic one. It builds a bridge between two
types of mathematical objects of different natures, and we may hope that adopting the most
adequate perspective will make the resolution of some problems easier, that is, by crossing the
bridge if only it is possible to do so in both directions. Having this picture in mind, two questions
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arise naturally:

1. Under which condition is a class of representations the class of representation of mon-

odromy of a projective structure?

2. Are two marked projective structures defining the same class of representation of mon-

odromy necessarily isomorphic?

The first question concerns the characterization of the image of the map MonS. It has been
solved by Gallo, Kapovich and Marden [GKM00]. The second question, of whether MonS is
one-to-one, has in general a negative answer. Thus, the monodromy representation does not
characterize completely the projective structure. However, several weaker injectivity results are
known. As early as the work of Poincaré, it appeared that for all complex structure C on S, the
monodromy map MonS is injective in restriction to the set of projective structures compatible
with C.

One can also endow the sets P(S) and R(S) with a topology, or even with a real or complex
differentiable structure, and ask a local version of the second question (and thus of the first one,
in a sense). The monodromy map is regular, and Hejhal showed in 1975 that if the genus of S is
at least 2, then it is a local C ∞-diffeomorphism [Hej75, Thm 1 p. 20]. A few years later, Earle
and Hubbard showed it independently in the holomorphic setting [Ear81; Hub81]. The genus 1
case has to be treated differently, but leads to a similar statement; we refer to [LM09, Sec. 1.4.].

An alternative viewpoint on projective structures is that of (G,X)-structures, for the group
G = Aut(P1) and the variety X = P1. In fact, the monodromy map can be defined in the general
setting of (G,X)-structures and the arguments of Ehresmann and Thurston [Thu80, Prop. 5.1]
show that it is again a local homeomorphism (see also [Gol21, Thm. 7.2.1.] and [Gol10, Sec. 7]
for a brief review and additional references).

The main result of this thesis, namely the Theorem 4.3.1, is a generalization of Hejhal’s
theorem to meromorphic projective structures, that is to say having poles, in a sense that we
will soon make precise.

Projective structures where studied as soon as in the XIXth century in relation with Schwarzian
equations and their monodromy, and also with the uniformization problem (see [Sai16]). Schwarzian
equations are the homogeneous linear equations of order two of the form

y′′+
q(x)

2
y = 0,
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where q is a meromorphic function over a domain of the complex plane. A brief computation
shows that the quotient ϕ = y1/y2 of two linearly independent solutions of such an equation
satisfies

S (ϕ) :=
(

ϕ ′′

ϕ ′

)′
− 1

2

(
ϕ ′′

ϕ ′

)2

= q (3)

where S (ϕ) is the Schwarzian derivative of ϕ (introduced by Lagrange). From the basic prop-
erties of the latter, we deduce that two solutions differ by a linear fractional transformation
acting on the target: thus, such functions ϕ define a projective atlas.

Those basic properties are the following: first, the Schwarzian derivative of an immersive
function vanishes identically if and only if this function is the restriction of a linear fractional
transformation. Intuitively, this derivative measures the failure of an immersion to be the re-
striction of a linear fractional transformation. In addition, the composition rule S ( f ◦ g) =

(g′)2S ( f ) ◦ g+S (g) it satisfies, applied to projective changes of coordinates g (for which
S (g) ≡ 0), becomes exactly the change of variable formula for global quadratic differential
forms.

In fact, the set of projective structures on a given compact Riemann surface C is endowed
with an affine space structure for the vector space of quadratic differential forms on C. The pro-
jective charts of the translation of P by φ are defined as follows: if x is a chart of P with respect
to which φ = q(x)

2 dx⊗dx, then the charts of P+φ are the solutions of the equation (3). On the
other hand, the difference between two projective structures on C is measured by a quadratic
differential form defined locally as the Schwarzian derivative of the difference between two
charts, one for each of those projective structures. It is this relation between projective struc-
tures and quadratic differential forms that allows us to endow the moduli space P(S) with a
smooth complex structure (more precisely: with an holomorphic affine bundle structure over
the Teichmüller space T (S), for the vector bundle of quadratic differential forms).

Thus, a projective structure might be seen as a "global scalar differential equation on a man-
ifold", that is, as a connection.

The viewpoint on projective structures that turns out to be the most fruitful in the setting of
this thesis is the one of opers (as defined by Beilinson and Drinfeld). To a projective structure on
S, we can associate in a canonical way a G-oper on the underlying Riemann surface C, for the
group G = PGL(2,C), and conversely. It is a triple (π : Q!C,F ,σ) composed of a P1-bundle
π , a holomorphic foliation F on Q transverse to the fibers of π and a section σ of the bundle π

transverse to the foliation F . Such a foliation is said to be Riccati with respect to π , because it
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is induced by a Riccati differential equation in any local trivialization of this P1-bundle. Riccati
foliations play a preeminent role in the theory of holomorphic foliations.

A demonstration of Hejhal’s theorem based on this viewpoint was sketched by Loray and
Marín [LM09]; the ideas implemented here are in fact due to Ehresmann and Thurston. We have
completed this demonstration and adapted it to the case of meromorphic projective structures.

Let us mention that a generalization of Hejhal’s theorem from the point of view of G-opers
(without singularity), and valid for more general groups G, was given by Sanders [San18, Thm.
6.3].

The relation between projective structures and quadratic differential forms is also essential
to the precise definition of projective structures with poles. Let us consider a projective structure
P on C. A meromorphic projective structure on C can be defined as the translation of P by a
meromorphic quadratic differential form φ on C (away from the poles of the latter). The poles
pi of P, as well as their orders ni, are by definition the ones of φ .

To meromorphic projective structures correspond meromorphic PGL(2,C)-opers, that is to
say triples (π : Q!C,F ,σ) as above, except (π : Q!C,F ) is now a singular Riccati foli-
ation. This correspondence is not bijective, though, in contrast with the non-singular case: two
opers not holomorphically equivalent can very well define the same meromorphic projective
structure. Nonetheless, there exists a unique minimal PGL(2,C)-oper associated with a mero-
morphic projective structure without apparent singularity, minimal in the sense that its polar
divisor is minimal up to bimeromorphic gauge transformation.

Defining the monodromy map is a much more delicate task than in the non-singular case. Let
us denote by Σ the set of poles of a meromorphic projective structure P on C. The monodromy
representation of P is defined as the one of the non-singular projective structure induced by P

on C∗ = CrΣ. It includes the monodromy originating from the topology of S, but also local
monodromies, around each singular points. Then comes, for poles of order at least 3, the Stokes
data, forming the so-called generalized monodromy data. This additions are inspired by the the-
ory of meromorphic linear rank 2 connections, of which Riccati foliations are the projectivized
versions. Note that the monodromy representation of a meromorphic projective structure is also
the one of the associated Riccati foliation.

In fact, every singular Riccati foliation is the projectivization of meromorphic rank 2 con-
nection (E,∇), that is to say a global linear differential system. Knowing this, we can use the
existing works on linear connections and deduce some analogous results regarding Riccati fo-
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liation. Notably, it is generally in the context of linear connections that can be found, in the
literature, the constructions of moduli spaces and isomonodromic deformations. We keep in
mind, though, that in our work no mathematical necessity imposes to speak about linear con-
nections. In a similar way, a PGL(2,C)-oper lifts to a GL(2,C)-oper, that is to say a triple
(E,∇,L) composed of a rank 2 vector bundle on C, a meromorphic connection ∇ on E and a
line subbundle L of E satisfying a transversality condition.

The sort of "bridge" established by the monodromy map is well-known for linear connec-
tions: it is the Riemann-Hilbert correspondence. The study of the monodromy allows a qualita-
tive study of differential equations in the complex domain without having to solve them explic-
itly, which we can rarely achieve. In the case of meromorphic connections, it is necessary, in
order to establish such a bijective correspondence, to include additional data to the monodromy
representation. Those are notably Stokes matrices, at poles of orders at least 2. The analysis
of singularities reveals a profound dichotomy in the behavior of solutions – and in turn in the
local analytic classification of equations – according to the orders of those singularities: equal
to 1 or at least 2 (this is known as the Stokes phenomenon, discovered by Stokes in the XIXth

century). We say they are regular (or moderate, or tame) singularities and irregular (or wild)
singularities, respectively. The moduli spaces of generalized monodromy data are called wild
character varieties.

The same goes for meromorphic projective structures (but for pole orders at most 2 or at least
3). Allegretti and Bridgeland constructed a smooth (possibly non-Hausdorff) character variety
X ∗(S,M) (using Fock-Goncharov coordinates [FG06]) containing generalized monodromy
data together with a framing, and showed that the monodromy map

MonS,M : P∗(S,M)−!X ∗(S,M) (4)

is holomorphic [AB20]. Here, P∗(S,M) denotes the moduli space of (equivalence classes of)
meromorphic projective structures marked by (S,M), signed, and without apparent singular-
ity. The marking of a meromorphic projective structure on S by a real bordered surface S with
marked points M is a marking of the surface obtained by the real blow-up of S at each irregular
singularity, with marked points corresponding to regular singular points and Stokes directions
on this blown-up surface. The signing encodes a choice of fixed point of the local monodromy at
regular singularities, needed in the definition of the monodromy map of Allegretti and Bridge-
land (in order to define the framings). Except in a few special cases (always in genus 0 and with
a small number of poles counted with multiplicity), P∗(S,M) is a smooth variety.
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In this thesis, we fix the value λ
(i)
−1 of the residue at each pole pi (as well as a signing), even

at irregular singularities. The associated moduli space

P◦(S,M,(λ
(i)
−1))

is again smooth. In particular, the number of pole d and their orders (ni) are fixed.

Several authors have developed independently some alternative constructions of generalized
monodromy data and of wild character varieties for linear connections [BMM06; PS09; Boa14;
PR15; CMR17; CMR18]. In order to obtain a smooth moduli space, it is necessary to impose
some good conditions on the monodromy data (stability, non-degeneracy...).

On the other hand, Inaba [Ina16] constructed a smooth moduli space for linear connections.
Here too, in reality, it is necessary to restrict to connections satisfying a stability condition.
We can see GL(2,C)-opers as a special kind of connections, satisfying a special condition:
they admit a transverse line subbundle. We are going to show that this condition implies in
particular that they are stable in the sense of Inaba. Now, the moduli space of Inaba (when the
curve C, the polar divisor and the formal data are fixed) is in bijection with a subset of the wild
character variety via the irregular Riemann-Hilbert correspondence. Fixing moreover the trace
connexion on the determinant bundle, we deduce a smooth moduli space for PGL(2,C)-opers,
and we apply the irregular Riemann-Hilbert correspondence, in its version for singular Riccati
foliations. This is how we obtain a smooth wild character variety

R̄∗(S,M,(λ
(i)
−1)),

without having to formulate a condition directly on the generalized monodromy data.

Note that the monodromy map for meromorphic projective structures differs from the Riemann-
Hilbert map, since the complex structure on S is not fixed and since we consider only connection
of a special kind, namely opers.

Our main result is stated as follows:

Theorem 4.3.1 Assume that is g = 0, then |M| ≥ 3, and that is g = 1, then |M| ≥ 1. In this

case, the monodromy map

Mon
S,(ni),(λ

(i)
−1)

: P◦(S,M,(λ
(i)
−1))−! R̄∗(S,M,(λ

(i)
−1))
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is a local biholomorphism.

Our theorem generalizes and unifies a number of analogous results that where already
known before in some specific cases, and which where obtained through various techniques. Let
us quote the works of Bakken [Bak77] (cf. [Sib75, p. 198]) in genus g = 0, with a unique pole
of order n ≥ 5; Iwasaki [Iwa91, Thm. 5.9] for projective structures admitting a fixed number
of apparent singularities; Luo [Luo93] for the case where all singularities are regular (of order
exactly 2) with an index θ ∈ CrZ (indices can vary freely in this set), that is to say with non-
trivial and non-parabolic local monodromy; Hussenot Desenonges [Hus19] for the case where
all singularities are regular (of order 2) with a fixed index θ = 0 ∈ Z and a parabolic local mon-
odromy; Mj and Gupta [GM21] for the case where all singularities are irregular (and the index
vary freely in C). Recently, LeBarron Alley [All21] studied meromorphic cyclic SL(n,C)-opers
admitting a unique pole on the Riemann sphere and concluded that the associated monodromy
map is a holomorphic immersion if the pole order is a multiple of n.

Ingredients of the demonstration. Beside the works of Allegretti, Bridgeland and Inaba,
our demonstration rely on the construction of universal isomonodromic deformations by Heu
[Heu10]. Locally on P◦(S,M,(λ

(i)
−1)), we construct an analytic family of meromorphic PGL(2,C)-

opers that locally embeds in the universal family of singular Riccati equations derived from
Inaba’s work. Then, the isomonodromic flow allows us to retract two nearby opers having the
same generalized monodromy data one on the other, leading to the local injectivity of the mon-
odromy map. Theorem 4.3.1 then follows from the holomorphy of the monodromy map, thanks
to the open mapping theorem.

Additional properties and open questions. Just as in the case of projective structures with-
out pole, the characterization of the image of the monodromy map of meromorphic projective
structures is not obvious. It has been solved recently for projective structures with irregular sin-
gularities by Mj and Gupta [GM20, Thm 1.1.], and in some cases with regular singularities by
several authors, including [Nas21], [FG21] and [Fil21].

Hejhal also showed that, in the holomorphic case, the monodromy map is not a covering
map onto its image, but that it is so over an adequate restriction of its image [Hej75, Thm. 8, 9
page 21].

The question of whether or not the monodromy map is a symplectomorphism have also been
studied (see [Lou15] and the references already mentioned).
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Summary. This thesis is organized as follows. The first Chapter is dedicated to the introduc-
tion of meromorphic projective structures, while Chapter 2 shows their relation to meromorphic
PGL(2,C)-opers. In particular, we describe their minimal birational models. In Chapter 3, we
show that opers belong to Inaba’s smooth moduli space. Chapter 4 ends with the proof of the
main theorem.
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CHAPTER 1

MEROMORPHIC PROJECTIVE

STRUCTURES

We start this first chapter with an introduction to complex projective structures without poles
and their monodromy map. The Reader who is not yet familiar with the subject might profitably
consult the surveys [Tyu78; Dum09; LM09] and the book [Sai16]. In the first section, we ex-
plain in particular that the set of projective structures on a fixed complex curve is an affine
space for the vector space of quadratic differentials. This is fundamental because it gives rise
to a structure of a complex manifold on the moduli space of projective structures of genus g.
Moreover, it allows us to define meromorphic projective structures. We state Hejhal’s theorem,
and in the last section we recall the definition of the moduli space of marked meromorphic
projective structures of genus g with poles of prescribed (in a somewhat loose sense) orders,
constructed by Allegretti and Bridgeland in [AB20].

1.1 Complex projective structures (without pole) and their
monodromy map

Let S be a connected C ∞-smooth oriented real surface.

Definition 1.1.1. A complex projective structure on S is a maximal atlas of charts mapping open
sets in S into open sets in the complex projective line P1 and such that the transition maps are
restrictions of elements in the group of automorphisms of P1 as a complex manifold (which we
canonically identify with PGL(2,C)).

(It is always implicitly assumed that both the C ∞-smooth structure and the orientation in-
duced by this complex structure are the ones initially fixed on S).

This is also the definition of a (G,X)-structure on S, with G = PGL(2,C) and X = P1.
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Chapter 1 – Meromorphic projective structures

Two projective structures on S are said to be isomorphic (resp. marked isomorphic) if there
exists an orientation-preserving diffeomorphism of S (resp. a diffeomorphism of S homotopic
to the identity 1) pulling back any projective chart of one of them to a projective chart of the
other. We will denote by P(S) the set of marked isomorphism classes of projective structures
on S. The marking will be needed in the definition of the monodromy map.

Every projective structure on S induces a complex structure on S, hence there is a forgetful
map P(S)!T (S) (where T (S) denotes the Teichmüller space of S) and we may as well speak
of a projective structure on a complex curve. Every complex structure is induced by a projective
one –meaning that the forgetful map is surjective– as shown by the following example.

Example 1.1.2 (The canonical projective structure on a complex curve C). Let C be a compact

complex smooth curve of genus g. By the uniformization theorem, it is biholomorphic to P1,

C/(Z+τZ) (τ ∈H) or H/Γ (Γ≤ PSL(2,R) a Fuchsian group) if g= 0,1 or g≥ 2, respectively.

Suppose, for instance, that g ≥ 2 and consider the covering map c : H! H/Γ. A projective

structure is defined on the quotient space by local inverses of c (it is invertible on contractible

open sets of the base). Indeed, they differ by an element of Γ which is a subgroup of PGL(2,C),
and we regard H as embedded in P1. This projective structure can then be pulled back to the

curve C, giving a projective structure compatible with the complex one. This construction can

be transposed to genus 0 or 1 curves (in genus 0, the standard atlas on P1 is also projective,

and it is the only genus 0 projective structure). The resulting structure is called the canonical
projective structure (or standard Fuchsian structure 2 when g ≥ 2) on C. In fact, it can also be

defined if C is non-compact (cf. the following example).

Example 1.1.3. Let U be an open subset of the Riemann sphere and assume that it is invariant

under a free and properly discontinuous action of a group of Möbius transformations Γ. Then,

the local inverses af the associated quotient map U !U/Γ, which is a covering map, form a

projective atlas on the quotient space. In particular, the Poincaré-Koebe uniformization theorem

endow any Riemann surface C with a canonical projective structure; there is an infinite number

of distinct projective structures on C as soon as it is different from P1.

Let us denote by u : S̃−! S the universal cover of S, and let C be a complex structure on S.

Proposition 1.1.4. Given a projective structure P on C:

1. There exists an analytic map

f : C̃ −! P1

1. Or isotopic, this is equivalent. Moreover, the orientation is automatically preserved.
2. Not to be confused with meromorphic projective structures with Fuchsian singularities.
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1.1. Complex projective structures (without pole) and their monodromy map

such that on each contractible open set U ⊂C on which the composition f ◦u−1 is defined

(here, u−1 denote any local inverse for u), it is a projective chart. Any other such map is

of the form σ ◦ f for some σ ∈ PGL(2,C). We say f is a developing map for the projective

structure P.

2. To every developing map f there corresponds a unique morphism

ρ f : π1(C)−! PGL(2,C)

(called the monodromy representation) such that ρ f (γ) ◦ f = f ◦ γ (equivariance) and

ρσ◦ f = σ ◦ρ f ◦σ−1.

Proof. We follow [Hub81, Lem. 1] and correct minor typos.

1. Cover C̃ with open sets Ui on which u is injective, and such that there exist projective
charts αi : u(Ui)−!P1 (note that u(Ui) is an open set because u is an open map). Let βi :=αi◦u.

Ui P1

u(Ui)

βi

αiu

Then, the family (σi j) defined by σi j = β j ◦ β
−1
i is a Čech 1-cocycle of the constant sheaf

PGL(2,C) on C̃. Since C̃ is simply connected, it also is a coboundary (after refining the cover if
necessary), and there exist a 0-cochain (σi) with σi ∈ PGL(2,C) such that σi j = σ

−1
j ◦σi. Then

we get the identity σi ◦βi = σ j ◦β j on Ui∩U j. Hence all the σi ◦βi are restrictions of a global
holomorphic map f : C̃ −! P1 with the desired properties.

2. Since both f ◦ u−1 and f ◦ γ ◦ u−1 are projective coordinates on C, in each Ui there is a
homomorphism ρ f ,i : π1(C)−! PGL(2,C) such that ρ f ,i(γ)◦ f (x) = f ◦ γ(x) for x ∈Ui. But it
is clear from analytic continuation that ρ f ,i(γ)◦ f = f ◦ γ on all of C̃, since C̃ is connected and
both sides are analytic functions of x.

A short calculus yields the last identity: (σ ◦ f )◦ γ = σ ◦ρ f (γ)◦ f = σ ◦ρ f (γ)◦σ−1 ◦ (σ ◦
f ).

A developing map can be constructed by analytic continuation of a projective chart by other
projective charts. In this sense, it globalizes a projective chart, whereas the monodromy rep-
resentation globalizes the transition maps. A projective structure on S can be described by the
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data of a C ∞ immersion f : S̃! P1 together with a representation ρ ∈ Hom(π1(S),PGL(2,C))
with respect to which it is equivariant: a so-called development-holonomy pair 3 ( f ,ρ).

Definition 1.1.5. Let us denote R(S) the set of PGL(2,C)-conjugacy classes of representations
of the fundamental group of S in PGL(2,C). Thanks to Proposition 1.1.4, to a marked isomor-
phism class of projective structures we can associate the conjugacy class of the monodromy
representation of one of its developing maps. This defines the so-called monodromy map

MonS : P(S)−!R(S).

Note that the marking is essential to define this map; it is also key to the smoothness of the
Teichmüller space, hence of the moduli space P(S), that we will discuss latter.

Theorem 1.1.6 (Poincaré). The monodromy map MonS is injective in restriction to each fiber

of the forgetful map P(S)!T (S).

A short proof of this fact is given in [LM09].

Quadratic differentials and affine structure. Let C denote a (connected) smooth curve (i.e.
a Riemann surface). We have seen that the set of complex projective structures over C is non-
empty (cf. Example 1.1.3). We can expect it to be large, since being a Möbius transformation is a
much stronger condition than being holomorphic. In fact, it can be endowed with an affine space
structure for the vector space H0(C,(T ∗C)⊗2) of global holomorphic quadratic differentials (see
[Hub81, Lem. 4] or [Gun67, Cor. 2]). We recall bellow this affine structure and introduce some
notations. If C is compact, the Riemann-Roch theorem implies that the above vector space is of
dimension 3g− 3 (resp. 1, 0) if C is of genus g ≥ 2 (resp. g = 1,0) (see, for example, [Jos06,
Cor. 5.4.2]).

Let f be a locally injective holomorphic function of one complex variable. The Schwarzian

derivative of f is

S ( f ) =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Now let f ,g two locally injective holomorphic maps between open sets of the complex plane.
The key properties of the Schwarzian derivative are

• S ( f ◦g) = (g′)2S ( f )◦g+S (g),

3. Here, "holonomy" and "monodromy" are synonyms.
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1.1. Complex projective structures (without pole) and their monodromy map

• S (g)≡ 0 if and only if g is the restriction of a Möbius transformation, i.e. g(x) = ax+b
cx+d ,

(a,b,c,d) ∈ C4, ad−bc 6= 0.

The Schwarzian derivative thus depends on the coordinate it is computed, so we usually specify
it by a subscript: Sx( f ).

Let P1 and P2 be two projective structures on C, with local coordinates x1 and x2, respec-
tively, and denote 4 ψ = x2 ◦ x−1

1 . Then, we define φ := P2−P1 locally as

φ :=
Sx1(ψ)

2
dx⊗2

1 ,

where Sx1(ψ) denotes the Schwarzian derivative of ψ with respect to the variable x1. Those
local expressions glue together by virtue of the basic properties of the Schwarzian derivative,
defining a global holomorphic quadratic differential. Conversely, given a projective structure
P1 and a holomorphic quadratic differential φ written locally as φ = q(x1)

2 dx⊗2
1 , the charts of

P2 := P1 +φ are defined to be the solutions of the equation

Sx1(ϕ) = q (1.1)

in ϕ . Furthermore, according to a theorem of Schwarz, it is equivalent to define projective charts
as quotients ϕ = y1/y2 where y1 and y2 range over all independent solutions of the equation

y′′+
q(x1)

2
y = 0. (1.2)

Thus, a projective structure may be interpreted as a global generalization of such a second order
homogeneous linear scalar equation. For each chart of C, we get a coefficient q and their collec-
tion forms a projective Cartan connection (see [Na19]). On the intersections, the corresponding
second order equations are projectively equivalent, in the sense that their sets of quotients of
solutions coincide (see [Sai16, Prop. VIII.3.8.]).

Remark 1. An equation of the form (1.2) but with opposite sign before q/2 is sometimes used
in the literature, e.g. in [AB20]. Let us apply the projective change of coordinate x̃1 = ix1 to
equation (1.2). We obtain an equation projectively equivalent to y′′− q(x̃1)

2 y = 0 (see [Sai16,
Prop. VIII.3.8.]).

The above affine structure endows the set of projective structures on a fixed curve C with

4. There is a slight abuse here: it is understood that projective charts take there values in C and that transition
maps are invertible linear fractional functions. This is an alternative definition of a projective atlas.

37



Chapter 1 – Meromorphic projective structures

a structure of a complex manifold. The aim of the following paragraph is to describe a natural
smooth complex structure on the whole P(S), i.e. letting the complex structure on S vary.

The moduli space P(X/B). For any holomorphic family f : X ! B of compact smooth
curves, let us denote

P(X/B) := {(t,P) : t ∈ B and P is a projective structure on Ct := f−1(t)}.

Most of the time, there will be no ambiguity regarding the family f to which this notation refers.
There is a holomorphic vector bundle

Q(X/B)! B,

defined as Q(X/B) = f∗((T ∗X/B)
⊗2) (where TX/B stands for the vertical tangent bundle of X ,

relative to f ), whose fiber over a point t ∈ B is the vector space of quadratic differential forms
Q(X/B)t = H0(Ct ,(T ∗Ct)

⊗2).
A choice of a section s of the map pr1 : P(X/B)! B furnishes a "choice of origin" in each

fibers, which in turn provides an identification

P(X/B)−!Q(X/B)

(t,P) 7−! (t,P−pr2(s(t)))

(here, pri denotes the restriction to P(X/B) of the projection on the i-th factor). Two such
sections s1 and s2 will induce the same complex structure on P(X/B) if and only if their differ-
ence s2− s1 is a holomorphic section of Q(X/B). Hubbard showed there is a natural complex
structure on P(X/B), though, which is the only one such that firstly the map P(X/B)! B

is holomorphic and secondly the analytic families of projective structures given by its holo-
morphic sections are induced by relative projective structures on f [Hub81, Prop. 1]. The map
P(X/B)! B is a holomorphic affine bundle for the vector bundle Q(X/B)! B.

Definition 1.1.7. A relative projective atlas on a holomorphic family f : X ! B of (compact or
not) smooth curves is an atlas (Ui,ϕi) for X such that for each t ∈B, the restriction (Ui∩Ct ,ϕi|Ct )

(where the range of ϕi|Ct is understood to be appropriately restricted as well) forms a projective
atlas on Ct . A relative projective structure is a maximal relative projective atlas.

Example 1.1.8. The Teichmüller space of genus 1 curves is isomorphic to the upper half-plane

H. Consider the first projection p1 : H×C!H. A relative projective atlas on the holomorphic
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1.1. Complex projective structures (without pole) and their monodromy map

family

f : (H×C)/〈(τ,z+1),(τ,z+ τ)〉−!H

of elliptic curves induced by p1 is given by local inverses of the quotient map

H×C! (H×C)/〈(τ,z+1),(τ,z+ τ)〉 ,

composed with the projection on the second factor C, regarded as embedded in P1.

The aforementioned natural complex structure on P(X/B) makes the projection P(X/B)!

B into a holomorphic affine bundle for the vector bundle Q(X/B), with the action (t,φ) ·(t,P) =
(t,P+φ). Note that the key ingredient in Hubbard’s proof is the existence, at least locally over
the base B, of a relative projective structure. It is worth mentioning that not every holomor-
phic family of curves carry a relative projective structure 5. For example, as showed by Zhao in
[Zha19], a non-isotrivial holomorphic family of compact curves over a compact curve B cannot
support any relative projective structures. Hubbard verified the existence of a relative projective
structure on a family of genus g≥ 2 curves under the assumption that the base B is Stein.

Assume that B = T (S) is the Teichmüller space of marked curves (i.e. marked Riemann
surfaces) on the compact smooth surface S, and f : X ! B is the universal holomorphic family
of curves over B. Then, the bundle Q(X/B)! B is trivial, because the Teichmüller space is
contractible and Stein. Moreover, in this case we can reinterpret elements (t,P) ∈P(X/B) as
follow: P is a marked projective structure, with its marking being the only one compatible with
the marking of Ct . Then, there is a natural bijection P(S) 'P(X/B) (remember that marked
complex curves have no non-trivial automorphisms; this rigidity is key to the smoothness of
Teichmüller spaces and the existence of universal family of curves).

In the genus 1 case, the section s of P(S)!T (S) provided by the uniformization theorem
(as in Example 1.1.8) induces the natural complex structure on P(S). However, this is false
as soon as g ≥ 2 (note that if g = 1 the monodromy representation of the canonical projective
structure is complex, whereas if g≥ 2 it is real). A way to construct a relative projective structure
in the latter case is to use the simultaneous uniformization theorem of Bers. This leads to a so-
called quasi-Fuchsian section; for more details about this, see the discussion in [Dum09, Sec.
3.3].

The existence of a relative projective structure locally over the base of an arbitrary holomor-
phic family of compact curves may then be deduced from the universal property of Teichmüller

5. In contrast, the constant rank theorem provides any holomorphic families of curves with a relative complex
atlas.
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Chapter 1 – Meromorphic projective structures

spaces.

Proposition 1.1.9. Let f : X ! B be a holomorphic family of compact smooth curves. For

any point t0 in B, there exists a neighborhood Bt0 of t0 in B such that the holomorphic family

ft0 : f−1(Bt0)! Bt0 induced by f supports a relative projective structure.

Hejhal’s theorem. Gunning showed that a compact smooth curve C admits an affine struc-

ture 6 if and only if its genus is 1 (this is false for meromorphic projective structures, as it will be-
come apparent latter). Moreover, every projective structure on a genus 1 curve can be reduced to
an affine structure (see [Gun66, Cor. 3 p. 173, p. 192] or [LM09, Ex. 1.7]). This implies that the
monodromy representation of any developing map of a projective structure on a surface of genus
g≥ 2 have non-commutative image [Hub81, Cor. p. 260] (and are irreducible). After choosing
a set of generators of the group π1(S), the set of representations Hom(π1(S),PGL(2,C)) can
be identified with an analytic space in PGL(2,C)2g. The open subset of representations with
non-commutative image in Hom(π1(S),PGL(2,C)) is a sub-manifold of PGL(2,C)2g and its
quotient Rnc(S) modulo conjugacy has a unique structure of complex manifold such that the
quotient map is analytic [Hub81, Prop. 4]. It is of complex dimension 6g−6, just as P(S).

Theorem 1.1.10. ([Hej75, Thm. 1 p. 20], [Ear81, Cor. 2], [Hub81, Thm. p. 272]) If S has genus

g≥ 2, then the monodromy map

Mong≥2
S : P(S)−!Rnc(S)

is a local biholomorphism.

In the genus 1 case, the monodromy representation always belongs to the set A (S) :=
Hom(π1(S),Aff(C))/ ∼ of affine representation modulo conjugacy. It is also possible to show
that Mong=1

S : P(S) −! A (S) is a local biholomorphism (see [LM09, Sec. 1.4]). Here, the
affine distortion f ′′/ f ′ can play the role of the Schwarzian derivative.

In the genus 0 case, there is only one projective structure and it is simply connected, so it
would not make sense to seek for a similar statement.

1.2 The space of meromorphic projective structures

The definition of a meromorphic projective structure on C relies on the affine space structure
on the set of complex projective structures over a complex curve.

6. A projective structure such that, in coordinates, transition maps belong to the group Aff(C).
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1.2. The space of meromorphic projective structures

Definition 1.2.1. A meromorphic projective structure P on a complex curve C is a projective
structure P∗ on the complement C∗ =CrΣ of a finite subset Σ⊂C, such that given a holomor-
phic projective structure P0 on C, the quadratic differential φ = P∗−P0|C∗ on C∗ extends to a
meromorphic quadratic differential on C, that is to say a meromorphic section of (T ∗C)⊗2.

Such a structure P∗ is therefore determined by a pair (P0,φ). Though it is not unique, every
other pair (P̃0, φ̃) describing P satisfies (P̃0, φ̃) = (P0 + φhol,φ − φhol) for some holomorphic
quadratic differential φhol. Hence the condition on φ is independent of P0: points in Σ are called
poles of the structure P and the pole order of P at a point can be defined as the pole order at
that point of one of its so-called polar differentials φ . Hence if np is the order of p ∈ Σ, we can
define the (effective) polar divisor of P by DP = ∑p∈Σ np p.

The monodromy representation. The monodromy representation of a meromorphic projec-
tive structure P is well-defined, up to PGL(2,C)-conjugacy, as the one of P∗ in (the notations
of Definition 1.2.1). It is a class of representation of the fundamental group of the punctured
curve CrΣ. The local monodromy around a pole is the image of a loop encircling it once in the
counterclockwise direction.

Remark 2. If (y1,y2) is a fundamental system of solutions of a second order homogeneous scalar
linear differential equation, then (

y1 y2

y′1 y′2

)
is a fundamental solution of its companion systems, and reciprocally. As a consequence, the
monodromy matrices of the scalar equation and its companion system (both acting by right
multiplication) around a pole are the same, say M.

The monodromy of the projective structure associated to an equation of the form (1.2), how-
ever, is given in the homogeneous coordinates [y1 : y2] by the projectivization of the transpose
>M. But it is a classical fact that a matrix with complex coefficients is always conjugated to its
transpose (in particular, a matrix has the same eigenvalues as its transpose), thus the local mon-
odromy of the projective structure is, up to conjugacy, the projectivization of the monodromy
of the associated scalar equation or its linear companion system.

Regular singularities. This terminology comes from second order scalar differential equa-
tions (and their companion first order linear differential systems). The term regular singular

refers to points where solutions of the scalar equation (or the linear system) exhibit at most
polynomial growth on some sectors (see [Ily]). For the scalar equation (1.2) (and by definition
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for projective structures), this is equivalent to q having a pole order at most 2 (we also say it is a
Fuchsian singularity), but not for linear systems. On the one hand, a singularity with Poincaré

rank equal to 0 is regular singular. On the other, only the minimal Poincaré rank (minimal in
the equivalence class of the system up to meromorphic gauge transformation 7) at a regular
singularity must be equal to 0. Singularities that are not regular are of course called irregular

singularities. Though this terminology is well-established, some authors prefer the adjectives
tame (or moderate) and wild, which are less confusing.

A regular singularity is called apparent 8 if P∗ has trivial local monodromy, else it is called
logarithmic.

Apparent singularities correspond exactly to branch points of the projective structure, i.e.
points for which there exists an integer k ∈N such that projective charts read ϕ(x) = xk in some
local coordinates. About branch points, see also Proposition 2.2.6. In the present paper, we
will mainly focus on projective structures without branch points. Branched projective structures
where studied by Mandelbaum [Man72].

Let p be a regular singularity of P, and write φ = q(x)
2 dx⊗2 for a polar differential in some

coordinate chart x around p. We define the residue 9 (of order 2) of P at p to be

res2(p) = lim
x!0

x2q(x). (1.3)

This definition is independent of the polar differential and of the coordinate chart. Latter, we
will also call "residue at p" a quantity different from res2(p), but related (see Remark 13).

The index θ(p) of P at p, is then defined up to a sign as

θ(p) =±
√

1−2res2(p),

in other words, writing the Schwarzian equation (1.1) for a projective chart ϕ around p (in a
complex coordinate x centered at p) we have

Sx(ϕ) = q(x) =
1−θ(p)2

2x2 +o(x−2).

Projective charts and monodromy around regular singularities may be studied according to the

7. cf. Definition 3.0.2.
8. cf. [Gup21, Sec. 2.3] for a review of other definitions appearing in the literature.
9. Here, we follow the terminology and notations of [Sai16, Sec. IX.1.], which are a slightly different from

the ones in [AB20]: our q is equal to their −2ϕ , hence their definitions of "leading coefficient", "residue" and
"exponent" does not match ours.
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value of the index θ(p). For a detailed analysis, the reader may refer to [Sai16, Prop. IX.1.1].
Consider the companion system of the second order equation (1.2),

dY +

(
0 −1

q(x)/2 0

)
Y dx = 0. (1.4)

Up to conjugacy, the projectivization of the monodromy of this system corresponds to the local
monodromy of the projective structure, cf. Remark 2.

Proposition 1.2.2 (cf. [AB20], Lem. 5.1). Assume that the system (1.4) has a regular singularity

at z = 0. Then, the eigenvalues of its monodromy around z = 0 are

ξ
± = exp(iπ(1±θ)),

where θ = θ(0) is defined up to a sign as above. In particular, the eigenvalues ξ± are distinct

if and only if ±θ ∈ CrZ.

Several possibilities occur for the local monodromy of the projective structure, depending
on the value of the index:

• if θ ∈ CrZ, it is non-trivial and non-parabolic,

• if θ ∈ Z, it is trivial or parabolic.

Remark 3. In order to construct the monodromy framed local system of a projective structure,
Allegretti and Bridgeland needed to chose a point of P1 fixed by the local monodromy of each
regular singularity. Such a choice is encoded by the notion of signed meromorphic projective
structure: a signing is just a choice of sign "+" or "−" at each regular singularity. In [AB20,
Prop. 8.4], the signing considered is the one given by a choice of sign of the index θ(p) =

±
√

1−2res2(p) at each regular singularity p, i.e. a determination of the square root. The square
root branches over θ = 0, so that no sign is chosen in this case, which is fine because the local
monodromy is then parabolic (apparent singularities are excluded by assumption), hence it has
a unique fixed point. However, the square root does not branch over θ ∈Zr{0}, hence a choice
is made here although it is not really needed.

Those points of the moduli space of projective structures where parabolic local monodromy
occur (we always exclude apparent singularities) causes a failure in the local injectivity of the
monodromy map.

In the introduction, we have mentioned several works generalizing Hejhal’s theorem for
meromorphic projective structures. Luo [Luo93] considered the case where all singularities
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are regular (of order exactly 2) with an index θ ∈ CrZ, thus excluding non-trivial and non-
parabolic local monodromy. On the other hand, Hussenot Desenonges [Hus19] considered the
case where all singularities are regular (of order 2) with an index θ = 0 ∈ Z parabolic local
monodromy. Thus, Luo does not fix the indices but excludes parabolic local monodromies,
whereas Hussenot Desenonges fixes the indices but considers parabolic local monodromies.

In the present thesis, we will fix the values of the indices and we will not exclude parabolic
local monodromies.

As for Gupta and Mj [GM21], they dealt with projective structures with only irregular sin-
gularities, hence this issue does not arise in their work.

Example 1.2.3. The family of Gauss hypergeometric equations

x(x−1)y′′+[(α +β +1)x− γ]y′+αβy = 0, with α,β ,γ ∈ C and x ∈ C

induces a family of meromorphic projective structures on P1 with 3 regular singularities at 0, 1
and ∞ (see [Sai16, section IX.2.]).

In fact, all such projective structures are induced by a hypergeometric equation. Projective

charts take the form

ϕ(x) = f (x)θ or ϕ(x) = f (x)θ + log( f (x))

where θ ∈C depends on (α,β ,γ), and f is a local complex coordinate around a singularity x0,

f (x0) = 0.

Example 1.2.4. The Heun equations induces projective structures on P1 with 4 regular singu-

larities (see [Sai16, Sec. IX.3.1.]).

Example 1.2.5. An example on the torus is provided by the Lamé equation (see [Sai16, p. IX.3.3.]).

The subsequent paragraph is devoted to the description of a moduli space of meromorphic
projective structures.

The moduli space P(X/B;D). Let d ∈ N be an integer and (ni) ∈ Nd be a collection of
integers and

f : X // B

pi
yy

a holomorphic family of compact smooth curves, together with d disjoint holomorphic sections
p1, . . . , pd . We can define an effective divisor D as D := ∑

d
i=1 niDi with Di = im(pi). Its restric-

tion to Ct = f−1(t), for some t ∈ B, will be denoted Dt = ∑
d
i=1 ni pi(t). There is a holomorphic
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vector bundle
Q(X/B;D)! B

whose fiber over a point t ∈ B is the vector space Q(X/B;D)t =H0(Ct ,(T ∗Ct)
⊗2(Dt)) of mero-

morphic quadratic differentials on Ct having poles of order at most ni at the points pi(t) and no
other pole. As a consequence of the Riemann-Roch theorem,

dim(H0(Ct ,(T ∗Ct)
⊗2(Dt))) = 3g−3+

d

∑
i=1

ni. (1.5)

Let us denote P(X/B)t the fiber of the projection of P(X/B) to B. Then, define P(X/B;D)

as the affine bundle (for the vector bundle Q(X/B;D)) whose fiber over t is the quotient

P(X/B;D)t := (P(X/B)t×Q(X/B;D)t)/∼

for the equivalence relation

((t,P1),φ1)∼ ((t,P2),φ2)⇔ (P2,φ2) = (P1 +φhol,φ1−φhol)

for some φhol ∈ Q(X/B). The resulting quotient space is in bijection with the set

{(t,P) : t ∈ B and P is a meromorphic projective structure on Ct

having poles of order at most ni at the points pi(t) and no other pole}.

The space Q(X/B;D)t acts transitively and freely on equivalence classes by (φ̃ , t) · [(t,P),φ ] =
[(t,P),φ + φ̃ ].

A family of meromorphic projective structures on f relative to the divisor D is defined to
be a holomorphic section of this affine bundle P(X/B;D)! B. It induces a relative projective
structure on the restriction of f to X rD [AB20, Sec. 7.3.].

The subset corresponding to projective structures with poles of orders exactly (ni) forms a
dense open set

P(X/B;D ,(ni))⊂P(X/B;D)

(see [AB20, Lem. 8.1]).

As usual, denote by S a smooth oriented compact real surface of genus g. If B = T (S,d)

is the Teichmüller space of marked curves (i.e. marked Riemann surfaces) on S equipped with
d marked points, and if f is the universal holomorphic family of marked curves, we chose the
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sections pi such that for t ∈T (S,d), the pi(t) correspond to marked points on Ct .

Marked meromorphic projective structures. Take a meromorphic projective structure P on
C with pole orders (ni), and perform a real oriented blow-up 10 at each irregular singularity.
Consider one of them, say pi. Then, the ni− 2 corresponding asymptotic horizontal directions

(see [AB20]) of any polar differential of P at pi define ni−2 points on the boundary component
of the resulting blown-up surface SP lying over pi. Together with the set PP of points in the
interior of SP corresponding to regular singularities (the punctures), they form the set MP ⊂ SP

of marked points (cf. Figure 1.1).

A marked bordered surface is defined to be a pair (S,M) consisting of a compact, con-
nected, oriented, smooth surface with boundary S and a finite non-empty set M⊂ S of marked
points such that each boundary component of S contains at least one marked point (we refer to
the definition given in [AB20, Sec. 3.6]). Let S′ denote the surface obtained by taking the real
oriented blow-up of S at each puncture: this replaces punctures with boundary components con-
taining no marked points. A marked bordered surface (S,M) is determined up to isomorphism
by its genus and a collection of non-negative integers {k1, . . . ,kd} giving the number of marked
points on the d boundary components of S′. For example, (SP,MP) is a marked bordered surface
determined by the genus of P and the numbers

ki =

{
0 if ni ≤ 2

ni−2 otherwise.
(1.6)

Figure 1.1 – The surface SP with marked points MP.

A marking of the meromorphic projective structure P by a marked bordered surface (S,M)

is defined to be an isotopy class (relative to the boundaries and the marked points) of orientation

10. Locally, the blow down is: R≥0×S1 −! R2, (r,θ) 7−! (r cos(θ),r sin(θ)).
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preserving C ∞-diffeomorphisms θ : S! SP such that θ(M) =MP. 11

Definition 1.2.6. A marked meromorphic projective structure is a triple (C,P,θ), where C is
a complex curve, P is a meromorphic projective structure on C, and θ is a marking of P by a
marked bordered surface (S,M).

Fix a marked bordered surface (S,M). Two meromorphic projective structures marked by
(S,M), (Ci,Pi,θi), i = 1,2, are said to be equivalent if there exists a biholomorphism C1!C2

that preserves the projective structures and whose lift to the blown-up surfaces commutes with
the markings.

The moduli space P(S,M). Let (S,M) be a fixed marked bordered surface determined by a
genus g and a non-empty collection of non-negative integers {k1, . . . ,kd}. From now on, suppose
B = T (S,d). Let D be the divisor on X defined by

D :=
d

∑
i=1

(ki +2)Di.

Thanks to [AB20, Lem. 8.1, Prop. 8.2], we know that there is a dense subset V of P(X/B;D)

and a covering map

M : P(S,M)! V ⊂P(X/B;D) (1.7)

whose fibers over a point [(t,P),φ ] is the set of markings of P by (S,M) inducing (by blowing
down the boundary component of S) the marking of S corresponding to t. This covering space
P(S,M) is in bijection with the set of equivalence classes of marked meromorphic projective
structures marked by (S,M).

Remark 4. The moduli space P(S,M) was introduced by Allegretti and Bridgeland in [AB20].
We would like to emphasize that the marked bordered surface (S,M) does not always determine
the pole orders of the projective structures (the exact orders of regular singularities are not
specified). Thus, if pi ∈C corresponds to a point in the interior of S, the open subset V contains
projective structures with a simple pole at pi and others with a double pole at pi. Projective
structures with simple poles appear in the boundary of spaces of projective structures with
double poles.

11. The terminology is a little confusing here: we just defined a "marking" of P by a "marked" bordered surface.
The "marking" of P refers to θ , whereas "marked" bordered surface is a surface S with marked points M.
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This is natural for Allegretti and Bridgeland because of the result of Bridgeland and Smith
[BS15] which identifies the corresponding unions of components of moduli spaces of meromor-
phic quadratic differentials with spaces of stability conditions.

However, in this thesis will soon fix the residues of the meromorphic projective structures
(see Proposition 3.3.3), hence the orders of regular poles as well.

Allegretti and Bridgeland showed the following proposition.

Proposition 1.2.7 ([AB20], Prop. 8.2). Assume that if g = 0, then |M| ≥ 3. Then P(S,M) is a

complex manifold of dimension

6g−6+
n

∑
i=1

(ki +3).

According to the relation (1.6), special cases satisfying g = 0 and |M| ≤ 2 correspond to
non-singular projective structures and cases when (ni) is equal, up to a permutation of entries,
to (1), (2), (3), (4), (1,1), (1,2), (2,2), (1,3), (2,3) and (3,3) (about those special cases, see
[AB20, Sec. 6.4]).

Submanifolds of P(S,M). Let us denote by P the set of marked points points in the interior
of S (i.e. those corresponding to regular singularities). There is a map

R : P(S,M)−! CP

sending a class of marked meromorphic projective structures to the corresponding residue at
each regular singularity. This map is a holomorphic submersion [AB20, Prop. 8.4]. We intro-
duce the following submanifolds of P(S,M). First, assigning the values (µi) ∈ CP for the
residues leads to

P(S,M,(µi)) := R−1((µi)i).

Second, if Z = ∪θ∈N{z ∈ C : z− (1−θ 2)/2 = 0} (which is a discrete set of points of the real
line in C), then

P•(S,M) := R−1(CPrZP),

is a dense open set in P(S,M) corresponding to projective structures having non-trivial and
non-parabolic local monodromies around regular singular points. Third, there is an open subset

P◦(S,M)
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in P(S,M) corresponding to marked projective structures without apparent singularity [AB20,
Lem. 8.3] (it contains P•(S,M)).

Latter, we will introduce a new notion of "residue" which apply not only to regular singu-
larities but also to irregular ones, and we will consider the submanifold defined by fixing those
residues (cf. Proposition 3.3.3).
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CHAPTER 2

A SMOOTH FAMILY OF OPERS

We have seen already that a complex projective structure may be described in several ways:
as a projective atlas, as a development-holonomy pair or as a projective connection. Yet another
viewpoint turns out to be the most appropriate to develop our arguments: opers. A PGL(2,C)-
opers is a Riccati foliation of a P1-bundle over a curve, equipped with a transverse section.
In the meromorphic case, this leads a priori to consider singular Riccati foliations of a P1-
bundle, equipped with a section that might be tangent or might go through singularities of the
foliation. However, in contrast with the holomorphic case, it is not uniquely determined by
the projective structure: there can be different birational models [Bru15]. As observed by Loray
and Pereira [LP07], there is however a unique birational model minimizing the polar divisor and
such that the section does not intersect the singular set of the foliation. In the second section, we
deduce that if the projective structure has no apparent singularity, then the above ambiguity can
be resolved, so that there is a bijection between the set of meromorphic projective structures
without apparent singularity on a curve C and the set of meromorphic PGL(2,C)-oper on C

with minimal polar divisor. Finally, in the third section, we construct a smooth family of such
opers.

2.1 Opers for the group PGL(2,C) over a smooth curve C

Let us define opers, first in the case without poles.

Definition 2.1.1. An oper for the group PGL(2,C) on C (or PGL(2,C)-oper on C) is defined to
be a triple (π : Q!C,F ,σ), where

• π : Q!C is a holomorphic P1-bundle over C,

• F is a regular holomorphic foliation on Q transverse to the fibers of π (i.e. a Riccati
foliation, cf. below),

• σ : C! Q is a holomorphic section of the bundle, transverse to the foliation F .
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C

Q σ

−
!

F

π

Figure 2.1 – A PGL(2,C)-oper on C.

This definition makes sense for non-compact curves C as well. This terminology was intro-
duced by Beilinson and Drinfeld [BD05] (see also [Fre07]) and is a particular case of a much
more general class of objects, including opers for groups such as GL(2,C) or SL(2,C). Another
formulation of the above definition will be given later, in terms of equivalence classes of opers
for the group GL(2,C) (cf. Definition 3.2.2).

Proposition 2.1.2. Let C be a smooth curve. There is a bijection (given below) between the set

of projective structures on C and the set PGL(2,C)-opers on C.

Proof. Le P be a projective structure on C, with its projective atlas denoted (Ui,ϕi)i.

Then, the coordinate changes ϕi j := ϕi ◦ϕ
−1
j : ϕ j(Ui∩U j)! ϕi(Ui∩U j) are restrictions of

Möbius transformations and satisfy, on ϕ j(Ui ∩Uk ∩U j), the cocycle relation ϕik ◦ϕk j = ϕi j.
Whence, we can define a map gi j with value in PGL(2,C): to x ∈ Ui ∩U j we associate the
automorphism gi j(x) of P1 whose restriction equals ϕi j. The gi j also satisfy a cocycle relation,
hence they define a P1-bundle

π : Q = ti(Ui×P1)/(( j,x,y)∼ (i,x,gi j(x) · y))−!C.

By construction, the gi j are locally constant thus the transition functions of the bundle π do
not depend on the variable x and it makes sense to speak of the horizontal foliation on a trivial
chart of π . This foliation descends to a foliation F on P transverse to the fibers of π .

Furthermore, the graph of each projective chart ϕi defines a local section on Ui×P1. The
open cover and the gluing data of the bundle π correspond exactly to those of the projective
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2.1. Opers for the group PGL(2,C) over a smooth curve C

atlas of P, so that projective charts define a global section σ of π . This section is transverse to
the foliation F because the derivatives of the ϕi never vanish.

Ui

ϕi

−
!

−
!

Ui×P1

U j

ϕ j

U j×P1

7−!

(x,g ji(x) · y)

Figure 2.2 – The gluing construction.

Finally, we have constructed a triple (π : Q!C,F ,σ) with the appropriate properties.

Let us describe the inverse of this identification. Given the previous triple (π : Q!C,F ,σ),
we can recover the projective structure P in the following way. First, the flow box theorem
ensures that on the trivialization charts there exists a bundle isomorphism sending the Riccati
foliation to the horizontal one. (Concretely, this bundle isomorphism may be described using
the sharp 3-transitivity of the action of the group of Möbius transformations on P1: choose
three distinct leaves and send them to the constant sections {y = 0}, {y = 1} and {y = ∞}).
Then, restricted to the trivializing open sets, the graph of the section σ defines a projective
charts. Finally, the compatibility between charts follows from the gluing data of the bundle.
(This projective structure induces the complex structure C because the section is analytic).

Note that the conjugacy class of the monodromy representations of F and the associated
projective structure are the same, because transition maps of the projective atlas are the same as
cocycles of the bundle.

The isomorphism class of the couple (π : Q! C,F ) can be recovered from the data of
the complex curve C together with its monodromy representation up to conjugacy. This is the
classical Riemann-Hilbert correspondence, which in this context amounts to the suspension of
the monodromy representation.
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Chapter 2 – A smooth family of opers

In a way analogous to Proposition 2.1.2, meromorphic projective structures correspond to
meromorphic opers. The rest of the present section is devoted to the definition of those objects
and to the clarification of their relation to meromorphic projective structures.

Singular Riccati foliations. Let π : Q!C be a holomorphic P1-bundle. A singular holomor-
phic foliation F on Q is said to be Riccati with respect to π if it is transverse to the generic
fiber of π . Let (U,x) be a coordinate chart of C such that the bundle is trivial over U , i.e.
π−1(U) ' U ×P1, and choose a standard coordinate y on P1. Then, is these coordinates the
foliation F is described by a Pfaffian equation of the form

d(x)dy+[a(x)y2 +b(x)y+ c(x)]dx = 0, (2.1)

where a,b,c and d are holomorphic functions and d is non-identically vanishing (a detailed
study of Riccati foliations is exposed in [Bru15, Chap. 4.1]; see also [Sai16, Prop. VIII.1.1.]).
A fiber of π over a point corresponding to a zero of d is invariant by F , whereas fibers over
points where d is non-zero are transverse to F . The set of singularities sing(F ) of the foliation
is contained in the union of invariant fibers. If F is an invariant fiber, then the set sing(F )∩F

contains one or two elements since they are obtained by solving a quadratic equation.

Dividing by d, we obtain a Riccati equation (hence the terminology):

F|U : dy+ y2
α + yβ + γ = 0, (2.2)

where α,β and γ are meromorphic 1-forms on U . Note that equation (2.2) also determines F :
the leaves are obtained as the graphs of its solutions – this is possible only outside fibers corre-
sponding to the poles of α,β and γ , but then the resulting foliation extends uniquely outside a
codimension 1 analytic subset (this is basic foliation theory, see for instance [Lor12, Prop. 27]
or [IY08, Thm. 2.20]). Invariant fibers correspond exactly to the poles of α,β and γ .

Definition 2.1.3. To a singular Riccati foliation (π : Q ! C,F ), we can associate a polar

divisor on C defined as the direct image by π of the tangency divisor between F and the
foliation induced by the fibers of π .

A Möbius transformation fixes the point at infinity in the projective line if and only if it
is affine. Recall that the affine group is generated by translations and dilatations by a non-
zero complex number. Affine holomorphic gauge transformations act on the Riccati equation
as follow. A pullback by a gauge transformation of the form y = a(x)ỹ transforms the Riccati
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equation (2.2) into

dỹ+aỹ2
α + ỹ

(
β +

da
a

)
+

γ

a
= 0 (2.3)

whereas a pullback by a gauge transformation of the form y = ỹ+b(x) transforms it into

dỹ+ ỹ2
α + ỹ(β +2bα)+(b2

α +db+bβ + γ) = 0. (2.4)

The following proposition gives the relation between Riccati foliations and the quadratic
differentials associated with projective structures.

Proposition 2.1.4 (see Prop. 2.1 in [LM09]). Let (π : Q!C,F ,σ) be a PGL(2,C)-oper defin-

ing a projective structure P on a smooth curve C. Let x be a coordinate chart of C defined on an

open set U over which the bundle π is trivial 1. Then

(i) there exists a unique coordinate chart y on Cy ⊂ P1 in which the triple takes the normal

form F|U : dy+
(

y2 + q(x)
2

)
dx = 0 with q ∈ O(U)

σ|U : {y = ∞}.
(2.5)

(ii) Moreover, on U, the projective charts of the structure P are exactly the solutions of the

Schwarzian equation Sx(ϕ) = q.

Note that, after the substitution y =−1/ỹ, we see that the same is true for the formF|U : dỹ+
(

q(x)
2 ỹ2 +1

)
dx = 0 with q ∈ O(U)

σ|U : {ỹ = 0}.
(2.6)

which is the projectivization ỹ = ỹ1/ỹ2 of the companion system of equation (1.2),

dỸ +

(
0 −1

q(x)/2 0

)
Ỹ dx = 0, (2.7)

with the section σ corresponding to the line subbundle L = 〈t(0,1)〉. See [AB20, Rk. 3.3(ii)]
for the corresponding computation directly on the rank 2 connection side.

Proof of Proposition 2.1.4. Let U be an open set of C such that the bundle π is trivial over U .

1. In fact, it is trivial on any proper open subset U ( C, because π is the projectivization of a rank 2 vector
bundle, which is trivial on any non-compact curve by Grauert-Röhrl theorem.
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(i) By transitivity of Möbius transformations, there exist trivializing coordinates (x,y) on
π−1(U)'U×P1 in which σ|U = {y = ∞}. As above, the Pfaffian equation reads

F|U : dy+ y2
α + yβ + γ = 0,

where α,β and γ are holomorphic 1-forms on U , with α non-vanishing (due to the transversality
between the section and the foliation). The action of affine holomorphic gauge transformations
(i.e. those fixing the section at infinity) on the Riccati equation is such that α and β can be
arbitrarily chosen, except α must remain non-vanishing (see equations (2.3) and (2.4)). After
such a choice of α and β is made, no non-trivial gauge transformation leaves them unchanged.
Hence γ is uniquely determined by the projective structure P. Choose α = dx, β = 0 and denote
γ = q/2dx. (The factor 1/2 is a matter of convention: if it wasn’t written here, a factor 2 would
pop up in the Schwarzian equation of point (ii) anyway). In practice, one can first normalize the
quadratic coefficient to 1 via y = a(x)ỹ, then cancel the linear coefficient via y = ỹ+b(x) (see
equations (2.3) and (2.4)).

(ii) Just as in the proof of Proposition 2.1.2, we can find coordinates (x,y) on U ×P1 in
which the foliation F is given by y′ = 0 (i.e. horizontal) and the section σ defines a projective
chart ϕ = σ|U . After a gauge transformation sending the section to infinity

(x,y) 7−! (x,y1) :=
(

x,
1

y−ϕ

)
,

the equation takes on the form y′1 − ϕ ′y2
1 = 0. Next, we apply change of the y1 coordinate

preserving {y1 =∞}: those are exactly the elements of the affine group. First, the transformation

(x,y1) 7−! (x,y2) :=
(
x,−ϕ

′y1
)

followed by a multiplication of the equation by−ϕ ′ normalizes the coefficient of y2
2 to 1 without

perturbing the coefficient of y′2. Second, the transformation

(x,y2) 7−! (x,y3) :=
(

x,y2−
ϕ ′′

2ϕ ′

)
annihilates the coefficient of y3 and we get

y′3 + y2
3 +

Sx(ϕ)

2
= 0.
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The uniqueness in (i) yields Sx(ϕ) = q.
Finally, two solutions of the Schwarzian equation differ from a Möbius transformation

(compare (1.1)), hence the conclusion.

Meromorphic PGL(2,C)-opers.

Definition 2.1.5. A meromorphic PGL(2,C)-oper on C is a triple of the form (π : Q!C,F ,σ),
where

• π : Q!C is a holomorphic P1-bundle over C,

• F is a singular holomorphic foliation on Q transverse to the generic fibers of π (a singular
Riccati foliation on Q),

• σ : C! Q is a holomorphic section of the bundle, transverse to the foliation F .

C

σ

−
!

Q

π

F

Figure 2.3 – A meromorphic PGL(2,C)-oper on C.

The polar divisor of a meromorphic PGL(2,C)-oper on C is defined to be the one of the
associated singular Riccati foliation (cf. Definition 2.1.3).

"Singular" triples (π,F ,σ) associated with a meromorphic projective structure. Let P

be a meromorphic projective structure on C described by a pair (P0,φ), following the notations
of Definition 1.2.1. Consider the trivial P1-bundle over C, a standard coordinate y on P1, and
the holomorphic section σ = {y = ∞}. Suppose that, in the charts of a projective atlas (Ui,xi)

of P0, the quadratic differential reads φ = qi(xi)
2 dx⊗2

i . Define

Fi : dy+
(

y2 +
qi(xi)

2

)
dxi = 0. (2.8)
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Since xi is a projective chart for P0, those expressions glue together to give a singular Riccati
foliation F on the trivial P1-bundle over C. We get a triple (π,F ,σ), where π is the trivial
bundle, which by Proposition 2.1.4 defines the projective structure P = P0 +φ in the sense that
we can recover a projective atlas outside of the polar locus just as in Proposition 2.1.2.

Consider a triple (π : Q! C,F ,σ), where π is a holomorphic P1-bundle on C, F is a
singular Riccati foliation on π and σ is a holomorphic section of π generically transverse to
F . We say that the triple defines a meromorphic projective structure P on C if we can recover a
projective atlas outside of the polar locus just as in Proposition 2.1.2.

However, in contrast with the latter situation, triples not holomorphically equivalents may
define the same meromorphic projective structure on C. The object we are dealing with here
is really the triple (π : Q −! C,F ,σ) modulo gauge transformations of the bundle that are

bimeromorphic and such that their indeterminacy locus are contained in the fibers above poles

of the projective structure.

Proposition 2.1.6. Proposition 2.1.4 holds for meromophic projective structures, if we allow

bimeromorphic gauge transformations and replace q ∈ O(U) by q ∈M (U).

Note that, when the triple is locally expressed in a form (2.5), but with q possibly having a
pole at x = 0, we see by the change of variable Y = 1/y that q admits a pole of order at least 1
if and only if σ := {y = ∞} intersects the singular set of F . (This is the unique singular point
on the invariant fiber). Hence the section σ is merely generically transverse to the foliation
F : it is transverse above points in C∗, and it goes through singularities of F above poles of
P. Thus, we are not dealing with an oper. We can reduce to the situation where the section is
everywhere transverse to the foliation by applying bimeromorphic gauge transformations of the
bundle, though. It is the object of Proposition 2.2.2 in the next section.

2.2 A unique meromorphic oper associated with a meromor-
phic projective structure without apparent singularity:
the minimal birational model

Definition 2.2.1. Let π : Q!C be a P1-bundle and q ∈ Q. The blow up of q, composed with
the contraction (which is possible thanks to Castelnuovo’s criterion) of the proper (or strict)
transform of the fiber π−1(π(q)) is called the elementary transformation centered at q and
denoted elemq.
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An elementary transformation is a birational transformation, and its inverse is an elementary
transformation. The image of a P1-bundle by an elementary transformation is again a holomor-
phic P1-bundle. Every P1-bundle over C can be obtained from the trivial bundle C×P1!C by
some successive elementary transformations (see [IS96, p. 229]). All birational transformations
between P1-bundles over C are obtained by composing elementary transformations.

For instance, consider the trivial bundle D×P1!D, with coordinate x on the disc, homoge-
neous coordinates [y1 : y2] on the projective line. Then, elem(0,[y1:0])(x, [y1,y2]) = (x, [xy1,y2]).

Let σ be a section of the P1-bundle π . After the elementary transformation elemq, the self-
intersection number of the strict transform σ̃ of σ satisfies

σ̃ · σ̃ =

σ ·σ +1 if q /∈ σ

σ ·σ −1 if q ∈ σ .

Proposition 2.2.2. Let P be a meromorphic projective structure on C, and let (π : Q!C,F ,σ)

be a triple defining it. There exists a PGL(2,C)-oper (π̃ : Q̃!C,F̃ , σ̃) defining P where π̃ is

bimeromorphically equivalent to π via elementary gauge transformations sending F to F̃ and

σ to σ̃ (the point here is that σ̃ is everywhere transverse to F̃ ).

Proof. Suppose P admits at least one pole, otherwise there is nothing to prove. Start by applying
Proposition 2.1.6 for a local coordinate x centered at a pole p of P of order n ∈ N∗. Sticking to
the same notations, we get

F|U : dy+
(

y2 +
q̃(x)
2xn

)
dx = 0 with q̃ := xnq ∈ O(U) and q̃(0) 6= 0.

As we have already noticed, the only point where σ goes through a singularity of the foliation
F|U is (x,y) = (0,∞). The idea is to apply an appropriate number of elementary transformations
centered at this point.

Apply first the gauge transformation Y = 1/y, then multiply by−Y 2 before performing l ∈N
elementary gauge transformations Y = xlỸ . After a division by xn, we get the Pfaffian equation

F̃|U : xldỸ +

[
−x2l−n q̃(x)

2
Ỹ 2 + lxl−1Ỹ −1

]
dx = 0,

so that fixing l = (n+1)/2 or n/2 depending if n is odd or even, respectively, we get −dx = 0
at (x,Ỹ ) = (0,0). This 1-form is both non-zero and transverse to the pull-back σ̃ := {Ỹ = 0} of
the section σ .
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Applying this kind of transformations for every poles of P leads to the desired oper (π̃ : Q̃!

C,F̃ , σ̃). The projective structure associated to this new triple is the same as that of the initial
one, because elementary transformations are biholomorphic outside of the fibers containing the
points at which they are centered.

U

σ = {y = ∞}

−
!

99K

−
!

{y = 0}

x = 0 x = 0

U×P1

−
!

x = 0

or

n is odd n is even

Figure 2.4 – Proposition 2.2.2.

An oper defining a meromorphic projective structure (with at least one pole) is not unique
modulo bimeromorphic gauge transformation. If we add a condition on the order of tangency
between the foliation F and the fibers of π , though, we get a uniqueness statement.

Just as the transversality between the section and the foliation, the order of tangency between
the foliation and the fibers can be changed by a bimeromorphic gauge transformation.

Remark 5. Consider a singular Riccati foliation (π : Q!C,F ), and assume it has an invariant
fiber. Chose a coordinate system (x,y) on a local trivialization of the bundle such that the set
{x = 0} corresponds to an invariant fiber. By 3-transitivity of the action of Möbius transforma-
tions on the projective line, we can assume without loss of generality that (0,0) is a singular
point of the foliation and that (0,∞) is not. Then, there exists an integer m∈N∗ and holomorphic
functions a,b and c such that the Pfaffian equation defining locally the foliation reads

xmdy+(a(x)y2 +b(x)y+ c(x))dx = 0,

with a(0) 6= 0 and c(0) = 0. By a holomorphic gauge transformation, we can normalize a to 1
while preserving {y = 0} and {y = ∞} (cf. equation (2.3)). This changes b and c to, say, b̃ and
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c̃, respectively. After the meromorphic transformation (x,y) := (x,xkỹ), k ∈ Z, we get

xm+kdỹ+[x2kỹ2 +(kxm+k−1 + b̃(x)xk)y+ c̃(x)]dx = 0,

with b̃, c̃ holomorphic (c̃(0) = 0). If k > 0, this transformation (which also preserves {y = 0}
and {y = ∞} away from {x = 0}) corresponds to an elementary transformations centered at
(0,∞), and we see from the latter equation that the order of vanishing of the coefficient before
dỹ at 0 has either decreased or remained equal to m after k = 1 elementary transformation
(depending on the order of vanishing of b̃ and c̃, and after division by the appropriate power of
x). If k < 0, we are applying elementary transformations centered at (0,0). If k = −1 we see
(after a multiplication by x2) that the pole order of the Riccati equation has increased from m to
m+1.

This proves that an elementary transformation centered at a singular point of the foliation

decreases or leaves unchanged the order of the pole of the Riccati equation, whereas an ele-

mentary transformation centered outside of the singular locus of the foliation on an invariant

fiber always increase the order of the pole of the Riccati equation.

A birational model of (π : Q! C,F ) minimizing the polar divisor of the foliation is not
unique (see [Bru15]).

Proposition 2.2.3. Let (π : Q!C,F ,σ) be a triple defining a meromorphic projective struc-

ture on C.

(i) Suppose F reads locally around a singularity centered at x = 0 as in Proposition 2.1.6,

with q having a pole of order n ∈ N∗. Then, applying elementary gauge transformations

centered at a point in {x = 0} we can get a 1-form defining the foliation having poles of

order dn
2e (where d·e denotes the ceiling function). This is the minimum order that can be

achieved by applying meromorphic gauge transformations.

(ii) Suppose F is defined locally in a coordinate x by a 1-form admitting a pole of order m

at x = 0, then q (Proposition 2.1.6) has a pole of order at most 2m.

Proof. (i) Recall that any birational gauge transformation is the composition of elementary
transformations. Consider the normal form (2.5). The only singularity of the foliation F being
(x,y) = (0,∞), the idea (cf. Remark 5) is to apply an elementary transformation centered at this
point, and repeat the process as long as it is possible, say k ∈ N times. Pulling-back the 1-form
via (x, ỹ) 7! (x,y) := (x,x−kỹ) leads to

2xn−kdỹ+
[
2xn−2kỹ2− kxn−1−kỹ+ q̃(x)

]
dx = 0,

61



Chapter 2 – A smooth family of opers

with q̃(x) := xnq(x) ∈ O(U) and q̃(0) 6= 0. Whence the result.
(ii) This can be seen by carrying out the computations in the proof of Proposition 2.1.4(i)

but with a and b meromorphic and possibly admitting a pole at x = 0.

In fact, as observed by Loray and Pereira in [LP07, Sec. 3.2.]:

Proposition 2.2.4. Let (π : Q! C,F ,σ) be a singular Riccati foliation F , together with a

section σ generically transverse to F . There is a unique birational model minimizing the polar

divisor such that the section does not intersect the singular set of the foliation.

If we further assume that the corresponding projective structure has no apparent singularity,
then by Proposition 2.2.6 (bellow) the section cannot be tangent to the foliation and the above
minimal model defines an oper.

In conclusion, we get a correspondence similar to Proposition 2.1.2 for meromorphic pro-
jective structures without apparent singularity on C.

Proposition 2.2.5. Let C be a smooth curve. There is a bijection (given above) between the set

of meromorphic projective structures without apparent singularity on C and the set of meromor-

phic PGL(2,C)-oper (π : Q!C,F ,σ) such that the polar divisor of F is minimal.

Apparent singularities, branch points and tangency between the section and the folia-
tion. Proposition 2.2.3 allows us to characterize apparent singularities and give there relation
to branch points (see also [Sai16, Proposition IX.1.2.]).

Proposition 2.2.6. Let (π : Q! C,F ,σ) be a PGL(2,C)-oper. Suppose the associated pro-

jective structure admits an apparent singularity at a point p ∈C. Then, there exist elementary

gauge transformations desingularizing the foliation over p, while possibly introducing a tan-

gency point between σ and F . The converse is true.

Proof. Suppose first that the section σ is tangent to F at some point in the fiber over a point
p ∈ C along which the foliation is regular. Then, there are holomorphic functions a,b and an
integer k ∈ N∗ such that, in a bundle chart Ux×Cy such that p = 0 and σ = {y = 0},

F|U : dy+[a(x)y2 +b(x)y+ xk−1]dx = 0.

Here, tang(F ,σ) = k−1. The composition

(x,y) 7−! (x, ỹ) := (x,y/xk)
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of k elementary gauge transformations (the first one being centered at (x,y) = (0,0)) leads to

dỹ+
[

a(x)xkỹ2 +

(
k
x
+b(x)

)
ỹ+

1
x

]
dx = 0.

We see, after multiplication by x, that the section is now transverse to the foliation around
x = 0. Moreover, a calculation similar to the proof of Proposition 2.1.4 shows that the projective
structure has a pole of order at most 2 at x = 0. But the local monodromy is trivial since we
started with a non-singular foliation.

Conversely: Thanks to the Proposition 2.2.3, the foliation may be described by a 1-form
with a pole of order at most 1. This falls into the non-degenerate case of [Bru15, Prop. 4.2].
Furthermore, the monodromy being trivial, we can perform (see [Bru15, page 44 and 45]) a
change of variable (not necessarily a gauge transformation preserving σ ) to get, for some n ∈ Z

dy− ny
x

dx = 0.

Then, a composition of elementary transformations (the first one being centered at (x,y) =
(0,0)) leads to

dy = 0,

which is non-singular. Finally, the corresponding section may be tangent to the foliation. We
can’t ensure the transversality.

Other types of singularities (in [Bru15]) cannot be desingularized. Indeed, there monodromy
are non-trivial. Hence, apparent singularities are exactly those that can be desingularized.

Around those points, the projective charts take the form ϕ(x) = xk−1 up to a change of
coordinate: they are branch points.

2.3 Construction of a family of meromorphic PGL(2,C)-opers

We use de notations of section 1.2.

Lemma 2.3.1. For all point τ0 ∈P◦(S,M,(ni)), there exists an open neighborhood U of τ0

and a holomorphic family of curves F : C !U, together with

• a holomorphic P1-bundle Π : Q! C ,

• a dimension 1 singular foliation F on Q,
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• and a holomorphic section S of Π

such that F ◦Π is a first integral of F , and in restriction to any fiber Cτ := F−1(τ) of the

family F, the triple (Π|Cτ
,F|Qτ

,S|Cτ
) is the unique PGL(2,C)-oper with minimal polar divisor

on Cτ associated to meromorphic projective structures corresponding to τ .

Proof. Recall from section 1.2 that B denotes the Teichmüller space T (S,d) and f : X ! B

denotes the universal family of marked curves. Pick a point τ0 ∈P◦(S,M,(ni)) and denote by
b0 its image in B. Replacing B by an open ball, we know from Proposition 1.1.9 that there exists
a relative projective structure (without pole) α on f : X ! B. It induces a holomorphic section
s0 of P(X/B;D)! B. This section in turn induces a bijection

Φs0 : P(X/B;D)−!Q(X/B;D)

[(t,P),φ ] 7−! (t,(P+φ)− (Ps0(t)+φs0(t))) if s0(t) = [(t,Ps0(t)),φs0(t)].

Then, define U as the preimage of B in P◦(S,M,(ni)) and form the fibred product

C :=U×B X

and define F : C !U as the pullback of f .

C =U×B X

F
��

// X

f
��

U
M|U //P(X/B;D ,(ni))

� � //P(X/B;D)
Φs0

''

// B

s0
ss

Q(X/B;D)

OO

For all τ ∈ U , let us denote t = pr1 ◦Φs0 ◦M(τ) and φτ := pr2 ◦Φs ◦M(τ) (pri means the
projection to the i-th factor). The projective structure Pt := (Ps0(t)+ φs0(t))+ φτ on Ct induced
by the above relative projective structure is also a projective structure Pτ on Cτ := F−1(τ)

(by construction of the fibered product). This defines a holomorphic family of meromorphic
projective structure on U (this is the tautological family: roughly speaking, it is τ on the fiber
over τ).

Denote by D̃ and α̃ the pullbacks of D and α on C , respectively. According to [AB20, Lem.
7.4], the holomorphic family defined in the preceding paragraph induces a relative projective
structure without poles on the family of curves C r D̃ !U and subtracting (the restriction of)
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α̃ to it gives the holomorphic family of relative quadratic differentials (see [AB20, Prop. 7.3])
corresponding to φτ .

Now consider the trivial bundle Π0 : C ×P1! C . Chose moreover a standard coordinate y

on P1 and consider the section S∞ := {y = ∞} of this trivial bundle. From the pair (Pτ ,φτ), we
know (see Equation 2.8) how to construct a triple (Π0|Cτ

: Cτ×P1!Cτ ,Fτ ,S∞|Cτ
) describing

the projective structure associated to τ .
The polar divisor on Cτ of the Riccati foliation Fτ is not necessarily minimal, and S∞|Cτ

is not necessarily everywhere transverse to Fτ . To get an oper with minimal polar divisor, we
apply elementary transformations along the locus of the divisor D (this is a family version of
Propositions 2.2.2, 2.2.3 and 2.2.4). Each component Di is an hypersurface in C . An elementary
transformation centered at S∞(Di) can be described as follows: first blow-up S∞(Di) and then
contract the strict transform of Π

−1
0 (Di). We apply elementary transformations until we get an

oper above Cτ for all τ ∈U .
By construction, the resulting objects satisfy the requirements of the statement.

This lemma remains true if we replace P◦(S,M,(ni)) by one of its submanifolds.
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CHAPTER 3

A SMOOTH FAMILY OF SINGULAR

RICCATI FOLIATIONS

Let C be a smooth curve and E ! C be a rank k holomorphic vector bundle, that we will
frequently denote simply by E. Its sheaf of holomorphic sections is a locally free sheaf of OC-
modules of rank k, that we denote by E as well. The sheaf of OC-modules associated with a
divisor D on C is denoted by OC(D), and it is defined by setting

U 7−! OC(D)(U) := { f : U ! C | f is meromorphic and div( f )≥−D}.

We denote Ω1
C(D) := Ω1

C⊗OC OC(D) the sheaf of meromorphic 1-forms with polar divisor "at
most" D.

Definition 3.0.1. A meromorphic connection ∇ on the holomorphic vector bundle E is a C-
linear morphism of sheaf

∇ : E −! E⊗OC Ω
1
C(D)

for some effective divisor D, satisfying the Leibniz rule, i.e. for any open set U ⊂C, any function
f ∈ OC(U) and any local section s of E over U , ∇( f s) = f ∇s+ s⊗d f .

Note that because C has dimension 1, the connection is automatically flat.
Often, in the context of moduli spaces, it is the couple (E,∇) that we call a connection. We

say that the connection (E,∇) has rank k, referring to the rank of the vector bundle E.
Consider for instance the rank 2 case. Concretely, over an open set U ⊂C where the bundle

is trivial and for a given local frame (e1,e2), such a connection is represented by a matrix 1-form
Ω = (ωi j)i j ∈Mat(2,Ω1

C(D)(U)) called the connection matrix, whose coefficients are defined
by the relations ∇e j = ∑

2
i=1 ei⊗ωi j. Conversely, given a matrix 1-form Ω on U , we can define

a connection ∇ on the trivial bundle U×C2 as follows. The image of a section s = ∑
2
j=1 y je j is

of course defined by

∇s :=
2

∑
i=1

ei⊗ (dY +ΩY )i ,
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where Y :=

(
y1

y2

)
. Thus, we may abusively write

∇ = d +Ω

if we remember that this expression depends on the local frame that we have chosen. Whenever
we pullback by a holomorphic gauge transformation Ỹ 7! GỸ , the connection matrix becomes

Ω̃ = G−1
ΩG+G−1dG.

A collection of matrix 1-forms – one for each local trivialization of E – satisfying this glu-
ing property represents a unique connection on E. Note that since G−1dG is holomorphic, G

conjugates the principal part of Ω to the principal part of Ω̃. The poles and pole orders of the
connection are defined to be those of its matrices. We can chose D to be the effective polar

divisor of ∇, though strictly speaking our definition does not require this.
The Poincaré rank of ∇ at a pole of order m is defined to be m−1. It might change after a

meromorphic gauge transformation. The minimal Poincaré rank in the equivalence class of the
system up to meromorphic gauge transformation is sometimes called the true Poincaré rank.

Definition 3.0.2. The polar divisor of a meromorphic connection (E,∇) on C is said to be mini-

mal if the pole order at each pole cannot be decreased by a meromorphic gauge transformation.

Definition 3.0.3. We say that a connection (E,∇) is reducible if there exists an invariant sub-

bundle, i.e. a subbundle 0 ( L ( E satisfying ∇(L) ⊂ L⊗Ω1
C(D). Otherwise, we say it is irre-

ducible.

Fuchs relation. The trace connection (det(E), tr(∇)) is the connection induced by (E,∇) on
the determinant bundle of E. In local trivialization coordinates, its connection matrices are the
traces of the matrices of ∇. We say a connection is trace-free if its trace is isomorphic to the
horizontal connection d on the trivial line bundle OC.

The following relation holds for arbitrary rank and is a consequence of the residue formula
(for a proof, see [IY08, Cor. 17.35]).

Proposition 3.0.4 (Fuchs relation). If ∇ is a meromorphic connection on a smooth vector bun-

dle E over a smooth compact curve C, then

∑
p∈C

resp(tr(∇))+deg(E) = 0, (3.1)
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3.1. Riccati foliations and meromorphic rank 2 connections

where the degree of E is by definition the degree of its determinant bundle.

3.1 Riccati foliations and meromorphic rank 2 connections

Let (E,∇) be a rank 2 meromorphic connection on C. Consider a non-zero local section
s = ∑

2
j=1 y je j of E that is flat for ∇, i.e. ∇s = 0. As usual, (e1,e2) is a local frame of E and

Ω = (ωi j)i j denotes the connection matrix of ∇ with respect to this frame. Assume that y2 6= 0
and denote y = y1/y2. Computing the logarithmic derivative of y leads to the Riccati equation

dy+ω2,1y2 +(ω2,2−ω1,1)y−ω1,2 = 0.

This equation defines the projectivization P(E,∇) := (P(E),P(∇)) of the connection (E,∇),
i.e. a Riccati foliation on the P1-bundle P(E).

Thus, to a rank 2 connection we can associate its trace and its projectivization,

(E,∇) 7−!

{
(det(E), tr(∇))

(P(E),P(∇)).

Now, can we always find a rank 2 connection with prescribed trace and projectivization? In other
words, is it possible to lift a given Riccati foliation (Q,F ) to a rank 2 meromorphic connection
(E,∇) with a given trace (L,∇L)? If it exists, such a lift is not unique. Indeed, P(E,∇)=P(Ẽ, ∇̃)

if and only if there exists a rank 1 meromorphic connection (L′,∇L′) such that (Ẽ, ∇̃) = (E⊗
L′,∇⊗∇L′). This can be seen by comparing their cocycles and connection matrices: if the
cocycles of E and L′ with respect to a common open cover (Ui) of C are respectively (Gi j) and
(gi j), then E⊗L′ have cocycles Gi j ·gi j. If ∇ = d +Ωi and ∇L′ = d +ωi with respect to some
trivialization charts, then ∇⊗∇L′ = d +(Ωi +ωiI). We call this operation a twist of (E,∇) by
the rank 1 meromorphic connection (L′,∇L′). For any rank 1 meromorphic connection (L′,∇L′),{

det(E⊗L′) = det(E)⊗L′⊗2

tr(∇⊗∇L′) = tr(∇)⊗ tr(∇L′)
⊗2.

Consequently, such a lift (E,∇) is unique up to a twist by a tensor square root of the rank 1 trivial
connection (OC,d). Note that this square root is necessarily a holomorphic connection. If g is the
genus of C, there are 22g such elements (indeed, they correspond via the Riemann-Hilbert corre-
spondence –which preserves the group structures– to the 22g elements of Hom(π1(C),{±1})),
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whence at most 22g lifts.
Let us return to the question of the existence of such a lift. Every P1-bundle on a curve is the

projectivization of a rank 2 vector bundle (see [Mar70, Intro.]), and this vector bundle is unique
up to a tensor product with a line bundle L′. Let E be a vector bundle such that P(E) =Q. We are
looking for a line bundle L′ such that det(E⊗L′) = det(E)⊗det(L′)⊗2 = L, that is, a square root
of L⊗det(E)⊗(−1) in the Picard group Pic(C). Such a square root exists if and only if the degree
of L⊗det(E)⊗(−1) is even. As for the connection ∇L and the Riccati foliation F , suppose they
are given locally over each open set of an open cover (Ui) as d+δi and dy+y2αi+yβi+γi = 0,
respectively. Then, the connection on E⊗L′ defined locally by

dY +

(
δi−βi

2 −γi

αi
δi+βi

2

)
Y = 0

has trace ∇L and projectivization F . In conclusion, we get the following proposition.

Proposition 3.1.1. Let (L,∇L) and (Q,F ) be a rank 1 meromorphic connection and a singular

Riccati foliation on C, respectively. There exists a rank 2 meromorphic connection on C with

trace (L,∇L) and projectivization (Q,F ) if and only if

deg(L)−deg(E)≡ 0 mod 2.

This lift is unique up to a twist by a tensor square root of the rank 1 trivial connection (OC,d).

Remark 6. Since we are interested in projective structures, there is a priori no reason for us
to speak about linear connections. However, some results we will use are formulated in the
literature in the setting of linear connection.

3.2 Projective structures and opers for the group GL(2,C)

Some properties of P1-bundles. Let us first recall some useful facts regarding P1-bundles
and their sections; proofs can be found in Maruyama’s book [Mar70, Chap. I].

Facts 3.2.1. Let E be a holomorphic rank 2 vector bundle on a genus g curve C, and denote

Q = P(E) its projectivization. Every P1-bundle on C arises in this way. To give a (holomorphic)

section of Q is equivalent to give a line subbundle of E, and there always exists one. Degrees

of line subbundles of E are bounded above; a line subbundle of E is said to be maximal if its

degree is maximal. We denote the maximal degree by M(E).
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Let σ be a section of Q and Lσ be the corresponding line subbundle of E. The self-intersection

number of σ is equal to the degree of its normal bundle Nσ , which satisfies σ∗(Nσ ) = det(E)⊗
L⊗(−2)

σ . Thus,

σ ·σ = deg(E)−2deg(Lσ ).

Maximal line subbundles of E are in bijective correspondence with minimal sections of Q, i.e.

with section with minimal self-intersection number N(E) := deg(E)−2M(E). In fact, since this

number depends only on Q, we also denote it by N(Q). It is at most g. The parity of σ ·σ , for

any section σ , is the same as the parity of N(Q).

In fact N(Q) ≡ deg(E) mod 2 and this parity also determines the topological class of the

S2-bundle subjacent to P(E) (see [Góm89], [Lor14], [LM09, Sec. 2.1]).

If σ is minimal and σ ·σ = N(Q) < 0, then any other section σ ′ has a self-intersection

number σ ′ ·σ ′ ≥−N(Q) (there is a gap in the possible values).

Finally, we have that

1. if N(Q)< 0, then there is a unique maximal line subbundle of E,

2. if N(Q) = 0 and E is indecomposable, then again there is a unique maximal line subbun-

dle of E,

3. if N(Q) = 0, E is decomposable but E 6' L⊕L for any line subbundle L of E, then there

are only two maximal line subbundles L1,L2 of E, and in fact E = L1⊕L2,

4. if E = L⊕ L for some line subbundle L of E, then E has infinitely many maximal line

subbundles, all of which are isomorphic to L.

In fact, if N(Q) = 0, deg(E) = 0 and E is decomposable, we have E = L⊕L−1 for some line

subbundle L and the two last cases correspond respectively to L⊗2 6' OC and L⊗2 ' OC.

Remark 7. A line subbundle L of E is invariant by ∇ if and only if the corresponding section of
P(E) is invariant by the foliation induced by ∇.

Opers for the group GL(2,C).

Definition 3.2.2. A (meromorphic) oper for the group GL(2,C) on a complex curve C is a
triple (E,∇,L), where E is a rank 2 holomorphic vector bundle, ∇ is a holomorphic (resp.
meromorphic) connection on E and L ⊂ E is a line subbundle satisfying a non-degeneracy (or

71



Chapter 3 – A smooth family of singular Riccati foliations

strictness) condition: the OC-linear map ϕ defined as the composite

ϕ : L ι
−! E ∇

−! E⊗Ω
1
C

q⊗id
−−−! (E/L)⊗Ω

1
C (3.2)

(resp. ϕ : L ι
−! E ∇

−! E⊗Ω
1
C(D)

q⊗id
−−−! (E/L)⊗Ω

1
C(D)) (3.3)

(where ι is the inclusion, q is the quotient map and D is an effective divisor on C) is an isomor-
phism.

A PGL(2,C)-oper on C may then be alternatively defined as an equivalence class of GL(2,C)-
opers under the following twist relation. Two PGL(2,C)-opers (E1,∇1,L1) and (E2,∇2,L2) are
considered to be equivalent if there is a rank 1 holomorphic connection (L,∇L) and an isomor-
phism

(E1,∇1)' (E2,∇2)⊗ (L,∇L)

sending L1 to L2⊗L.

The non-degeneracy condition tells us that L is nowhere invariant by ∇, which is exactly the
transversality condition of the section σ induced by L on P(E,∇). Another condition called the
Griffiths transversality is asked in the general definition of a GL(k,C)-oper in greater dimen-
sions k≥ 2, but we don’t need to consider it here since it is automatically satisfied in rank k = 2.

Remark 8. This alternative definition of a PGL(2,C)-oper on C is equivalent to Definition 2.1.5
(and Definition 2.1.1, in the holomorphic case). Indeed, as we will show in the following para-
graphs, the Riccati foliation associated to a PGL(2,C)-oper must be the projectivization of a
rank 2 linear connection. However, our definitions of meromorphic opers are a little tighter than
those suggested by Allegretti and Bridgeland since we impose that the map ϕ in (3.3) is an
isomorphism (compare [AB20, Rmk 3.3(i)]).

A self-intersection formula. Let (π : Q!C,F ,σ) be a meromorphic PGL(2,C)-oper with
the Riccati foliation having polar divisor D = ∑

d
i=1 mi pi on the genus g curve C. Because the

section σ is transverse to F , we have, according to Brunella [Bru15, Prop. 2.2] (see also [Lor14,
Prop. 25]),

σ ·σ = 2−2g−deg(D). (3.4)
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From this formula, we deduce in particular that the parity of deg(E), which is the same as the
parity of σ ·σ , is also equal to the parity of deg(D). Another consequence is that

σ ·σ ≥ 0⇔

{
g = 0, deg(D) = 0,1 or 2

g = 1, deg(D) = 0.
(3.5)

Thus, apart from those four special values for (g,deg(D)), the self-intersection number of σ is
negative. This implies that σ is the unique minimal section of Q and the only one with negative
self-intersection number.

Remark 9. Let us denote by P the meromorphic projective structure described by the oper
(π : Q!C,F ,σ) and by SP the associated bordered surface with marked points MP. Assume,
as in Proposition 1.2.7, that if g = 0 then |MP| ≤ 3. Then, by Proposition 2.2.3, this excludes the
above three special values when g = 0 and deg(D) = 0,1 or 2. The fourth one, (g,deg(D)) =

(1,0), is not excluded but corresponds to a projective structure without pole; our main theorem
(Theorem 4.3.1) is already known in this case so we might exclude it as well.

Lift of a PGL(2,C)-oper to a GL(2,C)-oper. Suppose we want to lift a PGL(2,C)-oper
(π : Q!C,F ,σ) with polar divisor D to a GL(2,C)-oper on C. If (E,∇) is a lift of (Q,F ),
then σ corresponds to a unique line subbundle L of E and by Remark 7, (E,∇,L) is a GL(2,C)-
oper on C whose equivalence class under the twist relation is (π : Q!C,F ,σ).

From the self-intersection formula (3.4) combined with Proposition 3.1.1, the possible choices
of trace connection for (E,∇,L) depend on the parity of the degree of the polar divisor D. If
it is even, then so is deg(E) and (π : Q! C,F ) can be lifted to a rank 2 connection with
determinant having any even degree; a trace-free rank 2 connection, for example. If deg(D) is
odd, however, the determinant bundle must have an odd degree. Here is an example of a valid
choice for the trace connection. Note that in this case, the PGL(2,C)-oper has at least one pole,
let us choose one, say pi. We would like to choose a trace connection with a single simple
pole at pi, so that the corresponding lifts still have polar divisor D (and it is minimal if it was
for (π : Q! C,F )). By the Fuchs relation, such a connection must have residue −1 at pi,
hence trivial local monodromy around pi. By the Riemann-Hilbert correspondence, there exists
a unique rank 1 connection (OC(pi),ζ ) having a single pole of order 1 at pi and a trivial global
monodromy.

Recall that once we have made a choice of a trace connection, a rank 2 lift (E,∇) is unique
up to a twist by one of the 22g

tensor square root of the rank 1 trivial connection.
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3.3 Formal data of rank 2 connections and Riccati foliations

We denote by C[[x]] the ring of formal power series in the variable x, C((x)) = C[[x]][x−1]

its quotient field (the field of formal Laurent series in the variable x), and C{x} the ring of
convergent power series in the variable x (those with non-zero radius of convergence at 0).

Local formal invariants. Here, we work around a singular point, hence the concept of con-
nection (or formal connection) is unnecessary. We thus consider formal rank 2 linear systems
in the complex variable x around a possible pole at x = 0.

To give a formal classification of such systems is to describe the orbits under the action of
formal holomorphic gauge transformations. The following theorem tells us there are "good" rep-
resentatives in each orbits, called formal normal forms. These in turn provides formal invariants
of a system.

Theorem 3.3.1 ([DL22], Sec. 2). Let dY +ΩY = 0 be a rank 2 linear differential system with

Ω =

(
A−m

xm +
A−m+1

xm−1 + · · ·+ A−1

x
+A(x)

)
dx

where A−m, . . . ,A−1 ∈Mat(2,C) are constant matrices, A−m 6= 0 and A∈Mat(2,C{x}) is holo-

morphic. Assume that the pole order m ∈ N∗ at x = 0 is minimal, i.e. cannot be decreased by a

meromorphic gauge transformation of the system.

Then, there exists a formal holomorphic gauge transformation G ∈ GL(2,C[[x]]) such that

Ω̃ = G−1
ΩG+G−1dG

is of one of the following formal normal forms.

• Regular case (m = 1).

Ω̃ =

(
λ+ 0
0 λ−

)
dx or Ω̃ =

(
λ+ xk

0 λ−

)
dx, (3.6)

for some non-negative integer k ∈ N and λ± =
λ
±
−1
x , where λ

±
−1 ∈ C are the eigenvalues

of A−1, such that in the second case λ
+
−1 = λ

−
−1 + k.

Moreover, the latter formal normal form is unique, while the first one is unique up to the

permutation of λ+ and λ−.

74



3.3. Formal data of rank 2 connections and Riccati foliations

• Irregular (m≥ 2) and unramified (A−m is semi-simple) case.

Ω̃ =

(
λ+ 0
0 λ−

)
dx, (3.7)

for some λ± =
λ
±
−m
xm + · · ·+ λ

±
−1
x and λ

±
i ∈ C (λ±−m are the eigenvalues of A−m).

Moreover, this formal normal form is unique up to the permutation of λ+ and λ−.

• Irregular (m≥ 2) and ramified (A−m is not semi-simple) case.

Ω̃ =

(
α β

xβ α− 1
2x

)
dx, (3.8)

for some

α = α−m
xm + · · ·+ α−2

x2 + α−1
x , αi ∈ C

β = β−m
xm + · · ·+ β−2

x2 , βi ∈ C.
Moreover, this formal normal form is unique up to the multiplication of β by −1.

Proof complement. A version of this theorem is proven in [DL22, Sec. 2], allowing twists in
addition to gauge transformations. This assumption can be circumvented in the following way.
First, it is unnecessary if Ω has trace-free principal part (or merely trace-free leading coeffi-
cient A−m). But we can always reduce to this case, by working separately on each terms of the
decomposition [

Ω− trace(Ω<0)

2
I2

]
+

trace(Ω<0)

2
I2,

where Ω<0 is the principal part of Ω. Indeed, the first term of this sum has trace-free principal
part, while the last term is in the center of GL(2,C[[x]]) and is thus invariant by formal holo-
morphic gauge transformation (such a transformation acts by conjugacy on the negative part of
the system’s matrix).

Remark 10. One must be careful here, not to confuse eigenspaces of the matrix Ω with sub-
spaces invariant by d+Ω, or with subspaces generated by solutions of the system dY +ΩY = 0.

We call the coefficients (λ+,λ−) and (α,β ) in the above normal forms, considered up to a
permutation of λ+ and λ− and up to the multiplication of β by−1, the basic formal data of the
system. Under the assumption that the pole order m is minimal, the basic formal data of a system
together with the value of m fully characterize the formal structure of the system dY +ΩY = 0
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Chapter 3 – A smooth family of singular Riccati foliations

(i.e. they determine its equivalence class under formal holomorphic gauge equivalence), except
in the regular case 1.

Remark 11. Since G is formally holomorphic, so is G−1dG. Therefore, the gauge transformation
G acts by conjugacy on the principal part Ω<0 of the system’s matrix. As a consequence, the
trace tr(Ω<0) is a formal invariant of the system. Moreover, it is fully determined by the system’s
basic formal data.

In the regular resonant case, applying the meromorphic gauge transformation (which is a
composition of elementary gauge transformations in rank 2)

G =

(
x−k 0
0 1

)

leads to a connection matrix of the form

˜̃
Ω =

(
λ
−
−1 1
0 λ

−
−1

)
dx
x
.

Furthermore, in the irregular ramified case, applying the ramification x = z2 and the gauge
transformation

G =

(
1 1
z −z

)
leads to a connection matrix of the form

˜̃
Ω =

(
λ+ 0
0 λ−

)
dz

with λ± = 2z(α ± zβ ) = 2(±xβ + zα). This ramified formal normal form is unique up to the
permutation of λ+ and λ−.

With those additional transformations, the formal normal forms of Theorem 3.3.1 are all
Hukuhara-Turrittin ramified formal normal forms. As the above relations shows, their diagonal
elements (up to a permutation) can be deduced from the basic formal data, and conversely. Thus,
it is just another way to encode the basic formal data, that we will use from now on and call
basic formal data as well.

1. More precisely: in the regular resonant case, i.e. when the eigenvalues of A−1 satisfy |λ−−λ+| ∈N, the sys-
tem can be formally equivalent to either of the two normal forms (3.6). In the regular non-resonant case, however,
only the first one is possible (see [IY08, Thm. 16.15]).
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3.3. Formal data of rank 2 connections and Riccati foliations

In the literature, the system dY +ΩY = 0 is often considered up to formal meromorphic

gauge transformations. The normal forms obtained in this way are also Hukuharra-Turrittin
ramified formal normal forms (see [Sib90, Thm. 6.8.1]), but only the set of their diagonal ele-
ments modulo Zdz/z is a formal meromorphic invariant of the system. Those diagonal elements,
called "generalized eigenvalues" by Inaba in [Ina16], thus lead to a looser notion of formal in-
variants that we do not use.

Local formal invariants for singular Riccati foliations. Let F be a singular Riccati foliation
on the trivial P1-bundle over a disc 0 ∈ D⊂ C defined by the equation

F : dy+[a(x)y2 +b(x)y+ c(x)]
dx
xm = 0, (x,y) ∈ Dx×P1

y , (3.9)

were a,b,c ∈ C{x} are holomorphic functions. Assume that the pole order m ∈ N∗ at x = 0 is
minimal, i.e. cannot be decreased by a meromorphic gauge transformation.

Locally, this Riccati equation is the projectivization of a unique trace-free rank 2 system (this
is just the local part of the proof of Proposition 3.1.1). After projectivization of the Hukuhara-
Turrittin ramified formal normal form of this system, we immediately deduce a ramified formal
normal forms for the Riccati equation (see also [LPT16, Prop. 5.1]). In each case (regular,
irregular unramified and irregular ramified), the normal form only depends on a coefficient
λ = λ−−λ+ ∈C[z−1], well-defined up to a multiplication by−1, that we call the basic formal

data of the Riccati equation.

We may assume without loss of generality that {y = 0} is transverse to F (if not, then we
can send any transverse section to infinity by a holomorphic gauge transformation of the trivial
bundle). Then, there is a unique meromorphic affine gauge transformation such that

F : dy+
(

y2 +
g(x)
xn

)
dx = 0

with g ∈ O∗(D) holomorphic and non-vanishing and m ≤ n ≤ 2m (the computation is just a
meromorphic version of the proofs of Propositions 2.1.4(i) and 2.2.3(ii)). The integer n depends
only on the initial singular Riccati equation (3.9).

Definition 3.3.2. The irregularity index of the equation (3.9) at x = 0 is defined as

ν := max
(

0,
n−2

2

)
∈ 1

2
N.
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Chapter 3 – A smooth family of singular Riccati foliations

The irregularity index is equal to zero if and only if x = 0 is a regular singularity of equation
(3.9). It is a positive integer (resp. half of a positive integer) if and only if x = 0 is an irregular
unramified singularity (resp. an irregular ramified singularity). This is true in particular for
Riccati foliations associated to a meromorphic projective structure (see (2.8)), and in that case
n is the order of the pole of the projective structure (see Proposition 2.2.3(ii) and [AB20, proof
of Thm. 5.2]).

Note that the irregularity index is well-defined for any Riccati equation (3.9), i.e. even if m

is not minimal. The adjectives "regular", "irregular unramified" and "irregular ramified" then
refer to a bimeromorphically gauge equivalent equation with minimal pole order.

Formal solutions, formal local monodromy and residues. From the Hukuhara-Turrittin
ramified formal normal forms, we deduce that to a system dY +ΩY = 0 as in Theorem 3.3.1
there is a formal fundamental solution of the form

Y (z) = G(z)(z2)LeQ(z),

where G ∈ GL(2,C((z))) corresponds to a gauge transformation putting the system into a
normal form, L ∈ Mat(2,C) is the residue matrix of the matrix ˜̃

Ω of that normal form, and
Q ∈Mat(2,C[z−1]) is a diagonal matrix such that dQ (the so-called irregular part) corresponds
to all other terms in the principal part of ˜̃

Ω. For some historical details about the Hukuhara-
Turrittin normal forms, see [Lod16, Thm. 3.3.1].

When going around the pole at z = 0 in the counterclockwise direction, this formal solution
gets multiplied (to the right) by e2iπL. This is called the formal monodromy matrix of the system,
with respect to the fundamental solution Y . Another formal solution YC, for some C∈GL(2,C),
has formal monodromy C−1e2iπLC.

Fixing the residue of a formal normal form (either of the theorem Theorem 3.3.1 or of
Hukuhara-Turrittin) also fixes the formal monodromy.

Global formal invariants. We define the basic formal data of a meromorphic connection
(E,∇) having minimal polar divisor D = ∑

d
i=1 mi pi as the tuple of its basic formal data at each

pole, presented as the diagonal elements of the Hukuhara-Turrittin ramified formal normal form
as above, up to a permutation. Thus, the basic formal data of a connection is an element of the
quotient set ((C[z−1])2)d/(S2)

d . Having in mind the construction of moduli spaces of mero-
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3.3. Formal data of rank 2 connections and Riccati foliations

morphic connections with fixed formal data, we call an element

Λ = (λ+,(i),λ−,(i))1≤i≤d ∈ ((C[z−1])2)d

a formal data (dropping the adjective "basic"). This is a basic formal data together with an extra
piece of information (namely an ordering, encoded by a sign).

Remark 12. The Fuchs relation (3.1) induces a relation on the formal data of (E,∇) (cf. [Ina16,
p. 10 and the proof of Prop. 1.3]).

Similarly, the formal data of a Riccati equation (Q,F ) having minimal polar divisor D =

∑
d
i=1 mi pi is an element

Λ̄ = (λ (i))1≤i≤d ∈ (C[z−1])d

such that its equivalence class under the action of {±1}d is the basic formal data of (Q,F ), i.e.
the tuple of its basic formal data at each pole. We denote by λ

(i)
−1 the residue of λ (i). Note that,

in the irregular ramified case, this is the residue with respect to the variable z and we always
have λ−1 = 0. In all other cases, this is the residue with respect to the variable x.

If Λ = (λ+,(i),λ−,(i)) is the formal data of (E,∇), we also say Λ̄ = (λ−,(i)−λ+,(i)) is its
projectivization. It is the formal data of the projectivization P(E,∇).

The space P◦(S,M,(λ
(i)
−1)). An equivalence class of marked meromorphic projective struc-

ture in P◦(S,M) corresponds (cf. (1.7)) to a unique meromorphic projective structure without
apparent singularity P on some complex curve C on S. Let us denote by D = ∑

d
i=1 ni pi its polar

divisor. By Proposition 2.2.5, P corresponds to a unique PGL(2,C)-oper (π : Q!C,F ,σ) on
C, with minimal polar divisor D̃=∑

d
i=1 mi pi, where mi := dni

2 e. Then, νi :=max(0,(ni−2)/2) is
the irregularity index of (π : Q!C,F ) at pi. Whether a pole pi is a regular, irregular, ramified
or unramified singularity of the Riccati foliation depends only on νi.

There is a well-defined map

R̃ : P◦(S,M)−! Cd/{±1}d (3.10)

sending an equivalence class of marked meromorphic projective structures without apparent
singularity to the tuple of residues (±λ

(i)
−1)1≤i≤d of the basic formal data of the associated

PGL(2,C)-oper. Since the residue at an irregular ramified singularity is equal to zero, the map
R̃ may not be surjective.
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Chapter 3 – A smooth family of singular Riccati foliations

Remark 13. We now have two quantities that we both call the residue at a regular singularity pi

of P: ±λ
(i)
−1 and res2(pi) (cf. the definition (1.3)). However, they are different! They are related

by the formula (λ
(i)
−1)

2 = (1−2res2(pi))/4 = θ(pi)
2/4.

Let (±λ
(i)
−1) be a point in Cd/{±1}d . Then, we denote by

P◦(S,M,(±λ
(i)
−1)) = R̃−1((±λ

(i)
−1))

the set corresponding to projective structures with residues (±λ
(i)
−1).

We will also denote this subset by P◦(S,M,(λ
(i)
−1)), together with the extra information of

a choice of a representative of each residue in C.

Proposition 3.3.3. Assume that is g = 0, then |M| ≥ 3. Then, if it is non-empty, the space

P◦(S,M,(λ
(i)
−1)) is a smooth submanifold of P◦(S,M) of non-negative even dimension

6g−6+
d

∑
i=1

(2νi +3)−
d

∑
i=1

νi∈N

1.

Proof. The residue map R̃ factors through the restriction of the covering map M|P◦(S,M) (cf.
(1.7)) and the residue map (defined in a similar way)

˜̃R : im(M|P◦(S,M))−! Cd/{±1}d,

so that R̃ = ˜̃R ◦M|P◦(S,M). Since smooth covering maps are submersions, we are left to prove
that ˜̃R is a holomorphic submersion too.

Consider a point [(t,P0),φ0] ∈P(X/B;D), contained the domain of definition of ˜̃R (here,
we use the notations of section 1.2, in particular B = T (S,d)). In fact, we are going to show
that the residue map is a submersion even if we fix the complex structure t. There is a unique
bijection between the spaces P(X/B;D)t and Q(X/B;D)t sending [(t,P0),φ0] to (t,0).

Consider a meromorphic projective structure [(t,P),φ ] ∈P(X/B;D)t on Ct in the domain
of definition of ˜̃R (endowed with the induced topology). The idea is to find, for each coordinate
function of ˜̃R, a non identically zero quadratic differential –that is to say a non-zero vector in
Q(X/B;D)t– such that the directional derivative of ˜̃R at [(t,P),φ ] (i.e. at the corresponding
point in Q(X/B;D)t) along that vector is non-zero. We are going to use the Riemann-Roch
theorem as in the proof of [BS15, Lem. 6.1], but we must first clarify the relation between
residues of a projective structure and the coefficients in the expansion of the corresponding
quadratic differential (in particular in the unramified irregular case).
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3.3. Formal data of rank 2 connections and Riccati foliations

Let p be a pole of P, of order n. It is also a pole of the associated PGL(2,C)-oper. To relate
its residue at p with the quadratic differential φ , we first apply Proposition 2.1.6 locally around
p. Then we lift the Riccati equation a rank 2 system. This yields the system

dY +

(
0 −q(x)/2
1 0

)
Y dx = 0.

Assume first that p is an irregular non-ramified singularity of P. Then, n≥ 3 and n = 2m for
some m ∈ N. After the elementary gauge transformation

G =

(
1 0
0 xm

)
,

the system’s matrix becomes (
0 −q(x)xm/2

x−m mx−1

)
,

and the pole order is now minimal. In order to make the computation simpler, we consider
instead the system with trace-free matrix(

−mx−1/2 −q(x)xm/2
x−m mx−1/2

)
.

The basic formal data are the eigenvalues λ± =
λ
±
−m
xm + · · ·+ λ

±
−1
x of the negative part of this

matrix (cf. the proof of Theorem 3.3.1). Therefore, they must satisfy the identity

(λ±)2 =
(λ±−m)

2

x2m + · · ·+
a±λ

±
−1 +b±

xm+1 + · · ·+
(λ±−1)

2

x2

=

[
q(x)

2
+

m2

4x2

]<0

,

where a± = 2λ
±
−m 6= 0 (because we are in a trace-free and non-ramified situation) and b± ∈ C

does not depend on λ
±
−1. As a consequence, if q−(m+1) denotes the (−(m+ 1))-coefficient in

the power series development of q, then λ
±
−1 = q−(m+1)/(2a±)−b±/a±. Hence ,

±λ−1 =±
1
2

(
1

a−
− 1

a+

)
q−(m+1)−±

(
b−

a−
− b+

a+

)
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Chapter 3 – A smooth family of singular Riccati foliations

and we deduce that the residue map ˜̃R is holomorphic. Moreover, the derivative of ±λ−1 with
respect to q−(m+1) is non-zero.

By virtue of the Riemann-Roch theorem (cf. formula (1.5)),

dim(H0(Ct ,(T ∗Ct)
⊗2((m+1) · p))) = 3g−3+(m+1),

and this dimension is positive except if (g,m) = (0,2) (in this particular case, |M| ≥ 3 hence
P must have another pole p′, distinct from p; thus we can consider quadratic differentials with
polar divisor (m+ 1) · p+ p′ and adapt the following argument). The subset of quadratic dif-
ferentials with a pole of order exactly (m + 1) at p is open and dense. Let φ̃ be one of its
non-identically vanishing elements. Then, locally around p, its −(m+1)-coefficient q̃−(m+1) is
non zero, and the above computations show that the directional derivative at [(t,P),φ ] of the
residue at p is non-zero. This concludes the proof.

Finally, if p is a regular singularity, i.e. n = 1 or 2, then we find ±λ−1 = ±q−1 or ±λ−1 =

±q−2±1/2, respectively, and similar arguments apply.

3.4 A smooth moduli space of singular Riccati foliations with
fixed formal data

A moduli space of meromorphic rank 2 connections with fixed formal data. In his papers,
Inaba introduced an alternative way of encoding the formal data of a meromorphic connection,
more suitable for his construction of moduli spaces, via the notion of a parabolic connection of

generic ramified type with a given exponent [Ina16, Def. 2.1] (see also [Ina21]). This is, roughly
speaking, a meromorphic connection together with the additional data of a parabolic structure

and a collection of ramified structures. The precise definitions are quite involved and we won’t
state them here. Instead, we refer the Reader to Inaba’s papers and explain only the features that
are relevant to our purpose.

The parabolic structure (in the sense of Inaba, which we are going to make more precise
shortly) serves two different functions. First, it is part of the data encoding the formal data of
the connection. Second, it is key to the smoothness of moduli spaces, via a stability condition.

Inaba constructed, in particular, a moduli space of (parabolic and stable) rank 2 meromor-
phic connection on a given smooth curve C, with a given polar divisor D and a given formal
data Λ. Note that not all formal data Λ (in the sense of a collection of elements of C[z−1]) is the
formal data of a meromorphic connection: it must satisfy the Fuchs relation (cf. Remark 12).
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3.4. A smooth moduli space of singular Riccati foliations with fixed formal data

Another condition appears in the work of Inaba, which is needed in order for his construction to
be valid: he calls it the "genericity condition" (cf. the assumption of Proposition 1.3, in [Ina16]);
this condition relates to the formal data at ramified irregular singular points: the λ± are called
"generic" if their 1

z2m−2 -coefficient is non-zero 2, where m is the order of the pole. As the follow-
ing lemma shows, this condition is automatically satisfied by the formal data of meromorphic
connections in our setting, because we assume that they have minimal polar divisor (which is
more natural when defining formal data) and a trace-free leading coefficient at each irregular
ramified singularities. Thus, we won’t need to talk about this "genericity" condition in what
follows.

Lemma 3.4.1. Let dY +ΩY = 0 be a rank 2 linear differential system as in Theorem 3.3.1, with

a pole order m ∈ N∗ at x = 0 that is minimal. Suppose that we are in the irregular (m≥ 2) and

unramified (A−m is semi-simple) case, and assume moreover that the leading coefficient A−m is

trace-free. Then, the formal data of the system are "generic" in the sense of Inaba.

Proof. This is essentially a byproduct of the proof of Theorem 3.3.1. We are going to express
the eigenvalues of ˜̃

Ω as functions of the entries of Ω.

The leading term A−m of the matrix Ω admits an eigenvalue of multiplicity 2, which is equal
to 0 since A−m is trace-free. After a preliminary constant gauge transformation, the leading term
may be put into an upper-triangular form and we can write

Ω =


(

0 b−m

0 0

)
xm +

(
a−m+1 b−m+1

c−m+1 d−m+1

)
xm−1 + · · ·

dx,

with b−m 6= 0 (the points of ellipsis contain only higher order terms).

If c−m+1 = 0, the gauge transformation G = diag(1,x) kills the term of order −m, which
contradicts our assumption that m is minimal. Consequently, c−m+1 6= 0.

Now, let us compute the first terms of the formal data λ± of this system. After the substitu-
tions

x = z2 followed by the elementary transformation Y =

(
1 0
0 z

)
Ỹ

2. In fact, Inaba defines the "genericity" of a pole in general, but the condition is empty if the singularity is
regular, and it is superfluous (i.e. not needed in [Ina16, Prop. 1.3]) if the singularity is irregular unramified. Thus,
we only need to consider "genericity" for irregular ramified singularities.
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Chapter 3 – A smooth family of singular Riccati foliations

in the connection d +Ω, we get a new connection matrix

Ω̃ = 2


(

0 b−m

c−m+1 0

)
z2(m−1)

+

(
a−m+1 0

0 d−m+1

)
z2(m−1)−1

+ · · ·+

(
0 b−1

c0 1/2

)
z

+ · · ·

dz, (3.11)

whose eigenvalues are λ±dz = (± i
√

b−mc−m+1

z2m−2 + · · ·)dz. But b−mc−m+1 6= 0, hence λ± are
generic.

Parabolic structures. If p is a point of C, we denote by Op the ring of germs of holomorphic
functions at p, i.e. the stalk of the sheaf OC at p. Let I be the maximal ideal of Op, and denote
by Omp = Op/Im, for m ∈N∗. Concretely, in a local coordinate x centered at p, I = (x) (x is the
germ of x at 0) and elements in Omp are germs of holomorphic functions modulo xm. Sticking
to Inaba’s notations, we denote by mt = Spec(Omp) the m-th infinitesimal neighborhood of p

in C.

Let E be a rank 2 holomorphic vector bundle on C. The restriction E|mp of the sheaf E to
this infinitesimal neighborhood is a locally free sheaf of Omp-modules of rank 2.

Let ∇ be a meromorphic connection on E, with its polar divisor D = ∑
d
i=1 mi pi, mi ∈ N∗,

being minimal. Then, for all 1≤ i≤ d, it induces a morphism

∇|mi pi : E|mi pi −! E|mi pi⊗Ω
1
C(D),

Indeed, after choosing a local coordinate xi around pi as well as a trivialization coordinate of
the bundle, we see that the image ∇s, considered modulo xmi

i , of a section s depends only on
the mi first coefficients of the power series development of s (and on the negative part of the
connection matrix).

A parabolic structure L = {l(i)j }
1≤i≤d
0≤ j≤si

(in the sense of [Ina16, Def. 2.1(iv)]) (where si = 1
or 2) on (E,∇), is the data, for each pole pi, of a strictly descending filtration of E|mi pi by
Omi pi-submodules

l(i)0 ⊃ ·· · ⊃ l(i)si

of E|mi pi , starting by l(i)0 = E|mi pi and ending by l(i)si = 0, such that

∇|mi pi(l
(i)
j )⊂ l(i)j ⊗Ω

1
C(D)
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3.4. A smooth moduli space of singular Riccati foliations with fixed formal data

for all 1≤ i≤ d and 0≤ j ≤ si, with all the si ∈ {1,2} maximal among such filtrations.
In other words, if locally around pi there exists a length 1 invariant Omi pi-submodule of the

negative part ∇|mi pi of the connection, then we must have si = 2 and l(i)1 must be a length 1
invariant submodule of ∇|mi pi . Otherwise, si = 1.

Remark 14. In contrast with Remark 10, a Omi pi-submodule of E|mi pi is invariant by ∇|mi pi if
and only if it is an eigenspace of the connection matrix of ∇|mi pi .

A parabolic weight for the parabolic connection (E,∇,L ) is a choice of a rational number
for each non-trivial l(i)j (1≤ j ≤ si), i.e. a tuple of rational numbers α = (α

(i)
j )1≤i≤d

1≤ j≤si
, satisfying0 < α

(i)
j < 1

α
(i)
j1 < α

(i)
j2 if j1 < j2,

for any i, and α
(i)
j 6= α

(i′)
j′ for (i, j) 6= (i′, j′).

Stability of parabolic connections.

Definition 3.4.2. Let (E,∇,L ), with L = {l(i)j }
1≤i≤d
0≤ j≤si

, be a rank 2 parabolic connection on C

with polar divisor D and parabolic weight α . The parabolic connection is said to be α-stable if
all invariant line subbundle F of E satisfies the inequality

deg(E)−2deg(F)+ ∑
1≤i≤d

F|mi pi
6⊂l(i)1

µ
(i)− ∑

1≤i≤d
F|mi pi

⊂l(i)1

µ
(i) > 0, (3.12)

where µ(i) = α
(i)
2 −α

(i)
1 .

Note that µ(i) is well-defined here, since the existence of an invariant subbundle F implies
si = 2 for all 1≤ i≤ d. If si = 1 for some i, then the connection is irreducible around pi, therefore
there are no invariant line subbundle and the above condition is empty: the parabolic connection
is thus stable with respect to any of its parabolic weights.

The moduli space M α
C,D,Λ. Let C be a compact smooth curve, D an effective divisor on C and

Λ a "generic" formal data (compatible with D). The moduli space M α
C,D,Λ of α-stable parabolic

meromorphic rank 2 connections on C with polar divisor D minimal and formal data Λ was
constructed by Inaba (note that the degree of the vector bundles on which the connections live
is fixed by Λ and the Fuchs relation).
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Theorem 3.4.3 ([Ina16], Thm. 3.1). There is a structure of a smooth complex manifold on

M α
C,D,Λ, of dimension

dim(M α
C,D,Λ) = 2(4(g−1)+1+deg(D))

if non-empty.

Moreover, there exists a smooth manifold M ′, a local homeomorphism

M ′ −!M α
C,D,Λ

and a universal family of parabolic meromorphic connections on M ′.

Remark 15. Such a moduli space was studied, in the case of rank 2 connections on C = P1, by
Diarra and Loray in [DL22]. See also the earlier work by Inaba and Saito regarding unramified
meromorphic connections [IS13] and the subsequent preprint [Ina21] dealing with generalized
isomonodromic deformations.

Parabolic structures for connections without projectively apparent singularity. Assume
that (E,∇) has no projectively apparent singularity (i.e. no simple pole with scalar local mon-
odromy). Then, if its formal data Λ are fixed (in particular, if we have chosen an ordering of the
diagonal elements in its Hukahara-Turrittin ramified formal normal form), there is a canonical
parabolic structure on (E,∇). It is determined as follows.

Consider a pole pi. Locally around pi, by Remark 14, any one-dimensional (formal) eigenspace
of the negative part of a connection matrix around pi in a formal normal form Ω̃ of Theo-
rem 3.3.1 induces a length 1 invariant submodule of the negative part ∇|mi pi of ∇.

Suppose first that pi is a regular singularity, and that Ω̃ = diag(λ+,λ−)dx and λ+ = λ−. In
this case, all subspaces are invariant by Ω̃, hence there is no canonical choice of an eigenspace.
But ∇ must have projectively trivial local monodromy around pi, hence this does not occur by
assumption.

In all other cases when pi is a regular or irregular unramified singularity, there is a unique
formal eigenspace of the negative part of Ω̃ associated to λ+. Thus, we have si = 2 and we
canonically define l(i)1 as the induced length 1 invariant submodule of ∇|mi pi .

Finally, if pi is an irregular ramified singularity, then there are no length 1 invariant submod-
ule 3 of ∇|mi pi , hence si = 1 and the filtration l(i)j must be the trivial one: l(i)0 = E|mi pi ⊃ l(i)1 = 0.

3. This is a property of ramified singularity.
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Opers correspond to α-stable connections. We are now going to show that (if we exclude
special values of (g,deg(D))) the connections associated with GL(2,C)-opers are always α-
stable, for some parabolic weight α . Furthermore, if we restrict ourselves to opers with a fixed
formal data, then it is possible to find a common parabolic weight α with respect to which they
are all α-stable.

Lemma 3.4.4. Let C be a genus g curve, D be an effective divisor on this curve and Λ be a

formal data adapted to D. Assume that 2− 2g− deg(D) < 0. Then, there exists a parabolic

weight α adapted to Λ such that: if (E,∇,L ) is a parabolic rank 2 meromorphic connections

on C with polar divisor D, formal data Λ and admitting a subbundle L⊂ E such that (E,∇,L)

is a GL(2,C)-opers over C, then (E,∇,L ) is α-stable.

Proof. Let (E,∇,L ) be a parabolic meromorphic connections on C with polar divisor D and
formal data Λ. Note that the form of a parabolic weight α = (α

(i)
j )1≤i≤d

1≤ j≤si
associated to this

parabolic connection, i.e. the values of d and the si, only depends on Λ.

If (E,∇) is irreducible (for example, if it admits a ramified irregular singularity), then it is
stable with respect to any parabolic weight.

Suppose (E,∇) is reducible, and let F be a line subbundle of E, invariant by ∇. By assump-
tion, there exists a line subbundle L such that (E,∇,L) is a GL(2,C)-oper on C. Denote by
σ the associated section on the P1-bundle P(E). Our assumptions on g and deg(D), together
with the transversality of σ with respect to the foliation P(∇) imply by equation (3.4) that σ

has negative self-intersection number. Further, we know that it is the unique section with neg-
ative self-intersection number. Because F is invariant by the connection, it is distinct from L.
Hence deg(E)−2deg(F) ≥ −σ ·σ > 0 (cf. Facts 3.2.1). Since the self-intersection number is
an integer, we necessarily have deg(E)−2deg(F)≥ 1. But this depend neither on the parabolic
connection (E,∇,L ), nor on the invariant subbundle F . As a consequence, we readily see that
it is possible to chose a parabolic weight α adapted to Λ in such a way that the condition (3.12)
is always fulfilled, hence the conclusion.

Connections without projectively apparent singularity. We denote by

M α,◦
C,D,Λ

the subset of parabolic connections with no projectively apparent singularity. It is an open subset
of M α

C,D,Λ.
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Chapter 3 – A smooth family of singular Riccati foliations

As we have observed previously, a parabolic connection (E,∇,L ) without apparent singu-
larity is entirely determined by the subjacent meromorphic connection (E,∇) and the formal
data Λ. Hence, the parabolic structure is superfluous, in a sense, and from now on we will refer
to elements of this space as meromorphic connections (keeping in mind that the α-stability is
defined with respect to the parabolic structure).

We wish now to construct smooth moduli spaces of singular Riccati foliations contain-
ing the foliations subjacent to PGL(2,C)-opers associated to elements in the moduli spaces
P◦(S,M,(λ

(i)
−1)) of equivalence classes of marked meromorphic projective structures on S,

with d poles of orders (ni) and (signed) residues (λ (i)
−1).

Connections with a fixed trace. We are now going to study the subspaces of M α,◦
C,D,Λ consist-

ing of connection with a specified trace, equal to (O,d) or (O(pi),ζ ) for some pole pi. Accord-
ing to section 3.2, we know that, depending on the parity of its polar divisor, a PGL(2,C)-oper
can be lifted to such a connection. Once the trace is fixed, a moduli space of Riccati foliations
is obtained as the quotient by a discrete group.

Let us denote by Γ the moduli space of holomorphic rank 1 connections on C, and Γ1 the
moduli space of rank 1 meromorphic connections with a single simple pole having residue −1.

Recall from Remark 11 that the negative parts of the traces of the connection matrices are
equal to the traces of the corresponding normal forms of Theorem 3.3.1. Chose a formal data Λ

such that an element of M α,◦
C,D,Λ has holomorphic trace 4. Then, the trace map

T0 : M α,◦
C,D,Λ −! Γ

(E,∇) 7−! (det(E), tr(∇))

is well-defined. It is holomorphic.
The space Γ has a group structure and acts holomorphically on both the source and the target

of the trace map T0 in an equivariant way: by ·⊗(L,∇) and ·⊗(L,∇)⊗2, respectively. The action
of Γ on itself by ·⊗ (L,∇)⊗2 is transitive, so that T0 is surjective.

Lemma 3.4.5. The trace map T0 is a surjective holomorphic submersion. In particular, the

subset

M α,◦,0
C,D,Λ := T−1

0 (OC,d)

4. Note that without changing the projective equivalence class of Λ we can make such a choice. In other words,
given a formal data Λ̄, we can always find a Λ such that its projectivization is Λ̄ and its trace is such that T0 is
well-defined. The same is true in the case of T1 bellow.
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of trace-free connections is a smooth submanifold of M α,◦
C,D,Λ of dimension

6g−6+2deg(D).

Proof. If the trace map had a critical value in Γ, then all the elements of this critical value’s orbit
under the above action of Γ on itself would be critical values as well, since the action of Γ on
M α,◦

C,D,Λ induces isomorphisms between fibers. But the action of Γ on itself is transitive (which,
by the way, implies that T0 is surjective) and T0 is holomorphic, hence this would contradict
Sard’s theorem.

The value of dim(M α,◦,0
C,D,Λ) = dim(M α,◦

C,D,Λ)− dim(Γ) is given by [Ina16, Thm. 3.1] (In-
aba’s theorem applied in the rank 2 case gives dim(M α,◦

C,D,Λ) = 2(4(g−1)+1+deg(D)) as in
Theorem 3.4.3, and in the rank 1 case it gives dim(Γ) = 2(g−1)+2).

A similar argument shows that, if Λ is such that

T1 : M α,◦
C,D,Λ −! Γ1

(E,∇) 7−! (det(E), tr(∇))

is well-defined, then M α,◦,1
C,D,Λ := T−1

1 (OC(pi),ζ ) is a smooth submanifold of M α,◦
C,D,Λ (the twist

action of Γ on Γ1 is transitive). The dimensions are the same as before.
Note that the admissible Λ in both cases must in particular satisfy the hypothesis of Lemma 3.4.1,

hence they are "generic".

A moduli space of singular Riccati foliations. Let Γ′ be the subgroup of square roots of the
rank 1 trivial connection (OC,d) in Γ. It is a discrete Lie group of cardinal 22g, acting holomor-
phically on M α,◦,0

C,D,Λ and M α,◦,1
C,D,Λ by the twist operation. The complements M α,◦,0,∗

C,D,Λ and M α,◦,1,∗
C,D,Λ

of fixed points (a fixed point is a point with a non-trivial stabilizer) are therefore invariant open
subsets. In addition, the action of Γ′ on those spaces is proper for it is a finite group, so that the
quotient spaces M α,◦,0,∗

C,D,Λ /Γ′ and M α,◦,1,∗
C,D,Λ /Γ′ have unique structures of smooth manifolds such

that the quotient maps are local diffeomorphisms.
Let (E,∇) and (E ′,∇′) be two elements in M α,◦,0,∗

C,D,Λ or M α,◦,1,∗
C,D,Λ . Then,

P(E,∇) = P(E ′,∇′) ⇔ (E,∇) = (E ′,∇′) mod Γ
′.

For this reason, to an element in M α,◦,0,∗
C,D,Λ /Γ′ or M α,◦,1,∗

C,D,Λ /Γ′ corresponds a unique singular
Riccati foliation (Q,F ) (with no apparent singularity) on C, with polar divisor D and formal
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Chapter 3 – A smooth family of singular Riccati foliations

data Λ̄. We identify those quotients to the corresponding spaces of singular Riccati equations
and denote 5

Riccα,◦,0,∗
C,D,Λ̄

↔M α,◦,0,∗
C,D,Λ /Γ

′ and Riccα,◦,1,∗
C,D,Λ̄

↔M α,◦,1,∗
C,D,Λ /Γ

′.

This is well-defined if Λ̄ is the projectivization of Λ. Indeed, Λ is then uniquely determined by
Λ̄ and the negative part of the trace of a connection matrix.

The latter two moduli spaces contain, roughly speaking, foliations induced by PGL(2,C)-
opers on C. This is the meaning of the following lemma.

Lemma 3.4.6. Assume that 2−2g−deg(D)< 0. Let (E,∇,L ) ∈M α,◦,0
C,D,Λ (resp. ∈M α,◦,1

C,D,Λ) be

a parabolic rank 2 meromorphic connection admitting a subbundle L ⊂ E such that (E,∇,L)

is a GL(2,C)-oper over C. Then, (E,∇,L ) is not a fixed point for the action of Γ′ on M α,◦,0
C,D,Λ

(resp. M α,◦,1
C,D,Λ).

Proof. We need to prove that any rank 1 connection (L0,∇L0)∈Γ′ such that (E,∇)⊗(L0,∇L0)'
(E,∇) is necessarily trivial. First, note that L0 must have degree 0.

Denote by σ the section of P(E) associated to L. From the equation (3.4) and our assump-
tions, we glean the inequality σ ·σ < 0. Recall from Facts 3.2.1 that σ is the only section with
negative self-intersection number. Line subbundles L⊗L0 and L (of E⊗L0 and E, respectively)
have same degree and are both maximal. By uniqueness of the maximal line subbundle, if E⊗L0

is isomorphic to E such an isomorphism must send L⊗L0 to L, which in turn are isomorphic.
Thus, L0 = OC and it follows that ∇L0 must be trivial.

Let (π : Q!C,F ,σ) be a PGL(2,C)-oper on C with polar divisor D minimal, formal data
Λ̄ and without apparent singularity. Suppose that 2− 2g− deg(D) < 0. Assume moreover that
deg(D) ≡ 0 mod 2 (resp. deg(D) ≡ 1 mod 2). Then, by Lemma 3.4.4 and Lemma 3.4.6 there
exists a parabolic weight α such that by the construction above, (π : Q!C,F ,σ) corresponds
to a unique element in Riccα,◦,0,∗

C,D,Λ̄
(resp. Riccα,◦,1,∗

C,D,Λ̄
).

Remark 16. Note that no two such opers (π : Q ! C,F ,σ) and (π ′ : Q′ ! C,F ′,σ ′) are
mapped to the same element, because then (π : Q!C,F ) = (π ′ : Q′!C,F ′) and moreover
σ = σ ′ because by assumption, σ is the only section of (π : Q! C,F ) with negative self-
intersection.

5. Beware that the letter Λ does not refer to the same element in both cases: the set of admissible formal data
depends on the chosen trace.
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3.5 The irregular Riemann-Hilbert correspondence

Let (E,∇) be a meromorphic rank 2 connection on a genus g curve C, with polar divisor D=

∑
d
i=1 mi pi and polar locus Σ = {pi : 1≤ i≤ d}. Choose a base point p0 in CrΣ. A presentation

fundamental group π(CrΣ, p0) of the punctured curve is

π(CrΣ, p0) = 〈αi,βi,γ j, 1≤ i≤ g, 1≤ j ≤ d | [α1,β1] · · · [αg,βg] = γ1 · · ·γd〉 ,

where {αi,βi} is a canonical system of generators of π(C, p0) not going trough Σ, and where
the γi are defined as follows. For each i, choose a small contractible open neighborhood Ui of pi

in CrΣ, and a path δi connecting p0 to pi, which lies in CrΣ except for its endpoints. Then,
γi is defined by traveling from p0 to Ui along δi, encircling pi in the counterclockwise direction
by a small loop in Ui, and then returning to x along δi.

The (global) monodromy representation of (E,∇) is defined (up to conjugacy) as follows.
Let Ω0 be a connection matrix of (E,∇) in a neighborhood of p0, and let Y be a fundamental
solution of the system dY +Ω0Y = 0 around p0. The analytic continuation of Y along a loop
γ ∈ π1(CrΣ) yields a new fundamental solution Y γ = Y Mγ for some matrix Mγ ∈ GL(2,C).
The monodromy representation of the system with respect to Y is defined as usual, by

π1(CrΣ, p0)−! GL(2,C)

γ 7−!Mγ .

Another choice of fundamental solution Ỹ leads to a monodromy representation that is conju-
gated to the above one in GL(2,C).

The generalized monodromy data. In order to extend the classical Riemann-Hilbert corre-
spondence to connections with irregular singularities, we must enrich the monodromy repre-
sentation with some extra data. This includes the global monodromy representation, together
with a decomposition of the local monodromies into: the formal local monodromies, the Stokes
matrices and the links (or "connection matrices").

Wild character varieties. Let us denote the set of generalized monodromy data by R(S,M),
and it Riccati foliation counterpart by R̄(S,M). Different approaches exist in the literature
[BMM06; PS09; Boa14; PR15; CMR17; CMR18; AB20], to endow subsets of R(S,M), and
R̄(S,M) with a smooth structure.
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Chapter 3 – A smooth family of singular Riccati foliations

Our approach is to transport the smooth structure of the moduli spaces M α,◦
C,D,Λ constructed

by Inaba in [Ina16] to the corresponding subsets of the wild character varieties via the irregular

(or wild) Riemann-Hilbert correspondence.

Theorem 3.5.1 (Irregular Riemann-Hilbert correspondence). The monodromy map

M α,◦
C,D,Λ −!R(S,M)

is injective.

See [MR91, Thm. 19] and [Boa14, App. A]. (See also [MR82; IY08]).

Corollary 3.5.2 (Irregular Riemann-Hilbert correspondence for Riccati foliations). The mon-

odromy maps

Riccα,◦,0,∗
C,D,Λ̄

−! R̄(S,M) and Riccα,◦,1,∗
C,D,Λ̄

−! R̄(S,M)

are injective.

We denote by R̄∗(S,M,(λ
(i)
−1)) the image of this map once the curve, the pole order and the

residues are fixed, and endow it with the smooth complex structure induced by the monodromy
map and the smooth structure of the moduli spaces of singular Riccati foliations.

3.6 Universal isomonodromic deformations

In [Heu10], Heu constructed the universal isomonodromic deformations of trace-free mero-
morphic rank 2 connections on curves (see also her thesis [Heu08]). Recall that a topologically
trivial, analytic deformation

(Et !Ct ,∇t)t∈T (topologically trivial means T is contractible)

of some initial trace-free rank 2 connection (E0 ! C0,∇0) is called an isomonodromic defor-

mation if it is induced by a flat, locally constant connection (E ! X ,∇) over the total space of
the analytic family of curves X ! T whose fiber over t is Ct .

Here, locally constant means that locally around each point of X , after a convenient change
of coordinate (a combination of a gauge transformation of E ! X and a change of coordinate
in X), the connection matrix of ∇ does not depend on the parameter t ∈ T .
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Remark 17. Isomonodromic deformations where also studied by Inaba in his preprint [Ina21].

Heu’s construction can be implemented mutatis mutandis to get the universal isomonodromic
deformations of an initial Riccati foliation (Q0,F0) := P(E0,∇0) (see [Heu10, Sec. 5.2]).

Explicit construction. Let us briefly recall the explicit construction of the universal isomon-
odromic deformations; for the full details in the case of meromorphic trace-free rank 2 connec-
tions, we refer to [Heu10, Sec. 3.3.2.].

It is natural to start with the case of non-singular Riccati foliation before dealing with the
singular regular case and eventually the general meromorphic case (including irregular singu-
larities). So let (Q0,F0) be an initial holomorphic Riccati foliation on a curve C0 on S. It turns
out that it is sufficient to deform the complex structure of the curve C0 to obtain the universal
isomonodromic deformation of this initial Riccati foliation. This is a direct consequence of the
classical Riemann-Hilbert correspondence (which amounts to the suspension of the monodromy
representation). The construction goes as follows. Let us denote by

XT −!T (S)

the Teichmüller universal family of curves. Because the Teichmüller space T (S) is contractible,
the inclusion C0 ↪!XT induces an isomorphism of the fundamental groups π1(C0,∗)' π1(XT ,∗).
Hence, the suspension of the monodromy representation of (Q0,F0) provides with a connection
(Q! XT ,F ) inducing the universal isomonodromic deformation of (Q0,F0).

In the regular singular cases, we could use the generalized Riemann-Hilbert correspondence.
However, Heu adapted a construction of Malgrange using only the classical correspondence.
Let (Q0,F0) be an initial singular Riccati foliation with polar divisor D0, admitting d poles (of
orders at most 1). Here again, it suffices to deform the complex structure of C0. Let us denote
by

XT −!T (S,d)

the Teichmüller universal family of marked curves, and DT the divisor on XT corresponding
to marked points. On one hand, the suspension of the monodromy of the initial Riccati foliation
gives a Riccati foliation (Q∗!X∗T ,F ∗) over X∗T =XT rDT extending uniquely (Q0,F0)|X∗0 ,
where X∗0 = X0 rD0. On the other hand, around each component D i

T of DT , there exists a
tubular neighborhood U i

T adapted to the fibers of the Teichmüller family of curves. It is possible
to extend (Q0,F0)|U i

0
, where U i

0 = U i
T ∩C0, as a product over this tubular neighborhood. Each

of the resulting Riccati foliations (Qi,F i) have the same monodromy as (Q∗! X∗T ,F ∗) in
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Chapter 3 – A smooth family of singular Riccati foliations

restriction to their common domain of holomorphy, so that, according to the classical Riemann-
Hilbert correspondence, there is a unique isomorphism gluing them into a connection (Q,F )

over XT inducing the universal isomonodromic deformation of (Q0,F0).

In the general meromorphic case (including irregular singularities), the above gluing is not
always unique (cf. Lemma 3.6 in [Heu10]). Hence, the deformation of the complex structure
is no longer sufficient to obtain the universal isomonodromic deformation of an initial Riccati
foliation (Q0,F0). The additional freedom in the construction corresponds to the irregular part
of the formal invariants of the Riccati foliation, that has to be deformed as well. In Heu’s work,
they appear as (mi−1)-jet of germs of coordinate changes around each pole pi of order mi > 1,
but this is equivalent (cf. Remark 18 below). The universal cover J of the space of such jets
is then added to the parameter space to form a "thickened Teichmüller space", or a moduli
space of "irregular curves" T = J ×T (S,d) (passing to the universal covering ensures this
new parameter space remains contractible). Then, the universal isomonodromic deformation of
(Q0,F0) is constructed on a family of curves

(X ,D) = (J×XT ,J×DT )

over T via a gluing construction similar to the previous one.

Remark 18. Consider a Riccati equation (3.9) in the irregular unramified case. Its Hukuhara-
Tirrittin formal normal form reads

dy+λydx = 0, (3.13)

for some λ = λ−m
xm + · · ·+ λ−1

x and λi ∈ C. By an additional change of the x-coordinate, this
equation can be put into the normal form

dy+
[

1
xm +

λ−1

x

]
ydx = 0 (3.14)

where λ−1 is the residue of λdx and is invariant under a change of the x-coordinate (see [Lor21,
proof of Prop. 2.3]). A similar computation holds in the irregular ramified case, but in the
variable z.

More generally, consider a Riccati equation (3.9) with no assumption on the minimality of
m, and denote by ω the 1-form defining the foliation F . If ϕ is a change of the x coordinate
centered at 0 such that

ϕ(x) = id(x) mod xm,
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then there is a holomorphic gauge transformation g such that g · (ϕ∗ω) = ω [Heu10, Lem. 3.6].
In particular, this tells us that the Hukuhara-Turrittin formal normal form (3.13) can be put

into the form (3.14) using only a (m−1)-jet of coordinate change.

3.7 Construction of a family of singular Riccati foliations

Our approach is a (local) combination of the constructions of Inaba and Heu, in order to
obtain a smooth universal family of singular Riccati foliations that (locally) contains the ones
subjacent to PGL(2,C)-opers induced by meromorphic projective structures without apparent
singularity (cf. Lemma 2.3.1).

Thanks to the irregular Riemann-Hilbert correspondence, we know that the smooth moduli
space

M (S,M,(λ
(i)
−1)) := R̄∗(S,M,(λ

(i)
−1))×T,

where T = J ×T (S,d), contains all singular Riccati foliations associated with elements in
P◦(S,M,(λ

(i)
−1)) (if 2−2g−∑

d
i=1 ni < 0).

Construction with additional parameters. Let I ⊂ R̄∗(S,M,(λ
(i)
−1)) be a small open ball.

The universal family of Theorem 3.4.3 can be transported all the way down to I, while pro-
jectivizing the connections of the family, making it a holomorphic family of singular Riccati
foliation on I.

This provides a smooth family of initial singular Riccati foliations (Q0,F0). Those param-
eters can be added to Heu’s construction of isomonodromic deformations in order to obtain a
holomorphic family

(Qt !Ct ,Ft)t∈I×J×T (S,d)

of singular Riccati foliations on the family of curves

(X ,D) = (I× J×XT , I× J×DT ).
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CHAPTER 4

THE MONODROMY MAP IS A

LOCAL BIHOLOMORPHISM

To an equivalence class of marked meromorphic projective structures with signed residues in
P◦(S,M,(λ

(i)
−1)) corresponds (cf. (1.7)) a unique meromorphic projective structure without ap-

parent singularity P on some complex curve on the genus g real surface S, with residues (±λ
(i)
−1).

Let us denote by (ni) its pole orders (cf. Remark 4). To P corresponds a unique PGL(2,C)-oper
(π : Q!C,F ,σ) on C, with minimal polar divisor D̃ = ∑

d
i=1 mi pi, where mi := dni

2 e. Assume
that if g = 0, then |M| ≥ 3, and that if g = 1, then |M| ≥ 1 (cf. Remark 9). The constructions
of the preceding chapters provide us with a well-defined (thanks to Proposition 2.2.5) injective
map

e : P◦(S,M,(λ
(i)
−1))−!M (S,M,(λ

(i)
−1)).

The injectivity is a direct consequence of Remark 16 (which is, in fact, an analogous for
meromorphic projective structures of the Poincaré theorem 1.1.6) and of the injectivity of the
Riemann-Hilbert map. Moreover, this injection is holomorphic.

4.1 Factorization of the monodromy map

Definition 4.1.1. The composition of the above map with the first projection is denoted by

Mon
S,(ni),(λ

(i)
−1)

: P◦(S,M,(λ
(i)
−1))−! R̄∗(S,M,(λ

(i)
−1)) (4.1)

and is called the monodromy map.

This map is holomorphic. The monodromy of a projective structure is the monodromy of
the underlying connection.
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4.2 Ehresmann transversality

Let (Q! X ,F ) be the universal isomonodromic deformation constructed by Heu (see sec-
tion 3.6) on the analytic family of compact curves f : X ! T . Recall that F is a codimension
one singular holomorphic Riccati foliation over Q, with polar divisor D on X .

Lemma 4.2.1 (Local "C ∞ product of bundles structure"). Let t0 ∈ T . There exists an open

neighborhood U of t0 in T such that F has a "C ∞ product structure" over f−1(U).

Let us denote C0 := f−1(t0). By a C ∞ product structure, we mean that there exist C ∞-
diffeomorphisms Φ and Θ making the diagram

Q| f−1(U)

��

Φ //U×Q|C0

��
f−1(U)

Θ //U×C0

commute, and conjugating the foliation F| f−1(U) to the product Riccati foliation Π∗F|C0 where
Π : U×Q|C0 !Q|C0 is the projection to the second factor.

Proof of Lemma 4.2.1. Let t0 ∈ T and denote by C0 = f−1(t0) and pi,0 the unique point in
D i ∩C0, where D i is an irreducible component of D . By construction, the foliation F has a
holomorphic product structure along D i, locally over an open neighborhood Vpi,0 ⊂X containing
pi,0. This is the local constancy property (see [Heu10]). We are going to extend this product
structure in a C ∞-smooth way over a f -saturated neighborhood of C0.

The analytic family f is in particular a C ∞-submersion with compact connected fibers.
Thus, Ehresmann’s theorem [Ehr51, Sec. 1] implies that it is the projection map of a locally
trivial bundle of class C ∞. However, in order to show the lemma we would like to get local
trivializations adapted to the meromorphic connection F and its polar divisor D .

We start by covering C0 ⊂ X with an open cover (Vj) j containing the open neighborhood
Vpi,0 of all pi,0 as above, and such that on all Vj (except maybe for the Vpi,0) the constant rank
theorem for the submersion f holds (meaning there are coordinate charts in which f is a pro-
jection) and such that the only Vj containing pi,0 is Vpi,0 . Then, by compacity of C0, we extract a
finite subcover of (Vj) j which we denote in the same way. Note that this subcover still contains
all of the Vpi,0 .

There exists an open neighborhood of C0 in X of the form V := f−1(U) ⊂ (∪ jVj), with U

an open neighborhood of t0. We denote again Vj := Vj ∩V . On each Vj we can find (using the
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coordinates provided by the constant rank theorem and the coordinates on Vpi,0 in which the
1-form defining F does not depend on the parameter t) a C ∞-foliation which is the pull-back
of the radial foliation on U centered at t0. Those foliations are induced by C ∞-vector fields. We
use partitions of unity to glue them and form a vector field v on V . Thanks to the compacity of
the fibers of f , the flow of v exists over all V and gives a C ∞ trivialization f−1(U)' U×C0.

Using this particular local trivialization, we use again an argument similar to the proof of
Ehresmann’s theorem in order to obtain Φ. We see the foliation F as an Ehresmann connection
on π : Q ! X . There exist lifts of the previous vector field, horizontal with respect to the
connection F . Away from the polar divisor D of the connection, this is a classical fact. On a
neighborhood of D i, it is the result of our choice of coordinates on the Vpi,0 .

The compacity of the fibers of π ensures the existence of the flow. It gives an isomorphism
Φ satisfying the claimed properties.

4.3 Proof of the main theorem

We are now able to prove ou main theorem. Recall that we assumed that if g = 0, then
|M| ≥ 3, and that if g = 1, then |M| ≥ 1.

Theorem 4.3.1. The monodromy map Mon
S,(ni),(λ

(i)
−1)

is a local biholomorphism.

Proof. We are going to show that the monodromy map is locally injective. Since the holomor-
phy of the monodromy map have already been established, the conclusion will follow immedi-
ately by invariance of domain. The fact that the source and the range of the monodromy map
have equal dimensions follows from Proposition 3.3.3 and Lemma 3.4.5.

Pick a point x0 ∈P◦(S,M,(λ
(i)
−1)), and denote by y0 ∈M (S,M,(λ

(i)
−1))= R̄∗(S,M,(λ

(i)
−1))×

T its image by e. Let V = I×U be an open neighborhood of y0, such that I ⊂ R̄∗(S,M,(λ
(i)
−1)) is

an open ball sufficiently small to carry the universal analytic family of singular Riccati foliation
constructed in section 3.7, and such that U ∈ T is sufficiently small to get, by local constancy of
isomonodromic deformations and Ehresmann transversality as in Lemma 4.2.1, a C ∞ product
structure along isomonodromic deformations of elements in V .

Since the map e is continuous, there exists an open neighborhood W of x0 such that e(W )⊂
V . Up to shrinking W to a smaller open neighborhood of x0, we know that it carries a family of
meromorphic PGL(2,C)-opers in the sense of Lemma 2.3.1. This is, in particular, a family of
singular Riccati foliations. By injectivity of e and the universal property of the analytic family
of singular Riccati foliations over V , it induces an injection at the level of the families.
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We are going to show that the restriction of the monodromy map to W is one-to-one. Pick
two points x1,x2 ∈W , and suppose that their images by the monodromy map are equal. Denote
z := Mon

S,(ni),(λ
(i)
−1)

(x1) = Mon
S,(ni),(λ

(i)
−1)

(x2), y1 = e(x1), y2 = e(x2) and finally t0, t1 and t2
the projection of y0, y1 and y2, respectively. As depicted on Figure 4.1, the injectivity of the
monodromy map at x0 arise from the transversality of the image of W by e with respect to the
fibers of the projection to the first factor, i.e. with respect to the monodromy map of singular
Riccati foliations.

P◦(S,M,(λ
(i)
−1))

M (S,M,(λ
(i)
−1))

R̄∗(S,M,(λ
(i)
−1))

T

I×U

Mon
S,(ni),(λ

(i)
−1)

z

y0

y2

y1

t0

t1

t2
e

Figure 4.1 – This situation where y1 and y2 are distinct is impossible: the image of
P◦(S,M,(λ

(i)
−1)) by e is transverse to the fibers of the projection onto R̄∗(S,M,(λ

(i)
−1)).

Let (πi : Qi ! Ci,Fi,σi) be the opers corresponding to xi, for each i = 1,2, in the family
of Lemma 2.3.1. They are isomonodromic deformations of one another. Recall that isomon-
odromic deformations are induced by a codimension one foliation, whose holonomy locally
gives a C ∞-retraction of the Riccati foliations of the family on, say, (π1 : Q1!C1,F1). This is
the content of Lemma 4.2.1, depicted on Figure 4.2.
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σ1

−
!

−!

σ2

{z}×UC1

C2

Figure 4.2 – The local product structure.

Hence, the two foliated bundles (πi : Qi!Ci,Fi), i = 1,2 are isomorphic in the real differ-
entiable sense. Denote by σ̃2 the image in Q1 of σ2 by this isomorphism H. Up to shrinking W

again, we can assume that σ̃2 is close to σ1 in the sense that it is contained in a tubular neighbor-
hood of the latter section, adapted to the foliation (cf. Figure 4.3). This is a consequence of the
continuity of the map of the family of meromorphic opers into the universal family of singular
Riccati equations.

The holonomy of the foliation F1 defines a C ∞-diffeomorphism

hol : σ̃2 −! σ1.

The C ∞-diffeomorphism
f : C2 −!C1

defined by f = π1 ◦hol◦H ◦σ2 is an isomorphism of projective structures. In conclusion, x1 =

x1.
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σ̃2

−
!

σ1

Figure 4.3 – A tubular neighborhood of σ1, containing σ̃2.

102



BIBLIOGRAPHY

[AB20] D. G. L. Allegretti and T. Bridgeland, « The monodromy of meromorphic pro-
jective structures », in: Transactions of the American Mathematical Society (June
2020), p. 1, URL: http://dx.doi.org/10.1090/tran/8093.

[All21] C. L. Alley, « On the monodromy of meromorphic cyclic opers on the Riemann
sphere », in: Int. Math. Res. Not. IMRN 21 (2021), pp. 16693–16725, URL: https:
//doi.org/10.1093/imrn/rnaa047.

[Bak77] I. Bakken, « A multiparameter eigenvalue problem in the complex plane », in:
Amer. J. Math. 99.5 (1977), pp. 1015–1044, URL: https://doi.org/10.2307/
2373998.

[BD05] A. Beilinson and V. Drinfeld, Opers, 2005, URL: https://arxiv.org/abs/
math/0501398.

[BMM06] A. A. Bolibruch, S. Malek, and C. Mitschi, « On the generalized Riemann-Hilbert
problem with irregular singularities », in: Expo. Math. 24.3 (2006), pp. 235–272,
URL: https://doi.org/10.1016/j.exmath.2005.11.003.

[Boa14] P. P. Boalch, « Geometry and braiding of Stokes data; fission and wild character
varieties », in: Ann. of Math. (2) 179.1 (2014), pp. 301–365, URL: https://doi.
org/10.4007/annals.2014.179.1.5.

[Bru15] M. Brunella, Birational geometry of foliations, vol. 1, IMPA Monographs, Springer,
Cham, 2015, pp. xiv+130, URL: https://doi.org/10.1007/978-3-319-
14310-1.

[BS15] T. Bridgeland and I. Smith, « Quadratic differentials as stability conditions », in:
Publ. Math. Inst. Hautes Études Sci. 121 (2015), pp. 155–278, URL: https://
doi.org/10.1007/s10240-014-0066-5.

[CMR17] L. O. Chekhov, M. Mazzocco, and V. N. Rubtsov, « Painlevé monodromy mani-
folds, decorated character varieties, and cluster algebras », in: Int. Math. Res. Not.

IMRN 24 (2017), pp. 7639–7691, URL: https://doi.org/10.1093/imrn/
rnw219.

103

http://dx.doi.org/10.1090/tran/8093
https://doi.org/10.1093/imrn/rnaa047
https://doi.org/10.1093/imrn/rnaa047
https://doi.org/10.2307/2373998
https://doi.org/10.2307/2373998
https://arxiv.org/abs/math/0501398
https://arxiv.org/abs/math/0501398
https://doi.org/10.1016/j.exmath.2005.11.003
https://doi.org/10.4007/annals.2014.179.1.5
https://doi.org/10.4007/annals.2014.179.1.5
https://doi.org/10.1007/978-3-319-14310-1
https://doi.org/10.1007/978-3-319-14310-1
https://doi.org/10.1007/s10240-014-0066-5
https://doi.org/10.1007/s10240-014-0066-5
https://doi.org/10.1093/imrn/rnw219
https://doi.org/10.1093/imrn/rnw219


[CMR18] L. Chekhov, M. Mazzocco, and V. Rubtsov, « Algebras of quantum monodromy
data and character varieties », in: Geometry and physics. Vol. I, Oxford Univ. Press,
Oxford, 2018, pp. 39–68.

[DL22] K. Diarra and F. Loray, « Normal forms for rank two linear irregular differential
equations and moduli spaces », in: Period. Math. Hungar. 84.2 (2022), pp. 303–
320, URL: https://doi.org/10.1007/s10998-021-00408-8.

[Dum09] D. Dumas, « Complex projective structures », in: Handbook of Teichmüller theory.

Vol. II, vol. 13, IRMA Lect. Math. Theor. Phys. Eur. Math. Soc., Zürich, 2009,
pp. 455–508, URL: https://doi.org/10.4171/055-1/13.

[Ear81] C. J. Earle, « On variation of projective structures », in: Riemann surfaces and

related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New

York, Stony Brook, N.Y., 1978), vol. 97, Ann. of Math. Stud. Princeton Univ. Press,
Princeton, N.J., 1981, pp. 87–99.

[Ehr51] C. Ehresmann, « Les connexions infinitésimales dans un espace fibré différen-
tiable », in: Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone,
Liège; Masson & Cie, Paris, 1951, pp. 29–55.

[FG06] V. Fock and A. Goncharov, « Moduli spaces of local systems and higher Teich-
müller theory », in: Publ. Math. Inst. Hautes Études Sci. 103 (2006), pp. 1–211,
URL: https://doi.org/10.1007/s10240-006-0039-4.

[FG21] G. Faraco and S. Gupta, Monodromy of Schwarzian equations with regular singu-

larities, 2021, URL: https://arxiv.org/abs/2109.04044.

[Fil21] T. L. Fils, Holonomy of complex projective structures on surfaces with prescribed

branch data, 2021, URL: https://arxiv.org/abs/2103.11451.

[Fre07] E. Frenkel, Langlands correspondence for loop groups, vol. 103, Cambridge Stud-
ies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007, pp. xvi+379.

[GKM00] D. Gallo, M. Kapovich, and A. Marden, « The monodromy groups of Schwarzian
equations on closed Riemann surfaces », in: Ann. of Math. (2) 151.2 (2000), pp. 625–
704, URL: https://doi.org/10.2307/121044.

[GM20] S. Gupta and M. Mj, « Monodromy representations of meromorphic projective
structures », in: Proc. Amer. Math. Soc. 148.5 (2020), pp. 2069–2078, URL: https:
//doi.org/10.1090/proc/14866.

104

https://doi.org/10.1007/s10998-021-00408-8
https://doi.org/10.4171/055-1/13
https://doi.org/10.1007/s10240-006-0039-4
https://arxiv.org/abs/2109.04044
https://arxiv.org/abs/2103.11451
https://doi.org/10.2307/121044
https://doi.org/10.1090/proc/14866
https://doi.org/10.1090/proc/14866


[GM21] S. Gupta and M. Mj, « Meromorphic projective structures, grafting and the mon-
odromy map », in: Adv. Math. 383 (2021), Paper No. 107673, 49, URL: https:
//doi.org/10.1016/j.aim.2021.107673.

[Gol10] W. M. Goldman, « Locally homogeneous geometric manifolds », in: Proceedings

of the International Congress of Mathematicians. Volume II, Hindustan Book Agency,
New Delhi, 2010, pp. 717–744.

[Gol21] W. M. Goldman, « Geometric structures on manifolds », 2021, URL: http://
www2.math.umd.edu/~wmg/gstom.pdf.

[Góm89] X. Gómez-Mont, « Holomorphic foliations in ruled surfaces », in: Trans. Amer.

Math. Soc. 312.1 (1989), pp. 179–201, URL: https://doi.org/10.2307/
2001213.

[Gun66] R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes,
Princeton University Press, Princeton, N.J., 1966, pp. iv+254.

[Gun67] R. C. Gunning, « Special coordinate coverings of Riemann surfaces », in: Math.

Ann. 170 (1967), pp. 67–86, URL: https://doi.org/10.1007/BF01362287.

[Gup21] S. Gupta, « Monodromy groups of CP1-structures on punctured surfaces », in: J.

Topol. 14.2 (2021), pp. 538–559, URL: https://doi.org/10.1112/topo.
12189.

[Hej75] D. A. Hejhal, « Monodromy groups and linearly polymorphic functions », in: Acta

Math. 135.1 (1975), pp. 1–55, URL: https://doi.org/10.1007/BF02392015.

[Heu08] V. Heu, « Déformations isomonodromiques des connexions de rang 2 sur les courbes »,
Theses, Université Rennes 1, Nov. 2008, URL: https://tel.archives-ouvertes.
fr/tel-00358039.

[Heu10] V. Heu, « Universal isomonodromic deformations of meromorphic rank 2 connec-
tions on curves », in: Ann. Inst. Fourier (Grenoble) 60.2 (2010), pp. 515–549, URL:
http://aif.cedram.org/item?id=AIF_2010__60_2_515_0.

[Hub81] J. H. Hubbard, « The monodromy of projective structures », in: Riemann surfaces

and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ.

New York, Stony Brook, N.Y., 1978), vol. 97, Ann. of Math. Stud. Princeton Univ.
Press, Princeton, N.J., 1981, pp. 257–275.

105

https://doi.org/10.1016/j.aim.2021.107673
https://doi.org/10.1016/j.aim.2021.107673
http://www2.math.umd.edu/~wmg/gstom.pdf
http://www2.math.umd.edu/~wmg/gstom.pdf
https://doi.org/10.2307/2001213
https://doi.org/10.2307/2001213
https://doi.org/10.1007/BF01362287
https://doi.org/10.1112/topo.12189
https://doi.org/10.1112/topo.12189
https://doi.org/10.1007/BF02392015
https://tel.archives-ouvertes.fr/tel-00358039
https://tel.archives-ouvertes.fr/tel-00358039
http://aif.cedram.org/item?id=AIF_2010__60_2_515_0


[Hus19] N. Hussenot Desenonges, « Heijal’s theorem for projective structures on surfaces
with parabolic punctures », in: Geom. Dedicata 200 (2019), pp. 93–103, URL:
https://doi.org/10.1007/s10711-018-0362-1.

[Ily] Y. Ilyashenko, « Regular singular point », in: Encyclopedia of Mathematics (), URL:
http://encyclopediaofmath.org/index.php?title=Regular_singular_

point&%20oldid=36592.

[Ina16] M.-a. Inaba, Moduli space of irregular singular parabolic connections of generic

ramified type on a smooth projective curve, 2016, URL: https://arxiv.org/
abs/1606.02369.

[Ina21] M.-a. Inaba, Moduli space of factorized ramified connections and generalized isomon-

odromic deformation, 2021, URL: https://arxiv.org/abs/2108.09667.

[IS13] M.-a. Inaba and M.-H. Saito, « Moduli of unramified irregular singular parabolic
connections on a smooth projective curve », in: Kyoto J. Math. 53.2 (2013), pp. 433–
482, URL: https://doi.org/10.1215/21562261-2081261.

[IS96] V. A. Iskovskikh and I. R. Shafarevich, « Algebraic surfaces [ MR1060325 (91f:14029)] »,
in: Algebraic geometry, II, vol. 35, Encyclopaedia Math. Sci. Springer, Berlin,
1996, pp. 127–262, URL: https://doi.org/10.1007/978-3-642-60925-1_2.

[Iwa91] K. Iwasaki, « Moduli and deformation for Fuchsian projective connections on a
Riemann surface », in: J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38.3 (1991), pp. 431–
531.

[IY08] Y. Ilyashenko and S. Yakovenko, Lectures on analytic differential equations, vol. 86,
Graduate Studies in Mathematics, American Mathematical Society, Providence,
RI, 2008, pp. xiv+625.

[Jos06] J. Jost, Compact Riemann surfaces, Third, Universitext, An introduction to con-
temporary mathematics, Springer-Verlag, Berlin, 2006, pp. xviii+277, URL: https:
//doi.org/10.1007/978-3-540-33067-7.

[LM09] F. Loray and D. Marin Pérez, « Projective structures and projective bundles over
compact Riemann surfaces », in: Astérisque 323 (2009), pp. 223–252.

106

https://doi.org/10.1007/s10711-018-0362-1
http://encyclopediaofmath.org/index.php?title=Regular_singular_point&%20oldid=36592
http://encyclopediaofmath.org/index.php?title=Regular_singular_point&%20oldid=36592
https://arxiv.org/abs/1606.02369
https://arxiv.org/abs/1606.02369
https://arxiv.org/abs/2108.09667
https://doi.org/10.1215/21562261-2081261
https://doi.org/10.1007/978-3-642-60925-1_2
https://doi.org/10.1007/978-3-540-33067-7
https://doi.org/10.1007/978-3-540-33067-7


[Lod16] M. Loday-Richaud, Divergent series, summability and resurgence. II, vol. 2154,
Lecture Notes in Mathematics, Simple and multiple summability, With prefaces
by Jean-Pierre Ramis, Éric Delabaere, Claude Mitschi and David Sauzin, Springer,
[Cham], 2016, pp. xxiii+272, URL: https://doi.org/10.1007/978-3-319-
29075-1.

[Lor12] F. Loray, « Feuilletages holomorphes singuliers », Cours donné à Fès, 2012, URL:
https://perso.univ-rennes1.fr/frank.loray/CoursFes.pdf.

[Lor14] F. Loray, Isomonodromic deformation of Lamé connections, Painlevé VI equation

and Okamoto symetry, 2014, URL: https://arxiv.org/abs/1410.4976.

[Lor21] F. Loray, Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension

deux, vol. 36, Ensaios Matemáticos [Mathematical Surveys], Sociedade Brasileira
de Matemática, Rio de Janeiro, 2021, pp. 53–274, URL: https://doi.org/10.
21711/217504322021/em362.

[Lou15] B. Loustau, « The complex symplectic geometry of the deformation space of com-
plex projective structures », in: Geom. Topol. 19.3 (2015), pp. 1737–1775, URL:
https://doi.org/10.2140/gt.2015.19.1737.

[LP07] F. Loray and J. V. Pereira, « Transversely projective foliations on surfaces: exis-
tence of minimal form and prescription of monodromy », in: Internat. J. Math. 18.6
(2007), pp. 723–747, URL: https://doi.org/10.1142/S0129167X07004278.

[LPT16] F. Loray, J. V. Pereira, and F. Touzet, « Representations of quasi-projective groups,
flat connections and transversely projective foliations », in: J. Éc. polytech. Math.

3 (2016), pp. 263–308, URL: https://doi.org/10.5802/jep.34.

[Luo93] F. Luo, « Monodromy groups of projective structures on punctured surfaces », in:
Invent. Math. 111.3 (1993), pp. 541–555, URL: https://doi.org/10.1007/
BF01231297.

[Man72] R. Mandelbaum, « Branched structures on Riemann surfaces », in: Trans. Amer.

Math. Soc. 163 (1972), pp. 261–275, URL: https : / / doi . org / 10 . 2307 /
1995722.

[Mar70] M. Maruyama, On classification of ruled surfaces, vol. 3, Lectures in Mathematics,
Department of Mathematics, Kyoto University, Kinokuniya Book-Store Co., Ltd.,
Tokyo, 1970, pp. iv+75.

107

https://doi.org/10.1007/978-3-319-29075-1
https://doi.org/10.1007/978-3-319-29075-1
https://perso.univ-rennes1.fr/frank.loray/CoursFes.pdf
https://arxiv.org/abs/1410.4976
https://doi.org/10.21711/217504322021/em362
https://doi.org/10.21711/217504322021/em362
https://doi.org/10.2140/gt.2015.19.1737
https://doi.org/10.1142/S0129167X07004278
https://doi.org/10.5802/jep.34
https://doi.org/10.1007/BF01231297
https://doi.org/10.1007/BF01231297
https://doi.org/10.2307/1995722
https://doi.org/10.2307/1995722


[MR82] J. Martinet and J.-P. Ramis, « Problèmes de modules pour des équations différen-
tielles non linéaires du premier ordre », in: Inst. Hautes Études Sci. Publ. Math. 55

(1982), pp. 63–164, URL: http://www.numdam.org/item?id=PMIHES_1982_
_55__63_0.

[MR91] J. Martinet and J.-P. Ramis, « Elementary acceleration and multisummability. I »,
in: Ann. Inst. H. Poincaré Phys. Théor. 54.4 (1991), pp. 331–401, URL: http:
//www.numdam.org/item?id=AIHPA_1991__54_4_331_0.

[Na19] X. Na, « Introduction to Opers », 2019, URL: https://math.rice.edu/~at52/
Notes.pdf.

[Nas21] G. Nascimento, Monodromies of Projective Structures on Surface of Finite-type,
2021, URL: https://arxiv.org/abs/2105.07084.

[PR15] E. Paul and J.-P. Ramis, « Dynamics on wild character varieties », in: SIGMA Sym-

metry Integrability Geom. Methods Appl. 11 (2015), Paper 068, 21, URL: https:
//doi.org/10.3842/SIGMA.2015.068.

[PS09] M. van der Put and M.-H. Saito, « Moduli spaces for linear differential equa-
tions and the Painlevé equations », in: Ann. Inst. Fourier (Grenoble) 59.7 (2009),
pp. 2611–2667, URL: http://aif.cedram.org/item?id=AIF_2009__59_7_
2611_0.

[Sai10] H. P. de Saint-Gervais, Uniformisation des surfaces de Riemann, Retour sur un
théorème centenaire, ENS Éditions, Lyon, 2010, p. 544.

[Sai16] H. P. de Saint-Gervais, Uniformization of Riemann surfaces, Heritage of European
Mathematics, European Mathematical Society (EMS), Zürich, 2016, pp. xxx+482,
URL: https://doi.org/10.4171/145.

[San18] A. Sanders, The pre-symplectic geometry of opers and the holonomy map, 2018,
URL: https://arxiv.org/abs/1804.04716.

[Sib75] Y. Sibuya, Global theory of a second order linear ordinary differential equation

with a polynomial coefficient, North-Holland Mathematics Studies, Vol. 18, North-
Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co.,
Inc., New York, 1975, pp. xv+290.

108

http://www.numdam.org/item?id=PMIHES_1982__55__63_0
http://www.numdam.org/item?id=PMIHES_1982__55__63_0
http://www.numdam.org/item?id=AIHPA_1991__54_4_331_0
http://www.numdam.org/item?id=AIHPA_1991__54_4_331_0
https://math.rice.edu/~at52/Notes.pdf
https://math.rice.edu/~at52/Notes.pdf
https://arxiv.org/abs/2105.07084
https://doi.org/10.3842/SIGMA.2015.068
https://doi.org/10.3842/SIGMA.2015.068
http://aif.cedram.org/item?id=AIF_2009__59_7_2611_0
http://aif.cedram.org/item?id=AIF_2009__59_7_2611_0
https://doi.org/10.4171/145
https://arxiv.org/abs/1804.04716


[Sib90] Y. Sibuya, Linear differential equations in the complex domain: problems of ana-

lytic continuation, vol. 82, Translations of Mathematical Monographs, Translated
from the Japanese by the author, American Mathematical Society, Providence, RI,
1990, pp. xiv+269, URL: https://doi.org/10.1090/mmono/082.

[Thu80] W. Thurston, « The Geometry and Topology of Three-Manifolds », 1980, URL:
http://library.msri.org/books/gt3m/.

[Tyu78] A. N. Tyurin, « On periods of quadratic differentials », in: Russian Mathematical

Surveys 33.6 (Dec. 1978), pp. 169–221, URL: https://doi.org/10.1070/
rm1978v033n06abeh003882.

[Zha19] S. Zhao, « A note on holomorphic families of complex projective structures »,
2019, URL: https : / / web . archive . org / web / 20220709132849 / https :
//www.math.stonybrook.edu/~shezhao/papers/projstruc.pdf.

109

https://doi.org/10.1090/mmono/082
http://library.msri.org/books/gt3m/
https://doi.org/10.1070/rm1978v033n06abeh003882
https://doi.org/10.1070/rm1978v033n06abeh003882
https://web.archive.org/web/20220709132849/https://www.math.stonybrook.edu/~shezhao/papers/projstruc.pdf
https://web.archive.org/web/20220709132849/https://www.math.stonybrook.edu/~shezhao/papers/projstruc.pdf






Titre : Structures projectives méromorphes, opers et monodromie
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Résumé : Les structures projectives com-
plexes considérées dans cette thèse sont des
courbes compactes localement modelées sur
CP1. À un tel objet géométrique, modulo iso-
morphisme, l’application de monodromie as-
socie un objet algébrique : une représentation
de son groupe fondamental dans PGL(2,C),
modulo conjugaison. Cette correspondance
n’est ni surjective, ni injective. Néanmoins,
c’est un difféomorphisme local (Hejhal, 1975).
Nous généralisons ce théorème aux struc-
tures projectives admettant des pôles – sans
singularité apparente et à résidus fixés – et
déduisons que l’application de monodromie
correspondante est un biholomorphisme local.

Une telle structure projective détermine un

unique PGL(2,C)-oper méromorphe à diviseur
des pôles minimal sur la courbe complexe
sous-jacente. Les PGL(2,C)-opers peuvent
être définis comme classes d’équivalence de
GL(2,C)-opers, et nous montrons que ces
derniers peuvent être plongés dans un espace
de modules lisse de connexions linéaires de
rang 2 paraboliques. La correspondance de
Riemann-Hilbert irrégulière devient alors un
ingrédient essentiel de notre travail.

Nous construisons une famille analytique
de PGL(2,C)-opers et utilisons les déforma-
tions isomonodromiques (et iso-Stokes) ainsi
qu’un argument de transversalité à la Ehres-
mann pour conclure à l’injectivité locale de
l’application de monodromie.

Title: Meromorphic projective structures, opers and monodromy

Keywords: Riemann surfaces; Monodromy groups; Stokes matrices; Foliations (Mathematics);

Connections (Mathematics); Moduli spaces

Abstract: The complex projective structures
considered is this thesis are compact curves
locally modeled on CP1. To such a geometric
object, modulo isomorphism, the monodromy
map associates an algebraic one: a represen-
tation of its fundamental group into PGL(2,C),
modulo conjugacy. This correspondence is
neither surjective nor injective. Nonetheless,
it is a local diffeomorphism (Hejhal, 1975).
We generalize this theorem to projective struc-
tures admitting poles – without apparent sin-
gularity and with fixed residues – and deduce
that the corresponding monodromy map is a
local biholomorphism.

Such a projective structure determines a

unique meromorphic PGL(2,C)-oper with min-
imal polar divisor on the underlying com-
plex curve. PGL(2,C)-opers can be defined as
equivalence classes of GL(2,C)-opers, which
we show can be embedded into a smooth
moduli space of parabolic rank 2 linear con-
nections. The irregular Riemann-Hilbert corre-
spondence then turns out to be a key ingredi-
ent in our work.

We construct an analytic family of
PGL(2,C)-opers and use isomonodromic (and
iso-Stokes) deformations together with an
Ehresmann transversality argument to show
the local injectivity of the monodromy map.
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