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Abstract

This thesis consists of three parts. The �rst one is devoted to the veri�cation of
Petri nets, the second one to the veri�cation of recursive Petri nets which extend
Petri nets, and the �nal one aims at combining active learning and veri�cation.

A Petri net can be analyzed by computing and studying its Clover, that is,
the canonical representation of the downward over approximation of its reacha-
bility set. Using the Karp-Miller algorithm one can compute the Clover, but this
algorithm is very ine�cient and moreover, its original proof of correctness is not
satisfying. Many variations of the original Karp-Miller algorithm computing the
clover exist, but some are incomplete, others introduced an unknown supplemen-
tary memory size (possibly Ackermannian) and proofs are often heavy. Our �rst
contribution is the design of a complete algorithm in such a way that we can
theoretically bound the additional memory requirements. The key idea of this al-
gorithm is the introduction of a new concept, called acceleration. More precisely,
using accelerations, we were able:

1. to simplify the proof of correctness of the Karp-Miller algorithm;
2. to present the �rst simple modi�cation of the original but incomplete Mini-

mal Coverability Tree algorithm;
3. to prove that the supplementary memory needed by our algorithm is elemen-

tary (2-EXPSPACE);
4. to implement a prototype MinCov, showing experimentally that it is the

most e�cient one compared to other tools computing the Clover.

In the early two-thousands, Recursive Petri nets (RPN) have been introduced
in order to model distributed planning of multiagent systems for which counters
and recursivity were necessary. Although RPN strictly extend Petri nets and
context-free grammars, most of the usual problems (reachability, termination, etc.)
were shown to be decidable. For almost all other models extending Petri nets
and context-free grammars, the complexity of coverability and termination are
unknown or strictly larger than EXPSPACE. In contrast, we establish here that
for RPN, the coverability, termination, boundedness and �niteness problems are
EXPSPACE-complete as for Petri net. While having a great expressive power,
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RPN su�er several modeling limitations. We introduce Dynamic Recursive Petri
nets (DRPN) which address these issues, extending the expressiveness of RPN.
This model generalizes almost all previous known models, which extend the Petri
net and keep the coverability problem decidable. Thus, we establish that the
coverability problem is decidable for DRPN.

For active learning and formal methods, our work focuses on Angluin's L∗ al-
gorithm. Angluin's algorithm learns the minimal deterministic �nite automaton
(DFA) of a regular language using membership and equivalence queries. Its prob-
abilistic approximately correct (PAC) version substitutes an equivalence query by
a set of random membership queries. Thus, it can be applied to any kind of de-
vice and may be viewed as synthesizing an automaton from observations of the
device. We are interested in how the PAC version behaves for devices which are
obtained from a DFA by introducing some noise. More precisely, we study whether
the algorithm reduces the noise, producing a DFA closer to the original one than
the noisy device. We found that the reduction of the noise strongly depends on
the type of noise and its amount. Moreover, we use this algorithm to develop a
property-directed approach for veri�cation of recurrent neural networks (RNNs).
It learns a DFA as a surrogate model from a given RNN, which is then analyzed
using model checking as a veri�cation technique. We show that this not only allows
us to discover small counterexamples fast, but also to generalize them by pumping
towards faulty �ows, hinting at the underlying error in the RNN.



Résumé

Cette thèse est découpée en trois parties. La première est consacrée à la véri�cation
des réseaux de Petri, la seconde à la véri�cation des réseaux de Petri récursifs qui
étendent les réseaux de Petri et la dernière vise à combiner l'apprentissage actif et
la véri�cation.

Un réseau de Petri peut être analysé en calculant et étudiant son Clover, la
représentation canonique de la sur-approximation vers le bas de son ensemble
d'accessibilité. A l'aide de l'algorithme de Karp-Miller on peut calculer le Clover,
mais cet algorithme est très ine�cace et de plus sa preuve originelle de correction
n'est pas satisfaisante. Il y a de nombreuses variantes de cet algorithme mais
certaines sont incomplètes et d'autres requièrent une mémoire additionnelle de
taille potentiellement ackermannienne. En�n les preuves de correction sont souvent
intriquées. Notre première contribution est la conception d'un algorithme complet
incluant une borne théorique sur la taille de la mémoire additionelle. L'idée clef de
cet algorithme est l'introduction d'un nouveau concept, appelé accélération. Plus
précisément à l'aide des accélérations, nous avons pu:

1. simpli�er la preuve de correction de l'algorithme de Karp-Miller;
2. de présenter la première modi�cation simple de l'algorithme incomplet de

construction du �Minimal Coverability Tree�;
3. de prouver que la mémoire supplémentaire requise par notre algorithme est

élémentaire (2-EXPSPACE);
4. de développer un prototype MinCov et de montrer expérimentalement qu'il

est l'outil le plus e�cace parmi ceux qui calculent le Clover.

Au début des années 2000, les réseaux de Petri récursifs (RPN) ont été intro-
duits en vue de la modélisation et de l'analyse de la plani�cation distribuée de
systèmes multi-agents pour lesquels la présence de compteurs et la recursivité sont
nécessaires. Bien que les RPN étendent strictement les réseaux de Petri et les
grammaires algébriques, la plupart des problèmes usuels (accessibilité, terminai-
son, etc.) restent décidables. Pour presque tous les modèles incluant les réseaux de
Petri et les grammaires algébriques, la complexité des problèmes de la couverture
et de la terminaison est inconnue ou strictement plus grande que EXPSPACE. Ici,
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nous établissons que les problèmes de couverture, terminaison, caractère borné et
�nitude des RPN sont EXPSPACE-complets comme ceux des réseaux de Petri.
Bien qu'ayant un grand pouvoir d'expression, les RPN sou�rent de plusieurs lim-
itations en terme de modélisation. Aussi nous introduisons les réseaux de Petri
récursifs dynamiques (DRPN) qui répondent à ces limitations et par conséquent
étendent le pouvoir d'expression des RPN. Les DRPN généralisent presque toutes
les extensions de réseaux de Petri pour lesquelles le problème de couverture est
décidable. Nous démontrons alors que le problème de couverture reste décidable
pour les DRPN.

Dans la troisième partie, notre travail se concentre sur l'algorithme L∗ d'Angluin.
Cet algorithme apprend l'automate �ni déterministe (DFA) minimal d'un langage
régulier à l'aide de questions d'appartenance et d'équivalence de langages. Sa ver-
sion probabilistiquement approximativement correcte (PAC) remplace une ques-
tion d'équivalence par un ensemble de questions aléatoires d'appartenance. Nous
avons étudié comment la PAC version se comporte pour des machines qui sont
obtenues en �bruitant� un DFA et si l'algorithme réduit le bruit. Nous établis-
sons que la réduction du bruit dépend fortement de la nature du bruit et de sa
quantité. De plus, nous utilisons cet algorithme pour développer une approche de
véri�cation des réseaux neuronaux récurrents (RNN). Un DFA est appris comme
une abstraction d'un RNN puis analysé à l'aide de techniques de �model check-
ing�. Nous établissons deux avantages de cette approche : lorsque la propriété
n'est pas véri�ée les contre-exemples exhibés sont de petite taille et susceptibles
d'être généralisés en un patron d'erreur mettant en évidence la nature de la faute
du RNN.
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Chapter 1

Introduction

Veri�cation

Veri�cation, the act of proving or disproving the correctness of software and hard-
ware, is an essential part of development and research in the academia and in the
industry. Widespread engineering techniques such as testing may be useful, but
cannot rule out completely the existence of bugs. This poses grave dangers in crit-
ical systems, such as medical systems, electric grids, etc. For this reason formal
veri�cation was introduced and is now widely adopted by companies such as Intel,
IBM, Facebook, Google, etc. Formal veri�cation allows proving the correctness of
software or hardware using mathematical tools. One of the approaches for formal
veri�cation is model checking, where we model the underlying system in terms of
a mathematical model, and verify its properties using the mathematical features
of the model.

Model-checking has been very successful in the veri�cation of �nite-state systems,
see e.g., [18]. However, assuming that systems have �nitely many states is very
restrictive. Therefore, the study of in�nite-state systems has gained popularity.
With their additional capabilities, in�nite-state systems have an increased com-
plexity, which made the study of in�nite-state system a very active one. The
in�nite-state space comes from a huge variety of sources, such as systems with
variables that belong to the natural or even real numbers, recursive systems which
may lead to in�nite stacks, parameterized systems which can describe in�nitely
many �nite systems depending on the initial state. Many abstract models have
been introduced in order to model these in�nite-state systems, e.g., WSTS [63],
timed automata [112], pushdown automata [105]...

1
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Cover of Petri nets

In recent years, multiple advancements led to rapid growth of concurrent and
distributed systems. These types of systems are even harder to verify using the
usual engineering solutions, since their bugs tend to occur with low probability
and may remain undetected for long stretches of time.

Petri nets are a model speci�cally designed as a modeling language for the de-
scription of concurrent and distributed systems. Petri nets do not only have a
very intuitive graphical representation, but they also have formal semantics which
give rise to many analysis techniques. Petri nets are used in a wide variety of
domains, for example:

• computer science: veri�cation of multithreaded programs [86], communica-
tion protocols [79], hardware designs [159], concurrent object-oriented pro-
gramming [3], etc;
• biology : modeling and analysis of molecular networks [18];
• business process management : modeling notations and work�ow manage-
ment systems [154];
• process mining : creating process models as abstract representations of event
logs [153].

The most sought after property to verify for Petri nets is the reachability prob-
lem: given an initial con�guration of the system, is there a sequence of actions
that leads to a target con�guration? In other words, can a given system, with
some initial conditions, reach a bug/desired-state. Unfortunately, it has been
shown that this property is theoretically very hard to verify (it is Ackermannian-
complete [104, 41]). However, some techniques exist for bounded Petri nets (�nite-
state systems) which most often work in practice, e.g., partial-order reductions,
symmetry-based reductions, etc; and some techniques exist for sub-problems, e.g.,
backward algorithm and coverability trees for the so-called coverability problem.
Unfortunately, these techniques are not always well translated to the reachability
problem on unbounded Petri nets (in�nite-state systems) which need their own
techniques.

One of the most studied property in unbounded Petri nets is coverability: given
an initial con�guration of the system, is there a sequence of actions that leads
to a con�guration larger than the target con�guration? It has been studied for
several reasons: (1) many properties like mutual exclusion, safety, LTL model
checking with atomic predicates on transitions, or control-state reachability, reduce
to coverability, (2) the coverability problem is EXPSPACE-complete, and (3) there
exist e�cient prototypes and numerous case studies. To solve the coverability
problem, there are backward and forward algorithms. But these algorithms do not
address relevant problems like the repeated coverability problem, the boundedness
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problem and regularity of the traces. However, these problems are EXPSPACE-
complete [45, 24] and are also decidable using the (possibly Ackermannian) Karp
and Miller algorithm [85] that computes a �nite tree labeled by a set of ω-markings
C ⊆ NP

ω (where Nω is the set of naturals enlarged with an upper bound ω and P
is the set of places) such that the reachability set and the �nite set C have the
same downward closure in NP . Thus, a marking m is coverable if there exists
some m′ ≥ m with m′ ∈ C. Hence, C can be seen as one among all the possible
�nite representations of the in�nite downward closure of the reachability set. This
set C allows, for instance, to solve multiple instances of coverability in linear time
w.r.t. the size of C avoiding to call many times a costly algorithm. Informally,
the Karp and Miller algorithm builds a reachability tree but, in order to ensure
termination, substitutes by ω some �nite components of a marking of a vertex
when some marking of an ancestor is smaller. Unfortunately, C may contain
comparable markings, where for coverability properties only the maximal elements
are important. The set of maximal elements of C can be de�ned independently of
the Karp and Miller algorithm and was called the minimal coverability set in [56]
and abbreviated as the Clover in the more general framework of Well Structured
Transition Systems (WSTS) [58].

Due to the fact that the Karp and Miller algorithm keeps in memory not only
the maximal elements, its space requirement may be huge. To address this issue,
Alain Finkel designed a new algorithm, the Minimal Coverability Tree algorithm
(MCT) [56]. This algorithm modi�es the Karp and Miller algorithm in such a way
that at each step of the algorithm, the set of ω-markings labeling vertices is an
antichain. Unfortunately, MCT algorithm possesses a subtle bug which makes it
generate, sometimes, an under-approximation of the Clover. A counter example
for the algorithm can be found in [57, 65]. There were a few attempts (e.g, [152],
[135], [64]) to �x this algorithm by keeping more information during the execu-
tion. However, the size of this extra memory was not bounded and may even be
non-primitive recursive (as compared to MCT). Thus, �xing the MCT algorithm or
designing a new Clover generating algorithm, without keeping a huge amount of
extra information, is an important goal. Which leads us to our �rst problem:

Question 1

Is there an algorithm computing the Clover which is
conservative in its memory usage?

Recursive Petri nets

Petri net is a useful formalism for analysis of concurrent programs for many rea-
sons, however they cannot model several widely used patterns in concurrent sys-
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tems, in particular recursive features. Therefore, an important research direction
consists of extending Petri nets to support new modeling features while still pre-
serving decidability of properties checking.

Such extensions may be partitioned between those whose states are still markings
in Np, and the other ones. One of the simplest extension consists of adding two
inhibitor arcs, with which one can simulate a Minsky machine [5], and therefore
yield undecidability of most of the veri�cation problems. However, adding a sin-
gle inhibitor arc preserves the decidability of the reachability, coverability, and
boundedness problems [133, 29, 28]. When adding more than three reset arcs to
a Petri net, the coverability problem becomes Ackermannian-complete [143] and
boundedness undecidable [51]. In ν-Petri nets, the tokens are colored where colors
are picked in an in�nite domain: their coverability problem is double-Ackermann
time complete [101]. In Petri nets with a stack, the reachability problem may
be reduced to the coverability problem and both are at least not primitive recur-
sive [40, 98] while their decidability status is still unknown [98]. In branching
vector addition systems with states (BVASS) a state is a set of threads with as-
sociated markings. A thread either �res a transition as in Petri nets or forks,
transferring a part of its marking to the new thread. For BVASS, the reachability
problem is also not primitive recursive [100] and its decidability is still an open
problem while the coverability and the boundedness problems are 2-EXPTIME-
complete [46]. The analysis of subclasses of Petri nets with a stack is an active
�eld of research [13, 113, 43, 165]. However, for none of the above extensions, the
coverability and termination problems belong to EXPSPACE.

The Recursive Petri net (RPN) model has been introduced to model distributed
planning of multiagent systems for which counters and recursivity were necessary
for specifying resources and delegation of subtasks [52]. Roughly speaking, a state
in an RPN consists of a directed rooted tree of threads, where each thread has
a marking with which it plays a token game. The thread can �re three types of
transition: (1) elementary transition, changing its own marking, (2) abstract tran-
sition, consuming tokens and creating a new child thread with an initial marking
depending only on the �red transition, and (3) cut transition, pruning the subtree
rooted in the thread �ring it and producing tokens in its parent.

While RPNs extend Petri nets and context-free grammars as was shown in [71],
the reachability, boundedness and termination remain decidable [71, 72]. This is
shown by reducing these properties to reachability problems of Petri nets, so the
corresponding algorithms are not primitive recursive. LTL model checking is un-
decidable for RPN but becomes decidable for the subclass of sequential RPN [73].
The question of the decidability of the coverability problem on RPN was not in-
vestigated, partly because no order was designed for its states. There are many
orders which can be de�ned on the states of RPN, but one would want this order
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to be at least congruent with the transitions. Which brings us to the following
question:

Question 2

Is there a `good' order on the states of an RPN? If so, is the
coverability problem decidable?

While having a great expressive power, RPN su�er from two main limitations:

1. RPNs do not include more general features for transitions like reset arcs,
transfer arcs, etc;

2. The initial marking associated to the recursive �call� only depends on the
calling transition and not on the current marking of the caller.

Which brings us to our third question:

Question 3

Does there exist a model extending RPN, which: (1) has greater
transition features, (2) has a dynamic thread creation, and (3)

keeps some interesting properties of the RPN decidable?

Active learning and veri�cation

One of the �rst goals of this PhD thesis was to connect machine learning and ver-
i�cation of in�nite-state systems. In this regard, we had the great luck to join the
brand-new project LeaRNNify. The aim of this project is to bring together two
di�erent kinds of algorithmic learning, namely grammatical inference and learning
of neural networks. This subject was not exactly the research we had initially
planned, which was the use of machine learning for veri�cation, but the oppor-
tunity to work with leading people from the veri�cation community on verifying
recurrent neural networks (RNN) was one we could not pass. That is why one
can spot some gap between the previous subjects and the ones we will introduce
below.

The problem of learning a language from its �nite samples of strings by discover-
ing the corresponding grammar is known as grammar inference, whose signi�cance
was initially stated in [145] and an overview of its very �rst results can be found
in [21]. There are generally two types of algorithms for learning deterministic �nite
automaton (DFA) of a regular language, so-called online and o�ine algorithms.
O�ine algorithms are given a set of words that are accepted by the automaton
(positive examples) and a set of unaccepted words (negative examples), and they
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return a minimal automaton which rejects the negative examples and accepts the
positive ones. See for example the algorithm from [22]. Online algorithms on the
other hand can ask further queries whether a word is accepted or unaccepted by
the desired automaton. This way the algorithm can ask for relevant examples
helping it construct an automaton more faithfully to the desired automaton. A
well-known example for an online algorithm is the Angluin L∗ algorithm [10].

Angluin's algorithm learns a minimal DFA of a regular language in the presence
of a minimally adequate teacher. A minimally adequate teacher is a teacher (given
a language) which is capable of answering two types of queries, namely member-
ship and equivalence queries. The algorithm uses these two types of queries to
generate the DFA representing the language. There are many implementations
and optimizations to Angluin's algorithm, such as the ones in [88, 81]. Two of
the disadvantages of this algorithm is that (1) the equivalence query is very ex-
pensive computationally, and (2) one wants to learn from a language represented
by a model which might not have an equivalence query. One of the ways to face
this problem is the probabilistic approximately correct (PAC) version of Angluin's
algorithm [10]. This version substitutes the equivalence query by a large enough
set of random membership queries. Thus, it can be applied to any kind of device
and may be viewed as synthesizing an automaton abstracting the behavior of the
device based on observations.

Recurrent neural networks (RNNs) are a state-of-the-art tool to represent and
learn sequence-based models. They have applications in time-series prediction,
sentiment analysis, and many more. In particular, they are increasingly used in
safety-critical applications and act, for example, as controllers in cyber-physical
systems [4]. Therefore, as the safty of these RNN is important, there is a growing
need for formal veri�cation.

An interesting usage of Angluin's algorithm is extracting a DFA from an RNN
approximating its language. More generally in recent years there have been many
works developing this type of techniques, i.e., extracting from RNNs state-based
formalism such as �nite automata, e.g., [14, 115, 114, 122, 123, 156]. These types
of extraction are useful for understanding and analyzing RNN, and can be used
for veri�cation. One way of using these extractions for veri�cation is the following
technique: Given an RNN and some speci�cation it should ful�ll, one �rst extracts
a state-based formalism, such as �nite automaton, which approximates the black
box, then check whether this approximation ful�lls the speci�cation. Unfortu-
nately, this kind of technique su�ers from two problems: (1) RNN systems can be
huge, and therefore the extraction can be a very lengthy process, (2) the algorithm
might �nd a counter example for the approximation on which the RNN and the
approximation disagree. This brings us to our the fourth problem:
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Question 4

Is there a way to use abstraction for the veri�cation of RNN,
avoiding long execution time, and making sure that if the

algorithm terminates with a counter example to the abstraction
then it is a counter example for the RNN?

Another issue with this type of veri�cation is that RNN are inherently noisy,
i.e., some of their output is wrong. This is due to the fact that they are sta-
tistically learned. But Angluin's algorithm, as most other learning algorithms in
the literature, assumes the correctness of the training data, including the example
data such as attributes as well as classi�cation results. However, as seen above,
sometimes the noise-free datasets are not available. Some research has been previ-
ously carried on the e�ects of noise on learning, such as: [11, 87, 130]. This made
us ask:

Question 5

What does Angluin's PAC Algorithm generate when given a
noisy model? Is there noise to which it is robust?

Regular languages are widely used due to their simplicity, but unfortunately
they are very restrictive. For example, the family of languages of balanced paren-
theses is not regular, but it is a subset of context-free languages. Context-free
languages are a well-known language family which is used in a large variety of
applications, such as compilers and processing natural languages. Therefore, de-
signing an Angluin type of algorithm, learning a context-free language, can give us
for example a better approximation of RNN. Unfortunately, learning context-free
language seems to be currently out of reach, but we can maybe learn a subclass
of context-free languages which is larger (than regular languages). Therefore, we
are faced with the following question:

Question 6

Does there exist a model including regular languages and
balanced parentheses for which we have an extraction algorithm?
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1.1 Summary of contribution

Cover of Petri nets

In Chapter 3, we introduce the concept of abstraction as an ω-transition (transi-
tions that may create or demand ω tokens) that mimics the e�ect of an in�nite
family of �ring sequences of markings w.r.t. coverability. As a consequence, adding
abstractions to the net does not modify its coverability set. Moreover, the classical
Karp and Miller acceleration can be formalized as an abstraction whose incidence
on places is either ω or null. The set of accelerations of a net is upward closed, and
well-ordered. Hence, there exists a �nite subset of minimal accelerations, and we
show that the size of all minimal accelerations is bounded by a double exponential
using a recent result from [103]. Using our new de�nition of acceleration, we give
a short proof for the correctness of the Karp and Miller algorithm.

Despite the current opinion that �The �aw is intricate and we do not see an easy
way to get rid of it... Thus, from our point of view, �xing the bug of the MCT
algorithm seems to be a di�cult task� [65], in Chapter 4 we describe our simple
modi�cation of MCT which makes it correct. It mainly consists in memorizing
discovered accelerations and using them as ordinary transitions. Contrary to all
existing minimal coverability set algorithms that use an unknown additional mem-
ory that could be non-primitive recursive, we show that the additional memory
required for accelerations is at most doubly exponential. This provides an answer
to Question 1.

In Chapter 5, we describe in detail how we developed an optimized prototype of
our algorithm. Comparing the prototype performance against other tools produc-
ing the Clover on benchmarks either from the literature or random ones, have
con�rmed that our algorithm requires signi�cantly less memory than the other
algorithms and is close to the fastest tool w.r.t. the execution time. Moreover,
we show how to combine our algorithm with continuous over approximation tech-
niques from [26], resulting in superior tool solving coverability.

Recursive Petri nets

In Chapter 8, we begin by introducing a quasi-order on states of RPN compatible
with the �ring rule and establish that it is not a well quasi-order. Moreover, we
show that there cannot exist a transition-preserving compatible well quasi-order,
preventing us to use the framework of Well Structured Transition Systems to prove
that coverability is decidable. We show that the RPN languages are quite close
to recursively enumerable languages, since the closure under homomorphism and
intersection with a regular language is the family of recursively enumerable lan-
guages. More precisely, we show that RPN coverability (as reachability) languages
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strictly include the union of context-free languages and Petri net coverability lan-
guages. Moreover, we prove that RPN coverability languages and reachability lan-
guages of Petri nets are incomparable. We prove that RPN coverability languages
are a strict subclass of RPN reachability languages. In addition, we establish that
the family of RPN languages is closed under union, homomorphism, concatenation
and Kleene star, but neither under intersection with a regular language nor under
complementation. This answers the �rst half of Question 2, by showing that the
newly de�ned quasi-order has interesting qualities.

From a complexity point of view, we show that, as for Petri nets, coverability,
termination, boundedness, and �niteness are EXPSPACE-complete, answering the
second half of Question 2. Thus, the increase of expressive power does not entail a
corresponding increase in complexity. In order to solve the coverability problem,
we design a set of reductions, reducing the coverability problem for RPN to the
coverability problem in Petri net. In order to solve the termination problem for
RPN, we consider two cases for an in�nite sequence, depending on (informally
speaking) whether the depth of the trees corresponding to states are bounded
or not along the sequence. For the unbounded case, we introduce the abstract
graph that expresses the ability to create threads from some initial state. The
decidability of the �niteness and boundedness problems are also mainly based on
this abstract graph.

In Chapter 9, we introduce Dynamic Recursive Petri nets (DRPN) (motivated
by the limitation of RPN), a model extending RPN with generalized transition
features and dynamic thread creation. We show that the family of coverability
languages of DRPN are strictly more expressive than the family of coverability
languages of RPN. We achieve this in two ways, �rst using the generalized tran-
sition features, and second using the dynamic thread creation, showing that both
extensions are �true extensions� for RPN. Finally, we prove that the coverability
problem is still decidable for DRPN, using a type of saturation algorithm, allowing
us to reduce the problem to the one for WSTS, which answers Question 3.

Active Learning and Veri�cation

In Chapter 10, we describe 3 types of algorithms which verify that a given RNN
satis�es some given speci�cations:

� Statistical Model Checking (SMC). This algorithm generates a large
(statistically signi�cant) �nite set of words and checks whether the RNN
satis�es the given speci�cation on this set.

� Automaton Abstraction and Model Checking (AAMC). This is the
algorithm we described above. It generates a DFA which approximates the
RNN, and then checks whether it satis�es the given speci�cation.
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� Property-Directed Veri�cation (PDV). Similarly to AAMC, it gener-
ates a DFA approximating the RNN. But instead of performing the genera-
tion of the RNN and then the model checking, we intertwined them together.
This algorithm was inspired by black-box checking from [126].

The PDV algorithm is our answer to Question 4, where its superiority can be
seen by its performance on the experiments we ran in the end of Chapter 10. We
compare these algorithms according to a set of benchmarks coming from a variety
of sources. We �nd that the quickest algorithm is the PDV. On average it is
4.5 times faster than SMC and 20 times faster than AAMC. Moreover, we show
that algorithms generating a DFA have two other advantages on SMC. First, both
AAMC and PDV �nd counter examples which are smaller than SMC. Second, in
case we �nd a mistake we can use the generated DFA in order to �nd a �faulty
�ow�, which allows us to generate more counter examples and to �visualize� the
�reason� the problem exists.

In Chapter 11, we investigate the robustness of Angluin's algorithm to noisy models
(answering Question 5). To this end, we introduce three types of noise applied to
DFA, producing three types of random languages:

1. Noisy output. A random language produced by reversing the word accep-
tance of the DFA with a small probability,

2. Noisy input. A random language produced by, with a small probability,
replacing each letter of a word by one chosen uniformly from the alphabet
and then checking whether the DFA accepts it,

3. Counter DFA. A language which combines the status of a word w.r.t. the
DFA and its status w.r.t. a randomly generated counter automaton.

Our experiments consisted of �rst generating several hundreds of random DFA, to
which we applied these noises, and then computing the statistical distance from
the original DFA. We were investigating several questions, where the important
ones were: (1) what is the threshold in terms of distance between the original
and noisy language above which the algorithm produces a device that is no more
�similar to� the original DFA? (2) What is the impact of the nature of noise on
the robustness of Angluin's algorithm? Our experiments show that for the �rst
two types of noises (noisy output and noisy input) there is a threshold from which
Angluin's algorithm is able to extract a DFA �similar to� the original one. However,
for the third type of noise (counter DFA), there does not exist a threshold from
which the original DFA is �recoverable�. These results directed us to conjecture
that Angluin's algorithm is more robust to noise which is less structured. To this
end we prove that the random languages that are produced by the �rst noise and
second noise (under a slight condition on the original DFA), are almost surely not
recursively enumerable.
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In Chapter 12, we present the family of visibly pushdown languages which is a
subset of the family of context-free languages. These languages were originally
de�ned as the languages of visibly pushdown automaton introduced by [7, 8],
but can equivalently be seen as the languages of visibly pushdown grammars.
Moreover, this family includes the family of balanced parentheses languages. For
this family we present: (1) an active learning algorithm for visibly pushdown
grammars (answering Question 6), and (2) its applicability for learning surrogate
models of RNN trained on context-free languages. Our learning algorithm makes
use of the proximity of visibly pushdown languages and regular tree languages, and
builds on an existing learning algorithm for regular tree languages. Equivalence
tests between a given RNN and a hypothesis grammar rely on a mixture of A*
search and random sampling. An evaluation of our approach on a set of RNNs
from the literature shows good preliminary results.

1.2 Organization of the thesis

• Preliminaries (Chapter 2). We give the basics of: WSTS, Petri nets, formal
languages, and Angluin's algorithm, used in this thesis.

Part I - Cover of Petri Nets

• Covering and Abstractions (Chapter 3). We de�ne a new construction called
abstractions, which commodi�es the accelerations. Using this, we show a new
proof for the Karp and Miller algorithm and improve it.

• Computing the Clover E�ciently (Chapter 4). We answer Question 1, by
�xing the MCT algorithm. We achieve that by using the commodi�ed accel-
erations. This gives a new algorithm MinCov, which uses only EXPSPACE

supplementary memory.
• The Tool MinCov (Chapter 5). We discuss the implantation details of MinCov.

We show small optimization done to it, such as a smart choice of exploration
order, fast data structures, etc. Moreover, we show how one can use MinCov
to solve the coverability problem quickly. Finally, we compare its perfor-
mance to other tools computing the Clover and coverability.

Part II - Recursive Petri net

• Extending Petri nets (Chapter 6). We discuss some limitations of Petri nets,
such as their inability to do zero tests, or simulate a stack. In the second
section we describe some models extending Petri nets solving the problems
described.
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• Recursive Petri Nets (Chapter 7). We begin by introducing RPNs, their syn-
tax and their semantics. We continue by reviewing their usage and previous
results.

• Expressiveness and Decision problems in RPN (Chapter 8). The chap-
ter where we answer Question 2. We de�ne an order on the states of an
RPN. We show that the coverability language de�ned by this order includes
context free and Petri net coverability languages. Finally, using a Rack-
o� type technique we show that coverability, termination, and boundedness
problems are EXPSPACE-complete.

• Dynamic Recursive Petri Nets (Chapter 9). The chapter where we answer
Question 3, de�ning a new model, the Dynamic Recursive Petri Nets. We
show that it extends RPN and A�ne nets. Moreover, we show that its
coverability languages strictly include that of RPN coverability languages.
We �nish this chapter by showing that coverability is decidable.

Part III - Active Learning and Veri�cation

• Property Directed Veri�cation (Chapter 10). We begin by presenting the
three types of veri�cation algorithms for RNN. We then compare them on a
set of benchmarks.

• Noisy DFA (Chapter 11). The chapter where we study how di�erent kinds of
noise e�ect Angluin's algorithm, answering Question 5. We review several
hundreds of experiments performed to this end. In the last section, we show
some theoretical results to strengthen our conclusions on the experimental
data.

• VPA (Chapter 12). The chapter where we introduce the family of visibly push-
down languages. For this family of languages, we present an active learning
algorithm (answering Question 6), and test its e�ciency on extracting visibly
pushdown languages from a set of RNN.



Chapter 2

Preliminaries

2.1 Well Structured Transition Systems

Well-structured transition systems (WSTS) [63] are a family of in�nite state sys-
tems for which many veri�cation problems are decidable. These decidability results
depend on a well-quasi-ordering between states, which is also compatible with tran-
sitions. This family extends many well-known models such as Petri nets, post self
modifying nets, timed automata, lossy systems...
This section is strongly based on the paper [63] and all the missing proofs, details
and in depth explanations can be found there.

2.1.1 Well-Quasi-Order

Given a set X, we call a relation ≤ on it an order if it is:

Re�exive ∀x ∈ X x ≤ x;
Transitive ∀x, y, z ∈ X if x ≤ y and y ≤ z then x ≤ z;
Antisymmetric ∀x, y ∈ X if x ≤ y and y ≤ x then x = y;

If we drop the antisymmetry requirement we get a quasi-order (qo). Let x < y
denote x ≤ y ̸≤ x. We call an order (X,≤) well-founded if there is no in�nite
strictly decreasing sequence, i.e., (xi)

∞
i=0 ⊆ X such that:

x1 > x2 > x3 > . . .

An order is a well-quasi-order (wqo) if for any sequence (xi)
∞
i=0 ⊆ X there exist

i < j such that xi ≤ xj. If the order is well-founded and ordered (i.e., not qo) we
call it well-ordered. For example of a well-order, we have the usual order ≤ on Nd,
de�ned as follows, given v, v′ ∈ Nd we say that v ≤ v′ if and only if v(i) ≤ v′(i) for
all i ≤ d.

13
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Given a qo (X,≤), we call a set U ⊆ X upward (resp. downward) closed if for
any x ≤ y (resp. x ≥ y), where x ∈ U and y ∈ X then y ∈ U . Give an x ∈ X,
denote the upward closer of x by ↑x = {y ∈ X | y ≥ x}, and for a set B ⊆ X
denote ↑B =

⋃
x∈B ↑x, respectively for downward closure we denote ↓x and ↓B.

Given an upward closed set U , we call a subset B ⊆ U a basis of U if ↑B = U .
We call a basis ↑B = U minimal basis if for any other basis ↑B′ = U we have
|B| ≤ |B′|. A well-known result [75] gives us that if the qo is a wqo if and only
if any upward closed set has a �nite basis. For example, the minimal basis of the
upward closed set {v ∈ N3 | v(0) ≥ 2 or v(1) ≥ 1} is {(2, 0, 0), (0, 1, 0)}. As a
consequence of this result, one gets that:

Lemma 2.1.1. Given a wqo (X,≤), for any increasing of sequence upward closed
sets U1 ⊆ U2 ⊆ U3 ⊆ · · · , there exists an n ∈ N such that Un = Un+1 = Un+2 = · · · .

An antichain E is a set for which : ∀x ̸= y ∈ E ¬(x ≤ y ∨ y ≤ x). For an
example, the set:

{(n, 0), (n− 1, 1), . . . , (0, n)} ⊆ N2

is an antichain on length n + 1 in (N2,≤). X is FAC if all of its antichains are
�nite. A set E ⊆ X is directed if E is nonempty and for all x, y ∈ E there exists
z ∈ E such that x ≤ z and y ≤ z. An ideal is a directed downward closed set.
A well-known characterization is that a set is FAC if and only if it is equal to a
�nite union of ideals. A proof of this result can be found in [27]. Given a set
E ⊆ X, there may exist several �nite families of ideals whose union is equal to E.
Among all these �nite families, one can choose the unique set of maximal ideals
(by inclusion): this set is therefore canonically associated with E. An alternative
de�nition for (X,≤) to be wqo is if it is well-founded and FAC.

2.1.2 Well structured transition systems

A transition system is a tuple TS = ⟨S,→⟩, where S is a set of elements we
call states and →⊆ S × S is a set of elements we call transitions. Denote by
∗−→ the re�exive and transitive closure of the relation →. For a state s ∈ S,
denote by SuccTS(s) = {s′ ∈ S | s → s′} the set of immediate successors and
PredTS(s) = {s′ ∈ S | s′ → s} the set of immediate predecessors. Given an qo
≤, we that it is compatible with TS, if for any s1 ≤ t1 and s1 → s2 there exists a
state t2 ∈ S such that t1

∗−→ t2 and s2 ≤ t2 (see Figure 2.1). Moreover, denote by

Succ∗TS(s) = {s′ ∈ S | s ∗−→ s′} and Pred∗TS(s) = {s′ ∈ S | s′ ∗−→ s}.
A Well Structured Transition System (WSTS), ⟨S,→,≤⟩, is a transition system
equipped with ≤ a qo on S where ≤ is a wqo, and ≤ is compatible.

We call the WSTS e�ective if the WSTS has a set of state the relation and
ordering are �nitely encoded, there exists a Turing machine to decide the transition
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Figure 2.1: Compatible relation.

relation, the order relation and whether an element is in the states. For more
details, see [27]. From now on, we consider that all WSTS are e�ective.

For any WSTS W and a state s ∈ S, we de�ne:

1. The reachability set Reach(W, s) is de�ned by:

Reach(W, s) = {s′ ∈ S | s ∗−→ s′} (= Succ∗W (s))

2. The coverability set Cover(W, s) is de�ned by:

Cover(W, s) =↓Reach(W, s)

A fundamental question one can ask about WSTS (and transition system in gen-
eral) is the reachability problem:

De�nition 2.1.2 (Reachability problem). Given a WSTS W = ⟨S,→,≤⟩, an
initial state s0 ∈ S, and a target state s ∈ S. Does s belong to Reach(W, s0) ?

Unfortunately, reachability in general is undecidable for WSTS, this result is
due to WSTS being an extension of rest-net (de�ned and discussed in Section 6.2),
and rest net having undecidable reachability. Another problem is the one which
uses the Cover instead of the Reach:

De�nition 2.1.3 (Coverability problem). Given a WSTS W = ⟨S,→,≤⟩, an
initial state s0 ∈ S, and a target state s ∈ S. Does s belong to Cover(W, s0)?

Note that, s ∈ Cover(W, so) if and only if s0 ∈ Pred∗W (↑s). Therefore, if we
had an algorithm computing Pred∗W (↑s) we would be able to solve coverability. We
say that a WSTS has e�ective pred-basis if there exists an algorithm such that for
any s ∈ S it computes pb(s) a �nite basis of ↑PredW (↑s). We extend the notation
of pb to �nite sets, given C ⊆ S, then pb(C) is a �nite basis of ↑PredW (↑C). Note
that using the algorithm for pb(c), we can get an algorithm deciding pb(C). From
now on, we consider that all the WSTS have an e�ective pred-basis. An algorithm
computing Pred∗W (↑s) exists for WSTS, the backward coverability algorithm [1],
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Algorithm 1: Backward coverability algorithm

Input: A WSTS W , and a state s ∈ S
Output: A �nite basis of Pred∗W (↑s)

1 C ← {s};
2 repeat oldC ← C; C ← C ∪ pb(C) until ↑ C =↑ oldC;
3 return C

see Algorithm 1. First, we note that the Algorithm 1 terminates since in every
iteration the set ↑oldC ⊆↑C, and from Lemma 2.1.1 we know that this sequence
stabilizes. When it terminates ↑C =

⋃m
n=0 ↑PrednW (↑s) for some m ∈ N. On one

hand, note that the set Pred∗W (↑s) is upward closed, hence

C =
m⋃

n=0

↑PrednW (↑s) =
m⋃

n=0

PrednW (↑s) ⊆ Pred∗W (↑s)

i.e., Algorithm 1 is consistent. On the other, because of the stabilization we have
that for some �nite m ∈ N:

Pred∗W (↑s) =
∞⋃
n=0

PrednW (↑s) =
m⋃

n=0

PrednW (↑s) ⊆ C

i.e., Algorithm 1 is complete.

Proposition 2.1.4 ([63]). Given a WSTS and a state s, the Algorithm 1 termi-
nates and returns a �nite basis of Pred∗W (↑ s).

Finally, since s ∈ Cover(W, s0) if and only if s0 ∈ Pred∗W (↑s) we have that:

Theorem 2.1.5. Coverability is decidable for WSTS.

2.2 Petri nets

We de�ne the Petri nets by using the backward incidence matrix Pre and the
incidence matrix C, as compared to the usual way of using Pre and the forward
incidence matrix Post. The connection between these two de�nitions is that
Post = C+Pre.

De�nition 2.2.1. A Petri net is a tuple N = ⟨P, T,Pre,C⟩ where:

� P is a �nite set of places ;
� T is a �nite set of transitions with P ∩ T = ∅;
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Figure 2.2: The marked Petri net N1.

� Pre ∈ NP×T is the backward incidence matrix ;
� C ∈ ZP×T is the incidence matrix for which the following holds:
For all p ∈ P and t ∈ T , C(p, t) +Pre(p, t) ≥ 0.

A marked Petri net (N ,m0) is a Petri net N initialized with a marking m0 ∈ NP .

One can see in Figure 2.2, a graphical representation of a Petri net N1, where
places are denoted by circles, transitions by squares and the arrows represent the
backward incidence and incidence matrix. So in Figure 2.2 the Petri net N1 has a
set of 6 places P = {pi, pℓ, pbk, pm, pba, pc}, a set of 5 transitions T = {t1, t2, t3, t4, t5}
and its backward and incidence matrices are:

Pre =



t1 t2 t3 t4 t5 t6

pi 1 1 1 0 0 0
pℓ 0 0 0 0 1 0
pbk 0 0 0 0 0 1
pm 0 0 0 1 0 0
pba 0 0 0 0 0 1
pc 0 0 0 0 0 0

 ; C =



t1 t2 t3 t4 t5 t6

pi −1 −1 −1 0 0 0
pℓ 1 1 0 0 0 0
pbk 1 0 1 0 0 0
pm 0 1 1 −1 0 0
pba 0 0 0 0 1 −1
pc 0 0 0 1 0 1

.

Moreover, we can also represent graphically the marking of a Petri net, by a number
of small tokens inside the places. For example, the marking of the Petri net N1 in
Figure 2.2 is pi.

Given an alphabet Σ we de�ne, as usual Σ∗, the Kleene star of Σ. The column
vector of the matrix Pre (resp. C) indexed by t ∈ T is denoted by Pre(t) (resp.
C(t)). A transition t ∈ T is �reable from a marking m ∈ NP if m ≥ Pre(t). When

t is �red from a marking m, its �ring leads to a marking m′
def
= m +C(t), which
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is denoted by m
t−→ m′. We extend the �ring rule to a sequence of �rings σ ∈ T ∗

recursively according to its length, as follows: The empty sequence ε is always
�reable and does not change the marking. The sequence σ = tσ′, with t ∈ T and

σ′ ∈ T ∗ is �reable from m if m
t−→ m′ and σ′ is �reable from m′. The �ring of σ

from m leads to a marking m′′ reached by σ′ from m′. We denote this �ring by
m

σ−→m′′.

Petri nets with P places are WSTS, where the states are NP , the transitions are
as described above, and the order de�ned on the states is the (also de�ned in the
previous section) wqo on the vectors in NP . Both the reachability and coverability
problems are decidable for Petri nets. Moreover, the reachability problem was re-
cently shown to be Ackermannian-complete [104, 41] (i.e., Fω) and the coverability
problem is EXPSPACE-complete [132].

Since the coverability set is downward closed and (NP ,≤) is FAC, it can be
expressed as a �nite union of ideals. The ideals of NP can be elegantly de�ned
as follows. We �rst extend the natural numbers and integers: Nω = N ∪ {ω} and
Zω = Z ∪ {ω}. Then we extend the order relation and the addition operation to
Zω: For all n ∈ Z, ω > n and for all n ∈ Zω, n + ω = ω + n = ω. NP

ω , with
this extended order, is still well-ordered, and its elements are called ω-markings.
There is a one to one correspondence between ideals of NP and ω-markings. Let
m ∈ NP

ω . Denote by JmK the set:

JmK = {m′ ∈ NP |m′ ≤m}

JmK is an ideal of NP (and any ideal can be represented as such). By the de�nitions
and properties stated above, we are able to formally de�ne the Clover of a Petri
net.

De�nition 2.2.2. Let (N ,m0) be a marked PN. Then Clover(N ,m0) ⊆ NP
ω is

the (�nite) set of maximal (for inclusion) ideals such that :

Cover(N ,m0) =
⋃

m∈Clover(N ,m0)

JmK

Example 2.2.3. The marked Petri net N1 in Figure 2.2 is unbounded. Its
Clover(N1, pi) is the set of four elements:

{pi, pbk + pm, pl + pm + ωpba, pl + pbk + ωpba + ωpc}

For example, the marking pl+pbk+αpba+βpc is reachable by the sequence t1t
α+β
5 tβ6

and therefore covered.
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2.3 Language theory

Given an alphabet Σ, a language (of �nite words) on this alphabet is a subset
L ⊆ Σ∗. We denote by ε the empty word. Note that, in Part III we change
the notation of the empty word to λ due to con�icts with the notation for PAC
learning. For a language L we denote its complement by L = {w ∈ Σ∗ | w ̸∈ L}.
For two languages L1,L2 ⊆ Σ∗, we let L1\L2 = L1∩L2. The symmetric di�erence
of L1 and L2 is de�ned as L1 ⊕ L2 = (L1 \ L2) ∪ (L2 \ L1).

A fundamental approach in the research of abstract model is to consider them
as language generators.

2.3.1 Regular languages

Let us start with the family of regular languages on the alphabet Σ. This family
is de�ned inductively with the following rules:

1. ∅ is a regular language;
2. For all a ∈ Σ, the language {a} is a regular language;
3. Given a regular language L, the Kleene star of this language, i.e., L∗, is a

regular language;
4. Given two regular languages L,L′, the union, i.e., L ∪ L′, and the concate-

nation, i.e., L · L′, are regular languages.

For example, the language {(ab)n | n ∈ N} is regular, since it is equal to ({a}·{b})∗,
which is the application of the above rules (in order) 2, 4, and then 3. Another
example is {ε} where ε is the empty word, since it can be expressed as ∅∗.

We now de�ne a deterministic �nite automaton (DFA) which are closely related
to regular languages:

De�nition 2.3.1 (DFA). A (complete) deterministic �nite automaton (DFA) is
a 5-tuple A = ⟨Q,Σ, δ, q0, F ⟩ such that:

1. Q is a �nite set of states;
2. Σ is a �nite alphabet;
3. δ : Q× Σ→ Q is a transition function;
4. q0 ∈ Q is an initial state;
5. F ⊆ Q is a �nite set of �nal states.

The transition function δ is inductively extended to words as follows: δ(q, ε) = q
and δ(q, wa) = δ(δ(q, w), a). We say that a word w is accepted by A if δ(q0, w) ∈ F .
The language generated by a DFA A, denoted by L(A), is the set of all accepted
words.
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Theorem 2.3.2 (Kleene theorem). The family of regular languages is equal to the
family of DFA languages.

For example one can see in Figure 2.3 the DFA A1 with the generated language
L(A1) = {(ab)n | n ∈ N}. The states are represented by circles, where a state with
a double circle is a �nal state, and a state with an incoming arrow not connected
to anything else in the initial state. The transition function is represented by
the arrows between the states. Given a DFA A = ⟨Q, δ, q0, F ⟩, the complement

Figure 2.3: The DFA A1 with the language {(ab)n | n ∈ N}.

DFA A = (Q, δ, q0, Q \ F ), we get L(A) = L(A) = Σ∗ \ L(A). Given a DFA A,
we call it a minimal DFA if for any other DFA A′ with the same language, i.e.
L(A) = L(A′), A has less or equal number of states than A′.

Theorem 2.3.3. For any regular language L there exists a unique minimal DFA
A such that L(A) = L.

Given a language L ⊆ Σ∗ and x, y ∈ Σ∗ we say that z ∈ Σ∗ is a distinguishing
word if exactly one of the two words xz, yz is in L. We say that two words x, y ∈ Σ∗

are Nerode congruent, i.e., x ∼L y, if and only if they do not have a distinguishing
word.

Theorem 2.3.4 (Myhill�Nerode theorem). The language L is regular if and only
if Nerode congruence has a �nite number of equivalence classes. Moreover, the
number of classes is equal to the number of states of the minimal DFA A such that
L = L(A).

2.3.2 Context-free languages

Another well-known family of languages is the family of languages generated by
Context-Free Grammars (CFG).

De�nition 2.3.5 (CFG). A context-free grammar, is a 4-tuple ⟨V,Σ, R, S⟩ such
that:
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1. V is a �nite alphabet, the non-terminal variables;
2. Σ is a �nite alphabet, the terminals variables;
3. R is a subset of V × (V ∪ Σ)∗, the rewrite relation;
4. S ∈ V is a starting symbol.

The language L(G) ⊆ Σ∗ of a grammar G is de�ned using a global rewrite
relation ⇒⊆ (Σ ∪ V )∗ × (Σ ∪ V )∗ de�ned by uAv ⇒ uwv for all rewrite action
(A,w) and u, v ∈ (Σ ∪ V )∗. With this, we let L(G) = {w ∈ Σ∗ | S ⇒∗ w}
where ⇒∗ denotes the re�exive transitive closure of the binary relation ⇒. We
call a language L context-free if there exists a CFG G over Σ such that L = L(G).
The family of context-free languages is strictly greater than the family of regular
languages.

Theorem 2.3.6. Any regular language L is a context-free language.

The language of palindromes on Σ = {a, b} is a non-regular context-free lan-
guage. The CFG generating it is Σ = {a, b}, V = {S}, S is the starting symbol,
and it has three rewrite actions:

S → aSa; S → bSb; S → ε.

The family of Dyck languages (i.e., the family of balanced parentheses) is a family
of non-regular context-free languages. The CFG of a Dyck language of order n
(the number of di�erent parentheses) on the alphabet Σ = {pi, qi}ni=1 is V = {S},
S is the starting symbol, and it has n+ 1 rewrite actions:

For all i ≤ n S → piSqi S; S → ε.

Given the alphabets Σ1 and Σ2 and a function h : Σ∗1 7→ Σ∗2, we call this function
h a homomorphism if
h(ww′) = h(w)h(w′) for all w,w′ ∈ Σ∗1. An important property of Dyck languages
was shown by Chomsky and Schützenberger. They showed that any context-free
language can be `represented' by a Dyck language and a regular language:

Theorem 2.3.7 (Chomsky�Schützenberger representation). Let L be a context-
free language on the alphabet Σ, then there exist a Dyck language LD, a regular
language LR both on the same alphabet Σ′, and a homomorphism h : Σ′ 7→ Σ, such
that L = h(LD ∩ LR).

Just like in the case of regular languages, there is a device generating exactly
any context-free language.

De�nition 2.3.8 (PDA). A pushdown automaton (PDA) is a 7-tupleA = ⟨Q,Σ,Γ, δ, q0, Z, F ⟩
such that:
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1. Q is a �nite set of states;
2. Σ is a �nite alphabet, the input alphabet ;
3. Γ is a �nite alphabet, the stack alphabet ;
4. δ is a �nite subset of Q× (Σ ∪ {ε})× Γ×Q× Γ∗;
5. q0 ∈ Q is an initial state;
6. Z ∈ Γ is an initial stack symbol;
7. F ⊆ Q is a �nite set of �nal states.

The set of con�gurations of A is Cf (A) = Q×Σ∗×Γ∗. The step relation ⊢ on
Cf (A)×Cf (A) is de�ned as follows. For all (p, a, A, q, v) ∈ δ and all (q, aw,Au) ∈
Cf (A), (q, aw,Au) ⊢ (q′, w, vu). Then the language of A is de�ned by: L(A) =
{w | ∃(q, u) ∈ F × Γ∗ (q0, w, Z) ⊢∗ (q, ε, u)} and we get:

Proposition 2.3.9. The family of context-free languages is equal to the family of
languages accepted by pushdown automata.

For example, in Figure 2.4 one can see the PDA A2 for the language of palin-
dromes on two letters.

a,b

a,b

Figure 2.4: A PDA whose language is the language of palindromes on two letters.

2.3.3 Recursively enumerable languages

De�nition 2.3.10. A deterministic Turing machine is a 7-tuple TM = ⟨Q, q0, qf ,Γ, ♭,Σ, δ⟩
such that:

1. Q is a �nite set of states;
2. q0 ∈ Q is an initial state;
3. F ⊆ Q are �nal states;
4. Γ, tape alphabet ;
5. ♭ ∈ Γ is the blank symbol ;
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6. Σ ⊆ Γ with ♭ /∈ Σ, is the input alphabet ;
7. δ is a partial function from Q× Γ 7→ Q× Γ \ {♭} × {−1, 1}.

The set of con�gurations of TM is Cf (TM) = {(q, w, n) | q ∈ Q,w ∈ (Γ \
{♭})∗, 0 < n ≤ |w|+ 1}. The step relation ⊢ on Cf (TM)× Cf (TM) is de�ned as
follows.

� For all (q, w, |w|+1) ∈ Cf (TM) and (q′, a, d) = δ(q, ♭) such that |w|+1+d >
0,
(q, w, |w|+ 1) ⊢ (q′, wa, |w|+ 1 + d);

� For all (q, w, n) ∈ Cf (TM) with n ≤ |w| and (q′, a, d) = δ(q, w[n]) such that
n+ d > 0,
(q, w, n) ⊢ (q′, w[1, n− 1]aw[n+ 1, |w|], n+ d).

Then the language of TM is de�ned by: L(A) = {w | ∃(q, u, n) ∈ Cf (TM), q ∈
F, (q0, w, 1) ⊢∗ (q, u, n)}.

We say that L is a recursively enumerable language if there exists a Turing
machine TM such that L = L(TM). L is recursive if L is a recursively enumerable
and L is a recursively enumerable.

This family of recursive languages strictly includes the family of context-free
languages.

Theorem 2.3.11. Any context-free language L is a recursive language.

L = {anbncn | n ∈ N} is a non context-free recursive language.

2.3.4 Petri net languages

All the results and de�nitions of this subsection come from the Peterson book [127].
Using a similar procedure generating regular languages from �nite state ma-

chines, one can de�ne a Petri net languages. Let (N ,m) be a marked Petri
net, Sf a �nite set of �nal markings, and we equip any transition t with a la-
bel λ : T 7→ Σ ∪ {ε} where Σ is a �nite alphabet and ε is the empty word. The
labeling is extended to transition sequences in the usual way. Once Ss and λ are
speci�ed we can de�ne two languages of the marked Petri net:

Reachability languages. All the words labeling sequences reaching some state
of Sf :

LR(N ,m, λ, Sf ) = {λ(σ)|m
σ−→m′ ∈ Sf}

Coverability languages. All the words labeling sequences covering some state
of Sf :

LC(N ,m, λ, Sf ) = {λ(σ)|m
σ−→m′′ ≥m′ ∈ Sf}
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Let us for now focus on the reachability languages, the larger family:

Proposition 2.3.12 ([128, 68]). The family of Petri net reachability languages
strictly includes the family of coverability languages.

The language L2 = {anbncn | n ∈ N} is a Petri net reachability language. In-
deed, L2 = LanR(N2, pi, λ, {pf}}) where N2 is the Petri net depicted in Figure 2.5,
and the labeling is denoted by (red) letters above the transitions. Reachability lan-

Figure 2.5: The Petri net N2 for the language L2 = {anbncn | n ∈ N}.

guages have some important closure properties:

Proposition 2.3.13. ([127]) The family of Petri net reachability languages is
closed under the following operations: union, intersection, Kleene star, concatena-
tion, and homomorphism.

Let us describe the relations between the family of reachability languages and
the previously de�ned ones.

Proposition 2.3.14. ([127]) The family of regular languages is strictly included
in the family of reachability languages of Petri nets.

The context-free languages and the reachability languages are incomparable,
where for example it was shown that:

Lemma 2.3.15. ([127]) The language of palindromes on two letters is not a reach-
ability language for any Petri net.

Moreover, the language {anbncn | n ∈ N} is not a context-free language, hence:

Proposition 2.3.16. The family of context-free languages and the family of Petri
net reachability languages are incomparable.

Since reachability for Petri nets is decidable, and context-free languages are
recursive, we have:

Proposition 2.3.17. The family of reachability languages of Petri nets is strictly
included in the family of recursive languages.
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2.3.5 L∗ � algorithm

Angluin introduced L∗, a classical instance of a learning algorithm in the presence
of a minimally adequate teacher (MAT) [10]. Given any regular language L ⊆
Σ∗, the algorithm L∗ eventually outputs the unique minimal DFA H such that
L(H) = L. The crux is that, while Σ is given, L is a priori unknown and can only
be accessed through membership queries (MQ) and equivalence queries (EQ):

(MQ) w ∈ L? for a given word w ∈ Σ∗. Thus, the answer is either yes or no.

(EQ) L(H) = L? for a given DFA H. Again, the answer is either yes or no. If
the answer is no, one also gets a counterexample word from the symmetric
di�erence L(H)⊕ L.

Essentially, L∗ asks MQs until it considers that it has a consistent data set to come
up with a hypothesis DFA H (Line 8), which then undergoes an EQ (Line 9). If
the latter succeeds, then the algorithm stops. Otherwise, the counterexample and
possibly more membership queries are used to re�ne the hypothesis. The algorithm

Algorithm 2: L∗- algorithm.

Input: An oracle providing a membership query MQ : Σ∗ 7→ {T, F}, and
a equivalence query EQ : DFA 7→ Σ∗ × {T, F}

Data: AT , AF the minimal automata with L(AT ) = Σ∗ and L(AF ) = ∅
Output: A �nite automaton H

1 if MQ(ε) then
2 H ← AT ;
3 else
4 H ← AF ;
5 end
6 Counter, Equal← EQ(H);
7 while not Equal do
8 H ← Refine(H,MQ,Counter);
9 Counter, Equal← EQ(H);

10 end
11 return H

provides the following guarantee: If MQs and EQs are answered according to
a given regular language L ⊆ Σ∗, then the algorithm eventually outputs, after
polynomially many steps, the unique minimal DFA H such that L(H) = L. The
heart of this algorithm lies in procedure of the re�nement of the current hypothesis
Line 8 according to a counter example and membership queries. There are several
ways to implement this process. In the original paper [10] Angluin maintains
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an observation table which can represent DFA and can be re�ned by a counter
example. In this work we mainly use the process developed by Kearns et al.
in [88]. Their main idea is to use the Nerode congruence and Theorem 2.3.4.
Denote by L the regular language we are attempting to learn. They maintain two
sets:

1. State access words S. Representatives of equivalence classes of the Nerode
congruence.

2. Distinguishing words D. A set of distinguishing words, such that, for any
s, s′ ∈ S, there exists a distinguishing word d ∈ D.

These two sets are stored in a binary decision tree T , where S are the leaves and
D are the inner vertices. Given a word w, the decision made in each inner vertex
is answering whether wd ∈ L. Therefore, for a given tree T we can assign for any
word w a state s ∈ S, denote it by Sift(T , w). Figure 2.6, illustrates a run of the
algorithm learning the language L2 = {(ab)n | n ∈ N} and presents two trees T ,
and T ′, for which Sift(T , aa) = a and Sift(T ′, aa) = aa. An invariant property of

Decision Tree

New counter example

Decision Tree Produced DFA from

Produced DFA from

Figure 2.6: Partial run of the Kearns et al. L∗ algorithm for the language
{(ab)n | n ∈ N}.

the decision trees, which are built during the algorithm, is that two words w ∼L w′

are assigned to the same state by the decision trees. Assuming that the language
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is not universal or empty, there exists a word w such that w ∈ L if and only if
ε /∈ L. Therefore, the initial decision tree consists of the root ε with two children
w and ε (see T in Figure 2.6).

To create a hypothesis DFA from these trees, one takes the set S to be the
states of the DFA. The transition function δ is de�ned on each (s, a) ∈ S × Σ to
be the state Sift(T , sa) = s′. The initial state is the state ε and the �nal state
are all the states on the right side of the tree. See for example the trees and their
DFA in Figure 2.6.

Now, assume we performed an equivalence check and received a counter exam-
ple w. It means that there is an equivalence class we did not discover yet, more
precisely there exists a s ∈ S which represents more than one class of ∼L. There-
fore, the algorithm splits one of the previously known states (i.e., leaf of the tree)
and adds a new distinguishing word (inner node) to separate these new states.
This is done by taking the counter example w and checking the smallest pre�x
wpre for which s = Sift(T , wpre) ̸= δ(q0, wpre) = s′ in the current hypothesis DFA
and Tree T . Let wd be the distinguishing word between s′ and s, and denote by
wpre = w′prea. We change the leaf s′ in to an inner vertex with word wda, add it
two new leafs s and w′pre. In Figure 2.6, the counter-example aab, splits the node
a into aa and a and add the distinguishing word b = εb.

Therefore, every round, we add a single state which does not belong to any other
equivalence class of the original language. When all classes have been discovered
the algorithm terminates and this happens in �nite time, since there are �nitely
many class in a regular language by Theorem 2.3.4. Moreover, since we have
representatives of the classes and distinguishing words, the current DFA is the
minimal DFA.

An issue may rise if one wants to use this algorithm to learn a regular language
from a black box, where an equivalence query cannot be implemented. In this case
we can use a probabilistic version of Angluin's algorithm. In Angluin's original
paper [10], she designs a type of probably approximately correct (PAC) version of
her algorithm, where the equivalence query is replaced with a large set of random
membership queries. The size of this set, StEq, depends on three variables 0 <
ε, δ < 1 and the number of equivalence queries already performed n:

StEq(n, ε, δ) =
1

ε

(
log(

1

δ
) + log(2)(n+ 1)

)
.

By replacing the equivalency queries with random StEq(n, ε, δ)membership queries
we get the PAC version of the algorithm, for which we get the following guarantee:

Theorem 2.3.18 ([10]). Let P be a probability distribution on Σ∗, L a regular
language, and 0 < ε, δ < 1. The PAC version of Angluin's algorithm terminates
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outputting a DFA A, such that with probability greater than 1− δ:∑
w∈L⊕L(A)

P (w) ≤ ε

2.4 Markov Chains

The following is a short summary of some results and de�nitions for Markov chains.
We add it here as it is an integral part of a proof in Chapter 11.

De�nition 2.4.1. A sequence {Xn}∞n=0 of random variables is called a Markov
Chain (MC) on the state space S if it satis�es, ∀n ∈ N, {xj}n+1

j=0 ⊆ S:

P (Xn+1 = xn+1|X0 = x0, X1 = x1, ..., Xn = xn) = P (Xn+1 = xn+1|Xn = xn)

We call a MC time homogeneous if for all n ∈ N, P (Xn+1 = xn+1 | Xn = xn) =
P (X1 = y | X0 = x). We call it �nite if |S| <∞. From now on we assume that all
MCs are time homogeneous and �nite. Let the transition function be the stochastic
matrix P , such that P(x, y) = P (Xn+1 = y | Xn = x). To examine the behavior of
a MC we need to know how to �start� the chain at X0. Let the initial distribution
be π0 (x) = P (X0 = x) a probability measure on S. Denote by:

Pπ0 (X0 = x0, ..., Xn = xn) = π0 (x0)P (x0, x1) · · · P (xn−1, xn)

For a state x ∈ S, we denote by πx initial distribution such that π0(x) = 1. Given
x ∈ S we call the random value Ty = inf {n ≥ 0|Xn ∈ A} the hitting time of y.
Denote by ρ(x, y) = Pπx(Ty < ∞) the probability of reaching y from x in �nite
time. Given two states x, y ∈ S, we say that x leads to y, i.e. x → y, if ρx,y > 0.
We call S irreducible if ∀x, y ∈ S, x→ y and y → x.

We call the measure π on S an invariant probability for the MC if πP = π.

Lemma 2.4.2. Given an irreducible MC, then the invariant measure exists and it
is unique.

For x ∈ S satisfying Pn (x, x) > 0 for some n > 0, call dx = gcd ({n > 1|Pn (x, x) > 0})
is the period of x.

Lemma 2.4.3. If the MC is irreducible, then ∀x, y ∈ S, dx = dy.

The Period of the MC is then de�ned to be the period of all states. We call a
irreducible MC aperiodic if it is of period one.

Theorem 2.4.4. Given a �nite, irreducible, and aperiodic, MC with invariant
distribution π, then:

∀x, y ∈ S lim
n→∞

Pn (x, y) = π (y)
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Given a period d > 1, one can divide the states into d equivalence classes
S = S0 ∪ S1 · · ·Sd−1, such that ∀i < d and ∀j ̸= (i+ 1)mod d one has:

∀x ∈ Si ,∀y ∈ Sj P(x, y) = 0

Moreover, the MC on the states Si with the probability distribution Pn is an
irreducible MC.
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Cover of Petri Nets
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Chapter 3

Cover and Commodi�cation of

Accelerations

Recall that the Cover (also denoted as coverability set) of a Petri net with an
initial marking is the downward closure (for the usual order on integer vectors) of
the set of reachable markings. An e�ective �nite representation of the cover makes
it possible to decide several problems, such as: Can a given marking be covered by
a reachable marking (the coverability problem)? Is the set of reachable markings
�nite? Which places are unbounded?

In 1969, Karp and Miller showed that a �nite representation of the coverability
set of Petri nets and vector addition systems is computable by an algorithm (the
K-M algorithm) constructing a �nite tree [85] whose �nite set of vertex labels (ω-
markings) C represents the cover. Speci�cally, the downward closure (in NP ) of
C, coincides with the cover.

The original proof of K-M algorithm is incomplete as Hack had already noted
in 1974 [68]. Motivated by the lack of complete and certi�ed proof, Yamamoto et
al. wrote a formal COQ proof of the correctness of K-M algorithm [160].

In this chapter we give a simple and elegant proof of the K-M algorithm based
on three new concepts: abstraction, acceleration and sequence of exploration. In
particular, we transform the accelerations of the K-M algorithm to �rst-class citizens
(i.e., commodi�cation of the accelerations) instead of using them implicitly. Then
we propose an �accelerated� variant of the K-M algorithm with an expected gain in
execution time.

An abstraction is an ω-transition (i.e., a generalized transition), where (1) its
backward incidence and incidence with respect to a place can be equal to ω (i.e.,
belonging to Nω) and (2) which has an in�nite family of transition sequences �jus-
tifying� the introduction of the ω's. We show that their �ring from a ω-marking
whose associated ideal is included in Cover leads to a ω-marking whose associated
ideal is also included in Cover. We then prove that the concatenation of abstrac-

33
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tions is still an abstraction. An acceleration is an abstraction whose incidence with
respect to each place is either zero or ω. We establish that any abstraction can be
transformed into an acceleration by substituting the strictly positive components
of the incidence by ω and requiring ω tokens for the strictly negative components
of the incidence.

The proof of the K-M algorithm becomes rather simple, with the addition of
ghost variables (i.e., variables without e�ect on the execution of the algorithm). As
usual, the proof of the termination is based on the well order of NP

ω . The proof of
consistency is an almost immediate consequence of the properties of abstractions
and accelerations. The proof of completeness is based on the notion of exploration
sequences, detailed below.

We then deepen our study of accelerations. The set of accelerations provided
with a natural order is a well order, i.e., every upward closed set can be represented
by a �nite set of minimal elements. We show that the integer coe�cients of the
minimal accelerations are bounded by B(e, d), which is polynomial in the size of
the incidence matrices e and doubly exponential in the number of places d. We
also show how to transform (truncate) any acceleration into an acceleration whose
integer coe�cients are bounded by B(e, d). We then propose an accelerated version
of the algorithm of K-M with an expected gain in the execution time. The general
principle is as follows: when you discover an acceleration, you truncate it and
memorize it. Then at each step of the algorithm, the marking of the current node
is increased by �ring the accelerations that can be �red. Due to the truncation of
the accelerations, our accelerated version of the K-M algorithm requires a minimal
additional cost in memory (2−EXP), compared to the general cost memory of
the K-M algorithm which is non-primitive recursive. In addition, the proof of the
correctness of our accelerated variant is immediately deduced from our original
proof.

Organization. In Section 3.1 we introduce and study abstractions and accelera-
tions of a Petri net. We then establish the proof of the K-M algorithm in Section 3.2.
In Section 3.3 we describe an improved version of the K-M algorithm.

Based on. This chapter is mainly based on our work in [61].

3.1 Covering and Abstractions

Let N = ⟨P, T,Pre,C⟩ be a Petri net. In order to introduce abstractions and
accelerations, we generalize the transitions to take into account place markings
with ω tokens.

De�nition 3.1.1. Let P be a set of places. An ω-transition a is de�ned by two
vectors:
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Figure 3.1: Concatenation of abstractions

� Pre(a) ∈ NP
ω its backward incidence;

� C(a) ∈ ZP
ω its incidence with Pre(a) +C(a) ≥ 0.

For simplicity, we denotePre(a)(p) (resp.C(a)(p)) byPre(p, a) (resp.C(p, a)).
An ω-transition a is �reable from an ω-marking m ∈ NP

ω if m ≥ Pre(a). When a

is �red from an ω-marking m, it leads to an ω-marking m′
def
= m+C(a), which we

denote m
a−→ m′. Note that if Pre(p, a) = ω then whatever the value of C(p, a)

is, one has m′(p) = ω. So without loss of generality, we suppose that for all
ω-transition a, Pre(p, a) = ω implies C(p, a) = ω.

In order to de�ne abstractions, we de�ne the incidence of a sequence of ω-

transitions σ by recurrence over its length. Like previously, we introducePre(p, σ)
def
=

Pre(σ)(p) and C(p, σ)
def
= C(σ)(p). The base case corresponds to the de�nition

of an ω-transition. Let σ = tσ′, with t an ω-transition and σ′ a sequence of
ω-transitions, then:

� C(σ) = C(t) +C(σ′);
� For all p ∈ P

� if C(p, t) = ω then Pre(p, σ) = Pre(p, t);
� else Pre(p, σ) = max(Pre(p, t),Pre(p, σ′)−C(p, t)).

The sequence σ is �reable from m if and only if m ≥ Pre(σ). In this case,
m

σ−→ m +C(σ). For an example, see Figure 3.1, where we have the Pre and C
of two omega transitions a and a′ and their concatenation a · a′.
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An abstraction of a PN is an ω-transition which concisely re�ects the behavior
of the net from the point of view of coverability (see Proposition 3.1.3). We note
that a transition t of a PN is by construction (with σn = t) an abstraction.

De�nition 3.1.2. Let N = ⟨P, T,Pre,C⟩ be a PN and a be an ω-transition.
The ω-transition a is an abstraction if for all n ≥ 0, there exists σn ∈ T ∗ such

that for all p ∈ P with Pre(p, a) ∈ N, we have:

1. Pre(p, σn) ≤ Pre(p, a);
2. if C(p, a) ∈ Z then C(p, σn) ≥ C(p, a);
3. if C(p, a) = ω then C(p, σn) ≥ n.

The following proposition justi�es the interest of abstractions.

Proposition 3.1.3. Let (N ,m0) be a marked PN, a be an abstraction and m

be an ω-marking such that: JmK ⊆ Cover(N ,m0) and m
a−→ m′. Then Jm′K ⊆

Cover(N ,m0).

Proof. Let m∗ ∈ Jm′K. Denote n = max(m∗(p) |m′(p) = ω) and
ℓ = max(Pre(p, σn), n−C(p, σn) |m(p) = ω).
De�ne m♯ ∈ JmK by:

� If m(p) < ω then m♯(p) = m(p);
� Otherwise m♯(p) = ℓ.

Let us check that σn is �reable from m♯. For any p ∈ P ,

� If m(p) < ω then m♯(p) = m(p) ≥ Pre(p, a) ≥ Pre(p, σn);
� Otherwise m♯(p) = ℓ ≥ Pre(p, σn).

Let us check that m♯ +C(σn) ≥m∗. For any p ∈ P ,

� If m(p) < ω and C(p, a) < ω then
m♯(p) +C(p, σn) ≥m(p) +C(p, a) = m′(p) ≥m∗(p);

� If m(p) < ω and C(p, a) = ω then
m♯(p) +C(p, σn) ≥ C(p, σn) ≥ n ≥m∗(p);

� If m(p) = ω then m♯(p) +C(p, σn) ≥ n−C(p, σn) +C(p, σn) = n ≥m∗(p).

A simple way to build new abstractions consists in concatenating them.

Proposition 3.1.4. Let N = ⟨P, T,Pre,C⟩ be a PN and σ a sequence of abstrac-
tions. Then the ω-transition a de�ned by Pre(a) = Pre(σ) and C(a) = C(σ) is
an abstraction.
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Proof. We show this result by recurrence on the length of σ. The base case is
immediate. Let σ = bσ′ and (by the recursion hypothesis) let {σ′n}n∈N a family of
sequences of transitions associated with σ′. Let {σn,b}n∈N a family of sequences of
transitions associated with b. Fix n ∈ N.
Denote by n′ = max(n,max(n−C(p, b) | C(p, b) < ω = C(p, σ′))).
Denote ℓ = max(Pre(p, σ′n′), n−C(p, σ′n′) | Pre(p, b) < ω = C(p, b)).
Let us show that σℓ,bσ

′
n′ satis�es the three conditions of De�nition 3.1.2.

First recall, that we set the ω-transitions in such a way that for any p ∈ P , if
Pre(p, a) = ω then C(p, a) = ω. Hence, we are only interested in places such that
Pre(p, a) < ω. Let p ∈ P , Pre(p, a) < ω if and only if
(1) Pre(p, b) < ω and C(p, b) = ω, or
(2) Pre(p, b) < ω, C(p, b) < ω and Pre(p, σ′) < ω.

1. Case Pre(p, b) < ω and C(p, b) = ω.
Therefore Pre(p, a) = Pre(p, b) and C(p, a) = ω.
We thus have Pre(σℓ,b) ≤ Pre(p, b) = Pre(p, a).
Moreover, Pre(p, σℓ,b) + C(p, σℓ,b) ≥ C(p, σℓ,b) ≥ ℓ ≥ Pre(p, σ′n′) showing
condition ii. holds.
Finally, C(p, σℓ,b)+C(p, σ′n′) ≥ ℓ+C(p, σ′n′) ≥ n−C(p, σ′n′)+C(p, σ′n′) ≥ n
ful�lling condition iii.

2. Case Pre(p, b) < ω, C(p, b) < ω and Pre(p, σ′) < ω.
Therefore, Pre(p, a) = max(Pre(p, b),Pre(p, σ′)−C(p, b)) and:

Pre(p, σℓ,bσ
′
n′) = max(Pre(p, σℓ,b),Pre(p, σ′n′)−C(p, σℓ,b))

≤ max(Pre(p, b),Pre(p, σ′)−C(p, b)) = Pre(p, a)

showing condition ii. holds. In order to show that condition ii. holds, there
are two subcases to be considered:

� C(p, σ′) < ω. So, C(p, a) = C(p, b) +C(p, σ′)
and C(p, σℓ,bσ

′
n) = C(p, σℓ,b) +C(p, σ′n) ≥ C(p, b) +C(p, σ′) = C(p, a).

� C(p, σ′) = ω. So, C(p, a) = ω
and C(p, σℓ,bσ

′
n′) = C(p, σℓ,b) +C(p, σ′n′) ≥ C(p, b) + n−C(p, b) = n.

Therefore, a is an abstraction.

We now introduce the concept underlying the construction of Karp and Miller.

De�nition 3.1.5. Let N = ⟨P, T,Pre,C⟩ be a PN. An acceleration is an abstrac-
tion a such that C(a) ∈ {0, ω}P .

The following proposition provides a way of obtaining acceleration from any
abstraction.



38CHAPTER 3. COVER AND COMMODIFICATION OF ACCELERATIONS

Proposition 3.1.6. Let N = ⟨P, T,Pre,C⟩ be a PN and a be an abstraction.
De�ne a′ an ω-transition by for all p ∈ P

� If C(p, a) < 0 then Pre(p, a′) = C(p, a′) = ω;
� If C(p, a) = 0 then Pre(p, a′) = Pre(p, a) and C(p, a′) = 0;
� If C(p, a) > 0 then Pre(p, a′) = Pre(p, a) and C(p, a′) = ω.

Then a′ is an acceleration.

Proof. Consider {σn}n∈N a family associated with the abstraction a. We now show
that the family {σn

n}n∈N satis�es the conditions of De�nition 3.1.2 for a′. For all
n ∈ N:

� Let p ∈ P such that Pre(p, a′) < ω.
This implies that C(p, a) ≥ 0 and that Pre(p, a′) = Pre(p, a).
Since, C(p, σn) ≥ C(p, a) ≥ 0, one has
Pre(p, σn

n) = Pre(p, σn) ≤ Pre(p, a) = Pre(p, a′);
� Let p ∈ P such that C(p, a′) = 0. We get that 0 = C(p, a) ≤ C(σn).
Therefore, 0 ≤ nC(σn) = C(σn

n);
� Let p ∈ P such that Pre(p, a′) < ω and C(p, a′) = ω. This implies that
C(p, a) > 0. So 1 ≤ C(p, a) ≤ C(σn). Therefore, n ≤ nC(σn) = C(σn

n).

3.2 Karp and Miller's algorithm

Algorithm 3 is the K-M algorithm enlarged with `ghost' variables (i.e., having no
in�uence on the behavior of the algorithm) Acc and δ which will simplify the proof.
Let us brie�y describe this algorithm. It maintains a directed tree Tr = (V,E, λ, δ)
whose vertices (V ) are labeled by an ω-marking (i.e., λ : V 7→ NP

ω ) and the
edges (E) are labeled by a sequence of ω-transitions belonging to TAcc∗ (i.e.,
δ : E 7→ TAcc∗). We extend δ to a mapping from E∗ 7→ (TAcc∗)∗ in the usual
way. K-M maintains a subset of the vertices (Front) which are still to be explored.
In order to shorten the description of the algorithm, we introduced Anc(u) the set
of ancestors of u (excluding u).

As long as Front is not empty, the algorithm chooses a vertex u ∈ Front. Then
there are three cases. Note that, by �in our version� we mean the introduction of
the new ghost variables.

� The marking of u is less than or equal to that of an ancestor u′: then u is
removed from Front and V and the edge entering u is removed.
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Figure 3.2: An unbounded Petri net.

� The marking of u is greater than that of an ancestor u′ and for at least one
place p, λ(u′)(p) < λ(u)(p) < ω. For all such places p, we substitute to its
marking the value ω. In our version, we also de�ne an ω-transition a by (1)
de�ning it as the sequence of ω-transitions which labels the path from u′ to u,
(2) applying the transformation of Proposition 3.1.6, and (3) concatenating
it with the sequence labeling the incoming edge of u.

� Otherwise, the algorithm determine the �reable transitions and �re them to
create the children of u which are inserted in Front. The vertex u is removed
from Front. In our version, the incoming edge of a new vertex is labeled by
the transition that has been �red.

When Front is empty, the algorithm ends.

Example 3.2.1. The Figure 3.3 illustrates the tree of Karp and Miller correspond-
ing to the PN in Figure 3.2. Let us describe its construction during the develop-
ment of the leftmost branch. From the initial marking, one �res t1 which leads to
pl+pbk, incomparable with m0. The exploration continues from this marking. The
only �reable transition is t5 whose �ring leads to the marking pl + pbk + pba. An
acceleration a1 is discovered with Pre(a1) = pl and C(a1) = ωpba. The current
marking is then modi�ed accordingly to the �ring of a1. This vertex is exam-
ined again during a subsequent iteration. There is no more acceleration possible.
Consequently, one continues the exploration: t5 and t6 are �reable. The vertex
associated with the �ring of t5 has an identical marking: it will therefore be re-
moved. The vertex associated with �ring of t6 gives rise to a new acceleration: a2

with Pre(a2) = pbk + ωpba and C(a2) = ωpc + ωpba. Since from the last marking
only t5 and t6 are �reable and lead to the same marking, the exploration of the
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Figure 3.3: Karp and Miller's tree.

branch is stopped. Note that a1 is re-discovered twice during the construction.
The algorithm computed a set of 11 ω-markings labeling the 11 nodes. This set a
is �nite basis of the Cover.

We will now show the correctness of the K-M algorithm, namely:

� It terminates;
� It is consistent:

⋃
v∈V Jλ(v)K ⊆ Cover(N ,m0);

� It is complete: Cover(N ,m0) ⊆
⋃

v∈V Jλ(v)K.

The termination is based on the fact that NP
ω is well-ordered.

Proposition 3.2.2 (termination). The K-M algorithm (Algorithm 3) terminates.

Proof. By contradiction, suppose the K-M algorithm does not terminate. A vertex
of the tree can only be chosen in the loop at most |P |+1 times. In fact, it remains
in Front only if it has been accelerated, which implies that the associated marking
has, at least, one more component which is equal to ω.
Consequently, the algorithm builds a tree with in�nitely many vertices. Each
vertex has at most |T | children. By application of König's lemma, this tree has an
in�nite branch.
Let m0,m1, . . . be the markings associated with the vertices of this branch. Recall
that, NP

ω is well-ordered. Therefore, we can extract an increasing in�nite subse-
quencemα(0) ≤mα(1) ≤ · · · . There cannot be an equality between two consecutive
vertices because then the second vertex would have been removed, hence we have
a strictly increasing sequence. We therefore deduce that an acceleration has been
detected between any two consecutive vertices. Thus, each marking has, at least,
one more component which is equal to ω than its predecessor. Therefore, this
sequence contains at most |P |+ 1 elements which contradicts the hypothesis.
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Algorithm 3: The Karp and Miller algorithm

KarpMiller(N ,m0)
Input: A marked PN (N ,m0)
Data: V a set of vertices; E ⊆ V × V ; Front ⊆ V ; λ : V → Np

ω;
δ : E → TAcc∗;

Tr = (V,E, λ, δ) a labeled tree; Acc a set of ω-transitions;
u, u′, u′′ vertices; a an ω-transition with non negative incidence;
Output: A labeled tree Tr = (V,E, λ, δ)

1 V ← {r}; E ← ∅; Front← {r}; λ(r)←m0; Acc← ∅;
2 while Front ̸= ∅ do
3 Choose u ∈ Front
4 if ∃u′ ∈ Anc(u) s.t. λ(u′) ≥ λ(u) then
5 Front← Front \ {u} ; V ← V \ {u} ; E ← E \ V × {u} // λ(u) is

covered

6 else if ∃u′ ∈ Anc(u) s.t. λ(u′) < λ(u) ∧ ∃p λ(u′)(p) < λ(u)(p) < ω
then
// An acceleration is found between u and its ancestors

u′

7 Let γ ∈ E∗ be the path from u′ to u in Tr
8 a← NewAcceleration()
9 foreach p ∈ P do
10 if λ(u′)(p) < λ(u)(p) then λ(u)(p)← ω
11 if C(p, δ(γ)) < 0 then Pre(p, a)← ω; C(p, a)← ω
12 if C(p, δ(γ)) = 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← 0
13 if C(p, δ(γ)) > 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← ω

14 end
15 Let (u′′, u) be the incoming arc of u in Tr
16 δ((u′′, u))← δ((u′′, u)) · a; Acc← Acc ∪ {a}
17 else
18 Front← Front \ {u}
19 foreach t ∈ T s.t. λ(u) ≥ Pre(t) do

// Adding the children of u
20 u′ ← NewNode(); V ← V ∪ {u′}; Front← Front ∪ {u′};

E ← E ∪ {(u, u′)}
21 λ(u′)← λ(u) +C(t); δ((u, u′))← t

22 end

23 end

24 end
25 return Tr
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The following lemma illustrates the advantage of the introduction of ghost
variables.

Lemma 3.2.3. For every edge (u, v) ∈ E, we have λ(u)
δ(u,v)−−−→ λ(v).

Proof. There are two cases to be considered:

• The creation of (u, v). This happens during the construction of the successors

of u. Consequently, there exists a transition t ∈ T such that, λ(u)
t−→ λ(v) and

this transition labels the edge (u, v) .

• The modi�cation of λ(v). This happens when the algorithm discovers an
acceleration a between an v and an ancestor u′ of v. We denote by m− the
marking associated with v before its update and m+ the marking associated with
v after its update. By induction, the sequence of ω-transitions along the path from
u′ to v is �reable from λ(u′), hence also from m−. This sequence has the same
precondition that a has, except possibly on places p where m−(p) = ω. So a is

�reable from m− and by construction m−
a−→m+.

The following lemma is based on the preservation of abstractions by concate-
nation and the construction of accelerations from abstractions.

Lemma 3.2.4. Every ω-transition a ∈ Acc is an acceleration.

Proof. The proof is done by induction according to the order of insertion in Acc.
Let a ∈ Acc be an ω-transition. Let us denote by σ the sequence corresponding
to the path in the directed tree (created during the run of K-M) which led to the
creation of a. By the induction hypothesis, σ is a sequence of abstractions. From
Proposition 3.1.4, σ is an abstraction (as a concatenation of abstractions). The
construction of a from σ corresponds to Proposition 3.1.6. Therefore, a is an
acceleration.

The consistency of the algorithm is now a consequence of the previous lemmas.

Proposition 3.2.5 (consistency). For all v ∈ V , Jλ(v)K ⊆ Cover(N ,m0).

Proof. The proof is done by induction on the length of the path from r to u.
The marking associated with the root r is m0. Hence Jm0K ⊆ Cover(N ,m0).
Denote by u the parent of v. By the induction hypothesis Jλ(u)K ⊆ Cover(N ,m0).

By Lemma 3.2.3, λ(u)
δ(u,v)−−−→ λ(v). By Lemma 3.2.4, δ(u, v) is a sequence of

abstractions. By Proposition 3.1.4, δ(u, v) is an abstraction. By Proposition 3.1.3,
Jλ(v)K ⊆ Cover(N ,m0).

In order to ease the proof of completeness, we introduce the notion of sequence
of exploration, related to the coverability tree and its construction.
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De�nition 3.2.6. A sequence of transitions m
σ−→m′ is a sequence of exploration

of Tr if there exists v ∈ Front with λ(v) = m and for all markings m′′ visited by
the sequence σ and all v ∈ V \ Front, we have : m′′ ̸≤ λ(v).

For example in Figure 3.4 the sequence σ is an exploration sequence. The

Figure 3.4: Exploration sequence to m′ where Front = {v, x}.

de�nition of exploration sequence brings us to the following de�nition:

De�nition 3.2.7. Let m be a marking. Then m is quasi-covered if:

� Either there exists v ∈ V \ Front such that m ∈ Jλ(v)K;
� Or there exists a sequence of exploration m1

σ−→m2 ≥m.

We now show that all coverable markings are quasi-covered during the run of
the algorithm.

Lemma 3.2.8. For all m ∈ Cover(N ,m0) is quasi-covered at the start of each
iteration (Line 2) of the main while loop (lines 2 - 26).

Proof. We establish this result by induction on the number of iterations of the
while loop already performed.

• Let the base case be the �rst time we reach the beginning of the main loop.
Since the algorithm is initialized by V = Front = {r} and λ(r) = m0 and for
all m ∈ Cover(N ,m0), there exists a sequence m0

σ−→ m2 ≥ m. We get that
Assertion 2 holds for the base case.

• Consider the start of an iteration of the loop. Pick m ∈ Cover(N ,m0). If m
satis�es Assertion 1, it satis�es it until the termination of the algorithm.

Suppose that m satis�es Assertion 2. Let us denote the sequence of exploration
m1

σ−→ m2 ≥ m with w ∈ Front where λ(w) = m1. Let us consider the di�erent
alternatives.

◦ ∃u′ ∈ Anc(u) such that λ(u′) ≥ λ(u). This implies that u ̸= w and the sequence
of exploration stays valid.



44CHAPTER 3. COVER AND COMMODIFICATION OF ACCELERATIONS

◦ λ(u) is accelerated.
If u ̸= w, the sequence of exploration is still valid.
If u = w then, since λ(u) has been increased, σ is �reable from λ(u). Each

marking visited is greater than or equal to the corresponding marking of the ex-
ploration sequence. So this new sequence is a sequence of exploration that covers
m.

◦ u is removed from Front and its children are computed. There are now two
subcases to be considered.

� If for all marking m′ visited by σ, m′ ̸≤ λ(u), the sequence of exploration is
still valid.

� Otherwise, consider m′ the last marking visited such that m′ ≤ λ(u) and

the su�x of the sequence m′
σ′
−→m2.

If σ′ = ε then m ≤m2 = m′ ≤ λ(u). Therefore, Assertion 1 holds for m.

Otherwise m′
t−→ m′′

σ′′
−→ m2. Since m′ ≤ λ(u), u has a child v ∈ Front such

that λ(u)
t−→ λ(v) ≥ m′′. Therefore, λ(v)

σ′′
−→ m∗ ≥ m for some m∗ and

considering the choice of m′ this sequence is a sequence of exploration.

Using the above, we can conclude the completeness of K-M:

Proposition 3.2.9 (completeness). Upon termination of Algorithm 3,

Cover(N ,m0) ⊆
⋃
v∈V

Jλ(v)K

.

Proof. When Algorithm 3 terminates, Front is empty. The completeness is a con-
sequence of Lemma 3.2.8.

3.3 An improvement of the algorithm

In order to present an improvement of the algorithm, we deepen the study of
accelerations. First, we equip the ω-transitions with an order related to their
precondition and incidence.

De�nition 3.3.1. Let P be a set of places and let a and a′ be two ω-transitions.
We de�ne the order between them to be:

a ⪯ a′ if and only if Pre(a) ≤ Pre(a′) ∧C(a′) ≤ C(a)
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In other words, a ⪯ a′ if and only if for any ω-markingm such that a′ is �reable
from, then a is also �reable and �ring it leads to an ω-marking greater than or
equal to the one reached by a′.

Proposition 3.3.2. Let N be a PN. Then the set of abstractions of N is upward
closed. Similarly, the set of accelerations is upward closed in the set of ω-transitions
with incidence in {0, ω}P (also ordered by ⪯).

Proof. Let a be an abstraction and a′ be an ω-transition such that a′ ≥ a. Let
{σn}n∈N be the family of sequences associated with a. Let n0 = max(C(p, a′) |
C(p, a′) ∈ N) where, by convention, max(∅) = 0. We will show that the family
{σmax(n,n0)}n∈N can be associated with a′. Pick p such that Pre(p, a′) ∈ N, which
implies that Pre(p, a) ∈ N. We get:

� Pre(p, σmax(n,n0)) ≤ Pre(p, a) ≤ Pre(p, a′) ;
� If C(p, a′) ∈ Z and C(p, a) ∈ Z then C(p, σmax(n,n0)) ≥ C(p, a) ≥ C(p, a′) ;
� If C(p, a′) ∈ Z and C(p, a) = ω then C(p, σmax(n,n0)) ≥ n0 ≥ C(p, a′) ;
� If C(p, a′) = ω then C(p, a) = ω and C(p, σmax(n,n0)) ≥ n.

The above also applies to accelerations, which �nishes the proof.

Next, we show that the set of accelerations is well-ordered.

Proposition 3.3.3. Let N be a PN. Then the set of accelerations of N with ⪯ is
well-ordered.

Proof. The set of accelerations is a subset of NP × {0, ω}P with the order ob-
tained by the Cartesian product of (N,≤) and ({0, ω},≤) (De�nition 3.3.1). These
sets are well-ordered and since the Cartesian product preserves this property, the
proposition follows.

Let us observe that the set of accelerations is not empty, since it contains
the acceleration a de�ned by Pre(a) = C(a) = 0 whose associated family {σn}
is de�ned by: for all n, σn = ε. Since the set of accelerations with the order
⪯ is well-ordered, it is equal to the upper closure of the �nite set of minimal
accelerations (minimal according to the order ⪯). We now study the maximal
size of these minimal accelerations. Given a net, we denote by d = |P | and
e = maxp,t(max(Pre(p, t),Pre(p, t) +C(p, t)).

We will use the following result by Jérôme Leroux [103] which gives a bound
to the length of the shortest transition sequences which connects two mutually
reachable markings m1 and m2.

Theorem 3.3.4. (Theorem 2, [103]) Let N be a PN, m1,m2 be markings, and
σ1, σ2 be sequences such that m1

σ1−→ m2
σ2−→ m1. Then there exist σ′1, σ

′
2 such that

m1

σ′
1−→m2

σ′
2−→m1 where:
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|σ′1σ′2| ≤ ||m1 −m2||∞(3de)(d+1)2d+4

We deduce an upper bound on the size of minimal accelerations. Let v ∈ NP
ω .

We denote by

||v||∞ = max(v(p) | v(p) ∈ N)

Proposition 3.3.5. Let N be a PN and let a be a minimal acceleration. Then

||Pre(a)||∞ ≤ e(3de)(d+1)2d+4

Proof. We consider the net N ′ = ⟨P ′, T ′,Pre′,C′⟩ obtained from N by removing
the set of places {p | Pre(p, a) = ω} and adding the set of transitions T1 = {tp |
p ∈ P ′} with Pre(tp) = p and C(tp) = −p.
We denote P1 = {p | Pre(p, a) < ω = C(p, a)}. Let m1 the marking obtained by
restricting Pre(a) to P ′ and m2 = m1 +

∑
p∈P1

p. Observe that d′ ≤ d and that
e′ = e.
Let {σn}n∈N be the family of sequences associated with a.
Consider n∗ = ||Pre(a)||∞ + 1. Then σn∗ is �reable in N ′ from m1 and its �ring
reaches a marking that covers m2. By concatenating transitions of T1, we obtain
a �ring sequence in N ′ such that m1

σ1−→ m2. By the same process, we obtain a
sequence m2

σ2−→m1.

Applying Theorem 3.3.4, there exists a sequence σ′1 with m1

σ′
1−→ m2 and |σ′1| ≤

(3de)(d+1)2d+4
since ||m1−m2||∞ = 1. By deleting transitions of T1 in σ′1, we obtain

a sequence σ′′1 ∈ T ∗ with m1

σ′′
1−→m′2 ≥m2 and |σ′′1 | ≤ (3de)(d+1)2d+4

.
The ω-transition a′, de�ned by:

� Pre(p, a′) = Pre(p, σ′′1) for all p ∈ P ′;
� Pre(p, a′) = ω for all p ∈ P \ P ′;
� and C(a′) = C(a).

is an acceleration with associated family {σ′′1
n}n∈N.

By de�nition of m1, a
′ ≤ a. Since a is minimal, a′ = a.

Since |σ′′1 | ≤ (3de)(d+1)2d+4
, ||Pre(a)||∞ = ||Pre(a′)||∞ ≤ e(3de)(d+1)2d+4

.

Using previous results, we show that if we get a �too big� minimal acceleration,
we can truncate it.

Proposition 3.3.6. Let N be a PN and a be an acceleration.
Then the ω-transition trunc(a) is an acceleration, where trunc(a) is de�ned by:

� C(trunc(a)) = C(a);
� for all p such that Pre(p, a) ̸= ω, we have
Pre(p, trunc(a)) = min(Pre(p, a), e(3de)(d+1)2d+4

);
� for all p such that Pre(p, a) = ω, we have Pre(p, trunc(a)) = ω.
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Figure 3.5: An accelerated K-M

Proof. Let a′ ≤ a, be a minimal acceleration. For all p such that Pre(p, a) ̸= ω,
Pre(p, a′) ≤ e(3de)(d+1)2d+4

. Hence a′ ≤ trunc(a). Since the set of accelerations is
upward closed, we deduce that trunc(a) is an acceleration.

We are now able to describe the improvement made to the construction of
Karp and Miller (see Algorithm 4). First when one discovers an acceleration, one
truncates it before inserting it into Acc (line 17). Then, when a vertex of the Front
is selected, one �rst tries to apply the accelerations of Acc to increase its marking
(lines 4-6).

Example 3.3.7. Figure 3.5 shows the accelerated K-M tree corresponding to the
net of Figure 3.2. When the vertex obtained by �ring t2 from the initial marking
is examined, the algorithm evaluates whether �ring a1 or a2 (both discovered in
the left branch) is possible. The acceleration a1 is �reable and therefore �red.

The proof of termination is unchanged, while the proofs of consistency and
completeness require only very minor modi�cations to integrate the case of the
application of accelerations. Below we give an intuition on what needs to change
without a full proof. This is due to the fact that we present an even more so-
phisticated algorithm in the next chapter. The proof of consistency remains valid
since the ω−transition a, which is truncated before being added to Acc, is still an
acceleration due to Proposition 3.3.6. For completeness one needs to include in
the induction step of the proof of Lemma 3.2.8, the case of the algorithm using a
previously discovered acceleration.

In practice, applying the memorized accelerations decreases the size of the tree.
Furthermore, the cost of memorizing accelerations is largely compensated by this
decrease. For the benchmarks showing this claim see Chapter 5
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Algorithm 4: An acceleration of the Karp and Miller algorithm

KarpMillerImproved(N ,m0)
Input: A marked PN (N ,m0)
Data: V set of vertices; E ⊆ V × V ; Front ⊆ V ; λ : V → Np

ω;
δ : E → TAcc∗;

Tr = (V,E, λ, δ) a labeled tree; Acc a set of ω-transitions;
u, u′, u′′ vertices; a an acceleration;
Output: A labeled tree Tr = (V,E, λ, δ)

1 V ← {r}; E ← ∅; Front← {r}; λ(r)←m0; Acc← ∅;
2 while Front ̸= ∅ do
3 Choose u ∈ Front and let u′′ be the predecessor of u

4 foreach a ∈ Acc s.t. λ(u)
a−→ λ(u) +C(a) > λ(u) do

5 λ(u)← λ(u) +C(a); δ((u′′, u))← δ((u′′, u))a
6 end
7 if ∃u′ ∈ Anc(u) s.t. λ(u′) ≥ λ(u) then
8 Front← Front \ {u} ; V ← V \ {u} ; E ← E \ V × {u} // λ(u) is

covered

9 else if ∃u′ ∈ Anc(u) s.t. λ(u′) < λ(u) ∧ ∃p λ(u′)(p) < λ(u)(p) < ω
then
// An acceleration is found between u and an ancestors

of u
10 Let γ ∈ E∗ The path from u′ to u in Tr
11 a← NewAcceleration()
12 foreach p ∈ P do
13 if C(p, δ(γ)) < 0 then Pre(p, a)← ω; C(p, a)← ω
14 if C(p, δ(γ)) = 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← 0
15 if C(p, δ(γ)) > 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← ω;

λ(u)(p)← ω

16 end
17 a← trunc(a)
18 δ((u′′, u))← δ((u′′, u)) · a; Acc← Acc ∪ {a}
19 else
20 Front← Front \ {u}
21 foreach t ∈ T s.t. λ(u) ≥ Pre(t) do

// Adding the children of u
22 u′ ← NewNode(); V ← V ∪ {u′}; Front← Front ∪ {u′};

E ← E ∪ {(u, u′)}
23 λ(u′)← λ(u) +C(t); δ((u, u′))← t

24 end

25 end

26 end
27 return Tr
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From a theoretical point of view, there is at most a doubly exponential number
of accelerations each of exponential size: that is to say an additional doubly ex-
ponential memory complexity. Recall, that the size of a cover tree is in the worst
case non-primitive recursive. Therefore, even without decrease of the size of the
tree, the increase of memory size is negligible. Moreover, if the memory space is a
strong constraint then it is enough to keep a subset of the accelerations since the
proof of the modi�ed algorithm is valid for any subset of accelerations.





Chapter 4

Computing the Clover E�ciently

As shown in the previous chapter, the K-M algorithm computes a �nite tree labeled
by a �nite set of ω-markings C ⊆ NP

ω such that C's downward closure restricted to
NP is the Cover. Therefore, C is one among all the possible �nite representations
of the Cover. Moreover, it is not necessarily minimal in the number of elements
because it may contain comparable ω-markings and thus contain redundant items.

Clover, the canonical representation of the cover. However, the set of
maximal elements of C is unique and minimal (in size). This set can be de�ned
independently of the K-M algorithm and was called the minimal coverability set
(MCS) in [56] and abbreviated as the Clover in the more general framework of
Well Structured Transition Systems (WSTS) [58]. Given the Clover, one can
answer coverability questions without rerunning one of the classical coverability
algorithms each time. One only needs to compare the desired marking to be
covered with the markings in the Clover, which takes time proportional to the size
of the Clover. Clover also makes it possible to answer a wider variety of questions
beyond coverability and �niteness problems. Let us illustrate this point with
the following question on parameterized coverability: Is the marking (n, 2, 5, n)
coverable for all n ≥ 0? This property holds if and only if the ω-marking (ω, 2, 5, ω)
is smaller than another ω-marking in the Clover, which can be tested in time
proportional to the size of the Clover. Let us remark that it can be reduced to the
place boundedness problem (noticed by Grégoire Sutre and transmitted to us in
a private communication). The question which arises is whether one can �nd an
e�cient algorithm to compute the Clover of a marked Petri net.

The minimal coverability tree algorithm. So in [56] the author computes
the Clover by modifying the K-M algorithm in such a way that at each step of the
algorithm, the set of ω-markings labelling vertices is an antichain. But this aggres-
sive strategy, implemented by the so-called Minimal Coverability Tree algorithm
(MCT), contains a subtle bug, it may compute a strict under-approximation of
Clover as shown in [57, 65].

51
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Alternative minimal coverability set algorithms. Since the discovery of
this bug, three algorithms (with variants) [65, 135, 129] have been designed for
computing the minimal coverability set without building the full Karp-Miller tree.
In [65] Geeraerts et al. proposed a minimal coverability set algorithm (called
CovProc) that is not based on the K-M algorithm but uses a similar but restricted
introduction of ω's. In [135], Reynier et al. proposed a modi�cation of the MCT,
called the Monotone-Pruning algorithm (called MP), that keeps but �deactivates�
vertices labeled with smaller ω-markings while MCT would have deleted them.
Recently, in [134], Reynier et al. simpli�ed their original proof of correctness
for MP and showed how to extend it for some extensions of Petri nets. In [152],
Valmari et al. proposed another algorithm (denoted below as VH) for constructing
the minimal coverability set without deleting vertices. Their algorithm builds a
graph and not a tree as usual. In [129], Piipponen et al. improved this algorithm
by designing appropriate data structures and heuristics for exploration strategy
that may signi�cantly decrease the size of the graph.

In this chapter, we design an algorithm based on (and �xing) the MCT generating the
Clover of a given net. Despite the current opinion that �The �aw is intricate and
we do not see an easy way to get rid of it... Thus, from our point of view, �xing the
bug of the MCT algorithm seems to be a di�cult task� [65], we have found a simple
modi�cation of MCT which makes it correct. It mainly consists in memorizing
discovered accelerations and using them as ordinary transitions as described in
Section 3.3. Contrary to all existing minimal coverability set algorithms that use
an unknown additional memory that could be non-primitive recursive, we show,
that by Theorem 3.3.4, the additional memory required for accelerations, is at
most doubly exponential (Proposition 3.3.6).

Organization. In Section 4.1 we review in more details the minimal coverability
set algorithms discussed above. Section 4.2 gives an overview and an example run
of our algorithm MinCov. In Section 4.3 we prove MinCov correctness.

Based on. This chapter is mainly based on our work in [60].

4.1 Clover �nding algorithms

Throughout the years, major work has been made on algorithms generating of the
Clover. Most of them trying to optimize the K-M algorithm. The following is a
short summary of the relevant history of this work:
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MCT

In 1993, Alain Finkel de�ned a unique minimal coverability graph for marked
Petri nets [56]. This graph allowed them to decide the same problems as the tree
which the K-M algorithm produces. Given a marked Petri net, the vertices of its
minimal coverability graph are the markings of its Clover. Hence, computing this
graph, one computes also the Clover. The algorithm given in [56], from now on
denoted here by MCT, for computing the minimal coverability graph is based on a
new optimization of the K-M algorithm. The main idea of MCT was to use the K-M
exploration but keep only the vertices with incomparable and maximal markings.
This was achieved by preforming the following actions: Given v the last vertex
discovered and λ(v) its marking, then:

� If there exists a vertex u (previously discovered) such that its marking has
λ(u) ≥ λ(v), then delete v;

� If there exist a vertex, u an ancestor of v with marking strictly smaller λ(v).
Accelerate the marking of u (the same as in K-M) and remove the entire
subtree rooted in u;

� Finally, if there exist a vertex u (not an ancestor of v) with marking strictly
smaller λ(v). Remove u and the subtree rooted in u.

Unfortunately the MCT algorithm was shown in [57] to produce sometimes an under-
approximation of the Clover. This was shown by designing a Petri net for which,
if one picks carefully the order of the vertices explored by MCT it computes a set
of ω-markings which downward closure in NP is a strict subset of the Cover.

CovProc

In 2007, Geeraerts et al. (a subset of the authors of [57], the paper showing the
bug in MCT), designed an algorithm computing the Clover. In contrary to most of
other algorithms preforming this task, they do not build a tree (like the one in K-M)
but handle sets of pairs of markings. The relation between these pairs is that the
second marking can be reached from the �rst one. This relation is su�cient to �nd
and apply acceleration, like the ones from K-M. In order to exploit monotonicity
property of Petri nets, they de�ne a new type of order on these pairs. This order
allows them to maintain sets of maximal pairs during the execution.

The authors provide a way to further optimize their algorithm in a form of an
oracle. This oracle provides pairs of marking such that the second marking m is
in the Cover and for which its downward closure is closed to transitions i.e.,

↓{m′ | ∀t ∈ T s.t. m
t−→m′} ⊆ ↓m.
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They give an example of such an oracle, which provides them with a good perfor-
mance boost.

An implementation of CovProc with and without this oracle was written in
python and compared to K-M. They showed that they are much faster than K-M.
On unbounded Petri nets, the version with the oracle provides a boost to the
performance (compared to CovProc without the oracle), with speed-ups of up too
100× faster.

MP

In 2011 Reynier et al. of [135] set out to �x the bug in MCT by designing a new algo-
rithm Monotone-Pruning (MP). Their approach for �xing the bug, was to instead
of deleting vertices, as done by MCT, �disabling� them. A disabled vertex cannot
have new children, or be used to discover new accelerations. A disabled vertex is
only used to insure completeness.

The algorithm MP was implemented in Python and was compared to K-M and
CovProc [135]. They showed that on a set of popular benchmarks, MP was 10−30×
faster than CovProc and on benchmarks that didn't time out for the K-M it was
100− 300× faster.

Recently [134] Reynier et al. revisited their algorithm. They point out that
the proof for completeness provided in [135] is very complicated. Hence, in [134]
they devise a new proof for its correctness. This proof 1. is much clearer, and 2.
it allows them to give a more generalized version of MP. This generalization might
be used in some subset of WSTS type of systems.

VH

In 2014 Valmari et al. [152] set out to design an improved version of the K-M

algorithm, which we will refer to as VH. Unlike previous tree algorithms, the authors
of [152] did not try to �x the bug with was caused by pruning subtrees. Instead,
they focused on making some useful heuristics, smart data structures, etc. Here
are a few of these optimizations:

� Written in C.
� Vertex blocking: Given a newly discovered vertex with a marking m. If
there already exists a marking larger or equal to it, VH would not explore its
children.

� Hash table: In a forward exploration of a Petri net's coverability tree, there
might be multiple vertices with the same marking. Not only can it happen,
it does happen quite regular because of the nature of transitions in Petri net.
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Therefore, instead of checking whether which is bigger or equal to it, they
�rst check for equality using a Hash table.

� Better acceleration techniques: Using smart heuristics, they �nd accel-
erations faster.

Later on in [129] Piipponen et al. improved VH. The authors identi�ed two bot-
tlenecks in VH: 1) checking for acceleration, and 2) comparing a given marking to
a set of previously discovered marking. Both of these operations are very costly
timewise. To solve the �rst issue, they use a Trajan inspired algorithm. For the
second issue, they designed a new data structure inspired by a binary decision
diagrams.

Both versions, [152] and [129], were implemented in C++. Both tools showed
very good performance on the ran benchmarks(where the newer version seem to
be 10× faster). Both of the versions were able to compute Clovers to benchmarks
which were previously timed out on other tools. However, one have to note that
the benchmarks ran in [152] and [129] were only run on their tools.

4.2 Speci�cation and illustration

As discussed in the introduction, to compute the clover of a Petri net, most al-
gorithms build coverability trees (or graphs), which are variants of the Karp and
Miller tree with the aim of reducing the peak memory during the execution. The
seminal algorithm [56] is characterized by a main di�erence with the KMT con-
struction: when �nding that the marking associated with the current vertex strictly
covers the marking of another vertex, it deletes the subtree issued from this ver-
tex, and when the current vertex belonged to the removed subtree it substitutes
it to the root of the deleted subtree. This operation drastically reduces the peak
memory but as shown in [57] entails incompleteness of the algorithm.

Like the previous algorithms that ensure completeness with deletions, our al-
gorithm also needs additional memory. However, unlike the other algorithms, it
memorizes accelerations instead of ω-markings. This approach has two advan-
tages. First, we are able to exhibit a theoretical upper bound on the additional
memory which is doubly exponential, while the other algorithms do not have such
a bound. Furthermore, accelerations are reused in the construction and thus may
even shorten the execution time and peak space w.r.t. the algorithm in [56].

Before we delve into a high-level description of this algorithm, let us present
some of the variables, functions, and de�nitions used by the algorithm. Algorithm
5, denoted from now on as MinCov takes as an input a marked net (N ,mini) and
constructs a directed labeled tree Tr = (V,E, λ, δ), and a set Acc of ω-transitions
(which by Lemma 4.3.4 are accelerations). Each v ∈ V is labeled by an ω-marking,
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Figure 4.1: Prune and Delete.

λ(v) ∈ NP
ω . Since Tr is a directed tree, every vertex v ∈ V , has a predecessor

(except the root r) denoted by prd(v) and a set of descendants denoted by Des(v).
By convention, prd(r) = r. Each edge e ∈ E is labeled by a �ring sequence
δ(e) ∈ To · Acc∗, consisting of an ordinary transition followed by a sequence of

accelerations (which by Lemma 4.3.3 ful�lls λ(prd(v))
δ(prd(v),v)−−−−−−→ λ(v)). In addition,

again by Lemma 4.3.3, m0
δ(r,r)−−−→ λ(r). Let γ = e1e2 . . . ek ∈ E∗ be a path in the

tree, we denote by δ(γ) := δ(e1)δ(e2) . . . δ(ek) ∈ (T ∪Acc)∗. The subset Front ⊆ V
is the set of vertices `to be processed'.

MinCov may call function Delete(v) that removes from V a leaf v of Tr and
function Prune(v) that removes from V all descendants of v ∈ V except v itself as
illustrated in Figure 4.1.

First MinCov does some initialization, and sets the tree Tr to be a single vertex
r with marking λ(r) = mini and Front = {r}. Afterwards, the main loop builds
the tree, where each iteration consists in processing some vertex in Front as follows.

MinCov picks a vertex u ∈ Front (line 3). From λ(u), MinCov �res a sequence
σ ∈ Acc∗ reaching some mu that maximizes the number of ω produced, i.e., |{p ∈
P | λ(u)(p) ̸= ω ∧mu(p) = ω}|. Thus, in σ, no acceleration occurs twice, and its
length is bounded by |P |. Then MinCov updates λ(u) with mu (line 5) and the
label of the edge incoming to u by concatenating σ. Afterwards, it performs one
of the following actions according to the marking λ(u):

� Cleaning (line 7): If there exists u′ ∈ V \ Front with λ(u′) ≥ λ(u). The
vertex u is redundant and MinCov calls Delete(u)

� Accelerating (lines 8-16): If there exists u′, an ancestor of u with λ(u′) <
λ(u). then an acceleration can be computed. The acceleration a is deduced
from the �ring sequence labeling the path from u′ to u. MinCov inserts a
into Acc, calls Prune(u′) and pushes back u′ in Front.

� Exploring (lines 18 - 25): Otherwise MinCov calls Prune(u′) followed by
Delete(u′) for all u′ ∈ V with λ(u′) < λ(u) since they are redundant. Af-
terwards, it removes u from Front and for all �reable transition t ∈ T from
λ(u), it creates a new child for u in MCT and inserts it into Front.
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4.2.1 A run of the algorithm

Example 4.2.1. Let us describe some iterations of MinCov(N ,minit), where N
is the Petri net in Figure 3.2 and minit = pinit. For each iteration of the main
loop below, we present a �gure showing Tr before and after the iteration. In the
�gures, we color in red the currently processed vertex and in blue the other vertices
in Front.

Iteration 2 (Figure 4.2): MinCov picks v5 from Front and processes it. Since

Before: After:

Figure 4.2: Iteration 2 � Finding a new acceleration.

Acc = ∅, there is no possible acceleration �ring (lines 4-5). Next, MinCov
discovers an ancestor v2 of v5 with a smaller marking. Therefore, it performs
an acceleration phase (lines 8-16). MinCov builds a new acceleration a1 (ac-
cording to labels of the edges between v5 and v2), with Pre(a1) = pl and
C(a1) = ω ·pba and inserts it in Acc. Afterwards, it performs Prune(v2), and
pushes v2 back to Front.

Before: After:

Figure 4.3: Iteration 7 � Side deletion and exploration.

Iteration 7 (Figure 4.3): MinCov picks v1 from Front and processes it. Since a2

is �reable from λ(v1), λ(v1) becomes λ(v1) +C(a2) = pl + pbk + ωpba + ωpc

(lines 4-5). Since there is no marking greater than λ(v1) in λ(V \ Front) and
no ancestor with a smaller marking, MinCov goes to the exploration phase
(lines 18-25).
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Looking at all vertices, MinCov deletes (the subtree rooted in) v6 since
λ(v6) < λ(v1). Afterwards, it creates two children of v1 (v7 and v8) since
t5 and t6 are �reable from λ(v1) .

Iteration 11 (Figure 4.4): MinCov picks v9 from Front and processes it. Neither
a1, nor a2 are �reable from λ(v9), so it is unchanged by lines 4-5. Then since
λ(v9) ≤ λ(v1), MinCov performs the cleaning phase by calling Delete(v9).

Before: After:

Figure 4.4: Iteration 11 � Clean up.

Iteration 11 is the last iteration of MinCov since Front = ∅. The �nal tree is
the one presented in Figure 4.5. The set of ω-markings decorating its vertices is:

λ(V ) = {pi, pl + pbk + ωpba + ωpc, pbk + pm, pl + pm + ωpba}

which is exactly the Clover set of the marked Petri net in Figure 3.2

Figure 4.5: The tree generated by MinCov in Example 4.2.1

4.3 MinCov Correctness Proof

We now establish the correctness of Algorithm 5 by proving the following properties
(where for all W ⊆ V , λ(W ) denotes

⋃
v∈W λ(v)):

� its termination;
� the incomparability of ω-markings associated with vertices in V : λ(V ) is an
antichain;
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Algorithm 5: Computing the minimal coverability set

MinCov(N ,mini)
Input: A marked Petri net (N ,mini)
Data: V set of vertices; E ⊆ V × V ; Front ⊆ V ; λ : V → Np

ω;
δ : E → ToAcc

∗; Tr = (V,E, λ, δ) a labeled tree;Acc a set of
ω-transitions;

Output: A labeled tree Tr = (V,E, λ, δ)
1 V ← {r}; E ← ∅; Front← {r}; λ(r)←mini; Acc← ∅; δ(r, r)← ε
2 while Front ̸= ∅ do
3 Select u ∈ Front
4 Let σ ∈ Acc∗ a maximal �reable sequence of accelerations from λ(u)

// Maximal w.r.t. the number of ω's produced

5 λ(u)← λ(u) +C(σ)
6 δ((prd(u), u))← δ((prd(u), u)) · σ
7 if ∃u′ ∈ V \ Front s.t. λ(u′) ≥ λ(u) then Delete(u) // λ(u) is

covered

8 else if ∃u′ ∈ Anc(V ) s.t. λ(u) > λ(u′) then
// An acceleration was found between u and one of u's

ancestors

9 Let γ ∈ E∗ the path from u′ to u in Tr
10 a← NewAcceleration()
11 foreach p ∈ P do
12 if C(p, δ(γ)) < 0 then Pre(p, a)← ω; C(p, a)← ω
13 if C(p, δ(γ)) = 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← 0
14 if C(p, δ(γ)) > 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← ω

15 end
16 a← trunc(a); Acc← Acc ∪ {a}; Prune(u′); Front = Front ∪ {u′} ;
17 else
18 for u′ ∈ V do

// Remove vertices labeled by markings covered by

λ(u)
19 if λ(u′) < λ(u) then Prune(u′); Delete(u′)

20 end
21 Front← Front \ {u}
22 foreach t ∈ T ∧ λ(u) ≥ Pre(t) do

// Add the children of u
23 u′ ← NewNode(); V ← V ∪ {u′}; Front← Front ∪ {u′});

E ← E ∪ {(u, u′)}
24 λ(u′)← λ(u) +C(t); δ((u, u′))← t

25 end

26 end

27 end
28 return Tr
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� its consistency: Jλ(V )K ⊆ Cover(N ,m0);
� its completeness: Cover(N ,m0) ⊆ Jλ(V )K.

Similarly to the proof of Proposition 3.2.2 we get termination by using the well
order of NP

ω and Koenig Lemma.

Proposition 4.3.1. MinCov terminates.

Proof. Consider the following variation of the algorithm.

Instead of deleting the current vertex when its marking is smaller or equal than
the marking of a vertex, one marks it as `cut' and extract it from Front.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is not an ancestor of v, one marks them as
`cut' and extract from Front those who are inside.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is an ancestor of v, say v∗, one marks those
on the path from v∗ to v (except v) as `accelerated', one marks the other vertices
of the subtree as `cut' and inserts v again in Front with the marking of v∗. All the
markings of the subtree in Front are extracted from it.

All the vertices marked as `cut' or `accelerated' are ignored for comparisons and
discovering accelerations. This alternative algorithm behaves as the original one
except that the size of the tree never decreases and so if the algorithm does not
terminate, the tree is in�nite. Since this tree is �nitely branching, due to Koenig
Lemma it contains an in�nite path. On this in�nite path, no vertex can be marked
as `cut' since it would belong to a �nite subtree. Observe that the marking labelling
the vertex following an accelerated subpath has at least one more ω than the
marking of the �rst vertex of this subpath. So there is an in�nite subpath with
unmarked vertices in V . But NP

ω is well-ordered, so there should be two vertices
v and v′, where v′ is a descendant of v with λ(v′) ≥ λ(v), which contradicts the
behavior of the algorithm.

Since we are going to use recurrence on the number of iterations of the main loop
of Algorithm 5, we introduce the following notations: Trn = (Vn, En, λn, δn), Frontn,
and Accn are the values of variables Tr, Front, and Acc at line 2 when n iterations
have been executed.

Proposition 4.3.2. For all n ∈ N, λ(Vn \ Frontn) is an antichain. Thus, on
termination, λ(V ) is an antichain.

Proof. Let us introduce V ′ := V \ Front and V ′n := Vn \ Frontn. We are going to
prove by induction on the number n of iterations of the while-loop that V ′n is an
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antichain. MinCov initializes variables V and Front at line 1. So V0 = {r} and
Front0 = {r}, therefore, V ′0 = V0 \ Front0 = ∅ is an antichain.
Assume that V ′n = Vn\Frontn is an antichain. Modifying V ′n can be done by adding
or removing vertices from Vn and removing vertices from Frontn while keeping them
in Vn. The actions that MinCov may perform in order to modify the sets V and
Front are: Delete (lines 7 and 19), Prune (lines 16 and 19), adding vertices to V
(line 23), adding vertices to Front (lines 16 and 23), and removing vertices from
Front (line 21).
• Both Delete and Prune do not add new vertices to V ′. Thus, the antichain
feature is preserved.
• MinCov may add vertices to V only at line 23 where it simultaneously adds them
to Front and therefore does not add new vertices to V ′. Thus, the antichain feature
is preserved.
• Adding vertices to Front may only remove vertices from V ′n. Thus, the antichain
feature is preserved.
• MinCov can only add a vertex to V ′ when it removes it from Front while keeping
it in V . This is done only at line 21. There the only vertex MinCov may remove
(line 21) is the working vertex u. However, if (in the iteration) MinCov reaches
line 21 then it did not reach line 7 hence, (1) all markings of λ(V ′n) ⊆ λ(Vn) are
either smaller or incomparable to λn+1(u). Moreover, MinCov has also reached
line 18-20, where (2) it performs Delete on all vertices u′ ∈ V ′n ⊆ Vn with
λn(u

′) < λn+1(u). Let us denote by V ′′n ⊆ V ′n the set V ′ at the end of line 20.
Due to (1) and (2), marking λn+1(u) is incomparable to any marking in λn+1(V

′′
n ).

Since V ′′n ⊆ V ′n, λn+1(V
′′
n ) is an antichain. Combining this fact with the incompa-

rability between λn+1(u) and any marking in λn+1(V
′′
n ), we conclude that the set

λn+1(V
′
n+1) = λn+1(V

′′
n ) ∪ {λn+1(u)} is an antichain.

In order to establish consistency, we prove that the labelling of vertices and
edges is compatible with the �ring rule and that Acc is a set of accelerations.

Lemma 4.3.3. For all n ∈ N, for all u ∈ Vn \ {r}, λn(prd(u))
δ(prd(u),u)−−−−−−→ λn(u)

and mini
δ(r,r)−−−→ λn(r).

Proof. Let us prove by induction on the number n of iterations of the main loop
that, for all v ∈ Vn, the assertions of the lemma hold. Initially, V0 = {r} and
λ0(r) = mini. Since mini

ε−→mini = λ0(r) the base case is established.
Assume that the assertions hold for Trn. Observe that MinCov may change the
labeling function λ and/or add new vertices in exactly two places: at lines 4-6 and
at lines 22-25. Therefore, in order to prove the assertion, we show that after each
group of lines it still holds.
• After lines 4-6: MinCov computes (1) a maximal �reable sequence σ ∈ Acc∗n
from λn(u) (line 4), and updates u's marking to mu = λn(u) + C(σ) (line 5).
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Since the assertions hold for Trn, (2) if u ̸= r, λn(prd(u))
δ(prd(u),u)−−−−−−→ λn(u) else

mini
δ(r,r)−−−→ λn(r). By concatenation, we get λn(prd(u))

δ(prd(u),u)σ−−−−−−−→ mu if u ̸= r

and otherwise, mini
δ(r,r)σ−−−−→mu which establishes that the assertions hold after line

6.
• After lines 22-25: The vertices for which λ is updated at these lines are the
children of u that are added to the tree. For every �reable transition t ∈ T from
λ(u), MinCov creates a child vt for u (lines 22-23). The marking of any child vt is

set to mn+1(v) := mn+1(u) +C(t) (line 24). Therefore, since λn+1(u)
t−→ λn+1(vt),

the assertions hold.

Next, we show that the set Acc always consists of accelerations (which are
abstractions).

Lemma 4.3.4. At any execution point of MinCov, Acc is a set of accelerations.

Proof. At most, one acceleration is added per iteration. Let us prove by induction
on the number n of iterations of the main loop that Accn is a set of accelerations.
Since Acc0 = ∅, the base case is straightforward.
Assume that Accn is a set of accelerations and consider Accn+1. In an iteration,
MinCov may add an ω-transition a to Acc. Due to the inductive hypothesis, δ(γ) is
a sequence of abstractions where γ is de�ned at line 9. Consider b, the ω-transition
de�ned by Pre(b) = Pre(δ(γ)) and C(b) = C(δ(γ)). Due to Proposition 3.1.4, b
is an abstraction. Due to Proposition 3.1.6, the loop of lines 11-15 transforms b
into an acceleration a. Due to Proposition 3.3.6, after truncation at line 16, a is
still an acceleration.

Using the previous two results and Proposition 3.1.4 on concatenation of ab-
stractions, we get consistency:

Proposition 4.3.5. Jλ(V )K ⊆ Cover(N ,m0).

Proof. Let v ∈ V . Consider the path u0, . . . , uk of MCT from the root r = u0

to uk = v. Let σ ∈ (T ∪ Acc)∗ denote δ(prd(u0), u0) · · · δ(prd(uk), uk). Due to
Lemma 4.3.3, m0

σ−→ λ(v). Due to Lemma 4.3.4, σ is a sequence of abstractions.
Due to Proposition 3.1.4, the ω-transition a de�ned by Pre(a) = Pre(σ) and
C(a) = C(σ) is an abstraction. Due to Proposition 3.1.3, Jλ(v)K ⊆ Cover(N ,m0).

The following de�nitions are related to an arbitrary execution point of MinCov
and are introduced to establish its completeness. Recall that, while proving the
correctness of the Karp and Miller algorithm, we introduced sequences we called
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�exploring sequence�(de�nition 3.2.6). We are again in need for this type of se-
quences, but since MinCov can �re accelerations directly, we need to extend the
de�nition which would including them:

De�nition 4.3.6. Let σ = σ0t1σ1 . . . tkσk with for all i, ti ∈ T and σi ∈ Acc∗.
Then the �ring sequence m

σ−→m′ is an exploring sequence if:

� There exists v ∈ Front with λ(v) = m
� For all 0 ≤ i ≤ k, there does not exist v′ ∈ V \ Front
with m+C(σ0t1σ1 . . . tiσi) ≤ λ(v′).

Figure 4.6: Iteration 2 � Finding a new acceleration.

Similarly to De�nition 3.2.7 we de�ne quasi-covered. This time using the ex-
tended version of exploration sequences:

De�nition 4.3.7. Let m̂ be a marking. Then m̂ is quasi-covered if:

� either there exists v ∈ V \ Front with λ(v) ≥ m̂;
� or there exists an exploring sequence m

σ−→m′ ≥ m̂.

In order to prove completeness of the algorithm, we want to prove that at
the beginning of every iteration, any m ∈ Cover(N ,m0) is quasi-covered. To
establish this assertion, we introduce several lemmas showing that this assertion
is preserved by some actions of the algorithm with some prerequisites. More pre-
cisely, Lemma 4.3.8 corresponds to the deletion of the current vertex, Lemma 4.3.9
to the discovery of an acceleration, Lemma 4.3.10 to the deletion of a subtree
whose marking of the root is smaller than the marking of the current vertex and
Lemma 4.3.11 to the creation of the children of the current vertex.

Lemma 4.3.8. Let Tr, Front and Acc be the values of corresponding variables at
some execution point of MinCov and u ∈ V be a leaf in Tr such that the following
items hold:



64 CHAPTER 4. COMPUTING THE CLOVER EFFICIENTLY

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;
3. For all a ∈ Acc �reable from λ(u), λ(u) = λ(u) +C(a);
4. There exists v ∈ V \ {u} such that λ(v) ≥ λ(u).

Then all m ∈ Cover(N ,m0) are quasi-covered after performing Delete(u).

Proof. Let u be a leaf of Tr. Assume the assertions of the lemma are satis�ed.
Denote by Tr′ = (V ′, E ′, λ′, δ′) and Front′, the value of variables Tr and Front after
performing Delete(u) on Tr.
Let m∗ ∈ Cov(N ,mini). Thus m∗ is quasi-covered. By de�nition, V ′ = V \ {u}
and Front′ = Front \ {u}. Moreover, for all v′ ∈ V ′ we have λ′(v′) = λ(v′). We
split the proof in two cases:
• There exists w ∈ V \ Front with λ(w) ≥m∗

� If w ̸= u then w ∈ V ′ \ Front′. Since λ′(w) = λ(w), m∗ is still quasi-covered.
� If w = u then there exists v such that λ′(v) = λ(v) ≥ λ(u). Therefore, if
v /∈ Front then m∗ is still quasi-covered. Otherwise, since λ(V \ Front) is an
antichain, for all v′ /∈ Front λ(v′) ̸≥ λ(u) implying λ(v′) ̸≥ λ(v). Therefore,
the sequence λ(v)

ε−→ λ(v) ≥m∗, is an exploring sequence.

• There is an exploring sequence m
σ−→m′ ≥m∗ with some w such that m = λ(w).

Let σ = σ0t1σ1 · · · tkσk, where ti ∈ T and σi ∈ Acc∗.

� Assume w ̸= u. Since (1) for all 0 ≤ i ≤ k, there does not exist v′ ∈ V \Front
such that λ(w) +C(σ0t1σ1 . . . tiσi) ≤ λ(v′), (2) V ′ \ Front′ ⊆ V \ Front, and
(3) λ′(w) = λ(w), m

σ−→m′ is still an exploring sequence.
� Assume w = u. Since λ(v) ≥ λ(u) = λ(u)+C(σ0) then v ∈ Front: otherwise
it would contradict the de�nition of an exploring sequence. Since λ[u](v) =
λ(v) ≥ λ(u), σ is also �reable from λ[u](v). Since V ′\Front′ ⊆ V \Front, there
does not exist v′ ∈ V ′ \Front′ such that λ[u](v)+C(σ0t1σ1 . . . tiσi) ≤ λ[u](v′)
for some i. Therefore, λ′(v)

σ−→ λ′(v) +C(σ) ≥m∗ is an exploring sequence.

Next we show that, any m ∈ Cover(N ,m0) is still quasi-covered after �nding
an acceleration:

Lemma 4.3.9. Let Tr, Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u ∈ V such that the following items hold:

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−→ λ(v).
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Then all m ∈ Cover(N ,m0) are quasi-covered after performing Prune(u) and then
adding u to Front.

Proof. Let u ∈ V . Denote by Tr′ = (V ′, E ′, λ′, δ′), and Front′ the value Tr after
performing Prune(u) on Tr and adding u to Front. Assume that the assertions of
the Lemma hold. If u ∈ Front then Tr′ = Tr and we are done. So let us assume
that u /∈ Front. Due to the de�nition of Prune, V ′ \ Front′ = V \ (Front∪Des(u)).
Moreover, for all v ∈ V ′, λ′(v) = λ(v).
Let m∗ ∈ Cov(N ,mini). Thus m∗ is quasi-covered. We split the proof in two
cases:
• There exists w ∈ V \ Front with λ(w) ≥m∗.

� Assume that w is not a descendant of u. Since w is not a descendant of u,
w ∈ V ′ \ Front′. Since λ′(w) = λ(w) ≥m∗, m∗ is quasi-covered.

� Assume that w is a descendant of u, by a path in Tr

u = w0
δ(w0,w1)−−−−−→ w1 · · ·wk−1

δ(wk−1,wk)−−−−−−→ wk = w. Since λ(V \ Front) is an
antichain any λ(wi) is incomparable with any λ(w′) in λ(V \ Front).
Since V ′ \ Front′ ⊆ V \ Front, the sequence
λ(u) = λ(w0)

δ(w0,w1)−−−−−→ λ(w1) · · ·λ(wk−1)
δ(wk−1,wk)−−−−−−→ λ(wk) = λ(w) ≥m∗

is an exploring sequence.

• There is an exploring sequence m
σ−→m′ ≥m∗ with some w such that m = λ(w).

Let σ = σ0t1σ1 · · · tkσk, where ti ∈ T and σi ∈ Acc∗.

� Assume that w is not a descendant of u. Thus w ∈ Front′. Since V ′\Front′ ⊆
V \ Front, and for all v′, λ′(v′) = λ(v′), m

σ−→ m′ ≥ m∗ is still an exploring
sequence.

� Assume that w is a descendant of u by a path in Tr

u = w0
δ(w0,w1)−−−−−→ w1 · · ·wk−1

δ(wk−1,wk)−−−−−−→ wk = w. Since λ(V \ Front) is an
antichain any λ(wi) with i < k is incomparable with any λ(w′) in λ(V \Front).
Consider the sequence λ(u) = λ(w0)

δ(w0,w1)−−−−−→ λ(w1) · · ·λ(wk−1)
δ(wk−1,wk)−−−−−−→

λ(wk)
σ−→m′ ≥m∗. Since V ′\Front′ ⊆ V \Front, and for all v′, λ′(v′) = λ(v′),

this sequence is an exploring sequence.

Next we show that, any m ∈ Cover(N ,m0) is still quasi-covered after pruning
a subtree smaller than current marking:

Lemma 4.3.10. Let Tr, Front and Acc be the values of corresponding variables
at some execution point of MinCov, u ∈ Front and u′ ∈ V such that the following
items hold:
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1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−→ λ(v);
4. λ(u′) < λ(u) and u is not a descendant of u′.

Then after performing Prune(u′); Delete(u′),

1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) is an antichain;

3. For all v ∈ V \ {r}, λ(prd(v)) δ(prd(v),v)−−−−−−→ λ(v).

Proof. The second and third assertions of the conclusion are still satis�ed, since
we do no add vertices and edges. So let us establish that all m ∈ Cover(N ,m0)
are still quasi-covered. Let m∗ ∈ Cov(N ,mini).
• There exists w ∈ V \ Front with λ(w) ≥m∗.

� Assume that w is not a descendant of u′. Since w is not a descendant of u′,
w is still in V \ Front. Since λ(w) ≥m∗, m∗ is quasi-covered.

� Assume that w is a descendant of u′, by a path in Tr

u′ = w0
δ(w0,w1)−−−−−→ w1 · · ·wk−1

δ(wk−1,wk)−−−−−−→ wk = w. Since λ(V \ Front) is an
antichain any λ(wi) is incomparable with any λ(w′) in λ(V \ Front). Since

V \Front does not include new items, the sequence λ(u)
δ(w0,w1)···δ(wk−1,wk)−−−−−−−−−−−−→m′

is an exploring sequence with m′ ≥m∗.

• There is an exploring sequence m
σ−→m′ ≥m∗ with some w such that m = λ(w).

Let σ = σ0t1σ1 · · · tkσk, where ti ∈ T and σi ∈ Acc∗.

� Assume that w is not a descendant of u′. Since V \ Front does not include
new items, m

σ−→m′ ≥m∗ is still an exploring sequence.
� Assume that w is a descendant of u′ by a path in Tr

u′ = w0
δ(w0,w1)−−−−−→ w1 · · ·wk−1

δ(wk−1,wk)−−−−−−→ wk = w. Since λ(V \ Front) is an
antichain any λ(wi) with i < k is incomparable with any λ(w′) in λ(V \Front).
Consider the sequence λ(u′) < λ(u)

δ(w0,w1)···δ(wk−1,wk)σ−−−−−−−−−−−−−→ m′ ≥ m∗. Since
V \Front does not include new items, this sequence is an exploring sequence.

Finally, we show that, any m ∈ Cover(N ,m0) still quasi-covered after explor-
ing and adding the new children of a current node:

Lemma 4.3.11. Let Tr, Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u ∈ Front such that the following items hold:
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1. All m ∈ Cover(N ,m0) are quasi-covered;
2. λ(V \ Front) ∪ {λ(u)} is an antichain;
3. For all a ∈ Acc �reable from λ(u), λ(u) = λ(u) +C(a).

Then after removing u from Front and for all t ∈ T �reable from λ(u), adding
a child vt to u in Front with marking of vt de�ned by λu(vt) = λ(u) + C(t), all
m ∈ Cover(N ,m0) are quasi-covered.

Proof. Let u ∈ Front, denote by Tr′ = (V ′, E ′, λ′, δ′) and Front′ the value of
variables Tr and Front after removing u from Front and for all transition t ∈ T
�reable from λ(u), adding a child vt to u in Front′ with marking of vt de�ned by
λ′(vt) = λ(u)+C(t). In words, this corresponds to lines 21-25 of MinCov. Assume
the assertions of the lemma hold.
Let m∗ ∈ Cov(N ,mini). Due to the assertions of the lemma, m∗ is quasi-covered.
By de�nition, V ′ \ Front′ = (V \ Front) ∪ {u}. We split the proof in two cases:
• There exists w ∈ V \ Front with λ(w) ≥ m∗. Since only u has been added to
V \ Front and λ(u) is incomparable to any λ(w), m is still quasi-covered.
• There is an exploring sequence m

σ−→m′ ≥m∗ with some w such that m = λ(w).
Let σ = σ0t1σ1 · · · tkσk, where ti ∈ T and σi ∈ Acc∗.

� Either there does not exist i ≤ k such that λ(w) +C(σ0t1σ1 · · · tiσi) ≤ λ(u).
Observe that this implies w ̸= u. Otherwise, since from λ(u) no �reable
acceleration produces some ω, one would obtain λ(u) +C(σ0) = λ(u). Since
only u has been added to V \ Front, m σ−→ m′ ≥ m∗ is still an exploring
sequence.

� Otherwise, pick the greatest index i ≤ k such that λ(w)+C(σ0t1σ1 · · · tiσi) ≤
λ(u). If i = k, then λ′(u) = λ(u) ≥ λ(w) +C(σ0t1σ1 · · · tkσk) = m′ ≥m im-
plying that m is quasi-covered. If i < k then denote by σ′ = ti+1σi+1 · · · tkσk,
this su�x of σ. σ′ is �reable from λ(u), hence ti+1 is �reable from λ(u).
So u has a child vti+1

in V ′ with λ′(vti+1
) = λ(u) + C(ti+1). Let σ′′ =

σi+1ti+2 · · · tkσk. Then σ′′ is �reable from λ′(vti+1
) and λ′(vti+1

)
σ′′
−→ m′′ ≥

m′ ≥m. Since only u has been added to V \Front, for all i < j ≤ k there does
not exist v′ ∈ V ′ \ Front′ such that λu(vti+1

) +C(σi+1ti+2 · · · tjσj) ≤ λu(v
′).

Therefore, since vti+1
∈ Frontu, λ

′(vti+1
)

σ′′
−→m′′ is an exploring sequence.

Combining all the above, we get that all m ∈ Cover(N ,m0) are quasi-covered.

Proposition 4.3.12. At the beginning of every iteration, all m ∈ Cover(N ,m0)
are quasi-covered.

Proof. Let us prove by induction on the number of iterations that allm ∈ Cover(N ,m0)
are quasi-covered.
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Let us consider the base case. MinCov initializes V and Front to {r} and λ(r) to
mini. By de�nition, for all m ∈ Cov(N ,mini), there exists σ = t1t2 · · · tk ∈ T ∗

such that mini
σ−→m′ ≥m. Since V \Front = ∅, this �ring sequence is an exploring

sequence.
Assume that all m ∈ Cover(N ,m0) are quasi-covered at the beginning of some
iteration. Let us examine what may happen during the iteration. In lines 4-6,
MinCov computes the maximal �reable sequence σ ∈ Acc∗n from λn(u) (line 4)
and sets u's marking to mu := λn(u) + C(σ) (line 5). Afterwards, there are
three possible cases: (1) either mu is covered by some marking associated with a
vertex out of Front, (2) either an acceleration is found, (3) or MinCov computes
the successors of u and removes u from Front.

Line 7. MinCov calls Delete(u). So Trn+1 is obtained by deleting u. Moreover,
λ(u′) ≥ mu. Let us check the hypotheses of Lemma 4.3.8. Assertion 1 fol-
lows from induction since (1) the only change in the data is the increasing
of λ(u) by �ring some accelerations and (2) u belongs to Front, so it cannot
cover intermediate markings of exploring sequences. Assertion 2 follows from
Proposition 4.3.2 since V \ Front is unchanged. Assertion 3 follows imme-
diately from lines 4-6. Assertion 4 follows with v = u′. Thus, using this
lemma, the induction is proved in this case.

Lines 8-16. Let us check the hypotheses of Lemma 4.3.9. Assertions 1 and 2 are
established as in the previous case. Assertion 3 holds due to Lemma 4.3.3,
and the fact that no edge has been added since the beginning of iteration.
Thus, using this lemma, the induction is proved in this case.

Lines 18-25. We �rst show that the hypotheses of Lemma 4.3.11 hold before
line 21.
Let us denote the values of Tr and Front after line 20 by T̂ rn and F̂rontn.
Observe that for all iteration of Line 19 in the inner loop, the hypotheses
of Lemma 4.3.10 are satis�ed. Therefore, in order to apply Lemma 4.3.11
it remains only to check assertions 2 and 3 of this lemma. Assertion 2
holds since (1) λ(V \ Front) is an antichain, (2) due to Line 7 there is no
w ∈ V \ Front such that λ(w) ≥ λ(u), and (3) by iteration of Line 19 all
w ∈ V \ Front such that λ(w) < λ(u) have been deleted. Assertion 3 holds
due to Line 5 (all useful enabled accelerations have been �red) and Line 8
(no acceleration has been added).

Lines 21-25 correspond to the operations related to Lemma 4.3.11. Thus,
using this lemma, the induction is proved in this case.

The completeness of MinCov is an immediate consequence of the previous propo-
sition.

Corollary 4.3.13. When MinCov terminates, Cover(N ,m0) ⊆ Jλ(V )K.
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Proof. By Proposition 4.3.12 all m ∈ Cover(N ,m0) are quasi-covered. Since on
termination, Front is empty for all m ∈ Cover(N ,m0), there exists v ∈ V such
that m ≤ λ(v).





Chapter 5

The Tool MinCov

In the previous chapter we have introduced the algorithm MinCov which computes
the Clover to a given marked Petri net. This algorithm does not only �x the bug
in the algorithm from [56] but also introduces new ideas. In order to demonstrate
the e�ciency of MinCov in generating the Clover, we implemented it. We will refer
to its implementation with the same name, i.e., MinCov. Our goals in this chapter
are to 1) discuss some extra optimizations used, 2) describe some details of its
implementation, and 3) benchmark MinCov.

Benchmarks and measurements. As usual, in order to benchmark MinCov, we
need to have answers to the following 3 questions:

1. What are the benchmarks?
2. What are we measuring?
3. Against what are we comparing MinCov?

The instances of the benchmarks are a set of marked Petri nets to which we are
asked to generate the Clover. These Petri nets come from two sources: 1) a set of
standard benchmarks from the literature, and 2) a set of randomly generated Petri
nets generated in house. We will be measuring two indicators. The �rst one is the
time it takes to generate the Clover. The second one is the maximal space taken
by the algorithm. However, since the tools we are comparing are not necessarily
written in the same language, we devise a way to compare the memory usage in an
abstract way. Finally, the tools we will compare MinCov to are the tools described
in the Section 4.1.
Implementation and optimizations. In order to implement MinCov we had to
�rst clarify the parts of the algorithm which were left ambiguous (on purpose).
For example, the exploration strategy, i.e., the implantation of �Select u ∈ Front�
(Line 3). Second, we need to deiced on low-level details of the design, such as
the data structures. Lastly, we note that the �vanilla� version of MinCov is very
e�cient in space as compared to all the other tools (as we will see below), but it
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is not the fastest one. For that, we develop some new heuristics and optimizations
that will give us the missing edge.

Coverability. Recall that a coverability problem provides one with a marked Petri
net (N ,m0), a target marking m, and asks you whether m ∈ Cover(N ,m0).
Using our MinCov we can solve coverability problems by computing the Clover
and checking whether m ∈ Cover(N ,m0). A straight forward optimization for
coverability, MinCov can check in each iteration whether the target is already
covered. By doing so MinCov is very fast in proving that the target is unsafe,
i.e., coverable. Unfortunately, proving that a target is safe (i.e., uncoverable)
necessitates generating the entire Clover, which can be very slow and require large
memory. On the other hand, the tool qCover[26] is very fast in proving the target
is safe, but it is slow proving unsafe. The question is whether it is even possible to
have a tool which shows safety and unsafety quickly. We will show that by using
the ideas from both MinCov and qCover gives us a tool which is greater than the
sum of its parts.

Organization. In Section 5.1 we discuss the di�erent exploration strategies one
can use while running MinCov. In Section 5.2 we describe di�erent high-level
optimizations for MinCov. In Section 5.3 we describe how to use MinCov to solve
the coverability problem e�ciently. In Section 5.4 the implantation of MinCov is
detailed. In Section 5.5 we present benchmarks comparing MinCov to other tools.

Based on. This chapter is mainly based on our work in [60, 61].

5.1 Exploration Strategies

In the being of each iteration of the main while loop (Line 3) the Algorithm 5
picks a vertex from the Front. In previous section we did not specify how does
the algorithm choose this vertex. This is because our algorithm works correctly
with any type of exploration. But, not all exploration strategies are equivalent
for performance. Similar to the approach of Valmari and Hansen [152] we tried 3
types of explorations: Breadth First Search (BFS), Depth First Search (DFS), and
Most Tokens First (MTF). BFS and DFS are usual graph explorations strategies,
i.e., BFS explores all the neighbors of the current vertex �rst, and DFS explorers
the descendants of its current vertex �rst. The MTF strategy turns the Front to a
max-heap according to lexicographic order on vectors of natural numbers, h ∈ N3,
calculated as follows:

1. h1 is the number of places with ω of the vertex markings;
2. h2 is the sum of the tokens in places which are not ω;
3. h3 is the distance of the node from the root, i.e., the depth of the vertex in

the tree.
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For example, given the vertices v1, v2, v3, v4 labeled with the markings:
1
1
ω
0


︸ ︷︷ ︸

m1

,


1
1
1
ω


︸ ︷︷ ︸

m2

,


0
0
ω
ω


︸ ︷︷ ︸

m3

,


0
ω
0
ω


︸ ︷︷ ︸

m4

and depthsd1 = d2 = d3 = 1, and d4 = 5. The vectors h1, h2, h3, h4 associated with
v1, ..., v4 are: 1

2
1


︸ ︷︷ ︸

h1

≤

 1
3
1


︸ ︷︷ ︸

h2

≤

 2
0
1


︸ ︷︷ ︸

h3

≤

 2
0
5


︸ ︷︷ ︸

h4

 # of ω
sum of not ω

depth



The MTF strategy would explore the vertex in the following order: v4, v3, v2, v1.
Running three versions of exploration strategies, we did not �nd a clear pref-

erence for the exploration strategy. In total, the fastest exploration strategy was
DFS. However, the other strategies were not far behind, the MTF strategy had less
than 1% di�erence in total time, and the BFS strategy had less than a 1.5% dif-
ference. However, it is important to note that there exist instances of benchmarks
for which each of the strategies preformed better than the other, with speed up
of ×4 faster. Moreover, we note that there are numerous nodes which are deleted
not during the accelerations. These subsets of nodes could be left unexplored if we
had some better oracle to guide the exploration. We conjecture that there exists
a better exploration strategy that can have signi�cant speed-ups.

In the rest of this chapter when measuring the performance of MinCov we use
the DFS exploration strategy unless speci�ed otherwise.

5.2 Optimizations

The greatest strength of MinCov, compared to its competition, is that it is very
memory e�cient (as we will show on the benchmarks in the next section). However,
for MinCov to compete against the fastest tools, there are still some optimizations
to be done. These optimizations come in two 'tastes': Figuring out the appropriate
data structures (will be discussed in Section 5.4) and heuristics. These optimiza-
tions are an attempt to deal mainly with the bottleneck identi�ed by Piipponen
and Valmari [129] for their algorithm VH which also holds for MinCov. Namely,
comparing the current marking to all the ones previously discovered (lines 7 and
18-20) is extremely time-consuming.
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To empirically benchmark the optimizations below, we ran the di�erent ver-
sions of MinCov on a subset (of size 15) of the benchmarks from the literature
(described in the next section). The execution of these benchmarks is limited to
900 seconds. When we compare the time between di�erent versions of MinCov ,
the time measurement consists of the total time on instances that did not time
out plus 900 seconds for any instance that led to a timeout.

Parallel checking. For each iteration of Algorithm 5 (implementing MinCov),
in which we do not delete the current node (denote by u the current vertex), we
check whether λ(u) ≤ λ(v) or whether λ(v) < λ(u) for every vertex v ∈ V .

In both of these checks, we iterate over all the vertices, which ends up being
very expensive timewise. In this optimization, instead of iterating twice over all
the vertices we iterate once, checking for every vertex v whether λ(u) ≤ λ(v) or
λ(v) < λ(u). Note that on one hand, if we �nd v such that λ(u) ≤ λ(v) we:
1) stop comparing vertices, 2) delete the vertex u, and 3) restart the main loop.
On the other hand, if we �nd a vertex v such that λ(v) < λ(u) we do not need
to continue checking whether λ(u) ≤ λ(v), since we know that the set V is an
anti-chain. Finally, if u is incomparable to any other vertex, then there is also no
reason to check for accelerations.

Results on small benchmarks: Ruining the benchmarks, we got around 40% per-
formance boost compared to the vanilla version.

Lazy check. As we discussed above, one of the main bottlenecks of MinCov is
comparing a current marking to the ones already discovered. This action has an
e�ect on the current set of vertices if one of the two happens: 1) MinCov discovers
a marking larger the current one, and it deletes the current marking, or 2) it �nds
a marking smaller than the current one, and it removes the subtree rooted at it.
Running MinCov on the benchmarks, one can notice that both cases do not happen
often, around 2% of iteration. Hence, comparing the current marking to the ones
already discovered is �useless� a lot of times. Therefore, we stop comparing the
current marking at every iteration, instead we check it every CI ∈ N iteration of
the main loop. The value of CI is dynamic, i.e., it changes between each iteration
as follows: In the �rst iteration, we set it to CI = 1 (i.e., check every iteration). Its
value changes if and only if in the current iteration MinCov compares the current
marking to the previous ones. It changes as follows:

If MinCov found marking comparable to the current marking then:

CI← max{ CI
100

, 1}

Else:
CI← min{ 2CI, 5000}
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It is important to note that in each iteration we check for accelerations, even if
we do not compare the current marking to the one previously discovered. Finally,
while using this optimization, we don't use the DFS exploration but the MTF one.
This is due to the fact that not only do we get 5% speed up compared to DFS,
but we also get 1% less memory usage.

Results on small benchmarks: Ruining the benchmarks, we got around 65% per-
formance boost compared to the vanilla version.

One would think that we would pay a heavy price in the form of larger memory
usage by performing the Lazy optimization, fortunately this is not the case. MinCov
is a very destructive algorithm, i.e., it can remove entire subtrees of vertices in one
iteration. We compare the memory usage by counting for each benchmark that
did not time out (on both versions) the number of the peak number of vertices in
instances, plus the peak number of accelerations. Comparing to the vanilla version,
we get an extra 5% (15851 vs 16621). Moreover, if we compare to MinCov using
all other optimizations except the lazy one (fore which less benchmarks time-out),
we get a smaller increase of 2.5% (35570 vs 36475).

Since in the rest of the chapter we are going to use the Lazy and non-Lazy
version, we denote the Lazy version by L-MinCov, and the non-Lazy by MinCov.

5.3 MinCov and the coverability problem

As discussed in the introduction, we are looking for a tool that is good at proving
safety and unsafety. As mentioned before (and this will be demonstrated in Sub-
section 5.5.3), MinCov is quite quick in showing that a benchmark in unsafe, and
slow for proving safety.

qCover is an implementation of an algorithm solving the coverability problem,
designed in [26]. The heart of its approach is a continuous over-approximation of
the reachability set using the reachability set of continuous Petri nets. This tool
qCover , contrary to MinCov , is very fast when showing that an instance is safe
but very slow otherwise.

The most straight forward implementation of a tool combining the strength of
these two tools is running them in parallel. This simple strategy gives quite a big
boost of performance of up to ×3 faster than qCover or MinCov.

Now, instead of just running the two tools in parallel, we can take the idea of
over-approximation using Linear-Programming (LP) from qCover and implement
it in MinCov. Given a Petri net N such that T = {ti}ni=1. Let its incidence matrix
be:

C =

 | | |
C(t1) C(t2) · · · C(tn)
| | |


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Given an initial marking m0 and a target marking m. If m is coverable, then
there exists x ∈ NP such that C · x ≥ m−m0. Moreover, the problem of �nding
an x ≥ 0 such that C · x ≥ m −m0 can be solved by an LP solver. Therefore,
given a current vertex v in some iteration of a run of MinCov. Using an LP solver,
we can check whether there exists x ∈ RP such that C · x ≥ m − λ(v). If x does
not exist, we do not explore its children. In order to implement these changes into
MinCov, all we need is to add 3 lines to the original code. See Algorithm 6 where
the red lines are the modi�ed ones.

Moreover, we can use this idea in implementing a smart exploration strategy.
Recalling the LP is an optimization problem, which not only �nds the solution to
x but also �nds the minimal one with regard to some y ∈ RP . LP �nds an x which
minimizes yTx that is subjected to:

C · x ≥m−m0

x ≥ 0

Taking y = 1 (the vector with all entries equal to one), the resulting x has the
property that for any covering sequence m0

σ−→m′ ≥m:∑
p∈P

x(p) ≤ |σ|

Now, assume that at some time, the set Front (in MinCov ) contains two vertices
v1, v2 and by using an LP solver, it produced a solution x1, x2 for each of v1, v2. If∑

p∈P x1(p) ≤
∑

p∈P x2(p), it would mean that potentially a marking that would
cover the target is �closer� to the vertex v1. Therefore, it would be more bene�cial
to explore v1 �rst. We implement this type of graph exploration, calling it A∗.
Finally, using solvers is a very expensive action, and it slows MinCov to a crawl if
used on every iteration, therefore we only use it sporadically.

5.4 Implementation

MinCov is implemented in Python 3.7 using the NumPy, Scipy and the Z3-solver
libraries, and it is around 2000 lines of code. MinCov imports Petri net in .spec
format from Mist1. It can be found on GitHub in here:
https://github.com/IgorKhm/MinCov

MinCov uses a large amount of memory to store all the vertices and manipulate
them, therefore using the right type of data structure is paramount. In the fol-
lowing, we point out the two data structures that we used in the implementation:

1https://github.com/pierreganty/mist/wiki.

https://github.com/IgorKhm/MinCov
https://github.com/pierreganty/mist/wiki
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Algorithm 6: Checking for coverability with LP

MinCov(N ,mini)
Input: A marked Petri net (N ,mini) and a target m
Data: V set of vertices; E ⊆ V × V ; Front ⊆ V ; λ : V → Np

ω;
δ : E → ToAcc

∗; Tr = (V,E, λ, δ) a labeled tree;Acc a set of
ω-transitions;

Output: True if m ∈ Cov(N ,mini), false otherwise
1 V ← {r}; E ← ∅; Front← {r}; λ(r)←mini; Acc← ∅; δ(r, r)← ε
2 while Front ̸= ∅ do
3 Select u ∈ Front
4 Let σ ∈ Acc∗ a maximal �reable sequence of accelerations from λ(u)
5 λ(u)← λ(u) +C(σ)
6 δ((prd(u), u))← δ((prd(u), u)) · σ
7 if ∃u′ ∈ V \ Front s.t. λ(u′) ≥ λ(u) then Delete(u)
8 else if ∃u′ ∈ Anc(V ) s.t. λ(u) > λ(u′) then
9 Let γ ∈ E∗ the path from u′ to u in Tr

10 a← NewAcceleration()
11 foreach p ∈ P do
12 if C(p, δ(γ)) < 0 then Pre(p, a)← ω; C(p, a)← ω
13 if C(p, δ(γ)) = 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← 0
14 if C(p, δ(γ)) > 0 then Pre(p, a)← Pre(p, δ(γ)); C(p, a)← ω

15 end
16 a← trunc(a); Acc← Acc ∪ {a}; Prune(u′); Front = Front ∪ {u′} ;
17 else
18 for u′ ∈ V do
19 if λ(u′) < λ(u) then Prune(u′); Delete(u′)
20 end
21 Front← Front \ {u}
22 if ∃x s.t. C · x ≥m− λ(u) then
23 foreach t ∈ T ∧ λ(u) ≥ Pre(t) do
24 u′ ← NewNode(); V ← V ∪ {u′}; Front← Front ∪ {u′});

E ← E ∪ {(u, u′)}
25 λ(u′)← λ(u) +C(t); δ((u, u′))← t

26 end

27 end
28 if λ(u) ≥m then return true

29 end

30 end
31 return false
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Hash table for equality. Due to the structure of Petri nets, there are often
multiple runs to reach the same markings. For this reason, during a run of MinCov
one gets many duplicates of marking already processed. Recall, that hash tables
are very e�cient in �nding equality. Therefore, keeping a hash table of all the
current markings (the set V ), we can check quickly for equality. This optimization
don't require a lot of memory since the hash table can consist of pointers to the
markings already in memory. This type of optimization is widely used in algorithm
dealing with reachability of Petri nets, and was �rst suggested for coverability trees
in [152].

Results on small benchmarks: Ruining the benchmarks, we got around 30% per-
formance boost compared to the vanilla version.

Short-transitions. Looking at Petri nets from the literature, one notices that
Pre and C vectors associated to transitions are sparse. By sparse, we mean that
the number of places p ∈ P for which Pre(p) = C(p) = 0 is more than 95% of
the total number of places. Therefore, instead of storing the entire transition as a
vector, we store it as two lists of tuples, where each tuple is a place and an integer.
For example, the transition t with Pre,C ∈ NP where P = {pi}4i=1, turns into two
lists each of length 2 (since only two entries were not equal to 0):

Pre(t) =


1
0
0
ω

 ;C(t) =


ω
0
0
ω

 =⇒
(

(p1, 1)
(p4, ω)

)
;

(
(p1, ω)
(p4, ω)

)

Note that in this case, we probably don't save much, but when a transition has
1000 places with only 30 of them are none zero, we start seeing the di�erence.

The same idea can be used for the ω−markings, but unfortunately it was not
practical in our Python implantation. This is due to the use of the NumPy library
to represent markings. But we use it because its array implementation is very
optimized, and it works faster than if we had written one in Python on our own.

Results on small benchmarks: Ruining the benchmarks, we got around 5% perfor-
mance boost compared to the vanilla version.

5.5 Benchmark results

5.5.1 Benchmarks

The benchmarks used for evaluation come in two types: 1) benchmarks from the
literature, and 2) benchmarks randomly generated by us.
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Benchmarks from the literature These benchmarks were taken from [25, 54]
which in turn were gathered from �ve sources:

• MIST1: containing both real and arti�cial systems (mutual exclusion pro-
tocols, communication protocols, . . . );
• BFC2 [84]: systems originated from analysis of concurrent C programs;
• SOTER3 [47]: systems originating from the analysis of Erlang programs in
order to test the tool SOTER;
• Medical [93]: systems originating from the analysis of a simple medical
messaging system of Vanderbilt University Medical Center;
• Bug tracking [93]: systems originating from the analysis of messages of a
bug-tracking system.

Random benchmarks To generate these, we �rst generated random Petri nets
with the following properties:

• 50 < |P |, |T | < 100;
• the number of places connected to each transition is bounded by 10;
• the resulting Petri nets are not structurally bounded, i.e., there exists a
marking m such that m

σ−→m′ > m.

For each of these we randomly picked an initial marking m0, and made sure that
the following holds:

• 1 ≤
∑

p∈P m0(p) ≤ |P |
2

• running MinCov on it one of the following happened:

� MinCov did not terminate after 900 seconds
� MinCov terminated after longer than 1 second
� MinCov terminated with a vertex set of size larger than 1000.

5.5.2 Clover generation

We compare MinCov and L-MinCov with the tool MP [135], the tool VH [152], and
the tool CovProc [65]. We have also implemented the (incomplete) minimal cover-
ability tree algorithm denoted by MCT in order to measure the additional memory
needed for the (complete) tools. Both MP and VH tools were sent to us by the
courtesy of the authors. The tool MP has two implementations one in Python and
another in C++. For comparison, we selected the Python one to avoid biases due
to programming language.

2http://www.cprover.org/bfc/.
3http://mjolnir.cs.ox.ac.uk/soter/

http://www.cprover.org/bfc/
http://mjolnir.cs.ox.ac.uk/soter/
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All benchmarks were performed on a computer equipped by Intel i5-8250U
CPU with 4 cores, 16 GB of memory and Ubuntu Linux 18.03.

Table 5.1 contains a summary of all the instances of the benchmarks. We
compare them according to the same metrics we used in the previous section,
namely:

The �rst column shows the number of instances on which the tool timed out.
The time column consists of the total time on instances that did not time out, plus
900 seconds for any instance that led to a timeout. The #Nodes column consists
of the peak number of nodes in instances that did not time out on any of the tools
(except CovProc which does not provide this number). For MinCov and L-MinCov
we take the peak number of nodes plus accelerations.

Table 5.1: Benchmarks for clover (red is the best and blue second best)
123 benchmarks from the literature 100 random benchmarks

T/O Time #Nodes

MinCov 16 18127 48218
L-MinCov 12 13659 55541
VH 15 14873 75225
MP 24 23904 478681
CovProc 49 47081 N/A

MCT 19 19223 45660

T/O Time #Nodes

MinCov 14 13989 62345
L-MinCov 13 12565 91470
VH 15 13692 208134
MP 21 21726 755129
CovProc 80 74767 N/A

MCT 16 15888 63275

In the benchmarks from the literature, we observed that L-MinCov is much
faster than MinCov (around 25% faster), the extra memory used by it is around
15% and it is still 2nd place. On the Random benchmarks the time di�erence
between L-MinCov and MinCov are less obvious but still L-MinCov wins timewise,
and it is not much worse in space. Both MinCov and L-MinCov are more space
e�cient. L-MinCov is the fastest tool, and it times out the least. Interestingly the
tool VH is not far behind, and if we look only on the instances where both the tools
did not time out then VH is 20% faster then L-MinCov. Looking more closely, we
note that L-MinCov is faster than VH on benchmarks where the set of vertices is
very large. A possible explanation could be that VH is implemented in C++ and
therefore it is much faster on the smaller benchmarks.

5.5.3 Coverability

We compare MinCov and L-MinCov with and without A∗ to the tool qCover [26] on
the set of benchmarks from the literature in Table 5.2. In [26], qCover is compared
to the most competitive tools for coverability and achieves a score of 142 solved
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instances while the second best tool achieves a score of 122. We split the results
into safe instances (not coverable) and unsafe ones (coverable). In both categories,
we counted the number of instances on which the tools failed (columns T/O) and
the total time (columns Time) as in Table 5.1.

Table 5.2: Benchmarks for the coverability problem (red is the best and blue
second best)

Time
Unsafe

T/O
Unsafe(60)

Time safe T/O
safe(115)

T/O Time

MinCov 1754 1 51323 53 54 53077
L-MinCov 1219 1 48851 49 50 50070
qCover 26467 26 11865 11 37 38332
MinCov+A∗ 186 0 16163 16 16 16349
MinCov∥qCover 1841 2 13493 11 13 15334
L-MinCov∥ qCover 1538 1 12732 9 10 14270
L-MinCov+A∗ 318 0 12582 10 10 12900

Next we note that, without the A∗ optimization, MinCov and qCover are com-
plementary i.e., qCover is faster at proving that an instance is safe and MinCov

is faster at proving that an instance is unsafe. The 5th and 6th rows of Table 5.2
represent a parallel execution of the tools, where the time for each instance is
computed as follows:

Time(MinCov ∥ qCover) = 2min (Time(MinCov),Time(qCover)) .

Combining both tools is around 2.5× faster than qCover and 3.5× faster than
MinCovand L-MinCov. This is in some sense the best version possible of run-
ning them in parallel. Therefore, fusing their ideas into one tool, as done in
L-MinCov+A∗, is greater than the sum of its parts. We get that L-MinCov+A∗ is
around 3× faster than qCover and 4× faster than MinCovand L-MinCov.

It is interesting to note that qCover is still the fastest tool for verifying safe
instances, even if it timed out more than L-MinCov+A∗. We believe that this points
at another avenue to optimization for L-MinCov. Namely, qCover uses a type of
backward exploration from the target marking instead of a forward exploration
like the one used by L-MinCov. We could maybe combine the two explorations to
boost L-MinCov+A∗ even further.

Another important detail, is that even for Unsafe (i.e., coverable) instances,
L-MinCov+A∗ is faster then L-MinCov. This means that L-MinCov+A∗ found a
�ring sequence leading to a marking bigger than the target faster than L-MinCov.
We strengthen the idea that having a good exploration strategy is crucial.
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In the bottom line, for checking coverability it seems that in the general case
it is best to use L-MinCov+A∗, unless one has a strong reason to suspect that
the instance is safe then use qCover and MinCov ∥ qCover, or unsafe then use
MinCov+A∗.
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Chapter 6

Extending Petri nets

While Petri nets have been established as useful to model and analyze concurrent
and distributed systems, they have inherent limitations that forbid or make it
very di�cult to model some real life systems. Therefore, numerous researches are
devoted to extend in several directions the Petri nets model. Such extensions can
be roughly split into three types:

Abbreviations. This type of extension does not extend the expressive power of
Petri nets but adds structures that compacts the model while keeping the possi-
bility to unfold the model into a Petri net for applying analysis algorithms. Let
us illustrate this kind of extension by the well-known formalism of colored Petri
nets [83].

� In colored Petri nets, places and transitions are equipped with a �nite color
domain and the items of the incidence matrices are no more integers but
mappings from the color domain of a transition to the multisets over the
color domain of a place. The unfolding of a colored Petri into an ordinary
Petri net is obtained by considering pairs (place, color) (resp. (transition,
color)) as places (resp. transitions) of the ordinary net and evaluating the
mappings for these colors to determine the incidence matrices of this net.
Generally the unfolding yields an exponential blow-up.

� Fortunately, for analysis purposes, dedicated methods for colored Petri nets
have been developed that avoid such an unfolding. For instance in [32],
Chiola et al. show how to e�ciently build a symbolic reachability graph for
a subclass of colored Petri nets called well-formed colored nets.

� Furthermore, letting the size of the color domains variable and considering
them as parameters, it is possible to design speci�c analysis methods. For
instance in [?, 39] the authors show how to compute in a parametrized way
a generative family of (positive) linear invariants in large subclasses of well-

85
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formed colored nets.

Semantic extensions. A possible semantic of a Petri net is the set of maximal
(�nite or in�nite) �ring sequences of the net. This semantic is more generally
the one associated with discrete event systems. However, one often needs to �rst
introduce timed delays between the occurrences of events (e.g., transition �rings)
and then to equip the set of these timed sequences with a probability measure in
order to proceed with a quantitative analysis. Let us illustrate these extensions
with time(d) Petri nets and stochastic Petri nets.

� In time Petri nets [20], each transition is equipped with a time interval. This
interval is downward translated with time elapsing as long as the transition
is enabled: when reaching zero its lower bound remains unchanged while
time can no more elapse when some upper bound reaches zero. An enabled
transition may �re when its associated interval includes zero, and after the
�ring its time interval and the time interval of all newly disabled transitions
are reinitialized. An important advantage of this formalism is that it is
able to model urgency requirements. However, all the relevant properties
are undecidable when the reachability graph of the associated Petri net is
in�nite.

� In timed Petri nets [139], each arc is equipped with a time interval. The
tokens have an age, and a transition can �re if every input arc has a token in
the corresponding place whose age belongs to the associated interval. Then
these tokens are consumed, and the token produced by an output arc has
its (initial) age set to some value inside the associated interval. When time
elapses, the age of all tokens evolves accordingly. Whilst this formalism can-
not model urgency requirements, some relevant properties like coverability
are decidable.

� In stochastic Petri nets [112], each transition is equipped with a rate which is
the parameter of the negative exponential distribution. When a transition is
newly enabled, one samples the associated distribution to get the delay before
�ring. The enabled transition with the smallest delay �res (such semantic
is called race policy). It can be shown that the stochastic process generated
by this formalism is a continuous time Markov chain (CTMC) thus allowing
the standard analyses of CTMC.

Syntactic extensions. These extensions add capabilities to the transitions of
the net, but the operational semantic remains the one of discrete event systems: a
sequence of alternating states and transition �rings. The extensions that we will
present in this part are syntactic extensions. Such an extension is interesting if it
is a strict extension with respect to some criterion (e.g., the family of generated
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languages) and some relevant properties remain decidable. For example, a Petri
net with inhibitor arcs is a Petri net with the added capability of performing zero
tests, i.e., checking whether some places are empty, as a prerequisite of �ring a
transition. It achieves zero testing by adding incoming inhibitor arcs from its
places to its transitions. At �rst look, Petri net with inhibitor arcs may seem
very close to Petri net, but given only two inhibitor arcs (two zero tests), the net
becomes equivalent to a Minsky machine [5]. Therefore, all relevant properties are
undecidable.

For many years, it has been considered that there do not exist any natural
extensions strictly extending the capabilities of the Petri net, but still keeping
some important properties of the Petri net decidable:

�In general, it seems that any extension which does not allow zero test-
ing will not actually increase the modeling power (or decrease the de-
cision power) of Petri nets but merely result in another equivalent for-
mulation of the basic Petri net model. (Modeling convenience may be
increased.) At the same time, any extension which does allow zero test-
ing will increase the modeling power to the level of Turing machines and
decrease decision power to zero. Thus, Petri net extensions would seem
to have few practical advantages for analysis.� � James L. Peterson
[127]

In 1978 this idea was shown to be wrong. In [150] Valk introduced post self-modi�ed
nets for which coverability is decidable, and it strictly extends Petri nets. Soon
after came several extensions which manage to extend Petri nets while keeping
interesting properties decidable.

In this chapter, we review in more detail shortcomings of Petri nets and some of
their extensions. In Section 6.1 we describe some limitations of Petri nets. After-
wards, in Section 6.2 we review some well known syntactic extensions that strictly
extend the capabilities of Petri nets. We partition these extensions according to
whether their state is still an ordinary regular marking or not.

6.1 Relevant Petri Nets Limitations

There are many limitations of the Petri net model, and here we only discuss three
of them. We have chosen them for their modeling importance and their relevance
for theoretical researches. In order to formally characterize their limitations, we
use two criteria: the family of generated languages of Petri nets (for the two �rst
limitations) and the family of the generated transition systems (for the last one).
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6.1.1 Zero testing

A classical limitation of Petri net can be found in the following example, which
was inspired by the cigarette smokers problem [125], and developed in [94, 2, 124]
(the details of this example are taken from Peterson's book [127]). Let us consider
consumers, C1 and C2, producers, P1 and P2, bu�ers, B1 B2, and a shared channel
Ch, as depicted in Figure 6.1. Producer Pi can produce items and store them in

Figure 6.1: Two producers with bu�ers and a prioritized shared channel (this �gure
originates from [127]).

bu�er Bi. From the bu�er Bi, one can send, through the channel Ch, the items
one by one to consumer Ci. In addition, there is a constraint on the shared channel
where C1 has a priority over C2, i.e., if there is any item in bu�er B1, then the
channel is closed for B2. The impossibility to model this process using Petri nets is
due to the model monotonicity (i.e., if a transition can be �red from a state, it can
be �red from any other larger state) and the well-quasi order of its states. Assume
for contradiction that there exists a Petri net modeling this system. Therefore,
there exists a sequence of markings {mi}i∈N such that mi represents the state
where there are i items in B1 and one item in B2. Since (NP , <) is a well quasi-
ordered set, there exist two natural numbers i < j such that mi ≤ mj. From

state mi there exists a �ring sequence mi
σ−→ m sending i items from B1 to C1

after which the channel is open to send the item from B2 to C2 by some sequence
σ′. Since mj > mi, the sequence σ is also �reable from mj sending i items to C1,
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i.e., mj
σ−→ m′ ≥ m. By the monotonicity of the Petri net, σ′ is �reable from m′

emptying the bu�er B2 while B1 is not empty. This limitation can be generally
expressed as the inability to perform �zero tests� on unbounded places. Note that,
if we would for example bound the size of both bu�ers, it would become possible
to model the system as a Petri net using �complementary� places.

6.1.2 Pushdown capabilities

The stack is an abstract data type that serves as a collection of elements, with
two operations, push and pop. Adding a stack to a model, i.e., adding pushdown
capability is very useful for modeling relevant systems like procedural programs
with unbounded integer variables [13].

An example of a system one would like to model is a syntactical analyzer of
a programming language. More speci�cally, we are interested in verifying that
all the expressions have balanced brackets. Recall from Section 2.3 that Dyck
languages are the languages of balanced brackets. Assume, for contradiction, that
Dyck languages are included in the family of reachability languages of Petri nets.
Recall that by Theorem 2.3.7, any CFG language is equal to a homomorphism
of an intersection of a Dyck language and a regular language. Since, Petri nets
are closed under homomorphism and intersection by Proposition 2.3.13 and any
regular language is a Petri net language by 2.3.14 we would get that any CFG
language is a Petri net language. But this contradicts Proposition 2.3.15 which
states that the palindrome language on two letters is not a Petri net language.

6.1.3 Modeling of faults

In the last decades there has been an intensive research about the synthesis of Petri
nets (for more details see [15]). The question of synthesis asks whether taking as
input a (�nitely represented) transition system, there exists a Petri net whose
reachability graph is isomorphic to this transition system. The synthesis problem
for �nite transition systems belongs to PTIME. In the following, we deal with an
in�nite transition system, focusing on the expressiveness point of view.

A modeling requirement suggested in [71] concerns the addition of a �faulty
behavior� to an arbitrary Petri net. This behavior, when triggered, resets the
current state to the initial one. For example, assume one wants to study a simple
printing system which does the following:

1. Input. inputs data from the user;
2. Processsing. processes the input data;
3. Printing. prints the data;
4. Finished. returns to the input state.
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Input
Page

Process Print
PageData

...

Fault Fault

Figure 6.2: A Petri net modeling of the printer behavior.

One possible way to model this system can be seen in Figure 6.2 (the black part
of the Petri net). We spot at least two faulty states from which it would be
bene�cial to reset the system to its initial state: (1) the system starts printing
before processing all the input data (modelled by the red transition with reset
arcs in Figure 6.2) and (2) the system inputs data before printing all the previous
processed data.

Is it possible to synthesis this transition system as a Petri net? In order to
model this functionality in an atomic way, the initial state needs to have an in�nite
incoming degree (i.e., in�nitely many states which are a transition away from the
initial one), see the right side of Figure 6.2(note that this is a subgraph of the
transition system). Unfortunately, this is impossible in Petri nets, since every
state in a Petri net has only a �nite incoming degree.

6.2 Petri Net Extensions

In the following, we present some relevant Petri nets extensions. We split these
extensions into two types, those that only extend the transition rules, and those
that extend the type of possible states. This presentation is not exhaustive but
related to the extensions we will be discussing in the remaining chapters of this
part, namely (Dynamic) Recursive Petri nets.

6.2.1 Firing rule based extensions

Petri net with reset arcs. This extension was �rst introduced in [12]. These
nets include reset arcs between a transition tand a place p. When t is �red, the
marking of p is reset (i.e., all tokens of p are removed). Figure 6.3 shows a Petri
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net with reset arcs. Transition tr has two reset arcs (arcs with a cross on one of
their vertices) one ends at pd and the other at pr. If tr is �red, it resets the places
pd and pr.

One can design a net, Figure 6.3, which adds one of the faulty behavior de-
scribed in Sub-Section 6.1.3. When the model is inputting new data (i.e., m ≥ pi)
but it still has data ready for printing (i.e., m ≥ pr) the transition tr is enabled.
Firing tr resets the places pd, and pr. Moreover, It puts the system into its initial
state (i.e., a token in pi). Other relevant modelings can be found in numerous
publications (e.g., [23, 97]).

Figure 6.3: Modeling faults using reset arcs

In [12] Toshiro et al. show that the reachability problem of reset Petri nets is
undecidable, and in [51] Dufourd et al. proved that it remains undecidable with two
resettable places. The boundedness problem was at �rst erroneously thought to be
decidable [92]. It was later shown in [51], that in fact the boundedness problem and
the place boundedness problems are undecidable. Moreover, these authors have
shown that the coverability and termination problems are decidable, using the
backward procedure of WSTS (see Section 2.1). In later work [143], Schnoebelen
established that the coverability and termination problems are Ackerman-hard.

Petri net with transfer arcs. This extension was �rst presented in [34]. Such
nets include a new type of arc, allowing for the atomic movement of all the tokens
currently present in a source place to a target place. Figure 6.4 illustrates such a
net. In this net, one can see: an incoming transfer arc (trident head) starting at
the place pr and ending at the transition tr, and an outgoing transfer arc (regular
head but with trident tail) starting at the transition tr and ending at the place ps,



92 CHAPTER 6. EXTENDING PETRI NETS

and labeled by pd, pr. Firing the transition tr, moves all tokens from pr and pd to
ps (after consuming the tokens associated with the precondition of tr).

Figure 6.4: Faults using transfer arcs

Figure 6.4 describes a net with transfer arcs extending the functionalities of
the Petri net of Figure 6.2. This extension provides us with a partial solution
of one of the faulty behavior described in Subsection 6.1.3. When the model is
inputting new data (i.e., m ≥ pi) but it still has leftover data ready for printing
(i.e., m ≥ pr) transition tr is enabled. Firing tr transfers all the tokens from places
pd and pr to place ps and puts the system into its initial state (i.e., a token in pi).
Here we need to add a sink place ps in which we drop all `deleted' tokens. In
fact we more or less weakly simulate a transition with reset arcs. In [164]. the
author presents a process calculus which impossible to model with Petri nets, but
possible using transfer arcs. For other examples of modeling with transfer arcs,
see e.g. [97].

In [51] the authors show that the reachability problem for transfer Petri nets is
undecidable (for a net having at least 2 extended arcs). However, the coverability
and termination problems remain decidable. Surprisingly, they show that the
boundedness problem is decidable, but that the place-boundedness problem is
undecidable. The undecidability of the place-boundedness problem can be viewed
as a consequence of the undecidability of the boundedness problem for reset nets.
Similarly, as in the transfer Petri net in Figure 6.4 one can `simulate' a reset arc
by transfer arcs with a sink place. To the best of our knowledge no other Petri
net extension exhibits this separation (this observation was �rst made in [51]).

A�ne nets. This extension was �rst introduced in [55]. A�ne nets extend the
�ring rule of transitions in order to include a�ne functions for marking updates.
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For any t ∈ T we have that C(t) is an a�ne function, i.e., for marking m ∈ NP ,
C(t)(m) = Atm + Bt for some At ∈ NP×P and Bt ∈ ZP . The transition t is
�reable from m if m ≥ Pre(t) and C(t)(m) ≥ 0. Firing the transition t from the
marking m, the reached marking is m′ = C(t)(m). Note that, for any t ∈ T , if
At = Id then, the transition is equivalent to a standard Petri net transition, and
we can represent it (in drawing) in the same way we do transitions in Petri nets.
For transitions with At ̸= Id, for any place p ∈ P where C(t)(p) ̸= p, we draw an
arc (ending with a diamond) from the transition t to the place p, and we label it
with

∑
p′∈P At(p, p

′)p′. For example, see the transition tr in Figure 6.5, where:

Ctr =



pi p2 p3 pd pr

pi 1 0 0 0 0
p2 0 1 0 0 0
p3 0 0 1 0 0
pd 0 0 0 0 0
pr 0 0 0 0 0



Figure 6.5: Faults using an a�ne net

These nets extend Petri nets with reset and transfer arcs. For instance, the
a�ne net of Figure 6.5 simulates the net in Figure 6.3. Therefore, the reachability
and boundedness problems are undecidable (as was done in [55]). On the other
hand, in [55] Finkel et al. use WSTS theory to show that coverability and ter-
mination problems are decidable. Moreover, the coverability for a�ne nets was
shown to be Ackermann-hard since it extends the coverability problem for reset
nets. Hence, we get a model which extends both reset and transfer nets and where
some interesting properties remain decidable.
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In [30], Bonnet et al. suggest that the main reason of the undecidability of
boundedness and the hardness of the coverability, comes from the ability to simu-
late reset arcs. So Bonnet et al. de�ne Strongly increasing A�ne nets (SIAN), a
subclass of a�ne nets. In this subclass for any t ∈ T , we have that At ≥ Id.. This
model is equivalent to post self-modifying nets, de�ned by Valk in [150], the �rst
Petri net extension shown to be a strict extension of Petri nets that keeps some
important properties decidable. They show that in this subclass we get that the
coverability, termination, and boundedness problems are EXPSPACE-complete.

6.2.2 State based extensions

ν-Petri nets. In ν-Petri nets, every token is labelled by a data picked from some
countable set. These data are pure names, they can only be compared for equality
(i.e., unordered data). A transition in the net is �reable if there are su�cient
tokens in each place with the correct data (as speci�ed by the arcs surrounding
the transition). Firing a transition consumes the prerequisite token and creates
new tokens with data. Furthermore, this data might be fresh, i.e., a value never
seen before in the computation.

Figure 6.6 represents a ν-Petri net with a single transition. In order to be
�reable this transition needs to have at least one token in each of its input places,
and these tokens need to have di�erent data (in our case c and a). Once it is �red
it consumes these tokens, and generates a new tokens one with the labeled y (in
our case it is a) and a token with a fresh label (in our case d).

The model of ν-Petri nets was originally introduced in [137] with the aim to
model distributed protocols where process identities had to be taken into account.
Other modeling uses of ν-Petri can be found in [120, 136].

Figure 6.6: A transition �ring in a ν-Petri net

Rosa et al. in [138], reduce the reachability problem in inhibitor Petri nets
to the reachability problem of ν-Petri nets, entailing the undecidability of the
reachability problem. Moreover, they show that the coverability and termination
problems of ν-Petri nets are decidable. In [101] Lazi�c et al. show that coverability,
boundedness and termination problems are Ackermann-hard.
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Data nets. In data nets, originally de�ned in [99], every token carries a data
picked from a linearly-ordered in�nite domains and the transition �ring rule in-
cludes whole-place operations (similar to the ones de�ned in a�ne nets). A tran-
sition in the net is �reable if there is a su�cient amount of tokens in each place
and the data which is carried by the tokens is ordered in a way speci�ed by the
transition. Firing a transition may add tokens that carry extra data, possibly fresh
as in the ν-Petri nets.

Figure 6.6 represents a data net with a single transition. In fact this is a data
Petri net, i.e., a data net which does not allow whole-place operation. In order
to be �reable this transition needs to have at least one token in each of its input
places, where the one labeled x (in our case a) needs to be smaller than the one
labeled with z (in our case c). Once it is �red, it consumes these tokens, and
generates a new token labeled y such that x < y < z (in our case b).

Data nets can simulate all previous discussed extensions: ν-Petri can be simu-
lated by Data nets as done in [138] and a�ne nets can be simulated by data nets
which do not use the data attached to the tokens.

Figure 6.7: A transition �ring in a Data net (assuming that a < b < c)

Thus, the reachability problem for data nets is undecidable, while coverability
and termination problems are decidable for any data nets. Finally, the bounded-
ness problem is only decidable for data nets in which the transitions are restricted
to transfer arcs [99].

Nested Petri nets. First introduced in [108], this extension has tokens that
may themselves be nets. Nested Petri nets have four type of steps: (1) transfer
step - moving/generating/removing tokens containing nets, without changing their
internal state, (2) object-autonomous - moving regular tokens, (3) horizontal syn-
chronization - �ring synchronously a transition between two systems associated
with two tokens in the same place, and 4) vertical synchronization - �ring syn-
chronously a transition in a system on a token and in the system containing this
token. Note that the possible nets attached to tokens are prede�ned. Moreover,
the maximal depth of the system is bounded and prede�ned.
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Nested Petri nets were used in order to model task planning systems, multiagent
systems and recursive-parallel systems [109]. This model extends Petri reset net, as
shown in [110]. Due to the simulation of reset Petri nets, Lamozova et al. concluded
in [110] that the reachability and boundedness problems for nested Petri nets are
undecidable. Moreover, using WSTS results and building an appropriate wqo for
the states of Nested Petri nets, they established that the termination problem for
nested Petri nets is decidable.

Pushdown Petri nets. In Pushdown Petri nets, the states are equipped with
a stack which contains symbols of some alphabet. The �ring rule changes accord-
ingly: the �reabllity of a transition depends on whether there is a speci�c symbol
on the top of the current stack, and when �ring pops and/or pushes symbols in
the stack.

Figure 6.8: A pushdown Petri net

Figure 6.8 represents a pushdown Petri net. Firing transition t1 pushes `a' in
to the stack and moves the token. Transition t− pops b and transition t+ pushes b.
Note, that if b is pushed to the stack, then t2 cannot �re until the stack is cleared
from all the b's.

There is no natural wqo on the states of a pushdown Petri net, which makes
it a WSTS. This makes this model stand out of all the rest of the models we in-
troduced in this chapter. It also means that one cannot use the usual techniques
(e.g., backward coverability algorithm) for proving properties such as coverability
and termination. As far as we know, the decidability status of the coverability and
reachability problems for pushdown Petri nets are still unknown. For pushdown
Petri nets with dimension of size one, Leroux et al. show in [106], that the cover-
ability problem is decidable. Termination and boundedness problems were shown
to be decidable in [105].
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Table 6.1 summarizes the decidability status and the complexity of standard
problems for the above models. In the next chapters we are going to introduce
Recursive Petri net which strictly extends Petri net. We will in particular establish
that its family of coverability languages includes the family of CFG languages and
that the coverability, termination, and boundedness problems for Recursive Petri
nets are EXPSPACE-complete.

Extensions Reachability Coverability Termination Boundedness

Petri net Ackerman-complete EXPSPACE-Complete EXPSPACE-Complete EXPSPACE-Complete

Reset net Undecidable Ackerman-hard Ackerman-hard Undecidable

Transfer net Undecidable Ackerman-hard Ackerman-hard Decidable

SIAN Undecidable EXPSPACE-complete EXPSPACE-complete EXPSPACE-complete

A�ne net Undecidable Ackerman-hard Ackerman-hard Undecidable

ν-Petri net Undecidable Ackermann-hard Ackermann-hard Ackermann-hard

Data net Undecidable Ackermann-hard Ackermann-hard Undecidable

Nested net Undecidable ? Decidable Undecidable

Pushdown Petri net ? ? Decidable Decidable

Table 6.1: Decidability and complexity of standard problems for Petri net exten-
sions





Chapter 7

Recursive Petri Nets

In this chapter, we introduce Recursive Petri Nets (RPN). The �rst appearance
of RPN can be found in [52] by El Fallah et al. They noticed that the standard
patterns of dynamical systems highlight two modeling needs:

1. The ability to handle the concurrent execution of parallel sequential pro-
cesses;

2. The ability to manage the dynamical creation of objects.

The models that were available, then, were either not su�ciently expressive for
the two patterns or led to undecidability of standard veri�cation problems. Thus,
El Fallah and Haddad introduced the RPN formalism. The RPN formalism is
able to model distributed planning of multiagent systems for which counters and
recursivity are necessary.

The interest of the formalism were �rst illustrated by modeling a scenario from
the transportation domain of conveyors and clients in [52]. Other applications of
RPN like systems featuring faults and interruptions, and goal-oriented programs
were later discussed, one can �nd some examples here [71, 72].

Recall that in Section 2.3, we showed that the family of Petri net reachability
languages does not include the family of context-free languages. On the contrary,
the family of RPN reachability languages was shown not only to include the family
Petri net reachability languages but also the one of context-free languages [71].
Moreover, since these families are incomparable, this shows that the family of
RPN reachability languages is strictly larger than both (and in fact even their
union). Another known model whose family of languages was shown to include
both of these families is Process Algebra Net, de�ned in [117]. However, this model
was also shown in [72] to be included in RPN.

In addition, RPN was shown to retain many of the decidable properties from
Petri nets. Such properties include: reachability, coverability, �niteness etc.

99
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RPN is not the only model extending the capabilities of Petri nets with dy-
namical creation of objects. For example, the Net systems designed in [91] has a
special type of transitions, whose �ring starts a new token game for the net. More-
over, these created new nets can return some tokens to their creator. However,
this model can also be simulated by RPN. Another example is the object Petri
nets, a model introduced in [151]. In this model, the tokens themselves are Petri
nets. However, these nets are limited by the depth, and their reachability problem
was shown to be undecidable. In the same spirit, there is also the nested Petri
nets model, that has been introduced in [110]. Here its depth of hierarchy is not
bounded but still reachability and other properties were shown to be undecidable.

Roughly speaking, a state of an RPN consists of a tree of threads, where the
local state of each thread is a marking. Any thread may �re an elementary, abstract
or cut transition. When the transition is elementary, the �ring updates its marking
as in Petri nets; when it is abstract, this only consumes the tokens speci�ed by the
input arcs of the transition and creates a child thread initialized with the initial
marking of the transition. When a cut transition is �red, the thread and its subtree
are pruned, producing in its parent the tokens speci�ed by the output arcs of the
abstract transition that created it. We leave the formal de�nition of the Recursive
Petri Nets (RPN) to Section 7.1.

Organization. In Section 7.1 we give a formal de�nition of RPN. We then
discuss its modeling capabilities is Section 7.2. Finally, in Section 7.3 we recall
some previous results that were shown for RPN.

7.1 Presentation

The state of an RPN has a structure akin to a `directed rooted tree' of Petri nets.
Each vertex of the tree, hereafter thread, is an instance of the RPN and possessing
some marking on it. Each of these threads can �re three types of transitions. An
elementary transition updates its own marking according to the usual Petri net
�ring rule. An abstract transition consumes tokens from the thread �ring it and
creates a new child (thread) for it. The marking of the new thread is determined
according to the �red abstract transition. A cut transition can be �red by a thread
if its marking is greater or equal than some marking. Firing a cut transition, the
thread erases itself and all of its descendants. Moreover, it creates tokens in its
parent, which are speci�ed by the output arcs of the abstract transition that
created it (except when the thread is at the root of the tree, in which case it yields
the empty tree).

De�nition 7.1.1 (Recursive Petri Net). A Recursive Petri Net is a 6-tuple N =
⟨P, T,W−,W+,Ω⟩ where:
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� P is a �nite set of places;
� T = Tel ⊎ Tab ⊎ Tτ is a �nite set of transitions with P ∩ T = ∅, and Tel

(respectively Tab, Tτ ) is the subset of elementary (respectively abstract, cut)
transitions;

� W− is the NP×T backward incidence matrix;
� W+ are the NP×(Tel⊎Tab) forward incidence matrix;
� Ω : Tab → NP is a function that labels every abstract transition with an
initial marking;

For brevity reasons, we denote by W+(t) a vector in NP , where for all p ∈ P ,
W+(t)(p) = W+(p, t), and we do the same for W−(t).

Figure 7.1 graphically describes an example of an RPN with:

P = {pini, pfin, pbeg, pend} ∪ {pbi , pai : i ≤ 2};
Tel = {tb1 , tb3 , ta1 , ta3 , tsa, tsb} ; Tab = {tbeg, tb2 , ta2};
Tτ = {tτ1 , tτ2}.

The elementary transitions are depicted by rectangles with a single border while
abstract transitions are depicted by rectangles with a double border and cut tran-
sitions are depicted by rectangles �lled in black. As for Petri nets, the items
of the incidence matrices label the arcs surrounding transitions: for instance
W−(pini, tbeg) = 1. The initial markings of the abstract transitions are indicated
close to the transition and framed in a rectangle: for instance Ω(tb2) = pbeg (where
pbeg denotes the marking with one token in place pbeg and zero elsewhere).

A concrete state s of an RPN is a labeled tree representing relations between
threads and their associated markings. Every vertex of s is a thread, and edges
are labeled by abstract transitions. We introduce a countable set V of vertices in
order to pick new vertices when necessary.

De�nition 7.1.2 (State of an RPN). A concrete state (in short, a state) s of an
RPN is a tree over the �nite set of vertices Vs ⊆ V , inductively de�ned as follows:

� either Vs = ∅ and thus s = ∅ is the empty tree;
� or Vs = {rs} ⊎ V1 ⊎ . . . ⊎ Vk with 0 ≤ k and s = (rs,m0, {(mi, si)}1≤i≤k) is
de�ned as follows:
� rs is the root of s labelled by a marking m0 ∈ NP ;
� For all i ≤ k, si is a state over Vi ̸= ∅ and there is an edge rs

mi−→s rsi
with mi ∈ {W+(t)}t∈Tab

.

For all u, v ∈ Vs, one denotes Ms(u) the marking labelling u and when u
m−→s v,

one writes Λ(u, v) := m. State sv is the (maximal) subtree of s rooted in v.
While the set of vertices Vs will be important for analyzing the behavior of a

�ring sequence in an RPN, one can omit it and get a more abstract representation
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Figure 7.1: An example of a marked RPN.

of the state. Note that contrary to the previous de�nition where {(mi, si)}1≤i≤k
was a set, in the following de�nition we need a multiset denoted by Childs.

De�nition 7.1.3 (Abstract state of an RPN). An abstract state s of an RPN is
inductively de�ned as follows:

� either s = ∅ is the empty set ;
� or s = (ms, Childs) where ms ∈ NP and Childs is a �nite multiset of pairs
(m′, s′)
where m′ ∈ {W+(t)}t∈Tab

and s′ is an abstract state di�erent from ∅.

Given a concrete state s, we denote by [s] its abstract state. Except if explicitly
stated, a state is a concrete state.

In the other direction, given an abstract state s, one recovers its set of concrete
states by picking an arbitrary set of vertices Vs ⊆ V of appropriate cardinality
and, inductively, arbitrarily splitting Vs between the root and the pairs (m, s′).

For example, on the right side of Figure 7.1, there is a (concrete) state of the
RPN N . This state consists of three threads with markings 0,0, and pend (where
0 is the null marking) and two edges with the labels W+(tbeg) and W+(tb2).

Let s be a state of some RPN. Every thread u di�erent from the root has a
unique parent, denoted by prds(u). We write prd(u) when the speci�c state is
clear. The descendants of a thread u consist of threads in the subtree rooted in,
u including u itself. We denote this set by Dess(u). For m ∈ NP , we denote by
s[r,m] := (r,m, ∅), the state consisting of a single vertex r whose marking is m.
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As usual, two markings m,m′ ∈ NP , over a set of places P , are partially ordered
as follows: m ≤ m′ if for all places p ∈ P , m(p) ≤ m′(p).

De�nition 7.1.4 (Operational semantics). Let s = (r,m0, {(mi, si)}1≤i≤k) be a

state. Then the �ring rule s
(v,t)−−→ s′ where v ∈ Vs and t ∈ T is inductively de�ned

as follows:

� Let t ∈ Tel such that W−(t) ≤ m0, then one has s
r,t−→ (r,m0 − W−(t) +

W+(t), {(mi, si)}i≤k)
� Let t ∈ Tab such thatW

−(t) ≤ m0, then one has s
r,t−→ (r,m0−W−(t), {(mi, si)}i≤k+1))

where mk+1 = W+(t), sk+1 = s[v,Ω(t)] with v ∈ V \ Vs

� Let t ∈ Tτ such that W−(t) ≤ m0, then one has s
r,t−→ ∅

� Let i ≤ k such that si
v,t−→ s′i

if s′i = ∅ then s
v,t−→ (m0 +mi, {(mj, sj)}1≤j ̸=i≤k)

else s
v,t−→ (m0, {mj, sj}1≤j ̸=i≤k ∪ {mi, s

′
i})

Figure 7.2 illustrates a sequence of transition �rings in the RPN described by
Figure 7.1. The �rst transition tbeg ∈ Tab is �red by the root. Its �ring results
in a state in which the root has a new child (denoted by v) and a new outgoing
edge with label pfin. The marking of the root is decreased to 0 and v is initially
marked by Ω(tbeg) = pbeg. The second �ring is due to an elementary transition
tb1 ∈ Tel which is �red by v. Its �ring results in a state for which the marking of v
is changed to M ′

s(v) = Ms(v)+W+(tb1)−W−(tb1) = pb1 . The �fth transition to be
�red is the cut transition tτ2 , �red by the thread with the marking pend (denoted
by w). Its �ring results in a state where the thread w is erased, and the marking
of its parent is increased by W+(tb2) = pb2 .

pini 0

pbeg v

pfin

0

pb1

pfin

0

0

pbeg

pfin

pb2 0

0

pend w

pfin

pb2

0

pb2

pfin

0

pend

pfin

pfin

tbeg tb1 tb2
tsa

tτ2tb3tτ2

Figure 7.2: A �ring sequence for the RPN in Figure 7.1.

A �ring sequence is a sequence of transition �rings, written in a detailed way:

s0
(v1,t1)−−−→ s1

(v2,t2)−−−→ · · · (vn,tn)−−−−→ sn, or when the context allows it, in a more concise
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way like s0
σ−→ sn for σ = (v1, t1)(v2, t2) . . . (vn, tn). Let σ ∈ T ∗ with σ = t1 . . . tn

and v be a vertex, (v, σ) is an abbreviation for (v, t1) . . . (v, tn). When we deal with
several nets, we indicate by a subscript in which net, say N , the �ring sequence
takes place: s0

σ−→N sn. In�nite �ring sequences are similarly de�ned. In a �ring
sequence, a thread v that has been deleted is never reused (which is possible
since V is countable). A thread is �nal (respectively initial) w.r.t. σ if it occurs
in the �nal (respectively initial) state of σ. We say that v ∈ Desσ(u) if there
exists i ≤ n such that v ∈ Dessi(u). We call σ′ a subsequence of σ, denoted by
σ′ ⊑ σ, if there exists k indexes i1, i2 . . . ik such that 1 ≤ i1 < i2 < . . . ik ≤ n and
σ′ = (vi1 , ti1)(vi2 , ti2) . . . (vik , tik).

Remark. In the sequel, when we write �RPNN �, we meanN = ⟨P, T,W+,W−,Ω⟩,
unless we explicitly write di�erently. An RPN N equipped with an initial state s
is a marked RPN and denoted (N , s).

For a marked RPN (N , s0), let Reach(N , s0) = {[s] | ∃σ ∈ T ∗ s.t. s0
σ−→ s} be

its reachability set, i.e., the set of all the reachable abstract states.

7.2 Modeling capabilities

From a modeling point of view, the RPN formalism have many features which
make it more appropriate for speci�cation than Petri nets. In this section, we give
three examples of behaviors that are �. . . are di�cult or even impossible to specify
with typical models such like Petri nets. . . � [72]. These examples are directly
taken from [72].

7.2.1 Faults

As already described in Section 6.1 faults are a possible feature of many systems,
for which Petri nets do not have a �good� modeling pattern. On the contrary,
in RPN it is very simple. For example Figure 7.3 depicts an RPN �extending�
the Petri net from Figure 6.2 by adding one of the faulty behaviors described in
Subsection 6.1.3 (the printer should not receive new information if it did not �nish
printing). In this RPN we add cut transitions tfault, abstract transition trun and
place pready. The initial state is s[pready, r]. To �turn on� the printing machine
one �res trun which creates a new thread. This thread behaves as the Petri net
in Figure 6.2, except when it encounters a faulty behavior (the marking of the
thread is larger than pi + pr) where it can �re the cut transition tfault. Firing this
transition removes the thread and puts a token in the place pready of the thread r,
from which we can restart the printer.
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...

Figure 7.3: Faults using an RPN

This behavior can be easily added to any Petri net. See Figure 7.4 where we
add a cut transition to any faulty marking of the net and a mechanism which runs
a ��xing� protocol.

7.2.2 Concurrent goal-oriented programs

Goal-oriented programs consist of applying some rules until some predicate is
reached. Concurrent goal-oriented programs are systems which run multiple con-
current process trying to ful�ll the same goal. Once some process achieves the goal,
the entire program terminates. Modeling such systems may be di�cult, since, for
example, there might exist a �nal state which is reachable from in�nitely many
states.

RPN's are well-equipped to model them. For example, let us look the RPN of
Figure 7.5. The goal of the system is to reach the empty state. Its initial state
consists of a single thread with the marking p1,1+p1,2. In order to cut this thread,
the thread needs to get at least one token in p1,3. For that, it is enough to return
after �ring one of the abstract transition t1,1 or t1,2. These transitions can be �red
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Petri net

Figure 7.4: Modeling faults with RPN

concurrently, and the goal of the system can be reached once any of them �nishes.
Note that, �ring transition t1,2 creates a thread with a token in p1,3, which can
create an unbounded branch of threads by �ring t3,2. Therefore, the empty state
can be reached from an in�nite number of states.

Figure 7.5: Modeling a concurrent goal-oriented program with RPN from [72]

7.2.3 Interruptions

Let us suppose that we have some system for which we want to add interruption
functionality. In RPN this functionality can be simply modeled similarly like de-
picted in Figure 7.6. All the transitions of the original system (in blue) require at
least one token in pint1. The interrupt action is realized by �ring the abstract tran-
sition tint1. This transition takes the token from pint1 disabling every transition
in the original system until the interrupt is handled. Moreover, the interrupt han-
dling mechanism has the same interrupt system modeled by pint2 and tint2, which
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Original
Mechanism

Figure 7.6: Modeling interruption mechanism using an RPN from [72]

creates a recursive interruption process. In comparison, the same modeling with
Petri net is rather di�cult as it requires keeping each context of the suspended
processes.

7.3 Previous results about the analysis and expres-

siveness of RPN

7.3.1 Decision Problems

As discussed for other extensions of Petri nets in Chapter 6, it is interesting to
compare the decidability of relevant properties inherited from Petri nets. Let us
quickly recall some of these properties. Let (N , s0) be a marked RPN and sf be a
state of N , then:

� The reachability problem asks whether there exists a �ring sequence σ such
that s0

σ−→ sf .
� The termination problem asks whether there exists an in�nite �ring sequence.
� The boundedness problem asks whether there exists B ∈ N such that for all
s ∈ Reach(N , s0) and for all v ∈ Vs, one has max(Ms(v)(p))p∈P ≤ B.

� The �niteness problem asks whether the reachability set is �nite, i.e., Reach(N , s0) <
∞.

In [71, 70] the authors establish the following results:

Theorem 7.3.1 ([71, 70]). The reachability, �niteness and boundedness problems
for RPN's are decidable

Contrary to Petri nets, in [70] the authors show that model checking temporal
logic becomes undecidable. More precisely, it is undecidable on RTL (Regular
Temporal Logic) which is a fragment of LTL.
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Theorem 7.3.2 ([70]). Checking the truth of an RTL formula on an RPN is
undecidable.

In later works, the same authors present in [73] a submodel of RPN, the se-
quential recursive Petri nets (SRPN). Loosely speaking, the limitation imposed by
the SRPN is such that the only thread that can �re is the latest created one. This
gives the SRPN a limitation on its state, which can only be a branch (where in
the RPN it can be any arbitrary rooted tree). This model preserves most of the
modeling capabilities of RPN, while model checking LTL becomes decidable.

7.3.2 Languages

Recall that expressiveness of a formalism can be investigated by studying the
family of languages that it can generate. In Section 2.3 we de�ned a few types
of languages generated by a Petri net (e.g., the reachability language). Similarly,
one can de�ne the family of reachability languages for RPN. Given a marked RPN
(N , s0), a labelling of the transitions λ(t) ∈ Σ ∪ {ε} where Σ is a �nite alphabet
and ε is the empty word, and a �nite subset of abstract states Sf , the reachability
language LR(N , s0, λ, Sf ) is de�ned by:

LR(N , s0, λ, Sf ) = {λ(σ) | ∃ s0
σ−→ sf ∧ [sf ] ∈ Sf}

i.e., the set of labelling for sequences reaching some state of Sf in N . Haddad et

Reach-PN

Cov-PN CF

Reach-RPN

Figure 7.7: Hierarchy of languages.

al. [71] use the reachability languages in order to compare the RPN formalism to
other well-known models.

Theorem 7.3.3 ([71]). The family of reachability languages of RPNs strictly in-
cludes the union of the families of Petri net reachability and context-free languages.
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In [70] Haddad et al. show that the family of reachability languages of RPN is
quite close to the family of recursively enumerable languages:

Theorem 7.3.4 ([70]). Let L be a recursively enumerable language. Then there
exists an RPN language L′, a regular language R and a homomorphism h such
that L = h(L′ ∩R).

Combining the results above and some well-known results about Petri net lan-
guages we get a hierarchy on the languages described in Figure 7.7.





Chapter 8

Expressiveness and Decision

Problems in RPN

8.1 Introduction

Till recently, the de�nition and analysis of the coverability problem for RPNs
(similar to the one de�ned for Petri nets and many of its extensions) was left
unexplored. One of the reasons, is the lack of a �good� order between states.
One would try to �nd an order which is well quasi ordered, like for many other
extensions of Petri nets. With such a wqo and using the WSTS framework, one
would get the decidability of the coverability problem for free. Unfortunately, we
show that under very light assumptions, all but the most trivial orders are not
wqo. Instead, we present an order for the states of the RPN which while not being
wqo is strongly compatible, similar to the one de�ned on the states of Petri nets.

Equipped with this order, we de�ne and study the family of RPN coverability
languages. We show that the RPN coverability languages are quite close to re-
cursively enumerable languages, since the closure under homomorphism and inter-
section with a regular language is the family of recursively enumerable languages.
We also show that RPN coverability (as reachability) languages strictly include
the union of context-free languages and Petri net coverability languages. More-
over, we prove that RPN coverability languages and reachability languages of Petri
nets are incomparable and that RPN coverability languages are a strict subclass of
RPN reachability languages. Studying the operations on languages, we establish
that the family of RPN coverability languages is closed under union, Kleene star,
and homomorphism but not under intersection with a regular language nor under
complementation.

From an algorithmic point of view, we show that, as for Petri nets, coverabil-
ity, termination, boundedness, and �niteness problems are EXPSPACE-complete.

111
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Thus, the increase of expressive power does not entail a corresponding increase
in complexity. In order to solve the coverability problem, we show that if there
exists a covering sequence, there exists a `short' one (i.e., with a length at most
doubly exponential w.r.t. the size of the input). In order to solve the termination
problem, we consider two cases for an in�nite sequence, depending on (informally
speaking) whether the depth of the trees corresponding to states are bounded or
not along the sequence. For the unbounded case, we introduce the abstract graph
that expresses the ability to create threads from some initial state. The decid-
ability of the �niteness and boundedness problems are also mainly based on this
abstract graph.

Organization. In section 8.2, we introduce an order between RPNs states and
establish basic results related to these notions. In section 8.3, we introduce deci-
sion problems and some reductions between them. In section 8.4, we study the
expressiveness of coverability languages. Then in sections 8.5, 8.6, and 8.7 we
show that the coverability, termination, boundedness, and �niteness problems are
EXPSPACE-complete.

Based on. This chapter is mainly based on our works [59, 62].

8.2 An order for Recursive Petri Nets

We now de�ne a qo ⪯ between states of an RPN. Given two states s, s′ of an RPN
N , we say that s is smaller or equal than s′, denoted by s ⪯ s′, if there exists a
subtree in s′, which is isomorphic to s, where markings are greater or equal on all
vertices and edges.

De�nition 8.2.1. Let s ̸= ∅ and s′ be states of an RPN N . Then s ⪯ s′ if there
exists an injective mapping f from Vs to Vs′ such that for all v ∈ Vs:

1. Ms(v) ≤Ms′(f(v)), and,

2. for all v
m−→s w, there exists an edge f(v)

m′
−→s′ f(w) with m ≤ m′.

In addition, ∅ ⪯ s for all states s.
When f(rs) is required to be rs′ , one denotes this relation s ⪯r s′ with ∅ ⪯r s if
and only if s = ∅.

Figure 8.1 illustrates these quasi-orders(shown below). We can see that s ⪯ s′

since taking the injective mapping f : Vs 7→ V ′s de�ned by f(r) = v and f(u) = u′,
we get that both of the conditions are satis�ed. On the other hand, s ̸⪯r s

′ since
Ms(r) ≰ Ms′(r

′).
While this is irrelevant for the results presented here, let us mention that

checking whether s ⪯ s′ can be done in polynomial time by adapting a standard
algorithm for the subtree problem (see for instance [146]).
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Figure 8.1: Illustration of the two quasi-orders de�ned in 8.2.1.

Lemma 8.2.2. The relations ⪯ and ⪯r are quasi-orders.

Proof. Let, s, s′, s′′ be states of an RPN N with s = (r,m0, {(mi, si)}1≤i≤k), s′ =
(r′,m′0, {(m′i, s′i)}1≤i≤k′) and s′′ = (r′′,m′′0, {(m′′i , s′′i )}1≤i≤k′′). Let us show that the
relation ⪯ is a qo.

1. Re�exivity: the identity function Id on Vs insures that s ⪯ s.
2. Transitivity: Given s ⪯ s′ ⪯ s′′, there exist two injective functions f : Vs →

Vs′ and f ′ : Vs′ → Vs′′ . Let g : Vs → Vs′′ be de�ned by g = f ′ ◦ f . Then g is

injective. For any edge v
m−→s w, there exists an edge f(v)

m′
−→s′ f(w) with

m ≤ m′ and there exists an edge f ′(f(v))
m′′
−−→s′′ f

′(f(w)) withm ≤ m′ ≤ m′′.
For all v ∈ Vs, one has Ms(v) ≤ Ms′(f(v)) ≤ Ms′′(f

′(f(v))) = Ms′′(g(v)).
Therefore s ⪯ s′′.

The proof for the relation ⪯r is similar.

Consider the equivalence relation ≃ :=⪯ ∩ ⪯−1. Given a set of states A, one
denotes by A/≃ the quotient set by the equivalence relation ≃. Observe that s ≃ s′

if and only if their abstract representations are equal and that ≃=⪯r ∩ ⪯−1r .
A qo ≤ on the states of an RPN is strongly compatible (as in [63]) if for all

states s, s′ such that s ≤ s′ and for all transition �rings s
(v,t)−−→ s1, there exist a

state s′1 and a transition �ring s′
(v′,t′)−−−→ s′1 with s1 ≤ s′1.

Lemma 8.2.3. The quasi-orders ⪯ and ⪯r are strongly compatible.

Proof. Let s ⪯ s′ and, let f be the mapping associated with the relation ⪯ and

s
v,t−→ s1.

Thus, sv
v,t−→ s2 for some s2.
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We will exhibit some s′1 such that s1 ⪯ s′1 with some f ′ as associated mapping.

Since Ms(v) ≤ Ms′(f(v)), one has s′f(v)
f(v),t−−−→ s′2 for some s′2 and by induction

s′
f(v),t−−−→ s′1 for some s′1.

It remains to de�ne f ′.
� If t ∈ Tel then f ′ = f ;
� If t ∈ Tab then for all threads u of s, f ′(u) = f(u) and if v∗ (resp. w∗) is the
thread created by the �ring (v, t) (resp. (f(v), t)) then f(v∗) = w∗;

� If t ∈ Tτ then f ′ is equal to f restricted to the remaining vertices.
It is routine to check that the inequalities between corresponding markings of s
and s′ are ful�lled. The proof for ⪯r is similar.

These quasi-orders may contain an in�nite set of incomparable states (i.e., an
in�nite antichain). For example, see Figure 8.2 where any two states si and sj are
incomparable. Indeed, for any i < j: (1) sj ̸⪯ si because |Vsj | > |Vsi | there cannot

Figure 8.2: An RPN with an antichain of states

be any injective function from Vsj to Vsi , and (2) si ̸⪯ sj because for any injective
function from Vsi to Vsj , at least one of the edges with the marking pr would be
mapped to an edge with a marking pℓ. Since s ⪯r s

′ implies s ⪯ s′, this is also an
antichain for ⪯r.

Observe also that these quasi-orders are not only strongly compatible. They
are transition-preserving compatible, meaning that for all states s, s′ such that

s ≤ s′ and for all transition �rings s
(v,t)−−→ s1, there exist s

′
1 and a transition �ring
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s′
(v′,t)−−−→ s′1 with s1 ≤ s′1. In Petri net, the standard order on NP is a wqo which is

transition-preserving compatible. The next proposition establishes that such a qo
does not exist in RPN.

Proposition 8.2.4. There does not exist a wqo on states of RPN which is transition-
preserving compatible.

Proof. Consider the net of Figure 8.2 and the family of states {sn}n≥1. By a simple

examination one gets that for all n ≥ 1, sn
(vn+1,τℓ)...(v1,τℓ)(v0,τr)−−−−−−−−−−−−−→ ∅. Moreover, for

all n′ ̸= n, there does not exist a �ring sequence from sn′ labelled by τn+1
ℓ τr.

Thus, for any transition-preserving compatible qo≤, these states are incomparable,
establishing that ≤ is not a wqo.

Since ⪯ is not a wqo, RPNs with the relation ⪯ are not well-structured transi-
tion systems, see Section 2.1 or [63], for which coverability is decidable. Therefore,
to solve coverability, one needs to �nd another way.

8.3 Decision problems and reductions

In this section, we introduce the decision problems that we are going to solve
and establish reductions to simpler problems in order to shorten the proofs of
subsequent sections.

Let (N , s0) be a marked RPN and sf be a state of N .

� The cut problem asks whether there exists a �ring sequence σ such that
s0

σ−→ ∅?
� The coverability problem asks whether there exists a �ring sequence σ such
that s0

σ−→ s ⪰ sf?
� The termination problem asks whether there exists an in�nite �ring se-
quence?

� The �niteness problem asks whether Reach(N , s0) is �nite?
� The boundedness problem asks whether there exists B ∈ N such that for all
s ∈ Reach(N , s0) and for all v ∈ Vs, one has max(Ms(v)(p))p∈P ≤ B?

Observe that contrary to Petri nets, the �niteness, and boundedness problems are
di�erent and not equivalent. Indeed, an RPN can be bounded while due to an
unbounded number of vertices, its reachability set can be in�nite.

For multiple reasons when dealing with marked RPN, it is more convenient to
assume that the initial state is s[r,m], i.e., contains a single thread. Therefore,
we introduce the �rooted� version of the above problems, i.e., s0 is required to be
some s[r,m0], to which we show reductions from the general problems. In order to
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establish these reductions, given a marked RPN (N , s0), we build a marked RPN
(N̊ , s[r, m̊0]) that in a way simulates the former marked RPN. We do this by adding
a place pv for every vertex v ̸= r of s0, and we add an abstract transition tv that
consumes a token from this place and creates a new vertex with initial marking in
Ms0(v)+

∑
v

mv′−−→s0v
′
pv′ . This will allow creating the children of v in s0 (see Figure

8.3). In order to similarly proceed in the root, m̊0 = Ms0(r) +
∑

r
mv−→s0v

pv.

De�nition 8.3.1. Let (N , s0) be a marked RPN. Then (N̊ , s̊0) is de�ned by:
� P̊ = P ∪ {pv | v ∈ Vs0 \ {rs0}};
� T̊ab = Tab ∪ TV , T̊τ = Tτ , T̊el = Tel with TV = {tv | v ∈ Vs \ {rs}};
� for all t ∈ T , one has W̊−(t) = W−(t) and all t ∈ Tab ∪ Tel, W̊

+(t) = W+(t);
� for all tv ∈ TV and u

mv−→s0 v, W̊
−(tv) = pv and W̊+(tv) = mv ;

� for all t ∈ Tab, Ω̊(t) = Ω(t);
� for all tv ∈ TV , Ω̊(tv) = Ms0(v) +

∑
v

mv′−−→s0v
′
pv′ ;

� s̊0 = s[r,Ms0(rs) +
∑

rs0
mv−→s0v

pv].

Figure 8.3: From a marked RPN to a rooted one

Let m ∈ NP̊ , we denote by m|P ∈ NP the projection of m on P . Let s be a
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state of N̊ , we denote s|P a state of N obtained by projecting every marking of s
on P .

Observations and notations.
1. The encoding size of (N , s0) is linear w.r.t. the encoding size of (N̊ , s̊0).
2. Let e := (vi)0≤i≤k be an enumeration of Vs0 such that v0 = rs0 and for all

0 < i ≤ k, prd(vi) ∈ {vj}j<i. Consider σe
s0

= (prd(vi), tvi)
k
i=1. Such an

enumeration is called consistent. By construction of N̊ , s̊0
σe
s0−−→N̊ s′0 with

s′0|P = s0 and all places of PV unmarked in s′0.

3. Let s̊0
σ−→N̊ s, where 1) any abstract transition in σ di�erent from {tv} does

not create vertices in Vs0 , and 2) when tv is �red it creates the new vertex
is v. Then by construction, for all v ∈ Vs0 \ {rs0}, there is at most one
occurrence of tv which furthermore is �red in prds0(v). Moreover, since these
�rings consume tokens in PV that were not used for �rings of T , they can
be pushed at the beginning of σ (denoted by σ1) and completed by the
missing �rings of TV in σ (denoted by σ2) getting a consistent enumeration
e. Summarizing, denoting by σ|N , the sequence σ without the �rings of TV ,
one gets that:

(1) s̊0
σ1σ|N−−−→N̊ s,

(2) s̊0
σσ2−−→N̊ s′ and

(3) s0
σ|N−−→N s′′ with s′|P = s′′ and all places of PV are unmarked in s′.

Due to observation 2, we immediately get that:

Lemma 8.3.2. Let (N , s0) be a marked RPN and s0
σ−→N s. Then for every

consistent enumeration e, there exists a �ring sequence s̊0
σe
s0

σ
−−→N̊ s′ with s′|P = s

and all places of PV are unmarked in s′.

Due to observation 3, we immediately get that:

Lemma 8.3.3. Let (N , s0) be a marked RPN and s̊0
σ−→N̊ s. Then there exist a

consistent enumeration e and a decomposition σe
s0

= σ1σ2 such that s̊0
σ1σ|N−−−→N̊ s,

s̊0
σσ2−−→N̊ s′ and s0

σ|N−−→N s′′ with s′|P = s′′ and all places of PV are unmarked in s′.

Due to the previous lemmas, we get that:

Proposition 8.3.4. The cut (resp. coverability, termination, �niteness, bounded-
ness) problem is polynomially reducible to the rooted cut (resp. coverability, termi-
nation, �niteness, boundedness) problem.

Proof. Let (N , s0) be a marked RPN and sf be a state of N . De�ne s̊f a state of

N̊ be as sf with in all markings of s̊f , all places of P̊ \ P unmarked.
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• Assume that there exists s0
σ−→N ∅. Then by Lemma 8.3.2, s̊0

σe
s0

σ
−−→N̊ ∅. Assume

that there exists s̊0
σ−→N̊ ∅, which means that the last transition is �red in the root

and is a cut transition. Then by Lemma 8.3.3, s0
σ|N−−→N s′′ for some s′′, since the

last �ring of σ|N is the cut transition �red in the root s′′ = ∅.

• Assume that there exists s0
σ−→N s ⪰ sf . Then by Lemma 8.3.2, s̊0

σe
s0

σ
−−→N̊ s̊

with s̊|P = s. Thus s̊ ⪰ s̊f . Assume that there exists s̊0
σ−→N̊ s ⪰ s̊f . Then by

Lemma 8.3.3, there exists σ2 a �ring sequence of TV with s̊0
σσ2−−→N̊ s′, s0

σ|N−−→N s′′

and s′|P = s′′. Since σ2 only creates vertices and deletes tokens from PV , s
′ ⪰ s̊f .

Thus s′′ ⪰ sf .

• Assume that there exists s0
σ−→N with σ in�nite. Then by Lemma 8.3.2, s̊0

σe
s0

σ
−−→N̊ .

Assume that there exists s̊0
σ−→N̊ with σ in�nite. Then by Lemma 8.3.3, s0

σ|N−−→N
with σ|N in�nite since there are only a �nite number of �rings of TV .
• Assume that Reach(N , s0) is in�nite. For all s ∈ Reach(N , s0), de�ne s̊ a state
of N̊ as s with all places of PV in markings of s unmarked. Due to Lemma 8.3.2, s̊ ∈
Reach(N̊ , s̊0). Since this mapping is injective, Reach(N̊ , s̊0) is in�nite. Assume
that Reach(N̊ , s̊0) is in�nite. Let s ∈ Reach(N̊ , s̊0). Due to Lemma 8.3.3, consider

s
σ2−→N̊ s′ and s0

σ|N−−→N s′′ with s′|P = s′′ and all places of PV unmarked in s′. Thus

s′′ ∈ Reach(N , s0). The mapping from s to s′′ is not injective. However, the
inverse image of s′′ by this mapping is �nite since there are a �nite number of
consistent enumerations and pre�xes of such enumerations. Thus Reach(N , s0) is
in�nite.
• Assume that (N , s0) is unbounded. For all s ∈ Reach(N , s0), de�ne s̊ a state
of N̊ as s with all places of PV in markings of s unmarked. Due to Lemma 8.3.2,
s̊ ∈ Reach(N̊ , s̊0). Thus (N̊ , s̊0) is unbounded. Assume that (N̊ , s̊0) is unbounded.
By construction, the marking of places in PV is bounded. Let s ∈ Reach(N̊ , s̊0).

Due to Lemma 8.3.3, consider s
σ2−→N̊ s′ and s0

σ|N−−→N s′′ with s′|P = s′′ and all

places of PV unmarked in s′. Thus s′′ ∈ Reach(N , s0). Since for all vertex v of s, v
is also present in s′′ and for all p ∈ P , Ms(v)(p) = Ms′′(v)(p). Then Reach(N , s0)
is unbounded.

Let σ be a �ring sequence. A thread is extremal w.r.t. σ if it is an initial or
�nal thread.

De�nition 8.3.5. Let N be an RPN. Then Tret ⊆ Tab, the set of returning tran-
sitions is de�ned by:

{t ∈ Tab | ∃σ s.t. s[r,Ω(t)]
σ−→ ∅}

For all t ∈ Tret, we de�ne σt to be some arbitrary shortest returning sequence
(i.e., s[r,Ω(t)]

σt−→ ∅). We now introduce N̂ , obtained fromN by adding elementary
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transitions that mimic the behavior of a returning sequence. Observe that the size
of N̂ is linear w.r.t. the size of N .

De�nition 8.3.6. Let N be an RPN. Then N̂ =
〈
P, T̂ , Ŵ+, Ŵ−,Ω

〉
is de�ned

by:
� T̂ab = Tab, T̂τ = Tτ , T̂el = Tel ⊎ {tr | t ∈ Tret};
� for all t ∈ T , Ŵ−(t) = W−(t) and all t ∈ Tab ∪ Tel, Ŵ

+(t) = W+(t);

� for all t ∈ Tab, Ω̂(t) = Ω(t);

� for all t ∈ Tret, Ŵ
−(tr) = W−(t) and Ŵ+(tr) = W+(t).

Figure 8.4 illustrates this construction.

Figure 8.4: From N to N̂ and N̂el

Note that since N̂ enlarges N by adding transitions and that any �ring of tr

in N̂ can be replaced by the �ring of tσt in N , we get:

Proposition 8.3.7. Let (N , s0) be a marked RPN. Then Reach(N , s0) = Reach(N̂ , s0).

We call a �ring sequence σ omniscient if any thread created during its �ring is
a �nal thread.

Proposition 8.3.8. Let (N , s0) be a marked RPN and s0
σ−→N s. Then there exists

a �ring sequence s0
σ̂−→N̂ s such that σ̂ is omniscient.

Proof. Assume that we have an extremal thread u which �res t ∈ Tab, creating
a non-�nal thread v that disappears by a matching cut transition (v, tτ ) ∈ σ for
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tτ ∈ Tτ . One builds σ′ by (1) deleting from σ the transition (u, t), (2) deleting
all the �rings from Desσ(v) in σ, and (3) replacing the transition (v, tτ ) by (u, tr).
We claim that s

σ−→ s′. Indeed, in u the transition (u, tr) has the same incidence in
u as the transition (u, t) followed by (v, tτ ) (`anticipating' (v, tτ ) only add tokens
in intermediate states) and the other deleted �rings are performed by threads
in Desσ(v) which do not exist anymore. By taking σ̂ the sequence obtained by
iterating the process, we get the omniscient sequence.

In order to recover from a sequence in N̂ a sequence inN , for every t ∈ Tret, one
has to simulate the �rings of a transition tr by sequence σt. Therefore, bounding
the length of σt is a critical issue. Recall that in [132], Racko� showed that the
coverability problem for Petri nets belongs to EXPSPACE. More precisely, he
proved that if there exists a covering sequence, then there exists a `short' one:

Theorem 8.3.9 (Racko� [132]). Let N be a Petri net, mini, mtar be markings and
σ be a �ring sequence such that mini

σ−→ m ≥ mtar. Then there exists a sequence σ′

such that mini
σ′
−→ m′ ≥ mtar with |σ′| ≤ 22

cn logn
for some constant c and n being

the size of (N ,mtar).

A surprising consequence of Racko�'s proof is that the length of the minimal
coverability sequence does not depend on the initial marking of the net. Using this
bound, we show a similar one for the length of the returning sequences.

Proposition 8.3.10. Let N be an RPN and t ∈ Tret. Then the returning sequence
σt ful�lls |σt| ≤ 2·2

dn logn
for some constant d and n = size(N ).

Proof. Let us enumerate Tret = {t1, . . . , tK} in such a way that i < j implies
|σti | ≤ |σtj |. Observe �rst that the shortest returning sequences do not include
�rings of abstract transitions not followed by a matching cut transition, since it
could be omitted, as it only deletes tokens in the thread. We argue by induction
on k ≤ K that:

|σtk | < 2k·2
cn logn

where c is the Racko� constant

For k = 1, we know that σt1 has a minimal length over all returning sequences.
Hence, there are no cuts in σt1 except the last one. Due to the above observation,
σt1 only includes �ring of elementary transitions. Thus, the Racko� bound of
Theorem 8.3.9 applies for a covering of some �nal marking.
Assume that the result holds for all i < k. Due to the requirement on lengths,
σtk only includes cuts from threads created by ti ∈ Tret with i < k. Thus, by

Proposition 8.3.8 we get a sequence σ̂tk · (r, tτ ) in N̂ (where r is the root and
tτ ∈ Tτ ). The sequence σ̂tk consists of only elementary transitions and does not
contain any transition tri with i ≥ k. The marking of r reached by σ̂tk covers
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some �nal marking, hence by Theorem 8.3.9 there exists a covering sequence σ̂′tk
such that |σ̂′tk | ≤ 22

cn logn
. Since σ̂tk does not contain �ring of tri with i ≥ k this

also holds for σ̂′tk . Substituting any �ring of tri by σti , one gets a corresponding
sequence σ′tk in N . Using the induction hypothesis, one gets that the length of σ′tk
ful�lls:

|σ′tk | ≤ |σ̂t′k
|2(k−1)·2cn logn ≤ 22

cn logn · 2(k−1)·2cn logn

= 2k·2
cn logn

From minimality of σtk , one gets |σtk | ≤ |σ′tk | ≤ 2k·2
cn logn

which concludes the proof
since

max
t∈Tret

{|σt|} ≤ 2|Tret|·2cn logn ≤ 2n2
cn logn ≤ 22

2cn logn

.

Using the previous proposition, we can compute Tret in exponential space, by
enumerating for all abstract transitions, all �ring sequences of su�cient length and
checking whether they lead to the empty tree.

Below are immediate corollaries from the previous propositions:

Corollary 8.3.11. Let N be a marked RPN. Then for all s
σ̂−→N̂ s′, there exists

s
σ−→N s′ such that |σ| ≤ 22

dn logn|σ̂| for some constant d and n = size(N ).

Corollary 8.3.12. Given an RPN N , one can build N̂ in exponential space.

In order to mimic the behavior of a speci�c thread in a �ring sequence (which

will be useful later on), we introduce the Petri net N̂el. The size of N̂el is also
linear w.r.t. the size of N .

De�nition 8.3.13. LetN be an RPN. Then the Petri net N̂el =
〈
P, T̂el, Ŵ

+
el , Ŵ

−
el

〉
is de�ned by:

� T̂el = T̂ \ Tτ ;

� For all t ∈ T̂el \ Tab, Ŵ
−
el (t) = Ŵ−(t) and Ŵ+

el (t) = Ŵ+(t);

� For all t ∈ Tab, Ŵ
−
el (t) = Ŵ−(t) and Ŵ+

el (t) = 0.

Figure 8.4 illustrates this de�nition.

As for N̂ , one can build N̂el in exponential space.
Observation. The main (straightforward) property of N̂el is the following one.

Let σ ∈ T̂ ∗el with nt the number of occurrences of t in σ. Then m0
σ−→N̂el

m if and

only if s[r,m0]
(r,σ)−−→N̂ s with Vs = {r} ∪

⋃
t∈Tab
{vt,1, . . . , vt,nt}, Ms(r) = m and for

all vti , r
W+(t)−−−→s vti and Ms(vti) = Ω(t).
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8.4 Expressiveness

The expressiveness of a formalism may be de�ned by the family of languages that
it can generate. In [71], the expressiveness of RPNs was studied using reachability
languages. However, using reachability languages as speci�cation languages has
an inconvenient since the emptiness problem for these languages is Ackermannian-
complete [104, 41] for Petri nets, so it is also Ackermannian-Hard, at least, for
RPN. We propose to characterize the expressive power of RPN by studying the
family of coverability languages which is su�cient to express most of the usual
reachability properties since many of them reduce to check that no reachable state
may cover a bad marking in a thread.

As for reachability language, we equip any transition t with a label λ(t) ∈ Σ ∪
{ε} where Σ is a �nite alphabet and ε is the empty word. The labelling is extended
to transition sequences in the usual way. Thus, given a labelled marked RPN
(N , s0) and a �nite subset of states Sf , the (coverability) language LC(N , s0, λ, Sf )
is de�ned by:

LC(N , s0, λ, Sf ) = {λ(σ) | ∃ s0
σ−→ s ⪰ sf ∧ sf ∈ Sf}

i.e., the set of words generated by sequences covering some state of Sf in N .

8.4.1 Cut and cover languages equivalence

In this subsection, we show that the family of coverability languages of an RPN is a
particular family of reachability languages of an RPN : the family of cut languages.
A cut language of an RPN is a reachability language with a single �nal state ∅.

Proposition 8.4.1. The family of cut languages of RPNs is included in the family
of coverability languages of RPNs.

Proof. Due to the correspondence between �ring sequences of (N , s0) and those
of (N̊ , s̊0), established in the previous section, one can assume w.l.o.g. that the
initial markings of the RPNs have a single vertex. Let LR(N , s[r,m0], λ, {∅}) be
such a reachability language.
N ′ is obtained by adding places todo and done and a transition start ∈ T ′ab with:

λ′(start) = ε, W ′−(start) = todo, W ′+(start) = done, Ω′(start) = m0.
Then it is routine to check that LC(N ′, s[r, todo], λ′, {s[r, done]}) = LR(N , s[r,m0], λ, {∅}).

Establishing the converse inclusion is more intricate.

Proposition 8.4.2. The family of coverability languages of RPNs is included in
the family of cut languages of RPNs.
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Proof. Due to the correspondence between �ring sequences of (N , s0) and those
of (N̊ , s̊0), established in the previous section, one can assume w.l.o.g. that the
initial markings of the RPNs have a single vertex. Let LC(N , s[r,m0], λ, Sf ) be a
coverability RPN language.
Case ∅ ∈ Sf . Observe that in this case we can reduce Sf to {∅}. Then N ′ is
obtained from N by adding a place root and a cut transition troot with λ′(troot) =
ε and W ′−(troot) = root. It is routine to check that the reachability language
LR(N ′, s[r,m0 + root], λ′, {∅}) = LC(N , s[r,m0], λ, {∅}).
Case ∅ /∈ Sf . Consider the net N ∗ obtained from N by adding two places start
and run with m∗0 = start, transitions trun ∈ Tel and tstart ∈ Tab with λ∗(trun) =
λ∗(tstart) = ε and:
W ∗−(trun) = run, W ∗+(trun) = 2run,
W ∗−(tstart) = start, W ∗+(tstart) = 0 and Ω∗(tstart) = m0 + run.

� For all t ∈ Tel, W
∗−(t) = W ∗−(t) + run and W ∗+(t) = W+(t);

� For all t ∈ Tab, Ω
∗(t) = Ω(t) + run, W ∗−(t) = W−(t) + run and W ∗+(t) =

W+(t) + run;
� For all t ∈ Tτ , W

∗−(t) = W−(t) + run.
Let S∗f be Sf where all markings are increased by run.
Then it is routine to check that: LC(N ∗, s[r,m∗0], λ∗, S∗f ) = LC(N , s[r,m0], λ, Sf ).
Furthermore, (1) the empty tree is not reachable in (N ∗, s[r,m∗0]) and (2) for
any coverability sequence s[r,m∗0]

σ−→ s ⪰ sf ∈ S∗f , r does not belong to the
image of the corresponding mapping f . Thus, in the rest of the proof, we assume
that (N , s[r,m0], λ

∗, Sf ) ful�lls these properties. We also assume w.l.o.g. that all
vertices in Sf are distinct. We denote Vf this set of vertices.

Let N ′ obtained as follows.
One adds places todo, done, cut, {pv | v ∈ Vf}, {pu,v | s ∈ Sf , u

mv−→s v}.
� For all t ∈ Tel, W

′−(t) = W−(t) and W ′+(t) = W+(t);
� For all t ∈ Tab, W

′−(t) = W−(t), W ′+(t) = W+(t) and Ω′(t) = Ω(t) + cut;
� For all t ∈ Tτ , W

′−(t) = W−(t) + cut.
For all t ∈ Tab, one adds the following abstract transitions:

� one adds tBr ∈ T ′ab with λ′(tBr) = λ(t) and
W ′−(tBr) = W−(t) + todo, W ′+(tBr) = done, Ω′(tBr) = Ω(t) + todo;

� For all rs with s ∈ Sf one adds trs ∈ T ′ab with λ′(trs) = λ(t) and

W ′−(trs) = W−(t) + todo, W ′+(trs) = done, Ω′(trs) = Ω(t) + (|{rs
mw−−→s

w}|+ 1)prs ;
� For all v ∈ Vs \ {rs} with s ∈ Sf and u

mv−→s v such that W+(t) ≥ mv,
one adds tv ∈ T ′ab with λ′(tv) = λ(t) and

W ′−(tv) = W−(t) + pu, W
′+(tv) = pu,v, Ω(tv) = Ω(t) + (|{v mw−−→s w}|+ 1)pv.

One adds the following cut transitions:
� One adds τdone ∈ Tτ with W ′−(τdone) = done and λ′(τdone) = ε.
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� For all v ∈ Vs with s ∈ Sf , one adds τv ∈ T ′τ with λ′(τv) = ε and
W ′−(τv) = Ms(v) + pv +

∑
v

mw−−→sw
pv,w.

Let us prove that LR(N ′, s[r,m0 + todo], {∅}) = LC(N , s[r,m0], Sf ).

• LC(N , s[r,m0], λ, Sf ) ⊆ LR(N ′, s[r,m0 + todo], λ′, {∅}). Consider in N a cover-

ability sequence s[r,m0]
σ−→ s ⪰ sf ∈ Sf with f the mapping from Vsf to Vs. Let

Br be the branch in s from r to f(rsf ), excluding f(rsf ). We build a sequence σ′

as follows.

� Let v ∈ Br \ {r} and (u, t) be the �ring in σ that creates v.
Then we substitute (u, t) by (u, tBr);

� Let (u, t) be the �ring in σ that creates f(rsf ). Then we substitute (u, t) by
(u, trsf );

� Let v ∈ Vsf \ {rsf} and (u, t) be the �ring in σ that creates f(v).
Then we substitute (u, t) by (u, tv).

Then σ′ is a �ring sequence of (N ′, s[r,m0 + todo]) that leads to s′ with the same
tree structure (and vertices) as the one of s and where the markings labelling s′

are de�ned as follows.

� For all v ∈ Vs′ \ (Br ∪ f(Vsf )), Ms′(v) = Ms(v) + cut,

and all u
m′

v−→s′ v and u
mv−→s v, one has m

′
v = mv;

� For all v ∈ Br, Ms′(v) = Ms(v). For all v
m′

w−−→s′ w with w ∈ Br ∪ {f(rsf )},
m′w = done;

� For all v ∈ Vsf , Ms′(f(v)) = Ms(f(v)) + pv. For all f(v)
m′

w−−→s′ f(w),
m′w = pv,w.

Observe that λ(σ′) = λ(σ). Then one completes σ′ by �ring {(f(v), τv)}v∈Vsf

bottom up followed by �ring {(v, τdone)}v∈Br bottom up leading to ∅.
• LR(N ′, s[r,m0+todo], λ′, {∅}) ⊆ LC(N , s[r,m0], λ, Sf ). Observe that in (N ′, s[r,m0+
todo]) the only way to reach ∅ is to �re, τdone since in r (by induction) only ab-
stract transitions of Tab, {tBr | t ∈ Tab} and {trs | t ∈ Tab ∧ s ∈ Sf} are �reable
and places cut and {pv}v∈Vf

are initially unmarked. Furthermore, a single �ring
{tBr | t ∈ Tab} and {trs | t ∈ Tab ∧ s ∈ Sf} is at most possible in r, since no
transition can produce tokens for todo in r.

So consider in N ′ a �ring sequence s[r,m0 + todo]
σ′
−→ ∅. Due to the previous

observation before the �ring (r, τdone) ending σ′, there has been in σ′ a �ring of
(r, tBr) or (r, trs) for some t ∈ Tab and s ∈ Sf creating a vertex v1 followed by the
�ring of a cut transition in v1. Since Ω′(tBr) = Ω(t) + todo, if v1 has been created
by (r, tBr), then the only cut transition that can be �red in v1 is τdone. Since
λ′(τdone) = ε and W ′+(tBr) = done, this �ring can be delayed in σ′ just before the
�ring of (r, τdone).

Furthermore, there must have been before this �ring, the �ring of (v1, tBr) or
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(v2, trs) for some t ∈ Tab and s ∈ Sf creating a vertex v2 followed by the �ring of
a cut transition in v2. Since this iterated reasoning must end, there must be some
vk created by the �ring of (vk−1, trs) (with v0 = r) for some t ∈ Tab and s ∈ Sf .
We denote by f(rs) the vertex vk.
Since Ω′(trs) = Ω(t) + (|{rs

mw−−→s w}| + 1)prs , the only cut transition that can be
�red in f(rs) is τrs . Since λ′(τrs) = ε and W ′+(trs) = done, this �ring can be
delayed in σ′ just before the �ring of (vk−1, τdone). Furthermore, the �ring of this
cut transition must have been preceded for all rs

mw−−→s w by the �ring of some
abstract transition (vk, tw) creating a vertex denoted f(w), followed by the �ring
of a cut transition in f(w).
Applying the same reasoning for f(w) as the one for f(rs), one gets that the only
cut transition that can be �red in f(w) is τw and that all the �rings related to
these w's can be delayed before the �ring (f(rs), τrs).
Iterating this process, one obtains that σ′ can be reordered as σ′′στ with λ′(σ′′) =
λ′(σ′), and στ is a sequence of cut transition �rings with λ(στ ) = ε.
Let s′′ be the state of reached by σ′′: it includes a branch created by the �rings
among {tBr}t∈Tab

, followed by a tree whose set of vertices is f(Vs) and every vertex
f(v) has been created by the �ring of some transition in {tv}t∈Tab

. Observe that
due to our observations on (N ′, s[r,m0 + todo]), all other �rings of σ′′ are �rings
of transitions in T . By substituting in σ′′ all tBr by t and all tv by t, one gets a
�ring sequence σ of (N , s[r,m0]) with λ(σ) = λ′(σ′) that covers s.

The transformation presented in the above proof can be performed in polyno-
mial time, and this will be used in the next section.

8.4.2 Language hierarchy

We now turn to investigating the relationship between the family of RPN cov-
erability languages to other language families. More precisely, we consider the
families of recursively enumerable languages, context-free languages, RPN reach-
ability languages, and Petri nets languages.

The next theorem has two interesting consequences: the family of RPN cov-
erability languages is not closed under intersection with the family of regular lan-
guages. But the family obtained by this intersection is quite close to the family
of recursively enumerable languages. The result was already stated in Proposi-
tion 9 of [70] for the family of RPN reachability languages, but the proof was only
sketched.

Theorem 8.4.3. Let L be a recursively enumerable language. Then there exist an
RPN coverability language L′, a regular language R and a homomorphism h such
that L = h(L′ ∩R).
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Proof. LetM = (Σ, L, δ) be a Turing machine with it set of states L including ℓ0
(resp. ℓf ) the initial (resp. �nal) state and its transition function δ from L×Σ∪{♭}
to L× Σ× {←,→} where ♭ is the blank character.

Let us de�ne a labeled marked RPN N and an automaton A. Their common
alphabet is the set of transitions of N , and the labeling of the transitions of the
RPN is the identity mapping. The intersection of their languages is thus the
language of the synchronized product of the two devices. The single �nal state of
N (to be covered) is the empty tree.

The automaton A is depicted below (with Σ = {a, b}). In q0 it allows N
to generate the representation of any word w ∈ Σ∗, input of M. However, this
intermediate representation is not suitable for mimicking M. Thus, in q1, the
intermediate representation is translated into an appropriate one. Once this rep-
resentation is obtained, it mimics any transition ofM by triggering the �ring of
several transitions of N . We will detail this simulation after the speci�cation of
N .

q0 q1 ℓ0 ℓ ℓf

The simulation part of A

· · · · · ·next

froma toa

fromb tob

run

ta, tb

δ(ℓ, a) = (ℓ′, b,→)

ℓ ℓ′
right→a left→b

δ(ℓ, a) = (ℓ′, b,←)

ℓ

ℓa,a

ℓa,b

ℓ′
upd←a,b

left←a right←a

left←b right←b

δ(ℓ, ♭) = (ℓ′, b,→)

ℓ ℓ′
check♭ left→b

δ(ℓ, a) = (ℓ′, b,←)

ℓ

ℓ♭,a

ℓ♭,b

ℓ′
check♭

upd←♭,b

left←a right←a

left←b right←b

δ(ℓ, ♭) = (ℓ′, b,←)

N is de�ned as follows. Its set of places is P = {pa | a ∈ Σ}∪{root, right, left, start, ret}.
We now de�ne the set of transitions T . The �rst subset corresponds to the gener-
ation of a representation of the input word ofM.

� For all a ∈ Σ, ta ∈ Tab with W−(ta) = start, W+(ta) = ret and Ω(ta) =
start+ pa;

� next ∈ Tel with W−(next) = start and W+(next) = ret;
� For all a ∈ Σ, froma ∈ Tτ W−(froma) = ret+ pa;
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� For all a ∈ Σ, toa ∈ Tab with W−(toa) = right, W+(toa) = right and
Ω(toa) = right+ pa;

� run ∈ Tel with W−(run) = root+ ret and W+(run) = root

The second subset corresponds to the simulation ofM.

� For all a ∈ Σ, right→a ∈ Tτ with W−(right→a ) = right+ pa;
� For all a ∈ Σ, left→a ∈ Tab with W−(left→a ) = W+(left→a ) = left
and Ω(left→a ) = left+ pa;

� For all a, b ∈ Σ, upd←a,b ∈ Tel with W−(upd←a,b) = right+pa and W+(upd←a,b) =
right+ pb

� For all a ∈ Σ, left←a ∈ Tτ with W−(left←a ) = left+ pa
� For all a ∈ Σ, right←a ∈ Tab with W−(right←a ) = W+(right←a ) = right
and Ω(right←a ) = right+ pa

� check♭ ∈ Tel with W−(check♭) = W+(check♭) = right+ root;
� For all b ∈ Σ, upd←♭,b ∈ Tab with W−(upd←♭,b) = right, W+(upd←♭,b) = right
and Ω(upd←♭,b) = right+ pb.

The initial state is s[r, root+ start+ left+ right].
Let us explain how the simulation works. Let abc be the word on the tape of

M. Then �ring (r, ta)(v1, tb)(v2, tc) one gets:

r

root + left + right

v1

pa

v2

pb

v3

pc + start

ret ret ret

After �ring (v3, next)(v3, fromc)(r, toc)(v2, fromb)(u1, tob)(v1, froma)(u2, toa)(r, run)
one gets:

r

root + left

u1

pc

u2

pb

u3

pa + right

right right right

Let us describe the two cases of tape simulation. Assume that the content
of the tape is abcd♭ω and that the head of M is over, c then the corresponding
state is the following one. The �left� branch contains the content of the tape on
the left of the head while descending to the leaf, and the �right� branch contains
the relevant content of the tape on the right of the head (including the cell under
the head) while ascending from the leaf. Thus, the token in place right points to
the thread corresponding to the cell under the head, while the token in place left
points to the thread corresponding to the cell immediately on the left of the head.
The state ofM is the state of A.

r

root pd

v

pc + rightpa

u

pb + left

right rightleftleft
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Assume that the content of the tape is abcd♭ω and that the head ofM is over the
�rst ♭, then the corresponding state is the following one.

r

root + rightpapbpcpd + left

leftleftleftleft

It is routine to check that the simulation works. Let us illustrate it with one
example. Assume that the content of the tape is abcd♭ω, the head of M is
over c and the current state is ℓ. Let δ(ℓ, c) = (ℓ′, e,←). Then after �ring
(v, upd←c,e)(u, left

←
b )(v, right←b ), one gets:

r

root pd

v

pepa + left pb + right

right rightleft right

For all a ∈ Σ, the homomorphism h maps ta to a and for all t /∈ {ta}a∈Σ, h maps
t to ε.

Obviously, the family of RPNs coverability languages includes the family of
PNs coverability languages. In [71], Proposition 1 establishes that the family of
context-free languages is included in family of reachability languages for RPNs.
The proof relies on simulating the leftmost derivations of a context-free grammar
within particular two places bX and eX per nonterminal symbol X, where a token
in bX means that X must derived and a token in eX means that the derivation of
X into a word has been achieved. In order to adapt this result for the family of
coverability languages for RPNs, it is enough to consider w.l.o.g. that the initial
symbol I never appears on the right-hand side of a rule and to specify s[r, eI ] as
�nal state.

Proposition 8.4.4. The family of context-free languages is included in the family
of coverability languages of RPNs.

Proof. Let G = (V,Σ, R, S) be a context-free grammar. We de�ne a labelled
marked net N as follows.
• The set of places is de�ned by:

P = {bv, ev | v ∈ V } ∪ {pi,j | 1 ≤ i ≤ n ∧ 0 ≤ j < ni}
• The set of transitions is de�ned by T =

⋃
i≤n Ti ∪ Tτ where all abstract and cut

transitions
are labelled by ε and:
� Tτ = {tv}v∈V \S where W−(tv) = ev
� If ni = 0 then Ti = {ti,0} with W−(ti,0) = bS and W+(ti,0) = eS, ti,0 ∈ Tel

and λ(ti,0) = ε;
� Otherwise Ti = {ti,0, ti,1, . . . , ti,ni

} with:
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1. W−(ti,0) = bvi and W+(ti,0) = pi,0; ti,0 ∈ Tel and λ(ti,0) = ε;
2. for all 1 < j < ni W

−(ti,j) = pi,j and W+(ti,0) = pi,j+1;
3. W−(ti,ni

) = pi,ni−1 and W+(ti,ni
) = evi ;

4. for all 1 < j ≤ ni if ui,j ∈ V then ti,j ∈ Tab and Ω(ti,j) = bui[j] else
ti,j ∈ Tel, λ(ti,j) = ui[j].

• The initial marking s0 = s[bS]. We want to show that L(G) = L(N , s0, {sf})
where sf = s[eS].

The result of a (possibly partial) leftmost derivation, not leading to an empty
word, is represented by:

(w, uik [jk, nk], uik−1
[jk−1, nk−1], . . . , ui1 [j1, n1])

with (1) for all ℓ ≤ k 0 < nℓ, (2) 1 ≤ jk ≤ nk+1, and (3) for all ℓ < k 1 < jℓ ≤ nℓ+1

where:

� w ∈ Σ∗ is the subword already generated;
� (i1, j1) · · · (ik, jk) are the current nested rules with the index of the next
symbol to be processed (none when jℓ = nℓ + 1).

The leftmost derivations are simulated by the net as follows. There is a �ring
sequence with a trace w leading to a reachable state de�ned by:

� if k = 0 then s[eS];
� if k ≥ 1 and jk = nk + 1 then a single branch of length k − 1 labelled by
ti1,j1−1, . . . tik−1−1,jk−1−1 with all markings empty except the last one consist-
ing of a token in evk ;

� if k ≥ 1, jk ≤ nk and uik [jk] ∈ Σ then a single branch of length k−1 labelled
by
ti1,j1−1, . . . tik−1−1,jk−1−1 with all markings empty except the last one consist-
ing of a token in pik,jk ;

� if k ≥ 1, jk ≤ nk and uik [jk] ∈ V then a single branch of length k labelled
by ti1,j1−1, . . . tik,jk−1 with all markings empty except the last one consisting
of a token in buik

[jk];

Let us describe the simulation.

� If jk ≤ nk and uik [jk] ∈ V then the derivation consists in choosing some rule
rik+1

= uik [jk]→ uik+1
leading to (w, uik+1

[1, nk+1], uik [jk+1, nk], . . . , ui1 [j1, n1]).
This is simulated by the �ring of elementary transition tik+1,0 possibly fol-
lowed by the �ring of abstract transition tik+1,1 when uik+1

[1] ∈ V ;
� If jk ≤ nk and uik [jk] ∈ Σ then the derivation consists in concatenating the
letter uik [jk] to the word w leading to (wuik [jk], uik [jk+1, nk], uik−1

[jk−1, nk−1], . . . , ui1 [j1, n1]).
This is simulated by the �ring of elementary transition tik,jk+1 possibly fol-
lowed by the �ring of abstract transition tik,jk+1 when jk + 1 ≤ nk and
uik [jk + 1] ∈ V ;

� If jk = nk + 1 then the derivation consists in deleting the empty word
uik [jk, nk] leading to
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(w, uik−1
[jk−1, nk−1], . . . , ui1 [j1, n1]).

This is simulated by the cut transition in the leaf of the branch producing the
token speci�ed by the postcondition of tik−1,jk−1−1 possibly followed by the
�ring of abstract transition tik−1,jk−1

when jk−1 ≤ nk−1 and uik−1
[jk−1] ∈ V ;

The case of the empty word is straightforward.
Conversely, the simulation from traces of �ring sequences to words generated by
(possibly partial) leftmost derivations is done similarly.

Since universality is undecidable for the family of context-free languages, we
deduce that universality of the family of RPN coverability languages is undecidable.

Let L1 = {ambncp | m ≥ n ≥ p}. Denote by L2 = {ww̃ | w ∈ {d, e}∗}, where w̃
is the mirror of w. Observe that given the �nal marking 0 we get that the net in
Figure 8.5 has L1 as its coverability language.

Figure 8.5: A Petri net for the language L1.

The next proposition witnesses a Petri net language, interesting from an ex-
pressiveness point of view. A similar result can be found page 179 in Peterson's
book [127].

Proposition 8.4.5. L1 is the coverability language of some Petri net, but it is not
a context-free language.

Proof. Let us recall (a weak version of) Ogden lemma [121]. For any context-free
language L there exists an integer N such for any word w ∈ L with N marked
positions, there exists a decomposition w = w1w2w3w4w5 such that w2w4 contains
at least a marked position and for all n ≥ 0, w1w

n
2w3w

n
4w5 ∈ L.

Assume that L1 is a context-free language and consider the word w = aNbNcN with
all c positions marked. So let w = w1w2w3w4w5 with the decomposition ful�lling
the requirements of Ogden lemma. Since w′ = w1w

2
2w3w

2
4w5 ∈ L1, w2 and w4 are

mono-letter words. Furthermore, one of these words is equal to cq for some q > 0.
If w2 = cq then w4 = cq

′
and thus w′ contains too much c's to belong to L1. If
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w4 = cq then either w2 = aq
′
, w2 = bq

′
or w2 = cq

′
. Whatever the case, w′ misses

either a's or b's to belong to L1.
As mentioned before the coverability language for the net in Figure 8.5 with �nal
marking 0 is L1.

Using the previous results, the next theorem emphasizes the expressive power
of coverability languages of RPNs. Note that, in the following proof, we use
Proposition 8.4.11 which shows the closure of the family of coverability languages
of RPNs under the union operation. The proof for that proposition comes later in
this section.

Theorem 8.4.6. The family of coverability languages of RPNs strictly includes the
union of the family of coverability languages of PNs and the family of context-free
languages.

Proof. The inclusion is an immediate consequence of Proposition 8.4.4. Consider
the language L = L1 ∪ L2.
Since (1) by Proposition 8.4.11, the family of coverability languages of RPNs is
closed under union, (2) L1 is a PN language, and (3) the language of palindromes
is a context-free language, we deduce that L is an RPN language.
PN and context-free languages are closed under homomorphism. Since the projec-
tion of L on {a, b, c} is the language of Proposition 8.4.5, L is not a context-free
language. The projection of L on {d, e} is the language of palindromes which
concludes the proof since it was seen in Proposition 2.3.15 that the language of (2
letters) palindromes is not a coverability language for any PN.

The next proposition builds a language which is a reachability language, but not
a coverability one. We do it using the language L3 = {anbmcm | n ≥ m; m,n ∈ N}.
Observe that given the �nal marking pf we get that the net in Figure 8.6 has L3

as its reachability language. Note that, originally in [59] we showed that the folk
language {anbncn | n ∈ N} is not a coverability one, using an almost identical
proof. By that showing that, as for Petri nets, coverability does not ensure the
power of �exact counting�. We replace this language, since we can reuse it in
Section 9.3 to illustrate the di�erence between dynamic recursive Petri nets and
RPNs. Moreover, the proof of the following proposition is interesting by itself,
since it combines an argument based on WSTS (case 1) and an argument à la
Ogden (case 2).

Proposition 8.4.7. L3 is the reachability language of the Petri net of Figure 8.6,
but it is not the coverability language of any RPN.

Proof. Due to Proposition 8.4.2, it is enough to prove that there does not exist
(N , s[r,m0], λ) such that L3 = LR(N , s[r,m0], λ, {∅}). Assume by contradiction
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Figure 8.6: A Petri net for the language L3.

that there exists such (N , s[r,m0]}). For all n, let σn be a �ring sequence reaching
∅ such that λ(σn) = anbncn and σ′n be the pre�x of σn whose last transition
corresponds to the last occurrence of b. Denote sn the state reached by σ′n and
the decomposition by σn = σ′nσ

′′
n. Among the possible σn, we select one such that

sn has a minimal number of threads. Let Post be the �nite set of NP , de�ned by:
Post = {W+(t)}t∈Tab

.

•
s[r,m0] sn ∅

σ′n σ′′n

σ′
n = ρt

λ(ρ) = anbn−1

λ(t) = b

λ(σ′′
n) = cnλ(σ′′
n) = cn

minimal number of threads of sn

Case 1. There exists a bound B of the depths of the trees, corresponding to
{sn}n∈N. Let SB be the set of abstract states of depth at most B and di�erent
from ∅. Observe that S0 can be identi�ed to NP and SB can be identi�ed to
NP ×Multiset(Post× SB−1). Furthermore, the (component) order on NP and the
equality on Post are wqos. Since wqo is preserved by the multiset operation and
the Cartesian product, SB is wqo by a qo denoted <. By construction, s ≤ s′

implies s ⪯r s′. Thus, there exist n < n′ such that sn ⪯r sn′ which entails that
σ′n′σ′′n is a �ring sequence with trace an

′
bn

′
cn reaching ∅, yielding a contradiction.

Case 2. The depths of the trees corresponding to {sn}n∈N are unbounded. There
exists n such that the depth of sn is greater than (2|Post| + 1). Thus, in sn for
1 ≤ j ≤ 3, there are edges uj

m−→sn vj and denoting ij the depth of vj, one has
0 < i1 < i2 < i3.
For k ∈ {1, 2, 3}, consider of the sequence ρk performed in the subtree rooted in
vk by the �rings of σn. Among these three �ring sequences, two of them either (1)
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both �nish by a cut transition in vk or (2) both do not �nish by a cut transition
in vk. Let us call i, j with i < j the indices of these sequences and wi and wj their
traces. We have illustrated the situation below.

•
s[r,m0]

∅
σ′n σ′′n

ρi

ρj
•vi •

•vj

•
•

One can build two �ring sequences that still reach ∅ and thus whose labels belong
to the language. The �rst one consists of mimicking the �behavior� of the subtree
rooted in vj starting from vi, which is possible due to the choice of i and j, as
illustrated below.

•
s[r,m0]

∅

ρj
•vi •

The second one consists of mimicking the �behavior� of the subtree rooted in vi
starting from vj as illustrated below.

•
s[r,m0]

∅

ρi
ρj

•vi •
•vj

•
•
•

•
•
•

Denote by w the trace of the sequence performed in the subtree rooted in vi without
the trace of the sequence performed in the subtree rooted in vj.
Case w = ε. Then the �ring sequence reaching ∅ obtained by mimicking in
vi the behavior of vj has trace anbncn and leads to another state sn with fewer
threads yielding a contradiction, since sn was supposed to have a minimal number
of threads.
Case w = ak for k > 0. Consider the �ring sequence σ reaching ∅ obtained by
mimicking in vi the behavior of vj. The trace of this sequence is an−kbncn /∈ L,
which yields a contradiction.



134 CHAPTER 8. EXPRESSIVENESS AND DECISION PROBLEMS IN RPN

Case w ̸= ak for k ≥ 0. Let us consider the �ring sequence σ reaching ∅ obtained
by mimicking in vj the behavior of vi. The trace of σ is an interleaving of anbncn

and w and it belongs to L3, which implies that w = akbqcq for some q > 0 and
k ≥ 0. Furthermore, σ can be chosen in such a way that the �ring subsequences
in the subtrees rooted at vi and vj are performed in one shot, which implies that
its trace is . . . akakwjb

qcqbqcq . . . yielding a contradiction.

The following corollary shows that extending the family of coverability lan-
guages of PNs by substituting either (1) coverability by reachability or (2) PNs by
RPNs is somewhat �orthogonal�.

Corollary 8.4.8. The families of reachability languages of Petri nets and the
family of coverability languages of RPNs are incomparable.

Proof. One direction is a consequence of Proposition 8.4.7 while the other direction
is a consequence of Proposition 8.4.4 observing that the language of palindromes
is not the reachability language of any Petri net (see Proposition 2.3.15).

Combining Propositions 8.4.1, 8.4.2 and 8.4.7, one gets the following theorem.

Theorem 8.4.9. The family of coverability languages of RPNs is strictly included
in the family of reachability languages of RPNs.

Figure 8.7 illustrates the hierarchy of the languages presented in this work.

8.4.3 Closure Properties

We now study the closure properties of the family of RPN coverability languages
under several operations. As mentioned in the Peterson book, this analysis is
important for two main reasons: It helps to understand the properties of the RPN
coverability languages and these compositions may help to design and construct
large systems by composing them from smaller ones.

Using proposition 8.4.1 and 8.4.2 we study the closure properties of the family of
RPN cut languages instead of the family of RPN coverability languages. Moreover,
using Proposition 8.3.4 we assume w.l.o.g. that the initial state of the RPNs has
a single vertex.

Lemma 8.4.10. Given a marked RPN (N , s0) with a labeling λ. Then the marked
RPN (N̊ , s̊0) from De�nition 8.3.1 with the labeling :

λ̊(t) =

{
λ(t) t ∈ T

ε else

has the same cut language.
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Reach-PN Cov-RPN

Cov-PN CF

Reach-RPN

L3
L1 L2

L1 ∪ L2

L2 ∪ L3

Figure 8.7: L1 = {ambncp | m ≥ n ≥ p};L2 = {w ∈ {d, e}∗ | w = w̃};L3 =
{ambncn | m ≥ n ∈ N}.

Proof. We show this lemma by a double inclusion.
On the one hand, if w ∈ LR(N , s0, λ, {∅}), there exists a cut sequence σ such

that λ(σ) = w. From Lemma 8.3.2 we have that s̊0
σe
s0

σ
−−→N̊ ∅, and by de�nition

λ̊(σe
s0
σ) = λ̊(σe

s0
)̊λ(σ) = εw = w. Therefore w ∈ LR(N̊ , s̊0, λ̊, {∅}).

On the other hand, if w ∈ LR(N̊ , s̊0, λ̊, {∅}), there exists a cut sequence σ

such that λ̊(σ) = w. From Lemma 8.3.3 we have that s0
σ|N−−→N ∅, moreover

λ̊(σ) = λ̊(σ|N ) = λ(σ|N ). Therefore w ∈ LR(N , s0, λ, {∅}).

Proposition 8.4.11. The family of RPN coverability/cut languages is closed un-
der union.

Proof. Consider two labelled marked RPNs (N , s[r,m0], λ) and (N ′, s[r′,m′0], λ′).
Let us de�ne Ñ as follows (see Figure 8.8 for an illustration of this construction):

Ñ 's set of places is the disjoint union of P and P ′ with two additional places p0
and pe. Its set of transitions is the disjoint union of T and T ′ with two additional
abstract transitions t, and t′ and a cut transition te.

• For all t ∈ T ∪ T ′ab, W̃
−(t) = W−(t) + p and when t /∈ Tτ ∪ T ′τ W̃+(t) = W+(t)

• For all t ∈ Tab ∪ T ′ab, Ω̃(t) = Ω(t)

• W̃−(tstart) = p0, W̃
+(tstart) = pe, Ω̃(t) = m0

• W̃−(t′start) = p0, W̃
+(t′start) = pe, Ω̃(t

′) = m′0
• W̃−(te) = pe
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Figure 8.8: Union of two RPN cut languages.

• For all t ∈ T , λ̃(t) = λ(t) and for all t ∈ T ′, λ̃(t) = λ′(t)

• For all t ∈ {tstart, t′start, te}, λ̃(t) = ε.

• The initial state of Ñ is s[r̃, p0].

Let us prove that LR(N , s[r,m0], λ, {∅})∪LR(N ′, s[r′,m′0], λ′, {∅}) ⊆ LR(Ñ , s[r̃, λ̃, p0], {∅}).
Let σ be a cut sequence of (N , s[r,m0]). The corresponding cut sequence σ̃ of

(Ñ , s[r̃, p0]) is built as follows. Initially, one �res (r̃, tstart), creating a thread r
with a marking m0. Following it one �res σ which reaches the state s[r̃, p0]. Fi-
nally, one �res (r̃, te) reaching ∅. The word generated by this cut sequence is

λ̃((r̃, tstart)σ(r̃, te)) = λ(σ). The proof for LR(N ′, s[r′,m′0], λ′, {∅}) is similar.

Let us prove that LR(Ñ , s[r, p0], λ̃, {∅}) ⊆ LR(N , s[r,m0], λ, {∅})∪LR(N ′, s[r′,m′0], λ′, {∅}).
Observe that any cut sequence of (Ñ , s[r̃, p0]) must start by a �ring of tstart or

t′start and end with te. Assume that the cut sequence from (Ñ , s[r̃, p0]) generat-
ing w starts by �ring tstart, i.e., (r̃, tstart)σ̃(r̃, te). The sequence σ̃ is �reable in

(N , s[r,m0]), and the word generated by it is λ(σ̃) = λ̃((r̃, tstart)σ̃(r̃, te)) = w ∈
LR(N , s[r,m0], λ, {∅}). Similarly, we show that if the cut sequence would start by
�ring t′start, then w ∈ LR(N ′, s[r′,m′0], λ′, {∅}).

Proposition 8.4.12. The family of RPN coverability/cut languages is closed un-
der concatenation.

Proof. Consider two labelled marked RPNs (N , s[r,m0], λ) and (N ′, s[r′,m′0]λ′).
Let us de�ne Ñ as follows, see Figure 8.9. Its set of places is the disjoint union of
P and P ′ with three additional places p0, pc and pe. Its set of transitions is the
disjoint union of T and T ′ with two additional abstract transitions t, and t′ and a
cut transition te.

• For all t ∈ T ∪ T ′ab, W̃
−(t) = W−(t) and when t /∈ Tτ ∪ T ′τ W̃+(t) = W+(t)

• For all t ∈ Tab ∪ T ′ab, Ω̃(t) = Ω(t)

• W̃−(tstart) = p0, W̃
+(tstart) = pc, Ω̃(t) = m0
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Figure 8.9: Concatenation of two RPN cut languages.

• W̃−(t′start) = pc, W̃
+(t′start) = pe, Ω̃(t

′) = m′0
• W̃−(te) = pe
• For all t ∈ T , λ̃(t) = λ(t) and for all t ∈ T ′, λ̃(t) = λ′(t)

• For all t ∈ {tstart, t′start, te}, λ̃(t) = ε.

• The initial state of Ñ is s[r̃, p0].

Let us prove that LR(N , s[r,m0], λ, {∅})·LR(N ′, s[r′,m′0], λ′, {∅}) ⊆ LR(Ñ , s[r̃, p0], λ̃, {∅}).
Let σ be a cut sequence of (N , s[r,m0]) and σ′ be a cut sequence of (N ′, s[r′,m′0]).
The corresponding cut sequence σ̃ of L(Ñ , s[r̃, p0]) is built as follows. Initially,
one �res (r̃, tstart), creating a new thread denoted by r. Then after the creation
of a thread r, one �res σ which ends in a cut bringing us to the state s[r̃, pc]).
Next, one �res (r̃, t′start), creating a new thread denoted by r′. After the creation
of a thread r′, one �res σ′ which ends in a cut �nishing with the state s[r̃, pe]).
Finally, we �nish by �ring the cut transition (r̃, te), which leads us to the ∅. All
together, we get the �ring sequence σ̃ = (r̃, tstart)σ(r̃, t

′
start)σ

′(r̃, te), for which

λ̃(σ̃) = ε λ(σ) ε λ′(σ′) ε = λ(σ)λ′(σ′).

Let us prove that LR(Ñ , s[r̃, p0], λ̃, {∅}) ⊆ LR(N , s[r,m0], λ, {∅})·LR(N ′, s[r′,m′0], λ′, {∅}).
Observe that any cut sequence must be of the type σ̃ = (r̃, tstart)σ(r̃, t

′
start)σ

′(r̃, te),
where (1) (r̃, tstart) and (r̃, t′start) create a new thread r and r′ with the marking m0

and m′0 respectively, (2) σ and σ′ are �ring sequences ending by a cut transition
�red from r and r′ respectively, and (3) σ and σ′ are �reable from s[r,m0], and

s[r′,m′0] respectively. Moreover, λ̃(σ̃) = λ(σ)λ′(σ′) which �nishes the proof for
concatenation.

Proposition 8.4.13. The family of RPN coverability/cut languages is closed un-
der Kleene star.

Proof. Consider a labelled marked RPN (N , s[r,m0], λ). Let us de�ne Ñ as fol-
lows, see Figure 8.10. Its set of places is the disjoint union of P with one additional
places p0. Its set of transitions is the disjoint union of T , with one additional ab-
stract transitions tstart and a cut transition te.
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Figure 8.10: Kleene star of an RPN cut language.

• For all t ∈ T , W̃−(t) = W−(t) and when t /∈ Tτ W̃+(t) = W+(t)

• For all t ∈ Tab, Ω̃(t) = Ω(t)

• W̃−(tstart) = p0, W̃
+(tstart) = p0, Ω̃(tstart) = m0

• W̃−(te) = pe
• For all t ∈ T , λ̃(t) = λ(t)

• For all t ∈ {tstart, te}, λ̃(t) = ε.

• The initial state of Ñ is s[r̃, p0].

Let us prove that LR(N , s[r,m0], λ, {∅})∗ ⊆ LR(Ñ , s[r̃, p0], λ̃, {∅}). Let {σi}i<n

for n ∈ N be cut sequences of (N , s[r,m0]). For any i < n, construct a sequence

σ̃i of (Ñ , s[r̃, p0]) as follows. First we �re (r̃, tstart) creating a new thread r with
the marking m0. Afterwards, we �re σi which ends with a cut transition from
thread r, and reaches the state s[r̃, p0]. Note that λ̃(σ̃i) = λ(σi). Therefore, the
sequence σ̃1σ̃2 . . . σ̃n is �reable from s[r̃, p0]) ending in the state s[r̃, p0]). Finally,
we �re (r̃, te) reaches ∅. In total, we get a cut sequence generating the word

λ̃(σ̃1σ̃2 . . . σ̃n(r̃, te)) = λ(σ1)λ(σ2) . . . λ(σn).

Let us prove that LR(Ñ , s[r̃, p0], λ̃, {∅}) ⊆ LR(N , s[r,m0], λ, {∅})∗. Observe that
any cut sequence must be of the type σ̃ = (r̃, t)σ1(r̃, t)σ2 . . . (r̃, tstart)σn(r̃, te)
for i ∈ N, where each σi is a cut sequence �reable from (N , s[r,m0]). Since,

λ̃(tstart), λ̃(te) = ε, we get that

λ̃((r̃, tstart)σ1(r̃, tstart)σ2 . . . (r̃, tstart)σn(r̃, te)) = λ(σ1)λ(σ2) . . . λ(σn)

which �nishes the proof.

The next proposition exhibits a particular feature of RPNs languages (e.g.,
Petri nets or context-free languages are closed under intersection with a regular
language).

Proposition 8.4.14. The family of coverability/cut languages of RPNs is not
closed under intersection with a regular language not under complementation.
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Proof. Due to Proposition 8.4.7, the family of coverability languages of RPNs is
strictly included in the family of recursively enumerable languages. Since the for-
mer family is closed under homomorphism, Theorem 8.4.3 implies that it is not
closed under intersection with a regular language and a fortiori with another cover-
ability language. Since intersection can be obtained by union and complementation
and since the family of RPN coverability languages is closed under union, they are
not closed under complementation.

8.5 Coverability is EXPSPACE-Complete

The section is devoted to the proof that the coverability problem is in EXPSPACE-
complete. The EXPSPACE-hardness follows immediately from the EXPSPACE-
hardness of the coverability problem for Petri nets [107].

Observe that the coverability problem is equivalent to the emptiness problem
of the coverability language of an RPN. In Section 8.4 we have shown that the
families of coverability languages and cut languages for RPN are equal and that the
transformation from one to another is performed in polynomial time (proposition
8.4.1 and 8.4.2). Therefore, we will establish the complexity result for the cut
problem, getting as a corollary the same result for the coverability problem.

Theorem 8.5.1. The cut problem is EXPSPACE-complete.

Proof. Let (N , s0) be a marked RPN and η the accumulated size of the RPN and
the initial state. By Proposition 8.3.4 we assume w.l.o.g. that Vs0 is a singleton
{r}. Assume there exists a �ring sequence s0

σ−→N ∅. Using Proposition 8.3.8 one

gets an omniscient sequence s0
σ̂−→N̂ ∅ such that σ̂ = (r, σ1)(r, t) for some t ∈ Tτ .

The (omniscient) sequence (r, σ1) contains only elementary transitions. Thus,
m0

σ1−→N̂el
m with m ≥ W−(t). On the other hand if there exists m0

σ−→N̂el
m ≥

W−(t) then there exists a cut sequence in N from the state s0.

Therefore, by combing the following two facts 1) one can build N̂el in exponential

space by constructing N̂ Corollary 8.3.12, and 2) coverability in Petri nets is
EXPSPACE, we are done.

The next theorem is an immediate corollary of the previous one.

Theorem 8.5.2. The coverability problem for RPNs is EXPSPACE-complete.

8.6 Termination is EXPSPACE-Complete

In this section we address the termination problem for RPN. Let (N , s0) be a
marked RPN. We denote the size of the input of the termination problem by η.
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In [132] Racko� showed that the termination problem for Petri net is solvable in
exponential space:

Theorem 8.6.1 (Racko�'s Theorem [107, 132]). The termination problem for
Petri nets is EXPSPACE-complete.

We aim to show that the termination problem for RPN is EXPSPACE-complete.
EXPSPACE-hardness follows immediately from EXPSPACE-hardness of the termi-
nation problem for Petri nets [107]. By Proposition 8.3.4 we assume w.l.o.g. that
Vs0 = {r}. Hence, for the rest of the section, we will assume that s0 = s[r,m0] for
some marking m0.
A main ingredient of the proof is the construction of an abstract graph related to
the �ring of abstract transitions.

De�nition 8.6.2 (abstract graph). Let (N , s0) be a marked RPN. Let GN ,s0 =
(Va, Ea,Ma) be a labeled directed graph de�ned inductively as follows:

1. r ∈ Va and Ma(r) = m0;

2. For any v ∈ Va and t ∈ Tab, if there exists s[v,Ma(v)]
σ(v,t)−−−→ then vt ∈ Va,

(v, vt) ∈ Ea and Ma(v) = Ω(t).

Observe that an edge (v, vt) means that from state s[v,Ma(v)], the thread v
can �re t in the future and by induction that vt ∈ Va if and only if t is �reable in
the marked RPN. Observe that the size of GN ,s0 is linear w.r.t. the size of (N , s0).

Lemma 8.6.3. Let (N , s0) be a marked RPN. Then one can build its abstract
graph in exponential space.

Proof. First, note that |Va| ≤ |Tab| + 1. Then for any vertex v already in Va and

any t ∈ Tab checking whether s[v,Ma(v)]
σ(v,t)−−−→ is �reable is equivalent to solving

the covering problem Ma(v)
σ−→ m ≥ W−(t) in N̂el (recall De�nition 8.3.13) which

can be done in exponential space due to Racko�'s coverability theorem for Petri
nets.

While we will not prove it, using a reduction from the Petri net coverability
problem, one can show that we cannot use less than an exponential space to build
the abstract graph.

Let us illustrate the abstract graph in Figure 8.11 corresponding to the RPN
of Figure 7.1. Here the initial state is s[r, pini]. For clarity, we have renamed
the abstract transitions as follows: t := tbeg, ta := ta2 , tb := tb2 . For instance, the
existence of the edge from vt to vta is justi�ed by the �ring sequence (vt, ta1)(vt, ta).
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Figure 8.11: An abstract graph for the RPN in Figure 7.1

Let σ be an in�nite �ring sequence. We say that σ is deep if it visits a state s
whose depth is strictly greater than |Tab|. Otherwise, we say that σ is shallow. To
solve the termination problem it su�ces to decide whether the RPN has such an
in�nite sequence, either shallow or deep.

The next lemma establishes that lassos of the abstract graph are witnesses of
deep in�nite sequences in an RPN:

Lemma 8.6.4. Let (N , s0) be a marked RPN. Then there is a deep in�nite se-
quence starting from s0 if and only if there is a cycle in GN ,s0.

Proof.
• Assume that σ is a deep sequence. Hence, it reaches a state s̃ whose tree has a
path γ starting from the root, with |γ| > |Tab|. Let us denote it by γ = (vi)

m
i=1. For

all i ≤ m denote by ti the abstract transition that creates vi. Using γ, one builds
a path γa = v1v2 . . . vm in GN ,s0 as follows. First v1 = r and mr = Ma(r). Since
along σ the thread r �res t1 to create v2, there is an edge between r to vt2 in GN ,s0 .
For any 1 < i ≤ m, the thread vi is created with the marking Ω(ti) = Ma(vti).
Since vi+1 is a child of vi, somewhere in the sequence σ the thread vi �res ti+1.
Therefore, there is an edge from vti to vti+1

in GN ,s0 . The length of the path γa
strictly greater than |Tab|, and since Va ≤ |Tab|+ 1 there is a cycle in γa.
• Conversely, assume that there is a cycle in GN ,s0 . Then there is an in�nite path
γa = {vi}∞i=0 in GN ,s starting from r, where for any i ≥ 1 denote by ti the abstract
transition associated to the vertex vi. We now translate this in�nite path to a
deep sequence on N with initial state s0. Note that v0 = r and that mr = Ma(r).
By de�nition of Ea, there is a sequence s

σ1−→ s′0 where the abstract transition

t1 is �reable from v0 in s′0. We get s
σ1−→ s′0

(v0,t1)−−−→ s2. Denote by v1 the thread
created by t1. The thread's marking hasMs1(v1) = Ma(v1), therefore one continues
translating the path γa in the same way as the �rst edge. Since for any (vi, vi+1)
in γa we create a new thread from vi one gets a deep sequence.

We now show that for any shallow σ there is a thread v which �res in�nitely
many times in σ.
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Lemma 8.6.5. Let (N , s0) be a marked RPN and σ be a shallow sequence. Then
there is a thread v that �res in�nitely many times in σ.

Proof. If the root r �res in�nitely often, then we are done. Otherwise, r has �nitely
many children, and the �ring subsequence of σ of the subtree of (at least) one child,
say v, must be in�nite. If v �res in�nitely often, then we are done. Otherwise, we
proceed inductively up to |Tab| where some thread must �re in�nitely often.

We now show that given some state s[r,m0] one can check in exponential space
the existence of a shallow sequence in which r �res in�nitely many times.

Lemma 8.6.6. Let (N , s0) be a marked RPN. Then one can check in exponential
space, whether there exists an in�nite sequence starting with r �ring in�nitely many
times.

Proof. We �rst show that there is a sequence where r �res in�nitely many times
if and only if there is a in�nite �ring sequence in the marked Petri net (N̂el,m0).
• Assume there exists such σ in (N , s[r,m0]). Then the sequence σ is also �reable in

(N̂ , s[r,m0]). In N̂ , one eliminates in σ the cut transitions by increasing occurrence
order as follows. Let (v, t) be a cut transition and (v′, t′) be the �ring that creates
v. Then one deletes all the �rings performed by the descendants of v and replaces
(v′, t′) by (v′, t′r). Let σ′ be the sequence obtained after this transformation. In
σ′, the root still �res in�nitely often, since no �ring performed by the root has
been deleted (but sometimes substituted by an elementary �ring). Moreover, σ′

has no more cut transitions. Consider the still in�nite �ring sequence (r, σ′′) where
in σ′ all �rings in other vertices than r have been deleted. Observe now that, by
de�nition, σ′′ is also an in�nite sequence of N̂el.
• Conversely, assume there exists an in�nite �ring sequence σ of (N̂el,m0). Then

(r, σ) is an in�nite �ring sequence of (N̂ , s[r,m0]) (with only root �rings) entailing
the existence of an in�nite �ring sequence of (N , s[r,m0]).
By Theorem 8.6.1, one can check in exponential space whether there exists an
in�nite sequence of (N̂el,m0).

Summing up the results for shallow and deep sequences we get:

Theorem 8.6.7. The termination problem of RPN is in EXPSPACE-complete.

Proof. The algorithm proceeds as follows. It builds in EXPSPACE (by Lemma 8.6.3)
the abstract graph and checks whether there is a deep in�nite sequence using the
characterization of Lemma 8.6.4. In the negative case, it looks for a shallow in-
�nite sequence. To this aim, it checks in exponential space for any reachable
vertex v from r in GN ,s0 , whether there exists an in�nite sequence starting from
s[v,Ma(v)] with the root �ring in�nitely many times. The complexity follows from
Lemma 8.6.6 while the correctness follows from Lemma 8.6.5.
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8.7 Finiteness and Boundedness are EXPSPACE-complete

In this section we will show that the �niteness and boundedness problems for RPNs
are EXPSPACE-complete w.r.t. η = size(N , s0), i.e. the accumulated size of the
RPN and the initial state. For Petri nets the �niteness problem, which is equivalent
to the boundedness problem, has been shown to be EXPSPACE-complete:

Theorem 8.7.1 ([107, 132]). The �niteness problem for Petri nets is EXPSPACE-
complete.

EXPSPACE-hardness follows immediately from EXPSPACE-hardness of the �nite-
ness problem for Petri nets [107].

Moreover, by applying Proposition 8.3.4 like in previous sections we will assume
that s0 = s[r,m0]. Given two vertices u, v in a graph G, the distance between them
distG(u, v) is the length of a shortest path going from u to v.

Lemma 8.7.2. Let (N , s0) be a marked RPN and GN ,s0 = (Va, Ea,Ma) be its
abstract graph. Then for all v ∈ Va, there exists s ∈ Reach(N , s0) and u ∈ Vs such
that Ms(u) = Ma(v).

Proof. We show the lemma by induction on distGN ,s0
(r, u). If distGN ,s0

(r, v) = 0
then v = r and Ma(r) = m0. Assume that we have shown the lemma for any
v such that distGN ,s0

(r, v) < n, and pick v ∈ Va such that distGN ,s0
(r, v) = n.

Since distGN ,s0
(v, r) > 0, v = vt for some t ∈ Tab. Moreover, there is some

(u, vt) ∈ Ea such that distGN ,s0
(r, u) = n − 1 and by the induction hypothesis

there is a sequence s0
σu−→ su and some w ∈ Vsu such that Msu(w) = Ma(u). From

the de�nition of GN ,s0 , there is a �reable sequence s[w,Ma(w)]
σt(w,t)−−−−→. Combining

these sequences, we get s0
σu−→ su

σt(w,t)−−−−→ svt , where the newly created thread w′

ful�lls Msv(w
′) = Ω(t) = Ma(vt).

The following lemma shows that we can simulate the behavior of every thread
by a Petri net.

Lemma 8.7.3. Let (N , s0) be a marked RPN and GN ,s0 = (Va, Ea,Ma) be its
abstract graph. Then:⋃

s∈Reach(N ,s0)

{Ms(v)}v∈Vs =
⋃
u∈Va

Reach(N̂el,Ma(u)).

Proof.
• Let m ∈

⋃
s∈Reach(N ,s0)

{Ms(u)}u∈Vs . There exists s0
σ−→ s with some v ∈ Vs

such that Ms(v) = m. By Proposition 8.3.8 there is an omniscient sequence in

s0
σ̂−→N̂ s. We split σ̂ into s0

σ̂1−→N̂ sv
σ̂2−→N̂ where sv is the state where the thread
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v �rst appears. By de�nition of the abstract graph, there is some u ∈ Va with
Msv(v) = Ma(u). Let (v, σ̂

′
2), consisting of all �rings of v in σ̂2. (v, σ̂′2) is �reable

from sv since σ̂2 is omniscient implying that there will be not cut transition �red
by a child of v. By construction of N̂el, the sequence σ̂′2 is a �ring sequence of

(N̂el,Ma(u)) thus m ∈ Reach(N̂el,Ma(u)).

• Let u ∈ Va and m ∈ Reach(N̂el,Ma(u)), i.e. Ma(u)
σ−→N̂el

m for some n ∈ N.
First by Lemma 8.7.2 there exists s0

σu−→N su where for some v ∈ Vsu we have
Msu(v) = Ma(u). By construction of N̂ , we also have s0

σu−→N̂ su. By construction

of N̂el, we get that su
(v,σ)−−→N̂ s where Ms(v) = m. By Proposition 8.3.7, s ∈

Reach(N , s0), which concludes the proof.

Using the previous Lemma and Racko�'s Theorem, we establish the complexity
of the boundedness problem:

Proposition 8.7.4. The boundedness problem of RPN is EXPSPACE-complete.

Proof. Hardness of the problem comes from hardness of Petri nets. Let (N , s0)
be a marked RPN. Due to Corollary 8.3.4 we assume w.l.o.g. that s0 = s[r,m0].
By Lemma 8.7.3 checking whether (N , s0) is bounded is equivalent to whether

for v ∈ Va, (N̂el,Ma(u)) is bounded which, due to Racko�, can be performed in
exponential space.

Let (N , s0) be a marked RPN. If s0 = ∅ then the number of reachable states
is 1, hence from now on we assume that s0 ̸= ∅. Next, if there exists t ∈ Tab

with W−(t) = 0 then there are in�nitely many reachable states since one can �re t
repeatedly, which provides us with a sequence of states with an unbounded number
of threads. Therefore, from now on we assume that for all t ∈ Tab, W

−(t) > 0.

We now establish a connection between the boundedness of N̂el and the maxi-
mal number of children of the root in N :

Lemma 8.7.5. Let N be an RPN such that (N̂el,m0) is bounded. Then:

sup
s′∈Reach(N ,s[r,m0])

|{v ∈ Vs′ | rs′ →s′ v}| <∞

Proof. Assume that there exists a family of sequences {σn}n∈N such that s[r,m0]
σn−→N

sn and the number of children of r in sn is greater than n. By Proposition 8.3.8 for
all σn there exists an omniscient sequence σ̂n in N̂ from s[r,m] reaching sn. We
remove from σ̂n all the transitions not �red from the root getting (r, σ̂′n) which is
also �reable from s[r,m] and which leads to a state where the root has a number
of children greater than n. Since an abstract transition consumes tokens from the
root (for all t ∈ Tab, W

−(t) > 0) one can remove them from (r, σ̂′n) and get (r, σ̂′′n)
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for which s
(r,σ̂′′

n)−−−→N̂ s′′n and
∑

p∈P Ms′′n(r)(p) > n. Since σ̂′′n is �reable from m in

N̂el this contradicts the hypothesis of the lemma.

Combining the above results, we get a characterization of the �niteness prob-
lem:

Proposition 8.7.6. Let (N , s0) be a marked RPN. Then Reach(N , s0) is �nite if
and only if the following assertions hold:
1. There is no loop in GN ,s0 = (Va, Ea,Ma);

2. For all v ∈ Va, (N̂el,Ma(v)) is bounded.

Proof.
• Assume that assertions 1 and 2 hold. Due to Assertion 1 and Lemma 8.6.4 any
reachable state has its depth bounded by some constant. Due to Assertion 2 and
Lemmas 8.7.3 and 8.7.5 each thread in any reachable state has a bounded number
of children, and a bounded number of di�erent reachable markings. Therefore,
Reach(N , s0) is �nite.

• Assume that Assertion 1 does not hold. By Lemma 8.6.4 there is a deep in�-
nite sequence. Hence, there is an in�nite sequence of states with growing depth.
Therefore, Reach(N , s0) is not �nite.
• Assume that Assertion 2 does not hold for some vertex v. By Lemma 8.7.2
there exists a state s ∈ Reach(N , s0) and a vertex u ∈ Vs such that Ms(u) =

Ma(v). By the de�nition of N̂el, for any m ∈ Reach(N̂el,Ms(v)), there exists

a �ring sequence (r, σ′) in N̂ such that s
(r,σ′)−−−→N̂ s′ with Ms′(v) = m. Since

Reach(N̂ , s) ⊆ Reach(N̂ , s0), (N̂ , s0) is unbounded. Due to Proposition 8.3.7,

Reach(N̂ , s0) = Reach(N , s0) and thus (N , s0) is unbounded.

Theorem 8.7.7. The �niteness problem of RPN is EXPSPACE-complete.

Proof. The algorithm proceeds by checking Assertions 1 and 2 of Proposition 8.7.6.
It builds in exponential space (by Lemma 8.6.3) the abstract graph and checks
whether there is no loop in GN ,s0 . In the negative case, for any vertex v ∈ Va it

checks in exponential space, whether the marked Petri net (N̂el,Ma(v)) is bounded.





Chapter 9

Dynamic Recursive Petri Nets

9.1 Introduction

While having a great expressive power, RPN su�er several limitations: (1) the
elementary transitions do not include more general features like reset arcs, transfer
arcs, . . . that preserve the decidability of the coverability problem; (2) the �ring
rule of an abstract transition is somewhat limited: the initial marking associated
with the creation of a thread is constant, i.e. it does not depend on the current
marking of the thread that �res it. So we introduce Dynamic Recursive Petri
nets (DRPN) which address these issues while preserving the decidability of the
coverability (and cut) problem.

Dynamic recursive Petri nets. In order to unify the possible extensions that
could be imagined, we de�ne in a generic way a DRPN. We associate with a DRPN
over the set of places P , a set of non decreasing partial functions F from NP to
NP . The possible e�ects of a transition on the current marking and the initial
marking of a thread created by the �ring of an abstract transition are speci�ed
by functions of F . Furthermore, the precondition of an elementary or abstract
transition is speci�ed by the domain of the function that updates the marking of
the thread that �res the transition while the (upward closed) precondition of a cut
transition is speci�ed by the minimal elements of this set of markings. Rather than
providing a syntactical de�nition of F , we have chosen to require some e�ectiveness
properties of this set. Such an approach lets open the possibility to choose an
appropriate set F for modelling needs. In particular, we show that Petri nets,
A�ne nets and Recursive Petri nets can be rede�ned in terms of DRPN. We also
illustrate the modelling power of DRPN through a small but relevant example.

Expressiveness. We generalize the qo de�ned for RPN to DRPN, and we show
that the family of coverability languages of DRPN is strictly greater than the
one of RPN. This result is robust in the following sense: we provide two di�erent
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languages each one using in a somewhat minimal way a feature speci�c to DPRNs.
The �rst language is generated by a DRPN without abstract transitions and only
using a single `non-standard' function (which is sublinear, see later on). The second
language is generated by a DRPN for which all transitions but a single abstract
transition can be speci�ed in the RPN formalism.

Coverability. We show that the coverability problem is decidable. In order to
solve the coverability problem, we provide a reduction of this problem to the cut
problem of a DRPN without abstract transitions. Since we establish that a DRPN
without abstract transitions is a WSTS, the conclusion follows. The complexity of
this problem should be studied by �xing some possible F (as it is done for RPN
in the previous chapter) and we let here this open issue as a perspective to this
work.

Organization. In section 9.2 we introduce DRPN, illustrate their modelling ca-
pabilities and de�ne a qo between states of DRPN. In section 9.3, we study from
a theoretical point of view, expressiveness of DRPNs. In section 9.4, we establish
that the coverability problem is decidable.

Based on. This chapter is base on our work in [69].

9.2 Dynamic Recursive Petri Nets

Since DRPN is an extension of RPN, let us �rst point out their similarities and
di�erences.
Similarities. From a syntactical point of view as in RPN, a DRPN includes a
set of places P and a set of transitions T , including three types of transitions:
elementary, abstract, and cut ones. From a semantical point of view, states are
still represented by a tree structure and the e�ects of �ring a transition are similar:

◦ The �ring of an elementary transition updates the marking of the thread
�ring it;
◦ The �ring of an abstract transition updates the marking of the thread �ring
it and creates a new child to the �ring thread;
◦ The �ring of a cut transition removes the subtree rooted in the thread which
�red it, and updates the marking of its parent.

Di�erences. In DRPN, the initial marking of a new thread not only depends
on the abstract transition that created it, but also on the marking of the thread
that created it. The functions involved in the marking changes or the marking
initialization are picked from a set of non decreasing (partial) functions which is
not prede�ned but must satisfy some properties (see later on). In order to be more
precise, we associate with every transition t a �nite set of markings Gdt. Then we
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associate (1) with an elementary transition t a mapping (of markings) Upt whose
domain is ↑Gdt, (2) with an abstract transition t three mappings Up−t , Bgt and
Up+t where Up+t is a total mapping and ↑Gdt is the domain of Up−t and Bgt. The
following table exhibits the operational rules for marking changes in RPN and
DRPN (the mapping Id denotes the identity mapping where the domain should
be clear from the context).

RPN DRPN
t- elementary transition, m ≥ W−(t) m ∈ ↑Gdt

m- marking of v. m
v,t−→ m+W+(t)−W−(t) m

v,t−→ Upt(m)
t- abstract transition, m ≥ W−(t) m ∈ ↑Gdt

m- marking of v, m
v,t−→ m−W−(t) m

v,t−→ Up−t (m) with Up−t ≤ Id
m′- marking of the new child of v. m′ = Ω(t) m′ = Bgt(m)
t- cut transition, m ≥ W−(t) m ∈ ↑Gdt
m- marking of v.

m′- marking v's parent, m′
v,t−→ m′ +W+(t′) m′

v,t−→ Up+t′ (m
′) with Up+t′ ≥ Id

t′- transition which created v.

Observe that the DRPN expressiveness and modeling power depend strongly
on the family of functions it is allowed to use for its transitions. Our interest is
to de�ne this family to be as large as possible, while still preserving decidable
properties. To this end we will introduce our notion of e�ective functions. Let us
�rst recall a couple of notions from order theory (see Chapter 2.1). Let Y ⊂ NP

(for some �nite set P ), be an upward closed set (with the usual order on NP ).
There exists a set of it minimal elements, denoted by min(Y ), i.e. the minimal
�nite set ful�lling Y =↑min(Y ). Observe that, given a non-decreasing function
f : NP 7→ NP , the set f−1(Y ) is upward closed.

De�nition 9.2.1 (E�ective function). Let (X,≤) be a wqo, and f : X 7→ X
a non-decreasing recursive partial function. We say that a f is e�ective if there
exists an algorithm computing, for any x ∈ X the set min(f−1(↑x)).

Note that, for an e�ective function f : NP 7→ NP and any x ∈ NP , it is decidable
whether x ∈ dom(f), since dom(f) is upward closed, and we have an algorithm
computing:

min
(
f−1(↑0)

)
= min

(
f−1(↑min(NP ))

)
= min

(
f−1(NP )

)
= min(dom(f))

We are now ready to give the full de�nition of DRPN:

De�nition 9.2.2 (DRPN). A Dynamic Recursive Petri Net is a 6-tuple N =
⟨P, T,Gd, Up, Up−, Up+, Bg⟩ where:
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� P is a �nite set of places;
� T is a �nite set of transitions such that P ∩ T = ∅. This set consists of
three type of transitions: elementary, abstract, and cut transitions, i.e. T =
Tel ⊎ Tab ⊎ Tτ ;

� Gd = {Gdt}t∈T is a family of �nite sets of markings with Gdt ⊆ NP ;
� Up = {Upt}t∈Tel

is a family of e�ective functions with Upt ∈ (NP )↑Gdt ;
� Up− = {Up−t }t∈Tab

is a family of e�ective functions with Up−t ∈ (NP )↑Gdt ;
� Up+ = {Up+t }t∈Tab

is a family of e�ective functions with Up+t ∈ (NP )N
P
;

� For all t ∈ Tab, we have Up−t ≤ Id ≤ Up+t ;
� Bg = {Bgt}t∈Tab

is a family of e�ective functions with Bgt ∈ (NP )↑Gdt .

Most of the operational semantic of a DRPN mimics the one of RPN. However,
in order for this chapter to be self content, we repeat the similar parts of the
semantic. A concrete state s of a DRPN is a labeled tree representing relations
between threads and their associated markings. Every vertex of s is a thread,
and edges are labeled by functions from Up+. We introduce a countable set V of
vertices in order to pick new vertices when necessary.

De�nition 9.2.3 (State of a DRPN). A concrete state (in short, a state) s of a
DRPN is a tree over the �nite set of vertices Vs ⊆ V , inductively de�ned as follows:

� either Vs = ∅ and thus s = ∅ is the empty tree;
� or Vs = {rs} ⊎ V1 ⊎ . . . ⊎ Vk with 0 ≤ k and s = (rs,m0, {(fi, si)}1≤i≤k) is
de�ned as follows:
� rs is the root of s labeled by a marking m0 ∈ NP ;

� For all i ≤ k, si is a state over Vi ̸= ∅ and there is an edge rs
fi−→s rsi

with fi ∈ Up+.

For all u, v ∈ Vs, one denotes Ms(u) the marking labeling u and when u
f−→s v,

one writes Λ(u, v) := f . State sv is the (maximal) subtree of s rooted in v.

While the set of vertices Vs will be important for analyzing the behavior of a
�ring sequence in a DRPN, one can omit it and get a more abstract representation
of the state. Note that contrary to the previous de�nition where {(fi, si)}1≤i≤k
was a set, in the following de�nition we need a multiset Childs.

De�nition 9.2.4 (Abstract state of a DRPN). An abstract state s of a DRPN is
inductively de�ned as follows:

� either s = ∅ is the empty set ;
� or s = (ms, Childs) where ms ∈ NP and Childs is a �nite multiset of pairs
(f ′, s′)
where f ′ ∈ Up+ and s′ is an abstract state di�erent from ∅.
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Given a concrete state s, we denote by [s] its abstract state. Except if explicitly
stated, a state is a concrete state.

In the other direction, given an abstract state s, one recovers its set of concrete
states by picking an arbitrary set of vertices Vs ⊆ V of appropriate cardinality
and, inductively, arbitrarily splitting Vs between the root and the pairs (m, s′).

One denotes by Dess(v) (respectively Ancs(v)) the set of descendants (respec-
tively ancestors) of v ∈ V in the underlining tree of s (including v itself). If v ̸= r
then prd(v) is the parent of v in the tree. The depth of s is the depth of its tree.
Given m ∈ NP , sm denotes a tree consisting of a single vertex r with marking
M(r) = m.
Let us formally de�ne the �ring of elementary, abstract and cut transitions.

De�nition 9.2.5 (Operational semantics). Let s = (r,m0, {(fi, si)}1≤i≤k) be a

state. Then the �ring rule s
(v,t)−−→ s′ where v ∈ Vs and t ∈ T is inductively de�ned

as follows:

� Let t ∈ Tel such thatm0 ∈↑Gd(t), then one has s
(r,t)−−→ (r, Upt(m0), {(fi, si)}i≤k)

� Let t ∈ Tab such thatm0 ∈↑Gd(t), then one has s
(r,t)−−→ (r, Up−t (m0), {(fi, si)}i≤k+1))

where fk+1 = Up+t , sk+1 = s[v,Bgt(M(v))] with v ∈ V \ Vs

� Let t ∈ Tτ such that m0 ∈↑Gd(t), then one has s
(r,t)−−→ ∅

� Let i ≤ k such that si
(v,t)−−→ s′i

if s′i = ∅ then s
(v,t)−−→ (fi(m0), {(fj, sj)}1≤j ̸=i≤k)

else s
(v,t)−−→ (m0, {fj, sj}1≤j ̸=i≤k ∪ {fi, s′i})

The transition �ring is denoted s
(v,t)−−→ s′ and when there are several nets,

s
(v,t)−−→N s′. A �ring sequence is a sequence of transition �rings, written in detailed

way: s0
(v1,t1)−−−→ s1

(v2,t2)−−−→ · · · (vn,tn)−−−−→ sn, or when the context allows it, in a more
concise way like s0

σ−→ sn for σ = (v1, t1)(v2, t2) . . . (vn, tn). The length of σ, denoted
|σ|, is n. The abstract length of σ, denoted |σ|ab, is |{i ≤ n | ti ∈ Tab}|. The depth
of σ is the maximal depth of states s0, . . . , sn. A cut sequence is a �ring sequence
that reaches ∅. Given a �ring sequence that includes the �ring of an abstract
transition t in vertex v creating vertex w and followed later by the cut transition
tτ in w, we say that (v, t), (w, tτ ) are matched in σ.

Remark. In the sequel, when we write �DRPNN �, we meanN = ⟨P, T,Gd, Up, Up−, Up+, Bg⟩,
unless we explicitly write di�erently. A DRPN N equipped with an initial state s
is a marked RPN and denoted (N , s).

For a marked DRPN (N , s0), let Reach(N , s0) = {[s] | ∃σ ∈ T ∗ s.t. s0
σ−→ s}

be its reachability set, i.e. the set of all the reachable abstract states.
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Discussion. The main limitations of the modeling power of DRPN are the re-
quirements that (1) the prerequisite for �ring a transition are upward closed sets
↑Gdt and (2) functions like Upt must be non-decreasing. Despite these limitations,
DRPNs include many models like:

Petri nets. Given a Petri net N = ⟨P, T,Pre,C⟩ we can be viewed as a DRPN
N ′ = ⟨P, T,Gd, Up, ∅, ∅, ∅⟩, where for all t ∈ T = Tel, Gdt = {Pre(t)} and
Upt = Id+C(t).

A�ne Petri nets. (de�ned in Section 6.2) Given an A�ne Petri netsN = ⟨n, F ⟩
we can simulate it by the DRPN N ′ = ⟨P, T,Gd, Up, ∅, ∅, ∅⟩ where P =
{i}0<i≤n, T = Tel = F . For all t ∈ T , where t(m) = Atm+Bt for At ∈ Nn×n

and Bt ∈ Zn×n, we have Gdt = min{m | Atm + Bt ≥ 0} and Upt(m) =
Atm+Bt.

Recursive Petri nets. Given an Recursive Petri nets N = ⟨P, T,W+,W−,Ω⟩
we can simulate it by the DRPN N ′ = ⟨P, T,Gd, Up, Up−, Up+, Bg⟩, where:
◦ t ∈ T , Gdt = {W−(t)}
◦ t ∈ Tel, Upt = Id+W+(t)−W−(t)
◦ t ∈ Tab, Up

−
t = Id−W−(t), Up+t = Id+W+(t)

◦ Bgt is constant and equal to Ω(t)

Graphical representation.
For modeling purposes, we equip DRPN with a graphical representation based

on net representations. Places (resp. transitions) are depicted by circles (resp.
rectangles). However, a transition does not have input arcs, but only output
arcs represented by diamond-headed arrows and labeled by expressions where a
place represents the current value of its marking. The guard of an elementary
transition is represented by the set of markings inside the rectangle (we omit
the curly brackets in the �gures, for simplicity). For instance, the elementary
transition t illustrated in Figure 9.1 is de�ned by: Gdt = {3p1} and Upt(m) =
(m(p1) + m(p2))p1 + ⌊

√
m(p2)⌋p2. Note that, in the illustration of DRPNs, we

denote the current number of tokens in a place p, i.e. m(p), by p.

Figure 9.1: An elementary transition in DRPN

The rectangle of an abstract transition t is divided into several parts: on the
top corner left (−) starts the edges representing Up−t , on the top center Gdt is
represented, on the bottom corner left Bgt is represented, and on the bottom corner
right (+) start the edges representing Up+t . We don't plot edges for unchanged
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places. For instance, the abstract transition t in 9.2 is de�ned by: Gdt = {3p1 +
p3, 2p2}, Up−t (m) = (m(p1)−1)p1+⌊0.5m(p2)⌋p2+m(p3)p3, Up

+
t (m) = m(p1)p1+

2m(p2)p2 +m(p3)
2p3, and Bgt = m(p1)p2. Observe that Up

−
t ≤ Id ≤ Up+t .

+

-

Figure 9.2: An abstract transition in DRPN

Finally, a cut transition τ in DRPN is represented with a rectangle �lled with
gray surrounding Gdτ . For example see the cut transition τ in Figure 9.3 where
the Gd(τ) = {2p1, p2}.

Figure 9.3: A cut transition in DRPN

Example 9.2.6 (Hiring an assassin). In order to illustrate the modeling capa-
bilities of DRPN, we present an example of distributed planning. The DRPN
NJaqen of Figure 9.4 represents the possible behavior of an assassin hired for a job.
The transitions presented with ordinary input and output arcs are RPN (and thus
DRPN) transitions.

The assassin is given 3 days (3 tokens in ptime), an advance of 20 bitcoins (20
tokens in padv), and is promised to get a reward of 20 bitcoins after the job is done
(20 tokens in preward). In order to try catching his target, he needs to devote one
bitcoin and one day of his time. After this day either the assassin is successful
(tfound) or fails (tlost) and needs to spend another day. When successful, the assas-
sin can collect the reward (tcollect). However, the assassin has also another strategy
which consists of hiring another assassin by giving him a quarter of his advance
money and promise him an equal reward, telling him the number of days left (thire
where fpay(m) = m(ptime)ptime+⌊0.5⌈0.5m(padv)⌉⌋padv+⌈0.5⌈0.5m(padv)⌉⌉preward).
If some hired assassin is successful, he can report his success to the hiring guy by
�ring the cut transition treport. The state presented on the right of Figure 9.4 con-
sists of three assassins where the last hired one has �found� the target. Observe
that as long as an assassin has money he can hire other assassins and that even
after hiring he can still try to ��nd� the target by himself.
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Figure 9.4: The Jaquen DRPN with a state

A �ring sequence of NJaqen is presented in Figure 9.5 where the vertex that
�res the transition is �lled. The initial assassin �rst tries to �nd the target but
fails (i.e. �ring (r, tlost)), losing one bitcoin and one day. Then he hires another
assassin by �ring the abstract transition (r, thire), losing half of his advance money
and creating a new vertex v, where the hired assassin has two days, an advance
of �ve bitcoins and a promised reward of �ve bitcoins for completing the job :
M(v) = 2ptime + 5padv + 5preward. This assassin kills the target and collects the
reward ((v, tlost) followed by (v, tcollect)). Then using a cut transition he reports it
to his employer (v, treport), which removes v and adds one token to pdead in M(r).
Finally, the original assassin can collect his money by �ring tcollect.

 

 

 

  

 

 

Figure 9.5: A �ring sequence in Jaquen DRPN

Ordering states of a DRPN. We now de�ne a qo on the states of a DRPN.
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This qo is an extension to the one we had for states of RPN, where instead of com-
paring markings on the edges, we compare functions. More precisely, we assume
a decidable order ⪯ between functions of Up+ such that for all f, f ′ and m ∈ NP

f ⪯ f ′ implies f(m) ≤ f ′(m). There always exists such an order, namely '='
(syntactical equality). Furthermore, for most of the families Up+, '≤' is decidable
and more appropriate. Given two states s, s′ of N , we say that s is smaller or
equal than s′ (or equivalently that s′ covers s) if there is a subtree in s′ isomorphic
to s (by some matching) such that (1) given any pair of matched vertices (u, u′),
M(u) ≤M ′(u′) and (2) given any pair of functions (f, f ′) labeling matched edges,
f ⪯ f ′.

De�nition 9.2.7. Let ⪯ and ⪯φ be the qo de�ned as follows. Let s, s′ ̸= ∅ be
states of a DRPN N and let φ be an injective mapping from Vs to Vs′ .
If for all v ∈ Vs:

1. Ms(v) ≤Ms′(φ(v)), and,

2. for all v
f−→s w, there exists an edge φ(v)

f ′
−→s′ φ(w) with f ⪯ f ′.

then s ⪯φ s
′.

We de�ne s ⪯ s′ if there exists an injective mapping φ from Vs to Vs′ such that
s ⪯φ s

′.
In addition, we set ∅ ⪯ s for all states s.

Observe that with our assumption, this order is decidable.
The following lemma shows that the relation de�ned in 9.2.7 on states of DRPN

is a qo and is strongly compatible. We leave out its proofs since they are similar
to the ones for lemmas 8.2.2 and 8.2.3.

Lemma 9.2.8. The relation ⪯ is a qo and strongly compatible.

However, just like in RPN this qo is not a wqo and thus in order to solve the
coverability problem, one cannot apply the backward exploration since it would
not necessarily terminate.

Recall, the coverability set Cov(N , s0) is de�ned as the downward closure of
the reachability set:

Cov(N , s0) =↓Reach(N , s0)

9.3 Expressiveness

In Section 8.4, the expressiveness of RPNs was studied using coverability languages.
In order to compare RPN and DRPN expressiveness we recall the de�nition of the
family of coverability languages of DRPN. Equip any transition t ∈ T with a label
λ(t) ∈ Σ∪ {ε}. The labeling is extended to transition sequences in the usual way.
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Thus given a labeled marked DRPN (N , s0, λ) and a �nite set of states St, the
coverability language LC(N , s0, λ, St) is de�ned by:

LC(N , s0, λ, St) = {λ(σ) | ∃s ∈ St,∃s′ ∈ St; s0
σ−→ s ∧ s ⪰ s′}

In Section 8.4, we showed that the family of RPN coverability languages is equal
to the family of RPN cut languages (propositions 8.4.1 and 8.4.2). The proof also
works for DRPN (using the RPN simulations).

Proposition 9.3.1. The family of cut languages of DRPNs is equal to the family
of coverability languages of DRPNs.

Therefore, in this section, we will be talking about coverability and cut lan-
guages for DRPN interchangeably. Moreover, due to Proposition 8.4.10 we can
assume that the initial markings of the RPNs have a single vertex.

In order to establish the di�erence between RPN and DRPN languages, we
need to de�ne a new type of RPN languages, in which we are only allowed to
only �re a bounded number of abstract transitions. Formally, given B ∈ N, let
LR(N , s0, λ, ∅) be the B-bounded cut language, i.e.

LB(N , s0, λ, ∅) = {λ(σ) | ∃σ; s0
σ−→ ∅ ∧ |σ|ab ≤ B}

We say that L ⊆ Σ∗ is a B-bounded cut language if L = LB(N , s0, λ, St) for some
N , s0, λ and St.

9.3.1 Bounded RPN and Petri net languages equivalence

In this subsection, we show how to build a Petri net with same language as a
B-bounded cut language of an RPN.

Let L = LB(N , [r,m], λ, ∅) be a B-bounded cut language with the RPN N =
⟨P, T,W+,W−,Ω⟩. Without loss of generality, we assume that for any t, t′ ∈ Tab we
have W+(t) ̸= W+(t′). We build a Petri net NB = (PB, TB,PreB,CB), with an
initial marking mB, a target marking p∅ and a labeling function for its transitions
λB, such that L = LC(NB,mB, λ

B, p∅). NB has a structure which represents the
super set of all possible states reachable by �ring sequences in N containing at
most B abstract transitions. This is achieved by copying the structure of the RPN
in a tree like structure. Each vertex in this tree represents a possible thread in
the RPN. To each of these vertices we match a set of places re�ecting the threads
marking, its connection to its predecessor and its control state. Each vertex can be
in one of three control states �sleeping�, �running�, or �dead�. Note that a �running�
vertex cannot become �sleeping� vertex and a �dead� one cannot become �running�.
We now describe in details the construction of NB. Figure 9.6 illustrates such a
construction for B = 2.
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2

control

 

Transitions with extra
arcs from and to 

Transitions with an
extraarcs from   

Multiple arcs

Control places

Figure 9.6: The RPN N and it Petri net NB for B = 2. NB is split into two
types of blocks: a control block and a block per possible thread. The second type
of block includes two types of places: control places (e.g. purun and put ) and places
(e.g. pu1 and pu2) simulating the marking of the thread.
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Let TB = (EB, V B) be a rooted and directed tree of depth B, for which every
internal node has B children. Denote its root by rB. For each node, v ∈ V B de�ne
a set of places P v and a set of transitions T v. The set P v for v ̸= rB includes four
types of places:

P v = {pv | p ∈ P} ⊎ {pvt | t ∈ Tab} ⊎ {pvsleep} ⊎ {pvrun}

� pv for every place p in the RPN N
� pvt for every abstract transition t (marked if v was �woken up� by the tran-
sition t)

� pvsleep (marked if this vertex is �still sleeping�)
� pvrun (marked if this vertex is �running�)

For v = rB we have P rB = {prB | p ∈ P} ⊎ {prBrun} since rB corresponds to the
initial thread. For an example, see the set of places for the vertex u in Figure 9.6:

P u = {pu1 , pu2} ⊎ {put } ⊎ {pusleep} ⊎ {purun}

For any node v ̸= rB, the set T
v includes three types of transitions:

T v = {tv | t ∈ Tel} ⊎ {tv,w|t ∈ Tab, prd(w) = v} ⊎ {τ vτ,t | τ ∈ Tτ , t ∈ Tab}

Note that, for any leaf v, there is no transition of the second type, i.e. T v = {tv |
t ∈ Tel} ⊎ {τ vτ,t | τ ∈ Tτ , t ∈ Tab}.

For v = rB, we have a di�erence for the cut transitions, since it was not
�created� by a transition. We have

T rB = {trB | t ∈ Tel} ⊎ {trB ,w|t ∈ Tab, prd(w) = rB} ⊎ {τ rBτ | τ ∈ Tτ}

For an example, the set of transitions for vertex u in Figure 9.6 is:

T u = {tue} ⊎ {tu,w, tu,x} ⊎ {τuτ,t}

Lastly, we have two extra special places, p∅ denoting the empty tree, and pab in
charge of limiting the number of �abstract transition �rings� in NB. Combining
all we get:

PB = {p∅, pab} ⊎
⋃

v∈V B

P v ; TB =
⋃

v∈V B

T u

Before describing PreB and CB let us introduce a few useful notations. Given
v ∈ V B and a marking (of a thread of N ) m =

∑
p∈P ap · p, denote by [m]v =∑

p∈P ap · pv, the translation of the marking to vertex v of NB. Denote by
mAnc(v) =

∑
u∈Anc(v) p

u
run, such that if m ≥mAnc(v), then v and all its ancestors

are �running�.
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We are now ready to construct PreB and CB for each t ∈ TB. Note that, all
transitions in NB belong to some vertex v. First, A general rule for all transitions
is that if the vertex they �belong� or any of its ancestors (including itself) are not
running (i.e. m ≥mAnc(v)) then it is not �reable. Now, we describe in details the
four types of transitions:

� The transition tv is �reable if it is �reable in v (i.e. m ≥ [W−(t)]
v). If �red,

it only updates the marking of places in vertex v according to W+ and W−:

PreB(tv) = mAnc(v) +
[
W−(t)

]v
; CB(tv) =

[
W+(t)−W−(t)

]v
See for example transitions tue in Figure 9.6.

� The transition tv,w is �reable if (1) t is �reable in v (i.e. m ≥ [W−(t)]
v),

(2) NB can still �re �abstract transitions� (i.e. pab > 0), and (3) the vertex
w was not �woken up� yet (i.e. pwsleep > 0). Firing it (1) �wakes up� w by
putting a token in pwrun, removing the token in pwsleep and putting a token in
pwt meaning that it was created by t, 2) removes a token from pab since it
used an �abstract transitions�, 3) puts tokens in vertex w according to Ω(t),
and 4) updates the marking on the vertex v according to W−(t):

PreB(tv,w) = mAnc(v) +
[
W−(t)

]v
+ pwsleep + pab ;

CB(tv,w) = pwrun + pwt − pwsleep − pab + [Ω(t)]w − [W−(t)]v

See for example transition tu,w in Figure 9.6.
� The transition τ vτ,t represents the cut steps of v. It is �reable if v was created
by the transition t (i.e. pvt > 0), and has marking greater or equal than
W−(τ). Its �ring removes the token from pvrun (�killing� v) and puts tokens
in the places of its parent according to W+(t):

PreB(τ vτ,t) = mAnc(v) + [W−(τ)]v + pvt ; CB(τ vτ,t) = [W+(t)]prd(v) − pvrun

See for example transitions tuτ,t in Figure 9.6.
� The transition τ rBτ represents a cut step of rB. It is �reable if the vertex
rB has a marking greater or equal than W−(τ). It removes the token in
prBrun making all transitions not �reable, and puts a token in p∅ signifying we
reached the �empty state�:

PreB(τ rBτ,t ) = prBrun + [W−(τ)]rB ; CB(τ rBτ,t ) = p∅ − prBrun

See for example transition trBτ in Figure 9.6.

For translations from a state of N to a marking of NB, we need a way to translate
a marking on an edge of the state to the transition that created it. Hence, given
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a state s of N and v ∈ Vs \ {r}, denote by Υs(v) ∈ Tab the transition such that
W+(Υs(v)) = Λs(prd(v), v). Let s be a state of the RPN N and ϕ an isomorphism
from its underlining tree structure to a rooted subtree of TB. Denote by M(ϕ, s)
the �translation� of the state s to a marking of NB, such that if s ̸= ∅:

M(ϕ, s) =
∑
u∈Vs

[Ms(u)]
ϕ(u) +

∑
u∈ϕ(Vs)

purun +
∑

v∈Vs\{r}

p
ϕ(v)
Υs(v)

and M(ϕ, ∅) = p∅. Recall that [r,m0] is the initial state of the marked RPN N ,
let the initial marking of NB be:

mB = [m]rB + prBrun +
∑

u∈V B\{rB}

pusleep +B pab

Finally, we de�ne the transition labeling ofNB as follows. λB(tv) = λ(t), λB(tv,w) =
λ(t), λB(τ vτ,t) = λ(τ), and λB(τ r

B

τ ) = λ(τ).
For any markingm of NB, we de�ne the projection ofm to a speci�c node u ∈ VB,
denoted by [m]u, as follows. Let m be a marking of NB de�ned by:

m =
∑
u∈VB

(
aurun · prun + ausleep · pusleep +

∑
p∈P

aup · pu +
∑
t∈Tab

aut · put

)
+a∅ ·p∅+aab ·pab

then:
[m]u = ausleep · pusleep +

∑
p∈P

aup · pu +
∑
t∈Tab

aut · put

We are now in position to show the inclusion of the family of B-bounded RPN
cut languages in the family of PN coverability languages. The inverse inclusion is
immediate: the family of PN coverability languages is included in the family of
B-bounded RPN cut languages.

Proposition 9.3.2. The family of B-bounded RPN cut languages is included to
the family of PN coverability languages.

Proof. We establish that for anyB ∈ N we have LB(N , [r,m], λ, ∅) = LC(NB,mB, λ
B, {p∅}).

We do it by showing the double inclusion.

Showing LB(N , [r,m], λ, ∅) ⊆ LC(NB,mB, λ
B, {p∅})

Given ω ∈ LB(N , [r,m], λ, ∅) there exists a cut sequence [r,m]
σ−→ ∅ where:

σ = s0
(v1,t1)−−−→ s1

(v2,t2)−−−→ · · · (vℓ,tℓ)−−−→ sℓ = ∅,
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λ(σ) = ω, and |σ|ab ≤ B.
If cut steps would instead of removing vertices would only forbid �ring in them

and their descendants, then after �ring the sequence σ we would get a state with
an underlining rooted tree T . T is isomorphic to a subtree of TB rooted in rB,
since each inner node can not have more than B children and its depth is smaller
then B. Denote this isomorphism by ϕ.
We now show by induction that there exists a �ring sequence

mB = m0

t′1−→m1

t′2−→ · · ·
t′ℓ−→mℓ

in NB such that mi ≥M(ϕ, si) and λB(t
′
i) = λ(ti).

For i = 0, m0 = mB and the induction holds from the de�nition of mB.
Assume we have shown the induction hypothesis for i < n, we turn to show it
for i = n. We split the proof into four cases according to ti (where the last two
are for cut transitions). For each type we show: a) the transition simulating ti in
NB with the same label, b) this transition is �reable from mi−1, and c) the new
reached marking mi ≥M(ϕ, si):

1. ti ∈ Tel.

(a) Replacement - t′i = t
ϕ(vi)
i and by de�nition their label is the same.

(b) Fireable from mi−1 - From the induction hypothesis we know that:

mi−1 ≥M(ϕ, si−1) = mAnc(ϕ(vi))+[M(vi)]
ϕ(vi) ≥mAnc(ϕ(vi))+[W−(ti)]

ϕ(vi) =
PreB(tϕ(vi))
hence tϕ(vi) is �reable from mi−1.

(c) Marking reached - SinceCB(t
ϕ(vi)
i ) only changes the marking of places

of the type pϕ(vi) for p ∈ P and ti only changes the marking of the vertex,
vi we get that:
M(ϕ, si)−M(ϕ, si−1) = [W+(ti)−W−(ti)]

ϕ(vi) = CB(t
ϕ(vi)
i )

hence mi = mi−1 +CB(tϕ(vi)) ≥M(ϕ, si)

2. ti ∈ Tab, which creates a new vertex w in si.

(a) Replacement - t′i = t
ϕ(vi),ϕ(w)
i and by de�nition their label is the same.

(b) Fireable from mi−1 - By the same reasoning as for the elementary

transitions, plus the fact that the vertex w is fresh (i.e. p
ϕ(w)
sleep = 1) and

we �red less than B abstract transitions (i.e. pab > 0) we have that

mi−1 ≥ PreB(t
ϕ(vi),ϕ(w)
i ).

(c) Marking reached - Note that the changes in si compared to si−1 are
a new edge to a new vertex w marked by Ω(ti), and that the marking
of vi changes according to W−(ti). We get that:

M(ϕ, si)−M(ϕ, si−1) = pϕ(w)
run + p

ϕ(w)
ti − p

ϕ(w)
sleep + [Ω(ti)]

ϕ(w) − [W−(ti)]
ϕ(vi)

= CB(t
ϕ(vi),ϕ(w)
i )
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hence mi = mi−1 +CB(t
ϕ(vi),ϕ(w)
i ) ≥M(ϕ, si)

3. ti ∈ Tτ and vi ̸= r. Denote by t̂ the transition that created vi.

(a) Replacement - t′i = τ
ϕ(vi)

ti,t̂
and by de�nition their label is the same.

(b) Fireable from mi−1 - By the same reasoning as for the elementary
transitions, plus the fact that hatt created it (i.e. phatt

{phi(vi)} = 1)

we get mi−1 ≥ PreB(τ
ϕ(vi)

ti,t̂
).

(c) Marking reached - The changes in si compared to si−1 are that the
vertex vi is removed and the marking of prd(vi) changes according to
W+(t̂). We get that:

M(ϕ, si)−M(ϕ, si−1) ≤ [W+(t̂)]ϕ(prd(vi)) − pϕ(vi)run = CB(t
ϕ(vi)

ti,t̂
)

Hence, mi = mi−1 +CB(t
ϕ(vi)

ti,t̂
) ≥M(ϕ, si)

4. ti ∈ Tτ and vi = r.

(a) Replacement - t′i = τ
ϕ(vi)
ti , and by de�nition their label is the same.

(b) Fireable from mi−1 - By the same reasoning as for the elementary

transitions mi−1 ≥ PreB(τ
ϕ(vi)
ti ).

(c) Marking reached - We have that si = ∅ and �ring τ
ϕ(vi)
ti

M(ϕ, si)−M(ϕ, si−1) ≤ p∅ − prBrun = CB(trB
ti,t̂

)

Hence, mi = mi−1 +CB(trB
ti,t̂

) ≥M(ϕ, si)

Combining all the above we get the covering sequence σ′ = t′1t
′
2 . . . t

′
ℓ such that:

mB
σ′
−→mℓ ≥ p∅

Therefore ω = λ(σ′) ∈ LC(NB,mB, λ
B, {p∅}).

Showing LC(NB,mB, λ
B, {p∅}) ⊆ LB(N , [r,m], λ, ∅)

Given ω ∈ LC(NB,mB, λ
B, {p∅}), there exists a covering sequence σ:

mB = m0
t1−→m1

t2−→ · · · tℓ−→mℓ ≥ p∅

in NB such that λB(σ) = ω. We will show that there exists a cut sequence σ′:

[r,m] = s0
(v1,t′1)−−−→ s1

(v2,t′2)−−−→ · · ·
(vℓ,t

′
ℓ)−−−→ sℓ = ∅

in N such that for any 0 ≤ i ≤ ℓ we have:
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1. There is an isomorphism ϕi from a subtree of TB to the underling tree of the
state si

2. For Ui = {v ∈ VB |mi ≥mAnc(v)}, we have ϕi(Ui) = Vsi

3. For all vertices v ∈ Vsi \ r, and u = ϕ−1i (v):

0 ≤ [mi]u − puΥsi (v)
≤ [Msi(v)]

u

where for v = r then [mrB ]u ≤ [Msi(r)]
u

4. λB(ti) = λ(t′i).

We do this by induction on 0 ≤ i ≤ ℓ. For i = 0 since [r,m] has only one vertex
we let ϕ0(rB) = r satisfying assertion 1. From the de�nitions we have m0 = mB

which satis�es the assertions 2-3. Finally, there is no t0 so assertion 4. does not
apply to this base case. Assume we have shown this for every n < i and show it
for n = i. We split the proof into three cases according to ti:

� ti = xu for u ∈ VB and x ∈ Tel. First, note that since t
u was �red from mi−1

we have mi−1 > purun. Let vi = ϕi−1(u) ∈ Vsi−1
, which exists by assertion 2.

We show that that letting t′i = x we would get that (vi, t
′
i) is �reable from

si−1 to an appropriate si. First notice that by induction:

[Msi−1
(vi)]

u ≥ [mi−1]u − puΥsi−1 (v)
≥ PreB(xu)−mAnc(u) = [W−(x)]u

hence Msi−1
(vi) ≥ W−(t) and (vi, t

′
i) is �reable from si−1. Since �ring xu

does not change the tokens in any pwrun for w ∈ VB and �ring (vi, t
′
i) does not

change the structure of the underlining tree of si, letting ϕi = ϕi−1 satis�es
assertions 1 and 2.
Since (vi, t

′
i) only change the marking of vi, we get that for any vertex w ̸= u

assertion 3 holds. For u we get that :

[mi]u = [mi−1]u +CB (xu) ≤ [Msi−1
(vi)]

u + [W+(t′i)−W−(t′i)]
u

and Msi(vi) = Msi−1
(vi) + W+(t′i) −W−(t′i) which satis�es assertion 3 for

the node u. Finally, by de�nition λ(t′i) = λ(x) = λB(x
u) = λB(ti).

� ti = xu,u′
for u, u′ ∈ VB, u = prd(u′) in TB, and x ∈ Tab. By the same

reasoning as in the previous case vi = ϕi−1(u) ∈ Vsi−1
and letting t′i = x we

get that (vi, t
′
i) is �reable from si−1.

Since t′i ∈ Tab, �ring (vi, t
′
i) creates for vi a new child v′i. Denote by:

ϕi(w) =

{
ϕi−1(w) w ̸= u′

v′i w = u′

ϕi is an isomorphism from a subtree of TB to the underlining tree of si, hence
assertion 1 holds. Moreover, since the transition ti = xu,u′

adds a token to
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pu
′

run and for any node w ̸= u′ does not decrease the number of tokens in pwrun,
we get that ϕi(Ui) = ϕi(Ui−1 ∪ u′) = Vsi−1

∪ {v′} = Vsi satisfying assertion 2.
For any w ∈ Vsi such that w ̸= vi, v

′
i we have Msi(w) = Msi−1

(w) since �ring
(vi, t

′
i) does not change their marking. For any w ∈ VB such that w ̸= u, u′

we have [mi]w = [mi−1]w since �ring xu,u′
does not change their marking.

Therefore, to show assertion 3 holds we only need to show it for the nodes
u, u′, and we get:

[mi]u = [mi−1]u +
[
CB

(
xu,u′

)]
u
≤

≤ [Msi−1
(vi)−W−(t′i)]

u + puΥsi−1 (v)

[mi]u′ =[mi−1]u′ + [Ω(x)]u
′
+ pu

′

run + pux − pu
′

sleep

=[Ω(x)]u
′
+ pux

While in N we have Msi(v) = Msi−1
(vi) − W−(t′i), Msi(v

′
i) = Ω(t′i) and

Υsi(v
′) = t which satis�es assertion 3 for the nodes u and u′. Finally, by

de�nition λ(t′i) = λ(x) = λB(x
u,u′

) = λB(ti).
� ti = τux,y or τ rBx for y ∈ Tab and x ∈ Tτ . Denote by u′ the parent of u in
TB. By the same reasoning as in the previous case vi = ϕi−1(u) ∈ Vsi−1

and
letting t′i = y we get that (vi, t

′
i) is �reable from si−1.

If u = rB then ti = τ rBx and Ui = Vsi = ∅ and assertion 1-3 are ful�lled.
Assume that u ̸= rb, then ti = τux,y. Firing (vi, x) removes vi and its descen-
dants, hence Vsi = Vsi−1

\ (Dessi−1
(vi)). Denote by ϕi = ϕi−1|ϕ−1(Vsi )

this
is an isomorphism from a subtree of TB to the underlining tree of si, hence
assertion 1 holds. Moreover, since the transition ti = τux,y does not change
the number of tokens in pwrun for any w ̸= u and decrees the tokens in purun
to 0, we have Ui = Ui−1 \ (DesTB

(u)) and assertion 2 holds.
Let v′i be the parent of vi in si−1. For any w ∈ Vsi such that w ̸= v′i,
Msi(w) = Msi−1

(w) since �ring (vi, x) does not change their marking. For
any w ∈ Ui such that w ̸= u′ we have [mi]w = [mi−1]w since �ring τux,y does
not change their marking. Therefore, to show assertion 3 we only need to
show it for the node u′. From assertion 3 (of the previous step), we know
that Υsi−1

(vi) = y. We get that:

[mi]u = [mi−1]u +
[
CB

(
τux,y
)]

u
=

= [Msi−1
(v′i) +W+(y)]u + puΥsi−1 (v

′
i)

and Msi(v
′
i) = Msi−1

(v′i) +W+(y) which satis�es assertion 3 for the node u′.
Finally, by de�nition λ(t′i) = λ(x) = λB(τ

u
x,y) = λB(ti).
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Recall that mB = m0
σ−→ mℓ ≥ p∅ hence tℓ = τ rBτ . This transition has to appear

since it is the only transition adding a token in p∅. It is the �nal one since,
after �ring it there are zero tokens in prBrun and PreB(t) ≥ prBrun for any t ∈ TB.

Therefore, s0
σ′
−→ sℓ = ∅, and from assertion 4. we get that ω = λB(σ) = λ(σ′).

Moreover, |σ′|ab = |{tu,u
′ ∈ σ | u, u′ ∈ V B, t ∈ Tab}| ≤ B since C(tu,u

′
)(pab) = −1

for tu,u
′ ∈ TB, CB(t)(pab) = 0 for t ∈ TB, and m0(pab) = B. So we conclude that

ω ∈ LB(N , [r,m], λ, ∅).

9.3.2 Language Hierarchy

In this subsection we show that the family of coverability languages for DRPN is
strictly larger than the family of coverability languages for RPN. We will do it in
two ways, using each time a di�erent feature of DRPN not present in RPN. The
�rst feature we are going to use is the ability of the DRPN to create threads whose
initial marking depends on the marking of the thread which created them. Recall
that in Proposition 8.4.7 we have shown that the language L3 = {anbmcm | n ≥ m}
is not an RPN coverability language.

Proposition 9.3.3. L3 is a DRPN cut language.

Figure 9.7: A DRPN with a coverability language L3.

Proof. Let N be the DRPN in Figure 9.7, we show that LR(N , [r, pinit], λ, ∅) = L3.
On one hand, given w = anbmcm ∈ L3 i.e. n ≥ m. The sequence σ = tna t t

m
b tfin t

m
c

is a cut sequence and λ(σ) = anbmcm.
On the other hand, let σ be a cutting sequence such that λ(σ) ∈ LR(N , [r, pinit], λ, ∅).
We note that any cut sequence has to be of type σx,y,z = txa t t

y
b tfin t

z
c for x, y, z ≥ 0.

We get that x ≥ y since tb consumes a token from tb. Furthermore, y = z since a
thread �ring tb consumes the token from pb and the only way to cut that thread
would be to �re tc. Therefore, λ(σ) = axbycz with x ≥ y = z and λ(σ) ∈ L3.
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It is important to note that, the DRPN in �gure 9.7 is almost a regular RPN,
where the only di�erence is that Bgtb is not a constant marking but an additive
function depending on the marking of the thread �ring it.

The second feature we are going to use is the ability of transitions in DRPN
to perform �arbitrary� functions. We achieve this by extending the result in [102]
about weakly computable function by Petri nets to RPNs.

De�nition 9.3.4. A function f : N → N is called weakly computable by a Petri
net if there exists a Petri net N which has four designated places pbeg, pin, pout
and pfin and ful�lls the following properties:

1. For any n ∈ N there exists a sequence σn such that pbeg+n ·pin
σn−→m ≥ pend

and the number of tokens in pout is exactly f(n).
2. For any n ∈ N and any sequence σ such that pbeg+n·pin

σ−→m ≥ pend+x·pout,
we have x ≤ f(n).

In [102] the authors show that slow functions are not weakly computable by
Petri nets.

De�nition 9.3.5 (slow/sublinear function). We say that a function f : N → N
is sublinear if limn→∞

f(n)
n

= 0. We call the function f slow if it is sublinear, non
decreasing and limn→∞ f(n) =∞.

For example ⌊log(1 + n)⌋ and ⌊
√
n⌋ are slow functions.

Theorem 9.3.6 ([102]). A slow function cannot be weakly computed by a Petri
net.

Given a slow function f and the alphabet {a, b} we denote the language
Lf = {akbm | k ≥ 0∧ f(k) ≥ m}. As an immediate consequence of the properties
of f , one de�nes by induction the strictly increasing sequence (α(n))n∈N: α(0) = 0
and α(n+1) = min(m | α(n) < m∧ f(α(n)) < f(m)). Note that α depends on f ,
but for sake of readability, and where it is clear from context, we write α instead
of αf . The next proposition establishes that Lf is a DRPN coverability language.

Proposition 9.3.7. For any slow function f , Lf is a DRPN cover language.

Proof. LetN be the DRPN in Figure 9.8, we show that LC(N , [r, pwa ], λ, [r, pwb
]) =

Lf .
On one hand, given akbm ∈ Lf , from the de�nition of the language m ≤ f(k).
This word is also in
LC(N , [r, p1], λ, [r, p2]), where the appropriate covering sequence is tkat

m
b .
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On the other hand, given a �ring sequence σ it can take the following forms: 1)
tka for k ≥ 0, or 2) tkatwb

tmb for k,m ≥ 0 for which m ≤ f(k) + 1. The �rst form
does not cover p2. The second form, if m = f(k) + 1 then the reached marking
does not cover p2. Therefore, �ring sequences tkatwb

tmb with m ≤ f(k) are the all
covering sequences, and λ(tkatwb

tmb ) = akbm ∈ Lf .

Figure 9.8: A DRPN with a coverability language Lf

Let us pick an arbitrary slow function f . The remainder of this section con-
sists in showing that the language Lf is not an RPN cut language. We will
establish that every RPN cut language which includes Lf strictly includes it.
Let us pick an arbitrary labeled RPN N with an initial state [r,m0], such that
Lf ⊆ LR(N , [r,m0], λ, ∅). Let {σn}n∈N be a family of cut sequences such that
λ(σn) = aα(n)bf(α(n)) where among the possible σn's, we pick one with the minimal
depth and among those one with the minimal length (i.e. min |σn|). The skeleton
of the proof is organized in three propositions:

� Proposition 9.3.8 establishes that Lf is a not a PN coverability language.
Using Proposition 9.3.2 we conclude that there does not exist an RPN N
and B ∈ N such that Lf is its B-bounded language.

� Proposition 9.3.9 establishes that if the depth of {σn}n∈N is bounded then
LR(N , [r,m0], λ, ∅) is a B-bounded language. This shows that if the depth
of {σn}n∈N is bounded then Lf ̸= LR(N , [r,m0], λ, ∅).

� Proposition 9.3.10 concludes the proof by showing that if the depth of {σn}n∈N
is unbounded, LR(N , [r,m0], λ, ∅) contains words that do not belong to Lf .
This shows that Lf is strictly included in LR(N , [r,m0], λ, ∅), i.e. Lf ⊊
LR(N , [r,m0], λ, ∅).

Note that, the family of cut sequences {σn}n∈N is used in the rest of this subsection.
We �rst show that Lf is not a Petri net coverability language, using Theorem

9.3.6:

Proposition 9.3.8. Lf is not a PN coverability language.

Proof. Assume for contradiction that there is a Petri net Ñ = ⟨P, T,Pre,C⟩
with an initial marking m0, a set of �nal markings Mt, and a labeling function
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λ : T → {a, b, ε} for which L(Ñ ,m0, λ,Mt) = Lf . Let us de�ne a Petri net N ′ =
⟨P ′, T ′,Pre′,C′⟩ that weakly computes f . Let P ′ = P ∪ {pbeg, prun, pfin, pin, pout}
and T ′ = T ∪ {tm |m ∈Mt} ∪ {trun}. For any t ∈ T we set:

Pre′(t) =

{
Pre(t) + pin + prun λ(t) = a

Pre(t) + prun else
;C′(t) =


C(t)− pin λ(t) = a

C(t) + pout λ(t) = b

C(t) else

For every m ∈Mt, we set Pre(tm) = m+ prun and C(tm) = pfin − prun. Last we
set Pre(trun) = pbeg and C(trun) = prun +m0.

For all n ∈ N, there is a sequence σ̃n in the original net Ñ , such that λ(σ̃n) = anbf(n)

and for some m ∈ Mt we have that mini
σ̃n−→ m′ ≥ m. Therefore, the sequence

trunσ̃ntm is �reable in the Petri net N ′, from the marking pbeg + npin reaching a
marking greater or equal than pend with exactly f(n) tokens in pout.
Let mn = pbeg + npin be an initial marking and σ be a sequence such that mn

σ−→
m > xpout + pend for some x. The �rst transition in this sequence has to be trun,
since it is the only one �reable from mn. The �nal marking is greater or equal
than pend, hence there has to be a �ring of tm, for some m ∈ Mt, in the sequence
but after �ring tm no other transition can be �red. Combining these two facts,
we get that σ = trunσ

′tm where σ′ ∈ T ∗ is �reable in the original net Ñ , where

m0
σ′
−→ m′ ≥ m ∈ Mt. Therefore λ(σ′) = ambℓ ∈ Lf , where m ≤ n since the

transitions labeled with a can be �red at most n times (the initial marking of N ′
had n tokens in pin). Since m ≤ n, we get that ℓ ≤ f(m) ≤ f(n). Therefore,
looking back to N ′, we have that after �ring σ we have x ≤ f(n).

Given a labeled RPN (N , λ) and an abstract transition t (i.e. t ∈ Tab), we
introduce the following languages:

LN ,λ(t) = {λ(σ) | s[r, Begt]
σ−→} ; L⊥N ,λ(t) = {λ(σ) | s[r, Begt]

σ−→ ∅}

These are the languages can appear in a subtree created by t (closed or not). Recall
that {σn}n∈N is the family of cut sequences such that λ(σn) = aα(n)bf(α(n)) de�ned
in the skeleton of the proof.

Proposition 9.3.9. Let (N , λ) be a labeled RPN, s0 be its initial state such that
Lf ⊆ LR(N , s0, λ, {∅}). Assume that the depths of {σn}n∈N are bounded. Then
Lf ⊊ LR(N , s0, λ, {∅}).

Proof. Let D ≥ 0 be the maximum of the depths of the family of {σn}∞n=1. For
clarity, we let LN denote LR(N , s0, λ, {∅}) more concisely.

We are going to build an RPN N̂ such that Lf ⊆ LB(N̂ , pini) ⊆ LN . This

would �nish the proof since by Proposition 9.3.2 and 9.3.8, Lf ⊊ L̂.
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We �rst build the labeled RPN N̄ = ⟨P̄ , T̄ , W̄+, W̄−, Ω̄⟩ with label λ̄ by adding
places and transitions to (N , λ) as follows. For all t ∈ Tab, one adds new places
and transitions according to LN ,λ(t) and L⊥N ,λ(t):

• If a+b+ ∩ LN ,λ(t) = ∅ and zt = max{m | bm ∈ LN ,λ(t)} < ∞ then one adds
two elementary transitions t−, tb and a place pt (see �gure below), where:

W̄−(t−) = W−(t), W̄+(t−) = zt · pt, λ̄(t−) = λ(t);
W̄−(tb) = pt, W̄+(tb) = 0, λ̄(tb) = b;

• Otherwise, if a+b+ ∩L⊥N ,λ(t) = ∅ and max{m | bm ∈ L⊥N ,λ(t)} <∞ then one

adds, three elementary transitions t−⊥,t
x
⊥, t

+
⊥ and two places p⊥t− , p

⊥
t+ with yt

and x are de�ned below:

W̄−(t−⊥) = W−(t), W̄+(t−⊥) = yt · p⊥t− , λ̄(t−⊥) = λ(t);
W̄−(tx⊥) = p⊥t− , W̄+(tx⊥) = p⊥t+ − p⊥t− , λ̄(tx⊥) = x;
W̄−(t+⊥) = yt · p⊥t+ , W̄+(t+⊥) = W−(t)− yt · p⊥t+ , λ̄(t+⊥) = ε

◦ If bm ∈ L⊥t for m > 0 then yt = max{m | bm ∈ L⊥t } and x = b;
◦ Else if aℓ ∈ L⊥t for ℓ > 0 then yt = min{ℓ | aℓ ∈ L⊥t } and x = a;
◦ Otherwise, yt = 1 and x = ε.

• Otherwise, nothing is changed.

On the one hand LN ⊆ LR(N̄ , s0, λ̄, ∅) since any �ring sequence in N can be
performed in N̄ and for all transitions t ∈ T the labeling functions agree, i.e
λ(t) = λ̄(t). On the other hand, the new transitions are built according to LN (t)
and L⊥N (t) in such a way that every �ring of a new transition can be replaced
by a �ring of a sequence of transitions with the same produced label. Hence
LR(N̄ , s0, λ̄, ∅) = LN .
We now show that there exists some B, such for all n ∈ N there is a �ring sequence
σ′n in N̄ with |σ′n|ab ≤ B and λ̄(σ′n) = λ(σn). Pick an arbitrary n ∈ N and denote
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more explicitly the cut sequence s0
σn−→ ∅. Assume there is an occurrence t ∈ Tab

by the vertex u in σn creating a vertex v. Recall that, D is the maximal depth of
the family {σn}n∈N. We transform σn depending on whether the �ring (u, t) has a
matching cut transition (v, τ) in σn:

The �ring (u, t) has a matching cut.

1. Assume that a+b+ ∩ L⊥N (t) ̸= ∅. If there are more than D occurrences of t
with a matching cut in σn then there are two occurrences (w1, t) and (w2, t)
where w2 is neither a descendant nor an ancestor of w1. So one could build
a cut sequence σ with ℓi,mi > 0 such that λ(σ) = . . . aℓ1bm1aℓ2bm2 . . . ∈ LN .
So, Lf ⊊ LN and we are done.

2. If max{m | bm ∈ L⊥N (t)} = ∞. Let m be the number of occurrences of b
in σn produced at the subtree rooted in v then there exists m′ > m such
that one can build a cut sequence σ with m > f(α(n)) + 1 such that λ(σ) =
aα(n)bf(α(n))+m′−m ∈ LN So Lf ⊊ LN and we are done.

3. Otherwise (i.e. a+b+ ∩ L⊥N (t) = ∅ and max{m | bm ∈ L⊥N (t)} < ∞), we
replace the �ring of (u, t) by the sequence below and remove all �rings from
Des(v),

(u, t−⊥)

yt times︷ ︸︸ ︷
(u, tx⊥) . . . (u, t

x
⊥)(u, t

+
⊥)

and obtain a cut sequence σ′n such that λ̄(σ′n) = aℓbm with ℓ ≤ α(n) and
m ≥ f(α(n)). If ℓ < α(n), and m > f(α(n)) then Lf ⊊ LN and we are done.
Otherwise λ̄(σ′n) = λ(σn) and |σ′n|ab < |σn|ab. We can repeat this process
until either one concludes that Lf ⊊ LN or there are at most D �rings of t
with a matching cut transition in σ′n.

The �ring (u, t) does not have a matching cut.
We again have the same three cases only with LN ,λ(t) instead of L⊥N ,λ(t). Case

3 is slightly di�erent. Here we replace the �ring of (u, t) by:

(u, t−)

zt times︷ ︸︸ ︷
(u, tb) . . . (u, tb)

We have built a sequence σ′n with λ̄(σ′n) = λ(σn) and |σ′n|ab ≤ 2D|Tab|. So we
choose B = 2D|Tab|.

We now enlarge the labeled RPN (N̄ , λ̄) to (N̂ , λ̂) in such a way that for all

aℓbm ∈ Lf there is a cut sequence σ with λ̂(σ) = aℓbm and |σ|ab ≤ B. We observe
that the properties of α imply that: Lf = {aℓbm | ∃n, δ−, δ+ ℓ = α(n) + δ+ ∧m =
f(α(n))− δ−}. Due to the observation about RPN languages, the initial state of
N̄ only consists of one vertex, whose initial marking is denoted mini. So one builds
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the RPN N̂ (for an example see Figure 9.9) where its initial state only consists of
one vertex with initial marking pini as follows.
• Add elementary transitions ta, trun, tab and places pini, prun such that:

Ŵ−(ta) = pini, Ŵ+(ta) = pini, λ̂(ta) = a;

Ŵ−(trun) = pini, Ŵ+(trun) = mini + prun, λ̂(trun) = ε;

Ŵ−(tab) = prun, Ŵ+(tab) = 2prun, λ̂(tab) = ε.

• For all t ∈ T , we set:

Ŵ−(t) = W̄−(t) + prun, Ŵ+(t) = W̄+(t), B̂g(t) = B̄g(t) + prun when t ∈ Tab

• For all t ∈ T with λ̄(t) = b, we add transition tε which is a copy of t with λ̂(tε) = ε.

 

Figure 9.9: From N̄ to N̂

We now prove that Lf is included in the bounded language of (N̂ , λ̂). Let
aℓbm ∈ Lf . Then there exist n, δ−, δ+ such that ℓ = α(n)+ δ+ and m = f(α(n))−
δ−. Let σn be a cut sequence in N̄ such that λ′(σn) = aα(n)bf(α(n)). We de�ne σ

to be the cut sequence of N̂ as follows.
σ starts by (r, ta)

δ+(r, trun)(r, tab)
|σn|. Then σ is completed by σ̂n where σ̂n is

obtained from σn by:

� changing δ− occurrences of transitions with label b by their copy;
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� whenever σn creates a new vertex v, one inserts (v, tab)
|σn| �rings.

Observe that λ̂(σ) = aℓbm. Let w be a word. De�ne w↓b as the set of words obtained
from w by omitting some occurrences of b. De�ne L′′ = {w | ∃w′ ∈ LN w ∈ a∗w′↓b}.
Therefore Lf ⊆ LB(N̂ , pini, λ̂, ∅) ⊆ L′′. Since Lf is not a B-bounded language, by
propositions 9.3.2 and 9.3.8, Lf ⊊ L′′. Finally, we get that if LN = Lf then
L′′ = Lf which concludes the proof.

We are now in position to conclude that Lf is not an RPN cut language.
Note that the following proof is very similar to the second part of the proof of
Proposition 8.4.7.

Proposition 9.3.10. Lf is not an RPN cut language.

Proof. Let (N , s0, λ) be a marked RPN such that Lf ⊆ LR(N , s0, λ, ∅). Let us
denote more concisely LR(N , s0, λ, ∅) by LN . By Proposition 9.3.9 if the depths
of {σn}n∈N are bounded then Lf ⊊ LN and we are done.

So assume that the depths of {σn}n∈N are unbounded. There is some n with

σn = σ′nσ
′′
n such that s0

σ′
n−→ s′ where the depth of s′ is greater than (2|T | + 1).

Thus, in sn, for all j such that 1 ≤ j ≤ 3, there are edges uj
m−→sn vj and denoting

ij the depth of vj, one has 0 < i1 < i2 < i3.

For k ∈ {1, 2, 3}, consider of the sequence ρk performed in the subtree rooted
in vk by the �rings of σn. Among these three �ring sequences, two of them either
(1) both �nish by a cut transition in vk or (2) both do not �nish by a cut transition
in vk. Let us call i, j with i < j the indices of these sequences and wi and wj their
traces. We have illustrated the situation below.

•
s[r,m0]

∅
σ′n σ′′n

ρi

ρj
•vi •

•vj

•
•

One can build two �ring sequences that still reach ∅ and thus whose labels belong
to the language. The �rst one consists of mimicking the �behavior� of the subtree
rooted in vj starting from vi, which is possible due to the choice of i and j, as
illustrated below.
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•
s[r,m0]

∅

ρj
•vi •

The second one consists of mimicking the �behavior� of the subtree rooted in vi
starting from vj as illustrated below.

•
s[r,m0]

∅

ρi
ρj

•vi •
•vj

•
•
•

•
•
•

Denote by w the trace of the sequence performed in the subtree rooted in vi without
the trace of the sequence performed in the subtree rooted in vj. Let us examine
the possible case for word w:

• w = ε. Then one can build another covering sequence with the trace
aα(n)bf(α(n)) where we mimic the behavior of vj in vi. By doing so we get
a covering sequence σ′n not deeper than σn but which is shorter then σn,
i.e. |σn| > |σ′n| which is a contradicts to our assumption about σn being the
minimal one.
• w = aℓ, for ℓ > 0. Then one can build another covering sequence by mimick-
ing the behavior of vj in vi. But then the trace of the new covering sequence
will be aα(n)−ℓbf(α(n)) and since ℓ > 0 we get that aα(n)k−ℓbf(α(n)) /∈ Lf , from
which we conclude that Lf ⊊ LN .
• w = bm, for m > 0. Then one can build another covering sequence by
mimicking the behavior of vi in vj. But then the trace of the new covering
sequence will be aα(n)bf(α(n))+m /∈ Lf from which we conclude that Lf ⊊ LN .
• w = aℓbm, for ℓ,m > 0. Then one can build a family of covering sequences
{σ̂x}x∈N by mimicking the behavior of vi from vj recursively x times. We
would get that λ(σ̂x) = aα(n)+xℓbf(α(n))+xm for any x ∈ N. But that would
give us that:

f(α(n)) + xm

α(n) + xℓ

x→∞−−−→ m

ℓ
> 0

Since f is sublinear there exists x ∈ N such that λ(σ̂x) /∈ Lf , from which we
conclude that Lf ⊊ LN .
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9.3.3 Closure Properties

We now study the closure properties of the family of DRPN coverability languages
under several forms of operations. The proof of this subsection are omitted since
the proofs from section 8.4 and 8.3 are also valid here. The proof of the next propo-
sition is based on the proof of Proposition 8.4.10, and Lemmas 8.3.2 and 8.3.3.

Proposition 9.3.11. Given a labelled marked DRPN (N , s, λ) there exists a marked
DRPN (N̊ , s[r,m], λ̊) with the same cut language.

Using this equivalence and similar proofs as those for Propositions 8.4.11, 8.4.12
and 8.4.13, where the same control parts described in Figures 8.8, 8.9, and 8.10 can
be used for DRPN, it is straightforward to show the following closure properties:

Proposition 9.3.12. The family of DRPN coverability languages is closed under:

1. Union
2. Concatenation
3. Kleene star

Using the same proof as for the one for Proposition 8.4.14, since any RPN
language is also a DRPN language, we get:

Proposition 9.3.13. The family of coverability languages of DRPNs is not closed
under intersection with a regular language and under complementation.

9.4 Decidability of the coverability problem

In order to prove that the coverability problem for DRPN is decidable, we are
missing one important ingredient. Recall that in Section 8.3 we developed some
reductions and techniques to handle covering sequences in RPN. We now develop
similar techniques for DRPN. Speci�cally, given a DRPN N we build a kind of
N̂el (De�nition 8.3.13) for DRPN, i.e. a DRPN which is unable to �re abstract
transitions but which is still able to simulate the markings of a single thread of the
DRPN N . In order to achieve this for RPN, we had to generate the set Tret ⊆ Tab,
the set of abstract transitions whose newly created thread can be cut. In DRPN
we encounter a di�culty: the initial marking of a created thread is not constant
but depends on the marking of the thread creating it. Therefore, computing this
set is a bit more involved and we need the following de�nitions:

De�nition 9.4.1. Let N be a DRPN. Then Cuttable(N ) ⊆ NP is de�ned by:

Cuttable(N ) = min{m | ∃σ s[r,m]
σ−→ ∅}
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and for all t ∈ Tab, Closedt is de�ned by:

Closedt = min(Bg−1t (Cuttable(N ))

Due to the properties of DRPN transition �ring rules, these sets are upward closed.

Example 9.4.2. Consider the DRPN of Figure 9.4. With one token in both ptime

and in padv one �res tfound producing a token in pdead which allows �ring a cut
transition. Furthermore, �ring the abstract transition thire does not help to reach
∅ since in the new vertex, the marking of ptime is equal to the marking of ptime in
its parent vertex and the marking padv is smaller than the marking of padv in in
its parent vertex. Thus Cuttable(N ) = {ptime + padv}. The marking of a vertex
created by thire is greater or equal than ptime+padv if in its parent vertex there is at
least one token in ptime and three tokens in padv. Thus Closedthire = {ptime+3padv}.

If we are able to compute Cuttable and thus {Closedt}t∈Tab
we still encounter an

issue building the DRPN N̂el. Recall that for RPN in order to get N̂el we took the
transition in t ∈ Tret and replaced them by elementary transition tr. Firing these
transitions had the same e�ect on the state as of a sequence starting by creating
a new thread by t and then cutting it. In DRPN it is impossible to replace such a
sequence by a single transition since the e�ect of the cut depends on the marking of
the thread, hence the timing of the cut transition is crucial. Therefore, we replace
the single tr transitions by Tr = {t−, t+ | t ∈ Tab}. To ensure the sequentiality
between these �rings, the set of places is extended with Pr = {pt | t ∈ Tab} with
one token produced (resp. consumed) in pt by t− (resp. t+). To ensure that the
�ring of t− is performed when the corresponding �ring of t can be matched later
by the �ring of the cut transition, the guard of t− is the guard of t intersected with
Closedt.

In order to formally de�ne N̂ and to exhibit relations between states and thus
markings of N and N̂ , we introduce the projection Proj from NP̂ to NP where
P̂ = P ∪ Pr.

De�nition 9.4.3. Let N be a DRPN.
Then N̂el = ⟨P̂ , T̂ , Ĝd, Ûp, Ûp−, Ûp+, B̂g⟩ is a DPRN de�ned by: Ûp+ = B̂g = ∅

� P̂ = P ∪ Pr and T̂ = Tel ∪ Tτ ∪ Tr;
� for all t ∈ Tel ∪ Tτ , Ĝdt = Gdt
for all t− ∈ Tr, Ĝdt− = min(↑Gdt ∩ ↑Closedt)
for all t+ ∈ Tr, Ĝdt+ = {pt};

� for all t ∈ Tel, all p ∈ P and all pt′ ∈ Pr,
Ûpt(p) = Upt(p) ◦ Proj and Ûpt(pt′) = pt′ ;

� for all t− ∈ Tr, all p ∈ P and all pt′ ∈ Pr,
Ûpt−(p) = Up−t (p) ◦ Proj and Ûpt(pt′) = pt′ + 1t=t′ ;



176 CHAPTER 9. DYNAMIC RECURSIVE PETRI NETS

� for all t+ ∈ Tr, all p ∈ P and all pt′ ∈ Pr,
Ûpt+(p) = Up+t (p) ◦ Proj and Ûpt(pt′) = pt′ − 1t=t′ .

Let us denote by M=0 = {m ∈ NP̂ | ∀t ∈ Tab m(pt) = 0} the set of markings
with no token in every pt.

Before showing that given N we can compute N̂el, we show that there exists a
cut sequence from an initial state with one thread in N if and only if there exists
one in N̂el. Otherwise stated:

Lemma 9.4.4. Let N be a DRPN, then Cuttable(N ) = Proj(Cuttable(N̂el))

Proof. We show this lemma by double inclusion.
On one hand, let m ∈ Cuttable(N ), i.e. there exist a cutting sequence s[r,m]

σ−→N
∅. Observe that if in σ, there exists a �ring of an abstract transition creating some
vertex v not followed later by a cut transition in v, then one can omit this �ring
and all �rings in the subtree rooted at v and still reaches ∅. Thus, we assume that
every vertex v created by the �ring of an abstract transition is later deleted by a
matching cut transition in v. For any abstract transition t �red from the root r
in σ creating the thread vt. Denote by σt(τ, vt) the �ring sub-sequence �red in the
subtree rooted in vt. We get the �ring sequence σ̂ from σ as follows. For every
�ring of an abstract transition t from the root, modify σ as follows: (1) replace
(t, r) �ring by (t−, r), (2) remove the sub-sequence σt from σ, and (3) replace (τ, vt)

by (t+, r). The �ring sequence σ̂ is �rable in N̂el and has that s[r,m]
σ̂−→N̂el

∅.
On the other hand, given m ∈ Proj(Cuttable(N̂el)), i.e. there exists a cut sequence

s[r,m]
σ̂−→N̂el

∅. Observe that like in the previous case if in σ, there exists a �ring
of some t− not paired with a later �ring of transition in t+, then one can omit
t− and still reaches ∅. By the construction of t− and t+, if t− is �reable from
s[r,m′] then there exists a sequence σt in N such that Bgt(m

′)
σt−→N ∅. We get

the �ring sequence σ from σ̂ as follows: Given a �ring of t− in σ̂ and its matching
t+ replace (1) (t−, r) by the abstract transition (t, r) which creates a new thread
vt, and (2) replace the �ring of transition t+ by the sequence σt �red from vt. The
�ring sequence σ is �rable in N and has that s[r,m]

σ−→N ∅.

We are left with proving that there exists an algorithm which given a DRPN
N builds N̂el. To show that this algorithm exists it is enough to show that an
algorithm computing Cuttable and {Closedt}t∈Tab

exists. Let us describe how Al-

gorithm 7 does exactly that. In the lines 2-8, it builds a version of N̂el where for
every t, Closedt is replaced by Closed[t]. Since Closed[t] will be updated during
the loop of lines 9-18, Gdt− is updated several times at line 10. Still in this loop,
using a standard backward exploration (see Section 2.1), during lines 11-15, it

computes in variable X, Cuttable for this version of N̂el. Afterwards, still in this
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loop, it updates Y by restricting X to the markings with no token in Pr and then
projecting it to P . Then using Y , it updates for every t, Closed[t]. The algorithm
terminates when Y is no more enlarged.

We now show that the Algorithm 7 is e�ective. We begin by showing the
following lemma:

Lemma 9.4.5. Let U, V be �nite subsets of NP . Then there is an algorithm
computing min(↑U∩ ↑V ) and min(↑U∪ ↑V ).

Proof. The lines 2-4 of Algorithm 8 compute a set W such that ↑W = min(↑U∩ ↑
V ). It achieves this by computing max(u, v) de�ned by:

∀p ∈ P,max(u, v)(p) = max(u(p), v(p))

for any two elements u ∈ U and v ∈ V , and adding it to W . This set is not
necessarily minimal, therefore in lines 5-5 removes any item which is not minimal.

Since min(↑U∪ ↑V ) = min(U ∪ V ) and U, V are �nite we are done.

Algorithm 8: Computing min{↑U∩↑V }
Input: Finite sets U, V

1 W ← ∅;
2 for u, v ∈ U × V do
3 W ← W ∪ {max(u, v)}
4 end
5 for w,w′ ∈ W do if w ≤ w′ then W ← W \ {w′} ;
6 return W ;

Using this algorithm we are ready to show that Algorithm 7 is e�ective.

Proposition 9.4.6. Algorithm 7 is e�ective.

Proof. First note that lines 1�8 are e�ective since Tab is �nite and we only perform
initialization of variables.

The sets X, oldX, Y, oldY , and Gdt for all t ∈ T are �nite set at the end of
Line 8, and we will show that at any point of the algorithm between 10 - 17 they
stay �nite. For any t ∈ T by the de�nition of DRPN the functions Upt, Bgt are
e�ective. Proj is also e�ective (we omit the trivial proof). Therefore, the Line 17
is e�ective. First, the Line 10, if e�ective from Lemma 9.4.5 and the previous
remark on Proj. The sets Gdt are kept �nite since the function min produces
only �nite sets. Similarly, the lines 11 and 14 are e�ective and keep all the sets
�nite.

Proposition 9.4.7. Algorithm 7 terminates and it returns Y =↑Cuttable and for
all t ∈ Tab, Closed[t] = Closedt.
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Proof. In the sequel Closed[t] denotes the value of this variable at some execution

point. Let us denote N ′ the version of N̂el built by the algorithm and updated at
every iteration of loop of lines 9-18.
• Termination. Denote by Yn , Closedn[t] for all t, the sets Y and Closed[t] at the
beginning of iteration n of the repeat loop(lines 9-18). We prove by induction on
n that the sequence of sets ↑Yn and for all t, ↑Closedn[t] is an increasing sequence of

upward closed sets of NP and NP̂ , respectively. Since NP and NP̂ are well-ordered,
these sets must stabilize after a �nite number of iterations. Since T is �nite, this
will establish termination of the algorithm.
The basis of the induction is correct since Y0,= Closed0[t] = ∅ for all t ∈ T . It
remains to prove that for n > 1, ↑Yn ⊆↑Yn+1, ↑Closedn[t] ⊆↑Closedn+1[t]. We
start by showing that the while loop terminates(lines 12-15). We also prove it by
induction on n. Consider the nth iteration of the repeat loop, and let us prove
the sequence of sets ↑Xk

n at the beginning of the iteration k of the while loop is
an increasing sequence of upward closed sets. This will establish the termination
of this loop. Observe that X1

n = min{Proj−1(Gdt) | t ∈ Tτ}, and that at every
iteration

↑Xk−1
n ⊆↑Xk

n = (Up−1t (↑X)∩ ↑Gdt)∪ ↑Xk−1
n .

Denote by Xn = Xk
n, where k is the minima value for which ↑Xk

n =↑Xk+1
n . Note

that, Xn−1 ⊆ Xn, since ↑Closedn−1[t] ⊆↑Closedn[t]. Finally, Yn = Proj(Xn ∩M=0)
for which we know that:

↑Yn−1 =↑Proj(Xn−1 ∩M=0) ⊆↑Proj(Xn ∩M=0) =↑Yn,

and for all t ∈ T we have:

↑Closedn−1[t] = Bg−1t (↑Yn−1) ⊆ Bg−1t (↑Yn) =↑Closedn[t].

• Consistency. We establish by induction on the iterations of the repeat loop
that ↑Y ⊆ ↑Cuttable(N ) and for allm ∈ ↑Closed[t], there is a sequence sBg(t)(m)

σm−−→
∅, implying ↑Closed[t] ⊆ ↑Closedt. Consider an arbitrary iteration of the repeat
loop. Thus, the while loop computes X which is the set Cuttable(N ′). Since by
induction, ↑Closed[t] ⊆↑Closedt one deduces that ↑X ⊆ ↑Cuttable(N̂el). Applying
Lemma 9.4.4, one deduces that
Y ⊆ ↑Cuttable(N ) and so that at the end of the iteration ↑Closed[t] ⊆ ↑Closedt.
• Completeness. Let m ∈ ↑Closedt. Consider a sequence sBg(t)(m)

σ−→N ∅.
Observe that if in σ, there exists a �ring of and abstract transition creating some
vertex v not later followed by a cut transition in v, then one can omit this �ring
and all �rings in the subtree rooted at v and still reaches ∅. Thus, we assume
that every vertex v created by the �ring of abstract transition is later deleted by
a matching cut transition in v.
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We establish the completeness of the algorithm by recurrence on the depth of σ. If
the depth is null, it means that σ only includes �ring of elementary transitions in
r ended by the cut transition. So ŝBg(t)(m)

σ−→Nel
∅. Furthermore, since σ ∈ ({r} ×

Tel)
∗(r, τ), ŝBg(t)(m)

σ−→N ′ ∅ for N ′ built at the beginning of the �rst iteration of the
repeat loop. During every iteration of the repeat loop, the while loop computes
in X the set of markings from which a sequence of transitions of N ′ leads to some
marking greater than a marking in {Proj−1(Gdt) | t ∈ Tτ}. So B̂gt(m) ∈↑X at
the end of the iteration and after the for loop at line 17, m ∈↑Closed[t].
Assume that σ has depth h > 0. So every m′ in the root from which there is a
�ring of an abstract transition t′ belongs to ↑Closed[t′] since the subsequence in
the created vertex up to the cut transition has depth strictly less than h. Consider
the last iteration of the repeat loop for which such t′ is added to ↑Closed[t′].
Then either at this iteration m already belongs to ↑Closed[t] or it will be added
at the next iteration (which exists since ↑Y is enlarged) due to execution of the
while loop. Indeed, consider a closing subsequence of σ for a child of the root
created by some transition t′ and substitute the �ring of t′ by t′−, delete the
closing subsequence and substitute the cut step by the �ring of t+ in r. Doing
this transformation (and omitting the cut step in r) one obtains a closing �ring
sequence in N ′ as described above from ŝBg(t)(m). Thus, at the beginning of the

last iteration of the while loop, N ′ = N̂el. Using Lemma 9.4.4, one gets that at
this end of this iteration, Y = Cuttable(N ).

Finally, we are ready to prove that coverability in DRPN is decidable. This
goal is achieved with a set of reductions. We show that (see Figure 9.10): (1) the

DRPN coverability problem is equivalent to rooted DRPN cut problem in N̂el, i.e.
a DRPN with no abstract transitions with an initial state consisting of one state
and (2) showing that N̂el is a WSTS.

Proposition 9.4.8. The following problems are reducible to each other:

1. DRPN coverability problem
2. DRPN cut problem
3. Rooted DRPN cut problem
4. rooted DRPN cut problem in N̂el

Proof. First notice, the coverability problem is equivalent to the emptiness problem
of the coverability language of an DRPN. The same is true for cut problem. In
Proposition 9.3.1 we have shown that these language families are equivalent, and
the translation of the problem from one to the other can be done in polynomial
space. Therefore, problems (1) and (2) are equivalent. Using Lemma 9.3.11 we
get that problems (2) and (3) are equivalent. Finally, from Lemma 9.4.4 we get
that (3) and (4) are equivalent, which concludes the proof.
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DRPN coverability

DRPN cut

rooted DRPN cut

rooted DRPN cut for N̂el WSTS coverability

Lemma 9.4.4

Lemma 9.3.11

Proposition 9.3.1

Proposition 9.4.9

Figure 9.10: The reductions used to prove the decidability of DRPN coverability

Proposition 9.4.9. For any marked DRPN (N , s[r,m]) the marked DRPN (N̂el, s[r,m])
is a WSTS.

Proof. The DRPN (N̂el, s[r,m]) is unable to create any new threads, hence the
reachable states can only own a single thread. The order on a single state is
a wqo since it is equivalent to the usual order on NP . Since the order is wqo
and we already know that it is strongly compatible by Lemma 9.2.8, we get that
(N̂el, s[r,m]) is a WSTS.

Theorem 9.4.10. The DRPN coverability problem is decidable.

Proof. By Proposition 9.4.8 the cover problem in DRPN is equivalent to the rooted
DRPN cut problem in N̂el.
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Algorithm 7: Computing the closure of abstract transitions

Input: N a DRPN
// P̂ = P ∪ {pt | t ∈ Tab}, T̂el = Tel ∪ {t−, t+ | t ∈ Tab}
// Proj is the projection from NP̂ to NP

Data: X, oldX �nite subsets of NP̂ ; oldY, Y �nite subsets of NP ; t a
transition

Output: Closed an array indexed by Tab of �nite subsets of NP

1 Y ← ∅; for t ∈ Tab do Closed[t]← ∅
// Initializing N̂el:

2 for t ∈ Tel do Ûpt(m̂) :=

{
Upt(Proj(m̂(p))) for all p ∈ P

m̂(p) for all p ∈ Pr

3 for t ∈ Tel ∪ Tτ do Ĝdt := Gdt
4 for t ∈ Tab do

5 Ûpt−(m̂) :=


Upt−(Proj(m̂(p))) for all p ∈ P

m̂(p) for all p ∈ Pr \ {pt}
m̂(pt) + 1 when p = pt

6 Ĝdt+(m̂) := {pt}

7 Ûpt+(m̂) :=


Upt+(Proj(m̂(p))) for all p ∈ P

m̂(p) for all p ∈ Pr \ {pt}
m̂(pt)− 1 when p = pt

8 end

// N̂el is initialized except Gdt− for all t ∈ Tab.

// Computing Closedt:

9 repeat
10 for t ∈ Tab do Gdt− ← min(Proj−1(↑Gdt∩ ↑Closed[t]))
11 oldY ← Y ; X ← min(Proj−1(

⋃
t∈Tτ
↑Gdt)); oldX ← ∅

12 while X ̸= oldX do
13 oldX ← X

14 for t ∈ T̂el do X ← min(↑X∪ ↑min(↑min(Up−1t (↑X))∩ ↑Gdt))
// backward exploration

15 end

// Recall that M=0 = {m ∈ NP̂ | ∀t ∈ Tab m(pt) = 0}.
16 Y ← Proj(X ∩M=0) // new Cuttable.

17 for t ∈ Tab do Closed[t]← min(Bg−1t (↑Y )) // updating Closedt

acc. to the new Cuttable

18 until Y ̸= oldY
19 return Y,Closed
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Chapter 10

Property Directed Veri�cation

10.1 Introduction

Recurrent neural networks (RNNs) are a state-of-the-art tool to represent and learn
sequence-based models. They have applications in time-series prediction, senti-
ment analysis, and many more. In particular, they are increasingly used in safety-
critical applications and act, for example, as controllers in cyber-physical systems
[4]. Thus, there is a growing need for formal veri�cation. While formal-methods
based techniques such asmodel checking [16] have been successfully used in practice
and reached a certain level of industrial acceptance, a transfer to machine-learning
algorithms has yet to take place. We apply it on machine-learning artifacts rather
than on the algorithm.

An emerging research stream aims at extracting, from RNNs, state-based for-
malism such as �nite automata [156, 123, 115, 114, 14, 122]. Finite automata
turned out to be useful for understanding and analyzing all kinds of systems us-
ing testing or model checking. In the �eld of formal veri�cation, it has proven to
be bene�cial to run the extraction and veri�cation process simultaneously [126].
Moreover, the state space of RNNs tends to be prohibitively large, or even in-
�nite, and so do incremental abstractions thereof. Motivated by these facts, we
propose an intertwined approach to verifying RNNs, where, in an incremental fash-
ion, grammatical inference and model checking go hand-in-hand. Our approach
is inspired by black-box checking [126], which exploits the property to be veri�ed
during the veri�cation process. Our procedure can be used to �nd misclassi�ed
examples or to verify a system that the given RNN controls.

Property-directed veri�cation. Let us give a glimpse of our method. We
consider an RNN R as a binary classi�er of �nite sequences over a �nite alphabet
Σ. In other words, R represents the set of strings that are classi�ed as positive.

185
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We denote this set by L(R) ⊆ Σ∗ and call it, as usual, the language of R. We
would like to know whether R is compatible with a given speci�cation A, written
R |= A. Here, we assume that A is given as a (deterministic) �nite automaton.
Finite automata are algorithmically feasible, albeit having a reasonable expressive
power: many abstract speci�cation languages such as temporal logics or all of the
regular expressions can be compiled into �nite automata [66].

But what does R |= A actually mean? In fact, there are various options.
If we know the exact language that the R should represent, i.e., A provides a
complete characterization of the sequences that are to be classi�ed as positive,
then |= refers to language equivalence, i.e., L(R) = L(A). Note that this would
imply that L(R) is supposed to be a regular language, which may rarely be the
case in practice. Therefore, we will focus on checking inclusion L(R) ⊆ L(A),
which is more versatile as we explain next.

Suppose N is a �nite automaton representing a negative speci�cation, i.e., R
must classify words in L(N) as negative at any cost. In other words, R does
not produce false positives. This amounts to checking that L(R) ⊆ L(N) where
N is the �complement automaton� of N . For instance, assume that R is sup-
posed to recognize valid XML documents over a �nite prede�ned set of tags. Seen
as a set of strings, this is not a regular language. However, we can still check
whether L(R) only contains words where every opening tag <tag-name> is eventu-
ally followed by a closing tag </tag-name> (while the number of opening and the
number of closing tags may di�er). As negative speci�cation, we can then take
an automaton N accepting the corresponding regular set of strings. For example,
<book><author></author><author></book> ∈ L(N), since the second occurrence of
<author> is not followed by some </author> anymore. On the other hand, we
have <book><author><author></author></book> ∈ L(N), as <book> and <author>

are always eventually followed by their closing counterpart.

Symmetrically, suppose P is a �nite automaton representing a positive speci�-
cation so that we can �nd false negative classi�cations: If P represents the words
that R must classify as positive, we would like to know whether L(P ) ⊆ L(R).
Our procedure can be run using the complement of P as speci�cation and inverting
the outputs of R, i.e., we check, equivalently, L(R) ⊆ L(P ).

An important instance of this setting is adversarial robustness certi�cation,
which measures a neural network's resilience against adversarial examples (spe-
cialized inputs created with the purpose of confusing a neural network). Given
a (regular) set of words L classi�ed as positive by the given RNN, the RNN is
intuitively robust w.r.t. L if slight modi�cations in a word from L do not alter
the RNN's judgement. This notion actually relies on a distance function. Then,
P is the set of words whose distance to a word in L is bounded by a prede�ned
threshold, which is regular for several popular distances such as the Hamming or
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Levenshtein distance. Similarly, we can also check whether the neighborhood of
a regular set of words preserves a negative classi�cation. It is important to note
that the robustness discussed in Chapter 11 is a di�erent type of robustness.

So, in all these cases, we are faced with the question of whether the language
of an RNN R is contained in the (regular) language of a �nite automaton A.
Our approach to this problem relies on black-box checking [126], which has been
designed as a combination of model checking and testing in order to verify �nite-
state systems and is based on Angluin's L∗ learning algorithm [10]. L∗ produces
a sequel of hypothesis automata based on queries to R. Every such hypothesis
H may already share some structural properties with R. So, instead of checking
conformance of H with R, it is worthwhile to �rst check L(H) ⊆ L(A) using
classical model-checking algorithms. If the answer is a�rmative, we apply sta-
tistical model checking to check L(R) ⊆ L(H) to con�rm the result. Otherwise,
a counterexample is exploited to re�ne H, starting a new cycle in L∗. Just like
in black-box checking, our experimental results (Section 10.6) suggest that the
process of interweaving automata learning and model checking is bene�cial in the
veri�cation of RNNs and o�ers advantages over more obvious approaches such
as (pure) statistical model checking or running automata extraction and model
checking in sequence. A further key advantage of our approach is that, unlike in
statistical model checking, we often �nd a family of counterexamples, in terms of
loops in the hypothesis automaton, which testify conceptual problems of the given
RNN.

Note that, though we only cover the case of binary classi�ers, our framework
is in principle applicable to multiple labels using one-vs-all classi�cation.

Related Work. Mayr and Yovine describe an adaptation of the PAC variant of
Angluin's L∗(see Section 2.3). algorithm that can be applied to neural networks
[115]. As L∗ is not guaranteed to terminate when facing non-regular languages,
the authors impose a bound on the number of states of the hypotheses and on the
length of the words for membership queries. In [114, 116], Mayr et al. propose
on-the-�y property checking where one learns an automaton approximating the
intersection of the RNN language and the complement of the property to be veri-
�ed. Like the RNN, the property is considered as a black box, only decidability of
the word problem is required. Therefore, the approach is suitable for non-regular
speci�cations.

Weiss et al. introduce a di�erent technique to extract �nite automata from
RNNs [156]. It also relies on Angluin's L∗ but, uses a di�erent type of abstraction
of the given RNN to perform equivalence checks between them.

The paper [4] studies formal veri�cation of systems where an RNN-based agent
interacts with an environment. The veri�cation procedure proceeds by a reduction
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to feed-forward neural networks (FFNNs). It is complete and fully automatic.
This is at the expense of the expressive power of the speci�cation language, which
is restricted to properties that only depend on bounded pre�xes of the system's
executions. In our approach, we do not restrict the kind of regular property to
verify. The work [82] also reduces the veri�cation of RNNs to FFNN veri�cation.
To do so, the authors calculate inductive invariants, thereby avoiding a blowup
in the network size. The e�ectiveness of their approach is demonstrated on audio
signal systems. Like in [4], a time interval is imposed in which a given property is
veri�ed.

For adversarial robustness certi�cation, Ryou et al. [141] compute a convex
relaxation of the non-linear operations found in the recurrent cells for certifying
the robustness of RNNs. The authors show the e�ectiveness of their approach
in speech recognition. Besides, MARBLE [50] builds a probabilistic model to
quantize the robustness of RNNs. However, these approaches are white-box based
and demand the full structure and information of neural networks. Instead, our
approach is based on learning with black-box checking.

Elboher et al. present a counter-example guided veri�cation framework whose
work�ow shares similarities with our property-guided veri�cation [53]. However,
their approach addresses FFNNs rather than RNNs. For recent progress in the
area of safety and robustness veri�cation of deep neural networks, see [96].

Organization. In Section 10.2, we recall basic notions such as RNNs and �nite
automata. Section 10.3 describes two basic algorithms for the veri�cation of RNNs,
before we present property-directed veri�cation in Section 10.4. How to handle
adversarial robustness certi�cation is discussed in Section 10.5. The experimental
evaluation and a thorough discussion can be found in Section 10.6.

Based on. This chapter is base on our work in [90].

10.2 Preliminaries

In this section, we provide de�nitions for the probability and recurrent neural
networks. For the de�nitions of languages, �nite automata, and Angluin's L*
algorithm one is directed to Section 2.3.
Notation change. Note that, in all Part III we use λ to denote the empty word
instead ε.

Probability Distributions. In order to sample words over Σ, we assume a
probability distribution (pa)a∈Σ on Σ (by default, we pick the uniform distribution)
and a �termination� probability p ∈ (0, 1]. Together, they determine a natural
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probability distribution on Σ∗ given, for w = a1 . . . an ∈ Σ∗, by Pr(w) = pa1 · . . . ·
pan · (1 − p)n · p. According to the geometric distribution, the expected length of
a word is (1/p) − 1, with a variance of (1 − p)/p2. Let 0 < ε < 1 be an error
parameter and L1,L2 ⊆ Σ∗ be languages. We say that L1 ε-approximately correct
w.r.t. L2 if Pr(L1 \ L2) =

∑
w∈L1\L2 Pr(w) < ε.

Recurrent Neural Networks. Recurrent neural networks (RNNs) are a generic
term for arti�cial neural networks that process sequential data. They are particu-
larly suitable for classifying sequences of varying length, which is essential in do-
mains such as natural language processing (NLP) or time-series prediction. For the
purposes of this thesis, it is su�cient to think of an RNN R as an e�ective function
R : Σ∗ → {0, 1}, which determines its language as L(R) = {w ∈ Σ∗ | R(w) = 1}.
Its complement R is de�ned by R(w) = 1−R(w) for all w ∈ Σ∗. There are several
ways to e�ectively represent R. Among the most popular architectures are long
short-term memory (LSTM) [76], and Gated recurrent units (GRUs) [33]. Their
expressive power depends on the exact architecture, but generally goes beyond the
power of �nite automata, i.e., the class of regular languages.

We sometimes use the notations of the RNNs and DFA for their respective
languages. For example, we say that R is ε-approximately correct w.r.t. A if
L(R) is ε-approximately correct w.r.t. L(A).

10.3 Veri�cation Approaches

Before we present (in Section 10.4) our method of verifying RNNs, we here describe
two simple approaches. The experiments will later compare all three algorithms
(SMC, AAMC, and PDV) w.r.t. their performance.

Statistical Model Checking (SMC). One obvious approach for checking whether
the RNN under test R satis�es a given speci�cation A, i.e., to check whether
L(R) ⊆ L(A), is by a form of random testing. The idea is to generate a �nite
test suite T ⊂ Σ∗ and to check, for each w ∈ T ∩ L(R), whether w ∈ L(A) holds.
If not, each such w is a counterexample. On the other hand, if none of the words
turns out to be a counterexample, the property holds on R with a certain error
probability. The algorithm is sketched as Algorithm SMC.

Note that the test suite is sampled according to a probability distribution on
Σ∗. Recall that our choice depends on two parameters: a probability distribution
on Σ and a �termination� probability, both are described in Section 10.2.

Theorem 10.3.1 (Correctness of SMC). If Algorithm SMC, with ε, γ ∈ (0, 1),
terminates with �Counterexample w�, then w is mistakenly classi�ed by R as pos-
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Algorithm 9: SMC
Input: RNN R, DFA A,

ε, γ ∈ (0, 1)

1 for i = 1, . . . , log(2/γ)/(2ε2) do
2 w ← sampleWord()
3 if w ∈ L(R) \ L(A) then
4 return �Counterexample w�

5 end

6 return �Property satis�ed�

Algorithm 10: AAMC
Input: RNN R and DFA A

1 AR ← Approximation(R)
2 if ∃w ∈ L(AR) \ L(A) then
3 return �Counterexample w�
4 else return �Property satis�ed�

Algorithm 11: PDV

Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 Initialize L∗

2 while true do

3 H ← hypothesis provided by L∗

4 Check L(H) ⊆ L(A)
5 if L(H) ⊆ L(A) then
6 Check L(R) ⊆ L(H) using

Alg. SMC
7 if L(R) ⊆ L(H) then
8 return �Property satis�ed�

9 else Feed counterexample to
L∗

10 else

11 Let w ∈ L(H) \ L(A)
12 if w ∈ L(R) then
13 return

�Counterexample w�

14 else Feed counterexample w
to L∗

15 end

16 end

itive. If it terminates with �Property satis�ed�, then R is ε-approximately correct
w.r.t. A with probability at least 1− γ.

Proof. If the algorithm terminates with �Counterexample w�, we have w ∈ L(R) \
L(A). Thus, w is mistakenly classi�ed. Using the sampling described in Sec-
tion 10.2, denote by p̂ the probability to pick w ∈ Σ∗ such that w ∈ L(R) and w ̸∈
L(A). Taking n = log(2/γ)/(2ε2) random samples wherem of them are counter ex-
amples, by Hoe�ding's inequality bound [77], we get that Pr(p̂ /∈ [m

n
−ε, m

n
+ε]) < γ.

Therefore, if Algorithm 9 terminates without �nding any counterexamples we get
that R is ε-approximately correct w.r.t. A with probability at least 1− γ.

While the approach works in principle, it has several drawbacks for its practical
application. The size of the test suite may be quite huge and it may take a while
both �nding a counterexample or proving correctness.

Moreover, the correctness result and the algorithm assume that the words to
be tested are chosen according to a random distribution that somehow also has to
take into account the RNN as well as the property automaton.



10.4. PROPERTY-DIRECTED VERIFICATION OF RNNS 191

It has been reported that this method does not work well in practice [156] and
our experiments (Section 10.6) support these �ndings.

Automaton Abstraction and Model Checking (AAMC). As model check-
ing for �nite-state systems was extensively researched, a straightforward idea would
be to

(a) approximate the RNN R by a �nite automaton AR, and
(b) to check whether L(AR) ⊆ L(A) using model checking.

The algorithmic schema is depicted in Algorithm AAMC.
Here, we can instantiate Approximation() in Algorithm AAMC, by the DFA-

extraction algorithms from [115] or [156]. In fact, for approximating an RNN by a
�nite-state system, several approaches have been studied in the literature, which
can be, roughly, divided into two approaches: (a) abstraction, and (b) automata
learning. In the �rst approach, the state space of the RNN is mapped to equiva-
lence classes according to certain predicates. The second approach uses automata-
learning techniques such as Angluin's L∗. The approach presented in [156] is an
intertwined version combining both ideas.

Therefore, there are di�erent instances of AAMC, varying in the approximation
approach. Note that, for veri�cation as language inclusion, as considered here, it
actually su�ces to learn an over-approximation AR such that L(R) ⊂∼ L(AR).

While the approach seems promising at �rst hand, its correctness has two
glitches. First, the result �Property satis�ed� depends on the quality of the ap-
proximation. Second, any returned counterexample w may be spurious : w is a
counterexample with respect to AR satisfying A but may not be a counterexam-
ple for R satisfying A. If w ∈ L(R), then it is indeed a counterexample, but
if not, it is spurious�an indication that the approximation needs to be re�ned.
If the automaton is obtained using abstraction techniques (such as predicate ab-
straction) that guarantee over-approximations, well-known principles like CEGAR
[37] may be used to re�ne it. In the automata-learning setting, w may be used
as a counterexample for the learning algorithm to improve the approximation.
Repeating the latter idea suggests an interplay between automata learning and
veri�cation�and this is the idea that we follow. However, rather than starting
from some approximation with a certain quality that is later re�ned according to
the RNN and the property, we perform a direct, property-directed approach.

10.4 Property-Directed Veri�cation of RNNs

We are now ready to present our algorithm for property-directed veri�cation
(PDV). The underlying idea is to replace the equivalence queries (EQ) in An-
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gluin's L∗ algorithm with a combination of classical model checking and statistical
model checking, which are used as an alternative to EQs. This approach, which
we call property-directed veri�cation of RNNs, is outlined as Algorithm PDV and
works as follows.

After initialization of L∗ and the corresponding data structure, L∗ automati-
cally generates and asks membership queries (MQs) to the given RNN R until it
comes up with a �rst hypothesis DFA H (Line 3 in Algorithm 11). In particular,
the language L(H) is consistent with the MQs asked so far.

At an early stage of the algorithm, H is generally small. However, it already
shares some characteristics with R. So it is worth checking, using standard au-
tomata algorithms, whether there is no mismatch yet between H and A, i.e.,
whether L(H) ⊆ L(A) holds (Line 4). Because otherwise (Line 10), a counterex-
ample word w ∈ L(H)\L(A) is already a candidate for being a misclassi�ed input
for R. If indeed w ∈ L(R), w is mistakenly considered positive by R so that
R violates the speci�cation A. The algorithm then outputs �Counterexample w�
(Line 13). If, on the other hand, R happens to agree with A on a negative classi�-
cation of w, then there is a mismatch between R and the hypothesis H (Line 14).
In that case, w is fed back to L∗ to re�ne H.

Now, let us consider the case that L(H) ⊆ L(A) holds (Line 5). If, in addition,
we can establish L(R) ⊆ L(H), we conclude that L(R) ⊆ L(A) and output
�Property satis�ed� (Line 8). This inclusion test (Line 6) relies on statistical
model checking using given parameters ε, γ > 0 (cf. Algorithm SMC). If the test
passes, we have some statistical guarantee of correctness ofR (cf. Theorem 10.3.1).
Otherwise, we obtain a word w ∈ L(R) \ L(H) witnessing a discrepancy between
R and H that will be exploited to re�ne H (Line 9).

Overall, in the event that the algorithm terminates, we have the following
theorem that assures the soundness of a returned counterexample and provides
the statistical guarantees on the property satisfaction, depending on the result of
the algorithm:

Theorem 10.4.1 (Correctness of PDV). If the Algorithm PDV terminates then
it outputs �Counterexample w�, then w is mistakenly classi�ed by R as positive.
If it outputs �Property satis�ed�, then R is ε-approximately correct w.r.t. A with
probability at least 1− γ.

Proof. Suppose the Algorithm PDV outputs �Counterexample w� in Line 13. Due
to Lines 11 and 12, we have w ∈ L(R) \ L(A). Thus, w is a counterexample.

Suppose the algorithm outputs �Property satis�ed� in Line 8. By Lines 6
and 7, R is ε-approximately correct w.r.t. H with probability at least 1 − γ.
That is, Pr(L(R) \ L(H)) < ε with the probability 1 − γ. Moreover, by Line 4,
L(H) ⊆ L(A). This implies that L(R) \ L(A) ⊆ L(R) \ L(H) and, therefore,
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Pr(L(R) \ L(A)) ≤ Pr(L(R) \ L(H)). We deduce that R is ε-approximately
correct w.r.t. A with probability at least 1− γ.

Although we cannot hope that Algorithm PDV will always terminate, we
demonstrate empirically that it terminates on many examples. It terminates on
all of our experiments (a couple of hundreds) we preformed for Section 10.6.

10.5 Adversarial Robustness Certi�cation

Adversarial robustness certi�cation aims to prove that an RNN is robust to small
perturbations of their inputs by an adversary to change the classi�cation of the
word. Our method can especially be used for adversarial robustness certi�cation,
which is parameterized by a distance function dist : Σ∗ × Σ∗ → [0,∞]. Recall
that a distance function is a function that satis�es:, for all words w1, w2, w3 ∈ Σ∗:
(i) dist(w1, w2) = 0 if and only if w1 = w2, (ii) dist(w1, w2) = dist(w2, w1), and
(iii) dist(w1, w3) ≤ dist(w1, w2) + dist(w2, w3). Popular distance functions are
Hamming distance and Levenshtein distance. The Hamming distance between two
words w1, w2 ∈ Σ∗ is the number of positions in which w1 di�ers from w2, provided
|w1| = |w2| (otherwise, the distance is ∞). The Levenshtein distance between w1

and w2 is the minimal number of operations among substitution, insertion, and
deletion that are required to transform w1 into w2. For L ⊆ Σ∗ and r ∈ N, we
let Nr(L) = {w′ ∈ Σ∗ | dist(w,w′) ≤ r for some w ∈ L} be the r-neighborhood
of L. If L is regular and dist is the Hamming or Levenshtein distance, then
Nr(L) is regular (for e�cient constructions of Levenshtein automata when L is a
singleton, see [144]). Let R be an RNN, L ⊆ Σ∗ be a regular language such that
L ⊆ L(R), r ∈ N, and 0 < ε < 1. We call R ε-adversarially robust (w.r.t. L and
r) if Pr(Nr(L) \ L(R)) < ε. Accordingly, every word from Nr(L) \ L(R) is an
adversarial example. Thus, checking adversarial robustness amounts to checking
the inclusion L(R) ⊆ Nr(L) through one of the above-mentioned algorithms.

Note that, even when L is a �nite set, Nr(L) can be too large for exhaustive
exploration so that PDV, in combination with SMC, is particularly promising, as
we demonstrate in our experimental evaluation in Section 10.6.

From the de�nitions and Theorem 10.4.1, we get:

Lemma 10.5.1. If Algorithm PDV, for input complement language of the RNN R
and a DFA A recognizing Nr(L), terminates, then if it outputs �Counterexample
w�, then w is an adversarial example. Otherwise, R is ε-adversarially robust
(w.r.t. L and r) with probability at least 1− γ.

Similarly, we can also check whether the neighborhood of a regular set of words
preserves a negative classi�cation. Meaning, we can handle the case where given
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L∩L(R) = ∅, then R is ε-adversarially robust w.r.t. L if Pr(L(R) ∩Nr(L)) < ε,
and every word in L(R) ∩ Nr(L) is an adversarial example. Overall, this case
amounts to checking L(R) ⊆ Nr(L).

10.6 Experimental Evaluation

We now present an experimental evaluation of the three algorithms SMC, AAMC,
and PDV, and provide a comparison of their performance on LSTM networks [76]
(a variant of RNNs using LSTM units). The algorithms have been implemented1

in Python 3.6 using PyTorch 19.09 and NumPy library. The experiments of ad-
versarial robustness certi�cation were run on MacBook Pro 13 with the macOS.
The other experiments were run on NVIDIA DGX-2 with an Ubuntu OS.

The general schema for the three types of experiments below is as follows:

1. Train an RNN R on a language L;
2. Generate speci�cation in the form of a DFA A;
3. Use the SMC, AAMC, and PDV to check whetherR ful�lls the speci�cations.

Optimization For Equivalence Queries. In [115], the authors implement
AAMC but with an optimization that was originally shown in [10]. This optimiza-
tion concerns the number of samples required for checking the equivalence between
the hypothesis and the taught language. This number depends on ε, γ and the

number of previous equivalence queries n and is calculated by 1
ε

(
log 1

γ
+ log(2)(n+ 1)

)
.

We adopt this optimization in AAMC and PDV as well (Algorithm AAMC in
Line 1 and Algorithm PDV in Line 6).

10.6.1 Evaluation on Randomly Generated DFA

Synthetic Benchmarks. To compare the algorithms, we implemented the fol-
lowing procedure, which generates a random DFA Arand, an RNN R that learned
L(Arand), and a �nite set of speci�cation DFA:

(1) choose a random DFA Arand = (Q, δ, q0, F ), with |Q| ≤ 30, over an alphabet
Σ with |Σ| = 5;

(2) randomly sample words from Σ∗ as described in Section 10.2 in order to
create a training set and a test set;

(3) train an RNN R with hidden dimension 20|Q| and 1 + |Q|/10 layers�if the
accuracy of R on the training set is larger than 95%, continue, otherwise
restart the procedure;

1available at https://github.com/LeaRNNify/Property-directed-verification

https://github.com/LeaRNNify/Property-directed-verification
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Table 10.1: Experimental results

Type Avg time (s) Avg len #Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

(4) choose randomly up to �ve sets Fi ⊆ Q \ F to de�ne speci�cation DFA
Ai = (Q, δ, q0, F ∪ Fi).

Using this procedure, we created 30 DFAs/RNNs and 138 speci�cations.

Experimental Results. Given an RNN R and a speci�cation DFA A, we
checked whether R satis�es A using Algorithms 1�3, i.e., SMC, AAMC, and PDV,
with ε, γ = 5 · 10−4.

Table 10.1 summarizes the executions of the three algorithms on our 138 ran-
dom instances. The columns of the table are as follows:

(i) Avg time was counted in seconds and all the algorithms were timed out after
10 minutes;

(ii) Avg len is the average length of the found counterexamples (if one was found);
(iii) #Mistakes is the number of random instances for which a mistake was found;
(iv) Avg MQs is the average number of membership queries asked of the RNN.

Note that not only is PDV faster and �nds more errors than AAMC, the
average number of states of the �nal DFA is also much smaller: 26 states with
PDV and 319 with AAMC. Furthermore, it asked more than 10 times less MQs to
the RNN. Comparing PDV to SMC, it is 4.5 times faster and the average length
of counterexamples it found is 10 times smaller, although it has fewer mistakes
discovered.

Faulty Flows. One of the advantages of extracting DFA in order to detect
mistakes in a given RNN is the possibility to �nd not only one mistake but a �faulty
�ow �. For example, Figure 10.1 shows a DFA which was extracted with PDV,
based on which we found a mistake in the corresponding RNN. The counterexample
we found was abcee. One can see that the word abce is a loop in the DFA. Hence, we
can suspect that this could be a �faulty �ow�. Checking the words wn = (abce)ne
for n ∈ {1, . . . , 100}, we observed that, for any n ∈ {1, . . . , 100}, the word wn was
in the RNN language but not in the speci�cation.

To automate the reasoning above, we developed the following procedure: Given
an RNN R, a speci�cation A, the extracted DFA H, and the counterexample w:
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Figure 10.1: Faulty Flow in DFA extracted through PDV

(1) build the cross product DFA H×A;
(2) for every pre�x w1 of the counterexample w = w1w2, denote by sw1 the state

to which the pre�x w1 leads in H × A. For any loop ℓ starting from sw1 ,
check if wn = w1ℓ

nw2 is a counterexample for n ∈ {1, . . . , 100};
(3) if wn is a counterexample for more than 20 di�erent n's, declare that a �faulty

�ow� was found.

Using this procedure, we managed to �nd faulty �ows in 81/109 of the counterex-
amples that were found by PDV.

10.6.2 Adversarial Robustness Certi�cation

We also examined PDV for adversarial robustness certi�cation, following the ideas
explained in Section 10.5, both on synthetic and real-world examples.

Synthetic Benchmarks. For a given DFA (representing one of the languages
described below), we randomly sampled words from Σ∗ by using the DFA and
created a training set and a test set. For RNN training, we proceeded like in step
(3) for the benchmarks in Section 10.6.1. Moreover, for certi�cation, we randomly
sampled 100 positive words and 100 negative words from the test set. For a given
word w, we then let L = {w} and considered Nr(L) where r = 1, . . . , 5.

Given an RNN R, we checked whether R satis�es adversarial robustness using
the certi�cation methods PDV, SMC, and neighborhood-automata generation SMC
(NAG-SMC), with ε, γ = 0.01. In SMC, we randomly modi�ed the input word
within a certain distance to generate words in the neighborhood. In NAG-SMC, on
the other hand, we �rst generated a neighborhood automaton of the input word,
and sampled words that are accepted by the automaton. Here, we followed the
algorithm by Bernardi and Giménez [19], who introduce a method for generating
uniformly random words of length n in a given regular language with mean time
bit-complexity O(n).
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Figure 10.2, which is a set of scatter plots, shows the results of the average
time of executing the algorithms on the languages that we describe below. The
x-axis and y-axis are both time in seconds, and each data point represents one
adversarial robustness certi�cation procedure. The length of words are from 50 to
500 and follow the normal distribution.

Figure 10.2: Comparing the three algorithms

Simple Regular Ranguages. As a sanity check of our approach, we considered
the following two regular languages and distance functions:

L1 = ((a + b)(a + b))∗ (also called modulo-2 language) with Hamming dis-
tance;
L2 = c(a + b)∗c with a distance function dist such that dist(w1, w2) is the
Hamming distance if w1, w2 ∈ L2 and |w1| = |w2|, and dist(w1, w2) = ∞
otherwise.
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Figure 10.3: Automaton for ABP

The size of the Hamming neighborhood will exponentially grow with the distance.

The accuracies of the trained RNNs reached 100%. All three approaches suc-
cessfully reported �adversarially robust� for the certi�ed RNNs.

The �rst two diagrams on the �rst row of Figure 10.2 compare the runtimes of
PDV and SMC on the two regular-language datasets, resp. whereas the �rst two
diagrams on the second row compare the runtimes of PDV and NAG-SMC. We
make two main observations. First, on average, the running time of PDV (avg.
15.70 seconds) is shorter than SMC (avg. 24.04 seconds) and NAG-SMC (avg. 32.5
seconds), which shows clearly that combining symbolically checking robustness on
the extracted model and statistical approximation checking is more e�cient than
pure statistical approaches. Second, although SMC and NAG-SMC are able to
certify short words (whose length is smaller than 30) faster, when the length of
words is greater, they have to spend more time (which is more than 60 seconds)
for certi�cation. This is because, for short words, statistical approaches can easily
explore the whole neighborhood, but when the neighborhood becomes larger and
larger, this becomes infeasible.

The �rst two diagrams on the third row of Figure 10.2 compare the running
time of SMC and NAG-SMC, respectively. In general, NAG-SMC is slower than
SMC, this is mainly because, for sampling random words from the neighborhood,
using the algorithm proposed by Bernardi et al. [19] is slower than combining the
random.choice function in the Python library and the corresponding modi�cation.

Real-World Dataset. We used two real-world examples considered by Mayr
and Yovine [115]. The �rst one is the alternating-bit protocol (ABP) shown in
Figure 10.3. However, we add a special letter dummy in the alphabet and a
self-loop transition labeled with dummy on every state. We use the number of
insertions of the letter dummy as the distance function. The second example is a
variant of an example from the E-commerce website [119]. There are seven letters
in the original automaton. Similarly, we also add dummy and self-loop transition
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in every state (omitted in the �gure for simplicity). Again, we use the number of
insertions of dummy as the distance function.
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Figure 10.4: Automaton for e-commerce

The accuracies of the trained RNNs also reach 100%. For certi�cation, the
three approaches can certify the adversarial robustness for the RNNs as well.

The last two diagrams on the �rst (resp. second) row of Figure 10.2 compare
the runtime of PDV and SMC (resp. PDV and NAG-SMC) on the ABP and the
E-commerce dataset. The data points in the �rst and second row have a vertical
shape. The reason is that the running time of PDV is usually relatively stable
(10�20 seconds), while the running time of SMC and NAG-SMC increases linearly
with the word length.

The last two diagrams on the third row of Figure 10.2 compare the runtimes of
SMC and NAG-SMC on the two datasets. Here, the data points have a diagonal
shape, but for NAG-SMC, when the word length is long (more than 300), it usually
spends more time than SMC. This is mainly because it is ine�cient to construct
the neighborhood automaton and sample random words from the neighborhood.

10.6.3 RNNs Identifying Contact Sequences

Contact tracing [89] has proven to be increasingly e�ective in curbing the spread
of infectious diseases. In particular, analyzing contact sequences�sequences of
individuals who have been in close contact in a certain order�can be crucial
in identifying individuals who might be at risk during an epidemic. We, thus,
look at RNNs which can potentially aid contact tracing by identifying possible
contact sequences. However, in order to deploy such RNNs in practice, one would
require them to be veri�ed adequately. One does not want to alert individuals
unnecessarily even if they are safe, or overlook individuals who could be at risk.
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Figure 10.5: Temporal Network for contact between 4 people

In a real-world setting, one would obtain contact sequences from contact-
tracing information available from, for instance, contact-tracing apps. However,
such data is often di�cult to procure due to privacy issues. Thus, in order to
mimic a real life scenario, we use data available from www.sociopatterns.org,
which contains information about interaction of humans in public places (hospitals,
schools, etc.) presented as temporal networks.

Formally, a temporal network G = (V,E) [78] is a graph consisting of a set of
vertices V and a set of labeled edges E (i.e. E = V ×V ×N), where the labels
represent the timestamp during which the edge was active Figure 10.5 is a simple
temporal network, which can be perceived as contact graph of four workers in an
o�ce where edge labels represent the time of meeting between them. A time-
respecting path π ∈ V ∗�a sequence of vertices such that there exists a sequence of
edges with increasing time labels�depicts a contact sequence in such a network.
In the example in Figure 10.5, CDAB is a time-respecting path while ABCD is
not.

Benchmarks. For our experiment, given a temporal network G, we generated
an RNN R recognizing contact sequences as follows:

1. We created training and test data for the RNN by generating (i) valid time-
respecting paths (of lengths between 5 and 15) using labeled edges from
G, and (ii) invalid time-respecting paths, by considering a valid path and
randomly introducing breaks in the path. The number of time-respecting
paths in the training set is twice the size of the number of labeled edges in
G, while the test set is one-�fth the size of the training set.

2. We trained RNN R with hidden dimension |V | (minimum 100) as well as
⌊2 + |V |/100⌋ layers on the training data. We considered only those RNNs
that could be trained within 5 hours with high accuracy (avg. 99%) on the
test data.

www.sociopatterns.org
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3. We used a DFA that accepts all possible paths (disregarding the time labels)
in the network as the speci�cation, which would allow us to check whether
the RNN learned unwanted edges between vertices.

Using this process, from the seven temporal networks taken from www.sociopatterns.

org, we generated seven RNNs and seven speci�cation DFA. We ran SMC, PDV,
and AAMC on the generated RNNs, using the same parameters as used for the
random instances.

Table 10.2: Results of model-checking algorithm on RNN identifying contact se-
quences

Counter- Extracted
Case Alg. example len. DFA size Time (s)

Across SMC 3 0.3
Kenyan AAMC 2 328 624.76

Household PDV 2 2 0.22

SMC 2 0.23
Workplace AAMC 2 111 604.99

PDV 2 2 0.77

SMC 5 0.33
Highschool AAMC 2 91 627.30

2011 PDV 2 2 0.19

SMC 7 0.24
Hospital AAMC 2 36 614.76

PDV 2 2 0.006

Counter- Extracted
Case Alg. example len. DFA size Time (s)

Within SMC 2 0.28
Kenyan AAMC 2 178 620.30

Household PDV 2 2 0.27

SMC 71 1.51
Conference AAMC 2 38 876.19

PDV 2 2 0.33

SMC 3 0.48
Workplace AAMC 2 87 621.44

2015 PDV 2 2 1.11

Results. Table 10.2 notes the length of counterexample, the extracted DFA size
(only for PDV and AAMC), and the running time of the algorithms. We make
three main observations.

First, the counterexamples obtained by PDV and AAMC (avg. length 2), are
much more succinct than those by SMC (avg. length 13.1). Small counterexam-
ples help in identifying the underlying error in the RNN, while long and random
counterexamples provide much less insight. For example, from the counterexam-
ples obtained from PDV and AAMC, we learned that the RNN overlooked certain
edges or identi�ed wrong edges. This result highlights the demerit of SMC, which
has also been observed in [156].

Second, the running time of SMC and PDV (avg. 0.48 seconds and 0.41 sec-
onds) is comparable, while that of AAMC is prohibitively large (avg. 655.68 sec-
onds), indicating that model checking on small and rough abstractions of the RNN
produces superior results.

Third, the extracted DFA size, in case of AAMC (avg. size 124.14), is always
larger compared to PDV (avg. size 2), indicating that RNNs are quite di�cult to

www.sociopatterns.org
www.sociopatterns.org
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be approximated by small DFA and this slows down the model-checking process
as well. Again, our experiments con�rm that PDV produces succinct counterex-
amples reasonably fast.



Chapter 11

Analyzing Robustness of Angluin's

Algorithm

11.1 Introduction

Discrete-event systems and their languages. Discrete-event systems [31] is
a large class of dynamic systems that given some internal state evolve from one
state to another one due to the occurrence of an event. For instance, discrete-event
systems can represent both a cyber-physical process whose events are triggered by
the controller or the environment and a business process whose events are triggered
by human activities or software executions. Often the behaviors of such systems
are classi�ed as safe (aka correct, representative, etc.) or unsafe. Since a behavior
may be identi�ed by its sequence of occurred events, this leads to the notion of
language.

Analysis versus synthesis. There are numerous formalisms to specify (lan-
guages of) discrete-event systems. From a designer point of view, the simpler it is
the better its analysis will be. So �nite automata and their languages (regular lan-
guages) are good candidates for the speci�cation. However, even when the system
is speci�ed by an automaton, its implementation may slightly di�er due to sev-
eral reasons (bugs, unplanned human activities, unpredictable environment, etc.).
Thus, one generally checks whether the implementation conforms to the speci�ca-
tion. However, in many contexts, the system has already been implemented and
the original speci�cation (if any) is lost, as for instance in the framework of process
mining [155]. Thus, by observing and interacting with the system, one aims to
recover a speci�cation close to the original speci�cation or at least that is robust
with respect to the pathologic behaviors of the system.

Language learning. The problem of learning a language from its �nite sam-
ples of strings by discovering the corresponding grammar is known as grammar

203
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inference, whose signi�cance was initially stated in [145] and an overview of its
very �rst results can be found in [22]. As it may not always be possible to infer
a grammar that exactly identi�es a language, an approximate language learning
was introduced in [158], where a grammar is selected from a solution space whose
language approximates the target language with a speci�ed degree of accuracy. To
provide deeper insight into language learning, the problem of identifying a (mini-
mum) deterministic �nite automata (DFA) that is consistent with a given sample
has attracted a lot of attention in the literature since several decades [67, 10, 149].
An understanding of regular language learning is very valuable for a generalization
to other more complex classes of languages.

Angluin's L∗ algorithm. Recall, Angluin's L∗ algorithm learns the minimal DFA
of a regular language using membership and equivalence queries. Thus, one could
try to adapt it to the synthesis task described above. However, for most of the
systems seen as black boxes, the equivalence query cannot be implemented. Thus,
its probabilistic approximately correct (PAC) version substitutes an equivalence
query by an enough large set of random membership queries. Then the main issue
is to de�ne and evaluate the accuracy of such a learning in this context. More
precisely, here we are interested in how the PAC Angluin algorithm behaves for
devices which are obtained from a DFA by introducing some noise.

Noisy learning. Most learning algorithms in the literature assume the correctness
of the training data, including the example data such as attributes as well as
classi�cation results. However, sometimes the noise-free datasets are not available.
Quinlan [130] carried out an experimental study of the noise e�ects on learning
performance, whose results showed that the classi�cation noise had more negative
impact than the attribute one. Angluin and Laird [11] studied how to compensate
for randomly introduced noise and discovered a theorem giving a size bound of a
sample that is su�cient for PAC-identi�cation in the presence of classi�cation noise
when the concept classes are �nite. Michael Kearns formalized another related
learning model from statistical queries by extending Valiant's learning model [87].
One main result shows that any class of functions learnable from this statistical
query model is also learnable with classi�cation noise in Valiant's model, as far as
the noise rate is smaller than 1

2
.

Our contribution. In this chapter, we study against which kinds of noise the
Angluin algorithm is robust, which is the very �rst attempt of noise analysis in
the automata learning setting, to the best of our knowledge. To this end, we
introduce three kinds of noisy devices obtained from a DFA: (1) either the noisy
device is a random language obtained from a given DFA by reversing the word
acceptance with a small probability, which corresponds to the classi�cation noise
in the classical learning setting, (2) either the noisy device, also with a small
probability, replaces each letter of a word example by one chosen uniformly from
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the alphabet, which corresponds to the attribute noise in the classical setting, (3)
or the noisy DFA combines the status of a word w.r.t. the DFA and its status
w.r.t. a counter automaton. Our studies are based on the distribution over words
that is used for generating words associated with membership queries and de�ning
(and statistically measuring) the distance between two devices as the probability
that they di�er on word acceptance. We have performed experiments over several
hundreds of random DFA. We have pursued several goals along our experiments.
The three �rst ones are related to methodological and e�ciency issues, while the
two last ones are related to the results of our experiments:

� How to choose the accuracy of the approximate equivalence query to get a
good trade-o� between accuracy and e�ciency?

� Since in most of the cases, Angluin's algorithm may perform a huge number
of re�nement rounds before a possible termination, what is a �good� number
of rounds to stop the algorithm avoiding under�tting and over�tting?

� What is the threshold (in terms of distance) between pertubating the DFA
or producing a device that is no more �similar to� the DFA?

� What is the impact of the nature of noise on the robustness of Angluin's
algorithm?

� What is the impact of the words distribution on the robustness of Angluin's
algorithm?

We experimentally show that w.r.t. the random noise, both for input and output,
Angluin's algorithm behaves quite well, i.e., the learned DFA is very often closer to
the original one than the noisy random language while when the noise is obtained
by the counter automaton, the Angluin's algorithm is not robust. Moreover, we
establish that the expectation of the length of a random word should be enough
large to cover a relevant part of the set of words in order for Angluin's algorithms
to be robust.

In order to understand why Angluin's algorithm is robust w.r.t. random noise
we have undertaken a theoretical study establishing that almost surely the lan-
guages of the output noisy device is not recursively enumerable. The same result
holds for the input noisy devices under a slight condition on the original DFA.
This con�rms that the less the noise is structured, the more robust is Angluin's
algorithm.

Organization. In Section 11.2, we introduce the technical background re-
quired for the robustness analysis. In Section 11.3, we detail the goals and the
settings of our analysis. In Section 11.4, we provide and discuss the experimental
results. In Section 11.5, we relate randomness with structuration.
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11.2 Preliminaries

Here we provide the technical background required for the robustness analysis.
Note that, the basic de�nition for languages, �nite automata, can be found in Sec-
tion 2.3. Even thought we de�ned Angluin's L∗ and its PAC version in Section 2.3,
we recall its de�nition here and make a small modi�cation to it in order to insure
its termination on languages which are not regular.
Notation change. Note that, in all Part III we use λ to denote the empty word
instead ε.

Words distribution and measure of a language. A distribution D over Σ∗

is de�ned by a mapping PrD from Σ∗ to [0, 1] such that
∑

w∈Σ∗ PrD(w) = 1.
Let L be a language its probabilistic measure w.r.t. D, PrD(L) is de�ned by
PrD(L) =

∑
w∈L PrD(w).

Our analysis requires that we should be able to e�ciently sample a word ac-
cording to some D. Thus, we only consider the distributions Dµ where µ ∈ (0, 1)
de�ned for a word w = a1 . . . an ∈ Σ∗ by:

PDµ(w) = µ

(
1− µ

|Σ|

)n

In practice to sample a random word according to Dµ, we start with the empty
word and iteratively we �ip a biased coin with probability 1 − µ to add a letter
(and µ to return the current word) and then uniformly select the letter in Σ.

Language distance. Given languages L1 and L2 their distance w.r.t. distribution
D, dD(L1, L2) is de�ned by: dD(L1, L2) = PrD(L1∆L2). Computing the distance
between languages is in most of the cases impossible. Fortunately whenever the
membership problem for L1 and L2 are decidable, then using Cherno�-Hoe�ding
bounds [77], this distance can be statistically evaluated as follows. Let e, d > 0
be an error parameter and a con�dence level, respectively. Let S be a set of
words sampled independently according to D such that |S| ≥ log(2/d)

2e2
. Let dist =

|S∩(L1∆L2)|
|S| . Then:

PrD(|dD(L1, L2)− dist| > e) < d .

Since we will not simultaneously discuss several distributions, we will alleviate the
notations and omit the subscript D almost everywhere.

PAC version of Angluin's L∗ algorithm. Given a regular language L, Angluin's
L∗ algorithm learns the unique minimal DFA A such that L(A) = L using only
membership queries `Does w belong L?' and equivalence queries `Does L(A) = L?
and if not provide a word w ∈ L∆L(A)'. An abstract version of this algorithm is
depicted by Algorithm 12. The main features of this algorithm are: a data Data
from which Synthesize(Data) returns an automaton A and such that given a
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word w ∈ L∆L(A), Update(Data, w) updates Data. The number of states of A
is incremented by one after each round, and so the algorithm terminates after its
number of states is equal to the (unknown) number of states of the minimal DFA
recognizing L.

The Probably Approximately Correct (PAC) version of Angluin's L∗ algorithm
takes as input an error parameter ε and a con�dence level δ replaces the equivalence
query by a number of membership queries `w ∈ L∆L(A)?' where the words are
sampled from some distributionD unknown to the algorithm. Thus, this algorithm
can stop too early when all answers are negative while L ̸= L(A). However,
due to the number of such queries which depends on the current round r (i.e.,

⌈ log(1/δ)+(r+1) log(2)
ε

⌉) this algorithm ensures that:

PrD(dD(L,L(A)) > ε) < δ .

A key observation is that this algorithm could be used for every language L for
which the membership problem is decidable. However, since L is not necessarily a
regular language it could never stop and thus our adaptation includes a parameter
maxround that ensures termination.

Algorithm 12: Angluin's L∗ algorithm

Input: L, a language unknown to the algorithm
Input: an integer maxround ensuring termination

Angluin()

Data: an integer r, a boolean b and a data Data
Output: a DFA AE

Initialize(Data); r ← 0

// The control of maxround is unnecessary when L is regular

while r < maxround do
AE ← Synthesize(Data)
(b, w)← IsEquivalent(AE)
if b then return AE

Update(Data, w); r ← r + 1
end
return Synthesize(Data)
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Figure 11.1: Comparison between d(L(A),L(MN )) and d(L(A),L(AE))

11.3 Robustness Analysis

11.3.1 Principle and goals of the analysis

Principle of the analysis. Figure 11.1 illustrates the whole process of our
analysis. First we set the qualitative and quantitative nature of the noise (N ).
Then we generate a set of random DFA (A). Combining A and N , one gets
a noisy model MN . More precisely, depending on whether the noise is random
or not, MN is either generated o�-line (deterministic noise) or on-line (random
noise) when a membership query is asked during Angluin's L∗ algorithm. Finally,
we compare the distances (1) between A andMN , and (2) between A and AE, the
automaton returned by the algorithm. The aim of this comparison is to establish
whether the AE is closer to A thanMN . In order to get a quantitative measure,
we de�ne the information gain as:

Information gain =
d(L(A),L(MN ))

d(L(A),L(AE))

We consider, low information gain to be in [0, 0.9], medium information gain to
be in [0.9, 1.5], high information gain to be in [1.5,∞).

In addition, we also evaluate the distance between AE and MN in order to
study in which cases the algorithm learns in fact the noisy model instead of the
original DFA.

Goals of the analysis. The two �rst goals are related to the tuning of the PAC
Angluin's L∗ algorithm while the last ones are related to the robustness analysis.

� Maximal number of rounds. Since the running time of the algorithm
quadratically depends on the number of rounds (i.e. iterations of the loop),
selecting an appropriate maximal number of rounds is a critical issue. So
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we let vary this maximal number of rounds and analyze how the reduction
factor decreases w.r.t. this number.

� Accurateness of the equivalence query. As an equivalence query is
replaced with a set of membership queries whose number depends on the
current number of round and the pair (ε, δ), it is thus interesting to study (1)
what is the e�ect of (ε, δ) on the ratio of executions that reach the maximal
number of rounds and (2) compare the reduction factor for executions that
stop before reaching this maximal number and the same execution when
letting it run up to this maximal number.

� Quantitative analysis. The reduction factor highly depends on the `quan-
tity' of the noise, i.e., noise rate. So we analyze the reduction factor de-
pending on the distance between the original DFA and the noisy device and
want to identify a threshold (if any) where the reduction factor starts to
signi�cantly increase.

� Qualitative analysis. Another important criterion of the reduction factor
is the `nature' of the noise. So we analyze the reduction factor w.r.t. the
three noisy devices that we have introduced.

� Impact of word distribution. Finally, the robustness of this algorithm
with respect to word distribution is also analyzed.

11.3.2 Settings

In order to empirically evaluate our ideas, we have implemented some benchmarks.
These benchmarks were implemented in Python, using the NumPy libraries. It can
be found on GitHub1. All benchmarks were performed on a computer equipped
by Intel i5-8250U CPU with 4 cores, 16 GB of memory and Ubuntu Linux 18.03.

We now describe the settings of the experiments we made with three di�erent
types of noises. For this we implemented the PAC version of Kearns and Vazirani
L∗ algorithm [88].

We choose µ = 10−2 for the parameter of the word distribution so that the
average length of a random word is 99. All the statistic distances were computed
using the Cherno�-Hoe�ding bound [77] with 10−3 as con�dence level and 5 · 10−4
as width.

The benchmarks were performed on DFA randomly generated using the follow-
ing procedure. Let Mq = 50 and Ma = 20 be two parameters, upper bounds on the
number of states and of the alphabet, that could be tuned in future experiments.
The DFA A = (Q, σ, q0, F ) on Σ is generated as follows:

� Uniformly choose nq ∈ [10,Mq] and na ∈ [3,Ma];

1https://github.com/LeaRNNify/Noisy_Learning

https://github.com/LeaRNNify/Noisy_Learning
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� Set Q = [0, nq] and Σ = [0, na];
� Uniformly choose nf ∈ [0, nq − 1] and let F = [0, nf ];
� Uniformly choose q0 in Q;
� For all (q, a) ∈ Q× Σ, uniformly choose the state σ(q, a).

We now describe the three kinds of noise that we analyze.

DFA with noisy output. Given a DFA A on the alphabet Σ and 0 < p < 1,
the random device A→p switches the status of words w.r.t. A with probability p.
More formally for all word w,

Pr(w ∈ L(A→p)) = (1− p)1w∈L(A) + p1w ̸∈L(A)

Observe that the expected value of d(L(A),L(A→p)) is p. Moreover, in our exper-
iments when we get that∣∣∣d(L(A),L(A→p))−p

p

∣∣∣ < 5 · 10−2 for all the generated DFA.

DFA with noisy input. Given a DFA A on the alphabet Σ (with |Σ| > 1) and
0 < p < 1, the random device A←p change every letter of the word with probability
p uniformly to another letter and then returns the status of the new word w.r.t.
A. More formally, let w = w1 . . . wn. Then:

Pr(w ∈ L(A←p)) =
∑

|w′|=|w|∧w′∈L(A)

∏
i≤n

(1− p)1wi=w′
i
+

p

|Σ| − 1
1wi ̸=w′

i

Remark. In our implantation of both noisy input and output, in order to be con-
sistent we keep a large hash table that holds all the words seen before and their
randomly assigned output. This is currently the biggest bottleneck in our bench-
marks, since for measuring statistical distance requires a huge set of samples, which
in turn uses most of the memory.

Counter DFA. Let A be a DFA of the alphabet Σ and c be a function from
Σ ∪ {λ} to N . We inductively de�ne the function c from Σ∗ to N by:

c(λ) = c(λ) and c(wa) = c(w) + c(a)

The counter DFA is Ac works as follows. For all word w:

w ∈ L(Ac) if and only if w ∈ L(A) or c(w) ≤ 0

In our experiments we randomly generate the counter function as follows:

� Uniformly choose c(λ) in [0, |Σ|];
� For all a ∈ Σ, Pr(c(a) = −1) = 1

4
and for all 0 ≤ i ≤ 6, Pr(c(a) = i) = 3

28
.
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11.3.3 Tunings

Before launching our experiments, we need to tune two key parameters for both
e�ciency and accurateness purposes: the maximal number of rounds of the algo-
rithm and the accuracy of the approximate equivalence query. This tuning is based
on experiments over the DFA with the noisy output since the expected distance
between the DFA and the noisy model is known (p), thus simplifying the tuning.

Maximal number of rounds. In order to specify a maximal number of rounds
that lead to the good performances of the Angluin's Algorithm, we took a DFA
with noisy output A→p for p ∈ {0.005, 0.0025, 0.0015, 0.001}. We ran the learning
algorithm, stopping every 20 rounds to estimate the distance between the cur-
rent DFA AE to the original DFA A. Figure 11.2 shows the evolution graphs of
d(L(A),L(AE)) w.r.t. the number of rounds according to the di�erent values of p
each of them summarizing �ve runs on �ve di�erent DFA. The vertical axis corre-
sponds to the distance to original DFA A, and the horizontal axis corresponds to
the number of rounds. The red line is the distance withA→p, and the blue line is
the distance with AE. We observe that after about 250 rounds d(L(A),L(AE)) is
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Figure 11.2: Number of rounds analysis

stabilizing. Therefore, from now on all the experiments are made with a maximum
of 250 rounds. Of course this number depends on the size of A, but for the variable
size that we have chosen (between 10 and 50 states) it seems to be a good choice.

Accurateness of the approximate equivalence query. We have generated
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thirty-�ve DFA and for each of them we generated �ve A→p with di�erent values
of p. Table 11.1 summarizes our results with di�erent ε and δ for the approximate
equivalence query. The rows correspond to the value of the noise p, the columns
correspond to the values of ε and δ (where we always choose ε = δ) and each
cell shows the average information gain. Looking at this table, ε = δ = 0.01 and
ε = δ = 0.005 seem to be optimal values. We decided to �x ε = δ = 0.005 for all
our experiments.

HHH
HHHp
ε = δ

0.05 0.01 0.005 0.001 0.0005

0.01 0.081 0.054 0.047 0.048 0.050

0.005 0.086 0.087 0.072 0.070 0.094

0.0025 0.867 0.292 0.591 0.321 0.748

0.0015 1.401 2.933 3.082 0.980 0.710

0.001 5.334 4.524 3.594 1.811 6.440

Table 11.1: Evaluation of the impact of ε and δ.

11.4 Experimental Evaluation

11.4.1 Qualitative and Quantitative analysis

For the three types of noise we have generated several DFA and for each DFA
we have generated several noisy models depending on the `quantity' of noise. By
computing the (average) information gain for all these experiments, we have been
able to get conclusions about the e�ect of the nature and the quantity of the noise
on the performance of Angluin's algorithm.

DFA with noisy output. We have generated �fty DFA A and for each of
them we generated DFA with noisy output A→p with �ve p between 0.01 and
0.001. Table 11.2 summarizes the results. We have identi�ed a threshold for
p between 0.0015 and 0.0025, if the noise is above 0.0025 the resulting DFA A
has a bigger distance to the original one A than A→p, and smaller if the noise
is under 0.0015. Moreover, once we cross the threshold the robustness of the
algorithm increases very quickly. We have also included a column that represents
the standard deviation of the random variable d(L(A),L(AE)) to assess that our
conclusions are robust w.r.t. the probabilistic feature.
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p d(L(A),L(AE)) d(L(A→p),L(AE)) gain standard deviation

0.01 0.12625 0.13320 0.074 0.04102

0.005 0.04420 0.04827 0.11 0.03366

0.0025 0.00333 0.00568 0.75 0.00523

0.0015 0.00027 0.00174 5.5 0.00047

0.001 0.00006 0.00103 15.7 0.00007

Table 11.2: Evaluation of the algorithm w.r.t. the noisy output.

DFA with noisy input. We have generated forty-�ve random DFA A and for
each of them we have generated several DFA with noisy-input A←p with p ∈
{10−4, 5 · 10−4, 10−3, 5 · 10−3}. Contrary to the case of noisy output, p does not
correspond to the expected value of d(A,A←p). Thus, we have evaluated this
distance for every pair of the experiments and we have gathered the pairs whose
distances belong to intervals that are described in the �rst column of Table 11.3.
The second column of this table reports the number of pairs in the interval while
the third one reports the average value of this distance for these pairs. Again we
identify a threshold for d(A,A←p) between 0.0015 and 0.0025 and once we cross
the threshold the robustness of the algorithm increases very quickly.

Range # d(A,A←p) d(A,AE) d(A←p,AE) gain standard deviation

[0.025,1] 36 0.04027 0.21513 0.22658 0.18 0.05279

[0.005,0.025] 53 0.00924 0.05416 0.06077 0.17 0.04172

[0.002,0.005] 33 0.00378 0.01260 0.01611 0.30 0.01783

[0.001,0.002] 11 0.00123 0.00030 0.00154 4.1 0.00058

[0.001,0.0005] 25 0.00079 0.00002 0.00082 39.5 0.00007

Table 11.3: Evaluation of the algorithm w.r.t. the noisy input.

Counter DFA. We have generated one hundred and sixty DFA and for each of
them we have generated a counter automaton (as described above). The results
of our experiments are given in Table 11.4. Here whatever the quantity of noise
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the Angluin's algorithm is unable to get closer to the original DFA. Moreover,
the extracted DFA AE is very often closer to the counter automaton Ac than the
original DFA A.

Range # d(A,Ac) d(A,AE) d(Ac,AE) gain standard deviation

[0.005,0.025] 14 0.01238 0.02586 0.02053 0.47 0.01898

[0.005,0.002] 57 0.00245 0.00396 0.00262 0.61 0.00298

[0.001,0.002] 22 0.00143 0.00209 0.00121 0.68 0.00126

[0.0005,0.001] 20 0.00079 0.00108 0.00064 0.72 0.00065

[0.0001,0.0005] 44 0.00025 0.00035 0.00021 0.71 0.00021

Table 11.4: Evaluation of the algorithm w.r.t. the `noisy' counter.

Thus, we conjecture that when the noise is `unstructured' and the quantity is
small enough such that the word noise is still meaningful, then Angluin's algorithm
is robust. On the contrary, when the noise is structured then Angluin's algorithm
`tries to learn' the noisy model whatever the quantity of noise. In section 11.5,
we will strengthen this conjecture establishing that in some sense random noise
implies unstructured noise.

11.4.2 Words distribution

The parameter µ determines the average length of a random word ( 1
µ
− 1). Ta-

ble 11.5 summarizes experimental results with values of µ indicated on the �rst
row. The other rows correspond to di�erent values of the noise p for A→p. The
cells (at the intersection of a pair (p,µ)) contain the (average) information gain
where experiments were done over twenty-two DFA always eliminating the worst
and best cases to avoid that the pathological cases perturb the average values. For
values of p that matter (i.e., when the gain is greater than 1), there is clear ten-
dency for the gain to �rst increase w.r.t. µ, reaching a maximum about µ = 0.01
the value that we have chosen and then decrease. A possible explanation would be
the following: too short words (i.e., big µ) does not help to discriminate between
languages while too long words (i.e., small µ) lead to over�tting and does not
reduce the noise.
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HH
HHHHp

µ
.001 .005 0.01 0.05 0.1

0.01 0.059 0.067 0.078 0.184 0.317

0.005 0.078 0.130 0.134 0.559 0.966

0.0025 0.165 0.298 0.398 1.246 0.823

0.0015 0.465 0.671 2.267 2.074 1.651

0.001 1.801 10.94 8.907 3.753 2.341

Table 11.5: Analysis of di�erent distributions on Σ∗

11.5 Random languages versus structured languages

In this section, we want to establish that the main factor of the robustness of
the Angluin's L∗ algorithm w.r.t. random noise is that almost surely the pertur-
bated language is unstructured. We consider a language as structured if it can
be produced by some general device. Thus, we identify the family of structured
languages with the family of recursively enumerable languages.

The following lemma gives a simple mean to establish that almost surely a
random language is not recursively enumerable.

Lemma 11.5.1. Let R be a random language over Σ. Let (wn)n∈N be a sequence
of words of Σ∗.
Denote Wn = {wi}i<n and ρn = maxW⊆Wn Pr(R ∩Wn = W ).

Assume that limn→∞ ρn = 0.
Then for all countable family of languages F , almost surely R /∈ F and in

particular almost surely R is not a recursively enumerable language.

Proof. Let us consider an arbitrary language L.
Then for all n, Pr(R = L) ≤ Pr(R ∩Wn = L ∩Wn) ≤ ρn.
Thus Pr(R = L) = 0 and Pr(R ∈ F) =

∑
L∈F Pr(R = L) = 0.

The proofs of the two next theorems use the same notations as those given in
the lemma. From this lemma, we immediately obtain that almost surely the noisy
output perturbation of any language is not recursively enumerable.

Theorem 11.5.2. Let L be a language and 0 < p < 1.
Then almost surely L→p is not a recursively enumerable language.

Proof. Consider any enumeration (wn)n∈N of Σ∗ and any W ⊆ Wn.
The probability that L→p ∩Wn is equal to W is bounded by max(p, 1− p)n.
Thus ρn ≤ max(p, 1− p)n and limn→∞ ρn = 0.
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We cannot get a similar result for the noisy input perturbation. Indeed, con-
sider the language Σ∗, whatever the kind of noise brought to the input, the obtained
language is still Σ∗. With the kind of input noise that we study, consider the lan-
guage that accepts words of odd length (see the automaton A′ of Figure 11.3).
Then the perturbed language is unchanged.

However, given a DFA A, we establish a slight condition on A which ensures
that almost surely the random language L(A←p) is not recursively enumerable.
We abbreviate bottom strongly connected component (of A viewed as a graph) by
BSCC.

Theorem 11.5.3. Let Σ be an alphabet with |Σ| > 1. Let A = ⟨Q,F, σ, q0⟩ be a
DFA over Σ, 0 < p < 1 and C, C ′ some BSCC of A (possibly equal). Assume that

in A there exist paths q0
w−→ q1 and q0

w′
−→ q′1 such that q1 ∈ C ∩ F , q′1 ∈ C ′ \ F and

|w| = |w′|.
Then almost surely L(A←p) is not a recursively enumerable language.

Proof. Let us denote ℓ = |w| and m (resp. m′) the periodicity of C (resp. C ′).
Let a ∈ Σ. We build a Markov chain M from C as follows: every transition

q
a−→ q′ has probability 1 − p and for all b ̸= a, every transition q

b−→ q′ has
probability p

|Σ|−1 . We proceed similarly from C ′ to buildM′.

Let us denote αn (resp. α′n ) the probability in M (resp. M′) that starting
from q1 (resp. q

′
1), the current state at time n is q1 (resp. q

′
1). SinceM andM′ are

irreducible, limn→∞ αmn (resp. limn→∞ α′m′n) exists and is positive. Let us denote
α (resp. α′) this limit. There exists n0 such that for all n ≥ n0, αmn ≥ α

2
and

α′m′n ≥ α′

2
.

De�ne for all n ∈ N , wn = wamm′(n+n0).
The probability that wn is accepted by L(A)←p is lower bounded by the proba-

bility that the pre�x w is unchanged (thus reaching q1) and that after mm′(n+n0)
steps the current state inM is q1. So a lower bound is: min(p, 1− p)ℓ α

2
.

The probability that wn is rejected by L(A)←p is lower bounded by the probabil-
ity that the pre�x w is changed into w′ (thus reaching q′1) and that aftermm′(n+n0)
steps the current state inM′ is q′1. So a lower bound is: min(p, 1− p)ℓ α

′

2
.

Let W ⊆ Wn. The probability that L←p ∩Wn is equal to W is upper bounded
by: (

1−min(p, 1− p)ℓ
min(α, α′)

2

)n

Thus ρn ≤
(
1−min(p, 1− p)ℓmin(α,α′)

2

)n
and limn→∞ ρn = 0.

The DFA A of Figure 11.3 that represents the formula `a Until b' of temporal
logic LTL ful�lls the hypotheses of Theorem 11.5.3. The corresponding pair of
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states consists of the accepting state and the leftmost one. Checking the hypotheses
of this theorem can be done in quadratic time by �rst building a graph whose set of
vertices is Q×Q and there is an edge (q1, q2)→ (q′1, q

′
2) if there are some transitions

q1
a1−→ q′1 and q2

a2−→ q′2 and then looking for a vertex (q1, q2) in some BSCC with
q1 ∈ F and q2 /∈ F reachable from (q0, q0).

Figure 11.3: Two DFA

Range # d(L(A),L(A←p)) d(L(A),L(AE)) d(L(A←p)),L(AE)) gain

[0.005,0.025] 85 0.01114 0.03604 0.04345 0.30902

[0.002,0.005] 81 0.00338 0.00421 0.00747 0.80443

[0.001,0.002] 25 0.00142 0.00035 0.00174 4.09784

[0.0005,0.001] 16 0.00071 0.00006 0.00077 11.08439

Table 11.6: Experiments on DFA ful�lling the hypotheses of Theorem 11.5.3

Range # d(L(A),L(A←p)) d(L(A),L(AE)) d(L(A←p),L(AE)) gain

[0.005,0.025] 36 0.01089 0.02598 0.03410 0.41905

[0.002,0.005] 49 0.00308 0.00387 0.00646 0.79628

[0.001,0.002] 35 0.00136 0.00057 0.00182 2.39863

[0.0005,0.001] 36 0.00075 0.00063 0.00130 1.18583

Table 11.7: Experiments on DFA not ful�lling the hypotheses of Theorem 11.5.3

In order to experimentally validate that the structural criterion is the main one
for robustness of the Angluin's L∗ algorithm, we have re�ned our experiments on
DFA with noisy inputs partitioning the randomly generated DFA depending on
whether they ful�ll the hypotheses of Theorem 11.5.3. We have chosen |Σ| = 3
since with greater size, it was di�cult to generate DFA that do not satisfy the
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hypotheses. Tables 11.7 and 11.6 summarize these experiments. Looking at the
last rows of the tables (where the information gain is greater than one) con�rms
our conjecture.



Chapter 12

Visibly Pushdown Languages

12.1 Introduction

Context-free languages (CFLs), which are generated by context-free grammars
(CFGs), abound in many application areas, for example when facing formal lan-
guages and applications such as programming languages and compilers, but es-
pecially also when processing natural language or controlled natural language.
Visibly pushdown languages (VPLs), introduced by [7, 8], are a robust subclass of
CFLs with interesting closure and decidability properties, as explained in further
detail below�and are the class of languages studied in this chapter. The idea is
that the underlying pushdown automata are input-driven [118, ], i.e., every letter
from the given alphabet is assigned a type among push, pop, and internal (we
therefore deal with a visibly pushdown alphabet).

In this chapter, as a �rst contribution, we present a novel learning algorithm
for VPLs, given a minimally adequate teacher.

An important application area of such a learning algorithm, as pursued in
this chapter, is to derive so-called surrogate models, also known as approximation
models, of recurrent neural networks (RNNs). RNNs play an important role in
natural-language processing or time-series prediction, amongst others. While a
neural network is often di�cult to analyze and to understand, the surrogate model
shares essential features of the underlying network but allows for simpler means
for its analysis and explainability.

As a second contribution, we show that our algorithm can indeed be used for
deriving a so-called visibly pushdown grammar (VPG) usable for explaining the
language accepted by an underlying RNN. To this end, we perform queries to the
network and infer an automaton model, which is then translated into a grammar.
The latter provides structural information of the underlying network, which can
hardly be obtained from the network directly.

219
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Our Approach. As mentioned above, our learning algorithm is for the class of
VPLs. Alur et al. [7] established a close relationship between VPLs and regular
tree languages. We exploit this relationship and use an existing learning algorithm
for regular tree languages [142, 48, ] to derive a grammar-based representation of
a VPL, resulting in a MAT learning algorithm.

This is similar to Sakakibara's algorithm [142, ], which infers CFGs in terms
of tree automata learned using structural queries. In our case, we also adopt
tree interpretations of the words that are queried, but with not exactly the same
structure.

In fact, [95] and [80] had already pointed out that it would be possible to use
the algorithm of [142] for learning regular tree languages to obtain a tree represen-
tation of a VPL, albeit mentioning two potential obstacles for this. First, the �nal
visibly pushdown automaton is non-deterministic, requiring thus the exponential
cost in obtaining a deterministic one. Furthermore, certain structural properties
cannot be guaranteed that are expected from recursive programs. Our work fo-
cusing on practical learning of VPLs shows that these critical issues can be well
handled by adapting the improved version of [142, ] by [48] and by leveraging the
computational power of RNNs.

One advantage of our algorithm as opposed to other algorithms for classes
of CFLs is that it is easier to understand, as it is based on the case for tree
languages. Moreover, its correctness essentially follows from the correctness of
the tree-learning algorithm so that, in principle, we can plug in any other tree-
automata learning algorithm having the same interfaces. Another advantage is its
extensibility to non-context-free languages, insofar as they have a representation
as tree languages [111, ].

Application to RNNs. Our work is inspired by [161], who infer CFGs from
RNNs by extracting a sequence of deterministic �nite automata (DFA) using the
algorithm proposed by [156], and exploiting the notion of pattern rule sets (PRSs),
from which the CFG rules are derived. Experiments show that many interesting
CFLs can be learned. There are nevertheless some di�culties to overcome. For
example, a sequence of extracted DFA often contains some noise, either from the
RNN training or from the application of the L∗ algorithm. Consequently, incorrect
patterns are frequently inserted into the DFA sequence, which can deviate from
the PRS. To handle this, a voting and threshold scheme has been proposed such
that the languages of the given RNNs were mostly recovered in terms of CFGs,
while several others were partially or incorrectly learned.

The class of VPLs is incomparable to the language class handled by [161] (cf.
Example 12.2.2 in Section 12.2). It must be fairly noted that our algorithm relies
on a partitioning of the input alphabet into push, pop, and internal symbols, which
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is not required by [161]. However, it turns out that all the 15 benchmark languages
considered by [161] are VPLs.

In [161], checking equivalence between the given RNN and a hypothesis gram-
mar relies on an orthogonal learned abstraction of the RNN. In our case, the
equivalence query relies on two complementary tests to look for words belonging
to their symmetric di�erence, i.e., words in only one of the two corresponding
languages.

Apart from two exceptions, the languages from [161] are very well learned with
our approach, even some of the languages that are only partially generalized by
applying the other approach. This demonstrates that our algorithm may be a
worthwhile alternative when dealing with structured data (annotated linguistic
data, programs, XML documents, etc.), i.e., in presence of a visibly pushdown
alphabet.

Further Related Work. Some researchers adapted learning algorithms for reg-
ular languages to learn CFLs. For example, Clark et al. [36] presented an ex-
act analogue of that proposed by [9] for a limited class of CFLs by combining
the correspondence of non-terminals to the syntactic congruence class with weak
substitutability. Then, Clark et al. [35] expanded this approach by adopting an
extended MAT (minimally adequate teacher) to answer equivalence queries where
the hypothesis may not be in the learnable class. Yoshinaka et al. [163] extended
the syntactic congruence to tuples of strings to learn e�ciently some sorts of multi-
ple CFGs. Even though the above algorithms for learning CFLs have shown some
promising results, they are limited to some constrained class. The learnability of
the whole class of CFLs is widely believed to be intractable [44, ].

Alur et al. showed in [6] that there is generally no unique minimal VPA for a
given VPL. To this end they present a restricted VPA model they call k-module
single entry visibly pushdown automata (k-SEVPA). This model has a unique min-
imal presentation for any VPL, where the number of states might be exponential
as compared with a minimal VPA with this language. Using this representation
Isberner [80] showed an algorithm learning VPL in terms of k-SEVPA.

Since decades, some approaches have been developed to extract simpler and ex-
plainable surrogate models from a neural network to facilitate comprehension and
veri�cation [148, 123, ]. New algorithms for extracting (weighted or unweighted)
DFA from RNNs have been proposed recently, with promising applications in ver-
i�cation [156, 115, 14, 131, 157, 114, ]. They may also turn out to be useful for
generalizations to other, more complex classes of languages. Up to now, however,
there has been little research on extracting CFGs from RNNs. With the excep-
tion of [161, ], existing approaches rely on an RNN augmented with external stack
memory, either continuous or discrete [42, 147, ]. In such a hybrid system, besides
the classical input symbols, the input includes also what is read from the top of
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the stack.

Organization. Section 12.2 recalls basic notions of VPLs. Trees and tree au-
tomata are presented in Section 12.3. In Section 12.4, we recall the tree-automata
learning algorithm that we exploit, in Section 12.5, to learn grammars for VPLs.
In Section 12.6, we apply our algorithm to inferring grammars from RNNs.

Based on. This chapter is base on our work in [17].

12.2 Visibly Pushdown Languages

Notation change. Note that, in all Part III we use λ to denote the empty word
instead ε.
For the de�nition of context-free languages and grammar we direct the reader to
Section 2.3.

The class of visibly pushdown languages has been introduced by [7, 8]. It was
originally de�ned in terms of visibly pushdown automata, but can be equivalently
characterized by a subclass of context-free grammars. visibly pushdown languages
constitute a robust class that, unlike the class of context-free languages, is closed
under complement.

The idea is to assign to every letter from an alphabet a precise role. Speaking
in terms of automata, every letter is either a push, a pop, or an internal symbol.
This clearly is a restriction: A pushdown automaton for the context-free language
{anban | n ∈ N} has to perform a certain number of push operations while reading
the �rst n occurrences of a before the b, and pop operations when reading the
remaining letters a. On the other hand, {anbn | n ∈ N} can be recognized by a
pushdown automaton where a stack symbol is pushed when reading an a and a
stack symbol is popped when reading a b. Accordingly, a visibly pushdown alphabet
is an alphabet Σ = Σpush⊎Σpop⊎Σint that is partitioned into push, pop, and internal
letters.

For the rest of the chapter, Σ will always denote a given visibly pushdown
alphabet.

De�nition 12.2.1. A visibly pushdown grammar (VPG) over Σ is a CFG (V, S,→)
such that every rule has one of the following forms (where A,B,C ∈ V ): A→ λ,
or A→ cB with c ∈ Σint, or A→ aBbC with a ∈ Σpush and b ∈ Σpop.

A language L ⊆ Σ∗ is called a visibly pushdown language (VPL) over Σ if there
is a VPG G over Σ such that L(G) = L.

Example 12.2.2. Let's recall Dyck languages from the Preliminaries, Section 2.3.
For n ≥ 1, consider the grammar Gn given by S → λ | piSqiS (for all i ∈
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a a c b b a b

Figure 12.1: A nested word

{1, . . . , n}) over the alphabet Σn = {p1, . . . , pn, q1, . . . , qn}. Hereby, as usual, |
separates several possible right-hand sides of rules. Then, L(Gn) is the Dyck
language of order n of well-bracketed words, where pi is an opening and qi its
corresponding closing bracket. The CFG Gn is in fact also a VPG for Σpush =
{p1, . . . , pn}, Σpop = {q1, . . . , qn}, and Σint = ∅ so that L(Gn) is a VPL. Another
example of a VPL is {anxbn | n ∈ N} where Σpush = {a}, Σpop = {b}, and
Σint = {x}. This language is not captured by the PRS-formalism presented by
[161] (cf. [162, Section C.3]).

We observe that, due to the form of permitted rules, a VPL L can only contain
words w ∈ Σ∗ that are well-formed in a certain sense. The set WΣ of well-formed
words over Σ is de�ned as the language L(GΣ) of the �most permissive� VPG:
GΣ = ({S}, S,→) with set of rules {S → λ} ∪ {S → cS | c ∈ Σint} ∪ {S → aSbS |
a ∈ Σpush and b ∈ Σpop}.

The general framework by [7, 8] can also cope with words that have unmatched
push or pop positions. For simplicity, we restrict here to well-formed words. How-
ever, the algorithms can be extended straightforwardly to the general case.

With w = a1 . . . an ∈ WΣ, we can associate a unique binary relation ↷ ⊆
{1, . . . , n} × {1, . . . , n} connecting a push with a unique pop position: For i, j ∈
{1, . . . , n}, we let i ↷ j if i < j, ai ∈ Σpush, aj ∈ Σpop, and ai+1 . . . aj−1 is well-
formed. We call the pair (w,↷) (with w ∈ WΣ) a nested word. A nested word over
Σ with Σpush = {a, b}, Σpop = {a, b}, and Σint = {c} is depicted in Figure 12.1. We
do not exploit nested words in this chapter, but it is helpful to think of well-formed
words as nested words when we encode them as trees.

12.2.1 Visibly Pushdown Automata

Though we are principally interested in inferring grammars, we give here the def-
inition of visibly pushdown automata, which also constitute a characterization of
the class of VPLs.

De�nition 12.2.3. A visibly pushdown automaton (VPA) over Σ is a tuple A =
(Q,S, δ, ι, F ) containing a �nite set of control states Q, a nonempty �nite set of
stack symbols S, an initial state ι, and a set of �nal states F ⊆ Q. Moreover, δ =
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(δpush, δpop, δint) is a collection of transition functions δpush : Q×Σpush → P(Q×S),
δpop : Q× Σpop × S → P(Q), and δint : Q× Σint → P(Q). We call A deterministic
if all transition functions map all arguments to singleton sets.

A VPA recognizes a language L(A) ⊆ Σ∗. Intuitively, it is the language of an
in�nite automaton whose states (we actually say con�gurations) are pairs (q, σ)
where q ∈ Q is the current control state and σ ∈ S∗ is the current stack contents.
With this, in the in�nite automaton, we have a transition (q, σ)

a−→ (q′, σ′) if there
is A ∈ S such that one of the following holds:

� a ∈ Σpush and (q′, A) ∈ δpush(q, a) and σ′ = σ · A
� a ∈ Σpop and q′ ∈ δpop(q, a, A) and σ = σ′ · A
� a ∈ Σint and q′ ∈ δint(q, a) and σ′ = σ

We call (q, σ) a �nal con�guration if q ∈ F and σ = λ. Moreover, (ι, λ) is the
only initial con�guration. Finally, we de�ne L(A) to be the language recognized
by this in�nite automaton in the expected way.

Fact 1 ([7, 8]). Let L ⊆ Σ∗. Then, L is a VPL over Σ if and only if there is a VPA
A over Σ such that L(A) = L.

12.3 Trees and Regular Tree Languages

The reason why VPLs are so robust is that they are close to tree languages. In
fact, nested words as introduced in the previous section can be represented as trees.
Trees are de�ned over a ranked alphabet, i.e., an alphabet Γ = Γ0 ⊎Γ1 ⊎ . . .⊎Γkmax

that is partitioned into letters of arity k ∈ {0, . . . , kmax} where kmax ∈ N is the
maximal arity. Unless otherwise stated, we let Γ be a �xed ranked alphabet.

A tree t over Γ is a term that is generated according to the grammar t ::=
a(t1, . . . , tk), where k ranges over {0, . . . , kmax} and a over Γk. Figure 12.2 depicts
a syntax-tree-based representation of the tree

a(a(c(□()), b(b(□(), a(□())))), b(□()))

over the ranked alphabet given by Γ0 = {□}, Γ1 = {a, b, c}, and Γ2 = {a, b}. The
size |t| of t is the number of its nodes, i.e., the number of occurrences of symbols
from Γ. Let Trees(Γ) denote the set of all trees over Γ.

The algorithm by [48], on which our approach is based, infers regular tree
languages in terms of tree automata (later, when a tree automaton represents a
VPL, we will be able to extract a corresponding VPG representation).

De�nition 12.3.1. A nondeterministic �nite (bottom-up) tree automaton (NTA)
over Γ is a tuple B = (Q, δ, F ) where Q is the nonempty �nite set of states, F ⊆ Q
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Figure 12.2: A tree

is the set of �nal states, and δ :
⋃

k∈{0,...,kmax}(Γk × Qk) → P(Q) is the transition

function. We will write δ(a(q1, . . . , qk)) instead of δ(a, q1, . . . , qk).
We call B deterministic (a DTA) if |δ(a(q1, . . . , qk))| = 1 for all arguments

a, q1, . . . , qk. Then, δ can also be seen as a total (i.e., complete) function δ :⋃
k∈{0,...,kmax}(Γk ×Qk)→ Q. We let DTA(Γ) denote the set of DTAs over Γ.

From δ :
⋃

k∈{0,...,kmax}(Γk ×Qk) → P(Q), we obtain a function δ̂ : Trees(Γ) →
P(Q) letting, for an arity k ∈ {0, . . . , kmax}, a ∈ Γk, and t1, . . . , tk ∈ Trees(Γ),
δ̂(a(t1, . . . , tk)) =

⋃
q1∈δ̂(t1),...,qk∈δ̂(tk) δ(a(q1, . . . , qk)). We can now de�ne the tree

language recognized by B as T (B) = {t ∈ Trees(Γ) | δ̂(t) ∩ F ̸= ∅}. We call a tree
language T ⊆ Trees(Γ) regular if it is recognized by some NTA over Γ.

We now state some important and well-known facts about tree automata. For
more details, we refer the reader to [38, ].

Fact 2 (minimal DTA). For every NTA B = (Q, δ, F ), there is a unique (up to
isomorphism) minimal DTA B′ = (Q′, δ′, F ′) such that T (B′) = T (B). We can
assume |Q′| ≤ 2|Q|.

The index of a regular tree language T is the number of states of the minimal
DTA recognizing T .

While DTAs capture the class of regular tree languages, deterministic top-down
�nite tree automata [38, ], which we do not de�ne here, are strictly less expressive.

Fact 3 (membership and emptiness).

1. Given an NTA B and a tree t ∈ Trees(Γ), one can decide in polynomial time
whether t ∈ T (B). For DTAs, there is a linear-time algorithm.

2. For a given NTA B, one can decide in polynomial time whether T (B) ̸= ∅.

12.4 Learning Deterministic Tree Automata

Recall, Angluin's L∗ algorithm, an algorithm inferring a deterministic �nite au-
tomaton for a given regular word language that can only be accessed via two
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types of queries: membership queries (MQs) and equivalence queries (EQs). In
[48] Angluin's algorithm is extended to tree automata, this algorithm is called
TL∗. TL∗, can infer a DTA over a �xed ranked alphabet Γ for a given (un-
known) regular tree language T . Hereby, T can be accessed through member-
ship queries and equivalence queries, which are implemented by �oracle� mappings
MQtree : Trees(Γ)→ {yes, no} and EQtree : DTA(Γ)→ {yes} ∪ Trees(Γ):

� We say that MQtree is sound for T if, for all t ∈ Trees(Γ), MQtree(t) = yes if
and only if t ∈ T .

� We say that EQtree is counterexample-sound for T if, for all B ∈ DTA(Γ)
and t ∈ Trees(Γ) such that EQtree(B) = t, we have t ∈ T ⊕ T (B) (i.e., t is a
counterexample).

� We call EQtree equivalence-sound for T if, for all B ∈ DTA(Γ) such that
EQtree(B) = yes, we have T = T (B).

These queries act as �oracles� and their answers are delivered instantaneously.
Ideally, one assumes that EQtree, which checks the current hypothesis computed
by the learning algorithm, is both counterexample- and equivalence-sound. In
practice, this is not always the case. In fact, in our experiments, we will make
weaker assumptions on EQtree.

The algorithm TL∗ by [48] takes as input a ranked alphabet Γ and two func-
tions MQtree : Trees(Γ) → {yes, no} and EQtree : DTA(Γ) → {yes} ∪ Trees(Γ). If
TL∗(Γ,MQtree,EQtree) terminates, it outputs a DTA over Γ.

Fact 4 ([48]). Let T ⊆ Trees(Γ) be a regular tree language, say with index n (the
minimal DTA for T has n states). Suppose MQtree is sound for T and that EQtree is
both counterexample- and equivalence-sound for T . Then, TL∗(Γ,MQtree,EQtree)
terminates and outputs the unique minimal DTA B with n states such that T (B) =
T . The overall running time is polynomial in |Γ|, nkmax , and the maximal size of a
counterexample returned by EQtree.

Note that, in the next sections, kmax will be �xed. However, unlike in the
case of word automata, the size of a smallest counterexample tree returned for an
equivalence query may be exponential in the size of the target automaton.

12.5 Learning Visibly Pushdown Grammars

In this section, we exploit tree-automata learning for the inference of VPLs in
terms of VPGs. The derived algorithm will then be exploited to extract grammars
from RNNs.
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12.5.1 Encoding Nested Words as Trees

The main link between words and trees is provided by an encoding of well-formed
words as trees over a suitable ranked alphabet [7, 8, ].

Let Σ = Σpush ⊎ Σpop ⊎ Σint be a visibly pushdown alphabet. To encode words
fromWΣ as trees, we introduce a suitable ranked alphabet Γ = Γ0⊎Γ1⊎Γ2 letting
Γ0 = {□}, Γ1 = Σpop ∪ Σint, and Γ2 = Σpush. That is, the maximal arity is 2. For
the rest of this section, we �x Σ and the associated ranked alphabet Γ.

To a well-formed word w ∈ WΣ, we inductively assign a (parse) tree ⟨⟨w⟩⟩ ∈
Trees(Γ) as follows:

1. ⟨⟨λ⟩⟩ = □().
2. If w = aw1bw2 such that a ∈ Σpush, b ∈ Σpop, and w1 and w2 are well-formed,

then ⟨⟨w⟩⟩ = a(⟨⟨w1⟩⟩ , b(⟨⟨w2⟩⟩)).
3. If c ∈ Σint and w is well-formed, then ⟨⟨cw⟩⟩ = c(⟨⟨w⟩⟩).

One can a nested word and its encoding in Figure 12.3.

a a c b b a b

a

a

b

b

□

c □

b

□

a □

Figure 12.3: Nested word and its tree encoding

Given L ⊆ WΣ, we let ⟨⟨L⟩⟩ = {⟨⟨w⟩⟩ | w ∈ L} ⊆ Trees(Γ). Moreover, we
let TΓ = ⟨⟨WΣ⟩⟩ be the set of trees that encode a well-formed word. Note that
⟨⟨.⟩⟩ :WΣ → TΓ is injective and, therefore, a bijection. Indeed, its inverse mapping,
which we denote by J.K, is given by J□()K = λ, Ja(t1, b(t2))K = aJt1KbJt2K and
Jc(t)K = cJtK. For T ⊆ TΓ, let JT K = {JtK | t ∈ T}.

Let us state some known facts on the relation between VPGs and NTAs/DTAs
due to [7, 8].

Fact 5. For every VPL L over Σ, there is an NTA (or DTA) B over Γ such that
T (B) = ⟨⟨L⟩⟩. In particular, there is a DTA Bparse over Γ with a constant number
of states such that T (Bparse) = TΓ.

As we will extract grammars from tree automata, the following is particularly
important:

Fact 6. Let B be an NTA over Γ such that T (B) ⊆ TΓ. One can compute, in
polynomial time, a VPG nta2vpg(B) over Σ such that L(nta2vpg(B)) = JT (B)K.
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Algorithm 13: Implement-
ing MQtree in terms of MQvpl

1 MQtree(t):

2 if t ∈ T (Bparse)
3 then return MQvpl(JtK)

4 else return no

Algorithm 14: Implementing
EQtree in terms of EQvpl

1 EQtree(B):
2 if T (B) ⊆ T (Bparse)
3 then return EQvpl(B)
4 else

5 pick t ∈ T (B) \ T (Bparse)
6 return t

We give the translation of an NTA into a VPG, as the latter will yield the
representation of a VPL learned in terms of the NTA. Suppose B = (Q, δ, F )
is an NTA over Γ such that T (B) ⊆ TΓ. We de�ne nta2vpg(B) = (V, I,→) as
follows. In fact, instead of just one start symbol, we assume a set of start symbols
I ⊆ V . This is no more expressive than having one single start symbol, as we
can always introduce a fresh start symbol, leading to all the right-hand sides of
rules associated with symbols from I. Intuitively, the grammar derives a run of
the NTA top-down, where states are successively replaced with input letters. So
we let V = Q and I = F . Moreover, the set of rules contains

1. q̂ → λ for all q̂ ∈ δ(□());
2. q̂ → cq for all c ∈ Σint, q ∈ Q, and q̂ ∈ δ(c(q));
3. q̂ → apbq for all a ∈ Σpush, b ∈ Σpop, and p, q, q′, q̂ ∈ Q such that q′ ∈ δ(b(q))

and q̂ ∈ δ(a(p, q′)).

For completeness, let us mention some connections with visibly pushdown au-
tomata (VPAs), which are e�ectively equivalent to VPGs w.r.t. expressive power
so that we could also learn VPAs instead of VPGs (cf. [7, 8, ] for the de�nition
of VPAs). For an NTA B over Γ such that T (B) ⊆ TΓ, one can compute, in
polynomial time, a VPA A over Σ such that L(A) = JT (B)K. Conversely, for a
VPA A over Σ, one can compute, in polynomial time, an NTA B over Γ such that
T (B) = ⟨⟨L(A)⟩⟩. Hence, there is also a DTA for ⟨⟨L(A)⟩⟩ of exponential size. In
general, this exponential blow-up cannot be avoided even when we start from a
deterministic VPA.

12.5.2 Learning VPLs in Terms of VPGs

Recall that Σ is a �xed visibly pushdown alphabet and Γ is the derived ranked
alphabet.
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We now present an algorithm, called VPL∗ in the following, that learns a VPL
L ⊆ WΣ in terms of a DTA for the tree language ⟨⟨L⟩⟩ ⊆ TΓ that can then be
translated into a VPG according to Fact 6. In particular, the equivalence query
will take a DTA as argument, rather than a VPA. Essentially, we rely on the
algorithm TL∗. However, equivalence and membership queries are now answered
w.r.t. the VPL L. More precisely, we deal with a mapping MQvpl :WΣ → {yes, no}
and a partial mapping EQvpl : DTA(Γ) → {yes} ∪ TΓ whose domain is the set of
DTAs B ∈ DTA(Γ) such that T (B) ⊆ TΓ:

� We call MQvpl sound for L if, for all w ∈ WΣ, we have MQvpl(w) = yes if
and only if w ∈ L.

� We say that EQvpl is counterexample-sound for L if, for all B ∈ DTA(Γ) such
that T (B) ⊆ TΓ and all t ∈ TΓ, EQvpl(B) = t implies JtK ∈ L ⊕ JT (B)K.

� We say that EQvpl is equivalence-sound for L if, for all B over Γ such that
T (B) ⊆ TΓ, EQvpl(B) = yes implies L = JT (B)K.

Our algorithm VPL∗ for learning VPLs uses TL∗ as a black-box. Therefore, we
de�ne a mapping MQtree : Trees(Γ)→ {yes, no} and a mapping EQtree : DTA(Γ)→
{yes} ∪ Trees(Γ) that implement the membership and equivalence queries for tree
languages, respectively (cf. Algorithms 13 and 14). The algorithm VPL∗ (Algo-
rithm 15) then simply calls TL∗ with parameters (Γ,MQtree,EQtree) and translates
the resulting DTA into a VPG.

Algorithm 13. Membership queryMQtree(t) with t ∈ T (Bparse) = TΓ is answered
in terms of MQvpl(JtK) (line 3). If, on the other hand, t ̸∈ T (Bparse), the query
returns no (line 4).

Algorithm 14. Recall that we are looking for a tree automaton for the language
T = ⟨⟨L⟩⟩, which is included in T (Bparse). We will, therefore, �rst check whether
this inclusion also applies to the current hypothesis DTA B, i.e., whether T (B) ⊆
T (Bparse). If not, then we can �nd a tree t ∈ T (B) \ T (Bparse), which serves as
a counterexample to the equivalence query (line 5). So suppose that T (B) ⊆
T (Bparse). Let us assume that EQvpl is both counterexample- and equivalence-
sound. If it returns a tree t = EQvpl(B), then JtK ∈ L⊕JT (B)K so that t can indeed
be used to re�ne the hypothesis B. If, on the other hand, EQvpl(B) = yes, then
L = JT (B)K, i.e., T (B) = ⟨⟨L⟩⟩, so that we can return B as a suitable tree-language
representation. Algorithm 15 then returns the VPG G = nta2vpg(B). According
to Fact 6, we have L(G) = JT (B)K = L.

Theorem 12.5.1. Let L be a VPL and B̂ be the minimal DTA such that T (B̂) =
⟨⟨L⟩⟩. Assume MQvpl is sound for L and that EQvpl is both counterexample- and
equivalence-sound for L. Then, VPL∗ (Algorithm 15) terminates and eventually
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Algorithm 15: VPL∗

1 B ← TL∗(Γ,MQtree,EQtree) /∗ MQtree and EQtree from Algorithms 13 and 14 ∗/
2 return nta2vpg(B)

returns a VPG G of size polynomial in the size of B̂ such that L(G) = L. The
overall running time is polynomial in |Σ|, the index of B̂, and the maximal size of
a counterexample returned in lines 3 and 6 of Algorithm 14.

Proof. By Fact 6, we have to show that calling TL∗(Γ,MQtree,EQtree) returns, in
polynomial time, a DTA B such that T (B) = T (B̂). We will show that MQtree

is sound for T (B̂) and EQtree is counterexample- and equivalence-sound for T (B̂).
By Fact 4, this implies that TL∗(Γ,MQtree,EQtree) returns a DTA B such that
T (B) = T (B̂). The running time is polynomial since all additional operations in
Algorithms 13 and 14 and can be performed in polynomial time (cf. Fact 3).

To show that MQtree is sound for T (B̂), let t ∈ Trees(Γ). Assume MQtree(t) =
yes. By Algorithm 13, this implies t ∈ T (Bparse) and MQvpl(JtK) = yes. As MQvpl

is sound for L, we have JtK ∈ L. Since T (B̂) = ⟨⟨L⟩⟩, we get t ∈ T (B̂). Conversely,
assume MQtree(t) = no. If t ̸∈ T (Bparse), then t ̸∈ T (B̂). So suppose t ∈ T (Bparse)
and MQvpl(JtK) = no. As MQvpl is sound for L, we have JtK ̸∈ L, which implies

t ̸∈ T (B̂).

Let us show that EQtree is counterexample-sound for T (B̂). Suppose B ∈
DTA(Γ) and t ∈ Trees(Γ) such that EQtree(B) = t. There are two cases. First,
suppose t ∈ T (B) \ T (Bparse). As T (B̂) ⊆ T (Bparse), we have t ∈ T (B) \ T (B̂)
and, hence, t ∈ T (B) ⊕ T (B̂). Second, assume T (B) ⊆ T (Bparse). As EQvpl is

counterexample-sound for L, this implies JtK ∈ L ⊕ JT (B)K. Due to T (B̂) = ⟨⟨L⟩⟩,
we get t ∈ T (B̂)⊕ T (B).

Finally, we show that EQtree is equivalence-sound for T (B̂). Suppose B ∈
DTA(Γ) such that EQtree(B) = yes. Then, T (B) ⊆ T (Bparse) and EQvpl(B) = yes.

As EQvpl is equivalence-sound for L, we get L = JT (B)K, which implies T (B̂) =
T (B).

Note that, like in TL∗, a smallest counterexample tree returned for an equiv-
alence query may be of exponential size. Also note that the size of the returned
VPG G is at most exponential in the size of a minimal (nondeterministic) VPA
recognizing L.
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12.6 Experiments

We applied Algorithm 15 to recurrent neural networks (RNNs) in order to extract
VPGs. We implemented it in Python 3.6, using the NumPy library1. Since we
are comparing our extractions to those done in [161, ]2, we use the 15 RNNs they
trained, and a modi�ed version of the interface they wrote to communicate with
these RNNs. All benchmarks were performed on a computer equipped by Intel
i5-8250U CPU with 4 cores, 16 GB of memory, and Ubuntu Linux 18.03.

The experiments done for this chapter are very preliminary, yet they show
promise and motivate a more in-depth investigation. We describe some ideas for
some more in-depth experimentation in the end of Chapter 13

Recurrent Neural Networks. RNNs can be seen as language acceptors. For the
purpose of this chapter, it is enough to think of an RNNR as an in�nite automaton
with in�nite state space Q (e.g., Q = Rdim for some dimension dim ≥ 1), initial
state q0 ∈ Q, transition function δ : Q × Σ → Q, and a mapping score : Q → R
(e.g., indicating a probability of acceptance or of an �end of sequence� token). As
usual, δ is extended to δ̂ : Q× Σ∗ → Q over words by applying δ letter by letter.
Then, R computes a (score) function R : Σ∗ → R by R(w) = score(δ̂(q0, w)).
Moreover, given a threshold τ ∈ R, one can associate with R a language letting
L(R) = {w ∈ Σ∗ | R(w) ≥ τ} or using di�erent threshold criteria.

In fact, [161] use language-model RNNs where, in addition, every letter gets
a dedicated score in a given state. They de�ne the semantics L(R) as the locally
τ -truncated support where �acceptance� is subject to the condition that the score
of every letter (including �end of sequence�) has a score greater than τ (cf. [74, ]).

Several well-known architectures are available to e�ectively represent RNNs,
such as LSTM [76, ], and GRUs [33, ]. Generally, depending on the architec-
ture, the expressive power of RNNs goes beyond the regular languages. So it is
worthwhile to study extraction methods for classes of CFLs.

Methodology and Results. The 15 CFLs considered by [161] are given in Ta-
ble 12.2, together with the CFGs from Table 12.1. For conciseness, they are de�ned
in terms of general CFGs. However, it turns out that all of them are VPLs. In
most cases, there is arguably a canonical partition of the alphabet into a visibly
pushdown alphabet. For all these VPLs, we considered the RNNs provided by
[161], which were trained on sample sets generated by a probabilistic version of a
corresponding CFG.

In our experiments, we used a Kearns Vazirani variation of TL∗ (cf. [49]).
A query MQvpl(w) for a well-formed word w was answered according to the given

1The code is available here: https://github.com/LeaRNNify/VPA_learning
2The RNN can be found here: https://github.com/tech-srl/RNN_to_PRS_CFG

https://github.com/LeaRNNify/VPA_learning
https://github.com/tech-srl/RNN_to_PRS_CFG
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Table 12.1: De�nition of some CFLs (X and Y are �nite sets of words)

L(X, Y ):

S → λ | xSy

(for all x ∈ X and y ∈ Y )

RE -Dyck(X, Y ):

S → xAy

A→ xAy | AA | λ

(for all x ∈ X and y ∈ Y )

Dyck 1 ◁ X:

S → p1Aq1

A→ p1Aq1 | AA | λ | x

(for all x ∈ X)

Dyckn:

S → piAqi

A→ piAqi | AA | λ

(for all i ∈ {1, . . . , n})

Alternating :

S → A | B

A→ (B) | λ

B → [A] | λ

Dyck 2 ◁ X:

S → piAqi

A→ piAqi | AA | λ | x

(for all i ∈ {1, 2} and x ∈ X)

RNNR, i.e., MQvpl(w) = yes if and only if w ∈ L(R). To answer a query EQvpl(B),
we used two independent subroutines that look for counterexample words (of length
under 30):

(i) We chose 1500 random words.
(ii) We noticed that the 15 languages represented by the RNNs from [161, ] are

very sparse (similarly to a lot of other examples of RNN languages from the
literature). Therefore, taking only random samples from the RNN would
most likely produce an empty language. In order to avoid this, we imple-
mented a type of A∗ exploration (cf. [140, ]) in the rooted directed tree of
all words Σ∗, where each vertex is a word w ∈ Σ∗ and its children are wa
for a ∈ Σ. This word-exploration technique relies on an evaluation function
f : Σ∗ → R where the higher the score of a word the higher its priority to
be explored �rst. The function we chose for this depended on two things:
1) The average score given to the word by the RNN and its neighborhood
(where the assumption is that the higher the score the closer we are to a word
in the RNN language), and 2) The length of the word, where we preferred
shorter words. The function we chose is

f(w) =
1

|w|2
∑

w′∈Σ∗ s.t. |w′|≤d

R(ww′)

where R(·) is the score given to the word by the RNN, and the size of the
neighborhood was chosen to be d = 4. Using this type of exploration, we
generated a set P (performed once in the beginning of the run) of positive
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examples from the RNN language (only well-formed words ; timeout of 60
seconds).

Note that EQvpl is counterexample-sound for L(R) but not necessarily equivalence-
sound. It was su�ciently precise on our small set of examples, which leads us to
believe that there is a reasonable chance that a further investigation might reveal
that it is well performing in a more general environment. Though the given trained
RNNs have imperfections, the intended languages are learned in most cases. Ta-
ble 12.2 indicates the time needed to learn a VPG, averaging across �ve runs, the
number of rules extracted, and the �nal column showing whether [161] were able
to extract the correct language. In most runs, the extracted VPGs are equivalent
to the respective CFGs the RNNs were trained on. Exceptions are L14 and L15 for
which we obtain grammars approximating the respective languages. This happens
due to structural errors in the given RNNs w.r.t. the target languages. Note that
we extracted 13/15 languages compared to 10/15 extracted by [161].

Table 12.2: Results for learning RNNs

Visibly Pushdown Alphabet

Language Push Pop Int #Rules Time Extracted by [161]

L1 L({a}, {b}) {a} {b} 3 1s Yes

L2 L({a, b}, {c, d}) {a, b} {c, d} 9 23s Yes

L3 L({ab, cd}, {ef, gh}) {a, b, c, d} {e, f, g, h} 13 74s No

L4 L({ab}, {cd}) {a, b} {c, d} 4 1s Yes

L5 L({abc}, {def}) {a, b, c} {d, e, f} 5 1s Yes

L6 L({ab, c}, {de, f}) {a, c} {d, f} {b, e} 10 49s No

L7 Dyck 2 {p1, p2} {q1, q2} 19 69s Yes

L8 Dyck 3 {p1, p2, p3} {q1, q2, q3} 28 74s No

L9 Dyck 4 {p1, . . . , p4} {q1, . . . , q4} 37 79s Yes

L10 RE -Dyck({(abcd}, {wxyz)}) {(, a, b, c, d} {w, x, y, z, )} 10 7s Yes

L11 RE -Dyck({ab, c}, {de, f}) {a, c} {d, f} {b, e} 27 59s No

L12 Alternating {(, [} {), ]} 5 2s Yes

L13 Dyck 1 ◁ {a, b, c} {p1} {q1} {a, b, c} 19 66s Yes

L14 Dyck 2 ◁ {a, b, c} {p1, p2} {q1, q2} {a, b, c} � 65s Yes

L15 Dyck 1 ◁ {abc, d} {p1} {q1} {a, b, c, d} � 51s No

To give a (successful) example, Table 12.3 depicts the grammar that was output
for L10.
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Table 12.3: Learned VPG for L10 with start symbol A1

A1 → ( A2 ) A0

A0 → λ

A2 → a A3 z A0

A3 → b A4 y A0

A4 → c A5 x A0

A5 → d A0w A0

A5 → d A1w A0

A5 → d A6w A0

A6 → ( A2 ) A1

A6 → ( A2 ) A6

Fixing Mistakes Variation. The previous result can easily be ruined by a
wrong sample of words. For example, we could pick a word that is in the RNN
language but not in the original language. To mitigate this problem, one can do the
following: Denote by P the set of positive examples generated from the RNN, let
H be the current hypothesis grammar, and let pos(H) = |P ∩L(H)|

|P | . Assume that H

comes with a counterexample wc and a new hypothesis H ′. If pos(H ′) < pos(H),
then we keep re�ning both of them, but making sure that wc cannot be used as a
counterexample for H. In the end, we return the hypothesis which is �closest� to
the RNN language, i.e., the one with largest pos(H). For example, by increasing
the sampling length from the RNN (30 → 40) and the size of the sample set
(1500→ 2000), we ruined (most of the RNN have some errors in them, it is just a
matter of time to �nd them) the extraction of language L8, but using the procedure
above, we manage to �x this issue.

Agnostic Learning. Some criticism might be given to the fact that we assume
the visibly pushdown alphabet to be known. To solve this issue, we generated a
set P of positive words from the RNN like before. Using P , we examined all the
possible visibly pushdown alphabets (there may be several), picked the best suited
alphabet (with the least number of internal symbols), and continued learning. We
succeeded in 8 of the 13 languages that were successful in the non-agnostic case.



Chapter 13

Conclusion

Cover of Petri nets

The study of the Karp and Miller algorithm led us to several results. First, in
Chapter 3, we have commodi�ed the concept of accelerations from the Karp and
Miller algorithm, using new notions of abstraction, acceleration, and exploration
sequence. Using these notions, we have developed a simple and elegant proof of
the Karp and Miller algorithm. Then we designed an accelerated version of this
algorithm which memorizes all the accelerations already computed in order to
re-apply them systematically.

Furthermore, in Chapter 4, using our new notions, we designed a simple and
e�cient modi�cation of the incomplete minimal coverability tree algorithm for
building the Clover of a net. Compared to the alternative algorithms previ-
ously designed, we have theoretically bounded the size of the additional space
(2-EXPSPACE).

In Chapter 5, we have implemented a prototype, MinCov, for this algorithm, and
showed the optimization used in the implementation. We have compared the
performance of our algorithm with other existing algorithms generating the Clover
on benchmarks from the literature and on random benchmarks generated by us.
On all the benchmarks MinCov beats the competitions in memory size, and in total
time (including timeouts). Finally, we showed how one can combine MinCov with
ideas from qCover in order to create a superior tool solving coverability fast.

In the future, plan to study the possibility of e�ectively pre-calculating the set
of minimal accelerations or some relevant subset. Finally, it would be interesting
to introduce and apply the concept of acceleration for the study of other well-
structured transition systems.

235
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Recursive Petri nets

In chapter 8, we begin by de�ning a quasi-order on states of RPN compatible with
the �ring rule and establish that it is not a well quasi-order. Using this quasi-order,
we have shown that the family of RPN coverability languages strictly includes
both the family of Petri net coverability languages and context-free languages.
Moreover, we showed that this family is not far from the recursive enumerable
languages. Finally, from an algorithmic point of view we showed that complexity
of coverability, termination, boundedness and �niteness problems are EXPSPACE-
complete.

In Chapter 9, we have introduced DRPN that extends RPNs in several directions.
We have showed that this model extends not only RPN but also many other Petri
net extensions such as transfer-nets, rest-nets, a�ne-nets. . . We have shown that
the family of DRPN coverability languages strictly includes the family of RPN
coverability languages, and we have established that the coverability problem is
still decidable.

Cov-RPN

Cov-PN CFReach-PN

Reach-RPN

Cov-DRPN

Figure 13.1: Language families de�ned by RPN and DRPN, and their relations to
other languages.

In the future we would like to study the following problems:

� Where is the family of DRPN coverability languages compared to the reach-
ability languages? See Figure 13.1 for the two possible position of the DRPN
coverability languages,
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� How to decide whether a word belongs to a coverability or reachability lan-
guage of an RPN/DRPN?

� Since the quasi-order possesses an in�nite antichain, but there exist short
witnesses for coverability, does there exist an e�ective �nite representation
of the downward closure of the reachability set?

� Does there exist a restriction of DRPN for which it still strictly extends RPN,
but for which reachability would be still decidable?

� Can we adapt our ideas from MinCov to have an e�cient tool solving cover-
ability for RPN/DRPN?

Active Learning and Veri�cation

In chapter 10, we proposed property-directed veri�cation as a new veri�cation
method for formally verifying RNNs with respect to regular speci�cations, with
adversarial robustness certi�cation as one important application. We have ex-
perimentally compared PDV to two other methods, on randomly generated DFA,
instances of adversarial robustness certi�cation and on contact sequences. We saw
that PDV is the best approach time wise, which also gives very short counter ex-
amples if it �nds a mistake. Finally, we showed that if PDV �nds a mistake, then
the DFA generated by the PDV can be used to �nd �faulty �ows� helping the user
to generate more counter examples, and even more importantly may help them to
understand the mistake.

In the future we would like to extend our ideas to the setting of Moore/Mealy
machines supporting the setting of richer classes of RNN classi�ers. Another future
work is to investigate the applicability of our approach for RNNs representing
more expressive languages, such as context-free ones. Finally, we plan to extend
the PDV algorithm for the formal veri�cation of RNN-based agent environment
systems, and to compare it with the existing results.

In Chapter 11 we have studied how the PAC Angluin's algorithm behaves for
devices which are obtained from a DFA by introducing some noise. More precisely,
we studied whether Angluin's algorithm reduces the noise producing a DFA closer
to the original one than the noisy device. We have considered two kinds of noises:
random noise and structured noise. We have shown that on average Angluin's
algorithm behaves well for random noise and not for structured noise. We have
completed our study by establishing that almost surely the random noisy devices
produce a non recursively enumerable language, con�rming the relevance of the
structural criterion for robustness of Angluin's algorithm.

In the future we want to �rst develop an more sophisticated stopping mechanism.
Currently, we are using a static one, using a maximal number. We believe it is
possible to have one which depends dynamically on trackable information during its
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run, e.g. its distance from the noise language. Note that Angluin's algorithm uses
no extra information about the original DFA. It would be interesting to introduce
a priori knowledge and design more e�cient algorithms accordingly. For instance,
the algorithm could take as input the maximal size of the original DFA or a regular
language that is a superset of the original language.

In Chapter 12, we presented an algorithm to learn VPLs in the MAT framework.
As an application, we focused on the extraction of grammars from RNNs, where
we introduce a A∗ type of technique of extracting positive and negative examples
from an RNN. Our experiments suggest that the algorithm is a suitable alternative
to current approaches when we deal with structured data.

In the future there are several directions we would like to investigate. The �rst
one is as mentioned in the begin of Section 12.6 there is a strong need for further
experimentation and evaluation of this algorithm. Here is a list of ideas towards
these goals:

• Larger pool of RNNs representing di�erent visibly pushdown languages.
• The number of queries taken while checking equality was chosen to be very small.
This was done in order to reproduce the exact CFLs, since L∗ type of algorithms are
inherently sensitive to errors. Even one error can produce a completely di�erent
VPG. If the goal had been to produce a VPG whose language is statistically close
to the original one, then one could have taken a more probabilistic approach using,
for example, the Cherno�-Hoe�ding bound as done in chapters 10 and 11.
• Testing this technique on RNNs that represent a language which is not necessarily
a CFL (e.g., the Amazon sentiment analysis, which was previously unlearnable
with this type of method due to the sparseness of the language).

Moreover, currently in order to learn VPA we learn DTA which we translate
into VPA, but we think that there is a better more direct way of doing that. One
possible strategy is de�ning a minimal VPA which agrees with some type of Nerode
congruence. Finally, we can use this algorithm in PDV, enlarging the veri�cation
settings we developed in Chapter 10.
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Titre: Véri�cation de systèmes in�nis et apprentissage automatique

Mots clés: réseaux de Petri, apprentissage automatique,véri�cation

Résumé: Cette thèse est découpée en trois
parties. La première est consacrée à la véri�ca-
tion des réseaux de Petri, la seconde à la véri-
�cation des réseaux de Petri récursifs qui éten-
dent les réseaux de Petri et la dernière vise à
combiner l'apprentissage actif et la véri�cation.

Un réseau de Petri peut être analysé en cal-
culant et étudiant son Clover, la représenta-
tion canonique de la sur-approximation vers le
bas de son ensemble d'accessibilité. A l'aide de
l'algorithme de Karp-Miller on peut calculer le
Clover, mais cet algorithme est très ine�cace et
de plus sa preuve originelle de correction n'est
pas satisfaisante. Il y a de nombreuses variantes
de cet algorithme mais certaines sont incom-
plètes et d'autres requièrent une mémoire ad-
ditionnelle de taille potentiellement ackerman-
nienne. En�n les preuves de correction sont
souvent intriquées. Notre première contribution
est la conception d'un algorithme complet in-
cluant une borne théorique sur la taille de la
mémoire additionelle. L'idée clef de cet algo-
rithme est l'introduction d'un nouveau concept,
appelé accélération. Plus précisément à l'aide
des accélérations, nous avons pu:

1. simpli�er la preuve de correction de
l'algorithme de Karp-Miller;

2. de présenter la première modi�cation sim-
ple de l'algorithme incomplet de construc-
tion du �Minimal Coverability Tree�;

3. de prouver que la mémoire supplémen-
taire requise par notre algorithme est élé-
mentaire (2-EXPSPACE);

4. de développer un prototype MinCov et
de montrer expérimentalement qu'il est
l'outil le plus e�cace parmi ceux qui cal-
culent le Clover.

Au début des années 2000, les réseaux de
Petri récursifs (RPN) ont été introduits en vue
de la modélisation et de l'analyse de la plani�-
cation distribuée de systèmes multi-agents pour
lesquels la présence de compteurs et la recur-
sivité sont nécessaires. Bien que les RPN éten-
dent strictement les réseaux de Petri et les gram-
maires algébriques, la plupart des problèmes
usuels (accessibilité, terminaison, etc.) restent

décidables. Pour presque tous les modèles in-
cluant les réseaux de Petri et les grammaires
algébriques, la complexité des problèmes de la
couverture et de la terminaison est inconnue ou
strictement plus grande que EXPSPACE. Ici,
nous établissons que les problèmes de couver-
ture, terminaison, caractère borné et �nitude
des RPN sont EXPSPACE-complets comme
ceux des réseaux de Petri. Bien qu'ayant un
grand pouvoir d'expression, les RPN sou�rent
de plusieurs limitations en terme de modélisa-
tion. Aussi nous introduisons les réseaux de
Petri récursifs dynamiques (DRPN) qui répon-
dent à ces limitations et par conséquent étendent
le pouvoir d'expression des RPN. Les DRPN
généralisent presque toutes les extensions de
réseaux de Petri pour lesquelles le problème
de couverture est décidable. Nous démontrons
alors que le problème de couverture reste décid-
able pour les DRPN.

Dans la troisième partie, notre travail se con-
centre sur l'algorithme L∗ d'Angluin. Cet al-
gorithme apprend l'automate �ni déterministe
(DFA) minimal d'un langage régulier à l'aide
de questions d'appartenance et d'équivalence de
langages. Sa version probabilistiquement ap-
proximativement correcte (PAC) remplace une
question d'équivalence par un ensemble de ques-
tions aléatoires d'appartenance. Nous avons
étudié comment la PAC version se comporte
pour des machines qui sont obtenues en �brui-
tant� un DFA et si l'algorithme réduit le bruit.
Nous établissons que la réduction du bruit
dépend fortement de la nature du bruit et de
sa quantité. De plus, nous utilisons cet algo-
rithme pour développer une approche de véri�-
cation des réseaux neuronaux récurrents (RNN).
Un DFA est appris comme une abstraction
d'un RNN puis analysé à l'aide de techniques
de �model checking�. Nous établissons deux
avantages de cette approche : lorsque la pro-
priété n'est pas véri�ée les contre-exemples ex-
hibés sont de petite taille et susceptibles d'être
généralisés en un patron d'erreur mettant en év-
idence la nature de la faute du RNN.
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Abstract: This thesis consists of three parts.
The �rst one is devoted to the veri�cation of
Petri nets, the second one to the veri�cation of
recursive Petri nets which extend Petri nets, and
the �nal one aims at combining active learning
and veri�cation.

A Petri net can be analyzed by computing
and studying its Clover, that is, the canonical
representation of the downward over approxi-
mation of its reachability set. Using the Karp-
Miller algorithm one can compute the Clover,
but this algorithm is very ine�cient and more-
over, its original proof of correctness is not sat-
isfying. Many variations of the original Karp-
Miller algorithm computing the clover exist,
but some are incomplete, others introduced an
unknown supplementary memory size (possibly
Ackermannian) and proofs are often heavy. Our
�rst contribution is the design of a complete
algorithm in such a way that we can theoret-
ically bound the additional memory require-
ments. The key idea of this algorithm is the
introduction of a new concept, called acceler-
ation. More precisely, using accelerations, we
were able:

1. to simplify the proof of correctness of the
Karp-Miller algorithm;

2. to present the �rst simple modi�cation of
the original but incomplete Minimal Cov-
erability Tree algorithm;

3. to prove that the supplementary memory
needed by our algorithm is elementary (2-
EXPSPACE);

4. to implement a prototype MinCov, show-
ing experimentally that it is the most ef-
�cient one compared to other tools com-
puting the Clover.

In the early two-thousands, Recursive Petri
nets (RPN) have been introduced in order to
model distributed planning of multiagent sys-
tems for which counters and recursivity were
necessary. Although RPN strictly extend Petri
nets and context-free grammars, most of the
usual problems (reachability, termination, etc.)

were shown to be decidable. For almost all other
models extending Petri nets and context-free
grammars, the complexity of coverability and
termination are unknown or strictly larger than
EXPSPACE. In contrast, we establish here that
for RPN, the coverability, termination, bound-
edness and �niteness problems are EXPSPACE-
complete as for Petri net. While having a great
expressive power, RPN su�er several model-
ing limitations. We introduce Dynamic Recur-
sive Petri nets (DRPN) which address these is-
sues, extending the expressiveness of RPN. This
model generalizes almost all previous known
models, which extend the Petri net and keep the
coverability problem decidable. Thus, we estab-
lish that the coverability problem is decidable
for DRPN.

For active learning and formal methods, our
work focuses on Angluin's L∗ algorithm. An-
gluin's algorithm learns the minimal determinis-
tic �nite automaton (DFA) of a regular language
using membership and equivalence queries. Its
probabilistic approximately correct (PAC) ver-
sion substitutes an equivalence query by a set
of random membership queries. Thus, it can be
applied to any kind of device and may be viewed
as synthesizing an automaton from observations
of the device. We are interested in how the PAC
version behaves for devices which are obtained
from a DFA by introducing some noise. More
precisely, we study whether the algorithm re-
duces the noise, producing a DFA closer to the
original one than the noisy device. We found
that the reduction of the noise strongly depends
on the type of noise and its amount. Moreover,
we use this algorithm to develop a property-
directed approach for veri�cation of recurrent
neural networks (RNNs). It learns a DFA as
a surrogate model from a given RNN, which is
then analyzed using model checking as a veri-
�cation technique. We show that this not only
allows us to discover small counterexamples fast,
but also to generalize them by pumping towards
faulty �ows, hinting at the underlying error in
the RNN.
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