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Abstract

In Computer Science an optimization problem is a problem where we try to find the best
solution from all feasible solutions. This kind of problems may arise from other sciences,
like mathematics, physics and economics, or even from industry. While we are dealing
with such a problem our goal is to present efficient algorithms that are computing optimal
solutions for any given instance. Unfortunately, in many cases we have to deal with NP-
hard problems for which it is a common belief that no such algorithm exists. Due to
that, several approaches and techniques have been developed to deal with NP-hardness.

In this manuscript we are interested in two specific approaches. First, we consider ap-
proximate solutions. The concept of polynomial time approximation exists from decades.
Here, instead of trying to find the “best” solution we are searching for a “good” one that
can be computed in polynomial time. There are problems for which we can develop
polynomial-time approximation schemes that return solutions as close to the optimal
as we want, others that can only admit constant-factor approximation algorithms and
others do not even admit constant-factor approximation algorithms.

In the second approach, we consider restricted instances for the problem. In such a
approach we make additional assumptions for the instance of the given problem. This
idea comes form the fact that sometimes we are not interested in solving all the instances
of a problem but just a subclass and instances in this subclass have properties that we
can exploit in our algorithms. In this thesis we mostly apply this approach on graph
problems. Some assumptions are related to the structure of the given input (for graph
problems this could for example mean that the graph is regular or bipartite) while other
assumptions deal with the size of specific parameter (like the degree or the treewidth of
the given graph). In the second case, we say that we are interested in the parameterized
complexity of the problem. When we consider a parameter, our goal is to find exact
algorithms whose running time is in the form f(k)nO(1), where k is the size of the
parameter and n the size of the instance. When the approach is successful, we say that
we have an fpt-algorithm.

In the first chapter we investigate problems that are similar to the well-known Subset
Sum problem. In particular, we study the Subset Sums Ratio problem (SSR) and some
variants of it. In SSR we have as input a set A of positive integers and we want to find
two disjoint subsets that have ratio as close to one as possible. We present a new FPTAS
algorithm for the SSR and we develop a generic framework that yields FPTAS’s for a
family of variations of SSR under some conditions.

In the rest of this manuscript we study graph problems. Some of these problems
are variants of well-known graph problems like the Feedback Vertex Set problem
and the Vertex Coloring problem. For these problems we present approximation
algorithms, inapproximability results and parameterized algorithms. Finally, using stan-
dard assumptions like the Exponential Time Hypothesis, we present lower bounds on
the running time of our parameterizad algorithms that matches the running time of our
algorithms.
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Résumé

En informatique, un problème d’optimisation est un problème où l’on essaie de trouver
la meilleure solution parmi toutes les solutions réalisables. Ce type de problème peut
provenir d’autres sciences, comme les mathématiques, la physique, l’économie, ou même
de l’industrie. Lorsque nous traitons un tel problème, notre objectif est de proposer des
algorithmes efficaces qui calculent des solutions optimales pour toute instance donnée.
Malheureusement, dans de nombreux cas, nous devons traiter des problèmes NP-difficiles
pour lesquels il est communément admis qu’aucun algorithme de la sorte n’existe. Pour
cette raison, plusieurs approches et techniques ont été développées pour traiter la NP-
difficulté.

Dans ce manuscrit, nous nous intéressons à deux approches spécifiques. Première-
ment, nous considérons les solutions approchées. Le concept d’approximation en temps
polynomial existe depuis des décennies. Ici, au lieu d’essayer de trouver la ”meilleure”
solution, nous cherchons une ”bonne” solution qui peut être calculée en temps polyno-
mial. En particulier, nous voulons développer un algorithme d’approximation en temps
polynomial qui retourne des solutions aussi proches de l’optimum que possible. Dans la
deuxième approche, nous considérons des instances restreintes du problème. Dans une
telle approche, nous faisons des hypothèses supplémentaires sur l’instance du problème
donné. Cette idée vient du fait que parfois nous ne sommes pas intéressés à résoudre
toutes les instances d’un problème mais seulement une sous-classe et les instances de cette
sous-classe ont des propriétés que nous pouvons exploiter dans nos algorithmes. Dans
cette thèse, nous appliquons principalement cette approche aux problèmes de graphes.
Certaines hypothèses sont liées à la structure de l’entrée donnée (pour les problèmes
de graphes, cela peut signifier par exemple que le graphe est régulier ou biparti) tandis
que d’autres hypothèses concernent la taille d’un paramètre spécifique (comme le de-
gré ou la largeur d’arbre du graphe donné). Dans le second cas, nous disons que nous
sommes intéressés par la complexité paramétrée du problème. Lorsque nous consid-
érons un paramètre, notre objectif est de trouver des algorithmes exacts dont le temps
d’exécution est de la forme f(k)nO(1), où k est la taille du paramètre et n la taille de
l’instance. Lorsque cette approche est possible, nous disons que nous avons un algo-
rithme fpt.

Dans le premier chapitre, nous étudions des problèmes similaires au problème bien
connu de la somme de sous-ensembles (Subset Sum). En particulier, nous étudions le
problème Subset Sum Ratio (SSR) et certaines de ses variantes. Dans SSR, nous avons
en entrée un ensemble A d’entiers positifs et nous voulons trouver deux sous-ensembles
disjoints qui ont un rapport aussi proche de un que possible. Nous présentons un nouvel
algorithme FPTAS pour SSR et nous développons un cadre générique qui donne des
FPTAS pour une famille de variantes du SSR sous certaines conditions.

Dans la suite de ce manuscrit, nous étudions les problèmes de graphes. Certains de
ces problèmes sont des variantes de problèmes de graphes bien connus comme le problème
Feedback Vertex Set et le problème Vertex Coloring. Pour ces problèmes, nous
présentons des algorithmes d’approximation, des résultats d’inapproximabilité et des al-
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gorithmes paramétrés. Enfin, en utilisant des hypothèses standard comme l’hypothèse du
temps exponentiel (ETH), nous présentons des bornes inférieures sur le temps d’exécution
de nos algorithmes paramétrés qui correspondent au temps d’exécution de nos algo-
rithmes.



Résumé étendu

Élements de complexité, approximation, graphes et paramé-
trisation
Dans cette thèse, nous considérons des problèmes combinatoires appartenant à la classe
NP. De manière informelle, NP est la classe contenant tous les problèmes de décision
pour lesquels on peut vérifier, en temps polynomial, si une réponse donnée est la bonne
réponse. Une sous-classe de NP est la classe P qui contient tous les problèmes de décision
qui peuvent être résolus en temps polynomial. Il est facile de voir que P ⊆ NP, cependant
la question de savoir si P = NP ou non est encore ouverte.

De nombreux problèmes intéressants appartiennent à la catégorie des problèmes NP-
complets. Pour définir les problèmes NP-complets, nous devons d’abord définir les ”ré-
ductions polynomiales”.

Définition (Réduction en temps polynomial). Une réduction en temps polynomial d’un
problème A à un problème B est un algorithme en temps polynomial qui transforme toute
instance IA de A en une instance IB de B telle que IB est une instance positive de B si
et seulement si IA est une instance positive de A.

Nous disons qu’un problème A est NP-complet s’il appartient à NP et que tout autre
problème B dans NP est réductible en temps polynomial à A. Si nous ne pouvons vérifier
que la deuxième condition, nous disons que le problème est NP-difficile.

Le premier problème dont on a prouvé qu’il était NP-complet est le problème bien
connu de la Satisfiabilité (connu sous le nom de SAT) [61].

Définition (SAT). Soit ϕ une formule logique sur un ensemble de n variables {x1, . . . , xn}.
L’objectif est de décider s’il existe une affectation de valeurs de vérité aux variables qui
satisfait la formule.

L’une des variantes les plus importantes de SAT, qui est également NP-complète,
est 3-SAT. La différence entre SAT et 3-SAT est que dans cette dernière la formule ϕ
est sous forme normale conjonctive (formule CNF) et que chaque clause contient trois
littéraux.

Lorsque nous considérons un problème d’optimisation, dans de nombreux cas, nous
pouvons être satisfaits si nous disposons d’un algorithme en temps polynomial qui renvoie
des solutions réalisables proches de l’optimum. Pour quantifier la distance entre une
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solution réalisable et une solution optimale, nous utilisons le rapport entre le poids de la
solution réalisable et le poids de la solution optimale. Si, pour un algorithme donné, nous
pouvons prouver que ce rapport est borné pour toute instance donnée, alors nous disons
que cet algorithme est un algorithme d’approximation. De plus, si pour un algorithme
ce rapport r satisfait 1 ≥ r ≥ a (respectivement 1 ≤ r ≤ a) pour toutes les instances
d’un problème de maximisation (respectivement d’un problème de minimisation), alors
cet algorithme est un algorithme d’approximation de rapport a.

Comme tous les algorithmes n’ont pas le même rapport et la même durée d’exécution,
il a été décidé de les classer en fonction de ces aspects. Les catégories les plus importantes
sont les suivantes :

• Algorithme d’approximation à facteur constant : Tout algorithme à facteur cons-
tant qui s’exécute en temps polynomial.

• Schéma d’approximation en temps polynomial (PTAS) : Il s’agit d’un algorithme
d’approximation, pour un problème de maximisation (respectivement, pour un
problème de minimisation), ayant comme information supplémentaire en entrée
un nombre réel ε > 0, ayant un rapport 1 − ε (respectivement, ayant un rapport
1+ε) et son temps d’exécution est un polynôme de n (où n est la taille de l’entrée).

• Schéma d’approximation en temps entièrement polynomial (FPTAS) : Ces algo-
rithmes sont des algorithmes PTAS dont le temps d’exécution est un polynôme de
n et 1/ε.

Par conséquent, les problèmes d’optimisation peuvent être catégorisés en fonction du
meilleur rapport d’approximation qu’ils peuvent admettre. Nous présentons ci-dessous
quelques-unes de ces classes :

• FPTAS: Classe de problèmes qui admettent des FPTAS.

• PTAS: Classe de problèmes qui admettent des PTAS.

• APX: Classe de problèmes admettant des algorithmes d’approximation à facteur
constant.

• f(n)-APX: Classe de problèmes qui admettent des algorithmes d’approximation
O(f(n)) s’exécutant en temps polynomial.

Cependant, dans plusieurs cas, nous ne pouvons pas être sûrs que nos algorithmes
atteignent le meilleur rapport d’approximation pour un problème. C’est pourquoi nous
cherchons des limites inférieures. Une façon de calculer les limites du rapport d’approximation
pour un problème donné est de présenter des réductions génératrices d’écarts. L’idée
derrière les réductions d’écart est la suivante :

Soit A un problème de minimisation et B un problème de décision. De plus, pour
une instance y ∈ IA, nous désignons par opt(y) le poids d’une solution optimale de
y. Supposons maintenant que pour deux nombres k et c, nous puissions donner une
correspondance de l’ensemble des instances IB de B à l’ensemble des instances IA de A
telle que :
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• toutes les instances positives x ∈ IB sont mises en correspondance avec un y ∈ IA

où opt(y) ≤ k et

• toutes les instances négatives x ∈ IB sont mises en correspondance avec une y ∈ IA

où opt(y) > ck.

Alors, si B est un problème NP-difficile, on ne peut pas décider en temps polynomial
si, pour une instance y de A, on a opt(y) ≤ k ou opt(y) > ck. Par conséquent, le
problème A n’admet aucun algorithme d’approximation de r pport c qui s’exécute en
temps polynomial.

Lorsqu’un problème est NP-difficile, on peut essayer de considérer des contraintes
supplémentaires afin de trouver des moyens de le traiter. Certaines contraintes peuvent
être liées à la taille d’un paramètre d’un problème particulier; la taille de la solution
optimale en est un exemple. Une question intéressante qui se pose lors de l’examen des
paramètres est la suivante : ”Si la taille de ce paramètre est petite, pouvons-nous ré-
soudre le problème plus rapidement?”. Lorsque nous considérons de telles questions, nous
disons que nous considérons des problèmes paramétrés (c’est-à-dire des problèmes avec
un paramètre particulier k) et nous étudions la complexité paramétrée d’un problème
sous ce paramètre.

Étant donné un problème paramétré avec un paramètre k, nous voulons décider
s’il existe un moyen de calculer une solution optimale en temps f(|k|)poly(n) où f(|k|)
est une fonction calculable et poly(n) est un polynôme de la taille de l’entrée n. Un
algorithme ayant ces propriétés est appelé algorithme fpt. En utilisant cette idée, nous
définissons la classe FPT comme suit :

Définition (Classe FPT). La classe des problèmes paramétrés qui admettent des algo-
rithmes fpt.

Malheureusement, tous les problèmes paramétrés n’appartiennent pas à la classe
FPT. Ci-dessous, nous présentons la hiérarchie W telle que proposée par Downey et
Fellows [74] :

P ⊆ FPT = W[0] ⊆W[1] · · · ⊆W[t] · · · ⊆ XP.

Ils ont conjecturé que les inclusions sont strictes; cette conjecture reste ouverte. Pour
une définition formelle des classes paramétrées ci-dessus et de la hiérarchie W, le lecteur
peut se référer à [75].

Comme pour la complexité classique, l’outil que nous utilisons pour décider de la
complexité paramétrée d’un problème est une réduction. Comme la complexité d’un
problème paramétré dépend de la taille du paramètre, nous avons besoin d’une réduction
qui prend en compte le paramètre.

Définition (fpt-réduction). Soit (A, k) et (B, k′) deux problèmes paramétrés. Nous
disons que nous avons une réduction fpt de la forme (A, k) à (B, k′) s’il existe un
algorithme qui transforme toute instance (x, k) de (A, k) en une instance (y, k′) de
(B, k′) et

• (x, k) est une instance oui si et seulement si (y, k′) est une instance oui,
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• il existe une fonction calculable g telle que |k′| ≤ g(|k|) et

• l’algorithme s’exécute en temps f(|k|)poly(n), pour une fonction calculable f .

De même que pour les réductions polynomiales et les problèmes NP-complets, ici,
un problème paramétré (A, k) est W[i]-complet s’il appartient à W[i] et que tout autre
problème paramétré dans W[i] est fpt-réductible à (A, k).

Les algorithmes paramétrés (même les algorithmes FPT) ont des temps d’exécution
vraiment mauvais par rapport au paramètre. Pour cette raison, nous essayons toujours
de trouver des algorithmes qui ont une dépendance minimale vis-à-vis de la taille du
paramètre. Pour vérifier qu’un algorithme ne peut pas être amélioré, nous essayons
de trouver des limites inférieures de calcul. Certaines de ces limites sont basées sur
l’hypothèse P 6=NP, mais dans de nombreux cas, nous utilisons d’autres hypothèses plus
fortes. Le principal outil sur lequel nous nous appuierons est l’hypothèse de temps
exponentiel (ETH) de Impagliazzo, Paturi, et Zane [120], qui énonce ce qui suit :

Conjecture. Hypothèse du temps exponentiel: il existe un ϵ > 0, tel que 3-SAT sur des
instances avec n variables et m clauses ne peut être résolu en temps 2ϵ(n+m).

Plusieurs des problèmes que nous considérons dans cette thèse sont des problèmes de
graphes. Un graphe G est constitué de deux ensembles, un ensemble V de sommets et un
ensemble E d’arêtes. L’ensemble E indique, dans un certain sens, si deux sommets sont
liés ou non. Si deux sommets u et v dans V sont liés, alors une arête e = uv appartient
à E, sinon uv /∈ E.

Comme nous l’avons mentionné précédemment, dans de nombreux cas, nous sup-
posons que nous avons des contraintes supplémentaires sur nos instances du problème.
Dans les problèmes de graphes, ces contraintes sont généralement liées aux propriétés
structurelles du graphe d’entrée.
Nous présentons ci-dessous quelques-unes des classes les plus courantes de graphes non
orientés.

• Graphes complets : Graphes qui contiennent toutes les arêtes possibles. Un graphe
complet à n sommets est noté Kn.

• Arbres : graphes qui ne contiennent pas de cycles.

• Graphes bipartis : graphes qui ne contiennent pas de cycles de longueur impaire.

• Graphes bipartis complets : graphes bipartis qui contiennent toutes les arêtes
possibles. Un graphe biparti complet avec |L| = n et |R| = m est noté Kn,m.

• Graphes réguliers : Graphes où tous les sommets ont le même degré. Si en plus
on connaît le degré d des sommets alors on appelle le graphe d-régulier.

• Graphes subcubiques : Graphes de degré maximum ∆ ≤ 3.

• Graphes planaires : Un graphe est dit planaire s’il existe une manière de le dessiner
dans un plan à deux dimensions telle qu’aucune paire d’arêtes ne se croise.
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L’un des problèmes de graphes les plus étudiés, NP-difficile, est le problème de la
Maximum Independent Set.

Définition (Maximum Independent Set (Max IS)). Étant donné un graphe G =
(V, E), un ensemble S ⊆ V est appelé ensemble indépendant si pour tout u, v ∈ S on
a uv /∈ E. Dans Max IS nous recherchons un ensemble indépendant de G, de taille
maximale.

La taille d’un ensemble indépendant maximal d’un graphe G est désignée par α(G).
Dans [183], il a été prouvé que, pour tout ε > 0, il n’existe aucun algorithme en temps
polynomial qui approche α(G), pour un graphe G, selon un rapport de n1−ε, à moins que
P = NP. Une version plus faible de ce résultat a été présentée pour la première fois dans
[106] sous la condition NP 6= ZPP au lieu de P 6= NP. La version paramétrée de Max
IS, lorsque nous considérons la taille de la solution comme paramètre, est W[1]-difficile
et elle ne peut pas être résolue en |V |o(k) temps, sous la condition ETH [65].

Il existe plusieurs problèmes, tels que Max IS, qui recherchent des sous-ensembles
de sommets ou d’arêtes qui satisfont une certaine propriété et ont la plus grande (ou la
plus petite) taille possible. Certaines propriétés bien connues sont présentées ci-dessous.
Supposons que l’on nous donne un graphe G = (V, E), nous définissons alors ce qui suit:

• Vertex Cover de G : Un ensemble S ⊆ V est appelé vertex cover de G si pour
chaque arête e = uv ∈ E on a que u ∈ S ou v ∈ S.

• Dominating Set de G : Un ensemble S ⊆ V est appelé dominating set de G si pour
tout sommet u ∈ V on a soit u ∈ S, soit il existe v ∈ S tel que uv ∈ E.

• Matching de G : Un ensemble S ⊆ E est appelé matching de G si pour tout
sommet u ∈ V il existe au plus une arête e ∈ S qui est incidente à u.

En utilisant les propriétés précédentes, nous pouvons définir les problèmes suivants :

Définition (Minimum Vertex Cover (Min VC)). Soit G = (V, E) un graphe. Le
problème Minimum Vertex Cover demande de trouver un vertex cover de G de plus
petite cardinalité.

Min VC est considéré comme le complément de Max IS. En effet, pour un graphe
donné G = (V, E), le complément V \ S, de tout vertex cover S de G, est un ensemble
indépendant. Comme Max IS, Min VC est également NP-difficile; cependant, pour
Min VC, il existe un algorithme d’approximation à rapport 2. De plus, sa version
paramétrée, lorsqu’elle est paramétrée par la taille de la solution, appartient à FPT.

Définition (Minimum Dominating Set (Min DS)). Soit G = (V, E) un graphe. Le
problème Min DS demande de trouver un dominating set de G de plus petite cardinalité.

Min DS est NP-difficile et sa version paramétrée, lorsqu’elle est paramétrée par la taille
de la solution, est W[2]-complète. La taille d’un ensemble dominant minimal, d’un
graphe G donné, est appelée nombre de domination et est notée par γ(G).
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Définition (Maximum Matching problem). Soit G = (V, E) un graphe. Le problème
Maximum Matching demande de trouver un matching de G de taille maximale.
Le problème du Maximum Matching appartient à P.

L’un des paramètres structurels les plus connus d’un graphe est la largeur d’arbre
(treewidth). Pour définir la treewidth d’un graphe, nous devons d’abord définir ce que
nous appelons la décomposition en arbre d’un graphe.
Définition (Décomposition en arbre). Étant donné un graphe G = (V, E), nous appelons
décomposition arborescente de G un arbre T = (V ′, E′) ainsi qu’un ensemble B = {Bt ⊆
V | t ∈ V ′} tel que:

• Pour chaque sommet t ∈ V ′ a été attribué un ensemble Bt ⊆ V . Nous appelons
cet ensemble sac de t.

• ∪
t∈V ′ Bt = V .

• Soit t, w ∈ V ′ et u ∈ Bt ∩ Bw. Pour tout x ∈ V ′, où x appartient au chemin
(unique) de t à w dans T , on a que u ∈ Bx.

• Soit uv ∈ E. Il existe un t ∈ V ′ tel que u, v ∈ Bt.
La taille du plus grand sac de T moins 1 est appelée largeur de la décomposition en arbre.

Définition (Treewidth). Étant donné un graphe G, nous recherchons le nombre min-
imum tw ∈ N tel que, il existe une décomposition en arbre de G avec une largeur de tw
et il n’existe aucune décomposition en arbre de G avec une largeur inférieure à tw.

La treewidth d’un graphe est un paramètre important. Afin de tirer parti de la
treewidth tw d’un graphe G = (V, E), nous devons calculer une décomposition d’arbre
(T,B), où T = (V ′, E′) est un arbre binaire enraciné, qui satisfait les propriétés suivantes:

• la largeur de la décomposition de l’arbre est de tw,

• chaque nœud de T appartient à exactement une des catégories suivantes:

– Nœud feuille : une feuille, v, de T telle que |Bv| = 1.
– Nœud introduire v: un nœud, v, de T avec un fils, c, tel que Bc ⊂ Bv et
|Bv \Bc| = 1.

– Nœud oublier : un nœud, v, de T avec un fils, c, tel que Bv ⊂ Bc et |Bc\Bv| =
1.

– Nœud joindre : un nœud, v, de T avec deux fils, c et c′, tel que Bv = Bc = Bc′ .

Cette décomposition en arbre dite nice a été introduite dans [33]. Il existe un algorithme
qui transforme une décomposition en arbre donnée en une décomposition en arbre nice
avec O(n tw) nœuds en O(n2tw).

En général, chaque sac d’une décomposition en arbre est un ensemble séparant du
graphe original. Cette propriété nous permet de tirer avantage de la structure de la
décomposition nice en arbre et nous permet d’utiliser la programmation dynamique à
ses nœuds. Pour plus de détails sur les décompositions en arbres, voir [75].
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Subset-Sums Ratio et variations
Dans le Chapitre 3, nous étudions le problème Subset-Sums Ratio. La définition
formelle du problème est la suivante:

Définition (Subset-Sums Ratio (SSR)). Étant donné un ensemble A = {a1, . . . , an}
de n entiers positifs, trouver deux ensembles non vides et disjoints S1, S2 ⊆ {1, . . . , n}
qui minimisent le rapport:

max{
∑

i∈S1 ai,
∑

j∈S2 aj}
min{

∑
i∈S1 ai,

∑
j∈S2 aj}

.

Ce problème est la version optimisation du problème Equal Subset Sum (ESS) qui,
étant donné un ensemble d’entrée, demande deux sous-ensembles disjoints de somme
égale. ESS trouve des applications dans de nombreux domaines différents, allant de
la biologie computationnelle [60, 57], du choix social computationnel [144], à la cryp-
tographie [179], pour n’en citer que quelques-uns. De plus, elle est liée à des concepts
théoriques importants tels que la complexité des problèmes de recherche de la classe
TFNP [166].

Ces deux problèmes sont fortement liés au problème bien connu de la somme des sous-
ensembles. Les calculs de la somme des sous-ensembles sont d’une importance capitale en
informatique, car ils apparaissent soit comme des problèmes en soi, soit comme des sous-
problèmes dans un grand nombre de méthodes théoriques et pratiques permettant de
résoudre d’importants problèmes de calcul. Comme la plupart des problèmes de somme
de sous-ensembles sont NP-difficiles, un effort a été fait au fil des ans pour trouver des
moyens systématiques de dériver des schémas d’approximation pour ces problèmes. En
particulier, le FPTAS le plus connu pour le problème de la somme de sous-ensembles
apparaît dans [129]. Parmi les contributions importantes dans cette direction, citons
les travaux de Gens et Levner [95], Horowitz et Sahni [114, 115], Ibarra et Kim [119],
Sahni [174], Woeginger [180], et Woeginger et Pruhs [169].

Dans la première moitié de ce chapitre, nous présentons un nouveau schéma d’approxi-
mation pour le problème Subset-Sums Ratio. Notre algorithme utilise des algorithmes
exacts et d’approximation pour Subset Sum, ainsi, toute amélioration par rapport à
ces derniers s’applique à notre schéma proposé. De plus, selon la relation entre n et ε,
notre algorithme améliore le meilleur schéma d’approximation existant de [151].

En particulier, dans la section 3.3, nous introduisons un FPTAS pour une version
du problème appelée Subset-Sums Ratio contraint. Ensuite, nous expliquons com-
ment utiliser l’algorithme présenté dans la section précédente, afin d’obtenir un schéma
d’approximation pour le problème Subset-Sums Ratio. La complexité de ce FPTAS
est analysée en détail dans la Section 3.5.

Plusieurs variantes d’ESS ont été prouvées NP-complètes par Cieliebak et al. dans [58,
59]. Cependant, la version d’optimisation de ces problèmes n’a pas été étudiée. Dans la
deuxième moitié de ce chapitre, nous considérons une famille de variations de SSR qui
inclut tous ces problèmes. La définition formelle de cette famille est assez technique et
présentée ci-dessous.
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Famille de problèmes de type Subset-Sums ratio (F -SSR). Un problème P dans
F -SSR est un problème d’optimisation combinatoire (I, k,F) où:

• I est un ensemble d’instances dont chacune est une paire (E, w) où E = {e1, . . . , en}
est un ensemble d’éléments de base et w : E 7→ R+ est une fonction de poids qui
fait correspondre chaque élément ei à un nombre positif ai;

• k définit le nombre de sous-ensembles de {1, . . . , n} que l’on recherche;

• F donne l’ensemble des solutions réalisables comme suit: pour toute entrée (E, w),
F(k, E) est une collection de k-tuples de sous-ensembles non vides et disjoints
de {1, . . . , n}, et étant donné (k, E, (S1, . . . , Sk)), nous pouvons vérifier en temps
polynomial si (S1, . . . , Sk) est dans F(k, E).

Pour une instance (E, w) de P nous définissons le poids d’une solution réalisable (S1, . . . , Sk)
comme étant le rapport:

max{
∑

i∈S1 ai, . . . ,
∑

j∈Sk
aj}

min{
∑

i∈S1 ai, . . . ,
∑

j∈S2 aj}

où ai = w(ei) pour tous les ei ∈ E.
Enfin, le but de P est de trouver, pour une instance (E, w), une solution réalisable

(S∗
1 , . . . , S∗

k) avec un poids minimum.
Dans la section 3.7, nous présentons certaines conditions qui, si elles sont satisfaites

par un problème P dans cette famille, alors P admet un FPTAS. La plus importante
de ces conditions est l’existence d’un algorithme pseudopolynomial pour une version re-
streinte de P. L’idée derrière notre cadre est de définir un paramètre d’échelle δ que nous
utiliserons pour réduire les valeurs d’entrée, ce qui permet aux algorithmes pseudopoly-
nomiaux de s’exécuter en temps polynomial. Nous devons noter que des algorithmes
d’approximation plus rapides peuvent exister pour ces problèmes. Cependant, notre ob-
jectif n’était pas de trouver les algorithmes les plus rapides possibles mais de garantir
des FPTAS pour le plus grand nombre de problèmes possible.

À titre d’exemples particuliers, nous présentons deux problèmes qui appartiennent à
F -SSR: le 2-Set SSR et le Factor-r SSR.

Two-Set Subset-Sums Ratio problem (2-Set SSR). Soit A = {(a1, b1), . . . , (an, bn)}
un ensemble de paires de nombres positifs. Nous cherchons deux ensembles non vides et
disjoints S1, S2 ⊆ {1, ..., n} qui minimisent

max{
∑

i∈S1 ai,
∑

j∈S2 bj}
min{

∑
i∈S1 ai,

∑
j∈S2 bj}

.

Factor-r Subset-Sums Ratio problem (Factor-r SSR). Étant donné un ensemble
A = {a1, . . . , an} de n nombres positifs et un nombre r ≥ 1, trouver deux ensembles non
vides et disjoints S1, S2 ⊆ {1, . . . , n} qui minimisent le rapport

max{r ·
∑

i∈S1 ai,
∑

j∈S2 aj}
min{r ·

∑
i∈S1 ai,

∑
j∈S2 aj}

.
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Les preuves qu’ils appartiennent effectivement à F -SSR seront présentées dans la
Section 3.8.1 et la Section 3.8.2 respectivement. Nous devons noter que la version décision
de Factor-r SSR a été étudiée dans [59]. Pour ces deux problèmes, nous introduisons
les FPTAS. Plus précisément, nous montrons que le FPTAS que nous présentons pour
le 2-Set SSR peut être utilisé comme FPTAS pour le Factor-r SSR.

Max-Min and Min-Max Problems
Dans les chapitres 4 et 5, nous considérons les versions Max-Min de Edge Cover et
Feedback Vertex Set. Les versions Max-Min et Min-Max de nombreux problèmes
d’optimisation célèbres ont récemment suscité un grand intérêt dans la littérature. Bien
que la motivation initiale pour l’étude de ces problèmes était le désir d’analyser la pire
performance possible d’une heuristique naïve, ces problèmes se sont progressivement
révélés posséder une riche structure combinatoire qui les rend intéressants en soi.

De nombreux autres problèmes d’optimisation classiques ont été étudiés dans le cadre
Max-Min ou Min-Max, tels que : Max Min Separator [100], Max Min Cut [79],
Min Max Knapsack (également connu sous le nom de Lazy Bureaucrat Problem)
[12, 90, 97], et une variante pondérée de Max Min Edge Cover [130]. Certains
problèmes dans ce domaine se présentent naturellement sous d’autres formes et ont été
largement étudiés, comme Min Max Matching (également connu sous le nom de Edge
Dominating Set [121]), Grundy Coloring, qui peut être vu comme une version Max
Min de Coloring [3, 24], et Max Min VC dans les hypergraphes, qui est connu sous
le nom de Upper Transversal [155, 109, 110, 111].

Upper r-Tolerant Edge Cover

Dans le chapitre 4 nous définissons et étudions les problèmes de tolerant edge cover. Une
edge cover d’un graphe G = (V, E) sans sommets isolés est un sous-ensemble d’arêtes
S ⊆ E qui couvre tous les sommets de G, c’est-à-dire que chaque sommet de G est une
extrémité d’au moins une arête dans S. Le nombre de edge cover d’un graphe G = (V, E),
noté ec(G), est la taille minimale d’une couverture d’arêtes de G et il peut être calculé
en temps polynomial (voir le chapitre 19 dans [175]). Une couverture d’arêtes S ⊆ E est
dite minimale (par rapport à l’inclusion) si aucun sous-ensemble propre de S n’est une
edge cover. Le edge cover minimal est également connu dans la littérature sous le nom
d’ensemble enclaveless [176] ou d’ensemble nonblocker [71].

Alors qu’une couverture par arêtes minimale peut être calculée efficacement, trouver
la plus grande couverture par arêtes minimale est un problème NP-difficile [149]. En
particulier, il est montré que le problème est équivalent à la recherche d’un ensemble
dominant minimal. Le problème d’optimisation associé est appelé Upper Edge Cover
(et noté Upper EC) [13] et la valeur optimale correspondante, pour un graphe G =
(V, E), sera notée uec(G).

Ici, nous nous intéressons aux solutions edge cover minimales tolérant les défaillances
d’au plus r − 1 arêtes.
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Définition (r-Tolerant Edge Cover). Soit r ≥ 1 un entier et G = (V, E) un graphe de
degré minimum r. Nous disons qu’un ensemble S ⊆ E est une couverture par arêtes
r-tolérante si :

• tous les sommets v ∈ V sont incidents à au moins k arêtes de S,

• S est minimal avec cette propriété.

De manière équivalente, nous cherchons un sous-ensemble d’arêtes S de G tel que
le sous-graphe (V, S) est le plus grand sous-graphe qui a un degré minimum r et il est
minimal avec cette propriété. Notons que le cas r = 1 correspond à la notion standard
de edge cover minimale.

Définition (Upper r-Tolerant Edge Cover problem (Upper r-EC)). Étant donné
un entier r ≥ 1 et un graphe G = (V, E) avec un degré minimum r, nous cherchons une
r-tolerant edge cover S de G avec une taille maximum. Nous désignons par uecr la taille
de S.

Pour r = 1, le Upper r-Tolerant Edge Cover est le même problème que le
Upper Edge Cover (ou simplement le Upper EC). Un problème fortement lié au
problème Upper EC est le problème Minimum Dominating Set (Min DS). Un en-
semble dominant dans un graphe est un sous-ensemble S de sommets tel que tout sommet
qui n’est pas dans S a au moins un voisin dans S. La taille du plus petit ensemble dom-
inant de G est notée γ(G). Pour tout graphe G l’égalité uec(G) = n − γ(G) est vraie
[149].

Ainsi, en utilisant les résultats de complexité connus pour Min DS, nous déduisons
que Upper EC est NP-difficile dans les graphes planaires de degré maximum 3 [94],
les graphes cordaux [39], les graphes bipartis, les split graphes [30] et les k-arbres avec
k arbitraire [62]. Par contre, Upper EC est polynomial dans les k-arbres avec k fixe,
les graphes bipartis convexes [70] et les graphes fortement cordaux [81]. Concernant
l’approximabilité, une preuve de APX-difficulté avec une limite d’inapproximabilité ex-
plicite et un algorithme combinatoire d’approximation de 0,6 sont proposés dans [165].
De meilleurs algorithmes avec un rapport d’approximation de 0,71 et 0,803 sont donnés
respectivement dans [53] et [15]. Pour tout ε > 0, Upper Edge Cover est difficile à
approcher à un facteur de 259

260 + ε à moins que P=NP [165].
Des notions connexes d’ensembles dominants sont introduites dans la littérature sous

le nom de r-tuple domination [18, 85, 91, 101, 107, 133], et r-domination [51, 85]. Un
ensemble S ⊆ V est appelé un r ensemble dominant de G = (V, E) si pour tout sommet
v ∈ V , |NG(v) ∩ S| ≥ r. La cardinalité minimale d’un ensemble dominant r de G est
appelée nombre de domination r et généralement notée γr(G). De plus, un ensemble
S ⊆ V est appelé un r-tuple dominating set de G = (V, E) si pour tout sommet v ∈ V ,
|NG[v]∩S| ≥ r. La cardinalité minimale d’un ensemble dominant de r de G est appelée
nombre de domination de r et est généralement notée γ×r(G).

Dans la Section 4.3 nous prouvons plusieurs propriétés concernant uecr(G). En par-
ticulier, nous montrons :
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Property. Soit r ≥ 1, pour tous les graphes G = (V, E) de degré minimum au moins r,
l’inégalité suivante est vraie :

2ecr(G) ≥ uecr(G)

La propriété ci-dessus montre que la taille de toute couverture par arêtes r-tolérante
de G est une approximation à rapport 1

2 de uecr(G). Nous présentons ensuite deux
propriétés qui relient la valeur uecr(G) aux valeurs uec(G) et γr(G) respectivement.

Property. Soit r ≥ 1. Pour tous les graphes G = (V, E) de degré minimal au moins
égal à r, les inégalités suivantes sont vraies :

uecr(G) ≤ r · uec(G)
uecr(G) ≥ r

(
n− γr(G)

)
Dans les sections 4.4 et 4.5, nous présentons des résultats de NP-difficulté pour

Upper r-EC et Double Upper EC, et des résultats de difficulté d’approximation
pour Upper EC et Double Upper EC. Plus précisément, nous montrons que Double
Upper EC est NP-difficile dans les graphes bipartis cubiques et les split graphes et
Upper r-EC est NP-difficile dans les graphes r + 1 réguliers. De plus, Upper r + 1-EC
est NP-difficile dans les graphes de degré maximum ∆+1 si Upper r-EC est NP-difficile
dans les graphes de degré maximum ∆, et ceci est valable même pour les graphes bipartis.

Comme nous avons déjà montré qu’il existe une approximation facile de rapport 1
2 ,

nous cherchons des limites inférieures sur le rapport d’approximation en temps poly-
nomial. Nous présentons deux réductions de la difficulté d’approximation qui nous
donnent (plusieurs) rapports d’inapproximabilité pour Upper Edge Cover et Upper
2-Tolerant Edge Cover dans les graphes avec un degré maximal borné.

Max-Min FVS
Dans le chapitre 5, nous considérons une variation Max-Min de Feedback Vertex Set.
Typiquement, le Feedback Vertex Set est étudié avec un objectif de minimisation tel qu’il
a été défini précédemment. Ici, nous nous intéressons à un objectif qui est, en un sens,
l’inverse : nous cherchons un feedback vertex set S qui est aussi grand que possible, tout
en étant minimal. Nous appelons ce problème Max Min FVS. Notre objectif dans ce
chapitre est de montrer que Max Min FVS présente un comportement de complexité
intéressant en ce qui concerne son approximabilité.

La raison pour laquelle nous nous concentrons sur le problème Max Min FVS est
le contraste entre deux de ses cousins plus étudiés : les problèmes Max Min Vertex
Cover (Max Min VC) et Upper Dominating Set (Upper DS), où l’objectif est de
trouver la plus grande couverture minimale de sommets ou l’ensemble dominant le plus
grand respectivement. À première vue, on pourrait s’attendre à ce que le problème Max
Min VC soit le plus facile des deux : les deux problèmes peuvent être vus comme une
tentative de trouver le plus grand ensemble minimal de sommets d’un hypergraphe, mais
dans le cas de Max Min VC l’hypergraphe a une structure très restreinte, alors que dans
le cas de Upper DS l’hypergraphe est essentiellement arbitraire. Cette intuition s’avère
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correcte : alors que Upper DS n’admet aucune approximation de rapport n1−ϵ [22],
Max Min VC admet une approximation de rapport

√
n (mais aucune approximation

de rapport n1/2−ϵ) [40].
Ce contexte nous amène à la question naturelle de l’approximabilité de Max Min

FVS. À un niveau intuitif, on peut être tenté de penser que ce problème devrait être
plus difficile que celui de Max Min VC, puisque couvrir les cycles est plus complexe que
couvrir les arêtes, mais plus facile que celui de Upper DS, puisque couvrir les cycles nous
offre toujours plus de structure qu’un hypergraphe arbitraire. Cependant, à notre con-
naissance, aucun algorithme d’approximation de rapport n1−ϵ n’est actuellement connu
pour Max Min FVS (le problème pourrait donc être aussi difficile que Upper DS),
et la meilleure borne de difficulté d’approximation connue est n1/2−ϵ [154] (le problème
pourrait donc être aussi facile que Max Min VC).

Notre principale contribution dans ce chapitre est de répondre pleinement à la ques-
tion posée précédemment, en confirmant et en quantifiant précisément l’intuition selon
laquelle Max Min FVS est un problème qui se situe “entre” Max Min VC et Up-
per DS : Nous donnons un algorithme d’approximation en temps polynomial avec un
rapport O(n2/3) et une réduction de la difficulté de l’approximation qui montre que (à
moins que P = NP) aucun algorithme en temps polynomial ne peut obtenir un rapport
de n2/3−ϵ, pour tout ϵ > 0. Ceci règle complètement l’approximabilité du problème en
temps polynomial. Au passage, nous prouvons également que Max Min FVS admet
un noyau cubique lorsqu’il est paramétré par la taille de la solution, nous donnons un
algorithme d’approximation avec un rapport O(∆), nous montrons qu’aucun algorithme
ne peut atteindre le rapport ∆1−ϵ, pour tout ϵ > 0, et enfin nous améliorons la meilleure
preuve de NP-complétude connue pour Max Min FVS de ∆ ≥ 9 [154] à ∆ ≥ 6, où ∆
est le degré maximum du graphe d’entrée.

Un aspect intéressant de nos résultats est qu’ils ont une interprétation issue de la
combinatoire extrémale qui reflète bien la situation de Max Min VC. Rappelons qu’un
corollaire de l’approximation de rapport

√
n pour Max Min VC [40] est que tout graphe

sans sommets isolés possède une couverture de sommets minimale de taille au moins
égale à

√
n, et ceci est optimal (voir Remarque 5.3.2). Par conséquent, l’algorithme

a seulement besoin de prétraiter trivialement le graphe (en supprimant les sommets
isolés) et ensuite de trouver cet ensemble, dont l’existence est garantie. Nos algorithmes
peuvent être vus sous un angle similaire: nous prouvons que si l’on applique deux règles
de prétraitement presque triviales à un graphe (suppression des feuilles et contraction
des arêtes entre sommets de degré deux), l’existence d’un fvs minimal de taille au moins
n1/3 (et Ω(n/∆)) est toujours garantie, et ces quantités sont optimales (Corollaire 5.9
et Remarque 5.3.2). Ainsi, le rapport d’approximation de n2/3 est automatiquement
garanti pour tout graphe où nous appliquons exhaustivement ces règles très simples et
où nos algorithmes n’ont à travailler que pour construire l’ensemble promis. Cela rend
quelque peu remarquable le fait que le rapport de n2/3 s’avère être le meilleur possible.

Ayant réglé l’approximabilité de Max Min FVS en temps polynomial, nous consid-
érons la question du temps à investir si l’on souhaite garantir un rapport d’approximation
de r (qui peut dépendre de n) où r < n2/3. Ce type de compromis temps-approximation
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a été largement étudié par Bonnet et al. [38], qui ont montré que Max Min VC admet
une r-approximation en temps 2O(n/r2) et que celle-ci est optimale sous l’hypothèse ETH
randomisée.

Pour Max Min FVS nous ne pouvons pas espérer obtenir un compromis avec des
performances exponentielles en n/r2, car cela implique une

√
n approximation en temps

polynomial. Il semble donc plus naturel de viser un temps d’exécution exponentiel en
n/r3/2. En effet, en généralisant notre algorithme d’approximation en temps polynomial,
nous montrons que nous pouvons obtenir une r approximation en temps nO(n/r3/2).
Bien que cet algorithme réutilise certains ingrédients de notre approximation en temps
polynomial, il est significativement plus élaboré, car il n’est plus suffisant de comparer
la taille de notre solution à n. Nous complétons notre résultat par une borne inférieure
montrant que notre algorithme est essentiellement le meilleur possible sous l’hypothèse
ETH randomisée pour tout r (pas seulement en temps polynomial), ou plus précisément
que l’exposant du temps d’exécution de notre algorithme ne peut être amélioré que par
des facteurs no(1).

Digraph Coloring
Dans Digraph Coloring, on nous donne un graphe orienté (digraphe) D et on nous
demande de calculer le plus petit k tel que les sommets de D peuvent être partitionnés
en k ensembles acycliques. En d’autres termes, l’objectif de ce problème est de colorer
les sommets avec le nombre minimal de couleurs de sorte qu’aucun cycle dirigé ne soit
monochrome. Cette notion est appelée le nombre dichromatique et a été introduite par
V. Neumann-Lara [164]. Plus récemment, la coloration des digraphes a fait l’objet d’une
grande attention, notamment parce qu’il s’avère que de nombreux résultats concernant le
nombre chromatique des graphes non orientés s’appliquent tout naturellement au nombre
dichromatique des digraphes [4, 10, 26, 35, 54, 99, 102, 104, 105, 112, 141, 153, 157,
177]. Nous notons que Digraph Coloring généralise Coloring (si nous remplaçons
simplement toutes les arêtes d’un graphe par des paires d’arcs anti-parallèles) et est donc
NP-complet.

Dans le Chapitre 6, nous nous intéressons à la complexité de Digraph Coloring du
point de vue de la complexité structurelle paramétrée. Notre principale motivation pour
cette étude est que Coloring (non orienté) est un problème d’importance centrale dans
ce domaine dont la complexité est bien comprise, et il est naturel d’espérer que certains
des résultats de tractabilité connus puissent s’appliquer aux digraphes – en particulier
parce que, comme nous l’avons mentionné, le Digraph Coloring semble se comporter
comme une contrepartie très proche du Coloring à bien des égards. En particulier,
pour les graphes non orientés, la complexité de Coloring pour les graphes “presque-
acycliques” est très précisément connue : pour tout k ≥ 3, il existe un algorithme de
complexité O∗(ktw), où tw est la largeur d’arbre du graphe d’entrée, et il est optimal (sous
SETH) même si nous remplaçons la largeur d’arbre par des paramètres beaucoup plus
restrictifs [123, 147]. Pouvons-nous obtenir le même degré de précision pour Digraph
Coloring ?
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Les paramétrages structurels de Digraph Coloring ont été étudiés dans [177], qui
a montré que le problème est FPT par largeur modulaire en généralisant les algorithmes
de [92, 136], et [99] qui a montré que le problème est dans XP par largeur de clique (notez
que les résultats de difficulté pour Coloring excluent un algorithme fpt dans ce cas
[86, 87, 137]). Nos résultats sur la difficulté du problème pour les DFVS et FAS bornés
s’appuient sur les travaux de [153]. Le fait que le problème soit difficile pour le DFVS
borné implique qu’il est également difficile pour la plupart des versions dirigées de la
largeur d’arbre, y compris la largeur de DAG, la largeur de Kelly et la largeur de chemin
dirigée [31, 93, 118, 125, 138]. En effet, la difficulté pour FAS implique également la
difficulté pour la largeur d’élimination bornée, une restriction plus récemment introduite
de la largeur d’arbre dirigée [84]. Pour la largeur d’arbre non dirigée, un problème avec
un comportement similaire est DFVS : (undirected) FVS est soluble en O∗(3tw) [68] mais
DFVS ne peut pas être résolu en temps two(tw)nO(1), et ceci est optimal sous l’hypothèse
ETH [36]. Pour d’autres problèmes naturels dont la complexité par largeur d’arbre est
twΘ(tw), voir [20, 28, 37].

En ce qui concerne le degré maximal, il n’est pas difficile de voir que k-Digraph
Coloring est NP-difficile pour les graphes de degré maximal 2k + 2, car k-Coloring
est NP-difficile pour les graphes de degré maximal k+1, pour tous les k ≥ 3. A l’inverse,
en utilisant une généralisation du théorème de Brooks dû à Mohar [158] on peut voir que
k-Coloring dans les digraphes de degré maximum 2k est dans P. Cela laisse comme
seul cas ouvert les digraphes de degré 2k + 1, ce qui dans un sens reflète nos résultats
pour les digraphes de DFVS k et de degré 4k − 2. Nous notons que la NP-difficulté
de 2-Digraph Coloring pour les graphes de degré borné est connue même pour les
graphes de grande circonférence (girth), mais la borne sur le degré suit la limite imposée
sur la circonférence [82].

La question principale qui nous motive est la suivante : Est-ce que Digraph Col-
oring devient aussi soluble pour les instances “presque-acycliques” ? Nous abordons
cette question sous deux angles.

Tout d’abord, dans la section 6.3, nous considérons la notion d’acyclicité au sens du
digraphe et étudions les cas où le digraphe d’entrée est proche d’être un DAG. La mesure
la plus naturelle de ce type est probablement le directed feedback vertex set (DFVS).

Formellement, cet ensemble de sommets est défini comme suit :

Définition. Étant donné un graphe dirigé D = (V, E), un ensemble S ⊆ V est appelé
directed feedback vertex set de D si le graphe D[V \ S] est un graphe acyclique dirigé.

Le problème est paraNP-difficile pour ce paramètre, car pour tous les k ≥ 2 fixés, on
sait déjà que le problème de coloration des graphes est NP-difficile, pour des instances
de DFVS de taille au plus k + 4 [153]. Notre première contribution est de renforcer ce
résultat en montrant ce qui suit :

Théorème. Pour tout k ≥ 2, il est NP-difficile de décider si un digraphe D = (V, E)
est k-colorable même lorsque la taille de son directed feedback vertex set est k. De plus,
ce problème ne peut pas être résolu en temps 2o(n) à moins que l’ETH soit fausse.
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Pour ce faire, nous présentons une réduction à partir d’une version restreinte du
problème 3-SAT. Ce résultat comble le vide laissé par la réduction de [153] et fournit
une dichotomie complète, puisque le problème est trivialement FPT par k lorsque le
DFVS a une taille strictement inférieure à k (la seule partie non triviale du problème
dans ce cas est de trouver le DFVS [52]). À la fin de cette section, nous considérons
le problème 2-Digraph Coloring sur des graphes orientés. Nous prouvons qu’il est
NP-difficile de décider si un graphe orienté est 2-colorable même dans les cas où la taille
du DFVS est 3. Ceci est optimal car il existe un argument facile montrant que tous les
graphes orientés avec DFVS k sont k-colorables.

Dans la section 6.4, nous cherchons à savoir si en considérant une notion plus re-
streinte de la quasi-acyclicité, ou en imposant d’autres restrictions, telles que la limita-
tion du degré maximum du graphe, pourrait conduire à un algorithme fpt. Malheureuse-
ment, nous montrons qu’aucune de ces solutions ne suffit à rendre le problème soluble.
En particulier, nous considérons d’abord comme paramètre la taille du feedback arc set
(FAS) d’un digraphe.

Définition. Étant donné un graphe dirigé D = (V, E), un ensemble S ⊆ E est appelé
feedback arc set de D si le graphe D′ = (V, E \ S] est un graphe acyclique dirigé.

Nous montrons que pour tout k ≥ 2, k-Digraph Coloring est NP-difficile pour les
digraphes de FAS de taille k2 (le feedback arc set est bien sûr un paramètre plus restrictif
que le feedback vertex set). De manière intéressante, cela nous conduit également à une
dichotomie complète, cette fois pour le paramètre FAS : nous montrons que k-coloring
devient FPT (par k) sur les graphes de FAS de taille au plus k2 − 1, par un argument
qui réduit ce problème à la coloration d’un sous-digraphe avec au plus O(k2) sommets,
et donc le seuil de complexité correct pour ce paramètre est k2. Deuxièmement, nous
montrons que la coloration d’un digraphe avec DFVS de taille k reste NP-difficile même
si le degré maximum est au plus 4k−1. Ceci renforce la réduction de [153], qui a montré
que le problème est NP-difficile pour une dégénérescence bornée (plutôt que pour un
degré). En presque complétant le tableau, nous montrons que k-colorer un digraphe
avec DFVS k et un degré maximum d’au plus 4k − 3 est FPT par k, laissant ouvert
seulement le cas où le DFVS est exactement k et le degré maximum exactement 4k− 2.

Dans la section 6.5, en raison des résultats négatifs pour DFVS et FAS, nous avons
décidé de considérer comme paramètre la treewidth du graphe sous-jacent.

Il s’avère que, finalement, cela suffit à conduire à un algorithme fpt, obtenu avec des
techniques de programmation dynamique standard. En particulier, nous montrons ce
qui suit.

Théorème. Il existe un algorithme qui, étant donné un digraphe D sur n sommets et
une décomposition en arbre de son graphe sous-jacent de largeur tw, décide si D est
k-colorable en temps ktw(tw!)nO(1).

Cependant, notre algorithme a un temps d’exécution quelque peu décevant, car il est
nettement inférieur à la complexité de ktwnO(1) qui est connue pour être optimale pour
les Coloring non orientés, en particulier pour les petites valeurs de k. Cela soulève la
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question de savoir si le facteur supplémentaire (tw!) peut être supprimé. Notre principale
contribution dans cette partie est de montrer que cela est probablement impossible,
même pour un cas plus restreint. Plus précisément, nous montrons que:

Théorème. S’il existe un algorithme qui décide si un digraphe donné sur n sommets et
treedepth (non orientée) td est 2-colorable en temps tdo(td)nO(1), alors l’ETH est fausse.

Enfin, dans la section 6.6, nous considérons les tournois. Il est déjà connu que
2-Digraph Coloring est NP-difficile pour les tournois [54]. L’algorithme exhaustif
pour vérifier si un tournoi est 2-colorable nécessite une durée O∗(2n) car il existe 2n 2-
coloriages possibles pour un graphe. Nous améliorons ce temps d’exécution en proposant
un algorithme qui répond à la même question en O∗( 3√6n). Cette amélioration vient du
fait qu’étant donné un tournoi T = (V, E) tout cycle contient un triangle. Enfin, nous
expliquons comment l’algorithme précédent peut être étendu pour k couleurs. Cela nous
donne le corollaire suivant :

Corollary. Soit T = (V, E) un tournoi. Nous pouvons décider si le nombre bichroma-
tique de T est k en temps O∗( 3√k3 − k

n).

Locally Irregular Induced Subgraphs
Un graphe G est dit localement irrégulier, si toutes les paires de sommets adjacents de
G ont des degrés différents. Dans ce chapitre, nous introduisons et étudions le problème
de trouver le plus grand sous-graphe induit localement irrégulier d’un graphe donné. Ce
problème est équivalent à l’identification du nombre minimum de sommets qui doivent
être supprimés de G, pour que ce qui reste soit un graphe localement irrégulier.

La notion de graphe localement irrégulier a été introduite pour la première fois
dans [21]. L’aspect le plus intéressant des graphes localement irréguliers vient de leur
connexion avec la conjecture dite 1-2-3, proposée dans [126]. Formellement, la conjecture
1-2-3 stipule que pour presque tous les graphes, nous devrions être capables de placer
des poids de {1, 2, 3} sur les arêtes de ce graphe, de sorte que la coloration, qui attribue
à chaque sommet une couleur égale à la somme des poids sur ses arêtes adjacentes, est
une coloration de sommet correcte du graphe. Un lien évident est que cette conjecture
est valable pour les graphes localement irréguliers. En effet, placer un poids égal à 1 sur
toutes les arêtes d’un graphe localement irrégulier, suffit à produire un vertex-coloring
correct, puisque chaque sommet reçoit une couleur égale à son degré.

Le problème que nous présentons appartient à une famille de problèmes plus générale
et bien étudiée, qui consiste à identifier le plus grand sous-graphe induit d’un graphe
donné qui vérifie une propriété spécifique Π. C’est-à-dire, étant donné un graphe G =
(V, E) et un entier k, existe-t-il un ensemble V ′ ⊆ V tel que |V ′| ≤ k et G[V \ V ′] a
la propriété spécifiée Π ? Ce problème généralisé est en effet classique en théorie des
graphes, et il est connu sous le nom Induced Subgraph with Property Π (ISPΠ en
abrégé) dans [94]. Dans notre cas, la propriété Π est “le sous-graphe induit est localement
irrégulier”.



23

Dans [140], les auteurs ont montré que ISPΠ est un problème difficile pour toute
propriété Π qui est héréditaire, i.e., tous les sous-graphes induits de G vérifient Π si G
lui-même vérifie cette propriété. Cependant, la question reste intéressante (on pourrait
dire qu’elle devient en fait plus intéressante) même si la propriété Π n’est pas héréditaire.
Récemment, les auteurs de [25] ont étudié le problème pour Π étant “tous les sommets
du sous-graphe induit ont un degré impair”, qui n’est clairement pas une propriété
héréditaire. Néanmoins, ils ont montré que c’est un problème NP-difficile, et ils ont
donné un algorithme fpt qui résout le problème quand il est paramétré par la largeur
de rang. De même, les auteurs de [5, 14, 159] ont étudié le problème ISPΠ, où Π est
la propriété assez naturelle “le sous-graphe induit est d-régulier”, où d est un entier
donné en entrée (rappelons qu’un graphe est dit d-régulier si tous ses sommets ont le
même degré d). En particulier, il est montré dans [14] que trouver un plus grand sous-
graphe induit (connecté) qui est d-régulier, est NP-difficile à approximer, même en se
limitant aux graphes bipartis ou planaires. Les auteurs de [14] fournissent également un
algorithme en temps linéaire pour résoudre ce problème pour les graphes avec une largeur
d’arbre bornée. En revanche, les auteurs de [5] adoptent une approche plus pratique,
puisqu’ils se concentrent sur la résolution du problème pour les valeurs particulières de
d = 1 et d = 2, en utilisant des limites issues de la programmation quadratique, de la
relaxation Lagrangienne et de la programmation en nombres entiers.

Il est tout à fait clair que, dans un certain sens, la propriété qui nous intéresse se
situe à l’opposé de celle étudiée dans [5, 14, 159]. Cependant, les deux propriétés, “le
sous-graphe induit est régulier” et “le sous-graphe induit est localement irrégulier” ne
sont pas héréditaires. Cela signifie que nous n’obtenons pas un résultat de NP-difficulté
directement de [140]. De plus, le problème ISPΠ admet toujours un algorithme fpt,
lorsqu’il est paramétré par la taille de la solution, si Π est une propriété héréditaire
(prouvé dans [46, 131]), mais pour une propriété non héréditaire, ce n’est pas toujours
vrai. En effet, dans [159], les auteurs ont prouvé que lorsque l’on considère Π comme
“le sous-graphe induit est régulier”, le problème ISPΠ est W[1]-difficile lorsqu’il est
paramétré par la taille de la solution.

Comme nous l’avons mentionné précédemment, la conjecture 1-2-3 semble avoir des
liens très intéressants avec les graphes localement irréguliers. Il y a eu quelques étapes
vers la preuve de cette conjecture, qui impliquent la décomposition des arêtes d’un
graphe en un nombre constant de sous-graphes localement irréguliers, i.e., étant donné
G, trouver une coloration des arêtes de G en utilisant un nombre constant de couleurs,
de sorte que chaque couleur induise un sous-graphe localement irrégulier de G. C’est la
principale motivation derrière [21], et elle semble rester suffisamment intéressante pour
attirer plus d’attention [27, 143, 171].

Notons que la classe des graphes localement irréguliers peut être vue comme un
antonyme de celle des réguliers, i.e., graphes tels que tous leurs sommets ont le même
degré. Il est important de préciser ici qu’il existe plusieurs notions alternatives de ce type.
Ceci est principalement dû au fait très connu qu’il n’existe pas de graphes irréguliers
non triviaux, i.e., graphes qui ne contiennent pas deux sommets (pas nécessairement
adjacents) avec le même degré (voir [49]). Ainsi, la littérature regorge de définitions
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légèrement différentes de l’irrégularité (voir par exemple [6, 49, 50, 89, 170]). Une façon
de traiter la non-existence de graphes irréguliers, est de définir une notion d’irrégularité
locale. Intuitivement, au lieu d’exiger que tous les sommets d’un graphe aient des degrés
différents, nous considérons maintenant chaque sommet v séparément, et demandons
que les sommets “autour” de v vérifient certaines propriétés d’irrégularité. Par exemple,
les auteurs de [7] étudient des graphes G tels que pour chaque sommet v de G, deux
voisins de v n’ont pas le même degré. Pour un aperçu d’autres notions intéressantes
d’irrégularité (locale ou autre), nous renvoyons le lecteur à [8].

Nous commençons dans la Section 7.2 par fournir les notations, définitions et lemmes
de base qui seront utilisés tout au long de ce chapitre. Plus important encore, nous
définissons l’irregulateur minimal de G comme suit :

Définition. Soit G = (V, E) un graphe. Un ensemble S ⊆ V , de taille minimale, tel
que G[V \ S] est appelé irregulateur minimal de G et noté ir∗(G). De plus, par I(G)
nous désignons la taille |S| d’un irregulateur minimum S de G.

Dans la Section 7.3, nous traitons de la complexité du problème introduit. En partic-
ulier, nous montrons que le problème appartient à P si le graphe d’entrée est un chemin,
un cycle, un arbre, un graphe biparti complet ou complet. Nous prouvons ensuite que
trouver le plus grand sous-graphe localement irrégulier induit d’un graphe G donné est
NP-difficile, même dans certains cas très restreints.

Théorème. Soit G un graphe et k ∈ N. Décider si I(G) ≤ k est NP-complet, même
lorsque G est un graphe biparti planaire avec un degré maximum ∆ ≤ 3, ou un graphe
biparti cubique.

Comme le problème que nous introduisons semble être difficile à calculer même pour
des familles de graphes assez restreintes, nous procédons à l’étude de son approximabilité.
Malheureusement, nous prouvons dans la Section 7.4 que pour tout graphe biparti G
d’ordre n et k ≥ 1, il ne peut exister d’algorithme en temps polynomial qui trouve
une approximation de I(G) dans le rapport O(n1− 1

k ), à moins que P=NP. Néanmoins,
nous parvenons à donner un algorithme d’approximation (trivial) de rapport d pour les
graphes bipartis d-réguliers en retournant (toujours) une des bipartitions du graphe. En
particulier, nous montrons ce qui suit.

Théorème. Pour tout graphe biparti d-régulier G = (L, R, E) d’ordre n, on a que
I(G) ≥ n/2d.

Nous décidons alors de nous intéresser à sa complexité paramétrée. Dans la sec-
tion 7.5, nous présentons deux algorithmes qui calculent I(G), chacun considérant des
paramètres différents. Le premier considère la taille de la solution k et le degré maximal
∆ de G :

Théorème. Pour un graphe donné G = (V, E) avec |V | = n et un degré maximal ∆, et
pour k ∈ N, il existe un algorithme qui décide si I(G) ≤ k en temps (2∆)knO(1).

L’idée de cet algorithme est basée sur l’observation suivante :
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Lemma. Soit G = (V, E) un graphe tel que G n’est pas localement irrégulier, et S est
un ir∗(G). De plus, soit Gv = (V ′, E′) le graphe G[V \ {v}] pour un sommet v ∈ S.
Alors I(Gv) = I(G)− 1.

La seconde considère la largeur d’arbre tw et ∆ de G :

Théorème. Pour un graphe donné G = (V, E) et une belle décomposition arborescente
de G, il existe un algorithme qui retourne I(G) en temps ∆3twnO(1), où tw est la treewidth
de la décomposition donnée et ∆ est le degré maximum de G.

Malheureusement, ces algorithmes ne peuvent être considérés comme étant FPT que
si ∆ fait partie du paramètre. Dans la section 7.5.3, nous présentons deux réductions qui
prouvent que le problème est W[2]-difficile quand il est paramétré uniquement par la taille
de la solution et W[1]-difficile quand il est paramétré uniquement par la largeur de l’arbre.
La première est une réduction à partir de l’ensemble dominant qui est W[2]-complet
lorsqu’il est paramétré par la taille de sa solution, tandis que la seconde est une réduction
à partir du problème List Coloring qui est W[1]-difficile lorsqu’il est paramétré par la
treewidth du graphe donné. Ces réductions montrent également que nous ne pouvons
même pas avoir un algorithme qui calcule I(G) en temps f(k)no(k) ou O∗(f(tw)no(tw)),
à moins que l’ETH n’échoue.

Par conséquent, nos algorithmes sont essentiellement optimaux.

Crossword Puzzle
Les mots croisés sont des jeux à un joueur dont le but est de remplir une grille (tradition-
nellement bidimensionnelle) avec des mots. Depuis leur première apparition il y a plus
de 100 ans, les mots croisés sont rapidement devenus populaires. Aujourd’hui, on peut
les trouver dans de nombreux journaux et magazines du monde entier, comme le New
York Times aux États-Unis ou le Le Figaro en France. En plus de leur intérêt récréatif
évident, les mots croisés sont des outils appréciés en éducation [64] et en médecine. En
particulier, la participation à des jeux de mots croisés semble retarder l’apparition d’un
déclin accéléré de la mémoire [168]. Ils sont également utiles pour développer et tester
des techniques de calcul; voir par exemple [173]. En fait, la conception et la réalisation
d’un puzzle constituent toutes deux un défi. Dans ce chapitre, nous nous intéressons à
la tâche de résolution d’un type spécifique de mots croisés.

Il existe différents types de mots croisés. Dans les plus célèbres, certains indices sont
donnés en même temps que l’endroit où les réponses doivent se trouver. Une solution
contient des mots qui doivent être cohérents avec les indices donnés, et les paires de mots
qui se croisent sont contraintes de s’accorder sur la lettre qu’elles partagent. Les mots
croisés de type ”Fill-in” ne sont pas accompagnés d’indices. Étant donné une liste de
mots et une grille dans laquelle certains emplacements sont identifiés, l’objectif est de
remplir tous les emplacements avec les mots donnés. La liste de mots est généralement
succincte et fournie de manière explicite.

Dans une variante de mots croisés ”Fill-in” actuellement proposée dans un magazine
télévisé français [148], il faut trouver jusqu’à 14 mots et les placer dans une grille (la
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grille est la même pour chaque instance, voir la Figure 1 pour une illustration). Les mots
ne sont pas explicitement listés mais ils doivent être valide (par exemple, appartenir à
la langue française). Dans une instance du jeu, certaines lettres spécifiées ont un poids
positif; les autres lettres ont un poids nul. L’objectif est de trouver une solution dont le
poids - défini comme la somme totale des lettres écrites dans la grille - est au moins égal
à un seuil donné.

Figure 1: Placez les mots valides dans cette grille. Dans une instance possible, les lettres
S, U, I, V, R, E et T ont respectivement un poids de 7, 5, 4, 2, 6, 1 et 3. Toute autre
lettre a un poids nul. Essayez d’obtenir au moins 330 points.

Dans ce chapitre, nous nous proposons de faire une étude théorique de cette grille
de mots croisés ”Fill-in” (la grille n’est pas limitée à celle de la Figure 1). Nous nous
intéressons principalement à deux problèmes : La grille peut-elle être entièrement com-
plétée ? Comment le poids d’une solution peut-il être maximisé ? Dans la suite, ces
problèmes sont appelés respectivement Crossword Puzzle Decision et Crossword
Puzzle Optimization (en abrégé : CP-Dec et CP-Opt).

CP-Dec n’est pas nouveau; voir GP14 dans [94]. La preuve de NP-complétude est
attribuée à une communication personnelle avec Lewis et Papadimitriou. Par la suite,
une preuve alternative de NP-complétude est apparue dans [77] (voir également [139]).
D’autres articles sur les mots croisés existent et il s’agit pour la plupart de techniques
validées empiriquement provenant de l’intelligence artificielle et de l’apprentissage au-
tomatique; voir par exemple [96, 150, 145, 9, 173, 172] et les références qui s’y trouvent.

Tout d’abord, nous devons donner quelques détails sur l’entrée du problème. On nous
donne un dictionnaire D = {d1, . . . dm} dont les mots sont construits sur un alphabet
L = {l1, . . . lℓ}, et une grille bidimensionnelle composée d’emplacements horizontaux et
verticaux. Un emplacement est composé de cellules consécutives. Les emplacements
horizontaux ne se croisent pas; il en va de même pour les emplacements verticaux.
Cependant, les emplacements horizontaux peuvent croiser les emplacements verticaux.

Dans une solution réalisable, chaque emplacement S reçoit soit un mot de D de
longueur |S|, soit rien (on dit parfois qu’une case ne recevant rien reçoit un mot vide).
Chaque case reçoit au maximum une lettre, et les mots attribués à deux emplacements
qui se croisent doivent s’accorder sur la lettre placée dans la case partagée. Tous les em-
placements horizontaux remplis reçoivent des mots écrits de gauche à droite (en travers),
tandis que tous les emplacements verticaux reçoivent des mots écrits de haut en bas.

Il existe une fonction de poids w : L → N. Le poids d’une solution est la somme
totale des poids des lettres placées dans la grille. Observez que le poids d’une solution
est plus petit que la somme totale des poids de ses mots car, dans le premier cas, les
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lettres des cellules partagées ne sont comptées qu’une seule fois.
Les deux principaux problèmes étudiés dans cet article sont les suivants. Étant donné

une grille, un dictionnaire D sur un alphabet L, et une fonction de poids w : L → N,
l’objectif de Crossword Puzzle Optimization (en bref, CP-Opt) est de trouver une
solution réalisable de poids maximal. Étant donné une grille et un dictionnaire D sur un
alphabet L, la question posée par Crossword Puzzle Decision (CP-Dec en bref)
est de savoir si la grille peut être complètement remplie ou non ?

Deux cas seront considérés : si chaque mot est utilisé au plus une fois, ou si les mots
peuvent être utilisés plusieurs fois. Nous supposerons parfois que certaines cellules sont
pré-remplies avec certains éléments de L. Dans ce cas, une solution est réalisable si
elle est cohérente avec les cellules pré-remplies. Nous proposons ci-dessous un premier
résultat lorsque toutes les cellules partagées sont pré-remplies.

Proposition. CP-Dec et CP-Opt peuvent être résolus en temps polynomial si toutes
les cellules partagées de la grille sont pré-remplies, que la réutilisation des mots soit
autorisée ou non.

Ce résultat est utilisé à plusieurs reprises dans le reste du chapitre.
On peut associer à chaque grille un graphe biparti, appelé ci-après le graphe de la

grille: chaque emplacement est un sommet et deux sommets partagent une arête si les
emplacements correspondants se chevauchent. La grille (et donc, le graphe de grille)
n’est pas nécessairement connectée.

Remarquons enfin que, en utilisant une représentation appropriée, on peut supposer
que la taille de l’entrée est de n + m, où n est le nombre d’emplacements dans la grille
et m est le nombre de mots dans le dictionnaire.

Notre objectif dans ce chapitre est d’identifier les paramètres structurels pertinents
qui rendent le remplissage des mots croisés difficiles d’un point de vue computationnel.
Nous commençons par examiner la structure de la grille donnée. Il est naturel de penser
que, si la structure de la grille est arborescente, alors le problème devrait devenir plus
facile, puisque la grande majorité des problèmes sont solubles sur des graphes de petite
largeur d’arbre. Nous ne confirmons que partiellement cette intuition : en prenant
en compte la structure du graphe de la grille, nous montrons dans la Section 8.3 que
CP-Opt, lorsque nous autorisons la réutilisation des mots, peut être résolu en temps
polynomial sur des instances de largeur d’arbre constante. En particulier :

Théorème. Si nous autorisons la réutilisation des mots, alors CP-Opt peut être résolu
en temps (m + 1)tw(n + m)O(1) sur des instances où tw est la treewidth du graphe de la
grille.

Cependant, notre algorithme n’est pas soluble à paramètre fixe et, comme nous le
montrons, cela ne peut être évité, même si l’on considère le cas beaucoup plus restreint
où le problème est paramétré par le nombre d’emplacements horizontaux, qui limite
trivialement la largeur d’arbre du graphe de grille. De manière plus dévastatrice, nous
montrons que si nous imposons également la règle naturelle selon laquelle les mots ne
peuvent pas être réutilisés, le problème devient déjà NP-difficile lorsque le graphe de
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grille est une collection d’arêtes disjointes pour les alphabets de taille 3, ou une union
d’étoiles pour un alphabet binaire. Par conséquent, une structure arborescente ne semble
pas être d’une grande aide pour rendre les mots croisés solubles.

Nous considérons ensuite CP-Opt paramétré par le nombre total d’emplacements
n. On peut dire qu’il s’agit d’une paramétrisation très naturelle du problème, car dans
les mots croisés de la vie réelle, on peut s’attendre à ce que la taille de la grille soit
significativement plus petite que la taille du dictionnaire. Nous montrons que dans ce
cas, le problème devient soluble à paramètre fixe :

Théorème. Il existe un algorithme qui résout CP-Dec et CP-Opt en temps O∗((ℓ +
1)n2/4), où n est le nombre total de slots et ℓ la taille de l’alphabet, que la réutilisation
des mots soit autorisée ou non.

Cependant, le temps d’exécution de notre algorithme est exponentiel en n2. Notre
résultat principal est de montrer que cette dépendance décevante est probablement la
meilleure possible : même pour un alphabet binaire, un algorithme résolvant CP-Dec
en temps 2o(n2) contredirait l’ETH randomisée. Notez que tous nos résultats positifs
jusqu’à ce point fonctionnent pour le cas plus général CP-Opt, tandis que nos résultats
de difficulté s’appliquent à CP-Dec.

Ensuite, dans la section 8.5 nous considérons l’approximabilité de CP-Opt. Ici, il est
facile d’obtenir une approximation de rapport 1

2 en ne considérant que les emplacements
horizontaux ou verticaux. Nous sommes seulement capables d’améliorer légèrement cette
approximation en montrant que :

Théorème. CP-Opt est (1
2 + 1

2(εn+1))-approximable en temps polynomial, pour tout
ε ∈ (0, 1].

Notre principal résultat dans cette direction est de montrer que c’est essentiellement
le meilleur possible : obtenir un algorithme avec le rapport 1

2 +ϵ contredirait la conjecture
des jeux uniques (UGC).

Avant de conclure, nous explorons dans la Section 8.6 les cas où CP-Dec peut être
résolu en temps polynomial. Nous proposons des réductions de CP-Dec à certains
problèmes bien connus qui appartiennent à P.
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Chapter 1

Introduction

Combinatorial problems are discrete problems defined over a finite collection of objects
and the goal is to return a set, or an ordering, or an assignment of these objects that
satisfies certain conditions. They arise from every day problems, puzzles, domains like
logic and graph theory, and even from industry. Furthermore, the study of these prob-
lems is an important task as they are abstraction of many problems that we encounter
in the real world, often since a long time (routing, scheduling, monitoring a territory
with a limited number of resources, etc).

Several combinatorial problems are defined in graphs. Graphs are mathematical
structures that consist of two sets; one set contains objects called vertices and the second
contains pairs of vertices, called edges. One of the most classic applications of graphs
is the representation of maps; the vertices represent areas while an edge exists between
two vertices if the corresponding areas are connected directly. Some of the most classic
combinatorial problems on graphs are the Traveling Salesman Problem, where we
want to decide whether for a given graph there is a cycle that contains each vertex
exactly once, the k coloring problem, which asks us to decide whether we can color the
vertices of a graph with k colors and each two vertices that share an edge have different
colors, and the shortest path problem, where we have to find a path with the smallest
length that connects two given vertices of a graph.

Note that the latter problem requests to find the shortest path, a question that
cannot be answered with a simple yes or no like the first two problems. Based on this
difference, combinatorial problems are divided into two categories: decision problems
and optimization problems. In decision problems we ask if there is a solution (and
sometimes return one), while in optimization problems the solutions have weights and
we want to find a solution with the minimum or maximum weight among all feasible
solutions.

When a computer scientist considers a combinatorial problem his goal is to find an
efficient way (algorithm) to solve the given problem. However, this sentence is far from
been precise as both the “find an efficient way” and “solve the given problem” may have
many different interpretations. First, it is important to understand the meaning behind
this sentence. We say that we have a way of solving a problem if we have a set of steps,
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called an algorithm, such that, given any instance of the problem (the input), following
these steps we can compute the desired output, called the solution. Efficient algorithms
minimize the resources we use. These resources can be energy, memory, time, etc., and
can be viewed as different dimensions of an algorithm. It is often possible to reduce all
these dimensions to time. For example, it is not hard to imagine that an algorithm that
runs for “a long time” also consumes “a lot of energy”. In other words, time is one of
the most important resources to minimize. Time efficient algorithms have been studied
extensively through the years. When we study how fast we can solve a problem, from a
theoretical point of view, we say that we are studying its time complexity. Since the size
of the instances of a problem can vary greatly, it is inevitable that the time complexity
of a problem will be related to the size of its instance. Consequently, the theoretical
running time of an algorithm (i.e., the number of required steps) that solves a problem
is a function of the size of the problem instance. Additionally, we always need to specify
if we give the worst, average or best case running time. In this thesis we are interested
for the worst case analysis of an algorithm. When considering graph problems, we take
the number of vertices plus the number of edges of the input graph as the input size.
Moreover, in the case of simple graphs (i.e., graphs without loops or multiple edges)
we can reduce ourselves to the number of vertices since the number of edges is at most
quadratic to them. For example, imagine that we are given a graph and our goal is to
check whether starting from a particular vertex we can reach all other vertices. This can
be checked using a well-known algorithm called Breadth-first search (BFS). The running
time of this algorithm in the worst case is linear in the number of vertices and edges (or
quadratic in the number vertices for simplicity).

In the early developments of combinatorial optimization, researchers stated that
polynomial time resolution is acceptable (i.e., efficient) in theory. This is however ques-
tionable for the practical resolution of a problem. Unfortunately, a lot of interesting
combinatorial problems are conjectured to be unsolvable in polynomial time, but there
is no evidence that no such algorithm exists. Many of these problems belong to the set
of NP-complete problems. Moreover, there is a framework that helps us to show that
a problem is at least as hard as these problems (NP-hard problems) or that it belongs
to the set of NP-complete problems. This framework gives us the certainty that if we
find a polynomial-time algorithm for an NP-complete problem, then all NP-complete
problems admit polynomial-time algorithms. In other words, finding a polynomial-time
algorithm for an NP-hard problem would be a major breakthrough since we would be
able to solve (efficiently in theory) a bunch of interesting problems.

Since no one has managed to give polynomial-time algorithms for NP-complete prob-
lems, most computer scientists believe that such algorithms can not be constructed.
Consequently, many different approaches have been developed to deal with these prob-
lems. To understand these approaches we need to return to our original goal and ask
ourselves what kind of trade-offs we can make.

Our initial goal was to find an efficient algorithm that solves any instance of a given
problem. The first compromise is related to the efficiency of the algorithm. Since we
believe that there is no polynomial-time algorithm that can solve NP-complete prob-
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lems, we can look for algorithms of worse time complexity. This direction includes the
development of exponential and pseudo-polynomial time algorithms.

The second compromise relates to the instances of the problem. As we believe that
we cannot solve all instances, we can try to deal with instances that have certain prop-
erties. As an example, imagine a graph problem. Instead of trying to solve the given
problem on any graph, we can try to develop polynomial-time algorithms that solve the
problem on specific classes of graphs such as trees or cycles. In other cases, we can
consider parameters of the problem and cases where these parameters are bounded by
some constant. This idea leads to parameterized complexity (and parameterized algo-
rithms) where the main goal is to find algorithms where all the computational difficulty
is encapsulated in the parameter and not in the size of the instance. In particular, such
algorithms are called fixed-parameter tractable (fpt-)algorithms and their running time
is in the form of f(k)poly(n), where f(k) is a function over the size k of the parameter
and poly(n) is a polynomial of the size n of the instance.

Finally, we can allow the return of solutions that are not optimal. Note that this
approach can only be considered when studying optimization problems. As we have
already said, the goal in optimization problems is to find a feasible solution with mini-
mum or maximum weight, which we call the optimal solution. However, in some cases we
may be satisfied with solutions that are ”close enough” to optimal. Algorithms that are
proven to return such solutions are called approximation algorithms. There are classes
of problems that are defined based on the approximation algorithms they admit. Two
of the most common approximation classes are the APX and the FPTAS. When, in
polynomial time over n, we can guarantee for a constant c a solution that is at most
c times bigger than an optimal solution then we have a constant-factor approximation
algorithm. If a problem admits a constant-factor approximation algorithm then it be-
longs to APX. On the other hand, when the error margin ε is given in the input and
we can return, in polynomial time over n and 1

ε , a solution 1 + ε close to the optimal
then we have a Fully Polynomial Approximation Scheme (FPTAS). Problems that admit
FPTASs belong to the class FPTAS.

As we mentioned before, there is a huge number of different combinatorial problems,
and these problems often differ in nature. This variety deepens even further when we
consider all the aforementioned approaches that can be used to deal with these problems.
That is why the scientific community has to offer a constantly renewed/enriched toolbox
for tackling combinatorial problems and this reason has provided enough motivation to
study as many combinatorial problems and different approaches as possible. This thesis
contributes to this agenda.

Our contribution: This manuscript consists of 8 additional chapters. In Chapter 2 we
provide all the necessary terminology and definitions we use. In chapters 3 to 7 we study
variants of classical combinatorial problems and each chapter is devoted to one problem.
For these problems we first consider their time complexity in general and restricted
cases. Then, for the hard cases of the problems, we try to develop parameterized and
approximate algorithms or prove that no such algorithms exist. Finally, there is a
conclusion chapter where we suggest other directions, techniques and problems that can
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be studied in future work.
More precisely, in Chapter 3 we investigate problems that are similar to the well

known Subset-Sum problem. In particular, we study the Subset-Sums Ratio problem
(SSR) and some variants of it. In SSR we have as input a set A of positive integers and we
want to find two disjoint subsets that have ratio as close to one as possible. We present
a new FPTAS for SSR that identifies cases that can be easily approached, while using
Subset Sum computations to deal with the hard cases. The second half of this chapter is
focused on variations of SSR. In particular, we define two families of SSR problems that
are able to capture additional restrictions and we present conditions which, if they are
met by a problem in these families, guarantee the existence of an FPTAS for the problem.
Then we are considering two specific variants of SSR, the 2-Set SSR problem and the
Factor-r SSR that belong to these families. For 2-Set SSR we use our framework to
present an FPTAS based on this algorithm and we show that this FPTAS can be also
used to approximate Factor-r Subset-Sums Ratio.

In the rest of this manuscript we mostly study combinatorial problems on graphs.
Particularly, we consider five problems; the Upper r-Tolerant Edge Cover, the
MAX-MIN Feedback Vertex Set, the k-Digraph Coloring, the Maximum Lo-
cally Irregular Induced Subgraph and the problem of filling Crossword Puzzles.

In Chapter 4 we study the Upper r-Tolerant Edge Cover. This problem asks
for a subset of edges of the graph, of maximum size, that covers all the vertices at least
r times and it is minimal (i.e., no proper subset of it has the same property). We first
give some properties of the feasible solutions of the problem and their values. Most
interestingly, we show that any feasible solution is a 1

2 -approximation. Then we present
several NP-hardness results for restricted graph classes. In particular, the problem is
intractable for r + 1-regular bipartite graphs while, for r = 2, it is intractable even for
split graphs and cubic planar graphs. Furthermore, we show that the Upper (r + 1)-
Tolerant Edge Cover is NP-hard in graphs of maximum degree ∆ + 1 if the Upper
r-Tolerant Edge Cover is NP-hard in graphs of maximum degree ∆. Then we
consider the approximability of the problem. As we showed that we can easily have a
1
2 -approximation then we consecrate to find inapproximability ratio. We present two
hardness of approximation reductions that give us several inapproximability ratios for
Upper Edge Cover and Upper 2-Tolerant Edge Cover in graphs with bounded
maximum degree.

Then, in Chapter 5, we study the approximability of the MAX-MIN Feedback
Vertex Set problem. A subset of the vertices of a graph is a feedback vertex set
if the graph we get after deleting this set is acyclic. In this problem we are search-
ing for the largest feedback vertex set that is minimal. We present a polynomial time
n2/3-approximation algorithm and a hardness of approximation reduction which shows
that this ratio is best possible we can achieve in polynomial time under standard as-
sumptions. Then we present a time-approximation trade off algorithm that returns a
r-approximation solution in time nO(n/r3/2) and we complement this with a matching
lower bound (under standard assumptions). Along the way we show that the prob-
lem admits a cubic kernel when parameterized by the solution size, we prove that the
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problem remains NP-hard for graphs of maximum degree ∆ = 6 and we give a O(∆)-
approximation.

In Chapter 6 we consider a well known variant of the chromatic number in directed
graphs, called dichromatic number. The dichromatic number is strongly connected with
acyclic directed graphs as it is the minimum number of colors needed in order to color
all the vertices of the graph and each color induces a directed acyclic graph. This leads
to the natural question of calculating the dichromatic number in graphs that are almost
acyclic. Therefore we decide to study the parameterized complexity of the problem
for parameters like directed feedback vertex set and the feedback arc set. Interestingly
enough, we show that for directed feedback vertex set we have a dichotomy as any
directed graph with feedback vertex set k can be colored with k + 1 colors but it is
NP-hard to decide if it can be colored with k colors. Then, we show that for digraphs
with feedback arc set of size k2 it is NP-hard to decide if they can be colored with k
colors. This leads to another dichotomy since the problem belongs to FPT for graphs
with feedback arc set of size k2 − 1.

The problem we consider in Chapter 7 belongs to a family of problems where the goal
is to identify the largest induced subgraph of a given graph that verifies a certain property
Π. In particular, we study the case when the property Π is “the induced subgraph is
locally irregular”. A graph is called locally irregular when any two adjacent vertices have
different degrees. We show that this problems is NP-hard even in very restricted cases
like subcubic planar bipartite graphs, or cubic bipartite graphs. Furthermore, we show
that the problem is NP-hard to approximate within a ratio O(n1−1/k), for any constant
k ≥ 1, even for bipartite graphs. Then, we consider the parameterized complexity of
the problem. We present two parameterized algorithms with running time (2∆)knO(1),
where k is the number of deleted vertices, and (∆)3twnO(1), where tw is the treewidth of
the given graph. Finally we provide evidence that our algorithms are essentially optimal
under standard assumptions.

In Chapter 8 we study the problem of filling crossword puzzles. An instance of the
problem consists of a grid, an alphabet and a dictionary over this alphabet. The goal
of the problem is to fill the grid with words from the dictionary while the reuse of a
word may or may not allowed. In particular, we create a graph that represents the grid
of the crossword puzzle and we consider the complexity of filling the grid based on the
properties of the graph and the size of the given alphabet. If we do not allow word reuse,
the problem is NP-hard even in very restricted cases such as, the grid graph is a union
of stars and the alphabet has only two letters, and, the grid graph is a matching and the
alphabet has only three letters. If we allow word reuse, the problem becomes slightly
more tractable as we obtain an (m+1)tw algorithm in this case, where tw is the treewidth
of the grid graph. Then, we take as parameter the number of slots of the grid n and we
present an (k + 1)n2 algorithm where k is the size of the alphabet. We finally consider
the optimization version of the problem. Here, we provide a simple 1

2 -approximation
algorithm and evidence that it is unlikely to obtain a better approximation ratio in
polynomial time under standard assumptions.
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Chapter 2

Basic Notation and Terminology

2.1 Computational Complexity

One of the most important topics in Computer Science is the design of computer al-
gorithms. Algorithms are finite procedures that are well-defined and aim to return the
desired solution to a particular problem. One of the things we are interested in this
manuscript is the study of the “computational complexity” of a problem and in partic-
ular its “time complexity”. The time complexity (or simply complexity) of an algorithm
is defined as its running time, while the time complexity of a problem is defined as the
running time of the fastest algorithm for that problem.

To give a proper definition for the running time of an algorithm, we must first explain
what we call the instance of a problem and the size of the instance.

An instance of a problem consists of all the data required to solve the problem, while
the size of the instance (or the size of the input) refers to the size of that data. Since the
actual execution time of an algorithm is related to several parameters, such as processing
power, memory size, and input size, it does not make sense, from a theoretical point of
view, to compare algorithms based on this criteria. Therefore, the most logical way is to
relate the running time to the number of steps using a function of the input size. Saying
that an algorithm has complexity f(n) means that for an input of size n the algorithm
terminates after f(n) steps. Note that, because these functions are related to running
time, it makes sense to consider only non-negative and non-decreasing functions.

Even so, this notation does not specify everything. There are algorithms that do not
always stop after exactly the same number of steps or we can not calculate the exact
number of steps that are required. For that reason we are going to use the following
asymptotic notations.

• O(f(n)): We say that a function g(n) ∈ O(f(n)) if there exist two positive con-
stants c and n0 such that,

g(n) ≤ cf(n) for all n ≥ n0
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• Ω(f(n)): We say that a function g(n) ∈ Ω(f(n)) if there exist two positive con-
stants c and n0 such that,

g(n) ≥ cf(n) for all n ≥ n0

• o(f(n)): We say that a function g(n) ∈ o(f(n)) if

lim
n→+∞

g(n)
f(n)

= 0

In this document, whenever we have a multi variable function inside an asymptotic
notation all variables except one are considered as constants. As a particular example
take the statement g(n, m) ∈ O(f(n, m)). This may mean that for any given m ≥ 0,
g(n, m) ∈ O(f(n, m)), or that for any given n ≥ 0, g(n, m) ∈ O(f(n, m)). Which of n,
m is considered fixed and which variable will be clear from the context.

Class NP and Polynomial Reductions

As mentioned, there are several problems for which we have not been able to find poly-
nomial time algorithms or show that it is impossible to find such algorithms. In this
thesis we consider problems belonging to the NP class. Informally, NP is the class con-
taining all decision problems for which we can check, in polynomial time, whether a
given answer is the correct answer. A subclass of NP is the class P which contains all
decision problems that can be solved in polynomial time. It is easy to see that P ⊆ NP,
however the question whether P = NP or not is still open.

Many interesting problems belong to the category of NP-complete problems. To
define NP-complete problems we first need to define ”polynomial reductions”.

Definition 2.1 (Polynomial-time reduction). A polynomial-time reduction from a prob-
lem A to a problem B is a polynomial-time algorithm that transforms any instance IA

of A to an instance IB of B such that IB is a positive instance of B if and only if IA is
a positive instance of A.

We say that a problem A is NP-complete if it belongs to NP and any other problem B
in NP is polynomial-time reducible to A. In case we can only verify the second condition
then we say that the problem is NP-hard.

The first problem proved to be NP-complete is the well-known Satisfiability prob-
lem (known as SAT) [61].

Definition 2.2 (SAT). Let ϕ be a logical formula, in conjunctive normal form (CNF
formula), over a set of variables {x1, . . . , xn}. The goal is to decide if there exists a truth
assignment over the variables that satisfies the formula.

One of the most important variants of SAT, which is also NP-complete, is 3-SAT.
The difference between SAT and 3-SAT is that in the latter the each clause contains
three literals.
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Note that if we have an NP-complete problem A, then we can show that a problem
B is NP-hard by presenting a polynomial-time reduction from A to B. Informally, this
means that problem B is at least as hard as A since any polynomial-time algorithm for
B can be used to solve A. Moreover, the existence of any polynomial-time algorithm
that solves an NP-complete problem can lead to solving all NP-complete problems in
polynomial time, and to the conclusion that P=NP. Conversely, if we prove that a
particular NP-complete problem does not admit a polynomial-time algorithm, then we
are led to the conclusion that P 6=NP and that no NP-complete (or NP-hard) problem
admits a polynomial-time algorithm.

In this thesis we focus on combinatorial optimization problems. Compared to decision
problems, the standard definition for optimization problems is a bit more complicated.
Definition 2.3 (Optimization problems). An optimization problem is a quadruple (I, f,
w, g) such that:

• I is the set of the instances of the problem.

• For a given instance x ∈ I, f(x) is the set of all feasible solutions of x.

• For a given x ∈ I and y ∈ f(x), w(x, y) is the weight of the solution y for the
instance x.

• g is either the min or the max function.
The objective of an optimization problem is, for a given case x ∈ I, to find a feasible
solution ybest ∈ f(x) such that w(x, ybest) = g{w(x, y) | y ∈ f(x)}.

The class of optimization problems we are mainly interested in is NPO. This class is
the analogue of NP for optimization problems and is defined as follows:
Definition 2.4. An optimization problem A = (I, f, w, g) belongs to NPO if:

• there exists a polynomial q such that for any x ∈ I and y ∈ f(x) we have |y| ≤ q(|x|).

• we can decide in polynomial time if x ∈ I or y ∈ f(x) for a given x.

• w(x, y) is polynomial time computable.
Starting from any optimization problem we can define a decision version of this

problem based on the function g. If g = min then the decision version asks if there is
a feasible solution with weight less than or equal to a given value k, while if g = max
we want to check for a feasible solution with weight greater than or equal to a k. When
the decision version of an optimization problem is NP-complete then the correspond-
ing optimization problem is at least as hard as NP-complete problems. Therefore, we
should not expect the optimization version of an NP-complete problem to be solvable
in polynomial time (unless P=NP), as otherwise we can answer the decision problem by
solving the optimization. We say that these optimization problems are NP-hard.

Since for NP-hard optimization problems we do not expect to find polynomial-time
algorithms, we need to find different ways of dealing with them. There are three classical
approaches:
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1. we can develop algorithms that do not run in polynomial time,

2. we can try to find, in polynomial time, solutions that are “close enough” to the
optimal one and

3. we can try to solve, in polynomial time, instances with additional restrictions.

In this manuscript we mainly try to find good approximation algorithms (i.e., algorithms
that run in polynomial time and return a solution as close to optimal as possible) or try
to develop algorithms that solve exactly instances with specific constraints. In the second
case we also consider parameterized algorithms, which can be seen as a combination of
the first and third approaches. More details about these approaches are presented in the
sections 2.2, 2.3 and 2.4.

2.2 Approximation
In the previous section we explained that when dealing with an NP-hard optimization
problem it is unlikely to find a polynomial-time algorithm that returns an optimal solu-
tion. However, in many cases we can be satisfied if we have a polynomial-time algorithm
that returns feasible solutions that are close to optimal. When the weight function w
gives all feasible solutions a positive weight, then we can quantify the distance between
a feasible and an optimal solution using the ratio of the weight of the feasible solution to
the weight of the optimal solution. If for a given algorithm we can prove that this ratio
is bounded for any given instance, then we say that this algorithm is an approximation
algorithm. In particular, for minimization problems this ratio r is always greater than
or equal to 1; furthermore, if for a given algorithm we have 1 ≤ r ≤ a for all cases then
this algorithm is an a-approximation algorithm . Similarly, for maximization problems
this ratio r is always less than or equal to 1. Moreover, if for a given approximation
algorithm we have 1 ≥ r ≥ a for all instances then this algorithm is an a-approximation
algorithm.

Since not all algorithms have the same ratio and running time, we decide to categorize
them as using these aspects. The most important categories are the following:

• Constant factor approximation algorithm: Any algorithm with constant ratio that
runs in polynomial time.

• Polynomial-time approximation scheme (PTAS): This is an approximation algo-
rithm, for a maximization problem (respectively for a minimization problem), has
as additional information in the input a real number ε > 0, has ratio 1− ε (resp.
1 + ε) and its running time is a polynomial n (where n is the size of the input).

• Fully polynomial-time approximation scheme (FPTAS): These algorithms are PTAS
algorithms that the running time is a polynomial in n and in 1/ε.

In the following sections we will see that, under certain assumptions (such as P 6=
NP), there are problems that do not admit algorithms with a good approximation ratio.
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Therefore, optimization problems can be categorized based on the best approximation
ratio they can admit. Below we present some of these classes:

• FPTAS: Class of problems that admit FPTAS’s.

• PTAS: Class of problems that admit PTAS’s.

• APX: Class of problems that admit constant factor approximation algorithms.

• f(n)-APX: Class of problems that admit O(f(n))-approximation algorithms that
run in polynomial time.

As we have already mentioned, there are problems that cannot be approximated
under a particular ratio in polynomial time. One way of computing the bounds on the
approximation ratio for a given problem is by using gap reductions. The idea behind
gap-generating reductions is as follows:

Let A be a minimization problem and B a decision problem. Moreover, for an
instance y ∈ IA, we denote as opt(y) the weight of an optimal solution of y. Now,
suppose that, for two numbers k and c, we can give a mapping from the set of instances
IB of B to the set of instances IA of A such that:

• all the yes-instances x ∈ IB are mapped to a y ∈ IA where opt(y) ≤ k and

• all the no-instances x ∈ IB are mapped to a y ∈ IA where opt(y) > ck.

Then, if B is an NP-hard problem, we cannot decide in polynomial time if, for an instance
y of A, we have opt(y) ≤ k or opt(y) > ck. Therefore, the problem A does not admit
any c-approximation algorithm that runs in polynomial time.

Note that, the previous conclusion follows from the fact that, any polynomial-time c-
approximation algorithm for A could be used to separate the instances of A with optimal
solution with weight less than k from those with optimal solution with weight greater
than ck. Therefore, we could answer whether an instance of B is yes or no in polynomial
time.

In some cases, we use additional assumptions in order to find bounds on the ap-
proximation ratio that can be achieved in polynomial time. One such hypothesis is the
Unique Games Conjecture. For more information on the Unique Games Conjec-
ture and the Unique Label Cover problem see Section 2.4.

2.3 Restricted Instances and Parameterization
When a problem is NP -hard, we can try to consider additional constraints in order to
find ways to deal with it. In the next section we present several constraints for graph
problems. Some constraints may be related to the size of a parameter of a particular
problem. As a parameter we can consider any function of the instance of the problem. In
many cases the parameter is related to the structural properties of the problem instance;
for example, when dealing with graph problems, the maximum degree of the given graph
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graph can be considered as a parameter. An interesting question that arises when
considering parameters is the following: ”If the size of this parameter is small, can
we solve the problem faster?”. When we consider such questions we say that we are
considering parameterized problems (i.e., problems that have a particular parameter k
as part of the input) and we are investigating the parameterized complexity of a problem
under that parameter.

Given a parameterized problem with a parameter k, we want to decide whether
there is a way to compute an optimal solution in time f(|k|)poly(n) where f(|k|) is a
computable function and poly(n) is a polynomial of the size of the input n. An algorithm
with these properties is called fpt-algorithm. Using this idea we define the class FPT
as follows:

Definition 2.5 (Class FPT). The class of parameterized problems that admit fpt-
algorithms.

Unfortunately, not all of the parameterized problems belong to FPT. Below, we
present the W-hierarchy as proposed by Downey and Fellows:

P ⊆ FPT = W[0] ⊆W[1] · · · ⊆W[t] · · · ⊆ XP

They conjectured that the containments are proper; this conjecture remains open. For
a formal definition of the above parameterized classes and the W-hierarchy you can
see [75].

Similarly to classical complexity, the tool we use to decide the parameterized com-
plexity of a problem is a reduction. Because the complexity of a parameterized problem
depend on the size of the parameter, we need a reduction that takes the parameter into
account.

Definition 2.6 (fpt-reduction). Let (A, k) and (B, k′) be two parameterized problems.
We say that we have an fpt reduction form (A, k) to (B, k′) if there exists an algorithm
that transforms any instance (x, k) of (A, k) to an instance (y, k′) of (B, k′) and

• (x, k) is a yes instance if and only if (y, k′) is a yes instance,

• there exists a computable function g such that |k′| ≤ g(|k|) and

• the algorithm runs in time f(|k|)poly(n), for a computable function f .

Similarly to polynomial reductions and NP-complete problems, here, a parameter-
ized problem (A, k) is W[i]-complete if it belongs to W[i] and any other parameterized
problem in W[i] is fpt-reducible to (A, k). One of the most fundamental problems on
parameterized complexity is the Circuit Satisfiability.

Definition 2.7. A Boolean circuit is a directed acyclic graph whose vertices belong to
one of the following categories:

• input vertices: vertices of indegree 0
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• negation vertices: vertices of indegree 1

• add vertices: vertices of in degree at least 2

• or vertices: vertices of in degree at least 2

Finally, there is a unique vertex of out degree 0 (that belongs to one of the previous
categories) that is called output vertex.

Given a circuit C, we say that a vertex is small if its indegree is upper bounded
by a constant; otherwise it is large. We define the depth of a circuit as the maximum
number of vertices in a path from an input vertex to the output vertex. The weft of a
circuit is the maximum number of large vertices in any path from an input vertex to the
output vertex. Finally, a truth assignment over the input vertices has weight k is we
have assigned “true” to exactly k of the input vertices.

The parameterized version of the Circuit Satisfiability problem we are interested
in is the following:

Definition 2.8 (Weft-t Circuit Satisfiability (WtCS)). Let C be a Boolean circuit
of weft at most t and bounded depth, and k a positive integer. Is there a satisfying
assignment over the input vertices of weight k?

The reason why the Circuit Satisfiability problem is fundamental to parameter-
ized complexity is because the problem (WtCS,k′), where k′ is the size of the assignment,
is complete for the class W[t]. Therefore, using fpt reductions and Boolean circuits, we
can show that a parameterized problem (A, k) belongs to class W[t] by presenting an
fpt reduction form (A, k) to (WtCS,k′) where k′ is the size of the assignment.

Parameterized algorithms (even FPT algorithms) can have really bad running times
relative to the parameter. For this reason we always try to find algorithms that have
minimal dependence on the parameter size. To verify that an algorithm cannot be
improved we try to find computational lower bounds. Some of these bounds are based
on the assumption P 6=NP, however, in many cases we use other stronger assumptions.
The main tool we will rely on is the exponential time hypothesis (ETH) of Impagliazzo,
Paturi, and Zane [120], which states the following:

Conjecture 1. Exponential Time Hypothesis: there exists an ϵ > 0, such that 3-SAT
on instances with n variables and m clauses cannot be solved in time 2ϵ(n+m).

Note that it is common to use the slightly weaker formulation of ETH stating that
3-SAT cannot be solved in 2o(n+m). We will also rely on the randomized version of ETH,
which has the same statement as Conjecture 1 but for randomized algorithms with an
expected running time of 2ϵ(n+m).

2.4 Graphs
Several of the problems we consider in this thesis are graph problems. A graph G consists
of two sets, a set V (G) of vertices and a set E(G) of edges. The set E(G) shows, in
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some sense, whether two vertices are related or not. If two vertices u and v in V (G) are
related then an edge e = uv ∈ E(G) otherwise uv /∈ E(G). Whenever the graph G is
clear from the context, we will omit it from the notation and just write V and E. Below
we give some standard notation for graphs.

We have two main classes of graphs: directed and undirected. Usually, instead
of the term directed graphs, we use the term digraphs. The difference between the two
classes is that in directed graphs, for two vertices u and v, edges uv and vu are considered
different edges, while in undirected graphs they are not. Furthermore, in directed graphs
the edges are directed and are called arcs. An arc uv is called an outgoing arc of u and
an incoming arc of v.

In this thesis we consider graphs with no self-loops (i.e. there is no vertex u ∈ V (G)
such that uu ∈ E(G)) and (usually) we do not have the same edge multiple time; such
graphs are called simple. In digraphs, a pair of arcs uv and vu is called a digon. Digraphs
without self-loops, digons or, the same edge multiple times, are called oriented graphs.

Given an undirected graph G = (V, E) we define the neighborhood of a vertex u ∈ V
to be the set of vertices NG(u) = {v ∈ V | uv ∈ E} and the degree dG(u) = |NG(u)|.
The closed neighborhood of u ∈ V is defined as NG[u] = {u} ∪NG(u). For a given set
of vertices X ⊆ V , we define the neighborhood of X as NG(X) =

∪
v∈X NG(v) and the

closed neighborhood of X as NG[X] =
∪

v∈X NG[v]. In a directed graph, for a vertex
u ∈ V , we can define the out-neighborhood and the in-neighborhood as N+

G (u) = {v ∈
V | uv ∈ E} and N−

G (u) = {v ∈ V | vu ∈ E} respectively. In addition, we have the
out-degree and the in-degree defined as d+

G(u) = |N+(u)| and d−
G(u) = |N−(u)|. In

both directed and undirected graphs, the maximum degree is denoted by ∆(G) and the
minimum degree by δ(G). Once again, whenever the graph G is clear from the context,
we will omit form the subscript.

Given a graph G and a uv ∈ E(G) the graph G/uv is the graph obtained by con-
tracting the edge uv, that is, replacing u, v by a new vertex connected to NG(u)∪NG(v).
In this manuscript we will only apply this operation when NG(u) ∩ NG(v) = ∅, so the
result will always be a simple graph. Given a set of edges S ⊆ E(G) we denote by V (S)
the set of vertices of V (G) that meet edges of S.

2.4.1 Graph Classes
In many cases, we assume that we have additional constraints on our problem instances.
In graph problems these constraints are usually related to the structural properties of
the input graph. Based on such properties, several classes of graphs have been defined.

In order to simplify the definitions of some classes we first need to explain what we
call induced subgraph and independent set.

Definition 2.9 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if
V ′ ⊆ V , E′ ⊆ E and for all uv ∈ E′ we have u, v ∈ V ′ .

Definition 2.10 (Induced Subgraph). Let G = (V, E) be a graph, V ′ ⊆ V and E′ =
{uv | u, v ∈ V ′ and uv ∈ E}. The graph (V ′, E′) is called induced subgraph of G it is
denoted by G[V ′].
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Definition 2.11 (Independent Set). Let G = (V, E) be a graph and S ⊆ V a non empty
set of vertices. If the induced subgraph G[S] has no edges then we say that S is an
independent set of G.

Below we present the most common classes of undirected graphs.

• Complete graphs: Graphs that contain all possible edges. A complete graph with
n vertices denoted by Kn.

• Trees: graphs that do not contain cycles.

• Bipartite graphs : graphs that do not contain odd length cycles. Alternatively, a
graph G = (V, E) is called bipartite if there exists a partition L, R of V such that
L and R are independent sets of G.

• Complete bipartite graphs: bipartite graphs that contain all possible edges (i.e. for
any u ∈ L and v ∈ R we have uv ∈ E). A complete bipartite graph with |L| = n
and |R| = m is denoted by Kn,m.

• Split graphs: A graph G = (V, E) is called split graph if there exists a partition
L, R of V such that G[L] is a complete graph and R is an independent set of G.

• Regular graphs: Graphs where all the vertices have the same degree. If in addition
we know the degree d of the vertices then we call the graph d-regular.

• Cubic graphs: 3-regular graphs

• Subcubic graphs: Graphs of maximum degree ∆ ≤ 3.

• Planar graphs: A graph is called planar if there exists a way to draw it on a
2-dimentional plan such that no edges cross each other.

2.4.2 Graph Problems
In this section we present some of the most important graph problems.

Definition 2.12 (Maximum Independent Set (Max-IS)). Given a graph G = (V, E)
find an independent set S of G of maximum size (i.e. for any other independent set S′

of G we have |S| ≥ |S′|).

Max-IS is one of the most studied, NP-hard, graph problems. The size of a maximal
independent set of a graph G is denoted by α(G). In [183], it was proved that, for any
ε > 0, there is no polynomial-time algorithm that approximates α(G), for a graph G,
within a ratio of n1−ε, unless P = NP. A weaker version of this result was first presented
in [106] under the condition NP 6= ZPP instead of P 6= NP. The parameterized version
of Max-IS, when we consider the solution size as the parameter, is W[1]-hard and it
cannot be solved in |V |o(k) time, under the ETH [65].
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Before we continue with the rest of the problems, let us introduce some useful nota-
tion. A set S with a property Π is called maximum if any other set S′ with the same
property has size |S′| ≤ |S|. Using this notation we can say that the goal of Max-IS
is to find a maximum independent set. Similarly, a set S with a property Π is called
minimum if any other set S′ with the same property has size |S′| ≥ |S|.

Two other, similar, notions are these of maximal and minimal sets. A set S with a
property Π is called maximal (resp. minimal) if any proper superset S′ ⊃ S (any proper
subset S′ ⊂ S) does not satisfy the property Π.

There are several problems, such as Max-IS, which search for subsets of vertices
or edges that satisfy a certain property and have the largest (or smallest) possible size.
Some well-known properties are shown below. Suppose we are given a graph G = (V, E)
then we define the following:

• Vertex Cover of G: A set S ⊆ V is called vertex cover of G if for each edge
e = uv ∈ E we have that u ∈ S or v ∈ S.

• Feedback Vertex Set of G: A set S ⊆ V is called feedback vertex set of G if the
graph G[V \ S] does not contain any cycle.

• Dominating Set of G: A set S ⊆ V is called dominating set of G if for any vertex
u ∈ V we have u ∈ S or there exists v ∈ S such that uv ∈ E.

• Edge Cover of G: A set S ⊆ E is called edge cover of G if for any vertex u ∈ V
there exists a edge e = uv ∈ E, for some v ∈ V , where e ∈ E.

• Matching of G: A set S ⊆ E is called matching of G if for any vertex u ∈ V there
exists at most one edge e ∈ S which is incident to u.

Note that, in contrast with the first three properties, which are properties of vertex
sets, the edge cover and matching are a properties that can be satisfied by sets of edges.

Using the previous properties, we can define the following problems:

Definition 2.13 (Minimum Vertex Cover (Min-VC)). Let G = (V, E) be a graph.
The Minimum Vertex Cover problem asks to find a minimum vertex cover of G.

Min-VC is considered as complement of the Max-IS. The reason is that, for a given
graph G = (V, E), the compliment V \ S, of any vertex cover S of G, is an independent
set. Like Max-IS, Min-VC is also NP-hard; however, for Min-VC, there exists a 2-
approximation algorithm. Furthermore, its parameterized version, when parameterized
by the size of the solution, belongs to FPT.

Definition 2.14 (Minimum Feedback Vertex Set (Min-FVS)). Let G = (V, E)
be a graph. The Minimum Feedback Vertex Set problem asks to find a minimum
feedback vertex set of G.

Min-FVS is NP-hard in the general case but it can be computed in polynomial time
in graphs with maximum degree 3. It is APX-complete and it belongs to FPT when
parameterized by its size.



2.4. GRAPHS 49

Definition 2.15 (Minimum Dominating Set (Min-DS)). Let G = (V, E) be a graph.
The Minimum Dominating Set problem asks to find a minimum dominating set of G.

Min-DS is NP-hard and its parameterized version, when parameterized by the size of
the solution, it is W[2]-complete. The size of a minimum dominating set, of a given
graph G, is called domination number and denoted by γ(G).

Definition 2.16 (Minimum Edge Cover (Min-EC)). Let G = (V, E) be a graph. The
Minimum Edge Cover problem asks to find a minimum edge cover of G.

Definition 2.17 (Maximum Matching problem). Let G = (V, E) be a graph. The
Minimum Edge Cover problem asks to find a minimum edge cover of G.

The Min-EC and Maximum Matching problems are problems that belong to P.
One, other, really important graph problem is the Coloring problem. First we

need to explain what is a proper coloring of a graph. Let G = (V, E) be a graph, k a
positive integer and C : V → {1, . . . , k} a function. We say that C is a proper coloring
of G if for each edge uv ∈ E, C(u) 6= C(v). Additionally, if such a function exists we
say that G is k-colorable.

Definition 2.18 (k-Coloring). Let G = (V, E) be a graph. The k-Coloring problem
asks if G is k-colorable or not.

Note that this is a decision version of the Coloring problem. The optimization
version asks to find the minimum k such that the given graph is k colorable. The k-
Coloring problem is NP-complete even when k = 3. Using this, it is easy to see that
the parameterized version of Coloring, when parameterized by the number of colors
k, does not admit an fpt-algorithm. Indeed, if the problem belongs to FPT then there
must be an algorithm that runs in f(k)poly(n), where n = |V |, and this gives us a
polynomial-time algorithm for 3-Coloring. However, such an algorithm cannot exist
unless P = NP.

The Unique Label Cover problem is defined as follows:

Definition 2.19 (Unique Label Cover). Let G = (V, E) be a graph with some
arbitrary total ordering ≺ of V , an integer R, and for each uv ∈ E with u ≺ v a 1-
to-1 constraint πuv which can be seen as a permutation on [R]. The vertices of G are
considered as variables of a constraint satisfaction problem, which take values in [R].
Each constraint πuv defines for each value of u a unique value that must be given to v
in order to satisfy the constraint. The goal is to find an assignment to the variables that
satisfies as many constraints as possible.

The above problem is important because it is related to the Unique Game Conjecture
(UGC). The UGC states that for all ϵ > 0, there exists R, such that distinguishing
instances of Unique Label Cover for which it is possible to satisfy a (1− ϵ)-fraction
of the constraints from instances where no assignment satisfies more than an ϵ-fraction
of the constraints is NP-hard. A slightly different version of this conjecture was defined
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by Khot and Regev and is called the Strong Unique Games Conjecture (SUGC). Despite
the name, Khot and Regev showed that this version is implied by the standard UGC.
The precise formulation is the following:

Theorem 2.1. [Theorem 3.2 of [132] (SUGC)] If the Unique Games Conjecture is true,
then for all ϵ > 0 it is NP-hard to distinguish between the following two cases of instances
of Unique Label Cover G = (V, E):

• (Yes case): There exists a set V ′ ⊆ V with |V ′| ≥ (1 − ϵ)|V | and an assignment
for V ′ such that all constraints with both endpoints in V ′ are satisfied.

• (No case): For any assignment to V , for any set V ′ ⊆ V with |V ′| ≥ ϵ|V |, there
exists a constraint with both endpoints in V ′ that is violated by the assignment.

Both UGC and SUGC are important tools in hardness of approximation.

Treewidth and Tree decomposition To define the treewidth of a graph we need
first to define what we call tree decomposition of a graph.

Definition 2.20 (Tree decomposition). Given a graph G = (V, E), we call tree decom-
position of G a tree T = (V ′, E′) together with a set B = {Bt ⊆ V | t ∈ V ′} such
that:

• For each vertex t ∈ V ′ has been assigned a set Bt ⊆ V . We call this set bag of t.

• ∪
t∈V ′ Bt = V

• Let t, w ∈ V ′ and u ∈ Bt ∩ Bw. For any x ∈ V ′, where x belongs to the (unique)
path for t to w in T , we have that u ∈ Bx.

• Let uv ∈ E. There exists a t ∈ V ′ such that u, v ∈ Bt.

The size of biggest bag of T minus 1 called width of the tree decomposition .

Assume that we are given a graph G = (V, E) and a tree decomposition (T,B),
where T = (V ′, E′) is a tree, of G. In order to avoid confusion, the vertices of the tree
decomposition, t ∈ V ′, will be called nodes.

Definition 2.21 (Treewidth). Given a graph G we are searching of the minimum
number tw ∈ N such that, there exists a tree decomposition of G with width tw.

2.4.3 Structural parameters of a graph
When we considered structural parameters of a graph we want to take advantage of the
properties of the parameter in order to construct an algorithm. Two other important
parameters are

• the size of minimum vertex cover and
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• the size of minimum feedback vertex set.

Note that both the Min-VC and Min-FVS are FPT when parameterized by the size of
their solutions. This is important because we can compute a minimum vertex cover or
a minimum feedback vertex set before starting dealing with a problem.

The treewidth of a graph is an other really important parameter. In order to take
advantage of the treewidth, tw, of a graph G = (V, E), we need to compute a tree
decomposition (T,B), where T = (V ′, E′) is a rooted binary tree, that satisfies the
following properties:

• the width of the tree decomposition is tw,

• each node of T belongs to exactly one of the following categories:

– Leaf Node: a leaf, v, of T such that |Bv| = 1.
– Introduce Node v: a node, v, of T with one child, c, such that Bc ⊂ Bv and
|Bv \Bc| = 1.

– Forget node: a node, v, of T with one child, c, such that Bv ⊂ Bc and
|Bc \Bv| = 1.

– Join Node: a node, v, of T with two children, c and c′, such that Bv = Bc =
Bc′ .

This tree decomposition called nice and it was introduced in [33]. There exists an
algorithm that transforms a given tree decomposition to a nice tree decomposition with
O(n tw) nodes in O(n2tw) time. In case we are not given a tree decomposition, then we
can use one of the various algorithms that compute one. In particular, if we are looking
for a tree decomposition of width at most k, we can use the algorithm presented in [32].
This algorithm returns a tree decomposition of width at most k or reports that no such
tree decomposition exists, in time 2O(tw3)O(n). Alternatively, there are approximation
algorithms that can be used; an algorithm that returns a tree decomposition of width
at most 2k + 1, or reports that the width is greater than k, and runs on 2O(tw)O(n) was
presented in [135].

The property that makes a nice tree decomposition of a graph so interesting is that
each of its bags is a cut set of the original graph. This property allows us to take advan-
tage of the structure of the nice tree decomposition and let us use dynamic programming
to its nodes. For more details on tree decompositions see [75].



52 CHAPTER 2. BASIC NOTATION AND TERMINOLOGY



Chapter 3

Subset-Sums Ratio and Variants

3.1 Introduction

Subset sum computations are of key importance in computing, as they appear either as
standalone tasks or as subproblems in a vast amount of theoretical and practical methods
coping with important computational challenges. As most of subset sum problems are
NP-hard, an effort was made over the years to come up with systematic ways of deriving
approximation schemes for such problems. Important contributions in this direction
include works by Gens and Levner [95], Horowitz and Sahni [114, 115], Ibarra and
Kim [119], Sahni [174], Woeginger [180], and Woeginger and Pruhs [169]. In particular,
the best known FPTAS for the Subset Sum problem appears in [129]. Moreover, the
aforementioned problems have been recently considered under the perspective of fine-
grained complexity [45, 161].

A problem, closely related to Subset Sum, is the Equal Subset Sum problem
(ESS), which, given an input set, asks for two disjoint subsets of equal sum. It finds
applications in multiple different fields, ranging from computational biology [60, 57] and
computational social choice [144], to cryptography [179], to name a few. In addition, it
is related to important theoretical concepts such as the complexity of search problems
in the class TFNP [166].

In this section we are considering the optimization version of ESS problem, called
Subset-Sums Ratio problem (SSR). SSR was introduced and shown NP-hard by Woeg-
inger and Yu [181]. The formal definition of the problem is as follows:

Definition 3.1 (Subset-Sums Ratio (SSR)). Given a set A = {a1, . . . , an} of n
positive integers, find two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n} that minimize
the ratio:

max{
∑

i∈S1 ai,
∑

j∈S2 aj}
min{

∑
i∈S1 ai,

∑
j∈S2 aj}

.

Additionally, we are going to define and study a family of variations of this optimization
problem.

53
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Related Work As we mentioned, ESS has been proven NP-Complete by Woeginger
and Yu [181] (see also the full version of [160] for an alternative proof) and several
variations have been proven NP-Complete by Cieliebak et al. in [58, 59]. A 1.324-
approximation algorithm has been proposed for SSR in [181] and several FPTASs ap-
peared in [23, 163, 151], the fastest so far being the one in [151] of complexity O(n4/ε).

As far as exact algorithms are concerned, recent progress has shown that ESS can
be solved probabilistically in1 O∗(1.7088n) time [160], faster than a standard “meet-in-
the-middle” approach yielding an O∗(3n/2) ≤ O∗(1.7321n) time algorithm.

These problems are tightly connected to Subset Sum, which has seen impressive
advances recently, due to Koiliaris and Xu [134] who gave a deterministic Õ(

√
nt) algo-

rithm, where n is the number of input elements and t is the target, and by Bringmann [43]
who gave a Õ(n+ t) randomized algorithm, which is essentially optimal under SETH [1].
See also [11] for an extension of these algorithms to a more general setting. Jin and Wu
subsequently proposed a simpler randomized algorithm [124] achieving the same bounds
as [43], which however seems to only solve the decision version of the problem. Recently,
Bringmann and Nakos [44] have presented an O(|St(Z)|4/3poly(log t)) algorithm, where
St(Z) is the set of all subset sums of the input set Z that are smaller than t, based on
top-k convolution.

Regarding approximation schemes for Subset Sum, recently Bringmann and Nakos [45]
presented the first improvement in over 20 years, since the scheme of [129] had remained
the state of the art. Making use of modern techniques, they additionally provide lower
bounds based on the popular min-plus convolution conjecture [67]. Furthermore, they
present a new FPTAS for the closely related Partition problem, by observing that their
techniques can be used to approximate a slightly more relaxed version of the Subset
Sum problem, firstly studied in [160].

Our Contribution In Section 3.4 we present a new approximation scheme for this
problem, highlighting its close relationship with the classical Subset Sum problem. The
previously existing algorithms depends on the classic scaling techniques which transforms
pseudo-polynomial algorithms to approximation algorithms. Our proposed algorithm is
the first that does not, heavily, depend to such techniques and associates SSR with
Subset Sum. Furthermore, improvements on the running time of exact or approximate
algorithms for Subset Sum can also improve the running time of our approximation
algorithm. Finally, we achieve a running time

O

(
min

{
n2.3

ε2.6 · log(n/ε2), n2

ε3 · log(n/ε2), n2

ε2

(
log(n/ε2) + 1

ε2 · log(1/ε)
)})

which improves over the O(n4

ε ) which is the current state of the art [151].
In Section 3.6 we define two families of variations of SSR problems that are able to

capture additional restrictions. Then, in Section 3.7, we present some conditions that
guarantee that a problem in these families admits an FPTAS. Finally, Section 3.8 we use

1Standard O∗ notation is used to hide polynomial and Õ to hide polylogarithmic factors.
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our framework to present FPTASs for two variations of SSR, namely 2-Set Subset-
Sums Ratio (2-Set SSR) and Factor-r Subset-Sums Ratio (Factor-r SSR); to
the best of our knowledge, no approximation algorithm has been known so far for these
problems.

3.2 Preliminaries
In what follows, we assume that we are given a set of positive integers A = {a1, . . . , an}
such that aj ≤ ai for all 1 ≤ j ≤ i ≤ n. Let [n] = {1, . . . , n} denote the set of integers in
the interval [1, n]. For a set of indices S ⊆ [n] we denote max(S, A) = max{ai | i ∈ S}.
Furthermore, we use the function R(S1, S2, A) introduced in [151]; this function was
defined as:

Ratio of two subsets. Given a set A = {a1, . . . , an} of n positive numbers and two
sets S1, S2 ⊆ {1, . . . , n} we define R(S1, S2, A) as follows:

R(S1, S2, A) =


0 if S1 = ∅ and S2 6= ∅∑

i∈S1
ai∑

i∈S2
ai

if S2 6= ∅,

+∞ otherwise.

We also define and use MR(S1, . . . , Sk, A) which is a generalization of R(S1, S2, A)
to k > 2 sets:

Max ratio of k subsets. Given a set A = {a1, . . . , an} of n positive numbers and k
sets S1, . . . , Sk ⊆ {1, . . . , n} we define:

MR(S1, . . . , Sk, A) = max{R(Si, Sj , A) | i 6= j and i, j ∈ {1, . . . , k}}

Note that we are using these expressions only if for all indices j ∈ Si, i ∈ [k], we
know that aj ∈ A. In order to keep our expressions as simple as possible we use the
above functions throughout the whole chapter.

If, in addition to the set A, we are given a set value ε ∈ (0, 1), define the following
partition of the elements of A:

• The set of its large elements as L(A, ε) = {ai ∈ A | ai ≥ ε · an}. Note that
an ∈ L(A, ε), for any ε ∈ (0, 1).

• The set of its small elements as M(A, ε) = {ai ∈ A | ai < ε · an}.

In the following, since the values of the associated parameters will be clear from the
context, they will be omitted and we will refer to these sets simply as L and M . Fur-
thermore, we denote the set of indices of elements in L(A, ε) as IL = {i | ai ∈ L(A, ε)}
and the set of indices of elements in M(A, ε) as IM = {i | ai ∈M(A, ε)}.

The following definitions will be useful for the sections 2.3 to 2.5 of this chapter.
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Definition 3.2 (Closest set and pair). Given a set A = {a1, . . . , an} and a set S ⊆ [n],
we define as closest set to S a set Sopt such that Sopt ⊆ [n]\S and Σi∈S ai ≥ Σi∈Sopt ai ≥
Σi∈S′ ai for all S′ ⊆ [n] \ S. The pair (S, Sopt) is called closest pair.

Definition 3.3 (ε-close set and pair). Given a set A = {a1, . . . , an} and a set S ⊆ [n],
we define as ε-close set to S a set Sε such that Sε ⊆ [n] \ S and Σi∈S ai ≥ Σi∈Sε ai ≥
(1− ε) · Σi∈S′ ai for all S′ ⊆ [n] \ S. The pair (S, Sε) is called ε-close pair.

Remark. Note that Sopt is also an ε-close set of S for any ε ∈ (0, 1).

Definition 3.4 (Subset Sum). Given a set A = {a1, . . . , an} and target t, compute a
set S ⊆ [n], such that Σi∈S ai = max{Σi∈S′ ai | S′ ⊆ [n], Σi∈S′ ai ≤ t}.

Definition 3.5 (Approximate Subset Sum). Given a set A = {a1, . . . , an}, target t and
a number ε ∈ (0, 1), compute a set S ⊆ [n], such that (1− ε) ·OPT ≤ Σi∈S ai ≤ OPT ,
where OPT = max{Σi∈S′ ai | S′ ⊆ [n], Σi∈S′ ai ≤ t}.

For a given set A = {a1, . . . , an} and a set of indices S ⊆ [n] one can compute a closest
set Sopt or an ε-close set Sε by solving Subset Sum or its approximate version as follows.

1. Closest set (Sopt) computation
Compute the subset sums of set A \ {ai | i ∈ S} with target Σi∈S ai and return
the set of indices of the solution set. This can be achieved by a standard meet in
the middle [114] algorithm.

2. ε-close set (Sε) computation
Run an approximate Subset Sum algorithm [129, 45] with error margin ε on set
A \ {ai | i ∈ S} with target Σi∈S ai.

Note that in most papers the requested output for the Subset Sum or Approximate
Subset Sum is the subset of the given set A and not the set of indices. However, here
we assume that the output is given as the set of indices.

3.3 Approximation scheme for Constrained SSR

In this section, we present an FPTAS for the constrained version of the Subset-Sums
Ratio problem where we are only interested in approximating the ratio of solutions
that involve large subset sums. By this, we mean that for at least one of the subsets of
the optimal solution, the sum of its large elements must be no less than max(A) = an

(assuming that A = {a1, . . . , an} is the sorted input set); let ropt denote the subset sum
ratio of such an optimal solution. Our FPTAS will return a solution of ratio r, such
that 1 ≤ r ≤ (1 + ε) · ropt, for a given ε ∈ (0, 1); however, we allow that the sets of the
returned solution do not necessarily satisfy the aforementioned constraint (i.e. the sum
of their large elements may be less than an).
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3.3.1 Outline of the algorithm

We now present a rough outline of the algorithm, along with its respective pseudocode:

• At first, we search for approximate solutions involving exclusively large elements
from L(A, ε).

• To this end, we produce the subset sums formed by these large elements. If their
number exceeds n/ε2, then we can easily find an approximate solution.

• Otherwise, for each of the produced subsets, we find its corresponding ε′-close set,
for some appropriate ε′ defined later.

• Then, it suffices to consider only these pairs of subsets when searching for an
approximate solution.

• In the case that the optimal solution involves small elements, we can approximate
it by adding elements of M(A, ε) in a greedy way.

Algorithm 1 ConstrainedSSR(A, ε, T )
Input: Sorted set A = {a1, . . . , an}, a number ε ∈ (0, 1) and table of partial sums T .
Output: (1 + ε)-approximation of the optimal solution respecting the constraint.

1: Partition A to M = {ai ∈ A | ai < ε · an} and L = {ai ∈ A | ai ≥ ε · an}.
2: Split interval [0, n · an] to n/ε2 bins of size ε2 · an.
3: while filling the bins with the subset sums of L do
4: if two subset sums correspond to the same bin then
5: return an approximation solution based on these. ▷ O(n/ε2) complexity.
6: end if
7: end while
8: 2|L| ≤ n/ε2 ⇐⇒ |L| ≤ log(n/ε2).
9: for each subset in a bin do ▷ O(n/ε2) subsets.

10: Find its ε′-close set. ▷ Complexity analysis in Section 3.5.
11: Add small elements accordingly. ▷ O(log n) complexity, see Subsection 3.3.3.
12: end for

3.3.2 Regarding only large elements

We firstly search for an (1 + ε)-approximate solution with ε ∈ (0, 1), without involving
any of the elements that are smaller than ε · an. Let M = {ai ∈ A | ai < ε · an} be the
set of small elements and L = A\M = {ai ∈ A | ai ≥ ε ·an} be the set of large elements.

After partitioning the input set, we split the interval [0, n · an] into smaller intervals,
called bins, of size l = ε2 · an each, as depicted in figure 3.1.

Thus, there are a total of B = n/ε2 bins. Notice that each possible subset of the
input set will belong to a respective bin constructed this way, depending on its sum.
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Figure 3.1: Split of the interval [0, n · an] to bins of size l.

Additionally, if two sets correspond to the same bin, then the difference of their subset
sums will be at most l.

The next step of our algorithm is to generate all the possible subset sums, occurring
from the set of large elements L. The complexity of this procedure is O

(
2|L|

)
, where

|L| is the cardinality of set L. Notice however, that it is possible to bound the number
of the produced subset sums by the number of bins B, since if two sums belong to the
same bin they constitute a solution, as shown in Lemma 3.1, in which case the algorithm
terminates in time O(n/ε2).

Lemma 3.1. If two subsets correspond to the same bin, we can find an (1 + ε)-
approximation solution.

Proof. Suppose there exist two sets L1, L2 ⊆ IL such that the sums∑i∈L1 ai and∑i∈L1 ai

correspond to the same bin and ∑i∈L1 ai ≤
∑

i∈L2 ai. Notice that there is no guarantee
regarding the disjointness of said subsets, thus consider L′

1 = L1 \ L2 and L′
2 = L2 \ L1,

for which it is obvious that ∑i∈L1 ai ≤
∑

i∈L2 ai.
Additionally, assume that L′

1 6= ∅. Then it holds that∑
i∈L′

2

ai −
∑
i∈L′

1

ai =
∑
i∈L2

ai −
∑
i∈L1

ai ≤ l

Therefore, the sets L′
1 and L′

2 constitute an (1 + ε)-approximation solution, since

R(L′
2, L′

1, A) = R(L′
2, L′

1, L) ≤
l +

∑
i∈L′

1
ai∑

i∈L′
1

ai

= 1 + l∑
i∈L′

1
ai
≤ 1 + ε2 · an

ε · an
= 1 + ε

where the last inequality is due to the fact that L′
1 ⊆ IL and all elements in L are grater

than or equal to ε · an, thus ∑i∈L′
1

ai ≥ ε · an.
It remains to show that L′

1 6= ∅. Assume that L′
1 = ∅. This implies that L1 ⊆ L2 and

since we consider each subset of L only once and the input is a set and not a multiset,
it holds that L1 ⊂ L2 =⇒ L′

2 6= ∅. Since the sums ∑i∈L1 ai and ∑i∈L2 ai correspond
to the same bin, it holds that∑

i∈L2

ai −
∑
i∈L1

ai ≤ l =⇒
∑
i∈L′

2

ai −
∑
i∈L′

1

ai ≤ l =⇒
∑
i∈L′

2

ai ≤ l
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Since L′
2 is a non empty subset of IL, which contain indices of elements that are greater

than or equal to ε ·an, we have ∑i∈L′
2

ai ≥ ε ·an > ε2 ·an = l, since ε < 1; contradiction.

Consider an ε′ such that 1/(1 − ε′) ≤ 1 + ε for all ε ∈ (0, 1), for instance ε′ = ε/2
(the exact value of ε′ will be computed in Section 3.5). If every produced subset sum
of the previous step belongs to a distinct bin, then, we compute their respective ε′-close
sets, as described in Section 3.2. We can approximate an optimal solution that involves
exclusively large elements using these pairs.

Before we prove the previous statement, observe that, if the optimal solution involves
sets L1, L2 ⊆ IL composed only of indices of large elements, where ∑i∈L1 ai ≤

∑
i∈L2 ai,

then ∑i∈L1 ai =
∑

i∈L2,opt
ai, where L2,opt is a closest set of L2, with respect to the set

IL \ L2.

Lemma 3.2. If the optimal ratio ropt involves sets consisting of only large elements,
then there exists an ε′-close pair with ratio r ≤ (1 + ε) · ropt.

Proof. Assume that the sets S∗
1 , S∗

2 ⊆ IL form the optimal solution (S∗
2 , S∗

1) andR(S∗
2 , S∗

1 , L) =
ropt ≥ 1 is the optimal ratio. Then, as mentioned, it holds that ∑i∈S∗

1
ai =

∑
i∈S∗

2,opt
ai.

For each set of large elements, there exists an ε′-close set and a corresponding ε′-close
pair; let (S∗

2 , S∗
2,ε′) be this pair for set S∗

2 . Then,

∑
i∈S∗

2

ai ≥
∑
i∈S∗

1

ai =
∑

i∈S∗
2,opt

ai ≥
∑

i∈S∗
2,ε′

ai ≥ (1− ε′) ·
∑
i∈S∗

1

ai

Thus, it holds that

1 ≤ R(S∗
2 , S∗

2,ε′ , L) ≤ 1
(1− ε′)

· R(S∗
2 , S∗

1 , L) ≤ (1 + ε) · ropt

Therefore, we have proved that in the case where the optimal solution consists of
sets comprised of only large elements, it is possible to find an (1 + ε)-approximation
solution. This is achieved by computing an ε′-close set for each subset S ⊆ IL belonging
in some bin, using the algorithms described in the preliminaries, with respect to set
L\{ai | i ∈ S} and target ∑i∈S ai. The total cost of these algorithms will be thoroughly
analyzed in Section 3.5 and depends on the algorithm used.

It is important to note that by utilizing an (exact or approximation) algorithm for
Subset Sum, we establish a connection between the complexities of Subset Sum and
approximating Subset-Sums Ratio in a way that any future improvement in the first
carries over to the second.
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3.3.3 General FPTAS for Constrained SSR
Whereas we previously considered optimal solutions involving exclusively large elements,
here we will search for approximations for those optimal solutions that use all the ele-
ments of the input set, hence include small elements, and satisfy our constraint. We will
prove that in order to approximate those optimal solutions, it suffices to consider only
the ε′-close pairs corresponding to each distinct bin and add small elements to them. In
other words, instead of considering any two random disjoint subsets consisting of large
elements2 and subsequently adding to these the small elements, we can instead consider
only the pairs computed in the previous step, the number of which is bounded by the
number of bins B = n/ε2. Moreover, we will prove that it suffices to add the small
elements to our solution in a greedy way.

Since the algorithm has not detected a solution so far, due to Lemma 3.1 every
computed subset sum of set L belongs to a different bin. Thus, their total number is
bounded by the number of bins B, i.e.

2|L| ≤
(

n

ε2

)
⇐⇒ |L| ≤ log

(
n

ε2

)
.

We proceed by involving small elements in order to reduce the difference between the
sums of ε′-close pairs, thus reducing their ratio.

Lemma 3.3. Given the ε′-close pairs, one can find an (1 + ε)-approximation solution
for the constrained version of Subset-Sums Ratio, in the case that the optimal solution
involves small elements.

sketch. Due to page limitations, we only give a short sketch of the proof here; the full
proof is deferred to the appendix (paper).

Let S∗
1 = L∗

1 ∪M∗
1 and S∗

2 = L∗
2 ∪M∗

2 be disjoint subsets of [n] that form an optimal
solution, where ∑i∈S∗

1
ai ≤

∑
i∈S∗

2
ai, L∗

1, L∗
2 ⊆ IL and M∗

1 , M∗
2 ⊆ IM . Recall that we

have assume that ai ≤ aj for all 1 ≤ i ≤ j ≤ n. Therefor IM = [|M |].
W.l.o.g., assume that ∑i∈L∗

1
ai <

∑
i∈L∗

2
ai (respectively ∑i∈L∗

2
ai <

∑
i∈L∗

1
ai). We

show that is suffices to find an appropriate k, such that [k] ⊆ IM , and add [k] to L∗
2,ε′

(respectively L∗
1,ε′) in order to approximate the optimal solution ropt = R(S∗

2 , S∗
1 , L).

Therefore, by adding in a greedy way small elements to an ε′-close set of the set
with the largest sum among L∗

1 and L∗
2, we can successfully approximate the optimal

solution.

Adding small elements efficiently.

Here, we will describe a method to efficiently add small elements to our sets. As a
reminder, up to this point the algorithm has detected an ε′-close pair (L2, L1), such
that L1, L2 ⊆ IL with ∑

i∈L1 ai <
∑

i∈L2 ai. Thus, we search for some k such that∑
i∈L1∪Mk

ai ≤
∑

i ∈ L2ai +ε ·an, where Mk = [k]. Notice that if ∑i∈IM
ai ≥

∑
i∈L2 ai−

2Note that the number of these random pairs is 3|L|.
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∑
i∈L1 ai, there always exists such a set Mk, since by definition, each element of set M

is smaller than ε · an. In order to determine k, we make use of an array of partial sums
T [k] =

∑
i∈[k] ai, where k ≤ |M |. Notice that T is sorted; therefore each time we need to

compute a subset with the desired property, this can be done in O(log |M |) = O(log n)
time.

3.4 FPTAS for SSR
The algorithm presented in the previous section constitutes an approximation scheme
for Subset-Sums Ratio, in the case where at least one of the solution subsets has
sum of its large elements greater than, or equal to the max element of the input set.
Thus, in order to solve the Subset-Sums Ratio problem, it suffices to run the previous
algorithm n times, where n depicts the cardinality of the input set A, while each time
removing the max element of A.

In particular, suppose that the optimal solution involves disjoint sets S∗
1 and S∗

2 ,
where ak = max{ai | i ∈ S∗

1 ∪ S∗
2}. There exists an iteration for which the algorithm

considers as input the set Ak = {a1, . . . , ak}. In this iteration, the element ak is the
largest element and the algorithm searches for a solution where the sum of the large
elements of one of the two subsets is at least ak. The optimal solution has this property
so the ratio of the approximate solution that the algorithm of the previous section returns
is at most (1 + ε) times the optimal.

Consequently, n repetitions of the algorithm suffice to construct an FPTAS for
Subset-Sums Ratio.

Notice that if at some repetition, the sets returned due to the algorithm of Section 3.3
have ratio at most 1 + ε, then this ratio successfully approximates the optimal ratio
ropt ≥ 1, since 1 + ε ≤ (1 + ε) · ropt, therefore they constitute an approximation solution.

Algorithm 2 SSR(A, ε)
Input: Sorted set A = {a1, . . . , an} and a number ε ∈ (0, 1).
Output: (1 + ε)-approximation of the optimal solution for Subset-Sums Ratio.

1: Create array T such that T [k] =
∑k

i=1 ai. ▷ Θ(n) time.
2: for i = n, . . . , 1 do
3: ConstrainedSSR({a1, . . . , ai}, ε, T )
4: end for

3.5 Complexity
The total complexity of the final algorithm is determined by three distinct operations,
over the n iterations of the algorithm:

1. The cost to compute all the possible subset sums occurring from large elements. It
suffices to consider the case where this is bounded by the number of bins B = n/ε2,
due to Lemma 3.1.
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2. The cost to find the ε′-close pair for each subset in a distinct bin. The cost of this
operation will be analyzed in the following subsection.

3. The cost to include small elements to the ε′-close pairs. There are B ε′-close pairs,
and each requires O(log n) time, thus the total time required is O

(
n
ε2 · log n

)
.

3.5.1 Complexity to find the ε′-close pairs
Using exact Subset Sum computations.

The first algorithm we mentioned is a standard meet in the middle algorithm. Here we
will analyze its complexity.

Let subset L′ ⊆ L such that |L′| = k. The meet in the middle algorithm on the set
L \ L′ costs time

O

( |L \ L′|
2

· 2
|L\L′|

2

)
.

Notice that the number of subsets of L of cardinality k is
(|L|

k

)
and that |L| ≤ log(n/ε2).

Additionally,
|L|∑

k=0

(
|L|
k

)
· 2

|L|−k
2 · |L| − k

2
= 2|L|/2 ·

|L|∑
k=0

(
|L|
k

)
· 2−k/2 · |L| − k

2

≤ 2|L|/2 · |L|
2
·

|L|∑
k=0

(
|L|
k

)
· 2−k/2

Furthermore, let c = (1 + 2−1/2), where log c = 0.7715... < 0.8. Due to Binomial
Theorem, it holds that

|L|∑
k=0

(
|L|
k

)
· 2−k/2 = (1 + 2−1/2)|L| = c|L| ≤ clog(n/ε2) = (n/ε2)log c

Consequently, the complexity to find a closest set for every subset in a bin is

O

(
2|L|/2 · |L|

2
· (n/ε2)log c

)
= O

(
(n/ε2)1/2 · log(n/ε2) · (n/ε2)log c

)
= O

(
n1.3

ε2.6 · log(n/ε2)
)

Using approximate Subset Sum computations.

Here we will analyze the complexity in the case we run an approximate Subset Sum
algorithm in order to compute the ε′-close pairs.

For subset Li ⊆ L of sum ∑
(Li), we run an approximate Subset Sum algorithm

([129, 45]), with error margin ε′ such that
1

1− ε′ ≤ 1 + ε ⇐⇒ ε′ ≤ ε

1 + ε
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By choosing the maximum such ε′, we have that

ε′ = ε

1 + ε
=⇒ 1

ε′ = 1 + ε

ε
= 1

ε
+ 1 =⇒ 1

ε′ = O

(1
ε

)
Thus, if we use for instance the approximation algorithm3 presented at [129], the com-
plexity of finding all the ε′-close sets (one for every subset in a bin, for a total of a
maximum of B = n/ε2 subsets) is

O

(
n

ε2 ·min
{ |L|

ε′ , |L|+ 1
(ε′)2 · log(1/ε′)

})
=

O

(
n

ε2 ·min
{ |L|

ε
, |L|+ 1

ε2 · log(1/ε)
})

=

O

(
n

ε2 ·min
{

log(n/ε2)
ε

, log(n/ε2) + 1
ε2 · log(1/ε)

})

3.5.2 Total complexity
The total complexity of the algorithm occurs from the n distinct iterations required and
depends on the algorithm chosen to find the ε′-close pairs, since both of the presented
algorithms dominate the time of the rest of the operations. Thus, by choosing the fastest
one (depending on the relationship between n and ε), the final complexity is

O

(
min

{
n2.3

ε2.6 · log(n/ε2), n2

ε3 · log(n/ε2), n2

ε2

(
log(n/ε2) + 1

ε2 · log(1/ε)
)})

3.6 Families of Variations of SSR
In this section we define two families of variations of the SSR problem, we present two
problems that belong in these families and finally we prove two lemmas that give us
some properties of the feasible solutions of the problems in these families.

The first family of variations of SSR we define is the Family of Subset-Sums Ratio
problems (F -SSR). We want this family to contain as many problems as possible. In
general we may not have just a set of numbers as input, but also a graph with weights
on the edges or the vertices, or any other structure. For such reasons we will use the
following notation.

Family of Subset-Sums Ratio problems (F-SSR). A problem P in F -SSR is a
combinatorial optimization problem (I, k,F) where:

• I is a set of instances each of which is a pair (E, w) where E = {e1, . . . , en} is a
set of ground elements and w : E 7→ R+ is a weight function which maps every
element ei to a positive number ai;

3Of complexity O
(
min
{

n
ε

, n + 1
ε2 · log(1/ε)

})
for n elements and error margin ε.
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• k defines the number of subsets of {1, . . . , n} we are searching for;

• F gives the set of feasible solutions as follows: for any input (E, w), F(k, E)
is a collection of k-tuples of nonempty and disjoint subsets of {1, . . . , n}, and
given (k, E, (S1, . . . , Sk)) we can check in polynomial time whether (S1, . . . , Sk)
∈ F(k, E).

The goal of P is to find for an instance (E, w) a feasible solution (S∗
1 , . . . , S∗

k) such that

MR(S∗
1 , . . . , S∗

k , A) = min{MR(S1, . . . , Sk, A) | (S1, . . . , Sk) ∈ F(k, E)}

where A = {ai = w(ei) | ei ∈ E}

Remark. Note that under this definition of F -SSR the function w of an instance (E, w)
does not play any role in deciding whether a k-tuple (S1, . . . , Sk) is feasible or infeasible
solution; in other words, the element weights do not affect feasibility, only their indices do.
Consequently, for a specific problem P = (I, k,F) ∈ F -SSR and two different instances
(E, w) and (E, w′) in I with the same ground elements E, the feasible solutions of the
two instances are the same.

We will now introduce a family of problems that is similar to F -SSR, with a major
difference which is an additional condition. In this family we know (it is given as input),
the minimum among the maximum values of the solution sets. This is rather technical
and its role will become clear in the following text.

Family of Semi-Restricted Subset-Sums Ratio Problems
(Semi-Restricted F-SSR). For every problem P = (I, k,F) in F -SSR, we define an
associated optimization problem P ′ = (I ′, k′,F ′) as follows:

• the set of instances of P ′ is:

I ′ = {(E, w, m) | (E, w) ∈ I and m ∈ {1, . . . |E|}}

• k′ = k

• the collection of feasible solutions of instance (E, w, m) ∈ I ′ is given by:

F ′(k, E, w, m) = {(S1, ..., Sk) ∈ F(k, E) | min
j∈{1,...,k}

{max
i∈Sj

w(ei)} = w(em)}

and the goal of P ′ is to find a feasible solution (S∗
1 , . . . , S∗

k) for an instance (E, w, m)
such that

MR(S∗
1 , . . . , S∗

k , A) = min{MR(S1, . . . , Sk, A) | (S1, . . . , Sk) ∈ F ′(k, E, w, m)}

where A = {ai = w(ei) | ei ∈ E}. We define the family of problems Semi-Restricted
F -SSR as the class of problems {P ′ | P ∈ F -SSR}.
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Remark. (i) We note that if a problem belongs to Semi-Restricted F -SSR it cannot
belong to F -SSR because of the additional condition for a solution (S1, ..., Sk) to be
feasible, namely minj∈{1,...k}{maxi∈Sj w(ei)} = w(em), which depends on the weight
function w and not only on the set of elements E as is the case for problems in F -SSR.

(ii) It is obvious that if there exists an efficient algorithm that can decide if a solution
is feasible for a problem P in F-SRR then we can construct another efficient algorithm
that takes into account the additional conditions and decides if a solution is feasible for
the semi-restricted version P ′.

Let us note that F -SSR contains many problems from several different areas in
computer science and could prove useful to get an FPTAS for them if we could develop
a pseudopolynomial algorithm with a particular property (as will be explained in the
next section) for their semi-restricted versions. This family includes subset-sums ratio
problems with matroid restrictions, graph restrictions, cardinality restrictions (including
partition problems). Certain scheduling and knapsack problems also belong to this
family.

As particular examples, we present some problems that belong in F -SSR. First we
present the following job scheduling problem.

Minimum Ratio Scheduling (MinRS). Let j1, . . . , jn be a list of jobs and m1, . . . , mk

a list of machines. Each job has a processing time ti, i ∈ [n]. The goal is to partition
the jobs into k sets, S1, . . . , Sk that minimizes the ratio MR(S1, . . . , Sk, T ), where T =
{t1, . . . , tn}.

Note that Min-RS is a generalization of the optimization version of Partition.
For the next problem, first, assume that we are given a graph G = (V, E) on n

vertices.

G-Independence Subset-Sum Ratio (G-IND SSR). Let w : V → R+ be a function.
We seek two nonempty and disjoint sets S1, S2 ⊆ {1, ..., n} such that, the sets V1 = {vi ∈
V, i ∈ S1} and V2 = {vi ∈ V, i ∈ S2} are independent sets of G, and minimize the ratio
MR(S1, S2, W ), where W = {wi = w(vi) | vi ∈ V }.

Note that when the graph G is fixed, and not part of the input, then the G-IND SSR
belongs in F -SSR. In the case where we include the graph in the input, then the problem
is an optimization version of ESS with Exclusions [59]; this problem does not belong
to F -SSR.

Remark. If we wanted to include such problems in F -SSR, then we can define it in
a slightly different way. In particular, instead of having the problems defined by the
triplet (I, k,F) we can remove F and include a structure, S, in the input (as in [169]).
This structure is used to determine the feasible and infeasible solutions. For simplicity,
we retain the definition of F -SSR as presented in the definition 3.6, however, all the
theorems we present in the following sections can be modified to apply to even the most
general definition of the family.
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In [98] there were introduced digraph constraints for the subset sum problem which
can easily be modeled via our framework. In general, when the graph is fixed, we could
also ask for S1 and S2 to satisfy a certain property related to other graph parameter(s),
for example we may demand that the solution consists of dominating sets or matchings.
In a similar manner, we may demand that the solution consists of, say, independent sets
of a given matroid.

Bellow we present two problems that are spacial cases of G-IND SSR.

Two-Set Subset-Sums Ratio problem (2-Set SSR). Let A = {(a1, b1), . . . , (an, bn)}
be a set of pairs of positive numbers. We seek two nonempty and disjoint sets S1, S2 ⊆
{1, ..., n} that minimize

max{
∑

i∈S1 ai,
∑

j∈S2 bj}
min{

∑
i∈S1 ai,

∑
j∈S2 bj}

.

Note that 2-Set SSR can be formulated as instance of G-IND SSR where G = Kn,n.

Factor-r Subset-Sums Ratio problem (Factor-r SSR). Given a set A = {a1, . . . , an}
of n positive numbers and a number r ≥ 1, find two nonempty and disjoint sets S1, S2
⊆ {1, . . . , n} that minimize the ratio

max{r ·
∑

i∈S1 ai,
∑

j∈S2 aj}
min{r ·

∑
i∈S1 ai,

∑
j∈S2 aj}

.

The proofs that 2-Set SSR and Factor-r SSR actually do belong in F -SSR will
be presented in Section 3.8.1 and Section 3.8.2 respectively. We must note that the
decision version of Factor-r SSR was studied in [59]. For these two problems, we will
introduce FPTAS’s.

Before we continue to the next section we will present two lemmas which reveal
properties under which solutions are feasible for both problems in F -SSR and Semi-
Restricted F -SSR.

Lemma 3.4. Let P = (I, k,F) a problem in F -SSR and P ′ = (I ′, k′,F ′) the semi
restricted version of P. If (E, w) ∈ I and (E, w′, m) ∈ I ′ are the instances of P and
P ′ respectively then any feasible solution (S1, . . . , Sk) of the instance (E, w′, m) of P ′ is
also a feasible solution of the instance (E, w) of P.

Proof. The feasible solutions (S1, . . . , Sk) of instance (E, w′, m) of P ′ are those in F ′(k, E, w′, m).
By the definition of P ′ in Semi-Restricted F -SSR we have F ′(k, E, w′, m) ⊆ F(k, E)
thus the lemma holds.

Lemma 3.5. Let P = (I, k,F) a problem in F -SSR and P ′ = (I ′, k′,F ′) the semi-
restricted version of P. If E is a set of elements and w, w′ two weight functions such
that:

∀i, j ∈ {1, . . . n}, w(ei) < w(ej)⇔ w′(ei) ≤ w′(ej)
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then any feasible solution (S1, . . . , Sk) for the instance (E, w) of P is a feasible solution
for the instance (E, w′, m) of P ′ if

w(em) = min
j∈{1,...,k}

{max{w(ei) | i ∈ Sj}}

Proof. Let (S1, . . . , Sk) be a feasible solution for the problem P with instance (E, w).
This means that (S1, . . . , Sk) ∈ F(k, E). Assuming that:

w(em) = min
j∈{1,...,k}

{max{w(ei) | i ∈ Sj}}

is easy to see that w(em) ≤ max{w(ei) | i ∈ Sj and j ∈ {1, . . . k}} which by the lemma
assumptions gives w′(em) ≤ max{w′(ei) | i ∈ Sj and j ∈ {1, . . . k}}. This means that
(S1, . . . , Sk) is a feasible solution for the instance (k, E, w′, m) of P ′ that meets both
conditions

(S1, . . . , Sk) ∈ F(k, E)

and
w′(em) = min

j∈{1,...,k}

{
max{w′(ei) | i ∈ Sj}

}
.

3.7 A Framework Yielding FPTAS for Problems in F -SSR

In the following theorem we define a scale parameter δ which we will use later to reduce
the input values, thus making the pseudopolynomial algorithms run in polynomial time.
This parameter in turn, depends on the error ε and on two other parameters, namely
w and m, to be chosen as explained in Theorem 3.6. By means of these parameters,
we are able to present properties which, if satisfied by the output sets, guarantee that
the solution is (1 + ε)-approximate. Note that the values of these parameters do not
necessarily have to be unique; several values within certain ranges would do as long as
the properties of the theorem below are satisfied.

Theorem 3.6. Let A = {a1, ..., an} be a set of positive numbers, ε ∈ (0, 1), two sets
S1Opt, S2Opt ⊆ {1, ..., n} and any numbers w, m, δ that satisfy:

• 0 < w ≤ min
(∑

i∈S1Opt
ai,
∑

i∈S2Opt
ai

)
• n ≥ m ≥ max (|S1Opt|, |S2Opt|),

• δ = (εw)/(3m)

If S1, S2 ⊆ {1, ..., n} are two non-empty sets such that:

• w ≤ min
(∑

i∈S1 ai,
∑

i∈S2 ai
)

• n ≥ m ≥ max (|S1|, |S2|),
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• 1 ≤MR(S1, S2, A′) ≤MR(S1Opt, S2Opt, A′) with A′ = {ba1
δ c, ..., ban

δ c}

Then the following inequality holds

1 ≤MR(S1, S2, A) ≤ (1 + ε) · MR(S1Opt, S2Opt, A) .

The following three lemmas will be used to prove Theorem 3.6. We will start with the
following one, which relates A with A′.

Lemma 3.7. Let ai, a′
i and δ be defined as in Theorem 3.6, then for any S ∈ {S1Opt,

S2Opt, S1, S2} the following holds:

∑
i∈S

ai −mδ ≤
∑
i∈S

a′
iδ ≤

∑
i∈S

ai (3.1)

mδ ≤ ε

3
∑
i∈S

ai (3.2)

Proof. To prove Eq. 3.1, notice that for all i ∈ {1, . . . , n} we define a′
i = bai

δ c. This gives
us

ai

δ
− 1 ≤ a′

i ≤
ai

δ
⇒ ai − δ ≤ δa′

i ≤ ai .

In addition for any S ∈ {S1Opt, S2Opt, S1, S2} we have |S| ≤ m, which means that∑
i∈S

ai −mδ ≤
∑
i∈S

ai − |S|δ ≤
∑
i∈S

a′
iδ ≤

∑
i∈S

ai .

As for Eq. 3.2 we have to take into account the theorem’s assumptions. Specifically we
know that

m ≤
∑
i∈S

ai for all S ∈ {S1Opt, S2Opt, S1, S2}

which gives
mδ = εw

3
≤ ε

3
∑
i∈S

ai

Lemma 3.8. For sets S1 and S2 it holds

MR(S1, S2, A) ≤MR(S1, S2, A′) + ε

3

Proof. Without loss of generality we will assume that

MR(S1, S2, A) = R(S1, S2, A)
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R(S1, S2, A) =
∑

i∈S1 ai∑
j∈S2 aj

≤
∑

i∈S1 a′
iδ + δm∑

j∈S2 aj
[by Eq. 3.1]

≤
∑

i∈S1 a′
iδ∑

j∈S2 a′
j

+ δm∑
j∈S2 aj

[by Eq. 3.1]

≤MR(S1, S2, A′) + ε

3
[by Eq. 3.2]

Lemma 3.9. For every ε ∈ (0, 1) we have that

MR(S1Opt, S2Opt, A′) ≤ (1 + ε/2) · MR(S1Opt, S2Opt, A)

Proof. Without loss of generality we will assume that

MR(S1Opt, S2Opt, A′) = R(S1Opt, S2Opt, A′)

From Eq. 3.1 we have that

MR(S1Opt, S2Opt, A′) =
∑

i∈S1Opt
a′

i∑
i∈S2Opt

a′
i

≤
∑

i∈S1Opt
ai∑

i∈S2Opt
ai −mδ

=
∑

i∈S1Opt
ai∑

i∈S2Opt
ai −mδ

·
∑

i∈S2Opt
ai∑

i∈S2Opt
ai

=
∑

i∈S2Opt
ai∑

i∈S2Opt
ai −mδ

·
∑

i∈S1Opt
ai∑

i∈S2Opt
ai

=
(

1 + mδ∑
i∈S2Opt

ai −mδ

)
· R(S1Opt, S2Opt, A)

by Eq. 3.2 it follows that

MR(S1Opt, S2Opt, A′) ≤
(

1 + 1
3
ε − 1

)
· R(S1Opt, S2Opt, A)

=
(

1 + ε

3− ε

)
· R(S1Opt, S2Opt, A)

≤
(

1 + ε

2

)
· R(S1Opt, S2Opt, A) [because ε ∈ (0, 1)]

≤
(

1 + ε

2

)
· MR(S1Opt, S2Opt, A).

This concludes the proof.

Now we are ready to prove Theorem 3.6.
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Proof. The theorem follows from a sequence of inequalities:

MR(S1, S2, A) ≤MR(S1, S2, A′) + ε

3
[by Lemma 3.8]

≤MR(S1Opt, S2Opt, A′) + ε

3
≤ (1 + ε

2
) · MR(S1Opt, S2Opt, A) + ε

3
[by Lemma 3.9]

≤ (1 + ε) · MR(S1Opt, S2Opt, A).

The next theorem presents the conditions that should be met to construct an FPTAS
algorithm for a problem that belongs to F -SSR. Keep in mind that this framework
provides a generic method to obtain an efficient approximation scheme for a problem: if
one manages to prove that a problem belongs to F -SSR and at the same time proposes
a pseudopolynomial time algorithm for its Semi-Restricted version then one obtains an
FPTAS for the problem.

Theorem 3.10. Let P = (I,F ,M,G) be a problem in F -SSR and P ′ = (I ′,F ′, M, G)
its corresponding problem in Semi - Restricted F -SSR. If for problem P ′ there exists
an algorithm that solves exactly each instance (A(m), m) = ({a1, . . . an}, m) ∈ I ′, in
which all ai values are integers, and runs in O(nc1ac2

m)) time, then P admits an FPTAS
that runs in O(nc1+c2+1/εc2)) time.

Proof. Recall that for every problem in F -SSR, two different instances A and A′ with the
same number of elements have exactly the same feasible solutions (see Remark 3.6). We
need to prove that the output of Algorithm 3 is a (1 + ε)-approximation of the optimum
solution of P with input A = {a1, . . . an}. Let ε ∈ (0, 1), S1, ..., Sk be the sets of the
optimum solution of P and S

(m)
1 , ..., S

(m)
k the solution of P ′ with input (A(m), m) ∈ I ′.

By Lemma 3.4, we have that a feasible solution of P ′, with input (A(m), m) is a feasible
solution of P with input A. So the optimal solution S

(m)
1 , . . . , S

(m)
k of the P ′ with input

(A(m), m) ∈ I ′ is a feasible solution of P with input A. We will also denote with an0 ∈ A
the minimum element among the maximum of the sets S1, . . . , Sk of the optimal solution,
i.e.

an0 = min
j∈{1,...,k}

(
max
i∈Sj

ai

)
This means that for the output of the Algorithm 3, S∗

1 , . . . , S∗
k we have

MR(S∗
1 , ..., S∗

k , A) ≤MR(S(n0)
1 , ..., S

(n0)
k , A)

so it is sufficient to prove that

MR(S(n0)
1 , ..., S

(n0)
k , A) ≤ (1 + ε) · MR(S1, ..., Sk, A)
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By Lemma 3.5, the optimal solution S1, ..., Sk is a feasible solution for problem P ′ on
input (A(n0), n0) so we have

MR(S(n0)
1 , ..., S

(n0)
k , A(n0)) ≤MR(S1, ..., Sk, A(n0)) (3.3)

Without loss of generality letMR(S(n0)
1 , S

(n0)
2 , A) =MR(S(n0)

1 , . . . , S
(n0)
k , A) andMR(S1,

S2, A(n0)) =MR(S1, . . . , Sk, A(n0)). Then due to the definition of the MR function

MR(S(n0)
1 , S

(n0)
2 , A(n0)) ≤MR(S(n0)

1 , . . . , S
(n0)
k , A(n0))

≤MR(S1, . . . , Sk, A(n0)) [by Eq. 3.3]
=MR(S1, S2, A(n0))

From the above equation and the definition of A(n0) it is easy to see that the pairs of
sets (S(n0)

1 , S
(n0)
2 ) and (S1, S2) satisfy the requirements of Theorem 3.6 which gives us

that

MR(S(n0)
1 , . . . , S

(n0)
k , A) =MR(S(n0)

1 , S
(n0)
2 , A) [by assumption]

≤ (1 + ε) · MR(S1, S2, A) [by Theorem 3.6]
≤ (1 + ε) · MR(S1, . . . , Sk, A) .

Regarding the running time we observe that the algorithm begins with a for loop that
repeats n times. In each iteration the algorithm computes A(m) in time O(n), executes
algorithm SOL(A(m), m) in time O(nc1a′c2

m ) and finally it has to evaluate MR(S′
1, . . . ,

S′
k, A) andMR(S∗

1 , . . . , S∗
k , A). This evaluation takes time O(k2) = O(n2) due to k ≤ n

(because S1, . . . , Sk are disjoint). So one iteration takes time O(max(nc1a′c2
m , n2)), and

Algorithm 3 takes, in total, O(max(nc1+1a′c2
m , n3)).

We will prove that the value a′
m which we use in each iteration is polynomially

bounded by n and 1/ε. Indeed, a′
m = bam/δc = b3nam/εamc ≤ 3n/ε. Hence the

running time is O(poly(n, 1/ε)) proving that Algorithm 3 is an FPTAS for problem P.
Finally, by replacing a′

m by O(n/ε) the running time of the statement follows.

We will now present an algorithm that approximates P using the algorithm for P ′.
We will denote the algorithm that returns the exact solution for P ′ by SOL(A, m).



72 CHAPTER 3. SUBSET-SUMS RATIO AND VARIANTS

Algorithm 3 FPTAS for the problem P [SOLapx,P(A) function]
Input: A set A = {a1, . . . , an}, ai ∈ R+.
Output: Sets with max ratio (1 + ε) to the optimal max ratio for the problem P.

1: (S∗
1 , . . . , S∗

k)← {∅, . . . , ∅}
2: for m← 1 to n do
3: δ ← εam

3n

4: A(m) ← ∅
5: for i← 1 to n do
6: a′

i ← bai
δ c

7: A(m) ← A(m) ∪ {a′
i}

8: end for
9: (S′

1, . . . , S′
k)← SOL(A(m), m)

10: if MR(S′
1, . . . , S′

k, A) ≤MR(S∗
1 , . . . , S∗

k , A) then
11: (S∗

1 , . . . , S∗
k)← (S′

1, . . . , S′
k)

12: end if
13: end for
14: return (S∗

1 , . . . , S∗
k)

In the next section we will give some examples of how this framework works by using
Theorem 3.10 to find an FPTAS algorithm for certain problems.

3.8 2-Set SSR and Factor-r SSR
In this section we consider two variants of SSR, the 2-Set SSR and the Factor-
r SSR. In particular, we use the previous presented framework in order to give an
FPTAS for the first problem and then we show that the same FPTAS can be used in
order to approximate the second. To the best of our knowledge, there are no previous
approximation schemes for these problem. We must note that faster approximation
algorithms may exist for these problems but it is not the goal of this section to find the
fastest possible algorithms.

3.8.1 FPTAS for 2-Set SSR
We begin this section by showing that 2-Set SSR belongs to F -SSR. To do so, we
match this problem with a problem (I,F ,M,G) in F -SSR. If we let the set of instances
I contain sets of positive numbers A = {a1, . . . , a2n} = {a1, . . . , an, b1, . . . , bn}, and
the set of feasible solutions F contain all the pairs of sets (S1, S2) such that S1 ⊆
{1, ..., n}, S2 ⊆ {n + 1, ..., 2n}, ∄ (i, j) such that i ∈ S1, j ∈ S2 with i ≡ j (mod n), the
objective M = MR(S1, S2, A)) and the goal function G = min, then the 2-Set SSR
problem coincides with (I,F ,M,G) which is a problem in F -SSR.

Now we shall present a pseudopolynomial time algorithm that finds an optimal solu-
tion for Semi-Restricted 2-Set SSR. Our algorithm employs two separate algorithms
for two different cases.
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Algorithm 4 Semi-Restricted 2-Set SSR solution [SOL(A, m) function]
Input: a set A = {a1, . . . , a2n}, ai ∈ Z+, and an integer m, 1 ≤ m ≤ 2n.
Output: the sets of an optimal solution for Semi-Restricted 2-Set SSR.

1: S′
1 ← ∅, S′

2 ← ∅, Smin ← ∅, Smax ← ∅
2: if m ≤ n then
3: (p, p′)← (0, n)
4: else if n < m ≤ 2n then
5: (p, p′)← (n, 0)
6: end if
7: Smin ← {i | i ∈ {1, . . . , n} and ai+p ≤ am}∖ {m− p}
8: Smax ← {i | i ∈ {1, . . . , n} and ai+p′ ≥ am}∖ {m− p + p′}
9: if Smax 6= ∅ then

10: (S1, S2)← SOLCase1(A, m, Smin, Smax)
11: (S′

1, S′
2)← SOLCase2(A, m, Smin, Smax)

12: if MR(S1, S2, A) <MR(S′
1, S′

2, A) then
13: (S′

1, S′
2)← (S1, S2)

14: end if
15: end if
16: return S′

1, S′
2

We continue with the presentation of the algorithms SOLCase1(A, m, Smin, Smax) and
SOLCase2(A, m, Smin, Smax). Let us first define a function that will simplify their pre-
sentation.

Larger Total Sum Tuple selection (LTST). Given two tuples v⃗1 = (S1, S2, x) and
v⃗2 = (S′

1, S′
2, x′) we define the function LTST(v⃗1, v⃗2) as follows:

LTST(v⃗1, v⃗2) =
{

v⃗2 if v⃗1 = (∅, ∅, 0) or x′ > x,
v⃗1 otherwise .

We use this function to compare the sum of the sets S1 ∪ S2 and S′
1 ∪ S′

2 i.e.

x =
∑

i∈S1∪S2

ai and x′ =
∑

i∈S′
1∪S′

2

ai

The next algorithm deals with Case 1. In Case 1 the solution contains an element of
weight greater than the sum of weights of all elements of the other set. In this case the
set with the largest total weight contains only one element and the other set contains
all the allowed elements.
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Algorithm 5 Case 1 solution [SOLCase1(A, m, Smin, Smax) function]
Input: a set A = {a1, . . . , a2n}, ai ∈ Z+ and an integer m, 1 ≤ m ≤ 2n and

Smin, Smax ⊆ {1, ..., n}.
Output: Case 1 optimal solution for Semi-Restricted 2-Set SSR.

1: S′
1 ← ∅, S′

2 ← ∅
2: if m ≤ n then
3: p← 0, p′ ← n
4: else
5: p← n, p′ ← 0
6: end if
7: Q← am +

∑
i∈Smin

ai+p

8: for all i ∈ Smax and ai+p′ > Q do
9: a← 0

10: if i ∈ Smin then
11: a← ai+p

12: end if
13: if ai+p′/(Q− a) <MR(S′

1, S′
2, A) then

14: S ← {j + p | j ∈ Smin or j = m− p}∖ {i + p}
15: (S′

1, S′
2)← (S, {i + p′})

16: end if
17: end for
18: return S′

1, S′
2

In Case 2 we consider that the largest weight element does not dominate the sum
of the weights of the second set. In this case we create a 3-dimensional matrix whose
first dimension represents the elements we have already used, the second represents the
difference of the set sums and the third is rather technical and it used to ensure that we
will not overwrite tuples that have desired properties. In the cells of the table we store
the two sets of indices and the total sum of their weights. Moreover, when the third
coordinate has value 1, this means that these sets could be a part of a feasible solution.

Algorithm 6 Case 2 solution [SOLCase2(A, m, Smin, Smax) function]
Input: a set A = {a1, . . . , a2n}, ai ∈ Z+ and an integer m, 1 ≤ m ≤ 2n and

Smin, Smax ⊆ {1, ..., n}.
Output: Case 2 optimal solution for Semi-Restricted 2-Set SSR.

1: S′
1 ← ∅, S′

2 ← ∅
2: if m ≤ n then
3: p← 0, p′ ← n
4: else
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5: p← n, p′ ← 0
6: Q← am +

∑
i∈Smin

ai+p

7: T [i, d, l]← {∅, ∅, 0}, ∀ (i, d, l) ∈ {0, . . . , n} × {−2 ·Q, . . . , Q} × {0, 1}
8: T [0, am, 0]← ({m}, ∅, am)
9: end if

10: for i← 1 to n do
11: for all (d, l) ∈ {−2 ·Q, . . . , Q} × {0, 1}
12: (S1, S2, x)← T [i− 1, d, l] do
13: T [i, d, l]← LTST(T [i, d, l], T [i− 1, d, l])
14: d′ ← d + ai+p

15: if i ∈ Smin then
16: T [i, d′, l]← LTST(T [i, d′, l], (S1 ∪ {i + p}, S2, x + ai+p))
17: end if
18: d′ ← d− ai+p′

19: if i ∈ Smax and d′ ≥ −2 ·Q then
20: T [i, d′, 1]← LTST(T [i, d′, 1], (S1, S2 ∪ {i + p′}, x + ai+p′))
21: else if i /∈ Smax and d′ ≥ −2 ·Q then
22: T [i, d′, l]← LTST(T [i, d′, l], (S1, S2 ∪ {i + p′}, x + ai+p′))
23: end if
24: end for
25: end for
26: for d← −2 ·Q to Q do
27: (S1, S2, x)← T [n, d, 1]
28: if MR(S1, S2, A) <MR(S′

1, S′
2, A) then

29: S′
1 ← S1, S′

2 ← S2
30: end if
31: end for
32: return (S′

1, S′
2)

Theorem 3.11. The Algorithm 4 returns an optimal solution for the semi restricted
version of 2-Set SSR.

In order to prove this theorem we need to notice that, for all i ∈ [n], the algorithm
produce all the differences of sums from subsets of {a1, . . . , ai, an+1, . . . , an+i} ∪ {am}
by adding the ai or an+i to the differences of the sums can be achieved from the set
{a1, . . . , ai−1, an+1, . . . , an+i−1} accordingly. The complete proof of this theorem is rather
technical and can be found in the appendix.

Theorem 3.12. Algorithm 4 runs in time O(n2 · am).

Proof. Observe that in Algorithm 4 we initialize our variables and we select Smin and
Smax according to m. These selections take time O(n). Then we execute Algorithm 5
and Algorithm 6. Algorithm 5 runs in O(n) due to the fact that the cardinality of
Smax can not be greater than n. Furthermore in Algorithm 6 we fill a matrix with size
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n × 3Q × 2 and by using a suitable data structure, we can store the sets in time (and
space) O(1) per cell. This implies that Algorithm 6 runs in O(nQ). Last, is easy to
see that Q = am +

∑
i∈Smin

ai+p and ai ≤ am for every ai this sum which gives us that
Q ≤ nam. So the Algorithm 4 runs in time O(n2 · am).

Since Algorithm 4 is a pseudopolynomial time algorithm for the Semi-Restricted
2-Set SSR which solves the instances with integer values and runs in time O(n2 · am),
by using Theorem 3.10 we get that 2-Set SSR admits an FPTAS that runs in time
O(n4/ε). Therefore, the following theorem holds.

Theorem 3.13. For 2-Set SSR and for every ε ∈ (0, 1) we can find an (1 + ε) approx-
imation solution in time O(n4/ε).

3.8.2 Approximation of Factor-r SSR

In this section we use the FPTAS we design for the 2-Set SSR in order to approximate
another variation of SSR, the Factor-r SSR.

Before we approximate this problem we prove that it belongs to F -SSR. We identify
Factor-r SSR with a problem (I,F ,M,G) in F−SSR, by letting the set of instances
I contain sets of positive numbers A = {a1, . . . , a2n} = {a1, . . . an, r ·a1, . . . , r ·an} with
ai ∈ Z+ for i ∈ {1, . . . , n}, r ∈ R, the set of feasible solutions F contain all pairs of sets
(S1, S2) such that S1 ⊆ {1, ..., n} and S2 ⊆ {n + 1, ..., 2n} and ∀ (i, j), i ∈ S1 ∧ j ∈ S2 ⇒
i + n 6= j, the measure be M =MR(S1, S2, A)), and the goal function be G = min.

Notice that we can modify the input of Factor-r SSR in order to solve it using 2-
Set SSR. Specifically, an optimal solution for Factor-r SSR with input ({a1, . . . , an}, r)
and an optimal solution of 2-Set SSR with input A = {(a1, r · a1) . . . , (an, r · an)} are
the same. Furthermore, when considering the above inputs, there exists a bijection
from feasible solutions for 2-Set SSR to the feasible solutions of Factor-r SSR. So
if we find an (1 + ε) approximating solution for the 2-Set SSR problem with input
A = {(a1, r · a1) . . . , (an, r · an)} then this is an (1 + ε) approximating solution for
Factor-r SSR.

3.9 Conclusions
The first part of this chapter, apart from the introduction of a new FPTAS for the
Subset-Sums Ratio problem, we establish a connection between Subset Sum and
approximating Subset-Sums Ratio. In particular, we showed that any improvement
Subset Sum will result in an improved FPTAS for Subset-Sums Ratio. In the second
half, we presented a framework that can yield FPTASs for a large spectrum of problems
that have weights in their input, an optimization function and some restrictions.

As a direction for future research, we consider the use of exact Subset Sum or Parti-
tion algorithms parameterized by a concentration parameter β, as described in [16, 17],
where they solve the decision version of Subset Sum. See also [76] for a use of this
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parameter under a pseudopolynomial setting. It would be interesting to investigate
whether analogous arguments could be used to solve the optimization version.

Finally, since the framework we presented for problems in F -SSR requires the ex-
istence of a pseudopolynomial time algorithms, it would be interesting to study the
restrictions that guarantee the existence of a such algorithms for these problems.
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Chapter 4

Upper Tolerant Edge Cover

4.1 Introduction
In this chapter we define and study tolerant edge cover problems. An edge cover of a
graph G = (V, E) without isolated vertices is a subset of edges S ⊆ E which covers
all vertices of G, that is, each vertex of G is an endpoint of at least one edge in S.
The edge cover number of a graph G = (V, E), denoted by ec(G), is the minimum size
of an edge cover of G and it can be computed in polynomial time (see Chapter 19
in [175]). An edge cover S ⊆ E is called minimal (with respect to inclusion) if no proper
subset of S is an edge cover. Minimal edge cover is also known in the literature as an
enclaveless set [176] or as a nonblocker set [71]. While a minimum edge cover can be
computed efficiently, finding the largest minimal edge cover is NP-hard [149], where it is
shown that the problem is equivalent to finding a dominating set of minimum size. The
associated optimization problem is called upper edge cover (and denoted Upper EC)
[13] and the corresponding optimal value, for a graph G = (V, E), will be denoted by
uec(G).

Here, we are interested in minimal edge cover solutions tolerant to the failures of at
most r− 1 edges. Formally, given an integer r ≥ 1, an edge subset S ⊆ E of G = (V, E)
is a tight r-tolerant edge-cover (r-tec for short) if the deletion of any set of at most r− 1
edges from S maintains an edge cover1 and the deletion of any edge from S yields a
set which is not a (tight) r-tolerant edge cover. Equivalently, we seek an edge subset S
of G such that the subgraph (V, S) has minimum degree r and it is minimal with this
property. For the sake of brevity we will omit the word ‘tight’ in the rest of the chapter.
Note that the case r = 1 corresponds to the standard notion of minimal edge cover.

As an illustrating example consider the situation in which the mayor of a big city seeks
to hire a number of guards, from a security company, who will be constantly patrolling
streets between important buildings. An r-tolerant edge cover reflects the desire of the
mayor to guarantee that the security is not compromised even if r−1 guards are attacked.
Providing a maximum cover would be the goal of a selfish security company, who would

1It might be more intuitive to call such an edge cover (r − 1)-tolerant, but for simplicity and due to
the fact that each vertex has at least degree r in the cover, we have chosen to use the term r-tolerant.
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like to propose a patrolling schedule with as many guards as possible, but in which all
the proposed guards are necessary in the sense that removing any of them would leave
some building not r-covered.

Related Work Upper EC has been investigated intensively during recent years,
mainly using the terminologies of spanning star forests and dominating sets. A domi-
nating set in a graph is a subset S of vertices such that any vertex not in S has at least
one neighbor in S. The minimum dominating set problem (denoted MinDS) seeks the
smallest dominating set of G of value γ(G). We have the equality uec(G) = n − γ(G)
[149].

Thus, using the complexity results known for MinDS, we deduce that Upper Edge
Cover is NP-hard in planar graphs of maximum degree 3 [94], chordal graphs [39]
(even in undirected path graphs, the class of vertex intersection graphs of a collection of
paths in a tree), bipartite graphs, split graphs [30] and k-trees with arbitrary k [62], and
it is polynomial in k-trees with fixed k, convex bipartite graphs [70], strongly chordal
graphs [81]. Concerning the approximability, an APX-hardness proof with explicit in-
approximability bound and a combinatorial 0.6-approximation algorithm is proposed in
[165]. Better algorithms with approximation ratio 0.71 and 0.803 are given respectively
in [53] and [15]. For any ε > 0, Upper Edge Cover is hard to approximate within
a factor of 259

260 + ε unless P=NP [165]. The weighted version of the problem, denoted
as Upper Weighted Edge Cover, have been recently studied in [130], in which it is
proved that the problem is not O( 1

n1/2−ε ) approximable nor O( 1
∆1−ε ) in edge weighted

graphs of order n and maximum degree ∆.

Related notions of dominating sets are introduced in the literature under the name
r-tuple domination [18, 85, 91, 101, 107, 133], and r-domination [51, 85]. A set S ⊆ V is
called a r-tuple dominating set of G = (V, E) if for every vertex v ∈ V , |NG[v] ∩ S| ≥ r.
The minimum cardinality of a r-tuple dominating set of G is called r-tuple domination
number and usually denoted by γ×r(G). The case r = 2 is often called the double
domination number [101]. Complexity and approximation results on γ×r(G) are given in
[18, 133, 142] where it is proved that for any r ≥ 2 fixed the problem is APX-complete in
graphs of maximum degree r + 2 [133], NP-hard in split graphs and bipartite graphs for
any r ≥ 1 [142] and it admits a PTAS for unit disk graphs [18]. Finally, the upper r-tuple
domination number2 of a graph G has been recently investigated in [48] where an upper
bound on this quantity for regular graphs is presented, with together a characterization
of extremal graphs achieving this upper bound depending on parameter r. The particular
case r = 1, corresponding to the upper domination number (denoted uds(G) here but
also known as Γ(G)), has been proved NP-hard in [55] and extensively studied from
complexity and approximability point of view in [22].

Our Contribution In Section 4.3 we present several properties of r-tec solutions and
of the ecr and uecr values in graphs. Furthermore, we give a characterization of r-tec

2The maximum cardinality of a minimal r-tuple dominating set of G.
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solutions based on the γ(G) and γ2(G) values of graphs, where we have equality between
uec and uec2 values.

In Section 4.4, we provide several complexity results. More specifically, for the Dou-
ble Upper EC we show that it is NP-hard in cubic planar graphs and split graphs and
for the general Upper r-EC we show that it is NP-hard in r-regular bipartite graphs.
Furthermore, we show that the Upper (r + 1)-EC is NP-hard in graphs with maximum
degree ∆ + 1 if the Upper r-EC is NP-hard in graphs with maximum degree ∆ (and
this holds even for bipartite graphs).

In Section 4.5 we present some inapproximability results starting by proving that,
unless P=NP, Upper EC is not approximable within 593

594 in graphs of max degree 4 and
363
364 in graphs of max degree 5 (the previous known result was for graphs with maximum
degree 6). Furthermore, we present the first inaproximability results for the Double
Upper EC for graphs with maximum degree 6 and 9.

4.2 Preliminaries
Let G = (V, E) be a graph where the minimum degree is at least r ≥ 1, i.e., δ(G) ≥ r.
We assume r is a constant fixed greater than one (but all results given here hold even
if r depends on the graph). A r-degree edge-cover 3 is defined as a subset of edges
G′ = GS = (V, S), such that each vertex of G is incident to at least r ≥ 1 distinct edges
e ∈ S. As r-tolerant edge-cover (or simply r-tec) we will call an edge set S ⊆ E if it is a
minimal r-degree edge-cover i.e. if for every e ∈ S, G′−e = (V, S \{e}) is not an r-degree
edge-cover. Alternatively, δ(G′) = r, and δ(G′−e) = r−1. If you seek the minimization
version, all the problems are polynomial-time solvable. In particular, the case of r = 1
corresponds to the edge cover in graphs. The optimization version of a generalization
of r-EC known as the Min lower-upper-cover problem (MinLUCP), consists of,
given a graph G where G = (V, E) and two non-negative functions a, b from V such that
∀v ∈ V , 0 ≤ a(v) ≤ b(v) ≤ dG(v), of finding a subset M ⊆ E such that the partial graph
GM = (V, M) induced by M satisfies a(v) ≤ dGM

(v) ≤ b(v) (such a solution will be
called a lower-upper-cover) and minimizing its total size |M | among all such solutions
(if any). Hence, an r-EC solution corresponds to a lower-upper-cover with a(v) = r and
b(v) = dG(v) for every v ∈ V . MinLUCP is known to be solvable in polynomial time
even for edge-weighted graphs (Theorem 35.2 in Chapter 35 of Volume A in [175]). We
are considering two associated problems, formally described as follows.

r-EC
Input: A graph G = (V, E) of minimum degree r.
Solution: r-tec S ⊆ E of G.
Output: Minimize |S|.
3A different generalization of edge cover was considered in [83], requiring that each connected com-

ponent induced by the edge cover solution contains at least r edges. Clearly, if every vertex is incident
to at least r edges from the cover, then each connected component induced by the edge cover solution
contains at least r edges.



82 CHAPTER 4. UPPER TOLERANT EDGE COVER
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Figure 4.1: Graph G = (V, E) with 6 vertices and 11 edges is shown in (a); (b) and (c)
give a solution for 2-EC and Double Upper EC of size 6 and 8 respectively.

Upper r-EC
Input: A graph G = (V, E) of minimum degree r.
Solution: r-tec S ⊆ E of G.
Output: Maximize |S|.

For a graph G, the optimal values of r-EC and Upper r-EC will be denoted by ecr(G)
and uecr(G) respectively. In particular, ec1(G) = ec(G) and uec1(G) = uec(G). As
indicated above, ecr(G) can be computed in polynomial-time. In Fig 4.1, we illustrate
the difference between the problems r-EC and Upper r-EC for r = 2. Note that
throughout the chapter we will also use the term Double Upper EC to refer to Upper
2-EC.

An edge dominating set S ⊆ E of a simple graph G = (V, E) is a subset S of edges
such that for any edge e ∈ E of G, at least one edge of S is incident to e. The Edge
Dominating Set problem (EDS in short) consists in finding an edge dominating set
of minimum size; the optimal value of an edge dominating set is usually denoted eds(G).
EDS is known to be NP-hard in general graphs (problem [GT2] in [94]). It is well known
that the problem is equivalent to solve the problem consisting of finding a maximal
matching of G with minimum size. According to standard terminology, this problem is
also called lower matching (Lower EM in short).

4.3 Basic properties of r-tolerant solutions

The next property presents a simple characterization of feasible r-tec solution general-
izing the well known result given for minimal edge covers, i.e., 1-tec, affirming that S is
a 1-tec solution of G if and only if S is spanning and the subgraph (V, S) induced by S
is (K3, P4)-free.

Property 4.1. Let r ≥ 1 and let G = (V, E) be a graph with minimum degree δ ≥ r. S
is an r-tec solution of G if and only if the following conditions meet on GS = (V, S):
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(1) V = V1(S) ∪ V2(S) where V1(S) = {v ∈ V : dGS
(v) = r}

and V2(S) = {v ∈ V : dGS
(v) > r}.

(2) V2(S) is an independent set of GS.

Proof. Let r ≥ 1 be a fixed integer and let G = (V, E) be an instance of Upper r-EC,
i.e., a graph of minimum degree at least r. Let us prove the necessary conditions: if
S ⊆ E is an r-tec solution, then by construction, V = V1(S) ∪ V2(S) is a partition of
vertices with minimum degree r in S. Now, if uv ∈ S with u, v ∈ V2(S), then S − uv is
also r-tec which is a contradiction of minimality.

Now, let us prove the other direction. Consider a subgraph G′ = (V, S) induced by
edge set S satisfying (1) and (2). By (1) it is clear GS has minimum degree at least r.
If uv ∈ S, then by (2) one vertex, say u ∈ V1(S) because V2(S) is an independent set.
Hence, the deletion of uv leaves u of degree r − 1 in the subgraph induced by GS\{uv}
and then S is an r-tec solution.

Property 4.2. Let r ≥ 1, for all graphs G = (V, E) of minimum degree at least r, the
following inequality holds:

2ecr(G) ≥ uecr(G) (4.1)

Proof. For a given graph G = (V, E) with n vertices, let S∗ be an optimal solution of
Upper r-EC, that is |S∗| = uecr(G). Let (V ∗

1 , V ∗
2 ) be the associated partition related

to solution S∗ as indicated in Property 4.1. Using this characterization, we deduce
uecr(G) ≤ r|V∗

1| ≤ rn. On the other side, if G′ denotes the subgraph induced by a
minimum r-tec solution of value ecr(G), we get 2ecr(G) =

∑
v∈V dG′(v) ≥ rn. Combining

these two inequalities, the results follows.

In particular, inequality (4.1) of Property 4.2 shows that any r-tec solution is a
1
2 -approximation of Upper r-EC.
The next property is quite natural for induced subgraphs and indicates that the size of an
optimal solution of a maximization problem does not decrease with the size of the graph.
Nevertheless, this property is false in general when we deal with partial subgraphs; for
instance, for the upper domination number, we get uds(K3) = 1 < 2 = uds(P3). It turns
out that this inequality is valid for the upper edge cover number.

Property 4.3. Let G = (V, E) be a graph such that 0 < r ≤ δ(G). For every partial
subgraph G′ ⊆ G with δ(G′) ≥ r, the following inequality holds:

uecr(G) ≥ uecr(G′) (4.2)

Proof. Fix an integer r ≥ 1 and a graph G = (V, E) with δ(G) ≥ r. Let G′ = (V ′, E′)
with δ(G′) ≥ r be a partial subgraph of G, i.e., V ′ ⊆ V and E′ ⊆ E. Consider an upper
r-tec solution S′ of G′ with size |S′| = uecr(G′). We prove inequality (4.2) by starting
from S = S′ and by iteratively repeating the following procedure:
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1. Select a vertex v ∈ V with dGS
(v) < r and e = uv ∈ E \ S.

2. If u is covered less or more than r times by S, then S := S + e.

3. If vertex u is covered exactly r times by S, consider two cases:

(a) If every vertex u′ ∈ NGS
(u) has degree dGS

(u′) ≤ r, then S := S + e.
(b) Otherwise there exists a vertex u′ ∈ NGS

(u) with dGS
(u′) > r then S :=

S + e− u′u.

We repeat this process until every vertex of G is covered at least r times. Obviously,
this algorithm terminates because ∑v /∈V2(S) dGS

(v) increase at each iteration where we
recall V2(S) = {v ∈ V : dGS

(v) > r}. Since at each step, the size of S never decreases, we
only need to show that we end the process with a r-tec solution of the whole graph. In
order to prove that, we will show by induction that V2(S) is an independent set of GS for
each iteration. Using Property 4.1, we get an r-tec solution because V1(S) = V \ V2(S).
Initially V2(S) = V2(S′) is an independent set of GS because S′ is a r-tec solution of
G′. Assume it is true for iteration k and consider iteration k + 1. During step 2, V2(S)
remains unchanged in both cases dGS

(u) < r or dGS
(u) > r. So by induction the

result is valid. During step 3.(a), V2(S) := V2(S) + u, but V2(S) ∩ NGS
(u) = ∅; so

V2(S) remains an independent set of GS . During step 3.(b), V2(S) remains unchanged
if dGS

(u′) > r + 1, otherwise V2(S) := V2(S)− u′. Thus, V2(S) remains an independent
set of GS by induction. In conclusion, uecr(G) ≥ |S| ≥ |S′| = uecr(G′) and the property
holds.

We can prove a similar property for the size of a partial solution and the upper edge
cover number. More specifically, in a graph G = (V, E) a partial r-tec defined as a set
S ⊆ E such that the set V2(S) = {v ∈ V | dGS

(v) > r} is an independent set of GS .

Property 4.4. Let G = (V, E) be a graph such that 0 < r ≤ δ(G). If E′ ⊆ E is a partial
r-tec of G then the following inequality holds:

uecr(G) ≥ |E′| (4.3)

The proof of the above property is similar to Property’s 4.3 except that we will start
with S := E′.

Property 4.5. Let G = (V, E) and E′ ⊆ E be a solution for Upper r-EC of G then
for any 1 ≤ m < r we can find a set E′′ ⊆ E′ such that E′′ is a m-tec of G. Especially,
if m = r − 1 then E′ \ E′′ is a tec of G[V (E′ \ E′′)].

Proof. It is easy to find a m-tec of G that is a subset of E′ if we start from the graph GE′

which has minimum degree r. Any m-tec of GE′ is a m-tec of G. Now, if m = r− 1 and
G′ = G[V (E′ \E′′)] we will prove that E′ \E′′ is a tec of G′. In order to do this, we need
to show that the set V2 = {v ∈ V | dG′

E′\E′′
(v) > 1} is an independent set in G′

E′\E′′ . Let
u, v ∈ V2 be two vertices which are connected in G′

E′\E′′ and they have degree greater



4.3. BASIC PROPERTIES OF r-TOLERANT SOLUTIONS 85

than one. Then, because E′′ is a (r− 1)-tec of G, we know that the vertices u and v are
covered r− 1 so in E′ are covered at least r + 1 times and they are connected. This is a
contradiction because E′ is an a solution for Upper r-EC. So, if m = r−1 then E′ \E′′

is a tec of G[V (E′ \ E′′)].

Property 4.6. Let r ≥ 1. For all graphs G = (V, E) of minimum degree at least r, the
following inequality holds:

uecr(G) ≤ r · uec(G) (4.4)

Proof. Let E1 ⊆ E and Er ⊆ E be the solutions of Upper EC and Upper r-EC. By
Property 4.5 we can have a set E′ ⊆ E such that E′ is a (r−1)-tec and Er \E′ is a TEC
of G[V (Er \ E′)]. Then by Property 4.3 and because E′ is a (r − 1)-tec we have that:

uecr(G) = |E′|+ |Er \ E′| ≤ uecr−1(G) + uec(G) (4.5)

Therefore, by induction to r we will show that uecr(G) ≤ r · uec(G).

• Induction base: for r = 2 we have that uec2(G) ≤ 2uec(G).

• Induction hypothesis: for 0 < r′ < δ(G) we have uecr′(G) ≤ r′ · uec(G).

• Induction step: we will show that uecr′+1(G) ≤ (r′ + 1) · uec(G).

The induction step can be proved using the inequality 4.5 and the induction hypothesis:
uecr′+1(G) ≤ uecr′(G) + uec(G) ≤ r′ · uec(G) + uec(G) = (r′ + 1) · uec(G).

A well known relation between the domination number and the upper edge cover
number for any graph G with n vertices is the following:

uec(G) = n− γ(G).

The previous equation cannot be generalized for the r-domination number and the
r upper edge cover number in any graph. However, we can prove the next relation.

Property 4.7. Let r ≥ 1. For all graphs G = (V, E) with n vertices and minimum
degree at least r. The next inequality between uecr(G) and the r-domination number
holds:

uecr(G) ≥ r
(
n− γr(G)

)
Proof. In order to prove this we will start from a minimum r-dominating set S and we
will construct a partial r-tec of G. S dominates all the vertices in V \ S at least r times
so for each v ∈ V \S we can select u1, . . . , ur ∈ S such that vui ∈ E, ∀i = 1, . . . , r and we
construct the set Ev = {vui | i = 1, . . . , r}. We will prove that the set E′ =

∪
v∈V \S Ev

is a partial r-tec. Recall that a subset E′ of edges is a partial r-tec if in the graph GE′
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the set V2 = {v ∈ V | dGE′ > r} is an independent set. This property holds in our set
because we selected the edges in order to be incident to at least one vertex of degree
exactly r. So, by the Property 4.4 we have that uecr(G) ≥ |E′|. As for the size of E′ we
observe that for each vertex v ∈ V \ S we have used exactly r edges that are incident to
a vertex of S and both of those sets (V \ S and S) are independent in GE′ . So the size
of E′ is equal to r(n− |S|) which implies:

uecr(G) ≥ |E′| = r(n− γr(G))

.

In the next lemma we are interested in graphs where the equality between uec and
uecr holds.

Lemma 4.8. Let G = (V, E) be a graph such that 1 < r ≤ δ(G), then the following are
equivalent:

1. γr(G) = γ(G)

2. uecr(G) = r · uec(G)

Proof. Starting from a graph G were γr(G) = γ(G) we will prove that uecr(G) = r·uec(G).
In this case we have that:

r · uec(G) = r ·
(
n− γ(G)

)
= r ·

(
n− γr(G)

)
≤ uecr (by Prop. 4.7)

In addition, we have that r · uec(G) ≥ uecr(G) (by Prop. 4.6) so we proved that:

γr(G) = γ(G) =⇒ uecr = r · uec.

For the converse, let G = (V, E) be a graph such that uecr = r · uec, Er be a maximum
r-tec and E1 be a maximum tec. First suppose that there exists a partition of the
vertices V ′

1 ∪ V ′
2 = V such that for all v ∈ V ′

1 we have dGEr
(v) = r and both of V ′

1 , V ′
2

are independent in GEr . It is easy to see that V ′
2 is a r-dominating set of G because V ′

1
is independent in GEr so each vertex of it is dominated at least r times by the vertices
in V ′

2 . Therefore, because V ′
1 , V ′

2 are independent in GEr and for all v ∈ V ′
1 we have

dGEr
(v) = r we can conclude that |Er| = r · |V ′

1 |. This gives us the following:

uecr(G) = |Er| = r · |V′
1| = r(n− |V′

2|) ≤ r(n− γr(G)).

Because in Prop.4.7 we showed that uecr(G) ≥ r(n− γr(G)) we have that:

r(n− γr(G)) = uecr(G)r · uec = r(n− γ(G))

which implies that:
uecr = r · uec⇒ γr(G) = γ(G).
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Thus, in order to complete the proof we have to show that when the values uec and uecr
of a graph are equal then we always have a partition as the one described in the above
assumption. Assuming that there is no such partition then for any partition V ′

1 , V ′
2 such

that V ′
2 is independent, all the vertices v ∈ V ′

1 have degree dGEr
(v) = r and V ′

1 cannot be
independent. First we will show that, for the previous partition, the following property
holds:

if v ∈ V ′
1 then NGEr

(v) ⊈ V ′
1 .

Starting from V ′
1 := V1(Er) and V ′

2 := V2(Er) (see Prop. 4.1) we have to remove vertices
u ∈ V ′

1 such that NGEr
(v) ⊆ V ′

1 until we have the desired condition. So, we repeat the
following:

1. Select a vertex u ∈ V ′
1 such that NGEr

(u) ⊆ V ′
1 .

2. Set V ′
1 := V ′

1 − u and V ′
2 := V ′

2 + u.

We have to show that the previous process terminates when the desired properties
hold for V ′

1 and V ′
2 . It is easy to see this holds because whenever we remove a u ∈ V1

vertex such that NGEr
(u) ⊆ V ′

1 from it, we reduce, at least by one, the number of vertices
with this property in V ′

1 . Therefore, the remaining vertices u ∈ V ′
1 have dGEr

(u) = r
and the vertices in V ′

2 are independent in GEr .
Now, due to the assumption, we know that V ′

1 cannot be independent (in GEr ) and
for all u ∈ V ′

1 we have dGEr
(u) = r. This observation combined with the fact that V ′

2
is independent in GEr gives r · |V ′

1 | > Er. Furthermore, because each vertex in V ′
1 has

at least one neighbor in V ′
2 we can select one edge for each vertex of V ′

1 adjacent to a
vertex in V ′

2 . The set which consists of this edges is a partial tec of size |V ′
1 | so by the

Prop. 4.4 we have uec ≥ |V′
1|. This gives us:

Er < r · |V ′
1 | ≤ r · uec

which is a contradiction because we have uecr = r · uec.

A known relation between the domination number and the r-domination number is:

γr(G) ≥ γ(G) + r − 2

so, by the above relation and the lemma 4.10 we can conclude the following:

Corollary 4.9. There is no graph G such that uecr = r · uec(G) for any r ≥ 3.

Now, we will present some graphs where the equation uec2 = 2uec holds. It is easy
to see that the smallest graph in which this relation holds is C4. Conversely, we have
the following lemma.

Lemma 4.10. For any graph G = (V, E) with |V | = n ≥ 4 if uec2(G) = 2uec(G) then
|E(G)| ≤ n(n−2)

2 when n is even and |E(G)| ≤ n(n−2)−1
2 when n is odd.
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Proof. By the lemma 4.8 we know that the eq. uec2(G) = 2uec(G) is equivalent to
γ2(G) = γ(G). It is obvious that in order to dominate twice every vertex we need at
least two vertices, therefore γ2(G) ≥ 2. So, we need to show that if n is even (resp.
odd) we have to remove from a clique at least n

2 edges (resp. n+1
2 edges) in order the

domination number to be at least two.
If the domination number is at least two we know that for any vertex v ∈ V there

exists another vertex u ∈ V such that uv /∈ E. This means that every vertex have degree
at most n− 2, so:

|E| =
∑
v∈V

d(v) ≤ n(n− 2)
2

.

This completes the case when n is even. In the case when n is odd the previous bound
is not an integer so the real bound is the greatest integer which is smaller than n(n−2)

2 ,
so n(n−2)−1

2 .

We will show that the previous upper bounds are tight. Let G = (V, E) = Kn be
a clique of size n. First we construct a maximum matching M ⊆ E of G; if n is even
then the graph GM has γ2(GM ) = γ(GM ) and the number of edges in GM is equal
to n(n−1)

2 − |M | = n(n−1)
2 − n

2 = n(n−2)
2 . In the case when n is odd any maximum

matching covers n − 1 vertices. Let v ∈ V be the vertex that is not covered by the
matching M . Then the only dominating set of GM of size one is the {v}. Therefore
if we remove any edge incident to v, let uv ∈ E be that edge, then in GM−uv we have
γ2(GM−uv) = γ(GM−uv) and the number of edges in GM−uv are equal to n(n−1)

2 −|M |−
1 = n(n−1)

2 − n+1
2 = n(n−2)−1

2 .

4.4 Complexity results
In this section we provide several complexity results for the Double Upper EC and
the Upper r-EC in some graph classes as regular graphs and split graphs.

Theorem 4.11. Let G = (V, E) be an (r + 1)-regular graph with r ≥ 2. Then,

uecr(G) = |E| − eds(G). (4.6)

Proof. In order to prove this equation, first we will show that if S ⊆ E is a r-tec of G,
then S = E \ S is an edge dominating set of G. Let (V1, V2) be the associated partition
related to S. By the Property 4.1 we know that V2 is an independent set. Because
our graph is (r + 1)-regular, it is easy to see that ∀v ∈ V1, dGS

(v) = r and ∀u ∈ V2,
dGS

(u) = r + 1. This observation gives us that the set S covers each vertex of V1 (they
have degree r) and that all the edges in E are incident to a vertex in V1 (because V2 is
an independent set). So, S is an edge dominating set.

Conversely, let S be a solution of EDS. We will show that there exists a r-tec of size
|S|. Because EDS is equivalent to Lower EM, we consider the edge set S as a maximal
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matching. Now, let V ′ = V \ V [S]. Observe that V ′ is an independent set in G and
each vertex v ∈ V ′ has dG

S
(v) = r + 1. The first holds because if there exists an edge

e between two vertices of V ′ then S ∪ {e} will be a matching with size greater than S,
which contradicts the maximality of S. The second holds because the edges in S are not
incident to vertices of V ′ by definition, and thus, all the edges in S are incident to at
least one vertex in V [S]. Finally, because S is a matching we have that all the vertices in
V [S] have degree r in GS so by the property 4.1, S is a r-tec. So the Eq. (4.6) holds.

Corollary 4.12. Upper r-EC is NP-hard in (r + 1)-regular bipartite graphs.

Proof. Using the NP-hardness proof of EDS in r-regular bipartite graphs given in [73],
the results follows from Theorem 4.11.

Corollary 4.13. Double Upper EC is NP-hard in cubic planar graphs.

Proof. Using the NP-hardness proof of EDS for cubic planar graphs given in [116], the
results follows from Theorem 4.11.

Theorem 4.14. Upper (r + 1)-EC is NP-hard in graphs of maximum degree ∆ + 1
if Upper r-EC is NP-hard in graphs of maximum degree ∆, and this holds even for
bipartite graphs.

Proof. Let G = (V, E) be a bipartite graph of max degree ∆. For our reduction we will
construct a new graph G′ = (V ′, E′) by starting from r + 1 copies of the graph G. Let
Gi = (Vi, Ei), i = 1, . . . , r + 1 be the copies G. Then for each vertex v ∈ V we add a
new vertex uv in G′ and we connect it with each one of the r + 1 copies, v1, v2, . . . , vr+1,
of the vertex v. It is obvious by the construction that the new graph remains bipartite
(see Fig. 4.2).

Now, we claim that the relation between uecr(G) and uecr+1(G′) is the following:

uecr+1(G′) = (r + 1)
(
n + uecr(G)

)
(4.7)

In order to prove this first we have to observe that all the vertices of the set U =
{uv | v ∈ V } ⊂ V ′ have degree exactly r + 1 in G′ (by construction) so we need all the
edges that are incident to them in any (r + 1)-tec of the G′. Furthermore, because U
is independent and has size equal to V we have that the number of the edges that are
incident to U is n(r + 1). Let EU be the set of those edges.

Now we will show that from an upper r edge cover S of G we can construct an (r+1)-
tec of G′ with size uecr+1(G′) = (r+1)(n+uecr(G)). If in each Gi we select the edges that
are copies of those in S (let us call Si this sets) then we claim that S′ =

∪k+1
i=1 Si ∪ EU

is an (r + 1)-tec of G′. Is easy to see that this set covers each vertex in U exactly r + 1
times by the set EU and each vertex vi ∈ Vi at least r time from the Si and exactly once
from the edge viuv ∈ EU . It remains to show that the set V ′

2(S′) is an independent set of
G′

S′ (see property 4.1). The only vertices in V ′
2(S′) are the one that had degree greater

than r in each (Vi, Si) (all the other vertices have degree r + 1 in G′
S′) but this vertices

must be independent because either the belong to different copies of G or, if they belong
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G1
L1 R1

v1 w1

...
...

...

Gn

Ln Rn

v1 w1

...
...

U1 U2

uv uw

...
...

Figure 4.2: If we call Ri and Li the right and left parts of the bipartite graph Gi for all
i = 1, . . . , n then we can observe that the vertices of U (U = U1 ∪ U2) been connected
either only to the right or only to the left vertices. So the new graph is bipartite

to the same copy, they belong to the independent set of an upper r edge cover. So we
have that:

uecr+1(G′) ≥ S′ = (r + 1)(n + uecr(G))

Now we will prove the converse. Let S′ be an upper (r+1) edge cover of G′ then S′ ⊇ EU

because otherwise we could not cover all the vertices of U r +1 times. We claim that the
set S′ \EU cannot has size |S′ \EU | ≥ (r + 1)uecr(G).In order to prove this, first observe
that EU is an tec of G′ because it covers every vertex at least once and the vertices
with degree greater that one are all in U which is independent set. Observe that all
the vertices in ∪k+1

i=1 are incident to exactly one edge of EU . Furthermore, we have that
S′\EU is a r-tec of G′

V ′[S′\EU ] because all vertices in V ′[S′\EU ] with degree greater than
r are independent (otherwise we could have two adjacent vertices with degree greater
that r + 1 in G′

S′) and all the other covered exactly r times (they covered r + 1 by
S′). Therefore, because the remaining graph (G′

V ′[S′\EU ]) consisted only by the r + 1
copies of G we can separate S′ \ EU in r + 1 r-tec, one for each copy if G. Due to that
|S′ \ EU | ≤ (r + 1)uecr(G) so:

uecr+1(G′) = |S′ \ EU|+ |EU| ≤ (r + 1)uecr(G) + n(r + 1).

It remains to show that the new graph has greater maximum degree than than the
original by one. Indeed, this holds because in the copies of G the maximum degree
is ∆ + 1 (we added one edge to each vertex of each cope of G) and the degree of the
vertices of U is exactly r + 1 so ∆(G′) = max{∆ + 1, r + 1} = ∆ + 1 (we can assume
that ∆ ≥ r).
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u4

u3

u5

u1

u2

...

v∗
1

v∗
2

v∗
n

Kn+2

Independent Set VIS

V ′

V ′′

Figure 4.3: We add the all the edges between the vertices of the set V ∗ ∪ {u1, u2} in
order to be a clique. The dashed edges represent the edges between the sets V ∗ and
V ′ ∪V ′′ (VIS). A vertex v′

1 ∈ V ′ adjacent to a vertex v∗
2 ∈ V ∗ if v1v2 ∈ E in the starting

graph and to the vertex v1∗ ∈ V ∗; the same holds for the vertices in V ′′.

Remark. Observe that the reverse direction of the proof applies to any (r + 1)-tec of
G′. So starting from an (r + 1)-tec of G′ we can construct an r-tec of G by checking
the r-tec of the copies of G in G′. Furthermore, if we select the greater one we have the
following relation:

|r-tec(G)| ≥ 1
r + 1

|(r + 1)-tec(G′)| − n

Theorem 4.15. Double Upper EC is NP-hard in split graphs.

Proof. The proof is based on a reduction from the 2-tuple dominating set. Let G = (V, E)
be an instance of 2-tuple dominating set; using this instance we will construct a split
graph G′. First, for every vertex v ∈ V we make three copies v∗, v′, v′′ (e.i. three copies
of V : V ∗, V ′ and V ′′) and for each vertex u ∈ N [v] we add the edges v∗u′, v∗u′′ (so, we
contain the edges v∗v′ and v∗v′′ in the new graph). After that we construct a K3,2 and
in the end we add edges in order to make a complete graph with the vertices of V ∗ and
the two vertices of the one side of K3,2 (Fig 4.3). From now on let VIS = V ′ ∪ V ′′.

Now we will prove that for a the minimum 2-tuple dominating S set of G and a
maximum 2-tec of G′ holds the following:

uec2(G′) = 8n− 2γ×2(G) + 6 (4.8)

Let S be a minimum 2-tuple dominating set of G. Using S we will construct an 2-tec
E′ for G′. For any vertex v ∈ V we will select two vertices w1, w2 ∈ S that dominates it
(there exist because S is a 2-tuple dominating set); then we will put in E′ all the edges
w∗

1v′, w∗
1v′′, w∗

1v′′′, w∗
2v′, w∗

2v′′ and w∗
2v′′′ of G′ (by the construction we are sure that we

have all the needed edges). By repeating this process for all the vertices of G we ending
with a set of edges E′ which covers all the vertices in VIS twice. Except that, E′ covers
more that twice all v∗ ∈ V ∗ such that v ∈ S because S is minimum which means that
for all v ∈ S there exists a vertex w ∈ V that is not dominated second time without
v so we have used at least two edges adjacent to it (one for w′ and one for w′′). Now
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for all v ∈ V \ S we add to E′ the edges v∗u1 and v∗u2 in order to cover the remaining
vertices of V ∗. Finally we add all the edges between u1, u2 and u3, u4, u5. We claim
that E′ is a 2-tec of G′ with size 8n − 2|S| + 6. Is easy to see that we cover all the
vertices at least twice by the construction of E′; so we have to prove that we cannot
remove any edge from it. Let V1(E′) and V2(E′) to be the associated partition related
to E′ (see property 4.1). We have to show that V2(E′) is independent set of G′

E′ . Let
S∗ = {v∗ ∈ V ∗ | v ∈ S} then is easy to see that V2(E′) ⊆ S∗ +u1 +u2 because for all the
other vertices we have use exactly two edges. Then, because we have not use any edges
between the vertices of the set S∗ + u1 + u2 in E′ we have that V2(E′) is independent.

For the size of E′ we have 2(3n) edges that cover the vertices of VIS and {v∗ | v ∈ S},
six edges between u1, u2 and u3, u4, u5 and 2(n − |S|) edges for the vertices v ∈ V \ S.
In total, |E′| = 8n− 2|S|+ 6. So we have that:

uec2(G′) ≥ 8n− 2|S|+ 6

Now we have to show the converse. Let E′ be an optimal solution of Double Upper
EC of G′; using E′ we will construct a 2-tuple dominating set of G (not necessarily
minimum). In order to prove this we will need to construct from E′ an other optimal
solution that has some specific properties. Before we start, observe that if need to cover
any vertex v ∈ V ∗ we can always use the edges u1v and u2v because u1 and u2 are
covered at least three times in any solution. First we will prove that:

• For any optimal solution of Double Upper EC E′ there exists an equivalent
solution E′′ such that |E′| = |E′′| and for any vertex v ∈ VIS we have dG′

E′′
(v) = 2.

This can be proved easily because if there exists a vertex v ∈ VIS with degree three or
more in our solution then we will remove an edge which is incident to v from E′ and we
will add an other edge in order to keep the size of our solution the same. Let e = uv
be the edge that we want to remove. We know that u ∈ V ∗ (by the construction of G′)
and it is covered only once by E′ − e (otherwise E′ wouldn’t be minimal). That means
that we have to cover the vertex u once more. For that, we can use one of the edges u1u
or u2u because we know that there are not both in our solution (like we said, u covered
once by E′− e) and the degree of both of u1, u2 is greater than two in any solution. Let
u1u be the new edge, then E′′ = (E′ − e + u1u is an optimal solution. If we repeat the
process we will have a solution without vertices v ∈ VIS with degree three or more. Now
we will prove that:

• For any optimal solution E′ of Double Upper EC there exists an equivalent
solution E′′ such that |E′| = |E′′| and there is no edge uv ∈ E′′ with both u, v ∈ V ∗.

Let us say that there exists uv ∈ E′ such that u, v ∈ V ∗. That means that at least one
of u, v has degree two in our solution. If both of them are degree two then, like before,
we can remove uv from our solution and add one of u1u, u2u in order to cover u and one
of u1v, u2v in order to cover v. This cannot be happened because the new solution will
be greater than the starting and we have assumed that we start from an optimal. So, we



4.4. COMPLEXITY RESULTS 93

have only one of u, v to be degree two in our solution, let v be that vertex. If we remove
the edge uv from E′ we have to cover only v and we can do it by adding one of u1v, u2v
and we keep the same size of solution. By repeating the process we can construct the
wanted solution. The third property that is needed for our solution is the following:

• For any optimal solution E′ of Double Upper EC there exists an equivalent
solution E′′ such that |E′| = |E′′| and ∀v ∈ V ∗ either NG′

E′′
(v) = {u1, u2} or

NG′
E′′

(v) ⊆ VIS .

By starting from any optimal solution we are constructing a new one that keeps both
the first two properties; let E′ be that solution. By the second property we do not have
edges between vertices of V ∗ in the solution so, if there exists a vertex such that neither
NGE′ (v) = {u1, u2} nor NGE′ (v) ⊆ VIS then for v we must have the following three
properties:

1. NG′
E′

(v) ∩ VIS 6= ∅

2. NG′
E′

(v) ∩ {u1, u2} 6= ∅

3. (NG′
E′

(v) ∩ VIS) ∪ (NG′
E′

(v) ∩ {u1, u2}) = NG′
E′

(v)

It is easy to realize that the degree of v must be exactly two, otherwise we could remove
the edge between v and the set {u1, u2} that used in our solution. Now, w.l.o.g. let
NG′

E′
(v) = {u1, u′} for some u′ ∈ V ′. In order to change the neighborhood of v, we will

remove the edge vu′ and we will add vu2. After this the neighborhood of v is {u1, u2}
but u′ is covered only once (by the first property). Let u′′ ∈ V ′′ be the copy of u′ and
NG′

E′
(u′′) = {v1, v2} (is degree two by the first property). Because we have not change

the edges incident to any of v1, v2 we have that the degree of both is at least two in
our solution. If one of them has degree greater than two, let v1 be that vertex, then we
could add the edge u′v1 (by the construction of G′ u′ and u′′ have the same neighbors)
and then we could have a solution greater than the optimal, which is a contradiction.
So, both v1, v2 have degree two in our solution and cannot be connected both with u′

(degree one at the moment). Let u′v1 not used in our solution, then we want to use it
in order to cover u′. If v1 is connected only to vertices in VIS then again we could use
u′v1 and give a solution greater than the optimal (we cannot remove edges incident to
vertices in VIS because are all degree two), so v1 must be connected to one of u1, u2 and
we can remove this edge from our solution and keep the same size for the solution. So we
can construct the wanted solution by repeating the process for all the needed vertices.

In order to complete this we must prove that

uec2(G′) ≤ 8n− 2|S|+ 6

where S is a minimum 2-tuple dominating set. For that purpose, first we will show that
if E′ is an optimal solution of Double Upper EC that with all the above properties
and S′ = {v | v∗ ∈ V ∗ and NG′

E′
(v∗) ⊆ VIS} then S′ is a 2-tuple dominating set of G
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and uec2(G′) = 8n−2|S∗|+6 where S∗ = {v∗ ∈ V ∗ | v ∈ S′}. S′ is a 2-tuple dominating
set of G because every vertex u′ ∈ V ′ is dominated twice by the vertices in S∗ which
means that every u ∈ V has N [u] ∩ S′ ≥ 2. Now, our solution contains all the six edges
between u1, . . . , u5, two edges for each vertex in V ∗ \ S∗ (because by the last property
their neighborhood in E′ is {u1, u2}) and two edges for each vertex in VIS (which covers
twice all vertices in S∗). So we have that

uec2(G′) = 8n− 2|S∗|+ 6 = 8n− 2|S′|+ 6 ≤ 8n− 2|S|+ 6

because S is a minimum 2-tuple dominating set (so |S| ≤ |S′|). So, by the NP-hardness
of 2-tuple dominating set in general graphs we have that the Double Upper EC is
NP-hard in split graphs.

4.5 Hardness of Approximation
In the following theorems we provide some inapproximability results for the Upper EC
and the Double Upper EC.

Theorem 4.16. It is NP-hard to approximate the solution of Upper EC to within 593
594

and 363
364 in graphs of max degree 4 and 5 respectively.

Proof of Theorem 4.16. In order to prove this we will use a reduction from Min VC.
Starting from an r-regular graph G = (V, E) we will construct a new graph G′. First
we will add a P2 to each vertex v ∈ V (let v′ and v′′ be the vertices of P2). After that
for each edge e = vu ∈ E we add a new vertex ve adjacent to v and u. In the end we
remove all the starting edges E. Let G′ = (V ′, E′) be the new graph; we claim that:

uec(G′) = 2n + m− |minV C(G)| (4.9)

By starting from a minimum vertex cover of G we will construct an ec of G′. It is easy, by
using m edges, to cover the vertices ve of G′ by selecting the edge vev if v ∈ minV C(G)
and the edge veu otherwise. This way we covered and all the vertices in minV C because
if any remains uncovered this way we could have a V C ⊂ minV C which is impossible.
In order to cover the ending vertices of the adding paths we must use the edge v′v′′ (n
edges in total). It remains to cover the vertices of V that are not in the minV C. This
can be done by adding to our solution for each uncovered vertex v ∈ V the edge v′v. Is
easy to see that the selected edges is a miminal edge cover of size m + n + n− |minV C|
so we have:

uec(G′) ≥ 2n + m− |minV C|

In reverse, if we start from an upper edge cover S of G′ we will make a vertex cover of
G. First observe that all the edges v′v′′ must be in our edge cover because this is the
only way to cover the vertices v′′. Second, if we have the edge vev in our solution then
the edge v′v is not and reverse (otherwise our solution would not be minimal). Now we
will prove that:
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• For any optimal solution S′ of Double Upper EC there exists an equivalent
solution S′ such that |S′| = |S| and ∀ve ∈ V ′ there exists only one edge that covers
it.

In order to prove that we will start from a vertex ve that covered twice in our solution.
Because the solution must be minimal then the vertices been adjacent to ve, let them
be v and u, must have degree one in our solution. So, we can remove one of the edges;
let this be the vev, and cover the vertex v by using the edge v′v. The new set of edges
remain a minimal edge cover and has the same size. By doing this to all vertices ve,
e ∈ E, we have the wanted property.

Now we will show that if we have a solution S that has the previous property then
the set U = {v ∈ V ′|vev ∈ S} is a vertex cover of G. This is obvious if we realize that
the edge vev exists only if v is incident to the edge e and that in S we covered all the
vertices ve so U covers all the edges e ∈ E.

It remains to check the size of our solution. Like we have said before, we need n
edges to cover the vertices v′′. Because each vertex ve covered exactly once we need m
edges and in the same time these edges covers the set U ; so we have to cover the vertices
V \ U . These vertices does not covered by edges that are incident to vertices ve so by
our previous observation the have degree exactly one (they covered by the edges v′v).
All the previous gives us the following:

uec(G′) = 2n + m− |U | ≤ 2n + m− |minV C|.

Before we continue, it is important to realize that if we start from a minimal edge cover
of value |ec| we can construct a vertex cover U of size |U | = 2n + m − |ec| by using
the same method as above (because we use only the minimality of our solution in the
costruction).

So, in order to prove those inapproximability results we will start from an r-regular
graph and we will do the construction we describe above. Now we have to observe that:

• m ≤ r|minV C|

• n = 2m
r ≤ 2|minV C|

By starting from an approximation solution, of value |ec|, of Upper EC we can
construct a vertex cover U . Suppose that we can approximate Upper EC in a factor
grater than (1− a) in graphs with max degree r + 1 then:

|U | − |minV C| ≤uec(G′)− |ec|
≤a uec(G′)
=a (2n + m− |minV C|)
≤a (3 + r)|minV C|

By this we could have an approximating solution for Min VC within a ratio 1 + (3 + r)a
for r-regular graphs. Because we know that Min VC cannot be approximated within a
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factor 100
99 in 3-regular graphs and within a factor 53

52 in 4-regular graphs (both in [56])
we have that:

• a cannot be equal or less than 1
594 in 3-regular graphs

• a cannot be equal or less than 1
364 in 4-regular graphs

So, the Upper EC cannot be approximated within a factor:

• 1− 1
594 for graphs with max degree ∆ = 4 and

• 1− 1
364 for graphs with max degree ∆ = 5.

Theorem 4.17. It is NP-hard to approximate the solution of Double Upper EC to
within 883

884 in graphs of max degree 6.

Proof of Theorem 4.17. We will start from the same reduction as in theorem 4.16. So,
from a 4-regular graph G = (V, E) we are forming a graph G′ = (V ′, E′) where |V ′| =
3n + m, max degree ∆ = 5 and uec(G′) = 2n + m − |minV C(G)|. After that we will
do the same reduction between Upper EC and Upper 2-EC as in Theorem 4.14 so we
have the following relation:

uec2(G′′) = 2uec(G′) + 2|V ′|

and generally by the remark 4.4 we have that from any 2-tec, of value |ec2|, of G′′ we
can construct a tec, of value |ec|, of G′ such that the following equation holds:

|ec2| ≤ 2|ec|+ 2|V ′|.

By combine the two reductions we have that:

uec2(G′′) = 2(2n + m− |minV C|) + 2|V ′| = 10n + 4m− 2|minV C(G)|

Now, if we can approximate the solution of Double Upper EC in factor 1− a then we
can have a solution of value |ec2| such that |ec2|

uec2
≥ 1− a. By starting from this solution

we can construct a vertex cover U for G. That gives us the following:

|U | − |minV C| ≤1
2

(uec2(G′′)− |ec2|)

≤1
2

auec(G′′)

=1
2

a(10n + 4m− 2|minV C|)
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Because we have start from a 4-regular graph we know that m ≤ 4minV C and n ≤
2minV C so by the previous we have that:

|U | − |minV C| ≤1
2

a(10n + 4m− 2|minV C|)

≤17a|minV C|

So, we could have a 1 + 17a approximation for vertex cover in 4-regular graphs. Because
we know that vertex cover is not 53

52 approximable (see [56]) that gives us that a cannot
be less than or equal to 1

17 ·
1
52 so the solution of Double Upper EC is NP-hard to

approximate within a factor 883
334 in graphs of max degree 6.

Theorem 4.18. It is NP-hard to approximate the solution of Double Upper EC to
within 571

572 in graphs of max degree 9.

Proof. Again, we will make a reduction from Vertex Cover problem. Starting from
a 4-regular graph G = (V, E) we construct a new graph by adding a set of new vertices
VE which has one vertex ve for each edge e ∈ E, and then adding new edges veu if the
edge e was incident to u in the original graph G. Let G′ = (V ′, E′) be the new graph. It
is easy to see that |V ′| = |V |+ |E| and ∆(G′) = 2∆(G) = 8. Furthermore, we can show
that from any V C of G we can construct a tec of G′ of size |TEC| = |E|+ |V |−|V C| and
conversely, from any tec of G′ we can construct a V C of G of size |V C| = |E|+|V |−|TEC|.
In order to prove the first direction we will start from a V C of G. Let S be the set of
all the edges veu where u ∈ V C. S is a partial tec of G because it covers only the
vertices in V C ∪ VE , any vertex of VE has degree one in G′

S and the vertices of V C are
independent in G′

S . It is easy to extend S to a tec of G′ by adding one edge for every
vertex v ∈ V \ V C that is adjacent to a vertex in V C (there exists because v ∈ V and
V C is a vertex cover of G). The extended S is a tec due to the fact that the vertices
that may have greater degree than one are all in V C, which is independent in GS and
all the vertices are covered. Now we have to observe that this tec contains exactly one
edge for each vertex in VE and one for each vertex in V \ V C so the size is exactly

|TEC| = |E|+ |V | − |V C|.

Conversely, we will start from a tec of G′ and we will construct a vertex cover of G of the
wanted size. First we have to show that for any tec S of G′, if there exists ve ∈ VE such
that dG′

S
(ve) = 2 (it cannot be greater because dG′(ve) = 2) then there exists an other

tec S′ of G′ that has the same size and every vertex ve ∈ VE has degree dGS′ (ve) = 1.
This is easy to prove by repeating the following:

If there exists e = uv ∈ E such that dGS′ (ve) = 2 then S′ := S′ + veu− vev.

This process terminates because it reduces the number of such vertices each time by one.
We have to show that the last set has the same size and remains a tec. Because ve has
degree two in the starting tec this means that the vertices u and v that were adjacent
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to it had degree one. In the new set we have degree two in vertex u and degree one in
the two neighbors of it, ve and v. So, the new set remains a tec and has the same size
because we remove one and add one edge. Now, from S′ we will construct a vertex cover
of G. We claim that the set U = {v ∈ V | NG′

S′
(v) ∩ VE 6= ∅} is a vertex cover of G of

the desired size. Because for each edge e ∈ E there exists a vertex ve ∈ VE , we have that
U is a vertex cover of G (because it dominates the VE). Because we know that in the
modified tec every vertex in VE has degree exactly one and those edges covers only U
(by construction) we need to count the edges that covers the remaining vertices. Assume
that in our tec the remaining vertices (V \U) have degree one and are independent, then
the size of our tec is

|TEC| = |E|+ |V | − |U | (4.10)

which gives us what we needed. In order to complete the reduction between Vertex
Cover and Upper Edge Cover we need to prove that the last assumption is always
true. First observe that if two vertices v, u ∈ V \U are covered by the same edge in our
tec then there exists an edge uv = e ∈ E and a vertex ve ∈ VE . Then in our tec the
vertex ve must be covered by u or v, which is a contradiction because none of them are
in U . Now suppose that there exists vertex v ∈ V \ U such that dG′

S′
(v) ≥ 2. Because

v /∈ U we know that there is a u ∈ U such that uv ∈ S′ and because u must be adjacent
to a vertex in VE in our tec this means that we have two vertices of degree at least two
in a tec which is a contradiction.

After that we will do the same reduction between Upper EC and Upper 2-EC as
in Theorem 4.14 so we have uec2(G′′) = 2uec(G′)+2|V ′| and generally by the remark 4.4
we have that from any 2-tec, of value |ec2|, of G′′ we can construct a tec, of value |ec|,
of G′ such that the following equation holds,

|ec2| ≤ 2|ec|+ 2|V ′|. (4.11)

Furthermore we have m = |E| ≤ 4|minV C| and n = |V | ≤ 2|minV C| (because we
started from a 4-regular graph) which implies that from a 2-tec, of value |ec2|, of G′′ we
can construct a vertex cover, U , of G that has the following property.

|ec2| ≤ 4|E|+ 4|V | − 2U (4.12)

The previous equation is easy to prove by the equations 4.10, 4.11 and the construction
of the graphs. Now we are ready to finish the proof. If we can approximate the solution
of Upper 2-EC within a factor of 1− a then we can have a solution of value |ec2| such
that |ec2|

uec2
≥ 1− a. By starting from this solution we can construct a vertex cover U for

the graph G. Then we have that:

|U | − |minV C| ≤ 1
2

(uec2(G′′)− |ec2|) ≤
1
2a uec2(G′′)

= 1
2

a (4m + 4n− 2|minV C|)
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By the relations between m, n and |minV C| we have the following:

|U | − |minV C| ≤ 1
2

a (4m + 4n− 2|minV C|) ≤ 11a |minV C|

So, we could have a 1 + 11a approximation for vertex cover in 4-regular graphs. Because
the vertex cover is not 53

52 approximable (see [56]) that gives us that a cannot be less than
or equal to 1

11 ·
1
52 so the solution of Double Upper EC is NP-hard to approximate

within a factor 571
572 in graphs of max degree 9.

4.6 Conclusions
In this chapter we studied a variant of the classic Edge Cover called Upper r-
Tolerant Edge Cover. Interestingly enough, we proved that any feasible solution
of the problem is 1

2 -approximation solution. Furthermore, we show that the problem
remains NP-hard in many restricted cases like split graphs and cubic planar graphs.
Finally we present some inapproximability results for graph with bounded degree.

Some questions we can consider in the future are the following:

• Can we improve the approximation ratio in general or in specific instances?

• Can we present hardness of approximation reduction that give us a more tight
inapproximability ratio?

• Are there classes of graph where the problem belongs in P?

Finally, it would be interesting to investigate the parameterized complexity of the prob-
lem. In particular, since Upper Edge Cover is polynomial in many classes that have
constant treewidth, it would be interesting to consider as parameter the treewidth of the
given graph. If we manage to set the problem in FPT, when parameterized by treewidth,
it will also give us some graph classes where the problem can be solved in polynomial
time.
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Chapter 5

Max-Min Feedback Vertex Set

5.1 Introduction

In this chapter we consider a variation of Feedback Vertex Set. Typically, Feedback
Vertex Set is studied with a minimization objective as we have define it in the Section 2.4.
Here, we are interested in an objective which is, in a sense, the inverse: we seek a feedback
vertex set S which is as large as possible, while still being minimal. We call this problem
Max Min FVS.

MaxMin and MinMax versions of many famous optimization problems have recently
attracted much interest in the literature (we give references below) and Max Min FVS
can be seen as a member of this framework. Although the initial motivation for studying
such problems was a desire to analyze the worst possible performance of a naive heuristic,
these problems have gradually been revealed to possess a rich combinatorial structure
that makes them interesting in their own right. Our goal in this chapter is to show
that Max Min FVS displays an interesting complexity behavior with respect to its
approximability.

Our motivation for focusing on Max Min FVS is the contrast between two of its
more well-studied cousins: the Max Min Vertex Cover and Upper Dominating Set
problems, where the objective is to find the largest minimal vertex cover or dominating
set respectively. At first glance, one would expect Max Min VC to be the easier of
these two problems: both problems can be seen as trying to find the largest minimal
hitting set of a hypergraph, but in the case of Max Min VC the hypergraph has a very
restricted structure, while in Upper DS the hypergraph is essentially arbitrary. This
intuition turns out to be correct: while Upper DS admits no n1−ϵ-approximation [22],
Max Min VC admits a

√
n-approximation (but no n1/2−ϵ-approximation) [40].

This background leads us to the natural question of the approximability of Max
Min FVS. On an intuitive level, one may be tempted to think that this problem should
be harder than Max Min VC, since hitting cycles is more complex than hitting edges,
but easier than Upper DS, since hitting cycles still offers us more structure than an
arbitrary hypergraph. However, to the best of our knowledge, no n1−ϵ-approximation
algorithm is currently known for Max Min FVS (so the problem could be as hard as

101
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Upper DS), and the best hardness of approximation bound known is n1/2−ϵ [154] (so
the problem could be as easy as Max Min VC).

Related Work To the best of our knowledge, Max Min FVS was first considered
by Mishra and Sikdar [154], who showed that the problem does not admit an n1/2−ϵ

approximation (unless P = NP), and that it remains APX-hard for ∆ ≥ 9. Furthermore,
these seem to be the only results related to the classic complexity of the problem. On the
other hand, Upper DS and Max Min VC are well-studied problems, both in the context
of approximation and in the context of parameterized complexity [2, 22, 40, 42, 55, 63,
72, 108, 122, 182, 184]. Many other classical optimization problems have recently been
studied in the MaxMin or MinMax framework, such as Max Min Separator [100],
Max Min Cut [79], Min Max Knapsack (also known as the Lazy Bureaucrat
Problem) [12, 90, 97], and some variants of Max Min Edge Cover [130, 103]. Some
problems in this area also arise naturally in other forms and have been extensively
studied, such as Min Max Matching (also known as Edge Dominating Set [121]),
Grundy Coloring, which can be seen as a Max Min version of Coloring [3, 24], and
Max Min VC in hypergraphs, which is known as Upper Transversal[155, 109, 110,
111].

The idea of designing super-polynomial time approximation algorithms which obtain
guarantees better than those possible in polynomial time has attracted much attention
in the last decade [19, 41, 66, 69, 78, 88, 128]. As mentioned, the result closest to the
time-approximation trade-off we give, in this chapter, is the approximation algorithm for
Max Min VC given by Bonnet et al. [38]. It is important to note that such trade-offs
are only generally known to be tight up to poly-logarithmic factors in the exponent of
the running time. As explained in [38], current lower bound techniques can rule out
improvements in the running time that shave at least nϵ from the exponent, but not
improvements which shave poly-logarithmic factors, due to the state of the art in quasi-
linear PCP constructions. Indeed, such improvements are sometimes possible [19] and
are conceivable for Max Min VC and Max Min FVS. Lower bounds for this type of
algorithm rely on the (randomized) Exponential Time Hypothesis (ETH).

Our Contribution Our main contribution in this chapter is to fully answer the ques-
tion addressed in the end of Section 5.1, confirming and precisely quantifying the intu-
ition that Max Min FVS is a problem that lies “between” Max Min VC and Upper
DS: We give a polynomial-time approximation algorithm with ratio O(n2/3) and a hard-
ness of approximation reduction which shows that (unless P = NP) no polynomial-time
algorithm can obtain a ratio of n2/3−ϵ, for any ϵ > 0. This completely settles the ap-
proximability of the problem in polynomial time. Along the way, we also prove that
Max Min FVS admits a cubic kernel when parameterized by the solution size, give
an approximation algorithm with ratio O(∆), show that no algorithm can achieve ratio
∆1−ϵ, for any ϵ > 0, and improve the best known NP-completeness proof for Max Min
FVS from graphs of ∆ ≥ 9 [154] to planar bipartite graphs of ∆ ≥ 6, where ∆ is the
maximum degree of the input graph. Note that, this is one of the very few hardness
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results for this problem. Furthermore, to the best of our knowledge, the complexity of
Max Min FVS was unknown for both planar and bipartite graphs until now.

One interesting aspect of our results is that they have an interpretation from ex-
tremal combinatorics which nicely mirrors the situation for Max Min VC. Recall that
a corollary of the

√
n-approximation for Max Min VC [40] is that any graph without

isolated vertices has a minimal vertex cover of size at least
√

n, and this is tight (see Re-
mark 5.3.2). Hence, the algorithm only needs to trivially preprocess the graph (deleting
isolated vertices) and then find this set, which is guaranteed to exist. Our algorithms can
be seen in a similar light: we prove that if one applies two almost trivial pre-processing
rules to a graph (deleting leaves and contracting edges between degree-two vertices), a
minimal fvs of size at least n1/3 (and Ω(n/∆)) is always guaranteed to exist, and this
is tight (Corollary 5.9 and Remark 5.3.2). Thus, the approximation ratio of n2/3 is
automatically guaranteed for any graph where we exhaustively apply these very simple
rules and our algorithms only have to work to construct the promised set. This makes
it somewhat remarkable that the ratio of n2/3 turns out to be best possible.

Having settled the approximability of Max Min FVS in polynomial time, we con-
sider the question of how much time needs to be invested if one wishes to guarantee
an approximation ratio of r (which may depend on n) where r < n2/3. This type of
time-approximation trade-off was extensively studied by Bonnet et al. [38], who showed
that Max Min Vertex Cover admits an r-approximation in time 2O(n/r2) and this is
optimal under the randomized ETH.

For Max Min FVS we cannot hope to obtain a trade-off with performance ex-
ponential in n/r2, as this implies a polynomial-time

√
n-approximation. It therefore

seems more natural to aim for a running time exponential in n/r3/2. Indeed, general-
izing our polynomial-time approximation algorithm, we show that we can achieve an
r-approximation in time nO(n/r3/2). Although this algorithm reuses some ingredients
from our polynomial-time approximation, it is significantly more involved, as it is no
longer sufficient to compare the size of our solution to n. We complement our result
with a lower bound showing that our algorithm is essentially best possible under the
randomized ETH for any r (not just for polynomial time), or more precisely that the
exponent of the running time of our algorithm can only be improved by no(1) factors.

5.2 Preliminaries
It is not hard to see that an fvs S is minimal if every u ∈ S has a private cycle, that is,
there exists a cycle in G[(V \ S)∪ {u}], which goes through u. A vertex u of a feedback
vertex set S that does not have a private cycle (that is, S \ {u} is also an fvs), is called
redundant. For a given fvs S, we call the set F := V \ S the corresponding induced
forest. If S is minimal, then F is maximal.

The main problem we are interested in is Max Min FVS: given a graph G = (V, E),
find a minimal fvs of G of maximum size. Since this problem is NP-hard, we will be
interested in approximation algorithms. An approximation algorithm with ratio r ≥ 1
(which may depend on n, the order of the graph) is an algorithm which, given a graph
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G, returns a solution of size at least mmfvs(G)
r , where mmfvs(G) is the size of the largest

minimal fvs of G.
We make two basic observations about our problem: deleting vertices or contracting

edges can only decrease the size of the optimal solution.

Lemma 5.1. Let G = (V, E) be a graph and u ∈ V . Then, mmfvs(G) ≥ mmfvs(G−u).
Furthermore, given any minimal feedback vertex set S of G−u, it is possible to construct
in polynomial time a minimal feedback vertex set of G of the same or larger size.

Lemma 5.2. Let G = (V, E) be a graph, u, v ∈ V with N(u) ∩N(v) = ∅ and uv ∈ E.
Then mmfvs(G) ≥ mmfvs(G/uv). Furthermore, given any minimal feedback vertex set
S of G/uv, it is possible to construct in polynomial time a minimal feedback vertex set
of G of the same or larger size.

The proofs of both lemmas are simple; we start from a minimal fvs S of the new
graph and we construct a minimal fvs S′ of the starting graph G such that |S| ≤ |S′|.
The complete proofs of these lemmas can be found in the appendix.

5.3 Polynomial Time Approximation Algorithm
In this section we present a polynomial-time algorithm which guarantees an approxima-
tion ratio of n2/3. As we show in Theorem 5.14, this ratio is the best that can be hoped
for in polynomial time. Later (Theorem 5.12) we show how to generalize the ideas pre-
sented here to obtain an algorithm that achieves a trade-off between the approximation
ratio and the (sub-exponential) running time, and show that this trade-off is essentially
optimal.

On a high level, our algorithm proceeds as follows: first we identify some easy cases
in which applying Lemma 5.1 or Lemma 5.2 is safe, that is, the value of the optimal is
guaranteed to stay constant, namely deleting vertices of degree at most 1, and contracting
edges between vertices of degree 2. After we apply these reduction rules exhaustively,
we compute a minimal fvs S in an arbitrary way. If S is large enough (larger than n1/3),
we simply return this set.

If not, we apply some counting arguments to show that a vertex u ∈ S with high
degree (≥ n2/3) must exist. We then have two cases: either we are able to construct a
large minimal fvs just by looking at the neighborhood of u in the forest (and ignoring
S \ {u}), or u must share many neighbors with another vertex v ∈ S, in which case we
construct a large minimal fvs in the common neighborhood of u, v.

Because our algorithm is constructive (and runs in polynomial time), we find it
interesting to remark an interpretation from the point of view of extremal combinatorics,
given in Corollary 5.9.

5.3.1 Basic Reduction Rules and Combinatorial Tools
We begin by showing two safe versions of Lemmas 5.1, 5.2.



5.3. POLYNOMIAL TIME APPROXIMATION ALGORITHM 105

Lemma 5.3. Let G, u be as in Lemma 5.1 with d(u) ≤ 1. Then mmfvs(G − u) =
mmfvs(G).

Proof. We only need to show that mmfvs(G) ≤ mmfvs(G − u) (the other direction is
given by Lemma 5.1). Let S be a minimal fvs of G. Then, S is an fvs of G − u.
Furthermore, u 6∈ S, as S is minimal in G. To see that S is also minimal in G− u, note
that any cycle of G also exists in G− u (as no cycle contains u).

Lemma 5.4. Let G, u, v be as in Lemma 5.2 with d(u) = d(v) = 2. Then mmfvs(G/uv) =
mmfvs(G).

Proof. Let G′ = G/uv, w be the vertex that replaced u, v in G′, and V ′ = V (G′).
We only need to show that mmfvs(G) ≤ mmfvs(G′), as the other direction is given

by Lemma 5.2. Let S be a minimal fvs of G. We consider two cases:
If u, v 6∈ S, then we claim that S is also a minimal fvs of G′. Indeed, G′[V ′ \ S]

is obtained from G[V \ S] by contracting uv, so both are acyclic. Furthermore, for all
z ∈ S, G′[(V ′ \ S) ∪ {z}] is obtained from G[(V \ S) ∪ {z}] by contracting uv, therefore
both have a cycle, hence no vertex of S is redundant in G′.

If {u, v} ∩ S 6= ∅, we claim that exactly one of u, v is in S. Indeed, if u, v ∈ S, then
G[(V \ S) ∪ {u}] does not contain a cycle going through u, as u has degree 1 in this
graph. Without loss of generality, let u ∈ S, v 6∈ S. We set S′ := (S \ {u}) ∪ {w} and
claim that S′ is a minimal fvs of G′. It is not hard to see that S′ is an fvs of G′, since it
corresponds to deleting S∪{v} from G. To see that it is minimal, for all z ∈ S′ \{w} we
observe that G′[(V ′ \S′)∪{z}] obtained from G′[(V \S)∪{z}] by deleting v, which has
degree 1. Therefore, this deletion strongly preserves acyclicity. Finally, to see that w is
not redundant for S′ we observe that G[(V \ S) ∪ {u}] has a cycle, and this cycle must
be present in G′[(V ′ \S′)∪{w}], which is obtained from the former graph by contracting
uv.

Definition 5.1. For a graph G = (V, E) we say that G is reduced if it is not possible to
apply Lemma 5.3 or Lemma 5.4 to G.

We now present a counting argument which will useful in our algorithm and states,
roughly, that if in a reduced graph we find a (not necessarily minimal) fvs, that fvs must
have many neighbors in the corresponding forest.

Lemma 5.5. Let G = (V, E) be a reduced graph and S ⊆ V a feedback vertex set of G.
Let F = V \ S. Then, |N(S) ∩ F | ≥ |F |

4 .

Proof. Let n1 be the number of leaves of F , n3 the number of vertices of F with at
least three neighbors in F , n2a the number of vertices of F with two neighbors in F and
at least one neighbor in S, and n2b the number of remaining vertices of F . We have
n1 + n2a + n2b + n3 = |F |. Furthermore, n3 ≤ n1 because the average degree of any
forest is less than 2.

We observe that all leaves of the tree have a neighbor in S (otherwise we would have
applied Lemma 5.3). This gives |N(S) ∩ F | ≥ n1 + n2a.
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Furthermore, none of the n2b vertices which have degree two in the tree and no
neighbors in S can be connected to each other, since then Lemma 5.4 would apply.
Therefore, n2b ≤ n1 + n2a + n3. Indeed, if n2b > n1 + n2a + n3, then n2b > |F |/2 and,
since these n2b vertices form an independent set, we would have |E(F )| ≥ 2n2b > |F |,
contradicting the assumption that F is a forest.

Putting things together we get |F | = n1 + n2a + n2b + n3 ≤ 2n1 + 2n2a + 2n3 ≤
4n1 + 2n2a ≤ 4|N(S) ∩ F |.

We note that Lemma 5.5 immediately gives an approximation algorithm with ratio
O(∆).

Lemma 5.6. In a reduced graph G with n vertices and maximum degree ∆, every
feedback vertex set has size at least n

5∆ .

Proof. Let S be a feedback vertex set of G and F the corresponding forest. If |S| < n
5∆

then |N(S)∩ F | < n
5 so by Lemma 5.5 we have |F | < 4n

5 . But then |V | = |S|+ |F | < n,
which is a contradiction.

Remark. Lemma 5.5 is tight.

Proof. Take two copies of a rooted binary tree with n leaves and connect their roots.
The resulting tree has 2n leaves and 2n− 2 vertices of degree 3. Subdivide every edge of
this tree. Add two vertices u, v connected to every leaf. In the resulting graph S = {u, v}
is an fvs. The corresponding forest has 8n− 5 vertices, of which 2n are connected to S.
The graph is reduced.

5.3.2 Polynomial Time Approximation and Extremal Results
We begin with a final intermediate lemma that allows us to construct a large minimal
fvs in any reduced graph that is a forest plus one vertex.

Lemma 5.7. Let G = (V, E) be a reduced graph and u ∈ V such that G− u is acyclic.
Then it is possible to construct in polynomial time a minimal feedback vertex set S of G
with |S| ≥ d(u)/2.

Proof. Let F = V \ {u}. Since the graph is reduced, all trees of G[F ] contain at least
two neighbors of u. Indeed, since each tree T of G[F ] has at least two leaves, both of
them must be neighbors of u (otherwise Lemma 5.3 applies).

As long as there exist v, w ∈ F with vw ∈ E and {v, w} 6⊆ N(u) we contract the
edge vw. Note that we can apply Lemma 5.2 as v, w have no common neighbors (u is
not a common neighbor by assumption, and they cannot have a common neighbor in
the forest without forming a cycle). Furthermore, this operation does not change d(u).
Therefore, it will be sufficient to construct a minimal fvs in the resulting graph after
applying this operation exhaustively.

Suppose now that we have applied the contraction operation described above ex-
haustively. We eventually arrive at a graph where u is connected to all vertices of F ,
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Figure 5.1: (a) vertex u is a minimal fvs of the given graph and has 4 neighbors in G[F ].
(b) a contracted form of G[F ] with 4 vertices. (c) a new minimal fvs of the result graph
of size 3.

as all trees of F initially contain some neighbors of u and, after repeated contractions,
all non-neighbors of u are absorbed into its neighbors (more precisely, each contraction
decreases |F \ N(u)|). Therefore, we arrive at a graph with d(u) = |F |. Furthermore,
every component of F contains strictly more than one vertex.

Now, since G[F ] is bipartite, there is a bipartition F = L ∪ R. Without loss of
generality |L| ≤ |R|. We return the solution S = R. First, S does have the promised
size, as |S| ≥ |F |/2 = d(u)/2. Second, S is an fvs, as L is an independent set, so L∪{u}
induces a star. Finally, S is minimal, because all v ∈ S are connected to u, and also
have at least one neighbor w ∈ L, with w also connected to u. An illustration of the
process is presented in Figure 5.1.

Theorem 5.8. There is a polynomial time approximation algorithm for Max Min FVS
with ratio O(n2/3).

Proof. We are given a graph G = (V, E). We begin by applying Lemmas 5.3,5.4 exhaus-
tively in order to obtain a reduced graph G′ = (V ′, E′). Clearly, if we obtain a |V ′|1/3

approximation in G′, since the reductions we applied do not change the optimal, and we
can construct a solution of the same size in G, we get a |V ′|2/3 ≤ |V |2/3 approximation
ratio in G. So, in the remainder, to ease presentation, we assume G is already reduced
and has n vertices.

Our algorithm begins with an arbitrary minimal fvs S. This can be constructed, for
example, by starting with S = V and removing vertices from S until it becomes minimal.
If |S| ≥ n1/3 then we return S. Since the optimal solution cannot have size more than
n, we achieve the claimed ratio.

Suppose then that |S| < n1/3. Let F be the corresponding forest. We have |F | >
n−n1/3 > n/2 for sufficiently large n. By Lemma 5.5, |N(S)∩F | ≥ n/8. Since |S| < n1/3

there must exist u ∈ S such that u has at least n2/3

8 neighbors in F .
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Let w ∈ F ∩N(u). We say that w is a good neighbor of u if there exists w′ ∈ F ∩N(u)
with w′ 6= w and w′ is in the same tree of G[F ] as w. Otherwise w is a bad neighbor of
u. By extension, a tree of G[F ] that contains a good (resp. bad) neighbor of u will be
called a good (resp. bad) tree. Every vertex of N(u) ∩ F is either good or bad.

We have argued that |N(u) ∩ F | ≥ n2/3

8 . We distinguish two cases: either u has at
least n2/3

16 good neighbors in F , or it has at least that many bad neighbors in F .
In the former case, we delete from the graph the set S\{u} and apply Lemmas 5.3, 5.4

exhaustively again. We claim that the number of good neighbors of u does not decrease
in this process. Indeed, two good neighbors of u cannot be contracted using Lemma 5.4,
since they have a common neighbor (namely u). Furthermore, suppose w is the first good
neighbor of u to be deleted using Lemma 5.3. This would mean that w currently has no
other neighbor except u. However, since w is good, initially there was a w′ ∈ N(u) in
the same tree of G[F ] as w. The vertex w′ has not been deleted (since we assumed w is
the first good neighbor to be deleted). Furthermore, Lemmas 5.3, 5.4 cannot disconnect
two vertices which are in the same component, so we get a contradiction. We therefore
have a reduced graph, where {u} is an fvs, and d(u) ≥ n2/3

16 . By Lemma 5.7 we obtain a
minimal fvs of size at least n2/3

32 , which is an O(n1/3) approximation.
In the latter case, u has at least n2/3

16 bad neighbors in F . Consider a bad tree T .
We claim that T must have a neighbor in S \ {u}, because T has at least two leaves, at
most one of which is a neighbor of u (since T is bad). If the second leaf is not connected
to S, it will be deleted by Lemma 5.3. Furthermore, since u is connected to one vertex
in each bad tree, u is connected to at least n2/3

16 bad trees.
We now find the vertex v ∈ S \{u} such that v is connected to the maximum number

of bad trees connected to u. Since |S| ≤ n1/3, v must be connected to at least n1/3

16 bad
trees connected to u. We now delete from the graph the set S \ {u, v} as well as all
trees of G[F ], except the bad trees connected to u, v. Furthermore, in each bad tree
T connected to both u, v let u′ ∈ T ∩ N(u) and v′ ∈ T ∩ N(v) such that u′, v′ are as
close as possible in T (note that perhaps v′ = u′). We delete all vertices of the tree T
except those on the path from v′ to u′. Then, we contract all internal edges of this path
(note that internal vertices of the path are not connected to {u, v} by the selection of
u′, v′). It is not hard to verify that, by using Lemmas 5.1, 5.2, if we are able to produce
a large minimal fvs in the resulting graph, we obtain a solution for G. Furthermore,
in the resulting graph, every bad tree T connected to u, v has been reduced to a single
vertex connected to u, v. So the graph is now either a K2,s, with s ≥ n1/3

16 , or the same
graph with the addition of the edge uv. In either case, it is not hard to see that starting
with the fvs that contains all vertices except {u, v}, and making it minimal, we obtain
a solution of size at least s− 1 which gives an approximation ratio of O(n2/3).

Corollary 5.9. For any reduced graph G on n vertices we have mmfvs(G) = Ω(n1/3).

Proof. We simply note that the algorithm of Theorem 5.8 always constructs a solution
of size at least n1/3

c , where c is a small constant, assuming that the original n-vertex
graph G was reduced.
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Remark. Corollary 5.9 is tight.

Proof. Take a Kn and for every pair of vertices u, v in the clique, add 2n new vertices
connected only to u, v. The graph has order n + 2n

(n
2
)

= n + n2(n− 1) = n3 − n2 + n ≥
n3/2. Any minimal fvs of this graph must contain at least n−2 vertices of the clique. As
a result its maximum size is at most n− 2 + 2n ≤ 3n. We have mmfvs(G)

|V (G)| ≤
6n
n3 = O( 1

n2 )
therefore mmfvs(G) = O(|V (G)|1/3).

Theorem 5.8 also implies the existence of a cubic kernel of Max Min FVS when
parameterized by the solution size k. Recall that the reduction rules do not change the
solution size. We suppose that the reduced graph has n vertices. For a small constant
c, if n ≥ c3k3, then we can always produce a solution of size at least n1/3/c = k, and
thus the answer is YES. Otherwise, we have a cubic kernel.

Corollary 5.10. Max Min FVS admits a cubic kernel when parameterized by the
solution size.

Finally, we remark that a similar combinatorial point of view can be taken for the
related problem of Max Min VC, giving another intuitive explanation for the difference
in approximability between the two problems.

Remark. Any graph G = (V, E) without isolated vertices, has a minimal vertex cover
of size at least

√
|V |, and this is asymptotically tight.

Proof. We will prove the statement under the assumption that G is connected. If not,
we can treat each component separately. If the components of G have sizes n1, . . . , nk,
then we rely on the fact that ∑k

i=1
√

ni ≥
√∑k

i=1 ni and that the union of the minimal
vertex covers of each component is a minimal vertex cover of G.

If G = (V, E) has a vertex u of degree at least
√

n, then we begin with the vertex
cover V \ {u} and remove vertices until it becomes minimal. In the end, our solution
contains a superset of N(u), therefore we have a minimal vertex cover of size at least√

n as promised. If, on the other hand, ∆(G) <
√

n, then any vertex cover of G must
have size at least

√
n. Indeed, a vertex cover of size at most

√
n − 1 can cover at most

(
√

n− 1)
√

n < n− 1 edges, but since G is connected we have |E(G)| ≥ n− 1. So, in this
case, any minimal vertex cover has the promised size.

To see that the bound given is tight, take a Kn and attach n leaves to each of its
vertices. This graph has n2 + n vertices, but any minimal vertex cover has size at most
2n.

5.4 Sub-exponential Time Approximation
In this section we give an approximation algorithm that generalizes our n2/3-approximation
and is able to guarantee any desired performance, at the cost of increased running time.
On a high level, our initial approach again constructs an arbitrary minimal fvs S and
if S is clearly large enough, returns it. However, things become more complicated from
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then on, as it is no longer sufficient to consider vertices of S individually or in pairs. We
therefore need several new ideas, one of which is given in the following lemma, which
states that we can find a constant factor approximation in time exponential in the size
of a given fvs. This will be useful as we will use the assumption that S is “small” and
then cut it up into even smaller pieces to allow us to use Lemma 5.11.

Lemma 5.11. Given a graph G = (V, E) on n vertices and a feedback vertex set S ⊆ V

of size k, it is possible to produce a minimal fvs S′ of G of size |S′| ≥ mmfvs(G)
3 in time

nO(k).

Proof. Before we begin, let us point out that for k = 1, Max Min FVS can be solved op-
timally in time O(n), using standard arguments from parameterized complexity, namely
the fact that in this case G has treewidth 2, and invoking Courcelle’s theorem, since the
properties “S is an fvs” and “S is minimal” are MSO-expressible [65]. Unfortunately,
this type of argument is not good enough for larger values of k, as the running time
guaranteed by Courcelle’s theorem could depend super-exponentially on k. We could
try to avoid this by formulating a treewidth-based DP algorithm to obtain a better run-
ning time, but we prefer to give a simpler more direct branching algorithm, since this is
good enough for Theorem 5.12.

We will assume that S is minimal (if not, we can remove vertices from it to make
it minimal and this only decreases the available running time of our algorithm). As a
result, we assume that mmfvs(G) ≥ 3k, as otherwise S is already a 3-approximation.

Let SOP T be a maximum minimal fvs of G, and FOP T = V \ SOP T . We formulate
an algorithm that maintains two disjoint sets of vertices SSOL, FSOL which, intuitively,
correspond to vertices we have decided to place in the fvs or the induced forest, re-
spectively. We will denote U := V \ (SSOL ∪ FSOL) the set of undecided vertices. Our
algorithm will be non-deterministic, that is, it will sometimes “guess” some vertices of
U that will be placed in SSOL or FSOL. We will bound the total number of guessing
possibilities by nO(k), which will imply that the algorithm can be made deterministic by
trying all possibilities for every guess and returning the best returned solution.

Throughout the algorithm, we will work to maintain the following invariants:

1. SSOL ∪ FSOL is an fvs of G.

2. SSOL ⊆ SOP T and FSOL ⊆ FOP T .

3. G[FSOL] is acyclic and has at most 2k components.

4. All vertices of SSOL have at least two neighbors in FSOL.

To begin, we guess a set F ′ ⊆ S such that G[F ′] is acyclic and set FSOL = F ′ and
SSOL = S \ F ′. Property 1 is satisfied as FSOL ∪ SSOL = S. Property 2 is satisfied for
the guess F ′ = FOP T ∩ S. If there exists u ∈ SSOL which does not satisfy Property 4,
we guess one or two vertices from N(u)∩U and place them into FSOL so that u has two
neighbors in FSOL. Since u has a private cycle in G[FOP T ], if the vertices we guessed
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are the neighbors of u in that cycle, we maintain Property 2. We continue in this way
until Property 4 is satisfied. We now observe that FSOL is acyclic (as FSOL ⊆ FOP T ),
and that since we have added at most two vertices for each vertex of SSOL, it contains
at most 2k vertices, hence at most 2k components, so we satisfied Property 3. So far,
the total number of possible guesses is upper-bounded by 2kn2k: 2k for guessing F ′ and
n2k for guessing at most two neighbors for each u ∈ SSOL.

We will now say that a “connector” is a path P ⊆ FOP T \FSOL, such that G[FOP T∪P ]
has strictly fewer components that G[FSOL]. Our algorithm will now repeateadly guess
if a connector exists, and if it does it will guess the first and last vertex u, v of P . Note
that u, v ∈ U and if we guess u, v correctly we can infer all of P , as G[U ] is acyclic,
so there is at most one path from u to v in G[U ]. We set FSOL := FSOL ∪ P and
continue guessing, until we guess that no connector exists. Observe that guessing the
endpoints of a connector gives n2 possibilities, and that adding a connector to FSOL

decreases the number of connected components of FSOL, which can happen at most 2k
times by Property 3. So we have a total of nO(k) possible guesses and for the correct
guess Property 2 is maintained.

We now consider every vertex of u ∈ U that has at least two neighbors in FSOL

and place all such vertices in SSOL. Properties 1, 3, and 4 are trivially still satisfied.
Furthermore, if our guesses so far are correct, all such vertices u belong in SOP T , as
they either already have a private cycle in FOP T , or if they have neighbors in distinct
components of FSOL, they would function as connectors in FOP T (and we assume we
have correctly guessed that no more connectors exist).

We are now in a situation where every vertex of U has at most one neighbor in
FSOL. We construct a new graph H by deleting from G all of SSOL and replacing FSOL

by a single vertex f that is connected to N(FSOL). Note that H is a simple graph (it
has no parallel edges) with an fvs of size 1 (as H − w is acyclic). We therefore use
the aforementioned algorithm implied by Courcelle’s theorem to produce a maximum
minimal fvs of H which, without loss of generality, does not contain w. Let S∗ ⊆ U
be this set. In G, we check if SSOL ∪ S∗ is an fvs. If it is we delete vertices from it (if
necessary) to make it redundant and return the resulting set S∗∗, which is a minimal
fvs.

To see that the resulting solution has the desired size we focus on the case where all
guesses were correct and therefore Properties 1-4 were maintained throughout the exe-
cution of the algorithm. As mentioned, since the total number of possibilities considered
in nO(k), a deterministic algorithm can simply try out all possible choices and return the
best solution.

We first observe that mmfvs(H) ≥ mmfvs(G) − |SSOL|, where SSOL is the set of
vertices we deleted from G to obtain H. Indeed, S0 := SOP T \ SSOL is a minimal fvs
of H. To see that S0 is an fvs, suppose that H contains a cycle after deleting S0. This
cycle must necessarily go through w. Let P be the vertices of this cycle except w. We
have P ⊆ U \ SOP T therefore, P ⊆ FOP T . However, this means either that P forms a
cycle with a component of FSOL (which contradicts the acyclicity of FOP T by Property
2), or that P is a connector, which contradicts our guess that no other connector exists.
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Therefore, S0 must be an fvs of H. To see that it is minimal we note that for all u ∈ S0
there exists a private cycle in G[U ∪ FSOL ∪ {u}], and this cycle is not destroyed by
contracting the vertices of FSOL into w.

We now have that |S∗∪SSOL| ≥ |SOP T |, because |S∗| ≥ |SOP T \SSOL|. We argue that
in the process of making S∗ minimal to obtain S∗∗ we delete at most 2k vertices. Indeed,
every time a vertex u of SSOL is removed from S∗ ∪ SSOL as redundant, since u has at
least two neighbors in FSOL by Property 4, the number of components of G[FSOL] must
decrease. Similarly, if we remove a vertex u ∈ S∗ as redundant, we consider the private
cycle of u in H \ S∗. All of the vertices of this cycle are present in G after we delete
S∗, except w, therefore, this cycle forms a path between two distinct components of
G[FSOL]. We conclude that, since removing a vertex from our fvs decreases the number
of connected components of G[FSOL], by Property 3 we have |S∗∗| ≥ |SOP T | − 2k. But
recall that we have assumed that k ≤ SOP T

3 (otherwise S was already a sufficiently good
approximation), so we have |S∗∗| ≥ mmfvs(G)

3 .

Theorem 5.12. There is an algorithm which, given an n-vertex graph G = (V, E) and
a value r, produces an r-approximation for Max Min FVS in G in time nO(n/r3/2).

Proof. First, let us note that we may assume that r is ω(1), because if r is bounded by a
constant, then we can solve the problem exactly in the given time. To ease presentation,
we will give an algorithm with approximation ratio O(r). A ratio of exactly r can be
obtained by multiplying r with an appropriate (small) constant.

Our algorithm borrows several of the basic ideas from Theorem 5.8, but requires
some new ingredients (including Lemma 5.11). The first step is, again, to construct a
minimal fvs S in some arbitrary way, for example by setting S = V and then removing
vertices from S until it becomes minimal. If |S| ≥ n/r we are done, as we already have
an r-approximation, so we simply return S. From this point, this algorithm departs from
the algorithm of Theorem 5.8, because it is no longer sufficient to compare the size of
the returned solution with a function of n (we need to compare it to the actual optimal
in order to obtain a ratio of r), and because we need to partition S into non-trivial parts
that contain more than one vertex. The algorithm proceeds as follows:

Let k = d
√

r e and partition S into k parts of (almost) equal size S1, . . . , Sk. Our
algorithm proceeds as follows: for each i, j ∈ {1, . . . , k} (not necessarily distinct) consider
the graph Gi,j obtained by deleting all vertices of S \ (Si ∪Sj). Compute, using Lemma
5.11 a solution for Gi,j , taking into account that Si ∪ Sj is a feedback vertex set of this
graph. Output the largest of the solutions found, using Lemma 5.1 to transform them
into solutions of G (or output S if it is larger than all solutions).

The algorithm clearly runs in the promised time: |Si ∪ Sj | ≤ 2n
rk , so the algorithm of

Lemma 5.11 takes time nO(n/r3/2) and is executed a polynomial number of times.
Let us now analyze the approximation ratio of the produced solution. Let SOP T be

an optimal solution and let F := V \ S and FOP T = V \ SOP T be the induced forests
corresponding to S and to the optimal solution. We would like to argue that one of the
considered subproblems contains at least a 1

r fraction of SOP T and that most (though
not all) of these vertices form part of a minimal fvs of that subgraph.
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To be more precise, we will define the notion of “type“ for each u ∈ SOP T ∩ F .
For each such u there must exist a cycle in the graph G[FOP T ∪ {u}] (if not, this would
contradict the minimality of SOP T ). Call this cycle c(u) (select one such cycle arbitrarily
if several exist). The cycle c(u) must intersect S, as S is an fvs. Let v be the vertex
of c(u) ∩ S closest to u on the cycle. Let v′ be the vertex of c(u) ∩ S that is closest to
u if we traverse the cycle in the opposite direction (note that v, v′ are not necessarily
distinct). Suppose that v ∈ Si, v′ ∈ Sj and without loss of generality i ≤ j. We then say
that u ∈ SOP T ∩ F has type (i, j). In this way, we define a type for each u ∈ SOP T ∩ F .
Note that according to our definition, all internal vertices of the path in c(u) from u to
v (and also from u to v′) belong in FOP T ∩ F .

According to the definition of the previous paragraph, there are k(k + 1)/2 ≤ r
possible types of vertices in SOP T ∩ F . Therefore, there must be a type (i, j) such that
at least |SOP T ∩F |

r vertices have this type. We now concentrate on the graph Gi,j , for
the type (i, j) which satisfies this condition. Our algorithm constructed Gi,j by deleting
all of S except Si ∪ Sj . We would like to claim that this graph has a minimal feedback
vertex set of size comparable to |SOP T ∩F |

r .
For the sake of the analysis, construct a minimal feedback vertex set S∗ of Gi,j as

follows: we begin with the fvs S∗ = SOP T ∩ (F ∪Si ∪Sj) and the corresponding induced
forest F ∗ = FOP T ∩ (F ∪ Si ∪ Sj). The set S∗ is a feedback vertex set as it contains all
vertices of SOP T found in Gi,j and SOP T is a feasible feedback vertex set of all of G. We
then make S∗ minimal by arbitrarily removing redundant vertices. Call the resulting set
S∗∗ ⊆ S∗ and the corresponding induced forest F ∗∗ ⊇ F ∗.

Our main claim now is that the number of vertices of S∗∩F of type (i, j) which were
“lost” in the process of making S∗ minimal, is upper-bounded by |Si ∪Sj |. Formally, we
claim that |{u ∈ (S∗ ∩ F ) \ S∗∗ | u has type (i, j)}| ≤ |Si ∪ Sj |. Indeed, consider such a
vertex u ∈ (S∗∩F )\S∗∗ of type (i, j), let c(u) be the cycle that defines its type and v, v′

the vertices of Si∪Sj which are closest to u on the cycle in either direction. All vertices of
c(u) in the paths from u to v and from u to v′ belong to FOP T ∩F , therefore also to F ∗. If
u was removed as redundant, this means that v, v′ must have been in distinct connected
components at the moment u was removed from the feedback vertex set (and also that
v, v′ are distinct). However, the addition of u to the induced forest creates a path from
v to v′ in the induced forest and hence decreases the number of connected components
(that is, trees in the induced forest) containing vertices of Si ∪ Sj . The number of such
connected components cannot decrease more than |Si ∪ Sj | times, therefore, during the
process of making S∗ minimal we may have removed at most |Si ∪ Sj | vertices of type
(i, j) from S∗ ∩ F .

Using the above analysis and the assumption that S∗ contains at least |SOP T ∩F |
r

vertices of type (i, j), we conclude that mmfvs(Gi,j) ≥ |S∗∗| ≥ |SOP T ∩F |
r − |Si ∪ Sj |. We

now note that if |SOP T ∩S| ≥ |SOP T |
r , then S is already an r-approximation, so it is safe

to assume |SOP T ∩F | ≥ (r−1)|SOP T |
r . Furthermore, |Si∪Sj | ≤ 2|S|√

r
≤ 2|SOP T |

r
√

r
, where again

we are assuming that S is not already an r-approximation. Putting things together we
get mmfvs(Gi,j) ≥ (r−1)|SOP T |

r2 − 2|SOP T |
r
√

r
≥ |SOP T |

2r , for sufficiently large r. Hence, since
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the algorithm will return a solution that is at least as large as mmfvs(Gi,j)
3 , we obtain an

O(r)-approximation.

5.5 Hardness of Approximation and NP-hardness

In this section we establish lower bound results showing that the approximation algo-
rithms given in Theorems 5.8 and 5.12 are essentially optimal, under standard complexity
assumptions.

5.5.1 Hardness of Approximation in Polynomial Time

We begin by showing that the best approximation ratio achievable in polynomial time
is indeed (essentially) n2/3. For this, we rely on the celebrated result of Håstad on the
hardness of approximating Max Independent Set, which was later derandomized by
Zuckerman, cited below.

Theorem 5.13. [106, 183] For any ϵ > 0, there is no polynomial time algorithm which
approximates Max Independent Set with a ratio of n1−ϵ, unless P = NP.

Starting from this result, we present a reduction to Max Min FVS.

Theorem 5.14. For any ϵ > 0, Max Min FVS is inapproximable within a factor of
n2/3−ϵ unless P = NP.

Proof. We give a gap-preserving reduction from Max Independent Set, which cannot
be approximated within a factor of n1−ϵ, unless P = NP. We are given a graph G =
(V, E) on n vertices as an instance of Max Independent Set. Recall that α(G) denotes
the size of the maximum independent set of G.

We transform G into an instance of Max Min FVS as follows: For every pair of
u, v ∈ V , we add n vertices such that they are adjacent only to u and v. We denote by
Iuv the set of such vertices. Then Iuv is an independent set. Let G′ = (V ′, E′) be the
constructed graph.

We now make the following two claims:

Claim 5.15. mmfvs(G′) ≥ (n− 1)
(α(G)

2
)

Proof. We construct a minimal fvs of G′ as follows: let C be a minimum vertex cover of
G. Then we begin with the set that contains C and the union of all Iuv (which is clearly
an fvs) and remove vertices from it until it becomes minimal. Let S be the final minimal
fvs. We observe that for all u, v ∈ V \C, S contains at least n− 1 of the vertices of Iuv.
Since C is a minimum vertex cover of G, there are

(α(G)
2
)

pairs u, v ∈ V \ C.

Claim 5.16. mmfvs(G′) ≤ n
(2α(G)

2
)

+ n
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Proof. Let S be a minimal fvs of G′ and F be the corresponding forest. It suffices to
show that |S \ V | ≤ n

(2α(G)
2
)
, since |S ∩ V | ≤ n. Consider now a set Iuv. If u ∈ S or

v ∈ S, then Iuv ∩ S = ∅, because all vertices of Iuv have at most one neighbor in F ,
and are therefore redundant. So, Iuv contains (at most n) vertices of S only if u, v ∈ F .
However, |F ∩ V | ≤ 2α(G), because F is bipartite, so F ∩ V induces two independent
sets, both of which must be at most equal to the maximum independent set of G. So
the number of pairs u, v ∈ F ∩V is at most

(2α(G)
2
)

and since each corresponding Iuv has
size n, we get the promised bound.

The two claims together imply that there exist constants c1, c2 such that (for suffi-
ciently large n) we have c1n(α(G))2 ≤ mmfvs(G′) ≤ c2n(α(G))2. That is, mmfvs(G′) =
Θ(n(α(G))2).

Suppose now that there exists a polynomial-time approximation algorithm which,
given a graph G′, produces a minimal fvs S with the property mmfvs(G′)

r ≤ |S| ≤
mmfvs(G′), that is, there exists an r-approximation for Max Min FVS. Running this
algorithm on the instance we constructed, we obtain that c1n(α(G))2

r ≤ |S| ≤ c2n(α(G))2.
Therefore, α(G)√

rc2/c1
≤
√

|S|
c2n ≤ α(G). As a result, we obtain an O(

√
r) approximation

for the value of α(G). We therefore conclude that, unless P = NP, any such algorithm
must have

√
r > n1−ϵ, for any ϵ > 0, hence, r > n2−ϵ, for any ϵ > 0. Since the graph G′

has N = Θ(n3) vertices, we get that no approximation algorithm can achieve a ratio of
N2/3−ϵ.

We notice that in the construction of the previous theorem, the maximum degree
of the graph is approximately equal to the approximation gap. Thus, the following
corollary also holds.

Corollary 5.17. For any positive constant ϵ, Max Min FVS is inapproximable within
a factor of ∆1−ϵ unless P = NP.

5.5.2 Hardness of Approximation in Sub-Exponential Time
In this section we extend Theorem 5.14 to the realm of sub-exponential time algorithms.
We recall the following result of Chalermsook et al.

Theorem 5.18. [47] For any ϵ > 0 and any sufficiently large r, if there exists an
r-approximation algorithm for Max Independent Set running in 2(n/r)1−ϵ, then the
randomized ETH is false.

We remark that Theorem 5.18, which gives an almost tight running time lower bound
for Max Independent Set, has already been used as a starting point to derive a
similarly tight bound for the running time of any sub-exponential time approximation
for Max Min VC. Here, we modify the proof of Theorem 5.14 to obtain a similarly tight
result for Max Min FVS. Nevertheless, the reduction for Max Min FVS is significantly
more challenging, because the ideas used in Theorem 5.14 involve an inherent quadratic
(in n) blow-up of the size of the instance. As a result, in addition to executing an
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appropriately modified version of the reduction of Theorem 5.14, we are forced to add
an extra “sparsification” step, and use a probabilistic analysis with Chernoff bounds to
argue that this step does not destroy the inapproximability gap.

Theorem 5.19. For any ϵ > 0 and any sufficiently large r, if there exists an r-
approximation algorithm for Max Min FVS running in 2(n/r3/2)1−ϵ, then the randomized
ETH is false.

Proof. We recall some details about the reduction used to prove Theorem 5.18. The
reduction of [47] begins from a 3-SAT instance ϕ on n variables, and for any ϵ, r,
constructs a graph G with n1+ϵr1+ϵ vertices which (with high probability) satisfies the
following properties: if ϕ is satisfiable, then α(G) ≥ n1+ϵr; otherwise α(G) ≤ n1+ϵr2ϵ.
Hence, any approximation algorithm with ratio r1−2ϵ for Max Independent Set would
be able to distinguish between the two cases (and solve the initial 3-SAT instance). If,
furthermore, this algorithm runs in 2(|V |/r)1−2ϵ , we get a sub-exponential algorithm for
3-SAT.

Suppose we are given ϵ, r, and we want to prove the claimed lower bound on the
running time of any algorithm that r-approximates Max Min FVS. To ease presenta-
tion, we will assume that r is the square of an integer (this can be achieved without
changing the value of r by more than a small constant). We will also perform a reduc-
tion from 3-SAT to show that an algorithm that achieves this ratio too rapidly would
give a sub-exponential (randomized) algorithm for 3-SAT. We begin by executing the
reduction of [47], starting from a 3-SAT instance ϕ on n variables, but adjusting their
parameter r appropriately so we obtain a graph G with the following properties (with
high probability):

• |V (G)| = n1+ϵr1/2+ϵ

• If ϕ is satisfiable, then α(G) ≥ n1+ϵr1/2

• If ϕ is not satisfiable, then α(G) ≤ n1+ϵr2ϵ

We now construct a graph G′ as follows: for each pair u, v ∈ V (G), we introduce an
independent set Iuv of size

√
r connected to u, v. We claim that G′ has the following

properties (assuming G has the properties cited above):

• |V (G′)| = Θ(n2+2ϵr3/2+2ϵ)

• If ϕ is satisfiable, then mmfvs(G′) = Ω(n2+2ϵr3/2)

• If ϕ is not satisfiable, then mmfvs(G′) = O(n2+2ϵr1/2+4ϵ)

Before proceeding, let us establish the properties mentioned above. The size of
|V (G′)| is easy to bound, as for each of the

(|V (G)|
2
)

pairs of vertices of G we have
constructed an independent set of size

√
r. If ϕ is satisfiable, we construct a minimal fvs

of G′ by starting with a minimum vertex cover of G to which we add all vertices of all
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Iuv. We then make this fvs minimal. We claim that for each Iuv for which u, v ∈ V \C,
our set will in the end contain all of Iuv, except maybe at most one vertex. Furthermore,
if one vertex of Iuv is removed from the fvs as redundant, this decreases the number of
components of the induced forest that contain vertices of V (as u, v are now in the same
component). This cannot happen more than |V (G)| times. The number of Iuv with
u, v ∈ V \ C is

(α(G)
2
)

= Ω(n2+2ϵr). So, mmfvs(G′) = Ω(n2+2ϵr3/2 − |V (G)|).
For the third property, take any minimal fvs S of G′ and let F be the corresponding

forest. We have |F ∩ V | ≤ 2α(G), because F is bipartite. It is sufficient to bound
|S \ V | to obtain the bound (as |S ∩ V | is already small enough). To do this, we note
that in a set Iuv where u, v are not both in F , we have Iuv ∩ S = ∅, as all vertices of
Iuv are redundant. So, the number of sets Iuv which contribute vertices to S is at most(|F ∩V |

2
)

= O(n2+2ϵr4ϵ). Each such set has size
√

r, giving the claimed bound.
We have now constructed an instance where the gap between the values for mmfvs(G′),

depending on whether ϕ is satisfiable, is almost r (in fact, it is r1−4ϵ, but we can make
it equal to r by adjusting the parameters accordingly). The problem is that the order of
the new graph depends quadratically on n. This blow-up makes it impossible to obtain
a running time lower bound, as a fast approximation algorithm for Max Min FVS (say
with running time 2n/r2) would not result in a sub-exponential algorithm for 3-SAT.
We therefore need to “sparsify” our instance.

We construct a graph G′′ by taking G′ and deleting every vertex of V (G′)\V (G) with
probability n−1

n . That is, every vertex of the independent sets Iuv we added survives
(independently) with probability 1/n. We now claim the following properties hold with
high probability:

• |V (G′′)| = Θ(n1+2ϵr3/2+2ϵ)

• If ϕ is satisfiable, then mmfvs(G′′) = Ω(n1+2ϵr3/2)

• If ϕ is not satisfiable, then mmfvs(G′′) = O(n1+2ϵr1/2+4ϵ)

Before we proceed, let us explain why if we establish that G′′ satisfies these properties,
then we obtain the theorem. Indeed, suppose that for some sufficiently large r and ϵ > 0,
there exists an approximation algorithm for Max Min FVS with ratio r1−5ϵ running in
time 2(N/r3/2)1−10ϵ for graphs with N vertices. The algorithm has sufficiently small ratio
to distinguish between the two cases in our constructed graph G′′, as the ratio between
mmfvs(G′′) when ϕ is satisfiable or not is Ω(r1−4ϵ) (and r is sufficiently large), so we can
use the approximation algorithm to solve 3-SAT. Furthermore, to compute the running
time we see that N/r3/2 = Θ(n1+2ϵr2ϵ) = O(n1+4ϵ). Therefore, (N/r3/2)1−10ϵ = o(n)
and we get a sub-exponential time algorithm for 3-SAT. We conclude that for any
sufficiently large r and any ϵ > 0, no algorithm achieves ratio r1−5ϵ in time 2(N/r3/2)1−10ϵ .
By adjusting r, ϵ appropriately we get the statement of the theorem.

Let us therefore try to establish that the three claimed properties all hold with high
probability. We will use the following standard Chernoff bound: suppose X =

∑n
i=1 Xi

is the sum of n independent random 0/1 variables Xi and that E[X] =
∑n

i=1 E[Xi] = µ.
Then, for all δ ∈ (0, 1) we have Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3
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The first property is easy to establish: we define a random variable Xi for each
vertex of each Iuv of G′. This variable takes value 1 if the corresponding vertex appears
in G′′ and 0 otherwise. Let X be the sum of the Xi variables, which corresponds to the
number of such vertices appearing in G′′. Suppose that the number of vertices in sets
Iuv of G′ is cn2+2ϵr3/2+2ϵ, where c is a constant. Then, E[X] = cn1+2ϵr3/2+2ϵ. Also,
Pr[|X − E[X]| ≥ E[X]

2 ] ≤ 2e−E[X]/12 = o(1). So with high probability, |V (G′′)| is of the
promised magnitude.

The second property is also straightforward. This time we consider a maximum
minimal fvs S of G′ of size cn2+2ϵr3/2. Again, we define an indicator variable for each
vertex of this set in sets Iuv. The expected number of such vertices that survive in G′′ is
cn1+2ϵr3/2. As in the previous paragraph, with high probability the actual number will
be close to this bound. We now need to argue that (almost) the same set is a minimal
fvs of G′′. We start in G′′ with (the surviving vertices of) S, which is clearly an fvs of
G′′, and delete vertices until the set is minimal. We claim that the size of the set will
decrease by at most |V (G)| = n1+ϵr1+ϵ. Indeed, if S ∩ Iuv 6= ∅, then u, v 6∈ S. The two
vertices u, v are (deterministically) included in G′′ and start out in the corresponding
induced forest in our solution. If a vertex of S ∩ Iuv is deleted as redundant, placing
that vertex in the forest will put u, v in the same component, reducing the number of
components of the forest with vertices from |V (G)|. This can happen at most |V (G)|
times. Since |V (G)| < c

10(n1+2ϵr3/2) (for n, r sufficiently large), deleting these redundant
vertices will not change the order of magnitude of the solution.

Finally, in order to establish the third property we need to consider every possible
minimal fvs of G′′ and show that none of them end up being too large. Consider a set
F ⊆ V (G) that induces a forest in G. Our goal is to prove that any minimal fvs S of
G′′ that satisfies V (G) \ S = F has a probability of being “too large” (that is, violating
our claimed bound) much smaller than 2−|V (G)|. If we achieve this, then we can take a
union bound over all sets F and conclude that with high probability no minimal fvs of
G′′ is too large.

Suppose then that we have fixed an acyclic set F ⊆ V (G). We have |F | ≤ 2α(G) ≤
2n1+ϵr2ϵ. Any minimal fvs with V (G) \ S = F can only contain vertices from a set Iuv

if u, v ∈ F . The total number of such vertices in G′ is at most O(n2+2ϵr1/2+4ϵ). The
expected number of such vertices that survive in G′′ is (for some constant c) at most
µ = cn1+2ϵr1/2+4ϵ. Now, using the Chernoff bound cited above we have Pr[|X − µ| ≥
µ
2 ] ≤ 2e−µ/12. We claim 2e−µ/12 = o(2−|V (G)|). Indeed, this follows because |V (G)| =
n1+ϵr1/2+ϵ = o(µ). As a result, the probability that a large minimal fvs exists for a fixed
set F ⊆ V (G) exists is low enough that taking the union bound over all possible sets F
we have that with high probability no minimal fvs exists with value higher than 3µ/2,
which establishes the third property.

5.5.3 NP-hardness for ∆ = 6

Theorem 5.20. Max Min FVS is NP-hard on planar bipartite graphs with ∆ = 6.

Proof. We give a reduction from Max Min VC, which is NP-hard on planar bipartite
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Figure 5.2: The edge gadget of e = (u, v) in the constructed graph G.

graphs of maximum degree 3 [184]. Note that the NP-hardness in [184] is stated for
Minimum Independent Dominating Set, but any independent dominating set is
also a maximal independent set (and vice-versa) and the complement of the minimum
maximal independent set of any graph is a maximum minimal vertex cover. Thus, we
also obtain NP-hardness for Max Min VC on the same instances.

We are given a graph G = (V, E). For each edge e = (u, v) ∈ E, we add a path
of length three from u to v going through two new vertices e(1), e(2) (see Figure 5.2).
Note that u, e(1), e(2), v form a cycle of length 4. Then we add two cycles of length 4,
e(i), c

(i)
e1 , c

(i)
e2 , c

(i)
e3 and e(i), c

(i)
e4 , c

(i)
e5 , c

(i)
e6 for i ∈ {1, 2}. Let G′ = (V ′, E′) be the constructed

graph. Because ∆(G) = 3, we have ∆(G′) = 6. Moreover, since G is planar and
bipartite, G′ is also planar and bipartite. We will show that there is a minimal vertex
cover of size at least k in G if and only if there is a minimal feedback vertex set of size
at least k + 4|E| in G′.

Given a minimal vertex cover S of size at least k in G, we construct the set S′ =
S ∪

∪
e∈E{c

(1)
e1 , c

(1)
e4 , c

(2)
e1 , c

(2)
e4 }. Then |S′| ≥ k + 4|E|. Let us first argue that S′ is an fvs of

G′. For each e = (u, v) ∈ E we have at least one of u, v ∈ S, without loss of generality
let u ∈ S. Now in G′[V ′ \ S′] the edges (e(1), e(2)) and (e(2), v) are bridges and therefore
cannot be part of any cycle. The remaining cycles going through e(1), e(2) are handled
by {c(1)

e1 , c
(1)
e4 , c

(2)
e1 , c

(2)
e4 }. Furthermore, since G′[V \ S] is an independent set, it is also

acyclic. To see that S′ is a minimal fvs, we remark that for each c
(i)
e1 , c

(i)
e4 contained in

S′ there is a private cycle in G′[V ′ \ S′]. We also note that since S is a minimal vertex
cover of G, for each u ∈ S, there exists v 6∈ S with e = (u, v) ∈ E. This means that u
has the private cycle formed by {u, v, e(1), e(2)} in G′[V ′ \S′]. Therefore, S′ is a minimal
fvs.

Conversely, suppose we are given a minimal fvs S′ of G′ with |S′| ≥ k + 4|E|. We
will edit S′ so that is contains only vertices in V ′ \

∪
e∈E{e(1), e(2)}, without decreasing

its size.
First, suppose e(1), e(2) ∈ S′, for some e ∈ E. We construct a new minimal fvs

S′′ = S′\{e(2)}∪{c(2)
e1 , c

(2)
e4 } which is larger that S′, since by minimality we have c

(2)
ei 6∈ S′

for i ∈ {1, . . . , 6}. It is not hard to see that S′′ is indeed an fvs, as no cycle can go through
e(2) in G′[V ′ \ S′′]. The two vertices we added have a private cycle, while all vertices of
S′ ∩ S′′ retain their private cycles, so S′′ is a minimal fvs. As a result in the remainder
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we assume that S′ contains at most one of {e(1), e(2)} for all e ∈ E.
Suppose now that for some e = (u, v) ∈ E, we have S′ ∩ {u, v} 6= ∅ and S′ ∩

{e(1), e(2)} 6= ∅. Without loss of generality, let e(1) ∈ S′. We set S′′ = S′ \ {e(1)} ∪
{c(1)

e1 , c
(1)
e4 } and claim that S′′ is a larger minimal fvs than S. Indeed, no cycle goes

through e(1) in G′[V ′ \ S′′], the new vertices we added to S′ have private cycles, and
all vertices of S′ ∩ S′′ retain their private cycles in G′[V ′ \ S′′]. Therefore, we can now
assume that if for some e = (u, v) ∈ E we have S′ ∩ {e(1), e(2)} 6= ∅ then u, v 6∈ S′.

For the remaining case, suppose that for some e = (u, v) ∈ E we have u, v 6∈ S′ and
(without loss of generality) e(1) ∈ S′. We construct the set S′′ = S′\{e(1)}∪{c(1)

e1 , c
(2)
e4 , u}.

Note that |S′′| ≥ |S′|+2. It is not hard to see that S′′ is an fvs, since by adding c
(1)
e1 , c

(1)
e4 , v

to our set we have hit all cycles containing e(1) in G′. The problem now is that S′′ is not
necessarily minimal. We greedily delete vertices from S′′ to obtain a minimal fvs S∗. We
claim that in this process we cannot delete more than two vertices, that is |S∗ \S′′| ≤ 2.
To see this, we first note that c

(1)
e1 , c

(2)
e4 , u cannot be removed from S′′ as they have private

cycles in G[V ′ \S′′]. Suppose now that w1 ∈ S′′ \S∗ is the first vertex we removed from
S′′, so G′[(V ′ \ S′′) ∪ {w1}] is acyclic. This vertex must have had a private cycle in
G′[V ′ \S′], which was necessarily going through u. Therefore, G′[(V ′ \S′′)∪{w1}] has a
path connecting two neighbors of u and this path does not exist in G′[(V ′ \ S′′)]. With
a similar reasoning, removing another vertex w2 ∈ S′′ from the fvs will create a second
path between neighbors of u in the induced forest. We conclude that this cannot happen
a third time, since |N(u)| ≤ 3, and if we create three paths between neighbors of u, this
will create a cycle. As a result, |S∗| ≥ |S′|. We assume in the remainder that S′ does
not contain e(1), e(2) for any e ∈ E.

Now, given a minimal fvs S′ of G′ with |S′| ≥ k +4|E| and S′∩ (∪e∈E{e(1), e(2)}) = ∅
we set S = S′ ∩ V and claim that S is a minimal vertex cover of G with |S| ≥ k. Indeed
S is a vertex cover, as for each e = (u, v) ∈ E, if u, v 6∈ S′ then we would get the cycle
formed by {u, v, e(1), e(2)}. To see that S is minimal, suppose NG[u] ⊆ S′. We claim
that in that case u has no private cycle in G′[V ′ \ S′] (this can be seen by deleting all
bridges in G′[V ′ \ S′], which leaves u isolated). This contradicts the minimality of S′

as an fvs of G′. Finally, we argue that |S′ \ V | ≤ 4|E|, which gives the desired bound
on |S|. Consider an e = (u, v) ∈ E. S′ cannot contain more than one vertex among
c

(1)
e1 , c

(1)
e2 , c

(1)
e3 , since any of these vertices hits the cycle that goes through the others. With

similar reasoning for the three other length-four cycles we conclude that S′ contains at
most 4 vertices for each edge e ∈ E.

Note that the previous result not only improves upon the maximum degree of graphs
where the problem is NP-hard. Moreover, it shows that the problem is NP-hard even
in instances at the intersection between planar graphs and bipartite graphs, two classes
for which the complexity of the problem was previously unknown.
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5.6 Conclusions
We have essentially settled the approximability of Max Min FVS for polynomial and
sub-exponential time, up to sub-polynomial factors in the exponent of the running time.
It would be interesting to see if the running time of our sub-exponential approximation
algorithm can be improved by poly-logarithmic factors in the exponent, as in [19]. In
particular, improving the running time to 2O(n/r3/2) seems feasible, but would likely
require a version of Lemma 5.11 which uses more sophisticated techniques, such as
Cut&Count [34, 65, 68]. For the parameterized complexity perspective, we gave a cubic
kernel when parameterized by solution size. A natural direction of future work is the
deep analysis of parameterized complexity of Max Min FVS. Finally, we showed that
Max Min FVS is NP-hard even on planar bipartite graphs of maximum degree 6. This,
to the best of our knowledge, is one of the very few hardness results for this problem. It
would be interesting to investigate the tractability in other restricted graph classes, and
in particular in graphs of graphs of maximum degree 3, where Min FVS can be solved
in polynomial time [178].

Another problem of similar spirit which deserves to be studied is Max Min OCT,
where an odd cycle transversal (OCT) is a set of vertices whose removal makes the graph
bipartite. This problem could also potentially be “between” Max Min VC and Upper
DS, but obtaining a n1−ϵ approximation for it seems much more challenging than for
Max Min FVS.
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Chapter 6

Digraph Coloring

6.1 Introduction
In Digraph Coloring, we are given a digraph D and are asked to calculate the small-
est k such that the vertices of D can be partitioned into k acyclic sets. In other words,
the objective of this problem is to color the vertices with the minimum number of colors
so that no directed cycle is monochromatic. This notion is called the dichromatic num-
ber and it was introduced by V. Neumann-Lara [164]. More recently, digraph coloring
has received much attention, in part because it turns out that many results about the
chromatic number of undirected graphs quite naturally carry over to the dichromatic
number of digraphs [4, 10, 26, 35, 54, 99, 102, 104, 105, 112, 141, 153, 157, 177]. We
note that Digraph Coloring generalizes Coloring (if we simply replace all edges of
a graph by pairs of anti-parallel arcs) and is therefore NP-complete.

In this chapter we are interested in the computational complexity of Digraph Col-
oring from the point of view of structural parameterized complexity. Our main motiva-
tion for studying this is that (undirected) Coloring is a problem of central importance
in this area whose complexity is well-understood, and it is natural to hope that some
of the known tractability results may carry over to digraphs – especially because, as
we mentioned, Digraph Coloring seems to behave as a very close counterpart to
Coloring in many respects. In particular, for undirected graphs, the complexity of
Coloring for “almost-acyclic” graphs is very precisely known: for all k ≥ 3 there is a
O∗(ktw) algorithm, where tw is the input graph’s treewidth, and this is optimal (under
the SETH) even if we replace treewidth by much more restrictive parameters [123, 147].
Can we achieve the same amount of precision for Digraph Coloring?

Related Work Structural parameterizations of Digraph Coloring have been stud-
ied in [177], who showed that the problem is FPT by modular width generalizing the
algorithms of [92, 136]; and [99] who showed that the problem is in XP by clique-
width (note that hardness results for Coloring rule out an fpt-algorithm in this case
[86, 87, 137]). Our results on the hardness of the problem for bounded DFVS and FAS
build upon the work of [153]. The fact that the problem is hard for bounded DFVS

123
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implies that it is also hard for most versions of directed treewidth, including DAG-
width, Kelly-width, and directed pathwidth [31, 93, 118, 125, 138]. Indeed, hardness for
FAS implies also hardness for bounded elimination width, a more recently introduced
restriction of directed treewidth [84]. For undirected treewidth, a problem with similar
behavior is DFVS: (undirected) FVS is solvable in O∗(3tw) [68] but DFVS cannot be
solved in time two(tw)nO(1), and this is tight under the ETH [36]. For other natural
problems whose complexity by treewidth is twΘ(tw) see [20, 28, 37]

With respect to maximum degree, it is not hard to see that k-Digraph Coloring
is NP-hard for graphs of maximum degree 2k + 2, because k-Coloring is NP-hard
for graphs of maximum degree k + 1, for all k ≥ 3 1. On the converse side, using
a generalization of Brooks’ theorem due to Mohar [158] one can see that k-Digraph
Coloring digraphs of maximum degree 2k is in P. This leaves as the only open case
digraphs of degree 2k + 1, which in a sense mirrors our results for digraphs of DFVS k
and degree 4k−2. We note that the NP-hardness of 2-Digraph Coloring for bounded
degree graphs is known even for graphs of large girth, but the degree bound follows the
imposed bound on the girth [82].

Our Contribution The main question motivating this chapter is the following: Does
Digraph Coloring also become tractable for “almost-acyclic” inputs? We attack this
question from two directions.

First, in Section 6.3, we consider the notion of acyclicity in the digraph sense and
study cases where the input digraph is close to being a DAG. Possibly the most natural
such measure is directed feedback vertex set (DFVS), which is the minimum number
of vertices whose removal destroys all directed cycles. The problem is paraNP-hard for
this parameter, as for all fixed k ≥ 2, k-Digraph Coloring is already known to be
NP-hard, for inputs of DFVS at most k+4 [153]. Our first contribution is to tighten this
result by showing that actually k-Digraph Coloring is already NP-hard for DFVS of
size exactly k. This closes the gap left by the reduction of [153] and provides a complete
dichotomy, as the problem is trivially FPT by k when the DFVS has size strictly smaller
than k (the only non-trivial part of the problem in this case is to find the DFVS [52]).
In the end of this section we consider 2-Digraph Coloring on oriented graphs. We
prove that it is NP-hard to decide if an oriented graph is 2-colorable even in cases where
the size of DFVS is 3. This is tight as there exists an easy argument showing that all
oriented graphs with DFVS k are k-colorable.

In Section 6.4 we investigate if by considering a more restricted notion of near-
acyclicity, or by imposing further restrictions, such as bounding the maximum degree of
the graph, could lead to an fpt-algorithm. Unfortunately, we show that neither of these
suffices to make the problem tractable. In particular, by refining our reduction we obtain
the following: First, we show that for all k ≥ 2, k-Digraph Coloring is NP-hard for
digraphs of feedback arc set (FAS) k2, that is, digraphs where there exists a set of k2

arcs whose removal destroys all cycles (feedback arc set is of course a more restrictive
1Note that this argument does not prove that 2-Digraph Coloring is NP-hard for maximum degree

6, but this is not too hard to show. We give a proof in Theorem 6.1 for the sake of completeness.
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parameter than feedback vertex set). Interestingly, this also leads us to a complete
dichotomy, this time for the parameter FAS: we show that k-coloring becomes FPT (by
k) on graphs of FAS at most k2−1, by an argument that reduces this problem to coloring
a subdigraph with at most O(k2) vertices, and hence the correct complexity threshold for
this parameter is k2. Second, we show that k-coloring a digraph with DFVS k remains
NP-hard even if the maximum degree is at most 4k − 1. This further strengthens the
reduction of [153], which showed that the problem is NP-hard for bounded degeneracy
(rather than degree). Almost completing the picture, we show that k-coloring a digraph
with DFVS k and maximum degree at most 4k − 3 is FPT by k, leaving open only the
case where the DFVS is exactly k and the maximum degree exactly 4k − 2.

In Section 6.5, because of the negative results for DFVS and FAS, we deiced to con-
sider as parameter the treewidth of the underlying graph. It turns out that, finally, this
suffices to lead to an fpt-algorithm, obtained with standard DP techniques. However,
our algorithm has a somewhat disappointing running time of (tw!)ktwnO(1), which is
significantly worse than the ktwnO(1) complexity which is known to be optimal for undi-
rected Coloring, especially for small values of k. This raises the question of whether
the extra (tw!) factor can be removed. Our main contribution in this part is to show
that this is likely impossible, even for a more restricted case. Specifically, we show that
if the ETH is true, no algorithm can solve 2-Digraph Coloring in time tdo(td)nO(1),
where td is the input graph’s treedepth, a parameter more restrictive than treewidth
(and pathwidth).

Finally, in Section 6.6, we consider tournaments. It is already known that 2-Digraph
Coloring is NP-hard for tournaments [54]. The exhaustive algorithm to check if a
tournament is 2-colorable takes O∗(2n) time as there exists 2n possible 2-colorings for a
graph. We improve this running time by proposing an algorithm that answers the same
question in O∗( 3√6n).

6.2 Preliminaries
All digraphs are loopless and have no parallel arcs; two oppositely oriented arcs between
the same pair of vertices, however, are allowed and are called a digon. Oriented graphs
are digraphs which do not contain any digons. The in-degree (respectively, out-degree)
of a vertex is the number of arcs coming into (respectively going out of) a vertex. The
degree of a vertex is the sum of its in-degree and out-degree. For a set of arcs F , V (F )
denotes the set of their endpoints.

The chromatic number of a graph G is the minimum number of colors k needed to
color the vertices of G such that each color class is an independent set. We say that a
digraph D = (V, E) is k-colorable if we can color the vertices of D with k colors such
that each color class induces an acyclic subdigraph (such a coloring is called a proper
k-coloring). The dichromatic number, denoted by χ⃗(D), is the minimum number k for
which D is k-colorable. The maximum degree of a graph or digraph is denoted with ∆.

Recall that a subset of vertices S ⊂ V of D is called a feedback vertex set if D− S is
acyclic.
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Remark. Every digraph D = (V, E) with feedback vertex set of size at most k − 1 is
k-colorable.

The remark holds because we can use distinct colors for the vertices of the feedback
vertex set and the remaining color for the rest of the graph.

A subset of arcs A ⊂ E of D is called a feedback arc set if D−A is acyclic. A graph
G has treedepth at most k if one of the following holds: (i) G has at most k vertices
(ii) G is disconnected and all its components have treedepth at most k (iii) there exists
u ∈ V (G) such that G− u has treedepth at most k − 1. We use tw(G), td(G) to denote
the treewidth and treedepth of a graph. It is known that tw(G) ≤ td(G) for all graphs
G.

For a set V an ordering of V is an injective function σ : V → [|V |]. It is a well-known
fact that a digraph D is acyclic if and only if there exists an ordering σ of V (D) such
that for all arcs uv we have σ(u) < σ(v). This is called a topological ordering of D.

We conclude this section with a preliminary theorem. As we mentioned, the argument
from (undirected) graph coloring that shows why k-Digraph Coloring is NP-hard for
digraphs of ∆ = 2k + 2 does not hold for k = 2. Our first theorem, the proof of which
is given in the appendix, shows that the previous statement holds even for k = 2.

Theorem 6.1. It is NP-hard to decide if a given digraph with maximum degree 6 is
2-colorable.

6.3 Bounded Directed Feedback Vertex Set
In this section we study the complexity of the problem parameterized by the size of the
directed feedback vertex set of a digraph. Throughout we will assume that a directed
feedback vertex set is given to us; if not we can use known fpt-algorithms to find the
smallest such set [52].

As we are mentioned in Remark 6.2, a digraph of directed feedback vertex set of
size k − 1 can be always colored with k colors. Our main result in this section is that
k-Digraph Coloring is NP-hard for digraphs of directed feedback vertex set of size
k. Observe that Remark 6.2 indicates that this result will be best possible.

Remark. Let D = (V, E) be a digraph with directed feedback vertex set F of size |F | = k.
If F does not induce a bi-directed clique, then D is k-colorable.

Indeed, if u, v ∈ F are not connected by a digon we can use one color for {u, v}, k−2
distinct colors for the rest of F , and the remaining color for the rest of the graph. Remark
6.3 will also be useful later in designing an algorithm, but at this point it is interesting
because it tells us that, since the graphs we construct in our reduction have directed
feedback vertex set of size k and must in some cases have χ⃗(D) > k, our reduction needs
to construct a bi-directed clique of size k.

Before we go on to our reduction let us also mention that we will reduce from a
restricted version of 3-SAT with the following properties: (i) all clauses must have
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either only positive literals or only negative literals (ii) all variables appear at most 2
times positive and 1 time negative. We call this Restricted-3-SAT.

Lemma 6.2. Restricted-3-SAT is NP-hard and cannot be solved in 2o(n+m) time
unless the ETH is false.

Proof. Start with an arbitrary instance ϕ of 3-SAT with n variables and m clauses. We
first make sure that every variable appears at most 3 times as follows. First use the
trick of Theorem 6.1 to decrease the number of appearances of each literal to two. We
now edit ϕ′ as follows: for each variable x of ϕ′ we replace every occurence of ¬x with
a fresh variable x′. We then add the clause (¬x ∨ ¬x′). This gives a new equivalent
instance ϕ′′ which also has O(n + m) variables and clauses and satisfies all properties of
Restricted-3-SAT.

Theorem 6.3. For all k ≥ 2, it is NP -hard to decide if a digraph D = (V, E) is k-
colorable even when the size of its directed feedback vertex set is k. Furthermore, this
problem cannot be solved in time 2o(n) unless the ETH is false.

Proof. We give a reduction from Restricted-3-SAT, which is NP-hard by Lemma 6.2.
Our reduction will produce an instance of size linear in the input formula, which leads to
the ETH-based lower bound. Let ϕ be the given formula with variables x1, . . . , xn, and
suppose that clauses c1, . . . , cℓ contain only positive literals, while clauses cℓ+1, . . . , cm

contain only negative literals. We will assume without loss of generality that all variables
appear in ϕ both positive and negative (otherwise ϕ can be simplified).

First we are going to create a bi-directed clique of size k. We will call this clique
“palette” and the vertices of this clique “palette” vertices. We will prove the theorem for
k = 2. To obtain the proof for larger values one can add to the palette k−2 new vertices
which are connected to everything (including each other) with digons: this increases
both the dichromatic number and the directed feedback vertex set by k − 2. Note that
this does indeed construct a “palette” clique of size k, as indicated by Remark 6.3.

We begin by constructing the two palette vertices v1, v2 which are connected by a
digon. Then, for each clause ci, i ∈ [m] we do the following: if the clause has size
three we construct a directed path with vertices li,1, wi,1, li,2, wi,2, li,3, where the vertices
li,1, li,2, li,3 represent the literals of the clause; if the clause has size two we similarly
construct a directed path with vertices li,1, wi,1, li,2, where again li,1, li,2 represent the
literals of the clause.

For each variable xj , j ∈ [n] we do the following: for each clause ci1 where xj appears
positive and clause ci2 where xj appears negative we construct a vertex w′

j,i1,i2 and add
an incoming arc from the vertex that represents the literal xj in the directed path of ci1

to w′
j,i1,i2 ; and an outgoing arc from w′

j,i1,i2 to the vertex that represents the literal ¬xj

in the directed path of ci2 .
Finally, to complete the construction we connect the palette vertices to the rest of the

graph as follows: v1 is connected with a digon to all existing vertices wi,j , i ∈ [m], j ∈ [2];
v2 is connected with a digon to all existing vertices w′

j,i1,i2 ; v2 has an outgoing arc to
the first vertex of each directed path representing a clause and an incoming arc from



128 CHAPTER 6. DIGRAPH COLORING

the last vertex of each such path; v1 has an outgoing arc to all vertices that represent
positive literals and an incoming arc from all vertices representing negative literals. (See
Fig. 6.1)

(α)

v1 v2

li,1 wi,1 li,2 wi,2 li,3

v1 v2

l′ = xj w′
j,i1,i2 l = ¬xj

(β) (γ)

x1 w1,1 x2 w1,2 x3

¬x1 w2,1 ¬x2

w′
1,1,2 w′

2,1,2

Figure 6.1: (α): The cycles created by {v1, v2} and clauses with three literals. (β):
The cycles created by {v1, v2} and each pair {x,¬x}. (γ): An example digraph for the
formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2), without showing v1, v2.

Let us now prove that this reduction implies the theorem. First, we claim that in the
digraph we constructed {v1, v2} is a directed feedback vertex set. Indeed, suppose we
remove these two vertices. Now every arc in the remaining graph either connects vertices
that represent the same clause, or is incident on a vertex w′

j,i1,i2 . Observe that these
vertices have only one incoming and one outgoing arc and because of the ordering of the
clauses i1 < i2 (since clauses that contain negative literals come later in the numbering).
We conclude that every directed path must either stay inside the path representing the
same clause or lead to a path that represents a later clause. Hence, the digraph is acyclic.

Let us now argue that if ϕ is satisfiable then the digraph is 2-colorable. We give
color 1 to v1 and 2 to v2. We give color 2 to each wi,j and color 1 to each w′

j,i1,i2 . Fix
a satisfying assignment for ϕ. We give color 1 to all vertices li,j that represent literals
set to True by the assignment and color 2 to all remaining vertices. Let us see why
this coloring is acyclic. First, consider a vertex w′

j,i1,i2 . This vertex has color 1 and one
incoming and one outgoing arc corresponding to opposite literals. Because the literals
are opposite, one of them has color 2, hence w′

j,i1,i2 cannot be in any monochromatic
cycle and can be removed. Now, suppose there is a monochromatic cycle of color 1. As
{v1, v2} is a directed feedback vertex set, this cycle must include v1. Since v2 and all
wi,j have color 2 the vertex after v1 in the cycle must be some li,j representing a positive
literal which was set to True by our assignment. The only outgoing arc leaving from li,j
and going to a vertex of color 1 must lead it to a vertex w′

j′,i,i′ , which as we said cannot
be part of any cycle. Hence, no monochromatic cycle of color 1 exists. Consider then
a monochromatic cycle of color 2, which must begin from v2. The next vertex on this
cycle must be a li,1 and since we have eliminated vertices w′

j,i1,i2 the cycle must continue
in the directed path of clause i. But, since we started with a satisfying assignment, at
least one of the literal vertices of this path has color 1, meaning the cycle cannot be
monochromatic.

Finally, let us argue that if the digraph is 2-colorable, then ϕ is satisfiable. Consider
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a 2-coloring which, without loss of generality, assigns 1 to v1 and 2 to v2. The coloring
must give color 2 to all wi,j and color 1 to all wj,i1,i2 , because of the digons connecting
these vertices to the palette. Now, we obtain an assignment for ϕ as follows: for each
xj , we find the vertex in our graph that represents the literal ¬xj (this is unique since
each variable appears exactly once negatively): we assign xj to True if and only if
this vertex has color 2. Let us argue that this assignment satisfies all clauses. First,
consider a clause with all negative literals. If this clause is not satisfied, then all the
vertices representing its literals have color 2. Because vertices wi,j also all have color
2, this creates a monochromatic cycle with v2, contradiction. Hence, all such clauses
are satisfied. Second, consider a clause ci with all positive literals. In the directed path
representing ci at least one literal vertex must have color 1, otherwise we would get a
monochromatic cycle with v2. Suppose this vertex represents the literal xj and has an
out-neighbor w′

j,i,i2 , which is colored 1. If the out-neighbor of w′
j,i1,i2 is also colored 1, we

get a monochromatic cycle with v1. Therefore, that vertex, which represents the literal
¬xj has color 2. But then, according to our assignment xj is True and ci is satisfied.

The last result of this section concerns 2-coloring of oriented graphs.

Theorem 6.4. It is NP -hard to decide if an oriented graph D = (V, E) is 2-colorable
even when the size of its directed feedback vertex set is 3.

Proof. We adapt the proof of Theorem 6.3. First let us give an intuition behind the
gadget we are going to use. In the proof of Theorem 6.3 the digraph we created is not
an oriented graph as it contains digons. All the digons of that digraph are connected to
vertices v1 or v2, and therefore, we want to replace v1 and v2 with a gadget that contains
two arcs t1t2 and f1f2 such that the vertices t1 and t2 have the same color as v1 and
the vertices f1 and f2 have the same color as v2. Then we can replace all cycles that
contained v1 (respectively, v2) with cycles that contain the arc t1t2 (respectively, f1f2)
and the rest of the proof will remain the same.

The gadget we use in place of {v1, v2} is the one in the Fig. 6.2. Furthermore, we
will not use the digon between v1 and v2 and we replace all the other incoming arcs of
v1 from the previous construction with incoming arcs to t1, the outgoing arcs of v1 with
outgoing arcs from t2, the incoming arcs of v2 with incoming arcs to f1, the outgoing
arcs of v2 with outgoing arcs from f2. For example, the digon v1wi,1 in the gadget (α)
from the previous theorem becomes a triangle t1t2wi,1.

Now we need to show that in any proper 2-coloring of this gadget both pairs f1, f2
and t1, t2 are monochromatic and we use different colors per pair.

First observe that there exists such a coloring (see Fig. 6.2) We will show that the
vertices f1 and t1 cannot have the same color. Assume that they are both colored 0;
then the vertex f2 must be colored 1 because we have the cycle f1, f2, t1. Because the
vertex f2 is colored 1 and there exists the cycle f2, v3, v4 we know that at least one of
v3, v4 must be colored 0. Let v3 (respectively, v4) be colored 0, then the coloring is
not proper because there exists the cycle t1, f1, v3 (resp. t1, f1, v4) with all the vertices
colored 0. This is a contradiction so the f1 and t1 cannot have the same color. Similarly
we can prove that f2 and t1 cannot have the same color. So we must color the vertices
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t1 t2

f2

f1
v1v2

v3v4

Figure 6.2: Gadget H: It is 2-colorable, and in any 2-coloring both pairs {f1, f2} and
{t1, t2} must be monochromatic but with different colors per pair.

f1 and f2 with one color and t1 with the second. Furthermore because we have the cycle
f1, f2, t2, the vertex t2 must use the same color as t1.

It remains to show that the size of a minimum directed feedback vertex set is at most
3; observe that the set {f1, f2, t1} is a directed feedback vertex set (see Fig. 6.3).

t2

v1v2

v3v4

H without {f1, f2, t1} remaining digraph

Figure 6.3: For the remaining digraph, it has been proved that is acyclic in the previous
theorem so {f1, f2, t1} is a directed feedback vertex set of the whole digraph.

This result is tight as, by Remark 6.3, we know that oriented graphs with directed
feedback vertex set of size k are k-colorable.

6.4 Bounded Feedback Arc Set and Bounded Degree

In this section we first present two algorithmic results: we show that k-Digraph Col-
oring becomes FPT (by k) if either the input graph has directed feedback vertex set k
and maximum degree at most 4k − 3; or if it has feedback arc set at most k2 − 1 (and
unbounded degree). Interestingly, the latter of these results is exactly tight and the
former is almost tight: in the second part we refine the reduction of the previous section
to show that k-Digraph Coloring is NP-hard for digraphs which have simlutaneously
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a feedback arc set of size k2, a directed feedback vertex set of size k and maximum degree
∆ = 4k − 1.

6.4.1 Algorithmic Results
Our first result shows that for k-Digraph Coloring, if we are promised a directed
feedback vertex set of size k (which is the smallest value for which the problem is non-
trivial), then the problem remains tractable for degree up to 4k−3. Observe that in the
case of general digraphs (where we do not bound the directed feedback vertex set) the
problem is already hard for maximum degree 2k + 2 (see Introduction section), so this
seems encouraging. However, we show in Theorem 6.8 that this tractability cannot be
extended much further.

Theorem 6.5. Let D = (V, E) be a digraph with feedback vertex set F of size |F | = k
and maximum degree ∆ ≤ 4k − 3. Then, D is k-colorable if and only if D[N [F ]] is
k-colorable. Furthermore, a k-coloring of D[N [F ]] can be extended to a k-coloring of D
in polynomial time.

Proof. Let D = (V, E) be such a digraph. If D[N [F ]] is not k-colorable, then D is not
k-colorable, so we need to prove that if D[N [F ]] is k-colorable then D is k-colorable and
we can extend this coloring to D. Assume that D[N [F ]] is k-colorable. By Remark 6.3
we can assume that D[F ] is a bi-directed clique. Let c : N [F ] → [k] be the assumed
k-coloring and without loss of generality say that F = {v1, . . . , vk} and c(vi) = i for all
i ∈ [k].

Before we continue let us define the following sets of vertices: we will call Vi,in the
set of vertices v ∈ N [F ]\F such that c(v) = i and there exists an arc vvi ∈ E. Similarly
we will call Vi,out the set of vertices v ∈ N [F ] \ F where c(v) = i and there exists an arc
viv ∈ E. The sets Vi,in and Vi,out are disjoint in any proper coloring (otherwise we would
have a monochromatic digon). Furthermore, Vi,in ∪ Vi,out is disjoint from Vj,in ∪ Vj,out

for j 6= i (because their vertices have different colors), so all these 2k sets are pairwise
disjoint. We first show that if one of these 2k sets is empty, then we can color D.

Lemma 6.6. If for some i ∈ [k] one of the sets Vi,in, Vi,out is empty then we can extend
c to a k-coloring of D in polynomial time.

Proof. We keep c unchanged and color all of V (D) \ N [F ] with color i. This is a
proper k-coloring. Indeed, this cannot create a monochromatic cycle with color j 6= i.
Furthermore, if a monochromatic cycle of color i exists, since this cycle must intersect
F , we conclude that it must contain vi. However, in the current k-coloring vi either has
in-degree or out-degree 0 in the vertices colored i, so no monochromatic cycle can go
through it.

In the remainder we assume that all sets Vi,in, Vi,out are non-empty. Our strategy
will be to edit the k-coloring of D[N [F ]] so that we retain a proper k-coloring, but one
of these 2k sets becomes empty. We will then invoke Lemma 6.6 to complete the proof.
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We now define, for each pair i, j ∈ [k] with i < j the set Ei,j which contains all
arcs with one endpoint in {vi, vj} and the other in Vi,in ∪Vi,out ∪Vj,in ∪Vj,out and whose
endpoints have distinct colors. We call Ei,j the set of cross arcs for the pair (i, j). We will
now argue that for some pair (i, j) we must have |Ei,j | ≤ 3. For the sake of contradiction,
assume that |Ei,j | ≥ 4 for all pairs. Then, by summing up the degrees of vertices of F
we have:

∑
i∈[k]

d(vi) ≥ 2k + k(2k − 2) +
∑

i,j∈[k],i<j

|Ei,j | ≥ 2k2 + 4
(

k

2

)
= 4k2 − 2k

In the first inequality we used the fact that each vi ∈ F has at least two arcs
connecting it to Vi,in ∪ Vi,out (since these sets are non-empty); 2k − 2 arcs connecting it
to other vertices of F (since F is a clique); and each cross arc of a set Ei,j contributes
one to the degree of one vertex of F . From this calculation we infer that the average
degree of F is at least 4k−2, which is a contradiction, since we assumed that the digraph
has maximum degre 4k − 3.

Fix now i, j such that |Ei,j | ≤ 3. We will recolor Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out in a way
that allows us to invoke Lemma 6.6. Since we do not change any other color, we will only
need to prove that our recoloring does not create monochromatic cycles of colors i or j
in D[N [F ]]. We can assume that |Ei,j | = 3, since if |Ei,j | < 3 we can add an arbitrary
missing cross arc and this can only make the recoloring process harder. Furthermore,
without loss of generality, we assume that vi has strictly more cross arcs of Ei,j incident
to it than vj .

We now have to do a case analysis. First, suppose all three arcs of Ei,j are incident on
vi. Then, there exists a set among Vj,in, Vj,out that has at most one arc connecting it to
vi. We color this set i, and leave the other set colored j. We also color Vi,in ∪Vi,out with
j. This creates no monochromatic cycle because: (i) vi now has at most one neighbor
colored i in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out, so no monochromatic cycle goes through vi; (ii)
vj has either no out-neighbors or no in-neighbors colored j in Vi,in∪Vi,out∪Vj,in∪Vj,out.
With the new coloring we can invoke Lemma 6.6. In the remainder of this proof we
therefore assume that two arcs of Ei,j are incident on vi and one is incident on vj .

Second, suppose that one of Vj,in, Vj,out has no arcs connecting it to vi. We color
this set i and leave the other set colored j. Observe that one of Vi,in, Vi,out has no arc
connecting it to vj . We color that set j and leave the other set colored i. In the new
coloring both vi, vj either have no out-neighbor or no in-neighbor with the same color
in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out, so the coloring is proper and we can invoke Claim 6.6. In
the remainder we assume that vi has one arc connecting it to each of Vj,in, Vj,out.

Third, suppose that both arcs of Ei,j incident on vi have the same direction (into or
out of vi). We then color Vi,in∪Vi,out with j and Vj,in∪Vj,out with i. In the new coloring
vj has at most one neighbor with the same color and vi has either only in-neighbors or
only out-neighbors with color i, so the coloring is acyclic and we again invoke Lemma 6.6.

Finally, we have the case where two arcs of Ei,j are incident on vi, they have different
directions, one has its other endpoint in Vj,in and the other in Vj,out. Observe that one
of Vi,in, Vi,out has no arc connecting it to vj and suppose without loss of generality that
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it is Vi,in (the other case is symmetric). We color Vi,in with j and leave Vi,out with color
i. One of Vj,in, Vj,out has an incoming arc from vi; we color this set i and leave the
other colored j. Now, vi only has out-neighbors with color i, while vj has at either only
in-neighbors or only out-neighbors colored j, so we are done in this final case.

Our second result concerns a parameter more restricted than directed feedback vertex
set, namely feedback arc set. Note that, in a sense, the class of graphs of bounded
feedback arc set contains the class of graphs that have bounded directed feedback vertex
set and bounded degree (selecting all incoming or outgoing arcs of each vertex of a
directed feedback vertex set produces a feedback arc set), so the following theorem
may seem more general. However, a closer look reveals that the following result is
incomparable to Theorem 6.5, because graphs of directed feedback vertex set k and
maximum degree 4k − 3 could have feedback arc set of size up to almost 2k2 (consider
for example a bi-direction of the complete graph Kk,2k−2), while the following theorem
is able to handle graphs of unbounded degree but feedback arc set up to (only) k2 − 1.
As we show in Theorem 6.8, this is tight.

Theorem 6.7. Let D be a digraph with a feedback arc set F of size at most k2 − 1.
Then D is k-colorable if and only if D[V (F )] is k-colorable, and such a coloring can be
extended to D in polynomial time.

Proof. It is obvious that if D[V (F )] is not k-colorable then D is not k-colorable. We will
prove the converse by induction. For k = 1 it is trivial to see that if |F | = 0 then D is
acyclic so is 1-colorable. Assume then that any digraph D with a feedback arc set F of
size at most (k− 1)2 − 1 is (k− 1)-colorable, if and only if D[V (F )] is (k− 1)-colorable.

Suppose now that we have D with a feedback arc set F with |F | ≤ k2 − 1 and we
find that D[V (F )] is k-colorable (this can be tested in 2O(k2) time). Let c : V (F )→ [k]
be a coloring of V (F ). We distinguish two cases:

Case 1. There exists a color class (say Vk) such that at least 2k − 1 arcs of F are
incident on Vk. Then D − Vk has a feedback arc set of size at most |F | − (2k − 1) ≤
k2−1−(2k−1) ≤ (k−1)2−1 and V1, . . . , Vk−1 remains a valid coloring of the remainder
of V (F ). So by inductive hypothesis D − Vk has a (k − 1)-coloring. By using the color
k on Vk we have a k-coloring for D.

Case 2. Each color class is incident on at most 2k− 2 arcs of F. We then claim that
there is a way to color V (F ) so that all arcs of F have distinct colors on their endpoints.
If we achieve this, we can trivially extend the coloring to the rest of the graph, as arcs
of F become irrelevant. Now, let us call v ∈ V (F ) as type one if v is incident on at least
k arcs of F . We will show that there is at most one type one vertex in each color class.
Indeed, if u, v ∈ Vi are both type one, then they are incident on at least 2k − 1 arcs of
F (there is no digon between u and v because they share a color), which we assumed
is not the case, as Vi is incident on at most 2k − 2 arcs of F . Therefore, we can use k
distinct colors to color all the type one vertices of V (F ). Each remaining vertex of V (F )
is incident on at most k − 1 arcs of F . We consider these vertices in some arbitrary
order, and give each a color that does not already appear on the other endpoints of its
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incident arcs from F . Such a color always exists, and proceeding this way we color all
arcs of F with distinct colors. This completes the proof.

6.4.2 Hardness
In this section we improve upon our previous reduction by producing a graph which has
bounded degree and bounded feedback arc set. Our goal is to do this efficiently enough
to (almost) match the algorithmic bounds given in the previous section.

Theorem 6.8. For all k ≥ 2, it is NP -hard to decide if a digraph D = (V, E) is k-
colorable, even if D has a directed feedback vertex set of size k, a feedback arc set of size
k2, and maximum degree ∆ = 4k − 1.

Proof. Recall that in the proof of Theorem 6.3 for k ≥ 2 we construct a graph that
is made up of two parts: the palette part, which is a bi-directed clique that contains
v1, v2 and the k − 2 vertices we have possibly added to increase the chromatic number
(call them v3, . . . , vk); and the part that represents the formula. We perform the same
reduction except that we will now edit the graph to reduce its degree and its feedback
arc set. In particular, we delete the palette vertices and replace them with a gadget that
we describe below.

We construct a new palette that will be a bi-directed clique of size k, whose vertices
are now labeled vi, i ∈ [k]. Let M be the number of vertices of the graph we constructed
for Theorem 6.3. We construct M “rows” of 2k vertices each. More precisely, for each
ℓ ∈ [M ], i ∈ [k] we construct the two vertices vi

ℓ,in, vi
ℓ,out. In the remainder, when we refer

to row ℓ, we mean the set {vi
ℓ,in, vi

ℓ,out | i ∈ [k]}. For all i, j ∈ [k], i < j we connect the
vertices of row 1 to the vertices of the clique as shown in Fig. 6.4. For all i, j ∈ [k], i < j
and ℓ ∈ [M − 1] we connect the vertices of rows ℓ, ℓ + 1 as shown in Fig. 6.5.

In more detail we have:

1. For each i ∈ [k] the vertex vi has an arc to all vj
1,out for j ≥ i, an arc to vj

1,in for
all j 6= i, and an arc from vj

1,in for all j ≤ i.

2. For each ℓ ∈ [M ], for all i < j we have the following four arcs: vj
ℓ,outv

i
ℓ,out, vi

ℓ,outv
j
ℓ,in,

vj
ℓ,invi

ℓ,in, and vj
ℓ,outv

i
ℓ,in. As a result, inside a row arcs are oriented from out to in

vertices; and between vertices of the same type from larger to smaller indices i.

3. For each ℓ ∈ [M − 1], for all i ∈ [k] we have the arcs vi
ℓ,outv

i
ℓ+1,out and vi

ℓ+1,invi
ℓ,in.

As a result, the vi
ℓ,out vertices form a directed path going out of vi and the vi

ℓ,in

vertices form a directed path going into vi.

4. For each ℓ ∈ [M − 1], for all i, j ∈ [k] with i < j we have the arcs vi
ℓ,outv

j
ℓ+1,in,

vi
ℓ,outv

j
ℓ+1,out, vi

ℓ+1,invj
ℓ,in, vj

ℓ,outv
i
ℓ+1,in. Again, arcs incident on an out and an in

vertex are oriented towards the in vertex.

Let P be the gadget we have constructed so far, consisting of the clique of size k and
the M rows of 2k vertices each. We will establish the following properties.
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row 1

FVSvi vj

vi
1,in

vj
1,in

vi
1,out

vj
1,out

Figure 6.4: Graph showing the connections between two vertices of the clique palette
(vi, vj , where i < j) and the corresponding vertices of row 1.

row ℓ
(for ℓ ≥ 1)

row ℓ + 1

vi
ℓ,in

vj
ℓ,in

vi
ℓ,out

vj
ℓ,out

vj
ℓ+1,out

vj
ℓ+1,in

vi
ℓ+1,in

vi
ℓ+1,out

Figure 6.5: Here we present the way we are connecting the vertices of the rows i and
i + 1

1. Deleting all vertices vi, i ∈ [k] makes P acyclic and eliminates all directed paths
from any vertex vi

ℓ,in to any vertex vj
ℓ′,out, for all i, j ∈ [k], ℓ, ℓ′ ∈ [M ].

2. The maximum degree of any vertex of P is 4k − 2.

3. There is a k-coloring of P that gives all vertices of {vi
ℓ,in, vi

ℓ,out | ℓ ∈ [M ]} color i,
for all i ∈ [k].

4. In any k-coloring of P , for all i, all vertices of {vi
ℓ,in, vi

ℓ,out | ℓ ∈ [M ]} receive the
same color as vi.

We include the proof of these properties in the appendix. Now, let us explain why
they imply the theorem. To complete the construction, we insert P in our graph in the
place of the palette clique we were previously using. To each vertex of the original graph,
we associate a distinct row of P (there are sufficiently many rows to do this). Now, if
vertex u of the original graph, which is associated to row ℓ, had an arc from (respectively
to) the vertex vi in the palette, we add an arc from vi

ℓ,out (respectively to vi
ℓ,in).

Let us first establish that the new graph has the properties promised in the theorem.
The maximum degree of any vertex in the main (non-palette) part remains unchanged
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and is 2k + 2 ≤ 4k − 1 while the maximum degree of any vertex of P is now at most
4k − 1, as we added at most one arc to each vertex. Deleting {vi | i ∈ [k]} eliminates
all cycles in P , but also all cycles going through P , because such a cycle would need to
use a path from a vertex vi

ℓ,in (since these are the only vertices with incoming arcs from
outside P ) to a vertex vj

ℓ′,out. Deleting all of P leaves the graph acyclic (recall that the
palette clique was a directed feedback vertex set in our previous construction), so there
is a directed feedback vertex set of size k.

For the feedback arc set we remove the arcs {vjvi | j > i, i, j ∈ [k]} ∪ {vi
1,invj | j >

i, i, j ∈ [k]}∪{vi
1,invi | i ∈ [k]}. Note that these are indeed k2 arcs. To see that this is a

feedback arc set, suppose that the graph contains a directed cycle after its removal. This
cycle must contain some vertex vi, because we argued that {vi | i ∈ [k]} is a directed
feedback vertex set. Among these vertices, select the vi with minimum i. We now
examine the arc of the cycle going into vi. Its tail cannot be vj for j > i, as we have
removed such arcs, nor vj for j < i, as this contradicts the minimality of i. It cannot be
vi

1,in as we have also removed these arcs. And it cannot be vj
1,in for j < i, as these arcs

are also removed. But no other in-neighbor of vi remains, a contradiction.
Let us also argue that using the gadget P instead of the palette clique does not affect

the k-colorability of the graph. This is not hard to see because, following Properties
3 and 4 we can assume that any k-coloring of P will give color i to all vertices of
{vi} ∪ {vi

ℓ,in, vi
ℓ,out | ℓ ∈ [M ]}. The important observation is now that, for all ℓ ∈ [M ]

there will always exist a monochromatic path from vi to vi
ℓ,out and from vi

ℓ,in to vi. We
now note that, if we fix a coloring of the non-palette part of the graph, this coloring
contains a monochromatic cycle involving vertex vi of the original palette if and only if
the same coloring gives a monochromatic cycle in the new graph going through vi.

6.5 Treewidth
In this section we consider the complexity of Digraph Coloring with respect to param-
eters measuring the acyclicity of the underlying graph, namely, treewidth and treedepth.
Before we proceed let us recall that in all graphs G we have χ(G) ≤ tw(G)+1 ≤ td(G)+1.
This means that if our goal is simply to obtain an fpt-algorithm then parameterizing
by treewidth implies that the graph’s chromatic number (and therefore also the di-
graph’s dichromatic number) is bounded. We first present an algorithm with complexity
ktw(tw!) which, using the above argument, proves that Digraph Coloring is FPT
parameterized by treewidth.

Theorem 6.9. There is an algorithm which, given a digraph D on n vertices and a
tree decomposition of its underlying graph of width tw decides if D is k-colorable in time
ktw(tw!)nO(1).

Proof. The proof uses standard techniques so we sketch some details. In particular we
assume that we are given a nice tree decomposition on which we will perform dynamic
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programming. Before we proceed, let us slightly recast the problem. We will say that a
digraph D = (V, E) is k-colorable if there exist two functions c, σ such that (i) c : V → [k]
partitions V into k sets (ii) σ is an ordering of V (iii) for all arcs uv ∈ E we have either
c(u) 6= c(v) or σ(u) < σ(v). It is not hard to see that this reformulation is equivalent to
the original problem. Indeed, if we have a k-coloring, since each color class is acyclic, we
can find a topological ordering σi of the graph G[Vi] induced by each color class and then
concatenate them to obtain an ordering of V . For the converse direction, the existence
of c, σ implies that if we look at vertices of each color class, σ must induce a topological
ordering, hence each color class is acyclic.

Now, let D be a digraph and S be a subset of its vertices. Let (c, σ) be a pair of
coloring and ordering functions that prove that D is k-colorable. Then, we will say that
the signature of solution (c, σ) for set S is the pair (cS , σS) where cS : S → [k] is defined
as cS(u) = c(u) and σS : S → [|S|] is an ordering function such that for all u, v ∈ S
we have σS(u) < σS(v) if and only if σ(u) < σ(v). In other words, the signature of a
solution is the restriction of the solution to the set S.

Given a rooted nice tree decomposition of D, let Bt be a bag of the decomposition
and denote by B↓

t the set of vertices of D which are contained in Bt and bags in the sub-
tree rooted at Bt. Our dynamic programming algorithm stores for each Bt a collection
of all pairs (c, σ) such that there exists a k-coloring of D[B↓

t ] whose signature is (c, σ). If
we manage to construct such a table for each node, it will suffice to check if the collection
of signatures of the root is empty to decide if the graph is k-colorable.

The table is easy to initialize for Leaf nodes, as the only valid signature contains
the empty coloring and ordering function. For an Introduce node that adds u to a bag
containing Bt we consider all signatures (c, σ) of contained in the table of the child
bag. For each such signature we construct a signature (c′, σ′) which is consistent with
(c, σ) but also colors u and places it somewhere in the ordering (we consider all such
possibilities). For each (c′, σ′) we delete this signature if u has a neighbor in the bag
that is assigned the same color by c′ but such that their arc violates the topological
ordering σ′. We keep all other produced signatures. To see that this is correct observe
that u has no neighbors in B↓

t \ Bt, because all bags are separators, so if we produce
an ordering of B↓

t consistent with σ′ the only arcs incident on u that could violate it
are contained in the bag (and have been checked). For Forget nodes the table is easily
updated by keeping only the restrictions of valid signatures to the new bag. Finally,
for Join nodes we keep a signature (c, σ) if and only if it is valid for both sub-trees.
Again this is correct because nodes of one sub-tree not contained in the bag do not have
neighbors in the other sub-tree, so as long as we produce an ordering consistent with σ
we can concatenate we cannot violate the topological ordering condition.

For the running time observe that the size of the DP table is ktw(tw!), because
we consider all colorings and all orderings of each bag. In Introduce nodes we spend
polynomial time for each entry of the child node (checking all placements of the new
vertex), while computation in Join nodes can be performed in time linear in the size of
the table. The total running time is ktw(tw!)nO(1).

As we explained, even though Theorem 6.9 implies that Digraph Coloring is
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Vi Si,j,σ...
...

(β)

V1 Vk
. . .

u

(α)

Si,j,σ Si′,j,σ′

. . .

pj,i,σ,i′,σ′

(γ)

Figure 6.6: (α): For each set of variables Xi, i ∈ [log n], we create an independent set Vi.
We connect all vertices of ∪i∈[log n] Vi to a universal vertex u. (β): The set Si,j,σ exists
only if the truth assignment σ of Xi satisfies the clause cj . For each truth assignment
σ of Xi we have defined an ordering of the vertices in Vi (unique for each assignment).
We create a path that uses, alternatively, vertices from Vi and Si,j,σ and respects the
ordering we defined for σ. (γ): The cycles created by the sets Si,j,σ (for a clause cj) and
the connector vertices p.

FPT parameterized by treewidth, the complexity it gives is significantly worse than the
complexity of Coloring, which is essentially ktw. Our main result in this section is to
show that this is likely to be inevitable, even if we focus on the more restricted case of
treedepth and 2 colors.

Theorem 6.10. If there exists an algorithm which decides if a given digraph on n
vertices and (undirected) treedepth td is 2-colorable in time tdo(td)nO(1), then the ETH is
false.

Proof. Suppose we are given a 3-SAT formula ϕ with n variables and m clauses. We
will produce a digraph G such that |V (G)| = 2O(n/ log n)m and td(G) = O(n/ log n) and
G is 2-colorable if and only if ϕ is satisfiable. Before we proceed, observe that if we
can construct such a graph the theorem follows, as an algorithm with running time
O∗(tdo(td)) for 2-coloring G would decide the satisfiability of ϕ in time 2o(n).

To simplify the presentation we assume without loss of generality that n is a power
of 2 (otherwise adding dummy variables to ϕ can achieve this while increasing n be a
factor of at most 2). We begin the construction of G by creating log n independent sets
V1, . . . , Vlog n, each of size d 2en

log2 n
e. We add a vertex u and connect it with arcs in both

directions to all vertices of ∪i∈[log n]Vi (Fig. 6.6(α)). We also partition the variables of ϕ
into log n sets X1, . . . , Xlog n of size at most d n

log ne.
The main idea of our construction is that the vertices of Vi will represent an assign-

ment to the variables of Xi. Observe that all vertices of Vi are forced to obtain the
same color (as all are forced to have a distinct color from u), therefore the way these
vertices represent an assignment is via their topological ordering in the DAG they induce
together with other vertices of the graph which obtain the same color.

To continue our construction, for each i ∈ [log n] we do the following: we enumerate
all the possible truth assignments of the variables of Xi and for each such truth assign-
ment σ : Xi → {0, 1}|Xi| we define (in an arbitrary way) a distinct ordering ρ(σ) of the
vertices of Vi. We will say that the ordering ρ(σ) is the translation of assignment σ.
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Note that there are |Vi|! ≥ ( 2en
log2 n

)! ≥ ( 2n
log2 n

)
2en

log2 n = 2
2en

log2 n
(1+log n−2 log log n)

> 2d n
log n

e

for n sufficiently large, so it is possible to translate truth assignments to Xi to order-
ings of Vi injectively. Note that enumerating all assignments for each group takes time
2O(n/ log n) = 2o(n).

Consider now a clause cj of ϕ and suppose some variable of the group Xi appears in
cj . For each truth assignment σ to Xi which satisfies cj we construct an independent
set Sj,i,σ of size |Xi| − 1, label its vertices sℓ

j,i,σ, for ℓ ∈ [|Xi| − 1]. For each ℓ we add an
arc from ρ(σ)−1(ℓ) to sℓ

j,i,σ and an arc from sℓ
j,i,σ to ρ(σ)−1(ℓ + 1). In other words, the

ℓ-th vertex of Sj,i,σ has an incoming arc from the vertex of Vi which is ℓ-th according to
the ordering ρ(σ) which is the translation of assignment σ and an outgoing arc to the
vertex of Vi which is in position (ℓ + 1) in the same ordering (these paths are presented
at Fig. 6.6 (β)). Observe that this implies that if all vertices of Vi and of Sj,i,σ are given
the same color, then the topological ordering of the induced DAG will agree with ρ(σ)
on the vertices of Vi.

To complete the construction, for each clause cj we do the following: take all inde-
pendent sets Sj,i,σ which we have constructed for cj and order them in a cycle in some
arbitrary way. For two sets Sj,i,σ, Sj,i′,σ′ which are consecutive in this cycle add a new
“connector” vertex pj,i,σ,i′,σ′ , all arcs from Sj,i,σ to this vertex, and all arcs from this ver-
tex to Sj,i′,σ′ (Fig. 6.6(γ)). Finally, we connect each connector vertex pj,i,σ,i′,σ′ we have
constructed to an arbitrary vertex of V1 with a digon. This completes the construction.

Let us argue that if ϕ is satisfiable, then G is 2-colorable. We color u with color
2, all the vertices in Vi for i ∈ [log n] with 1 and all connector vertices pi,j,σ,i′,σ′ with
2. For each clause cj there exists a group Xi that contains a variable of cj such that
the supposed satisfying assignment of ϕ, when restricted to Xi gives an assignment
σ : Xi → {0, 1}|Xi| which satisfies cj . Therefore, there exists a corresponding set Sj,i,σ.
Color all vertices of this set with 1. After doing this for all clauses, we color all other
vertices with 2. We claim this is a valid 2-coloring. Indeed, the graph induced by color 2
is acyclic, as it contains u (but none of its neighbors) and for each cj , all but one of the
sets Sj,i,σ and the vertices pj,i,σ,i′,σ′ . Since these sets have been connected in a directed
cycle throught connector vertices, and for each cj we have colored one of these sets with
1, the remaining sets induce a DAG. For the graph induced by color 1 consider for each
Vi the ordering ρ(σ), where σ is the satisfying assignment restricted to Vi. Every vertex
outside Vi which received color 1 and has arcs to Vi, has exactly one incoming and one
outgoing arc to Vi. Furthermore, the directions of these arcs agree with the ordering
ρ(σ). Hence, since ∪i∈[log n]Vi touches all arcs with both endpoints having color 1 and
all such arcs respect the orderings of Vi, the graph induced by color 1 is acyclic.

For the converse direction, suppose we have a 2-coloring of G. Without loss of
generality, u has color 2 and ∪i∈[log n]Vi has color 1. Furthermore, all connectors pj,i,σ,i′,σ′

also have color 2. Consider now a clause cj . We claim that there must be a group Sj,i,σ

such that Sj,i,σ does not use color 2. Indeed, if all such groups use color 2, since they
are linked in a directed cycle with all possible arcs between consecutive groups and
connectors, color 2 would not induce a DAG. So, for each cj we find a group Sj,i,σ that
is fully colored 1 and infer from this the truth assignment σ for the group Xi. Doing
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this for all clauses gives us an assignment that satisfies every clause. However, we need
to argue that the assignment we extract is consistent, that is, there do not exist Sj,i,σ

and Sj′,i,σ′ which are fully colored 1 with σ 6= σ′. For the sake of contradiction, suppose
that two such sets exist, and recall that ρ(σ) 6= ρ(σ′). We now observe that if Sj,i,σ ∪ Vi

only uses color 1, then any topological ordering of Vi in the graph induced by color 1
must agree with ρ(σ), which is a total ordering of Vi. In a similar way, the ordering of
Vi must agree with ρ(σ′), so if σ 6= σ′ we get a contradiction.

Finally, let us argue about the parameters of G. For each clause cj of ϕ we construct
an independent set of size O(n/ log2 n) for each satisfying assignment of a group Xi

containing a variable of cj . There are at most 3 such groups, and each group has at
most 2n/ log n satisfying assignments for cj , so |V (G)| = 2O(n/ log n)m.

For the treedepth, recall that deleting a vertex decreases treedepth by at most 1. We
delete u and all of ∪i∈[log n]Vi which are O(n/ log n) vertices in total. It now suffices to
prove that in the remainder all components have treedepth O(n/ log n). In the remainder
every component is made up of the directed cycle formed by sets Sj,i,σ and connectors
pj,i,σ,i′,σ′ . We first delete a vertex pj,i,σ,i′,σ′ to turn the cycle into a directed “path” of
length L = 2O(n/ log n). We now use the standard argument which proves that paths of
length L have treedepth log L, namely, we delete the pj,i,σ,i′,σ′ vertex that is closest to
the middle of the path and then recursively do the same in each component. This shows
that the remaining graph has treedepth logarithmic in the length of the path, therefore
at most O(n/ log n).

6.6 Coloring Tournaments
In this section we propose an algorithm that decides if a given tournament T is 2-
colorable in time O∗( 3√6n). Our algorithm starts by removing, arbitrarily, as many
disjoint triangles from the tournament as possible and then considers all the proper
partial colorings of the tournament induced on these triangles. Then we use a recursive
algorithm in order to determine if any of these partial colorings can be extended to a
proper 2-coloring for the whole tournament. Finally, we use the same idea in order to
decide if a tournament is k-colorable.

This algorithm searches for two types of triangles in the tournament - triangles that
contain one uncolored vertex and two vertices with the same color and triangles that
contain only one colored vertex. For the first type, it is easy to see that we know which
color we have to assign to the uncolored vertex. However, for the second type, the
algorithm calls itself in order to decide if any of the possible colorings is extendable to
this triangle.

Before we continue to the proof, let us recall that any tournament T that has a
directed cycle must contain a triangle. Therefore, in the Algorithm 7 we know that the
graph T [V \ V1] where V1 is the set of (initially) removed vertices, is acyclic as we could
not find any other triangles in it.

Now, let us prove that the Algorithm 8 does what we claim.
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Algorithm 7 [2-COL(T ) decision function]
Input: A tournament T = (V, E).
Output: Is −→χ (T ) = 2 or not?

1: V1 ← ∅, V2 ← V
2: IsTwoDC ← False
3: while there is a triangle {v1, v2, v3} in V2 do
4: V1 ← V1 ∪ {v1, v2, v3}
5: V2 ← V2 \ {v1, v2, v3}
6: end while
7: for all 2-coloring C : V1 → {1, 2} that are proper do
8: IsTwoDC ← IsTwoDC ∨ Ext 2-DCN(T ,V1,C)
9: end for

10: return IsTwoDC

Lemma 6.11. Given a tournament T = (V, E), a set of vertices S ⊆ V such that
T [V \ S] is acyclic and a function C : S → {1, 2} of S, Algorithm 8 applied to VC = S
decides if we can find a function C∗ : V → {1, 2} that gives a proper 2-coloring for the
tournament T such that C∗(v) = C(v) for all v ∈ S.

Proof. First note that if the function cannot be extended the algorithm will return False.
Indeed, the algorithm changes the variable Ext to true only if there exists an extension
C∗ of C that is a proper coloring for the tournament. Such an extension can not exists
since we have assume that C is not extendable. So we have to prove that if the given
function C can be extended in order to give a proper coloring of the whole tournament
then the algorithm will return True. For the rest of the proof let us call the triangles
that contain one uncolored vertex and two vertices of the same color as type one and the
triangles with two uncolored vertices as type two. Assume C is extendable (i.e., there
is an extension C∗ that gives a proper coloring for the tournament); the algorithm first
checks if there exists a triangle of type one and gives to the uncolored vertices the other
color (in line 5). It is clear that this is the only option for these vertices so that the new
color function remains extendable. After that the algorithm checks for triangles of type
two. In this case we know that the two uncolored vertices cannot have both the same
color as the third vertex; so we have a total of 22−1 = 3 cases. After that the algorithm
checks (between lines 10 and 13) if any of these possibilities can be can be extended and
gives us a proper coloring (by calling itself in line 12).

As we mentioned, the algorithm tries to extend all the possible colorings (except
those that are not proper) so at some point we have an extendable function C and either
we do not have any uncolored vertices or we do not have any triangles of type one or
two.

Case 1. Suppose VNC = ∅ when line 16 of Algorithm 2 is executed. Then C is a
proper coloring of V which means that after the check in line 18 we change the value of
the variable Ext to True.

It remains to show that in the second case if we colored the remaining uncolored
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Algorithm 8 [Ext 2-COL(T ,VC ,C ) decision function]
Input: A tournament T = (V, E), a set of vertices VC ⊆ V and a function C : VC →
{1, 2}.

Output: Can we find a proper 2-coloring for T by extending C?
1: VNC ← V \ VC

2: Ext← False
3: while there is a triangle {v1, v2, v3} such that v1 ∈ VNC , v2, v3 ∈ VC and C(v2) =
C(v3) do

4: VC ← VC ∪ {v1}, VNC ← VNC \ {v1}
5: set C(v1) to be the color that is not C(v2) = C(v3)
6: end while
7: if C is a proper coloring for VC then
8: while there is a triangle {v1, v2, v2} such that v1, v2 ∈ VNC and v3 ∈ VC do
9: VC ← VC ∪ {v1, v2}, VNC ← VNC \ {v1, v2}

10: for all the pairs {Col1, Col2} 6= {C(v3), C(v3)} do
11: set C(v1)← Col1 and C(v2)← Col2
12: Ext← Ext ∨ Ext 2-DNC(T ,VC ,C)
13: end for
14: end while
15: end if
16: for all v ∈ VNC set C(v) to be 1
17: if C is a proper coloring for V then
18: Ext← True
19: end if
20: return Ext

vertices with any color we have a proper coloring for T .
Case 2. In this case we do not have any triangles of type one or two. This com-

bined with the assumption that the coloring is extendable implies that by coloring the
remaining vertices with any color we end up with a coloring that does not have any
monochromatic triangle. It remains to show the following claim:

Claim 6.12. Let T = (V, E) be a tournament and C : V → {1, 2} be a function that
is a 2-coloring of T such that there is no monochromatic triangle. Then C is a proper
coloring.

Proof. Assume that C does not give a proper coloring. Then there must exist a monochro-
matic cycle S with length grater than 3. Note that S induces a tournament. But any
tournament which contains a directed cycle contains a triangle. This gives a contradic-
tion since there are no monochromatic triangles in T .

So our coloring is a proper 2-coloring; thus the algorithm will change the value of
the variable Ext to True in line 18 and due to the logic or in line 12 this True will be
kept until the algorithm terminates.
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Finally we are going to prove that Algorithm 7 decides if a tournament is 2-colorable
and that it runs in O∗( 3√6n) time.

Theorem 6.13. Given a tournament T = (V, E), Algorithm 7 decides if T is 2-colorable.

Proof. It is easy to see that Algorithm 7 tries to extend any proper coloring of V1.
Now, in order to use Lemma 6.11 we need to observe that we have no triangles in V2.
Since a tournament without triangles is acyclic, it follows that V2 is acyclic. So, from
lemma 6.11 we know that if one of these colorings can be extended then the Algorithm 8
will return True. Thus, Algorithm 7 returns True if the tournament is 2-colorable and
False otherwise.

Theorem 6.14. Let T = (V, E) be a tournament. Then we can decide if the dichromatic
number of T is two in time O∗( 3√6n).

Proof. Observe that in Algorithm 7 all the steps are polynomial except the number of
the proper ways to color the set V1 and the time Algorithm 8 needs. It is easy to see
that the number of proper ways to color V1 is at most 6

|V1|
3 since for every triangle in

V1 we know that we have six possible choices to color it (all except the two that give to
every vertex the same color). This means that we call Algorithm 8 at most 6

|V1|
3 times.

The running time of the second algorithm depends on the number of times that it will
call itself. Now we can see that for the remaining vertices (V2 = V \ V1), in the worst
case, we need to check three different colorings (see proof of lemma 6.11) for two vertices
at a time. Thus, the running time of Algorithm 8 is lO∗(3

|V2|
2 ). So, we can decide if T

is 2-colorable in time

O∗(6
|V1|

3 · 3
|V2|

2 ) = O∗( 3√6|V1|+|V2|) = O∗( 3√6n)

Note that, Algorithm 7 can be modified in order to decide if a tournament is k-
colorable. The difference is that we need to consider all the proper ways, the vertices
of the type one triangles can be colored (for the definition of type one triangles see the
proof of Lemma 6.11). Since, in this case, we consider k colors this affects the running
time of the algorithm. The the number of proper ways to color V1 is at most (k3 − k)

|V1|
3 .

The worst case for the vertices of V2 is to be considered in triangles of type two (for the
definition of type one triangles see the proof of Lemma 6.11); this gives us k2−1 possible
colorings for two vertices at a time. Therefore, the total running time is O∗( 3√k3 − k

n).
This gives us the following corollary.

Corollary 6.15. Let T = (V, E) be a tournament. We can decide if the dichromatic
number of T is k in time O∗( 3√k3 − k

n).
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6.7 Conclusions
In this chapter we have strengthened known results about the complexity of Digraph
Coloring on digraphs which are close to being DAGs, precisely mapping the threshold
of tractability for directed feedback vertex set and feedback arc set; and we precisely
bounded the complexity of the problem parameterized by treewidth, uncovering an im-
portant discrepancy with its undirected counterpart. One question for further study is
to settle the degree bound for which k-Digraph Coloring is NP-hard for directed feed-
back vertex set of size k, and more generally to map out how the tractability threshold
for the degree evolves for larger values of the directed feedback vertex set from 4k−Θ(1)
to 2k +Θ(1), which is the correct threshold when the size of directed feedback vertex set
is unbounded. With regards to undirected structural parameters, it would be interesting
to investigate whether a vco(vc) algorithm exists for 2-Digraph Coloring, where vc is
the input graph’s vertex cover, as it seems challenging to extend our hardness result to
this more restricted case.



Chapter 7

Locally irregular induced
subgraphs

7.1 Introduction
A graph G is said to be locally irregular, if every two adjacent vertices of G have different
degrees. In this chapter, we introduce and study the problem of finding a largest locally
irregular induced subgraph of a given graph. This problem is equivalent to identifying
what is the minimum number of vertices that must be deleted from G, so that what
remains is a locally irregular graph.

The notion of locally irregular graphs was first introduced in [21]. The most interest-
ing aspect of locally irregular graphs, comes from their connection to the so-called 1-2-3
Conjecture, proposed in [126]. Formally, the 1-2-3 Conjecture states that for almost ev-
ery graph, we should be able to place weights from {1, 2, 3} on the edges of that graph,
so that the coloring, that assigns a color to each vertex equal to the sum of the weights
on its adjacent edges, is a proper vertex-coloring of the graph. An obvious connection is
that this conjecture holds for locally irregular graphs. Indeed, placing weight equal to 1
to all the edges of a locally irregular graph, suffices to produce a proper vertex-coloring,
as each vertex receives a color equal to its degree.

The problem we introduce belongs in a more general and well studied family of
problems, which is about identifying a largest induced subgraph of a given graph that
verifies a specific property Π. That is, given a graph G = (V, E) and an integer k,
is there a set V ′ ⊆ V such that |V ′| ≤ k and G[V \ V ′] has the specified property
Π? This generalised problem is indeed classic in graph theory, and it is known as the
Induced Subgraph with Property Π (ISPΠ for short) problem in [94]. In our case,
the property Π is “the induced subgraph is locally irregular”.

Related Work In [140] the authors showed that ISPΠ is a hard problem for any prop-
erty Π that is hereditary, i.e., all induced subgraphs of G verify Π if G itself verifies that
property. However, it remains interesting (one could say that it actually becomes more
interesting) even if the property Π is not hereditary. Recently, the authors of [25] studied

145



146 CHAPTER 7. LOCALLY IRREGULAR INDUCED SUBGRAPHS

the problem for Π being “all vertices of the induced subgraph have odd degree”, which
clearly is not a hereditary property. Nevertheless, they showed that this is an NP-hard
problem, and they gave an fpt-algorithm that solves the problem when parameterised
by the rank-width. Also, the authors of [5, 14, 159] studied the ISPΠ problem, where Π
is the rather natural property “the induced subgraph is d-regular”, where d is an integer
given in the input (recall that a graph is said to be d-regular if all of its vertices have
the same degree d). In particular, in [14] it is shown that finding a largest (connected)
induced subgraph that is d-regular, is NP-hard to approximate, even when restricted on
bipartite or planar graphs. The authors of [14] also provide a linear-time algorithm to
solve this problem for graphs with bounded treewidth. In contrast, the authors of [5]
take a more practical approach, as they focus on solving the problem for the particular
values of d = 1 and d = 2, by using bounds from quadratic programming, Lagrangian
relaxation and integer programming.

It is quite clear that, in some sense, the property that interests us lies on the opposite
side of the one studied in [5, 14, 159]. However, both properties, “the induced subgraph
is regular” and “the induced subgraph is locally irregular” are not hereditary. This
means that we do not get an NP-hardness result directly from [140]. Furthermore, the
ISPΠ problem always admits an fpt-algorithm, when parameterised by the size of the
solution, if Π is a hereditary property (proven in [46, 131]), but for a non-hereditary one,
this is not always true. Indeed in [159], the authors proved that when considering Π as
“the induced subgraph is regular”, the ISPΠ problem is W[1]-hard when parameterised
by the size of the solution.

As we mentioned earlier, the 1-2-3 Conjecture seems to have some very interesting
links to locally irregular graphs. There have been some steps towards proving that
conjecture, which involve edge-decomposing a graph into a constant number of locally
irregular subgraphs, i.e., given G, find an edge-coloring of G using a constant number
of colors, such that each color induces a locally irregular subgraph of G. This is the
main motivation behind [21], and it seems to remain interesting enough to attract more
attention [27, 143, 171].

Note that the class of locally irregular graphs can be seen as an antonym to that of
regular,i.e., graphs such that all of their vertices have the same degree. It is important
to state here that there exist several alternative such notions. This is mainly due to
the very well known fact that there are no non-trivial irregular graphs, i.e., graphs that
do not contain two vertices (not necessarily adjacent) with the same degree (see [49]).
Thus, the literature has plenty of slightly different definitions of irregularity (see for
example [6, 49, 50, 89, 170]). One way to deal with the nonexistence of irregular graphs,
is to define a notion of local irregularity. Intuitively, instead of demanding for all vertices
of a graph to have different degrees, we are now considering each vertex v separately,
and request that the vertices “around” v to verify some properties of irregularity. For
example, the authors of [7] study graphs G such that for every vertex v of G, no two
neighbours of v have the same degree. For an overview of other interesting notions of
irregularity (local or otherwise), we refer the reader to [8].
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Our Contribution We begin in Section 7.2 by providing the basic notations, defi-
nitions and lemmas that are going to be used throughout this chapter. In Section 7.3,
we deal with the complexity of the introduced problem. In particular, we show that
the problem belongs in P if the input graph is a path, cycle, tree, complete bipartite
or complete graph. We then prove that finding the maximum induced locally irregular
subgraph of a given graph G is NP-hard, even if G is restricted to being a subcubic
planar bipartite, or a cubic bipartite graph.

As the problem we introduce seems to be computationally hard even for rather
restricted families of graphs, we proceed by investigating its approximability. Unfortu-
nately, we prove in Section 7.4 that for any bipartite graph G of order n and k ≥ 1, there
can be no polynomial time algorithm that finds an approximation of I(G) within ratio
O(n1− 1

k ), unless P=NP. Nevertheless, we do manage to give a (simple) d-approximation
algorithm for d-regular bipartite graphs.

We then decide to look into its parameterised complexity. In Section 7.5, we present
two algorithms that compute I(G), each one considering different parameters. The first
considers the size of the solution k and the maximum degree ∆ of G, and and has
running time (2∆)knO(1), while the second considers the treewidth tw and ∆ of G, and
has running time ∆3twnO(1). Unfortunately, these algorithms can be considered as being
FPT only if ∆ is part of the parameter. In Section 7.5.3, we present two linear fpt-
reductions which prove that the problem is W[2]-hard when parameterised only by the
size of the solution and W[1]-hard when parameterised only by the treewidth. These
reductions also show that we can not even have an algorithm that computes I(G) in time
f(k)no(k) or O∗(f(tw)no(tw)), unless the ETH fails. The O∗ notation is used to suppress
polynomial factors in regards to n and tw.

7.2 Preliminaries
Let G = (V, E) be a graph. We say that G is locally irregular if for every edge uv ∈ E,
we have d(u) 6= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph;
any set S that has this property is said to be an irregulator of G. For short, we say that
S is an ir(G). Moreover, let I(G) be the minimum order that any ir(G) can have. We
say that S is a minimum irregulator of G, for short S is an ir∗(G), if S is an ir(G) and
|S| = I(G).

We also define the following notion, which generalises ir(G). Let G = (V, E) be a
graph, S, X ⊆ V and let G′ = G[V \ S]. Now, let S ⊆ V be such that, for each two
neighbouring vertices u, v in X \ S, we have that dG′(u) 6= dG′(v); any set S that has
this property is said to be an irregulator of X in G, for short ir(G, X). We define the
notions of ir∗(G, X) and I(G, X) analogously to the previous definitions.

We now provide some lemmas and an observation that will be useful throughout this
chapter. In the three lemmas below, we investigate the relationship between I(G) and
I(G, X).

Lemma 7.1. Let G = (V, E) be a graph and let X ⊆ V . Then I(G, X) ≤ I(G).
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Proof. Let S be an ir∗(G), G′ = G[V \S] and X ′ = X \S. Observe that for each pair of
vertices u, v such that u ∈ X ′ and v ∈ NG′(u) ∩X ′, we have that dG′(u) 6= dG′(v), since
S is an ir∗(G). It follows that S is also an irregulator of X in G, i.e. S is an ir(G, X),
and thus we have that I(G, X) ≤ |S| = I(G).

Lemma 7.2. Let G = (V, E) be a graph and S, X ⊆ V such that S is an ir∗(G, X).
Then, S ⊆ N [X] and I(G, X) = I(G[N [X]], X).

Lemma 7.3. Let G = (V, E) be a graph, and X1, . . . , Xn ⊆ V such that N [Xi]∩N [Xj ] =
∅ for every 1 ≤ i < j ≤ n. Then ∑n

i=1 I(G, Xi) ≤ I(G).

In this final lemma, we show that an irregulator of a graph is also an irregulator of
any subset of the vertices of the graph, even if we only consider the neighbourhood of
that subset.

Lemma 7.4. Let G = (V, E) be a graph, X be a subset of V and S be an ir(G). The
set S ∩N [X] is an ir(G, X) and an ir(G[N [X]], X).

The proofs of the above lemmas are included in the appendix.
The following, almost trivial, observation, will be useful throughout the rest of the

chapter.

Observation 1. Let G = (V, E) be a graph and S be an ir(G). Then, for each edge
uv ∈ E, if d(u) = d(v), then S contains at least one vertex in N [{u, v}]. Additionally,
for a set X ⊆ V , let S∗ be an ir(G[N [X]], X). Then for each edge uv ∈ E(G[X]), if
d(u) = d(v), then S∗ contains at least one vertex in N [{u, v}].

7.3 (Classic) complexity
In this section, we deal with the complexity of the problem we introduced. In Sec-
tion 7.3.1 we present all the families of graphs for which we prove that I(G) is computed
in polynomial time. Then in Section 7.3.2, we prove that, in general, computing I(G) is
NP-hard.

7.3.1 Polynomial Cases
Theorem 7.5. Let G be a graph. If G = Kn, then I(G) = n − 1. Also, if G = Kn,m

with 0 ≤ n ≤ m, then I(G) ≤ 1 with the equality holding if and only if n = m.

Proof. Let G = (V, E). Assume that G = Kn, and let S be an ir(G) with |S| < n − 1.
Then G′ = G[V \ S] is a complete graph of order n′ > n − (n − 1) = 1, and for any
n′ ≥ 2, we have that Kn′ is not locally irregular, leading to a contradiction.

Observe that Kn,m, with 0 ≤ n < m, is locally irregular, and thus I(Kn,m) = 0 in
this case. Assume now that G = Kn,n with n ≥ 1. We have that I(G) ≥ 1 as Kn,n is
not locally irregular. Let L, R be the two bipartitions of V , with |L| = n and |R| = n.
Consider the set S = {v}, where v is any vertex of L. Clearly, after the deletion of v,
the graph G′ = G[V \ S] is isomorphic to Kn−1,n which is locally irregular.
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Theorem 7.6. Let Pn be the path on n vertices, then

I(Pn) =
{
bn

4 c, if n 6≡ 2 mod 4
bn

4 c+ 1, if n ≡ 2 mod 4

Proof. We begin our proof by examining the cases of P1, P2, P3, and P4. Observe first
of all; that P1 and P3 are locally irregular graphs. It follows that I(P1) = I(P3) = 0.

On the other hand, it is also easy to check that P2 is not locally irregular, but that
deleting any one of its vertices suffices to turn it into P1 (which is locally irregular). It
follows that I(P2) = 1. We now show that I(P4) = 1. Let P4 = v1v2v3v4 and note that
P4 is not locally irregular (we have that d(v2) = d(v3) = 2). Moreover, deleting either
v1 or v4 from P4, results in the graph P3, which is locally irregular. Thus I(P4) = 1.
Observe moreover that any path on more than 4 vertices is not locally irregular.

We are now ready to continue with the proof. Let n, k, d ∈ N, with n ≥ 5, n ≡
k mod 4, d = bn

4 c and G = Pn = v1 . . . vn. We have the following two cases:

• k 6= 2. Consider the set S = {vi : i ≡ 0 mod 4}. We have that |S| = d. Also,
observe that the graph G[V (G) \ S] has d connected components, each one of
which is isomorphic to P3, which are locally irregular, and a connected component
isomorphic to Pk, where k ∈ {0, 1, 3}, which is also locally irregular (the graph P0
is the null graph). It follows that S is an ir(Pn) and that I(Pn) ≤ |S| = d. All
that is left to show is that I(Pn) ≥ d. Let us assume that there exists a set S0 that
is an ir(Pn) and |S0| < d. Now observe that G[V (G) \ S0] contains at least one
connected component isomorphic to Pm, with m ≥ 4 This is a contradiction, since
Pm is not locally irregular.

• k = 2. Consider the set S = {vi : i ≡ 0 mod 4} ∪ {vn}. We have that |S| = d + 1.
Similarly to the previous case, we have that G[V (G) \ S] contains d connected
components isomorphic to P3 and one connected component isomorphic to P1.
Thus S is an ir(Pn) and I(Pn) ≤ |S| ≤ d + 1. All that is left to show is that
I(Pn) ≥ d + 1. Observe that the arguments supporting that I(Pn) > d are the
same as the previous case. So, we assume that there exists a set S0 that is an
ir(Pn) and |S0| = d. Observe that all the connected components of G[V (G) \ S0]
are paths. Also, if there exists a connected component isomorphic to a Pm, with
m ≥ 4, then G[V (G) \ S0] is not locally irregular. So we may assume that all the
connected components of G[V (G) \ S0] are isomorphic to a paths on at most 3
vertices. It follows that one of these components must be isomorphic to P2, and
P2 is not locally irregular. This is a contradiction.

Corollary 7.7. Let Cn be the cycle on n ≥ 3 vertices, then I(Cn) = I(Pn−1) + 1.

To explain the above statement, observe that for every vertex v belonging to the
cycle G = Cn, we have that d(v) = 2. Thus, we know that I(Cn) ≥ 1 and that any S
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Figure 7.1: The gadget used in the proof of Theorem 7.9. The white and black vertices
are used to denote vertices belonging to different bipartitions.

that is an ir(G) contains at least one vertex, say vertex v. The statement follows by
observing that the graph G[V (G) \ v] is isomorphic to Pn−1.

Another interesting case is when G is a tree. In this case, we can calculate I(G)
in polynomial time as a direct consequence of Theorem 7.17 (see Section 7.5). Indeed,
in that theorem we provide an algorithm that computes I(G) in time ∆2twnO(1). The
next corollary follows directly from the fact that trees have tw = 1 (by definition) and
∆ = O(n).

Corollary 7.8. Let T be a tree. There exists a polynomial time algorithm that computes
I(T ).

7.3.2 NP-Hard Cases
We now show that finding a minimum irregulator of a graph is NP-hard. Interestingly,
this remains true even for quite restricted families of graphs, such as cubic (i.e., 3-
regular) bipartite graphs and subcubic (i.e., of maximum degree at most 3) planar
bipartite graphs.

Theorem 7.9. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete, even
when G is a planar bipartite graph with maximum degree ∆ ≤ 3.

Proof. Since the problem is clearly in NP, we focus on proving it is also NP-hard. The
reduction is from the Vertex Cover problem, which remains NP-complete when re-
stricted to planar cubic graphs [156]. In that problem, a planar cubic graph G and an
integer k ≥ 1 are given as an input. The question is, whether there exists a vertex cover
of G of order at most k. That is, whether there exists a set V C ⊆ V (G) such that for
every edge uv ∈ E(G), at least one of u and v belongs in V C and |V C| ≤ k.

Let G′ be a planar cubic graph and k ≥ 1 given as input for Vertex Cover. Let
|E(G′)| = m. We construct a planar bipartite graph G as follows; we start with the
graph G′, and modify it by using multiple copies of the gadget, illustrated in Figure 7.1.
Note that we follow the naming convention illustrated in Figure 7.1 whenever we talk
about the vertices of our gadgets. When we say that we attach a copy H of the gadget
to the vertices v and v′ of G′, we mean that we add H to G′, and we identify the vertices
w1 and w2 to the vertices v and v′ respectively. Now, for each edge vv′ ∈ E(G′), attach
one copy H of the gadget to the vertices v and v′, and then delete the edge vv′ (see
Figure 7.2). Clearly this construction is achieved in linear time (we have added m copies
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Figure 7.2: The construction in the proof of Theorem 7.9. The graph G′ is the initial
planar cubic graph, and G is the graph built during our reduction. In G, the white and
black vertices are used to denote vertices belonging to different bipartitions.

of the gadget). Note also that the resulting graph G has ∆(G) = 3 and that the planarity
of G′ is preserved since G is constructed by essentially subdividing the edges of G′ and
adding a tree pending from each new vertex. Also, G is bipartite. Indeed, observe that
after removing the edges of E(G′), the vertices of V (G′) form an independent set of G.
Furthermore, the gadget is bipartite, and the vertices w1, w2 (that have been identified
with vertices of V (G′)) belong to the same bipartition (in the gadget). Finally, for any
1 ≤ i ≤ m, let Hi be the ith copy of the gadget attached to vertices of G′. We use the
vertices ri and ui to denote the copies of the vertices r and u (respectively) that also
belong to Hi.

We are now ready to show that the minimum vertex cover of G′ has size k′ if and
only if I(G) = k′.

Let V C be a minimum vertex cover of G′ and |V C| = k′. We show that the set
S = V C is an ir(G). Let G∗ = G[V (G) \ S]. First, note that S contains only vertices
of G′. Thus, for each i, the vertices of Hi except from ri, which also remain in G∗, have
the same degree in G′ and in G∗. Also note that each vertex of G′ is adjacent only to
copies of r. It follows that it suffices to only consider the vertices ri to show that V C is
an ir(G). Now, for any 1 ≤ i ≤ m, consider the vertex ri. Since V C is a vertex cover
of G′, for each edge vv′ ∈ E(G′), V C contains at least one of v and v′. It follows that
dG∗(ri) ≤ 2. Note also that NG∗(ri) contains the vertex ui ∈ V (Hi) and possibly one
vertex v ∈ V (G′).

Also, since we only delete vertices in V (Hi) ∩ V (G′), we have that dG∗(ui) = 3 >
dG∗(ri). In the case where NG∗(ri) also contains a vertex v ∈ V (G′), the vertex v is
adjacent only to vertices which do not belong in V (G′). Thus, dG∗(v) = dG(v) = 3 >
dG∗(ri). It follows that ri has a different degree from all of its neighbours and that V C
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is an ir(G).
Now, we prove that if I(G) = k′ then there exists a vertex cover of size at most k′.

Assume that I(G) = k′ and let S be an ir∗(G). Observe that since S is an ir∗(G), S
contains at least one vertex of Hi (for each 1 ≤ i ≤ m). Let Xi = V (Hi) ∩ V (G′).
To construct a vertex cover V C of G′ with |V C| ≤ k′, we work as follows. For each
1 ≤ i ≤ m:

1. for each vertex v ∈ Xi, if v ∈ S then put v in V C. Then,

2. if S ∩Xi = ∅, put any one of the two vertices of Xi in V C.

Observe now that any vertex that is added to V C during step 1. of the above pro-
cedure, also belongs to S and any vertex that is added during step 2. of the above
procedure corresponds to at least one vertex in S. It follows that |V C| ≤ k′. Also note
that V C contains at least one vertex of Xi, for each i, and that for each uv ∈ E(G′),
there exists an i such that V (Xi) = {u, v}. Thus V C is indeed a vertex cover of G′.

Therefore G′ has a minimum vertex cover of size k′ if and only if I(G) = k′. To
complete the proof note that deciding if I(G) = k′ < k for a given k, answers the
question whether G′ has a vertex cover of size less than k or not.

In the following theorem we show that calculating I(G) is NP-hard even if G is a
cubic bipartite graph.

Theorem 7.10. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete even
in cubic bipartite graphs.

The proof of this theorem is included in the appendix.

7.4 (In)approximability
In the previous section we showed that computing I(G) is NP-hard, even for graphs G
belonging to quite restricted families of graphs. So the natural question to pose next,
which we investigate in this section, is whether we can approximate I(G). Unfortunately,
most of the results we present below are once again negative.

We start with a corollary that follows from the proof of Theorem 7.9 and the inap-
proximability of Vertex Cover in cubic graphs [56]:

Corollary 7.11. Given a graph G, it is NP-hard to approximate I(G) to within a ratio
of 100

99 , even if G is bipartite and ∆(G) = 3.

Now, we are going to show that there can be no algorithm that approximates I(G) to
within any decent ratio in polynomial time, unless P=NP, even if G is a bipartite graph
(with no restriction on its maximum degree).

Theorem 7.12. Let G be a bipartite graph of order N and k ∈ N be a constant such
that k ≥ 1. It is NP-hard to approximate I(G) to within O(N1− 1

k ).
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Figure 7.3: The construction in the proof of Theorem 7.12. In subfigure (b), we illustrate
how each pair of literal vertices is connected to the rest of the graph. Whenever there
is an upper index 1 ≤ l ≤ nk′ on a vertex, it is used to denote the lth copy of that
vertex. The dashed lines are used to represent the edges between the literal and the
clause vertices.

Proof. The proof is by a gap producing reduction from 2-Balanced 3-SAT, which was
proven to be NP-complete in [29]. In that problem, a 3CNF formula F is given as an
input, comprised by a set C of clauses over a set of Boolean variables X. In particular,
we have that each clause contains exactly 3 literals, and each variable x ∈ X appears in
F exactly twice as a positive and twice as a negative literal. The question is, whether
there exists a truth assignment to the variables of X satisfying F .

Let F be a 3CNF formula with m clauses C1, . . . , Cm and n variables x1, . . . , xn that
is given as input to the 2-Balanced 3-SAT problem. Let 2k = k′ + 1. Based on the
instance F , we are going to construct a bipartite graph G = (V, E) where |V | = O(nk′+1)
and

• I(G) ≤ n if F is satisfiable

• I(G) > nk′ otherwise.

To construct G = (V, E), we start with the following graph: for each literal xi (¬xi

resp.) in F , add a literal vertex vi (v′
i resp.) in V , and for each clause Cj of F , add a

clause vertex cj in V . Next, for each 1 ≤ j ≤ m, add the edge vicj (v′
icj resp.) if the

literal xi (¬xi resp.) appears in Cj according to F . Observe that the resulting graph
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is bipartite, for each clause vertex c we have d(c) = 3 and for each literal vertex v we
have d(v) = 2 (since in F , each variable appears twice as a positive and twice as a
negative literal). To finish the construction of G, we make use of the gadget shown in
Figure 7.3(a), as well as some copies of S5, the star on 5 vertices. When we say that we
attach a copy H of the gadget to the vertices vi and v′

i (for some 1 ≤ i ≤ n), we mean
that we add H to G, and we identify the vertices w1 and w2 to the vertices vi and v′

i

respectively. Now:

• for each 1 ≤ i ≤ n, we attach nk′ copies of the gadget to the vertices vi and v′
i of

G. For convenience, we give unique names to the vertices corresponding to each
gadget added that way. So, the vertex ul

i (for 1 ≤ l ≤ nk′ and 1 ≤ i ≤ n) is used to
represent the vertex u of the lth copy of the gadget attached to vi and v′

i, and ul
i,1

(ul
i,2 resp.) is used to denote the vertex u1 (u2 resp.) of that same gadget. Then,

• for each 1 ≤ j ≤ m, we add nk′ − 1 copies of the clause vertex cj to G, each one of
these copies being adjacent to the same literal vertices as cj . For 1 ≤ l ≤ nk′ , the
vertex cl

j is the lth copy of cj . Finally,

• for each 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , we add a copy of the star on 5 vertices S5 to
G and identify any degree-1 vertex of S5 to cl

j . Let sl
j be the neighbour of cl

j that
also belongs to a copy of S5.

Observe that the resulting graph G (illustrated in Figure 7.3(b)) remains bipartite and
that this construction is achieved in polynomial time in regards to n + m.

From the construction of G, we know that for every 1 ≤ i ≤ n, d(vi) = d(v′
i) = Θ(nk′).

So, for sufficiently large n, the only pairs of adjacent vertices of G that have the same
degrees are either the vertices ul

i and ul
i,2, or the vertices cl

j and sl
j (for every 1 ≤ i ≤ n,

1 ≤ l ≤ nk′ and 1 ≤ j ≤ m).
First, let F be a satisfiable formula and let t be a satisfying assignment of F . Also,

let S be the set of literal vertices vi (v′
i resp.) such that the corresponding literals xi

(¬xi resp.) are assigned value true by t. Clearly |S| = n. We also show that S is
an ir(G). Consider the graph G′ = G[V \ S]. Now, for any 1 ≤ i ≤ n, we have that
either vi or v′

i, say vi, belongs to the vertices of G′. Now for every 1 ≤ l ≤ nk, we have
that dG′(ul

i) = 3, while dG′(ul
i,1) = 2 and dG′(ul

i,2) = 4 (since none of the neighbours
of ul

i,1 and ul
i,2 belongs to S). Also, for every 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , since t is

a satisfying assignment of F , N(cl
j) contains at least one vertex in S. It follows that

dG′(cl
j) = 3 < 4 = dG′(sl

j). Finally, since S does not contain any neighbours of vi,
we have that dG′(vi) = dG(vi) = O(nk′). It follows that S is an ir(G) and thus that
I(G) ≤ n.

Now let F be a non-satisfiable formula and assume that there exists an S that is an
ir(G) with |S| ≤ nk′ . As usual, let G′ = G[V \ S]. Then:

1. For every 1 ≤ j ≤ m, there exists a literal vertex v such that v ∈ N(cl
j) for

every 1 ≤ l ≤ nk′ . Assume that this is not true for a specific j. Then, since
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dG(cl
j) = dG(sl

j) = 4, for every 1 ≤ l ≤ nk′ , we have that S contains at least
one vertex in N [{cl

j , sl
j}], which does not belong to the literal vertices. That is,

S contains at least one (non-literal) vertex for each one of the nk′ copies of cj .
Observe also that even if this is the case, S would also have to contain at least one
more vertex to, for example, stop u1

i,2 and u1
i , from having the same degree in G′.

It follows that |S| > nk′ , which is a contradiction.

2. For every 1 ≤ i ≤ n, S does not contain both vi and v′
i. Assume this is not true

for a specific i. Then, for every 1 ≤ l ≤ nk′ , we have that dG′(ul
i) = dG′(ul

i,1) = 2,
unless S also contains an additional vertex of the gadgets attached to vi and v′

i,
for each one of the nk′ such gadgets. It follows that |S| ≥ nk′ . Since we have also
assumed that for a specific i, both vi and v′

i belong to S, we have that |S| > nk′ ,
a contradiction.

3. For every 1 ≤ i ≤ n, S contains at least one of vi and v′
i. Assume this is not true

for a specific i. Then, for every 1 ≤ l ≤ nk′ , we have that dG′(ul
i) = dG′(ul

i,2) = 4,
unless S also contains an additional vertex of the gadgets attached to vi and v′

i,
for each one of the nk′ such gadgets. Even if this is the case, S would also have to
contain at least one more vertex to, for example, stop c1

1 and S1
1 from having the

same degree in G′. It follows that |S| > nk′ , which is a contradiction.

So from items 2. and 3. above, it follows that for each 1 ≤ i ≤ n, S contains exactly
one of vi and v′

i. Now consider the following truth assignment: we assign the value true
to every variable xi if the corresponding literal vertex vi belongs in S, and value false to
every other variable. Now, from item 1. above, it follows that each clause Cj contains
either a positive literal xi which has been set to true, or a negative literal ¬xi which has
been set to false. Thus F is satisfied, which is a contradiction.

Up to this point, we have shown that there exists a graph G = (V, E) with |V (G)| =
N = O(nk′+1) where

• I(G) ≤ n if F is satisfiable

• I(G) > nk′ otherwise.

Therefore, we have that I(G) is not O(nk′−1) approximable in polynomial time unless
P=NP.

Now, since N = |V (G)| = Θ(nk′+1) and 2k = k′ +1 we have O(nk′−1) = O(N
k′−1
k′+1 ) =

O(N1− 2
k′+1 ) = O(N1− 1

k ). This ends the proof of this theorem.

Now, we consider the case where G is regular bipartite graph. Below we present an
upper bound to the size of I(G). This upper bound is then used to obtain a (simple)
∆-approximation of an optimal solution.

Theorem 7.13. For any d-regular bipartite graph G = (L, R, E) of order n we have
that I(G) ≥ n/2d.
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Proof. Let S be an ir∗(G) and G′ = G[(L∪R) \ S]. We distinguish two cases according
to if S is a subset of one of the bipartitions L or R, or if S contains at least one vertex
from each bipartition.

Let us first deal we the first case and assume, w.l.o.g, that S ⊆ L. If |S| = |L| then
the theorem holds (since |L| = |R|). Therefore, we consider the case |S| < |L|. Observe
that any vertex v ∈ R must have dG′(v) < d. Indeed, since S ⊆ L, we know that for any
vertex u ∈ NG′(v), we have dG′(v) = d and S is an irregulator. It follows that N(S) = R
so d|S| ≥ n/2 which gives us I(G) ≥ n/2d.

Now, we consider the second case (S contains at least one vertex from each biparti-
tion). Let LS = S ∩L and RS = S ∩R. We partition L (R respectively) in to three sets:
the LS = S∩L (RS = S∩R resp.), the Ld−1 = {u | u ∈ L\S and dG′(u) < d} ( Rd−1 =
{u | u ∈ R \ S and dG′(u) < d}) and the Ld = L \ (LS ∪ Ld−1) (Rd = L \ (RS ∪ Rd−1)
resp.). Note that for all u ∈ Ld ∪ Rd we have dG′(u) = d. Therefore all the vertices in
Ld have exactly d neighbours in Rd−1 (in both G and G′) and all the vertices in Rd have
exactly d neighbours in Ld−1. Furthermore, since dG′(u) < d for all u ∈ Ld−1 ∪ Rd−1,
we know that each u ∈ Ld−1 has at least one neighbour in RS and each u ∈ Rd−1 has at
least one neighbour in LS . Now we are going to find some upper bounds on the number
of vertices in Ld−1 and Ld.

Since each vertex u ∈ Ld−1 has at least one neighbour in RS , we have that |Ld−1| ≤
d|RS |. Similarly we can show that |Rd−1| ≤ d|LS |.

Let E∗ be the set of edges between Ld and Rd−1. Since, any vertex of Ld have
exactly d neighbours in Rd−1 we know that |Ld| = |E∗|/d. Since each vertex of Rd−1
has at least one neighbours in LS , it has at most d − 1 edges in the E∗. Therefore
|E∗| ≤ (d− 1)|Rd−1| ≤ d(d− 1)|LS |. This gives us that |Ld| ≤ (d− 1)|LS |.

Now, observe that |L| = |LS |+ |Ld−1|+ |Ld| ≤ |LS |+ d|RS |+ (d− 1)|LS | = d(|LS |+
|RS |). So, since S = LS ∪RS , we have that I(G) ≥ n/2d.

Now recall that in any bipartite graph G, any bipartition of G is a vertex cover of
G. Also observe that any vertex cover of a graph G, is also an irregulator of G. Indeed,
deleting the vertices of any vertex cover of G, leaves us with an independent set, which is
locally irregular. The next corollary follows from these observations and Theorem 7.13:

Corollary 7.14. For any d-regular bipartite graph G = (L, R, E), any of the sets L and
R is a d-approximation of ir∗(G).

7.5 Parameterised complexity
As the problem of computing a minimal irregulator of a given graph G seems to be
rather hard to solve, and even to approximate, we focused our efforts towards finding
parameterised algorithms that can solve it. In Section 7.5.1 we present an fpt-algorithm
that calculates I(G) when parameterised by the size of the solution and ∆, the maximum
degree of the graph. Then, we turn our attention towards graphs that are “close to being
trees”, that is graphs of bounded treewidth. Indeed, in Section 7.5.2 we provide an fpt-
algorithm that finds a minimum irregulator of G, when parameterised by the treewidth
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of the input graph and by ∆. Observe that both of our algorithms have to consider ∆
as part of the parameter if they are to be considered as FPT. The natural question to
ask at this point is whether we can have an fpt-algorithm, when parameterised only by
the size of the solution, or the treewidth of the input graph. In Section 7.5.3, we give
a strong indication towards the negative answer for both cases, proving that, in some
sense, the algorithms provided in Sections 7.5.1 and 7.5.2 are optimal.

7.5.1 FPT by the size of the solution and ∆

Let us first present the following lemma:

Lemma 7.15. Let G = (V, E) be a graph such that, G is not locally irregular, and S be
an ir∗(G). Furthermore let Gv = (V ′, E′) be the graph G[V \ {v}] for a vertex v ∈ S.
Then I(Gv) = I(G)− 1.

Proof. First observe that S′ = S \ {v} must be an ir(Gv) as Gv[V ′ \ S′] = G[V \ S]. It
follows that I(Gv) ≤ I(G)− 1. Assume that I(Gv) < I(G)− 1. Then these exists an S′′

such that |S′′| < I(G)− 1 and S′′ is an ir(Gv). Since Gv[V ′ \S′′] = G[V \ (S′′∪{v})], we
have that S′′∪{v} is an ir(G) and |S′′∪{v}| = |S′′|+1 < I(G). This is a contradiction.

We are now ready to show the following:

Theorem 7.16. For a given graph G = (V, E) with |V | = n and maximum degree ∆,
and for k ∈ N, there exists an algorithm that decides if I(G) ≤ k in time (2∆)knO(1).

Proof. In order to decide if I(G) ≤ k we are going to use a recursive algorithm. The
algorithm has input (G, k), where G = (V, E) is a graph and k ≥ 0 is an integer. The
basic idea of this algorithm, is to take advantage of Observation 1. We present the exact
procedure in Algorithm 9.

Now, let us argue about the correctness and the efficiency of this algorithm. We
claim that for any graph G = (V, E) and any integer k ≥ 0, Algorithm 9 returns yes
if I(G) ≤ k and no otherwise. Furthermore, the number of steps that the algorithm
requires, is f(k, n) = (2∆)knO(1), where n = |V |. We prove this by induction on k.

Base of the induction (k = 0): Here, we only need to check if G is locally irregular.
Algorithm 9 does this in line 1 and returns yes if it is (line 2) and no otherwise (line 4).
Furthermore, we can check if G is locally irregular in polynomial time. So, the claim is
true for the base.

Induction hypothesis (k = k0 ≥ 0): We assume that we have a k0 ≥ 0 such that
Algorithm 9 can decide if any graph G with n vertices and maximum degree ∆ has
I(G) ≤ k0 in f(k0, n) = (k0 + 1)(2∆)k0nO(1) steps.

Induction step (k = k0 + 1): Let G = (V, E) be a graph. If G is locally irregular
then I(G) = 0 and Algorithm 9 answers correctly (in line 2). Assume that G is not
locally irregular; then there exist an edge vu ∈ E such that dG(v) = dG(v). Now,
let S be an ir∗(G). It follows from Observation 1 that S must include at least one
vertex w ∈ NG[{v, u}]. Since Algorithm 9 considers all the vertices in NG[{v, u}], at
some point it also considers the vertex w ∈ S ∩ NG[{v, u}]. Now, observe that for any
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Algorithm 9 [IsIrregular(G, k) decision function]
Input: A graph G = (V, E) and an integer k ≥ 0.
Output: Is I(G) ≤ k or not?

1: if G is irregular then
2: return yes
3: else if k = 0 then
4: return no
5: else ▷ k > 0 and G is not irregular
6: ans← no
7: find an edge vu ∈ E such that dG(v) = dG(u)
8: for all w ∈ NG[{u, v}] do
9: set Gw = G[V \ {w}]

10: if IsIrregular(Gw, k − 1) returns yes then
11: ans← yes
12: end if
13: end for
14: return ans
15: end if

x ∈ S, the set Sx = S \ {x} is an ir∗(Gx), where Gx = G[V \ {x}]. Furthermore, by
Lemma 7.15, we have I(Gx) ≤ k − 1 = k0 iff I(G) ≤ k. By the induction hypothesis,
we know that the algorithm answers correctly for all the instances (Gx, k0). Thus, if
I(G) ≤ k = k0 + 1, there must exist one instance (Gw, k0), where w ∈ S ∩ NG[{v, u}],
for which the Algorithm 9 returns yes. Therefore the algorithm answers for (G, k0 + 1)
correctly. Finally, this process request nO(1) steps in order to check if the graph is locally
irregular and 2∆f(k−1, n−1) steps (by induction hypothesis) in order to check if for any
graph Gx we have I(Gx) ≤ k − 1 = k0 (where x ∈ N [{u, v}]). So, the algorithm decides
in nO(1) + 2∆f(k− 1, n− 1) ≤ nO(1) + 2∆k(2∆)k−1(n− 1)O(1) ≤ nO(1) + k(2∆)knO(1) ≤
(k + 1)(2∆)knO(1) steps. Finally, note that k ≤ n− 1, and the result follows.

7.5.2 FPT by Treewidth and ∆

Theorem 7.17. For a given a graph G = (V, E) and a nice tree decomposition of G,
there exists an algorithm that returns I(G) in time ∆3twnO(1), where tw is the treewidth
of the given decomposition and ∆ is the maximum degree of G.

Proof. As the techniques we are going to use are standard, we are sketching some of the
introductory details. We are going to perform dynamic programming on the nodes of
the given nice tree decomposition. For a node t of the given tree decomposition of G,
we denote by Bt the bag of this node and by B↓

t the set of vertices of the graph that
appears in the bags of the nodes of the subtree with t as a root. Observe that Bt ⊆ B↓

t .
The idea behind our algorithm, is that for each node t we store all the sets S ⊆ B↓

t

such that S is an ir(G, B↓
t \ Bt). We also store the necessary “conditions” (explained
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more in what follows) such that if there exists a set S′, where S′ \S ⊆ V \B↓
t , that meets

these conditions, then S′ is an ir(G, B↓
t ). Observe that if we manage to do such a thing

for every node of the tree decomposition, then we can find I(G). To do so, it suffices to
check the size of all the irregulators we stored for the root r of the tree decomposition,
which also meet the conditions we have set. In that way, we can find a set S that is an
ir(G, B↓

r \Br), satisfies our conditions and is of minimum order, and since B↓
r = V , this

set S is a minimum irregulator of G and I(G) = |S|.
Let us now present the actual information we are keeping for each node. Assume

that t is a node of the tree decomposition and S ⊆ B↓
t is an irregulator of B↓

t \ Bt in
G, i.e., S is an ir(G, B↓

t \ Bt). For this S we want to remember which vertices of Bt

belong to S as well as the degrees of the vertices v ∈ Bt \ S in G[B↓
t \Bt]. This can be

done by keeping a table D of size tw + 1 where, if v ∈ Bt \S we set D(v) = d
G[B↓

t \Bt](v)
and if v ∈ Bt ∩ S we set D(v) = ∅ (slightly abusing the notation, by D(v) we mean the
position in the table D that corresponds to the vertex v). Like we have already said,
we are going to keep some additional information about the conditions that could allow
these sets to be extended to irregulators of B↓

t in G if we add vertices of V \B↓
t . For that

reason, we are also going to keep a table with the “target degree” of each vertex; in this
table we assign to each vertex v ∈ Bt \ S a degree dv such that, if there exists S′ where
S′ \ S ⊆ V \B↓

t and for all v ∈ Bt \ S we have dG[V \S′](v) = dv, then S is an ir(G, B↓
t ).

This can be done by keeping a table T of size tw + 1 where for each v ∈ Bt \ S we set
T (v) = i, where i is the target degree, and for each v ∈ Bt ∩ S we set T (v) = ∅. Such
tables T will be called valid for S in Bt. Finally, we are going to keep the set X = S∩Bt

and the value min = |S|. Note that the set X does not gives us any extra information,
but we keep it as it will be useful to refer to it directly.

To sum up, for each node t of the tree decomposition of G, we keep a set of quadruples
(X, D, T, min), each quadruple corresponding to a valid combination of a set S that is
an ir(G, B↓

t \Bt) and the target degrees for the vertices of Bt \ S. Here it is important
to say that when treating the node Bt, for every two quadruples (X1, D1, T1, min1) and
(X2, D2, T2, min2) such that for all v ∈ Bt we have that D1(v) = D2(v) and T1(v) = T2(v)
(this indicates that X1 = X2 as well), then we are only going to keep the quadruple with
the minimum value between min1 and min2 as we prove that this is enough in order to
find I(G).

Claim 7.18. Assume that for a node t, we have two sets S1 and S2 that are both
ir(G, B↓

t \Bt), and that T is a target table that is common to both of them. Furthermore,
assume that (X1, D1, T, |S1|) and (X2, D2, T, |S2|) are the quadruples we have to store
for S1 and S2 respectively (both respecting T ), with D1(v) = D2(v) for every v ∈ Bt.
Then for any set S ⊆ V \ B↓

t such that dG[V \(S1∪S)](v) = T (v) for all v ∈ Bt, we also
have that dG[V \(S2∪S)](v) = T (v) for all v ∈ Bt.

Proof. Assume that we have such an S for S1, let v be a vertex in Bt and H = G[v∪
(
(V \

B↓
t ) \ S

)
] (observe that H does not depend on S1 or S2). Since dG[V \(S1∪S)](v) = T (v),

we know that in the graph H, v has exactly T (v) − D1(v) neighbours (as D1(v) =
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d
G[B↓

t \S1)](v)). Now, since D1(v) = D2(v) = d
G[B↓

t \S2](v) we have that dG[V \S2∪S](v) =
T (v). Therefore, the claim holds.

Simply put, Claim 7.18 states that for any two quadruples Q1 = (X, D, T, min1) and
Q2 = (X, D, T, min2), any extension S of S1 is also an extension of S2 (where S1 and
S2 are the two sets that correspond to Q1 and Q2 respectively). Therefore, in order to
find the minimum solution, it is sufficient to keep the quadruple that has the minimum
value between min1 and min2.

Now we are going to explain how we create all the quadruples (X, D, T, min) for
each type of node in the tree decomposition. First we have to deal with the Leaf Nodes.
For a Leaf node t we know that Bt = B↓

t = ∅. Therefore, we have only one quadruple
(X, D, T, min), where the size of both D and T is zero (so we do not need to keep any
information in them), S = ∅ and min = |S| = 0.

Now let t be an Introduce node; assume that we have all the quadruples (X, D, T, min)
for its child c and let v be the introduced vertex. By construction, we know that v is
introduced in Bt and thus it has no neighbours in B↓

t \ Bt. It follows that if S ⊆ B↓
c is

an irregulator for B↓
c \ Bc, then both S and S ∪ {v} are irregulators for B↓

t \ Bt in G.
Furthermore, there is no set S ⊆ B↓

t \ {v} that is an irregulator of B↓
t \ Bt and is not

an irregulator of B↓
c \Bc. So, we only need to consider two cases for the quadruples we

have to store for c; if v belongs in the under-construction irregulator of B↓
t \Bt in G or

not.
Case 1 (v is in the irregulator). Observe that for any S that is an ir(G, B↓

c \ Bc),
which is stored in the quadruples of Bc, for every u ∈ Bc \S, we have that d

G[B↓
c \S](u) =

d
G[B↓

t \(S∪{v})](u). Moreover, for any target table T which is valid for S in c, the target
table T ′ is valid for S∪{v} in t, where T ′ is almost the same as T , the only difference being
that T ′ also contains the information about v, i.e, T ′(v) = ∅. So, for each quadruple
(X, D, T, min) in c, we need to create one quadruple (X ∪ {v}, D′, T ′, min + 1) for t,
where D′ is the almost the same as D, except that it also contains the information about
v, i.e., D′(v) = ∅.

Case 2 (v is not in the irregulator). Let q = (X, D, T, min) be a stored quadruple
of c and S be the corresponding ir(G, B↓

c \Bc). We first explain how to construct D′ of
t, based on q. Observe that the only change between G[B↓

c \S] and G[B↓
t \S], is that in

the latter there exist some new edges from v to some of the vertices of Bc. Therefore,
for each vertex u ∈ Bc \ X we set D′(u) = D(u) + 1 if u ∈ N [v] and D′(u) = D(u)
otherwise. Finally, for the introduced vertex v, we set D′(v) = |N(v) ∩ (Bc \X)|. We
now treat the target degrees for t. Observe that the target degrees for each vertex in
Bt \ {v} are the same as in T , since v only has edges incident to vertices in Bt. Now,
we only need to decide which are the valid targets for v. Since d

G[B↓
t \S](v) = D′(v), we

know that for every target t′, we have that D′(v) ≤ t′ ≤ ∆. Furthermore, we can not
have the target degrees of v to be the same as the targets of one of its neighbours in Bc

(these values are stored in T ), as, otherwise, any valid target table T ′ of t would lead to
adjacent vertices in Bt having the same degree. Let {t1, . . . , tk} ⊂ {D(v), . . . , ∆} be an
enumeration of all the valid targets for v (i.e. ti 6= T (u) for all u ∈ N [v]∩Bc \X). Then,
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for each quadruple (X, D, T, min) in c, and for each i = 1, . . . , k, we need to create the
quadruple (X, D′, Ti, min), such that Ti(u) = T (u) for all u ∈ Bc and Ti(v) = ti. In
total, we have k ≤ ∆ such quadruples.

Now, let us explain how we deal with the Join nodes. Assume that t is a Join Node
with c1 and c2 as its two children in the tree decomposition. Here, it is important to
mention that Bc1 = Bc2 and (B↓

c1 \Bc1) ∩ (B↓
c2 \Bc2) = ∅. Assume that there exists an

irregulator S of B↓
t \Bt in G, a valid target table T of S, and let (X, D, T, min) be the

quadruple we need to store in t for this pair (S, T ). Observe that this pair (S, T ) is valid
for both c1 and c2, so we must already have stored at least one quadruple in each node.
Let X ⊆ Bt and a target table T such that (X, D1, T, min1) and (X, D2, T, min2) are
stored for c1 and c2 respectively. We create the quadruple (X, D, T, min) for t by setting
D(u) = D1(u) + D2(u) − dG[Bt\X](u) for all u ∈ Bt \ X, D(u) = ∅ for all u ∈ X and
min = min1 + min2 − |X|. Observe that these are the correct values for the D(u) and
min, as otherwise we would count dG[Bt\X](u) and |X| twice. Finally, we need to note
that we do not store any quadruple (X, D, T, min) we create for the Join Note such that
D(u) > T (u) for a vertex u ∈ Bt \X. This is because for such quadruples, the degree
of vertex u will never be equal to any of the target degrees we have set, as it can only
increase when we consider any of the ancestor (i.e. parent, grantparent etc.) nodes of t.

Finally, we need to treat the Forget nodes. Let t be a Forget node, c be the its
child and v be the forgotten vertex. Assume that we have to store in t a quadruple
(X, D, T, min). Then, since X = Bt ∩ S for an irregulator S of Bt in G, we know that
in c we must have already stored a quadruple (X ′, D′, T ′, min′) such that, X ′ = S ∩Bc,
D′(u) = D(u) for all u ∈ Bc, T ′(u) = T (u) for all u ∈ Bc and min′ = min. Therefore,
starting from the stored quadruples in c, we can create all the quadruples of t. For each
quadruple (X ′, D′, T ′, min′) in c, we create at most one quadruple (X, D, T, min) for t
by considering two cases; the forgotten vertex vf belongs to X ′ or not.

Case 1 (v belongs to X ′). Then the quadruple (X, D, T, min) is almost the same as
(X ′, D′ , T ′, min′), with the following differences: X = X ′ \ {v}, min = min′, D(u) =
D′(u) and T (u) = T ′(u) for all u ∈ Bt and the tables D and T do not include any
information for v as this vertex does not belong to Bt anymore.

Case 2 (v does not belong to X ′). First we check if D′(vf ) = T ′(vf ) or not. This is
important because the degree of the v will never again be considered by our algorithm,
and thus its degree will remain unchanged. So, if D′(vf ) = T ′(vf ), we create the quadru-
ple (X, D, T, min) where X = X ′, min = min′, D(u) = D′(u) and T (u) = T ′(u) for all
u ∈ Bt and the tables D and T do not include any information for v.

For the running time, observe that the number of nodes of a nice tree decomposition
is O(tw ·n) and all the other calculations are polynomial in n+m. Thus we only need to
count the different quadruples in each node. Now, for each vertex v, we either include it in
X or we have ∆+1 options for the value D(u) and ∆+1−i for the value T (u) if D(u) = i.
Also, for sufficiently large ∆, we have that 1 +

∑∆
i=0(∆ + 1 − i) < ∆2. Furthermore,

the set X and the value min do not increase the number of quadruples because X =
{u | D(u) = ∅} and from all quadruples (X, D1, T1, min1), (X, D2, T2, min2) such that
D1(u) = D2(u) and T1(u) = T2(u) for all u ∈ Bt, we only keep one of them (by
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Claim 7.18).
Finally we need to consider the Join Nodes. Recall that for a Join Node t if we

have the quadruples (X, D1, T, min1) and (X, D2, T, min2) in the first and second child
respectively then we create the quadruple (X, D, T, min) (for t) by setting D(u) =
D1(u) + D2(u) − dG[Bt\X](u) for all u ∈ Bt \ X, D(u) = ∅ for all u ∈ X and min =
min1 + min2 − |X| (we discard this quadruple if D(u) > T (u) for any u ∈ Bt). So, for
a vertex for each vertex u ∈ Bt, we either include it in X or we have ∆ + 1 options for
the value T (u) and T (u) options for the values D1(u) and D2(u). This give us in total
1 +

∑∆
i=0 i2 < ∆3 options, for sufficiently large ∆. Since each bag has at most tw + 1

such vertices this give us at most ∆3tw combinations to check.
In total, the number of different quadruples in each node is ∆2tw, and the algorithm

decides in ∆3twnO(1) time.

It is worth noting that the algorithms of Theorem 7.16 and 7.17 can be used in order
to also return an ir∗(G).

7.5.3 W-Hardness
In this section we show a strong indication that there can be no fpt-algorithm that
calculates an optimal irregulator of the input graph G, when parameterised by just the
size of the solution or the treewidth of G. To do so, we present two linear-fpt reductions.
The first is from the Dominating Set problem, when parameterised by the size of the
solution, and the second is from the List Coloring problem, when parameterised by
the treewidth of the graph.

Theorem 7.19. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is W[2]-hard, when
parameterised by k.

Proof. The reduction is from the Dominating Set problem, which was shown to be
W[2]-complete when parameterised by the size of the solution (e.g. in [65]). In that
problem, a graph H = (V, E) and an integer k are given as input. The question asked,
is whether there exists a set D ⊆ V of order at most k (called a dominating set of H),
such that V = N [D].

Let H = (V, E) be a graph and k ∈ N. We construct a graph G = (V ′, E′) such that
H has a dominating set of order at most k if and only if G has an irregulator of order
at most k. We begin by defining an arbitrary enumeration of the vertices of V . That is,
V = {v1, . . . , vn}. The graph G is built starting from a copy of the graph H. To avoid
any confusion in what is to follow, we always use H to denote the original graph, and
G|H = G[{v′

1, . . . , v′
n}] to denote the copy of H that lies inside G (where the indices of

the v′
is’ are the same as the indices of the corresponding vis’). Then, for each 1 ≤ i ≤ n,

we attach the necessary number of pending vertices (meaning vertices of degree 1) to
the vertex v′

i, so that the degree of v′
i becomes equal to i · n. Finally, for each v′

i, let
u′

i be one of its newly attached pending vertices, and attach the necessary number of
new pending vertices to u′

i, so that its degree becomes equal to that of v′
i. The resulting

graph is G. To be clear, for every vertex v of G, we either have that v = v′
i or v = u′

i,
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or that v is a vertex pending from v′
i or u′

i (for some 1 ≤ i ≤ n). Note also that for each
1 ≤ i ≤ n, we have that dG(v′

i) = dG(u′
i) = i · n.

Now let D be a dominating set of H, with |D| = m ≤ k, and let D′ be the subset of V ′

that corresponds to the vertices of D. That is, D′ = {v′
i ∈ V ′ : vi ∈ D}. We claim that

the graph G′ = G[V ′ \D′] is locally irregular. Indeed, for every 1 ≤ i ≤ n, let α(i) be the
number of neighbours of vi that belong to D. Observe that since D is a dominating set
of H, we have that 1 ≤ α(i) ≤ n− 1. Now, for every vertex v′

i in V ′, we have that either
v′

i ∈ D′, in which case v′
i does not belong to G′, or dG′(v′

i) = dG(v′
i) − α(i) < dG′(u′

i).
Moreover, for every 1 ≤ i < j ≤ n, if v′

i, v′
j /∈ D′, we have that dG(v′

j)− dG(v′
i) ≥ n, and

thus dG′(v′
j) − dG′(v′

i) = dG(v′
j) − α(j) − dG(v′

i) + α(i) ≥ n + α(i) − α(j) ≥ 2. Finally,
every pending vertex l of G′ is attached to either u′

i or v′
i, which have degree (in G′)

strictly larger than 1. It follows that D′ is an irregulator of G with |D′| = m ≤ k, and
thus I(G) ≤ k.

For the other direction, assume that I(G) ≤ k and let S be an ir(G), with |S| = k,
and G′ = G[V ′ \S]. For each 1 ≤ i ≤ n, let Si = N [v′

i]∪N(u′
i). We claim that for every

i, we have S∩Si 6= ∅. Assume that this is not true, i.e., that there exists an i0 such that
Si0∩S = ∅. Then, by deleting the vertices of S from G, the degrees of v′

i0 and u′
i0 remain

unchanged. Formally, we have that dG′(v′
i0) = dG(v′

i0) = dG(u′
i0) = dG′(u′

i0). This is
a contradiction since S is an irregulator of G. Now, we consider the set S′, defined as
follows:

• Start with S′ = S.

• For each i, while there exists a vertex v ∈ Si ∩ S′ such that dG(v) = 1 or v = u′
i,

remove v from S′ and add v′
i to S′.

Clearly, we have that S′ only contains vertices from V (G|H) and that |S′| ≤ |S| = k.
Also, from the construction of S′, for every i, we have that Si∩S′ 6= ∅. It follows that for
every vertex v′

i, we either have v′
i ∈ S′ or there exists a vertex v ∈ N(v′

i) ∩ V (G|H) such
that v ∈ S′. Going back to H, let D = {vi : v′

i ∈ S′}. It is clear that D is a dominating
set of H of order at most k. This finishes our reduction.

Finally, note that throughout the above described reduction, the value of the param-
eter of the two problems is the same (in both of them, the parameter has the value k).
Moreover, the construction of the graph G is achieved in polynomial time in regards to
n. These observations conclude our proof.

Theorem 7.20. Let G be a graph with treewidth tw, and k ∈ N. Deciding if I(G) = k
is W[1]-hard when parameterised by tw.

Proof. We present a reduction from the List Coloring problem: the input consists of
a graph H = (V, E) and a list function L : V → P({1, . . . , k}) that specifies the available
colors for each vertex u ∈ V . The goal is to find a proper coloring c : V → {1, . . . , k}
such that c(u) ∈ L(u) for all u ∈ V . When such a coloring exists, we say that (H, L)
is a yes-instance of List Coloring. This problem is known to be W[1]-hard when
parameterised by the treewidth of H [75].
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Now, starting from an instance (H, L) of List Coloring, we construct a graph
G = (V ′, E′) (see Figure 7.4 (a)) such that:

• |V ′| = O(|V |6),

• tw(G) = tw(H) and

• I(G) = nk if and only if (H, L) is a yes-instance of List Coloring.

Before we start with the construction of G, let us give the following observation.

Observation 2. Let (H, L) be an instance of List Coloring where H = (V, E) and
there exists a vertex u ∈ V such that |L(u)| > d(u). Then the instance (H[V \ {u}], L′),
where L′(v) = L(v) for all v ∈ V \ {u}, is a yes-instance of List Coloring if and only
if (H, L) is a yes-instance of List Coloring.

Indeed, observe that for any vertex u ∈ V , by any proper coloring c of H, c(u)
only has to avoid d(u) colors. Since |L(u)| > d(u), we always have a spare color to
use on u that belongs in L(u). From the previous observation, we can assume that in
our instance, for all u ∈ V , we have |L(u)| ≤ d(u). Furthermore, we can deduce that
k ≤ n(n − 1) as the degree of any vertex is at most n − 1. Finally, let us denote by
L(u) the set {0, 1, . . . , k} \ L(u). It is important to note here that for every u ∈ V , the
list L(u) contains at least one element belonging in {1, . . . , k}. It follows that L(u) also
contains at least one element, the color 0. To sum up, we have that 1 ≤ |L(u)| ≤ k.

Now, we present the three gadgets we are going to use in the construction of G. First,
we have the “forbidden color gadget” Hi, which is a star with i leaves (see Figure 7.4(c)).
When we say that we attach a copy of Hi on a vertex v of a graph G, we mean that we
add Hi to G and we identify the vertices v and w2 (where here and in what follows, we are
using the naming illustrated in Figure 7.4 when talking about the vertices w1, w2, w3, v1
and v2). The second, is the “degree gadget”, which is presented in Figure 7.4(b). Finally,
we have the “horn gadget”, which is a path on three vertices (see Figure 7.4(d)). We
define the operation of attaching these two gadgets on a vertex v of a graph G similarly
to how we defined this operation for the forbidden color gadget (each time using the
appropriate w1 or w3, according to if it is a degree or a horn gadget respectively).

In order to construct G, we start from a copy of H. Let us use G|H to denote the
copy of H that lies inside of G and, for each vertex u ∈ V , let u′ be its copy in V ′.
We will call the set of these vertices U . That is, U = {v ∈ V (G|H)}. Then, we are
going to attach several copies of each gadget to u′, for each vertex u′ ∈ U . We start by
attaching k copies of the degree gadget to each vertex u′ ∈ U . Then, for each u ∈ V and
each i ∈ L(u), we attach one copy of the forbidden color gadget H2n3−i to the vertex
u′. Finally, for each u′ ∈ U , we attach to u′ as many copies of the horn gadget as are
needed, in order to have dG(u′) = 2n3.

Before we continue, observe that, for sufficiently large n, we have attached more
than n3 horn gadgets to each vertex of U . Indeed, before attaching the horn gadgets,
each vertex u′ ∈ U has dG(u) ≤ n − 1 neighbours in U , k neighbours from the degree
gadgets and at most k < n2 neighbours from the forbidden color gadgets (recall that
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u′

Edges incident to the
vertices v′ ∈ NG(u′) ∩ U

(a) The graph G

m horn gadgets

. . .

Hk1

. . .
Hk2

. . .
Hkl

. . .

. . .

. . .

l forbidden color gadgets

. . .

k degree gadgets

w1 v1

v2

(b) Degree gadget

w2 ...

(c) Forbidden color gadget
Hi

i− 1 vertices

w3

(d) Horn gadget

Figure 7.4: In (a) we illustrate the construction of G, as it is described in the proof
of Theorem 7.20. The black vertex represents every vertex that belongs in U . For the
specific vertex u′ shown in the figure, we have that L(u) = {c1, . . . , cl} and ki = n3 − ci

for all i = 1, . . . , l. We also have that m = 2n3 − dG(u)− k − l.

|L(u)| ≤ k). We now show that |V ′| = O(n6). For that purpose, let us calculate the
number of vertices in all the gadgets attached to a single vertex u′ ∈ U . First, we have
5k < 5n2 vertices in the degree gadgets. Then, we have less than 4n3 vertices in the
horn gadgets (as we have less that 2n3 such gadgets). Finally, we have at most k < n2

forbidden color gadgets, each one of which containing at most 2n3 vertices. So, for each
vertex u′ ∈ U , we have at most 2n5 + 4n3 + 5n2 vertices in the gadgets attached to u′.
Therefore, we have |V ′| = O(n6).

Before we prove that I(G) ≤ nk if and only if (H, L) is a yes-instance of List
Coloring, we need to argue about two things. First, about the treewidth of the graph
G and second, about the minimum value of I(G). Since our construction only attaches
trees to each vertex of G|H (and recall that a tree has a treewidth of 1 by definition), we
know that tw(G) = tw(G|H) = tw(H). As for I(G), we show that it has to be at least
equal to nk. For that purpose we have the following two claims.

Claim 7.21. Let S be an ir(G) and S ∩ U 6= ∅. Then |S| > n3.

Proof. Let u′ ∈ S ∩ U . By construction, G contains more than n3 horn gadgets that
are attached to u′. Therefore, by deleting u′, we create more than n3 copies of the P2
graph, each one of which forces us to include at least one of its vertices in S. Hence,
|S| > n3.

Claim 7.22. Let S be an ir(G) and S∩U = ∅. Then |S| ≥ nk. In particular, S includes
at least one vertex from each copy of the degree gadget used in the construction of G.

Proof. Let D be a copy of the degree gadget, attached to some vertex u′ ∈ U . Observe
that we have dG(v1) = dG(v2). It follows by Observation 1, that S contains at least one
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vertex v in N [{v1, v2}], and since u′ /∈ S, this v is a vertex other than w1. The result
follows from the fact that the same arguments hold for any degree gadget attached to
any vertex of U (recall that |U | = n and we have attached k copies of the degree gadget
to each one of the vertices of U). Hence, |S| ≥ nk.

By the previous two claims, we conclude that I(G) ≥ nk. We are ready to show that, if
(H, L) is a yes-instance of List Coloring, then there exists a set S ⊆ V ′ such that S
is an ir(G) and |S| = nk. Let c be a proper coloring of H such that c(u) ∈ L(u) for all
u ∈ V . We construct an ir(G) as follows. For each u ∈ V , we partition (arbitrarily) the
k degree gadgets attached to the vertex u′ to c(u) “good” and (k − c(u)) “bad” degree
gadgets. For each good degree gadget, we add the copy of the vertex v1 of that gadget
to S and for each bad degree gadget we add the copy of the vertex v2 of that gadget to
S. This process creates a set S of size nk, as it includes k distinguished vertices for each
vertex u′ ∈ U .

Now we need to show that S is an ir(G). Let G′ = G[V ′\S]; observe that each vertex
u′ ∈ U has degree dG′(u′) = 2n3 − c(u). Therefore, u′ does not have the same degree
as any of its neighbours that do not belong in U . Indeed, for every v ∈ NG′(u′) \ U , we
have that dG′(v) ∈ {1, 2} (if v belongs to a bad degree or a horn gadget) or dG′(v) ∈
{2n3 − i : i ∈ L(u)} (if v belongs to a forbidden color gadget). Furthermore, since c is a
proper coloring of H, for all uv ∈ E, we have that c(u) 6= c(v). This gives us that for any
edge u′v′ ∈ E′ with u′, v′ ∈ U , we have that dG′(u′) = 2n3− c(u) 6= 2n3− c(v) = dG′(v′).

So, we know that for every vertex u′ ∈ U , there is no vertex w ∈ NG′(u′) such that
dG′(u′) = dG′(w). It remains to show that, in G′, there exist no two vertices belonging
to the same gadget, which have the same degrees. First of all, we have that S does not
contain any vertex from any of the horn and forbidden color gadgets, nor from U . Thus
any adjacent vertices belonging to these gadgets have different degrees. Last, it remains
to check the vertices of the degree gadgets. Observe that for any copy of the degree
gadget, S contains either v1 or v2. In both cases, after the deletion of the vertices of S,
any adjacent vertices belonging to any degree gadget have different degrees. Therefore,
S is an ir(G) of order nk and since I(G) ≥ nk we have that I(G) = nk.

Now, for the opposite direction, assume that there exists a set S ⊆ V ′ such that S
is an ir∗(G) and |S| = nk. Let G′ = (V ′′, E′′) be the graph G[V ′ \ S]. It follows from
Claim 7.21 and Claim 7.22, that S ∩U = ∅ and that S contains exactly one vertex from
each copy of the degree gadget in G and no other vertices. Consider now the coloring
c of H defined as c(u) = 2n3 − dG′(u′). We show that c is a proper coloring for H
and that c(u) ∈ L(u). First, we have that c is a proper coloring of H. Indeed, for any
edge uv ∈ E, there exists an edge u′v′ ∈ E′′ (since S ∩ U = ∅). Since G′ is locally
irregular we have that dG′(u′) 6= dG′(v′), an thus c(u) 6= c(v). It remains to show that
c(u) ∈ L(u) for all u ∈ V . First observe that, during the construction of G, we attached
exactly k degree gadgets to each u′ ∈ U . It follows that dG′(u′) = 2n3 − j and c(u) = j
for a j ∈ {0, 1, . . . , k}. It is sufficient to show that j /∈ L(u). Since S contains only
vertices from the copies of the degree gadgets, we have that each u′ ∈ U has exactly
one neighbour of degree 2n3 − i for each i ∈ L(u) (this neighbour is a vertex of the
Hi forbidden color gadget that was attached to u′). Furthermore, for all u′ ∈ U , since
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G′ is locally irregular, we have that dG′(u′) 6= 2n3 − i for all i ∈ L(u). Equivalently,
dG′(u′) = 2n3 − j for any j ∈ L(u). Thus, c(u) ∈ L(u) for all u ∈ V .

Note that the reductions presented in the proofs of Theorem 7.19 and Theorem 7.20
are linear fpt-reductions. Additionally we know that

• there is no algorithm that answers if a graph G of order n has a Dominating Set
of size at most k in time f(k)no(k) unless the ETH fails [146] and

• there is no algorithm that answers if an instance (G, L) of the List Coloring is
a yes-instance in time O∗(f(tw)no(tw)) unless the ETH fails [75].

So, the following corollary holds.

Corollary 7.23. Let G be a graph of order n and assume the ETH. For k ∈ N, there is
no algorithm that decides if I(G) ≤ k in time f(k)no(k). Furthermore, assuming that G
has treewidth tw, there is no algorithm that computes I(G) in time O∗(f(tw)no(tw)).

7.6 Conclusion
In this chapter we introduced the problem of identifying the largest locally irregular
induced subgraph of a given graph. There are many interesting directions that could
be followed for further research. An obvious one is to investigate whether the problem
of calculating I(G) remains NP-hard for other, restricted families of graphs. The first
candidate for such a family would be the one of chordal graphs. On the other hand,
there are some interesting families, for which the problem of computing an optimal
irregulator could be decided in polynomial time, such as split graphs. Also, it could be
feasible to conceive approximation algorithms for regular bipartite graphs, which have
a better approximation ratio than the (simple) algorithm we present. The last aspect
we find intriguing, is to study the parameterised complexity of calculating I(G) when
considering other parameters, like the size of the minimum vertex cover of G, with the
goal of identifying a parameter that suffices, by itself, in order to have an fpt-algorithm.
Finally, it is worth investigating whether calculating I(G) could be done in FPT time
(parameterised by the size of the solution) in the case where G is a planar graph.
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Chapter 8

Crosswords Puzzle

8.1 Introduction

Crossword puzzles are one-player games where the goal is to fill a (traditionally two-
dimensional) grid with words. Since their first appearance more than 100 years ago,
crossword puzzles have rapidly become popular. Nowadays, they can be found in many
newspapers and magazines around the world like the New York Times in the USA, or
Le Figaro in France. Besides their obvious recreational interest, crossword puzzles are
valued tools in education [64] and medicine. In particular, crossword puzzles participa-
tion seems to delay onset of accelerated memory decline [168]. They are also helpful for
developing and testing computational techniques; see for example [173]. In fact, both
the design and the completion of a puzzle are challenging. In this manuscript, we are
interested in the task of solving a specific type of crossword puzzle.

There are different kinds of crossword puzzles. In the most famous ones, some clues
are given together with the place where the answers should be located. A solution
contains words that must be consistent with the given clues, and the intersecting pairs
of words are constrained to agree on the letter they share. Fill-in crossword puzzles do
not come with clues. Given a list of words and a grid in which some slots are identified,
the objective is to fill all the slots with the given words. The list of words is typically
succinct and provided explicitly.

In a variant of fill-in crossword puzzle currently proposed in a French TV magazine
[148], one has to find up to 14 words and place them in a grid (the grid is the same for
every instance, see Figure 8.1 for an illustration). The words are not explicitly listed but
they must be valid (for instance, belong to the French language). In an instance of the
game, some specified letters have a positive weight; the other letters have weight zero.
The objective is to find a solution whose weight – defined as the total sum of the letters
written in the grid – is at least a given threshold.

In this chapter we preset with a theoretical study of this fill-in crossword puzzle (the
grid is not limited to the one of Figure 8.1). We are mainly interested in two problems:
Can the grid be entirely completed? How can the weight of a solution be maximized?
Hereafter, these problems are called Crossword Puzzle Decision and Crossword

169
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Figure 8.1: Place valid words in this grid. In a possible instance, letters S, U, I, V, R, E,
and T have weight 7, 5, 4, 2, 6, 1, and 3, respectively. Any other letter has null weight.
Try to obtain at least 330 points.

Puzzle Optimization (CP-Dec and CP-Opt in short), respectively.
CP-Dec is not new; see GP14 in [94]. The proof of NP-completeness is credited

to a personal communication with Lewis and Papadimitriou. Thereafter, an alternative
NP-completeness proof appeared in [77] (see also [139]). Other articles on crossword
puzzles exist and they are mostly empirically validated techniques coming from Artifi-
cial Intelligence and Machine Learning; see for example [96, 150, 145, 9, 173, 172] and
references therein.

Our Contribution Our goal in this chapter is to pinpoint the relevant structural
parameters that make filling crossword puzzles intractable. We begin by examining the
structure of the given grid. It is natural to think that, if the structure of the grid
is tree-like, then the problem should become easier, as the vast majority of problems
are tractable on graphs of small treewidth. We only partially confirm this intuition:
by taking into account the structure of a graph that encodes the intersections between
slots (the grid graph) we show in Section 8.3 that CP-Opt can be solved in polynomial
time on instances of constant treewidth. However, our algorithm is not fixed-parameter
tractable and, as we show, this cannot be avoided, even if one considers the much more
restricted case where the problem is parameterized by the number of horizontal slots,
which trivially bounds the grid graph’s treewidth (Theorem 8.3). More devastatingly, we
show that if we also impose the natural rule that words cannot be reused, the problem
already becomes NP-hard when the grid graph is a matching for alphabets of size 3
(Theorem 8.5), or a union of stars for a binary alphabet (Theorem 8.4). Hence, a tree-
like structure does not seem to be of much help in rendering crosswords tractable.

We then go on to consider CP-Opt parameterized by the total number of slots
n. This is arguably a very natural parameterization of the problem, as in real-life
crosswords, the size of the grid can be expected to be significantly smaller than the size
of the dictionary. We show that in this case the problem does become fixed-parameter
tractable (Corollary 8.7), but the running time of our algorithm is exponential in n2. Our
main result is to show that this disappointing dependence is likely to be best possible:
even for a binary alphabet, an algorithm solving CP-Dec in time 2o(n2) would contradict
the randomized ETH (Theorem 8.11). Note that all our positive results up to this point
work for the more general CP-Opt, while our hardness results apply to CP-Dec.

Afterwards, in Section 8.5 we consider the approximability of CP-Opt. Here, it is
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easy to obtain a 1
2 -approximation by only considering horizontal or vertical slots. We

are only able to slightly improve upon this, giving a polynomial-time algorithm with
ratio 1

2 + O( 1
n). Our main result in this direction is to show that this is essentially

best possible: obtaining an algorithm with ratio 1
2 + ϵ would falsify the Unique Games

Conjecture (Theorem 8.13).
Before concluding, we explore in Section 8.6 the cases where CP-Dec can be resolved

in polynomial time. We propose reductions from CP-Dec to some well-known problems
that belong to P .

8.2 Preliminaries
We are given a dictionary D = {d1, . . . dm} whose words are constructed on an alphabet
L = {l1, . . . lℓ}, and a two-dimensional grid consisting of horizontal and vertical slots. A
slot is composed of consecutive cells. Horizontal slots do not intersect each other; the
same goes for vertical slots. However horizontal slots can intersect vertical slots. A cell
is shared if it lies at the intersection of two slots. Unless specifically stated, n, m and ℓ
denote the total number of slots, the size of D, and the size of L, respectively. Finally,
let us mention that we consider only instances where the alphabet is of constant size,
i.e., ℓ = O(1).

In a feasible solution, each slot S receives either a word of D of length |S|, or nothing
(we sometimes say that a slot receiving nothing gets an empty word). Each cell gets at
most one letter, and the words assigned to two intersecting slots must agree on the letter
placed in the shared cell. All filled horizontal slots get words written from left to right
(across) while all vertical slots get words written from top to bottom (down).

There is a weight function w : L → N. The weight of a solution is the total sum of
the weights of the letters placed in the grid. Observe that the weight of a solution is
smaller than the total sum of the weights of its words because, in the former, the letters
of the shared cells are counted only once.

The two main problems studied in this article are the following. Given a grid,
a dictionary D on alphabet L, and a weight function w : L → N, the objective of
Crossword Puzzle Optimization (CP-Opt in short) is to find a feasible solution
of maximum weight. Given a grid and a dictionary D on alphabet L, the question
posed by Crossword Puzzle Decision (CP-Dec in short) is whether the grid can
be completely filled or not?

Two cases will be considered: whether each word is used at most once, or if words
can be assigned multiple times. In this article, we will sometimes suppose that some
cells are pre-filled with some elements of L. In this case, a solution is feasible if it is
consistent with the pre-filled cells. Below we propose a first result when all the shared
cells are pre-filled.

Proposition 8.1. CP-Dec and CP-Opt can be solved in polynomial time if all the
shared cells in the grid are pre-filled, whether word reuse is allowed or not.

Proof. If word reuse is allowed, then for each combination of letters placed in these cells,
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we greedily fill out the rest of each slot with the maximum value word that can still be
placed there. This is guaranteed to produce the optimal solution. On the other hand, if
word reuse is not allowed, we construct a bipartite graph, with elements of D on one side
and the slots on the other, and place an edge between a word and a slot if the word can
still be placed in the slot. If we give each edge weight equal to the value of its incident
word reduced by the weight of the letters imposed by the shared cells of the slot, then
an optimal solution corresponds to a maximum weight matching.

One can associate a bipartite graph, hereafter called the grid graph, with each grid:
each slot is a vertex and two vertices share an edge if the corresponding slots overlap.
The grid (and then, the grid graph) is not necessarily connected.

Let us also note that so far we have been a bit vague about the encoding of the
problem. Concretely, we could use a simple representation which lists for each slot the
coordinates of its first cell, its size, and whether the slot is horizontal or vertical; and
then supplies a list of all words in the dictionary and an encoding of the weight function.
Such a representation would allow us to perform all the basic operations needed by our
algorithms in polynomial time, such as deciding if it is possible to place a word d in a
slot S, and which letter would then be placed in any particular cell of S. However, one
drawback of this encoding is that its size may not be polynomially bounded in n + m,
as some words may be exponentially long. We can work around this difficulty by using
a more succinct representation: we are given the same information as above regarding
the n slots; for each word we are given its total weight; and for each slot S and word d,
we are told whether d fits exactly in S, and if yes, which letters are placed in the cells
of S which are shared with other slots. Since the number of shared cells is O(n2) this
representation is polynomial in n + m and it is not hard to see that we are still able to
perform any reasonable basic operation in polynomial time and that we can transform
an instance given in the simple representation to this more succinct form. Hence, in the
remainder, we will always assume that the size of the input is polynomially bounded in
n + m.

8.3 When the Grid Graph is Tree-like

In this section we are considering instances of CP-Dec and CP-Opt where the grid
graph is similar to a tree. First, we give an algorithm for both problems in cases where
the grid graph has bounded treewidth and we are allowed to reuse words. We show
that this algorithm is essentially optimal. Then, we show that CP-Dec and CP-Opt
are much harder to deal with, in the case where we are not allowed to reuse words, by
proving that the problems are NP-hard even for instances where the grid graph is just
a matching. For the instances such that CP-Dec is NP-hard, we know that CP-Opt
is NP-hard. That happens because we can assume that all the letters have weight equal
to 1. Hence, a solution for CP-Dec is an optimal solution for CP-Opt.
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8.3.1 Word Reuse
We propose a dynamic programming algorithm for CP-Opt and hence also for CP-Dec.
Note that it can be extended to the case where some cells of the instance are pre-filled.

Theorem 8.2. If we allow word reuse, then CP-Opt can be solved in time (m+1)tw(n+
m)O(1) on inputs where tw is the treewidth of the grid graph.

Proof. As the techniques we are going to use are standard we are sketching some details.
For more details on tree decomposition (definition and terminology) see [65, Chap. 7].
Assuming that we have a rooted nice tree decomposition of the grid graph, we are going
to perform dynamic programming on the nodes of this tree decomposition. For a node
Bt of the given tree decomposition of the grid graph we denote by B↓

t the set of vertices
of the grid graph that appears in the nodes of the subtree with Bt as a root. Since each
vertex of the grid graph corresponds to a slot, we interchangeably mention a vertex of
the grid graph and its corresponding slot. In particular, we say that a solution σ assigns
words to the vertices of the grid graph, and σ(v) denotes the word assigned to v.

For each node Bt of the tree decomposition we are going to keep all the triplets
(σ, W, Wt) such that:

• σ is an assignment of words to the vertices of Bt;

• W is the weight of σ restricted to the vertices appearing in Bt;

• and Wm is the maximum weight, restricted to the vertices appearing in B↓
t , of an

assignment consistent with σ.

In order to create all the possible triplets for all the nodes of the tree decomposition we
are going to explore the nodes from leaves to the root. Therefore, each time we visit
a node we assume that we have already created the triplets for all its children. Let us
explain how we deal with the different types of nodes.

In the Leaf nodes we have no vertices so we keep an empty assignment (σ does not
assign any word) and the weights W and Wm are equal to 0.

For an Introduce node Bt we need to take in consideration its child node. Assume
that u is the introduced vertex; for each triplet (σ, W, Wm) of the child node we are going
to create all the triplets (σ′, W ′, W ′

m) for the new node as follows. First we find all the
words d ∈ D that fit in the corresponding slot of u and respect the assignment σ (i.e.,
if there are cells that are already filled under σ and d uses these cells then it must have
the same letters). We create one triplet (σ′, W ′, W ′

m) for each such a d as follows:

• We set σ′(u) := d and σ′(v) := σ(v) for all v ∈ Bt \ {u}.

• We can easily calculate the total weight, W ′, of the words in Bt where the shared
letters are counted only once under the assignment σ′.

• For the maximum weight W ′
m we know that it is increased by the same amount as

W ; so we set W ′
m = Wm + W ′ −W .
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Observe that we do not need to consider the intersection with slots whose vertices appear
in B↓

t \Bt as each node of a tree decomposition is a cut set.
Finally, we need to take in consideration that we can leave a slot empty. For this

case we create a new word d∗ which, we assume that, fits in all slots and d∗ has weight
0. Because the empty word has weight 0, W ′ and W ′

m are identical to W and Wm so
for each triplet of the child node, we only need to extend σ by assigning d∗ to u. In the
case we assign the empty word somewhere we will consider that the cells of this slot are
empty unless another word d 6= d∗ uses them.

For the Forget nodes we need to restrict the assignments of the child node to the
vertex set of the Forget node, as it has been reduced by one vertex (the forgotten vertex),
and reduce the weight W (which we can calculate easily). The maximum weight is not
changed by the deletion.

However, if we restrict the assignments we may end up with several triplets (σ, W, Wm)
with identical assignments σ. In that case we are keeping only the triplet with maximum
Wm. Observe that we are allowed to keep only triplets with the maximum Wm because
each node of a tree decomposition is a cut set so the same holds for the Forget nodes.
Specifically, the vertices that appear in the nodes higher than a Forget node Bt of the
tree decomposition do not have edges incident to vertices in B↓

t \Bt so we only care for
the assignment in Bt.

Finally, we need to consider the Join nodes. Each Join node has exactly two children.
For each possible assignment σ on the vertices of this Join node, we create a triplet iff
this σ appears in a triplet of both children of the Join node.

Because W is related only to the assignment σ, it is easy to see that it will be the
same as in the children of the Join node. So we need to find the maximum weight Wm.
Observe that between the vertices that appear in the subtrees of two children of a Join
node there are no edges except those incident to the vertices of the Join node. Therefore,
we can calculate the maximum weight Wm as follows: first we consider the maximum
weight of each child of the Join node reduced by W , we add all these weights and, in
the end, we add again the W . It is easy to see that this way we consider the weight of
the cells appearing in each subtree without those of the slots of the Join node and we
add the weight of the words assigned to the vertices of the Join node in the end.

For the running time we need to observe that the number of nodes of a nice tree
decomposition is O(tw · n) and all the other calculations are polynomial in n + m so
we only need to consider the different assignments for each node. Because for each
vertex we have |D|+1 choices, the number of different assignments for a node is at most
(|D|+ 1)tw+1.

It seems that the algorithm we propose for CP-Dec is essentially optimal, even if
we consider a much more restricted case.

Theorem 8.3. CP-Dec with word reuse is W[1]-hard parameterized by the number of
horizontal slots of the grid, even for alphabets with two letters. Furthermore, under
the ETH, no algorithm can solve this problem in time mo(k), where k is the number of
horizontal slots.
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Proof. We perform a reduction from k-Independent Set, where we are given a graph
G = (V, E) with |V | vertices and |E| edges and are looking for an independent set of size
k. This problem is well-known to be W[1]-hard and not solvable in |V |o(k) time under
the ETH [65]. We assume without loss of generality that |E| 6= k. Furthermore, we can
safely assume that G has no isolated vertices.

We first describe the grid of our construction which fits within an area of 2k−1 lines
and 2|E| − 1 columns. We construct:

1. k horizontal slots, each of length 2|E| − 1 (so each of these slots is as long hori-
zontally as the whole grid). We place these slots in the unique way so that no two
of these slots are in consecutive lines. We number these horizontal slots 1, . . . , k
from top to bottom.

2. |E| vertical slots, each of length 2k − 1 (so each of these slots is long enough to
cover the grid top to bottom). We place these slots in the unique way so that no
two of them are in consecutive columns. We number them 1, . . . , |E| from left to
right.

Before we describe the dictionary, let us give some intuition about the grid. The main
idea is that in the k horizontal slots we will place k words that signify which vertices we
selected from the original graph. Each vertical slot represents an edge of E, and we will
be able to place a word in it if and only if we have not placed words representing two of
its endpoints in the horizontal slots.

Our alphabet has two letters, say 0, 1. In the remainder, we assume that the edges
of the original graph are numbered, that is, E = {e1, . . . , e|E|}. The dictionary is as
follows:

1. For each vertex v we construct a word of length 2|E|−1. For each i ∈ {1, . . . , |E|},
if the edge ei is incident on v, then the letter at position 2i − 1 of the word
representing v is 1. All other letters of the word representing v are 0. Observe
that this means that if ei is incident on v and we place the word representing v
on a horizontal slot, the letter i will appear on the i-th vertical slot. Furthermore,
the word representing v has a number of 1s equal to the degree of v.

2. We construct k + 1 words of length 2k − 1. One of them is simply 02k−1. The
remaining are 02j−2102k−2j , for j ∈ {1, . . . , k}, that is, the words formed by placing
a 1 in an odd-numbered position and 0s everywhere else. Observe that if we place
one of these k words on a vertical slot, a 1 will be placed on exactly one horizontal
slot.

This completes the construction. We now observe that the k horizontal slots cor-
respond to a vertex cover of the grid graph. Therefore, if the reduction preserves the
answer, the hardness results for k-Independent Set transfer to our problem, since we
preserve the value of the parameter.
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We claim that if there exists an independent set of size k in G, then it is possible to
fill the grid. Indeed, take such a set S and for each v ∈ S we place the word representing
v in a horizontal slot. Consider the i-th vertical slot. We will place in this slot one of
the k +1 words of length 2k−1. We claim that the vertical slot at this moment contains
the letter 1 at most once, and if 1 appears it must be at an odd position (since these are
the positions shared with the horizontal slots). If this is true, clearly there is a word we
can place. To see that the claim is true, recall that since S is an independent set of k
distinct vertices, there exists at most one vertex in S incident on ei.

For the converse direction, recall that |E| 6= k. This implies that if there is a way
to fill out the whole grid, then words representing vertices must go into horizontal slots
and words of length 2k−1 must go into vertical slots. By looking at the words that have
been placed in the horizontal slots we obtain a collection of k (not necessarily distinct)
vertices of G. We will prove that these vertices must actually be an independent set of
size exactly k. To see this, consider the i-th vertical slot. If our collection of vertices
contained two vertices incident on ei, it would have been impossible to fill out the i-th
vertical slot, since we would need a word with two 1s. Observe that the same argument
rules out the possibility that our collection contains the same vertex v twice, as the
column corresponding to any edge ei incident on v would have been impossible to fill.

8.3.2 No Word Reuse
If a word cannot be reused, then CP-Dec looks more challenging. Indeed, in the fol-
lowing theorem we prove that if reusing words is not allowed, then the problem becomes
NP-hard even if the grid graph is acyclic and the alphabet size is 2. (Note that if the
alphabet size is 1, the problem is trivial, independent of the structure of the graph.)
Theorem 8.4. CP-Dec is NP-hard, even for instances where all of the following re-
strictions apply: (i) the grid graph is a union of stars (ii) the alphabet contains only two
letters (iii) words cannot be reused.
Proof. We show a reduction from 3-Partition. Recall that in 3-Partition we are given
a collection of 3n distinct positive integers x1, . . . , x3n and are asked if it is possible to
partition these integers into n sets of three integers (triples), such that all triples have
the same sum. This problem has long been known to be strongly NP-hard [94] and NP-
hardness when the integers are distinct was shown by Hulett et al. [117]. We can assume
that ∑3n

i=1 xi = nB and that if a partition exists each triple has sum B. Furthermore,
we can assume without loss of generality that xi > 6n for all i ∈ {1, . . . , 3n} (otherwise,
we can simply add 6n to all numbers and adjust B accordingly without changing the
answer).

Given an instance of 3-Partition as above, we construct a crossword instance as
follows. First, the alphabet only contains two letters, say the letters ∗ and !. To construct
our dictionary we do the following:

1. For each i ∈ {1, . . . , 3n}, we add to the dictionary one word of length xi that begins
with ! and n − 1 words of length xi that begin with ∗. The remaining letters of
these words are chosen in an arbitrary way so that all words remain distinct.
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2. For each i, j, k ∈ {1, . . . , 3n} with i < j < k we check if xi + xj + xk = B. If
this is the case, we add to the dictionary the word ∗2i−2!∗2j−2i−1!∗2k−2j−1!∗6n−2k.
In other words, we constructed a word that has ∗ everywhere except in positions
2i− 1, 2j − 1, and 2k− 1. The length of this word is 6n− 1. Let f be the number
of words added to the dictionary in this step. We have f ≤ (3n

3 ) = O(n3).

We now also need to specify our grid. We first construct f horizontal slots, each
of length 6n − 1. Among these f slots, we select n, which we call the “interesting”
horizontal slots. For each interesting horizontal slot, we construct 3n vertical slots, such
that the i-th of these slots has length xi and its first cell is the cell in position 2i − 1
of the interesting horizontal slot. This completes the construction, which can clearly
be carried out in polynomial time. Observe that the first two promised restrictions are
satisfied as we have an alphabet with two letters and each vertical slot intersects at most
one horizontal slot (so the grid graph is a union of stars).

We claim that if there exists a partition of the original instance, then we can place all
the words of the dictionary on the grid. Indeed, for each i, j, k ∈ {1, . . . , 3n} such that
{xi, xj , xk} is one of the triples of the partition, we have constructed a word of length
6n − 1 corresponding to the triple (i, j, k), because xi + xj + xk = B. We place each
of these n words on an interesting horizontal slot and we place the remaining words of
length 6n− 1 on the non-interesting horizontal slots. Now, for every i ∈ {1, . . . , 3n} we
have constructed n words, one starting with ! and n−1 starting with ∗. We observe that
among the interesting horizontal slots, there is one that contains the letter ! at position
2i − 1 (the one corresponding to the triple containing xi in the partition) and n − 1
containing the letter ∗ at position 2i− 1. By construction, the vertical slots that begin
in these positions have length xi. Therefore, we can place all n words corresponding to
xi on these vertical slots. Proceeding in this way we fill the whole grid, fulfilling the
third condition.

For the converse direction, suppose that there is a way to fill the whole grid. Then,
vertical slots must contain words that were constructed in the second step and represent
integers xi, while horizontal slots must contain words constructed in the first step (this
is a consequence of the fact that xi > 6n for all i ∈ {1, . . . , 3n}). We consider the
n interesting horizontal slots. Each such slot contains a word that represents a triple
(i, j, k) with xi + xj + xk = B. We therefore collect these n triples and attempt to
construct a partition from them. To do this, we must prove that each xi must belong to
exactly one of these triples. However, recall that we have exactly n words of length xi

(since all integers of our instance are distinct) and exactly n vertical slots of this length.
We conclude that exactly one vertical slot must have ! as its first letter, therefore xi

appears in exactly one triple and we have a proper partition.

Actually, the problem remains NP-hard even in the case where the grid graph is
a matching and the alphabet contains three letters. This is proved for grid graphs
composed of T s, where a T is a horizontal slot solely intersected by the first cell of a
vertical slot.



178 CHAPTER 8. CROSSWORDS PUZZLE

Theorem 8.5. CP-Dec is NP-hard, even for instances where all of the following re-
strictions apply: (i) each word can be used only once (ii) the grid is consisted only by
T s and (iii) the alphabet contains only three letters.

The proof of this theorem is quite technical and is included in the appendix.
Remark. In our construction each T has unique shape1 so the problem remains NP -
hard even in this case.
Remark. Theorem 8.3 can be adjusted to work also for the case where word reuse is
not allowed. We simply need to add a suffix of length log m to all words of length 2k− 1
and add rows to the grid accordingly. Hence, under the ETH, no algorithm can solve
this problem in time mo(k), where k is the number of horizontal slots.

Finally, observe that by filling the slots of a vertex cover of the grid graph, all the
shared cells are pre-filled. Since there are at most (m + 1)k (where k is the size of the
vertex cover) ways to assign words to these slots, by Proposition 8.1, we get the following
corollary.
Corollary 8.6. Given a vertex cover of size k of the grid graph we can solve CP-Dec
and CP-Opt in time (m + 1)k(n + m)O(1). Furthermore, as vertex cover we can take
the set of horizontal slots.

Therefore, the bound given in Remark 8.3.2 for the parameter vertex cover is tight.

8.4 Parameterized by Total Number of Slots
In this section we consider a much more restrictive parameterization of the problem: we
consider instances where the parameter is n, the total number of slots. Recall that in
Theorem 8.3 (and Remark 8.3.2) we already considered the complexity of the problem
parameterized by the number of horizontal slots of the instance. We showed that this
case of the problem cannot be solved in mo(k) and that an algorithm with running time
roughly (m + 1)k is possible whether word reuse is allowed or not.

Since parameterizing by the number of horizontal slots is not sufficient to render the
problem FPT, we therefore consider our parameter to be the total number of slots. This
is, finally, sufficient to obtain a simple fpt-algorithm.
Corollary 8.7. There is an algorithm that solves CP-Dec and CP-Opt in time O∗((ℓ+
1)n2/4), where n is the total number of slots and ℓ the size of the alphabet, whether word
reuse is allowed or not.
Proof. Since there are n slots in the instance, even if the grid is a complete bipartite
graph, the instance contains at most n2/4 cells which are shared between two slots.
In time (ℓ + 1)n2/4 we consider all possible letters that could be placed in these cells.
Finally, as we have shown in Proposition 8.1, each of these instances can be solved in
polynomial time.

1Two crosses are of the same shape if they are identical: same number of horizontal cells, same number
of vertical cells, and same shared cell.
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Even though the running time guaranteed by Corollary 8.7 is FPT for parameter n,
we cannot help but observe that the dependence on n is rather disappointing, as our
algorithm is exponential in the square of n. It is therefore a natural question whether
an fpt-algorithm for this problem can achieve complexity 2o(n2), assuming the alphabet
size is bounded. The main result of this section is to establish that this is likely to be
impossible.

Overview Our hardness proof consists of two steps. In the first step we reduce
3-SAT to a version of the same problem where variables and clauses are partitioned into
O(
√

n + m) groups, which we call Sparse 3-SAT. The key property of this intermedi-
ate problem is that interactions between groups of variables and groups of clauses are
extremely limited. In particular, for each group of variables Vi and each group of clauses
Cj , at most one variable of Vi appears in a clause of Cj . We obtain this rather severe re-
striction via a randomized reduction that runs in expected polynomial time. The second
step is to reduce Sparse 3-SAT to CP-Dec. Here, every horizontal slot will represent
a group of variables and every vertical slot a group of clauses, giving O(

√
n + m) slots

in total. Hence, an algorithm for CP-Dec whose dependence on the total number of
slots is subquadratic in the exponent will imply a sub-exponential time (randomized)
algorithm for 3-SAT. The limited interactions between groups of clauses and variables
will be key in allowing us to execute this reduction using a binary alphabet.

Let us now define our intermediate problem.

Definition 8.1. In Sparse 3-SAT we are given an integer n which is a perfect square
and a 3-SAT formula ϕ with at most n variables and at most n clauses, such that each
variable appears in at most 3 clauses. Furthermore, we are given a partition of the set
of variables V and the set of clauses C into

√
n sets V1, . . . , V√

n and C1, . . . , C√
n of size

at most
√

n each, such that for all i, j ∈ [
√

n] the number of variables of Vi which appear
in at least one clause of Cj is at most one.

Now, we are going to prove the hardness of Sparse 3-SAT, which is the first step
of our reduction.

Lemma 8.8. Suppose the randomized ETH is true. Then, there exists an ϵ > 0 such
that Sparse 3-SAT cannot be solved in time 2ϵn.

The first step of our reduction will be to prove that Sparse 3-SAT cannot be solved
in sub-exponential time (in n) under the randomized ETH, via a reduction from 3-SAT.
To do this, we will need the following combinatorial lemma.

Lemma 8.9. For each ϵ > 0 there exists C > 0 such that for sufficiently large n we
have the following. There exists a randomized algorithm running in expected polynomial
time which, given a bipartite graph G = (A, B, E) such that |A| = |B| = n and the
maximum degree of G is 3, produces a set V ′ ⊆ A ∪ B with |V ′| ≥ 2(1 − ϵ)n and a
coloring c : V ′ → [k] of the vertices of V ′ with k colors, where k ≤ C

√
n, such that for

all i ∈ [k] we have |c−1(i)| ≤
√

n and for all i, j ∈ [k] the graph induced by c−1(i)∪c−1(j)
contains at most one edge.
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Proof. Let k = Cd
√

ne, where C is a sufficiently large constant (depending only on ϵ) to
be specified later. We color each vertex of the graph uniformly at random from a color
in [k], call this coloring c. Let Xi,j be the set of edges which have as endpoints a vertex
of color i and a vertex of color j.

Our algorithm is rather simple: initially, we set V ′ = V . Then, for each i, j ∈ [k] we
check whether Xi,j contains at most one edge. If yes, we do nothing; if not, we select
for each edge e ∈ Xi,j an arbitrary endpoint and remove that vertex from V ′. In the
end we return the set V ′ that remains and its coloring. It is clear that this satisfies the
property that c−1(i) ∪ c−1(j) contains at most one edge for the graph induced by V ′

for all i, j ∈ [k], so what we need to argue is that (i) |c−1(i)| ≤
√

n for all i with high
probability and (ii) that V ′ has the promised size with at least constant probability. If
we achieve this it will be sufficient to repeat the algorithm a polynomial number of times
to obtain the claimed properties with high probability, hence we will have an expected
running time polynomial in n.

For the first part, fix an i ∈ [k] and observe that E[|c−1(i)|] ≤ 2
√

n
C . To prove that

all |c−1(i)| are of size at most 4
√

n/C with high probability (and hence also at most
√

n
for C sufficiently large), we will use Chernoff’s Inequality.

Proposition 8.10 (Chernoff’s Inequality). Let X be a binomial random variable and
ϵ > 0. Then P [|X − E[X]| > ϵE[X]] < 2e−ϵ2E[X]/3

We take ϵ = 1. It follows that P [|c−1(i)| > 4
√

n/C] ≤ 2e−2
√

n/3C . Now, taking the
union bound, we obtain that almost surely for all color i, |c−1(i)| < 4

√
n/C

The more interesting part of this proof is to bound the expected size of V ′. Let e
be an edge whose endpoints are colored with colors i and j. We say that e is good if no
other edge in G has one endpoint colored i and the other colored j by the coloring c.
Let u and v be the endpoints of e. The probability of another edge having endpoints of
colors i and j in the graph G−{u, v} is at most 2|E|

C2n
≤ 6

C2 . The probability that at least
one of the at most four edges incident to e has endpoints colored i and j is at most 4

C
√

n
.

Thus, the probability that e is good is at least 1− 6
C2 − 4

C
√

n
> 1− 7

C2 , if n is sufficiently
large. Let X be the number of edges which are not good. Then, E[X] ≤ 7C−2|E|. By
Markov’s Inequality P [X > 21C−2|E|] < 1/3. Thus, with probability at least 2/3, our
algorithm will remove at most 21C−2|E| ≤ 63C−2n vertices. Since we have promised to
remove at most 2ϵn vertices, it suffices to select any value C ≥ 8√

ϵ
.

Now, we present the proof of Lemma 8.8

Proof. Suppose that the statement is false, therefore for any ϵ > 0 we can solve Sparse
3-SAT in which the number of variables and clauses can be upper-bounded by N in
expected time 2ϵN using some supposed algorithm. Fix an arbitrary ϵ′ > 0. We will
show how to solve an arbitrary instance of 3-SAT with n variables and m clauses in
expected time 2ϵ′(n+m) using this supposed algorithm for Sparse 3-SAT. If we can do
this for any arbitrary ϵ′, this will contradict the randomized ETH.
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Start with an arbitrary 3-SAT instance ϕ with n variables and m clauses. We first
edit ϕ to ensure that each variable appears at most three times. In particular, if x
appears k > 3 times, we replace each appearance of x with a fresh variable xi, i ∈ [k],
and add the clauses (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ . . . ∧ (¬xk ∨ x1).

The number of variables in the new instance is at most n+3m. The number of clauses
is at most 4m. This is because every new clause and every new variable corresponds to
an occurrence of an original variable in an original clause and there are at most 3m such
occurrences.

We now have an instance ϕ′ equivalent to ϕ with at most n + 3m variables and at
most 4m clauses, such that each variable appears at most 3 times. Let N be the smallest
perfect square such that N ≥ n + 4m. We have N < 10(n + m). What we need now is
to produce a partition of the vertices and clauses of ϕ′.

In order to produce this partition we invoke Lemma 8.9 on the incidence graph of
ϕ′, that is, the bipartite graph where we have variables on one side and clauses on the
other, and edges signify that a variable appears in a clause. Add some dummy isolated
vertices on each side so that both sides of the incidence graph contain N vertices. We
invoke Lemma 8.9 by setting ϵ to be ϵ′/80. We obtain a coloring of all but at most
ϵ′N
40 ≤

ϵ′(n+m)
4 of the vertices of the incidence graph.

Let U be the set of variables and clauses that correspond to uncolored vertices of the
incidence graph. Then, for each such variable we produce two formulas (one by setting
it to True and one by setting it to False), and for each such clause, at most 3 formulas
(one by setting each of the literals of the clause to True). We thus construct at most
3ϵ′(n+m)/4 ≤ 2ϵ′(n+m)/2 new formulas, such that one of them is satisfiable if and only if
ϕ was satisfiable. We will then use the supposed algorithm for Sparse 3-SAT to decide
each of these formulas one by one.

Each new formula we have contains at most N variables and at most N clauses,
and by Lemma 8.9 we have partitions of the variables and clauses into C

√
N groups,

where C is a constant (that depends on ϵ′). By setting N ′ = dCe2N we can view
these instances as instances of Sparse 3-SAT, because then the number of groups
becomes equal to the square root of the upper bound on the number of variables and
clauses, and by the properties of Lemma 8.9 there is at most one edge between each
group of variables and each group of clauses. Since we suppose that for all ϵ > 0
such instances can be solved in time 2ϵN ′ , by setting ϵ = ϵ′/50dCe2 we can solve each
formula in 2ϵ′(n+m)/5. The total expected running time of our algorithm is at most
2ϵ′(n+m)/2 · 2ϵ′(n+m)/5 · (n + m)O(1) ≤ 2ϵ′(n+m), so we contradict the ETH.

We are now ready to prove the main theorem of this section.

Theorem 8.11. Suppose the randomized ETH is true. Then, there exists an ϵ > 0 such
that CP-Dec on instances with a binary alphabet cannot be solved in time 2ϵn2 ·mO(1).
This holds also for instances where all slots have distinct sizes (so words cannot be
reused).

Proof. Suppose for the sake of contradiction that for any fixed ϵ > 0, CP-Dec on
instances with a binary alphabet can be solved in time 2ϵn2 · mO(1). We will then
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contradict Lemma 8.8. In particular, we will show that for any ϵ′ we can solve Sparse
3-SAT in time 2ϵ′N , where N is the upper bound on the number of variables and clauses.
Fix some ϵ′ > 0 and suppose that ϕ is an instance of Sparse 3-SAT with at most N
variables and at most N clauses, where N is a perfect square. Recall that the variables
are given partitioned into

√
N sets, V1, . . . , V√

N and the clauses partitioned into
√

N
sets C1, . . . , C√

N . In the remainder, when we write V (Cj) we will denote the set of
variables that appear in a clause of Cj . Recall that the partition satisfies the property
that for all i, j ∈ [

√
N ] we have |Vi ∩ V (Cj)| ≤ 1. Suppose that the variables of ϕ are

ordered x1, x2, . . . , xN .
We construct a grid as follows: for each group Vi we construct a horizontal slot and

for each group Cj we construct a vertical slot, in a way that all slots have distinct lengths.
More precisely, the i-th horizontal slot, for i ∈ [

√
N ] is placed on row 2i−1, starts in the

first column and has length 2
√

N + 2i. The j-th vertical slot is placed in column 2j− 1,
starts in the first row and has length 5

√
N + 2j. (As usual, we number the rows and

columns top-to-bottom and left-to-right). Observe that all horizontal slots intersect all
vertical slots; in particular, the cell in row 2i − 1 and column 2j − 1 is shared between
the i-th horizontal and j-th vertical slot, for i, j ∈ [

√
N ]. We define L to contain two

letters {0, 1}.
What remains is to describe the dictionary.

• For each i ∈ [
√

N ] and for each assignment function σ : Vi → {0, 1} we construct
a word wσ of length 2

√
N + 2i. The word wσ has the letter 0 in all positions,

except positions 2j − 1, for j ∈ [
√

N ]. For each such j, we consider σ restricted
to Vi ∩ V (Cj). By the properties of Sparse 3-SAT, we have |Vi ∩ V (Cj)| ≤ 1.
If Vi ∩ V (Cj) = ∅ then we place letter 0 in position 2j − 1; otherwise we set in
position 2j−1 the letter that corresponds to the value assigned by σ to the unique
variable of Vi ∩ V (Cj).

• For each j ∈ [
√

N ] and for each satisfying assignment function σ : V (Cj)→ {0, 1},
that is, every assignment function that satisfies all clauses of Cj , we construct
a word w′

σ of length 5
√

N + 2j. The word w′
σ has the letter 0 in all positions,

except positions 2i− 1, for i ∈ [
√

N ]. For each such i, we consider σ restricted to
Vi ∩ V (Cj). If Vi ∩ V (Cj) = ∅ then we place letter 0 in position 2i− 1; otherwise
we set in position 2i− 1 the letter that corresponds to the value assigned by σ to
the unique variable of Vi ∩ V (Cj).

The construction is now complete. We claim that if ϕ is satisfiable, then it is possible
to fill out the grid we have constructed. Indeed, fix a satisfying assignment σ to the
variables of ϕ. For each i ∈ [

√
N ] let σi be the restriction of σ to Vi. We place in the i-th

horizontal slot the word wσi . Similarly, for each j ∈ [
√

N ] we let σ′
j be the restriction of

σ to V (Cj) and place w′
σ′

j
in the j-th vertical slot. Now if we examine the cell shared

by the i-th horizontal and j-th vertical slot, we can see that it contains a letter that
represents σ restricted to (the unique variable of) Vi ∩V (Cj) or 0 if Vi ∩V (Cj) = ∅, and
both the horizontal and vertical word place the same letter in that cell.
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For the converse direction, if the grid is filled, we can extract an assignment σ for
the variables of ϕ as follows: for each x ∈ Vi we find a Cj such that x appears in some
clause of Cj (we can assume that every variable appears in some clause). We then look
at the cell shared between the i-th horizontal and the j-th vertical slot. The letter we
have placed in that cell gives an assignment for the variable contained Vi ∩ V (Cj), that
is x. Having extracted an assignment to all the variables, we claim it must satisfy ϕ. If
not, there is a group Cj that contains an unsatisfied clause. Nevertheless, in the j-th
vertical slot we have placed a word that corresponds to a satisfying assignment for the
clauses of Cj , call it σj . Then σj must disagree with σ in a variable x that appears in
Cj . Suppose this variable is part of Vi. Then, this would contradict the fact that we
extracted an assignment for x from the word placed in the i-th horizontal slot.

Observe that the new instance has n = 2
√

N slots. If there exists an algorithm that
solves CP-Dec in time 2ϵn2

mO(1) for any ϵ > 0, we set ϵ = ϵ′/8 (so ϵ only depends on ϵ′)
and execute this algorithm on the constructed instance. We observe that m ≤ 2

√
N ·7

√
N ,

and that 2ϵn2 ≤ 2ϵ′N/2. Assuming that N is sufficiently large, using the supposed
algorithm for CP-Dec we obtain an algorithm for Sparse 3-SAT with complexity
at most 2ϵ′N . Since we can do this for arbitrary ϵ′, this contradicts the randomized
ETH.

8.5 Approximability of CP-Opt
This section begins with a

(1
2 +O( 1

n)
)
-approximation algorithm which works when words

can, or cannot, be reused. After that, we prove that under the unique games conjecture,
an approximation algorithm with a significantly better ratio is unlikely.

Theorem 8.12. CP-Opt is (1
2 + 1

2(εn+1))-approximable in polynomial time, for all
ε ∈ (0, 1].

Proof. Fix some ε ∈ (0, 1]. Let kv := min(d1
εe, n − h) and rv := dn−h

kv
e, where h is the

number of horizontal slots in the grid. Create rv groups of vertical slots G1, . . . , Grv

such that |Gi| ≤ kv for all i ∈ [rv] and G1 ∪ . . . ∪ Grv covers the entire set of vertical
slots. For each Gi, guess an optimal choice of words, i.e., identical to a global optimum,
and complete this partial solution by filling the horizontal slots (use the aforementioned
matching technique where the words selected for Gi are excluded from D). Each slot of∪

j 6=i Gj gets the empty word.
Since |Gi| ≤ kv, guessing an optimal choice of words for Gi by brute force requires at

most (m + 1)kv combinations. This is done rv times (once for each Gi). The maximum
matching runs in time O((m + n)2 ·mn). In all, the time complexity of the algorithm is
O((m + 1)kv · rv · (m + n)2 ·mn) ≤ O((m + 1)1/ε · εn · (m + n)2 ·mn).

Assume that, given an optimal solution, W ∗
H and W ∗

V are the total weight of the
words assigned to the horizontal and vertical slots, respectively, both including the shared
cells. Furthermore, let W ∗

S be the weight of the letters assigned to the shared cells in
the optimal solution. Observe that the weight of the optimal solution is W ∗

H +W ∗
V −W ∗

S

and the weight of our solution is at least W ∗
H + 1

rv
(W ∗

V −W ∗
S).



184 CHAPTER 8. CROSSWORDS PUZZLE

We repeat the same process, but the roles of vertical and horizontal slots are inter-
changed. Fix a parameter kh := min(d1

εe, h). Create rh := d h
kh
e groups of horizontal

slots G1, . . . , Grh
such that |Gi| ≤ kh for all i ∈ [rh] and G1 ∪ . . .∪Grh

covers the entire
set of horizontal slots. For each Gi, guess an optimal choice of words and complete this
partial solution by filling the vertical slots. Each slot of ∪j 6=i Gj gets the empty word.

Using the same arguments as above, we can conclude that the time complexity is
O((m + 1)1/ε · εn · (m + n)2 · mn) and that we return a solution of weight at least
W ∗

V + 1
rh

(W ∗
H −W ∗

S).
Finally, between the two solutions, we return the one with the greater weight. It

remains to argue about the approximation ratio. We need to consider two cases: W ∗
H ≥

W ∗
V and W ∗

V > W ∗
H .

Suppose W ∗
H ≥W ∗

V . The first approximate solution has value W ∗
H + 1

rv
(W ∗

V −W ∗
S) ≥

1+1/rv

2 (W ∗
H + W ∗

V − W ∗
S). If kv = n − h then rv = 1 and our approximation ratio

is 1. Otherwise, kv = d1
εe and rv = d n−h

d1/εee ≤
n−h
d1/εe + 1 = n−h+d1/εe

d1/εe . It follows that
1
rv
≥ d1/εe

n−h+d1/εe . Use n−h+d1/εe ≤ n+ 1
ε and d1/εe ≥ 1/ε to get that 1

rv
≥ 1/ε

n+1/ε = 1
εn+1 .

Our approximation ratio is at least 1+1/(εn+1)
2 .

Suppose W ∗
V > W ∗

H . The second approximate solution has value W ∗
V + 1

rh
(W ∗

H −
W ∗

S) > 1+1/rh

2 (W ∗
H +W ∗

V −W ∗
S). If kh = h, then our approximation ratio is 1. Otherwise,

kh = d1
εe and, using the same arguments, our approximation ratio is at least 1+1/(εn+1)

2 .
Note that 1+1/(εn+1)

2 ≤ 1. In all, we have a 1+1/(εn+1)
2 -approximate solution in

O((m + 1)1/ε · εn · (m + n)2 ·mn) for all ε ∈ (0, 1].

The previous approximation algorithm only achieves an approximation ratio of 1
2 +

O( 1
n), which tends to 1

2 as n increases. At first glance this is quite disappointing, as
someone can observe that a ratio of 1

2 is achievable simply by placing words only on the
horizontal or the vertical slots of the instance2. Nevertheless, we are going to show that
this performance is justified, as improving upon this trivial approximation ratio would
falsify the Unique Games Conjecture (UGC).

Using the version of the UGC given in Theorem 2.1 we are ready to present our
hardness of approximation argument for the crossword puzzle.

Theorem 8.13. Suppose that the Unique Games Conjecture is true. Then, for all ϵ
with 1

4 > ϵ > 0, there exists an alphabet Σϵ such that it is NP-hard to distinguish between
the following two cases of instances of the crossword problem on alphabet Σϵ:

• (Yes case): There exists a valid solution that fills a (1− ϵ)-fraction of all cells.

• (No case): No valid solution can fill more than a (1
2 + ϵ)-fraction of all cells.

Moreover, the above still holds if all slots have distinct lengths (and hence reusing
words is trivially impossible).

2This placement is done in a way that maximizes the weight, using the matching technique as in the
proof of Proposition 8.1.
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Proof. Fix an ϵ > 0. We will later define an appropriately chosen value ϵ′ ∈ (0, ϵ) whose
value only depends on ϵ. We present a reduction from a Unique Label Cover instance,
as described in Theorem 2.1. In particular, suppose we have an instance G = (V, E),
with |V | = n, alphabet [R], such that (under UGC) it is NP-hard to distinguish if there
exists a set V ′ of size (1− ϵ′)n that satisfies all its induced constraints, or if all sets V ′

of size ϵ′n induce at least one violated constraint for any assignment. Throughout this
proof we assume that n is sufficiently large (otherwise the initial instance is easy). In
particular, let n > 20

ϵ .
We construct an instance of the crossword puzzle that fits in an N × N square,

where N = 4n + n2. We number the rows 1, . . . , N from top to bottom and the columns
1, . . . , N from left to right. The instance contains n horizontal and n vertical slots. For
i ∈ [n], the i-th horizontal slot is placed in row 2i, starting at column 1, and has length
2n + n2 + i. For j ∈ [n], the j-th vertical slot is placed in column 2j, starts at row 1 and
has length 3n+n2 + j. Observe that all horizontal slots intersect all vertical slots and in
particular, for all i, j ∈ [n] the cell in row 2i, column 2j belongs to the i-th horizontal slot
and the j-th vertical slot. Furthermore, each slot has a distinct length, as the longest
horizontal slot has length 3n + n2 while the shortest vertical slot has length 3n + n2 + 1.

We define the alphabet as Σϵ = [R]∪{∗}. Before we define our dictionary, let us give
some intuition. Let V = {v1, . . . , vn}. The idea is that a variable vi ∈ V of the original
instance will be represented by both the i-th horizontal slot and the i-th vertical slot.
In particular, we will define, for each α ∈ [R] a pair of words that we can place in these
slots to represent the fact that vi is assigned with the value α. We will then ensure that
if we place words on both the i-th horizontal slot and the j-th horizontal slot, where
vivj ∈ E, then the assignment that can be extracted by reading these words will satisfy
the constraint π(vi,vj). The extra letter ∗ represents an indifferent assignment (which we
need if vivj 6∈ E).

Armed with this intuition, let us define our dictionary.

• For each i ∈ [n], for each α ∈ [R] we define a word d(i,α) of length 2n + n2 + i. The
word d(i,α) has the character ∗ everywhere except at position 2i and at positions
2j for j ∈ [n] and vivj ∈ E. In these positions the word d(i,α) has the character α.

• For each j ∈ [n], for each α ∈ [R] we define a word d′
(j,α) of length 3n+n2 + j. The

word d′
(j,α) has the character ∗ everywhere except at position 2j and at positions

2i for i ∈ [n] and vivj ∈ E. In position 2j we have the character α. In position
2i with vivj ∈ E, we place the character β ∈ [R] such that the constraint π(vi,vj)
is satisfied by assigning β to vi and α to vj . (Note that β always exists and is
unique, as the constraints are permutations on [R], that is, for each value α of vj

there exists a unique value β of vi that satisfies the constraint).

This completes the construction. Suppose now that V = {v1, . . . , vn} and that we
started from the Yes case of Unique Label Cover, that is, there exists a set V ′ ⊆ V
such that |V ′| ≥ (1 − ϵ′)n and all constraints induced by V ′ can be simultaneously
satisfied. Fix an assignment σ : V ′ → [R] that satisfies all constraints induced by V ′.
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For each i ∈ [n] such that vi ∈ V ′ we place in the i-th horizontal slot (that is, in row 2i)
the word d(i,σ(vi)). For each j ∈ [n] such that vj ∈ V ′ we place in the j-th vertical slot
the word d′

(j,σ(vj)). We leave all other slots empty. We claim that this solution is valid,
that is, no shared cell is given different values from its horizontal and vertical slot. To
see this, examine the cell in row 2i and column 2j. If both of the slots that contain it
are filled, then vi, vj ∈ V ′. If vivj 6∈ E and i 6= j, then the cell contains ∗ from both
words. If i = j, then the cell contains σ(vi) from both words. If i 6= j and vivj ∈ E,
then the cell contains σ(vi). This is consistent with the vertical word, as the constraint
π(vi,vj) is assumed to be satisfied by σ. We now observe that this solution covers at least
2(1− ϵ′)n3 cells, as we have placed 2(1− ϵ′)n words, each of length at least n2 + 2n, that
do not pairwise intersect beyond their first 2n characters.

Suppose now we started our construction from a No instance of Unique Label
Cover. We claim that the optimal solution in the new instance cannot cover significantly
more than half the cells. In particular, suppose a solution covers at least (1+ϵ′)n3 +10n2

cells. We claim that the solution must have placed at least (1 + ϵ′)n words. Indeed, if
we place at most (1 + ϵ′)n words, as the longest word has length n2 + 4n, the maximum
number of cells we can cover is (1+ ϵ′)n(n2 +4n) ≤ (1+ ϵ′)n3 +4(1+ ϵ′)n2 < (1+ ϵ′)n3 +
10n2. Let x be the number of indices i ∈ [n] such that the supposed solution has placed
a word in both the i-th horizontal slot and the i-th vertical slot. We claim that x ≥ ϵ′n.
Indeed, if x < ϵ′n, then the total number of words we might have placed is at most
(n − x) + 2x < (1 + ϵ′)n, which contradicts our previous observation that we placed at
least (1 + ϵ′)n words. Let V ′ ⊆ V be defined as the set of vi ∈ V such that the solution
places words in the i-th horizontal and vertical slot. Then |V ′| ≥ ϵ′n. We claim that it is
possible to satisfy all the constraints induced by V ′ in the original instance, obtaining a
contradiction. Indeed, we can extract an assignment for each vi ∈ V ′ by assigning to vi

value α if the i-th horizontal slot contains the word d(i,α). Note that the i-th horizontal
slot must contain such a word, as these words are the only ones that have an appropriate
length. Observe that in this case the i-th vertical slot must also contain d′

(i,α). Now, for
vi, vj ∈ V ′, with vivj ∈ E we see that π(vi,vj) is satisfied by our assignment, otherwise we
would have a conflict in the cell in position (2i, 2j). Therefore, in the No case, it must
be impossible to fill more than (1 + ϵ′)n3 + 10n2 cells.

The only thing that remains is to define ϵ′. Let C be the total number of cells in
the instance. Recall that we proved that in the Yes case we cover at least 2(1 − ϵ′)n3

cells and in the No case at most (1 + ϵ′)n3 + 10n2 cells. So we need to define ϵ′ such
that 2(1 − ϵ′)n3 ≥ (1 − ϵ)C and (1 + ϵ′)n3 + 10n2 ≤ (1

2 + ϵ)C. To avoid tedious
calculations, we observe that 2n3 ≤ C ≤ 2n3 + 8n2. Therefore, it suffices to have
2(1− ϵ′)n3 ≥ 2(1− ϵ)(n3 +4n2) and (1+ ϵ′)n3 +10n2 ≤ (1+2ϵ)n3. The first inequality is
equivalent to (ϵ−ϵ′)n ≥ 4(1−ϵ) and the second inequality is equivalent to (2ϵ−ϵ′)n ≥ 10.
Since we have assumed that n ≥ 20/ϵ, it is sufficient to set ϵ′ = ϵ/2.
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8.6 Special Cases Solvable in Polynomial Time
In this section we give some instances of CP-Dec which can be solved in polynomial
time when word reuse is not allowed. Hereafter, we will always silently assume that word
reuse is not allowed. Motivated by the fact that we could not generalize the NP-hardness
proof for the case where the grid graph is a matching and the alphabet contains only
two letters, we start considering restricted cases, that can be solved in polynomial time,
with the hope that we will show that we can answer this question in polynomial time.
Although this specific case remains open, we were able to find other instances of the
problem that can be solved in polynomial time. In the propositions that follow, the
spacial cases we ask for may seem extremely restrictive, however, given our initial goal,
it becomes easier to understand how we end up with such constraints.

We propose reductions from these instances to some well-known problems that be-
long to P . The first of these problems is 2-SAT which can be solved in linear time (see
[80]). The second problem is the maximum matching problem. In a bipartite graph
G = (V, E) this problem can be solved in O(

√
|V |(|E|+ |V |) [113]. For general graphs,

a much more involved algorithm by Micali and Vazirani matches the previous perfor-
mance [152]. Finally, we will reduce some instances of CP-Dec to the Exact Matching
problem. Karzanov in [127] proved that Exact Matching with 0-1 weights can be solved
in polynomial time in complete balanced bipartite graphs. In general graphs, under the
same weight restrictions, there exists an RNC algorithm by Mulmuley et al. [162], which
implies that Exact Matching is solvable in randomized polynomial time – though we
note that finding a deterministic polynomial time algorithm for Exact Matching is a
notorious open problem.

If the grid graph of the crossword puzzle is a matching, then we will call crosses the
pairs of slots that intersect. We will say that a pair of words (di, dj), i 6= j and i, j ∈ [m],
indicated by their indices (i, j), can be assigned to a cross C if di fits into the horizontal
slot of this cross, dj fits into the vertical slot and they have the same letter in the shared
cell. In the sequel, pairs (i, j) and (j, i) for any i 6= j and i, j ∈ [m] will count as different
pairs.

Proposition 8.14. CP-Dec can solved in polynomial time for instances where all of
the following conditions apply: (i) the grid consists of n/2 crosses, (ii) for any cross of
the grid we have at most two pairs of words that can fit into it.

We can recognize this kind of instances in polynomial time by counting the pairs
that fit in each cross as follows. For each cross Ck, k ∈ [n/2],

• first we find the set Dk,h of words that fit into the horizontal slot of Ck,

• for each word di ∈ Dk,h we find the set of words dj , different from di, that can fit
into the vertical slot of Ck, and such that di and dj agree on the shared cell of Ck;
let Dk,i,v be this set,

• let Pk = {(i, j) | di ∈ Dk,h and dj ∈ Dk,i,v} be the set of pairs that can be assigned
to Ck,
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• the number of pairs that fit in Ck is: np(Ck) =
∑

i:di∈Dk,h
|Dk,i,v|.

So we can recognize if we have this kind of instance by checking if np(Ck) ≤ 2 for all
k ∈ [n/2]. Furthermore, the above process is polynomial and can give us the pairs of
words that can be assigned to each cross. Now, we are going to present the proof of
Proposition 8.14.

Proof. First let D = {d1, . . . , dm} be the dictionary, Ck, k ∈ [n/2], be all the crosses of
the grid and Pk, k ∈ [n/2], the pairs of word indices that can be assigned to Ck. Observe
that if Pk = 0 for some k ∈ [n/2], then we know that we can not completely fill the grid.
Moreover, if Pk = 1, for some k ∈ [n/2], then there exists only one pair (i, j) for the
cross Ck so we can assign the only pair of words that fits into Ck and reduce the instance
by removing Ck from the grid, and the words from the dictionary. Therefore, we can
assume that Pk = 2 for all k ∈ [n/2].

From the sets Pk, k ∈ [n/2], we will construct an instance of 2-SAT that is satisfiable
if and only if we can completely fill the given grid without reusing the words of the
dictionary D. Before we continue the construction, let us mention that 2-SAT can be
solved in linear time [80].

We start by creating ∑k∈[n/2] |Pk| = n variables as follows; for each k ∈ [n/2] and
each (i, j) ∈ Pk we create the variable xk,i,j . Let X be the set of all the variables we
created. Now, we will construct a CNF formula ϕ such that each clause contains at most
two variables. First we add in ϕ n/2 clauses ck, k ∈ [n/2] as follows. For each cross Ck,
k ∈ [n/2], we add the clause ck = (xk,i,j ∨ xk,i′,j′) where (i, j) and (i′, j′) are in Pk.

After that, for all i ∈ [m] let Xi be the set of variables related to the word di, i.e.,
Xi := X ∩ {xk,i,j , xk,j,i | k ∈ [n/2] and dj ∈ D}. If |Xi| ≥ 2, then for any pair of
variables x, x′ ∈ Xi, x 6= x′, we add in ϕ a new clause (¬x ∨ ¬x′). That process creates∑

i∈[m]
(|Xi|

2
)

< mn2 additional clauses as |Xi| ≤ n. Therefore, the number of clauses in
ϕ is O(mn2).

It remains to prove that ϕ is satisfiable if and only if we can completely fill the
grid. Assume that ϕ is satisfiable and f : X → {T, F} is a satisfying assignment.
Then, we claim that for each k ∈ [n/2] there exists at least one variable xk,i,j such that
f(xk,i,j) = T . For k ∈ [n/2], we select one such a variable, xk,i,j , and we assign di

horizontally and dj vertically to the cross Ck.
Let us argue why there is always such a variable for each k ∈ [n/2]. By construction,

for each k ∈ [n/2] we have a clause ck that can be satisfied only if a variable xk,i,j , such
that (i, j) ∈ Pk, has the value T . So, we know that for each k ∈ [n/2] we have one such
a variable. Furthermore, since (i, j) ∈ Pk, the words di and dj fits to the horizontal and
vertical slots of the cross Ck respectively.

We need to prove that we have not assigned the same word to more than one crosses.
Assume that we have assigned a word di to two different crosses. Then, there exist two
variables x and x′ in Xi such that f(x) = f(x′) = T . This is a contradiction because for
each such pair of variables we have a clause (¬x ∨ ¬x′).

For the reverse direction we will show the following. If the grid is completely filled
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then the truth assignment f such that

f(xk,i,j) =
{

T, if we have assigned the pair (i, j) ∈ Pk to the cross Ck,

F, otherwise,

is a satisfying assignment for the formula ϕ. First, observe that for each k ∈ [n/2] the
clause ck is satisfied because in Ck we have assigned a pair (i, j) ∈ Pk (these are the
only pairs that can be assigned to Ck) so the variable xk,i,j that appears positively in ck

takes the value T by f . In order to complete the proof we need to show that at most
one of the variables in Xi is true. Observe that if two of them are true then we know
that we have two pairs of words containing di and they are assigned to a cross. This is
a contradiction because we can not reuse words.

If the shared cell of a cross is the first cell of the vertical slot, then the cross is called
T because the slots have the form of a capital T . The next proposition shows that under
some restrictions, the crossword problem can be solved efficiently if the grid is only made
of T ’s. We remark that the grid could have an unbounded number of different kinds of
T ’s.

Proposition 8.15. CP-Dec can be solved in polynomial time if the alphabet L has only
2 letters, l1 and l2, and the grid has the following properties: (i) it only consists of T ’s
and (ii) all the horizontal slots have length ℓh and all the vertical slots have length ℓv,
where ℓh 6= ℓv.

Proof. Starting from the dictionary D, we can create two disjoint sub-dictionaries Dh

and Dv containing the words that can fit into the horizontal slots and vertical slots,
respectively.

Now, let di, i ∈ [|Dh|] be the words in Dh and d′
i, i ∈ [|Dv|] be the words in Dv.

Furthermore, let m1 and m2 be the number of words in Dv that start with l1 and l2,
respectively. Finally, let us call Ti, for each i ∈ [n/2], the T ’s of the grid.

Observe that, for any completely filled grid, we know the minimum and the maximum
possible number of appearances of the symbol l1 in the shared cells. In particular, since
m2 words of Dv do not start with l1 we have at least w1 = max{0, n/2−m2} appearances
and since m1 words of Dv start with l1 we have at most w2 = min{n/2, m1} appearances.
So we need to decide if there exists a way to fill completely the horizontal slots of the
grid that forces w appearances of l1 in the shared cells for a w ∈ {w1, . . . , w2}.

Based on Dh and the T ’s we will construct an instance of the Exact Matching
problem. First, we create a complete balanced bipartite graph G = (V, U, E) where
V = {v1, . . . , v|Dh|} represents the words in Dh, vertices uj ∈ U where j ∈ [n/2] represent
the T ’s of the grid and vertices uj ∈ U such that j ∈ {n/2 + 1, . . . , |Dh|} are added so
that G is balanced.

It remains to assign weights to the edges. For each edge viuj ∈ E, if i ∈ [|Dh|],
j ∈ [n/2] and di contains symbol l1 in the position of the shared cell of the horizontal
slot of Tj , then viuj has weight 1, otherwise its weight is 0.
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Now it is not difficult to observe that G has a perfect matching of weight exactly w
if and only if we can fill all the horizontal slots of the grid with words of Dh such that
l1 appears exactly w times in the shared cells. Finally, we can decide if G has a perfect
matching of weight w, for any w ∈ {w1, . . . , w2}, in polynomial time by using Theorem 1
in [127].

Remark. The same proof works if instead of T ’s (where two slots intersect only in the
first position of the vertical slot), one has crosses such that any two slots that intersect
do so only at the same position of the vertical slot.

At first sight, the case covered by Proposition 8.15 looks restricted but it necessitates
to match three objects (1 horizontal word, 1 vertical word, and a cross) and 3D-matchings
are, in general, hard problems [94].

Proposition 8.16. CP-Dec can be solved in polynomial time if the instance has the
following properties: (i) the grid graph is a matching and (ii) the number of different
types of crosses3 is a constant.

Proof. First, we will prove that if we know the number of appearances of each letter in
the shared cells of each type of crosses, then we can find a way to fill the grid (if there
exists one) using the maximum matching problem.

Let t ∈ N be the number of different types of crosses and let L = {l1, . . . , lℓ} be the
alphabet. Furthermore, suppose that the given instance has a solution and that we are
given values ai,j , i ∈ [ℓ] and j ∈ [t] which indicate the number of appearances of the
letter li in the shared cell of type j crosses in this solution. In the end we will repeat
the algorithm for all combinations of such values, so we can assume that these values
are given to us in the input. We will therefore look for a solution that agrees with the
given values ai,j .

Now, we construct the following bipartite graph.

• For each pair (i, j) ∈ [ℓ]× [t] we create a set Vi,j = {vi,j,k, v′
i,j,k | k ∈ [ai,j ]} of 2ai,j

vertices. Furthermore, let V be the set ∪(i,j)∈[ℓ]×[t] Vi,j .

• For each word d ∈ D we create a vertex ud. Let U be the set of these vertices.

• For all d ∈ D and (i, j) ∈ [ℓ]× [t], if the word d fits in the horizontal slot of a cross
of type j and it forces the letter li in the shared cell of this slot, then we add all
the edges udvi,j,k where k ∈ [ai,j ].

• Finally, for all d ∈ D and (i, j) ∈ [ℓ]× [t], if the word d fits in the vertical slot of a
cross of type j and it forces the letter li in the shared cell of this slot, then we add
all the edges udv′

i,j,k where k ∈ [ai,j ].

3Two crosses are of the same type if they are identical: same number of horizontal cells, same number
of vertical cells, and same shared cell.
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Now, we claim that this graph has a matching that covers all the vertices in V if and
only if we can completely fill the grid in a way that respects the given appearances of
the letters. That is, for each letter i ∈ [ℓ] and each type j ∈ [t] there are exactly ai,j

crosses of type j that contain i in the shared cell in the solution.
In one direction, assume that we have an assignment of words in the grid that respects

the given appearances of the letters. For each (i, j) ∈ [ℓ]× [t] let Di,j be the set of words
that have been assigned to the crosses of type j and these words force the letter li in
the shared cell. Observe that Di,j has size 2ai,j as it respects the appearances of the
letters and for each d ∈ Di,j the vertex ud is adjacent to vi,j,k, for all k ∈ [ai,j ], if d has
been assigned to a horizontal slot or is adjacent to v′

i,j,k, for all k ∈ [ai,j ] if d has been
assigned to a vertical slot.

Now we are going to create a matching of the graph. Starting from an empty set S,
for each (i, j) ∈ [ℓ]×[t] and each word d in Di,j , if d has been assigned to a horizontal slot,
then we add in S an edge udvi,j,k for some k in [ai,j ] that covers an uncovered vertex
vi,j,k; otherwise we add an edge udv′

i,j,k for some k in [ai,j ] that covers an uncovered
vertex v′

i,j,k (we know that there are enough vertices by the previous observations).
Observe that S is a matching because each time we add an edge incident to two

uncovered vertices. Furthermore, because the size of Di,j is 2ai,j and we have exactly
ai,j horizontal and ai,j vertical slots we know that we will cover all the vi,j,k with the
corresponding vertices of the horizontal slots and all the v′

i,j,k with the corresponding
vertices of the vertical slots. Hence, S is a matching that covers all the vertices of V .

For the reverse direction, assume that S is a matching that covers all the vertices of
V . Because V is an independent set we know that for all v ∈ V there exists an edge
udv ∈ S for some word d ∈ D and ud ∈ U . We will assign words to the slots of the grid
as follows. For each edge udvi,j,k we assign the word d to an empty horizontal slot of a
cross of type j. Because all vi,j,k, k ∈ [ai,j ], are adjacent to vertices ud such that d fits
in the horizontal slots of crosses of type j and forcing the letter li in the shared cells, we
have filled all the horizontal slots in a way that respects the given appearances of the
letters.

Now, we are going to fill the vertical slots. For each edge udv′
i,j,k we assign the word

d to an empty vertical slot of a cross of type j where the shared cell has the letter li.
Because for a given pair (i, j) ∈ [ℓ] × [t] we have ai,j vertices vi,j,k and v′

i,j,k we know
that we have forced exactly ai,j times the letter li in the shared cell of crosses of type j,
so we have the exact number of vertical slots we want.

Finally, because the total number of vertices in V is the same as the number of slots
in the grid, we know that we have completely filled the grid.

Now, note that we can decide in polynomial time if there exists such a matching (by
finding a maximum matching).

In order to complete the proof we need to show that the different guesses for the
number of appearances ai,j , (i, j) ∈ [ℓ] × [t] is polynomially bounded by the input size.
Fix a type j and suppose it has νj crosses. Enumerating all the possible ai,j ’s is equivalent
to choosing ℓ− 1 positions in a row vector of size νj + ℓ− 1 (the chosen cells “separate”
the ai,j ’s). Then, there are

(νj+ℓ−1
ℓ−1

)
choices, which is upper bounded by

(n+ℓ−1
ℓ−1

)
.
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Finally, because we have t types of crosses, the total number of guesses is O(ntℓ)
which is polynomial as t and ℓ are constant.

So far we have assumed that the size of the alphabet is constant. In contrast, the
next two propositions hold without this hypothesis. Therefore, there are independent of
Proposition 8.16.

Proposition 8.17. CP-Dec can be solved in polynomial time when the grid consists of
identical crosses. This holds even if the size of the alphabet is not constant.

Proof. Let D be the dictionary of size m and let n/2 be the number of crosses in the
grid. In order to answer the question we will create a graph G on m vertices such that
G has a matching of size at least n/2 if and only if we can completely fill the grid. We
construct G = (V, E) as follows: V has exactly one vertex vi for each word di ∈ D and
E contains the edge vivj if and only if at least one of the pairs of words (i, j) or (j, i)
fits in a cross.

Now, observe that an edge of G gives us a pair of words that can fit into a cross.
Therefore, each matching S represents pairs of words that (all of them) fit in crosses.
Because the words are represented by vertices in the graph, the pairs we take from a
matching are independent as each vertex is covered at most once by S. Finally, if the
matching has at least n/2 edges then we know that we have enough pairs to fill the grid
completely.

Conversely, if we can cover the grid completely, then there exist n/2 distinct pairs
of words that fit in a cross. For each of these pairs we have an edge in G. Furthermore,
the set of these edges is a matching as we have not used the same word twice so there
are no two edges incident to the same vertex. Hence, G has a matching of size at least
n/2.

Because we can find a maximum matching of a graph in polynomial time we know
that we can decide if we can fill the whole grid in the same time.

Proposition 8.18. CP-Dec is polynomial time reducible to 0-1 Exact Matching if the
grid has the following properties: (i) it is a matching and (ii) the number of different
types of crosses is a constant. This holds even if the size of the alphabet is not constant.

Proof. Let t ∈ N be the number of different types of crosses. Let ak, for k ∈ [t], be the
number of crosses of type t in the grid. We assume w.l.o.g. that the number of words
|D| = m is even. We first create a multi-graph where parallel edges are allowed, and we
assign weights to the edges from the set {0, m0, . . . , mt−1} as follows:

• Let G = (V, E) be a complete graph with m vertices and give weight 0 to each
edge.

• For each k ∈ [t], add a set of edges Ek such that vivj ∈ Ek if one of the pairs of
words (i, j) or (j, i) fits in a cross of type k ∈ [t]. Give weight mk−1 to all the edges
in Ek.
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In order to distinguish the parallel edges, denote by (vivj)k the edge vivj ∈ Ek. Now, we
claim that this graph has a perfect matching of weight W =

∑
k∈[t] akmk−1 if and only

if we can fill the grid completely.
Assume that the grid is filled and construct a perfect matching as follows. Start from

an empty set S. For each cross, add to S the edge (vivj)k where (i, j) is the pair of words
allocated to the cross and k is the type of the cross. Since reusing words is not allowed,
we know that S is a matching. Furthermore, because each cross of type k has an edge
of Ek, we get that S has weight W . Finally, S can be extended to a perfect matching of
the same weight because all the vertices have edges of weight 0 between them.

Conversely, assume that the graph has a perfect matching S of weight W . Observe
that any perfect matching has exactly m/2 edges. Therefore we know that we have at
most m/2 edges from each set Ek, for any k ∈ [t]. Now we are going to show that we need
exactly ak edges from each set Ek. In particular, we claim that for any k ∈ {1, . . . , t}
we have that |S ∩ Ek| = ak. We prove this by induction.

Base Case (t): Assume that there exists a perfect matching S with weight W such
that |S ∩ Et| = bt 6= at. Assume that bt < at. Since 0 ≤ bt, we get that 1 ≤ at. Even
if we use a maximum number of edges of maximum weight (i.e., m/2 edges of weight
mt−2), we cannot compensate, i.e., S cannot have weight W because mt−2 ·m/2 < mt−1.
Now, we have to check the case bt > at. Since S has weight at least (at + 1)mt−1, we
have W ≥ (at + 1)mt−1. That gives us:∑

k∈[t]
akmk−1 ≥ (at + 1)mt−1 ⇒

∑
k∈[t−1]

akmk−1 ≥ mt−1 ⇒ mt−2 ∑
k∈[t−1]

ak ≥ mt−1

which is a contradiction since ∑k∈[t−1] ak ≤ m/2. Therefore, for any perfect matching
of weight W it must be |S ∩ Et| = at.

Induction Hypothesis ({k, k + 1, . . . , t}, k > 1): We assume that, for a given
k > 1, |S ∩ Ei| = ai holds for all i ∈ {k, k + 1, . . . , t}.

Induction Step (k − 1): For every l ∈ {k, . . . , t} we know that |S ∩ El| = al.
Therefore, the set S′ = S \

∪t
l=k(S ∩ El) has weight exactly ∑k−1

l=1 alm
l−1.

Assume that k − 1 = 1; then ∑k−1
l=1 alm

l−1 = a1. Since S′ consists only of edges in
E1 ∪ E, the edges in E1 have weight 1 and the edges in E have weight 0, so we can
conclude that S′ contains exactly a1 edges from E1.

Now, we consider the case k − 1 > 1. Similarly to the base case, assume that
|S′ ∩ Ek−1| = bk−1 and bk−1 < ak−1. In this case, even if we use a maximum number
of edges (i.e., m/2) of maximum weight (i.e., mk−2), we cannot compensate, i.e., mk−2 ·
m/2 < mk−1. Now we prove that, assuming bk−1 > ak−1 leads to a contradiction.
Indeed, in this case S′ has weight at least (ak−1 + 1)mk−2 which implies that:∑

l∈[k−1]
alm

l−1 ≥ (ak−1 + 1)mk−2 ⇒
∑

l∈[k−2]
alm

l−1 ≥ mk−2 ⇒ mk−3 ∑
l∈[k−2]

ak ≥ mt−1

The last inequality contradicts the fact that ∑l∈[k−2] ak ≤
∑

l∈[t] at ≤ m/2. Hence,
bk−1 = ak−1.
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Finally, observe that for any k ∈ [t] each edge in S ∩Ek gives us a pair of words that
fits into a cross of type k. Moreover, because S is a matching and |S ∩ Ek| = ak for all
k ∈ [t], we can completely fill the grid.

Now, starting from the graph we created in the first reduction, we will create an
instance of 0-1 Exact Matching, using the same technique as Papadimitriou and Yan-
nakakis in their proof of Proposition 1 of [167]. We build the new graph G′ by replacing
each edge (vivj)k, k ∈ [t], with a path, pi,j,k = 〈vi, uk

i,j,1, . . . uk
i,j,2mk−1 , vj〉. Assign weight

0 to the edges uk
i,j,2mk−1vj and uk

i,j,lu
k
i,j,l+1, where l < 2mk−1 is odd. All the other edges

of the path have weight 1.
Now, let Ei,j,k be the edges of a path pi,j,k. Observe that for any perfect matching

M ⊆ E′ of G′ and any path pi,j,k, the set of edges M ∩ Ei,j,k:

• either, contains edges of total weight 0 and it does not cover any endpoint of pi,j,k,

• or, it contains edges of total weight mk−1 and it covers both vi and vj .

Based on this observation we can transform any perfect matching of G into a perfect
matching of G′ with the same weight and vice versa.

Finally, since G′ has O(mt) vertices, the starting instance of CP-Dec is polynomial
time reducible to 0-1 Exact Matching.

We can also use the technique of Papadimitriou and Yannakakis [167] in the proof
of Proposition 8.15, giving us Corollary 8.19 which more general than Proposition 8.15.

Corollary 8.19. CP-Dec with alphabet of constant size is polynomial time reducible to
0-1 Exact Matching if the grid has the following properties: (i) it is a matching, (ii) all
shared cells are at the same position of the vertical slots, (iii) all vertical slots have the
same length lv and (iv) there is no horizontal slot of length lv.

The details are omitted but observe that we don’t need to construct a complete
bipartite graph and we can allow weights up to mk, where m = O(|D|) and k = O(|L|),
before we apply the aforementioned technique.

8.7 Conclusion
We studied the parameterized complexity of some crossword puzzles under several dif-
ferent parameters and we gave some positive results followed by proofs which show that
our algorithms are essentially optimal. Based on our results the most natural questions
that arise are:

• What is the complexity of CP-Dec when the grid graph is a matching and the
alphabet has size 2?

• Can Theorem 8.11 be strengthened by starting from ETH instead of randomized
ETH?
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• Can we beat the
(1

2 + O( 1
n)
)
-approximation ratio of CP-Opt if we restrict our

instances?

• Can Theorem 2.1 be strengthened by dropping the UGC?

Finally, as a future work, we could consider a variation of the crossword puzzle
problems where each word can be used a given number of times. This would be an
intermediate case between word reuse and no word reuse.
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Chapter 9

Conclusions

In this manuscript we have considered several optimization problems and studied many
different techniques that can be applied to them. We were mainly interested in variants
of well-known problems; four of them are problems defined by graphs. In particular, we
studied Upper r-Tolerant Edge Cover, the Upper Feedback Vertex Set, the
Digraph Coloring, and the Maximum Locally Irregular Induced Subgraph
problem. For these problems, we studied their complexity in the general case and for
special cases as well; some preliminary results were already known but we completed the
picture. In addition we studied the approximability of these problems. We presented
some approximation algorithms and some hardness of approximation results. Finally,
we studied their parameterized complexity. We decided which parameter to use based
on the nature of the problem. Furthermore, we proved the optimality of the presented
algorithms by giving lower bounds based on standard assumptions such as ETH.

The other two problems are the Subset-Sums Ratio (SSR) problem and a crossword
completion problem. Both problems were known to be NP-hard. We first investigated
the relationship between SSR and the well-known Subset Sum problem. This results
in a new FPTAS for SSR that uses existing algorithms for the Subset Sum problem. In
addition, we generalized other existing techniques in order to present a framework that
gives FPTASs for variations of SSR when certain conditions are met. For the second
problem our main approach was to consider instances of the puzzle where the grid has
certain properties. Moreover, we studied the approximability of the problem, gave an
approximation algorithm for the problem with ratio slightly better than 1

2 , and showed
that we should not expect to improve this ratio.

Within the results presented in this document, we would like to highlight some of
them and explain why they deserve to be highlighted. The first of them is the fine-grained
reduction, presented in Chapter 6, form of 3-SAT to Digraph Coloring which, ac-
cording to ETH, gives us a lower bound on the execution time of 2-Digraph Coloring
when parameterized by treedepth is rather surprising. As second we want to mention,
the r-approximation algorithm in Chapter 5 for the Max Min FVS problem which
runs in nO(n/r3/2) along with the proof that this time-approximation trade-off is essen-
tially tight under the ETH. Moreover, the relationship we established between SSR and

197
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Subset Sum in Chapter 3 appears to be important for SSR, as any improvement for
Subset Sum will lead to improved FPTAS for SSR. Finally we want to mention, the
reduction presented in Section 8 which gives us a bound on the approximation ratio of
the crossword puzzle. This reduction is under the Unique Game Conjecture, which is
used for the hardness of approximation reductions.

Future work for each problem has been given in the end of the corresponding chapters,
however, we would like to mention again some of the most interesting questions and add
a few more.

Regarding the SSR, it is would be interesting to investigate weather we can give a
reduction to Partition problem instead of Subset Sum. Second, it would be interesting
to study the constraints that we can apply to SSR and guarantee the existence of pseudo
polynomial-time algorithms. This could give us a more precise idea of which problems
in F -SSR admit FPTASs. Finally, there are no existing lower bound on the running
time of exact and approximate solutions for SSR. Such lower bounds could also give us
a measure of how far from optimal our algorithms are.

For Upper r-EC and Max-Min FVS, there are to few results regarding their pa-
rameterized complexity. In particular, the polynomial kernel we presented in Chapter 5
for Max-Min FVS shows that the problem belongs in FPT when parameterized by
the size of the solution as it can be translated to an exhaustive algorithm that runs in
2k3

nO(1). However, this performance is rather disappointing. It would be interesting
to see whether we can develop an algorithm with better asymptotic performance. A
natural question for the Upper r-EC is whether the problem belongs to FPT when
parameterized by treewidth since we know that, when r = 1, this holds. Similarly to
these two problems, there are many others that could be studied under the Max-Min
(Min-Max) framework. Regarding this framework, a much more general question that
we could address is whether there is any problem such that the Max-Min (or Min-Max)
version of the problem is easier than the “original” version.

For k-Digraph Coloring it would be nice to settle the degree for which the problem
is NP-hard for graph with directed feedback vertex set of size k. In particular, we have
shown that the problem is FPT when the given graph has DFVS of size k and maximum
degree 4k − 3 but becomes NP-hard when the given graph has DFVS of size k and
maximum degree 4k − 1. However, the case where the DFVS is of size k and maximum
degree is 4k − 2 remains open. Furthermore, it would be interesting to consider graphs
with larger values of the directed feedback vertex set and try to map out how the
tractability threshold for the degree evolves from 4k −Θ(1) to 2k + Θ(1).

The problem of identifying the largest locally irregular induced subgraph of a given
graph was studied for the first time in this document. Some interesting directions for
future investigation are whether the problem of calculating I(G) remains NP-hard for
other, restricted families of graphs such as chordal graphs and split graphs. Furthermore,
it is worth investigating whether calculating I(G) could be done in FPT time (parame-
terised by the size of the solution or other parameter) in the case where G is a planar
graph. Additionally, there is a huge variety of problems related to the irregularity of a
graph, which have not been sufficiently studied from an algorithmic point of view.
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For the problem of filling crosswords, the most intriguing questions are whether we
can give strengthen our inapproximability result by dropping the UGC and to study
complexity of the problem when, the grid graph is a matching and the alphabet contains
only two letters. Moreover, it would be interesting to consider other variants of the
problem, such as an intermediate case where repetition of words is allowed at most k
times, for a given k, or crosswords on three-dimensional grids.

Finally, we want to present some more general directions. The first is to study the
parameterized complexity of same problems under other parameters. In this document
we have give more attention to the size of the solution and the treewidth of a graph
and less attention to parameters like feedback vertex set and vertex cover. However,
there are many other structural parameters that can be studied. Second, since most of
the problems we studied are difficult both in terms of approximation and parameteri-
zation, we may need to find other ways to deal with them. In such cases we can try
to develop parameterized approximation algorithms with the ultimate goal of obtaining
fpt-algorithms that return approximate solutions.



200 CHAPTER 9. CONCLUSIONS



Bibliography

[1] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. Seth-based
lower bounds for subset sum and bicriteria path. In SODA 2019, pages 41–57.
SIAM, 2019.

[2] Hassan AbouEisha, Shahid Hussain, Vadim V. Lozin, Jérôme Monnot, Bernard
Ries, and Viktor Zamaraev. Upper domination: Towards a dichotomy through
boundary properties. Algorithmica, 80(10):2799–2817, 2018.

[3] Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy
coloring & friends, half-graphs, bicliques. In STACS, volume 154 of LIPIcs, pages
58:1–58:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[4] Pierre Aboulker, Nathann Cohen, Frédéric Havet, William Lochet, Phablo F. S.
Moura, and Stéphan Thomassé. Subdivisions in digraphs of large out-degree or
large dichromatic number. The Electronic Journal of Combinatorics, 26(3):P3.19,
2019.

[5] Agostinho Agra, Geir Dahl, Torkel Andreas Haufmann, and Sofia J. Pinheiro. The
k-regular induced subgraph problem. Discretete Applied Mathematics, 222:14–30,
2017.

[6] Yousef Alavi, Alfred Boals, Gary Chartrand, Ortrud Oellermann, and Paul Erdős.
K-path irregular graphs. Congressus Numerantium, 65, 01 1988.

[7] Yousef Alavi, Gary Chartrand, Fan R. K. Chung, Paul Erdös, Ronald L. Graham,
and Ortrud R. Oellermann. Highly irregular graphs. Journal of Graph Theory,
11(2):235–249, 1987.

[8] Akhbar Ali, Gary Chartrand, and Ping Zhang. Irregularity in Graphs. Springer
briefs in mathematics. Springer, 2021.

[9] Anbulagan and Adi Botea. Crossword puzzles as a constraint problem. In Princi-
ples and Practice of Constraint Programming, 14th International Conference, CP
2008. Proceedings, pages 550–554, 2008.

[10] Stephan Dominique Andres and Winfried Hochstättler. Perfect digraphs. Journal
of Graph Theory, 79(1):21–29, 2015.

201



202 BIBLIOGRAPHY

[11] Antonis Antonopoulos, Aris Pagourtzis, Stavros Petsalakis, and Manolis Vasilakis.
Faster algorithms for k-Subset Sum and variations. In Frontiers of Algorithmics
- International Joint Conference, IJTCS-FAW 2021, Beijing, China, August 16-
19, 2021, Proceedings, volume 12874 of Lecture Notes in Computer Science, pages
37–52. Springer, 2021.

[12] Esther M. Arkin, Michael A. Bender, Joseph S. B. Mitchell, and Steven Skiena.
The lazy bureaucrat scheduling problem. Inf. Comput., 184(1):129–146, 2003.

[13] S. Arumugam, S. T. Hedetniemi, S. M. Hedetniemi, L. Sathikala, and S. Sudha.
The covering chain of a graph. Util. Math, 98:183–196, 2015.

[14] Yuichi Asahiro, Hiroshi Eto, Takehiro Ito, and Eiji Miyano. Complexity of finding
maximum regular induced subgraphs with prescribed degree. Theoretical Computer
Science, 550:21–35, 2014.

[15] Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Maria
Kyropoulou. An improved approximation bound for spanning star forest and color
saving. In Rastislav Královic and Damian Niwinski, editors, Proc. of 34th MFCS,
volume 5734 of LNCS, pages 90–101. Springer, 2009.

[16] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in
the absence of concentration. In 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Ger-
many, volume 30 of LIPIcs, pages 48–61. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015.

[17] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense subset
sum may be the hardest. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs,
pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[18] Sandip Banerjee and Sujoy Bhore. Algorithm and hardness results on liar’s dom-
inating set and k-tuple dominating set. In Charles J. Colbourn, Roberto Grossi,
and Nadia Pisanti, editors, Proc. of IWOCA 2019, volume 11638 of Lecture Notes
in Computer Science, pages 48–60. Springer, 2019.

[19] Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai,
and Jesper Nederlof. New tools and connections for exponential-time approxima-
tion. Algorithmica, 81(10):3993–4009, 2019.

[20] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for
hitting connected minors on bounded treewidth graphs: the chair and the banner
draw the boundary. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 951–970. SIAM, 2020.



BIBLIOGRAPHY 203

[21] Olivier Baudon, Julien Bensmail, Jakub Przybyło, and Mariusz Wozniak. On
decomposing regular graphs into locally irregular subgraphs. European Journal of
Combinatorics, 49:90–104, 2015.

[22] Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen,
Kim-Manuel Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Van-
gelis Th. Paschos. The many facets of upper domination. Theoretical Computer
Science, 717:2–25, 2018.

[23] Cristina Bazgan, Miklos Santha, and Zsolt Tuza. Efficient approximation al-
gorithms for the SUBSET-SUMS EQUALITY problem. J. Comput. Syst. Sci.,
64(2):160–170, 2002.

[24] Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi.
Grundy Distinguishes Treewidth from Pathwidth. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algo-
rithms (ESA 2020), volume 173 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1–14:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[25] Rémy Belmonte and Ignasi Sau. On the complexity of finding large odd induced
subgraphs and odd colorings. Algorithmica, 83(8):2351–2373, 2021.

[26] Julien Bensmail, Ararat Harutyunyan, and Ngoc-Khang Le. List coloring digraphs.
Journal of Graph Theory, 87(4):492–508, 2018.

[27] Julien Bensmail, Martin Merker, and Carsten Thomassen. Decomposing graphs
into a constant number of locally irregular subgraphs. European Journal of Com-
binatorics, 60:124–134, 2017.

[28] Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-joung Kwon. Close
relatives of feedback vertex set without single-exponential algorithms parameter-
ized by treewidth. CoRR, abs/2007.14179, 2020.

[29] Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of
short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational
Complexity, (049), 2003.

[30] Alan A. Bertossi. Dominating sets for split and bipartite graphs. Inf. Process.
Lett., 19(1):37–40, 1984.

[31] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Ob-
drzálek. The dag-width of directed graphs. J. Comb. Theory, Ser. B, 102(4):900–
923, 2012.

[32] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.



204 BIBLIOGRAPHY

[33] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1):1–45, 1998.

[34] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deter-
ministic single exponential time algorithms for connectivity problems parameter-
ized by treewidth. Inf. Comput., 243:86–111, 2015.

[35] Drago Bokal, Gasper Fijavz, Martin Juvan, P. Mark Kayll, and Bojan Mohar. The
circular chromatic number of a digraph. Journal of Graph Theory, 46(3):227–240,
2004.

[36] Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz
Socala, and Marcin Wrochna. On directed feedback vertex set parameterized by
treewidth. In Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors,
Graph-Theoretic Concepts in Computer Science - 44th International Workshop,
WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings, volume 11159 of
Lecture Notes in Computer Science, pages 65–78. Springer, 2018.

[37] Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized
feedback vertex set problems on bounded-treewidth graphs: Chordality is the key
to single-exponential parameterized algorithms. Algorithmica, 81(10):3890–3935,
2019.

[38] Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation
trade-offs for inapproximable problems. Journal of Computer and System Sciences,
92:171 – 180, 2018.

[39] Kellogg S. Booth and J. Howard Johnson. Dominating sets in chordal graphs.
SIAM J. Comput., 11(1):191–199, 1982.

[40] Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min
vertex cover problem. Discrete Applied Mathematics, 196:62–71, 2015.

[41] Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approxima-
tion of min coloring by moderately exponential algorithms. Inf. Process. Lett.,
109(16):950–954, 2009.

[42] Arman Boyaci and Jérôme Monnot. Weighted upper domination number. Electron.
Notes Discret. Math., 62:171–176, 2017.

[43] Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pages 1073–1084, Philadelphia, PA, January 2017. SIAM.

[44] Karl Bringmann and Vasileios Nakos. Top-k-convolution and the quest for near-
linear output-sensitive subset sum. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, pages 982–995, New
York, NY, USA, 2020. ACM.



BIBLIOGRAPHY 205

[45] Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating
subset sum and partition. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 1797–1815. SIAM, 2021.

[46] Leizhen Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58(4):171–176, 1996.

[47] Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Indepen-
dent set, induced matching, and pricing: Connections and tight (subexponential
time) approximation hardnesses. In FOCS, pages 370–379. IEEE Computer Soci-
ety, 2013.

[48] Gerard Jennhwa Chang, Paul Dorbec, Hye Kyung Kim, André Raspaud, Haichao
Wang, and Weiliang Zhao. Upper k-tuple domination in graphs. Discrete Mathe-
matics & Theoretical Computer Science, 14(2):285–292, 2012.

[49] Gary Chartrand, Paul Erdös, and Ortrud Oellermann. How to define an irregular
graph. The College Mathematics Journal, 19, 01 1988.

[50] Gary Chartrand, Michael Jacobon, Jenö Lehel, Ortrud Oellermann, Sergio Ruiz,
and Farrokh Saba. Irregular networks. Congressus Numerantium, 64, 01 1986.

[51] Mustapha Chellali, Odile Favaron, Adriana Hansberg, and Lutz Volkmann. k-
domination and k-independence in graphs: A survey. Graphs and Combinatorics,
28(1):1–55, 2012.

[52] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A
fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM,
55(5):21:1–21:19, 2008.

[53] Ning Chen, Roee Engelberg, C. Thach Nguyen, Prasad Raghavendra, Atri Rudra,
and Gyanit Singh. Improved approximation algorithms for the spanning star forest
problem. Algorithmica, 65(3):498–516, 2013.

[54] Xujin Chen, Xiaodong Hu, and Wenan Zang. A min-max theorem on tournaments.
SIAM J. Comput., 37(3):923–937, 2007.

[55] Grant A. Cheston, Gerd Fricke, Stephen T. Hedetniemi, and David Pokrass Jacobs.
On the computational complexity of upper fractional domination. Discrete Applied
Mathematics, 27(3):195–207, 1990.

[56] Miroslav Chlebík and Janka Chlebíková. Complexity of approximating bounded
variants of optimization problems. Theor. Comput. Sci., 354(3):320–338, 2006.

[57] Mark Cieliebak and Stephan J. Eidenbenz. Measurement errors make the par-
tial digest problem np-hard. In LATIN 2004: Theoretical Informatics, 6th Latin
American Symposium, volume 2976 of Lecture Notes in Computer Science, pages
379–390, Berlin, Heidelberg, 2004. Springer.



206 BIBLIOGRAPHY

[58] Mark Cieliebak, Stephan J. Eidenbenz, and Aris Pagourtzis. Composing equipo-
tent teams. In Fundamentals of Computation Theory, 14th International Sym-
posium, FCT 2003, volume 2751 of Lecture Notes in Computer Science, pages
98–108, Berlin, Heidelberg, 2003. Springer.

[59] Mark Cieliebak, Stephan J. Eidenbenz, Aris Pagourtzis, and Konrad Schlude. On
the complexity of variations of equal sum subsets. Nord. J. Comput., 14(3):151–
172, 2008.

[60] Mark Cieliebak, Stephan J. Eidenbenz, and Paolo Penna. Noisy data make the
partial digest problem NP-hard. In Algorithms in Bioinformatics, Third Interna-
tional Workshop, WABI 2003, volume 2812 of Lecture Notes in Computer Science,
pages 111–123, Berlin, Heidelberg, 2003. Springer.

[61] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971,
Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[62] Derek G. Corneil and J. M. Keil. A dynamic programming approach to the dom-
inating set problem on k-trees. SIAM Journal on Algebraic Discrete Methods,
8(4):535–543, 1987.

[63] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory Comput. Syst.,
33(2):125–150, 2000.

[64] Edward K. Crossman and Sharyn M. Crossman. The crossword puzzle as a teaching
tool. Teaching of Psychology, 10(2):98–99, 1983.

[65] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algo-
rithms. Springer International Publishing, 2015.

[66] Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time approxi-
mation of weighted set cover. Inf. Process. Lett., 109(16):957–961, 2009.

[67] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On
problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–
14:25, 2019.

[68] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M.
van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems param-
eterized by treewidth in single exponential time. In Rafail Ostrovsky, editor, IEEE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 150–159. IEEE Computer Society,
2011.



BIBLIOGRAPHY 207

[69] Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theor.
Comput. Sci., 411(40-42):3701–3713, 2010.

[70] Peter Damaschke, Haiko Müller, and Dieter Kratsch. Domination in convex and
chordal bipartite graphs. Inf. Process. Lett., 36(5):231–236, 1990.

[71] Frank K. H. A. Dehne, Michael R. Fellows, Henning Fernau, Elena Prieto-
Rodriguez, and Frances A. Rosamond. NONBLOCKER: parameterized algorith-
mics for minimum dominating set. In Proc. of the 32nd SOFSEM, volume 3831 of
LNCS, pages 237–245. Springer, 2006.

[72] Marc Demange. A note on the approximation of a minimum-weight maximal
independent set. Computational Optimization and Applications, 14(1):157–169,
1999.

[73] Marc Demange, Tinaz Ekim, and Cerasela Tanasescu. Hardness and approxima-
tion of minimum maximal matchings. Int. J. Comput. Math., 91(8):1635–1654,
2014.

[74] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and
completeness. pages 191–225. Cambridge University Press, 1992.

[75] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

[76] Pranjal Dutta and Mahesh Sreekumar Rajasree. Algebraic algorithms for variants
of subset sum. In Algorithms and Discrete Applied Mathematics - 8th International
Conference, CALDAM 2022, volume 13179 of Lecture Notes in Computer Science,
pages 237–251. Springer, 2022.

[77] Jakob Engel, Markus Holzer, Oliver Ruepp, and Frank Sehnke. On computer inte-
grated rationalized crossword puzzle manufacturing. In Fun with Algorithms - 6th
International Conference, FUN 2012, Venice, Italy, June 4-6, 2012. Proceedings,
pages 131–141, 2012.

[78] Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Approximating
MAX SAT by moderately exponential and parameterized algorithms. Theor. Com-
put. Sci., 560:147–157, 2014.

[79] Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, and Yusuke Kobayashi. Parame-
terized Algorithms for Maximum Cut with Connectivity Constraints. In Bart M. P.
Jansen and Jan Arne Telle, editors, 14th International Symposium on Parameter-
ized and Exact Computation (IPEC 2019), volume 148 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 13:1–13:15, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[80] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput., 5(4):691–703, 1976.



208 BIBLIOGRAPHY

[81] M. Farber. Domination, independent domination and duality in strongly chordal
graphs. Discrete Appl. Math., 7:115–130, 1984.

[82] Tomás Feder, Pavol Hell, and Carlos S. Subi. Complexity of acyclic colorings of
graphs and digraphs with degree and girth constraints. CoRR, abs/1907.00061,
2019.

[83] Henning Fernau and David F. Manlove. Vertex and edge covers with clustering
properties: Complexity and algorithms. Journal of Discrete Algorithms, 7:149–167,
2009.

[84] Henning Fernau and Daniel Meister. Digraphs of bounded elimination width.
Discret. Appl. Math., 168:78–87, 2014.

[85] J. F. Fink and M. S. Jacobson. Graph theory with applications to algorithms and
computer science. chapter n-Domination in Graphs, pages 283–300. John Wiley &
Sons, Inc., New York, NY, USA, 1985.

[86] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. In-
tractability of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956,
2010.

[87] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav
Zehavi. Clique-width III: hamiltonian cycle and the odd case of graph coloring.
ACM Trans. Algorithms, 15(1):9:1–9:27, 2019.

[88] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-exponential ap-
proximation schemes for csps: From dense to almost sparse. In STACS, volume 47
of LIPIcs, pages 37:1–37:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

[89] Alan M. Frieze, Ronald J. Gould, Michal Karonski, and Florian Pfender. On graph
irregularity strength. Journal of Graph Theory, 41(2):120–137, 2002.

[90] Fabio Furini, Ivana Ljubic, and Markus Sinnl. An effective dynamic programming
algorithm for the minimum-cost maximal knapsack packing problem. European
Journal of Operational Research, 262(2):438–448, 2017.

[91] Andrei Gagarin and Vadim E. Zverovich. A generalised upper bound for the k-
tuple domination number. Discrete Mathematics, 308(5-6):880–885, 2008.

[92] Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algo-
rithms for modular-width. In IPEC, volume 8246 of Lecture Notes in Computer
Science, pages 163–176. Springer, 2013.

[93] Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Obdrzálek, Peter
Rossmanith, and Somnath Sikdar. Are there any good digraph width measures?
J. Comb. Theory, Ser. B, 116:250–286, 2016.



BIBLIOGRAPHY 209

[94] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

[95] George Gens and Eugene Levner. Computational complexity of approximation
algorithms for combinatorial problems. In Mathematical Foundations of Computer
Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia, Septem-
ber 3-7, 1979, volume 74 of Lecture Notes in Computer Science, pages 292–300.
Springer, 1979.

[96] Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and Mark C. Torrance.
Search lessons learned from crossword puzzles. In Proceedings of the 8th National
Conference on Artificial Intelligence. Boston, Massachusetts, USA, July 29 - Au-
gust 3, 1990, 2 Volumes, pages 210–215, 1990.

[97] Laurent Gourvès, Jérôme Monnot, and Aris Pagourtzis. The lazy bureaucrat prob-
lem with common arrivals and deadlines: Approximation and mechanism design. In
FCT, volume 8070 of Lecture Notes in Computer Science, pages 171–182. Springer,
2013.

[98] Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane. Subset sum problems with
digraph constraints. J. Comb. Optim., 36(3):937–964, 2018.

[99] Frank Gurski, Dominique Komander, and Carolin Rehs. Acyclic coloring of special
digraphs. CoRR, abs/2006.13911, 2020.

[100] Tesshu Hanaka, Hans L. Bodlaender, Tom C. van der Zanden, and Hirotaka
Ono. On the maximum weight minimal separator. Theoretical Computer Science,
796:294 – 308, 2019.

[101] Frank Harary and Teresa W. Haynes. Double domination in graphs. Ars Comb.,
55, 2000.

[102] Ararat Harutyunyan. Brooks-type results for coloring of digraphs. PhD Thesis,
Simon Fraser University, 2011.

[103] Ararat Harutyunyan, Mehdi Khosravian Ghadikolaei, Nikolaos Melissinos, Jérôme
Monnot, and Aris Pagourtzis. On the complexity of the upper r-tolerant edge
cover problem. In Luís Soares Barbosa and Mohammad Ali Abam, editors, Topics
in Theoretical Computer Science - Third IFIP WG 1.8 International Conference,
TTCS 2020, Tehran, Iran, July 1-2, 2020, Proceedings, volume 12281 of Lecture
Notes in Computer Science, pages 32–47. Springer, 2020.

[104] Ararat Harutyunyan, Mark Kayll, Bojan Mohar, and Liam Rafferty. Uniquely
d-colorable digraphs with large girth. Canad. J. Math., 64(6):1310–1328, 2012.

[105] Ararat Harutyunyan, Tien-Nam Le, Stéphan Thomassé, and Hehui Wu. Coloring
tournaments: From local to global. J. Comb. Theory, Ser. B, 138:166–171, 2019.



210 BIBLIOGRAPHY

[106] Johan Håstad. Clique is hard to approximate within n1−ϵ. Acta Math, 182:105–142,
1999.

[107] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. Fundamentals of
domination in graphs, volume 208 of Pure and applied mathematics. Dekker, 1998.

[108] Michael A. Henning and Dinabandhu Pradhan. Algorithmic aspects of upper
paired-domination in graphs. Theor. Comput. Sci., 804:98–114, 2020.

[109] Michael A. Henning and Anders Yeo. On upper transversals in 3-uniform hyper-
graphs. Electron. J. Comb., 25(4):P4.27, 2018.

[110] Michael A. Henning and Anders Yeo. Upper transversals in hypergraphs. Eur. J.
Comb., 78:1–12, 2019.

[111] Michael A. Henning and Anders Yeo. Bounds on upper transversals in hypergraphs.
J. Comb. Optim., 39(1):77–89, 2020.

[112] Winfried Hochstättler, Felix Schröder, and Raphael Steiner. On the complexity
of digraph colourings and vertex arboricity. Discret. Math. Theor. Comput. Sci.,
22(1), 2020.

[113] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[114] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the
knapsack problem. J. ACM, 21(2):277–292, 1974.

[115] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. J. ACM, 23(2):317–327, 1976.

[116] Joseph Douglas Horton and Kyriakos Kilakos. Minimum edge dominating sets.
SIAM J. Discrete Math., 6(3):375–387, 1993.

[117] Heather Hulett, Todd G. Will, and Gerhard J. Woeginger. Multigraph realizations
of degree sequences: Maximization is easy, minimization is hard. Oper. Res. Lett.,
36(5):594–596, 2008.

[118] Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions,
games, and orderings. Theor. Comput. Sci., 399(3):206–219, 2008.

[119] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. J. ACM, 22(4):463–468, 1975.

[120] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[121] Ken Iwaide and Hiroshi Nagamochi. An improved algorithm for parameterized
edge dominating set problem. J. Graph Algorithms Appl., 20(1):23–58, 2016.



BIBLIOGRAPHY 211

[122] Michael S. Jacobson and Kenneth Peters. Chordal graphs and upper irredundance,
upper domination and independence. Discret. Math., 86(1-3):59–69, 1990.

[123] Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis
of graph coloring problems. In CIAC, volume 10236 of Lecture Notes in Computer
Science, pages 345–356, 2017.

[124] Ce Jin and Hongxun Wu. A Simple Near-Linear Pseudopolynomial Time Random-
ized Algorithm for Subset Sum. In 2nd Symposium on Simplicity in Algorithms
(SOSA 2019), volume 69, pages 17:1–17:6, 2018.

[125] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed
tree-width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001.

[126] Michał Karoński, Tomasz Łuczak, and Andrew Thomason. Edge weights and
vertex colors. Journal of Combinatorial Theory, 91:151–157, 05 2004.

[127] Alexander V. Karzanov. Maximum matching of given weight in complete and
complete bipartite graphs. Kibernetika, 23(1):7–11, (1987) (English translation in
CYBNAW23(1), 8–13 (1987)).

[128] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Improved (in-)
approximability bounds for d-scattered set. In WAOA, volume 11926 of Lecture
Notes in Computer Science, pages 202–216. Springer, 2019.

[129] Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An
efficient fully polynomial approximation scheme for the subset-sum problem. J.
Comput. Syst. Sci., 66(2):349–370, 2003.

[130] Kaveh Khoshkhah, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian
Sikora. Weighted upper edge cover: Complexity and approximability. J. Graph
Algorithms Appl., 24(2):65–88, 2020.

[131] Subhash Khot and Venkatesh Raman. Parameterized complexity of finding sub-
graphs with hereditary properties. Theoretical Computer Science, 289(2):997–1008,
2002.

[132] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to
within 2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.

[133] Ralf Klasing and Christian Laforest. Hardness results and approximation algo-
rithms of k-tuple domination in graphs. Inf. Process. Lett., 89(2):75–83, 2004.

[134] Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms
for subset sum. ACM Trans. Algorithms, 15(3):40:1–40:20, 2019.



212 BIBLIOGRAPHY

[135] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for
treewidth. In 62nd IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184–192. IEEE,
2021.

[136] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algo-
rithmica, 64(1):19–37, 2012.

[137] Michael Lampis. Finer tight bounds for coloring on clique-width. In ICALP,
volume 107 of LIPIcs, pages 86:1–86:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[138] Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effec-
tiveness of digraph decompositions and complexity measures. Discret. Optim.,
8(1):129–138, 2011.

[139] Michael Lampis, Valia Mitsou, and Karolina Soltys. Scrabble is PSPACE-complete.
J. Inf. Process., 23(3):284–292, 2015.

[140] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary
properties is np-complete. Journal of Computer and System Sciences, 20(2):219–
230, 1980.

[141] Zhentao Li and Bojan Mohar. Planar digraphs of digirth four are 2-colorable.
SIAM J. Discret. Math., 31(3):2201–2205, 2017.

[142] Chung-Shou Liao and Gerard J. Chang. k-tuple domination in graphs. Inf. Process.
Lett., 87(1):45–50, 2003.

[143] Carla Negri Lintzmayer, Guilherme Oliveira Mota, and Maycon Sambinelli. De-
composing split graphs into locally irregular graphs. Discrete Applied Mathematics,
292:33–44, 2021.

[144] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On
approximately fair allocations of indivisible goods. In Proceedings of the 5th ACM
Conference on Electronic Commerce (EC-2004), pages 125–131, New York, NY,
USA, 2004. ACM.

[145] Michael L. Littman, Greg A. Keim, and Noam M. Shazeer. Solving crosswords
with PROVERB. In Proceedings of the Sixteenth National Conference on Artifi-
cial Intelligence and Eleventh Conference on Innovative Applications of Artificial
Intelligence, July 18-22, 1999, Orlando, Florida, USA, pages 914–915, 1999.

[146] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the European Association for Theoretical
Computer Science, 105:41–72, 2011.



BIBLIOGRAPHY 213

[147] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs
of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–
13:30, 2018.

[148] Télé Magazine. Publications Grand Public.

[149] David F. Manlove. On the algorithmic complexity of twelve covering and inde-
pendence parameters of graphs. Discrete Applied Mathematics, 91(1-3):155–175,
1999.

[150] Gary Meehan and Peter Gray. Constructing crossword grids: Use of heuristics vs
constraints. In In: Proceedings of Expert Systems 97: Research and Development
in Expert Systems XIV, SGES, pages 159–174, 1997.

[151] Nikolaos Melissinos and Aris Pagourtzis. A faster FPTAS for the subset-sums
ratio problem. In Computing and Combinatorics - 24th International Conference,
COCOON 2018, volume 10976 of Lecture Notes in Computer Science, pages 602–
614, Cham, 2018. Springer.

[152] Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding max-
imum matching in general graphs. In 21st Annual Symposium on Foundations of
Computer Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27.
IEEE Computer Society, 1980.

[153] Marcelo Garlet Millani, Raphael Steiner, and Sebastian Wiederrecht. Colouring
non-even digraphs. CoRR, abs/1903.02872, 2019.

[154] Sounaka Mishra and Kripasindhu Sikdar. On the hardness of approximating some
NP-optimization problems related to minimum linear ordering problem. RAIRO
Theor. Informatics Appl., 35(3):287–309, 2001.

[155] Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Pa-
rameterized algorithms for even cycle transversal. In Martin Charles Golumbic,
Michal Stern, Avivit Levy, and Gila Morgenstern, editors, Graph-Theoretic Con-
cepts in Computer Science - 38th International Workshop, WG 2012, Jerusalem,
Israel, June 26-28, 2012, Revised Selcted Papers, volume 7551 of Lecture Notes in
Computer Science, pages 172–183. Springer, 2012.

[156] Bojan Mohar. Face covers and the genus problem for apex graphs. J. Comb.
Theory, Ser. B, 82(1):102–117, 2001.

[157] Bojan Mohar. Circular colorings of edge-weighted graphs. Journal of Graph The-
ory, 43(2):107–116, 2003.

[158] Bojan Mohar. Eigenvalues and colorings of digraphs. Linear Algebra and its Ap-
plications, 432(9):2273 – 2277, 2010. Special Issue devoted to Selected Papers
presented at the Workshop on Spectral Graph Theory with Applications on Com-
puter Science, Combinatorial Optimization and Chemistry (Rio de Janeiro, 2008).



214 BIBLIOGRAPHY

[159] Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding
regular induced subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009.

[160] Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol Wegrzycki. Equal-
subset-sum faster than the meet-in-the-middle. In 27th Annual European Sympo-
sium on Algorithms, ESA 2019, volume 144 of LIPIcs, pages 73:1–73:16, 2019.

[161] Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. A subquadratic approx-
imation scheme for partition. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 70–88. SIAM, 2019.

[162] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy
as matrix inversion. Comb., 7(1):105–113, 1987.

[163] Danupon Nanongkai. Simple FPTAS for the subset-sums ratio problem. Inf.
Process. Lett., 113(19-21):750–753, 2013.

[164] Victor Neumann-Lara. The dichromatic number of a digraph. J. Comb. Theory,
Ser. B, 33(3):265–270, 1982.

[165] C. Thach Nguyen, Jian Shen, Minmei Hou, Li Sheng, Webb Miller, and Louxin
Zhang. Approximating the spanning star forest problem and its application to
genomic sequence alignment. SIAM J. Comput., 38(3):946–962, 2008.

[166] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[167] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted
spanning tree problems. J. ACM, 29(2):285–309, 1982.

[168] Jagan A. Pillai, Charles B. Hall, Dennis W. Dickson, Herman Buschke, Richard B.
Lipton, and Joe Verghese. Association of crossword puzzle participation with
memory decline in persons who develop dementia. Journal of the International
Neuropsychological Society, 17(6):1006–1013, 2011.

[169] Kirk Pruhs and Gerhard J. Woeginger. Approximation schemes for a class of
subset selection problems. Theor. Comput. Sci., 382(2):151–156, 2007.

[170] Jakub Przybyło. Irregularity strength of regular graphs. Electronic Journal of
Combinatorics, 15, 06 2008.

[171] Jakub Przybyło. On decomposing graphs of large minimum degree into locally
irregular subgraphs. Electronic Journal of Combinatorics, 23(2):2–31, 2016.

[172] Leonardo Rigutini, Michelangelo Diligenti, Marco Maggini, and Marco Gori. Au-
tomatic generation of crossword puzzles. Int. J. Artif. Intell. Tools, 21(3), 2012.



BIBLIOGRAPHY 215

[173] Christopher D. Rosin. Nested rollout policy adaptation for Monte Carlo tree
search. In IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
649–654, 2011.

[174] Sartaj Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–
127, 1976.

[175] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer-Verlag, 2003.

[176] P. J. Slater. Enclaveless sets and MK-systems. J. Res. Nat. Bur. Stand., 82(3):197–
202, 1977.

[177] Raphael Steiner and Sebastian Wiederrecht. Parameterized algorithms for directed
modular width. In CALDAM, volume 12016 of Lecture Notes in Computer Science,
pages 415–426. Springer, 2020.

[178] Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating inde-
pendent set problem and feedback set problem for graphs with no vertex degree
exceeding three. Discrete Mathematics, 72(1):355 – 360, 1988.

[179] Nadav Voloch. Mssp for 2-d sets with unknown parameters and a cryptographic
application. Contemporary Engineering Sciences, 10:921–931, 10 2017.

[180] Gerhard J. Woeginger. When does a dynamic programming formulation guarantee
the existence of a fully polynomial time approximation scheme (fptas)? INFORMS
J. Comput., 12(1):57–74, 2000.

[181] Gerhard J. Woeginger and Zhongliang Yu. On the equal-subset-sum problem. Inf.
Process. Lett., 42(6):299–302, 1992.

[182] Meirav Zehavi. Maximum minimal vertex cover parameterized by vertex cover.
SIAM Journal on Discrete Mathematics, 31(4):2440–2456, 2017.

[183] David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing, 3(1):103–128, 2007.

[184] Igor E. Zvervich and Vadim E. Zverovich. An induced subgraph characterization
of domination perfect graphs. Journal of Graph Theory, 20(3):375–395, 1995.



216 BIBLIOGRAPHY



Appendix A

Missing Proofs

Proof of Theorem 3.11
Proof. Before we start the proof we have to remark two things. The first is that generally,
it’s not necessary that S1 ⊆ {1, . . . , n} and S2 ⊆ {n + 1, . . . , 2 · n} but they may be
reversed, so when we mention a feasible solution, by convention we regard that m ∈ S1.
Secondly, in the case-algorithms inside of Algorithm 4 we construct two variables p and
p′ such that:

• If m ∈ {1, . . . , n} then (p, p′) = (0, n)
• If m ∈ {n + 1, . . . , 2 · n} then (p, p′) = (n, 0)

With the use of these variables we prove some properties for the indices of the feasible
solutions.

Lemma A.1. Let (S1, S2) be a feasible solution of the problem with input ({a1, . . . ,
a2·n}, m), the set S = {1, . . . , n} and (p, p′) the variables we defined above, then:

• S1 ⊆ {i + p | i ∈ S} (A.1)
• S2 ⊆ {i + p′ | i ∈ S} (A.2)
• for an index j ∈ S1 then j − p + p′ /∈ S2 (A.3)
• for an index j ∈ S2 then j − p′ + p /∈ S1 (A.4)

Proof. Since (S1, S2) are in such order so m ∈ S1 and, one of S1, S2 sets is subset of
{1, . . . , n} while the other is subset of {n + 1, . . . , 2 · n}, we have that
• If m ∈ {1, . . . , n} then S1 ⊆ {1, . . . , n}, S2 ⊆ {n + 1, . . . , 2 · n} and (p, p′) = (0, n)
• If m ∈ {n+1, . . . , 2 ·n} then S2 ⊆ {1, . . . , n}, S1 ⊆ {n+1, . . . , 2 ·n} and (p, p′) = (n, 0)
Without loss of generality we assume that m ≤ n, this means that p = 0,

S1 ⊆ {1, . . . , n} = {i + p | i ∈ S}

and because p′ = n

S2 ⊆ {n + 1, . . . , 2 · n} = {i + p′ | i ∈ S} .
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It remains to prove the relations between the indices of the two sets. By the definition
of the problem for any feasible solution (S1, S2)∄ (i, j) such that i ∈ S1, j ∈ S2 and
i ≡ j (mod n). Because p, p′ ∈ {0, n} we have that j ≡ j − p + p′ ≡ j − p′ + p (mod n)
so both of the last two properties holds.

Lemma A.2. Let (S1, S2) be a feasible solution for the problem with input ({a1, . . .
, a2·n}, m) and Smin, Smax the sets as they are defined in Algorithm 4, then the following
are true:

∃ i ∈ Smax such that i + p′ ∈ S2 (A.5)
S1 ⊆ {i + p | i ∈ Smin} ∪ {m} (A.6)

Proof. We start with the definitions of Smin and Smax.

Smin = {i | i ∈ {1, . . . , n} and ai+p ≤ am}∖ {m− p}
Smax = {i | i ∈ {1, . . . , n} and ai+p′ > am}∖ {m− p + p′} .

For any feasible solutions of the semi restricted version of 2-Set SSR we know that am =
maxi∈S1 ai and am ≤ maxi∈S2 ai. Let j ∈ S2 such that aj ≥ am then by relation A.2,
we have that ∃ i ∈ {1, . . . , n} such that i + p′ = j, ai+p′ ≥ am and i 6= m − p + p′ so
i ∈ Smax (by its definition). So relation A.5 holds. Now by considering the relation A.1,
if j ∈ S1 ∖ {m} then ∃ i ∈ {1, . . . , n} such that i + p = j, ai+p ≤ am and j 6= m which
means that i ∈ Smin so the relation A.6 holds. Thus the lemma holds.

Now, let (S∗
1 , S∗

2) be an optimal solution for the semi restricted version of 2-Set SSR
with input A = {a1, . . . a2·n} and m. Without lost of generality let

max
i∈S∗

1
{ai} = am1 = am < am2 = max

j∈S∗
2
{aj}

this means that the sets appear in the same order as if they were constructed from the
algorithm. For this optimal solution we have two cases, either am2 > Q or am2 ≤ Q
(where Q← am +

∑
i∈Smin

ai+p as it is defined in case-algorithms of Algorithm 4).
Case 1 (am2 > Q). In this case we return a solution with ratio equal to the optimal
using Algorithm 5. By relation A.2 we know that there exists m0 ∈ {1, . . . , n} such
that the index m0 + p′ = m2. With the additional knowledge that am2 > Q we have
that m0 ∈ Smax. We claim that the pair of sets (S, {m2}), where S = {i + p | i ∈
Smin or i = m − p} ∖ {m0 + p} is an optimal solution for this case. In order to prove
this claim we need to observe that for any feasible solution (S1, S2) for this case we have
S1 ⊆ ({i + p | i ∈ Smin} ∪ {m}) ∖ {m2 − p′ + p} and S2 ⊇ {m2}. So for any feasible
solution for this case we have:

MR(S1, S2, A) = R(S2, S1, A) ≥ R({m2}, S1, A)
≥ R({m2}, ({i + p | i ∈ Smin} ∪ {m}) ∖ {m2 − p′ + p}, A)

which proves the claim. Due to this fact, Algorithm 5 returns (S, {m2}) or a pair of sets
with the same max ratio.
Case 2 (am2 < Q). The first thing we have to prove in this case is the following lemma,
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Lemma A.3. If (S′
1, S′

2) is a feasible solution for this case and (S1, S2) is a pair of sets
such that S1 ⊆ S′

1 and S2 ⊆ S′
2 then:

−2 ·Q ≤
∑
i∈S1

ai −
∑
j∈S2

aj ≤ Q

Proof. By relation A.6 it is obvious that ∑i∈S1 ai ≤ Q so we need prove that∑
j∈S2

aj ≤ 2 ·Q .

Let’s assume that ∑j∈S2 aj > 2 ·Q then because Q ≥ am2 = maxi∈S′
2
{ai} and S2 ⊆ S′

2,
we have that S2 should contain at least 3 indices and the same holds for the set S′

2. Let
m0 6= m2 be one of them, then because Q ≥ am0 and ∑j∈S′

2
aj ≥

∑
j∈S2 aj > 2 · Q we

have that ∑
j∈S′

2

aj >
∑

j∈S′
2∖{m0}

aj > Q

and because ∑i∈S′
1

ai ≤ Q

1 ≤MR(S′
1, S′

2 ∖ {m0}, A) ≤MR(S′
1, S′

2, A)

which is a contradiction.

The next lemma shows that, for any feasible solution (S1, S2), the cell T [n, d, 1],
where d =

∑
i∈S1 ai −

∑
i∈S2 ai, is non empty. Furthermore the sets which are stored in

this cell have max ratio at most MR(S1, S2, A).

Lemma A.4. Let (S∗
1 , S∗

2) is a feasible solution for this case and (S1, S2) is a pair of
sets such that S1 ⊆ S∗

1 , S2 ⊆ S∗
2 and m ∈ S1. We define m0 = max{0, i | i + p ∈

S1 ∖ {m} or i + p′ ∈ S2} and d =
∑

i∈S1 ai −
∑

i∈S2 ai.

If S2 ∩ {i + p′ | i ∈ Smax} = ∅ then the cell T [m0, d, 0] 6= (∅, ∅, 0)
else then the cell T [m0, d, 1] 6= (∅, ∅, 0)

Proof. For any pair (S1, S2) (as these described at the lemma) we define the following
set

SS1,S2 = {0} ∪ {i mod n | i + p ∈ S1 or i + p′ ∈ S2)}∖ {m− p} .

Note that i ∈ {1, . . . , n} if i + p ∈ S1 (by relation A.1) and the same holds if i + p′ ∈ S2.
Because of this, we know that SS1,S2 ⊆ {0, . . . , n} ∖ {m − p}. We prove this lemma by
using strong induction to the maximum element of the set S.
• If max{SS1,S2} = 0 (base case)
Because we have requested m ∈ S1 and by the fact that max{SS1,S2} = 0 we can conclude
that S2 ∩ {i + p′ | i ∈ Smax} = ∅ and (S1, S2) = ({m}, ∅), which is the pair of sets the
algorithm stores in the cell T [0, am, 0]. This concludes the base case.
• Assuming that lemma’s statement holds for all the indices k′ which are smaller or
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equal than a specific index k < n, we now prove it for k + 1.
• Let k + 1 = max{SS1,S2} this means that k + 1 + p 6= m and either k + 1 + p ∈ S1 or
k + 1 + p′ ∈ S2. So we have to check both cases.
Case A (k +1+p ∈ S1). In this case for the pair of sets (S′

1, S2) = (S1∖{k +1+p}, S2)
meets the conditions of the induction because max{SS′

1,S2} < max{SS1,S2 ∖{k +1}}. So
for d =

∑
i∈S′

1
ai −

∑
i∈S2 ai we know that:

either the cell T [max{SS′
1,S2}, d, 0] 6= (∅, ∅, 0) if S2 ∩ {i + p′ | i ∈ Smax} = ∅

or the cell T [max{SS′
1,S2}, d, 1] 6= (∅, ∅, 0) if S2 ∩ {i + p′ | i ∈ Smax} 6= ∅

(respectively)

Algorithm 6 moves up all the cells (line 13). This means that the cell T [k, d, 0] (resp.
T [k, d, 1]) is non equal to (∅, ∅, 0) in the case S2 ∩ Smax = ∅ (resp. S2 ∩ Smax 6= ∅).
Because k + 1 ∈ Smin (by relation A.6 and k + 1 + p ∈ S1) then Algorithm 6 fills the cell
T [k + 1, d + ak+1+p, 0] (resp. T [k + 1, d + ak+1+p, 1]) in line 16. This proves the case A.
Case B (k + 1 + p′ ∈ S2). Here we have two extra cases, either k + 1 ∈ Smax or not.
Case B.1 (k + 1 /∈ Smax). Like in the previous case, the pair of sets (S1, S′

2) =
(S1, S2 ∖ {k + 1 + p′}) meets the conditions of the induction because max{SS1,S′

2
} <

max{SS1,S2 ∖ {k + 1}}. So for d =
∑

i∈S1 ai −
∑

i∈S′
2

ai we know that:

either the cell T [max{SS1,S′
2
}, d, 0] 6= (∅, ∅, 0) if S′

2 ∩ {i + p′ | i ∈ Smax} = ∅
or the cell T [max{SS1,S′

2
}, d, 1] 6= (∅, ∅, 0) if S′

2 ∩ {i + p′ | i ∈ Smax} 6= ∅
(respectively)

As we have said before, Algorithm 6 moves up all the cells (line 13). This means that
the cell T [k, d, 0] (resp. T [k, d, 1]) is non equal to (∅, ∅, 0) in the case of S′

2 ∩ {i + p′ |
i ∈ Smax} = ∅ (resp. S′

2 ∩ {i + p′ | i ∈ Smax} 6= ∅) and because we know that
d − ak+1+p′ ≥ −2 · Q (by lemma A.3) in the line 22 the algorithm fills the wanted cell
T [k, d− ak+1+p′ , 0] (resp. T [k, d− ak+1+p′ , 1]).
Case B.2 (k + 1 ∈ Smax). This case is similar to Case B.1 with the exception that the
algorithm ensures that the algorithm fills the cell T [k, d− ak+1+p′ , 1] in line 20 if either
of the T [k − 1, d, 0] or T [k − 1, d, 1] are non-empty.

To complete the proof we have to observe three things.
First, in any cell Algorithm 6 keeps the pair of sets with the greater total sum.
Second, For all the pairs of sets (S1, S2) which are stored we have S1 ⊆ {i+p | i ∈ Smin},
S2 ⊆ {i + p′ | i ∈ {1, . . . , n}} and ∄(j, j′) such that j ∈ S1, j′ ∈ S2 and j ≡ j′ (mod n)
(because we use only i + p in S1 or i + p′ in S2 every time). Third, in order to store a
pair of sets in any cell T [i, d, 1] we have either add a i + p′ with i ∈ Smax to the S2 or
use an other cell T [i′, d′, 1] (which already have such an index in S2) so these pairs are
feasible solutions for this case.
With all that in mind we know that, if (S∗

1 , S∗
2) be an optimal solution for the problem

then for d =
∑

i∈S∗
1

ai−
∑

i∈S∗
2

ai (d ∈ {−2·Q, . . . , Q} by the lemma A.3) a cell T [i, d, 1] 6=
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(∅, ∅, 0) due to lemma A.4 and relation A.5 so the same holds for the T [n, d, 1] (because
the algorithm moves up all the cells). Let (S1, S2) pair of sets stored in that specific cell.
As we mentioned earlier the pair (S1, S2) is a feasible solution such that:∑

i∈S1

ai −
∑
i∈S2

ai =
∑
i∈S∗

1

ai −
∑
i∈S∗

2

ai

and ∑
i∈S1

ai +
∑
i∈S2

ai ≥
∑
i∈S∗

1

ai +
∑
i∈S∗

2

ai

Since the differences of the sums of the pairs are the same, it is easy to see that the pair
with the smaller max ratio is the one with the greater total sum. Furthermore, we can
not have smaller max ratio than the optimal so the stored pair is an optimal one. Thus
the Algorithm 4 returns an optimal solution in both of cases.

Proof of Lemma 5.1
Proof. Let S be a minimal fvs of G−u. We observe that S∪{u} is an fvs of G. If S∪{u}
is minimal, we are done. If not, we delete vertices from it until it becomes minimal. We
now note that the only vertex which may be deleted in this process is u, since all vertices
of S have a private cycle in G − u (that is, a cycle not intersected by any other vertex
of S). Hence, the resulting set is a superset of S.

Proof of Lemma 5.2
Proof. Before we prove the Lemma we note that the contraction operation, under the
condition that N(u) ∩ N(v) = ∅, preserves acyclicity in a strong sense: G is acyclic if
and only if G/uv is acyclic. Indeed, if we contract an edge that is part of a cycle, this
cycle must have length at least 4, and will therefore give a cycle in G/uv. Of course,
contractions never create cycles in acyclic graphs.

Let G′ := G/uv, w be the vertex of G′ which has replaced u, v, V ′ = V (G′), and S
be a minimal fvs of G′. We have two cases: w ∈ S or w 6∈ S.

In case w ∈ S, we start with the set S′ = (S \{w})∪{u, v}. It is not hard to see that
S′ is an fvs of G. Furthermore, no vertex of S′ \ {u, v} is redundant: for all z ∈ S \ {w},
there is a cycle in G′[(V ′ \ S) ∪ {z}], therefore there is also a cycle in G[(V \ S′) ∪ {z}].
Furthermore, we claim that S′ \ {u, v} is not a valid fvs. Indeed, there must be a cycle
contained (due to minimality) in G1 = G′[(V ′ \S)∪{w}]. Therefore, if there is no cycle
in G2 = G[(V \ S′) ∪ {u, v}], we get a contradiction, as G1 can be obtained by G2 by
contracting the edge uv and contracting edges preserves acyclicity. We conclude that
even if S′ is not minimal, if we remove vertices until it becomes minimal, we will remove
at most one vertex, so the size of the fvs obtained is at least |S|.

In case w 6∈ S, we will return the same set S. Let F = V \S, F ′ = V ′\S. By definition,
G′[F ′] is acyclic. To see that G[F ] is also a forest, we note that G′[F ′] is obtained from
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G[F ] by contracting uv, and as we noted in the beginning, the contractions we use
strongly preserve acyclicity. To see that S is minimal, take z ∈ S and consider the
graphs G1 = G[(V \ S) ∪ {z}] and G2 = G′[(V ′ \ S) ∪ {z}]. We see that G2 can be
obtained from G1 by contracting uv. But G2 must have a cycle, by the minimality of S,
so G1 also has a cycle. Thus, S′ is minimal in G.

Proof of Theorem 6.1
Proof. We perform a reduction from NAE-3-SAT, a variant of 3-SAT where we are
asked to find an assignment that sets at least one literal to True and one to False in
each clause. First we remark that this problem remains NP-hard if all literals appear at
most twice.

To see this, suppose that x appears ℓ ≥ 4 times in ϕ. We replace each appearance
of x with a fresh variable xi, i ∈ [ℓ] and add to the formula the clauses (¬x1 ∨ x2) ∧
(¬x2 ∨ x3) . . . (¬xℓ ∨ x1). Repeating this for all variables that appear at least 4 times
produces an equivalent instance ϕ′ with O(n + m) variables and clauses such that all
literals appear at most 2 times. Furthermore, any satisfying assignment the formula
forces exactly one true and one false literal in the new clauses.

We construct a digraph as follows: for each variable xi we make a digon and label its
vertices xi,¬xi. We call this part of the digraph the assignment part. For each clause
we make a directed cycle of size equal to the clause and associate each vertex of the
cycle with a literal. We call this part the satisfaction part. Finally, for each vertex of
the assignment part we connect it with digons with each vertex of the satisfaction part
that represents the opposite literal.

The digraph we constructed has maximum degree 6; indeed, each literal has degree
two in the assignment part and since each literal appears in at most two clauses, it has
degree at most 4 in the satisfaction part. If there is a satisfying assignment then we give
color 1 to all True literals of both parts and color 2 to everything else. Observe that
all arcs connecting the two parts are bichromatic and if the assignment is satisfying all
directed cycles are also bichromatic. For the converse direction, if there is a 2-coloring
we can extract an assignment by setting to True all literals which have color 1 in the
assignment part. Note that this implies that in the satisfaction part all literals which
have color 1 have been set to True and all literals which have color 2 have been set
to False, because of the digons connecting the two parts. But this implies that our
assignment is satisfying because all cycles are bichromatic.

Proof of the properties in Theorem 6.8
Property 1. Once we delete {vi | i ∈ [k]} we observe that for every vertex vi

ℓ,in its only
outgoing arcs are to vertices vj

ℓ,in for j < i or vertices vj
ℓ−1,in for j ≥ i. This shows that

we have eliminated all directed paths from vi
ℓ,in to vj

ℓ′,out. Furthermore, this shows that
no cycle can be formed using vi

ℓ,in vertices, since all their outgoing arcs either move to a
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previous row, or stay in the same row but decrease i. In a similar way, no directed cycle
can be formed using only vi

ℓ,out vertices, as all their outgoing arcs either move to a later
row, or stay in the same row but decrease i.
Property 2. For a vertex vi we have 2k− 2 arcs incident on it from the clique; the two
arcs connecting it to vi

1,in, vi
1,out; two arcs connecting it to vj

1,in, vj
1,out for j > i; two arcs

connecting it to vj
1,in for j < i. This gives 2k − 2 + 2i + 2(k − i) = 4k − 2.

For a vertex vi
1,in we have one arc to vj for j ≤ i; two arcs to vj for j > i; arcs to all

vj
in, vj

out for j 6= i; arcs to vj
2,in for j ≤ i. This gives i + 2(k − i) + 2(k − 1) + i = 4k − 2.

For a vertex vi
1,out we have arcs from vj for j ≤ i; arcs to vj

1,in, vj
1,out for j 6= i; arcs to

vj
2,in and vj

2,out for j ≥ i; arcs to vj
2,in for all j < i. This gives i + 2(k−1) + 2(k− i) + i =

4k − 2.
For a vertex vi

ℓ,in, ℓ ≥ 2 we have arcs to vj
ℓ−1,in, for j ≥ i; to vj

ℓ−1,out for j 6= i; to
vj

ℓ,in, vj
ℓ,out for j 6= i; from vj

ℓ+1,in for j ≤ i. This gives (k− i+1)+(k−1)+2(k−2)+ i =
4k − 2.

Finally, for a vertex vi
ℓ,out, ℓ ≥ 2 we have arcs from vj

ℓ−1,out for j ≤ i; to vj
ℓ,in, vj

ℓ,out

for j 6= i; to all vj
ℓ+1,in, for j 6= i; to vj

ℓ+1,out for j ≥ i. This gives i + 2(k− 1) + (k− 1) +
(k − i + 1) = 4k − 2.
Property 3. We assign color i to vi and to {vi

ℓ,in, vi
ℓ,out | ℓ ∈ [M ]}. We claim that

there is no monochromatic cycle in P with this coloring. Indeed, if such a cycle exists,
it must use vi, as {vi | i ∈ [k]} is a directed feedback vertex set. But observe that with
the coloring we gave, for each ℓ ∈ [M − 1] the only out-neighbor of vi

ℓ,out with color i is
vi

ℓ+1,out and vi
M,out has no out-neighbor of color i. Similar examination of {vi

ℓ,in | ℓ ∈ [M ]}
shows that the part of P colored i induces a directed path on 2M + 1 vertices with vi

in the middle.
Property 4. Since the vertices vi induce a clique, we may assume without loss of
generality that we are given a coloring c where c(vi) = i. We prove the property by
induction on ℓ. For ℓ = 1, we will first prove that c(vi

1,in) = i by induction on i. For
the base case we have that v1

1,in is connected with a digon with vj for all j > 1, so
c(v1

1,in) = 1. Now, fix a j and suppose that for all i < j we have c(vi
1,in) = i. Then vj

1,in

cannot receive any color i < j, because this would make a cycle with vi
1,in, vi. It can also

not receive a color i > j because it has a digon to all vi for i > j. Hence, c(vj
1,in) = j.

Continuing on ℓ = 1, we will prove by reverse induction on i that c(vi
1,out) = i. For

c(vk
1,out) if we give this vertex any color j < k then we get a cycle with vj , vj

1,in, so we
must have c(vk

1,out) = k. Now fix an i and suppose that for all j > i we have c(vj
1,out) = j.

If we give vi
1,out a color j > i this will make a cycle with vj , vj

1,out, vi
1,out, vj

1,in. But if
we give vi

1,out a smaller color j < i, this will also make a cycle with vj , vj
1,in. Therefore,

c(vi
1,out) = i for all i.
Suppose now that the property is true for row ℓ and we want to prove it for row ℓ+1.

We will use similar reasoning as in the previous case. We will also use the observation
that for all i, there is a monochromatic path from vi to vi

ℓ,out and a monochromatic path
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from vi
ℓ,in to vi. First, we show by induction on i that c(vi

ℓ+1,in) = i for all i. For v1
ℓ+1,in

we observe that if we give this vertex color j > 1, then using the arcs from vj
ℓ,out and

to vj
ℓ,in we have a monochromatic cycle of color j. Hence, c(v1

ℓ+1,in) = 1. Fix a j and
suppose that for all i < j we have c(vi

ℓ+1,in) = i. If we assign c(vj
ℓ+1,in) a color i < j, then

we get a cycle using vi
ℓ,out, vj

ℓ+1,in, vi
ℓ+1,in, vi

ℓ,in. If we assign it a color i > j, then we get
the cycle using vi

ℓ,out, vj
ℓ+1,in, vi

ℓ,in. So, for all i we have c(vi
ℓ+1,in) = i. To complete the

proof, we do reverse induction to show that c(vi
ℓ+1,out) = i. For c(vk

ℓ+1,out) we cannot give
this vertex color j < k because this will give a cycle using vj

ℓ,out, vk
ℓ+1,out, vj

ℓ+1,invj
ell,in.

Now, fix an i and assume that for j > i we have c(vj
ℓ+1,out) = j. We cannot assign vi

ℓ+1,out

any color j > i because this would give the cycle vj
ℓ,out, vj

ℓ+1,out, vi
ℓ+1,out, vj

ℓ+1,in, vj
ℓ,in. We

can also not assign any color j < i as this gives the cycle using vj
ℓ,out, vi

ℓ+1,out, vj
ℓ+1,in, vj

ℓ,in.
We conclude that for all i we have c(vi

ℓ+1,out) = i.

Proof of Lemma 7.1
Proof. Let S be an ir∗(G), G′ = G[V \S] and X ′ = X \S. Observe that for each pair of
vertices u, v such that u ∈ X ′ and v ∈ NG′(u) ∩X ′, we have that dG′(u) 6= dG′(v), since
S is an ir∗(G). It follows that S is also an irregulator of X in G, i.e. S is an ir(G, X),
and thus we have that I(G, X) ≤ |S| = I(G).

Proof of Lemma 7.2
Proof. Let S be an ir∗(G, X), S1 = S ∩N [X] and S2 = S \ S1. It suffices to prove that
S1 is an ir(G, X). Indeed, if S1 ⊆ S is an ir(G, X), since S is an ir∗(G, X), we can
conclude that S = S1 and that S ⊆ N [X] (by definition of S1).

Assume now that S1 is not an ir(G, X). Then there exists a pair of vertices u, v where
uv is an edge in G[X\S1] and dG[V \S1](u) = dG[V \S1](v). Observe that N [{u, v}] ⊆ N [X],
and thus N [{u, v}] ∩ S2 = ∅. Therefore, dG[V \S](u) = dG[V \S1](u) = dG[V \S1](v) =
dG[V \S](v). This is a contradiction since S is an ir∗(G, X).

Now, we prove that I(G, X) = I(G[N [X]], X). Let S be an ir∗(G, X). Since
S ⊆ N [X] and any vertex v ∈ X \ S has N(v) ⊆ N [X], we have that dG[V \S](v) =
dG[N [X]\S](v). Thus, S is an ir(G[N [X]], X) and I(G, X) ≥ I(G[N [X]], X). Now for
the opposite direction, let S′ be an ir∗(G[N [X]], X). We show that S′ is also an
ir(G, X). Since for all v ∈ X \ S′, we have dG[V \S′](v) = dG[N [X]\S′](v) (again because
N(v) ⊆ N [X]) we have that S′ is an ir(G, X). Therefore, I(G, X) ≤ I(G[N [X]], X).

Proof of Lemma 7.3
Proof. Let X =

∪n
i=1 Xi. For every 1 ≤ i ≤ n, let Si be an ir∗(G, Xi) and G′

i = G[V \Si],
and let S =

∪n
i=1 Si and G′ = G[V \ S]. Observe first that for every i 6= j, since
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N [Xi] ∩N [Xj ] = ∅, we have that Si ∩ Sj = ∅ as well. Thus, |S| = ∑n
i=1 |Si|.

We now show that S is an ir∗(G, X). Assume that there exists an S′ such that |S′| <
|S| and S′ is an ir(G, X). Then, there exists a k ≤ n such that the set S′

k = S′ ∩N [Xk],
is such that |S′

k| < |Sk|, as otherwise |S′| can not be smaller than |S|. Observe that
S′

k must be an ir(G, Xk); this holds because for any vertex u ∈ S′ \ S′
k, we know that

u /∈ N [Xk]. This is a contradiction since we have assumed that Sk is an ir∗(G, Xk)
and S′

k is an ir(G, Xk) with size smaller than Sk. Therefore, S is an ir∗(G, X), and the
statement follows by Lemma 7.1.

Proof of Lemma 7.4
Proof. Let SX = S ∩ N [X], G′ = G[V \ S] G∗ = G[V \ SX ]. Assume that SX is not
an ir(G, X). Then there exist two adjacent vertices v, u such that {v, u} ⊂ X \ SX

and dG∗(u) = dG∗(v). Since SX = S ∩ N [X] we have that NG[S](u) = NG[SX ](u) and
NG[S](v) = NG[SX ](v). Therefore dG′(u) = dG∗(u) = dG∗(v) = dG′(u) which is a contra-
diction since G′ is locally irregular. It remains to show that SX is an ir(G[N [X]], X).
Note that for any vertex v ∈ X \SX N [v] is included in both G and G[N [X]]. Therefore,
dG∗(v) = dG[N [X]\SX ](v) since we have remove the same vertices from N [X]. So SX is
an ir(G[N [X]], X).

Proof of Theorem 7.10
As the proof of Theorem 7.10 is rather technical, we first present the construction, as
well as two lemmas that are going to be utilised in that proof.

Construction for Theorem 7.10 Assume that we have an instance (ϕ, X) of 2-
Balanced 3-SAT comprised by a set {C1, . . . , Cm} of clauses over the set of Boolean
variables {x1, . . . , xn}. We are going to create a cubic bipartite graph G. First we create
a bipartite graph F = (V, E) as follows: for each literal xi (¬xi resp.) in ϕ, add a literal
vertex vi,p (vi,n resp.) in V , and for each clause Cj of ϕ, add a clause vertex cj in V .
Next, for each 1 ≤ j ≤ m, add the edge vi,pcj (vi,ncj resp.) if the literal xi (¬xi resp.)
appears in Cj according to ϕ. We create a copy F ′ = (V ′, E′) of F and we denote by
v′

i,p, v′
i,n and c′

j the copies of vi,p, vi,n and cj for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}
respectively.

Finally, we are going to connect the two graphs using n copies of the gadget graph
H presented in FigureA.1. In particular, for each i ∈ {1, . . . , n} we create a copy Hi

of H and we attach it to the vertices related to the variable xi. That is, we add Hi to
the graph, and we identify vi,p, vi,n with the vertices w1 and w2 and v′

i,p, v′
i,n with the

vertices w′
1 and w′

2 respectively. This results in a cubic bipartite graph which we call G.

Lemma A.5. Let H = (V, E) be the graph in Figure A.1 and let V ∗ = V \{w1, w2, w′
1, w′

2}
then, the following holds:

• I(H, V ∗) = 3
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u′
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Figure A.1: The gadget used in the construction of Theorem 7.10

v′1,p

v′1,n

v′2,p

v′2,n

...
v′n,p

v′n,n

v1,p

v1,n

v2,p
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c′1

c′2

...

c′m

c1

c2

...

cm

Figure A.2: The cubic bipartite graph G, constructed in the proof of Theorem 7.10

• for any S that is an ir∗(H, V ∗) we have:

– {w1, w2, w′
1, w′

2} ∩ S = ∅,
– {u1, u′

1} ∩ S = ∅
– {u2, u′

2} ∩ S 6= ∅
– {u2, u′

2} ⊈ S

• for any S that is an ir(H, V ∗) and |S| = 4 we have:

– |{w1, w2, w′
1, w′

2} ∩ S| ≤ 1,
– |{u1, u′

1} ∩ S| ≤ 1

Proof. Consider the edges u1u2, v3,1v4,1 and u′
2u′

1. These edges have in common that
both of their incident vertices have the same degree (equal to 3). It follows from Ob-
servation 1 that any ir(H, V ∗) contains at least one vertex in each one of the sets S1 =
N(u1u2) = {w1, w2, u1, u2, v1,1, v1,2}, S2 = N(v3,1v4,1) = {v2,1, v2,2, v3,1, v3,2, v4,1, v5,1}
and S3 = N(u′

2u′
1) = {v6,1, v6,2, u′

2, u′
1, w′

1, w′
2}. Finally, observe that the sets S1, S2 and

S3 are pairwise disjoint. It follows that I(H, V ∗) ≥ 3. To show that I(H, V ∗) = 3, we pro-
vide the following list, which presents all the possible subsets of V that are irregulators
of V ∗ in H and they have order 3:
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• {u2, v2,1, v6,1}

• {u2, v2,1, v6,2}

• {u2, v4,1, v6,1}

• {u2, v4,1, v6,2}

• {v1,1, v3,2, u′
2}

• {v1,2, v3,2, u′
2}

• {v1,2, v3,1, u′
2}

It follows that I(H, V ∗) = 3. Note also that in all the sets presented in the above list,
each set contains exactly one of the vertices u2 and u′

2, and none of the vertices in
{w1, w2, w′

1, w′
2, u1, u′

1}. This suffices to validate the second item of the statement.
In the following list, we present all the possible subsets of V that are ir(H, V ∗) of

order 4, validating the third item of the statement:

• {w1, u2, v2,1, v6,1}
• {w1, u2, v2,1, v6,2}
• {w1, u2, v4,1, v6,1}
• {w1, u2, v4,1, v6,2}
• {w1, v2,2, v2,3, v6,2}
• {w1, v2,2, v2,3, v6,1}
• {w1, v2,2, v2,1, v6,2}
• {w1, v2,2, v2,1, v6,1}
• {w1, v2,2, v4,1, v6,2}
• {w1, v2,2, v4,1, v6,1}
• {w1, v2,3, v2,1, v6,2}
• {w1, v2,3, v2,1, v6,1}
• {w2, u2, v2,1, v6,1}
• {w2, u2, v2,1, v6,2}
• {w2, u2, v4,1, v6,1}
• {w2, u2, v4,1, v6,2}
• {u1, u2, v2,1, v6,2}
• {u1, u2, v2,1, v6,1}
• {u1, u2, v4,1, v6,2}
• {u1, u2, v4,1, v6,1}
• {u1, v1,1, v3,2, u′

2}
• {u1, v1,2, v3,2, u′

2}
• {u1, v1,2, v3,1, u′

2}
• {u1, v3,2, v3,1, u′

2}
• {u1, v3,1, v5,2, u′

2}
• {u1, v3,1, v5,2, w′

1}
• {u1, v3,1, v5,2, w′

2}
• {u2, v2,2, v2,3, v6,2}
• {u2, v2,2, v2,3, v6,1}
• {u2, v2,2, v2,1, v6,2}
• {u2, v2,2, v2,1, v6,1}
• {u2, v2,2, v4,1, v6,2}
• {u2, v2,2, v4,1, v6,1}
• {u2, v2,3, v2,1, v6,2}

• {u2, v2,3, v2,1, v6,1}
• {u2, v2,3, v4,1, v6,2}
• {u2, v2,3, v4,1, v6,1}
• {u2, v2,3, v4,1, u′

1}
• {u2, v2,1, v4,1, v6,2}
• {u2, v2,1, v4,1, v6,1}
• {u2, v2,1, v6,2, v6,1}
• {u2, v2,1, v6,2, u′

1}
• {u2, v2,1, v6,1, u′

1}
• {u2, v4,1, v6,2, v6,1}
• {u2, v4,1, v6,2, u′

1}
• {u2, v4,1, v6,1, u′

1}
• {v1,1, v1,2, v3,2, u′

2}
• {v1,1, v1,2, v3,1, u′

2}
• {v1,1, v1,2, v5,1, u′

2}
• {v1,1, v1,2, v5,1, w′

1}
• {v1,1, v1,2, v5,1, w′

2}
• {v1,1, v3,2, v3,1, u′

2}
• {v1,1, v3,2, v5,1, u′

2}
• {v1,1, v3,2, v5,1, w′

1}
• {v1,1, v3,2, v5,1, w′

2}
• {v1,1, v3,2, v6,2, v6,1}
• {v1,1, v3,2, v5,2, u′

2}
• {v1,1, v3,2, v5,2, w′

1}
• {v1,1, v3,2, v5,2, w′

2}
• {v1,1, v3,2, u′

2, u′
1}

• {v1,1, v3,1, v5,2, u′
2}

• {v1,1, v3,1, v5,2, w′
1}

• {v1,1, v3,1, v5,2, w′
2}

• {v1,1, v5,1, v6,2, v5,2}
• {v1,1, v5,1, v5,2, v6,1}
• {v1,1, v5,1, v5,2, u′

2}
• {v1,1, v5,1, v5,2, u′

1}
• {v1,1, v5,1, v5,2, w′

1}

• {v1,1, v5,1, v5,2, w′
2}

• {v1,1, v3,2, u′
2, w′

1}
• {v1,1, v3,2, u′

2, w′
2}

• {v2,2, v2,3, v6,2, w2}
• {v2,2, v2,3, v6,1, w2}
• {v2,2, v2,1, v6,2, w2}
• {v2,2, v2,1, v6,1, w2}
• {v2,2, v4,1, v6,2, w2}
• {v2,2, v4,1, v6,1, w2}
• {v1,2, v3,2, v3,1, v6,2}
• {v1,2, v3,2, v3,1, v6,1}
• {v1,2, v3,2, v3,1, u′

2}
• {v1,2, v3,2, v5,1, u′

2}
• {v1,2, v3,2, v5,1, w′

1}
• {v1,2, v3,2, v5,1, w′

2}
• {v1,2, v3,2, v5,2, u′

2}
• {v1,2, v3,2, v5,2, w′

1}
• {v1,2, v3,2, v5,2, w′

2}
• {v1,2, v3,2, u′

2, u′
1}

• {v1,2, v3,1, v5,1, u′
2}

• {v1,2, v3,1, v5,1, w′
1}

• {v1,2, v3,1, v5,1, w′
2}

• {v1,2, v3,1, v6,2, v6,1}
• {v1,2, v3,1, v5,2, u′

2}
• {v1,2, v3,1, v5,2, w′

1}
• {v1,2, v3,1, v5,2, w′

2}
• {v1,2, v3,1, u′

2, u′
1}

• {v1,2, v3,1, u′
2, w′

1}
• {v1,2, v3,1, u′

2, w′
2}

• {v1,2, v3,2, u′
2, w′

1}
• {v1,2, v3,2, u′

2, w′
2}

• {v2,3, v2,1, v6,2, w2}
• {v2,3, v2,1, v6,1, w2}



228 APPENDIX A. MISSING PROOFS

At this point we would like to comment on the proof of Lemma A.5. Indeed, one
could prove that lemma by an extensive case analysis. We stress however that, even
taking advantage of Observation 1, that case analysis would be extremely long and
uninteresting. So, instead, we decided to check all possible ir(H, V ∗) of order 3 and 4
with the help of a computer program (running a simple exhaustive algorithm), which
gave us the above lists.

Before we continue, we are going to give some notation that we are going to use in
what follows. First, we call VC the set of all the clause vertices and VX the set of all
the literal vertices. Whenever it is not clear by the context, we use v(i) in order to talk
about the copy of a vertex v ∈ V (H) that belongs to Hi. Similarly, we use V ∗

i to denote
the copy of V ∗ that is inside Hi. For all i ∈ {1, . . . , n}, let Xi be the set of literal vertices
{vi,p, vi,n, v′

i,p, v′
1,n}, Ui be the set that contains the copies of u1 and u′

1 that belong in
Hi and Ni =

∪
v∈Xi

N(v) \Ui the set of clause vertices are adjacent to a literal vertex of
Xi.

Now, assume that we have an irregulator S of G (where G is the graph described in
the previous construction). By Lemma 7.4 we have that S∩V (Hi) is an ir(Hi, V ∗

i ) (since
Hi = G[N [V ∗

i ]]) for all i ∈ {1, . . . , n}. Let I = {j | j ∈ {1, . . . , n} and |V (Hj) ∩ S| = 3}.
Then, for all j ∈ I, the set S ∩ V (Hj) is an ir∗(Hj , V ∗

j ) which means that it has the
same properties as any ir∗(H, V ∗). Furthermore, by Lemma A.5 we know that for all
v ∈ {w1, w2, w′

1, w′
2, u1, u′

1} the copy of v in Hi is not included in S∩V (Hi). Additionally,
one of the u1, u′

1 has degree 2 and the other has degree 3 in the G[V \ S]. We call XL

the set of all the vertices vj,p, vj,n, j ∈ I such that the copy of u′
2 belonging to Hj is

included to S. We call these the “left gadgets” and we denote by nl the number of these
gadgets. Similarly, we call XR the set of all the vertices v′

j,p, v′
j,n, j ∈ I such that the

copy of u2 belonging to Hj is included to S. We call these the “right gadgets” and we
denote by nr the number of these gadgets. The gadgets Hi, i /∈ I, will be called good
gadgets.

Now, we show that I(G) ≥ 4n, and we identify some additional properties of any
minimum irregulator of G.
Lemma A.6. Let G be the graph constructed as described above, starting from an
instance (ϕ, X) of 2-Balanced 3-SAT with |X| = n. Then I(G) ≥ 4n. Furthermore,
any set S that is an ir∗(G), such that |S| = 4n, verifies the following:

1. there is no clause such that both its clause vertices c and c′ belong to S.

2. nl + nr = |S ∩ VC |

3. |S ∩ V (Hi)| ≤ 4 for all i ∈ {1, . . . , n}

4. any clause vertex c ∈ S has exactly two neighbours in XL ∪XR and one neighbour
that belongs to a good gadget.

5. for any c and c′, corresponding to the same clause in ϕ, if c ∈ S (c′ ∈ S resp.)
then there exists a variable vertex v ∈ S such that v ∈ NG(c′) (v ∈ NG(c)).
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Proof. First we show that I(G) ≥ 4n. Let S be an ir(G) and G∗ = G[V \ S]. Let Hi be
the copy of the gadget H that is attached to the literal vertices that correspond to the
variable xi ∈ X. Since I(H, V ∗) = 3, we have that I(G, V ∗

i ) = 3 for all i ∈ {1, . . . , n}.
Observe that for any i ∈ I, |S ∩ V (Hi)| = 3 and S ∩ Xi = ∅. We claim that S
must include at least one vertex of the set Ni. Indeed, if this is not true then all
the vertices in Xi have degree 3 in G∗ and the same holds for one of the vertices in
Ui which lead to a contradiction. It is also worth mentioning that for any i ∈ I, for
(v, u) ∈ {{vi,pvi,n} × {v′

i,pv′
i,n}} we have we have that v ∈ XL ⇐⇒ u /∈ XR so

{v, u} ∩ (XL ∪XR) 6= ∅.
Before we continue, let us give some extra notation. Let CL ⊆ S (resp. CR ⊆ S) be

the set of clause vertices c such that NG(c) ∩ XL 6= ∅ (resp. NG(c) ∩ XR 6= ∅). Note
that CL is subset of the set of clause vertices of F (CL ⊆ V (F )) and CR is subset of the
set of clause vertices of F ′ (CR ⊆ V (F ′)). Furthermore, for 1 ≤ l ≤ 3, let CL,l be the
sets of vertices c ∈ CL such that |N(c) ∩ (

∪
j∈I Xj)| = l and CR,l be the sets of vertices

c ∈ CR such that |N(c) ∩ (
∪

j∈I Xj)| = l. In simple words, CL,l (CR,l resp.) are the
clause vertices that belong to S∩F (to S∩F ′ resp.), which are adjacent to l left or right
gadgets, with at least one of these being a left (right resp.) gadget. Finally, let C ′

L,3 be
the set {c′

i | ci ∈ CL,3} and C ′
R,3 be the set {ci | c′

i ∈ CR,3}. In Figure A.3 we illustrate
all information given above.

We now show that |S ∩ VC | ≥ nl + nr. To do that, we preset some relations between
the sets CL ∪ CR, XL ∪ XR and the edges between them in G. Let E∗ be the set
containing exactly these edges. First, we calculate a lower bound for |E∗|. Observe
that all vertices in XL belong to a left gadget and are neighbours of a copy of u1.
Additionally, dG∗(u1) = 3 for any u1 that belongs to a left gadget. Therefore, for all
v ∈ XL, dG∗(v) ≤ 2 as otherwise G∗ is not locally irregular. This means that each
v ∈ XL has at least one neighbour in S, and thus that there are at least |XL| = 2nl

edges between S and XL. Furthermore, all these edges must be incident to vertices in
CL (by the definition of CL). In the same way we can show that between S and XR

are at least |XR| = 2nr edges all of them being incident to vertices in CR. Therefore,
|E∗| ≥ 2(nl + nr).

Now we are going to calculate an upper bound for |E∗|. To do that, we have to
split E∗ into tree subsets, and treat them separately. For 1 ≤ l ≤ 3, let E∗

l be the
set of edges between CL,l ∪ CR,l and XL ∪ XR. By the definition of CL,1 and CR,1 we
know that each c ∈ CL,1 ∪ CR,1 has exactly one neighbour in XL ∪XR. It follows that
|E∗

1 | ≤ |CL,1 ∪ CR,1|. Also, the vertices c ∈ CL,2 ∪ CR,2 have at most two neighbours in
XL ∪XR. It follows that |E∗

2 | ≤ 2|CL,2 ∪ CR,2|. For the set |E∗
3 |, an easy upper bound

is 3|CL,3 ∪CR,3|. However, we are going to calculate a tighter upper bound. To do that,
we use the following claim.

Claim A.7. Both C ′
R,3 and C ′

L,3 are subsets of S.

Proof. Let c ∈ C ′
R,3. By the definition of C ′

R,3, we know that there exists a c′ ∈ CR,3
and that c′ is incident to a vertex x ∈ XR in G. Let H be the copy of the left gadget
to which x belongs. Without loss of generality, assume that x is a copy of the vertex w′

1
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...

...

...

......

XL

XR

All Fj, j ∈ I
S ∩ V (F ) ∩ VC

CL

CL,1

CL,2

CL,3

C ′R,3

S ∩ V (F ′) ∩ VC

CR

CR,1

CR,2

CR,3

C ′L,3

Figure A.3: An illustration of the subsets of CL and CR, defined in the proof of The-
orem 7.10. The edges incident to clause vertices: are dashed if they are incident to
vertices of Fi for some i /∈ I; are not dashed if they are incident to vertices of Fj for
some j ∈ I. We know that the black vertices do not belong to S and that the light-grey
vertices belong to S.

of H. Therefore, in G, the vertex c is adjacent to the the copy of w1 that belongs to H.
Now, let z be the other clause vertex adjacent to w1 in G. In order to decide if c belongs
to S we need to consider two cases, the first being when z ∈ S and the second when
z /∈ S. For the first case (z ∈ S), consider the vertex u1 ∈ H. Since H is a left gadget,
we have that u1 /∈ S, and that dG∗(u1) = 2. It follows that c ∈ S as otherwise we would
have that dG∗(w1) = dG∗(u1) = 2. So let z /∈ S (second case) and assume that z /∈ S. It
follows that dG∗(c) = 3 as all of the neighbours of c in G are copies of vertices of XR or
of XL (by the construction of C ′

R,3) and none of these vertices belongs to S. Also, since
z /∈ S, we have that dG∗(w1) = 3 which is a contradiction since c is adjacent to w1. So,
for any c ∈ C ′

R,3 we have that c ∈ S. With symmetric arguments we can show that any
c ∈ C ′

L,3 must belong to S.
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In order to calculate a tighter upper bound for E∗
3 we are going to use the sets

CL,3 ∪ C ′
R,3 and CR,3 ∪ C ′

L,3. Observe that the set CR,3 ∪ C ′
L,3 contains exactly the

copies of the vertices in CL,3 ∪ C ′
R,3. Now, due to symmetry, we have that each pair

(cj , c′
j) ∈ (CL,3∪C ′

R,3)× (CR,3∪C ′
L,3) has exactly three neighbours in XL∪XR (if cj has

ℓ ≤ 3 neighbours in XL then c′
j has 3− ℓ neighbours in XR and vice versa). Therefore,

between the sets CL,3 ∪C ′
R,3 ∪CR,3 ∪C ′

L,3 and XL ∪XR we have exactly 3|CL,3 ∪C ′
R,3|

edges in G. Since CL,3 ∪CR,3 ⊆ CL,3 ∪C ′
R,3 ∪CR,3 ∪C ′

L,3 we have |E∗
3 | ≤ 3|CL,3 ∪C ′

R,3|.
Combining the above upper bounds, we get that |E∗| ≤ |CL,1 ∪ CR,1| + 2|CL,2 ∪

CR,2|+ 3|CL,3 ∪ C ′
R,3|.

By combining the lower and the upper bounds for |E∗|, we get the following inequal-
ity:

2(nl + nr) ≤ |CL,1 ∪ CR,1|+ 2|CL,2 ∪ CR,2|+ 3|CL,3 ∪ C ′
R,3| (A.7)

Since the sets CL,3 ∪ C ′
R,3 and CR,3 ∪ C ′

L,3 are both subsets of S (by Claim A.7), we
have that S ⊇ CL,1 ∪CL,2 ∪CL,3 ∪C ′

R,3 ∪CR,1 ∪CR,2 ∪CR,3 ∪C ′
L,3. Also, since the sets

CL,3 ∪ C ′
R,3 and CR,3 ∪ C ′

L,3 have the same cardinalities, we get that:

|S ∩ VC | ≥ |CL,1 ∪ CR,1|+ |CL,2 ∪ CR,2|+ 2|CL,3 ∪ C ′
R,3| (A.8)

If we combine the two inequalities A.7 and A.8, we get that:

2(nl + nr) ≤ 2|S ∩ VC | − |CL,1 ∪ CR,1| − |CL,3 ∪ C ′
R,3|

This gives us that |S ∩ VC | ≥ nl + nr, from which follows that |S| ≥ 4n.
Now, by taking a closer look at the previous inequalities, we can gain some extra

information. Note that from this point we are considering only cases where we have an
irregulator S such that |S| = 4n. Since for all i /∈ I we have |S ∩ V (Hi)| ≥ 4, it follows
that:

|S| =
∑
i/∈I
|S∩V (Hi)|+

∑
i∈I
|S∩V (Hi)|+ |S∩VC | =

∑
i/∈I
|S∩V (Hi)|+3(nl +nr)+ |S∩VC |.

Note that the number of the gadgets Hi with i /∈ I, is exactly n− (nl + nr). Assume
now that |S ∩ VC | > (nl + nr). Then:

|S| =
∑
i/∈I
|S ∩ V (Hi)|+ 3(nl + nr) + |S ∩ VC |

≥ 4(n− nl − nr) + 3(nl + nr) + |S ∩ VC | since ∀i /∈ I : |S ∩ V (Hi)| ≥ 4
> 4(n− nl − nr) + 4(nl + nr) since |S ∩ VC | > (nl + nr)
= 4n

noindent which is a contradiction. Thus |S ∩ VC | = (nl + nr). Now assume that there
exists an i /∈ I such that |S ∩ V (Hi)| > 4. Then:
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|S| =
∑
i/∈I
|S ∩ V (Hi)|+ 3(nl + nr) + |S ∩ VC |

≥
∑
i/∈I
|S ∩ V (Hi)|+ 4(nl + nr) since |S ∩ VC | = (nl + nr)

> 4(n− nl − nr) + 3(nl + nr) + (nl + nr) since ∃i /∈ I : |S ∩ V (Hi)| > 4
= 4n

This, again, is a contradiction. Therefore, |S ∩ VC | = (nl + nr) and for all i /∈ I we have
|S ∩ V (Hi)| ≤ 4. In addition, for all i ∈ I, we have that |S ∩ V (Hi)| = 3. At this point
we have shown the items 2. and 3. of the statement

Also, from eq. A.7, we can deduce that both CL,1 ∪ CR,1 and CL,3 ∪ C ′
R,3 are empty

sets as otherwise |S ∩ VC | > nl + nr. Furthermore, C ′
R,3 being empty means that CR,3

is empty as well.
Now we are going to show that S ∩VC = CL,2 ∪CR,2 and that there no clause vertex

c ∈ CL,2 such that its copy c′ belongs to CR,2 (which suffices to prove items 4. and
1.). We first show that S ∩ VC = CL,2 ∪ CR,2. Assume that S ∩ VC ⊃ CL,2 ∪ CR,2.
Then, |S ∩ VC | > |CL,2 ∪ CR,2|. Using this we can modify eq. A.7. This gives us
2(nl+nr) ≤ 2|CL,2∪CR,2| < 2|S∩VC | which contradicts the fact that |nl+nr| = |S∩VC |.

Assume now that there exists a set of clauses Sc ⊂ CL,2 such that for each c ∈ Sc

we have that its copy c′ belongs to CR,2. Furthermore, let Sc be the largest such set
and S′

c be the set {c′ | c ∈ Sc}. We are going to calculate a new upper bound for the
edges between S ∩VC and XL∪XR in G. Observe that, by construction, all the vertices
in CL,2 ∪ CR,2 have exactly two neighbours in ∪j∈I Xi. Furthermore, the vertices in CL

have at least one neighbour in XL and the vertices in CR have at least one neighbour
in XR. So, we can conclude that all vertices in Sc ∪ S′

c have exactly one neighbour in
XL ∪ XR and all vertices in (CL,2 ∪ CR,2) \ (Sc ∪ S′

c) have exactly two neighbours in
XL∪XR. In this case, the maximum number of edges between S∩VC = CL,2∪CR,2 and
XL ∪XR in G is |Sc ∪ S′

c|+ 2|(CL,2 ∪CR,2) \ (Sc ∪ S′
c)| = 2|S ∩ VC | − |Sc ∪ S′

c|. Since we
have assumed that Sc is not empty we have 2(nl +nr) ≤ 2|S∩VC |− |Sc∪S′

c| < 2|S∩VC |
which contradicts to the fact that |S ∩ VC | = nl + nr.

It remains to prove item 5. For that, consider a vertex c ∈ S ∩ VC . W.l.o.g. assume
that c ∈ CL. Recall that we have shown that S ∩ VC = CL,2 ∪ CR,2. Therefore, c′ has
two neighbours in left gadgets and one in a good gadget. Furthermore, since no literal
vertex of a left gadget has been included in S we know that dG∗(c′) ≥ 2. We show the
following claim:

Claim A.8. dG∗(c′) = 2

Proof. Assume that c′ has degree 3 in G∗. Now consider one of the neighbours of c′

which belongs to a left gadget; let us call this neighbour v′. Since v′ is a literal vertex
of a left gadget and the vertex u′

1 of each left gadget has dG∗(u′
1) = 2 we know that the

degree of v′ in G∗ can be 0, 1 or 3 (because S is an ir(G)). Observe that u′
1 and c′ do
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not belong to S so v′ has at least two neighbours in G∗. This means that dG∗(v′) can
be only 3. This is a contradiction because G∗ is a locally irregular graph, and the edge
v′c′ belongs to G∗ and dG∗(v′) = dG∗(c′) = 3.

Therefore c′ can not have degree three in G∗, from which follows that one of its
neighbours belong to S. This completes the proof of the lemma.

Proof of Theorem 7.10

Proof. Since the problem is clearly in NP, we focus on proving it is also NP-hard. The
reduction is from 2-Balanced 3-SAT, which was proven to be NP-complete in [29].
Starting with a formula ϕ over a set of n variables X we create the graph G = (V, E)
described above (illustrated in Figure A.2). We claim that I(G) = 4n if and only if ϕ is
satisfiable.

Assume that ϕ is satisfiable and let t : X → {T, F} be a satisfying assignment.
We construct an irregulator of G as follows: for each copy of H, select the vertices
u1, v3,1, v5,2. Then for each i ∈ {1, . . . , n} we select the vertex v′

i,p if t(xi) = T and the
vertex v′

i,n otherwise. Let S be the set of all of these vertices and G∗ = G(V \ S). We
claim that S is an ir∗(G). First observe that |S| = 4n since we have select exactly 4
vertices from each copy of H. Furthermore, observe that, for each i ∈ {1, . . . , n} we have
that S ∩ V (Hi) is an ir(G[V (Hi)], V ∗

i ). Thus, to show that S is an ir(G), it suffices to
show that there is no literal vertex in G[V (G) \ S] that has the same degree as one of
its neighbours (all the other pair of vertices either do not share an edge or they do not
have the same degree because S∩V (Hi) is an ir(G[V (Hi)], V ∗

i )). Observe that no literal
vertex v, incident to a copy of u1 in G, has been included in S. Therefore, any clause
vertex c adjacent to any such literal vertex v, has degree 3 in G∗. Furthermore observe
that for each such literal vertex v, the set S contains its neighbour u1. Thus, any such
literal vertex has degree 2 in G∗ and only neighbours of degree 3. Now consider any
literal vertex v′ ∈ V \ S, incident to copies of u′

1. Since S does not include any vertex
of VC (recall that VC is the set of all clause vertices in G) and any copy of u′

1, we have
dG∗(v′) = 3. Furthermore, by the construction of S we have that dG∗(u′

1) = 2 for all
the copies of u′

1. It remains to show that the clause vertices c′ ∈ VC ∩ V (F ′) (the set
of clause vertices to the right of the Figure A.2) have dG∗(c′) ≤ 2. Since S contains all
the literal vertices that correspond to all the true literals under t, and t is a satisfying
assignment, we know that S contains least one neighbour of c′ for all c′ ∈ VC ∩ V (F ′).
Since these vertices do not exist in G∗, we have dG∗(c′) ≤ 2 for all c′ ∈ VC ∩ V (F ′).
Therefore, S is an ir(G). Additionally, since |S| = 4n and we know that I(G) ≥ 4n, we
have that S is an ir∗(G).

For the reverse direction, let S be an ir∗(G) of size 4n. We show that ϕ is satisfiable.
In particular we claim that

t(xi) =
{

T if {vi,p, v′
i,p} ∩ S 6= ∅,

F otherwise

is a satisfying assignment of ϕ.
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Since, by Lemma A.5, we have that for all i, |{vi,p, v′
i,p, vi,n, v′

i,n} ∩ S ∩ Hi| ≤ 1, it
suffices to show that for each clause Cj we have N({cj , c′

j})∩ S 6= ∅. Assume that there
exists a clause Cj such that N({cj , c′

j})∩S = ∅. We distinguish two cases: {cj , c′
j}∩S 6= ∅

and {cj , c′
j} ∩ S = ∅.

Case 1 ({cj , c′
j} ∩ S 6= ∅). Let c ∈ {cj , c′

j} ∩ S; since the irregulator S has size 4n,
by Lemma A.6, we know that there exists a literal vertex v ∈ N({cj , c′

j}) ∩ S. This is a
contradiction.

Case 2 ({cj , c′
j} ∩ S = ∅). Here, again, we are going to distinguish two cases; first

if there exists a k ∈ I such that N({cj , c′
j})∩ V (Hk) 6= ∅ and, second, if there is no such

k ∈ I.
Case 2(a) (N({cj , c′

j}) ∩ V (Hk) 6= ∅). W.l.o.g. let Hk be a left gadget. Then, c′
j is

adjacent to one of the vertices v′
k,p or v′

k,n; let us call v′ the neighbour of c′
j in Hk. Since

v′ belongs to a left gadget and c′
j /∈ S, we have dG∗(v′) ≥ 2 which is a contradiction.

Indeed, v′ is a literal vertex of a left gadget and we know that dG∗(u′
1) = 2 in any left

gadget. Furthermore dG∗(c′
j) = 3. It follows that v′ has the same degree as either c′

j (if
dG∗(v′) = 3) or the vertex u′

1 belonging to Hk (if dG∗(v′) = 2).
Case 2(b) (N({cj , c′

j}) ∩ V (Hk) = ∅ for all k ∈ I). Let Hk be a gadget such
that N({cj , c′

j}) ∩ V (Hk) 6= ∅. By the hypothesis, k /∈ I. By Lemma 7.4 we have
that Sk = S ∩ V (Hk) is an ir(Hk, V ∗

k ). Furthermore, since k /∈ I, we have that |Sk| =
|S ∩ V (Hk)| = 4.

Therefore, we know that at most one of u1 and u′
1 (of Hk) is included in S (since, by

Lemma A.5, at most one of them is included in Sk). W.l.o.g. assume that u1 /∈ S. Let
v ∈ {vk,p, vk,n} be the neighbour of cj in Hk. Since NG∗(v) ⊇ {cj , u1} and dG∗(cj) = 3,
it follows that NG∗(v) = {cj , u1} and that there exists a q 6= j such that cq ∈ NG(v) and
cq ∈ S.

We are going to show that c′
j has a neighbour v′ ∈ S. Due to symmetry we know

that the copies c′
j and c′

q have a common neighbour v′ in Hk. Furthermore, because of
Lemma A.6 we know that two of the neighbours of c′

q belong to left gadgets and the
third belongs to a good gadget. Also, the neighbour that belongs to a good gadget must
belong to S. Since v′ belongs to a good gadget and it is a neighbour of c′

q, it follows
that v′ ∈ S. This contradicts the starting assumption that NG{cj , c′

j} ∩ S = ∅.
This ends the proof of the theorem.

Proof of Theorem 8.5
In order to prove this theorem we need first to define a restricted version of Exactly-1
3-SAT.

Definition A.1 (Restricted Exactly 1 (3,2)-SAT). Assume that ϕ is a CNF for-
mula where each clause has either three or two literals and each variable appears at most
three times. We want to determine whether there exists a satisfying assignment so that
each clause has exactly one true literal.

Lemma A.9. The Restricted Exactly-1 (3,2)-SAT is NP-complete.
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Proof. We show a reduction from Exactly-1 3-SAT which is known to be NP-complete
[94] (lo4, one-in-three 3sat).

Let I = (ϕ, X) be an instance of Exactly-1 3-SAT with |X| = n variables and m
clauses. If there exists a variable x with k > 3 appearances, we replace each appearance
with a fresh variable xi, i ∈ [k] and add to the formula the clauses (¬x1 ∨ x2) ∧ (¬x2 ∨
x3) . . . (¬xk ∨ x1). We repeat this for all variables that appear more than three times.
Let I ′ = (ϕ′, X ′) be this new instance.

We claim that I = (ϕ, X) is a yes instance of Exactly-1 3-SAT iff I ′ = (ϕ′, X ′) is
a yes instance of Restricted Exactly-1 (3,2)-SAT.

Let S : X → {T, F} be a satisfying assignment for ϕ such that each clause of ϕ
has exactly one true literal. It is not hard to see that S′ : X ′ → {T, F} such that
S′(x) = S(x) if x ∈ X and S′(xi) = S(x) if xi replaces one appearance of x ∈ X, is a
satisfying assignment for ϕ′ such that each clause of ϕ′ has exactly one true literal.

Conversely, let S′ : X ′ → {T, F} be a satisfying assignment for ϕ′ such that each
clause of ϕ′ has exactly one true literal. Let xi, i ∈ [k], be the variables replacing x.
Because we have clauses (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) . . . (¬xk ∨ x1) we know that all the xi,
i ∈ [k], must have the same value in order to guarantee that all of these clauses have
exactly one true literal. Furthermore, is not hard to see that S : X → {T, F} where
S(x) = S′(x) if x ∈ X ′ and S(x) = S′(x1) if x1 replaces one appearance of x, then S is
a satisfying assignment for ϕ such that each clause of ϕ has exactly one true literal.

Now, let us give a construction that we are going to use.
Construction.
Let ϕ be an instance of Restricted Exactly 1 (3,2)-SAT with variables X =
{x1, . . . , xn} and clauses C = {c1, . . . , cm}. We will construct an instance of the cross-
word problem with alphabet L = {s1, s2, s3} where each letter has weight 1. The dictio-
nary D is as follows.

Let nlj ∈ {2, 3} be the number of literals in cj . For each variable xi, let ai ≤ 3 be
the number of its appearances in ϕ. Then, we create 3ai words, di,k,T , di,k,F and di,k,
for each k ∈ [ai] as follows.

• di,k,T and di,k,F have length m + n + 3i + k,

• the last letter of di,k,T is sk,

• the last letter of di,k,F is sk′ where k′ := k + 1 when k < ai, otherwise k′ := 1,

• if the k-th appearance of xi is positive then, di,k,T starts with s1 and di,k,F starts
with s2,

• if the k-th appearance of xi is negative then, di,k,T starts with s2 and di,k,F starts
with s1,

• the word di,k has length m + i + 1 and starts with sk, and

• all the other letters of these words can be chosen arbitrarily.
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Observe that the above process gives three words for each literal in ϕ.
For each clause cj , j ∈ [m], we construct nlj distinct words dt

j , t ∈ [nlj ] of length
1 + j such that one of them starts with the letter s2, the other nlj − 1 words start with
s1, and the unspecified letters can be chosen arbitrarily. Observe that we have enough
positions in order to create nlj − 1 distinct words starting with s1, which indicates that
we can create nlj pairwise distinct words for each cj .

In order to finish our construction we have to specify the grid. For each clause cj and
each literal l in cj we construct two pairs of slots as follows. Let l be the k-th appearance
of variable xi, k ∈ [ai]. The first pair of slots (type 1) consists of one horizontal slot
hSloti,k

j,1 of length m + n + 3i + k, and one vertical slot vSloti,k
j,1 of length m + i + 1 such

that, the last cell of the horizontal slot and the first cell of the vertical slot is the shared
cell. The second pair of slots (type 2) consists of one horizontal slot hSloti,k

j,2 of length
m + n + 3i + k, and one vertical slot vSloti,k

j,2 of length j + 1, that share their first cells.
Here let us mention that the grid we constructed is consisted only by T s.

Before we continue with the proof let us observe that in the instance of crossword
puzzle we created the number of slots in the grid is equal to the number of words in the
dictionary. Furthermore, we can specify in which slots each word can be assigned by
considering the size of the words and slots. For any i ∈ [n] and k ∈ [ai] the word di,k

can be assigned only to the vertical slots of the type 1 pairs of slots. For any j ∈ [m]
and t ∈ [nlj ] the word dt

j can be assigned only to the vertical slots of the type 2 pairs of
slots. The rest of the words can be assigned to horizontal slots of any type.

Let us first prove the following property where j(i, k) denotes the index of the clause
where the k-th occurrence of xi appears.

Property A.10. For any given i ∈ [n], slots hSloti,k
j(i,k),1 and vSloti,k

j(i,k),1 for k ∈ [ai]
are all filled iff we have assigned either all the words of {di,k,T : k ∈ [ai]}, or all the
words of {di,k,F : k ∈ [ai]}, to the slots hSloti,k

j(i,k),1, k ∈ [ai].

Proof. In one direction, if we have assigned to slots hSloti,k
j(i,k),1, k ∈ [ai], all the words

of {di,k,T : k ∈ [ai]} or all the words of {di,k,F : k ∈ [ai]}, then all the letters s1, . . . , sai

appear exactly once in the end of these ai slots. Because the words of {di,k: k ∈ [ai]}
start exactly with this set of letters, there is a unique way to assign them properly to
the slots vSloti,k

j(i,k),1, k ∈ [ai].
Conversely, assume that all the type 1 pairs of slots of xi are filled. Because the

only words that have the same length as slots vSloti,k
j(i,k),1, k ∈ [ai], are the words of

{di,k : k ∈ [ai]}, we know that in the end of slots hSloti,k
j(i,k),1, k ∈ [ai], each letter of

{s1, . . . , sai} appears exactly once. It is not hard to see that no combination of words
except {di,k,T : k ∈ [ai]} or {di,k,F : k ∈ [ai]}, gives the same letters in the shared
positions.

Now we are ready to present the proof of Theorem 8.5.

Proof. We show a reduction from Restricted Exactly 1 (3,2)-SAT. We claim that
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ϕ is a yes instance of Restricted Exactly 1 (3,2)-SAT iff we can fill all the slots of
the grid.

Suppose f : X → {T, F} is a truth assignment so that each clause of ϕ has exactly
one true literal that satisfies ϕ.

We are going to show a way to fill all the slots of the grid. Each variable xi appears
in ai literals; let l(i, k), k ∈ [ai], be these literals and j(i, k) ∈ [m], k ∈ [ai], be the indices
of the clauses cj(i,k) that contain the corresponding literals.

For each variable xi, fill the 3ai slots hSloti,k
j(i,k),1, hSloti,k

j(i,k),2 and vSloti,k
j(i,k),1 for all

k ∈ [ai] as follows. If f(xi) = T , then:

• assign di,k,T to hSloti,k
j(i,k),1 for all k ∈ [ai] and

• assign di,k,F to hSloti,k
j(i,k),2 for all k ∈ [ai].

Otherwise (f(xi) = F ):

• assign di,k,F to hSloti,k
j(i,k),1 for all k ∈ [ai] and

• assign di,k,T to hSloti,k
j(i,k),2 for all k ∈ [ai].

Finally, in both cases, we assign the words of {di,k : k ∈ [ai]} to the slots vSloti,k
j(i,k),1 for

k ∈ [ai] in any way they fit.
In order to fill the grid completely, for each j ∈ [m], we assign to the nlj slots,

vSloti,k
j,2, the words dk′

j for k′ ∈ [nlj ] in any way they fit.
It is not hard to see that we have assigned words to slots of the same length. It

remains to prove that the words we have assigned have the same letters in the shared
positions.

First observe that for a variable xi and the slots hSloti,k
j(i,k),1, k ∈ [ai], we have put

either {di,k,T : k ∈ [ai]} or {di,k,F : k ∈ [ai]}. Therefore, we know by Property A.10 that
we can use the words of {di,k : k ∈ [ai]} in the slots vSloti,k

j(i,k),1, k ∈ [ai].
In the nlj slots, vSloti,k

j,2, related to clause cj , we have put the words dk′
j , k′ ∈ [nlj ].

One of these words starts with s2 and the nlj − 1 others start with s1. We will show
that the same holds for the words we have assigned in the nlj slots hSloti,k

j,2.
Observe that each literal l ∈ cj can be described by a unique triplet (j, i, k) where

j ∈ [m] is the index of the clause, i ∈ [n] is the index of the variable xi on which l is
built, and k ∈ [ai] is the number of times that xi has appeared in ϕ until now. We claim
that if the literal l described by (j, i, k) satisfies cj , then the word assigned to hSloti,k

j,2
starts with s2, otherwise it starts with s1.

If l satisfies cj , then either l = xi and f(xi) = T or l = ¬xi and f(xi) = F . If l = xi

(resp., l = ¬xi), then we have assigned di,k,F (resp., di,k,T ) to hSloti,k
j,2 which starts with

s2 because f(xi) = T (resp., f(xi) = F ). If l does not satisfy cj , then we used di,k,T

(resp., di,k,F ) which starts with s1.
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Finally, because we assumed that each clause is satisfied by exactly one literal, we
know that one of the clause words starts with s2 and the other nlj−1 clause words start
with s1.

Conversely, we claim that if we can fill the whole grid, then we can construct a truth
assignment f : X → {T, F} such that each clause of ϕ has exactly one true literal.
Furthermore, one such assignment is the following:

f(xi) =

T, if di,1,T is assigned to hSloti,1
j(i,1),1,

F, otherwise.
(A.9)

We first prove the following claim.

Claim A.11. Let l be the literal of a clause cj corresponding to the k-th appearance of
some variable xi. l is true under the truth assignment (A.9) iff the word in hSlotsi,k

j,2
starts with s2.

Proof. Due to its length, hSlotsi,k
j,2 receives either di,k,T or di,k,F , and one of these words

starts with s2 whereas the other starts with s1. Therefore, we have two cases. In the
first case di,k,F starts with s2, then di,k,T starts with s1 and l = xi. In the second case,
di,k,T starts with s2, di,k,F starts with s1 and l = ¬xi.

Assume that di,k,F (resp., di,k,T ) starts with s2. By construction, we have that l = xi

(resp., l = ¬xi).
If di,k,F (resp., di,k,T ) is assigned to hSlotsi,k

j,2, then di,k,T (resp., di,k,F ) is assigned to
hSlotsi,k

j,1. By Property A.10 we know that hSlotsi,1
j,1 must contain di,1,T (resp., di,1,F ) so

f(xi) = T (resp., f(xi) = F ). So, if di,k,F (resp., di,k,T ) is assigned to hSlotsi,k
j,2, then we

know that f(xi) = T (resp., f(xi) = F ) and l = xi (resp., l = ¬xi) which means that l
must be true under the truth assignment (A.9).

In reverse direction, if we have assigned di,k,T (resp., di,k,F ) to hSlotsi,k
j,2, then we

know that f(xi) = F (resp., f(xi) = T ) and l = xi (resp., l = ¬xi) thus, l is false under
the truth assignment (A.9).

Based on the previous claim, we will show that each clause has exactly one true
literal under the truth assignment f given in (A.9).

For any j ∈ [m] there are exactly nlj pairs (i, k) where i ∈ [n] and k ∈ [ai] such that
the k-th appearance of xi is in cj . Let Cj be the set that contains contains all these
pairs (i, k).

Observe that for each pair (i, k) ∈ Cj there exists a pair of slots hSlotsi,k
j,2, vSlotsi,k

j,2
which share their first cells. Because the grid is full, the nlj vertical slots, vSlotsi,k

j,2,
where (i, k) ∈ Cj , must contain the words dt

j , t ∈ [nlj ]. One of these words starts with
s2 and nlj − 1 others start with s1. Therefore, the same must hold for the words that
have been assigned in the slots hSlotsi,k

j,2 for (i, k) ∈ Cj .
Using the previous claim, we know that one of the literals in cj is true and the other

nlj −1 are false under the truth assignment A.9. Therefore, if we can fill the whole grid,
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then there exists a truth assignment such that exactly one literal of each clause of ϕ is
true.
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