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Résumé __________________________
Cette thèse porte sur les comportements global et local des β-ensembles

lorsque leur dimension tend vers l’infini, d’abord à β > 0 fixé puis dans la
limite haute température, lorsque β tend vers 0. Dans une première partie,
nous étudions les ensembles β-Hermite, β-Laguerre et β-Jacobi lorsque β > 0.
Le chapitre 1 introduit des représentations matricielles de ces ensembles et ex-
plique la convergence de leurs mesures spectrales vers des mesures d’équilibre.
Les chapitres 2 et 3 présentent des classes d’universalité pour les comportements
locaux des β-ensembles lorsque leur dimension tend vers l’infini, définies par
les processus ponctuels des valeurs propres de certains opérateurs stochastiques.
Dans une seconde partie, les chapitres 4, 5 et 6 s’intéressent au comportement des
valeurs propres de ces opérateurs stochastiques dans la limite haute température.
Le chapitre 5 présente les résultats précédents de Laure Dumaz et Cyril Labbé
sur l’opérateur stochastique d’Airy. Le Chapitre 6 contient notre contribution de
recherche, avec l’étude des plus petites valeurs propres l’opérateur stochastique
de Bessel dans la limite haute température.

__________________________Abstract
This thesis focuses on the global and local behavior of β-ensembles when their

size tends to infinity, first at set β > 0, then in the high temperature limit, when
β tends to 0. In a first part, we study the β-Hermite, the β-Laguerre and the
β-Jacobi ensembles when β > 0. Chapter 1 introduces matrix models for these
ensembles and explains the convergence of their spectral measures to equilibrium
measures. Chapters 2 and 3 present universality classes for the local behaviors
of β-ensembles in the large dimension limit, defined using the eigenvalues point
processes of stochastic operators. In a second part, we analyze the eigenvalues
of these stochastic operators in the high temperature limit. Chapter 5 presents
the previous results from Laure Dumaz and Cyril Labbé on the stochastic Airy
operator. Chapter 6 contains our research contribution, with the study of the
smallest eigenvalues stochastic Bessel operator in the high temperature limit.
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Introduction





Contexte
Les β-ensembles, ou gas de Coulomb en physique statistique, sont des mesures

de probabilité sur un ensemble de points, appelés également valeurs propres du
β-ensemble. Ils ont fait l’objet de nombreuses études dans les dernières années
(voir par exemple [24], [25], [31], [64], [16], [17], [67], [71], [77], [84], ainsi que
leurs références). Le comportement des points d’un β-ensemble est régi par deux
forces contraires : les points sont confinés dans un même potentiel V , mais se
repoussent deux à deux. Le paramètre positif β influe à la fois sur le potentiel
et la répulsion entre les points, il s’interprète en physique statistique comme une
température inverse.

Nous nous intéressons au comportement global et local de trois β-ensembles :
l’ensemble β-Hermite, l’ensemble β-Laguerre et l’ensemble β-Jacobi. La thèse
se divise en deux parties. Dans la première partie, nous synthétisons les résul-
tats de convergence globale et locale existants sur les β-ensembles pour β > 0.
Nous introduisons les objets utiles à la description de ces comportements lim-
ites et présentons des heuristiques de convergence. Dans la seconde partie, nous
étudions le comportement des valeurs propres des ensembles β-Hermite et β-
Laguerre dans la limite haute température, c’est à dire lorsque le paramètre β
tend vers 0. Cette partie contient la présentation des résultats existants pour
l’ensemble β-Hermite, puis notre contribution au sujet avec l’étude de l’ensemble
β-Laguerre.

Statistiques globales et locales
L’étude des β-ensembles à paramètre β fixé se divise en trois chapitres. Le

Chapitre 1 introduit l’ensemble β-Hermite, l’ensemble β-Laguerre et l’ensemble
β-Jacobi ainsi que des représentations matricielles tridiagonales de ces ensembles.
Il établit le lien entre ces β-ensembles et des modèles classiques de matrices
aléatoires dans les cas orthogonal (β = 1), unitaire (β = 2) et symplectique
(β = 4). Dans le cadre général β > 0, il énonce la convergence des mesures
empiriques associées aux β-ensembles vers des mesures d’équilibre, lorsque la
dimension tend vers l’infini.

Le Chapitre 2 se concentre sur le comportement local des valeurs propres de
ces β-ensembles lorsque la dimension tend vers l’infini. Ce comportement est
décrit par des classes d’universalité, qui correspondent à la convergence vers des
processus ponctuels ne dépendant que de la position des valeurs propres dans le
spectre de la mesure empirique (aux bords du spectre, ou loin des bords), et non
du potentiel V définissant le β-ensemble, ce pour une large classe de potentiels.

La définition des processus ponctuels limites introduits au Chapitre 2 requiert
l’introduction d’opérateurs stochastiques. Le Chapitre 3 définit l’opérateur stochas-
tique d’Airy, l’opérateur stochastique de Bessel et l’opérateur Sineβ. Il explique
dans quelle mesure ces opérateurs peuvent être interprétés comme la limite en
grande dimension des modèles matriciels tridiagonaux introduits au Chapitre 1.

3



Limite haute température
L’étude locale des β-ensembles à haute température se divise également en

trois chapitres. Le Chapitre 4 est consacré à l’introduction de la transformée de
Riccati, qui permet de caractériser les valeurs propres d’opérateurs stochastiques
à l’aide des temps d’explosions de familles de diffusions.

Le Chapitre 5 suit l’analyse de Dumaz et Labbé [22], qui exploite cette caractéri-
sation pour montrer la convergence des valeurs propres minimales de l’opérateur
stochastique d’Airy vers un processus ponctuel de Poisson.

Enfin, le Chapitre 6 représente notre contribution de recherche et conduit l’analyse
des valeurs propres minimales de l’opérateur stochastique de Bessel dans la lim-
ite haute température. Il prouve leur convergence vers un processus ponctuel
limite décrit à l’aide d’équations différentielles stochastiques couplées.
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Global and local statistics of β-ensembles





Chapter 1

Global statistics

In this first chapter, we introduce the concept of β-ensembles and study the
global statistics of the β-Hermite, β-Laguerre and β-Jacobi ensembles as their
size tends to infinity. Section 1.1 defines these three β-ensembles and provides
useful random matrix representations. Section 1.2 shows their connection to
classical random matrix models for specific values of the parameter β. Section
1.3 presents global convergence of the three β-ensembles to equilibrium measures.
Finally, Section 1.4 summarizes the main results of this chapter.

1.1 Introduction to β-ensembles
For λ = (λ1, . . . , λn) ∈ Rn, introduce the Vandermonde determinant

∆(λ) =
∏
i<j

(λi − λj).

Let Wn = {λ ∈ Rn, λ1 6 . . . 6 λn}, and V : Dom(V ) ⊂ R→ R.

Definition 1.1.1 (β-ensemble). For β > 0, we call β-ensemble of size n and
potential V the probability measure on the set Wn:

Qβ,V
n

(
dλ1, . . . ,dλn

)
= 1
Zβ,Vn

∣∣∆(λ)
∣∣β n∏
i=1

exp
(
− nβ2 V (λi)

)
1λi∈Dom(V )dλi, (1.1.1)

where Zβ,Vn is a normalization constant, the potential V can depend on n, β and
typical choices for Dom(V ) are R, (0,+∞[ and (0, 1).

We can analyze the β-ensemble (1.1.1) as the encounter of two competing forces.
The potential V tends to gather the points of the β-ensembles in its minima,
while the Vandermonde determinant acts as a repulsive force between any two
points. The value of the parameter β tunes the respective importance of those
two forces and can also change the shape of the potential V .
From a statistical physics viewpoint, β-ensembles are measures of a one dimen-
sional Coulomb log-gas at the inverse temperature β, also called Dyson parame-
ter. They have attracted significant interest in recent years (see e.g. [24], [25],
[31], [64], [16], [17], [67], [71], [77], [84], and references therein).
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1.1. INTRODUCTION TO β-ENSEMBLES 9

1.1.1 The β-Hermite ensemble

The choice of potential VH(λ) = λ2/2, Dom(VH) = R defines the β-Hermite
ensemble on R:

Hβ
n

(
dλ1, . . . ,dλn

)
= 1
Zβ,VHn

∣∣∆(λ)
∣∣β n∏
i=1

exp
(
− nβ

4 λ2
i

)
dλi. (1.1.2)

Adapting earlier work from Trotter [76], Dimitriu and Edelman [24, Theorem
2.12] found a measure on a set of tridiagonal matrices which induces the measure
Hβ
n on the eigenvalues. Recall that a random variable is said to be χr-distributed

if it has the following density fr(x) = 1
2r/2−1Γ( r2 )x

r−1e−x
2/21x>0.

Theorem 1.1.1 (Matrix representation for the β-Hermite ensemble).
Let (Gi)16i6n be a family of independent standard Gaussian random variables.
For β > 0, consider the symmetric tridiagonal random matrix, with independent
coefficients in the upper triangular part:

Hβ
n = 1√

nβ


√

2G1 χ(n−1)β
χ(n−1)β

√
2G2 χ(n−2)β
. . .

. . .
. . .

χβ
√

2Gn

 . (1.1.3)

The real eigenvalues λ1 6 . . . 6 λn of Hβ
n have the joint density Hβ

n.

1.1.2 The β-Laguerre ensemble

For m > n, the choice of potential

VL(λ) = λ−
( 1
n

(m− n+ 1)− 2
nβ

)
lnλ, Dom(VL) = (0,+∞[

defines the β-Laguerre ensemble on (0,+∞[:

Lβn,m
(
dλ1, . . . ,dλn

)
= 1
Zβ,VLn

∣∣∆(λ)
∣∣β n∏
i=1

λ
β
2 (m−n+1)−1
i exp

(
−nβ2λi

)
1(0,∞[(λi)dλi.

(1.1.4)
Adapting earlier work from Silverstein [68], Dimitriu and Edelman [24, Theorem
3.4] found a measure on a set of bidiagonal matrices which induces the measure
Lβn,m on the eigenvalues.

Theorem 1.1.2 (Matrix representation for the β-Laguerre ensemble).
For β > 0, consider the bidiagonal random matrix Lβn,m with independent coef-
ficients:

Lβn,m = 1√
mβ


χmβ

χ(n−1)β χ(m−1)β
. . .

. . .

χβ χ(m−n+1)β

 . (1.1.5)

The real eigenvalues λ1 6 . . . 6 λn of Lβn,m(Lβn,m)T have the joint density Lβn,m.
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1.1.3 The β-Jacobi ensemble

For m1,m2 > n, the choice of potential

VJ(λ) =
( 1
n

(m1−n+1)− 2
nβ

)
lnλ+

( 1
n

(m2−n+1)− 2
nβ

)
ln(1−λ), Dom(VJ) = (0, 1)

defines the β-Jacobi ensemble on (0, 1):

Jβn,m1,m2

(
dλ1, . . . ,dλn

)
= 1
Zβ,VJn

∣∣∆(λ)
∣∣β n∏
i=1

λ
β
2 (m1−n+1)−1
i (1−λi)

β
2 (m2−n+1)−11(0,1)(λi)dλi.

(1.1.6)
Kilip and Nenciu [50, Theorem 2] found a measure on a set of tridiagonal matrices
which induces the measure Qβ,VJ

n on the eigenvalues.
Let p−1 = p0 = 0 and p1, . . . , p2n−1 be independent random variables distributed
as

pk ∼
{

Beta (2n−k
4 β, 2n−k−2

4 β + δ1 + δ2 + 2) if k even
Beta (2n−k−1

4 β + δ1 + 1, 2n−k−1
4 β + δ2 + 1) if k odd

where δ1 = β
2 (m1− n+ 1)− 1 and δ2 = β

2 (m2− n+ 1)− 1. Then, define αk, βk:{
αk = p2k−2(1− p2k−3) + p2k−1(1− p2k−2)
βk =

√
p2k−1(1− p2k−2) + p2k(1− p2k−1) .

Theorem 1.1.3 (Matrix representation for the β-Jacobi ensemble [26]).
For β > 0, consider the symmetric tridiagonal random matrix:

Jβn,m1,m2 =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βn−1 αn

 . (1.1.7)

The real eigenvalues λ1 6 . . . 6 λn of Jβn,m1,m2 have the joint density Jβn,m1,m2.
Remark 1.1.1 (About terminology). The names Hermite, Laguerre and Jacobi
refer to the orthogonal polynomials associated to the spectral measures (see Chap-
ter 2, Section 2.2). Depending on the context, the term ‘β-ensemble’ can also
refer to the associated tridiagonal or bidiagonal matrix ensemble. In this spirit,
we will refer to the points of a β-ensemble as eigenvalues.
Remark 1.1.2 (Structured matrices). One can easily create a matrix represen-
tation of Qβ,V

n by conjugating D = diag(λ), where λ has the law Qβ,V
n , with an

orthogonal (resp. unitary, symplectic) matrix. However, the resulting matrices
will be full and their coefficients not independent. The advantage of Theorems
1.1.1, 1.1.2 and 1.1.3 is to provide sparse matrices, with independent (but not
i.i.d) coefficients in the Hermite and Laguerre cases, called structured matrices.
We seek to understand the behavior of these three β-ensembles when n tends to
infinity. We will restrict our study to the following regimes of interest:

n/m −→
n,m→+∞

γ ∈ (0, 1] for the β-Laguerre ensemble, (1.1.8)

m1/n −→
n,m1→+∞

γ1 ∈ [1,∞[, m2/n −→
n,m2→+∞

γ2 ∈ [1,∞[ for the β-Jacobi ensemble.

(1.1.9)
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1.2 Classical random matrix models
There are many historical sources to random matrix theory. In the 1920’s,

the statistician Wishart studied the empirical covariance matrix of multivariate
Gaussian samples [83], a random Hermitian matrix now called Wishart matrix.
At the birth of informatics and numerical analysis in the 1940’s, Goldstine and
Von Neumann [36] introduced random matrices to understand the behavior of
algorithms in matrix numerical analysis, such as linear systems resolution, when
the data are flawed by errors.
In nuclear physics in the 1950’s, Wigner worked to explain the distribution of
energy levels in atomic nuclei [81], [82]. In quantum mechanics, energy levels are
related to the spectra of Hermitian operators. By randomizing those operators
using Gaussian variables and studying the spacing between the eigenvalues of
the associated random Hermitian matrices, Wigner was able to fairly account for
the empirical observations. The pioneering work of Wigner was then developed
in particular by Dyson [28] and Mehta [58].
Between 1960 and 1980 came the works of Marchenko, Pastur, Girko, Bai and
Silverstein. Since then, random matrix theory has been a very active field that
interacts with a wide range of mathematical branches. Thorough references on
the subject include [18], [33], [2], [9] and [59].

This section, inspired by Edelman and Rao’s review [29], shows how the β-
Hermite, β-Laguerre and β-Jacobi ensembles connect to classical random matrix
ensembles: the Gaussian ensembles, the Wishart (empirical covariance) ensem-
bles and the MANOVA (Multivariate Analysis of Variance) ensembles.

1.2.1 Gaussian matrices

For β = 1 (resp. β = 2, β = 4), let Gaussβ(n,m) be the set of n×m matrices
populated with independent and identically distributed standard real normal
variables (resp. complex normal variables, quaternionic normal variables). Here,
the parameter β ∈ {1, 2, 4} encodes the dimension over R of the space on which
the coefficients live. Recall the Frobenius norm of a matrix M ∈ Mn,m(K),
where K = R, C or the field of quaternions H:

∥∥M∥∥
F

= Tr(MM∗)1/2 =
( ∑

16i6n
16j6m

|mi,j |2
)1/2

.

We write dM =
∏

16i6n
16j6m

dmi,j the matrix differential element, with

dmi,j =
{

d<(mi,j) d=(mi,j) if K = C
dm1

i,j dm2
i,j dm3

i,j dm4
i,j if K = H

An element M = (mi,j) 16i6n
16j6m

of Gaussβ(n,m) has a joint element density

1
(2π)βmn/2

exp
(
− 1

2
∥∥M∥∥2

F

)
dM.
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A key property of Gauss1(n,m) (resp. Gauss2(n,m), Gauss4(n,m)) is its or-
thogonal (resp. unitary, symplectic) invariance, which is inherited from the
invariance of the Frobenius norm. Going forward, we call orthogonal the case
β = 1, unitary the case β = 2 and symplectic the case β = 4.

1.2.2 Classical random matrix ensembles

From Gaussβ(n,m) we can construct matrix ensembles that preserve its in-
variance properties.

Definition 1.2.1 (Gaussian, Wishart and MANOVA ensembles).
Set β ∈ {1, 2, 4}. The Gaussian orthogonal/unitary/symplectic ensembles (ab-
breviated GOE/GUE/GSE) of size n are the ensembles:

Gβ(n) =
{
M +M∗√

2
,M ∈ Gaussβ(n, n)

}
.

Form 6 n, The Wishart orthogonal/unitary/symplectic ensembles of size (n,m)
are the ensembles:

Wβ(n,m) = {MM∗,M ∈ Gaussβ(n,m)} .

For m1,m2 6 n, the MANOVA orthogonal/unitary/symplectic ensembles of size
(n,m1,m2) are the ensembles:

MANβ(n,m1,m2) =
{

M1
M1 +M2

,M1 ∈Wβ(n,m1),M2 ∈Wβ(n,m2)
}
.

The matrix coefficients of the Gaussian ensembles have a simple expression.
They are i.i.d N (0, 2) variables on the diagonal and i.i.d N (0, 1) variables above
the diagonal.
The following result connects the β-Hermite, β-Laguerre and β-Jacobi ensembles
with the Gaussian, Wishart and MANOVA ensembles.

Theorem 1.2.1 (Eigenvalues density ofGβ(n),Wβ(n,m) and MANβ(n,m1,m2)).
For β ∈ {1, 2, 4},

• Hβ
n is the joint eigenvalues density of 1√

nβ
M , M ∈ Gβ(n),

• Lβn,m is the joint eigenvalues density of 1
mβM , M ∈Wβ(n,m),

• Jβn,m1,m2 is the joint eigenvalues density of M ∈ MANβ(n,m1,m2).

1.2.3 Matrix distributions for β-ensembles, β ∈ {1, 2, 4}
For β ∈ {1, 2, 4}, let Hβ

n denote the set of self-adjoint matrices (i.e. real
symmetric if β = 1, complex Hermitian if β = 2 and quaternionic self-dual if
β = 4) and Hβ,+

n denote the set of definite positive self-adjoint matrices. Another
way to construct the β-Hermite and β-Laguerre ensembles for β ∈ {1, 2, 4} is
to equip Hβ

n and Hβ,+
n with proper probability measures. Such a result does not

seem to exist for the β-Jacobi ensembles.
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Theorem 1.2.2 (Matrix distributions for β-ensembles [2, Section 4.1]).
Set β ∈ {1, 2, 4}. The orthogonal (reps. unitary, symplectic) invariant probability
measure on Hβ

n

PHn (dM) = 1
ZVHn

exp
(
−nβ2 Tr

(
VH(M)

))
dM, where ZHn is a normalizing constant,

induces the law Hβ
n on the eigenvalues of M .

The Wishart distribution on Hβ,+
n

PLn(dM) = 1
ZVHn
|det(M)|

β
2 (m−n+1)−1 exp

(
−nβ2 Tr

(
M
))

dM, where ZLn is a normalizing constant,

induces the law Lβn,m on the eigenvalues of M .

Remark 1.2.1 (Maxwell’s theorem). The fact that matrices in Gβ(n) have nor-
mal coefficients can be read from PHn and is a consequence of Maxwell’s theorem
(see [59, Theorem 2.6.3]). A random matrix from Hβ

n has in the same time inde-
pendent entries and a law invariant by conjugacy with respect to orthognal (resp.
unitary, symplectic) matrices if and only if it has a Gaussian law with density
of the form M 7→ exp

(
aTr(M2) + bTr(M) + c

)
.

1.3 First order global asymptotics

1.3.1 Convergence of spectral measures

Definition 1.3.1 (Empirical spectral measure).
For a random matrix M of size n with eigenvalues λ1, . . . , λn, we call µ(M) its
spectral measure, where δ denotes the Dirac measure:

µ(M) = 1
n

n∑
i=1

δλi .

The spectral measures of the β-Hermite, β-Laguerre and β-Jacobi ensembles are
µ(Hβ

n ), µ(Lβn,m(Lβn,m)T ) and µ(Jβn,m1,m2). We equip the set of probability mea-
sures on R with the weak convergence with respect to continuous and bounded
test functions and we denote it weak−−−→.
For β ∈ {1, 2, 4}, the almost sure convergences of µ(Hβ

n ) and µ(Lβn,m(Lβn,m)T ) to
deterministic measures were historically established byWigner [82] and Marchenko
and Pastur [56] respectively. Using large deviations, these convergences can be
extended to any β > 0. We state this result for the Hermite case.

Theorem 1.3.1 (Large deviation principle for Hβ
n ). [15, Theorem 1.1]

The empirical measure µn = µ(Hβ
n ) satisfies a large deviation principle at scale

n2 with good rate function

I(µ) = E(µ)− E (µeq) ,

where µeq is the unique probability measure which minimizes:

E(µ) =
∫
VH(x)dµ(x)−

∫∫
log |x− y|dµ(x)dµ(y), VH(x) = x2/2.



14 CHAPTER 1. GLOBAL STATISTICS

Theorem 1.3.1 implies that, for any open subset O of the setM1(R) of measure
probabilities on R and any closed set F ∈M1(R),

−inf
O
IV 6 lim inf

n→∞
1
n2 logP

(
µn ∈ O

)
6 lim sup

n→∞

1
n2 logP

(
µn ∈ F

)
6 −inf

F
IVH .

As a result, for any open neighborhood U
(
µeq
)
of µeq,

lim sup
n→∞

1
n2H

β
n

(
µn ∈ U

(
µeq
)c)

< 0.

A direct application of Borel-Cantelli’s lemma then provides the almost-sure
convergence of µn to µeq.
Theorem 1.3.1 remains valid for a wide range of potentials V defined on R
that grow fast enough at infinity (see [10], [45] and the textbooks [9], [18]).
Its proof was adapted to the β-Laguerre and β-Jacobi ensembles by Hiai and
Petz to show large deviation principles for µ(Lβn,m(Lβn,m)T ) [40, Theorem 5.5.7]
and µ(Jβn,m1,m2) [41, Theorem 2.2]. The same argument as in the Hermite case
shows the almost sure convergence of µ(Lβn,m(Lβn,m)T ) and µ(Jβn,m1,m2) to their
respective equilibrium measures. Identifying these equilibrium measures yields
the following theorems (see [26] for a review), similar to laws of large numbers.
Theorem 1.3.2 (Spectral convergence of the β-Hermite ensemble).

µ(Hβ
n ) weak−−−→

n→∞
µsc almost surely,

where µsc is the semi-circle distribution:

µsc(dx) = 1
2π
√

4− x21[−2,2](x)dx. (1.3.1)

Theorem 1.3.3 (Spectral convergence of the β-Laguerre ensemble).
In the regime (1.1.8),

µ(Lβn,m(Lβn,m)T ) weak−−−→
n→∞

µγMP almost surely,

where µγMP is the Marchenko-Pastur distribution:

µγMP(dx) = 1
2πγx

√
(γ+ − x)(x− γ−)1[γ−,γ+](x)dx,

γ± = (1±√γ)2.

(1.3.2)

Theorem 1.3.4 (Spectral convergence of the β-Jacobi ensemble).
In the regime (1.1.9),

µ(Jβn,m1,m2) weak−−−→
n→∞

µγ1,γ2
KM almost surely,

where µγ1,γ2
KM is the generalized Kesten-McKay distribution; which arises as the

asymptotic distribution of large random d-regular graphs (see [49] and [57]):

µγ1,γ2
KM (dx) = γ1 + γ2

2π

√
(x− u−)(u+ − x)

x(1− x) 1]u−,u+[(x)dx,

u± =
(√γ1(γ1 + γ2 − 1)±√γ2

γ1 + γ2

)2
.

(1.3.3)
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Figures 1, 2 and 3 illustrate Theorems 1.3.2, 1.3.3 and 1.3.4 in the case β = 1.

Figure 1: Empirical eigenvalues density of M ∈ G1(104) (black); semi-
circle distribution µsc (blue).

Figure 2: Empirical eigenvalues density of M ∈ W1(103, 104) (black);
Marchenko-Pastur distribution µ0.1

MP (blue).

Figure 3: Empirical eigenvalues density ofM ∈M1(103, 104, 2·103) (black);
Kesten-McKay distribution µ10,2

KM (blue).
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1.3.2 The objective method

The convergence of the spectral measures of β-ensembles can also be derived
from the convergence of their matrix representations, viewing random matrices
as adjacency matrices of randomly rooted graphs. This is an instance of the ob-
jective method pushed forward by Aldous and Steele in [4]. In this subsection we
introduce the notion of randomly rooted graphs, define the Benjamini-Schramm
convergence and use it to prove weaker versions of Theorem 1.3.2 and Theroem
1.3.3.

Benjamini-Schramm convergence

The Benjamini-Schramm convergence is defined in [1] by Abért, Thom and
Virág. For an integer D > 0, let GD denote the set of (isomorphism classes of)
connected, undirected graphs where every vertex has at most D neighbors. Let
RGD denote the set of graphs G in GD together with a distinguished vertex,
called the root of G.
A random rooted graph of degree D is a Borel probability distribution on RGD.
We say that a sequence of random rooted graphs Gn defined on RGD converges
to G if it converges in the weak topology. That is, if for every continous function
f : RGD → R, we have

lim
n→∞

∫
RGD

f(x) dλn(x) =
∫
RGD

f(x)dλ(x),

where λn is the distribution of Gn and λ is the distribution of G. The weak
convergence of measures translates to convergence of the measures on the neigh-
borhoods of the root in the following way. For a random rooted graph G, a finite
rooted graph α and k > 0, let

P(G,α, k) = P(B(o, k) ∼= α)

be the probability that the k-ball around the root of G is isomorphic to α. Then
Gn converges to G if and only if, for all finite rooted graphs α and k > 0, we
have

lim
n→∞

P (Gn, α, k) = P(G,α, k).

Any finite graph G ∈ GD gives rise to a random rooted graph by assigning the
root of G uniformly randomly. We denote the distribution of this random rooted
graph by λG.

Definition 1.3.2 (Benjamini-Schramm convergence [1, Definition 1]).
A sequence of finite graphs Gn ∈ GD is Benjamini-Schramm convergent if λGn
weakly converges, or, equivalently, if P (Gn, α) converges for every sample α.
The local limit of Gn is defined as the weak limit of λGn .

This convergence notion was historically introduced by Benjamini, Schramm [12]
and Aldous and Lyons [3].
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Tridiagonal matrices and Schrödinger operators

Let us interpret the tridiagonal representations of β-ensembles as adjacency
matrices of random graphs. We follow the work of Bordenave, Caputo, Chafaï
and Salez in [13] and introduce the symmetric matrix

T (n) =



a
(n)
1 b

(n)
1 0 · · · 0

b
(n)
1 a

(n)
2 b

(n)
2 · · · 0

...
. . .

. . .
. . .

...

0 · · · b
(n)
n−2 a

(n)
n−1 b

(n)
n−1

0 · · · · · · b
(n)
n−1 a

(n)
n


. (1.3.4)

This is the adjacency matrix of a weighted finite chain graph with totally or-
dered vertices Vn = {1, 2, . . . , n}. It is also the matrix representation of a linear
operator on A(n) on L2 (Vn) defined for all f ∈ L2 (Vn) and all i ∈ Vn by(

A(n)f
)

(i) =
∑
j∈Vn

T
(n)
ij f(j) = b

(n)
i−1f(i− 1) + a

(n)
i f(i) + b

(n)
i f(i+ 1), (1.3.5)

with convention b(n)
0 = b

(n)
n = f(0) = f(n+ 1) = 0.

We wish to study the n→∞ limit of these graphs, in the sense of the Benjamini-
Schramm weak local convergence of Definition 1.3.2. We assume the coefficients
a, b to be random but asymptotically deterministic, which encompasses the β-
Hermite and β-Laguerre cases.
Theorem 1.3.5 (Asymptotically deterministic case [13]).
Let G(n) be the weighted graph with n > 1 vertices and adjacency operator A(n)

given by (1.3.5), where
(
a

(n)
i

)
16i6n and

(
b
(n)
i

)
16i6n are real random vectors such

that

a
(n)
i − a

(
i

n

)
d−→

n,i→∞
n−i→∞

0 and b
(n)
i − b

(
i

n

)
d−→

n,i→∞
n−i→∞

0, 1 6 i 6 n,

with a, b : [0, 1]→ R deterministic and continuous functions which do not depend
on n and i. Then, for the Benjamini-Schramm convergence,

lim
n→∞

G(n) = G,

where G is the random graph with vertex set Z, rooted at an arbitrary vertex,
with adjacency operator acting on f ∈ L2(Z,R) as

(Af)(i) = a(U)f(i) + b(U)
(
f(i− 1) + f(i+ 1)

)
, i ∈ Z, U ∼ Uniform

(
[0, 1]

)
.

This limiting operator A is a random real Schrödinger operator acting on L2(Z,R)
as

A(f) = b(U)(∆f) + Φ(U)f,
with diffusion coefficient and multiplicative potential

b(U) and Φ(U) = a(U) + 2b(U),

where ∆ is the discrete Laplacian acting on L2(Z,R) as

(∆f)(i) = f(i− 1) + f(i+ 1)− 2f(i), i ∈ Z.
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Proof. The argument relies on two probabilistic lemmas proved in the Appen-
dices.

Lemma 1.3.1. [13] For all n > 1 let in be uniformly distributed on {1, . . . , n}.

Then in
P−→

n→∞
+∞, n+ 1− in

P−→
n→∞

+∞, in
n
−→
n→∞

Uniform
(
[0, 1]

)
,

and we can couple the (in)n>1 by defining them on the same probability space in
such a way that for a random variable U ∼ Uniform

(
[0, 1]

)
on this space,

in
n

a.s.−→
n→∞

U and in particular in
n

P−→
n→∞

U.

Lemma 1.3.2. [13] Let
(
X(n)

)
n>1

be a sequence of random vectors of Rd and
let X = (X1, . . . , Xd) be a random vector of Rd. Then

X(n) P−→
n→∞

X if and only if X(n)
i

P−→
n→∞

Xi for all i ∈ {1, . . . , d}.

Let in be the label of a vertex chosen as being a root for G(n), uniformly dis-
tributed on {1, . . . , n} and independent of G(n). Using Lemma 1.3.1, we can
choose the probability space big enough to define

(
a

(n)
i

)
1≤i≤n and

(
b
(n)
i

)
1≤i≤n for

all n > 1, as well as (in)n>1 independent of
(
G(n)

)
n>1

and such that

in
n

P−→
n→∞

U

for a random variable U ∼ Uniform
(
[0, 1]

)
also defined on this space. We have:

εn,i = a
(n)
i − a

(
i

n

)
d−→

n,i→∞
n−i→∞

0 and ε′n,i = b
(n)
i − b

(
i

n

)
d−→

n,i→∞
n−i→∞

0.

Lemma 1.3.1 and the properties of in, εn,i, a, and b yield:(
A(n)

)
in,in

= a

(
in
n

)
+ εn,in

P−→
n→∞

a(U) + 0 = a(U)

and, for jn = in + 1 as well as for jn = in − 1,(
A(n)

)
in,jn

= b

(
in ∧ jn
n

)
+ ε′n,in∧jn

P−→
n→∞

b(U) + 0 = b(U).

Moreover, for all vertex j such that |in − j| > 1, we have
(
A(n)

)
in,j

= 0. Using

Lemma 1.3.2, for any depth d, the random rooted graph
(
G(n), in

)
restricted

to the ball B (in, d) centered at in and of radius d converges in probability as
n→∞ to the same restriction for G rooted at an arbitrary vertex.

Note that there is a single U in this proof, which provides the randomness of
G. This randomness is due only to the nature of the convergence, since the
coefficients a(n) and b(n) are asymptotically deterministic.
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Mean empirical distribution

For a random matrixM with (random) empirical spectral distribution µ(M),
we define its mean empirical spectral distribution

(
Eµ(M)

)
(B) = E

[
µ(M)(B)

]
=

E
∣∣ {1 6 k 6 n : λk ∈ B}

∣∣
n

.

Theorem 1.3.6 (Spectral solvability of random Schrödinger operator [13]).
Let us consider the random Schrödinger operator A = b(U)∆ + a(U) + 2b(U) of
Theorem 1.3.5, where a, b : [0, 1] 7→ R and U ∼ Uniform

(
[0, 1]

)
. Then its mean

spectral distribution is given by the uniform mixture of deformed arcsine laws

Eµ(A) =

∫ 1

0

1x∈[a(u)−2b(u), a(u)+2b(u)]

π
√

4b(u)2 −
(
x− a(u)

)2 du

 dx.

Moreover, for special choices of a and b given in the following table, this distri-
bution is the Wigner semicircle law or the Marchenko-Pastur law.

a(u), u ∈ [0, 1] b(u), u ∈ [0, 1] EµA

0 1 Arcsine law
1

π
√

4−x2 1x∈[−2,2]dx

0
√
u

Wigner semicircle law√
4−x2

2π 1x∈[−2,2]dx

1 + γ − 2γu
√
γ(1− γu)(1− u)

Marchenko-Pastur law√
(x−γ−)(γ+−x)

2πγx 1x∈[γ−,γ+]dx

Table 1: Examples of mean empirical spectral distributions [13]

Theorem 1.3.6 can be proved by noticing that the operator A is the sum of
a Laplacian operator, exactly solvable using Fourier analysis, and a diagonal
operator multiple of the identity. Specializing a and b and technical calculations
gets us to the Arcsine, Wigner and Marchenko-Pastur laws. The continuity of
the spectral measure for the weak local convergence of self-adjoint graphs (see
[1]) yields the following convergence of mean spectral distributions.

Theorem 1.3.7 (Convergence of the mean empirical spectral distribution [13]).

Let A(n) and A be as in Theorem 1.3.5 and EµA be as in Theorem 1.3.6. Then

Eµ(A(n)) weak−−−→
n→∞

Eµ(A).

Moreover, for special choices of a and b, EµA is a Wigner semicircle law or a
Marchenko-Pastur law (see Table 1).



20 CHAPTER 1. GLOBAL STATISTICS

Spectral convergence of the β-Hermite and β-Laguerre ensembles

A consequence of Theorem 1.3.7 is the convergence of the mean empirical
spectral distributions of the β-Hermite and β-Laguerre ensembles.

Theorem 1.3.8 (Convergence of the β-Hermite ensemble [13]).
For β > 0,

Eµ(Hβ
n ) weak−−−→

n→∞
µsc,

where µsc is the semi-circle distribution from (1.3.1).

Proof. Let G(n) be the random weighted graph with n vertices and adjacency
matrix Hβ

n . Let us show that the assumptions of Theorem 1.3.5 are satisfied.
Keeping the notations of (1.3.4) for the coefficients of Hβ

n , we have:

a
(n)
i

d= N (0, 2)√
βn

d−−−−−→
n,i→∞
n−i→∞

0, b
(n)
i

d=
χ(n−i)β√

βn

d=
χ(n−i)β√
(n− i)β

√(
1− i

n

)
.

Now, if Z ∼ χα then Z√
α

P−−−→
α→∞

1, indeed Z2 ∼ χ2
α gives E

[
Z2] = α and

Var
[
Z2] = 2α, hence Z2

α
L2
−→
α→∞

1, which gives

χ(n−i)β√
(n− i)β

d−−−−−→
n,i→∞
n−i→∞

1, and thus b
(n)
i −

√(
1− i

n

)
d−−−−−→

n,i→∞
n−i→∞

0.

Therefore, by Theorem 1.3.5 with a = 0 and b(u) =
√

(1− u), u ∈ [0, 1], since
U ∼ Uniform

(
[0, 1]

)
implies 1−U ∼ Uniform

(
[0, 1]

)
, we get that G(n) converges

as n→∞ for the weak local convergence to the real Schrödinger operator acting
on f ∈ L2(Z,R) as

(Af)(i) =
√
U∆(f) + 2

√
Uf(i), i ∈ Z.

Finally, the convergence of Eµ
Hβ
n
to µsc follows from Theorem 1.3.7.

Similar calculations can be performed for the β-Laguerre ensemble via its
bidiagonal representation Lβn,m from (1.1.5) and yield the following weak conver-
gence.

Theorem 1.3.9 (Convergence of the β-Laguerre ensemble [13]).
For β > 0 and γ ∈ (0, 1],

Eµ
(
Lβn,m(Lβn,m)T

) weak−−−−−→
n,m→∞
n/m→γ

µγMP,

where µγMP is the Marchenko-Pastur distribution from (1.3.2).
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Chapter 2

Local statistics

When n tends to infinity, the β-Hermite, β-Laguerre and β-Jacobi ensembles
exhibit locally a universal behavior: key limit statistics of the eigenvalues do
not depend on the ensemble type but only on the position of the eigenvalues in
the spectrum: in the bulk, at a soft edge or at a hard edge, thus forming three
universality classes. Section 2.1 properly defines these zones of the spectrum.
Section 2.2 studies the unitary case β = 2, for which universality results are
obtained using the determinantal representation of the correlation functions.
Finally, Section 2.3 presents universality results for general β > 0.

2.1 Zones of the spectrum
Consider an equilibrium measure µeq ∈ {µsc, µ

γ
MP, µ

γ1,γ2
KM } and its support

Supp(µeq) = [µ−eq, µ
+
eq], where:

µ−eq = inf{x ∈ R, µeq(x) > 0}, µ+
eq = sup{x ∈ R, µeq(x) > 0}.

We have Supp(µsc) = [−2, 2], Supp(µγMP) = [γ−, γ+], Supp(µγ1,γ2
KM ) = [u−, u+].

Definition 2.1.1 (Bulk, soft edge, hard edge). We call
• ]µ−eq, µ

+
eq[ the bulk of µeq,

• {µ−eq, µ
+
eq} the edges of µeq,

• a soft edge an edge where µeq vanishes continuously,

• a hard edge an edge where µeq diverges.
At a soft edge, for finite n, there is a non-zero probability of an eigenvalue ap-
pearing on both sides of the edge. It applies when the density hits the horizontal
axis and there is still ‘wiggle room’. Conversely, the hard edge applies when
the density meets a constraint, such as a positivity constraint, that forbids any
eigenvalue to exist behind the edge, even for finite n.
Remark 2.1.1 (Spectrum zones in a general setting). Definition 2.1.1 holds for
the β-Hermite, β-Laguerre and β-Jacobi ensembles. For measures supported on
a finite union of intervals, a more general definition of the spectrum zones can
be found in [2, Subsection 6.3.3].
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2.1.1 The β-Hermite ensemble

The β-Hermite ensemble has two soft edges.

Figure 4: Semi-circle distribution µsc

2.1.2 The β-Laguerre ensemble

The β-Laguerre ensemble has a hard left edge at 0 if the parameter γ of the
Marchenko-Pastur distribution is equal to 1 (i.e. limm/n = 1), and a soft left
edge otherwise. The right edge is always a soft edge.

Figure 5: Marchenko-Pastur distribution µ0.1
MP (left) and µ1

MP (right).
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2.1.3 The β-Jacobi ensemble

Appropriate tuning of the parameters can lead to any combination of soft-
/hard upper/lower edges. The asymptotics of m1 (resp. m2) with respect to
n determine the nature of the lower (resp. upper) edge. More precisely, if
m1−n→ a1

J , with a1
J <∞, then the left edge is a hard edge, while ifm1−n→∞

then the left edge is a soft edge. The same goes for the right edge.

Figure 6: Kesten-McKay distribution µ10,10
KM (upper left), µ1,10

KM (upper
right), µ10,1

KM (lower left) and µ1,1
KM(lower right).

2.1.4 Parameters regimes

Definition 2.1.2 (Soft edge and hard edge regimes).
In our study of the limit local statistics near an edge, we call soft edge regime
any of the regimes:

(Laguerre left edge) n/m→ γ ∈ (0, 1),
(Jacobi left edge) m1/n→ γ1 ∈ (1,∞[,

(Jacobi right edge) m2/n→ γ2 ∈ (1,∞[.
(2.1.1)

Conversely, we call hard edge regime any of the regimes:

(Laguerre left edge) n/m→ γ = 1,
(Jacobi left edge) m1/n→ γ1 = 1,

(Jacobi right edge) m2/n→ γ2 = 1.
(2.1.2)

Going forward, we restrict the hard edge regimes to the cases:

(Laguerre left edge) m− n→ aL > −1,
(Jacobi left edge) m1 − n→ a1

J > −1,
(Jacobi right edge) m2 − n→ a2

J > −1.
(2.1.3)
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2.2 Unitary case β = 2

We start by studying the limit local statistics of eigenvalues in the unitary
case. When β = 2, the correlation functions admit a useful determinantal rep-
resentation. For the general theory on correlation functions, we refer the reader
to the probabilistic survey [51] and to the handbook [2, Chapter 4].

2.2.1 Determinantal representation

Consider a β-ensemble Qβ,V
n from (1.1.1) and extend it to a permutation

invariant probability measure Q̂β,V
n .

Definition 2.2.1 (Correlation functions).
For k ∈ N, introduce the k-point correlation function:

R(k)
n (x1, . . . , xk) = n!

(n− k)!

∫
Rn−k

Q̂β,V
n (x1, . . . , xn) dxk+1dxk+2 . . . dxn, x1, . . . , xk ∈ R.

For any measurable set A ⊂ R, the quantity
∫
Ak Rn,k(x1, . . . , xk) dx1 . . . dxk is

equal to the expected number of k-tupels (λi1 , . . . , λik) of distinct eigenvalues
such that λij ∈ A for all j = 1, . . . , k. In particular, Rn,1(x)dx is the expected
number of particles in dx. The main spectral statistics, such as the probability
that a given number of eigenvalues lie in a given set, gap probabilities and eigen-
values spacing, can be expressed in terms of the k-point correlation functions.
In the unitary case, the orthogonal polynomial method provides a determinantal
representation for the k-point correlation functions. The β-ensemble rewrites:

Q2,V
n

(
dx1, . . . ,dxn

)
= 1
Z2,V
n

∣∣∆(x)
∣∣2 n∏
i=1

exp
(
− nV (xi)

)
dxi. (2.2.1)

When all the moments of the measure e−nV (x)dx are finite, we can define its
family of orthogonal polynomials (πj)j∈N:

∀ i, j ∈ N,
∫
R
πi(x)πj(x)e−nV (x) dx = cicjδi,j .

With linear manipulation, the Vandermonde determinant can be expressed as a
determinant with the monomials xj replaced by the polynomials πj(x):

∆(x) = det
[(
πj−1(xi)

)
i,j=1,...,n

]
.

We now normalize the πj to obtain an orthonormal system (φj)j∈N of L2(R)
with respect to the Lebesgue measure. The functions φj(x) = 1

cj
e−nV (x)/2πj(x)

satisfy:

∀ i, j ∈ N,
∫
R
φi(x)φj(x)dx = δi,j .
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For the unitary Hermite, Laguerre and Jacobi ensembles, the associated orthog-
onal polynomials are (unsurprisingly) the Hermite, Laguerre and Jacobi polyno-
mials (see [73] for a definition). Finally, we introduce the kernel Kn:

Kn(x, y) =
n−1∑
j=0

φj(x)φj(y), x, y ∈ R. (2.2.2)

The k-point correlation function Rn,k admits the following fundamental deter-
minantal representation.

Proposition 2.2.1 (Determinantal representation [51, Lemma 2.8]).
Fix n ∈ N and x ∈ Rn, then, for any k ∈ {1, . . . , n},

R(k)
n (x1, . . . , xk) = det

[(
Kn(xi, xj)

)
i,j=1,...,k

]
.

In particular,

R(1)
n (x1) = Kn (x1, x1) and Q̂β,V

n (x) = 1
n! det

[(
Kn(xi, xj)

)
i,j=1,...,n

]
.

Remark 2.2.1. In the orthgonal (β = 1) and symplectic (β = 4) settings, the
determinant from Proposition 2.2.1 is replaced by a Pfaffian:

R(k)
n (x1, . . . , xk) = Pf

[(
Kn (xi, xj)

)
i,j=1,...,k

]
.

2.2.2 Unitary universality classes

Fix a reference point x∗ and a constant cn > 0. We center the points around
x∗ and scale by a factor cn, so that (x1, . . . , xn) is mapped to(

cn (x1 − x∗) , . . . , cn (xn − x∗)
)
.

These centered and scaled points have the following rescaled k-point correlation
functions

1
ckn
R(k)
n

(
x∗ + x1

cn
, x∗ + x2

cn
, . . . , x∗ + xk

cn

)
.

Universality at x∗ means that, for a suitably chosen sequence (cn)n, the rescaled
k-point correlation functions have a specific limit as n → ∞. The precise limit
determines the universality class. In the unitary case, this limit can be expressed
as a k × k determinant

det
[
K (xi, xj)

]
16i,j6k,

where K is the eigenvalue correlation kernel. Therefore, the universality comes
down to

1
cn
Kn

(
x∗ + x

cn
, x∗ + y

cn

)
−→
n→∞

K(x, y). (2.2.3)

Definition 2.2.2 (Airy and Bessel functions [55, Chapter 5]).
The Airy function Ai : R→ R is the unique solution of the differential equation

f
′′(x) = xf(x)
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with asymptotics 1
2
√
πx1/4 e

− 2
3x

3/2 when x→∞ (see [73, Equation 1.81.4] for an
exact form).
The Bessel function Ja of the first kind and of order a is the solution of the
differential equation

x2 d2y(x)
dx2 + x

dy(x)
dx + (x2 − a2)y(x) = 0

which is well-defined at x = 0 (see [73, Equation 1.71.1] for an exact form).

Definition 2.2.3 (Bulk unitary universality).
A unitary β-ensemble shows bulk unitary universality at a point x∗ if (2.2.3)
occurs with the sine kernel K = KSine:

KSine(x, y) = sin π(x− y)
π(x− y) = sin(πx) sin′(πy)− sin′(πx) sin(πy)

π(x− y) , x, y ∈ R.

(2.2.4)

Definition 2.2.4 (Soft edge unitary universality).
A unitary β-ensemble shows soft edge unitary universality at a point x∗ if (2.2.3)
occurs with the Airy kernel K = KAiry:

KAiry(x, y) = Ai(x) Ai′(y)−Ai(y) Ai′(x)
x− y

, x, y ∈ R. (2.2.5)

Definition 2.2.5 (Hard edge unitary universality).
A unitary β-ensemble shows hard edge unitary universality at a point x∗ if
(2.2.3) occurs with the Bessel kernel K = KBessel:

KBessel(x, y) =
Ja(
√
x)√yJ ′a(

√
y)− J ′a(

√
x)
√
xJa(
√
y)

2(x− y) , x, y ∈ (0,∞[. (2.2.6)

The properties of Ai and Ja can be found in [55, Chapter 5].
Universality unitary classes were first discovered for classical β-ensembles. In
particular, the Hermite, Laguerre and Jacobi unitary ensembles show bulk uni-
tary universality in their bulks and soft/hard edge unitary universality at their
edges. These results are treated for instance in [33], [59] for the Hermite and
Laguerre unitary ensemble and in [60], [46] for the Jacobi unitary ensemble.
Remark 2.2.2 (Orthognal and symplectic universality classes). The Hermite, La-
guerre and Jacobi orthogonal and symplectic ensembles also show bulk, soft edge
and hard edge universality classes, as Pfaffian point processes instead of deter-
minantal point processes (see [20] for the bulk and [19], [21] for the edges).

2.3 General case β > 0
We now extend our quest for universality classes to the general case β > 0.

We notate λ+
0 (Qβ,V

n ) > . . . > λ+
k (Qβ,V

n ) (resp. λ−0 (Qβ,V
n ) 6 . . . 6 λ−k (Qβ,V

n )) the
(k + 1)st highest (resp. lowest) eigenvalues of the β-ensemble Qβ,V

n , for k 6 n.
Large deviation techniques show that the extremal eigenvalues λ+

0 (Qβ,V
n ) and

λ−0 (Qβ,V
n ) converge to the corresponding edges of the equilibrium measure.
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Theorem 2.3.1 (Convergence of the extremal eigenvalues [9, Theorem 2.6.6]).
Almost surely,

λ+
0 (Hβ

n) −→
n→∞

µ+
sc = 2,

λ−0 (Hβ
n) −→

n→∞
µ−sc = −2,

λ+
0 (Lβn,m) −→

n→∞
µγ,+MP = γ+,

λ−0 (Lβn,m) −→
n→∞

µγ,−MP = γ−,

λ+
0 (Jβn,m1,m2) −→

n→∞
µγ1,γ2,+

KM = u+,

λ−0 (Jβn,m1,m2) −→
n→∞

µγ1,γ2,−
KM = u−,

where γ+, γ−, u+ and u− are from (1.3.2) and (1.3.3).

Like in the orthogonal, unitary and symplectic cases (see Section 2.2), the limit
statistics of the eigenvalues for general β > 0 show three universality classes
depending on the zone of the spectrum: bulk universality, soft edge universal-
ity and hard edge universality. Since the determinantal or Pfiaffan structures
are lost, new objects are needed to describe the local limit of the β-ensembles.
These objective limits (see Chapter 1, Subsection 1.3.2) are given by stochastic
operators.

2.3.1 Bulk universality

The statement of bulk universality involves the Sineβ point process, defined
by Valkó and Virág [77]. The same authors later constructed the stochastic
Sineβ operator, whose eigenvalues are distributed as this point process [78]. We
reserve the introduction of the Sineβ operator for Chapter 3, Section 3.1 and
until then we refer to [77, Section 2] for the construction and the properties of
the Sineβ point process.

Definition 2.3.1 (Bulk universality).
A β-ensemble shows bulk universality when its eigenvalues, properly centered
and rescaled, converge in law to the Sineβ point process, with respect to vague
topology for the counting measure of the point process.

Valkó and Virág proved bulk universality for the β-Hermite ensemble [77]. It
was extended to the β-Laguerre ensemble by Jacquot and Valkò [44]. Bulk
universality for the β-Jacobi ensemble is expected but does not appear to have
been proven.

Theorem 2.3.2 (Bulk universality for Hβ
n and Lβn,m).

Set β > 0 and |z| < 2. Let c ∈ (γ−, γ+). Then

n
√

4− z2(λ(Hβ
n)− z

) d−−−→
n→∞

Sineβ,√
(γ+ − c)(c− γ−)

c

(
λ(Lβn,m)− cn

) d−−−→
n→∞

Sineβ,

where λ(Hβ
n) and λ(Lβn,m) denote the point processes associated to Hβ

n and Lβn,m.
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2.3.2 Soft edge universality

The statement of soft edge universality involves the stochastic Airy operator,
notated Aβ, properly defined in Chapter 3, Section 3.1. For each integer k > 0,
let Λk(Aβ) be its (k + 1)st lowest eigenvalue.

Definition 2.3.2 (Soft edge universality).
A β-ensemble shows soft edge universality when its eigenvalues, properly centered
and rescaled, converge in law to the lowest eigenvalues of the stochastic Airy
operator Aβ.

Ramírez, Rider and Virag [64] proved soft edge universality for the β-Hermite
and β-Laguerre ensembles, Holcomb and Moreno Flores [42] for the β-Jacobi
ensemble. Krishnapur, Rider and Virág [53] extended it to a larger class of
β-ensembles for which the potential V from Definition 1.1.1 satisfies convexity
assumptions.

Theorem 2.3.3 (Soft edge universality for Hβ
n, Lβn,m and Jβn,m1,m2).

Set β > 0. In the soft edge regime (2.1.1), for any k ∈ N,(
σHn
(
µ+

sc − λ+
j (Hβ

n)
))

06j6k
d−−−→

n→∞

(
Λ0(Aβ), . . . ,Λk(Aβ)

)
,(

σHn
(
λ−j (Hβ

n)− µ−sc
))

06j6k
d−−−→

n→∞

(
Λ0(Aβ), . . . ,Λk(Aβ)

)
,(

σLm,n
(
µγ,+MP − λ

+
j (Lβn,m)

))
06j6k

d−−−→
n→∞

(
Λ0(Aβ), . . . ,Λk(Aβ)

)
,(

σLm,n
(
λ−j (Lβn,m)− µγ,−MP

))
06j6k

d−−−→
n→∞

(
Λ0(Aβ), . . . ,Λk(Aβ)

)
,(

σJm1,m2,n

(
µγ1,γ2,+

KM − λ+
j (Jβn,m1,m2)

))
06j6k

d−−−→
n→∞

(
Λ0(Aβ), . . . ,Λk(Aβ)

)
,(

σJm1,m2,n

(
λ−j (Jβn,m1,m2)− µγ1,γ2,−

KM
))

06j6k
d−−−→

n→∞

(
Λ0(Aβ), . . . ,Λk(Aβ)

)
.

with σHn = n2/3, σLm,n = m(
√
nm)1/3

(
√
n+
√
m)4/3 and σJm1,m2,n explicited in [42, Theorem 4].

The law of Λ0(Aβ) is called the Tracy-Widom distribution TWβ. Historically,
Tracy and Widom found TW2 [74] and then TW1, TW4 [75] as the limiting law of
the rescaled largest eigenvalue of an n by n Gaussian unitary (resp. orthogonal,
symplectic) matrix.

2.3.3 Hard edge universality

The statement of hard edge universality involves the stochastic Bessel opera-
tor of parameter a, notated Gβ

a , properly defined in Chapter 3, Section 3.1. For
each integer k > 0, let Λk(Gβ

a) its (k + 1)st lowest eigenvalue.

Definition 2.3.3 (Hard edge universality).
A sequence of β-ensembles (Qβ,V

n )n has hard edge universality when its eigen-
values, properly centered and rescaled, converge in law to the lowest eigenvalues
of the stochastic Bessel operator Gβ

a .
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Ramírez and Rider [63] proved hard edge universality for the β-Laguerre en-
semble, Holcomb and Moreno Flores [42] for the β-Jacobi ensemble. Rider and
Waters [65] extended it to a large class of β-ensembles for which the potential V
from Definition 1.1.1 satisfies convexity assumptions.
Note that, in the hard edge regime (2.1.3), we have µγ,−MP = 0, µγ1,γ2,−

KM = 0 and
µγ1,γ2,+

MP = 1.

Theorem 2.3.4 (Hard edge universality for Lβn,m and Jβn,m1,m2).
For β > 0 and any k ∈ N,(

nm
(
λ−j (Lβn,m)− µ−MP

))
06j6k

d−−−→
n→∞

(
Λ0(Gβ

aL
), . . . ,Λk(Gβ

aL
)
)
,(

nm1
(
µγ1,γ2,+

KM − λ+
j (Jβn,m1,m2)

))
06j6k

d−−−→
n→∞

(
Λ0(Gβ

a2
J
), . . . ,Λk(Gβ

a2
J
)
)
,(

nm2
(
λ−j (Jβn,m1,m2)− µγ1,γ2,−

KM
))

06j6k
d−−−→

n→∞

(
Λ0(Gβ

a1
J
), . . . ,Λk(Gβ

a1
J
)
)
.

2.3.4 Summary of results

β-ensemble Universality Limit correlation
kernel (β = 2)

Limit point process
(β > 0)

Hermite bulk KSine Sineβ

Hermite soft edge KAiry lowest eigenvalues of Aβ

Laguerre bulk KSine Sineβ

Laguerre soft edge KSine lowest eigenvalues of Aβ

Laguerre hard left edge KBessel lowest eigenvalues of Gβ
aL

Jacobi bulk KSine Sineβ

Jacobi soft edge KAiry lowest eigenvalues of Aβ

Jacobi hard left edge KBessel lowest eigenvalues of Gβ
a1
J

Jacobi hard right edge KBessel lowest eigenvalues of Gβ
a2
J

Table 3: Universality and limit objects for the β-ensembles.



Chapter 3

From matrices to operators

Stochastic operators emerge as objective limits for β-ensembles in the study
of universality classes for local eigenvalues statistics (see Chapter 2, Section 2.3).
This chapter studies the connection of the Sineβ operator, the stochastic Airy
operator and the stochastic Bessel operator to the β-Hermite, β-Laguerre and
β-Jacobi ensembles. Section 3.1 properly defines these operators. Section 3.2
explains heuristically how they emerge in the n → ∞ limit of the β-ensembles
by interpreting matrices as finite difference schemes. Sections 3.3 and 3.4 make
this idea rigorous and prove respectively the hard edge universality for the β-
Laguerre ensemble and a Feynman-Kac formula for the stochastic Airy operator
at the soft edge. Section 3.5 presents an operator level transition between hard
and soft edge.

We now work in the hard edge regime (2.1.3), where the left edge of
the β-Laguerre ensemble and both edges of the β-Jacobi ensemble are
hard edges. For the the β-Laguerre ensemble, we consider only the
case m− n = aL > −1 and we notate a = aL.

3.1 Stochastic Operators

3.1.1 The Sineβ operator

The Sineβ operator was introduced by Valkó and Virág [78] as a type of Dirac
operator. The definition and properties of Dirac operators can be found in [80],
those of the Brownian motion on the hyperbolic plane in [34].

Definition 3.1.1 (Dirac operator [78, Section 3.3]).
A Dirac operator τ is a differential operator of the form

τv(t) = R−1(t)Jv′(t),

where R(t) is an integrable strictly positive definite real 2 × 2 matrix valued

function, v(t) a R2-valued function and J =
(

0 −1
1 0

)
.

31



32 CHAPTER 3. FROM MATRICES TO OPERATORS

R(t) has a unique representation in the form of

R = f

y

(
1 −x
−x x2 + y2

)
,

where f =
√

detR, y = f
R1,1

and x = −R1,2
R1,1

.
The notation Dir (x+ iy, u0/u1, f) denotes the Dirac operator τ with ratio of
boundary conditions u0/u1.

Definition 3.1.2 (Hyperbolic Brownian motion [78, Definition 3]).
In the hyperbolic half-plane model, the standard hyperbolic Brownian motion is
the solution of the stochastic differential equation

dB = =B dZ,

where Z is standard complex Brownian motion, i.e. =Z,<Z are independent
standard real Brownian motions. If we replace dZ by σdZ, we get the hyperbolic
Brownian motion with variance σ2.

Theorem 3.1.1 (The Sineβ operator [78, Theorems 25 and 26]).
Fix β > 0. Let x + iy be the hyperbolic Brownian motion 3.1.2 with variance
4
β in the half plane with initial condition i. Let q = limt→∞ x(t), and use the
notation x̃(t) = x

(
− log(1− t)

)
, ỹ(t) = y

(
− log(1− t)

)
. Then the Sineβ operator

Sineβ = Dir(x̃+ iỹ,∞, q)

has its spectrum distributed as the Sineβ process.

We refer to [78] for the properties of the Sineβ operator and the proof of bulk
universality, which are beyond the scope of this thesis.

3.1.2 Generalized Sturm-Liouville operators

The proper framework to introduce the stochastic Airy operator and the
stochastic Bessel operator is that of generalized Sturm-Liouville (S-L) operators.
General theory on these operators can be found in [80], its application to the
stochastic Airy operator and the stochastic Bessel operator in [23, Section 2].

Definition 3.1.3 (Generalized Sturm-Liouville operators).
Generalized Sturm-Liouville operators are differential operators τ of the form

τu(x) = 1
r(x)

(
−
(
p1(x)u′(x)− q0(x)u(x)

)′ − q0(x)u′(x) + p0(x)u(x)
)
, (3.1.1)

where u is a real valued function on [0, L] for some L > 0 or on R+(which
we consider to be the L = ∞ case in the following). We assume that the real
functions p0, p1, q0, r are continuous on [0,∞[ and r(x), p1(x) > 0 for x > 0.

We introduce

DL(τ) =
{
u ∈ L2([0, L], r

)
: τu ∈ L2([0, L], r

)
and u, p1u

′ − q0u ∈ AC
(
[0, L]

)}
,

where AC
(
[0, L]

)
is the set of absolutely continuous real functions on [0, L].
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Theorem 3.1.2 (Self-adjoint version of τ [23, Propositions 4 and 5]).
Let L ∈ (0,∞], assume that τ is of the form (3.1.1) and that it satisfies the
following conditions:

• the solution ud of the equation τud = 0 with Dirichlet initial conditions
ud(0) = 0, u′d(0) = 1 is not in L2 (R+, r), i.e.

∫∞
0 u2

d(x)r(x)dx =∞,

• there is a unique solution u∞ of the equation τu∞ = 0, with initial condi-
tion u∞(0) = 1 that is in L2 (R+, r),

•
∫∞

0
∫ x

0 u∞(x)2ud(y)2r(x)r(y)dydx <∞.

Then, there is a self-adjoint τL version of the operator on [0, L] with Dirichlet
boundary conditions on the domain

DL,0(τ) = DL(τ) ∩ {u : u(0) = 0, u(L) = 0}, (3.1.2)

where the end condition u(L) = 0 is dropped in the case L =∞. We denote this
self-adjoint operator by τL.
Furthermore, the inverse operator τ−1

L is an integral Hilbert-Schmidt operator in
L2([0, L], r

)
, and it has a bounded pure point spectrum.

3.1.3 The stochastic Airy operator

Stochastic Airy and Bessel operators are randomized versions of known dif-
ferential operators, which conversely can be seen as ‘β = ∞’ versions of their
stochastic counterparts.

Definition 3.1.4 (Airy operator [30, Definition 3.1]).
The Airy operator is the second order differential operator

A∞ = − d2

dx2 + x, (3.1.3)

acting on f ∈ L2((0,∞[
)
, with the boundary conditions

f(0) = 0 and lim
x→∞

f(x) = 0. (3.1.4)

.

Let D(A∞[ be the subspace of L2((0,∞[
)
of functions f verifying (3.1.4). An

eigenvalue/eigenfunction pair of A∞ is (λ, ψ) ∈ R×D(A∞[ such that ‖ψ‖2 = 1
and A∞ψ = λψk.

Proposition 3.1.1 (Eigenvalue decomposition for A∞ [30, Section 3.1]).
The eigenvalue decomposition of A∞ is:

∀k ∈ N,
(
A∞ − λk

)
Ai
(
− x− λk

)
= 0, (3.1.5)

with λk the (k + 1)st zero of Ai from Definition (2.2.2).
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Definition 3.1.5 (Stochastic Airy operator [64, Section 1]).
Set β > 0 and let B′ be a standard white noise on R+ (see [54, Chapter 1]).
The stochastic Airy operator, known as SAO, is the random differential operator

Aβ = A∞ + 2√
β
B′ i.e. Aβ = − d2

dx2 + x+ 2√
β
B′, (3.1.6)

defined on a subset of L2(R+) with Dirichlet boundary conditions at 0.

Proposition 3.1.2 (Aβ as a generalized S-L operator [23, Proposition 9]).
The operator Aβ is a generalized Sturm-Liouville operator of the form (3.1.1)
with

r(x) = p1(x) = 1, q0(x) = 2√
β
B(x), p0(x) = x.

It satisfies the hypothesis of Theorem 3.1.2 with probability one and we still
notate Aβ its self-adjoint version on D(Aβ) = D∞,0(Aβ) from (3.1.2).
If ψ solves the equation Aβψ = 0 with initial conditions ψ(0) = c0, ψ

′(0) = c1,
(c0, c1) 6= (0, 0), then (ψ,ψ′) is the strong solution of the stochastic differential
equation system

dψ(x) = ψ′(x)dx, dψ′(x) = ψ(x)
( 2√

β
dB + xdx

)
,

which is well defined for all times.

Proposition 3.1.3 (Pure point spectrum of Aβ [64, Theorem 1.1]).
With probability one, for each integer k > 0, the set of eigenvalues of Aβ has a
well-defined (k + 1)st lowest element Λk(Aβ).

Definition 3.1.6 (Eigenvalue problem for Aβ [64, Section 1]).
An eigenvalue/eigenfunction pair of Aβ is (λ, ψ) ∈ R×D(Aβ) such that ‖ψ‖2 = 1
and Aβψ = λψ, i.e.

ψ
′′(x) = 2√

β
ψ(x)B′(x) + (x− λ)ψ(x), (3.1.7)

which holds in the integration by parts sense:

ψ′(x)− ψ′(0) = 2√
β
ψ(x)B(x) +

∫ x

0
− 2√

β
B(y)ψ′(y)dy +

∫ x

0
(y − λk)ψ(y)dy.

3.1.4 The stochastic Bessel operator

Definition 3.1.7 (Bessel operator [30, Definition 3.3]).
The Bessel operator parametrized by a > −1 is the first order differential operator

J∞a = −2
√
x

d
dx + a√

x
, (3.1.8)

acting on L2([0, 1]
)
with the boundary conditions

f(1) = 0 and (J∞a f)(0) = 0. (3.1.9)
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Let D(J∞a ) be the subspace of L2([0, 1]
)
of functions f verifying (3.1.9). The

adjoint of the Bessel operator is

(J∞a )∗ = 2
√
x

d
dx + a+ 1√

x
,

with same domain and boundary conditions.

Proposition 3.1.4 (Singular value decomposition of J∞a [30, Section 3.1]).
The singular value decomposition of J∞a and (J∞a [∗ is:

J∞a
(
Ja(λk

√
x)
)

= λkJa+1(λk
√
x),

(J∞a )∗
(
Ja+1(λk

√
x)
)

= λkJa(λk
√
x),

for k ∈ N and with 0 < λ0 < λ1 < . . . the zeros of Ja from Definition (2.2.2).

Definition 3.1.8. Set β > 0, a > −1 and let B′ be a standard white noise on
[0, 1]. Define the stochastic operator acting on L2([0, 1]

)
:

J βa = J∞a + 2√
β
B′ i.e. J βa = −2

√
x

d
dx + a√

x
+ 2√

β
B′. (3.1.10)

Through formal manipulations (see [63, Section 1]), J βa (J βa )∗ can be transformed
into the stochastic Bessel operator.

Definition 3.1.9 (Stochastic Bessel operator [63, Section 1]).
Set β > 0, a > −1 and let B be a standard Brownian motion on R+. The
stochastic Bessel operator, known as SBO, is the random differential operator

Gβ
a = − 1

ma(x)
d

dx
( 1
sa(x)

d
dx
)
, (3.1.11)

ma(x) = exp
(
− (a+ 1)x− 2√

β
B(x)

)
, sa(x) = exp

(
ax+ 2√

β
B(x)

)
.

(3.1.12)

defined on a subset of L2(R+,ma) with Dirichlet boundary condition at 0 and
Neumann at infinity.

The operator −Gβ
a can be seen as generating a diffusion with random speed and

scale measures ma and sa. The motion can be built pathwise in the classical
mode (see for example [43, Chapter 4]).

Proposition 3.1.5 (Gβ
a as a S-L operator [23, Proposition 7]).

The stochastic operator Gβ
a is a Sturm-Liouville operator of the form (3.1.1) with

r = ma, p1 = s−1
a , p0 = q0 = 0.

It satisfies the hypothesis of Theorem 3.1.2 with probability one if a > 1 and we
still notate Gβ

a its self-adjoint version on D(Gβ
a) = D∞,0(Gβ

a) from (3.1.2).
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If ψ solves the equation Gβ
aψ = λψ with deterministic initial conditions ψ(0) =

c0, ψ′(0) = c1 then (ψ,ψ′) is the unique strong solution of the stochastic differ-
ential equation system:

dψ(x) = ψ′(x)dx, dψ′(x) = 2√
β
ψ′(x)dB(x) +

(
(a+ 2

β
)ψ′(x)− λe−xψ(x)

)
dx,

(3.1.13)
with the corresponding initial conditions.

Proposition 3.1.6 (Pure point spectrum of Gβ
a [63, Theorem 1]).

With probability one, for each integer k > 0, the set of eigenvalues of Gβ
a has a

well-defined (k + 1)st lowest element Λk(Gβ
a).

Definition 3.1.10 (Eigenvalue problem for Aβ [63, Section 1]).
An eigenvalue/eigenfunction pair of Gβ

a is (λ, ψ) ∈ R×D(Gβ
a) such that ‖ψ‖2 = 1

and Gβ
aψ = λψ, i.e. ψ = λ(Gβ

a)−1ψ, with the explicit inverse form

(
(Gβ

a)−1ψ
)
(x) =

∫ ∞
0

( ∫ x∧y

0
sa(dz)

)
ψ(y)ma(dy). (3.1.14)

(Gβ
a)−1 is non-negative symmetric in L2([R+,ma]

)
and the Dirichlet condition

at the origin is automatic for ψ = λ(Gβ
a)−1ψ.

3.2 Heuristic of convergence

This section presents heuristic arguments from [30] and [72] as to how the
stochastic Airy operator and the stochastic Bessel operator emerge as limits of
the matrix representations of β-ensembles, at the soft ad hard edges respectively.

3.2.1 Finite difference schemes

A finite difference scheme approximates numerically the solution of a differ-
ential equation by replacing differential operators with matrices that mimic their
behavior. Let us introduce the n× n matrices

∇n =


−1 1

−1 1
. . .

. . .

−1 1
−1

 , ∆n =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 , (3.2.1)

Fn =


1

1
1

. .
.

1

 , Sn =


−1

1
−1

. .
.

(−1)n

 . (3.2.2)
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Up to a constant factor, ∇n encodes a finite difference scheme for the first deriva-
tive operator when certain boundary conditions are in place. Likewise, under
certain conditions, ∆n discretizes the second derivative operator, also up to a
constant factor. Fn acts as a ‘flip’ permutation matrix.
In the next two subsections we explain how, properly rescaled at the soft and
hard edge respectively, the β-Hermite and β-Laguerre tridiagonal matrix repre-
sentations can be interpreted as finite difference schemes for Aβ and J βa . Similar
arguments for the β-Jacobi ensemble can be found in [30, Section 6].

3.2.2 Soft edge of the β-Hermite ensemble

For β > 0, recall the tridiagonal representation Hβ
n = (hβi,j)16i,j6n of the

β-Hermite ensemble of size n from (1.1.3). We first consider its low temperature
limit β →∞:

H∞n = 1√
n



0
√
n− 1√

n− 1 0
√
n− 2√

n− 2 0
√
n− 3

. . .
. . .

. . .√
2 0

√
1√

1 0


. (3.2.3)

This matrix encodes the recurrence relation for Hermite polynomials and its
eigenvalues are the roots of the nth polynomial. Properly rescaled, they converge
to the zeros of Ai (see [73, Equation 5.5.8]). Heuristically, applying the same
rescaling to a well-chosen similar transformation of H∞n should put forward a
discretized version of A∞.
For β finite or infinite, let Dn be the diagonal matrix of size n whose (i, i) entry
is (n/2)−(i−1)/2∏i−1

k=1 h
β
k,k+1. With β =∞, the conjugate of H∞n by Dn reads:

DnH
∞
n D

−1
n =



0 1
n−1
n 0 1

n−2
n 0 1

. . .
. . .

. . .
2
n 0 1

1
n 0


. (3.2.4)

Applying the appropriate rescaling, we introduce the ∞-Hermite model of size
n scaled at the soft edge, where In is the identity matrix of size n:

H∞,soft
n = −n2/3(DnH

∞
n D

−1
n − 2In). (3.2.5)

The translation is meant to pull the largest eigenvalues toward the origin, then
a scalar factor is applied to ‘zoom in’ so that the eigenvalues approach distinct
limits as n → ∞. Using (3.2.4), we derive the following proposition, which
interprets H∞,soft

n as a finite difference scheme for the Airy operator A∞ on the
mesh xi = hi, i = 1, . . . , n, with mesh size h = n−1/3.
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Proposition 3.2.1 (Finite difference scheme for A∞ [30, Theorem 5.2]).
∀n ∈ N,

H∞,soft
n = 1

h2 ∆n + diag−1(x1, . . . , xn−1),

with diag−1(x1, . . . , xn−1) the n×n matrix with x1, . . . , xn−1 on the subdiagonal
and zeros elsewhere.
Furthermore, for any fixed k ∈ N, the (k + 1)st least eigenvalue of H∞,soft

n con-
verges to the (k + 1)st least eigenvalue of A∞:

λ−k (H∞,soft
n ) −→

n→∞
Λk(A∞).

The convergence of the eigenvalues is a consequence of the eigenvalue decom-
position (3.1.5) for A∞ and the fact that our choice of rescaling is that of the
convergence of the roots of the Hermite polynomials to those of the Airy func-
tion. We now extend our argument to the β-Hermite ensemble for general β > 0.
Intuitively, the β-Hermite model of size n scaled at the soft edge is

Hβ,soft
n = −n2/3(DnH

β
nD
−1
n − 2In), (3.2.6)

where

DnH
β
nD
−1
n =



√
2√
nβ
G1 1

1
nβχ

2
(n−1)β

√
2√
nβ
G2 1

. . .
. . .

. . .
1
nβχ

2
2β

√
2√
nβ
Gn−1 1

1
nβχ

2
β

√
2√
nβ
Gn


. (3.2.7)

Proposition 3.2.2 (Finite difference scheme for Aβ [30, Theorem 6.2]).
We have

Hβ,soft
n = H∞,soft

n + 2√
β
Wn,

with

Wn = 1√
h

(−1√
2
)


G1
χ̃2

(n−1)β G2
χ̃2

(n−2)β G3
. . .

. . .

χ̃2
β Gn


,

where G1, . . . , Gn are standard Gaussian random variables, and

χ̃2
(n−j)β = 1√

2βn
(
χ2

(n−j)β)− (n− j)β
)
.

Furthermore, χ̃2
(n−j)β has mean 0 and standard deviation 1+O(h2) uniformly in

j for j such that xj = hj 6M , where M > 0 is fixed.
Since the increment of Brownian motion over an interval (x, x + h] has mean
0 and standard deviation

√
h, a discretization of white noise over this interval

should have mean 0 and standard deviation
√
h
h = 1√

h
, which makesWn a suitable

candidate. Therefore, Hβ,soft
n seems a reasonable discrete approximation of Aβ.
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3.2.3 Hard edge of the β-Laguerre ensemble

Let us show a similar heuristic for hard edge universality, looking at the left
edge of the β-Laguerre ensemble. With m = n+a, we can rewrite the bidiagonal
matrix representation of the β-Laguerre ensemble introduced in (1.1.5):

Lβn,a = 1√
(n+ a)β



χ(a+n)β
χ(n−1)β χ(a+n−1)β

. . .
. . .

χ2β χ(a+2)β
χβ χ(a+1)β

 . (3.2.8)

In the low temperature limit β →∞, Lβ,an approaches

L∞n,a = 1√
n+ a



√
a+ n√
n− 1

√
a+ n− 1
. . .

. . .√
2
√
a+ 2√

1
√
a+ 1

 . (3.2.9)

The kth least singular value of L∞n,a squared is the kth least root of the nth
Laguerre polynomial with parameter a, which, properly rescaled, converges to
kth positive zero of the Bessel function of the first kind Ja (see [73, Section 5.1]).
Introduce the ∞-Laguerre model of size n scaled at the hard edge:

L∞,hard
n,a = 2

√
n+ a√
h

FnSnL
∞
n,aS

−1
n Fn. (3.2.10)

Consider the mesh xi = (1− h
2 )− h(n− i), 1 = 1, . . . , n of size h = 1

n+(a+1)/2 .

Proposition 3.2.3 (Finite difference scheme for J∞a [72, Theorem 7.3.6]).
∀n ∈ N,

L∞,hard
n,a = −2 diag(

√
x1, . . . ,

√
xn) 1

h
∇n+ a

2



1√
x1

1√
x1
1√
x2

1√
x2

1√
x3

. . .

. . . 1√
xn−1
1√
xn


+En,

where En is upper bidiagonal with entries in rows d εhe, . . . , n uniformly O(h), for
any fixed 0 < ε < 1.

Indeed, for k = 1, . . . , n, the (k, k) entry of En is

(
2
√
k + a− 2

√
k + a/2− a

2
√
k + a/2

) 1√
h
.
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A series expansion of
√
k + a about

√
k + a/2 shows that the entry can be

bounded in magnitude by a2

16(ε−h)3/2h for all k > ε
h . Therefore, L∞,hard

n,a seems a
viable candidate for an approximation of a finite difference scheme for the Bessel
operator J∞a .

Moving on to the stochastic version, we use the approximation of the χ
distribution χr ≈

√
r + 1√

2G, valid for large r, to say that Lβn,a ≈ L̃βn,a, where

L̃βn,a = L∞n,a + 1√
2(n+ a)β


Gn
G′n−1 Gn−1

G′n−2 Gn−2
. . .

. . .

G′1 G1

 ,

withG1, . . . , Gn, G
′
1, . . . , G

′
n−1 independent standard Gaussian random variables.

With this approximation we can define the β-Laguerre model of size n scaled at
the hard edge:

Lβ,hard
n,a = 2

√
n+ a√
h

FnSnL
β,a
n S−1

n Fn

≈ 2
√
n+ a√
h

FnSnL̃
β,a
n S−1

n Fn

≈ L∞,hard
n,a +

√
2
β

1√
h
Wn,

(3.2.11)

where Wn is a random bidiagonal matrix whose (k, k) entry is Gk and whose
(k, k + 1) entry is G′k. The total standard deviation of

√
2
β

1√
h
Wn over row k is

2√
β

1√
h
, which is consistent with that of 2√

β
B′ from (3.1.10). Therefore, Lβ,hard

n,a

makes a viable candidate for a discrete approximation of J βa .

3.3 Hard edge universality

The following theorem gathers results already stated in Theorem 2.3.4 and
Proposition 3.1.6.

Theorem 3.3.1 (Hard edge universality for Lβn,a [63, Theorem 1]).
With probability one, when restricted to the positive half-line with Dirichlet con-
ditions at the origin, Gβ

a has a discrete spectrum comprised of single eigenvalues
0 < Λ0(Gβ

a) < Λ1(Gβ
a) < . . . ↑ ∞.

Moreover, for any k < ∞, the (k + 1)st smallest eigenvalues of the β-Laguerre
ensemble converge to the (k + 1)st smallest eigenvalues of the stochastic Bessel
operator:

n(n+ a)
(
λ−0 (Lβn,a), . . . , λ−k (Lβn,a)

) d−−−→
n→∞

(
Λ0(Gβ

a), . . . ,Λk(Gβ
a)
)
.
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In this section, we explain the proof of Theorem 3.3.1 from Ramírez and Rider.
Its structure is threefold. First, we inject the sequence

(
Lβn,a(Lβn,a)T

)
n>0 into

an integral operator space. Then, we prove the convergence of the operators
sequence. Finally, we identify its limit as Gβ

a . To lighten the writing, we will
denote by λn0 < λn1 < . . . the smallest eigenvalues of Lβn,a.
First, notice that for fixed λ, the differential system (3.1.13) has Lipschitz co-
efficients of linear growth and thus defines a pathwise unique Markov process
x 7→

(
ψ(x), ψ′(x)

)
for any

(
ψ(0), ψ′(0)

)
pair. Two solutions of ψ = λ(Gβ

a)−1ψ
vanishing at the origin must be constant multiples of one another, hence the
simplicity of the corresponding eigenvalues of Gβ

a .

3.3.1 Injection into the operator space

Set β > 0 and a > 1. Recall Sn from (3.2.2). As in the heuristic from Sub-
section 3.2.3, we work with L̂βn,a = Sn(Lβn,a)TS−1

n , which has the same singular
values as Lβn,a:

L̂βn,a = 1√
(n+ a)β


χ(a+1)β
−χ̃β χ(a+2)β

. . .
. . .

−χ̃(n−1)β χ(a+n)β

 , (3.3.1)

where the notation χ̃ is meant to emphasize the independence of the processes
along the main and lower diagonals. Since we want to prove the convergence to
the inverse operator (Gβ

a)−1 defined in (3.1.14), we compute the inverse of L̂βn,a.

Lemma 3.3.1. [63, Lemma 4] For any inversible lower bidiagonal matrix B =
(bi,j), B−1 is lower triangular and has the expression

(B−1)i,j = (−1)i+j

bi,i

i−1∏
k=j

bk+1,k
bk,k

for j < i,

(B−1)i,i = 1
bi,i

.

The proof of Lemma 3.3.1 rests on straightforward calculations, we do not give
it here. Define the mesh xi = i/n, i = 1, . . . , n. For a matrixM ∈Mn(R), M =
(mi,j)16i,j6n, there is a natural embedding M →M into the space of operators
acting on f ∈ L2([0, 1]

)
, which does not change the spectrum:

(Mf)(x) =
n∑
j=1

mi,jn

∫ xj

xj−1
f(y)dy for xi−1 6 x < xi.

Since the proper scaling at the hard edge is
(
n(n + a)L̂βn,a (L̂βn,a)T

)−1, using
Lemma 3.3.1, we read the action of

(
n(n+ a)

)−1/2(L̂βn,a)−1 on f ∈ L2([0, 1]
)
:

(
(
√
n(n+ a)L̂βn,a)−1f

)
(x) =

i∑
j=1

√
βn

χ(i+a)β

i−1∏
k=j

χ̃kβ
χ(k+a)β

∫ xj

xj−1
f(y)dy.
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Therefore, we can identify
(
n(n−a)

)−1/2(L̂βn,a)−1 with the integral operatorKβ,a
n

with discrete kernel

kβ,an (x, y) =
√
βn

χ(i+a)β
exp

( i−1∑
k=j

log χ̃kβ − logχ(k+a)β
)
1D(x, y) (3.3.2)

where 1D(x, y) = 1xi−16x<xi1xj−16y<xj1j6i.
To identify the limit of Kβ,a

n as n→∞, we need the following lemma.

Lemma 3.3.2. [63, Lemma 5] There is a Brownian motion B such that, for
x < y lying in (0, 1], for the Skorohod topology:

√
βn

χ(i+a)β

d−→
n→+∞

1√
x

(3.3.3)

and
i−1∑
k=j

log χ̃kβ − logχ(k+a)β
d−→

n→+∞

a

2 log y
x

+
∫ x

y

dbz√
βz
. (3.3.4)

Lemma 3.3.2 tells us that, as n→∞, Kβ,a
n should approach the integral operator

Kβ,a
∞ with kernel

kβ,a∞ (x, y) = x−
1+a

2 exp
[ ∫ x

y

dbz√
βz

]
y
a
2 1y<x. (3.3.5)

3.3.2 Convergence of the operators sequence

The proof of the convergence of the sequence (Kβ,a
n )n uses bounds on χ

variables and notions of operator theory, which we do not prove here.

Lemma 3.3.3. [63, Lemma 5] Let T (x) = 1
β log 1

x . There exist tight random
constants κn > 0 and κ′n > 0 independent of β so that

sup
16k6n

√
kβ

χ(k+a)β
6 κn,

∀ 1 6 j < i 6 n,
i−1∑
k=j

(
log χ̃kβ − logχ(k+a)β

)
− (a/2) log(j

i
) 6 κ′n

(
1 + T 3/4(xi) + T 3/4(xj)

)
.

Proposition 3.3.1 (Hilbert-Schmidt operator [66, Chapter 4]).
An operator K on the Hilbert space

(
L2([0, 1]

)
, ‖·‖2

)
is said to be Hilbert-Schmidt

if there exists a Hilbertian base (en)n∈N such that
∑
n∈N

∥∥Ken∥∥2 converges. In
this case, we set ∥∥K∥∥HS =

(∑
n∈N

∥∥Ken∥∥2

)1/2
.

A Hilbert-Schmidt operator is compact. Furthermore, if K is an integral operator
with kernel k ∈ L2([0, 1]× [0, 1]

)
then K is Hilbert-Schmidt and

∥∥K∥∥HS =
∥∥k∥∥2.
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Lemma 3.3.4 (Convergence of the operators sequence [63, Lemma 6]).
Kβ,a
∞ is almost surely Hilbert-Schmidt. Also, there exists a probability space on

which all Kβ,a
n and Kβ,a

∞ are defined, such that any sequence of the operators
Kβ,a
n contains a subsequence Kβ,a

n′ which converges to Kβ,a
∞ in Hilbert-Schmidt

norm with probability one, and in particular:

lim
n′→∞

∫ 1

0

∫ 1

0

∣∣kβ,an′ (x, y)(ω)− kβ,a∞ (x, y)(ω)
∣∣2dxdy = 0 almost surely. (3.3.6)

Lemma 3.3.4 is proved in the Appendices. We place ourselves on its advertised
probability space to prove the convergence in law of the eigenvalues. Start with
the scaled minimal eigenvalue of Lβn,a, and notate ‖ · ‖ the L2 7→ L2 operator
norm:

n(n+ a)λn0 = inf
‖v‖l2=1

〈
v, n(n+ a)L̂βn,a(L̂βn,a)T v

〉
=
(

sup
‖f‖L2=1

〈
f, (Kβ,a

n )TKβ,a
n f

〉 )−1

=
∥∥(Kβ,a

n )TKβ,a
n

∥∥−1
,

The final equality holds because (Kβ,a
n )TKβ,a

n is non-negative symmetric.
Since Kβ,a

∞ is almost surely Hilbert-Schmidt, (Kβ,a
∞ )TKβ,a

∞ is non-negative sym-
metric and compact so has a well defined maximal eigenvalue Λ̂0 =

∥∥(Kβ,a
∞ )TKβ,a

∞
∥∥.

Going forward, we write Λ̂0 > Λ̂1 > · · · the eigenvalues of Kβ,a∞ = (Kβ,a
∞ )TKβ,a

∞
and Λ̂n0 > Λ̂1

0 > . . . those of Kβ,an = (Kβ,a
n )TKβ,a

n .
We use Lemma 3.3.4 to choose a subsequence

(
φ(n)

)
n>0 along which

∥∥Kβ,a
φ(n) −K

β,a
∞
∥∥

HS −→ 0.

Kβ,aφ(n) converges strongly to Kβ,a∞ so the norms converge:

∥∥Kβ,aφ(n)
∥∥ = Λ̂φ(n)

0 −→
n→∞

∥∥Kβ,a∞ ∥∥ = Λ̂0 almost surely.

For any sequence of n(n + a)λn0 , there is a subsequence that converges almost
surely to 1/Λ̂0. This implies

n(n+ a)λn0 −→n→∞ Λ̂−1
0 almost surely. (3.3.7)

To extend our result to λn1 , λn2 , . . ., we need the convergence of the eigenvectors.
Define (fn)n>0 and f in L2([0, 1]

)
with unit norm by

〈
fn,Kβ,an fn

〉
= Λ̂n0 ,

〈
f,Kβ,a∞ f

〉
= Λ̂0.

We have
‖Kβ,aφ(n)fn‖L2 −→

n→∞
‖Kβ,a∞ ‖L2 .
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Since fφ(n) is uniformly bounded in L2([0, 1]
)
, we can extract a subsequence(

φ1(n)
)
n>0 along which it converges weakly to f∞. Then, for any ψ ∈ L2([0, 1]

)
,

〈
ψ,Kβ,aφ1(n)fφ1(n) −Kβ,a∞ f∞

〉
=
〈
ψ, (Kβ,aφ1(n) −K

β,a
∞ )fφ1(n)

〉
+
〈
Kβ,a∞ ψ, fφ1(n) − f∞

〉
−→
n→∞

0,

by norm convergence of the first term and boundedness of Kβ,a∞ in the second.
The weak convergence and the convergence of the norm imply the strong conver-
gence of a subsequence of (Kβ,an fn)n>0. Coupled with Kβ,an Kβ,an fn = Λ̂n0fn and
Λ̂n0 → Λ̂0, this induces a strongly convergent subsequence of (fn)n>0, which by
continuity converges to f .
Finally, denote by Pfn the projection onto the orthogonal complement of fn in
L2([0, 1]

)
. Pfφ1(n)K

β,a
φ1(n)Pfφ1(n) converges strongly to PfKβ,a∞ Pf , therefore

Λ̂φ1(n)
1 =

∥∥Pfφ1(n)K
β,a
n Pfφ1(n)

∥∥ −→
n→∞

∥∥PfKβ,a∞ Pf
∥∥ = Λ̂1 almost surely.

The same argument as for λn0 shows that

n(n+ a)λn1 −→n→∞ Λ̂−1
1 almost surely, (3.3.8)

and by induction the almost sure convergence extends to any finite number of
eigenvalues of Lβn,a.

3.3.3 Identification of (Gβ,a)−1

For fixed k ∈ N∗, we have proved the joint convergence in law of the rescaled
k highest eigenvalues of Lβn,a to the k highest eigenvalues of the integral operator
Kβ,a
∞ (Kβ,a

∞ )T . Its spectral problem reads

f(x) = λ

∫ 1

x
xa/2e

∫ x
y

dB(s)√
βs y−(a+1)

∫ y

0
e

∫ y
z

dB(s)√
βs za/2f(z)dzdy

= λ

∫ 1

0
(xy)a/2

( ∫ 1

x∨y
e
−2
∫ 1
z

dB(s)√
βs z−(a+1)dz

)
e

∫ 1
x

dB(s)√
βs e

∫ 1
y

dB(s)√
βs f(y)dy,

after integration by parts and where f ∈ L2([0, 1]
)
and f(1) = 0. The substitu-

tion g(x) = x−a/2e

∫ 1
x

dB(s)√
βs f(x) and the time change

∫ 1
x s
−1/2dB(s) = B̂

(
log(1/x)

)
with a new Brownian motion B̂ yield the equivalent formulation:

g(x) = λ

∫ 1

0

( ∫ 1

x∨y
e
− 2√

β
B̂(log 1/z)

z−(a+1)dz
)
g(y)yae

2√
β
B̂(log 1/y)

dy,

with g ∈ L2([0, 1], m̃a
)
, for m̃a(dx) = xae

2√
β
B̂(log 1/x)

dx. Finally, the change
of variables (x, y) → (e−x, e−y) gets us back to the desired form (3.1.14) and
transforms the Dirichlet condition at 1 into one at the origin.
We have thus identified Gβ

a as the limit operator and this concludes the proof of
Theorem 3.3.1.
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3.4 Soft edge universality
Universality at the soft edge as stated in Theorem 2.3.3 was proved by

Ramírez, Rider and Virág [64]. We wish here to present the beautiful analy-
sis of Gorin and Shkolnikov [37]. Resorting to combinatorics of high powers of
the β-Hermite ensemble matrix representation, they obtain a Feynman-Kac for-
mula for the stochastic Airy operator. We skecth the main ideas of their proof
and refer to their article for details. The concepts we use from theory of stochas-
tic integration, such as local times and Brownian bridges, can be found in the
textbook [48].

3.4.1 Setup

Consider a standard Brownian motion W , and for each T > 0 the following
random kernel on R+ × R+:

K(x, y;T ) = 1√
2πT

exp
(
− (x− y)2

2T
)

·EBx,y
(

1{∀t:Bx,y(t)∈R+} exp
(
− 1

2

∫ T

0
Bx,y(t)dt+ 1√

β

∫ ∞
0

La(Bx,y)dW (a)
))
,

(3.4.1)

where Bx,y is a standard Brownian bridge starting at x at time 0 and ending at
y at time T , which is independent of W , and the La(Bx,y) are the local times
accumulated by Bx,y at level a on [0, T ]. The expectation EBx,y is taken only
with respect to Bx,y.
We define U(T ), T > 0 as the integral operators on R+ with kernels K(x, y;T ),
and U(0) as the identity operator. To make statements about multiple operators
U(T ), we use the same path of W in (3.4.1).
Let S denote the set of all locally integrable functions f on R+ for which there
exists a δ > 0 such that f(x) = O

(
exp(x1−δ)

)
as x→∞. Further, for any n ∈ N

and f ∈ S, write πnf for the vector in Rn with components

(πnf)i = n1/6
∫ n−1/3(n−i+1)

n−1/3(n−i)
f(x)dx, i = 1, 2, . . . , n.

Finally, recall the β-Hermite ensemble tridiagonal matrix representationHβ
n from

(1.1.3), the permutation matrix Fn from (3.2.2) and introduce the n×n matrix:

Hβn(T ) = 1
2

((FnHβ
nF
−1
n

2
)bTn2/3c

+
(FnHβ

nF
−1
n

2
)bTn2/3c−1)

. (3.4.2)

Theorem 3.4.1 (Limit operator for Hβn(T ) [37, Theorem 2.8]).
We have the convergence

lim
n→∞

Hβn(T ) = U(T ), T > 0

in the following senses:
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(a) Weak convergence: For any f, g ∈ S and T > 0,

lim
n→∞

(πnf)THβn(T )(πng) =
∫
R+

(
UA(T )f

)
(x)g(x)dx

in distribution and in the sense of moments.
(b) Convergence of traces: For any T > 0,

lim
n→∞

Trace
(
(Hβn(T )

)
= Trace

(
U(T )

)
in distribution and in the sense of moments.

The convergence of the eigenvalues ofHβn(T ) to those of U(T ) can be deduced
from the convergence of the traces (see [37], Corollary 2.10).

Remark 3.4.1. Theorem 3.4.1 from [37] is stated in a more general setting,
defining for any interval A ⊂ R+ the kernel KA(x, y;T ) and the restriction
Hβ,A
n of Hβ

n onto A.

Remark 3.4.2. Gorin and Shkolnikov proved Theorem 3.4.1 for a wider range
of matrices that have diagonal entries of smaller order than their super/sub-
diagonal entries (see Assumption 2.1 in [37]). Gaudreau Lamarre was able to
lift this condition by rising the matrices to a different power (see [35, Section 4.3]
for a comparison with [37]), thus incorporating the soft edge of the β-Laguerre
ensemble.

Remark 3.4.3. Work has been done by Waters in [79] toward extending this tech-
nique to the hard edge and obtaining a Feynman-Kac formula for the stochastic
Bessel operator but remains to be completed.

Recall the stochastic Airy operator Aβ from 3.1.5 and its eigenvalues

Λ0(Aβ) 6 Λ1(Aβ) 6 . . .

Theorem 3.4.1 implies the following result.

Proposition 3.4.1 (Stochastic Airy semigroup [37, Corollary 2.12]).
For any T > 0, define e−

T
2 A

β as the unique operator on L2(R+) with the same
orthonormal basis of eigenfunctions as Aβ and the corresponding eigenvalues
eTΛ0(Aβ)/2 6 eTΛ1(Aβ)/2 6 . . .
If one couples e−

T
2 A

β with U(T ) by identifying the Brownian motions B in their
respective definitions, then for each T > 0, the operators e−

T
2 A

β and U(T ) coin-
cide with probability one.

The relationship between Aβ and the family of operators {U(T ), T > 0} can
be viewed as a variant of the Feynman-Kac formula for Schroedinger operators
(see [70, Section 6] for the known case where the potential is a deterministic
function).
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3.4.2 Sketch of the proof of Theorem 3.4.1

This section explains how the Brownian bridges Bx,y and the Brownian mo-
tion W from the kernel K(x, y;T ) from (3.4.1) arise in the study of high powers
of the matrix Hβ

n . We follow the original proof [37, Section 3] and work with a
rescaled and conjugated version of Hβ

n :

Mn = FnH
β
nF
−1
n = 1√

n



a(1) b(1) 0 · · · 0

b(1) a(2) b(2)
. . .

...

0 b(2) a(3)
. . . 0

...
. . .

. . .
. . . b(n− 1)

0 · · · 0 b(n− 1) a(n)


,

where a(m) ∼ N (0, 2/β) and b(m) ∼ χβm are independent. Note that a(m) is
of order 1 in m while b(m) =

√
m + ξ(m) with

∣∣E[ξ(m)]
∣∣ = o(m−1/3). Defining

sa = 1 and sξ = 1/
√

2β, we have

E
(
a(m)2) = s2

a, E
(
ξ(m)2) = s2

ξ + o(1) and s2
a/4 + s2

ξ = 1/β.

These estimates on the χ distribution tail can be found in a statistical distribu-
tion handbook such as [52]. By definition, for k ∈ N∗,

(Mn)k
[
i, i′
]

=
∑

Mn [i0, i1]Mn [i1, i2] . . .Mn [ik−2, ik−1]Mn [ik−1, ik] , (3.4.3)

where the sum is taken over all sequences of integers i0, i1, . . . , ik in {1, 2, . . . , n}
such that i0 = i, ik = i′, and |ij − ij−1| 6 1 for all j = 1, 2, . . . , k.
Take k =

⌊
Tn2/3

⌋
and assume that k is even (the odd case can be treated sim-

ilarly). We first consider the sequences in (3.4.3) without ‘horizontal’ segments
ij−1 = ij and therefore suppose that i− i′ is even. In (3.4.3), they account for

∑
16i0,i1,...,ik6n
|ij−i−1|=1 for all j
i0 = i, ik = i′

k∏
l=1

√
il ∧ il−1√

n

(
1 + ξ(il ∧ il−1)√

il ∧ il−1

)
. (3.4.4)

Recall the definition of Hβn(T ) from (3.4.2):

Hβn(T ) = 1
2

((Mn

2
)bTn2/3c

+
(Mn

2
)bTn2/3c−1)

. (3.4.5)

Write i∗ for min(i0, i1, . . . , ik). The contribution of the sequences of integers with
n−i∗
n1/3∗ → ∞ to the sum in (3.4.4) becomes negligible in the limit so we restrict
our attention to sequences with lim supn→∞ n−i∗

n1/4 <∞. In particular, we choose
i, i′ such that

x = lim
n→∞

n− i
n1/3 <∞, y = lim

n→∞
n− i′

n1/3 <∞.
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The sum in (3.4.4) is over the trajectories of a simple random walk with k steps
conditioned on connecting i to i′. Let us give a heuristic argument as to why the
normalized sum converges to an integral with respect to the law of the Brownian
bridge connecting x to y. The summand of (3.4.4) can be rewritten as

exp
(1

2

k∑
l=1

log
(
1− n− il ∧ il−1

n

)
+

k∑
l=1

log
(
1 + ξ(il ∧ il−1)√

ıl ∧ il−1

))
. (3.4.6)

For terms with lim supn→∞ n−i∗
n1/3 <∞, we use the approximation log(1 + z) ≈ z.

Here, z is of the order n−2/3, and there are order n2/3 summands. For the second
sum, consider the Taylor expansion

log(1 + ξ(il ∧ il−1)√
ll ∧ il−1

) = ξ(il ∧ il−1)√
ll ∧ il−1

− 1
2
ξ(il ∧ il−1)2

il ∧ il−1
+ · · · ,

where the second term is of order n−1 in expectation. Since there are order n2/3

summands, only the first term can contribute to the n→∞ limit. In that limit,
we can therefore replace (3.4.6) by

exp
(
− 1

2n

k∑
l=1

(n− il ∧ il+1) +
k∑
l=1

ξ(il ∧ il−1)√
il ∧ il−1

)
. (3.4.7)

In order to obtain local times at the limit n→∞, interpret the second term of
(3.4.7) in terms of occupation times:

k∑
l=1

ξ(il ∧ il−1)√
il ∧ il−1

=
n∑

h=i∗

ξ(h)√
h

∣∣ {l : il ∧ il+1 = h}
∣∣. (3.4.8)

A simple random walk bridge with k steps connecting i to i′ typically visits an
order of k1/2 sites, and the corresponding occupation times

∣∣ {l : il ∧ il−1 = h}
∣∣

are of the order k1/2. For such a trajectory, the right hand side of (3.4.8) is a sum
of independent random variables with means of orders o(h−2/3k1/2) = o(n−1/3)
and variances of orders O(h−1k) = O(n−1/3). Since there are an order of n1/3

summands, the limit of the sum is given by the Central Limit Theorem.
More specifically, the random walk bridge converges in the limit n → ∞ to a
standard Brownian bridge on [0, T ] connecting x to y and its occupation times
normalized by n1/3 converge to the local times of the Brownian bridge. Therefore,
the variance of the limiting centered Gaussian random variable comes out to
s2
ξ

∫∞
0 Lz(Bx,y)2dz.

With the Brownian motion sξWξ(z) = lim
n→∞

n−1/6∑n
h=n−bn1/3zc ξ(h), this random

variable can be written
sξ

∫ ∞
0

Lz(Bx,y)dWξ(z).

An application of Stirling’s formula shows that the number of random walk
bridges of length k =

⌊
Tn2/3

⌋
connecting i to i′ behaves asymptotically as

2kn−1/3
√

2
πT e

−(z−y)2/(2T ). Viewing (3.4.4) as a multiple of the expectation of a
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functional with respect to the law of such a random walk bridge, its asymptotic
behavior is the same multiple of the corresponding functional of the Brownian
bridge Bx,y, i.e.:

2kn−1/3
√

2
πT

e−(x−y)2/(2T )

· EBx,y
(
1{∀t:Bx,y(t)>0} exp

(
− 1

2

∫ T

0
Bx,y(t)dt+ sξ

∫ ∞
0

La(Bx,y)dW (a)
))
.

Consider now a sequence of (3.4.3) with k horizontal segments, assuming first
k = 2p even. This means we take a sequence of length k− 2p with no horizontal
segments and insert 2p horizontal segments at arbitrary spots. If p = 1 and we
normalize by 2k, the corresponding part in the sum (3.4.3) becomes

1
2k−2

∑
16i0,i1,...,ik−26n
|ij−ij−1|=1 for all j
i0 = i, ik−2 = i′

k−2∏
l=1

√
il ∧ il−1√

n

(
1 + ξ (il ∧ il−1)√

il ∧ il−1

)
·

 1
(2
√
n)2

∑
06j6l6k−2

a (ij) a (il)

 .

The last factor can be written as the sum of the terms 1
2

1
(2
√
n)2

(∑k−2
j=0 a(ij)

)2
and 1

2
1

(2
√
n)2
∑k−2
j=0 a(ij)2. As before, we can show that the first term tends to

1
2 times the square of a Gaussian random variable with mean 0 and variance
s2
a
4
∫∞

0 Lz(Bx,y)2dz, which we write as

sa
2

∫ ∞
0

Lz(Bx,y)dWa(z),

with the Brownian motion saWa(z) = lim
n→∞

n−1/6∑n
h−n−[n1/3z] a(h). The second

term is of order O(n−1k) = O(n−1/3) in expectation, and so negligible in the
limit n→∞. Similarly, for any number 2p of horizontal segments, their leading
order contribution is a factor of

1
(2p)!(2

√
n)2p

( k−2p∑
j=0

a(ij)
)2p ∼

n→∞
1

(2p)!
(sa

2

∫ ∞
0

La(Bx,y)dWa(a)
)2p

.

Adding (Mn)k−1 [i, i′], we get the total leading order contribution exp
( sa

2
∫∞

0 Lz(Bx,y) dWa(z)
)
.

Gathering everything, we obtain the asymptotics

1
2
((Mn

2
)k +

(Mn

2
)k−1)[i, i′ ] ∼

n→∞
n−1/3

√
1

2πT e
− (x−y)2

2

· EBx,y
(

1{∀t,Bx,y(t)>0} exp
(
− 1

2

∫ T

0
Bx,y(t)dt+

∫ ∞
0

Lz(Bx,y)
(
sξdWξ(z) + sa

2 dWa(z)
)))

.

Recall that s2
ξ + s2

a
4 = 1

β and set W =
√
β(sξWξ + ss

2 Wa). Theorem 3.4.1 follows
by summing over the relevant indices i, i′ and replacing the sums by the integrals
that they approximate.
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3.5 Operator level hard-to-soft transition
For the β-Laguerre ensemble Lβn,m, the soft or hard nature of the left edge

depends on the compared growth of m and n. Dumaz, Li and Valkó [23] proved
that taking a → +∞ in the parameter regime m = n + a induces a transition
between soft edge universality and hard edge universality.
For β > 0 and a > −1, recall ma from (3.1.12) and consider the ‘stretching’
transformation defined via (θaf)(x) = f(a2/3x). Define the following transform
for the stochastic Bessel operator of parameter 2a:

Gβ
2a = θ−1

a

(
m

1/2
2a Gβ

2am
−1/2
2a

)
θa. (3.5.1)

Then Gβ
2a is a self-adjoint operator with the same spectrum as Gβ

2a, and the op-
erators (Aβ)−1 and

(
Gβ

2a − a2
)−1

are Hilbert-Schmidt integral operators acting
on the same space of L2 (R+) functions (see [23, Section 2]). An operator level
hard-to-soft transition occurs.

Theorem 3.5.1 (Operator level hard-to-soft transition [23, Theorem 3]).
Let B′ be white noise on R+ and consider the Brownian motion B(x) :=

∫ x
0 B

′(y)dy.
For a > 0, set B2a(x) = a−1/3B

(
a2/3x

)
. Define Aβ with the white noise B′ and

Gβ
2a with the Brownian motion B2a via (3.5.1).

Then we have the convergence:

a4/3
(
Gβ

2a − a
2
)−1

−→
a→+∞

(Aβ)−1,

almost surely in Hilbert-Schmidt norm.
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Chapter 4

The Riccati transform

We showed in Chapter 3 that, for any β > 0, the rescaled lowest eigenvalues
of the β-Hermite ensemble and the β-Laguerre ensemble converge respectively to
the lowest eigenvalues of the stochastic Airy operator and the stochastic Bessel
operator. Our goal in the remaining of this thesis is to study the behavior of
those eigenvalues as the parameter β tends to 0. To that purpose, this chapter
introduces the Riccati transform, a classical tool in the study of the spectrum of
one-dimensional random Schrödinger operators, first used by Halperin [38].
The Riccati transform takes a linear second order operator into one of first
order, at the price of introducing a quadratic nonlinearity. Applying it to the
stochastic Airy operator and the stochastic Bessel operator provides us with
characterizations of the eigenvalues of Aβ and Gβ

a in terms of explosion times of
two families of diffusions, which will be useful in our β → 0 analysis in Chapters
5 and 6.
Sections 4.1 and 4.2 apply the Riccati transform to Gβ

a and Aβ respectively and
Sections 4.3 and 4.4 show how the obtained characterizations of the eigenvalues
can be used to derive properties of the eigenvalues processes.

4.1 Diffusion at the hard edge

4.1.1 The Riccati transform

Set a > −1 and β > 0. Recall the eigenvalues problem of the stochastic
Bessel Operator from (3.1.14) and its differential form from Proposition 3.1.5:

dψ′(t) = 2√
β
ψ′(t)dB(t) +

(
(a+ 2

β
)ψ′(t)− λe−tψ(t)

)
dt, dψ(t) = ψ′(t)dt.

(4.1.1)
Riccati’s map (or transform) is the change of variables

pλ(t) = ψ′(t)/ψ(t), (4.1.2)

valid away from the zeros of ψ. We derive from (4.1.1), in the Itô sense

dphard
λ (t) = 2√

β
phard
λ (t)dB(t) +

(
(a+ 2

β
)phard
λ (t)−

(
phard
λ (t)

)2−λe−t)dt. (4.1.3)

54
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First, see that replacing the −λe−t term in the drift of phard
λ with any negative

constant produces a homogeneous motion begun at +∞ and which hits −∞ with
probability one. Construction of such processes is treated in [43]. Successive
dominations of the inhomogeneous phard

λ by homogeneous versions over all short
times leads to the existence of uniqueness of phard

λ .
Solutions of (4.1.3) can blow up to −∞ in finite time, whenever ψ vanishes,
in which case phard

λ is immediately restarted at +∞. We can think of phard
λ as

taking values in the disjoint union of countable copies of the reals, R0, R1, . . . In
this space, points (n, t) are ordered lexicographically but we will refer to them
by their second coordinate t. A natural topology on this space is provided by
the two-point compactification of each copy of the reals, glued together at the
endpoints so as to respect the lexicographic ordering (see [64, Section 3]).

Proposition 4.1.1 (Family of diffusions at the hard edge [63, Section 3]).
The solution phard

λ of (4.1.3) is unique and continuous for the topology discussed
above, and decreasing in λ for each t. It defines a family of Markov processes,
or family of diffusions at the hard edge, parametrized by λ.

Recall that 0 < Λ0(Gβ
a) < . . . < Λk−1(Gβ

a) denote the k lowest eigenvalues of Gβ
a .

Our goal is to prove the following connection between the family of diffusions at
the hard edge and the eigenvalues of the stochastic Bessel operator.

Theorem 4.1.1 (Law of explosions at the hard edge [63, Theorem 2]).
Let Px,t denote the law of phard

λ (·) starting from position x at time t. Let also
νt(dz) = P+∞,t(r ∈ dz) where r is the explosion time of phard

λ to −∞. Then,

P
(
Λ0(Gβ

a) > λ
)

= ν0
(
{∞}

)
and, more generally,

P
(
Λk(Gβ

a) < λ
)

=
∫
Rk+1

ν0 (dt1) νt1 (dt2) · · · νtk (dtk+1) .

Remark 4.1.1 (Equality of events at the hard edge). The proof of Theorem 4.1.1
will show an equality of events, stronger than the stated equality in law:

∀k ∈ N,
{
phard
λ explodes at most k times on (0,∞[

}
=
{
Λk(Gβ

a) > λ
}
. (4.1.4)

4.1.2 Proof of Theorem 4.1.1

We follow the proof of Ramírez and Rider [63, Section 3]. For L > 0, consider
first the restriction of Gβ

a to [0, L] with Dirichlet conditions in 0 and L, writing
Gβ,L
a this truncated operator.

Lemma 4.1.1. [63, Lemma 3.2] Fix λ and consider the unique diffusion phard
λ (t)

started at +∞ at t = 0, and restarted at +∞ immediately after any passage to
−∞. The number of eigenvalues of Gβ,L

a less than λ is equal in law to the number
of explosions of p before t = L.

Proof. Take ψ0(t, λ) the solution of (4.1.1) with ψ0(0, λ) = 0 and ψ′0(0, λ) = 1.
Then Λ is an eigenvalue of Gβ,L

a if and only if ψ0(L,Λ) = 0. Let Λ0(Gβ,L
a ) be

the smallest eigenvalue of Gβ,L
a . Suppose that

∀ 0 < t 6 L, ψ0(t, λ) > 0.
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The monotonicity of phard
λ in λ implies that

∀λ′ 6 λ, ∀ 0 < t 6 L, ψ0(t, λ′) > 0.

Therefore, we have the equality of events:

{t 7→ ψ0(t, λ) has no roots before t = L} = {Λ0(Gβ,L
a ) > λ}.

The same monotonicity argument shows that additional zeros of the almost
surely continuous function λ 7→ ψ0(L, λ) only occur by increasing λ, whereupon
all other roots (in the t variable) move to the left, yielding the equality of events
for general k ∈ N:

{t 7→ ψ0(t, λ) has at most k roots on (0, L)} = {Λk(Gβ,L
a ) > λ}. (4.1.5)

Consider now p(t, λ) formed from ψ0(t, λ) and its derivative. By uniqueness of
the solutions to (4.1.1), ψ0 and ψ′0 cannot vanish simultaneously. In particular,
the zeros of ψ0 are isolated. At any root r of t 7→ ψ0(t, λ), including r = 0,
ψ0(r+ε, λ) > 0 and ψ′0(r+ε, λ) > 0 for ε small enough, so limε↓0 p(r+ε, λ) = +∞.
Likewise, when r > 0, ψ0(r+ε, λ) > 0 and ψ′0(r+ε, λ) < 0 for ε small enough, so
limε↓0 p(r−ε, λ) = −∞. Therefore, to count roots of ψ0(·, λ) is to count passages
of the corresponding p(·, λ) to −∞, after subsequent restarts at +∞.

Lemma 4.1.2. [63, Lemma 3.3] For k ∈ N∗, as L→∞, the top k eigenvalues
of Gβ,L

a converge to the top k eigenvalues of Gβ
a with probability one.

Proof.
(
Gβ,L
a

)−1
acts on L2([0, L],ma

)
via((

GL
β,a

)−1
f

)
(x) =

∫ ∞
0

sL(x, y)f(y)ma(dy),

where

sL(x, y) =
(∫ x∧y

0
s(dz)

)
×

∫ Lx∨y s(dz)∫ L
0 s(dz)

 1{x,y∈[0,L]}.

We have sL(x, y) 6
∫ x∧y
0 s(dz) and limL→∞ sL(x, y) =

∫ x∧y
0 s(dz) pointwise in x

and y, almost surely. By dominated convergence, almost surely,∫ ∞
0

∫ ∞
0

f(x)sL(x, y)g(y)ma(dx)ma(dy) −→
L→∞

∫ ∞
0

∫ ∞
0

f(x)
(∫ x∧y

0
s(dz)

)
g(y)ma(dx)ma(dy)

for all f, g ∈ L2(R+,m), and

tr
(
(Gβ,L

a )−1) =
∫ L

0
sL(x, x)ma(dx) −→

L→∞

∫ ∞
0

∫ x

0
s(dy)ma(dx) = tr

(
(Gβ

a)−1).
This implies the convergence of Gβ,L

a to Gβ
a in trace norm (see [69], Theorem

2.20), from which we can derive the convergence of the eigenvalues using the
same arguments as in the proof of Theorem 3.3.1.

Taking L → ∞ in Lemma 4.1.1 and using Lemma 4.1.2 proves Theorem 4.1.1
and the equality of events 4.1.4.
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4.1.3 Simulations

Fix a = 2 and β = 2. Our numerical simulations are set to start at 10 at
t = 0 and to restart at 10 when they hit −10. This approximation is made
for computational convenience and does not change the number of explosions.
Figure 7 shows a realization of phard

50 , exploding 4 times. As t increases, it becomes
harder for the diffusion to explode to −∞.

Figure 7: Diffusion phard
50 .

Figure 8 shows a realization of phard
1 , phard

5 and phard
10 using the same Brownian

motion B(ω), exploding respectively 0, 1 and 2 times. From the equality (4.1.4),
on this event ω:

1 < Λ0(G2
2) 6 5 < Λ1(G2

2) 6 10 < Λ2(G2
2).

Figure 8: Diffusions phard
1 (top), phard

5 (middle) and phard
10 (bottom).
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4.2 Diffusion at the soft edge
We follow the arguments of Ramírez, Rider and Virág [64, Section 3] to

skecth the proof of Theorem 4.2.1, the analog of Theorem 4.1.1 for the soft edge.

4.2.1 The Ricatti transform

Recall the eigenvalue problem (3.1.7) for the stochastic Airy operator from
Proposition 3.1.3:

ψ
′′(t) = 2√

β
ψ(t)B′(t) + (t− λ)ψ(t). (4.2.1)

The Riccati transform psoft
λ (t) = ψ′(t)/ψ(t) turns (4.2.1) into a first-order differ-

ential equation, understood in the Itô sense:

dpsoft
λ (t) =

(
t− λ−

(
psoft
λ (t)

)2)dt− 2√
β

dB(t). (4.2.2)

Proposition 4.2.1 (Family of diffusions at the soft edge [64, Section 3]).
The solution psoft

λ of (4.2.2) is unique, continuous for the topology discussed in
Subsection 4.1.1, and decreasing in λ for each t. It defines a family of Markov
processes, or family of diffusions at the soft edge, parametrized by λ.

Arguments similar to those of Section 4.1 prove the following results, where
Aβ,L is the truncation of Aβ, defined on the finite interval [0, L] with Dirichlet
conditions at both endpoints.

Lemma 4.2.1. [64, Lemma 3.2] For fixed λ, the number of blowups of psoft
λ (t)

to −∞ on [0, L] equals the number of eigenvalues of Aβ,L at most λ.

Lemma 4.2.2. [64, Lemma 3.3] As L → ∞ the first k eigenvalues of Aβ,L
converge to the first k eigenvalues of Aβ.

Recall that 0 < Λ0(Aβ) < . . . < Λk−1(Aβ) denote the k lowest eigenvalues of
Aβ. Taking the L→∞ limit in Lemma 4.2.1 and using Lemma 4.2.2 yields the
following results.

Proposition 4.2.2 (Equality of events at the soft edge [64, Proposition 3.4]).
For almost all λ,

∀k ∈ N,
{
psoft
λ explodes at most k times on (0,∞[

}
=
{
Λk(Aβ) > λ

}
. (4.2.3)

Finally, using the translation equivariance of psoft
λ with regards to λ, Theorem

4.2.1 characterizes the spectrum of Aβ in terms of the explosion probability of
the one-dimensional diffusion t 7→ p0(t).

Theorem 4.2.1 (Law of explosions at the hard edge [64, Theorem 1.2]).
Let κ(t, ·) be the distribution of the first time passage to −∞ of the diffusion
psoft

0 (t) when started from +∞ at time t. Then

P
(
Λ0(Aβ) > λ

)
= κ

(
− λ, {∞}

)
, and, for k > 0,

P
(
Λk(Aβ) < λ

)
=
∫
Rk+1

κ (−λ, dt1)κ (t1,dt2) . . . κ (tk, dtk+1) .
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4.2.2 Simulations

Fix a = 2 and β = 2. Once again, our numerical simulations are set to start at
10 at t = 0 and to restart at 10 when they hit −10. This approximation is made
for computational convenience and does not change the number of explosions.
Figure 7 shows a realization psoft

10 , exploding 7 times. The more t increases, the
harder it becomes for the diffusion to explode to −∞.

Figure 9: Diffusion psoft
10 .

Figure 10 shows a realization of psoft
1 , psoft

2 and psoft
5 using the same Brownian

motion B(ω), exploding respectively 0, 1 and 3 times. From the equality (4.2.2),
on this event ω:

1 < Λ0(A2
2) < 2 < Λ1(A2

2) < Λ2(A2
2) 6 5 < Λ3(A2

2).

Figure 10: Diffusions psoft
1 (top), psoft

2 (middle) and psoft
5 (bottom).
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4.3 Tracy-Widom tail bounds

The characterization of the spectrum of Aβ by the explosions of psoft
λ as in

(4.2.2) can be used to prove tail estimates of the Tracy-Widom distribution.

Theorem 4.3.1 (Tracy-Widom tail bounds [64, Theorem 1.3]).
With TWβ = −Λ0(Aβ), we have:

P (TWβ > a) = exp
(
−2

3βa
3/2(1 + o

a→+∞
(1)
))
,

P (TWβ < −a) = exp
(
− 1

24βa
3(1 + o

a→+∞
(1)
))
.

The characterization (4.2.3) is used in the proof of the lower bound of the left
tail and of the upper bound of the right tail. We explain the former here and
refer to [64, Section 4] for the proof of the latter.
With Theroem 4.2.1, we have:

P (TWβ < −a) = P
(
Λ0(Aβ) > a

)
= P(∞,−a)

(
psoft

0 never explodes
)
,

where the subscript of P indicates the space-time starting point of p0.
By monotonicity and strong Markov property,

P(∞,−a)
(
psoft

0 never explodes
)
> P(1,−a)

(
psoft

0 never explodes
)

> P(1,−a)
(
∀ t ∈ [−a, 0], psoft

0 (t) ∈ [0, 2]
)
P(0,0)

(
psoft

0 never explodes
)
.

The second factor is a positive term not depending on a. To bound the first
probability, we use the Cameron-Martin-Girsanov formula:

P(1,−a)
(
∀ t ∈ [−a, 0], psoft

0 (t) ∈ [0, 2]
)

= E(1,−a)
(

exp
(
− β

4

∫ 0

−a

(
t−B(t)2

)
dB(t)− β

8

∫ 0

−a

(
t−B(t)2

)2
dt
)
;B(t) ∈ [0, 2] ∀ t 6 0

)
,

where Bt is a Brownian motion with diffusion coefficient 2/
√
β. On the event in

question,
β

8

∫ 0

−a

(
t−B2

t

)2
dt = β

24a
3 + O

a→+∞

(
a2
)
,

and∫ 0

−a

(
t−B(t)2

)
dB(t) = aB(−a)+1

3
(
B(−a)3 −B(0)3

)
+
( 4
β
− 1

)∫ 0

−a
B(t)dt = O

a→+∞
(a).

To finish, note that P(−a,0)
(
∀ t 6 0, B(t) ∈ [0, 2]

)
> e−ca does not interfere with

the leading order. We have proved

P
(
TWβ < −a

)
> exp

(
− 1

24βa
3(1 + o

a→+∞
(1)
))
.
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To illustrate Theorem 4.3.1 numerically, we approximate TW1 by the em-
pirical distribution of the largest eigenvalue of a size 103 Gaussian Orthogonal
Matrix, computed over 104 samples. Figure 11 compares this empirical distri-
bution with the theoretical tail estimates.

Figure 11: TW1 (black) and left and right tail estimates (blue).

4.4 The hard-to-soft transition
Borodin and Forrester [14] proved a transition between the hard and soft

edge distributions at β = 1, 2, and 4. In the unitary case β = 2, we can use the
determinantal structure from Chapter 2, Section 2.2 to write these distributions
in terms of Fredholm determinants:

P
(
Λ0(G2

a) > λ
)

= 1+
∞∑
k=1

(−1)k

k!

∫ λ

0
dx1 . . .

∫ λ

0
dxk det

[
KBessel (xi, xj)

]
i,j=1,...,k

,

and

P (TW2 < λ) = 1 +
∞∑
k=1

(−1)k

k!

∫ ∞
λ

dx1 . . .

∫ ∞
λ

dxk det
[
KAiry (xi, xj)

]
i,j=1,...,k

,

where the kernels KAiry and KBessel are as in Section 2.2. Using the the Riccati
transform and characterization (4.1.4), Ramírez and Rider showed the same
transition holds at all β > 0.

Theorem 4.4.1 (Hard to soft transition [63, Theorem 3]).
For β > 0,

η − Λ0(Gβ
2
√
η−2/β)

η2/3
d−−−→

η→∞
TWβ.



Chapter 5

The stochastic Airy operator

The inverse temperature parameter β shapes the global and local behavior
of the β-ensembles. The last two chapters of this thesis study respectively the
β-Hermite ensemble from (1.1.2) and the β-Laguerre ensemble from (1.1.4) in
the double limit n→∞, β → 0, which we call high-temperature regime.

Figure 12: High-temperature regime for Hβ
n.

The high-temperature regime can be obtained in different ways. Taking β = β(n)
allows to achieve simultaneously n→∞ and β → 0 and yields Poissonian limit
local statistics for the eigenvalues in the bulk (see [61], [27], [11]) and at the
edges (see [5], [8] and [62]), for specific β(n) regimes.
In this thesis, we achieve the high-temperature regime by taking first n→∞ and
then β → 0. The limit local statistics of the β-Hermite ensemble are determined
by the behavior, when β → 0, of the Sineβ operator from Theorem 3.1.1 (in
the bulk) and of the stochastic Airy operator Aβ from Definition 3.1.5 (at the
edges). For the bulk statistics, Allez and Dumaz [6] proved the convergence of
the Sineβ point process to a Poisson point process on R.
We focus here on the (soft) edges statistics. Dumaz and Labbé [22] proved the
convergence of the rescaled eigenvalues of Aβ to a Poisson point process on R.
This chapter is dedicated to the proof of this result, stated in Theorem 5.1.1,
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with techniques that we use again in Chapter 6 in our study of the stochastic
Bessel operator.

5.1 Statement of results
Recall that Λ0(Aβ) < Λ1(Aβ) < . . . denote the smallest eigenvalues of Aβ.

Theorem 5.1.1 (Aβ at high temperature [22, Theorem 1]).
Setting cβ =

(
3

2β ln 1
πβ

)2/3
, we have:(

β
√
cβ
(
Λk(Aβ) + cβ

))
k>0

d−−−→
β→0

(
Λk
)
k>0,

where
(
Λk
)
k>0 are the atoms of a Poisson point process on R with intensity exdx.

To prove Theorem 5.1.1, we follow the arguments of Allez and Dumaz [7] and of
Dumaz and Labbé [22], who use the fruitful connection between the eigenvalues
ofAβ and the diffusions obtained through its Riccati map (see Chapter 4, Section
4.2). To this end, we introduce the stochastic linear operator Lβ, for x > 0:

Lβ = − d2

dx2 + β

4x+B′(x).

The operator Lβ proves more convenient to study than Aβ in the high temper-
ature regime because it removes the 2/

√
β term, which diverges as β → 0.

Denoting by Λ0(Lβ) < Λ1(Lβ) < . . . its eigenvalues, the change of function
ψ̃(x) = cψ(x/c) with c = (4/β)1/3 in the differential equation (3.1.7) satisfied by
the eigenfunctions ψ of Aβ shows that:

{
Λk(Lβ), k ∈ N

} d=
(
β

4

)2/3 {
Λk(Aβ), k ∈ N

}
. (5.1.1)

Implementing the Riccati transform from Chapter 4 on Lβ, we obtain a new
family of diffusions on R+ (see [22, Section 2]).

Proposition 5.1.1 (A second family of diffusions [22, Theorem 1]).
Let β > 0 and B a Brownian motion. Introduce (Za)a∈R, the family of diffusions
on R+:

dZa(t) =
(
a+ β

4 t− Za(t)
2)dt+ dB(t), Za(0) = +∞, a ∈ R. (5.1.2)

When exploding to −∞, Za is immediately restarted from +∞.
We have the key equality of events:{

Λk(Lβ) 6 a
}

=
{
Z−a blows up to −∞ a least k + 1 times in R+

}
. (5.1.3)

The proof of Theorem 5.1.1 has three steps. In Section 5.2, we study the explo-
sions process of a stationary version of the diffusion Za. In Section 5.3, we prove
the convergence of the explosions process of Za using stationary approximations.
In Section 5.4, we derive the convergence of the eigenvalues process of Aβ.
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5.2 A family of stationary diffusions

5.2.1 Statement of results

Definition 5.2.1 (A family of stationary diffusions).
For B a Brownian motion, t0 ∈ R+ and x0 ∈ R∪{+∞}, introduce (Y (t0,x0)

a )a∈R
the family of stationary diffusions on R+:

dY (t0,x0)
a (t) =

(
a− Y (t0,x0)

a (t)2
)

dt+ dB(t), Y (t0,x0)
a (t0) = x0, a ∈ R. (5.2.1)

Each time Y (t0,x0)
a hits −∞, it is restarted immediately from +∞.

The diffusion Y (t0,x0)
a evolves in a potential V Y (z) = −az+z3/3, which does not

depend on time t. Consequently, Ya can be seen as a stationary version of Za
in the case β = 0, and understanding its explosions process is the first step to
prove Theorem 5.1.1. To this end, we will use the following key property.

Proposition 5.2.1 (Monotonicity property of Y (t0,x0)
a [22, Section 4.1]).

Almost surely, for all a 6 a′, all (t0, x0), (t′0, x′0) and all s ∈ [t0 ∨ t′0],

if Y (t0,x0)
a (s) 6 Y

(t′0,x′0)
a (s) then Y (t0,x0)

a (s+ ·) 6 Y
(t′0,x′0)
a (s+ ·), (5.2.2)

up to the next explosion time of Y (t0,x0)
a .

Definition 5.2.2 (Explosion times point process of Y (0,+∞[
a ).

For a ∈ R, introduce the first explosion time of Y (t0,x0)
a :

ζ(t0,x0)(a) = inf{t > 0 : Y (t0,x0)
a (t) = −∞}.

The diffusion Y (0,+∞[
a blows up to −∞ in a finite time almost surely (later proved

in (5.2.4)) and is then reset at +∞, so we can define the successive explosions
times:

ζ1(a) = ζ(0,+∞[(a) < ζ2(a) = ζ(ζ1,+∞[(a) < ζ3(a) = ζ(ζ2,+∞[(a) . . .

The explosion times point process of Y (0,+∞[
a is the empirical measure µa of the

rescaled explosion times:

µa(B) =
+∞∑
k=1

δζk(a)/m(a)(B), for B Borel set of R+,

wherem(a) is later defined in (5.2.5). In particular, the random variable µa
(
[0, t]

)
is the number of explosions of the diffusion Y (0,+∞[

a in the interval
[
0,m(a)t

]
.

We can now state the main result of this section.

Theorem 5.2.1 (Vague convergence of µa [7, Theorem 3.6]).
When a → +∞, the explosion times point process µa of the diffusion Y

(0,+∞[
a

converges weakly (in the space of Radon measures on R+ equipped with the topol-
ogy of vague convergence [47])to a Poisson point process with intensity 1 on R+.
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5.2.2 Proof of Theorem 5.2.1

First, we study the law of the first explosion time. The potential V Y presents
a local minimum in z =

√
a and a local maximum in z = −

√
a. The potential

barrier ∆V Y = 4
3a

3/2 gets very large when a → +∞, while the noise remains
constant. A typical sample path of the diffusion spends most of its time near
the bottom of the well, and from time to time manages to reach the unstable
equilibrium point −

√
a, from where it either explodes to −∞ or comes back

to the bottom of the well within a short time. From Kramer’s theory [39],
we expect ζ(t0,x0)(a) to be distributed according to an exponential law with
parameter exp(−2∆V Y ). To prove this, consider the Laplace transform:

gα(x) = E
[
e−αζ

(0,x)(a)
]
. (5.2.3)

Using classical theory on infinitesimal generators of diffusion processes (see [43]),
we get the following characterization.

Proposition 5.2.2 (Laplace transform of ζ(t0,x0)(a) [7, Proposition 3.1]).
Let α > 0. The function gα defined in (5.2.3) is the unique bounded and twice
continuously differentiable solution of the boundary value problem

1
2g
′′
α −

(
x2 − a

)
g′α = αgα, gα(x)→ 1 when x→ −∞.

In addition, it satisfies the fixed point equation

gα(x) = 1− 2α
∫ x

−∞
dt
∫ +∞

t
ds exp

(
2a(s− t) + 2

3
(
t3 − s3

))
gα(u).

The probability that Y (0,x)
a explodes in a finite time is given by taking α = 0:

g0(x) := lim
α↓0

E(e−αζ(0,x)(a)) = P(ζ(0,x)(a) < +∞[= 1. (5.2.4)

The mean exit time m(0,x)(a) of the diffusion starting at time t = 0 from position
x is obtained by differentiating gα(x) with respect to α and taking α = 0.

m(0,x)(a) = 2
∫ x

−∞
dt
∫ +∞

t
du exp

(
2a(u− t) + 2

3
(
t3 − u3

))
.

Set m(a) = m(0,+∞[(a). Its asymptotic when a→ +∞ can be determined using
the saddle point method (see [7], Appendix C):

m(a) = π√
a

exp
(8

3a
3/2
)(

1 + 5
48

1
a3/2 + o

a→+∞

( 1
a3
))
. (5.2.5)

Theorem 5.2.2 shows that, when a→ +∞, the explosion time ζ(t0,x0)(a) rescaled
by its mean m(a) converges to the exponential distribution with parameter 1,
faithfully to Kramer’s theory. This result is valid for a large range of starting
points, mainly all the points which are in the potential well (i.e. above the local
maximum of the potential).
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Theorem 5.2.2 (Convergence in law of ζ(t0,x0)(a) [7, Theorem 3.3]).
Let f : R→ R such that a1/4

(
f(a) + a1/2

)
→

a→+∞
+∞. Then,

sup
x>f(a)

∣∣∣∣gα/m(a)(x)− 1
1 + α

∣∣∣∣ −→a→+∞
0.

In particular, for any x > f(a), the first rescaled explosion time ζ(0,x)(a)/m(a)
converges in law when a → +∞ to an exponential law with parameter 1.

We can now prove the convergence of the explosion times point process to a
Poisson point process with intensity 1 on R+.

Proof of Theorem 5.2.1. Using the criterion from Kallenberg [47], it is sufficient
to prove that, for any finite union I of disjoint and bounded intervals, a→ +∞,

E
(
µa(I)

)
−→
a→+∞

|I|, (5.2.6)

P
(
µa(I) = 0

)
−→
a→+∞

exp
(
− |I|

)
, (5.2.7)

where |I| denotes the length of the set I. For (5.2.6), by linearity, we just need
to prove that E

(
µa[0, t]

)
−→
a→+∞

t. With Theorem 5.2.2, we have

E
(
µa[0, t]

)
=

+∞∑
k=0

P
(
µa[0, t] > k

)
= 1 +

+∞∑
k=1

P
(ζk(a)
m(a) 6 t

)
.

For each k, the strong Markov property tells us that the random variable ζk+1−ζk
is independent of (ζ1, ζ2 − ζ1, . . . , ζk− ζk−1) and has the same distribution as
ζ1. Therefore, ζk(a)/m(a) converges in law when a → +∞ to the Gamma
distribution Γ(k, 1). Using Cramer’s large deviation principle, one can prove the
existence of a constant C > 0 independent of k such that P [ζk(a)/m(a) 6 t] 6
C/k2. The bounded convergence theorem applies and:

E
(
µa[0, t]

)
−→
a→+∞

1 +
+∞∑
k=1

P
(
Γ(k, 1) 6 t

)
= t.

We now turn to the second equality (5.2.7). For any k > 1, the strong Markov
property for the diffusion Y (0,+∞[

a shows that the first k explosions times converge
jointly in law to the first k occurrence times ξ1 < ξ2 < . . . < ξk of a Poisson
point process with intensity 1:

1
m(a)

(
ζ1(a), ζ2(a), . . . , ζk(a)

) d−−−−→
a→+∞

(
ξ1, ξ2, . . . , ξk

)
. (5.2.8)

Indeed, the increments are independent and each of them converges to an ex-
ponential distribution thanks to Theorem 5.2.2. A large deviation argument
can again bound the probability of having more than k explosion times be-
fore time m(a)t. Using the convergence (5.2.8) on the overwhelming event{
ζk(a) > m(a)t

}
, we get the convergence (5.2.7).
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5.3 Convergence of the explosions times process

5.3.1 A first convergence result

We now study the explosions times point process of the non-stationary diffu-
sion Za using approximations by the stationary diffusion Ya. If β tends to 0 while
a is fixed, the diffusion Za converges in law to the stationary diffusion Ya, which
explodes at least k times with probability one, for any fixed k ∈ N. Therefore,
if we look for a non trivial limit in law for the eigenvalue Λk(Lβ) when β → 0,
the parameter a should increase to +∞. Consider the rescaling aLβ = m−1(Lβ),
with Lβ = β−1(3

8 ln 1/β)−1/3. Dumaz and Labbé [22, Section 4.1] proved that

aLβ =
β→0

(3
8 ln 1

β

)2/3 (
1− 2

3
ln π

ln(1/β) + o
β→0

( 1
ln(1/β)

))
. (5.3.1)

To account for the fact that Za feels the evolution in time due to the linear term
β
4 in the drift, introduce aβ(r) = aLβ − r

4√a
Lβ
, r ∈ R. The asymptotic in (5.3.1)

shows us that

aβ(r) =
β→0

aLβ −
1
2

1
31/3 ln

( 1
β

)−1/3
r + o

β→0

( 1
(ln 1

β )4/3

)
.

This definition is motivated by the fact that, between times 0 and Lβ t, the first
part of the drift of Za

Lβ
evolves from aLβ to

aLβ + β

4L
β t ∼

β→0
aβ(t).

Fix r ∈ R and introduce (ζk)k∈N∗ the family of explosion times of Zaβ(r) (with
no risks of confusion with the explosions of Y a from Section 5.2, which we no
longer use), where we omit the dependency on β and r to alleviate notations.

Definition 5.3.1 (Explosion times point process of Zaβ(r)).
The explosion times point process of Zaβ(r) is the empirical measure νβ,

νβ(B) =
+∞∑
k=1

δζk/Lβ (B) =
+∞∑
k=1

δζk/m(a
Lβ

)(B), for B Borel set of R+.

For almost all r, the number νβ (R+) of explosions in R+ is equal to the number
of eigenvalues smaller than −aβ(r).

Theorem 5.3.1 (Vague convergence of νβ [7, Theorem 4.1]).
When β → 0, the explosion times point process νβ converges weakly (in the space
of Radon measures equipped with the topology of vague convergence [47]) to a
Poisson point process with inhomogeneous intensity er× e−tdt. It readily implies
the following convergence.
For any t < t′, k ∈ N,

P
(
νβ
(
[t; t′]

)
= k

)
−→
β→0

exp
(
−er

∫ t′

t
e−xdx

) (
er
∫ t′
t e
−xdx

)k
k! .
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Proof of Theorem 5.3.1. For simplification purposes, we notate here Z the diffu-
sion Zaβ(r). Again, from Kallenberg’s criterion [28], it is sufficient to prove that,
for any finite union I of disjoint and bounded intervals,

E
(
νβ(I)

)
−→
β→0

er
∫
I
e−tdt (5.3.2)

P
(
νβ(I) = 0

)
−→
β→0

exp
(
−er

∫
I
e−tdt

)
. (5.3.3)

Write I = J ∪ [t1; t2] and let t0 < t1 be the supremum of J . Set si = Lβ ti
for i = 0, 1, 2. By linearity of the expectation, it is enough to prove (5.3.2) for
intervals I of the form I = [0, t]. For (5.3.3), the simple Markov property yields

P
(
νβ(I) = 0

)
= P

(
1νβ(J)=0PZ(s0),s0

(
νβ
(

[t1; t2]
)

= 0
))
,

where PZ(s0),s0 is the law of the diffusion Z started at time s0 with value Z(s0).
Therefore, showing (5.3.3) reduces to see that with probability going to 1 as
β → 0,

PZ(s0),s0

(
νβ
(

[t1; t2]
)

= 0
)
−→
β→0

exp
(
−er

∫ t2

t1
e−tdt

)
.

The idea is to decompose the interval [t1; t2] (with t1 = 0 for (5.3.2)) into a
finite number of small intervals and to approximate the number of explosions
of Z on each small interval of the subdivision by those of stationary diffusions.
Define a sequence (τk)k∈N of i.i.d. random variables with uniform law in [0, 1],
independent of the diffusion Z. Let δ small enough such that 0 < δ < s1 − s0.
Then, construct iteratively the sequence of random times (Sk)k > 0 such that
S0 = s1 − δτ0, Sk = Sk−1 + δτk for k > 1. On each interval [Sk, Sk+1] of the
random subdivision, define two diffusions mk and Mk (independent of the times
τk) driven by the same Brownian motion as Z:

mk (Sk) = Z (Sk) and dmk(s) =
(
aβ(r) + β

4Sk −m
2
k(s)

)
ds+ dBs for s ∈ [Sk, Sk+1] ,

Mk (Sk) = Z (Sk) and dMk(s) =
(
aβ(r) + β

4Sk+1 −M2
k (s)

)
ds+ dBs for s ∈ [Sk, Sk+1] .

The drifts of the diffusion mk(s), Z(s) and Mk(s) are in increasing order for s ∈
[Sk, Sk+1]: aβ(r)+ β

4Sk 6 aβ(r)+ β
4 s 6 aβ(r)+ β

4Sk+1. The monotonicity property
of the stationary diffusions implies that the number of explosions νβ

(
[Sk, Sk+1]

)
of the diffusion Z is stochastically dominated from above (resp. from below) by
the number of explosions of the diffusion mk (resp. Mk).
It remains to check that the starting points ofmk andMk fall within the hypothe-
ses of Theorem 5.2.2, with probability one as β tends to 0. For those technical
estimates, we refer the reader to [7, Section 4.2]. Theorem 5.2.1 adapted to mk

and Mk then shows that their respective explosions point processes converge
weakly in the space of Radon measure, when the time scale is renormalized
respectively by m

(
aβ(r) + βSk/4

)
and m

(
aβ(r) + βSk+1/4

)
, to Poisson point

processes with intensity 1, independently of the exact location of Z (Sk). This
proves (5.3.2) and (5.3.3) and concludes the proof of the theorem.
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5.3.2 A stronger convergence result

A shortcoming of Theorem 5.3.1 is that the topology of vague convergence
of Radon measures does not allow to control the mass at infinity, while this is
required to study the eigenvalues of the operator Lβ. To prove the convergence of
the eigenvalues process in the next section, we will need to consider the topology
of weak convergence of finite measures. This was done by Dumaz and Labbé [22],
who controlled the behavior of the diffusion Z at infinity to improve Theorem
5.3.1 and obtained the following convergence.

Theorem 5.3.2 (Weak convergence of νβ [22, Theorem 4]).
Fix r ∈ R. As β → 0, the random measure νβ converges in law for the topology
of weak convergence of finite measures to a Poisson point process on R+ with
intensity ere−tdt.

As a straightforward application of Theorem 5.3.1, we get the progressive defor-
mation of TWβ into a Gumbel law when β → 0.

Theorem 5.3.3 (From Tracy Widom to Gumbel [7, Corollary 3.5]).
When properly rescaled and centered, the Tracy-Widom law TWβ converges weakly
to the Gumbel law. More precisely, the following convergence holds:

2·31/3 ·
(

ln 1
β

)1/3
((

β

4

)2/3
TWβ−

(3
8

)2/3 (
ln 1
βπ

)2/3
)
−→
β→0

e−x exp
(
−e−x

)
dx.

The Gumbel law governs the fluctuations of the maximum of independent Gaus-
sian variables, so this convergence in consistent with the independence of eigen-
values showed by the limit Poissonian statistics of Theorem 5.3.1.

5.4 Convergence of the eigenvalues process

We now sketch the proof of Theorem 5.1.1, deriving from Theorem 5.3.2 the
convergence of the marginal distributions of the bottom eigenvalues of the linear
stochastic operator Lβ when β → 0. We introduce a discretization scheme to
approximate the diffusion Za. First, let 0 = tn0 < tn1 < . . . < tn2n = +∞ be the
points that satisfy:∫ tnj+1

tnj

e−sds = 1
2n , ∀j ∈ {0, . . . , 2n − 1} .

Using Theorem 5.3.2, as β → 0, the number of explosions of the diffusion Zaβ(r)
in the time interval [tnjLβ, tnj+1L

β] is given by a Poisson random variable of
intensity 2−ner and the first eigenvalues of Lβ typically deviate from aLβ like
1/√aLβ . Therefore, we set ε > 0 and introduce the grid around aLβ :

Mβ
ε =

{
aLβ + p

ε

4√aLβ
: p ∈ Z ∩

[
−1/ε2, 1/ε2

]}
.
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For every j ∈ {0, . . . , 2n − 1} and every a ∈Mβ
ε , we use the diffusion Z

(tnj Lβ ,+∞)
a ,

notated Zja, to approximate the diffusion Za on the interval [tnjLβ, tnj+1L
β]. The

justification behind this approximation is provided by the following lemma, we
refer to [22] for its technical proof.

Lemma 5.4.1 (Approximation of Za by Zja [22, Lemma 5.1]).
With a probability going to 1 as β tends to 0 and then n goes to ∞, the following
holds. For all a ∈Mβ

ε and all j ∈ {0, . . . , 2n − 1}:

• Za explodes at most one time on (tnjLβ, tnj+1L
β],

• Za explodes on (tnjLβ, tnj+1L
β] if and only if Zja explodes on (tnjLβ, tnj+1L

β].

Denote by (qi)i=1...m the elements ofMβ
ε in decreasing order q1 > . . . > qm and

let ri be such that
qi = aL −

ri
4
√
aL
, i = 1, . . . ,m.

For every j ∈ {0, . . . , 2n − 1} set Vj(i) = 1 if the diffusion Zjqi explodes on
(tnjLβ, tnj+1L

β], and Vj(i) = 0 otherwise. Set also q0 = +∞, r0 = −∞ and
Vj(0) = 0. Finally, define

Qβn(i) =
2n−1∑
j=0

(
Vj(i)− Vj(i− 1)

)
, i = 1 . . .m.

For every i, the r.v. Qβn(i) counts the number of intervals (tnjLβ, tnj+1L
β] where

the diffusion Zjqi explodes but the diffusion Zjqi−1 does not. By Lemma 5.4.1,
this is a good approximation of the total number of explosions of Zqi minus the
total number of explosions of Zqi−1 in the β → 0 and n→ +∞ limit.

Lemma 5.4.2 (Convergence of
(
Qβn(i)

)
i=1,...,m [22, Lemma 5.2]).

The vector
(
Qβn(i)

)
i=1,...,m converges in distribution as β → 0 and n→ +∞ to a

vector of independent Poisson random variables with parameters pi =
∫ ri
ri−1

es ds.

Proof. By the monotonicity property of the stationary diffusions, for any given
j ∈ {0, . . . , 2n − 1}, the diffusions (Zjqi , i = 1, . . . , m) on the interval [tnjLβ,∞[
are ordered up to their first explosion times, so Vj(1) 6 Vj(2) 6 . . . 6 Vj(m).
Since these r.v. are {0, 1}-valued, we get the identities:

P (Vj(1) = 0, . . . , Vj(i− 1) = 0, Vj(i) = 1, . . . , Vj(m) = 1) = P (Vj(i) = 1)− P (Vj(i− 1) = 1)
P (Vj(1) = 0, . . . , Vj(m) = 0) = P (Vj(m) = 0)
P (Vj(1) = 1, . . . , Vj(m) = 1) = P (Vj(1) = 1) .

Theorem 5.3.2 yields:

P
(
Vj(i) = 1

)
−→
β→0

1− exp
(
−2−neri

)
. (5.4.1)
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Noting that the random vectors
(
Vj(1), Vj(2), . . . , Vj(m)

)
j=0,...,2n−1 are inde-

pendent, we now compute the law of
(
Qβn(i)

)
i=1,...,m. For any given integers

`1, . . . , `m, set ` =
∑
i `i. Then P

(
Qβn = (`1, . . . , `m)

)
equals

∑
S1,...,Sm⊂{0,...,2n−1}

Si∩Si′=∅
#Si=`i

∏
j∈Si

(
P
(
Vj(i) = 1

)
−P
(
Vj(i−1) = 1

)) ∏
j /∈S1∪...∪Sm

P
(
Vj(m) = 0

)
.

Using (5.4.1), we deduce that the β → 0 limit of the last expression equals(
2n

`1, . . . , `m, 2n − `

)
m∏
i=1

(
exp

(
−2−neri−1

)
−exp

(
−2−neri

) )`i(
exp

(
−2−nerm

) )2n−`
.

As n→∞, one can show that this converges to the required quantity
∏m
i=1

p
`i
i
`i! e
−pi .

To conclude the proof of Theorem 5.1.1, we define

Qβ =
∑
k>1

δ4√a
Lβ (λk+a

Lβ )

as a random variable in the space of measures on (−∞,∞[ which are finite on
all intervals bounded to the right. We endow this space with the weak topology
towards −∞ and the vague topology towards +∞, so as to control the increasing
sequence of atom locations of Qβ from its first point.
For any ε > 0, on the event on which Lemma 5.4.1 holds true, we have, for every
i ∈ {1, . . . ,m},

Qβ
(

(ri−1, ri]
)

= Qβn(i).

Thus, by Lemma 5.4.2, the random vectorQβ
(

(ri−1, ri]
)
, i = 1, . . . ,m, converges

in distribution as β → 0 to a vector of independent Poisson random variables of
intensity eri−eri−1. This provides the required control on the mass given by QL
to (−∞, r] for any given r to obtain the tightness of

(
Qβ
)
β
. Furthermore, the

marginals of any limiting point are uniquely identified thanks to this convergence.
Therefore, (Qβ)β converges in law to a Poisson point process of intensity exdx,
and then standard arguments ensure that the increasing sequence of its atom
locations converges in law for the product topology to the increasing sequence
of atom locations of this Poisson point process.



Chapter 6

The stochastic Bessel operator

6.1 Introduction
This chapter presents our results on the high temperature limit of the eigen-

values of the stochastic Bessel operator introduced by Ramírez and Rider [63].
Recall that the Stochastic Bessel operator (SBO for short) is a random differen-
tial operator depending on two parameters β > 0 and a > −1 which writes:

Gβ
a = − exp

(
(a+ 1)x+ 2√

β
B(x)

)
· d
dx

(
exp

(
− ax− 2√

β
B(x)

) d
dx

)
.

In this paper, for technical reasons, we will restrict to a > 0 that we will fix for
the rest of the paper.

SBO’s eigenvalues that we denote Λβ,a(0) < Λβ,a(1) < . . . can be seen as
interacting particles on R+ at temperature 1/β, confined in R+ and whose inter-
action with the hard edge 0 depends on the parameter a. Indeed they correspond
to the scaling limit of the smallest points of the (β, a)-Laguerre particles whose
density writes

1
Zn,β,a

∏
i<j

|λ(n)
i − λ

(n)
j |

β ×
n−1∏
k=0

(λ(n)
k )

β
2 (a+1)−1e−

β
2 λ

(n)
k 1

λ
(n)
k
>0 . (6.1.1)

They can be described via a family of coupled Riccati diffusions (pβλ, λ ∈ R∗+)
with initial condition pβλ(0) = +∞:

dpβλ(t) = 2√
β
pβλ(t)db(t) +

(
(a+ 2

β
)pβλ(t)− pβλ(t)2 − λe−t

)
dt .

The diffusion pβλ may explode to −∞, in this case it immediately restarts from
+∞.
It is crucial to note that the same Brownian motion B drives the whole family
of SDE. It implies important properties such as for example the monotonicity
of the number of explosions of pβλ (which turns out to be finite). In fact, the
number of explosions of pβλ over R+ corresponds to Nβ

λ , the counting function of
the eigenvalues of the SBO.

72
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When β tends to 0, the smallest eigenvalues get close to the hard edge at 0 at
an exponential rate. In order to get a non trivial limit, we therefore consider the
rescaled eigenvalues µβ,a(i) := β ln(1/Λβ,a(i)) for i > 0 (note that this reverses
the ordering of the eigenvalues).

Our main result is the following theorem:

Theorem 6.1.1 (Convergence of the eigenvalues). When β → 0, the rescaled
eigenvalue point process of SBO (µβ,a(i), i > 0) converges in law towards a
random simple point process on R+ which can be described using coupled SDEs.

The convergence holds for a well chosen topology of Radon measures on R+,
corresponding to a left-vague/right-weak topology (see below for more details).
We will also give a characterization (similar to the one for SBO eigenvalues)
of the limiting point process through coupled diffusions. This characterization
enables one to compute various statistics on the limiting point process.

Let us now make a few comments on this result. Usually, one expects that when
the temperature is large, the limiting point process is no longer repulsive and
corresponds to a Poisson point process as the noise becomes dominant. Here we
get a different result. It comes from the competition with the strong interaction
with the hard edge (which is attractive when β is small, see (6.1.1)). Because of
this interaction, the repulsive factor does not disappear at the limit.

6.2 Strategy of proof and limiting point process

6.2.1 Rescaled diffusions

We will study the small beta limit of the family (pβλ) when λ is properly
rescaled with β, i.e. when λ is such that β ln(1/λ) is of order 1. More precisely,
we aim at understanding the number of explosion times of pβλ on R+, as it
corresponds to the number of eigenvalues below λ.
Notice that when pβλ reaches 0, the term in front of the noise vanishes and the
drift is negative. It implies that pβλ never reaches 0 from below. It is easy to
check that the hitting times of 0 form a discrete point process.
Let us fix µ > 0. Using this property, we define the diffusion qβµ(t), which equals

q+
µ (t) := β ln

(
pβΛβ (t/(4β))

)
when pβΛβ (t/(4β)) > 0,

q−µ (t) := −β ln
(
− pβΛβ (t/(4β))

)
− µ− t/4 when pβΛβ (t/(4β)) < 0,

where Λβ := exp(−µ/β).

The diffusions q+
µ (t) and q−µ (t) follow the SDEs:

dq+
µ = dW (t) + 1

4
(
a− exp(q+

µ (t)/β)− exp(−(q+
µ (t) + t/4 + µ)/β)

)
dt (6.2.1)

dq−µ = dW (t) + 1
4
(
− (a+ 1)− exp(q−µ (t)/β)− exp(−(q−µ (t) + t/4 + µ)/β)

)
dt

(6.2.2)



74 CHAPTER 6. THE STOCHASTIC BESSEL OPERATOR

where W is a Brownian motion (corresponding to (different) rescaling of the
initial Brownian motion B). The diffusions q±µ may explode to −∞ in a finite
time. By definition, the diffusion qβµ alternates between q+

µ and q−µ : it starts to
follow q+

µ and each time qβµ = q+
µ (resp. q−µ ) reaches −∞, qβµ immediatly restarts

from +∞ and follow q−µ (resp. q+
µ ) .

Let us define the critical line:

cµ(t) := −µ− t/4 . (6.2.3)

Figure 13 shows an example of trajectory of the diffusion qβµ . On this event, the
diffusion qβµ explodes one time as q+

µ (blue), then one time as q−µ (red), and then
stays above the critical line cµ(t) as q+

µ (blue) and does not explode anymore.

Figure 13: Sample trajectory of the diffusion qβµ.

Roughly, the diffusion q+
µ behaves as follows after each explosion time. It first

quickly goes down to values around 0. Then, it spends some time between the
line cµ(t) and 0, where it behaves as a reflected (downwards) Brownian motion
with drift a/4. If it reaches the line t 7→ cµ(t) in a finite time then it quickly
explodes to −∞ after this hitting time.
The behavior of the diffusion q−µ is similar except that in the interval [cµ(t), 0],
it behaves as a reflected (downwards) Brownian motion with drift −(a + 1)/4.
Therefore, it almost surely hits cµ(t) when a > 0.
There are two types of explosions for qβµ : either qβµ explodes at a time ξ such
that qβµ(ξ+) = q+

µ (ξ+). It corresponds to the (rescaled) hitting times of 0 by the
initial diffusion pβΛβ . Or qβµ explodes at time ξ such that qβµ(ξ−) = q−µ (ξ−). In
this case, we get the (rescaled) explosion times by the initial diffusion pβΛβ .
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In the following, we denote by ξ+
β (0) < ξ−β (0) < ξ+

β (1) < ξ−β (1) < . . . the
explosion times of the diffusion qβµ and by

νβµ :=
∑
i>0

δξ−
β

(i) . (6.2.4)

the measure corresponding to the (rescaled) explosions of pβΛβ .
We will prove that, for a well-chosen topology, the trajectory of the diffusion qβµ
converges in law when β → 0 towards a non-trivial limit, that we describe in the
following paragraph.

6.2.2 Description of the limiting point process

Let us define now the limiting diffusion rµ, which will characterize the limit-
ing point process. Its definition involves Brownian motions with drift reflected
downwards at 0.
By definition, a Brownian motion with drift q reflected downwards at 0 is a
diffusion Markov process with infinitesimal operator G : f ∈ D 7→ 1

2f
′′ + qf ′

acting on the domain

D :=
{
f ∈ Cb[0,+∞[, Gf ∈ Cb

(
[0,+∞[

)
, lim
x↓0

f ′(x) = 0
}
,

where Cb
(
[0,+∞[

)
denotes the continuous and bounded functions on [0,+∞[.

Thanks to Skorohod problem, we can write this diffusion as

(W (t) + qt)− sup
s6t

(W (s) + qs) ∨ 0 ,

where W is a Brownian motion starting at 0 or any negative point.

Let us now define the diffusion rµ. It starts at 0 at time 0 i.e. rµ(0) := 0.
It then follows a Brownian motion with drift a/4 reflected downwards at 0 that
we denote r+, until its first hitting time of the critical line (6.2.3). If it reaches
the critical line in a finite time, then it immediately restarts at 0 at this time
and follows a reflected downwards at 0 Brownian motion with another drift
−(a + 1)/4 denoted r−, and so on, alternating between r+ and r− each time it
hits t 7→ cµ(t) and restarts at 0. Note that the probability that r+ reaches the
critical line decreases with time. On the other hand, r− almost surely hits the
critical line in a finite time.

Let us denote by ξ+
0 (0) < ξ−0 (0) < ξ+

0 (1) < ξ−0 (1) < . . . the hitting times of the
critical line by the diffusion rµ and define the random measure associated to the
point process (ξ−0 (k), k > 0) only:

ν0
µ :=

∑
i>0

δξ−0 (i) .

We will then use the coupled random measures (ν0
µ, µ > 0) to define a discrete

point process on R+. As µ ∈ R+ 7→ νµ(R+) is decreasing from +∞ to 0 almost
surely, it is easy to prove the following proposition:
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Proposition 6.2.1 (Definition of the limiting point process). There is a unique
random variable M0 valued on the Borel measures on ]0,+∞[ such that, for all
fixed µ1 < · · · < µk,

M0[µi,+∞[= ν0
µi(R+) .

Almost surely, the measure M0 is discrete, bounded from above and has an ac-
cumulation point at 0.

6.2.3 Convergence towards the limiting measures

We can now state the desired convergence result:
Proposition 6.2.2 (Convergence of the explosion times).
When β → 0, the measure νβµ converges in law to the measure ν0

µ for the topology
of weak convergence.
It is immediate to extend this proposition for the joint law of νβµi when µ1, . . . , µk
are fixed positive numbers. It directly implies the following result on the finite
dimensional laws of the point process {µβ,a(i), i > 0}. Let us denote by Mβ

the measure associated to this point process, i.e. Mβ :=
∑
i>0 δµβ,a(i). Then, we

have the following result:
Proposition 6.2.3 (Convergence of the finite-marginals of the eigenvalue pro-
cess).
Fix µ1 < . . . < µk. When β → 0, the random vector

(
Mβ[µ1,+∞[, . . . ,Mβ[µk,+∞[

)
converges in law to the random vector

(
M0[µ1,+∞[, . . . ,M0[µk,+∞[

)
.

Consider the space of measures on (0,∞[ with the topology that makes contin-
uous the maps m 7→ 〈f,m〉 for any continuous and bounded function f with
support bounded to the left: in other words, this is the vague topology towards
0 and the weak topology towards +∞.
The previous proposition shows that the family (Mβ)β>0 is tight: indeed the
above convergence provides the required control on the mass at +∞.
As the finite-marginals of any limiting point is identified, we deduce the con-
vergence of the left-vague/right-weak topology of the eigenvalue point process
stated in Theorem 6.1.1.

Let us now give an outline of the rest of the paper which is devoted to the
proof of Proposition 6.2.2. We will first control the first explosion time of the
diffusion qβµ in the next section 6.3 and deduce the weak convergence of the k
first explosions times. The section 6.4 focuses on the tightness of the family
(νβµ)β>0.

6.2.4 Useful results

We will use the following estimates for any Brownian motion W :

∀x > 0, P
(

sup
s∈[0,1]

W (s) > x
)
6 P

(
sup
s∈[0,1]

∣∣W (s)
∣∣ > x

)
6 4e−x2/2, (6.2.5)

∀x > 0, P
(

sup
s∈[0,1]

W (s) > x
)

= P
(∣∣W (1)

∣∣ > x
)
> 1−

√
2
π
x. (6.2.6)
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Consider a diffusion y started from 0 and its counterpart y reflected downwards
at the origin:

y(t) = y(t)− sup
s6t

y(s).

For all δ > 0,
{
y(t) < −δ

}
=
{
∃s < t, y(t)− y(s) < −δ

}
, therefore:

sup
s∈[0,t]

∣∣y(s)
∣∣ < δ/2⇒ inf

s∈[0,t]
y(s) > −δ. (6.2.7)

6.3 Control of the explosion times
In this section, we fix µ > 0. Recall the definition of c = cµ in (6.2.3).

Consider the first two explosion times ξ+ := ξ+
β (0) and ξ− := ξ−β (0) of the

diffusion qβµ . Until the first explosion time ξ+, by definition qβµ(0) = +∞ and
qβµ(t) = q+(t) follows the SDE (6.2.1).
Set δ = β1/8 and introduce the first hitting times by the diffusion q+:

τ0 := inf{t > 0, q+(t) 6 0} and τc := inf{t > 0, q+(t) 6 c(t) + δ}. (6.3.1)

We decompose the trajectory of q+ into three parts: first it reaches the axis
x = 0 in a short time (descent from +∞). Then it spends some time of order
O(1) in the region [c(t)+δ, 0] and behaves like a reflected Brownian motion with
a constant drift a/4. If it approaches the critical line t 7→ c(t) closer than δ, then
it explodes with high probability within a short time (explosion to −∞).
Recall the first hitting times ξ+

0 (0) < ξ−0 (0) of the line c by the diffusion r.

Proposition 6.3.1 (Limit behavior of the diffusion q+ and q−).
Fix T > 0 (independent of β). There exist a deterministic η → 0 and an event
E0 such that P(E0)→ 1, on which, for β small enough:

(a) τ0 < β,

(b) sup
[τ0,τc∧T ]

∣∣q+(t)− r+(t)
∣∣ < δ,

(c) τc < T ⇒ |ξ+ − τc| < η and |ξ+
0 (0)− τc| < η.

Besides, these properties also hold for the diffusions q− from (6.2.2) and r− and
their corresponding hitting and explosion times. As a consequence, on the event
E0, for β small enough,

ξ− < T ⇒
∣∣ξ− − ξ−0 (0)

∣∣ < 2η. (6.3.2)

The control (6.3.2) readily extends to any ξ−β (k) and ξ−0 (k) for k ∈ N and ensures
that, for any T > 0, P(ξ−β (k) 6 T )→ P(ξ−0 (k) 6 T ), thus identifying the measure
ν0
µ as the unique possible limit for νβµ .

The rest of this section is dedicated to the proof of Proposition 6.3.1. Recall
that the diffusion q− differs from its counterpart q+ only by its constant drift
component −(a+ 1)/4 (instead of +a/4 for q+), which makes q− decrease faster
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than q+. We prove the results for the diffusion q+, they can be extended to the
diffusion q− with the same arguments.

We introduce the stationary diffusion q on R+, which we use to approximate
q+ in the region when the drift component exp

[
− 1

β

(
c(t) + q+(t)

)]
becomes

negligible as β tends to 0:

dq(t) = dW (t) + 1
4
(
a− eq(t)/β

)
dt. (6.3.3)

6.3.1 Descent from +∞: proof of (a)

It suffices to prove property (a) for the diffusion q, which bounds the diffusion
q+ from above. Set the level l1 = β3/4, so that β = o(l1). As β tends to 0, when
the diffusion q is above the level l1, the term of leading order in the right-hand
side of (6.3.3) is eq(t)/β.

Consider the ordinary differential equation on R+:

dy(t) = 1
4(a− 1

2e
y/β)dt, y(0) = +∞,

which has for solution y(t) = −β ln
( 1

2a(1− e−at/4β)
)
. The time t1 at which the

diffusion y reaches the level l1/2 has the asymptotics

t1 = 8βe−l1/(2β) + o(βe−l1/β).

Introduce the diffusion q1(t) = q(t)−W (t). Its evolution writes:

dq1(t) = 1
4
(
a− e

(
q1(t)+W (t)

)
/β
)
dt.

Let E ′1 =
{

sup
[0,t1]

∣∣W (t)
∣∣ 6 β2}. By the Brownian tail bound (6.2.5), P(E ′1) −→ 1.

On the event E ′1, e(q1(t)+W (t))/β > e−1/βeq1(t)/β, so the diffusion q1 is bounded
from above by the diffusion y for β small enough and hits the level l1/2 before
time t1. Since

∣∣q1(t)−q(t)
∣∣ 6 β2 before time t1, for β small enough, the diffusion

q hits the level l1 before time t1 .

After the level l1 is reached, we use the Brownian motion W (t1 + ·)−W (t1) to
reach x = 0 in a short additional time. Set the event

E ′′1 =
{

inf
[0,β/2]

{
W (t1 + t)−W (t1) + a

4 t
}
< −l1

}
,

on which τ0 < t1 + β/2. Since P
(
E ′′1
)
> P

(
inf

[0,β/2]
W (t1 + t)−W (t) < −l1 − a

8β
)
,

the lower bound (6.2.6) and the asymptotics β = o(l1) and l1 = o(
√
β) imply

that P
(
E ′0
)
−→ 1, thus proving the property (a) on the event E1 = E ′1 ∩ E

′′
1 .
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6.3.2 Convergence to r+: proof of (b)
The bound (6.2.5) shows that the probability of the following event tends to

1 as β tends to 0:
E ′2 =

{
sup
t∈[0,β]

|W (t)| 6 β1/4}.
Note that β1/4 = o(δ) and that the diffusion r+(τ0 + t)− r+(τ0) is equal in law
to r+ by the strong Markov property. Thus, to prove property (b), it suffices to
show that, with overwhelming probability as β tends to 0, for β small enough,

sup
[0,τ ′c∧T ]

∣∣q+
0 (t)− r+(t)

∣∣ < δ/2, (6.3.4)

where q+
0 denotes the diffusion q+ started from x = 0 at time t = 0 and τ ′c its

first hitting time of c(t) + δ.

We denote by q0 the stationary diffusion q from (6.3.3) started from x = 0 at
time t = 0. For t ∈ [0, τ ′c ∧ T ], q+

0 (t) > c(t) + δ, so we get the bounds:

∀t ∈ [0, τ ′c ∧ T ], q0(t)− e−δ/βT 6 q+
0 (t) 6 q0(t).

Since e−δ/β = o
(
δ
)
, to prove property (6.3.4), it is enough to show that, on an

event E ′2 of probability going to 1 as β tends to 0, for β small enough,

sup
[0,τ ′c∧T ]

∣∣q0(t)− r+(t)
∣∣ < δ/4, (6.3.5)

To that end, we bound the diffusion q0(t) from below and above by two reflected
diffusions r+

1 and r+
2 that converge to r+ as β tends to 0.

We set a level l2 = β1/6, so that l2 = o(δ) and δ = o(
√
l2).

Lower bound

For any stochastic process Z, we denote by Lxt (Z) its local time at position
x and time t. Since the element of drift −eq0(t)/β is decreasing on

]
−∞,−l2

]
,

we have the lower bound:

∀t ∈ [0, τ ′c ∧ T ], q0(t) > r+
1 (t), (6.3.6)

where r+
1 (t) is the following diffusion (reflected downwards at the barrier −l2):

r+
1 (t) = −l2 +W (t) + at/4− e−

δ
β T/4− L0

t

(
W (t) + at/4− e−

δ
β T/4

)
,

It is straightforward that

∀t ∈ [0, τ ′c ∧ T ], r+(t)− e−
δ
β T/4− l2 6 r+

1 (t) 6 r+(t)− l2.

Since e−
δ
β = o(l2), for β small enough,

sup
[0,τ ′c∧T ]

∣∣r+(t)− r+
1 (t)

∣∣ < 2l2. (6.3.7)
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Upper bound

We wish to bound the diffusion q0(t) from above by the diffusion r+(t) + l2.
To prove that this upper bound holds with high probability as β tends to 0, we
use the following result, that shows how unlikely it becomes for the diffusion
q0(t) to hit the level l2 before any negative level.

Lemma 6.3.1 (Levels hitting times for the diffusion q0(t)).
For any γ < 0,

P
(

inf
{
t > 0, q0(t) = l2

}
< inf

{
t > 0, q0(t) = γ

})
−→ 0.

Lemma 6.3.1 proved in the Appendices using standard tools of diffusion analysis.

The choice of level γ = −µ(T ) in Lemma 6.3.1 provides the existence of an event
E ′2 of probability going to 1 as β tends to 0 on which the diffusion q0(t) hits the
barrier c(t) before the level l2, and thus:

∀t ∈ [0, τ ′c ∧ T ], q0(t) 6 r+(t) + l2. (6.3.8)

Conclusion

Gathering (6.3.6) and (6.3.8), we get that, on E ′2, for β small enough,

∀t ∈ [0, τ ′c ∧ T ], r+
1 (t) 6 q0(t) 6 r+(t) + l2,

which implies sup
[0,τ ′c∧T ]

∣∣q0(t)− r+(t)
∣∣ < 2l2. This in turn implies (6.3.5) and thus

proves property (b).

6.3.3 Explosion to −∞: proof of (c)
We denote by q+

δ (resp. q+
−δ) the diffusion q+ started at time t = 0 from

position −µ + δ (resp. −µ − δ). We introduce the first hitting time τδ of the
level c(t) − δ by the diffusion q+

+δ, and the explosion time τ−∞ of the diffusion
q+
−δ to −∞.
To prove property (c), we choose η = 2l2, with l2 = β1/6, and show that there
exists an event of probability going to 1 as β tends to 0 on which, for β small
enough, τδ < η/2 and τ−∞ < η/2.

Control of τδ

Recall that δ = β1/8, so that l2 = o(δ) and δ = o(
√
l2).

We use the variations of the Brownian motion W to cross the critical line c(t).
The upper bound q+

δ (t) 6 −µ+ δ +W (t) + a
4 t implies that τδ < l2 on the event

E3 =
{

inf
[0,l2]

{
W (s) + a

4s+ 1
4s+ 2δ

}
< 0

}
.

The bound (6.2.6) ensures that P
(
E3
)
→ 1.
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Note that the inclusion of events E ′3 ⊂
{

inf
{
t > 0, r+(t) + t/4 6 −2δ

}
< l2

}
ensures that, on a subevent of E2 (where |q+(τc) − r+(τc)| < δ if τc < +∞) of
probability going to P(E2) as β tends to 0, the diffusion r+ hits the critical line
c(t) while the diffusion q+ crosses this line, between times τc and τc + η.

Control of τ−∞

On each Brownian trajectory, the diffusion q+
−δ is bounded from above by the

diffusion z, with

dz(t) = dW (t) + 1
4
(
a− e−

1
β

(
t/4+µβ+z(t)

))
dt, z(0) = −µ− δ.

Define the diffusion z1(t) = z(t) + µ−W (t)− at/4, with evolution

dz1(t) = −1
4e
− 1
β

(
z1(t)+t/4+W (t)+at/4

)
dt, z1(0) = −δ.

Consider the event E ′3 =
{
sup
[0,β]
|W (t)| 6 δ/4

}
, with P

(
E ′3
)
→ 1.

On E ′3, for β small enough:

∀t 6 β, W (t) + a+ 1
4 t 6 δ/2,

so the diffusion z1 is bounded from above by the diffusion z2 with evolution

dz2(t) = −1
4e
− 1
β

(
z3(t)+δ/2

)
dt, z2(0) = −δ.

The diffusion z2 has the solution

z2(t) = −δ/2 + β ln
(
e−δ/(2β) − t

4β
)
,

which explodes to −∞ in a time 4βe−δ/(2β), smaller than β for β small enough.
This remains true for z1 and thus for z, since |z1−z| 6 µ+aβ/4+β while t 6 β.
Since β = o(η), this proves the desired control on τ−∞.

6.4 Tightness of the explosion times measures
In this section, we fix µ > 0. Recall from (6.2.4) the measure of the explosion
times νβµ . We prove in this section that there are β0 > 0 and α > 0, such that,
for all ε > 0, there exist a finite time Tε and a finite number of explosions Nε so
that:

inf
β6β0

P
({
νβµ
(
[0, αTε]

)
6 Nε

}⋂{
νβµ
(
[αTε,+∞[

)
= 0

})
> 1− ε. (6.4.1)

Introduce Lβµ, the law of the random measure νβµ . The bound (6.4.1) readily
implies the tightness condition:

∃β0, ∀ε > 0, ∃Kε compact, sup
β<β0

Lβ(Kε) > 1− ε.
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Indeed, the closure Kε of
{
µ ∈ P, µ([0, αTε]) 6 Nε and µ

(
[αTε,+∞[

)
= 0

}
,

where P is the space of locally finite measures on R+, satisfies the Kallenberg
criterion from [47] for weak relative compacity:

sup
µ∈Kε

µ(R+) < +∞,

inf
t>0

sup
µ∈Kε

µ
(
[t,+∞[

)
= 0.

The rest of this section is dedicated to the proof of (6.4.1), which provides the
relative compacity of the family (Lβ)β<β0 inM1(P) by the Prokhorov theorem
and thus concludes the proof of Proposition 6.2.2.

We show a preliminary result that will be helpful to control the number of
explosions. Recall that ξ+ = ξ+

β (0) is the first explosion time of the diffusion q+

from (6.2.1), started from +∞ at time 0.

Lemma 6.4.1 (Lower bound on the explosion time of q+).
For β small enough,

∀t > 0, P
(
ξ+ > t

)
> 1− 4e−µ2/(32t).

Proof. We fix a deterministic δ0 such that 0 < δ0 < µ/4. Recall the definition
of the critical line cµ in (6.2.3). When the diffusion q+ is in the region between
−cµ(t) + δ0 and −δ0, we have the lower bound, for β small enough:

a− eq+(t)/β − e−
1
β

(µ(t)+q+(t)) > a− 2e−δ0/β > a/2. (6.4.2)

Introduce the diffusion q̂ on R+, started from −δ0 at time 0 and reflected down-
wards at −δ0:

q̂(t) = −ε+W (t) + at/8− L0
t

(
W (t) + at/8

)
.

The bound (6.4.2) shows that, for β small enough, the diffusion q+ is bounded
from below by the diffusion q̂ on each Brownian trajectory, up until the first
hitting time of cµ(t) + δ0 by the diffusion q+.

Set t > 0 and introduce the event E =
{

sup
s∈[0,t]

∣∣W (t)
∣∣ < µ/4

}
. By the Brownian

tail bound (6.2.5), we have P(E) > 1−4e−µ2/(32t). Besides, on the event E , using
(6.2.7),

∀s ∈ [0, t], q̂(s) > −δ0 − µ/2.

This means that the diffusion q̂ stays above −µ until time t. Thus, for β small
enough so that (6.4.2) holds, on the event E , we have ξ+ > t.

We now turn to the proof of (6.4.1). Fix ε > 0. We will control the diffusion
qβµ with two diffusions. The first diffusion Q1 starts at time Tε at position −1 and
is reflected below the horizontal line −1 with drift a/8. The second diffusion Q2
starts at time 2T at position cµ(Tε), has a drift a/8 as well and is also reflected
below −1.
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We can choose Tε large enough such that the diffusions Q1 and Q2 do not hit
cµ(t) + 1 with probability greater than 1− ε/10. Indeed, the sublinearity of the
Brownian motion W (Tε+ t)−W (Tε) (implied for instance by the law of iterated
logarithm) is such that there exists a time T0 after which |W (Tε + t)−W (t)| <
t/16 with probability greater than 1− ε/40. Using (6.2.7), this implies that Q1
stays above −1 − t/8 after time T0, and thus above the critical line cµ(t). We
choose Tε large enough so that |W (Tε + t) −W (t)| < cµ(T )/4 with probability
greater than 1−ε/40 until time T0, as a result Q1 stays above cµ(t) before time T0
as well. Therefore, on an event of probability greater than 1− ε/20, the diffusion
Q1 never hits cµ(t). Similar arguments can be used for the second diffusion Q2.

The term −(a + 1)/4 in the drift of the diffusion q− implies the existence of
α > 0 such that, almost surely, when started before time 2Tε+1, the diffusion q−
explodes before time αTε. If, at time Tε, the diffusion qβµ evolves as the diffusion
q−, then it almost surely explodes before time αTε, after which it evolves as q+

and stays above Q1 (for β small enough such that 2e−1/β < a/8) and does not
explode.

If, at time T , the diffusion qβµ evolves as the diffusion q+, then we distinguish
between three cases:
First, if the diffusion qβµ hits −1 between times Tε and 2Tε, then qβ stays above
Q1 and therefore does not explode.
Else, following the proof of property (c) from Proposition 6.3.1 in Section 6.3,
we can choose a deterministic level δ1 > 0 so that, if qβµ reaches t 7→ cµ(t) + δ1
between time Tε and 2Tε, then it explodes before time 2Tε + 1 with probability
greater than 1− ε/10. After that, qβµ behaves as q− and almost surely explodes
one last time before time αTε, as previously.
Finally, if the diffusion qβµ starts above cµ(Tε) + δ1 at time Tε and stays in the
interval [cµ(t) + δ1,−1] for all t ∈ [Tε, 2Tε], then it is bounded from below by a
Brownian motion with a positive drift a/8, and therefore it will be above cµ(T )
at time 2Tε with probability greater than 1− ε/10. In this event, qβµ stays above
the diffusion Q2 after time 2Tε and thus does not explode.

Gathering the different cases, we obtain the existence of an event of probability
greater than 1− ε/2 on which qβµ explodes at most once after time Tε and does
not explode after time αTε.

To conclude the proof of the tightness criterion (6.4.1), we apply Lemma 6.4.1
to get the existence of a finite Nε and of an event of probability greater than
1− ε/2 on which the diffusion qβµ explodes at most Nε − 1 times before time Tε.
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Lemmas for Theorem 1.3.5

Proof of Lemma 1.3.1

For the first property, if (mn)n>1 is an integer sequence with limn→∞mn =
+∞ and limn→∞

mn
n = 0, then

P (in > mn) = n−mn

n
= 1− mn

n
−→
n→∞

1.

The second property follows from the fact that n + 1 − in and in are equally
distributed. For the third property, we write, for all t ∈ [0, 1],

P (in 6 nt) = P (in 6 bntc) = bntc
n
−→
n→∞

t.

For the last property, we can simply take U ∼ Uniform
(
[0, 1]

)
on an arbitrary

probability space and define in = 1 + bnUc for all n > 1.

Proof of Lemma 1.3.2

Since

max
16i6n

|xi| 6 |x| =
(

d∑
i=1

x2
i

)1/2

,

we get, for all ε ∈ (0,+∞[,

max
16i6d

P
(∣∣∣X(n)

i −Xi

∣∣∣ > ε
)
6 P

(∣∣∣X(n) −X
∣∣∣ > ε

)
6

d∑
i=1

P
(∣∣∣X(n)

i −Xi

∣∣∣ > ε

d

)
,

by the union bound for the last inequality.
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Lemmas for Theorem 3.3.1

Proof of Lemma 3.3.2

For χr a chi random variable of index r > 0, for any p > −r, we use the
estimates (see [52]):

E(χpr) = 2pΓ(r + p

2 )
(
Γ(r2)

)−1
, (6.4.3)

E(logχr) = 1
2 log r− 3

2r+ O
r→+∞

(1/r2), Var(logχr) = 1
2r+ O

r→+∞
(1/r2), (6.4.4)

∀m ∈ N∗, E
(
(logχr −E logχr)2m) = O

r→+∞
(1/rm) (6.4.5)

Start with the convergence (3.3.3). For any fixed x ∈ (0, 1], it is an instance of
the law of large numbers. With (6.4.3), one can obtain the increment bound

E
(√√√√ (r + 1)β

χ2
(r+a+1)β

−

√√√√ rβ

χ2
(r+a)β

)2
= O

r→+∞
(1/r2),

which gives the tightness required to ensure process level convergence.
Turning to the proof of (3.3.4), by the first estimate of (6.4.4), we have:

lim
n→∞

bnxc∑
k=bnyc

(
E(log χ̄kβ)−E(logχ(k+a)β)

)
= a

2 log(y/x),

uniformly for y < x restricted to compact sets of (0, 1]. Thus, for (3.3.4), it is
enough to demonstrate the weak convergence

n∑
k=bnxc

(
logχ(k+c)β −E logχ(k+c)β

) d−−−→
n→∞

∫ 1

x

1√
2βz

dB(z), (6.4.6)

where c is any fixed number, and apply it to the two independent sums of the
kernel. To that purpose, we use the following result.

Proposition 6.4.1. [32, Chapter 7] Let yn,k be a sequence of mean-zero pro-
cesses starting at 0 with independent increments ∆yn,k. Assume that, when
n, k →∞,

nE(∆yn,k)2 = f(k/n) + o(1), nE(∆yn,k)4 = o(1) (6.4.7)

uniformly for k/n in compact sets of [0, T ) with a continuous f ∈ L1
loc
(
[0, T )

)
.

Then, in the Skorohod topology,

yn(t) := yn,bntc
d−−−→

n→∞

∫ t

0
f1/2(s)dB(s)

with B a standard Brownian motion.

Take t = 1− x in the proposition to apply it to (6.4.6). The second estimate of
(6.4.4) yields the first assumption of (6.4.7) with f(t) = 1/(2βt). The estimate
(6.4.5) with m = 2 produces the second half of (6.4.7), as x is always positive.
This proves (3.3.4).
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Proof of Lemma 3.3.4

First, for C ∈ R and a > −1, the integral operator on L2([0, 1]
)
with kernel

kC(x, y) = C exp
(
C
(

log(1/x)
)3/4 + C

(
log(1/y)

)3/4) ya/2

x(a+1)/2 1y<x

is Hilbert-Schmidt. Indeed, the change of variables x = e−s and y = e−t produces∫ 1

0

∫ 1

0

∣∣kC(x, y)
∣∣2dxdy = C2

∫ ∞
0

e2Cs3/4+as
∫ ∞
s

e2Ct3/4−(a+1)tdtds,

and the latter is finite if and only if a > −1.
Using Lemma 3.3.2, there is a subsequence (still noted (n) for simplification
purposes) over which we have the joint convergence in law:

√
nβ

χ(bnxc+a)β

d−−−→
n→∞

( 1√
x
, 0 < x 6 1),

bnxc∑
k=bnyc

(log χ̃kβ − logχ(k+a)β) d−−−→
n→∞

(
(a/2) log(y/x) +

∫ x

y

dbz√
βz
, 0 < y 6 x < 1

)
,

κn, κ
′
n

d−−−→
n→∞

κ, κ′.

By Skorohod’s representation theorem ([32, Theorem 1.8]), there is a probability
space on which each of the above occurs with probability one. On this new space

P
(

lim
n→∞

kβ,an (x, y)(ω) = kβ,a(x, y)(ω) for almost every x, y ∈ [0, 1]2
)

= 1.

To apply Lebesgue’s dominated convergence theorem, we need to find an almost
surely finite constant C(ω) such that, for almost all x, y ∈ [0, 1] and ω:

sup
n>0

kβ,an (x, y)(ω) 6 kC(ω)(xy) and kβ,a(x, y)(ω) 6 kC(ω)(x, y). (6.4.8)

We use Lemma 3.3.3. For each n, for x ∈ [xi, xi+1), y ∈ [yj , yj+1),

kβ,an (x, y)(w) 6 κn(ω)x−(a+1)/2
i y

a/2
j exp

(
κ′n(ω)

(
1 + T 3/4(xi) + T 3/4(yj)

))
.

(6.4.9)
Since κn and κ′n converge, they are bounded almost surely. Using the continuity
of T , we can fit the right hand side of (6.4.9) under a fixed kC independent of n.
For the limit kernel kβ,a∞ (x, y)(ω), its exponent can be expressed as equal in law
to ∫ x

y

dB(z)√
βz

= 1√
β

(
B̃
(

log(1/x)
)
− B̃

(
log(1/y)

))
,

with B̃ a different Brownian motion living on the same probability space. By
the law of the iterated logarithm, B̃(a) 6 c(ω)

(
1 +

(
a log log(1 + a)

)1/2) for

a random c(ω) and all a > 0, and
(
a log log(1 + a)

)1/2
6 c′a3/4 with a (non-

random) c′ and all a large enough. Thus, the second half of (6.4.8) holds with
C(ω) 6 β−1/2c′c(ω). This concludes the proof, with∫ 1

0

∫ 1

0

∣∣∣kβ,an (x, y)(ω)− kβ,a∞ (x, y)(ω)
∣∣∣2 dxdy −→

n→∞
0 a.s.
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Proof of Lemma 6.3.1
Recall that l1 = β3/4 and l2 = β1/6. In this proof we denote by q the diffusion

q+
0 . Set γ < 0, τ = inf

{
t > 0, q+

0 (t) = l2
}
and τ ′ = inf

{
t > 0, q+

0 (t) = γ
}
. Let

fβ(x) = 1
4
(
a− exp(x/β)

)
. To compute the hitting times of q, introduce the scale

functions sβ and s:

sβ(x) =
∫ x

−1
exp

(
− 2

∫ u

0
fβ(v)dv

)
du,

s(x) =
∫ x

−1
exp

(
− 2

∫ u

0

a

4dv
)
du = 2

a

(
ea/2 − eax/2

)
.

The following lemma explicits the asymptotic behavior of sβ.

Lemma 6.4.2 (Convergence of the scale functions).
For any x0 < 0,

s′β −→ s′ and sβ −→ s uniformly on [x0, 0].

Furthermore, sβ
(
l2
)
−→ +∞.

Since sβ
(
q(·)

)
is a local martingale, sβ

(
q(· ∧ τ(q)∧ τ ′(q)

)
is a martingale. By the

stopping theorem, we get:

P
(
τ < τ ′

)
=

sβ(γ)− sβ
(
0
)

sβ(γ)− sβ
(
l2
) .

Lemma 6.4.2 readily implies that this probability tends to 0 as β tends to 0.

Proof of Lemma 6.4.2. We have, for all x 6 0,∣∣∣∣ ∫ x

0
fβ(v)− a

4dv
∣∣∣∣ 6 ∫ 0

x
ev/βdv 6 β −→ 0,

which means that ln s′β converges uniformly to ln s′ on ] − ∞, 0]. Besides, the
functions ln s′β and ln s′ are bounded on [x0, 0], and x 7→ ex is uniformly contin-
uous on [x0, 0] so s′β converges uniformly to s′ on [x0, 0]. Therefore, sβ converges
uniformly to s on [x0, 0].
Now turning to sβ

(
l2
)
. We can compute explicitly:

ln s
′
β(x) = −2

∫ x

0
fβ(v)dv = −2ax+ 2

∫ x

0
ev/βdv = −2ax+ 2β

(
ex/β − 1

)
.

A study of the variations of ln s′β shows that s′β decreases until β ln(2a) and
increases afterwards. For β small enough, ln s′β(l1) > βel1/β, which tends to +∞
as β tends to 0, and s′β increases on

[
l1, l2

]
, so that:

sβ
(
l2
)
>
∫ l2

l1
s′β(v)dv >

(
l2 − l1

)
s′β(l1),

therefore sβ
(
l2
)
−→ +∞.
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MOTS CLÉS

Beta-ensembles - Gas de Coulomb - Matrices aléatoires - Opérateurs stochastiques - Diffusions - Physique
statistique

RÉSUMÉ

Cette thèse porte sur les comportements global et local des β-ensembles lorsque leur dimension tend vers l’infini, d’abord
à β > 0 fixé puis dans la limite haute température, lorsque β tend vers 0. Dans une première partie, nous étudions les
ensembles β-Hermite, β-Laguerre et β-Jacobi lorsque β > 0. Le chapitre 1 introduit des représentations matricielles de
ces ensembles et explique la convergence de leurs mesures spectrales vers des mesures d’équilibre. Les chapitres 2 et 3
présentent des classes d’universalité pour les comportements locaux des β-ensembles lorsque leur dimension tend vers
l’infini, définies par les processus ponctuels des valeurs propres de certains opérateurs stochastiques. Dans une seconde
partie, les chapitres 4, 5 et 6 s’intéressent au comportement des valeurs propres de ces opérateurs stochastiques dans la
limite haute température. Le chapitre 5 présente les résultats précédents de Laure Dumaz et Cyril Labbé sur l’opérateur
stochastique d’Airy. Le Chapitre 6 contient notre contribution de recherche, avec l’étude des plus petites valeurs propres
l’opérateur stochastique de Bessel dans la limite haute température.

ABSTRACT

This thesis focuses on the global and local behavior of β-ensembles when their size tends to infinity, first at set β > 0,
then in the high temperature limit, when β tends to 0. In a first part, we study the β-Hermite, the β-Laguerre and the β-
Jacobi ensembles when β > 0. Chapter 1 introduces matrix models for these ensembles and explains the convergence
of their spectral measures to equilibrium measures. Chapters 2 and 3 present universality classes for the local behaviors
of β-ensembles in the large dimension limit, defined using the eigenvalues point processes of stochastic operators. In a
second part, we analyze the eigenvalues of these stochastic operators in the high temperature limit. Chapter 5 presents
the previous results from Laure Dumaz and Cyril Labbé on the stochastic Airy operator. Chapter 6 contains our research
contribution, with the study of the smallest eigenvalues stochastic Bessel operator in the high temperature limit.
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