
HAL Id: tel-04054922
https://theses.hal.science/tel-04054922

Submitted on 1 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Problèmes variationnels pour l’interpolation dans
l’espace de Wasserstein

Katharina Eichinger

To cite this version:
Katharina Eichinger. Problèmes variationnels pour l’interpolation dans l’espace de Wasserstein. Anal-
yse fonctionnelle [math.FA]. Université Paris sciences et lettres, 2022. Français. �NNT : 2022UP-
SLD029�. �tel-04054922�

https://theses.hal.science/tel-04054922
https://hal.archives-ouvertes.fr


Préparée à l’Université Paris Dauphine

Problèmes variationnels pour l’interpolation dans l’espace
de Wasserstein

Soutenue par

Katharina EICHINGER
Le 13 Décembre 2022

École doctorale no543

École doctorale SDOSE

Spécialité
Mathématiques

Composition du jury :

Jérémie BIGOT
Professeur des Universités
Université de Bordeaux Rapporteur

Giuseppe BUTTAZZO
Professor
Università di Pisa Président du jury

Guillaume CARLIER
Professeur des Universités
Université Paris Dauphine PSL Directeur de thèse

Virginie EHRLACHER
Maître de conférences
École des Ponts Paristech Rapporteur

Noureddine IGBIDA
Professeur des Universités
Université de Limoges Membre du jury

Chloé JIMENEZ
Maître de conférences
Université de Bretagne-Occidentale Membre du jury





Remerciements

Tout d’abord, je voudrais remercier très chaleureusement Guillaume Carlier pour avoir
accepté d’encadrer ma thèse. Depuis ton cours donné à Munich, j’avais hâte de travailler
avec toi. Pendant ces trois années, j’ai pu apprendre énormément de choses grâce à nos
longues discussions en présentiel ou à distance. Merci aussi pour toutes les opportunités que
tu m’as donné malgré les circonstances parfois difficiles. Merci d’avoir toujours confiance à
moi, même dans les phases de difficulté et de doute. Sans toi, je ne serais certainement pas
la personne que je suis maintenant, ni au niveau mathématiques ni en tant que humain.
Merci de m’avoir aidé à grandir.

Je tiens également à remercier Jérémie Bigot et Virginie Ehrlacher qui m’ont fait
l’honneur d’être les rapporteurs de ma thèse. J’ai beaucoup apprécié vos commentaires
enrichissants et chaleureux. Je suis aussi très reconnaissante envers Giuseppe Buttazzo,
Noureddine Igbida et Chloé Jimenez d’avoir accepté de faire partie de mon jury.

Merci à mes co-auteurs, sans eux mon travail n’aurait pas été aussi fructueux et joyeux.
Thank you Alexey for the collaboration together, it was a pleasure to work with you.
Merci Enis pour toutes les longues discussions enrichissantes qu’on a eu ensemble et ton
enthousiasme. Et merci à nouveau à Giuseppe pour ton accueil à Pise, les discussions
productives, tes idées fructueuses et ton optimisme.

During my thesis, I also had the pleasure to finish a project with Manuel Gnann and
Christian Kuehn. Danke Christian für all die Möglichkeiten, die du mir gegeben hast.
Vielen Dank Manuel für all die langen Diskussionen, deine Tipps und die Zeit, die du mir
geschenkt hast.

Merci à toutes les personnes dont je dois la bonne organisation de ma thèse. Merci
à Ariela Briani qui a encadré l’organisation du programme Cofund MathinParis m’ayant
permis d’effectuer ma thèse à Paris et qui était toujours à l’écoute. Merci à Derya Gök
pour s’occuper de nous (surtout des jeunes) non seulement au niveau administrative mais
aussi de créer l’étage le plus chaleureux d’Inria Paris. Merci également à Isabelle Bellier
et César Faivre pour toujours être disponible et votre accueil. Ça m’a toujours fait plaisir
de parler avec vous.

Durant mes années de thèse, j’ai aussi effectué une mission d’enseignement à l’Université
Paris Dauphine PSL et je souhaite remercier toute l’équipe du MIDO ainsi que les pro-
fesseurs pour qui j’ai effectué des TD et TP: Julien Poisat et Émeric Bouin. Ce fut vraiment
très agréable de travailler avec vous.

I would also like to thank all my teachers and professors I have had the pleasure to
learn from during my studies, and who have encouraged me to pursue a scientific path.

Merci à toute l’équipe Mokaplan pour votre accueil chaleureux, les discussions et le
soutien. C’est une grande honneur de pouvoir effectuer sa thèse au sein d’un des cœurs du
transport optimal dans le monde avec non seulement des chercheurs extrêmement impor-

i



REMERCIEMENTS

tants dans le domaine, mais aussi gentils et bienveillants.
Un grand merci à tous mes co-doctorants, soit de l’université Paris Dauphine PSL soit

d’Inria Paris. Même à travers d’une pandémie, nous avons réussi à créer liens des profonds
que j’espère garder le long de notre vie. Aux Dauphinois: Je suis contente que nous avons
réussi de créer autant d’événements scientifiques et conviviaux ensemble. J’espère que
cela restera comme ça après mon départ, sachant qu’on a déjà trouvé mon successeur. Aux
moka-jeunes et moka-originaux: Merci de m’avoir accompagné dans les moments durs mais
aussi dans les moments joyeux. Je ne vais pas oublier nos soirées. Merci aussi à mes amis
que je connais depuis mon séjour à l’X, nos répas étant toujours délicieux. En fait, je ne
sais même pas dans quelle langue il est raisonnable de vous tous remercier. Alors je le ferai
dans toutes nos langues: Merci. Grazie (milione). Gracias. Thanks. Obrigado. Danke.
谢谢. cảm ơn. Благодаря. .

Danke an all meine Freunde aus der Heimat. Auch wenn uns knapp 1000 Kilometer
trennen, habt ihr es stets geschafft nicht den Kontakt zu mir zu verlieren. Vielen Dank
für die langen Telefonate, die Ausflüge (wenn möglich), die schönen Abende, das geduldige
Anhören meiner Probleme und die Ablenkung von der Mathematik, wenn nötig. Danke,
dass ihr für mich da seid.

Vielen Dank an meine Familie. Von klein auf habt ihr mich unterstützt, wie es ging.
Auch wenn es vielleicht nicht immer klar ist, was ich da so treibe, steht ihr doch stets
hinter mir. Ohne euch wäre ich nicht da, wo ich heute bin. Dankeschön. Ślicznie sziękuję.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.

ii



Contents

Remerciements i

1 Introduction 1

2 Preliminaries 7
2.1 Optimal transport in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Link with Monge-Ampère equation . . . . . . . . . . . . . . . . . . . 15
2.1.2 Wasserstein spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The matching for teams problem . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Barycenters in the Wasserstein space . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Entropic regularization of optimal transport . . . . . . . . . . . . . . . . . . 23

3 Entropically regularized Wasserstein barycenters 29
3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Properties of the entropic barycenter . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Global bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 A maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Higher regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 The bounded case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 The case of log-concave measures on Rd . . . . . . . . . . . . . . . . 51

3.5 Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Stochastic setting and law of large numbers . . . . . . . . . . . . . . 51
3.5.2 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Linearization of Monge-Ampère equations . . . . . . . . . . . . . . . . . . . 57
3.7 Linearization in the semi-discrete case . . . . . . . . . . . . . . . . . . . . . 62
3.8 Linearization of the Monge-Ampère equation on the torus . . . . . . . . . . 66
3.A Auxiliary probability results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Wasserstein medians 71
4.1 Formulation and existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Stability and robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Stability with respect to data . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Robustness of Wasserstein medians . . . . . . . . . . . . . . . . . . . 75

4.3 One dimensional Wasserstein medians . . . . . . . . . . . . . . . . . . . . . 78
4.4 Multi-marginal and dual formulations . . . . . . . . . . . . . . . . . . . . . 86

iii



CONTENTS

4.4.1 Multi-marginal formulation . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Dual formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Beckmann minimal flow formulation . . . . . . . . . . . . . . . . . . . . . . 93
4.5.1 The Beckmann problem . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.2 PDE formulation of the Wasserstein median problem . . . . . . . . . 98

4.A Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.A.1 Wasserstein medians in two dimensions. . . . . . . . . . . . . . . . . 101

5 Constrained Wasserstein interpolation 105
5.1 A parking location model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Wasserstein interpolation with constraints . . . . . . . . . . . . . . . . . . . 108

5.2.1 Explicit one-dimensional examples . . . . . . . . . . . . . . . . . . . 109
5.2.2 Reformulation, existence, uniqueness . . . . . . . . . . . . . . . . . . 111

5.3 Dual formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.1 Location constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2 Density constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Distance like costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.1 Location constraint, concentration and integrability on the boundary 119
5.4.2 Density constrained solutions are bang-bang . . . . . . . . . . . . . . 125

5.5 The case of strictly convex costs with a convex location constraint . . . . . 126
5.5.1 Penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.2 Proof of the bound by Γ-convergence . . . . . . . . . . . . . . . . . . 128

5.6 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6.1 Description of the Sinkhorn-like algorithm . . . . . . . . . . . . . . . 130
5.6.2 Numerical results: comparison of the optimal interpolation and the

optimal parking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.6.3 Proofs of duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Outlook 143

Notation 145

iv



Chapter 1

Introduction

Optimal transportation dates back to the work by Monge in 1781 [88]. The modern
formulation has then been introduced in 1942 by Kantorovich [66] as one of the first
problems in linear programming. Kantorovich’s formulation of optimal transport can be
derived as follows.

Given a certain amount of mass m > 0, we want to move it from position x ∈ X to
y ∈ Y at a certain cost per unit of mass c(x, y), where X and Y are suitable sets. This gives
the total cost of mc(x, y) to transport all of it, and it is also the optimal cost since there
is just one way to move the mass: everything goes from x to y. What if the mass is not
located at one point but rather distributed on a set of points and to be transported to a set
of points? Mathematically, this is modeled by (positive) measures ρ ∈ M(X), ν ∈ M(Y )
where the initial mass ρ(X) should be equal to the target mass ν(Y ), so ρ(X) = ν(Y ) = m.
Now, the way Kantorovich modeled the transportation of mass between the two measures
is to consider a measure on the product space γ ∈M(X×Y ) which has suitable marginals,
i.e. γ(· × Y ) = ρ and γ(X × ·) = ν. We write γ ∈ Π(ρ, ν). This means that for two sets
A ⊂ X, B ⊂ Y the quantity γ(A × B) encodes how much mass is transported from A to
B. Or, if one is thinking more in probabilistic terms, for m = 1, it gives us a coupling
between two random variables distributed according to ρ and ν. In order to choose a
coupling which is optimal, we are interested in minimizing the total (or in probabilistic
terms average w.r.t. γ) cost. This yields the optimal transportation (OT) problem

Wc(ρ, ν) := inf

{ˆ
X×Y

c(x, y) dγ(x, y) : γ ∈ Π(ρ, ν)

}
. (1.0.1)

The OT problem gives a measure of discrepancy between the two measures ρ and ν,
which translates well the relationship between elements in the underlying spaces given by
the cost function c in the following sense. If we naturally embed two points and their total
mass into the space of measures by identifying them with their weighted Dirac masses and
define the transport cost between two measures ρ and ν

W̄c(ρ, ν) :=

{
mc(x, y) if ρ = mδx, ν = mδy,

+∞ else,
(1.0.2)

then (under very mild assumptions on the spaces) (1.0.1) is the lower semicontinuous convex
envelope of (1.0.2), i.e. the somehow closest convex problem on the space of measures. This
has been shown recently in [106]. Hopefully, this serves as a mathematical intuition that
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CHAPTER 1. INTRODUCTION

the OT problem translates geometrical or topological properties of the underlying spaces,
encoded in the cost function c, to the spaces of measures equipped with the corresponding
OT cost.

As such it has become a popular in fields like economics [33, 35, 57], data science
[70, 75, 87, 96], physics [17, 22, 41] and several other areas.

Let us now take m = 1 from now on, as the exact total mass does not matter for our
purposes. Then, OT can be seen as matching two probability probability distributions
in an optimal way as to minimize the average cost. This has been extended in [33] to
matching of several probability measures. One formulation of the multi-matching problem
in [33] is given as the following variational problem over several OT functionals.

inf

{
N∑
i=1

Wci(ρ, νi) : ρ ∈ P(Y )

}
. (1.0.3)

The goal of this thesis is to study certain variants of this problem.
Suppose that the cost functions ci are given such that (1.0.3) becomes the minimization

problem of a convex combination of OT functionals depending on the same cost c

inf

{
N∑
i=1

piWc(ρ, νi) : ρ ∈ P(Y )

}
,

which equivalently means minimizing the expectation w.r.t. the probability measure
P =

∑N
i=1 piδνi on the space of probability measures

inf {Eν∼P [Wc(ρ, ν)] : ρ ∈ P(Y )} . (1.0.4)

The probabilistic interpretation of this variational problem dates back to Fréchet [56],
where he was interested in generalizing probabilistic notions established for (number val-
ued) random variables to more general random objects, which do not necessarily have
values in a vector space. Motivated by the observation that a typical element (in French
élément typique), like the median or mean, of a real-valued random variable solves a vari-
ational problem, he defines the following generalizations. As soon as we are given a metric
space (E , d) and a random variable U with values in E , a solution of

inf {E [d(a, U)] : a ∈ E} (1.0.5)

can be seen as median or equiprobable position (in French position équiprobable) of U , and
a solution of

inf
{
E
[
d(a, U)2

]
: a ∈ E

}
(1.0.6)

is the (non-linear) analogue of an expectation ormean position (in French position moyenne).
Going back to the OT problem, if one chooses the cost function c in a way such that

Wc becomes a metric distance, we can interpret a solution to (1.0.4) as a typical element of
a measure valued random variable. Two of the works presented in this thesis are inspired
by this observation.

The thesis is structured as follows. We give an overview of the preliminaries required
in Chapter 2. Starting with a non-exhaustive overview of optimal transport theory with a
focus on results needed in our work, we provide the link to the Monge-Ampère equation
and highlight the case when the cost function is given by the power of a metric, making

2



the optimal transport functional (up to a power) a metric as well. We then list different
characterizations of the multi-matching problem (1.0.3) and give the most important prop-
erties and challenges of the Wasserstein barycenter, a special case of the multi-matching
problem. Finally, we discuss the entropic regularization of optimal transport and explain
the Sinkhorn algorithm from the primal and dual perspective.

The next three chapters contain our scientific contributions, each chapter corresponding
to one work.

Chapter 3: Entropically regularized Wasserstein barycenters

Chapter 3 is based on joint work with G. Carlier and A. Kroshnin [32] and studies a
regularized version of the case of quadratic cost ci(x, y) = |x − y|2 on Rd × Rd in (1.0.4).
The unregularized version has been introduced in [1] as a generalization of the Euclidean
barycenter problem to the Wasserstein space of order 2. In the spirit of Fréchet, it can be
seen as a mean in the space of probability measures as in (1.0.6) since W|.|2 , commonly
denoted W 2

2 in the literature, turns out to be the square of a metric on the space of
probability measures with finite second moment P2(Rd). It has since gained a lot of
popularity in image processing [101, 100, 110], statistics [91, 111, 115, 13], data analysis
and machine learning [43, 45, 62, 63] and economy [33]. In order to tackle regularity issues,
the following problem is considered

inf
ρ∈P2(Rd)

1

2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν) + λE(ρ), (1.0.7)

where E is a penalization aiming to regularize the barycenter. This problem has been
introduced in [10] for a variety of penalization terms. In Chapter 3 the relative entropy
w.r.t. the Lebesgue measure is used as a penalization term E. We call any solution entropic
Wasserstein barycenter. After providing existence and uniqueness under mild conditions,
analytical properties are studied. Notably, some global bounds and a maximum princi-
ple are proved. Under stronger hypothesis, higher regularity of the entropic Wasserstein
barycenter are provided. Then the stochastic setting is considered where the expecta-
tion with respect to P in (1.0.7) is replaced by its empirical counterpart. Namely, for
(νi)i∈N∗ ⊂ P2(Rd) with νi ∼ P independent and identically distributed consider

inf
ρn∈P2(Rd)

1

2

n∑
i=1

W 2
2 (ρn, νi) + λE(ρ).

Then with the help of stability properties of the entropic Wasserstein barycenter a law
of large numbers is deduced. Finally, inspired by a general proof strategy to establish
a central limit theorem (CLT) on Riemannian manifolds, a central limit theorem for the
entropic Wasserstein barycenter is provided. The crucial part is to prove that the map

Φν : ρ 7→ ϕνρ,

is continuously differentiable in a suitable space. This is explained in more detail in Sec-
tion 3.5.2. We then provide three explicit cases where one has enough regularity for the
CLT. The case where all measures are sufficiently regular and supported on a ball (as a
prototype for a smooth convex set), the case of the torus and the semi-discrete setting
where we rely on the analysis of [68].
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CHAPTER 1. INTRODUCTION

Chapter 4: Wasserstein medians

After the success of Wasserstein barycenters in various applications, it is reasonable to
study the equivalent of a median on the space of probability measures. This is done in
Chapter 4 by considering (1.0.4) for the cost function c(x, y) = d(x, y) where d is a metric
of an underlying suitable metric space. It based on an ongoing work with G. Carlier and
E. Chenchene [29]. In this case Wd, often also denoted by W1 in the literature, defines
a metric on the space of probability measures with finite first moment. In view of the
observation by Fréchet (1.0.5) a solution of

inf

{
N∑
i=1

piW1(ρ, νi) : ρ ∈ P1(Y )

}

is defined to be a Wasserstein median. One of the main statistical advantages of a median
object, its robustness with respect to corrupted data is discussed. This is quantified by
the so-called breakdown point of a statistical estimator, which shows a better robustness
of the median estimator compared to the mean. After establishing standard properties
such as existence and stability of the Wasserstein median, a rigorous study of Wasserstein
medians for the underlying metric space (R, |.|) is given. We provide a selection procedure
for the possibly non-unique Wasserstein median and give some integrability estimates. In
contrast to the Wasserstein barycenter, integrability properties from the given data do not
seem to carry over to the Wasserstein median in more complicated spaces, such as even Rd.
We provide a counterexample, providing that a (linear) L∞-bound does not carry over.
Nevertheless, various equivalent formulations of the Wasserstein median problem are given.
As a convex problem, it is classical to establish its dual formulation. Furthermore, two
multimarginal formulations are discussed and various properties of Wasserstein medians
are deduced from it. In the end, we display the connection to the Beckmann problem and
give a PDE characterization of Wasserstein medians.

Chapter 5: Constrained Wasserstein interpolation

In Chapter 5, which is based on the preprint [20] in joint work with G. Buttazzo and
G. Carlier, we still study problems of the type (1.0.3). This time it is under the slightly
different motivation of finding optimal parking places. We are given two probability mea-
sures µ0, representing the distribution of a population, and µ1, representing a distribution
of facilities. In order to move from their current location to the facilities, residents may
either walk directly to their target location, which costs them c1(x, z) to go from x to z,
or take their car (or more environmentally friendly their bike), costing them c0(x, y) to
move from x to y, park it at a parking spot indicated by a measure ρ (the unknown to be
determined) and walk the remaining way, at the cost c1(y, z) to move from y to z. Denot-
ing the distribution of residents who choose to first take the car by 0 ≤ ν0 ≤ µ0 to go to
the facilities located at 0 ≤ ν1 ≤ µ1, the optimal parking location may be mathematically
modeled as follows with optimal transport costs.

inf

Wc1(µ0 − ν0, µ1 − ν1)︸ ︷︷ ︸
walking directly

+Wc0(ν0, ρ) +Wc1(ρ, ν1)︸ ︷︷ ︸
driving and walking

: (ρ, ν0, ν1) ∈ S

 , (1.0.8)
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where S denotes the set of triplets of measures (ρ, ν0, ν1) satisfying

0 ≤ ν0 ≤ µ0, 0 ≤ ν1 ≤ µ1, and
ˆ

dν0 =

ˆ
dν1 =

ˆ
dρ,

and imposing additional constraints on ρ

• location constraints, that is spt ρ ⊂ K, with a compact set K a priori given;

• density constraints, that is ρ ≤ φ, for a given non-negative and integrable function
φ.

To further study properties of optimal solutions, we then consider the reduced problem
(with ν0 and ν1 fixed)

inf {Wc0(ν0, ρ) +Wc1(ρ, ν1) : ρ ∈ A} , (1.0.9)

where A is the set of probability measures satisfying one of the possible constraints imposed
on ρ, listed above. For the following we restrict the analysis to compactly supported
measures on Rd. We start by establishing existence of minimizers and reformulations, such
as the dual problem and a multimarginal formulation. In the case of density constraint, we
give mild sufficient conditions for optimizers to be of bang-bang type, i.e. to be of the form
1Aφ for some measurable set A. Then, special attention is given to distance-like costs,
more concretely costs of the form ci(x, y) ≡ |x − y|α for 0 < α ≤ 1, which all satisfy the
triangle inequality. It turns out that under reasonable assumptions (from the model point
of view) all optimal ρ are concentrated on the boundary of the set K. Nevertheless, it is
proven that in this case ρ is absolutely continuous with respect to the Hausdorff measure,
given K is regular enough and one of the measures discrete and the other one absolutely
continuous with respect to the Lebesgue measure. Given the degeneracy of a parking on
the boundary, it is reasonable to study the density-constrained problem, which turns out
to be of bang-bang type under the same hypothesis as the one for the concentration on
the boundary of the location constraint. A mathematically more feasible situation is given
if the costs are smooth, strong convex functions of the difference x − y. Then, we prove
an L∞-bound for the part of ρ which is concentrated in the interior of K by its link to a
Monge-Ampère type equation and an approximation argument.

Finally, we give a numerical scheme to compute solutions of (1.0.8), (1.0.9) and more
generally (1.0.3) based on entropic regularization of the transport plans in the formulation
of OT. This yields an extension of the celebrated Sinkhorn algorithm. We deduce it from
the dual perspective of the entropically regularized formulation.
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Chapter 2

Preliminaries

In this chapter, we recall the known theory which is used in this thesis. This includes giving
a (non-exhaustive) overview of the theory of optimal transport, introducing the variational
formulation of the multi-matching problem, discussing the special case of barycenters in
the Wasserstein space, explaining the entropically regularized transport problem and giving
the link to the celebrated Sinkhorn algorithm.

2.1 Optimal transport in a nutshell

We start by reviewing the fundamental properties of optimal transportation theory. For
a detailed introduction to the subject we refer to [104, 112, 113], which the following
presentation is mainly based on but we also recommend [7, 5].

The optimal transport problem has been introduced by Monge in the 18th century in
Mémoire sur la théorie des déblais et des remblais [88]. It can be stated as follows.

Definition 2.1.1. Let X,Y be two Polish spaces. Given ρ ∈ P(X), ν ∈ P(Y ) and a Borel
measurable cost function c : X × Y → R+ the Monge formulation of the optimal transport
(OT) problem is given by

inf

{ˆ
X
c(x, T (x)) dρ(x) : T Borel-measurable s.t. T#ρ = ν

}
, (2.1.1)

where T#ρ is the push-forward defined just below. In the context of optimal transport a
feasible map for (2.1.1) is called a transport map and an optimal solution to (2.1.1) is
referred to as an optimal transport (OT) map.

Definition 2.1.2 (Push-forward). Let X,Y be two Polish spaces, ρ ∈ P(X). We define
for T : X → Y Borel measurable the push-forward of ρ under T , T#ρ by

T#ρ(A) = ρ(T−1(A)),

for all A ⊂ Y Borel measurable.
In the language of OT we call T a transport map from ρ to ν := T#ρ.

As it stands the problem turns out to be quite difficult to solve directly due to the
non-linear push-forward condition.

A milestone has been made when Kantorovich introduced a relaxation of the Monge
problem in 1942 [66]. The Kantorovich formulation of the classical optimal transport
problem can be formulated as follows.

7
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Definition 2.1.3. Let X,Y be two Polish spaces. Given ρ ∈ P(X), ν ∈ P(Y ) and a Borel
measurable cost function c : X × Y → R+ the Kantorovich formulation of the optimal
transport (OT) problem is given by

Wc(ρ, ν) := inf

{ˆ
X×Y

c(x, y) dγ(x, y) : γ ∈ Π(ρ, ν)

}
, (OT)

where Π(ρ, ν) is the set

Π(ρ, ν) :=
{
γ ∈ P(X × Y ) : π1#γ = ρ, π2#γ = ν

}
,

with π1 : X × Y → X, (x, y) 7→ x, π2 : X × Y → Y, (x, y) 7→ y being the projections.
An element of Π(ρ, ν) is called transport plan and a minimizer of (OT) is referred to

as optimal transport plan or OT plan.

Remark 2.1.4. Note that a transport map T from ρ to ν always induces a transport plan
γ by setting γ = (id, T )#ρ. This implies that we always have

(2.1.1) ≥ (OT).

If there is an OT plan induced by a map, then clearly (2.1.1) = (OT). More generally,
in [99] Pratelli showed that if one of the measures is non-atomic and the cost function c
continuous, then the values of the two problems coincide, regardless of the fact if an OT
plan is induced by a map.

Remark 2.1.5. The OT problem can be restated in probabilistic form

inf {E [c(U, V )] : U ∼ ρ, V ∼ ν} , (2.1.2)

where U ∼ ρ means that the random variable U is distributed according to the probability
measure ρ.

If we assume X = Y = Rd equipped with the Euclidean norm |.| and take as a cost
function c(x, y) = |x − y|2, then by developing the squares, the OT problem amounts to
maximizing the covariance among all couplings of random variables with given marginal
laws. From this, one can expect that an optimal plan (if it exists) should be deterministic
if possible, in the sense that for a given map T : X → Y one would hope for V = T (U) for
an optimal coupling of (2.1.2) or in other terminology the optimal transport plan of (OT)
should be of the form (id, T )#ρ.

We will see in the following that this is true under some regularity assumptions on the
measure ρ and the cost function c.

The Kantorovich formulation of the OT problem is a (infinite dimensional) linear pro-
gramming problem. As such, under mild hypothesis one can guarantee existence of a
minimizer.

Theorem 2.1.6. Let X,Y be Polish spaces, ρ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R+

lower semicontinuous. Then (OT) admits an optimal solution.

Proof. The proof is by now a standard argument called direct method in calculus of vari-
ations. It is based on the fact that the set of transport plans Π(ρ, ν) is compact in the
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narrow topology, that is the weak topology σ(P(X × Y ), Cb(X × Y )) in duality with con-
tinuous and bounded functions. This guarantees existence of an accumulation point of any
minimizing sequence. To guarantee optimality of this accumulation point, it sufficient that

γ 7→
ˆ
X×Y

c(x, y) dγ(x, y)

is lower semicontinuous w.r.t. the narrow topology. The latter is obvious if c is continuous
and bounded and can be extended to lower semicontinuous c by approximation from below.
We refer to Chapter 1.1 in [104].

Note that under the hypothesis of Theorem 2.1.6 the optimal value of (OT) may be
+∞. Then (trivially) every plan is “optimal”.

For convex optimization problems, it is natural to consider their dual formulation.

Theorem 2.1.7 (Kantorovich duality, Theorem 5.10 (i) [113]). Let X,Y be Polish spaces,
ρ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R+ lower semicontinuous. Then the OT problem
(OT) admits the following dual formulation

sup
(ϕ,ψ)∈L1(X,ρ)×L1(Y,ν)

{ˆ
X
ϕ(x) dρ(x) +

ˆ
Y
ψ(y) dν(y) : ϕ(x) + ψ(y) ≤ c(x, y)

}
= sup

(ϕ,ψ)∈Cb(X)×Cb(Y )

{ˆ
X
ϕ(x) dρ(x) +

ˆ
Y
ψ(y) dν(y) : ϕ(x) + ψ(y) ≤ c(x, y)

}
,

(OT∗)

in the sense that strong duality holds

(OT) = (OT∗).

Note, that we have weak duality immediately by definition of the problems, i.e.

(OT) ≥ (OT∗).

The proof of the equality in Theorem 2.1.7 can be done in several ways. A proof based
on Fenchel-Rockafellar duality is given in the proof of Theorem 1.3 [112]. We sketch a
proof employing c-cyclical monotonicity from the proof of Theorem 5.10 [113].

Definition 2.1.8 (Cyclical monotonicity). Let X,Y be two sets, c : X × Y → R+. A
set Γ ⊂ X × Y is called c-cyclically monotone if for all N ∈ N∗, {(xi, yi)}Ni=1 ⊂ Γ and
permutations σ of {1, . . . , N}

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)).

For continuous cost functions it is quite straightforward to show that an OT plan γ is
c-cyclically monotone. A lemma from convex analysis stated first by Rockafellar (for the
cost function c(x, y) = −x · y) characterizes c-cyclically monotone sets to be contained in
the c-superdifferential of a c-concave function, see the following definition.

Definition 2.1.9. Let X,Y be Polish spaces, c : X×Y → R+. For the functions f : X →
R ∪ {−∞,+∞} =: R̄, g : Y → R̄ define the following.

9
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The c-transform of f is a function f c : Y → R̄ defined as

f c(y) := inf
x∈X
{c(x, y)− f(x)} . (2.1.3)

If there exists f : X → R̄ such that g = f c and g is not identically −∞, then g is called
c-concave.

Similarly, the c-transform of g is given by

gc(x) := inf
y∈Y
{c(x, y)− g(y)} . (2.1.4)

The function f is called c-concave if there is g : Y → R̄ such that f = gc and it is not
identically −∞.

Finally, the c-superdifferential of f at a point x ∈ X is given by

∂cf(x) := {y ∈ Y : f(x) + f c(y) = c(x, y)} ,

and the c-superdifferential of f is

∂cf = {(x, y) ∈ X × Y : f(x) + f c(y) = c(x, y)} .

Remark 2.1.10. We slightly abuse notation here because we call a priori two different c-
transforms by the same letter. As in most of our arguments in this thesis the cost function
c is symmetric and we do not need this distinction explicitly, this should however not cause
any problems.

Assuming the cost function c is bounded, we can apply the lemma from convex anal-
ysis first stated by Rockafeller, whose generalized version can be found in e.g. Theo-
rem 1.37 [104]. Together with Theorem 1.38 [104], which justifies that the support of an
OT plan for continuous cost functions is c-cyclically monotone, we obtain the existence of
a proper (i.e. not identically equal to ±∞) c-concave function ϕ : X → R̄ such that

spt(γ) ⊂ ∂cϕ. (2.1.5)

Set ψ = ϕc. If additionally c is bounded, one can check with (2.1.3), (2.1.4) that both ϕ
and ψ are bounded, hence feasible for (OT∗). This finally leads to the important relation
of the optimal plan γ and the constructed ϕ,ψˆ

X×Y
c(x, y) dγ(x, y) =

ˆ
X×Y

ϕ(x) + ψ(y) dγ(x, y)

=

ˆ
X
ϕ(x) dρ(x) +

ˆ
Y
ψ(y) dν(y).

Duality for the general case can then be concluded by approximation. We refer to the
proof of Theorem 5.10 [113] or Section 1.6.2 [104] for the details of the proof.
Remark 2.1.11 (Primal-dual optimality conditions). As soon as strong duality holds, we
have the following powerful relation. The plan γ ∈ Π(ρ, ν) is an OT plan (a minimizer of
(OT)) and (ϕ,ψ) ∈ L1(X, ρ) × L1(Y, ν) is a solution for the dual problem (OT∗) if and
only if

ϕ(x) + ψ(y) ≤ c(x, y) for every (x, y) ∈ X × Y,
ϕ(x) + ψ(y) = c(x, y) for γ-a.e. (x, y).

(2.1.6)

We see in the following how we can deduce geometric properties of the OT plan from
(2.1.6) under some regularity assumptions.
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Remark 2.1.12 (Restriction to c-concave functions). A standard trick is to observe that
one can always replace a feasible pair (ϕ,ψ) ∈ Cb(X)× Cb(Y ) of (OT∗) by the c-concave
pair (ϕcc, ϕc) since by definition of the c-transforms (Definition 2.1.9) this pair satisfies

c(x, y) ≥ ϕcc(x) + ϕc(y)

and a straightforward computation yields

ϕcc(x) ≥ ϕ(x) and ϕc(y) ≥ ψ(y).

This implies that (ϕcc, ϕc) is both feasible and does not decrease the value of the objective
function of (OT∗). This means that

(OT∗) = sup

{ˆ
X
ϕ(x) dρ(x) +

ˆ
Y
ϕc(y) dν(y) : ϕ ∈ Cb(X) c-concave

}
, (2.1.7)

which we have already used in the proof sketch for Kantorovich duality (Theorem 2.1.7).

While strong duality holds in a quite general framework, as announced in Theo-
rem 2.1.7, one needs to impose additional assumptions on the cost function to obtain
existence of solutions of the dual problem. We give two sufficient conditions in the follow-
ing theorem, the first one already used in the proof sketch of Theorem 2.1.7.

Theorem 2.1.13 (Theorem 1.39 [104], Theorem 5.10 (iii) [113]). Let X,Y be Polish spaces,
ρ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R+ be lower semicontinuous. Then,

• If c is in addition bounded and uniformly continuous, then (OT∗) admits a solution
(ϕ,ψ) ∈ Cb(X)× Cb(Y ).

• If there are (cX , cY ) ∈ L1(X, ρ)× L1(Y, ν) s.t.

c(x, y) ≤ cX(x) + cY (y),

then (OT∗) admits a solution (ϕ,ψ) ∈ L1(X, ρ)× L1(Y, ν).

Optimal solutions are called Kantorovich potentials.

Remark 2.1.14 (Non-uniqueness of Kantorovich potentials). Clearly, if (ϕ,ψ) are Kan-
torovich potentials, then the pair (ϕ + k, ψ − k) for any k ∈ R is optimal as well. Even
up to this translation, uniqueness cannot be guaranteed. We state sufficient conditions for
uniqueness in Remark 2.1.20.

With this at hand one can prove sparsity of the optimal transport plans, in the sense
that they are induced by a map, i.e. an optimal γ is of the form γ = (id, T )#ρ for a (Borel)
measurable map T : X → Y . In this case T is an optimal solution to Monge’s original
problem formulation (2.1.1), see also Remark 2.1.4. The first proof of this geometrical
property of optimal transport plans has been established by Brenier [18] and further been
generalized by Gangbo and McCann [59]. A quite general sufficient condition for the
existence of a Monge map is given in Theorem 5.30 [113], which essentially requires the
c-superdifferential of a c-concave function at x ∈ X to have only one element ρ-a.e.

We present a special case of this assumption, assuming regularity of c ensuring this
condition, similar to the arguments introduced in [59]. The proof relies on the differential
structure of the underlying space and the so-called twist condition of the underlying cost
function c. We state it on Rd.

11
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Definition 2.1.15. The function c : Rd ×Rd → R satisfies the so-called twist condition if
x 7→ c(x, y) is differentiable for all (x, y) ∈ Rd × Rd and for x ∈ Rd fixed

y 7→ ∇xc(x, y) (2.1.8)

is injective.

With this condition at hand we can give sufficient conditions for existence of maps.
In the interest of readability, we formulate the theorem for the special case that the cost
function c(x, y) = h(x − y) for a nice convex function h as this is what we need in this
thesis. This has been first proved by Gangbo and McCann in Theorem 1.2 [59]. More
general sufficient conditions are given in Theorem 10.28 [113]. We state here a slightly
weaker version than the original one from Gangbo and McCann.

Theorem 2.1.16. Let X = Y = Rd. Suppose that c(x, y) = h(x− y) for a strictly convex
function h ∈ C1(Rd,R) satisfying in addition

• h(x)/|x| → +∞ as |x| → ∞,

• For r ∈ R+, θ ∈ (0, π) whenever p ∈ Rd is far enough from the origin, there exists a
cone

K(r, θ, z, p) :=

{
x ∈ Rd : |x− p||z| cos

(
1

2
θ

)
≤ z · (x− p) ≤ r|z|

}
,

with z ∈ Rd \ {0}, such that h attains its maximum over K(r, θ, z, p) at p.

Then any solution γ to the OT problem (OT) is induced by a map, i.e. there exists
T : Rd → Rd (Borel) measurable such that

γ = (id, T )#ρ,

and the map is unique ρ-a.e. The explicit form of T is given by

T (x) = (∇h)−1(∇ϕ(x)),

where ϕ is a c-concave function whose c-superdifferential contains the support of an OT
plan. If there exist Kantorovich potentials, then ϕ coincides with a Kantorovich potential
ρ-a.e.

Proof comment. The hypothesis give sufficient conditions to be able to differentiate the
optimality conditions from Remark 2.1.11 (where if no Kanorovich potentials exist we take
the c-concave function as in (2.1.5) and its c-transform) as it is shown in [59]. Then we
obtain for an OT plan γ

∇ϕ(x) = ∇xc(x, y) = ∇h(x− y) for γ-a.e. (x, y).

The solvability for y corresponds to the twist condition (2.1.8) for c, which is satisfied here
thanks to strict convexity of h.

Remark 2.1.17. Let us mention that convex functions satisfying the conditions of Theorem
2.1.16 include in particular quadratic polynomials and radial functions.
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If we restrict ourselves to the compact case, we can give a more general statement
without needing to go into technical details “at infinity”.

Theorem 2.1.18. Let X ⊂ Rd be the closure of an open bounded set, Ld(∂X) = 0 and
Y ⊂ Rd compact. Suppose that c : X × Y → R+ satisfies the twist condition (2.1.8) and
that it is Lipschitz continuous on X × Y. Assume further that ρ is absolutely continuous.

Then any solution γ to the OT problem (OT) is induced by a map, i.e. there exists
T : X → Y (Borel) measurable such that

γ = (id, T )#ρ,

and the map is unique ρ-a.e. The explicit form of T is given by

T (x) = (∇xc)−1(∇ϕ(x)),

where by (∇xc)−1 we mean the left inverse of (2.1.8) (parametrized by x) and ϕ is a c-
concave Kantorovich potential.

Proof comment. This is a special case of Theorem 10.28 [113] in combination with Remark
10.33 [113].

Remark 2.1.19 (Uniqueness of optimal transport plans). If every optimal plan γ is given
by a map, i.e. γ = (id, T )#ρ, then it is the unique optimal plan. This follows directly
by convexity of (OT), as stated in Remark 1.19 [104]. Indeed, suppose that there are two
optimal plans γ = (id, T )#ρ, γ̃ = (id, T̃ )#ρ for T, T̃ (Borel) measurable maps. Then by
convexity 1

2γ + 1
2 γ̃ must be an optimal plan as well which can only be induced by a map

if T = T̃ ρ-a.e.

Remark 2.1.20 (Uniqueness of Kantorovich potentials). As mentioned in Remark 2.1.14 we
can only expect uniqueness of Kantorovich potentials up to a constant, in the sense that
for two pairs of Kantorovich potentials (ϕi, ψi)i=1,2 we have

ϕ1 − ϕ2 = k Ld-a.e. on spt ρ = X

ψ1 − ψ2 = −k ν-a.e.

for a constant k ∈ R. This condition seems slightly off, but as soon as ρ � Ld we can
replace the first condition by ρ-a.e. The reason we emphasize that uniqueness of one of the
potentials holds Ld-a.e. on the support is that later when taking variations of the optimal
transport functional in one of the arguments, we need uniqueness of the potentials to hold
for these variations, see also the comment after Proposition 7.18 [104].

Uniqueness of the Kantorovich potentials up to a constant is guaranteed if X ⊂ Rd is
the closure of a connected open subset, Ld(∂X) = 0, spt ρ = X and sufficient conditions
for differentiability of c and the Kantorovich potentials associated to ρ are given. Similar to
Theorem 2.1.16 or Theorem 2.1.18 two examples for sufficient conditions for differentiability
are

• Y = Rd c(x, y) = h(x− y) for a strictly convex function h ∈ C1(Rd,R) satisfying the
technical conditions as in Theorem 2.1.16, or

• Y ⊂ Rd compact, and c is Lipschitz continuous on X × Y .
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The proof is a slight generalization of Proposition 7.18 [104]. We sketch it for convenience.
Under the assumptions above, let (ϕi, ψi) (i = 1, 2) be two pairs of Kantorovich poten-

tials. By strong duality (Remark 2.1.11), we have for an OT plan γ for i = 1, 2

ϕi(x) + ψi(y) ≤ c(x, y) on X × Y,
ϕi(x) + ψi(y) = c(x, y) on spt γ.

This implies that ϕi coincides with a c-concave function on spt ρ = X. With the assump-
tions above it is differentiable Ld-a.e. We get

∇ϕ1(x) = ∇xc(x, y) = ∇ϕ2(x)

for Ld-a.e. x ∈ X and (x, y) ∈ spt γ. Since X is connected, this implies that ϕ1 − ϕ2 is
constant Ld-a.e. on spt ρ. Now note that ψi coincides with the c-transform of ϕi (i = 1, 2)
ν-a.e., which implies uniqueness up to a constant for it as well ν-a.e.

Remark 2.1.21 (The case of quadratic cost). Let X = Y = Rd equipped with the Euclidean
norm |.| and ρ and ν have finite second moments. The case c(x, y) = 1

2 |x−y|
2 is somewhat

special as already pointed out in Remark 2.1.5. By developing the square and putting the
second moments to the other side, the strong duality of between (OT) and (OT∗) becomes

sup
γ∈Π(ρ,ν)

ˆ
Rd×Rd

x ·y dγ(x, y) = inf
(ϕ,ψ)∈L1(ρ)×L1(ν)

ˆ
Rd

|x|2

2
−ϕ(x) dρ(x)+

ˆ
Rd

|y|2

2
−ϕ(y) dν(y)

By Theorem 2.1.13, there are Kantorovich potentials ϕ ∈ L1(ρ), ψ ∈ L1(ν). So choosing
u(x) := |x|2

2 −ϕ(x) and v(y) := |y|2
2 −ϕ(y), the c-transforms become the classical Legendre

transform
u∗(y) := sup

x∈Rd
{x · y − u(x)} .

Hence u and v coincide with a convex function on the support of an OT plan. The literature
on convex functions and their regularity is vast, see for instance [27], [50] or [102].

Now, assuming that ρ is absolutely continuous, Theorem 2.1.16 becomes existence of
an OT map T , given by T (x) = ∇u(x) for ρ-a.e. x, which is the gradient of a convex
function. This recovers the initial statement by Brenier [18]. In the literature one often
refers to u as Brenier potential.

Remark 2.1.22. Under the hypothesis of Theorem 2.1.16 or Theorem 2.1.18, suppose that
we have a (Borel) measurable map T such that T#ρ = ν and for a proper c-concave function
ϕ : X → R̄

ϕ(x) + ϕc(T (x)) = c(x, T (x)) ρ-a.e.

which equivalently means by considering Definition 2.1.9 that for ρ-a.e. x we have (x, T (x)) ∈
∂cϕ. Then T is an OT map, the detailed argument is a slight extension of part of the proof
of Theorem 2.12 [112].

While this condition may not be easy to verify for general cost functions, it becomes
particularly handy when considering the quadratic case c(x, y) = |x − y|2. The the fact
that (x, T (x)) ∈ ∂cϕ for ρ-a.e. x becomes T coincides ρ-a.e. with the gradient of a convex
function by Remark 2.1.21.
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2.1.1 Link with Monge-Ampère equation

We begin by a formal discussion. In the case that the (unique) optimal plan for (OT)
is given by γ = (id, T )#ρ for a (Borel) measurable map T , we have T#ρ = ν. The
functional characterization of this pushforward condition is that for all test functions f
(e.g. f ∈ Cb(Y )) ˆ

spt ν
f(y) dν(y) =

ˆ
spt ρ

f(T (x)) dρ(x).

Suppose now that X = Y = Rd and both ρ and ν are absolutely continuous w.r.t. the
Lebesgue measure Ld on Rd. By abuse of notation we identify their densities with the
same letter. By applying the standard change of variables “y = T (x)” we obtain

ˆ
T−1(spt ν)

f(T (x))ν(T (x))|det(DT (x))|dx =

ˆ
spt ρ

f(T (x))ρ(x) dx.

Since this is true for any test function f this yields at least formally (with the fundamental
lemma of calculus of variations) the Jacobian equation subject to a non-linear “boundary
condition”

ν(T )|det(DT )| = ρ, on int(spt ρ),

T (spt ρ) = spt ν.
(2.1.9)

In particular, if we consider the quadratic cost function c(x, y) = |x−y|2 ρ, ν ∈ P2(Rd) with
ρ and ν absolutely continuous, we are in the setting of Theorem 2.1.16, so that the optimal
plan γ = (id, T )#ρ for a (Borel) measurable map T . Furthermore, by Remark 2.1.21 we
have T = ∇u ρ-a.e. for a convex function u. Plugging this into (2.1.9) we obtain that u
solves the Monge-Ampère equation

ν(∇u) det(D2u) = ρ, on int(spt ρ),

∇u(spt ρ) = spt ν.
(2.1.10)

The above relation can be made somewhat rigorous by employing regularity of convex
functions. In that way both ∇u and D2u can be defined Ld-almost everywhere, see for
instance Theorem 4.8 [112] for the case of the quadratic cost function and more generally
Theorem 2.1.25 below.

It is natural to ask the question whether higher regularity of the convex function u can
be guaranteed given some hypothesis on the the measures ρ and ν, ensuring even validity of
(2.1.10) in the classical sense. A breakthrough has been made with the work by Caffarelli
[24, 23, 25]. His results can be summarized as follows

Theorem 2.1.23 (Theorem 3.3 [44]). Let X,Y ⊂ Rd be the closure of open bounded sets,
ρ ∈ Pac(X), ν ∈ Pac(Y ). Suppose that their densities are bounded away from zero and
infinity on X, respectively Y . Denote by T = ∇u : intX → intY the optimal transport
map for the quadratic cost function c(x, y) = |x − y|2. Assume further that Y is convex.
Then,

• T ∈ C0,α
loc (intX) ∩W 1,1+ε

loc (X) for some α ∈ (0, 1) and some ε > 0.

• If in addition ρ ∈ Ck,βloc (intX), ν ∈ Ck,βloc (intY ) for some k ∈ N, β ∈ (0, 1), then
T ∈ Ck+1,β

loc (intX).
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• If X,Y are smooth and uniformly convex, ρ ∈ Ck,β(X), ν ∈ Ck,β(Y ) for some k ∈ N,
β ∈ (0, 1), then T : X → Y is a global diffeomorphism of class Ck+1,β.

Remark 2.1.24. The convexity of the support of the target measure Y is crucial. In [24]
Caffarelli gave the following counterexample for non-convex support of the target measure.

On R2 consider ρ to be the uniform measure on X = B1(0) and ν the uniform measure
on Y = (B+

1 + (1, 0)T) ∪ (B−1 − (1, 0)T), where B+
1 and B−1 denote the right and left half

discs
B+

1 = B1(0) ∩ {x1 ≥ 0}, B−1 = B1(0) ∩ {x1 ≤ 0}.

Then the OT map from ρ to ν is given by T (x1, x2) = (x1 + sgnx1, x2) since T#ρ = ν
and in view of Remark 2.1.22 it suffices to note that it is ρ-a.e. the gradient of the convex
function ϕ(x) = |x1|+ 1

2 |x|
2. Clearly T is not continuous.

If we modify the support of the target measure to be connected by adding a small
horizontal strip Sε := {|x2| ≤ ε, |x1 ≤ 1|} for ε > 0 and take νε to be the uniform measure
on Yε := Y ∪ Sε, then one can show that for ε small enough the optimal maps remain
discontinuous by stability of the Kantorovich potentials, see [24] for details.

A survey of the regularity theory for the Monge-Ampère equation can be found in
[44], where the statement of Theorem 2.1.23 is from. A more detailed introduction to this
subject is [54].

Let us mention that for more general convex cost functions Cordero-Erausquin has
showed that the derivation of the Jacobian equation can be made rigorous.

Theorem 2.1.25 (Theorem 4.8 [39]). Let X,Y ⊂ Rd be the closure of open bounded sets,
ρ ∈ Pac(X), ν ∈ Pac(Y ). Suppose that the cost function satisfies c(x, y) = h(x− y) with h
convex and h, h∗ ∈ C2(Rd). Let ϕ be a Kantorovich potential associated to ρ, i.e. an optimal
solution to (OT∗), then the optimal transport map T satisfies T (x) = x−∇h∗(∇ϕ(x)) a.e.
and there is a measurable set K ⊂ X with ρ(K) = 1 such that the following equation is
well-defined and holds true for all x ∈ K

ρ(x) = ν(T (x)) det
(
Id−D2h∗(∇ϕ(x))D2ϕ(x)

)
.

2.1.2 Wasserstein spaces

If one chooses cost functions depending on the distance of the underlying Polish space,
many topological and geometric properties are transferred to the space of probability mea-
sures equipped with a distance given by the optimal transport problem (OT), as justified
below.

In this section, we take X = Y a Polish space with metric d and define the Wasserstein
distance as special instance of the optimal transport problem (OT).

Definition 2.1.26. Let 1 ≤ p < ∞. The Wasserstein distance of order p between the
measures ρ, ν ∈ Pp(X) :=

{
ρ ∈ P(X) :

´
X d

p(x0, x) dρ(x) <∞, x0 ∈ X
}
is defined by

Wp(ρ, ν) := inf

{ˆ
X×Y

dp(x, y) dγ(x, y) : γ ∈ Π(ρ, ν)

} 1
p

.

The term distance is justified by the following proposition which also characterizes the
topology of Pp(X) equipped with Wp as distance.
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Proposition 2.1.27. Let 1 ≤ p <∞. The Wasserstein distance of order p is a metric on
Pp(X). Moreover, as soon as (X, d) is a Polish space, then (Pp(X),Wp) is Polish as well.
In particular for (ρn)n∈N ⊂ Pp(X)N and ρ ∈ Pp(X) the following statements are equivalent

• limn→∞Wp(ρn, ρ) = 0,

• ρn converges narrowly to ρ (i.e. in σ(P(X), Cb(X))) and for x0 ∈ X

lim
n→∞

ˆ
X
d(x0, x) dρn(x) =

ˆ
X
d(x0, x) dρ(x).

We call (Pp(X),Wp) the Wasserstein space of order p.

Proof sketch. The proof of the triangular inequality relies on the gluing lemma see for
instance Lemma 5.4 and 5.5 [104]. The fact that this makes (Pp(X),Wp) a Polish space
with its characterization for converging sequences is included in Proposition 7.1.5 and
Remark 7.1.11 [7].

Remark 2.1.28. Note that local compactness fromX does not carry over to (Pp(X),Wp). It
is actually a necessary condition that X is compact for local compactness of (Pp(X),Wp),
see Remark 7.1.9 [7]. But if X is compact then (Pp(X),Wp) is compact as well. Indeed, by
compactness of X any subset of P(X) = Pp(X) is precompact in the narrow topology by
Prokhorov’s theorem and the convergence of moments of a converging sequence in P(X)
follows since the moment is just a bounded continuous function in this case.

Even though not needed in this thesis, we mention for completeness that the dynamic
formulation in (P2(X),W2).

Theorem 2.1.29 (Theorem 8.1 [112]). Let X ⊂ Rd compact, ρ, ν ∈ P2,ac(X). Then

W 2
2 (ρ, ν) = inf

{ˆ 1

0

ˆ
X
µt(x)|vt(x)|2 dx dt : (µt, vt)0≤t≤1 ∈ V (ρ, ν)

}
where V (ρ, ν) is the set of (µt, vt)0≤t≤1 satisfying

• µ ∈ C([0, 1], (Pac(X), σ(Pac(X), C(X)))),

• v ∈ L2(µt ⊗ L1
|[0,1]),

• ∂tµt + div(νtvt) = 0 in the weak sense,

• µ0 = ρ, µ1 = ν.

Remark 2.1.30. As observed by Otto [90] the dynamic formulation allows to formally view
the Wasserstein space of order 2 as Riemannian manifold. This is further studied and
made rigorous in Chapter 8 [7]. We do not go into details here because we only use
this interpretation to compare our proof strategy for the CLT of regularized Wasserstein
barycenters to the strategy employed on Riemannian manifolds, see Section 5.6.3. Very
loosely speaking, in the notation of Theorem 2.1.29 given an optimal solution (µt, vt)0≤t≤1,
(µt)0≤t≤1 becomes a geodesic between ρ and ν with tangent vector vt at the point µt. The
relationship to an optimal Kantorovich potential ϕ associated to ρ (i.e. solution to (2.1.7))
is given by v0 = −∇ϕ, see Proposition 8.5.2 [7]. Hence by fixing the constant of the
Kantorovich potential (assuming uniqueness up to a constant) the Kantorovich potentials
are isomorphic to the tangent vectors.
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A special case of equivalent formulation arises for p = 1. In order to see that, recall
that by Remark 2.1.12 a formulation of the dual problem is given by

(OT) = sup

{ˆ
X
ϕ(x) dρ(x) +

ˆ
X
ϕc(y) dν(y) : ϕ ∈ C(X) c-concave

}
For simplicity we take X ⊂ Rd a convex set. Then this corresponds to c(x, y) = |x− y|,
which is special since c-concave functions have a specific characterization.

Proposition 2.1.31 (Proposition 3.1 [104]). Let X ⊂ Rd be a convex set, c(x, y) = |x− y|.
Then the set of c-concave functions on X coincide with the set 1-Lipschitz functions. Fur-
thermore, for every 1-Lipschitz function f on X, we have f c(x) = −f(x) for all x ∈ X.

In particular, for X ⊂ Rd a compact convex set with non-empty interior, Lipschitz
functions on X can be identified with the Sobolev space W 1,∞(X) (see for instance Propo-
sition 2.13 [6]). Taking into account Proposition 2.1.31 and Remark 2.1.12 the Kantorovich
duality from Theorem 2.1.7 then becomes

(OT) = sup

{ˆ
X
ϕd(ρ− ν) : ϕ ∈W 1,∞(X), |∇ϕ| ≤ 1

}
.

Then at least formally the dual is given by the following problem, which represents another
equivalent formulation of (OT) in this case.

Definition 2.1.32 (Beckmann problem). Suppose that X ⊂ Rd is a compact convex set
with non-empty interior, ρ, ν ∈ P(X). Then the Beckmann problem is given by

inf
{
‖σ‖TV : σ ∈Mdiv(X,Rd),∇ · σ = ρ− ν

}
, (2.1.11)

where Mdiv(X,Rd) is the space of vector-valued finite Radon measures whose weak diver-
gence is a scalar Radon measure, ‖.‖TV is the total variation norm

‖σ‖TV = sup
f∈C(X,Rd)

{ˆ
X
f dσ : ‖f‖L∞(X,Rd) ≤ 1

}
,

and the divergence constraint ∇ · σ = ρ − ν is to be understand weakly with Neumann
boundary conditions, i.e. for all f ∈ C1(X,R)

−
ˆ
X
∇f dσ =

ˆ
X
f d(ρ− ν).

The relation to the OT problem is given in the following proposition.

Proposition 2.1.33 (Theorem 4.6 [104]). Let X ⊂ Rd be a compact convex set with non-
empty interior, ρ, ν ∈ P(X). Then the Beckmann problem (2.1.11) and the OT problem
(OT) have equal minimal values

(OT) = (2.1.11).

Moreover, given an OT plan γ a solution σ to (2.1.11) is given by σ defined as
ˆ
X
f dσ :=

ˆ
X×X

ˆ 1

0
f((1− t)x+ ty) · (x− y) dt dγ(x, y),

for every f ∈ C(X,Rd).
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2.2 The matching for teams problem

The prototype for the problems considered in this thesis has been introduced in Carlier and
Ekeland in their paper Matching for teams [33] as the following multi-matching problem.

Definition 2.2.1 (Definition 1 [33]). Given X1, . . . , XN , Z compact metric spaces, cost
functions ci ∈ C(Z × Xi) and νi ∈ P(Xi) for i = 1, . . . , N . The family ϕi ∈ C(Z),
γi ∈ P(Z ×Xi) for i = 1, . . . , N and ρ ∈ P(Z) is called matching equilibrium if

• for all z ∈ Z
N∑
i=1

ϕi(z) = 0,

• γi ∈ Π(ρ, νi) for all i = 1, . . . , N ,

• for all i = 1, . . . , N

ϕi(z) + ϕcii (xi) = ci(z, xi) for γi-a.e. (z, xi).

In their paper they have related the conditions of being a matching equilibrium to
a convex optimization problem involving sums of optimal transport functionals and its
dual formulation. Indeed, the above mentioned conditions turn out to be the primal-dual
optimality conditions.

Theorem 2.2.2 (Theorem 4 [33]). In the setting of Definition 2.2.1 consider the coupling
((ϕi)

N
i=1, (γi)

N
i=1, ρ) ∈ C(Z)N × P(Z ×X1)× · · · × P(Z ×XN )× P(Z). It is a matching

equilibrium if and only if

• ρ solves the convex optimization problem

inf

{
N∑
i=1

Wci(ρ, νi) : ρ ∈ P(Z)

}
, (2.2.1)

• (ϕi)
N
i=1 solve its (pre-) dual formulation

sup

{
N∑
i=1

ˆ
Xi

ϕci(xi) dνi(xi) :
N∑
i=1

ϕi = 0

}
,

• for each i = 1, . . . , N γi is an OT plan for Wci(ρ, νi).

Finally, finding the equilibrium measure ρ ∈ P(Z) can also be recast as a multimarginal
problem by defining the cost function

c(x1, . . . , xN ) := inf
z∈Z

{
N∑
i=1

ci(z, xi)

}
. (2.2.2)
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Proposition 2.2.3 (Proposition 3 [33]). Given X1, . . . , XN , Z compact metric spaces, cost
functions ci ∈ C(Z × Xi) and νi ∈ P(Xi) for i = 1, . . . , N . Define c as in (2.2.2) and
consider

inf

{ˆ
X1×···×XN

c(x1, . . . , xN ) dπ(x1, . . . , xN ) : π ∈ Π(ν1, . . . , νN )

}
. (2.2.3)

Then (2.2.3) admits a solution and inf (2.2.3) = inf (2.2.1). Furthermore, for a solution π
of (2.2.3) and for any measurable map T : X1 × · · · ×XN → Z satisfying

T (x1, . . . , xN ) ∈ arg min
z∈Z

{
N∑
i=1

ci(xi, z)

}
,

the measure ρ := T#π is a solution to (2.2.1).

2.3 Barycenters in the Wasserstein space

In [1] Agueh and Carlier have introduced and analyzed thoroughly an important special
case of the multi-matching problem by taking all costs ci to be equal to the quadratic cost
function. In analogy to the Euclidean barycenter problem, they define the Wasserstein
barycenter.

Definition 2.3.1 (Wasserstein barycenter). Let νi ∈ P2(Rd) for i = 1, . . . , N and p ∈ RN+
such that

∑N
i=1 pi = 1. A Wasserstein barycenter is a solution to the following variational

problem

inf

{
1

2

N∑
i=1

piW
2
2 (ρ, νi) : ρ ∈ P(Rd)

}
. (B)

Several remarks are in place at this stage.
Remark 2.3.2. Their terminology comes from the fact that the Wasserstein barycenter is
a natural generalization of the (generalized) Euclidean barycenter problem

inf
x∈Rd

{
1

2

N∑
i=1

pi|x− xi|2
}
,

to the Wasserstein space of order 2. Here xi ∈ Rd, pi ∈ R+ i = 1, . . . , N (with
∑N

i=1 pi = 1)
are given.

The case N = 2 is a special case of a well-known object in OT introduced by Mc-
Cann [86].
Remark 2.3.3. The Wasserstein barycenter for N = 2 coincides with McCann’s displace-
ment interpolation, introduced in [86]. More precisely, given two measures ν0, ν1 ∈ P2(Rd)
with ν0 absolutely continuous, let T : Rd → Rd be the optimal transport map forW 2

2 (ν0, ν1)
(existence is guaranteed by Theorem 2.1.16), McCann’s displacement interpolation is de-
fined to be for t ∈ (0, 1)

νt := ((1− t)Id+ tT )#ν0.

As it turns out (νt)t∈[0,1] is a constant-speed geodesic in the space (P2(Rd),W2), i.e. for
0 ≤ s ≤ t ≤ 1

W2(νs, νt) = (t− s)W2(ν0, ν1).
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Moreover, for t ∈ [0, 1], νt is the unique Wasserstein barycenter for

inf
{

(1− t)W 2
2 (ν0, ρ) + tW 2

2 (ν1, ρ) : ρ ∈ P2(Rd)
}
.

There are at least three ways two see this. One by employing the triangular inequality,
another one is to consider the multimarginal formulation (2.2.3) and a third one by duality
as displayed in 6.2 [1].

In their paper [1], Agueh and Carlier have furthermore generalized Theorem 2.2.2 and
Theorem 2.2.3 to the whole space in the quadratic setting. In Section 4 [1], they show that
the multimarginal formulation of (B) coincides with the problem considered by Gangbo
and Swiech [60] as the cost function (2.2.2) in the quadratic case

c(x1, . . . , xN ) = inf
x∈Rd

{
N∑
i=1

pi
2
|x− xi|2

}
,

has a unique minimizer S(x1, . . . , xN ) =
∑N

i=1 pixi, which gives a nice explicit expression
for c.

Even though the Wasserstein barycenter is the most well-studied case of the multi-
matching problem, it is still an open problem to establish higher regularity properties.
This is due to the optimality conditions which characterize the Wasserstein barycenter
(see Proposition 3.8 [1]). Namely, in the setting of Definition 2.3.1 if in addition νi is
absolutely continuous for all i = 1, . . . , N , then ρ ∈ P2(Rd) is a Wasserstein barycenter if
and only if there exist Brenier potentials ui such that ∇ui is the OT map from νi to ρ and
a constant C such that

N∑
i=1

piu
∗
i (x) ≤ C +

|x|2

2
for all x ∈ Rd with equality ρ-a.e.

Recall that the potentials are (a priori formally) coupled with νi and ρ through the Monge-
Ampère equation (2.1.10)

νi(∇u∗i ) det(D2u∗i ) = ρ,

∇u∗i (spt ρ) = spt νi.

This makes the Wasserstein barycenter a free boundary problem coupled to a Monge-
Ampère equation, whose regularity depends highly on the support of the target measure
(recall Remark 2.1.24) which is unknown. Even worse, there exist counterexamples show-
ing that even if the supports of the given measure νi are all convex, the support of the
Wasserstein barycenter may not be, see [105] for a counterexample for N = 2 by using
Remark 2.3.3.

In Chapter 3 we will circumvent this problem by introducing a regularizing term in
(B).

Nevertheless, Agueh and Carlier managed to prove with the PDE characterization
above at least a maximum principle for the Wasserstein barycenter.

Theorem 2.3.4 (Theorem 5.1 [1]). Let νi ∈ P2,ac(Rd) for i = 1, . . . , N and p ∈ RN+ such
that

∑N
i=1 pi = 1. Assume that ν1 ∈ L∞(Rd) (by abuse of notation we denote the density

with the same letter). Let ρ be the unique Wasserstein barycenter. Then ρ ∈ L∞(Rd) and
more precisely

‖ρ‖L∞(Rd) ≤
1

pd1
‖ν1‖L∞(Rd).
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Finally let us mention the probabilistic interpretation of barycenters, which motivates
our work displayed in Chapter 3.

Remark 2.3.5 (Interpretation as mean). The Wasserstein barycenter can also be seen as a
natural generalization of the mean to the metric space (P2(Rd),W2). This idea dates back
to Fréchet [56].

Indeed, in a Hilbert space (H, ‖·‖) consider any random variable Z distributed according
to P ∈ P(H) with E

[
‖Z‖2

]
< ∞. Then its mean E[Z] is well-defined and satisfies the

following variational principle. It is the unique solution of

inf
c∈H

EZ∼P [‖Z − c‖2], respectively inf
c∈H

ˆ
H
‖z − c‖2 dP (z).

The variational formulation has the advantage of being generalizable to a metric space
(M,d) by replacing ‖.− .‖ by d(., .). In [56], Fréchet calls this generalization mean position
(in French position moyenne) as a generalization of the mean. This concept applied to
the metric space (P2(Rd),W2) and probability distribution P =

∑N
i=1 piδνi yields the

Wasserstein barycenter problem (B).

The past remark motivates the following generalization of the barycenter problem,
which has been first considered by several authors [11, 67, 76, 92].

Definition 2.3.6. Let P ∈ P2(P2(Rd)). A (generalized) Wasserstein barycenter is a solu-
tion of the following variational problem

inf
ρ∈P2(Rd)

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν), (2.3.1)

or in probabilistic notation
inf

ρ∈P2(Rd)
Eν∼P

[
W 2

2 (ρ, ν)
]
.

Its probabilistic interpretation together with the fact that Wasserstein barycenters
have gained popularity in image processing and data science ([91, 101, 111, 115]) arise
the questions of simulating it numerically and estimating it from given data. By now
many numerical algorithms have been developed, see for instance [9, 34, 43, 96] and many
more. Moreover, several groups have provided a law of large numbers (LLN) for empirical
Wasserstein barycenters, which, for random variables (νi)n∈N independent and identically
distributed (i.i.d.) according to P , are solutions of

inf
ρn∈P2(Rd)

1

n

n∑
i=1

W 2
2 (ρn, νi). (2.3.2)

Notably, in [11] Bigot and Klein prove a LLN if all measures are supported on a compact
set in Rd, in the sense that under suitable existence and uniqueness assumptions they prove
that for ρ solution of (2.3.1) and ρn solution of (2.3.2) for n ∈ N∗

W2(ρn, ρ)→ 0, as n→∞.

Le Gouic and Loubes consider in [76] the barycenter on the Wasserstein of order p
on suitable geodesic spaces, where they prove the following stronger consistency result. If
(Pn)n∈N ∈ P2(P2(Rd))N, P ∈ P2(P2(Rd)) such that W2(Pn, P ) → 0 as n → ∞ (here W2
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denotes the Wasserstein distance of order 2 on P2(P2(Rd))), then a sequence of minimizers
of (2.3.2) given by (ρn)n∈N is precompact in the Wasserstein topology, and each accumu-
lation point is a Wasserstein barycenter. One readily sees that under suitable assumptions
guaranteeing uniqueness on Wasserstein barycenters that this implies the LLN. This con-
sistency result has further been generalized in [71] by Kroshnin to an even larger class of
cost functions and regularized version of (2.3.1) (which has first introduced in [10]).

Due to lack of regularity, quantifying the speed of convergence of the law of large
numbers in the spirit of a central limit theorem (CLT) turns out so be quite difficult. In [2]
Agueh and Carlier have provided a central limit theorem for a few specific cases. Kroshnin
et al. [72] study the case of Gaussian measures in detail and provide a CLT in this case.

In order to advance this question, we consider a regularized version of the Wasser-
stein barycenter problem, as introduced in [10]. In Chapter 3, we prove a CLT for this
version under some additional assumptions on the support of the probability measure
P ∈ P2(P2(Rd)).

Let us also mention that average rates of convergence of empirical barycenters have
been established in Ahidar-Coutrix et al. [3] and generalized in Le Gouic et al. [73] on a
quite general class of (geodesic) metric space assuming regularity on the Brenier potentials,
which in our setting translates to

E
[
W 2

2 (ρn, ρ)
]
≤ C

n
,

for ρWasserstein barycenter (solution of (2.3.1)) and ρn empirical Wasserstein barycenters
(solution of (2.3.2)) for n ∈ N∗.

Finally, in a very recent work Carlier et al. [30] have proven Hölder continuity of Wasser-
stein barycenters w.r.t. the Wasserstein distance of order 1 on P(P(BR(0))) (BR(0) ⊂ Rd,
R > 0)W1 between measure P,Q ∈ P(P(BR(0))) supported on sufficiently nice measures.
From this they deduce the following quantitative result (notation as before)

E [W2(ρn, ρ)] ≤ C E [W1(Pn, P )]
1
6 ,

where Pn = 1
n

∑n
i=1 δνi denotes the empirical measure.

2.4 Entropic regularization of optimal transport

For the numerical simulation of examples in Chapter 5 we replace the optimal transporta-
tion functionals by their entropically regularized versions. This will enable us to apply some
extensions of the celebrated Sinkhorn algorithm [109] (also known as iterative proportional
fitting procedure [46]), popularized in the context of optimal transport and matching by
[42] and [58]. For an introduction to this rapidly developing subject and convergence re-
sults, we refer the reader to [96] and [89]. For convenience we repeat here the basic idea
and adapt it to the setting we are interested in.

We only work on Rd here but give refer to [89], [80] and references therein for a more
general treatment.

Definition 2.4.1. The relative entropy between P,Q ∈M+(RM ) on RM (usuallyM = 2d)
is defined by

H(P |Q) :=

{´
RM

(
log
(

dP
dQ

)
− 1
)

dP if P � Q,

+∞ otherwise.
(2.4.1)
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With this we can define the entropically regularized optimal transport problem.

Definition 2.4.2. The entropically regularized optimal transport cost for a (Borel) mea-
surable cost function c : Rd×Rd → R+, a regularizing parameter ε > 0 and a fixed reference
measure Q ∈ P(Rd × Rd) is given by

inf

{ˆ
Rd×Rd

c(x, y) dγ(x, y) + εH(γ|Q) : γ ∈ Π(ν, ρ)

}
. (EOT)

Remark 2.4.3. Note that, by setting R = e−c(x,y)/εQ, we have

εH(γ|R) =

ˆ
Rd×Rd

c(x, y) dγ(x, y) + εH(γ|Q)

so that (EOT) amounts to minimizing H(.|R) among transport plans between µ0 and µ1.
The relative entropy w.r.t. a reference measure R is well-known in large deviations theory
to be the rate function of the empricial measure of i.i.d. random variables distributed
according to R, according to Sanov’s theorem. This is why minimizing the relative entropy
is connected to to the problem introduced by Schrödinger [108, 107] of finding the most
likely evolution of particles, following a certain law, knowing their distribution at two
distinct time points. For a detailed review we refer to [80] and references therein.

Hence, we continue studying the slightly more general problem for R ∈ M+(Rd) with
finite total mass

inf {H(γ|R) : γ ∈ Π(ν, ρ)} , (2.4.2)

and it should be clear how the results carry over to (EOT).
Before studying the regularized optimal transport problem (EOT), let us mention that

it is indeed an approximation of (OT) in the sense that (EOT) Γ-converges to (OT) as
ε → 0. This has been shown for instance in [79] in a quite general framework and in [31]
for the cost function c(x, y) = |x− y|2.

Under mild hypothesis, there is existence and uniqueness of a minimizer of (EOT).

Theorem 2.4.4 (Theorem 2.1 [89]). Assume that there is a plan γ ∈ Π(ν, ρ) such that
H(γ|R) <∞. Then there exists a unique minimizer γ∗ of (2.4.2) (hence of (EOT)).

Furthermore,

1. if R ∼ ν ⊗ ρ, then there exist ϕ,ψ measurable functions such that

dγ∗
dR

= exp(ϕ(x) + ψ(y)) R-a.s. (2.4.3)

2. Conversely, if there is γ̄ ∈ Π(ν, ρ) with

dγ̄

dR
= exp(ϕ(x) + ψ(y)) R-a.s.

for two measurable functions ϕ,ψ, then γ̄ is optimal for (2.4.2).

If in addition ν ⊗ ρ� R and

log
d(ν ⊗ ρ)

dR
∈ L1(ν ⊗ ρ), (2.4.4)

then ϕ ∈ L1(ν) and ψ ∈ L1(ρ).
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The following duality relation holds.

Proposition 2.4.5. Let c : Rd × Rd → R+, Q ∈ M+(Rd × Rd) a finite Radon measure.
Set R = e−c/εQ. Suppose R ∼ ν ⊗ ρ and (2.4.4). The dual of (EOT) is given by

sup
(ψ,ϕ)∈L1(ν)⊗L1(ρ)

{ˆ
Rd
ϕdν +

ˆ
Rd
ψ dρ−

ˆ
R2d

exp(ϕ(x) + ψ(y)) dR(x, y)

}
. (EOT∗)

There exist solutions to the dual problem, they satisfy (2.4.3) and strong duality holds, i.e.

(EOT) = ε(EOT∗).

Moreover, it is also equal to

sup
(ψ,ϕ)∈C0(Rd)2

{ˆ
Rd
ϕdν +

ˆ
Rd
ψ dρ−

ˆ
R2d

exp(ϕ(x) + ψ(y)) dR(x, y)

}
.

Proof comment. The proof of this duality result in high generality is usually done by ob-
serving that weak duality holds, i.e. (EOT) ≥ (EOT∗). The fact that strong duality holds
is quite technical by standard tools of convex duality as soon as the underlying spaces are
not compact. Hence it can be done by showing that there exist L1-functions which achieve
equality by Theorem 2.4.4, see the proof of Theorem 3.2 [89]. The last equality to the
optimization in the space of continuous functions vanishing at infinity follows by density
of C0(Rd)2 in L1(ν)⊗ L1(ρ).

This enables us to describe the basic form of Sinkhorn’s algorithm in the dual perspec-
tive, where it becomes the form of an alternate gradient ascent scheme of the dual poten-
tials. The relation between the dual and primal iterates are discussed in Remark 2.4.6.

From now on we take R = e−c(x,y)/εRν⊗Rρ with c ∈ L1(ν⊗ρ), Rν ∼ ν and Rρ ∼ ρ, and
log
(

dν
dRν

)
∈ L1(ν), log

(
dρ

dRρ

)
∈ L1(ρ) (in order to satisfy (2.4.4)). This the usual setting

to apply Sinkhorn’s algorithm as the reference measure may not necessarily coincide with
the marginals (which is of significant interest if we want to compute an a priori unknown
interpolation of several measures). The first order optimality conditions of (EOT∗) are
given by

ϕ(x) = log
dν

dRν
(x)− log

ˆ
Rd

exp(ψ(y)− c(x, y)/ε) dRρ(y) ν-a.s.

ψ(y) = log
dρ

dRρ
(y)− log

ˆ
Rd

exp(ϕ(x)− c(x, y)/ε) dRν(x) ρ-a.s.

The alternate gradient ascent hence takes the following form.

Algorithm 1 (Sinkhorn’s algorithm). Given ϕ0 = 0. Iterate for i ≥ 0

ψi(y) = log
dρ

dRρ
(y)− log

ˆ
Rd

exp(ϕi(x)− c(x, y)/ε) dRν(x)

ϕi+1(x) = log
dν

dRν
(x)− log

ˆ
Rd

exp(ψi(y)− c(x, y)/ε) dRρ(y)
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In line with Theorem 2.4.4 an approximate solution γ of (2.4.2) after iterate i is given
by

dγ

d(Rν ⊗Rρ)
(x, y) = exp(−c(x, y)/ε+ ϕi+1(x) + ψi(y)). (2.4.5)

Remark 2.4.6. The algorithm initially introduced by Sinkhorn [109] is also called iterative
proportional fitting procedure (IPFP). In the context of entropy minimization this corre-
sponds to iterative fitting of the marginals and takes the following form. Given γ−1 = R,
iterate for i ≥ 0

γ2i = arg min
{
H(γ|γ2i−1) : π2#γ = ρ

}
(2.4.6)

γ2i+1 = arg min
{
H(γ|γ2i) : π1#γ = ν

}
To give the link to Algorithm 1, we need to understand better the form of the iterates. We
show the argument only for the first iterate (2.4.6) but it carries over by symmetry for the
second iterate. The argument follows closely the one in Section 6 [89].

We disintegrate γ with π2#γ = ρ to γ = K ⊗ ρ and γ2i−1 = K2i−1 ⊗ ρ2i−1, where
ρ2i−1 = π2#γ2i−1 to obtain

H(γ|γ2i−1) = H(ρ|ρ2i−1) +

ˆ
Rd
H(K|K2i−1) dρ.

Since H(ρ|ρ2i−1) is constant, the minimum in (2.4.6) is achieved by choosing K = K2i−1.
The minimizer is hence given by γ2i = K2i−1⊗ρ. In order to get an explicit representation
of the iterates and compare it to (2.4.5) we compute the density

dγ2i

d(Rν ⊗Rρ)
.

For this we want a representation of dK2i−1

dRν
. This is nothing but the conditional density of

γ2i−1 with respect to Rν ⊗Rρ given y which is the quotient of dγ2i−1

d(Rν⊗Rρ) and the marginal´
Rd

dγ2i−1

d(Rν⊗Rρ)(x, y) dν(x).
If we now assume that

dγ2i−1

d(Rν ⊗Rρ)
(x, y) = exp(−c(x, y)/ε+ ϕi(x) + ψi−1(y)),

(which is the case for γ−1 = R with ϕ0 = 0, ψ−1 = 0) then

dK2i−1

dRν
(x, y) =

exp(−c(x, y)/ε+ ϕi(x) + ψi−1(y))´
Rd exp(−c(x, y)/ε+ ϕi(x) + ψi−1(y)) dRν(x)

=
exp(−c(x, y)/ε+ ϕi(x))´

Rd exp(−c(x, y)/ε+ ϕi(x)) dRν(x)
.

In total we have

dγ2i

d(Rν ⊗Rρ)
(x, y) =

dK2i−1

dRν
(x, y)

dρ

dRρ
(y)

=
dρ

dRρ
(y)

exp(−c(x, y) + ϕi(x))´
Rd exp(−c(x, y) + ϕi(x)) dRν(x)

,
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which, choosing ψi(y) = log dρ
dRρ

(y) − log
´
Rd exp(−c(x, y) + ϕi(x)) dν(x) as in Algorithm

1 yields
dγ2i

d(Rν ⊗Rρ)
(x, y) = exp(−c(x, y) + ϕi(x) + ψi(y)).

Observe that in the dual perspective of the Sinkhorn algorithm (Algorithm 1) the
iterations correspond to

ψi = arg max
ψ

J(ϕi, ψ)

ϕi+1 = arg max
ϕ

J(ϕ,ψi)

for each i ≥ 0, where

J(ϕ,ψ) =

ˆ
Rd
ϕdν +

ˆ
Rd
ψ dρ−

ˆ
R2d

exp(ϕ(x) + ψ(y)) dR(x, y),

is the objective functional of (EOT∗). By strict concavity of J each iteration hence strictly
increases the value function and by weak duality J is bounded from above. From this
we get that (J(φi, ψi))i∈N converges and we can hope for convergence of the potentials as
well. A proof has been given for example in [103] in the continuous setting. A very general
treatment is considered in [36].
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Chapter 3

Entropically regularized Wasserstein
barycenters

This chapter is based on the published article [32]. We decided to adapt the presentation
of the central limit theorem compared to the paper in order to illustrate the basic idea and
detail a few more cases where the central limit theorem is valid.

The Wasserstein barycenter can be interpreted as generalization of the mean in the
Wasserstein space of order two. This naturally arises several questions studying its empir-
ical counterpart. Several authors have established a law of large numbers (LLN) for it (see
e.g. [11, 76, 71]). Having this law of large numbers in mind, it is natural to look for error
estimates and asymptotic normality of the error between population Wasserstein barycen-
ters and their empirical counterpart. However, establishing a central limit theorem (CLT)
for Wasserstein barycenters and, more generally, for Fréchet means over a non-negatively
curved metric space seems to be a delicate task (see [3]) except in very particular cases
(dimension one or the case of Gaussians, see [2], [72]). The difficulty is not only due to
the fact that the problem is infinite-dimensional but also (and in fact more importantly)
to the fact that Wasserstein barycenters are related to an obstacle problem for a system
of Monge-Ampère equations (see Section 2.3). The support of the Wasserstein barycenter
is indeed an unknown of the problem and very little is known about its regularity. The
free-boundary aspect of Wasserstein barycenters actually makes the dependence of the
barycenter possibly non-smooth on the sample and thus prevents one from using a delta
method.

Bigot, Cazelles and Papadakis in [10] observed that when one discretizes continuous
measures, the corresponding (discrete) barycenters exhibit strong oscillations and proposed
to add an entropic penalization to the Wasserstein variance functional to rule out such
discretization artefacts. Such regularizations were also considered in a more general setting
by Kroshnin in [71]. Once one adds an entropic term, the free-boundary aspect of the un-
regularized Wasserstein problem, as discussed in Section 2.3, disappears and one can expect
regularity and quite strong estimates by PDE arguments. The objective of this work is
precisely to investigate the regularizing effect of the entropic penalty term. Starting from
the optimality condition which consists in an elliptic system of Monge-Ampère equations,
we will prove various bounds (on the Fisher information, by a maximum principle, or
higher regularity based on the regularity theory for Monge-Ampère). We will then consider
the stochastic setting of entropic Wasserstein barycenters of random i.i.d. measures. As a
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consequence of our estimates, we will obtain a strengthened form of the law of large numbers
(that is, not only for a.s. convergence in Wasserstein distance, but also for Sobolev norms)
and more importantly, under suitable additional assumptions, we will obtain a CLT.

The remainder of the chapter is organized as follows. In Section 3.1, we introduce
the setting and prove existence and uniqueness of the entropic Wasserstein barycenter.
The entropic barycenter is then characterized by a system of Monge-Ampère equations in
section 3.2 where we treat the Gaussian case as a simple application. Section 3.3 is devoted
to further properties: global moment and Sobolev bounds, strong stability and a maximum
principle. Higher regularity is considered in Section 3.4 first in the bounded case and then
on Rd for log-concave measures. Section 3.5 deals with asymptotic results for entropic
barycenters of empirical measures with a law of large numbers and a CLT. Section 3.6, 3.7
and 3.8 contain some material related to the linearization of Monge-Ampère equations, to a
discrete version of the Monge-Ampère equation and to the situation on the torus. Finally,
the appendix gathers auxiliary probability results which are used in the proof of our CLT.

3.1 Setting

Motivated by the interpretation of barycenters as mean from Remark 2.3.5, we give our-
selves a Borel (with respect to the Wasserstein metric) probability measure on the Wasser-
stein space (P2(Rd),W2) (see Definition 2.1.26 and Proposition 2.1.27) with finite second
moment, i.e. P ∈ P2(P2(Rd)). In view of Definition 2.1.26, this means thatˆ

P2(Rd)
m2(ν) dP (ν) < +∞, (3.1.1)

where m2(ν) denotes the second moment of ν i.e.

m2(ν) := W 2
2 (ν, δ0) =

ˆ
Rd
|x|2 dν(x), ∀ν ∈ P2(Rd).

Given a regularization parameter λ > 0 and Ω a non-empty open connected subset of Rd
with a Lebesgue negligible boundary (of particular interest is the case where Ω = Rd or Ω
is convex), we are interested in the following problem (which was introduced in [10] as an
entropic regularization of the Wasserstein barycenter problem):

inf
ρ∈P2(Rd)

VP,λ,Ω(ρ) :=
1

2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν) + λEntΩ(ρ), (EB)

where EntΩ is the relative entropy with respect to Ld|Ω, the Lebesgue measure restricted to
Ω, restricted to probability measures, as defined in (2.4.1)

EntΩ(ρ) := H(ρ|Ld|Ω) =

{´
Ω ρ log ρ, if µ = ρdx and

´
Ω ρ = 1,

+∞ otherwise.

If Ω = Rd we simply denote EntRd = Ent and VP,λ,Rd = VP,λ.

Example 3.1.1. If Ω = Rd and P =
∑I

i=1 piδδxi is concentrated on Dirac masses, (EB) can
be reformulated as

inf
ρ∈P2(Rd)

1

2

ˆ
Rd

∣∣∣x− I∑
i=1

pixi

∣∣∣2 dρ(x) + λEnt(ρ)
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whose solution is the Gaussian

ρ(x) :=
1

(2πλ)
d
2

exp
(
− 1

2λ

∣∣∣x− I∑
i=1

pixi

∣∣∣2)
whereas the (unregularized) Wasserstein barycenter of P is just δ∑I

i=1 pixi
.

By the direct method of the calculus of variations, one easily obtains

Proposition 3.1.2. Assume P ∈ P2(P2(Rd)), then (EB) admits a unique solution.

Proof. Let (ρn)n∈N be a minimizing sequence for (EB) (necessarily 0 outside Ω). In what
follows C will denote a constant which may vary from one line to the other. Observing
that

1

2
W 2

2 (ρn, ν) ≥ 1

4
m2(ρn)−m2(ν),

we deduce from the fact that VP,λ,Ω(ρn) is bounded from above and (3.1.1) that we have

1

4
m2(ρn) + λEntΩ(ρn) ≤ C. (3.1.2)

It now follows from [65] ((14) in the proof of Proposition 4.1) that for α ∈ ( d
d+2 , 1), one

can bound from below the entropy by

EntΩ(ρ) ≥ −C(1 +m2(ρ))α. (3.1.3)

Together with (3.1.2) this shows that (m2(ρn))n∈N is bounded so that (ρn)n∈N is tight
by Markov’s inequality. One may therefore assume, taking a subsequence if necessary
(not relabeled) that (ρn)n∈N converges narrowly to some ρ. Of course ρ ∈ P2(Rd) (with
m2(ρ) ≤ lim infn→∞m2(ρn)) and ρ vanishes outside Ω. Now since (m2(ρn))n∈N is bounded
and (ρn)n∈N converges narrowly to ρ we have (by e.g. Corollary A.4 [31])

EntΩ(ρ) ≤ lim inf
n→∞

EntΩ(ρn). (3.1.4)

and EntΩ(ρ) > −∞ thanks to (3.1.3). We also have for every ν ∈ P2(Rd)

W 2
2 (ρ, ν) ≤ lim inf

n→∞
W 2

2 (ρn, ν).

Hence, by Fatou’s Lemma:
ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν) ≤ lim inf

n→∞

ˆ
P2(Rd)

W 2
2 (ρn, ν) dP (ν),

which, together with (3.1.4) enables us to conclude that ρ solves (EB). The uniqueness of
the minimizer directly follows from the strict convexity of the entropy and the convexity
of the Wasserstein term.

Entropic-Wasserstein barycenters can therefore be defined as follows.

Definition 3.1.3. The unique solution ρ of (EB) is called the entropic-Wasserstein barycen-
ter of P ∈ P2(P2(Rd)) with respect to λ and Ω and denoted barλ,Ω(P ) and simply barλ(P )
if Ω = Rd.
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Remark 3.1.4. Theorem 4.4 in [10] states under the additional assumption that Ω is convex
and compact (note that taking the closure of Ω does not change the entropic-Wasserstein
barycenter) and supp ν ⊂ Ω for P -a.e. ν, that

W2(barλ,Ω(P ), bar0,Ω(P ))→ 0 as λ→ 0,

provided bar0,Ω(P ) is unique. By inspecting their proof, one can actually see that the
compactness assumption on Ω can be relaxed by the same argument as in Proposition 3.1.2.
The assumption on the inclusion of the support can also be omitted if one understands
bar0,Ω(P ) as the Wasserstein barycenter of P constrained to have support in Ω.

Since barλ,Ω(P ) is absolutely continuous with respect to the Lebesgue measure, we
shall slightly abuse notations and use the same notation for its density.

We can immediately state some basic invariance properties of entropic-Wasserstein
barycenters in the case Ω = Rd. For instance, if we shift all measures ν by some vector s ∈
Rd and rotate by some orthogonal matrix Q ∈ O(d), then entropic-Wasserstein barycenters
will be also shifted and rotated by the same vector and matrix (clearly, the same result
holds for any subgroup of translations and orthogonal transformations that Ω is invariant
to). The next proposition shows that translations can actually be “factored out” from the
barycenter.

Proposition 3.1.5. Let Ω = Rd, λ > 0, P ∈ P2(P2(Rd)), and ρ = barλ(P ). Fix a
measurable map s ∈ L2

(
P ;Rd

)
and define a measure Ps := (ν 7→ ν ⊕ s(ν))#P , where

ν ⊕ s := (x 7→ s + x)#ν for all ν ∈ P2(Rd) and s ∈ Rd. Then barλ(Ps) = ρ ⊕ s̄, with
s̄ :=

´
P2(Rd) s(ν) dP (ν).

Proof. Note that it is enough to consider the case Eν [X] = 0 for P -a.e. ν, where the term
Eν [X] =

´
Rd x dν(x) is the average of ν ∈ P2(Rd). Recall that due to the bias-variance

decomposition

W 2
2 (µ, ν) = W 2

2 (µ	 Eµ[X], ν 	 Eν [X]) + |Eµ[X]− Eν [X]|2, µ, ν ∈ P2(Rd).

Since entropy is invariant to shifts, we get for any ρ ∈ P2(Rd) and a ∈ Rd

VPs,λ(ρ⊕ a) =
1

2

ˆ
P2(Rd)

[
W 2

2 (ρ	 Eρ[X], ν) + |Eρ[X] + a− s(ν)|2
]

dP (ν)

+ λEnt(ρ)

= VP,λ(ρ)− 1

2
|Eρ[X]|2 +

1

2
|a+ Eρ[X]− s̄|2 + C.

In particular, taking s ≡ 0, ρ = ρ, and using that the minimum with respect to a is attained
at 0, we get that Eρ[X] = 0. Now, we can first minimize VP,λ(ρ) over ρ’s with zero mean:
Eρ[X] = 0, and then minimize the third term with respect to a, hence barλ(Ps) = ρ ⊕ a,
a = s̄. The claim follows.

Remark 3.1.6. Note that, when Ω = Rd, a useful corollary of Proposition 3.1.5 is that the
average of entropic-Wasserstein barycenter is the expectation of averages:

Eρ[X] =

ˆ
P2(Rd)

Eν [X] dP (ν).
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3.2 Characterization

The entropic term forces the regularized barycenter to be everywhere positive. Indeed,
arguing in a similar way as in Lemma 8.6 from [104], we arrive at:

Lemma 3.2.1. Let ρ := barλ,Ω(P ) then ρ > 0 a.e. on Ω and log(ρ) ∈ L1
loc(Ω).

Proof. Let g be a Gaussian density, scaled so as to give mass 1 to Ω. For t ∈ (0, 1), set
ρt := (1− t)ρ+ tg. The convexity of ρ 7→W 2

2 (ρ, ν) together with the optimality of ρ, give

λ(EntΩ(ρt)− EntΩ(ρ)) ≥ t

2

ˆ
P2(Rd)

[W 2
2 (ρ, ν)−W 2

2 (g, ν)] dP (ν),

so that for some C, we have for every t ∈ (0, 1),

1

t
(EntΩ(ρt)− EntΩ(ρ)) ≥ C. (3.2.1)

Now, observe that

1

t
(EntΩ(ρt)− EntΩ(ρ)) =

ˆ
{ρ=0}

g log(tg) +

ˆ
{ρ>0}

1

t
(ρt log(ρt)− ρ log(ρ))

≤
ˆ
{ρ=0}

g log(tg) +

ˆ
{ρ>0}

(g log(g)− ρ log(ρ))

≤ log(t)

ˆ
{ρ=0}

g + EntΩ(g)− EntΩ(ρ),

where in the second line we have used the convexity of s 7→ s log(s). Combining this
inequality with (3.2.1) and letting t→ 0+, we immediately see that Ld({ρ = 0}) = 0.

Let us now show that log(ρ) ∈ L1
loc(Ω). Since max(0, log(ρ)) ≤ ρ we have to show that´

K log(ρ) > −∞ for every compact subset (of positive Lebesgue measure) K of Ω. Calling
µ the uniform probability measure on K, setting νt := ρ+t(µ−ρ) for t ∈ (0, 1) and arguing
as above, we have

1

t
(EntΩ(νt)− EntΩ(ρ)) ≥ C,

moreover 1
t (νt log(νt) − ρ log ρ) ≤ µ log(µ) − ρ log ρ ∈ L1(Ω), Fatou’s Lemma and the

previous inequality thus give

C ≤ lim sup
t→0+

1

t
(EntΩ(νt)− EntΩ(ρ))

≤
ˆ

Ω
lim sup
t→0+

(νt log(νt)− ρ log(ρ)) =

ˆ
Ω

log(ρ)(µ− ρ)

and since EntΩ(ρ) is finite, this gives
´
K log(ρ) > −∞.

The fact that the regularized barycenter is everywhere positive guarantees unique-
ness (up to a constant) of the Kantorovich potential between ρ and ν ∈ P2(Rd) by Re-
mark 2.1.20. This uniqueness is well-known to be very useful in terms of differentiability
of µ 7→ W 2

2 (µ, ν) at µ = ρ as expressed in Lemma 3.2.4 below (which is slight general-
ization of Proposition 7.17 in [104]). The following inequality will be useful to justify the
differentiability of µ 7→

´
P2(Rd)W

2
2 (µ, ν) dP (ν) at µ = ρ:
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Lemma 3.2.2. Let ρ ∈ L1(Ω) and ρ > 0 a.e. on Ω. Then for any compact set K ⊂ Ω and
any convex function u : Ω→ R one has

osc
K
u := max

K
u−min

K
u ≤ diam(K) + r

inf
x∈Kr/2

ρ(Br/2(x))

ˆ
Ω
|∇u|ρ, (3.2.2)

where 0 < r ≤ d(K, ∂Ω) and Kσ =
⋃
x∈K B̄σ(x) for any σ > 0. Moreover, the Lipschitz

constant of u on K, Lip (u|K), can be estimated as

Lip (u|K) ≤ 2 diam(K) + 3r

r inf
x∈K3r/4

ρ(Br/4(x))

ˆ
Ω
|∇u|ρ. (3.2.3)

Remark 3.2.3. Notice that Ω is not necessary convex, thus we say a function u on Ω is
convex if it can be extended to a convex function on Rd (possibly taking value +∞), see
[54].

Proof. Let x1 ∈ arg maxK u, x0 ∈ arg minK u, and w ∈ ∂u(x1). Then for any x ∈ Ω and
z ∈ ∂u(x) one has

u(x0) + z · (x− x0) ≥ u(x) ≥ u(x1) + w · (x− x1),

and thus the Cauchy–Schwarz inequality yields

|z| ≥ oscK u+ w · (x− x1)

|x− x0|
.

Since u is a.e. differentiable, we haveˆ
Ω
|∇u|ρ ≥

ˆ
Wr(x1,w)

|∇u|ρ ≥ osc
K
u

ˆ
Wr(x1,w)

1

|x− x0|
ρ(x) dx

≥ osc
K
u

ˆ
Wr(x1,w)

1

|x− x1|+ |x1 − x0|
ρ(x) dx

≥ osc
K
u
ρ
(
Br/2

(
x+ rw

2|w|

))
diam(K) + r

,

where we have setWr(x,w) := {y ∈ Br(x) : w · (y − x) ≥ 0} and used the fact thatBr/2
(
x+ rw

2|w|

)
⊂

Wr(x,w) and x + rw
2|w| ∈ Kr/2. Finally, the positivity of ρ together with the compactness

of K implies that

inf
{
ρ(Wr(x,w)) : x ∈ K, w ∈ Rd

}
≥ inf

x∈Kr/2
ρ(Br/2(x)) > 0.

The first claim follows.
To prove (3.2.3) we apply (3.2.2) to Kr/2, which yields

osc
Kr/2

u ≤
diam(Kr/2) + r/2

inf
x∈K3r/4

ρ
(
Br/4(x)

) ˆ
Ω
|∇u|ρ

≤ diam(K) + 3r/2

inf
x∈K3r/4

ρ
(
Br/4(x)

) ˆ
Ω
|∇u|ρ.
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Note that for any x ∈ K and w ∈ ∂u(x) one has Br/2(x) ⊂ Kr/2, hence

osc
Kr/2

u ≥ osc
Br/2(x)

u ≥ r

2
|w|.

Therefore,

|w| ≤ 2

r
osc
Kr/2

u ≤ 2 diam(K) + 3r

r inf
x∈K3r/4

ρ
(
Br/4(x)

) ˆ
Ω
|∇u|ρ,

thus we obtain the desired bound on Lip (u|K).

Lemma 3.2.4. For P ∈ P2(P2(Rd)), let ρ := barλ,Ω(P ) and given ν ∈ P2(Rd), let ϕνρ be
the (unique on Ω, up to an additive constant) Kantorovich potential between ρ and ν (for
cost function 1

2 |x− y|). Let µ ∈ L
1(Ω) be a probability density such that µ− ρ has compact

support in Ω, defining ρε := ρ+ ε(µ− ρ) for ε ∈ (0, 1
2), we have

lim
ε→0+

1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ, ν)] =

ˆ
Ω
ϕνρ d(µ− ρ),

and

lim
ε→0+

1

2ε

ˆ
P2(Rd)

[W 2
2 (ρε, ν)−W 2

2 (ρ, ν)] dP (ν) =

ˆ
P2(Rd)

(ˆ
Ω
ϕνρ d(µ− ρ)

)
dP (ν).

Proof. Let us shorten notations by defining

ϕ := ϕνρ, u := uνρ =
1

2
|·|2 − ϕνρ,

and let ϕε be a Kantorovich potential between ρε and ν and uε := 1
2 |·|

2 − ϕε. Let K be
a compact subset of Ω supporting µ − ρ and normalize the potentials u and uε in such a
way that their minimum on K is 0. It immediately follows from the Kantorovich duality
formula that

ˆ
K
ϕε d(µ− ρ) ≥ 1

2ε
[W 2

2 (ρε, ν)−W 2
2 (ρ, ν)] ≥

ˆ
K
ϕd(µ− ρ). (3.2.4)

Now observe that since (∇uε)#ρε = ν, we have

m2(ν) =

ˆ
Ω
|∇uε|2ρε ≥ (1− ε)

ˆ
Ω
|∇uε|2ρ. (3.2.5)

We then deduce from Jensen’s inequality a bound on
´

Ω|∇uε|ρ which does not depend
on ε. Thanks to Lemma 3.2.2, we obtain local uniform bounds on uε and therefore can
deduce that for some vanishing sequence of (εn)n∈N, (uεn)n∈N converges locally uniformly
on Ω to some convex v whose minimum is 0 on K and that (∇uεn)n∈N converges ρ-a.e.
to ∇v. Using continuous bounded test-functions and Lebesgue’s dominated convergence
theorem, we can pass to the limit in ∇uεn#ρεn = ν to deduce that ∇v#ρ = ν, which, with
our normalization and the uniqueness of Brenier’s map implies that u = v and also full
uniform convergence on K of ϕε to ϕ. Passing to the limit in (3.2.4) gives the first claim
of the lemma.
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To prove the second claim, set

θε(ν) :=
1

2ε

[
W 2

2 (ρε, ν)−W 2
2 (ρ, ν)

]
,

and observe that it follows from (3.2.4)-(3.2.5) and Lemma 3.2.2 that θε(ν) can be bounded
from above and from below by two affine functions of m2(ν), the desired result therefore
follows from (3.1.1), Lebesgue’s dominated convergence theorem and the first claim.

We are now in position to characterize the regularized barycenter.

Proposition 3.2.5. For P ∈ P2(P2(Rd)), let ρ ∈ P2(Rd), then ρ = barλ,Ω(P ) if and only
if, denoting by ∇uνρ Brenier’s map between ρ and ν, there are normalizing constants for
uνρ such that ρ has a continuous density given by

ρ(x) := exp
(
− 1

2λ
|x|2 +

1

λ

ˆ
P2(Rd)

uνρ(x) dP (ν)
)

(3.2.6)

for every x ∈ Ω. Moreover, log(ρ) is semi-convex hence differentiable a.e. and for a.e.
x ∈ Ω, one has

x+ λ∇ log(ρ)(x) =

ˆ
P2(Rd)

∇uνρ(x) dP (ν). (3.2.7)

Proof. For necessity fix a compact with non-empty interior subset K of Ω and normalize
ϕνρ = 1

2 | · |
2 − uνρ such that it has minimum 0 on K, then, arguing as in the proof of

Lemma 3.2.4, there is a constant CK such that ‖ϕνρ‖L∞(K) ≤ CK(1 + m2(ν)) so that the
(semi-concave) potential

x 7→ U(x) :=

ˆ
P2(Rd)

ϕνρ(x) dP (ν),

is bounded on K. Now we claim that V := λ log(ρ) + U (which is integrable on K thanks
to Lemma 3.2.1) coincides Lebesgue a.e. with a constant on K (which taking an exhaustive
sequence of compact subsets of Ω will enable to find normalizing constants for uνρ that do
not depend on K and therefore prove (3.2.6)). Assume, by contradiction, that V does not
coincide Lebesgue a.e. with a constant on K, then we could find two measurable subsets
K1 and K2 of K, both of positive Lebesgue measure and α ∈ R and δ > 0 such that

V ≥ α+ δ a.e. on K1, V ≤ α− δ a.e. on K2. (3.2.8)

In particular ρ(K1) > 0 and ρ(K2) > 0, now set β := ρ(K1)
2ρ(K2) and define the probability

density µ ∈ L1(Ω) by

µ(x) :=


1
2ρ(x) if x ∈ K1,

(1 + β)ρ(x) if x ∈ K2,

ρ(x) otherwise,

and ρε := ρ+ ε(µ− ρ). It is straightforward to check that

lim
ε→0+

1

ε
(Ent(ρε)− Ent(ρ)) =

ˆ
K

log(ρ)(µ− ρ).
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With Lemma 3.2.4, the construction of µ and (3.2.8), this yields

lim
ε→0+

1

ε
[VP,λ,Ω(ρε)− VP,λ,Ω(ρ)]

=

ˆ
K
V (µ− ρ) = −1

2

ˆ
K1

V ρ+ β

ˆ
K2

V ρ ≤ −δρ(K1) < 0

contradicting the fact by optimality of ρ, VP,λ,Ω(ρε) ≥ VP,λ,Ω(ρ).
Now assume that ρ ∈ P2(Rd) satisfies (3.2.6), and let µ ∈ P2(Rd) be supported on Ω

and such that EntΩ(µ) <∞. Using the convexity of the entropy firstly gives

λEntΩ(µ) ≥ λEntΩ(ρ) + λ

ˆ
Ω

log(ρ)(µ− ρ). (3.2.9)

Secondly, by Kantorovich duality formula and using the fact that ϕνρ is a Kantorovich
potential between ρ and ν, we get

1

2

ˆ
P2(Rd)

W 2
2 (µ, ν) dP (ν) ≥ 1

2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν)

+

ˆ
P2(Rd)

(ˆ
Ω
ϕνρ d(µ− ρ)

)
dP (ν).

Adding (3.2.9), observing that (3.2.6) means that λ log ρ+
´
P2(Rd) ϕ

ν
ρ dP (ν) = 0 and using

Fubini’s theorem, we thus get

VP,λ,Ω(µ) ≥ VP,λ,Ω(ρ),

so that ρ = barλ,Ω(P ).
Let us now prove (3.2.7). Since

Φ :=

ˆ
P2(Rd)

uνρ dP (ν)

is convex, log ρ is semi-convex. It is therefore differentiable a.e. Now we claim that if x ∈ Ω
is a differentiability point of Φ it also has to be a differentiability point of uνρ for P -almost
every ν. Indeed, assume that Φ is differentiable at x ∈ Ω. For n ∈ N∗, let An denote the
set of ν ∈ P2(Rd) for which there exist pν and qν in ∂uνρ(x) such that |pν − qν | ≥ 1/n. The
desired claim will be established if we prove that P (An) = 0 for every n ∈ N∗. Let then
(qν , pν) ∈ ∂uνρ(x)2 be chosen (in a measurable way) so that |pν − qν | ≥ 1/n when ν ∈ An,
then, for every h ∈ Ω− x, one has

uνρ(x+ h)− uνρ(x)− 1

2
(pν + qν) · h ≥ 1

2
|(pν − qν) · h|,

so that, by integration s :=
´
P2(Rd)

pν+qν
2 dP (ν) ∈ ∂Φ(x) = {∇Φ(x)} and then

Φ(x+ h)− Φ(x)− s · h = o(h) ≥ 1

2

ˆ
An

|(pν − qν) · h|dP (ν).

By homogeneity, we thus have
´
An
|(pν − qν) · h|dP (ν) = 0 for every h. This implies´

An
|pν − qν | dP (ν) = 0 ≥ P (An)/n and therefore P (An) = 0. Hence, if Φ is differentiable

at x, for every h ∈ Rd, we have

uνρ(x+ th)− uνρ(x)

t
→ ∇uνρ(x) · h as t→ 0+, for P -a.e. ν.
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Moreover, the left-hand side above is controlled in absolute value by the Lipschitz constant
of uνρ in a compact neighbourhood of x which, thanks to Lemma 3.2.2, in turn, is controlled
by ˆ

Ω

∣∣∇uνρ∣∣ρ =

ˆ
Rd
|y|dν(y) ≤

√
m2(ν).

Thanks to (3.1.1) and Lebesgue’s dominated convergence theorem, we thus get

∇Φ(x) =

ˆ
P2(Rd)

∇uνρ(x) dP (ν),

which shows (3.2.7).

Remark 3.2.6 (A first regularizing effect). One immediately deduces from (3.2.6) and the
convexity of uνρ, further regularity properties of the regularized barycenter:

log(ρ) ∈ L∞loc(Ω), ρ ∈W 1,∞
loc (Ω), and ∇ρ ∈ BVloc(Ω,Rd).

Example 3.2.7 (Gaussian case). Suppose now that P is concentrated on Gaussian measures
and Ω = Rd; then the regularized barycenter is Gaussian as well. In order to prove this we
can assume thanks to Proposition 3.1.5 that P -a.e. ν = N (0, Sν), where Sν are positive
semi-definite matrices with EP [Sν ] ≤ σ2I, σ > 0. We want to prove that there is a positive
definite symmetric matrix S̄ such that

barλ(P ) = N (0, S̄).

In order to see that, recall that the optimal transport T νρ from ρ = N (0, S) to ν = N (0, Sν)
is given by (see e.g. [47])

T νρ (x) := S−1/2
(
S1/2SνS

1/2
)1/2

S−1/2︸ ︷︷ ︸
=:TSνS

x.

Thus uνρ = 1
2x · T

Sν
S x+ C, and the optimality condition (3.2.6) can be rewritten as

−λ
2
x · S̄−1x = −|x|

2

2
+

1

2
EP
[
x · TSνS x

]
+ C,

i.e.
I = λS̄−1 + S̄−1/2 EP

[(
S̄1/2Sν S̄

1/2
)1/2

]
S̄−1/2.

Thus S̄ has to be a solution of the following fixed-point equation

S = Φ(S) := λI + EP
[(
S1/2SνS

1/2
)1/2

]
.

This has a solution by Brouwer’s fixed-point theorem. Indeed, denote by αν the largest
eigenvalue of Sν . Then, by assumption

EP [αν ] ≤ trEP [Sν ] ≤ dσ2.
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Define
α := 2λ+ dσ2,

then for any λI ≤ S ≤ αI it holds that

Φ(S) ≤
(
λ+ EP

[
(ανα)1/2

])
I ≤

(
λ+

α

2
+

EP [αν ]

2

)
I

≤
(
λ+

α

2
+
dσ2

2

)
I = αI.

So, Φ(·) maps the convex set {λI ≤ S ≤ αI} to itself, and it is clearly continuous. The
existence of S̄ such that S̄ = Φ(S̄) therefore follows from Brouwer’s fixed-point theorem.

Example 3.2.8 (Discrete case). Consider now the case where Ω = Rd and P is a discrete
measure supported on discrete measures

P =
∑
i∈I

piδνi with νi :=
∑
j∈Ji

νji δxji
,

where I and each Ji are finite and for every i ∈ I, the points (xji )j∈Ji are pairwise distinct
and the weights νji are positive. Then, it follows from Proposition 3.2.5 that ρ = barλ(P )
has the form

ρ(x) = exp
(
− 1

2λ
|x|2 +

1

λ

∑
i∈I

piui(x)
)
,

where ∇ui is the optimal transport between ρ and νi so that ui takes the form

ui(x) = max
j∈Ji
{x · xji − v

j
i } := uvi(x),

where the vi = (vji )j∈Ji should match the mass conservation condition, i.e. be such that

νji = ρ(∂u∗vi(x
j
i )), ∀i ∈ I, ∀j ∈ Ji. (3.2.10)

In the semi-discrete optimal terminology, ∂u∗vi(x
j
i ) is the so-called Laguerre cell where uvi

coincides with x 7→ x · xji − vji . Computing ρ = barλ(P ) therefore amounts to finding
{vji , i ∈ I, j ∈ Ji} such that (3.2.10) holds for ρ depending on the vji as well:

ρ(x) = exp
(
− 1

2λ
|x|2 +

1

λ

∑
i∈I

pi max
j∈Ji
{x · xji − v

j
i }
)
. (3.2.11)

Using results from [68] concerning the differentiability of the Kantorovich functional in the
semi-discrete case, it is easy to see that the non-linear system (3.2.10)–(3.2.11) is the system
of Euler–Lagrange equations for the finite-dimensional concave maximization problem

sup
vji

−∑
i∈I

pi
∑
j∈Ji

vji ν
j
i − λ

ˆ
Rd

exp
(
− 1

2λ
|x|2 +

1

λ

∑
i∈I

pi max
j∈Ji
{x · xji − v

j
i }
)

dx

 ,
which is the dual of the entropic barycenter problem in this semi-discrete setting.
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3.3 Properties of the entropic barycenter

3.3.1 Global bounds

The aim of this paragraph is to emphasize some global bounds on the entropic barycenter
which hold in the case where Ω may be unbounded, in particular it covers the case of the
whole space.

Lemma 3.3.1. The entropic Wasserstein barycenter ρ of P ∈ P2(P2(Rd)) enjoys the
following bound on the Fisher information:

ˆ
Ω
|∇ log(ρ)|2ρ ≤ 1

λ2

ˆ
P2(Rd)

W 2(ρ, ν) dP (ν).

In particular,
√
ρ ∈ H1(Ω), hence in case Ω = Rd it holds that ρ ∈ L∞(R) ∩ C0,1/2(R) if

d = 1, ρ ∈ Lq(R2) for every q ∈ [1,+∞) if d = 2 and ρ ∈ L
d
d−2 (Rd) if d ≥ 3. Finally,

(1 + |x|)∇ρ ∈ L1(Rd).

Proof. According to Proposition 3.2.5

∇ log(ρ(x)) =
1

λ

ˆ
P2(Rd)

(
∇uνρ(x)− x

)
dP (ν) = − 1

λ

ˆ
P2(Rd)

∇ϕνρ(x) dP (ν),

thus ˆ
Ω

|∇ρ|2

ρ
=

ˆ
Ω
|∇ log(ρ)|2ρ ≤ 1

λ2

ˆ
Ω
ρ(x)

ˆ
P2(Rd)

∣∣∇ϕνρ(x)
∣∣2 dP (ν) dx,

and using Fubini’s Theorem, we get that

ˆ
Ω

|∇ρ|2

ρ
≤ 1

λ2

ˆ
P2(Rd)

[ˆ
Ω

∣∣∇ϕνρ∣∣2ρ] dP (ν) =
1

λ2

ˆ
P2(Rd)

W 2
2 (ρ, ν) dP (ν).

Finally, (1 + |x|)∇ρ = 2 (1 + |x|)
√
ρ∇
√
ρ belongs to L1(Rd) since both (1 + |x|)

√
ρ and

∇
√
ρ are in L2(Rd).

Proposition 3.3.2. Let p ≥ 1, and assume that
ˆ
P2(Rd)

mp(ν) dP (ν) < +∞ (3.3.1)

(where mp(ν) :=
´
Rd |x|

p dν(x)). Then the entropic-Wasserstein barycenter ρ of P satisfies
mp(ρ) < +∞, and more precisely, for any r > 0 it holds that

mp(ρ) ≤ 6p

2

(
rp +

ˆ
P2(Rd)

mp(ν) dP (ν)

)
+
Ld(B1(0)) Γ

(
d+p

2

)
2Ld(Ω ∩Br(0))

(96λ)(d+p)/2. (3.3.2)

In particular, if Ω = Rd, then

mp(ρ) ≤ 6p

2

ˆ
P2(Rd)

mp(ν) dP (ν) + (3456λ)p/2 Γ

(
d+ p

2

)
. (3.3.3)
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Proof. Fix r > 0 s.t. Ld(Ω∩Br(0)) > 0 and denote S := Ω∩Br(0). Now let us take R > 0
and consider the set

QR :=
{
x ∈ BR(0) \BR/2(0) : |x| ≥ 3

(
E
∣∣T νρ (x)

∣∣+ r
)}
. (3.3.4)

Here and after, expectations are taken w.r.t. ν ∼ P . Assume ρ(QR) > 0 and define

ρt := ρ+ t

(
ρ(QR)

Ld(S)
1S −ρ1QR

)
∈ P2(Ω), 0 ≤ t ≤ 1.

Then

d

dt
EntΩ(ρt)

∣∣∣∣
t=0+

=
ρ(QR)

Ld(S)

ˆ
S

log ρ−
ˆ
QR

ρ log ρ

≤ ρ(QR) log

(
ρ(S)

Ld(S)

)
− ρ(QR) log

(
ρ(QR)

Ld(QR)

)
≤ ρ(QR) log

(
Ld(QR)ρ(S)

ρ(QR)Ld(S)

)
≤ ρ(QR) log

(
Ld(BR(0))

ρ(QR)Ld(S)

)
= ρ(QR) log

(
VdR

d

ρ(QR)Ld(S)

)
,

where Vd := Ld(B1(0)) is the volume of the unit ball in Rd. Furthermore, for any ν we can
estimate W 2

2 (ρ1, ν) using the transport plan

γ := (id, T νρ )#

(
ρ1Rd\QR

)
+

1

Ld(S)
1S ⊗

(
T νρ
)

#
(ρ1QR) ∈ Π(ρ1, ν),

which gives us

W 2
2 (ρ1, ν) ≤

ˆ
Rd\QR

∣∣T νρ (x)− x
∣∣2ρ+

 
S

[ˆ
QR

∣∣T νρ (x)− y
∣∣2ρ(x)

]
dy

≤W 2
2 (ρ0, ν) +

ˆ
QR

[(
r +

∣∣T νρ (x)
∣∣)2 − ∣∣T νρ (x)− x

∣∣2] ρ
≤W 2

2 (ρ0, ν) +

ˆ
QR

[
r2 + 2r

∣∣T νρ (x)
∣∣− |x|2 + 2

∣∣T νρ (x)
∣∣|x|] ρ.

Then it is easy to see that, due to convexity of W 2
2 (·, ·),

d

dt
EW 2

2 (ρt, ν)

∣∣∣∣
t=0+

≤ EW 2
2 (ρ1, ν)− EW 2

2 (ρ0, ν)

≤
ˆ
QR

[
r2 + 2 (r + |x|)E

∣∣T νρ (x)
∣∣− |x|2] ρ

=

ˆ
QR

[(
r + E

∣∣T νρ (x)
∣∣)2 − (|x| − E

∣∣T νρ (x)
∣∣)2] ρ

≤ −1

3

ˆ
QR

|x|2ρ ≤ −ρ(QR)R2

12
.
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Therefore,
d

dt
VP,λ,Ω(ρt)

∣∣∣∣
t=0+

≤ λρ(QR)

(
log

(
VdR

d

ρ(QR)Ld(S)

)
− R2

24λ

)
.

On the other hand, by optimality this derivative should be non-negative, thus

ρ(QR) ≤ VdR
d

Ld(S)
exp

(
− R2

24λ

)
. (3.3.5)

Now we set Rn = 2n and define qn := ρ(QRn), n ∈ Z. Note that by the definition (3.3.4)
of QR, if x ∈ Ω \

⋃
n∈ZQRn , then |x| < 3

(
E
∣∣∣T νρ (x)

∣∣∣+ r
)
. Consequently,

mp(ρ) =

ˆ
Ω
|x|pρ ≤

ˆ
Ω\

⋃
n∈ZQRn

3p
(
E
∣∣T νρ ∣∣+ r

)p
ρ+

∑
n∈Z

Rpnqn.

Using the fact that (a + b)p ≤ 2p−1(ap + bp),
(
T νρ

)
#
ρ = ν, and Jensen’s inequality, one

can bound the first term on the r.h.s. as follows:
ˆ

Ω\
⋃
n∈ZQ2n

3p
(
E
∣∣T νρ (x)

∣∣+ r
)p
ρ ≤ 6p

2

(
rp + E

ˆ
Ω

∣∣T νρ ∣∣pρ) =
6p

2
(rp + Emp(ν)) .

Now let us bound the second term: due to (3.3.5) we get

∑
n∈Z

Rpnqn ≤
Vd
Ld(S)

∑
n∈Z

Rd+p
n exp

(
− R

2
n

24λ

)

≤ Vd
Ld(S)

∑
n∈Z

ˆ 2n+1

2n
xd+p−1 exp

(
− x2

96λ

)
dx

=
Vd
Ld(S)

ˆ +∞

0
xd+p−1 exp

(
− x2

96λ

)
dx

=
Vd(96λ)(d+p)/2

2Ld(S)
Γ

(
d+ p

2

)
.

Combining the above bounds together we obtain

mp(ρ) ≤ 6p

2
(rp + Emp(ν)) +

Vd(96λ)(d+p)/2

2Ld(S)
Γ

(
d+ p

2

)
,

thus the first claim follows.
Finally, in case Ω = Rd, we can take r =

√
96λ

6p/(p+d)
, then using Ld(S) = Vdr

d one obtains

mp(ρ) ≤ 6p

2
Emp(ν) +

(
6d/(p+d)

√
96λ

)p 1 + Γ
(
d+p

2

)
2

≤ 6p

2
Emp(ν) + (3456λ)p/2 Γ

(
d+ p

2

)
.
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Remark 3.3.3. Note that (3.3.3) (and thus, in some sense, (3.3.2)) is an interpolation be-
tween two bounds. On the one hand, if λ = 0, then ρ is a standard Wasserstein barycenter
and, due to convexity of mp(·) along generalized geodesics, one gets the bound

mp(ρ) ≤
ˆ
P2(Rd)

mp(ν) dP (ν).

On the other hand, if P is concentrated at the measure δ0, then ρ = N (0, λI) by Proposi-
tion 3.2.5. In this case,

mp(ρ) =
(2λ)p/2 Γ

(
p+d

2

)
Γ
(
d
2

) ,

which coincides with the second term in the r.h.s. of (3.3.3) up to a constant factor to the
power p and a factor depending on the dimension.
Remark 3.3.4. Let us indicate now a more elementary approach to obtain moment bounds
when Ω is convex. Let V : Rd → R+ be a convex potential such thatˆ

P2(Rd)
mV (ν) dP (ν) < +∞, where mV (ν) :=

ˆ
Rd
V (x) dν(x).

On the one hand, thanks to (3.2.7), the convexity of V and the fact that ∇uνρ#
ρ = ν, we

have ˆ
Ω
V (λ∇ log ρ(x) + x)ρ(x) dx ≤

ˆ
P2(Rd)

mV (ν) dP (ν).

On the other hand, again by convexity

V (λ∇ log ρ(x) + x)ρ(x) ≥ V (x)ρ(x) + λ∇V (x) · ∇ρ(x).

Integrating by parts (which can be justified if V is C1,1 and using Lemma 3.3.1), denoting
by η the outward normal to Ω on ∂Ω, we thus getˆ

Ω
(V − λ∆V )ρ ≤

ˆ
P2(Rd)

mV (ν) dP (ν)− λ
ˆ
∂Ω
∂ηV ρ. (3.3.6)

Assuming (3.3.1) and choosing V (x) = |x− x0|p (actually, some suitable C1,1 approxima-
tions of V ) with p ≥ 2 in (3.3.6) with x0 ∈ Ω, observing that ∂ηV ≥ 0 on ∂Ω since Ω is
convex, we obtain the boundˆ

Ω

(
|x− x0|p − λp(p+ d− 2) |x− x0|p−2

)
ρ(x) dx ≤

ˆ
Ω

ˆ
Rd
|x− x0|p dν(x) dP (ν).

In particular, when Ω = Rd or, more generally, when Ω is convex and contains 0, we have

m2(ρ) ≤ 2λd+

ˆ
P2(Rd)

m2(ν) dP (ν),

and for higher moments

mp(ρ) ≤ λp(p+ d− 2)mp−2(ρ) +

ˆ
P2(Rd)

mp(ν) dP (ν).

Note finally that when choosing V linear, the two convexity inequalities we used above are
equalities, yielding ˆ

Ω
xρ(x) dx+ λ

ˆ
∂Ω
ηρ =

ˆ
P2(Rd)

ˆ
Rd
x dν(x) dP (ν).
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Corollary 3.3.5. Under assumptions of Proposition 3.3.2 it holds that ρ1/p ∈ W 1,p(Ω).
In particular, if p > d, then ρ ∈ L∞(Ω) ∩ C0,1−d/p(Ω).

Proof. Once we have a bound on mp(ρ), the fact that ρ1/p is W 1,p can be proved as for
Lemma 3.3.1. Indeed, by the same arguments together with the crude bound∣∣∇uνρ(x)− x

∣∣p ≤ 2p−1
(∣∣∇uνρ(x)

∣∣p + |x|p
)
,

we arrive at

pp
∣∣∣∇ρ1/p

∣∣∣p
Lp(Ω)

=

ˆ
Ω

|∇ρ|p

ρp−1 ≤
2p−1

λp

(ˆ
P2(Rd)

mp(ν) dP (ν) +mp(ρ)

)
.

3.3.2 Stability

Following [76], let us define the p-Wasserstein metric between measures on Pp(Rd)

Wp
p (P,Q) := inf

Γ∈Π(P,Q)

ˆ
Pp(Rd)×Pp(Rd)

W p
p (µ, ν) dΓ (µ, ν).

Lemma 3.3.6 (Stability). Take p ≥ 2 and let {Pn}n≥1 ⊂ Pp
(
Pp(Rd)

)
, P ∈ Pp

(
Pp(Rd)

)
be s.t. Wp(Pn, P )→ 0. Then for ρn = barλ,Ω(Pn) and ρ = barλ,Ω(P ) it holds that

Wp(ρn, ρ) −→ 0, (3.3.7)

ρ1/p
n

W 1,p(Ω)−−−−−→ ρ1/p, (3.3.8)

log ρn
W 1,q

loc (Ω)
−−−−−→ log ρ, ∀ 1 ≤ q <∞. (3.3.9)

Proof. Proof of (3.3.7). Note that since W2(·, ·) ≤ Wp(·, ·) and W2(·, ·) ≤ Wp(·, ·), one
has W2(Pn, P )→ 0. According to the proof of Proposition 3.1.2, m2(ρn) (m2(ρ)) are uni-
formly bounded, thus by (3.1.3) EntΩ(ρn) (EntΩ(ρ)) are bounded from below. Moreover,
replacement of Ω with its closure Ω does not change an entropic-Wasserstein barycenter.
Then Theorem 5.5 from [71] that W2(ρn, ρ)→ 0.

Arguing in the same way as in the proof of Proposition 3.3.2, one can show that for
any R > 0

ˆ
{|x|≥R}

|x|pρn ≤ C
[ˆ
Pp(Rd)

ˆ
{|x|≥R}

(
1 +

∣∣∇uνρn∣∣p) ρn dPn(ν)

+

ˆ +∞

R
xd+p−1 exp

(
− x2

96λ

)
dx

]
,

(3.3.10)

where the constant C depends solely on Ω, λ, p, and d.
To prove thatWp(ρn, ρ)→ 0, we also need the following result on continuity of optimal

transport plans: once W2(ρn, ρ) → 0, Wp(νn, ν) → 0, and there exists a unique optimal
transport plan γνρ from ρ to ν for the quadratic cost function, one has

J(γνnρn , γ
ν
ρ )→ 0,
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where J(·, ·) is the optimal transport cost for the cost function

c
(
(x1, y1), (x2, y2)

)
= |x1 − x2|2 + |y1 − y2|p, xi, yi ∈ Rd,

and γνnρn is any optimal transport plan from ρn to νn for the quadratic cost function. Indeed,
ˆ
|x− y|2 dγνnρn = W 2

2 (ρn, νn)→W 2
2 (ρ, ν) =

ˆ
|x− y|2 dγνρ ,

then γνnρn ⇀ γνρ due to Prokhorov’s theorem and uniqueness of the optimal transport plan.
Moreover,
ˆ
Rd×Rd

(
|x|2 + |y|p

)
dγνnρn (x, y) = m2(ρn) +mp(νn)

→ m2(ρ) +mp(ν) =

ˆ
Rd×Rd

(
|x|2 + |y|p

)
dγνρ (x, y),

thus the convergence follows from Theorem 3.7 [71]. Further, using Theorem 3.7 [71] again,
it is easy to see that for any closed set G ⊂ Rd the function

(ρ, ν) 7→
ˆ
G

(
1 +

∣∣∇uνρ∣∣p) ρ =

ˆ
G×Rd

(1 + |y|p) dγνρ (x, y)

is upper-semicontinuous w.r.t. convergence in W2 distance (for ρ) and Wp distance (for ν),
as well as its average w.r.t. a measure on Pp(Rd)

(ρ, P ) 7→
ˆ
Pp(Rd)

ˆ
G

(
1 +

∣∣∇uνρ∣∣p) ρ dP (ν).

Hence for all R > 0 one obtains

lim sup
n→∞

ˆ
Pp(Rd)

ˆ
{|x|≥R}

(
1 +

∣∣∣∇uνρn∣∣∣p) ρn dPn(ν) ≤
ˆ
Pp(Rd)

ˆ
{|x|≥R}

(
1 +

∣∣∇uνρ∣∣p) ρdP (ν).

Using this together with (3.3.10), we get that

lim sup
n→∞

ˆ
{|x|≥R}

|x|pρn ≤ C
[ˆ
{|x|≥R}

(ˆ
Pp(Rd)

(
1 +

∣∣∇uνρ∣∣p) dP (ν)

)
ρ

+

ˆ +∞

R
xd+p−1 exp

(
− x2

96λ

)
dx

]
→ 0 as R→ 0.

Thus the measures (|·|pρn)n∈N are uniformly integrable, and by the criterion of convergence
in a Wasserstein space (see e.g. Theorem 6.9 [113]), we deduce that Wp(ρn, ρ) → 0 as
n→∞.

Proof of (3.3.8) and (3.3.9). Fix an arbitrary open set U ⊂⊂ Ω. By Lemma 3.2.2

Lip
(
uνρn

∣∣
U

)
≤ C

inf
x∈U3r/4

ρn
(
Br/4(x)

) (ˆ
Ω
|∇uνρn |

2ρn

)1/2

=
C

inf
x∈U3r/4

ρn
(
Br/4(x)

)√m2(ν),
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where r = d(U, ∂Ω). Since ρn ⇀ ρ and ρ > 0 on Ω, we have inf
x∈U3r/4

ρn
(
Br/4(x)

)
≥ c > 0

for any n. Therefore, the functions

ūn = λ log ρn +
|·|2

2
=

ˆ
P2(Rd)

uνρn dPn(ν)

are uniformly Lipschitz continuous on U for all n since
´
P2(Rd)m2(ν) dPn(ν) are uniformly

bounded. Furthermore, as ρn ⇀ ρ > 0, ūn are also uniformly bounded on U . Then,

by the Arzelà–Ascoli theorem, ūn
C(U)−−−→ ū, and we deduce from weak convergence that

ū = λ log ρ + |·|2
2 . Moreover, every ūn is convex, thus ∇ūn → ∇ū a.e. on U . Hence, by

Lebesgue’s dominated convergence theorem, we get ūn
W 1,q(U)−−−−−→ ū for any 1 ≤ q <∞ and

thus (3.3.9).
Further, using (3.2.7), we get

ˆ
Ω\U

∣∣∣∇ρ1/p
n

∣∣∣p =
1

pp

ˆ
Ω\U
|∇ log ρn|

pρn ≤
2p−1

(pλ)p

ˆ
Ω\U

(|∇ūn|p + |x|p) ρn.

Since the functions ρ 7→
´

Ω\U |x|
pρ and (ρ, P ) 7→

´
Pp(Rd)

´
Ω\U

∣∣∇uνρ∣∣pρdP (ν) are u.s.c., we
obtain that

lim sup

ˆ
Ω\U

∣∣∣∇ρ1/p
n

∣∣∣p → 0 as U → Ω

(e.g. in a sense that ρ(Ω \ U) → 0). Finally, this together with (3.3.9) yields that

ρ
1/p
n

W 1,p(Ω)−−−−−→ ρ1/p.

In particular, the previous lemma shows that one can approximate the barycenter ρ
by approximating P with discrete measures supported on some dense set of measures, e.g.
discrete or having smooth densities. As another corollary of Lemma 3.3.6, in Section 3.5
we will obtain a law of large numbers for entropic-Wasserstein barycenters.

3.3.3 A maximum principle

Proposition 3.3.7. Assume that Ω is convex and P
(
{ν ∈ P2(Rd) : ν(Ω) = 1}

)
= 1, and

let ρ := barλ,Ω(P ) be its entropic Wasserstein barycenter. Then

‖ρ‖L∞(Rd) ≤

(ˆ
P2(Rd)

‖ν‖−1/d

L∞(Rd)
dP (ν)

)−d
.

Proof. We first prove the result in the simple case where P is supported by finitely many
measures and then proceed by approximation thanks to the stability Lemma 3.3.6 (more
precisely, its corollary Theorem 3.5.1).

Step 1: the case of finitely many measures.
Fix a compact convex setK ⊂ Ω with non-empty interior. Assume that P =

∑N
i=1 piδνi ,

where each νi is supported in K and has a C0,α, bounded away from 0 density on K. Since
K is bounded, all uνiρ are Lipschitz, so we can take the continuous version of ρ on Ω.

Now fix an arbitrary x ∈ Ω \ K. Since ρ > 0 on Ω and
(
∇uνiρ

)
#
ρ = νi for all i, there
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are subgradients ∇uνiρ (x) ∈ K. Let y =
∑N

i=1 pi∇u
νi
ρ (x) ∈ K, v = y−x

|y−x| , then thanks to
(3.2.6)

∂v log ρ(x) ≥ 1

λ
〈y − x, v〉 =

1

λ
|y − x| > 0,

therefore x cannot be a maximum point of ρ, and ρ actually attains its maximum on K.
Further, since log(ρ) ∈W 1,∞

loc (Ω), the regularity result of Cordero-Erausquin and Figalli
[40] yields that uνiρ is in fact C2,α

loc . Then at its maximum point x ∈ Ω we should have, on
the one hand

N∑
i=1

piD
2uνiρ (x) ≤ I.

On the other hand, using the Monge-Ampère equation ρ = det
(
D2uνiρ

)
νi

(
∇uνiρ

)
(see

also (3.4.3)), we get

ρ(x) ≤ ‖νi‖L∞(Rd) det
(
D2uνiρ (x)

)
, i = 1, . . . , N.

So, using the concavity of det(·)1/d over symmetric positive semi-definite matrices, we
obtain

N∑
i=1

pi

(
ρ(x)

‖νi‖L∞(Rd)

)1/d

≤
N∑
i=1

pi det
(
D2uνiρ (x)

)1/d

≤ det

(
N∑
i=1

piD
2uνiρ (x)

)1/d

≤ 1,

which gives

ρ ≤

(
N∑
i=1

pi‖νi‖−1/d

L∞(Rd)

)−d
.

Of course, the requirement that νi is bounded away from 0 is just here to justify twice
differentiability of uνiρ , if we drop this assumption replacing νi by νni = (1− 1

n)νi + 1
nLd(K)

,
using Lemma 3.3.6, we get the same conclusion by letting n → ∞. In a similar way,
Hölder regularity of the νi’s can also be removed by suitably mollifying these measures
and arguing by stability again. Finally, if P =

∑N
i=1 piδνi with m2(νi) < +∞, we can find

an increasing sequence of compact convex sets Kn ⊂ Ω, such that for every n ∈ N

max
i=1,...,N

ˆ
Rd\Kn

(
1 + |x|2

)
dνi(x) ≤ 1

n
.

Set

νni :=
νi 1Kn
νi(Kn)

≤ n

n− 1
νi, Pn :=

N∑
i=1

piδνni ,

then ρn := barλ,Ω(Pn) is bounded with

ρn ≤
n

n− 1

(
N∑
i=1

pi‖νi‖−1/d

L∞(Rd)

)−d
.
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Since W2(νni , νi)→ 0 for all 1 ≤ i ≤ N , we have W2
2 (Pn, P )→ 0, thus stability enables us

to conclude that

ρ ≤

(
N∑
i=1

pi‖νi‖−1/d

L∞(Rd)

)−d
.

Step 2: the general case.
We now consider the case of a general Borel probability P ∈ P2(P2(Rd)) and concen-

trated on measures giving full mass to Ω. Let ν1, ν2, . . . be i.i.d. random measures drawn
from P . Then, by Theorem 3.5.1, the empirical barycenters ρn := barλ,Ω(Pn), where
Pn := 1

n

∑n
i=1 δνi is the empirical measure, a.s. converge to ρ in the 2-Wasserstein distance.

Since
1

n

n∑
i=1

‖νi‖−1/d

L∞(Rd)
→

ˆ
P2(Rd)

‖ν‖−1/d

L∞(Rd)
dP (ν) a.s.

by the strong law of large numbers, we conclude by lower semicontinuity of the L∞-norm
w.r.t. W2-convergence using Step 1.

Remark 3.3.8. If, under the assumptions of the above proposition,

P
(
{ν ∈ L∞(Rd), ν ≤ C}

)
= α > 0,

then it gives

‖ρ‖L∞(Rd) ≤
C

αd
.

The same bound was obtained in Theorem 6.1 from [67] for 2-Wasserstein barycenters on
Riemannian manifolds.

The following simple example shows that convexity of Ω is essential for the maximum
principle (even if P -a.e. measure ν is concentrated on Ω).

Example 3.3.9. Consider the one-dimensional case where Ω = [−8,−4] ∪ [−1, 1] ∪ [4, 8].
Let P = 1

2δν− + 1
2δν+ , ν− = 1

4 1(−8,−4), ν+ = 1
4 1(4,8). First, we take λ = 0, thus

ρ0 := barΩ,0(P ) is an ordinary Wasserstein barycenter (constrained to be supported on
Ω). It is easy to see that ρ0 is actually supported on [−1, 1], so ‖ρ0‖L∞(Ω) ≥ 1

2 while
‖ν−‖L∞(Ω) = ‖ν+‖L∞(Ω) = 1

4 . Now we consider ρλ := barΩ,λ(P ) and let λ → 0. By com-
pactness, we readily get that ρλ ⇀ ρ0, so, for λ small enough, we have ‖ρλ‖L∞(Ω) >

1
4 .

Finally, by rescaling, one can construct examples violating the maximum principle for any
λ > 0.

3.4 Higher regularity

3.4.1 The bounded case

The theory developed so far has needed very mild assumptions on Ω. To deduce higher
regularity (up to the boundary) of the Kantorovich potentials and the barycenter we need
to impose more conditions on the domain.
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Suppose that P is concentrated on sufficiently regular probability measures supported
on a closed ball of radius R > 0, B̄ := Ω = B̄R(0), more precisely, assume that for some
α ∈ (0, 1), k ∈ N∗ and C > 0

P
({
ν ∈ Pac(Rd) : ν(Ω) = 1, ‖ν‖Ck,α(Ω) + ‖log ν‖L∞(Ω) ≤ C

}
︸ ︷︷ ︸

=:Qk,α

)
= 1. (3.4.1)

Remark 3.4.1. The following arguments are presented here for the case of a ball for sim-
plicity but work for compact convex sets with Ck+2,α-boundary which are strongly convex
with a uniform modulus of convexity. More precisely, we require that there are m-strongly
convex functions Hν , H ∈ Ck+2,α(Rd) for m > 0 such that

Ω = {x ∈ Rd : H(x) < 0}, ∂Ω = {x ∈ Rd : H(x) = 0},
supp ν = {x ∈ Rd : Hν(x) ≤ 0}, ∂(supp ν) = {x ∈ Rd : Hν(x) = 0},

and there is an R > 0 such that Ω, supp ν ⊂ BR(0) for P -a.e. ν. We add remarks at the
proofs that significantly depend on the domain.

Thanks to the entropic regularization, this regularity implies regularity for the poten-
tials and the barycenter.

Proposition 3.4.2. Under assumption (3.4.1) for k ∈ N∗, one has

uνρ ∈ Ck+2,α(Ω) for P -a.e. ν and ρ ∈ Ck+2,α(Ω),

and there is a constant K > 0 such that∥∥uνρ∥∥Ck+2,α(Ω)
,
∥∥uρν∥∥Ck+2,α(Ω)

≤ K for P -a.e. ν.

Furthermore, for P -a.e. ν the transport ∇uνρ : Ω→ Ω is a diffeomorphism of class Ck+1,α.

Proof. By (3.4.1) P -a.e. ν ∈ C0,α(Ω) is bounded from below and above on Ω by a constant
only depending on C. With the representation of ρ in (3.2.6) we obtain that ∇ log ρ is
bounded by 2R/λ a.e. Together with

´
ρ = 1 this implies that ‖log ρ‖C0,1(Ω) is bounded

by a constant only depending on R and λ.
This implies by Caffarelli’s regularity theory for Monge-Ampère equations (see [25] for

the original paper and Theorem 3.3 [44] for a concise formulation) that for any ν ∈ Qk,α,
uνρ ∈ C2,α(Ω) and ∇uνρ : Ω→ Ω is a diffeomorphism.

For the uniform estimate again by Caffarelli’s regularity theory for Monge-Ampère
equations (theorem on page 3 (1143) of [23]) there is an α1 ∈ (0, 1) and constant C1 (only
depending on α1, C and R) such that∥∥uνρ∥∥C1,α1 (Ω)

,
∥∥uρν∥∥C1,α1 (Ω)

≤ C1 for every ν ∈ Qk,α.

This implies in particular ρ ∈ C1,α1(Ω) by (3.2.6) and we can apply Theorem 3.6.7 to see
that

Φρ :
{
ν ∈ C0,α1(Ω) : ν(Ω) = 1, ‖log ν‖L∞(Ω) <∞

}
→ M

ν 7→ uρν

is continuous (where M denotes the set of C2,α1(Ω) convex potentials u with zero mean
such that |∇u| = R on ∂Ω). Now note that, by the compact embedding of Hölder spaces,
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Qk,α is compact in C0,α1(Ω). This implies that Φρ(Qk,α) is compact in C2,α1(Ω). Hence,
there is a K1 > 0 such that ∥∥uρν∥∥C2,α1 (Ω)

≤ K1 for P -a.e. ν.

Furthermore, since each uρν is strongly convex thanks to compactness of Φρ(Qk,α) we
conclude that there is constant c > 0 such that

D2uρν ≥ c for P -a.e. ν, (3.4.2)

so that we obtain ∥∥D2uνρ
∥∥
L∞(Ω)

≤ c for P -a.e. ν,

which gives ρ ∈ C1,1(Ω) and then again by Caffarelli’s regularity theory for Monge-Ampère
equations uνρ ∈ C3,α(Ω). Differentiating now the Monge-Ampère equation (which is satis-
fied in the classical sense)

det(D2uνρ)ν(∇uνρ) = ρ in Ω,∣∣∣∇uνρ∣∣∣2 = R2 on ∂Ω,

in direction e ∈ Sd−1, we obtain by the same considerations as in the computation in
Proposition 3.6.6

div(Aν∇(∂eu
ν
ρ)) = ∂eρ in Ω,

∇uνρ · ∇(∂eu
ν
ρ) = 0 on ∂Ω,

where Aν = ν(∇uνρ) det(D2uνρ)(D2uνρ)−1. Thanks to Lemma 3.6.3 and (3.4.2) we can
finally deduce by classical Schauder estimates (Theorem 6.30 in [61]) that there is constant
K > 0 uniform in ν such that∥∥∂euνρ∥∥C2,α(Ω)

≤ K
(∥∥∂euνρ∥∥C0,α(Ω)

+ ‖∂eρ‖C0,α(Ω)

)
.

This concludes the uniform estimate of uνρ in C3,α(Ω) for P -a.e. ν, and by again employing
(3.2.6) we deduce ρ ∈ C3,α(Ω). The same bound follows for uρν by exchanging the role of
ρ and ν. Higher regularity follows by standard elliptic theory.

Note in particular that uνρ satisfies the Monge-Ampère equation, subject to the second
boundary value condition, which encodes the fact that ∇uνρ maps the ball into itself, in the
classical sense

det(D2uνρ)ν(∇uνρ) = ρ in B

∇uνρ(B) ⊂ B,
(3.4.3)

and that the second boundary value condition is equivalent (see Lemma 3.6.1) to an eikonal
equation on the boundary

|∇uνρ(x)|2 = R2, ∀x ∈ ∂B.
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3.4.2 The case of log-concave measures on Rd

Caffarelli’s contraction principle [26], generalized by Kolesnikov in [69], implies global (and
dimension-free) Lipschitz (or Hölder) global estimates for the optimal transport between
suitable log-concave measures. In its original form, Caffarelli’s Theorem says that the
optimal transport between the standard Gaussian γ and a measure which is more log-
concave (i.e. has the form e−V γ with V convex) is 1-Lipschitz. Since the entropic barycenter
is less log-concave than a Gaussian, if the measures ν satisfy a uniform log-concavity
estimate, one can deduce a C1,1 regularity result for log(ρ):

Proposition 3.4.3. Assume Ω = Rd and that for P -a.e. ν there is some Aν > 0 such
that ν writes as dν = e−Vνdy with D2Vν ≥ AνI (in the sense of distributions), such that
E
[√

λAν
−1
]
< ∞, where the expectation is taken with respect to the random variable ν

distributed according to P. Let ρ := barλ(P ) be its entropic barycenter.
Then log ρ ∈ C1,1(Rd) and more precisely there holds

−I ≤ λD2 log ρ ≤
(
E
[

1√
λAν

]
− 1
)
I. (3.4.4)

Proof. It directly follows from (3.2.6) that ρ = e−ψ with D2ψ ≤ I
λ . Since for P -a.e. ν

we have dν = e−Vνdy with D2Vν ≥ AνI, thanks to Caffarelli’s contraction Theorem, the
optimal transport map ∇uνρ is Lipschitz with the explicit estimate

0 ≤ D2uνρ ≤
I√
λAν

P -a.e.

so that the convex potential Φ := E
[
uνρ

]
is C1,1 and has E

[√
λA
−1
]
< ∞ as an upper

bound on its Hessian. Since λ∇ log(ρ) + id = ∇Φ, the bound (3.4.4) directly follows.

3.5 Statistical properties

3.5.1 Stochastic setting and law of large numbers

Now we consider the following stochastic setting [11, 71, 3] : let P , as above, be a distribu-
tion on P2(Ω) with finite second moment, and ν1, ν2, . . . be independent random measures
drawn from P . We will call the barycenter of the first n measures ν1, . . . , νn an empirical
barycenter : ρn = barλ,Ω(Pn), where Pn = 1

n

∑n
i=1 δνi is the empirical measure. Note that

ρn is random, and in this section we will establish its statistical properties, namely, consis-
tency and (under additional assumptions) a central limit theorem. As already mentioned
in section 3.3, a LLN follows immediately from Lemma 3.3.6.

Theorem 3.5.1 (Law of large numbers). Assume
´
P2(Rd)mp(ν) dP (ν) < +∞ for some

p ≥ 2. Let ρ be the entropic-Wasserstein barycenter of P and (ρn)n∈N be the empirical
barycenters. Then it a.s. holds that

Wp(ρn, ρ) −→ 0,

log ρn
W 1,q

loc (Ω)
−−−−−→ log ρ ∀1 ≤ q <∞,

ρ1/p
n

W 1,p(Ω)−−−−−→ ρ1/p.
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In particular, if Ω is compact and (ρn)n∈N is uniformly bounded in Ck,α(Ω) for k ∈ N, then
ρn

a.s.−−→ ρ in Ck,β(Ω) for any β ∈ (0, α).

Proof. It is well-known that, since the Wasserstein space is Polish, empirical measures Pn
converge to P in Wp metric (see e.g. Corollary 5.9 in [71]). Then the first part of the
theorem follows from Lemma 3.3.6.

The last claim follows due to compact Hölder embedding and weak convergence ρn ⇀ ρ.

3.5.2 Central limit theorem

Formal idea of the CLT

For the proof of the CLT we inspire ourselves by what is known on Riemannian manifolds,
see for instance Section 5.4 [94]. This idea has also been employed for the case of Gaussian
measures in [72]. Let us consider the formal computations.

Given a Wasserstein barycenter ρ of (EB) (for λ = 0, Ω = Rd) the first order optimality
conditions amount to ˆ

ϕνρ dP (ν) = 0, (3.5.1)

where ϕνρ are the Kantorovich potentials, i.e. such that (Id −∇ϕνρ)#ρ = ν. Note that we
actually only have ˆ

ϕνρ dP (ν) ≥ 0 with equality ρ-a.e. (3.5.2)

But in the following formal arguments we assume that we have (3.5.1), as it would be
the case for Riemannian manifolds. This condition becomes in the empirical case for an
empirical barycenter ρn formally

1

n

n∑
k=1

ϕνkρn = 0. (3.5.3)

Now a natural way to obtain a CLT on a manifold is to consider the CLT on the tangent
space and hope for enough regularity to be able to project back on the manifold, using
a delta method. (Here we assume that the tangent spaces at two different points can be
identified with each other.) What we mean is the following. Considering Remark 2.1.30,
the Kantorovich potentials can be seen as vectors in the tangent space of ρ., resp. ρn. The
i.i.d. potentials ϕνkρ satisfy a CLT, i.e. taking into account that EP

[
ϕνkρ

]
= 0 we have

1√
n

n∑
k=1

ϕνkρ −→ N (0,Var(ϕνkρ )).

With (3.5.3) we obtain

1√
n

n∑
k=1

ϕνkρ −
1√
n

n∑
k=1

ϕνkρn −→ N (0,Var(ϕνρ)).

Now keep in mind that the Kantorovich potentials can be seen as vectors in the tangent
space of ρ, respectively ρn, and define the map

Φ̄ν : ρ 7→ ϕνρ, (3.5.4)
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so that
1√
n

n∑
k=1

Φ̄νk(ρ)− 1√
n

n∑
k=1

Φ̄νk(ρn) −→ N (0,Var(ϕνρ)).

If the Φ̄ν are continuously differentiable, this rewrites
ˆ 1

0

1

n

n∑
k=1

Φ̄′νk(ρtn) dt︸ ︷︷ ︸
=:Gn

√
n(ρ− ρn) −→ N (0,Var(ϕνρ)),

where ρtn := tρ + (1 − t)ρn. So if the operators Gn converge nicely to an invertible G, we
finally obtain √

n(ρ− ρn) −→ N (0, G−1 Var(ϕνρ)G−1).

This strategy is made rigorous in the following section with the help of the entropic regu-
larization.

Rigorous proof of the CLT

In the following we give a CLT under the condition that Φ̄ν from (3.5.4) (more precisely
Φν = 1

2 | · |
2 − Φ̄ν) is sufficiently regular followed by corollaries giving sufficient conditions

for this regularity. To overcome the problem of having an obstacle problem as pointed out
in (3.5.2), we use the penalizing term in the variational problem to enforce equality on a
certain fixed set Ω.

First, let us recall some notions of probability theory in Hilbert spaces. Let (H, 〈., .〉)
be a separable Hilbert space endowed with its Borel sigma-algebra. Recall that random
variables {Xn}n∈N taking values in H converge in distribution to a random variable X
if E f(Xn) → E f(X) for any bounded continuous function f on H. We denote this
convergence by

Xn
d−→ X.

The covariance operator of of a random variable X is defined as

Var(X) : H → H

h 7→ E [〈X − E[X], h〉(X − E[X])] .

We also need to recall the notion of strong operator topology (SOT): operators An on H
converge to A in SOT (An

SOT−−−→ A), if Anu→ Au for all u ∈ H.
Finally, to prove a central limit theorem for barycenters we will use some technical

results from probability theory postponed to Appendix 3.A.
Let us also introduce the following notation: if F is a space of integrable functions on

Ω, then

F� :=

{
f ∈ F :

ˆ
Ω
f = 0

}
.

Theorem 3.5.2 (Central limit theorem). Let Ω be the closure of an open, bounded, convex
set. For α ∈ (0, 1) and ν ∈ P(Ω) define the map

Φν : C0,α(Ω) ∩ Pac(Ω)→ L2
�(Ω)

ρ 7→ uνρ,
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where uνρ is the zero-mean Brenier potential between ρ and ν.
Assume that there is a set D ⊂ P2(Ω) such that P (D) = 1 and for ν ∈ D the map Φν

is continuously differentiable at ρ with ‖ log ρ‖L∞(Ω) < ∞ and its derivative (Φν)′ is Her-
mitian and non-positive. Suppose further that (Φν)′(ρ) are bounded in L2

�(Ω) uniformly in
ρ ∈ C0,α(Ω) ∩ Pac(Ω) and ν ∈ D.

Then a CLT for empirical barycenters holds in L2
�(Ω), i.e.

√
n (ρn − ρ)

d−→ ξ ∼ N (0,Σ),

with covariance operator Σ = G−1 Var(uνρ)G−1, where

G : u 7→ λ
u

ρ
− λ

 
B

u

ρ
− E

[
(Φν)′(ρ)

]
.

Proof. First note that ρ = barλ,Ω(P ) ∈ C0,1(Ω) by compactness of Ω and the character-
ization of entropic barycenters (3.2.6), by the same argument as in the beginning of the
proof of Proposition 3.4.2.

Step 1. Let us introduce the following map F

F :

{
ρ ∈ C0,α(Ω) :

ˆ
B
ρ = 1, min

Ω
ρ > 0

}
→ C0,α

� (Ω)

ρ 7→ λ log ρ+
|·|2

2
−
 
B

(
λ log ρ(x) +

|x|2

2

)
.

It is continuously differentiable and its derivative is

F ′(ρ) : h 7→ λ
h

ρ
− λ

 
B

h

ρ
.

Then the first order optimality condition (3.2.6) can be rewritten as follows

F (ρ) = E [Φν(ρ)] .

Respectively, for the empirical barycenter it reads as

F (ρn) =
1

n

n∑
i=1

Φνi(ρn).

Combining the above equations and using differentiability of F and Φν , we obtain

Gn(ρn − ρ) = F (ρn)− F (ρ)− 1

n

n∑
i=1

(Φνi(ρn)− Φνi(ρ)) =
1

n

n∑
i=1

ui − E[u], (3.5.5)

where ui = uνiρ , E[u] = Eν∼P [uνρ], and the operator Gn is defined as follows

Gn :=

ˆ 1

0
F ′(ρtn) dt− 1

n

n∑
i=1

ˆ 1

0
(Φνi)

′(ρtn) dt,

with ρtn := (1− t)ρ+ tρn.
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Step 2. We are going to apply a delta method to prove a CLT and to do this we need
a convergence (in an appropriate space)

(Gn)−1 P−→ G−1, G := F ′(ρ)− E
[
(Φν)′(ρ)

]
.

But first let us extend all the linear operators above to L2
�(Ω) and prove their uni-

form boundedness. Denote by Barλ,Ω(D) the set of entropic barycenters of all measures
supported on D

Barλ,Ω(D) :=
{

barλ,Ω(Q) : Q ∈ P2(P2(Rd)), Q(D) = 1
}
.

Clearly, the operators F ′(ρ) are Hermitian, bounded and positive definite for all ρ ∈ Barλ,Ω(D).
Using the characterization of the entropic barycenter (3.2.6) and the boundedness of Ω,
we conclude that these ρ are uniformly bounded away from zero, thus F ′(ρ) are uniformly
positive-definite. Indeed, for any h ∈ L2

�(Ω)

〈h, F ′(ρ)h〉L2(Ω) =

ˆ
Ω
λ
h2

ρ
≥ λ

minΩ ρ
‖h‖2L2(Ω) ≥ cF ‖h‖

2
L2(Ω).

For all ρ ∈ Barλ,Ω(D) and ν ∈ D it holds that −(Φν)′(ρ) are Hermitian, non-negative
and uniformly bounded by assumption. In particular, the operators G and all Gn are a.s.
well-defined, uniformly positive definite, and thus continuously invertible in L2

�(Ω) with

‖G−1‖L2
�(Ω) ≤ ‖F ′(ρ)−1‖L2

�(Ω) ≤
1

cF
, ‖G−1

n ‖L2
�(Ω) ≤

1

cF
. (3.5.6)

Step 3. Now let us prove that G−1
n → G−1 in SOT. First,

ˆ 1

0
F ′(ρtn) dt→ F ′(ρ) a.s.

since ρn
C0,α(Ω)−−−−−→ ρ a.s. by Theorem 3.5.1, thanks to (ρn)n∈N being uniformly bounded in

C0,1(Ω) (again by (3.2.6) and the boundedness of Ω). Second, the LLN and separability
of L2

�(Ω) yield that
1

n

n∑
i=1

(Φνi)
′(ρ)

SOT−−−→ E(Φν)′(ρ) a.s.

It remains to show that

1

n

n∑
i=1

ˆ 1

0
(Φνi)

′(ρtn) dt− 1

n

n∑
i=1

(Φνi)
′(ρ)

SOT−−−→ 0 a.s. (3.5.7)

Let ν ∈ D and ρ
C0,α(Ω)−−−−−→ ρ. Thanks to continuous differentiability of Φν∥∥(Φν)′(ρ)u− (Φν)′(ρ)u

∥∥
L2(Ω)

→ 0 for any u ∈ C0,α
� (Ω).

Hence, density of C0,α
� (Ω) in L2

�(Ω) yield that (Φν)′(ρ)→ (Φν)′(ρ) in SOT on L2
�(Ω). Now

we fix h ∈ L2
�(Ω), then the functions

fνi(ρ) :=

∥∥∥∥ˆ 1

0
(Φνi)

′(ρt)hdt− (Φνi)
′(ρ)h

∥∥∥∥
L2(Ω)

,
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where ρt := (1− t)ρ+ tρ, are bounded, continuous, and fνi(ρ) = 0. Since ρn
C0,α(Ω)−−−−−→ ρ a.s.,

Lemma 3.A.1 ensures that∥∥∥∥∥ 1

n

n∑
i=1

ˆ 1

0
(Φνi)

′(ρtn)hdt− 1

n

n∑
i=1

(Φνi)
′(ρ)h

∥∥∥∥∥
L2(Ω)

≤ 1

n

n∑
i=1

fνi(ρn)→ 0 a.s.

Taking a dense countable set {hj}j∈N in L2
�(Ω) and using the uniform boundedness of (Φν)′

in L2
�(Ω), one obtains (3.5.7). Combining the above results we conclude that Gn

SOT−−−→ G
a.s. Finally, for any u ∈ L2

�(Ω) one has

G−1
n h−G−1h = G−1

n (G−Gn)G−1h→ 0,

since G−1
n are uniformly bounded. We thus have shown G−1

n
SOT−−−→ G−1 a.s.

Step 4. Note that ‖uνρ‖L2(Ω) ≤ C‖uνρ‖C(Ω), thus E‖uνρ‖2L2(Ω) <∞, and by the standard
CLT in Hilbert spaces (see e.g. [74, Theorem 10.5]) applied to (ui)i∈N we obtain that

Sn√
n

:=
1√
n

n∑
i=1

(
ui − Euνρ

) d−→ ξ, ξ ∼ N
(
0,Var(uνρ)

)
.

According to (3.5.5),
√
n (ρn − ρ) = G−1

n

Sn√
n
.

Since G−1
n are uniformly bounded and G−1

n
SOT−−−→ G−1 a.s., Lemma 3.A.2 yields the CLT

for ρn: √
n (ρn − ρ)

d−→ G−1ξ ∼ N
(
0, G−1 Var(uνρ)G−1

)
.

Corollary 3.5.3 (CLT in the regular case). Let Ω = BR(0) for R > 0 and assume (3.4.1)
to be true with k = 1. Then a CLT for empirical barycenters holds in H2

� (B).

Proof. First note, that by Theorem 3.6.7 and Proposition 3.4.2 the hypothesis of Theorem
3.5.2 are satisfied with D = Q1,α. Hence, the empirical barycenters satisfy a CLT in L2

�(Ω).
To improve the CLT to hold in H2

� (B), we use the same notation as in the proof of Theorem
3.5.2 and need to prove uniform boundedness of the operators G−1 and G−1

n for all n in
H2
� (B).
Clearly F ′(ρ) and (Φν)′(ρ) can be continuously extended toH2

� (B) for any ρ ∈ Barλ,B(Q1,α),
ν ∈ Q1,α.

For all ρ ∈ Barλ,B(Q1,α) and ν ∈ Q1,α the operators −(Φν)′(ρ) are uniformly bounded
in H2

� (B) since all ν and D2uνρ are uniformly bounded away from zero according to (3.4.1)
and Proposition 3.4.2: namely, Theorem 3.6.7 together with the Poincaré inequality and
Theorem 6.27 [77] yield that there is a constant CΦ > 0 such that for h ∈ H2(B)∥∥(Φν)′(ρ)h

∥∥
H2(B)

≤ CΦ‖h‖L2(B). (3.5.8)

Obviously, F ′(ρ) and
´ 1

0 F
′(ρtn) dt are continuously invertible, with uniformly bounded

inverses. In particular, they are Fredholm operators of index 0. Due to (3.5.8) and the
Rellich–Kondrachov theorem, (Φν)′(ρ) are compact and uniformly bounded inH2

� (B) for all
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ρ ∈ Barλ,B(Q1,α), ν ∈ Q1,α, as well as any of their average. Thus G := F ′(ρ)−E [(Φν)′(ρ)]
is a Fredholm operator, and indG = indF ′(ρ) = 0. Since G is positive definite in L2

�(B),
kerG = {0}, therefore G is invertible in H2

� (B). The same applies for any Gn. Let us
prove that G−1

n are uniformly bounded in H2
� (B). Suppose Gnh = v ∈ H2

� (B). Then∥∥∥∥(ˆ 1

0
F ′(ρtn) dt

)
h

∥∥∥∥
H2(B)

≤ ‖v‖H2(B) +
1

n

n∑
i=1

ˆ 1

0

∥∥(Φνi)
′(ρtn)h

∥∥
H2(B)

dt

≤ ‖v‖H2(B) + CΦ‖h‖L2(B)

≤ ‖v‖H2(B) + CΦ‖G−1
n ‖L2

�(B)‖v‖L2(B)

≤
(

1 +
CΦ

cF

)
‖v‖H2(B),

by employing (3.5.6). On the other hand,∥∥∥∥(ˆ 1

0
F ′(ρtn) dt

)
h

∥∥∥∥
H2(B)

≥

∥∥∥∥∥
(ˆ 1

0
F ′(ρtn) dt

)−1
∥∥∥∥∥
−1

H2
�(B)

‖h‖H2(B) ≥ c‖h‖H2(B).

Therefore,

‖G−1
n ‖H2

�(B) ≤
1

c

(
1 +

CΦ

cF

)
.

To deduce the CLT in theH2
� (B) note that we have ρtn

C2(B̄)−−−−→ ρ again thanks to Proposition
3.4.2 and Theorem 3.5.1. As a result we can repeat Step 3 and Step 4 in H2

� (B) to
conclude.

Corollary 3.5.4 (CLT in the discrete case). Let Ω = BR(0) for R > 0. Assume that there
are N ∈ N∗, ε > 0 such that we have P (Dε,Ndiscr) = 1, where Dε,Ndiscr is defined in (3.7.2).
Then a CLT for empirical barycenters holds in L2

�(B).

Proof. The hypothesis of Theorem 3.5.2 are satisfied with D = Dε,Ndiscr by Corollary 3.7.3.

Corollary 3.5.5 (CLT on the torus). Assume Ω = Td and that for some α ∈ (0, 1), C > 0

P
({
ν ∈ Pac(Rd) : ν(Ω) = 1, ‖ν‖C1,α(Ω) + ‖log ν‖L∞(Ω) ≤ C

})
= 1.

Then a CLT for empirical barycenters holds in H2
� (Td).

Proof. The proof is analogous to the proof of Corollary 3.5.3 once one identifies all objects
on Td with periodic objects on Rd and chooses Φν := 1

2 | · |
2− Φ̄ν from Theorem 3.8.4 with

D = D1,α from Section 3.8. The arguments in Proposition 3.4.2 can be extended to the
periodic case as well by Theorem 3.8.4 to obtain uniform bounds in H2

� (Td).

3.6 Linearization of Monge-Ampère equations

We consider ν, µ ∈
{
% ∈ Pac(B̄) : ‖%‖C0,α(B̄) + ‖log %‖L∞(B̄) <∞

}
on a closed ball B̄ := BR(0)

of radius R > 0 for α ∈ (0, 1). Our goal is to linearize the following Monge-Ampère equa-
tion with a second boundary value condition

det(D2u)ν(∇u) = µ,

∇u(B̄) = B̄,
(3.6.1)
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for some fixed ν ∈ C1,α(B̄). Note that thanks to Brenier’s theorem there exists a unique
convex solution satisfying (3.6.1) (a priori in the sense of ∇u#µ = ν), and it is C2,α(B̄)
thanks to regularity theory for Monge-Ampère equations. We will need the following
lemmas.

Lemma 3.6.1. Let u ∈ C1(B̄) be strictly convex. Then the following are equivalent

• ∇u(B̄) = B̄,

• ∇u(∂B) ⊂ ∂B.

Proof. For the first direction assume by contradiction that there is p ∈ ∂B such that
∇u(p) ∈ B̊. Note that at p there is an outer normal to B̄, namely p itself. Take a > 0 such
that ∇u(p)+ap ∈ B. Since ∇u is surjective, there is q ∈ B̄ satisfying ∇u(q) = ∇u(p)+ap.
Then

(q − p) · (∇u(q)−∇u(p)) = a(q − p) · p < 0,

which contradicts the monotonicity of ∇u.
For the other direction, note that ∇u(∂B) ⊂ ∂B implies ∇u(∂B) = ∂B since the only

subset of ∂B homeomorphic to ∂B is ∂B itself. Now, by a similar argumentation as above
one can obtain that ∇u(∂B) ⊂ ∂∇u(B̄). Furthermore, strict convexity of u yields that its
conjugate u∗ ∈ C1(Rd), and recall that (∇u∗)−1 ({x}) = {∇u(x)} for any x ∈ B̊. Thus
∇u maps B̊ to the interior of ∇u(B̄). Therefore, ∂∇u(B̄) = ∇u(∂B) = ∂B. Now, there
is only one compact set in Rd with non-empty interior and boundary ∂B: B̄, so that we
have ∇u(B̄) = B̄.

Remark 3.6.2. Note that the proof of Lemma 3.6.1 extends to the setting described in
Remark 3.4.1. Keeping the same notation the statement changes to equivalence of

• ∇u(Ω̄) = supp ν,

• ∇u(∂Ω) ⊂ ∂ supp ν.

The contradicting argument reads in this case (since ∇H(p) is the outer normal at p)

(q − p) · (∇u(q)−∇u(p)) = a(q − p) · ∇H(p) < 0,

where the inequality is strict due to the strong convexity.

Lemma 3.6.3. For u ∈ C2(B̄) strongly convex such that |∇u(x)|2 − R2 = 0 for x ∈ ∂B,
there is β ∈ C(∂B), β > 0 such that (D2u)−1(x) ·x = β(x)∇u(x) for x ∈ ∂B. Futhermore,
there exists κ > 0 such that |∇u(x) · x| ≥ κ for all x ∈ ∂B.

Proof. Note that the Legendre transform u∗ is at least C2(B̄). Indeed, by standard reg-
ularity theory for convex functions u∗ ∈ C1(B̄) and since D2u is invertible, the inverse
function theorem applied to ∇u yields differentiability for ∇u∗ = (∇u)−1. Now note that
∇u∗ also satisfies (see Lemma 3.6.1)

|∇u∗(y)|2 −R2 ≤ 0 for all y ∈ B
|∇u∗(y)|2 −R2 = 0 for all y ∈ ∂B.
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This implies by differentiating at a boundary point y that there is β̃(y) ≥ 0 such that

D2u∗(y)∇u∗(y) = β̃(y)y.

By invertibility of D2u∗(y), we see that β̃(y) > 0. Substituting ∇u(x) = y gives by using
properties of Legendre transform

D2u∗(∇u(x))∇u∗(∇u(x)) = β̃(∇u(x))∇u(x),

⇐⇒ (D2u)−1(x)x = β̃(∇u(x))∇u(x),

for all x ∈ ∂B. Set β(x) := β̃(∇u(x)) and note that β ∈ C(∂B) since

β(x) =
1

R2
(D2u)−1(x)x · ∇u(x).

The second statement follows since

|∇u(x) · x| = 1

β(x)
(D2u)−1(x)x · x ≥ R2K > 0,

where K is a constant only depending on ‖D2u‖L∞(B) and ‖(D2u)−1‖L∞(B).

Remark 3.6.4. One may readily check that Lemma 3.6.3 extends to the setting described
in Remark 3.4.1. Indeed, the proof uses that the defining convex functions of the ball are
of the form |·|2 −R2 and the outer normal at a boundary point x is x.

From now on, we fix the constant by considering potentials in the set

Ck,α� (B̄) :=

{
u ∈ Ck,α(B̄) :

ˆ
B
u = 0

}
with k ∈ N. Let us also define

M =
{
u ∈ C2,α

� (B̄) : |∇u|2 −R2 = 0 on ∂B
}
.

We now prove that in a neighborhood of a strongly convex function u0 ∈M this set is the
graph of a C1-function.

Lemma 3.6.5. At u0 ∈M strongly convex,M is locally given by the image of a bijective
C1-function on a closed subspace of C2,α

� (B̄). More precisely, there exist open subsets
V ⊂ F0 :=

{
h ∈ C2,α

� (B̄) : ∇u0 · ∇h = 0 on ∂B
}
, U ⊂ C2,α

� (B̄), with u0 ∈ U, and a

bijective C1-function:
χ0 : V → U ∩M.

Furthermore, for f0 := ΠF0(u0), where ΠF0 is the projection on F0 defined by (3.6.2),
it holds χ′0(f0) = id .

Proof. First, we show that C2,α
� (B̄) = F0 ⊕G0, where F0, G0 are linear subspaces defined

as

F0 :=
{
f ∈ C2,α

� (B̄) : ∇u0 · ∇f = 0 on ∂B
}
,

G0 :=
{
g ∈ C2,α

� (B̄) : ∃c ∈ R,−div(A0∇g) = c
}
,
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where A0 = cof(D2u0) is the cofactor matrix of D2u0, and −div(A0∇g) = c is to be
understood in the distributional sense, i.e. for all ψ ∈ C∞c (B) such that

´
B ψ = 0

ˆ
B
A0∇g · ∇ψ = 0.

Take u ∈ C2,α
� (B̄). Define f to be a solution of

−div(A0∇f) = −div(A0∇u) +
ffl
B div(A0∇u) in B,

∇u0 · ∇f = 0 on ∂B,
(3.6.2)

and g a solution of

−div(A0∇g) = −
ffl
B div(A0∇u) in B,

∇u0 · ∇g = ∇u0 · ∇u on ∂B.
(3.6.3)

Thanks to Lemma 3.6.3 the boundary conditions are uniformly oblique and compatible
with the right hand side. Hence, both (3.6.2) and (3.6.3) admit a unique weak solution
f, g ∈ H1

� (B) which is C2,α
� (B̄) thanks to linear elliptic PDE theory (e.g. by a combination

of [77, Theorem 5.54] and [61, Theorem 6.31]). Thus, we have found a decomposition
u = f + g for f ∈ F0 and g ∈ G0. It is also unique because F0 ∩ G0 = {0}. To see that
notice that every h ∈ F0 ∩G0 satisfies

−div(A0∇h) = c in B, c ∈ R
∇u0 · ∇h = 0 on ∂B,

whose unique solution is h = 0. In total, we obtain well-definedness of the projection
operators ΠF0 : C2,α(B̄) → F0 and ΠG0 : C2,α(B̄) → G0. Continuity of ΠF0 and ΠG0 in
C2,α(B̄) follows by the open mapping theorem, see e.g. [19, Theorem 2.10].

Now we would like to apply the implicit function theorem to

Γ: F0 ⊕G0 → C1,α(∂B),

(f, g) 7→ |∇(f + g)|2 −R2.

Its partial derivative at u0 with respect to g0 := ΠG0(u0) is given by

∂

∂g
Γ(u0)h = 2∇u0 · ∇h on ∂B, h ∈ G0.

Bijectivity of the derivative means existence and uniqueness of h ∈ C2,α
� (B̄) such that

−div(A0∇h) = c on B, c ∈ R,
∇u0 · ∇h = w on ∂B,

where w ∈ C1,α(∂B). By the same argumentation as above, this is the case if and
only if c = − 1

|B|
´
∂B w det(D2u0)β0 where β0 is as in Lemma 3.6.3. Continuity follows

again by the open mapping theorem. Thanks to the implicit function theorem there are
UF ⊂ F0, UG ⊂ G0 open (ΠF (u0) ∈ UF , resp. ΠG(u0) ∈ UG) such that χ̃0 : UF → UG is
C1 and

Γ(f, g) = 0 for (f, g) ∈ UF ⊕ UG ⇐⇒ g = χ̃0(f).
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This implies that χ0 : UF →M∩UF ⊕UG, f 7→ f+ χ̃0(f) is well-defined, C1 and bijective.
Finally, note that for f0 := ΠF0(u0), h ∈ F0

0 =
d

df
Γ(f0, χ̃0(f0))h = 2∇u0 · ∇h︸ ︷︷ ︸

=0

+
∂

∂g
Γ(f0, χ̃0(f0))χ̃′0(f0)h.

By invertibility of ∂
∂gΓ(f0, χ0(f0)), we conclude χ̃′0(f0) = 0, hence χ′0(f0) = id .

Now for u0 ∈M take U ⊂ C2,α
� (B̄) from Lemma 3.6.5 (and possibly restrict it further

such that any u ∈ U ∩M is strongly convex) and consider the map

Mν : U ∩M→
{
u ∈ C0,α(B̄) :

ˆ
B
u = 1

}
u 7→ det(D2u)ν(∇u)

where ν is a fixed probability density in the set Q1,α defined in (3.4.1). Note that this map
is well-defined by Lemma 3.6.1 and the fact that the push forward preserves the mass. We
want to “take the derivative at u ∈ U ∩M” by pulling back Mν to the linear space F0 with
the map χ0 from Lemma 3.6.5.

Proposition 3.6.6. In the setting of Lemma 3.6.5, let u ∈ U ∩M be strongly convex.
Then Nν := Mν ◦χ0 is continuously differentiable at f := ΠF0u and the derivative is given
by

N ′ν(f) : F0 → C0,α
� (B̄)

h 7→ tr(AνD
2(χ′0(f)h)) + det(D2u)∇ν(∇u) · ∇(χ′0(f)h),

where F0 =
{
h ∈ C2,α

� (B̄) : ∇u0 · ∇h = 0 on ∂B
}

and Aν := ν(∇u)cof(D2u).
In addition, in the weak sense we have

N ′ν(f)h = div(Aν∇(χ′0(f)h)).

Proof. Let h ∈ F0, then the directional derivative is given by
d

dt
Nν(f + th)|t=0 =

d

dt
det(D2χ0(f + th))ν(∇χ0(f + th))|t=0

= tr(AνD
2(χ′0(f)h)) + det(D2u)∇ν(∇u) · ∇(χ′0(f)h).

By continuity of χ′0, we can conclude that Nν is continuously differentiable. Now note that
if u ∈ C3,α(B̄)

div(Aν∇(χ′0(f)h)) = div(ν(∇u)cof(D2u)∇(χ′0(f)h))

= D2u∇ν(∇u) · cof(D2u)∇(χ′0(f)h)

+ ν(∇u) div(cof(D2u)∇(χ′0(f)h))

= det(D2u)∇ν(∇u) · ∇(χ′0(f)h)

+ ν(∇u) tr
(
cof(D2u)D2(χ′0(f)h)

)
,

where, in the last line, we have used that cof(D2u) has divergence-free columns (see Lemma
p.462 in [51]). This yields

N ′ν(f)h = div(Aν∇(χ′0(f)h)).

The same result follows for u ∈ C2,α(B̄) (in the weak sense) by density.
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For fixed ν ∈ Q1,α, consider now

S =
{
% ∈ Pac(B̄) : ‖%‖C0,α(B̄) + ‖log %‖L∞(B̄) <∞

}
and the map

Φν : S → M,
µ → u, where u strongly convex and ∇u#µ = ν.

(3.6.4)

Note that this is well defined thanks to Brenier’s theorem (Theorem 2.1.18 and Remark
2.1.21) and regularity theory for Monge-Ampère equations (Theorem 2.1.23). Furthermore,
by the considerations before we can now prove that it is continuously differentiable.

Theorem 3.6.7. Φν as defined in (3.6.4) is continuously differentiable. More precisely,
for every µ ∈ S, the value of (Φν)′(µ)f at f ∈ C0,α

� (B̄) is the unique solution h ∈ C2,α
� (B̄)

of the linearized equation
div(Aν∇h) = f in B,

∇u0 · ∇h = 0 on ∂B,

where u0 = Φν(µ) and Aν = ν(∇u0)cof(D2u0).

Proof. For u0 = Φν(µ) ∈ M the derivative of Nν at f0 = ΠF0(u0) is given by Proposi-
tion 3.6.6. Invertibility of N ′ν(f0) is equivalent to finding, for every f ∈ C0,α

� (B̄), a unique

h ∈ F0 =
{
u ∈ C2,α

� (B̄) : ∇u0 · ∇u = 0 on ∂B
}
,

such that
div(Aν∇h) = f in B, (3.6.5)

in the weak sense where we have used that χ′0(f0) = id by Lemma 3.6.5. As before, by
strong convexity of u0 equation (3.6.5) is uniformly elliptic and the boundary conditions
are compatible, so that by elliptic regularity theory there is a unique solution h ∈ C2,α

� (B̄),
satisfying the boundary condition ∇u0 · ∇h = 0 on ∂B. With the inverse function the-
orem we conclude that there is an open (in S) neighborhood U containing µ such that
N−1
ν |U : U → N−1

ν (U) is a C1-diffeomorphism. By possibly further restricting U (such
that N−1

ν (U) ⊂ V from Lemma 3.6.5), we see that Φν |U = χ0 ◦ N−1
ν |U is also C1 in a

neighborhood of µ. We employ again χ′0(f0) = id to conclude.

3.7 Linearization in the semi-discrete case

Let B̄ = BR(0) for R > 0. In this section we are interested in linearizing the discrete
equivalent of the Monge-Ampère equation by using the fine analysis developed in [68].
More precisely, in this section we assume ρ∗ ∈ Pac(B̄) and ν =

∑Nν
i=1 q

ν
i δxνi ∈ P(B̄) to be

discrete. Then the primal dual optimality conditions (Remark 2.1.11) motivate the study
of the Laguerre tesselation for v ∈ RN

Lagxi(v) := {x ∈ B̄ : ∀1 ≤ j ≤ N, x · xi − vi ≥ x · xj − vj}, i ∈ {1, . . . , N}.

Indeed, if u∗, v∗ are optimal Kantorovich potentials (for cost function c(x, y) = −x · y),
then for each i ∈ {1, . . . , N} on the interior of Lagxi(v

∗) the optimal transport map is
given by ∇u∗ = xi Ld-a.e. (see Theorem 2.1.18).
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Now, by Theorem 2.1.13 and Remark 2.1.20, there is actually a unique Kantorovich
potential v∗ ∈ RN� :=

{
v ∈ RN :

∑N
i=1 vi = 0

}
and by (∇u∗)#ρ

∗ = ν we have

ρ∗(Lagxνi (v∗)) = qνi for all 1 ≤ i ≤ N. (3.7.1)

This can be seen as a discrete version of the Monge-Ampère equation.
In order to linearize rigorously (3.7.1) we need to impose some assumptions on ν. For

this define for N ∈ N∗ and ε > 0

Dε,Ndiscr :=

{
ν ∈ P(B̄) : ν =

Nν∑
i=1

qνi δxνi , q
ν
i ≥ ε, |xνi − xνj | ≥ ε,Nν ≤ N

}
. (3.7.2)

For, ν ∈ Dε,Ndiscr the goal is to investigate regularity of

Ψν : Pac(B̄) ∩ C0,α(B̄)→ RN�
ρ∗ 7→ v∗ s.t. (3.7.1) holds.

Note that it is well-defined and indeed maps to a Brenier potential by Corollary 1.2 [68].

Proposition 3.7.1. Assume that ν ∈ Dε,Ndiscr for ε > 0, N ∈ N∗ and ρ∗ ∈ Pac(B̄)∩C0,α(B̄)
for α ∈ (0, 1) with

∥∥(ρ∗)−1
∥∥
L∞(B)

<∞, . Then Ψν is continuously differentiable at ρ∗ and
we have the following quantitative estimate

|(Ψν)′(ρ∗)h| ≤ 1

Cε2
|qν | ‖ρ∗‖L∞(B̄)

∥∥(ρ∗)−1
∥∥
L∞(B̄)

‖h‖L2(B̄),

where C is a fixed constant depending on ε, ‖ρ∗‖L∞(B̄),
∥∥(ρ∗)−1

∥∥
L∞(B̄)

and the domain B̄.

Proof. Define Fν : Pac(B̄) ∩ C0,α(B̄)× RN� → RN� by

Fν(ρ, v) =
(
ρ(Lagxνi (v))− qνi

)N
i=1

.

Since spt ρ∗ = B̄, by Remark 2.1.20 there is a unique potential v∗ ∈ RN� satisfying (3.7.1).
In particular, we have Fν(ρ∗, v∗) = 0. We want to apply the implicit function theorem
in Banach spaces (see e.g. Theorem 4.B [114]) in order to get regularity of Ψν . For
this we use the fine analysis of the Kantorovich functional K defined in Theorem 1.1 [68]
(they call it Φ). Note that the quadratic cost function restricted to B̄×RN satisfies all the
regularity assumptions required in the paper. Using Corollary 1.2 [68] we have in particular
∇K(·) = Fν(ρ∗, ·).

By Theorem 4.1 [68] we deduce that Fν is continuously differentiable in v∗. Fur-
thermore, we can apply Theorem 5.1 [68] since (B̄, ρ∗) satisfies the Poincaré-Wirtinger
inequality (PW) thanks to

∥∥(ρ∗)−1
∥∥
L∞(B)

< ∞. This implies that K is C2 and strongly
concave and hence DvFν(ρ∗, v∗) exists and is bijective. The derivative in ρ can be directly
computed and is given by

DρFν(ρ, v)h =

(ˆ
Lagxν

i
(v)
h(x) dx

)N
i=1

,
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for h ∈ C0,α
� (B̄). Altogether this implies that there is an open subset U∗ of ρ∗ such that

Ψν is continuously differentiable on U∗ and

(Ψν)′(ρ∗) = −DvFν(ρ∗,Ψν(ρ∗))−1DρFν(ρ∗,Ψν(ρ∗)).

Thanks to the quantitative concavity result in Theorem 5.1 [68] we have for h ∈ C0,α
� (B̄)

|(Ψν)′(ρ∗)h| ≤ ‖DvFν(ρ∗,Ψν(ρ∗))−1‖L(RN� ,RN� )|DρFν(ρ,Ψν(ρ∗)))h|

≤ 1

Cε2
‖ρ∗‖L∞(B̄) |DρFν(ρ, v)h|,

where C depends on ε, ‖ρ∗‖L∞(B̄),
∥∥(ρ∗)−1

∥∥
L∞(B̄)

and the domain B̄.
Now note that by using Cauchy-Schwarz inequality

|DρFν(ρ,Ψν(ρ∗)))h|2 =

N∑
i=1

(ˆ
Lagxν

i
(Ψν(ρ∗))

h(x) dx

)2

≤
N∑
i=1

Ld
(

Lagxνi (Ψν(ρ∗))
)2
‖h‖2L2(B̄)

≤
∥∥(ρ∗)−1

∥∥2

L∞(B̄)
‖h‖2L2(B̄)

N∑
i=1

ρ∗
(

Lagxνi (Ψν(ρ∗))
)2

=
∥∥(ρ∗)−1

∥∥2

L∞(B̄)
|qν |2‖h‖2L2(B̄).

For the central limit theorem we are interested in the map from ρ∗ to the Legendre
transform of the Brenier potential Ψν(ρ∗) of zero mean, hence the following lemma is
needed.

Lemma 3.7.2. The map

Tν : RN� → L2
�(B̄)

v 7→
(
x 7→ uv(x) = max

1≤i≤N
{x · xνi − vi} −

 
B

max
1≤i≤N

{z · xi − vi} dz

)
is continuously differentiable. The following estimate on the derivative holds

‖(Tν)′(v̄)(h)‖L2(B) ≤ C|h|,

for h ∈ Rd� and C =
√
Ld(B̄).

Proof. Let v ∈ RN� . We start by differentiating the unnormalized version

Sν(v) := uv(x) = max
1≤i≤N

{x · xνi − vi} ,

at x ∈ int(Lagxνi (v)) for 1 ≤ i ≤ N fixed. By definition of the Laguerre cells, we have

uv(x) = x · xνi − vi > x · xνj − vj
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for all j 6= i. Let h ∈ RN� . Then there is t0 > 0 such that for t ∈ (−t0, t0) we have

uv+th(x) = x · xνi − vi − thi > x · xνj − vj − thj ,

for all j 6= i. This implies that for such t

uv+th(x)− uv(x)

t
= −hi.

Since Ld
(
B̄ \

⋃N
j=1 int(Lagxνj (v))

)
= 0 (see for instance Section 1.2 [68]) we have for Ld-

a.e. x

lim
t→0

uv+th(x)− uv(x)− t
∑N

i=1 1int(Lagxν
i

(v))(x)hi

t
= 0.

To get differentiability in L2 note that for any 1 ≤ j ≤ N

x · xj − vj − thj ≤ uv(x) + t|h|∞ and
x · xj − vj ≤ uv+th(x) + t|h|∞.

So that taking the maximum in j we obtain

|uv+th − uv| ≤ t|h|∞.

In particular, we have

t−1

∣∣∣∣∣uv+th − uv + t

N∑
i=1

1int(Lagxν
i

(v))hi

∣∣∣∣∣ ≤ 2|h|∞,

and we conclude by Lebegue’s dominated convergence theorem

lim
t→0

ˆ
B̄
t−2

(
uv+th − uv + t

N∑
i=1

1int(Lagxν
i

(v))hi

)2

dx = 0.

The derivative in L2 is hence given by

(Sν)′(v)(h) = −
N∑
i=1

1int(Lagxν
i

(v))hi.

Now consider the function N : L2(B)→ L2
�(B)

u 7→ u−
 
B
u(x) dx.

Its derivative evaluated at h ∈ L2(B) is given by

N ′(u)h = h−
 
B
h(x) dx.

This implies in particular by minimality of the variance functional that

‖N ′(u)h‖L2(B) ≤ ‖h‖L2(B).

To conclude the estimate we compute
ˆ
B̄

(
(Sν)′(v)(h)

)2
dx =

ˆ
B̄

N∑
i=1

1int(Lagxν
i

(v))h
2
i dx ≤ C|h|2,

where C = Ld(B̄) and use the chain rule for Tν = N ◦ Sν .

65



CHAPTER 3. ENTROPICALLY REGULARIZED WASSERSTEIN BARYCENTERS

To put it all together, consider

Φν : Pac(B̄) ∩ C0,α(B̄)→ L2
�(B)

ρ 7→ u, where u is convex, ∇u#ρ = ν.

We obtain the following regularity of Φν .

Corollary 3.7.3. Assume that ρ∗ ∈ Pac(B̄)∩C0,α(B̄) for α ∈ (0, 1),
∥∥(ρ∗)−1

∥∥
L∞(B)

<∞
and ν ∈ Dε,Ndiscr for ε > 0, N ∈ N∗. Then Φν is continuously (Fréchet) differentiable at ρ∗

and the derivative satisfies for h ∈ L2
�(B)

‖(Φν)′(ρ∗)h‖L2(B) ≤ C‖h‖L2(B),

where C only depends on B, ε, ‖ρ∗‖L∞(B) and ‖(ρ∗)−1‖L∞(B).

Proof. This follows since Φν = Tν ◦Ψν in combination with Proposition 3.7.1 and Lemma
3.7.2.

3.8 Linearization of the Monge-Ampère equation on the torus

In this section we consider the d-dimensional flat torus Td := Rd/Zd equipped with the
usual distance d in quotient spaces, for x, y ∈ Td

d(x, y) := inf
p∈Zd
|x− y + p|,

where x, y ∈ Rd are specific representatives of the equivalence classes x, y.
Note that (Td, d) is a compact metric space, and as such the theory from Chapter 2.1

applies. Futhermore, we can identify periodic functions and measures on Rd with functions
and measures on Td. In that setting, the regularity theory for Monge Ampère equations
carries over as well as proven in [38].

We need the following integration by parts lemma

Lemma 3.8.1. Let h ∈ C2(Td), g ∈ C1(Td) and A ∈ C1(Td,Rd×d)ˆ
Td

div(A∇h)g =

ˆ
Td
A∇h · ∇g

Proof. This follows by identifying the given functions by periodic functions on Rd and
applying the standard integration by parts with periodic boundary conditions.

Consider ν, ρ ∈
{
µ ∈ Pac(Td) : ‖µ‖Ck,α(Td) + ‖ logµ‖L∞(Td) <∞

}
=: Dk,α for fixed

α ∈ (0, 1). The goal of this section is to linearize the Monge-Ampère type equation on the
torus. More precisely, for ν ∈ D1,α we consider the map

Φ̄ν : D0,α → C2,α
� (Td),

ρ 7→ ϕ, where x 7→ |x|2
2 − ϕ(x) convex and det(Id−D2ϕ)ν(x−∇ϕ) = ρ,

(3.8.1)
where x ∈ Rd and x ∈ Td is its representative. Furthermore we use the short notation
det(Id−D2ϕ)ν(x−∇ϕ) = ρ for det(Id−D2ϕ(x))ν(x−∇ϕ(x)) = ρ(x) for all x ∈ Td and

Ck,α� (Td) :=

{
f ∈ Ck,α(Td) :

ˆ
Td
f = 0

}
.
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Remark 3.8.2. Note carefully that here we have to pass to the Kantorovich potential u in
order to be able to deal with a periodic function as requiring convexity on the torus would
only yield constant functions. It is a priori only L1(Td) but unique up to a constant by
an argument as in Remark 2.1.20. A corresponding convex function (on Rd) is given by
x 7→ |x|2

2 − ϕ(x), as one can see for instance in the proof of Theorem 1.25 [104].

We show that Φ̄ν is well-defined and continuously (Fréchet) differentiable (in the strong
C0,α(Td) topology).

For well-definedness, identify all the quantities with their periodic counterpart on Rd
and use the version of Brenier’s theorem for periodic measures on Rd, Theorem 1 [38].
Hence, there is a unique (up to a constant) convex function u (on the whole Rd) satisfy-
ing ∇u#ρ = ν, and it is C2,α thanks to Caffarelli’s regularity theory for Monge-Ampère
equations (Theorem 1 [38] summarizes this for the case on the torus). Fix the constant by
requiring x 7→ |x|2

2 −u(x) to be of zero mean. Now thanks to the relation ϕ(x) = |x|2
2 −u(x),

where x ∈ Td, x ∈ Rd, the regularity carries over to ϕ.
In order to do prove continuous differentiability fix ν ∈ D1,α for the remaining section

and consider
Mν : C2,α

� (Td)→
{
f ∈ C0,α(Td) :

ˆ
Td
f = 1

}
,

ϕ 7→ det(Id−D2ϕ)ν(x−∇ϕ) = ρ.

Proposition 3.8.3. Let ν ∈ D1,α and ϕ0 ∈ C2,α
� (Td) be such that u0 ∈ C2,α(Rd) defined

by u0(x) = |x|2
2 − ϕ0(x) is strongly convex. Then, there is neighborhood U0 (w.r.t. the

strong C2,α
� (Td)-topology) of ϕ0 such that for all ϕ ∈ U0 the function Mν is continuously

(Fréchet) differentiable and the derivative is given by

M ′ν(ϕ) : C2,α
� (Td)→ C0,α

� (Td)
h 7→ − tr(Aν(ϕ)D2h)− det(Id−D2ϕ)∇ν(x−∇ϕ) · ∇h,

where Aν(ϕ) = ν(x−∇ϕ)cof(Id−D2ϕ)T . Furthermore, the derivative can be rewritten in
divergence form, i.e. in the weak sense

M ′ν(ϕ)h = −div(Aν(ϕ)∇h).

Proof. Choose U0 such that ϕ0 ∈ U0 and for ϕ ∈ U0 the corresponding function u defined by
u(x) = |x|2

2 −ϕ(x) are uniformly strongly convex on [0, 1]d. We prove that Mν is Gâteaux-

differentiable on U0 and that its Gateaux derivativeDGMν ∈ C
(
U0, L(C2,α

� (Td), C0,α
� (Td))

)
,

where L(C2,α
� (Td), C0,α

� (Td)) is the space of linear bounded operators from C2,α
� (Td) to

C0,α
� (Td). This concludes continuous differentiability.
Let ϕ ∈ U0, h ∈ C2,α

� (Td). Then by Lemma A.1 [54]

DGMν(ϕ)h =
d

dt
Mν(ϕ+ th)|t=0

=
d

dt
det(Id−D2(ϕ+ th))ν(x−∇(ϕ+ th))|t=0

=− tr(Aν(ϕ)D2h)− det(Id−D2ϕ)∇ν(x−∇ϕ) · ∇h,

for Aν(ϕ) = ν(∇ϕ)cof(D2ϕ)T .
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DGMν(ϕ) is clearly linear and also bounded by strong convexity of u. It is as well
continuous in ϕ (in the strong C2,α(Td) topology).

For reformulation in divergence form suppose ϕ ∈ C3,α(Td). Then

div(Aν(ϕ)∇h) = div
(
ν(x−∇ϕ)cof(Id−D2ϕ)T∇h

)
=(Id−D2ϕ)T∇ν(x−∇ϕ) · cof(Id−D2ϕ)T∇h

+ ν(x−∇ϕ) div(cof(Id−D2ϕ)T∇h)

= det(Id−D2ϕ)∇ν(x−∇ϕ) · ∇h

+
d∑
j=1

d∑
i=1

∂xjcof(Id−D2ϕ)Tji∂xih

+ ν(x−∇ϕ) tr
(
cof(Id−D2ϕ)TD2h

)
.

Now note that Id−cof(D2ϕ) has divergence free columns by the lemma in Section 8.1.4b [51],
so that

d∑
j=1

d∑
i=1

∂xjcof(Id−D2ϕ)Tji∂xih =

d∑
i=1

∂xih

d∑
j=1

∂xjcof(Id−D2ϕ)Tji = 0.

Hence, the equality holds in the weak sense by Lemma 3.8.1, i.e. for all g ∈ C∞(Td)
ˆ
Td
M ′ν(ϕ)hg =

ˆ
Td
Aν∇h · ∇g. (3.8.2)

Now take a subsequence in C3,α(Td) converging to ϕ ∈ C2,α(Td) in the C2,α(Td)-topology
and use the continuity of the integrals in (3.8.2) to conclude.

With this at hand, we can prove that Φ̄ν is continuously Fréchet differentiable.

Theorem 3.8.4. Let ν ∈ D1,α. Then, the map Φ̄ν as defined in (3.8.1) is continuously
Fréchet differentiable. More precisely, for every ρ ∈ D0,α, the value of (Φ̄ν)′(ρ)f at f ∈
C0,α
� (Td) is the unique solution h ∈ C2,α

� (Td) of the linearized equation

−div(Aν∇h) = f on Td,

where ϕ0 = Φ̄ν(ρ) and Aν = ν(x−∇ϕ0)cof(Id−D2ϕ0)T .

Proof. Let ϕ0 = Φ̄ν(ρ) ∈ C2,α(Td). Considering Remark 3.8.2 and regularity for Monge-
Ampère equations, we have that u0 ∈ C2,α(Rd) defined by u0(x) = |x|2

2 − ϕ0(x) is strongly
convex. So the Fréchet derivative of Mν at ϕ0 is given by Proposition 3.8.3. Invertibility
of M ′ν(ϕ0) is equivalent to finding, for every f ∈ C0,α

� (Td), a unique h ∈ C2,α
� (Td) such

that
−div(Aν∇h) = f on Td, (3.8.3)

in the weak sense. By strong convexity of ϕ0 equation (3.8.3) is uniformly elliptic. This
implies that there is a unique solution h ∈ H1

� (Td) which is also in C2,α
� (Td) thanks to

elliptic PDE regularity theory (use e.g. Lemma 6.5 [61] and Theorem 5.2 [61]). With
the inverse function theorem we conclude that there is an open (in D0,α) neighborhood U
containing ρ such that Φ̄ν is Fréchet differentiable on U .
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3.A. AUXILIARY PROBABILITY RESULTS

3.A Auxiliary probability results

Lemma 3.A.1. Consider space Cb(X ) of bounded continuous functions on a separable
metric space X endowed with the topology of pointwise convergence. Let f1, f2, . . . be i.i.d.
(Borel) random functions from Cb(X ) s.t. f1(x∗) = 0 a.s. and E supx∈X |f1(x)| < ∞. Let
(Xn)n∈N be a sequence of r.v. convergent to x∗ a.s. Then

1

n

n∑
i=1

fi(Xn)→ 0 a.s.

Proof. Consider the modulus of continuity for f at point x∗:

ωf (δ, x∗) :=

{
supx∈Bδ(x∗)|f(x)− f(x∗)|, δ > 0,

0, δ = 0.

Note that (f, δ) 7→ ωf (δ, x∗) is measurable: indeed, take a countable dense set S ⊂ X , then

ωf (δ, x∗) = sup
x∈S
|f(x)− f(x∗)|1[d(x, x∗) < δ].

Since fi(x∗) = 0 a.s., we have for any fixed δ > 0∣∣∣∣∣ 1n
n∑
i=1

fi(Xn)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

ωfi(d(Xn, x
∗), x∗)

≤ 1

n

n∑
i=1

(
ωfi(δ, x

∗)1 [d(Xn, x
∗) ≤ δ]

+ sup
x∈X
|fi(Xn)|1 [d(Xn, x

∗) > δ]
)
.

Further, E supx∈X |f1(x)| <∞, therefore by the strong LLN

1

n

n∑
i=1

sup
x∈X
|fi(Xn)| a.s.−−→ E sup

x∈X
|f1(x)|,

1

n

n∑
i=1

ωfi(δ, x
∗)

a.s.−−→ Eωf1(δ, x∗) ≤ E sup
x∈X
|f1(x)|.

Since 1 [d(Xn, x
∗) > δ]→ 0 a.s. it holds a.s. that

lim sup
1

n

n∑
i=1

ωfi(d(Xn, x
∗), x∗) ≤ Eωf1(δ, x∗)→ 0 as δ → 0

due to Lebesgue’s dominated convergence theorem. The claim follows.

The following result is a version of Slutsky’s theorem for Hilbert space. We say that
Xn ∈ H converge in probability to X (Xn

P−→ X), if ‖Xn −X‖
P−→ 0, i.e. for any ε > 0 it

holds that P (‖Xn −X‖ > ε)→ 0.

Lemma 3.A.2. Let (An)n∈N be a sequence of random bounded operators on a separable
Hilbert space H convergent to a fixed operator A in SOT a.s. and bounded in probability
(i.e. for any ε > 0 there exists Mε s.t. P (‖An‖ > Mε) ≤ ε for all n). Let (Xn)n∈N be a
sequence of r.v. in H, Xn

d−→ X. Then AnXn
d−→ AX.
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CHAPTER 3. ENTROPICALLY REGULARIZED WASSERSTEIN BARYCENTERS

Proof. Let (en)n∈N be an o.n.b. in H and Πk be the orthogonal projector onto the first k
axes e1, . . . , ek. Then

AnXn = AXn + (An −A)ΠkXn + (An −A) (I −Πk)Xn. (3.A.1)

Since An
SOT−−−→ A a.s., for any fixed k we have ‖(An −A) Πk‖op → 0 a.s., thus

(An −A) ΠkXn
P−→ 0.

Moreover,
(I −Πk)Xn

d−−−→
n→∞

(I −Πk)X
P−−−→

k→∞
0.

Since An are bounded in probability, the above equations imply that

(An −A)Xn
P−→ 0.

This together with (3.A.1) and Xn
d−→ X yields convergence AnXn

d−→ AX.
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Chapter 4

Wasserstein medians

The following chapter is based on an ongoing work with G. Carlier and E. Chenchene, we
refer to it with [29]. The images in this chapter have been provided by E. Chenchene.

Given the popularity of the Wasserstein barycenter (B) in several fields, as pointed out
in the introduction and Section 2.3, it may already be enough as a statistical estimator.
However, it has one drawback: it is not the most robust estimator in the sense that
it is susceptible to outliers. Indeed, loosely speaking, it suffices that one of the given
data probability measures moves “arbitrarily far” from the other samples, the Wasserstein
barycenter will take into account this outlier and may become “arbitrarily far” from the
uncorrupted Wasserstein barycenter. A way to capture this mathematically is the break-
down point, which will make this notion precise and will be discussed in the sequel.

A way to circumvent this problem is to study the corresponding median problem.
Again inspired by the Euclidean setting, minimizing the sum of all weighted Euclidean
distances gives a notion of weighted median, which in the literature is commonly referred
as point of Torricelli, Fermat-Weber point or geometric median, see e.g. [37] [85] [98]. As
already pointed out in the introduction of this thesis, Fréchet generalized these definitions
to a general metric space (X, d) in the seminal work Les éléments aléatoires de nature
quelconque dans un espace distancié [56]. Let us also mention that the case of two measures
has been studied in [82].

This motivates to define the Wasserstein median as any optimal solution to the following
convex problem

inf
ρ∈P1(X)

N∑
i=1

piW1(ρ, νi),

where ν1, ..., νN ∈ P1(X) are probability measures and p1, ..., pN ≥ 0 are non-negative
weights that sum to one.

To illustrate the difference in robustness between Wasserstein barycenters and Wasser-
stein medians consider for instance the problem of averaging the five black-and-white pic-
tures in Figure 4.1. It is clear from Figure 4.1, that the Wasserstein median shows some
sort of robustness to the outlier (the spiral).

A more interesting example from the point of view of applications is shown in Figure
4.2, where both the Wasserstein barycenter and Wasserstein median of histograms are
shown, the Wasserstein barycenter exhibiting more oscillations.
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CHAPTER 4. WASSERSTEIN MEDIANS

Figure 4.1 – Comparison between a Wasserstein barycenter (middle) and a Wasserstein
median (right) for a sample of five measures (left) with uniform weights.

Our objective is to further investigate the notion of Wasserstein median highlighting
the most important properties.

Figure 4.2 – Comparison between Wasserstein barycenters (blue) and Wasserstein medians
(black) of the daily attendance distributions (x-axis: time from 2:00 am to 12:00 pm) of t
London’s underground stations, with t = 9, 29, 39, 59, 81.

To this end we introduce the problem and justify its well-posedness in Section 4.1.
Section 4.2 deals with the stability of the Wasserstein median subject to perturbations of
the sample measures and we prove that its break-down point problem is ∼ 1/2, i.e. to
drastically corrupt the estimation of the Wasserstein median, at least half of the sample
measures has to be modified. In Section 4.3 we study thoroughly the case where the
probability measures are supported on the real line. We show in particular that if all the
measures are absolutely continuous with bounded density, then there exists an absolutely
continuous Wasserstein median whose density is in L∞ with a linear dependency on the
L∞-norms of the sample measures, which, as we show in a counterexample, is not true
in higher dimensions. In Section 4.4, we present a dual and a multi-marginal formulation
of the problem with some applications. In Section 4.5 we present a flow formulation of
the Wasserstein median problem that leads to a PDE of Monge-Kantorovich type which
characterizes the problem. For completeness, Section 4.A about the numerical simulations
used for the images of this chapter is included. This work has been done by E. Chenchene.

4.1 Formulation and existence

Let (X, d) be a proper metric space, i.e. a metric space such that all the closed balls are
compact. This implies that (X, d) is Polish, i.e. separable and complete. As we mentioned
in the introduction, on (P1(X),W1) we get a natural notion of median.

Definition 4.1.1 (Wasserstein median). Let ν1, . . . , νN ∈ P1(X) and p1, . . . , pN positive
weights such that p1 + · · · + pN = 1, we call (weighted) Wasserstein median any optimal
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solution to the following convex problem

inf
ρ∈P1(X)

N∑
i=1

piW1(ρ, νi). (M)

We denote by F : P1(X)→ R the objective function and by Medp(ν1, . . . , νN ) the set of all
Wasserstein medians of ν1, . . . , νN with weights p := (p1, . . . , pN ).

The existence of a solution of (M) follows from the standard Direct Method of Calculus
of Variations which we detail for the sake of completeness.

Theorem 4.1.2 (Existence of a solution). Let ν1, . . . , νN ∈ P1(X), p = (p1, . . . , pN )
positive weights such that p1 + · · ·+ pN = 1 then there exists a minimizer of (M) and the
set Medp(ν1, . . . , νN ) is a convex closed subset of P1(X).

Proof. Let (ρn)n∈N be a minimizing sequence of (M). There exists C > 0 such that for all
n ∈ N we have F(ρn) ≤ C, thus for all n ∈ N:

N∑
i=1

pi inf
γi∈Π(ρn,νi)

ˆ
d(x, y) dγi(x, y) ≤ C. (4.1.1)

By the triangular inequality we have for x̄ ∈ X and for all γni ∈ Π(ρn, νi)

ˆ
d(x, x̄) dρn(x) ≤

N∑
i=1

pi

ˆ
d(x, y) dγni (x, y) +

N∑
i=1

pi

ˆ
d(y, x̄) dνi(y) ∀n ∈ N.

Hence, by (4.1.1) and the arbitrariness of γni the sequence (ρn)n∈N has uniformly bounded
first moments. By Markov’s inequality it follows that (ρn)n∈N is tight since X is proper.
Hence (ρn)n∈N admits a narrowly converging subsequence, call ρ its limit. Since F1 is
lower semicontinuous with respect to the narrow convergence (see Lemma 7.1.4 in [7]), ρ
is a Wasserstein median.

Convexity of Medp(ν1, . . . , νN ) follows by (standard) convexity of W1.

Remark 4.1.3. In the proof of Theorem 4.1.2 we proved that the set Medλ(ν1, . . . , νN ) is
narrowly compact. Actually, it is compact with respect to the topology induced by the
W1 distance, as proven in Theorem 5.5 [71] in a much wider framework. A straightforward
proof of this fact is given in Corollary 4.4.5 using the multi-marginal formulation in the
case X = Rd.

4.2 Stability and robustness

In this section, we introduce fundamental properties of Wasserstein medians which mainly
rely on the metric side of the problem and can be generalized to Fréchet medians, we will
highlight when this is possible.
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CHAPTER 4. WASSERSTEIN MEDIANS

4.2.1 Stability with respect to data

The stability with respect to random perturbation of the sample measures is a crucial
property for any location estimator. We show in the sequel that if ν1, . . . , νN are approxi-
mated by sequences (νni )n∈N ∈ P1(X)N for i = 1, . . . , N , then the approximated medians
narrowly converge, passing to a subsequence if necessary, to a Wasserstein median of the
original measures. While this result is expected and can be established with quite standard
techniques, it is important both for numerical purposes, and for theoretical reasons as it
will enable us to circumvent the connectivity hypothesis on the support of the original
measures in Theorem 4.3.9.

Lemma 4.2.1. Let (pn1 , . . . , p
n
N )n∈N with

∑N
i=1 p

n
i = 1 be a sequence in [0, 1]N converg-

ing to (p1, . . . , pN ) and (νn1 )n∈N, . . . , (ν
n
N )n∈N be sequences converging to (ν1, . . . , νN ) in

(P1(X),W1). Then the sequence of functionals of the Wasserstein median problem, i.e.,
Fn : P1(X)→ R defined for n ∈ N

Fn(ρ) :=
N∑
i=1

pniW1(ρ, νni )

Γ-converges with respect to the narrow convergence to the functional F of the Wasserstein
median problem (M).

Proof. The lim sup-inequality is guarranteed by taking the constant recovery sequence. For
the lim inf-inequality let µ ∈ P1(X) and (µn)n∈N be a narrowly converging sequence to µ.
Then by joint lower semicontinuity of the Wasserstein functional (see e.g. Lemma 7.1.4 in
[7])

lim inf
n→∞

Fn(µn) ≥
N∑
i=1

piW1(µ, νi).

With this at hand we can deduce the following stability result.

Theorem 4.2.2 (Stability of Wasserstein medians). Let pn = (pn1 , . . . , p
n
N )n∈N,

∑N
i=1 p

n
i = 1,

be a sequence in [0, 1]N converging to p = (p1, . . . , pN ) and (νn1 )n∈N, . . . , (ν
n
N )n∈N be se-

quences converging to (ν1, . . . , νN ) in (P1(X),W1). For all n ∈ N let ρn ∈ Medpn(νn1 , . . . , ν
n
N ).

Then (ρn)n∈N admits a narrowly-converging subsequence and every limit point is a weighted
Wasserstein median of (ν1, . . . , νN ) and weight p.

Proof. Similar to the proof of existence of a Wasserstein median, we can prove that (ρn)n∈N
is tight. Indeed, for C > 0 sufficiently large and ε > 0 there is an N ∈ N such that for
n ≥ N

N∑
i=1

pniW1(ρn, νni ) ≤ C, |pni − pi| < ε and W1(νni , νi) < ε.

Hence for a fixed x0 ∈ X we obtain for n ≥ N
ˆ
d(x, x0) dρn(x) ≤

N∑
i=1

pni

[
W1(ρn, νni ) +W1(νni , νi) +

ˆ
d(x0, y) dνi(y)

]
≤ C̃,
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for C̃ > 0 independent of n. This implies tightness of (ρn)n∈N. Optimality of an accumu-
lation point now follows by the Γ-convergence from Lemma 4.2.1.

Remark 4.2.3. Actually, one can improve the convergence of a suitable subsequence of
minimizers (ρn)n∈N to convergence in (P1(X),W1) by employing Theorem 5.5 [71] directly.

Another self-contained proof of this in the setting X = Rd is given by combing the Γ-
convergence from Lemma 4.2.1W1 and the precompactness of the sequence in (P1(X),W1)
by Corollary 4.4.5.

4.2.2 Robustness of Wasserstein medians

In statistics, an index which somewhat tries to capture the notion of robustness is the so
called break-down point. Roughly speaking, it yields the largest fraction of the input data
which could be corrupted (i.e., changed arbitrarily) without moving the estimation too far
from the original estimation for the non-corrupted data. Let us give an example. Take
N ≥ 2 points in R and consider the usual (uniform) algebraic mean. It suffices to move
only one of these points to +∞ for the mean to go to +∞, too. In other words, corrupting
arbitrarily only one input value the estimated mean could move arbitrarily far from the
original mean value. The break-down point of the arithmetic mean is therefore 1/N : it
suffices to corrupt only one value to make the output information-less, unless we don’t
provide some error bounds on the corrupted data. It is well known (see Theorem 2.1 and
2.2 [78]) that the break-down point of geometric medians is approximately 1/2, so that
even corrupting half (minus one) of the data we can stay rather confident on the output.
In this section we prove a similar result for Wasserstein medians. To do so, we should first
recall some basic facts about break-down points, starting with a definition of break-down
point that we adapted to the weighted case.

Definition 4.2.4 (Break-down point). Let (Y, dY ) be a metric space, N ≥ 2 and p =
(p1, . . . , pN ) ∈ [0, 1]N with

∑N
i=1 pi = 1. For a statistics function tp : Y N → Y we define

its break-down point associated to the weights p at x = (x1, ..., xN ) ∈ Y N by the following
number

b(tp(x)) := min

{∑
i∈I

pi : I ⊆ {1, . . . , N}, sup
yI

d(t(yI), t(x)) = +∞

}
,

where the sup is taken over all possible corrupted collections yI = (y1, ..., yN ) that are
obtained from x by replacing the points indexed by I by arbitrary values in Y .

Remark 4.2.5 (“Arbitrarily far”). Let X be a bounded space (i.e., diamX <∞). One could
easily notice from the definition of the Wasserstein distance

W1(µ, ν) ≤ diam(X) := sup{d(x, y) | (x, y) ∈ X2},

which means that if the space is bounded, the breakdown point of any location estimator
w.r.t. the metric W1 is always 1. This means that this index is only a useful indicator
of robustness if we suppose the space to have infinite diameter. This assumption, which
is clearly technical, has to be made in order to take advantages of the properties of the
break-down index, which is sensible to robustness as far as perturbations are somewhat
arbitrarily stressed.
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We now state the main theorem for Wasserstein medians, where the reference metric
space is P1(X) equipped with theW1 distance, and the statistics function is just the choice
of one median in Med(ν1, . . . , νN ). The proof is a generalization of the one of Theorem 2.2.
in [78].

Theorem 4.2.6 (Break-down point of Wasserstein medians). Suppose diam(X) =∞. Let
N ≥ 2, ν := (ν1, ..., νN ) ∈ P1(X)N and p := (p1, . . . , pN ) ∈ [0, 1]N with

∑N
i=1 pi = 1.

Denote by Mp : P1(X)N → P1(X) a function which gives a Wasserstein median for each
ν1, ..., νN with associated weights p. Then the break-down point ofMp satisfies

b(Mp(ν)) ≥ 1

2
.

More precisely, if we take a corrupted collection µ := (µ1, . . . , µN ) by replacing components
indexed by I ⊂ {1, . . . , N} with

∑
i∈I pi <

1
2 we have

W1(Mp(ν),Mp(µ)) ≤ 2Cδ

1− 2δ
+ 2C (4.2.1)

where C := maxiW1(Mp(ν), νi) and

δ := sup

∑
j∈J

pj : J ⊂ {1, . . . , N},
∑
j∈J

pj <
1

2

 .

Proof. Let us denote ρ = Mp(ν1, ..., νN ). Take I ⊂ {1, . . . , N} such that
∑

i∈I pi <
1
2 .

Denote by µ := (µ1, ..., µN ) a corrupted collection obtained by replacing the points indexed
by I of ν := (ν1, ..., νN ). We prove by contradiction that

W1(ρ,Mp(µ)︸ ︷︷ ︸
:=µ

) ≤ K,

for a constant K independent of I. In order to do so, define C := maxiW1(ρ, νi) and let
B = B2C(ρ) be the ball with center ρ and radius 2C with respect to the W1 distance.
Further, let

ξ := Dist(µ,B) := inf
%∈B

W1(µ, %).

Then by the triangular inequality W1(µ, ρ) ≤ ξ + 2C, so that for all j = 1, . . . , N

W1(µj , µ) ≥W1(µj , ρ)−W1(ρ, µ) ≥W1(µj , ρ)− (ξ + 2C). (4.2.2)

Now suppose that µ is far from ρ, more precisely by defining

δ := sup

∑
j∈J

pj : J ⊂ {1, . . . , N},
∑
j∈J

pj <
1

2

 ,

suppose that

ξ >
2Cδ

1− 2δ
.

Then by using that (P1(X),W1) is a geodesic space, see Lemma 4.2.8, we have for all
j = 1, . . . , N

W1(νj , µ) ≥ C + ξ ≥W1(νj , ρ) + ξ (4.2.3)
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Putting together the estimates in (4.2.2) and (4.2.3) yields
N∑
j=1

pjW1(µj , µ) ≥
∑
j∈I

pj(W1(µj , ρ)− (ξ + 2C)) +
∑
j /∈I

pj(W1(µj , ρ) + ξ)

=

N∑
j=1

pjW1(µj , ρ) + ξ(
∑
j /∈I

pj −
∑
j∈I

pj)− 2C
∑
j∈I

pj

≥
N∑
j=1

pjW1(µj , ρ) + ξ(1− 2δ)− 2Cδ

>
N∑
j=1

pjW1(µj , ρ),

which contradicts µ being a Wasserstein median for the corrupted collection µ. Note that
this also implies that

ξ ≤ 2Cδ

1− δ
,

from which we deduce the estimate in (4.2.1).

Remark 4.2.7. By inspecting the proof, we observe that actually the lower bound for the
break-down point ofMp is given by

1− δ = inf

∑
j∈J

pj : J ⊂ {1, . . . , N},
∑
j∈J

pj ≥
1

2

 .

In case of uniform weights, i.e. with p := (1/N, . . . , 1/N), we have δ =
⌊
N−1

2

⌋
/N . In this

case we retrieve the classical estimate

b(Mp(ν)) ≥
⌊
N + 1

2

⌋
/N,

as proved in Theorem 2.2. in [78] for geometric medians on Rd. Moreover, we have the
following uniform estimate for k = b(N − 1)/2c

sup
µk

W1(Mp(µk),Mp(ν)) ≤ 2C

⌊
N + 1

2

⌋
,

where C = maxiW1(Mp(ν), νi) and the sup is taken over all possible corrupted collections
µk = (µ1, ..., µN ) that are obtained from ν by replacing k components of ν by arbitrary
measures in P1(X).

Lemma 4.2.8. Let (X, d) be a Polish space. Then (P1(X),W1) is a geodesic space.

Proof. Let µ0, µ1 ∈ P1(X). We claim that µt = (1 − t)µ0 + tµ1 is a constant-speed
geodesic in (P1(X),W1). Indeed, by employing Kantorovich-Rubinstein duality (Theorem
1.14 [112]), we have for 0 ≤ s ≤ t ≤ 1

W1(µt, µs) = sup

{ˆ
X
ϕd(µt − µs) : ϕ ∈ L1(|µt − µs|), ‖ϕ‖Lip ≤ 1

}
= (t− s) sup

{ˆ
X
ϕd(µ1 − µ0) : ϕ ∈ L1(|µ1 − µ0|), ‖ϕ‖Lip ≤ 1

}
= (t− s)W1(µ1, µ0),
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where ‖ϕ‖Lip := supx,y∈X
|ϕ(x)−ϕ(y)|

d(x,y) .

Remark 4.2.9. Theorem 4.2.6 can be adapted to Fréchet medians defined on any geodesic
metric space. In fact, the proposed proof essentially relies on the triangular inequality,
existence of a geodesic between two arbitrary elements and on the very first definition of
a median.

Figure 4.3 – Comparison of a Wassertein median and a Wasserstein barycenter of four
discrete measures (in blue, red, green, and yellow). The yellow sample measure could be
thought as an outlier.

4.3 One dimensional Wasserstein medians

In this section, we study the case of Wasserstein medians on X = R with distance d
induced by the absolute value. Recall that in one dimension the Wasserstein space of order
1 can be identified as a Banach space since the Wasserstein distance of order 1 between
two measures is equal to the L1-distance between their cumulative or quantile distribution
functions, see also Section 2.1 [104]. Hence, the Wasserstein median problem becomes more
explicit. This allows to find few different explicit constructions of Wasserstein medians.
In this section for all ν ∈ P1(R) we denote by Fν its associated cumulative distribution
function (cdf), which is defined by Fν(x) = ν((−∞, x]) for all x ∈ R. We also denote by
qν : [0, 1] → R̄ its pseudo-inverse or quantile distribution function (qdf), which is defined
by

qν(t) := inf{x ∈ R | Fν(x) ≥ t},

for t ∈ [0, 1]. More precisely, we have the following important characterization of the
Wasserstein distance of order one on one dimensional domains, see for instance [104, The-
orem 2.9]. Let µ, ν ∈ P1(R), then we have:

W1(µ, ν) =

ˆ 1

0
|qν(t)− qµ(t)|dt = ‖qν − qµ‖L1([0,1])

=

ˆ
R
|Fµ(t)− Fν(t)| dt = ‖Fν − Fµ‖L1(R).
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We obtain immediately the following reformulations of the Wasserstein median problem

inf (M) = inf
ρ∈P1(R)

ˆ
R

N∑
i=1

pi|Fρ(t)− Fνi(t)| dt (4.3.1)

= inf
ρ∈P1(R)

ˆ 1

0

N∑
i=1

pi|qρ(t)− qνi(t)| dt (4.3.2)

which will be referred as vertical (4.3.1) and horizontal (4.3.2) formulations. The termi-
nology will become clear in the sequel. Note that in this way the problem is equivalent
to perform a proper selection of a 1D Euclidean weighted median of the cumulative or
quantile distribution functions. Due to the continuity properties of cdfs and qdfs we can
trace back to pointwise medians (as proved in Proposition 4.3.2) which is why the following
lemma is useful in the sequel.

Proposition 4.3.1 (Medians in R). Let x1 < ... < xN ∈ R and p = (p1, . . . , pN ) positive
weights which sum up to 1. Then xk is a median if and only if k satisfies the following
condition: ∑

i≥k
pi ≥

1

2
and

∑
i≤k

pi ≥
1

2
. (4.3.3)

If there exists an unique k such that (4.3.3) is satisfied then xk is the unique weighted
median. Finally, there exists at most two ks which satisfy (4.3.3), and they are consecutive:
say xk, xk+1. In this case, Medp(x1, . . . , xN ) = [xk, xk+1].

Proof. We look for xk, k ∈ {1, . . . , N}, which minimizes the following convex function
f(y) :=

∑N
i=1 pi|y − xi|. By convexity this is equivalent to finding xk such that

0 ∈ ∂f(xk) =

N∑
i=1

pi∂| · −xi|(xk) =
∑
i<k

pi + [−pk,+pk]−
∑
i>k

pi.

where we used a standard notation for the sum of sets. This can be rewritten as∑
i<k

pi −
∑
i≥k

pk ≤ 0 ≤
∑
i≤k

pi −
∑
i>k

pi,

which in turn is equivalent to (4.3.3). The remaining statements are an immediate conse-
quence of (4.3.3).

This triggers a natural mild condition for uniqueness, i.e.

Property. Let p1, . . . , pN > 0 be positive weights such that
∑N

i=1 pi = 1 and that

there is no permutation σ of {1, ..., N} and no index k such that:
k∑
i=1

pσ(i) =
1

2
, (4.3.4)

Condition (4.3.4) ensures uniqueness for 1D geometric medians by Proposition 4.3.1,
and, therefore, also for Wasserstein medians on one dimensional domains by Proposition
4.3.2.
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Proposition 4.3.2. Let ν1, . . . , νN ∈ P1(R) with cumulative distribution function F1, . . . , FN
and quantile distribution function q1, . . . , qN , p := (p1, . . . , pN ) ∈ [0, 1]N with

∑N
i=1 pi = 1.

Let ρ ∈ Medp(ν1, . . . , νN ), then

Fρ(x) ∈ Medp(F1(x), . . . , FN (x)) ∀x ∈ R, and qρ(t) ∈ Medp(q1(t), . . . , qN (t)) ∀t ∈ (0, 1).
(4.3.5)

Conversely, given ρ ∈ P1(R), if Fρ is its cumulative distribution function and satisfies
(4.3.5), or respectively its quantile distribution function qρ satisfies (4.3.5) then ρ is a
Wasserstein median. Furthermore, if (4.3.4) holds, then there is a unique Wasserstein
median.

Proof. We show the first claim for cdfs. The same argument works for qdfs. Suppose that
there is an x ∈ R such that

Fρ(x) /∈ Medλ(F1(x), . . . , FN (x)).

Then by right-continuity of all the cdfs there must be a δ > 0 such that for all y ∈ [x, x+δ]

Fρ(y) /∈ Medλ(F1(y), . . . , FN (y)),

which contradicts Fρ being the cdf of a Wasserstein median. The converse is immediate.
Now uniqueness under (4.3.4) follows from the fact that in this case Medp(ξ1, . . . , ξN ) is
always a singleton for every ξ1, . . . , ξN ∈ R by Proposition 4.3.1.

Note that condition (4.3.4) holds for instance when we consider an odd number of
sample measures with uniform weights. However, unlike the 1D Euclidean case this is not
a necessary condition for uniqueness, even if it is still somehow tight. In fact, if (4.3.4)
does not hold it is easy to build a sample for which uniqueness does not hold. Proposition
4.3.2, in particular (4.3.5), suggests also a natural way to construct a family of Wasserstein
medians. The following definition will be helpful.

Definition 4.3.3 (Upper and lower medians). Let Ω be a subset of R and f1, . . . , fN :
Ω→ R be N functions, we define

g+(x) := maxMedλ(f1(x), . . . , fN (x)), g−(x) := minMedλ(f1(x), . . . , fN (x)) ∀x ∈ Ω.

g+ will be called upper median and g− lower median of f1, . . . , fN .

As before it is useful to look at properties of pointwise medians. Proposition 4.3.1
implies the following characterization for lower and upper medians which we use frequently
in the proofs.

Corollary 4.3.4. Let x1, ..., xN ∈ R and p = (p1, . . . , pN ) be (strictly) positive weights
which sum up to 1. Then,

• x+ is the upper median, i.e. x+ = maxMedp(x1, . . . , xN ) iff x+ is a median and for
all I ⊂ {1, . . . , N} with

∑
i∈I pi ≥

1
2

x+ ≥ min
i∈I

xi

• x− is the lower median, i.e. x− = minMedp(x1, . . . , xN ) iff x− is a median and for
all I ⊂ {1, . . . , N} with

∑
i∈I pi ≥

1
2

x− ≤ max
i∈I

xi
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Proof. By reordering and relabeling the points we can always assume that x1 < · · · < xM
and M ≤ N. Indeed, reordering the given points to x̄1 < · · · < x̄M (by possibly dropping
points with equal value) with weights p̄i =

∑
k∈Ai pk whereAi = {k ∈ {1, . . . , N} : xk = x̄i}

yields the result.
So, assume that x1 < · · · < xM and corresponding (strictly) positive weights (pi)

M
i=1

with M ≤ N.
We only prove the first assertion, the second one is analogous. Let x+ be the upper

median. Then, by Proposition 4.3.1 there is k ∈ {1, . . . ,M} such that x+ = xk with∑
i≥k pi ≥

1
2 and

∑
i≤k pi ≥

1
2 . Now, assume that there is I ⊂ {1, . . . , N} with

∑
i∈I pi ≥

1
2

and
x+ < min

i∈I
xi.

Observe that necessarily I ⊂ {k + 1, . . . ,M} and
∑

i≥k+1 pi = 1
2 since

∑
i≥k+1 pi ≥∑

i∈I pi ≥
1
2 and

∑
i≥k+1 pi = 1 −

∑
i≤k pi ≤

1
2 . This implies that I = {k + 1, . . . ,M}.

Since
∑

i≤k+1 pi ≥
1
2 and

∑
i≥k+1 pi ≥

1
2 , Proposition 4.3.1 gives that xk+1 > x+ is a

median as well, contradicting the fact that x+ is the upper median.
Let now x+ be a median. If there is a unique median, then clearly x+ is the upper

median. Otherwise, there is k ∈ {1, . . . ,M} such that Medp(x1, . . . , xN ) = [xk, xk+1]
and

∑
i≥k+1 pi ≥

1
2 by Proposition 4.3.1. But then by our assumption x+ ≥ xk+1 which

concludes that x+ is the upper median.

The following technical lemma summarizes the elements to justify our Median selection
procedure and states properties we need for the higher regularity in the sequel.

Lemma 4.3.5 (Median selection). Let Ω be a (possibly unbounded) interval of R and
f1, . . . , fN : Ω → R be non-decreasing functions. Let g+ , g− be the upper and the lower
medians of f1, . . . , fN . Define

gθ = θg+ + (1− θ)g− for θ ∈ [0, 1].

Then it holds that

1. gθ is non-decreasing for all θ ∈ [0, 1], hence, differentiable almost everywhere.

2. If f1, . . . , fN are all strictly increasing then gθ is strictly increasing for all θ ∈ [0, 1].

3. If f1, . . . , fN are all right (resp. left) continuous, then gθ is right (resp. left) contin-
uous.

4. Assume that θ ∈ {0, 1}. Denote by I0(x) = {i ∈ {1, . . . , N} | gθ(x) = fi(x)}. Then
we have that

min
i∈I0(x)

f ′i(x) ≤ g′θ(x) ≤ max
i∈I0(x)

f ′i(x) for a.e. x ∈ Ω.

Proof. It suffices to prove the points 1., 2. and 3. for θ ∈ {0, 1}. For all t ∈ Ω denote
I+(t) := {i ∈ {1, . . . , N} : fi(t) ≥ g+(t)}. Since all the fi’s are non-decreasing, we obtain
for h > 0 such that t+ h ∈ Ω, and all i ∈ I+(t)

fi(t+ h) ≥ g+(t).
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Now, note that by Corollary 4.3.4 with
∑

i∈I+(t) pi ≥
1
2 we have

g+(s) ≥ min
i∈I

fi(s).

This implies g+(t + h) ≥ g+(t) as desired. For the lower median a similar strategy with
the set I−(t+ h) := {i ∈ {1, . . . , N} : fi(t+ h) ≤ g−(t+ h)} and part 2 of Corollary 4.3.4
yields the result. For 2. the argument is analogous and therefore omitted.

For 3. consider g+ and t ∈ Ω, (tn)n∈N ∈ RN with tn ≥ t and tn → t as n → ∞. Then
(g+(tn))n∈N is bounded and hence there is a converging subsequence. Denote the sequence
by (nk)k∈N and its limit by g̃+(t). By passing to the limit k → ∞ the fact that all the
g+(tnk) are medians we have for all x ∈ R

N∑
i=1

pi|g̃+(t)− fi(t)| ≤
N∑
i=1

pi|x− fi(t)|.

Hence g̃+(t) is a median as well. To conclude that it is the upper median take I ⊂
{1, . . . , N} such that

∑
i∈I pi ≥

1
2 , then

g+(tnk) ≥ min
i∈I

fi(tnk),

and passing to the limit k →∞ concludes that g̃+(t) is the upper median, hence g̃+(t) =
g+(t). Now that we know that every subsequence has a converging subsequence towards
g+(t) we can conclude that the whole sequence converges. The proof for the lower median
and for the left continuity is analogous.

Let us now focus on 4. Let Ω′ ⊂ Ω be a set of full Lebesgue measure where gθ, fi
with i ∈ {1, . . . , N} are all differentiable and consider x ∈ Ω′. By the continuity of all the
functions gθ and f1, . . . , fN in x and Proposition 4.3.1 (recall θ ∈ {0, 1}), for all sufficiently
small h ∈ R, gθ(x+h) = fj(x+h) for some j ∈ I0(x), which we denote by jh. Furthermore,
by the differentiability of gθ and all fi in x we have for ε > 0

g′θ(x) ≤ |g′θ(x)− f ′jh(x)|+ f ′jh(x)

≤
∣∣∣∣gθ(x+ h)− gθ(x)

h
− fjh(x+ h)− fjh(x)

h

∣∣∣∣︸ ︷︷ ︸
=0

+ε+ f ′jh(x),

where we have possibly chosen h even smaller to ensure ε-closedness of the difference
quotients to the derivative. This yields

g′θ(x) ≤ max
j∈I0(x)

{
f ′j(x)

}
+ ε,

and we conclude the upper estimate on the derivative by ε → 0. The lower bound is
analogous.

Given ν1, . . . , νN ∈ P1(R) with cdf Fν1 , . . . , FνN and qdf qν1 , . . . , qνN we can now select
two (a priori different) Wasserstein medians by taking

qθ := θq+ + (1− θ)q−, Fθ := θF+ + (1− θ)F−, (4.3.6)
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Figure 4.4 – Two numerical examples: (Left) The horizontal selection compared to the ver-
tical selection with parameter θ = 1/2. (Right) Three vertical selections with parameters
θ = 0, 1/2, 1 for a different sample of four measures. (Down) their cumulative distribution
functions.

with θ ∈ [0, 1]. They will be referred to as horizontal and vertical selections. We call
horizontal upper, horizontal lower, vertical upper, vertical lower Wasserstein medians the
medians given by q+, q−, F+, F− respectively. Note that thanks to Lemma 4.3.5 Fθ and
qθ are indeed cdfs and qdfs respectively (the fact that the limits carry over is immediate).
We furthermore obtain a regularity result as detailed in the following.

Proposition 4.3.6. Let ν1, . . . , νN ∈ P1(R) and fix θ ∈ [0, 1] then Fθ : R → [0, 1] and
qθ : [0, 1] → R̄ given by (4.3.6) are two well defined cumulative and quantile distribution
functions which define two Wasserstein medians ρθ and µθ respectively. Moreover, we have
the following

1. If ν1, . . . , νN are all atomless (resp. discrete) then ρθ and µθ are atomless (resp.
discrete);

2. If ν1, . . . , νN have connected support, then ρθ and µθ have connected support.

Proof. The proof is a direct consequence of Lemma 4.3.5 and the following well known
characterizations. We know that µ being atomless is equivalent to Fµ being continuous as
well as qµ being strictly increasing, see Theorem 4.3 (m) [48]. Similarly, by Theorem 4.3
(p) [48] µ has connected support if and only if Fµ is strictly increasing on {µ > 0} , if and
only if qµ is continuous.

In addition, if the regularity of all the sample measures improves further, then the
regularity of the vertical and horizontal selections of a Wasserstein median improves as
well, as shown in the following theorems. Let us first discuss the vertical selections.

Theorem 4.3.7. Let ν1, . . . , νN ∈ P1(R) and let Fθ : R → [0, 1] be given by (4.3.6) for
θ ∈ [0, 1]. If ν1, . . . , νN are all absolutely continuous with densities f1, . . . , fN ∈ Lp(R)
with p ∈ [1,∞] then ρθ, the measure given by Fθ, is absolutely continuous with density
fρθ ∈ Lp(R), and the following quantitative estimate on the density holds

fρθ(x) ≤ max
1≤i≤N

{fi(x)}, for a.e. x ∈ R.

In particular, its Lp-norm is finite and the following estimate holds

‖fρθ‖Lp(R) ≤
N∑
i=1

‖fi‖Lp(R). (4.3.7)
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Proof. Let us assume now that all the sample measures are absolutely continuous with
densities f1, . . . , fN ∈ Lp(R). Consider first θ ∈ {0, 1}. Let I ⊂ R be a non-trivial interval.
We prove that Fθ is absolutely continuous on I by using its equivalence to being continuous,
of bounded variation and satisfying Lusin’s property, which states that for any measurable
set N with L1(N) = 0 we have L1(Fθ(N)) = 0, see for instance [12, 5.8.51].

Indeed, continuity and being of bounded variation (more precisely being non-decreasing)
is carried over to Fθ thanks to Lemma 4.3.5. For the Lusin’s property, observe that by
Proposition 4.3.1 for all x ∈ R Fθ(x) ∈ {Fν1(x), . . . , FνN (x)}, so that we have

Fθ(N) ⊂
N⋃
i=1

Fνi(N),

for any measurable set N . If now L1(N) = 0, then by absolute continuity of the Fνi , we
have L1(Fνi(N)) = 0, hence also L1(Fθ(N)) = 0. We proved that F1 and F0 yield two
absolutely continuous Wasserstein medians. Since Fθ = θF1 +(1−θ)F0 = θF+ +(1−θ)F−
we also retrieve the same result for all θ ∈ (0, 1). Finally, the estimate on the derivative
fθ follows by Lemma 4.3.5 point 4.

Let us now turn our attention to the horizontal selections, the following refined stability
property will be useful.

Lemma 4.3.8. Let ν1, . . . , νN ∈ P1(R) be probability measures. For all i ∈ {1, . . . , N}
let (νni ) ∈ P1(R)N be sequences that converge to νi in (P1(R),W1). Denote by µn ∈
Medp(νn1 , . . . , ν

n
N ) the horizontal lower (resp. upper) weighted medians for all n ∈ N, then

µn converges narrowly to the horizontal lower (resp. upper) median of ν1, . . . , νN .

Proof. Let us denote by qn the quantile function associated to µn, where w.l.o.g. µn are
the horizontal lower medians. It is a general result (cfr. Theorem 4.2.2) that µn admits
a narrowly-converging subsequence (νnk)k∈N whose limit is a Wasserstein median of the
limit sample. Then, denoting by q∞ the quantile distribution function of the limit, it
follows that qnk(t) → q∞(t) as k → ∞ for all t ∈ (0, 1) where q∞ is continuous (see for
instance proof of Proposition 5 on page 250 [55]). Since q∞ is non-decreasing, the set of
discontinuities of q∞ is L1-negligible, therefore qnk converges almost-everywhere to q∞.
Let now I ⊂ {1, . . . , N} with

∑
i∈I pi ≥

1
2 . By Corollary 4.3.4 we have for all k ∈ N and

all t ∈ (0, 1)

qnk(t) ≤ max
i∈I

qn(t).

By a.e. convergence we obtain hence for a.e. t ∈ (0, 1)

q∞(t) ≤ max
i∈I

q∞(t).

By again employing Corollary 4.3.4 and Proposition 4.3.2 together with left-continuity of
q∞ we get that q∞ is indeed the horizontal lower median. Since every subsequence contains
a convergence subsequence converging to the horizontal lower median, the same is true for
the whole sequence.

We are ready to prove the main theorem regarding the regularity of the horizontal
selections.
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Theorem 4.3.9. Let ν1, . . . , νN ∈ P1(R) and let qθ : R → [0, 1] given by (4.3.6) for
θ ∈ [0, 1]. If ν1, . . . , νN are all absolutely continuous with densities f1, . . . , fN ∈ Lp(R)
with p ∈ (1,∞] then µθ, the measure given by qθ, is absolutely continuous with density
fµθ ∈ Lp(R), and the following quantitative estimate on the Lp-norm of the density holds

‖fµθ‖Lp(R) ≤
N∑
i=1

‖fi‖Lp(R). (4.3.8)

Proof. We apply a similar strategy to the one in the proof of Theorem 4.3.7 but with the
additional assumption that all the sample measures have connected support and on their
support F ′i = fi > 0 a.e. This implies (see for instance [12, 5.8.52]) that all the qdfs are
absolutely continuous on [a, b] with [a, b] ⊂ (0, 1). Using the same argument as in the
proof of Theorem 4.3.7, we find that for θ ∈ {0, 1} the horizontal median qθ is absolutely
continuous on any closed interval [a, b] ⊂ (0, 1). Therefore, since qθ = θq+ + (1 − θ)q−,
the same holds for any θ ∈ [0, 1]. This implies (by again employing [12, 5.8.52]) absolute
continuity of the respective cdfs on compact intervals, and hence absolute continuity of the
median measure.

Now fix θ ∈ {0, 1} and let us denote by µθ the corresponding Wasserstein median
and Fµθ its cdf. In order to give an Lp estimate on the derivative almost everywhere of
Fµθ , which we call fµθ note that for almost every t ∈ (0, 1) q′i(t) = [fi(qi(t))]

−1 for all
i ∈ {1, . . . , N} and q′θ(t) = [fµθ(qθ(t))]

−1. Therefore, using point 4. of Lemma 4.3.5 , we
get

fµθ(qθ(t)) =
1

q′θ(t)
≤ 1

minI0(t){q′i(t)}
≤ max

i∈I0(t)
{fi(qi(t))} for a.e. t ∈ (0, 1), (4.3.9)

where I0(t)={i ∈ {1, . . . , N} | qi(t) = qθ(t)}. Let us denote by A the set of full measure
where (4.3.9) holds. Since qθ satisfies Lusin’s property, qθ(A) has full measure. Then,
using that qθ(Fµθ(x)) = x, for all x ∈ qθ(A) we obtain

fµθ(x) ≤ max
i∈I0(F

µθ
(x))
{fi(qi(Fµθ(x)))} ≤ max

1≤i≤N
{fi(x)},

where we used that qi(Fµθ(x)) = qθ(Fµθ(x)) = x for all i ∈ I0(Fµθ(x)). Hence we get the
desired Lp estimate for θ ∈ {0, 1}.

To get rid of the additional assumption on the support of the sample measures we use
an approximation argument. Let g be the standard Gaussian measure on R and introduce
the following approximating sequences:

νni :=

(
1− 1

n

)
νi +

1

n
g ∀i ∈ {1, . . . , N}, ∀n ∈ N∗.

We have that (νni )n∈N∗ is a sequence of absolutely continuous measures with connected
support and positive density L1-a.e. which converges in W1 to νi for every i. The upper
(resp. lower) horizontal Wasserstein median νn of (νn1 , ν

n
2 , ..., ν

n
N ) is absolutely continuous

for all n ∈ N∗, let us call its density fn. By Lemma 4.3.8 the sequence (νn)n∈N∗ converges
to the upper (resp. lower) median of (ν1, ..., νN ). We also have that for any n the estimate
(4.3.8) holds. Therefore we have

‖fn‖p ≤
N∑
i=1

∥∥∥∥(1− 1

n

)
fi +

1

n
g

∥∥∥∥
p

≤
(

1− 1

n

) N∑
i=1

‖fi‖p +
N

n
‖g‖p.
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Hence (fn)n∈N∗ converges weakly-* (i.e. in σ(Lp(R), L
p
p−1 (R))) and using that the Lp

norm is lower semicontinuous with respect to the weak-* convergence then we get (4.3.8).
In the general case for θ ∈ (0, 1) the Lp-bound on fµθ follows from Lemma 4.3.10 with
V (x) = xp.

The hypothesis of the following lemma is reminiscent of McCann’s condition for dis-
placement convexity, which boils down to convexity of the function inside the integral in 1D
as specified below. This is not at all surprising, indeed the horizontal medians correspond
to McCann’s displacement interpolation between the horizontal lower and upper median.

Lemma 4.3.10. Let V : [0,∞)→ R be a convex function. Then in the setting of Theorem
4.3.9 ˆ

R
V (fµθ(x)) dx ≤ θ

ˆ
R
V (f+(x)) dx+ (1− θ)

ˆ
R
V (f−(x)) dx.

Proof. First, note that since V is convex implies φ : (0,∞) 3 t 7→ tV (t−1) convex as
well. Indeed, φ coincides with the perspective function of V , P : (0,∞) × [0,∞) → R,
P (t, x) 7→ tV (xt−1), evaluated at (t, 1). This is convex by for instance Proposition 8.25
[8]. We now have the following estimate

ˆ
R
V (fµθ(x)) dx =

ˆ 1

0
V (q′θ(t)

−1)q′θ(t) dt

≤
ˆ 1

0
θV (q′+(t)−1)q′+(t) + (1− θ)V (q′−(t)−1)q′−(t) dt

= θ

ˆ
R
V (f+(x)) dx+ (1− θ)

ˆ
R
V (f−(x)) dx,

where in the inequality we have used convexity of φ.

Remark 4.3.11. Note that, in contrast to the Wasserstein barycenter case, we need regular-
ity of the whole sample to guarantee existence of a regular Wasserstein median. Counterex-
amples can be easily designed even in 1D. Furthermore, the estimates (4.3.7) and (4.3.8)
are only valid in dimension one, see Example 4.4.9 for a counterexample to Lp bounds in
higher dimensions.

4.4 Multi-marginal and dual formulations

4.4.1 Multi-marginal formulation

An important feature of Wasserstein medians is that (M) admits a multi-marginal reformu-
lation, which, as we shall detail in the following, enlightens a connection with the median
problem on (X, d).

Definition 4.4.1. Let ν1, . . . , νN ∈ P1(X) and p1, . . . , pN positive weights such that p1 +
· · ·+ pN = 1, the multi-marginal problem is given by

inf
ρ,γ∈Π(ρ,ν1,...,νN )

ˆ N∑
i=1

pid(x, xi) dγ(x, x1, ..., xN ), (MMP)
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where Π(ρ, ν1, ..., νN ) is the set of all Radon probability measures on XN+1 with marginals
ρ, ν1, . . . , νN . A slightly different variant is

inf
γ∈Π(ν1,...,νN )

ˆ
inf
x∈X

N∑
i=1

pid(x, xi) dγ(x1, ..., xN ). (MMP)

The problems (MMP) and (MMP) can be proven to be equivalent to (M), as detailed
in the following adaptation of Proposition 3 [33] for Wasserstein medians.

Theorem 4.4.2. The following hold

1. inf (M) = inf (MMP) = inf (MMP).

2. If ρ is a solution to (M), then there is γ ∈ Π(ρ, ν1, ..., νN ) solving (MMP), and con-
versely, for an optimal solution γ of (MMP) the first marginal π0#γ is a Wasserstein
median.

3. For any measurable function Mλ : XN → X such that for all (x1, ..., xN ) ∈ XN

Mλ(x1, . . . , xN ) ∈ arg min
x∈X

N∑
i=1

pid(x, xi), (4.4.1)

and any γ that minimizes (MMP), the measure ρ := (Mp)#γ is a Wasserstein me-
dian.

4. If γ is an optimal solution of (MMP), then π0,j#γ is an optimal transport plan
between the corresponding marginals.

The proof is analogous to the one of Proposition [33]. Note however that there is not a
straightforward generalization of point 3. in Proposition 3 [33] (corresponding to a converse
of 3. here) to Wasserstein medians due to the fact that the set of minimizers in (4.4.1) is
not in general single-valued.

This is not only a technicality: consider for instance X = [−1, 1] equipped with the
usual Euclidean distance and let ν1 = δ−1/2 and ν2 = δ1/2 with uniform weights. Then
Medλ(ν1, ν2) is the set of all probability measures supported on [−1/2, 1/2] whereas if we
take γ admissible for (MMP) then necessarily γ = δ(−1/2,1/2) and the Wasserstein medians
obtained with the above procedure are all discrete ρ = (Mλ)#δ(−1/2,1/2) = δMλ(−1/2,1/2) =
δc for some c ∈ [−1/2, 1/2]. It turns out, that a sufficient condition for the converse of 3.
to hold is the following

Property. Let ν1, . . . , νN ∈ P1(X) and positive weights p = (p1, . . . , pN ) such that∑N
i=1 pi = 1, we say that there is essentially one function that satisfies (4.4.1) relative

to ν1, . . . , νN and p if for all γ ∈ Opt(MMP)

if Mp and M′p are measurable and satisfy (4.4.1) then Mp = M′p γ − a.e. (4.4.2)

The following proposition further characterizes the structure of optimal solutions of the
multi-marginal problems and establishes the converse of 3. in Theorem 4.4.2 under the
assumption of essential uniqueness as stated in (4.4.2).
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Proposition 4.4.3. Let ν1, ..., νN ∈ P1(X), let p = (p1, . . . , pN ) be positive weights such
that

∑N
i=1 pi = 1, and ρ ∈ P(X) be a Wasserstein median. Let γ ∈ Π(ρ, ν1, . . . , νN ) be an

optimal solution to (MMP) associated to ρ. We have the following

1. For γ−almost every (x, x1, . . . , xN ) ∈ XN+1 there is Mλ which satisfies (4.4.1) such
that

x = Mλ(x1, . . . , xN ). (4.4.3)

2. If there exists essentially one function Mλ that satisfies (4.4.1) relative to ν1, . . . , νN
and p, then for any Wasserstein median ρ ∈ P(X) there exists an optimal solution
γ to (MMP) such that ρ = (Mλ)#γ.

Proof. Let us start from point 1. Denote by η the projection of γ onto the last N compo-
nents. We have that

inf (M) =

ˆ ∑
i

pid(x, xi) dγ ≥
ˆ

inf
y

∑
i

pid(y, xi) dη ≥ inf (M). (4.4.4)

The latter inequality is due to the fact that η is feasible for (MMP). (4.4.4) yields that∑
i

pid(x, xi) = inf
y

∑
i

pid(y, xi) γ − a.e.

Hence there is Mλ which satisfies (4.4.1) such that (4.4.3) holds. Let us now discuss point
2. Let ρ be a Wasserstein median and γ an optimal solution to (MMP) associated to ρ. Let
us denote denote by η the projection of γ onto the last N components. Note that in (4.4.4)
we proved that η is optimal for (MMP). By 1. and the essential uniqueness of Mλ we have
that the support of γ is included in the graph of Mλ. It follows that γ = (Mλ, Id)# η, and
specifically that ρ = (π0)# (Mλ, Id)# η = (Mλ)# η.

Theorem 4.4.2 and Proposition 4.4.3 entail the following interesting applications.

Corollary 4.4.4. Let X = Rd. If all the sample measures are supported on a convex
subset K ⊂ Rd, then every Wasserstein median ρ ∈ Medλ(ν1, . . . , νN ) is supported on K
too. Moreover, for p ≥ 1 we have the following bound on the p-moments:

ˆ
Rd
|x|p dρ ≤

N∑
i=1

ˆ
Rd
|x|pdνi ∀ρ ∈ Medλ(ν1, . . . , νN ). (4.4.5)

Proof. The first claim follows directly from (4.4.3) and the convexity of K. Now, pick
ρ ∈ Medλ(ν1, . . . , νN ) and let γ the optimal solution to (MMP) given by point 2. in
Theorem 4.4.2. By (4.4.3) for γ-almost every (x, x1, . . . , xN ) the first component x can be
written as a convex combination of the latter N components x1, . . . , xN . In particular, we
have by convexity of |.|p

|x|p ≤
N∑
i=1

|xi|p for γ − a.e. (x, x1, . . . , xn) ∈ (Rd)N .

Integrating over γ we get (4.4.5).
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The following corollary improves the results in Theorems 4.1.2 and 4.2.2 by passing
from the narrow topology to the topology induced by the Wasserstein distance.

Corollary 4.4.5. Let pn = (pn1 , . . . , p
n
N )n∈N with

∑N
i=1 p

n
i = 1 be a sequence in [0, 1]N con-

verging to p = (p1, . . . , pN ) and (νn1 )n∈N, . . . , (ν
n
N )n∈N be sequences converging to (ν1, . . . , νN )

in (P1(X),W1). Then any sequence ρn ∈ Medλ(νn1 , . . . , ν
n
N ) admits a subsequence that con-

verges in (P1(X),W1) to a weighted median of ν1, . . . , νN . In particular, Medλ(ν1, . . . , νN )
is a convex compact subset of (P1(Ω),W1).

Proof. Let ρn ∈ Medλ(νn1 , . . . , ν
n
N ), as in the proof of Corollary 4.4.4 we consider γn ∈

Π(ρn, νn1 , . . . , ν
n
N ) an optimal solution to (MMP) associated ρn. By point 1. of Proposition

4.4.3 we have that for γn-almost every (x, x1, . . . , xN ) the first component x can be written
as convex combination of x1, . . . , xN . Thus, we have for C > 0 by quasi-convexity of
y 7→ |y|1{|y|≥C} that

|x|1{|x|≥C} ≤
N∑
i=1

|xi|1{|xi|≥C}.

Integrating with respect to γn we get

ˆ
Ω
|x|1{|x|≥C} dρn ≤

N∑
i=1

ˆ
Ω
|xi|1{|xi|≥C} dνni ∀n,C > 0.

The right-hand-side is uniformly bounded by the uniform integrability of (νni )n∈N for all
i ∈ {1, . . . , N}, thus, the sequence (ρn)n∈N is uniformly integrable, too. Together with
being narrowly precompact by Theorem 4.2.2, it is also precompact with respect to the
topology induced by W1 by Proposition 7.1.5 [7].

The same argument yields precompactness of Medλ(ν1, . . . , νN ) and hence compactness
by Theorem 4.1.2.

Corollary 4.4.6. Let ν1, . . . , νN ∈ P1(X) and p1, ..., pN be positive weights that sum to
one. If there exists j ∈ {1, .., N} such that pj > 1/2, then the Wasserstein median of
(ν1, ..., νN ) is unique and coincides with νj.

Proof. Let ρ be a weighted median of (ν1, ..., νN ). By a straightforward application of the
triangle inequality applied to the metric d of X there exists an unique function Mλ such
that (4.4.1) holds, and it is equal to

Mλ(x1, ..., xN ) = xj ∀(x1, ..., xn) ∈ XN ,

which coincides with the projection onto the jth factor.
Indeed, suppose w.l.o.g. that pN > 1

2 . Assume that a weighted median of (x1, . . . , xN ) ∈
X is given by x̄ 6= xN , i.e.

x̄ ∈ arg min
x∈X

N∑
i=1

pid(x, xi).

But then

N∑
i=1

pid(xN , xi) =
N−1∑
i=1

pid(xN , xi) ≤
N−1∑
i=1

pi [d(xN , x̄) + d(x̄, xi)] <
N∑
i=1

pid(x̄, xi),
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contradicting minimality of x̄.
Now by point 2. of Proposition 4.4.3, every Wasserstein median ρ is given by ρ =

(Mλ)# γ, where γ ∈ Π(ν1, ..., νN ) is an optimal solution to (MMP). Since γ ∈ Π(ν1, ..., νN )
we get ρ = (πj)# γ = νj .

Remark 4.4.7. The case of two measures is a somewhat remarkable special case of this
threshold effect. Indeed, as soon as p1 > p2 the measure ν1 is the unique median. On
the other hand, in case of equality of the weights p1 = p2 = 1

2 any point on a W1-
geodesic between ν1 and ν2 is a median since by reparametrizing to a constant-speed
geodesic it can be seen that it saturates the triangular inequality. And vice versa, if ρ
is a Wasserstein median, then it lies on a geodesic curve. Indeed just concatenate two
properly rescaled constant speed geodesics between ρ and ν1 and between ρ and ν2 and
use W1(ν1, ν2) = W1(ν1, ρ) +W1(ρ, ν2).

Remark 4.4.8. In fact, the result of Corollary 4.4.6 can be directly proved by using the
triangle inequality of W1. Nevertheless, we decided to keep this proof because using the
same argument enables us to lift certain properties of the weighted median on X to the
Wasserstein median.

We also use this strategy in Example 4.4.9 to show that the L∞-norm of a Wasserstein
median (if it is finite) cannot depend linearly on the L∞-norms of the given measures
ν1, . . . , νN . This is in contrast to what is true for Wasserstein barycenters (see Theorem
5.1 [1]).

A counterexample to regularity. Unlike the case of Wasserstein barycenters, in the
case of Wasserstein medians it is not sufficient that one of the given measures is regular,
say absolutely continuous or L∞, for a median to inherit this property. One can construct
counterexamples in the one dimensional case. If all of the given measures have Lp-integrable
densities, then this carries over to a median in one dimension in some cases, see Section
4.3. The situation seems to be more intricate in higher dimension. The following example
shows that a linear L∞-bound cannot hold.

Example 4.4.9. Take four absolutely continuous measures with bounded density on R2 as
follows. For 0 < ε < 1 define ν1 by its density 1

ε1[1,2]×[− ε
2
, ε
2

], and the other three measures
are obtained by successive rotation by 90◦, see Figure 4.5. By using the multi-marginal
formulation, we show that any uniform (i.e. with uniform weights) Wasserstein median
has to be concentrated on a set of Lebesgue measure of order ε2, and hence, even if it is
absolutely continuous with respect to to the Lebesgue measure, its density cannot have a
linear dependence of the L∞-bound of the given measures.

For this observe that by Theorem 4.4.2 any Wasserstein median ρ with a corresponding
optimal multi-marginal plan γ satisfies that x is a geometric median of (x1, . . . , x4) for γ-
a.e. (x, x1, . . . , x4).

Now note that with this construction four points xi ∈ spt νi with i = 1, . . . , 4 always
form a convex quadrilateral, and hence their unique median is the intersection of the two
segments generated by x1, x3 and x2, x4. This follows from what is known for geometric
medians in two dimensions, see for instance Theorem 1.1.2 (c) [37]. It is easy to see that
all these intersections happen in the square [− ε

2 ,
ε
2 ]2, yielding that spt ρ ⊂ [− ε

2 ,
ε
2 ]2.
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Figure 4.5 – Schematic depiction of the support of the four measures νi from Example 4.4.9
in colors and admissible support of any Wasserstein median in black

4.4.2 Dual formulation

To introduce the dual formulation of (M) we fix a point x0 ∈ X and define the spaces

Y0 :=

{
f ∈ C(X) : lim

d(x,x0)→∞

f(x)

1 + d(x, x0)
= 0

}
,

Yb :=

{
f ∈ C(X) : sup

x∈X

f(x)

1 + d(x, x0)
<∞

}
.

Note that the space is independent of the choice x0 and that the dual is

(Y0)∗ =:M1(X) = {µ ∈M(X) : (1 + d(x, x0))µ ∈M(X)} .

With this at hand, we define the following problem (which is strictly speaking the pre-dual
of (M))

sup

{
N∑
i=1

ˆ
X
ϕcii dνi : ϕi ∈ Y0,

N∑
i=1

ϕi = 0

}
, (M∗0)

where ϕcii is the ci-transform of ϕi for ci = pid, that is defined as ϕcii (y) := infx∈X pid(x, y)−
ϕi(x) for all y ∈ X and i = 1, . . . , N , and its relaxed version

sup

{
N∑
i=1

ˆ
X
ϕcii dνi : ϕi ∈ Yb,

N∑
i=1

ϕi = 0

}
. (M∗)

By definition of the ci-transform we clearly have the following weak duality relation

inf (M) ≥ sup (M∗) ≥ sup (M∗0).

With a standard argument, we can establish a strong duality and an existence result.

Proposition 4.4.10. We have that inf (M) = sup (M∗) = sup (M∗0). Moreover, there exists
a minimizer of (M∗).

The proof is essentially the same as the proof of Proposition 2.2 and 2.3 in [1] for the
Wasserstein barycenter case. Moreover, in the proof we can also notice that we can always
consider N − 1 potentials to be ci-concave, with ci = pid, i.e., ϕi = ϕcicii , which, thanks to
the following lemma, actually means Lipschitz in our context.
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Lemma 4.4.11. Let λ > 0 and let c = λd, if ϕ : X → R is c-concave then ϕ is λ-Lipschitz.
We write ϕ ∈ Lipλ(X). Moreover, ϕc = −ϕ.

For a proof, see for instance Proposition 3.1 [104].
If we want all the optimal potentials to be Lipschitz, then we have to relax the con-

straint, as shown in the following.

Proposition 4.4.12. Let ν1, . . . , νN ∈ P1(X) and p1, . . . , pN be positive weights such that∑N
i=1 pi = 1. Define the following

sup

{ N∑
i=1

ˆ
X
ψi dνi

∣∣∣∣ψi ∈ Lippi(X), i = 1, . . . , N,

N∑
i=1

ψi ≤ 0

}
. (ML∗)

We have the following equivalence

inf (M) = sup (M∗0) = sup (M∗) = sup (ML∗).

Moreover, the right hand side has a global maximizer and it can be derived from the solution
of (M∗) taking the ci-concavification of each ψi.

Proof. We prove that sup (M∗) ≥ sup (ML∗) and then sup (ML∗) ≥ sup (M∗). Let (ψ1, ..., ψN )
be admissible for (ML∗) and define

ϕ = (ϕ1, ..., ϕN ) :=

(
−ψ1, ...,−ψN−1,

N−1∑
n=1

ψn

)
.

Clearly, ϕ is admissible for (M∗) and we have

N∑
i=1

ˆ
ψi dνi =

N−1∑
i=1

ˆ
(−ϕi) dνi +

ˆ
ψN dνN .

Since for every i = 1, .., N − 1 it holds ϕi ∈ Lippi(X), thanks to Lemma 4.4.11 we have
−ϕi = ϕcii . For i = N , we have

ϕN =

N−1∑
n=1

ψn ≤ −ψN ,

thus, ϕcNN ≥ ψN . Putting all together we get

N∑
i=1

ˆ
ψi dνi ≤

N∑
i=1

ˆ
ϕcii dνi.

This proves the first inequality. For the converse, let ϕ = (ϕ1, ..., ϕN ) be admissible for
(M∗). Consider

ψ = (ψ1, ..., ψN ) = (ϕc11 , ..., ϕ
cN
N ).

It follows that ψ is admissible for (ML∗) because ψi are all pi-Lipschitz functions and we
have:

N∑
i=1

ψi(x) =

N∑
i=1

ϕcii (x) =

N∑
i=1

inf
y∈X
{pid(x, y)− ϕi(y)} ≤ −

N∑
i=1

ϕi(x) = 0.

The two objective functions, since ψi = ϕcii for all i = 1, . . . , N coincide.
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The set of optimal points of (ML∗) is a convex subset of C(X) whose elements are
called Kantorovich potentials. The reason is contained in the following.

Theorem 4.4.13 (Optimality conditions). Let ν1, . . . , νN ∈ P1(X) and p1, . . . , pN be
positive weights such that

∑N
i=1 pi = 1. Let ρ ∈ P1(X), γi ∈ Π(ρ, νi), ψi ∈ Lippi(X) for all

i ∈ {1, . . . , N}.
Then, ρ is a Wasserstein median, γi ∈ Π(ρ, νi) are OT plans for all i ∈ {1, . . . , N},

and (ψ1, ..., ψN ) solve (ML∗) if and only if they satisfy the following system of Primal-Dual
conditions

1. For all i ∈ {1, ..., N}, it holds ψi(y) − ψi(x) = pid(x, y) for γi-almost every (x, y) ∈
X2.

2. It holds that:
N∑
i=1

ψi ≤ 0,
N∑
i=1

ψi = 0 ρ− a.e.

Moreover, ψi/pi ∈ Lip1(X) are optimal Kantorovich potentials for the OT problem with
cost function c = d between νi and ρ for all i ∈ {1, . . . , N}.

Proof. Let ρ be aWasserstein median, (ψ1, . . . , ψN ) an optimal solution to the dual problem
(ML∗) and γi ∈ Π(ρ, νi) optimal transportation plans. By duality (Proposition 4.4.12) we
have

N∑
i=1

ˆ
X2

pid(x, y) dγi(x, y) =
N∑
i=1

ˆ
X
ψi dνi, thus,

N∑
i=1

ˆ
X2

(
pid(x, y)−ψi(y)

)
dγi(x, y) = 0.

Since ψi is pi-Lipschitz for all i ∈ {1, . . . , N}, and
∑

i ψi ≤ 0 we have

0 ≤ −
ˆ N∑

i=1

ψi(x) dρ(x) ≤
N∑
i=1

ˆ
X2

(
pid(x, y)− ψi(y)

)
dγi(x, y) = 0.

Hence
∑N

i=1 ψi = 0 ρ-a.e. It follows that

N∑
i=1

ˆ
X2

(
pid(x, y)− ψi(y) + ψi(x)

)
dγi(x, y) = 0,

and since ψi ∈ Lippi(X) we have pid(x, y) + ψi(x) − ψi(y) ≥ 0, which implies 1. For the
’if’-part suppose that ψi are pi-Lipschitz functions which satisfy 1. and 2. Then the latter
equation is true, and by the weak duality we obtain optimality. The fact that ψi/pi are
Kantorovich potentials between νi and ρ follows immediately from 1.

4.5 Beckmann minimal flow formulation

In this section, we consider the median problem on a compact convex domain Ω ⊂ Rd.
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4.5.1 The Beckmann problem

Definition 4.5.1. Let ν1, . . . , νN ∈ P1(Ω) and p1, . . . , pN be positive weights such that∑N
i=1 pi = 1. The Beckmann minimal flow problem consists of minimizing the weighted

sum of the total variation norm of σ1, . . . ,σN satisfying an appropriate divergence con-
straint, namely

inf
(σ1,...,σN ,ρ)∈Mdiv(Ω,Rd)N×P(Ω)

{
N∑
i=1

pi‖σi‖TV : ∇ · σi + νi = ρ, i ∈ {1, . . . , N}

}
, (MB)

where || · ||TV is the total variation norm. Here the divergence operator is to be intended
in the weak sense with zero Neumann boundary conditions. More precisely, for all i ∈
{1, . . . , N} we write ∇ · σi + νi = ρ in short if for all φ ∈ C1(Ω)

−
ˆ

Ω
∇φ · dσi +

ˆ
Ω
φ dνi =

ˆ
Ω
φ dρ.

Each admissible σi is called transport flow from ρ to νi.

The Beckmann problem is equivalent to the Wasserstein median problem, as detailed
in the following theorem.

Theorem 4.5.2. Let ν1, . . . , νN ∈ P(Ω), p = (p1, . . . , pN ) be positive weights such that∑N
i=1 pi = 1. Then (MB) admits a solution and inf (MB) = inf (M). Furthermore, ρ is a

Wasserstein median if and only if there are transport flows (σi)
N
i=1 such that (σ1, . . . ,σN , ρ)

is an optimal solution to (MB).

Proof. For all i ∈ {1, . . . , N}, we know from e.g. Theorem 4.6 [104] that

W1(ρ, νi) = inf
σi∈Mdiv(Ω,Rd)

{‖σi‖TV : ∇ · σi + νi = ρ} . (4.5.1)

Hence, the Wasserstein median problem rewrites

inf (M) = inf
ρ∈P1(Ω̄)

N∑
i=1

piW1(ρ, νi),

= inf
ρ∈P1(Ω̄)

N∑
i=1

pi inf
σi∈Mdiv(Ω,Rd)

{‖σi‖TV : ∇ · σi + νi = ρ}

= inf
(σ1,...,σN ,ρ)∈Mdiv(Ω,Rd)N×P(Ω)

{
N∑
i=1

pi‖σi‖TV : ∇ · σi + νi = ρ, i ∈ {1, . . . , N}

}
= inf (MB).

For existence, fix a Wasserstein median ρ and note that Theorem 4.6 [104] also provides ex-
istence of a transport flow σi for the Beckmann flow problem between ρ and νi. By optimal-
ity the vector (σ1, . . . ,σN , ρ) is a solution for (MB). This also proves that if (σ∗1, . . . ,σ

∗
N , ρ

∗)
is an optimal solution to (MB), then ρ∗ ∈ Medp(ν1, . . . , νN ).

Note that if we fix a Wasserstein median ρ ∈ P(Ω), then (MB) totally decouples in
N optimal transport problems according to (4.5.1). Therefore, all the classical theory on
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the flow formulation of Optimal Transport applies here. An overview of this theory can be
found in Sections 4.2 [104]. For instance, given an OT plan γi from ρ to νi we can find an
optimal transport flow σγi defined as follows (see proof of Theorem 4.6 [104])

〈σγi , θ〉 :=

ˆ
Ω×Ω

ˆ 1

0
θ((1− t)x+ ty)(y − x) dt dγi(x, y), (4.5.2)

for every θ ∈ C(Ω,Rd), and we can call transportation density the quantity ηγi

〈ηγi , φ〉 :=

ˆ
Ω×Ω

ˆ 1

0
φ((1− t)x+ ty)|y − x|dt dγi(x, y). (4.5.3)

for every φ ∈ C(Ω). The two quantities are related in the following sense. Let ϕi be a
Kantorovich potential from ρ to νi, then

σγi = −∇ϕiηγi . (4.5.4)

Note that this expression is well-defined because by the theory of transport rays from
Section 3.1.3 [104] or more precisely Lemma 3.6 [104] and strong duality ϕi is differentiable
at (1− t)x+ ty for t ∈ (0, 1) and (x, y) ∈ spt γi with x 6= y.

The construction of optimal solutions to (MB) from optimal transportation plans in
the sense of (4.5.2) can be generalized to the Wasserstein median setup by considering the
vector valued measure σγ = ((σγ)1, . . . , (σγ)N ) ∈ M(Ω,Rd)N for given ρ ∈ P(Ω) and
γ ∈ Π(ρ, ν1, ..., νN ) defined by

〈σγ ,θ〉 :=

ˆ
Ω
N+1

 N∑
j=1

ˆ 1

0
θj((1− t)x+ txj)(xj − x) dt

 dγ(x, x1, ..., xN ), (4.5.5)

for each θ ∈ C(Ω,Rd)N . The corresponding transport density is defined analogous to
(4.5.3) as ηγ ∈M(Ω,R)N given by

〈ηγ ,φ〉 :=

ˆ
Ω
N+1

 N∑
j=1

ˆ 1

0
φj((1− t)x+ txj)|xj − x| dt

 dγ(x, x1, ..., xN ), (4.5.6)

for φ ∈ C(Ω)N . Let us now generalize the relation (4.5.4) to the Wasserstein median
setting.

Proposition 4.5.3. Let ρ ∈ P(Ω), and γ ∈ Π(ρ, ν1, ..., νN ) such that (ρ,γ) is optimal
for (MMP), then the transport flow σγ ∈ M(Ω,Rd)N defined by (4.5.5) is an admissible
optimal solution for (MB) and satisfies for any optimal Kantorovich potentials (ψ1, ..., ψN ),
i.e. solutions of (ML∗)

(σγ)i =
1

pi
∇ψi · (ηγ)i,

where ηγ ∈M(Ω,R)N is the corresponding density from (4.5.6).

Proof. The proof goes along the lines of the proof of Theorem 4.6 [104] by noticing that
the multi-marginal decouples to the bimarginal setting thanks to Theorem 4.4.2. To check
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feasibility let us start computing ∇ · (σγ)i for i = 1, . . . , N . Denote γi = (π0,i)#γ. Then
for θi ∈ C1(Ω) we have

〈∇ · (σγ)i, θi〉 = −
ˆ

Ω
2

(ˆ 1

0

d

dt
θi((1− t)x+ txi)(xi − x) dt

)
dγi(x, xi)

= −
ˆ

Ω
2

(θi(xi)− θi(x)) dγi(x, xi) =

ˆ
Ω
θi d(ρ− νi).

This implies ∇ · (σγ)i + νi = ρ in the weak sense for all i = 1, ..., N . To prove optimality
note that

N∑
i=1

pi||(σγ)i||TV =
N∑
i=1

pi sup
θi∈C(Ω,Rd),
‖θi‖L∞(Ω,Rd)

≤1

〈(σγ)i, θi〉 =
N∑
i=1

sup
θi∈C(Ω,Rd),
‖θi‖L∞(Ω,Rd)

≤1

〈(σγ)i, piθi〉

= sup
θi∈C(Ω,Rd),
‖θi‖L∞(Ω,Rd)

≤1

〈
((σγ)1, ..., (σγ)N ) , (p1θ1, ..., pNθN )

〉

= sup
θi∈C(Ω,Rd),
‖θi‖L∞(Ω,Rd)

≤1

ˆ
Ω
N+1

(
N∑
i=1

ˆ 1

0
piθi((1− t)x+ txi)(xi − x)dt

)
dγ

≤
ˆ

Ω
N+1

 N∑
j=1

pj |xj − x|

 dγ(x, x1, ..., xN ) = inf (MMP) = inf (MB).

Now let (ψ1, . . . , ψn) be a solution of (ML∗). By Theorem 4.4.13 one observes that
the ci-transform ψci/pi = −ψi/pi (for ci = pi|. − .|) is a Kantorovich potential from ρ to
νi w.r.t. the Euclidean distance for all i = 1, . . . , N. Hence using (4.5.4) we obtain (since
(ηγ)i = ηγi from (4.5.3))

(σγ)i =
1

pi
∇ψi · (ηγ)i.

Note that in the setting of Proposition 4.5.3, each component of σγ is the optimal
transport flow from ρ to νi according to (4.5.2) associated to the optimal transportation
plan γi = (π0,i)#γ.

As in the classical transportation theory, the converse of Proposition 4.5.3 is true as
well.

Proposition 4.5.4. If σ = (σ1, . . . ,σN ) ∈ Mdiv(Ω,Rd)N and ρ ∈ P(Ω) are such that
(σ1, . . . ,σN , ρ) is optimal for (MB), then there exists an optimal multi-marginal trans-
portation plan γ ∈ Π(ρ, ν1, ..., νN ) of (MMP) such that σ = σγ .

Proof. As σi is an optimal transport flow from ρ to νi, by Theorem 4.13 [104] there exists
an optimal transportation plan γi ∈ Π(ρ, νi) such that: σi = σγi . Using the Gluing Lemma
(see e.g. Lemma 5.3.4 [7]) we obtain γ ∈ Π(ρ, ν1, ..., νN ) such that: (π0,i)#γ = γi for all

96



4.5. BECKMANN MINIMAL FLOW FORMULATION

i = 1, ..., N . Therefore for θ ∈ C(Ω,Rd)N

〈σ,θ〉 =
N∑
i=1

〈σi,θi〉

=

N∑
i=1

ˆ
Ω×Ω

(ˆ 1

0
θi((1− t)x+ txi)(xi − x) dt

)
dγi(x, xi)

=

ˆ
Ω
N+1

(
N∑
i=1

ˆ 1

0
θi((1− t)x− txi)(xi − x) dt

)
dγ(x, x1, ..., xN )

Hence σ = σγ . Optimality of γ follows from

inf (MMP) =

N∑
i=1

piW1(ρ, νi)

=

N∑
i=1

pi

ˆ
Ω

2
|x− xi| dγi(x, xi)

=

ˆ
Ω
N+1

N∑
i=1

pi|x− xi| dγ(x, x1, . . . , xN ).

Relying on the theory on summability of the transport density, given in Theorem 4.14,
Corollary 4.15, Theorem 4.16 and Theorem 4.20 in [104], we deduce the following one-sided
higher regularity results.

Theorem 4.5.5. Let ρ ∈ P(Ω) be a Wasserstein median. Then we have the following.

• If ν1, . . . , νN ∈ P(Ω) are absolutely continuous, then the transportation flows σi
between ρ and νi do not depend on the choice of the optimal transport plan γi between
ρ and νi and their corresponding transport densities ηi are absolutely continuous.

• If furthermore ν1, . . . , νN ∈ Lp(Ω), then if p < d′ = d/(d − 1), the unique optimal
transport density ηi associated to the transport from ρ to νi belongs to Lp(Ω) as well,
and if p ≥ d′ it belongs to any space Lq(Ω) for q < d′. By (4.5.4) this integrability
carries over to the unique transportation flow σi.

The significance of the previous Theorem is that if all our data νi ∈ Lp(Ω), then we
obtain some regularity for the transportation flow, namely σi ∈ L1+ε(Ω;Rd) for some ε > 0
for all i ∈ {1, . . . , N}, without having to assume any regularity of the Wasserstein median.

In the next section we derive a PDE of Monge-Kantorovich type characterizing the
Wasserstein median. Without any regularity assumptions it quite intricate to properly
define a gradient. Thanks to Theorem 4.5.5 we can give a simpler version of this PDE
system.
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Figure 4.6 – Left: a Wasserstein median (blue) of three sample measures (black) and the
three optimal transport densities (in gray) (i.e. the Total Variation measure according to
REF) computed via Douglas-Rachford on a 300 × 300 grid. Right: a zoom of a 50 × 50
portion of the picture, where we highlighted (in red) the transport flow.

4.5.2 PDE formulation of the Wasserstein median problem

Let ν1, . . . , νN ∈ P(Ω), we consider the following system of PDEs which is reminiscent of
the Monge-Kantorovich equation related to the W1-distance as stated in Section 5 [4].

Definition 4.5.6 (The Monge-Kantorovich problem (MK)). Given ν1, . . . , νN ∈ P(Ω),
and p1, . . . , pN > 0 such that

∑N
i=1 pi = 1. The Monge-Kantorovich problem consists of

finding ψi ∈ Lippi(Ω), ηi ∈M+(Ω) for i ∈ {1, ..., N} and ρ ∈ P1(Ω) such that

1. For each i ∈ {1, ..., N} there exist a sequence of smooth functions (ψni )n∈N uniformly
converging to ψi on Ω such that the functions ∇ψni converge in L2(ηi)

d to a function
∇ηiψi satisfying

|∇ηiψi| = pi ηi − a.e. in Ω.

2. The following PDE is satisfied in the weak sense with Neumann boundary conditions

1

pi
∇ · (ηi∇ηiψi) + νi = ρ in Ω ∀i ∈ {1, ..., N}.

3. The following obstacle problem holds∑
i

ψi ≤ 0,
∑
i

ψi = 0 ρ-a.e.

Remark 4.5.7 (Tangential gradient). The function ∇ηiψi in point 1. of MK is called tan-
gential gradient of ψi, introduced in [15, 14] and [52], see also Remark 5.1 [4]. The notion
of tangential gradient is necessary to be able to give meaning to ∇ · (ηi∇ηiψi). Indeed,
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under no additional assumptions even the product ηi∇ψi may a priori not be well-defined
due to ηi not necessarily being absolutely continuous. In Theorem 4.5.8 we will see thanks
to the equivalence to the Wasserstein median problem that ∇ηiψi = ∇ψi ηi-a.e.

Note furthermore that the definition is well posed because given ψi ∈ Lippi(Ω), ηi ∈
M+(Ω) for i ∈ {1, ..., N} and ρ ∈ P(Ω) which solve MK, there is at most one tangential
gradient ∇ηiψi. Indeed, consider two sequences of smooth functions (ψni )n∈N, (ψ̂ni )n∈N

uniformly converging to ψi on Ω with ∇ψni → ∇ηiψi and ∇ψ̂ni → ∇̂ηiψi in L2(ηi)
d as

n→∞. We have by 2. from Definition 4.5.6
ˆ

Ω
∇ηiψi · ∇̂ηiψi dηi = lim

n→∞

ˆ
Ω
∇ηiψi · ∇ηiψ̂ni dηi = pi lim

n→∞
〈νi − ρ, ψ̂ni 〉 = pi〈νi − ρ, ψi〉.

So by taking the difference
ˆ

Ω
|∇ηiψi − ∇̂ηiψi|2 dηi =

ˆ
Ω
|∇ηiψi|2 dηi +

ˆ
Ω
|∇̂ηiψi|2 dηi − 2

ˆ
Ω
∇ηiψi · ∇̂ηiψi dηi

= lim
n→∞

(ˆ
Ω
∇ηiψi · ∇ηiψni dηi +

ˆ
Ω
∇̂ηiψi · ∇ηiψ̂ni dηi

)
− 2pi〈νi − ρ, ψi〉

= lim
n→∞

pi〈νi − ρ, ψni 〉+ lim
n→∞

pi〈νi − ρ, ψ̂ni 〉 − 2pi〈νi − ρ, ψi〉 = 0.

Hence ∇ηiψi = ∇̂ηiψi ηi-a.e.
We now prove equivalence of MK and (MB), hence with the Wasserstein median prob-

lem.

Theorem 4.5.8. Let ν1, ..., νN ∈ P(Ω), and p1, . . . , pN > 0 such that
∑N

i=1 pi = 1.

• If ψi ∈ Lippi(Ω) are dual potentials, i.e. solve (ML∗) and ηi ∈ M+(Ω) for i ∈
{1, ..., N} are transport densities, i.e. σi := 1

pi
∇ψiηi solve (MB), then they solve

the Monge-Kantorovich system with ρ := ∇ · σi + νi (this is independent of i) and
∇ηiψi = ∇ψi ηi-a.e.

• If ρ ∈ P(Ω), ψi ∈ Lippi(Ω) and ηi ∈ M+(Ω) solve the Monge-Kantorovich system,
then ρ solves (M), ψi solve (ML∗) and σi := 1

pi
∇ηiψiηi solve (MB). Moreover, in this

case ∇ηiψi = ∇ψi ηi-a.e.

Proof. We start with the first implication. So let ψi ∈ Lippi(Ω) be dual potentials and ηi ∈
M+(Ω) for i ∈ {1, ..., N} transport densities, σi := 1

pi
∇ψiηi the corresponding transport

flows. Point 2. of MK in Definition 4.5.6 simply follows since σi is a feasible solution for
the Beckmann problem by construction (see Proposition 4.5.3). Validity of point 3., the
obstacle problem, follows directly by the optimality conditions in Proposition 4.4.13.

For the first point take a convolution kernel (kn)n∈N∗ (i.e. kn ∈ C∞c (Rd), spt kn ⊂ B 1
n

(0),
kn ≥ 0 and

´
Rd kn dx = 1) and define ψni := kn∗ψi, where the convolution is to be intended

applied to the Lipschitz extension of ψi to the whole Rd. Then since |∇ψi ? kn| ≤ pi

piW1(ρ, νi) = −
ˆ

Ω
ψi d (ρ− νi) = − lim

n→∞

ˆ
Ω
ψi ? kn d (ρ− νi)

= lim
n→∞

1

pi

ˆ
Ω
∇ψi ? kn · ∇ψi dηi ≤ pi||σi||TV = piW1(ρ, νi).
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In particular limn→∞
1
pi

´
Ω∇ψi ? kn · ∇ψi dηi = limn→∞ pi

´
Ω∇ψi ? kn dσi = piW1(ρ, νi).

Therefore with |∇ψi| = pi and |∇ψi ? kn| ≤ pi and optimality of all the quantities

lim
n→∞

ˆ
Ω
|∇ψi −∇ψi ? kn|2 dηi =

ˆ
Ω
|∇ψi|2 dηi + lim

n→∞

ˆ
Ω
|∇ψi ? kn|2 dηi

− 2 lim
n→∞

ˆ
Ω
∇ψi ? kn · ∇ψi dηi

≤ 2p2
i ‖σi‖TV − 2p2

iW1(ρ, νi) = 0

This implies that ∇ψi is a tangential gradient. Now note that there is a multi-marginal
transport plan γ solution to (MMP) with η = ηγ by Proposition 4.5.4. Since ηi � π0,i#γ
we obtain by the optimality conditions (Theorem 4.4.13)

|∇ψi| = pi ηi-a.e. in Ω.

For the converse take a sequence of smooth functions (ψni )n∈N from the definition of
the tangential gradient and test the PDE with ψni to obtain for i = 1, . . . , N

− 1

pi

ˆ
Ω
∇ηiψi∇ψni dηi +

ˆ
Ω
ψni dνi =

ˆ
Ω
ψni dρ.

By taking the limit n→∞ and summing over all i we get

−
N∑
i=1

1

pi

ˆ
Ω
|∇ηiψi|2 dηi +

ˆ
Ω

N∑
i=1

ψi dνi =

ˆ
Ω

N∑
i=1

ψi dρ.

This yields using |∇ηiψi| = pi ηi- a.e. and
∑N

i=1 ψi = 0 ρ-a.e.

−
N∑
i=1

piηi(Ω) +

ˆ
Ω

N∑
i=1

ψi dνi = 0.

Now
N∑
i=1

pi‖σi‖TV ≤
N∑
i=1

piηi(Ω) =

ˆ
Ω

N∑
i=1

ψi dνi,

which concludes optimality of ρ, ψi and σi by weak duality.
In order to obtain ∇ηiψi = ∇ψi ηi- a.e. use optimality of the quantities and proceed

as in the first direction with convolution.

Of course, if we can assume that any solution ηi is absolutely continuous then the usual
weak gradient ∇ψi ∈ L∞(Ω) would automatically be in L2(ηi) and it would coincide with
the tangential gradient ηi-a.e. if ψi is a solution to MK. By proving equivalence with the
Beckmann problem in Theorem 4.5.8 we see that the assumption ν1, . . . , νN ∈ Lp(Ω) is
sufficient for ηi ∈ L1(Ω) by Theorem 4.5.5. In that case we can replace the general Monge-
Kantorovich system from Definition 4.5.6 by its regular version.
Regular Monge-Kantorovich problem. Given ν1, . . . , νN ∈ Pac(Ω) with densities in
Lp(Ω), p > 1 and p1, . . . , pN > 0 such that

∑N
i=1 pi = 1.

Find: ψi ∈W 1,∞(Ω), ηi ∈ L1
+(Ω) for i ∈ {1, ..., N} and ρ ∈ P(Ω), such that:

1. For each i ∈ {1, ..., N} it holds that |∇ψi| ≤ pi in Ω, |∇ψi| = pi ηi − a.e.
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2. The following PDE is satisfied in the weak sense with Neumann boundary conditions

1

pi
∇ · (ηi∇ψi) + νi = ρ in Ω ∀i ∈ {1, ..., N}

3. The following obstacle condition holds.∑
i

ψi ≤ 0,
∑
i

ψi = 0 ρ-a.e.

4.A Numerics

Indication: This part has been executed by my collaborator E. Chenchene. As I cannot
cite another source (in form of a preprint or paper) yet, this draft is included here to show
how the images in chapter have been created.

Despite having gathered an increasing interest due to its high potential for applica-
tions, the computation of Wasserstein means and median is still considered an important
challenge and a definitive computational strategy is yet far from being established. In
this section, we describe the algorithms we employed to compute all the above numeri-
cal examples and present a fairly new approach based on a Douglas-Rachford method on
the Beckman flow formulation, which turned out to be particularly competitive with the
state-of-art.

One dimensional case. Assume we have N ≥ 2 discrete measures supported on a
ordered grid of n ≥ 2 points in R. Recall from Section 4.3 that ifX = R the problem admits
a closed form solution which can be computed directly with simple sorting procedures.
Let us consider the vertical selection median according to (4.3.1). First, for each i ∈
{1, . . . , N} we define Fi to be the cumulative distribution function corresponding to νi.
For each point x of the grid we implement a sorting procedure to find the median interval
of {F1(x), . . . , FN (x)}, which takes O(N log(N)) time. Let F−(x) and F+(x) be the lower
and upper median respectively, and define Fθ = θF+ +(1−θ)F− for θ ∈ [0, 1]. By Theorem
4.3.2, Fθ is the cumulative distribution function of a Wasserstein median ν defined for each
xi in the grid as ν(xi) := (Fθ(xi+1)− F (xi))/|xi+1 − xi|.

4.A.1 Wasserstein medians in two dimensions.

Consider now a grid X = {(h, k) ∈ R2 | h, k = 1, . . . , p}. Each each elements can represent
for instance the coordinates of a pixel in a digital picture. We equip X with a cost function
c, such as the Euclidean `1 or the `2 distance. Let n = p2 and fix an ordering of the elements
ofX, sayX := {x1, . . . , xn}. FixN ≥ 2 discrete measures µ1, . . . , µN ∈ P(X). In this case,
the multi-marginal formulation of the Wasserstein median problem according to (MMP) is
a finite dimensional linear problem with Nn2 variables and Nn(n+2)+1 linear constraints.
Subsequently, (MMP) can became quickly intractable, especially considering that n = p2.
For this reason, LP tools to compute Wasserstein medians have for long been deprecated.
More recently, S. Gualandi et al. provided new competitive LP schemes to tackle the
Wasserstein median problem formulated on a network flow form à la Beckmann which run
instead of O(n3 log(n)) in = (n2 log(n)) time.
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The celebrated Sinkhorn algorithm is nowadays the most popular approach to tackle
Optimal Transport problems in higher dimensions. It could be thought as an instance of
the Iterative Bregman Projections (IBP) scheme applied to an entropy-regularized variant
of the discrete (MMP) formulation depending on a parameter ε > 0 which has to be
tuned as small as possible to get sufficiently close to a solution. While having many
important computational advantages, such as an highly parallelizable structure and a fast
IBP convergence behaviour, as a main drawback we would deal with non-exact outputs,
in general blurred, and important numerical instabilities when we look for more and more
precise solutions.

Douglas-Rachford on the Beckmann formulation.

Given a square domain Ω, and N ≥ 2 measures ν1, . . . , νN ∈ P(Ω), the Beckmann minimal
flow formulation of the Wasserstein median according to (MB) is a convex minimization
problem on a convex set. We discretize (MB) employing the grid Gh with step-length h. We
introduce the discrete spacesMh := {µ : G → R} and Sh := {σ : G → R2} and consider
the usual discretization of the gradient ∇h : U → S defined via forward differences. The
discrete divergence operator is the opposite adjoint of∇h, that we denote with∇h· = −∇∗h.
We consider the following discretized Beckman problem. Let

Dh :=

{
(σ1, . . . ,σN , ν)

∣∣∣∣ ∀k : σk ∈ Sh, ν ∈Mh, ∇h · σk + νk = ν,

}
Then, (MB) turns into the following discrete formulation

inf
(σ1,...,σN ,ν)∈Dh

N∑
k=1

pk‖σk‖1,2 + I(ν ∈ ∆) (4.A.1)

Where ∆ is the unit simplex, and ‖·‖1,2 is the `1,2 distance on S, also known as group-Lasso
penalty, namely, for all σ ∈ S, ‖σ‖1,2 =

∑n
n=1 ‖σ(xi)‖, where, now ‖ · ‖ is the usual `2

distance on Rn.
To solve (4.A.1), we apply a Douglas-Rachford method with the functions defined by

g1(σ1, . . . ,σN , ν) =
∑N

k=1 pk‖σk‖1,2 + I(ν ∈ ∆), g2(σ1, . . . ,σN , ν) = I ((σ1, . . . ,σN , ν) ∈ Dh).
The Douglas-Rachford method is an instance of the proximal point algorithm, which can
be employed to solve a minimization problem consisting of the sum of two, or more, convex
lower semi continuous functions which are accessible through evaluation of their proxim-
ity operators. In our case, the proximity operator of g1 consists in a projection onto the
unit simplex for the discrete measure ν and on the application of the proximal operator
of the group-Lasso penalty (that we denote by Shrinkτ ) on each component σi, which is
computable via Moreau formula.

The proximity operator of g2 coincides with the projection onto Dh, which is much
more delicate, as we now describe. It is well known that given a linear map A : Rn → Rm
and a vector b ∈ Rm, the projection onto the set of solution to the linear system Ax = b
is given by Pr(x) = x − A∗ξ where ξ solves (AA∗)ξ = Ax − b. In our case, we have
b = [−ν1, . . . ,−νN ]T and the linear operators A and AA∗ can be written in block form as

A =

∇h· −I
. . .

...
∇h· −I

 , AA∗ =


−∆h + I I · · · I

I
. . .

...
... I
I I · · · −∆h + I

 , (4.A.2)
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where ∆h represents the discrete Laplacian operator, namely ∆h = (∇h·)∇h.

Proposition 4.A.1. Let σ = (σ1, . . . , σN ) ∈ SNh and ν ∈ Mh ∩ ∆, then the projection
(σ̃, ν̃) of (σ, ν) onto Dh is given by

σ̃i = σi +∇hξi, ν̃ = ν +

N∑
i=1

ξi,

where ξi = ξ′i − (I − 1
N∆h)−1

(
1
N

∑N
j=1 ξ

′
j

)
and ξ′i solves for all i ∈ {1, . . . , N}

−∆hξ
′
i = ∇h · σi + νi − ν.

Proof. We only need to show that A(σ̃, ν̃) = b and that ξ = (ξ1, . . . , ξN ) solves AA∗ξ =
A(σ, ν)−b where A and AA∗ are defined in (4.A.2). Let us start from the latter. Denoting
ξ̄′ = 1/N

∑N
i=1 ξ

′
i, we have for all i ∈ {1, . . . , N} that

−∆hξi +
N∑
j=1

ξj = −∆ξ′i + ∆h

(
I − 1

N
∆h

)−1

ξ̄′ +Nξ̄′ −N
(
I − 1

N
∆h

)−1

ξ̄′

= ∇h · σi + νi − ν +Nξ̄′ −N
(
I − 1

N
∆h

)(
I − 1

N
∆h

)−1

ξ̄′

= ∇h · σi + νi − ν.

Hence AA∗ξ = A(σ, ν)− b. Regarding the feasibility constraint, we have

∇h · σ̃i + νi = ∇h · σi + ∆hξi + νi = ∇h · σi + ∆hξ
′
i −∆h

(
I − 1

N
∆h

)−1

ξ̄′ + νi

= ν −∆h

(
I − 1

N
∆h

)−1

ξ̄′ = ν +Nξ̄′ −N
(
I − 1

N
∆h

)−1

ξ̄′ = ν̃,

which concludes the proof.

Proposition 4.A.1 allows us to implement a Douglas-Rachford scheme on (4.A.1), which
we summarize in Algorithm 1. In Algorithm 1, we are required to solve two sparse (elliptic)
linear systems, which we tackled with generic sparse linear solvers, e.g. spsolve in scipy.
However, one should put adequate care when trying to solve the first Laplacian system.
Indeed, if the projection onto the simplex is not computed sufficiently well, the right
hand side can be out of the range of the Laplacian. For this reason, in our numerical
implementation, we smoothed out all possible numerical errors with a further projection
of the right hand side onto the set of discrete measure with total mass equal to one.

The computational cost required to solve the aforementioned linear systems is overall
balanced with a very fast iteration-wise convergence behaviour. Most importantly, note
that there is no need to store dense n × n matrices. This makes the proposed method
suitable for highly large-scale instances, which using state of art methods are far from
being tractable.
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Data: A collection of discrete probability measures ν1, . . . , νN ∈ Sh, step-size
τ > 0.

Result: ν = lim νk, σq = limσkq for q ∈ {1, . . . , N} solution to (4.A.1).
Initialize: η0

1, . . . ,η
0
N ∈ Sh and µ0 ∈Mh ∩∆;

while not convergent do
σk+1
q = Shrinkτ

(
ηkq
)
for all q ∈ {1, . . . , N} ;

νk+1 = Proj∆(µk);
for q ∈ {1, . . . , N} do

Solve: −∆hξ
′
q = ∇h · (2σk+1

q − ηkq ) + νi − 2νk+1 + µk;

ξq = ξ′q −
(
I − 1

N∆h

)−1
(

1
N

∑N
j=1 ξ

′
j

)
end
ηk+1
q = (1− θk)ηkq + θk

(
σk+1
q +∇hξq

)
for all q ∈ {1, . . . , N};

µk+1 = (1− θk)µk + θk

(
νk+1 +

∑N
q=1 ξq

)
.

end
Algorithm 1: Douglas-Rachford for the Wasserstein median problem

Convergence. Douglas-Rachford benefits from robust convergence guarantees, without
any condition neither on the starting point, nor on the step-size τ > 0. In particular, we
have that if σkq , νk, ηk and µk are generated by Algorithm 1, then for each q ∈ {1, . . . , N},
we have σkq → σ∗q and νk → ν∗ and (σ∗1, . . . ,σ

∗
N , ν

∗) solves (4.A.1). Furthermore, defining
σ̃k+1
q = 2σk+1

q − ηkq + ∇hξq and ν̃k+1 = 2νk+1 − µk +
∑N

q=1 ξq, we have that, up to
numerical tolerances (σ̃k+1

1 , . . . , σ̃k+1
N , ν̃k+1) ∈ Dh, i.e. is always feasible for (4.A.1), and

σ̃kq → σ∗q , ν̃k → ν∗ for every q ∈ {1, . . . , N}. Thus, it makes sense to measure the
relative decrease of objective function on σ̃k1 , . . . , σ̃kN , namely rk = (fk+1 − fk)/fk with
fk+1 =

∑N
q=1 pq‖σ̃k+1

q ‖1,2 and setting rk < tol as stopping criterion.
Interestingly, in our implementation we noticed that the larger τ , the sparser the limit

of (νk)k∈N and that a good choice of the step-size is τ = 10−3, which even at different
scales, always provided very fast convergence behaviours.

Matrix-free method, i.e. without the need to ever solve any linear system exists and
can be applied to solve (4.A.1) as well. Indeed, we implemented the Primal Dual Hybrid
Gradient method popularized by Chambolle and Pock, with different step-size selection
strategies, such as backtracking, adaptive and fixed step-sizes, which, however, always pro-
vided very slow behaviours, and therefore, we disregarded it.
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Chapter 5

Constrained Wasserstein
interpolation

This chapter is based on joint work with G. Buttazzo and G. Carlier from the preprint [20].

The goal is to investigate a class of problems as a mathematical model for the optimal
location of a parking region around a city. In this context, one is given two probability
measures µ0 and µ1, which may be interpreted as a distribution of residents and a dis-
tribution of services respectively. A resident living at x0 reaching a service located at x1

may either walk directly to x1 for the cost c1(x0, x1) or drive to an intermediate parking
location x and then walk from x to x1 paying the sum c0(x0, x) + c1(x, x1). In this model,
detailed in Section 5.1, the pivot or parking measure ρ may have total mass less than 1,
and one may decompose µ0 and µ1 as µi = µi − νi + νi with 0 ≤ νi ≤ µi denoting the
driving part of µi and the unknowns are ν0, ρ and ν1 (with same total mass). The goal is
then to minimize the overall cost

Wc1(µ0 − ν0, µ1 − ν1) +Wc0(ν0, ρ) +Wc1(ρ, ν1),

subject to possible additional constraints on ρ, such as

• location constraints, where the support of ρ, spt ρ, is required to be contained in a
given region K ⊂ Rd;

• density constraints, where the measure ρ is required to be absolutely continuous and
with a density not exceeding a prescribed function φ.

Let us remark that if (ν0, ν1, ρ) solves this parking problem, then ρ minimizes the reduced
problem

Wc0(ν0, .) +Wc1(., ν1),

subject to the same location or density constraints. We call this corresponding problem
the (constrained) Wasserstein interpolation problem and study fine properties of solutions
in detail in Sections 5.4 and 5.5. These qualitative properties will be directly applicable to
optimal parking measures.

Certain classes of constrained Wasserstein interpolation problems have been studied
in the past. Notably, [83] considers the problem of location constraint for cost functions
given by Finsler distances, while in [84] the case of density constraint for Euclidean cost
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CHAPTER 5. CONSTRAINED WASSERSTEIN INTERPOLATION

functions is analyzed. The paper [64] considers a more general density constraint problem
again for the Euclidean cost, where the measure ρ is required not to exceed a given measure
Θ ∈ M+(Rd). Without additional constraint on the measure ρ, the minimization of
the functional Wc0(ν0, .) + Wc1(., ν1), or its generalizations to more than two prescribed
measures, arise in different applied settings such as multi-population matching [33] or
Wasserstein barycenters [1]. In particular, in the quadratic case where c0(x, y) = c1(x, y) =
|x− y|2, minimizers of Wc0(ν0, .) +Wc1(., ν1) are the midpoints of McCann’s displacement
interpolation [86] between ν0 and ν1 i.e. geodesics for the quadratic Wasserstein metric.
Our goal is to investigate the effect of location and density constraints on such Wasserstein
interpolation problems. Let us also mention that the minimization of Wc0(ν0, ρ) with
respect to ρ in a class of measures which are singular with respect to ν0 was addressed in
[21].

The remaining chapter is organized as follows. In Section 5.1, we introduce the problem
related to the optimization of a parking area. Section 5.2 considers the general Wasserstein
interpolation problem (WI) and after solving an explicit example, we prove existence and
discuss uniqueness of solutions. Dual formulations are introduced in Section 5.3. In Section
5.4, the particular case of distance-like costs is studied, while Section 5.5 deals with the
case of strictly convex cost functions. In these sections we study various qualitative prop-
erties of the solutions, in particular their integrability. Finally, in Section 5.6, we present
some numerical simulations thanks to an entropic approximation scheme and compare the
solutions of interpolation and parking problems.

5.1 A parking location model

In this section, we introduce a mathematical model for the optimal location of a parking
area in a city. We fix:

• a compactly supported probability measure on Rd, µ0 which represents the distribu-
tion of residents in a given area;

• a a compactly supported probability measure on Rd, µ1 which represents the distri-
bution of services.

The goal is to determine a measure ρ which represents the density of parking places, in
order to minimize a suitable total transportation cost. All the residents travel to reach the
services, but some of them may simply walk (which will cost c1(x, y) to go from x to y),
while some other ones may use their car to reach a parking place (which will cost c0(x, y)
to go from x to the parking place y) and then walk from the parking place to the services
(which will cost c1(y, z) to go from y to z). We consider two cost functions c0 and c1 and
the corresponding Wasserstein functionals Wc0 and Wc1 , defined as in (OT), respectively
representing the cost of moving by car and the cost of walking. It may be natural to assume
that walking is more costly than driving i.e. c1 ≥ c0, for instance we may take p ≥ 1 and

c0(x, y) = |x− y|p, c1(x, y) = λ|x− y|p with λ ≥ 1.

Assuming that ν0 ≤ µ0 denotes the distribution of driving residents and ν1 ≤ µ1 the
corresponding services they reach for, the total cost we consider is

F (ν0, ν1, ρ) = Wc1(µ0 − ν0, µ1 − ν1) +Wc0(ν0, ρ) +Wc1(ρ, ν1). (5.1.1)
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5.1. A PARKING LOCATION MODEL

The optimization problems we consider are then the minimization of F (ν0, ν1, ρ), subject
to the constraints

0 ≤ ν0 ≤ µ0, 0 ≤ ν1 ≤ µ1, and ν0(Rd) = ν1(Rd) = ρ(Rd),

and additional constraints as:

• no other constraints on the parking measure ρ;

• location constraints, that is spt ρ ⊂ K, with a compact set K ⊂ Rd a priori given;

• density constraints, that is ρ ≤ φ, for a given non-egative and integrable function φ.

This optimization problem in the case of a location constraint can also be reformulated as
a linear program in the following way

inf
γ, γ̃ ≥ 0,

γ + π#
0,1γ̃ ∈ Π(µ0, µ1)

ˆ
Rd×Rd

c1(x0, x1) dγ(x0, x1)+

ˆ
Rd×Rd×K

(c0(x0, x)+c1(x, x1)) dγ̃(x0, x, x1).

(5.1.2)
It is indeed easy to see that the optimal solution to minimizing the functional in (5.1.1) is
given by π#

pivγ̃. Hence to incorporate a density constraint in the formulation (5.1.2) one
needs to add the constraint π#

pivγ̃ ≤ φ.
Figure 5.1 gives an example of the optimal parking problem where both γ and γ̃ are

non-trivial.

(a) The data given µ0 (green),
µ1 (red) and the support of
φ ≡ const (gray)

(b) Support of optimal parking
ρ indicated by pink area, blue
line represents optimal plan γ

(c) The orange lines represent
the optimal plan γ̃ between
residents µ0, ρ and facilities µ1

Figure 5.1 – Parking location problem with density constraint.

The problem with location constraint is actually equivalent to a standard optimal
transport problem with cost function

C(x0, x1) := min

{
c1(x0, x1), inf

x∈K
{c0(x0, x) + c1(x, x1)}

}
.

More precisely, consider

inf
β∈Π(ν0,ν1)

ˆ
Rd×Rd

C(x0, x1) dβ(x0, x1). (5.1.3)

Then both (5.1.2) and (5.1.3) admit solutions and they are equivalent in the following sense
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• inf (5.1.2) = inf (5.1.3),

• if γ, γ̃ are optimal for (5.1.2), then β := γ + π#
0,1γ̃ is optimal for (5.1.3),

• if β is optimal for (5.1.3), then defining

V1 :=
{

(x0, x1) ∈ Rd × Rd : c1(x0, x1) = C(x0, x1)
}

γ := β|V1
and P : Rd × Rd → Rd (measurable)

P (x0, x1) ∈ arg min
x∈K

{c0(x0, x) + c1(x, x1)},

and
dγ̃(x0, x1, x) := δP (x0,x1)(x)⊗ dβ|Rd\V1

(x0, x1),

then γ and γ̃ are optimal for (5.1.2).

Remark 5.1.1. Note that the solutions (ν0, ν1, ρ) to minimizing (5.1.1), (respectively the
solutions γ and γ̃ to (5.1.2)) are not necessarily probability measures. The optimal common
total mass of γ̃, ν0 and ν1 represents the fraction of µ0 which uses the parking. In order
to analyse further properties of a parking measure ρ, we consider in the next sections the
following Wasserstein interpolation problem

inf
{
Wc0(ν0, ρ) +Wc1(ρ, ν1) : µ ∈ A

}
,

where A ⊂ P(Rd) encodes the location or density constraints imposed on ρ. The parking
problem is a generalization of this interpolation problem, as the Wasserstein interpolation
problem corresponds to imposing that the parking measure is of full mass.

5.2 Wasserstein interpolation with constraints

Let ν0, ν1 ∈ P(Rd) be two probabilities with compact support, and let c0, c1 : Rd×Rd → R+

be two continuous cost functions. For a class A ⊂ P(Rd) we are interested in solving the
optimization problem

inf
{
Wc0(ν0, ρ) +Wc1(ρ, ν1) : µ ∈ A

}
. (WI)

HereWci(µ0, µ1) denotes the value of the optimal transport problem between two measures
µ0, µ1 ∈ P(Rd), obtained by means of the Wasserstein functionals defined in (OT). In
order to simplify the presentation, by an abuse of notation, if ρ is a measure and φ is
a non-negative Lebesgue integrable function, by ρ ≤ φ we mean that ρ is is absolutely
continuous and its density, again denoted ρ, satisfies ρ ≤ φ Lebesgue a.e. Also, for a
measure % ∈ P(Rd) we often write by abuse of notation % ∈ P(Ω) if spt % ⊂ Ω for a closed
subset Ω ⊂ Rd.

Typical cases for the class A of admissible choices are:

(i) no constraint, that is A = P(Rd);

(ii) location constraints, that is A = P(K) for a non-empty compact subset K of Rd;

(iii) density constraints, that is A = {ρ ∈ Pac(Rd) : ρ ≤ φ} for an L1-function
φ : Rd → R+ with compact support and

´
Rd φdx > 1.
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5.2.1 Explicit one-dimensional examples

Before going to the general case, let us illustrate our problem in a simple one-dimensional
case.

Example 5.2.1. Consider the one-dimensional case and the measures

ν0(x) = 1[0,1](x), ν1(x) = 1[5,6](x).

We first look at the case where the cost functions are given by distances:

c0(x, y) = (1− t)|x− y|, c1(x, y) = t|x− y| with t ∈]0, 1[.

The following results can be easily seen by rephrasing the problem in terms of the distri-
bution functions f, f0, f1 of the probabilities ρ, ν0, ν1 (see for instance Chapter 2 of [104]):

inf

{ˆ 6

0
(1− t)|f0 − f |+ t|f − f1| dx : f non-decreasing, f(0) = 0, f(6) = 1

}
with the constraints

(i) no additional constraint;

(ii) spt f ′ ⊂ [2, 4];

(iii) f ′ ≤ θ1[2,4].

Since f0 ≤ f1, it is easy to see that in the minimization above, one can always assume that
f0 ≤ f ≤ f1 and then remove the absolute values and minimize under the constraint that
f is non-decreasing and f0 ≤ f ≤ f1. We then have:

(i) In the absence of constraints, this becomes the problem of finding the Wasserstein
median between ν0 and ν1 (see [29] for more on Wasserstein medians). In particular,
the optimal solutions ρ are characterized as follows:

• if t > 1/2 (respectively t < 1/2), the unique solution is given by ρ = ν1 (respec-
tively ρ = ν0);

• if t = 1/2, any probability ρ whose distribution function f is between the two
distribution functions f0 and f1 of ν0 and ν1, in the sense that

f0(x) ≤ f(x) ≤ f1(x) for all x ∈ R,

is a minimizer.

(ii) In the case of the location constraint K = [2, 4], we observe a similar threshold effect:

• if t > 1/2 (respectively t < 1/2), the unique solution is given by ρ = δ4 (respec-
tively ρ = δ2);

• if t = 1/2, then any probability measure supported on K is a solution.

(iii) In the case of density constraint φ(x) := θ1[2,4](x) with θ > 1/2 we have:

• if t > 1/2 (respectively t < 1/2), the unique solution is given by ρ = θ1[4−1/θ,4]

(respectively ρ = θ1[2,2+1/θ]);
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• if t = 1/2 any probability measure satisfying the constraint is a solution.

The example above relies on the fact that for distance-like costs, optimality somehow
forces the triangular inequality to be saturated in dimension 1. We will investigate this
phenomenon further in Section 5.4.

We consider now strictly convex cost functions: as a prototype we take, with the same
measures ν0 and ν1 above,

c0(x, y) = (1− t)|x− y|2, c1(x, y) = t|x− y|2 with t ∈ (0, 1).

Also this case can be rephrased in terms of the so-called pseudo-inverse g, g0, g1 of the
distribution functions f, f0, f1 as:

inf

{ˆ 1

0
(1− t)(g − g0)2 + t(g1 − g)2ds : g non-decreasing

}
with the constraints

(i) no additional constraint;

(ii) g([0, 1]) ⊂ [2, 4];

(iii) g′ ≥ 1/θ and g([0, 1]) ⊂ [2, 4].

This implies:

(i) In the unconstrained case the solution simply corresponds to the Wasserstein-geodesic
from ν0 to ν1 at time t ∈ (0, 1), or equivalently the weighted barycenter. It is given
by

νt(x) := 1[5t,1+5t](x).

(ii) Take the constraint K = [2, 4], as above. Here the solution depends on the location
of the unconstrained geodesic νt. We present a few cases (the other ones are clear by
symmetry)

• if t ≤ 1
5 the support of νt is contained in [0, 2], hence the optimal solution is δ2;

• if 1
5 < t < 2

5 the optimal solution is ρ = (2− 5t)δ2 + 1[2,1+5t];

• if 2
5 ≤ t ≤

3
5 the support of νt is contained in [2, 4], hence the solution is simply

νt.

(iii) Take the function φ(x) := θ1[2,4](x) with 1 > θ > 1
2 . The solution depends again on

the location of the unconstrained geodesic νt.We have the following cases (remaining
cases are again obtained by symmetry)

• if t ≤ 1
5 the support of νt is contained in [0, 2], hence the optimal solution is

θ1[2,2+1/θ];

• if 1
5 < t < 2

5 the optimal solution is still ρ = θ1[2,2+1/θ];

• if 2
5 ≤ t ≤

3
5 the support of νt is contained in [2, 4], but by the density constraint

νt is not even feasible this time. So the solution is of the form θ1[a,b] with
2 ≤ a < b ≤ 4 and b− a = 1/θ.
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5.2.2 Reformulation, existence, uniqueness

Let us now come back to the constrained Wasserstein interpolation problem (WI) assuming
that the measures ν0 and ν1 are compactly supported and the costs c0 and c1 are continuous
and non-negative, then by the direct method one directly gets

Lemma 5.2.2. Assume either the case (ii): A = P(K) with K ⊂ Rd compact or the
case (iii) A := {ρ ∈ P(Rd) : ρ ≤ φ} with φ ∈ L1(Rd) compactly supported and

´
Rd φ dx ≥ 1.

Then problem (WI) admits a solution.

Proof. In both cases, one is left to optimize over probabilities over a fixed compact set, the
sum of two Wasserstein terms which are weakly* lower semicontinuous.

In the unconstrained case where A := P(Rd), one of course needs some coercivity in
the problem. We shall therefore assume that there exists a compact subset of Rd, denoted
(again) by K, such that for every (x0, x1) ∈ spt(ν0)× spt(ν1) one has

arg min
x∈Rd

{c0(x0, x) + c1(x, x1)} is non-empty and included in K. (5.2.1)

We then define, for (x0, x1) ∈ spt(ν0)× spt(ν1)

c(x0, x1) := inf
x∈Rd
{c0(x0, x) + c1(x, x1)} = min

x∈K
{c0(x0, x) + c1(x, x1)}.

In the following proposition, we show that the optimization problem (WI), withA = P(Rd),
is equivalent to the standard transport problem with cost c

inf
γ∈Π(ν0,ν1)

ˆ
Rd×Rd

c(x0, x1) dγ(x0, x1), (5.2.2)

which clearly admits a solution, since c ∈ C(spt(ν0) × spt(ν1)). We easily deduce the
existence of a solution to (WI) when A = P(Rd) as well as the fact that all solutions are
supported by K.

We will denote by Π(ν0, ρ, ν1) the set of transport plans in the variables (x0, x, x1)
with marginals ν0, ρ, ν1, and we denote by π0,piv, πpiv,1, π0,1 the projections on the first
and second, second and third, first and third factors respectively.

Proposition 5.2.3. Assume the coercivity condition (5.2.1). Let γ ∈ Π(ν0, ν1) solve (5.2.2)
and let T : spt(ν0)× spt(ν1)→ Rd be measurable and such that

T (x0, x1) ∈ arg min
x∈K

{c0(x0, x) + c1(x, x1)} ∀(x0, x1) ∈ spt(ν0)× spt(ν1).

Then

• T#γ is a solution of (WI) with A = P(Rd) and the optimal values of (WI) and (5.2.2)
coincide;

• conversely, for any optimal solution ρ of (WI), consider optimal transport plans
γ0 ∈ Π(ν0, ρ) with respect to the cost c0 and γ1 ∈ Π(ρ, ν1) with respect to the cost
c1. Then there exists a plan γ̃ ∈ Π(ν0, ρ, ν1) with π#

0,pivγ̃ = γ0 and π#
piv,1γ̃ = γ1 such

that π#
0,1γ̃ is optimal for (5.2.2) and c0(x0, x)+c1(x, x1) = c(x0, x1) on spt(γ̃) so that

ρ is supported by K.
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The previous equivalence also holds between (WI) with A = P(K) (with K a given compact
subset of Rd) and (5.2.2) with c given by c(x0, x1) = minx∈K{c0(x0, x) + c1(x, x1)}.

Proof. Let ρ ∈ P(Rd), γ0 ∈ Π(ν0, ρ) and γ1 ∈ Π(ρ, ν1); by the gluing Lemma (see Lemma
7.6 in [112]), there is a plan γ̃ ∈ Π(ν0, ρ, ν1) with π#

0,pivγ̃ = γ0 and π#
piv,1γ̃ = γ1. Hence,

since γ solves (5.2.2) and π#
0,1γ̃ ∈ Π(ν0, ν1), we have

ˆ
Rd×Rd

c0 dγ0 +

ˆ
Rd×Rd

c1 dγ1 =

ˆ
Rd×Rd×Rd

{c0(x0, x) + c1(x, x1)} dγ̃(x0, x, x1)

≥
ˆ
Rd×Rd

cdπ#
0,1γ̃ ≥

ˆ
Rd×Rd

cdγ

=

ˆ
Rd×Rd

{c0(x0, T (x0, x1)) + c1(T (x0, x1), x1)} dγ(x0, x1)

≥Wc0(ν0, T
#γ) +Wc1(T#γ, ν1)

which, taking the infimum with respect to γ0 ∈ Π(ν0, ρ) and γ1 ∈ Π(ρ, ν1), enable us to
deduce that T#γ solves (WI) as well as the equality of the optimal values of (WI) and
(5.2.2).

Assume now that ρ solves (WI) and consider optimal transport plans γ0 ∈ Π(ν0, ρ)
with respect to the cost c0 and γ1 ∈ Π(ρ, ν1) with respect to the cost c1. Using again the
gluing lemma we find γ̃ ∈ Π(ν0, ρ, ν1) with π#

0,pivγ̃ = γ0 and π#
piv,1γ̃ = γ1, and we then have

inf (5.2.2) = inf (WI) =

ˆ
Rd×Rd×Rd

{c0(x0, x) + c1(x, x1)} dγ̃(x0, x, x1)

≥
ˆ
Rd×Rd×Rd

c(x0, x1) dγ̃(x0, x, x1) =

ˆ
Rd×Rd×

cdπ#
0,1γ̃.

Therefore π#
0,1γ̃ is optimal for (5.2.2) and c0(x0, x) + c1(x, x1) = c(x0, x1) on spt(γ̃).

In other words, the coercivity condition (5.2.1) ensures that we can replace A = P(Rd)
by A = P(K) in (WI) and therefore always optimize over probabilities over a fixed compact
subset of Rd.
Remark 5.2.4. If ν0 is absolutely continuous and c0 is locally Lipschitz and satisfies the
twist condition, i.e. it is differentiable in the first coordinate and for every x0 ∈ spt(ν0)

y 7→ ∇x0c0(x0, y) is injective,

then (WI) has a unique minimizer. Indeed, the conditions above imply that

ρ 7→Wc0(ρ, ν0) is strictly convex.

The proof follows along the lines of Proposition 7.19 of [104] once one observes that,
thanks to the twist condition and the regularity assumptions on c0 and ν0, the optimal
transport problem between ν0 and ρ has a unique transport plan induced by a map, see
Proposition 1.15 [104] and discussion after. This gives uniqueness for smooth and strictly
convex costs. Note that this also gives uniqueness for (ii) and (iii) in the case of concave
costs, i.e. when c0(x, y) = l(|x − y|) for l : R+ → R+ strictly concave, increasing and
differentiable on (0,+∞), if we assume ν0 absolutely continuous and for (ii) K∩spt ν0 = ∅,
or for (iii) spt(φ) ∩ spt ν0 = ∅ (see [59] or [97] for refinements and weaker conditions). All
these arguments for uniqueness of course remain true if we replace the assumptions on ν0

and c0 by similar assumptions on ν1 and c1.
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5.3 Dual formulations

5.3.1 Location constraints

Thanks to the coercivity condition (5.2.1) any solution ρ to (WI) with A = P(Rd) is
necessarily concentrated on the compact set K, hence both cases (i) and (ii) (without the
coercivity condition) can be formulated over P(K). In this case, it can be convenient, to
characterize solutions of the convex minimization problem (WI) by duality as follows.

Proposition 5.3.1. In the cases (i) together with (5.2.1), and (ii) problem (WI) admits
the dual formulation

sup

{ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 : ϕ0, ϕ1 ∈ C(K), ϕ0 + ϕ1 = 0

}
, (5.3.1)

where for a function ϕ ∈ C(K) the c0-transform of ϕ, ϕc0 ∈ C(spt(ν0)) is defined by

ϕc00 (x0) := min
x∈K
{c0(x0, x)− ϕ(x)} ∀x0 ∈ spt(ν0), (5.3.2)

and similarly the c1-transform of ϕ, ϕc1 ∈ C(spt(ν1)) is given by

ϕc11 (x1) := min
x∈K
{c1(x, x1)− ϕ(x)} ∀x1 ∈ spt(ν1). (5.3.3)

Furthermore, the dual problem (5.3.1) has an optimizer and it is also equivalent to the
problem

sup

{ˆ
Rd
u0 dν0 +

ˆ
Rd
u1 dν1 : u0(x0) + u1(x1) ≤ c(x0, x1)

}
, (5.3.4)

where the cost function c is given by

c(x0, x1) = min
{
c0(x0, x) + c1(x, x1) : x ∈ K

}
.

Proof. We start by showing the duality formula (5.3.1). Since K is compact, this follows
immediately by applying Fenchel-Rockafellar theorem. Indeed, defining for ϕ ∈ C(K)

G(ϕ) :=

ˆ
Rd
ϕc0 dν0, H(ϕ) :=

ˆ
Rd

(−ϕ)c1 dν1,

we have
(5.3.1) = − inf

ϕ∈C(K)
{−G(ϕ)−H(ϕ)} .

Note that the functionals G and H are convex, continuous with respect to the L∞-norm
and finite around, say, 0 ∈ C(K). This implies by Fenchel-Rockafellar theorem

(5.3.1) = − max
ρ∈(C(K))∗

−G∗(ρ)−H∗(−ρ) = min
ρ∈(C(K))∗

G∗(ρ) +H∗(−ρ).

Now note that by Kantorovich duality we have

G∗(ρ) =

{
Wc0(ρ, ν0) if ρ ∈ P(K)

+∞ if ρ ∈ (C(K))∗ \ P(K),

H∗(−ρ) =

{
Wc1(ρ, ν1) if ρ ∈ P(K)

+∞ if ρ ∈ (C(K))∗ \ P(K).
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This implies that indeed
(5.3.1) = (WI).

The proof of existence of a minimizer of (5.3.1) follows by standard arguments. We give
the main steps for completeness. Note that for any admissible pair (ϕ0,−ϕ0) ∈ (C(K))2

we can replace ϕ0 by its c0-concave envelope, i.e. setting

ϕ̃0(x) := inf
x0∈spt(ν0)

{c0(x0, x)− ϕc00 (x0)} , (5.3.5)

ϕ̃1(x) := −ϕ̃0(x).

Then we obtain ϕ̃c00 = ϕc00 and ϕ̃0 ≥ ϕ0 which also implies ϕ̃c11 ≥ ϕc11 (see for instance
Proposition 1.34 of [104]). Furthermore, for any λ ∈ R the transformation given by
(ϕ̃0, ϕ̃1) 7→ (ϕ̃0 + λ, ϕ̃1 − λ) does not change the value of the objective in (5.3.1) and keeps
ϕ̃0 c0-concave, i.e. like in (5.3.5) up to a constant.

Now consider a maximizing sequence (ϕn0 , ϕ
n
1 )n∈N which without loss of generality sat-

isfies minϕn0 = 0 and (5.3.5) for every n ∈ N. This implies that ϕn0 have the same modulus
of continuity inherited from c0 (see Box 1.8 Memo in [104]). The uniform modulus of
continuity on K together with minϕn0 = 0 also give a uniform upper bound on ϕn0 . Since
ϕn1 = −ϕn0 equicontinuity and boundedness hold for the sequence (ϕn1 )n∈N as well. By
the Arzelà-Ascoli theorem we can then extract a uniformly convergent subsequence and
conclude on the optimality of the limit by continuity of the integral operator with respect
to uniform convergence.

For the equivalence between (5.3.1) and (5.3.4) let ϕ0, ϕ1 ∈ C(K) be optimal for (5.3.1)
and define ui := ϕcii . They are feasible for (5.3.4) since for any x ∈ K

u0(x0) + u1(x1) ≤ c0(x0, x)− ϕ0(x) + c1(x, x1)− ϕ1(x)

= c0(x0, x) + c1(x, x1).

This implies

sup (5.3.4) ≥
ˆ
Rd
u0 dν0 +

ˆ
Rd
u1 dν1 ≥ sup (5.3.1).

On the other hand, for u0, u1 admissible for (5.3.4) such that
ˆ
Rd
u0 dν0 +

ˆ
Rd
u1 dν1 ≥ sup (5.3.4)− ε,

define ϕ0 := uc̄00 , ϕ1 := −ϕ0, where for a function u

uc̄0(x) := inf
y∈spt ν0

{c0(y, x)− u(y)} .

Now we have for x0 ∈ spt ν0, x1 ∈ spt ν1, by construction

ϕc00 (x0) ≥ u(x0)

and

ϕc11 (x1) = inf
x∈K

{
c1(x, x1) + uc̄00 (x)

}
≥ inf

x∈K

{
−c0(x0, x) + u0(x0) + u1(x1) + inf

y∈spt ν0

{c0(y, x)− u0(y)}
}
.
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Choosing x0 ∈ spt ν0 such that for n ∈ N

c0(x0, x)− u0(x0) ≥ inf
y∈spt ν0

{c0(y, x)− u0(y)} − 1

n
,

we obtain as n→∞
ϕc11 (x1) ≥ u1(x1).

This altogether yields

sup (5.3.1) ≥
ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 ≥ sup (5.3.4)− ε.

Letting ε→ 0 concludes the desired equality.

Remark 5.3.2. Note that (5.3.4) is the dual of the standard OT problem (5.2.2). Hence,
with Proposition 5.2.3 it would have been enough to prove duality of one of the formula-
tions.

Proposition 5.3.1 gives the following primal dual optimality conditions. If the functions
ϕ0 and ϕ1 solve (5.3.1), then ρ ∈ P(K) solves (WI) if and only if ϕ0 is a Kantorovich
potential between ν0 and ρ and ϕ1 is a Kantorovich potential (see Theorem 2.1.13) between
ρ and ν1 i.e. there exist (γ0, γ1) ∈ Π(ν0, ρ)×Π(ρ, ν1) such that

ϕ0(x) + ϕc00 (x0) = c0(x0, x) ∀(x0, x) ∈ spt(γ0),

ϕ1(x) + ϕc11 (x1) = c1(x, x1) ∀(x, x1) ∈ spt(γ1).

Defining the c0-concave envelope of ϕ0 and the c1-concave envelope of ϕ1 by

ϕ̃0(x) := min
x0∈spt(ν0)

{c0(x0, x)− ϕc00 (x0)},

ϕ̃1(x) := min
x1∈spt(ν1)

{c1(x, x1)− ϕc11 (x1)},

one has ϕ̃0 ≥ ϕ0 and ϕ̃1 ≥ ϕ1 with an equality on spt(ρ) so that ϕ̃0 + ϕ̃1 ≥ 0 with an
equality on spt(ρ).

5.3.2 Density constraint

We now consider case (iii) where there is a constraint on the density ρ ≤ φ, one can
characterize minimizers by duality as follows:

Proposition 5.3.3. Consider (WI) in the case (iii) where there is a constraint on the
density ρ ≤ φ with φ ∈ L1(Rd), φ ≥ 0,

´
Rd φdx > 1 and spt(φ) compact (as well as spt(ν0)

and spt(ν1)). Then the value of (WI) coincides with the value of its (pre-)dual formulation

sup
ϕ0,ϕ1∈C(spt(φ))2

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φdx (5.3.6)

(where ϕcii are as in formulae (5.3.2)-(5.3.3) with K replaced by spt(φ)). Moreover, the
supremum in (5.3.6) is attained. If (ϕ0, ϕ1) solves (5.3.6), then ρ solves (WI) under the
constraint ρ ≤ φ if and only if there exist γ0 ∈ Π(ρ, ν0) and γ1 ∈ Π(ρ, ν1) such that

ϕ0(x) + ϕc00 (x0) = c0(x0, x), ∀(x0, x) ∈ spt(γ0), (5.3.7)
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ϕ1(x) + ϕc11 (x1) = c1(x, x1), ∀(x, x1) ∈ spt(γ1) (5.3.8)

(so that γ0 and γ1 are optimal plans and ϕ0 and ϕ1 are Kantorovich potentials) and

ϕ0 + ϕ1 ≥ 0 on spt(φ− ρ), ϕ0 + ϕ1 ≤ 0 on spt(ρ). (5.3.9)

Proof. The fact that the concave maximization problem (5.3.6) is the dual of (WI) under
the constraint ρ ≤ φ follows directly from the Fenchel-Rockafellar duality theorem and the
Kantorovich duality formula, similarly to the proof of Proposition 5.3.1.

Let us prove now that (5.3.6) admits a solution. To see this we remark that the objective
is unchanged when one replaces (ϕ0, ϕ1) by (ϕ0+λ, ϕ1−λ) where λ is a constant. Moreover,
replacing ϕ0 and ϕ1 by their c0/c1-concaves envelopes defined for every x ∈ spt(φ) by

ϕ̃0(x) := min
x0∈spt(ν0)

{c0(x0, x)− ϕc00 (x0)},

ϕ̃1(x) := min
x1∈spt(ν1)

{c1(x, x1)− ϕc11 (x1)}
(5.3.10)

it is well-known that ϕ̃i ≥ ϕi and ϕ̃cii = ϕcii for i = 0, 1 so that replacing ϕi by ϕ̃i is an
improvement in the objective of (5.3.6), moreover the functions ϕ̃i have a uniform modulus
of continuity inherited from the uniform continuity of ci. From these observations, we can
find a uniformly equicontinuous maximizing sequence (ϕn0 , ϕ

n
1 )n for which minspt(φ) ϕ

n
0 = 0

so that ϕn0 is also uniformly bounded. Since min(ϕn1 +ϕn0 , 0) ≤ 0, the fact that (ϕn0 , ϕ
n
1 )n∈N

is a maximizing sequence together with the uniform bounds on ϕn0 we get a uniform lower
bound on

´
Rd(ϕ

n
1 )c1dν1 from which we easily derive a uniform upper bound on ϕn1 thanks

to (5.3.10). To show that ϕn1 is also uniformly bounded from below, we observe that the
quantity ˆ

Rd
(ϕn1 )c1dν1 +

ˆ
Rd

min(ϕn1 + ϕn0 , 0)φdx

is bounded from below and bounded from above by C + (
´
φdx− 1) minspt(φ) ϕ

n
1 for some

constant C. Since
´
φdx > 1 this gives the desired lower bound. Having thus found a

uniformly bounded and equicontinuous maximizing sequence, we deduce the existence of
a solution to (5.3.6) from Arzelà-Ascoli theorem.

Let us now look at the optimality conditions which follow from the above duality. If
(ϕ0, ϕ1) solves (5.3.6), then ρ solves (WI) under the constraint ρ ≤ φ if and only if

Wc0(ν0, ρ) +Wc1(ρ, ν1) =

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φ.

If γ0 (respectively γ1) is an optimal plan for c0 (resp. c1) between ν0 and ρ (resp. ρ and
ν1), we thus haveˆ

Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φ =

ˆ
Rd
c0 dγ0 +

ˆ
Rd
c1 dγ1

≥
ˆ
Rd

(ϕc00 (x0) + ϕ0(x)) dγ0(x0, x) +

ˆ
Rd

(ϕc11 (x1) + ϕ1(x)) dγ1(x, x1)

=

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν0 +

ˆ
Rd

(ϕ0 + ϕ1) dρ

≥
ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν0 +

ˆ
Rd

min(ϕ0 + ϕ1, 0) dρ

≥
ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν0 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φ dx
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where we have used that ρ ≤ φ in the last line. All the inequalities above should therefore
be equalities which together with the continuity of ϕ0 and ϕ1 is easily seen to imply
(5.3.7)-(5.3.8)-(5.3.9). This shows the necessity of these conditions.

For the proof of sufficiency first not that weak duality holds, i.e. for any ρ ∈ Pac(spt(φ))
with ρ ≤ φ and ϕ0, ϕ1 ∈ C(spt(φ))2 we have

Wc0(ν0, ρ) +Wc1(ρ, ν1)

≥
ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

(ϕ0 + ϕ1)ρ dx

≥
ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)ρ dx

≥
ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φ dx

Assume now that ρ ∈ Pac(spt(φ)) and ϕ0, ϕ1 ∈ C(spt(φ))2 satisfy (5.3.7)-(5.3.8)-
(5.3.9), then

Wc0(ν0, ρ) +Wc1(ρ, ν1)

(5.3.7),(5.3.8)
=

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

(ϕ0 + ϕ1)ρ dx

(5.3.9)
=

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φ dx−
ˆ
Rd

min(ϕ0 + ϕ1, 0)(φ− ρ) dx

(5.3.9)
=

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd

min(ϕ0 + ϕ1, 0)φ dx.

Corollary 5.3.4. Under the same assumptions as in Proposition 5.3.3, assume that ρ is
optimal for (WI) under the constraint ρ ≤ φ and let γ0 and γ1 be optimal transport plans.
Then, whenever x0, x, x1 are such that (x0, x) ∈ spt(γ0), (x, x1) ∈ spt(γ1), x ∈ spt(φ− ρ),
we have

c0(x0, x) + c1(x, x1) = min
y∈spt(φ−ρ)

{c0(x0, y) + c1(y, x1)}.

Proof. Let (ϕ0, ϕ1) solve (5.3.6). By definition of the ci-transforms ((5.3.2), (5.3.3)), for
every (x0, x1, y) ∈ spt(ν0)× spt(ν1)× spt(φ) one has

c0(x0, y) + c1(y, x1) ≥ ϕc00 (x0) + ϕc11 (x1) + (ϕ0 + ϕ1)(y).

Together with (5.3.9) this implies that for every (x0, x1) ∈ spt(ν0)× spt(ν1)

min
y∈spt(φ−ρ)

{c0(x0, y) + c1(y, x1)} ≥ ϕc00 (x0) + ϕc11 (x1).

But now if x ∈ spt(ρ) ∩ spt(φ− ρ), by (5.3.9) again we have ϕ0(x) + ϕ1(x) = 0. Hence by
(5.3.7)-(5.3.8) whenever (x0, x) ∈ spt(γ0), (x, x1) ∈ spt(γ1) and x ∈ spt(φ− ρ) we have

ϕc00 (x0) + ϕc11 (x1) = c0(x0, x) + c1(x, x1) ≥ min
y∈spt(φ−ρ)

{c0(x0, y) + c1(y, x1)},

which yields the desired result.
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In the discrete case, we can deduce a bang-bang result stating that the constraint
ρ ≤ φ is always binding when ρ > 0 under mild conditions on the cost. We will give similar
bang-bang results for distance-like costs in Section 5.4.

Corollary 5.3.5. Assume that ν0 and ν1 are discrete, for every (x0, x1) ∈ spt(ν0)× spt(ν1),
c0(x0, .) and c1(., x1) are C1 and M -Lipschitz on spt(φ) (for some M that does not depend
on x0 and x1) and that the set

{x ∈ spt(φ) : ∇xc0(x0, x) +∇xc1(x, x1) = 0}, (5.3.11)

is Lebesgue negligible. Then if ρ is optimal for (WI) under the constraint ρ ≤ φ, there
exists a measurable subset E of spt(φ) such that ρ = φ1E.

Proof. Let (ϕ0, ϕ1) solve (5.3.6), As seen in the proof of Proposition 5.3.3, we may assume
that, for every x ∈ spt(φ)

ϕ0(x) := min
x0∈spt(ν0)

{c0(x0, x)− ϕc00 (x0)},

ϕ1(x) := min
x1∈spt(ν1)

{c1(x, x1)− ϕc11 (x1)},

so that ϕ0 and ϕ1 are Lipschitz hence differentiable a.e. on spt(φ). Since ϕ0 + ϕ1 = 0 on
spt(ρ) ∩ spt(φ− ρ), we then have

∇ϕ0 +∇ϕ1 = 0 a.e. on {0 < ρ < φ},

but if ϕ0 (resp. ϕ1) is differentiable at x and (x0, x) ∈ spt(γ0) (resp. (x, x1) ∈ spt(γ1)),
where γ0 and γ1 are optimal plans, then

∇ϕ0(x) = ∇xc0(x0, x), ∇ϕ1(x) = ∇xc1(x, x1).

Hence, denoting by Ai the countable concentration set of νi (i = 0, 1), a.e. x such that
0 < ρ(x) < φ(x) belongs to⋃

(x0,x1)∈A0×A1

{x ∈ spt(φ) : ∇xc0(x0, x) +∇xc1(x, x1) = 0},

which is negligible by assumption. The desired bang-bang conclusion then readily follows.

Remark 5.3.6. In some cases, for instance when the costs c0 and c1 depend quadratically
or more generally as a p-th power of the distance (with p > 1), the set in (5.3.11) reduces
to a single point which depends in a Lipschitz way on x0 and x1. The conclusion of
Corollary 5.3.5 then still holds under the weaker assumption that one between ν0 and
ν1 is discrete and the other one is singular with respect to the Lebesgue measure. More
precisely, this still holds if the Hausdorff dimension of the support of ν0 is h0, and the
Hausdorff dimension of the support of ν1 is h1, with h0 + h1 < d.

5.4 Distance like costs

In this section, we pay special attention to the case of distance-like costs:

c0(x0, x) := |x0 − x|α, c1(x, x1) := λ|x− x1|α, (5.4.1)

with 0 < α ≤ 1 and λ > 0.
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5.4.1 Location constraint, concentration and integrability on the bound-
ary

Let us start with the case of a location constraint of type (ii): ρ ∈ P(K) for some non-
empty compact subset K of Rd.

Lemma 5.4.1. Assume K is a compact subset of Rd and that one of the following as-
sumption holds:

• α = 1, λ > 1 and the interior of K is disjoint from spt(ν1),

• α ∈ (0, 1) and the interior of K is disjoint from spt(ν0) ∪ spt(ν1).

Then any solution ρ of (WI) under the constraint ρ ∈ P(K) is supported by ∂K.

Proof. For (x0, x1) ∈ spt(ν0)× spt(ν1), set

c(x0, x1) := min
x∈K
{|x0 − x|α + λ|x− x1|α},

T (x0, x1) := arg min
x∈K

{|x0 − x|α + λ|x− x1|α}.

We know from Proposition 5.2.3 that ρ is supported by T (spt(ν0)× spt(ν1)). In particular,
if x ∈ spt(ρ) is an interior point of K then it is a local minimizer of c0(x0, ·) + c1(·, x1) for
some (x0, x1) ∈ spt(ν0) × spt(ν1). In the case α = 1, λ > 1, by the triangular inequality
there is one unique global minimizer (without constraint x ∈ K) which equal to x1, and
no other local minimizer, but since x 6= x1, this is clearly impossible.

In the case α < 1, our assumption implies that x /∈ {x0, x1}, so that x has to be a
critical point of c0(x0, ·) + c1(·, x1). One should have

α|x− x0|α−2(x− x0) + λα|x− x1|α−2(x− x1) = 0,

so that x0 6= x1 and x ∈ [x0, x1]. But c0(x0, ·) + c1(·, x1) is strictly concave on [x0, x1]
which contradicts x being a local minimizer.

Remark 5.4.2. If α = λ = 1 the previous result is false: if d = 1, ν0 = δ0 and ν1 = δ1, and
K = [1/4, 3/4], then it follows from the triangle inequality that any probability supported
by K is actually optimal.

Now that we know that minimizers are supported by ∂K, one may wonder, if K and
ν1 are regular enough, whether these minimizers are absolutely continuous with respect
to the (d − 1)-Hausdorff measure on ∂K, the answer is positive if ν0 is discrete, i.e. is
concentrated on a countable set, ν0(K) = 0 and ν1 is absolutely continuous with support
disjoint from int(K) (see Proposition 5.4.4 below). A first step consists in the following
result.

Lemma 5.4.3. Assume that c0 and c1 are as in (5.4.1) (with α ∈ (0, 1] and λ > 1 if α = 1),
and that K is compact. Then for every x0 and (Lebesgue-)almost every x1 ∈ Rd \K, the
set

Tx0(x1) := arg min
x∈K

{
|x0 − x|α + λ|x− x1|α

}
is a singleton.

119



CHAPTER 5. CONSTRAINED WASSERSTEIN INTERPOLATION

Proof. Fix x0, set
cx0(x1) := min

x∈K

{
|x0 − x|α + λ|x− x1|α

}
,

and observe that cx0 is locally Lipschitz on Rd \ K. It thus follows from Rademacher’s
theorem that almost every x1 ∈ Rd \K is a point of differentiability of cx0 , and for such a
point, if x ∈ Tx0(x1), we have

∇cx0(x1) = λα|x1 − x|α−2(x1 − x) 6= 0.

If α ∈ (0, 1) this immediately gives the claim with

Tx0(x1) = {x1 + (λα)
1

1−α |∇cx0(x1)|
2−α
α−1∇cx0(x1)}.

If α = 1 and λ > 1, if both x and x′ belong to Tx0(x1) then x1, x and x′ are aligned, so
that the triangle inequality between their differences is saturated. But if x ∈ [x1, x

′), by
the definition of Tx0(x1) and λ > 1, we should also have

cx0(x1) = |x− x0|+ λ|x− x1| = |x′ − x0|+ λ|x′ − x1|
= |x′ − x0|+ λ(|x− x1|+ |x′ − x|)
> |x′ − x0|+ |x′ − x|+ λ|x− x1|,

which is impossible by the triangle inequality, yielding the a.e. single-valuedness of Tx0 in
this case as well.

Proposition 5.4.4. Assume that either α = 1, λ > 1 or α ∈ (0, 1) and

• K is the closure of an open, bounded set in Rd with a boundary of class C1,1,

• ν0 is discrete and ν0(K) = 0,

• ν1 is absolutely continuous and int(K) ∩ spt ν1 = ∅.

Then, any solution ρ of (WI) under the constraint ρ ∈ P(K) is absolutely continuous with
respect to the (d− 1)-Hausdorff measure on ∂K.

Proof. Since ν0 is discrete, we can write ν0 =
∑

x0∈A0
px0δx0 , with A0 at most countable,

disjoint from K and px0 > 0 for every x0 ∈ A0. It follows from Proposition 5.2.3 and
Lemma 5.4.3 that there exists a transport plan γ between ν0 and ν1, which can be written
as

γ =
∑
x0∈A0

px0δx0 ⊗ ν
x0
1 ,

such that defining Tx0 as in Lemma 5.4.3 and T (x0, x1) = Tx0(x1) one has

ρ = T#γ =
∑
x0∈A0

px0T
#
x0
νx0

1 .

Since the second marginal of γ is ν1, we also have

ν1 =
∑
x0∈A0

px0ν
x0
1 ,
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so that all the measures νx0
1 are dominated by 1/px0ν1 hence absolutely continuous. We

are thus left to show that for each fixed x0 in the countable set A0, the measure T#
x0ν

x0
1

(which is supported by ∂K by Lemma 5.4.1) is absolutely continuous with respect to the
(d− 1)-Hausdorff measure on ∂K which from now on we denote by σ(d−1),∂K . We now fix
x0 ∈ A0 and a Borel subset A of ∂K and our aim is to bound

(T#
x0
νx0

1 )(A) = νx0
1 (T−1

x0
(A)).

To this end, let us distinguish the two cases α = 1, λ > 1 and α ∈ (0, 1).
Assume α = 1 and λ > 1. Since ν1(K) = 0 (because ∂K being a smooth hypersurface,

it is Lebesgue negligible and ν1(int(K)) = 0), we have

νx0
1 (T−1

x0
(A) \K) = νx0

1 (T−1
x0

(A)).

Now take x = Tx0(x1) ∈ ∂K with x1 /∈ K which is ν1-a.e. the case (so that x /∈ {x0, x1}).
By optimality, there exists β ≥ 0 such that

x̂− x0 + λx̂− x1 + βn(x) = 0,

where for ξ ∈ Rd \ {0}, we have set ξ̂ = ξ/|ξ|, and where n(x) is the outward normal to
∂K at x. Using the fact that λx̂− x1 has norm λ yields

λ2 = β2 + 1 + 2βn(x) · x̂− x0,

whose only non-negative root is

β = βx0(x) := −n(x) · x̂− x0 +

√
λ2 − 1 + (n(x) · x̂− x0)2,

so that
λx̂1 − x = βx0(x)n(x) + x̂− x0,

and the right hand side is a Lipschitz function of x thanks to our assumptions (∂K
being C1,1 and x0 being at a positive distance from K, hence from x). Using again
that λx̂− x1 has norm λ, this shows that if x = Tx0(x1) then for some r ∈ [0, R] with
R = λ−1 diam(spt ν1 −K) there holds

x1 = Fx0(r, x) := x+ r[βx0(x)n(x) + x̂− x0].

Hence
νx0

1 (T−1
x0

(A)) ≤ νx0
1 (Fx0([0, R]×A)).

If σ(d−1),∂K(A) = 0, the smoothness of K and the fact that Fx0 is Lipschitz on [0, R]×∂K,
readily imply that Fx0([0, R]×A) is Lebesgue negligible. Hence νx0

1 (T−1
x0

(A)) = 0 and since
this holds for any x0 ∈ A0, we also have ρ(A) = 0, which implies the absolute continuity
of ρ with respect to σ(d−1),∂K .

Let us now assume that α ∈ (0, 1). To cope with the fact that c1(x, x1) is not differen-
tiable if x = x1, it will be convenient to fix ε > 0 and to consider x1 ∈ Aε1, where

Aε1 := {x1 ∈ spt(ν1) ; d(K,x1) ≥ ε},

and
d(K,x) := min

y∈K
|x− y|,
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is the Euclidean distance to K. If x1 ∈ Aε1 ∩ T−1
x0

(x) with x ∈ A, it follows from the
first-order optimality condition, there is some r ≥ 0 such that

x1 = Gx0(r, x) := x+ |Hx0(r, x)|
2−α
α−1Hx0(r, x),

where
Hx0(r, x) = rn(x) + λ−1|x− x0|α−2(x− x0).

Now, note that
|Hx0(r, x)| = |x1 − x|α−1.

This shows that

|r| ≤ |x1 − x|α−1 + λ−1|x− x0|α−1

≤ εα−1 + λ−1 max
x∈K
|x− x0|α−1 =: Rε(x0).

Hence, Aε1∩T−1
x0

(x) is included in the image byGx0 of the set {(r, x), x ∈ A, r ∈ [0, Rε(x0)]}.
Since Gx0 is Lipschitz (with a Lipschitz constant depending on ε) on this set we obtain as
soon as σ(d−1),∂K(A) = 0

νx0
1 (T−1

x0
(A)) = νx0

1 (T−1
x0

(A) \K) = lim
ε↘0

νx0
1 (T−1

x0
(A) ∩Aε1)

≤ lim
ε↘0

νx0
1 (Gx0([0, Rε(x0)]×A)) = 0.

Thus we can conclude as before that ρ is absolutely continuous.

Proposition 5.4.5. Suppose in addition to the assumptions of Proposition 5.4.4 that ν0

has finite support, ν1 has a bounded density with respect to the d-dimensional Lebesgue
measure. If α ∈ (0, 1), further assume that K ∩ spt ν1 = ∅. Then ρ has a bounded density
with respect to the (d− 1)-Hausdorff measure on ∂K.

Proof. In the case α = 1, λ > 1 we can continue using the same notation and Lipschitz
mapping Fx0 and R as in the proof of Proposition 5.4.4 to conclude for any Borel subset
A of ∂K

ρ(A) =
∑

x0∈spt(ν0)

px0ν
x0
1 (T−1

x0
(A))

≤
∑

x0∈spt(ν0)

px0ν
x0
1 (Fx0([0, R]×A))

≤
∑

x0∈spt(ν0)

‖ν1‖L∞Ld(Fx0([0, R]×A))

≤ Ccard(spt ν0)‖ν1‖L∞Rσ(d−1),∂K(A)

where C is a constant that only depends on the C1,1 smoothness of ∂K and the maximal
Lipschitz constant of Fx0 over [0, R]×∂K, with respect to x0 ∈ spt(ν0), and card(spt ν0) de-
notes the cardinality of the support of ν0. This way we deduce that ρ ∈ L∞(∂K, σ(d−1),∂K).

For the case α ∈ (0, 1) we need in addition K ∩ spt ν1 = ∅ to ensure that, again using
the same arguments and notation as in the proof of Proposition 5.4.4, there is an ε0 > 0
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such that Aε01 = spt(ν1). In this way, all the analysis from the previous proof can be carried
through on Aε01 and we obtain

ρ(A) =
∑

x0∈spt(ν0)

px0ν
x0
1 (T−1

x0
(A) ∩Aε01 )

≤
∑

x0∈spt(ν0)

px0ν
x0
1 (Gx0([0, Rε0(x0)]×A))

≤
∑

x0∈spt(ν0)

‖ν1‖L∞Ld(Gx0([0, Rε0(x0)]×A))

≤ Ccard(spt ν0)‖ν1‖L∞Rε0(x0)σ(d−1),∂K(A),

where C is a constant that only depends on the C1,1 smoothness of ∂K and the maximal
with respect to x0 ∈ spt(ν0) Lipschitz constant of Gx0 over [0, Rε0(x0)]× ∂K.

One might also be interested in the case that the distribution of residents represented by
ν0 is absolutely continuous and ν1 is discrete. The case α ∈ (0, 1) is completely symmetric
as we have not assumed λ > 1 in the previous proofs. However for the case α = 1, λ > 1,
the proof slightly differs as we shall see below. Arguing as for the proof of Lemma 5.4.3,
we have:

Lemma 5.4.6. Assume that c0 and c1 are as in (5.4.1) (with α ∈ (0, 1] and λ > 1 if
α = 1), and that K is compact. Then for (Lebesgue-)almost every x0 ∈ Rd \K and every
x1, the set

Tx1(x0) := arg min
x∈K

{
|x0 − x|α + λ|x− x1|α

}
is a singleton.

The analogue of Proposition 5.4.4, then reads

Proposition 5.4.7. Assume that either α = 1, λ > 1 or α ∈ (0, 1) and

• K is the closure of an open, bounded set in Rd with a boundary of class C1,1,

• ν0 is absolutely continuous and int(K) ∩ spt ν0 = ∅,

• ν1 is discrete and ν1(K) = 0.

Then, any solution ρ of (WI) under the constraint ρ ∈ P(K) is absolutely continuous with
respect to the (d− 1)-Hausdorff measure on ∂K.

Proof. As already explained, the case α > 1 can be handled exactly as for Proposition
5.4.4, we shall therefore assume that α = 1 and λ > 1. We write ν1 =

∑
x1∈A1

px1δx1 , with
A1 countable and px1 > 0. It follows from Proposition 5.2.3 and Lemma 5.4.6 that there
exists a transport plan γ between ν0 and ν1, which can be written as

γ =
∑
x1∈A1

νx1
0 ⊗ px1δx1 ,

such that defining Tx1 as in Lemma 5.4.3 and T (x0, x1) = Tx1(x0) one has

ρ = T#γ =
∑
x1∈A1

px1T
#
x1
νx1

0 .
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Since the first marginal of γ is ν0, νx1
0 is absolutely continuous for every x1 ∈ A1. We

are thus left to show that for each fixed x1 in the countable set A1, the measure T#
x1ν

x1
0

is absolutely continuous with respect to the (d− 1)-Hausdorff measure on ∂K which from
now on we denote by σ(d−1),∂K . We now fix x1 ∈ spt(ν1) and a Borel subset A of ∂K and
our aim is to bound

(T#
x1
νx1

0 )(A) = νx1
0 (T−1

x1
(A)).

Since ν0(K) = 0, we have νx1
0 (T−1

x1
(A) \K) = νx1

0 (T−1
x1

(A)). Now take x = Tx1(x0) ∈ ∂K
with x0 /∈ K. By optimality, there exists β ≥ 0 such that

x̂− x0 + λx̂− x1 + βn(x) = 0 where for ξ ∈ Rd \ {0}, we have set ξ̂ =
ξ

|ξ|

where n(x) is the outward normal to ∂K at x. This time our aim is to write, for fixed x1,
x0 as a Lipschitz function of x and a length factor, so we proceed as follows. Using the
fact that λx̂− x1 has norm λ yields

1 = β2 + λ2 + 2βλn(x) · x̂− x1.

This time, it is possible that there are two positive solutions for β. We denote them

β+
x1

(x) := −λn(x) · x̂− x1 +

√
(λn(x) · x̂− x1)2 + 1− λ2,

β−x1
(x) := −λn(x) · x̂− x1 −

√
(λn(x) · x̂− x1)2 + 1− λ2.

Hence, we have one of the following equalities is satisfied by (x0, x, x1)

x0 = x+ r(λx̂− x1 + β+
x1

(x)n(x)) =: F+
x1

(r, x),

x0 = x+ r(λx̂− x1 + β−x1
(x)n(x)) =: F−x1

(r, x),

where r ∈ [0, R] and R = diam(spt ν0 −K).
Consider now a Borel set A ⊂ ∂K with σ(d−1),∂K(A) = 0. We distinguish the cases

where the discriminant (λn(x) · x̂− x1)2 + 1− λ2 is zero or positive

A0 :=
{
x ∈ A : (λn(x) · x̂− x1)2 + 1− λ2 = 0

}
,

A> :=
{
x ∈ A : (λn(x) · x̂− x1)2 + 1− λ2 > 0

}
=

⋂
δ>0

{
x ∈ A : (λn(x) · x̂− x1)2 + 1− λ2 ≥ δ

}
︸ ︷︷ ︸

=:Aδ

.

Since F+
x1

and F−x1
agree with Lipschitz functions on [0, R]× A0 and [0, R]× Aδ for δ > 0

fixed, we obtain

νx1
0 (T−1

x1
(A)) ≤ νx1

0 (T−1
x1

(A0)) + lim
δ↘0

νx1
0 (T−1

x1
(Aδ))

≤ νx1
0 (F+

x1
([0, R]×A0)) + lim

δ↘0

(
νx1

0 (F+
x1

([0, R]×Aδ)) + νx1
0 (F−x1

([0, R]×Aδ))
)

= 0,

as required.
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It is unclear whether an L∞-bound can be obtained with the same proof strategy since
the Lipschitz constant of the maps F+

x1
and F−x1

may blow up as δ → 0+. In addition, in
Proposition 5.4.4 the smoothness of K is crucial, as the example below shows.
Example 5.4.8. The regularity of K is essential for the conclusion of the previous propo-
sitions. Take for example in the two-dimensional case K = {(x, y) ∈ Rd : |x|+ |y| ≤ 1}
and consider the distance-like cost (5.4.1) for any α ∈ (0, 1] and λ > 0. Let ν0 = δx0 for
x0 = (−2, 0) and ν1 the (normalized) Lebesgue measure on the disc B1(−4). We prove
that an optimal pivot measure ρ is given by δ(−1,0).

Indeed, since

arg min
y∈K

{|y − x0|α} = (−1, 0) = arg min
y∈K

{|y − x1|α} for all x1 ∈ B1(−4),

we have (−1, 0) = arg miny∈K{|y − x0|α + λ|x − x1|α} for all x1 ∈ B1(−4). Hence, for
the map T given by T (x0, x1) = (−1, 0) we have by Proposition 5.2.3 that for any optimal
plan γ of the multi-marginal formulation (5.2.2) the measure T#γ = δ(−1,0) is optimal for
(WI).

5.4.2 Density constrained solutions are bang-bang

We end this section by observing that in the case of a density constraint ρ ≤ φ, for
distance-like costs minimizers are of bang bang type.

Proposition 5.4.9. Assume that c0 and c1 are as in (5.4.1) with λ > 1 if α = 1,
that φ ∈ L1(Rd) is non-negative with compact support, that

´
Rd φdx > 1, and that both

spt(φ) ∩ spt(ν0) and spt(φ)∩ spt(ν1) are Lebesgue negligible. Then any solution ρ of (WI)
under the constraint ρ ≤ φ is of the form ρ = φ1E for some measurable subset E of spt(φ).

Proof. Let us start with the case α = 1, λ > 1 and define A := {0 < ρ < φ}, we
then consider (Lipschitz) potentials ϕ0 and ϕ1 as in the proof of Corollary 5.3.5. A.e.
point of A is a differentiability point of ϕ0 and ϕ1, satisfies ∇ϕ0 + ∇ϕ1 = 0 and lies in
Rd \ (spt(ν0) ∪ spt(ν1)). Hence arguing as in the proof of corollary 5.3.5, for a.e. x in A
one can find x0 ∈ spt(ν0) \ {x} and x1 ∈ spt(ν1) \ {x} such that

0 = ∇ϕ0(x) + λ∇ϕ1(x) =
x− x0

|x− x0|
+ λ

x− x1

|x− x1|
which is impossible since λ > 1. This shows that A is negligible and ends the proof for
this case.

Consider now the slightly more complicated case where α ∈ (0, 1), since x 7→ |x− x0|α
is Lipschitz only away from x0, it is convenient for δ > 0 to introduce the set

Bδ := {x ∈ spt(φ) : d(x, spt(ν0) ∪ spt(ν1)) ≥ δ}

on Bδ the potentials ϕ0 and ϕ1 are Lipschitz and we can find a subset B̃δ of Bδ with
Bδ \ B̃δ negligible such that ϕ0 and ϕ1 are differentiable on B̃δ. Consider now for ε > 0

Aε := {ε < ρ < φ− ε}

and let Ãε be the subset (of full Lebesgue measure) consisting of its points of density
1 (so that Ãε ⊂ spt(φ − ρ)). Arguing as before for a.e. x ∈ Ãε ∩ B̃δ, we can find
(x0, x1) ∈ spt(ν0)× spt(ν1) such that

∇ϕ0(x) +∇ϕ1(x) = ∇fx0,x1(x) = 0,
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where fx0,x1(x) := |x − x0|α + λ|x − x1|α. Moreover we know from Corollary 5.3.4 that
spt(φ− ρ) (hence also Ãε) is included in the level set fx0,x1 ≥ fx0,x1(x). Since x /∈ {x0, x1}
is a critical point of fx0,x1 we have x1 6= x0 and x belongs to [x0, x1]

e := x̂− x0 = x̂1 − x = x̂1 − x0.

And then the Hessian D2fx0,x1 at x takes the form

D2fx0,x1(x) = (α|x− x0|α−2 + λα|x− x0|α−2)(id +(α− 2)e⊗ e)

which shows that x is a saddle-point of fx0,x1 , its hessian having a negative eigenvalue with
eigenvector e and being positive definite on e⊥.

Hence for small r > 0, Ãε should lie in the intersection of B(x, r) with a certain strict
quadratic cone of Rd contradicting the fact that x is a point of density 1 of Ãε. This shows
that Aε ∩ Bδ is negligible, letting δ → 0+ we find that Aε is negligible and since this is
true for every ε > 0, the desired conclusion follows.

5.5 The case of strictly convex costs with a convex location
constraint

We now consider (WI) in the case of the location constraint A = P(K) where K is a
compact convex subset of Rd with non-empty interior and c0 and c1 satisfy the strong
convexity and smoothness assumptions

ci(x, y) := Fi(y − x), Fi ∈ C2(Rd), λ id ≤ D2Fi ≤ Λ id, i = 0, 1, (5.5.1)

for some constants 0 < λ ≤ Λ. Since these costs are twisted, (WI) in the case of the
location constraint A = P(K) admits a unique solution as soon as ν0 (or ν1) is absolutely
continuous.

Example 5.5.1. Consider the two dimensional case with a location constraint given by the
square K of Example 5.4.8; take ν0 = δ(−2,0), ν1 uniform on the ball of radius 1 centered
at (3, 0), c0(x, y) = |x − y|2 and c1(x, y) = 2|x − y|2. Then by a direct application of
Proposition 5.2.3, the (unique) solution of (WI) is explicit: it is the image of the uniform
measure on the ball B of radius 2/3 centered at (4/3, 0) by the projection onto K. It has
an atom at (1, 0), an absolutely continuous part, uniform on B ∩K and a one dimensional
part corresponding to the points of B which project onto the segments [(0, 1), (1, 0)] and
[(0,−1), (1, 0)].

This shows that, contrary to the case of distance like costs, one should expect that ρ
in general decomposes into a (non-zero) interior part and a boundary part

ρ = ρint + ρbd where ρint(A) := ρ(A ∩ int(K)), ρbd(A) := ρ(A ∩ ∂K), (5.5.2)

for every Borel subset A of Rd. Regarding ρbd, arguing as in Proposition 5.4.5, one can
show that if ν0 is absolutely continuous, ν1 is discrete and K is of class C1,1, ρbd is
absolutely continuous with respect to the (d − 1)-Hausdorff measure on ∂K (and has a
bounded density if in addition ν0 ∈ L∞ and ν1 is finitely supported). As for the regularity
of ρint, we have:
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Proposition 5.5.2. Assume c0 and c1 are of the form (5.5.1), that ν0 and ν1 are compactly
supported, with ν0 ∈ Pac(Rd), having an bounded density, and that K is a compact convex
subset of Rd with non-empty interior. Decomposing the solution ρ of (WI) in the case of
the location constraint A := P(K) as in (5.5.2), we have ρint ∈ L∞(K) and more precisely
(identifying ρint with its density), we have

‖ρint‖L∞(K) ≤ ‖ν0‖L∞(Rd)2
dλ−dΛd (5.5.3)

where λ and Λ are the positive constants appearing in (5.5.1).

To establish the L∞ bound in (5.5.3), we shall use a penalization strategy, detailed in
the next paragraph, the proof by a standard Γ-convergence argument is postponed to the
end of this section.

5.5.1 Penalization

Given g ∈ C2(Rd), with g convex and non-negative, let us consider

inf
ρ∈P(Rd)

T (ρ) +

ˆ
Rd
g dρ with T (ρ) := Wc0(ν0, ρ) +Wc1(ν1, ρ) (5.5.4)

then we have.

Proposition 5.5.3. Assuming (5.5.1) and ν0 ∈ L∞(Rd) compactly supported, (5.5.4) ad-
mits a unique solution ρg. Moreover ρg is absolutely continuous with respect to the Lebesgue
measure and its density (still denoted ρg) satisfies for a.e. x ∈ Rd, the bound

ρg(x) ≤ ‖ν0‖L∞λ−d det(D2g(x) + 2Λ id) (5.5.5)

where λ and Λ are the positive constants appearing in (5.5.1).

Proof. The coercivity of c0, c1 and g ≥ 0 give the existence of a minimizer as in Proposi-
tion 5.2.3, whereas uniqueness is guaranteed by twistedness of the costs and the absolute
continuity of ν0, see Remark 5.2.4. Also Proposition 5.2.3 ensures there is some ball B
which contains a neighbourhood of spt(ρg). Then, Theorem 3.3 [93] (incorporating g in one
of the costs considered there), guarantees that the minimizer ρg is absolutely continuous.
The optimality condition derived from the dual formulation of (5.5.4), (see (5.3.1)) gives
the existence of potentials ϕ0 and ϕ1 such that

ϕ0 + ϕ1 + g = 0 on B, (5.5.6)

and

Wc0(ν0, ρg) =

ˆ
Rd
ϕc00 dν0 +

ˆ
Rd
ϕ0 dρg, Wc1(ρg, ν1) =

ˆ
Rd
ϕc11 dν1 +

ˆ
Rd
ϕ1 dρg,

so that defining the ci-concave potentials

ϕ̃0(x) := inf
x0∈spt(ν0)

{c0(x0, x)− ϕc00 (x0)},

ϕ̃1(x) := inf
x1∈spt(ν1)

{c1(x, x1)− ϕc11 (x)},
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one should have
ϕi ≤ ϕ̃i on B and ϕi = ϕ̃i on spt(ρg). (5.5.7)

Now observe that thanks to (5.5.1), ϕ̃0 and ϕ̃1 are semi-concave and more precisely

D2ϕ̃i ≤ Λ id, i = 0, 1. (5.5.8)

In particular ϕ̃0 and ϕ̃1 are everywhere superdifferentiable, but on spt(ρg), thanks to (5.5.6)
and (5.5.7), ϕ̃0 + ϕ̃1 + g is minimal and since g is differentiable this implies that ϕ̃0 + ϕ̃1

is also subdifferentiable on spt(ρg). This readily implies that ϕ̃0 and ϕ̃1 are differentiable
on spt(ρg) and that

∇ϕ̃0 +∇ϕ̃1 +∇g = 0 on spt(ρg).

By Alexandrov’s Theorem (see Theorem 6.9 [53]) , ϕ̃0 and ϕ̃1 are also twice differentiable
ρg-a.e. and minimality of ϕ̃0 + ϕ̃1 + g on spt(ρg) also gives

D2ϕ̃0 +D2ϕ̃1 +D2g ≥ 0 ρg-a.e.. (5.5.9)

The optimal transport S0 for the cost c0 between ρg and ν0 (see Theorem 2.1.16) is then
given by

S0(x) = x−∇F ∗0 (∇ϕ̃0(x)), x ∈ spt(ρg),

where F ∗0 is the Legendre transform of F0. The absolute continuity of ρg enables us to
use Theorem 2.1.25 and the existence of a set of full measure for ρg for which one has the
Jacobian equation

ρg = ν0 ◦ S0 det(id−D2F ∗0 (∇ϕ̃0)D2ϕ̃0), (5.5.10)

where D2ϕ̃0(x) is to be understood in the sense of Alexandrov and id−D2F ∗0 (∇ϕ̃0)D2ϕ̃0),
which is diagonalizable with real and non-negative eigenvalues, can be rewritten as

id−D2F ∗0 (∇ϕ̃0)D2ϕ̃0 = D2F ∗0 (∇ϕ̃0)(D2F0(x− S0(x))−D2ϕ̃0(x)),

together with (5.5.10), since D2F ∗0 ≤ λ−1 id and D2F0(x−S0(x))−D2ϕ̃0(x) is semidefinite
positive, this gives for ρg a.e. x

ρg(x) ≤ ‖ν0‖L∞λ−d det(D2F0(x− S0(x))−D2ϕ̃0(x)),

by (5.5.9) and (5.5.8), we then have

−D2ϕ̃0(x) ≤ D2g(x) +D2ϕ̃1(x) ≤ D2g(x) + Λ id,

but since D2F0 ≤ Λ id, the bound (5.5.5) follows.

5.5.2 Proof of the bound by Γ-convergence

Recall that we have assumed that K is a convex compact subset with non-empty interior.
For ε > 0, setting Kε := K + 2εB (where B is the unit Euclidean ball of Rd); consider the
mollifiers ηε = ε−dη( ·ε) with η a smooth probability density supported on B, consider the
smooth and convex function

gε := ηε ? ε
−1d2

Kε ,

where dKε is the distance to Kε. Define T as in (5.5.4) and for every ρ ∈ P(Rd):

Jε(ρ) := T (ρ) +

ˆ
Rd
gε dρ, J(ρ) :=

{
T (ρ) if ρ ∈ P(K)

+∞ otherwise
,

where by abuse of notation we write ρ ∈ P(K) if ρ ∈ P(Rd) with spt ρ ⊂ K. We have.
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CONSTRAINT

Proposition 5.5.4. Suppose that K is a convex compact subset with non-empty interior.
Then Jε Γ-converges to J as ε→ 0+ for the narrow topology.

Proof. The Γ-limsup inequality follows directly by considering the constant recovery se-
quence. Indeed let ρ ∈ P(Rd). If ρ /∈ P(K), then clearly

lim sup
ε→0+

Jε(ρ) ≤ +∞ = J(ρ).

If ρ ∈ P(K), then spt ρ ∩ spt gε = ∅, so that

lim sup
ε→0+

Jε(ρ) = Wc0(ν0, ρ) +Wc1(ν1, ρ) = J(ρ).

For the Γ-liminf inequality let ρ ∈ P(K) and (ρn)n∈N ∈ RN be a narrowly converging
sequence and (εn)n ∈ RN

+ a sequence s.t. εn →
n→∞

0. If ρ ∈ P(K), then

lim inf
n→∞

Jεn(ρn) ≥ lim inf
n→∞

(Wc0(ν0, ρn) +Wc1(ν1, ρn))

≥Wc0(ν0, ρ) +Wc1(ν1, ρ) = J(ρ),

where we have used the lower semicontinuity of the Wasserstein functional w.r.t. the
narrow topology.

Assume now ρ /∈ P(K). For R > 0 define

gRε := ηε ? (R ∧ ε−1d2
Kε),

so that ‖gRε ‖L∞(Rd) ≤ R. Since gε ≥ gRε we have

lim inf
n→∞

Jεn(ρn) ≥ lim inf
n→∞

(
Wc0(ν0, ρn) +Wc1(ν1, ρn) +

ˆ
Rd
gRεn dρn

)
≥Wc0(ν0, ρ) +Wc1(ν1, ρ) + lim inf

n→∞

ˆ
Rd
gRεn dρn.

Now since ρ /∈ P(K) there is Ω ⊂ Rd open such that infx∈Ω dK(x) ≥ δ > 0 and
ρ(Ω) = m > 0. Hence

lim inf
n→∞

ˆ
Rd
gRεn dρn ≥ lim inf

n→∞

ˆ
Ω
gRεn dρn

≥ lim inf
n→∞

ˆ
Ω
R dρn = Rm,

where in the last inequality we have used that for n large enough ε−1
n d2

Kεn
≥ R.We conclude

by arbitrariness of R.

Hence the tight sequence of minimizers of J 1
n
for n ∈ N∗, (ρn)n∈N∗ with ρn := ρg 1

n

converges narrowly to ρ, the minimizer of J i.e. the solution of (WI) with A = P(K).
Since D2g 1

n
= 0 on int(K), we deduce from (5.5.5) that for every open Ω such that

Ω b int(K)
‖ρn‖L∞(Ω) ≤ ‖ν0‖L∞2dλ−dΛd

from which one deduces (5.5.3) by letting n→∞.
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5.6 Numerical simulations

For the numerical simulation of examples in the case of interpolation between measures
(WI) and the parking problem (5.1.1) we replace the optimal transportation costs by their
entropically regularized versions. This will enable us to apply some variants of the cele-
brated Sinkhorn’s algorithm, popularized in the context of optimal transport and matching
by [42] and [58]. For an introduction to this rapidly developing subject and convergence
results, we refer to [96] and [89].

5.6.1 Description of the Sinkhorn-like algorithm

The general idea of the Sinkhorn algorithm applied to the entropic optimal transport
problem has already been discussed in Section 2.4. Now, we are going to apply this idea
to the minimization problems (WI) and (5.1.1), and more generally the minimization of
several Wasserstein functionals, i.e. the multi-matching problem (2.2.1).

A Sinkhorn-like algorithm for the entropically regularized version of (2.2.1) in the dis-
crete setting has been proposed in Section 3.2 [9]. The basic idea is to use Bregman
alternate projections on affine subspaces, introduced by Bregman [16] and generalized by
Dykstra’s algorithm [49] to convex sets. A very general framework in the continuous setting
is studied in [36]. In Section 1.1.3 [36] the authors comment that the Bregman projections,
respectively Dykstra’s algorithm, correspond actually to an alternate dual ascend method,
as we have already seen for the Sinkhorn algorithm for the basic entropic OT problem in
Remark 2.4.6.

Note that for the Wasserstein multi-matching problems (2.2.1) as well as for the Wasser-
stein interpolation (WI) and and the parking location problem (5.1.1) (both with location
constraint) there exist multi-marginal formulations, namely (2.2.3), (5.2.2) and (5.1.3).
One could hence also apply entropic regularization to these multi-marginal formulations
as proposed and studied in [9, 81, 28]. However, this would require to compute the multi-
marginal cost-function, which in our case is an minimization in itself and usually does
not have a simple closed form expression. This is why we entropically regularize each OT
functional individually for our purposes.

For sake of completeness we compute the dual formulations of the entropically regu-
larized variational problems we are interested in and deduce the (generalized) Sinkhorn
iterates, the proofs are postponed to Section 5.5.2.

The Wasserstein interpolation problem

The entropic regularization of the interpolation problem (WI) becomes for two suitably
chosen reference measures R0, R1

inf
{
H(γ0|R0) +H(γ1|R1) : ρ ∈ A, γ0 ∈ Π(ν0, ρ), γ1 ∈ Π(ρ, ν1)

}
.

Naturally, the cases (i) with no additional constraint and (ii) with location constraint K
are treated by choosing the reference measures to enforce the support of ρ being included
in K. Namely we choose

R0 = e−c0/εν0 ⊗ 1K , R1 = e−c1/ε1K ⊗ ν1,

where for case (i) we choose K large enough (yet still compact) as before. The resulting
Sinkhorn iterations are given in Proposition 1 and 2 [9] in the discrete case. The case (iii)
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of a density constraint φ requires performing a suitable projection of the estimated inter-
polation, as specified in Proposition 4.1 in [95] in the case of φ ≡ κ.

Since there is no additional technical effort, we consider the entropic regularization of
the more general multi-matching problem (2.2.1), possibly with additional constraints. We
are given νi ∈ P(Rd) and cost functions ci ∈ C(Rd × Rd) for i = 1, . . . , N. For simplicity,
as we are developing the following theory for numerical simulations, we assume that all
the νi have compact support. Note also that we switch the order of arguments, in order
to have the unknown pivot measure in the second component.

The basic entropically regularized multi-matching problem reads as follows

inf
ρ∈P(Rd)

{
N∑
i=1

H(γi|Ri) : γi ∈ Π(ρ, νi)

}
(EMM)

where we choose Ri = exp(−ci(xi, x))Qi with Qi = Rνi ⊗µ for Rνi ∈ P(Rd), νi � Rνi and
µ ∈ P(Rd) is a suitable reference measure with compact support.

In what follows, we develop duality results for the regularized multi-matching problem
with additional constraints and deduce the alternate ascent algorithm.

For the duality results, we work in the space of bounded real valued Radon measures
M(RM ), which is the topological dual of C0(RM ), where M ∈ N∗ (typically equal to d or
2d, we also use the R2d ' Rd × Rd for readability). We postpone the proof strategies to
Section 5.6.3.

Proposition 5.6.1. Let νi ∈ P(Rd) with compact support for i = 1, . . . , N . Suppose
further that Ri ∈ M(Rd × Rd) is of the form Ri = e−ci(x,y)/εRνi ⊗ µ with Ri ∼ νi ⊗ µ,
log
(

dνi
dRνi

)
∈ L1(νi), c ∈ L1(Rνi ⊗µ) for a fixed compactly supported measure µ ∈M(Rd).

Then, the dual of (EMM) is given by

sup
(ϕi,ψi)∈C0(Rd)2N

{
N∑
i=1

ˆ
Rd
ϕi(x) dνi(x)−

N∑
i=1

ˆ
R2d

exp (ϕi(x) + ψi(y)) dRi(x, y) :
N∑
i=1

ψi = 0

}
(EMM*)

Thanks to this duality result we can now state Sinkhorn’s algorithm in this case.

Algorithm 2 (Sinkhorn’s algorithm, adapted to multi-matching problem). Given ψ0 = 0.
Iterate for l ≥ 0 for each i = 1, . . . , N

ϕl+1
i (xi) = log

dνi
dRνi

(xi)− log

(ˆ
K

exp

(
−ci(xi, x)

ε
+ ψli(x)

)
dµ(x)

)
,

ψl+1
i (x) = log

dρl

dµ
(x)− log

(ˆ
Rd

exp

(
−ci(xi, x)

ε
+ ϕl+1

i (xi)

)
dRνi(xi)

)
,

where ρl is the current approximate interpolation which is given by the geometric mean
formula (see Proposition 2 of [9])

ρl(x) =
N∏
j=1

(ˆ
Rd

exp

(
−cj(xj , x)

ε
+ ϕl+1

j (xj) + ψlj(x)

)
dνj(xj)

) 1
N

.

We now treat the case of an additional density constraint.
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Proposition 5.6.2. Let νi ∈ P(Rd) with compact support for i = 1, . . . , N and φ ∈ L1(Rd)
compactly supported with

´
Rd φ dx ≥ 1. Suppose further for a fixed compactly supported

measure µ ∈M(Rd) that sptϕ ⊂ sptµ, Ri ∈M(Rd×Rd) with Ri ∼ νi⊗µ, log
(

dνi
dRνi

)
∈ L1(νi),

c ∈ L1(Rνi ⊗ µ).
Consider the problem with additional density constraint

inf
ρ∈P(Rd),

ρ≤φLd

{
N∑
i=1

H(γi|Ri) : γi ∈ Π(νi, ρ)

}
(EMD)

Then, its dual is given by

sup
(ϕi,ψi)Ni=1∈C(X)2N

{
−

N∑
i=1

ˆ
R2d

exp (ϕi(x) + ψi(y)) dRi(x, y)

+

N∑
i=1

ˆ
Rd
ϕi(x) dνi(x) +

ˆ
Rd
φ

N∑
i=1

ψi dx :

N∑
i=1

ψi ≤ 0

} (EMD*)

for a compact set X.

This gives the algorithm for the additional density constraint.

Algorithm 3 (Sinkhorn’s algorithm, adapted to density constraint). Given ψ0 = 0.
Iterate for l ≥ 0 for each i = 1, . . . , N

ϕl+1
i (xi) = log

dνi
dRνi

(xi)− log

(ˆ
K

exp

(
−ci(xi, x)

ε
+ ψli(x)

)
dµ(x)

)
,

ψl+1
i (x) = log

d min
{
ρl, φ

}
dµ

(x)− log

(ˆ
Rd

exp

(
−ci(xi, x)

ε
+ ϕl+1

i (xi)

)
dRνi(xi)

)
,

where ρl is the current approximate interpolation which is given by the geometric mean
formula (see Proposition 2 of [9])

ρl(x) =

N∏
j=1

(ˆ
Rd

exp

(
−cj(xj , x)

ε
+ ϕl+1

j (xj) + ψlj(x)

)
dνj(xj)

) 1
N

.

The parking location problem

Regularizing the parking problem (5.1.1) in a similar way leads to

inf
(γ,γ̃0,γ̃1)∈D

{H(γ|R) +H(γ̃0|R0) +H(γ̃1|R1)} , (5.6.5)

where

D =
{

(γ, γ̃0, γ̃1) ∈M+(Rd × Rd) : π0#(γ + γ̃0) = ν0, π1#γ + π0#γ̃1 = ν1, π1#γ̃1 = π1#γ̃0

}
.

Note that here we have switched the order of arguments in γ̃1 compared to the formulation
(5.1.1) in order to simplify notation in the following.
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As before, a location constraint on a given set K can be encoded in the choice of the
reference measures

R = e−c1/εν0 ⊗ ν1, R0 = e−c0/εν0 ⊗ 1K , R1 = e−c1/εν1 ⊗ 1K .

For the location constraint the primal-dual relation is given in the following proposition.

Proposition 5.6.3. Let νi ∈ P(Rd) with compact support for i = 0, 1. Suppose fur-
ther that Ri ∈ M(Rd × Rd) is of the form Ri = e−ci(x,y)/εRνi ⊗ µ with Ri ∼ νi ⊗ µ,
log
(

dνi
dRνi

)
∈ L1(νi), c ∈ L1(Rνi ⊗µ) for a fixed compactly supported measure µ ∈M(Rd).

Then, the dual of (5.6.5) is given by

sup
(ϕi,ψi)1

i=0∈C(X)4

{
1∑
i=0

ˆ
Rd
ϕi dνi −

ˆ
Rd×Rd

exp(ϕ0(x0) + ϕ1(x1)) dR(x0, x1)

−
1∑
i=0

ˆ
Rd×Rd

exp(ϕi(xi) + ψi(x)) dR(xi, x) : ψ0 + ψ1 = 0

}
,

for a compact set X ⊂ Rd.

We also state the duality for the case of density constraint, the proof being analogous
to the ones executed in Section 5.6.3.

inf
(γ,γ̃0,γ̃1)∈Dφ

{H(γ|R) +H(γ̃0|R0) +H(γ̃1|R1)} , (5.6.6)

where
Dφ :=

{
(γ, γ̃0, γ̃1) ∈ D : π1#γ̃0 = π1#γ̃1 ≤ φLd

}
.

Proposition 5.6.4. Let νi ∈ P(Rd) with compact support for i = 0, 1 and φ ∈ L1(Rd)
compactly supported and

´
Rd φ dx ≥ 1. Suppose further for a fixed compactly supported

measure µ ∈ M(Rd) that sptφ ⊂ sptµ. Assume further that Ri ∈ M(Rd × Rd) is of the
form Ri = e−ci(x,y)/εRνi⊗µ with Ri ∼ νi⊗µ, log

(
dνi

dRνi

)
∈ L1(νi), c ∈ L1(Rνi⊗µ). Then,

the dual of (5.6.6) is given by

sup
(ϕi,ψi)1

i=0∈C(X)4

{
1∑
i=0

ˆ
Rd
ϕi dνi +

ˆ
Rd

(ψ0 + ψ1)φ dx −
ˆ
Rd×Rd

exp(ϕ0(x0) + ϕ1(x1)) dR(x0, x1)

−
1∑
i=0

ˆ
Rd×Rd

exp(ϕi(xi) + ψi(x)) dR(xi, x) : ψ0 + ψ1 ≤ 0

}
,

for a compact set X ⊂ Rd.

The Sinkhorn iterations (density constraint included) in the dual variables then become.

Algorithm 4 (Sinkhorn’s algorithm, adapted to parking density problem). Given ψ0 = 0.
Iterate for l ≥ 0 for i = 0, 1

ϕl+1
i (xi) = log

dνi
dRνi

(xi)− log

(ˆ
Rd

exp
(
−c1

ε
+ ϕli+1

)
dRνi+1 +

ˆ
Rd

exp
(
−ci
ε

+ ψli

)
dµ

)
,

ψl+1
i (x) = log

d min
{
ρl, φ

}
dµ

(x)− log

(ˆ
Rd

exp
(
−ci
ε

+ ϕl+1
i (xi)

)
dRνi(xi)

)
,
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where the i+1 is to be understood modulo 2 and ρl is the current approximate interpolation
which is given by the geometric mean formula (see Proposition 2 of [9]):

ρl(x) =
1∏
j=0

(ˆ
Rd

exp

(
−cj(xj , x)

ε
+ ϕl+1

j (xj) + ψlj(x)

)
dνj(xj)

) 1
2

.

5.6.2 Numerical results: comparison of the optimal interpolation and
the optimal parking

We now present some numerical results based on the iterative schemes described in the
previous paragraph. In all our examples (presented in Figures 5.2 to 5.5), we compare the
solutions of the interpolation and parking problems with a constant density constraint on
the unit square K = [0, 1]2. We always take as distribution of services µ1 = ν1 = δ1/2,1/2,
the Dirac measure at the center of the square and as distribution of residents, we take a
symmetric sum of four Dirac measures

µ0 = ν0 =
1

4

(
δ(0.5,0.1) + (δ(0.5,0.9) + δ(0.1,0.5) + (δ(0.9,0.5)

)
,

and we denote the optimal pivot measure in the figures by µ. We consider power-like costs

c0(x, y) = |x− y|p and c1(x, y) = 1.5 c0(x, y),

for several values of p corrresponding to concave, linear or convex costs and various constant
threshold values for the density constraints φ. In this setting, we know (Corollary 5.3.5
for p > 1 and Proposition 5.4.9 for p ≤ 1) that the optimal interpolation and the optimal
parking are of bang-bang type. Even with the entropic regularization (which has the effect
of blurring the true solution) this is clearly what we observe in these figures with a small
regularization ε = 5.10−4. Since the optimal parking may have total mass less than 1 (it
can even be 0, see Figure 5.2), we have indicated its total mass on each figure, of course if
the total mass of the parking is 1 it coincides with the interpolation, a case which is more
likely to occur when the threshold level is high. Finally, one can see the influence of the
exponent p on the shape of the support of the optimal measure.

5.6.3 Proofs of duality

Proof of Proposition 5.6.1. Even though a proof using the Fenchel-Rockafellar Duality
Theorem is possible here, we give a different proof based on infimal convolution inspired
by the arguments in [1] to prove Proposition 2.2.

For i = 1, . . . , N define Gi : C0(Rd)→ R by

Gi(ψi) := inf
ϕi∈C0(Rd)

{ˆ
R2d

exp(ϕi(x) + ψi(y)) dRi(x, y)−
ˆ
Rd
ϕi(x) dνi(x)

}
.

Note that for every 1 ≤ i ≤ N , Gi is a convex function because it is the (unconstrained)
infimum of a jointly convex function in (ϕi, ψi).
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Figure 5.2 – concave cost p = 0.25

By Proposition 2.4.5 we have for ρ ∈M(Rd)

G∗i (ρ) = sup
(ψi,ϕi)∈C0(Rd)2

{ˆ
Rd
ψi(y) dρ(y) +

ˆ
Rd
ϕi(x) dνi(x)−

ˆ
R2d

exp(ϕi(x) + ψi(y)) dRi(x, y)

}

=

{
infγ∈Π(νi,ρ)H(γ|Ri) if ρ ∈ P(Rd),
+∞ otherwise.

Indeed, if ρ /∈ M+(Rd), then there is f ∈ C0(Rd) with f ≤ 0 and
´
Rd f dρ > 0. Taking

ψni = nf , ϕi ∈ C0(Rd) fix and letting n → ∞ yields G∗i (ρ) = +∞. Now suppose that
ρ ∈ M+(Rd) but ρ(Rd) 6= 1. W.l.o.g. suppose ρ(Rd) > 1. Then for every n ∈ N∗ there is
kn > 0 such that

Ri(R2d \ [−n, n]2d) ≤ kn and |ρ− νi|(Rd \ [−n, n]d) ≤ kn, (5.6.9)

and limn→∞ kn = 0. Here |ρ−νi| = (ρ−νi)+ +(ρ−νi)− where ρ−νi = (ρ−νi)+−(ρ−νi)−
is the Hahn-Jordan decomposition. Now take ψni ∈ C0(Rd) with ‖ψni ‖L∞(Rd) = log(1/

√
kn)

and

ψni (y) =

{
log
(

1√
kn

)
if |y| ≤ n

0 if |y| ≥ n+ 1.
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Taking ϕni = −ψni we have

ˆ
Rd
ψni (y) dρ(y) +

ˆ
Rd
ϕni (x) dνi(x)−

ˆ
R2d

exp(ϕni (x) + ψni (y)) dRi(x, y)

≥ log

(
1√
kn

)
(ρ− νi)([−n, n]d)− log

(
1√
kn

)
|ρ− νi|(Rd \ [−n, n]d)

− kn −
1√
kn
Ri(R2d \ [−n, n]2d)

−→ +∞ as n→∞,

thanks to (5.6.9).
This means that

(EMM) = inf
ρ∈P(Rd)

N∑
i=1

G∗i (ρ) = −

(
N∑
i=1

G∗i

)∗
(0).

To rewrite the last expression, define the infimal convolution for ψ ∈ C0(Rd)

G(ψ) =

(
N
�
i=1
Gi

)
(ψ) := inf

(ψi)Ni=1∈C0(Rd)N

{
N∑
i=1

Gi(ψi) :

N∑
i=1

ψi = ψ

}
.

Then by iteratively applying Lemma 3.7 [27] we have G∗ =
∑N

i=1G
∗
i , so that

(EMM) = −(G∗)∗(0)

≥ −G(0) = (EMM*).

This establishes weak duality.
For strong duality, it is sufficient by the Fenchel-Moreau Theorem (see e.g. Proposition

4.1 [50]) to prove that G is a proper (i.e. not identically ±∞), lower semicontinuous and
convex function in a neighborhood of 0. Since G is convex it is sufficient to prove that
0 ∈ int(domG) thanks to Corollary 2.3 [50]. For this note that

⋂N
i=1 domG∗i 6= ∅ which

implies G > −∞ (see (3.24) in [27])). For the upper bound take ψi ∈ C0(Rd), then

Gi(ψi) ≤ exp
(
‖ψi‖L∞(Rd)

)
Ri(R2d),

so that for ψ ∈ C0(Rd)

G(ψ) ≤ exp
(
‖ψ‖L∞(Rd)/N

) N∑
i=1

Ri(R2d).

Proof of Proposition 5.6.2. Since all of the given quantities are compactly supported, choose
a compact set X ⊂ Rd which contains all of the supports.
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Define F : C(X)2N → R ∪ {−∞,+∞} and G : C(X × X)N → R ∪ {−∞,+∞} as
follows

F (ϕ1, ψ1, . . . , ϕN , ψN ) := −
N∑
i=1

ˆ
Rd
ϕi(x) dνi(x)−

ˆ
Rd
φ(x)

N∑
i=1

ψi(x) dx

+ χ(−∞,0]

(
N∑
i=1

ψi

)
,

G(u1, . . . , uN ) :=
N∑
i=1

ˆ
R2d

exp(ui(x)) dRi(x),

where χA for some set A denotes the indicator function

χA(x) =

{
0 if x ∈ A,
+∞ otherwise.

Define furthermore the linear operator Λ : C(X)2N → C(X ×X)N by

Λ(ϕ1, ψ1, . . . , ϕN , ψN ) = (ϕi + ψi)
N
i=1.

Since F,G are proper, l.s.c. and convex functions, F (0) = 0 < +∞, G(Λ(0)) ∈ (−∞,+∞)
and G is continuous on Λ(0), we can apply the Fenchel-Rockafellar duality theorem

(EMD*) = − inf
(ϕi,ψi)Ni=1∈C(X)2N

{F (ϕi, ψi) +G(Λ(ϕi, ψi))}

= − sup
(γi)Ni=1∈M(X×X)N

{−F ∗(Λ∗(γi))−G∗(−γi)}
(5.6.10)

We have that

G∗(γ1, . . . , γN ) = sup
(ui)Ni=1∈C(X×X)N

{
N∑
i=1

ˆ
R2d

ui dγi −
N∑
i=1

ˆ
R2d

exp(ui(x)) dRi(x)

}
(5.6.11)

is a supremum of (strictly) concave functions (of the ui). So that every maximal ui if it
exists satisfies the first order optimality condition given by, for all functions fi ∈ C(X×X)

ˆ
R2d

fi dγi −
ˆ
R2d

fi(x) exp(ui(x)) dRi(x) = 0.

This implies that if all γi � Ri then ui = log( dγi
dRi

) attains the maximum in (5.6.11). If
there is one γi 6� Ri, then the supremum is equal to +∞.

This can be seen as follows. If γi 6� Ri, there is a (Borel) measurable set A ⊂ X such
that γi(A) > 0 andRi(A) = 0. Now, the short version is to note that the supremum (5.6.11)
can be taken over all bounded measurable functions since for each bounded measurable
function ui and ε > 0 one can find a continuous function ūi such that (γi+Ri)(ui 6= ūi) < ε
by (the strong version of) Lusin’s theorem, see e.g. Theorem 1.15 [53]. Then choose the
sequence defined by uni = n1A to conclude.

More precisely, by Lusin’s theorem there is a sequence of sets (En)n∈N and a sequence
of continuous functions (uni )n∈N such that
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• uni = n1A on En,

• 0 ≤ uni ≤ n on R2d,

• (γi +Ri)(u
n
i 6= n1A) ≤ (γi +Ri)(R2d \ En) ≤ e−2n.

With these properties we obtain
ˆ
R2d

uni dγi −
ˆ
R2d

exp(uni (x)) dRi(x)

≥
ˆ
En∩A

uni dγi −
ˆ
E

exp(uni (x)) dRi(x)−
ˆ
R2d\E

exp(uni (x)) dRi(x)

≥nγi(En ∩A)−Ri(En \A)− e−n

which converges to +∞ as n→∞ because γi(En ∩A)→ γi(A) > 0.
In total we get

G∗(γ1, . . . , γN ) =

{
+∞ if there is i s.t. γi 6� Ri,∑N

i=1H(γi|Ri) otherwise.

Now

F ∗(µ1, ρ1, . . . , µN , ρN )

= sup
(ϕi,ψi)Ni=1∈C(X)2N

{
N∑
i=1

ˆ
ϕi dµi +

ˆ
ψi dρi − F (ϕ1, ψ1, . . . , ϕN , ψN )

}

= sup
(ϕi,ψi)

N
i=1∈C(X)2N∑N
i=1 ψi≤0

{
N∑
i=1

ˆ
ϕi d(µi + νi) +

ˆ
ψi dρi +

ˆ
Rd
φ(x)

N∑
i=1

ψi(x) dx

}

=


+∞ if there is i s.t. νi 6= −µi,

sup
ψi∈C(X)N∑N
i=1 ψi≤0

{∑N
i=1

´
ψi dρi +

´
R2d φ(x)

∑N
i=1 ψi(x) dx

}
otherwise.

Indeed, suppose that there is an 1 ≤ i ≤ N such that νi 6= −µi. Then there is A ⊂ X
Borel measurable such that (νi + µi)(A) 6= 0. W.l.o.g. (νi + µi)(A) > 0. Then choosing
ϕni = n, ϕj = 0 for j 6= i and ψj = 0 for 1 ≤ j ≤ N and letting n→∞ yields the result.

Now assume that there are i 6= j such that ρi 6= ρj . This means that there is A ⊂ X
Borel measurable such that ρi(A) > ρj(A). By a similar argument with Lusin’s theorem
we can hence choose ψni = n, ψnj = −n and ψk = 0 for the remaining k and let n→∞ to
conclude that F ∗(µ1, ρ1, . . . , µN , ρN ) = +∞. This yields

F ∗(µ1, ρ1, . . . , µN , ρN )

=


+∞ if there is i s.t. νi 6= −µi, or if there are i 6= j s.t. ρi 6= ρj

sup
ψi∈C(X)N∑N
i=1 ψi≤0

{∑N
i=1

´
ψi dρi +

´
R2d φ(x)

∑N
i=1 ψi(x) dx

}
otherwise.

=

{
0 if for all i s.t. νi = −µi, for all i, j ρi = ρj and −ρ1 ≤ φ
+∞ otherwise.
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where the last equality follows by a similar argument as before.
To compute Λ∗ :M(X×X)N →M(X)2N let (ϕi, ψi)

N
i=1 ∈ C(X)2N , (γi)

N
i=1 ∈M(X ×X)N .

We have
〈Λ((ϕi, ψi)

N
i=1), (γi)

N
i=1〉

=
N∑
i=1

ˆ
Rd×Rd

ϕi(x) + ψi(y) dγi(x, y)

=
N∑
i=1

ˆ
Rd
ϕi(x) dγi(x, y) +

ˆ
Rd
ψi(y) dγi(x, y).

This concludes Λ∗(γ1, . . . , γN ) = (π1#γi, π2#γi)
N
i=1, so that (5.6.10) becomes

(EMD*) = inf
γi

{
N∑
i=1

H(−γi|Ri) : γi ∈ Π(−νi, ρ),−ρ ≤ φ

}
= (EMD).

Proof idea of Proposition 5.6.3. This follows again by the Fenchel-Rockafellar theorem with

F (ϕ0, ψ0, ϕ1, ψ1) = −
1∑
i=0

ˆ
Rd
ϕi dνi + χ{0}(ψ0 + ψ1)

G(u, v0, v1) =

ˆ
R2d

exp(u) dR+

1∑
i=0

ˆ
R2d

exp(vi) dRi

The details of the proof are similar to the proof of Proposition 5.6.2.
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Figure 5.3 – concave cost p = 0.75
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Figure 5.4 – Linear cost p = 1
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Figure 5.5 – Convex cost p = 2
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Outlook

In this thesis, we studied interpolation problems involving several optimal transport func-
tionals, which can also be seen as multi-matching problems or even means and medians in
metric spaces. In addition to the results shown in this thesis, there are a lot of possible
research directions for the problems discussed, which we elaborate in the following.

The Wasserstein barycenter problem has been a very active area of research ever since
its introduction in 2011. Nevertheless, it is still an open problem to deduce higher regularity
properties. The results on its entropically regularized version studied in Chapter 3 is a
step in this direction. Moreover, having established a central limit theorem for empirical
regularized Wasserstein barycenters, it could be interesting to study further probabilistic
properties such as a large deviations principle. The regularity of the map Φν defined
in Theorem 3.5.2, which maps for a fixed target measure a source measure toward the
corresponding Brenier potential, should enable to prove such a result. Finally, let us remark
that further research can be done in finding efficient numerical methods to compute an
entropically regularized Wasserstein barycenter.

The Wasserstein median studied in Chapter 4 turns out to be a promising statistical
estimator thanks to its robustness to outliers. Still, in general uniqueness of this estimator
cannot be guaranteed, so it would be interesting to study certain selections of Wasserstein
medians and their properties, as it is done in this thesis in the case of the real line. Contrary
to the case of the Wasserstein barycenter, the Wasserstein median does not allow for a linear
L∞-bound when the given measures have L∞-densities, see Example 4.4.9. Maybe it is
at least possible to prove that a non-linear L∞-bound holds true in certain cases or that
absolute continuity of the given measures carries over. By imposing additional geometric
conditions and using its multimarginal formulation, one can also hope to retrieve further
properties. Of course, it is also interesting to extend the results from discrete to more
general probability measures on the Wasserstein space (P1(X),W1). Finally, the reason
the majority of this chapter has been kept in the framework of general metric spaces, is
that we believe that the Wasserstein median could be of particular interest when studied
on discrete structures such as graphs.

The constrained Wasserstein interpolation problem studied in Chapter 5 has issued
several possible further research directions. First, note that in the case of location con-
straint, we believe the absolute continuity (w.r.t. the (d − 1)-Hausdorff measure) of the
pivot measure on the boundary as announced in e.g. Proposition 5.4.4 should hold true
without one of the measures assumed to be discrete. It seems that this is an artifact of
our proof strategy. Next, the simulations in Figure 5.2, 5.3, 5.4 and 5.5 give rise to the
question of its relation to shape optimization problems. For example, in the case p = 2
the pivot measure appears to be the union of balls, which is indeed an exact solution if
the threshold function is constant and both given measures are given by Dirac measures.
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From this it is reasonable to conjecture that also other solutions take the form of unions
of optimal shapes.
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Notation

N, N∗ set of non-negative integers, set of strictly positive integers
Rd d-dimensional space of real numbers with d ∈ N∗
|·| Euclidean norm
x · y Euclidean scalar product between x, y ∈ Rd
|·|∞ l∞ norm on space of real numbers
Ld Lebesgue measure on Rd
M(X) space of finite Radon measures on X
M+(X) set of non-negative finite Radon measures on X
P(X) space of Borel probability measures on X
Pp(X) space of Borel probability measures on X with finite pth moment, p ≥ 1
Pac(X) space of absolutely continuous Borel probability measures on X ⊂ Rd
Mdiv(X,Rd) space of vector-valued finite Radon measures whose weak divergence

is a scalar Radon measure
C(X) space of continuous functions on X
Ck(X) space of k times continuously differentiable functions on X, k ∈ N∗
Ck,α(X) space of k times continuously differentiable functions on X whose

kth derivative is Hölder continuous with exponent α ∈ (0, 1], k ∈ N∗
LipM (X) set of Lipschitz continuous functions with maximal Lipschitz constant M > 0
Lp(X) space of measurable functions for which pth power of absolute value is integrable
Lp(X, ρ), Lp(ρ) Lp space w.r.t. measure ρ, p ≥ 1
W k,p(X) Sobolev of order k ∈ N∗ and integrability p ≥ 1
Hk(X) Sobolev space W 2,p(X)
F� subset of functions with zero mean of the integrable function space F
‖.‖F norm of Banach space F
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MOTS CLÉS

Transport optimal, équation de Monge-Ampère, moyenne de Fréchet, médiane Fréchet, régularisation en-
tropique

RÉSUMÉ

Cette thèse étudie des problèmes variationnels comprenant plusieurs fonctionnelles de transport optimal. Un exemple
populaire est le barycentre Wasserstein qui peut être vu en tant que moyenne dans l’espace de Wasserstein d’ordre 2.
Depuis son introduction en 2011 de Agueh et Carlier, il est devenu très populaire en statistiques, machine learning et
traitement des images. Bien que la consistance du barycentre Wasserstein soit désormais bien connue, une étude plus
precise des taux de convergences nécessite encore une analyse supplémentaire. Nous faisons un pas dans cette direc-
tion en montrant une théorème centrale limite pour une version régularisée du barycentre Wasserstein qui a été introduite
par Bigot, Cazelles et Papadakis en 2019. Même si le barycentre Wasserstein fournit déjà un bon estimateur statistique,
ce n’est pas toujours un estimateur robuste car son breakdown point est bas. Cela nous a motivé d’étudier la médiane
Wasserstein, la solution du problème de minimisation des sommes des distances de Wasserstein d’ordre 1. En effet,
le breakdown point de la médiane Wasserstein s’avère être plus grand. Cependant, des propriétés de régularité de cet
estimateur sont plus subtiles. Néanmoins, nous fournissons une caractérisation détaillée et des estimations d’intégrabilité
dans le cas où les mesures sont supportées sur la droite réelle. Dans le cadre général des espaces métriques, des for-
mulations duales et multimarginales équivalentes sont présentées. Nous donnons aussi une caractérisation d’EDP des
médianes Wasserstein sur des espaces euclidiens. Motivé par un contexte différent, pourtant donnant une classe sim-
ilaire des problèmes d’optimisation, est le problème d’emplacement de stationnement optimal. Ceci consiste de trouver
une mesure optimale sous des contraintes supplémentaires, comme l’emplacement ou une contrainte de capacité, entre
deux mesures, prenant en compte des différents types de coûts de transport. Dans ce cadre, nous démontrons des pro-
priétés de régularité pour plusieurs classes du coût de transport. Finalement, nous fournissons un algorithme numérique
afin de simuler des distributions de stationnement optimal en introduisant un terme de régularisation entropique et en
déduisant une variante du célèbre algorithme du Sinkhorn.

ABSTRACT

This thesis studies variational problems involving several optimal transport functionals. A popular example is the Wasser-
stein barycenter, which can be seen as a mean in the Wasserstein space of order 2. Since its introduction in 2011
by Agueh and Carlier, it has gained a lot of popularity in fields like statistics, machine learning and image processing.
While consistency of the Wasserstein barycenter is by now well known, a deeper study of rates of convergence still re-
quires further research. We give a step in this direction by proving a central limit theorem for a regularized version of the
Wasserstein barycenter, which has been introduced by Bigot, Cazelles and Papadakis in 2019. While the Wasserstein
barycenter already provides a good statistical estimator, it is not always a very robust estimator, as it has a low breakdown
point. This motivates the study of the Wasserstein median, the solution to minimizing a sum of Wasserstein distances of
order 1. Indeed, the breakdown point of the Wasserstein median turns out to be higher. However, regularity properties
of this estimator are more subtle. Nevertheless, we provide a detailed characterization and integrability estimates in the
case where the measures are supported on the real line. In the general setting of metric spaces, equivalent dual and
multimarginal formulations are given. We also introduce a PDE characterization for Wasserstein medians on Euclidean
spaces. Motivated by a different context, yet yielding a similar class of optimization problems, is the optimal parking
location problem. It consists of finding an optimal measure under additional constraints, such as a location or a capacity
constraint, between two distributions, taking into account different kind of transportation costs. In this case, we prove
regularity properties for several classes of transport costs. Finally, we provide a numerical algorithm to simulate optimal
parking distributions by introducing an entropic regularization term and deducing a variant of the celebrated Sinkhorn
algorithm.

KEYWORDS

Optimal transport, Monge-Ampère equation, Fréchet mean, Fréchet median, Entropic regularization
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