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General introduction

General introduction

Since the 1950s, negative effects due to rise in global greenhouse gas emissions emanating
from human activities have been observed. Atmospheric and ocean temperatures have risen, ice
caps around the world are melting. Climate change is already causing changes in extreme weather
events leading to a rise in the intensity and frequency of floods, hurricanes, droughts, heatwaves
and wildfires [IPCC2014].

Deleterious effects of human activities on our ecosystems have also been observed. These
ecosystems provide the basic support for human life by maintaining earth habitable. For example,
clean air, water and food essential for human survival are strongly dependent on natural systems
[Brondizio2019]. However they are threatened due to rapidly growing human needs for food,
energy, water and materials.

We are entering a ’mass extinction’ of species which is threatening the biodiversity and con-
sequently the balance of the ecosystems [Ceballos2015]. For example, extinction rates of various
animal groups (vertebrates, birds, reptiles, etc.) are predicted to be 8-100 times higher since
1500s. Around 40 percent of amphibians as well as 33 percent of corals and marine mammals are
threatened with extinction [Brondizio2019].

Energy and electricity generation as a sector is the largest contributor to the greenhouse gas
emissions. This can be verified in figure 1, where global greenhouse gas emissions from 2016 are
displayed. This is mainly due to the use of fossil fuel based technologies: coal, gas and oil.

Figure 1: Breakdown of world greenhouse gas emissions in 2016, updated from [Herzog2009].
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General introduction

Consequently, new energy technologies have been proposed to keep greenhouse gas emissions
in check. These technologies e.g. wind turbines and solar PV, could have lower carbon emissions
by an order of magnitude as compared to their fossil counterparts. Nonetheless, it does not mean
that they also have lower negative effects on human health, natural resources or ecosystems with
respect to other environmental indicators.

The technologies entering the market should thus also be assessed from an environmental
criteria over its entire life cycle and with a variety of different indicators such as acidification,
ecotoxicity, etc. This would enable us to identify and limit their impacts before the possible com-
mercialisation of such technologies. Assessing them at a developing stage would also avoid large
scale environmental problems in the future. Integrating this criteria into assessments would facil-
itate optimal decision-making regarding these systems. Furthermore, it will also enable planning
these facilities such that their environmental impacts are minimised.

Hence, the aim of this thesis is to propose an approach to integrate environmental information
in the assessments of hybrid energy systems. These systems are often the stage where emerging
energy technologies are demonstrated and their performance in real world conditions is quantified.
More specifically, two main problems are identified that prevent the inclusion of environmental
information. First, environmental information was not calculated with the corresponding changes
in energy simulations. Second, environmental indicators were not included in the multi-objective
optimisation. Research proposals were introduced for addressing these two problems. A case
study involving hydrogen production from electrolysis of water is used to illustrate and validate
the concepts introduced in this thesis.
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1
Establishment of the thesis context

Summary: This chapter first presents the context of emerging technologies in hybrid energy simu-
lations, in which this thesis was written. The need of including environmental impacts at this stage
of analysis is then described. To satisfy this need, two main problems arise in the status-quo. They
are elaborated using relevant arguments and examples. Then, to solve these problems, two main
goals of the the thesis are presented.
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1.1. Modelling context: Emerging technologies in hybrid energy simulations

1.1 Modelling context: Emerging technologies in hybrid energy sim-
ulations

The aim of this section is to present the background of the thesis, more specifically on the
hybrid energy simulations. First, the activities conducted in the laboratory are presented. Then, the
positioning of this thesis at the system level is elaborated and the interest in analysing technologies
at this level is also described. Energy simulation software used in this thesis, Odyssey, is then
presented with the help of an example.

These results were obtained from discussion with the laboratory personnel and through the
utilisation of the software tools in the lab. The laboratory personnel are also the direct or indirect
users of the energy simulation tools. Hence, they are referred to as ’Users’ hereafter. Discussions
were held with them using open-ended questionnaires.

1.1.1 Activities conducted in the laboratory

The thesis was conducted in the laboratory of energy systems and demonstrations (LSED) at CEA-
Liten (French commission for atomic and alternative energies). The laboratory LSED works on
technical, economic and environmental evaluation of energy and district heating systems at three
levels. The three levels being: component, system and territory. At the component level, detailed
analysis of only of a technology is done with limited interactions with other components. At the
system level as the name suggests, multiple technologies/components are modelled as close to the
real conditions as possible. Finally, the territory level is analysis energy systems at a regional scale.
An example can be assessing the heating or the electricity grid of a city. Another important point to
note is that the laboratory mainly deals with emerging energy technologies and its corresponding
solutions. The technology readiness levels (TRL) dealt with is around 3-8. The aim is to evaluate
these systems and provide recommendations on investment and R&D

1.1.2 System level analysis - hybrid energy systems

This thesis is primarily situated at the system level, even though certain principles could also be
applied at other levels. This ‘level’ of system analysis is also called hybrid energy simulation
or local/community-scale in the literature [Connolly2010, Sinha2014]. Hybrid energy system is
defined as the one which incorporates multiple energy generation and storage options, along with
the load [Nazari-Heris2018]. Another salient feature that is often associated with hybrid energy
systems is the presence of renewable energy sources with or without the conventional genera-
tion [Connolly2010]. Furthermore, the energy demand or generation can be in different forms:
heating, electricity or even fuels such as hydrogen. For example, a hybrid energy system can
be a combination of photovoltaics (PV), wind turbines, grid-electricity, batteries, fuel cells, hy-
drogen source and so on. These systems can be operated with a connection to central electricity
grid/heating network, or without it, in stand-alone mode.

During the exchanges with the laboratory personnel, they were asked to provide examples of
some their past projects. Below is the list of technologies mentioned by the users when describing
examples of projects. Hence, it is a non-exhaustive list.

• Photovoltaics

• Wind Turbines

• Hydrogen storage

• Batteries: Li-ion and lead-acid

• Methanation

• Fuel cells and Electrolysers: Alkaline,
PEM and SOEC

• Gasification technologies

• Biogas from anaerobic digestion

• Electricity/gas network

5



Chapter 1. Establishment of the thesis context

It can be seen that some of technologies above are not yet fully commercialised and are still
in the ’emerging’ stage. The technologies can also be referred to as components of hybrid energy
systems.

1.1.3 Hybrid energy systems: a pilot scale implementation of emerging technolo-
gies

Hybrid energy systems are widely used for pilot scale-demonstration of emerging technologies.
This is a crucial step in their development before their eventual commercialisation, since they
are evaluated in an operational context i.e. in real world conditions. It is thus also the first time
when a particular technology can be legitimately compared to its alternatives. Analysis at this
level provides important insights with respect to operation of a technology, interaction with other
components and influence of on-ground conditions. Consequently, it facilitates planning of these
systems, identification of key issues and quantification of future performance. Thus the projects
usually have one of the following objectives: feasibility analysis, optimisation of operation or
dimensionning.

In order to conduct such assessments, reliable simulations are necessary. According to User2
"(Simulations) enable us to see how technologies perform with load, local conditions, constraints,
etc.". Another User11 further adds "It is essential to use simulations for prospective studies...to
evaluate energy scenarios or specific designs in order to assess their validity and performance".

Furthermore, these simulations, are often quite complex due to the following:

• Variability and mismatch in the renewable resources and the demand

• Multiple technological options possible to satisfy the same objective

• Interactions between different energy carriers: electricity, hydrogen, heating, etc.

• Trade-offs between the different performance indicators

To deal with these complexities, understand their behaviour and effectively design them, ’dy-
namic’ simulation are necessary. Dynamic simulation means the simulations taking into account
the time dependent variations in the functionning of the system. It is particularly relevant in this
context owing to the intermittent nature of energy components in question. User8 notes this im-
portance "Clients are interested in dynamic behaviour of their energy systems".

1.1.4 Energy simulation tool used in this thesis - Odyssey

In this thesis, the software ’Odyssey’ developed by CEA is used for the energy simulations
[Guinot2013]. It is primarily used internally by the laboratory members and simultaneously devel-
oped on a project-by-project basis. It can work at a system level up to a territory or regional level,
integrating renewable sources and storage. It is principally used for techno-economic feasibility
analysis or dimensionning. Any other hybrid energy software could also have been used instead.
The software is briefly described below and illustrated in figure 1.1.

Inputs

The inputs are obtained from clients or partners (in case of collaborative projects). In some cases,
inputs are searched or estimated by the users themselves along with a discussion with stakeholders.
They can be classified in the following types:

Time-series. It enables entering variable values for the models over a period of one year. Time-
step can vary from 1s to 1 day. It may consist of variable renewable sources, energy spot
prices, energy demand, etc.

6



1.1. Modelling context: Emerging technologies in hybrid energy simulations

SIMULATION

• Components, models 
(performances, ageing) and 
parameters (ex: sizing, costs)

• Control strategy

Outputs

• Operational details of each component (time 
series, mass/energy balances, statistics)

• System Performances Indicators

Economic indicators

Investment costs, payback time, 
profit, etc. 

Technical indicators

Use rate of RE potential, system 
footprint, load satisfaction rate, 
etc.SENSITIVITY 

ANALYSIS
OR

OPTIMIZATION

weather, energy demand, price time-series

Case specific inputs

Technology inputs

Environmental indicators

CO2 emission factor for use 
phase

Figure 1.1: An overview of the energy simulation software used in this thesis - Odyssey.

Model parameters. They consist of different parameters that influence the system modelling.
They may consist of technical or economic parameters either at a level of particular technol-
ogy components or at a level of system. It is possible to define models with different levels
of detail. For example, including efficiency degradation in batteries and taking into account
the replacement during the project lifetime.

Control strategy. Operation rules need to be specified which essentially dictate prioritisation of
components in case of conflicts. For example, use of local vs. grid electricity.

Functions

The users thus choose a system architecture i.e. a combination of technology components, define
model parameters, enter time-series and finally define a pertinent operation strategy. Time-series
can be obtained from historically recorded data, online databases or even generated artificially.

Simulations. Using the above inputs, simulation of a single system configuration can be obtained.
A system configuration means particular size of each component and a specific operation
strategy. The software then calculates component behaviour at each time-step for a dura-
tion of one year. The results are then extrapolated for a duration of the project lifetime.
Consequently, this enables the calculation of performance indicators. Technical indicators
typically measure the energy produced or satisfied or un-utilised. On the other hand, eco-
nomic indicators deal with the associated costs of energy or system.

Then, further investigation of system parameters or operation through sensitivity analysis or
multi-criteria optimisation is also possible. Since it strongly depends on the project and the
allocated resources, these two steps are thus optional. Techniques compatible with ’black-
box’ models are utilised since the simulations cannot be mathematically formulated in this
software. That is, the simulations performed cannot be represented as a mathematical equa-
tion. In brief, these techniques initialise different system configurations and then analyse the

7



Chapter 1. Establishment of the thesis context

performance indicators to find influential parameters or to search optimal solutions. Both of
these techniques will be described in detail in the coming chapters.

Sensitivity analysis. There are often many uncertainties while modelling a system. In this step,
the uncertainties are specified, followed by the quantification of their influence on the final
results. Local or global sensitivity analysis are currently possible. In the former case, value
of a parameter is varied around a reference point keeping other values the same to get a pos-
sible range of outputs. While global sensitivity analysis methods (GSA e.g. Sobol indices
or Morris method) are also applied to find the most influential parameters from a statistical
distribution of outputs due to the uncertain parameters [Nadal2019].

Multi-criteria optimisation is used to search system configurations with respect to max 3 cri-
teria simultaneously using the evolutionary algorithm SPEA2 [Zitzler2001]. Hence, it can
be useful for optimising operation of a system or for dimensionning a system. The cri-
teria or the objectives are nothing but the performance indicators of a system, e.g. cost,
energy demand satisfied. The multi-objective decision-making is especially useful in this
context to find solutions with trade-offs between the different objectives. Example, lower
cost might mean that the energy demand is not completely satisfied and vice-versa. Then
a decision can be made on the compromise that best suits the desired requirements. Multi-
criteria optimisation is also combined with global sensitivity analysis to facilitate design
under uncertainties [Nadal2020].

Optimisation with SPEA2

Since multi-criteria optimisation forms a major part of this thesis, the SPEA2 algorithm is briefly
described in this section. Before that however, the jargons used in this field are introduced below
while placing them in the context of this thesis.

Individual is a particular set of variables for which optimal values are sought. There can be thus
multiple variables to be optimised at the same time relating to parameters such as size or
control strategy. Optimisation variables could have discrete or continuous values. In this
thesis, the focus is on dimensionning the system. Thus, an individual in this document is a
system configuration with a particular size of each energy component in the system.

Optimisation objective or optimisation criteria is the one with respect to which the set of vari-
ables are to be optimised. It can be a single objective or multiple for a multi-objective
optimisation. When the optimisation objectives are 2-3, it is called multi-objective optimi-
sation. Whereas when they increase more than 3, it is often referred to as many-objective
optimisation in the literature [Bechikh2016]. In this thesis, these are the performance indi-
cators of a system configuration that can be technical, economic or environmental. Prior to
this thesis, the number of criteria for simultaneous optimisation in Odyssey was maximum
3.

Population is a collection of individuals. Furthermore, parents is the population from which
offsprings are obtained, usually by applying mate and mutation operators.

Mate and mutation operators can be seen in figure 1.2. These two are randomly applied to
individuals. Mating also known as crossover, combines optimisation variables of two indi-
viduals while mutation changes value of a variable of an individual.

Fitness is the performance indicator of the individual on the basis of which it is evaluated. Often
it is the same as the objective value of the individual. Then depending if the problem is about
minimisation or maximisation of the objective, fitness of an individual is better, worse or
comparable with the other. Another difference is that some algorithms (like SPEA2) might
use relative fitness values for computations instead of absolute objective values.

8



1.1. Modelling context: Emerging technologies in hybrid energy simulations

Figure 1.2: Crossover and mutation operations, illustration from [Perez Gallardo2013].

Domination An individual X is said to dominate another individual Y when the fitness of X is
better than Y in at least one objective while the fitnesses of X in all other objectives is not
worse than Y. On the other hand, if fitness of X is worse than Y in at least one objective,
and the same is true for fitness of Y with respect to X, then the two solutions are said to be
non-dominated.

Pareto front is made up of non-dominated individuals. The main property of this curve is such
that value of an objective cannot be improved without degrading a value of another objective.
Thus, it offers the trade-offs between the objectives simultaneously optimised. For a mono-
criteria optimisation, this is only a single point, better than all other individuals. For a n-
objective optimisation, it consists of a curve of non-dominated individuals in n-dimensions.

Diversity is the measure of different individuals in the population. There is no single measure
for diversity as it may refer to values of fitness or individuals types. In this thesis, diversity
is referred in terms of different fitness values. It becomes more and more important as the
number of optimisation objectives increase. As they increase, the pareto front increases
exponentially. Since in an algorithm, a finite number of solutions can be searched, it is
important to search solutions that represent different (or preferential) parts of the pareto
front. Lets say three individuals have the following objective values as (demand satisfaction,
cost and carbon emissions): (1%, 11 Euros, 6 kg CO2-eq), (1.5%, 10 Euros, 6.1 kg CO2-eq)
and (8%, 12 Euros, 2 kg CO2-eq). If two solutions had to be selected between the three,
it is better to retain the last one in any set since it offers a different perspective of higher
unsatisfied demand but lower carbon emissions.

Now that the essential concepts have been discussed, SPEA2 can be described, a simplified
version is illustrated in figure 1.3. In the first step, a random population is initialised. All the
non-dominated individuals (based on their objective values) are directly copied to the archive. If
the archive size (S i.e. no. of individuals in the archive) increases more than a pre-defined value,
individuals maintaining the diversity are preferentially retained. Fitness values are then assigned
to each individual in the archive and the population. As mentioned earlier, these are relative fitness
values depending on the number of individuals dominated by it. The fitness assignment equations
are not described here. Then, all the non-dominated individuals in the population are copied to
a set (size N). If N > S, individuals are deleted using the diversity criteria with more diverse
individuals retained. If N < S, next best dominated solutions from the population are added. If N
equals S, algorithm proceeds with the next step.

If the termination criteria (or the stopping condition) is not satisfied, N solutions are copied
to the archive. Individuals are selected from N for the next generation using binary tournaments.
In such a selection, one individual is selected from randomly grouped 2 individuals, based on the
fitness values. Mutation and crossover operators are then applied to form the population of size P
for the next generation. The loop thus continues until the termination criteria is satisfied. When
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it is, the non-dominated solutions in N are presented as the final solutions. An example of the
termination criteria could be maximum number of generations reached.
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Figure 1.3: SPEA2 operating scheme as described in [Zitzler2001].

1.1.5 Example: case study of hydrogen production

To facilitate the communication of the concepts introduced in the previous sub-section, an example
case study implemented in Odyssey is presented here. This case study can be seen as a reference
of the current state of analysis possible for the hybrid energy systems. The same case will be
modified in the future chapters for the demonstration of the proposals.

Goal

The location is Marseille, France where a variable hydrogen load is satisfied using water electrol-
ysis. The electricity is supplied by the grid and there is a H2 storage. The aim is to minimise
the hydrogen production cost while satisfying the hydrogen demand as much as possible. Thus,
to dimension the following components: Electrolyser nominal power (ELY) and H2 storage size
(TankH2). The case study as seen in the software interface is illustrated in figure 1.4.

Inputs

The input parameters are kept simple and default values are used where necessary. Hence, the
results are only for illustration purposes. Electrolyser efficiency is 56%, based on the lower heating
value of hydrogen. Cost of electrolyser and the storage varies linearly according to the size. For
the dynamic simulation, time series of hydrogen demand and electricity spot prices, for every five
minutes are available for the entire year and is illustrated for the initial nine days in figure 1.5.
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1.1. Modelling context: Emerging technologies in hybrid energy simulations

Figure 1.4: Case study of hydrogen production from PEM water electrolysis.
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Figure 1.5: Inputs time series: hydrogen demand (kg/h) and electricity price (C/MWh).

There are several operational strategies available, which essentially is a way of instructing the
software how to operate the system when there are multiple ways of operation are possible. In this
case, electricity price is unusually low even going below zero on multiple occasions due to excess
electricity produced by a nearby source. Therefore, we use a strategy to force electrolyser to use
this electricity when the price is below 50 C/MWh.

The goal is to dimension the electrolyser size and the tanks, with respect to the hydrogen
production cost (C/kg) while satisfying the maximum hydrogen demand. The latter can be mea-
sured using the mass based unmet load, which means fraction of the demand (in kg) not satisfied
throughout the project lifetime. An approximate range (table 1.1) to size the two components with
respect to the above two objectives is given to the optimiser.

Outputs

First the optimisation results are presented. If there was only one objective to be optimised, there
would only be one solution. Since there are 2 objectives to be minimised, the resulting solutions
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Chapter 1. Establishment of the thesis context

Table 1.1: Summary of inputs to the optimisation

Component Technical Economic
Range for

dimensionning

Electrolyser 56% conversion efficiency
linear cost model

respect to size
0.5 - 1.5 MW

Tanks 30-60 bar pressure range
linear cost model

respect to size
1 - 150 m3

have a trade-off between the two objectives. These solutions are presented as a pareto front in
figure 1.6. It can be seen that any solution, cannot be made better off with respect to an objective,
without making another objective worse. For example, as seen in the figure, cost of hydrogen
for a particular solution cannot be decreased without increasing the unmet load. These solutions
represent different sizes of electrolyser and storage. To analyse them further, 4 arbitrary solu-
tions are picked, they are shown in table 1.2. The change in the size of electrolyser-storage and
consequently, trade-off between cost-demand satisfaction can be seen clearly.
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Figure 1.6: Pareto front of the results for the dimensionning problem

Table 1.2: Description of the four selected cases from the pareto front

No. Unmet load Levelised hydrogen cost (C/kg) Electrolyser size (MW) Storage size (m3)

1 0.00% 5.64 1.27 21

2 0.07% 5.03 1.05 31

3 1.89% 4.83 0.95 46

4 5.97% 4.79 0.91 21

During the above dimensioning, operational details of the system for each time step were also
calculated, in order to calculate the hydrogen cost and unmet load. For example, the electrolyser

12



1.1. Modelling context: Emerging technologies in hybrid energy simulations

operating power and hydrogen state of charge in the storage for case 3 is illustrated in figure
1.7. These representations are useful to see the system behaviour in detail. It also highlights the
dynamic nature of results, which are crucial in this context with intermittent energy sources.
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Figure 1.7: Output time series for case no. 3: electrolyser power (MW) and Hydrogen quantity in
the tank (kg)

Relevance of multi-criteria optimisation

The results from the pareto front can thus be used for dimensionning a system with respect to the
dynamic conditions present. The information about the solutions in the curve is readily available
in the format of table 1.2. Here the added value of the multi-criteria optimisation can be seen with
respect to the different system configurations possible. For example, if 100% of the hydrogen
demand is to be satisfied over the project lifetime, the cost becomes the highest. On the other
hand, if some leeway is possible, the cost can be decreased upto 15% while limiting the unsatisfied
demand to less than 2%.

The optimisation module provides a systematic way to find the best possible solutions in terms
of the relevant criteria. It also helps to comprehend the trade-offs between the criteria for a given
case and arrive to a decision accordingly. In the absence of this, users will have to manually
simulate different sizes of electrolyser and storage based on some estimates to consequently find
their techno-economic performance. Even if that is done, it is quite difficult to know if these
solutions lie on or close to the pareto front. In other words, it would be highly probable that
solutions exist that are better than the ones manually found in both of the two criteria.

The optimisation and the corresponding analysis is an iterative process. For example, since
the above problem is already known, the optimisation bounds in table 1.1 were straightforward to
define. However, depending on the case if the optimisation bounds appear in one of the solutions,
search using the algorithm has to redone with the modified range. For instance in the case study
above, if one of the solutions in the pareto front had contained 1.5 MW (max value of electrolyser)
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Chapter 1. Establishment of the thesis context

the search has to be redone after increasing max range. So as to allow the search of systems with
these sizes.

Optimisation even though a practical tool, is not required for all projects. In many cases the
system is already dimensionned and a further analysis is requested from the lab. Examples can be
feasibility of a scaled-up business case or practicality of a system. Detailed performance of each
component calculated by the software can be useful to make such an analysis. Sensitivity analysis
(local or global) might be used if required.

Relevance of the results

It is possible to analyse each system configuration according to performance of a component at
each time step such as figure 1.7. The selected points can be recommended by the users to the
decision-makers or even one specific solution if the additional preferences are known. This is also
an iterative process involving exchange of information between the users and other stakeholders
in a project. Users might receive critiques on their analyses or might obtain future investigation
directions. On the other hand, users might demand further details to improve their models on
issues such as time-series or a technology behaviour.

A set of important insights provided by this type of analysis is the future research or planning
directions. This is useful information for a successful transition of a technology from demonstra-
tion to commercial scale. At the moment, relevant information can be obtained for technical and
economic criteria. For example, sensitivity of the hydrogen price with respect to the efficiency of
the electrolyser v/s grid electricity price could be found in a real world scenario. This information
can be useful to guide improvement efforts.

Another example can be planning the electrolyser operation. Assume a hypothetical case when
the operation strategy is the optimisation variable and it is found that the hydrogen production is
most profitable when electrolyser is operated at 50% power due to electricity price time serie
and stack degradation. Hydrogen production from electrolysis can planned in the areas where
electricity price is conducive to this or research efforts could be directed to modify/improve this
behaviour.

The final decision about implementing one or none of the systems rests with the decision-
makers. It could be supplemented by additional analysis which could be done in the same labora-
tory or by other stakeholders.

1.2 Taking environmental impact into account

In this section, including the environmental impact with the hybrid energy simulations is dis-
cussed. First the requirement for this type of analysis is discussed. Then, the relevance of life
cycle assessment as a tool for this context along with its description is discussed. The experi-
ence of users with LCA and their opinion on different aspects of LCA is presented in the final
subsection.

1.2.1 Need for environmental assessment

Heat and electricity generation as a sector contributed the maximum to greenhouse gas emissions
in 2016 as was seen in the introduction. Thus there has been a lot of emphasis on emerging,
’low-carbon’ technologies in the energy sector. Consequently, during their development, it is
important to estimate their environmental impact for a number of reasons such as: comparison
with conventional technologies; identify major issues (e.g. impact transfer) before large scale
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implementation; facilitate future planning, research, design and guide investment.
The above points are corroborated by the laboratory personnel. Multiple users highlighted that

the need for environmental assessments in addition to the techno-economic analysis is primarily
based on increasing requests by clients. These clients mainly are industries or organisations work-
ing at different levels such as governmental, intergovernmental, non-governmental, national or
international. According to the discussions with the laboratory personnel, following are the rea-
sons why environmental assessment is requested.

First is the quantification of environmental impacts of the use of new technologies. This en-
ables comparison with the conventional ones. Also it gives an estimation and understanding of
their environmental impact. "The clients do not want their investments to become a liability" as
User2 puts it. Since the technologies are still in pilot/demonstration scale, future concerns could be
curbed or entirely avoided by directing R&D towards the significant issues. Second, it enables the
communication of information regarding environmental impacts of products. User2 also notes an
increasing trend in enterprises wanting to disseminate the environmental impacts to the consumers
or other stakeholders.

Finally, environmental indicators provide another perspective in decision-making. It was em-
phasized by multiple users that, technical and economic indicators have a higher importance.
However, environmental information can especially help when techno-economic indicators are
inconclusive. As user User6 says: "Mobility is difficult (to decide) right now since there are
various options, hydrogen, electric, synthetic natural gas...this could be a problem decided by
environmental impacts"

1.2.2 Relevance of life cycle assessment (LCA)

Life cycle assessment is a widely used to quantify environmental impacts of energy technologies,
conventional or renewable [Turconi2013]. It is a comprehensive analysis methodology taking
into account resource use and emissions throughout the entire lifetime. It is the relevant tool in
this context and it is already used in the laboratory for assessing the energy systems. However, the
comprehensiveness of life cycle assessment also contributes to complexities in its usage, especially
in the current context.

Taking the ILCD handbook as the reference, LCA is briefly described here [European Com-
mission2010]. It consists of four main steps as seen in figure 1.8(a). First step is the definition of
goal and scope, where the overall objective of the study, coverage of the investigation, limitations
and target audience are declared as precisely as possible. Second step, is the modelling and data
collection step, called inventory analysis. Arguably the most time and resource intensive step,
where all data has to be collected and modelled. The data is recommended to be representative of
the actual situation, technologically, geographically and temporally. While being consistent with
the requirements defined in the goal and scope. At this step, the activities in the system boundary
are translated to exchanges with the environment (biosphere flows). These flows are essentially
resource use and emission produced by all the activities. A conceptual representation is illustrated
in figure 1.8(b).

Third step, is impact assessment, where biosphere flows are translated into a particular nega-
tive (or positive) impact on humans or the environment. There exists multiple impact indicators
targeting the areas of protection. Example can be, carbon footprint for climate change or eutroph-
ication for water bodies. Similarly, there are also multiple impact assessment methods since there
are multiple ways of modelling environmental stresses [Weidema2015].

Finally in the last step, interpretation, the model and the results are confronted with the defined
goal in the first step. The scope and inventory are iteratively refined to meet the study goals. At the
end of the iterative process, the interpretation step facilitates the derivation of robust conclusions
or even recommendations based on the overall quality of data and models.
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Figure 1.8: (a) Life cycle assessment framework adapted from ILCD handbook [European Com-
mission2010]; (b) A conceptual representation of inventory building and its use for impact calcu-
lation step of an LCA.

1.2.3 Laboratory engineers and life cycle assessment

As mentioned previously, LCA is occasionally conducted in the laboratory. In this subsection,
information collected about the engineers regarding life cycle assessment is presented. Notably,
their experience with LCA and preferences for development of a environmental assessment ap-
proach. This is especially useful since they would be the ones establishing the LCA models and
conducting analysis on them.

The LCA competence amongst the lab personnel was found to be low. Majority of the par-
ticipants were aware of the existence of the LCA methodology but had not conducted a study
themselves. During the interviews it was found that only one user had experience with LCA
investigations. The remaining 12 out of 13 users, only calculated the operating phase carbon diox-
ide emissions as a proxy for environmental impact. Apart from the carbon footprint, following
indicators were mentioned: energy use, water use and resource use.

The personnel were also asked to quantify their preferences concerning the addition of envi-
ronmental assessment. They were asked to rate importance they would assign to conducting an
environmental assessment out of 10, with 10 being very important. Results are presented in figure
1.9. Consistency of models and reliability of results for a wide range of systems has the highest
average rating. Followed by ease of data collection and use respectively. Regarding the ease of
use, it was iterated by multiple users that they are willing to undergo additional training if neces-
sary. Parametric and analysis choices available to the users allowing them to see effects of various
parameters, trailed in just behind. It means enabling users to have ample choices to see results of
their design. Finally, the time aspect of conducting an environmental assessment, is rated lowest
since it depends on the particular project. It is related to the accuracy, since more the time spent,
accuracy of the models should be higher.
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Figure 1.9: User preferences from the environmental modelling rated from 1-10 with 10 being very
important. Blue dots represent the user rating and the red cross represents the average.

1.3 Problems in the status-quo with respect to the inclusion of envi-
ronmental impacts

The primary responsibility of the laboratory is to design and plan different projects often in-
volving emerging technologies using quantified technical, economic and environmental informa-
tion. In doing so, the users in the lab aim to provide reliable analysis based on which decisions
could be made on investments, R&D and even bring insights on policy-making.

With respect to the previous subsection, it is a clear that some members need LCA training.
However, even if this limitation is improved, there are two problems found with the status-quo. It
is argued that these two problems impede consideration of environmental information during the
design and planning phase of hybrid energy systems:

1.3.1 Problem 1: Inadequate environmental impact estimation

First problem is insufficient environmental information for effective analysis. Environmental as-
sessments for the projects in the laboratory are usually carried out in the following two ways.

Using emission values calculated either in Excel or added in the in-house simulations is the
first approach. In order to do this, emission factors for processes are obtained from the ecoinvent
database or literature. In this case, limited number of indicators (only global warming potential)
and life cycle stages are included. In most of the cases, CO2 emission calculations are limited
to the operating phase. For emerging technologies, this approach risks impact transfer to other
life cycle stages or to other impact indicators as concluded by [Laurent2012]. They demonstrated
that shifting electricity production sources from fossil-based to renewables leads to a decrease in
carbon footprint but the same trend does not appear for all other LCA indicators. Thus consid-
ering only carbon footprint during decision-making might lead to sub-optimal results. Especially
when dealing with emerging technologies, consideration of other impact indicators to limit impact
transfer is crucial.
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Using specialised LCA software For the second case, when a more detailed study is required,
LCA methodology as elaborated in section 1.2.2 is followed and a specialised LCA software, such
as Simapro is used. Assistance is often requested from LCA specialists from outside of the lab.
The main issue here is that the designers cannot see the consequences of changes in the design
on the corresponding LCA indicators. The assessment is an iterative procedure, which involves
multiple changes in parameters, input data, operation strategies and system architecture. Techno-
economic information is readily available, thanks to the energy simulation software. On the other
hand, since the environmental analysis is performed separately, environmental indicators are not
treated in the same manner. Environmental analysis is thus done when the design has already been
formalised. At this stage, LCA can only have limited inputs in design and planning.

For example, consider the case study presented in section 1.1.5. The influence of the efficiency
of electrolyser on the environmental impact cannot be directly tested nor quantified using the cur-
rent approach. Typically sensitivity analysis (local or global) is utilised for this purpose. Influence
of parameters can be quantified clearly on the techno-economic indicators. For LCA indicators,
using the current tools, only a local sensitivity analysis is possible, that too after a manual simu-
lation of a system and then updating the LCA activities. Many such design parameters could be
present in a system, insights on their behaviour in terms on environmental impacts are thus not
readily available. Hence it is not possible to the users to provide appropriate analysis or recom-
mendations on the design parameters and their influence on the environmental impacts.

Hence to summarize, either information is inadequate during the assessment (for the first case)
or it is not utilisable with the relevant assessment tools (for the second case).

1.3.2 Problem 2: Exclusion of LCA indicators in the optimisation process

The second problem is that the LCA indicators have to be included as optimisation objectives if
solutions with higher environmental efficiency are desired. This might be obvious to some readers
but not so much for the others. Even if problem in the previous step is solved and appropriate
LCA models are added, it is not guaranteed that it makes a difference to the solutions proposed
by the optimisation algorithm. Here higher environmental efficiency is used instead of lower
environmental impacts and is continued in the rest of thesis. Since it was observed that on a
macro-level new energy technologies might have higher impacts than estimated due to increasing
energy demand and/or rebound effect [Deng2017].

Here, a demonstration is made using the case study presented earlier to illustrate that LCA
indicators have to be included in optimisation objectives to find solutions with higher environmen-
tal efficiency. The goal of dimensionning the system for hydrogen production remains the same
but two components are added: solar PV and wind. The system configurations are searched with
respect to the same techno-economic indicators (unmet load and levelized hydrogen cost). Thus,
in theory there is potential to find system configurations with these two components and reduce
the reliance on grid electricity. Consequently, it means that there is also a potential to reduce en-
vironmental impact per kg H2 produced. Case study representation in the software can be seen in
figure 1.10.

The meteorological data is obtained from renewable.ninja [Staffell2016,Pfenninger2016]. Lin-
ear cost model is used for the new components. Since LCA indicators are not taken into account
during the search process itself, their estimation can be made at the end when the final solutions are
obtained. This is also practical since LCA models are not yet developed, thus a rough estimation
using only climate change potential is made at this stage.

The search is made with respect to the size range outlined in table 1.3. The genetic algorithm
is allowed to run for 150 generations. Since there are 2 objectives, 2-dimensional pareto front
is again obtained consisting of 156 different system configurations in figure 1.11. It can be seen
that this curve is not different from the curve obtained in figure 1.6, where solar PV and wind
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Figure 1.10: Representation of the case study in Odyssey

Table 1.3: Search range provided to the genetic algorithm.

Min Max

Electrolyser (MW) 0.5 2.5

Wind (MW) 0 8

Solar PV (MW) 0 8

H2 storage (m3) 1 120

were not even included in the search process. On further analysis, it is found that there is no
significant change in the proposed system configurations too. The maximum values wind and
solar PV dimensioned in the pareto front solutions is 0 kW and 100 kW respectively. A summary
of the system configurations obtained is presented in table 1.4. Since in this case study, grid
electricity is comparatively cheap, configurations with wind and solar PV are a bit expensive and
thus do not lie on the pareto curve. Even though solutions with them are desired, to have an option
with different environmental impacts.

Table 1.4: Summary of the obtained 156 system configurations obtained at the end of the search

Min Max Mean

Electrolyser (MW) 0.89 1.27 1.07

Wind (kW) 0 0 0.00

Solar PV (kW) 0 100 16.35

H2 storage (m3) 12 43 26.18

Average grid use (kW) 920 1002 982.04

The climate change impact of hydrogen production from water electrolysis is primarily depen-
dent on the type of electricity utilised as found by [Valente2017]. The climate change potential
(kg CO2-eq/kWh) of the three electricity sources: grid, wind and solar PV is 0.071, 0.014 and 0.07
respectively. These are generic values are obtained from ecoinvent 3.6 [Wernet2016] for France,
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Figure 1.11: Pareto front of the results for the dimensionning problem

using the ILCD impact assessment method. It is clear from these values that when the electricity
use from grid is minimised, carbon footprint of hydrogen production will also be lower.

For a demonstration, the impact of hydrogen produced based solely on the electricity impact
can be calculated by the following equation:

IH2 =
LHVH2

e f f iciency
∗ Ielectricity (1.1)

Where,

IH2 : is the impact per kg hydrogen produced

LHVH2 (33.3 kWh/kg H2): Lower heating value of hydrogen

efficiency (56 %): of the electrolysis system

Ielectricity: impact per kWh of electricity used

In the above equation, if climate change impact of grid electricity is substituted, it results in
hydrogen production impact of 4.22 kg CO2-eq/kg H2. This rough estimation will be true for all
of the system configurations obtained above since there is only a marginal inclusion of solar PV
and furthermore, the difference with impact of grid electricity is negligible.

On the other hand if climate change impact of wind electricity is substituted in the equation
1.1, hydrogen production impact is reduced to 0.83 kg CO2-eq/kg H2. Thus we see more than 4
time difference when the electricity source is changed. This is of course a rough estimation of only
one indicator and the final impact will depend on the system constraints, local weather conditions,
end of life scenarios, etc. However, it can be seen that the search of system configurations enabling
the reduction in carbon footprint of hydrogen is not possible in the present situation. Similar trend
was noticed during multiple independent runs.

Here, if a reduction in the carbon emissions is desired, it is clear that more wind has to be
included in the system. In the absence of LCA indicators included in the optimisation, wind can
be manually sized in the system based on some estimations. Even then, it is quite difficult to
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know if the performance of the system can be further improved. That is, it is probable that the
points would not lie on or close to the real pareto front. This was was also argued earlier when
the relevance of multi-criteria optimisation was discussed. Thus it can be verified that systems
with higher environmental efficiency cannot be reliably found unless environmental indicators are
included as objectives in the multi-criteria optimisation.

1.4 Goals of the thesis

In the previous section it was concluded that there are two major problems preventing the
inclusion of environmental impacts in the assessments of hybrid energy systems. Based on them,
two main objectives of the thesis can be formulated:

1.4.1 Integrated LCA modelling along with hybrid energy simulations

In order to enable consideration of environmental impact, LCA models need to be integrated
with the current techno-economic modelling in a combined approach. These models will ensure
that instantaneous results are obtained based on a change in any of the system parameters. So
as to allow users to effectively assess systems. An integration of LCA models in the existing
assessment tools will also increase the probability that environmental impact is considered during
investigations. Following points should be taken into account during the development of such
models:

User profile - The users are experts in techno-economic analysis of hybrid energy systems but
they are beginners in life cycle assessment. Developing LCA models in the context of
emerging technologies needs high level of expertise and insights on the future evolution. It
will therefore be more efficient to empower the users to develop the LCA models themselves
rather than outsourcing the LCA analysis. Especially since technical evolution is closely
linked to the changes in LCA results. It will leverage the already available competences in
the laboratory. Thus it is important to keep the user profile in mind while building a general
methodology of LCA models.

Prioritisation of data collection - Importance has to be assigned to the different data to be col-
lected in the development of LCA models due to two main reasons. First is the variable level
of detail required. According to the discussions with users, the granularity of LCA models
depend on the resources available within the frame of different projects. The presently avail-
able techno-economic models also have a varying level of detail. The second reason is the
presence of many uncertainties. LCA in itself is a data intensive process, with the ’future’
scope expected in many investigations, amount of resources required increase exponentially.
For example, background processes (e.g. recycle rate, electricity mix) have to be adapted
to the future scope, lab/pilot scale inventory processes have to be adapted for a future in-
dustrial production, scaling equipment size from prototype to commercial scale, etc. If the
importance of data to be collected is not quantified, due to limited time/resources avail-
able, practitioners will arbitrarily search for data. Consequently, disproportionate amount
of resources might be allocated to modelling.

Compatibility with mathematical tools - As mentioned earlier, two mathematical tools are used
often in the laboratory: global sensitivity analysis and genetic optimisation. To ensure that
the environmental information is treated in a similar way as other performance indicators,
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Chapter 1. Establishment of the thesis context

it is important that LCA models too are compatible with these tools. It will increases the
chances that the new indicators are taken into account by the users.

1.4.2 Inclusion of LCA indicators in multi-objective optimisation

It was noted that, environmental impact adds an extra dimension in decision-making. Multi-
criteria optimisation is already used to obtain solutions with trade-offs between the techno-economic
objectives. Trade-offs with further environmental indicators will be useful for design and planning
of systems while including the environmental impacts. Furthermore it will be practical to the users
to have additional information more or less in the same structure as currently utilised.

It was demonstrated that without including LCA indicators as objectives in the multi-criteria
optimisation, solutions with higher environmental efficiency cannot be searched. The problem
then is, LCA can have upto 20 different objectives unlike one indicator each for tech-eco analysis.
The maximum objectives that could be included in Odyssey presently is three. Hence a strategy
to effectively include LCA results in optimisation is required.

1.5 Research Approach

Once the thesis goals were formulated, the approach followed, was to search the relevant state
of the art topics to solve them. This led to the identification of topics in the literature that were
missing or ones that could be improved further. Consequently, research proposals were concocted
to address these issues. The adopted research approach is described further below, and a simplified
illustration of the approach can be seen in figure 1.12.

Integrated 
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economic and 
LCA modelling

Inclusion of LCA 
indicators in 

multi-objective 
optimisation

Computational
strategies to add LCA 
in external tools or 
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expensive hybrid energy

simulations even with
latest algorithms

Objective reduction
using visual survey

Hybrid approach of 
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reduction
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energy systems

Parameterized LCA 
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Problems or missing

information
Thesis research
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Figure 1.12: A simplified illustration of the research approach followed in this thesis

As we saw in this chapter, two key problems were identified after discussions with laboratory
personnel and utilisation of tools in the lab. These two problems prevent consideration of environ-
mental information in design and planning of hybrid energy systems. The two primary goals of the
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1.5. Research Approach

thesis could then be formulated: integrated modelling including LCA models and multi-objective
optimisation including the LCA indicators.

In order to solve these goals, state-of-the-art topics were searched. First step was to see how
environmental information is calculated and included in other hybrid energy simulation software.
It was found that both of the two problems also exist in them.

The next step was to search for computational strategies utilised in the literature in order to
integrate LCA with other tools or software. Since it would help get an overview of the possible
approaches for integrated modelling with LCA. From this exercise, it was concluded that param-
eterized LCA modelling could be a valid approach to integrate the LCA models with the energy
simulations. However, there were two problems that remained unsolved in the context of hy-
brid energy simulations. First, the modelling is complex since the process requires high level of
expertise in both topics: energy systems and LCA. Second, due to emerging technologies often
appearing in this context, the modelling is resource intensive with many uncertainties.

Thus to solve these issues, a general framework for establishing parameterized LCA mod-
els for hybrid energy systems is proposed. For this purpose, an initial methodology was built
by anticipating the issues that could be faced while developing parameterized LCA models for
emerging technologies. This initial methodology was then given to an energy engineer to imple-
ment a preliminary model of the PEM electrolyser. Based on the feedback during this process, the
methodology and the LCA model were improved. Other elements of the literature such as global
sensitivity analysis and emerging technologies were also consulted during this process.

Then to solve the second problem of including LCA indicators in the search of solutions, the
literature on multi/many-objective optimisation was consulted. It was found that the currently
utilised algorithm SPEA2 might have convergence problems when optimisation with respect to
3+ indicators are desired. Given the experience and the past research laboratory personnel, a new
generation evolutionary algorithm NSGA-III which does not have these issues was chosen.

During the literature search, objective reduction techniques were also found. These techniques
basically identify redundant optimisation objectives to be temporarily discarded, which do not
change the pareto front but increase the efficiency of optimisation algorithms. These are quite
relevant since LCA indicators were found to be correlated in various investigations in the literature.
Moreover since the hybrid energy simulations are computationally expensive, they could be quite
helpful in reducing the computational time. Thus a hybrid approach of NSGA-III with objective
reduction is proposed.

Finally, during the implementation of the above approach, it was found that LCA indicator
correlations could be found before the optimisation process based on average estimations. Given
that the system satisfies certain conditions. This finding was later finalised as the proposal of, ’Ob-
jective reduction in LCA using a simple visual survey’. The rest of thesis unfolds in the following
manner:

Chapter 2 elaborates the findings from the state-of-the-art. The above discussed topics are justi-
fied as much as possible followed by the formulation of research proposals of this thesis.

Chapter 3 then describes the proposal of establishing parameterized LCA models. The method-
ology is demonstrated by applying it on a PEM electrolyser case study.

Chapter 4 outlines the proposal of the proposed objective reduction technique using a bike design
case study. The results are verified using principal component analysis, a well established
objective reduction technique in the literature used for the same purpose. Recommendations
are provided on its utilisation.

Chapter 5 presents the final proposal of the hybrid NSGA-III approach with objective reduction.
Performance of the new approach is tested with the original algorithm using a dimension-
ning case study of hybrid energy systems. Recommendations are then made on the use of
this approach.
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2
Positioning the thesis in the existing literature

Summary: In this chapter, the state-of-the-art topics are reviewed in order to solve the formulated
goals of the thesis. First activity was to investigate the available hybrid energy simulation soft-
ware. The main objective was to assess how the environmental information is calculated. Then,
in the second section the LCA integration strategies in the non-LCA software or models are inves-
tigated. So as to formalise the type of LCA modelling to be used in the thesis. Literature on the
inclusion of LCA indicators in the optimisation process is consulted in the following section. This
enables the definition of the optimisation strategy to be used in order to include the LCA indica-
tors in the search of solutions. Finally, from the disparity found between the elements required to
satisfy thesis goals and the literature, research proposals are formulated in the last section.
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2.1. Environmental information in the hybrid energy simulations

2.1 Environmental information in the hybrid energy simulations

One of the first activities of this thesis was to compare the environmental analysis in the hy-
brid energy simulation software [Sharma2019]. The objective of this exercise was to investigate
whether the two requirements formulated in the previous chapter were already satisfied in the
other similar software. A comprehensive list of more than 50 software was compiled using ener-
gyplan.eu and investigations by [Sinha2014, Connolly2010]. These software were screened using
so that the relevant ones are retained using the following criteria:

• Software catering to a geographical area greater than a region were excluded.

• Only the software dealing with technical or economic simulation were selected. Hence, the
ones dealing with objectives such as policy, markets, networks, etc. were neglected.

• Finally, software unavailable on the market because of being obsolete or internally used,
were not investigated in this paper.

Five software passing the screening are HOMER 1, iHOGA 2, EnergyPRO 3, RETScreen Ex-
pert 4 and TRNSYS 5. Amongst them, Odyssey can be added as well.

As we see in table 2.1, only one software includes environmental information of more than one
life cycle stage. Furthermore, only limited emissions are taken into account. This is inappropriate
for systems involving renewables or energy storage technologies, where most of the impacts are
from upstream or downstream stages.

Table 2.1: Summary of the environmental analysis in the reviewed software [Sharma2019].

Software

Life cycle stages

considered Emission factor units
Emissions Possibility

to add more

emissions

Emission

limits or

penaltiesOperation Other CO2 NOx SO2 CO
Unburnt

fuel

Particulate

matter

HOMER X -
kg pollutant per

unit fuel consumed
X X X X X X - X

iHOGA X X

kg pollutant per

unit fuel consumed

OR kg pollutant per

unit size of equipment

X - - - - - - -

EnergyPRO X -
kg pollutant per

unit fuel consumed
X X X - - - X X

RETScreen

Expert
X -

kg pollutant per

unit energy produced
X X - - X - - -

TRNSYS - - - - - - - - - X -

Odyssey X -
kg pollutant per

unit fuel consumed
X - - - - - X -

A demonstration is seen in figure 2.1, where a comparison between electricity production from
wind turbines, solar PV, conventional natural gas and coal plants according to their climate change
potential. The resulting impacts are distributed along the life cycle stages. For solar PV and wind
turbines, data was assembled from a paper investigating 153 life cycle assessment (LCA) studies
[Nugent2014]. While for natural gas and coal, it was taken from LCA review and harmonisation
studies [O’Donoughue2014,Whitaker2012]. It is clear that, for conventional technologies, most of

1 http://homerenergy.com/ 2 http://ihoga-software.com/ 3 https://www.emd.dk/energypro/
4 http://www.nrcan.gc.ca/energy/software-tools/7465 5 https://sel.me.wisc.edu/trnsys/
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Figure 2.1: Breakdown of climate change potential according to different life cycle stages for
electricity production from wind turbines, solar PV, conventional natural gas and coal fired plants
[Sharma2019].

the climate change impact results from the use phase. These two studies also show that first order
estimates of global warming potential is possible only with a knowledge of certain supply chain
steps of the fuel cycle. However, the same is not true for renewable technologies, where most
of the impacts come from the manufacturing/end-of-life phases. The latter have a lower carbon
footprint by an order of magnitude, than conventional technologies but this might not be true for
other indicators such as mineral resource depletion. Hence, decisions based only on greenhouse
gas emissions might lead to sub-optimal conclusions due to impact transfer [Laurent2012].

Coming to the functionalities offered by these software, 4 offer a possibility of searching sys-
tem configurations according to desired indicators. Out of them, EnergyPRO is used for planning
the operation of the system. For example, when to operate a component according to the weather,
electricity market, etc. It does not offer the possibility of sizing the system. HOMER does offer
searching solutions with respect to a single criteria. It does this by simulating all possible combi-
nations followed by sorting the solutions in an increasing or decreasing order. A summary can be
seen in table 2.2.

Only 2 software (iHOGA and Odyssey) offer search of solutions with respect to more than
one objective. Since they use genetic algorithm, their convergence is likely to be faster than
HOMER even for single objective optimisation. In terms of including environmental indicators
in the search, only CO2 emissions are included in them that too for limited components and life
cycle stages.

2.1.1 Summary: Insufficient environmental information

It is concluded that environmental information provided in them is insufficient to support decision-
making in the context of this thesis. Main reason being that the analysis is not sufficiently adapted
towards the characteristics of new energy technologies. Impact indicators and life cycle stages are
excluded from estimation. Thus the two outlined problems of insufficient impact estimation and
exclusion of environmental indicators also remain in the other similar software.
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Table 2.2: Summary of the environmental analysis in the reviewed software [Sharma2019].

Software
Simulation

Sizing
Operation strategy

optimization
Computation type

Economic Technical

HOMER X X X X
Simulation + mono-objective

search

iHOGA X X X X
Simulation +

Multi-objective genetic algorithm

EnergyPRO X X - X Simulation

RETScreen

Expert
X X - - Simulation

TRNSYS - X - - Simulation

Odyssey X X X X
Simulation +

Multi-objective genetic algorithm

2.2 LCA computational models

The goal of this section is to identify LCA modelling strategies in the literature and the ones
that could be undertaken in order to solve the first problem. Thus the objective of this section is to
identify strategies in the literature that could be used to integrate LCA methodology with external
non-LCA tools and models. More specifically in the context of the thesis, LCA modelling that
could take inputs from energy simulation and calculate impact indicators. Thus, it is clear that
quantitative results are required.

Apart from the conventional LCA computation, other strategies have also been used in the
literature. Once these approaches are classified and characterised, an overview of the thesis goals
with respect to already developed strategies can be obtained.

Before proceeding with the search, it is necessary to first specify the conventional computa-
tional structure of LCA. Hence, this is described next, followed by the literature search methods.
Then from the found studies, reasons for retaining certain studies are elaborated. Finally, the
identified strategies are classified and described.

2.2.1 Computational structure of LCA

In this section, the standard methodology to calculate inventory and impact assessment is elabo-
rated as per [Heijungs2002]. Let’s start with a technosphere matrix A, which consists of relation-
ships between the economic activities with each other. Final demand vector f is the reference flow
of the LCA study. Where, the amount of each activity desired for the LCA calculations are speci-
fied. In order to satisfy the demand f, scaling vector s for each of the activity is the technosphere
matrix is defined. Since A (often, a LCA database) and f (demand) are known, scaling factors can
be calculated in equation 2.1 using matrix operations.

A.s = f⇐⇒ s = A−1.f (2.1)

As a fictional example, two activities of electricity and fuel production are shown in the techno-
sphere matrix. For 10 kWh electricity production, 2 litres of fuel is required. While for producing
100 litres of fuel, electricity is not required. Let’s assume 5 kWh of electricity as the reference
flow.
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Electricity prod. Fuel prod.( )
Litre of fuel −2 100

kWh electricity 10 0

×
( )

s1

s2

=
( )

0

5

Hence, the scaling factors would be 0.5 and 0.01. They are then used to calculate impact
of each activity using the environmental intervention or the biosphere matrix B. It has the same
number of columns as matrix A, meaning the same activities. The rows represent the ’exchanges’
of each activity with the environment. The total environmental exchange g for the reference flow
is then found using the below equation:

g = B.s (2.2)

As an extension of the above example, lets say fuel production requires extraction 50 litres of
crude oil and emits 20 kg each of CO2 and SO2. Whereas, electricity production does not require
crude oil directly but emits 30 kg and 40 kg of CO2 and SO2 respectively. Hence, equation 2.2 can
be represented as:

g =

Electricity prod. Fuel prod.


Crude Oil 0 −50

CO2 30 20

SO2 40 20

×
( )

0.5

0.01

=




−0.5

15.2

20.2

Once all the environmental exchanges are calculated, they are multiplied by the characterisation
matrix C to get the impact indicators, I.

I = C.g (2.3)

Here, the rows of matrix C represent the selected impact assessment methods. While the col-
umn represents the characterisation factor for each environmental intervention. Thus the number
of columns of C is equal to number of rows of g. Finally, I1 and I2 are the two impact indicators
for the reference flow of 5 kWh electricity.

I =

Crude oil CO2 SO2( )
Impact 1 c11 c12 c13

Impact 2 c21 c22 c23

×




Crude oil −0.5

CO2 15.2

SO2 20.2

=
( )

I1

I2

This is a simplified representation of the calculations, they are conducted at a much larger scale
in LCA investigations. For example, no. of activities in ecoinvent 3.6 database are 13831, which
translates to the 13831 rows and columns for the matrix A.

2.2.2 Search Method

A preliminary search was carried out using the keywords ’Simplified LCA’ in google scholar and
scopus. During this search, LCA models were found, combined with external ’non-LCA’ tools,
models or databases. Such LCA investigations are often termed as ’simplified or streamlined LCA
study’. The objectives of these investigations was generally to provide decision support or for
design. Similarly, simplification techniques conventionally utilised by LCA practitioners were
also found.
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Consequently, to focus on studies in-line with the objective, the search string comprising of
keywords for: LCA, simplifications and integration with other models was formulated. The search
string presented in figure 2.2, resulted in 920 results in Scopus. These results consisted of books,
journal and conference publications.

LCA keywords

lca OR  "life cycle assessment"  OR  lci OR  "life 
cycle inventor*"  OR  lcia OR  "life cycle analys*"

LCA simplification 
keywords

streamlin*  OR  simplif*  OR  screening*

Keywords related
to integration with

non-LCA models

design*  OR  tool  OR  decision

920 results

Figure 2.2: The search string used to identify documents in Scopus.

2.2.3 Selection criteria

Abstracts and/or full text of these 920 results were then reviewed. Thirty eight studies could not
be pursued further since their full-text was not available online or they were not written in English.
Further, 791 were discarded since they did not fit in with the objective of the search due to one of
the following reasons:

• They were not an environmental LCA study

• They did not integrate LCA with an external tool or did not present an approach which could
be utilised to simplify LCA computations

• They calculated qualitative LCA impact indicators

As a result of the selection, 75 studies were retained and a further 91 studies were added
through snowballing, resulting in a total of 165 studies classified.

2.2.4 Results

Statistics regarding the total 165 studies analysed in this subsection are presented in figure 2.3.
An increasing year wise trend can be seen in these kind of investigations. In terms of the field
of application, built-environment or construction has the maximum applications. Often studies
involving an integration of building databases with LCA database were noticed. In the thesis
of [Tasala Gradin2020], the lack of data was identified as the main motivating factor for simplifi-
cation. They review all the simplification strategies in LCA. However, for the studies found here,
the main objective was quick estimation of impact for design or decision-making. LCA was often
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Figure 2.3: Statistics of the total 165 references analysed. (left) Year-wise distribution; (right)
Sector-wise distribution.

integrated with a non-LCA tool or even as a simplified excel sheet to guide stakeholders about the
environmental impact.

Globally, three ways of computing LCA indicators were found combined with other tools/models:
Parameterized modelling, Functional approximation of LCA calculations and Data mining tech-
niques. The basic calculation principle behind each of them, examples of studies found under this
classification and relevance of each approach is presented below.

Parameterized LCA models

Concept For parameterized LCA models, definition from [Heijungs2020] is preferred, as it best
defines the studies segregated under this category. They are the ones where LCA process data
(or a part of it) depend on one or more settings. The settings are often the relevant parameters
(p1, p2, p3.., pd), using which the demand vector f = ( f1, f2... fl) is calculated. The output of the
parameterized model would thus be the amounts of different activities required in the scope of the
overall LCA model:

f = ψ(p1, p2, p3..pd) (2.4)

Once constructed, the parameterized models allow the calculation of impacts according the
change in the respective parameters. The LCA calculations are then normally carried out through
equations 2.1 - 2.2. These steps could be quite computationally expensive due to the large sizes of
the matrices. Recall from section 2.2.1, the impact indicators can be calculated as:

I = C.B.A−1.f (2.5)

A part of the above equation could also be pre-calculated if the activities present in f are
known. These are then known as precalculated aggregated datasets [Lesage2018]. Impact per unit
of each activity in f is calculated separately. Then, the vector of ’n’ impact indicators I=(I1, I2...In)
can be calculated as the sum of impacts of each activity in the system:

In = ∑
l

Il
n ∗ fl (2.6)
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Where, Il
n is the impact per unit of activity ’l’ for an impact category ’n’ which is pre-

calculated. Similarly, a parameterized model could also be defined in terms of the environmental
exchanges in matrix g:

gh = ∑
l

gl
h ∗ fl (2.7)

Where, gl
h is the pre-calculated environmental exchange ’h’ per unit of activity ’l’. Impact

indicators are then calculated using equation 2.2. This is especially useful when a limited number
of activities are used each time. The calculation of large matrices is thus avoided, making the
process more efficient. Another important point is that the pre-calculated datasets also enable
the mathematical formulation of LCA models which could be useful various in contexts, such as
analytical sensitivity analysis methods or multi-integer linear programming.

For instance, consider the electricity production from the example defined in section 2.2.1. If
let’s say climate change impact (Ielec

CC ) of the electricity is precalculated to be equal to 0.5 kg CO2
eq/kWh, this value can be directly multiplied by the electricity consumed which is presumably
calculated by a parameterized model.

Application in LCA No. of studies classified under this category was 131. Similar to any LCA
study, the level of granularity of parameterized LCA vary in the literature. This type of integration
has been done in [Morbidoni2010] who combined product design tools with the LCA specialised
software OpenLCA. It was often found that the demand vector in equation 2.4 was calculated by an
external model. Then its entry to an LCA software/calculations was automated. The open source
LCA tools such as OpenLCA [Ciroth2014] and Brightway2 [Mutel2017] have further facilitated
this step.

LCA calculations can also be included with other analysis tools. For example, the BIMEELCA
tool is developed for an automatic LCA during building design [Santos2019,Santos2020]. Differ-
ent levels of detail of an LCA are defined depending on the life cycle stages included in the scope.
Precalculated aggregated datasets are used for impact estimation in this case.

Use of area-specific databases or using limited number of activities from a database are also
common in these cases. For example, use of Okobaudat [Gantner2018] in built-environment LCA
tools [Zimmermann2019]. Aggregated datasets have also been used with optimisation algorithms
to select materials [Ng2020] or to assess investment in energy sources [Tietze2020].

This type of formulation has also been widely used to make area-specific decision or assess-
ment tools for non-experts in LCA. Often only a handful of inputs are required by the tool for
a high-level estimation of impact. The objective of these tools is often to provide quick envi-
ronmental information to the relevant actors. These tools have been developed for instance in
solar heating and cooling systems [Beccali2016], milk production [Pirlo2019], urban water indus-
try [Schulz2012] and packaging [Verghese2010].

Relevance Since the basic computational structure of these models remains the same as in the
conventional LCA, similar accuracies can be expected. Thus, the relevance of the results will
then depend on the scope of the models and the data quality. The simplifications utilised in the
conventional LCA studies are also applied in this case. Some examples are: use only of databases,
narrowing the range of environmental impacts considered, neglection of upstream/downstream
processes, etc. Hence, conclusions that could be derived from these models, depends on their
modelling assumptions.

Functional approximation of LCA calculations

These models basically estimate the outputs (LCA indicators) with respect to the different inputs
(parameters) like the models in the previous sections. However, the conventional LCA calculations
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as seen previously are by-passed completely. The estimations are made by establishing mathemat-
ical relationships between the inputs and outputs leveraging previously conducted LCA studies. In
theory, any mathematical approach predicting outputs with respect to the inputs of a could thus be
utilised. The calculations under this category could thus be represented by the following equation:

I = φ(p1, p2, p3..pd) (2.8)

In the LCA literature, two techniques were found so far: multi-linear regression and artificial
neural networks.

Multiple linear regression

Concept It enables the modelling of relationship between the response and one or more inde-
pendent variables [Igual2017]. A model predicting environmental impact In with respect to m
independent variables can be defined in the following equation:

In = an
0 +an

1 p1 +an
2 p2 . . .an

m pd (2.9)

The predictor variables can be either selected using literature review, industrial experience or
statistical methods. LCA indicator data has to be made available with respect to each of the
selected variables/parameters pn

m. The data can be empirical or artificially generated. The most
common method to calculate the co-efficients (an

m) is the ordinary least squares estimator. This
can be easily done in Excel or in programming languages such as Python or R. Later, the impacts
of new cases are estimated by entering the predictor variables. As we can see from the above
equation, ’n’ separate equations need to be formulated for ’n’ impact indicators.

Application in LCA No. of studies classified under this category was 22. Roches et al. use this
approach to extrapolate impact of agricultural products in different countries using nine farming
inputs such as fertiliser use, machine use, etc [Roches2010]. Emission factors (CO2/kWh) of
electricity production from 444 worldwide coal plants were estimated by [Steinmann2014]. Along
with multiple linear regression, they also used local linear regression for model fitting. They
hypothesized that 5 predictor variables explain the variability in the emission factors: plant age,
capacity, coal type, steam pressure and GDP per capita of plant location.

Carbon footprint of wafer fabrication was calculated using 3 parameters selected through lit-
erature review, industrial expertise and process & correlation analyses [Huang2016]. Padey et al.
first developed a comprehensive parameterized model of wind turbines. Then, they applied GSA
to identify the two most influential parameters as lifetime and load factor on the global warming
impacts. A simple regression model for quick CO2 emissions estimation from wind electricity
based on these two variables was then developed [Padey2013].

Lullo et al. also used GSAs to effectively select the important parameters for their regression
models. They further make available an Excel workbook to convert excel-based LCAs into regres-
sion models [Di Lullo2020]. Regression was also used to predict indicators but based on other
known indicators by [Pascual-González2015]. This approach was applied to oil and electricity
product categories of Ecoinvent database. They were able to achieve accuracies of more than 80%
using 5 indicators as the learning set for electricity and more than 85% using 3 indicators for oil
datasets.

Relevance The main advantage of such models is the ease of utilisation. They could be used
simply as an equation, that can account for different variabilities in the impact. Hence, avoiding the
LCA calculations. Furthermore, they could be used where LCA needs a mathematical formulation.

In terms of the relevance of results, it highly depends on the scope of the model and the values
to be predicted. For example, [Padey2013] reported an accuracy of more than 85% for global
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warming impact from wind electricity. On the other hand [Roches2010], report relatively high
accuracy (83%) for some indicators less than 67% for others. Hence, it has to be clearly defined
under what conditions the model will offer relevant results. Next, the ’goodness’ of the fit mea-
sures such as co-efficient of determination (R2) can be used to evaluate the representativeness of
the data. Thus in general, they could offer initial estimates or data for ’screening LCA’ depending
on certain conditions such as goodness of the fit, type of data point, etc.

Artificial neural networks (ANN)

Concept They are being widely used for recognition of image, video, language and sound [Wolf-
gang2011]. Furthermore, ANNs can also display basic creativity in generating these patterns.
Their relevant application in this context is function approximation, i.e. the non-linear predictions
after learning the relationships between input parameters and outputs. In the context of LCA, they
could be defined as equation 2.8 but not further. They are the black-box models predicting the
impact with respect to some parameters or settings.

Similar to regression, output data with respective variation of input variables is necessary
for neural network models. An ANN is made up of multiple layers of inter-connected artificial
neurons, illustrated in figure 2.4 on the left. Each neurons in a layer is connected each neuron
in the adjacent layers. However, neurons belonging to the same layer are not inter-connected
[Skansi2018]. A neuron receives two types of inputs for calculations: weighted values (see figure
2.4 on the right) from all neurons in the previous layer and an additional value of bias (b). The
weights are not necessarily bound between 0-1. The output of the neuron could simply be a sum of
these inputs for linear neurons. However, in most cases, these inputs are transformed with the help
of a non-linear function. The most commonly used being a sigmoid or logistic function, illustrated
figure 2.4 on the right. The calculated output is then multiplied with the respective weights and
sent to all the neurons in the next layer [Skansi2018].

x1

x2

w12

w22

f(z)

E.g:    f(z) = 
1

1+𝑒−𝑧

z = b2+x1w12+x2w22

Input layer logistic functionHidden layers Output layer

Figure 2.4: (Left) Simplified illustration of an artificial neural network; (Right) An artificial neu-
ron, simplified., illustration adapted from [Skansi2018]

.

Initially, the network learns mapping of output from inputs using the training data. This pro-
cess is essentially the network adjusting the weights (w) to ensure the error between the predicted
and the actual value is low. The ANN might require multiple iterations through the training data
to arrive at an acceptable error value [Kalogirou2001]. Once the error is below the acceptable val-
ues, weights of the network are held constant in order to predict outputs for testing, validation and
eventually for predicting new data points. From a practical point of view, ANN implementation is
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offered by many open source libraries available in programming languages such as Python, Java
or C++.

Application in LCA No. of studies classified under this category was 8. Park & Seo used this ap-
proach to predict early-stage impact of household products using product attributes such as power
consumption, lifetime, material distribution, etc. with accuracies more than 72% [Park2003].
Wernet et al. applied ANN’s to predict impact of chemicals at an early stage using their molecu-
lar structures [Wernet2008]. They further compared this approach in terms of accuracy and time
saved in comparison with 3 other common approximation techniques used by LCA practitioners:
extrapolation, use of proxy data and process models [Wernet2012]. A number of studies have
thereafter developed this investigation further taking into account other factors such as thermo-
dynamic properties [Song2017, Karka2019, Kleinekorte2019]. Khanali et al. trained ANN’s by
collecting on-field data of Tea production in Iran followed by analysis of predictions to get accu-
racies of more than 85% [Khanali2017].

Relevance ANNs are especially useful when the data is detailed, complex, non-linear and highly
co-related. In contrast to the regression models, where the exact mathematical relationship has to
be specified for curve-fitting (e.g. order of polynomial), ANNs calculate the relationships by them-
selves. As a downside, they are even more opaque to introspection than regression models. It is
not possible to comprehend inner workings of ANN to find specific impact sources or contribu-
tions from a prediction. Furthermore, these models might require more resources (data, time and
computational power) for their development as compared to other approaches. Their applications
are also limited to the training dataset. Further the departure from it, lower is the accuracy.

Therefore the accuracy of ANNs depend on the similarities of the point to be predicted with
the training set. A valid use of impact estimations based on ANNs could be filling data gaps. The
instances where data of low importance is missing. By low importance, it is meant where the data
is expected to have a low contribution to the impact. Moreover since the ANN models are opaque
to analysis, estimation for a data point cannot be verified. Thus they are only recommended to be
used to estimate the order of magnitude of the impact when the prediction point is similar to the
training set.

Data mining techniques

Concept In brief, the techniques described below depend on calculating the impact of a new
product based on its similarities with other products already present in the database. The simi-
larities could be in terms of functions, structure, materials, behaviours or environmental impact.
These similarities are determined using text descriptions in bill of materials, LCA databases or in
a manually created database. Data mining and machine learning techniques are leveraged for this
purpose. These studies often also involve facilitating the mapping of LCA databases with others,
for example, a BOM database. Multiple data mining strategies have been cited in the 4 publica-
tions found under this category. However, in this section, attention is focused on two techniques,
which form the basis of all the calculations in the found references: clustering and classification.
Then, the studies are presented along with their LCA estimation method.

Clustering is defined as ’grouping together similar objects’ while separating dissimilar objects
in separate groups [Bramer2007]. For example, grouping developing and developed economies. A
salient point in this aspect is that the clusters are unlabelled [Skansi2018]. A visual representation
of clustering for two dimensional data points can be seen in figure 2.5. The algorithms find clusters
typically when distance between neighbouring points is smaller than distance between points be-
tween two different clusters. Hence, the choice of a distance metric for clustering is fundamental.
The ’k-medoids’ algorithm used in LCA studies, can work with both continuous and discrete data.
Manhattan distance (eq. 2.10) is one of the widely used metric to measure the distance d between
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two vectors [Wolfgang2011].

de(x,y) =
n

∑
i=1
| xi− yi | (2.10)

Y axis 
data

X axis data

Figure 2.5: (Left) Objects for clustering, representation in a two dimensional data (Right) Clus-
tering of objects [Bramer2007].

Classification is dividing objects into ’mutually exhaustive and exclusive categories’, such
that each object is assigned to at least one class and one object is assigned to precisely one
class [Bramer2007]. The main difference here with clustering is that, in classification the data
is labelled or already structured. Hence, the classification is categorised under ’supervised learn-
ing’ while clustering in ’unsupervised’. Basic principles of a commonly used classifier: Naive
bayes is described here with an example from [Skansi2018]. A fictitious record of whether the
train was late according to the time of the day is presented in table 2.3. Here, some basic prior
probabilities could be, such as train being late (9/13) and train being on time (4/13). Hence, to
calculate Pon−time|morning, the probability of train being on time, given that it is morning will be:

Pon−time|morning =
Pmorning|on−time ·Pon−time

Pmorning
(2.11)

Where, Pmorning|on−time = (2/4) is the probability that its morning given that the train is on time,
while Pmorning=(5/13) and Pon−time=(4/13) are the probabilites of it being morning and train being
on time respectively. Thus supposedly for a new data point, Pon−time|morning = 0.4, thus train is
predicted to be late or a value of ’yes’. This calculation can also be done directly from the table
but it is used as a demonstration of the underlying principle. In practise, the value is calculated
using much more complex data and probabilities. Thus, values of new data points are estimated
by leveraging the prior collected data.

Application in LCA Sundaravaradan et al. performed clustering to group components and sub-
components using the functions/text descriptions in the BOM and LCA databases [Sundaravaradan2011].
Then, the estimation of new data points was done using the other points belonging to the same
cluster. They used this approach for 2 objectives: First, missing impact data of randomly selected
processes from ecoinvent 2.0. Mixed results were obtained. High accuracies (>95%) for 90% of
the points, while poor accuracies for the rest (up to 30%). Second, LCA calculation of new data
points was done, by leveraging a BOM database of 560 components of printed circuit boards. The
results are variable according to the object. The median accuracy was 87.2% and more than 75%
accuracy for most of the objects, but high errors for the rest. Presumably when the supplied object
is different to the dataset.

Hosain et al. also grouped objects in BOM and LCA database using clustering [Hossain2014].
Data was obtained from a computer manufacturer with 5,948 BOM descriptions. In the BOM
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Table 2.3: Fictitious train data to demonstrate naive Bayes classifier [Skansi2018].

Time Train late

morning no

afternoon yes

evening yes

morning yes

morning yes Time Late (yes) On-time (no) TOTAL

afternoon yes morning 3 2 5

evening no afternoon 4 1 5

evening yes evening 2 1 3

morning no TOTAL 9 4 13

afternoon no

afternoon yes

afternoon yes

morning yes

database, clusters were made according to the function satisfied using text descriptions. Meaning
that the products present in the same cluster satisfy the same function and are ’substitutable’.
While in the LCA database, clusters were made using text strings as well as their environmental
impact. The differences between the two types of clustering (or disparate clustering) enabled
automatic ’eco-design’ recommendations. That is, sub-components of the objects providing the
same functions but with a lower environmental impact. Furthermore, using the characteristics
of the clusters, Bayes classifier is trained to map new activities in BOM database with the LCA
database automatically. They achieved reasonably well matching of databases with majority of
the matches having high confidence score (>0.95) and only 10% of the matches with a low score
(<0.25). For the disparate clustering, a re-design of a desktop computer demonstrated upto 36%
reduction in the carbon footprint.

Zhou et al. present a framework of performing LCA of buildings using data mining tech-
niques [Zhou2015]. Their main recommendations are the following. First, using classifiers to map
BOM activities to LCA databases. Second, for regional impact assessment of buildings, forming
clusters of similar buildings in the region. LCA analysis only of small number of buildings as rep-
resentatives of each cluster. Hence, regional impact could be found by scaling the clusters and thus
indirectly, each building representative. Third, disparate clustering to propose design alternatives.
However, no case study was presented to demonstrate their results.

Jeong et al. cluster the products utilising a ’Function-Behaviour-Structure-Environmental’
characterisation of products [Jeong2014]. For example, a fan can be represented by: structural
characteristics - steel, mass; behaviour - cross flow fan; function - move air; environmental -
assembly by rolling and its environmental impact. Later, the similarities in the structure of com-
ponents are used to find appropriate cluster to consequantly calculate their impacts. They estimate
pretty accurately (3-7% error) for 12 impact categories for case studies involving industrial fans.
However, it should be noted that in this particular case there are only marginal differences between
the training and the validation set.

Relevance Data mining techniques are meant to be used with large amounts of data generated
from the rise of informatics. In terms of LCA, an important use could be mapping of external
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databases with activities in LCA database. As it offered promising results in this case. This can
reduce the effort required in manual mapping by an order of magnitude. Another useful application
seems to be in ’eco-design’ using disparate clustering on functional and environmental character-
istics. As it can provide options satisfying the same function but with different environmental
impact.

On the other hand, predicting impacts of new data points based on clustering similar products
seems less attractive but could be a promising topic for future research. Two applications of
this approach were: first, calculation of missing impact factors provided that other indicators for
the same object are present. Moreover, the toxicity impact indicators are highly sensitive to the
presence of certain compounds, which makes their prediction using this approach difficult. Second
application is impact assessment of a new object. In this case, object to be assessed should be
similar to ones already present. Even then it can only provide initial estimates. It can be argued
that first estimates could be also made through a manual database or literature search.

Table 2.4: Recommendations on the use of the LCA modelling methods and relevance of their
results

Approach To be used when:
Relevance of

LCA results

Parameterized

LCA

- High accuracy is required
upto detailed

LCA possible
- Detailed contribution analysis are required

- Analysis often involve new technologies, processes

and materials

Linear

Regression

- LCA model is required in terms of an equation to simplify

use or for utilisation with analytical methods screening LCA

- Prediction set is similar to the learning set

ANNs

- Relationship between predictor variables and LCA impact

is highly non-linear and predictor variables are correlated

with each other

Initial estimate or

to fill data gaps

for low importance

data

- Comprehension of the model for contribution analysis

is not required

- Prediction set is similar to the learning set

- Large amount of data is available

Data mining

techniques

- Not recommended for impact estimation, but ’classification’

N.A.useful for mapping LCA databases with other databases

- During that, ’Disparate clustering’ could be useful in eco-design

2.2.5 Summary: Parameterized LCA models are selected but some issues remain
unsolved

To satisfy the goals of this thesis, parameterized LCA models were selected as the computational
approach for LCA models with the energy simulation software. Mainly since it was established
in the context that often the modelling will deal with emerging energy technologies. In this case,
the new predictions cannot be based on the existing ones since they could be remarkably different
from each other. Furthermore, the objective of the environmental analysis is to make investment

37



Chapter 2. Positioning the thesis in the existing literature

and R&D decisions, which might require detailed analysis of sub-components of technologies.
Hence, the level of detail into the sub-components offered by regression or ANNs are inadequate.
Regarding data mining techniques, they could be useful when mapping is required between a large
technical database with an LCA database, which is not the case currently. Recommendations on
when to use these strategies for integrating with external models are presented in table 2.4.

However, there are two problems associated with development of parameterized LCA models
in this context:

First, is the complex nature of modelling. It requires high level of LCA expertise, good knowl-
edge of the technology, insights on its future evolution and familiarity with energy simulations.
Moreover, the modelling is arguably more complex as compared to the conventional LCA studies.
Since all the outputs from energy simulations influencing the LCA indicators have to be taken into
account. On the other hand from the LCA perspective, modelling of inventories of components,
their future evolution, variation due to geography and end of life treatment is not taken into ac-
count in the techno-economic simulations. Hence, in addition to the technical parameters, new
parameters pertinent to LCA might have to be introduced.

Second, owing to these variabilities, modelling becomes time intensive. During the design of
hybrid energy systems for the future, there are often many uncertainties related to design param-
eters and background/foreground processes. As a result, prioritizing the data collection becomes
indispensable. Due to the complex nature of the simulations, multiple uncertainties and their pos-
sible co-relations, local sensitivity analysis as practiced in conventional LCA studies might be
inadequate and tiresome.

It appears that the techniques and strategies to solve the above issues do exist in the LCA
literature. However, a consistent methodology that combines them to enable the establishment of
parameterized LCA models for hybrid energy systems does not exist yet.

2.3 Inclusion of LCA indicators in optimisation

In this section, the problem of inclusion of LCA indicators in optimisation is confronted with
the techniques in the literature. The importance of this inclusion was justified earlier. To reiterate,
it will enable users to search for solutions with higher environmental efficiency. Thus the problems
that usually involve deciding the system configuration or the operational strategy, could be viewed
from an additional perspective of environmental impacts.

2.3.1 Problems with the currently used genetic algorithm SPEA2

As mentioned earlier, SPEA2 [Zitzler2001] is currently utilised in Odyssey for searching solutions
with respect to maximum 3 objectives simultaneously. It is one of the landmark 2nd generation
evolutionary algorithms [Bechikh2016]. However, numerous investigations have shown that its
performance considerably deteriorates when number of objectives increase more than 3 [Li2015,
Li2018, Deb2013]. The same is also true for its contemporaries (e.g. performance of NSGA-II
demonstrated by [Saxena2012]) . In this thesis, at least one technical and economic indicator is
expected to be present. Furthermore, a holistic perspective of environmental impact is envisaged,
thus it is likely that number of objective increase more than 3. Continuation of the same algorithm
can thus become problematic.

The main reason for the inefficacy is that when the number of objectives increase, more solu-
tions become indistinguishable from each other. That is, the number of non-dominated solutions
for selection increase exponentially with objectives [Li2015]. Recall figure 1.3, after fitness eval-
uation, the problem appears when solutions have to be selected so that size N becomes equal to
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the archive size S. Now, the secondary selection operator based on diversity is deployed. The
algorithm is therefore unable to adequately push the solutions towards convergence. As a result of
this phenomenon, the final solutions might represent good diversity without converging towards
the pareto front [Li2015, Li2018, Saxena2012].

2.3.2 Use of genetic algorithm NSGA-III in this thesis

There are numerous approaches for solving multi-criteria optimisation and even more algorithms.
For example, [Marler2004] identified 21 different approaches including evolutionary algorithms
for many-objective optimisation. While [Li2018] identified 13 different, equally well performing
evolutionary algorithms only. They are currently preferred in the laboratory for the searching so-
lutions. They are relatively robust and can handle variety of different problem types: non-linear,
continuous/discrete and even black-box models [Marler2004]. Another advantage is that its com-
putations can be run in parallel. Thus multiple computers can be deployed to solve a large problem.
Given the experience of the lab members (both users and tool developers) with evolutionary al-
gorithms and the past research [Nadal2019, Guinot2015b, Guinot2015a], this approach is kept the
same. Additionally, it will be easier for the users to process additional information concerning the
impact with already utilised approaches for dimensionning. It also facilitated the implementation
of the genetic algorithms during this thesis.

Another important point is that LCA calculations depend on the energy simulation models in
the first place. Thus it seems logical to integrate LCA indicators in the optimisation approaches
similar to the ones already selected for energy system optimisation.

Amongst the evolutionary algorithms, NSGA-III was selected as it is considered as one of
the state-of-the art evolutionary algorithms for many-objective optimisation [Li2018]. It was first
introduced in 2014, in response to the convergence problems mentioned in the previous subsection
[Deb2013]. Its performance in terms of convergence and diversity for upto 15 objectives was also
demonstrated [Jain2013]. Another key advantage of this algorithm is the preferential search of the
pareto front. Due to its reference points based approach, it inherently searches for preferred points.
It becomes convenient since with high number of objectives size of the pareto front becomes large
and not all parts could be of interest. As a result, the post-pareto processing to select particular
solutions for decision-making might not be necessary.

Description of NSGA-III

A simplified illustration of the algorithm is provided in figure 2.6, it is described in detail below.
The description is provided using the original paper [Deb2013] and its implementation in this
thesis using the DEAP framework in Python [Fortin2012]. The first step is the specification of
reference points which essentially dictates the preferred pareto points to be searched. Then a
pseudo random population is initialised. Meaning random individuals (system configurations)
within the search range. For example, for solar PV size range of 0-8MW, random sizes between
this range are generated for the individuals in the first generation. Often the population size is
slightly higher than the number of reference points. Offsprings from the parent population are
produced by applying crossover and muation operators. Fitness or the performance indicators
of each individual in the two populations are then evaluated. Based on them and the reference
points, population for the next generation is selected. The approximation of the pareto front is
updated at each generation using the population by retaining only the non-dominated members.
The population size remains constant but the number of pareto front members likely increase with
generations. These steps are described in detail below:

Reference point specification Reference points in NSGA-III are specified in terms of the ob-
jectives either as a uniform spread or as a set of preferential points. These points lie between 0
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Figure 2.6: NSGA-III operating scheme in this thesis.

to 1, representing the min and max value of each objective respectively. These points enable the
convergence and diversity of solutions. Furthermore, since they are associated with the proposed
solutions they allow preferential search of the pareto front. As the number of objectives increase,
the size of the pareto front increases exponentially. For decision-making, we might be interested
only in a part of the Pareto front or in having a good distribution of points across the entire Pareto
front. In this context, the use of reference points thus becomes interesting. Another advantage
in this aspect is that the use of processing of pareto front using techniques such as multi-criteria
decision making might not be necessary. Since the preferential solutions in pareto are inherently
searched.

To obtain a uniform spread, approach from [Das1998] is proposed by the authors of NSGA-
III. It involves placing points on a normalized hyperplane with an intercept = 1 on each axis. The
number of points (H) is calculated as:

H =
(NOBJ + P̂−1)!
P̂!× (NOBJ−1)!

(2.12)

Where, P̂ is the number of axis partitions and NOBJ is the number of objectives. These refer-
ence points increase exponentially with the number of objectives. For example, for 3 objectives
with 10 axis partitions, 66 reference points are obtained shown on the left in figure 2.7. Similarly,
other preferential set of points can also be decided. In this case it should be noted that extreme
points at P̂=1 and scale=1 also have to be provided.

Whereas when the number of objectives are increased to 10, number of reference points be-
come 92,378. To keep this in check, the authors propose decreasing the no. of axis partitions
but using using multiple layers at different scales. For example on the right in the same figure,
layering approach in 3 dimensions is shown when the objectives increase.

Initialization of a pseudo-random population. In the first step, an initial set of individuals are
specified using random values within the individual search space. An individual is the set of values
to be optimised. For each value, a search limit is to be provided. This can be based on engineering
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Any other

preference can

also be

decided

Figure 2.7: Reference point distribution illustrated for 3 dimensions. (Left) for 10 axis partitions.
(Right) using a layering approach when the number of objectives increase.

estimations. A set of individuals then constitute the initial population. The population should be
large enough to have a good distribution of individuals in the 0th, otherwise there can be a risk of
the optimisation getting stuck at a local optimum.

Selection This step is probably the most complex part of the algorithm. Once the offsprings are
created, selection of population for the next generation is made on the basis of fitness from the
offsprings and the parents. The latter can also be referenced as the current generation individuals.

Ranking the population into levels of domination. When selecting a set of population for the next
generation, the members are distinguished in non-domination levels (F). That is, each non-
domination level consists of individuals that are indistinguishable from each other (or non-
dominated). Individuals in the lower levels are dominated by the ones in the level above.
When the selection step proceeds, members are filled from the first non-dominated level F1.
In simple terms, the non-dominated solutions are filled first then the algorithm goes to the
second best level until the number of selected members is equal to or more than the popula-
tion size. If the size of population is equal to the number of individuals in the selected levels
Flev, no further steps are required and the next generation can be started. However, often this
is not the case especially when the number of objectives increase and large number of indi-
viduals become non-dominated. Selection is to be made amongst individuals at a particular
level Flev such that the population size remains constant throughout the evolutionary pro-
cess. For this, individuals are differentiated according to their diversity using the reference
points in the following steps. This is done by ensuring that the population represents the
desired pareto solutions. All other solutions in the levels beyond F(lev+1,2..) are discarded.

Standardization of fitness. In this step, the fitness of each individual is standardized with respect
to the rest of the population. First the ideal (zob) and extreme points (aob) of the selected
population are defined by assembling the minimum and the maximum fitness value respec-
tively of each respective objective. Supposing fob(x) is the fitness value for an objective ob,
the standardised value of the fitness can be given by:

f ′ob(x) =
fob(x)− zob

aob
For ob = 1,2,3...NOBJ (2.13)
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This standardisation procedure facilitates dealing with problems when the objectives are
differently scaled and lie in different orders of magnitude. Which is often the case across
different LCA impact indicators.

Association of reference points with the population. The standardised points in the population can
now be associated with the reference points defined earlier. It is interesting to note that af-
ter the standardisation, these points will lie on the same plane as the reference points. For
association, a line is drawn from the origin to each of reference points. Then from this
line, the perpendicular distance to the standardised points is calculated. The individual with
the shortest distance to the reference point, is assigned to this point. A reference point can
thus have multiple or zero individuals associated to it. This procedure of association of
indivduals before standardisation, is illustrated in figure 2.8.

Figure 2.8: Illustration of the association operation of individuals (orange points) with reference
points (in blue) [Deb2013].

Niche preservation. To ease the explanation of this step, it is re-iterated that individuals in F(lev−1)
levels are already selected. On the other hand, the level Flev has too many members for se-
lection. A niche count (ρ j) is defined as the number of already selected individuals (in levels
F(lev−1)) associated with a particular reference point (j). The first step is to identify refer-
ence points with minimum ρ j value. If ρ j=0, and if this reference point has no associated
members in either in levels F(lev−1) or Flev, this point is discarded from further evaluations
until the next generation. Or else if there are members of Fl associated with this point, one
with the shortest distance as calculated previously is added and the niche count is increased
by one. Whereas when ρ j ≥ 1, a member randomly selected amongst the ones associated
with this point from front Flev is added to the next generation. Leading to an increase in ρ j.
All the vacant population slots are thus filled in this manner.

Optimisation loop Once the new generation is selected, offsprings are again created using muta-
tion and mating operations and the loop proceeds until the stopping criterion is satisfied. Examples
of stopping criterion can be (lack of) change in objectives for a number of sucessive generations,
analysing the optimisation indicators (e.g. hypervolume or IGD) or pre-defined number of gener-
ations.
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2.3.3 Optimisation overview in life cycle assessment

In order to search for solutions while including the LCA indicators, multi-objective optimisation
has been widely used. Often this process included LCA indicators with other economic or techni-
cal indicators. Owing to the added complexities with higher objectives in optimisation, often only
a limited number of them are included. At the output, pareto solutions are processed further or
directly presented for decision-making.

Amongst them, two approaches were commonly found in the LCA literature were ε-constraint
method and genetic algorithms. It should be noted that a variety of other approaches are possible
and available in the optimisation literature but these two were often employed.
ε-constraint method is one of the commonly used methods for multi-objective optimisation.

For this method initially all objectives are separately optimised to obtain a minimum value for
each of them. Then, a primary objective is identified which is then optimised but in this instance,
placing constraints on the secondary objectives. Constraints are modified (relaxed or tightened)
for each optimisation run such that they cover the entire optimisation space in the desired steps,
while placing constraints on the secondary objectives [Vandepaer2020].

The earliest examples including the ε-constraint method are found in the late 1990’s where
[Azapagic1999] used this approach to simultaneously optimise production, costs and global warm-
ing potential in order to manage a chemical process chain. [Zhang2015] also used ε-constraint
method to assess various system configurations in micro-grids. They included global warming po-
tential and acidification potential as two environmental indicators. [Yue2016] proposed a hybrid
LCA, multi-optimisation framework to include green house gas emissions in the decision-making
of biomass supply chains in the UK. [Antipova2014] include 6 environmental indicators with other
conventionally used indicators such as cost to investigate alternatives for retro-fitting of buildings.
More recently, [Vandepaer2020] include 3 indicators along with costs to investigate future energy
scenarios in Switzerland.

Genetic algorithms as introduced earlier have also been used to include LCA indicators as op-
timisation objectives. Some examples are presented here. [Gerber2011] used a genetic algorithm
in the process design of a biomass plant utilising wood chips to generate synthetic natural gas and
heat/electricity. They used thermodynamic design as the technical constraint, costs and Ecoindica-
tor99 as an aggregated environmental indicator to search acceptable solutions. [Ahmadi2015] used
NSGA-II, a pareto based genetic algortihm for eco design of conventional water production pro-
cess. Three objectives were included in the main optimisation loop for this purpose: water quality
indicator, costs and an aggregated environmental score. Design of hybrid energy systems, similar
to the ones in thesis were done by [Nagapurkar2019] using genetic algorithms. They included CO2
emissions with the techno-economic design of microgrids in United States. Sizing and operation
of pharmaceutical batch plants were optimised by [Dietz2006] while using genetic algorithms.
They included an aggregated environmental impact and costs as the optimisation criteria.

Problems with limited LCA indicators

It was seen that although LCA indicators have been included in optimisation, only a limited num-
ber of them are usually included. Either they are included in an aggregated form or CO2 emissions
is taken as a proxy for all environmental impacts. When the former is done using weighting or
endpoints, there are two problems. First, there is a risk of ruling out solutions that are optimal
in the original objective space. Since the objectives disproportionately contribute to the final im-
pact, the dominance structure of the original problem is distorted. This was clearly demonstrated
by [Antipova2013], they found that using only the total Ecoindicator-99 favoured only one group
of indicators. It resulted in optimisation algorithm omitting one set of otherwise optimal solutions.

The second problem is the uncertainties or the subjective choices involved in the weighting
and endpoint indicators. LCA community as a whole does not seem to favour the use of these two
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approaches possibly due to the lack of robust conclusions that could be drawn from them. More
discussion on it in section 4.1.2.

On the other hand when selecting only a limited set of indicators without taking into account
the pareto structure of the problem might lead to impact transfer. The two reasons outlined by
[Guillén-Gosálbez2011]. First, we might have an impression that solution A is superior to solution
B since it has lower impacts in the selected indicators. However, solution B could be better than
solution A in the omitted objectives. Secondly, two solutions can have same performance in the
reduced objective space while one of them could be superior when viewed with all objectives.

Impact transfer is even more important for the emerging technologies. It could happen that
designers or engineers are not aware of an impact that could become problematic in the future.
On the other hand, the problematic aspects could be addressed if they are identified during the
development.

2.3.4 Objective reduction techniques in life cycle assessment

It should also be noted that including large number of objectives in optimisation is not straight-
forward as it leads to various issues such as high computational cost, convergence problems of
algorithms, visualization and expensive calculation of algorithm performance metrics [Deb2013,
Saxena2012]. One of the methods to alleviate some of these problems, is by temporarily eliminat-
ing the redundant objectives [Li2018]. They rely on the fact that when a many-objective problem
has the same pareto front with fewer objectives, optimisation can be made on the lower objectives
instead of the original ones [Li2015]. These techniques are quite relevant in life cycle assessment
where the indicators are often found to be correlated.

There are various objective reduction techniques in the literature that could be classified under
two types: offline and online. In the online methods, the objective reduction is performed grad-
ually as the algorithm progresses. While in the offline methods, objective reduction is done after
obtaining a set of solutions. In LCA investigations, three methods of this type were found.

A general framework of the objective reduction methods utilised in LCA can be seen in figure
2.9. First step is the partial initialisation to obtain a sample set. Partial initialisation is optimisation
with respect to arbitrary reduced set of objectives or optimisation in the complete space of tech-
eco-env objectives but with reduced amount of time. The objective reduction techniques then
analyse the initial set of solutions to select a reduced set of indicators. The optimisation algorithm
then works with respect to the selected indicators.

Two types of objective reduction techniques were found in LCA: Correlation based and dom-
inance structure based. In the latter, correlations between the objectives are leveraged. While in
the former, redundant objectives are identified using the preservation of the dominance structure
between the solutions [Li2015]. Yuan et al. performed a comprehensive analysis of objective
reduction methods and found that none of the two is clearly superior [Yuan2017]. Both have their
respective advantages and limitations. Three objective reduction techniques were found in LCA.
Out of them, the first two are based on correlations while the last one is based on dominance
structure preservation. They are described as follows:

Principal component analysis (PCA) is a statistical tool that is used for analysis of complex
data. More specifically, identification of redundant variables that do not add new information
but complicate the data. It allows the transformation of co-related variables into a set of ordered
uncorrelated variables, known as principal components (PC). PCs can be ranked according to their
ability to explain the variance in the data set [Deb2005]. In many practical problems only a few
PCs explain most of the variance in the entire set.

Objective reduction based on PCA was first proposed by [Deb2005]. They then provided
further customization to the reduction framework in [Saxena2012] for different types of problems.
In the context of LCA, each PC is a combination of original impact indicators. Once the PCs
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Figure 2.9: General objective reduction scheme used for optimisation including LCA indicators

explaining the maximum variance are identified, indicators making the maximum contribution in
them can be selected.

The following are the steps to calculate PCs and to reduce the number of objectives are de-
scribed as per [Deb2005, Saxena2012]. First step is the standardisation of the obtained dataset by
subtracting mean of each indicator from each datapoint. From this dataset, a correlation matrix is
then calculated for the LCA indicators. Eigenvectors and eigenvalues of the matrix are then cal-
culated. The first PC is then the eigenvector corresponding to the highest eigenvalue. Second PC
is the eigenvector with the second highest eigenvalue and so on. Next, only the PCs are retained
which explain the maximum variance. The generally recommended value is 99.7% but for prob-
lems with high number of redundant indicators, [Saxena2012] demonstrated that even a values as
low as ≈ 68% could be used that explain most of the variance in the original objectives.

Figure 2.10: An illustration of the methodology to select indicators using PCA heuristics by
[Deb2005, Saxena2012].

Impact indicators in the retained PCs are selected according to two rules:

1. Objectives with most negative and most positive values are chosen

2. If all objectives have the same sign, two objectives with the highest values are chosen

Then in the final step, the selected indicators are further reduced according to correlation coef-
ficients between them. For this step, [Saxena2012] introduced quantifiable parameters to facilitate
this step such as correlation threshold and a selection score.

Life cycle assessment can also be considered as a highly redundant problem if large number
of indicators are considered. Since it was found that only 6 indicators explain 92% of the variance
out of a total of 135 impact indicators for 976 products using PCA [Steinmann2016].
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Application in LCA Gutierrez et al. were the first ones to use PCA in LCA [Gutiérrez2010].
They used it to gain insights on the environmental impact indicators of household products. More
specifically, they used PCA and other similar techniques to find correlations between indicators.
Thus, a small subset of 3 indicators could explain relative perfomance of products instead of the
total 12 utilised.

Sabio et al. were the first ones to utilise PCA specifically for LCA objective reduction in
optimisation [Sabio2012]. They applied the strategy to design hydrogen supply chains in Spain.
The problem was formulated as a mixed integer linear programming (MILP) problem followed
by ε-constraint optimisation. They were able to discard 4 out of 8 initial indicators. Similar
problem formulation was done by [Pozo2012], who applied this method to 2 case studies. Brunet
et al. also followed a similar approach of MILP formulation, PCA and ε-constraint optimisation to
design bioprocesses (chemicals) [Brunet2012]. More recently, [Perez Gallardo2013] applied PCA
to reduce objectives and then to dimension a PV system using genetic optimisation.

Representative objective reduction method (ROM) This method proposed by [Cucek2013] ,
relies on determination of correlations between the indicators and then selecting a representative
set amongst them. After obtaining pareto-optimal points with respect to all objectives, these points
are standardized by dividing each one by the maximum of each indicator. A handful of (5-6)
equidistant points on the mix-max range of each objective are then selected. Three values are then
calculated between all possible pairs of indicators, in order to group them:

• Normalised ratios between pairs of footprints (should be close to 1)

• Overlapping pairs of footprints within the process variables (should be close to 1)

• Average absolute normalised deviation between pairs of footprints (should be close to 0)

One indicator each from the uncorrelated sets formed is then selected for optimisation. Cucek
et al. optimised the integrated economic-environmental model using the ε-constraint method
[Cucek2013]. They then utilised ROM to reduce 5 environmental indicators to 3. A less rig-
orous and more practical application of ROM was done in [Čuček2014] also using the biomass
supply chains as a case study.

Dominance structure based reduction Dominance structure based technique for objective re-
duction was first introduced by [Brockhoff2006]. It was applied to LCA for the first time by
[Guillén-Gosálbez2011]. It relies on omitting indicators such that the rankings of the solutions
are unchanged. For example, if we consider solutions A and B with three objectives f1, f2 and f3
in figure 2.11. If all objectives are to be minimised, A and B are indistinguishable, since neither
of the two is better in all of the three objectives. Now, if say objective f3 is omitted, solution B
becomes superior to A with an error of δ=0.4. On the other hand when objective f2 is omitted, A
and B remain indistinguishable i.e. the initial Pareto structure of the problem is maintained even
after omitting one objective. This technique thus relies on MILP based formulation to discard
indicators such that the error ’δ ’ is minimised.

Application in LCA After the initial introduction in [Guillén-Gosálbez2011], slight modifica-
tions or new metrics on the same principles were proposed by [Vázquez2018]. Redundant envi-
ronmental indicators were identified during dimensionning of a solar reverse osmosis plant [An-
tipova2013]. They identified two sets of indicators which followed the same trends. They use the
same case study to further propose use of filters for post-optimisation analysis [Antipova2015].

Hennen et al. propose a objective reduction framework to dimension energy systems based
on the same approach [Hennen2017]. They applied their framework to dimensionning problem in
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Figure 2.11: An example to demonstrate dominance-structure based reduction technique. (a)
Three original objectives (b) Objective f3 discarded (b) Objective f2 discarded . Illustration from
[Vázquez2018].

heating and cooling networks operating on natural gas and electricity grid. Kostin et al. also use
objective reduction to design sugar cane supply chains in Argentina [Kostin2012].

LCA was integrated with specialised chemical process design software for an integrated design
including economic, technical and environmental criteria by [Gonzalez-Garay2018]. Along with
the reduction of environmental objectives, they used ANNs for approximation of their integrated
model, data envelopment analysis as a post filter of solutions and hypervolume indicator to verify
the quality of pareto front.

2.3.5 Summary: A possible combination of NSGA-III with objective reduction?

NSGA-III appears to be a sound algorithm for the many-objective optimisation problems involving
life cycle assessment that appear in this thesis. Its combination with objective reduction techniques
could have two interesting benefits:

Computational time and quality of results The peculiarity in the case of hybrid energy simula-
tion software is that they are often computationally expensive. For instance, the a single simulation
of case study in figure 1.10 takes around 9 seconds to run on a single processor. If for instance say
uniform solution distribution for a 15 objective problem is desired, the number of reference points
for P̂=2 at 2 scales become 240 according to equation 2.12. Population size which is the next
higher multiple of 4 then becomes 244. If the simulation time is calculated for parallel computing
on 8 processors, it is estimated to be around 22.9 hours for 300 generations.

The life cycle impact indicators are often found to be correlated. The vast number of studies
found in the previous subsection are an evidence of this. If the redundant indicators in LCA could
be identified and it appears that the performance of NSGA-III could be further improved.

Let’s say in a hypothetical scenario, 15 indicators are reduced to 6 using one of the reduction
techniques. Which is not a far-fetched assumption given the past studies [Steinmann2016, Perez-
Gallardo2018]. For 6 indicators, using P̂=3 at 2 scales, the number of reference points become 112
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and the population size =116. The simulation time is then reduced to 10.9 hours, less than half the
previous time. This is mainly due to the reduction in the number of simulations required. There
is another advantage to this, the increase in number of axis partitions (P̂) at both scales mean that
more distributed solutions can be obtained. To summarize, it appears that higher quality solutions
could be obtained in less than half the time.

Visualization A second advantage can appear if correlation based objective reduction techniques
are used. If groups can be made of indicators that co-vary, the visualization in the final set of solu-
tions can be greatly improved. For instance, only the reduced set of indicators could be provided to
facilitate decision-making along with the correlation information of omitted indicators. As men-
tioned earlier, LCA could be considered as a redundant problem. Consequently, a small set of
indicators could be sufficient to explain the changes in rest of the indicators. This could signifi-
cantly improve visualization even if large number of LCA indicators are considered in the initial
problem.

Thus a combination of NSGA-III with objective reduction techniques seems promising. How-
ever, it is not yet done in the literature.

2.4 Synthesis of research proposals

In order to facilitate the consideration of environmental impacts in the assessments of hybrid
energy systems, the two major goals of the thesis were established at the end of chapter 1. These
goals being: integrated tech-eco-LCA modelling and inclusion of LCA indicators in the search of
feasible solutions for hybrid energy systems. They were then confronted with the state-of-the-art
in sections 2.1, 2.2 and 2.3, to formulate three research proposals of this thesis.

Proposal 1. At the end of section 2.1, it was found that the problems regarding appropriate
consideration of environmental impacts also exist in other available software that analyse hybrid
energy systems. Then after looking at the existing approaches that combine LCA computations
with external tools, it was found that an approach defined as parameterised LCA modelling could
be leveraged for integrated tech-eco-LCA modelling. However, a systematic methodology is miss-
ing that takes into account various problematic aspects in this modelling context. These aspects
refer to variabilities in geography, scaling, data gaps and future evolution. Another element that
complicates these elements further is the presence of emerging technologies. Additionally since
this methodology could be used by personnel beginners in LCA to develop LCA models for hybrid
energy systems. Thus a method to reliably and effectively develop these models are necessary but
missing so far in the literature. This proposal is thus explored in chapter 3.

Proposal 2. Then from section 2.3 it was concluded that a new generation evolutionary algo-
rithm, NSGA-III could be used to include LCA indicators in the optimisation process. It was also
found that utilising it in combination with objective reduction techniques might offer improve-
ments on its performance in terms of computational time and quality of solutions. To the best of
our knowledge, NSGA-III has not been combined with objective reduction thus far in the litera-
ture. Also, it appears that this algorithm has not yet been used with LCA indicators. This proposed
approach is thus tested in chapter 5.

Proposal 3. During the implementation of the algorithm in the above proposal, it was realised
that correlations between LCA indicators could be identified without generating an intial sample
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set. As a result, redundant objectives could be reduced without an initialization of the problem. As
far as it is understood by us, this is not possible in other reduction techniques in the literature. It
has limited application than other techniques but it can result in saving computational time and un-
certainties related to the generation of the sample set. This proposal is described and demonstrated
in chapter 4.
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3
Establishment of parameterized life cycle

assessment models for hybrid energy simulations

In this chapter, the first proposal of this thesis is elaborated, which is, framework for the establish-
ment of parameterized life cycle assessment models of hybrid energy systems. The first section is
commenced by looking at other similar investigations in the literature and the contribution of this
work amongst them. Then some background on the approach followed for the development of this
chapter and its relevance is described. Then in the second section, the framework is described,
and it is implemented in the next section using a PEM water electrolysis case study in hybrid en-
ergy simulations. The results of the case study application are seen in the fourth section. Finally,
the chapter is concluded in the last section.
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3.1. Introduction

3.1 Introduction

3.1.1 Contribution to the existing literature

The relevance of parameterized LCA modelling approach for the purpose of integrating LCA with
energy simulations was justified in section 2.2.5. It will facilitate the estimation of LCA indicators
with the corresponding alterations in the energy simulations.

Nevertheless, two problems concerning the complex and resource intensive nature of mod-
elling, appear during the development of these models for hybrid energy simulations. The mod-
elling is complex since a good expertise of energy simulations and technologies is required. Sec-
ondly, due the inherent variabilities of energy technologies and additional uncertainties because of
the emerging technology context, the modelling requires different types of data. Thus it becomes
necessary that the data to be searched is assigned relative importance. In its absence, data which
might not have significant influence on the results might be searched preferentially. Furthermore,
since the users in the laboratory are only beginners in LCA, many issues such as filling data gaps,
scaling inventories, accounting for future context, etc. might not be clear for them.

If we look at the literature, multiple parameterized LCA models with varying levels of de-
tail were identified in section 2.2.4 such as to aid decision-making of cranes [Ostad-Ahmad-
Ghorabi2011], packaging [Verghese2010], milk production [Pirlo2019], electric motor vehicles
[Nordelöf2018] and PV panels [Gazbour2019]. Gerber and colleagues present a systematic method-
ology for LCA integration with process design framework [Gerber2012,Gerber2011]. They indeed
present important work in terms of LCA integration and scaling of equipment. However, they do
not address the issues related to future evolution of systems and guiding data collection due to
multiple uncertain factors.

Establishment of parameterized models followed by identification of influential parameters
using global sensitivity analysis is applied in the following contexts for different reasons: wind
turbines [Padey2013], bio-refineries [Pérez-López2018], buildings [Mastrucci2017] and geother-
mal energy [Lacirignola2017]. In this thesis, these studies are built upon to propose a framework
to establish parameterized LCA models for hybrid energy systems. These models are particu-
larly suited for ex-ante LCA of emerging energy technologies and integration with hybrid energy
simulations.

The second goal of the proposal is to save time in modelling through prioritising data collection
of parameters and LCA processes. Influential parameters are recognized using derivative based
global sensitivity measure (DGSM). While the influential LCA foreground processes are identified
using a novel coefficient, importance index, based on DGSM. This global sensitivity analysis
method, DGSM, has not been used in LCA studies yet.

The resulting LCA model at the end of the framework is such that, it provides users with LCA
indicators as the values or design in the energy simulation change. It thus also allows its use in
tools such as optimisation that are often used to analyse energy systems. Consequently enabling
the consideration of LCA indicators in the investigations of hybrid energy systems. Thereafter,
the methodology is demonstrated using a case study of a PEM electrolyser. We show that only
improving the identified important aspects of the model is sufficient to obtain reasonably accurate
results.

3.1.2 Framework development approach

The first step towards developing the framework were the discussions with the users in the labo-
ratory and utilisation of energy simulation tools. The goal was to follow the analysis process of
energy systems, outline ideal requirements from LCA integration model and note the issues faced
by engineers during modeling. The first chapter was partially written on the basis of these issues.

This was followed by comparison of hybrid energy simulation software, the exercise presented
in section 2.1. An overview of calculation models for environmental models with energy simula-
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tions was thus obtained. Then, the LCA computation models for integration with different tools in
the literature were reviewed in section 2.2. Finally, to find useful strategies for the emerging tech-
nologies, references collected by the following studies on ‘ex-ante LCA’ were investigated and rel-
evant ones were added [Arvidsson2018,Thomassen2019,Moni2020,Bergerson2020,Buyle2019].

Once a preliminary methodology was prepared, it was given to an engineer to develop the
model of PEM electrolyser. Based on the feedback from the engineer, the methodology was
improved which is finally presented here.

3.1.3 Relevance of the framework

The framework is primarily aimed at personnel developing LCA models for hybrid energy simu-
lations: energy system engineers, software developers or LCA practitioners. It is based on the best
practices found in this context. It is assumed that the personnel using this framework are begin-
ners in LCA with at least a basic training. This framework does not aim at replacing the standard
LCA methodology [European Commission2010] but to facilitate its implementation in the context
of hybrid energy simulations. More specifically, it aims to support readers in the following steps
of effectively integrating LCA with hybrid energy simulations: inventory analysis, impact assess-
ment and interpretation. Thus, the framework comes into play once the goal and scope for the
LCA investigation is finalised.

3.2 Framework to establish parameterized LCA models for hybrid
energy simulations

A schematic briefly representing the methodology is presented in figure 3.1, where the steps
proposed in this chapter are outlined in black. The goal & scope is defined as per the the steps of
an LCA [European Commission2010], for a hybrid energy simulation model. The next step is the
starting point of the framework, where guidance is provided to facilitate recognition and refining
outputs from energy simulations for LCA calculations. Then, for the identified processes, level of
detail for LCA models is decided. This step also includes steps of building inventory for emerging
technologies if the data is not readily available. The next step is instructions on dealing with the
uncertainties and inherent variabilities of energy components. Then recommended assembly of
LCA models with respect to the energy simulations is presented along with definition of model
parameters. Global sensitivity analysis (GSA) is conducted using DGSM to identify influential
parameters and LCA processes. They are then improved in an iterative manner to obtain an LCA
model integrated with energy simulations.

In essence, the methodology involves building the model with easily available data but ensur-
ing that as much as possible all the relevant LCA activities as per the defined scope are included.
The resource intensive steps such as future evolution of technologies are kept out of this first itera-
tion. This is then followed by identification of influential aspects using global sensitivity analysis
and which enables prioritization of improvements in data. Using the sensitivity indices and the
newly introduced importance indices, most influential parameters and LCA processes are identi-
fied for improvement. Both qualitative or quantitative improvements can consequently be made in
the models. Thus making the entire procedure more efficient.

In the following sub-sections, for each step of the methodology, the main actions to conduct
are presented, based on the state of the art and on the potential uses of this model (i.e. design and
optimisation in R&D).

Before proceeding further, it is important to have an overview of the LCA calculations. The
impact (I) of energy conversion systems or of a single energy component, irrespective of the impact
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Figure 3.1: A schematic representation of the proposed framework. The steps that are described
in this chapter are outlined in black.

category is calculated using the following equation:

I =
Impact over the entire life cycle

Energy or fuel converted during the lifetime
(3.1)

Where the numerator is the sum of characterized impacts of each life cycle stage. It is evident
that the LCA modelling calculates the environmental impact. However, the inputs to initiate these
parameterized LCA models are calculated by the energy simulation. The denominator, on the
other hand, is the part of the process flows calculated entirely by the technical simulation. The
latter depends on local conditions, goal of the simulation and behavior of other components.

3.2.1 Handling inputs from energy simulations

The first step of the framework is to identify the outputs from the energy simulations and process
them for use in LCA calculations. For a particular system configuration, once the goal and scope
of the LCA investigation are decided, this step can be followed.

The components and their corresponding process flows that are to be included in the LCA
calculations are identified. This has to be done according to the system boundaries defined in the
goal & scope. Then, according to the components that are to be included, the outputs from the
energy simulations are recognised. They have to be sufficiently processed before their utilisation
in LCA calculations. So as to ensure that the units are consistent between the two.

At this point, additional inputs that are not included or calculated by the energy simulations
but are relevant for LCA should also be added. Another important point is that there might be
certain use phase modelling that affect the components/processes. It is crucial to take this into
account. For example, the operation efficiency of a system might affect its lifetime.

3.2.2 LCA modelling approach

After the pertinent process and equipment are identified, LCA modelling approach for each them
are decided in this step. From the point of view of LCA, energy simulations usually calculate the
size of equipment or the quantities of flows related to the use phase. The upstream and down-
stream processes related to LCA generally require additional modelling. Three strategies are rec-
ommended in increasing order of specificity:
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First is the direct use of activity from an LCA database or from another literature source. Here
equivalence can be drawn with the ‘background processes’ as defined by ILCD handbook [Euro-
pean Commission2010]. From a management perspective, they are the ones where the designer
does not have a direct influence or control on its selection. Or from a ’specificity perspective’
when a specific process cannot be defined and average or equivalent data is to be used. For ex-
ample, the designer might have direct control over amount of steel utilised in the system, but little
information/choice where the manufacturer is sourcing steel from.

Second option is utilisation of an activity in literature with some changes. An average activity
is modified according to the required goal and scope. Qualitative and/or qualitative changes can
be made to the activity. There can be many applications to this due to multiple ways present to
modify an activity. It is particularly relevant in this context for technologies whose flows are par-
tially calculated by the energy simulations. For example, for crystalline silicon PV panels, energy
simulations will calculate the electricity produced according to local weather data. Furthermore,
other parameters such as lifetime or background electricity mix according to manufacturing data
can be updated as well.

Third option is building a new LCA inventory altogether. This is particularly relevant for
emerging technologies, whose inventories are not present in the LCA databases. In the next sub-
section, recommendations to assemble inventory for this LCA are described.

Building an inventory for an emerging technology

The steps to assemble an inventory for an emerging technology in this context are different from
a conventional LCA. Main reason being that this technology will only be a component when an
integrated techno-economical-LCA analysis is conducted on the system. Keeping this in mind, this
sub-section first establishes the background scope to collect the necessary data. Next, guidelines
on the data search are provided.

Technology & Scope definition Technology definition as the name suggests is to define a tech-
nology whose model needs to be developed. This should be as specific as possible. For example,
if the target is a model of PV panel, the type of panels, i.e. monocrystalline silicon, polycrystalline
silicon or thin film should be specified. The following aspects have to be defined as precisely as
possible:

Size The envisaged scale of technology accountable by the model has to be defined as well. For
example, 50 kW – 2MW battery bank.

Geography The place where the system is installed and where the component was manufactured.

Temporality Since the context here is developing energy systems, the coverage here can be
present scenario, near future or ex-ante analysis.

This section differs from ‘Goal & Scope definition’ of a conventional LCA by not specifying a
goal and a functional unit. Instead a technology is specified instead. Especially since a model de-
veloped here will be a single component in the energy system. Furthermore, the size or geography
might change during the optimisation or GSA analysis.

Finding inventory data
According to the anticipated technology readiness level (TRL) of components, guidelines on

collecting inventory data are provided in this subsection. The methodology proposed needs at
least one LCA existing in the literature for the energy component. It has been assumed that it is
probable given the level of TRL in question (Demonstration or pilot scale).
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The recommendation of this sub-section is to find enough data to build a complete inventory
of the technology then refine the modelling in later steps. Here, complete means all (or most of)
the materials and processes are present. The verification of completeness of the inventory can be
done by one or a combination of the following options: data quality assessment in the original
publications, multiple sources following similar data trends, expertise of engineers themselves or
consulting an external expert in the technology domain. It ensures that no material or process
is left out of the inventory at this step. The material amounts and their LCA modelling due to
variabilities or uncertainties can be decided to be refined later.

To put completeness into context, the ILCD guidelines [European Commission2010] on LCA
recommend a quantitative definition of ‘completeness’ of the inventory by defining a cut-off cri-
teria for each environmental category either in the scope, or in an iterative manner during data
collection/result analysis. In other words, declaration of the part of inventory left out of the analy-
sis as a percentage (%) of the impact indicator. However, they also recognize the paradox, ‘if one
would know the total impact, there would be no need for cut-off’ (ibid.). The important point is
thus to ensure that the maximum activities are included in the analysis, to have appropriate results.

The search for inventory data can be challenging since there usually is a dearth of detailed and
transparent data, even more so with emerging technologies. Multiple sources might be needed to
complete one inventory.

The first step can be to verify if an article exists reviewing the LCA investigations performed
on either of the following two topics: type of energy component or the function satisfied by the
energy component. For example, for the case study of electrolysers, review articles on LCA of
electrolysers or LCA of hydrogen production routes would be relevant. Apart from providing leads
to the inventory data, these articles can provide important information required for parameterizing
LCA models such as: major sources of variability in the impact and key issues to be resolved.
In case where a review is not found, a manual search of data becomes necessary. However, it is
suggested at this point to stop the search as soon as a complete inventory is built instead of finding
all possible data sources in the literature.

Data quality and the relevance to the scope can be used to differentiate between multiple
sources. Until then, average or anyone of the values found can be used. In the opposite case
where no inventory is found, sources other than LCA studies have to be explored. There can be
three main sources of obtaining them: scientific articles, reports from enterprises/organizations or
obtaining data from laboratories or businesses [Arvidsson2018].

3.2.3 Dealing with variabilities and uncertainties

Once a preliminary inventory of the energy system is ready, there are different uncertainties includ-
ing the inherent variabilities of technologies to be accounted for. In this subsection, variabilities
of this context are anticipated and accordingly, best practices found in the literature are recom-
mended. Regarding the types of uncertainties as per [Huijbregts1998] and [Björklund2002], the
focus is on the following: spatial variability, variability between objects/sources, and uncertainty
due to unrepresentative data.

Data gaps

Most of the time, even though we have a complete inventory, modelling these processes is not
straightforward. It is possible that the processes to be added are not a part of LCA databases
neither they are transparent enough in the literature to be replicated. Or, for some reason, detailed
modeling is required to fill the data gap. For example, if a novel material has to be adapted for a
future industrial production.

The steps below are recommended to be followed. They are in the increasing order of complex-
ity. For instance, the fourth step includes the state of the art prospective LCA recommendations
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on process design. Hence, they are advised to be followed when a particular inventory process is
a major part of the technosphere or is identified as important later in this iterative framework.

First Chart the calculation steps in the original study.

Second Search the literature if another study has already modelled the particular process.

Third Otherwise, at this point, we can use an approximation using any of the following strate-
gies: proxy or substitute processes, precursors, by-products, co-products, ideal baseline (stoichio-
metric ratio and heat of reaction for mass and energy balance respectively) or expert opinion. LCA
practitioners use these techniques widely.

Fourth After the previous step, it is expected, that the data gap is filled. Even though questions
could be posed about accuracy, it can be refined iteratively. Hence, after the DGSM step, if a
foreground process is recognized as important, a more detailed estimation is required. Here if
other strategies are not feasible, following approaches could be useful:

• Process design approaches in LCA can be practical in this case. They are also the most
relevant to the type of processes we intend to model (manufacturing, recycling, etc.). They
use ideal baseline, publications or lab scale data as starting points. From the literature,
there are a variety of different approaches proposed when the data is lacking [Hischier2005,
Simon2016, van Kalkeren2013, Hetherington2014, Tecchio2016]. Most relevant approach
found was of [Piccinno2016], where guidelines for calculation inventory data based on
process design are included. It consists of a simple scale-up framework based on labo-
ratory or ideal baseline data to provide quantitative estimates. Calculations for commonly
used components in manufacturing along with average and recommended values to facilitate
heat/energy balance are also included (ibid.).

• Process design using simulation tools can be also be used instead or as a complementary
approach. An example could be process simulation software such as Aspen 1 or ProSim
2, where the input/outputs of a process could be estimated using energy and mass balance.
Another useful but not necessarily a process design tool could be Finechem 3, available
freely to estimate impact of petrochemicals using molecular descriptors. However, this
particular tool should only be used for data with low importance [Wernet2012].

• For the impacts of metals not in the LCA databases, either the values or inventory modelling
process from Nuss and Eckelman could be used [Nuss2014]. They present cradle-to-gate
impacts of 63 metals, by modelling inventories using ecoinvent version 2.2 and the data
collected from literature.

• To estimate ’fugitive’ emissions’. When modelling processes concerning volatile com-
pounds, some amount of them ‘escape’ or ‘leak’ into the atmosphere. They are called
fugitive emissions and can have a significant impact on the environment [Thomassen2019].
To model them, Hassim and colleagues propose emission factors that can be applied to a
process design [Hassim2010]. Hence, they should be used where relevant.

A detailed, step-by-step guidance on finding inventories and assembling them can significantly
support engineers, who are beginners in LCA. Such a guideline, does not exist in the literature so
far.

1 https://www.aspentech.com/en/products/engineering/aspen-plus 2 https://www.prosim.net
3 https://emeritus.setg.ethz.ch/research/downloads/software—tools/fine-chem.html
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Scaling

The recommended procedure for scaling inventories is elaborated in this section and justified as
much as possible. An illustration can be seen in figure 3.2, the procedure is adapted from the one
proposed by [Gerber2011], modified according to the context. It is described as follows. The ideal
case naturally is to obtain direct material distributions for different sizes, but finding such data is
not expected in this case. Hence, we start from the next best step, estimating material amounts
using design or engineering laws.

If this is not possible either, the scaling equation 3.2 can be used with the subsequent steps.
First step is to find the most relevant parameter for scaling the inventory activities. Often it is
the sizing parameter, which the designers are expected to be familiar with. For example, energy
generation components, scale with the nominal power (kW or MW), while for storage, it is energy
storage capacity (kWh or MWh).

La,2
y,co

La,1
y,co

=

(
SP2

SP1

)b

(3.2)

Where La
y,co, is the quantity of activity ’a’ in the inventory of component ’co’ in its lifecycle

phase ’y’ and SP is the sizing parameter of equipment (e.g. kW or kWh), b is the scaling factor.

If material / utility estimation using engineering or 
design laws is not possible

Determine functional parameter linked to the size

Separate modular and non-modular inventory 
processes

Modular
Use b = 1

Non – modular
use default cost 

exponent b = 0.6. with 
sensitivity analysis

Scaled inventory

Figure 3.2: Proposed scaling approach for dimensionning inventories of components. Adapted
from [Gerber2011].

Then, a classification of inventory activities is made under modular and non-modular com-
ponents. Modular components are the one where a set of structures are repeated to increase the
capacity. As result, the ‘economies of scale’ don’t play a role and amount of material per unit size
of component follows a linear correlation (e.g. electrolyser stack, fuel cell stack, solar PV panels,
etc.). Hence the inventory activities under these will scale with b=1. Non-modular components
are the opposite, where there is marginal decrease/increase in materials per unit size (e.g. heat
exchangers, boilers, compressors, wind turbines). For non-modular type, cost exponents can be
used. If these are unavailable as well, the default cost factor of b = 0.6 can be used. However, in
this case a sensitivity analysis assessing the influence of inventory uncertainty becomes essential,
in order to assess the robustness.

It should be noted that a single technology could have both modular and non-modular compo-
nents. The below equation is sometimes also called ‘6/10th rule’ when b = 0.6 is used. It is widely
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used for cost scaling if no other information is available [Moore1959, Chauvel2003].
The above recommendations are based on the literature where few studies analyse the in-

fluence of size of components on the environmental impacts. Caduff et al. assessed different
energy conversion units such as biomass furnaces and heat pumps [Caduff2014]. They found a
clear correlation between the impacts (global warming potential and ozone depletion) during the
manufacturing phase of an equipment and its size, according to power law in equation 3.2.

Similar results were obtained, with different ’b’ values was found for mass (kg) of energy
components such as diesel engines, generators and steam boilers, including the ones mentioned
above [Caduff2011]. These values lie in the same range as the recommended cost scaling factor
0.5-1 [Caduff2014].

Gerber et al. found a similar equivalence between cost and impact scaling of equipment [Ger-
ber2011], further justifying the use of equation 3.2. They also say that cost exponent although
a reasonable estimation, is still an approximation, which brings additional uncertainty. This un-
certainty can be due to cost dependence on factors such as labour. For the value of b, Gerber
et al., recommend the use of empirical data calculated using multiple inventories or using cost-
scaling factor. Hence, use of engineering or theoretical design laws for material estimation is the
recommended before.

The difference between the strategy presented here and that of Gerber et al. and Caduff et
al. is the manner of using the power law in equation 3.2. Here, the individual activities are
scaled after their classification as modular/non-modular. Whereas, in Gerber et al., aggregated
impacts of components are scaled directly with respect to the size. In other words, in equation
3.2, impact scores of components (e.g. global warming potential) are on the left hand side, instead
of individual inventory amounts. Caduff et al. demonstrate multiple options which could be used
without specifying one.

Another important point is that different indicators may scale differently. That is to say, with
a different scaling factor ‘b’. Dissimilar scaling factors of Caduff et al. [Caduff2011,Caduff2014]
obtained for global warming potential, ozone depletion and mass of components, are an evidence
of this. The proposed approach provides more flexibility, as it enables using power law for some
processes and the possibility of using other approaches for the rest. It is also more logical as we
will see in the example of electrolysers, where the stack and auxiliary components scale differently.

Hence, we put forward a more flexible and normative approach contributing to the scaling of
energy components for LCA calculations.

Geography

The ideal scenario to adapt the inventory activities would be possible if the supply chain of the
components is known. In general, at least in ecoinvent v3.6 [Wernet2016] it was found that there
were a lot more choices for varying geographic scope for activities related to energy than materials.
The recommendation is thus to select inventory activities as close to expected scope as possible.
They can be further be customised/refined in the databases if they are found to be influential later.
Processes such as the ones below can be chosen/modified according to the geography using the
LCA databases:

• Electricity mix

• Metals, chemicals and other materials

• End of life scenarios

In hybrid energy simulations, the variability due to meteorological data is already taken into
account. The geographical scope can have a significant impact on the LCA results. For example,
the influence of electricity mix utilised in PV manufacture varied the results of carbon footprint
from approx. 40 g CO2-eq/kWh for EU-hydropower mix to 80 g CO2-eq/kWh for Chinese mix,
keeping other parameters the same [Wild-Scholten2013].
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Future evolution

Depending on the case, we might or might not need to adapt our model for the future. Sub-
sequently, users can look into opportunities at adapting them for the future. Following are the
aspects that could be altered:

• Improvements in manufacturing and process efficiencies – As the cumulative deployment of
a technology increases, the cost of technology has been observed to decrease. This ‘learn-
ing’ is because of various reasons such as: increased productivity, industrial scale produc-
tion, research, etc. These factors consequently also affect the environmental impacts. They
can be modelled using the ’one-factor learning curve’ [Rubin2015] :

In,Cum = In,0 ·Cumc (3.3)

Where, In,0 is the impact for the indicator ’n’ (e.g. kg CO2-eq/kW) of the first component.
While In,Cum is the impact of the last component at a cumulative installed capacity Cum (e.g.
kW) respectively. Technological learning rate is ’c’.

In life cycle assessment, this equation has been applied to project impacts of wind power
[Caduff2012] and PV panels [Bergesen2016, van der Hulst2020]. However, they are not
advised to be used when the learning rate ’c’ is calculated with low-quality data. Where,
low-quality defined by Thomassen et. al as <3 data points or low co-efficient of determi-
nation (R2 <0.5) [Thomassen2020]. Mainly since the predictions are uncertain and highly
sensitive to the learning rate ’c’ [Yeh2012]. Furthermore, unlike economic models, there
are no sector-wise rules of thumb for the environmental impact [Thomassen2020]. Hence,
they have limited utility for emerging technologies.

Thus the advise in this case would be consulting experts/stakeholders for expected material
and process efficiency gains. Another possible approach could be to estimate the improve-
ments based on a similar mature technology. Such as reductions expected in stack materials
for PEM electrolyser based on PEM fuel cells [Carmo2013].

• Evolution of background activities – The background activities such as the electricity mix or
end of life scenarios can be adjusted for the future. Moreover, if they lead to large variance
in the results, comparison using different ‘predictions’ is advised [Arvidsson2018]. Some
examples of the documents can be roadmaps, goals, prediction scenarios of IEA, scenarios
of environmental agencies, scenarios of NGO’s, etc.

• Energy conversion efficiencies – These involve the use phase efficiency of components, for
example, efficiency of solar panels. The engineers are already involved in techno-economic
estimations where these values are necessary. In any case, roadmap/prediction documents
or expert opinion can be consulted.

To conclude, all of the above approaches add another layer of uncertainty and require signif-
icant amount of effort from the practitioner. Hence, for the first iteration, it is advised to use the
easily available data. Once sensitivity indices are available, understanding of the model becomes
clear and then we can focus on detailing the modelling that significantly influences on the results.

3.2.4 Model assembly and parameter definition

At this stage, it is expected that the outputs from the energy simulations are appropriately trans-
formed for LCA calculations. The LCA modelling is finalised for the first iteration that includes
all the processes under the system boundaries.
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According to the identified uncertainties and variabilities in the previous subsection, the LCA
model is parameterized i.e. defined in terms of parameters. There can be multiple parameters pos-
sible for a model. Some parameters are already available with the energy simulations. Generally,
these are the ones related to the operational phase of the system. The accuracy or the quality of
energy systems modelling will thus invariably affect the LCA results. Thus, care has to be taken
to include all the flows influencing the LCA impacts.

In addition to them, parameters related to LCA might also have to be added. They could be
a design parameter to be fixed or could also be processes lying outside the scope of influence of
designers. A typical example can be electricity mix, where the designer has little influence over its
development, however, it may play a crucial role on the impact of the system in the future. These
parameters can be can be any of the variabilities or uncertainties in the LCA model.

The computational structure of parameterised LCA models can be defined in multiple ways,
which were presented in section 2.2.4. Irrespective of the chosen manner, two crucial points
are highlighted here regarding the model assembly which will be essential for the next steps of
sensitivity analysis:

1. It should enable the computation of contribution analysis in terms of each life cycle phase
of each component.

2. There should be at least one parameter used for sensitivity analysis in DGSM for the first
iteration that is directly linked to the contribution of one component to a particular life cycle
phase. The parameter range can be decided using real world data or from the literature.

To elaborate further, consider figure 3.3 where the equation 3.1 can be viewed in terms of its
contribution from each life cycle phase. This contribution should be further separated in terms
of the individual components in each phase if possible. For example, if the manufacturing phase
consists of two separate components: boiler and gasifier, the contribution analysis should be made
possible for manufacturing phase of each the two, with at least one parameter related to each one.
For the implementation of this framework, such a representation is important. This will help in
the next section to identify the influential LCA processes.

In = 
𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑎𝑐𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑙𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑟 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
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Figure 3.3: Representing the parameterized model and disaggregating the impact equation in
terms of impact contributions and energy flow.

A caution to the use is the specification of range of uncertain parameters. If an unrealistic
large range is specified, the method can assign higher influence to the parameter. In the opposite
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case, when shorter range than actual is considered, lower influence might be obtained than that is
actually possible. Thus the uncertainty ranges should be based on realistic ranges from literature,
real world conditions or expected values.

3.2.5 GSA using Derivative-based Global Sensitivity Measure

In this step, the parameters selected along with their uncertainty ranges are supplied to DGSM
method. Then, the influential parameters and processes are identified using the obtained sensitivity
indices and importance indices respectively. These 2 aspects are then improved according to
required scope. More than one iterations might be required depending on the case. If in case,
the value of an identified influential parameter cannot be fixed, the uncertainty values can be
propagated to the model. Resulting in a distribution, which can be analyzed using statistical values.
This will enable users predict the possible impact range.

In this section, first the choice of DGSM as a global sensitivity analysis method is justified.
This is especially relevant since it has not been used yet in the LCA literature. Then, the mathe-
matical description and practical information about its implementation are discussed. Finally, the
importance indices are introduced.

Preference of using GSA over SA

Sensitivity analysis (SA) is recommended for all LCA’s. Due to the added layer of uncertainties
thanks to the ex-ante context, SA becomes crucial. If relative influence of parameters is identified,
it allows prioritisation of resource allocation. Moreover, it enables users to judge the accuracy of
their models. In summary, we utilize it for the following reasons:

• Understanding of the model behavior according to its influential parameters

• Prioritizing data collection

• Enhancing robustness of results when design parameters are uncertain

Even though the most common SA in LCA’s is the local sensitivity analysis (LSA), where
one input is varied around its reference point, keeping other values the same [Groen2017]. Their
interpretation is limited since they assume model linearity, ignore interactions between parame-
ters and do not search the entire distribution space [Pannier2018]. Even though it can be eas-
ily applied, it cannot quantify the responsibility of uncertain parameters in the model output
variability [Nadal2020]. Global sensitivity analysis (GSA) methods do not have these draw-
backs [Wei2015]. These methods evaluate the model for different combinations of uncertain pa-
rameters, unlike the local SA. Furthermore, uncertain parameters not only from LCA modelling
but also from energy simulations are expected. Thus, in a complex model such as this, GSA makes
much more sense.

Selection of DGSM as a GSA method

Other GSA can also be used, but in this paper, we recommend the use of Derivative-based Global
Sensitivity Measure (DGSM) [Sobol’2010]. The logic behind this choice is that the goal is to
discard the non-influential parameters, and obtain their approximate ranking. It offers a good
balance in this context between accuracy in calculating sensitivity indices and computational time.
This choice is further elaborated with respect to other GSA methods as follows.

In this context, an approximate ranking of the influential parameters and discard of non-
influential ones is needed, which can be done while maintaining a low computation time using
DGSM [Lamboni2013]. This is especially important in this context for two reasons. First, the
hybrid energy simulations are computationally expensive due to dynamic simulations. Due to the
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variable nature of renewable energies and variable demand, an energy balance at each time-step
becomes necessary. Second, in this context, due to the large amount of uncertainties and variabil-
ities, number of uncertain parameters can be 10+.

To put the time required in context, for 10 parameters (d), no. of model evaluations for variance
decomposition method of Sobol are N(2d+2) = 11264, with N = 512 [Saltelli2008]. It is widely
considered as the state-of-the-art in GSA. While for DGSM, less number of model evaluations
are needed with N = 100, N(d+1)=1100. If one model evaluation takes around 15 seconds, thus
the time required for Sobol is around 47 hours, while for DGSM, 4.6 hours. Apart from the ones
mentioned, other GSA methods exists as well, but DGSM can work with a black-box models,
and offers the best trade-off between required accuracy and acceptable computational time in this
context. Another advantage, unlike regression/correlation based methods, is that it can be used
with non-linear or non-monotonic models (ibid.).

DGSM can be seen as a generalized form of the popular screening Morris method, also known
as, method of elementary effects (ibid.). In other words, Morris method is a coarse form of DGSM.
Morris method may require lesser number of model evaluations than DGSM [Iooss2017], but in
its basic form, it cannot precisely compute the sensitivity due to interaction between parameters,
neither can it rank them in order of their influence [Lamboni2013].

Moreover, a link between DGSM and the method of Sobol has been established [Sobol’2009].
Meaning that even in the worst case it allows reliable discard of non-influential parameters and
even rank parameters in the order of their influence (except for highly non-linear models).

Thus even in the worst case, the non-influential parameters can be reliably discarded but the
ranking of some parameters is inversed. Its not a problem since exact knowledge of variance
decomposition is not necessary in this case.

Mathematical description

Let’s say, f (P) is the combined techno-economic-LCA function to be evaluated with d param-
eters, where P = (p1, p2, . . . pd) and e = 1,2 . . . ,d Thus P represents a set of parameters. As
per [Sobol’2009], DGSM measures are mathematically defined as:

ve =
∫ (

∂ f (P)
∂ pe

)2

dp (3.4)

Since, we use a black-box model, the right hand side of the above equation can be numerically
calculated as per [Iooss2017, Touzani2014, Lamboni2013]:

v̂e =
1
N

N

∑
j=1

(
∂ f (P j)

∂ pe

)2

(3.5)

∂ f (P)
∂ pe

=
f (p1, ..(pe +δ ), ..pd)− f (P)

δ
(3.6)

In simple terms, the function f (P) is assessed with small increments ‘δ’ in a parameter pe

in equation 3.6. Then, ve becomes the mean over N repetitions of different modifications pe

for the entire parameter distribution using equation 3.5. Since we are using the python package
SALib [Herman2017], this distribution of parameters are developed using Sobol sequence over a
N(d+1). Other sequences to generate samples can also be used instead [Kucherenko2017].

In this thesis, we use γe as the sensitivity index because of the following link established
with the Sobol total effect, Se,total [Sobol’2009]. The total effect index of Sobol, considers the
non-linear and effect of interactions between parameters. A uniform distribution is used for all
parameters, where ae and be are the lower and upper bounds of pe. Whereas, V is the total variance
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of the distribution. Another probability distribution can also be used, but finding a distribution or
large enough dataset for its calculation is not anticipated due to the scarce data.

γe =
(be−ae)

V π2

2

ve ≥ Se,total (3.7)

Using the above equation, we see that for low values of γe, the parameter can be considered
non-influential. Thus, screening of parameters, while taking a fraction of time as compared to the
calculation of the sobol indices Se,total . The conclusion being that even in the worst case of highly
non-linear models (e.g. x5), low values of sensitivity indices γe can reliably confirm non-influential
parameters.

Practical implementation

According to a recent review [Douglas-Smith2020], DGSM is readily available in sensitivity pack-
ages in the software R [Iooss2019] and Python (SALib) [Herman2017]. In this paper we use the
latter. The utilisation is simple, once the parameterized model is finalised, it can be linked to sensi-
tivity analysis package. The number of uncertain parameters and their ranges have to be specified.
First, a distribution of various combination of these parameters is obtained. Then, samples are
generated by propagating these parameter combinations through the model. The package treats
the integrated technical-economic-LCA model as a black-box function. Finally, the generated
samples are mathematically assessed as per the previous section to get the sensitivity indices. The
process is outlined in figure 3.4 Number of model evaluations required are N(d+1), where d is the
number of parameters. While N=100 can used to get consistent results as per investigations done
in the past [Touzani2014, Iooss2012, Iooss2017].

3.a. Entries  
read

3.c. 
Export

Uncertain
parameters

.exe file

1. Generate
samples

2. Launch

3.b. Energy
simulation

4. LCA indicators
analysed

SALib package 
(Python)

Operational 
details of 

the system

Brightway2 
(Python)

3.d. LCA 
Simulation

Figure 3.4: Interaction of sensitivity analysis package with energy simulations and LCA modelling.

Identification of environmentally influential parameters and foreground processes

Here we focus solely on LCA indicators, even though other indicators such as levelised costs
are also possible. Influential parameters are identified using sensitivity indices while a novel co-
efficient, importance index (Im) is proposed to identify the most influential foreground processes.
The sensitivity index, γe obtained from DGSM will enable us to discard non-influential parameters.
Thus, utilizing resources on improving them and their related term in the fraction has a lower
priority. On the contrary, the influential parameters have to be estimated accurately to obtain
appropriate results.
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Apart from the parameters, foreground process modelling might also require improvements.
To facilitate this exercise, importance index (Im) of an activity ’a’ can be defined as follows for a
particular LCA impact indicator:

Ima
y,co = γe×Ca

y,co (3.8)

Where, γe is the sensitivity index of the parameter pe which is linked to a component or process
(co) in the lifecycle phase y. While Cy,co (%) is the contribution of the process a to the total impact
of component (co) in lifecycle phase y. This is possible since each of the selected variable is linked
to a life cycle phase.

For example, consider a hypothetical component, bio-PV panel. Let’s say, a design parameter,
panel thickness was varied, to ease visualisation, consider it as LCA parameter 2 in figure 3.3.
Suppose it has the highest sensitivity index, γman f , thick = 0.80. Meaning, it is responsible for ma-
jority of the variance in results. It is directly related to panel manufacturing where say, natural gas
use contributes to 90% of the global warming impact. If the material proportions are unchanged
during the variation of thickness, Imnat.gas

bio−PV, man f .=0.8*0.9=0.72 for the category global warming
potential.

Here we establish for the hypothetical case that, modelling of natural gas is important in this
case to improve model accuracy. Hence, user could improve the estimation of natural gas; assign
a better representative natural gas process; or even change the composition of natural gas process
in the future. In case one process is related to more than one influential parameter, the index is
then the aggregated sum. Importance indices for each indicator for the foreground processes can
thus be presented in decreasing order. Value of sensitivity and importance indices close to zero
represents they are non-influential.

Importance indices can also be seen as a new method to quantify the importance of uncertain-
ties in LCA. They can be especially useful when large amounts of uncertainties are present in the
system. The foreground processes whose improvements will have the maximum influence on the
results can thus be identified. Higher the co-efficient, the more resources should be allocated to
improve the particular process modelling. They are not sensitivity indices in themselves, but they
can provide useful information as to which processes should be prioritized for modelling.

Thus, the influential parameters and LCA activities are identified using sensitivity indices (γ)
and importance indices (Im). They can thus be differentiated in terms of their relative impor-
tance to the final results. Data can thus be preferentially searched and the resources can be better
allocated for LCA modelling.

3.3 Case study: PEM water electrolysis

For demonstration, the framework is applied to the same case study of hydrogen production
from PEM electrolysis, which was introduced in section 1.1.5. An illustration of LCA boundaries
in the case study and in the Odyssey software is presented on left and right respectively in figure
3.5. The cradle-to-grave impacts of electrolyser and power supply is considered within the LCA
boundaries. Hybrid energy simulation model is used as an input to the parameterized LCA. Any
other simulation or software could also be used instead. While the LCA calculations are done
using Brightway2, an open-source LCA framework in Python [Mutel2017]. Python package of
SALib was used for DGSM analysis [Herman2017].
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LCA boundary

LCA boundary

Figure 3.5: Illustration of the case study and the LCA system boundaries

3.3.1 Handling outputs from the energy simulation

For this case study, two components to be included for LCA calculations can be explicitly found
looking at the figure above: PEM electrolyser and grid electricity. On closer look, two process
flows from the electrolyser are also found: water consumption and hydrogen production. The
latter is the output and impact of all the components has to be calculated with reference to it. Thus
there are three components/processes whose cradle-to-grave impact has to be calculated.

The relevant outputs from the energy simulation models are time series: Stack power (EPEM
t ),

Hydrogen production (ProdH2
t ) and electricity extraction from grid (Egrid

t ). Where t is the time
step, it represents data at every 5 minutes for one year. Time steps can be denoted by t ∈ T =
{0,1,2 . . .}, with its length thus becoming len(T) = 105120.

They are used to then used to calculate the lifetime consumption/production values of Grid
electricity consumed during the entire life time (Egrid

li f e ), and hydrogen production (ProdH2
li f e) and

size of PEM electrolyser (SPEM) using the following equations:

SPEM = max({EPEM
t , t ∈ T}) (3.9)

Egrid
li f e =

len(T )
12

∗ li f etimepro ject ∗mean({Egrid
t , t ∈ T}) (3.10)

ProdH2
li f e =

len(T )
12

∗ li f etimepro ject ∗mean({ProdH2
t , t ∈ T}) (3.11)

Where, li f etimepro ject=20 years. Water consumption over the entire lifetime is calculated
using the hydrogen production. Since 1 mol of water (mol. wt. = 18g) produces 1 mol of hydrogen
(mol. wt. = 2g), nine times more water is consumed than hydrogen produced:

Wli f e = 9∗ProdH2
li f e (3.12)

Then, it was found during the preliminary analysis that the PEM electrolyser stack might have
to be renewed during the project lifetime of 20 years. This depends on the number hours of
operation. For this, first the Number of hours (hoursPEM) of stack functioning are calculated using
the number of time steps when the stack power is greater than zero:

hoursPEM =
len({EPEM

t > 0|EPEM
t , t ∈ T})

12
∗ li f etimepro ject (3.13)

Then, the number of stacks required during the project lifetime are estimated using the equa-
tion below, where ceiling means the integer greater than or equal to the calculated real number.
For example, if 2.3 stacks are calculated, that actually means 3 stacks will be required during the
lifetime of the project. Stackli f e is the stack lifetime in hours.
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Numberstacks = ceiling
[

hoursPEM

Stackli f e

]
(3.14)

3.3.2 LCA modelling approach

Then for the LCA modelling approach, out of the three whose impact needs to be calculated,
two activities, grid electricity and de-ionised water are interfaced directly with the simulations for
the first iteration. They are classified under the use phase activity list as La

use, where a refers to
a particular activity in the list. For PEM electrolysis, no activity is found in the ecoinvent v3.6
database. Hence, an inventory is built with the following steps:

Building inventory for PEM electrolyser

Technology and scope definition With multiple demonstration systems coming up around the
world, TRL level of PEM electrolyser can be considered to be 7-8. Further, we select the following
scope:

• Scale of electrolyser model: 100 kW - 10 MW

• System is installed in Marseille, France and it is assumed to be manufactured in the same
country

• The system is to be installed in the year 2030 with a project lifetime of 20 years

Search for inventory data Following the first step in this subsection, multiple review articles
about hydrogen production were found [Valente2017, Bhandari2014]. In these papers, only one
study [Schmidt Rivera2018] was found which could be used to partially reproduce the inventory.
The study enlists data of the PEM stack but does not contain any information about the auxiliary
or BOP (balance of plant) components. These components also referred to as balance of plant, are
essential for hydrogen production. They mainly involve electrical components, pre-processing of
water and post processing of hydrogen [Pilenga2018].

Hence continuing the manual search, two reproducible inventories comprising of all the ex-
pected components were found [Bareiß2019, Zhao2018]. The completeness of the inventory was
verified by an expert, Dr. Fouda-Onana. Being involved in the R&D activities of PEM electrolyser
at CEA-Liten, he is one of the contributors to harmonization methodology of low-temperature wa-
ter electrolysis, proposed by European Commission [Pilenga2018]. The exchange was held in the
form of in-person meeting, with the primary goal: verifying if the inventory is consistent with the
components considered in the system boundaries. Other aspects were discussed such as: Nafion
manufacturing process, current efficiencies and lifetime of PEM systems and the expected fu-
ture developments in the inventory. At the end of the meeting, the (qualitative and quantitative)
completeness of the inventory was verified and publications were shared to improve the under-
standing/modelling of PEM electrolysis systems. Thus the PEM stack and BOP inventory can
be found in annex tables A.1 and A.2 respectively. The amount of each activity can be repre-
sented by La

man f , stack and La
man f , BOP, they take into account processes of raw material extraction,

manufacturing and assembly.
Even though the stack data was available in [Schmidt Rivera2018] it is not used since the other

two studies align better with the scope while having a higher data quality. First for the goal and
scope, the two studies [Bareiß2019,Zhao2018] have a goal of industrial hydrogen production with
1MW PEM electrolyser. On the other hand, for Schmidt-rivera et al., electrolyser size can be esti-
mated to be < 100 kW, for domestic use. In terms of data quality, their stack inventory is based on
a lab report from NREL in 2005 [Carlson2005], while the selected two studies estimate inventory
from pilot PEM systems based on relatively recent data, personnel interviews and industrial visits.
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3.3.3 Addressing variabilities and uncertainties

Data Gaps Once the foreground model was assembled, there were issues with three activities:
Nafion membrane of electrolyser, deionizer and iridium. Since they were not available in ecoinvent
v3.6 (latest at the time). Hence, they were dealt in the following approach for the first iteration:

• Nafion is modelled according to the stoichiometric calculations of [Duclos2017]. The mem-
brane is considered to be a product of sulfuric acid and tetrafluoroethylene with 100% yield
and negligible energy requirements.

• Deionizer – Instead of modelling a deionizer separately, the activity ‘deionised water’ was
used.

• Iridium is a part of platinum group elements and is mined along with other rare metals of
this group: platinum, ruthenium, osmium, palladium and rhodium. Hence, ‘platinum’ is
considered a substitute for the impacts of iridium.

As we can see, the modelling is done with the easily available data for the first iteration.

Scaling Engineering models to estimate the amount of materials in the PEM stack and BOP
were unavailable, hence the equation 3.2 is used with a factor b=1 for stack inventory and b=0.6
for BOP. Since the stack power is increased modularly, while there is decrease in material quantity
per unit capacity for BOP components. Other studies use similar hypothesis for electrolysers
[Zhang2017, Mehmeti2018].

Geography and End-of-life (EOL) For the geographical scope, all the inventory materials, were
selected from the ecoinvent 3.6 cut-off database, with location priorities defined as follows: France,
neighbouring countries, Europe and finally global markets. It should be noted that the activities
for stack and BOP are based on the market mixes from ecoinvent i.e. they include materials from
various sources, transport, etc.

At the end of life, the materials in the PEM stack and BOP are either recycled or disposed
(landfill or incineration). The system is credited for the primary production avoided due to recy-
cling. In order to find activities for these steps, the recycling (secondary production) LEOL, recycle
and primary production production activities LEOL, primary for each material in inventory is gath-
ered from ecoinvent. Furthermore, the disposal activities LEOL, dispose are also assembled where
the waste markets specific to each material were selected. Since in the selected waste markets,
according to the material, they were already classified as incinerated or landfilled or a mix of both.
If waste market was not found, the material was assumed to be landfilled in a generic activity. The
entire list of the three types activities can be found in annex tables A.3, A.4 and A.5.

End of life impact of stack and BOP materials is calculated separately as a function of the
found activities and the recycle rate. The following steps are thus followed:

• Each material a in the electrolyser manufacturing inventories La
man f , stack and La

man f , BOP is
iterated through the recycle list LEOL, recycle.

• If a relevant recycle process for a exists in LEOL, recycle, then it is added to the recycle list of
that component with the quantity calculated as:

La
EOL recycle,co = R∗La

man f , co (3.15)

Where R is the recycle rate. Same amount is added to the avoided list of that component but
as a negative input for LCA calculations as:

La
EOL avoid,co =−R∗La

man f , co (3.16)
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Rest of the material is disposed using a relevant process in Ldispose as:

La
EOL dispose,co = (1−R)∗La

man f , co (3.17)

• If a relevant recycling process is not found, entire material quantity is disposed using a
particular diposal activity if possible or a generic landfill activity.

La
EOL dispose,co = La

man f , co (3.18)

The amount of recycled materials incorporated the manufacturing of metals in france was
around 50%, while it was only 6% for plastics [ADEME2018]. This does not represent the amount
of materials actually recycled, but it is taken as an approximation for the recycle rate R for the first
iteration. This can also be improved later if required. Finally, three EOL inventories each for
PEM stack (Lrecycle

stack ,Lavoid
stack ,L

dispose
stack ) and PEM BOP (Lrecycle

BOP ,Lavoid
BOP ,Ldispose

BOP ) are formulated using
the equations presented above. End of life impact of each material thus equals impact of recycling
plus impact of disposal minus the avoided production of primary material due to recycling.

Future evolution As discussed in the methodology, future evolution of the LCA processes is
intentionally left out of the modelling for the first iteration. Even though some information is
available in the references found thus far. Further discussion in section 3.4.2.

3.3.4 Model Assembly

Finally, the life cycle impact has to be calculated for the activities along all the life cycle phases.
This can be represented as a demand array f for the LCA computations:

f = (La
use, La

man f , BOP, La
man f , stack, La

EOL recycle,BOP, La
EOL avoid,BOP, La

EOL dispose,BOP,

La
EOL recycle,stack, La

EOL avoid,stack, La
EOL dispose,stack) (3.19)

Equation 2.4 is recalled, which is utilised for LCA calculations using Brightway2. The total
life cycle impact of the system is thus sum of the impacts of the above list of activities for a
particular impact indicator. The impact per unit hydrogen is found by dividing the total hydrogen
produced, i.e. equation 3.1. It should be noted that other ways of parameterised LCA computations
discussed in section 2.2.4 could also be utilised which will provide the same results.

Five parameters are made directly related to at least one of the lists so that the relationships
between them and the contribution analysis could be made explicit. It will later be useful for
the sensitivity analysis step. Only one parameter, efficiency (in grey), was already present in the
energy simulations. Four other parameters relevant to LCA are added in green: stack lifetime,
recycle rate and material scaling models of stack and BOP. A simplified version of global struc-
ture of the parameterized model is illustrated in figure 3.6. The disaggregated impact equation
can be seen consisting of contributions of different components/phases divided by the hydrogen
production during the lifetime. The relationships between the disaggregated impact equation and
the parameters can also be seen clearly. Other parameters also exist in energy simulations but only
the ones that are varied in this investigations are illustrated.

Recently updated impact assessment method, IMPACTWorld+ [Bulle2019] is used. The choice
is based on the fact that, this impact assessment framework was the latest to be updated according
to the best practices in the characterization modelling. However, other impact assessment meth-
ods could alternatively be used. Hydrogen is produced from electrolysis primarily to avoid using
the fossil sources. Hence, we select climate change indicator to quantify this potential. Further-
more, since PEM electrolyser consists of many rare metals, following midpoint indicators are also
selected: terrestrial acidification, particulate matter formation, photochemical oxidant formation,
human toxicity cancer and mineral resources use. Ozone depletion could also be important since
the PEM stack consists of Nafion membrane, which is manufactured using fluoro- compounds.
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Figure 3.6: Description of the parameterized model for the PEM water electrolysis case study.
New parameters added, that are relevant to LCA are illustrated in green.

3.3.5 Parameter definition for GSA

As mentioned earlier, the 6 selected parameters, presented in table 3.1 such that there is at least
one parameter linked to the disaggregated equation inputs. Or when there is genuine uncertainty
regarding them. To reiterate, the goal here is to find variability of the results as a function of
parameters. Moreover as we saw in the previous subsection, since the parameters are directly
related to each input of the disaggregated equation, the importance of the inventory data can also
be estimated. since the first model is based on rapidly collected data, parameters or foreground
processes can be preferentially searched. They are described below:

• The number of hours of stack functioning are limited because of degrading performance.
Current suppliers report a range of 60k – 100k hours [Buttler2018]. The stack replacement
frequency is decided based on an arbitrary decrease in performance (e.g. 10% decrease in
efficiency relative to the start). Consequently this affects the amount of stack materials used.

• Efficiency of a PEM electrolyser is higher at when it is operating at less than its rated capac-
ity [Kopp2017]. Even though we can estimate the operation using the energy simulation, it
is based on electricity spot prices of 2014, hence we don’t know the actual operating effi-
ciency, neither its impact on the indicators. Additionally, there is degradation of efficiency
as discussed above.

• Experts predict a decrease of up to 50% in the materials required for electrolysis in the
future thanks to ongoing research efforts to increase cell area [Bertuccioli2014]. Therefore,
relative variance of due to 50% decrease in the stack and BOP materials is selected. Also
the robustness of the scaling for BOP can be verified.

• As mentioned earlier the recycling rate was approximated as 50% for the first iteration
since it corresponds to the percentage of recycled materials used in metal manufacture
[ADEME2018]. Also, no other parameter directly influences the end-of-life phase. Hence,
recycling rate affecting the stack and BOP end of life is varied independently upto 95%.
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Table 3.1: Input ranges to the DGSM sensitivity analysis

Parameter
Abbreviation

used
Value Source

Lifetime of stack Lifetime 60,000 – 100,000 hours [Buttler2018]

Efficiency of system

(incl. auxiliary components)
Efficiency 50 – 60 %

[Buttler2018],

[Kopp2017]

Multiplication factor for stack materials Stack factor 0.5 – 1 [Bertuccioli2014]

Multiplication factor for auxiliary component materials BOP factor 0.5 – 1 [Bertuccioli2014]

Recycling of stack material
stack recycle

rate
50% - 95% [ADEME2018]

Recycling of auxiliary component materials
BOP recycle

rate
50% - 95% [ADEME2018]

3.4 Case study: Results

This section proceeds as follows: In the first subsection we select the most influential param-
eters and corresponding foreground processes, supplied by the sensitivity analysis. Whereas in
the second subsection, the influential parameters are precised or foreground process modelling is
improved. These results are then compared to a conventional approach where all parameters or
foreground modelling of a study were improved.

3.4.1 Sensitivity & Importance indices

The sensitivity indices (γe) for each one of the inputs in table 3.1 across the selected indicators are
shown in figure 3.7. Higher the value of each parameter, higher is its influence on the final results.
The two variables, efficiency and lifetime are selected since they are clearly the most influential
variables. Amongst the rest, only stack factor is visible to have a share, but it stays less than 0.2 in
all the indicators.

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Climate change

Ozone Layer Depletion

Terrestrial acidification

Particulate matter formation

Photochemical oxidant formation

Human toxicity cancer

Mineral resources use
Sensitivity indices

 BOP recycle rate  stack recycle rate  BOP factor  stack factor  Efficiency Lifetime

Figure 3.7: Sensitivity indices (γ) obtained for the parameters for each of the selected midpoint
indicators

Furthermore, to calculate the Importance indices (Im), we can multiply the above sensitivity
index with the corresponding contribution of the foreground processes. For instance, sensitivity
index of efficiency for climate change, γ

climate change
e = 1.21. Efficiency is related to the use phase,
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Table 3.2: Importance indices (Im) for 3 arbitrarily selected foreground processes from the use
phase and the stack inventory. Full results in annex table A.6.

Foreground

process
Classification

Importance indices (Im)

Climate

change

Ozone

Layer

Depletion

Terrestrial

acidification

Particulate

matter

formation

Photochemical

oxidant

formation

Human

toxicity

cancer

Mineral

resource

use

electricity, high voltage,

production mix
Use phase 1.21 1.21 0.8 1.05 1.07 1.12 1.2

market for platinum
Manufacturing:

PEM Stack
0.02 0.00 2.04 0.79 0.80 0.16 0.01

market for titanium
Manufacturing:

PEM Stack
0.00 0.00 0.04 0.04 0.04 0.01 0.00

where the foreground processes are water and electricity consumption. Their respective contribu-
tions to climate change are Celec.

use = 99.94% and Cwater
use 0.06%. Hence, Imelec.

use = 1.21 and Imwater
use

0.00 for climate change. Values of these coefficients for 3 selected processes of each indicator is
shown in table 3.2. A complete table with importance indices of the processes in use phase and
stack inventory are included in table A.6.

It should be noted that, these indices are not a disaggregated representation of sensitivity in-
dices. For example, the sensitivity index of efficiency for climate change, is not only affected by
carbon content of the electricity consumed but also by the produced hydrogen (due to variation
in the efficiency), see figure 3.6. But they can guide users to important foreground processes.
Looking at the results from table 3.2, we select only the electricity and platinum processes, to be
improved for the defined scope. Importance indices for the rest of the processes stayed below 0.02,
similar to titanium.

3.4.2 Improving the influential aspects for the scope

In this subsection, the improvements of the identified influential aspects are described. In re-
gards to the use phase, the parameter: efficiency and foreground process: electricity consumed
are identified influential. For the efficiency, negligible improvements from the state-of-the art are
anticipated at least until 2030. The principal reason is the comparatively higher capital costs than
operational costs. As a result, research is focused on increasing current densities in the cells, which
is detrimental to the efficiency [Schmidt2017]. Hence, an average efficiency of 57% is decided,
that incorporates 3% degradation at the end of life from an initial efficiency of 60%. Whereas, the
electricity mix is also identified in table 3.2 as a major contributing process to almost all impact
indicators. Hence, the background modelling of French mix is updated to the expected mix in the
year 2030 [ADEME2014]. The composition of the two electricity mixes is elaborated in the table
A.7.

Lifetime is the other influential parameter, along with related foreground process of platinum.
Experts predict stack lifetime of up to 85,000 hours [Schmidt2017]. However, some manufacturers
already report a lifetime of 100,000 hours [Buttler2018]. In any case, within the above range, the
number of stacks remains 2 for the case study, hence we fix the stack duration as 90,000 hours.

On the other hand, as identified by importance indices, platinum modelling was the other
hotspot. This is improved as follows. Platinum was considered as a substitute for iridium in the
first iteration, since the latter does not exist in ecoinvent, but is a by- product of the same plat-
inum group element extraction process [Ravindra2004]. Hence, iridium was modelled using the
methodology of [Nuss2014]. In brief, the process ‘platinum group metal, extraction and refin-
ery operations’ of ecoinvent v3.6 includes co-production of 5 elements: nickel, platinum, copper,
palladium, rhodium and gold. The impact of each one is calculated according to economic allo-

73



Chapter 3. Establishment of parameterized life cycle assessment models for hybrid energy
simulations

cation. In the first step, this process was un-allocated using annual production values and their
impacts, obtained from supporting files of ecoinvent database. Then, the impacts of 3 co-products
of the same process, not included, (Rhodium, Iridium and Osmium) are reallocated according to
the factors calculated by [Nuss2014]. These factors are obtained from economic allocation using
historical market and production data. The allocation values of ecoinvent v3.6 and the ones used
here are presented in table A.8. Furthermore, the amount of platinum and rhodium were updated
according to expected reductions in 2030.

3.4.3 Results for scope 2030 and comparison with ideal case & literature values

In this section we compare the results for the three cases: base case, first iteration with easily
available data; second case, where the important parameters and LCA processes are improved;
ideal case, were even the non-influential aspects are improved. Recycling rate is increased to
95% as per [Zhao2018], where it is said high recycling is promised in the project contracts owing
to financial values of rare metals. Material reductions in the stack inventory are updated for all
elements according to the near future scenario of [Bareiß2019]. The differences between the 3
cases are outlined in table 3.3. The difference in the stack inventory can be seen in table A.1. The
results for the LCA indicators are presented in figure 3.8, while keeping the base case i.e. the first
iteration as the reference of 100%. The absolute values of three cases can be found in table A.10.

Table 3.3: Comparison of input parameters for the three cases

Parameter /

Process
Base case

Important parameters

adjusted
Ideal case Source

Electricity mix French mix 2016 French mix 2030 French mix 2030
[Wernet2016],

[ADEME2014]

Recycle rate

PEM stack & BOP
50% 50% 95% [Zhao2018]

Efficiency 55% 57% 57%
[Buttler2018],

[Schmidt2017]

Stack inventory
Current state

of the art

Only platinum & iridium

values adjusted. Iridium

modelling improved.

’Near future’

scenario
[Bareiß2019]

Lifetime stack 80,000 hours 90,000 hours 90,000 hours
[Buttler2018],

[Schmidt2017]

From the figure 3.8 it is clear that adjusting the important parameters altered the results sig-
nificantly. While further refining the model by changing all possible aspects of modelling has a
negligible affect on the results. As the absolute error between the base case (first iteration) and
ideal case ranged from 13% - 49%. Whereas when only the influential parameters are improved,
the absolute error with the ideal case remains less than 1% across all impact indicators.

Thus in a real world scenario, the users or developers of the LCA models, do not need to search
for data that were found to have negligible influence on the results. For instance, specifying the
exact recycle rate for the year 2030 will only negligibly change the results. Thus saving time for
the users. The same goes for the stack data, to obtain accurate estimation of impact, all of the
PEM stack data do not need to be improved for the year 2030. Here the users or LCA practitioners
could utilise their limited time to only accurately find the values of the catalysts platinum and
iridium from literature, project collaborators or from other laboratories. Only the prediction of
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Figure 3.8: Results obtained for the LCA indicators for the three cases.

these values is sufficient to improve the model for the future.
One more additional insight using this model was regarding the material estimation of BOP

materials. Even though they are auxiliary components, they are essential for the functioning of the
system and require considerable amont of materials e.g. 13.7 tons of steel and 5.9 tons of copper
(table A.2). However, even a 50% reduction in these materials were identified as negligible to the
final impacts. Thus the scaling of these materials or future reduction in materials due to research,
do not need to be improved for prediction of impact in the future.

Model consistency was verified using other unrelated investigations from the literature. The
estimated French electricity mix of 2030 has a climate change potential of 55 g CO2-eq/kWh,
which results in a hydrogen production impact of 3.6 kg CO2-eq/kg H2. This is close to 3 kg CO2-
eq/kg H2 estimated by [Bareiß2019], with electricity mix of ≈ 50 g CO2-eq/kWh. Further, when
the electricity mix is changed to only onshore wind, impact of hydrogen comes to 0.9 kg CO2-
eq/kg H2. It lies in the range (0.5 - 2.3 kg CO2-eq/kg H2) of harmonised climate change impacts of
hydrogen production from electrolysis using wind electricity calculated by [Valente2017]. Hence,
the results obtained are coherent and agree well with the literature.

3.4.4 When influential parameters cannot be fixed

Often, it may happen that the variables related to highly influential parameters or processes cannot
be fixed to a certain value. They could then be presented in terms of statistical values. In this
section, an example is described by propagating and visualizing the uncertainty ranges. The distri-
bution can be further analysed using statistical values. Let’s choose a hypothetical case to evaluate
this scenario. Say for our model, real-world efficiency and the electricity mix cannot be precisely
predicted a priori. Reasonable efficiency range of 55% - 60% is selected. For the electricity mix,
the three scenarios of the year 2050 proposed by [ADEME2014] are selected. The scenarios differ
between them with variable share of nuclear energy with respect to renewable sources: wind, PV,
hydroelectric and Marine energy. The actual mix in the future can lie between any of the 3 mixes.
Hence a function is created varying the contribution of nuclear energy from 48%-18% with a pro-
portional compensation by renewable sources, as per [ADEME2014]. Uncertainty is propagated
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Figure 3.9: Boxplots of distribution of impacts obtained by propagating the PEM electrolyser
system efficiency and electricity mix using quasi-monte carlo. Maximum and minimum values
obtained by propagating extreme points of efficiency and electricity mix using LSA

using quasi-monte carlo or sobol sequence, which is also the precursor to DGSM. Both uncertain
parameters are assumed to have an uniform distribution.

The results of the obtained distribution (300 samples) are illustrated in figure 3.9 using box-
plots. For comparison, local sensitivity analysis (LSA) results are also plotted. Here, the extreme
values of efficiency and electricity mix is propagated through the model to obtain maximum and
minimum values for each impact. In boxplots, apart from the maximum and minimum values,
space between each horizontal line represents approximately 25% of the values. For example, it
can be said that for the considered uncertainty ranges, there is ≈ 75% chance the climate change
potential for producing 1 kg hydrogen remains below 3.8 kg CO2 eq. If we compare this to local
sensitivity analysis, only a range of global warming potential 3.39-3.88 kg CO2 eq is obtained for
the same uncertainties. Which is clearly lower as compared to the maximum value of 4.01 kg CO2
eq that is actually possible. Thus outlining the utility of global sensitivity analysis.

To conclude, here even though a modest uncertainty range was used, there was still a difference
between GSA and LSA. Thus in real-world situations, the possible minimum or maximum values
of indicators can be significantly over or underestimated by local sensitivity analysis.

Furthermore, the preliminary version of this parameterized model was already verified to be
working well with evolutionary algorithm for dimensionning [Sharma2020].

3.5 Conclusions

A step-by-step methodology is proposed to effectively establish parameterised LCA models
for hybrid energy systems. The resulting LCA models are primarily developed to be used with
energy simulations for the future context. The resulting LCA models thus take into account the
alterations in the energy simulations and accordingly calculate the indicators. Thus a link between
changes in design (system parameters, configuration) and LCA indicators was established which
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did not exist before. The methodology was applied to case study involving hydrogen produc-
tion from PEM electrolysers. The parameterised model developed was connected to an energy
simulation. The obtained results agreed well with unrelated investigations in the literature.

Prioritising data collection is proposed using global sensitivity analysis. Thus, when conduct-
ing an LCA with limited resources, the data which is the most important to improve the results
could be identified using the proposed method. Taking into account the complexity with multi-
ple uncertain parameters of an integrated model and the expensive computational time of hybrid
energy simulations, use of derivative based global sensitivity measures (DGSM) is proposed as a
GSA method. Along with a new co-efficient (Importance index) to identify the most important
foreground processes. This particular type of GSA although used in other fields [Touzani2014,
Kiparissides2009] has not been applied to life cycle assessment yet. The main advantage is that it
offers good estimations of sensitivity indices most of the time (except for highly non-linear cases)
while using only a fraction of the function evaluations as the state-of-the-art Sobol indices. Even
in the worst case, it still allows reliable discard of non-influential parameters. This is really useful
when the simulations are computationally expensive, there are many uncertainties in the model
and exact sensitivity indices are not necessary, like in this context.

For this case study using the sensitivity and importance indices following data were found
influential: system efficiency, electricity mix, catalysts amounts in the electrolyser stack and stack
lifetime. Whereas recycle rate for stack and BOP, materials for BOP, stack materials other than
catalysts were found not influential to the final impact. For the future context, even if the non-
influential data was improved, it only resulted in less than 1% difference than the ideal case.
Consequently, even in a highly uncertain context, the users do not have to accurately estimate the
non-influential parameters or foreground processes correctly for robust estimations. For example
in this case study, reductions in BOP or stack materials (except catalyst contents) for the future
or detailed scaling of BOP materials is not necessary. Thus the framework can save significant
amount of time.

Furthermore, quantified recommendations regarding the influential aspects could be provided
to decision-makers. Using this information, for example, investment in R&D could be guided for
improving the system efficiency or specifically reducing the catalyst content in the stack. Decreas-
ing catalyst loading in the stack is also beneficial from an economic perspective [Schmidt2017].
On the other hand, research is not prioritised in improvement of stack efficiency due to economic
reasons (ibid.). System efficiency is affected by stack efficiency and other auxiliary components.
Whether this topic should be pursued is a different issue and beyond the scope of this thesis. The
conclusion being that obtaining this type of insights are made possible.

The target audience envisaged for the methodology are personnel developing and using these
software/models. Such a methodology did not exist in the literature thus far. It provides ideal start-
ing points for developing these models, which are not included in the LCA handbooks. Especially
starting with the literature search and how much data to collect. Followed by context specific, sys-
tematic recommendations on how to fill data gaps. Guidance is also provided for addressing the
variabilities for sizing, geography and future evolution. Development of such models will enable
integrated technical-economic-LCA assessments of hybrid energy systems. It therefore allows
users or engineers to provide appropriate recommendations regarding R&D or planning of such
technologies from an environmental point of view as well.
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4
Objective reduction of LCA indicators using a

visual survey

The chapter is commenced with the relevance of this proposal with respect to the literature fol-
lowed by the current opinion about two types of impact indicators in LCA. Then the indicators
preferred in the CEA organisation are discussed with a justification of choices made in this thesis.
In the next section, the method of identifying redundant LCA indicators primarily for optimisation
is then presented using a hypothetical design example. The limitations of this approach are out-
lined in comparison with other approaches found in the literature. Then in the next section the
recommendations on its use are outlined. Finally, the chapter is concluded in the last section.
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Chapter 4. Objective reduction of LCA indicators using a visual survey

4.1 Introduction

4.1.1 Contribution to literature and relevance

The importance of an optimisation approach including the environmental indicators along with the
existing technical and economic indicators has been discussed in the first chapter. Objective reduc-
tion techniques are often used to improve the performance of multi/many-objective optimisation
algorithms [Saxena2012]. Three reduction techniques used so far in LCA for this purpose were
also briefly described. Relevance of using correlation-based objective reduction techniques even
with the new generation evolutionary algorithm NSGA-III was also elaborated in section 2.3.5.

All of these methods, need at least a partial initialisation of the problem to obtain a sample
set. Meaning that the problem has to be run at least for sometime to obtain an initial set of
solutions. Furthermore, there could be problems with the sample set since the correlations in
them might not represent the correlations between indicators on the pareto front [Yuan2017]. To
avoid these problems, many investigations in the literature prefer to run the problem with all
indicators for a long time. For example, around 16 hours in [Perez Gallardo2013] or 200-2000
generations in [Yuan2017]. This is actually counterproductive for objective reduction. Since,
objective reduction is itself required to reduce the computational time.

In this thesis, a new technique to reduce the number of LCA indicators for dimensionning
using a visual survey was found during the implementation of NSGA-III. It relies on identification
of correlations between the LCA indicators using contribution analysis and is applicable to only
a certain type of problems. Unlike the techniques presented, it does not require an initialisation
of the optimisation problem. It only requires an estimate of impacts based on average simulation
values. Since such preliminary calculations might be done by the engineers in any case, this
alternative approach could save time. This approach is described in section 4.2 using an example
of design of a bike. But first a background is provided on the LCA indicators in the following
subsections.

4.1.2 Type of LCA indicators: midpoints and endpoints

Elementary flows obtained at the end of inventory analysis, are multiplied by characterisation fac-
tors in order to obtain quantified environmental impacts as outlined in equation 2.3. These factors
are found by modelling impact pathways from the elementary flows to the areas of protection.
Endpoints are located towards the end, quantifying the damage to the areas of protection [Euro-
pean Commission2010]. Three commonly defined areas of protection are: Human health, Natural
environment and Natural resources.

On the other hand, the midpoints are located somewhere along the impact pathway. Ideally,
they should be placed at the point after which the impact mechanism is the same for all flows
[Hauschild2015]. For example, a simplified impact pathway of climate change is presented in
figure 4.1. With the release of greenhouse gases, their concentration increases in the atmosphere
increases. This leads to variable radiative forcing corresponding to a particular gas. Once this
forcing is quantified, it is possible to commonly model the impact to the areas of protection. Thus
it is a suitable midpoint indicator to quantify climate change. Impact pathways of impact indicators
according to the impact assessment method ReCiPe 2016 can be seen in figure 4.2.

There has been a lot of discussion about when to use endpoints and midpoints in the literature
but the debate remains open since both have their pros and cons [Bare2006, Hauschild2015, Piz-
zol2017, Bare2000].

Arguments for endpoints

Endpoints, owing to their modelling at the end of impact pathway, there are a lot more assump-
tions and value choices involved, leading to more uncertainties and decrease in robustness. Fur-
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Figure 4.1: Simplified representation of climate change impact pathway from elementary flows to
the areas of protection [Hauschild2015].

Figure 4.2: Impact indicators at endpoint and midpoints along with their impact pathways in
impact assessment method ReCiPe 2016 [Huijbregts2016].

ther, midpoints being more comprehensive in the impacts calculated, not all of them could be
included while modelling the damage pathways due to reasons such as lack of data or insufficient
understanding [Bare2000].

There is a strong demand for policymaking based on LCA investigations, which in turn require
simple and clear outcomes [Hellweg2014]. They conclude that this demand can be answered
using endpoints or single score aggregation. In the 25th SETAC conference, a plenary session was
organised to discuss the relevance of midpoints, endpoints and single point indicators for decision-
making [Kägi2016]. It was discussed that even though endpoints have additional uncertainties and
single score aggregation uses subjective weighting from experts, there is an argument that these
two approaches might be, in fact necessary. The primary reason being, not all of the midpoints
orient themselves in the same way. Consequently, to arrive to a conclusion about ‘whether product
A is better than B’ or ‘Optimal way to improve a product/system’, decision-makers are forced to
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subjectively attach weights to the midpoints or choose indicators based on their interests. In such
a case, basing decisions on the endpoints instead might thus be a better approach.

Arguments for midpoints

On the other hand, midpoints are advantageous due to their comparatively low uncertainties. In
terms of investigations quantitatively comparing midpoints and endpoints, the following studies
were found.

Dong et al. compared the LCA results for construction materials according to midpoints and
endpoints [Dong2014]. They show that the ranking of materials under both are generally con-
sistent but when normalization is applied at each level, there can be considerable difference in
the interpretation of results. That is, the relative magnitude of impact categories can be different
depending whether the normalization is done at endpoint or midpoint. They recommend using
midpoints and selecting the critical impact categories in the goal & scope. Whereas when end-
points are needed, midpoint results should also be provided.

Yi et al. compared outcomes from LCA investigation of municipal solid waste in Korea for
midpoints and endpoints [Yi2011]. They concluded that if endpoints include all of the midpoints
for its corresponding elementary flows and assumptions, the results are consistent. They further
say that endpoints are helpful in interpreting midpoint results but a segregation of these impacts
into global, regional and local will benefit this further.

Weidema compared the results from three endpoints methods Ecoindicator99, Stepwise 2006
and ReCiPe 2008 by monetizing them and subsequently revealing the underlying differences in
their hypothesis and value choices [Weidema2015]. Lenzen et al. studied the consequences of us-
ing midpoints and endpoints for decision-making [Lenzen2006]. They conclude that even though
endpoints offer more clarity in terms of the impacts, if the uncertainties are too high to answer the
question, subjective judgements on more accurate midpoints or MCDA techniques could be used.
Furthermore, they find that uncertainty in monetizing the damage can be as high as 80%.

Hauschild et al. identified the best practices amongst the midpoints and endpoints in the
plethora of LCIA methods [Hauschild2013]. They concluded that most of the endpoints are in
the need of further development before basing recommendations solely on them. It remains to
be seen whether the updated methods since then (ReCiPe 2016 [Huijbregts2016] and IMPACT
World+ [Bulle2019]) have improved these elements or not.

In general, midpoint indicators are largely preferred by the LCA practitioners since endpoint
indicators can exhibit large uncertainties. Thus more robust conclusions could be derived using
midpoints. Even when endpoints indicators or other types of aggregation are used, it is highly
recommended to supplement them with the midpoint indicators [European Commission2010].
The disadvantages of using these aggregated methods were also discussed in section 2.3.3 where
investigations have shown that they distort the pareto front of the original problem i.e. many
problems that were optimal in the original set of midpoints could be skipped when aggregated
indicators are used.

Preferred impact assessment in CEA

Midpoints are also preferred in CEA using the life cycle impact assessment method of the environ-
mental footprint (EF) 3.0 [Fazio2018]. As compared to the ILCD recommendations in 2011 [Eu-
ropeanCommission2011], only midpoints are proposed under EF, where endpoints were also in-
cluded initially. This method was proposed in order to facilitate communication of environmental
information. Thus it is a part of the strategy of the European Commission to establish common
methods to quantify and transmit environmental performance of different products. Consequently,
the impact assessment methods proposed under the ILCD framework are further modified in this
context.
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4.1.3 Impact assessment method selected in this thesis

The impact assessment method selected in this thesis is IMPACTWorld+ [Bulle2019] due to three
main reasons. First, it was recently updated using the state-of-the-art developments in the impact
pathways (ibid.). Second, the EF method is not readily available in the LCA framework Bright-
way2 used in this thesis. While the IMPACTWorld+ is available for download online1. Third,
IMPACTWorld+ contains indicators at both midpoints and endpoints. It was not considered worth
investing resources to add EF method to Brightway2. Mainly since, the impact assessment method
if available, can be easily substituted and it will not make a difference to the methods proposed in
this thesis.

4.2 Indicator selection based on a visual survey

This technique was discovered during the analysis of case-study results from the implementa-
tion of many-objective optimisation including the LCA indicators. It was realised that for certain,
simple cases correlations between the LCA indicators could be found even before running an op-
timisation. That is, before an initialization of the problem which is required by other reduction
methods. Where the problem is allowed to run for certain time and the results are analysed to
identify correlations between the indicators.

For this method, correlations could be identified based on average values. After the correla-
tions are identified, the objective reduction techniques operate on the same general principle. The
correlated indicators are grouped together, resulting in uncorrelated groups of indicators. Then one
indicator from each group is selected, such that each group is appropriately represented. Optimis-
ing with respect to the selected indicators will then be equivalent to when optimising with respect
to the original set of indicators. Thus maintaining the same pareto front with the reduced set of
indicators as the original problem. In other words, optimising with the reduced set of indicators
should give the same solutions as optimising with the original indicator set.

Even though it has limited application, this type of pre-selection is not possible using the
existing objective reduction techniques in LCA.

An outline of the method can be seen in figure 4.3 and can be described in the following steps:

First step is defining components to be optimised in terms of the defined functional unit as per
the LCA goal and scope (impact per unit) for the considered set of indicators. For example,
if the goal is to optimise electricity sources in a network, a valid unit of comparison could
be impact per kWh or impact per kW. Similar for the case of LCA, the selection of the
functional unit is crucial and can lead to significant difference in results. Nevertheless,
since the technique mentioned here also uses the same functional unit for differentiation,
results will be consistent with the LCA indicators.

In second step, impact per unit is then standardised by dividing with the corresponding maximum
impact per unit. Since the impact indicators have different units, standardising enables
comparison across them. At this point, impacts of components could be plotted on a line
graph. If a particular component has a variable impact per unit, all possible values should
be plotted.

Third step is grouping indicators such that each group has the same ranking of components within
them. For different solutions consisting of different combinations of components, indicators

1 http://www.impactworldplus.org/en/writeToFile.php
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Define the components to be optimized, as the functional
unit i.e. impact per unit for selected indicators

Standardise the impact by dividing the impacts by max 
value in the respective indicator 

Classify impact indicators into separate groups, such that
each group has the same ranking of components in terms

of their impact

Further classify indicators into sub-groups, such that
indicators in a sub-group are ≈20% close to each other

Select one indicator from each sub-group for 
optimisation, analyse the results using correlation matrix 

to verify the results. If any indicator is incorrectly
classified, add the indicator to the optimisation and re-

run.

1.

2.

3.

4.

5.

Figure 4.3: An illustration of the methodology to select impact indicators using a visual survey

within a particular group will co-vary. Since the impact of the system is nothing but an
aggregation of impacts of individual components.

Fourth step is then further sub-grouping the indicators such that the indicators in a sub-group lie
close to each other. It was seen in the simulation runs that a range of ≈ 20% could be used
distinguish the sub-groups. This step further refines the groupings obtained in the previous
step. It gives a more conservative classification of indicators since it was observed during the
analysis that in certain cases even if the indicators belong to the same group (same ranking),
they could vary differently if they lie far apart from each other. One indicator from each
sub-group could then be selected for optimisation.

Fifth step is about verifying the obtained results. The indicators from the obtained optimisation
results could be verified using a correlation matrix. The indicators within a particular sub-
group should have high coefficient of correlation (≥0.7). If this is not the case, this indicator
should be included in the optimisation and the problem should be re-initialised.

4.2.1 Example: Design of a bike

For a demonstration of the technique, let’s consider a hypothetical problem of designing a bike
weighing 1 kg. The functional unit selected for LCA is also 1 kg for simplicity. It is made from 3
materials: aluminium, glass fibre and tin. The environmental impacts of these 3 materials are ob-
tained from ecoinvent 3.6 [Wernet2016] using the ImpactWorld+ assessment method [Bulle2019].
Complete name of the processes and absolute impact per kg is presented in annex table A.11.

Following the first step of the methodology, the functional unit 1 kg is the comparison unit
between the 3 materials. Then, the impact of these 3 materials is standardised with respect to
the maximum value and plotted on a line graph. For example, aluminium has the maximum
value in climate change potential, thus its value becomes equal to 1. This enables the comparison
across different environmental indicators. These 8 midpoint indicators out of the 18 are arbitrarily
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selected in this case. Application of the methodology to this case study for 1-4 steps can be seen
in figure 4.4.

aluminium

Glass fibre

Tin

Functional unit: 
Impact/kg

0

0.2

0.4

0.6

0.8

1

Climate
change, long

term

Fossil and
nuclear energy

use

Freshwater
ecotoxicity

Freshwater
eutrophication

Human toxicity
cancer

Marine
eutrophication

Mineral
resources use

Terrestrial
acidification

Standardised Impact per kg (impact/max_impact)
aluminium
production
, primary,
ingot

glass fibre
production

tin
production

Group A (Al > Tn > glass) Group B (Tn > Al > glass) Group C (glass > Tn > Al)

Climate change, Fossil & nuclear
energy use, Human toxicity
cancer, Terrestrial acidification

Freshwater ecotoxicity, Freshwater
eutrophication, Marine eutrophication

Mineral resource use

Group A.1 Group A.2 Group B.1 Group B.2 Group C.1

Climate change, 
Fossil & nuclear
energy use, 
Human toxicity
cancer

Terrestrial
acidification

Freshwater ecotoxicity,
Freshwater
eutrophication

Marine 
eutrophication

Mineral resource use

1.

2.

3.

4.

Figure 4.4: Classification of the indicators according to the visual survey (steps 1-4) applied to a
fictional case study of designing a bike

Then for the third step, indicators can be classified into 3 groups, with respect to the ranking of
the 3 materials within them. For example, in climate change, highest impact is from aluminium,
followed by glass fibre and tin.

The indicators are further classified into sub-groups such that they lie close to each other
(within≈ 20%) in the fourth step. Thus 5 sub-groups are obtained as seen in the figure. Optimisa-
tion is not done in this case, but 20 design alternatives are generated with varying quantities (in kg)
of the 3 materials. These alternatives are generated by increasing the aluminium values and then
filling the rest of weight with glass fibre and tin. Their compositions and impacts, standardised
with respect to the max value is shown in figure 4.5. It can be clearly seen that the indicators
within a group and a sub-group co-vary together. While the co-relation between the sub-groups is
even stronger.

To understand in more detail, let’s consider the two indicators belonging to the same sub-
group, freshwater ecotoxicity and freshwater eutrophication. The impact per kg in decreasing
order in them is: aluminium, glass-fibre and tin (figure 4.4). The relative positioning of points
within them is quite similar. A particular solution of designing a bike weighing 1 kg will require
x, y and z amounts of aluminium, glass-fibre and tin respectively. For the two indicators, each
material will have a similar impact contribution, since the relative impacts of the three materials in
both indicators are similarly positioned. Consequently since the impact of the system is nothing
but an aggregation of the impacts of 3 materials, the indicators within a subgroup will thus co-vary.

If we compare 5 solutions in terms of their contributions in figure 4.6, after having standardised
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Soluti
on no.

aluminium 
(kg)

glass fibre 
(kg)

tin (kg)

1 0.05 0.0475 0.9025

2 0.1 0.09 0.81

3 0.15 0.1275 0.7225

4 0.2 0.16 0.64

5 0.25 0.1875 0.5625

6 0.3 0.21 0.49

7 0.35 0.2275 0.4225

8 0.4 0.24 0.36

9 0.45 0.2475 0.3025

10 0.5 0.25 0.25

11 0.55 0.2475 0.2025

12 0.6 0.24 0.16

13 0.65 0.2275 0.1225

14 0.7 0.21 0.09

15 0.75 0.1875 0.0625

16 0.8 0.16 0.04

17 0.85 0.1275 0.0225

18 0.9 0.09 0.01

19 0.95 0.0475 0.0025

20 1 0 0
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Figure 4.5: Results of impact indicators of the 20 design alternatives

them with respect to the max value in the set, the relative change and contribution analysis between
the two indicators is similar. Since in a particular sub-group, ranking of these materials in terms
of impact is similar, the impacts within a classified sub-group will also change proportionally.
Even though the percent decrease is different in both figures, the co-efficient of correlation and
co-efficient of determination for the two indicators are ≈ 0.99. Thus, outlining a perfect co-
relation between both. The efficiency of classifying co-varying indicators can be verified using a
correlation matrix in the next section.
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Figure 4.6: Contribution analysis of the 5 solutions in terms of the two LCA indicators.
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4.2.2 Design of a bike: comparison with PCA

The selection of indicators using the visual survey can be compared to selection using principal
component analysis. The technique was initially described in section 2.3.4. To remind the steps to
be followed in this technique, they are illustrated in figure 2.10 as per [Deb2005, Saxena2012].

Here the sample set for PCA based reduction are the hypothetical 20 design alternatives pre-
sented previously. The analysis was done using a freely available excel package Real statistics2

by [Zaiontz2017]. Once the solutions are available, the next step is the correlation matrix which
can be seen in table 4.1.

Table 4.1: Correlation matrix of 8 impact indicators for the 20 bike alternatives.

Climate change
Fossil and nuclear

energy use

Freshwater

ecotoxicity

Freshwater

eutrophication

Human toxicity

cancer

Marine

eutrophication

Mineral

resources use

Terrestrial

acidification

Climate change 1.00 0.97 -0.86 -0.84 1.00 -0.74 -0.98 0.53

Fossil and nuclear

energy use
0.97 1.00 -0.72 -0.69 0.98 -0.56 -1.00 0.71

Freshwater

ecotoxicity
-0.86 -0.72 1.00 1.00 -0.84 0.98 0.74 -0.02

Freshwater

eutrophication
-0.84 -0.69 1.00 1.00 -0.81 0.99 0.71 0.02

Human toxicity

cancer
1.00 0.98 -0.84 -0.81 1.00 -0.71 -0.99 0.57

Marine

eutrophication
-0.74 -0.56 0.98 0.99 -0.71 1.00 0.59 0.18

Mineral

resources use
-0.98 -1.00 0.74 0.71 -0.99 0.59 1.00 -0.69

Terrestrial

acidification
0.53 0.71 -0.02 0.02 0.57 0.18 -0.69 1.00

Then, the eigenvalues and eigenvectors of this matrix is calculated. The resulting eigenvector
corresponding to the highest eigenvalue is the first principal component (PC). These eigenvectors
are arranged in decreasing order in table 4.2. Furthermore, 100% of the cumulative variance is
explained by the first two components. These results can be seen in figure 4.7. Following the rec-
ommendations of [Saxena2012], most negative and most positive indicators are retained. These 3
(out of 8) indicators are highlighted in bold in table 4.2. Meaning that just these 3 indicators could
be used for optimisation while avoiding a transfer of impact. Or in the optimisation terminology,
optimising with respect to these 3 indicators will maintain the pareto structure of the initial 8 in-
dicators. Since the variance in the entire set can be in fact predicted by estimating only these 3
indicators. They cannot be further reduced since the coefficient of correlation between them stays
less than 0.53 for all combinations.

2 https://www.real-statistics.com/
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Table 4.2: PCA results for the 8 impact indicators. Selected indicators are highlighted in bold.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eigenvalues (λ ) 6.23 1.77 0.00 0.00 0.00 0.00 0.00 0.00

Explained variability (%) 78 22 0 0 0 0 0 0

Cumulative variability (%) 78 100 100 100 100 100 100 100

Climate change 0.399 0.077 0.265 -0.170 0.015 -0.331 0.780 0.133

Fossil and nuclear energy use 0.377 0.253 0.362 -0.331 -0.181 -0.425 -0.566 -0.139

Freshwater ecotoxicity -0.365 0.311 -0.005 -0.204 -0.427 0.067 0.267 -0.686

Freshwater eutrophication -0.357 0.339 0.016 -0.233 -0.457 0.044 0.000 0.702

Human toxicity cancer 0.396 0.116 0.288 -0.206 -0.028 0.839 0.000 0.000

Marine eutrophication -0.324 0.442 0.099 -0.338 0.759 0.000 0.000 0.000

Mineral resources use -0.382 -0.230 0.840 0.310 0.000 0.000 0.000 0.000

Terrestrial acidification 0.175 0.676 0.000 0.716 0.000 0.000 0.000 0.000
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Figure 4.7: Scree plot of the principal components

The impact indicators are shown in bi-dimensional plots of the first two principal components
in figure 4.8. This plot makes it easier to visualise the relationships between the different indica-
tors. The closer the indicators lie to each other, the more they are co-related and vice-versa. The
co-variance predicted by the visual survey is thus corroborated, first by the correlation matrix and
then by the figure in discussion.

In terms of selecting the impact indicators for optimisation, it is clear that PCA is more efficient
than the visual survey which can be seen in terms of two things. First, the number of indicators
selected by PCA is 3 whereas by visual survey is 5. The latter is more conservative in this aspect.
Secondly, PCA can identify indicators with the maximum and minimum loadings on the respective
PC. That is, quantification of impact indicators with the highest influence within a group. Even
though selection of an indicator within a sub-group is random for the visual survey, its effect
on the final optimisation result should be negligible since it was shown that reliably grouping of
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Figure 4.8: LCA indicators plotted in terms of the two principal components.

Table 4.3: Comparison of indicators selected by visual survey and PCA

Initial indicators (8)

Climate change, Fossil & nuclear energy use, Freshwater ecotoxicity,

Freshwater eutrophication, Human toxicity cancer, Marine

eutrophication, Mineral resource depletion, Terrestrial acidification

PCA reduced indicators (3) Climate change, Mineral resource depletion, Terrestrial acidification

Visual survey indicators (5)
Climate change, Mineral resource depletion, Terrestrial acidification,

Marine eutrophication, Freshwater eutrophication

indicators in terms of co-variance was achieved.

4.2.3 Limitations

Following are the limitations of identifying redundant indicators using the visual survey approach:

When the optimisation variable cannot be defined in terms of functional unit - In the above ex-
ample each optimisation variable (amount of material) could be defined with respect to
each indicator (impact per kg). In case when this is not possible, a visual survey cannot
be used. For energy systems, a parameter related to operation strategy is a commonly used
optimisation variable. For instance in example 1.1.5, deciding the value of electricity price
’x̂’, such that, the electricity is taken from the grid or from local sources. It is not possible to
define the optimisation variable electricity price in terms of the functional unit (impact per
kg H2), thus making visual survey unusable.

Complex system - A sufficiently complex system could render the use of visual survey infeasible
since it might not necessarily reduce the number of indicators to optimise. The number of
sub-groups formed following the schematic in figure 4.3 could be equal to the original set of
indicators. Two possible scenarios come to mind. First, if there are too many components,
there could be more than manageable subgroups due to numerous rankings possible between
the components. Second, if the components are highly non-linear in the line graph (e.g.
figure 4.4).

Conservative reduction of redundant indicators - As compared to other methods, visual survey
can be more conservative in selecting the representative indicators. With this approach
it could still exist the opportunity to further identify redundant indicators. However, it was
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Chapter 4. Objective reduction of LCA indicators using a visual survey

seen in various simulation runs that if the classification in the visual survey was stopped only
with the technology rankings (step 3 in figure 4.3), consistent identification of correlations
might not be always guaranteed. Hence, it is obliged to sub-group them further and select
additional indicators.

4.3 Recommendations on its use

Taking into consideration the above discussion, the visual survey technique is thus recom-
mended to be used when: a case is not complex and the optimisation variables can be defined in
terms of the LCA functional unit. The effort saved in this case will be the initialization of the
problem for generation of sample set. Usually, it is running the problem in the original objective
space for a limited time. All the other strategies seen so far need at least a partial initialisation of
the optimisation problem to obtain a sample set. As mentioned previously, the problem is often run
for many generations (e.g. 200-2000 generations in [Yuan2017,Saxena2012,Perez Gallardo2013])
to obtain this initial set so that it represents the same correlations/dominance structure as in the
pareto front. For situations where there are many objectives or when the model is expensive to
compute, this can take a lot of time. Thus making its application impractical. On the other hand,
the visual technique seems to be the only approach which could be utilised ’a priori’.

Additionally, the analysis of an optimisation problem in this way (e.g figure 4.5) offers an intu-
itive approach to finding correlations and objective reductions. Thus enhancing the understanding
of the model behaviour. This can be especially relevant when the users are non-experts in life
cycle assessment or objective reduction.

More research is needed to improve the above mentioned limitations. The most important step
would be the application of this principle in an algorithm. Using this, the technique can be refined
and the practical ceilings on its use can be found. For example, for forming the sub-groups of
indicators in step 4 of the method, a 20% limit between the indicators is proposed using empirical
results. This number could be tested or further defined precisely. Similar testing is needed for
finding insights on its application on complex systems. For instance, further precision of use on
components with non-linear impact/unit.

4.4 Conclusions

A visual technique to identify correlations between the LCA impact indicators for certain
systems was presented. This property could then be leveraged to select impact indicators for
optimisation and discard the redundant ones. A hypothetical case study of designing a bike was
used as a demonstration. An already well established approach in the literature (PCA) for the
same purpose was used to verify the obtained results. The limitations of this approach and its
comparison with similar found techniques in the literature were also discussed. It is concluded
that it is a promising technique that can identify correlations between the indicators without an
initialization of the problem. It could be used in certain cases if the limitations can be avoided.
Nevertheless, more research is required in order to implement the principle of this technique in an
algorithm to refine its applications and also to eliminate human errors.
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5
Including environmental indicators in the

multi-objective search of solutions

The goal of this chapter is to present an optimisation approach of combining NSGA-III and ob-
jective reduction to include high number (10+) of LCA indicators in the multi-objective search
of solutions of hybrid energy systems. This chapter proceeds as follows. First the contribution
and relevance of this proposition with respect to the literature is discussed. Then in the second
section a dimensionning case study involving hydrogen production from PEM water electrolysis is
prepared for demonstration of this approach. The proposed optimisation approach is tested with
14 indicators out of which 13 are LCA midpoints in the third section. Its performance with respect
to the conventional NSGA-III and multiple extents of objective reduction is presented. Then in
the fourth section an approach to visualise pareto-optimal solutions at the end of optimisation is
presented. Conclusions are presented in the last section.
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5.1. Relevance and contribution to the literature

5.1 Relevance and contribution to the literature

For the inclusion of LCA indicators, so that acceptable solutions can be searched with higher
environmental efficiency, NSGA-III algorithm with objective reduction is proposed. Objective
reduction techniques indeed improve performance of various evolutionary algorithms in terms of
lower computational time and better quality results in the literature [Brockhoff2007, Gonzalez-
Garay2018, Deb2005, Perez Gallardo2013]. To the best of our knowledge, objective reduction
techniques are not yet combined with the NSGA-III. A possible reason could be that objective
reduction techniques were initially introduced to deal with the convergence issues of the older
generation evolutionary alogrithms like NSGA-II or SPEA2. While NSGA-III already seems to
be efficient with high number of objectives (upto 15) [Deb2013]. However, we saw in section
2.3.5, that promising improvements on computational time, solution quality and decision-making
could be possible using objective reduction especially when the computations are expensive.

As far as it is understood, the evolutionary algorithm NSGA-III has not been utilised in LCA
investigations thus far. Except for conference article that was made with the preliminary model
of the case study in this chapter [Sharma2020]. With its demonstration, two key advantages are
brought to the LCA literature. First is its ability to supply well converged, well-diversified solu-
tions for problems with up to 15 objectives [Deb2013]. Second is its ability to search for prefer-
ential solutions using the supplied reference points. In the LCA literature, the pareto solutions are
often subject to post-processing using techniques such as multi-criteria decision making [Perez-
Gallardo2018], data envelopment analysis [Gonzalez-Garay2018], pareto filters [Antipova2014],
etc.. Using NSGA-III, preferential solutions are inherently searched by supplying a set of refer-
ence points. Thus, use of such post-processing techniques might not be necessary.

In this chapter, a methodology to include LCA indicators in the many-objective optimisation
of hybrid energy systems is proposed. The performance of NSGA-III is thus tested with and
without objective reduction on a dimensionning problem in hybrid energy systems for the original
14 objectives. Visual survey and PCA, both correlation based techniques, were used for objective
reduction. It was found that better quality solutions could be obtained in less time when the
objectives were reduced until 7. If objectives were reduced further using a correlation matrix
as per the last step (see figure 2.10) suggested by [Deb2005, Saxena2012], there was a trade-off
between the computational time and the quality of solutions.

Furthermore, the correlation between indicators was also used to ease visualization of results.
Solutions could be presented only in terms of reduced indicators along with the correlations in-
formation of the temporarily eliminated indicators. Such that, the decisions could be made on
the reduced set while clear information is provided regarding the their correlations with the dis-
carded ones. Here on the other hand only 4 indicators were found to be sufficient for the final
representation from the initial set of 14 optimisation objectives.

This proposal thus addresses the problem of including the LCA indicators to enable the search
of solutions with higher environmental efficiency and supplying them in a coherent way to engi-
neers or decision-makers. Additionally, 13 midpoint LCA indicators are included for this purpose
instead of aggregating them using endpoints or weighting. This addresses two issues: First, the
solutions optimal in the original objective space are not skipped. Second, it also adheres with
the preferences of LCA community in general, decision-makers and CEA & its partners of using
midpoint indicators.
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Chapter 5. Including environmental indicators in the multi-objective search of solutions

5.2 Hydrogen production case study

The case study of hydrogen production presented in the earlier chapters is modified in order
to demonstrate the optimisation approach. Basically, the problematic, constraints and the goal
remain unchanged but two additional components, photovoltaics and wind turbine are added. For
a reminder, the goal is to dimension the system in order to satisfy the variable hydrogen demand
in Marseille, France. Hydrogen is produced using PEM water electrolysis. The restraints to this
sizing problem are costs (fixed and variable) of each component, energy demand and local weather
conditions. An illustration of the case study in the simulation software can be seen in figure 5.1.

Figure 5.1: Representation of the case study in Odyssey.

Pre-estimation

Before proceeding with the optimisation, a pre-estimation is necessary to see whether it is actually
relevant for this case. If the difference between the min and max values of LCA indicators is
less than 30%, due to the uncertainties in LCA, it will be difficult to differentiate between the
obtained solutions. Thus an optimisation search would not be very useful. For the above case,
a pre-estimation was already made in an example in section 1.3.2, where the inclusion of LCA
indicators in the multi-objective search was justified.

It was seen that only considering the impact of electricity, the climate change impact per kg
H2 reduced from 4.22 kg CO2-eq (grid electricity in France) to 0.83 kg CO2-eq (electricity from
wind turbine) respectively. Thus there could be a substantial gain in the environmental efficiency.
This is again a rough estimation and the final impact will depend on the system constraints, local
weather conditions, end of life scenarios, etc. However, it gives enough motivation to proceed
forward with this dimensionning problem. Thus in this chapter, the system is dimensionned with
respect to the technical, economic and LCA indicators together.

Modelling information

The technical, economic and LCA inputs are described in detail as much as possible in the coming
subsection. The tech-eco indicators are retained from the example presented in chapter 1. Techno-
economic data was found from literature, databases or default values used in the laboratory. For
developing the LCA model, the framework presented in chapter 3 is used again. For simplicity,
these steps are not described in terms of the framework. Instead the information is described
according to each component of the system.
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5.2. Hydrogen production case study

The technical indicator is the unsatisfied hydrogen demand, which can be expressed as the
percentage of the total mass based hydrogen demand the system was unable to satisfy during the
project lifetime. While the economic indicator is levelised cost (C) per kg of hydrogen. While
for LCA as mentioned before, 13 midpoint indicators from a recently updated method IMPACT-
World+ are selected [Bulle2019]. The main reason for this selection was that they were recently
updated according the developments in the impact pathways. Any other impact assessment could
also be used in the future by the users.

5.2.1 Inputs to the integrated model

The economic inputs are only for demonstration of the approach and they are based on default
values found in the literature. Project lifetime is assumed to be 20 years, as it is the often used
value for similar energy projects. The step 3 of GSA is not performed for this case study. It was
however already performed for an initial version in the earlier chapter. A summary of the model
is presented in table 5.1 and it is further described below:

Electrolyser data is the same as the one established in the previous chapters for the ’base case’
of PEM water electrolysis. Except for one difference which is, the modelling of iridium process
not available in ecoinvent 3.6 was added according to the method from [Nuss2014] described
previously. The stack life time is assumed to be 90,000 h. Full data is available in annex tables
A.1 (base case), A.2.
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Figure 5.2: Production data of solar PV and Wind for the first nine days.

Solar PV production data is taken from the freely available database renewable.ninja1 [Pfen-
ninger2016]. For the location of Marseille, France, the capacity factor is 0.19. The LCA model
for solar PV is taken from the ecoinvent 3.6 database for multi-Si technology, updated according

1 https://www.renewables.ninja/
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Chapter 5. Including environmental indicators in the multi-objective search of solutions

to more recent industrial data from [Gazbour2016]. More specifically, four elements are modi-
fied. First, the wafer thickness is decreased according to recent modules, resulting in a decrease
in amount (kg) of silicon per 1m2 wafer manufacture from 1.14 to 0.66. Second, in multi-Si
silicon production process, only solar grade silicon is used. Third, in the silicon production,
siemens process, electricity requirement is decreased from 115 to 55 kWh/kg. While the elec-
tricity mix is changed to 80% chinese and 20% world mix, inline with the current solar PV supply
chain [Gazbour2018]. An illustration of the modifications in the ecoinvent 3.6 database is illus-
trated in figure A.1 and the PV inventory activities are listed in table A.9. Solar PV is a modular
technology, where the size is increased with additional PV panels. Thus, a linear relationship
between the solar PV size and the inventory is followed i.e. b=1 in equation 3.2.

Wind production data is taken from renewable.ninja as well [Staffell2016]. The data was ex-
tracted for a fixed hub height of 76m which corresponds to 2MW turbine with a rotor diameter
of 91m. This results in a capacity factor of 0.31. For other wind turbine sizes, capacity factor
is kept constant, that is, the time series is scaled linearly with respect to the turbine power. In
the real world however, the wind speed and thus the electricity production varies with the hub
height (which changes with turbine size). Another approach of using a shear co-efficient as done
in [Caduff2012] was also tried, but it resulted in even more unrealistic estimations. The ideal case
is extracting data for each turbine power and hub height from renewable.ninja itself. However,
they only allow limited access per hour which could be a limiting factor for sensitivity analysis or
optimisation. This was not pursued further. Hence, there is room for improvement in the electric-
ity estimations from wind turbine. The LCA inventory is from [Padey2013,Sacchi2019], available
online2 for adaptation as a python notebook. It is a parameterized model that calculates a detailed
inventory using a limited amount of parameters such as turbine size, type (offshore or onshore),
etc. An example inventory of 2MW wind turbine calculated from this model is shown in annex B.

Table 5.1: Summary of inputs to the integrated techno-economic-LCA model

Component Technical
Economic

Environmental
Initial fixed costs Other costs

Electrolyser
56% efficiency

stack life - 90,000 h
3.4 C/size (W)

Stack change: 2%

of initial cost

Parameterized model,

data in base case

table A.1 & table A.2

Solar PV
5 min time-serie

Cap. factor - 0.19
0.8 C/size (W)

O&M: 0.42% of

initial cost

Ecoinvent 3.6, update

acc. to [Gazbour2016].

figure A.1, table A.9

Wind
5 min time-serie

Cap. factor - 0.31
1.38 C/size (W)

O&M: 3% of

initial cost

Parameterized

model, e.g. in annex B

Grid

Stack at max power

when price ≤ 50 C/MWh.

Use grid unless

local source available.

25000 C

Electricity

price time-serie,

O&M: 10,000 C/year

Ecoinvent 3.6

high voltage,

french mix

Tanks
30-60 bar pressure

initial pressure - 30 bar
1135 C/size (m3) - Not included

2 https://github.com/romainsacchi/LCA_WIND_DK/blob/master/LCA_parameterized_model_Eolien_public.ipynb
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5.2. Hydrogen production case study

Grid and operation strategy. An operation strategy is necessary for the functionning of energy
simulations software used in this thesis. It mainly functions as conflict resolution. In this case, use
of electricity from grid or local sources PV/wind. The strategy selected is hydrogen production
at maximum power if the price of electricity is less than 50 C/MWh. Since in this particular
time serie, there is an excess production from nearby sources, leading to exceptionally low prices
during certain time periods. The same strategy was used in the original case study conducted
previously in the laboratory for dimensionning with respect to tech-eco. The threshold values
between 45-59 C/MWh provide comparable trade-off between the load satisfaction and hydrogen
price. One caveat to note is that, when the local sources of electricity, PV and wind are present
and available, they are used irrespective of the operation strategy. Production continues as long
as the hydrogen can be produced to satisfy the demand or to fill the storage. Impact of the grid
electricity is modelled as the high voltage french mix in Ecoinvent 3.6 [Wernet2016].

Hydrogen storage tanks are operated within a range of 30-60 bar. Pressure cannot be dropped
below 30 due to technical constraints. The starting pressure is set at a minimum of 30 bar.
Since it was observed that when the pressure is set anywhere above 30 bar, the storage was over-
dimensionned due the already available ’free’ hydrogen in the system. The environmental impact
of storage was not included since the goal of the case study was a demonstration of a global ap-
proach rather than calculation of exact environmental impact. Ideally, it should indeed be included.

Other LCA inputs. The LCA boundary selected is cradle to grave. It includes as much im-
pacts as possible throughout the project lifetime including raw material extraction, fabrication of
components, use phase, transport until their end-of-life. For transport, default values used in the
market mixes are used, additional transport in the foreground processes are not included but they
can be easily added if required by the users.

The geographical preference for all activities are selected in terms of increasing geographical
area around France (e.g. France, neighbouring countries, Europe, Global). These preferences are
coded in Brightway2 to select the activities in ecoinvent closest to the desired the geographical
scope.

For the end-of-life, only the recycling of materials for which the activities are available in
ecoinvent 3.6 (metals & plastics) are included [Wernet2016]. The system is credited for recycling
by avoiding the production of virgin materials. The recycling rate is set at 50%. Rest of the
materials are either landfilled or incinerated. The calculation steps followed in section 3.3.3 is
used again.

End-of-life processes are not included when LCA indicators are calculated in the optimisa-
tion loop itself to reduce the computational time. Since, it was verified during preliminary runs
that the inclusion of end-of-life processes only marginally reduced the total impact for this case
study. As was also seen in chapter 3, the low importance of recycle rate. However, at the end of
the optimisation run, when the pareto optimal solutions are finally compiled, impact is calculated
including these processes. These processes can indeed be included while maintaining a low com-
putational time. Since the results were not expected to change with this step, it was kept for future
enhancements.

5.2.2 Computational structure

Once the integrated model with tech-eco-LCA indicators is ready, the optimisation algorithm can
be coupled with it. In essence, the algorithm gives various parameters to the integrated model who
then calculates the desired performance indicators or the fitness. The computational structure for
this case study is illustrated in in figure 5.3.

NSGA-III first launches energy simulations in Odyssey for different system sizes. The result
of this simulation are the tech-eco indicators and the operational details, for each system con-
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Figure 5.3: Computational structure for search of solutions for including technical, economic and
LCA indicators

figuration. Both are read in Python. The operational details are the time-series of performances
of each component for one year. This is then used to initialise the parameterized LCA models.
The calculation details using them are already specified in section 3.3.1. Additionally for the two
new components, the size of wind turbine and solar PV are obtained from energy simulations to
initialise their LCA models.

LCA inventories with the different activities is thus compiled followed by impact calculation
using Brightway2. All indicators are then analysed by NSGA-III for dimensionning. The loop
continues until a stopping criterion is attained.

5.3 Performance of NSGA-III with reduced indicators

In this section, the performance of NSGA-III with reduced set of indicators is tested. Con-
sequently, a comparison between three optimisation cases: one with full set of objectives (14);
second with indicators reduced using visual survey (7) and third with indicator reduction using
heuristic of [Deb2005, Saxena2012] relying on principal component analysis (2-4). The overall
comparison scheme is present in figure 5.4.

From the initial set of indicators (15), the technical indicator, unmet load is added as a con-
straint at 10%. Individuals below this value were discarded. Since it was observed that often
solutions below a certain satisfactory value were termed as technically feasible solutions. Any
other value for the ’feasible solutions’ could also be defined instead. Or it also possible to include
this as an additional objective for optimisation.

The technically feasible system configurations are thus searched for all 14 objectives using
NSGA-III. For the second test, 14 objectives are reduced using the visual survey to 7. For the
third test, 14 objectives are reduced to 2-4 objectives using PCA [Deb2005]. All LCA impacts
for the temporarily discarded indicators are however still retained. Even though they are not used
during the optimisation loop, they are used to finally compare the quality of solutions obtained.
The three setups are then compared for the no. of function evaluations required for convergence
and the quality of solutions obtained. This is done by assessing the pareto optimal solutions, their
objective values and the hypervolume indicator. Whereas the objective reduction procedures for
the two approaches and reference point selection will be explained later in this section.

98



5.3. Performance of NSGA-III with reduced indicators

Indicator reduction

using visual survey

Optimisation with 7 

objectives

Optimisation with 14 

objectives

But results saved for all 

14 indicators

Comparison using objective values, hypervolume

indicator with no.of evaluations

Pareto optimal 

solutions

Indicator reduction

using PCA

Optimisation with 2-4 

objectives

Figure 5.4: Comparison scheme for testing performance for different optimisation cases

5.3.1 Hypervolume indicator

Hypervolume indicator is widely used to measure the quality of solutions proposed by multi-
objective optimisation in terms of their convergence and diversity [Bechikh2016]. The former
means its closeness to the optimal set while the latter means the spread of solutions in the entire
objective space [While2011]. It quantifies this by measuring one single value: the portion of
space in all objectives covered by a set of solutions. The space is measured with respect to non-
ideal point. This point is generally between 5-50% worse than the worst point expected in the
set [Ishibuchi2018]. Hypervolume indicator is especially useful in practical problems when the
exact pareto front is not known. It will thus be used in this chapter to assess the quality of the
solutions in the pareto front.

Ideal point

A1

Reference (anti-
ideal) point

A2

B2

B1

IH (A)

IH (B)

Figure 5.5: Hypervolume calculation principle adapted from [Zitzler2003].

For example, consider two solution sets A and B with two points each. If the goal is to min-
imise the two objectives f1 and f2, the space covered by the respective solution sets in the two
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Chapter 5. Including environmental indicators in the multi-objective search of solutions

objective space, IH(A) and IH(B) can be seen in figure 5.5. As the solutions become widely dis-
tributed (diversity) or closer to the ideal point (convergence), the space covered by them increases.

Theoretically speaking, four properties of hypervolume indicator found in the literature are
important to note:

• If IH(A) > IH(B), there is definitely one space which is dominated by A which is not by B.
Thus it must contain a solution vector A1 which is not dominated by any of the solutions in
B [Zitzler2003].

• Whenever a solution set A dominates another set B, then the hypervolume indicator is al-
ways greater for the former than the latter [Zitzler2007].

• If a solution set A achieves the maximum possible hypervolume for a given problem, it
guarantees that A contains all Pareto-optimal objective vectors [Zitzler2007].

• If A is a preferred alternative to B, it is not possible to have an indicator value as IH(B) >
IH(A) [Zitzler2003].

To conclude, if the hypervolume indicator for a given set is higher than the other, it can be
concluded that, the given set is at minimum, comparable to the other set in terms of dominance
but with higher diversity, like in the above figure. However, it is also possible that the set with
higher hypervolume dominates the other set. Thus, solution sets with higher hypervolume values
are generally considered of better quality.

The hypervolume calculation algorithm proposed by [While2011], available online3 is used
in this thesis. Since the DEAP package uses the hypervolume calculation proposed by [Fon-
seca2006], for which computational time is infeasible for the number of objectives (14) and size
of pareto (1000+) in this thesis.

5.3.2 Indicator reduction using visual survey

The visual survey steps applied to this case study is shown in figure 5.6. The first step is the
specification of components in terms of the functional unit ’Impact/kg Hydrogen produced’. Then,
an estimation of the impact based on a static simulation of possible impact values attainable by
these components are obtained.

In brief, the LCA models described above are utilised again but a simplistic estimation is made
based on average values from production and consumption time series. Out of the 4 components,
impact of grid and PV will be constant per kg hydrogen produced. Since scaling of their impact is
linear with respect to the electricity produced. For PEM electrolyser and wind, their scaling with
respect to size is non-linear. Hence, the first step is to find an initial estimate of their sizes based
on average values using the following equations:

Electrolysersize(kW ) =
LHVH2(kWh/kg)∗H2 avg. demand (kg/h)

e f f iciency
(5.1)

Windsize(kW ) =
Elysize(kW )

Wind capacity factor
(5.2)

Where, LHVH2 = 33.3 kWh/kg is the lower heating value of hydrogen. Average hydrogen
demand and capacity factor is calculated using the one year time series. The average sizes of
electrolyser and wind are 878 kW and 2.05 MW respectively. Then, a range of possible sizes
attainable is estimated to be around (500 kW-5 MW) PEM electrolyser and (0-8 MW) for wind

3 https://pypi.org/project/hvwfg/
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Figure 5.6: Indicator selection procedure using visual survey for this case study

turbine. Equidistant points from this range are selected to calculate their impacts. First for elec-
trolyser, the selected points of sizes, are fed in equation 5.1 to get the average hydrogen produced.
Then, the impact per kg hydrogen is calculated using the following equation:

Electrolyser(Impact per kg H2) =
Electrolyser cradle to grave impact

H2 avg. production (kg/h)∗8760h∗ years of operation
(5.3)

A similar procedure is followed for wind. The equidistant wind sizes in the range (0-8MW) are
used first to calculate the electrolyser size from equation 5.2. Then, average hydrogen production
from this wind size is calculated using equation 5.1. Finally, equation 5.3 is used to calculate the
final impact per kg hydrogen of each wind turbine by substituting the electrolyser impact by wind
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LCA models. Similar procedure was also followed for solar PV, but its impact/kg H2 remains
constant for a particular location.

The impact per component is then standardised with respect to the max value in each indicator
to obtain the final comparison graph. Ultimately, the indicators are classified into groups and
sub-groups. One indicator is then selected at random from each sub-group in bold in the above
figure.

5.3.3 Indicator reduction using PCA

Initial 14 indicators were also reduced using the PCA method proposed by [Deb2005,Saxena2012].
It was performed on the pareto front (sample set) obtained after the 5 generations of running
NSGA-III with all objectives. This was done for 5 independent runs. It was noted that, a sample set
after higher number of generations is generally utilised in the literature [Yuan2017, Saxena2012].
However, due to high computational time (9s) per simulation, from a practical perspective, this
limit is selected.

Here, the indicator reduction procedure was varied by changing two settings: the threshold
value of including principal components (CUT) and the last step of reducing additional indicators
using a correlation matrix. This was done in order to find the influence of these two settings on
the final results. Changing the two above steps changes the number and the type of indicators
retained for the optimisation. Based on them, insights about these settings for the future use could
be obtained. The two instances are described below:

First instance: CUT value = 99.99% and additional reduction using a correlation matrix

Following the steps of schematic 2.10, first a correlation matrix is obtained. Then, the eigenvalues
and eigenvectors are calculated. The highest eigenvalue corresponds to the first principal compo-
nent (PC), the next highest with the second PC and so on. Only the first 5 PCs are displayed in
table 5.2 since from 5th PC onwards, they have 0 contribution to the explained variance. As per
the CUT = 99.99%, the first four principal components are retained. Then, the objectives with
most negative and most positive values are chosen. These are highlighted in bold in table 5.2.

Then, from the 7 selected indicators, additional reductions are made using correlations be-
tween them. First, the correlation threshold (Tcor) is calculated as per [Saxena2012] using the
following equation:

Tcor = 1.0−PCcum
1

(
1.0−

Ncum=95.4
pc

NOBJ

)
(5.4)

Where,

PCcum
1 : is the cumulative variance explained by the first principal component

Ncum=95.4
pc : Number of principal components required to explain 95.4% of the variance

NOBJ: Number of objectives in the original problem

Using the values from the table 5.2, Tcor=0.4. The 7 indicators obtained are classified using
the correlation matrix such that their correlations coefficients are greater than the calculated Tcor.
The correlation matrix is included in annex table A.12. Consequently, from this step, two sets
of objectives are formed. The first one being water scarcity and ionising radiation. The second
set includes rest of the 5 objectives. Then, one objective from each set is selected which has the
highest score (sci) defined by [Saxena2012]:

sci =
Npc

∑
j=1

PC j.abs(evi j) (5.5)
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Table 5.2: PCA results for the 14 indicators. Selected indicators are highlighted in bold.

PC1 PC2 PC3 PC4 PC5

Eigenvalues (λ ) 9.82 3.77 0.36 0.05 0.00

Explained variability (%) 70.11 27.93 2.6 0.35 0.0

Cumulative explained var. (%) 70.11 97.04 99.65 99.99 99.99

Cost in C/kg 0.282 -0.109 -0.654 -0.649 0.008

Fossil and Nuclear energy (FS) -0.206 0.388 -0.218 0.016 0.074

Climate change (CC) 0.249 0.320 0.013 0.226 -0.241

Mineral resources (Min) 0.303 -0.096 -0.379 0.469 -0.211

Water scarcity (W) -0.099 0.489 -0.087 0.051 -0.013

Freshwater acidification (FWA) 0.292 0.203 0.139 -0.089 -0.176

Terrestrial acidification (TER) 0.292 0.204 0.142 -0.093 -0.174

Freshwater ecotoxicity (FW eco) 0.297 0.138 0.398 -0.286 -0.131

Particular matter formation (PM) 0.306 0.146 0.054 0.090 0.902

Photochemical oxidant formation (POF) 0.307 0.136 0.076 0.117 -0.004

Human toxicity cancer (HT can) 0.305 -0.112 -0.293 0.389 0.016

Human toxicity non cancer (HT non can) 0.298 0.182 0.030 -0.181 -0.013

Ionizing radiation (IO) -0.224 0.361 -0.220 -0.004 -0.002

Ozone layer depletion (Oz) -0.189 0.412 -0.178 -0.009 -0.004

Npc: total number of principal components

PC j: explained variance of the principal component ’j’

evi j: is the ith eigenvector of the jth PC

Thus for example from table 5.2, sccost = 0.282 ∗ 0.7+ 3.77 ∗ 0.109 . . . and so on. In this
way, the indicators having the maximum contribution to all the PC out of the reduced set are
selected. This results in selection of 2 indicators: freshwater ecotoxicity and ionising radiations.
This procedure was repeated 3 times, it resulted in the selection of the same 2 indicators.

Second instance: CUT value = 95% and no additional reduction

In the second instance of using PCA, the last step is skipped which involves additional reduction
performed using correlation matrix. The rationale behind this was that, it was noticed during the
reduction to 2 objectives in the previous step gave comparatively worse final pareto solutions,
outlined by a low hypervolume indicator and distribution of points. These topics will be discussed
in the results.

If CUT value was maintained at 99.99%, without additional reduction in indicators, 7 indica-
tors were obtained, that would be very similar to the ones selected by the visual survey which will
most likely lead to similar performance. A comparison is seen in table 5.6. By reducing the CUT
value and no additional reduction, 3-4 indicators could be selected that could offer insights on the
trade-off between number of indicators and solution quality.

Thus PCA reduction procedure is tested to include only the first two principal components
using a CUT value of 95%. This value was also used in the other investigations in the literature
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Figure 5.7: (Left) Scree plot of principal components are their cumulative explained variability.
(Right) First two principal components plotted against each other to reveal correlations between
indicators.

[Perez Gallardo2013, Pozo2012] according to the first proposal of the reduction framework in
[Deb2005]. Thus from table 5.2, only indicators with the most positive and most negative values
are selected. This is done for five simulation runs, the indicators retained for 5 runs are presented
in table 5.3. For the 3rd simulation run, human toxicity cancer was selected twice in the two PCs.
Hence, only 3 indicators were retained.

The scree plot of the PCs from table 5.2 is illustrated in on the left in figure 5.7. On the
right, the two PCs obtained are plotted against each other where indicators with similar trends are
grouped together.

Table 5.3: Indicators retained by PCA during the five simulation runs

Simulation

run
1 2 3 4 5

Indicators

Retained

Ionising

radiation

Ionising

radiation

Ionising

radiation

Ionising

radiation

Ionising

radiation

Photochemical

oxidant formation

Photochemical

oxidant formation

Human toxicity

cancer

Photochemical

oxidant formation

Photochemical

oxidant formation

Water scarcity Water scarcity Water scarcity Water scarcity Climate change

Human toxicity

cancer

Human toxicity

cancer

Human toxicity

cancer

Human toxicity

cancer

5.3.4 Reference point specification

Reference point and consequently population size selection is important for analysing the perfor-
mance of the 3 instances. Since it will directly influence the no. of function evaluations for each
generation and thus the time required for each simulation run. As seen in equation 2.12, since no.
of objectives (NOBJ) are fixed, axis partitions (P̂) are needed for defining the number of uniformly
distributed reference points. The higher the number of partitions, the better it is since more diverse
solutions for each objective can be obtained. This number then decides the number of reference
points and consequently the population size. Following the authors, population size is slightly
higher than the reference points [Deb2013].
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Table 5.4: Reference points, population size and indicators retained for the different simulation
runs.

Instance
Original

objectives

Reduction using

visual survey

Reduction

using PCA

(1st instance)

Reduction

using PCA

(2nd instance)

No. of objectives

(NOBJ)
14 7 4 3 2

Axis partitions (P̂) 2,2 3,2 6 11 72

Layer scale 1,0.5 1,0.5 1 1 1

No. of reference

points (H)
210 112 84 78 73

Population size 212 120 92 84 80

Indicators for

search

Cost, FS, W, IO, Oz,

CC, Min, FWA, TER,

PM, POF, HT non can,

HT can, FW eco

Cost, Oz, CC,

Min, PM, HT can,

FW eco

IO, HT can,

POF, W/CC

IO, W,

HT can
IO, Fw eco

The population size is also important, since it should be large enough to ensure that suffi-
ciently different individuals are present in generation zero. Thus first a minimum population size
is decided to be 80.

For 2 objectives, 72 axis partitions result only in 73 reference points and minimum population
size. Then, 3 objectives, 11 axis partitions can be afforded which result in 78 reference points.
Whereas the axis partitions are reduced for 4 objectives to get 84 reference points. From 7 ob-
jective onwards, layering is needed. Since even with P̂=5, H becomes 462. Thus 2 layers, one
outer layer with 3 axis partitions and second inner layer with 2 axis partitions are selected. For
14 objectives, P̂ for outer layer has to be reduced to 2, otherwise H=665. It cannot be reduced
further since as seen in figure 2.7, for P̂=1 only the extreme points of each objective are selected.
An overview for the different cases is provided in table 5.4.

5.3.5 Results with NSGA-III and reduced indicators

Hypervolume indicator for the different number of reduced objectives with NSGA-III are
shown in figure 5.8. As mentioned before, hypervolume indicator signifies convergence as well
as diversity of solutions. Higher the indicator value, solutions are considered of better quality. It
is calculated for the pareto solutions obtained after each generation for each simulation run. As
outlined before, the hypervolume indicator was calculated with respect to all 14 objectives irre-
spective of when the objectives were temporarily omitted during the search using NSGA-III as
seen in figure 5.4. The anti-ideal point for the indicator calculation was kept the same, which
corresponds to approximately 30% worse objective values than the maximum obtained in the pre-
liminary simulation runs.

It can be seen that for all five runs, optimising with the reduced 7 objectives has a higher
hypervolume than the original 14 objectives. The latter case struggles to reach a similar value
even for the same amount generations or more than twice the number of evaluations. This can be
verified from annex figures C.1 and C.2.

On the other hand using PCA, the indicators were reduced to between 2-4 indicators depending
on the instance. For the first instance, a 99.99% CUT value and following all steps recommended
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Figure 5.8: Hypervolume indicator for different simulation runs.

by [Saxena2012], 2 objectives were retained. Whereas for second instance, with 95% CUT value
and skipping additional reduction, 3/4 indicators were obtained. For all of the reductions using the
above settings in PCA, hypervolume indicator was the less than with 7 or 14 objective cases. In
fact, as the indicators were reduced beyond 7, hypervolume also similarly reduced.

It should be noted that according to the specified reference points and consequently the popula-
tion, the number of evaluations for each generation differs depending on the number of objectives
optimised. For example, optimisation with 14 objectives requires approximately 2 times more
function evaluations than with 7 objectives due to twice the population size. Hence, comparison
of hypervolume is fair with respect to the number of evaluations. In any case, the above observa-
tions do not change even when a comparison is made with respect to the number of generations.

2D plots of pareto front In order to have a closer look at the pareto solutions provided by the
different simulation runs, they are plotted on four bi-dimensional graphs. These are all pareto
optimal solutions in ’n’ objective space. Where ’n’ depends on the no. of objectives (14, 7,
4..), can be seen in the graph legends. These pareto solutions were plotted with respect to all 14
objectives in bi-dimensional plots at the end of 300 generations. The number of individuals in
the pareto here are 9951, 8781 and 3615 for 14, 7 and 4 objectives cases plotted in this section
respectively.

In figure 5.9, pareto solutions obtained by one simulation run of 14 and 7 objectives can be
seen. While in figure 5.10, comparison is made between 4 and 7 objective runs. An optimisation
with respect to two objective will give a single curve of points as was seen in figure 1.11. Here
since the solutions optimal in higher dimensions are plotted in two dimensions, the pareto curves
are thicker. Same reason also explains the different shapes of these curves as compared to a 2
dimensional pareto curve.

In the plots of climate change vs. freshwater ecotoxicity, discrete points are observed, this is
because of the discontinuous search space provided. For example, for wind turbine sizing, system
configurations were searched with steps of 100kW between 0-8MW.

In both figures the superior distribution of solutions obtained with 7 objectives can be seen.
Hence, validating also the higher hypervolume indicator obtained for this instance. The worse dis-
tribution obtained with 14 objectives is likely due to the less distributed reference points possible.
In order to limit the size of population and consequently the number of evaluations, a layering
approach was used to specify reference points as per the authors [Deb2013]. Population for each
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Figure 5.9: Distribution of the pareto front obtained using 14 and 7 objectives shown in four
figures of 2-dimensional plots

generation is selected after assigning each individual to a reference point. Then, the pareto front is
updated using this population if it is non-dominated compared to the individuals already present.
Thus it is likely that due to insufficiently distributed reference points, spread of solutions obtained
also follow a similar trend. It should be noted that the optimisation with 14 objectives has higher
number of evaluations and higher number of pareto optimal points. Irrespective of this, it strug-
gles to uniformly distribute the points, as can be seen in figure 5.9. Despite having high number
of points, they leave a noticeable empty space in the plots.

For optimisation with 7 objectives, despite the lower number of pareto optimal points, they
seem to be better distributed. Here a layering approach was also used for reference point distri-
bution. The number of reference points are decreased to half as compared to the original search
space, but they are better distributed in the reduced 7 objective space. Thus, better distributed
solutions in the reduced space could be found. Furthermore, since these solutions were highly
correlated with rest of 7 temporarily omitted objectives, the search provides a better distribution
of solutions in all objectives.

On the other hand, if we look at the solutions with 4 objectives, they have a high distribution
of reference points but the same does not reflect in the pareto solutions obtained. In cost curves
(top two figures in 5.10), insufficient distribution is found towards the cost minima. Whereas in
the bottom two graphs, there seems to be a significant portion left unexplored by a 4 objective
search. The 4 objectives correspond to two PC retention, in the PCA reduction procedure that
explain 97% of the cumulative variance. As a result, 3% of the variance of the original objective
space is not explained in this instance. Thus solutions optimal in the higher dimensional space
might have been discarded when optimising with 4 objectives. The inferior performance is likely
due to this reason.

The optimisation instance with 2 reduced objectives obtained from PCA, resulted in even
worse performance. This could be expected also due to its low hypervolume indicator value ob-
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Figure 5.10: Distribution of the pareto front obtained using 7 and 4 objectives shown in four
figures of 2-dimensional plots

tained. The 2D plots for two simulations for 2 and 7 objectives can be found in annex figures C.7
and C.8.

There are although one set of points which are comparatively less explored by the 7 objective
optimisation, which are included in the other two, seen in the above figures, for costs higher than
16 C/kg. These points correspond to extreme minimisation of ionising radiation, ozone layer
depletion, water scarcity and fossil & nuclear energy use. As a result, wind and PV are oversized
in an attempt to minimise the grid electricity use. However, climate change increases instead of
decreasing since oversized wind and PV lead to much of the electricity that is wasted and not used
by the electrolyser to produce hydrogen. This also results in higher cost per kg hydrogen and high
impact per kg in all other indicators.

To explain why these points are not included in 7 objective optimisation, see two plots in
figure 5.11. In the reduction using visual survey, ozone layer depletion was selected, which is
highly correlated with ionising radiations. Even though the overall correlation coefficient equals
1, the perfect correlation does not hold true at the extremities during the minimisation of ozone
layer depletion and ionising radiation (see figure 5.11 on the right). Thus, when ozone layer
depletion is minimised less than 0.7 kg CFC-11 eq (x 10−6), the points are not optimal in the
reduced 7 dimensional plane anymore. Points above 16 C/kg H2, in the figure 5.11 on the left.
Whereas since ionising radiation is included in the reduced set proposed by PCA, these solutions
are identified in this instance. This can be seen as a limitation of correlation based objective
reduction techniques. Sometimes the extreme points might not conform to the same correlations.

All of the observations seen above regarding the distribution of points are the same for different
optimisation instances. Same graphs for two other independent runs are present in the appendix,
they are almost indistinguishable with the ones shown above. Plots for 7-14 objectives can be
found in annex figures C.3 and C.4. While for 7-4 objectives, can be found in figures C.5 and C.6.
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Figure 5.11: Distribution of the pareto front obtained using 7 and 4 objectives shown for two, 2D
plots

Evaluations to reach minimum value of indicators In terms of searching the minimum value
of each objective, these values were found relatively quickly for all instances with (7 and 4) ob-
jectives being slightly faster. The minimum value of indicators in the pareto were about the same
for all simulation runs except for the 2 objective case.

A standardised minimum value of pareto solutions for four objectives plotted with respect to
the number of evaluations are illustrated in figure 5.12. Since the performance of the 2 objective
case was considerably worse and to ease the visualization it is not plotted here. But the same
figures including it can be found in annex figure C.9. A comparatively lower value for some
indicators such as cost was not reached even after 300 generations for this case.

Figure 5.12: Standardised minimum value of objectives vs. number of evaluations for different
simulation runs.

109



Chapter 5. Including environmental indicators in the multi-objective search of solutions

The minimum value of the objectives are standardised by dividing with the anti-ideal point
used for hypervolume. Such standardisation is important since LCA indicators show a difference
in magnitude of up to 1012 between them. Thus, a small difference in indicators with high magni-
tude may seem significant and vice-versa. In most indicators such as cost, freshwater ecotoxicity
and mineral resource depletion, less objectives lead to relatively faster search of the minimum
objective value. While in others such as ionizing radiations, no difference is found. However, it
should be noted that finding minimum points might not reflect optimal solutions or a satisfactory
distribution of pareto points for decision-making. For all simulation runs, there was a negligible
change in the hypervolume and the indicators after around 200 generations, hence being conser-
vative, the simulations were run for a maximum of 300 generations each.

5.3.6 Discussion

Performance of NSGA-III

It was found that NSGA-III struggles to provide a uniform distribution of solutions with 14 objec-
tives. Even though its capabilities has been demonstrated in other investigations in the literature
with equivalent or higher number of objectives. It goes to show that the performance of algorithms
are often problem dependent, which was also highlighted by [Li2018]. Nevertheless, NSGA-III
performed well with most problems and no one algorithm has the best performance with all types
of problems (ibid.). The issue here is likely due to the inadequate distribution of the reference
points. The number of reference points could be increased but it will lead to exponential increase
in computational time. For example, increasing axis partitions from [2,2] to [3,2] in table 5.4 leads
to 665 reference points for 14 objectives. This will result in 3 times more computational time.

Performance of NSGA-III with reduced objectives

The best quality of solutions were found when NSGA-III was run with the 7 reduced objectives.
This was verified using the hypervolume indicator values and distribution of pareto optimal points.
The probable reason behind this is for the case of 7 objectives, the best trade-off was obtained
between: a good distribution of the supplied reference points to NSGA-III and enough indicators
retained to explain the variance of the original 14 objective problem.

If the indicators were reduced further, a corresponding decrease in the quality of solutions was
noticed. For optimisation with less than 7 indicators, a lower hypervolume indicator was obtained
than for the ones found with the original 14 objective optimisation. The worst solution quality was
obtained when problem was simplified to 2 objectives.

Time comparison

As mentioned before, the hybrid energy simulations are computationally expensive. One simula-
tion takes around 9 seconds to complete on one core. Out of it, majority of the time is used by the
energy simulation model (≈8s) while the LCA model on Brightway2 takes the rest (≈1s). The
latter can be further reduced using aggregated pre-samples4 [Lesage2018]. Estimation of the time
required is made in table 5.5 using the population size calculated in table 5.4, as the approximate
number of evaluations in each generation. The time required to generate samples at 5 generations
of 14 objectives is not included for reduced objectives. Quality of the obtained solutions above are
qualitatively rated.

Indicators when reduced to 7 in the case study give the best quality solutions in lesser time. If
indicators are reduced further, a trade-off between the time required and the solution quality could
be seen. The time required can be further reduced using more processing power by utilising other

4 https://bw2preagg.readthedocs.io/en/latest/
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Table 5.5: Estimation of computational time using multi-processing for different number of indi-
cators.

NSGA-III with

14 indicators

NSGA-III with

reduction to

7 indicators

NSGA-III with

reduction to

4 indicators

NSGA-III with

reduction to

2 indicators

Time required for 200

generations on 8 cores

(Intel i7, 7th gen)

13 hours 7.5 hours 5.8 hours 5 hours

Quality of solutions ++ +++ ++ +

computers on the network. This is often done in the laboratory. Another advantage of genetic
algorithms can be seen here. Large problems could be processed in parallel.

Objective reduction using PCA

The first observation is that LCA can indeed be considered as a problem with high number of
redundant indicators, meaning that the number of reduced objectives explaining most of the vari-
ance are much smaller than the original objective set. This was also observed in other investiga-
tions [Steinmann2016, Perez Gallardo2013, Sabio2012].

In the update of objective reduction framwork using PCA [Saxena2012], a low CUT value and
additional reduction using a correlation matrix are recommended for problems with high number
of redundant indicators. When these steps were followed in section 5.3.3, only 2 indicators were
retained. Out of all the simulation runs, worst quality of solutions were obtained in this case.
Considerably better solution quality in terms of convergence as well as their diversity was obtained
with 3, 4 and 7 objectives.

While it might be true that 2 indicators explain most of the variance, a small amount of variance
left out in the indicators resulted in much worse solutions by significantly distorting the original
pareto structure.

Objective reduction using visual survey

Objective reduction using only a visual survey offered the best solution quality in combination
with NSGA-III. The correlations between the indicators were successfully identified even before
initialising the problem. Whereas PCA based reductions were carried out after running the 14
objective problem for 5 generations. This can save significant amount of time. Furthermore for
this sample set, much higher number of generations are used in the literature, e.g. 200 generations
used in [Yuan2017]. Which is not certainly not feasible for application here.

Similar objectives can also be obtained using PCA reduction procedure as well. For example,
7 indicators are also selected if these changes in the PCA procedure are made: the CUT value in
the PCA reduction procedure increase to 99.99% and no additional reduction. Additionally, they
are almost the same as one selected by the visual survey. A comparison can be seen in table 5.6
below.

If PCA reduction is made using the recommended settings, 4 indicators are the same as ob-
tained for visual technique. While the other three are highly correlated. It is thus highly likely that
the quality solutions obtained after optimisation using them are similar to the ones obtained using
the 7 indicators in this section.
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Table 5.6: Comparison of indicators selected using the visual technique and using a particular
setting in PCA.

Indicators selected

using visual technique
Oz PM CC HT can Cost Fw eco Min

Indicators selected using

PCA

(CUT=99.99% and

no additional reduction using

correlation matrix)

IO POF W HT can Cost Fw eco Min

5.4 Visualization of solutions for decision-making

In this section, an approach for visualisation of solutions from the obtained pareto distribu-
tion is presented. As mentioned earlier, there exists other approaches for the same purpose such
as multi-criteria decision making [Perez Gallardo2013], data envelopment analysis [Gonzalez-
Garay2018], pareto filters [Antipova2015]. A simple alternative approach is presented for the
selection that takes advantage of the NSGA-III operation + correlations based objective reduction.
Final results are presented in form of a visual tool to the users.

5.4.1 Proposed procedure

Once the optimisation loop is stopped, two groups of solutions are obtained. The population from
the final generation and the pareto front, this can be verified from algorithm operation in figure
2.6. A final set of solutions for decision making are to be assembled from these two groups. A
schematic of the recommended procedure to obtain these solutions is presented in figure 5.13. In
order to select a set of solutions for final decision making, the latest population obtained in the last
generation is the recommended starting point since it represents the preferences that were specified
before start of the search process.

Population obtained in 
the final generation

Replace dominated population 
members by their closest

counterparts from pareto using
Euclidean distance 

Pareto approximate
members

Apply PCA to select 
indicators

Add prefered
individuals or 

indicators if required

Solutions for decision-
making using the limited

indicators with
correlation information

1

2
3

4

Figure 5.13: Proposed approach to select and visualize solutions.

As seen in the algorithm schematic in figure 2.6, the pareto front is updated using the popula-
tion obtained at each generation. Thus, it is not necessary that all of the population members are
the part of the pareto front. In other words, there could already be members in the pareto front
who have better fitness values. In such a situation, the dominated members are replaced by their
closest counterparts present in the pareto front in step 1. Then to reduce the visual burden, PCA
is performed again in step 2. Reduced set of indicators are thus obtained that explain most of
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the variance. Here the principal components retained can be selected by the users themselves. A
threshold value of 95-99% is recommended.

Then, preferred indicators or individuals can be further added in step 3. Final results are
presented with these reduced indicators with their correlation information with other indicators.
Engineers or decision-makers can thus select a solution according to their preferences using a
visual tool in step 4. If required, preferred indicators can be added to the final visualisation based
on correlations. Step 3 and 4 are iterative where additional solutions could be added to the visual
tool for decision-making. These steps are described and demonstrated below.

5.4.2 Application to the obtained results

In this case study, a uniform set of reference points were specified irrespective of the number of
objectives. Thus, the final population should represent equidistant spread of solutions on or near
the pareto front for all objectives.

Selecting closest counterparts using Euclidean distance. For the demonstration of this sub-
section, one of the optimisation runs with 7 objectives are selected. Since best quality of solutions
were obtained in these runs. At the end of 300 generations, the size of the pareto front is 8781
solutions. We start with 120 solutions in the population, out of which, 37 solutions were found
not to be pareto-optimal. Since they are dominated by at least one solution in the pareto front. A
particular solution is a system configuration with unique sizes of electrolyser, wind turbine, PV
and hydrogen storage. These solutions were then replaced by their closest counter parts in the
pareto set. For this, Euclidean distance ’dec’ between each of 37 solutions and the each pareto set
point was calculated using equation 5.6. Then the non-optimal point was replaced by the one with
the minimum distance in the pareto set.

dec(m,n) =

√
z

∑
o=1

(mo−no)2 (5.6)

Where:

n: is the non-pareto optimal population member

m: is the member of pareto front

mo,no: vectors associated with members m and n respectively of length ’z’

The vectors mo,no used for calculating the distance could either be the standardised fitness
values or the system configurations themselves. For the former, fitness has to be divided with
the max fitness value for fair calculation across all indicators. Both of these approaches were
tried, sometimes they led to same solutions and sometimes not. However, neither led to a better
performance than the other. Similarities in the system configurations was selected here, but the
other approach could also be selected instead. An example is provided in figure 5.14. Whereas
the distribution of the population, after the replacement in terms of ionising radiation and cost is
shown in figure 5.15. Similar uniform spread is also observed for other indicators. Thus validating
the claim that the final population represents a uniform spread of solutions. That is it represents
the preferential solutions defined at the beginning as the reference points of NSGA-III.

PCA for identifying correlations. At this stage, PCA is used to find correlations between the
indicators so as to reduce visual burden of having to make a decision based on many indicators.
This reduction might have already performed in one of the previous steps. Nonetheless, PCA
reduction step is not computationally expensive and easy to implement. Furthermore, PCA at
this step can give accurate correlations of indicators amongst the selected pareto solutions. As
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Electrolyser 
(MW)

Wind 
(kW)

Solar PV (kW) Storage (m3)

0.9 1500 1100 107

Unmet load
(%)

Cost (€/kg 
H2)

Climate
change (kg 

CO2-eq/kg H2)

Mineral
resource depl. 

(kg deprived)

1.5 6.42 2.73 0.015

Electrolyser 
(MW)

Wind 
(kW)

Solar PV (kW) Storage (m3)

0.905 1700 1250 109

Unmet load
(%)

Cost (€/kg 
H2)

Climate
change (kg 

CO2-eq/kg H2)

Mineral
resource depl. 

(kg deprived)

0.7 6.72 2.73 0.016

Electrolyser 
(MW)

Wind 
(kW)

Solar PV (kW) Storage (m3)

0.895 1500 1050 85

Unmet load
(%)

Cost (€/kg 
H2)

Climate
change (kg 

CO2-eq/kg H2)

Mineral
resource depl. 

(kg deprived)

2 6.39 2.72 0.015

Dominated population member

Similar solutions by individual (configuration)

Similar solutions by fitness (indicators)

Figure 5.14: Replacing the dominated population member by a similar individual in the pareto
front using individual or fitness similarities.

Figure 5.15: Population spread in the pareto.

compared to the optimisation step, more leeway could be afforded for the CUT value, but it is
recommended to kept above 95%.

Therefore, for the above case PCA is conducted on the 120 optimal and technically feasible
solutions. Three principal components are retained that explain 99.93% of the variance. Four indi-
cators out of the 14 initial ones, are given by this step: Human toxicity cancer, Ionising radiation,
Terrestrial acidification and Freshwater ecotoxicity. If required, these indicators can also be re-
placed by the ones considered more important. In the laboratory, cost and climate change impact
are used regularly in most of the projects. Thus they are added, replacing the ones with whom
they show the highest correlations: human toxicity cancer and ionising radiation respectively. The
correlation matrix for this step is added in the annex table A.13. A change in correlation values
could be seen from the previously calculated correlation matrix after 5 generations, which is nor-
mal since those solutions were not pareto optimal. Correlations between indicators for solutions
on the pareto might be different than the ones that are not optimal [Yuan2017].
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Visualisation of solutions with limited indicators Solutions can then be visualized for decision-
making. Along with the selected indicators, it is crucial to provide correlation information to the
users. That is, information about change in an indicator will lead to corresponding change in
which other indicators in the background.

For this case, the solutions were sorted in terms of increasing cost indicator. They can then be
selected by users based on the particular project preferences using a visual hovering tool. For the
moment, absolute values tech-eco and 2 LCA indicators are shown along with information about
each system configuration when a pointer is hovered on it. A demonstration of first 25 solutions
is provided in figure 5.16. It should be noted that users can add other indicators to display or even
additional performance indicators such as capital cost can also be added easily in the future. The
display here is limited but additional solutions can be viewed on a computer screen with or without
a scroll bar. Additional solutions could be added by the users from the bi-dimensional plots; or
by searching the pareto front using filters such as objective values, system configurations; or by
finding similar solutions using euclidean distance; other information such as fixed cost could also
added in the future as required.

Figure 5.16: Final set of solutions provided in a visual tool.

The indicators which were not selected in the visual tool in the previous step are presented in
table 5.7 with the selected indicators with whom they have the highest coefficient of correlation.
Similarly, a graphical illustration of this correlation is in figure 5.17. The standardised impacts of
the LCA indicators are shown for all 120 solutions. It can be clearly seen that indicators under
each group are highly correlated. As per [Taylor1990], all coefficients lie between high (0.68-0.9)
to very high (0.9-1) correlations.

In most cases, decision-making based on a small set will work as expected, as can be verified
from the plots. However, in certain cases especially at the ends, caution has to be exercised by
the users. For instance, in group A in figure 5.17, an increase in cost between solutions 1-5 leads
to a decrease in human toxicity non cancer and mineral resource depletion. Thus providing these
graphs and correlation coefficients along with the final set of solutions is important for consistent
decision-making.
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Figure 5.17: The correlations between 4 indicators retained and the other 10 discarded in the final
set of 120 solutions

Table 5.7: Correlation coefficients for retained indicators with the discarded ones (except fresh-
water ecotoxicity). Full results in table A.13.

Correlation with climate

change potential
Correlation with cost

Correlation with Terrestrial

acidification

Fossil energy and

nuclear use
0.80

Human toxicity

cancer
1.00

Freshwater

acidification
1.00

Water scarcity 0.85
Mineral resource

depletion
0.98

Particulate matter

formation
0.93

Ionising radiation 0.79
Human toxicity

non-cancer
0.88

Photochemical oxidant

formation
0.90

Ozone layer

depletion
0.81

In order to gain insights about the correlations between indicators in figure 5.17, following
points are outlined:

Group A (Top left). Overall this group seems to be sensitive to the increase in the sizes of PV and
wind. The cost of renewables is higher than the grid for this case study. Similarly for other
indicators, impact per kg hydrogen produced is relatively high for renewables.

Group B (Top right). In this group, the relative impact per kg hydrogen produced for all compo-
nents is the same. See figure 5.6. As a result, for a particular system configuration, each
component contributes similarly to the final impact.

Group C (Bottom left). The indicators in this group are highly influential on grid electricity use.
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As the grid electricity use decreases from left to right, a decrease in the values is seen.
However after solution no. 52, the climate change impact remains constant and slightly
increases at the end. This is when further minimisation of grid use oversizes solar PV and
wind turbines. As a result, much of the electricity is wasted. It leads to decrease in 4
indicators, but all other indicators including cost increase.

Group D (Bottom right). Only freshwater ecotoxicity is included in this group. The compara-
tive impact depends almost entirely on the presence of solar PV. This can also be seen due
to relatively high freshwater ecotoxicity per kg hydrogen production as compared to other
components in the system. This comes from aluminium and copper emissions in groundwa-
ter during mining and treatment of these metals.

Discussion

The proposed approach adheres to the preference of using midpoint indicators for visualization
and eventual decision-making. Correlations between the indicators are leveraged for this purpose.
A limited set of indicators are provided with correlation information with other indicators in the
background. Thus, an overview of the holistic environmental can be taken into account in com-
munication or decision-making.

It is noted that there is a degree of subjectivity in step 3 where preferred indicators and so-
lutions can be added to visualization. However, these choices are often project specific that de-
pend on priorities of decision-makers or collaborators. Additional indicators such as cost/CO2-eq
avoided or assigning preference based weights to indicators such as in multi-criteria decision mak-
ing can always be added on a project-by-project basis as required.

5.4.3 Comparison with the status-quo

A comparison between the pareto solutions above for 7 objective search (orange points) is made
with 2 objective search (blue points) in figure 5.18. As expected, it can be seen that not all solutions
that are optimal in the tech-eco-LCA objectives are pareto optimal in the 2 dimensional tech-eco
plane. As a result, in the status-quo when search is made only with 2 objectives, when the system
is sized with respect to tech-eco objectives, it is not possible to search for solutions with higher
environmental efficiency. For example, all the blue points have climate change indicator to approx
4.6 kg CO2-eq/kg H2. Max sizing of wind and PV is 0 and 50kW respectively. If for example,
climate change impact is desired to be decreased, arbitrary sizing of wind or PV is to be done
manually. In this case, it is highly likely that non-optimal solutions will be obtained. That is,
it cannot be ensured whether the performance of the system can be improved further. Whereas
for pareto-optimal solutions, an objective value can only be improved if at least one of the other
objective is made worse.

In this chapter, a systematic approach to include more than 10 LCA indicators in search of
solutions, while having a holistic overview of the impact is described. Using the hypervolume
indicator and the objective values, pareto optimality of the solutions is highly likely.

Theoretically, all the blue points should also be a part of the orange points in the figure above.
Some overlap at the bottom can be seen already. But insufficient coverage of tech-eco points in
the overall optimisation is probably since the unmet load was included as a constraint rather than
an objective. If required, this can be done easily with additional reference points corresponding to
tech-eco minimisation objectives. This will ensure the better coverage of the blue curve.
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Figure 5.18: Comparison of tech-eco optimisation and with LCA. Black point is solution no. 20 in
figure 5.16.

5.5 Conclusions

In this chapter, a systematic approach to take into account overall environmental impact during
the search of solutions for hybrid energy systems was presented. Environmental impact is taken
into account using LCA midpoint indicators (13), which is arguably the preferred approach of LCA
practitioners and personnel at CEA due to its low uncertainty/subjectivity. The presented approach
ensures that the LCA practitioner/decision-maker/engineer is at least aware of the impact transfer
while searching solutions with higher environmental efficiency. Furthermore, solutions that might
be interesting are not skipped by aggregating indicators.

An interesting example regarding its relevance for decision-making is seen when cost per kg
H2 increases from 4.7 C to 14.7 C, climate change potential attains a minimum value of 2.5 kg
CO2-eq/kg H2 at cost value of around 9 C. Beyond this point, this value remains almost the
same even if the cost increases further. This can be seen in figure 5.17 along with relationships
between other indicators. Therefore, an approach is provided to facilitate the selection of sensible,
technically feasible solutions while considering a holistic environmental impact.

For the multi/many-objective optimisation, one of state-of-the-art genetic algorithms NSGA-
III was used. To our knowledge, this is not yet done in the LCA literature. The main advantages
being its performance even with upto 15 objectives and preferential search of the pareto front.
Consequently, post-processing of pareto front solutions might not be necessary.

The efficiency of NSGA-III was further tested with reduced no. of objectives. It was found
that indicator reduction upto a certain point, improves the efficiency of NSGA-III. The main reason
being better quality of solutions in terms of both evaluation time and diversity could be obtained.
Furthermore, it was found that reduced indicators (except for when objectives were reduced to 2)
minimised all objective values in less number of evaluations. Such an investigation of NSGA-III
with reduced objectives, to our knowledge is not yet done in the literature.

The limitations of NSGA-III when dealing with high number of objectives were also high-
lighted. It struggled to obtain a uniform distribution of solutions with 14 objectives. Thus, for
utilisation in LCA, where redundant indicators could be easily found, NSGA-III combined with
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objective reduction seems promising.
When the number of indicators were reduced to less than 7, a trade-off between time and

quality of solutions was observed for NSGA-III. The 14 indicators were reduced to 2 when the
framework by [Deb2005, Saxena2012] was followed. However, with the 2 indicators, the perfor-
mance of the search was found to be unacceptable. LCA being a problem with high number of
redundant indicators, most of the variance could be explained by a small set. Nonetheless, leaving
out a small amount of variance might considerably worsen the performance of the search. It was
found that increasing the CUT value to around 99.99% and not making additional reduction using
correlation matrix, maintained the pareto front of the original problem.

An important observation regarding the PCA reduction procedure is that sample set only after
5 generations was selected from a practical viewpoint. This value is much smaller as compared
to the literature where often 200 generations are used as a sample set [Saxena2012, Yuan2017].
From the results obtained, it seems to be adequate as a sample set. Perhaps, this case study is an
exception or maybe a sample set far from ideal can still be used for objective reduction. Corelation
matrices at the end of 5 generations and for the finally visualised 120 solutions can be seen in annex
tables A.12, A.13. More research is needed in this direction.

Another observation is that when relying on correlations either for indicator reduction or
decision-making, caution is advised since the relationships may change at the extreme points.
It was observed even with a correlation coefficient = 1 between two indicators, the relationship
deteriorates at their respective minima. This might have an affect during the search of solutions or
during the final decision-making. This was also underlined as a drawback of correlation based ob-
jective reduction techniques in the investigations of [Yuan2017]. Nonetheless, their advantages far
outweigh their disadvantages as compared to other reduction techniques. Higher robustness with
non-ideal sample sets and less time required were identified by them (ibid.). One more advantage
in terms of correlation based visualization was identified in this chapter. This is not possible with
objective reduction techniques such as ones relying on the dominance structure.

Indicator reduction using visual survey was again successfully applied. Correlations between
the indicators were identified without even initialising an optimisation problem. As far as un-
derstood, this is not possible with other reduction techniques. The indicators classified in the
sub-groups had high correlation coefficient between them. It was seen that this could save a sig-
nificant amount of time required to produce the initial sample set. Furthermore, reliance on the
quality of this set can also be eliminated. If the principle of this technique could be automated into
an algorithm, its efficiency can be further improved.
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General conclusions

At the beginning of this thesis, two main impediments towards including environmental infor-
mation in the assessments of hybrid energy systems were identified. These two topics were then
confronted with the literature to formulate three research proposals that were addressed in this the-
sis. Using them, a general approach to include environmental information in the assessments of
hybrid energy systems is developed as illustrated in figure 5.19. This approach can be divided into
2 parts: parameterized LCA model creation for integrated tech-eco-LCA modelling and inclusion
of LCA indicators in multi/many objective optimisation. Each of the two parts are described and
their application is justified below.
Integrated tech-eco-LCA modelling (Steps 1-3) Once the project goals are clearly defined,
first step is information collection regarding the energy simulations and definition of the LCA
goal & scope. The engineers in the laboratory are already well versed with the former since it is
their primary activity during the investigations currently carried out in the laboratory. This type
of information is usually collected from project stakeholders, databases, literature or technical
reports.

For a hybrid energy system, once the LCA goal and scope is defined, the relevant components
and process flows under the LCA boundary are identified. Variabilities, uncertainties and data
gaps are identified and dealt with, by using initial estimates. These LCA models are coupled with
outputs from energy simulations. Parameterised LCA models are thus developed that can take into
account these alterations.

Next, the model is improved using global sensitivity analysis. Derivative based global sensitiv-
ity measures were used in this thesis since it was found to offer a good trade-off between accuracy
in the estimation of sensitivity indices and computational time in this context. Nonetheless, other
relevant GSA method could also be used depending on the computational cost and number of un-
certainties in the model. Influential parameters and foreground processes are then identified using
the obtained sensitivity and importance indices respectively. The model is then improved until the
uncertainties are below an acceptable value.

These steps to be followed were presented in detail in chapter 3 and demonstrated with a case
study on hydrogen production from PEM water electrolysis. The resulting integrated model is
such that it can take in as inputs any parameter and return the corresponding technical, economic
and LCA indicators.

Discussion Therefore using this step, the LCA indicators could be calculated with respect to
changes in energy simulations such as size, process flows or geography. Thus a link between
changes in design (system parameters, configuration) and LCA indicators was established which
did not exist before.

Thanks to this inclusion, insights on the environmental performance of the hybrid energy sys-
tems can be obtained. These insights could then be used to formulate recommendations in R&D
or in planning new facilities in order to improve environmental efficiency. Sometimes the rec-
ommendations from an environmental point of view could be opposite from that of an economic
perspective. Thus excluding environmental information from assessments could mean that oppor-
tunities are missed in increasing environmental efficiency of energy systems.
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Figure 5.19: Illustration of the proposed approach to include LCA indicators in the assessments
of hybrid energy systems
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It was found that electricity mix, efficiency and catalyst content in the stack were the most im-
portant in the considered environmental indicators. Quantified recommendations regarding these
aspects could consequently be provided to decision-makers. Using this information, for exam-
ple, investment in R&D could be guided for improving the efficiency or specifically reducing the
catalyst content in the stack.

Sensitivity and importance indices were also used to guide data collection. Model assembly
structure is recommended such that calculation of these coefficients are possible. It allows identi-
fying the parameters and foreground processes that are the most important for improving reliability
and robustness of the LCA models.

The proposed framework provides a systematic methodology for building parameterised LCA
models. It was developed in tandem with an energy engineer, who was a beginner in LCA. Thus
facilitating its use in cases where non-experts in LCA want to add environmental models to hybrid
energy simulations. Guidance is provided on various issues that could arise in modelling emerging
energy technologies in the future such as: scaling, geographical variability, unavailable data and
future evolution.

Optimisation including LCA indicators (Steps 4-6) Then, if optimisation is required, these
steps are carried out. An important point when optimisation with LCA is desired is to pre-estimate
the difference in the LCA indicators. For example, if the expected difference for a certain indicator
between the maximum and minimum values is only 30%, it will be difficult to distinguish the
solutions from an LCA point of view. Thus, including LCA indicators in the optimisation might
not make sense for this case.

To go ahead with the optimisation, the parameterized tech-eco-LCA model is connected to a
new generation evolutionary algorithm, NSGA-III. The reference points are provided as per the
desired solutions. They are necessary for functionning of the algorithm. The points 0-1 correspond
to the maximum and minimum values of objectives respectively.

Furthermore, it was observed that reduction in indicators improved the quality of solutions
and decreased the computational time with NSGA-III. First if possible, reduction of number of
indicators by finding correlations between them could be made using a visual survey. Since it will
eliminate the requirement of a sample set, saving computational time.

Since the application of this technique is limited, a reduction using principal component analy-
sis could be also be done. Here the initial problem can be run for 5-10 generations and the resulting
pareto front can be used as a sample set for reduction. It is accepted that for an ideal sample set,
much more generations are required (200-2000 generations in [Saxena2012, Yuan2017]). Then
however, objective reduction techniques do not make sense in this case. The number of genera-
tions to obtain the sample set could be increased if the computations are not expensive.

As we saw, the results after 5 generations for case study in chapter 5 were promising. Ad-
ditionally, correlation based objective reduction techniques like PCA, are better equipped to deal
with non-ideal sample sets than other types [Yuan2017]. On the other hand, if solutions are se-
lected at 0 or 1st generation, there is a much higher risk that correlations in them do not represent
as the ones in the pareto front. This might result in unreliable retention of indicators. A difference
between correlations at 5th generation and final set of solutions can be seen in tables A.12 and
A.13.

Regarding the PCA reduction procedure outlined by [Deb2005, Saxena2012], following rec-
ommendations are made according to the results obtained in chapter 5. If the shape of the original
pareto problem is to be maintained, it is recommended that: CUT value should be maintained close
to 99.99% to retain principal components and the last step of further reduction using correlation
matrix should be skipped. Further reduction might result in a trade-off between solution quality
and computational time.

The number of generations for optimisation can be determined by stability in the hypervolume
indicator and minimum/average indicator values in the pareto front. The final population and
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the pareto optimal solutions can then be used for visualisation of solutions for decision-making.
Since the final population is representative of the preferred solutions, they are a valid starting
point. If they are not optimal, they are replaced by similar individuals in the obtained pareto
front using euclidean distance. At this point, PCA is recommended to be conducted again but a
lower CUT value ≈ 95% to select indicators could be afforded. Here, PCA is used to ease the
visualization, thus the exact CUT value can be decided the users themselves to retain indicators.
These indicators are then used to represent the final solution set. The correlation information of
the discarded indicators is provided with the retained indicators.

This is an iterative step where other solutions from the pareto could be added using euclidean
distance or using additional criteria such fixed cost. Thus it is possible to make a decision based
of few indicators while having a holistic overview of the environmental impacts. The proposed
approach thus leverages the operating principle of NSGA-III and the correlation based objective
reduction techniques.

Discussion This step enables the search of system configurations with higher environmental
efficiency. It was shown that this is not possible if optimisation is made only with techno-economic
indicators. For instance for the techno-economic optimisation, all solutions had the almost same
climate change potential ≈ 4.6 kg CO2-eq/kg H2. Including LCA indicators enabled search of
solutions upto 2.5 kg CO2-eq/kg H2 along with trade-offs with technical and other LCA indicators.
In chapter 5, this approach was applied to a dimensionning problem of hydrogen production from
PEM water electrolysis. A pareto front with 1 economic and 13 LCA midpoint indicators was
obtained, while technical performance was added as a constraint. This offers a choice of solutions
with higher environmental efficiency to the users and decision-makers. Trade-offs between these
techno-economic and environmental indicators could be found. Additionally, even the trade-offs
between the LCA indicators themselves could be obtained. Thus, the impact transfer can be kept
in check.

For multi-objective optimisation, evolutionary algorithm NSGA-III coupled with objective
reduction techniques is proposed. To the best of our knowledge, it has not been done yet in
the literature. It was shown that performance of NSGA-III could be improved using objective
reduction techniques. Higher quality of solutions could be obtained in less time. For example,
computational time was reduced to half when 14 indicators were reduced to 7 using correlations
between them while simultaneously obtaining higher hypervolume indicator value.

Furthermore, by changing settings in the PCA reduction procedure and using the new visual
technique for indicator reduction, a trade-off between solution quality and computational time was
revealed when indicators were reduced less than 7. Regarding the PCA reduction procedure, when
the framework proposed by the authors [Deb2005, Saxena2012] was followed, it led to retaining
only 2 objectives that gave the worst pareto solution quality in terms of convergence. In order to
maintain the structure of original pareto problem, high threshold value ≈ 99.9% is recommended
while additional reduction in the last step using a correlation matrix is not recommended.

A new indicator reduction using a visual technique was found during the implementation of
the above algorithm. It showed promising results in the identification of correlations between LCA
indicators without requiring samples. It can be applied to simple cases but its efficacy could be
improved in the future.
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Sample sets for objective reduction techniques. Initialization of a problem in all objective
space is required to generate samples. Objective reduction techniques rely on these samples for
their selections. Some examples of this duration from the literature are: 20 minutes in [Brock-
hoff2007], 15.6 hours/400 generations in [Perez Gallardo2013], 200 - 2000 generations in [Yuan2017,
Saxena2012]. This is done so that the correlations or dominance structure in the sample set re-
flect that of the pareto front for reliable reduction of indicators. The problem is, when a func-
tional evaluation is expensive, like in this thesis, the objective reduction techniques will increase
the computational time instead of decreasing it. In this thesis, samples were selected for PCA
objective reduction after 5 generations from a practical point of view, which gave promising re-
sults. Limited research was found on the duration of this initialization step, as was also concluded
by [Yuan2017]. Thus question can be asked, what is the sampling duration for objective reduction
in a reasonable time?

Visual survey as an algorithm. The visual technique of objective reduction correctly identified
the correlations between the LCA indicators without requiring a sampling set. This was demon-
strated for two cases. Nevertheless, it is only a principle at this stage that could be implemented
into an algorithm for objective reduction. The main advantage is that obtaining initial samples
as mentioned in the above paragraph, is not necessary. By implementation and testing, its appli-
cation could be refined. The elements in this technique that could be refined include: range for
classification of indicators in sub-groups (step 4 in figure 4.3) and dealing with complex/non-linear
cases.

Treatment of uncertainties. In the framework for developing LCA models, uncertainties or
variabilities due to geography, data gaps, size and different process/technologies were taken into
account. Other uncertainties, although not in the scope of thesis, could play an important role
in the assessments. Improving them would ensure derivation of more robust conclusions. The
framework could be extended to include these uncertainties. Another interesting avenue would be
to include uncertainties in the optimisation process as well. A recent method to deal with techno-
economic uncertainties in the optimisation of hybrid energy systems could be extended to also
include LCA indicators [Nadal2020].

Online objective reduction with NSGA-III. Objective reduction techniques integrated into an
evolutionary algorithm itself are possible. Also called, online objective reduction, they have been
implemented with NSGA-II [Cheung2014]. An online integration of PCA with NSGA-III could
offer interesting results.

Repeatability. Genetic algorithms are stochastic methods that start with a randomly initialized
population. Furthermore, in this case the number of optimal individuals are quite high since pareto
front is a curve in 14 dimensions. Out of them a finite number of solutions are found and con-
sequently selected for decision making. Thus it is possible that different solutions are obtained
at the end of each optimisation run. It will be interesting to assess the differences between the
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obtained solutions at the end of each optimisation run. In terms of system configurations as well
as indicator values. Then consequently exploring if there are strategies to increase repeatability of
optimisation results.

Application to different case studies. From a more practical point of view, application of the
optimisation approach to more case studies and energy systems could offer promising results.
An example could be inclusion of LCA indicators in the optimisation of an electricity grid or
planning investment of energy technologies for the future. Instances where LCA indicators are
not considered as relevant criteria for design and planning. It could lead to new solutions that
were not visible before. Development of a user interface of the concepts introduced in this thesis
will greatly facilitate its application to different case studies by making it easier to use.
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Abbreviations

ANN Artificial neural networks

BOP Balance of plant

CEA French commission of atomic and alternative energies

CUT Threshold value of cumulative variance of PCs

DEAP Distributed evolutionary algorithms in python

DGSM Derivative based global sensitivity measure

EF Environmental footprint impact assessment method

EOL End of life

EU European union

GSA Global sensitivity analysis

ILCD International Reference Life Cycle Data System

LCA Life cycle assessment

LCI Life cycle inventory analysis

LSA Local sensitivity analysis

LSED Laboratory of energy systems and demonstrations, CEA-Liten

MILP Multi integer linear programming

NREL National Renewable Energy Laboratory

PC Principal component

PCA Principal component analysis

PEM Polymer electrolyte membrane

PV Photovoltaics

R&D Research and development

SALib Sensitivity analysis library in python

TRL Technology readiness level

Conference publications
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[Čuček2014] Lidija Čuček, Jiří Jaromír Klemeš et Zdravko Kravanja. Objective
dimensionality reduction method within multi-objective optimisa-
tion considering total footprints. Journal of cleaner production,
vol. 71, pages 75–86, 2014.

[Das1998] Indraneel Das et John E Dennis. Normal-boundary intersection:
A new method for generating the Pareto surface in nonlinear mul-
ticriteria optimization problems. SIAM journal on optimization,
vol. 8, no. 3, pages 631–657, 1998.

[Deb2005] Kalyanmoy Deb et Dhish Kumar Saxena. On finding pareto-
optimal solutions through dimensionality reduction for certain
large-dimensional multi-objective optimization problems. Kangal
report, vol. 2005011, 2005.

[Deb2013] Kalyanmoy Deb et Himanshu Jain. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated
sorting approach, part I: solving problems with box constraints.
IEEE transactions on evolutionary computation, vol. 18, no. 4,
pages 577–601, 2013.

[Deng2017] Gary Deng et Peter Newton. Assessing the impact of solar PV
on domestic electricity consumption: Exploring the prospect of re-
bound effects. Energy Policy, vol. 110, pages 313–324, 2017.

VI



Bibliography

[Di Lullo2020] Giovanni Di Lullo, Eskinder Gemechu, Abayomi Olufemi Oni et
Amit Kumar. Extending sensitivity analysis using regression to
effectively disseminate life cycle assessment results. The Interna-
tional Journal of Life Cycle Assessment, vol. 25, no. 2, pages 222–
239, 2020.

[Dietz2006] Adrian Dietz, Catherine Azzaro-Pantel, Luc Pibouleau et Serge
Domenech. Multiobjective optimization for multiproduct batch
plant design under economic and environmental considerations.
Computers & Chemical Engineering, vol. 30, no. 4, pages 599–
613, 2006.

[Dong2014] Ya Hong Dong et S Thomas Ng. Comparing the midpoint and end-
point approaches based on ReCiPe—a study of commercial build-
ings in Hong Kong. The International Journal of Life Cycle As-
sessment, vol. 19, no. 7, pages 1409–1423, 2014.

[Douglas-Smith2020] Dominique Douglas-Smith, Takuya Iwanaga, Barry FW Croke et
Anthony J Jakeman. Certain trends in uncertainty and sensitivity
analysis: An overview of software tools and techniques. Environ-
mental Modelling & Software, vol. 124, page 104588, 2020.

[Duclos2017] Lucien Duclos, Maria Lupsea, Guillaume Mandil, Lenka Svecova,
Pierre-Xavier Thivel et Valérie Laforest. Environmental assessment
of proton exchange membrane fuel cell platinum catalyst recycling.
Journal of Cleaner Production, vol. 142, pages 2618–2628, January
2017.

[European Commission2010] European Commission et Joint Research Centre. ILCD handbook:
general guide for life cycle assessment : detailed guidance. Publi-
cations Office of the European Union, Luxembourg, 2010. OCLC:
711747737.

[EuropeanCommission2011] EuropeanCommission. International Reference Life Cycle Data
System (ILCD) Handbook- Recommendations for Life Cycle Im-
pact Assessment in the European context. First edition November
2011. EUR 24571 EN. Luxemburg. Publications Office of the Euro-
pean Union; 2011. European Commission-Joint Research Centre,
2011.

[Evangelisti2017] Sara Evangelisti, Carla Tagliaferri, Dan JL Brett et Paola Let-
tieri. Life cycle assessment of a polymer electrolyte membrane fuel
cell system for passenger vehicles. Journal of cleaner production,
vol. 142, pages 4339–4355, 2017.

[Fazio2018] S Fazio, F Biganzioli, V De Laurentiis, L Zampori, S Sala et E Di-
aconu. Supporting information to the characterisation factors of
recommended EF Life Cycle Impact Assessment methods, version
2, from ILCD to EF 3.0. Ispra. doi, vol. 10, page 002447, 2018.

[Fonseca2006] Carlos M Fonseca, Luís Paquete et Manuel López-Ibánez. An im-
proved dimension-sweep algorithm for the hypervolume indicator.
In 2006 IEEE international conference on evolutionary computa-
tion, pages 1157–1163. IEEE, 2006.

VII



Bibliography

[Fortin2012] Félix-Antoine Fortin, François-Michel De Rainville, Marc-
André Gardner Gardner, Marc Parizeau et Christian Gagné. DEAP:
Evolutionary algorithms made easy. The Journal of Machine
Learning Research, vol. 13, no. 1, pages 2171–2175, 2012.

[Gantner2018] Johannes Gantner, Katrin Lenz, Rafael Horn, Petra Von Both et
Sebastian Ebertshäuser. Ökobau. dat 3.0–Quo Vadis? Buildings,
vol. 8, no. 9, page 129, 2018.

[Gazbour2016] Nouha Gazbour, Guillaume Razongles, Christian Schaeffer et Car-
ole Charbuillet. Photovoltaic power goes green. In 2016 Electron-
ics Goes Green 2016+(EGG), pages 1–8. IEEE, 2016.

[Gazbour2018] Nouha Gazbour, Guillaume Razongles, Elise Monnier, Maryline
Joanny, Carole Charbuillet, Françoise Burgun et Christian Scha-
effer. A path to reduce variability of the environmental footprint
results of photovoltaic systems. Journal of Cleaner Production,
vol. 197, pages 1607–1618, October 2018.

[Gazbour2019] Nouha Gazbour. Systemic integration of Eco-design in photovoltaic
technologies R&D. Theses, Université Grenoble Alpes, February
2019. Issue: 2019GREAT018.

[Gerber2011] Léda Gerber, Martin Gassner et François Maréchal. Systematic
integration of LCA in process systems design: Application to com-
bined fuel and electricity production from lignocellulosic biomass.
Computers & Chemical Engineering, vol. 35, no. 7, pages 1265–
1280, July 2011.

[Gerber2012] Léda Gerber. Integration of Life Cycle Assessment in the concep-
tual design of renewable energy conversion systems. Thèse de Doc-
torat, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE,
Lausanne, 2012.

[Gonzalez-Garay2018] Andres Gonzalez-Garay et Gonzalo Guillen-Gosalbez. SUSCAPE:
A framework for the optimal design of SUStainable ChemicAl Pro-
cEsses incorporating data envelopment analysis. Chemical Engi-
neering Research and Design, vol. 137, pages 246–264, 2018.

[Groen2017] Evelyne A. Groen, Eddie A. M. Bokkers, Reinout Heijungs et Imke
J. M. de Boer. Methods for global sensitivity analysis in life cycle
assessment. The International Journal of Life Cycle Assessment,
vol. 22, no. 7, pages 1125–1137, July 2017.

[Guillén-Gosálbez2011] Gonzalo Guillén-Gosálbez. A novel MILP-based objective reduc-
tion method for multi-objective optimization: Application to envi-
ronmental problems. Computers & Chemical Engineering, vol. 35,
no. 8, pages 1469–1477, 2011.

[Guinot2013] Benjamin Guinot. Multi-criteria assessment of storage technolo-
gies of renewable energies : Design and realisation of the simu-
lation platform ODYSSEY for the optimisation of sizing and en-
ergy control strategies. Theses, Université de Grenoble, September
2013.

VIII



Bibliography

[Guinot2015a] Benjamin Guinot, Bénédicte Champel, Florent Montignac, Elisa-
beth Lemaire, Didier Vannucci, Sebastien Sailler et Yann Bultel.
Techno-economic study of a PV-hydrogen-battery hybrid system for
off-grid power supply: Impact of performances’ ageing on optimal
system sizing and competitiveness. International Journal of Hydro-
gen Energy, vol. 40, no. 1, pages 623–632, 2015.

[Guinot2015b] Benjamin Guinot, Florent Montignac, Bénédicte Champel et Didier
Vannucci. Profitability of an electrolysis based hydrogen produc-
tion plant providing grid balancing services. International Journal
of Hydrogen Energy, vol. 40, no. 29, pages 8778–8787, 2015.

[Gutiérrez2010] Ester Gutiérrez, Sebastián Lozano et Belarmino Adenso-Díaz. Di-
mensionality reduction and visualization of the environmental im-
pacts of domestic appliances. Journal of Industrial Ecology,
vol. 14, no. 6, pages 878–889, 2010.

[Hassim2010] Mimi H. Hassim, Alberto L. Pérez et Markku Hurme. Estimation
of chemical concentration due to fugitive emissions during chemi-
cal process design. Process Safety and Environmental Protection,
vol. 88, no. 3, pages 173–184, May 2010.

[Hauschild2013] Michael Z Hauschild, Mark Goedkoop, Jeroen Guinée, Reinout
Heijungs, Mark Huijbregts, Olivier Jolliet, Manuele Margni,
An De Schryver, Sebastien Humbert, Alexis Laurentet al. Iden-
tifying best existing practice for characterization modeling in life
cycle impact assessment. The International Journal of Life Cycle
Assessment, vol. 18, no. 3, pages 683–697, 2013.

[Hauschild2015] Michael Z Hauschild et Mark AJ Huijbregts. Introducing life cycle
impact assessment. In Life cycle impact assessment, pages 1–16.
Springer, 2015.

[Heijungs2002] Reinout Heijungs et Sangwon Suh. The computational structure
of life cycle assessment, volume 11. Springer Science & Business
Media, 2002.

[Heijungs2020] Reinout Heijungs. Is mainstream LCA linear? The International
Journal of Life Cycle Assessment, vol. 25, no. 10, pages 1872–
1882, 2020.

[Hellweg2014] Stefanie Hellweg et Llorenç Milà i Canals. Emerging approaches,
challenges and opportunities in life cycle assessment. Science,
vol. 344, no. 6188, pages 1109–1113, 2014.

[Hennen2017] Maike Hennen, Sarah Postels, Philip Voll, Matthias Lampe et An-
dré Bardow. Multi-objective synthesis of energy systems: Efficient
identification of design trade-offs. Computers & Chemical Engi-
neering, vol. 97, pages 283–293, 2017.

[Herman2017] Jon Herman et Will Usher. SALib: An open-source Python library
for Sensitivity Analysis. The Journal of Open Source Software,
vol. 2, no. 9, page 97, January 2017.

[Herzog2009] Tim Herzog. World greenhouse gas emissions in 2005. World
Resources Institute, 2009.

IX



Bibliography

[Hetherington2014] Alexandra C. Hetherington, Aiduan Li Borrion, Owen Glyn Grif-
fiths et Marcelle C. McManus. Use of LCA as a development tool
within early research: challenges and issues across different sec-
tors. The International Journal of Life Cycle Assessment, vol. 19,
no. 1, pages 130–143, January 2014.

[Hischier2005] Roland Hischier, Stefanie Hellweg, Christian Capello et Alex Pri-
mas. Establishing Life Cycle Inventories of Chemicals Based on
Differing Data Availability (9 pp). The International Journal of
Life Cycle Assessment, vol. 10, no. 1, pages 59–67, January 2005.

[Hossain2014] M Shahriar Hossain, Manish Marwah, Amip Shah, Layne T Wat-
son et Naren Ramakrishnan. AutoLCA: a framework for sustain-
able redesign and assessment of products. ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 5, no. 2, pages
1–21, 2014.

[Huang2016] C-Y Huang, AH Hu, J Yin et H-C Wang. Developing a parametric
carbon footprinting tool for the semiconductor industry. Interna-
tional journal of environmental science and technology, vol. 13,
no. 1, pages 275–284, 2016.

[Huijbregts1998] Mark AJ Huijbregts. Application of uncertainty and variability in
LCA. The International Journal of Life Cycle Assessment, vol. 3,
no. 5, page 273, 1998.

[Huijbregts2016] MAJ Huijbregts, ZJN Steinmann, PMF Elshout, G Stam,
F Verones, MDM Vieira, A Hollander, M Zijp et R Van Zelm.
ReCiPe 2016: a harmonized life cycle impact assessment method
at midpoint and endpoint level report I: characterization. 2016.

[Igual2017] Laura Igual et Santi Seguí. Introduction to Data Science. In Intro-
duction to Data Science, pages 1–4. Springer, 2017.

[Iooss2012] B Iooss, AL Popelin, G Blatman, C Ciric, F Gamboa, S Lacaze
et M Lamboni. Some new insights in derivative-based global sen-
sitivity measures. In Proceedings of the PSAM11 ESREL 2012
Conference, pages 1094–1104, 2012.

[Iooss2017] Bertrand Iooss et Andrea Saltelli. Introduction to Sensitivity Anal-
ysis. In Roger Ghanem, David Higdon et Houman Owhadi, edi-
teurs, Handbook of Uncertainty Quantification, pages 1103–1122.
Springer International Publishing, Cham, 2017.

[Iooss2019] Bertrand Iooss, A Janon, Gilles Pujol, B Broto, K Boumhaout,
S Da Veiga, T Delage, J Fruth, L Gilquin, J Guillaumeet al. Sen-
sitivity: global sensitivity analysis of model outputs. R package
version, vol. 1, no. 2, 2019.

[IPCC2014] IPCC. Climate change 2014: Synthesis report. Summary for policy-
makers. Contribution of working groups I, II and III to the fifth as-
sessment report of the Intergovernmental panel on climate change,
page 151, 2014.

X



Bibliography

[Ishibuchi2018] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi et Yusuke Nojima. How
to Specify a Reference Point in Hypervolume Calculation for Fair
Performance Comparison. Evolutionary Computation, vol. 26,
no. 3, pages 411–440, 2018.

[Jain2013] Himanshu Jain et Kalyanmoy Deb. An evolutionary many-objective
optimization algorithm using reference-point based nondominated
sorting approach, part II: handling constraints and extending to an
adaptive approach. IEEE Transactions on evolutionary computa-
tion, vol. 18, no. 4, pages 602–622, 2013.

[Jeong2014] Myeon-Gyu Jeong, James R Morrison et Hyo-Won Suh. Ap-
proximate life cycle assessment via case-based reasoning for eco-
design. IEEE Transactions on Automation Science and Engineer-
ing, vol. 12, no. 2, pages 716–728, 2014.

[Kägi2016] Thomas Kägi, Fredy Dinkel, Rolf Frischknecht, Sebastien Hum-
bert, Jacob Lindberg, Steven De Mester, Tommie Ponsioen,
Serenella Sala et Urs Walter Schenker. Session “Midpoint, end-
point or single score for decision-making?”—SETAC Europe 25th
Annual Meeting, May 5th, 2015. The International Journal of Life
Cycle Assessment, vol. 21, no. 1, pages 129–132, 2016.

[Kalogirou2001] Soteris A Kalogirou. Artificial neural networks in renewable en-
ergy systems applications: a review. Renewable and sustainable
energy reviews, vol. 5, no. 4, pages 373–401, 2001.

[Karka2019] Paraskevi Karka, Stavros Papadokonstantakis et Antonis Kokos-
sis. Environmental impact assessment of biomass process chains
at early design stages using decision trees. The International Jour-
nal of Life Cycle Assessment, vol. 24, no. 9, pages 1675–1700,
2019.

[Khanali2017] Majid Khanali, Hossein Mobli et Homa Hosseinzadeh-Bandbafha.
Modeling of yield and environmental impact categories in tea pro-
cessing units based on artificial neural networks. Environmental
Science and Pollution Research, vol. 24, no. 34, pages 26324–
26340, 2017.

[Kiparissides2009] A. Kiparissides, S. S. Kucherenko, A. Mantalaris et E. N. Pis-
tikopoulos. Global Sensitivity Analysis Challenges in Biological
Systems Modeling. Industrial & Engineering Chemistry Research,
vol. 48, no. 15, pages 7168–7180, August 2009.

[Kleinekorte2019] Johanna Kleinekorte, Leif Kröger, Kai Leonhard et André Bar-
dow. A neural network-based framework to predict process-specific
environmental impacts. Computer Aided Chemical Engineering,
vol. 46, pages 1447–1452, 2019.

[Kopp2017] M. Kopp, D. Coleman, C. Stiller, K. Scheffer, J. Aichinger et
B. Scheppat. Energiepark Mainz: Technical and economic anal-
ysis of the worldwide largest Power-to-Gas plant with PEM elec-
trolysis. International Journal of Hydrogen Energy, vol. 42, no. 19,
pages 13311–13320, May 2017.

XI



Bibliography

[Kostin2012] A Kostin, G Guillén-Gosálbez, FD Mele et L Jiménez. Identify-
ing key life cycle assessment metrics in the multiobjective design
of bioethanol supply chains using a rigorous mixed-integer linear
programming approach. Industrial & Engineering Chemistry Re-
search, vol. 51, no. 14, pages 5282–5291, 2012.

[Kucherenko2017] Sergey Kucherenko et Bertrand Iooss. Derivative-Based Global
Sensitivity Measures. In Roger Ghanem, David Higdon et Houman
Owhadi, editeurs, Handbook of Uncertainty Quantification, pages
1241–1263. Springer International Publishing, Cham, 2017.

[Lacirignola2017] Martino Lacirignola, Philippe Blanc, Robin Girard, Paula Perez-
Lopez et Isabelle Blanc. LCA of emerging technologies: address-
ing high uncertainty on inputs’ variability when performing global
sensitivity analysis. Science of the Total Environment, vol. 578,
pages 268–280, 2017.

[Lamboni2013] M. Lamboni, B. Iooss, A.-L. Popelin et F. Gamboa. Derivative-
based global sensitivity measures: General links with Sobol’ in-
dices and numerical tests. Mathematics and Computers in Simula-
tion, vol. 87, pages 45–54, January 2013.

[Laurent2012] Alexis Laurent, Stig I Olsen et Michael Z Hauschild. Limitations of
carbon footprint as indicator of environmental sustainability. Envi-
ronmental science & technology, vol. 46, no. 7, pages 4100–4108,
2012.

[Lenzen2006] Manfred Lenzen. Uncertainty in impact and externality
assessments-implications for decision-making (13 pp). The Inter-
national journal of life cycle assessment, vol. 11, no. 3, pages 189–
199, 2006.

[Lesage2018] Pascal Lesage, Chris Mutel, Urs Schenker et Manuele Margni. Un-
certainty analysis in LCA using precalculated aggregated datasets.
The International Journal of Life Cycle Assessment, vol. 23, no. 11,
pages 2248–2265, 2018.

[Li2015] Bingdong Li, Jinlong Li, Ke Tang et Xin Yao. Many-objective
evolutionary algorithms: A survey. ACM Computing Surveys
(CSUR), vol. 48, no. 1, pages 1–35, 2015.

[Li2018] Kaiwen Li, Rui Wang, Tao Zhang et Hisao Ishibuchi. Evolutionary
many-objective optimization: A comparative study of the state-of-
the-art. IEEE Access, vol. 6, pages 26194–26214, 2018.

[Marler2004] R Timothy Marler et Jasbir S Arora. Survey of multi-objective opti-
mization methods for engineering. Structural and multidisciplinary
optimization, vol. 26, no. 6, pages 369–395, 2004.

[Mastrucci2017] Alessio Mastrucci, Paula Perez-Lopez, Enrico Benetto, Ulrich
Leopold et Isabelle Blanc. Global sensitivity analysis as a sup-
port for the generation of simplified building stock energy models.
Energy and Buildings, vol. 149, pages 368–383, 2017.

XII



Bibliography

[Mehmeti2018] Andi Mehmeti, Athanasios Angelis-Dimakis, Carlos Boigues
Muñoz, Marco Graziadio et Stephen J. McPhail. Eco-
thermodynamics of hydrogen production by high-temperature elec-
trolysis using solid oxide cells. Journal of Cleaner Production,
vol. 199, pages 723–736, October 2018.

[Moni2020] Sheikh Moniruzzaman Moni, Roksana Mahmud, Karen High et
Michael Carbajales-Dale. Life cycle assessment of emerging tech-
nologies: A review. Journal of Industrial Ecology, vol. 24, no. 1,
pages 52–63, February 2020.

[Moore1959] Frederick T. Moore. Economies of Scale: Some Statistical Evi-
dence. The Quarterly Journal of Economics, vol. 73, no. 2, page
232, May 1959.

[Morbidoni2010] Alessandro Morbidoni, Marco Recchioni, Harald E Otto et Ferruc-
cio Mandorli. Enabling an efficient SLCA by interfacing selected
PLM LCI parameters. In Proceedings of TMCE, 2010.

[Mutel2017] Chris Mutel. Brightway: An open source framework for Life Cycle
Assessment. The Journal of Open Source Software, vol. 2, no. 12,
page 236, April 2017.

[Nadal2019] Amélia Nadal. Impact of uncertainties on the techno-economic op-
timization of hybrid energy systems. Theses, Communauté Univer-
sité Grenoble Alpes, November 2019.

[Nadal2020] Amélia Nadal, Alain Ruby, Cyril Bourasseau, Delphine Riu et
Christophe Berenguer. Accounting for techno-economic param-
eters uncertainties for robust design of remote microgrid. Inter-
national Journal of Electrical Power & Energy Systems, vol. 116,
page 105531, March 2020.

[Nagapurkar2019] Prashant Nagapurkar et Joseph D Smith. Techno-economic opti-
mization and environmental Life Cycle Assessment (LCA) of micro-
grids located in the US using genetic algorithm. Energy Conversion
and Management, vol. 181, pages 272–291, 2019.

[Nazari-Heris2018] Morteza Nazari-Heris et Behnam Mohammadi-Ivatloo. Applica-
tion of Robust Optimization Method to Power System Problems. In
Classical and Recent Aspects of Power System Optimization, pages
19–32. Elsevier, 2018.

[Ng2020] CY Ng, SS Lam, Samuel PM Choi et Kris MY Law. Optimizing
green design using ant colony-based approach. The International
Journal of Life Cycle Assessment, vol. 25, no. 3, pages 600–610,
2020.

[Nordelöf2018] Anders Nordelöf et Anne-Marie Tillman. A scalable life cycle
inventory of an electrical automotive traction machine—Part II:
manufacturing processes. The International Journal of Life Cycle
Assessment, vol. 23, no. 2, pages 295–313, February 2018.

[Nugent2014] Daniel Nugent et Benjamin K Sovacool. Assessing the lifecycle
greenhouse gas emissions from solar PV and wind energy: A criti-
cal meta-survey. Energy Policy, vol. 65, pages 229–244, 2014.

XIII



Bibliography

[Nuss2014] Philip Nuss et Matthew J. Eckelman. Life Cycle Assessment of
Metals: A Scientific Synthesis. PLoS ONE, vol. 9, no. 7, page
e101298, July 2014.

[O’Donoughue2014] Patrick R O’Donoughue, Garvin A Heath, Stacey L Dolan et Mar-
tin Vorum. Life cycle greenhouse gas emissions of electricity gener-
ated from conventionally produced natural gas: systematic review
and harmonization. Journal of Industrial Ecology, vol. 18, no. 1,
pages 125–144, 2014.

[Ostad-Ahmad-Ghorabi2011] Hesamedin Ostad-Ahmad-Ghorabi et Daniel Collado-Ruiz. Tool
for the environmental assessment of cranes based on parameteriza-
tion. The International Journal of Life Cycle Assessment, vol. 16,
no. 5, pages 392–400, June 2011.

[Padey2013] Pierryves Padey, Robin Girard, Denis Le Boulch et Isabelle Blanc.
From LCAs to simplified models: a generic methodology applied
to wind power electricity. Environmental science & technology,
vol. 47, no. 3, pages 1231–1238, 2013.

[Pannier2018] Marie-Lise Pannier, Patrick Schalbart et Bruno Peuportier. Com-
prehensive assessment of sensitivity analysis methods for the identi-
fication of influential factors in building life cycle assessment. Jour-
nal of Cleaner Production, vol. 199, pages 466–480, October 2018.

[Park2003] Ji-Hyung Park et Kwang-Kyu Seo. Knowledge-based approximate
life cycle assessment system in the collaborative design environ-
ment. In 2003 EcoDesign 3rd International Symposium on Envi-
ronmentally Conscious Design and Inverse Manufacturing, pages
499–503. IEEE, 2003.

[Pascual-González2015] Janire Pascual-González, Carlos Pozo, Gonzalo Guillén-Gosálbez
et Laureano Jiménez-Esteller. Combined use of MILP and multi-
linear regression to simplify LCA studies. Computers & Chemical
Engineering, vol. 82, pages 34–43, 2015.

[Perez Gallardo2013] Jorge Raúl Perez Gallardo. Ecodesign of large-scale photovoltaic
(PV) systems with multi-objective optimization and Life-Cycle As-
sessment (LCA). Thèse de Doctorat, 2013.

[Perez-Gallardo2018] J Raul Perez-Gallardo, Catherine Azzaro-Pantel et Stéphan Astier.
Combining multi-objective optimization, principal component
analysis and multiple criteria decision making for ecodesign of
photovoltaic grid-connected systems. Sustainable Energy Tech-
nologies and Assessments, vol. 27, pages 94–101, 2018.

[Pérez-López2018] Paula Pérez-López, Mahdokht Montazeri, Gumersindo Feijoo,
María Teresa Moreira et Matthew J Eckelman. Integrating uncer-
tainties to the combined environmental and economic assessment
of algal biorefineries: A Monte Carlo approach. Science of the
total environment, vol. 626, pages 762–775, 2018.

[Pfenninger2016] Stefan Pfenninger et Iain Staffell. Long-term patterns of European
PV output using 30 years of validated hourly reanalysis and satel-
lite data. Energy, vol. 114, pages 1251–1265, 2016.

XIV



Bibliography

[Piccinno2016] Fabiano Piccinno, Roland Hischier, Stefan Seeger et Claudia Som.
From laboratory to industrial scale: a scale-up framework for
chemical processes in life cycle assessment studies. Journal of
Cleaner Production, vol. 135, pages 1085–1097, November 2016.

[Pilenga2018] A Pilenga, G Tsotridis, European Commission et Joint Research
Centre. EU harmonised terminology for low temperature wa-
ter electrolysis for energy storage applications. 2018. OCLC:
1111109225.

[Pirlo2019] G. Pirlo et S. Lolli. Environmental impact of milk production from
samples of organic and conventional farms in Lombardy (Italy).
Journal of Cleaner Production, vol. 211, pages 962–971, February
2019.

[Pizzol2017] Massimo Pizzol, Alexis Laurent, Serenella Sala, Bo Weidema,
Francesca Verones et Christoph Koffler. Normalisation and weight-
ing in life cycle assessment: quo vadis? The International Journal
of Life Cycle Assessment, vol. 22, no. 6, pages 853–866, 2017.

[Pozo2012] C Pozo, R Ruiz-Femenia, J Caballero, G Guillén-Gosálbez et
L Jiménez. On the use of Principal Component Analysis for re-
ducing the number of environmental objectives in multi-objective
optimization: Application to the design of chemical supply chains.
Chemical Engineering Science, vol. 69, no. 1, pages 146–158,
2012.

[Ravindra2004] Khaiwal Ravindra, László Bencs et René Van Grieken. Platinum
group elements in the environment and their health risk. Science
of The Total Environment, vol. 318, no. 1-3, pages 1–43, January
2004.

[Roches2010] Anne Roches, Thomas Nemecek, Gérard Gaillard, Katharina Plass-
mann, Sarah Sim, Henry King et Llorenç Milà i Canals. MEX-
ALCA: a modular method for the extrapolation of crop LCA. The
International Journal of Life Cycle Assessment, vol. 15, no. 8,
pages 842–854, 2010.

[Rubin2015] Edward S Rubin, Inês ML Azevedo, Paulina Jaramillo et Sonia
Yeh. A review of learning rates for electricity supply technologies.
Energy Policy, vol. 86, pages 198–218, 2015.

[Sabio2012] N Sabio, A Kostin, G Guillén-Gosálbez et L Jiménez. Holistic
minimization of the life cycle environmental impact of hydrogen in-
frastructures using multi-objective optimization and principal com-
ponent analysis. International Journal of Hydrogen Energy, vol. 37,
no. 6, pages 5385–5405, 2012.

[Sacchi2019] Romain Sacchi, Romain Besseau, Paula Perez-Lopez et Isabelle
Blanc. Exploring technologically, temporally and geographically-
sensitive life cycle inventories for wind turbines: A parameterized
model for Denmark. Renewable Energy, vol. 132, pages 1238–
1250, 2019.

XV



Bibliography

[Saltelli2008] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campo-
longo, Jessica Cariboni, Debora Gatelli, Michaela Saisana et Ste-
fano Tarantola. Global sensitivity analysis: the primer. John Wiley
& Sons, 2008.

[Santos2019] Ruben Santos, António Aguiar Costa, José D Silvestre et Lincy
Pyl. Integration of LCA and LCC analysis within a BIM-based
environment. Automation in Construction, vol. 103, pages 127–
149, 2019.

[Santos2020] Rúben Santos, António Aguiar Costa, José D Silvestre et Lincy
Pyl. Development of a BIM-based Environmental and Economic
Life Cycle Assessment tool. Journal of Cleaner Production, page
121705, 2020.

[Saxena2012] Dhish Kumar Saxena, João A Duro, Ashutosh Tiwari, Kalyanmoy
Deb et Qingfu Zhang. Objective reduction in many-objective opti-
mization: Linear and nonlinear algorithms. IEEE Transactions on
Evolutionary Computation, vol. 17, no. 1, pages 77–99, 2012.

[Schmidt Rivera2018] Ximena C. Schmidt Rivera, Evangelia Topriska, Maria Kolokotroni
et Adisa Azapagic. Environmental sustainability of renewable hy-
drogen in comparison with conventional cooking fuels. Journal of
Cleaner Production, vol. 196, pages 863–879, September 2018.

[Schmidt2017] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson et
S. Few. Future cost and performance of water electrolysis: An
expert elicitation study. International Journal of Hydrogen Energy,
vol. 42, no. 52, pages 30470–30492, December 2017.

[Schulz2012] Matthias Schulz, Michael D Short et Gregory M Peters. A stream-
lined sustainability assessment tool for improved decision making
in the urban water industry. Integrated Environmental Assessment
and Management, vol. 8, no. 1, pages 183–193, 2012.

[Sharma2019] Hemant Sharma, Élise Monnier, Guillaume Mandil, Peggy Zwolin-
ski et Stephane Colasson. Comparison of environmental assess-
ment methodology in Hybrid energy system simulation software.
Procedia CIRP, vol. 80, pages 221–227, 2019.

[Sharma2020] Hemant Sharma, Guillaume Mandil, Peggy Zwolinski, Em-
manuelle Cor, Hugo Mugnier et Elise Monnier. Integration of
life cycle assessment with energy simulation software for polymer
exchange membrane (PEM) electrolysis. Procedia CIRP, vol. 90,
pages 176–181, 2020.

[Simon2016] Bálint Simon, Krystyna Bachtin, Ali Kiliç, Ben Amor et Marcel
Weil. Proposal of a framework for scale-up life cycle inventory:
A case of nanofibers for lithium iron phosphate cathode applica-
tions: Cradle-to-Gate LCA of Nanofiber Li-ion Battery Cathodes.
Integrated Environmental Assessment and Management, vol. 12,
no. 3, pages 465–477, July 2016.

[Sinha2014] Sunanda Sinha et S.S. Chandel. Review of software tools for hybrid
renewable energy systems. vol. 32, pages 192–205, 2014.

XVI



Bibliography

[Skansi2018] Sandro Skansi. Introduction to deep learning: from logical calculus
to artificial intelligence. Springer, 2018.

[Sobol’2010] I.M. Sobol’ et S. Kucherenko. A new derivative based importance
criterion for groups of variables and its link with the global sensi-
tivity indices. Computer Physics Communications, vol. 181, no. 7,
pages 1212–1217, July 2010.

[Sobol’2009] I.M. Sobol’ et S. Kucherenko. Derivative based global sensitivity
measures and their link with global sensitivity indices. Mathemat-
ics and Computers in Simulation, vol. 79, no. 10, pages 3009–3017,
June 2009.

[Song2017] Runsheng Song, Arturo A Keller et Sangwon Suh. Rapid life-cycle
impact screening using artificial neural networks. Environmental
science & technology, vol. 51, no. 18, pages 10777–10785, 2017.

[Staffell2016] Iain Staffell et Stefan Pfenninger. Using bias-corrected reanalysis
to simulate current and future wind power output. Energy, vol. 114,
pages 1224–1239, 2016.

[Steinmann2014] Zoran JN Steinmann, Aranya Venkatesh, Mara Hauck, Aafke M
Schipper, Ramkumar Karuppiah, Ian J Laurenzi et Mark AJ Hui-
jbregts. How to address data gaps in life cycle inventories: a
case study on estimating CO2 emissions from coal-fired electric-
ity plants on a global scale. Environmental science & technology,
vol. 48, no. 9, pages 5282–5289, 2014.

[Steinmann2016] Zoran JN Steinmann, Aafke M Schipper, Mara Hauck et Mark AJ
Huijbregts. How many environmental impact indicators are needed
in the evaluation of product life cycles? Environmental Science &
Technology, vol. 50, no. 7, pages 3913–3919, 2016.

[Sundaravaradan2011] Naren Sundaravaradan, Manish Marwah, Amip Shah et Naren Ra-
makrishnan. Data mining approaches for life cycle assessment. In
Proceedings of the 2011 IEEE international symposium on sustain-
able systems and technology, pages 1–6. IEEE, 2011.

[Tasala Gradin2020] Katja Tasala Gradin. Simplified Life Cycle Assessment Approaches
and Potential Impact Shifts. Thèse de Doctorat, Kungliga Tekniska
högskolan, 2020.

[Taylor1990] Richard Taylor. Interpretation of the correlation coefficient: a basic
review. Journal of diagnostic medical sonography, vol. 6, no. 1,
pages 35–39, 1990.

[Tecchio2016] Paolo Tecchio, Pierluigi Freni, Bruno De Benedetti et Françoise Fe-
nouillot. Ex-ante Life Cycle Assessment approach developed for a
case study on bio-based polybutylene succinate. Journal of Cleaner
Production, vol. 112, pages 316–325, January 2016.

[Thomassen2019] Gwenny Thomassen, Miet Van Dael, Steven Van Passel et Fengqi
You. How to assess the potential of emerging green technologies?
Towards a prospective environmental and techno-economic assess-
ment framework. Green Chemistry, vol. 21, no. 18, pages 4868–
4886, 2019.

XVII



Bibliography

[Thomassen2020] Gwenny Thomassen, Steven Van Passel et Jo Dewulf. A review on
learning effects in prospective technology assessment. Renewable
and Sustainable Energy Reviews, vol. 130, page 109937, 2020.

[Tietze2020] Ingela Tietze, Lukas Lazar, Heidi Hottenroth et Steffen Lewerenz.
LAEND: A Model for Multi-Objective Investment Optimisation of
Residential Quarters Considering Costs and Environmental Im-
pacts. Energies, vol. 13, no. 3, page 614, 2020.

[Touzani2014] Samir Touzani et Daniel Busby. Screening Method Using the
Derivative-based Global Sensitivity Indices with Application to
Reservoir Simulator. Oil & Gas Science and Technology – Revue
d’IFP Energies nouvelles, vol. 69, no. 4, pages 619–632, 2014.

[Turconi2013] Roberto Turconi, Alessio Boldrin et Thomas Astrup. Life cycle
assessment (LCA) of electricity generation technologies: Overview,
comparability and limitations. Renewable and sustainable energy
reviews, vol. 28, pages 555–565, 2013.

[Valente2017] Antonio Valente, Diego Iribarren et Javier Dufour. Harmonised
life-cycle global warming impact of renewable hydrogen. Journal
of Cleaner Production, vol. 149, pages 762–772, April 2017.

[van der Hulst2020] Mitchell K van der Hulst, Mark AJ Huijbregts, Niels van Loon,
Mirjam Theelen, Lucinda Kootstra, Joseph D Bergesen et Mara
Hauck. A systematic approach to assess the environmental impact
of emerging technologies: A case study for the GHG footprint of
CIGS solar photovoltaic laminate. Journal of Industrial Ecology,
2020.

[van Kalkeren2013] Henri A. van Kalkeren, Anneloes L. Blom, Floris P. J. T. Rut-
jes et Mark A. J. Huijbregts. On the usefulness of life cycle as-
sessment in early chemical methodology development: the case of
organophosphorus-catalyzed Appel and Wittig reactions. Green
Chemistry, vol. 15, no. 5, page 1255, 2013.

[Vandepaer2020] Laurent Vandepaer, Evangelos Panos, Christian Bauer et Ben
Amor. Energy System Pathways with Low Environmental Im-
pacts and Limited Costs: Minimizing Climate Change Impacts Pro-
duces Environmental Cobenefits and Challenges in Toxicity and
Metal Depletion Categories. Environmental Science & Technol-
ogy, vol. 54, no. 8, pages 5081–5092, 2020.

[Vázquez2018] Daniel Vázquez, Rubén Ruiz-Femenia, Laureano Jiménez et
José A Caballero. MILP models for objective reduction in
multi-objective optimization: Error measurement considerations
and non-redundancy ratio. Computers & Chemical Engineering,
vol. 115, pages 323–332, 2018.

[Verghese2010] Karli L. Verghese, Ralph Horne et Andrew Carre. PIQET: the
design and development of an online ‘streamlined’ LCA tool for
sustainable packaging design decision support. The International
Journal of Life Cycle Assessment, vol. 15, no. 6, pages 608–620,
July 2010.

XVIII



Bibliography

[Wei2015] Wei Wei, Pyrene Larrey-Lassalle, Thierry Faure, Nicolas Du-
moulin, Philippe Roux et Jean-Denis Mathias. How to Conduct
a Proper Sensitivity Analysis in Life Cycle Assessment: Taking into
Account Correlations within LCI Data and Interactions within the
LCA Calculation Model. Environmental Science & Technology,
vol. 49, no. 1, pages 377–385, January 2015.

[Weidema2015] Bo P Weidema. Comparing three life cycle impact assessment
methods from an endpoint perspective. Journal of Industrial Ecol-
ogy, vol. 19, no. 1, pages 20–26, 2015.

[Wernet2008] Gregor Wernet, Stefanie Hellweg, Ulrich Fischer, Stavros Pa-
padokonstantakis et Konrad Hungbuhler. Molecular-structure-
based models of chemical inventories using neural networks. Envi-
ronmental science & technology, vol. 42, no. 17, pages 6717–6722,
2008.

[Wernet2012] Gregor Wernet, Stefanie Hellweg et Konrad Hungerbuhler. A tiered
approach to estimate inventory data and impacts of chemical prod-
ucts and mixtures. The International Journal of Life Cycle Assess-
ment, vol. 17, no. 6, pages 720–728, July 2012.

[Wernet2016] Gregor Wernet, Christian Bauer, Bernhard Steubing, Jürgen Rein-
hard, Emilia Moreno-Ruiz et Bo Weidema. The ecoinvent database
version 3 (part I): overview and methodology. The International
Journal of Life Cycle Assessment, vol. 21, no. 9, pages 1218–1230,
September 2016.

[While2011] Lyndon While, Lucas Bradstreet et Luigi Barone. A fast way of cal-
culating exact hypervolumes. IEEE Transactions on Evolutionary
Computation, vol. 16, no. 1, pages 86–95, 2011.

[Whitaker2012] Michael Whitaker, Garvin A Heath, Patrick O’Donoughue et Mar-
tin Vorum. Life cycle greenhouse gas emissions of coal-fired elec-
tricity generation: Systematic review and harmonization. Journal
of Industrial Ecology, vol. 16, pages S53–S72, 2012.

[Wild-Scholten2013] M.J. Wild-Scholten. Energy payback time and carbon footprint
of commercial photovoltaic systems. Solar Energy Materials and
Solar Cells, vol. 119, pages 296–305, December 2013.

[Wolfgang2011] Ertel Wolfgang. Introduction to artificial intelligence. Springer,
2011.

[Yeh2012] Sonia Yeh et Edward S Rubin. A review of uncertainties in tech-
nology experience curves. Energy Economics, vol. 34, no. 3, pages
762–771, 2012.

[Yi2011] Sora Yi, Kiyo H Kurisu et Keisuke Hanaki. Life cycle impact as-
sessment and interpretation of municipal solid waste management
scenarios based on the midpoint and endpoint approaches. The In-
ternational Journal of Life Cycle Assessment, vol. 16, no. 7, pages
652–668, 2011.

XIX



Bibliography

[Yuan2017] Yuan Yuan, Yew-Soon Ong, Abhishek Gupta et Hua Xu. Objective
reduction in many-objective optimization: evolutionary multiobjec-
tive approaches and comprehensive analysis. IEEE Transactions on
Evolutionary Computation, vol. 22, no. 2, pages 189–210, 2017.

[Yue2016] Dajun Yue, Shyama Pandya et Fengqi You. Integrating hybrid
life cycle assessment with multiobjective optimization: a modeling
framework. Environmental science & technology, vol. 50, no. 3,
pages 1501–1509, 2016.

[Zaiontz2017] Charles Zaiontz. Real statistics using Excel. 2017. Computer soft-
ware] https://www.real-statistics.com/free-download/(accessed 20
Oct 2020), 2017.

[Zhang2015] Di Zhang, Sara Evangelisti, Paola Lettieri et Lazaros G Papageor-
giou. Optimal design of CHP-based microgrids: Multiobjective
optimisation and life cycle assessment. Energy, vol. 85, pages 181–
193, 2015.

[Zhang2017] Xiaojin Zhang, Christian Bauer, Christopher L. Mutel et Kathrin
Volkart. Life Cycle Assessment of Power-to-Gas: Approaches, sys-
tem variations and their environmental implications. Applied En-
ergy, vol. 190, pages 326–338, March 2017.

[Zhao2018] Guangling Zhao et Eva Ravn Nielsen. Environmental Impact Study
of BIG HIT, 2018.

[Zhou2015] Qifeng Zhou, Hao Zhou, Yimin Zhu et Tao Li. Data-driven solu-
tions for building environmental impact assessment. In Proceedings
of the 2015 IEEE 9th International Conference on Semantic Com-
puting (IEEE ICSC 2015), pages 316–319. IEEE, 2015.

[Zimmermann2019] R Kjær Zimmermann, Kai Kanafani, F Nygaard Rasmussen et
Harpa Birgisdottir. Early Design Stage Building LCA using the
LCAbyg tool: Comparing Cases for Early Stage and Detailed LCA
Approaches. In IOP Conference Series: Earth and Environmental
Science, volume 323, page 012118. IOP Publishing, 2019.

[Zitzler2001] Eckart Zitzler, Marco Laumanns et Lothar Thiele. SPEA2: Im-
proving the strength Pareto evolutionary algorithm. TIK-report,
vol. 103, 2001.

[Zitzler2003] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca
et Viviane Grunert Da Fonseca. Performance assessment of multi-
objective optimizers: An analysis and review. IEEE Transactions
on evolutionary computation, vol. 7, no. 2, pages 117–132, 2003.

[Zitzler2007] Eckart Zitzler, Dimo Brockhoff et Lothar Thiele. The hypervolume
indicator revisited: On the design of Pareto-compliant indicators
via weighted integration. In International Conference on Evolution-
ary Multi-Criterion Optimization, pages 862–876. Springer, 2007.

XX





List of Figures

1 Breakdown of world greenhouse gas emissions in 2016, updated from [Herzog2009]. 1

1.1 An overview of the energy simulation software used in this thesis - Odyssey. . . . 7
1.2 Crossover and mutation operations, illustration from [Perez Gallardo2013]. . . . 9
1.3 SPEA2 operating scheme as described in [Zitzler2001]. . . . . . . . . . . . . . 10
1.4 Case study of hydrogen production from PEM water electrolysis. . . . . . . . . 11
1.5 Inputs time series: hydrogen demand (kg/h) and electricity price (C/MWh). . . . 11
1.6 Pareto front of the results for the dimensionning problem . . . . . . . . . . . . . 12
1.7 Output time series for case no. 3: electrolyser power (MW) and Hydrogen quantity

in the tank (kg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 (a) Life cycle assessment framework adapted from ILCD handbook [European

Commission2010]; (b) A conceptual representation of inventory building and its
use for impact calculation step of an LCA. . . . . . . . . . . . . . . . . . . . . 16

1.9 User preferences from the environmental modelling rated from 1-10 with 10 being
very important. Blue dots represent the user rating and the red cross represents the
average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 Representation of the case study in Odyssey . . . . . . . . . . . . . . . . . . . . 19
1.11 Pareto front of the results for the dimensionning problem . . . . . . . . . . . . . 20
1.12 A simplified illustration of the research approach followed in this thesis . . . . . 22

2.1 Breakdown of climate change potential according to different life cycle stages for
electricity production from wind turbines, solar PV, conventional natural gas and
coal fired plants [Sharma2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The search string used to identify documents in Scopus. . . . . . . . . . . . . . 29
2.3 Statistics of the total 165 references analysed. (left) Year-wise distribution; (right)

Sector-wise distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 (Left) Simplified illustration of an artificial neural network; (Right) An artificial

neuron, simplified., illustration adapted from [Skansi2018] . . . . . . . . . . . . 33
2.5 (Left) Objects for clustering, representation in a two dimensional data (Right)

Clustering of objects [Bramer2007]. . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 NSGA-III operating scheme in this thesis. . . . . . . . . . . . . . . . . . . . . . 40
2.7 Reference point distribution illustrated for 3 dimensions. (Left) for 10 axis parti-

tions. (Right) using a layering approach when the number of objectives increase.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Illustration of the association operation of individuals (orange points) with refer-
ence points (in blue) [Deb2013]. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 General objective reduction scheme used for optimisation including LCA indica-
tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 An illustration of the methodology to select indicators using PCA heuristics by
[Deb2005, Saxena2012]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 An example to demonstrate dominance-structure based reduction technique. (a)
Three original objectives (b) Objective f3 discarded (b) Objective f2 discarded .
Illustration from [Vázquez2018]. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

XXII



List of figures

3.1 A schematic representation of the proposed framework. The steps that are de-
scribed in this chapter are outlined in black. . . . . . . . . . . . . . . . . . . . . 55

3.2 Proposed scaling approach for dimensionning inventories of components. Adapted
from [Gerber2011]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Representing the parameterized model and disaggregating the impact equation in
terms of impact contributions and energy flow. . . . . . . . . . . . . . . . . . . 62

3.4 Interaction of sensitivity analysis package with energy simulations and LCA mod-
elling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Illustration of the case study and the LCA system boundaries . . . . . . . . . . . 67
3.6 Description of the parameterized model for the PEM water electrolysis case study.

New parameters added, that are relevant to LCA are illustrated in green. . . . . . 71
3.7 Sensitivity indices (γ) obtained for the parameters for each of the selected mid-

point indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 Results obtained for the LCA indicators for the three cases. . . . . . . . . . . . 75
3.9 Boxplots of distribution of impacts obtained by propagating the PEM electrolyser

system efficiency and electricity mix using quasi-monte carlo. Maximum and min-
imum values obtained by propagating extreme points of efficiency and electricity
mix using LSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Simplified representation of climate change impact pathway from elementary flows
to the areas of protection [Hauschild2015]. . . . . . . . . . . . . . . . . . . . . . 81

4.2 Impact indicators at endpoint and midpoints along with their impact pathways in
impact assessment method ReCiPe 2016 [Huijbregts2016]. . . . . . . . . . . . . 81

4.3 An illustration of the methodology to select impact indicators using a visual survey 84
4.4 Classification of the indicators according to the visual survey (steps 1-4) applied

to a fictional case study of designing a bike . . . . . . . . . . . . . . . . . . . . 85
4.5 Results of impact indicators of the 20 design alternatives . . . . . . . . . . . . . 86
4.6 Contribution analysis of the 5 solutions in terms of the two LCA indicators. . . . 86
4.7 Scree plot of the principal components . . . . . . . . . . . . . . . . . . . . . . 88
4.8 LCA indicators plotted in terms of the two principal components. . . . . . . . . 89

5.1 Representation of the case study in Odyssey. . . . . . . . . . . . . . . . . . . . . 94
5.2 Production data of solar PV and Wind for the first nine days. . . . . . . . . . . . 95
5.3 Computational structure for search of solutions for including technical, economic

and LCA indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Comparison scheme for testing performance for different optimisation cases . . 99
5.5 Hypervolume calculation principle adapted from [Zitzler2003]. . . . . . . . . . . 99
5.6 Indicator selection procedure using visual survey for this case study . . . . . . . 101
5.7 (Left) Scree plot of principal components are their cumulative explained variabil-

ity. (Right) First two principal components plotted against each other to reveal
correlations between indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Hypervolume indicator for different simulation runs. . . . . . . . . . . . . . . . 106
5.9 Distribution of the pareto front obtained using 14 and 7 objectives shown in four

figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.10 Distribution of the pareto front obtained using 7 and 4 objectives shown in four

figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.11 Distribution of the pareto front obtained using 7 and 4 objectives shown for two,

2D plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.12 Standardised minimum value of objectives vs. number of evaluations for different

simulation runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.13 Proposed approach to select and visualize solutions. . . . . . . . . . . . . . . . . 112

XXIII



List of figures

5.14 Replacing the dominated population member by a similar individual in the pareto
front using individual or fitness similarities. . . . . . . . . . . . . . . . . . . . . 114

5.15 Population spread in the pareto. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.16 Final set of solutions provided in a visual tool. . . . . . . . . . . . . . . . . . . . 115
5.17 The correlations between 4 indicators retained and the other 10 discarded in the

final set of 120 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.18 Comparison of tech-eco optimisation and with LCA. Black point is solution no.

20 in figure 5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.19 Illustration of the proposed approach to include LCA indicators in the assessments

of hybrid energy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1 PV modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXI

C.1 Hypervolume indicator for different number of objectives with NSGA-III with
extended number of evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . XLI

C.2 Hypervolume indicator for different number of objectives with NSGA-III with
number of generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLII

C.3 Distribution of the pareto front obtained using 7 and 14 objectives shown in four
figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . XLII

C.4 Distribution of the pareto front obtained using 7 and 14 objectives shown in four
figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIII

C.5 Distribution of the pareto front obtained using 7 and 4 objectives shown in four
figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIII

C.6 Distribution of the pareto front obtained using 7 and 4 objectives shown in four
figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIV

C.7 Distribution of the pareto front obtained using 7 and 2 objectives shown in four
figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIV

C.8 Distribution of the pareto front obtained using 7 and 2 objectives shown in four
figures of 2-dimensional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . XLV

C.9 Evaluations vs. standardised minimum point of indicators in the pareto front . . . XLVI

XXIV





List of Tables

1.1 Summary of inputs to the optimisation . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Description of the four selected cases from the pareto front . . . . . . . . . . . . 12
1.3 Search range provided to the genetic algorithm. . . . . . . . . . . . . . . . . . . 19
1.4 Summary of the obtained 156 system configurations obtained at the end of the

search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Summary of the environmental analysis in the reviewed software [Sharma2019]. . 25
2.2 Summary of the environmental analysis in the reviewed software [Sharma2019]. . 27
2.3 Fictitious train data to demonstrate naive Bayes classifier [Skansi2018]. . . . . . 36
2.4 Recommendations on the use of the LCA modelling methods and relevance of

their results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Input ranges to the DGSM sensitivity analysis . . . . . . . . . . . . . . . . . . . 72
3.2 Importance indices (Im) for 3 arbitrarily selected foreground processes from the

use phase and the stack inventory. Full results in annex table A.6. . . . . . . . . 73
3.3 Comparison of input parameters for the three cases . . . . . . . . . . . . . . . . 74

4.1 Correlation matrix of 8 impact indicators for the 20 bike alternatives. . . . . . . 87
4.2 PCA results for the 8 impact indicators. Selected indicators are highlighted in

bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Comparison of indicators selected by visual survey and PCA . . . . . . . . . . . 89

5.1 Summary of inputs to the integrated techno-economic-LCA model . . . . . . . . 96
5.2 PCA results for the 14 indicators. Selected indicators are highlighted in bold. . . 103
5.3 Indicators retained by PCA during the five simulation runs . . . . . . . . . . . . 104
5.4 Reference points, population size and indicators retained for the different simula-

tion runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5 Estimation of computational time using multi-processing for different number of

indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Comparison of indicators selected using the visual technique and using a particular

setting in PCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7 Correlation coefficients for retained indicators with the discarded ones (except

freshwater ecotoxicity). Full results in table A.13. . . . . . . . . . . . . . . . . 116

A.1 Stack inventory for the three cases, data from [Bareiß2019], electricity require-
ment from [Evangelisti2017] . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIX

A.2 Balance of plant inventory, data from [Zhang2017] and [Bareiß2019] . . . . . . XXX
A.3 Primary production activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXX
A.4 Disposal activites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXX
A.5 Recycling activites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXII
A.6 Importance indices for foreground processes from the use phase and the stack

inventory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXII

XXVI



List of tables

A.7 Electricity mix utilised in the case study from ecoinvent 3.6 cutoff and for 2030
adapted from ADEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIII

A.8 Current allocation for platinum group metals in ecoinvent v3.6 and updated allo-
cation using factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIV

A.9 PV inventory activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIV
A.10 Absolute impact values from the three cases . . . . . . . . . . . . . . . . . . . . XXXIV
A.11 Name of the three materials from ecoinvent 3.6 and absolute impact per kg for the

design of bike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXV
A.12 Correlation matrix after 5 generations for indicator reduction using PCA, for one

simulation run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXV
A.13 Correlation matrix for indicator reduction using PCA obtained for final display of

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVI

XXVII





A
Annex 1 : Supplementary data

Table A.1: Stack inventory for the three cases, data from [Bareiß2019], electricity requirement
from [Evangelisti2017]

Activity Base case
Only imp.

data adjusted
Ideal case

market for titanium, primary’ (kilogram, GLO, None) 528.0 528.0 37.0

market for aluminium, primary, ingot’ (kilogram, RoW, None) 27.0 27.0 54.0

market for steel, chromium steel 18/8, hot rolled’

(kilogram, GLO, None)
100.0 100.0 40.0

market for copper, cathode’ (kilogram, GLO, None) 4.5 4.5 9.0

market for sulfuric acid’ (kilogram, RER, None) 13.6 13.6 1.7

market for tetrafluoroethylene film, on glass’

(kilogram, GLO, None)
2.88 2.88 0.36

market for activated carbon, granular’ (kilogram, GLO, None) 9 9 4.5

market for iridium’ (kilogram, GLO, None) 0 0.037 0.037

market for platinum’ (kilogram, GLO, None) 0.825 0.01 0.01

electricity, high voltage, production mix’

(kilowatt hour, FR, None)
5360.0 5360.0 5360.0
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Annexe A. Annex 1 : Supplementary data

Table A.2: Balance of plant inventory, data from [Zhang2017] and [Bareiß2019]

Activity Amount

market for steel, unalloyed’ (kilogram, GLO, None) 13700.0

market for copper’ (kilogram, GLO, None) 5900.0

market for steel, chromium steel 18/8, hot rolled’ (kilogram, GLO, None) 1100.0

market for aluminium, primary, ingot’ (kilogram, RoW, None) 1000.0

market for polyethylene, high density, granulate, recycled’ (kilogram, CH, None) 300.0

market for concrete, 30-32MPa’ (cubic meter, RoW, None) 2.113

market for display, liquid crystal, 17 inches’ (unit, GLO, None) 1.0

Table A.3: Primary production activities

Primary production activities

’copper production, primary’ (kilogram, RER, None)

’pig iron production’ (kilogram, RoW, None)

’aluminium production, primary, ingot’ (kilogram, IAI Area, Russia & RER w/o EU27 & EFTA, None)

’steel production, converter, chromium steel 18/8’ (kilogram, RER, None)

’primary lead production from concentrate’ (kilogram, GLO, None)

’polyethylene production, high density, granulate’ (kilogram, RER, None)

’steel production, converter, low-alloyed’ (kilogram, RER, None)

Table A.4: Disposal activites

Disposal activities

’market for waste polyvinylchloride’ (kilogram, FR, None)

’market for waste polypropylene’ (kilogram, FR, None)

’market for waste concrete’ (kilogram, RoW, None)

’market for waste mineral oil’ (kilogram, CH, None)

’market for waste reinforcement steel’ (kilogram, CH, None)

’market for waste rubber, unspecified’ (kilogram, CH, None)

’market for waste aluminium’ (kilogram, GLO, None)

’market for process-specific burdens, inert material landfill’ (kilogram, RoW, None)
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Annexe A. Annex 1 : Supplementary data

Table A.5: Recycling activites

Recycling activites

’treatment of copper scrap by electrolytic refining’ (kilogram, RER, None)

’market for iron scrap, sorted, pressed’ (kilogram, GLO, None)

’treatment of aluminium scrap, new, at remelter’ (kilogram, RER, None)

’treatment of aluminium scrap, post-consumer, prepared for recycling, at remelter’ (kilogram, RER, None)

’treatment of scrap lead acid battery, remelting’ (kilogram, RER, None)

’steel production, electric, chromium steel 18/8’ (kilogram, RER, None)

’polyethylene production, high density, granulate, recycled’ (kilogram, CH, None)

’treatment of waste polyethylene, for recycling, unsorted, sorting’ (kilogram, CH, None)

’steel production, electric, low-alloyed’ (kilogram, RER, None)

Table A.6: Importance indices for foreground processes from the use phase and the stack inventory.

Foreground

processes
Classification

Importance indices (Im)

Climate

change

Ozone

Layer

Depletion

Terrestrial

acidification

Particulate

matter

formation

Photochemical

oxidant

formation

Human

toxicity

cancer

Mineral

resources

use

market for water, deionised Use phase 0.0007 0.0007 0.0018 0.0015 0.0010 0.0019 0.0041

electricity, high voltage,

production mix
Use phase 1.2124 1.2136 0.7999 1.0517 1.0660 1.1216 1.1959

market for titanium, primary
Manufacturing,

PEM stack
0.0045 0.0001 0.0440 0.0406 0.0379 0.0134 0.0024

market for aluminium,

primary, ingot

Manufacturing,

PEM stack
0.0001 0.0000 0.0018 0.0015 0.0011 0.0023 0.0000

market for steel, chromium

steel 18/8

Manufacturing,

PEM stack
0.0001 0.0000 0.0015 0.0020 0.0012 0.0031 0.0003

market for copper, cathode
Manufacturing,

PEM stack
0.0000 0.0000 0.0013 0.0006 0.0003 0.0003 0.0001

market for sulfuric acid
Manufacturing,

PEM stack
0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

market for tetrafluoroethylene
Manufacturing,

PEM stack
0.0001 0.0010 0.0001 0.0001 0.0001 0.0000 0.0000

market for activated carbon,

granular

Manufacturing,

PEM stack
0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000

market for platinum
Manufacturing,

PEM stack
0.0172 0.0004 2.0390 0.7944 0.7957 0.1638 0.0128

electricity, high voltage,

production mix

Manufacturing,

PEM stack
0.0001 0.0000 0.0008 0.0006 0.0006 0.0003 0.0001
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Table A.7: Electricity mix utilised in the case study from ecoinvent 3.6 cutoff and for 2030 adapted
from ADEME

Electricity mix activities from Ecoinvent 3.6

Electricity mix

high voltage,

France, v3.6.

Electricity mix

France 2030,

adapted using

[ADEME2014]

’electricity production, deep geothermal’ (kilowatt hour, FR, None) 0,00% 0,30%

’electricity production, hard coal’ (kilowatt hour, FR, None) 1,49% 0,00%

’electricity production, hydro, pumped storage’ (kilowatt hour, FR, None) 0,95% 0,89%

’electricity production, hydro, reservoir, alpine region’ (kilowatt hour, FR, None) 1,87% 1,75%

’electricity production, hydro, run-of-river’ (kilowatt hour, FR, None) 9,79% 9,19%

’electricity production, natural gas, combined cycle

power plant’ (kilowatt hour, FR, None)
3,62% 3,75%

’electricity production, natural gas, conventional

power plant’ (kilowatt hour, FR, None)
0,70% 0,72%

’electricity production, nuclear, pressure water reactor’ (kilowatt hour, FR, None) 75,17% 48,00%

’electricity production, oil’ (kilowatt hour, FR, None) 0,32% 0,00%

’electricity production, wind, 1-3MW turbine, offshore’ (kilowatt hour, FR, None) 0,00% 11,22%

’electricity production, wind, 1-3MW turbine, onshore’ (kilowatt hour, FR, None) 3,72% 11,22%

’electricity production, wind, <1MW turbine, onshore’ (kilowatt hour, FR, None) 0,24% 0,00%

’electricity production, wind, >3MW turbine, onshore’ (kilowatt hour, FR, None) 0,02% 0,00%

’heat and power co-generation, biogas, gas engine’ (kilowatt hour, FR, None) 0,09% 1,83%

’heat and power co-generation, hard coal’ (kilowatt hour, RoW, None) 0,00% 0,00%

’heat and power co-generation, natural gas, conventional

power plant, 100MW electrical’ (kilowatt hour, FR, None)
1,28% 1,33%

’heat and power co-generation, oil’ (kilowatt hour, FR, None) 0,04% 0,00%

’heat and power co-generation, wood chips, 6667 kW,

state-of-the-art 2014’ (kilowatt hour, FR, None
0,36% 0,61%

’treatment of blast furnace gas, in power plant’ (kilowatt hour, FR, None) 0,29% 0,00%

’treatment of coal gas, in power plant’ (kilowatt hour, FR, None) 0,05% 0,00%

electricity, from municipal waste incineration to

generic market for electricity, medium voltage’ (kilowatt hour, FR, None)
0,00% 0,61%

electricity production, photovoltaic, 570kWp open

ground installation, multi-Si’ (kilowatt hour, FR, None)
0,00% 9,15%
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Table A.8: Current allocation for platinum group metals in ecoinvent v3.6 and updated allocation
using factors.

Metals
Current allocation ecoinvent v3.6

[Wernet2016]

Updated allocation

using [Nuss2014]

Nickel 11% 10,55%

Platinum 63% 62,02%

Copper 4% 3,65%

Palladium 10% 10,24%

Rhodium 11% 11,23%

Gold 1% 1,39%

Ruthenium 0% 0,41%

Osmium 0% 0,08%

Iridium 0% 0,43%

Table A.9: PV inventory activities

Activity Location Amount Unit

market for diesel, burned in building machine GLO 7673 megajoule

market for photovoltaics, electric installation for 570kWp module, open ground GLO 1 unit

market for inverter, 500kW GLO 3.126 unit

market for photovoltaic mounting system, for 570kWp open ground module GLO 4273.5 square meter

market group for electricity, low voltage GLO 36.033 kilowatt hour

photovoltaic panel production, multi-Si wafer updated LSED RER 4401.7 square meter

Table A.10: Absolute impact values from the three cases

Case

Climate

change

(kg CO2-eq)

Ozone

depletion

(kg CFC-11-eq

10−6)

Terrestrial

acidification

(kg SO2-eq

10−2)

Particulate

matter

formation

(kg PM2.5-eq

10−6)

Photochemical

Oxidant

Formation

(kg NMVOC-eq

10−3)

Human

Toxicity

cancer

(CTUh 10−7)

Mineral

resource

use

(100 kg

deprived)

Base case 4.698 3.931 1.793 2.087 12.996 2.548 1.596

Only important

parameters adjusted
3.584 2.651 1.253 1.694 9.182 2.952 1.852

Ideal case 3.568 2.642 1.243 1.679 9.103 2.965 1.845
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Table A.11: Name of the three materials from ecoinvent 3.6 and absolute impact per kg for the
design of bike

Activity name

Climate

change

(kg CO2-eq)

Fossil and

nuclear

energy use

(MJ deprived)

Freshwater

ecotoxicity

(CTUe)

Freshwater

eutrophication

(kg PO4 P-lim eq)

Human

toxicity

cancer

(CTUh)

Marine

eutrophication

(kg N N-lim eq)

Mineral

resources

use

(kg

deprived)

Terrestrial

acidification

(kg SO2 eq)

aluminium production,

primary, ingot | RoW |

kilogram

18.428 193.292 460501.000 1.98E-02 5.18E-06 1.18E-03 0.023 0.091

glass fibre production

| RER | kilogram
2.039 36.918 24422.516 2.47E-03 1.43E-07 3.33E-04 0.295 0.012

tin production | RoW |

kilogram
10.086 144.557 3891383.069 7.97E-02 2.90E-06 2.10E-03 0.113 0.089

Table A.12: Correlation matrix after 5 generations for indicator reduction using PCA, for one
simulation run.

Cost FS CC Min W FWA TER
FW

eco
PM POF HT can

HT

non can
IO Oz

Cost 1.00 -0.68 0.55 0.95 -0.45 0.69 0.69 0.68 0.77 0.77 0.95 0.75 -0.71 -0.65

FS -0.68 1.00 -0.04 -0.72 0.92 -0.30 -0.30 -0.43 -0.41 -0.43 -0.76 -0.34 1.00 1.00

CC 0.55 -0.04 1.00 0.63 0.35 0.96 0.96 0.89 0.93 0.92 0.61 0.95 -0.11 0.03

Min 0.95 -0.72 0.63 1.00 -0.46 0.77 0.77 0.77 0.85 0.86 1.00 0.81 -0.77 -0.69

W -0.45 0.92 0.35 -0.46 1.00 0.09 0.09 -0.05 -0.03 -0.05 -0.49 0.05 0.89 0.95

FWA 0.69 -0.30 0.96 0.77 0.09 1.00 1.00 0.98 0.99 0.99 0.77 1.00 -0.38 -0.23

TER 0.69 -0.30 0.96 0.77 0.09 1.00 1.00 0.98 0.99 0.99 0.77 1.00 -0.38 -0.23

FW eco 0.68 -0.43 0.89 0.77 -0.05 0.98 0.98 1.00 0.97 0.98 0.78 0.97 -0.50 -0.36

PM 0.77 -0.41 0.93 0.85 -0.03 0.99 0.99 0.97 1.00 1.00 0.85 1.00 -0.48 -0.34

POF 0.77 -0.43 0.92 0.86 -0.05 0.99 0.99 0.98 1.00 1.00 0.86 0.99 -0.50 -0.36

HT can 0.95 -0.76 0.61 1.00 -0.49 0.77 0.77 0.78 0.85 0.86 1.00 0.81 -0.80 -0.72

HT

non can
0.75 -0.34 0.95 0.81 0.05 1.00 1.00 0.97 1.00 0.99 0.81 1.00 -0.41 -0.27

IO -0.71 1.00 -0.11 -0.77 0.89 -0.38 -0.38 -0.50 -0.48 -0.50 -0.80 -0.41 1.00 0.99

Oz -0.65 1.00 0.03 -0.69 0.95 -0.23 -0.23 -0.36 -0.34 -0.36 -0.72 -0.27 0.99 1.00
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Table A.13: Correlation matrix for indicator reduction using PCA obtained for final display of
solutions

cost FS CC Min W FWA TER
FW

eco
PM POF HT can

HT

non can
IO Oz

cost 1.00 -0.83 -0.39 0.98 -0.79 0.24 0.23 0.57 0.57 0.64 1.00 0.88 -0.84 -0.82

FS -0.83 1.00 0.80 -0.76 1.00 0.20 0.20 -0.56 -0.14 -0.23 -0.84 -0.53 1.00 1.00

CC -0.39 0.80 1.00 -0.27 0.85 0.73 0.73 -0.09 0.47 0.39 -0.40 0.07 0.79 0.81

Min 0.98 -0.76 -0.27 1.00 -0.71 0.35 0.35 0.58 0.66 0.73 0.99 0.93 -0.77 -0.75

W -0.79 1.00 0.85 -0.71 1.00 0.28 0.28 -0.50 -0.06 -0.15 -0.80 -0.46 0.99 1.00

FWA 0.24 0.20 0.73 0.35 0.28 1.00 1.00 0.56 0.94 0.90 0.23 0.66 0.18 0.21

TER 0.23 0.20 0.73 0.35 0.28 1.00 1.00 0.56 0.93 0.90 0.23 0.66 0.18 0.21

FW eco 0.57 -0.56 -0.09 0.58 -0.50 0.56 0.56 1.00 0.69 0.72 0.58 0.67 -0.57 -0.55

PM 0.57 -0.14 0.47 0.66 -0.06 0.94 0.93 0.69 1.00 0.99 0.56 0.88 -0.16 -0.13

POF 0.64 -0.23 0.39 0.73 -0.15 0.90 0.90 0.72 0.99 1.00 0.64 0.92 -0.25 -0.22

HT can 1.00 -0.84 -0.40 0.99 -0.80 0.23 0.23 0.58 0.56 0.64 1.00 0.88 -0.85 -0.84

HT

non can
0.88 -0.53 0.07 0.93 -0.46 0.66 0.66 0.67 0.88 0.92 0.88 1.00 -0.54 -0.52

IO -0.84 1.00 0.79 -0.77 0.99 0.18 0.18 -0.57 -0.16 -0.25 -0.85 -0.54 1.00 1.00

Oz -0.82 1.00 0.81 -0.75 1.00 0.21 0.21 -0.55 -0.13 -0.22 -0.84 -0.52 1.00 1.00
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Annex 3 : Supplementary figures from chapter 5

Figure C.1: Hypervolume indicator for different number of objectives with NSGA-III with extended
number of evaluations
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Annexe C. Annex 3 : Supplementary figures from chapter 5

Figure C.2: Hypervolume indicator for different number of objectives with NSGA-III with number
of generations

Figure C.3: Distribution of the pareto front obtained using 7 and 14 objectives shown in four
figures of 2-dimensional plots
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Figure C.4: Distribution of the pareto front obtained using 7 and 14 objectives shown in four
figures of 2-dimensional plots

Figure C.5: Distribution of the pareto front obtained using 7 and 4 objectives shown in four figures
of 2-dimensional plots
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Figure C.6: Distribution of the pareto front obtained using 7 and 4 objectives shown in four figures
of 2-dimensional plots

Figure C.7: Distribution of the pareto front obtained using 7 and 2 objectives shown in four figures
of 2-dimensional plots
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Figure C.8: Distribution of the pareto front obtained using 7 and 2 objectives shown in four figures
of 2-dimensional plots



Figure C.9: Evaluations vs. standardised minimum point of indicators in the pareto front



Integration of environmental analysis in
the assessments of hybrid energy
systems

Résumé

Les technologies énergétiques émergentes sont souvent évaluées à une échelle pi-
lote, ce qui permet d’étudier leurs performances dans des conditions réelles. On
les appelle souvent systèmes énergétiques hybrides et ils se caractérisent par une
offre/demande d’énergie variable, des vecteurs énergétiques multiples, etc. Les
logiciels existants pour analyser ces systèmes ne permettent qu’une analyse en-
vironnementale simpliste qui pourrait être insuffisante pour évaluer les nouveaux
systèmes énergétiques. Cette thèse vise donc à fournir une méthodologie générale
pour inclure des indicateurs environnementaux dans la conception, la planification
et l’évaluation des systèmes énergétiques hybrides. Dans ce contexte, trois con-
tributions à la littérature sont proposées. Premièrement, pour faciliter la modélisa-
tion technico-économique et environnementale intégrée, un cadre pour développer
des modèles paramétrés d’analyse du cycle de vie (ACV) des systèmes énergé-
tiques hybrides est proposé. Deuxièmement, une approche d’optimisation pour
la recherche de solutions à plus haute efficacité environnementale combinant la
NSGA-III et la réduction objective est proposée. Troisièmement, une nouvelle ap-
proche de réduction d’objectif trouvée dans cette thèse est proposée, qui peut être
appliquée à des cas simples.

Mots-clés : ACV; technologies émergentes; réduction des objectifs; optimi-
sation multi-objectifs; systèmes énergétiques hybrides; analyse de sensibilité glob-
ale

Abstract

Emerging energy technologies are often assessed at a pilot scale, which allows the
investigation of their performance in real world conditions. These are often called
hybrid energy systems and are characterised by variable energy supply/demand,
multiple energy vectors, etc. Existing software to analyse these systems only al-
low simplistic environmental analysis which might be insufficient to assess the new
energy systems. This thesis thus aims to provide a general methodology to in-
clude environmental indicators in the design, planning and assessments of hybrid
energy systems. Within this context, three contributions to the literature are pro-
posed. First, to facilitate integrated techno-economic-environmental modelling, a
framework to develop parameterised life cycle assessment (LCA) models of hybrid
energy systems is proposed. Second, an optimisation approach to search solutions
with higher environmental efficiency combining NSGA-III and objective reduction is
proposed. Third, a new objective reduction approach found in this thesis is pro-
posed, which can be applied to simple cases.

Keywords : LCA; emerging technology; objective reduction; multi-objective
optimisation; hybrid energy systems; Global sensitivity analysis
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