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Introduction

Contexte

Les β-ensembles, ou gas de Coulomb en physique statistique, sont des mesures de probabilité sur un ensemble de points, appelés également valeurs propres du β-ensemble. Ils ont fait l'objet de nombreuses études dans les dernières années (voir par exemple [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF], [START_REF] Dumitriu | Global spectrum fluctuations for the βhermite and β-laguerre ensembles via matrix models[END_REF], [START_REF] Erdős | Gap universality of generalized Wigner and βensembles[END_REF], [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF], [START_REF] Bourgade | Bulk universality of general βensembles with non-convex potential[END_REF], [START_REF] Bourgade | Universality of general βensembles[END_REF], [START_REF] Shcherbina | Orthogonal and symplectic matrix models: Universality and other properties[END_REF], [START_REF] Sosoe | Local semicircle law in the bulk for gaussian βensemble[END_REF], [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF], [START_REF] Wong | Local semicircle law at the spectral edge for gaussian β-ensembles[END_REF], ainsi que leurs références). Le comportement des points d'un β-ensemble est régi par deux forces contraires : les points sont confinés dans un même potentiel V , mais se repoussent deux à deux. Le paramètre positif β influe à la fois sur le potentiel et la répulsion entre les points, il s'interprète en physique statistique comme une température inverse.

Nous nous intéressons au comportement global et local de trois β-ensembles : l'ensemble β-Hermite, l'ensemble β-Laguerre et l'ensemble β-Jacobi. La thèse se divise en deux parties. Dans la première partie, nous synthétisons les résultats de convergence globale et locale existants sur les β-ensembles pour β > 0. Nous introduisons les objets utiles à la description de ces comportements limites et présentons des heuristiques de convergence. Dans la seconde partie, nous étudions le comportement des valeurs propres des ensembles β-Hermite et β-Laguerre dans la limite haute température, c'est à dire lorsque le paramètre β tend vers 0. Cette partie contient la présentation des résultats existants pour l'ensemble β-Hermite, puis notre contribution au sujet avec l'étude de l'ensemble β-Laguerre.

Statistiques globales et locales

L'étude des β-ensembles à paramètre β fixé se divise en trois chapitres. Le Chapitre 1 introduit l'ensemble β-Hermite, l'ensemble β-Laguerre et l'ensemble β-Jacobi ainsi que des représentations matricielles tridiagonales de ces ensembles. Il établit le lien entre ces β-ensembles et des modèles classiques de matrices aléatoires dans les cas orthogonal (β = 1), unitaire (β = 2) et symplectique (β = 4). Dans le cadre général β > 0, il énonce la convergence des mesures empiriques associées aux β-ensembles vers des mesures d'équilibre, lorsque la dimension tend vers l'infini.

Le Chapitre 2 se concentre sur le comportement local des valeurs propres de ces β-ensembles lorsque la dimension tend vers l'infini. Ce comportement est décrit par des classes d'universalité, qui correspondent à la convergence vers des processus ponctuels ne dépendant que de la position des valeurs propres dans le spectre de la mesure empirique (aux bords du spectre, ou loin des bords), et non du potentiel V définissant le β-ensemble, ce pour une large classe de potentiels.

La définition des processus ponctuels limites introduits au Chapitre 2 requiert l'introduction d'opérateurs stochastiques. Le Chapitre 3 définit l'opérateur stochastique d'Airy, l'opérateur stochastique de Bessel et l'opérateur Sine β . Il explique dans quelle mesure ces opérateurs peuvent être interprétés comme la limite en grande dimension des modèles matriciels tridiagonaux introduits au Chapitre 1.

Limite haute température

L'étude locale des β-ensembles à haute température se divise également en trois chapitres. Le Chapitre 4 est consacré à l'introduction de la transformée de Riccati, qui permet de caractériser les valeurs propres d'opérateurs stochastiques à l'aide des temps d'explosions de familles de diffusions.

Le Chapitre 5 suit l'analyse de Dumaz et Labbé [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF], qui exploite cette caractérisation pour montrer la convergence des valeurs propres minimales de l'opérateur stochastique d'Airy vers un processus ponctuel de Poisson.

Enfin, le Chapitre 6 représente notre contribution de recherche et conduit l'analyse des valeurs propres minimales de l'opérateur stochastique de Bessel dans la limite haute température. Il prouve leur convergence vers un processus ponctuel limite décrit à l'aide d'équations différentielles stochastiques couplées.

Global and local statistics of β-ensembles

Chapter 1

Global statistics

In this first chapter, we introduce the concept of β-ensembles and study the global statistics of the β-Hermite, β-Laguerre and β-Jacobi ensembles as their size tends to infinity. Section 1.1 defines these three β-ensembles and provides useful random matrix representations. Section 1.2 shows their connection to classical random matrix models for specific values of the parameter β. Section 1.3 presents global convergence of the three β-ensembles to equilibrium measures. Finally, Section 1.4 summarizes the main results of this chapter.

Introduction to β-ensembles

For λ = (λ 1 , . . . , λ n ) ∈ R n , introduce the Vandermonde determinant

∆(λ) = i<j (λ i -λ j ).
Let W n = {λ ∈ R n , λ 1 . . . λ n }, and V : Dom(V ) ⊂ R → R. Definition 1.1.1 (β-ensemble). For β > 0, we call β-ensemble of size n and potential V the probability measure on the set W n :

Q β,V n dλ 1 , . . . , dλ n = 1 Z β,V n ∆(λ) β n i=1 exp - nβ 2 V (λ i ) 1 λ i ∈Dom(V ) dλ i , (1.1.1)
where Z β,V n is a normalization constant, the potential V can depend on n, β and typical choices for Dom(V ) are R, (0, +∞[ and (0, 1).

We can analyze the β-ensemble (1.1.1) as the encounter of two competing forces. The potential V tends to gather the points of the β-ensembles in its minima, while the Vandermonde determinant acts as a repulsive force between any two points. The value of the parameter β tunes the respective importance of those two forces and can also change the shape of the potential V .

From a statistical physics viewpoint, β-ensembles are measures of a one dimensional Coulomb log-gas at the inverse temperature β, also called Dyson parameter. They have attracted significant interest in recent years (see e.g. [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF], [START_REF] Dumitriu | Global spectrum fluctuations for the βhermite and β-laguerre ensembles via matrix models[END_REF], [START_REF] Erdős | Gap universality of generalized Wigner and βensembles[END_REF], [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF], [START_REF] Bourgade | Bulk universality of general βensembles with non-convex potential[END_REF], [START_REF] Bourgade | Universality of general βensembles[END_REF], [START_REF] Shcherbina | Orthogonal and symplectic matrix models: Universality and other properties[END_REF], [START_REF] Sosoe | Local semicircle law in the bulk for gaussian βensemble[END_REF], [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF], [START_REF] Wong | Local semicircle law at the spectral edge for gaussian β-ensembles[END_REF], and references therein).

INTRODUCTION TO β-ENSEMBLES

The β-Hermite ensemble

The choice of potential V H (λ) = λ 2 /2, Dom(V H ) = R defines the β-Hermite ensemble on R:

H β n dλ 1 , . . . , dλ n = 1 Z β,V H n ∆(λ) β n i=1 exp - nβ 4 λ 2 i dλ i . (1.1.2)
Adapting earlier work from Trotter [START_REF] Trotter | Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö[END_REF], Dimitriu and Edelman [24, Theorem 2.12] found a measure on a set of tridiagonal matrices which induces the measure H β n on the eigenvalues. Recall that a random variable is said to be χ r -distributed if it has the following density f r (x) = 1 2 r/2-1 Γ( r 2 ) x r-1 e -x 2 /2 1 x>0 . Theorem 1.1.1 (Matrix representation for the β-Hermite ensemble). Let (G i ) 1 i n be a family of independent standard Gaussian random variables. For β > 0, consider the symmetric tridiagonal random matrix, with independent coefficients in the upper triangular part:

H β n = 1 √ nβ       √ 2G 1 χ (n-1)β χ (n-1)β √ 2G 2 χ (n-2)β . . . . . . . . . χ β √ 2G n      
.

(1.1.

3)

The real eigenvalues λ 1 . . . λ n of H β n have the joint density H β n .

The β-Laguerre ensemble

For m n, the choice of potential

V L (λ) = λ - 1 n (m -n + 1) - 2 nβ ln λ, Dom(V L ) = (0, +∞[
defines the β-Laguerre ensemble on (0, +∞[:

L β n,m dλ 1 , . . . , dλ n = 1 Z β,V L n ∆(λ) β n i=1 λ β 2 (m-n+1)-1 i exp -n β 2 λ i 1 (0,∞[ (λ i )dλ i .
(1.1.4) Adapting earlier work from Silverstein [START_REF] Silverstein | The smallest eigenvalue of a large dimensional Wishart matrix[END_REF], Dimitriu and Edelman [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF]Theorem 3.4] found a measure on a set of bidiagonal matrices which induces the measure L β n,m on the eigenvalues. Theorem 1.1.2 (Matrix representation for the β-Laguerre ensemble). For β > 0, consider the bidiagonal random matrix L β n,m with independent coefficients:

L β n,m = 1 √ mβ       χ mβ χ (n-1)β χ (m-1)β . . . . . . χ β χ (m-n+1)β      
.

(1.1.5)

The real eigenvalues λ 1 . . . λ n of L β n,m (L β n,m ) T have the joint density L β n,m .

The β-Jacobi ensemble

For m 1 , m 2 n, the choice of potential

V J (λ) = 1 n (m 1 -n+1)- 2 nβ ln λ+ 1 n (m 2 -n+1)- 2 nβ ln(1-λ), Dom(V J ) = (0, 1)
defines the β-Jacobi ensemble on (0, 1):

J β n,m 1 ,m 2 dλ 1 , . . . , dλ n = 1 Z β,V J n ∆(λ) β n i=1 λ β 2 (m 1 -n+1)-1 i (1-λ i ) β 2 (m 2 -n+1
)-1 1 (0,1) (λ i )dλ i .

(1.1.6) Kilip and Nenciu [START_REF] Killip | Matrix models for circular ensembles[END_REF]Theorem 2] found a measure on a set of tridiagonal matrices which induces the measure Q β,V J n on the eigenvalues. Let p -1 = p 0 = 0 and p 1 , . . . , p 2n-1 be independent random variables distributed as

p k ∼ Beta ( 2n-k 4 β, 2n-k-2 4 β + δ 1 + δ 2 + 2) if k even Beta ( 2n-k-1 4 β + δ 1 + 1, 2n-k-1 4 β + δ 2 + 1) if k odd where δ 1 = β 2 (m 1 -n + 1) -1 and δ 2 = β 2 (m 2 -n + 1) -1. Then, define α k , β k : α k = p 2k-2 (1 -p 2k-3 ) + p 2k-1 (1 -p 2k-2 ) β k = p 2k-1 (1 -p 2k-2 ) + p 2k (1 -p 2k-1 )
.

Theorem 1.1.3 (Matrix representation for the β-Jacobi ensemble [START_REF] Duy | On spectral measures of random Jacobi matrices[END_REF]).

For β > 0, consider the symmetric tridiagonal random matrix:

J β n,m 1 ,m 2 =       α 1 β 1 β 1 α 2 β 2 . . . . . . . . . β n-1 α n      
.

(1.1.7)

The real eigenvalues λ 1 . . . λ n of J β n,m 1 ,m 2 have the joint density J β n,m 1 ,m 2 . Remark 1.1.1 (About terminology). The names Hermite, Laguerre and Jacobi refer to the orthogonal polynomials associated to the spectral measures (see Chapter 2, Section 2.2). Depending on the context, the term 'β-ensemble' can also refer to the associated tridiagonal or bidiagonal matrix ensemble. In this spirit, we will refer to the points of a β-ensemble as eigenvalues. Remark 1.1.2 (Structured matrices). One can easily create a matrix representation of Q β,V n by conjugating D = diag(λ), where λ has the law Q β,V n , with an orthogonal (resp. unitary, symplectic) matrix. However, the resulting matrices will be full and their coefficients not independent. The advantage of Theorems 1.1.1, 1.1.2 and 1.1.3 is to provide sparse matrices, with independent (but not i.i.d) coefficients in the Hermite and Laguerre cases, called structured matrices. We seek to understand the behavior of these three β-ensembles when n tends to infinity. We will restrict our study to the following regimes of interest: n/m -→ n,m→+∞ γ ∈ (0, 1] for the β-Laguerre ensemble, (1.1.8)

m 1 /n -→ n,m 1 →+∞ γ 1 ∈ [1, ∞[, m 2 /n -→ n,m 2 →+∞ γ 2 ∈ [1,
∞[ for the β-Jacobi ensemble.

(1.1.9)

CLASSICAL RANDOM MATRIX MODELS

Classical random matrix models

There are many historical sources to random matrix theory. In the 1920's, the statistician Wishart studied the empirical covariance matrix of multivariate Gaussian samples [START_REF] Wishart | The generalised product moment distribution in samples from a normal multivariate population[END_REF], a random Hermitian matrix now called Wishart matrix. At the birth of informatics and numerical analysis in the 1940's, Goldstine and Von Neumann [START_REF] Goldstine | Planning and Coding of Problems for an Electronic Computing Instrument[END_REF] introduced random matrices to understand the behavior of algorithms in matrix numerical analysis, such as linear systems resolution, when the data are flawed by errors. In nuclear physics in the 1950's, Wigner worked to explain the distribution of energy levels in atomic nuclei [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF], [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF]. In quantum mechanics, energy levels are related to the spectra of Hermitian operators. By randomizing those operators using Gaussian variables and studying the spacing between the eigenvalues of the associated random Hermitian matrices, Wigner was able to fairly account for the empirical observations. The pioneering work of Wigner was then developed in particular by Dyson [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF] and Mehta [START_REF] Mehta | Random matrices and the statistical theory of energy levels[END_REF]. Between 1960 and 1980 came the works of Marchenko, Pastur, Girko, Bai and Silverstein. Since then, random matrix theory has been a very active field that interacts with a wide range of mathematical branches. Thorough references on the subject include [START_REF] Deift | Orthogonal polynomials and random matrices: A Riemann-Hilbert approach[END_REF], [START_REF] Forrester | Log-gases, random matrices and the Fisher-Hartwig conjecture[END_REF], [START_REF] Akemann | The Oxford handbook of random matrix theory[END_REF], [START_REF] Anderson | An introduction to random matrices[END_REF] and [START_REF] Mehta | Random Matrices[END_REF]. This section, inspired by Edelman and Rao's review [START_REF] Edelman | Random matrix theory[END_REF], shows how the β-Hermite, β-Laguerre and β-Jacobi ensembles connect to classical random matrix ensembles: the Gaussian ensembles, the Wishart (empirical covariance) ensembles and the MANOVA (Multivariate Analysis of Variance) ensembles.

Gaussian matrices

For β = 1 (resp. β = 2, β = 4), let Gauss β (n, m) be the set of n × m matrices populated with independent and identically distributed standard real normal variables (resp. complex normal variables, quaternionic normal variables). Here, the parameter β ∈ {1, 2, 4} encodes the dimension over R of the space on which the coefficients live. Recall the Frobenius norm of a matrix M ∈ M n,m (K), where K = R, C or the field of quaternions H:

M F = Tr(M M * ) 1/2 = 1 i n 1 j m |m i,j | 2 1/2 .
We write dM = 1 i n 1 j m dm i,j the matrix differential element, with

dm i,j = d (m i,j ) d (m i,j ) if K = C dm 1 i,j dm 2 i,j dm 3 i,j dm 4 i,j if K = H An element M = (m i,j ) 1 i n 1 j m of Gauss β (n, m) has a joint element density 1 (2π) βmn/2 exp - 1 2 M 2 F dM.
A key property of Gauss 1 (n, m) (resp. Gauss 2 (n, m), Gauss 4 (n, m)) is its orthogonal (resp. unitary, symplectic) invariance, which is inherited from the invariance of the Frobenius norm. Going forward, we call orthogonal the case β = 1, unitary the case β = 2 and symplectic the case β = 4.

Classical random matrix ensembles

From Gauss β (n, m) we can construct matrix ensembles that preserve its invariance properties. 

G β (n) = M + M * √ 2 , M ∈ Gauss β (n, n) .
For m n, The Wishart orthogonal/unitary/symplectic ensembles of size (n, m) are the ensembles:

W β (n, m) = {M M * , M ∈ Gauss β (n, m)} .
For m 1 , m 2 n, the MANOVA orthogonal/unitary/symplectic ensembles of size (n, m 1 , m 2 ) are the ensembles:

MAN β (n, m 1 , m 2 ) = M 1 M 1 + M 2 , M 1 ∈ W β (n, m 1 ), M 2 ∈ W β (n, m 2 ) .
The matrix coefficients of the Gaussian ensembles have a simple expression. They are i.i.d N (0, 2) variables on the diagonal and i.i.d N (0, 1) variables above the diagonal.

The following result connects the β-Hermite, β-Laguerre and β-Jacobi ensembles with the Gaussian, Wishart and MANOVA ensembles. 

Theorem 1.2.1 (Eigenvalues density of G β (n), W β (n, m) and MAN β (n, m 1 , m 2 )). For β ∈ {1, 2, 4}, • H β n is the joint eigenvalues density of 1 √ nβ M , M ∈ G β (n), • L β n,m is the joint eigenvalues density of 1 mβ M , M ∈ W β (n, m), • J β n,m 1 ,m 2 is the joint eigenvalues density of M ∈ MAN β (n, m 1 , m 2 ).
P L n (dM ) = 1 Z V H n |det(M )| β 2 (m-n+1)-1 exp - nβ 2 Tr M dM,

First order global asymptotics 1.3.1 Convergence of spectral measures

Definition 1.3.1 (Empirical spectral measure). For a random matrix M of size n with eigenvalues λ 1 , . . . , λ n , we call µ(M ) its spectral measure, where δ denotes the Dirac measure:

µ(M ) = 1 n n i=1 δ λ i .
The spectral measures of the β-Hermite, β-Laguerre and β-Jacobi ensembles are

µ(H β n ), µ(L β n,m (L β n,m ) T ) and µ(J β n,m 1 ,m 2 ).
We equip the set of probability measures on R with the weak convergence with respect to continuous and bounded test functions and we denote it weak ---→. For β ∈ {1, 2, 4}, the almost sure convergences of µ(H β n ) and µ(L β n,m (L β n,m ) T ) to deterministic measures were historically established by Wigner [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] and Marchenko and Pastur [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF] respectively. Using large deviations, these convergences can be extended to any β > 0. We state this result for the Hermite case. 

I(µ) = E(µ) -E (µ eq ) ,
where µ eq is the unique probability measure which minimizes: 

E(µ) = V H (x)dµ(x) - log |x -y|dµ(x)dµ(y), V H (x) = x 2 /2.
F ∈ M 1 (R), -inf O I V lim inf n→∞ 1 n 2 log P µ n ∈ O lim sup n→∞ 1 n 2 log P µ n ∈ F -inf F I V H .
As a result, for any open neighborhood U µ eq of µ eq , lim sup

n→∞ 1 n 2 H β n µ n ∈ U µ eq c < 0.
A direct application of Borel-Cantelli's lemma then provides the almost-sure convergence of µ n to µ eq . Theorem 1.3.1 remains valid for a wide range of potentials V defined on R that grow fast enough at infinity (see [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF], [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF] and the textbooks [START_REF] Anderson | An introduction to random matrices[END_REF], [START_REF] Deift | Orthogonal polynomials and random matrices: A Riemann-Hilbert approach[END_REF]). Its proof was adapted to the β-Laguerre and β-Jacobi ensembles by ) T ) and µ(J β n,m 1 ,m 2 ) to their respective equilibrium measures. Identifying these equilibrium measures yields the following theorems (see [START_REF] Duy | On spectral measures of random Jacobi matrices[END_REF] for a review), similar to laws of large numbers.

Theorem 1.3.2 (Spectral convergence of the β-Hermite ensemble). µ(H β n ) weak ---→ n→∞ µ sc almost surely,
where µ sc is the semi-circle distribution:

µ sc (dx) = 1 2π 4 -x 2 1 [-2,2] (x)dx. (1.3.1)
Theorem 1.3.3 (Spectral convergence of the β-Laguerre ensemble).

In the regime (1.1.8),

µ(L β n,m (L β n,m ) T ) weak ---→ n→∞ µ γ MP almost surely,
where µ γ MP is the Marchenko-Pastur distribution:

µ γ MP (dx) = 1 2πγx (γ + -x ) (x -γ -)1 [γ -,γ + ] (x)dx, γ ± = (1 ± √ γ) 2 . (1.3.2)
Theorem 1.3.4 (Spectral convergence of the β-Jacobi ensemble).

In the regime (1.1.9),

µ(J β n,m 1 ,m 2 ) weak ---→ n→∞ µ γ 1 ,γ 2 KM almost surely,
where µ γ 1 ,γ 2 KM is the generalized Kesten-McKay distribution; which arises as the asymptotic distribution of large random d-regular graphs (see [START_REF] Kesten | Symmetric random walks on groups[END_REF] and [START_REF] Mckay | The expected eigenvalue distribution of a large regular graph[END_REF]):

µ γ 1 ,γ 2 KM (dx) = γ 1 + γ 2 2π (x -u -)(u + -x) x(1 -x) 1 ]u -,u + [ (x)dx, u ± = γ 1 (γ 1 + γ 2 -1) ± √ γ 2 γ 1 + γ 2 2 .
(1.3.3) 

The objective method

The convergence of the spectral measures of β-ensembles can also be derived from the convergence of their matrix representations, viewing random matrices as adjacency matrices of randomly rooted graphs. This is an instance of the objective method pushed forward by Aldous and Steele in [START_REF] Aldous | The objective method: Probabilistic combinatorial optimization and local weak convergence[END_REF]. In this subsection we introduce the notion of randomly rooted graphs, define the Benjamini-Schramm convergence and use it to prove weaker versions of Theorem 1.3.2 and Theroem 1.3.3.

Benjamini-Schramm convergence

The Benjamini-Schramm convergence is defined in [START_REF] Abért | Benjamini-schramm convergence and pointwise convergence of the spectral measure[END_REF] by Abért, Thom and Virág. For an integer D > 0, let G D denote the set of (isomorphism classes of) connected, undirected graphs where every vertex has at most D neighbors. Let RG D denote the set of graphs G in G D together with a distinguished vertex, called the root of G. A random rooted graph of degree D is a Borel probability distribution on RG D . We say that a sequence of random rooted graphs G n defined on RG D converges to G if it converges in the weak topology. That is, if for every continous function

f : RG D → R, we have lim n→∞ RG D f (x) dλ n (x) = RG D f (x)dλ(x),
where λ n is the distribution of G n and λ is the distribution of G. The weak convergence of measures translates to convergence of the measures on the neighborhoods of the root in the following way. For a random rooted graph G, a finite rooted graph α and k > 0, let

P(G, α, k) = P(B(o, k) ∼ = α)
be the probability that the k-ball around the root of G is isomorphic to α. Then G n converges to G if and only if, for all finite rooted graphs α and k > 0, we have lim

n→∞ P (G n , α, k) = P(G, α, k).
Any finite graph G ∈ G D gives rise to a random rooted graph by assigning the root of G uniformly randomly. We denote the distribution of this random rooted graph by λ G .

Definition 1.3.2 (Benjamini-Schramm convergence [1, Definition 1]). A sequence of finite graphs G n ∈ G D is Benjamini-Schramm convergent if λ Gn
weakly converges, or, equivalently, if P (G n , α) converges for every sample α.

The local limit of G n is defined as the weak limit of λ Gn .

This convergence notion was historically introduced by Benjamini, Schramm [START_REF] Benjamini | Recurrence of distributional limits of finite planar graphs[END_REF] and Aldous and Lyons [START_REF] Aldous | Processes on unimodular random networks[END_REF].

Tridiagonal matrices and Schrödinger operators

Let us interpret the tridiagonal representations of β-ensembles as adjacency matrices of random graphs. We follow the work of Bordenave, Caputo, Chafaï and Salez in [START_REF] Bordenave | Local weak convergence of random graphs[END_REF] and introduce the symmetric matrix

T (n) =           a (n) 1 b (n) 1 0 • • • 0 b (n) 1 a (n) 2 b (n) 2 • • • 0 . . . . . . . . . . . . . . . 0 • • • b (n) n-2 a (n) n-1 b (n) n-1 0 • • • • • • b (n) n-1 a (n) n           . (1.3.4)
This is the adjacency matrix of a weighted finite chain graph with totally ordered vertices V n = {1, 2, . . . , n}. It is also the matrix representation of a linear operator on

A (n) on L 2 (V n ) defined for all f ∈ L 2 (V n ) and all i ∈ V n by A (n) f (i) = j∈Vn T (n) ij f (j) = b (n) i-1 f (i -1) + a (n) i f (i) + b (n) i f (i + 1), (1.3.5)
with convention b

(n) 0 = b (n) n = f (0) = f (n + 1) = 0.
We wish to study the n → ∞ limit of these graphs, in the sense of the Benjamini-Schramm weak local convergence of Definition 1.3.2. We assume the coefficients a, b to be random but asymptotically deterministic, which encompasses the β-Hermite and β-Laguerre cases.

Theorem 1.3.5 (Asymptotically deterministic case [START_REF] Bordenave | Local weak convergence of random graphs[END_REF]). Let G (n) be the weighted graph with n 1 vertices and adjacency operator A (n) given by (1.3.5), where a

(n) i 1 i n and b (n) i 1 i n are real random vectors such that a (n) i -a i n d -→ n,i→∞ n-i→∞ 0 and b (n) i -b i n d -→ n,i→∞ n-i→∞ 0, 1 i n,
with a, b : [0, 1] → R deterministic and continuous functions which do not depend on n and i. Then, for the Benjamini-Schramm convergence,

lim n→∞ G (n) = G,
where G is the random graph with vertex set Z, rooted at an arbitrary vertex, with adjacency operator acting on f ∈ L 2 (Z, R) as

(Af )(i) = a(U )f (i) + b(U ) f (i -1) + f (i + 1) , i ∈ Z, U ∼ Uniform [0, 1] .
This limiting operator A is a random real Schrödinger operator acting on L 2 (Z, R) as

A(f ) = b(U )(∆f ) + Φ(U )f,
with diffusion coefficient and multiplicative potential b(U ) and

Φ(U ) = a(U ) + 2b(U ),
where ∆ is the discrete Laplacian acting on L 2 (Z, R) as

(∆f )(i) = f (i -1) + f (i + 1) -2f (i), i ∈ Z.
Proof. The argument relies on two probabilistic lemmas proved in the Appendices.

Lemma 1.3.1. [START_REF] Bordenave | Local weak convergence of random graphs[END_REF] For all n 1 let i n be uniformly distributed on {1, . . . , n}.

Then i n P -→ n→∞ +∞, n + 1 -i n P -→ n→∞ +∞, i n n -→ n→∞ Uniform [0, 1] ,
and we can couple the (i n ) n 1 by defining them on the same probability space in such a way that for a random variable U ∼ Uniform [0, 1] on this space, i n n a.s.

-→ n→∞ U and in particular i n n

P -→ n→∞ U. Lemma 1.3.2. [13] Let X (n) n 1
be a sequence of random vectors of R d and let X = (X 1 , . . . , X d ) be a random vector of R d . Then

X (n) P -→ n→∞ X if and only if X (n) i P -→ n→∞ X i for all i ∈ {1, . . . , d}.
Let i n be the label of a vertex chosen as being a root for G (n) , uniformly distributed on {1, . . . , n} and independent of G (n) . Using Lemma 1.3.1, we can choose the probability space big enough to define a

(n) i 1≤i≤n and b (n) i 1≤i≤n for all n 1, as well as (i n ) n 1 independent of G (n) n 1
and such that

i n n P -→ n→∞ U
for a random variable U ∼ Uniform [0, 1] also defined on this space. We have:

ε n,i = a (n) i -a i n d -→ n,i→∞ n-i→∞ 0 and ε n,i = b (n) i -b i n d -→ n,i→∞ n-i→∞ 0.
Lemma 1.3.1 and the properties of i n , ε n,i , a, and b yield:

A (n) in,in = a i n n + ε n,in P -→ n→∞ a(U ) + 0 = a(U )
and, for j n = i n + 1 as well as for j n = i n -1,

A (n) in,jn = b i n ∧ j n n + ε n,in∧jn P -→ n→∞ b(U ) + 0 = b(U ).
Moreover, for all vertex j such that |i n -j| > 1, we have A (n) in,j = 0. Using Lemma 1.3.2, for any depth d, the random rooted graph G (n) , i n restricted to the ball B (i n , d) centered at i n and of radius d converges in probability as n → ∞ to the same restriction for G rooted at an arbitrary vertex.

Note that there is a single U in this proof, which provides the randomness of G. This randomness is due only to the nature of the convergence, since the coefficients a (n) and b (n) are asymptotically deterministic.

Mean empirical distribution

For a random matrix M with (random) empirical spectral distribution µ(M ), we define its mean empirical spectral distribution

Eµ(M ) (B) = E µ(M )(B) = E {1 k n : λ k ∈ B} n .
Theorem 1.3.6 (Spectral solvability of random Schrödinger operator [START_REF] Bordenave | Local weak convergence of random graphs[END_REF]).

Let us consider the random Schrödinger operator

A = b(U )∆ + a(U ) + 2b(U ) of Theorem 1.3.5, where a, b : [0, 1] → R and U ∼ Uniform [0, 1]
. Then its mean spectral distribution is given by the uniform mixture of deformed arcsine laws

Eµ(A) =   1 0 1 x∈[a(u)-2b(u), a(u)+2b(u)] π 4b(u) 2 -x -a(u) 2 du   dx.
Moreover, for special choices of a and b given in the following table, this distribution is the Wigner semicircle law or the Marchenko-Pastur law.

a(u), u ∈ [0, 1] b(u), u ∈ [0, 1] Eµ A 0 1 Arcsine law 0 √ u Wigner semicircle law √ 4-x 2 2π 1 x∈[-2,2] dx 1 + γ -2γu γ(1 -γu)(1 -u) Marchenko-Pastur law √ (x-γ -)(γ + -x) 2πγx 1 x∈[γ -,γ + ] dx
Table 1: Examples of mean empirical spectral distributions [START_REF] Bordenave | Local weak convergence of random graphs[END_REF] Theorem 1.3.6 can be proved by noticing that the operator A is the sum of a Laplacian operator, exactly solvable using Fourier analysis, and a diagonal operator multiple of the identity. Specializing a and b and technical calculations gets us to the Arcsine, Wigner and Marchenko-Pastur laws. The continuity of the spectral measure for the weak local convergence of self-adjoint graphs (see [START_REF] Abért | Benjamini-schramm convergence and pointwise convergence of the spectral measure[END_REF]) yields the following convergence of mean spectral distributions.

Theorem 1.3.7 (Convergence of the mean empirical spectral distribution [START_REF] Bordenave | Local weak convergence of random graphs[END_REF]).

Let A (n) and A be as in Theorem 1.3.5 and Eµ A be as in Theorem 1.3.6. Then

Eµ(A (n) ) weak ---→ n→∞ Eµ(A).
Moreover, for special choices of a and b, Eµ A is a Wigner semicircle law or a Marchenko-Pastur law (see Table 1).

Spectral convergence of the β-Hermite and β-Laguerre ensembles

A consequence of Theorem 1.3.7 is the convergence of the mean empirical spectral distributions of the β-Hermite and β-Laguerre ensembles.

Theorem 1.3.8 (Convergence of the β-Hermite ensemble [START_REF] Bordenave | Local weak convergence of random graphs[END_REF]). For β > 0,

Eµ(H β n ) weak ---→ n→∞ µ sc ,
where µ sc is the semi-circle distribution from (1.3.1).

Proof. Let G (n) be the random weighted graph with n vertices and adjacency matrix H β n . Let us show that the assumptions of Theorem 1.3.5 are satisfied. Keeping the notations of (1.3.4) for the coefficients of H β n , we have:

a (n) i d = N (0, 2) √ βn d -----→ n,i→∞ n-i→∞ 0, b (n) i d = χ (n-i)β √ βn d = χ (n-i)β (n -i)β 1 - i n . Now, if Z ∼ χ α then Z √ α P ---→ α→∞ 1, indeed Z 2 ∼ χ 2 α gives E Z 2 = α and Var Z 2 = 2α, hence Z 2 α L 2 -→ α→∞ 1, which gives χ (n-i)β (n -i)β d -----→ n,i→∞ n-i→∞
1, and thus b

(n) i - 1 - i n d -----→ n,i→∞ n-i→∞ 0.
Therefore, by Theorem 1.3.5 with a = 0 and b(u

) = (1 -u), u ∈ [0, 1], since U ∼ Uniform [0, 1] implies 1 -U ∼ Uniform [0, 1] ,
we get that G (n) converges as n → ∞ for the weak local convergence to the real Schrödinger operator acting on f ∈ L 2 (Z, R) as

(Af )(i) = √ U ∆(f ) + 2 √ U f (i), i ∈ Z.
Finally, the convergence of Eµ H β n to µ sc follows from Theorem 1.3.7.

Similar calculations can be performed for the β-Laguerre ensemble via its bidiagonal representation L β n,m from (1.1.5) and yield the following weak convergence.

Theorem 1.3.9 (Convergence of the β-Laguerre ensemble [START_REF] Bordenave | Local weak convergence of random graphs[END_REF]). For β > 0 and γ ∈ (0, 1],

Eµ L β n,m (L β n,m ) T weak -----→ n,m→∞ n/m→γ µ γ MP ,
where µ γ MP is the Marchenko-Pastur distribution from (1.3.2).

Summary of results

β-ensemble β-Hermite β-Laguerre β-Jacobi

Eigenvalues density

1 Z β,V H n ∆(λ) β n i=1 exp -nβ 4 λ 2 i 1 Z β,V L n ∆(λ) β n i=1 λ δ i exp -n β 2 λ i 1 R * + (λ i ), δ = β 2 (m -n + 1) -1 1 Z β,V J n ∆(λ) β n i=1 λ δ 1 i (1 -λ i ) δ 2 1 (0,1) (λ i ), δ 1 = β 2 (m 1 -n + 1) -1, δ 2 = β 2 (m 2 -n + 1) -1 Matrix model 1 √ nβ             N (0, 2) χ (n-1)β χ (n-1)β N (0, 2) χ (n-2)β . . . . . . . . . χ β N (0, 2)             1 √ mβ             χ mβ χ (n-1)β χ (m-1)β . . . . . . χ β χ (m-n+1)β                         α 1 β 1 β 1 α 2 β 2 . . . . . . . . . β n-1 α n             α i , β i defined recursively using Beta variables Equilibrium measure µ sc (dx) = 1 2π 4 -x 2 1 [-2,2] (x)dx µ γ MP (dx) = (γ + -x ) (x -γ -) 2πγx 
1 [γ-,γ+] (x)dx γ ± = (1 ± √ γ) 2 µ γ 1 ,γ 2 KM (dx) = γ 1 + γ 2 2π (x -u -)(u + -x) x(1 -x) 1 ]u -,u + [ (x)dx u ± = γ 1 (γ 1 + γ 2 -1) ± √ γ 2 γ 1 + γ 2 2
Table 2: Main properties of the β-Hermite, β-Laguerre and β-Jacobi ensembles.

Chapter 2

Local statistics

When n tends to infinity, the β-Hermite, β-Laguerre and β-Jacobi ensembles exhibit locally a universal behavior: key limit statistics of the eigenvalues do not depend on the ensemble type but only on the position of the eigenvalues in the spectrum: in the bulk, at a soft edge or at a hard edge, thus forming three universality classes. Section 2.1 properly defines these zones of the spectrum. Section 2.2 studies the unitary case β = 2, for which universality results are obtained using the determinantal representation of the correlation functions. Finally, Section 2.3 presents universality results for general β > 0.

Zones of the spectrum

Consider an equilibrium measure µ eq ∈ {µ sc , µ γ MP , µ γ 1 ,γ 2 KM } and its support Supp(µ eq ) = [µ - eq , µ + eq ], where:

µ - eq = inf{x ∈ R, µ eq (x) > 0}, µ + eq = sup{x ∈ R, µ eq (x) > 0}. We have Supp(µ sc ) = [-2, 2], Supp(µ γ MP ) = [γ -, γ + ], Supp(µ γ 1 ,γ 2 KM ) = [u -, u + ]. Definition 2.1.1 (Bulk, soft edge, hard edge). We call • ]µ - eq , µ +
eq [ the bulk of µ eq ,

• {µ - eq , µ + eq } the edges of µ eq ,

• a soft edge an edge where µ eq vanishes continuously,

• a hard edge an edge where µ eq diverges. At a soft edge, for finite n, there is a non-zero probability of an eigenvalue appearing on both sides of the edge. It applies when the density hits the horizontal axis and there is still 'wiggle room'. Conversely, the hard edge applies when the density meets a constraint, such as a positivity constraint, that forbids any eigenvalue to exist behind the edge, even for finite n. Remark 2.1.1 (Spectrum zones in a general setting). Definition 2.1.1 holds for the β-Hermite, β-Laguerre and β-Jacobi ensembles. For measures supported on a finite union of intervals, a more general definition of the spectrum zones can be found in [2, Subsection 6.3.3].

The β-Hermite ensemble

The β-Hermite ensemble has two soft edges. 

The β-Jacobi ensemble

Appropriate tuning of the parameters can lead to any combination of soft-/hard upper/lower edges. The asymptotics of m 1 (resp. m 2 ) with respect to n determine the nature of the lower (resp. upper) edge. More precisely, if m 1 -n → a 1 J , with a 1 J < ∞, then the left edge is a hard edge, while if m 1 -n → ∞ then the left edge is a soft edge. The same goes for the right edge. 

Parameters regimes

Definition 2.1.2 (Soft edge and hard edge regimes). In our study of the limit local statistics near an edge, we call soft edge regime any of the regimes:

(Laguerre left edge) n/m → γ ∈ (0, 1), (Jacobi left edge) m 1 /n → γ 1 ∈ (1, ∞[, (Jacobi right edge) m 2 /n → γ 2 ∈ (1, ∞[. (2.1.1)
Conversely, we call hard edge regime any of the regimes:

(Laguerre left edge) n/m → γ = 1, (Jacobi left edge) m 1 /n → γ 1 = 1, (Jacobi right edge) m 2 /n → γ 2 = 1. (2.1.2)
Going forward, we restrict the hard edge regimes to the cases:

(Laguerre left edge) m -n → a L > -1, (Jacobi left edge) m 1 -n → a 1 J > -1, (Jacobi right edge) m 2 -n → a 2 J > -1.
(2.1.3)

Unitary case β = 2

We start by studying the limit local statistics of eigenvalues in the unitary case. When β = 2, the correlation functions admit a useful determinantal representation. For the general theory on correlation functions, we refer the reader to the probabilistic survey [START_REF] König | Orthogonal polynomial ensembles in probability theory[END_REF] and to the handbook [2, Chapter 4].

Determinantal representation

Consider a β-ensemble Q β,V n from (1.1.1) and extend it to a permutation invariant probability measure Qβ,V n .

Definition 2.2.1 (Correlation functions).

For k ∈ N, introduce the k-point correlation function:

R (k) n (x 1 , . . . , x k ) = n! (n -k)! R n-k Qβ,V n (x 1 , . . . , x n ) dx k+1 dx k+2 . . . dx n , x 1 , . . . , x k ∈ R.
For any measurable set A ⊂ R, the quantity

A k R n,k (x 1 , . . . , x k ) dx 1 . . . dx k is equal to the expected number of k-tupels (λ i 1 , . . . , λ i k ) of distinct eigenvalues such that λ i j ∈ A for all j = 1, . . . , k.
In particular, R n,1 (x)dx is the expected number of particles in dx. The main spectral statistics, such as the probability that a given number of eigenvalues lie in a given set, gap probabilities and eigenvalues spacing, can be expressed in terms of the k-point correlation functions.

In the unitary case, the orthogonal polynomial method provides a determinantal representation for the k-point correlation functions. The β-ensemble rewrites:

Q 2,V n dx 1 , . . . , dx n = 1 Z 2,V n ∆(x) 2 n i=1 exp -nV (x i ) dx i . (2.2.1)
When all the moments of the measure e -nV (x) dx are finite, we can define its family of orthogonal polynomials (π j ) j∈N :

∀ i, j ∈ N, R π i (x)π j (x)e -nV (x) dx = c i c j δ i,j .
With linear manipulation, the Vandermonde determinant can be expressed as a determinant with the monomials x j replaced by the polynomials π j (x):

∆(x) = det π j-1 (x i ) i,j=1,...,n .
We now normalize the π j to obtain an orthonormal system (φ j ) j∈N of L 2 (R) with respect to the Lebesgue measure. The functions φ j (x) = 1 c j e -nV (x)/2 π j (x) satisfy:

∀ i, j ∈ N, R φ i (x)φ j (x)dx = δ i,j .
For the unitary Hermite, Laguerre and Jacobi ensembles, the associated orthogonal polynomials are (unsurprisingly) the Hermite, Laguerre and Jacobi polynomials (see [START_REF] Szego | Orthogonal Polynomials[END_REF] for a definition). Finally, we introduce the kernel K n :

K n (x, y) = n-1 j=0 φ j (x)φ j (y), x, y ∈ R. (2.2.2)
The k-point correlation function R n,k admits the following fundamental determinantal representation.

Proposition 2.2.1 (Determinantal representation [51, Lemma 2.8]).

Fix n ∈ N and x ∈ R n , then, for any k ∈ {1, . . . , n},

R (k) n (x 1 , . . . , x k ) = det K n (x i , x j ) i,j=1,...,k .
In particular,

R (1) n (x 1 ) = K n (x 1 , x 1 ) and Qβ,V n (x) = 1 n! det K n (x i , x j ) i,j=1,...,n .
Remark 2.2.1. In the orthgonal (β = 1) and symplectic (β = 4) settings, the determinant from Proposition 2.2.1 is replaced by a Pfaffian:

R (k) n (x 1 , . . . , x k ) = Pf K n (x i , x j ) i,j=1,...,k .

Unitary universality classes

Fix a reference point x * and a constant c n > 0. We center the points around x * and scale by a factor c n , so that (x 1 , . . . , x n ) is mapped to

c n (x 1 -x * ) , . . . , c n (x n -x * ) .

These centered and scaled points have the following rescaled

k-point correlation functions 1 c k n R (k) n x * + x 1 c n , x * + x 2 c n , . . . , x * + x k c n .
Universality at x * means that, for a suitably chosen sequence (c n ) n , the rescaled k-point correlation functions have a specific limit as n → ∞. The precise limit determines the universality class. In the unitary case, this limit can be expressed

as a k × k determinant det K (x i , x j ) 1 i,j k ,
where K is the eigenvalue correlation kernel. Therefore, the universality comes down to

1 c n K n x * + x c n , x * + y c n -→ n→∞ K(x, y). (2.2.3) Definition 2.

(Airy and Bessel functions [55, Chapter 5]).

The Airy function Ai : R → R is the unique solution of the differential equation

f (x) = xf (x)
with asymptotics [START_REF] Szego | Orthogonal Polynomials[END_REF]Equation 1.81.4] for an exact form). The Bessel function J a of the first kind and of order a is the solution of the differential equation

1 2 √ πx 1/4 e -2 3 x 3/2 when x → ∞ (see
x 2 d 2 y(x) dx 2 + x dy(x) dx + (x 2 -a 2 )y(x) = 0
which is well-defined at x = 0 (see [START_REF] Szego | Orthogonal Polynomials[END_REF]Equation 1.71.1] for an exact form).

Definition 2.2.3 (Bulk unitary universality).

A unitary β-ensemble shows bulk unitary universality at a point x * if (2.2.3) occurs with the sine kernel K = K Sine :

K Sine (x, y) = sin π(x -y) π(x -y) = sin(πx) sin (πy) -sin (πx) sin(πy) π(x -y) , x, y ∈ R.
(2.2.4)

Definition 2.2.4 (Soft edge unitary universality).

A unitary β-ensemble shows soft edge unitary universality at a point x * if (2.2.3) occurs with the Airy kernel K = K Airy :

K Airy (x, y) = Ai(x) Ai (y) -Ai(y) Ai (x) x -y , x, y ∈ R. (2.2.5) 

Definition 2.2.5 (Hard edge unitary universality).

A unitary β-ensemble shows hard edge unitary universality at a point x * if (2.2.3) occurs with the Bessel kernel K = K Bessel :

K Bessel (x, y) = J a ( √ x) √ yJ a ( √ y) -J a ( √ x) √ xJ a ( √ y) 2(x -y) , x, y ∈ (0, ∞[. (2.2.6)
The properties of Ai and J a can be found in [55, Chapter 5].

Universality unitary classes were first discovered for classical β-ensembles. In particular, the Hermite, Laguerre and Jacobi unitary ensembles show bulk unitary universality in their bulks and soft/hard edge unitary universality at their edges. These results are treated for instance in [START_REF] Forrester | Log-gases, random matrices and the Fisher-Hartwig conjecture[END_REF], [START_REF] Mehta | Random Matrices[END_REF] for the Hermite and Laguerre unitary ensemble and in [START_REF] Min | Global and local scaling limits for linear eigenvalue statistics of Jacobi beta-ensembles[END_REF], [START_REF] Johnstone | Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy-Widom limits and rates of convergence[END_REF] for the Jacobi unitary ensemble.

Remark 2.2.2 (Orthognal and symplectic universality classes). The Hermite, Laguerre and Jacobi orthogonal and symplectic ensembles also show bulk, soft edge and hard edge universality classes, as Pfaffian point processes instead of determinantal point processes (see [START_REF] Deift | Universality in random matrix theory for orthogonal and symplectic ensembles[END_REF] for the bulk and [START_REF] Deift | Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices[END_REF], [START_REF] Deift | Universality for orthogonal and symplectic Laguerre-type ensembles[END_REF] for the edges).

General case β > 0

We now extend our quest for universality classes to the general case β > 0. We notate 

λ + 0 (Q β,V n ) . . . λ + k (Q β,V n ) (resp. λ - 0 (Q β,V n ) . . . λ - k (Q β,V n )) the (k + 1) st highest (resp. lowest) eigenvalues of the β-ensemble Q β,V n , for k n. Large deviation techniques show that the extremal eigenvalues λ + 0 (Q β,V n ) and λ - 0 (Q β,V n ) converge
λ + 0 (H β n ) -→ n→∞ µ + sc = 2, λ - 0 (H β n ) -→ n→∞ µ - sc = -2, λ + 0 (L β n,m ) -→ n→∞ µ γ,+ MP = γ + , λ - 0 (L β n,m ) -→ n→∞ µ γ,- MP = γ -, λ + 0 (J β n,m 1 ,m 2 ) -→ n→∞ µ γ 1 ,γ 2 ,+ KM = u + , λ - 0 (J β n,m 1 ,m 2 ) -→ n→∞ µ γ 1 ,γ 2 ,- KM = u -,
where γ + , γ -, u + and u -are from (1.3.2) and (1.3.3).

Like in the orthogonal, unitary and symplectic cases (see Section 2.2), the limit statistics of the eigenvalues for general β > 0 show three universality classes depending on the zone of the spectrum: bulk universality, soft edge universality and hard edge universality. Since the determinantal or Pfiaffan structures are lost, new objects are needed to describe the local limit of the β-ensembles. These objective limits (see Chapter 1, Subsection 1.3.2) are given by stochastic operators.

Bulk universality

The statement of bulk universality involves the Sine β point process, defined by Valkó and Virág [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF]. The same authors later constructed the stochastic Sine β operator, whose eigenvalues are distributed as this point process [START_REF] Valkó | The sine β operator[END_REF]. We reserve the introduction of the Sine β operator for Chapter 3, Section 3.1 and until then we refer to [77, Section 2] for the construction and the properties of the Sine β point process.

Definition 2.3.1 (Bulk universality).

A β-ensemble shows bulk universality when its eigenvalues, properly centered and rescaled, converge in law to the Sine β point process, with respect to vague topology for the counting measure of the point process.

Valkó and Virág proved bulk universality for the β-Hermite ensemble [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF]. It was extended to the β-Laguerre ensemble by Jacquot and Valkò [START_REF] Jacquot | Bulk scaling limit of the laguerre ensemble[END_REF]. Bulk universality for the β-Jacobi ensemble is expected but does not appear to have been proven.

Theorem 2.3.2 (Bulk universality for H

β n and L β n,m ). Set β > 0 and |z| < 2. Let c ∈ (γ -, γ + ). Then n 4 -z 2 λ(H β n ) -z d ---→ n→∞ Sine β , (γ + -c)(c -γ -) c λ(L β n,m ) -cn d ---→ n→∞ Sine β ,
where λ(H β n ) and λ(L β n,m ) denote the point processes associated to H β n and L β n,m .

Soft edge universality

The statement of soft edge universality involves the stochastic Airy operator, notated A β , properly defined in Chapter 3, Section 3.1. For each integer k 0, let Λ k (A β ) be its (k + 1) st lowest eigenvalue.

Definition 2.3.2 (Soft edge universality).

A β-ensemble shows soft edge universality when its eigenvalues, properly centered and rescaled, converge in law to the lowest eigenvalues of the stochastic Airy operator A β .

Ramírez, Rider and Virag [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF] proved soft edge universality for the β-Hermite and β-Laguerre ensembles, Holcomb and Moreno Flores [START_REF] Holcomb | Edge scaling of the β-Jacobi ensemble[END_REF] for the β-Jacobi ensemble. Krishnapur, Rider and Virág [START_REF] Krishnapur | Universality of the stochastic airy operator[END_REF] extended it to a larger class of β-ensembles for which the potential V from Definition 1.1.1 satisfies convexity assumptions. [START_REF] Holcomb | Edge scaling of the β-Jacobi ensemble[END_REF]Theorem 4].

Theorem 2.3.3 (Soft edge universality for

H β n , L β n,m and J β n,m 1 ,m 2 ). Set β > 0. In the soft edge regime (2.1.1), for any k ∈ N, σ H n µ + sc -λ + j (H β n ) 0 j k d ---→ n→∞ Λ 0 (A β ), . . . , Λ k (A β ) , σ H n λ - j (H β n ) -µ - sc 0 j k d ---→ n→∞ Λ 0 (A β ), . . . , Λ k (A β ) , σ L m,n µ γ,+ MP -λ + j (L β n,m ) 0 j k d ---→ n→∞ Λ 0 (A β ), . . . , Λ k (A β ) , σ L m,n λ - j (L β n,m ) -µ γ,- MP 0 j k d ---→ n→∞ Λ 0 (A β ), . . . , Λ k (A β ) , σ J m 1 ,m 2 ,n µ γ 1 ,γ 2 ,+ KM -λ + j (J β n,m 1 ,m 2 ) 0 j k d ---→ n→∞ Λ 0 (A β ), . . . , Λ k (A β ) , σ J m 1 ,m 2 ,n λ - j (J β n,m 1 ,m 2 ) -µ γ 1 ,γ 2 ,- KM 0 j k d ---→ n→∞ Λ 0 (A β ), . . . , Λ k (A β ) . with σ H n = n 2/3 , σ L m,n = m( √ nm) 1/3 ( √ n+ √ m) 4/3 and σ J m 1 ,m 2 ,n explicited in
The law of Λ 0 (A β ) is called the Tracy-Widom distribution T W β . Historically, Tracy and Widom found T W 2 [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] and then T W 1 , T W 4 [START_REF] Tracy | On orthogonal and symplectic matrix ensembles[END_REF] as the limiting law of the rescaled largest eigenvalue of an n by n Gaussian unitary (resp. orthogonal, symplectic) matrix.

Hard edge universality

The statement of hard edge universality involves the stochastic Bessel operator of parameter a, notated G β a , properly defined in Chapter 3, Section 3.1. For each integer k 0, let Λ k (G β a ) its (k + 1) st lowest eigenvalue.

Definition 2.3.3 (Hard edge universality).

A sequence of β-ensembles (Q β,V n ) n has hard edge universality when its eigenvalues, properly centered and rescaled, converge in law to the lowest eigenvalues of the stochastic Bessel operator G β a .

Ramírez and Rider [START_REF] Ramírez | Diffusion at the random matrix hard edge[END_REF] proved hard edge universality for the β-Laguerre ensemble, Holcomb and Moreno Flores [START_REF] Holcomb | Edge scaling of the β-Jacobi ensemble[END_REF] for the β-Jacobi ensemble. Rider and Waters [START_REF] Rider | Universality of the stochastic Bessel operator[END_REF] extended it to a large class of β-ensembles for which the potential V from Definition 1.1.1 satisfies convexity assumptions. Note that, in the hard edge regime (2.1.3), we have µ γ,-

MP = 0, µ γ 1 ,γ 2 ,- KM = 0 and µ γ 1 ,γ 2 ,+ MP = 1. Theorem 2.3.4 (Hard edge universality for L β n,m and J β n,m 1 ,m 2 ). For β > 0 and any k ∈ N, nm λ - j (L β n,m ) -µ - MP 0 j k d ---→ n→∞ Λ 0 (G β a L ), . . . , Λ k (G β a L ) , nm 1 µ γ 1 ,γ 2 ,+ KM -λ + j (J β n,m 1 ,m 2 ) 0 j k d ---→ n→∞ Λ 0 (G β a 2 J ), . . . , Λ k (G β a 2 J ) , nm 2 λ - j (J β n,m 1 ,m 2 ) -µ γ 1 ,γ 2 ,- KM 0 j k d ---→ n→∞ Λ 0 (G β a 1 J ), . . . , Λ k (G β a 1 J
) .

Summary of results

β-ensemble

Universality Limit correlation kernel (β = 2) Limit point process (β > 0) Hermite bulk K Sine Sine β Hermite soft edge K Airy lowest eigenvalues of A β Laguerre bulk K Sine Sine β Laguerre soft edge K Sine lowest eigenvalues of A β Laguerre hard left edge K Bessel lowest eigenvalues of G β a L Jacobi bulk K Sine Sine β Jacobi soft edge K Airy lowest eigenvalues of A β Jacobi hard left edge K Bessel lowest eigenvalues of G β a 1 J Jacobi hard right edge K Bessel lowest eigenvalues of G β a 2
J Table 3: Universality and limit objects for the β-ensembles.

Chapter 3

From matrices to operators

Stochastic operators emerge as objective limits for β-ensembles in the study of universality classes for local eigenvalues statistics (see Chapter 2, Section 2.3). This chapter studies the connection of the Sine β operator, the stochastic Airy operator and the stochastic Bessel operator to the β-Hermite, β-Laguerre and β-Jacobi ensembles. Section 3.1 properly defines these operators. Section 3.2 explains heuristically how they emerge in the n → ∞ limit of the β-ensembles by interpreting matrices as finite difference schemes. Sections 3.3 and 3.4 make this idea rigorous and prove respectively the hard edge universality for the β-Laguerre ensemble and a Feynman-Kac formula for the stochastic Airy operator at the soft edge. Section 3.5 presents an operator level transition between hard and soft edge.

We now work in the hard edge regime (2.1.3), where the left edge of the β-Laguerre ensemble and both edges of the β-Jacobi ensemble are hard edges. For the the β-Laguerre ensemble, we consider only the case m -n = a L > -1 and we notate a = a L .

Stochastic Operators

The Sine β operator

The Sine β operator was introduced by Valkó and Virág [START_REF] Valkó | The sine β operator[END_REF] as a type of Dirac operator. The definition and properties of Dirac operators can be found in [START_REF] Weidmann | Spectral theory of ordinary differential operators[END_REF], those of the Brownian motion on the hyperbolic plane in [START_REF] Franchi | Hyperbolic dynamics and Brownian motion. An introduction[END_REF].

Definition 3.1.1 (Dirac operator [78, Section 3.3]).

A Dirac operator τ is a differential operator of the form

τ v(t) = R -1 (t)Jv (t),
where R(t) is an integrable strictly positive definite real 2 × 2 matrix valued function, v(t) a R 2 -valued function and J = 0 -1 1 0 . β in the half plane with initial condition i. Let q = lim t→∞ x(t), and use the notation
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R(t) has a unique representation in the form of

R = f y 1 -x -x x 2 + y 2 , where f = √ det R, y = f R 1,1 and x = - R 1,2 R 1,
x(t) = x -log(1 -t) , ỹ(t) = y -log(1 -t) . Then the Sine β operator Sine β = Dir(x + iỹ, ∞, q)
has its spectrum distributed as the Sine β process.

We refer to [START_REF] Valkó | The sine β operator[END_REF] for the properties of the Sine β operator and the proof of bulk universality, which are beyond the scope of this thesis.

Generalized Sturm-Liouville operators

The proper framework to introduce the stochastic Airy operator and the stochastic Bessel operator is that of generalized Sturm-Liouville (S-L) operators. General theory on these operators can be found in [START_REF] Weidmann | Spectral theory of ordinary differential operators[END_REF], its application to the stochastic Airy operator and the stochastic Bessel operator in [23, Section 2].

Definition 3.1.3 (Generalized Sturm-Liouville operators).

Generalized Sturm-Liouville operators are differential operators τ of the form

τ u(x) = 1 r(x) -p 1 (x)u (x) -q 0 (x)u(x) -q 0 (x)u (x) + p 0 (x)u(x) , (3.1.1)
where u is a real valued function on [0, L] for some L > 0 or on R + (which we consider to be the L = ∞ case in the following). We assume that the real functions p 0 , p 1 , q 0 , r are continuous on [0, ∞[ and r(x), p 1 (x) > 0 for x 0.

We introduce

D L (τ ) = u ∈ L 2 [0, L], r : τ u ∈ L 2 [0, L], r and u, p 1 u -q 0 u ∈ AC [0, L] ,
where AC [0, L] is the set of absolutely continuous real functions on [0, L]. Let L ∈ (0, ∞], assume that τ is of the form (3.1.1) and that it satisfies the following conditions:

• the solution u d of the equation τ u d = 0 with Dirichlet initial conditions

u d (0) = 0, u d (0) = 1 is not in L 2 (R + , r), i.e. ∞ 0 u 2 d (x)r(x)dx = ∞, • there is a unique solution u ∞ of the equation τ u ∞ = 0, with initial condi- tion u ∞ (0) = 1 that is in L 2 (R + , r), • ∞ 0 x 0 u ∞ (x) 2 u d (y) 2 r(x)r(y)dydx < ∞.
Then, there is a self-adjoint τ L version of the operator on [0, L] with Dirichlet boundary conditions on the domain

D L,0 (τ ) = D L (τ ) ∩ {u : u(0) = 0, u(L) = 0}, (3.1.2)
where the end condition u(L) = 0 is dropped in the case L = ∞. We denote this self-adjoint operator by τ L . Furthermore, the inverse operator τ -1 L is an integral Hilbert-Schmidt operator in L 2 [0, L], r , and it has a bounded pure point spectrum.

The stochastic Airy operator

Stochastic Airy and Bessel operators are randomized versions of known differential operators, which conversely can be seen as 'β = ∞' versions of their stochastic counterparts. The Airy operator is the second order differential operator

A ∞ = - d 2 dx 2 + x, (3.1.3) acting on f ∈ L 2 (0, ∞[ , with the boundary conditions f (0) = 0 and lim x→∞ f (x) = 0. (3.1.4) . Let D(A ∞ [ be the subspace of L 2 (0, ∞[ of functions f verifying (3.1.4). An eigenvalue/eigenfunction pair of A ∞ is (λ, ψ) ∈ R × D(A ∞ [ such that ψ 2 = 1 and A ∞ ψ = λψ k . Proposition 3.1.1 (Eigenvalue decomposition for A ∞ [30, Section 3.1]).
The eigenvalue decomposition of A ∞ is: 

∀k ∈ N, A ∞ -λ k Ai -x -λ k = 0, ( 3 
A β = A ∞ + 2 √ β B i.e. A β = - d 2 dx 2 + x + 2 √ β B , ( 3 
(x) = p 1 (x) = 1, q 0 (x) = 2 √ β B(x), p 0 (x) = x.
It satisfies the hypothesis of Theorem 3.1.2 with probability one and we still notate

A β its self-adjoint version on D(A β ) = D ∞,0 (A β ) from (3.1.2). If ψ solves the equation A β ψ = 0 with initial conditions ψ(0) = c 0 , ψ (0) = c 1 , (c 0 , c 1 ) = (0, 0), then (ψ, ψ ) is the strong solution of the stochastic differential equation system dψ(x) = ψ (x)dx, dψ (x) = ψ(x) 2 √ β dB + xdx ,
which is well defined for all times. ).

An eigenvalue/eigenfunction pair of

A β is (λ, ψ) ∈ R×D(A β ) such that ψ 2 = 1 and A β ψ = λψ, i.e. ψ (x) = 2 √ β ψ(x)B (x) + (x -λ)ψ(x), (3.1.7)
which holds in the integration by parts sense: The Bessel operator parametrized by a > -1 is the first order differential operator

ψ (x) -ψ (0) = 2 √ β ψ(x)B(x) + x 0 - 2 √ β B(y)ψ (y)dy + x 0 (y -λ k )ψ(y)dy.

The stochastic Bessel operator

J ∞ a = -2 √ x d dx + a √ x , (3.1.8)
acting on L 2 [0, 1] with the boundary conditions

f (1) = 0 and (J ∞ a f )(0) = 0. (3.1.9)
Let D(J ∞ a ) be the subspace of L 2 [0, 1] of functions f verifying (3.1.9). The adjoint of the Bessel operator is

(J ∞ a ) * = 2 √ x d dx + a + 1 √ x ,
with same domain and boundary conditions. Proposition 3.1.4 (Singular value decomposition of J ∞ a [30, Section 3.1]). The singular value decomposition of J ∞ a and (J ∞ a [ * is:

J ∞ a J a (λ k √ x) = λ k J a+1 (λ k √ x), (J ∞ a ) * J a+1 (λ k √ x) = λ k J a (λ k √ x),
for k ∈ N and with 0 < λ 0 < λ 1 < . 

J β a = J ∞ a + 2 √ β B i.e. J β a = -2 √ x d dx + a √ x + 2 √ β B . ( 3 
G β a = - 1 m a (x) d dx 1 s a (x) d dx , (3.1.11) m a (x) = exp -(a + 1)x - 2 √ β B(x) , s a (x) = exp ax + 2 √ β B(x) .
(3.1.12) defined on a subset of L 2 (R + , m a ) with Dirichlet boundary condition at 0 and Neumann at infinity.

The operator -G β a can be seen as generating a diffusion with random speed and scale measures m a and s a . The motion can be built pathwise in the classical mode (see for example [START_REF] Itô | Diffusion Processes and Their Sample Paths[END_REF]Chapter 4]). 

r = m a , p 1 = s -1 a , p 0 = q 0 = 0.
It satisfies the hypothesis of Theorem 3.1.2 with probability one if a > 1 and we still notate

G β a its self-adjoint version on D(G β a ) = D ∞,0 (G β a ) from (3.1.2).
If ψ solves the equation G β a ψ = λψ with deterministic initial conditions ψ(0) = c 0 , ψ (0) = c 1 then (ψ, ψ ) is the unique strong solution of the stochastic differential equation system: ).

dψ(x) = ψ (x)dx, dψ (x) = 2 √ β ψ (x)dB(x) + (a + 2 β )ψ (x) -λe -x ψ(x) dx, ( 3 

An eigenvalue/eigenfunction pair of

G β a is (λ, ψ) ∈ R×D(G β a ) such that ψ 2 = 1 and G β a ψ = λψ, i.e. ψ = λ(G β a ) -1 ψ, with the explicit inverse form (G β a ) -1 ψ (x) = ∞ 0 x∧y 0 s a (dz) ψ(y)m a (dy). (3.1.14) (G β a ) -1 is non-negative symmetric in L 2 [R + , m a ]
and the Dirichlet condition at the origin is automatic for ψ = λ(G β a ) -1 ψ.

Heuristic of convergence

This section presents heuristic arguments from [START_REF] Edelman | From random matrices to stochastic operators[END_REF] and [START_REF] Sutton | The stochastic operator approach to random matrix theory[END_REF] as to how the stochastic Airy operator and the stochastic Bessel operator emerge as limits of the matrix representations of β-ensembles, at the soft ad hard edges respectively.

Finite difference schemes

A finite difference scheme approximates numerically the solution of a differential equation by replacing differential operators with matrices that mimic their behavior. Let us introduce the n × n matrices

∇ n =         -1 1 -1 1 . . . . . . -1 1 -1         , ∆ n =         2 -1 -1 2 -1 . . . . . . . . . -1 2 -1 -1 2         , (3.2.1)
F n =         1 1 1 . . . 1         , S n =         -1 1 -1 . . . (-1) n         . (3.2.2)
Up to a constant factor, ∇ n encodes a finite difference scheme for the first derivative operator when certain boundary conditions are in place. Likewise, under certain conditions, ∆ n discretizes the second derivative operator, also up to a constant factor. F n acts as a 'flip' permutation matrix.

In the next two subsections we explain how, properly rescaled at the soft and hard edge respectively, the β-Hermite and β-Laguerre tridiagonal matrix representations can be interpreted as finite difference schemes for A β and J β a . Similar arguments for the β-Jacobi ensemble can be found in [START_REF] Edelman | From random matrices to stochastic operators[END_REF]Section 6].

Soft edge of the β-Hermite ensemble

For β > 0, recall the tridiagonal representation H β n = (h β i,j ) 1 i,j n of the β-Hermite ensemble of size n from (1.1.3). We first consider its low temperature limit β → ∞:

H ∞ n = 1 √ n            0 √ n -1 √ n -1 0 √ n -2 √ n -2 0 √ n -3 . . . . . . . . . √ 2 0 √ 1 √ 1 0            . ( 3 

.2.3)

This matrix encodes the recurrence relation for Hermite polynomials and its eigenvalues are the roots of the n th polynomial. Properly rescaled, they converge to the zeros of Ai (see [START_REF] Szego | Orthogonal Polynomials[END_REF]Equation 5.5.8]). Heuristically, applying the same rescaling to a well-chosen similar transformation of H ∞ n should put forward a discretized version of A ∞ . For β finite or infinite, let D n be the diagonal matrix of size n whose (i, i) entry is (n/2) -(i-1)/2 i-1 k=1 h β k,k+1 . With β = ∞, the conjugate of H ∞ n by D n reads:

D n H ∞ n D -1 n =           0 1 n-1 n 0 1 n-2 n 0 1 . . . . . . . . . 2 n 0 1 1 n 0           . (3.2.4)
Applying the appropriate rescaling, we introduce the ∞-Hermite model of size n scaled at the soft edge, where I n is the identity matrix of size n:

H ∞,soft n = -n 2/3 (D n H ∞ n D -1 n -2I n ). (3.2.5)
The translation is meant to pull the largest eigenvalues toward the origin, then a scalar factor is applied to 'zoom in' so that the eigenvalues approach distinct limits as n → ∞. Using (3.2.4), we derive the following proposition, which interprets H ∞,soft n as a finite difference scheme for the Airy operator A ∞ on the mesh x i = hi, i = 1, . . . , n, with mesh size h = n -1/3 . Proposition 3.2.1 (Finite difference scheme for A ∞ [30, Theorem 5.2]). ∀n ∈ N,

H ∞,soft n = 1 h 2 ∆ n + diag -1 (x 1 , . . . , x n-1
), with diag -1 (x 1 , . . . , x n-1 ) the n × n matrix with x 1 , . . . , x n-1 on the subdiagonal and zeros elsewhere. Furthermore, for any fixed k ∈ N, the (k + 1) st least eigenvalue of H ∞,soft n converges to the (k + 1) st least eigenvalue of A ∞ :

λ - k (H ∞,soft n ) -→ n→∞ Λ k (A ∞ ).
The convergence of the eigenvalues is a consequence of the eigenvalue decomposition (3.1.5) for A ∞ and the fact that our choice of rescaling is that of the convergence of the roots of the Hermite polynomials to those of the Airy function. We now extend our argument to the β-Hermite ensemble for general β > 0.

Intuitively, the β-Hermite model of size n scaled at the soft edge is

H β,soft n = -n 2/3 (D n H β n D -1 n -2I n ), (3.2.6) 
where

D n H β n D -1 n =              √ 2 √ nβ G 1 1 1 nβ χ 2 (n-1)β √ 2 √ nβ G 2 1 . . . . . . . . . 1 nβ χ 2 2β √ 2 √ nβ G n-1 1 1 nβ χ 2 β √ 2 √ nβ G n              . (3.2.7)
Proposition 3.2.2 (Finite difference scheme for A β [30, Theorem 6.2]).

We have

H β,soft n = H ∞,soft n + 2 √ β W n , with W n = 1 √ h -1 √ 2          G 1 χ2 (n-1)β G 2 χ2 (n-2)β G 3 . . . . . . χ2 β G n         
, where G 1 , . . . , G n are standard Gaussian random variables, and

χ2 (n-j)β = 1 √ 2βn χ 2 (n-j)β ) -(n -j)β .
Furthermore, χ2 (n-j)β has mean 0 and standard deviation 1 + O(h 2 ) uniformly in j for j such that x j = hj M , where M > 0 is fixed.

Since the increment of Brownian motion over an interval (x, x + h] has mean 0 and standard deviation √ h, a discretization of white noise over this interval should have mean 0 and standard deviation

√ h h = 1
√ h , which makes W n a suitable candidate. Therefore, H β,soft n seems a reasonable discrete approximation of A β .

Hard edge of the β-Laguerre ensemble

Let us show a similar heuristic for hard edge universality, looking at the left edge of the β-Laguerre ensemble. With m = n + a, we can rewrite the bidiagonal matrix representation of the β-Laguerre ensemble introduced in (1.1.5):

L β n,a = 1 (n + a)β         χ (a+n)β χ (n-1)β χ (a+n-1)β . . . . . . χ 2β χ (a+2)β χ β χ (a+1)β         . (3.2.8)
In the low temperature limit β → ∞, L β,a n approaches

L ∞ n,a = 1 √ n + a         √ a + n √ n -1 √ a + n -1 . . . . . . √ 2 √ a + 2 √ 1 √ a + 1         . (3.2.9)
The k th least singular value of L ∞ n,a squared is the k th least root of the n th Laguerre polynomial with parameter a, which, properly rescaled, converges to k th positive zero of the Bessel function of the first kind J a (see [START_REF] Szego | Orthogonal Polynomials[END_REF]Section 5.1]). Introduce the ∞-Laguerre model of size n scaled at the hard edge:

L ∞,hard n,a = 2 √ n + a √ h F n S n L ∞ n,a S -1 n F n . (3.2.10)
Consider the mesh

x i = (1 -h 2 ) -h(n -i), 1 = 1, . . . , n of size h = 1 n+(a+1)/2 . Proposition 3.2.3 (Finite difference scheme for J ∞ a [72, Theorem 7.3.6]). ∀n ∈ N, L ∞,hard n,a = -2 diag( √ x 1 , . . . , √ x n ) 1 h ∇ n + a 2            1 √ x 1 1 √ x 1 1 √ x 2 1 √ x 2 1 √ x 3 . . . . . . 1 √ x n-1 1 √ xn            +E n ,
where E n is upper bidiagonal with entries in rows h , . . . , n uniformly O(h), for any fixed 0 < < 1.

Indeed, for k = 1, . . . , n, the (k, k) entry of E n is 2 √ k + a -2 k + a/2 - a 2 k + a/2 1 √ h .
A series expansion of √ k + a about k + a/2 shows that the entry can be bounded in magnitude by a 2 16( -h) 3/2 h for all k h . Therefore, L ∞,hard n,a seems a viable candidate for an approximation of a finite difference scheme for the Bessel operator J ∞ a . Moving on to the stochastic version, we use the approximation of the χ distribution χ r ≈ √ r + 1 √ 2 G, valid for large r, to say that L β n,a ≈ Lβ n,a , where

Lβ n,a = L ∞ n,a + 1 2(n + a)β         G n G n-1 G n-1 G n-2 G n-2 . . . . . . G 1 G 1         , with G 1 , . . . , G n , G 1 , . . . , G n-1 independent standard Gaussian random variables.
With this approximation we can define the β-Laguerre model of size n scaled at the hard edge:

L β,hard n,a = 2 √ n + a √ h F n S n L β,a n S -1 n F n ≈ 2 √ n + a √ h F n S n Lβ,a n S -1 n F n ≈ L ∞,hard n,a + 2 β 1 √ h W n , (3.2.11) 
where W n is a random bidiagonal matrix whose (k, k) entry is G k and whose (k, k + 1) entry is G k . The total standard deviation of 2

β 1 √ h W n over row k is 2 √ β 1 √
h , which is consistent with that of 2 √ β B from (3.1.10). Therefore, L β,hard n,a makes a viable candidate for a discrete approximation of J β a .

Hard edge universality

The following theorem gathers results already stated in Theorem 2.3.4 and Proposition 3.1.6. ). With probability one, when restricted to the positive half-line with Dirichlet conditions at the origin, G β a has a discrete spectrum comprised of single eigenvalues

0 < Λ 0 (G β a ) < Λ 1 (G β a ) < . . . ↑ ∞.
Moreover, for any k < ∞, the (k + 1) st smallest eigenvalues of the β-Laguerre ensemble converge to the (k + 1) st smallest eigenvalues of the stochastic Bessel operator:

n(n + a) λ - 0 (L β n,a ), . . . , λ - k (L β n,a ) d ---→ n→∞ Λ 0 (G β a ), . . . , Λ k (G β a ) .
In this section, we explain the proof of Theorem 3.3.1 from Ramírez and Rider.

Its structure is threefold. First, we inject the sequence L β n,a (L β n,a ) T n 0 into an integral operator space. Then, we prove the convergence of the operators sequence. Finally, we identify its limit as G β a . To lighten the writing, we will denote by λ n 0 < λ n 1 < . . . the smallest eigenvalues of L β n,a . First, notice that for fixed λ, the differential system (3.1.13) has Lipschitz coefficients of linear growth and thus defines a pathwise unique Markov process x → ψ(x), ψ (x) for any ψ(0), ψ (0) pair. Two solutions of ψ = λ(G β a ) -1 ψ vanishing at the origin must be constant multiples of one another, hence the simplicity of the corresponding eigenvalues of G β a .

Injection into the operator space

Set β > 0 and a > 1. Recall S n from (3.2.2). As in the heuristic from Subsection 3.2.3, we work with Lβ n,a = S n (L β n,a ) T S -1 n , which has the same singular values as L β n,a :

Lβ n,a = 1 (n + a)β       χ (a+1)β -χβ χ (a+2)β . . . . . . -χ(n-1)β χ (a+n)β       , ( 3.3.1) 
where the notation χ is meant to emphasize the independence of the processes along the main and lower diagonals. Since we want to prove the convergence to the inverse operator (G β a ) -1 defined in (3.1.14), we compute the inverse of Lβ n,a . Lemma 3.3.1. [START_REF] Ramírez | Diffusion at the random matrix hard edge[END_REF]Lemma 4] For any inversible lower bidiagonal matrix B = (b i,j ), B -1 is lower triangular and has the expression

(B -1 ) i,j = (-1) i+j b i,i i-1 k=j b k+1,k b k,k for j < i, (B -1 ) i,i = 1 b i,i .
The proof of Lemma 3.3.1 rests on straightforward calculations, we do not give it here. Define the mesh

x i = i/n, i = 1, . . . , n. For a matrix M ∈ M n (R), M = (m i,j ) 1 i,j n
, there is a natural embedding M → M into the space of operators acting on f ∈ L 2 [0, 1] , which does not change the spectrum:

(Mf )(x) = n j=1 m i,j n x j x j-1 f (y)dy for x i-1 x < x i .
Since the proper scaling at the hard edge is n(n + a) Lβ n,a ( Lβ n,a ) T -1 , using Lemma 3.3.1, we read the action of n(n + a)

-1/2 ( Lβ n,a ) -1 on f ∈ L 2 [0, 1] : ( n(n + a) Lβ n,a ) -1 f (x) = i j=1 √ βn χ (i+a)β i-1 k=j χkβ χ (k+a)β x j x j-1 f (y)dy.

Therefore, we can identify n(n-a)

-1/2 ( Lβ n,a ) -1 with the integral operator K β,a n with discrete kernel

k β,a n (x, y) = √ βn χ (i+a)β exp i-1 k=j log χkβ -log χ (k+a)β 1 D (x, y) (3.3.2)
where

1 D (x, y) = 1 x i-1 x<x i 1 x j-1 y<x j 1 j i .
To identify the limit of K β,a n as n → ∞, we need the following lemma. Lemma 5] There is a Brownian motion B such that, for x < y lying in (0, 1], for the Skorohod topology:

Lemma 3.3.2. [63,

√ βn χ (i+a)β d -→ n→+∞ 1 √ x (3.3.3) and i-1 k=j log χkβ -log χ (k+a)β d -→ n→+∞ a 2 log y x + x y db z √ βz . (3.3.4) Lemma 3.3.2 tells us that, as n → ∞, K β,a n should approach the integral operator K β,a ∞ with kernel k β,a ∞ (x, y) = x -1+a 2 exp x y db z √ βz y a 2 1 y<x . (3.3.5)

Convergence of the operators sequence

The proof of the convergence of the sequence (K β,a n ) n uses bounds on χ variables and notions of operator theory, which we do not prove here.

Lemma 3.3.3. [63, Lemma 5] Let T (x) = 1 β log 1
x . There exist tight random constants κ n > 0 and κ n > 0 independent of β so that

sup 1 k n √ kβ χ (k+a)β κ n , ∀ 1 j < i n, i-1 k=j log χkβ -log χ (k+a)β -(a/2) log( j i ) κ n 1 + T 3/4 (x i ) + T 3/4 (x j ) .
Proposition 3.3.1 (Hilbert-Schmidt operator [START_REF] Rudin | Functional Analysis. International series in pure and applied mathematics[END_REF]Chapter 4]).

An operator K on the Hilbert space L 2 [0, 1] , • 2 is said to be Hilbert-Schmidt if there exists a Hilbertian base (e n ) n∈N such that n∈N Ke n 2 converges. In this case, we set

K HS = n∈N Ke n 2 1/2 . A Hilbert-Schmidt operator is compact. Furthermore, if K is an integral operator with kernel k ∈ L 2 [0, 1] × [0, 1] then K is Hilbert-Schmidt and K HS = k 2 .
Lemma 3.3.4 (Convergence of the operators sequence [START_REF] Ramírez | Diffusion at the random matrix hard edge[END_REF]Lemma 6]). K β,a ∞ is almost surely Hilbert-Schmidt. Also, there exists a probability space on which all K β,a n and K β,a ∞ are defined, such that any sequence of the operators

K β,a n contains a subsequence K β,a n which converges to K β,a
∞ in Hilbert-Schmidt norm with probability one, and in particular: 

lim n →∞ 1 0 1 0 k β,a n (x, y)(ω) -k β,a ∞ (x,
n(n + a)λ n 0 = inf v l 2 =1 v, n(n + a) Lβ n,a ( Lβ n,a ) T v = sup f L 2 =1 f, (K β,a n ) T K β,a n f -1 = (K β,a n ) T K β,a n -1 ,
The final equality holds because (K β,a n

) T K β,a n is non-negative symmetric. Since K β,a ∞ is almost surely Hilbert-Schmidt, (K β,a ∞ ) T K β,a
∞ is non-negative symmetric and compact so has a well defined maximal eigenvalue Λ0

= (K β,a ∞ ) T K β,a ∞ . Going forward, we write Λ0 > Λ1 > • • • the eigenvalues of K β,a ∞ = (K β,a ∞ ) T K β,a ∞ and Λn 0 > Λ1 0 > . . . those of K β,a n = (K β,a n ) T K β,a
n . We use Lemma 3.3.4 to choose a subsequence φ(n) n 0 along which

K β,a φ(n) -K β,a ∞ HS -→ 0.
K β,a φ(n) converges strongly to K β,a ∞ so the norms converge:

K β,a φ(n) = Λφ(n) 0 -→ n→∞ K β,a ∞ = Λ0 almost surely.
For any sequence of n(n + a)λ n 0 , there is a subsequence that converges almost surely to 1/ Λ0 . This implies

n(n + a)λ n 0 -→ n→∞ Λ-1 0 almost surely. (3.3.7)
To extend our result to λ n 1 , λ n 2 , . . ., we need the convergence of the eigenvectors. Define (f n ) n 0 and f in L 2 [0, 1] with unit norm by

f n , K β,a n f n = Λn 0 , f, K β,a ∞ f = Λ0 . We have K β,a φ(n) f n L 2 -→ n→∞ K β,a ∞ L 2 .
Since f φ(n) is uniformly bounded in L 2 [0, 1] , we can extract a subsequence φ 1 (n) n 0 along which it converges weakly to f ∞ . Then, for any ψ ∈ L 2 [0, 1] ,

ψ, K β,a φ 1 (n) f φ 1 (n) -K β,a ∞ f ∞ = ψ, (K β,a φ 1 (n) -K β,a ∞ )f φ 1 (n) + K β,a ∞ ψ, f φ 1 (n) -f ∞ -→ n→∞ 0,
by norm convergence of the first term and boundedness of K β,a ∞ in the second. The weak convergence and the convergence of the norm imply the strong convergence of a subsequence of (K β,a n f n ) n 0 . Coupled with K β,a n K β,a n f n = Λn 0 f n and Λn 0 → Λ0 , this induces a strongly convergent subsequence of (f n ) n 0 , which by continuity converges to f . Finally, denote by P fn the projection onto the orthogonal complement of

f n in L 2 [0, 1] . P f φ 1 (n) K β,a φ 1 (n) P f φ 1 (n) converges strongly to P f K β,a ∞ P f , therefore Λφ 1 (n) 1 = P f φ 1 (n) K β,a n P f φ 1 (n) -→ n→∞ P f K β,a ∞ P f = Λ1 almost surely.
The same argument as for λ n 0 shows that

n(n + a)λ n 1 -→ n→∞ Λ-1 1 almost surely, (3.3.8) 
and by induction the almost sure convergence extends to any finite number of eigenvalues of L β n,a .

Identification of (G β,a ) -1

For fixed k ∈ N * , we have proved the joint convergence in law of the rescaled k highest eigenvalues of L β n,a to the k highest eigenvalues of the integral operator K β,a ∞ (K β,a ∞ ) T . Its spectral problem reads dx. Finally, the change of variables (x, y) → (e -x , e -y ) gets us back to the desired form (3.1.14) and transforms the Dirichlet condition at 1 into one at the origin. We have thus identified G β a as the limit operator and this concludes the proof of Theorem 3.3.1.

f (x) = λ

Soft edge universality

Universality at the soft edge as stated in Theorem 2.3.3 was proved by Ramírez, Rider and Virág [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF]. We wish here to present the beautiful analysis of Gorin and Shkolnikov [START_REF] Gorin | Stochastic Airy semigroup through tridiagonal matrices[END_REF]. Resorting to combinatorics of high powers of the β-Hermite ensemble matrix representation, they obtain a Feynman-Kac formula for the stochastic Airy operator. We skecth the main ideas of their proof and refer to their article for details. The concepts we use from theory of stochastic integration, such as local times and Brownian bridges, can be found in the textbook [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF].

Setup

Consider a standard Brownian motion W , and for each T > 0 the following random kernel on R + × R + :

K(x, y; T ) = 1 √ 2πT exp - (x -y) 2 2T •E B x,y 1 {∀t:B x,y (t)∈R + } exp - 1 2 T 0 B x,y (t)dt + 1 √ β ∞ 0 L a (B x,y )dW (a) , (3.4.1) 
where B x,y is a standard Brownian bridge starting at x at time 0 and ending at y at time T , which is independent of W , and the L a (B x,y ) are the local times accumulated by B x,y at level a on [0, T ]. The expectation E B x,y is taken only with respect to B x,y . We define U(T ), T > 0 as the integral operators on R + with kernels K(x, y; T ), and U(0) as the identity operator. To make statements about multiple operators U(T ), we use the same path of W in (3.4.1). Let S denote the set of all locally integrable functions f on R + for which there exists a δ > 0 such that f (x) = O exp(x 1-δ ) as x → ∞. Further, for any n ∈ N and f ∈ S, write π n f for the vector in R n with components

(π n f ) i = n 1/6 n -1/3 (n-i+1) n -1/3 (n-i) f (x)dx, i = 1, 2, . . . , n.
Finally, recall the β-Hermite ensemble tridiagonal matrix representation H β n from (1.1.3), the permutation matrix F n from (3.2.2) and introduce the n × n matrix: The convergence of the eigenvalues of H β n (T ) to those of U(T ) can be deduced from the convergence of the traces (see [START_REF] Gorin | Stochastic Airy semigroup through tridiagonal matrices[END_REF], Corollary 2.10).

H β n (T ) = 1 2 F n H β n F -1 n 2 T n 2/3 + F n H β n F -1 n 2 T n 2/3 -1 . ( 3 
Remark 3.4.1. Theorem 3.4.1 from [START_REF] Gorin | Stochastic Airy semigroup through tridiagonal matrices[END_REF] is stated in a more general setting, defining for any interval A ⊂ R + the kernel K A (x, y; T ) and the restriction [START_REF] Gorin | Stochastic Airy semigroup through tridiagonal matrices[END_REF]). Gaudreau Lamarre was able to lift this condition by rising the matrices to a different power (see [START_REF] Gaudreau Lamarre | On the convergence of random tridiagonal matrices to stochastic semigroups[END_REF]Section 4.3] for a comparison with [START_REF] Gorin | Stochastic Airy semigroup through tridiagonal matrices[END_REF]), thus incorporating the soft edge of the β-Laguerre ensemble.

H β,A n of H β n onto A. Remark 3.4.2

. Gorin and Shkolnikov proved Theorem 3.4.1 for a wider range of matrices that have diagonal entries of smaller order than their super/subdiagonal entries (see Assumption 2.1 in

Remark 3.4.3. Work has been done by Waters in [START_REF] Waters | Feynman-kac formula for the stochastic bessel operator[END_REF] toward extending this technique to the hard edge and obtaining a Feynman-Kac formula for the stochastic Bessel operator but remains to be completed.

Recall the stochastic Airy operator A β from 3.1.5 and its eigenvalues Λ 0 (A β ) Λ 1 (A β ) . . . Theorem 3.4.1 implies the following result.

Proposition 3.4.1 (Stochastic Airy semigroup [37, Corollary 2.12]).

For any T 0, define e -T 2 A β as the unique operator on L 2 (R + ) with the same orthonormal basis of eigenfunctions as A β and the corresponding eigenvalues e T Λ 0 (A β )/2 e T Λ 1 (A β )/2 . . .

If one couples e -T

2 A β with U(T ) by identifying the Brownian motions B in their respective definitions, then for each T 0, the operators e -T 2 A β and U(T ) coincide with probability one.

The relationship between A β and the family of operators {U(T ), T > 0} can be viewed as a variant of the Feynman-Kac formula for Schroedinger operators (see [START_REF] Simon | Functional Integration and Quantum Physics[END_REF]Section 6] for the known case where the potential is a deterministic function).

Sketch of the proof of Theorem 3.4.1

This section explains how the Brownian bridges B x,y and the Brownian motion W from the kernel K(x, y; T ) from (3.4.1) arise in the study of high powers of the matrix H β n . We follow the original proof [37, Section 3] and work with a rescaled and conjugated version of H β n :

M n = F n H β n F -1 n = 1 √ n           a(1) b(1) 0 • • • 0 b(1) a(2) b(2) . . . . . . 0 b(2) a(3) . . . 0 . . . . . . . . . . . . b(n -1) 0 • • • 0 b(n -1) a(n)          
, where a(m) ∼ N (0, 2/β) and b(m) ∼ χ βm are independent. Note that a(m

) is of order 1 in m while b(m) = √ m + ξ(m) with E[ξ(m)] = o(m -1/3 ). Defining s a = 1 and s ξ = 1/ √ 2β, we have E a(m) 2 = s 2 a , E ξ(m) 2 = s 2 ξ + o(1) and s 2 a /4 + s 2 ξ = 1/β.
These estimates on the χ distribution tail can be found in a statistical distribution handbook such as [START_REF] Krishnamoorthy | Handbook of statistical distributions with applications[END_REF]. By definition, for k ∈ N * ,

(M n ) k i, i = M n [i 0 , i 1 ] M n [i 1 , i 2 ] . . . M n [i k-2 , i k-1 ] M n [i k-1 , i k ] , (3.4.3)
where the sum is taken over all sequences of integers i 0 , i 1 , . . . , i k in {1, 2, . . . , n} such that i 0 = i, i k = i , and |i j -i j-1 | 1 for all j = 1, 2, . . . , k. Take k = T n 2/3 and assume that k is even (the odd case can be treated similarly). We first consider the sequences in (3.4.3) without 'horizontal' segments i j-1 = i j and therefore suppose that i -i is even. In (3.4.3), they account for

1 i 0 ,i 1 ,...,i k n |i j -i -1 |=1 for all j i 0 = i, i k = i k l=1 √ i l ∧ i l-1 √ n 1 + ξ(i l ∧ i l-1 ) √ i l ∧ i l-1 . (3.4.4)
Recall the definition of H β n (T ) from (3.4.2):

H β n (T ) = 1 2 M n 2 T n 2/3 + M n 2 T n 2/3 -1 . ( 3 

.4.5)

Write i * for min(i 0 , i 1 , . . . , i k ). The contribution of the sequences of integers with n-i * n 1/3 * → ∞ to the sum in (3.4.4) becomes negligible in the limit so we restrict our attention to sequences with lim sup n→∞ n-i * n 1/4 < ∞. In particular, we choose i, i such that

x = lim n→∞ n -i n 1/3 < ∞, y = lim n→∞ n -i n 1/3 < ∞.
The sum in (3.4.4) is over the trajectories of a simple random walk with k steps conditioned on connecting i to i . Let us give a heuristic argument as to why the normalized sum converges to an integral with respect to the law of the Brownian bridge connecting x to y. The summand of (3.4.4) can be rewritten as

exp 1 2 k l=1 log 1 - n -i l ∧ i l-1 n + k l=1 log 1 + ξ(i l ∧ i l-1 ) √ ı l ∧ i l-1 . (3.4.6)
For terms with lim sup n→∞ n-i * n 1/3 < ∞, we use the approximation log(1 + z) ≈ z. Here, z is of the order n -2/3 , and there are order n 2/3 summands. For the second sum, consider the Taylor expansion

log(1 + ξ(i l ∧ i l-1 ) l l ∧ i l-1 ) = ξ(i l ∧ i l-1 ) l l ∧ i l-1 - 1 2 
ξ(i l ∧ i l-1 ) 2 i l ∧ i l-1 + • • • ,
where the second term is of order n -1 in expectation. Since there are order n 2/3 summands, only the first term can contribute to the n → ∞ limit. In that limit, we can therefore replace (3.4.6) by exp -

1 2n k l=1 (n -i l ∧ i l+1 ) + k l=1 ξ(i l ∧ i l-1 ) √ i l ∧ i l-1 . ( 3.4.7) 
In order to obtain local times at the limit n → ∞, interpret the second term of (3.4.7) in terms of occupation times:

k l=1 ξ(i l ∧ i l-1 ) √ i l ∧ i l-1 = n h=i * ξ(h) √ h {l : i l ∧ i l+1 = h} . ( 3 

.4.8)

A simple random walk bridge with k steps connecting i to i typically visits an order of k 1/2 sites, and the corresponding occupation times {l : i l ∧ i l-1 = h} are of the order k 1/2 . For such a trajectory, the right hand side of (3.4.8) is a sum of independent random variables with means of orders o(h

-2/3 k 1/2 ) = o(n -1/3 ) and variances of orders O(h -1 k) = O(n -1/3
). Since there are an order of n 1/3 summands, the limit of the sum is given by the Central Limit Theorem. More specifically, the random walk bridge converges in the limit n → ∞ to a standard Brownian bridge on [0, T ] connecting x to y and its occupation times normalized by n 1/3 converge to the local times of the Brownian bridge. Therefore, the variance of the limiting centered Gaussian random variable comes out to

s 2 ξ ∞ 0 L z (B x,y ) 2 dz. With the Brownian motion s ξ W ξ (z) = lim n→∞ n -1/6 n h=n-n 1/3 z ξ(h), this random variable can be written s ξ ∞ 0 L z (B x,y )dW ξ (z).
An application of Stirling's formula shows that the number of random walk bridges of length k = T n 2/3 connecting i to i behaves asymptotically as 2 k n -1/3 2 πT e -(z-y) 2 /(2T ) . Viewing (3.4.4) as a multiple of the expectation of a functional with respect to the law of such a random walk bridge, its asymptotic behavior is the same multiple of the corresponding functional of the Brownian bridge B x,y , i.e.:

2 k n -1/3 2 πT e -(x-y) 2 /(2T ) • E B x,y 1 {∀t:B x,y (t) 0} exp - 1 2 T 0 B x,y (t)dt + s ξ ∞ 0 L a (B x,y )dW (a) .
Consider now a sequence of (3.4.3) with k horizontal segments, assuming first k = 2p even. This means we take a sequence of length k -2p with no horizontal segments and insert 2p horizontal segments at arbitrary spots. If p = 1 and we normalize by 2 k , the corresponding part in the sum (3.4.3) becomes

1 2 k-2 1 i 0 ,i 1 ,...,i k-2 n |i j -i j-1 |=1 for all j i 0 = i, i k-2 = i k-2 l=1 √ i l ∧ i l-1 √ n 1 + ξ (i l ∧ i l-1 ) √ i l ∧ i l-1 •   1 (2 √ n) 2 0 j l k-2 a (i j ) a (i l )   .
The last factor can be written as the sum of the terms

1 2 1 (2 √ n) 2 k-2 j=0 a(i j ) 2 and 1 2 1 (2 √ n) 2 k-2 j=0 a(i j ) 2 .
As before, we can show that the first term tends to 1 2 times the square of a Gaussian random variable with mean 0 and variance

s 2 a 4 ∞ 0 L z (B x,y
) 2 dz, which we write as

s a 2 ∞ 0 L z (B x,y )dW a (z),
with the Brownian motion s a W a (z) = lim

n→∞ n -1/6 n h-n-[n 1/3 z] a(h). The second term is of order O(n -1 k) = O(n -1/3
) in expectation, and so negligible in the limit n → ∞. Similarly, for any number 2p of horizontal segments, their leading order contribution is a factor of

1 (2p)!(2 √ n) 2p k-2p j=0 a(i j ) 2p ∼ n→∞ 1 (2p)! s a 2 ∞ 0 L a (B x,y )dW a (a) 2p . Adding (M n ) k-1 [i, i ],
we get the total leading order contribution exp sa

2 ∞ 0 L z (B x,y ) dW a (z) .
Gathering everything, we obtain the asymptotics 1 2

M n 2 k + M n 2 k-1 [i, i ] ∼ n→∞ n -1/3 1 2πT e -(x-y) 2 2 • E B x,y 1 {∀t,B x,y (t) 0} exp - 1 2 T 0 B x,y (t)dt + ∞ 0 L z (B x,y ) s ξ dW ξ (z) + s a 2 dW a (z) . Recall that s 2 ξ + s 2 a 4 = 1 β and set W = √ β(s ξ W ξ + ss 2 W a )
. Theorem 3.4.1 follows by summing over the relevant indices i, i and replacing the sums by the integrals that they approximate.

Operator level hard-to-soft transition

For the β-Laguerre ensemble L β n,m , the soft or hard nature of the left edge depends on the compared growth of m and n. Dumaz, Li and Valkó [START_REF] Dumaz | Operator level hard-to-soft transition for β-ensembles[END_REF] proved that taking a → +∞ in the parameter regime m = n + a induces a transition between soft edge universality and hard edge universality. For β > 0 and a > -1, recall m a from (3.1.12) and consider the 'stretching' transformation defined via (θ a f )(x) = f (a 2/3 x). Define the following transform for the stochastic Bessel operator of parameter 2a:

G β 2a = θ -1 a m 1/2 2a G β 2a m -1/2 2a θ a . (3.5.1)
Then G β 2a is a self-adjoint operator with the same spectrum as G β 2a , and the operators (A β ) -1 and G β 2a -a 2 -1 are Hilbert-Schmidt integral operators acting on the same space of L 2 (R + ) functions (see [START_REF] Dumaz | Operator level hard-to-soft transition for β-ensembles[END_REF]Section 2]). An operator level hard-to-soft transition occurs. 

1). Then we have the convergence:

a 4/3 G β 2a -a 2 -1 -→ a→+∞ (A β ) -1 ,
almost surely in Hilbert-Schmidt norm.

High temperature limit of β-ensembles

Chapter 4

The Riccati transform

We showed in Chapter 3 that, for any β > 0, the rescaled lowest eigenvalues of the β-Hermite ensemble and the β-Laguerre ensemble converge respectively to the lowest eigenvalues of the stochastic Airy operator and the stochastic Bessel operator. Our goal in the remaining of this thesis is to study the behavior of those eigenvalues as the parameter β tends to 0. To that purpose, this chapter introduces the Riccati transform, a classical tool in the study of the spectrum of one-dimensional random Schrödinger operators, first used by Halperin [START_REF] Halperin | Green's functions for a particle in a one-dimensional random potential[END_REF]. The Riccati transform takes a linear second order operator into one of first order, at the price of introducing a quadratic nonlinearity. Applying it to the stochastic Airy operator and the stochastic Bessel operator provides us with characterizations of the eigenvalues of A β and G β a in terms of explosion times of two families of diffusions, which will be useful in our β → 0 analysis in Chapters 5 and 6. Sections 4.1 and 4.2 apply the Riccati transform to G β a and A β respectively and Sections 4.3 and 4.4 show how the obtained characterizations of the eigenvalues can be used to derive properties of the eigenvalues processes.

Diffusion at the hard edge

The Riccati transform

Set a > -1 and β > 0. Recall the eigenvalues problem of the stochastic Bessel Operator from (3.1.14) and its differential form from Proposition 3.1.5: First, see that replacing the -λe -t term in the drift of p hard λ with any negative constant produces a homogeneous motion begun at +∞ and which hits -∞ with probability one. Construction of such processes is treated in [START_REF] Itô | Diffusion Processes and Their Sample Paths[END_REF]. Successive dominations of the inhomogeneous p hard λ by homogeneous versions over all short times leads to the existence of uniqueness of p hard λ . Solutions of (4.1.3) can blow up to -∞ in finite time, whenever ψ vanishes, in which case p hard λ is immediately restarted at +∞. We can think of p hard λ as taking values in the disjoint union of countable copies of the reals, R 0 , R 1 , . . . In this space, points (n, t) are ordered lexicographically but we will refer to them by their second coordinate t. A natural topology on this space is provided by the two-point compactification of each copy of the reals, glued together at the endpoints so as to respect the lexicographic ordering (see [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF]Section 3]). 

dψ (t) = 2 √ β ψ (t)dB(t) + (a + 2 β )ψ (t) -λe -t ψ(t) dt, dψ(t) = ψ (t)dt. ( 4 
Recall that 0 < Λ 0 (G β a ) < . . . < Λ k-1 (G β a ) denote the k lowest eigenvalues of G β a .
Our goal is to prove the following connection between the family of diffusions at the hard edge and the eigenvalues of the stochastic Bessel operator. Proof. Take ψ 0 (t, λ) the solution of (4.1.1) with ψ 0 (0, λ) = 0 and ψ 0 (0, λ) = 1. Then Λ is an eigenvalue of G β,L a if and only if ψ 0 (L, Λ) = 0. Let Λ 0 (G β,L a ) be the smallest eigenvalue of G β,L a . Suppose that

P Λ k (G β a ) < λ = R k+1 ν 0 (dt 1 ) ν t 1 (dt 2 ) • • • ν t k (dt k+1 ) .
∀ 0 < t L, ψ 0 (t, λ) > 0.
The monotonicity of p hard λ in λ implies that ∀λ λ, ∀ 0 < t L, ψ 0 (t, λ ) > 0.

Therefore, we have the equality of events:

{t → ψ 0 (t, λ) has no roots before t = L} = {Λ 0 (G β,L a ) > λ}.
The same monotonicity argument shows that additional zeros of the almost surely continuous function λ → ψ 0 (L, λ) only occur by increasing λ, whereupon all other roots (in the t variable) move to the left, yielding the equality of events for general k ∈ N:

{t → ψ 0 (t, λ) has at most k roots on (0, L)} = {Λ k (G β,L a ) > λ}. (4.1.5)
Consider now p(t, λ) formed from ψ 0 (t, λ) and its derivative. By uniqueness of the solutions to (4.1.1), ψ 0 and ψ 0 cannot vanish simultaneously. In particular, the zeros of ψ 0 are isolated. At any root r of t → ψ 0 (t, λ), including r = 0, ψ 0 (r+ε, λ) > 0 and ψ 0 (r+ε, λ) > 0 for ε small enough, so lim ε↓0 p(r+ε, λ) = +∞. Likewise, when r > 0, ψ 0 (r + ε, λ) > 0 and ψ 0 (r + ε, λ) < 0 for ε small enough, so lim ε↓0 p(r-ε, λ) = -∞. Therefore, to count roots of ψ 0 (•, λ) is to count passages of the corresponding p(•, λ) to -∞, after subsequent restarts at +∞. 

∞ 0 ∞ 0 f (x)s L (x, y)g(y)m a (dx)m a (dy) -→ L→∞ ∞ 0 ∞ 0 f (x) x∧y 0 s(dz) g(y)m a (dx)m a (dy) for all f, g ∈ L 2 (R + , m), and tr (G β,L a ) -1 = L 0 s L (x, x)m a (dx) -→ L→∞ ∞ 0 x 0 s(dy)m a (dx) = tr (G β a ) -1 .
This implies the convergence of G β,L a to G β a in trace norm (see [START_REF] Simon | Trace Ideals and Their Applications[END_REF], Theorem 2.20), from which we can derive the convergence of the eigenvalues using the same arguments as in the proof of Theorem 3. 

Simulations

Fix a = 2 and β = 2. Our numerical simulations are set to start at 10 at t = 0 and to restart at 10 when they hit -10. This approximation is made for computational convenience and does not change the number of explosions. Figure 7 shows a realization of p hard 50 , exploding 4 times. As t increases, it becomes harder for the diffusion to explode to -∞. using the same Brownian motion B(ω), exploding respectively 0, 1 and 2 times. From the equality (4.1.4), on this event ω: 

1 < Λ 0 (G 2 2 ) 5 < Λ 1 (G 2 2 ) 10 < Λ 2 (G 2 2 ).

Diffusion at the soft edge

We follow the arguments of Ramírez, Rider and Virág [64, Section 3] to skecth the proof of Theorem 4.2.1, the analog of Theorem 4.1.1 for the soft edge.

The Ricatti transform

Recall the eigenvalue problem (3.1.7) for the stochastic Airy operator from Proposition 3.1.3:

ψ (t) = 2 √ β ψ(t)B (t) + (t -λ)ψ(t). (4.2.1)
The Riccati transform p soft λ (t) = ψ (t)/ψ(t) turns (4.2.1) into a first-order differential equation, understood in the Itô sense: Arguments similar to those of Section 4.1 prove the following results, where A β,L is the truncation of A β , defined on the finite interval [0, L] with Dirichlet conditions at both endpoints. Recall that 0 < Λ 0 (A β ) < . . . < Λ k-1 (A β ) denote the k lowest eigenvalues of A β . Taking the L → ∞ limit in Lemma 4.2.1 and using Lemma 4.2.2 yields the following results. Let κ(t, •) be the distribution of the first time passage to -∞ of the diffusion p soft 0 (t) when started from +∞ at time t. Then

dp soft λ (t) = t -λ -p soft λ (t) 2 dt - 2 √ β dB(t). ( 4 
P Λ 0 (A β ) > λ = κ -λ, {∞} ,
and, for k 0,

P Λ k (A β ) < λ = R k+1 κ (-λ, dt 1 ) κ (t 1 , dt 2 ) . . . κ (t k , dt k+1 ) .

Simulations

Fix a = 2 and β = 2. Once again, our numerical simulations are set to start at 10 at t = 0 and to restart at 10 when they hit -10. This approximation is made for computational convenience and does not change the number of explosions. Figure 7 shows a realization p soft 10 , exploding 7 times. The more t increases, the harder it becomes for the diffusion to explode to -∞. Figure 10 shows a realization of p soft 1 , p soft 2 and p soft 5 using the same Brownian motion B(ω), exploding respectively 0, 1 and 3 times. From the equality (4.2.2), on this event ω: 

1 < Λ 0 (A 2 2 ) < 2 < Λ 1 (A 2 2 ) < Λ 2 (A 2 2 ) 5 < Λ 3 (A 2 2 ).

Tracy-Widom tail bounds

The characterization of the spectrum of A β by the explosions of p soft λ as in (4.2.2) can be used to prove tail estimates of the Tracy-Widom distribution. With T W β = -Λ 0 (A β ), we have:

P (T W β > a) = exp - 2 3 βa 3/2 1 + o a→+∞ (1) , P (T W β < -a) = exp - 1 24 βa 3 1 + o a→+∞ (1) .
The characterization (4.2.3) is used in the proof of the lower bound of the left tail and of the upper bound of the right tail. We explain the former here and refer to [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF]Section 4] for the proof of the latter. With Theroem 4.2.1, we have: The second factor is a positive term not depending on a. To bound the first probability, we use the Cameron-Martin-Girsanov formula:

P (T W β < -a) = P Λ 0 (A β ) > a = P (∞,
P (1,-a) ∀ t ∈ [-a, 0], p soft 0 (t) ∈ [0, 2] = E (1,-a) exp - β 4 0 -a t -B(t) 2 dB(t) - β 8 0 -a t -B(t) 2 2 dt ; B(t) ∈ [0, 2] ∀ t 0 ,
where B t is a Brownian motion with diffusion coefficient 2/ √ β. On the event in question,

β 8 0 -a t -B 2 t 2 dt = β 24 a 3 + O a→+∞ a 2 ,
and

0 -a t -B(t) 2 dB(t) = aB(-a)+ 1 3 B(-a) 3 -B(0) 3 + 4 β -1 0 -a B(t)dt = O a→+∞ (a).
To finish, note that P (-a,0) ∀ t 0, B(t) ∈ [0, 2] e -ca does not interfere with the leading order. We have proved

P T W β < -a exp - 1 24 βa 3 1 + o a→+∞ (1) .
To illustrate Theorem 4.3.1 numerically, we approximate T W 1 by the empirical distribution of the largest eigenvalue of a size 10 3 Gaussian Orthogonal Matrix, computed over 10 4 samples. Figure 11 compares this empirical distribution with the theoretical tail estimates. 

The hard-to-soft transition

Borodin and Forrester [START_REF] Borodin | Increasing subsequences and the hard-to-soft edge transition in matrix ensembles[END_REF] proved a transition between the hard and soft edge distributions at β = 1, 2, and 4. In the unitary case β = 2, we can use the determinantal structure from Chapter 2, Section 2.2 to write these distributions in terms of Fredholm determinants:

P Λ 0 (G 2 a ) > λ = 1+ ∞ k=1 (-1) k k! λ 0 dx 1 . . . λ 0 dx k det K Bessel (x i , x j ) i,j=1,...,k
, and

P (T W 2 < λ) = 1 + ∞ k=1 (-1) k k! ∞ λ dx 1 . . . ∞ λ dx k det K Airy (x i , x j ) i,j=1,...,k
, where the kernels K Airy and K Bessel are as in Section 2.2. Using the the Riccati transform and characterization (4.1.4), Ramírez and Rider showed the same transition holds at all β > 0. 

For β > 0, η -Λ 0 (G β 2 √ η-2/β ) η 2/3 d ---→ η→∞ T W β .
Chapter 5

The stochastic Airy operator

The inverse temperature parameter β shapes the global and local behavior of the β-ensembles. The last two chapters of this thesis study respectively the β-Hermite ensemble from (1.1.2) and the β-Laguerre ensemble from (1.1.4) in the double limit n → ∞, β → 0, which we call high-temperature regime. The high-temperature regime can be obtained in different ways. Taking β = β(n) allows to achieve simultaneously n → ∞ and β → 0 and yields Poissonian limit local statistics for the eigenvalues in the bulk (see [START_REF] Nakano | Gaussian beta ensembles at high temperature: eigenvalue fluctuations and bulk statistics[END_REF], [START_REF] Duy | The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles[END_REF], [START_REF] Benaych-Georges | Poisson statistics for matrix ensembles at large temperature[END_REF]) and at the edges (see [START_REF] Allez | Invariant beta ensembles and the gauss-wigner crossover[END_REF], [START_REF] Allez | A diffusive matrix model for invariant βensembles[END_REF] and [START_REF] Pakzad | Poisson statistics at the edge of Gaussian β-ensemble at high temperature[END_REF]), for specific β(n) regimes.

In this thesis, we achieve the high-temperature regime by taking first n → ∞ and then β → 0. The limit local statistics of the β-Hermite ensemble are determined by the behavior, when β → 0, of the Sine β operator from Theorem 3.1.1 (in the bulk) and of the stochastic Airy operator A β from Definition 3.1.5 (at the edges). For the bulk statistics, Allez and Dumaz [START_REF] Allez | From sine kernel to Poisson statistics[END_REF] proved the convergence of the Sine β point process to a Poisson point process on R.

We focus here on the (soft) edges statistics. Dumaz and Labbé [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF] proved the convergence of the rescaled eigenvalues of A β to a Poisson point process on R. This chapter is dedicated to the proof of this result, stated in Theorem 5.1.1, with techniques that we use again in Chapter 6 in our study of the stochastic Bessel operator.

Statement of results

Recall that Λ 0 (A β ) < Λ 1 (A β ) < . . . denote the smallest eigenvalues of A β .

Theorem 5.1.1 (A β at high temperature [22, Theorem 1]).

Setting

c β = 3 2β ln 1 πβ 2/3
, we have:

β √ c β Λ k (A β ) + c β k 0 d ---→ β→0 Λ k k 0 ,
where Λ k k 0 are the atoms of a Poisson point process on R with intensity e x dx.

To prove Theorem 5.1.1, we follow the arguments of Allez and Dumaz [START_REF] Allez | Tracy-widom at high temperature[END_REF] and of Dumaz and Labbé [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF], who use the fruitful connection between the eigenvalues of A β and the diffusions obtained through its Riccati map (see Chapter 4, Section 4.2). To this end, we introduce the stochastic linear operator L β , for x > 0:

L β = - d 2 dx 2 + β 4 x + B (x).
The operator L β proves more convenient to study than A β in the high temperature regime because it removes the 2/ √ β term, which diverges as β → 0. Denoting by Λ 0 (L β ) < Λ 1 (L β ) < . . . its eigenvalues, the change of function ψ(x) = cψ(x/c) with c = (4/β) 1/3 in the differential equation (3.1.7) satisfied by the eigenfunctions ψ of A β shows that: 

Λ k (L β ), k ∈ N d = β 4 2/3 Λ k (A β ), k ∈ N . ( 5 
dZ a (t) = a + β 4 t -Z a (t) 2 dt + dB(t), Z a (0) = +∞, a ∈ R. (5.1.2)
When exploding to -∞, Z a is immediately restarted from +∞.

We have the key equality of events:

Λ k (L β ) a = Z -a blows up to -∞ a least k + 1 times in R + . (5.1.3)
The proof of Theorem 5.1.1 has three steps. In Section 5.2, we study the explosions process of a stationary version of the diffusion Z a . In Section 5.3, we prove the convergence of the explosions process of Z a using stationary approximations. In Section 5.4, we derive the convergence of the eigenvalues process of A β .

A family of stationary diffusions

Statement of results

Definition 5.2.1 (A family of stationary diffusions).

For B a Brownian motion, t 0 ∈ R + and x 0 ∈ R ∪ {+∞}, introduce (Y

(t 0 ,x 0 ) a
) a∈R the family of stationary diffusions on R + :

dY (t 0 ,x 0 ) a (t) = a -Y (t 0 ,x 0 ) a (t) 2 dt + dB(t), Y (t 0 ,x 0 ) a (t 0 ) = x 0 , a ∈ R. (5.2.1) Each time Y (t 0 ,x 0 ) a hits -∞, it is restarted immediately from +∞.
The diffusion Y (t 0 ,x 0 ) a evolves in a potential V Y (z) = -az + z 3 /3, which does not depend on time t. Consequently, Y a can be seen as a stationary version of Z a in the case β = 0, and understanding its explosions process is the first step to prove Theorem 5.1.1. To this end, we will use the following key property.

Proposition 5.2.1 (Monotonicity property of

Y (t 0 ,x 0 ) a [22, Section 4.1]).
Almost surely, for all a a , all (t 0 , x 0 ), (t 0 , x 0 ) and all s ). For a ∈ R, introduce the first explosion time of Y (t 0 ,x 0 ) a :

∈ [t 0 ∨ t 0 ], if Y (t 0 ,x 0 ) a (s) Y (t 0 ,x 0 ) a (s) then Y (t 0 ,x 0 ) a (s + •) Y (t 0 ,x 0 ) a (s + •), (5.2.2 
ζ (t 0 ,x 0 ) (a) = inf{t 0 : Y (t 0 ,x 0 ) a (t) = -∞}.
The diffusion Y (0,+∞[ a blows up to -∞ in a finite time almost surely (later proved in (5.2.4)) and is then reset at +∞, so we can define the successive explosions times:

ζ 1 (a) = ζ (0,+∞[ (a) < ζ 2 (a) = ζ (ζ 1 ,+∞[ (a) < ζ 3 (a) = ζ (ζ 2 ,+∞[ (a) . . .

The explosion times point process of Y

(0,+∞[ a is the empirical measure µ a of the rescaled explosion times:

µ a (B) = +∞ k=1 δ ζ k (a)/m(a) (B), for B Borel set of R + ,
where m(a) is later defined in (5.2.5). In particular, the random variable µ a [0, t] is the number of explosions of the diffusion Y (0,+∞[ a in the interval 0, m(a)t .

We can now state the main result of this section. Theorem 5.2.1 (Vague convergence of µ a [START_REF] Allez | Tracy-widom at high temperature[END_REF]Theorem 3.6]). When a → +∞, the explosion times point process µ a of the diffusion Y (0,+∞[ a converges weakly (in the space of Radon measures on R + equipped with the topology of vague convergence [START_REF] Kallenberg | Random Measures[END_REF])to a Poisson point process with intensity 1 on R + .

Proof of Theorem 5.2.1

First, we study the law of the first explosion time. The potential V Y presents a local minimum in z = √ a and a local maximum in z = -√ a. The potential barrier ∆V Y = 4 3 a 3/2 gets very large when a → +∞, while the noise remains constant. A typical sample path of the diffusion spends most of its time near the bottom of the well, and from time to time manages to reach the unstable equilibrium point -√ a, from where it either explodes to -∞ or comes back to the bottom of the well within a short time. From Kramer's theory [START_REF] Hänggi | Reaction-rate theory: fifty years after kramers[END_REF], we expect ζ (t 0 ,x 0 ) (a) to be distributed according to an exponential law with parameter exp(-2∆V Y ). To prove this, consider the Laplace transform:

g α (x) = E e -αζ (0,x) (a) .
(5.2.3)

Using classical theory on infinitesimal generators of diffusion processes (see [START_REF] Itô | Diffusion Processes and Their Sample Paths[END_REF]), we get the following characterization. Let α > 0. The function g α defined in (5.2.3) is the unique bounded and twice continuously differentiable solution of the boundary value problem

1 2 g α -x 2 -a g α = αg α , g α (x) → 1 when x → -∞.
In addition, it satisfies the fixed point equation

g α (x) = 1 -2α x -∞ dt +∞ t ds exp 2a(s -t) + 2 3 t 3 -s 3 g α (u).
The probability that Y (0,x) a explodes in a finite time is given by taking α = 0:

g 0 (x) := lim α↓0 E(e -αζ (0,x) (a) ) = P(ζ (0,x) (a) < +∞[= 1. (5.2.4)
The mean exit time m (0,x) (a) of the diffusion starting at time t = 0 from position x is obtained by differentiating g α (x) with respect to α and taking α = 0.

m (0,x) (a) = 2 x -∞ dt +∞ t du exp 2a(u -t) + 2 3 t 3 -u 3 .
Set m(a) = m (0,+∞[ (a). Its asymptotic when a → +∞ can be determined using the saddle point method (see [START_REF] Allez | Tracy-widom at high temperature[END_REF], Appendix C):

m(a) = π √ a exp 8 3 a 3/2 1 + 5 48 
1 a 3/2 + o a→+∞ 1 a 3 .
(5.2.5) Theorem 5.2.2 shows that, when a → +∞, the explosion time ζ (t 0 ,x 0 ) (a) rescaled by its mean m(a) converges to the exponential distribution with parameter 1, faithfully to Kramer's theory. This result is valid for a large range of starting points, mainly all the points which are in the potential well (i.e. above the local maximum of the potential). In particular, for any x f (a), the first rescaled explosion time ζ (0,x) (a)/m(a) converges in law when a → +∞ to an exponential law with parameter 1.

We can now prove the convergence of the explosion times point process to a Poisson point process with intensity 1 on R + .

Proof of Theorem 5.2.1. Using the criterion from Kallenberg [START_REF] Kallenberg | Random Measures[END_REF], it is sufficient to prove that, for any finite union I of disjoint and bounded intervals, a → +∞, 

E µ a (I) -→ a→+∞ |I|, (5.2 

Convergence of the explosions times process

A first convergence result

We now study the explosions times point process of the non-stationary diffusion Z a using approximations by the stationary diffusion Y a . If β tends to 0 while a is fixed, the diffusion Z a converges in law to the stationary diffusion Y a , which explodes at least k times with probability one, for any fixed k ∈ N. Therefore, if we look for a non trivial limit in law for the eigenvalue Λ k (L β ) when β → 0, the parameter a should increase to +∞. Consider the rescaling a To account for the fact that Z a feels the evolution in time due to the linear term

L β = m -1 (L β ), with L β = β -1 ( 3 8 ln 1/β) -1/3
β 4 in the drift, introduce a β (r) = a L β -r 4 √ a L β , r ∈ R.
The asymptotic in (5.3.1) shows us that

a β (r) = β→0 a L β - 1 2 1 3 1/3 ln 1 β -1/3 r + o β→0 1 (ln 1 β ) 4/3 .
This definition is motivated by the fact that, between times 0 and L β t, the first part of the drift of Z a L β evolves from a L β to The explosion times point process of Z a β (r) is the empirical measure ν β ,

a L β + β 4 L β t ∼ β→0 a β (t).
ν β (B) = +∞ k=1 δ ζ k /L β (B) = +∞ k=1 δ ζ k /m(a L β ) (B), for B Borel set of R + .
For almost all r, the number ν β (R + ) of explosions in R + is equal to the number of eigenvalues smaller than -a β (r). 

P ν β (I) = 0 = P 1 ν β (J)=0 P Z(s 0 ),s 0 ν β [t 1 ; t 2 ] = 0 ,
where P Z(s 0 ),s 0 is the law of the diffusion Z started at time s 0 with value Z(s 0 ). Therefore, showing (5.3.3) reduces to see that with probability going to 1 as β → 0,

P Z(s 0 ),s 0 ν β [t 1 ; t 2 ] = 0 -→ β→0 exp -e r t 2
t 1 e -t dt .

The idea is to decompose the interval [t 1 ; t 2 ] (with t 1 = 0 for (5.3.2)) into a finite number of small intervals and to approximate the number of explosions of Z on each small interval of the subdivision by those of stationary diffusions. Define a sequence (τ k ) k∈N of i.i.d. random variables with uniform law in [0, 1], independent of the diffusion Z. Let δ small enough such that 0 < δ < s 1 -s 0 . Then, construct iteratively the sequence of random times (S k ) k 0 such that S 0 = s 1 -δτ 0 , S k = S k-1 + δτ k for k 1. On each interval [S k , S k+1 ] of the random subdivision, define two diffusions m k and M k (independent of the times τ k ) driven by the same Brownian motion as Z:

m k (S k ) = Z (S k ) and dm k (s) = a β (r) + β 4 S k -m 2 k (s) ds + dB s for s ∈ [S k , S k+1 ] , M k (S k ) = Z (S k ) and dM k (s) = a β (r) + β 4 S k+1 -M 2 k (s) ds + dB s for s ∈ [S k , S k+1 ] .
The drifts of the diffusion m k (s), Z(s) and M k (s) are in increasing order for s ∈ [S k , S k+1 ]:

a β (r)+ β 4 S k a β (r)+ β 4 s a β (r)+ β 4 S k+1 .
The monotonicity property of the stationary diffusions implies that the number of explosions ν β [S k , S k+1 ] of the diffusion Z is stochastically dominated from above (resp. from below) by the number of explosions of the diffusion m k (resp. M k ).

It remains to check that the starting points of m k and M k fall within the hypotheses of Theorem 5.2.2, with probability one as β tends to 0. For those technical estimates, we refer the reader to [7, Section 4.2]. Theorem 5.2.1 adapted to m k and M k then shows that their respective explosions point processes converge weakly in the space of Radon measure, when the time scale is renormalized respectively by m a β (r) + βS k /4 and m a β (r) + βS k+1 /4 , to Poisson point processes with intensity 1, independently of the exact location of Z (S k ). This proves (5.3.2) and (5.3.3) and concludes the proof of the theorem.

A stronger convergence result

A shortcoming of Theorem 5.3.1 is that the topology of vague convergence of Radon measures does not allow to control the mass at infinity, while this is required to study the eigenvalues of the operator L β . To prove the convergence of the eigenvalues process in the next section, we will need to consider the topology of weak convergence of finite measures. This was done by Dumaz and Labbé [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF], who controlled the behavior of the diffusion Z at infinity to improve Theorem 5.3.1 and obtained the following convergence. When properly rescaled and centered, the Tracy-Widom law T W β converges weakly to the Gumbel law. More precisely, the following convergence holds:

2•3 1/3 • ln 1 β 1/3 β 4 2/3 T W β - 3 8 2/3 ln 1 βπ 2/3 -→ β→0 e -x exp -e -x dx.
The Gumbel law governs the fluctuations of the maximum of independent Gaussian variables, so this convergence in consistent with the independence of eigenvalues showed by the limit Poissonian statistics of Theorem 5.3.1.

Convergence of the eigenvalues process

We now sketch the proof of Theorem 5.1.1, deriving from Theorem 5.3.2 the convergence of the marginal distributions of the bottom eigenvalues of the linear stochastic operator L β when β → 0. We introduce a discretization scheme to approximate the diffusion Z a . First, let 0 = t n 0 < t n 1 < . . . < t n 2 n = +∞ be the points that satisfy:

t n j+1 t n j e -s ds = 1 2 n , ∀j ∈ {0, . . . , 2 n -1} .
Using Theorem 5.3.2, as β → 0, the number of explosions of the diffusion Z a β (r) in the time interval [t n j L β , t n j+1 L β ] is given by a Poisson random variable of intensity 2 -n e r and the first eigenvalues of L β typically deviate from a L β like 1/ √ a L β . Therefore, we set ε > 0 and introduce the grid around a L β :

M β ε = a L β + p ε 4 √ a L β : p ∈ Z ∩ -1/ε 2 , 1/ε 2 .
For every j ∈ {0, . . . , 2 n -1} and every a ∈ M β ε , we use the diffusion Z (t n j L β ,+∞) a , notated Z j a , to approximate the diffusion Z a on the interval [t n j L β , t n j+1 L β ]. The justification behind this approximation is provided by the following lemma, we refer to [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF] for its technical proof. Lemma 5.4.1 (Approximation of Z a by Z j a [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF]Lemma 5.1]). With a probability going to 1 as β tends to 0 and then n goes to ∞, the following holds. For all a ∈ M β ε and all j ∈ {0, . . . , 2 n -1}:

• Z a explodes at most one time on (t n j L β , t n j+1 L β ],

• Z a explodes on

(t n j L β , t n j+1 L β ] if and only if Z j a explodes on (t n j L β , t n j+1 L β ].
Denote by (q i ) i=1...m the elements of M β ε in decreasing order q 1 > . . . > q m and let r i be such that

q i = a L - r i 4 √ a L , i = 1, . . . , m.
For every j ∈ {0, . . . , 2 n -1} set V j (i) = 1 if the diffusion Z j q i explodes on (t n j L β , t n j+1 L β ], and V j (i) = 0 otherwise. Set also q 0 = +∞, r 0 = -∞ and V j (0) = 0. Finally, define

Q β n (i) = 2 n -1 j=0 V j (i) -V j (i -1) , i = 1 . . . m.
For every i, the r.v. Q β n (i) counts the number of intervals (t n j L β , t n j+1 L β ] where the diffusion Z j q i explodes but the diffusion Z j q i-1 does not. By Lemma 5.4.1, this is a good approximation of the total number of explosions of Z q i minus the total number of explosions of Z q i-1 in the β → 0 and n → +∞ limit. Lemma 5.4.2 (Convergence of Q β n (i) i=1,...,m [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF]Lemma 5.2]). The vector Q β n (i) i=1,...,m converges in distribution as β → 0 and n → +∞ to a vector of independent Poisson random variables with parameters p i = r i r i-1 e s ds.

Proof. By the monotonicity property of the stationary diffusions, for any given j ∈ {0, . . . , 2 n -1}, the diffusions (Z j q i , i = 1, . . . , m) on the interval [t n j L β , ∞[ are ordered up to their first explosion times, so V j (1)

V j (2) . . . V j (m). Since these r.v. are {0, 1}-valued, we get the identities:

P (V j (1) = 0, . . . , V j (i -1) = 0, V j (i) = 1, . . . , V j (m) = 1) = P (V j (i) = 1) -P (V j (i -1) = 1) P (V j (1) = 0, . . . , V j (m) = 0) = P (V j (m) = 0) P (V j (1) = 1, . . . , V j (m) = 1) = P (V j (1) = 1) . Theorem 5.3.2 yields: P V j (i) = 1 -→ β→0 1 -exp -2 -n e r i .
(5.4.1)

Noting that the random vectors V j (1), V j (2), . . . , V j (m) j=0,...,2 n -1 are independent, we now compute the law of Q β n (i) i=1,...,m . For any given integers 1 , . . . , m , set = i i . Then P Q

β n = ( 1 , . . . , m ) equals S 1 ,...,Sm⊂{0,...,2 n -1} S i ∩S i =∅ #S i = i j∈S i P V j (i) = 1 -P V j (i-1) = 1 j / ∈S 1 ∪...∪Sm P V j (m) = 0 .
Using (5.4.1), we deduce that the β → 0 limit of the last expression equals

2 n 1 , . . . , m , 2 n - m i=1 exp -2 -n e r i-1 -exp -2 -n e r i i exp -2 -n e rm 2 n - .
As n → ∞, one can show that this converges to the required quantity m i=1

p i i i ! e -p i .
To conclude the proof of Theorem 5.1.1, we define

Q β = k 1 δ 4 √ a L β (λk+a L β )
as a random variable in the space of measures on (-∞, ∞[ which are finite on all intervals bounded to the right. We endow this space with the weak topology towards -∞ and the vague topology towards +∞, so as to control the increasing sequence of atom locations of Q β from its first point.

For any ε > 0, on the event on which Lemma 5.4.1 holds true, we have, for every i ∈ {1, . . . , m}, Q β (r i-1 , r i ] = Q β n (i). Thus, by Lemma 5.4.2, the random vector Q β (r i-1 , r i ] , i = 1, . . . , m, converges in distribution as β → 0 to a vector of independent Poisson random variables of intensity e r i -e r i -1 . This provides the required control on the mass given by Q L to (-∞, r] for any given r to obtain the tightness of Q β β . Furthermore, the marginals of any limiting point are uniquely identified thanks to this convergence. Therefore, (Q β ) β converges in law to a Poisson point process of intensity e x dx, and then standard arguments ensure that the increasing sequence of its atom locations converges in law for the product topology to the increasing sequence of atom locations of this Poisson point process.

Chapter 6

The stochastic Bessel operator

Introduction

This chapter presents our results on the high temperature limit of the eigenvalues of the stochastic Bessel operator introduced by Ramírez and Rider [START_REF] Ramírez | Diffusion at the random matrix hard edge[END_REF].

Recall that the Stochastic Bessel operator (SBO for short) is a random differential operator depending on two parameters β > 0 and a > -1 which writes:

G β a = -exp (a + 1)x + 2 √ β B(x) • d dx exp -ax - 2 √ β B(x) d dx .
In this paper, for technical reasons, we will restrict to a > 0 that we will fix for the rest of the paper.

SBO's eigenvalues that we denote Λ β,a (0) < Λ β,a (1) < . . . can be seen as interacting particles on R + at temperature 1/β, confined in R + and whose interaction with the hard edge 0 depends on the parameter a. Indeed they correspond to the scaling limit of the smallest points of the (β, a)-Laguerre particles whose density writes

1 Z n,β,a i<j |λ (n) i -λ (n) j | β × n-1 k=0 (λ (n) k ) β 2 (a+1)-1 e -β 2 λ (n) k 1 λ (n) k >0 . (6.1.1)
They can be described via a family of coupled Riccati diffusions (p β λ , λ ∈ R * + ) with initial condition p β λ (0) = +∞:

dp β λ (t) = 2 √ β p β λ (t)db(t) + (a + 2 β )p β λ (t) -p β λ (t) 2 -λe -t dt .
The diffusion p β λ may explode to -∞, in this case it immediately restarts from +∞. It is crucial to note that the same Brownian motion B drives the whole family of SDE. It implies important properties such as for example the monotonicity of the number of explosions of p β λ (which turns out to be finite). In fact, the number of explosions of p β λ over R + corresponds to N β λ , the counting function of the eigenvalues of the SBO.

When β tends to 0, the smallest eigenvalues get close to the hard edge at 0 at an exponential rate. In order to get a non trivial limit, we therefore consider the rescaled eigenvalues µ β,a (i) := β ln(1/Λ β,a (i)) for i 0 (note that this reverses the ordering of the eigenvalues).

Our main result is the following theorem: Theorem 6.1.1 (Convergence of the eigenvalues). When β → 0, the rescaled eigenvalue point process of SBO (µ β,a (i), i 0) converges in law towards a random simple point process on R + which can be described using coupled SDEs.

The convergence holds for a well chosen topology of Radon measures on R + , corresponding to a left-vague/right-weak topology (see below for more details). We will also give a characterization (similar to the one for SBO eigenvalues) of the limiting point process through coupled diffusions. This characterization enables one to compute various statistics on the limiting point process.

Let us now make a few comments on this result. Usually, one expects that when the temperature is large, the limiting point process is no longer repulsive and corresponds to a Poisson point process as the noise becomes dominant. Here we get a different result. It comes from the competition with the strong interaction with the hard edge (which is attractive when β is small, see (6.1.1)). Because of this interaction, the repulsive factor does not disappear at the limit.

Strategy of proof and limiting point process 6.2.1 Rescaled diffusions

We will study the small beta limit of the family (p β λ ) when λ is properly rescaled with β, i.e. when λ is such that β ln(1/λ) is of order 1. More precisely, we aim at understanding the number of explosion times of p β λ on R + , as it corresponds to the number of eigenvalues below λ. Notice that when p β λ reaches 0, the term in front of the noise vanishes and the drift is negative. It implies that p β λ never reaches 0 from below. It is easy to check that the hitting times of 0 form a discrete point process. Let us fix µ > 0. Using this property, we define the diffusion q β µ (t), which equals

q + µ (t) := β ln p β Λ β (t/(4β)) when p β Λ β (t/(4β)) > 0, q - µ (t) := -β ln -p β Λ β (t/(4β)) -µ -t/4 when p β Λ β (t/(4β)) < 0,
where Λ β := exp(-µ/β).

The diffusions q + µ (t) and q - µ (t) follow the SDEs:

dq + µ = dW (t) + 1 4 a -exp(q + µ (t)/β) -exp(-(q + µ (t) + t/4 + µ)/β) dt (6.2.1) dq - µ = dW (t) + 1 4 -(a + 1) -exp(q - µ (t)/β) -exp(-(q - µ (t) + t/4 + µ)/β) dt (6.2.2)
than q + . We prove the results for the diffusion q + , they can be extended to the diffusion q -with the same arguments.

We introduce the stationary diffusion q on R + , which we use to approximate q + in the region when the drift component exp -1 β c(t) + q + (t) becomes negligible as β tends to 0:

dq(t) = dW (t) + 1 4
a -e q(t)/β dt. (6.3.3)

Descent from +∞: proof of (a)

It suffices to prove property (a) for the diffusion q, which bounds the diffusion q + from above. Set the level l 1 = β 3/4 , so that β = o(l 1 ). As β tends to 0, when the diffusion q is above the level l 1 , the term of leading order in the right-hand side of (6.3.3) is e q(t)/β . Consider the ordinary differential equation on R + :

dy(t) = 1 4 (a - 1 2 e y/β )dt, y(0) = +∞,
which has for solution y(t) = -β ln 1 2a (1 -e -at/4β ) . The time t 1 at which the diffusion y reaches the level l 1 /2 has the asymptotics

t 1 = 8βe -l 1 /(2β) + o(βe -l 1 /β ).
Introduce the diffusion q 1 (t) = q(t) -W (t). Its evolution writes:

dq 1 (t) = 1 4 
a -e q 1 (t)+W (t) /β dt.

Let

E 1 = sup [0,t 1 ] W (t) β 2
. By the Brownian tail bound (6.2.5), P(E 1 ) -→ 1.

On the event E 1 , e (q 1 (t)+W (t))/β e -1/β e q 1 (t)/β , so the diffusion q 1 is bounded from above by the diffusion y for β small enough and hits the level l 1 /2 before time t 1 . Since q 1 (t) -q(t) β 2 before time t 1 , for β small enough, the diffusion q hits the level l 1 before time t 1 .

After the level l 1 is reached, we use the Brownian motion W (t 1 + •) -W (t 1 ) to reach x = 0 in a short additional time. Set the event

E 1 = inf [0,β/2] W (t 1 + t) -W (t 1 ) + a 4 t < -l 1 , on which τ 0 < t 1 + β/2. Since P E 1 P inf [0,β/2] W (t 1 + t) -W (t) < -l 1 -a 8 β
, the lower bound (6.2.6) and the asymptotics β = o(l 1 ) and l 1 = o( √ β) imply that P E 0 -→ 1, thus proving the property (a) on the event E 1 = E 1 ∩ E 1 .

Convergence to r + : proof of (b)

The bound (6.2.5) shows that the probability of the following event tends to 1 as β tends to 0:

E 2 = sup t∈[0,β] |W (t)| β 1/4 .
Note that β 1/4 = o(δ) and that the diffusion r + (τ 0 + t) -r + (τ 0 ) is equal in law to r + by the strong Markov property. Thus, to prove property (b), it suffices to show that, with overwhelming probability as β tends to 0, for β small enough, sup

[0,τ c ∧T ] q + 0 (t) -r + (t) < δ/2, ( 6.3.4) 
where q + 0 denotes the diffusion q + started from x = 0 at time t = 0 and τ c its first hitting time of c(t) + δ.

We denote by q 0 the stationary diffusion q from (6.3.3) started from x = 0 at time t = 0. For t ∈ [0, τ c ∧ T ], q + 0 (t) c(t) + δ, so we get the bounds:

∀t ∈ [0, τ c ∧ T ], q 0 (t) -e -δ/β T q + 0 (t) q 0 (t).

Since e -δ/β = o δ , to prove property (6.3.4), it is enough to show that, on an event E 2 of probability going to 1 as β tends to 0, for β small enough, sup

[0,τ c ∧T ] q 0 (t) -r + (t) < δ/4, (6.3.5) 
To that end, we bound the diffusion q 0 (t) from below and above by two reflected diffusions r + 1 and r + 2 that converge to r + as β tends to 0. We set a level l 2 = β 1/6 , so that l 2 = o(δ) and δ = o( √ l 2 ).

Lower bound

For any stochastic process Z, we denote by L x t (Z) its local time at position x and time t. Since the element of drift -e q 0 (t)/β is decreasing on -∞, -l 2 , we have the lower bound:

∀t ∈ [0, τ c ∧ T ], q 0 (t) r + 1 (t), (6.3.6) 
where r + 1 (t) is the following diffusion (reflected downwards at the barrier -l 2 ):

r + 1 (t) = -l 2 + W (t) + at/4 -e -δ β T /4 -L 0 t W (t) + at/4 -e -δ β T /4 , It is straightforward that ∀t ∈ [0, τ c ∧ T ], r + (t) -e -δ β T /4 -l 2 r + 1 (t) r + (t) -l 2 .
Since e

-δ β = o(l 2 ), for β small enough, sup [0,τ c ∧T ]
r + (t) -r + 1 (t) < 2l 2 . (6.3.7)

Upper bound

We wish to bound the diffusion q 0 (t) from above by the diffusion r + (t) + l 2 . To prove that this upper bound holds with high probability as β tends to 0, we use the following result, that shows how unlikely it becomes for the diffusion q 0 (t) to hit the level l 2 before any negative level. Lemma 6.3.1 (Levels hitting times for the diffusion q 0 (t)). For any γ < 0, P inf t 0, q 0 (t) = l 2 < inf t 0, q 0 (t) = γ -→ 0. Lemma 6.3.1 proved in the Appendices using standard tools of diffusion analysis.

The choice of level γ = -µ(T ) in Lemma 6.3.1 provides the existence of an event E 2 of probability going to 1 as β tends to 0 on which the diffusion q 0 (t) hits the barrier c(t) before the level l 2 , and thus: ∀t ∈ [0, τ c ∧ T ], q 0 (t) r + (t) + l 2 .

(6.3.8)

Conclusion

Gathering (6.3.6) and (6.3.8), we get that, on E 2 , for β small enough, ∀t ∈ [0, τ c ∧ T ], r + 1 (t) q 0 (t) r + (t) + l 2 , which implies sup [0,τ c ∧T ] q 0 (t) -r + (t) < 2l 2 . This in turn implies (6.3.5) and thus proves property (b).

Explosion to -∞: proof of (c)

We denote by q + δ (resp. q + -δ ) the diffusion q + started at time t = 0 from position -µ + δ (resp. -µ -δ). We introduce the first hitting time τ δ of the level c(t) -δ by the diffusion q + +δ , and the explosion time τ -∞ of the diffusion q + -δ to -∞. To prove property (c), we choose η = 2l 2 , with l 2 = β 1/6 , and show that there exists an event of probability going to 1 as β tends to 0 on which, for β small enough, τ δ < η/2 and τ -∞ < η/2.

Control of τ δ

Recall that δ = β 1/8 , so that l 2 = o(δ) and δ = o( √ l 2 ). We use the variations of the Brownian motion W to cross the critical line c(t). The upper bound q + δ (t) -µ + δ + W (t) + a 4 t implies that τ δ < l 2 on the event

E 3 = inf [0,l 2 ] W (s) + a 4 s + 1 4 s + 2δ < 0 .
The bound (6.2.6) ensures that P E 3 → 1.

Note that the inclusion of events E 3 ⊂ inf t 0, r + (t) + t/4 -2δ < l 2 ensures that, on a subevent of E 2 (where |q + (τ c ) -r + (τ c )| < δ if τ c < +∞) of probability going to P(E 2 ) as β tends to 0, the diffusion r + hits the critical line c(t) while the diffusion q + crosses this line, between times τ c and τ c + η.

Control of τ -∞

On each Brownian trajectory, the diffusion q + -δ is bounded from above by the diffusion z, with dz(t) = dW (t) + The diffusion z 2 has the solution z 2 (t) = -δ/2 + β ln e -δ/(2β) -t 4β , which explodes to -∞ in a time 4βe -δ/(2β) , smaller than β for β small enough. This remains true for z 1 and thus for z, since |z 1 -z| µ + aβ/4 + β while t β. Since β = o(η), this proves the desired control on τ -∞ .

Indeed, the closure K of µ ∈ P, µ([0, αT ]) N and µ [αT , +∞[ = 0 , where P is the space of locally finite measures on R + , satisfies the Kallenberg criterion from [START_REF] Kallenberg | Random Measures[END_REF] for weak relative compacity: The rest of this section is dedicated to the proof of (6.4.1), which provides the relative compacity of the family (L β ) β<β 0 in M 1 (P) by the Prokhorov theorem and thus concludes the proof of Proposition 6.2.2.

We show a preliminary result that will be helpful to control the number of explosions. Recall that ξ + = ξ + β (0) is the first explosion time of the diffusion q + from (6.2.1), started from +∞ at time 0. Lemma 6.4.1 (Lower bound on the explosion time of q + ). For β small enough, ∀t > 0, P ξ + > t 1 -4e -µ 2 /(32t) .

Proof. We fix a deterministic δ 0 such that 0 < δ 0 < µ/4. Recall the definition of the critical line c µ in (6.2.3). When the diffusion q + is in the region between -c µ (t) + δ 0 and -δ 0 , we have the lower bound, for β small enough:

a -e q + (t)/β -e -1 β (µ(t)+q + (t))

a -2e -δ 0 /β a/2. (6.4.2)

Introduce the diffusion q on R + , started from -δ 0 at time 0 and reflected downwards at -δ 0 : q(t) = -+ W (t) + at/8 -L 0 t W (t) + at/8 .

The bound (6.4.2) shows that, for β small enough, the diffusion q + is bounded from below by the diffusion q on each Brownian trajectory, up until the first hitting time of c µ (t) + δ 0 by the diffusion q + . Set t > 0 and introduce the event E = sup s∈[0,t] W (t) < µ/4 . By the Brownian tail bound (6.2.5), we have P(E) 1 -4e -µ 2 /(32t) . Besides, on the event E, using (6.2.7), ∀s ∈ [0, t], q(s) > -δ 0 -µ/2.

This means that the diffusion q stays above -µ until time t. Thus, for β small enough so that (6.4.2) holds, on the event E, we have ξ + > t.

We now turn to the proof of (6.4.1). Fix > 0. We will control the diffusion q β µ with two diffusions. The first diffusion Q 1 starts at time T at position -1 and is reflected below the horizontal line -1 with drift a/8. The second diffusion Q 2 starts at time 2T at position c µ (T ), has a drift a/8 as well and is also reflected below -1.

Lemmas for Theorem 1.3.5 Proof of Lemma 1.3.1

For the first property, if (m n ) n 1 is an integer sequence with lim n→∞ m n = +∞ and lim n→∞ mn n = 0, then

P (i n > m n ) = n -m n n = 1 - m n n -→ n→∞ 1.
The second property follows from the fact that n + 1 -i n and i n are equally distributed. For the third property, we write, for all t ∈ [0, 1],

P (i n nt) = P (i n nt ) = nt n -→ n→∞ t.
For the last property, we can simply take U ∼ Uniform [0, 1] on an arbitrary probability space and define i n = 1 + nU for all n 1.

Proof of Lemma 1.3.2

Since max

1 i n |x i | |x| = d i=1 x 2 i 1/2
, we get, for all ε ∈ (0, +∞[, max

1 i d P X (n) i -X i ε P X (n) -X ε d i=1 P X (n) i -X i ε d ,
by the union bound for the last inequality.

Lemmas for Theorem 3.3.1

Proof of Lemma 3.3.2

For χ r a chi random variable of index r > 0, for any p > -r, we use the estimates (see [START_REF] Krishnamoorthy | Handbook of statistical distributions with applications[END_REF]): where c is any fixed number, and apply it to the two independent sums of the kernel. To that purpose, we use the following result. Take t = 1 -x in the proposition to apply it to (6.4.6). The second estimate of (6.4.4) yields the first assumption of (6.4.7) with f (t) = 1/(2βt). The estimate (6.4.5) with m = 2 produces the second half of (6.4.7), as x is always positive. This proves (3.3.4).

E(χ p r ) = 2 p Γ( r + p 2 ) Γ( r 

Proof of Lemma 3.3.4

First, for C ∈ R and a > -1, the integral operator on L 2 [0, 1] with kernel exp κ n (ω) 1 + T 3/4 (x i ) + T 3/4 (y j ) . (6.4.9) Since κ n and κ n converge, they are bounded almost surely. Using the continuity of T , we can fit the right hand side of (6.4.9) under a fixed k C independent of n. For the limit kernel k β,a ∞ (x, y)(ω), its exponent can be expressed as equal in law to c a 3/4 with a (nonrandom) c and all a large enough. Thus, the second half of (6.4.8) holds with C(ω) β -1/2 c c(ω). This concludes the proof, with Proof of Lemma 6.3.1

Recall that l 1 = β 3/4 and l 2 = β 1/6 . In this proof we denote by q the diffusion q + 0 . Set γ < 0, τ = inf t 0, q + 0 (t) = l 2 and τ = inf t 0, q + 0 (t) = γ . Let f β (x) = 1 4 a -exp(x/β) . To compute the hitting times of q, introduce the scale functions s β and s: The following lemma explicits the asymptotic behavior of s β . Lemma 6.4.2 (Convergence of the scale functions).

For any x 0 < 0, s β -→ s and s β -→ s uniformly on [x 0 , 0].

Furthermore, s β l 2 -→ +∞.

Since s β q(•) is a local martingale, s β q(• ∧ τ (q) ∧ τ (q) is a martingale. By the stopping theorem, we get:

P τ < τ = s β (γ) -s β 0 s β (γ) -s β l 2 .
Lemma 6.4.2 readily implies that this probability tends to 0 as β tends to 0.

Proof of Lemma 6.4.2. We have, for all x 0, A study of the variations of ln s β shows that s β decreases until β ln(2a) and increases afterwards. For β small enough, ln s β (l 1 ) βe l 1 /β , which tends to +∞ as β tends to 0, and s β increases on l 1 , l 2 , so that:

s β l 2 l 2 l 1
s β (v)dv l 2 -l 1 s β (l 1 ), therefore s β l 2 -→ +∞.
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 2 Figure 2: Empirical eigenvalues density of M ∈ W 1 (10 3 , 10 4 ) (black); Marchenko-Pastur distribution µ 0.1 MP (blue).

Figure 3 :

 3 Figure 3: Empirical eigenvalues density of M ∈ M 1 (10 3 , 10 4 , 2•10 3 ) (black); Kesten-McKay distribution µ 10,2 KM (blue).
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 6 Figure 6: Kesten-McKay distribution µ 10,10 KM (upper left), µ 1,10 KM (upper right), µ 10,1 KM (lower left) and µ 1,1 KM (lower right).
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 1 The notation Dir (x + iy, u 0 /u 1 , f ) denotes the Dirac operator τ with ratio of boundary conditions u 0 /u 1 . Definition 3.1.2 (Hyperbolic Brownian motion [78, Definition 3]). In the hyperbolic half-plane model, the standard hyperbolic Brownian motion is the solution of the stochastic differential equation dB = B dZ, where Z is standard complex Brownian motion, i.e. Z, Z are independent standard real Brownian motions. If we replace dZ by σdZ, we get the hyperbolic Brownian motion with variance σ 2 . Theorem 3.1.1 (The Sine β operator [78, Theorems 25 and 26]). Fix β > 0. Let x + iy be the hyperbolic Brownian motion 3.1.2 with variance
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 1 βs f (y)dy, after integration by parts and where f ∈ L 2 [0, 1] and f (1) = 0. The substitution g(x) = x -a/2 e dB(s) √ βs f (x) and the time change 1x s -1/2 dB(s) = B log(1/x) with a new Brownian motion B yield the equivalent formulation: g ∈ L 2 [0, 1], ma , for ma (dx) = x a e
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 411 Family of diffusions at the hard edge[START_REF] Ramírez | Diffusion at the random matrix hard edge[END_REF] Section 3]). The solution p hard λ of (4.1.3) is unique and continuous for the topology discussed above, and decreasing in λ for each t. It defines a family of Markov processes, or family of diffusions at the hard edge, parametrized by λ.
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 4114121411 Equality of events at the hard edge). The proof of Theorem 4.1.1 will show an equality of events, stronger than the stated equality in law:∀k ∈ N, p hard λ explodes at most k times on (0, ∞[ = Λ k (G β a ) > λ . (4.1.4) Proof of Theorem 4.1.We follow the proof of Ramírez and Rider [63, Section 3]. For L > 0, consider first the restriction of G β a to [0, L] with Dirichlet conditions in 0 and L, writing G β,L a this truncated operator. [63, Lemma 3.2] Fix λ and consider the unique diffusion p hard λ (t) started at +∞ at t = 0, and restarted at +∞ immediately after any passage to -∞. The number of eigenvalues of G β,L a less than λ is equal in law to the number of explosions of p before t = L.
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 412121 [63, Lemma 3.3] For k ∈ N * , as L → ∞, the top k eigenvalues of G β,La converge to the top k eigenvalues of G β a with probability one. Proof. G β,L a -[0, L], m a via L (x, y)f (y)m a (dy), where s L (x, y) = {x,y∈[0,L]} . We have s L (x, y) x∧y 0 s(dz) and lim L→∞ s L (x, y) = x∧y 0 s(dz) pointwise in x and y, almost surely. By dominated convergence, almost surely,
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 31 Taking L → ∞ in Lemma 4.1.1 and using Lemma 4.1.2 proves Theorem 4.1.1 and the equality of events 4.1.4. 
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 421 Law of explosions at the hard edge[START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF] Theorem 1.2]).
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 9 Figure 9: Diffusion p soft 10 .

Figure 10 :p soft 1 (top), p soft 2 (middle) and p soft 5 (

 10125 Figure 10: Diffusions p soft 1 (top), p soft 2 (middle) and p soft 5 (bottom).
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 431 Tracy-Widom tail bounds [64, Theorem 1.3]).

P ( 1 ,

 1 -a) p soft 0 never explodes , where the subscript of P indicates the space-time starting point of p 0 . By monotonicity and strong Markov property, -a) ∀ t ∈ [-a, 0], p soft 0 (t) ∈ [0, 2] P (0,0) p soft 0 never explodes .

Figure 11 :

 11 Figure 11: T W 1 (black) and left and right tail estimates (blue).
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 441 Hard to soft transition [63, Theorem 3]).

Figure 12 :

 12 Figure 12: High-temperature regime for H β n .

.1. 1 )

 1 Implementing the Riccati transform from Chapter 4 on L β , we obtain a new family of diffusions on R + (see[START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF] Section 2]).Proposition 5.1.1 (A second family of diffusions [22, Theorem 1]).Let β > 0 and B a Brownian motion. Introduce (Z a ) a∈R , the family of diffusions on R + :

Proposition 5 . 2 . 2 (

 522 Laplace transform of ζ (t 0 ,x 0 ) (a) [7, Proposition 3.1]).

Theorem 5 . 2 . 2 (

 522 Convergence in law of ζ (t 0 ,x 0 ) (a)[START_REF] Allez | Tracy-widom at high temperature[END_REF] Theorem 3.3]). Let f : R → R such that a 1/4 f (a) + a1

FixDefinition 5 . 3 . 1 (

 531 r ∈ R and introduce (ζ k ) k∈N * the family of explosion times of Z a β (r) (with no risks of confusion with the explosions of Y a from Section 5.2, which we no longer use), where we omit the dependency on β and r to alleviate notations. Explosion times point process of Z a β (r) ).

Theorem 5 . 3 . 2 (

 532 Weak convergence of ν β[START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF] Theorem 4]). Fix r ∈ R. As β → 0, the random measure ν β converges in law for the topology of weak convergence of finite measures to a Poisson point process on R + with intensity e r e -t dt.As a straightforward application of Theorem 5.3.1, we get the progressive deformation of T W β into a Gumbel law when β → 0. Theorem 5.3.3 (From Tracy Widom to Gumbel [7, Corollary 3.5]).

2 (

 2 r 2 ),(6.4.4)∀m ∈ N * , E (log χ r -E log χ r ) 2m = O r→+∞ (1/r m ) (6.4.5)Start with the convergence (3.3.3). For any fixed x ∈ (0, 1], it is an instance of the law of large numbers. With (6.4.3), one can obtain the increment boundE (r + 1)β χ r 2 ),which gives the tightness required to ensure process level convergence.Turning to the proof of(3.3.4), by the first estimate of (6.4.4), we have: χkβ ) -E(log χ (k+a)β ) = a 2 log(y/x), uniformly for y < x restricted to compact sets of (0, 1]. Thus, for (3.3.4), it is enough to demonstrate the weak convergence n k= nx log χ (k+c)β -E log χ (k+c)

Proposition 6 . 4 . 1 .-

 641 [START_REF] Ethier | Markov processes: characterization and convergence[END_REF] Chapter 7] Let y n,k be a sequence of mean-zero processes starting at 0 with independent increments ∆y n,k . Assume that, when n, k → ∞,nE(∆y n,k ) 2 = f (k/n) + o(1), nE(∆y n,k ) 4 = o(1) (6.4.7)uniformly for k/n in compact sets of [0, T ) with a continuous f ∈ L 1 loc [0, T ) . Then, in the Skorohod topology,y n (t) := y n, nt d 2 (s)dB(s)with B a standard Brownian motion.

k 4 ye--

 4 C (x, y) = C exp C log(1/x) 3/4 + C log(1/y) 3/a/2x (a+1)/2 1 y<x is Hilbert-Schmidt. Indeed, the change of variables x = e -s and y = e -t produces 2Ct 3/4 -(a+1)t dtds, and the latter is finite if and only if a > -1. Using Lemma 3.3.2, there is a subsequence (still noted (n) for simplification purposes) over which we have the joint convergence in law:√ nβ χ ( nx +a)β d log χ (k+a)β )By Skorohod's representation theorem ([32, Theorem 1.8]), there is a probability space on which each of the above occurs with probability one. On this new spaceP lim n→∞ k β,a n (x, y)(ω) = k β,a (x, y)(ω) for almost every x, y ∈ [0, 1] 2 = 1.To apply Lebesgue's dominated convergence theorem, we need to find an almost surely finite constant C(ω) such that, for almost all x, y ∈ [0, 1] and ω:sup n>0 k β,a n (x, y)(ω) k C(ω) (xy) and k β,a (x, y)(ω) k C(ω) (x, y). (6.4.8) We use Lemma 3.3.3. For each n, for x ∈ [x i , x i+1 ), y ∈ [y j , y j+1 ), k β,a n (x, y)(w) κ n (ω)x

  x) -B log(1/y) , with B a different Brownian motion living on the same probability space. By the law of the iterated logarithm, B(a) c(ω) 1 + a log log(1 + a) 1/2 for a random c(ω) and all a > 0, and a log log(1 + a)

  a n (x, y)(ω) -k β,a ∞ (x, y)(ω) 2 dxdy -→ n→∞ 0 a.s.

2 -

 2 e ax/2 .

  β dv β -→ 0, which means that ln s β converges uniformly to ln s on ] -∞, 0]. Besides, the functions ln s β and ln s are bounded on [x 0 , 0], and x → e x is uniformly continuous on [x 0 , 0] so s β converges uniformly to s on [x 0 , 0]. Therefore, s β converges uniformly to s on [x 0 , 0]. Now turning to s β l 2 . We can compute explicitly:ln s β (x) = -2 x 0 f β (v)dv = -2ax + 2x 0 e v/β dv = -2ax + 2β e x/β -1 .

  

  Definition 1.2.1 (Gaussian, Wishart and MANOVA ensembles). Set β ∈ {1, 2, 4}. The Gaussian orthogonal/unitary/symplectic ensembles (abbreviated GOE/ GUE/ GSE) of size n are the ensembles:

  where Z L n is a normalizing constant, induces the law L β n,m on the eigenvalues of M . Remark 1.2.1 (Maxwell's theorem). The fact that matrices in G β (n) have normal coefficients can be read from P H n and is a consequence of Maxwell's theorem (see [59, Theorem 2.6.3]). A random matrix from H β n has in the same time independent entries and a law invariant by conjugacy with respect to orthognal (resp. unitary, symplectic) matrices if and only if it has a Gaussian law with density of the form M → exp aTr(M 2 ) + bTr(M ) + c .

  Theorem 1.3.1 implies that, for any open subset O of the set M 1 (R) of measure probabilities on R and any closed set

  .1.6) defined on a subset of L 2 (R + ) with Dirichlet boundary conditions at 0.

	Proposition 3.1.2 (A β as a generalized S-L operator [23, Proposition 9]).
	The operator A β is a generalized Sturm-Liouville operator of the form (3.1.1)
	with
	r

  y)(ω) 2 dxdy = 0 almost surely. (3.3.6) Lemma 3.3.4 is proved in the Appendices. We place ourselves on its advertised probability space to prove the convergence in law of the eigenvalues. Start with the scaled minimal eigenvalue of L β n,a , and notate • the L 2 → L 2 operator norm:

  It defines a family of Markov processes, or family of diffusions at the soft edge, parametrized by λ.

.2.2) Proposition 4.2.1 (Family of diffusions at the soft edge [64, Section 3]). The solution p soft λ of (4.2.2) is unique, continuous for the topology discussed in Subsection 4.1.1, and decreasing in λ for each t.

  For each k, the strong Markov property tells us that the random variableζ k+1 -ζ k is independent of (ζ 1 , ζ 2 -ζ 1 , . . . , ζ k -ζ k-1 )and has the same distribution as ζ 1 . Therefore, ζ k (a)/m(a) converges in law when a → +∞ to the Gamma distribution Γ(k, 1). Using Cramer's large deviation principle, one can prove the existence of a constant C > 0 independent of k such that P [ζ k (a)/m(a) t] C/k 2 . The bounded convergence theorem applies and:

								.6)
		P µ a (I) = 0 -→ a→+∞	exp -|I| ,	(5.2.7)
	where |I| denotes the length of the set I. For (5.2.6), by linearity, we just need
	to prove that E µ a [0, t] -→ a→+∞	t. With Theorem 5.2.2, we have
	E µ a [0, t] =	+∞ k=0	P µ a [0, t] k = 1 +	+∞ k=1	P	ζ k (a) m(a)	t .
								+∞
	E µ a [0, t] -→ a→+∞	1 +	k=1	P Γ(k, 1) t = t.
	We now turn to the second equality (5.2.7). For any k 1, the strong Markov
	property for the diffusion Y a (0,+∞[	shows that the first k explosions times converge
	jointly in law to the first k occurrence times ξ 1 < ξ 2 < . . . < ξ k of a Poisson
	point process with intensity 1:			
	1 m(a)	ζ 1 (a), ζ 2 (a), . . . , ζ k (a)	d ----→ a→+∞	ξ 1 , ξ 2 , . . . , ξ k .	(5.2.8)
	Indeed, the increments are independent and each of them converges to an ex-
	ponential distribution thanks to Theorem 5.2.2. A large deviation argument
	can again bound the probability of having more than k explosion times be-
	fore time m(a)t. Using the convergence (5.2.8) on the overwhelming event
	ζ k (a) > m(a)t , we get the convergence (5.2.7).

  . Dumaz and Labbé [22, Section 4.1] proved that

	a L β = β→0	3 8	ln	1 β	2/3	1 -	2 3	ln π ln(1/β)	+ o β→0	1 ln(1/β)	.	(5.3.1)

  Proof of Theorem 5.3.1. For simplification purposes, we notate here Z the diffusion Z a β (r) . Again, from Kallenberg's criterion[START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], it is sufficient to prove that, for any finite union I of disjoint and bounded intervals, J ∪ [t 1 ; t 2 ] and let t 0 < t 1 be the supremum of J. Set s i = L β t i for i = 0, 1, 2. By linearity of the expectation, it is enough to prove (5.3.2) for intervals I of the form I = [0, t]. For (5.3.3), the simple Markov property yields

		E ν β (I) -→ β→0	e r	I	e -t dt	(5.3.2)
	P ν β (I) = 0 -→ β→0	exp -e r	I	e -t dt .	(5.3.3)
	Write I =							
	Theorem 5.3.1 (Vague convergence of ν β [7, Theorem 4.1]).
	When β → 0, the explosion times point process ν β converges weakly (in the space
	of Radon measures equipped with the topology of vague convergence [47]) to a
	Poisson point process with inhomogeneous intensity e r × e -t dt. It readily implies
	the following convergence.							
	For any t < t , k ∈ N,							
	P ν β [t; t ] = k -→ β→0	exp -e r	t	t	e -x dx	e r t t e -x dx k!	k	.

  Define the diffusion z 1 (t) = z(t) + µ -W (t) -at/4, with evolution

			1 4	a -e	-1 β t/4+µ β +z(t) dt, z(0) = -µ -δ.
	dz 1 (t) = -	1 4	e	-1

β z 1 (t)+t/4+W (t)+at/4 dt, z 1 (0) = -δ.

Consider the event

E 3 = sup [0,β] |W (t)| δ/4 , with P E 3 → 1.

On E 3 , for β small enough:

∀t β, W (t) + a + 1 4 t δ/2,

so the diffusion z 1 is bounded from above by the diffusion z 2 with evolution

dz 2 (t) = -1 4 e -1

β z 3 (t)+δ/2 dt, z 2 (0) = -δ.

π √ 4-x

1 x∈[-2,2] dx

where W is a Brownian motion (corresponding to (different) rescaling of the initial Brownian motion B). The diffusions q ± µ may explode to -∞ in a finite time. By definition, the diffusion q β µ alternates between q + µ and q - µ : it starts to follow q + µ and each time q β µ = q + µ (resp. q - µ ) reaches -∞, q β µ immediatly restarts from +∞ and follow q - µ (resp. q + µ ) .

Let us define the critical line:

c µ (t) := -µ -t/4 . (6.2.3) Figure 13 shows an example of trajectory of the diffusion q β µ . On this event, the diffusion q β µ explodes one time as q + µ (blue), then one time as q - µ (red), and then stays above the critical line c µ (t) as q + µ (blue) and does not explode anymore.

Figure 13: Sample trajectory of the diffusion q β µ .

Roughly, the diffusion q + µ behaves as follows after each explosion time. It first quickly goes down to values around 0. Then, it spends some time between the line c µ (t) and 0, where it behaves as a reflected (downwards) Brownian motion with drift a/4. If it reaches the line t → c µ (t) in a finite time then it quickly explodes to -∞ after this hitting time. The behavior of the diffusion q - µ is similar except that in the interval [c µ (t), 0], it behaves as a reflected (downwards) Brownian motion with drift -(a + 1)/4. Therefore, it almost surely hits c µ (t) when a > 0. There are two types of explosions for q β µ : either q β µ explodes at a time ξ such that q β µ (ξ + ) = q + µ (ξ + ). It corresponds to the (rescaled) hitting times of 0 by the initial diffusion p β Λ β . Or q β µ explodes at time ξ such that q β µ (ξ -) = q - µ (ξ -). In this case, we get the (rescaled) explosion times by the initial diffusion p β Λ β .

In the following, we denote by

. the explosion times of the diffusion q β

µ and by

the measure corresponding to the (rescaled) explosions of p β Λ β . We will prove that, for a well-chosen topology, the trajectory of the diffusion q β µ converges in law when β → 0 towards a non-trivial limit, that we describe in the following paragraph.

Description of the limiting point process

Let us define now the limiting diffusion r µ , which will characterize the limiting point process. Its definition involves Brownian motions with drift reflected downwards at 0. By definition, a Brownian motion with drift q reflected downwards at 0 is a diffusion Markov process with infinitesimal operator G : f ∈ D → 1 2 f + qf acting on the domain

where C b [0, +∞[ denotes the continuous and bounded functions on [0, +∞[. Thanks to Skorohod problem, we can write this diffusion as

where W is a Brownian motion starting at 0 or any negative point.

Let us now define the diffusion r µ . It starts at 0 at time 0 i.e. r µ (0) := 0. It then follows a Brownian motion with drift a/4 reflected downwards at 0 that we denote r + , until its first hitting time of the critical line (6.2.3). If it reaches the critical line in a finite time, then it immediately restarts at 0 at this time and follows a reflected downwards at 0 Brownian motion with another drift -(a + 1)/4 denoted r -, and so on, alternating between r + and r -each time it hits t → c µ (t) and restarts at 0. Note that the probability that r + reaches the critical line decreases with time. On the other hand, r -almost surely hits the critical line in a finite time.

Let us denote by ξ

) < . . . the hitting times of the critical line by the diffusion r µ and define the random measure associated to the point process (ξ - 0 (k), k 0) only:

We will then use the coupled random measures (ν 0 µ , µ > 0) to define a discrete point process on R + . As µ ∈ R + → ν µ (R + ) is decreasing from +∞ to 0 almost surely, it is easy to prove the following proposition: Proposition 6.2.1 (Definition of the limiting point process). There is a unique random variable M 0 valued on the Borel measures on ]0, +∞[ such that, for all fixed

Almost surely, the measure M 0 is discrete, bounded from above and has an accumulation point at 0.

Convergence towards the limiting measures

We can now state the desired convergence result: Proposition 6.2.2 (Convergence of the explosion times). When β → 0, the measure ν β µ converges in law to the measure ν 0 µ for the topology of weak convergence.

It is immediate to extend this proposition for the joint law of ν β µ i when µ 1 , . . . , µ k are fixed positive numbers. It directly implies the following result on the finite dimensional laws of the point process {µ β,a (i), i 0}. Let us denote by M β the measure associated to this point process, i.e. M β := i 0 δ µ β,a (i) . Then, we have the following result: Proposition 6.2.3 (Convergence of the finite-marginals of the eigenvalue process).

Consider the space of measures on (0, ∞[ with the topology that makes continuous the maps m → f, m for any continuous and bounded function f with support bounded to the left: in other words, this is the vague topology towards 0 and the weak topology towards +∞. The previous proposition shows that the family (M β ) β>0 is tight: indeed the above convergence provides the required control on the mass at +∞. As the finite-marginals of any limiting point is identified, we deduce the convergence of the left-vague/right-weak topology of the eigenvalue point process stated in Theorem 6.1.1.

Let us now give an outline of the rest of the paper which is devoted to the proof of Proposition 6.2.2. We will first control the first explosion time of the diffusion q β µ in the next section 6.3 and deduce the weak convergence of the k first explosions times. The section 6.4 focuses on the tightness of the family (ν β µ ) β>0 .

Useful results

We will use the following estimates for any Brownian motion W :

Consider a diffusion y started from 0 and its counterpart y reflected downwards at the origin:

For all δ > 0, y(t) < -δ = ∃s < t, y(t) -y(s) < -δ , therefore:

y(s) > -δ. (6.2.7)

Control of the explosion times

In this section, we fix µ > 0. Recall the definition of c = c µ in (6.2.3). Consider the first two explosion times ξ + := ξ + β (0) and ξ -:= ξ - β (0) of the diffusion q β µ . Until the first explosion time ξ + , by definition q β µ (0) = +∞ and q β µ (t) = q + (t) follows the SDE (6.2.1). Set δ = β 1/8 and introduce the first hitting times by the diffusion q + : τ 0 := inf{t 0, q + (t) 0} and τ c := inf{t 0, q + (t) c(t) + δ}.

(6.3.1)

We decompose the trajectory of q + into three parts: first it reaches the axis x = 0 in a short time (descent from +∞). Then it spends some time of order O(1) in the region [c(t) + δ, 0] and behaves like a reflected Brownian motion with a constant drift a/4. If it approaches the critical line t → c(t) closer than δ, then it explodes with high probability within a short time (explosion to -∞).

Recall the first hitting times ξ + 0 (0) < ξ - 0 (0) of the line c by the diffusion r. Proposition 6.3.1 (Limit behavior of the diffusion q + and q -).

Fix T > 0 (independent of β).

There exist a deterministic η → 0 and an event E 0 such that P(E 0 ) → 1, on which, for β small enough:

Besides, these properties also hold for the diffusions q -from (6.2.2) and r -and their corresponding hitting and explosion times. As a consequence, on the event E 0 , for β small enough,

The control (6.3.2) readily extends to any ξ - β (k) and ξ - 0 (k) for k ∈ N and ensures that, for any T > 0, P(ξ - β (k) T ) → P(ξ - 0 (k) T ), thus identifying the measure ν 0 µ as the unique possible limit for ν β µ . The rest of this section is dedicated to the proof of Proposition 6.3.1. Recall that the diffusion q -differs from its counterpart q + only by its constant drift component -(a + 1)/4 (instead of +a/4 for q + ), which makes q -decrease faster

Tightness of the explosion times measures

In this section, we fix µ > 0. Recall from (6.2.4) the measure of the explosion times ν β µ . We prove in this section that there are β 0 > 0 and α > 0, such that, for all > 0, there exist a finite time T and a finite number of explosions N so that:

Introduce L β µ , the law of the random measure ν β µ . The bound (6.4.1) readily implies the tightness condition:

We can choose T large enough such that the diffusions Q 1 and Q 2 do not hit c µ (t) + 1 with probability greater than 1 -/10. Indeed, the sublinearity of the Brownian motion W (T + t) -W (T ) (implied for instance by the law of iterated logarithm) is such that there exists a time T 0 after which |W (T + t) -W (t)| < t/16 with probability greater than 1 -/40. Using (6.2.7), this implies that Q 1 stays above -1 -t/8 after time T 0 , and thus above the critical line c µ (t). We choose T large enough so that |W (T + t) -W (t)| < c µ (T )/4 with probability greater than 1-/40 until time T 0 , as a result Q 1 stays above c µ (t) before time T 0 as well. Therefore, on an event of probability greater than 1 -/20, the diffusion Q 1 never hits c µ (t). Similar arguments can be used for the second diffusion Q 2 .

The term -(a + 1)/4 in the drift of the diffusion q -implies the existence of α > 0 such that, almost surely, when started before time 2T +1, the diffusion q - explodes before time αT . If, at time T , the diffusion q β µ evolves as the diffusion q -, then it almost surely explodes before time αT , after which it evolves as q + and stays above Q 1 (for β small enough such that 2e -1/β < a/8) and does not explode.

If, at time T , the diffusion q β µ evolves as the diffusion q + , then we distinguish between three cases: First, if the diffusion q β µ hits -1 between times T and 2T , then q β stays above Q 1 and therefore does not explode. Else, following the proof of property (c) from Proposition 6.3.1 in Section 6.3, we can choose a deterministic level δ 1 > 0 so that, if q β µ reaches t → c µ (t) + δ 1 between time T and 2T , then it explodes before time 2T + 1 with probability greater than 1 -ε/10. After that, q β µ behaves as q -and almost surely explodes one last time before time αT , as previously. Finally, if the diffusion q β µ starts above c µ (T ) + δ 1 at time T and stays in the interval [c µ (t) + δ 1 , -1] for all t ∈ [T , 2T ], then it is bounded from below by a Brownian motion with a positive drift a/8, and therefore it will be above c µ (T ) at time 2T with probability greater than 1 -/10. In this event, q β µ stays above the diffusion Q 2 after time 2T and thus does not explode.

Gathering the different cases, we obtain the existence of an event of probability greater than 1 -/2 on which q β µ explodes at most once after time T and does not explode after time αT .

To conclude the proof of the tightness criterion (6.4.1), we apply Lemma 6.4.1 to get the existence of a finite N and of an event of probability greater than 1 -/2 on which the diffusion q β µ explodes at most N -1 times before time T . 
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ABSTRACT

This thesis focuses on the global and local behavior of β-ensembles when their size tends to infinity, first at set β > 0, then in the high temperature limit, when β tends to 0. In a first part, we study the β-Hermite, the β-Laguerre and the β-Jacobi ensembles when β > 0. Chapter 1 introduces matrix models for these ensembles and explains the convergence of their spectral measures to equilibrium measures. Chapters 2 and 3 present universality classes for the local behaviors of β-ensembles in the large dimension limit, defined using the eigenvalues point processes of stochastic operators. In a second part, we analyze the eigenvalues of these stochastic operators in the high temperature limit. Chapter 5 presents the previous results from Laure Dumaz and Cyril Labbé on the stochastic Airy operator. Chapter 6 contains our research contribution, with the study of the smallest eigenvalues stochastic Bessel operator in the high temperature limit.