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Résumé

Ces dernières années, en raison de la croissance sans précédent du nombre d’appareils connectés

et de données mobiles, et des développements continus des technologies pour répondre à cette énorme

demande de données, le réseau de cinquième génération (5G) a émergé. La future architecture 5G

sera essentiellement basée sur le Network Slicing (NS), qui permet de fournir une approche flexible

pour réaliser la vision 5G. Grâce au concept émergent de virtualisation des fonctions réseau (NFV),

les fonctions réseau sont découplées des matériels physiques dédiés et réalisées sous forme de logiciel.

Cela offre plus de flexibilité et d’agilité dans les opérations commerciales.

Malgré les avantages qu’il apporte, NFV soulève quelques défis techniques, le problème de reconfig-

uration étant l’un d’entre eux. Ce problème, qui est NP-difficile, consiste à réaffecter les fonctions de

réseau virtuel (VNFs) pour s’adapter aux changements du réseau, en transformant l’état courant des

services déployés, on peut illustrer cela par la migration des machines virtuelles (VM) qui hébergent

les VNF, à un autre état qui répond aux objectives des opérateurs.

Cette thèse de doctorat étudie comment reconfigurer les VNFs en les migrant vers un état optimal

qui pourrait être calculé en avance ou inconnu. Dans cette thèse, nous avons étudié les deux cas en

minimisant la durée d’interruption de service et la durée de migration des VNFs. Nous avons proposé

des méthodes exactes et approchées. Parmi les méthodes exactes, nous citons deux modèles PLNE.

Nous avons également proposé deux approches heuristiques, l’une basée sur la génération de colonnes

et la deuxième utilisant la notion de “feedback arc set”. L’objectif global de ce travail est donc de

définir et d’étudier le problème de reconfiguration des VNFs dans le contexte du 5G network slicing,

et de proposer des modèles mathématiques et des algorithmes efficaces pour résoudre les problèmes

d’optimisation sous-jacents.

Mots-clés : 5G Network slicing, Reconfiguration des VNFs , Migration des VNFs , optimisation.
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Abstract

In recent years, because of the unprecedented growth in the number of connected devices and

mobile data, and the ongoing developments in technologies to address this enormous data demand,

the fifth generation (5G) network has emerged. The forthcoming 5G architecture will be essentially

based on Network Slicing (NS), which enables provide a flexible approach to realize the 5G vision.

Thanks to the emerging Network Function Virtualization (NFV) concept, the network functions are

decoupled from dedicated hardware devices and realized in the form of software. This offers more

flexibility and agility in business operations.

Despite the advantages it brings, NFV raises some technical challenges, the reconfiguration problem

is one of them. This problem, which is NP-Hard, consists in reallocating the Virtual Network Functions

(VNFs) to fit the network changes, by transforming the current state of deployed services, e.g., the

current placement of Virtual Machines (VM) that host VNFs, to another state that updates providers’

objectives.

This PhD thesis investigates how to reconfigure the VNFs by migrating them to an optimal state

that could be computed in advance or free placement. In this thesis, we studied both cases while

minimizing the service interruption duration and the VNF migration duration. We have proposed

exact and approximate methods. Among the exact methods, we cite two ILP models. We also

proposed two heuristic approaches, one based on column generation and the second using the concept

of “arc set feedback”. The overall objective of this work is therefore to define and study the problem of

VNF reconfiguration problem in the context of 5G network slicing, and propose mathematical models

and efficient algorithms to solve the underlying optimization problems.

Keywords: 5G Network slicing, VNF reconfiguration, VNF migration, optimization.
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Chapter 1

Introduction

Nowadays, the world is experiencing an increased use and need of applications and new technolo-

gies, numerous devices and networks will be interconnected and traffic demand will constantly rise.

New services emerge with various requirements, and many devices required faster speed and data

transmission. 5G is at the crossroads of these new usages. It aims to better respond to the wide

variety of needs and new demands through a unified technology that takes into account this diversity.

One of the visions of 5G is to have a multi-service network supporting a wide range of verticals

with a varied set of performance and service requirements. The key to realize this vision is network

slicing [4] which is defined by [5] as a concept for running multiple logical customized networks on

a shared common infrastructure complying with agreed service level agreement (SLA) for different

vertical industry customers and requested functionalities. In the 3rd Generation Partnership Project

(3GPP) [6] [7], three standardized slice types are currently defined (see Fig. 1.1):

• mMTC – Massive Machine Type Communications: communications between a large number of

objects with various quality of service needs. The objective of this category is to respond to the

exponential increase of connected objects. It mainly encompasses all uses related to the Internet

of Things. These services require extensive coverage, low energy consumption, and relatively

restricted speeds.

• eMBB – Enhanced Mobile Broadband: concerns all applications and services that require an ever

faster connection, for example, to allow viewing of ultra-high definition (8K) videos or wireless

streaming of virtual or augmented reality applications.

19



• uRLLC – Ultra-reliable and Low Latency Communications: encompasses all the applications

requiring extremely high reactivity as well as a very strong guarantee of message transmission.

These needs are mainly found in transport (in case of risk of accident, for example), in medicine

(telesurgery), etc.

Figure 1.1: 5G usage scenarios

The network slicing is essentially based on Network Function Virtualization (NFV) which decouples

hardware and network functions using virtualization technologies. A network slice is a connected set,

or chain, of network functions, logically creating a dedicated virtual network that satisfies the specific

requirements of a service [8]. By virtualizing entire categories of network node functions into modular

units, NFV achieves greater scalability in communication and computing services. Dynamic slicing

operations (such as the deployment of new slices, the ending of slices, etc) can impact the performance

of other slices and make the placement of existing slice resources sub-optimal or inefficient. The

operator should be able to reconfigure slices with minimal impact on ongoing services while respecting

resource availability.

To provide high-quality and cost-efficient services, effective management of the 5G network is

crucial. Through 5G management, most management tasks require reconfiguration of virtualized

network functions. The VNF Reconfiguration has vital importance for both providers and users.

In meeting the SLA, the poor estimation of the placement resources would lead to broken SLAs
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and penalties. The client will be discouraged and the provider must compensate the client for SLA

violations leading to significant economic losses. The VNF reconfiguration problem for the 5G core

network is a challenging problem for the provider’s resource-economic requirements.

The problem of VNF reconfiguration consists of reallocating the VNFs to adapt to the network

changes, by transforming the current state of deployed services, e.g., the current placement of VMs

or containers that host VNFs, to another state that updates providers’ objective(s). There are three

types of management strategies to address a reconfiguration problem: (i) VNFs migration (ii) Traffic

re-direction and (iii) Scaling. In this work, we focus on the VM-based VNF reconfiguration problem

regarding migration strategy.

1.1 Thesis plan and contributions

In this section, we present the plan of the thesis, summarise the main contributions, and list the

published works.

In Chapter 2, we introduce the industrial context of our thesis, we overview the evolution of the

mobile system, from 1G to 5G. Then, we present the concept of network slicing and its principles

and introduce the background of NFV. Next, we highlight the VNF reconfiguration problem and the

optimization techniques and algorithms used to solve it with a classification of the problem according

to what exists in the literature.

In Chapter 3, we introduce different optimization tools and techniques that are used in this thesis.

Firstly, we present an introduction to graph theory, secondly we introduce linear programming, and

thirdly we present the concept of column generation based on linear programming.

In Chapter 4, we describe the first contribution of this PhD thesis. We define the problem of VNF

reconfiguration in the context of 5G networks and propose an Integer Linear Programming (ILP)

formulation to model it. The ILP model takes into consideration the type of VNF migration, the

service interruption duration, and the VNF migration duration. The ILP finds a reconfiguration plan,

consisting of a series of migrations that will relocate the VNFs from their current servers to those

computed beforehand while minimizing the migration and interruption duration. We evaluate the

proposed model according to the service importance taking into consideration the SLA availability

metric, and the nature of the datasets. The content of Chapter 4 was presented at the International
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Conference on Networks and published in its proceedings [9].

In Chapter 5, we propose an efficient heuristic for the Virtual Network Function (VNF) reconfig-

uration problem in the context of 5G network slicing. We rely on the topological sorting algorithm

and the Feedback Arc Set (FAS) problem to build our heuristic which is an alternative to the exact

solution already proposed in Chapter 4. The evaluation results show the good performance of the

heuristic that solves the problem in a few seconds under a large network infrastructure.

In Chapter 6, we model the problem as Multiple Multidimensional Knapsacks Reconfiguration

problems and formulate it through a non-compact model and the corresponding Column Generation

algorithm. A new alternative compact ILP formulation is also presented. In addition, we propose an

extension of the ILP formulation that enables reconfiguring the VNFs in the case where the destination

is unknown. The VNFs migrate from the current state to another optimal state that the model

ILP computes. The content presented in both Chapters 5 and 6 was respectively accepted at the

International Workshop on Resilient Networks Design and Modeling [10] [11].

In Chapter 7, we conclude our work and present the directions to take to extend and improve our

contributions to future research.
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2.1. 5G NETWORKS

In this chapter, we introduce the industrial context of this PhD thesis. We present useful concepts

needed to understand the scope of this work. Then, we describe the VNF reconfiguration problem

together with different optimization methods used in the literature.

2.1 5G Networks

Mobile communication has transfigured the way people use to communicate each other to exchange

information. Wireless communication including mobile generation technologies has a very tremendous

growth in the past 50 years as given in fig 2.1. Since the 70s and over four decades, four generations

of mobile wireless networks have emerged. In 1980 the mobile cellular era started, and since then

mobile communications have undergone significant changes and experienced enormous growth. The

first generation(1G) technology is a very basic voice analog phone system using circuited switched

technology [12], that was introduced in the 1980s and continued until being replaced by 2G digital

telecommunications. Compared to first-generation systems, second-generation (2G) systems offered

low bitrates and allowed the support of multiple users by using digital multiple access technology,

such as TDMA (time division multiple access) and CDMA (code division multiple access). Later in

2000, in order to offer voice, text, and data services, the third generation (3G) was introduced. In this

technology, a true revolution took place where the network speed was increased up to 2Mpbs which

made high-speed browsing, gaming, email, and other web services possible to a vast segment of the

population and the transfer speed was four times greater than 2G. After the 3G transition, the next

evolution took place with the introduction of mobile broadband and mobile data in the year 2010 when

4G was introduced. 4G is enabled by the LTE technology, which stands for Long Term Evolution. 4G

networks use packet-switching to offer IP-based voice calls and text messages in addition to high-speed

mobile data. Since the implementation of 4G networks and adoption by industrial firms, the number

of mobile and Internet of Things (IoT) devices has drastically increased. In addition, the increase

of users and their personal needs for bandwidth is causing congestion problems. The 4G network

was not designed to be so adaptable and 5G is designed to meet these needs. 5G promises greater

speed, capacity, and density of connected devices with less interference. It also delivers greater energy

efficiency, greater mobility, and lower latency.

26



2.2. NETWORK SLICING

Figure 2.1: Main drivers behind past cellular communications generations and 5G [1]

2.2 Network Slicing

Unlike consumer services, vertical industries require networks that deliver deterministic services,

with assured latency, jitter, and packet loss. Such requirements can hardly be met by 4G networks.

Traditional networks should switch to 5G with its differentiated capabilities to fulfill varied require-

ments. Network slicing is the key to this change. With network slicing, a physical network can be

sliced into logical networks that run on shared infrastructures while targeting different industries and

applications.

An example of the network slicing architecture can be seen on Fig. 2.2. The network infrastructure

is on the last layer and covers the access network, the transport network, and the core network. In

this example, there are three slices, each of a different class and with different needs. Each slice has

several entry points on the access network thanks to the Worldwide Interoperability for Microwave

Access (WIMAX) infrastructure. Then, every slice passes through network functions on edge clouds

in the transport network. Finally they connect to datacenters in the core network. Some parts of the

network infrastructure are used by only one slice and others are shared by several of them.

In the context of 5G networks, Network slicing was introduced by NGMN (Next Generation Mobile
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Network) in [13] as a paradigm that suggests partitioning the physical infrastructure into several

virtual networks called slices, as presented in Fig. 2.2. Later, 3GPP [6] [7] defined network slicing as a

technology that enables the creation of customized networks to provide optimal solutions for diverse

market scenarios with diverse demand requirements. Network slicing builds on top of the following

principles that shape the concept and related operations:

• Automation: is essential for network slicing because ultimately a plethora of dynamic network

slices will need to be provisioned in real-time across physical, virtual, and cloud-based domains.

The resulting complexity simply will not be manageable using manual processes.

• Isolation: is a major requirement that must be satisfied to operate parallel slices on a common

shared physical network. Each slice has a specific service requirement that should be satisfied.

Moreover, each slice must have an independent security function. Indeed, if two slices share the

same resource and one slice had attacks or faults, the other slices must not have an impact.

Figure 2.2: 5G Network Slicing concept [2]

• Elasticity: During the use of a slice, some needs may change and a slice must be elastic and

must provide the possibility to change according to these needs. Elasticity can be achieved by

shifting virtual network functions, scaling up and down allocated resources, and reprogramming

the control and data element functionalities.
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• End-to-end network slicing: is a major characteristic of the 5G System. It consists of RAN

(Radio Access Network), Transport Network (TN), and Core Network (CN). This use case

intends to demonstrate the modeling, orchestration, and assurance of a network slice which are

implemented in the following with relevant standards.

2.3 Background of NFV

2.3.1 What is NFV ?

A Network Function (NF) is an element within a network with well defined external interfaces

and functional behavior e.g. DHCP, Firewall, routing. Network Function Virtualization [14] [15]

abstracts network functions, allowing them to be installed, controlled and manipulated by software.

In traditional networks, all devices are deployed on the legacy. All network elements are enclosed boxes,

and hardware cannot be shared. Each equipment requires additional hardware for increased capacity.

With NFV, however, network elements are independent applications that are flexibly deployed on a

unified infrastructure comprising standard servers, storage devices, and switches. In this way, software

and hardware are decoupled, and the capacity for each application is increased or decreased by adding

or reducing virtual resources.

Figure 2.3: The vision of physical network functions (PNFs) to virtualized network functions (VNFs)

If NFV is implemented efficiently and effectively, it can provide a number of benefits compared to

traditional networking approaches. The following are the most important potential benefits [16]:

29



2.3. BACKGROUND OF NFV

• Reduced Capital Expenditures (CAPEX), by using commodity servers and switches, consol-

idating equipment, exploiting economies of scale, and supporting pay-as-you-grow models to

eliminate wasteful overprovisioning.

• Reduced Operational Expenditures (OPEX), in terms of power consumption and space usage,

by using commodity servers and switches, consolidating equipment, and exploiting economies of

scale, and reduced network management and control expenses.

• The ability to innovate and roll out services quickly, reducing the time to deploy new networking

services addressing changing requirements.

• Ease of interoperability thanks to standardized and open interfaces.

• Use of a single platform for different applications, users, and tenants. This allows network

operators to share resources across services and across different customer bases.

• Provided agility and flexibility, by quickly scaling services to address changing demands.

2.3.2 NFV framework

The Fig. 2.4 shows a high-level view of the NFV framework. It consists of three domains of

operation:

• NFV Infrastructure (NFVI): The NFVI is the set of hardware and software components that

build up the NFV environment on which NFV services are deployed, managed and executed.

NFVI includes:

1. Hardware resources: this includes computing hardware (such as RAM, CPU), storage hard-

ware (such as disk storage, Network Attached Storage (NAS)), and network hardware (such

as switches and routers).

2. Virtualization layer : abstracts the hardware resources and allows to support of multiple

VNFs by virtually sharing its resources. There are multiple open source and proprietary

options for the virtualization layer (such as VMWare, Xen, and KVM).
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Figure 2.4: High-Level NFV Framework [3]

3. Virtual infrastructure: this includes virtual compute (Virtual Machines VMs), virtual stor-

age, and virtual links.

• Virtualized Network Functions (VNFs): represent virtualized instances of different network

function, implemented in software, that run over the NFVI.

• NFVManagement and Orchestration (MANO): This involves deploying and managing the lifecy-

cle of physical/software resources that support the infrastructure virtualization, and the lifecycle

management of VNFs. NFV management and orchestration focus on all virtualization-specific

management tasks necessary in the NFV framework [3].

2.3.3 NFV principles

Three key NFV principles are involved in creating practical Network Services (NS):

• Service chaining: Each NS requires a chain of network functions to be executed. This is referred

to as Service Function Chaining (SFC in the IETF terminology), also known as Virtualized

Network Functions Forwarding Graph (VNF-FG in the ETSI terminology). This means that

there is a sequencing and specific connectivity between VNFs.
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• VNF embedding: The process of deploying VNFs in the physical servers for the SFCs is called

as VNF embedding. VNF embedding consists of node and link embedding. The orchestrator

is responsible of the embedding stage; it is in charge of the management and orchestration of

software resources and the virtualized hardware infrastructure to realize networking services.

• Distributed architecture: A VNF may be made up of one or more VNF components (VNFC),

each of which implements a subset of the VNF’s functionality. Each VNFC may be deployed in

one or multiple instances. These instances may be deployed on separate, distributed hosts to

provide scalability and redundancy.

2.4 VNF reconfiguration

2.4.1 What is the VNF reconfiguration problem?

In Network Service (NS), the traffic demand usually varies across time. This might affect the

service performance and lead to breaking the SLA and penalties. Therefore, the orchestrator needs

to manage and reconfigure the VNF resources to address the changes that occurred in the network.

To define it simply, a reconfiguration is a reallocation of the NFV to adapt the utilization of network

resources to the occurred changes and can have objectives such as minimizing the service interruptions

or improving the QoS. Multiple types of reconfiguration can be done in the network:

• VNFs migration: There are two types of reconfiguration with VNFs migration. The first type

is VNFs migration within a datacenter. As Cho et al. mentioned in [17], if two VNFs used one

after the other are on the same node, then there is no communication delay between them. The

second type is VNFs migration between datacenters. In this case, it may be associated with the

re-routing of traffic between the new VNFs’ positions. In [18], the authors consider the problem

of reconfiguration as the problem of both rerouting traffic flows and improving the mapping of

network functions onto nodes in the presence of dynamic traffic, with the objective of bringing

the network back to a close to the optimal operating state, in terms of resource usage. In [19], the

VNF reconfiguration problem is addressed by determining the migration of VNF and rerouting

service paths between IoT networks and clouds that optimize the reconfiguration cost and the

resource consumption, while satisfying the resource and QoS constraints.
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Figure 2.5: Illustration of VNF reconfiguration problem

• Traffic re-direction: This type of reconfiguration concerns flow re-routing. With this reconfigura-

tion, a portion of the traffic is changed without impacting the network functions. If a request has

to go through specific network functions, its traffic can be rerouted in-between but the functions

will not migrate [18].

• Scaling: During high traffic periods, the virtual network, SFC or slice may need to be scaled.

Stelios et al. [20] focus on the reconfiguration in terms of horizontal and vertical elasticity.
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Horizontal scaling (scale out/in) consists of adding/removing virtualized resources and vertical

scaling (scale up/down) is reconfiguring the capacity/size of existing virtualized resources [21].

In our work, we focus on reconfiguration with VNFs migration. To help the reader grasp the

problem of reconfiguration in terms of VNFs migration, Fig. 2.5 shows an example of the VNF recon-

figuration problem of an end-to-end network service. The service is composed of a set of VNFs that

together provide a specific functionality which is the SFC chain. The virtualization layer abstracts

the physical resources and anchors the VNFs to the virtualized infrastructure. The SFC (virtual re-

sources) is deployed in the VNF infrastructure (physical resources) presented by five servers in the

”current state”which represents the initial state of our problem. The VNFs are implemented in virtual

machines (VMs). At time t, we assume that a breakdown has occurred in server ”S5”. The VNF-5

deployed in S5 needs to be redeployed in order to ensure the continuity of the service. The strategy

we take into consideration for the reconfiguration is migration. Here, the VNF5 is migrated to server

”S3” in order to reach an optimal state presented by the ”target state”. We obtain the target state

by using a simple model that calculates the VNF placement. The used model is not presented in this

thesis.

In this example, we have just one VNF to migrate for reconfiguration. Imagine we have several

VNFs migrations to perform, in this case, it will be difficult to know which one to migrate first while

respecting the service requirements and available resources. Finding the order in which different VNFs

can be migrated from source server to destination server is referred to as the VNF reconfiguration

problem.

The VNF reconfiguration problem involves two tasks: (i) the first is identifying a new feasible place-

ment of the VNF (and links) such that the service requirement can be satisfied. That is answering the

question, where to place the set of VNFs that compose a network service in the most adequate way,

with respect to the service provider goals, inside the physical network? (ii) the second task consists in

identifying a sequence of VNF migrations (hence VM migrations) to pass from the current configura-

tion, called current state (where VNFs are not optimally allocated) to the desired configuration, called

target state (looking for optimality). This should be done while taking into consideration the different

constraints (precedence and dependencies between the VNFs, hardware and network resources, etc).

Here the question is, how to execute the migrations to reach a given placement? In this thesis, we
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focus our attention on the first and second tasks, without taking into consideration the precedence

constraints between VNFs and network.

- VNFs placement

In literature, the VNF placement problem is encountered in two forms:

• Initial VNFs placement: consists of mapping efficiently the initial SFC request onto the physical

network [22] [23] [24].

• Dynamic VNFs placement: deals with the re-assignment of the physical network usage (the

VNFs have to be re-allocated to adapt to dynamic changes occurred in the network) [25] [26]

The dynamic VNFs placement corresponds to the first task of the VNF reconfiguration problem.

- VNFs Migration

The movement of VNFs from one physical host to another physical host by transferring its con-

sumption such as CPU, associated memory, and storage, is known as VNF Migration. The VNFs

migration can be performed by different methods. Generally, there are two techniques of migration:

• Cold (non-live) migration: represents the process of moving VMs between servers by powering

off the VM on the source server, moving it to the target server then powering it back up on the

target server [27]. Migrating a suspended VM is named a cold migration.

• Hot (live) migration: consists of moving running VMs between the target and source servers

without disconnecting the service or application. The live migration ensures minimal downtime

for the VM. In addition, it facilitates fault management, low-level system maintenance, and

reduction in energy consumption [28]. Among the different live migration approaches, there are

two main algorithms, the pre-copy algorithm, and the post-copy algorithm. The terms pre- and

post-copy refer to the transfer of memory pages. The pre-copy migration copies the memory

state to the destination and then transfers the processor state. However, the post copy migration

does the opposite, it sends the processor state to the destination and then transfers the VM’s

memory contents.

The VNFs migration is a reconfiguration strategy among others (scaling, traffic re-direction). In

this thesis, we focus on the VNF reconfiguration that uses the migration strategy. In the example
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presented in Fig. 2.5, the trigger for the migration is the breakdown. There are many other triggers

or use cases for moving VNFs:

• Moving VNFs from servers that need upgrades, maintenance, or any other operation that could

take longer.

• Moving VNFs when new demands arrive, for example, new SFCs need to be deployed.

• Moving VNFs from servers that need to reduce their energy consumption.

• Achieving high availability by moving VNFs to alternative servers when their current physical

servers are failing or get inadvertently down.

• Achieving better performance by moving VNFs from one server to another, in order to avoid

busy servers and ensure load balancing.

2.4.2 The VNF reconfiguration techniques

The VNF reconfiguration problem is a NP-Hard optimization problem. [29] demonstrates the NP-

hardness of the reconfiguration problem in the context of distributed systems. In this section, the

research on the VNF reconfiguration problem is summarized. Table 2.1 reports different works with

regard to the problem. These works are classified based on the method they use, as discussed below.

Table 2.1: Classification of VNF-R techniques

Classification References

Exact [30] [31] [32] [33] [34] [35] [36]
[37] [38] [39] [40]

Heuristics [18] [32] [35] [41] [42]
[43] [44] [45]

Meta-heuristics [46] [47] [48]

Artificial intelligence [19] [36] [49] [50] [51]

- Using exact methods

In literature, many research works to solve the problem of VNF reconfiguration by proposing an

Integer Linear Programming (ILP) model [32] [33] [34] [35] [36] [37] [40]. Eramo et al. [32] formulated
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the energy-aware reconfiguration of VNF as an ILP. Using cold migration, they proposed a migration

policy that determines when and where to migrate VNF in response to changes to SFC request inten-

sity. The objective is to minimize the total energy consumption given by the sum of the consolidation

and migration energies. The same authors proposed in [33] a hot migration policy aiming at mini-

mizing the total cost taking into account both the energy consumption and the reconfiguration costs

characterizing the QoS degradation.

In [40], the authors studied the problem of SFC dynamic reconfiguration in edge clouds. They

consider that the VNFs (and hence VNF Components (VNFCs)) have been already placed in the

respective virtual resources on which they run. The resource requirements of each VNFC change over

time with changes in traffic. They aimed to balance the trade-off optimization objective which is to

maximize the service provider’s revenue minus the total reconfiguration cost. The total reconfiguration

cost is divided into the VNFs migration cost and bandwidth cost. The problem was formulated as an

ILP model intended to exactly solve this problem.

In [34], Gausseran et al. treated the problem of reconfiguring the VNFs with the goal of bringing

the network from a sub-optimal to an optimal operational state. They proposed an ILP model based on

the make-before-break mechanism, in which a new path is set up before the old one is torn down. This

mechanism allows reaching closer to optimal resource allocation while not interrupting the demands

which have to be reconfigured. The authors showed that the model allows to lower the network cost

and increase the acceptance rate.

In [35], an ILP model was formulated to solve the problem of deployment and reconfiguration of

VNFs for dynamic situations. The authors tried to jointly optimize the deployment and the recon-

figuration of new users’ services while considering the trade-off between resource consumption and

operational overhead. While in [36], the authors consider a trade-off between the minimization of the

latency, Service Level Agreement (SLA) violation cost, hardware utilization, and VNF reconfiguration

cost. In [37], the problem of VNF reconfiguration is addressed in the context of cloud computing. The

authors treated the problem by answering the questions of when to reconfigure, which VNFs should

be reconfigured, and where to host them. To deal with this issue they proposed a two-level runtime

reconfiguration mechanism to automate the operations with the objective of reducing VNF migration

and minimizing the total migration time.

A divide-and-conquer approach is proposed in [38], in order to reconfigure 5G network slices. The
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proposed model finds a sequence of feasible migrations, that satisfies the SLA without overloading the

network, from the current configuration to the new configuration while taking into consideration the

bandwidth and latency constraints between the network functions of network slices.

The reconfiguration problem is treated in [30] [31] [39] using constraint programming, which is an

approach to model and solve combinatorial problems. In [30] [31] authors proposed a VM scheduler

named BtrPlace that uses constraint programming (CP) to model the position of the VMs and the

migrations. From its inputs, Btrplace models a core Reconfiguration Problem (RP), i.e. a minimal

reconfiguration algorithm that manipulates servers and VMs through actions. To use CP, a problem

is modeled as a Constraint Satisfaction Problem (CSP), comprising a set of variables, a set of domains

representing the possible values for each variable, and a set of constraints that represent the required

relations between the values and the variables. A solution for a CSP is a variable assignment (a value

for each variable) that simultaneously satisfies the constraints. To solve CSPs, BtrPlace uses the

Choco library [52]. Constraint programming is also used in [39] for dynamic consolidation, which is

an approach that migrates tasks within a cluster as their computational requirements change, both

to reduce the number of nodes that need to be active and to eliminate temporary overload situations.

The type of migrations taken into account is live (hot) migrations.

- Using heuristic methods

The problem of VM-based reconfiguration is tackled in [43] [44] [41] [45] using greedy heuristics.

In [43], the problem of virtual network function reconfiguration was treated with the objective of

minimizing the number of overloaded links and reducing the cost of reconfiguration. To deal with this

problem, the authors proposed a greedy Virtual Network Reconfiguration algorithm (VNR) that mini-

mizes the rejection rate of virtual network requests. In [44] greedy heuristics are provided for managing

the resource provisioning of reliable virtual networks (VN) in the cloud. This includes handling the

placement of VNFs while providing availability guarantees, as well as reconfiguring their placement

as their request changes over time. It consists of two modules, JENA: a tabu-based availability-aware

resource allocation (embedding) module for virtual networks that achieves availability guarantees, and

ARES: a reliable reconfiguration module to adapt the embedding of hosted services as they scale.

A greedy heuristic algorithm is proposed in [41] to reconfigure the live migrations of a given set

of VMs so that all VMs are migrated to their final target. The goal is to calculate a migration plan

that minimizes the total migration time and the total migration downtime of the VMs. The authors
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took into account the datacenter network topology using a weighted undirected graph. The proposed

heuristic calculates a migration cost for each VNF based on: the CPU and memory usage of the VNF,

the rate of modification of the memory pages as well as the amount of traffic exchanged with other

VNFs. In [45], the authors presented VScheduler, a system that dynamically adjusts the resource

configuration of virtual machines, including the amount of virtual resources and a new mapping of

virtual machines on physical nodes. In order to find a good solution close to the optimal, a greedy

heuristic was employed to dynamically redistribute virtual machines on a cluster of physical nodes. A

greedy heuristic is also proposed in [53] in the context of embedded systems. The authors proposed a

GRASP algorithm that addresses the joint placement and routing of networks of processes, which is a

static reconfiguration of tasks from a DPN (represents the network of processes) onto the network of

clusters. The proposed algorithm gives good solution quality with an acceptable computation time.

Column generation models are proposed in [35] and [18] in order to solve larger instances. In [35],

the dynamic service reconfiguration problem was addressed. First, the authors solved the problem

exactly using an ILP model, as mentioned earlier. Then, to reduce the time complexity they designed

a column generation (CG) model for optimization. The results showed that the CG-based approach

outperformed the benchmark algorithm in terms of the service provider’s profit from service provision-

ing. In [18], a scalable algorithm relying on the column generation technique was modeled to solve the

problem of network slice reconfiguration, while avoiding QoS degradation. The proposed algorithm

reconfigures a given set of network slices from an initial routing and placement of network functions to

another solution that improves the usage of the network resources, both in terms of links and VNFs.

A dynamic programming algorithm is proposed by Eramo et al. in [32] using a Viterbi algorithm

to find the best VNF reconfiguration for traffic arriving at every time instance. As defined in [54],

a Viterbi algorithm is a recursive optimal solution to the problem of estimating the state sequence

of a discrete-time finite-state Markov process. The proposed heuristic is able to determine when and

where to migrate VNFs in response to network changes, with low computational complexity.

- Using meta-heuristic methods

Saving energy consumption remains one of the interesting challenges of VNF. [48] and [47] treated

the problem of reconfiguration regarding to energy consumption. Both papers provide genetic algo-

rithm models to generate high-quality solutions to optimization and search problems. In [48], the

authors proposed an energy-aware service and reconfiguration algorithm that allows users to meet
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their service latency requirements while minimizing energy consumption at the same time. The pro-

posed algorithm also reconfigures the SFC path when the energy consumption of idle servers exceeds

a given threshold of the total energy consumption, which results in reducing total energy consump-

tion. For the same objective of reducing the consumed energy, Haibo et al. [47] tried to conserve the

power consumption in the large-scale datacenter. To solve this issue, they proposed a standard genetic

algorithm-based online self-reconfiguration approach (GABA), that reconfigures the number of VMs

for different applications and their physical locations according to time-varying resource requirements

and environmental conditions. The genetic algorithm is adopted to efficiently find the optimal recon-

figuration policy. The resource utilization of large-scale cloud computing data centers can thus be

improved and their energy consumption can be greatly conserved.

A tabu-search algorithm is used both in [42] [40]. Authors of [42] tried to answer the VNF

reconfiguration problem by mapping and scheduling VNFs of a given service onto virtual networks. To

do so, they proposed three greedy algorithms and a tabu search-based heuristic. As they mentioned,

the tabu search-based algorithm performs better than the greedy ones. However, the algorithms

proposed do not consider the links between physical/virtual nodes, and consequently, the link delays

for transferring a given function from one node to another are considered to be negligible. In [40], a

tabu-search heuristic is proposed as well. The proposed algorithm can balance the trade-off between

the service provider’s revenue and reconfiguration cost.

A genetic algorithm is also proposed in [46], to find the optimal allocation of virtual machines in a

multi-tier distributed environment. The authors considered a general model for virtual machines re-

source allocation where each virtual machine and each physical host is described by a multi-dimensional

resource vector. Resources are both quantitative and qualitative. The genetic algorithm appears to

perform well in finding an approximate solution and the efficiency obtained could make the genetic

algorithm feasible in a dynamic allocation scenario.

- Using Artificial intelligence methods

The reconfiguration of network slices is investigated in [50] with aim of minimizing long-term

resource consumption by exploiting Deep Reinforcement Learning (DRL). The authors addressed the

resource reconfiguration under flow fluctuation within a network slice, the proposed model predicts

the future requirement of the slice thus to avoid unnecessary reconfigurations. The DRL is also used

in [51] in order to provide a better quality of service (QoS) for diverse applications. The authors
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proposed a framework integrated into the Software Defined Network (SDN) control plane of the Data

Center Networks (DCNs), implementing real-time and automatic DCN reconfiguration.

In addition to ILP, [36] also proposed a Machine Learning approach for Efficient reconfiguration of

VNFs called MAPLE. The proposed approach works in a proactive fashion to reduce both the setup

latency and complexity of the VNF reconfiguration processes. To do so, the k-medoids clustering tech-

nique, which is praised for its robustness to noise and outliers compared to other clustering techniques

(e.g., means), is employed [55]. However, since k-medoids suffer from several limitations in terms of

their sensitivity to local optima and their time-consuming running time, the authors incorporated a

statistical technique that optimizes the selection of the initial set of medoids into the proposed clus-

tering approach to enhance the clustering performance and clusters quality. Therefore, the authors

modeled the VNF reconfiguration problem as an Integer Linear Programming (ILP) problem which

considers a tradeoff among the minimization of the latency, SLA violation cost, hardware resource

utilization, and VNF readjustment cost. Then, machine learning-based placement and reconfiguration

algorithm were designed that intelligently eliminate some cost functions from the proposed ILP to

boost its feasibility in a large-scale network.

The dynamic reconfiguration of computational resources assigned to virtual network functions

plays a key role in the deployment of management of future service infrastructure. In [49] [19], the

problem of service function reconfiguration is studied. Hirayama et al. [49] investigated the problem of

VNF reconfiguration, using a migration strategy, by utilizing an encoder-decoder the Recurrent Neural

Network (RNN). The RNN approach is effective, especially when sequential input data is available.

Therefore, it is also suitable for the dynamic VNF migration technique by utilizing the time-series

data of resource demands of network functions. In [19], the dynamic VNF reconfiguration is treated

in the context of Internet-of-Things (IoT). In addition to ILP, the authors solved the problem through

a deep learning approach while guaranteeing the QoS and resource constraints. Regarding the NP-

hardness of the proposed ILP model, the authors proposed a deep Dyna-Q (DDQ)-based approach to

efficiently reconfigure SFCs in the IoT network. the proposed approach uses two algorithms that are

used back-to-back resulting in the graph neural network (GNN)-based VNFI resource prediction and

the Dyna-Q-based SFC reconfiguration.
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Table 2.2: Objective-based classification of VNF-R approaches

Energy Energy Consumption [32] [33] [56] [47] [48]

Cost
Reconfiguration Cost [18] [19] [36] [37] [44] [45] [50] [57] [56]
Migration Cost [19] [30] [31] [43] [47]

Resource Usage
Hardware usage [30] [31] [36] [39] [43] [48] [49] [57] [53]
Network Usage [19] [30] [31] [34] [35] [38] [41] [42] [45] [46] [50] [57] [53]

QoS

Latency [36] [38] [47] [51]
Overhead [35] [44]
Reconfiguration Delay [18]
Congestion [46]

2.4.3 A classification of VNF reconfiguration methods in literature

In this section, we classified the nature of VNF reconfiguration solutions, proposed in the literature,

into two categories (see Table 2.3):

• Online VNF-R (dynamic): In this case, the reconfiguration decisions are made in run-time. The

datacenter makes the reconfiguration decisions based on its current state to satisfy the new

arrival demands and take into account different constraints. The new arrival demands are not

known, so the datacenter makes an immediate reconfiguration decision every time a demand

arrives [35] [47].

• Offline VNF-R (static): This case requires prior knowledge about arrival demands. The recon-

figuration decisions are made to satisfy the demands and constraints known beforehand. The

datacenter is not able to update the new changes that occurred over time.

The VNF-R solutions are categorized according to their target objectives (see Table 2.2):

• Energy consumption: can be represented by minimization of power consumption.

• Cost optimization: can be expressed in terms of reconfiguration cost and migration cost.

• Resource usage: can be represented by hardware usage (CPU, RAM, etc) and network usage

(bandwidth, etc).

• QoS Optimisation: can be expressed in terms of latency, overhead, reconfiguration delay, and

congestion.
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Table 2.3: Classification of VNF-R solutions

Type of reconfiguration References

Online VNF-R [18] [19] [32] [33] [34] [35] [36]
[39] [42] [41] [44]

[45] [47] [50] [49] [51] [57]

Offline VNF-R [30] [31] [32] [37] [38] [41] [43] [46] [48] [53]

2.5 Conclusion

In this chapter, we defined the concept of network function virtualization (NFV) followed by a de-

scription of its architecture and principles. Then we presented a definition of the VNF reconfiguration

problem and its relationship with the concepts of VNF placement and migration. Moreover, we high-

lighted the optimization techniques and algorithms used to solve the problem of VNF reconfiguration

with a classification of the problem according to what exists in the literature.
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3.1. GRAPH THEORY

In this chapter, we describe some theoretical aspects that are fundamental to a better under-

standing of our work. We begin by describing some concepts of the graph theory and some classical

problems that are used within our proposed approaches. Then we describe some exact approaches

and the column generation approach used to address optimization problems.

3.1 Graph theory

Graphs are widely used in computer science and applied mathematics. They are vastly used to

describe different types of networks and scheduling processes for example. This section formalizes

some concepts of graph theory to better represent 5G networks.

3.1.1 Definitions

Figure 3.1: Representations of graphs

Graphs are networks of points and lines, like the ones shown in Figure 3.1. As described in [58] , a

graph G consists of a finite nonempty set V of objects called vertices and a set E of 2-element subsets

of V called edges. The sets V and E are the vertex set and edge set of G, respectively. So a graph G

is a pair (actually an ordered pair) of two sets V and E that we can write it as G = (V, E).

A directed graph, also called a digraph, is a graph in which the edges have a direction. The set E

of a directed graph, for example, is therefore composed of pairs (u, v), where u and v are called origin

and destination respectively. We call the size of the graph the cardinality of the set E, that is, the

number of arcs of the graph. Similarly, we call order the cardinality of the set V , that is, the number

of vertices of the graph.

A graph whose vertices are arranged in a row, is called a path graph (or often just called a path).

Formally, the path Pn has vertex set {v1, v2, ...vn} and edge set {vivi+1 : i = 1, 2, ...n}. If we arrange

vertices around a circle or polygon, we have a cycle graph (often just called a cycle). Another way to
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think of a cycle is as a path where the two ends of the path are connected up. Formally, the cycle

Cn has vertex set {v1, v2, ...vn} and edge set {vivi+1 : i = 1, 2, ...n} ∪ {vnv1}. In this context, a graph

with no cycles in it is known as an acyclic graph, and a graph with at least one cycle is known as cyclic

graph. A complete graph is a simple graph in which every vertex is adjacent to every other vertex.

Formally, a complete graph Kn has vertex set {v1, v2, ...vn} and edge set {vivj : 1 ≤ i < j ≤ n}.

3.1.2 Topological Sorting

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of nodes such that for

every directed arc (u; v), node u comes before v in the ordering. Topological Sorting for a graph is not

possible if the graph is not a DAG. For example, see Figure 3.2 , a topological sorting of the following

graph is [7, 5, 3, 1, 4, 2, 0, 6]. There can be more than one topological sorting for a graph. For

example, another topological sorting of the following graph is [3, 5, 7, 0, 1, 2, 6, 4].

Figure 3.2: Topological sorting example

Kahn [59] and depth-first search [60] algorithms are two classical algorithms that find a topological

sorting for a given DAG. Both algorithms have running time linear in the number of nodes plus the

number of arcs O(|V | + |E|) where |V | denotes the number of nodes in the graph and |E| the number

of arcs in the graph.
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3.1.3 Feedback Arc Set problem

A feedback arc set is a subset of edges containing at least one edge of every cycle in a directed

graph. In other words, removing the edges in the feedback arc set from the graph makes the remaining

graph a directed acyclic graph. A feedback arc set S is minimal if the reinsertion of any edge s ∈ S

to the directed acyclic graph induces a cycle. If the edges in a minimal feedback arc set are reversed

rather than removed from the original graph, then the graph also becomes acyclic [61].

The feedback arc set problem is on the list of Richard M. Karp’s 21 NP-complete problems [62].

The minimum feedback arc set problem is an NP-hard problem on graphs that seeks a minimum set

of arcs that leaves a directed graph G acyclic when removed.

3.1.3.1 Heuristics for the feedback arc set problem

In this section, we present some heuristics for the feedback arc set problem. We consider G = (V ; E)

as a directed graph with |V | = n and |E| = m.

• The minimum set cover problem approach

The greedy heuristic consists of gradually building the feedback arc set by always picking that arc

as the next element that, when removed, destroys most of the remaining simple cycles. This heuristic is

known as the greedy heuristic for the minimum set cover problem, with an O(1+log(d)) approximation

factor, where d is the maximum cardinality of any subset. The weakness of this heuristic is that even

sparse graphs can have Ω(2n) simple cycles [63].

• Greedy local heuristics

As explained above, counting all the simple cycles makes the greedy approach less efficient. Other

heuristics, based on local information only and making greedy choices without enumerating all simple

cycles, exists. The feedback arc set is built up iteratively. At each step, the input graph is simplified

before removing an arc or multiple arcs. This simplification can include splitting into Strongly Con-

nected Components (SCCs) and then dropping the trivial SCCs (the ones consisting of a single node).
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After simplification, the algorithm looks for a node in the remaining graph where many simple cycles

are likely to be destroyed when one or a few arcs of that node are removed. For example, a node

in a SCC with a single incoming arc but with many outgoing arcs is a good candidate: removing its

single incoming arc breaks all the cycles that pass through that node, and the number of destroyed

simple cycles is at least the out-degree of that node (each outgoing arc must participate in at least

one simple cycle in a SCC by definition). This intuition is behind the greedy score functions: a node

gets a higher score if it is more ”asymmetric” regarding its in- and out-degrees. Such score functions

are, for example:

Where score(i) is the score of node i, dini and douti are the in- and out-degree of the node i,

respectively. There are weighted variants of these functions that can be used if the input is a weighted

graph. The node with the highest score is selected, then all of its in- or outgoing arcs are removed,

whichever arc set has the smallest cardinality. The algorithm continues with the simplification. The

heuristic terminates when there are no arcs left [64] [65].

• Sorting heuristics

Given an arbitrary ordering of the nodes of G, all the arcs can be categorized as either forward or

backward arcs depending on whether the terminal node (source) of the arc appears after the initial

node (destination) of the same arc or before. In the former case, the arc is a forward arc (it is pointing

forward in the ordering); in the latter case, it is a backward arc. The set of backward arcs is selected

as the feedback arc set. The sorting heuristics view the minimum feedback arc set problem as an

ordering problem: they try to find the minimum cost ordering by sorting the nodes appropriately.

Various sorting heuristics exist, for example in [66].
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3.2 Linear Programming

Linear programming, also called linear optimization, is, as the second name suggests, a method

for solving optimization problems. Since 1947 with the introduction of the simplex algorithm by

Dantzig [67] (the first practical approach to solving linear programs), linear programming has become

one of the most widely used methods for solving optimization problems. Optimization can be as the

mathematical branch intended to handle a complex decision problem, involving the selection of values

for a number of interrelated variables, by focusing attention on a single objective designed to quantify

performance and measure the quality of the decision. The objective is maximizing ( or minimizing,

depending on the formulation) subject to the constraints that may limit the selection of decision

variable values. All dependencies expressed through constraints or objective function are assumed

linear.

In a linear program there can be distinguished:

1. Parameters, which are the data describing the instance of the problem which are considered as

known given values.

2. Decision variables are the unknowns that the user needs to determine.

3. Objective (or optimization) function. This is used to express the objective (minimization or

maximization) in terms of the decision variables.

4. Constraints are functions that express the requirements on the relationships between the decision

variables.

5. Domain of variables allows limiting the set of decision variables as part of continuous/integer/positive...

numbers.

Linear programming (LP) is widely used to solve optimization problems in operations research

such as scheduling, flow routing, resource allocation, resource management, etc. In a LP, all variables

must be fractional, however, there are many problems that require integer or binary variables. For

example, to model a delivery vehicle scheduling problem, it is impossible to use a fraction of a vehicle,

when a truck is sent on delivery it is sent entirely. When all variables are binaries or integers the

problem is an ILP (Integer Linear Program). When there is a mix of fractionals and integers/binaries
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variables the problem is a MILP (Mixed Integer Linear Program) but we will refer to it as ILP during

this thesis to keep the nomenclature simple.

Linear programs are written in the form:

Where n is the number of variables and m the number of constraints. X = {x1, x2, ..., xn} is the

set of decision variables. C = {c1, c2, ..., cn} is the set corresponding to the coefficients of the variables

in the objective function, it may be a cost to minimise or a profit to maximise. For every linear

constraint j ∈ [1, m] there is a set of coefficient aj,i for every variables xi and bj is the right-hand-side

of equation j.

Different classes of solutions (i.e., classes of values for the decision variables) are identified for a

Linear Programming model:

• Feasible solution: is a solution for which all the constraints are satisfied;

• Infeasible solution: is a solution for which at least one constraint is violated;

• Optimal solution: is a feasible solution that has the most favorable value of the objective function.

Linear Programming models can be solved graphically in the simplest cases. In more complex

cases other algorithms such as Simplex or interior-point are used.

3.2.1 Example of Linear Programming problems

3.2.1.1 The knapsack problem

The knapsack problem (KP) [68] has a significant place in the study of integer programming models

with binary variables. In the knapsack problem, one needs to pack a set of items (I), with given values
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(v) and sizes (w) (such as weights or volumes), into a container with a maximum capacity (C). If

the total size of the items exceeds the capacity, we can’t pack them all. In that case, the problem is

to choose the a subset of the items of the maximum total value that will fit in the container. The

decision variables are represented by binary variables xi taking value 1 if item i is selected and packed

into the container and 0 otherwise. The objective function is (
∑︁

i∈I vixi) such that (
∑︁

i∈I wixi ≤ C).

3.2.2 Duality

One of the key properties of LP used in this section is Duality. For each LP written in standard

form, called the Primal, there is another LP called the Dual. The objective of the dual is the opposite

of the primal one, i.e. if the primal is a minimization problem, then the dual is a maximization one,

and vice-versa. For every variable in the primal, there is a constraint in the dual. And for every

constraint in the dual, there is a variable in the dual. The dual problem of the dual is primal.

The dual problem (left) of the primal (right) is modeled as follows:

where y is the vector variables of size m of the dual problem.
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There are several rules for transforming the constraints and bounds of a primal maximization

problem to its dual:

• For an inferiority constraint and a non-negativity bound, the dual has a superiority constraint

and a non-negativity bound.

• For an equality constraint and a non-negativity bound, the dual has a superiority constraint and

no bound.

• For an inferiority constraint with no bound, the dual has an equality constraint and a non-

negativity bound.

The comprehension of the duality in LP is important to understand the functioning of the column

Generation (CG).

3.3 Column generation

The method was initially proposed by Ford and Fulkerson in 1958. Formally, column generation

is a way of solving a linear programming (LP) problem that adds columns (i.e. variables) during the

pricing phase of solving the problem. In that context, many researchers have observed that column

generation is a very powerful technique for solving a wide range of industrial problems to optimality

or to near-optimality. Among the others, Gilmore and Gomory have demonstrated its effectiveness in

a cutting stock problem. Column generation relies on the fact that the solver does not need to access

to all the variables of the problem simultaneously. In fact, the main advantage of column generation

is that not all variables need to be put in formulation (the same principle as the constraint generation

algorithm). Instead, the problem is first formulated as a restricted master problem with few variables,

and new variables are brought into the basis as needed. Meaning that if a column with a positive

(resp. negative) reduced cost for maximization (resp. minimization) problem can be found, it is added

to the Master and this process is repeated until no more columns can be added to the Master (see

Figure 3.3).

The column generation algorithm works as follows:

1. Start with a subset of columns forming the master problem.
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2. Solve the master problem and identify the dual coefficients corresponding to constraints of Mas-

ter.

3. Write the column generator algorithm: pose the components of a potential column as variables

and dual coefficients (found at step 1) as parameters and write down an LP problem having as

objective function the reduced cost of the column and as constraints the conditions that variables

should satisfy to formulate a valid column. Solve the problem.

4. If the above problem (step 3) gives a column with a positive (resp. negative) reduced cost for

a maximization (resp. minimization) problem, then update the master problem by adding the

new column(s) and go to step 2. Otherwise, the current solution is optimal.

Figure 3.3: How column generation works

3.3.1 An example: path generation

The problem is as follows. Consider a network composed of a set η of nodes, a set ξ of links with

given capacities Ce(e ∈ ξ), and d, a connections (or a demand).

To connection d is assigned a predefined path set Pd between its end nodes sd and td; any path p

is identified with the set of links it traverses, i.e., p ⊆ ξ. Now let xp denote the bandwidth allocated
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to path p ∈ Pd. We are interested in finding a feasible flow maximizing
∑︁

p∈Pd
xp. In other words,

this is the maximum flow problem formulated through path variables instead of flow variables on arcs.

Obviously, these two formulations are equivalent if instead of a given set of paths Pd, all possible

paths are included. Then, the idea is to solve the problem with a given set of paths Pd, and check

its optimality by computing the reduced costs for all other paths not included in Pd. If there is some

path with negative reduced cost, then it is added in Pd, and the problem is solved iteratively until the

achieved solution reaches optimality. The above column generation algorithm is used here to build the

candidate paths to join the set Pd. The entire formulation (using a restricted set of paths) follows:

max
∑︂

p∈Pd

xp (3.1)

subject to :

∑︂
p∈Pd,e∈p

xp ≤ Ce ; ∀e ∈ ξ(πe) (3.2)

xp ≥ 0 ; p ∈ Pd (3.3)

where πe gives the dual variables. Note that with respect to an optimal basis B, the dual variables

are expressed as CBB1 while the reduced cost is expressed as CB − CBB1D, where D collects the

columns out of basis. In our formulation, we notice that CB is composed of 1 for any path included in

the basis (look at the objective function), and matrices B and D are composed of vectors (columns)

of size |E| having 1 at row e for each link e traversing the path. Hence, for a given path q ∈ D the

scalar product πq gives
∑︁

e∈q πe, which will be used to check the optimality of a given solution. As

we are dealing with a maximization problem, an optimal basis should have the reduced costs all non

positive, which comes to check if there exists a path q between sd and td such that its reduced cost

1 −
∑︁

e∈q πe is positive. Putting all this together, one needs to compute for some path q maximizing

the reduced cost 1 −
∑︁

e∈q πe, which is equivalent to minimizing
∑︁

e∈q πe. So, the problem of checking

the feasibility of the solution provided by the master is reduced to the shortest path problem in the

graph weighted with vector π and checking its corresponding reduced cost.

1. Similarly to the cutting stock problem, the algorithm may be presented as:
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2. Initiate the master the problem with a set of some paths joining sd to td.

3. Solve the master problem and note with the values of the obtained dual variables.

4. Compute the shortest path q in the graph weighted with (π) values.

5. If the reduced cost 1 −
∑︁

e∈q πe ≥ 0, add q in the formulation and go to step 2; otherwise stop

(the solution is optimal).
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An ILP formulation
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4.1. SYSTEM MODEL

In this chapter, We propose an ILP model for the VNF reconfiguration problem in the context of

network slicing in 5G networks. The model takes into account two types of migrations (hot and cold

migrations). Our algorithm generates a reconfiguration plan to pass rapidly and efficiently from an

initial state where the placed VNFs are not optimally allocated to a new state, computed beforehand,

respecting the resource capacity with minimal interruption, migration, and SLA costs. Section 6.1

presents the system model. Section 4.2 introduces the problem statement and formulation. The

experiments and evaluation results are presented in Section5.3. We close the chapter with some

concluding remarks.

4.1 SYSTEM MODEL

4.1.1 Problem definition

The problem we are interested in is the reconfiguration of 5G network slices. To define it simply, a

reconfiguration is a reallocation of the NFV to adapt the utilization of network resources to the occurred

changes. Fig. 4.1 shows an example of the VNFs reconfiguration problem. Three service slices are

presented: self-driving car (slice uRLLC), live streaming (slice eMBB), and smart home (slice mMTC).

Each slice is a set of virtualized network functions (VNFs), and each VNF is deployed in one Virtual

Machine (VM) with different capacities (CPU, RAM). The slices (virtual resources) are deployed in

the VNF infrastructure (physical resources) presented by five servers in the ”current state”, which

represents the initial state of our problem. At time t, a new demand for slice deployment is presented.

In this case, the current VNF placements become sub-optimal and inefficient. The VNFs placement

should be reconfigured by migrating VNFs to another optimal state (target state). In our problem,

the current and target states are known beforehand. Our objective is to reconfigure all the realized

migrations to attain the target state (new placement of VNFs) and generate a reconfiguration plan

that allows passing rapidly and optimally from the current state to the target state while respecting

resource capacities, minimizing the service interruption and migration duration.

The VNF migrations are performed in two types of migrations. In a hot (live) migration, the

running VNFs are moved between the source and target servers without disconnecting the service or

application. The hot migration ensures minimal downtime for the VNF. In a cold (non-live) migration,

the VNFs are moved between servers by powering off the VNF on the source server, moving it to the
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4.1. SYSTEM MODEL

Figure 4.1: Presentation of VNFs reconfiguration problem. NSSF: Network Slice Selection Function,
UDM: Unified Data Management, NRF: Network Repository Function, AUSF: Authentication Server
Function, AMF: Access and Mobility Management Function, SMF: Session Management Function,
PCF: Policy Control Function

target server then powering it back up on the target server. The cold migration ensures an important

downtime that should be minimized.

Our objectives are to minimize the total migration duration so that the VNF migration be per-

formed as quickly as possible and to minimize the service interruption, which is important, especially

for some use cases such as smart grids, intelligent transport systems, and remote surgery. These

services require ultra-high network reliability of more than 99.999% and very low latency (of 1 mil-

lisecond) for packet transmission. Minimizing the service interruption ensures the slice availability

and the avoidance of SLA violations. Moreover, the VNF interruption degrades the service not only

for one slice but for many other slices too as they can be shared between several of them.
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4.1. SYSTEM MODEL

Figure 4.2: The graph representation of VNFs migrations

4.1.2 Problem modeling

The VNF reconfiguration problem is a NP-Hard optimization problem. [29] demonstrates the NP-

hardness of the reconfiguration problem in the context of distributed systems. In this paper, we

model the network as a connected directed graph G = (V, E). The nodes v ∈ V stand for the servers

and the links (v, v′) ∈ E connecting the nodes represent the VNF migration from node v to node v′

(see Fig. 4.2). The VNF can be shared between different slices (ex in Fig. 4.1: NSSF, UDM, NRF

and AUSF are shared VNFs between all slices) or dedicated to one slice (ex in Fig. 4.1: SMF ). In

this paper, we assume that each VNF is implemented in one VM and there is a low communication

delay between servers. Thus, the flow routing is not taken into consideration, nor are the precedence

constraints.

Our objective is to propose an optimization algorithm that takes as input the current and target

states and generates as output the reconfiguration plan while minimizing the total migration duration

and the service interruption. There is a property that already has been demonstrated in [29], and

consists of finding the reconfiguration plan in polynomial time without service interruption using the

Topological Sorting (TS) algorithm, in the case where the network topology is an acyclic graph.

The topological sorting for Directed Acyclic Graph (DAG) [69] [70] is a linear ordering of nodes

such that for every directed arc (v, v′), node v comes before v′ in the ordering. The TS algorithm is

not possible if the graph is not a DAG (for the case of a cyclic graph). For this reason, we propose

an exact model that can be applied to different types of graphs (acyclic and cyclic) and where the
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4.2. PROBLEM STATEMENT AND FORMULATION

solution can be optimized in terms of service interruption and total migration duration.

4.2 Problem statement and formulation

Linear programming constitutes the basis of the solution method developed in this work. In this

section, we present the VNF reconfiguration problem statement and its formulation as an Integer

Linear Programming (ILP).

4.2.1 VNF reconfiguration problem: Problem statement

The VNF reconfiguration problem is presented as follows with notation given in Table 4.1 for easy

reference:

• Given : The placement of VNFs in the current and target states.

• Find : in which stage k the V NFi should be migrated, which type of migration to use (cold or

live migration) while respecting the resource constraints.

The total number of stages N required for all VNFs to be migrated can be equal to Nv the

number of VNFs in worst cases, where each VNF migrates separately in one stage. Or less than

that, in cases where we have parallel migrations.

• Subject to: the VNF occupied CPU capacity capcpu
i , the VNF occupied RAM capacity capram

i ,

the VNF interruption duration δi and the VNF migration duration T .

• Objective : minimizing the VNF migration and interruption duration.

4.2.2 Problem formulation

To formulate the integer linear programming model, we introduce the decision variables, the con-

straints to be satisfied, and the objective function.

4.2.2.1 Decision variables

We have the following decision variables to model VNF migrations between servers (Knapsacks):

xik =
{︄

1, if the V NFi is migrated in stage k ;
0, otherwise.

(4.1)
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Table 4.1: Table of Notations

Notation Description

N number of stages

Nv number of VNFs

Ns number of servers

k order / stage of the reconfiguration

xik a binary variable indicating that V NFi is migrated in
order k

yik a binary variable indicating the stage where V NFi is
interrupted in source host

O(s) set of VNFs originating from server s

D(s) set of VNFs targeting server s

Ck
s represents the residual CPU capacity of server s in

stage k

Rk
s represents the residual RAM capacity of server s in

stage k

capcpu
i represents the occupied CPU capacity of V NFi

capram
i represents the occupied RAM capacity of V NFi

δi represents the interruption duration of V NFi

T represents the migration duration of a given V NF

βi represents the cost of service interruption, which is
the SLA availability of each V NFi

α represents the migration cost of all VNFs

yik =
{︄

1, if the V NFi is interrupted in stage k ;
0, otherwise.

(4.2)

4.2.2.2 Problem constraints

• Integrity constraint for migration

Equation (4.3) insures that V NFi can only be migrated once to the destination server.

Nv∑︂
k=1

xik = 1 ; ∀i ∈ {1, .., N} (4.3)

• Integrity constraint for interruption

Equation (4.4) shows that V NFi can only be interrupted once in the source server.
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4.2. PROBLEM STATEMENT AND FORMULATION

Nv∑︂
k=1

yik = 1 ; ∀i ∈ {1, .., N} (4.4)

• Capacity constraint

Equations (4.5) and (4.6) ensure that resource capacities of each server (for CPU and RAM,

respectively) in each stage k, are not exceeded. VNFs that are interrupted free the resources of their

origin server, while VNFs that are placed consume the resources of their destination server.

∀s ∈ {1, .., Ns} ; ∀k ∈ {1, .., N} ;

Ck
s −

∑︂
iϵD(s)

xikcapcpu
i +

∑︂
iϵO(s)

yikcapcpu
i = Ck+1

s (4.5)

∀s ∈ {1, .., Ns} ; ∀k ∈ {1, .., N} ;

Rk
s −

∑︂
iϵD(s)

xikcapram
i +

∑︂
iϵO(s)

yikcapram
i = Rk+1

s (4.6)

Ck
s ≥ 0 ; ∀s ∈ {1, .., Ns} ; ∀k ∈ {1, .., N} (4.7)

Rk
s ≥ 0 ; ∀s ∈ {1, .., Ns} ; ∀k ∈ {1, .., N} (4.8)

• Interruption duration constraint

Equation (4.9a) ensures that the VNF is migrated with cold migration during the whole process. It

considers that interruption and migration could be performed in the same stage. Otherwise, equation

(4.9b), which refers also to cold migration, gives more flexibility. The interruption and migration could

be performed in one or more stages. In cold migration, the VNF is interrupted first in the source host

then it is migrated to the destination host. The VNF interruption should be before VNF migration.

Equation (4.9c) ensures that the VNF is migrated with live migration during the whole process.

In this case, the migration of V NFi occurs at one stage before the interruption. Here, we consider

that VNF is interrupted in the source host after totally being migrated to the destination host.

63



4.2. PROBLEM STATEMENT AND FORMULATION

Equation (4.9d) encompasses the cold and live migration.

Nv∑︂
k=1

kyik =
Nv∑︂
k=1

kxik ; ∀i ∈ {1, .., N} (4.9a)

Nv∑︂
k=1

kyik ≤
Nv∑︂
k=1

kxik ; ∀i ∈ {1, .., N} (4.9b)

Nv∑︂
k=1

kyik =
Nv∑︂
k=1

kxik + 1 ; ∀i ∈ {1, .., N} (4.9c)

Nv∑︂
k=1

kyik ≤
Nv∑︂
k=1

kxik + 1 ; ∀i ∈ {1, .., N} (4.9d)

The interruption time is considered as the number of stages between the VNF interruption and

VNF migration. In live migration, the interruption time is negligible, therefore, we consider δi = 0.

In cold migration, the VNF interruption is performed at least in one stage δi = 1. Equation (4.10)

refers to the formulation of VNF interruption time.

δi = (
Nv∑︂
k=1

kxik + 1) − (
N∑︂

k=1
kyik) (4.10)

• Migration duration constraint

Equation (4.11) finds the maximum migration duration that should be minimized.

Nv∑︂
k=1

kxik ≤ T ; ∀i ∈ {1, .., N} (4.11)

4.2.2.3 Objective function

min(
Nv∑︂
i=1

βiδi + αT ) (4.12)

The objective function consists of minimizing the VNFs interruption time, which represents the

number of stages during which the V NFi is interrupted and minimizing the VNFs migration duration,

which represents the number of stages during which the V NFi is migrated. The weight βi associated
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Figure 4.3: The reconfiguration plan of all VNFs migrations taking into consideration the SLA avail-
ability

with δi represents the SLA availability for each VNF belonging to a given slice. The service availability

of the slice is divided into three ranges: high availability (βi = 100%), average availability (βi ≥ 99%),

and low availability (βi < 99%).

4.3 Experimental results

4.3.1 Simulation Setup

4.3.1.1 Topology Dataset

The ILP model is solved using CPLEX Optimisation studio V12.8 integrated with python. Ex-

periments were conducted on a machine with a Core i7-6600U CPU and 16 Go of RAM. We use

randomly generated topologies to evaluate our model for both acyclic and cyclic graphs. The graphs

are randomly generated with different sizes (small and medium graphs) using the NetworkX, which

is a well-known python lib, and we are inspired by the code proposed by [71] [72]. The nodes of the

graph represent the servers and the links represent the VNF migration. The node and link capacities

are generated randomly, (1∼50) for CPU capacity and (10∼90) for RAM capacity.
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4.3.1.2 VNF and slice Datasets

The type number of VNFs is randomly generated in the range (20∼150). The slices are randomly

generated by choosing the set of connected VNFs, taking into consideration the shared and dedicated

VNFs. Each slice contains at least 5 VNFs. The datasets are presented in Table 5.1 and Table 5.2.

Table 4.2: Datasets of acyclic graphs

Instances Servers VNFs Slices

DC-acy1 10 25 6

DC-acy2 20 35 11

DC-acy3 40 60 12

DC-acy4 50 120 24

DC-acy5 80 150 35

Table 4.3: Datasets of cyclic graphs

Instances Servers VNFs Slices

DC-cy1 10 30 8

DC-cy2 20 45 12

DC-cy3 40 70 15

DC-cy4 50 120 25

DC-cy5 80 146 32

4.3.2 Evaluation Metrics

To show the performance of our model, we use the following evaluation metrics:

• Scalability: To evaluate the scalability of our model, we adopt two metrics. These metrics are

the model execution time in seconds and the estimated gap to optimal in % after one hour.

• Migration duration: We evaluate the total migration duration for the entire process, as well as

the number and the percentage of migrated VNFs per each step of the migration.

• Interruption duration: We evaluate the ratio of interrupted VNFs to the total VNFs as well as

the interruption duration for each slice demand.

• Migration and interruption costs: We evaluate the interruption and migration cost by giving

each VNF the corresponding SLA availability βi and varying the weight α.
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4.3.3 Simulation Result and Analysis

4.3.3.1 Evaluation according to the nature of slices

We evaluate the example presented in Fig. 4.1 with V = 5 and E = 14. As we mentioned earlier,

each slice has its SLA availability that should be respected. In Fig. 4.3(a), we present the considered

values of each service availability: high availability for slice uRLLC (βi = 100%), average availability

for slice mMTC (βi = 99%) and low availability for slice eMBB (βi < 99%).

Figure 4.4: The evaluation results of migration and interruption cost

Fig. 4.4(a) shows the total migration and interruption duration for all slices according to different

variations of α, where the number of α is varied between (1∼200). We can see that the total migration

duration decreases and the total interruption duration increase with the rise of the α. From α = 100,

we can observe clearly that the total migration and interruption duration stagnates respectively in

steps 3 and 7. This is because the ILP model finds the optimal solution that minimizes both migration

and interruption duration.

To evaluate the interruption duration for each slice, we set the α to 100. Fig. 4.4(b) presents the

migration duration of VNFs for each slice. We can see that in the slice uRLLC there is no interruption

as it demands high availability, then for mMTC, there is one VNF interrupted for a duration of 1

step, while the eMBB has more interrupted VNFs. To have more details about the interrupted VNFs,

Fig. 4.3(b) shows the reconfiguration plan of VNFs migrations. We can see that UPF and SMF

dedicated to eMBB are interrupted for 3 steps. This is because of the low SLA availability of 20%

and 40% respectively. Then, the AMF shared between eMBB and mMTC is interrupted for 1 step,
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which explains the importance of the service availability. The ILP model takes into consideration the

availability of each slice while minimizing the interruption duration.

4.3.3.2 Evaluation according to the nature of datasets

In this section, we evaluate the datasets presented in Table 5.1 and Table 5.2 for acyclic and cyclic

graphs, respectively. In this experiment, we set βi and α to 1 to focus more on the nature of graphs

and their impact on the results.

• Acyclic graph

For acyclic graphs, our ILP model solves the VNF reconfiguration problem without interruption

and with 0% of optimality gaps. As we mentioned in Section 4.1.2, in the case of an acyclic graph,

we can find the reconfiguration plan in polynomial time without interruption using the TS algorithm.

In Table 4.4, we compare our ILP model with the TS algorithm. We can see that the TS finds a

reconfiguration plan in milliseconds compared to our ILP model. However, the best objective of our

ILP model is more interesting than the TS algorithm. This is because the ILP finds the optimal

solution that minimizes the migration duration while the TS finds a feasible solution without taking

into consideration the migration duration. This means that the ILP gives a solution where the VNFs

are migrated from the early steps and in parallel as long as possible (see Fig. 4.5(b)) and with minimum

migration duration (see Fig. 4.5(a)). Fig. 4.5 shows that the ILP migrates all VNFs in the first four

steps for all instances.

Table 4.4: Comparison between the ILP model and TS algorithm for acyclic graph

Instances ILP: Ex-
ecution
time (s)

ILP:
Best
objective

TS: Ex-
ecution
time (s)

TS: Best
objective

DC-acy1 0.33 3 0.000532 25

DC-acy2 1.06 3 0.000324 35

DC-acy3 2.08 3 0.000949 60

DC-acy4 17.76 4 0.001346 80

DC-acy5 36.19 4 0.001257 150

• Cyclic graph
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Figure 4.5: The evaluation results of migration duration for the acyclic graph

Figures 4.6(a) and 4.6(b), respectively, show the evolution of the execution time and the gap to

optimal estimated by CPLEX at the end of the execution time according to the different instances.

These two metrics significantly increase for DC-cy4 and DC-cy5 instances due to the np-hardness of

the problem. Optimality gaps are often at 0% except in the case of DC-cy4 and DC-cy5 instances

which need more time to find an optimal solution. The ILP converged to optimality for medium

graphs (120 to 146 VNFs) about over an hour of simulation. It provides an interesting solution in

terms of migration duration and VNF interruption. Fig. 4.7(a) shows that the VNFs can migrate over

7 steps for DC-cy4 and over 6 steps for DC-cy5. The interrupted VNFs are less than 20% and 10%,

respectively, for DC-cy4 and DC-cy5 (see Fig. 4.7(a)). In Fig. 4.7(b), we can see that most VNFs are

migrated without interruption (hot migration where δi = 0).

Figure 4.6: Scalability evaluation results for cyclic graph
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Figure 4.7: The evaluation results of migration duration for cyclic graph

Figure 4.8: The evaluation results of interruption duration for cyclic graph

Like acyclic graphs, the ILP succeeds for cyclic graphs to migrate efficiently and quickly the VNFs

from the first steps with minimum interruptions. However, in acyclic graphs, the migrations are

performed without interruptions and are slightly faster when compared to the case cyclic graphs. This

leads to conclude that the ILP model complexity depends strongly on the presence of cycles.

4.4 Conclusion

In this chapter, we have proposed an ILP-based solution for the problem of slice reconfiguration in

the context of 5G networks. The ILP finds a reconfiguration plan, consisting of a series of migrations

that will relocate the VNFs from their current servers to those computed beforehand while minimizing

the migration and interruption duration. We evaluate the proposed model according to the service
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importance taking into consideration the SLA availability metric, and according to the nature of the

datasets (whether it is an acyclic or a cyclic graph). The evaluation results show that the ILP finds

the optimal reconfiguration plan that minimizes the service interruption, the total migration duration,

and service availability. In the next chapter, we propose a heuristic algorithm in order to improve the

CPU time and allow dealing with larger instances.
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In this chapter, we propose a new heuristic for the VNF reconfiguration problem in the context of

5G network slicing. The Feedback Arc Set (FAS) problem is used and an efficient heuristic inspired

by the concept of the Topological Sorting (TS) algorithm is proposed. This approach generates a

reconfiguration plan to pass rapidly from an initial state where the placed VNFs are not optimally

allocated to a new state, computed beforehand while minimizing the VNF interruption and migration

duration. Our findings are illustrated by numerical results which are compared to these of the ILP

model already reported in Chapter 4. Another issue dealt with in this work is the overall duration of

the migration process. We are interested in scheduling as much as possible the migration process by

realizing migrations in parallel. All this justifies calling for parallel topological sorting.

5.1 The problem modeling

In this work, a graph model approach is used in order to find a heuristic for the 5G reconfiguration

problem. The problem is modeled using graph theory. G = (V, E) is a directed graph where V =

1, 2, ..n stands for the servers (n is the total number of servers). Initially each server i has a remaining

resource (i.e. residual capacity, Ci ≥ 0 and residual memory Ri ≥ 0). E represents a set of edges,

∀(u, v) ∈ E, u represents the server at the initial state on which the VNF is executed and v represents

the server at the final state on which the VNF need to be migrated to.

We recall equations (5.1) and (5.2) that should be verified in the final state. The equations ensure

that for a given vertex v of G once we migrate all the VNFs running on a given server, it will have

enough resources to process the entering VNFs. In this article, we consider servers with two resources

type (CPU and ram) as noted in equations (5.1) and (5.2).

∀v ∈ V, Cv +
∑︂

t∈NEG[v]
cpuvt ≥

∑︂
s∈NIG[v]

cpusv (5.1)

∀v ∈ V, Rv +
∑︂

t∈NEG[v]
ramvt ≥

∑︂
s∈NIG[v]

ramsv (5.2)

Where:

• NEG[v] design the set of out-neighbors vertices in G of v, that is ∀t ∈ NEG[v],

(v, t) ∈ E.

• NIG[v] design the set of in-neighbors vertices in G of v, that is ∀s ∈ NIG[v], (s, v) ∈ E.
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Figure 5.1: Graph model

Fig. 5.1 provides an example to show how to model the problem using graph theory. At the top

of Fig. 5.1 we can see three servers, each one has represented as a box for the initial state ’Before’

and the final state ’After’. Here it’s assumed that every server has 2 resources, with R1 representing

the capacity resource (the left column of the box) and R2 the memory (the right column of the box).

The different colors represent different VNFs running on the servers, for example in server 1 there

are two VNFs. VNF1 uses 2 resource units R1 and 3 units of R2 resource, while VNF2 uses 1 unit

of R1 resource and one unit of R2. The yellow color highlights the remaining resources in a server.

At the bottom of Figure 5.1, we find the graph model. The vertices represent the servers and the

edges represent the VNF migrations. Our objective is to reconfigure the VNF migrations which are

represented by edges in order to find the reconfiguration plan.

The graph representation could be acyclic or cyclic according to the network complexity. In the

case of an acyclic graph, we know from [29], that we may build a reconfiguration plan in polynomial
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time without service interruption using the TS algorithm. The topological sorting for Directed Acyclic

Graph (DAG) [69] [70], is a linear ordering of nodes such that for every directed arc (u, v), node u

comes before v in the ordering. The nodes in a directed graph can be arranged in a topological order

if and only if the directed graph is acyclic [61]. In this article, we propose a heuristic inspired by the

algorithm of topological sorting that can be applied to different types of graphs (cyclic and acyclic).

5.2 Related work

In the literature, the topological sorting algorithm has been applied in different domains. But,

up to our knowledge, it is not yet studied for the VNF reconfiguration problem.[73], [74], [75], [70]

and [59] treat the topological sorting (or topological ordering) with large graphs. In [73] and [74], a

new topological sorting algorithm was proposed for large graphs that decrease the computing time

and increase the efficiency, better than Kahn’s and Depth First Search (DFS) topological sorting

algorithms. [75][70][59] The Kahn’s and DFS algorithms are the basic algorithms of graph theory for

topological sorting. Kahn’s algorithm is described in [59]. It works by keeping track of the number

of incoming edges into each node (indegree) and repeatedly stores the nodes with zero in-degree and

deletes the edges originating from them until no element with zero in-degree can be found. On the

other hand, the DFS algorithm traverses the graph as long as possible (i. e., until there are no more

non-visited successors left) along a branch before tracking back. In [75], the DFS was used to reduce

the temporary space of a large Directed Acyclic Graph (DAG). The authors present the depth-first

discovery algorithm (DFDA) to find topological sorting. [70] presents an I/O efficient algorithm called

IterTS for topologically sorting directed acyclic graphs. However, the algorithm is inefficient in the

worst case.

Topological sorting in parallel is presented in [76] and [77]. In [76], the authors proposed a new

topological sorting algorithm based on the parallel computation approach. The idea of the parallel

computation in this article consists in traversing, in parallel, all links leading from a node, once this

node is visited. The algorithm was implemented using a Stream-Multiple Data stream (SIMD) ma-

chine. The time complexity of this proposed algorithm is the order of the longest distance between

a source node and sink node in an acyclic digraph. Besides, it [77] is presented the Parallel Genetic

Algorithm (PGA) using topological sorting. The algorithm improves the solution of the Job Shop

Scheduling Problem (JSSP) and minimizes the execution time of the makespan calculation. To cal-
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culate the makespan of each schedule, the authors used the longest path algorithm. The topological

sorting is found by calculating the degree for all the vertices and starting from the vertex which has

a degree of 0. The sequences of each schedule are executed in parallel. In this work, we provide a

new algorithm framework applied to the problem of VNF reconfiguration called Parallel Topological

Sorting (PTS) that minimizes the migration duration of VNFs.

5.3 Overview of the proposed approach

The approach is starting with the pre-processing phase where we model the migration of concerned

VNFs. If the resulting graph is cyclic, which is often the case in 5G networks, we find an acyclic sub-

graph using the Feedback Arc Set (FAS: a set of edges that when removed from a cyclic graph G

give an acyclic graph G′). Once an acyclic graph is obtained, we use the parallel topological sorting

algorithm while migrating all possible running or interrupted VNFs (edges removed from the cyclic

graph after applying the FAS algorithm). The reconfiguration plan is built by putting together all

VNFs migrations (see Fig. 5.2).

Figure 5.2: The proposed approach for cyclic graph

5.3.1 Heuristic used for the Feedback Arc Set problem

The problem is solved by a greedy heuristic for the minimum set cover problem. It consists in

gradually building the feedback arc set by always picking an arc as the next element that, when

removed, breaks most of the remaining simple cycles. This heuristic of FAS used in our approach is

the one used in [61].

Mathematically, the FAS problem is formulated as follow:

min
y

m∑︂
j=1

wjyj (5.3)
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subject to: {︄ ∑︁m
j=1 aijyj ≥ 1 for each i = 1, 2, ..., l

y = {0, 1}

}︄

Where, m denotes the number of edges; wj are non-negative weights (often integer); yj takes 1 if

edge j is in the feedback edge set, and 0 otherwise; aij is 1 if edge j traverses cycle i, and 0 otherwise;

l denotes the number of simple cycles. The matrix A = (aij) is called the cycle matrix.

The weakness of this formulation is that enumerating all simple cycles may be intractable. So the real

challenge stands in finding an intelligent enumeration of all simple cycles. This leads to enumerating

simple cycles in a lazy fashion and extends an incomplete cycle matrix iteratively until a minimum

feedback arc set is found (note that the minimum feedback arc set problem is an NP-hard problem on

graphs that seeks a minimum set of arcs which leaves a directed graph G acyclic when removed [61]).

We provide an overview of the FAS algorithm in Fig. 5.3, for more details we reference[61].

5.3.2 Parallel Topological Sorting algorithm

In our algorithm, we take into consideration the residual resources for nodes, Equations (5.1)

and (5.2) are verified at every step of the algorithm.

In the case of an acyclic graph, we start by finding a list of sink nodes that have no outcoming arcs

and insert them into a set of the sinks called S. Instead of looking for one sink node to start by (as

the Kahn’s algorithm [59]), we search for a set of all sink node S. Then we construct a subgraph from

the original graph where we remove the nodes of S and the edges entering to the nodes stored in S,

then add these arcs to the ordering. We decrement the out-degree of nodes originating from deleted

edges. We iterate this process until reaching an empty subgraph. The termination of the algorithm is

assured by the fact that at every step we’ll remove at least one sink node (the subgraphs are acyclic

as we start with an acyclic graph, so they have at least one node with out-degree 0) and we have a

finite number of nodes.

The novelty of our algorithm lies in the removed arcs of the feedback arc set F . In this case,

after finding the sink nodes S, we realize all incoming migrations to S if the residual capacity of S is

sufficient to accommodate all incoming VNFs. Otherwise, we interrupt FAS edges outcoming from S

to leave enough space in order to be able to migrate the VNFs. The migrated VNFs are added to the

ordering, and the capacity and out-degree are updated. In order to minimize the migration duration,
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Figure 5.3: Overview of the FAS algorithm

we migrate all possible VNFs of the feedback arc set while checking if there is enough place for FAS

migrations. We check if the resource capacity of edges in F entering removed nodes is less than the

resource capacity of removed nodes. In this case, we can add the edges to the ordering called the

reconfiguration plan RF . We iterate this process until there are no nodes left with zero out-degree.

The remaining edges of F not inserted during the process are added to the end of the ordering (see

Fig. 5.4). We provide a pseudo-code (algorithm 1) for the PTS algorithm and an example of all the

process (Fig. 5.8) for better understanding.
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Figure 5.4: Diagram of the proposed approach

5.4 Experimental results

5.4.1 Evaluation Metrics

To show the performance of our algorithm, we use the following evaluation metrics:

• Scalability: We evaluate the execution time in seconds.
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• Migration duration: We evaluate the total migration duration for all the process.

• Interruption duration: We evaluate the total interruption duration for all the process.

5.4.2 Simulation Result and Analysis

In this section, we evaluate the above heuristic according to the nature of the datasets (cyclic and

acyclic graphs). The datasets are presented in Table 5.1 and Table 5.2. The results are compared to

the ILP solutions already reported in [9]. The ILP model is an exact solution that models the state

dynamics of the server during stages of VNFs migrations. The decision variables are binary variables

indicating the stage where the VNF is migrated or interrupted. The ILP takes into account the hot and

cold migration and the capacity constraint while minimizing the interruption and migration duration.
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Table 5.1: Datasets of acyclic graphs

Instances Servers VNFs Slices

DC-acy1 10 25 6

DC-acy2 20 35 11

DC-acy3 40 60 12

DC-acy4 50 120 24

DC-acy5 80 150 35

Table 5.2: Datasets of cyclic graphs

Instances Servers VNFs Slices

DC-cy1 10 30 8

DC-cy2 20 45 12

DC-cy3 40 70 15

DC-cy4 50 120 25

DC-cy5 80 146 32

5.4.2.1 Acyclic graph

In the case we have an acyclic graph the problem is much less complex compared to the cyclic one

and we are not reporting all results. In general, we have observed that the algorithm is fast while the

ILP model may spend more than 36 seconds for some large instances. With respect to the other two

criteria, the PTS solutions remain pretty close to those obtained with ILP, especially for the small

and medium instances.

5.4.2.2 Cyclic graph

Fig. 5.5 shows the evolution of the computation time according to different instances. It can be

seen that the heuristic solves the problem rapidly in a few milliseconds for different sizes of graphs.

Using the ILP, the instance DC-cy5 takes more than one hour while solving the problem with the

heuristic is achieved in less than one second. This may be important, especially when dealing with

urgent demands of reconfiguration.

The total interruption duration is presented in Fig. 5.6. The interruption duration of the first

three instances (DC-cy1, DC-cy2, DC-cy3) for the heuristic is near to that of the ILP. Fig. 5.7 shows

the total migration duration of the whole process for the heuristic and the ILP model. We notice that

the solutions for the heuristic remain comparable with the optimal solutions of the ILP for small and

82



5.4. EXPERIMENTAL RESULTS

Figure 5.5: Computation time for cyclic graph

Figure 5.6: The total interruption duration for the cyclic graph

Figure 5.7: The total migration duration for the cyclic graph

medium instances.
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5.5 Conclusion

In this work, an efficient heuristic was proposed for the problem of VNF reconfiguration in the

context of 5G networks. The proposed heuristic finds the reconfiguration plan, consisting of a series of

migrations that will relocate the VNFs from their current servers to those computed beforehand while

minimizing the migration and interruption duration. The proposed heuristic was compared to the ILP

model presented in [9]. The results show that the heuristic yields good solutions that are close to the

optimal solution for small and medium instances. Furthermore, our heuristic finds the reconfiguration

plan in milliseconds for large instances, which is not the case when applying the ILP model. Still, we

may notice that there is room for improvement, especially when dealing with the interruption time

issue for large instances in cyclic graphs.
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Figure 5.8: Example of the entire process
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This chapter looks at the VNF migration problem. We assume that the initial and final states that

define the assignment of the VNFs to their source and destination servers are known. The goal is to

define a sequence of steps in the migration from the initial to the final state. At each step, VNFs can

only be moved from their source server and/or to their destination server. The objective is to minimize

the total time when VNFs are not assigned to a server and therefore must be suspended. Another

version of this problem is where the destination state is not fixed, and so defining the final assignment

of the VNFs to servers becomes an additional part of the problem. All this is encapsulated in what we

call the Multiple Multidimensional Knapsacks Reconfiguration (MMKR) problem, which is the focus

of this contribution; the multiple knapsacks correspond to servers, and the multiple dimensions are

different capacity-related characteristics of the VNFs and the server.

The contribution of this chapter consists in proposing a new method of solving the MMKR prob-

lem, based on a non-compact Integer Linear Programming (ILP) problem formulation and Column

Generation, together with an alternative new compact ILP formulation. In addition, we propose an

ILP formulation that enables reconfiguring the VNFs in the case where the destination is unknown.

The VNFs migrate from the current state to another optimal state that the model ILP computes.

We illustrate the resulting effectiveness of solving the problem with a series of numerical experiments,

comparing the results to the results of applying the compact ILP problem model reported in Chapter4.

6.1 Multiple Multidimensional Knapsack Problem

The Knapsack problem in its basic form has a prominent place in the study of Integer Program-

ming (IP) models with binary variables. The problem consists in packing a given set of items with

given values and sizes (such as weights or volumes) into a container with a given maximum capacity

C. With the total size of the items potentially exceeding the capacity of the container, usually, it is

not possible to pack all of them. The problem is therefore to select a subset of items with the greatest

possible total value to place in the container. The ILP formulation of the problem uses one binary

decision variable per item to indicate the items that are selected.

A variant of the standard Knapsack problem is the Multiple Knapsacks problem. Instead of

a single knapsack, here there are multiple knapsacks, where knapsack k (k = 1 . . . K, K being the

number of knapsacks) has capacity Ck. Not only must be selected the items to pack but it must also
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be decided which knapsack each item should be placed in.

Another often-studied version of the standard Knapsack problem is the Multidimensional

Knapsack problem. In this variant of the problem, the set of items selected for packing into the

knapsack should satisfy not one but several capacity constraints corresponding to individual capacity

dimensions. And putting together multiple dimensions and multiple knapsacks gives rise to the Mul-

tiple Multidimensional Knapsacks problem, a problem that has so far been very little addressed

in the literature, but which appears to be NP-hard and computationally challenging.

Finally, a reconfiguration aspect can be introduced into the Knapsack problem. The idea behind

reconfiguration is to start from a given initial assignment of items to knapsacks and to sequentially

move items between knapsacks so as to reach a given final assignment. Including reconfiguration

brings out the scheduling aspect of the problem which, in conjunction with multiple multidimensional

knapsacks, results in the MMKR problem that is our concern here. It is a novel version of the problem,

and it turns out to be considerably more difficult.

Arguably, versions of the problem examined in this work have already appeared in other contexts

linked to computer networking. Sirdey et al. [29] looked at a process move problem that arises in

relation to the operability of a certain class of high-availability real-time distributed systems. Given

an initial and a final system state defining which processes are assigned to which processors in a

distributed system, the goal is to find a minimally disruptive sequence of operations (non-impacting

process migrations or temporary process interruptions) at the end of which the system is in the

final state; at no step can the capacity of any processor be exceeded. Thinking of each processor

as a knapsack and of each process as an item, this problem has a lot in common with the MMKR

problem. The main difference lies in the technical context: in our 5G VNF reconfiguration problem

migrations are realized according to rules (known as hot and cold migration of VNFs) that impose

specific constraints upon feasible migration sequences.

Solano and Pióro [78] studied the problem of lightpath reconfiguration in optical transport net-

works. Lightpath reconfiguration is a networking task that is performed in order to improve resource

utilization and limit network congestion. The problem consists in finding an optimal transition from

an initial set of currently operational lightpaths to a new set of lightpaths guaranteeing better network

performance. The problem becomes nontrivial when establishing the new set of lightpaths requires

the release of resources held by the currently operational lightpaths while ensuring continuity of traffic
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flows (an operational lightpath cannot be removed before the corresponding new lightpath is set up).

The reconfiguration scheduling seeks to make the maximum number of simultaneously disrupted con-

nections at any point during the process as small as possible [78]. Although the application context is

different from that of the MMKR problem, the formulations of the two problems have a lot in common.

The existing and the new lightpath connections can be seen as items migrating over network links

which, being bundles of optical wavelengths, may be considered as knapsacks, insofar as they provide

the resources for the connections.

There has also been a lot of work done on problems that overlap with the MMKR problem. [79]

proposes a resource allocation and management mechanism for 5G networks using Multi-access Edge

Computing (MEC) technology. A simple mathematical model of the MEC resource (re)allocation

mechanism is proposed to meet the requirements of the user.

[80] considers a control problem in the reconfiguration of photovoltaic arrays that involves chang-

ing the connections in the solar panel equipped with the dynamic switching matrix. The proposed

formulation of the problem is based on the well-known subset sum problem, which is a special case of

the Knapsack problem. The solution method uses a dynamic programming algorithm that is capable

of computing an optimum reconfiguration. The characteristic feature of this problem is that the final

configuration of the array is not given.

[81] considers centralized spectrum allocation in cognitive radio networks as a Multiple Mul-

tidimensional Knapsacks problem. The formulation of the problem models the behavior of the

Centralized Coordinator Node (CCN) that shares spectrum availability information with a set of cog-

nitive users. Each primary user acts as a two-dimensional knapsack, with bandwidth and temperature

interference as the limiting resources. CCN has to assign the cognitive users, considered as items,

to primary users in such a way that the overall traffic throughput is maximized while the resource

constraints are satisfied. The proposed formulation is similar to our problem formulation, but it is

limited to the computation of a static assignment of items to knapsacks and does not include the

scheduling aspect.
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6.2 Solution methods for fixed final target

In this section, we discuss the exact methods of solving the MMKR problem for fixed final target,

where the VNF placement in the target state is known beforehand. These methods are essentially

based on Integer Linear Programming. Table 6.1 lists the notation used.

6.2.1 First compact formulation

In this section, we present a compact ILP model inspired from the model reported in Chapter

4. We use the following variables. For each i ∈ I, xi is a continuous positive variable denoting the

interruption time of item i. For all i ∈ I, t ∈ T , yt
i is a binary variable that equals 1 if, and only if,

item i is interrupted at its source at time t, and zt
i is a binary variable that equals 1 if, and only if,

item i is placed at its destination at time t. For all i ∈ I, t ∈ T , ct
k is a continuous positive variable

denoting the residual capacity of knapsack k at time t. The MMKR problem can then be written as:

min
∑︂
i∈I

w(i)xi (6.1a)

∑︂
i∈O(k)

w(i) + c1
k = C(k) ∀k (6.1b)

∑︂
i∈O(k)

w(i)yt
i −

∑︂
i∈D(k)

w(i)zt
i + ct

k = ct+1
k ∀k, ∀t < T (6.1c)

∑︂
t∈T

yt
i = 1 ∀i (6.1d)

∑︂
t∈T

zt
i = 1 ∀i (6.1e)

∑︂
i∈O(k)

yt
i +

∑︂
i∈D(k)

zt
i ≤ 1 ∀k, ∀t (6.1f)

∑︂
t∈T

tzt
i −

∑︂
t∈T

tyt
i + 1 ≤ xi ∀i (6.1g)

xi ≥ 0 ∀i (6.1h)

yt
i , zt

i ∈ {0, 1} ∀i, ∀t (6.1i)

ct
k ≥ 0 ∀k, ∀t. (6.1j)

The objective is to minimize the weighted interruption time over all items. Constraints (6.1g) force

the interruption time of the item to be greater than the difference between the time of placing the
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Table 6.1: Notation

K the number of knapsacks
K the set of knapsacks, K = {1, 2, . . . , K}
k a specific knapsack
C(k) the resource capacity of knapsack k
I the number of items
I the set of items, I = {1, 2, . . . , I}
i a specific item
o(i) the source knapsack of item i
d(i) the destination knapsack of item i
w(i) the resource requirement of item i
O(k) the items with knapsack k as source,

O(k) ⊆ I
D(k) the items with knapsack k as destination,

D(k) ⊆ I
T the number of time periods
T the set of time periods, T = {1, 2, . . . , T}
t a specific time period

item at the destination and the time of interrupting at the source (increased by 1 because the VNF is

not available until the next time period after transfer); we note that the nature of the objective forces

this constraint to equality.

Unfortunately, formulation (6.1) does not scale well and our goal in this work is to propose alter-

native solution methods. The following is a method based on Column Generation.

6.2.2 Non-compact formulation

To use the Column Generation method, we need an alternative non-compact problem formulation.

The main challenge is deciding on the format of the columns. We are seeking to represent (over the

relevant time periods) the movement of an item from the source knapsack to the destination knapsack

as a path in a graph with (knapsack, time) tuples as nodes. For each knapsack and each time period,

there will be a specific node in the graph, and at each time period the item is to be found in at least

one knapsack, and in at most two (there are two knapsacks when the migration occurs). A path

in this graph, therefore, represents the placement of the item over all time periods. The arcs (and

consequently the paths) allowed in the graph should reflect all possible item migrations. We have T
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time periods and K + 1 knapsacks replicated at each period, the knapsack (K + 1) being a virtual

knapsack of infinite capacity, containing all the interrupted items. If an arc enters a node (k, t) the

corresponding item consumes resources of knapsack k at time period t. Since the number of possible

paths is large, they cannot all be included in the problem formulation, and the Column Generation

method deals neatly with this situation. We start with a basic feasible set of paths and then search

for a new path that improves the objective function.

Each column takes the form a = (a1,1, . . . , aK+1,1, a1,2, . . . , aK+1,2, . . . , a1,T , a2,T , . . . , aK+1,T ),

where ak,t is 1 if item i is placed at knapsack k at time t, and 0 otherwise.

Each of these columns represents a specific path p that some item i can use to migrate from

its source to its destination knapsack. Since at the outset there will be only a small set of paths

guaranteeing an initial feasible solution, we need to search for new paths (columns) in the above

format to be included in the path set Pi for item i, with a view to obtaining a better objective

function value. When searching for such a column all its elements ak,t will be set as binary variables.

In addition, each column in the Master Problem has a corresponding binary path variable yip that

indicates whether path p for item i is used (yip=1) or not used (yip=0).

Figure 6.1: Graph representation
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The graph in Figure 6.1 shows a migration from source knapsack 2 to destination knapsack 3 at a

time period of 3. At a time period, 3 resources are thus consumed in both knapsack 2 and knapsack

3. For the sake of clarity, only a subset of arcs is shown just to give an idea of the allowed arcs and

paths. We can move from the source knapsack to other knapsacks during each time period except the

last one. If this move is to the destination knapsack, then the item will stay there until the end. If the

move is to the interruption knapsack, then we are forced to migrate back to the destination knapsack

before the last time period, with vertical moves coming out from knapsack (K + 1).

6.2.2.1 Master Problem

Now that we have a better theoretical grasp of the context of the problem, we are able to put

forward a corresponding non-compact Linear Programming (LP) formulation as the first step in our

column generation algorithm. For sake of simplicity, the one-dimensional case is assumed.

min
∑︂
t∈T

∑︂
i:(K+1,t)∈p,p∈Pi

w(i)yip (6.2a)

∑︂
i:(k,t)∈p,p∈Pi

w(i)yip ≤ C(k) ∀k, ∀t (λkt) (6.2b)

∑︂
p∈Pi

yip = 1 ∀i (γi) (6.2c)

yip ≥ 0. (6.2d)

The objective function aims at minimizing the overall path weights going through the interruption

knapsack summed over all time periods, which is equivalent to minimizing the total interruption cost.

For a specific time period t the second sum iterates over all items that have (K + 1, t) in a path p

belonging to their path set Pi.

The first constraint ensures that knapsack capacities are always satisfied during all time periods.

We sum over all weighted paths going through each node (k,t) and require that the capacity of that

node is never exceeded.

the second constraint helps to pose the relaxed (continuous) version of the problem because in the

binary version only one yip for an item i is equal to 1 and all other variables should equal 0. For each

such constraint, the dual variable is indicated beside them (λkt, γi, respectively).
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6.2.2.2 Pricing Problem

The second step in the algorithm requires defining the Pricing Problem. As mentioned above, the

Pricing Problem will be an Integer Linear Programming using the dual variables found in the first

step as parameters and column elements akt as variables.

min w(i)
∑︂
k∈K

∑︂
t∈T

λk,tak,t − γi ≡ (6.3a)

min
∑︂
k∈K

∑︂
t∈T

λk,tak,t ≡ (6.3b)

min
∑︂

(k,t)∈p∈Pi

λk,t (6.3c)

∑︂
k∈K

ak,t ≥ 1 ∀t (6.3d)

ak,t ∈ {0, 1} ∀k, ∀t. (6.3e)

The above model is complemented with the following constraint if no interruptions are allowed

∑︂
t∈T

∑︂
k∈{1,...,K}

ak,t ≤ T + 1, (6.4)

and with the following one if interruptions are allowed

∑︂
t∈T

∑︂
k∈{1,...,K+1}

ak,t ≤ T + 2. (6.5)

Indeed, the above constraints express the length of a path which is connected to the number of

interruptions. the objective function above is a graph shortest path problem, where the arc weights

are denoted by dual variables λk,t. We are searching for the shortest path from source to destination

knapsack in a directed graph where each incoming arc at node (k, t) has a weight λk,t.

The condition (6.3d) indicates that an item should be placed in at least one knapsack at each time

period.

The conditions (6.4) and (6.5) restrict the movements of items between knapsacks. Only one

knapsack change, denoted by a vertical move in the graph, is allowed if there are no interruptions (i.e.,

knapsack (K + 1) is not used). But, if we are searching for a path with interruption (i.e., knapsack

(K + 1) is used), then we allow at most two vertical moves.
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It is not by chance that the Pricing Problem is the shortest path problem. Usually, this problem is

an ILP with a special combinatorial structure: knapsack problem, shortest path problem, maximum

flow problem, or other problems of this nature. The success of applying column generation often

relies on efficient algorithms to solve the pricing problem. For that reason, we usually search for a

combinatorial algorithm to efficiently solve the problem rather than posing the ILP version of the

problem to the solver. The algorithm allows to directly exploit all the details specific to the problem,

while the solver follows a more general approach to find the solution. Based on this fact, the shortest

path algorithm comes naturally as the combinatorial algorithm for minimizing the objective function.

6.2.2.3 Achieving an integer solution

As the final step in the column generation algorithm, we need to obtain an integer solution to the

problem. In this section, we present the different methods:

• Final ILP: One good way of not shifting the results too much in relation to the continuous

results is to solve the final Master Problem as an Integer Linear Programming problem. In this

final Master Problem, we use the final set of paths found by iteratively solving the continuous

version of Column Generation until optimality. The path variables are then forced to binary.

This method is referred as Solving the Final Master Problem (Final ILP).

• Post optimization: The main idea of this method is to start with an initial solution obtained

by rounding and to add new paths until a possible solution is reached. This initial solution

may be infeasible after rounding the variables. We, therefore, identify the knapsack in which

the capacity constraint has been violated and the items that it contains. We then modify the

paths of some of the items in the knapsack by adding interruptions in them to make the solution

feasible. This is noted with PostOpt.

• A mixed method: Another method involves solving the Master Problem one more time but now

with the addition of the paths established using the heuristic method. A comparison of the

objective functions of the different methods shows that solving the Master Problem once again

in this way gives us the lowest cost. The ILP version of the final Master Problem (after the

addition of paths identified by the post-optimization method) is consequently the best version,
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maintaining feasibility and having the lowest interruption cost, that is to say, the closest to the

continuous interruption cost. This method is noted as PostOpt + Final ILP.

6.2.3 Second compact formulation

Below we introduce a new compact ILP model of the MMKR problem, the origin of this model is

Artur Tomaszewski [11]. We define the following variables. For all i ∈ I, t ∈ T , xt
i is a binary variable

that equals 1 if, and only if, item i is at its source at time t, yt
i is a binary variable that equals 1 if,

and only if, item i is at its destination at time t, and zt
i is a binary variable that equals 1 if, and only

if, item i is interrupted at time t. Then, using the observable monotonicity of the values of variables

x and y with time periods, the MMKR problem can be formulated as:

min
∑︂
i∈I

∑︂
t∈T

w(i)zt
i (6.6a)

xt
i ≥ xt+1

i ∀i, ∀t < T (6.6b)

yt
i ≥ yt−1

i ∀i, ∀t > 1 (6.6c)

xt
i + yt

i + zt
i ≥ 1 ∀i, ∀t (6.6d)∑︂

t∈T
(xt

i + yt
i + zt

i) ≥ T + 1 ∀i (6.6e)

∑︂
i∈O(k)

w(i)xt
i +

∑︂
i∈D(k)

w(i)yt
i ≤ C(k) ∀k, ∀t (6.6f)

xt
i, yt

i , zt
i ∈ {0, 1} ∀i, ∀t. (6.6g)

Once again, the objective is to minimize the weighted interruption time over all items. While

constraints (6.7f) require that each item is either in a knapsack or is interrupted, constraints (6.7g)

result from the mentioned specifics of VNF migration that the VNF is not available until the next time

period after the transfer, and require that after the item has been moved to the destination knapsack

and the item is not still in the source knapsack it must be regarded as interrupted.

6.3 Solution methods for free final target

In this section, we discuss the exact methods of solving the MMKR problem for the free final

target, where The VNFs placement in the target state is unknown. The objective is to generate a re-
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configuration plan that ensures the transition between the states and enables optimal VNF placements

in the target state.

6.3.1 Column generation

For the Column Generation formulation, the model will be the same just keeping in mind that

now the path that will be added as a new column will be the shortest path possible knowing just the

origin for each item and every knapsack could be as a destination.

6.3.2 Second ILP formulation

We define the following variables. For all i ∈ I, t ∈ T , xt
i is a binary variable that equals 1 if,

and only if, item i is at its source at time t, yt
i,k is a binary variable that equals 1 if, and only if, item

i is a at knapsack k at time t, ui
k is a binary variable that equals 1 if, and only if, knapsack k is a

destination for item i, and zt
i is a binary variable that equals 1 if, and only if, item i is interrupted at

time t. Then, using the observable monotonicity of the values of variables x and y with time periods,

the MMKR problem can be formulated as:

min
∑︂
i∈I

∑︂
t∈T

w(i)zt
i (6.7a)

∑︂
∀k

uk
i = 1 ∀i (6.7b)

yt
i,k ≤ uk

i ∀i (6.7c)

xt
i ≥ xt+1

i ∀i, ∀t < T (6.7d)∑︂
∀k

yt
i,k ≥

∑︂
∀k

yt−1
i,k ∀i, ∀t > 1 (6.7e)

xt
i +

∑︂
∀k

yt
i,k + zt

i ≥ 1 ∀i, ∀t (6.7f)∑︂
t∈T

(xt
i +

∑︂
∀k

yt
i,k + zt

i) ≥ T + 1 ∀i (6.7g)

∑︂
i∈O(k)

w(i)xt
i +

∑︂
i∈I

w(i)yt
i,k ≤ C(k) ∀k, ∀t (6.7h)

xt
i, yt

i,k, zt
i ∈ {0, 1} ∀i, ∀t, ∀k. (6.7i)
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6.4 Numerical Results

This section is devoted to numerical results. We ran our methods on realistic problem instances,

using randomly generated topologies to build acyclic and cyclic graphs. The graphs, of different sizes

(small and medium), were generated randomly using NetworkX, (a Python lib), based on [71]. The

nodes of the graph represent the servers, and the links represent the VNF migration. The node and

link capacities were generated randomly, (1 − 50) for CPU capacity and (10 − 90) for RAM capacity.

The type number of the VNFs were randomly generated in the range (20 − 220) and the number of

servers in the range (10 − 100). The datasets are presented in Table 6.2. Another element included in

the tables is the number of periods (Periods) allowed for the migration. This aspect may be important

in some situations where the migrations have to be realized in the shortest possible time. In theory,

the maximum number of periods is bounded by the number of migrations (items), but in practice,

several migrations can be processed in parallel. An assessment of the Column Generation method

together with its several post-optimization methods for both cyclic and acyclic graphs can be seen in

Table III and Table IV, respectively. It will be remarked that the mixed method (that is PostOpt +

Final ILP) performed significantly better. This method is used below for the purposes of comparison

with the ILP formulations.

Table 6.2: Datasets of cyclic and acyclic graphs

Cyclic Graphs Acyclic Graphs

Instance Server Item Periods Server Item Periods

1 10 30 I/4 10 25 I
2 20 45 I/5-1 20 35 I/4
3 40 70 I/8 40 60 I/9
4 50 90 I/10 50 80 I/10
5 80 146 I/18 80 150 5I/25
6 100 220 I/32-1 100 200 I/30

6.4.1 Fixed final target

In this section, we present the evaluation results for the case where the final target is known for

cyclic and acyclic graphs.
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6.4.1.1 Cyclic graph

Figure 6.2: Interruption cost of cyclic graphs (Column Generation)

In the following, we report comparative numerical results for the three methods, namely column

generation completed with mixed post optimisation method (Post Opt+ Final ILP), first compact

ILP, and second compact ILP. The notation TL stands for the out of time limit, the limit being set

to 3600 seconds.

Table 6.3: Interruption cost of cyclic graphs for all models

Inst Server Item Periods Final
ILP

Post-
Opt

Post-
Opt +
Final
ILP

First
ILP For-
mulation

Second
ILP For-
mulation

1 10 30 I/4 12 5 2 0 0
2 20 45 I/5-1 0 5 0 0 0
3 40 70 I/8 28 34 16 TL 2
4 50 90 I/10 40 44 24 TL 0
5 80 146 I/18 49 57 21 TL 0
6 100 220 I/32-1 20 26 12 TL 0
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Figure 6.3: Execution time of cyclic graphs in seconds (Column Generation)

Figure 6.4: Execution time of cyclic graphs in seconds

Fig. 6.2 presents the interruption cost of the cyclic graphs for the column generation method. The

results show that the mixed method has the lowest interruption cost comparing to the Final ILP and

post optimization methods, but it takes more time to find the optimal solution (see Fig. 6.3). Table 6.3

summarizes the experimental results of the two compact ILP. The second ILP formulation gives better

results comparing to the first ILP model and column generation method in terms of interruption cost

and execution time as shows the Fig. 6.4.
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6.4.1.2 Acyclic graph

Figure 6.5: Interruption cost of acyclic graphs (Column Generation)

Table 6.4: Interruption cost of acyclic graphs for all models

Inst Server Item Periods Final
ILP

Post-
Opt

Post-
Opt +
Final
ILP

First
ILP For-
mulation

Second
ILP For-
mulation

1 10 25 I 0 19 0 0 0
2 20 35 I/4 0 3 0 0 0
3 40 60 I/9 0 9 0 0 0
4 50 80 I/10 7 7 4 0 0
5 80 150 I/25 10 22 10 TL 0
6 100 200 I/30 5 15 5 TL 0

Figure 6.6: Execution time of acyclic graphs in seconds (Column Generation)
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Figure 6.7: Execution time of acyclic graphs in seconds

From the results above it may be concluded that the Column Generation method gives better

results than the first compact formulation, while keeping the interruption cost under control. In the

case of acyclic graphs, the cost is zero in most cases. However, it will also be remarked that the second

compact formulation achieves the optimal solution in a very short time. Nevertheless, the column

generation method has the advantage of offering more possibilities as regards incorporating the sort of

difficult new constraints that are encountered in real-world conditions. These constraints may concern

the overall duration of the migration process which needs to be minimized, or specific interruption

options that are to be included in the main problem.

6.4.2 Free final target

In this section, we present the evaluation results for the case where the final target is unknown for

cyclic and acyclic graphs.
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6.4.2.1 Cyclic Graphs

Figure 6.8: Interruption cost of cyclic graphs (Column Generation)

Figure 6.9: Execution time of cyclic graphs in seconds (Column Generation)

As can be seen from the graphs, solving the Master Problem one more time, but now with the

addition of the paths established using the heuristic method, requires more time, because now we have

more possibilities to choose the path for each item.
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Figure 6.10: Execution time of cyclic graphs in seconds

Table 6.5: Interruption cost of cyclic graphs for all models

Inst Server Item Periods Final
ILP

Post-
Opt

Post-
Opt +
Final
ILP

Second
ILP For-
mulation

1 10 30 I/4 0 6 0 0
2 20 45 I/5-1 0 22 0 0
3 40 70 I/8 21 83 14 0
4 50 90 I/10 24 32 4 0
5 80 146 I/18 49 83 18 TL
6 100 220 I/32-1 36 49 10 TL

6.4.2.2 Acyclic Graphs

Figure 6.11: Interruption cost of acyclic graphs (Column Generation)
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Figure 6.12: Execution time of acyclic graphs in seconds (Column Generation)

Figure 6.13: Execution time of acyclic graphs in seconds

Table 6.6: Interruption cost of acyclic graphs for all models

Inst Server Item Periods Final
ILP

Post-
Opt

Post-
Opt +
Final
ILP

Second
ILP For-
mulation

1 10 25 I 0 3 0 0
2 20 35 I/4 0 15 0 0
3 40 60 I/9 0 2 0 0
4 50 80 I/10 7 56 3 0
5 80 150 I/25 20 37 7 TL
6 100 200 I/30 15 19 5 0

As can be seen from the tables, compared to the Second ILP Formulation, the Column Generation

Method gives faster results, while keeping the interruption cost under control. The second ILP For-
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mulation, in fact, provides the interruption with a cost equal to zero in all the cases, because now the

model is more accessible in choosing the destination for each item. The problem in this formulation

is that we add a lot of variables because we have the variable yt
i,k, but also the fact that our variables

are integer values, makes the problem complex and requires more time.

6.5 Conclusion

In this chapter, we have presented some new results on an optimization problem relating to resource

allocation in 5G networks. We model the problem as Multiple Multidimensional Knapsacks Recon-

figuration problems and formulate it through Integer Linear Programming compact and non-compact

models. In addition, we propose an ILP model for the case where the destination is unknown.

One of the main issues here is that solution choices have a high combinatorial potential, which

may make the optimization problem computationally intractable for large problem instances. Indeed,

from the experimental results, we see that the first compact formulation becomes intractable when

the number of items and the number of servers increases. We propose a Column Generation solution

approach.

The proposed non-compact ILP problem model and the corresponding solution method are easily

adaptable to the case where the destination state is not fixed and needs to be determined. The

method does not, however, yield systematically integer solutions, and it consequently needs to be

supplemented by a post-optimization step, which does not invariably lead to an optimal solution either.

Nevertheless, the method exhibits shorter computation times than the first compact formulation,

although computation times remain significantly higher than those exhibited by the second compact

formulation.

To conclude, we use the column generation algorithm in order to not generate and use the whole set

of paths because of the enormous number of them. It brings the advantage of solving larger instances

and taking less computational time to find the solution compared to a pure ILP approach.
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7.1 Thesis contributions: a summary

In this thesis, we have defined and studied the problem of VNF reconfiguration in the context of

5G network slicing, for which we have proposed mathematical models and efficient algorithms to solve

it. A first contribution is the study on the industrial context from where the problem is extracted. A

state of the art is also provided. Next, we proposed, in Chapter 4, an ILP formulation that enables

to schedule the VNFs and generates a reconfiguration plan to pass from an initial state where the

resources of slices are not optimal to a new state where the optimality is assured while minimizing the

service interruption, the migration duration and respecting the resource capacity. The reconfiguration

plan is a list of actions (migrations) that will relocate the VNFs from their current servers to those

computed beforehand. This problem is shown to be NP-complete in the strong sense [29] [82]. We

took into consideration two types of migrations, hot and cold migrations. We evaluate the proposed

model according to the service importance taking into consideration the SLA availability metric, and

according to the nature of the datasets (whether it is represented by an acyclic or a cyclic graph). The

drawback is that the ILP spends a significant amount of time solving large instances. To overcome

this problem, we proposed a new heuristic in Chapter 5, in order to improve the computational time

and allow dealing with larger instances. The heuristic is based on the feedback arc set problem and

an efficient heuristic inspired by the concept of a topological sorting algorithm. The heuristic used for

the feedback arc set problem is a greedy heuristic for the minimum set cover problem. The proposed

heuristic is the parallel topological sorting that enables the migration of the VNFs in parallel. The

proposed heuristic was compared to the ILP model presented in Chapter 4. In contrast to the ILP

model, the heuristic finds the reconfiguration plan in milliseconds for large instances. Furthermore, the

heuristic yields good quality solutions that are close to the optimal for small and medium instances.

Nevertheless, the interruption time for large instances in the case of cyclic graphs remain far from

optimality and there is room for improvement.

The third contribution of this PhD thesis was the column generation model. We proposed in

Chapter 6 a compact and non-compact ILP model for the column generation model as well as an

alternative ILP model. First of all, we were able to get results for all testing instances, cyclic and

acyclic, even for those that could not be solved in a reasonable amount of time by the first ILP

approach proposed in Chapter 4. In fact, column generation is a methodology designed and used for
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large instances, so we do not need to take into consideration the whole set of decision variables and

corresponding columns. Secondly, the computational time for all instances is no more than 1 second

if we use the time periods shrinkage, compared to the ILP computational time. This advantage is

not granted, but it depends on the proper formulation of the Master problem and finding a fast

combinatorial algorithm for solving the Pricing problem. Still, this method is not an exact one and

we cannot guarantee the optimality. Comparing the interruption cost values of the column generation

model to the compact ILP formulation, we observed that the interruption cost for a number of instances

is some times larger. To conclude, the column generation model brings the advantage of solving larger

instances and taking less computational time to find the solution compared to a pure ILP approach.

This may be seen as an heuristic approach.

7.2 Future work and perspectives

In this section, we present directions for future work as a perspective for the work conducted during

this PhD thesis. We provide two main directions for future work:

• The first direction consists in improving the heuristic proposed in chapter 5. To recall, the

limitation found in the proposed heuristic is that the interruption time for large instances in the

case of cyclic graphs is significant. To overcome this issue, one approach would be to consider

is what we call a warm start or advanced start. It allows providing the CPLEX optimizer an

advanced starting point for optimization. The idea consists of providing CPLEX the solution of

the heuristic previously solved, which means we can provide to the CPLEX the reconfiguration

plan found using the heuristic as an initial solution, in order to improve this solution by using

the ILP model presented in Chapter 4. This approach can be used to deal with the heuristic

limitation and improve the interruption time by finding the optimal solution by using the ILP

model.

• An interesting perspective for the work performed in this PhD thesis consists in studying the

precedence relations between the VNFs in the context of service chaining. Dynamic programming

is one of the approaches that we can apply to this problem so that the precedence constraints

can be satisfied using this approach. To recall, the dynamic programming [83] [84] follows the

methodology of the divide-and-conquer method, by combining the solutions of subproblems to
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solve the problem. Dynamic programming aims at reusing the previously found solutions, that’s

why it is appliable when subproblems share subsubproblems. It solves each subproblem just once

and then saves the solution in a table, thereby avoiding the work of recomputing the solution

every time it solves each subproblem. When developing a dynamic-programming algorithm,

we follow a sequence of four steps: (1) Characterize the structure of an optimal solution. (2)

Recursively define the value of an optimal solution. (3) Compute the value of an optimal solution,

typically in a bottom-up fashion. (4) Construct an optimal solution from computed information.

Usually, the value found in step 3 is enough to solve most problems, but sometimes we may

need to construct a combinatorial object that lies behind that optimal value. Actually, we have

already studied this approach of a dynamic programming algorithm, based on the migration

steps of the items (VNFs). The algorithm searches for the sequence of the optimal steps in a

tree structure, enumerating all possible scheduling sequences. We tested some instances and

have some preliminary results that show that the algorithm requires a considerable amount of

memory and computational time, because of the enormous number of states even for relatively

small number of migrations. We have obtained encouraging results only in the case where we

allowed exclusively the hot migration.
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