Alexandre Araujo 
  
Blaise Delattre 
  
Raphaël Ettedgui 
  
Evrard Garcelon 
  
Iskander Legheraba 
  
Rafael Pinot 
  
Baptiste 
  
  
  
  
  

Pour commencer, j'exprime mon immense gratitude à Julien Mairal et Panayotis Mertikopoulos d'avoir accepté d'être rapporteurs de cette thèse, pour leur lecture attentive du manuscrit ainsi que les commentaires avisés et détaillés qu'ils en ont fait. Je remercie Gabriel Peyré d'avoir été président du jury, ainsi que Isabelle Guyon pour avoir été examinatrice. Ce fut un plaisir et un honneur de présenter mes travaux devant des chercheurs d'une telle renommée internationale. Nos échanges pendant la soutenance ont été très enrichissants et ont permis d'ouvrir de nouvelles pistes potentielles de recherches.

Je remercie chaleureusement et amicalement mes deux maîtres de thèse Jamal Atif et Olivier Teytaud pour les trois ans e ectués de travail ensemble et leur précieux encadrement. C'est grâce à eux que j'ai pu m'épanouir autant d'un point de vue personnel que professionel au cours de cette aventure. Je remercie Jamal m'avoir donné cette chance de pouvoir travailler sur un sujet aussi passionant que les attaques adverses en apprentissage automatique. Grâce à lui, j'ai pu découvrir le monde de la recherche académique, qui m'a passionné à bien des égards. Jamal m'a aussi apporté une rigueur scienti que, ainsi qu'une ouverture d'esprit sur les sujets que nous abordions. Son investissement tant scienti que qu'humain dans mes travaux a largement contribué à la réussite de ce doctorat . Olivier fut également un maître de thèse formidable. Il m'a beaucoup aidé à me focaliser sur des sujets qui puissent avoir une application concrète. De plus, Olivier a toujours été présent pour m'épauler quand j'avais des moments de doute. Si un jour je devais encadrer une thèse, j'espère le faire aussi bien que Jamal et Olivier.

List of Figures and Tables

.

On the left, illustration of common standardly calibrated losses. On the right plot of their symmetrized version. Here we notice that 0 ∈ argmin α φ(α) + φ(-α) for all these losses. Thus none of them are adversarially calibrated. . . . . Illustration of the a calibrated loss in the adversarial setting. ). The target arm is arm 3 or 5 and the dashed black line is the convex hull of the other con dence sets. The ellipsoids are the con dence sets C t,a for each arm a. If we consider only arms {1, 2, 4, 5}, and we use 5 as the target arm, the condition (D. ) is satis ed as there is a θ outside the convex hull of the other con dence sets. On the other hand, if we consider arms {1, 2, 3, 4} and we use 3 as the target arm, the condition is not satis ed anymore. . 

E.

Removing either parameter obfuscation or DFA from our defense causes a large drop in accuracy. This con rms the intuition that robustness is given by the inability to e ciently generate attacks in a white-box settings when the parameters are obfuscated, and that DFA is capable of generating partially robust features. We note that even though the non-linearity |.| 2 does not contribute to robustness, it is key to obfuscation, preventing trivial retrieval. Transfer performance does not change much when removing components of the defense. While the Base model is not ablated, we leave its performance as a term of comparison.

E.

Square attack can be evaded by simply retraining on natural data the classi er of a robust model. We con rm the same result when retraining the standard fully connected classi cation layer in the pretrained models in place of the ROPUST module (Defense-free result in the chart on the right). While the Base model is not ablated, we leave its performance as a term of comparison. . . . . .
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Simpli ed modelling of phase retrieval. The retrieved matrix U is modeled as the linear interpolation between the real transmission matrix U and a random matrix R, only for some columns selected by a mask. Varying the value of α and the percentage of masked columns allows to modulate the knowledge of the attacker without running resource-hungry phase retrieval algorithms. . . . . .
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Performance of an APGD-CE attack with a retrieved matrix in place of the, otherwise unknown, transpose of the transmission matrix. As expected, a better knowledge of the transmission matrix, i.e. higher alpha and/or higher percentage of known columns correlates with the success of the attack, with a sharp phase transition. At rst glance, it may seem that even a coarsegrained knowledge of the TM can help the attacker. However, optical phase retrieval works on the output correlation only: accordingly, we nd that even state-of-the-art phase retrieval methods operates only in the white contoured region, where the robustness is still greater than the Base models. We highlighted the accuracies achieved under attack in this region in the heat-map. . . . . . . .
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Equitable and optimal division of the resources between N = 3 di erent negative costs (i.e. utilities) given by EOT. Utilities have been normalized. Blue dots and red squares represent the di erent elements of resources available in each cake. We consider the case where there is exactly one unit of supply per element in the cakes, which means that we consider uniform distributions. Note that the partition between the agents is equitable (i.e. utilities are equal) and proportional (i.e. utilities are larger than 1/N ). . . . . . . . . . . . . . . . . . . . . . . . .
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Left, middle left, middle right: the size of dots and squares is proportional to the weight of their representing atom in the distributions µ * k and ν * k respectively. The utilities f * k and g * k for each point in respectively µ * k and ν * k are represented by the color of dots and squares according to the color scale on the right hand side. The gray dots and squares correspond to the points that are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ * k or ν * k . Right: the size of dots and squares are uniform since they correspond to the weights of uniform distributions µ and ν respectively. The values of f * and g * are given also by the color at each point. Note that each agent gets exactly the same total utility, corresponding exactly to EOT. This value can be computed using dual formulation (F. ) and for each gure it equals the sum of the values (encoded with colors) multiplied by the weight of each point (encoded with sizes).

F.

Comparison of the time-accuracy tradeo s between the di erent proposed algorithms. Left: we consider the case where the number of days is N = 2, the size of support for both measures is n = m = 100 and we vary ε from 0.005 to 0.5. Middle: we x n = m = 100 and the regularization ε = 0.05 and we vary the number of days N from to . Right: the setting considered is the same as in the gure in the middle, however we increase the sample size such that n = m = 500. Note that in that case, LP is too costly to be computed. . . . . xxiv
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Comparison of the optimal couplings obtained from standard OT for three different costs and EOT in case of negative costs (i.e. utilities). Blue dots and red squares represent the locations of two discrete uniform measures. Left, middle left, middle right: Kantorovich couplings between the two measures for negative Euclidean cost (-• 2 ), negative square Euclidean cost (-• 2 2 ) and negative . L norm (-• 1.5 1 ) respectively. Right: Equitable and optimal division of the resources between the N = 3 di erent negative costs (i.e. utilities) given by EOT. Note that the partition between the agents is equitable (i.e. utilities are equal) and proportional (i.e. utilities are larger than 1/N . . . . . . . . . . . . .
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Comparison of the optimal couplings obtained from standard OT for three different costs and EOT in case of postive costs. Blue dots and red squares represent the locations of two discrete uniform measures. Left, middle left, middle right: Kantorovich couplings between the two measures for Euclidean cost ( • 2 ), square Euclidean cost ( • 2 2 ) and . L norm ( • 1.5 1 ) respectively. Right: transport couplings of EOT solving Eq. (F. ). Note that each cost contributes equally and its contribution is lower than the smallest OT cost. . . . . . . . . .
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Left, middle left, middle right: the size of dots and squares is proportional to the weight of their representing atom in the distributions µ * k and ν * k respectively. The utilities f * k and g * k for each point in respectively µ * k and ν * k are represented by the color of dots and squares according to the color scale on the right hand side. The gray dots and squares correspond to the points that are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ * k or ν * k . Right: the size of dots and squares are uniform since they correspond to the weights of uniform distributions µ and ν respectively. The values of f * and g * are given also by the color at each point. Note that each agent gets exactly the same total utility, corresponding exactly to EOT. This value can be computed using dual formulation (F. ) and for each gure it equals the sum of the values (encoded with colors) multiplied by the weight of each point (encoded with sizes).

F.

Left, middle left, middle right: the size of dots and squares is proportional to the weight of their representing atom in the distributions µ * k and ν * k respectively. The collection "cost" f * k for each point in µ * k , and its delivery counterpart g * k in ν * k are represented by the color of dots and squares according to the color scale on the right hand side. The gray dots and squares correspond to the points that are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ * k or ν * k . Right: the size of dots and squares are uniform since they corresponds to the weights of uniform distributions µ and ν respectively. The values of f * and g * are given also by the color at each point. Note that each agent earns exactly the same amount of money, corresponding exactly EOT cost. This value can be computed using dual formulation (F. ) or its reformulation (F. ) and for each gure it equals the sum of the values (encoded with colors) multiplied by the weight of each point (encoded with sizes). . . . . . . . . . . . . .
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In this experiment, we draw samples from two normal distributions and we plot the relative error from ground truth for di erent regularizations. We consider the case where two costs are involved: c 1 = 2 × 1 x =y , and c 2 = d where d is the Euclidean distance. This case corresponds exactly to the Dudley metric (see Proposition ). We remark that as ε → 0, the approximation error goes also to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Comparison of the KS statistic (left) and the AUPC (right) of our test statistic NCI n,r,p when the data is generated respectively from the models de ned in (G. ) and (G. ) with Gaussian noises for multiple p and J. For each problem, we draw n = 1000 samples and repeat the experiment times. We set r = 1000 and report the results obtained when varying the dimension d z of each problem from to . Observe that when J = 1, for all p ≥ 1 NCI n,r,1 = NCI n,r,p , therefore there is only one common black curve. . . . . . . . . . . .
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the oracle statistic CI n,p and the approximate normalized statistic NCI n,r,p , with the theoretical asymptotic null distribution when the data is generated either from the model de ned in (G. ) (left) or the one de ned in (G. ) (right). We set the dimension of Z to be either d z = 5 (top row) or d z = 20 (bottom row).
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Non centered case: validation of the theoretical bounds for E X 1 ...X λ ∼B(0,r) f ( X(µ) ) when y = R 3 (i.e. = 1 3 ) from Theorem for d = 5 and R = 1. We implemented λ = 100 and λ = 10000. 10000 samples have been drawn to estimate the expectation. We see that such a value for µ is a good approximation of the minimum of the empirical values: we can thus recommend µ = λ(1 -) d when λ → ∞. We also added some classical choices of values for µ from literature: when λ → ∞, our method performs the best. . . . . . . . . . . . . . . .
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Experimental curves comparing various methods for choosing µ as a function of λ in dimension 3. Our proposals lead to good results but we notice that they are outperformed by TEAvg and EAvg for Rastrigin: it is better to not take into account non-quasi-convexity because the overall shape is more meaningful that local ruggedness. This phenomenon does not happen for the more rugged HM (Highly Multimodal) function. It also does not happen in dimension or dimension (previous and next gures): in those cases, THCH performed best. Con dence intervals shown in lighter color (they are quite small, and therefore they are di cult to notice). . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Assume that we consider a xed ratio µ/λ and that λ goes to ∞. The average of selected points, in an unweighted setting and with uniform sampling, converges to the center of the area corresponding to the ratio µ/λ: we will not converge to the optimum if that optimum is not the middle of the sublevel. This explains why we need µ/λ → 0 as λ → ∞: we do not want to stay at a xed sublevel. .

J.

Average regret f ( X(µ) )f (x ) in logarithmic scale in function of the selection ratio µ/λ for di erent values of λ ∈ {5000, 10000, 20000, 50000}. The experiments are run on Sphere, Rastrigin and Perturbed Sphere function for di erent dimensions d ∈ {3, 6, 9}. All results are averaged over 30 independent runs. We observe, consistently with our theoretical results and intuition, that (i) the optimal r = µ λ decreases as d increases (ii) we need a smaller r when the function is multimodal (Rastrigin) (iii) we need a smaller r in case of dissymmetry at the optimum (perturbed sphere). . 

Notations and Symbols
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Gaussian distribution Lap(., .)

Laplace distribution Φ cdf of the standard Gaussian distribution N (0, 1)
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Classi cation and Learning theory 

. Arti cial Intelligence foundations

Machine Learning, the computer science subdomain dedicated to building and studying computer systems that automatically improve with experience, is at the very core of the recent advances in Arti cial Intelligence. Finding its roots in statistical analysis, it has been widely studied over the past thirty years from algorithmic and mathematical perspectives, giving rise to a new discipline, computational learning theory. With the availability of massive amounts of data and computing power at low price, the last two decades have witnessed a growing interest in real-world applications of the domain. This interest is even stronger since , with the remarkable success of AlexNet [Krizhevsky et al., ] on the ImageNet challenge [Deng et al., ], using neural networks with several layers. The era of Deep Learning started then, with unexpected achievements in several domains: generative modeling [Goodfellow et al., ], natural language processing [Vaswani et al., ], etc. The success of Deep Learning (arti cial neural networks with a lot of layers) can be explained by the conjunction of the following factors:

• Availability of data: the amount and the cost of data have largely decreased since the emergence of web platforms, and tools for large-scale data management.

• Computational power: new specialized hardware architectures such as GPUs and TPUs allow faster and larger training algorithms.

• Algorithmic scalability: algorithms are scalable to large models (Distributed Computing, etc.) and large number of data (Stochastic Gradient Descent [Bottou, ], etc.) ], etc.) stimulating the emergence of large communities.

It is worth noting here that Arti cial Intelligence, as a scienti c domain, exists since early th century. Protean in nature, it encompasses several notions and elds, beyond Machine Learning, and Deep Learning. Its birth is inseparable from the development of computer science. The rst e cient computer was built by Charles Babbage and ran Ada Lovelace's algorithm. Computer Science was formalized and theorized in the Church-Turing thesis [Turing, ], which de nes the notion of computability, i.e. functions are computable if they can be out as a list of prede ned instructions to be followed. Such instructions are called algorithms. Arti cial Intelligence, or at the least the term, was "o cially founded" as a research eld in at the Dartmouth Workshop [McCarthy et al., ], organized by Marvin Minsky, John McCarthy, Claude Shannon and Nathan Rochester. During this conference, the term "Arti cial intelligence" was proposed and adopted by the community of researchers. Since then, the eld has oscillated between hype and disappointment, with no less than two major period of disinterest as the AI winters. This thesis is clearly developed during the third hype's period, but we keep in mind the very enlightening history of the discipline.

. Risks with Learning Systems . . Common Threats

Cybersecurity is at the core of computer science. Cryptography has been one of the hottest topics during the last thirty years. Despite their performances, learning systems are subject to many types of vulnerabilities and, by their popularity, are then prone to malicious attacks. Probably, the most known vulnerability that got public attention is privacy. While the amount of available data is exponentially growing, recovering identities by crossing datasets is easier when data are not protected. As it was exhibited in the de-anonymization of the Net ix M$ prize dataset [Narayanan and Shmatikov, ], hiding identities in datasets is not su cient to protect the privacy data. Computer scientists have then intensi ed their e ort to propose ways to protect data, leading to the emergence to what is considered as a gold standard for data protection: Di erential Privacy [Dwork, ]. It barely consists in adding noise to data to make them unrecoverable without too much deteriorating their utility. It is appealing because it comes with strong theoretical guarantees, while being simple to manipulate, allowing to tradeo between the degree of privacy through noise injection and the quality of the information one can infer from the data. Common privacy attacks are:

• Model stealing [Tramèr et al., ]: An attacker aims at stealing the parameters of a given model.

• Membership inference [Shokri et al.,

]: Inferring whether a data sample was present or not in a training set.

. Risks with Learning Systems

In response to privacy threats, European authorities conceived the GDPR (General Data Protection Regulation) , adopted in , which de nes new rules on the use of data and on privacy. Today, GDPR is part of any data management plan of private companies. As an update of the GDPR, a second law proposition regarding data sharing from public and private companies has been introduced by the European Commission on The Governance of Data in . Another type of vulnerability in Machine Learning is model failure. A malicious user, by modifying either the model or the data, can make it performs very poorly. The most known attacks aiming at model failures are:

• Data poisoning attacks [Kearns and Li, ]: changing some data in the training set so that the model performs very poorly on the hold-out set.

• Evasion attacks [Biggio et al., , Szegedy et al., ]: small imperceptible perturbations at inference time. We will refer them to "adversarial attacks".

Known and gaining interest in academia, these threats are not well-known by most of the companies [Kumar et al., b]. More importantly, such vulnerabilities hinder the use of state-ofthe-art models in critical systems (autonomous vehicles, healthcare, etc.). In the manuscript we will focus on adversarial attacks. We introduce this threat more in details in the next paragraph.

References to adversarial examples in European Commission law proposal on Arti cial Intelligence systems

As part of the introduction: "Cybersecurity plays a crucial role in ensuring that AI systems are resilient against attempts to alter their use, behavior, performance or compromise their security properties by malicious third parties exploiting the system's vulnerabilities. Cyberattacks against AI systems can leverage AI specific assets, such as training data sets (e.g. data poisoning) or trained models (e.g. adversarial attacks), or exploit vulnerabilities in the AI system's digital assets or the underlying ICT infrastructure. To ensure a level of cybersecurity appropriate to the risks, suitable measures should therefore be taken by the providers of highrisk AI systems, also taking into account as appropriate the underlying ICT infrastructure." Title III (High risk AI systems), Chapter II (Requirements for high risk AI system), Article . (Human oversight): "High-risk AI systems shall be resilient as regards attempts by unauthorized third parties to alter their use or performance by exploiting the system vulnerabilities. The technical solutions aimed at ensuring the cybersecurity of high-risk AI systems shall be appropriate to the relevant circumstances and the risks. The technical solutions to address AI specific vulnerabilities shall include, where appropriate, measures to prevent and control for attacks trying to manipulate the training dataset ('data poisoning'), inputs designed to cause the model to make a mistake ('adversarial examples'), or model flaws." Introduction AI is referred to any autonomous system than can endanger human lives. This text aims at dealing with many threats in Learning Systems. Two direct references are made to adversarial attacks, underlying the need for companies to deal with them. The di culty is to unify and create precise rules in a domain where results and certi cates are mostly empirical. As mentioned earlier, it is known that robust models are often less performing and can make autonomous systems unusable in real world scenarii. Thus, this text is a rst step towards a uni ed regulation on autonomous systems but might miss precise requirements for models to be used in production.

. . Adversarial attacks against Machine Learning Systems

Despite the recent gain of interest in studying adversarial attacks in Machine Learning, the problematic exists however for a while and takes its source in SPAM classi cation where adversaries were spammers whose goal was to evade from the taken decision .

With the recent success of Deep Learning algorithms, in particular in computer vision, several authors [Biggio et al., , Szegedy et al., ] have highlighted their vulnerability to adversarial attacks. Adversarial attacks in this case are widely understood as "imperceptible" perturbations of an image, i.e. slight changes in the pixels, so that this image remains unchanged from human sights. This characteristic might be surprising but is actually a severe curb in applying state-ofthe-art deep learning methods in critical systems. There are plenty of issues that makes di cult building and evaluating robust models for real life applications:

. The notion of imperceptibility is not well understood: numerically measuring human perception is still an open problem. Hence, detecting the change of perception due to adversarial attacks is an ill-posed problem. Most of the research in the domain focused on pixel-wise perturbations (e.g. p norms), while real world threats would be crafted by inserting some misleading objects in the environment (e.g. patches [Brown et al., ], T-shirts [Xu et al., ], textures [Wiyatno and Xu, ],etc.).

. Robustness is often empirically measured: there exist only a few methods with formal guarantees on the robustness and these guarantees are often loose. Robustness is usually measured on a set of possible attacks and not all possible perturbations are spanned by these attacks, leaving rooms for potential blind spots.

. There exists a trade-o between robustness and accuracy. Most models that are robust suffer from a performance drop on natural data. For instance, a robustly trained robot will perform much lower on natural tasks than an accurate non-robust robot. That makes robust models unusable in real world applications [Lechner et al., ].

. Adversarial Classi cation in Machine Learning

In this manuscript, we will focus on the task of classi cation in Machine Learning. The purpose of this task is to "learn" how to classify some input x into some label(s). The input can be an image, a text, an audio, etc. For instance, in computer vision, a known dataset is ImageNet where the goal is to learn how to classify high quality images into 1000 labels [Deng et al., ]. In natural language processing, the IMDB Movie Review Sentiment Classi cation dataset [Maas et al., ] aims at classifying positive or negative sentiments from movie reviews. To learn a classi er, the task is often supervised, i.e, we have access to labeled inputs, which constitutes the so-called training set. To assess the quality of the learned model, we evaluate it on other images that constitute the test set.

. . A Learning Approach for Classi cation

From now, we will assume that the inputs are in some space X and the labels form a set Y := {1, . . . , K}. To learn an adequate classi cation model, we denote {(x 1 , y 1 ), . . . , (x N , y N )} the N elements of X × Y forming the training set. We furthermore assume that these inputs are independent and identically distributed (i.i.d.) from some distribution P on X × Y. The aim is now to learn a function/hypothesis from these samples h : X → Y to classify an input x with a label y. To assess the quality of a classi er, the metric of interest is often the misclassi cation rate of the model, or the 0/1 loss risk, and it is de ned as: Introduction learned by minimizing the empirical risk for a certain convenient loss function L over some class of functions H.

inf f ∈H R N (f ) := 1 N N i=1 L(f (x i ), y i ).
This problem is called Empirical Risk Minimization (ERM). The theory of this problem has been widely studied and is well understood. It is often argued that there is a tradeo on the "size" of H: having a too small H may lead to under tting, i.e. not enough parameters to describe the optimal possible function while a too large H may lead to over tting, i.e. tting too much training data. We often talk about bias-complexity tradeo (see Figure . ). A penalty term Ω H (f ) can also be added to the ERM objective to prevent from over tting. This tradeo was recently questioned by the double descent [Belkin et al., ] phenomenon where overparametrized (i.e. number of parameters largely over the number of training samples) regimes lower the risk.

The presence of adversaries in classi cation questions the knowledge we have in standard statistical learning. Indeed, most standard results do not hold in presence of adversaries, hence, opening a new research area dedicated to studying and understanding the classi cation problem in presence of adversarial attacks, and more importantly, deepens our understanding of machine learning/deep learning in high dimensional regimes.

. . Classi cation in Presence of Adversarial Attacks

Though a model can be very well performing on natural samples, small perturbations of these natural samples can lead to unexpected and critical behaviors of classi cation models [Biggio et al., , Szegedy et al., ]. To formalize that, we will assume the existence of a "perception" distance d : X 2 → R such that a perturbation x of an input x remains imperceptible if d(x, x ) ≤ ε for some constant ε ≥ 0. This "perception" distance is di cult to de ne in practice. For images, the • ∞ distance over pixels is often used, but is not able to capture all imperceptible perturbations. This choice is purely arbitrary: for instance, we will highlight in the manuscript that • 2 perturbations can also be imperceptible while having a large • ∞ . Image classi cation algorithms are also vulnerable to geometric perturbations, i.e. rotations and translations [Kanbak et al., , Engstrom et al., ]. A typical example of an adversarial attack is shown in Figure . . Therefore, the goal of an attacker is to craft an adversarial input x from an input x that is imperceptible , i.e. d(x, x ) ≤ ε and misclassi es the input, i.e. h(x ) = y. Such a sample x is called an adversarial attack. The used criterion cannot be the misclassi cation rate anymore, we need to take into account the possible presence of an adversary that maliciously perturbs the input. We then de ne the robust/adversarial misclassi cation rate or robust/adversarial 0/1 loss risk: R 0/1,ε (h) := P (x,y) (∃x ∈ X s.t. d(x, x ) ≤ ε and h(x ) = y) = E (x,y)∼P sup

x ∈X s.t. d(x,x )≤ε

1 h(x ) =y
. Adversarial Classification in Machine Learning Akin standard risk minimization, we aim to learn a function f : X → R K such that h(x) = argmax k f k (x). Usually in adversarial classi cation we aim at solving the following optimization problem, that we will call adversarial empirical risk minimization:

inf f ∈H R N ε (f ) := 1 N N i=1 sup x ∈X s.t. d(x,x )≤ε L(f (x i ), y i ).
This problem is more challenging to tackle than the standard risk minimization since it involves a hard inner supremum problem [Madry et al., b]. Guarantees in the adversarial setting are therefore di cult to obtain both in terms of convergence and statistical guarantees. The usual technique to solve this problem is called Adversarial Training [Goodfellow et al., b, Madry et al., b]. It consists in alternating inner and outer optimization problems. Such a technique improves in practice adversarial robustness but lacks theoretical guarantees. So far, most results and advances in understanding and harnessing adversarial attacks are empirical [Ilyas et al., , Rice et al., ], leaving many theoretical and practical questions open. Moreover, robust models su er from a performance drop and vulnerability of models is currently still very high (see Table . ), which leaves room for substantial improvements.

Attacker

Paper reference Standard Acc. Robust Acc.

None

[Zagoruyko and Komodakis, ] . % % ∞ (ε = 8/255) [Rebu et al., ] . % . %

Table . : State-of-the-art accuracies on adversarial tasks on a WideResNet x [Zagoruyko and Komodakis, ]. Results are reported from [Croce et al., a] .

Outline and Contributions

We will rst introduce in Chapter the necessary background regarding Machine Learning and Adversarial Examples. We will then analyze adversarial attacks from three complementary points of view outlined as follows.

. . A Game Theoretic Approach to Adversarial Attacks

A line of research, following Pinot et al. [ ], to understand adversarial classi cation is to rely on game theory. In Chapter , we will build on this approach and de ne precisely the motivations for both the attacker and the classi er. We will cast it naturally as a zero-sum game. We will in particular, study the problem of the existence of equilibria. More precisely, we will answer the following open question.

Question

What is the nature of equilibria in the adversarial examples game?

In game theory, there are many types of equilibria. In this manuscript, we will focus on Stackelberg and Nash equilibria. We will show the existence of both when both the classi er and the attacker play randomized strategies. To reach such equilibria, the classi er will be random, and the attacker will move randomly the samples at a maximum distance of ε. Then, we will propose two di erent algorithms to compute the optimal randomized classi er in the case of a nite number of possible classi ers. We will nally propose a heuristic algorithm to train a mixture of neural networks and show experimentally the improvements we achieve over standard methods. This work was published at ICML [Meunier et al., d].

. . Loss Consistency in Classi cation in Presence of an Adversary

In standard classi cation, consistency with regard to 0/1 loss is a desired property for the surrogate loss L used to train the model. In short, a loss L is said to be consistent if for every probability distribution, a sequence of classi ers (f n ) n∈N that minimizes the risk associated with the loss L, it also minimizes the 0/1 loss risk. Usually, in standard classi cation, the problem is simpli ed thanks to the notion of calibration. We will see that the question of consistency in the adversarial case is much harder.

Question

Which losses are consistent with regard to the 0/1 loss in the adversarial classication setting?

We tackle this question by showing that usual convex losses are not calibrated for the adversarial classi cation loss. Hence this negative result emphasizes the di culty of understanding the adversarial attack problem, and building provable defense mechanisms. We pave a way towards . Outline and Contributions solving this question by proposing candidate losses and giving arguments for their consistency. This work was published NeurIPS [Meunier et al., b].

. . Building Certi able Models

The last problem we deal with in this manuscript is the implementation of robust certi able models. In short, a classi er is said to be certi able at an input x at level ε if one can ensure there exist no adversarial examples in the ball of radius ε. This problem is challenging since it is far from trivial to come up with non-vacuous bounds that are exploitable in practice.

Question

How to e ciently implement certi able models with non-vacuous guarantees?

To this end, we propose a general method that enforces Lipschitzness on the predictions of neural networks. This method draws its inspiration from the continuous ow interpretation of residual networks. We provide discretization strategies and recover many existing methods to build 1-Lipschitz layers in neural networks. In particular, we show that using a gradient ow of a convex function, our network is 1-Lipschitz. Based on this insight, we design a Lipschitz layer, that we call Convex Potential Layer (CPL). We show empirically and theoretically the robustness bene ts of this approach. This work was published at ICML [Meunier et al., a].

. . Additional Works

In addition to the works we present in the main document, we also present some other contributions we made during the thesis. These are deferred to the appendices.

Regarding adversarial examples, we will present additional works complete the study we lead in the main document:

• On the robustness of randomized classi ers to adversarial examples (see Appendix A):

we show that by adding a noise on an input of a classi er, we are able to get guarantees on the decision up to some level ε. This work was published at NeurIPS [Pinot et al., ] and under review in an extended journal version [Pinot et al., ].

• Yet another but more e cient black-box adversarial attack: tiling and evolution strategies (see Appendix B): we provide a method based on evolutionary strategies to craft black-box adversarial attacks. This work is a preprint and has not been published [Meunier et al., ].

• Advocating for Multiple Defense Strategies against Adversarial Examples (see Appendix C): We show that, in high-dimensional settings, the balls overlaps for two di erent p norms are fundamentally di erent. This induces to rethink robustness against attacks using di erent norms. This work was published at a workshop at ECML [Araujo et al., ].

• Adversarial Attacks on Linear Contextual Bandits (see Appendix D): we build provable attacks against online recommendation systems, namely Linear Contextual Bandits. This work was published at NeurIPS [Garcelon et al., ].

• ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients (see Appendix E): we use an Optical Processor Unit (OPU) over existing state-of-the-art defenses to improve adversarial robustness. This work was published at ICASSP [Cappelli et al., b].

We published a paper in optimal transport on Equitable and Optimal Transport with Multiple Agents (see Appendix F) at AISTATS [Scetbon et al., a] where we introduce a way to deal with multiple costs in optimal transport by equitably partitioning transport among costs. We also submitted recenty a paper on Conditional Independence Testing [Scetbon et al., b] on an p -based Kernel Conditional Independence Test (see Appendix G). In this paper we present a new kernel-based Conditional Independence Test. Its advantages are its computational simplicity and a very simple asymptotic distribution under null hypothesis. Moreover, it performs competitively with other test for Conditional Independence.

With Olivier Teytaud, research scientist at Meta AI and co-supervisor of this thesis, we also published some works in the eld of evolutionary algorithms:

• Variance Reduction for Better Sampling in Continuous Domains (see Appendix H):

we show that, in one shot optimization, the optimal search distribution, used for the sampling, might be more peaked around the center of the distribution than the prior distribution modelling our uncertainty about the location of the optimum. This work was published at PPSN [Meunier et al., c].

• On averaging the best samples in evolutionary computation (see Appendix I): we prove mathematically that a single parent leads to a suboptimal simple regret in the case of the sphere function. We provide a theoretically-based selection rate that leads to better progress rates. This work was published at PPSN [Meunier, Chevaleyre, Rapin, Royer, and Teytaud, a].

• Asymptotic convergence rates for averaging strategies (see Appendix J): we extend the results from the previous paper to a wide class of functions including C 3 functions with unique optima. This work was published at FOGA [Meunier et al., a].

• Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through

Background

This chapter introduces the required background on classi cation on adversarial examples. 

Contents

. Supervised Classi cation

A classi cation task aims at learning a function that assigns a label to a given input. Along with regression, classi cation is one of the supervised learning tasks. One can nd classi cation tasks in Computer Vision [LeCun and Cortes, , Krizhevsky et al., Deng et al., ], Natural Language Processing [Vaswani et al., ], Speech Recognition [Dong et al., ], etc. In this thesis, most examples will be from Computer Vision and Image Recognition.

. . Notations

In this section, we formalize the task of classi cation. First, we de ne the notions of inputs and labels:

Background

• Consider an input space X , typically images. We assume this space is endowed with an arbitrary metric d, possibly a perception distance or any p norm. In the following of the manuscript, unless it is speci ed, (X , d) will be a proper (i.e. closed balls are compact) Polish (i.e. completely separable) metric space. Note that for any norm • , (R d , • ) is a proper Polish metric space.

• Each input x ∈ X has to be associated with a label y. A label is a descriptor of the input.

The set of labels is discrete, and we designate it by Y := {1, . . . , K}. Y is endowed with the trivial metric d (y, y ) = 1 y =y . Note that (X × Y, d ⊕ d ) is also a proper Polish space.

The purpose of classi cation is to learn a classi er h : X → Y. It is usual to learn a function f : X → R K such that: h(x) = argmax k∈Y f k (x). In a classi cation problem in machine learning, the data is assumed to be sampled from an unknown probability distribution P over X × Y. We will assume from now that all the probability distributions we consider are Borel distributions. For any Polish Space Z, we will denote B(Z) the Borel σ-algebra and the set of Borel distributions over Z will be denoted M + 1 (Z). We recall that on Polish space, all Borel probability distributions are Radon measures. We also recall the notion of universal measurability: a set A ⊂ Z is said to be universally measurable if it is measurable for every complete Borel probability measure. We also recall the notion of weak topology on the space of probability distribution: we say that P n converges weakly towards P if for every bounded continuous function f , f dP n → f dP. Note that calling this property weak topology is an abuse of language, it is closer to a notion of weak-topology.

When Z and Z are two measurable spaces endowed with their Borel σ-algebra (unless specied), we will denote F(Z, Z ) the space of measurable functions from Z to Z . Without loss of generality, when Z = R, we will simply denote: F(Z) := F(Z, Z ).

. . Classi cation Task in Supervised Learning

In standard classi cation, we usually aim at maximizing the accuracy of the classi er, or equivalently, at minimizing the risk associated with the 0/1 loss de ned as follows.

De nition . Let P be a Borel probability distribution over X × Y. Let h : X → Y be a Borel measurable classifier. Then, the risk of h associated with 0/1 loss (or error of h) is defined as: R P (h) := P(h(x) = y) = E (x,y)∼P 1 h(x) =y ( . )

The Optimal Bayes risk is defined as the optimal risk over measurable classifiers F(X , Y):

R P := inf h∈F (X ,Y) R P (h) ( . )
If f : X → R K , then the risk of f is defined as R P (f ) := P(argmax k∈Y f k (x) = y)

Note that this quantity is well-de ned when h or f is Borel or universally measurable. The optimal classi er is called the Optimal Bayes classifier and is de ned as h (x) = argmax k P(y = k | x). We remark that the disintegration theorem ensures that x → P(y = k | x) is indeed Borel measurable.

In practice, the access to the Optimal Bayes classi er is not possible because it requires full knowledge of the probability distribution P which is not the case in general. Instead, in the supervised learning setting, the learner has access to data points {(x 1 , y 1 ), . . . , (x N , y N )}, that constitutes the training set. Knowing the Optimal Bayes classi er on training points is not sucient to generalize on points out of the training set. Hence, one needs to reduce the search space of measurable functions to a much smaller one, denoted H in the sequel. The 0/1 loss is not convex neither continuous, and minimizing directly the / loss risk on H might be NP-hard even for simple set of hypotheses as linear classi ers. We usually minimize a well-chosen surrogate loss function L. A loss function L : R K × Y → R is a non-negative Borel measurable function. An example of such a loss is the cross entropy loss de ned as L(f (x), y) = -K i=1 1 y=i log f i (x) where f i (x) is the probability learned by the model with input x belonging to the class i. Hence, the objective is to minimize the empirical risk associated with H using the loss L de ned as:

R L (f ) := 1 N N i=1 L(f (x i ), y i ).
Neural Networks A popular set of classi ers are Neural Networks. They gained in popularity due to their exceptional performances in Image Recognition [Krizhevsky et al., , He et al., b] or Natural Language Processing for instance [Vaswani et al., ]. In its simpler form, a neural network is a concatenation of linear operators and non-linear functions (called activations). This concatenation are called layers. Formally a neural network with L layers writes:

f (x) = (W L σ(W L-1 . . . σ(A 1 x + b 1 ) . . .) + b L )
where W i are called the weight matrices and b i the biases. In the case of image recognition, the weights may have a special structure of convolution: such networks are called Convolutional Networks. We illustrate a convolutional layer in Figure . .

To train neural networks, the backpropagation is a standard algorithm based on the chain rule. This algorithm is subject to gradient vanishing, or gradient explosion issues. To circumvent these Background problems, many tricks were proposed as using ReLU-like activation functions [Xu et al., , Ramachandran et al., ], Dropout [Srivastava et al., ], Batch Normalization [Io e and Szegedy, ] or the use of Residual Layers [He et al., b]. More, despite their popularity, it is di cult to understand the outstanding performances of neural networks.

. . Surrogate losses, consistency and calibration

Binary Classi cation. In this section, we recall the main results about surrogate losses in binary classi cation. We assume that Y = {-1, +1}. In this case, a classi er is a measurable function f : X → R such that an input x is classi ed as 1 if f (x) > 0 and as -1 if f (x) ≤ 0. Then the 0/1 loss is de ned as 1 y×sign(f (x))≤0 . As mentioned earlier, optimizing the risk associated with the 0/1 loss is a di cult task. We need to properly introduce notions of surrogate losses.

A margin loss is a loss L such that there exist a measurable function φ : R → R + , satisfying, L(x, y, f ) = φ(yf (x)). The risk associated with a margin loss φ is then R φ,P (f ) :=

E P [φ(yf (x))].
A loss φ is said to be classification-consistent if every minimizing sequence for the risk associated with the φ loss is also a minimizing sequence for the risk associated with the 0/1loss. In other words, for a given

P ∈ M + 1 (X × Y), φ is classi cation-consistent for P if for all sequences (f n ) n∈N of measurable functions: R φ,P (f n ) → R φ,P := inf f ∈F (X ) R φ,P (f ) =⇒ R P (f n ) → R P ( . )
While this notion seems complicated to study, Zhang [ b], Bartlett et al. [ ], Steinwart [ ] have focused on a relaxation named calibration. A loss is said to be classification-calibrated if for every ε > 0, there exists δ > 0 such that for every α ∈ R and η ∈ [0, 1]:

ηφ(α) + (1 -η)φ(-α) -min β∈R [ηφ(β) + (1 -η)φ(-β)] ≤ δ =⇒ sign (η - 1 2 )α = 1
We remark the notion of calibration is basically a pointwise notion of consistency with η corresponding to P(y = 1|x).

Zhang [ b], Bartlett et al. [ ],
Steinwart [ ] proved the equivalence of the two notions in the case of standard-binary classi cation. In particular, they show that a wide range of convex margin losses are actually classi cation-consistent: if φ is convex and di erentiable at 0, then φ is calibrated if and only if φ (0) < 0.

The problem of consistency have been investigated in the case of multi-label classi cation by Zhang [ a]. The results can be similarly derived, and it was show that large range of convex functions are actually consistent for classi cation problems.

. . Empirical Risk Minimization and Generalization

As mentioned earlier, the learner has access to training points {(x 1 , y 1 ), . . . , (x N , y N )} and not to the whole distribution. We aim at learning the classi er on a set of functions H. The classi er fN is then chosen to minimize the empirical risk given a loss L:

fN = argmin f ∈H R L (f ) = argmin f ∈H 1 N N i=1 L(f (x i ), y i ).
. Supervised Classification Since the learning procedure takes into account a nite number of samples and a set H of hypotheses, one need to control the risk of the classi er fN .

Risk Decomposition and bias-complexity tradeo .

The excess risk of a classi er is de ned as the di erence between the risk and the optimal risk: R L (f n ) -R L . The excess risk can be decomposed as follows:

R L ( fN ) -R L = R L ( fN ) -R L,H + R L,H -R L with R L,H = inf f ∈H R L (f ).
The two terms in the previous decomposition corresponds respectively to:

• The estimation risk: the empirical risk R( fN ) (i.e., training error) is only an estimate of the optimal risk, and so fN is only an estimate of the predictor minimizing the true risk.

The estimation risk depends on the training set size N and on the size, or complexity, of H. The more samples we have the smaller will be the estimation risk and more complex H is the larger the estimation error will be.

• The approximation risk: the approximation risk is the error made by optimizing over H instead of minimization over the whole space of measurable functions. As the function space H grows, the approximation naturally decreases.

This decomposition induces a tradeo on the complexity of H named bias-complexity tradeo or bias-variance tradeo . On one hand, if H is not enough rich, then the estimation risk would be small, but the approximation error can be large, it is called underfitting. On the other hand, if H is too rich, then the approximation risk would be small but the estimation error large, it is called overfitting. To overcome these issues in practice, it is usual to add a regularization parameter to the empirical risk depending on the set H:

fN = argmin f ∈H R L (f ) + λ × Ω H (f ) = argmin f ∈H 1 N N i=1 L(f (x i ), y i ) + λ × Ω H (f ).
The convergence of regularized least squares regression has been largely studied on Reproducing Kernel Hilbert Space (RKHS). A RKHS (H, •, • H ) is characterized by a symmetric, positive de nite function called a kernel over X such that for all f ∈ H and x ∈ X , f (x) = f, k(x, •) H . In this case, the regularization parameter Ω H (f ) is the square norm of f : f 2 H .

Uniform Convergence. Since fN is dependent on the training samples, it is usually di cult to estimate R( fN ) from training samples. A natural thing to do is to upperbound this quantity using:

| R( fN ) -R( fN )| ≤ sup f ∈H | R(f ) -R(f )|
The convergence of the right-end term is referred as uniform convergence or Provably Approximately correct (PAC) learning [Valiant, ]. It can be bounded either with high probability or Background in expectation (i.e. L 1 convergence). We remark the speed of convergence depends on the complexity of H: more complex H is, the slower the convergence will be, hence exhibiting again a tradeo on the expressivity of H. There have been a lot of research that proposed tools to study this convergence. Now, we recall a fundamental tool, namely the Rademacher complexity.

The Rademacher complexity was introduced by Bartlett and Mendelson [ ] to study the problem of uniform convergence. Given a set of functions H, and a set of observations S = {z 1 , . . . , z N } from a distribution P, the empirical Rademacher complexity is de ned as:

Rad S (H) := 2 N E σ sup h∈H | N i=1 σ i h(z i )|
where σ i are independent samples from Rademacher law:

P [σ i = +1] = P [σ i = -1] = 1 2 .
The Rademacher complexity satisfy the following composition property of Rademacher complexity: when φ is a M -Lipschitz function:

Rad S (φ • H) ≤ M Rad S (H)
This property is particularly useful because it allows to study the Rademacher complexity regardless the loss function. When H is not too complex (for instance, nite set or linear classi ers), one can bound the Rademacher complexity by O(n -1/2 ). It was proven by Bartlett and Mendelson [ ] that the Rademacher complexity upperbounds the uniform risk error as follows:

E S∼P N sup h∈H |e S (h) -e P (h)| ≤ 2E S∼P N Rad S (H)
where e P (h) = E z∼P [h(z)] and e S (h) = 1 N N i=1 h(z i ). This property leads to the following generalization error bound derived from classical concentration bounds: with probability 1δ (over the sampling S), for every h ∈ H: e S (h)e P (h) ≤ 2 Rad S (H) + 4 2 log(4/δ) n .

. Introduction to Adversarial Classi cation

In this section, we present the required background about adversarial classi cation. In the rst part, we present formally what is an adversarial attack, then how to craft them in practice. After, we present ways for defending against adversarial examples. Finally, we state the main results about current theoretical understanding of adversarial examples.

. . What is an adversarial example?

In classi cation tasks, an adversarial example is a perturbation of an input that is imperceptible to humans, but that state-of-the-art classi ers are unable to classify accurately. In the following of the manuscript we de ne adversarial attacks as follows.

De nition . Let h : X → Y be a classifier. An adversarial attack of level ε on the input x with label y against the classifier h is a perturbation x such that:

h(x ) = y and d(x, x ) ≤ ε .
This de nition is very simple and general. The distance d can refer to an p distance, taken as a surrogate to a perception distance. We can associate to adversarial examples a notion of adversarial risk. The adversarial risk is the worst case risk if each point is optimally attacked at level ε.

De nition .

Let P be a Borel distribution over X × Y. Let h : X → Y be a classifier. We define the adversarial risk of h at level ε as:

R ε (h) := P ∃x ∈ B ε (x), h(x ) = y = E (x,y)∼P sup x ∈Bε(x) 1 h(x ) =y where B ε (x) = {x ∈ X | d(x, x ) ≤ ε}. If f : X → R K , then the adversarial risk of f at level ε is defined as R ε (f ) := P ∃x ∈ B ε (x), argmax k∈Y f k (x ) = y
A rst property is that the adversarial risk is well-de ned in the sense of measurability stated below. While this result seems trivial, it requires advanced arguments from measure theory.

Proposition . Let P be a Borel distribution over X × Y. Let h : X → Y be a classifier. If h is Borel measurable then (x, y) → sup x ∈Bε(x) 1 h(x ) =y is universally measurable.

Proof. For h ∈ F(X , Y), we de ne φ ε (x, y, h) = sup x ∈Bε(x) 1 h(x) =y . We have :

φ ε (x, y, h) = sup (x ,y )∈X ×Y 1 h(x ) =y -∞ × 1{d(x , x) ≥ ε or y = y} Then, (x, y), (x , y ) → 1 h(x ) =y -∞ × 1{d(x , x) ≥ ε or y = y}
de nes a measurable, hence upper semi-analytic function. Using [Bertsekas and Shreve, , Proposition . , Corollary . ], we get that for all h ∈ F(X ), (x, y) → φ ε (x, y, h) is a universally measurable function.

Background

Similarly to the standard classi cation setting, we de ne the optimal Bayes risk for adversarial classi cation.

De nition .

Let P be a Borel distribution over X × Y. We call adversarial Optimal Bayes risk of level ε, the infimum of adversarial risk of level ε over the set of Borel measurable classifiers F(X , Y):

R ε := inf h∈F (X ,Y) R ε (h)
Contrarily to the standard case, the existence of optimal Bayes classi ers for the adversarial risk is a di cult question.

. . Casting Adversarial examples

The probably most puzzling about adversarial examples is the facility to craft them. Let us consider an attacker that aim at nding an adversarial perturbation x of an input x for a given classi er f : X → R K . In order to craft an adversarial example, typically the cross-entropy, the attacker maximizes the following objective given a di erentiable loss L:

max x ∈X s.t. d(x,x )≤ε L f (x ), y) .
( . )

In this case the attack is said to be untargeted, i.e. the classi er aims at evading the label y. On the other side, a targeted attack aims at perturbing a label x to make it classify to a target label y. In this case, the attacker objective writes:

min x ∈X s.t. d(x,x )≤ε L(f (x ), y)
). An attacker may also target at nding the smallest perturbation problem [Moosavi-Dezfooli et al., , Carlini and Wagner, ]. Many attacks were proposed that we will categorize into two parts: white-box attacks and black-box attacks.

White box attacks:

In this setting, the attacker has full knowledge of the function f and its parameters. Hence, these attacks often takes advantages of the di erentiability of f and the loss function L. Then, such attacks usually takes the gradient ∇ x L f x t , y as ascent direction for crafting adversarial examples. These attacks are called gradient based attacks. The most popular white box attacks are PGD attack Kurakin et al. [ ], Madry et al. [ b], FGSM attack [Goodfellow et al., b], Carlini&Wagner attack [Carlini and Wagner, ], AutoPGD [Croce and Hein, a], FAB [Croce and Hein, a], etc. As an illustration of the simplicity of crafting adversarial examples, we show hereafter how to design a PGD attack in an p case.

Example (PGD attack). Let x 0 ∈ R d be an input. The projected gradient descent (PGD) Kurakin et al. [ ], Madry et al. [ b] of radius ε, recursively computes

x t+1 = Bp(x,ε) x t + α argmax δ s.t. ||δ||p≤1 ∆ t , δ where B p (x, ε) = {x + τ | τ p ≤ }, ∆ t = ∇ x L f x t , y , α is a gradient step size,
and S is the orthogonal projection operator on S. Many attacks are extensions of this one, e.g. AutoPGD [Croce et al., b] and SparsePGD [Tramèr and Boneh, ] Black box attacks: In this setting, the attacker has limited knowledge of the classi er. The attacker does not have access to the parameters of the classi er, but can query either the predicted logits or the predicted label for a given input x. To craft adversarial examples, it was proposed to mimic gradient-based attacks using gradient estimation as in the ZOO attack [Chen et al., ] and in the NES attack [Ilyas et al., a, ]. Attacks might also be based on other optimization methods such as combinatorial methods [Moon et al., ] or evolutionary computation [Andriushchenko et al., ]. ].

Adversarial Examples beyond

• Audio systems: Audio systems can be fooled by adding inaudible adversarial noise to an audio le [Carlini and Wagner, ]. These attacks raise issues in the massive use of personal vocal assistants [Zhang et al., b].

• NLP classi cation tasks: Adversaries change some words in a text to make it misclassi ed. ]. The goal of these attacks are to force the learner to choose the wrong arms a linear number of times. While these works are mostly theoretical, their potential use in practical settings might raise issues for businesses in a close future.

. . Defending against adversarial examples

Defending against adversarial examples is still an open research question with only a few answers to it. One can classify the methods in two categories: empirical defenses and provable defenses.

Provable defenses.

A defense is said to be provable if there is a theoretical guarantee to ensure a level of robustness. Formally, a classi er h is said to be certifiably robust at level ε at input x with label y if there exist no adversarial example of level ε on h at the point (x, y), i.e. for all x such that Background d(x, x ) ≤ ε, h(x ) = y. Researchers have focused on nding ways to certify robustness. The rst categories of defenses rely on convex relaxation of layers [Wong and Kolter, , Wong et al., ]. It consists in considering a convex outer approximation of the set of activations reachable through a norm-bounded perturbation of an input. In the case of ReLU activation, the robust optimization problem that minimizes the worst case loss over this outer region writes as a linear program. Another developed method is noise injection to the input [Lecuyer et al., , Cohen et al., , Pinot et al., , Salman et al., ]. By adding a noise, the inputs can be seen as distributions. The certi cates are derived by determining which classi er would be the most powerful to distinguish two inputs. This idea is closely related to the notions of statistical tests [Cohen et al., ], information theory [Pinot et al., ] [Goodfellow et al., b, Madry et al., b]. This defense is a heuristic to minimize the adversarial risk. We describe the adversarial training defense in Algorithm to training a classi er f θ parametrized by θ. It consists in alternating minimization steps and attacks on the classi er to make it more robust. To our knowledge there exists no proof of convergence for this defense. Many other empirical defenses are variants of Adversarial Training, e.g. TRADES [Zhang et al., a] or MART [Wang et al., b]. For instance, TRADES aims at minimizing the following objective:

f → E L(f (x), y) + λ × max x ∈Bε(x) L(f (x ), f (x))
.

The rst term aims at optimizing standard robustness and the second term is a regularization for adversarial robustness. The objective is to better balance the tradeo between robustness and standard accuracy. Similarly to Adversarial Training, the inner supremum is optimized using PGD algorithm.

Another promising way to defend against adversarial examples is to augment the dataset. For instance, Carmon et al. [ b], Rebu et al. [ ] proposed to use unlabeled data to improve Adversarial Training strategies. Other works such as [Wang et al., b] proposed to use arti-cially generated inputs to improve adversarial robustness. We do not go deeper into details of these but most powerful defenses use one of these techniques [Croce et al., a].

Evaluation Protocol. Unless the used defense mechanisms are provable and provide guarantees, evaluating and assessing adversarial robustness is a painstaking task for empirical defenses.

For instance, many papers introduced "defenses" that were actually proven to be "false" [Athalye et al., a, Carlini et al., ]. Indeed, when proposing a defense, one needs to adapt the attack model to the defense. We describe the following common issues. For instance, when evaluating against randomized classi ers in either white-box or black-box setting, the return output is a random variable, hence the computation of an attack against it needs to be adapted to the nondeterministic nature of the classi er. To do so, Athalye et al. [ a] proposed to average either the logits or the gradient of the classi er to build a suitable attack against a randomized classi er. This procedure was called Expectation Over Transformation (EOT). A second example is defenses that aims at using non-di erentiable activation functions such as Heaviside functions. Athalye et al.

[ c] proposed to use BPDA (Backward Pass Di erentiable Approximation), i.e. di erentiable approximations to circumvent the "defense". Black-box attacks are also a way to build e cient attacks in this case.

To answer the need of adversarial examples research community to evaluate accurately their models against adversarial examples, Croce et al. [ a] proposed RobustBench as a uni ed platform for benchmarking adversarial defenses. The platform evaluates models on di erent blackbox and white-box, targeted and untargeted attacks (AutoPGD [Croce et al., b], FAB [Croce and Hein, a], SquareAttack [Andriushchenko et al., ]). However, this platform has its limitations: for instance, it does not propose to evaluate the robustness of randomized classi ers.

State-of-the-art in Image Classi cation

To evaluate the performance of an attack of a classication algorithm, one needs to train and evaluate on datasets. In image classi cation evaluation, three datasets are mainly used:

• MNIST [LeCun]: A dataset of black and white low-quality images representing the 10 digits. The training set contains 50000 images and test set 10000 images. These images are of dimension 28 × 28 × 1 (784 in total). This dataset is known to be easy (> 99% can be obtained using simple classi ers). In adversarial classi cation, the problem is also easy to be solved. Evaluation on MNIST is not su cient to assess the performance of a classi er or even a defense against adversarial examples.

• CIFAR and CIFAR [Krizhevsky and Hinton, ]: Datasets of colored lowquality images representing the 10 labels and 100 labels for respectively CIFAR and CI-FAR . Each training set contains 50000 images and test set 10000 images. These images are of dimension 32 × 32 × 1 (3072 in total). The current state-of-the-art on CIFAR in standard classi cation is > 99% of accuracy with most recent methods. On CIFAR , the current state-of-the-art is around 94%. In adversarial classi cation both datasets are challenging and di cult. The evolution of state-of-the-art in adversarial classi cation is Background available in RobustBench . Benchmark in adversarial classi cation are often made on these datasets.

• ImageNet [Deng et al., ]: ImageNet refers to a dataset containing 1.2 million of images labeled into 1000 classes. Images are of diverse qualities, but models often takes input of dimension 224 × 224 × 3 (dimension 150528 in total). The current state-of-the-art on ImageNet is about 87%. It is worth noting that adversarial classi cation on ImageNet is still a very-challenging task. Further than the standard dataset, ImageNet project is still in development: the project gathers 14197122 images and 21841 labels on August st, .

. . Theoretical knowledge in Adversarial classi cation

Curse of dimensionality. From the seminal paper on adversarial examples on deep learning systems [Szegedy et al., ], the input dimension has been considered as an argument for inevitability of adversarial attacks. To assess this intuition, Gilmer et al. [ ], Shafahi et al. [ ] proved that for a wide range of distributions P on the unit sphere of dimension D, and any classier h, it is possible to nd an attack on examples x with high probability, exponentially depending on the dimension of X . The arguments rely on isoperimetric inequalities and was extended to logconcave distributions on Riemannian manifolds and uniform distributions over positively curved Riemannian manifolds [Dohmatob, ].

Simon-Gabriel et al. [

] also tried to explain the existence of adversarial examples for neural networks under the light of the high dimensionality of inputs. The authors assumed that networks have ReLU activations and that the distributions of weight are Gaussian. Under such hypotheses, they proved that the gradient norm with regard to the input is highly dependent on the dimension of the input, then justifying again that the dimensionality of the input is a reason for the existence of adversarial examples.

Generalization Bounds in Adversarial

Learning. Similarly to the standard classi cation case, research has focused on computing uniform bounds for adversarial classi cation. These works are often inspired from generalizations of standard tools such as VC-dimension [Cullina et al., ] or Rademacher complexity [Yin et al., , Khim and Loh, , Awasthi et al., ] in the adversarial case. They exhibit generalization bounds that are highly dependent on the dimension of the input. Indeed the Rademacher complexity for classes adapted to the adversarial case adds a polynomial term in the dimension D of the input. However, for randomized classi ers, it is di cult to adapt PAC-Bayes bounds to the adversarial setting [Viallard et al., ]. Indeed, the proof schemes cannot be used in the adversarial setting. Moreover, there is still a lack of understanding of the bias-complexity tradeo in the adversarial case [Wang et al., ].

Adversarial Bayes Risk. . Game Theory in a Nutshell the adversarial risk from a game theoretic perspective. We will explain in details these contributions in Section . . . One of the recent contributions is the existence of optimal classi ers for the adversarial setting. The problem is not trivial because of the inner supremum and the di culty to de ne a suitable topology on the space of measurable functions. The two papers [Awasthi et al., b, Bungert et al., ] propose two di erent approaches for proving the existence of Bayes classiers. Bungert et al. [ ] proposed an L 1 + T V decomposition [Chan and Esedoglu, ] of the adversarial risk. To this end, the authors introduced a non-local perimeter satisfying the submodularity property. They got interested in a suitable relaxation of the adversarial by replacing the inner supremum in the adversarial risk with a ν-essential supremum where ν is a well-chosen distribution. This allows to study the problem in L ∞ (X , ν). The properties of this relaxation are nice (i.e. compactness and semi-continuity) which allows the authors to prove the existence of a minimizer for the relaxed problem. From this solution, the authors built a solution to the adversarial problem that is Borel measurable. The authors studied the regularity properties of these minimizers.

. Game Theory in a Nutshell

Game theory studies strategic interactions among agents assuming their actions are rational. It has many applications in social science [Moulin, ] and more recently in machine learning [Goodfellow et al., ] for instance. In this section, we recall the main concepts in game theory that will help us better understanding the problem of adversarial examples.

. . Two-player zero-sum games

An important subclass of game theoretic problems are two-person zero-sum games. In such a game there are two players namely Player and Player with opposite objectives. When Player plays an action x in some space A 1 and Player plays an action y in some space A 2 , Player receives a reward u 1 (x, y) (also named utility) and Player receives a reward u 2 (x, y) = -u 1 (x, y). The objective for each player is to nd what is the best strategy to play against the other player to maximize their utility. These strategies are of two types:

• deterministic strategies: the player plays a strategy x (for Player ) or y (for Player ),

• mixed strategies: the player pick up x (for Player ) or y (for Player ) randomly according to some probability distribution µ. In this case, the utility functions are averaged according to the strategies µ and ν for respectively Player and Player . The average reward of the Player is then

E x∼µ,y∼ν [u 1 (x, y)].
An important feature is the order of play in the game: the strategies might be di erent if the player knows what was the action of the player before him. This leads us to the notion of best response. Assume that a mixed strategy µ was played by Player , then the set of the best responses for Player to Player strategy is a strategy that maximizes the utility:

arg max ν E x∼µ,y∼ν [u 1 (x, y)].
We denote this set BR 2 (µ). Game theory aims at studying and computing the nature of strategies in response to other players strategies.

Background

. . Equilibria in two-player zero-sum games

In game theory, optimal strategies for players are studied under the name of equilibria. Depending on the game, we might have interest in two types of equilibria: Nash equilibria where players do not cooperate and have to choose a strategy simultaneously, and Stackelberg equilibria where a player de nes its strategy before the other one. We only focus on two-player zero-sum game.

Nash Equilibria. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the player, and no player has anything to gain by changing only their own strategy. In other words, it is the strategy a rational player should adopt without any cooperation with the other. Note that the existence of a Nash equilibrium is not always guaranteed. Formally, a Nash equilibrium is a tuple of actions (x , y ) for Players and such that for all other actions x for Player and y for Player we have:

u 1 (x , y ) ≥ u 1 (x, y ) and u 2 (x , y ) ≥ u 2 (x , y)
Note that here the strategies can be either mixed or deterministic. In a two-player zero-sum game we can restate the previous condition as

u 1 (x, y ) ≤ u 1 (x , y ) ≤ u 1 (x , y)
We remark that a Nash equilibrium is de ned as a best response to each other strategy, i.e. (x , y ) is a Nash equilibrium if and only if x ∈ BR 1 (y ) and y ∈ BR 2 (x ). We can then come to a necessary and su cient condition for the existence of Nash equilibria in the case of a two-player zero-sum game:

max x min y u 1 (x, y) = min y max x u 1 (x, y)
It is a strong duality condition on the function u 1 , with the additional property that the optima are attained. If there is duality, but the optima are not attained, we can state the existence of δapproximate Nash equilibria for every δ > 0, i.e. (x δ , y δ ) such that:

u 1 (x δ , y δ ) ≥ u 1 (x, y δ ) -δ and u 2 (x δ , y δ ) ≥ u 2 (x δ , y) -δ Stackelberg Equilibria. A Stackelberg
game is a game where Player de nes its strategy before Player . Stackelberg equilibria are a tuple of optimal strategies for each player. As Player needs to de ne its strategy before Player , the strategy x of Player has to maximize min y u 1 (x, y). The strategy for Player is then just to play an action that maximizes its utility given that Player played x . In other words, he has to choose a best response to x . Note that if (x , y ) is a Nash equilibrium then it is also a Stackelberg equilibrium.

. . Strong Duality Theorems

Finite action sets. In a two-player zero-sum game where the actions space is nite for both players, the rewards can be cast in a matrix A ∈ R n×m where A ij = u 1 (x i , y j ). In this case, Von

. Optimal Transport concepts

Neumann [Von Neumann, ] proved that there always exists a mixed equilibrium. A mixed strategy of n actions can be embedded in the probability simplex: ].

∆ n := (p 1 , . . . , p n ) ∈ R n + | n i=1 p i = 1
Theorem (Sion's Theorem [Sion, ] ). Let X be a compact convex set and Y be a convex set of a linear topological space. Let u : X × Y → R be a function such that for all y ∈ Y , u(•, y) is quasi-concave and upper semi-continuous; and for all x ∈ X, u(x, •) is quasi-convex and lower semi-continuous, then:

max x∈X inf y∈Y u(x, y) = inf y∈Y max x∈X u(x, y) Moreover, if Y is compact, then the infimum is attained.
Note that a function is said to be quasi-convex if its lower level sets are convex sets. In particular, convex functions are quasi-convex.

Theorem (Fan's Theorem [Fan, ]). Let X be a compact convex set and Y be a convex set (not necessarily topological). Let u : X × Y → R be a function such that for all y ∈ Y , u(•, y) is concave and upper semi-continuous; and for all x ∈ X, u(x, •) is convex, then:

max x∈X inf y∈Y u(x, y) = inf y∈Y max x∈X u(x, y)
Moreover, if Y is compact and for all x ∈ X, u(x, •) is lower semi-continuous, the infimum is attained.

The hypotheses are close since both concern convexity or quasi convexity of the reward function and the semi-continuity of the partial reward. The di erences are subtle and there are cases where one may use either Sion's or Fan's Theorem. For in nite action sets, it is usual to consider mixed strategies as probability distributions on X or Y . In this case, we often endow M 1 + (X ) and M 1 + (Y) with the weak- * (or narrow) topology of measures and use Sion's or Fan's Theorem directly on these probability spaces.

. Optimal Transport concepts

Optimal Transport have gained interest in Machine Learning applications during the past years. Indeed, Optimal Transport has the ability to model many problems, e.g. Generative Adversar-Background ial Networks [Arjovsky et al., ], or Adversarial Learning [Sinha et al., , Pydi and Jog, a, Bhagoji et al., ]. In particular, it will be a central tool in this thesis with the notion of distributionally robust optimization introduced in Section . . . The computation methods for optimal transport problems have also been considerably improved recently. Originally introduced by Monge, this Optimal Transport was a problem where the aim was to move some quantity x to some places y while minimizing the total cost of transport. Let Z be a Polish space. Let P and Q be two Borel probability distributions over Z and c : Z 2 → R+ be a non-negative function. Formally, the problem was posed as follows:

inf T | T P=Q E z∼P [c(z, T (z))]
where T is a measurable mapping and T P de nes the pushforward measure of P by the function T :

T P(A) = P T -1 (A)
for all measurable sets A.

The main di culty with the previous problem, is that there may exist no mapping from P to Q, for instance when P is a single Dirac distribution and Q support contains more than two points. To overcome this issue, Kantorovich proposed to interest in couplings in mappings. Formally couplings between distributions are de ned as follows.

De nition (Couplings between distributions). Let Z be a Polish space. Let P and Q be two Borel probability distributions over Z. The set of coupling distributions between P and Q is defined as:

Γ P,Q := γ ∈ M 1 + (Z 2 ) | Π 1, γ = P, Π 2, γ = Q
where Π i, represents the push-forward of the projection on the i-th component.

Setting this de nition, one can de ne a well-posed version of the Monge problem, often referred to Kantorovich problem. (Optimal Transport). Let Z be a Polish space. Let c : Z 2 → R+ be a lower semicontinuous non-negative function. Let P and Q be two Borel probability distributions over Z. The Optimal Transport problem or Wasserstein problem between P and Q associated with cost function c is defined as:

De nition

W c (P, Q) := inf γ∈Γ P,Q c(x, y)dγ(x, y) = inf γ∈Γ P,Q E (x,y)∼γ [c(x, y)]

A clear introduction to this problem can be found in Villani [

]. In particular, it was proved that the in mum is attained. When X is endowed with a ground metric d, one can endow the space of probability distributions with bounded p-moments with a metric named the p-Wasserstein metric de ned as:

D p (P, Q) := inf γ∈Γ P,Q E (x,y)∼γ [d p (x, y)] 1/p

. Optimal Transport concepts

With this metric, the space of probability distributions with bounded p-moments metrizes the weak topology of measures. When p = ∞, the D ∞ can be de ned in the limit as:

D ∞ (P, Q) := inf γ∈Γ P,Q γ -ess sup (x,y) d(x, y)
The ∞-Wasserstein metric can be extended to other costs and will be denoted W ∞,c .

Entropic Regularized Optimal Transport. The computation time of the exact Optimal Transport solution is often prohibitive: the complexity is supercubic in the number of samples in the empirical distributions. 

W ε c (P, Q) := inf γ∈Γ P,Q c(x, y)dγ(x, y) + ε × KL(γ||P ⊗ Q) = inf γ∈Γ P,Q E (x,y)∼γ [c(x, y)] + ε × KL(γ||P ⊗ Q)
where KL is the Kullback-Leibler divergence de ned as KL(µ||ν) = log dµ dν dµ + dνdµ if µ ν, and +∞ otherwise. To solves this problem, Cuturi [ ] proposed to use Sinkhorn iterations which considerably accelerate the computation of an approximate solution to the optimal transport problem.

Kantorivch Duality.

A fundamental theorem in Optimal Transportation is the Kantorovich duality theorem which writes as follows.

Theorem (Kantorovich duality). Let Z be a Polish space. Let c : Z 2 → R+ be a lower semicontinuous non-negative function. Let P and Q be two Borel probability distributions over Z. Then the following strong duality theorem holds:

W c (P, Q) = sup f,g∈C(Z), f ⊕g≤c f dP + f dQ
where for all x, y ∈ Z, f ⊕ g(x, y) := f (x) + g(y) and C(Z) is the set of continuous functions over Z.

One can nd a proof of this result in [Villani, ]. The main arguments are that the dual of continuous functions on a compact space is the space of Radon measures, and the Rockafellar duality theorem. We can also mention its entropic regularized version.

Theorem (Kantorovich duality). Let Z be a Polish space. Let c : Z 2 → R+ be a lower semicontinuous non-negative function. Let P and Q be two Borel probability distributions over Z. Then the following strong duality theorem holds:

W c (P, Q) = sup f,g∈C(Z) f dP + f dQ -ε e f (x)+g(y)-c(x,y) ε dµ(x)dν(y) -1
Background where for all x, y ∈ Z, f ⊕ g(x, y) := f (x) + g(y) and C(Z) is the set of continuous functions over Z. 

Related Work

d(g(x, y, z), x) ≤ ε
for all x, y, z and z is sampled from a latent distribution p z . The set of such functions g is denoted G ε . In this setting the authors show there is no duality gap for the game between the attacker and the learner:

min f ∈H max g∈Gε E (x,y)∼P,z∼pz [L(f (g(x, y, z), y)] = max g∈Gε min f ∈H E (x,y)∼P,z∼pz [L(f (g(x, y, z), y)]
However, this setting is limited due to the convexity assumptions. As we will see in Chapter , one can prove that no convex loss can be a good surrogate for the 0/1 loss in the adversarial setting.

Related Work

The goal of the paper is to build a framework to design new zero-shot black-box adversarial attacks from generative attackers. Such an attack is called a No Box attack.

Pinot et al. [

] proposed to study the adversarial attacks problem from a game theoretic point of view. The authors proposed to treat the case of binary classi cation with 0/1 loss where the classi er can be either allowed to deterministically play a continuous function or randomly chose a continuous function. In game theoretic terminology, the classi er can play mixed strategies of continuous functions. On the other side, the attacker is deterministic. Formally, its set of actions is:

F ε = {f ∈ F(X × Y, X × Y) | ∀(x, y) ∈ X × Y, f 1 (x, y) -x ≤ ε and f 2 (x, y) = y}
In their work, the authors also assume that the attacker su ers a regularization. The rst considered regularization penalizes the average perturbation for the attacker:

Ω(f ) = E (x,y)∼P [ x -f 1 (x, y) ]
The second one penalizes the attacker if she attacks "too many points":

Ω(f ) = E (x,y)∼P 1 x =f 1 (x,y)
Given one of these regularization, the score function for the classi er h and an attacker f , is dened as:

E P [L(h(f (x)), y)] -λ × Ω(f )
where λ is a non-negative constant. In this setting, the authors show that there do not exist a pure Nash Equilibrium. In particular, the risk for randomized classi ers is strictly smaller than the risk for deterministic classi ers. The question of the nature of equilibria was remained open.

. . Adversarial Risk Minimization and Optimal Transport

Optimal Transport is a key element when studying Adversarial Classi cation problems. Let P be a distribution on the input-label space X × Y. We recall that the problem of adversarial risk minimization is de ned as

R ε,P = inf h P (x,y) ∃x ∈ B ε (x), h(x ) = y
A recent line of work [Bhagoji et al., , Pydi and Jog, a, Trillos and Murray, ] draw important links between R ε,P and Optimal Transport problems in the case of binary classi cation (Y = {-1, +1}) when the space X satis es a midpoint property, i.e. for all

x 1 , x 2 ∈ X there exists x ∈ X such that d(x, x 1 ) = d(x, x 2 ) = d(x 1 ,x 2 ) 2
. It was shown that in this case:

R ε,P = 1 2 - 1 2 W cε (P, P S )
where P S := T S P with T S (x, y) = (x, -y) and

c ε (x, y), (x , y ) = 1 d(x,x )>2ε,y =y
Note that T S only switches the label of a pair (x, y). When ε = 0, W cε (P, P S ) equals the total variation distance between P and P S , which was a result proved in [Trillos and Murray, ]. While this property does not have practical properties yet, there is a hope that this relation might help at building more robust classi ers to adversarial examples.

. . Distributionally Robust Optimization

Another close link between adversarial attacks and Optimal Transport can be made under the light of distributionally robust optimization. Let Z and Θ be Polish spaces. Let P be a Borel probability distribution over Z. Let f : Θ × Z → R be an upper semi continuous function in its second variable. Consider the following problem:

min θ∈Θ E z∼P [f (θ, z)] = min θ∈Θ f (θ, z)dP(z) ( . )
This problem can typically be a risk minimization problem in Machine Learning when P is a distribution over input-label pairs and Θ is a parameter space for the classi er. A distributionally robust optimization (DRO) problem is a problem similar to Equation ( . ), but the learner aims at being robust to a change in the distribution P. Typically, if D is an uncertainty metric for distributions, the DRO problem writes as follows:

min θ∈Θ sup Q∈M + 1 (Z)| D(P,Q)≤ε E z∼Q [f (z)]
For instance, D be the Kullback-Leibler divergence or other f -divergences [Duchi et ]. In the case of Wasserstein uncertainty sets, let c : Z → R+ be a lower semi-continuous nonnegative function. Then a Wasserstein distributionally robust optimization (DRO) problem is de ned as follows:

min θ∈Θ sup Q∈M + 1 (Z)| Wc(P,Q)≤ε E z∼Q [f (z)]
The Wasserstein balls writes as

B c (P, ε) := Q ∈ M + 1 (Z) | W c (P, Q) ≤ ε
This problem induces an attack on the distribution P. Informally, one can interpret a Wasserstein ball as an attacker moving each point x of the distribution P to a distribution Q x so that the average "distance" E x∼P [E y∼Qx [c(x, y)]] at most equals to ε. With this interpretation, we can start linking the Wasserstein DRO problem to the adversarial learning problem. Indeed, in the adversarial attack problem, the attacker is authorized to move each point to another at distance at most ε, i.e. he is authorized a mapping T such that d(x, T (x)) ≤ ε for every x almost surely.

Properties of Wasserstein balls. The Wasserstein balls inherit from nice properties. Since Q → W c (P, Q) is convex, they are convex sets. Moreover, the function Q → W c (P, Q) is lower semi-continuous for the narrow topology of measures, then the set B c (P, η) is closed for the narrow topology too. Concerning the compactness of this set, if Z is compact then the set B c (P, η) is also compact as a closed subset of the compact set M + 1 (Z). Yue et al. [ ] proved the compactness for p-Wassertein balls.

Duality results

The problem of computing DRO solutions is di cult since it concerns optimization over distribution. A strong duality leading to a relaxation of the problem was proved by Blanchet and Murthy [ ]. We state this theorem as follows.

Theorem (Wasserstein DRO duality). Let P be a Borel probability distribution over Z. Let f : Z → R be an upper semi continuous function. Let c : Z → R + be a lower semi-continuous non-negative function. Then the following duality result holds

sup Q∈M + 1 (Z)| Wc(P,Q)≤ε E z∼Q [f (z)] = inf λ≥0 E z∼P sup z ∈Z f (z ) -λc(z, z ) + λε
This theorem was proved by [Blanchet and Murthy, ] using similar arguments to Kantorovich duality. The link with the adversarial attack problem is made clearer with this theorem. Indeed, E z∼P [sup z ∈Z f (z )λc(z, z )] is closed to the adversarial attacks problem. We will make a direct link in the Chapter .

Adversarial classi cation as a Wasserstein-∞ DRO problem.

The adversarial attack problem was studied under the light of DRO from a statistical point of view [Raghunathan et al., ], or to prove that adversarial classi cation is exactly a Wasserstein-∞ problem with a wellsuited cost function [Pydi and Jog, a]. The previous result from [Blanchet and Murthy, ] does not directly apply to Wasserstein-∞ distances but can be adapted. The Wasserstein-∞ DRO problem can be understood as follows: each point x of the distribution P can be moved to a distribution Q x so that the worst-case "distance" c(x, y) is smaller that ε. In general, one can state the following result that proves that the adversarial classi cation problem is actually a Wasserstein-∞ DRO problem.

Theorem (Duality for Wasserstein-∞ DRO). Let Z be a Polish space. Let P be a probability distribution over Z. Let c be a non-negative lower-semicontinuous function over Z 2 and f : Z → R be a Borel measurable function. Then the following strong duality holds

sup Q| W∞,c(P,Q)≤ε E z∼Q [f (z)] = E z∼P sup z ∈Z| c(z,z )≤ε f (z )
.

A Game Theoretic Approach to Adversarial Classification

This result can be found in special case in [Pydi and Jog, a]. For sake of completeness, we provide a proof of the result.

Proof. Let us de ne:

f : (z, z ) ∈ Z 2 → f (z ) -∞ × 1 c(z,z )>ε .
f is Borel measurable, hence upper semi-analytic [Bertsekas and Shreve,

, Chapter ]. We then deduce that

z ∈ Z → sup z ∈Z f (z, z ) = sup z ∈Z| c(z,z )≤ε f (z )
is universally measurable, hence justifying the de nition of the left-hand term in the Theorem. Now let Q be such that W ∞,c (P, Q) ≤ ε. There exists γ ∈ Γ P,Q such that c(z, z ) ≤ ε γ-almost surely. Then we deduce

E z ∼Q f (z ) = E (z,z )∼γ f (z ) ≤ E (z,z )∼γ sup z ∈Z| c(z,z )≤ε f (z ) ≤ E z∼P sup z ∈Z| c(z,z )≤ε f (z )
We have then

sup Q| W∞,c(P,Q)≤ε E z∼Q [f (z)] ≤ E z∼P sup z ∈Z| c(z,z )≤ε f (z )
Thanks to Bertsekas and Shreve [ , Proposition . ], for any δ > 0, there exists a universally measurable mapping T : Z → Z such that f (z, T (z)) ≥ sup z ∈Z f (z, z )δ for every z ∈ Z. De ning Q = T P, we get that W ∞,c (P, Q) ≤ ε and that:

sup Q| W∞,c(P,Q)≤ε E z∼Q [f (z)] ≥ E z∼P sup z ∈Z| c(z,z )≤ε f (z ) -δ
Consequently, we deduce the expected result of the Theorem.

When the problem is a classi cation problem (i.e., Z = X × Y with Y = K ), one can replace f with L(f (x), y) with L a measurable loss function and set the cost c equals to:

c((x, y), (x , y )) := d(x, x ) if y = y +∞ otherwise.

Related Work

Hence, we recover the Adversarial classi cation problem using a Wasserstein-∞ DRO problem. We will see in Chapter , the geometric and topological properties of this set.

DRO, Game Theory and Adversarial Attacks. Recently, Pydi and Jog [ b] studied the adversarial binary classi cation game where the attacker can play a randomized strategy in the ∞-Wasserstein ball of radius ε and the classi er is allowed to play any measurable function. In this case the authors proved the existence of Nash Equilibria, meaning that the classi er can be deterministic and optimal and the attacker requires to be "randomized". We will discuss and compare to this work in details in Chapter .

. Surrogate losses in the Adversarial Setting

To account for the possibility of an adversary manipulating the inputs at test time, we need to revisit the standard risk minimization problem by penalizing any classi cation model that might change its decision when the point of interest is slightly changed. Essentially, this is done by replacing the standard (pointwise) 0/1 loss with an adversarial version that mimics its behavior locally but also penalizes any error in a given region around the point on which it is evaluated.

Yet, just like the 0/1 loss, its adversarial counterpart is not convex, which renders the risk minimization di cult. To circumvent this limitation, we take inspiration from the standard learning theory approach which consists in solving a simpler optimization problem where the non-convex loss function is replaced by a convex surrogate. In general, the surrogate loss is chosen to have a property called consistency [Zhang, b, Bartlett et al., , Steinwart, ], which guarantees that any sequence of classi ers that minimizes the surrogate objective must also be a sequence that minimizes the Bayes risk. In the context of standard classi cation, a large family of convex losses, called classifier-consistent, exhibits this property. This class notoriously includes the hinge loss, the logistic loss and the square loss.

However, the adversarial version of these surrogate losses needs not to have the same consistency properties with respect to the adversarial 0/1 loss. In fact, most existing results in the standard framework rely on a reduction of the global consistency problem to a local point-wise problem, called calibration. However, the same approach is not feasible in the adversarial setting, because the new losses are by nature non-point-wise. Then the optimum for a given input may depend on yet a whole other set of inputs [Awasthi et al., a,c]. Studying the concepts of calibration and consistency in the adversarial setting remains an open and understudied problem. Furthermore, this is a complex and technical area of research, that requires a rigorous analysis, since small tweaks in de nitions can quickly make results meaningless or inaccurate. This di culty is illustrated in the literature, where articles published in high pro le conferences tend to contradict or refute each other Bao et al. [ ], Awasthi et al. [ a,c].

Setting. In this section, let us consider a classi cation task with input space X and output space Y = {-1, +1}. Let (X , d) be a proper Polish (i.e. completely separable) metric space representing the inputs space. For all x ∈ X and δ > 0, we denote B δ (x) the closed ball of radius δ and center x. We also assume that for all x ∈ X and δ > 0, B δ (x) contains at least two points . Let us also endow Y with the trivial metric d (y, y ) = 1 y =y . Then the space (X × Y, d ⊕ d ) is a proper Polish space. For any Polish space Z, we denote M 1 + (Z) the Polish space of Borel probability measures on Z. We will denote F(Z) the space of real valued Borel measurable functions on Z. Finally, we denote R := R ∪ {∞, +∞}.

. . Notions of Calibration and Consistency

The 0/1-loss is both non-continuous and non-convex, and its direct minimization is a di cult problem. The concepts of calibration and consistency aim at identifying the properties that a loss must satisfy in order to be a good surrogate for the minimization of the 0/1-loss. In this section, we de ne these two concepts and explain the di erence between them. First, we need to give a general de nition of a loss function.

De nition (Loss function). A loss function is a function

L : X × Y × F(X ) → R such that L(•, •, f ) is a Borel measurable for all f ∈ F(X ).
Note that this de nition is not speci c to the standard neither adversarial case. In general, a loss can either depend only on f (x), or on other points related to x (e.g. the set of points within a distance ε of x). We now recall the de nition of the risk associated with a loss L and a distribution

P.

De nition (L-risk of a classi er). For a given loss function L, and a Borel probability distribution P over X × Y we define the risk of a classifier f associated with the loss L and a distribution P as

R L,P (f ) := E (x,y)∼P [L(x, y, f )].
We also define the optimal risk associated with the loss L as

R L,P := inf f ∈F (X ) R L,P (f ) .
In the literature [Zhang, b, Bartlett et al., , Steinwart, ], the notion of surrogate losses has been studied as a consistency problem. Formally, the notion of consistency is as follows.

De nition (Consistency).

Let L 1 and L 2 be two loss functions. For a given

P ∈ M + 1 (X × Y), L 2 is said to be consistent for P with respect to L 1 if for all sequences (f n ) n ∈ F(X ) N : R L 2 ,P (f n ) → R L 2 ,P =⇒ R L 1 ,P (f n ) → R L 1 ,P ( . )
Furthermore, L 2 is said consistent with respect to a loss L 1 the above holds for any distribution P.

Note that one can reformulate equivalently the previous de nition as follows. For all > 0, there exists δ > 0 such that for every f ∈ F(X ),

R L 2 ,P (f ) -R L 2 ,P ≤ δ =⇒ R L 1 ,P (f ) -R L 1 ,P ≤

Related Work

Consistency is in general a di cult problem to study because of its high dependency on the distribution P at hand. Accordingly, several previous works [Zhang, b, Bartlett and Mendelson, , Steinwart, ] introduced a weaker notion to study consistency from pointwise viewpoint. The simpli ed notion is called calibration and corresponds to consistency when P is a combination of Dirac distributions. The main building block in the analysis of the calibration problem is the calibration function, de ned as follows.

De nition (Calibration function). Let L be a loss function. The calibration function C L writes as

C L (x, η, f ) := ηL(x, 1, f ) + (1 -η)L(x, -1, f ), for any η ∈ [0, 1],
x ∈ X and f ∈ F(X ). We also define the optimal calibration function as

C L (x, η) := inf f ∈F (X ) C L (x, η, f ). Note that for any x ∈ X and η ∈ [0, 1], C L (x, η, f ) = R L,P (f ) with P = ηδ (x,+1) + (1 - η)δ (x,-1)
. The calibration function thus corresponds to a pointwise notion of the risk, evaluated at point x. We now de ne what is meant by calibration of a surrogate loss.

De nition (Calibration).

Let L 1 and L 2 be two loss functions. We say that L 2 is calibrated with regard to L 1 if for every > 0, η ∈ [0, 1] and x ∈ X , there exists δ > 0 such that for all f ∈ F(X ),

C L 2 (x, η, f )-C L 2 (x, η) ≤ δ =⇒ C L 1 (x, η, f ) -C L 1 (x, η) ≤ .
Furthermore, we say that L 2 is uniformly calibrated with regard to L 1 if for every > 0, there exists δ > 0 such that for all η ∈ [0, 1], x ∈ X and f ∈ F(X ) we have

C L 2 (x, η, f ) -C L 2 (x, η) ≤ δ =⇒ C L 1 (x, η, f ) -C L 1 (x, η) ≤ .
Similarly to consistency, one can also introduce a sequential characterization for calibration and uniform calibration:

L 2 is calibrated with regard to L 1 if for all η ∈ [0, 1], x ∈ X , for all (f n ) n ∈ F(X ) N : C L 2 (x, η, f n ) -C L 2 (x, η) ---→ n→∞ 0 =⇒ C L 1 (x, η, f n ) -C L 1 (x, η) ---→ n→∞ 0 . Also, L 2 is uniformly calibrated with regard to L 1 if for all (f n ) n ∈ F(X ) N : sup η∈[0,1],x∈X C L 2 (x, η, f n ) -C L 2 (x, η) ---→ n→∞ 0 =⇒ sup η∈[0,1],x∈X C L 1 (x, η, f n ) -C L 1 (x, η) ---→ n→∞ 0 .
Connection between calibration and consistency. Calibration is a necessary condition for consistency. In general, the converse is not true. However, in the speci c context of standard . Surrogate losses in the Adversarial Setting classi cation with a well-de ned 0/1-loss, the notions of consistency and calibration have been shown to be equivalent [Zhang, b, Bartlett et al., , Steinwart, ]. The next section discusses existing results on calibration and consistency in the standard classi cation setting.

. . Existing Results in the Standard Classi cation Setting

In binary classi cation, h is often de ned as the sign of a real valued function f ∈ F(X ). The loss usually used to characterize classi cation tasks corresponds to the accuracy of the classi er h. When h is de ned as above, this loss is de ned as follows.

De nition (0/1 loss). Let f ∈ F(X ). We define the 0/1 loss as follows

L 0/1 (x, y, f ) = 1 y×sign(f (x))≤0
with a convention for the sign, e.g. sign(0) = 1. We will denote R P (f

) := R L 0/1 ,P (f ), R P := R L 0/1 ,P , C(x, η, f ) := C L0/1 (x, η, f ) and C (x, η) := C L 0/1 (x, η).
Note that this 0/1-loss is di erent from the one introduced by Bao et 

al. [ ], Awasthi et al. [ a,c]: they used L ≤ (x, y, f ) = 1 y×f (x)≤0
which is a usual 0/1 loss but not adapted to consistency and calibration study. This loss penalizes indecision: i.e. predicting 0 would lead to a pointwise risk of 1 for y = 1 and y = -1 while the 0/1 loss L 0/1 returns 1 for y = 1 and 0 for y = -1. This de nition was used by Bao et al. [ ], Awasthi et al. [ a,c] to prove their calibration and consistency results. While Bartlett et al. [ ] was not explicit on the choice of the 0/1 loss, Steinwart [ ] explicitly mentions that the 0/1 loss is not a margin loss. The use of this loss is not suited for studying consistency and leads to inaccurate results as shown in the following counterexample. On X = R, let P be de ned as P = 1 2 (δ x=0,y=1 + δ x=0,y=-1 ) and φ : R → R be a margin loss. The φ-risk minimization problem writes inf α 1 2 (φ(α) + φ(-α)). For any convex functional φ the optimum is attained for α = 0. f n : x → 0 is a minimizing sequence for the φ-risk. However, R L ≤ (f n ) = 1 for all n and R * L ≤ = 1 2 . Then we deduce that no convex margin loss is consistent w.r.t. L ≤ . Consequently, the 0/1 loss to be used in adversarial consistency needs to satisfy L 0/1,ε (x, y, f ) = sup x ∈Bε(x) 1 ysign(f (x))≤0 , otherwise the obtained results might be inaccurate.

Some of the most prominent works [Zhang, b, Bartlett et al., , Steinwart, ] focus on the concept of margin losses, as de ned below.

De nition (Margin loss).

A loss L is said to be a margin loss if there exists a measurable function φ : R → R + such that:

L(x, y, f ) = φ(yf (x))
Without loss of generality, we will say that φ is a margin loss function, and we will denote R φ the risk associated with the margin loss φ and C φ the calibration function. Notably, it has been demonstrated in several previous works [Zhang, b, Bartlett et al., , Steinwart, ] that, for a margin loss φ, we always have C φ (x, η) = inf α∈R ηφ(α) + (1η)φ(-α). This is in particular one of the main observation allowing to show the following strong result about the connection between consistency and calibration.
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Theorem (Zhang [ b], Bartlett et al. [ ], Steinwart [ ]). Let φ : R → R + be a continuous margin loss. Then the three following assertions are equivalent.

. φ is calibrated with regard to L 0/1 , . φ is uniformly calibrated w.r.t. L 0/1 , . φ is consistent with regard to L 0/1 . Moreover, if φ is convex and di erentiable at 0, then φ is calibrated if and only φ (0) < 0.

The Hinge loss φ(t) = max(1t, 0) and the logistic loss φ(t) = log 1 + e -t are classical examples of convex consistent losses. Convexity is a desirable property for faster optimization of the loss, but there exist other non-convex losses that are calibrated such as the ramp loss (φ(t) = max(1t, 0) + max(1 + t, 0)) or the sigmoid loss (φ(t) = (1 + e t ) -1 ). In the next section, we present the adversarial classi cation setting for which Theorem may not hold anymore.

Remark . The equivalence between calibration and consistency is a consequence of the fact that, over the large space of measurable functions, minimizing the loss pointwisely in the input by desintegrating with regard to x is equivalent to minimizing the whole risk over measurable functions. This result is very powerful and simplify the study of calibration in the standard setting.

. . Calibration and Consistency in the Adversarial Setting.

We now consider the adversarial classi cation setting where an adversary tries to manipulate the inputs at test time. Given ε > 0, they can move each point x ∼ P to another point x which is at distance at most from x . The goal of this adversary is to maximize the 0/1 risk the shifted points from P. Formally, the appropriated loss with adversarial classi cation is de ned as follows.

De nition

(Adversarial 0/1 loss). Let ε ≥ 0. We define the adversarial 0/1 loss of level ε associated as:

L 0/1,ε (x, y, f ) = sup x ∈Bε(x) 1 ysign(f (x))≤0 We will denote R ε,P (f ) := R L 0/1,ε ,P (f ), R ε,P := R L 0/1,ε ,P , C ε (x, η, f ) := C L 0/1,ε (x, η, f ) and C ε (x, η) := C L 0/1 ,ε (x, η) for every P, x, f and η.
Speci city of the adversarial case. The adversarial risk minimization problem is much more challenging than its standard counterpart because an inner supremum is added to the optimization objective. With this inner supremum, it is no longer possible to reduce the distributional problem to a pointwise minimization as it is usually done in the standard classi cation framework. In fact, the notions of consistency and calibration are signi cantly di erent in the adversarial setting. This means that the results obtained in the standard classi cation may no longer be valid in the adversarial setting (e.g., the calibration needs not be su cient for consistency), which makes the study of consistency much more complicated. As a rst step towards analyzing the adversarial classi cation problem, we now adapt the notion of margin loss to the adversarial setting.

Note that after shifting x to x , the point needs not to be in the support of P anymore.

De nition (Adversarial margin loss). Let φ : R → R + be a margin loss and ε ≥ 0. We define the adversarial loss of level ε associated with φ as:

φ ε (x, y, f ) = sup x ∈Bε(x) φ(yf (x )) .
We say that φ is adversarially calibrated (resp. uniformly calibrated, resp. consistent) at level ε if φ ε is calibrated (resp. uniformly calibrated, resp. consistent) w.r.t. L 0/1,ε .

The calibration functions for φ and φ ε are actually equal. This property might seem counterintuitive at rst glance as the adversarial risk is most of the time strictly larger than its standard counterpart. However, the calibration functions are only pointwise dependent, hence having the same prediction for any element of the ball B ε (x) su ces to reach the optimal calibration C φ (x, η).

Proposition . Let ε > 0. Let φ be a continuous classification margin loss. For all x ∈ X and η ∈ [0, 1], we have

C φε (x, η) = inf α∈R ηφ(α) + (1 -η)φ(-α) = C φ (x, η) .
The last equality also holds for the adversarial 0/1 loss.

H-consistency and H-calibration Bao et al. [

] and Awasthi et al. [ a,c] proposed to study H-calibration and H-consistency in the adversarial setting, i.e. calibration and consistency when minimizing sequences in H. Similarly to the calibration function, the H-calibration function is de ned as follows.

De nition (H-calibration function)

. Let H ⊂ F(X ). Let L be a loss function. The optimal H-calibration function is defined as

C L,H (x, η) := inf f ∈H C L (x, η, f ) De nition (H-calibration). Let H ⊂ F(X ). Let H ⊂ F(X ).
Let L 1 and L 2 be two loss functions. We say that L 2 is H-calibrated with regard to L 1 if for every > 0, for all η ∈ [0, 1], x ∈ X , there exists δ > 0 for every f ∈ H:

C L 2 (x, η, f )-C L 2 ,H (x, η) ≤ δ =⇒ C L 1 (x, η, f ) -C L 1 ,H (x, η) ≤ .
Furthermore, we say that L 2 is uniformly H-calibrated with regard to L 1 if for every > 0, there exists δ > 0, for all η ∈ [0, 1], x ∈ X , for every f ∈ H:

C L 2 (x, η, f ) -C L 2 ,H (x, η) ≤ δ =⇒ C L 1 (x, η, f ) -C L 1 ,H (x, η) ≤ .
However, even in the standard classi cation setting, the link between both notions in this extended setting is not clear at all since a pointwise minimization of the risk cannot be done. To the best our knowledge, there is only one paper [Long and Servedio, ] that focuses on this notion

Related Work

in standard setting. The authors studied the restricted case of realizability, i.e. when the standard optimal risk associated with the 0/1 loss equals 0. We believe that studying H-consistency and H-calibration in the adversarial setting is a bit early. In Chapter , we mainly focus on calibration and consistency on the space of measurable functions F(X ) even if some results can be adapted to H-calibration.

.

Robustness and Lipchitzness

In this section, we overview the deep link that exist between adversarial examples and Lipschitzness. Indeed, a Lipschitz function is a function that does not vary a lot when changing its input and a classi er is robust if a small perturbation does not change the prediction. Formally, we recall a classi er h is certifiably robust at level ε at input x with label y if there exists a property depending on h, x, y and ε that implies that for all x such that d(x, x ) ≤ ε, h(x ) = y. We rst recall a property linking Lipschitzness to Robustness. Then, we present the existing methods for building Lipschitz Neural Networks.

. . Lipschitz Property of Neural Networks

The 

Lip 2 (f ) = sup x,x ∈X x =x f (x) -f (x ) 2 x -x 2 .
Intuitively, if a classi er is Lipschitz, one can bound the impact of a given input variation on the output, hence obtaining guarantees on the adversarial robustness. We can formally characterize the robustness of a neural network with respect to its Lipschitz constant with the following proposition:

Proposition (Tsuzuku et al. [ ]). Let f : X → R K be an L-Lipschitz continuous classifier for the 2 norm. Let ε > 0, x ∈ X and y ∈ Y the label of x. If at point x, the margin M f (x) satisfies: M f (x) := max(0, f y (x) -max y =y f y (x)) > √ 2Lε
then we have for every τ such that τ 2 ≤ ε:

argmax k f k (x + τ ) = y
.

Robustness and Lipchitzness

From Proposition , it is straightforward to compute a robustness certi cate for a given point. Consequently, in order to build robust neural networks the margin needs to be large and the Lipschitz constant small to get optimal guarantees on the robustness for neural networks. Beyond adversarial robustness, Lipschitzness has shown its utility in Wasserstein Generative Adversarial Networks. Indeed, the discriminator objective writes as a Wasserstein-1 distance in its dual form:

W 1 (P, G P z ) = sup f : 1-Lip E x∼P [f (x)] -E z∼Pz [f (G(z))]
where P z denotes the latent space, and G the generator function. It is worth noting that Wasserstein GANs highly improved the stability of training for GANs.

Lipschitz Constant of Neural Networks.

A neural network is a function f de ned as a succession of linear and non-linear activation functions σ:

f (x) = (A L σ(A L-1 . . . σ(A 1 x + b 1 ) . . .) + b L )
Assuming that σ is 1-Lipschitz, we have:

f (x) -f (y) 2 ≤ A 1 2 . . . A L 2 x -y 2
with A 2 is the spectral norm of A de ned as

A 2 = max x =0 Ax 2 x 2 = λ max (A T A)
where λ max (A T A) denotes the greatest eigenvalue of A T A. Note that A 2 is also the greatest singular value of A. [Gouk et al., , Jia et al., , Sedghi et al., , Singla et al., b, Araujo et al., ] proposed to estimate or upper-bound the spectral norm of convolutional and dense layers using for instance the power iteration method [Golub et al., ]. While these methods have shown interesting results in terms of accuracy, empirical robustness and eciency, they can not provide provable guarantees since the Lipschitz constant of the trained networks remains unknown or vacuous.
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Algorithm : Spectral normalization algorithm Require: Matrix W, Nb. Iter. n Initialize u and v

v ← Wu/ Wu 2 u ← W v/ W v 2      n iterations h ← 2/( i (Wu • v) i ) 2 return h

. . Learning -Lipschitz layers

Several works proposed methods to build -Lipschitz layers in order to boost adversarial robustness. These worls provide deterministic guarantees for adversarial robustness. One can either normalize the weight matrices by their largest singular values making the layer 1-Lipschitz, as in [Yoshida and Miyato, , Miyato et al., , Farnia et al., , Anil et al., ] or project the weight matrices on the Stiefel manifold [Li et al., b, Trockman et al., , Singla and Feizi, ].

The rst natural idea to learn 1-Lipschitz layers is to normalize the matrices in the forward pass of a Neural Networks :

A i ← A i A i 2 .

This natural idea was exploited by Miyato et al. [ ].

A key di culty is the computation of the spectral norm A i 2 . The authors proposed to use the power iteration method to compute the spectral norm (see Algorithm ). The number of iterations might be prohibitive, hence the authors proposed to use only one step in the training phase to make it faster. This method e ectively approximates well the spectral norm of the last layer. However, this method presents some disadvantages. The spectral normalization has for side e ect reducing the importance of smaller singular values. A consequence is the gradient vanishing that is very present in this structure.

Other approaches [Anil et al., , Singla et al., a, Huang et al., b] proposed methods leveraging the properties of activation functions to constraint the Lipschitz constant of Neural Networks. These works are usually useful to help to improve the performance of linear orthogonal layers. We now present how methods that focus on learning orthogonal layers.

Learning Orthogonal layers A workaround for the limitations of previously presented methods is to build norm preserving linear layers, i.e. orthogonal layers. We recall a matrix Ω ∈ R d×d is said to be orthogonal if for every x ∈ R d , Ωx 2 = x 2 . Indeed, such layers exactly preserve the norm, hence avoiding the reducing the importance all singular values and gradient vanishing issues. Recently, there have been a trend in aiming at learning Orthogonal Layers in neural networks. While all works have similar objectives, their execution is di erent. It is a di cult question to conciliate the convolution structure with orthogonality of linear layers. The presented works of Li et al. The BCOP layer (Block Convolution Orthogonal Parameterization) uses an iterative algorithm proposed by Björck et al. [ ] to orthogonalize a linear transformation. The BCOP layer relies on the following algorithm to orthonormalize a linear operator M :

M × I + 1 2 Q + 3 8 Q 2 + • • • + (-1) p 1 2 p Q p + . . . with Q = I -M T M .
To build a "convolutional layer" from the BCOP procedure, the authors proposed to work directly on the kernels of the convolutions, proposing block operations to orthogonalize convolutions.

Two other alternatives, the SOC layer (Skew Orthogonal Convolution) and the Cayley layer, used two di erent parametrizations of the Special Orthogonal Group SO n (R) using skew-symmetric matrices. Indeed, in Riemmanian geometry, the space of skew-symmetric matrices is isomorphic to the tangent space of SO n (R) at any point. SOC layers use the exponential mapping of a skew symmetric matrix de ned using the following Taylor expansion:

exp{A} := ∞ k=0 A k k!
which de nes an orthogonal matrix, indeed (exp{A}) T exp{A} = I. More precisely, the application A → exp{A} de nes a surjective mapping of SO n (R) from the space of skew-symmetric matrices. To approximate the exponential of a matrix, the authors proposed to use a nite number of terms in its Taylor series expansion. To be adapted to convolutions, a skew-symmetric linear transformation A = M -M T can be computed in a Deep Learning libraries as Pytorch or Tensor ow using the convolution and convolution-transpose operators.

The Cayley method proposed by Trockman et al. [

] use the Cayley transform to orthogonalize the weights matrices. Given a skew symmetric matrix A, the Cayley transform consists in computing the orthogonal matrix:

Cayley(A) = (I -A) -1 (I + A) .
Akin exponential mapping, the Cayley Transform de nes a surjective mapping of SO n (R) from the space of skew-symmetric matrices. To craft such operators, the authors proposed to work in the Fourier domain and directly on the kernels to compute the Cayley Transform.

Reshaped Kernel Methods. It has been shown by Cisse et al. [

] and Tsuzuku et al. [ ] that the spectral norm of a convolution can be upper-bounded by the norm of a reshaped kernel matrix. Consequently, orthogonalizing directly this matrix upper-bound the spectral norm of the convolution by 1. While this method is more computationally e cient than orthogonalizing the whole convolution, it lacks expressivity as the other singular values of the convolution are certainly too constrained.
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. . Residual Networks

During the training phase in neural networks, it may occur some issues such as gradient vanishing or gradient explosion [Hochreiter et al., ]. These issues limited the emergence of scalable and very deep neural networks until He et al. [ b] proposed the Residual Network (ResNet) architecture de ned with the following forward pass:

x 0 = x ∈ X x t+1 = x t + F t (x t ) for t ∈ {0, . . . , T }
where F t (x t ) is typically a two layer neural networks:

F t (x t ) = W 2,t σ(W 1,t x t )
for some weight matrices W 1,t , W 2,t and activation function σ. The ResNet uses residual connection that have the e ect of limiting gradient vanishing issues. Combined with batch normalization, the issue of gradient explosion can also be mitigated, hence opening the possibility to very deep and stable architecture.

To theoretically analyze the ResNet architecture, several works [Haber et al., , E, , Lu et al., , Chen et al., b] proposed a "continuous time" interpretation of the forward pass inspired by dynamical systems that can be de ned as follows.

De nition . Let (F t ) t∈[0,T ] be a family of functions on R d , we define the continuous time Residual Networks flow associated with F t as:

x 0 = x ∈ X dxt dt = F t (x t ) for t ∈ [0, T ]
This continuous time interpretation helps as it allows us to consider the stability of the forward propagation through the stability of the associated dynamical system. A dynamical system is said to be stable if two trajectories starting from an input and another one remain su ciently close to each other all along the propagation. This stability property takes all its sense in the context of adversarial classi cation.

It was argued by Haber et al. [ ] that when F t does not depend on t or vary slowly with time , the stability can be characterized by the eigenvalues of the Jacobian matrix ∇ x F t (x t ): the dynamical system is stable if the real part of the eigenvalues of the Jacobian remains negative throughout the propagation. This property however only relies on intuition and this condition might be di cult to verify in practice. In Chapter , in order to derive stability properties, we study gradient ows and convex potentials, which are subclasses of Residual networks.

Other works [Huang et al., b, Li et al., b] also proposed to enhance adversarial robustness using dynamical systems interpretations of Residual Networks. Both works argue that using particular discretization schemes would make gradient attacks more di cult to compute due to numerical stability. These works did not provide any provable guarantees for such approaches. We bridge this gap providing principled guarantees for Residual Networks. This blurry de nition of "vary slowly" makes the property di cult to apply. a], by rigorously reformulating the adversarial risk as a linear optimization problem over distributions. In fact, we cast the adversarial risk minimization problem as a Distributionally Robust Optimization (DRO) [Blanchet and Murthy, ] problem for a well suited cost function. This formulation naturally leads us, in Section . , to analyze adversarial risk minimization as a zero-sum game. We demonstrate that, Game Theory of Adversarial Examples in this game, the duality gap always equals 0, meaning that it always admits approximate mixed Nash equilibria.

Game Theory of Adversarial Examples

Afterwards, we aim at designing an e cient algorithm to learn an optimally robust randomized classi er. We focus on learning a nite mixture of classi ers. Drawing inspiration from robust optimization Sinha et al. [

] and subgradient methods Boyd [ ], we derive in Section . a rst oracle algorithm to optimize a nite mixture. Then, following the line of work of [Cuturi, ], we introduce an entropic regularization to e ectively compute an approximation of the optimal mixture. We validate our ndings with experiments on simulated and real datasets, namely CIFAR-an CIFAR-Krizhevsky and Hinton [ ].

. Consider the binary classi cation task illustrated in Figure . . We assume that all input-output pairs (X, Y ) are sampled from a distribution P de ned as follows

The Adversarial Attack Problem . . A Motivating Example

P(Y = ±1) = 1/2 and P(X = 0 | Y = -1) = 1 P(X = ±1 | Y = 1) = 1/2
Given access to P, the adversary aims to maximize the expected risk, but can only move each point by at most 1 on the real line. In this context, we study two classi ers: f 1 (x) = -x -1/2 and f 2 (x) = x -1/2 . Both f 1 and f 2 have a standard risk of 1/4. In the presence of an adversary, the risk (a.k.a. the adversarial risk) increases to 1. Here, using a randomized classi er can make the system more robust. Consider f where f = f 1 w.p. 1/2 and f 2 otherwise. The standard risk of f remains 1/4 but its adversarial risk is 3/4 < 1. Indeed, when attacking f , any adversary will have to choose between moving points from 0 to 1 or to -1. Either ways, the attack only works half of the time; hence an overall adversarial risk of 3/4. Furthermore, if f knows the strategy the adversary uses, it can always update the probability it gives to f 1 and f 2 to get a better (possibly (X, Y ) ∼ P is misclassi ed by fi if and only if fi(X)Y ≤ 0 deterministic) defense. For example, if the adversary chooses to always move 0 to 1, the classi er can set f = f 1 w.p. 1 to retrieve an adversarial risk of 1/2 instead of 3/4. Now, what happens if the adversary can use randomized strategies, meaning that for each point it can ip a coin before deciding where to move? In this case, the adversary could decide to move points from 0 to 1 w.p. 1/2 and to -1 otherwise. This strategy is still optimal with an adversarial risk of 3/4 but now the classi er cannot use its knowledge of the adversary's strategy to lower the risk. We are in a state where neither the adversary nor the classi er can bene t from unilaterally changing its strategy. In the game theory terminology, this state is called a Mixed Nash equilibrium.

. . General setting

Let us consider a loss function: L : Θ × (X × Y) → [0, ∞) satisfying the following set of assumptions.

Assumption (Loss function). ) The loss function L is a non negative Borel measurable function.

) For all θ ∈ Θ, L(θ, •) is upper-semi continuous. ) There exists M > 0 such that for all θ ∈ Θ,

(x, y) ∈ X × Y, 0 ≤ L(θ, (x, y)) ≤ M .
It is usual to assume upper-semi continuity when studying optimization over distributions [Villani, , Blanchet and Murthy, ]. Furthermore, considering bounded (and positive) loss functions is also very common in learning theory [ Bartlett and Mendelson, ] and is not restrictive.

In the adversarial examples framework, the loss of interest is the 0/1 loss, for whose surrogates are misunderstood and is the object of Chapter ; hence it is essential that a 0/1 loss satis es Assumption . In the binary classi cation setting (i.e. Y = {-1, +1}) a possible 0/1 loss writes L 0/1 (θ, (x, y)) = 1 yf θ (x)≤0 . Then, assuming that for all θ, f θ (•) is continuous and for all x, f • (x) is continuous, the 0/1 loss satis es Assumption . In particular, it is the case for neural networks with continuous activation functions.

. . Measure Theoretic Lemmas

We rst recall and prove some important lemmas about measure theory. (x,y))dµ(θ) is upper semi-continuous and hence Borel measurable.

Lemma (Fubini's theorem). Let L : Θ × (X × Y) → [0, ∞) satisfying Assumption . Then for all µ ∈ M 1 + (Θ), L(θ, •)dµ(θ) is Borel measurable; for Q ∈ M 1 + (X ×Y), L(•, (x, y))dQ(x, y) is Borel measurable. Moreover: L(θ, (x, y))dµ(θ)dQ(x, y) = L(θ, (x, y))dQ(x, y)dµ(θ) Lemma . Let L : Θ × (X × Y) → [0, ∞) satisfying Assumption . Then for all µ ∈ M 1 + (Θ), (x, y) → L(θ,
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Proof. Let (x n , y n ) n be a sequence of X × Y converging to (x, y) ∈ X × Y. Let M be an upper bound on the loss L. For all θ ∈ Θ, M -L(θ, •) is non negative and lower semicontinuous. Then by Fatou's Lemma :

M -L(θ, (x, y))dµ(θ) ≤ lim inf n→∞ M -L(θ, (x n , y n ))dµ(θ) ≤ lim inf n→∞ M -L(θ, (x n , y n ))dµ(θ)
We then have: M -L(θ, •)dµ(θ) is lower semi-continuous and then L(θ, •)dµ(θ) is upper-semi continuous.

Lemma . Let L : Θ × (X × Y) → [0, ∞) satisfying Assumption . Then for all µ ∈ M 1 + (Θ), Q → L(θ, (x, y))dµ(θ)dQ(x, y
) is upper semi-continuous for the weak topology of measures.

Proof. -L(θ, •)dµ(θ) is lower semi-continuous from Lemma . Then M -L(θ, •)dµ(θ) is lower semi-continuous and non negative. Letus denote v this function. Let (v n ) n be a non-decreasing sequence of continuous bounded functions such that v n → v. Let (Q k ) k converge weakly towards Q. Then by monotone convergence theorem:

vdQ = lim n v n dQ = lim n lim k v n dQ k ≤ lim inf k vdQ k
Then Q → vdQ is lower semi-continuous and then Q → L(θ, (x, y))dµ(θ)dQ(x, y) is upper semi-continuous for weak topology of measures.

. . Adversarial Risk Minimization

The standard risk for a single classi er θ associated with the loss L satisfying Assumption writes: R(θ) := E (x,y)∼P [L(θ, (x, y))]. Similarly, the adversarial risk of θ at level ε associated with the loss L is de ned as

R ε (θ) := E (x,y)∼P sup x ∈X , d(x,x )≤ε L(θ, (x , y)) .
It is clear that R 0 (θ) = R(θ) for all θ. We can generalize these notions with distributions of classi ers. In other terms the classi er is then randomized according to some distribution µ ∈ M 1 + (Θ). A classi er is randomized if for a given input, the output of the classi er is a prob-

. The Adversarial Attack Problem ability distribution. The standard risk of a randomized classi er µ writes R(µ

) = E θ∼µ [R(θ)].
Similarly, the adversarial risk of the randomized classi er µ at level ε is

R ε (µ) := E (x,y)∼P sup x ∈X , d(x,x )≤ε E θ∼µ L(θ, (x , y)) .
For instance, for the 0/1 loss, the inner maximization problem, consists in maximizing the probability of misclassi cation for a given pair (x, y).

Note that R(δ θ ) = R(θ) and R ε (δ θ ) = R ε (θ).
In the remainder of this section, we study the adversarial risk minimization problems with randomized and deterministic classi ers and denote

V rand ε := inf µ∈M 1 + (Θ) R ε (µ), V det ε := inf θ∈Θ R ε (θ) ( . )
Note that we can show that the standard risk in ma are equal : V rand 0 = V det 0 . Proposition . Let P be a Borel probability distribution on X × Y, and L a loss satisfying Assumption , then:

inf µ∈M 1 + (Θ) R(µ) = inf θ∈Θ R(θ) Proof. We have inf µ∈M 1 + (Θ) R(µ) ≤ inf θ∈Θ R(θ). Now, let µ ∈ M 1 + (Θ), then: R(µ) = E θ∼µ (R(θ)) ≥ essinf µ E θ∼µ (R(θ)) ≥ inf θ∈Θ R(θ).
where essinf denotes the essential in mum.

Remark .

No randomization is needed for minimizing the standard risk. Denoting V this common value, we also have the following inequalities for any ε > 0, V ≤ V rand ε ≤ V det ε .

. . Distributional Formulation of the Adversarial Risk

To account for the possible randomness of the adversary, we rewrite the adversarial attack problem as a convex optimization problem over distributions. Let us rst introduce the set of adversarial distributions.

De nition (Set of adversarial distributions). Let P be a Borel probability distribution on X ×Y and ε > 0. We define the set of adversarial distributions as

A ε (P) := Q ∈ M + 1 (X × Y) | ∃γ ∈ M + 1 (X × Y) 2 , d(x, x ) ≤ ε, y = y γ-a.s., Π 1 γ = P, Π 2 γ = Q
where Π i denotes the projection on the i-th component, and g the push-forward measure by a measurable function g.
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An attacker that can move the initial distribution P anywhere in A ε (P) is not applying a pointwise deterministic perturbation as considered in the standard adversarial risk. In other words, for a point (x, y) ∼ P, the attacker could choose a distribution q(• | (x, y)) whose support is included in {(x , y ) | d(x, x ) ≤ , y = y } from which he will sample the adversarial attack. In this sense, we say the attacker is allowed to be randomized. Link with DRO. We immediately remark that A ε (P) corresponds to the Wasserstein-∞ set associated with the cost

d ((x, y), (x , y )) → d(x, x ) if y = y +∞ otherwise.
Such a set can be de ned from usual (not ∞) Wasserstein uncertainty sets: for an arbitrary ε > 0, we de ne the cost c ε as follows

c ε ((x, y), (x , y )) := 0 if d(x, x ) ≤ ε and y = y +∞ otherwise.
This cost is lower semi-continuous and penalizes to in nity perturbations that change the label or move the input by a distance greater than ε. As Proposition shows, the Wasserstein ball associated with c ε is equal to A ε (P).

Proposition . Let P be a Borel probability distribution on X × Y and ε > 0 and η ≥ 0, then B cε (P, η) = A ε (P). Moreover, A ε (P) is convex and compact for the weak topology of M + 1 (X × Y).

Proof. Let η > 0. Let Q ∈ A ε (P). There exists γ ∈ M + 1 (X × Y) 2 such that, d(x, x ) ≤ ε, y = y γ-almost surely, and Π 1 γ = P, and Π 2 γ = Q. Then c ε dγ = 0 ≤ η. Then, W cε (P, Q) ≤ η, and Q ∈ B cε (P, η). Reciprocally, let Q ∈ B cε (P, η). Then, since the in mum is attained in the Wasserstein de nition, there exists γ ∈ M + 1 (X × Y) 2 such that c ε dγ ≤ η. Since c ε ((x, x ), (y, y )) = +∞ when d(x, x ) > ε and y = y , we deduce that, d(x, x ) ≤ ε and y = y , γ-almost surely. Then Q ∈ A ε (P). We have then shown that: A ε (P) = B cε (P, η).

The convexity of A ε (P) is immediate from the relation with the Wasserstein uncertainty set.

Let us show rst that A ε (P) is relatively compact for the weak topology. To do so we will show that A ε (P) is tight and apply Prokhorov theorem. Let δ > 0, (X × Y, d ⊕ d ) being a Polish space, {P} is tight then there exists K δ compact such that

P(K δ ) ≥ 1 -δ. Let Kδ := {(x , y ) | ∃(x, y) ∈ K δ , d(x , x) ≤ ε, y = y }. Recalling that (X , d) is proper (i.e. the closed balls are compact), so Kδ is compact. Moreover for Q ∈ A ε (P), Q( Kδ ) ≥ P(K δ ) ≥ 1 -δ.
And then, Prokhorov's theorem holds, and A ε (P) is relatively compact for the weak topology.

Let us now prove that A ε (P) is closed to conclude. Let (Q n ) n be a sequence of A ε (P) converging towards some Q for weak topology. For each n, there exists

γ n ∈ M 1 + (X × Y)
such that d(x, x ) ≤ ε and y = y γ n -almost surely and

Π 1 γ n = P, Π 2 γ n = Q n .
{Q n , n ≥ 0} is relatively compact, then tight, then n Γ P,Qn is tight, then relatively compact by Prokhorov's theorem. (γ n ) n ∈ n Γ P,Qn , then up to an extraction, γ n → γ. Then d(x, x ) ≤ ε and y = y γ-almost surely, and by continuity, Π 1 γ = P and by continuity, Π 2 γ = Q. And hence A ε (P) is closed.

Finally A ε (P) is a convex compact set for the weak topology.

Thanks to this result, we can reformulate the adversarial risk as the value of a convex problem over A ε (P).

Proposition . Let P be a Borel probability distribution on X × Y and µ a Borel probability distribution on Θ.

Let L : Θ × (X × Y) → [0, ∞) satisfying Assumption . Let ε > 0. Then: R ε (µ) = sup Q∈Aε(P) E (x ,y )∼Q,θ∼µ L(θ, (x , y )) . ( . 
)
The supremum is attained. Moreover Q * ∈ A ε (P) is an optimum of Problem ( . ) if and only if there exists

γ * ∈ M + 1 (X × Y) 2 such that: Π 1 γ * = P, Π 2 γ * = Q * , d(x, x ) ≤ ε, y = y and L(x , y ) = sup u∈X ,d(x,u)≤ε L(u, y) γ * -almost surely. Proof. Let µ ∈ M 1 + (Θ). Let us de ne f as f : ((x, y), (x , y )) → E θ∼µ [L(θ, (x, y))] -c ε ((x, y), (x , y )) .
f is upper-semi continuous, hence upper semi-analytic. Then, by upper semi continuity Reciprocally, let Q ∈ A ε (P). There exists γ ∈ M 1 + ((X × Y) 2 ), such that d(x, x ) ≤ ε and y = y γ-almost surely, and, Π 1 γ = P and ,(u,v))] γ-almost surely. Then, we deduce that:

of E θ∼µ [L(θ, •)] on the compact {(x , y ) | d(x, x ) ≤ ε, y = y }
Π 2 γ = Q. Then: E θ∼µ [L(θ, (x , y ))] ≤ sup (u,v), d(x,u)≤ε,y=v E θ∼µ [L(θ
E (x ,y )∼Q E θ∼µ L(θ, (x , y )) = E (x,y,x ,y )∼γ E θ∼µ L(θ, (x , y )) ≤ E (x,y,x ,y )∼γ sup (u,v), d(x,u)≤ε,y=v E θ∼µ [L(θ, (u, v))]
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≤ E (x,y)∼P sup (u,v), d(x,u)≤ε,y=v E θ∼µ [L(θ, (u, v))]
Then we deduce the expected result:

R ε (µ) = sup Q∈Aε(P) E (x,y)∼Q [E θ∼µ [L(θ, (x, y))]]
Let us show that the optimum is attained. L(θ, (x, y))]] is upper semi continuous by Lemma for the weak topology of measures, and A ε (P) is compact by Proposition , then by Prop. . from [Bertsekas and Shreve, ], the supremum is attained for a certain Q * ∈ A ε (P).

Q → E (x,y)∼Q [E θ∼µ [
The adversarial attack problem is a DRO problem for the cost c ε . Proposition means that, against a xed classi er µ, the randomized attacker that can move the distribution in A ε (P) has exactly the same power as an attacker that moves every single point x in the ball of radius ε. By Proposition , we also deduce that the adversarial risk can be casted as a linear optimization problem over distributions.

Remark . In a recent work, [Pydi and Jog, a] proposed a similar adversary using Markov kernels but left as an open question the link with the classical adversarial risk, due to measurability issues. Proposition solves these issues. The result is similar to [Blanchet and Murthy, ]. Although we believe its proof might be extended for infinite valued costs, [Blanchet and Murthy, ] did not treat that case. We provide an alternative proof in this special case.

. Nash Equilibria in the Adversarial Game . . Adversarial Attacks as a Zero-Sum Game Thanks to Proposition . , the adversarial risk minimization problem can be seen as a two-player zero-sum game that writes as follows,

inf µ∈M 1 + (Θ)
sup ) In this game, the classi er's objective is to nd the best distribution µ ∈ M + 1 (Θ) while the adversary is manipulating the data distribution. For the classi er, solving the in mum problem in Equation ( . ) simply amounts to solving the adversarial risk minimization problem -Problem ( . ), whether the classi er is randomized or not. Then, given a randomized classi er µ ∈ M + 1 (Θ), the goal of the attacker is to nd a new data-set distribution Q in the set of adversarial distributions A ε (P) that maximizes the risk of µ. More formally, the adversary looks for

Q∈Aε(P) E (x,y)∼Q,θ∼µ [L(θ, (x, y))]. ( . 
Q ∈ argmax Q∈Aε(P) E (x,y)∼Q,θ∼µ [L(θ, (x, y))].
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In the game theoretic terminology, Q is also called the best response of the attacker to the classi er µ.

Remark . Note that for a given classifier µ there always exists a "deterministic" best response, i.e. every single point (x, y) is mapped to another single point T (x, y). Let T : X × Y → X × Y be defined such that for all (x, y) ∈ X × Y, E θ∼µ [L(T (x, y))] = sup x , d(x,x )≤ε E θ∼µ [L(x , y)]. Thanks to Prop. . from [Bertsekas and Shreve, ], T is P-measurable. Moreover, we get that Q = (T, id) P belongs to the best response to µ. Therefore, T is the optimal "deterministic" attack against the classifier µ.

. . Dual Formulation of the Game

Every zero sum game has a dual formulation that allows a deeper understanding of the framework. Here, from Proposition , we can de ne the dual problem of adversarial risk minimization for randomized classi ers. This dual problem also characterizes a two-player zero-sum game that writes as follows,

sup ) In this dual game problem, the adversary plays rst and seeks an adversarial distribution that has the highest possible risk when faced with an arbitrary classi er. This means that it has to select an adversarial perturbation for every input x, without seeing the classi er rst. In this case, as pointed out by the motivating example in Section . . , the attack can (and should) be randomized to ensure maximal harm against several classi ers. Then, given an adversarial distribution, the classi er objective is to nd the best possible classi er on this distribution. Let us denote D ε the value of the dual problem. Since the weak duality is always satis ed, we get

Q∈Aε(P) inf µ∈M 1 + (Θ) E (x,y)∼Q,θ∼µ [L(θ, (x, y))]. ( . 
D ε ≤ V rand ε ≤ V det ε . ( . )
Inequalities in Equation ( . ) mean that the lowest risk the classi er can get (regardless of the game we look at) is D ε . In particular, this means that the primal version of the game, i.e. the adversarial risk minimization problem, will always have a value greater or equal to D ε . As we discussed in Section . . , this lower bound may not be attained by a deterministic classi er. As we will demonstrate in the next section, optimizing over randomized classi ers allows to approach D ε arbitrary closely.

Note that, we can always de ne the dual problem when the classi er is deterministic,

sup Q∈Aε(P) inf θ∈Θ E (x,y)∼Q [L(θ, (x, y))].
We can deduce an immediate corollary from Proposition that the dual problems for deterministic and randomized classi ers have the same value.

Corollary . Under Assumption , the dual for randomized and deterministic classifiers are equal.

. . Nash Equilibria for Randomized Strategies

In the adversarial examples game, a Nash equilibrium is a couple (µ * , Q * ) ∈ M 1 + (Θ) × A ε (P) where both the classi er and the attacker have no incentive to deviate unilaterally from their strategies µ * and Q * . More formally, (µ * , Q * ) is a Nash equilibrium of the adversarial examples game if (µ * , Q * ) is a saddle point of the objective function

(µ, Q) → E (x,y)∼Q,θ∼µ [L(θ, (x, y))].
Alternatively, we can say that (µ * , Q * ) is a Nash equilibrium if and only if µ * solves the adversarial risk minimization problem -Problem ( . ), Q * the dual problem -Problem ( . ), and D ε = V ε rand . In our problem, Q * always exists but it might not be the case for µ * . Then for any δ > 0, we say that (µ δ , Q * ) is a δ-approximate Nash equilibrium if Q * solves the dual problem and µ δ satis es

D ε ≥ R ε (µ δ ) -δ.
We now state our main result: the existence of approximate Nash equilibria in the adversarial examples game when both the classi er and the adversary can use randomized strategies. More precisely, we demonstrate that the duality gap between the adversary and the classi er problems is zero, which gives as a corollary the existence of Nash equilibria.

Theorem . Let

P ∈ M 1 + (X × Y). Let ε > 0. Let L : Θ × (X × Y) → [0, ∞) satisfying Assumption .
Then strong duality always holds in the randomized setting:

inf µ∈M + 1 (Θ) max Q∈Aε(P) E θ∼µ,(x,y)∼Q [L(θ, (x, y))] ( . ) = max Q∈Aε(P) inf µ∈M + 1 (Θ) E θ∼µ,(x,y)∼Q [L(θ, (x, y))]
The supremum is always attained. If Θ is a compact set, and for all (x, y) ∈ X × Y, L(•, (x, y)) is lower semi-continuous, the infimum is also attained.

Proof. A ε (P), endowed with the weak topology of measures, is a Hausdor compact convex space, thanks to Proposition . Moreover, M 1 + (Θ) is clearly convex and (Q, µ) → LdµdQ is bilinear, hence concave-convex. Moreover thanks to Lemma , for all µ, Q → LdµdQ is upper semi-continuous. Then Fan's theorem applies and strong duality holds.

Corollary . Under Assumption , for any δ > 0, there exists a δ-approximate Nash-Equibilrium (µ δ , Q * ). Moreover, if the infimum is attained, there exists a Nash equilibrium (µ * , Q * ) to the adversarial examples game.

Bose et al. [

] mentioned a particular form of Theorem for convex cases. It is still a direct corollary of Fan's theorem. This theorem can be stated as follows:

Theorem . Let P ∈ M 1 + (X × Y), ε > 0 and Θ a convex set.
Let L be a loss satisfying Assumption , and also, (x, y) ∈ X × Y, L(•, (x, y)) is a convex function, then we have the following:

inf θ∈Θ sup Q∈Aε(P) E Q [L(θ, (x, y))] = sup Q∈Aε(P) inf θ∈Θ E Q [L(θ, (x, y))]
.
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The supremum is always attained. If Θ is a compact set then, the infimum is also attained.

Theorem shows that D ε = V ε rand . From a game theoretic perspective, this means that the minimal adversarial risk for a randomized classi er against any attack (primal problem) is the same as the maximal risk an adversary can get by using an attack strategy that is oblivious to the classi er it faces (dual problem). This suggests that playing randomized strategies for the classi er could substantially improve robustness to adversarial examples. In the next section, we will design an algorithm that e ciently learn a randomized classi er and show improved adversarial robustness over classical deterministic defenses.

Remark .

Theorem remains true if one replaces A ε (P) with any other Wasserstein compact uncertainty sets (see [Yue et al., ] for conditions of compactness).
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.

. An Entropic Regularization

Let {(x i , y i )} N i=1 samples independently drawn from P and denote P := 1 N N i=1 δ (x i ,y i ) the associated empirical distribution. One can show the adversarial empirical risk minimization can be cast as:

R ε := inf µ∈M + 1 (Θ) N i=1 sup Q i ∈Γ i,ε E (x,y)∼Q i ,θ∼µ [L(θ, (x, y))]
where Γ i,ε is de ned as :

Γ i,ε := Q i | dQ i = 1 N , c ε ((x i , y i ), •)dQ i = 0 . Proposition . Let P := 1 N N i=1 δ (x i ,y i ) .
Let l be a loss satisfying Assumption . Then we have:

1 N N i=1 sup x, d(x,x i )≤ε E θ∼µ [L(θ, (x, y))] = N i=1 sup Q i ∈Γ i,ε E (x,y)∼Q i ,θ∼µ [L(θ, (x, y))]
where Γ i,ε is defined as :

Γ i,ε := Q i | dQ i = 1 N , c ε ((x i , y i ), •)dQ i = 0 .
Proof. This proposition is a direct application of Proposition for Dirac distributions δ (x i ,y i ) .
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In the following, we regularize the above objective by adding an entropic term to each inner supremum problem. Let α := (α i ) N i=1 ∈ R N + such that for all i ∈ {1, . . . , N }, and let us consider the following optimization problem:

R ε,α := inf µ∈M + 1 (Θ) N i=1 sup Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] -α i KL Q i 1 N U (x i ,y i )
where U (x,y) is an arbitrary distribution of support equal to:

S (ε) (x,y) := (x , y ) | c ε ((x, y), (x , y )) = 0 ,
and for all

Q, U ∈ M + (X × Y), KL(Q||U) := log dQ dU dQ + |U| -|Q| if Q U +∞ otherwise.
Note that when α = 0, we recover the problem of interest R ε = R ε,0 . Moreover, we show the regularized supremum tends to the standard supremum when α → 0.

Proposition . For µ ∈ M + 1 (Θ), one has

lim α i →0 sup Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] -α i KL Q 1 N U (x i ,y i ) = sup Q i ∈Γ i,ε E (x,y)∼Q i ,θ∼µ [L(θ, (x, y))].
Proof. Let us rst show that for α ≥ 0, sup

Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))]-αKL Q i 1 N U (x i ,y i ) admits a solution. Let α ≥ 0, (Q n α,i ) n≥0 a sequence such that E Q n α,i ,µ [L(θ, (x, y))] -αKL Q n α,i 1 N U (x i ,y i ) -→ n sup Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] -αKL Q i 1 N U (x i ,y i ) .
As Γ i,ε is tight ((X , d) is a proper metric space therefore all the closed ball are compact) and by Prokhorov's theorem, we can extract a subsequence which converges toward

Q α,i . Moreover, L is upper semi-continuous (u.s.c), thus Q → E Q,µ [L(θ, (x, y))] is also u.s.c. a
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Moreover, Q → -αKL Q 1 N U (x i ,y i
) is also u.s.c. b , therefore, by considering the limit superior as n goes to in nity we obtain that

lim sup n→+∞ E Q n α,i ,µ [L(θ, (x, y))] -αKL Q n α,i 1 N U (x i ,y i ) = sup Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] -αKL Q i 1 N U (x i ,y i ) ≤ E Q α,i ,µ [L(θ, (x, y))] -αKL Q α,i 1 N U (x i ,y i )
from which we deduce that Q α,i is optimal.

Let us now show the result. We consider a positive sequence of (α

( ) i ) ≥0 such that α ( ) i → 0. Let us denote Q α ( ) i ,i
and Q i the solutions of respectively:

max Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] -α ( ) i KL Q i 1 N U (x i ,y i )
and max

Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] . Since Γ i,ε is tight, (Q α ( ) i ,i
) ≥0 is also tight and we can extract by Prokhorov's theorem a subsequence which converges towards Q . Moreover we have

E Q i ,µ [L(θ, (x, y))] -α ( ) i KL Q i 1 N U (x i ,y i ) ≤ E Q α ( ) i ,i
,µ [L(θ, (x, y))]α

( ) i KL Q α ( ) i ,i 1 N U (x i ,y i )
from which follows that

0 ≤ E Q i ,µ [L(θ, (x, y))] -E Q α ( ) i ,i ,µ [L(θ, (x, y))] ≤ α ( ) i KL Q i 1 N U (x i ,y i ) -KL Q α ( ) i ,i 1 N U (x i ,y i )
Then by considering the limit superior we obtain that

lim sup →+∞ E Q α ( ) i ,i ,µ [L(θ, (x, y))] = E Q i ,µ [L(θ, (x, y))]
from which follows that

E Q i ,µ [L(θ, (x, y))] ≤ E Q ,µ [L(θ, (x, y))]
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a Indeed, by considering a decreasing sequence of continuous and bounded functions which converge towards

Eµ[L(θ, (x, y))] and by de nition of the weak convergence the result follows. b For α = 0 the result is clear, and if α > 0, note that KL

• 1 N U (x i ,y i ) is lower semi-continuous
By adding an entropic term to the objective, we obtain an explicit formulation of the supremum involved in the sum: as soon as α > 0 (which means that each α i > 0), each sub-problem becomes just the Fenchel-Legendre transform of KL(•|U (x i ,y i ) /N ) which has the following closed form:

sup Q i ∈Γ i,ε E Q i ,µ [L(θ, (x, y))] -α i KL Q i || 1 N U (x i ,y i ) = α i N log X ×Y exp E θ∼µ [L(θ, (x, y))] α i dU (x i ,y i ) .
Finally, we end up with the following problem:

inf µ∈M + 1 (Θ) N i=1 α i N log exp E µ [L(θ, (x, y))] α i dU (x i ,y i ) .
In order to solve the above problem, one needs to compute the integral involved in the objective.

To do so, we estimate it by randomly sampling m i ≥ 1 samples (u

(i) 1 , . . . , u (i) m i ) ∈ (X × Y) m i from U (x i ,y i )
for all i ∈ {1, . . . , N } which leads to the following optimization problem

inf µ∈M + 1 (Θ) N i=1 α i N log   1 m i m i j=1 exp E µ L(θ, u (i) j ) α i   ( . )
denoted R m ε,α where m := (m i ) N i=1 in the following. Now we aim at controlling the error made with our approximations. We decompose the error into two terms

| R m ε,α -R ε | ≤ | R ε,α -R m ε,α | + | R ε,α -R ε |
where the rst one corresponds to the statistical error made by our estimation of the integral, and the second to the approximation error made by the entropic regularization of the objective. First, we show a control of the statistical error using Rademacher complexities [ Bartlett and Mendelson, ].

Proposition . Let m ≥ 1 and α > 0 and denote α := (α, . . . , α) ∈ R N and m := (m, . . . , m) ∈ R N . Then by denoting M = max(M, α) with M as in Assumption , we have with a probability of at least 

1 -δ | R ε,α -R m ε,α | ≤ 2e M/α N N i=1 C i + 6 M e M/
= ±1] = 1/2. Proof. Let us denote for all µ ∈ M + 1 (Θ), R m ε,α (µ) := N i=1 α i N log   1 m m j=1 exp E µ L(θ, u (i) j ) α i   .
Let us also consider (µ

(m) n ) n≥0 and (µ n ) n≥0 two sequences such that R m ε,α (µ (m) n ) -----→ n→+∞ R m ε,α , R ε,α (µ n ) -----→ n→+∞ R ε,α . Since R m ε,α ≤ R m ε,α (µ n ), we remark that R m ε,α -R ε,α = R m ε,α -R m ε,α (µ n ) + R m ε,α (µ n ) -R ε,α (µ n ) + R ε,α (µ n ) -R ε,α ≤ sup µ∈M + 1 (Θ) R m ε,α (µ) -R ε,α (µ) + R ε,α (µ n ) -R ε,α ,
and by considering the limit, we obtain that

R m ε,α -R ε,α ≤ sup µ∈M + 1 (Θ) R m ε,α (µ) -R ε,α (µ)
Similarly we have that

R ε,α -R m ε,α ≤ R ε,α -R ε,α (µ (m) n ) + R ε,α (µ (m) n ) -R m ε,α (µ (m) n ) + R m ε,α (µ (m) n ) -R m ε,α from which follows that R ε,α -R m ε,α ≤ sup µ∈M + 1 (Θ) R m ε,α (µ) -R ε,α (µ)
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Therefore we obtain that

R ε,α -R m ε,α ≤ N i=1 α N sup µ∈M + 1 (Θ) log   1 m i m i j=1 exp   E θ∼µ L(θ, u (i) j )) α     -log X ×Y exp E θ∼µ [L(θ, (x, y))] α dU (x i ,y i ) .
Observe that L is non negative, therefore because the log function is -Lipschitz on [1, +∞), we obtain that

R ε,α -R m ε,α ≤ N i=1 α N sup µ∈M + 1 (Θ) 1 m m j=1 exp   E θ∼µ L(θ, u (i) j )) α   - X ×Y exp E θ∼µ [L(θ, (x, y))] α dU (x i ,y i ) .
Let us now denote for all i = 1, . . . , N ,

C i (µ, u (i) ) := 1 m m j=1 exp   E θ∼µ L(θ, u (i) j )) α   C i (µ) := X ×Y exp E θ∼µ [L(θ, (x, y))] α dU (x i ,y i ) .
and let us de ne

f (u (1) , . . . , u (N ) ) := N i=1 α N sup µ∈M + 1 (Θ) C i (µ, u (i) ) -C i (µ)
where u (i) := (u

(i) 1 , . . . , u (m) 
1 ). By denoting z (i) = (u

(i) 1 , . . . , u (i) k-1 , z, u (i) k+1 , . . . , u (i) 
m ), we have that

|f (u (1) , . . . , u (N ) ) -f (u (1) , . . . , u (i-1) , z (i) , u (i+1) , . . . , u (N ) )| ≤ α N sup µ∈M + 1 (Θ) C i (µ, u (i) ) -C i (µ) -sup µ∈M + 1 (Θ) C i (µ, z (i) ) -C i (µ) ≤ sup µ∈M + 1 (Θ) | C i (µ, u (i) ) -C i (µ, z (i) )| . Finding the Optimal Classifiers = α N 1 m   exp   E θ∼µ L(θ, u (i) k )) α   -exp E θ∼µ L(θ, z (i) )) α   ≤ 2α exp(M/α) N m
where the last inequality comes from the fact that the loss L is upper bounded by M . Then by applying the McDiarmid Inequality, we obtain that with a probability of at least 1δ,

R ε,α -R m ε,α ≤ E(f (u (1) , . . . , u (N ) )) + 2α exp(M/α) √ mN log(2/δ) 2 .
We have that

E(f (u (1) , . . . , u (N ) )) = α n N i=1 E sup µ∈M + 1 (Θ) C i (µ, u (i) ) -C i (µ) .
From the properties of Rademacher complexity (see Section . . ), we have for every i :

E sup µ∈M + 1 (Θ) C i (µ) -C i (µ) ≤ 2E(Rad(T • u (i) ))
where we recall for any class of functions H de ned on Z and point z :

(z 1 , . . . , z q ) ∈ Z q H • z := (f (z 1 ), . . . , f (z q )), f ∈ F , Rad(T • z) := 1 q E σ∼{±1} sup f ∈H q i=1 σ i f (z i ) , T := u → exp E θ∼µ [L(θ, u))] α , µ ∈ M + 1 (Θ) .
Moreover, as mentioned in Section . . ,

x → exp(x/α) is exp(M/α) α -Lipschitz on (-∞, M ], we have Rad(T • u (i) ) ≤ exp(M/α) α Rad(H • u (i) )
where

H := u → E θ∼µ [L(θ, u))], µ ∈ M + 1 (Θ) .
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Let us now de ne

g(u (1) , . . . , u (N ) ) := N j=1 2 exp(M/α) N Rad(H • u (j) ).
We observe that |g(u (1) , . . . , u (N ) )g(u (1) , . . . , u (i-1) , z (i) , u (i+1) , . . . ,

u (N ) )| ≤ 2 exp(M/α) N |Rad(H • u (i) ) -Rad(H • z (i) )| ≤ 2 exp(M/α) N M m .
By Applying the McDiarmid's Inequality, we have that with a probability of at least 1δ

E(g(u (1) , . . . , u (N ) )) ≤ g(u (1) , . . . , u (N ) ) + 2 exp(M/α)M √ mN log(2/δ) 2 .
Remarks also that

Rad(H • u (i) ) = 1 m E σ∼{±1}   sup µ∈M + 1 (Θ) m j=1 σ i E µ (L(θ, u (i) j ))   = 1 m E σ∼{±1}   sup θ∈Θ m j=1 σ i L(θ, u (i) j )  
Finally, applying a union bound leads to the desired result.

We deduce from the above Proposition that in the particular case where Θ is nite such that |Θ| = l, with probability of at least

1 -δ | R ε,α -R m ε,α | ∈ O M e M/α log(l) m .
This case is of particular interest when one wants to learn the optimal mixture of some given classi ers in order to minimize the adversarial risk. In the following proposition, we control the approximation error made by adding an entropic term to the objective.

Proposition . Denote for β > 0, (x, y) ∈ X × Y and µ ∈ M + 1 (Θ), A (x,y) β,µ := {u| sup v∈S (ε) (x,y) E µ [L(θ, v)] ≤ E µ [L(θ, u)] + β}
. Finding the Optimal Classifiers where

S (ε) (x,y) := (x , y ) | c ε ((x, y), (x , y )) = 0 , If there exists C β such that for all (x, y) ∈ X × Y and µ ∈ M + 1 (Θ), U (x,y) A (x,y) β,µ ≥ C β then we have | R ε,α -R ε | ≤ 2α| log(C β )| + β.
The assumption made in the above Proposition states that for any given random classi er µ, and any given point (x, y), the set of β-optimal attacks at this point has at least a certain amount of mass depending on the β chosen. This assumption is always true when β is su ciently large. However, in order to obtain a tight control of the error, a trade-o exists between β and the smallest amount of mass C β of β-optimal attacks.

Proof. Following the same steps as for the proof of Proposition , let (µ ε n ) n≥0 and (µ n ) n≥0 be two sequences such that

R ε ε,α (µ ε n ) -----→ n→+∞ R ε,α , R ε ε (µ n ) -----→ n→+∞ R ε . Remarks that R ε,α -R ε ≤ R ε,α -R ε ε,α (µ n ) + R ε ε,α (µ n ) -R ε ε (µ n ) + R ε ε (µ n ) -R ε ≤ sup µ∈M + 1 (Θ) R ε ε,α (µ) -R ε ε (µ) + R ε ε (µ n ) -R ε
Then by considering the limit we obtain that

R ε,α -R ε ≤ sup µ∈M + 1 (Θ) R ε ε,α (µ) -R ε ε (µ) .
Similarly, we obtain that

R ε -R ε,α ≤ sup µ∈M + 1 (Θ) R ε ε,α (µ) -R ε ε (µ) ,
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from which follows that

R ε,α -R ε ≤ 1 N N i=1 sup µ∈M + 1 (Θ) α log X ×Y exp E µ [L(θ, (x, y))] α dU (x i ,y i ) -sup u∈S ε (x i ,y i ) E µ [L(θ, u)] .
Let µ ∈ M + 1 (Θ) and i ∈ {1, . . . , N }, then we have α log

X ×Y exp E µ [L(θ, (x, y))] α dU (x i ,y i ) -sup u∈S ε (x i ,y i ) E µ [L(θ, u)] = α log X ×Y exp E µ [L(θ, (x, y))] -sup u∈S ε (x i ,y i ) E µ [L(θ, u)] α dU (x i ,y i ) = α log A (x i ,y i ) β,µ exp E µ [L(θ, (x, y))] -sup u∈S ε (x i ,y i ) E µ [L(θ, u)] α dU (x i ,y i ) + (A (x i ,y i ) β,µ ) c exp E µ [L(θ, (x, y))] -sup u∈S ε (x i ,y i ) E µ [L(θ, u)] α dU (x i ,y i ) ≤ α log exp - β α U (x i ,y i ) A (x i ,y i ) β,µ + α log(1+ exp(β/α) U (x i ,y i ) A (x i ,y i ) β,µ (A (x i ,y i ) β,µ ) c exp E µ [L(θ, (x, y))] -sup u∈S ε (x i ,y i ) E µ [L(θ, u)] α dU (x i ,y i )   ≤ α log(1/C β ) + β + α C β ≤ 2α log(1/C β ) + β Note that (A (x i ,y i ) β,µ
) c denotes the complementary set of A

(x i ,y i ) β,µ
. Now that we have shown that solving ( . ) allows to obtain an approximation of the true solution R ε , we next aim at deriving an algorithm to compute it.

. . Proposed Algorithms

From now on, we focus on nite class of classi ers. Let Θ = {θ 1 , . . . , θ l }, we aim to learn the optimal mixture of classi ers in this case. The adversarial empirical risk is therefore de ned as:

R ε (λ) = N i=1 sup Q i ∈Γ i,ε E (x,y)∼Q i l k=1 λ k L(θ k , (x, y))
. Finding the Optimal Classifiers

for λ ∈ ∆ l := {λ ∈ R l + s.t. l i=1 λ i = 1}
, the probability simplex of R l . One can notice that R ε (•) is a continuous convex function, hence min λ∈∆ l R(λ) is attained for a certain λ . Then there exists a non-approximate Nash equilibrium (λ , Q ) in the adversarial game when Θ is nite. Here, we present two algorithms to learn the optimal mixture of the adversarial risk minimization problem. An Entropic Relaxation. Using the results from Section . . , adding an entropic term to the objective allows to have a simple reformulation of the problem, as follows:

Algorithm : Oracle-based Algorithm λ 0 = 1 l l ; T ; η = 2 M √ lT for t = 1, . . . , T do Q s.t. ∃Q ∈ A ε (P) best response to λ t-1 and for all k ∈ [l], |E Q(L(θ k , (x, y))) -E Q (L(θ k , (x, y)))| ≤ δ g t = E Q(L(θ 1 , (x, y)), . . . , E Q(L(θ l , (x, y)) T λ t = Π ∆ l (λ t-1 -ηg t ) end
inf λ∈∆ l N i=1 α N log   1 m i m i j=1 exp l k=1 λ k L(θ k , u (i) j ) α  
Note that in λ, the objective is convex and smooth. One can apply the accelerated PGD [Beck and Teboulle, , Tseng, ] which enjoys an optimal convergence rate for rst order methods of O(T -2 ) for T iterations.

A First Oracle Algorithm. Besides entropic regularization, we present an oracle-based algorithm inspired from [Sinha et al., ] and the convergence of projected subgradient methods [Boyd, ]. The computation of the inner supremum problem is usually NP-hard. Let us justify it on a mixture of linear classi ers in binary classi cation:

f θ k ,b k (x) = θ k , x + b k for k ∈ l and λ = 1 l /l.
Let us consider the 2 norm and x = 0 and y = 1. Then the problem of attacking x is the following:

sup τ, τ ≤ε 1 l l k=1 1 θ k ,x+τ +b k ≤0
This problem is equivalent to a linear binary classi cation problem on τ , which is known to be NP-hard. Assuming the existence of a δ-approximate oracle to this supremum, the algorithm is presented in Algorithm . We get the following guarantee for this algorithm.

Proposition . Let Θ = (θ 1 , . . . , θ l ), L : Θ × (X × Y) → [0, ∞) be a loss satisfying Assumption , M bed defined as in Assumption and T ≥ 1. Then, Algorithm satisfies:

min t∈ T -1 R ε (λ t ) -R ε ≤ 2δ + 2M √ l √ T Proof. Thanks to Danskin theorem, if Q is a best response to λ, then g := (E Q [L(θ 1 , (x, y))], . . . , E Q [L(θ l , (x, y))]) T is a subgradient of λ → R(λ).
In particular for every λ optimal classi er:

g t , λ -λ t-1 ≤ R ε (λ ) -R ε (λ t-1 ) .
Moreover, we also have

| g t -g t , λ t-1 -λ | ≤ g t -g t ∞ λ t-1 -λ 1 ≤ δ( λ t-1 1 + λ 1 ) ≤ 2δ .
We also have that g t 2 ≤ √ lδ. Let η ≥ 0 be the learning rate. Then we have for all t ≥ 1:

λ t -λ 2 ≤ λ t-1 -ηg t -λ 2 = λ t-1 -λ 2 -2η g t , λ t-1 -λ + η 2 g t 2 2 ≤ λ t-1 -λ 2 -2η g t , λ t-1 -λ + 2η g t -g t , λ t-1 -λ + η 2 M 2 l ≤ λ t-1 -λ 2 -2η(R ε (λ t-1 ) -R ε (λ )) + 4ηδ + η 2 M 2 l
. Experiments

We then deduce by summing:

2η T -1 t=0 R ε (λ t ) -R ε (λ ) ≤ 4δηT + λ 0 -λ 2 + η 2 M 2 lT
Then we have:

min t∈ T -1 R ε (λ t ) -R ε (λ ) ≤ 2δ + 4 ηT + M 2 lη
The left-hand term is minimal for η = 2 M √ lT , and for this value:

min t∈ T -1 R ε (λ t ) -R ε (λ ) ≤ 2δ + 2M √ l √ T .
The main drawback of the above algorithm is that one needs to have access to an oracle to guarantee the convergence of the proposed algorithm. The entropic regularized algorithm is made to nd an approximate the solution and do not require access to an oracle.

. . A General Heuristic Algorithm

So far, our algorithms are not easily practicable in the case of deep learning. Adversarial examples are known to be easily transferrable from one model to another [Tramèr et al., , Papernot et al., a]. So we aim at learning diverse models. To this end, and support our theoretical claims, we propose an heuristic algorithm (see Algorithm ) to train a robust mixture of l classi ers. We alternatively train these classi ers with adversarial examples against the current mixture and update the probabilities of the mixture according to the algorithms we proposed in Section . . .

. Experiments . . Synthetic Dataset

To illustrate our theoretical claims, we start by testing our learning algorithm on the following synthetic two-dimensional problem. Let us consider the distribution P de ned as

P(Y = ±1) = 1/2, P(X | Y = -1) = N (0, I 2 ) and P(X | Y = 1) = 1 2 [N ((-3, 0), I 2 ) + N ((3, 0), I 2 )].
We sample 1000 training points from this distribution and randomly generate 10 linear classi ers that achieves a standard training risk lower than 0.4. To simulate an adversary with budget ε in 2 norm, we proceed as follows. For every sample (x, y) ∼ P we generate 1000 points uniformly at random in the ball of radius ε and select the one maximizing the risk for the 0/1 loss. Figure .  (left) illustrates the type of mixtures we obtain after convergence of our algorithms. Note that in this toy problem, we are likely to nd the optimal adversary with this sampling strategy if we sample enough attack points.
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Algorithm : Adversarial Training for Mixtures l: number of models, T : number of iterations, T θ : number of updates for the models θ, T λ : number of updates for the mixture λ, λ 0 = (λ 1 0 , . . . λ l 0 ), θ 0 = (θ 1 0 , . . . θ l 0 ) for t = 1, . . . , T do Let B t be a batch of data. To evaluate the convergence of our algorithms, we compute the adversarial risk of our mixture for each iteration of both the oracle and regularized algorithms. Figure . illustrates the convergence of the algorithms w.r.t the regularization parameter. We observe that the risk for both algorithms converge. Moreover, they converge towards the oracle minimizer when the regularization parameter α goes to 0.

Finally, to demonstrate the improvement randomized techniques o er against deterministic defenses, we plot in Figure . (right) the minimum adversarial risk for both randomized and deterministic classi ers w.r.t. ε. The adversarial risk is strictly better for randomized classi er whenever the adversarial budget ε is bigger than 2. This illustration corroborates our analysis of Theorem , and motivates an in-depth study of a more challenging framework, namely image classi cation with neural networks.

. . CIFAR Datasets

Experimental Setup. We now implement our heuristic algorithm (Alg. ) on CIFAR-and CIFAR-datasets for both Adversarial Traning [Madry et al., b] and TRADES [Zhang et al., a] loss. To evaluate the performance of Algorithm , we trained from 1 to 4 ResNet [He et al., b] models on 200 epochs per model . We study the robustness with regards to ∞ norm and xed adversarial budget ε = 8/255. The attack we used in the inner maximization of the training is an adaptative version of PGD for mixtures of classi ers with 10 steps. Note that for one single model, Algorithm exactly corresponds to adversarial training [Madry et al., b] or TRADES. For each of our setups, we made two independent runs and select the best one. The training time of our algorithm is around four times longer than a standard Adversarial Training (with PGD iter.) with two models, eight times with three models and twelve times with four models. We trained our models with a batch of size 1024 on 8 Nvidia V GPUs.

L × 200 epochs in total, where L is the number of models.

Evaluation Protocol. At each epoch, we evaluate the current mixture on test data against PGD attack with 20 iterations. To select our model and avoid over tting [Rice et al., ], we kept the most robust against this PGD attack. To make a nal evaluation of our mixture of models, we used an adapted version of AutoPGD (APGD) untargeted attacks [Croce et al., b] for randomized classi ers with both Cross-Entropy (CE) and Di erence of Logits Ratio (DLR) loss. For both attacks, we made 100 iterations and 5 restarts.

Optimizer. For each of our models, The optimizer we used in all our implementations is SGD with learning rate set to 0.4 at epoch 0 and is divided by 10 at half training then by 10 at the three quarters of training. The momentum is set to 0.9 and the weight decay to 5 × 10 -4 . The batch size is set to 1024.

Adaptation of Attacks.

Since our classi er is randomized, we need to adapt the attack accordingly. To do so we used the expected loss:

L((λ, θ), (x, y)) = l k=1 λ k L(θ k , (x, y))
to compute the gradient in the attacks, regardless the loss (DLR or CE). For the inner maximization at training time, we used a PGD attack on the cross-entropy loss with ε = 0.03.

Regularization in Practice.

The entropic regularization in higher dimensional setting need to be adapted to be more likely to nd adversaries. To do so, we computed PGD attacks with only 3 iterations with 5 di erent restarts instead of sampling uniformly 5 points in the ∞ -ball. In our experiments in the main paper, we use a regularization parameter α = 0.001. The learning rate for the minimization on λ is always xed to 0.001.

Alternate Minimization Parameters.

Algorithm implies an alternate minimization algorithm. We set the number of updates of θ to T θ = 50 and, the update of λ to T λ = 25.

. . E ect of the Regularization

In this subsection, we experimentally investigate the e ect of the regularization. In Figure . , we notice that the regularization has the e ect of stabilizing, reducing the variance and improving the level of the robust accuracy for adversarial training of mixtures (Algorithm ). The standard accuracy curves are very similar in both cases.

Results. The results are presented in Figure . . We remark our algorithm outperforms the standard adversarial training procedure in all the cases by more 1% on CIFAR-and CIFAR-, without additional loss of standard accuracy as it is shown in the left gures. On TRADES, the gain is even more important by more than 2% in robust accuracy. Moreover, it seems that our algorithm, by adding more and more models, reduces the over tting of adversarial training. It also appears that robustness increases as the number of models increases. So far, experiments are computationally very costly, and it is di cult to draw precise conclusions. Further, hyperparameter tuning [Gowal et al., a] such as architecture, unlabeled data [Carmon et al., b] or activation function may still improve the results.

. . Additional Experiments on WideResNet x

We now evaluate our algorithm on WideResNet x Zagoruyko and Komodakis [ ] architecture. Due to computation costs, we limit ourselves to 1 and 2 models, with regularization parameter set to 0.001. Results are reported in Figure . . We remark this architecture can lead to more robust models, corroborating the results from Gowal et al. [ a].

. . Over tting in Adversarial Robustness

We further investigate the over tting of our heuristic algorithm. We plotted in Figure . the robust accuracy on ResNet with 1 to 5 models. . This strange phenomenon would suggest that the more powerful the attacks are, the more the models are subject to over tting. We leave this question to future works.

. Discussions and Open Questions

On the need of Randomization. While we give a concrete example where randomization of classi ers is needed to be optimal in Section . . , [Pydi and Jog, b] show there is no duality gap when the classi er is allowed to play a deterministic measurable classi er. In other words, randomization would not be useful for this game. We conjecture, as the hypothesis class Θ grows, the duality gap decreases to 0. However, in nite samples cases, it is not realistic to optimize over the space of measurable functions. One may ask if we could nd conditions on the space of classi ers and the distribution P such that randomization is required. Pinot et al. [ ] partially answered this question when the attacker is regularized, but the general case is still an open question.

Statistical guarantees for randomized classi ers. Although it is possible to derive uniform convergence bounds for the adversarial classi cation problem [Yin et al., , Awasthi et al., ] for deterministic classi ers, deriving bounds for randomized classi ers is still an open question. One may think of adapting PAC-Bayes bounds [Guedj, ], but the proof scheme cannot apply for adversarial classi cation. A rst attempt to derive such bounds was proposed by Viallard et al. [

], but the subject is still in its infancy.

Learning Optimal Randomized Classi ers. For a given loss, learning the optimal randomized classi er for a continuous parameter space is also an open question. It is a di cult one though since it requires learning over the space of distributions. Attempts have been made to optimize over the space of distributions [Chizat, b,a, Kent et al., ] often using Wasserstein Gradient Flows [Ambrosio et al., ] ] proposed a particular ow to optimize a min-max problem in the space of distributions. While this paper gives good insights, the results are too preliminary to be adapted and applied to adversarial learning problems. The objective of this chapter is to study the problem of calibration and consistency in presence of adversaries and answer Question : "Which losses are consistent with regard to the 0/1 loss in the adversarial classi cation setting?". We study, in Section . , the problem of calibration in the adversarial setting and provide both necessary and su cient conditions for a loss to be calibrated in this setting. It is also worth noting that our results are easily extendable to H-calibration (see Section . . ). One on the main takeaways of our analysis is that no convex surrogate loss can be calibrated in the adversarial setting. We however characterize a set of non-convex loss functions, namely shifted odd functions that solve the calibration problem in the adversarial setting. Finally, we focus on the problem of consistency in the adversarial setting in Section . . Based on min-max arguments, we provide insights that might help paving the way to prove consistency of shifted odd functions in the adversarial setting. Speci cally, we proved strong duality results for these losses and show tight links with the 0/1-loss. From these insights, we are able to provide a close but weaker property to consistency.
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Adversarial Training, CIFAR-dataset results

Models

Setting. Let us consider a classi cation task with input space X and output space Y = {-1, +1}. Let (X , d) be a proper Polish (i.e. completely separable) metric space representing the inputs space. For all x ∈ X and δ > 0, we denote B δ (x) the closed ball of radius δ and center x. We also assume that for all x ∈ X and δ > 0, B δ (x) contains at least two points . Let us also endow Y with the trivial metric d (y, y ) = 1 y =y . Then the space (X × Y, d ⊕ d ) is a proper Polish space. For any Polish space Z, we denote M + 1 (Z) the Polish space of Borel probability measures

For instance, for any norm • , (R d , • ) is a Polish metric space satisfying this property.

Calibration and Consistency in Presence of Adversarial Attacks on Z. We will denote F(Z) the space of real valued Borel measurable functions on Z. Finally, we denote R := R ∪ {∞, +∞}. Moreover, we take back the de nitions introduced in Section . .

. Solving Adversarial Calibration

In this section, we study the calibration of adversarial margin losses with regard to the adversarial 0/1 loss. We rst provide necessary and su cient conditions under which margin losses are adversarially calibrated. We then show that a wide range of surrogate losses that are calibrated in the standard setting are not calibrated in the adversarial setting. Finally we propose a class of losses that are calibrated in the adversarial setting, namely the shifted odd losses.

. . Necessary and Su cient Conditions for Calibration

One of our main contributions is to nd necessary and su cient conditions for calibration in the adversarial setting. In a brief, we identify that for studying calibration it is central to understand the case where there might be indecision for classi ers (i.e. η = 1/2). Indeed, in this case, either labelling positively or negatively the input x would lead the same loss for x. Next result provides a necessary condition for calibration.

Theorem (Necessary condition for Calibration). Let φ be a continuous margin loss and ε > 0.

If φ is adversarially calibrated at level ε, then φ is calibrated in the standard classification setting and

0 ∈ argmin α∈ R 1 2 φ(α) + 1 2 φ(-α).
While the condition of calibration in the standard classi cation setting seems natural, we need to understand why 0

∈ argmin α∈ R 1 2 φ(α) + 1 2 φ(-α).
The intuition behind this result is that a sequence of functions simply converging towards 0 in the ball of radius ε around some x can take positive and negative values thus leading to suboptimal 0/1 adversarial risk.

Proof. Let us show that if 0 ∈ argmin α∈ R φ(α) + φ(-α) then φ is not calibrated for the adversarial problem. For that, let x ∈ X and we x η = 1 2 . For n ≥ 1, we de ne

f n (u) = 1 n for u = x and -1 n for u = x. Since |B ε (x)| ≥ 2, we have C φε (x, 1 2 , f n ) = max φ( 1 n ), φ(- 1 n ) ---→ n→∞ φ(0) As, φ(0) = inf α∈ R 1 2 (φ(α) + φ(-α)), the above means that (f n ) n is a minimizing se- quence for α → 1 2 (φ(α) + φ(-α)). Then thanks to Proposition , (f n ) n is also a minimiz- ing sequence for f → C φε (x, 1 2 , f ). However, for every integer n, we have C 0/1,ε (x, 1 2 , f n ) = 1 = 1 2 . As inf f ∈F (X ) C ε (x, 1 2 , f ) = 1 2 , φ
is not calibrated with regard to the 0/1 loss in the adversarial setting at level ε. We also immediately notice that if φ is calibrated with regard to 0/1 loss in the adversarial setting at level ε then φ is calibrated in the standard setting.

It turns out that, given an additional assumption, this condition is actually su cient to ensure calibration.

Theorem (Su cient condition for Calibration). Let φ be a continuous margin loss and ε > 0. If φ is decreasing and strictly decreasing in a neighbourhood of 0 and calibrated in the standard setting and 0 ∈ argmin α∈ R 1 2 φ(α) + 1 2 φ(-α), then φ is adversarially uniformly calibrated at level ε.

Proof. Let ∈ (0, 1 2 ). Thanks to Theorem , φ is uniformly calibrated in the standard setting, then there exists δ > 0, such that for all x ∈ X , η ∈ [0, 1], f ∈ F(X ):

C φ (x, η, f ) -C φ (x, η) ≤ δ =⇒ C 0/1 (x, η, f ) -C 0/1 (x, η) ≤ . Case η = 1 2 : Let x ∈ X and f ∈ F(X ) such that: C φε (x, η, f ) -C φε (x, η) = sup u,v∈Bε(x) ηφ(f (u)) + (1 -η)φ(-f (v)) -C φε (x, η) ≤ δ
We recall thanks to Proposition that for every u, v ∈ X ,

C φε (u, η) = C φ (v, η) = inf α∈R ηφ(α) + (1 -η)φ(-α) .
Then in particular, for all x ∈ B ε (x), we have:

C φ (x , η, f ) -C φ (x , η) ≤ sup u,v∈Bε(x) ηφ(f (u)) + (1 -η)φ(-f (v)) -C φε (x, η) ≤ δ .
Then since φ is calibrated for standard classi cation, for all

x ∈ B ε (x), C(x , η, f ) - C (x , η) ≤ . Since, < 1 2 , we have C(x , η, f ) = C (x , η) and then for all x ∈ B ε (x), f (x ) < 0 if η < 1/2 or f (x ) ≥ 0 if η > 1/2. We then deduce that C ε (x, η, f ) = η sup x ∈Bε(x) 1 f (x )≤0 + (1 -η) sup x ∈Bε(x) 1 f (x )>0 = min(η, 1 -η) = C ε (x, η) Then we deduce, C ε (x, η, f ) -C ε (x, η) ≤ . Case η = 1
2 : This shows us that calibration problems will only arise when η = 1 2 , i.e. on points where the Bayes classi er is indecise. For this case, we will reason by contradiction: we can construct a sequence of points α n and β n , whose risks converge to the same optimal value, while one sequence remains close to some positive value, and the other to some negative value. Assume that for all n, there exist f n ∈ F(X ) and x n ∈ X such that

C φε (x n , 1 2 , f n ) -C φε (x n , 1 2 ) ≤ 1 n
Calibration and Consistency in Presence of Adversarial Attacks and there exists

u n , v n ∈ B ε (x n ), such that f n (u n )f n (v n ) ≤ 0 Let us denote α n = f n (u n ) and β n = f n (v n ).
Moreover, we have thanks to Proposition : u) . Now note that there always exist α, β ∈ R such that, up to an extraction of a subsequence, we have α n ---→ n→∞ α and β n ---→ n→∞ β. Furthermore by continuity of φ and since 0 ∈ argmin φ(u) + φ(-u), α = 0 and β = 0. Without loss of generality one can assume that α < 0 < β, then for n su ciently large, α n < 0 < β n . Moreover we have

0 ≤ 1 2 φ(α n ) + 1 2 φ(-α n ) -inf u∈R 1 2 φ(u) + 1 2 φ(u) ≤ C φε (x, 1 2 , f n ) -C φε (x, 1 2 ) ≤ 1 n Then we deduce that (α n ) n is a minimizing sequence for u → 1 2 φ(u) + 1 2 φ(-u) and simi- larly (β n ) n is also a minimizing sequence for u → 1 2 φ(u) + 1 2 φ(-
0 ≤ 1 2 max(φ(α n ), φ(β n )) + 1 2 max(φ(-α n ), φ(-β n )) -C φε (x, 1 2 ) ≤ C φε (x, 1 2 , f n ) -C φε (x, 1 2 ) ≤ 1 n
so that we deduce:

1 2 max(φ(α n ), φ(β n )) + 1 2 max(φ(-α n ), φ(-β n )) -→ inf u∈R 1 2 φ(u) + 1 2 φ(u) ( . )
Since, for n su ciently large, α n < 0 < β n and φ is decreasing and strictly decreasing in a neighbourhood of 0, we have that:

max(φ(α n ), φ(β n )) = φ(α n ) and max(φ(-α n ), φ(-β n )) = φ(-β n )
. Moreover, there exists λ > 0 such that for n su ciently large φ(α n )φ(β n ) ≥ λ. Then for n su ciently large: Here we notice that 0 ∈ argmin α φ(α) + φ(-α) for all these losses. Thus none of them are adversarially calibrated.

1 2 max(φ(α n ), φ(β n )) + 1 2 max(φ(-α n ), φ(-β n )) = 1 2 φ(α n ) + 1 2 φ(-β n ) = 1 2 (φ(α n ) -φ(β n )) + 1 2 φ(-β n ) + 1 2 + φ(β n ) 4 3 2 1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 ( ) Hinge Logistic Sigmoid Ramp 0/1 loss 4 3 2 1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 1 2 ( ) + 1 2 ( ) Hinge Logistic Sigmoid Ramp
≥ 1 2 λ + inf u∈R 1 2 φ(u) + 1 2 φ(u)
which leads to a contradiction with Equation .. Then there exists a non zero integer n 0 such that for all

f ∈ F(X ), x ∈ X C φε (x, 1 2 , f ) -C φε (x, 1 2 ) ≤ 1 n 0 =⇒ ∀u, v ∈ B ε (x), f (u) × f (v) > 0. The right-hand term is equivalent to: for all u ∈ B ε (x), f (u) > 0 or for all u ∈ B ε (x), f (u) < 0. Then C ε (x, η, f ) = 1 2 and then C ε (x, η, f ) = C ε (x, η) Putting all that together, for all x ∈ X , η ∈ [0, 1], f ∈ F(X ): C φε (x, η, f ) -C φε (x, η) ≤ min(δ, 1 n 0 ) =⇒ C ε (x, η, f ) -C ε (x, η) ≤ .
Then φ is adversarially uniformly calibrated at level ε Remark (Decreasing hypothesis). For the reciprocal, the additional assumption that φ is decreasing and strictly decreasing in a neighborhood of 0 is not restrictive for usual losses. In Theorem , this assumption is stated as a necessary and sufficient condition for convex losses to be calibrated.

. . Negative results

Thanks to Theorem , we can present two notable corollaries invalidating the use of two important classes of surrogate losses in the standard setting. The rst class of losses are convex margin losses. These losses are maybe the most widely used in modern day machine learning as they comprise the logistic loss or the margin loss that are the building block of most classi cation algorithms.

Corollary . Let ε > 0. Then no convex margin loss can be adversarially calibrated at level ε.

A convex loss satis es 1 2 φ(α)

+ 1 2 φ(-α) ≥ φ(0), hence 0 ∈ argmin α∈R φ(α) + φ(-α).
From Theorem , we deduce the result. Then, φ is not adversarially calibrated at level ε. This Calibration and Consistency in Presence of Adversarial Attacks result seems counter-intuitive and highlights the di culty of optimizing and understanding the adversarial risk. Since convex losses are not calibrated, one may hope to rely on famous non-convex losses such as sigmoid and ramp losses. But, unfortunately, such losses are not either calibrated.

Corollary . Let ε > 0. Let λ ∈ R and ψ be a lower-bounded odd function such that for all α ∈ R, ψ > -λ. We define ψ as φ(α) = λ + ψ(α). Then φ is not adversarially calibrated at level ε.

Indeed, 1 2 φ(α) + 1 2 φ(-α) = λ, so that argmin α∈R 1 2 φ(α) + 1 2 φ(-α) = R.
Thanks to Theorem , φ is not adversarially calibrated at level ε. But, unfortunately, such losses are not calibrated either as illustrated in Figure . .

. . Positive results

Theorem also gives su cient conditions for φ to be adversarially calibrated. Leveraging this result, we devise a class of margin losses that are indeed calibrated in the adversarial settings. We call this class shifted odd losses, and we de ne it as follows.

De nition (Shifted odd losses). We say that φ is a shifted odd margin loss if there exists λ ≥ 0, τ > 0, and a continuous lower bounded strictly decreasing odd function ψ in a neighborhood of 0 such that for all α ∈ R, ψ(α) ≥ -λ and φ(α

) = λ + ψ(α -τ ).
The key di erence between a standard odd margin loss and a shifted odd margin loss is the variations of the function α → 1 2 φ(α)+ 1 2 φ(-α). The primary di erence is that, in the standard case the optima of this function are located at 0 while they are located in -∞ and +∞ in the adversarial setting. Let us give some examples of margin shifted odd losses below.

Example (Shifted odd losses). For every ε > 0 and every τ > 0, the shifted logistic loss, defined as follows, is adversarially calibrated at level ε: φ

: α → (1 + exp{(α -τ )}) -1 This loss is plotted on left in Figure . . We also plotted on right in Figure . α → 1 2 φ(α) + 1 2 φ(-α) to justify that 0 ∈ argmin α∈ R 1 2 φ(α) + 1 2 φ(-α)
. Also note that the shifted ramp loss also satisfies the same properties.

A consequence of Theorem is that shifted odd losses are adversarially calibrated, as demonstrated in Proposition stated below.

Proposition . Let φ be a shifted odd margin loss. For every ε > 0, φ is adversarially calibrated at level ε.

Proof. Let λ > 0, τ > 0 and φ be a strictly decreasing odd function such that φ de ned as

φ(α) = λ + φ(α -τ ) is non-negative. Proving that 0 / ∈ argmin t∈ R 1 2 φ(t) + 1 2 φ(-t).
φ is clearly strictly decreasing and nonnegative then it admits a limit l :=lim t→+∞ φ(t) ≥ 0. Then we have:

lim t→+∞ φ(t) = λ + l and lim t→-∞ φ(t) = λ -l
. Solving Adversarial Calibration

Consequently we have:

lim t→∞ 1 2 φ(t) + 1 2 φ(-t) = λ
On the other side φ(0

) = λ + φ(-τ ) > λ + φ(0) = λ since τ > 0 and φ is strictly decreasing. Then 0 / ∈ argmin t∈ R 1 2 φ(t) + 1 2 φ(-t).
Proving that φ is calibrated for standard classi cation.

Let > 0, η ∈ [0, 1], x ∈ X . If η = 1 2 , then for all f ∈ F(X ), C(x, 1 2 , f ) = C (x, 1 2 ) = 1 2 .
Let us now assume that η = 1 2 , we have for all f ∈ F(X ):

C φ(x, η, f ) = λ + ηφ(f (x) -τ ) + (1 -η)φ(-f (x) -τ ) = λ + (η - 1 2 )(φ(f (x) -τ ) -φ(-f (x) -τ )) + 1 2 (φ(f (x) -τ ) + φ(-f (x) -τ )) Let us show that argmin t∈ R 1 2 φ(t) + 1 2 φ(-t) = {-∞, +∞}.
We have for all t:

1 2 φ(t) + 1 2 φ(-t) = λ + 1 2 (φ(t -τ ) + φ(-t -τ )) = λ + 1 2 (φ(t -τ ) -φ(t + τ )) > λ
since tτ < t + τ and φ is strictly decreasing. Hence by continuity of φ the optimum are attained when t → ∞ or t → -∞. Then

argmin t∈ R 1 2 φ(t) + 1 2 φ(-t) = {-∞, +∞}. Without loss of generality, let η > 1/2, then t → (η - 1 2 )(φ(t -τ ) -φ(-t -τ ))
is strictly decreasing and

argmin t∈ R 1 2 (φ(t -τ ) + φ(-t -τ )) = {-∞, +∞}, then we have argmin t∈ R λ + (η - 1 2 )(t -τ ) -φ(-t -τ )) + 1 2 (φ(t -τ ) + φ(-t -τ )) = {+∞} .
By continuity of φ, we deduce that for δ > 0 su ciently small:

C φ(x, η, f )-C φ(x, η) ≤ δ =⇒ f (x) > 0
The same reasoning holds for η < 1 2 . Then we deduce that φ is calibrated for standard classi cation.

Finally, we obtain that φ is calibrated for adversarial classi cation for every ε > 0. 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10 .
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. About H-calibration

Our results naturally extend to H-calibration. With mild assumptions on H, it is possible to recover all the results made on calibration on F(X ). First, it is worth noting that, if H contains all constant functions, then most results about calibration in the adversarial setting extend. Proposition naturally extends to H-calibration as long as H contains all constant functions.

Proposition. Let H ⊂ F(X ). Let us assume that H contains all constant functions. Let ε > 0 and φ be a continuous classification margin loss. For all x ∈ X and η ∈ [0, 1], we have

C φε,H (x, η) = C φ,H (x, η) = inf α∈R ηφ(α) + (1 -η)φ(-α) = C φε (x, η) = C φ (x, η) .
The last equality also holds for the adversarial 0/1 loss.

The proof is exactly the same as for Proposition since we used a constant function to prove the equality. Under the same assumptions, the notion of H-calibration and uniform H-calibration are equivalent in the standard setting.

Proposition. Let H ⊂ F(X ). Let us assume that H contains all constant functions. Let φ be a continuous classification margin loss. φ is uniformly H-calibrated for standard classification if and only if φ is uniformly calibrated for standard classification. It also holds for non-uniform calibration.

Proof. Let us assume that φ is a continuous classi cation margin loss and that φ is uniformly calibrated. Let > 0. There exists δ > 0 such that, for all η ∈ [0, 1], x ∈ X and f ∈ F(X ):

C φ (x, η, f ) -C φ (x, η) ≤ δ =⇒ C(x, η, f ) -C (x, η) ≤ . Let η ∈ [0, 1], x ∈ X and f ∈ H such that C φ (x, η, f ) -C φ,H (x, η) ≤ δ. Thanks to Proposition . . , C φ,H (x, η) = C φ (x, η), and f ∈ F(X ), then C φ (x, η, f ) -C φ (x, η) ≤ δ and then: C(x, η, f ) -C H (x, η) = C(x, η, f ) -C (x, η) ≤ . Towards Adversarial Consistency Then φ is uniformly H-calibrated in standard classi cation.
Reciprocally, let us assume that φ is a continuous classi cation margin loss and that φ is uniformly H-calibrated. Let > 0. There exists δ > 0 such that, for all η ∈ [0, 1], x ∈ X and f ∈ H:

C φ (x, η, f ) -C φ,H (x, η) ≤ δ =⇒ C(x, η, f ) -C H (x, η) ≤ . Let η ∈ [0, 1], x ∈ X and f ∈ H such that C φ (x, η, f )-C φ,H (x, η) ≤ δ. C φ (x, η, f ) = ηφ(f (x)) + (1 -η)φ(-f (x)). Let f : u → f (x) for all u ∈ X , then f ∈ H since f is constant, C φ (x, η, f ) = C φ (x, η, f ) and C(x, η, f ) = C(x, η, f ). Thanks to the previous proposition, C φ,H (x, η) = C φ (x, η). Then: C φ (x, η, f ) -C φ,H (x, η) ≤ δ and then: C(x, η, f ) -C φ,H (x, η) = C(x, η, f ) -C φ (x, η) ≤
Then φ is uniformly calibrated in standard classi cation.

We can now obtain the necessary and su cient conditions as follows. They are really similar to the adversarial calibration ones.

Proposition (Necessary conditions for H-Calibration of adversarial losses). Let ε > 0. Let H ⊂ F(X ). Let us assume that H contains all constant functions and that there exists x ∈ X and

(f n ) n ∈ H N such that f n (u) → 0 for all u ∈ B ε (x) and for all n ∈ N, sup u∈Bε(x) f n (u) > 0 and inf u∈Bε(x) f n (u) < 0 Let φ be a continuous margin loss . If φ is adversarially uniformly H-calibrated at level ε, then φ is uniformly calibrated in the standard classification setting and 0 ∈ argmin α∈ R 1 2 φ(α) + 1 2 φ(-α).
Proposition (Su cient conditions for H-Calibration of adversarial losses). Let H ⊂ F(X ). Let us assume that H contains all constant functions. Let φ be a continuous strictly decreasing margin loss and ε > 0. If φ is calibrated in the standard classification setting and 0 ∈ argmin α∈

R 1 2 φ(α) + 1 2 φ(-α), then φ is adversarially uniformly H-calibrated at level ε.x
The proofs are the same as for the adversarial calibration setting. Note however that the assumptions on H are very weak: for instance, the set of linear classi ers

H = x → w, x + b | w ∈ R d , b ∈ R satis es the existence of x ∈ X and (f n ) n ∈ H N such that f n (u) → 0 for all u ∈ B ε (x) and for all n ∈ N, sup u∈Bε(x) f n (u) > 0 and inf u∈Bε(x) f n (u) < 0.

. Towards Adversarial Consistency

We focus our study now on the problem of adversarial consistency. In a rst part, taking inspiration from Long and Servedio [ ], Awasthi et al.

[ a], we study the ε-realisable case, i.e. the case where the adversarial risk at level ε equals zero. In a second part, we analyze the behavior of a candidate class of losses, namely the 0/1-like margin losses.

. . The Realizable Case

The realizable case is important since there are no possible adversaries for the Bayes optimal classi er. Formally, this means that the adversarial risk equals 0, as stated in the following de nition.

De nition (ε-realisability). Let P be a Borel probability distribution on X × Y and ε ≥ 0. We say that P is ε-realisable if R ε,P = 0.

In the case of realizable probability distribution, calibrated (and consequently consistent) margin losses in the standard classi cation setting are also calibrated and consistent in the adversarial case.

Proposition . Let ε > 0. Let P be an ε-realisable distribution and φ be a calibrated margin loss in the standard setting. Then φ is adversarially consistent at level ε.

The intuition behind this result is that if a probability distribution is ε-realisable, the marginal distributions are su ciently separated, so that there are no possible adversarial attacks, each point in the -neighbourhood of the support of the distribution can be classi ed independently of each other. To formally prove this result, we need a preliminary lemma.

Lemma . Let P be an ε-realisable distribution and φ be a calibrated margin loss in the standard setting. Then R φε,P = inf α∈R φ(α).

Proof. Let a ∈ R be such that φ(a)inf α∈R φ(α) ≤ . P being ε-realisable, there exists a measurable function f such that:

R ε,P (f ) = E P sup x ∈Bε(x) 1 ysign(f (x))≤0 = P ∃x ∈ B ε (x), sign(f (x )) = y ≤ := max(1, φ(-a))
.

Denoting p = P(y = 1), P 1 = P[•|y = 1] and P -1 = P[•|y = -1], we have:

p × P 1 ∃x ∈ B ε (x), f (x ) < 0 ≤ and (1 -p) × P -1 ∃x ∈ B ε (x), f (x ) ≥ 0 ≤ .
Let us now de ne g as:

g(x) = a if f (x) ≥ 0 -a if f (x) < 0
We have:

. Towards Adversarial Consistency R φε,P (g) = E P sup

x ∈Bε(x) φ(yg(x))

= p × E P 1 sup x ∈Bε(x) φ(g(x)) + (1 -p) × E P -1 sup x ∈Bε(x)
φ(-g(x))

We have:

p × E P 1 sup x ∈Bε(x) φ(g(x)) ≤ p × E P 1 sup x ∈Bε(x) φ(g(x))1 f (x )<0 + p × E P 1 sup x ∈Bε(x) φ(g(x))1 f (x )≥0 = φ(-a) × p × P 1 ∃x ∈ B ε (x), f (x ) < 0 + φ(a) × p × 1 -P 1 ∃x ∈ B ε (x), f (x ) < 0 ≤ φ(-a) + p × φ(a) ≤ p × inf α∈R φ(α) + 2
Similarly, we have:

(1 -p) × E P -1 sup x ∈Bε(x) φ(-g(x)) ≤ (1 -p) × inf α∈R φ(α) + 2
We get: R φε,P (g) ≤ inf α∈R φ(α) + 4 and, hence R φε,P = inf α∈R φ(α).

We are now ready to prove the result of consistency in the realizable case.

Proof. Let 0 < < 1. Thanks to Theorem , φ is uniformly calibrated for standard classication, then, there exists δ > 0 such that for all f ∈ F(X ) and for all x:

φ(yf (x)) -inf α∈R φ(α) ≤ δ =⇒ 1 ysignf (x)≤0 = 0
Let now f ∈ F(X ) be such that R φε,P (f ) ≤ R φε,P + δ . Thanks to Lemma , we have:

R φε,P (f ) -R φε,P = E P sup x ∈Bε(x) φ(yf (x)) -inf α∈R φ(α) ≤ δ
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Then by Markov inequality:

P sup x ∈Bε(x) φ(yf (x)) -inf α∈R φ(α) ≥ δ ≤ E P sup x ∈Bε(x) φ(yf (x)) -inf α∈R φ(α) δ ≤ So we have P[∀x ∈ B ε (x), φ(yf (x)) -inf α∈R φ(α) ≤ δ] ≥ 1 -and then P ∀x ∈ B ε (x), 1 ysign(f (x))≤0 = 0 ≥ 1 - .
Since P is ε-realisable, we have R ε,P = 0 and:

R ε,P (f ) -R ε,P = R ε,P (f ) = P ∃x ∈ B ε (x), sign(f (x )) = y ≤
which concludes the proof.

. . Towards the General Case

In this section, we seek to pave the way towards proving the consistency of shifted odd losses. We will observe that their behavior is actually very similar to that of the 0/1 loss, which makes them good candidates to be consistent losses. To this end, we rst add an extra hypothesis to the odd shifted losses in order to simplify our technical analysis.

De nition

(0/1-like margin losses). φ is a 0/1-like margin loss if there exists λ ≥ 0, τ ≥ 0, and a continuous lower bounded strictly decreasing odd function ψ in a neighbourhood of 0 such that for all α ∈ R, ψ(α) ≥ -λ and φ(α

) = λ + ψ(α -τ ) and lim t→-∞ φ(t) = 1 and lim t→+∞ φ(t) = 0
Note here that the losses here are not necessarily shifted, making this condition weaker. Consequently, we cannot hope that such losses are consistent neither calibrated, but they might help in nding the path towards consistency. Note also that if φ is an odd or shifted odd loss, one can always nd a rescaling of φ such that φ becomes a 0/1-like margin loss. Note also that such a rescaling does neither change the notion of consistency and calibration for φ nor for its rescaled version.

Based on min-max arguments, we provide below some results better characterizing 0/1-like margin loss functions in the adversarial setting. Let us rst recall the notions of midpoint property and adversarial distributions set that will be useful from now on as well as an important existing result from Pydi and Jog [ b].

De nition . Let (X , d) be a proper Polish metric space. We say that X satisfy the midpoint property if for all

x 1 , x 2 ∈ X there exist x ∈ X such that d(x, x 1 ) = d(x, x 2 ) = d(x 1 ,x 2 ) 2 .
We recall also the set A ε (P) of adversarial distributions introduced in Chapter .

.

Towards Adversarial Consistency

De nition . Let P be a Borel probability distribution and ε > 0. We define the set of adversarial distributions A ε (P) as: andJog [ b]). Let X be a Polish space satisfying the midpoint property. Then strong duality holds:

A ε (P) := Q ∈ M + 1 (X × Y) | ∃γ ∈ M + 1 (X × Y) 2 , d(x, x ) ≤ ε, y = y γ-a.s., Π 1 γ = P, Π 2 γ = Q Theorem (Pydi
R ε (P) = inf f ∈F (X ) sup Q∈Aε(P) R Q (f ) = sup Q∈Aε(P) inf f ∈F (X ) R Q (f )
Moreover the supremum of the right-hand term is attained.

Note that in the original version of the theorem, Pydi and Jog [ b] did not prove that the supremum is attained.

Proof. To prove that, note that for every Borel probability distribution

Q over X × Y, inf f ∈F (X ) R Q (f ) = (1 -q) + inf f ∈C(X ), 0≤f ≤1 f d(qQ 1 + (q -1)Q -1 ) where q = Q[y = 1] and Q i = Q[• | y = i].
When f is continuous and bounded, the function:

µ ∈ M(X ) → f dµ
is continuous for the weak topology of measures, then:

µ ∈ M(X ) → inf f ∈C(X ), 0≤f ≤1
f dµ is upper semi continuous for the weak topology of measures, as it is the in num of continuous functions. Then using the compacity of A ε (P), we deduce that the supremum is attained.

Connections between 0/1-like margin loss and 0/1 loss: a min-max viewpoint. Thanks the the above concepts, we can now present some results identifying the similarity and the differences between the 0/1 loss and 0/1-like margin losses. We rst show that for a given xed probability distribution P, the adversarial optimal risk associated with a 0/1-like margin loss and the 0/1 loss are equal.

Theorem . Let X be a Polish space satisfying the midpoint property. Let ε ≥ 0, P be a Borel probability distribution over X × Y, and φ be a 0/1-like margin loss. Then, we have:

R φε,P = R ε,P
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In particular, we note that this property holds true for the standard risk. To prove this result, we need the following lemma.

Lemma . Let Q be a Borel probability distribution over X × Y and φ be a 0/1-like shifted odd loss, then:

R φ,Q = R Q . Proof. Bartlett et al. [ ],
Steinwart [ ] proved that: for every margin losses φ,

R φ,Q = inf f ∈F (X ) E (x,y)∼Q [φ(yf (x))] = E x∼Qx inf α∈R [Q(y = 1|x)φ(α) + (1 -Q(y = -1|x))φ(-α)] = E x∼Qx C φ (Q(y = 1|x), x)
We also have

R Q = E x∼Qx [C (Q(y = 1|x), x)]. Moreover, if φ is a 0/1-like shifted odd loss, then: for every x ∈ X and η ∈ [0, 1], C φ (η, x) = min(η, 1 -η) = C (η, x). We can then conclude that R φ,Q = R Q .
We can now prove Theorem .

Proof. Let > 0 and P be a Borel probability distribution over X × Y. Let f such that R ε,P (f ) ≤ R ε,P + . Let a > 0 such that φ(a) ≥ 1and φ(-a) ≤ . We de ne g as:

g(x) = a if f (x) ≥ 0 -a if f (x) < 0 We have φ(yg(x)) = φ(a)1 ysign(f (x))≤0 + φ(-a)1 ysign(f (x))>0 . Then R φε,P (g) = E P sup x ∈Bε(x) φ(yg(x)) = E P sup x ∈Bε(x) φ(a)1 ysign(f (x ))≤0 + φ(-a)1 ysign(f (x ))>0 ≤ E P sup x ∈Bε(x) 1 ysign(f (x ))≤0 + φ(-a) ≤ R ε,P + 2 .
Then we have R φε,P ≤ R ε,P . On the other side, we have:

. Towards Adversarial Consistency R φε,P ≥ sup

Q∈Aε(P) inf f ∈F (X ) R φ,Q (f ) = sup Q∈Aε(P) R φ,Q = sup Q∈Aε(P) R Q = sup Q∈Aε(P) inf f ∈F (X ) R Q (f ) = inf f ∈F (X ) sup Q∈Aε(P) R Q (f ) = R ε,P
The last step is a consequence of Theorem . Then nally we get that R φε,P = R ε,P .

From this result, we can derive two interesting corollaries about 0/1-like margin losses. First, strong duality holds for the risk associated with φ.

Corollary (Strong duality for φ). Let us assume that X is a Polish space satisfying the midpoint property. Let ε ≥ 0, P be a Borel probability distribution over X × Y, and φ be a 0/1-like margin loss. Then, we have:

inf f ∈F (X ) sup Q∈Aε(P) R φ,Q (f ) = sup Q∈Aε(P) inf f ∈F (X ) R φ,Q (f )
Moreover the supremum is attained.

Note that there is no reason that the in mum is attained. A second interesting corollary is the equality of the set of optimal attacks, i.e. distributions of A ε (P) that maximize the dual problem: an optimal attack for the 0/1 loss is also an optimal attack for a 0/1-like margin, and vice versa.

Corollary (Optimal attacks).

Let assume that X be a Polish space satisfying the midpoint property. Let ε ≥ 0 and P be a Borel probability distribution over X × Y. Then, an optimal attack Q of level ε exists for both the 0/1 loss and φ. Moreover, for Q ∈ A ε (P). Q is an optimal attack for the loss φ if and only if it is an optimal attack for the 0/1 loss.

Proof. We have:

inf f ∈F (X ) sup Q∈Aε(P) R φ,Q (f ) = R φε,P = R ε,P by Theorem = inf f ∈F (X )
sup

Q∈Aε(P) R Q (f ) = sup Q∈Aε(P) inf f ∈F (X ) R Q (f ) = sup Q∈Aε(P) R Q (f ) = sup Q∈Aε(P) R φ,Q (f ) by Lemma = sup Q∈Aε(P) inf f ∈F (X ) R φ,Q (f )
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Q → inf f ∈F (X ) R φ,Q (f ) = inf f ∈F (X ) R Q (f )
is upper semi-continuous for the weak topology of measures. Moreover, A ε (P) is compact for the weak topology of measures, then

Q → inf f ∈F (X ) R φ,Q (f ) admits a maximum over A ε (P).
And Q is an optimal attack for the loss φ if and only if it is an optimal attack for the 0/1 loss.

A step towards consistency. From the previous results, we are able to prove a rst result toward the demonstration of consistency. This result is much weaker than consistency result, but it guarantees that if a sequence minimizes the adversarial risk, then it minimizes the risk for optimal attacks, i.e. in a game where the attacker plays before the classi er

Proposition . Let us assume that X be a Polish space satisfying the midpoint property. Let ε ≥ 0 and P be a Borel probability distribution over X × Y. Let Q be an optimal attack of level ε. Let

(f n ) n∈N be a sequence of F(X ) such that R φε,P (f n ) → R φε,P . Then R Q (f n ) → R ε,P . Proof. Let (f n ) n∈N be a sequence of F(X ) such that R φε,P (f n ) → R φε,P .
Let Q be an optimal attack of level ε. From Corollary , we get that:

R φε,P = R φ,Q .
Then we get

0 ≤ R φ,Q (f n ) -R φ,Q ≤ R φε,P (f n ) -R φε,P
from which we deduce that: R φ,Q (f n ) → R φ,Q . Since φ is consistent in the standard classi cation setting, we then have

R Q (f n ) → R Q .
We hope this result and its proof may lead to a full proof of consistency. This result is signi cantly weaker than consistency as stated in the following remark. In the proof of the previous results, we did not use the assumptions that losses are shifted. In our opinion, it is the key element that we miss and need to use to conclude the consistency of this family of losses. The shift in the loss would force the classi er to goes to ±∞ on the ε neighborhood support of the distribution of P. This question is complicated and is left as further work.

. Discussions and Open Questions

In this chapter, we set some solid theoretical foundations for the study of adversarial consistency. We highlighted the importance of the de nition of the 0/1 loss, as well as the nuance between calibration and consistency that is speci c to the adversarial setting. Furthermore, we solved the calibration problem, by giving a necessary and su cient condition for decreasing, continuous margin losses to be adversarially calibrated. Since this is a necessary condition for consistency, an important consequence of this result is that no convex margin loss can be consistent. This rules out most of the commonly used surrogates, and spurs the need for new families of consistent, yet easily optimisable families of losses.

Consistency of 0/1-like shifted margin losses. In Section . . , we introduced candidates losses for consistency. While these losses might lead to promising results, there is still a gap to prove the consistency of these losses. This question is left as further work.

Necessary and su cient conditions for consistency. While we provided necessary and sufcient conditions for calibration in the adversarial setting, it is a di cult and open question to solve the problem of consistency. One may ask if the conditions we found for calibration might be necessary or su cient for consistency. While there is an intuition that the notion of calibration is much weaker than consistency, we did not prove this. It would be challenging to nd a counter-example for a loss that is calibrated but not consistent in the adversarial setting. In this chapter, we study the design of Lipschitz Layers under the light of the dynamical system interpretation of Neural Networks, hence answering Question : "How to e ciently implement certi able models with non-vacuous guarantees?". We recall brie y the continuous time interpretation of Residual Networks. Let (F t ) t∈[0,T ] be a family of functions on R d , we de ne the continuous time Residual Networks ow associated with F t as:

A Dynamical System Perspective for Lipschitz Neural Networks

x 0 = x ∈ X dxt dt = F t (x t ) for t ∈ [0, T ]
Typically, F t designates a two layer neural network. Note that this can be interpreted as the forward pass of a Neural Networks From this continuous and dynamical interpretation, we analyze the Lipschitzness property of Neural Networks. We then study the discretization schemes that can preserve the Lipschitzness properties. With this point of view, we can readily recover several previous methods that build -Lipschitz neural networks [Trockman et al., , Singla and Feizi, ]. Therefore, the dynamical system perspective o ers a general and exible framework to build Lipschitz Neural Networks facilitating the discovery of new approaches. In this vein, we introduce convex potentials in the design of the Residual Network ow and show that this choice of parametrization yields to by-design 1-Lipschitz neural networks. At the very core of our approach lies a new 1-Lipschitz non-linear operator that we call Convex Potential Layer which allows us to adapt convex potential ows to the discretized case. These blocks enjoy the desirable property of stabilizing the training of the neural network by controlling the gradient norm, hence overcoming the exploding gradient issue. We experimentally demonstrate our approach by training large-scale neural networks on several datasets, reaching state-of-the art results in terms of under-attack and certi ably-robust accuracy.

.

A Framework to design Lipschitz Layers

The continuous time interpretation allows us to better investigate the robustness properties and assess how a di erence of the initial values (the inputs) impacts the inference ow of the model. Let us consider two continuous ows x t and z t associated with F t but di ering in their respective initial values x 0 and z 0 . Our goal is to characterize the time evolution of x tz t by studying its time derivative. We recall that every matrix M ∈ R d×d can be uniquely decomposed as the sum of a symmetric and skew-symmetric matrix M = S(M ) + A(M ). By applying this decomposition to the Jacobian matrix ∇ x F t (x) of F t , we can show that the time derivative of x tz t 2 only involves the symmetric part S(∇ x F t (x)).

For two symmetric matrices S 1 , S 2 ∈ R d×d , we denote S 1 S 2 if, for all x ∈ R d , x, (S 2 -S 1 )x ≥ 0. By focusing on the symmetric part of the Jacobian matrix we can show the following proposition.

Proposition . Let (F t ) t∈[0,T ] be a family of di erentiable functions almost everywhere on R d . Let us assume that there exists two measurable functions t → µ t and t → λ t such that

µ t I S(∇ x F t (x)) λ t I
for all x ∈ R d , and t ∈ [0, T ]. Then the flow associated with F t satisfies for all initial conditions x 0 and z 0 :

x 0 -z 0 e t 0 µsds ≤ x t -z t ≤ x 0 -z 0 e t 0 λsds
Proof. Consider the time derivative of the square di erence between the two ows x t and z t associated with the function F t and following the de nition :

d dt x t -z t 2 2 = 2 x t -z t , d dt (x t -z t ) = 2 x t -z t , F θt (x t ) -F θt (z t ) = 2 x t -z t , 1 0 ∇ x F θt (z t + s(x t -z t ))(x t -z t )ds by Taylor-Lagrange formula . A Framework to design Lipschitz Layers = 2 1 0 x t -z t , ∇ x F θt (z t + s(x t -z t ))(x t -z t ) ds = 2 1 0 x t -z t , S(∇ x F θt (z t + s(x t -z t )))(x t -z t ) ds
In the last step, we used that for every skew-symmetric matrix A and vector x, x, Ax = 0.

Since µ t I S(∇ x F θt (z t + s(x t -z t ))) λ t I, we get 2µ t x t -z t 2 2 ≤ d dt x t -z t 2 2 ≤ 2λ t x t -z t 2 2
Then by Gronwall Lemma, we have

x 0 -y 0 e t 0 µsds ≤ x t -y t ≤ x 0 -y 0 e t 0 λsds
which concludes the proof.

The symmetric part plays even a more important role since one can show that a twice di erentiable function whose Jacobian is always skew-symmetric is actually linear. Indeed, let F := (F 1 , . . . , F d ) : R d → R d be a twice di erentiable function such that ∇F (x) is skew-symmetric for all x ∈ R d . Then we have for all i, j, k:

∂ i ∂ j F k = -∂ i ∂ k F j = -∂ k ∂ i F j = ∂ k ∂ j F i = ∂ j ∂ k F i = -∂ j ∂ i F k = -∂ i ∂ j F k So we have ∂ i ∂ j F k =
0 and then F is linear: there exists a skew-symmetric matrix A such that F (x) = Ax. Moreover, constraining S(∇ x F t (x)) in the general case is technically di cult and a solution resorts to a more intuitive parametrization of F t as the sum of two functions F 1,t and F 2,t whose Jacobian matrix are respectively symmetric and skew-symmetric. Thus, such a parametrization enforces F 2,t to be linear and skew-symmetric. For the choice of F 1,t , we propose to rely on potential functions: a function F 1,t : R d → R d derives from a simpler family of scalar valued function in R d , called the potential, via the gradient operation. Moreover, since the Hessian of the potential is symmetric, the Jacobian for F 1,t is then also symmetric. If we had the convex property to this potential, its Hessian would have positive eigenvalues. Therefore, we introduce the following corollary.

Corollary . Let (f t ) t∈[0,T ] be a family of convex di erentiable functions on R d and (A t ) t∈[0,T ] a family of skew symmetric matrices. Let us define

F t (x) = -∇ x f t (x) + A t x,
then the flow associated with F t satisfies for all initial conditions x 0 and z 0 :

x t -z t ≤ x 0 -z 0 A Dynamical System Perspective for Lipschitz Neural Networks Proof. For all t, x, we have F t (x) = -∇ x f t (x) + A t x so ∇ x F t (x) = -∇ 2 x f t (x) + A t . Then S(∇ x F t (x)) = -∇ 2 x f t (x). Since f is convex, we have ∇ 2 x f t (x) 0.
So by application of Proposition , we deduce x ty t ≤ x 0y 0 for all trajectories starting from x 0 and y 0 . This simple property suggests that if we could parameterize F t with convex potentials, it would be less sensitive to input perturbations and therefore more robust to adversarial examples. We also remark that the skew symmetric part is then norm-preserving. However, the discretization of such ow is challenging in order to maintain this property of stability.

. . Discretized Flows

To study the discretization of the previous ow, let t = 1, . . . , T be the discretized time steps and from now we consider the ow de ned by F t (x) = -∇f t (x) + A t x, with (f t ) t=1,...,T a family of convex di erentiable functions on R d and (A t ) t=1,...,T a family of skew symmetric matrices. The most basic is method the explicit Euler scheme as de ned by:

x t+1 = x t + F t (x t )
However, if A t = 0, this discretized system might not satisfy x tz t ≤ x 0z 0 . Indeed, consider the simple example where f t = 0. We then have:

x t+1 -z t+1 2 -x t -z t 2 = A t (x t -z t ) 2 .
Thus explicit Euler scheme cannot guarantee Lipschitzness when A t = 0. To overcome this di culty, the discretization step can be split into two parts, one for ∇ x f t and one for A t :

x t+ 1 2 = (x t , ∇ x f t ) x t+1 = (x t+ 1 2 , A t )
This type of discretization scheme can be found for instance from Proximal Gradient methods where one step is explicit and the other is implicit. Then, we dissociate the Lipschitzness study of both terms of the ow.

. . Discretization scheme for ∇ x f t

To apply the explicit Euler scheme to ∇ x f t , an additional smoothness property on the potential functions is required to generalize the Lipschitzness guarantee to the discretized ows. Recall that a function

f is said to be L-smooth if it is di erentiable and if x → ∇ x f (x) is L-Lipschitz. Proposition . Let t ∈ {1, • • • , T }. Let us assume that f t is M t -smooth.
We define the following discretized ResNet gradient flow using h t as a step size:

x t+ 1 2 = x t -h t ∇ x f t (x t )
. A Framework to design Lipschitz Layers Consider now two trajectories x t and z t with initial points x 0 = x and z

0 = z respectively, if 0 ≤ h t ≤ 2 Mt , then x t+ 1 2 -z t+ 1 2 2 ≤ x t -z t 2 Proof. With c t = x t -z t 2 2
, we can write:

c t+ 1 2 -c t = -2h t x t -z t , ∇ x F θt (x t ) -∇ x F θt (z t ) + h 2 t ∇ x F θt (z t ) -∇ x F θt (z t ) 2 2
This equality allows us to derive the equivalence between c t+1 ≤ c t and:

h t 2 ∇ x F θt (x t ) -∇ x F θt (z t ) 2 2 ≤ x t -z t , ∇F θt (x t ) -∇F θt (z t )
Moreover, assuming that F θt being that:

1 M t ∇ x F θt (x t ) -∇ x F θt (z t ) 2 2 ≤ x t -z t , ∇ x F θt (x t ) -∇ x F θt (z t )
We can see with this last inequality that if we enforce h t ≤ 2 Mt , we get c t+ 1 2 ≤ c t which concludes the proof.

In Section . , we describe how to parametrize a neural network layer to implement such a discretization step by leveraging the recent work on Input Convex Neural Networks Amos et al. [ ].

Remark . Another solution relies on the implicit Euler scheme:

x t+ 1 2 = x t -∇ x f t (x t+ 1 2
). Let us remark that x t+ 1 2 is uniquely defined as:

x t+ 1 2 = argmin x∈R d 1 2 x -x t 2 + f t (x)
We recognized here the proximal operator of f t that is uniquely defined since f t is convex. Moreover, we have for two trajectories x t and z t :

x t -z t 2 2 = x t+ 1 2 -z t+ 1 2 + ∇ x f t (x t+ 1 2 ) -∇ x f t (z t+ 1 2 ) 2 2 = x t+ 1 2 -z t+ 1 2 2 + 2 x t -z t , ∇ x f t (x t+ 1 2 ) -∇ x f t (z t+ 1 2 ) + ∇ x f t (x t+ 1 2 ) -∇ x f t (z t+ 1 2 ) 2 2 ≥ x t+ 1 2 -z t+ 1 2 2
where the last inequality is deduced from the convexity of f t . So, without any further assumption on f t , the discretized implicit convex potential flow is 1-Lipschitz. Then, this strategy defines a 1-Lipschitz flow without further assumption on f t than convexity. To compute such a layer, one could compute the proximal operator which is a strongly convex-minimization optimization problem. However, This strategy is not computationally efficient and not scalable and preliminary experiments did not show competitive results while the training time is prohibitive. We leave this solution for future work.

. . Discretization scheme for A t

The second step of discretization involves the term with skew-symmetric matrices A t . As mentioned earlier, the challenge is that the explicit Euler discretization is not contractive. More precisely, the following property

x t+1 -z t+1 ≥ x t+ 1 2 -z t+ 1 2
is satis ed with equality only in the special and useless case of

x t+ 1 2 -z t+ 1 2 ∈ ker(A t ).
Moreover, the implicit Euler discretization induces an increasing norm and hence does not satisfy the desired property of norm preservation neither.

Midpoint Euler method.

We thus propose to use Midpoint Euler method, de ned as follows:

x t+1 = x t+ 1 2 + A t x t+1 + x t+ 1 2 2 ⇐⇒ x t+1 = I - A t 2 -1 I + A t 2 x t+ 1 2 .
Since A t is skew-symmetric, I-At 2 is invertible. This update corresponds to the Cayley Transform of At 2 that induces an orthogonal mapping. This kind of layers was introduced and extensively studied in [Trockman et al., ].

Exact Flow. One can de ne the simple di erential equation corresponding to the ow associated with A t

du t ds = A t u s , u 0 = x t+ 1 2 ,
There exists an exact solution since A t is linear. By taking the value at s = 1 2 , we obtain the following transformation:

x t+1 := u 1 2 = e A 2 x t+ 1 2 .
This step is therefore clearly norm preserving but the matrix exponentiation is challenging and it requires e cient approximations. This trend was recently investigated under the name of Skew Orthogonal Convolution (SOC) Singla and Feizi [ ].

. Parametrizing Convex Potentials Layers

. Parametrizing Convex Potentials Layers

As presented in the previous section, parametrizing the skew symmetric updates has been studied by Trockman et al. [ ], Singla and Feizi [ ]. Here, we focus on the parametrization of symmetric updates with the convex potentials proposed in Proposition . For that purpose, the Input Convex Neural Network (ICNN) [Amos et al., ] provide a relevant starting point that we will extend.

. . Gradient of ICNN

We use 1-layer ICNN [Amos et al., ] to de ne an e cient computation of Convex Potentials Flows. For any vectors w 1 , . . . w k ∈ R d , and bias terms b 1 , . . . , b k ∈ R, and for φ a convex function, the potential F de ned as:

F w,b : x ∈ R d → k i=1 φ(w i x + b i )
de nes a convex function in x as the composition of a linear and a convex function. Its gradient with respect to its input x is then:

x → k i=1 w i φ (w i x + b i ) = W φ (Wx + b)
with W ∈ R k×d and b ∈ R k are respectively the matrix and vector obtained by the concatenation of, respectively, w i and b i , and φ is applied element-wise. Moreover, assuming φ is M -Lipschitz, we have that

F w,b is M W 2 2 -smooth. W 2 denotes the spectral norm of W. The reciprocal also holds: if σ : R → R is a non-decreasing M -Lipschitz function, W ∈ R k×d and b ∈ R k , there exists a convex M W 2 2 -smooth function F w,b such that ∇ x F w,b (x) = W σ(Wx + b),
where σ is applied element-wise. The next section shows how this property can be used to implement the building block and training of such layers.

. . Convex Potential layers

From the previous section, we derive the following Convex Potential Layer: 

z = x - 2 W 2 2 W σ(Wx + b) A Dynamical System
v ← Wu/ Wu 2 u ← W v/ W v 2      iter. for training iter. for inference h ← 2/( i (Wu • v) i ) 2 return x -h W σ(Wx + b) , u
Written in a matrix form, this layer can be implemented with every linear operation W. In the context of image classi cation, it is bene cial to use convolutions instead of generic linear transforms represented by a dense matrix.

Remark . When W ∈ R 1×d , b = 0 and σ : x → R LU = max(x, 0), the Convex Potential Layer is equivalent to the HouseHolder activation function introduced in Singla et al. [ a].
Residual Networks [He et al., b] are also composed of other types of layers which increase or decrease the dimensionality of the ow. Typically, in a classical setting, the number of input channels is gradually increased, while the size of the image is reduced with pooling layers. In order to build a 1-Lipschitz Residual Network, all operations need to be properly scaled or normalized in order to maintain the Lipschitz constant.

Increasing dimensionsionality. To increase the number of channels in a convolutional Convex Potential Layer, a zero-padding operation can be performed: an input x of size c × h × w can be extended to some x of size c × h × w, where c > c, which equals x on the c rst channels and 0 on the cc other channels.

Reducing dimensionsionality. Dimensionality reduction is another essential operation in neural networks. On one hand, its goal is to reduce the number of parameters and thus the amount of computation required to build the network. On the other hand it allows the model to progressively map the input space on the output dimension, which corresponds in many cases to the number of di erent labels K. In this context, several operations exist: pooling layers are used to extract information present in a region of the feature map generated by a convolution layer. One can adapt pooling layers (e.g. max and average) to make them 1-Lipschitz [Bartlett et al., ]. Finally, a simple method to reduce the dimension is the product with a non-square matrix. We simply implement it as the truncation of the output. This obviously maintains the Lipschitz constant.

. . Computing spectral norms

Our Convex Potential Layer, described in Equation . . , can be adapted to any kind of linear transformations (i.e. Dense or Convolutional) but requires the computation of the spectral norm . Experiments for these transformations. The exact computation of the spectral norm of a linear operator is computationally prohibitive, an e cient approximate method is required during training to keep the complexity tractable. Many techniques exist to approximate the spectral norm (or the largest singular value), and most of them exhibit a trade-o between e ciency and accuracy. Several methods exploit the structure of convolutional layers to build an upper bound on the spectral norm of the linear transform performed by the convolution [Jia et al., , Singla et al., b, Araujo et al., ]. While these methods are generally e cient, they are less relevant in certain settings. For instance in our context, using a loose upper bound of the spectral norm will hinder the expressive power of the layer and make it too contracting.

For these reasons we rely on the Power Iteration Method (PM). This method converges at a geometric rate towards the largest singular value of a matrix. More precisely the convergence rate for a given matrix W is O(( λ 2 λ 1 ) k ) after k iterations, independently of the choice of the starting vector, where λ 1 > λ 2 are the two largest singular values of W. While it can appear computationally expensive due to the large number of required iterations for convergence, it is possible to drastically reduce the number of iterations during training. Indeed, as in [Miyato et al., ], by considering that the weights' matrices W change slowly during training, one can perform only one iteration of the PM for each step of the training and let the algorithm slowly converges along with the training process . We describe with more details in Algorithm , the operations performed during a forward pass with a Convex Potential Layer.

However, for evaluation purpose, we need to compute the certi ed adversarial robustness, and this requires to ensure the convergence of the PM. Therefore, we perform 100 iterations for each layer at inference time. Also note that at inference time, the computation of the spectral norm only needs to be performed once for each layer.

. Experiments

To evaluate our new 1-Lipschitz Convex Potential Layers, we conducted an extensive set of experiments. In this section, we rst describe the details of our experimental setup. We then recall the concurrent approaches that build 1-Lipschitz Neural Networks and stress their limitations. Our experimental results are nally summarized in Section . . . By computing the certi ed and empirical adversarial accuracy of our networks on CIFAR and CIFAR classi cation tasks [Krizhevsky and Hinton, ], we show that our architecture is competitive with stateof-the-art methods (Sections . . ). We also study the in uence of some hyperparameters and demonstrate the stability and the scalability of our approach by training very deep neural networks up to layers without normalization tricks or gradient clipping.

. . Training and Architectural Details

We demonstrate the e ectiveness of our approach on a classi cation task with CIFAR and CI-FAR datasets [Krizhevsky and Hinton, ]. We use a similar training con guration to the one proposed in [Trockman et al., ]. We trained our networks with a batch size of 256 over 200 epochs. We use standard data augmentation (i.e. random cropping and ipping), a learning rate of 0.001 with Adam optimizer [Diederik P. Kingma, ] without weight decay and a piecewise triangular learning rate scheduler. We used a margin parameter in the loss set to 0.7.

As other usual convolutional neural networks, we rst stack few Convolutional CPLs and then stack some Linear CPLs for classi cation tasks. To validate the performance and the scalability of our layers, we evaluate four di erent variations of di erent hyperparameters as described in Table . , respectively named CPL-S, CPL-M, CPL-L and CPL-XL, ranked according to the number of parameters they have. In all our experiments, we made 3 independent trainings to evaluate accurately the models. All reported results are the average of these 3 runs.

. . Concurrent Approaches

We compare our networks with SOC [Singla and Feizi, ] and Cayley Trockman et al. [ ] networks which are to our knowledge the best performing approaches for deterministic 1-Lipschitz Neural Networks. Since our layers are fundamentally di erent from these ones, we cannot compare with the same architectures. We reproduced SOC results for with 10 and 20 layers, that we call respectively SOC-10 and SOC-20 in the same training setting, i.e. normalized inputs, cross entropy loss, SGD optimizer with learning rate 0.1 and multi-step learning rate scheduler. For Cayley layers networks, we reproduced their best reported model, i.e. KWLarge with width factor of 3.

The work of Singla et al. [ a] propose three methods to improve certi able accuracies from SOC layers: a new HouseHolder activation function (HH), last layer normalization (LLN), and certi cate regularization (CR). The code associated with this approach is not open-sourced yet, so we just reported the results from their paper in ours results (Tables . and. ) under the name SOC+. We were being able to implement the LLN method in all models. This method largely improve the result of all methods on CIFAR , so we used it for all networks we compared on CIFAR (ours and concurrent approaches).

. 

. . Results

In this section, we present our results on adversarial robustness. We provide results on provable 2 robustness as well as empirical robustness on CIFAR and CIFAR datasets for all our models and the concurrent ones Certi ed Adversarial Robustness. Results on CIFAR and CIFAR dataset are reported respectively in Tables . and. . We also plotted certi ed accuracy w.r. ed accuracies for every level of ε except SOC+ that uses additional tricks we did not use. On CIFAR , our method performs slightly under the SOC networks but better than Cayley networks. Overall, our methods reach competitive results with SOC and Cayley layers.

Note that we observe a small gain using larger and deeper architectures for our models. This gain is less important as ε increases but the gain is non negligible for standard accuracies. In term of training time, our small architecture (CPL-S) trains very fast compared to other methods, while larger ones are longer to train. Empirical Adversarial Robustness. We also reported in Figure . the accuracy of all the models against PGD 2 -attack [Kurakin et al., , Madry et al., b] for various levels of . We used 10 iterations for this attack. We remark here that our method brings a large gain of robust accuracy over all other methods. On CIFAR for ε = 0.8, the gain of CPL-S over SOCapproach is more than 10%. For CIFAR , the gain is about 10% too for ε = 0.6. We remark that using larger architectures lead in a more substantial gain in empirical robustness.

Our layers only provide an upper bound on the Lipschitz constant, while orthonormal layers such as Cayley and SOC are built to exactly preserve the norms. This might negatively in uence the certi ed accuracy since the e ective Lipschitz constant is smaller than the theoretical one, hence leading to suboptimal certi cates. This might explain why our method performs so well for empirical robustness tasks. 

Batch

E ect of Batch Size in Training.

In Tables . and. , we tried three di erent batch sizes ( , and ) for training our networks on CIFAR and CIFAR datasets, we remark a gain in standard accuracy in reducing the batch size for all settings. As the perturbation becomes larger, the gain in accuracy is reduced and even in some cases we may loose some points in robustness.

E ect of the Margin Parameter.

In these experiments we varied the margin parameter in the margin loss in Figures . and. . It clearly exhibits a tradeo between standard and robust ac- curacy. When the margin is large, the standard accuracy is low, but the level of robustness remain high even for "large" perturbations. On the opposite, when the margin is small, we obtain a high standard accuracy but we are unable to keep a good robustness level as the perturbation increases. It is veri ed both on certi ed and empirical robustness.

. . Training stability: scaling up to 1000 layers

While the Residual Network architecture limits, by design, gradient vanishing issues, it still su ers from exploding gradients in many cases [Hayou et al., ]. To prevent such scenarii, batch normalization layers [Io e and Szegedy, ] are used in most Residual Networks to stabilize the training.

Recently, several works [Miyato et al., , Farnia et al., ] have proposed to normalize the linear transformation of each layer by their spectral norm. Such a method would limit exploding gradients but would again su er from gradient vanishing issues. Indeed, spectral normalization might be too restrictive: dividing by the spectral norm can make other singular values vanishingly small. While more computationally expensive (spectral normalization can be done with 1 Power Method iteration), orthogonal projections prevent both exploding and vanishing issues.

On the contrary the architecture proposed has the advantage to naturally control the gradient norm of the output with respect to a given layer. Therefore, our architecture can get the best of both worlds: limiting exploding and vanishing issues while maintaining scalability. To demonstrate the scalability of our approach, we experiment the ability to scale our architecture to very high depth (up to layers) without any additional normalization/regularization tricks, such as Dropout [Srivastava et al., ], Batch Normalization [Io e and Szegedy, ] or gradient clipping [Pascanu et al., ]. With the work done by Xiao et al. [ ], which leverage Dynamical Isometry and a Mean Field Theory to train a 10000 layers neural network, we believe, to the best of our knowledge, to be the second to perform such training. For the sake of computation e ciency, we limit this experiment to architecture with 30 feature maps. We report the accuracy in terms of epochs for our architecture in Figure . for a varying number of convolutional layers. It is worth noting that for the deepest networks, it may take a few epochs before the start of convergence. As Xiao et al. [ ], we remark there is no gain in using very deep architecture for this task.

. . Relaxing linear layers

Table . shows the result of the relaxed training of our CPL architecture, i.e. we xed the step h t in the discretized convex potential ow of Proposition . Increasing the constant h allows for an important improvement in the standard accuracy, but we loose in robust empirical accuracy. While computing the certi ed accuracy is not possible in this case due to the unknown value of the Lipschitz constant, we can still notice that the training of the network are still stable without normalization tricks, and o er a non-negligible level of robustness.

. Discussions and Open questions

In this chapter, we presented a new generic method to build 1-Lipschitz layers. We leverage the continuous time dynamical system interpretation of Residual Networks and show that using convex potential ows naturally de nes 1-Lipschitz neural networks. After proposing a parametrization based on Input Convex Neural Networks [Amos et al., ], we show that our models reach competitive results in classi cation and robustness in comparison which other existing 1-Lipschitz approaches. We also experimentally show that our layers provide scalable approaches without further regularization tricks to train very deep architectures.

Exploiting the ResNet architecture for devising ows has gained interest for example, in the context of generative modeling, Invertible Neural Networks [Behrmann et al., ] a] have had similar ideas to this present work but for a very di erent setting and applications. In particular, they did not have interest in the contraction property of convex ows and the link with adversarial robustness has not been exploited.

. Discussions and Open questions

Expressivity of discretized convex potential ows. Proposition suggests to constraint the symmetric part of the Jacobian of F t . We proposed to decompose F t as a sum of potential gradient and a skew symmetric matrix. Finding other parametrizations is an open challenge. Our models may not express all 1-Lipschitz functions. Knowing which functions can be approximated by our CPL layers is di cult even in the linear case. Indeed, let us de ne S 1 (R d×d ) the space of real symmetric matrices with singular values bounded by 1. Let us also de ne U 1 (R d×d ) the space of real matrices with singular values bounded by 1 in absolute value. Let

P(R d×d ) = {A ∈ R d×d |∃n ∈ N, S 1 , . . . , S n ∈ S 1 (R d × d) s.t. A = S 1 . . . S n }.
Then one can prove that P(R d×d ) = U 1 (R d×d ). Thus there exists A ∈ U 1 (R d×d ) such that for all matrices n, for all matrices S 1 , . . . , S n ∈ S 1 (R d×d ) such that M = S 1 , . . . , S n . Applied to the expressivity of discretized convex potential ows, the previous result means that there exists a 1-Lipschitz linear function that cannot be approximated as a discretized ow of any depth of convex linear 1-smooth potential ows as in Proposition . Indeed such a ow would write:

x → i (1 -2S i )
x where S i are symmetric matrices whose eigenvalues are in [0, 1], in other words such transformations are exactly described by x → M x for some M ∈ P(R d×d ). This is an important question that requires further investigation. ], Sander et al. [ b] has proposed a dynamical system interpretation of a ow on particles (i.e. the words in the initial sentence for NLP tasks). This can be seen as an interacting ow over a distribution. The question of robustness and Lipschitzness is way more technical since it implies Lipschitzness in the space of distributions. One could imagine to use Wasserstein Gradient ows [Ambrosio et al., ] as tools for deriving Lipschitz guarantees for Transformers.

Going beyond ResNets

A proof and justi cation of this result can be found here. 

Conclusion

. Summary of the Thesis

In this thesis, we studied the problem of classi cation in presence of adversaries from di erent points of view for theoretical and practical purposes. We have tried to analyze the problem using both a high level and a more precise analysis. We summarize our ndings as follows.

Summary of contributions

. We provided a better understanding of the adversarial attacks problem by studying the nature of equilibria in this game and then, proved the existence of mixed Nash equilibria for very general settings. There is a hope this research direction will lead to principled results that can be used in practice for better defending against adversarial examples using randomized classi ers.

. We studied and closed the problem of calibration in the adversarial binaryclassi cation setting providing necessary and su cient conditions. We paved the way to prove consistency results, and hope being able to conclude on consistency of shifted odd losses. It remains open to nd necessary and su cient conditions for consistency.

. We derived a principled way based on dynamical system to build 1-Lipschitz layers. Interestingly, we recovered some existing methods from the literature, but we were also able to build new well-performing layers, namely the Convex Potential Layers. We hope this work would lead to study other possible dynamical systems and provide new provably robust neural networks.

Conclusion

Although this thesis proposed some solutions to the adversarial attacks problem, we also opened many questions that would require further investigation.

. Open Questions . . Optimizing the Adversarial Attacks Problem

The optimization of the adversarial attacks problem is still an open from multiple point of views. Recall that the adversarial risk minimization problem writes

inf h∈H E (x,y)∼P sup x ∈X | d(x,x )≤ε L(h(x), y)
In classi cation, the end-objective is the accuracy, hence one need to optimize the 0/1 loss. However, optimizing the 0/1 loss is not computationally tractable. In the adversarial setting, the choice of a good surrogate loss L to the 0/1 loss is a di cult question. In particular, we have shown that no convex losses can be a good surrogate in Chapter . We have seen there might exist continuous and di erentiable losses that are consistent with regard to the 0/1 loss, but it is still an open problem.

Does there exist a simple principled way to train the adversarial attacks problem for both the classifier and the attacker?

Since no convex loss can be a good surrogate for the adversarial classi cation problem, the optimization of a suitable empirical risk would be a non-convex optimization problem which is misunderstood so far. The di culty of this problem is also highlighted by the inner supremum which is also non-convex. Then there is still a gap to bridge to understand the optimization of the adversarial problem. In Chapter , we proposed the following adversarial problem where the classi er and the attacker compete as follows

inf µ∈M + 1 (H) sup Q∈Aε(P) E µ∼H,(x,y)∼Q [L(h(x), y)]
This naturally leads to understand the adversarial problem as game between the attacker and the classi er with utility E µ∼H,(x,y)∼Q [L(h(x), y)]. We showed the existence of Nash equilibria for this game in Chapter . Although, we propose a way to learn the optimal mixtures of classi ers when their number is nite, the question of computing equilibria has not been studied and would be a natural further step. On one hand, it would help to build a robust classi er against every attack in A ε (P), and on the other hand, the attacker that would have been built would be robust to change in the mixture of classi ers. This problem is a min-max optimization problem over the set of probability distributions, hence a di cult problem. Although the problem writes as a convex-concave problem over the space of distributions, the utility is not geodisically convexconcave in the Wassertein-space. Applying directly results on Wasserstein Gradient Flow is not possible. Deriving a tractable algorithm with convergence guarantees is also di cult. There have

. Open Questions been some attempts by the Machine Learning community to nd mixed Nash equilibria using optimization over distribution techniques [Hsieh et al., , Domingo-Enrich et al., ] with applications to Generative Adversarial Networks for instance. Understanding and nding equilibria in games in Machine Learning such as the adversarial attacks problem and GANs is essential for the community to understand better these problems.

. . Understanding the Learning Dynamics in the Adversarial Setting

Statistical and Computational learning theory have focused on analyzing what can be inferred on the error outside the training set, often called generalization error. To analyze it, the risk is decomposed in bias-complexity form. This bias complexity tradeo has been question recently by double descent phenomenon [Belkin et al., , ], suggesting that higher complexity models might lead to lower generalization errors. These recent ndings underline the lack of understanding we have about generalization of Neural Networks.

Analyzing generalization in the adversarial setting case is still an underdeveloped question. There have been some works using Rademacher complexity [Yin et al., , Awasthi et al., ] to craft uniform convergence bounds. But, to our knowledge, very few works have focused on understanding the bias-complexity tradeo in the adversarial case.

How does statistical generalization work in the adversarial attacks setting?

This problem can be attacked from di erent angles. First, understanding the need or not of randomization for obtaining optimally robust classi ers is an important problem. From Chapter and Pydi and Jog [ b], the answer of this question depends mostly on two things: the set of hypotheses H and the distribution P. If H is small and cannot be optimal for P, there might be an interest for randomization, while when it is complex and su ciently expressive, for instance the set of measurable functions [Pydi and Jog, b], there is no need for randomization. However, choosing complex sets of hypotheses might lead to over tting, justifying the need of understanding generalization properties of randomized classi ers in the adversarial setting. While the question of uniform convergence bounds have been treated, generalization of randomized classi ers in the adversarial setting has only been partly tackled by Viallard et al. [ ] under the PAC-Bayes framework [Guedj, ] . Beyond PAC-like bounds, convergence rates of optimal classi ers in the adversarial setting as it was done by Fischer and Steinwart [ ] in the case of kernel least squares regression is an important and yet not studied problem. Even the question of the choice of the norm for the convergence is di cult since the adversarial setting involves points outside the support of the distribution.

. . Scaling Provably Robust Neural Networks

In Chapter , we provided a general method to build provably Lipschitz layers. However, every single methods only lead to limited results on CIFAR dataset [Krizhevsky et al.] with standard accuracies under 80% and certi able accuracies under 65% for ε = 36/255. The performances are far under the state-of-the-art on CIFAR standard classi cation task (> 95%). There is still a huge gap we need to bridge to have performant certi ably robust neural networks. Since we are
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unable to reach decent performances on simple datasets, the question of being robust on larger datasets as ImageNet [Deng et al., ] is a bit anticipated.

Is it possible to build non-vacuous certifiable neural networks on highly-dimensional large-scale datasets?

Building robust neural networks with deterministic non-vacuous guarantees is an active research area. Current methods that scale on ImageNet dataset rely on non-deterministic bounds using for instance randomized smoothing [Cohen et al., , Salman et al., ]. The advantages and the weaknesses of these methods are the same: while deterministic methods highly depend on the structure of the networks, randomized smoothing methods are agnostic to the structure of neural networks. One may hope using the structure of deep neural networks to get provable strategies. The question of robustness is also understudied for the recent Transformers [Vaswani et al., ] neural networks whose basic element is an attention block:

Attention(Q, K, V ) = softmax QK T √ d K V
where d K is the common dimension of Q and K. The Transformers architectures are today state of the art both in NLP tasks [Devlin et al., ] and computer vision tasks [Dosovitskiy et al., ]. These approaches are very recent, and their robustness have not been investigated yet. This question de nitely worth more attention! Beyond, this question of scalability and robustness of architectures, one may ask the feasibility of such tasks. Enforcing Lipschitz constraints on the networks may hinder the networks performances. In complex datasets like ImageNet, it might not be possible to get simultaneously good performances and non-vacuous certi cates. Moreover, the proposed defenses often rely on a single norm, often the 2 norm. Designing networks that are "universally" robust for human perception is a utopia, that we may never reach.

A On the Robustness of Randomized

Classi ers to Adversarial Examples

This paper investigates the theory of robustness against adversarial attacks. We focus on randomized classi ers (i.e. classi ers that output random variables) and provide a thorough analysis of their behavior through the lens of statistical learning theory and information theory. To this aim, we introduce a new notion of robustness for randomized classi ers, enforcing local Lipschitzness using probability metrics. Equipped with this de nition, we make two new contributions. The rst one consists in devising a new upper bound on the adversarial generalization gap of randomized classi ers. More precisely, we devise bounds on the generalization gap and the adversarial gap (i.e. the gap between the risk and the worst-case risk under attack) of randomized classi ers. The second contribution presents a yet simple but e cient noise injection method to design robust randomized classi ers. We show that our results are applicable to a wide range of machine learning models under mild hypotheses. We further corroborate our ndings with experimental results using deep neural networks on standard image datasets, namely CIFAR-and CIFAR-. All robust models we trained can simultaneously achieve state-of-the-art accuracy (over 0.82 clean accuracy on CIFAR-) and enjoy guaranteed robust accuracy bounds (0.45 against 2 adversaries with magnitude 0.5 on CIFAR-).

A. Introduction

In the last few years, there has been a growing concern on adversarial example attacks in machine learning. An adversarial attack refers to a small (humanly imperceptible) change of an input specifically designed to fool a machine learning model. These attacks have recently come to light thanks to works by Biggio et Besides security issues, this shows how little we know about the worst-case behaviors of models the industry uses daily. It is essential for the community to understand the very nature of this phenomenon in order to mitigate the threat.

Accordingly, a large body of works has been trying to design new models that would be less vulnerable to the adversarial setting [Goodfellow et 

A. . Supervised learning for image classi cation

Let us consider the supervised classi cation problem with an input space X and an output space Y. In the following, w.l.o.g. we will consider X ⊂ [-1, 1] d to be a set of images, and Y := {1, . . . , K} a set of labels describing them. The goal of a supervised machine learning algorithm is to design classi er that maps any image x ∈ X to a label y ∈ Y. To do so, the learner has access to a training sample of n image-label pairs S := {(x 1 , y 1 ), . . . , (x n , y n )}. Each training pair (x i , y i ) is assumed to be drawn i.i.d. from a ground-truth distribution P. To build a classi er, the usual strategy is to select a hypothesis function h : X → Y from a pre-de ned hypothesis class H to minimize the risk with respect to P. This risk minimization problem writes

inf h∈H R(h) := E (x,y)∼P L 0/1 (h(x), y) , (A. )
where L 0/1 , the 0/1 loss, outputs 1 when h(x) = y, and zero otherwise.

In practice, the learner does not have access to the ground-truth distribution; hence it cannot estimate the risk R(h). To nd an approximate solution for Problem (A. ), a learning algorithm solves the empirical risk minimization problem instead. In this case, we simply replace the risk by its empirical counterpart over the training sample S := {(x 1 , y 1 ), . . . , (x n , y n )}. The empirical risk minimization problem writes

inf h∈H R(h) := 1 n n i=1 L 0/1 (h(x i ), y i ) . (A. )
Then, to evaluate how far the selected hypothesis is from the optimum, one wants to upper bound the di erence between the risk and the empirical risk of any h ∈ H. This di erence is known as the generalization gap.

A. . Classi cation in the presence of an adversary

Given a hypothesis h ∈ H and a sample (x, y) ∼ P, the goal of an adversary is to nd a perturbation τ ∈ X such that the following assertions both hold. First, the perturbation is imperceptible to humans. This means that a human cannot visually distinguish the standard example x from the adversarial example x + τ . Second, the perturbation modi es x enough to make the classi er misclassify. More formally, the adversary seeks a perturbation τ ∈ X such that h(x + τ ) = y.

Although the notion of imperceptible modi cation is very natural for humans, it is genuinely hard to formalize. Despite these di culties, in the image classi cation setting, a su cient condition to ensure that the attack will remain undetected is to constrain the perturbation τ to have a small p norm. This means that for any p ∈ [1, ∞], there exists a threshold ε > 0 for which any perturbation τ is imperceptible as soon as τ p ≤ ε. [ c] also used an 1 norm or an 0 semi-norm. To account for adversaries possibly manipulating the input images, one needs to revisit the standard risk minimization by incorporating the adversary in the problem. The goal becomes to minimize the worst-case risk under ε-bounded manipulations. We call this problem the adversarial risk minimization. It writes

inf h∈H R ε (h) := E (x,y)∼D sup τ ∈Bp(ε) L 0/1 (h(x + τ ), y) , (A. )
where

B p (ε) := {τ ∈ X | τ p ≤ ε}.
In this new formulation, the adversary focuses on optimizing the inner maximization, while the learner tries to get the best hypothesis from H "under attack". By analogy with the standard setting, given n training examples S := {(x 1 , y 1 ), . . . , (x n , y n )}, we want to nd an approximate solution to the adversarial risk minimization by studying its empirical counterpart, the empirical adversarial risk minimization. This optimization problem writes

inf h∈H R N (h) := 1 n n i=1 sup τ ∈Bp(ε) L 0/1 (h(x i + τ ), y i ) . (A. )
In the presence of an adversary, two major issues appear in the empirical risk minimization. First, as recently pointed out by Madry et al.

[ a], the adversarial generalization error (i.e. the gap between the empirical adversarial risk and the adversarial risk) can be much larger than in the standard setting. Indeed, the adversary makes the problem dependent on the dimension of X . Hence, in high-dimension (e.g. for images) one needs much more samples to classify correctly as pointed out by Schmidt et ] and Zhang et al. [ a] g ave theoretical evidence that training a robust model may lead to an increase of its standard risk. Hence nding a good approximation for Problem (A. ) may lead to a poor solution for Problem (A. ). Accordingly, it is natural to wonder whether we can find a class of models H for which we can control both the standard and adversarial risks?

In this paper, we provide answers to the above question by conducting an in depth analysis of a special class of models called randomized classi ers, i.e. classi ers that output random variables instead of labels. Our main contributions summarize as follows.

A. . Contributions

Our rst contribution consists in studying randomized classi ers. By analogy with the deterministic case, we de ne a notion of robustness for randomized classi ers. This de nition amounts to making the classi er locally Lipschitz with respect to the p norm on X , and a probability metric on Y (e.g. the total variation distance or the Renyi divergence). More precisely, if we denote D the probability metric at hand, a randomized classi er m is called

(ε, α)-robust w.r.t. D if for any x, x ∈ X x -x p ≤ ε =⇒ D(m(x), m(x )) ≤ α.

A On the Robustness of Randomized Classifiers to Adversarial Examples

Denoting M D (ε, α) the class of randomized classi ers that respect this local Lipschitz condition, we present the following results.

. If D is either the total variation distance or the Renyi divergence, we show that for any m ∈ M D (ε, α), we can upper-bound the gap between the risk and the adversarial risk of m. Notably, if D is the total variation distance, for any m ∈ M D (ε, α) we have R ε (m) -R(m) ≤ α. Hence, α controls the maximal trade-o between robust and standard accuracy for locally Lipschitz randomized classi er. We demonstrate similar results when

D is the Renyi divergence showing that R ε (m) -R(m) ≤ 1 -O(e -α
). This means that, for the class of locally Lipschitz randomized classi ers, solving the risk minimization problem, i.e., Problem (A. ), gives an approximate solution to the adversarial risk minimization problem, i.e., Problem (A. ), up to an additive factor that depends on the robustness parameter α.

. We devise an upper-bound on the generalization gap of any m in M D (ε, α). In particular, when D is the total variation distance, we demonstrate that for any m ∈ M D (ε, α) we have

R(m) -R(m) ≤ O N × K n + α,
where N is the external ε-covering number of the input samples. This means that, when N/n → n→∞ 0, solving the empirical risk minimization problem, i.e., Problem (A. ), on M D (ε, α) provides an approximate solution to the risk minimization problem, i.e., Problem (A. ). Since we can also bound the gap between the adversarial and the standard risk, we can combine the two results to bound the adversarial generalization gap on M D (ε, α). Note however, that this result relies on a strong assumption on X that does not always avoid dimensionality issues. The problem of nding a subclass of M D (ε, α) that provides tighter generalization bounds is an open question.

For our second contribution, we present a practical way to design this class M(ε, α) by using a simple yet e cient noise injection scheme. This allows us to build randomized classi ers from state-of-the-art machine learning models, including deep neural networks. More precisely our contribution is as follows.

. Based on information-theoretic properties of the total variation distance and the Renyi divergence (e.g., the data processing inequality) we design a noise injection scheme to turn a state-of-the-art machine learning model into a robust randomized classi er. More formally, Let us denote Φ the c.d.f. of a standard Gaussian distribution. Let us consider h a deterministic hypothesis, we show that the randomized classi er m :

x → h(x + n) with n ∼ N (0, σ 2 I d ) is both (α 2 , (α 2 ) 2 2σ
)-robust w.r.t. the Renyi divergence and (α 2 , 2Φ α 2 2σ -1)robust w.r.t. the total variation distance. Our results on randomized classi ers are applicable to a wide range of machine learning models including deep neural networks.

. We further corroborate our theoretical results with experiments using deep neural networks on standard image datasets, namely CIFAR-and CIFAR-[Krizhevsky and

A. Related Work

Hinton, ]. These models can simultaneously provide accurate prediction (over 0.82 clean accuracy on CIFAR-) and reasonable robustness against 2 adversarial examples (0.45 against 2 adversaries with magnitude 0.5 on CIFAR-).

A. Related Work

Contrary to other notions such as training corruption, a.k.a. poisoning attacks [Kearns and Li, , Kearns et al., ], the theoretical study of adversarial robustness is still in its infancy. So far, empirical observations tend to show that ) adversarial examples on state-of-the-art models are hard to mitigate and ) robust training methods give poor generalization performances. Some recent works started to study the problem through the lens of learning theory either to understand the links between robustness and accuracy or to provide bounds on the generalization gap of current learning procedures in the adversarial setting.

A. . Accuracy vs robustness trade-o

A rst line of research [Su et al., , Jetley et al., , Tsipras et al., ] suggests that designing robust models might be inconsistent with standard accuracy. These works argue with experiments and toy examples that robust and standard classi cation are two concurrent problems. Following this line, Zhang et al. [ a] observed that the adversarial risk of any hypothesis h decomposes as follows,

R ε (h) = R(h) + R >0 ε (h), (A. )
where R >0 ε (m) is the amount of risk that the adversary gets with non-null perturbations. Looking at Equation (A. ), we realize that minimizing the adversarial risk is not enough to control standard accuracy, as one could only optimize over the second term. This indicates that adversarial risk minimization, i.e., Problem (A. ), is harder to solve than the standard risk minimization, i.e., Problem (A. ).

While this indicates that both goals maybe di cult be achieve simultaneously, Equation (A. ), along with the empirical studies from the literature do not highlight any fundamental trade-o between robustness and accuracy. Moreover, no upper-bound on R >0 ε (h) has been demonstrated yet. Hence the questions whether this trade-o exists and can be controlled remain open. In this paper, we provide a rigorous answer to these questions by identifying classes M D (ε, α) of randomized classi ers for which we can upper bound the trade-o term R >0 ε (m) for any m ∈ M D (ε, α). Hence, we can control the maximum loss of accuracy that the model can su er in the adversarial setting. It also challenges the intuitions developed by previous works [Su et al., , Jetley et al., , Tsipras et al., ] and argues in favor of using randomized mechanisms as a defense against adversarial attacks.

A. . Studying adversarial generalization

To further compare the hardness of the two problems, a recent line of research began to explore the notion of adversarial generalization gap. In this line, Schmidt et al. [ ] presented some rst intuitions by studying a simpli ed binary classi cation framework where P is a mixture of multidimensional Gaussian distributions. In this framework the authors show that without attacks, we ]. But, as we will discuss in the sequel, these results assume that the input space X can be partitioned in O(1) sub-space in which the classi cation function has small variations. This assumption may not always hold when dealing with high dimensional input spaces (e.g., images) and very sophisticated classi cation algorithms (e.g., deep neural networks).

Going further, it should be noted that the generalization gap measures only the di erence between empirical and theoretical risks. In practice, the empirical adversarial risk is hard to estimate, since we cannot compute the exact solution to the inner maximization problem. The following question therefore remains open: even if we can set up a learning procedure with a controlled generalization gap, can we give guarantees on the standard and adversarial risks? In this paper, we start answering this question by providing techniques that provably o er both small standard risk and reasonable robustness against adversarial examples (see Section A. . for more details).

A. . Defense against adversarial examples based on noise injection

Injecting noise into algorithms to improve train time robustness has been used for ages in detection and signal processing tasks [Zozor and . The rational behind randomized smoothing is very simple: smooth h after training by convolution with a Gaussian measure to build a more stable classi er. Our work belongs to the same line of research, but the nature of our results is di erent. Randomized smoothing is an ensemble method that builds a deterministic classi er by smoothing a pre-trained model with a Gaussian kernel. This scheme requires to compute a Monte-Carlo estimation of the smoothed classi er; hence requiring many rounds of evaluations to output a deterministic label. Our method is based on randomization and only requires one evaluation round for inferring a label, making the prediction randomized and computationally e cient. While randomized smoothing focuses on the construction of certi ed defenses, we study the generalization properties of randomized mechanisms both in the standard and the adversarial setting. Our analysis presents the fundamental properties of randomized defenses, including (but not limited to) randomized smoothing (c.f. Section A. ).

A. De nition of Risk and Robustness for Randomized classi ers

In this work, the goal is to analyze how randomized classi ers can solve the problem of classication in the presence of an adversary. Let us start by de ning what we mean by randomized classi ers.

Remark (Note on measurability). Trough the paper, we assume every spaces Z to be associated with a σ-algebra denoted A(Z). Furthermore, we denote M + 1 (Z) the set of probability distributions defined on the measurable space (Z, A(Z)). In the following, for simplicity, we refer to A(Z) only when necessary.

De nition

(Probabilistic mapping). Let Z and Z be two arbitrary spaces. A probabilistic mapping from Z to Z is a mapping m : Z → M + 1 (Z ), where M + 1 (Z ) is the space of probability measures on Z . When Z = X and Z = Y, m is called a randomized classi er. To get a numerical answer for an input x, we sample ŷ ∼ m(x).

Any mapping can be considered as a probabilistic mapping, whether it explicitly considers randomization or not. In fact, any deterministic classi er can be considered as a randomized one, since it can be characterized by a Dirac measure. Accordingly, the de nition of a randomized classi er is fully general and equally consider classi ers with or without randomization scheme.

A. . Risk and adversarial risk for randomized classi ers

To analyze this new hypothesis class, we can adapt the concepts of risk and adversarial risk for a randomized classi er. The loss function we use is the natural extension of the 0/1 loss to the randomized regime. Given a randomized classi er m and a sample (x, y) ∼ P it writes . ) This loss function evaluates the probability of misclassi cation of m on a data sample (x, y) ∼ P.

L 0/1 (m(x), y) := E ŷ∼m(x) [1{ŷ = y}]. ( A 
Accordingly, the risk of m with respect to P writes

R(m) := E (x,y)∼P L 0/1 (m(x), y) . (A. )
Finally, given m and (x, y) ∼ P, the adversary seeks a perturbation τ ∈ B p (ε) that maximizes the expected error of the classi er on x (i.e. E ŷ∼m(x+τ ) [1{ŷ = y}]). Therefore, the adversarial risk of m under ε-bounded perturbations writes

R ε (m) := E (x,y)∼P sup τ ∈Bp(ε) L 0/1 (m(x + τ ), y) . (A. )
By analogy with the deterministic setting, we denote

R(m) := 1 n n i=1
L 0/1 (m(x i ), y i ), and (A. )
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R N (m) := 1 n n i=1 sup τ ∈Bp(ε) L 0/1 (m(x i + τ ), y i ), (A. )
the empirical risks of m for a given training sample S := {(x 1 , y 1 ), . . . , (x n , y n )}.

A. . Robustness for randomized classi ers

We could de ne the notion of robustness for a randomized classi er depending on whether it misclassi es any test sample (x, y) ∼ P. But in practice, neither the adversary nor the model provider have access to the ground-truth distribution P. Furthermore, in real-world scenarios, one wants to check before its deployment that the model is robust. Therefore, it is required for the classi er to be stable on the regions of the space where it already classi es correctly. Formally a (deterministic) classi er c : X → Y is called robust if for any (x, y) ∼ P such that c(x) = y, and for any τ ∈ X one has

τ p ≤ ε =⇒ c(x) = c(x + τ ). (A. )
By analogy with this, we de ne robustness for a randomized classi er below.

De nition

(Robustness for a randomized classi er). A randomized classifier m :

X → M + 1 (Y) is called (ε, α)-robust w.r.t. D if for any x, τ ∈ X , one has τ p ≤ ε =⇒ D(m(x), m(x + τ )) ≤ α .
Where D is a metric/divergence between two probability measures. Given such a metric/divergence D, we denote M D (ε, α) the set of all randomized classifiers that are (ε, α)-robust w.r.t. D.

Note that we did not add the constraint that m classi es well on (x, y) ∼ P, since it is already encompassed in the probability distribution itself. If the two probabilities m(x) and m(x + τ ) are close, and if m(x) outputs y with high probability, then it will be the same for m(x + τ ). This formulation naturally raises the question of the choice of the metric D. Any choice of metric/divergence will instantiate a notion of adversarial robustness, and it should be carefully selected. In the present work, we focus our study on the total variation distance and the Renyi divergence. The question whether these metrics/divergences are more appropriate than others remains open but these two divergences are su ciently general to cover a wide range of other de nitions (see Appendix A. for more details). Furthermore, these notions of distance comply with both a theoretical analysis (Section A. ) and practical considerations (Section A. ).

A. . Divergence and probability metrics

Let us now recall the de nition of total variation distance and Renyi divergence. Let Z be an arbitrary space, and ρ, ρ be two measures in M + 1 (Z) . The total variation distance between ρ and ρ is

D T V ρ, ρ := sup Z⊂A(Z) |ρ(Z) -ρ (Z)| , (A. )
Recall from De nition that M + 1 (Z) is the set of probability measures on Z

where A(Z) is the σ-algebra associated with the set of measures M + 1 (Z). The total variation distance is one of the most commonly used probability metrics. It admits several very simple interpretations, and is a very useful tool in many mathematical elds such as probability theory, Bayesian statistics or optimal transport [Villani, , Robert, , Peyré et al., ]. In optimal transport, it can be rewritten as the solution of the Monge-Kantorovich problem with the cost function cost(z, z ) = 1{z = z },

D T V (ρ, ρ ) = inf Z 2 1 z = z dπ(z, z ) , (A. )
where the in mum is taken over all joint probability measures π in M + 1 (Z × Z) with marginals ρ and ρ . According to this interpretation, it seems quite natural to consider the total variation distance as a relaxation of the trivial distance on [0, 1] (for deterministic classi ers).

Let us now suppose that ρ and ρ admit probability density functions g and g according to a third measure ν. Then the Renyi divergence of order β between ρ and ρ writes

D β ρ, ρ := 1 β -1 log Y g (y) g(y) g (y) β dν(y) . (A. )
The Renyi divergence [Rényi, ] is a generalized divergence de ned for any β on the interval [1, ∞]. It equals the Kullback-Leibler divergence when β → 1, and the maximum divergence when β → ∞. It also has the property of being non-decreasing with respect to β. This divergence is very common in machine learning and Information theory [van Erven and Harremos, ], especially in its Kullback-Leibler form as it is widely used as the loss function, i.e., cross entropy, of classi cation algorithms. In the remaining, we denote M β (ε, α) the set of (ε, α)-robust classi ers w.r.t. D β .

Let us now give some properties of these divergences that will be useful for our analysis. First we recall the probability preservation property of the Renyi divergence, rst presented by Langlois et al. [ ].

Proposition (Langlois et al. [ ]). Let ρ and ρ be two measures in M + 1 (Z). Then for any Z ∈ A(Z), the following holds,

ρ(Z) ≤ exp D β (ρ, ρ ) ρ (Z) β-1 β .

Now thanks to previous works by Gilardoni [

] and Vajda [ ], we also get the following results relating the total variation distance and the Renyi divergence.

Proposition (Inequality between total variation and Renyi divergence). Let ρ and ρ be two measures in M + 1 (Z), and β ≥ 1. Then the following holds,

D T V (ρ, ρ ) ≤ min   3 2 1 + 4D β (ρ, ρ ) 9 -1 1/2 , exp(D β (ρ, ρ ) + 1) -1 exp(D β (ρ, ρ ) + 1) + 1   .
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D 1 (ρ, ρ ) ≥ 2D T V (ρ, ρ ) 2 + 4D T V (ρ, ρ ) 4 9 .
From which it follows that

D T V (ρ, ρ ) ≤ 3 2 1 + 4D 1 (ρ, ρ ) 9 -1 1/2 .
Moreover, using inequality from Vajda [ ], one gets

D 1 (ρ, ρ ) + 1 ≥ log 1 + D T V (ρ, ρ ) 1 -D T V (ρ, ρ ) .
This inequality leads to the following

exp(D 1 (ρ, ρ ) + 1) -1 exp(D 1 (ρ, ρ ) + 1) + 1 ≥ D T V (ρ, ρ ).
By combining the above inequalities and by monotony of Renyi divergence regarding β, one obtains the expected result.

From now on, we denote M T V (α, α) and M β (α, α) the set of (α, α)-robust classi ers respectively for D T V and D β . The next section gives bounds on the generalization gap in the standard and the adversarial settings for these speci c hypothesis classes.

A. Risks' gap and Generalization gap for robust randomized classi ers

As discussed in Section A. . , we can always decompose the adversarial risk of a classi er R ε (m) in two terms. First the standard risk R(m) and second the amount of risk the adversary creates with non-zero perturbations R >0 ε (m). Hence minimizing R(m) can give poor values for R ε (m) and vice-versa. In this section, we upper-bound the risks' gap R >0 ε (m), i.e. the gap between the risk and the adversarial risk of a robust classi er.

A. . Risks' gap for robust classi ers w.r.t. D T V

First, let us consider m ∈ M T V (ε, α). We can control the loss of accuracy under attack of this classi er with the robustness parameter α.

Theorem (Risk's gap for robust classi ers w.r.t D T V ). Let m ∈ M T V (ε, α) . Then we have R ε (m) ≤ R(m) + α .
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Proof. Let m be an (ε, α)-robust classi er w.r.t. D T V , (x, y) ∼ P and τ ∈ X such that τ p ≤ ε. By de nition of the 0/1 loss we have

L 0/1 (m(x + τ ), y) = E ŷ∼m(x+τ ) [1{ŷ = y}].
Furthermore, by de nition of the total variation distance we have

E ŷ∼m(x+τ ) [1{ŷ = y}] -E ŷ∼m(x) [1{ŷ = y}] ≤ D T V (m(x), m(x + τ )).
Since m ∈ M T V (ε, α), the above amounts to write

L 0/1 (m(x + τ ), y) -L 0/1 (m(x), y) ≤ α.
Finally, this holds for any (x, y) ∼ P and any ε bounded perturbation τ , then we get

E (x,y)∼P sup τ ∈Bp(ε) L 0/1 (m(x + τ ), y) -E (x,y)∼P L 0/1 (m(x), y) ≤ α.
The above inequality concludes the proof.

This result means that if we can design a class M T V (ε, α) with small enough α, then minimizing the risk of m ∈ M T V (ε, α) is also su cient to control the adversarial risk. It is relatively easy to obtain, but it has an interesting consequence on the understanding we have of the trade-o between robustness and accuracy. It says that there exists some classes of randomized classi ers for which robustness and standard accuracy may not be at odds, since we can upper-bound the maximal loss of accuracy the model may su er under attack. Zhang et al. [ a] and advocates for the use of randomization schemes as defenses against adversarial attacks. Note, however, that we did not evade the trade-o between robustness and accuracy, we only showed that with certain hypothesis classes it can be controlled.

A. . Risks' gap for robust classi ers w.r.t. D β

We now extend the previous results the Renyi divergence. We show that, for any randomized classi er in M β (ε, α), we can bound the gap between the risk and the adversarial risk of m. Using the Renyi divergence, the factor that controls the classi er's loss of accuracy under attack can be either multiplicative or additive, and depends both on the robustness parameter α and on the divergence parameter β.

Theorem (Multiplicative risks' gap for Renyi-robust classi ers). Let m ∈ M β (ε, α). Then we have R ε (m) ≤ (e α R(m)) β-1 β .
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Proof. Let m be an (ε, α)-robust classi er w.r.t. D β , (x, y) ∼ P and τ ∈ X such that τ p ≤ ε. With the same reasoning as above, and with Proposition , we get

L 0/1 (m(x + τ ), y) = E ŷ∼m(x+τ ) [1{ŷ = y}] = P ŷ∼m(x+τ ) [ŷ = y] ≤ e D β (m(x+τ ),m(x)) P ŷ∼m(x) [ŷ = y] β-1 β (Prop. ) = e D β (m(x+τ ),m(x)) E ŷ∼m(x) [1{ŷ = y}] β-1 β ≤ e α L 0/1 (m(x), y) β-1 β .
Since this holds for any (x, y) ∼ P and any ε bounded perturbation τ , we get

R ε (m) = E (x,y)∼D sup τ ∈Bp(ε) L 0/1 (m(x + τ ), y) ≤ E (x,y)∼D e β-1 β α L 0/1 (m(x), y) β-1 β ≤ e β-1 β α E (x,y)∼D L 0/1 (m(x), y) β-1 β .
Finally, using the Jensen inequality, one gets

≤ e β-1 β α E (x,y)∼D L 0/1 (m(x), y) β-1 β = (e α R(m)) β-1 β .
The above inequality concludes the proof.

This rst result gives a multiplicative bound on the gap between the standard and adversarial risks. This means that if we can design a class M β (ε, α) with small enough α, and big enough β, then minimizing the risk of any m ∈ M β (ε, α) is su cient to also minimize the adversarial risk of m. Nevertheless, multiplicative factors are not easy to analyze.

Remark . More general bounds can be computed if we assume that for every randomized classifier m there exists a convex function f such that for all x and τ with τ p ≤ ε, we have m(x)(Z) ≤ f (m(x + τ )(Z)) for all measurable sets Z. In this case, we get R ε (m) ≤ f (R(m)). This has a close link with randomized smoothing [Cohen et al., ] and f -di erential privacy [Dong et al., ] where both try to fit the best possible f using Neyman-Pearson lemma.

The following result provides an additive counterpart to Theorem . It gives a control over the loss of accuracy under attack with respect to the robustness parameter α and the Shannon entropy of m.

Theorem (Additive risks' gap for

Renyi-robust classi ers). Let m ∈ M β (ε, α), then we have R ε (m) -R(m) ≤ 1 -e -α E x∼D |X e -H(m(x))
A. Risks' gap and Generalization gap for robust randomized classifiers where H is the Shannon entropy ( i.e. for any

ρ ∈ M + 1 (Y), H(ρ) = - k∈Y ρ k log(ρ k )) and D |X is the marginal distribution of P for X . Proof. Let m ∈ M β (ε, α), then R ε (m) -R(m) = E (x,y)∼P sup τ ∈Bp(ε) L 0/1 (m(x + τ ), y) -L 0/1 (m(x), y) .
By de nition of the 0/1 loss, this amounts to write

= E (x,y)∼P sup τ ∈Bp(ε) E ŷadv ∼m(x+τ ),ŷ∼m(x) [1(ŷ adv = y) -1(ŷ = y)] ≤ E (x,y)∼P sup τ ∈Bp(ε) E ŷadv ∼m(x+τ ),ŷ∼m(x) [1(ŷ adv = ŷ)] = E (x,y)∼P sup τ ∈Bp(ε) P ŷadv ∼m(x+τ ),ŷ∼m(x) [ŷ adv = ŷ] = E (x,y)∼P sup τ ∈Bp(ε) 1 -P ŷadv ∼m(x+τ ),ŷ∼m(x) [ŷ adv = ŷ] = E (x,y)∼P sup τ ∈Bp(ε) 1 - K i=1 m(x) i × m(x + τ ) i .
Now, note that for any (x, y) ∼ P and τ ∈ X , by de nition of a probability vector in M + 1 (Y), and thanks to Jensen inequality we can write

K i=1 m(x) i × m(x + τ ) i ≥ exp K i=1 m(x) i log m(x + τ ) i .
Then by de nition of the entropy and the Kullback Leibler divergence we have

exp K i=1 m(x) i log m(x + τ ) i = exp -D 1 (m(x), m(x + τ )) -H(m(x)) .
Finally, by combining the above inequalities and since m ∈ M β (ε, α) we get

E (x,y)∼P sup τ ∈Bp(ε) P ŷadv ∼m(x+τ ),ŷ∼m(x) (ŷ adv = ŷ)
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≤ E (x,y)∼P sup τ ∈Bp(ε) 1 -e -D 1 (m(x),m(x+τ ))-H(m(x)) ≤ E (x,y)∼P 1 -e -α-H(m(x)) = 1 -e -α E x∼P |X e -H(m(x)) .
The above inequality concludes the proof.

This result is interesting because it relates the accuracy of m with the bound we obtain. In words, when m(x) has large entropy (i.e. H(m(x)) → log(K)) the output distribution tends towards the uniform distribution; hence α → 0. This means that the classi er is very robust but also completely inaccurate, since it outputs classes uniformly at random. On the opposite, if H(m(x)) → 0, then α → ∞. The classi er may be accurate, but it is not robust anymore (at least according to our de nition). Hence we need to nd a classi er that achieves a trade-o between robustness and accuracy.

A. Standard Generalization gap

In this section we devise generalization gap bounds for randomized classi ers when they are robust according either to the total variation distance or the Renyi divergence. To do so, we upper-bound the Rademacher complexity of the loss space for TV-robust classi ers

L M T V (ε,α) := {(x, y) → L 0/1 (h(x), y) | m ∈ M T V (ε, α)}.

The empirical Rademacher complexity, rst introduced by Bartlett and Mendelson [

], is one of the standard measures of generalization gap. It is particularly useful to obtain quality bounds for complex classes such as neural networks since it does not depend on the number of parameters in the network contrary to combinatorial notions such as the VC dimension.

De nition (Rademacher complexity).

For any class of real-valued functions F := {(x, y) → R}, given a training sample S = {(x 1 , y 1 ), . . . , (x n , y n )}, the empirical Rademacher complexity of F is defined as

Rad S (F) := 1 n E r i sup f ∈F n i=1 r i f (x i , y i ) , whith r i i.i.d. drawn from a Rademacher measure, i.e. P(r i = 1) = P(r i = -1) = 1 2 .
The empirical Rademacher complexity measures the uniform convergence rate of the empirical risk towards the risk on the function class F as demonstrated by Mohri et al. [ ]. Thanks to this notion of complexity, we can bound with high probability the generalization gap of any hypothesis m in a class M.

Theorem (Mohri et al. [ ]). Let M be a class of possibly randomized classifiers and L M := {L m : (x, y) → L 0/1 (m(x), y) | m ∈ M}. Then for any δ ∈ (0, 1), with probability at least 1δ, the following holds for any m ∈ M T V (ε, α),

R(m) -R(m) ≤ 2Rad S (L M ) + 3 ln(2/δ) 2n .

A. . Generalization error for robust classi ers

Accordingly, we want to upper bound the empirical Rademacher complexity of L M T V (ε,α) , which motivates the following de nition.

De nition

(α-covering and external covering number). Let us consider (X , . p ) a vector space equipped with the p norm, B ⊂ X and α ≥ 0. Then

• C = {c 1 , . . . , c m } is an α-covering of B for the p norm if for any x ∈ B there exists c i ∈ C such that x -c i p ≤ α.
• The external covering number of B writes N B, . p , α . It is the minimal number of points one needs to build an α-covering of B for the p norm.

The covering number is a well-known measure that is often used in statistical learning theory [Shalev-Shwartz and Ben-David, ] and asymptotic statistics [Van der Vaart, ] to evaluate the complexity of a set of functions. Here we use it to evaluate the number of p balls we need to cover the training samples, which gives us the following bound on the Rademacher complexity of L M T V (ε,α) .

Theorem (Rademacher complexity for TV-robust classi ers). Let L M T V (ε,α) be the loss function class associated with M T V (ε, α). Then, for any S := {(x 1 , y 1 ), . . . , (x n , y n )}, the following holds,

R S L M T V (ε,α) ≤ N × K n + α.
Where N = N {x 1 , . . . , x n }, . p , ε is the ε-external covering number of the inputs {x 1 , . . . , x n } for the p norm.

Proof. We denote S := {(x 1 , y 1 ), . . . , (x n , y n )} and N = N {x 1 , . . . , x n }, . p , ε . By de nition of a covering number, there exists C = {c 1 , . . . , c N } an ε-covering of {x 1 , . . . x n } for the p norm. Furthermore, for j ∈ {1, . . . , N } and y ∈ {1, . . . , K}, we de ne

E y,j = i ∈ {1, . . . , n} | y i = y and arg min l∈{1,...,N } x i -c l = j .
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We also denote

E j = ∪ y∈[K]
E y,j . Finally, we denote L m : (x, y) → L 0/1 (m(x), y). Then, by de nition of the empirical Rademacher complexity, we can write

R S L M T V (ε,α) = 1 n E r i sup m∈M T V (ε,α) n i=1 r i L m (x i , y i ) .
Then we can use E j to write

R S L M T V (ε,α) = 1 n E r i   sup m∈M T V (ε,α) N j=1 i∈E j r i L m (x i , y i )   .
Furthermore for any m ∈ M T V (ε, α) and i ∈ E j , there exists

α i ∈ [-α, α] such that: L m (x i , y i ) = L m (c j , y i ) + α i . Then we have R S L M T V (ε,α) ≤ 1 n E r i   sup m∈M T V (ε,α) N j=1 i∈E j r i L m (c j , y i )   + 1 n E r i   sup α i ∈[-α,α] N j=1 i∈E j r i α i   .
Let us start by studying the second term. We have

1 n E r i   sup α i ∈[-α,α] N j=1 i∈E j r i α i   = 1 n E r i sup α i ∈[-α,α] n i=1 r i α i = 1 n n i=1 α = α.
Now looking at the rst term. Since L m (x, y) ∈ [0, 1] for all (x, y) we have

1 n E r i   sup m∈M T V (ε,α) N j=1 i∈E j r i L m (c j , y i )   = 1 n E r i   sup m∈M T V (ε,α) N j=1 K y=1 L m (c j , y) i∈E y,j r i   ≤ 1 n E r i   N j=1 K y=1 i∈E y,j r i   .

A. Standard Generalization gap

Finally using the Khintchine inequality and the Cauchy Schartz inequality we get

1 n E r i   N j=1 K y=1 i∈E y,j r i   ≤ 1 n N j=1 K y=1 |E y,j | (Khintchine) ≤ 1 n √ N × K N j=1 K y=1 |E y,j | (Cauchy) = N × K n .
By combining the upper-bounds we have for each term, we get the expected result, 

R S L M T V (ε,α) ≤ N × K n + α.
L M β (ε,α) .
Corollary . Let L M β (ε,α) be the loss function class associated with M β (ε, α). Then, for any S := {(x 1 , y 1 ), . . . , (x n , y n )}, the following holds,

R S L M β (ε,α) ≤ N × K n + min    3 2   1 + 4α 9 -1   1/2 , e α+1 -1 e α+1 + 1   .
Where N = N {x 1 , . . . , x n }, . p , ε is the ε-external covering number of the inputs {x 1 , . . . , x n } for the p norm.

Proof. This corollary is an immediate consequence of Theorem and Proposition .

Thanks to Theorems and and Corollary , one can easily bound the generalization gap of robust randomized classi ers.

A. . Discussion and dimensionality issues

Xu and Mannor [ ] previously studied generalization bounds for learning algorithms based on their robustness. Although we use very di erent proof techniques, their results and ours are similar. More precisely, both analyses conclude that robust models generalize well if the training samples have a small covering number. Note, however, that we base our formulation on an adaptive partition of the samples, while the initial paper from Xu and Mannor [ ] only focuses on a xed partition of the input space. Wre refer the reader to the discussion section in [Xu and Mannor, ] for more details. These ndings seem to contradict the current line of works on the hardness of generalization in the adversarial setting. In fact, if the ground truth distribution is su ciently concentrated (e.g. lies in a low dimensional subspace of x), a small number of balls can cover S with high probability; hence N = O(1). This means that we can learn robust classi ers with the same sample complexity as in the standard setting. But if the ground truth distribution is not concentrated enough, the training samples will be far one from another; hence forcing the covering number to be large. In the worse case scenario, we need to cover the whole space [0, 1] d giving a covering number N = O 1 (ε) d which is exponential in the dimension of the problem. Therefore, in the worst-case scenario, our bound is in O

1 (ε) d √ n + α.
When ε is small and the dimension of the problem is high, this bound is too large to give any meaningful insight on the generalization gap of the problem. Therefore, we still need to tighten our analysis to show that robust learning for randomized classi ers is possible in high dimensional spaces.

Remark . Note that, we provided a very general result for randomized classifiers under the only assumption that they are robust w.r.t. the total variation distance. Our result applies to any class of classifiers and not only linear classifiers or one-hidden layer neural networks. To build a finer analysis, and to evade the curse of dimensionality, we should consider designing specific sub-classes M ⊂ M T V (ε, α) and adapt the proofs to make the term N smaller in the worst-case scenario.

A. Building robust randomized classi ers

In this section we present a simple yet e cient way to transform a non-robust, non-randomized classi er into a robust randomized classi er. To do so, we use a key property of both the Renyi divergence and the total variation distance called the Data processing inequality. It is a well-known result from information theory which states that "post-processing cannot increase information". The data processing inequality is as follows.

Theorem

(Cover and Thomas [ ]). Let us consider two arbitrary spaces Z, Z , ρ, ρ ∈ M + 1 (Z) and D ∈ {D T V , D β }. Then for any ψ : Z → Z we have

D ψ#ρ, ψ#ρ ≤ D ρ, ρ ,
where ψ#ρ denotes the pushforward of distiburtion ρ by ψ.

In the context of robustness to adversarial examples, we use the data processing inequality to ease the design of robust randomized classi ers. In particular, let us suppose that we can build a randomized pre-processing p : X → M + 1 (X ) such that for any x ∈ X and any ε-bounded perturbation τ , we have

D(p(x), p(x + τ )) ≤ α, with D ∈ {D T V , D β }.
(A. )

A. Building robust randomized classifiers

Then, thanks to the data processing inequality, we can take any deterministic classi er h to build an (ε, α) robust classi er w.r.t D de ned as m : x → h#p(x). This considerably simpli es the problem of building a class of robust models. Therefore, we want to build p a randomized preprocessing for which we can control the Renyi divergence and/or total variation distance between two inputs. To do this, we analyze the simple procedure of injecting random noise directly on the image before sending it to a classi er. Since the Renyi divergence and the total variation distances are particularly well suited to the study of Gaussian distributions, we rst use this type of noise injection. More precisely, in this section, we focus on a mapping that writes as follows.

p : x → N (x, Σ), (A. )

for some given non-degenerate covariance matrix Σ ∈ M d×d (R). We refer the interested reader to Pinot et al. [ ] for more general classes of noise, namely exponential families. Let us now evaluate the maximal variation of Gaussian pre-processing p when applied to an image x ∈ X with and without perturbation.

Lemma . Let β > 1, x, τ ∈ X and Σ ∈ M d×d (R) a non-degenerate covariance matrix. Let ρ = N (x, Σ) and ρ = N (x + τ, Σ), then D β (ρ, ρ ) = β 2 τ 2 Σ -1
. Thanks to the above lemma, we know how to evaluate the level of Renyi-robustness that a Gaussian noise pre-processing brings to a classi er. Now that we have this result, thanks to Proposition , we can also upper-bound the total variation distance between N (x, Σ) and N (x + τ, Σ). But this bound is not always tight. Besides, we can directly evaluate the total variation distance between two Gaussian distributions as follows.

Lemma . Let x, x ∈ X and Σ ∈ M d×d (R) a non-degenerate covariance matrix. Let ρ = N (x, Σ) and ρ = N (x + τ, Σ), then D T V (ρ, ρ ) = 2Φ τ Σ -1 2
-1 with Φ the cumulative density function of the standard Gaussian distribution.

Note that both bounds increase with the Mahalanobis norm of τ . Furthermore, we see that the greater the entropy of the Gaussian noise we inject, the smaller the distance between distributions. If we simplify the covariance matrix by setting Σ = σ 2 I d , it means that we can build more or less robust randomized classi ers against 2 adversaries, depending on σ.

Theorem (Robustness of Gaussian pre-processing). Let us consider c : X → Y a deterministic classifier, σ > 0 and p : x → N (x, σ 2 I d ) a pre-processing probabilistic mapping. Then the randomized classifier m := c#p is

• (α 2 , (α 2 ) 2 β 2σ )-robust w.r.t. D β against 2 adversaries. • (α 2 , 2Φ α 2 2σ -1)-robust w.r.t. D T V against 2 adversaries. Proof. Let x, τ ∈ X such that τ 2 ≤ α 2 .
Thanks to Lemma we have

D β (p(x), p(x + τ )) = β 2 τ 2 Σ -1 = β 2σ 2 τ 2 2 ≤ β(α 2 ) 2 2σ 2 .
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Similarly, thanks to Lemma , we get

D T V (p(x), p(x + τ )) = 2Φ τ Σ -1 2 -1 ≤ 2Φ α 2 2σ -1.
Finally, from the data processing inequality, i.e., thm , we get both

D β (m(x), m(x + τ )) ≤ β(α 2 ) 2 2σ 2 ,
and

D T V (m(x), m(x + τ )) ≤ 2Φ α 2 2σ -1.
The above inequalities conclude the proof.

Theorem means that we can build simple noise injection schemes as pre-processing of stateof-the-art image classi cation models and keep track of the maximal loss of accuracy under attack of the resulting randomized classi er. These results also highlight the profound link between randomized classi ers and randomized smoothing as presented by Cohen et al. [ ]. Even though our ndings are of di erent nature, both techniques use the same base mechanism (Gaussian noise injection). Therefore, Gaussian pre-processing is a principled defense method that can be analyzed through several standpoints, including certi ed robustness and statistical learning theory.

A. Discussion: Mode preservation property and Randomized Smoothing

Even though randomized classi ers have some interesting properties regarding generalization error, we can also study them through the prism of deterministic robustness. Let us for example consider the classi er that outputs the class with the highest probability for m(x), a.k.a. the mode of m(x). It writes

h rob : x → argmax k∈[K] m(x) k (A. )
Then checking whether h rob is robust boils down to demonstrating that the mode of m(x) does not change under perturbation. It turns out that D T V robust classi ers have this property. We call it the mode preservation property of M T V (ε, α).

Proposition

(Mode preservation for D T V -robust classi ers). Let m ∈ M T V (ε, α) be a robust randomized classifier and x ∈ X such that m(x) (1) ≥ m(x) (2) + 2α. Then, for any τ ∈ X , the following holds,

τ p ≤ ε =⇒ h rob (x) = h rob (x + τ ) .
A. Discussion: Mode preservation property and Randomized Smoothing

Proof. Let x, τ ∈ X such that τ p ≤ ε and m ∈ M T V (ε, α) such that m(x) (1) ≥ m(x) (2) + 2α.
By de nition of M T V (ε, α), we have that

D T V (m(x), m(x + τ )) ≤ α.
Then, for all k ∈ {1, . . . , K} we have

m(x) k -α ≤ m(x + τ ) k ≤ m(x) k + α . Let us denote k * the index of the biggest value in m(x), i.e., m(x) k * = m(x) (1) . For any k ∈ {1, . . . , K} with k = k * , we have m(x) k * ≥ m(x) k + 2α. Finally, for any k = k * , we get m(x + τ ) k * ≥ m(x) k * -α ≥ m(x) k + α ≥ m(x + τ ) k .
Then, argmax

k∈[K] m(x) k = argmax k∈[K]
m(x + τ ) k . This concludes the proof.

Similarly, we can demonstrate a mode preservation property for robust classi ers w.r.t. the Renyi divergence.

Proposition (Mode preservation for Renyi-robust classi ers). Let m ∈ M β (ε, α) be a robust randomized classifier and x ∈ X such that m(x) (1)

β β-1 ≥ exp (2 - 1 β )α m(x) (2) β-1 β .
Then, for any τ ∈ X , the following holds,

τ p ≤ ε =⇒ h rob (x) = h rob (x + τ ),
where h rob (x) := argmax

k∈[K] m(x) k . Proof. Let x, τ ∈ X such that τ p ≤ ε and m ∈ M β (ε, α) such that m(x) (1) β β-1 ≥ exp (2 - 1 β )α m(x) (2) β-1 β .
Then by de nition of M β (ε, α), we have

D β (m(x), m(x + τ )) ≤ α.
A On the Robustness of Randomized Classifiers to Adversarial Examples Furthermore, by using Proposition , for any k ∈ {1, . . . , K} we have

( * )m(x) k ≤ (exp(α)m(x + τ ) k ) β-1 β and ( * * )m(x + τ ) k ≤ (exp(α)m(x) k ) β-1 β .
Let us denote k * the index such that m(x) k * = m(x) (1) . Then using ( * ) we get

m(x + τ ) k * ≥ exp(-α)(m(x) k * ) β β-1 .
Furthermore for any k ∈ {1, . . . , K} where k = k * , we can use the assumption we made on m to get

exp(-α)(m(x) k * ) β β-1 ≥ exp β -1 β α (m(x) k ) β-1 β .
Finally, using ( * * ) we have

exp β -1 β α (m(x) k ) β-1 β ≥ m(x + τ ) k .
The above gives us argmax

k∈[K] m(x) k = argmax k∈[K]
m(x + τ ) k . This concludes the proof.

Coming back to the decomposition in Equation (A. ), with the above result, we can bound the risk the adversary induces with non-zero perturbations by the mass of points on which the classi er h rob gives the good response but based on a low probability of success, i.e., with small con dence . ) This means that the only points on which the adversary may induce misclassi cation are the points on which m already has a high risk. Once more, this says something fundamental about the behavior of robust randomized classi ers. On undefended models, the adversary could change the decision on any point it wanted; now it is limited to changing points on which the classi er is already inaccurate. This considerably mitigates the threat model we should consider. Furthermore, for any deterministic classi er designed as in Equation (A. ), we can also bound the maximal loss of accuracy under attack the classi er may su er. This bound may, however, be harder to evaluate since it now depends on both the classi er and the dataset distribution. The classi er we de ne in Equation (A. ) and the mode preservation property of m are closely related to provable defenses based on randomized smoothing. The core idea of randomized smoothing is to take a hypothesis h and to build a robust classi er that writes

R >0 ε (m) ≤ P (x,y)∼P h rob (x) = y and m(x) (1) < m(x) (2) + 2α . ( A 
c rob : x → argmax k∈[K] P z∼N (0,σ 2 I) [h(x + z) = k] . (A. )
From a probabilistic point of view, for any input x, randomized smoothing amounts to output the most probable class of the probability measure m(x) := h#N x, σ 2 I . Hence, randomized A. Numerical validations against 2 adversary smoothing uses the mode preservation property of m to build a provably robust (deterministic) classi er. Therefore, the above results (Proposition and Equation A. ) also hold for provable defenses based on randomized smoothing. Studying randomized smoothing from our point of view could give an interesting new perspective on that method. So far no results have been published on the generalisation gap of this defense in the adversarial setting. We could devise generalization bounds by similarity with our analysis. Furthermore, the probabilistic interpretation stresses that randomized smoothing is somewhat restrictive since it only considers probability measures which are the expectation on a simple noise injection scheme. The mode preservation property explains the behavior of randomized smoothing, but also presents fundamental properties of randomized defenses that could be used to construct more general defense schemes.

A. Numerical validations against 2 adversary

To illustrate our ndings, we train randomized neural networks with Gaussian pre-processing during training and inference on CIFAR-and CIFAR-. Based on this randomized classi er, we study the impact of randomization on the standard accuracy of the network, and observe the theoretical trade-o between accuracy and robustness.

A. . Architecture and training procedure

All the neural networks we use in this section are WideResNets [Zagoruyko and Komodakis, ] with 28 layers, a widen factor of 10, a dropout factor of 0.3 and LeakyRelu activation with a 0.1 slope. To train an undefended standard classi er we use the following hyper-parameters .

• Number of Epochs:

• Batch size:

• Loss function: Cross Entropy Loss

• Optimizer : Stochastic gradient descent algorithm with momentum 0.9, weight decay of 2 × 10 -4 and a learning rate that decreases during the training as follows:

lr =            0.1 if 0 ≤ epoch < 60 0.02 if 60 ≤ epoch < 120 0.004 if 120 ≤ epoch < 160 0.0008 if 160 ≤ epoch < 200.
To transform these standard networks into randomized classi ers, we inject noise drawn from Gaussian distributions, each with various standard deviations directly on the image before passing it through the network. Both during training and test, for computational e ciency, we evaluate the performance of the the algorithm over a single run for every images; hence no Monte Carlo Reusable code can be found in the following repository: https://github.com/MILES-PSL/ Adversarial-Robustness-Through-Randomization A On the Robustness of Randomized Classifiers to Adversarial Examples estimator is used. However, in practice, the test-time accuracy is stable when evaluated over the entire test dataset. Figures A. and A. show the accuracy and the minimum level of accuracy under attack of our randomized neural network for several levels of injected noise. We can see (Figure A. ) that the precision decreases as the noise intensity grows. In that sense, the noise must be calibrated to preserve both accuracy and robustness against adversarial attacks. This is to be expected, because the greater the entropy of the classi er, the less precise it gets. Furthermore, when injecting Gaussian noise as a defense mechanism, the resulting randomized network m is both (α 2 , (α 2 ) 2 2σ )-robust w.r.t. D 1 and (α 2 , 2Φ α 2 2σ -1)-robust w.r.t. D T V against 2 adversaries. Therefore thanks to thms and we have that

R ε (m) -R(m) ≤ 2Φ α 2 2σ -1, and (A. ) R ε (m) -R(m) ≤ 1 -e -(α 2 ) 2 2σ E x∼D |X e -H(m(x)) . (A. ) Figure A.
illustrates the theoretical lower bound on accuracy under attack (based on the minimum gap between Equations (A. ) and (A. )) for di erent standard deviations. The term in entropy has been estimated using a Monte Carlo method with 10 4 simulations. The trade-o between accuracy and robustness appears with respect to the noise intensity. With small noises, the accuracy is high, but the guaranteed accuracy drops fast with respect to the magnitude of the adversarial perturbation. Conversely, with bigger noises, the accuracy is lower but decreases slowly with respect to the magnitude of the adversarial perturbation. Overall, we get strong accuracy guarantees against small adversarial perturbations, but when the perturbation is bigger than 0.5 on CIFAR-(resp. 0.3 on CIFAR-, the guarantees are still not su cient). 

A. Lesson learned and future work

A. Lesson learned and future work

This paper brings new contributions to the theory of robustness to adversarial attacks. We provided an in depth analysis of randomized classi er, demonstrating their interest to defend against adversarial attacks. We rst de ned a notion of robustness for randomized classi ers using probability metrics/divergences, namely the total variation distance and the Renyi divergence. Second, we demonstrated that when a randomized classi er complies with this de nition of robustness, we can bound their loss of accuracy under attack. We also studied the generalization properties of this class of functions and gave results indicating that robust randomized classi ers can generalize. Finally, we showed that randomized classi ers have a mode preservation property. This presents a fundamental property of randomized defenses that can be used to explain randomized smoothing from a probabilistic point of view. To support our theoretical ndings we presented a simple yet e cient scheme for building robust randomized classi ers. We show that Gaussian noise injection can provide principled robustness against 2 adversarial attacks. We ran a set of experiments on CIFAR-and CIFAR-using Gaussian noise injection with advanced neural network architectures to build accurate models with controlled loss of accuracy under attack.

Future work will focus on studying the combination of randomization with more sophisticated defenses and on devising new tight bounds on the adversarial generalization and the adversarial risk gap of randomized classi ers. Based on the connections we established we randomized smoothing in Section A. , we will also aim at devising bounds on the gap between the standard and adversarial risks for this defense. Another interesting direction would be to show that the classi ers based on randomized smoothing have a generalization gap similar to the classes of randomized classi ers we studied.

A. Appendix: Proof of technical Lemmas

A. . Proof of Lemma

A On the Robustness of Randomized Classifiers to Adversarial Examples Proof. Let β > 1. Let us denote g and g respectively the probability density functions of ρ and ρ with respect to the Lebesgue measure. We also set x = x + τ for readability. Then we have

D β (ρ, ρ ) = 1 β -1 log E z∼ρ g(z) g (z) β = 1 β -1 log E z∼ρ exp β 2 (z -x ) Σ -1 (z -x ) -(z -x) Σ -1 (z -x) .
By change of variable we get

= 1 β -1 log E z∼N (0,Σ) exp β 2 z Σ -1 z -(z + τ ) Σ -1 (z + τ ) = 1 β -1 log E z∼N (0,Σ) exp β 2 -2z Σ -1 τ -τ 2 Σ -1 = 1 β -1 log R d exp -1 2 z Σ -1 z -β 2 2z Σ -1 τ -β 2 τ 2 Σ -1 (2π) d det(Σ) d/2 dz .
Furthermore, for any z ∈ R d , we have

- 1 2 z Σ -1 z - β 2 2z Σ -1 τ - β 2 τ 2 Σ -1 = - 1 2 (z + βτ ) Σ -1 (z + βτ ) + β 2 -β 2 τ 2 Σ -1 .
Then we can re-write the Renyi divergence as follows

D β (ρ, ρ ) = 1 β -1 log E z∼N (-βτ,Σ) exp β 2 -β 2 τ 2 Σ -1 = 1 β -1 log exp β 2 -β 2 τ 2 Σ -1 = β 2 τ 2 Σ -1 .
This concludes the proof.

A. . Proof of Lemma

Proof. Let us denote g and g respectively the probability density functions of ρ and ρ with respect to the Lebesgue measure. Furthermore, we denote x = x + τ . Then by de nition

A. Discussion on probability metrics of the total variation distance, we have

D T V (ρ, ρ) = ρ(Z) -ρ (Z) with Z = {z | g(z) ≥ g (z)}. In our case g(z) ≥ g (z) is equivalent to (z -x ) Σ -1 (z -x ) -(z -x) Σ -1 (z -x) ≥ 0.
Then with the same simpli cation as above, we have

ρ(Z) = P z∼N (x,Σ) (z -x ) Σ -1 (z -x ) -(z -x) Σ -1 (z -x) ≥ 0 = P z∼N (0,Σ) (z -τ ) Σ -1 (z -τ ) -z Σ -1 z ≥ 0 = P z∼N (0,Σ) -2z Σ -1 τ + τ 2 Σ -1 ≥ 0 = P z∼N (0,I d ) z Σ -1/2 τ ≤ 1 2 τ 2 Σ -1 . Furthermore, if z ∼ N (0, I d ) then z Σ -1/2 τ ∼ N (0, τ 2 Σ -1 ); hence we also have z Σ -1/2 τ τ Σ -1 ∼ N (0, 1). Accordingly we get ρ(Z) = P z∼N (0,1) z ≤ 1 2 τ Σ -1 = Φ 1 2 τ Σ -1 .
By symmetry we get that ρ

(A) = 1 -ρ(A) = 1 -Φ 1 2 τ Σ -1 . We then get D T V (µ, ν) = 2Φ τ Σ -1 2 -1
which concludes the proof.

A. Discussion on probability metrics

As mentioned earlier in this paper, the choice of the metric/divergence is crucial as it characterizes the notion of adversarial robustness we are examining. We focus on the total variation distance and Renyi divergence, but the question of whether these metrics/divergences are more appropriate than others remains open. It should be noted, however, that our de nition of robustness is monotonous depending on the metric/divergence we use.

Proposition (Monotonicity of the robustness). Let m be a randomized classifier, and let D and D be two divergences/metrics on M + 1 (Y). If there exists a non decreasing function

f : R → R such that ∀ρ, ρ ∈ M + 1 (Y), D(ρ, ρ ) ≤ f (D (ρ, ρ ))
, then the following assertion holds.

m is (ε, α)-robust w.r.t. D =⇒ m is (ε, f (α))-robust w.r.t. D.
The proof straightforwardly comes from the de nition of robustness.

A On the Robustness of Randomized Classifiers to Adversarial Examples

Proof. Let us consider m a randomized classi er (ε, α)-robust w.r.t. D . Then for any x ∼ P, and τ | τ p ≤ ε, since f is non decreasing, we have

D(m(x), m(x + τ )) ≤ f D (m(x), m(x + τ )) ≤ f (α).
Then m is (ε, f (α))-robust w.r.t. D which concludes the proof.

The above result suggests that the di erent notions of robustness we might conceive are more related than they appear. Here are some of the most classical divergences used in machine learning. Let ρ, ρ , ν three measures in M + 1 (Y). We denotes g and g the probability density functions of ρ and ρ with respect to ν. Then we can de ne the Wasserstein distance as follows

D W (ρ, ρ ) := inf Y 2 dist y, y dπ(y, y ), (A. )
where dist is some ground distance on Y, and the in mum is taken over all joint distributions π in M + 1 (Y × Y) with marginals ρ and ρ .

Remark . In transportation theory, the Wasserstein distance is solution of the Monge-Kantorovich problem with the cost function c(y, y ) = dist(y, y ). Then, the definitions of total variation and Wasserstein distance match when we use the trivial distance dist(y, y ) = 1{y = y }.

We also de ne respectively the Hellinger distance and the Separation distance as follows.

D H (ρ, ρ ) := Y √ g -g 2 dν 1/2 . (A. ) D S (ρ, ρ ) := sup y∈Y 1 - g(y) g (y) . (A. )
If we take any of the above metrics/divergences to instantiate a notion of adversarial robustness we might get very di erent semantics for them. However, we can show that any of these de nitions can be covered -with respect to Proposition -either by the Renyi or the total variation robustness. Figure A. summarizes the links we can make between all these di erent de nitions of robustness, and Propositions and present the associated results. We can see that the total variation distance and the Renyi divergence are both central since they can cover any of the other robustness notions. This does not mean that they are more appropriate than the others, but at least they are general enough to cover a wide range of possible de nitions. Proof. Let us consider ρ and ρ ∈ M + 1 (Y). Thanks to Gibbs and Su [ ] we have

Proposition . Let m be a randomized classifier. If m is (ε, α)-robust w.r.t. D T V then the fol- lowing assertions hold. • m is (ε, α × Diam(Y))-robust w.r.t. D W , where Diam(Y) := max y,y ∈Y dist(y, y ). • m is ε, √ 2α -robust w.r.t. D H .
• D W (ρ, ρ ) ≤ Diam(Y)D T V (ρ, ρ ). • D H (ρ, ρ ) ≤ 2D T V (ρ, ρ ).
Hence, by using Proposition respectively with f : x → Diam(Y)x and f : x → √ 2x we get the expected results.

Proposition . Let m be a randomized classifier. If m is (ε, α)-robust w.r.t. D β then the following assertions hold.

• m is (ε, α )-robust w.r.t. D T V with α = min 3 2 1 + 4α 9 -1 1/2 , exp(α+1)-1 exp(α+1)+1 . • m is (ε, √ α)-robust w.r.t. D H . • If β = ∞, then m is (ε, α) robust w.r.t. D S .
Proof. ) First, let us suppose that β ≥ 1. Thanks to Proposition and to [Gibbs and Su, ], for any ρ, ρ ∈ M + 1 (Y) we have

• D H (ρ, ρ ) ≤ D 1 (ρ, ρ ) ≤ D β (ρ, ρ ) (see Gibbs and Su [ ]). • D T V (ρ, ρ ) ≤ min 3 2 1 + 4D β (ρ,ρ ) 9 -1 1/2 , exp(D β (ρ,ρ )+1)-1 exp(D β (ρ,ρ )+1)+1 (Prop. ).
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Hence, by using Proposition , as above, we get the expected results.

) Now let us suppose that β = ∞. By de nition of the supremum divergence, we have

D ∞ (ρ, ρ ) = sup B⊂Y ln ρ(B) ρ (B) .
Furthermore, note that the function x → 1x -|ln(x)| is negative on R, therefore for any y ∈ Y one has

1 - ρ(y) ρ (y) ≤ ln ρ(y) ρ (y) .
Since the above inequality is true for any y ∈ Y, we have

D S ρ, ρ = sup y∈Y 1 - ρ(y) ρ (y) ≤ sup y∈Y ln ρ(y) ρ (y) ≤ sup B⊂Y ln ρ(B) ρ (B) = D ∞ (ρ, ρ ).
Finally, by using Proposition with f : x → x we get the expected results. In the targeted setting, we are able to reach, with a limited budget of 100, 000, 100% of success rate with a budget of 6, 662 queries on average, i.e. we need 800 queries less than the current state of the art.

B. Introduction

Despite their success, deep learning algorithms have shown vulnerability to adversarial attacks [Biggio et al., , Szegedy et al., ], i.e. small imperceptible perturbations of the inputs, that lead the networks to misclassify the generated adversarial examples. Since their discovery, adversarial attacks and defenses have become one of the hottest research topics in the machine learning community as serious security issues are raised in many critical elds. They also question our understanding of deep learning behaviors. Although some advances have been made to explain theoretically [Fawzi et al., , Sinha et al., , Cohen et al., , Pinot et al., ] and experimentally [Goodfellow et al., b, Xie et al., , Meng and Chen, , Samangouei et al., , Araujo et al., ] adversarial attacks, the phenomenon remains misunderstood and there is still a gap to come up with principled guarantees on the robustness of neural networks against maliciously crafted attacks. Designing new and stronger attacks helps building better defenses, hence the motivation of our work.

First attacks were generated in a setting where the attacker knows all the information of the network (architecture and parameters). In this white box setting, the main idea is to perturb the input in the direction of the gradient of the loss w.r.t. the input [Goodfellow et al., b, Kurakin et al., , Carlini and Wagner, , Moosavi-Dezfooli et al., ]. This case is unrealistic because the attacker has only limited access to the network in practice. For instance, web services that propose commercial recognition systems such as Amazon or Google are backed by pretrained B Black-box adversarial attacks: tiling and evolution strategies neural networks. A user can query this system by sending an image to classify. For such a query, the user only has access to the inference results of the classi er which might be either the label, probabilities or logits. Such a setting is coined in the literature as the black box setting. It is more realistic but also more challenging from the attacker's standpoint.

As a consequence, several works proposed black box attacks by just querying the inference results of a given classi er. A natural way consists in exploiting the transferability of an adversarial attack, based on the idea that if an example fools a classi er, it is more likely that it fools another one [Papernot et al., a]. In this case, a white box attack is crafted on a fully known classier. Papernot et al. [ a] exploited this property to derive practical black box attacks. Another approach within the black box setting consists in estimating the gradient of the loss by querying the classi er [Chen et al., , Ilyas et al., a,b]. For these attacks, the PGD attack [Kurakin et al., , Madry et al., b] algorithm is used and the gradient is replaced by its estimation. In this paper, we propose e cient black box adversarial attacks using stochastic derivative free optimization (DFO) methods with only access to the logits of the classi er. By e cient, we mean that our model requires a limited number of queries while outperforming the state of the art in terms of attack success rate. At the very core of our approach is a new objective function particularly designed to suit classical derivative free optimization. We also highlight a new intriguing property that deep neural networks are not robust to single shot tiled attacks. It leverages results and ideas from ∞ -attacks. We also explore a large spectrum of evolution strategies and other derivative-free optimization methods thanks to the Nevergrad framework [Rapin and Teytaud, ].

Outline of the paper. We present in Section B. the related work on adversarial attacks. Section B. presents the core of our approach. We introduce a new generic objective function and discuss two practical instantiations leading to a discrete and a continuous optimization problems. We then give more details on the best performing derivative-free optimization methods, and provide some insights on our models and optimization strategies. Section B. is dedicated to a thorough experimental analysis, where we show we reach state of the art performances by comparing our models with the most powerful black-box approaches on both targeted and untargeted attacks.

We also assess our models against the most e cient so far defense strategy based on adversarial training. We nally conclude our paper in Section B. .

B. Related work

Adversarial attacks have a long standing history in the machine learning community. Early works appeared in the mid 's where the authors were concerned about Spam classi cation [Biggio et al., ]. Szegedy et al. [ ] revives this research topic by highlighting that deep convolutional networks can be easily fooled. Many adversarial attacks against deep neural networks have been proposed since then. One can distinguish two classes of attacks: white box and black box attacks. In the white box setting, the adversary is supposed to have full knowledge of the network (architecture and parameters), while in the black box one, the adversary only has limited access to the network: she does not know the architecture, and can only query the network and gets labels, logits or probabilities from her queries. An attack is said to have suceeded (we also talk about At-B. Related work tack Success Rate), if the input was originally well classi ed and the generated example is classi ed to the targeted label.

The white box setting attracted more attention even if it is the more unrealistic between the two. The attacks are crafted by by back-propagating the gradient of the loss function w.r.t. the input. The problem writes as a non-convex optimization procedure that either constraints the perturbation or aims at minimizing its norm. Among the most popular ones, one can cite FGSM [Goodfellow et al., b], PGD [Kurakin et ], based on gradient estimation with nite di erences. This method achieves good results in practice but requires a high number of queries to the network. To reduce the number of queries, Ilyas et al. [ a] proposed to rely rather on Natural Evolution Strategies (NES). These derivative-free optimization approaches consist in estimating the parametric distribution of the minima of a given objective function. This amounts for most of NES algorithms to perform a natural gradient descent in the space of distributions [Ollivier et al., ]. In [Al-Dujaili and O'Reilly, ], the authors propose to rather estimate the sign of the gradient instead of estimating the its magnitude suing zeroth-order optimization techniques. They show further how to reduce the search space from exponential to linear. The achieved results were state of the art at the publication date. In Liu et al. [ ], the authors introduced a zeroth-order version of the signSGD algorithm, studied its convergence properties and showed its e ciency in crafting adversarial black-box attacks. The results are promising but fail to beat the state of the art. In Tu et al. [ ], the authors introduce the AutoZOOM framework combining gradient estimation and an auto-encoder trained o ine with unlabeled data. The idea is appealing but requires training an auto-encoder with an available dataset, which an additional e ort for the attacker. Besides, this may be unrealistic for several use cases. More recently, Moon et al. [ ] proposed a method based on discrete and combinatorial optimization where the perturbations are pushed towards the corners of the ∞ ball. This method is to the best of our knowledge the state of the art in the black box setting in terms of queries budget and success rate. We will focus in our experiments on this method and show how our approaches achieve better results.

Several defense strategies have been proposed to diminish the impact of adversarial attacks on networks accuracies. A basic workaround, introduced in [Goodfellow et al., b], is to augment the learning set with adversarial attacks examples. Such an approach is called adversarial training in the literature. It helps recovering some accuracy but fails to fully defend the network, and lacks theoretical guarantees, in particular principled certi cates. Defenses based on randomization at inference time were also proposed [Lecuyer et al., , Cohen et al., , Pinot et al., ]. These methods are grounded theoretically, but the guarantees cannot ensure full protection against adversarial examples. The question of defenses and attacks is still widely open since our understanding of this phenomenon is still in its infancy. We evaluate our approach against adversarial training, the most powerful defense method so far.

B. Methods

B. . General framework

Let us consider a classi cation task X → [K] where X ⊆ R d is the input space and [K] = {1, ..., K} is the corresponding label set. Let f : R d → R K be a classi er (a feed forward neural network in our paper) from an input space X returning the logits of each label in [K] such that the predicted label for a given input is arg max i∈[K] f i (x). The aim of ||.|| ∞ -bounded untargeted adversarial attacks is, for some input x with label y, to nd a perturbation τ such that arg max i∈[K] f i (x) = y. Classically, ||.|| ∞ -bounded untargeted adversarial attacks aims at optimizing the following objective:

max τ :||τ ||∞≤ L(f (x + τ ), y) (B. )
where L is a loss function (typically the cross entropy) and y the true label. For targeted attacks, the attacker targets a label y t by maximizing -L(f (x + τ ), y t ). With access to the gradients of the network, gradient descent methods have proved their e ciency [Kurakin et al., , Madry et al., b]. So far, the outline of most black box attacks was to estimate the gradient using either nite di erences or natural evolution strategies. Here using evolutionary strategies heuristics, we do not want to take care of the gradient estimation problem.

B. . Two optimization problems

In some DFO approaches, the default search space is R d . In the ∞ bounded adversarial attacks setting, the search space is B ∞ ( ) = {τ : ||τ || ∞ ≤ }. It requires to adapt the problem in Eq B. . Two variants are proposed in the sequel leading to continuous and discretized versions of the problem.

The continuous problem. As in Carlini and Wagner [

], we use the hyperbolic tangent transformation to restate our problem since B ∞ ( ) = tanh (R d ). This leads to a continuous search space on which evolutionary strategies apply. Hence our optimization problem writes:

max τ ∈R d L(f (x + tanh(τ )), y). (B. )
We will call this problem DFO coptimizer where optimizer is the used black box derivative free optimization strategy.

The discretized problem. Moon et al. [

] pointed out that PGD attacks [Kurakin et al., , Madry et al., b] are mainly located on the corners of the ∞ -ball. They consider optimizing the following max

τ ∈{-,+ } d L(f (x + τ ), y). (B. )

B. Methods

The author in [Moon et al., ] proposed a purely discrete combinatorial optimization to solve this problem (Eq. B. ). As in Zoph and Le [ ], we here consider how to automatically convert an algorithm designed for continuous optimization to discrete optimization. To make the problem in Eq. B. compliant with our evolutionary strategies setting, we rewrite our problem by considering a stochastic function f (x + τ ) where, for all i, τ i ∈ {-1, +1} and P(τ i = 1) = Softmax(a i , b i ) = e a i e a i +e b i . Hence our problem amounts to nd the best parameters a i and b i that optimize: min

a,b E τ ∼P a,b (L(f (x + τ ), y) (B. )
We then rely on evolutionary strategies to nd the parameters a and b. As the optima are deterministic, the optimal values for a and b are at in nity. Some ES algorithms are well suited to such setting as will be discussed in the sequel. We will call this problem DFO doptimizer where optimizer is the used black box derivative free optimization strategy for a and b. In this case, one could reduce the problem to one variale a i with P(τ i = 1) = 1 1+e -a i , but experimentally the results are comparable, so we concentrate on Problem B. .

B. . Derivative-free optimization methods

Derivative-free optimization methods are aimed at optimizing an objective function without access to the gradient. There exists a large and wide literature around derivative free optimisation. In this setting, one algorithm aims to minimize some function f on some space X . The only thing that could be done by this algorithm is to query for some points x the value of f (x). As evaluating f can be computationally expensive, the purpose of DFO methods is to get a good approximation of the optima using a moderate number of queries. We tested several evolution strategies [Rechenberg, , Beyer, ]: the simple (1+1)-algorithm [Matyas, , Schumer and Steiglitz, ], Covariance Matrix Adaptation (CMA [Hansen and Ostermeier, ]). For these methods, the underlying algorithm is to iteratively update some distribution P θ de ned on X . Roughly speaking, the current distribution P θ represents the current belief of the localization of the optimas of the goal function. The parameters are updated using objective function values at di erent points. It turns out that this family of algorithms, than can be reinterpreted as natural evolution strategies, perform best. The two best performing methods will be detailed in Section B. . ; we refer to references above for other tested methods.

Our best performing methods: evolution strategies

The (1 + 1)-ES algorithm. The (1 + 1)-evolution strategy with one-fth rule [Matyas, , Schumer and Steiglitz, ] is a simple but e ective derivative-free optimization algorithm (in supplementary material, Alg. ). Compared to random search, this algorithm moves the center of the Gaussian sampling according to the best candidate and adapts its scale by taking into account their frequency. Yao and Liu [ ] proposed the use of Cauchy distributions instead of classical Gaussian sampling. This favors large steps, and improves the results in case of (possibly partial) separability of the problem, i.e. when it is meaningful to perform large steps in some directions and very moderate ones in the other directions. ], and a speci c method for adaptating the covariance matrix. An outline is provided in supplementary material, Alg. . CMA-ES is an e ective and robust algorithm, but it becomes catastrophically slow in high dimension due to the expensive computation of the square root of the matrix. As a workaround, Ros and Hansen [ ] propose to approximate the covariance matrix by a diagonal one. This leads to a computational cost linear in the dimension, rather than the original quadratic one. . A natural evolution strategy consists in estimating iteratively the distribution of the optima. For most NES approaches, a fortiori CMA-ES, the iterative estimation consists in a second-order gradient descent (also known as natural gradient) in the space of distributions (e.g. Gaussians). ( + )-ES can also be seen as a NES, where the covariance matrix is restricted to be proportional to the identity. Note however that from an algorithmic perspective, both CME-ES and ( + )-ES optimize the quantile of the objective function.

Link with Natural Evolution

Hypotheses for DFO methods in the adversarial attacks context

The state of the art in DFO and intuition suggest the followings. Using softmax for exploring only points in the corner (Eq. B. ) is better for moderate budget, as corners are known to be good adversarial candidates; however, for high precision attacks (with small τ ) a smooth continuous precision (Eq B. ) is more relevant. With or without softmax, the optimum is at in nity , which is in favor of methods having fast step-size adaptation or samplings with heavy-tail distributions.

With an optimum at in nity, [Chotard et al., ] has shown how fast is the adaptation of the step-size when using cumulative step-size adaptation (as in CMA-ES), as opposed to slower rates for most methods. Cauchy sampling [Yao and Liu, ] in the (1 + 1)-ES is known for favoring fast changes; this is consistent with the superiority of Cauchy sampling in our setting compared to Gaussian sampling.

Newuoa, Powell, SQP, Bayesian Optimization, Bayesian optimization are present in Nevergrad but they have an expensive (budget consumption linear is linear w.r.t. the dimension) initial sampling stage which is not possible in our high-dimensional / moderate budget context. The targeted case needs more precision and favors algorithms such as Diagonal CMA-ES which adapt a stepsize per coordinate whereas the untargeted case is more in favor of fast random exploration such as the (1 + 1)-ES. Compared to Diagonal-CMA, CMA with full covariance might be too slow; given a number of queries (rather than a time budget) it is however optimal for high precision.

B. . The tiling trick

Ilyas et al. [ b] suggested to tile the attack to lower the number of queries necessary to fool the network. Concretely, they observe that the gradient coordinates are correlated for close pixels in i.e. the optima of the ball constrained problem B. , would be close to the boundary or on the boundary of the ∞ ball. In that case, the optimum of the continuous problem B. will be at ∞ or "close" to it. On the discrete case B. it is easy to see that the optimum is when ai or bi → ∞.

B. . CMA-ES algorithm

Algorithm : CMA-ES algorithm. The T subscript denotes transposition.

Require: Function f : R d → R to minimize, parameters b, c, w 1 > . . . , w µ > 0, p c and others as in e.g. [Hansen and Ostermeier, ].

m ← 0, C ← I d , σ ← 1 for t = 1...n do Generate x 1 , ..., x λ ∼ m + σN (0, C).
De ne x i the i th best of the x i .

Update the cumulation for C: p c ← cumulation of p c , overall direction of progress.

Update the covariance matrix: 

C ← (1 -c) C inertia + c b (p c × p T c ) overall direction +c(1 - 1 b ) µ i=1 w i x i -m σ × (x i -m) T σ "covariance" of the 1 σ x i

B. Appendix: Failing methods

In this section, we compare our attacks to other optimization strategies. We run our experiments in the same setup as in Section B. . . Results are reported in Table B. . DE and Normal ( + )-ES performs poorly, probably because these optimization strategies converge slower when the optima are at "in nity". We reformulate this sentence accordingly in the updated version of the paper. Finally, as the initialization of Powell is linear with the dimension and with less variance, it performs poorer than simple random search. Newuoa, SQP and Cobyla algorithms have also been tried on a smaller number images (we did not report the results), but their initialization is also linear in the dimension, so they reach very poor results too. 

C. Introduction

Deep [Carlini and Wagner, ], to mention the most popular ones. Because it is di cult to characterize the space of visually imperceptible variations of a natural image, existing adversarial attacks use surrogates that can di er from one attack to another. For example, Goodfellow et al. [ b] use the ∞ norm to measure the distance between the original image and the adversarial image whereas Carlini and Wagner [ ] use the 2 norm. When the input dimension is low, the choice of the norm is of little importance because the ∞ and 2 balls overlap by a large margin, and the adversarial examples lie in the same space. An important insight in this paper is to observe that the overlap between the two balls diminishes exponentially quickly as the dimensionality of the input space increases. For typical image datasets with large dimensionality, the two balls are mostly disjoint. As a consequence, the ∞ and the 2 adversarial examples lie in di erent areas of the space, and it explains why ∞ defense mechanisms perform poorly against 2 attacks and vice versa.

Building on this insight, we advocate for designing models that incorporate defense mechanisms against both ∞ and 2 attacks and review several ways of mixing existing defense mechanisms. In particular, we evaluate the performance of Mixed Adversarial Training (MAT) Good- Outline. The rest is organized as follows. In Section C. , we recall the principle of existing attacks and defense mechanisms. In Section C. , we conduct a theoretical analysis to show why the ∞ defense mechanisms cannot be robust against 2 attacks and vice versa. We then corroborate this analysis with empirical results using real adversarial attacks and defense mechanisms. In Section C. , we discuss various strategies to mix defense mechanisms, conduct comparative experiments, and discuss the performance of each strategy.

C

C. Preliminaries on Adversarial Attacks and Defenses

Let us rst consider a standard classi cation task with an input space X = [0, 1] d of dimension d, an output space Y = [K] and a data distribution D over X × Y. We assume the model f θ has been trained to minimize the expectation over D of a loss function L as follows:

min θ E (x,y)∼D [L(f θ (x), y)].
(C. )

C. . Adversarial attacks

Given an input-output pair (x, y) ∼ D, an adversarial attack is a procedure that produces a small perturbation τ ∈ X such that f θ (x + τ ) = y. To nd the best perturbation τ , existing attacks can adopt one of the two following strategies: (i) maximizing the loss L(f θ (x + τ ), y) under some constraint on τ p (a.k.a. loss maximization); or (ii) minimizing τ p under some constraint on the loss L(f θ (x + τ ), y) (a.k.a. perturbation minimization).

(i) Loss maximization. In this scenario, the procedure maximizes the loss objective function, under the constraint that the p norm of the perturbation remains bounded by some value , as follows:

argmax τ p≤ L(f θ (x + τ ), y). (C. )
The typical value of depends on the norm • p considered in the problem setting. In order to compare ∞ and 2 attacks of similar strength, we choose values of ∞ and 2 (for ∞ and C. Preliminaries on Adversarial Attacks and Defenses tions. The current state-of-the-art method to solve Problem (C. ) is based on a projected gradient descent (PGD) Madry et al. [ b] of radius . Given a budget , it recursively computes

x t+1 = Bp(x, ) x t + α argmax δ s.t. ||δ||p≤1 ∆ t |δ (C. )
where

B p (x, ) = {x + τ s.t. τ p ≤ }, ∆ t = ∇ x L f θ x t , y , α is a gradient step size,

and

S is the projection operator on S. Both PGD attacks with p = 2, and p = ∞ are currently used in the literature as state-of-the-art attacks for the loss maximization problem.

(ii) Perturbation minimization. This type of procedure search for the perturbation that has the minimal p norm, under the constraint that L(f θ (x + τ ), y) is bigger than a given bound c:

argmin L(f θ (x+τ ),y)≥c τ p . (C. )
The value of c is typically chosen depending on the loss function L . Problem (C. ) has been tackled in Carlini and Wagner [ ], leading to the following method, denoted C&W attack in the rest of this appendix. It aims at solving the following Lagrangian relaxation of Problem (C. ):

argmin τ τ p + λ × g(x + τ ) (C. )
where g(x + τ ) < 0 if and only if L(f θ (x + τ ), y) ≥ c. The authors use a change of variable τ = tanh(w)x to ensure that -1 ≤ x + τ ≤ 1, a binary search to optimize the constant c, and Adam or SGD to compute an approximated solution. The C&W attack is well de ned both for p = 2, and p = ∞, but there is a clear empirical gap of e ciency in favor of the 2 attack.

In this appendix, we focus on the Loss Maximization setting using the PGD attack. However we conduct some of our experiments using Perturbation Minimization algorithms such as C&W to capture more detailed information about the location of adversarial examples in the vector space . 

C. . Defense mechanisms Adversarial Training (AT). Adversarial Training was introduced in

min θ E (x,y)∼D max τ p≤ L(f θ (x + τ ), y) .
(C. )

For example, if L is the 0/1 loss, any c > 0 is acceptable.

As it has a more exible geometry than the Loss Maximization attacks.

C Advocating for Multiple Defense Strategies against Adversarial Examples

In the case where p = ∞, this technique o ers good robustness against ∞ attacks Athalye et al.

[ a]. AT can also be used with 2 attacks but as we will discuss in Section C. , AT with one norm o ers poor protection against the other. The main weakness of Adversarial Training is its lack of formal guarantees. Despite some recent work providing great insights Sinha et al. [ ], Zhang et al. [ a], there is no worst case lower bound yet on the accuracy under attack of this method.

Noise injection mechanisms (NI).

Another important technique to defend against adversarial examples is to use Noise Injection. In contrast with Adversarial Training, Noise Injection mechanisms are usually deployed after training. In a nutshell, it works as follows. At inference time, given a unlabeled sample x, the network outputs

fθ (x) := f θ (x + η) (instead of f θ (x)) (C. )
where 

η

C. No Free Lunch for Adversarial Defenses

In this Section, we show both theoretically and empirically that defenses mechanisms intending to defend against ∞ attacks cannot provide suitable defense against 2 attacks. Our reasoning is perfectly general; hence we can similarly demonstrate the reciprocal statement, but we focus on this side for simplicity. 

C. . Theoretical analysis

Let us consider a classi er f ∞ that is provably robust against adversarial examples with maximum ∞ norm of value ∞ . It guarantees that for any input-output pair (x, y) ∼ D and for any perturbation τ such that τ ∞ ≤ ∞ , f ∞ is not misled by the perturbation, i.e., f ∞ (x + τ ) = f ∞ (x). We now focus our study on the performance of this classi er against adversarial examples bounded with a 2 norm of value 2 . Using Figure C. (a), we observe that any 2 adversarial example that is also in the ∞ ball, will not fool f ∞ . Conversely, if it is outside the ball, we have no guarantee.

To characterize the probability that such an 2 perturbation fools an ∞ defense mechanism in the general case (i.e., any dimension d), we measure the ratio between the volume of the intersection of the ∞ ball of radius ∞ and the 2 ball of radius 2 . As Theorem shows, this ratio depends on the dimensionality d of the input vector x, and rapidly converges to zero when d increases. Therefore a defense mechanism that protects against all ∞ bounded adversarial examples is unlikely to be e cient against 2 attacks.

Theorem (Probability of the intersection goes to 0).

Let B 2,d ( ) := τ ∈ R d s.t τ 2 ≤ and B ∞,d ( ) := τ ∈ R d s.t τ ∞ ≤
. If for all d, we select and ' such that

Vol(B 2,d ( )) = Vol(B ∞,d ( )), then Vol(B 2,d ( ) B ∞,d ( )) Vol(B ∞,d ( )) → 0 when d → ∞.
Proof. Without loss of generality, let us x = 1. One can show that for all d,

Vol B 2,d 2 √ π Γ d 2 + 1 1/d = Vol(B ∞,d (1)) (C. )
where Γ is the gamma function. Let us denote

r 2 (d) = 2 √ π Γ d 2 + 1 1/d . (C. )
Then, thanks to Stirling's formula

r 2 (d) ∼ 2 πe d 1/2 . (C. )
Finally, if we denote U S , the uniform distribution on set S, by using Hoe ding inequality between Equation C. and C. , we get:

Vol(B 2,d (r 2 (d)) B ∞,d (1)) Vol(B ∞,d (1)) (C. ) =P x∼U B ∞,d (1) [x ∈ B 2,d (r 2 (d))] (C. ) C Advocating for Multiple Defense Strategies against Adversarial Examples =P x∼U B ∞,d (1) d i=1 |x i | 2 ≤ r 2 2 (d) (C. ) ≤ exp -d -1 r 2 2 (d) -dE|x 1 | 2 2 (C. ) ≤ exp - 2 πe - 1 3 2 d + o(d) . (C. )
Then the ratio between the volume of the intersection of the ball and the volume of the ball converges towards 0 when d goes to ∞.

Theorem states that, when d is large enough, 2 bounded perturbations have a null probability of being also in the ∞ ball of the same volume. As a consequence, for any value of d that is large enough, a defense mechanism that o ers full protection against ∞ adversarial examples is not guaranteed to o er any protection against 2 attacks . Note that this result defeats the -dimensional intuition: if we consider a dimensional problem setting, the ∞ and the 2 balls have an important overlap (as illustrated in 

C. . No Free Lunch in Practice

Our theoretical analysis shows that if adversarial examples were uniformly distributed in a highdimensional space, then any mechanism that perfectly defends against ∞ adversarial examples has a null probability of protecting against 2 -bounded adversarial attacks. Although existing defense mechanisms do not necessarily assume such a distribution of adversarial examples, we demonstrate that whatever distribution they use, it o ers no favorable bias with respect to the result of Theorem . As we discussed in Section C. , there are two distinct attack settings: loss Th. can easily be extended to any two balls with di erent norms. For clarity, we restrict to the case of ∞ and 2 norms.

C. No Free Lunch for Adversarial Defenses maximization (PGD) and perturbation minimization (C&W). Our analysis is mainly focusing on loss maximization attacks. However, these attacks have a very strict geometry . This is why, to present a deeper analysis of the behavior of adversarial attacks and defenses, we also present a set of experiments that use perturbation minimization attacks. ] surrogate norms. As we showed, these norms are really di erent in high dimension. Hence, defending against one norm-based attack is not su cient to protect against another one. In order to solve this problem, we review several strategies to build defenses against multiple adversarial attacks. These strategies are based on the idea that both types of defense must be used simultaneously in order for the classi er to be protected against multiple attacks. The detailed description of the experimental setting is described in Section C. . . 

C. Reviewing Defenses Against Multiple Attacks

C. Reviewing Defenses Against Multiple Attacks

C. . Experimental Setting

To compare the robustness provided by the di erent defense mechanisms, we use strong adversarial attacks and a conservative setting: the attacker has a total knowledge of the parameters of the model (white-box setting) and we only consider untargeted attacks (a misclassi cation from one target to any other will be considered as adversarial). To attack the models, we use state-of-the-art algorithms PGD. We run PGD with iterations to generate adversarial examples and with iterations when it is used for adversarial training. The maximum ∞ bound is xed to 0.031 and the maximum 2 bound is xed to 0.83. As discussed in Section C. , we chose these values so that the ∞ and the 2 balls have similar volumes. Note that 0.83 is slightly above the values typically used in previous publications in the area, meaning the attacks are stronger, and thus more di cult to defend against.

All experiments are conducted on CIFAR-with the Wide-Resnet -architecture. We use the training procedure and the hyper-parameters described in the original paper by Zagoruyko and Komodakis [ ]. Training time varies from day (AT) to days (MAT) on GPUs-V servers. 

C. . MAT -Mixed Adversarial Training

min θ E (x,y)∼D E p∼U ({2,∞}) max τ p≤ L(f θ (x + τ ), y) . (C. )
An alternative strategy is to systematically train the model with the most damaging adversarial example ( ∞ or 2 ). As described in Equation (C. ):

MAT-Max : min θ E (x,y)∼D max p∈{2,∞} max τ p≤ L(f θ (x + τ ), y) . (C. )
The accuracy of MAT-Rand and MAT-Max are reported in 

min θ E(x, y) ∼ D max τ p≤ L fθ (x + τ ), y) . (C. )
where fθ is a randomized neural network with noise injection as described in Section C. . , and • p de ne which kind of AT is used. For each setting, we consider two noise distributions, Gaussian and Uniform as we did with NI. We also consider two di erent Adversarial training AT-∞ as well as AT-2 .

The results of RAT are reported in Table C. (Columns: RAT-∞ and RAT-2 ). We can observe that RAT-∞ o ers the best extra robustness with both noises, which is consistent with previous experiments, since AT is generally more e ective against ∞ attacks whereas NI is more e ective against 2 -attacks. Overall, RAT-∞ and a noise from uniform distribution o ers the best performances but is still weaker than MAT-Rand. These results are also consistent with the literature, since adversarial training (and its variants) is the best defense against adversarial examples so far.

C. Conclusion & Perspective

In this paper, we tackled the problem of protecting neural networks against multiple attacks crafted from di erent norms. We demonstrated and gave a geometrical interpretation to explain why most defense mechanisms can only protect against one type of attack. Then we reviewed existing strategies that mix defense mechanisms in order to build models that are robust against multiple adversarial attacks. We conduct a rigorous and full comparison of Randomized Adversarial Training and Mixed Adversarial Training as defenses against multiple attacks.

We could argue that both techniques o er bene ts and limitations. We have observed that MAT o ers the best empirical robustness against multiples adversarial attacks but this technique is computationally expensive which hinders its use in large-scale applications. Randomized techniques have the important advantage of providing theoretical guarantees of robustness and being computationally cheaper. However, the certi cate provided by such defenses is still too small for strong attacks. Furthermore, certain Randomized defenses also su er from the curse of dimensionality as recently shown by Kumar et al. [ a]. Although, randomized defenses based on noise injection seem limited in terms of accuracy under attack and scalability, they could be improved either by Learning the best distribution to use or by leveraging di erent types of randomization such as discrete randomization rst proposed in Pinot et al. [ ]. We believe that these certi ed defenses are the best solution to ensure the robustness of classi ers deployed into real-world applications.

D Adversarial Attacks on Linear

Contextual Bandits

Contextual bandit algorithms are applied in a wide range of domains, from advertising to recommender systems, from clinical trials to education. In many of these domains, malicious agents may have incentives to force a bandit algorithm into a desired behavior. For instance, an unscrupulous ad publisher may try to increase their own revenue at the expense of the advertisers; a seller may want to increase the exposure of their products, or thwart a competitor's advertising campaign.

In this paper, we study several attack scenarios and show that a malicious agent can force a linear contextual bandit algorithm to pull any desired arm To(T ) times over a horizon of T steps, while applying adversarial modi cations to either rewards or contexts with a cumulative cost that only grow logarithmically as O(log T ). We also investigate the case when a malicious agent is interested in a ecting the behavior of the bandit algorithm in a single context (e.g., a speci c user). We rst provide su cient conditions for the feasibility of the attack and an e cient algorithm to perform an attack. We empirically validate the proposed approaches in synthetic and real-world datasets.

D. Introduction

Recommender ], which both rely on a unaltered feedback loop between the recommender system and the user. In recent years, a fair amount of work has been dedicated to understanding how targeted perturbations in the feedback loop can fool a recommender system into recommending low quality items.

Following the line of research on adversarial attacks in supervised learning ] are designed to nd optimal actions in hindsight in order to adapt to any rewards stream.

D Adversarial Attacks on Linear Contextual Bandits

The opposition between adversarial and stochastic bandit settings has sparked interests in studying a middle ground. In Bubeck and ], the rewards are assumed to be corrupted by adversarial rewards. The authors focus on building algorithms able to nd the optimal actions even in the presence of some non-random perturbations. This setting is di erent from what is studied in this article because those perturbations are bounded and agnostic to arms pulled by the learning algorithm, i.e., the adversary corrupt the rewards before the algorithm chooses an arm.

In the broader Deep Reinforcement Learning (DRL) literature, the focus is placed on modifying the observations of di erent states to fool a DRL system at inference time Hussenot et al. ], a bandit algorithm chooses between K articles to recommend to a user, based on some information about them, called context. We assume that an attacker sits between the user and the website, they can choose the reward (i.e., click or not) for the recommended article observed by the recommending algorithm. Their goal is to fool the bandit algorithm into recommending some articles to most users. The contributions of our work can be summarized as follows:

• We extend the work of Jun et al. [ ], Liu and Shro [ ] to the contextual linear bandit setting showing how to perturb rewards for both stochastic and adversarial algorithms, forcing any bandit algorithms to pull a speci c set of arms, o(T ) times for logarithmic cost for the attacker.

• We analyze, for the rst time, the setting in which the attacker can only modify the context

x associated with the current user (the reward is not altered). The goal of the attacker is to fool the bandit algorithm into pulling arms of a target set for most users (i.e., contexts) while minimizing the total norm of their attacks. We show that the widely known L UCB algorithm Abbasi-Yadkori et al. [ ], Lattimore and Szepesvári [ ] is vulnerable to this new type of attack.

• We present a harder setting for the attacker, where the latter can only modify the context associated to a speci c user. This situation may occur when a malicious agent has infected some computers with a Remote Access Trojan (RAT). The attacker can then modify the history of navigation of a speci c user and, as a consequence, the information seen by the online recommender system.We show how the attacker can attack the two very common bandit algorithms L UCB and Linear Thompson Sampling (L TS) Agrawal and Goyal [ ], Abeille et al. [ ] and, in certain cases, force them to pull a set of arms most of the time when a speci c context (i.e., user) is presented to the algorithm (i.e., visits a website).

D. Preliminaries

D. Preliminaries

We consider the standard contextual linear bandit setting with K ∈ N arms. At each time t, the agent observes a context x t ∈ R d , selects an action a t ∈ 1, K and observes a reward: r t,at = θ at , x t + η t at where for each arm a, θ a ∈ R d is a feature vector and η t at is a conditionally independent zero-mean, σ 2 -subgaussian noise. The contexts are assumed to be sampled stochastically except in App. D. .

Assumption .

There exist L > 0 and D ⊂ R d , such that for all t, x t ∈ D and, ∀x ∈ D, ∀a ∈ 1, K , x 2 ≤ L and θ a , x ∈ (0, 1]. In addition, we assume that there exists S > 0 such that θ a 2 ≤ S for all arms a.

The agent minimizes the cumulative regret after T steps R T = T t=1 θ a t , x tθ at , x t , where a t := argmax a θ a , x t . A bandit learning algorithm A is said to be no-regret when it satis es R T = o(T ), i.e., the average expected reward received by A converges to the optimal one. Classical bandit algorithms (e.g., L UCB and L TS) compute an estimate of the unknown parameters θ a using past observations. Formally, for each arm a ∈ [K] we de ne S t a as the set of times up to t -1 (included) where the agent played arm a. Then, the estimated parameters are obtained through regularized least-squares regression as θ t a = (X t,a X t,a + λI) -1 X t,a Y t,a , where λ > 0,

X t,a = (x i ) i∈S t a ∈ R d×|S t a | and Y t,a = (r i,a i ) i∈S t a ∈ R |S t a | .
Denote by V t,a = λI+X t,a X t,a the design matrix of the regularized least-square problem and by x V = √ x V x the weighted norm w.r.t. any positive matrix V ∈ R d×d . We de ne the con dence set:

C t,a = θ ∈ R d : θ -θ t,a Vt,a ≤ β t,a (D. )
where β t,a = σ d log (1 + L 2 (1 + |S t a |)/λ)/δ + S √ λ, which guarantees that θ a ∈ C t,a , for all t > 0, w.p. 1δ. This uncertainty is used to balance the exploration-exploitation trade-o either through optimism (e.g., L UCB) or through randomization (e.g., L TS).

D. Online Adversarial Attacks on Rewards

The ultimate goal of a malicious agent is to force a bandit algorithm to perform a desired behavior. An attacker may simply want to induce the bandit algorithm to perform poorly-ruining the users' experience-or to force the algorithm to suggest a speci c arm. The latter case is particularly interesting in advertising where a seller may want to increase the exposure of its product at the expense of the competitors. Note that the users' experience is also compromised by the latter attack since the suggestions they will receive will not be tailored to their needs. Similarly to Liu and Shro [ ], Jun et al. [ ], we focus on the latter objective, i.e., to fool the bandit algorithm into pulling arms in A † , a set of target arms, for To(T ) time steps (independently of the user).

A way to obtain this behavior is to dynamically modify the reward in order to make the bandit algorithm believe that a † is optimal, for some a † ∈ A † . Clearly, the attacker has to pay a price in order to modify the perceived bandit problem and fool the algorithm. If there is no restriction on when and how the attacker can alter the reward, the attacker can easily fool the algorithm. However, this setting is not interesting since the attacker may pay a cost higher than the loss su ered D Adversarial Attacks on Linear Contextual Bandits by the attacked algorithm. An attack strategy is considered successful when the total cost of the attack is sublinear in T .

In this section, we show that under Assumption , there exists an attack algorithm that is successful against any bandit algorithm, stochastic or adverserial.

Setting. We assume that the attacker has the same knowledge as the bandit algorithm A about the problem (i.e., knows σ and L). The attacker is assumed to be able to observe the context x t , the arm a t pulled by A, and can modify the reward received by A. When the attacker modi es the reward r t,at into r t,at the instantaneous cost of the attack is de ned as c t := r t,atr t,at . The goal of the attacker is to fool algorithm A such that the arms in A † are pulled To(T ) times and T t=1 c t = o(T ). We also assume that the action for the arms in the target set is strictly positive for every context x ∈ D. That is to say that ∆ := min x∈D x, θ a † (x)max a∈A † ,a =a † (x) x, θ a > 0 where a † (x) = arg max a∈A † x, θ a for every x ∈ D.

Attack idea. We leverage the idea presented in Liu and Shro [ ] and Jun et al. [ ] where the attacker lowers the reward of arms a / ∈ A † so that algorithm A learns that an arm of the target set is optimal for every context. Since A is assumed to be no-regret, the attacker only needs to modify the rewards o(T ) times to achieve this goal. Lowering the rewards has the e ect of shifting the vectors (θ a ) a / ∈A † to new vectors (θ a ) a / ∈A † such that for all arms a / ∈ A † and all contexts x ∈ D, there exists an arm a † ∈ A † such that θ a , x ≤ θ a † , x . Since rewards are assumed to be bounded (see Asm. ), this objective can be achieved by simply forcing the reward of non-target arms a / ∈ A † to the minimum value. Contextual ACE (see Fig. D. ) implements a soft version of this idea by leveraging the knowledge of the reward distribution. At each round t, Contextual ACE modi es the reward perceived by A as follows:

r 1 t,at = η t 1 {at / ∈A † } + r t,at 1 {at∈A † } (D. )
where η t is a σ-subgaussian random variable generated by the attacker independently of all other random variables. Contextual ACE transforms the original problem into a stationary bandit problem in which there is a targeted arm that is optimal for all contexts and all non targeted arms have expected reward of 0. The following propostion shows that the cumulative cost of the attack is sublinear.

Proposition . For any δ ∈ (0, 1/K], when using Contextual ACE algorithm (Fig. D. ) with perturbed rewards r 1 , with probability at least 1 -Kδ, algorithm A pulls an arm in A † for To(T ) time steps and the total cost of attacks is o(T ).

The proof of this proposition is provided in App. D. . . While Prop. holds for any no-regret algorithm A, we can provide a more precise bound on the total cost by inspecting the algorithm. For example, we can show (see App. D. ), that, with probability at least 1 -Kδ, the number of times L UCB Abbasi-Yadkori et al

. [ ] pulls arms not in A † is at most j / ∈A † N j (T ) ≤ 64Kσ 2 λS 2 ∆ 2 d log λ+ T L 2 d δ 2 2
. This directly translates into a bound on the total cost.

Comparison with ACE Liu and Shro [ ].

In the stochastic setting, the ACE algorithm Liu and Shro [ ] leverages a bound on the expected reward of each arm in order to modify the reward. However, the perturbed reward process seen by algorithm A is non-stationary D. Online Adversarial Attacks on Rewards and in general there is no guarantee that an algorithm minimizing the regret in a stationary bandit problem keeps the same performance when the bandit problem is not stationary anymore. Nonetheless, transposing the idea of the ACE algorithm to our setting would give an attack of the following form, where at time t, Alg. A pulls arm a t and receives rewards r 2 t,at : r 2 t,at = (r t,at + max(-1, min(0, C t,at )))1 {at / ∈A † } + r t,at 1 {at∈A † } with C t,at = (1-γ) min a † ∈A † min θ∈C t,a † θ, x t -max θ∈Ct,a t θ, x t . Note that C t,a is de ned as in Eq. D. using the non-perturbed rewards, i.e., Y t,a = (r i,a i ) i∈S t a .

Bounded Rewards. The bounded reward assumption is necessary in our analysis to prove a formal bound on the total cost of the attacks for any no-regret bandit algorithm, otherwise we need more information about the attacked algorithm. In practice, the second attack on the rewards, r 2 , can be used in the case of unbounded rewards for any algorithms. The di culty for unbounded reward is that the attacker has to adapt to the environment reward but in order to do so the reward process observed by the bandit algorithm becomes non-stationary under the attack. Thus, there is no guarantee that an algorithm like L UCB will pull a target arm as the proof relies on the environment observed by the bandit algorithm being stationary. We observe empirically that the total cost of attack is sublinear when using r 2 .

Jun et al. [

] does not assume that rewards are bounded but focus on attacking algorithms in the stochastic multi-armed setting. That is to say they study attacks only designed for ε-greedy and UCB while we provide an e cient attack for any algorithms in the linear contextual case. We can extend their work, and thus remove the bounded reward assumption, in the linear contextual case by using the following attack, designed only for L UCB:

r 3 t,at = r t,at + min a † ∈A † min θ∈C t,a † θ, x t -max θ∈Ct,a t θ, x t 1 {at / ∈A † } + r t,at 1 {at∈A † } (D. )
with C t,a de ned as in Eq. (D. ). Although, the attack r 3 is not stationary, it is possible to prove that the total cost of attack is O(log(T )) because we know that the attacked bandit algorithm is L UCB.

Constrained Attack.

When the attacker has a constraint on the instantaneous cost of the attack, using the perturbed reward r 1 may not be possible as the cost of the attack at time t is not decreasing over time. Using the perturbed reward r 2 o ers a more exible type of attack with more control on the instantaneous cost thanks to the parameter γ. But it still su ers from a minimal cost of attack from lowering rewards of arms not in A † .

Defense mechanism. The attack based on reward r 1 is hardly detectable without prior knownledge about the problem. In fact, the reward process associated to r 1 is stationary and compatible with the assumption about the true reward (e.g., subgaussian). While having very low rewards is reasonable in advertising, it can make the attack easily detectable in some other problems. On the other hand, the fact that r 2 is a non-stationary process makes this attack easier to detect. When some data are already available on each arm, the learner can monitor the di erence between the average rewards per action computed on new and old data.

D. Online Adversarial Attacks on Contexts

In this section, we consider the attacker to be able to alter the context x t perceived by the algorithm rather than the reward. The attacker is now restricted to change the type of users presented to the learning algorithm A, hence changing its perception of the environment. We show that under the assumption that the attacker knows a lower-bound to the reward of the target set, it is possible to fool L UCB.

Setting. As in Sec. D. , we consider the attacker to have the same knowledge about the problem as A. The main di erence with the previous setting is that the attacker attacks before the algorithm. We adopt a white-box Goodfellow et al. [ b] setting attacking L UCB. The goal of the attacker is unchanged: they aim at forcing the algorithm to pull arms in A † for To(T ) time steps while paying a sublinear total cost. We denote by x t the context after the attack and by c t = x tx t 2 the instantaneous cost.

Di erence between attacks on contexts and rewards.

Perturbing contexts is fundamentally di erent from perturbing the rewards. The attacker only modi es the context that is shown to the bandit algorithm. The true context, which is used to compute the reward, remains unchanged. In other words, the attacker cannot modify the reward observed by the bandit algorithm. Instead, the attack algorithm described in this section fools the bandit algorithm by making the rewards appear small relative to the contexts and requires more assumptions on the bandit algorithm than in Sec. D. . Attack Idea. The idea of the attack in this setting is similar to the attack of Sec. D. . The attacker builds a bandit problem where arm an a † ∈ A † is optimal for all contexts by lowering the perceived value of all other arms not in A † . The attacker cannot modify the reward but, thanks to the linear reward assumption, they can scale the contexts to decrease the predicted rewards in the original context.

At time t, the attacker receives the context x t and computes the attack. Thanks to the white-box setting, it computes the arm a t that algorithm A would pull if presented with context x t . If a t / ∈ A † then the attacker changes the context to x t = α at x t with α at > max x∈D min a † ∈A † θ at , x / θ a † , x .This factor is chosen such that for a ridge regression computed on the dataset (αx i , θ, x i ) i outputs a parameter close to θ/α therefore the attacker needs to choose α such that for every context x ∈ D, x, θ/α ≤ max a † ∈A † x, θ a † , x . In other words, the attacker performs a dilation of the incoming context every time algorithm A does not pull an arm in A † . The fact that the decision rule used by L UCB is invariant by dilation guarantees that the attacker will not inadvertently lower the perceived rewards for arms in A † . Because the rewards are assumed to be linear, presenting a large context αx and receiving the reward associated with the normal context x will skew the estimated rewards of L UCB. The attack protocol is summarized in Fig. D. .

In order to compute the parameter α used in the attack, we make the following assumption concerning the performance of the arms in the target set:

Assumption . For all x ∈ D, there exists a † ∈ A † , such that 0 < ν ≤ x, θ a † and ν is known to the attacker. Knowing ν. For advertising and recommendation systems, knowing ν is not problematic. Indeed in those cases, the reward is the probability of impression of the ad (r ∈ [0, 1]). The attacker has the freedom to choose one of multiple target arms with strictly positive click probability in every context. This freedom is an important aspect for the attacker since it allows the attacker to cherry pick the target ad(s). In particular, the attacker can estimate ν based on data from previous campaigns (only for the target ad). For instance, a company could have run many ad campaigns for one of their products and try to get the defender's system to advertise it.

D. Online Adversarial Attacks on Contexts

An issue is that the norm of the attacked context can be greater that the upper bound L of Assumption . To prevent this issue, we choose a context-dependent multiplicative constant α(x) = min{2/ν, L/ x 2 } which amounts to clip the norm of the attacked context to L. In Sec. D. , we show that this attack is e ective for di erent size of target arms sets. We also show that in the case of contexts such that x 2 ≤ νL/2 that the cost of attacks is logarithmic in the horizon T .

Proposition . Using the attack described in Fig. D. and assuming that x 2 ≤ νL/2 for all contexts x ∈ D, for any δ ∈ (0, 1/K], with probability at least 1 -Kδ, the number of times L UCB does not pull an arm in A † before time T is at most

j / ∈A † N j (T ) ≤ 32K 2 λ α 2 + σ 2 d log λd + T L 2 α 2 dλδ 3
with N j (T ) the number of times arm j has been pulled during the first T steps, The total cost for the attacker is bounded by: T

t=1 c t ≤ 64K 2 ν λ α 2 + σ 2 d log λd+T L 2 α 2 dλδ 3 with α = 2/ν.
The proof of Proposition (see App. D. . ) assumes that the attacker can attack at any time step, and that they can know in advance which arm will be pulled by Alg. A in a given context. Thus it is not applicable to random exploration algorithms like L TS Agrawal and Goyal [ ] and ε . We also observed empirically that thowe two randomized algorithms are more robust to attacks (see Sec. D. ) than L UCB.

Norm Clipping. Clipping the norm of the attacked contexts is not bene cial for the attacker. Indeed, this means that an attacked context was violating the assumption (used by the bandit algorithm) that contexts are bounded by L. The attack could then be easily detectable and may succeed only because it is breaking an underlying assumption used by the bandit algorithm. Prop. provides a theoretical grounding for the proposed attack when contexts are bounded by νL/2 and D Adversarial Attacks on Linear Contextual Bandits not only L. Although, we can not prove a bound on the cumulative cost of attacks in general, we show in Sec. D. that attacks are still successful for multiple datasets where contexts are not bounded by νL/2.

D. O ine attacks on a Single Context

Previous sections focused on the man-in-the-middle (MITM) attack either on reward or context. The MITM attack allows the attacker to arbitrarily change the information observed by the recommender system at each round. This attack may be hardly feasible in practice, since the exchange channels are generally protected by authentication and cryptographic systems. In this section, we consider the scenario where the attacker has control over a single user u. As an example, consider the case where the device of the user is infected by a malware (e.g., Trojan horse), giving full control of the system to the malicious agent. The attacker can thus modify the context of the speci c user (e.g., by altering the cookies) that is perceived by the recommender system. We believe that changes to the context (e.g., cookies) are more subtle and less easily detectable than changes to the reward (e.g., click). Moreover, if the reward is a purchase, it cannot be altered easily by taking control of the user's device. Clearly, the impact of the attacker on the overall performance of the recommender system depends on the frequency of the speci c user, that is out of the attacker's control. It may be thus di cult to obtain guarantees on the cumulative regret of algorithm A. For this reason, we mainly focus on the study of the feasibility of the attack.

The attacker targets a speci c user (i.e., the infected user) associated to a context x † . Similarly to Sec. D. , the objective of the attacker is to nd the minimal change to the context presented to the recommender system A such that A selects an arm in A † . A observes a modi ed context x instead of x † . After selecting an arm a t , A observes the true noisy reward r t,at = θ at , x † + η t at . We still study a white-box setting: the attacker can access all the parameters of A.

In this section, we show under which condition it is possible for an attacker to fool both an optimistic and posterior sampling algorithm.

D. . Optimistic Algorithm: L UCB

We consider the L UCB algorithm which chooses the arm to pull by maximizing an uppercon dence bound on the expected reward. For each arm a and context x, the UCB value is given by max θ∈Ct,a x, θ = x, θt a + β t,a x V -1 t,a

. The objective of the attacker is to force L UCB to pull an arm in A † once presented with context x † . This means to nd a perturbation of context x † that makes any arm in A † the most optimistic arm. Clearly, we would like to keep the perturbation as small as possible to reduce the cost for the attacker and the probability of being detected. Formally, the attacker needs to solve the following non-convex optimization problem:

min y∈R d y 2 s.t max a / ∈A † max θ∈ Ct,a x † + y, θ + ξ ≤ max a † ∈A † max θ∈ C t,a † x † + y, θ (D. )
where ξ > 0 is a parameter of the attacker and C t,a := θ | θ -θt a Vt,a ≤ β t,a is the con dence set constructed by L UCB. We use the notation C, V to stress the fact that L UCB observes only the modi ed context. In contrast to Sec. D. and D. , the attacker may not be able

D. Offline attacks on a Single Context

to force the algorithm to pull any of the target arms in A † . In other words, Problem D. may not be feasible. However, we are able to characterize the feasibility of (D. ).

Theorem . Problem (D. ) is feasible at time

t i . ∃θ ∈ ∪ a † ∈A † C t,a † , θ ∈ Conv ∪ a / ∈A † C t,a (D. )
The condition given by Theorem says that this attack can be done when there exists a vector x for which an arm in A † is assumed to be optimal according to L UCB. The condition mainly stems from the fact that optimizing a linear product on a convex compact set will reach its maximum on the edge of this set. In our case this set is the convex hull of the con dence ellipsoids of L UCB. Although it is possible to use an optimization algorithm for this class of non-convex problems-e.g., DC programming Tuy [ ]-they are still slow compared to convex algorithms. Therefore, we present a simple convex relaxation of the previous problem for a single target arm a † ∈ A † that still enjoys some empirical performance compared to Problem (D. ). The nal attack can then be computed as the minimum of the attacks obtained for each a † ∈ A † . The relaxed problem is the following for each a † ∈ A † :

min y∈R d y 2 s.t max a =a † ,a ∈A † max θ∈Ct,a x † + y, θ -θt a † ≤ -ξ (D. )
Since the RHS of the constraint in Problem (D. ) can be written as max θ∈C t,a † θ, x † + y for any y, the relaxation here consists in using θ, x † + y as a lower-bound to this maximum for any θ ∈ C t,a † . For the relaxed Problem (D. ), the same type of reasoning as for Problem (D. ) gives that Problem (D. ) is feasible if and only if θa

† (t) ∈ Conv a =a † ,a ∈A † C t,a .
If Condition (D. ) is not met, no arm a † ∈ A † can be pulled by L UCB. Indeed, the proof of Theorem shows that the upper-con dence of every arm in A † is always dominated by another arm for any context. In other words, if any arm in A † is optimal for some contexts then the condition is satis ed a linear number of times for L UCB (for formal proof of this fact see App. D. . ).

D. . Random Exploration Algorithm: L TS

The previous subsection focused on L UCB, however we can obtain similar guarantees for algorithms with random exploration such as L TS. In this case, it is not possible to guarantee that a speci c arm will be pulled for a given context because of the randomness in the arm selection process. The objective is to guarantee that an arm from A † is pulled with probability at least 1-δ. Similarly to the previous subsection, the problem of the attacker can be written as:

min y∈R d y s.t P ∃a † ∈ A † , ∀a ∈ A † , x † + y, θ a -θ a † ≤ -ξ ≥ 1 -δ (D. )
where the θ a for di erent arms a are independently drawn from a normal distribution with mean θa (t) and covariance matrix υ 2 V -1 a (t) with υ = σ 9d ln(T /δ). Solving this problem is D Adversarial Attacks on Linear Contextual Bandits not easy and in general not possible, even for a single arm. For a given x and arm a, the random variable x, θ a is normally distributed with mean µ a (x) := θa (t), x and variance σ 2 a (x) := ν 2 ||x|| 2 V -1 a (t) . We can then write x, θ a = µ a (x) + σ a (x)Z a with (Z a ) a ∼ N (0, I K ). For the sake of clarity, we drop the variable x when writing µ a (x) and σ a (x).

Let's imagine (just for this paragraph) that A † = {a † }, then the constraint in Problem (D. )

becomes

1 -E Z a † Π a ∈A † Φ σ a † Z a † +µ a † -µa σa
≤ δ where Φ is the cumulative distribution function of a normally distributed Gaussian random variable. Unfortunately, computing exactly this expectation is an open problem.

In the more general case where |A † | ≥ 1, rewriting the constraints of Problem (D. ) is not possible. Following the idea of Liu and Shro [ ], for every single target arm a † ∈ A † , a possible relaxation of the constraint in Problem (D. ) is, to ensure that there exists an arm a † ∈ A † such that for every arm a

∈ A † , 1 -Φ (µ a † -µ a -ξ)/( σ 2 a + σ 2 a † ) ≤ δ K-|A † | , where |A † | is the cardinal of A † .
Thus the relaxed version of the attack on L TS for a single arm a † is:

min y∈R d y s.t. ∀a ∈ A † , x † + y, θa † -θa -ξ ≥ νΦ -1 1 -δ K-|A † | x † + y V -1 a + V -1 a † (D. ) Problem (D.
) is similar to Problem (D. ) as the constraint is also a Second Order Cone Program but with di erent parameters (see App. D. ). As in section D. . , we compute the nal attack as the minimum of the attacks computed for each arm in A † .

D. Experiments

In this section, we conduct experiments on the attacks on contextual bandit problems with simulated data and two real-word datasets: MovieLens M Harper and Konstan [ ] and Jester Goldberg et al. [ ]. The synthetic dataset and the data preprocessing step are presented in App. D. . .

D. . Attacks on Rewards

We study the impact of the reward attack for 4 contextual algorithms: L UCB, L TS, ε and E 4. As parameters, we use L = 1 for the maximal norm of the contexts, δ = 0.01, υ = σ d ln(t/δ))/2, ε t = 1/ √ t at each time step t and λ = 0.1. We choose only a unique target arm a † . For E 4, we use N = 10 experts with N -2 experts returning a random arm at each time, one expert choosing arm a † every time and one expert returning the optimal arm for every context. With this set of experts the regret of bandits with expert advice is the same as in the contextual case. To test the performance of each algorithm, we generate 40 random contextual bandit problems and run each algorithm for T = 10 6 steps on each. We report the average cost and regret for each of the 40 problems. Figure D. (Top) shows the attacked algorithms using the attacked reward r 1 (reported as "stationary CACE") and the rewards r 2 (reported as CACE).

These experiments show that, even though the reward process is non-stationary, usual stochastic algorithms like L UCB can still adapt to it and pull the optimal arm for this reward process (which is arm a † ). The true regret of the attacked algorithms is linear as a † is not optimal for all D. Experiments contexts. In the synthetic case, for the algorithms attacked with the rewards r 2 , over M iterations and γ = 0.22, the target arm is drawn more than 99.4% of the time on average for every algorithm and more than 97.8% of the time for the stationary attack r 1 (see Table D. in App. D. . ). The dataset-based environments (see Figure D. (Left)) exhibit the same behavior: the target arm is pulled more than 94.0% of the time on average for all our attacks on Jester and MovieLens and more than 77.0% of the time in the worst case (for L TS attacked with the stationary rewards) (see Table D. ).

D. . Attacks on Contexts

We now illustrate the e ectiveness of the attack in Alg. D. . We study the behavior of attacked L UCB, L TS, ε with di erent size of target arms set (|A † |/K ∈ {0.3, 0.6, 0.9} with K the total number of arms). We test the performance of L UCB with the same parameters as in the previous experiments. Yet since the variance is much smaller in this case, we generate a random problem and run 20 simulations for each algorithm. The target arms are chosen randomly and we use the exact lower-bound on the reward of those arms to compute ν. Table D. (Left) shows the percentage of times an arm in A † , for |A † | = 0.3K, has been selected by the attacked algorithm. We see that, as expected, CC L UCB reaches a ratio of almost 1, meaning the target arms are indeed pulled a linear number of times. A more surprising result (at least not covered by the theory) is that ε exhibits the same behavior. Similarly to L TS, ε exhibits some randomness in the action selection process. It can cause an arm a † ∈ A † to be chosen when the context is attacked and interfere with the principle of the attack. We suspect that is what happens for L TS. Fig. D. (Bottom) shows the total cost of the attacks for the attacked algorithms . Despite the fact that the estimate of θ a † can be polluted by attacked samples, it seems that L TS can still pick up a † as being optimal for some dataset like MovieLens and Jester but not on the simulated dataset.

D. . O ine attacks on a Single Context

We now move to the setting described in Sec. D. and test the same algorithms as in Sec. D. . . We run simulations for each algorithm and each attack type. The target context x † is chosen randomly and the target arm as the arm minimizing the expected reward for x † . The attacker is only able to modify the incoming context for the target context (which corresponds to the context of one user) and the incoming contexts are sampled uniformly from the set of all possible contexts (of size 100). Table D. (Right) shows the percentage of success for each attack. We observe that the non-relaxed attacks on ε and L UCB work well across all datasets. However, the relaxed attack for L UCB and L TS are not as successful, on the synthetic dataset and MovieLens M. The Jester dataset seems to be particularly suited to this type of attacks because the true feature vectors are well separated from the convex hull formed by the feature vectors of the other arms: only 5% of Jester's feature vectors are within the convex hull of the others versus 8% for MovieLens and 20% for the synthetic dataset. As expected, the cost of the attacks is linear on all the datasets (see Figure D. in App. D. . ). The cost is also lower for the non-relaxed than for the relaxed version of the attack on L UCB. Unsurprisingly, the cost of the attacks on L TS is the highest due to the need to guarantee that a † will be chosen with high probability ( % in our experiments).

D. Conclusion

We presented several settings for online attacks on contextual bandits. We showed that an attacker can force any contextual bandit algorithm to almost always pull an arbitrary target arm a † with only sublinear modi cations of the rewards. When the attacker can only modify the contexts, we prove that L UCB can still be attacked and made to almost always pull an arm in A † by adding sublinear perturbations to the contexts. When the attacker can only attack a single context, we derive a feasibility condition for the attacks and we introduce a method to compute some attacks of small instantaneous cost for L UCB, ε and L TS. To the best of our knowledge, this paper is the rst to describe e ective attacks on the contexts of contextual bandit algorithms.

Our numerical experiments, conducted on both synthetic and real-world data, validate our results and show that the attacks on all contexts are actually e ective on several algorithms and with more permissible settings.

D. Appendix: Proofs

In this appendix, we present the proofs of di erent theoretical results presented in the paper.

D. . Proof of Proposition

Proposition. For any δ ∈ (0, 1/K], when using Contextual ACE algorithm (Alg. D. ) with perturbed rewards r1 , with probability at least 1 -Kδ, algorithm A pulls an arm in A † for To(T ) time steps and the total cost of attacks is o(T ).

Proof. Let us consider the contextual bandit problem A 1 , with K arms with contexts x ∈ D such that every arm in a † ∈ A † has mean reward θ a † , x and all other arms has mean 0. Then the regret of algorithm A for this bandit problem is upper-bounded with probability at least 1δ by a function f A (T ) such that f A (T ) = o(T ). In addition, the reward process fed to Alg. A by the attacker is a stationary reward process with σ 2 -subgaussian noise. Therefore, the number of times algorithm A pulls an arm not in A † is upper-bounded by f A (T )/ min x∈D ∆(x) where for every context x ∈ D, let a † (x) := arg max a∈A † x, θ a and ∆(x) = x, θ a † (x)max a∈A † ,a =a † (x) x, θ a .

In addition, the total cost of the attack is upper-bounded by

max a∈ 1,K max x∈D | x, θ a |(T - N A † (T ))
where N A † (T ) is the number of times an arm in A † has been pulled up to time T .

Thanks to the previous argument, T -N

A † (T ) ≤ f A (T )/ min x∈D ∆(x).

D. . Proof of Proposition

Proposition. Using the attack described in Alg. D. , for any δ ∈ (0, 1/K], with probability at least 1 -Kδ, the number of times L UCB does not pull an arm in A † is at most:

j / ∈A † N j (T ) ≤ 32K 2 λ α 2 + σ 2 d log λd + T L 2 α 2 dλδ 3
with N j (T ) the number of times arm j has been pulled after T steps, ||θ a || ≤ S for all arms a, λ the regularization parameter of L UCB and for all x ∈ D, ||x|| 2 ≤ L. The total cost for the attacker is bounded by:

T t=1 c t ≤ 64K 2 ν λ α 2 + σ 2 d log λd + T L 2 α 2 dλδ
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Proof. Let a t be the arm pulled by L UCB at time t. For each arms a, let θa (t) be the result of the linear regression with the attacked context and θa (t, λ/α 2 ) the one with the unattacked context and a regularization of λ α 2 . At any time step t, we can write, for all a ∈ A † :

θa (t) =   λI d + t l=0,a l =a α 2 x l x l   -1 t k=0,a k =a r k αx k = 1 α   λ α 2 I d + t k=0,a k =a x k x k   -1 t k=0,a k =a r k x k = θa (t, λ/α 2 ) α
We also note that, since the contexts are not modi ed for arms in a † ∈ A † : θa † (t) = θa † (t, λ). In addition, for any context x and arm a / ∈ A † , the exploration term used by L UCB becomes:

||x|| Ṽ -1 a,t = 1 α ||x|| V -1 a,t (D. )
where Ṽa,t = λI d + t l=0,a l =a α 2 x l x l and V -1 a,t = λ/α 2 I d + t k=0,a k =a x k x k . For a time t, if presented with context x t L UCB pulls arm a t / ∈ A † , we have:

α θa † (t), x t + β a † (t)||x t || V -1 a † ,t ≤ θat (t, λ/α 2 ), x t + β at (t)||x t || V -1 a t ,t As α = 2 ν ≥ min a † ∈A † 2 θ a † ,xt
, we deduce that on the event that the con dence sets (Theorem 2 in Abbasi-Yadkori et al. [ ]) hold for arm a :

2 ≤ θat (t, λ/α 2 ), x t + β at (t)||x t || V -1 a t ,t ≤ θ at , x t + 2β at (t)||x t || V -1 a t ,t Thus, 1 ≤ 2 -θ at , x t ≤ 2β at (t)||x t || V -1 a t ,t
. Therefore, T t=1 ] and the bound on the β j (T ) for all arms j, we have with Jensen inequality:

1 {at / ∈A † } ≤ T t=1 min(2β at (t)||x t || V -1 a t ,t , 1)1 {at / ∈A † } ≤ j / ∈A † 2β j (T ) T t=1 1 {at=j} T t=1,at=j min(1, ||x t || 2 V -1 j,t
T t=1 1 {at / ∈A † } ≤4 K T t=1 1 {at / ∈A † } d log 1 + α 2 T L 2 λd × λ/α 2 S + σ 2 log(1/δ) + d log 1 + α 2 T L 2 λd

D. . Proof of Theorem

Theorem. For any ξ > 0, Problem (D. ) is feasible if and only if:

∃θ ∈ a † ∈A † C t,a † , θ ∈ Conv   a / ∈A † C t,a   (D. )
where for every arm a, C t,a := θ | ||θ -θa (t)|| Ṽa,t ≤ β a (t) with θa (t) the least squares estimate for arm a built by L UCB and

Ṽa,t = λI d + t l=1,x l =x † 1 {a l =a} x l x l + t l=1,x l =x † 1 {a l =a} xl x l
the design matrix of L UCB at time t for all arms a (where xl is the modified context)

Proof. The proof of Theorem is decomposed in two parts. First, let us assume that Equation (D. ) is satis ed. Then, let us de ne a † ∈ A † such that θ ∈ C t,a † \ Conv a / ∈A † C t,a , then by the theorem of separation of convex sets applied to C t,a † and {θ}. There exists a vector v and c 1 < c 2 such that for all y ∈ Conv a =a † C t,a :

y, v ≤ c 1 < c 2 ≤ θ, v .
Hence, for ξ > 0 we have that for ṽ = ξ c 2 -c 1 v that:

y, ṽ + ξ ≤ θ, ṽ
So the problem is feasible. Secondly, let us assume that an attack is feasible. Then there exists a vector y such that:

max a † ∈A † max θ∈C t,a † y, θ > c 1 := max a / ∈A † max θ∈Ct,a
y, θ (D. )
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Let us reason by contradiction. We assume that a∈A † C t,a † ⊂ Conv a / ∈A † C t,a and consider

θ * ∈ a∈A † C t,a † such that y, θ * = max a † ∈A † max θ∈C t,a † y, θ As we assumed a∈A † C t,a † ⊂ Conv a / ∈A † C t,a , there exists n ∈ N , λ 1 , • • • , λ n ≥ 0 and θ 1 , • • • , θ n ∈ a / ∈A † C t,a such that θ * = n i=1 λ i θ i and n i=1 λ i = 1 Thus y, θ * = i λ i y, θ i ≤ c 1 n i=1 λ i = c 1 (D. )
We assumed that the problem is feasible, so c 1 < y, θ * according to Eq. D. . It contradicts Eq. D. . ). The target arm is arm 3 or 5 and the dashed black line is the convex hull of the other con dence sets. The ellipsoids are the con dence sets C t,a for each arm a. If we consider only arms {1, 2, 4, 5}, and we use 5 as the target arm, the condition (D. ) is satis ed as there is a θ outside the convex hull of the other con dence sets. On the other hand, if we consider arms {1, 2, 3, 4} and we use 3 as the target arm, the condition is not satis ed anymore.

D. . Condition of

Let us assume that there is an arm in a † ∈ A † which is optimal for some contexts. More formally, there exists a subspace V ⊂ D such that:

∀x ∈ V, ∃a † (x) ∈ A † , ∀a ∈ 1, K \ {a † (x)}
x, θ a † (x) > x, θ a .

D. Appendix: Experiments

We also assume that the distribution of the contexts is such that, for all t, µ := P(x t ∈ V ) > 0.

Then, the regret is lower-bounded in expectation by:

E(R T ) = E T t=1 1 {xt∈V } x t , θ a † (xt) -θ at ≥ µm(T ) min x∈V max a =a † (x) θ a † (x) -θ a , x
where m(T ) is the expected number of times t ≤ T such that condition (D. ) is not met. L UCB guarantees that E(R T ) ≤ O( √ T ) for every T . Hence,

m(T ) ≤ O √ T µ min x∈V max a =a † (x) θ a † (x) -θ a , x
This means that, in an unattacked problem, condition (D. ) is met T -O( √ T ) times. On the other hand, when the algorithm is attacked the regret of L UCB is not sub-linear as the condence bound for the target arm is not valid anymore. Hence we cannot provide the same type of guarantees for the attacked problem.

D. Appendix: Experiments

D. . Datasets and preprocessing

We present here the datasets used in the article and how we preprocess them for numerical experiments conducted in Section D. . We consider two types of experiments, one on synthetic data with a contextual MAB problems with K = 10 arms such that for every arm a, θ a is drawn from a folded normal distribution in dimension d = 30. We also use a nite number of contexts (10), each of them is drawn from a folded normal distribution projected on the unit circle multiplied by a uniform radius variable (i.i.d. across all contexts). Finally, we scale the expected rewards in (0, 1] and the noise is drawn from a centered Gaussian distribution N (0, 0.01).

The second type of experiments is conducted in the real-world datasets Jester Goldberg et al. [ ] and MovieLens M Harper and Konstan [ ]. Jester consists of joke ratings on a continuous scale from -10 to 10 for 100 jokes from a total of 73421 users. We use the features extracted via a low-rank matrix factorization (d = 35) to represent the actions (i.e., the jokes). We consider a complete subset of 40 jokes and 19181 users . Each user rates all the 40 jokes. At each time, a user is randomly selected from the 19181 users and mean rewards are normalized in [0, 1]. The reward noise is N (0, 0.01). The second dataset we use is MovieLens M. It contains 25000095 ratings created by 162541 users on 62423 movies. We perform a low-rank matrix factorization to compute users features and movies features. We keep only movies with at least 1000 ratings, which leave us with 162539 users and 3794 movies. At each time step, we present a random user, and the reward is the scalar product between the user feature and the recommend movie feature. All rewards are scaled to lie in [0, 1] and a Gaussian noise N (0, 0.01) is added to the rewards.

D. . Attacks on Rewards

In this appendix, we present empirical evolution of the total cost and the number of draws for a unique target arm as a function of the attack parameter γ for the Contextual ACE attack with perturbed rewards r2 on generated data. shows the regret for all the attacks. This gure shows that even though the total cost of attacks is linear for algorithms like L TS in the synthetic dataset, the regret is linear. More generally, we observe that the regret is linear for all attacked algorithms on all datasets. 

D. . Attacks on all Contexts

D. . Attack on a single context

D. Appendix: Problem (D. ) as a Second Order Cone (SOC) Program

Problem (D. ) and Problem (D. ) are both SOC programs. We can see the similarities between both problems as follows. Let us de ne for every arm a ∈ A † , the ellipsoid: with A a (t) = Ṽ -1 a (t) + Ṽ -1 a † (t) with Ṽa (t) and Ṽa † (t) the design matrix built by L TS and θa (t) the least squares estimate of θ a at time t. Therefore for an arm a, the constraint in Problem (D. ) can be written for any y ∈ R d and some arm a † ∈ A † as:

C t,a := y ∈ R d | ||y -θa (t)|| A -1 a (t) ≤ υΦ -1 1 - δ K -|A † | D. Appendix: Problem (D.

) as a Second Order Cone (SOC) Program

x + y, θa † (t) -ξ ≥ max z∈C t,a z, x + y Indeed for any x ∈ R d , max y∈C t,a y, x = x, θa (t) + υΦ -1 1 - δ K -|A † | × max ||A -1/2 a (t)u|| 2 ≤1 u, x = x, θa (t) + υΦ -1 1 - δ K -|A † | max ||z|| 2 ≤1 z, A 1/2 a (t)x
D Adversarial Attacks on Linear Contextual Bandits 

x, θa (t) + υΦ -1 1 - δ K -|A † | A 1/2 a (t)x 2
Thus, the constraint is feasible if and only if:

θa † (t) ∈ Conv   a ∈A † C t,a  

D. Appendix: Attacks on Adversarial Bandits

In the previous sections, we studied algorithms with sublinear regret R T , i.e., mainly bandit algorithms designed for stochastic stationary environments. Adversarial algorithms like E 4 do not provably enjoy a sublinear stochastic regret R T (as de ned in the introduction) . In addition, because this type of algorithms are, by design, robust to non-stationary environments, one could expect them to induce a linear cost on the attacker. In this section, we show that this is not the case for most contextual adversarial algorithms. Contextual adversarial algorithms are studied through the reduction to the bandit with expert advice problem. This is a bandit problem with K arms where at every step, N experts suggest a probability distribution over the arms. The goal of the algorithm is to learn which expert gets the best expected reward in hindsight after T steps. The regret in this type of problem is de ned as

R exp T = E max m∈ 1,N T t=1 K j=1 E (t)
m,j r t,jr t,at where E (t) m,j is the probability of selecting arm j for expert m. In the case of contextual adversarial bandits, the experts rst observe the context x t before recommending an expert m. Assuming the current setting with linear rewards, we can show that if an algorithm A, like E 4, enjoys a sublinear regret R exp T , then, using the Contextual ACE attack with either r1 or r2 , the attacker can fool the algorithm into pulling arm a † a linear number of times under some mild assump- D. Appendix: Attacks on Adversarial Bandits tions. However, attacking contexts for this type of algorithm is di cult because, even though the rewards are linear, the experts are not assumed to use a speci c model for selecting an action.

Proposition . Suppose an adversarial algorithm A satisfies a regret R exp T of order o(T ) for any bandit problem and that there exists an expert m such that T -

T t=1 E E (t) m ,a † t, = o(T )
with a † t, the optimal arim in A † at time t. Then attacking alg. A with Contextual ACE leads to pulling arm a † , To(T ) of times in expectation with a total cost of o(T ) for the attacker.

Proof. Similarly to the proof of Proposition , let's de ne the bandit with expert advice problem, A i , such that at each time t the reward vector is (r i t,a ) a (with i ∈ {1, 2}). The regret of this algorithm is:

Ri,exp

T = E max m∈ 1,N T t=1 E (t) m ri t -ri t,at ∈ o(T ).
The regret of the learner is:

E max m∈ 1,N T t=1 E (t)
m r tr t,at where a t are the actions taken by algorithm A i to minimize

Ri,exp T . Then we have:

Ri,exp

T ≥ E   T t=1 K j=1 (E (t) m ,j -1 {j=a † t, } )r i t,j + T t=1 ri t,a † t, -ri t,at   Therefore, E T t=1 ri t,a † t, -ri t,at ≤ Ri,exp T + E   T t=1 K j=1 (1 {j=a † t, } -E (t) m ,j )r i t,j   ≤ Ri,exp T + E T t=1 (1 -E (t) m ,a † t, )r i t,j ≤ Ri,exp T + E T t=1 (1 -E (t) m ,a † t,
)

For strategy i = 1, we have:

E T t=1 r1 t,a † t, -r1 t,at = T t=1 E r t,a † t, -1 {at∈A † } ≥ T -E T t=1 1 {at=a † t, } ∆ where ∆ := min x∈D θ a † (x) , x -max a∈A † ,a =a † (x) θ a , x with a † (x) := arg max a∈A † θ a , x .
Then, as R1,exp

T ∈ o(T ) and E T t=1 (1 -E (t) m ,a † t,
) ∈ o(T ), we deduce that

E( t 1 {at=a † t, } ) = T -o(T ) .
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For strategy i = 2, and δ > 0, let us denote by E δ the event that all con dence intervals hold with probability 1δ. But on the event E δ , for a time t where a t = a † t, and such that -1 ≤ C t,at ≤ 0:

r2 t,at = r t,at + C t,at = (1 -γ) min a † ∈A † min θ∈C t,a † θ, x t + η at,t + θ a , x t -max θ∈Ct,a t θ, x t ≤ (1 -γ) θ a † t,
, x t + η at,t when C t,at > 0 (still on the event E δ ):

r2 t,at = r t,at ≤ (1 -γ) θ a † t, , x t + η at,t because C t,at > 0 means that (1 -γ) θ a † t, , x t ≥ (1 -γ) min a † ∈A † min θ∈C t,a † θ, x t ≥ max θ∈Ct,a t θ, x t ≥ θ a , x t . But nally, when C t,at ≤ -1, r2 t,at = r t,at -1 ≤ η at,t ≤ (1 -γ) θ a † t,
, x t + η at,t . But on the complementary event E c δ , r2 t,at ≤ r t,at . Thus, given that the expected reward is assumed to be bounded in (0, 1] (Assumption ):

E T t=1 r2 t,a † t, -r2 t,at = E T t=1 (r t,a † -r2 t,at )1 {at =a † t, } ≥ E T t=1 min{γ min x∈D x, θ a † t, , ∆}1 {at =a † t, } 1 {E δ } -T δ
Finally, putting everything together we have:

E T t=1 γ min x∈D x, θ a † t, 1 {at =a † t, } ≤ R2,exp T + E T t=1 (1 -E (t) m ,a † t, ) + δT min{γ min a † ∈A † min x∈D x, θ a † , ∆} + 1 Hence, because R1,exp T = o(T ) and E T t=1 (1 -E (t)
m ,a † ) = o(T ) we have that for δ ≤ 1/T , the expected number of pulls of the optimal arm in A † is of order o(T ). In addition, the cost for the attacker is bounded by:

E T t=1 c t = E T t=1 1 {at =a † t, } max(-1, min(C t,at , 0)) ≤ E T t=1 1 {at =a † t, }
The proof is similar to the one of Prop. . The condition on the expert in Prop. means that there exists an expert which believes an arm a † ∈ A † is optimal most of the time. The adversarial algorithm will then learn that this expert is optimal. Algorithm E 4 has a regret R exp T bounded by 2T K log(N ), thus the total number of pulls of arms not in A † is bounded by D. Appendix: Contextual Bandit Algorithms 2T K log(M )/γ. This result also implies that for adversarial algorithms like E 3 Auer et al. [ ], the same type of attacks could be used to fool A into pulling arms in A † because the MAB problem can be seen as a reduction of the contextual bandit problem with a unique context and one expert for each arm.

D. Appendix: Contextual Bandit Algorithms

In this appendix, we present the di erent bandit algorithms studied in this paper. All algorithms we consider except E 4 uses disjoint models for building estimate of the arm feature vectors (θ a ) a∈ 1,K . Each algorithm (except E 4) builds least squares estimates of the arm features.

Algorithm : Contextual L UCB

Input: regularization λ, number of arms K, number of rounds T , bound on context norms: L, bound on norms θ a : D Initialize for every arm a, V -1

a (t) = 1 λ I d , θa (t) = 0 and b a (t) = 0 for t = 1, ..., T do Observe context x t Compute β a (t) = σ d log 1+Na(t)L 2 /λ δ with N a (t) the number of pulls of arm a Pull arm a t = argmax a θa (t), x t + β a (t)||x t || V -1 a (t)
Observe reward r t and update parameters θa (t) and V -1 a (t) such that: Vat (t + 1) = Vat (t) + x t x t , b at (t + 1) = b at (t) + r t x t , θ at (t + 1) = V -1 at (t + 1)b at (t + 1)

end for

Algorithm : Linear Thompson Sampling with Gaussian prior Input: regularization λ, number of arms K, number of rounds T , variance υ Initialize for every arm a, V -1 a (t) = λI d and θa (t) = 0, b a (t) = 0 for t = 1, ..., T do Observe context

x t Draw θa ∼ N ( θa (t), υ 2 V -1 a (t)) Pull arm a t = argmax a∈ 1,K θa , x t
Observe reward r t and update parameters θa (t) and V -1 

a (t) Vat (t + 1) = Vat (t) + x t x t , b at (t + 1) = b at (t) + r t x t , θ at (t + 1) = V -1 at (t +
t,j = N k=1 Q t,k E (t) j,k
Observe reward r t and de ne for all arms i rt,i = 1 -

1 {at=i} (1 -r t )/P t,i De ne Xt,k = a E (t)
k,a rt,a Update Q t+1,j = exp(ηQ t,i )/ N j=1 exp(ηQ t,j ) for all experts i end for

D. Appendix: Semi-Online Attacks

Liu and Shro [

] studies what they call the o ine setting for adversarial attacks on stochastic bandits. They consider a setting where a bandit algorithm is successively updated with minibatches of xed size B. The attacker can tamper with some of the incoming mini-batches. More precisely, they can modify the context, the reward and even the arm that was pulled for any entry of the attacked mini-batches. The main di erence between this type of attacks and the online attacks we considered in the main paper is that we do not assume that we can attack from the start of the learning process: the bandit algorithm may have already converged by the time we attack.

We can still study the cumulative cost for the attacker to change the mini-batch in order to fool a bandit algorithm to pull a target arm a † (here we take A † = {a † }). Contrarily to Liu and Shro [ ], we call this setting semi-online. We rst study the impact of an attacker on L UCB where we show that, by modifying only (K -1)d entries from the batch B, the attacker can force L UCB to pull arm a † , M Bo(M B) times with M the number of remaining batches updates. The cost of our attack is √ M B with M the total number of batches.

D. Appendix: Semi-Online Attacks

Cost of an attack: If presented with a mini-batch B, with elements (x t , a t , r t ) composed of the context x t presented at time t, the action taken a t and the reward received r t , the attacker modi es element i, namely (x i t , a i t , r i t ) into (x i t , ãi t , ri t ). The cost of doing so is

c i t = ||x i t - xi t || 2 + ri t -r i t + 1 {a i t =ã i t }
and the total cost for mini-batch B is de ned as c B = i∈B c i t . Finally, we consider the cumulative cost of the attack over M di erent mini-batches B 1 , . . . , B M , M l=1 c B l . The interaction between the environment, the attacker and the learning algorithm is summarized in Alg. . 

Algorithm

end if end while

The attack presented here is based on the Ahlberg-Nilson-Varah bound Varah [ ], which gives a control on the sup norm of a matrix with dominant diagonal elements. More precisely, when presented with a mini-batch B, the attacker needs to modify the contexts and the rewards. We assume that the attacker knows the number of mini-batch updates M and has access to a lower-bound on the reward of the target arm, ν as in Assumption .

The attacker changes (K -1) × d rows of the rst mini-batch to rewards of 0 with a context δ a e i for each arm a = a † with (e i ) the canonical basis of R d . Moreover, δ a is chosen such that:

δ a > max 2M BL 2 d ν + dM B, 4β 2 max L 2 d ν 2 + dM B (D. )
with β max = max M B t=0 β a (t) and M the number of mini-batch updates.

Proposition . After the first attack, with probability 1δ, L UCB always pulls arm a † , Proof. After having poisoned the rst mini-batch B, the latter can be partitioned into two subsets, B c (with non-perturbed rows) and B nc (with the poisoned rows). The design matrix of arm a = a † for every time t after the poisoning is:

V t,a = λI d + t l=1,a l =a x l x l + δ 2 a d i=1
e i e i (D. )
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For every time t, non diagonal elements of V t,a = (v i,j ) i,j are bounded by: ∀i, r i :=

j =i v i,j ≤ j =i t l=1,a l =a x l x l ∞ ≤ dN a (kB) (D. )
Whereas for all diagonal elements, v i,i ≥ δ 2 a > r i . Thus V t,a is strictly diagonal dominant and by the Ahlberg-Nilson-Varah bound Varah [ ]:

V -1 t,a ∞ ≤ 1 min i ( v i,i -r i ) ≤ 1 δ 2 a -dM B (D. )
Then, for every arm a = a † and any context x ∈ D and any time t after the attack:

θa,t , x + β a (t)||x|| V -1 t,a ≤ t l=1,a l =a r t (V -1 t,a x t ) x + β a (t)||x|| 1 V -1 t,a ∞ ≤ V -1 t,a ∞ dN t (a) sup y∈D ||y|| 2 2 + β max √ d sup y∈D ||y|| 2 V -1 t,a ∞ < ν
We have shown that for any arm a = a † and any time step t after the attack, the upper con dence bound computed by L UCB is upper-bounded bu ν the arm a † . Then, with probability 1δ, the con dence set for arm a † holds and, for all x ∈ D, arm a † is chosen by L UCB. The total cost of this attack is

d a =a † δ a L = O( √ M B)

E ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients

Robustness to adversarial attacks is typically obtained through expensive adversarial training with Projected Gradient Descent. Here we introduce ROPUST, a remarkably simple and e cient method to leverage robust pre-trained models and further increase their robustness, at no cost in natural accuracy. Our technique relies on the use of an Optical Processing Unit (OPU), a photonic co-processor, and a ne-tuning step performed with Direct Feedback Alignment, a synthetic gradient training scheme. We test our method on nine di erent models against four attacks in RobustBench, consistently improving over state-of-the-art performance. We perform an ablation study on the single components of our defense, showing that robustness arises from parameter obfuscation and the alternative training method. We also introduce phase retrieval attacks, specifically designed to increase the threat level of attackers against our own defense. We show that even with state-of-the-art phase retrieval techniques, ROPUST remains an e ective defense.

E. Introduction

Adversarial examples Goodfellow et al. [ a] threaten the safety and reliability of machine learning models deployed in the wild. Because of the sheer number of attack and defense scenarios, true real-world robustness can be di cult to evaluate Bubeck et This motivates the use of these pre-trained robust models as a solid foundation for developing simple and widely applicable defenses that further enhance their robustness. To this end, we introduce ROPUST, a drop-in replacement for the classi er of already robust models. Our defense is unique in that it leverages a photonic co-processor (the Optical Processing Unit, OPU) for physical parameter obfuscation Cappelli et al. [ a]: because the fixed random parameters are optically implemented, they remain unknown at training and inference time. Additionally, a synthetic gradient method, Direct Feedback Alignment (DFA) Nøkland [ ], is used for netuning the ROPUST classi er. We evaluate extensively our method against AutoAttack on nine di erent models in Robust-Bench, and consistently improve robust accuracies over the state-of-the-art (Section E. and Fig.

E. ).

We perform an ablation study, in Section E. , and nd that the robustness of our defense against white-box attacks comes from both parameter obfuscation and DFA. Surprisingly, we also discover that simply retraining the classi er of a robust model on natural data increases its robustness to square attacks, a phenomenon that warrants further study. Finally, in Section E. , we develop a phase retrieval attack targeting speci cally the parameter obfuscation of our defense, and show that even against state-of-the art phase retrieval techniques, ROPUST achieves fair robustness.

E. . Related work

Attacks. Adversarial attacks have been framed in a variety of settings: white-box, where the attacker is assumed to have unlimited access to the model, including its parameters (e.g. FGSM Goodfellow et ], while we here focus on a photonic technology, readily available to perform computations at scale.

E. . Motivations and contributions

We propose to simplify and extend the applicability of photonic-based parameter obfuscation defenses. Our defense, ROPUST, is a universally and easily applicable drop-in replacement for classi ers of already robust models. In contrast with existing parameter-obfuscation methods, it leverages pre-trained robust models, and achieves state-of-the-art performance.

Beyond silicon and beyond backpropagation. We leverage photonic hardware and alternative training methods to achieve adversarial robustness. The use of dedicated hardware to perform the random projection physically guarantees parameter obfuscation. Direct Feedback Alignment enables us to train and/or ne-tune the model despite non-di erentiable analog hardware being used in the forward pass. In our ablation study, we nd that both these components contribute to adversarial robustness, providing a holistic defense.

Accessible at: https://github.com/RobustBench/robustbench.
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Simple, universal, and state-of-the-art. ROPUST can be dropped-in to supplement any robust pre-trained model, replacing its classi er. Fine-tuning the ROPUST classi er is fast and does not require additional changes to the model architecture. This enables any existing architecture and adversarial countermeasure to leverage ROPUST to gain additional robustness, at limited cost. We evaluate on RobustBench, across pre-trained models, against AutoAttack sampling from a pool of attacks. We achieve state-of-the-art performance on the leaderboard, and, in light of our results, we suggest the extension of RobustBench to include obfuscation-based methods.

The Square attack mystery. Performing an ablation study on Square attack Andriushchenko et al. [ ], we nd that simply retraining from scratch the classi er of a robust model on natural data increases its robustness against it. This phenomenon remains unexplained and occurs even when the original fully connected classi cation layer is retrained, without using our ROPUST module.

Phase retrieval attacks. Drawing inspiration from the eld of phase retrieval, we introduce a new kind of attack against defenses relying on parameter obfuscation, phase retrieval attacks. These attacks assume the attacker leverage phase retrieval techniques to retrieve the obfuscated parameters in full, and we show that ROPUST remains robust even against state-of-the-art retrieval methods.

E. Methods

E. . Automated adversarial attacks

We evaluate our model against the four attacks implemented in RobustBench: APGD-CE and APGD-T Croce and Hein [ b], Square attack Andriushchenko et al. [ ], and Fast Adaptive Boundary (FAB) attack Croce and Hein [ a]. APGD-CE is a standard PGD where the step size is tuned using the loss trend information, squeezing the best performance out of a limited iterations budget. APGD-T, on top of the step size schedule, substitutes the cross-entropy loss with the Di erence of Logits Ratio (DLR) loss, reducing the risk of vanishing gradients. Square attack is based on a random search. Random updates δ are sampled from an attack-norm dependent distribution at each iteration: if they improve the objective function they are kept, otherwise they are discarded. FAB attack aims at nding adversarial samples with minimal distortion with respect to the attack point. With respect to PGD, it does not need to be restarted and it achieves fast good quality results. In RobustBench, using AutoAttack, given a batch of samples, these are rst attacked with APGD-CE. Then, the samples that were successfully attacked are discarded, and the remaining ones are attacked with APGD-T. This procedure continues with Square and FAB attack. Optical Processing Units. Optical Processing Units (OPU) are photonic co-processors dedicated to e cient large-scale random projections. Assuming an input vector x, the OPU computes the following operation using light scattering through a di usive medium:

E. . Our defense

E. Methods

y = |Ux| 2 (E. )
With U a fixed complex Gaussian random matrix of size up to 10 6 × 10 6 , which entries are not readily known. In the following, we sometimes refer to U as the transmission matrix (TM). The input x is binary ( bit -/ ) and the output y is quantized in -bit. While it is possible to simulate an OPU and implement ROPUST on GPU, this comes with two signi cant drawbacks: ( ) part of our defense relies on U being obfuscated to the attacker, which is not possible to guarantee on a GPU; ( ) at large sizes, storing U in GPU memory is costly Ohana et al. [ ]. Because U is physically implemented through the di usive medium, the random matrix will remain unknown even if the host system is compromised. Assuming unfettered access to the OPU, an attacker has to perform phase retrieval to retrieve the coe cients of U. As only the non-linear intensity |Ux| 2 can be measured and not Ux directly, this phase retrieval step is computationally costly. This problem is well studied, and state-of-the-art methods have O(M N log N ) time complexity Gupta et al. [ ], and do not result in a perfect retrieval. We develop an attack scenario based on this method in Section E. . ], relying on a random projection of the error as the teaching signal.

Direct Feedback

Accessible through LightOn Cloud: https://cloud.lighton.ai.
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In a fully connected network, at layer i out of N , neglecting biases, with W i its weight matrix, f i its non-linearity, and h i its activations, the forward pass can be written as a i = W i h i-1 , h i = f i (a i ). h 0 = X is the input data, and h N = f (a N ) = ŷ are the predictions. A task-speci c cost function L(ŷ, y) is computed to quantify the quality of the predictions with respect to the targets y. The weight updates are obtained through the chain-rule of derivatives:

δW i = - ∂L ∂W i = -[(W T i+1 δa i+1 ) f i (a i )]h T i-1 , δa i = ∂L ∂a i (E. )
where is the Hadamard product. With DFA, the gradient signal W T i+1 δa i+1 of the (i+ )-th layer is replaced with a random projection of the gradient of the loss at the top layer δa y -which is the error e = ŷy for commonly used losses, such as cross-entropy or mean squared error:

δW i = -[(B i δa y ) f i (a i )]h T i-1 , δa y = ∂L ∂a y (E. )
Learning with DFA is enabled by an alignment process, wherein the forward weights learn a con guration enabling DFA to approximate BP updates Re netti et al. [ ].

ROPUST To enhance the adversarial robustness of pretrained robust models, we propose to replace their classi er with the ROPUST module (Fig. E. ). We use robust models from the RobustBench model zoo, extracting and freezing their convolutional stack. The robust convolutional features go through a fully connected layer and a binarization step (a sign function), preparing them for the OPU. The OPU then performs a non-linear random projection, with xed unknown parameters. Lastly, the predictions are obtained through a nal fully-connected layer. While the convolutional layers are frozen, we train the ROPUST module on natural data using DFA to bypass the non-di erentiable photonic hardware. ]. Therefore, we instead use backward pass di erentiable approximation (BPDA) when attacking our defense. For BPDA, we need to nd a good di erentiable relaxation to non-di erentiable layers. For the binarization function, we simply use the derivative of tanh in the backward pass, while we approximate the transpose of the obfuscated parameters with a different xed random matrix drawn at initialization of the module. More speci cally, if we consider the expression for the forward pass of the ROPUST module:

y = softmax(W 3 |Usign(W 1 x)| 2 ) (E. )
In the backward we substitute U T (that we do not have access to) with a di erent xed random matrix R, in a setup similar to Feedback Alignment Lillicrap et al. [ ]. We also relax the sign function derivative to the derivative of tanh.

We present empirical results on RobustBench in the following Section E. . We then ablate the components of our defense in E. , demonstrating its holistic nature, and we nally create a phase retrieval attack to challenge parameter obfuscation in Section E. . 

E. Evaluating ROPUST on RobustBench

E. Evaluating ROPUST on RobustBench

All of the attacks are performed on CIFAR-Krizhevsky [ ], using a di erentiable backward pass approximation Athalye et al. [ a] as explained in Section E. . . For our experiments, we use OPU input size 512 and output size 8000. We use the Adam optimizer Kingma and Ba [ ], with learning rate 0.001, for 10 epochs. The process typically takes as little as minutes on a single NVIDIA V GPU.

We show our results on nine di erent models in RobustBench in Fig. E. . The performance of the original pretrained models from the RobustBench leaderboard is reported as Base. ROPUST represents the same models equipped with our defense. Finally, Transfer indicates the performance of attacks created on the original model and transferred to fool the ROPUST defense. For all models considered, ROPUST improves the robustness signi cantly, even under transfer.

For transfer, we also tested crafting the attacks on the Base model while using the loss of the ROPUST model for the learning rate schedule of APGD. We also tried to use the predictions of ROPUST, instead of the base model, to remove the samples that were successfully attacked from the next stage of the ensemble; however, these modi cations did not improve transfer performance.

Finally, we remark that the robustness increase typically comes at no cost in natural accuracy; we show the accuracy on natural data of the Base and the ROPUST models in in accuracy. This con rms the intuition that robustness is given by the inability to e ciently generate attacks in a white-box settings when the parameters are obfuscated, and that DFA is capable of generating partially robust features. We note that even though the non-linearity |.| 2 does not contribute to robustness, it is key to obfuscation, preventing trivial retrieval. Transfer performance does not change much when removing components of the defense. While the Base model is not ablated, we leave its performance as a term of comparison. 

E. Understanding ROPUST: an ablation study

Holistic defense.

We conduct an ablation study by removing a single component of our defense at a time in simulation: binarization, DFA, parameter obfuscation, and non-linearity |.| 2 of the random projection. To remove DFA, we also remove the binarization step and train the ROPUST module with backpropagation, since we have access to the transpose of the transmission matrix in the simulated setting of the ablation study. We show the results in Fig. E. : we see that removing the non-linearity |.| 2 and the binarization does not have an e ect, with the robustness given by parameter obfuscation and DFA, as expected. However, note that |.| 2 is central to preventing trivial phase retrieval, and is hence a key component of our defense.

Robustness to Square attack

While the ablation study on the APGD attack is able to pinpoint the exact sources of robustness for a white-box attack, the same study on the black-box Square attack has surprising results. Indeed, as shown in Fig. E. , no element of the ROPUST mechanism can be linked to robustness against Square attack. Interestingly, we found an identical behaviour when retraining the standard fully connected classi cation layer from scratch on natural (non perturbed) data, shown in the same Fig. E. under the Defense-free label.

E. Phase retrieval attack

Our defense leverages parameter obfuscation to achieve robustness. Yet, however demanding, it is still technically possible to recover the parameters through phase retrieval schemes Gupta et al. [ b, ]. To provide a thorough and fair evaluation of our attack, we study in this section phase retrieval attacks. We rst consider an idealized setting, and then confront this setting with a real-world phase retrieval algorithm from Gupta et al. [ ]. As expected, a better knowledge of the transmission matrix, i.e. higher alpha and/or higher percentage of known columns correlates with the success of the attack, with a sharp phase transition. At rst glance, it may seem that even a coarse-grained knowledge of the TM can help the attacker. However, optical phase retrieval works on the output correlation only: accordingly, we nd that even state-of-the-art phase retrieval methods operates only in the white contoured region, where the robustness is still greater than the Base models. We highlighted the accuracies achieved under attack in this region in the heat-map.

Ideal retrieval model. We build an idealized phase retrieval attack, where the attacker knows a certain fraction of columns, up to a certain precision, schematized in Figure E. . To smoothly vary the precision, we model the retrieved matrix U as a linear interpolation of the real transmission matrix U and a completely di erent random matrix R:

U = αU + (1 -α)R (E. )
In real phase retrieval, this model is valid for a certain fraction of columns of the transmission matrix, and the remaining ones are modeled as independent random vectors. We can model this with a Boolean mask matrix M, so our retrieval model in the end is:

U = αU M + (1 -α)R (E. )
In this setting, we vary the knowledge of the attacker from the minimum to the maximum by varying α and the percentage of retrieved columns, and we show how the performance of our defense changes in Fig. E. . In this simpli ed model only a crude knowledge of the parameters seems su cient, given the sharp phase transition. We now need to chart where state-of-the-art retrieval methods are on this graph to estimate their ability to break our defense.

E. Conclusion

Real-world retrieval performance. State-of-the-art phase retrieval methods seek to maximize output correlation, i.e. the correlation on y in Eq. E. , in place of the correlation with respect to the parameters of the transmission matrix, i.e. U in Eq. E. . This leads to a retrieved matrix that may well approximate the OPU outputs, but not the actual transmission matrix it implements. We nd this is a signi cant limitation for attackers. In Fig. E. , following numerical experiments, we highlight with a white contour the operating region of a state-of-the-art phase retrieval algorithm Gupta et al. [ ], showing that it can manage to only partially reduce the robustness of ROPUST.

E. Conclusion

We introduced ROPUST, a drop-in module to enhance the adversarial robustness of pretrained already robust models. Our technique relies on parameter obfuscation guaranteed by a photonic co-processor, and a synthetic gradient method: it is simple, fast and widely applicable.

We thoroughly evaluated our defense on nine di erent models in the standardized Robust-Bench benchmark, reaching state-of-the-art performance. In light of these results, we encourage to extend RobustBench to include parameter obfuscation methods.

We performed an ablation study in the white-box setting, con rming our intuition and the results from Cappelli et al. [ a]: the robustness comes from the parameter obfuscation and from the hybrid synthetic gradient method. The non-linearity |.| 2 on the random projection, while not contributing to robustness on its own, is key to prevent trivial deobfuscation by hardening RO-PUST against phase retrieval. A similar study in the black-box setting was inconclusive. However it shed light on a phenomenon of increased robustness against Square attack when retraining from scratch the classi er of robust architectures on natural data. This phenomenon appears to be universal, i.e. independent of the structure of the classi cation module being ne-tuned, warranting further study.

Finally, we developed a new kind of attacks, phase retrieval attacks, speci cally suited to parameter obfuscation defense such as ours, and we tested their e ectiveness. We found that the typical precision regime of even state-of-the-art phase retrieval methods is not enough to completely break ROPUST.

Future work could investigate how the robustness varies with the input and output size of the ROPUST module, and if there are di erent parameter obfuscation trade-o s when such dimensions change. The combination of ROPUST with other defense techniques, such as adversarial label-smoothing Goibert and Dohmatob [ ], could also be of interest to further increase robustness. By combining beyond silicon hardware and beyond backpropagation training methods, our work highlights the importance of considering solutions outside of the hardware lottery Hooker [ ].

Broader impact. Adversarial attacks have been identi ed as a signi cant threat to applications of machine learning in-the-wild. Developing simple and accessible ways to make neural networks more robust is key to mitigating some of the risks and making machine learning applications safer.

In particular, more robust models would enable a wider range of business applications, especially in safety-critical sectors.

E ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients

We do not foresee negative societal impacts from our work, beyond the risk of our defense being broken by future developments of research in adversarial attacks.

A limit of our work is that we prove increased robustness only empirically and not theoretically. However, we note that theoretically grounded defense methods typically fall short of other techniques more used in practice. We also rely on photonic hardware, that is however accessible by anyone similarly to GPUs or TPUs on commercial cloud providers.

We performed all of our experiments on single-GPU nodes with NVIDIA V , and an OPU, on a cloud provider. We estimate total of ∼ 500 GPU hours was spent. ]. The key to use OT in these applications lies in the gain of computation e ciency thanks to regularizations that smoothes the OT problem. More speci cally, when one uses an entropic penalty, one recovers the so called Sinkhorn distances [Cuturi, ]. In this paper, we introduce a new family of variational problems extending the optimal transport problem when multiple costs are involved with various applications in fair division of goods/work and operations research problems.

F. Introduction

Fair division [Steinhaus, ] has been widely studied by the arti cial intelligence [Lattimore et al., ] and economics [Moulin, ] communities. Fair division consists in partitioning diverse resources among agents according to some fairness criteria. One of the standard problems in fair division is the fair cake-cutting problem [Dubins and Spanier, , Brandt et al., ]. The cake is an heterogeneous resource, such as a cake with di erent toppings, and the agents have heterogeneous preferences over di erent parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, others just want a piece as large as possible. Hence, taking into account these preferences, one might share the cake equitably between the agents. A generalization of this problem, for which achieving fairness constraints is more challenging, is when the splitting involves several heterogeneous cakes, and where the agents have linked preferences over the di erent parts of the cakes. This problem has many variants such as the cake-cutting with two cakes [Cloutier et al., ], or the Multi Type Resource Allocation [Mackin and Xia, , Wang et al., a]. In all these models it is assumed that there is only one indivisible unit per type of resource available in each cake, and once an agent choose it, he or she has to take it all. In this setting, the cake can be seen as a set where each element of the set represents a type of resource, for instance each element of the cake represents a topping. A natural relaxation of these problems is when a divisible quantity of each type of resources is available. We introduce EOT (Equitable and Optimal Transport), a formulation that solves both the cake-cutting and the cake-cutting with two cakes problems in this setting.

Our problem expresses as an optimal transportation problem. Hence, we prove duality results and provide fast computation based on Sinkhorn algorithm. As interesting properties, some Integral Probability Metrics (IPMs) [Müller, ] as Dudley metric [Dudley et al., ], or standard Wasserstein metric [Villani, ] are particular cases of the EOT problem.

Contributions.

In this paper we introduce EOT an extension of Optimal Transport which aims at nding an equitable and optimal transportation strategy between multiple agents. We make the following contributions:

• In Section F. , we introduce the problem and show that it solves a fair division problem where heterogeneous resources have to be shared among multiple agents. We derive its dual and prove strong duality results. As a by-product, we show that EOT is related to some usual IPMs families and in particular the widely known Dudley metric.

• In Section F. , we propose an entropic regularized version of the problem, derive its dual formulation, obtain strong duality. We then provide an e cient algorithm to compute EOT. Finally we propose other applications of EOT for Operations Research problems.

F. Related Work

Optimal Transport. Optimal transport aims to move a distribution towards another at lowest cost. More formally, if c is a cost function on the ground space X × Y, then the relaxed Kantorovich formulation of OT is de ned for µ and ν two distributions as

W c (µ, ν) := inf γ X ×Y c(x, y)dγ(x, y)
where the in mum is taken over all distributions γ with marginals µ and ν. Kantorovich theorem states the following strong duality result under mild assumptions [Villani, ]

W c (µ, ν) = sup f,g X f (x)dµ(x) + Y g(y)dν(y)
where the supremum is taken over continuous bounded functions satisfying for all x, y, f (x) + g(y) ≤ c(x, y). The question of considering an optimal transport problem when multiple costs are involved has already been raised in recent works. For instance, [Paty and Cuturi, ] pro-F. Related Work posed a robust Wasserstein distance where the distributions are projected on a k-dimensional subspace that maximizes their transport cost. In that sense, they aim to choose the most expensive cost among Mahalanobis square distances with kernels of rank k. In articles [Li et al., c, Sun et al., a], the authors aim to learn a cost given observed matchings by inversing the optimal transport problem [Dupuy et al., ]. In [Petrovich et al., ] the authors study "featurerobust" optimal transport, which can be also seen as a robust cost selection for optimal transport. In articles [Genevay et al., , Scetbon and Cuturi, ], the authors learn an adversarial cost to train a generative adversarial network. Here, we do not aim to consider a worst case scenario among the available costs but rather consider that the costs work together in order to split equitably the transportation problem among them at lowest cost.

Entropic relaxation of OT. Computing exactly the optimal transport cost requires solving a linear program with a supercubic complexity (n 3 log n) [Tarjan, ] that results in an output that is not di erentiable with respect to the measures' locations or weights [Bertsimas and Tsitsiklis, ]. Moreover, OT su ers from the curse of dimensionality [Dudley, , Fournier and Guillin, ] and is therefore likely to be meaningless when used on samples from highdimensional densities. Following the line of work introduced by Cuturi [ ], we propose an approximated computation of our problem by regularizing it with an entropic term. Such regularization in OT accelerates the computation, makes the problem di erentiable with regards to the distributions [Feydy et al., ] and reduces the curse of dimensionality [Genevay et al., ]. Taking the dual of the approximation, we obtain a smooth and convex optimization problem under a simplicial constraint.

Fair Division. Fair division of goods has a long standing history in economics and computational choice. A classical problem is the fair cake-cutting that consists in splitting the cake between N individuals according to their heterogeneous preferences. The cake X , viewed as a set, is divided in X 1 , . . . , X N disjoint sets among the N individuals. The utility for a single individual i for a slice S is denoted V i (S). It is often assumed that V i (X ) = 1 and that V i is additive for disjoint sets. There exists many criteria to assess fairness for a partition X 1 , . . . , X N such as proportionality

(V i (X i ) ≥ 1/N ), envy-freeness (V i (X i ) ≥ V i (X j )) or equitability (V i (X i ) = V j (X j )).
The cake-cutting problem has applications in many elds such as dividing land estates, advertisement space or broadcast time. An extension of the cake-cutting problem is the cake-cutting with two cakes problem [Cloutier et al., ] where two heterogeneous cakes are involved. In this problem, preferences of the agents can be coupled over the two cakes. The slice of one cake that an agent prefers might be in uenced by the slice of the other cake that he or she might also obtain. The goal is to nd a partition of the cakes that satis es fairness conditions for the agents sharing the cakes. Cloutier et al. [ ] studied the envy-freeness partitioning. Both the cake-cutting and the cake-cutting with two cakes problems assume that there is only one indivisible unit of supply per element x ∈ X of the cake(s). Therefore sharing the cake(s) consists in obtaining a paritition of the set(s). In this paper, we show that EOT is a relaxation of the cutting cake and the cakecutting with two cakes problems, when there is a divisible amount of each element of the cake(s). In that case, cakes are no more sets but distributions that we aim to divide between the agents according to their coupled preferences.

F Equitable and Optimal Transport with Multiple Agents

Integral Probability Metrics.

In our work, we make links with some integral probability metrics. IPMs are (semi-)metrics on the space of probability measures. For a set of functions F and two probability distributions µ and ν, they are de ned as

IPM F (µ, ν) = sup f ∈F f dµ -f dν.
For instance, when F is chosen to be the set of bounded functions with uniform norm less or equal than , we recover the Total Variation distance [Steerneman, ] (TV). They recently regained interest in the Machine Learning community thanks to their application to Generative Adversarial Networks (GANs) [Goodfellow et al., ] where IPMs are natural metrics for the discriminator [Dziugaite et al., , Arjovsky et al., , Mroueh and Sercu, , Husain et al., ]. They also helped to build consistent two-sample tests [Gretton et al., , Scetbon and Varoquaux, a]. However when a closed form of the IPM is not available, exact computation of IPMs between discrete distributions may not be possible or can be costful. For instance, the Dudley metric can be written as a Linear Program [Sriperumbudur et al., ] which has at least the same complexity as standard OT. Here, we show that the Dudley metric is in fact a particular case of our problem and obtain a faster approximation thanks to the entropic regularization. utilities) given by EOT. Utilities have been normalized. Blue dots and red squares represent the di erent elements of resources available in each cake. We consider the case where there is exactly one unit of supply per element in the cakes, which means that we consider uniform distributions. Note that the partition between the agents is equitable (i.e. utilities are equal) and proportional (i.e. utilities are larger than 1/N ).

F. Equitable and Optimal Transport

Notations. Let Z be a Polish space, we denote M(Z) the set of Radon measures on Z. We call M + (Z) the sets of positive Radon measures, and M 1 + (Z) the set of probability measures. We denote C b (Z) the vector space of bounded continuous functions on Z. Let X and Y be two Polish spaces. We denote for µ ∈ M(X ) and ν ∈ M(Y), µ ⊗ ν the tensor product of the measures µ and ν, and µ ν means that ν dominates µ. We denote Π 1 : (x, y) ∈ X × Y → x and Π 2 : (x, y) ∈ X × Y → y respectively the projections on X and Y, which are continuous applications. For an application g and a measure µ, we denote g µ the pushforward measure of µ by g. For X and Y two Polish spaces, we denote LSC(X ×Y) the space of lower semi-continuous functions on X × Y, LSC + (X × Y) the space of non-negative lower semi-continuous functions on X ×Y and LSC - * (X ×Y) the set of negative bounded below lower semi-continuous functions on X ×Y . We also denote C + (X ×Y) the space of non-negative continuous functions on X ×Y and C - * (X × Y) the set of negative continuous functions on X × Y. Let N ≥ 1 be an integer and denote

∆ + := {λ ∈ R N + s.t. N i=1 λ i = 1}
, the probability simplex of R N . For two positive measures of same mass µ ∈ M + (X ) and ν ∈ M + (Y), we de ne the set of couplings with marginals µ and ν:

Π µ,ν := {γ s.t. Π 1 γ = µ , Π 2 γ = ν} .
We introduce the subset of (M 1 + (X ) × M 1 + (Y)) N representing marginal decomposition:

Υ N µ,ν := (µ i , ν i ) N i=1 s.t. i µ i = µ, i ν i = ν and ∀i, µ i (X ) = ν i (Y) .
We also de ne the following subset of M + (X × Y) N corresponding to the coupling decomposition:

Γ N µ,ν := (γ i ) N i=1 s.t. Π 1 γ i = µ , Π 2 γ i = ν .

F. . Primal Formulation

Consider a fair division problem where several agents aim to share two sets of resources, X and Y, and assume that there is a divisible amount of each resource x ∈ X (resp. y ∈ Y) that is available. Formally, we consider the case where resources are no more sets but rather distributions on these sets. Denote µ and ν the distribution of resources on respectively X and Y. For example, one might think about a situation where agents want to share fruit juices and ice creams and there is a certain volume of each type of fruit juices and a certain mass of each type of ice creams available. Moreover each agent de nes his or her paired preferences for each couple (x, y) ∈ X × Y. Formally, each person i is associated to an upper semi-continuous mapping u i : X × Y -→ R + corresponding to his or her preference for any given pair (x, y). For example, one may prefer to eat chocolate ice cream with apple juice, but may prefer pineapple juice when it comes with vanilla ice cream. The total utility for an individual i and a pairing γ i ∈ M + (X × Y) is then given by V i (γ i ) := u i dγ i . To partition fairly among individuals, we maximize the minimum of individual utilities.

From a transport point of view, let assume that there are N workers available to transport a distribution µ to another one ν. The cost of a worker i to transport a unit mass from location x to the location y is c i (x, y). To partition the work among the N workers fairly, we minimize the maximum of individual costs.

These problems are in fact the same where the utility u i , de ned in the fair division problem, might be interpreted as the opposite of the cost c i de ned in the transportation problem, i.e. for all i, c i = -u i . The two above problem motivate the introduction of EOT de ned as follows.

De nition

(Equitable and Optimal Transport). Let X and Y be Polish spaces. Let c := (c i ) 1≤i≤N be a family of bounded below lower semi-continuous cost functions on X × Y, and µ ∈ M 1 + (X ) and ν ∈ M 1 + (Y). We define the equitable and optimal transport primal problem:

EOT c (µ, ν) := inf (γ i ) N i=1 ∈Γ N µ,ν max i c i dγ i . (F. )
We prove along with Theorem that the problem is well de ned and the in mum is attained. Lower-semi continuity is a standard assumption in OT. In fact, it is the weakest condition to prove Kantorovich duality [Villani, , Chap. ]. Note that the problem de ned here is a linear optimization problem and when N = 1 we recover standard optimal transport. Figure F. illustrates the equitable and optimal transport problem we consider. Figure F. in Appendix F. shows an illustration with respect to the transport viewpoint in the exact same setting, i.e. c i = -u i . As expected, the couplings obtained in the two situations are not the same.

We now show that in fact, EOT optimum satis es equality constraints in case of constant sign costs, i.e. total utility/cost of each individual are equal in the optimal partition. See Appendix F. . for the proof.

Proposition

(EOT solves the problem under equality constraints). Let X and Y be Polish

spaces. Let c := (c i ) 1≤i≤N ∈ LSC + (X × Y) N ∪ LSC - * (X × Y) N , µ ∈ M 1 + (X ) and ν ∈ M 1 + (Y).
Then the following are equivalent:

• (γ * i ) N i=1 ∈ Γ N µ,ν is solution of Eq. (F. ), • (γ * i ) N i=1 ∈ argmin (γ i ) N i=1 ∈Γ N µ,ν t s.t. ∀i c i dγ i = t . Moreover, EOT c (µ, ν) = min (γ i ) N i=1 ∈Γ N µ,ν t s.t. ∀i c i dγ i = t .
This property highly relies on the sign of the costs. For instance if two costs are considered, one always positive and the other always negative, then the constraints cannot be satis ed. When the cost functions are non-negatives, EOT refers to a transportation problem while when the costs are all negatives, costs become utilities and EOT refers to a fair division problem. The two points of view are concordant, but proofs and interpretations rely on the sign of the costs.

F. . An Equitable and Proportional Division

When the cost functions considered c i are all negatives, EOT become a fair division problem where the utility functions are de ned as u i := -c i . Indeed according to Proposition , EOT solves max

(γ i ) N i=1 ∈Γ N µ,ν t s.t. ∀i, u i dγ i = t .
Recall that in our model, the total utility of the agent i is given by V i (γ i ) := u i dγ i . Therefore EOT aims to maximize the total utility of each agent i while ensuring that they are all equal. Let us now analyze which fairness conditions the partition induced by EOT veri es. Assume that the utilities are normalized, i.e., ∀i, there exists γ i ∈ M 1 + (X ×Y) such that V i (γ i ) = 1. For example one might consider the cases where ∀i, γ i = µ ⊗ ν or γ i ∈ argmin γ∈Πµ,ν c i dγ. Then any solution (γ * i ) N i=1 ∈ Γ N µ,ν of EOT satis es:

• Proportionality: for all i, V i (γ * i ) ≥ 1/N , • Equitablity: for all i, j, V i (γ * i ) = V j (γ * j ).
Proportionality is a standard fair division criterion for which a resource is divided among N agents, giving each agent at least 1/N of the heterogeneous resource by his/her own subjective valuation. Therefore here, this situation corresponds to the case where the normalized utility of each agent is at least 1/N . Moreover, an equitable division is a division of an heterogeneous resource, in which each partner is equally happy with his/her share. Here this corresponds to the case where the utility of each agent are all equal. The problem solved by EOT is a fair division problem where heterogeneous resources have to be shared among multiple agents according to their preferences. This problem is a relaxation of the two cake-cutting problem when there are a divisible amount of each item of the cakes. In that case, cakes are distributions and EOT makes a proportional and equitable partition of them. Details are left in Appendix F. . . Fair Cake-cutting. Consider the case where the cake is an heterogeneous resource and there is a certain divisible quantity of each type of resource available. For example chocolate and vanilla are two types of resource present in the cake for which a certain mass is available. In that case, each type of resource in the cake is pondered by the actual quantity present in the cake. Up to a normalization, the cake is no more the set X but rather a distribution on this set. Note that for the two points of view to coincide, it su ces to assume that there is exactly the same amount of mass for each type of resources available in the cake. In that case, the cake can be represented by the uniform distribution over the set X , or equivalently the set X itself. When cakes are distributions, the fair cutting cake problem can be interpreted as a particular case of EOT when the utilities of the agents do not depend on the variable y ∈ Y. In short, we consider that utilities are functions of the form u i (x, y) = v i (x) for all (x, y) ∈ X × Y. The normalization of utilities can be cast as follows: ∀i, V i (µ) = v i (x)dµ(x) = 1. Then Proposition shows that the partition of the cake made by EOT is proportional and equitable. Note that for EOT to coincide with the classical cake-cutting problem, one needs to consider that the uniform masses of the cake associated to each type of resource cannot be splitted. This can be interpreted as a Monge formulation [Villani, ] of EOT which is out of the scope of this paper.

F. . Optimality of EOT

We next investigate the coupling obtained by solving EOT. In the next proposition, we show that under the same assumptions of Proposition , EOT solutions are optimal transportation plans. See Appendix F. . for the proof.

F Equitable and Optimal Transport with Multiple Agents

Proposition (EOT realizes optimal plans). Under the same conditions of Proposition , for any (γ * i ) N i=1 ∈ Γ N µ,ν solution of Eq. (F. ), we have for all i ∈ {1, . . . , N }

γ * i ∈ argmin γ∈Π µ * i ,ν * i c i dγ where µ * i := Π 1 γ * i , ν * i := Π 2 γ * i , (F. )
and EOT c (µ, ν) = min

(µ i ,ν i ) N i=1 ∈Υ N µ,ν t s.t. ∀i W c i (µ i , ν i ) = t .
(F. )

Given the optimal matchings (γ * i ) N i=1 ∈ Γ N µ,ν , one can easily obtain the partition of the agents of each marginals. Indeed for all i, µ * i := Π 1 γ * i and ν * i := Π 2 γ * i represent respectively the portion of the agent i from distributions µ and ν.

Remark (Utilitarian and Optimal Transport). To contrast with EOT, an alternative problem is to maximize the sum of the total utilities of agents, or equivalently minimize the sum of the total costs of agents. This problem can be cast as follows:

inf

(γ i ) N i=1 ∈Γ N µ,ν i c i dγ i (F. )
Here one aims to maximize the total utility of all the agents, while in EOT we aim to maximize the total utility per agent under egalitarian constraint. The solution of (F. ) is not fair among agents and one can show that this problem is actually equal to W min i (c i ) (µ, ν). Details can be found in Appendix F. . .

F. . Dual Formulation

Let us now introduce the dual formulation of the problem and show that strong duality holds under some mild assumptions. See Appendix F. . for the proof.

Theorem (Strong Duality)

. Let X and Y be Polish spaces. Let c := (c i ) N i=1 be bounded below lower semi-continuous costs. Then strong duality holds, i.e. for (µ,

ν) ∈ M 1 + (X ) × M 1 + (Y): EOT c (µ, ν) = sup λ∈∆ + N (f,g)∈F λ c f dµ + gdν (F. )
where

F λ c := {(f, g) ∈ C b (X ) × C b (Y) s.t. ∀i ∈ {1, ..., N }, f ⊕ g ≤ λ i c i }.
This theorem holds under the same hypothesis and follows the same reasoning as the one in [Villani, , Theorem . ]. While the primal formulation of the problem is easy to understand, we want to analyse situations where the dual variables also play a role. For that purpose we show in the next proposition a simple characterisation of the primal-dual optimality in case of constant sign cost functions. See Appendix F. . for the proof. 

Proposition . Let X and Y be compact Polish spaces. Let

c := (c i ) 1≤i≤N ∈ C + (X × Y) N ∪ C - * (X × Y) N , µ ∈ M 1 + (X ) and ν ∈ M 1 + (Y). Let also (γ k ) N k=1 ∈ Γ N µ,ν and (λ, f, g) ∈ ∆ + n × C b (X ) × C b (Y).
Then Eq. (F. ) admits a solution and the following are equivalent:

• (γ k ) N
k=1 is a solution of Eq. (F. ) and (λ, f, g) is a solution of Eq. (F. ).

• . ∀i ∈ {1, ..., N }, f ⊕ g ≤ λ i c i . ∀i, j ∈ {1, ..., N } c i dγ i = c j dγ j . f ⊕ g = λ i c i γ i -a.e.

Remark . It is worth noting that when we assume that

c := (c i ) 1≤i≤N ∈ C + * (X × Y) N ∪ C - * (X × Y) N
, then we can refine the second point of the equivalence presented in Proposition by adding the following condition: ∀i ∈ {1, ..., N } λ i = 0.

Given two distributions of resources represented by the measures µ and ν, and N utility functions denoted (u i ) N i=1 , we want to nd an equitable and stable partition among the agents in case of transferable utilities. Let k be an agent. We say that his or her utility is transferable when once x ∈ X and y ∈ Y get matched, he or she has to decide how to split his or her associated utility u k (x, y) . She or he divides u k (x, y) into a quantity f k (x) which can be seen as the utility of having x and g k (y) for having y. Therefore in that problem we ask for (γ k , f k , g k ) N k=1 such that

u k (x, y) = f k (x) + g k (y) γ k -a.e. ( F 
. )
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Moreover, for the partition to be stable [Sotomayor and Roth, ], we want to ensure that, for every agent k, none of the resources x ∈ X and y ∈ Y that have not been matched together for this agent would increase their utilities, f k (x) and g k (y), if there were matched together in the current matching instead. Formally we ask that for k ∈ {1, . . . , N } and all (x, y) ∈ X × Y,

f k (x) + g k (y) ≥ u k (x, y) .
(F. )

Indeed if there exist k, x and y such that u k (x, y) > f k (x) + g k (y), then x and y will not be matched together in the share of the agent k and he can improve his utility for both x and y by matching x with y.

Finally we aim to share equitably the resources among the agents which boils down to ask ∀i, j ∈ {1, ..., N } u i dγ i = u j dγ j (F. )

Thanks to Proposition , nding (γ k , f k , g k ) N k=1 satisfying (F. ), (F. ) and (F. ) can be done by solving Eq. (F. ) and Eq. (F. ). Indeed let (γ k ) N k=1 an optimal solution of Eq. (F. ) and (λ, f, g) an optimal solution of Eq. (F. ). Then by denoting for all k = 1, . . . , N ,

f k = f λ k and g k = g λ k , we obtain that (γ k , f k , g k ) N
k=1 solves the equitable and stable partition problem in case of transferable utilities. Note that again, we end up with equality constraints for the optimal dual variables. Indeed, for all i, j ∈ {1, . . . , N }, at optimality we have f i + g i dγ i = f j + g j dγ j . Figure F. illustrates this formulation of the problem with dual potentials. Figure F. in Appendix F. shows the dual solutions with respect to the transport viewpoint in the exact same setting, i.e. c i = -u i . Once again, the obtained solutions di er.

F. . Link with other Probability Metrics

In this section, we provide some topological properties on the object de ned by the EOT problem. In particular, we make links with other known probability metrics, such as Dudley and Wasserstein metrics and give a tight upper bound.

When N = 1, recall from the de nition (F. ) that the problem considered is exactly the standard OT problem. Moreover any EOT problem with k ≤ N costs can always be rewritten as a EOT problem with N costs. See Appendix F. . for the proof. From this property, it is interesting to note that, for any N ≥ 1, EOT generalizes standard Optimal Transport.

Optimal Transport. Given a cost function c, if we consider the problem EOT with N costs such that, for all i, c i = N × c then, the problem EOT c is exactly W c . See Appendix F. . for the proof. Now we have seen that all standard OT problems are sub-cases of the EOT problem, one may ask whether EOT can recover other families of metrics di erent from standard OT. Indeed we show that the EOT problem recovers an important family of IPMs with supremum taken over the space of α-Hölder functions with α ∈ (0, 1]. See Appendix F. . for the proof.

F. Equitable and Optimal Transport

Proposition . Let X be a Polish space. Let d be a metric on X 2 and α ∈

(0, 1]. Denote c 1 = 2 × 1 x =y , c 2 = d α and c := (c 1 , (N -1) × c 2 , ..., (N -1) × c 2 ) ∈ LSC(X × X ) N then for any (µ, ν) ∈ M 1 + (X ) × M 1 + (X ) EOT c (µ, ν) = sup f ∈B d α (X ) X f dµ - X f dν (F. )
where

B d α (X ) := f ∈ C b (X ): f ∞ + f α ≤ 1 and f α := sup x =y |f (x)-f (y)| d α (x,y) . Dudley Metric. When α = 1, then for (µ, ν) ∈ M 1 + (X ) × M 1 + (X ), we have EOT c (µ, ν) = EOT (c 1 ,d) (µ, ν) = β d (µ, ν)
where β d is the Dudley Metric [Dudley et al., ]. In other words, the Dudley metric can be interpreted as an equitable and optimal transport between the measures with the trivial cost and a metric d. We acknowledge that Chizat et al. [ ] made a link between Unbalanced Optimal Transport and the " at metric", an IPM close to the Dudley metric, de ned on the space {f :

f ∞ ≤ 1, f 1 ≤ 1}.
Weak Convergence. When d is an unbounded metric on X , it is well known that W d p with p ∈ (0, +∞) metrizes a convergence a bit stronger than weak convergence [Villani, , Chap. ]. A su cient condition for Wasserstein distances to metrize weak convergence on the space of distributions is that the metric d is bounded. In contrast, metrics de ned by Eq. (F. ) do not require such assumptions and EOT (1 x =y ,d α ) metrizes the weak convergence of probability measures [Villani, , Chap. -]. For an arbitrary choice of costs (c i ) 1≤i≤N , we obtain a tight upper control of EOT and show how it is related to the OT problem associated to each cost involved. See Appendix F. . for the proof.

Proposition . Let X and Y be Polish spaces. Let c := (c i ) 1≤i≤N be a family of nonnegative lower semi-continuous costs. For any (µ,

ν) ∈ M 1 + (X ) × M 1 + (Y) EOT c (µ, ν) ≤ N i=1 1 W c i (µ, ν) -1 (F. )
Proposition means that the minimal cost to transport all goods under the constraint that all workers contribute equally is lower than the case where agents share equitably and optimally the transport with distributions µ i and ν i respectively proportional to µ and ν, which equals the harmonic sum written in Equation (F. ). [Sriperumbudur et al., , Proposition . ] 

Example. Applying the above result in the case of the Dudley metric recovers the following inequality

β d (µ, ν) ≤ TV(µ, ν)W d (µ, ν) TV(µ, ν) + W d (µ, ν)
.

F. Entropic Relaxation

In their original form, as proposed by Kantorovich Kantorovich [ ], Optimal Transport distances are not a natural t for applied problems: they minimize a network ow problem, with a supercubic complexity (n 3 log n) [Tarjan, ]. Following the work of Cuturi [ ], we propose an entropic relaxation of EOT, obtain its dual formulation and derive an e cient algorithm to compute an approximation of EOT.

F. . Primal-Dual Formulation

Let us rst extend the notion of Kullback-Leibler divergence for positive Radon measures. Let Z be a Polish space, for µ, ν ∈ M + (Z), we de ne the generalized Kullback-Leibler divergence as KL(µ||ν) = log dµ dν dµ + dνdµ if µ ν, and +∞ otherwise. We introduce the following regularized version of EOT.

De nition (Entropic relaxed primal problem). Let X and Y be two Polish spaces, c := (c i ) 1≤i≤N a family of bounded below lower semi-continuous costs lower semi-continuous costs on X × Y and ε := (ε i ) 1≤i≤N be non negative real numbers. For (µ, ν) ∈ M 1 + (X ) × M 1 + (Y), we define the EOT regularized primal problem:

EOT ε c (µ, ν) := inf γ∈Γ N µ,ν max i c i dγ i + N j=1 ε j KL(γ j ||µ ⊗ ν)
Note that here we sum the generalized Kullback-Leibler divergences since our objective is function of N measures in M + (X × Y). This problem can be compared with the one from standard regularized OT. In the case where N = 1, we recover the standard regularized OT. For N ≥ 1, the underlying problem is N i=1 ε i -strongly convex. Moreover, we prove the essential property that as ε → 0, the regularized problem converges to the standard problem. See Appendix F. . for the full statement and the proof. As a consequence, entropic regularization is a consistent approximation of the original problem we introduced in Section F. . . Next theorem shows that strong duality holds for lower semi-continuous costs and compact spaces. This is the basis of the algorithm we will propose in Section F. . . See Appendix F. . for the proof.

Theorem

(Duality for the regularized problem). Let X and Y be two compact Polish spaces, c := (c i ) 1≤i≤N a family of bounded below lower semi-continuous costs on X × Y and ε := (ε i ) 1≤i≤N be non negative numbers. For (µ, ν) ∈ M 1 + (X ) × M 1 + (Y), strong duality holds:

EOT ε c (µ, ν) = sup λ∈∆ + N sup f ∈C b (X ) g∈C b (Y) f dµ + gdν (F. ) - N i=1 ε i e f (x)+g(y)-λ i c i (x,y) ε i dµ(x)dν(y) -1
and the infimum of the primal problem is attained.

F. Entropic Relaxation

As in standard regularized optimal transport there is a link between primal and dual variables at optimum. Let γ * solving the reguralized primal problem and (f * , g * , λ * ) solving the dual one:

∀i, γ * i = exp f * + g * -λ * i c i ε i • µ ⊗ ν .

F. . Proposed Algorithms

Algorithm : Projected Alternating Maximization

Input: C = (C i ) 1≤i≤N , a, b, ε, L λ Init: f 0 ← 1 n ; g 0 ← 1 m ; λ 0 ← (1/N, ..., 1/N ) ∈ R N for k = 1, 2, ... do K k ← N i=1 K λ k-1 i i , c k ← f k-1 , K k g k-1 , f k ← c k a K k g k-1 , d k ← f k , K k g k-1 , g k ← d k b (K k ) T f k , λ k ← Proj ∆ + N λ k-1 + 1 L λ ∇ λ F ε C (λ k-1 , f k , g k ) . end Result: λ, f, g
We can now present algorithms obtained from entropic relaxation to approximately compute the solution of EOT. Let µ = n i=1 a i δ x i and ν = m j=1 b j δ y j be discrete probability measures where a ∈ ∆ + n , b ∈ ∆ + m , {x 1 , ..., x n } ⊂ X and {y 1 , ..., y m } ⊂ Y. Moreover for all i ∈ {1, . . . , N } and λ > 0, de ne

C := (C i ) 1≤i≤N ∈ (R n×m ) N with C i := (c i (x k , y l )) k,l the N cost matrices and K λ i := exp(-λC i /ε). Assume that ε 1 = • • • = ε N = ε.
Compared to the standard regularized OT, the main di erence here is that the problem contains an additional variable λ ∈ ∆ + N . When N = 1, one can use Sinkhorn algorithm. However when N ≥ 2, we do not have a closed form for updating λ when the other variables of the problem are xed. In order to enjoy from the strong convexity of the primal formulation, we consider instead the dual associated with the equivalent primal problem given when the additional trivial constraint

1 T n ( i P i )1 m = 1 is considered. In that the dual obtained is EOT ε C (a, b) = sup λ∈∆ + N f ∈R n , g∈R m f, a + g, b -ε log i e f /ε , K λ i i e g/ε + 1
We show that the new objective obtained above is smooth w.r.t (λ, f, g). See Appendix F. . for the proof. One can apply the accelerated projected gradient ascent [Beck and Teboulle, , Tseng, ] which enjoys an optimal convergence rate for rst order methods of O(k -2 ) for k iterations.

It is also possible to adapt Sinkhorn algorithm to our problem. See Algorithm . We denoted by Proj posed algorithm di ers from the Sinkhorn algorithm in many points and therefore the convergence rates cannot be applied here. Analyzing the rates of a projected alternating maximization method is, to the best of our knowledge, an unsolved problem. Further work will be devoted to study the convergence of this algorithm. We illustrate Algorithm by showing the convergence of the regularized version of EOT towards the ground truth when ε → 0 in the case of the Dudley Metric. See Figure F. in Appendix F. .

F. Other applications of EOT

Minimal Transportation Time. Assume there are N internet service providers who propose di erent debits to transport data across locations, and one needs to transfer data from multiple servers to others, the fastest as possible. We assume that c i (x, y) ≥ 0 corresponds to the transportation time needed by provider i to transport one unit of data from a server x to a server y.

For instance, the unit of data can be one Megabit. Then c i dγ i corresponds the time taken by provider i to transport µ i = Π 1 γ i to ν i = Π 2 γ i . Assuming the transportation can be made in parallel and given a partition of the transportation task (γ i ) N i=1 , max i c i dγ i corresponds to the total time of transport the data µ = Π 1 γ i to the locations ν = Π 2 γ i according to this partition. Then EOT, which minimizes max i c i dγ i , is nding the fastest way to transport the data from µ to ν by splitting the task among the N internet service providers. Note that at optimality, all the internet service providers nish their transportation task at the same time (see Proposition ).

Sequential Optimal Transport.

Consider the situation where an agent aims to transport goods from some stocks to some stores in the next N days. The cost to transport one unit of good from a stock located at x to a store located at y may vary across the days. For example the cost of transportation may depend on the price of gas, or the daily weather conditions. Assuming that he or she has a good knowledge of the daily costs of the N coming days, he or she may want a transportation strategy such that his or her daily cost is as low as possible. By denoting c i the cost of transportation the i-th day, and given a strategy (γ i ) N i , the maximum daily cost is then max i c i dγ i , and

F. Appendix: Proofs

EOT therefore nds the cheapest strategy spread the transport task in the next N days such that the maximum daily cost is minimized. Note that at optimality he or she has to spend the exact same amount everyday.

In Figure F. we aim to simulate the Sequential OT problem and compare the time-accuracy trade-o s of the proposed algorithms. Let us consider a situation where one wants to transport merchandises from µ = 1 n n i=1 δ x i to ν = 1 m m j=1 δ y j in N days. Here we model the locations {x i } and {y j } by drawing them independently from two Gaussian distributions in R 2 : ∀i, x i ∼ N (( 33 ), ( 0 1 1 0 )) and ∀j, y j ∼ N ( 4 4 ), 1 -.2 -.2 1

. We assume that everyday there is wind modeled by a vector w ∼ U(B(0, 1)) where B(0, 1) is the unit ball in R 2 that is perfectly known in advance. We de ne the cost of transportation on day i as c i (x, y) = yx -0.7 w i , yx to model the e ect of the wind on the transportation cost. In the following gures we plot the estimates of EOT obtained from the proposed algorithms in function of the runtime for various sample sizes n, number of days N and regularizations ε. PAM denotes Alg. , APGA denotes Alg. (See Appendix C. ), LP denotes the linear program which solves exactly the primal formulation of the EOT problem. Note that when LP is computable (i.e. n ≤ 100), it is therefore the ground truth. We show that in all the settings, PAM performs better than APGA and provides very high accuracy with order of magnitude faster than LP.

F. Appendix: Proofs F. . Notations

Let Z be a Polish space, we denote the set of Radon measures on Z endowed with total variation norm: µ TV = µ + (Z) + µ -(Z) with (µ + , µ -) is the Dunford decomposition of the signed measure µ. We call M + (Z) the sets of positive Radon measures, and M 1 + (Z) the set of probability measures. We denote C b (Z) the vector space of bounded continuous functions on Z endowed with • ∞ norm. We recall the Riesz-Markov theorem: if Z is compact, M(Z) is the topological dual of C b (Z). Let X and Y be two Polish spaces. It is immediate that X × Y is a Polish space. We denote for µ ∈ M(X ) and ν ∈ M(Y), µ ⊗ ν the tensor product of the measures µ and ν, and µ ν means that ν dominates µ. We denote Π 1 : (x, y) ∈ X × Y → x and Π 2 : (x, y) ∈ X × Y → y respectively the projections on X and Y, which are continuous applications. For an application g and a measure µ, we denote g µ the pushforward measure of µ by g. For f : X → R and g : Y → R, we denote f ⊕ g : (x, y) ∈ X × Y → f (x) + g(y) the tensor sum of f and g. For X and Y two Polish spaces, we denote LSC(X × Y) the space of lower semi-continuous functions on X × Y, LSC + (X × Y) the space of non-negative lower semi-continuous functions on X × Y and LSC - * (X × Y) the set of negative bounded below lower semi-continuous functions on X × Y . Let N ≥ 1 be an integer and denote

∆ + N := {λ ∈ R N + s.t. N i=1 λ i = 1}
, the probability simplex of R N . For two positive measures of same mass µ ∈ M + (X ) and ν ∈ M + (Y), we de ne the set of couplings with marginals µ and ν:

Π µ,ν := {γ s.t. Π 1 γ = µ , Π 2 γ = ν} .
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For µ ∈ M 1 (X ) and ν ∈ M 1 + (Y), we introduce the subset of (M 1 + (X ) × M 1 + (Y)) N representing marginal decomposition:

Υ N µ,ν := (µ i , ν i ) N i=1 s.t. i µ i = µ, i ν i = ν and ∀i, µ i (X ) = ν i (Y) .
We also de ne the following subset of M + (X × Y) N corresponding to the coupling decomposition:

Γ N µ,ν := (γ i ) N i=1 s.t. Π 1 i γ i = µ , Π 2 i γ i = ν .

F. . Proof of Proposition

Proof.

First, it is clear that EOT c (µ, ν) ≥ inf γ∈Γ N µ,ν {t s.t. ∀i, t = c i dγ i }.
Let us now show that in fact it is an equality. Thanks to Theorem , the in mum is attained for inf γ∈Γµ,ν max i c i dγ i . Indeed, we recall that Γ N µ,ν is compact and that the objective is lower semi-continuous. Let γ * be such a minimizer. Let I be the set of indices i such that c i dγ * i = EOT c (µ, ν). Assume that there exists j such that, EOT c (µ, ν) > c j dγ * j . In case of costs of LSC + (X × Y), for all i ∈ I, there exists

(x i , y i ) ∈ Supp(γ * i ) such that c i (x i , y i ) > 0. Let us denote A (x i ,y i ) measurable sets such that (x i , y i ) ∈ A (x i ,y i ) and let us denote γ de ned as for all k / ∈ I ∪ {j}, γk = γ * k , for i ∈ I, γi = γ * i - 1 A (x i ,y i ) γ * i and γj = γ * j + i∈I 1 A (x i ,y i ) γ * i for su ciently small so that γ ∈ Γ N µ,ν . Now, max k c k dγ * k > max k c k dγ k , which contradicts that γ * is a minimizer. Then for i, j, c i dγ * i = c j dγ * j . And then: EOT c (µ, ν) = inf γ∈Γ N µ,ν max i c i dγ i .
In case of costs in LSC - * (X ×Y), there exists (x 0 , y 0 ) ∈ Supp(γ * j ) such that c j (x 0 , y 0 ) < 0. Let us denote A (x 0 ,y 0 ) a measurable set such that (x 0 , y 0 ) ∈ A (x 0 ,y 0 ) and let us denote γ de ned as for all k / ∈ I ∪ {j}, γk = γ * k and for all i ∈ I, γi = γ * i + |I| 1 A (x 0 ,y 0 ) γ * j and γj = γ * j -1 A (x 0 ,y 0 ) γ * j for su ciently small so that γ ∈ Γ N µ,ν . Now, max k c k dγ * k > max k c k dγ i , which contradicts that γ * is a minimizer. Then for i, j, c i dγ * i = c j dγ * j . And then: EOT c (µ, ν) = inf γ∈Γ N µ,ν max i c i dγ i . It is clear that equity is veri ed thanks to the previous proof. For proportionality, assume the normalization: ∀i, there exists

γ i ∈ M 1 + (X × Y) such that V i (γ i ) = 1. Then for each i, V i (γ i /N ) = 1/N and (γ i ) i ∈ Γ N µ,ν .
Then at optimum: ∀i, V i (γ * i ) ≥ 1/N and proportionality is veri ed.

F. . Proof of Proposition

Proof. We prove along with Theorem that the in mum de ning EOT c (µ, ν) is attained. Let γ * be this in mum. Then at optimum we have shown that for all i, j, c i dγ * i = c j dγ * j = t. Let denote for all i, µ i = Π 1 γ * i and ν i = Π 2 γ * i .
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Let assume there exists i that c i dγ * i > W c i (µ i , ν i ). Let γ i realizing the in mum of W c i (µ i , ν i ). Let > 0 be su ciently small, then let de ne γ as follows: for all j = i, γj = (1 -)γ * j and γi = γ i + j =i γ * j . Then for all j = i, c j dγ j = (1 -)t and

c i dγ i = W c i (µ i , ν i ) + j =i c i dγ * j . It is clear that γ ∈ Γ N µ,ν .
For > 0 su ciently small, max i c i dγ i = (1 -)t < t, which contradicts the optimality of γ * .

A possible reformulation for EOT is:

EOT c (µ, ν) = min (µ i ,ν i ) N i=1 ∈Υ N µ,ν ∀i, γ i ∈Πµ,ν t s.t. c i dγ i = t
We previously show that at optimum the couplings are optimal transport plans, then:

EOT c (µ, ν) = min (µ i ,ν i ) N i=1 ∈Υ N µ,ν {t s.t. ∀i, W c i (µ i , ν i ) = t}
which concludes the proof.

F. . Proof of Theorem

To prove this theorem, one need to prove the three following technical lemmas. The rst one shows the weak compacity of Γ N µ,ν . Lemma . Let X and Y be Polish spaces, and µ and ν two probability measures respectively on X and Y. Then Γ N µ,ν is sequentially compact for the weak topology induced by γ = max i=1,..,N γ i TV .

Proof. Let (γ n ) n≥0 a sequence in Γ N µ,ν , and let us denote for all n ≥ 0, γ n = (γ n i ) N i=1 . We rst remark that for all i ∈ {1, ..., N } and n ≥ 0, γ n i TV ≤ 1 therefore for all i ∈ {1, ..., N }, (γ n i ) n≥0 is uniformly bounded. Moreover as {µ} and {ν} are tight, for any δ > 0, there exist K ⊂ X and L ⊂ Y compact sets such that

µ(K c ) ≤ δ 2 and ν(L c ) ≤ δ 2 . (F. )
Therefore, we obtain that for any for all i ∈ {1, ..., N },

γ n i (K c × L c ) ≤ N k=1 γ n k (K c × L c ) (F. ) ≤ N k=1 γ n k (K c × Y) + γ n k (X × L c ) (F. ) ≤ µ(K c ) + ν(L c ) = δ. (F. )
Therefore, for all i ∈ {1, ..., N }, (γ n i ) n≥0 is tight and uniformly bounded and Prokhorov's theorem [Dupuis and Ellis, , Theorem A. . ] guarantees for all i ∈ {1, ..., N }, (γ n i ) n≥0

F Equitable and Optimal Transport with Multiple Agents admits a weakly convergent subsequence. By a common convergent subsequence, we obtain that (γ n ) n≥0 admits a weakly convergent subsequence. By continuity of the projection, the limit also lives in Γ N µ,ν and the result follows.

Next lemma generalizes Rockafellar-Fenchel duality to our case.

Lemma . Let V be a normed vector space and V * its topological dual. Let V 1 , ..., V N be convex functions and lower semi-continuous on V and E a convex function on V . Let V * 1 , ...V * N , E * be the Fenchel-Legendre transforms of V 1 , ...V N , E. Assume there exists z 0 ∈ V such that for all i, V i (z 0 ) < ∞, E(z 0 ) < ∞, and for all i, V i is continuous at z 0 . Then:

inf u∈V i V i (u) + E(u) = sup γ 1 ...,γ N ,γ∈V * i γ i =γ - i V * i (-γ i ) -E * (γ)
Proof. This Lemma is an immediate application of Rockafellar-Fenchel duality theorem [Brezis, , Theorem . ] and of Fenchel-Moreau theorem [Brezis, , Theorem . ]. Indeed,

V = N i=1
V i (u) is a convex function, lower semi-continuous and its Legendre-Fenchel transform is given by:

V * (γ * ) = inf N i=1 γ * i =γ * N i=1 V * i (γ * i ). (F. )
Last lemma is an application of Sion's Theorem to this problem.

Lemma . Let X and Y be Polish spaces. Let c = (c i ) 1≤i≤N be a family of bounded below lower semi-continuous costs on X × Y, then for µ ∈ M 1 + (X ) and ν ∈ M 1 + (Y), we have

EOT c (µ, ν) = sup λ∈∆ + N inf γ∈Γ N µ,ν N i=1 λ i X ×Y c i (x, y)dγ i (x, y) (F. )
and the infimum is attained.

Proof. Taking for granted that a minmax principle can be invoked, we have

sup λ∈∆ + N inf γ∈Γ N µ,ν N i=1 λ i X ×Y c i (x, y)dγ i (x, y) = inf γ∈Γ N µ,ν sup λ∈∆ + N N i=1 λ i X ×Y c i (x, y)dγ i (x, y) = EOT c (µ, ν)
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But thanks to Lemma , we have that Γ N µ,ν is for the weak topology. And

∆ + N is convex. The objective function f : (λ, γ) ∈ ∆ + N × Γ N µ,ν → N i=1 λ i X ×Y c n i dγ i is
bilinear, hence convex and concave in its variables, and continuous with respect to λ. Moreover, let (c n i ) n be non-decreasing sequences of bounded cost functions such that c i = sup n c n i . By monotone convergence, we get f (λ, γ) = sup n i λ i c n i dγ i , f (λ, .). So f the supremum of continuous functions, then f is lower semi-continuous with respect to γ, therefore Sion's minimax theorem [Sion, ] holds.

We are now able to prove Theorem .

Proof. Let X and Y be two Polish spaces. For all i ∈ {1, .., N }, we de ne c i : X × Y → R a bounded below lower-semi cost function. The proof follows the exact same steps as those in the proof of [Villani, , Theorem . ]. First we suppose that X and Y are compact and that for all i, c i is continuous, then we show that it can be extended to X and Y non compact and nally to c i only lower semi continuous.

First, let assume X and Y are compact and that for all i, c i is continuous. Let x λ ∈ ∆ + N . We recall the topological dual of the space of bounded continuous functions C b (X × Y) endowed with . ∞ norm, is the space of Radon measures M(X × Y) endowed with total variation norm. We de ne, for u ∈ C b (X × Y):

V λ i (u) = 0 if u ≥ -λ i c i +∞ else
and:

E(u) = f dµ + gdν if ∃(f, g) ∈ C b (X ) × C b (Y), u = f + g +∞ else
One can show that for all i, V λ i is convex and lower semi-continuous (as the sublevel sets are closed) and E λ is convex. More over for all i, these functions continuous in u 0 ≡ 1 the hypothesis of Lemma are satis ed.

Let now compute the Fenchel-Legendre transform of these function. Let γ ∈ M(X ×Y) :

V λ * i (-γ) = sup u∈C b (X ×Y) -udγ; u ≥ -λ i c i = λ i c i dγ if γ ∈ M + (X × Y) +∞ otherwise
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On the other hand:

E λ * (γ) 0 if ∀(f, g) ∈ C b (X ) × C b (Y), f dµ + gdν = (f + g)dγ +∞ else
This dual function is nite and equals 0 if and only if that the marginals of the dual variable γ are µ and ν.

Applying Lemma , we get:

inf u∈C b (X ×Y) i V λ i (u) + E(u) = sup γ 1 ,...,γ N ,γ∈M(X ×Y) γ i =γ -V λ * i (γ i ) -E λ * (-γ)
Hence, we have shown that, when X and Y are compact sets, and the costs (c i ) i are continuous:

sup (f,g)∈F λ c f dµ + gdν = inf γ∈Γ N µ,ν i λ i c i dγ i
Let now prove the result holds when the spaces X and Y are not compact. We still suppose that for all i, c i is uniformly continuous and bounded. We denote c

∞ := sup i sup (x,y)∈X ×Y |c i (x, y)|. Let de ne I λ (γ) := i λ i X ×Y c i dγ i Let γ * ∈ Γ N µ,ν such that I λ (γ * ) = min γ∈Γ N µ,ν I λ (γ).
The existence of the minimum comes from the lower-semi continuity of I λ and the compacity of Γ N µ,ν for weak topology. Let x δ ∈ (0, 1). X and Y are Polish spaces then

∃X 0 ⊂ X , Y 0 ⊂ Y compacts such that µ(X c 0 ) ≤ δ and µ(Y c 0 ) ≤ δ. It follows that ∀i, γ * i ((X 0 × Y 0 ) c ) ≤ 2δ. Let de ne γ * 0 such that for all i, γ * 0 i = 1 X 0 ×Y 0 i γ * i (X 0 ×Y 0 ) γ * i . We de ne µ 0 = Π 1 i γ * 0 i and ν 0 = Π 2 i γ * 0 i . We then naturally de ne Γ N 0,µ 0 ,ν 0 := (γ i ) 1≤i≤N ∈ M + (X 0 × Y 0 ) N s.t. Π 1 i γ i = µ 0 and Π 2 i γ i = ν 0 and I λ 0 (γ 0 ) := i λ i X 0 ×Y 0 c i dγ 0,i for γ 0 ∈ Γ N 0,µ 0 ,ν 0 . Let γ0 verifying I λ 0 (γ 0 ) = min γ 0 ∈Π N 0,µ 0 ,ν 0 I λ 0 (γ 0 ). Let γ = ( i γ * i (X 0 × Y 0 ))γ 0 + 1 (X 0 ×Y 0 ) c γ * ∈ Γ N µ,ν . Then we get I λ (γ) ≤ min γ 0 ∈Γ N 0,µ 0 ,ν 0 I λ 0 (γ 0 ) + 2 |λ i | c ∞ δ
We have already proved that:

sup (f,g)∈F λ 0,c J λ 0 (f, g) = inf γ 0 ∈Γ N 0,µ 0 ,ν 0 I λ 0 (γ 0 ) F. Appendix: Proofs with J λ 0 (f, g) = f dµ 0 + gdν and F λ 0,c is the set of (f, g) ∈ C b (X 0 ) × C b (Y 0 ) satisfying, for every i, f ⊕ g ≤ min i λ i c i . Let ( f0 , g0 ) ∈ F λ 0,c such that : J λ 0 ( f0 , g0 ) ≥ sup (f,g)∈F λ 0,c J λ 0 (f, g) -δ
Since J λ 0 (0, 0) = 0, we get sup J λ 0 ≥ 0 and then, J λ 0 ( f0 , g0 ) ≥ δ ≥ -1. For every γ 0 ∈ Γ N 0,µ 0 ,ν 0 :

J λ 0 ( f0 , g0 ) = ( f0 (x) + g0 (y))dγ 0 (x, y)
then we have the existence of (x 0 , y 0 ) ∈ X 0 × Y 0 such that : f0 (x 0 ) + g0 (y 0 ) ≥ -1.

If we replace ( f0 , g0 ) by ( f0s, g0 + s) for an accurate s, we get that: f0 (x 0 ) ≥ 1 2 and g0 (y 0 ) ≥ 1 2 , and then ∀(x, y) ∈ X 0 × Y 0 :

f0 (x) ≤ c (x, y 0 ) -g0 (y 0 ) ≤ c (x, y 0 ) + 1 2 g0 (y) ≤ c (x 0 , y) -f0 (x 0 ) ≤ c (x 0 , y) + 1 2
where c := min i λ i c i . Let de ne f0 (x) = inf y∈Y 0 c (x, y) -g0 (y) for x ∈ X . Then f0 ≤ f0 on X 0 . We then get J λ 0 ( f0 , g0 ) ≥ J λ 0 ( f0 , g0 ) and f0 ≤ c (., y 0 ) + 1 2 on X . Let de ne ḡ0 (y) = inf x∈X c (x, y) -f0 (y). By construction (f 0 , g 0 ) ∈ F λ c since the costs are uniformly continuous and bounded and J λ 0 ( f0 , ḡ0 ) ≥ J λ 0 ( f0 , g0 ) ≥ J λ 0 ( f0 , g0 ). We also have ḡ0 ≥ c (x 0 , .) + 1 2 on Y. Then we have in particular: ḡ0 ≥c ∞ -1 2 on X and f0 ≥c ∞ -1 2 on Y. Finally:

J λ ( f0 , ḡ0 ) := X 0 f dµ 0 + Y 0 ḡ0 dν = i γ * i (X 0 × Y 0 ) X 0 ×Y 0 ( f0 (x) + ḡ0 (y))d i γ * 0 i (x, y) + (X 0 ×Y 0 ) c f0 (x) + ḡ0 (y)d i γ * i (x, y) ≥ (1 -2δ) X 0 f0 dµ 0 + Y 0 ḡ0 dν 0 -(2 c ∞ + 1) i γ * ((X 0 × Y 0 ) c ) ≥ (1 -2δ)J λ 0 ( f0 , ḡ0 ) -2 |λ i |(2 c ∞ + 1)δ ≥ (1 -2δ)J λ 0 ( f0 , g0 ) -2 |λ i |(2 c ∞ + 1)δ ≥ (1 -2δ)(inf I λ 0 -δ) -2 |λ i |(2 c ∞ + 1)δ
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≥ (1 -2δ)(inf I λ - |λ i | c ∞ + 1)δ) -2 |λ i |(2 c ∞ + 1)δ
This being true for arbitrary small δ, we get sup J λ ≥ inf I λ . The other sens is always true then:

sup (f,g)∈F λ c f dµ + gdν = inf γ∈Γ N µ,ν i λ i c i dγ i
for c i uniformly continuous and X and Y non necessarily compact.

Let now prove that the result holds for lower semi-continuous costs. Let c := (c i ) i be a collection of lower semi-continuous costs. Let (c n i ) n be non-decreasing sequences of bounded below cost functions such that c i = sup n c n i . Let x λ ∈ ∆ + N . From last step, we have shown that for all n:

inf γ∈Γ N µ,ν I λ n (γ) = sup (f,g)∈F λ c n f dµ + gdν (F. )
where

I λ n (γ) = i λ i c n i dγ i . First it is clear that: sup (f,g)∈F λ c f dµ + gdν ≤ sup (f,g)∈F λ c n f dµ + gdν (F. )
Let show that:

inf γ∈Γ N µ,ν I λ (γ) = sup n inf γ∈Γ N µ,ν I λ n (γ) = lim n inf γ∈Γ N µ,ν I λ n (γ)
where I λ (γ) = i λ i c i dγ i . Let (γ n,k ) k a minimizing sequence of Γ N µ,ν for the problem inf γ∈Γ N µ,ν i λ i c n i dγ i . By Lemma , up to an extraction, there exists γ n ∈ Γ N µ,ν such that (γ n,k ) k converges weakly to γ n . Then:

inf γ∈Γ N µ,ν I λ n (γ) = I λ n (γ n )
Up to an extraction, there also exists γ * ∈ Γ N µ,ν such that γ n converges weakly to γ * . For

n ≥ m, I λ n (γ n ) ≥ I λ m (γ n ) ≥ I λ m (γ m
), so by continuity of I λ m :

lim n I λ n (γ n ) ≥ lim sup n I λ m (γ n ) ≥ I λ m (γ * ) By monotone convergence, I λ m (γ * ) → I λ (γ * ) and lim n I λ n (γ n ) ≥ I λ (γ * ) ≥ inf γ∈Γ N µ,ν I λ (γ).

F. Appendix: Proofs

Along with Eqs. F. and F. , we get that:

inf γ∈Γ µ,ν I λ (γ) ≤ sup (f,g)∈F λ c f dµ + gdν
The other sens being always true, we have then shown that, in the general case we still have:

inf γ∈Γ N µ,ν I λ (γ) = sup (f,g)∈F λ c f dµ + gdν
To conclude, we apply Lemma , and we get:

sup λ∈∆ + N sup (f,g)∈F λ c f dµ + gdν = sup λ∈∆ + N inf γ∈Γ N µ,ν I λ (γ) = EOT c (µ, ν)

F. . Proof of Proposition

Proof. Let recall that, from standard optimal transport results:

EOT c (µ, ν) = sup u∈Φc udµdν with Φ c := u ∈ C b (X × Y) s.t. ∃λ ∈ ∆ + N , ∃φ ∈ C b (X ), u = φ cc ⊕ φ c with c = min i λ i c i where φ c is the c-transform of φ, i.e. for y ∈ Y, φ c (y) = inf x∈X c(x, y) -φ(x).
Let denote ω 1 , . . . , ω N the continuity modulii of c 1 , ..., c N . The existence of continuity modulii is ensured by the uniform continuity of c 1 , . . . , c N on the compact sets X × Y (Heine's theorem). Then a modulus of continuity for min i λ i c i is i λ i ω i . As φ c and φ cc share the same modulus of continuity than c = min i λ i c i , for u is Φ c , a common modulus of continuity is 2 × i ω i . More over, it is clear that for all x, y, {u(x, y) s.t. u ∈ Φ c } is compact. Then, applying Ascoli's theorem, we get, that Φ c is compact for . ∞ norm. By continuity of u → udµdν, the supremum is attained, and we get the existence of the optimum u * . The existence of optima (λ * , f * , g * ) immediately follows.

Let rst assume that (γ k ) N k=1 is a solution of Eq. (F. ) and (λ, f, g) is a solution of Eq. (F. ). Then it is clear that for all i, j, f ⊕ g ≤ λ i c i , (γ k ) N k=1 ∈ Γ N µ,ν and c j dγ j = c i dγ i (by Proposition ). Let k ∈ {1, . . . , N }. Moreover, by Theorem :

0 = f dµ + gdν -c i dγ i F Equitable and Optimal Transport with Multiple Agents = (f (x) + g(y))dγ i (x, - i λ i c i (x, y)dγ i (x, y) = (f (x) + g(y) -λ i c i (x, y))dγ i (x, y)
Since f ⊕g ≤ λ i c i and γ i are positive measures then f ⊕g = λ i c i , γ i -almost everywhere.

Reciprocally, let assume that there exist

(γ k ) N k=1 ∈ Γ N µ,ν and (λ, f, g) ∈ ∆ + n × C b (X ) × C b (Y) such that ∀i ∈ {1, ..., N }, f ⊕ g ≤ λ i c i , ∀i, j ∈ {1, ..., N } c i dγ i = c j dγ j and f ⊕ g = λ i c i γ i -a.e.
. Then, for any k:

c k dγ k = i λ i c i dγ i = i (f (x) + g(y))dγ i (x, y) = f (x)dµ(x) + g(y)dν(y)
≤ EOT c (µ, ν) by Theorem then γ k is solution of the primal problem. We also have for any k:

f dµ + gdν = i (f (x) + g(y))dγ i (x, y) = i λ i c i dγ i = c k dγ k ≥ EOT c (µ, ν)
then, thanks to Theorem , (λ, f, g) is solution of the dual problem.

Let now proof the result stated in Remark . Let assume the costs are strictly positive or strictly negative. If there exist i such that λ i = 0, thanks to the condition f ⊕g ≤ λ i c i , we get f ⊕g ≤ 0 and then f ⊕ g = 0 which contradicts the conditions f ⊕ g = λ k c k for all k.

F. . Proof of Proposition

Before proving the result let us rst introduce the following lemma.

F. Appendix: Proofs

Lemma . Let X and Y be Polish spaces. Let c := i ) 1≤i≤N a family of bounded below continuous costs. For (x, y) ∈ X × Y and λ ∈ ∆ + N , we define

c λ (x, y) := min i=1,...,N (λ i c i (x, y)) then for any (µ, ν) ∈ M 1 + (X ) × M 1 + (Y) EOT c (µ, ν) = sup λ∈∆ + N W c λ (µ, ν) (F. ) Proof. Let (µ, ν) ∈ M 1 + (X ) × M 1 + (Y) and c := (c i ) 1≤i≤N cost functions on X × Y. Let λ ∈ ∆ + N , then by Proposition : EOT c (µ, ν) = sup λ∈∆ + N sup (f,g)∈F λ c X f (x)dµ(x) + Y g(y)dν(y)
Therefore by denoting c λ := min i (λ i c i ) which is a continuous. The dual form of the classical Optimal Transport problem gives that:

sup (f,g)∈F λ c X f (x)dµ(x) + Y g(y)dν(y) = W c λ (µ, ν)
and the result follows.

Let us now prove the result of Proposition .

Proof. Let µ and ν be two probability measures. Let α ∈ (0, 1]. Note that if d is a metric then d α too. Therefore in the following we consider d a general metric on X × X . Let c 1 : (x, y) → 2 × 1 x =y and c 2 = d α . For all λ ∈ [0, 1):

c λ (x, y) := min(λc 1 (x, y), (1 -λ)c 2 (x, y)) = min(2λ, (1 -λ)d(x, y))
de nes a distance on X × X . Then according to [Villani, , Theorem . ]:

W c λ (µ, ν) = sup f s.t. f 1-c λ Lipschitz f dµ -f dν
Then thanks to Lemma we have

EOT (c 1 ,c 2 ) (µ, ν) = sup λ∈[0,1],f s.t. f 1-c λ Lipschitz f dµ -f dν Let now prove that in this case: EOT (c 1 ,c 2 ) (µ, ν) = β d (µ, ν). Let λ ∈ [0, 1) and f a c λ Lipschitz function. f is lower bounded: let m = inf f and (u n ) n a sequence satisfying f (u n ) → m. Then for all x, y, f (x) -f (y) ≤ 2λ and f (x) -f (y) ≤ (1 -λ)d(x, y).
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Let de ne g = f -λ. For x xed and for all n, f (x)f (u n ) ≤ 2λ, so taking the limit in n we get f (x)m ≤ 2λ. So we get that for all x, y, g(x) ∈ [-λ, +λ] and g

(x) -g(y) ∈ [-(1 -λ)d(x, zy), (1 -λ)d(x, y)]. Then ||g|| ∞ ≤ λ and ||g|| d ≤ 1 -λ. By construction, we also have f dµ -f dν = gdµ -gdν.Then ||g|| ∞ + ||g|| d ≤ 1. So we get that EOT (c 1 ,c 2 ) (µ, ν) ≤ β d (µ, ν). Reciprocally, let g be a function satisfying ||g|| ∞ +||g|| d ≤ 1. Let de ne f = g+||g|| ∞ and λ = ||g|| ∞ . Then, for all x, y, f (x) ∈ [0, 2λ] and so f (x) -f (y) ≤ 2λ. It is immediate that f (x) -f (y) ∈ [-(1 -λ)d(x, y), (1 -λ)d(x, y)]. Then we get f (x) -f (y) ≤ min(λ, (1 -λ)d(x, y)).
And by construction, we still have f dµ

-f dν = gdµ - gdν. So EOT (c 1 ,c 2 ) (µ, ν) ≥ β d (µ, ν).

Finally we get EOT

(c 1 ,c 2 ) (µ, ν) = β d (µ, ν) when c 1 : (x, y) → 2 × 1 x =y and c 2 = d a distance on X × X .

F. . Proof of Proposition

Lemma . Let x 1 , . . . , x N ≥ 0, then:

sup λ∈∆ + N min i λ i x i = 1 i 1 x i
Proof. First if there exists i such that x i = 0, we immediately have

sup λ∈∆ + N min i λ i x i = 0. g : λ → min i λ i x i is a continuous function on the compact set λ ∈ ∆ + N . Let denote λ * the maximum of g. Let show that for all i, j, λ * i x i = λ * j x j . Let denote i 0 , . . . , i k the indices such that λ * i l x i l = min i λ * i x i .
Let assume there exists j 0 such that: λ * j 0 x j 0 > min i λ * i x i , and that all other indices i have a larger λ * i x i ≥ λ * j 0 x j 0 . Then for > 0 su ciently small, let λ de ned as: λj 0 = λ * j 0 -, λi l = λ * i l + /k for all l ∈ {1, . . . , k} and λi = λ * i for all other indices. Then λ ∈ ∆ + N and g(λ * ) < g( λ), which contradicts that λ * is the maximum. Then at the optimum for all i, j, λ *

i x i = λ * j x j . So λ * i x i = C for a certain constant C. Moreover i λ * i = 1. Then 1/C = i 1/x i .
Finally, for all i,

λ * i = 1/x i i 1/x i
and then:

sup λ∈∆ + N min i λ i x i = 1 i 1 x i .
F. Appendix: Proofs Proof. Let µ and ν be two probability measures respectively on X Y. Let c := (c i ) i be a family of cost functions. Let de ne for λ ∈ ∆ + N , c λ (x, y) := min i (λ i c i (x, y)). We have, by linearity W c λ (µ, ν) ≤ min i (λ i W c i (µ, ν)). So we deduce by Lemma :

EOT c (µ, ν) = sup λ∈∆ + N W c λ (µ, ν) ≤ sup λ∈∆ + N min i λ i W c i (µ, ν) = 1 i 1 Wc i (µ,ν)
by Lemma which concludes the proof.

F. . Proof of Theorem

Proof. To show the strong duality of the regularized problem, we use the same sketch of proof as for the strong duality of the original problem. Let rst assume that, for all i, c i is continuous on the compact set X × Y. Let x λ ∈ ∆ + N . We de ne, for all u ∈ C b (X × Y):

V λ i (u) = ε i (x,y)∈X ×Y exp -u(x, y) -λ i c i (x, y) ε i dµ(x)dν(y) -1
and:

E(u) = f dµ + gdν if ∃(f, g) ∈ C b (X ) × C b (Y), u = f + g +∞ else
Let compute the Fenchel-Legendre transform of these functions. Let γ ∈ M(X × Y):

V λ * i (-γ) = sup u∈C b (X ×Y) -udγ -ε i (x,y)∈X ×Y exp -u(x, y) -λ i c i (x, y) ε i dµ(x)dν(y) -1 However, by density of C b (X × Y) in L 1 dµ⊗ν (X × Y)
, the set of integrable functions for µ ⊗ ν measure, we deduce that

V λ * i (-γ) = sup u∈L 1 dµ⊗ν (X ×Y) -udγ -ε i (x,y)∈X ×Y exp -u(x, y) -λ i c i (x, y) ε i dµ(x)dν(y) -1
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This supremum equals +∞ if γ is not positive and not absolutely continuous with regard to µ⊗ν. Let now denote F γ,λ (u) :=udγ-ε i (x,y)∈X ×Y exp -u(x,y)-λ i c i (x,y)

ε i dµ(x)dν(y) -1 .
F γ,λ * is Fréchet di erentiable and its maximum is attained for u * = ε i log dγ dµ⊗ν + λ i c i . Therefore we obtain that

V λ * i (-γ) = ε i log dγ dµ ⊗ ν dγ + 1 -γ(X × Y) + λ i c i dγ = λ i c i dγ + ε i KL(γ i ||µ × ν)
Thanks to the compactness of X × Y, all the V λ i for i ∈ {1, ..., N } are continuous on C b (X × Y). Therefore by applying Lemma , we obtain that:

inf u∈C b (X ×Y) i V λ i (u) + E(u) = sup γ 1 ...,γ N ,γ∈M(X ×Y) i γ i =γ - i V λ * i (γ i ) -E * (-γ) sup f ∈C b (X ), g∈C b (Y) f dµ + gdν - N i=1 ε i (x,y)∈X ×Y exp f (x) + g(y) -λ i c i (x, y) ε i dµ(x)dν(y) -1 = inf γ∈Γ N µ,ν N i=1 λ i c i dγ i + ε i KL(γ i ||µ ⊗ ν)
Therefore by considering the supremum over the λ ∈ ∆ N , we obtain that

sup λ∈∆ + N sup f ∈C b (X ), g∈C b (Y) f dµ + gdν - N i=1 ε i (x,y)∈X ×Y exp f (x) + g(y) -λ i c i (x, y) ε i dµ(x)dν(y) -1 = sup λ∈∆ + N inf γ∈Γ N µ,ν N i=1 λ i c i dγ i + ε i KL(γ i ||µ ⊗ ν) Let f : (λ, γ) ∈ ∆ + N ×Γ N µ,ν → N i=1 λ i c i dγ i +ε i KL(γ i ||µ⊗ν).
f is clearly concave and continuous in λ. Moreover γ → KL(γ i ||µ ⊗ ν) is convex and lower semi-continuous for weak topology [Dupuis and Ellis, , Lemma . . ]. Hence f is convex and lower-semi continuous in γ. ∆ + N is convex, and Γ N µ,ν is compact for weak topology (see Lemma ). So by Sion's theorem, we the expected result:

min γ∈Γ N µ,ν sup λ∈∆ + N i λ i c i dγ i + i ε i KL(γ i ||µ ⊗ ν) = sup λ∈∆ + N sup (f,g)∈C b (X )×C b (Y) X f (x)dµ(x) + Y g(y)dν(y) - N i=1 ε i X ×Y e f (x)+g(y)-λ i c i (x,y) ε i dµ(x)dν(y) -1
Moreove by xing γ ∈ Γ N µ,ν , we have

sup λ∈∆ + N i λ i c i dγ i + i ε i KL(γ i ||µ ⊗ ν) = max i c i dγ i + j ε j KL(γ j ||µ ⊗ ν)
which concludes the proof in case of continuous costs. A similar proof as the one of the Theorem allows to extend the results for lower semi-continuous cost functions.
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F. Appendix: Discrete cases F. . Exact discrete case

Let a ∈ ∆ + N and b ∈ + m and C := (C i ) 1≤i≤N ∈ (R n×m ) N be N cost matrices. Let also X := {x 1 , ..., x n } and Y := {y 1 , ..., y m } two subset of X and Y respectively. Moreover we de ne the two following discrete measure µ = n i=1 a i δ x i and ν = n i=1 b i δ y i and for all i, C i = (c i (x k , y l )) 1≤k≤n,1≤l≤m where (c i ) N i=1 a family of cost functions. The discretized multiple cost optimal transport primal problem can be written as follows:

EOT c (µ, ν) = EOT C (a, b) := inf P ∈Γ N a,b max i P i , C i where Γ N a,b := (P i ) 1≤i≤N ∈ R n×m + N s.t. ( i P i )1 m = a and ( i P T i )1 n = b .
As in the continuous case, strong duality holds and we can rewrite the dual in the discrete case also.

Proposition

(Duality for the discrete problem).

Let a ∈ ∆ + N and b ∈ ∆ + m and C := (C i ) 1≤i≤N ∈ (R n×m )
N be N cost matrices. Strong duality holds for the discrete problem and

EOT C (a, b) = sup λ∈∆ + N sup (f,g)∈F λ C f, a + g, b .
where

F λ C := {(f, g) ∈ R n + × R m + s.t. ∀i ∈ {1, ..., N }, f 1 T m + 1 n g T ≤ λ i C i }.

F. . Entropic regularized discrete case

We now extend the regularization in the discrete case. Let a ∈ ∆ + n and b ∈ ∆ + m and C := (C i ) 1≤i≤N ∈ (R n×m )

N be N cost matrices and ε = (ε i ) 1≤i≤N be nonnegative real numbers.

The discretized regularized primal problem is:

EOT ε C (a, b) = inf P ∈Γ N a,b max i P i , C i - N i=1 ε i H(P i )
where H(P ) = i,j P i,j (log P i,j -1) for P = (P i,j ) i,j ∈ R n×m + is the discrete entropy. In the discrete case, strong duality holds thanks to Lagrangian duality and Slater su cient conditions:

Proposition

(Duality for the discrete regularized problem). Let a ∈ ∆ + n and b ∈ ∆ + m and

C := (C i ) 1≤i≤N ∈ (R n×m )
N be N cost matrices and ε := (ε i ) 1≤i≤N be non negative reals.

Strong duality holds and by denoting

K λ i i = exp(-λ i C i /ε i ), we have EOT ε C (a, b) = sup λ∈∆ + N sup f ∈R n , g∈R m f, a + g, b - N i=1 ε i e f /ε i , K λ i i e g/ε i .
The objective function for the dual problem is strictly concave in (λ, f, g) but is neither smooth or strongly convex.

F. Appendix: Discrete cases

Proof. The proofs in the discrete case are simpler and only involves Lagrangian duality [Boyd et al., , Chapter ]. Let do the proof the regularized case, the one for the standard problem follows exactly the same path.

Let

a ∈ ∆ + N and b ∈ ∆ + m and C := (C i ) 1≤i≤N ∈ (R n×m ) N be N cost matrices. EOT ε C (a, b) = inf P ∈Γ N a,b max 1≤i≤N P i , C i - N i=1 ε i H(P i ) = inf (t,P )∈R×(R n×m + ) N ( i P i )1m=a ( i P T i )1n=b ∀j, P j ,C j ≤t t - N i=1 ε i H(P i ) = inf (t,P )∈R×(R n×m + ) N sup f ∈R n , g∈R m , λ∈R N + t + N j=1 λ j ( P j , C j -t) - N i=1 ε i H(P i ) + f T a - i P i 1 m + g T b - i P T i 1 n
The constraints are quali ed for this convex problem, hence by Slater's su cient condition [Boyd et al., , Section . . ], strong duality holds and:

EOT ε C (a, b) = sup f ∈R n , g∈R m , λ∈R N + inf (t,P )∈R×(R n×m + ) N t + N j=1 λ j ( P j , C j -t) - N j=1 ε j H(P j ) + f T   a - N j=1 P i 1 m   + g T   b - N j=1 P T i 1 n   = sup f ∈R n g∈R m λ∈∆ + N f, a + g, b + N j=1 inf P j ∈R n×m + P j , λ j C j -f 1 T n -1 m g T -ε j H(P j )
But for every i = 1, .., N the solution of inf

P j ∈R n×m + P j , λ j C j -f 1 T n -1 m g T -ε j H(P j ) is P j = exp f 1 T n + 1 m g T -λ j C j ε i
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Finally we obtain that

EOT ε C (a, b) = sup f ∈R n , g∈R m , + N f, a + g, b - N k=1 ε k i,j exp f i + g j -λ k C i,j k ε k F. Appendix: Other results

F. Appendix: Other results

F. . Utilitarian and Optimal Transport

Proposition . Let X and Y be Polish spaces. Let c := (c i ) 1≤i≤N be a family of bounded below continuous cost functions on X × Y, and µ ∈ M 1 + (X ) and ν ∈ M 1 + (Y). Then we have:

inf (γ i ) N i=1 ∈Γ N µ,ν i c i dγ i = W min i (c i ) (µ, ν) (F. )
Proof. The proof is a by-product of the proof of Theorem . The continuity of the costs is necessary since min i (c i ) is not necessarily lower semi-continuous when the costs are supposed lower semi-continuous.

Remark . We thank an anonymous reviewer for noticing that the utilitarian problem can be written also as an Optimal Transport on the space Z = (X × {1, . . . , N }) × (Y × {1, . . . , N }):

min γ∈ Γµ,ν x,i,y,j c((x, i), (y, j))dγ(x, i, y, j)
where the constraint space is Γµ,ν :

= γ ∈ M + 1 (Z) s.t. Π X γ = µ, Π Y γ = ν .

F. . MOT generalizes OT

Proposition . Let X and Y be Polish spaces. Let N ≥ 0, c = (c i ) 1≤i≤N be a family of nonnegative lower semi-continuous costs and let us denote for all k ∈ {1, . . . , N },

c k = (c i ) 1≤i≤k .
Then for all k ∈ {1, . . . , N }, there exists a family of costs

d k ∈ LSC(X × Y) N such that EOT d k (µ, ν) = EOT c k (µ, ν) (F. )
Proof. For all k ∈ {1, ..., N }, we de ne

d k := (c 1 , ..., (N -k + 1) × c k , ..., (N -k + 1) × c k ).
Therefore, thanks to Lemma we have

EOT d k (µ, ν) = sup λ∈∆ + N W c λ (µ, ν) (F. ) = sup (λ,γ)∈∆ k n inf γ∈Γµ,ν X ×Y min(λ 1 c 1 , .., λ k-1 c k-1 , λ k c k )dγ (F. )
where

∆ k n := {(λ, γ) ∈ ∆ + N ×R + : γ = (N -k +1)×min(λ k , ..., λ N )}. First remarks that γ = 1 - k-1 i=1 λ i ⇐⇒ (N -k + 1) × min(λ k , ..., λ N ) = N i=k λ i (F. )
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⇐⇒ λ k = ... = λ N (F. )
But in that case (λ 1 , ..., λ k-1 , γ) ∈ ∆ k and therefore we obtain that

EOT d k (µ, ν) ≥ sup λ∈∆ k inf γ∈Γµ,ν X ×Y min(λ 1 c 1 , .., λ k-1 c k-1 , γc k )dγ = EOT c k (µ, ν)
Finally by de nition we have γ ≤ N i=k λ i = 1 -k-1 i=1 λ i and therefore

X ×Y min(λ 1 c 1 , .., λ k-1 c k-1 , γc k )dγ ≤ X ×Y min λ 1 c 1 , .., λ k-1 c k-1 , 1 - k-1 i=1 λ i c k
Then we obtain that

EOT d k (µ, ν) ≤ EOT c k (µ, ν)
and the result follows.

Proposition . Let X and Y be Polish spaces and c := (c i ) 1≤i≤N a family of nonnegative lower semi-continuous costs on X × Y. We suppose that, for all i, c i = N × c 1 . Then for any

(µ, ν) ∈ M 1 + (X ) × M 1 + (Y) EOT c (µ, ν) = EOT c 1 (µ, ν) = W c 1 (µ, ν). (F. )
Proof. Let c := (c i ) 1≤i≤N such that for all i, c i = c 1 . for all (x, y) ∈ X × Y and λ ∈ ∆ + N , we have:

c λ (x, y) := min i (λ i c i (x, y)) = min i (λ i )c 1 (x, y)
Therefore we obtain from Lemma that

EOT c (µ, ν) = sup λ∈∆ + N W c λ (µ, ν) (F. )
But we also have that:

W c λ (µ, ν) = inf γ∈Γ (µ,ν) X ×Y min i (λ i c i (x, y))dγ(x, y) = min i (λ i ) inf γ∈Γ (µ,ν) X ×Y c 1 (x, y)dγ(x, y) = min i (λ i )W c 1 (µ, ν)
Finally by taking the supremum over λ ∈ ∆ + N we conclude the proof.

F. . Regularized EOT tends to EOT

Proposition . For (µ, ν) ∈ M 1 + (X ) × M 1 + (Y) we have lim ε→0 EOT ε c (µ, ν) = EOT c (µ, ν).
Proof. Let (ε l = (ε l,1 , . . . , ε l,N )) l a sequence converging to 0. Let γ l = (γ l,1 , . . . , γ l,N ) be the optimum of EOT ε l c (µ, ν). By Lemma , up to an extraction, γ l → γ = (γ 1 , . . . , γ N ) ∈ Γ N µ,ν . Let now γ = (γ 1 , . . . , γ N ) be the optimum of EOT c (µ, ν). By optimality of γ and γ l , for all i:

0 ≤ c i dγ l,i -c i dγ i ≤ i ε l,i (KL(γ i ||µ ⊗ ν) -KL(γ l,i ||µ ⊗ ν))
By lower semi continuity of KL(.||µ ⊗ ν) and by taking the limit inferior as l → ∞, we get for all i, lim inf →∞ c i dγ l,i = c i dγ i . Moreover by continuity of γ → c i dγ i we therefore obtain that for all i, c i dγ i ≤ c i dγ i . Then by optimality of γ the result follows.

F. . Projected Accelerated Gradient Descent

Proposition . Let a ∈ ∆ + N and b ∈ ∆ + m and C := (C i ) 1≤i≤N ∈ (R n×m ) N be N cost matrices and ε := (ε, ..., ε) where ε > 0. Then by denoting K λ i i = exp(-λ i C i /ε), we have EOT ε C (a, b) = sup λ∈∆ + N sup f ∈R n , g∈R m F ε C (λ, f, g) := f, a + g, b -ε log N i=1 e f /ε , K λ i i e g/ε + 1 . Moreover, F ε C is concave, di erentiable and ∇F is max max 1≤i≤N C i 2 ∞ ,2N ε Lipschitz-continuous on R N × R n × R m . Proof. Let Q := P := (P 1 , ..., P N ) ∈ (R n×m + ) N : N k=1 i,j P i,j k = 1 . Note that Γ N
a,b ⊂ Q, therefore from the primal formulation of the problem we have that

EOT ε C (a, b) = sup λ∈∆ + N inf P ∈Γ N a,b N i=1 λ i P i , C i -εH(P i ) = sup λ∈∆ + N inf P ∈Q sup f ∈R n , g∈R m N i=1 λ i P i , C i -εH(P i ) + f T a - i P i 1 m + g T b - i P T i 1 n

F Equitable and Optimal Transport with Multiple Agents

The constraints are quali ed for this convex problem, hence by Slater's su cient condition [Boyd et al., , Section . . ], strong duality holds. Therefore we have

EOT ε C (a, b) = sup λ∈∆ + N sup f ∈R n , g∈R m inf P ∈Q N i=1 λ i P i , C i -εH(P i ) + f T a - i P i 1 m + g T b - i P T i 1 n = sup λ∈∆ + N sup f ∈R n , g∈R m f, a + g, b + inf P ∈Q N k=1 i,j P i,j k λ k C i,j k + ε log P i,j k -1 -f i -g j
Let us now focus on the following problem:

inf P ∈Q N k=1 i,j P i,j k λ k C i,j k + ε log P i,j k -1 -f i -g j
Note that for all i, j, k and some small δ,

P i,j k λ k C i,j k -ε log P i,j k -1 -f i -g j < 0 if P i,j k ∈ (0, δ)
and this quantity goes to as P i,j k goes to . Therefore P i,j k > 0 and the problem becomes

inf P >0 sup ν∈R N k=1 i,j P i,j k λ k C i,j k + ε log P i,j k -1 -f i -g j + ν   N k=1 i,j P i,j k -1   .
The solution to this problem is for all k ∈ {1, .., N },

P k = exp f 1 T n +1mg T -λ k C k ε N k=1 i,j exp f i +g j -λ k C i,j k ε Therefore we obtain that EOT ε C (a, b) = sup λ∈∆ + N sup f ∈R n , g∈R m f, a + g, b F. Appendix: Other results -ε N k=1 i,j P i,j k   log   N k=1 i,j exp f i + g j -λ k C i,j k ε   + 1   = sup λ∈∆ + N sup f ∈R n , g∈R m f, a + g, b -ε   log   N k=1 i,j exp f i + g j -λ k C i,j k ε   + 1   .
From now on, we denote for all

λ ∈ ∆ + N EOT ε,λ C (a, b) := inf P ∈Γ N a,b N i=1 λ i P i , C i -εH(P i ) EOT ε,λ C (a, b) := sup f ∈R n , g∈R m f, a + g, b -ε   log   N k=1 i,j exp f i + g j -λ k C i,j k ε   + 1  
which has just been shown to be dual and equal. Thanks to [Nesterov, , Theorem ], as for all

λ ∈ R N , P ∈ Γ N a,b → N i=1 λ i P i , C i -εH(P i ) is ε-strongly convex, then for all λ ∈ R N , (f, g) → ∇ (f,g) F (λ, f, g) is A 2 1→2 ε
Lipschitz-continuous where A is the linear operator of the equality constraints of the primal problem. Moreover this norm is equal to the maximum Euclidean norm of a column of A. By de nition, each column of A contains only 2N non-zero elements, which are equal to one. Hence,

A 1→2 = √ 2N . Let us now show that for all (f, g) ∈ R n ×R m λ ∈ R N → ∇ λ F (λ, f, g) is also Lipschitz-continuous. Indeed we remarks that ∂ 2 F ∂λ q ∂λ k = 1 εν 2 [σ q,1 (λ)σ k,1 (λ) -ν(σ k,2 (λ)1 1 k=q )]
where 1 1 k=q = 1 i k = q and otherwise, for all k ∈ {1, ..., N } and p ≥ 1

σ k,p (λ) = i,j (C i,j k ) p exp f i + g j -λ k C i,j k ε ν = N k=1 i,j exp f i + g j -λ k C i,j k ε .
Let v ∈ R N , and by denoting ∇ 2 λ F the Hessian of F with respect to λ for xed f, g we obtain rst that

v T ∇ 2 λ F v = 1 εν 2   N k=1 v k σ q,1 (λ) 2 -ν N k=1 v 2 k σ k,2   F Equitable and Optimal Transport with Multiple Agents ≤ 1 εν 2 N k=1 v k σ q,1 (λ) 2 - 1 εν 2   N k=1 |v k | i,j exp f i + g j -λ k C i,j k ε i,j (C i,j k ) 2 exp f i + g j -λ k C i,j k ε   2 ≤ 1 εν 2   N k=1 v k σ q,1 (λ) 2 -   N k=1 |v k | i,j |C i,j k | exp f i + g j -λ k C i,j k ε   2   ≤ 0
Indeed the last two inequalities come from Cauchy Schwartz. Moreover we have

1 εν 2   N k=1 v k σ q,1 (λ) 2 -ν N k=1 v 2 k σ k,2   = v T ∇ 2 λ F v ≤ 0 - N k=1 v 2 k σ k,2 εν ≤ - N k=1 v 2 k max 1≤i≤N ( C i 2 ∞ ) ε ≤ Therefore we deduce that λ ∈ R N → ∇ λ F (λ, f, g) is max 1≤i≤N ( C i 2 ∞ ) ε Lipschitz-continuous, hence ∇F (λ, f, g) is max max 1≤i≤N C i 2 ∞ ,2N ε Lipschitz-continuous on R N ×R n ×R m . Denote L := max max 1≤i≤N C i 2 ∞ ,2N ε the Lipschitz constant of F ε C .
Moreover for all λ ∈ R N , let Proj ∆ + N (λ) the unique solution of the following optimization problem

min x∈∆ + N x -λ 2 2 . (F. )
Let us now introduce the following algorithm.

Beck and Teboulle [ ],

Tseng [ ] give us that the accelerated projected gradient ascent algorithm achieves the optimal rate for rst order methods of O(1/k 2 ) for smooth functions.

To perform the projection we use the algorithm proposed in Shalev-Shwartz and Singer [ ] which nds the solution of (F. ) after O(N log(N )) algebraic operations [Wang and Carreira-Perpinan, ].

F. . Fair cutting cake problem

Let X , be a set representing a cake. The aim of the cutting cake problem is to divide it in X 1 , . . . , X N disjoint sets among the N individuals. The utility for a single individual i for a slice S is denoted

F. Appendix: Other results

Algorithm : Accelerated Projected Gradient Ascent Algorithm

Input: C = (C i ) 1≤i≤N , a, b, ε, L Init: f -1 = f 0 ← 0 n ; g -1 = g 0 ← 0 m ; λ -1 = λ 0 ← (1/N, ..., 1/N ) ∈ R N for k = 1, 2, ... do (v, w, z) T ← (λ k-1 , f k-1 , g k-1 ) T + k-2 k+1 (λ k-1 , f k-1 , g k-1 ) T -(λ k-2 , f k-2 , g k-2 ) T ; λ k ← Proj ∆ + N v + 1 L ∇ λ F ε C (v, w, z) ; (g k , f k ) T ← (w, z) T + 1 L ∇ (f,g) F ε C (v, w, z). end Result: λ, f, g V i (S).
It is often assumed that V i (X ) = 1 and that V i is additive for disjoint There exists many criteria to assess fairness for a partition X 1 , . . . , X N such as proportionality

(V i (X i ) ≥ 1/N ), envy-freeness (V i (X i ) ≥ V i (X j )) or equitability (V i (X i ) = V j (X j )).
A possible problem to solve equitability and proportionality in the cutting cake problem is the following:

inf X 1 ,...,X N N i=1 X i =X max i V i (X i ) (F. )
Note that here we do not want to solve the problem under equality constraints since the problem might not be well de ned. Moreover the existence of the optimum is not immediate. A natural relaxation of this problem is when there is a divisible quantity of each element of the cake (x ∈ X ). In that case, the cake is no more a set but rather a distribution on this set µ. Following the primal formulation of EOT, it is clear that it is a relaxation of the cutting cake problem where the goal is to divide the cake viewed as a distribution. For the cutting cake problem with two cakes X and Y, the problem can be cast as follows:

inf X 1 ,...,X N s.t. N i=1 X i =X Y 1 ,...,Y N s.t. N i=1 Y i =Y max i V i (X i , Y i ) (F. )
Here EOT is the relaxation of this problem where we split the cakes viewed as distributions instead of sets themselves. Note that in this problem, the utility of the agents are coupled.
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F. Appendix: Illustrations and Experiments

F. . Primal Formulation

Here we show the couplings obtained when we consider three negative costs ci which corresponds to the situation where we aim to obtain a fair division of goods between three agents. Moreover we show the couplings obtained according to the transport viewpoint where we consider the opposite of these three negative cost functions, i.e. c i := -c i . We can see that the couplings obtained in the two situations are completely di erent, which is expected. Indeed in the fair division problem, we aim at nding couplings which maximize the total utility of each agent ( c i dγ 1 i ) while ensuring that their are equal while in the other case, we aim at nding couplings which minimize the total transportation cost of each agent ( c i dγ 2 i ) while ensuring that their are equal. Obviously we always have that

∀i c i dγ 2 i ≤ c i dγ 1 i .
Figure F. : Comparison of the optimal couplings obtained from standard OT for three di erent costs and EOT in case of negative costs (i.e. utilities). Blue dots and red squares represent the locations of two discrete uniform measures. Left, middle left, middle right: Kantorovich couplings between the two measures for negative Euclidean cost (-• 2 ), negative square Euclidean cost (-• 2 2 ) and negative . L norm (-• 1.5 1 ) respectively. Right: Equitable and optimal division of the resources between the N = 3 di erent negative costs (i.e. utilities) given by EOT. Note that the partition between the agents is equitable (i.e. utilities are equal) and proportional (i.e. utilities are larger than 1/N . ) and . L norm ( • 1.5 1 ) respectively. Right: transport couplings of EOT solving Eq. (F. ). Note that each cost contributes equally and its contribution is lower than the smallest OT cost.

F. . Dual Formulation

Here we show the dual variables obtained in the exact same settings as in the primal illustrations. 
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Transport viewpoint of the Dual Formulation. Assume that the N agents are not able to solve the primal problem (F. ) which aims at nding the cheapest equitable partition of the work among the N agents for transporting the distributions of goods µ to the distributions of stores ν. Moreover assume that there is an external agent who can do the transportation work for them with the following pricing scheme: he or she splits the logistic task into that of collecting and then delivering the goods, and will apply a collection price f (x) for one unit of good located at x (no matter where that unit is sent to), and a delivery price g(y) for one unit to the location y (no matter from which place that unit comes from). Then the external agent for transporting some goods µ to some stores ν will charge x∈X f (x)dµ(x) + y∈Y g(y)dν(y). However he or she has the constraint that the pricing must be equitable among the agents and therefore wants to ensure that each agent will pay exactly 1

N x∈X f (x)dµ(x) + y∈Y g(y)dν(y). Denote f = f N , g = g
N and therefore the price paid by each agent becomes x∈X f (x)dµ(x) + y∈Y g(y)dν(y). Moreover, to ensure that each agent will not pay more than he would if he was doing the job himself or herself, he or she must guarantee that for all λ ∈ ∆ + N , the pricing scheme (f ,g) satis es:

f ⊕ g ≤ min(λ i c i ).
Indeed under this constraint, it is easy for the agents to check that they will never pay more than what they would pay if they were doing the transportation task as we have

x∈X f (x)dµ(x) + y∈Y g(y)dν(y) ≤ X ×Y min i (λ i c i )dγ
which holds for every γ in particular for γ * = N i=1 γ * i optimal solution of the primal problem (F. ) from which follows

x∈X f (x)dµ(x) + y∈Y g(y)dν(y) ≤ N i=1 X ×Y min i (λ i c i )dγ * i ≤ N i=1 λ i X ×Y c i dγ * i = EOT c (µ, ν)
Therefore the external agent aims to maximise his or her selling price under the above constraints which is exactly the dual formulation of our problem.

Another interpretation of the dual problem when the cost are non-negative can be expressed as follows. Let us introduce the subset of

(C b (X ) × C b (Y)) N : G N c := (f k , g k ) N k=1 s.t. ∀k, f k ⊕ g k ≤ c k
Let us now show the following reformulation of the problem. See Appendix F. . for the proof.

F. Appendix: Illustrations and Experiments

Proposition . Under the same assumptions of Proposition , we have

EOT c (µ, ν) = sup (f k ,g k ) N k=1 ∈G N c inf t∈R (µ k ,ν k ) N k=1 ∈Υ N µ,ν t (F. ) s.t. ∀k, f k dµ k + g k dν k = t
Proof. Let us rst introduce the following Lemma which guarantees that compacity of Υ N µ,ν

for the weak topology.

Lemma . Let X and Y be Polish spaces, and µ and ν two probability measures respectively on X and Y. Then Υ N µ,ν is sequentially compact for the weak topology induced by γ = max i=1,..,N

µ i TV + ν i TV . Proof. Let (γ n ) n≥0 a sequence in Υ N µ,ν
, and let us denote for all n ≥ 0, γ n = (µ n i , ν n i ) N i=1 . We rst remarks that for all i ∈ {1, ..., N } and n ≥ 0, µ n i TV ≤ 1 and ν n i TV ≤ 1 therefore for all i ∈ {1, ..., N }, (µ n i ) n≥0 and (ν n i ) n≥0 are uniformly bounded. Moreover as {µ} and {ν} are tight, for any δ > 0, there exists K ⊂ X and L ⊂ Y compact such that µ(K c ) ≤ δ and ν(L c ) ≤ δ. Then, we obtain that for any for all i ∈ {1, ..., N },

µ n i (K c ) ≤ δ and ν n i (L c ) ≤ δ.
Therefore, for all i ∈ {1, ..., N }, (µ n i ) n≥0 and (ν n i ) n≥0 are tight and uniformly bounded and Prokhorov's theorem [Dupuis and Ellis, , Theorem A. . ] guarantees for all i ∈ {1, ..., N }, (µ n i ) n≥0 and (ν n i ) n≥0 admit a weakly convergent subsequence. By extracting a common convergent subsequence, we obtain that (γ n ) n≥0 admits a weakly convergent subsequence. By continuity of the projection, the limit also lives in Υ N µ,ν and the result follows.

We can now prove the Proposition. We have that for any

λ ∈ ∆ N sup (f,g)∈F λ c x∈X f (x)dµ(x) + y∈Y g(y)dν(y) ≤ sup (f k ,g k ) N k=1 ∈G N c inf (µ k ,ν k ) N i=1 ∈Υ N µ,ν N k=1 λ k x∈X f k (x)dµ k (x) + y∈Y g k (y)dν k (y) ≤ EOT c (µ, ν)
Then by taking the supremum over λ ∈ ∆ N , and by applying Theorem we obtain that

EOT c (µ, ν) = sup λ∈∆ N sup (f k ,g k ) N k=1 ∈G N c inf (µ k ,ν k ) N k=1 ∈Υ N µ,ν N k=1 λ k x∈X f k (x)dµ k (x) + y∈Y g k (y)dν k (y)
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Let G N c and Υ N µ,ν be endowed respectively with the uniform norm and the norm de ned in Lemma . Note that the objective is linear and continuous with respect to (µ k , ν k ) N k=1 and also (f k , g k ) N k=1 . Moreover the spaces G N c and Υ N µ,ν are clearly convex. Finally thanks to Lemma , Υ N µ,ν is compact with respect to the weak topology we can apply Sion's theorem Sion [ ] and we obtain that

EOT c (µ, ν) = sup (f k ,g k ) N k=1 ∈G N c inf (µ k ,ν k ) N k=1 ∈Υ N µ,ν sup λ∈∆ N N k=1 λ k x∈X f k (x)dµ k (x) + y∈Y g k (y)dν k (y) Let us now x (f k , g k ) N k=1 ∈ G N c and (µ k , ν k ) N k=1 ∈ Υ N µ,ν
, therefore we have:

sup λ∈∆ N N k=1 λ k x∈X f k (x)dµ k (x) + y∈Y g k (y)dν k (y) = sup λ inf t t × 1 - N i=1 λ i + N k=1 λ k x∈X f k (x)dµ k (x) + y∈Y g k (y)dν k (y) = inf t sup λ t + N k=1 λ k x∈X f k (x)dµ k (x) + y∈Y g k (y)dν k (y) -t = inf t t s.t. ∀k, f k dµ k + g k dν k = t
where the inversion is possible as the Slater's conditions are satis ed and the result follows. ], Scetbon and Varoquaux [ b], we use the p distance between two well-chosen analytic kernel mean embeddings evaluated at a nite set of locations. We show that this measure encodes the conditional dependence relation of the random variables under study. Under common assumptions on the richness of the RKHS, we derive the asymptotic null distribution of our measure, and design a simple nonparametric test that is distribution-free under the null hypothesis. Furthermore, we show that our test is consistent. Lastly, we validate our theoretical claims and study the performance of the proposed approach using simulated conditionally (in)dependent data and show that our testing procedure outperforms state-of-the-art methods.

G. . Related Work

Zhang et al. [

] propose a kernel based-test (KCIT), by leveraging the characterization of conditional independence derived in [Daudin, ] to form a test statistic. The authors of this work obtain the asymptotic null distribution of the proposed statistic and derived a practical procedure from it to test for H 0 . However, one main practical issue of the proposed test is that the asymptotic null distribution of their statistic cannot be computed directly as it involved unknown quantities. To address this problem, the authors propose to approximate it either with Monte Carlo simulations or by tting a Gamma distribution. In our work, we propose a new kernel-based statistic to test for conditional independence and show that its asymptotic null distribution is simply the standard normal distribution. In addition Zhang et al. [ ] extended the Gaussian process (GP) regression framework to the multi-output case, which allowed them to nd the hyperparameters involved in the test statistic, maximizing the marginal likelihood. We also deploy a similar optimization procedure to that of Zhang et al. [ ], however, in our case the output of the GP regression is univariate and therefore more computationally e cient. ] consider model-based methods to generate samples from the conditional distributions. In our work, we design a test statistic which characterizes the exact conditional independence of random variables and obtain its asymptotic null distribution without assuming any knowledge on the conditional distributions. Under some mild assumptions on the RKHSs considered, we also derive an approximate test statistic which admits the same asymptotic distribution and obtain a simple testing procedure from it.

G. Background and Notations

We rst recall some notions on kernels and mean embeddings which will be useful in the derivation of our conditional independence test. Let (D, A) be a Borel measurable space and denote M + 1 (D) the space of Borel probability measures on D. Let also (H, k) be a measurable RKHS on D, i.e. a functional Hilbert space satisfying the reproducing property: for all f ∈ H, x ∈ D, , x)] is nite, we de ne for all t ∈ D the mean embedding as µ ν,k (t) := x∈D k(x, t)dν(x). Note that µ ν,k is the unique element in H satisfying for all f ∈ H, E x∼ν (f (x)) = µ ν,k , f H . If ν → µ ν,k is injective, then the kernel k is said to be characteristic. This property is essential for the separation property to be veri ed when de ning a kernel metric between distributions, such as the MMD [Gretton et al., ], or the p distance [Scetbon and Varoquaux, b]. p -distance between mean embeddings. Let k be a de nite positive, characteristic, continuous, and bounded kernel on R d and p ≥ 1 an integer. Scetbon and Varoquaux [ b] showed that given an absolutely continuous Borel probability measure Γ on R d , the following function de ned for any (P,

f (x) = f, k x H . Let ν ∈ M + 1 (D). If E x∼ν [ k(x
Q) ∈ M + 1 (R d ) × M + 1 (R d ) as d p (P, Q) := R d |µ P,k (t) -µ Q,k (t)| p dΓ (t) 1 p (G. ) is a metric on M + 1 (R d ).
When the kernel k is analytic , Scetbon and Varoquaux [ b] also showed that for any J ≥ 1,

d p,J (P, Q) :=   1 J J j=1 |µ P,k (t j ) -µ Q,k (t j )| p   1 p , ( G. ) 
where (t j ) J j=1 are sampled independently from the Γ distribution, is a random metric on

M + 1 (R d ).
In what follows, we consider distributions on Euclidean spaces. More precisely, let d x , d y , d z ≥ 1, X := R dx , Y := R dy , and Z := R dz . Let (X, Z, Y ) be a random vector on X × Z × Y with law P XZY . We denote by P XY , P X , and P Y the law of (X, Y ), X, and Y , respectively. We also denote by Ẍ := X × Z, Ẍ := (X, Z), and P Ẍ its law. Let P X ⊗ P Y be the product of the two measures P X and P Y . Given (H Ẍ , k Ẍ ) and (H Y , k Y ), two measurable reproducing kernel Hilbert spaces (RKHS) on Ẍ and Y, respectively, we de ne the tensor-product RKHS

H = H Ẍ ⊗ H Y associated with its tensor-product kernel k = k Ẍ ⊗ k Y , de ned for all ẍ, ẍ ∈ Ẍ and y, y ∈ Y, as k((ẍ, y), (ẍ , y )) = k Ẍ (ẍ, ẍ ) × k Y (y, y ).

G. A new p kernel-based testing procedure

In this section, we present our statistical procedure to test for conditional independence. We begin by introducing a general measure based on the p distance d p between mean embeddings which An analytic kernel on R d is a positive de nite kernel such that for all x ∈ R d , k(x, •) is an analytic function, i.e., a function de ned locally by a convergent power series.

A random metric is a random process which satis es all the conditions for a metric almost-surely.

G An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings characterizes the conditional independence. We derive an oracle test statistic for which we obtain its asymptotic distribution under both the null and alternative hypothesis. Then, we provide an e cient procedure to e ectively compute an approximation of our oracle statistic and show that it has the exact same asymptotic distribution. To avoid any bootstrap or permutation procedures, we o er a normalized version of our statistic and derive a simple and consistent test from it.

G. . Conditional Independence Criterion

Let us rst introduce the criterion we use to de ne our statistical test. We de ne a probability measure P Ẍ⊗Y |Z on Ẍ × Y as

P Ẍ⊗Y |Z (A × B) := E Z E Ẍ|Z [1 A |Z]E Y |Z [1 B |Z] ,
for any

(A, B) ∈ B( Ẍ ) × B(Y)
, where 1 A is the characteristic function of a measurable set A and similarly for B. One now characterize the independence of X and Y given Z as follows: X ⊥ Y |Z if and only if P XZY = P Ẍ⊗Y |Z [Fukumizu et al., , Theorem ]. Therefore, we have a rst simple characterization of the conditional independence: X ⊥ Y |Z if and only if d p (P XZY , P Ẍ⊗Y |Z ) = 0. With this in place, we now state some assumptions on the kernel k considered in the rest of this paper.

Assumption . The kernel

k : ( Ẍ × Y) × ( Ẍ × Y) → R is definite positive, characteristic,
bounded, continuous and analytic. Moreover, the kernel k is a tensor product of kernels k Ẍ and k Y on Ẍ and Y, respectively.

It is worth noting that a su cient condition for the kernel k to be characteristic, bounded, continuous and analytic, is that both kernels k Ẍ and k Y are characteristic, bounded, continuous and analytic [Szabó and Sriperumbudur, ]. For example, if the kernels k Ẍ and k Y are Gaussian kernels on Ẍ and Y respectively, then k = k Ẍ ⊗ k Y satis es Assumption [Jitkrittum et al., ]. Using the analyticity of the kernel k, one can work with d p,J de ned in (G. ) instead of d p to characterize the conditional independence.

Proposition . Let p ≥ 1, J ≥ 1, k be a kernel satisfying Assumption , Γ an absolutely continuous Borel probability measure on Ẍ × Y, and {(t

(1) j , t (2) j )} J j=1 sampled independently from Γ . Then Γ -almost surely, d p,J (P XZY , P Ẍ⊗Y |Z ) = 0 if and only if X ⊥ Y |Z.
Proof. Recall that X ⊥ Y |Z if and only if P XZY = P Ẍ⊗Y |Z [Fukumizu et al., ]. If k is bounded, characteristic, and analytic, then, by invoking [Scetbon and Varoquaux, b, Theorem ] we get that d p p,J is a random metric on the space of Borel probability measures. This concludes the proof.

The key advantage of using d p,J (P XZY , P Ẍ⊗Y |Z ) to measure the conditional dependence is that it only requires to compute the di erences between the mean embeddings of P XZY and P Ẍ⊗Y |Z A gaussian kernel K on W ⊂ R d satis es for all w, w ∈ W, K(w, w ) := exp

w-w 2 2 2σ 2 .

G. . Approximation of the Test Statistic

Our goal here is to estimate

E Ẍ k Ẍ (t (1) j , Ẍ)|Z = • and E Y k Y (t (2) j , Y )|Z = •
for all j ∈ {1, . . . , J} in order to e ectively approximate of our statistic. To do so, we consider kernel-based regularized least squares (RLS) estimators. Let 1 ≤ r ≤ n and {(x i , z i , y i )} r i=1 be a subset of r samples. Let also j ∈ {1, . . . , J}, and denote by H 1,j Z and H 2,j Z two separable RKHSs on Z. Denote also by k 1,j Z and k 2,j Z their associated kernels and λ

(1)

j,r , λ (2) 
j,r > 0 the regularization parameters involved in the RLS regressions. Then, the RLS estimators are the unique solutions of the following problems:

min h∈H 2,j Z 1 r r i=1 h(z i ) -k Y (t (2) j , y i ) 2 + λ (2) j,r h 2 H 2,j Z and G. A new p kernel-based testing procedure min h∈H 1,j Z 1 r r i=1 h(z i ) -k Ẍ (t (1) j , (x i , z i )) 2 + λ (1) j,r h 2 H 1,j Z ,
which we denote by h

(2) j,r and h

(1) j,r , respectively. These estimators have simple expressions in term of the kernels involved. For example, let k Ẍ (t

(1) j , Ẍr ) := [k Ẍ (t (1) j , (x 1 , z 1 )), . . . , k Ẍ (t (1)
j , (x r , z r ))] T , then for any z ∈ Z, the estimator h

(1) j,r can be expressed as

h (1) j,r (z) = r i=1 [α (1) j,r ] i k 1,j Z (z i , z) , with α (1) j,r := (K 1,j r,Z + rλ (1) j,r Id r ) -1 k Ẍ (t (1) j , Ẍr ) ∈ R r ,
where K 1,j r,Z := (k 1,j Z (z i , z j )) 1≤i,j≤r . Similarly, we obtain simple expressions of h

(2) j,r . We can now introduce our new estimator of the witness function at each location (t (1) j , t

(2) j ) as follows:

∆ n,r (t (1) j , t (2) j ) := 1 n n i=1 k Ẍ (t (1) j , ẍi ) -h (1) j,r (z i ) × k Y (t (2) j , y i ) -h (2) j,r (z i ) ,
and the proposed test statistic becomes

CI n,r,p := J j=1 ∆ n,r (t (1) j , t (2) j ) p . 
Asymptotic Distribution. To get the asymptotic distribution, we need to make two extra assumptions. Let us de ne, for m ∈ {1, 2} and j ∈ {1, . . . , J}, L m,j Z -the operator on

L 2 (Z, P Z ) as L m,j Z (g)(•) = Ẍ k m,j Z (•, z)g(z)dP Z (z).
Assumption . There exists Q > 0, and γ ∈ [0, 1] such that for all λ > 0, m ∈ {1, 2} and j ∈ {1, . . . , J}:

Tr((L m,j Z + λI) -1 L m,j Z ) ≤ Qλ -γ .
Assumption . There exists 2 ≥ β > 1 such that for any j ∈ {1, . . . , J}, (t

(1) , t (2) ) ∈ Ẍ × Y, E Ẍ k Ẍ (t (1) , Ẍ)|Z = • ∈ R L 1,j Z β/2 , E Y k Y (t (2) , Y )|Z = • ∈ R L 2,j Z β/2 , where R L m,j Z β/2
is the image space of L m,j Z β/2

. Moreover, there exists L, σ > 0 such that for all l ≥ 2 and P Z -almost all z ∈ Z

E Ẍ k Ẍ (t (1) , Ẍ) -E Y k Ẍ (t (1) , Ẍ) l ≤ l!σ 2 L l-2 2 , E |Z=z k Y (t (2) , Y ) -E Y |Z=z k Y (t (2) , Y ) l ≤ l!σ 2 L l-2 2 .
These assumptions are central in our proofs and are common in kernel statistic studies [Caponnetto and De Vito, , Fischer and Steinwart, , Rudi and Rosasco, ]. Under these assumptions, Fischer and Steinwart [ ] proved optimal learning rates for RLS in RKHS norm, which is essential to guarantee that our new statistic CI n,r,p , estimated with RLS, has the same asymptotic law as our oracle estimator CI n,p .

To derive the asymptotic distribution of our new test statistic, we also need to de ne for all j ∈ {1, . . . , J} and i ∈ {1, . . . , n}, u i,r (j) := (k Ẍ (t

(1) j , ẍi ) -h (1) j,r (z i ))(k Y (t (2) j , y i ) -h (2) j,r (z i )), u i,r := ( u i,r (1) 
, . . . , u i,r (J)) T , and S n,r := 1 n n i=1 u i,r . Note that CI n,r,p = S n,r p p . In the following proposition, we show the asymptotic behavior of the statistic of interest. The proof of this proposition is given in Appendix G. . .

Proposition . Suppose that Assumptions

--are verified. Let p ≥ 1, J ≥ 1, ((t (1) 1 , t (2) 1 ), . . . , (t (1) J , t (2) J )) ∈ ( Ẍ ×Y) J , r n such that n β+γ 2β ∈ o(r n ) and λ rn = r -1 1+γ n . Then, under H 0 , we have √ n S n,rn → N (0, Σ). Moreover, under H 1 , if the ((t (1) 
j , t (2) 
j )) J j=1 are sampled independently according to Γ , then Γ -almost surely, for any q ∈ R, lim n→∞ P (n p/2 CI n,rn,p ≥ q) = 1.

From the above proposition, we can derive a consistent test at level α for 0 < α < 1. Indeed, we obtain the asymptotic null distribution of n p/2 CI n,rn,p and we show that under the alternative hypothesis H 1 , Γ -almost surely, n p/2 CI n,rn,p is arbitrarily large as n goes to in nity. For a xed level α, the test rejects H 0 if n p/2 CI n,rn,p exceeds the (1α)-quantile of its asymptotic null distribution and this test is therefore consistent. For example, when p ∈ {1, 2}, the asymptotic null distribution of n p/2 CI n,rn,p is either a sum of correlated Nakagami variables (p = 1) or a sum of correlated chi square variables (p = 2). However, computing the quantiles of these asymptotic null distributions can be computationally expensive as it requires a bootstrap or permutation procedure. In the following, we consider a di erent approach in which we normalize the statistic to obtain a simple asymptotic null distribution.

the probability density function of a Nakagami distribution of parameters m ≥ 1 2 and ω > 0 is for all

x ≥ 0, f (x, m, ω) = 2m m G(m)ω m x 2m-1 exp -m ω x 2
where G is the Euler Gamma function.

G. . Normalization of the Test Statistic

Herein, we consider a normalized variant of our statistic CI n,r,p in order to obtain a tractable asymptotic null distribution. Denote Σ n,r := 1 n n i=1 u i,r u T i,r and let δ n > 0, then the normalized statistic considered is given by NCI n,r,p := (Σ n,r + δ n Id J ) -1/2 S n,r p p .

In the next proposition, we show that our normalized approximate statistic converges in law to the standard multivariate normal distribution. The proof is given in Appendix G. . .

Proposition . Suppose that Assumptions

--are verified. Let p ≥ 1, J ≥ 1, ((t (1) 1 , t (2) 1 ), . . . , (t (1) J , t (2) J )) ∈ ( Ẍ × Y) J , r n such that n β+γ 2β ∈ o(r n ), λ n = r -1 1+γ n and (δ n ) n≥0 a sequence of positive real numbers such that lim n→∞ δ n = 0. Then, under H 0 , we have √ n(Σ n,r + δ n Id J ) -1/2 S n,rn → N (0, Id J ). Moreover, under H 1 , if the ((t (1) 
j , t (2) 
j )) J j=1 are sampled independently according to Γ , then Γ -almost surely, for any q ∈ R, lim n→∞ P (n p/2 NCI n,rn,p ≥ q) = 1.

Remark . We emphasize that J need not increase with n for test consistency. Note also that the regularization parameter δ n allows to ensure that (Σ n,r + δ n Id J ) -1/2 can be stably computed. In practice, δ n requires no tuning, and can be set to be a very small constant.

Our normalization procedure allows us to derive a simple statistical test, which is distributionfree under the null hypothesis.

Statistical test at level α:

Compute n p/2 NCI n,r,p , choose the threshold τ corresponding to the (1α) quantile of the asymptotic null distribution, and reject the null hypothesis whenever n p/2 NCI n,r,p is larger than τ . For example, if p = 2, the threshold τ is the (1α)-quantile of χ 2 (J), i.e., a sum of J independent standard χ 2 variables.

Total Complexity: Our normalized statistic NCI n,r,p requires rst to compute α (1) j,r and α

(2) j,r . These quantities can be evaluated in at most O(r 2 d + r 3 ) algebraic operations where d corresponds to the computational cost of evaluating the kernels involved in the RLS regressions. We will use the above for the complexity analysis of our method, although one can apply the Coppersmith-Winograd algorithm [Coppersmith and Winograd, ] that reduces the computational cost to O(r 2 d+r 2.376 ). Once α

(1) j,r and α

(2) j,r are available, evaluating the RLS estimators h

(1) j,r and h

(2) j,r require only O(rd) operations. Then ∆ n,r can be evaluated in O(nrd+r 2 d+r 3 ) operations and CI n,r,p has therefore a computational complexity of O(J(nrd + r 2 d + r 3 )). The computation of NCI n,r,p requires inverting a J × J matrix Σ n,r + δ n Id J , but this is fast and numerically stable: we empirically observe that only a small value of J is required (see Section G. ), e.g. less than

. Finally the total computational cost to evaluate NCI n,r,p is O(J(nrd+r 2 d+r 3 )+nJ 2 +J 3 ).

G. . Hyperparameters

The hyperparameters of our statistics NCI n,r,p fall into two categories: those directly involved with the test and those of the regression. We assume from now on that all the kernels involved in the computation of our statistics are Gaussian kernels, and consider n i.i.d. observations {(x i , z i , y i )} n i=1 . The rst category includes both the choice of the locations ((t x , t z ) j , (t y ) j )) J j=1 on which di erences between the mean embeddings are computed and the choice of the kernels k Ẍ and k Y . Each location t x , t y , t z is randomly chosen according to a Gaussian variable with mean and covariance of {x i } n i=1 , {y i } n i=1 , and {z i } n i=1 , respectively. As we consider Gaussian kernels, we should also choose the bandwidths. Here, we restrict ourselves to one-dimensional kernel bandwidths σ X , σ Y , and σ Z for the kernels k X , k Y , and k Z , respectively. More precisely, we select the median of

{ x i -x j } n i,j=1 , { y i -y j } n i,j=1
, and { z iz j } n i,j=1 for σ X , σ Y , and σ Z , respectively.

The other category contains all the kernels k m,j and the regularization parameters λ (m) j,r involved in the RLS problems. These parameters should be selected carefully to avoid either undertting of the regressions, which may increase the type-I error, or over tting, which may result in a large type-II error. To optimize these, similarly to Zhang et al. [ ], we consider a GP regression that maximizes the likelihood of the observations. While carrying out a precise GP regression can be prohibitive, in practice, we run this method only on a batch of size 200 observations randomly selected and we perform only 10 iterations for choosing the hyperparameters involved in the RLS problems. Hence, our optimization procedure does not a ect the total computational cost as it is independent of the number of observations n. ) and (G. ) with Gaussian noises for multiple p and J. For each problem, we draw n = 1000 samples and repeat the experiment times. We set r = 1000 and report the results obtained when varying the dimension d z of each problem from to . Observe that when J = 1, for all p ≥ 1 NCI n,r,1 = NCI n,r,p , therefore there is only one common black curve.

G. Experiments

The goal of this section is three fold: (i) to investigate the e ects of the parameters J and p on the performances of our method, (ii) to validate our theoretical results depicted in Propositions and , and (iii) to compare our method with those proposed in the literature. In more For each problem, we draw n = 1000 samples and repeat the experiment times. In all the experiments, we set J = 5 and p = 2, thus the asymptotic null distribution follows a χ 2 (5). Observe that both the oracle statistic and the approximated one recover the true asymptotic distribution under the null hypothesis. When H 1 holds, we can see that the two statistics manage to reject the null hypothesis. This gure also illustrates the empirical distribution of our approximate statistic when we do not optimize the hyperparameters involved in the RLS estimators: in this case we do not control the type-I error in the high dimensional setting. detail, we rst compare the performance of our method, both in terms of both power and type-I error, by varying the hyperparameters J and p. We show that our method is robust to the choice of p, and also show that the power increases as J increases. Then, we explore synthetic toy problems where one can derive an explicit formulation of the conditional means involved in our test statistic. In these cases, we can compute our proposed oracle statistic CI n,p and its normalized version, allowing us to show that under the null hypothesis we recover the theoretical asymptotic null distribution obtained in Proposition . We also reach to similar conclusions regarding our approximate normalized test statistic, NCI n,r,p . In addition, in this experiment, we investigate the e ect of the proposed optimization procedure for choosing the hyperparameters involved in the RLS estimators of NCI n,r,p , and show its bene ts. Finally, we demonstrate on several synthetic experiments that our proposed testing procedure outperforms state-of-the-art (SoTA) methods both in terms of statistical power and type-I error, even in the high dimensional setting.

G An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

Benchmarks. We consider synthetic data sets and compare the power and type-I error of our test NCI n,r,p to the following existing CI methods: KCIT [Zhang et al., ], RCIT [Strobl et al., ], CCIT [Sen et al., ], CRT [Candès et al., ] using correlation statistic from [Bellot and van der Schaar, ], FCIT [Chalupka et al., ] and GCM [Shah and Peters, ]. Software packages of all the above tests are freely available online and each experiment was run on a single CPU.

Evaluation. To evaluate the performance of the tests, we consider four metrics. Under H 0 , we report either the Kolmogorov-Smirnov (KS) test statistic between the distribution of p-values returned by the tests and the uniform distribution on [0, 1], or the type-I errors at level α = 0.05. Note that a valid conditional independence test should control the type-I error rate at any level α. Here, a test that generates a p-value that follows the uniform distribution over [0, 1] will achieve this requirement. The latter property of the p-values translates to a small KS statistic value. Under H 1 , we compute either the area under the power curve (AUPC) of the empirical cumulative density function of the p-values returned by the tests, or the resulting type-II error. A conditional test has higher power when its AUPC is closer to one. Alternatively, the smaller the type-II error is, the more powerful the test is. E ects of p, J and r. Our rst experiment studies the e ects of p and J on our proposed method. In addition we investigate the sensitivity of the method when varying the rank regression r both in term of performance and time. To do so, we follow the synthetic experiment proposed in Strobl et al. [ ]. To evaluate the type-I error, we generate data that follows the model:

X = f 1 (ε x ), Y = f 2 (ε y ), and Z ∼ N (0 d , I dz ), (G. )
where Z, ε x , and ε y are samples from jointly independent standard Gaussian or Laplace distributions, and f 1 and f 2 are smooth functions chosen uniformly from the set

{(•), (•) 2 , (•) 3 , tanh(•), exp(-| • |)}.
To compare the power of the tests, we also consider the model:

X = f 1 (ε x + 0.8ε b ), Y = f 2 (ε y + 0.8ε b ), (G. )
where ε b is sampled from a standard Gaussian or Laplace distribution. In Figure G. , we compare the KS statistic and the AUPC of our method when varying p and J. That gure shows that (i) our method is robust to the choice of p, and (ii) the performances of the test do not necessarily increase as J increases. In Figure G. (see Appendix G. . ), we also show that the power of the test is not very sensible to the choice of the rank r, however, we observe that the type-I error decreases as the rank r increases. Armed with theses observations, in the following experiments, we always set p = 2, J = 5 and r = n for our method.

Illustrations of our theoretical ndings. The following experiment con rms that validity of our theoretical results from Propositions and . For that purpose, we generate two synthetic data sets for which either H 0 or H 1 holds. Concretely, we de ne a rst triplet (X, Y, Z) as follows:

X = P 1 (Z) + ε x , Y = P 1 (Z) + ε y . (G. )
Above, ε x and ε y follow two independent standard normal distributions, Z ∼ N (0 dz , Σ) with Σ ∈ R dz×dz . The covariance matrix Σ is obtained by multiplying product of a random matrix whose entries are independent and follow standard normal distribution, by its transpose, and P 1 is a projection onto the rst coordinate. As a result, in this case, we have that X ⊥ Y | Z. We also consider a modi cation of the above data generating function for which H 1 holds. This is done by adding a noise component ε b that is shared across X and Y as follows:

X = P 1 (Z) + ε x + ε b , Y = P 1 (Z) + ε y + ε b , (G. )
where ε b follows the standard normal distribution. Since we consider Gaussian kernels, we can obtain an explicit formulation of

E Ẍ k Ẍ (t (1) j , Ẍ)|Z = • and E Y k Y (t (2) 
j , Y )|Z = • for both data generation functions. See Appendix G. . for more details. Consequently, we are able to compute both the normalized version of our oracle statistic CI n,p and our approximate normalized statistic NCI n,r,p . In Figure G. , we show that both statistics manage to recover the asymptotic distribution under H 0 , and reject the null hypothesis under H 1 . In addition, we show that in the high dimensional setting, only our optimized version of NCI n,r,p -obtained by optimizing the hyperparameters involved in the RLS estimators of our statistic-manages to recover the asymptotic distribution under H 0 .

Comparisons with existing tests. In our next experiments, we compare the performance of our method (implemented with the optimized version of our statistic) with state-of-the-art techniques for conditional independence testing. We rst study the two data generating functions from (G. ) and (G. ). For each of these problems, we consider two settings. In the rst, we x the dimension d z while varying the number of samples n. In the second, we x the number of samples while varying the dimension of the problem. To evaluate the performance of the tests, we compare the type-I errors at level α = 0.05 under the rst model (G. ), and, for second model (G. ), we evaluate the power of the test by presenting the type-II error. Figures G. (Gaussian case) and G. (Laplace case) demonstrate that our method consistently controls the type-I error and obtains a power similar to the best SoTA tests. In Figures G. and G. , we also compare the KS statistic and the AUPC of the di erent tests, and obtain similar conclusions. In addition, we investigate the high dimensional regime and show in Figure G. and G. that our test is the only one which manages to control the type-I error while being competitive in term of power with other methods. See Appendix G. . for more details.
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We now conduct another series of experiments that build upon the synthetic data sets presented in [Zhang et al., , Li and Fan, , Doran et al., , Bellot and van der Schaar, ]. To compare type-I error rates, we generate simulated data for which H 0 is true:

X = f 1 Z + ε x , Y = f 2 Z + ε y . (G. )
Above, Z is the average of Z = (Z 1 , • • • , Z dz ), ε x and ε y are sampled independently from a standard Gaussian or Laplace distribution, and f 1 and f 2 are smooth functions chosen uniformly from the set {(•), (•) 2 , (•) 3 , tanh(•), exp(-| • |)}. To evaluate the power, we consider the following data generating function:

X = f 1 Z + ε x + ε b , Y = f 2 Z + ε y + ε b , (G. )
where 

G. Conclusion

We introduced a new kernel-based statistic for testing CI. We derived its asymptotic null distribution and designed a simple testing procedure that emerges from it. To our knowledge, we are the rst article to propose an asymptotic test for CI with a tractable null distribution. Using various synthetic experiments, we demonstrated that our approach is competitive with other SoTA methods both in terms of type-I and type-II errors, even in the high dimensional setting.

G. Appendix: Proofs

G. . On the Formulation of the Witness Function

Let (t j ) J j=1 sampled independently from the Γ distribution, then by de nition of d p,J (•, •), we have that

d p,J (P XZY , P Ẍ⊗Y |Z ) :=   1 J J j=1 µ P XZY ,k Ẍ •k Y (t j ) -µ P Ẍ⊗Y |Z ,k Ẍ •k Y (t j ) p   1 p
, Moreover thanks to Assumption , we have that for any (t (1) , t (2) ) ∈ Ẍ × Y

µ P Ẍ⊗Y |Z ,k Ẍ •k Y (t (1) , t (2) ) = E Z E Ẍ k Ẍ (t (1) , Ẍ)|Z E Y k Y (t (2) , Y )|Z , G. Appendix: Proofs and µ P XZY ,k Ẍ •k Y (t (1) , t (2) ) = E k Ẍ (t (1) , Ẍ)k Y (t (2) , Y ) .
Let us now introduce the following witness function

∆(t (1) , t (2) ) := E k Ẍ (t (1) , Ẍ) -E Ẍ k Ẍ (t (1) , Ẍ)|Z × k Y (t (2) , Y ) -E Y k Y (t (2) , Y )|Z .
Therefore we obtain that

∆(t (1) , t (2) ) = E k Ẍ (t (1) , Ẍ)(k Y (t (2) , Y ) -E k Ẍ (t (1) , Ẍ)E Y k Y (t (2) , Y )|Z + E E Ẍ k Ẍ (t (1) , Ẍ)|Z E Y k Y (t (2) , Y )|Z -E E Ẍ k Ẍ (t (1) , Ẍ)|Z k Y (t (2) , Y ) . Now remarks that E k Ẍ (t (1) , Ẍ)E Y k Y (t (2) , Y )|Z = E E k Ẍ (t (1) , Ẍ)E Y k Y (t (2) , Y )|Z Z = E E Y k Y (t (2) , Y )|Z E Ẍ k (t (1) , Ẍ)|Z .
Simiarly, we have that

E E Ẍ k Ẍ (t (1) , Ẍ)|Z k Y (t (2) , Y ) = E E Y k Y (t (2) , Y )|Z E Ẍ k Ẍ (t (1) , Ẍ)|Z
from which follows that 2) ) .

∆(t (1) , t (2) ) = E k Ẍ (t (1) , Ẍ)(k Y (t (2) , Y ) -E E Y k Y (t (2) , Y )|Z E Ẍ k Ẍ (t (1) , Ẍ)|Z = µ P XZY ,k Ẍ •k Y (t (1) , t (2) ) -µ P Ẍ⊗Y |Z ,k Ẍ •k Y (t (1) , t ( 

G. . Proof of Proposition

Proof. For all j ∈ [J]:

√ n ∆ n,r (t (1) j , t (2) j ) (G. ) = √ n 1 n n i=1 k Ẍ (t (1) j , ẍi ) -h (1) j,r (z i ) k Y (t (2) j , y i ) -h (2) j,r (z i ) = √ n∆ n (t (1) j , t (2) 
j ) (G. )
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+ √ n 1 n n i=1 k Ẍ (t (1) j , ẍi ) -E Ẍ k Ẍ (t (1) j , Ẍ)|Z = z i E Y k Y (t (2) j , Y )|Z = z i -h (2) j,r (z i ) (G. ) + √ n 1 n n i=1 E Ẍ k Ẍ (t (1) j , Ẍ)|Z = z i -h (1) j,r (z i ) k Y (t (2) j , y i ) -E Y k Y (t (2) j , Y )|Z = z i (G. ) + √ n 1 n n i=1 E Ẍ k Ẍ (t (1) j , Ẍ)|Z = z i -h (1) j,r (z i ) E Y k Y (t (2) j , Y )|Z = z i -h (2) j,r (z i ) (G. )
Let us treat the four terms of this decomposition. The term (G. ) has been treated by Propostion , and satis es, under the null hypothesis H 0

√ n∆ n (t (1) j , t (2) 
j ) → n→∞ N 0, E k Ẍ (t (1) j , Ẍ) -E Ẍ k Ẍ (t (1) j , Ẍ)|Z k Y (t (2) j , Y ) -E Y k Y (t (2) j , Y )|Z
Let us now show that the last term (G. ) converges towards 0 in probability. Let us denote for all j, e

(1)

j : z → E Ẍ k Ẍ (t (1) 
j , Ẍ)|Z = z and e

(2)

j : z → E Y k Ẍ (t (2) 
j , Y )|Z = z , both elements of H Z by Assumption . Then we have, for all i ∈ [n]:

e (1) j (z i ) -h (1) j,r (z i ) e (2) j (z i ) -h (2) j,r (z i ) = e (1) j -h (1) j,r ⊗ e (2) j -h (2) j,r , k Z (z i , •) ⊗ k Z (z i , •) .
Then we deduce, by denoting:

µ ZZ := E[k Z (Z, •)k Z (Z, •)] and μZZ := 1 n n i=1 k Z (z i , •)k Z (z i , •), that 1 n n i=1 E Ẍ k Ẍ (t (1) j , Ẍ)|Z = z i -h (1) j,r (z i ) E Y k Y (t (2) j , Y )|Z = z i -h (2) j,r (z i ) = e (1) j -h (1) j,r ⊗ e (2) j -h (2) j,r , 1 n n i=1 k Z (z i , •) ⊗ k Z (z i , •) = e (1) j -h (1) j,r ⊗ e (2) j -h (2) j,r , µ ZZ + e (1) j -h (1) j,r ⊗ e (2) j -h (2) j,r , μZZ -µ ZZ .
Then remarks that:

| e (1) j -h (1) j,r ⊗ e (2) j -h (2) j,r , µ ZZ | = |E Z e (1) j (Z) -h (1) j,r (Z) e (2) j (Z) -h (2) j,r (Z) | ≤ e (1) j -h (1) j,r L 2 (P Z ) e (2) j -h (2) j,r L 2 (P Z )
Under the Assumptions -, for λ r = 1 r β+γ , we have, using the results from Fischer and Steinwart [ ]: e

(1)

j -h (1) j,r 2 L 2 (P Z ) ≤ Cτ 2 r β β+γ
with probability 1 -4e -τ and e

(2)

j - h (2) j,r 2 L 2 (P Z ) ≤ Cτ 2 r β β+γ
with probability 1 -4e -τ , for some constant C independent from n and τ . then by union bound, we deduce with probability 1 -8e -τ we have:

√ n| e

(1) jh

(1) j,r ⊗ e

(2)

j -h (2) j,r , µ ZZ | ≤ √ n C 2 τ 4 r β β+γ Then, if √ n ∈ o(r β β+γ
), we have:

√ n| e

(1) jh

(1) j,r ⊗ e

(2)

j -h (2) j,r , µ ZZ | → 0 in probability when n → ∞. Moreover: | e (1) j -h (1) j,r ⊗ e (2) j -h (2) j,r , μZZ -µ ZZ | ≤ e (1) j -h (1) j,r H Z e (2) j -h (2) j,r H Z μZZ -µ ZZ H Z ⊗H Z ,
and by Markov inequality, μZZµ ZZ H Z ⊗H Z ≤ C nδ with probability 1δ for some constant C . Moreover, under Assumption -, we have e

(1) jh

(1) j,r H Z → 0 and e

(2) jh

(2) j,r H Z → 0 in probability. Then, we deduce that √ n| e

(1) jh

(1) j,r ⊗ e

(2) jh

(2) j,r , μZZµ ZZ | → 0 in probability. Finally, the term (G. ) goes to 0 in probability.

The terms (G. ) and (G. ) are similar and can be treated the same way. We only focus on the term (G. ). For all i ∈ [n]:

| 1 n n i=1 k Ẍ (t (1) j , ẍi ) -E Ẍ k Ẍ (t (1) j , Ẍ)|Z = z i E Y k Y (t (2) j , Y )|Z = z i -h (2) j,r (z i ) | = | 1 n n i=1 k Ẍ (t (1) j , •), k Ẍ (ẍ i , •) -E Ẍ k Ẍ ( Ẍ, •)|Z = z i H Ẍ e
(2)

j -h (2) j,r , k Z (z i , •) H Z | = | 1 n n i=1 k Ẍ (t (1) , •) ⊗ e (2) j -h (2) j,r , k Ẍ (ẍ i , •) -E Ẍ k Ẍ ( Ẍ, •)|Z = z i ⊗ k Z (z i , •) H Ẍ ⊗H Z | = | k Ẍ (t (1) , •) ⊗ e (2) j -h (2) j,r , 1 n n i=1 k Ẍ (ẍ i , •) -E Ẍ k Ẍ ( Ẍ, •)|Z = z i ⊗ k Z (z i , •) H Ẍ ⊗H Z | ≤ k Ẍ (t (1) , •) H Ẍ e (2) j -h (2) j,r H Z μ1 ẌZ -µ ẌZ H Ẍ ⊗H Z + μ2 Ẍ -µ ẌZ H Ẍ ⊗H Z
where:

μ1 ẌZ := 1 n n i=1 k Ẍ (ẍ i , •)⊗k Z (z i , •), μ2 ẌZ := 1 n n i=1 E Ẍ k Ẍ ( Ẍ, •)|Z = z i ⊗ k Z (z i , •), and µ ẌZ := E[k Y (y, •)k Z (z, •)].
By 

-2δ, √ n μ1 ẌZ -µ ẌZ H Ẍ ⊗H Z + μ2 ẌZ -µ ẌZ H Ẍ ⊗H Z ≤ 2 C δ .
Moreover, under Assumption -, using the results from Fischer and Steinwart [ ], we have that e

(2) jh

(2) j,r H Z converges towards 0 in probability. Then the term (G. ) converges in probability towards 0. The same reasoning holds for (G. ).

Finally, by Slutsky's Lemma:

√ n ∆ n,r (t (1) j , t (2) 
j ) → n→∞ N 0, E k Ẍ (t (1) j , Ẍ) -E Ẍ k Ẍ (t (1) j , Ẍ)|Z k Y (t (2) j , Y ) -E Y k Y (t (2) j , Y )|Z .
Now we have:

S n,r = ∆ n,r (t (1) j , t (2) j 
)

j∈[J] = ∆ n (t (1) j , t (2) j 
)

j∈[J] + ∆ n,r (t (1) j , t (2) 
j ) -∆ n (t (1) j , t (2) j 
)

j∈[J]
and we have shown that √ n ∆ n,rn (t

(1) j , t (2) 
j ) -∆ n (t (1) j , t (2) j ) 
j∈ [J] goes to 0 in probability. Then by Slutsky Lemma and Proposition , we get: S n,rn → N (0, Σ).

Let r > 0. Under H 1 , S n,rn → S = 0. Let consider a realization of (t

(1) j , t

(2) j ) j∈[J] such that S p = 0. So P (n p/2 S n,rn p ≥ r) → 1 as n → ∞ because S p = 0. ) with Laplace noises. Each point in the gures is obtained by repeating the experiment for independent trials. In each plot the dimension d z is varying from to ; here, the number of samples n is xed and equals to 1000.

H Variance Reduction for Better

Sampling in Continuous Domains

Design of experiments, random search, initialization of population-based methods, or sampling inside an epoch of an evolutionary algorithm uses a sample drawn according to some probability distribution for approximating the location of an optimum. Recent papers have shown that the optimal search distribution, used for the sampling, might be more peaked around the center of the distribution than the prior distribution modelling our uncertainty about the location of the optimum. We con rm this statement, provide explicit values for this reshaping of the search distribution depending on the population size λ and the dimension d, and validate our results experimentally.

H. Introduction

We consider the setting in which one aims to locate an optimal solution x * ∈ R d for a given blackbox problem f : R d → R through a parallel evaluation of λ solution candidates. A simple, yet e ective strategy for this one-shot optimization setting is to choose the λ candidates from a normal distribution N (µ, σ 2 ), typically centered around an a priori estimate µ of the optimum and using a variance σ 2 that is calibrated according to the uncertainty with respect to the optimum. Random independent sampling is -despite its simplicity -still a very commonly used and performing good technique in one-shot optimization settings. There also exist more sophisticated sampling strategies like Latin Hypercube Sampling (LHS McKay et al. [ b]), or quasi-random constructions such as Sobol, Halton, ], where the authors consider the setting in which the optimum x * is known to be distributed according to a standard normal distribution N (0, I d ), and the goal is to minimize the distance of the best of the λ samples to this optimum. In the context of evolution strategies, one would formulate this problem as minimizing the sphere function with a normally distributed optimum. Intuitively, one might guess that sampling the λ candidates from the same prior distribution, N (0, I d ), should be optimal. This intuition, however, was disproved in Cauwet et al. [ ], where it is shown that -unless ] how to optimally scale the variance σ 2 when sampling the λ solution candidates from a normal distribution N (0, σ 2 I d ). While the result from Cauwet et al. [ ] suggests to use σ = 0, we show in this work that a more e ective strategy exists. More precisely, we show that setting σ 2 = min{1, Θ(log(λ)/d)} is asymptotically optimal, as long as λ is sub-exponential, but growing in d. Our variance scaling factor reduces the median approximation error by a 1ε factor, with ε = Θ(log(λ)/d). We also prove that no constant variance nor any other variance scaling as ω(log(λ)/d) can achieve such an approximation error. Note that several optimization algorithms operate with rescaled sampling. Our theoretical results therefore set the mathematical foundation for empirical rules of thumb such as, for example, used in e.g. Rahnamayan Our Empirical Results. We complement our theoretical analyses by an empirical investigation of the rescaled sampling strategy. Experiments on the sphere function con rm the results. We also show that our scaling factor for the variance yields excellent performance on two other benchmark problems, the Cigar and the Rastrigin function. Finally, we demonstrate that these improvements are not restricted to the one-shot setting by applying them to the initialization of iterative optimization strategies. More precisely, we show a positive impact on the initialization of Although an intuitive way to estimate the mean of a standard gaussian distribution is to compute the empirical mean, Stein showed that this strategy is suboptimal w.r.t. mean squared error and that the empirical mean needs to be rescaled by some factor to be optimal.

H

H. Problem Statement and Related Work

The context of our theoretical analysis is one-shot optimization. In one-shot optimization, we are allowed to select λ points x 1 , . . . , x λ ∈ R d . The quality f (x i ) of these points is evaluated, and we measure the performance of our samples in terms of simple regret Bubeck et 

al. [ ] min i=1,...,λ f (x i ) -inf x∈R d f (x).
That is, we aim to minimize the distance -measured in quality space -of the best of our points to the optimum. This formulation, however, also covers the case in which we aim to minimize the distance to the optimum in the search space: we simply take as f the root of the sphere function f x * : R d → R, x → xx * 2 , where here and in the following . denotes the Euclidean norm.

Rescaled Random Sampling for Randomly Placed Optimum. In the setting studied in Sec. H. we assume that the optimum x * is sampled from the standard multivariate Gaussian distribution N (0, I d ), and that we aim to minimize the regret min i=1,...,λ x ix * 2 through i.i.d. samples x i ∼ N (0, σ 2 I d ). That is, in contrast to the classical design of experiments (DoE) setting, we are only allowed to choose the scaling factor σ, whereas in DoE more sophisticated (often quasi-random and space-lling designs -which are typically not i.i.d. samples) are admissible. Intuitively, one might be tempted to guess that σ = 1 should be a good choice, as in this case the λ points are chosen from the same distribution as the optimum x * . This intuition, however, was refuted in [Cauwet et al., , Theorem ], where is was shown that the middle point sampling strategy, which uses σ = 0 (i.e., all λ points collapse to (0, . . . , 0)) yields smaller regret than sampling from N (0, I d ) unless λ grows exponentially in d. More precisely, it is shown in Cauwet et al. [ ] that, for this regime of λ and d, the median of x * 2 is smaller than the median of x ix * 2 for i.i.d. x i ∈ N (0, I d ). This shows that sampling a single point can be better than sampling λ points with the wrong scaling factor, unless the budget λ is very large. Our goal is to improve upon the middle point strategy, by deriving a scaling factor σ such that the λ i.i.d. samples yield smaller regret with a decent probability. More precisely, we aim at identifying σ such that

P min 1≤i≤λ x i -x * 2 ≤ (1 -ε) x * 2 ≥ δ, (H. )
for some δ ≥ 1/2 and ε > 0 as large as possible. Here, in line with Cauwet et al. [ ], we have switched to regret, for convenience of notation. Cauwet et al. [ ] proposed, without proof, such a scaling factor: our proposal is dramatically better in some regimes. 

H. Theoretical Results

We derive su cient and necessary conditions on the scaling factor σ such that Eq. (H. ) can be satis ed. More precisely, we prove that Eq. (H. ) holds with approximation gain ε ≈ log(λ)/d when the variance σ 2 is chosen proportionally to log λ/d (and λ does not grow too rapidly in d). We then show that Eq. (H. ) cannot be satis ed for σ 2 = ω(log(λ)/d). Moreover, we prove that ε = O(log(λ)/d), which, together with the rst result, shows that our scaling factor is asymptotically optimal. The precise statements are summarized in Theorems , , and , respectively. Proof sketches are available in Sec. H. . Proofs are left in the full version available on the ArXiv version Meunier et al. [ b].

Theorem (Su cient condition on rescaling). Let δ ∈ [ 1 2 , 1). Let λ = λ d , satisfying :

λ d → ∞ as d → ∞ and log(λ d ) ∈ o(d) (H. )
. Then there exist two positive constants c 1 , c 2 , and d 0 , such that for all d ≥ d 0 it holds that P min i=1,...,λ

x * -x i 2 ≤ (1 -ε) x * 2 ≥ δ (H. )
when x * is sampled from the standard Gaussian distribution N (0, I d ), x 1 , . . . , x λ are independently sampled from N (0,

σ 2 I d ) with σ 2 = σ 2 d = c 2 log(λ)/d and ε = ε d = c 1 log(λ)/d.

Theorem

shows that i.i.d. Gaussian sampling can outperform the middle point strategy derived in Cauwet et al. [ ] (i.e., the strategy using σ 2 = 0) if the scaling factor σ is chosen appropriately. Our next theorem summarizes our ndings for the conditions that are necessary for the scaling factor σ 2 to outperform this middle point strategy. This result, in particular, illustrates why neither the natural choice σ = 1, nor any other constant scaling factor can be optimal. While Theorem induces a necessary condition on the scaling factor σ to improve over the middle point strategy, it does not bound the gain that one can achieve through a proper scaling. Our next theorem shows that the factor derived in Theorem is asymptotically optimal.

Theorem

(Upper bound for the approximation factor). Consider λ = λ d satisfying assumptions (H. ). There exists an absolute constant C > 0 such that for all δ ∈ [ 1 2 , 1), there exists d 0 > 0 such that, for all d > d 0 and for all ε, σ > 0, it holds that if P min i=1,...,λ x * -

x i 2 ≤ (1 -ε) x * 2 ≥ δ for x * ∼ N (0, I d ) and x 1 , . . . , x λ independently sampled from N (0, σ 2 I d ), then ε ≤ C log(λ)/d.
Proof Sketches. We rst notice that as x * is sampled from a standard normal distribution N (0, I d ), its norm satis es x * 2 = d + o(d) as d → ∞. We then use that, conditionally to x * , it holds that

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 x * = 1 -1 -P x -x * 2 ≤ (1 -ε) x * 2 x * λ
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We therefore investigate when the condition

P x -x * 2 ≤ (1 -ε) x * 2 x * > 1 -(1 -δ) 1 λ (H. )
is satis ed. To this end, we make use of the fact that the squared distance x * 2 of x * to the middle point 0 follows the central χ 2 (d) distribution, whereas, for a given point x * ∈ R d , the distribution of the squared distance xx * 2 /σ 2 for x ∼ N (0, σ 2 I d ) follows the non-central χ 2 (d, µ) distribution with non-centrality parameter µ := x * 2 /σ 2 . Using the concentration inequalities provided in [Zhang and Zhou, , Theorem ] for non-central χ 2 distributions, we then derive su cient and necessary conditions for condition (H. ) to hold. With this, and using assumptions (H. ), we are able to derive the results from Theorems , , and .

H. Experimental Performance Comparisons

The theoretical results presented above are in asymptotic terms, and do not specify the constants. We therefore complement our mathematical investigation with an empirical analysis of the rescaling factor. Whereas results for the setting studied in Sec. H. are presented in Sec. H. . , we show in Sec. H. . that the advantage of our rescaling factor is not limited to minimizing the distance in search space. More precisely, we show that the rescaled sampling achieves good results also in a classical DoE task, in which we aim for minimizing the regret for the Cigar and for the Rastrigin functions. Finally, we investigate in Sec. H. . the impact of initializing two common optimization heuristics, Bayesian Optimization (BO) and di erential evolution (DE), by a population sampled from the Gaussian distribution N (0, σ 2 I d ) using our rescaling factor σ = log(λ)/d. d E min i=1,...,λ x *x i 2 in terms of σ/ log(λ)/d for di erent dimensions and budgets. We observe that the best parametrization of σ is around log(λ)/d in all displayed cases. Moreover, we also see that -as expected -the gain of the rescaled sampling over the middle point sampling (σ = 0) goes to 0 as d → ∞ (i.e. we get a result closer to the case σ = 0 as dimension goes to in nity). We also see that, for the regimes plotted in Fig. H. , the advantage of the rescaled variance grows with the budget λ. Figure H. (on left) displays the average regret (average over multiple samplings and multiple positions of the optimum) as a function of increasing values of λ for the di erent rescaling methods (σ ∈ {0, log λ/d, 1}). We remark, unsurprisingly, that the gain of rescaling is diminishing as λ → ∞. Finally, Figure H. (on right) shows the distribution of regrets for the di erent rescaling methods. The improvement of the expected regret is not at the expense of a higher dispersion of the regret.

H. . Validation of Our Theoretical Results on the Sphere Function

H. . Comparison with the DoEs Available in Nevergrad

Motivated by the signi cant improvements presented above, we now investigate whether the advantage of our rescaling factor translates to other optimization tasks. To this end, we rst analyze a DoE setting, in which an underlying (and typically not explicitly given) function f is to be minimized through a parallel evaluation of λ solution candidates x 1 , . . . , x λ , and regret is measured (30,100,3000,10000,30000,100000) and distinct dimensionalities (20,200,2000). MetaTuneRecentering performs well in each case, and is not limited to the sphere function for which it was derived. Variants of LHS are sometimes excellent and sometimes not visible at all (only the best performing methods are shown).

in terms of min i f (x i )inf x f (x). In the broader machine learning literature, and in particular in the context of hyper-parameter optimization, this setting is often referred to as one-shot optimization The order for rows and for columns is the same: algorithms are ranked by their average winning frequency, measured against all other algorithms in the portfolio. The heatmaps show the fraction of runs in which algorithm x (row) outperformed algorithm y (column), averaged over all settings and all replicas (i.e. random repetitions). The settings are typically sweepings over various budgets, dimensions, and objective functions. For each tested (algorithm, problem) pair, 20 independent runs are performed: a case with N settings is thus based on a total number of 20 × N runs. The number N of distinct problems is at least 6 and often high in the dozens, hence the minimum number of independent runs is at least .

Algorithm Portfolio. Several rescaling methods are already available on Nevergrad. A large fraction of these have been implemented by the authors of Cauwet et al. [ ]; in particular:

• The replacement of one sample by the center. These methods are named "midpointX" or "XPlusMiddlePoint", where X is the original method that has been modi ed that way.

• The rescaling factor MetaRecentering derived in Cauwet et al. [ ]: σ = 1+log(λ) 4 log(d) . • The quasi-opposite methods suggested in Rahnamayan and Wang [ ], with pre x "QO": when x is sampled, then another sample crx is added, with r uniformly drawn in [0, 1] and c the center of the distribution.

We also include in our comparison a di erent type of one-shot optimization techniques, independent of the present work, currently available in the platform: they use the information obtained Detailed results for individual settings are available at http://dl.fbaipublicfiles.com/nevergrad/allxps/list. html.
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from the sampled points to recommend a point x that is not necessarily one of the λ evaluated ones. These "one-shot+ " strategies have the pre x "Avg". We keep all these and all other sampling strategies available in Nevergrad for our experiments. We add to this existing Nevergrad portfolio our own rescaling strategy, which uses the scaling factor derived in Sec. H. ; i.e., σ = log(λ)/d. We refer to this sampling strategy as MetaTuneRecentering, de ned below. Both scaling factors ). To extend to multidimensional Gaussian sampling, we use that if U is a uniform random variable on [0, 1] and Φ the standard Gaussian CDF, then Φ -1 (U ) simulates a N (0, 1) distribution. We do so on each dimension: this provides a Gaussian quasi-random, random or LHS sampling.

Then, one can rescale the Gaussian quasi-random sampling with the corresponding factor σ for for i ≤ λ and j ≤ d, x i,j = σφ -1 (h i,j ) where h i,j is the j th coordinate of a i th Scrambled-Hammersley point.

Results for the Full DoE Testbed in Nevergrad. Fig. H. displays aggregated results for the Sphere, the Cigar, and the Rastrigin functions, for three di erent dimensions and six di erent budgets. We observe that our MetaTuneRecentering strategy performs best, with a winning frequency of %. It positively compares against all other strategies from the portfolio, with the notable exception of AvgLHS, which, in fact, compares favorably against every single other strategy, but with a lower average winning frequency of . %. Note here that AvgLHS is one of the "oneshot+ " strategies, i.e., it has not only one more sample, but it is also allowed to sample its recommendation adaptively, in contrast to our fully parallel MetaTuneRecentering strategy. It performs poorly in some cases (Rastrigin) and does not make sense as an initialization (Sect. H. . ). We see that MetaTuneRecentering scores second on sphere (where AvgLHS is winning), third on Cigar (after AvgLHS and QORandom), and rst on Rastrigin. This ne performance is remarkable, given that the portfolio contains quite sophisticated and highly tuned methods. In addition, the AvgLHS methods, sometimes performing better on the sphere, besides using more capabilities than we do (as it is a "oneshot+ " method), had poor results for Rastrigin (not even in the best methods). On sphere, the di erence to the third and following strategies is signi cant ( . % winning rate against . % for the next runner-up). On Cigar, the di erences between the rst four strategies are greater than percentage points each, whereas on Rastrigin the average winning frequencies of the rst ve strategies is comparable, but signi cantly larger than that of the sixth one (which scores . % against > . % for the rst ve DoEs). Fig. H. zooms into the results for the sphere function, and breaks them further down by available budget λ (note that the results are still averaged over the three tested dimensions). MetaTuneRecentering scores second in all six cases. A breakdown of the results for sphere by dimension (and aggregated over the six available budgets) is provided in Fig. H. and Fig. H. . For dimension 20, we see that MetaTuneRecentering ranks third, but, interestingly, the two rst methods are "oneshot+ " style (Avg pre x). In dimension 200, MetaTuneRecentering ranks second, with considerable advantage over the third-ranked strategy ( . % vs. . %). Finally, for the largest tested dimension, d = 2000, our method ranks rst, with an average winning frequency of . %.

Selected DoE Tasks.

H. . Application to Iterative Optimization Heuristics

We now move from the one-shot settings considered thus far to iterative optimization, and show that our scaling factor can also be bene cial in this context. , 31, 37, 43, 50, 60}, dimension d ∈ {20, 2000}, and parallelism w = max(d, b/6 ). We observe that a BO version using our MetaTuneRecentering performs best, and that several other variants using this scaling appear among the top-performing con gurations. The chart on the right of Fig. H. summarizes results for Di erential Evolution. Since DE can handle larger budgets, we consider here a total number of settings, which correspond to the testcase named "paraalldes" in Nevergrad. In this suite, results are averaged over budgets b ∈ {10, 100, 1000, 10000, 100000}, dimensions d ∈ {5, 20, 100, 500, 2500}, parallelism w = max(d, b/6 ), and again the objective functions Sphere, Cigar, Ellipsoid, and Hm. Specialized versions of DE perform best for this testcase, but we see that DE initialized with our MetaTuneRecentering strategy ranks fth (outperformed only by ad hoc variants of DE), with an overall winning frequency that is not much smaller than that of the top-ranked NoisyDE strategy ( . % for ChainDEwithMetaTuneRecentering vs. . % for NoisyDE) -and almost always outperforms the rescaling used in the original Nevergrad.

H. Conclusions and Future Work

We have investigated the scaling of the variance of random sampling in order to minimize the expected regret. While previous work Cauwet et al. [ ] had already shown that, in the context of the sphere function, the optimal scaling factor is not identical to that of the prior distribution from which the optimum is sampled (unless the sample size is exponentially large in the dimension), it did not answer the question how to scale the variance optimally. We have proven that a standard deviation scaled as σ = log(λ)/d gives, with probability at least 1/2, a sample that is signi cantly closer to the optimum than the previous known strategies. We have also proven that the gain achieved by our scaling strategy is asymptotically optimal and that any decent scaling factor is asymptotically at most as large as our suggestion. The empirical assessment of our rescaled sampling strategy con rmed decent performance not only on the sphere function, but also on other classical benchmark problems. We have furthermore given indications that the sampling might help improve state-of-the-art numerical heuristics based on di erential evolution or using Bayesian surrogate models. Our proposed one-shot method performs best in many cases, sometimes outperformed by e.g. AvgLHS, but is stable on a wide range of problems and meaningful also as an initialization method (as opposed to AvgLHS). Whereas our theoretical results can be extended to quadratic forms (by conservation of barycenters through linear transformations), an extension to wider families of functions (e.g., families of functions with order Taylor expansion) is not straightforward. Apart from extending our results to broader function classes, another direction for future work comprises extensions to the multiepoch case. Our empirical results on DE and BO gives a rst indication that a properly scaled variance can also be bene cial in iterative sampling. Note, however, that in the latter case, we only adjusted the initialization, not the later sampling steps. This forms another promising direction for future work.

H. Appendix: Relevant Concentration Bounds for χ 2 Distributions

We recall some basic de nitions and properties of the central and the non-central χ 2 distributions, which are needed in the proofs of Theorems and .

De nition . (Central χ 2 -distribution) Let X 1 , ..., X d be d independent random variables drawn from the standard normal distribution N (0, 1). Then the random variable U = X 2 1 + ... + X 2 d follows a central χ 2 (d) distribution with d degrees of freedom.

As mentioned previously, the squared distance x * 2 of x * to the middle point 0 follows the central χ 2 (d) distribution. This is thus also the distribution of the performance of the random sampling strategy using σ 2 = 0. In our proofs we will make use of the following properties of this distribution.

H. Appendix: Proof of Theorem (Sufficient condition)

Property . (Properties of χ 2 distribution) Let U ∼ χ 2 (d). Then E(U ) = d, var(U ) = 2d, and for all t ∈ [0, 1] it holds that P | U d -1| ≥ t ≤ 2 exp -dt 2 8 .
While the central χ 2 distribution su ces for the analysis of the middle point sampling strategy, non-central χ 2 distribution are required in the analysis of our Gaussian sampling with rescaled variance.

De nition . (Non-central χ 2 -distribution) Let X 1 , ..., X d be independently drawn random variables satisfying X i ∼ N (µ i , 1). Let U = X 2 1 +...+X 2 d . The random variable U follows a central χ 2 (d, µ) distribution with d degrees of freedom and non-centrality parameter µ = d i=1 µ 2 i .

Note here that the non-central χ 2 distribution only depends on d i=1 µ 2 i , but not on the individual values (µ 1 , ..., µ d ). Note further that, for a given point x * ∈ R d , the distribution of the squared distance xx * 2 for x ∼ N (0, I) follows the non-central χ 2 (d, µ) distribution with non-centrality parameter µ := x * 2 .

We recall some important properties of the non-central χ 2 distribution.

Property . (Properties of the non-central

χ 2 distribution) Let U ∼ χ 2 (d, µ). Then E(U ) = d + µ, var(U ) = 2(d + 2µ
), and for any β > 1 there exist positive constants C 1 , C β such that for all x ≤ (µ + d)/β it holds that

P (U ≤ -x) ≥ C 1 exp -C β x 2 2µ + d . (H. )
Moreover, for all x > 0, it holds that

P (U ≤ -x) ≤ exp - 1 4 x 2 2µ + d . (H. )
Proofs for the concentration inequalities H. and H. can be found in [Zhang and Zhou, , Theorem ].

H. Appendix: Proof of Theorem (Su cient condition)

Proof. We now present the proof of Theorem , the su cient condition for the scaling factor σ 2 to be bene cial over sampling the middle point. Let δ, λ and d satisfy the conditions of Theorem . Let ε, σ > 0. By the law of total probability it holds that, for all t ≤ 1,

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 = P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 | | x * 2 d -1| ≤ t P | x * 2 d -1| ≤ t + P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 | x * 2 d -1| > t P | x * 2 d -1| > t .

H Variance Reduction for Better Sampling in Continuous Domains

Eq. H. is therefore satis ed if

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 | x * 2 d -1| ≤ t P | x * 2 d -1| ≤ t ≥ δ.
This equation, in turn, is satis ed if for all y with | y 2 d -1| ≤ t it holds that

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 x * = y ≥ δ P | x * 2 d -1| ≤ t . (H. )
For the following computations, we x t := d -1/3 and we set δ

:= δ/P | x * 2 d -1| ≤ t . Let x * be such that | x * 2 d -1| ≤ t.
Then, conditionally to x * , we have

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 x * = 1 -P min i∈[λ] x * -x i 2 ≥ (1 -ε) x * 2 x * = 1 -P x -x * 2 ≥ (1 -ε) x * 2 x * λ = 1 -1 -P x -x * 2 ≤ (1 -ε) x * 2 x * λ
for an x is distributed as a normal distribution N (0, σ 2 I). We recall that for such an x the distribution of the term xx * 2 /σ 2 (for xed x * ) follows the non-central χ 2 (d, µ) distribution with non-centrality parameter µ := x * 2 /σ 2 . We therefore obtain (through simple algebraic manipulations) that condition (H. ) holds if and only if

P U ≤ (1 -ε) x * 2 σ 2 ≥ 1 -(1 -δ ) 1/λ , with U ∼ χ 2 (d, µ). Let Y := U -x * 2 σ 2 + d .
Then the previous condition is equivalent to

P Y ≤ -ε x * 2 σ 2 + d ≥ 1 -(1 -δ) 1/λ .
According to the concentration inequality H. , it holds that for any β > 1, there exist constants C 1 > 0 and C β > 0 such that if

ε x * 2 σ 2 + d ≤ 1 β x * 2 σ 2 + d , (H. ) then P Y ≤ -ε x * 2 σ 2 + d ≥ C 1 exp -C β (ε x * 2 σ 2 + d) 2 2 x * 2 σ 2 + d .
H. Appendix: Proof of Theorem (Necessary condition)

We deduce a su cient condition for (H. ), by noting that it is satis ed if, for all x * such that 

| x * 2 d -1| ≤ t, it holds that ε x * 2 σ 2 + d 2 2 x * 2 σ 2 + d ≤ A λ , (H. ) with A λ := -1 C β log 1 -(1 -δ ) 1/λ -
ε x * 2 σ 2 + d ( x * 2 σ 2 + d) ≤ c 1 c 2 (1 + t) + 1 d c 2 log λ (1 -t) + 1
.

Under the assumptions stated in (H. ) the term

c 1 c 2 (1+t)+1 d c 2 log λ (1-t)+1
converges to zero as d → ∞. We therefore obtain that, for d su ciently large and

x * satisfying | x * 2 d -1| ≤ t, it holds that ε x * 2 σ 2 + d x * 2 σ 2 + d ≤ 1 β ,
which proves (H. ).

To show (H. ), we rst note that

(ε x * 2 σ 2 + d) 2 2 x * 2 σ 2 + d ≤ c 1 c 2 (1 + t) + 1 2 2 d c 2 log λ (1 -t) + 1
.

Under the assumptions stated in (H. ), and since d → ∞, we approximate

c 1 c 2 (1 + t) + 1 d c 2 log λ (1 -t) + 1 = c 2 2 c 1 c 2 + 1 2 log λ + o(log λ) = 2 3C β log λ + o(log λ)
and A λ = 1 C β log λ + o(log λ), which shows that condition H. holds for d su ciently large and

x * satisfying | x * 2 d -1| ≤ t.

H. Appendix: Proof of Theorem (Necessary condition)

H Variance Reduction for Better Sampling in Continuous Domains Proof. We now prove the necessary condition which we have stated in Theorem . Let d, λ, ε, and σ satisfy the condition of Theorem . As in the beginning of the proof for Theorem , we can deduce the following necessary condition. For all t ≤ 1 it holds that

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 | x * 2 d -1| ≤ t P | x * 2 d -1| ≤ t +P | x * 2 d -1| > t ≥ δ
Then there exists x * such that | x * 2 d -1| ≤ t and

P min i∈[λ] x * -x i 2 ≤ (1 -ε) x * 2 x * ≥ δ -P | x * 2 d -1| > t P | x * 2 d -1| ≤ t . (H. ) Set δ := δ-P | x * 2 d -1|>t P | x * 2 d -1|≤t
. Then the necessary condition (H. ) can be written as

P Y ≤ -ε x * 2 σ 2 + d ≥ 1 -(1 -δ ) 1/λ with Y := U -( x * 2 σ 2 + d)
and U being distributed according to a non-central χ 2 distribution with d degrees of freedom and non-centrality parameter x * 2 /σ 2 . According to the concentration bound (H. ), we have

P Y ≤ -ε x * 2 σ 2 + d ≤ exp - 1 4 (ε x * 2 σ 2 + d) 2 2 x * 2 σ 2 + d . Condition (H. ) therefore requires exp - 1 4 (ε x * 2 σ 2 + d) 2 2 x * 2 σ 2 + d ≥ 1 -(1 -δ ) 1/λ . From this we derive ε ≤ Ãλ 2 x * 2 σ 2 + d -d σ 2 x * 2 , with Ãλ = -4 log 1 -(1 -δ ) 1/λ . As ε > 0, we obtain that σ 2 < σ2 := 2 x * 2 /d d Āλ -1 .
H. Appendix: Proof of Theorem (Upper Bound for the Gain) Proof. The proof of Theorem uses the same argument as the one of Theorem . We have proved that σ 2 must be between 0 and σ = 2 x * 2 /d d Āλ -1 . Then we get that:

ε ≤ sup σ∈[0,σ] Ãλ 2 x * 2 σ 2 + d -d σ 2 x * 2 .
Noticing that:

sup σ∈[0,σ] Ãλ 2 x * 2 σ 2 + d -d σ 2 x * 2 = sup α∈[0,1] Ãλ 2 x * 2 ασ 2 + d -d ασ 2 x * 2
We get after simple algebraic simpli cations and for d su ciently large under assumptions (H. ):

sup σ∈[0,σ] Ãλ 2 x * 2 σ 2 + d -d σ 2 x * 2 ≤ dσ 2 x * 2 sup α∈[0,1] α   α -1 + Ãλ d 2 -1   ≤ dσ 2 x * 2 sup α∈[0,1] α α -1 + 1 -1 ≤ 8 log λ d + o log λ d Then ε ∈ O log λ d d
, which concludes the proof of Theorem . We see the failure of MetaRecentering in the worsening performance as budget goes to in nity: the budget has an impact on σ which becomes worse, hence worse overall performance. We note that quasi-opposite sampling can perform decently in a wide range of values. Opposite Sampling is not much better than random search in high-dimension. Our MetaTuneRecentering shows decent performance: in particular, simple regret decreases as λ → ∞. where D h is the restriction of D to the level set {x : f (x) ≤ h}. In our setting, we have D = B(0, r) and D h = B(0, √ h). Therefore,

E X 1 ,...,X λ ∼B(0,r) f X(µ) | f (X (µ+1) ) = h = E X 1 ,...,X λ ∼B(0,r) X(µ) 2 | f (X (µ+1) ) = h = E X 1 ...Xµ∼B(0, √ h) 1 µ µ i=1 X i 2 = 1 µ 2 E X 1 ...Xµ∼B(0, √ h)   µ i,j=1 X T i X j   = 1 µ 2 µ i,j=1,i =j E X i ...X j ∼B(0, √ h) X T i X j + 1 µ 2 µ i=1 E X i ∼B(0, √ h) X i 2 = 1 µ E X∼B(0, √ h) X 2 .
By Lemma , we have:

E X∼B(0, √ h) X 2 = d d+2 h. Hence E X 1 ,...,X λ ∼B(0,r) f X(µ) | f (X (µ+1) ) = h = d d+2 h µ .
The result of Lemma shows that E f X(µ) | f (X (µ+1) ) = h depends linearly on h. We now establish a similar dependency for

E f X (1) | f (X (µ+1) ) = h . Lemma . For d > 0, h > 0, λ > µ ≥ 1, and f (x) = x 2 , E X 1 ,...,X λ ∼B(0,r) f X (1) | f (X (µ+1) ) = h = h Γ ( d+2 d )Γ (µ + 1) Γ (µ + 1 + 2/d) .
Proof. First note that using the same argument as in Lemma , ∀β ∈ (0, h]:

P X 1 ...X λ ∼B(0, √ h) f X (1) > β | f (X (µ+1) ) = h = P X 1 ...Xµ∼B(0, √ h) [f (X 1 ) > β, . . . , f (X µ ) > β] = P X∼B(0, √ h) [f (X) > β] µ .
Recall that the volume of a d-dimensional ball of radius r is proportional to r d . Thus, we get:

P X∼B(0, √ h) [f (X) < β] = √ β d √ h d = β h d 2
.

I. Theory

It is known that for every positive random variable X, E(X) = ∞ 0 P(X > β)dβ. Therefore:

E S f X (1) | f (X (µ+1) ) = h = h 0 P f X (1) > β | f (X (µ+1) ) = h dβ = h 0 1 - β h d 2 µ dβ = h 1 0 1 -u d 2 µ du = h 2 d 1 0 (1 -t) µ t 2/d-1 dt = h Γ ( d+2 d )Γ (µ + 1) Γ (µ + 1 + 2/d)
.

To obtain the last equality, we identify the integral with the beta function of parameters µ+1 and 2 d .

We now directly compute E X 1 ,...,X λ ∼B(0,r) f (X (1) ) .

Lemma . For all d > 0, λ > 0 and r > 0:

E X 1 ,...,X λ ∼B(0,r) f (X (1) ) = r 2 Γ ( d+2 d )Γ (λ + 1) Γ (λ + 1 + 2/d) .
Proof. As in Lemma , we have for any β ∈ (0, r 2 ]:

P X 1 ...X λ ∼B(0,r) f X (1) > β = P X 1 ...X λ ∼B(0,r) [f (X 1 ) > β, ..., f (X λ ) > β] = P X∼B(0,r) [f (X) > β] λ = √ β r d .
The result then follows by reasoning as in the proof of Lemma .

By combining the results above, we obtain the exact formula for E f ( X(µ) ) .

Theorem . For all d > 0, r > 0 and λ > µ ≥ 1:

E X 1 ...X λ ∼B(0,r) f ( X(µ) ) = r 2 d × Γ (λ + 1)Γ (µ + 1 + 2/d) µ(d + 2)Γ (µ + 1)Γ (λ + 1 + 2/d) .
Proof. The proof follows by applying our various lemmas and integrating over all possible values for h. We have:

E X 1 ...X λ ∼B(0,r) f ( X(µ) )
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= E E f ( X(µ) ) | f X (µ+1) = 1 µ d d + 2 E f X (µ+1) by Lemma = 1 µ d d + 2 Γ (µ + 1 + 2/d) Γ (µ + 1)Γ ( d+2 d ) E E f (X (1) ) | f X (µ+1) by Lemma = 1 µ d d + 2 Γ (µ + 1 + 2/d) Γ (µ + 1)Γ ( d+2 d ) E f (X (1) ) = r 2 d × Γ (λ + 1)Γ (µ + 1 + 2/d) µ(d + 2)Γ (µ + 1)Γ (λ + 1 + 2/d) by Lemma .
We have checked experimentally the result of Theorem (see Figure I. ): the result of Theorem follows from Theorem since for d ≥ 2, λ and r xed, E f ( X(µ) ) is strictly decreasing in µ. In addition, we can obtain asymptotic progress rates:

Corollary . Consider d > 0. When λ → ∞, we have E X 1 ...X λ ∼B(0,r) f ( X(µ) ) ∼ λ -2 d r 2 d × Γ (µ + 1 + 2/d) µ(d + 2)Γ (µ + 1) , while if λ → ∞ and µ(λ) → ∞, E X 1 ...X λ ∼B(0,r) f ( X(µ(λ)) ) ∼ r 2 d d + 2 µ(λ) 2 d -1 λ 2 d . As a result, ∀c ∈ (0, 1), E f ( X( cλ ) ) ∈ Θ 1 λ and E f (X (1) ) ∈ Θ 1 λ 2/d .
Proof. We recall the Stirling equivalent formula for the gamma function: when z → ∞,

Γ (z) = 2π z z e z 1 + O 1 z .
Using this approximation, we get the expected results.

This result shows that by keeping a single parent, we lose more than a constant factor: the progress rate is signi cantly impacted. Therefore it is preferable to use more than one parent.

I. . Convergence when the sampling is not centered on the optimum

So far we treated the case where the center of the distribution and the optimum are the same.

We now assume that we sample from the distribution B(0, r) and that the function f is f (x) =

xy 2 with y ≤ r. We de ne = y r .

Lemma . Let r > 0, d > 0, λ > µ ≥ 1, we have:

P X 1 ...X λ ∼B(0,r) (f (X (µ+1) ) > (1 -) 2 r 2 ) = P U ∼B(λ,(1-) d ) (U ≤ µ),
I. Theory where B(λ, p) is a binomial law of parameters λ and p.

Proof. We have f (X

(µ+1) ) > (1 -)r ⇐⇒ λ i=1 1 {f (X i )≤(1-) 2 r 2 } ≤ µ since 1 {f (X i )≤(1-) 2 r 2 } are independent Bernoulli variables of parameter (1 -) d , hence the re- sult.
Using Lemma , we now get lower and upper bounds on E f X (µ+1) :

Theorem . Consider d > 0, r > 0, λ > µ ≥ 1. The expected value of f ( X(µ) ) satisfies both E X 1 ...X λ ∼B(0,r) f ( X(µ) ) ≤4r 2 P U ∼B(λ,(1-) d ) (U ≤ µ) + r 2 d × Γ (λ + 1)Γ (µ + 1 + 2/d) µ(d + 2)Γ (µ + 1)Γ (λ + 1 + 2/d) and E X 1 ...X λ ∼B(0,r) f ( X(µ) ) ≥ r 2 d × Γ (λ + 1)Γ (µ + 1 + 2/d) µ(d + 2)Γ (µ + 1)Γ (λ + 1 + 2/d) .
Proof.

E f ( X(µ) ) = E f ( X(µ) )|f (X (µ+1) ) ≥ (1 -) 2 r 2 P f (X (µ+1) ) ≥ (1 -) 2 r 2 + E f ( X(µ) )|f (X (µ+1) ) < (1 -) 2 r 2 P f (X (µ+1) ) < (1 -) 2 r 2 .
In this Bayes decomposition, we can bound the various terms as follows:

E f ( X(µ) )|f (X (µ+1) ) ≥ (1 -) 2 r 2 ≤ 4r 2 , P f (X (µ+1) ) ≥ (1 -) 2 r 2 ≤ 1, E f ( X(µ) )|f (X (µ+1) ) < (1 -) 2 r 2 ≤ r 2 d × Γ (λ + 1)Γ (µ + 1 + 2/d) µ(d + 2)Γ (µ + 1)Γ (λ + 1 + 2/d) .
Combining these equations yields the rst (upper) bound. The second (lower) bound is deduced from the centered case (i.e. when the distribution is centered on the optimum) as in the previous section. Proof. Let µ λ = cλ with 0 < c < (1 -) d . We immediately have from Hoe ding's concentration inequality:

∈ R d . Let = y r ∈ [0, 1) and f (x) = x -y 2 . When using µ = cλ with 0 < c < (1 -) d , we get as λ → ∞, for a fixed d, E X 1 ...X λ ∼B(0,r) f ( X(µ) ) = dr 2 c 2/d-1 (d + 2)λ + o 1 λ .
P U ∼B(λ,(1-) d ) (U ≤ µ λ ) ∈ o( 1 λ )
when λ → ∞. From Corollary , we also get:

r 2 d × Γ (λ + 1)Γ (µ λ + 1 + 2/d) µ λ (d + 2)Γ (µ λ + 1)Γ (λ + 1 + 2/d) ∼ d r 2 c 2/d-1 (d + 2)λ .
Using the inequalities of Theorem , we obtain the desired result.

The result of Theorem shows that a convergence rate O(λ -1 ) can be attained for the µ-best approach with µ > 1. The rate for µ = 1 is Θ(λ -2/d ), proving that the µ-best approach leads asymptotically to a better estimation of the optimum. If we consider the problem min µ max y: y ≤ r E f y ( X(µ) ) with f y the objective function x → xy 2 , then µ = cλ with 0 < c < (1 -) d achieves the O λ -1 progress rate.

All the results we proved in this section are easily extendable to strongly convex quadratic functions. For larger class of functions, it is less immediate, and left as future work.

I. . Using quasi-convexity

The method above was designed for the sphere function, yet its adaptation to other quadratic convex functions is straightforward. On the other hand, our reasoning might break down when applied to multimodal functions. We thus consider an adaptive strategy to de ne µ. A desirable property to a µ-best approach is that the level-sets of the functions are convex. A simple workaround is to choose µ maximal such that there is a quasi-convex function which is identical to f on {X (1) , . . . , X (µ) }. If the objective function is quasi-convex on the convex hull of 

E X1...X λ ∼B(0,r) f ( X(µ) ) when y = R 3 (i.e. = 1 
3 ) from Theorem for d = 5 and R = 1. We implemented λ = 100 and λ = 10000. 10000 samples have been drawn to estimate the expectation. We see that such a value for µ is a good approximation of the minimum of the empirical values: we can thus recommend µ = λ(1 -) d when λ → ∞. We also added some classical choices of values for µ from literature: when λ → ∞, our method performs the best.

{X (1) , . . . , X (μ) } with μ ≤ λ, then: for any i ≤ μ, X (i) is on the frontier (denoted ∂) of the convex hull of {X (1) , . . . , X (i) } and the value

h = max i ∈ [1, λ], ∀j ≤ i, X (j) ∈ ∂ ConvexHull(X (1) , . . . , X (j) )
veri es h ≥ μ so that µ = min(h, μ) is actually equal to μ. As a result:

• in the case of the sphere function, or any quasi-convex function, if we set μ = λ(1-) d , using µ = min(h, μ) leads to the same value of µ = μ = λ(1 -) d . In particular, we preserve the theoretical guarantees of the previous sections for the sphere function x → xy 2 .

• if the objective function is not quasi-convex, we can still compute the quantity h de ned above, but we might get a µ smaller than μ. However, this strategy remains meaningful at it prevents from keeping too many points when the function is "highly" non-quasi-convex.

I. Experiments

To validate our theoretical ndings, we rst compare the formulas obtained in Theorems and with their empirical estimates. We then perform larger scale experiments in a one-shot optimization setting.

I. . Experimental validation of theoretical formulas

Figure I. compares the theoretical formula from Theorem and its empirical estimation: we note that the results coincide and validate our formula. Moreover, the plot con rms that taking the µ-best points leads to a lower regret than the 1-best approach. We also compare in Figure I. the theoretical bounds from Theorem with their empirical estimates. We remark that for µ ≤ (1 -) d λ the convergence of the two bounds to E(f ( X(µ) )) It turns out that if the population is large, our formula for µ leads to a smaller regret. Note that our strategy assumes that is known, which is not the case in practice. It is interesting to note that if the center of the distribution and the optimum are close (i.e. is small), one can choose a larger µ to get a lower variance on the estimator of the optimum.

I. . One-shot optimization in Nevergrad

In this section we test di erent formulas and variants for the choice of µ for a larger scale of experiments in the one-shot setting. Equations I. -I. present the di erent formulas for µ used in our comparison.

µ = 1

No pre x (I. ) where clip(a, b, c) = max(a, min(b, c)) is the projection of c in [a, b] and h is the maximum i such that, for all j ≤ i, X (j) is on the frontier of the convex hull of {X (1) , . . . , X (j) } (Sect. I. . ). Equation I. is the naive recommendation "pick up the best so far". Equation I. existed before the present work: it was, until now, the best rule Teytaud [ ] , overall, in the Nevergrad platform. Equations I. and I. are the proposals we deduced from Theorem : asymptotically on the sphere, they should have a better rate than Equation I. . Equations I. and I. are counterparts of Equations I. and I. that combine the latter formulas with ideas from Teytaud [ ]. Theorem remains true if we add to µ some constant depending on d so we ne tune our theoretical equation (Eq. I. ) with the one provided by Teytaud [ ], so that µ is close to the value in Eq. I. for moderate values of λ. We perform experiments in the open source platform Nevergrad Rapin and Teytaud [ ].

µ = clip 1, d, λ 4 Pre x: Avg (averaging) (I. ) µ = clip 1, ∞, λ 1.1 d Pre x: EAvg (Exp. Averaging) (I. ) µ = clip 1, min h, λ 4 , d + λ 1.1 d Pre x: HCHAvg (h from Convex Hull) (I. ) µ = clip 1, ∞, λ 1.01 d
While previous experiments (Figures I. and I. ) were performed in a controlled ad hoc environment, we work here with more realistic conditions: the sampling is Gaussian (i.e. not uniform in a ball), the objective functions are not all sphere-like, and budgets vary but are not asymptotic. Figures I. , I. , I. present our results in dimension 3, 25 and 200 respectively. The objective functions are randomly translated using N (0, 0.2I d ). The objective functions are de ned as f Sphere

(x) = x 2 , f Cigar (x) = 10 6 d i=2 x 2 i + x 2 1 , f HM (x) = d i=1 x 2 i × (1.1 + cos(1/x i )), f Rastrigin (x) = 10d + f sphere (x) -10 i cos(2πx i ).

Our proposed equations

TEAvg and EAvg are unstable: they sometimes perform excellently (e.g. everything in dimension ). Our combinations THCHAvg and HCHAvg perform well: in most settings, THCHAvg performs best. But the gap with the previously proposed Avg is not that big. The use of quasi-convexity as described in Section I. . was usually bene cial: however, in dimension 25 for the Rastrigin function, it prevented the averaging from bene ting from the overall "approximate" convexity of Rastrigin. This phenomenon did not happen for the "more" multimodal function HM, or in other dimensions for the Rastrigin function.

I. Conclusion

We have proved formally that the average of the µ best is better than the single best in the case of the sphere function (simple regret O(1/λ) instead of O(1/λ 2/d )) with uniform sampling. We suggested a value µ = cλ with 0 < c < (1 -) d . Even better results can be obtained in practice using quasi-convexity, without losing the theoretical guarantees of the convex case on the sphere function. Our results have been successfully implemented in Rapin and Teytaud [ ]. The improvement compared to the state of the art, albeit moderate, is obtained without any computational overhead in our method, and supported by a theoretical result.

J Asymptotic convergence rates for averaging strategies J. Introduction

Finding the minimum of a function from a set of λ points (x i ) i≤λ and their images (f (x i )) i≤λ is a standard task used for instance in hyper-parameter tuning Bergstra and Bengio [ ], or control problems. While random search estimate of the optimum consists in returning arg min f (x i ) i≤λ , in this paper we focus on the similar strategy that consists in averaging the µ best samples, i.e. returning 1 µ µ i=1 x (i) where f (x (1) ) ≤ . . . ≤ f (x (λ) ). These kinds of strategies are used in many evolutionary algorithms such as CMA-ES. Although experiments show that these methods perform well, it is not still understood why taking the average of best points actually leads to a lower regret. In Meunier et al. [ a], it is proved in the case of quadratic functions that the regret is indeed lower for the averaging strategy than for pure random search. In this paper, we extend the result of this paper by proving convergence rates for a wide class of functions including three times continuously di erentiable functions with unique optima.

J. . Related Work

Better than picking up the best

Given a nite number of samples λ equipped with their tness values, we can simply pick up the best, or average the "best ones" ]. Overall, the best is quite robust, but the surrogate or the averaging usually provides better convergence rates. Using surrogate modeling is fast when the dimension is moderate and the objective function is smooth (simple regret in O(λ -m/d ) for λ points in dimension d with m times di erentiability, leading to superlinear rates in evolutionary computation Auger et al.

[ a]). In this paper, we are interested in the rates obtained by averaging the best samples for a wide class of functions. We extend the results of Meunier et al. [ a] which only hold for the sphere function.

Weighted averaging

Among the various forms of averaging, it has been proposed to take into account the fact that the sampling is not uniform (evolutionary algorithms in continuous domains typically use Gaussian sampling) in Teytaud and Teytaud [ ]: we here simplify the analysis by considering a uniform sampling in a ball, though we acknowledge that this introduces the constraint that the optimum is indeed in the ball. In this paper, we focus on the selection rate when the number of samples λ is very large in the case of parallel optimization. In this case, the selection ratio would tend to 0. We carefully analyze this ratio and derive convergence rates using this selection ratio.

Taking into account many basins

While averaging the best samples, the non-uniqueness of an optimum might lead to averaging points coming from di erent basins. Thus we consider at rst the case of a unique optimum and hence a unique basin. Then we aim to tackle the case where there are possibly di erent basins.

Island models Skolicki [

] have also been proposed for taking into account di erent basins. Meunier et al. [ a] has proposed a tool for adapting µ depending on the (non) quasi-convexity. In the present work, we extend the methodology proposed in Meunier et al. [ a].

J. . Outline

In the present paper, we rst introduce, in Section J. , the large class of functions we will study, and study some useful properties of these functions in Section J. . Then, in Section J. , we prove upper and lower convergence rates for random search for these functions. In Section J. , we extend Meunier et al. [ a] by showing that asymptotically in the number of samples λ, the handled functions satisfy a better convergence rate than random search. We then extend our results on wider classes of functions in Section J. . Finally we validate experimentally our theoretical ndings and compare with other parallel optimization methods.

J. Beyond quadratic functions

In the present section, we present the assumptions to extend the results from Meunier et al.

[ a] to the non-quadratic case. We will denote B(0, r) the closed ball centered at 0 of radius r in R d endowed with its canonical Euclidean norm denoted by • . We will also denote by • B(0, r) the corresponding open ball. All other balls intervening in what follows will also follow that notation. For any subset S ⊂ B(0, r), we will denote U (S) the uniform law on S.

Let f : B(0, r) → R be a continuous function for which we would like to nd an optimum point x * . The existence of such an optimum point is guaranteed by continuity on a compact set. For the sake of simplicity, we assume that f (x ) = 0. We de ne the h-level sets of f as follows.

De nition . Let f : B(0, r) → R be a continuous function. The closed sublevel set of f of level h is defined as:

S h := {x ∈ B(0, r) | f (x) ≤ h}.
We now describe the assumptions we will make on the function f that we optimize.

Assumption . f : B(0, r) → R is a continuous function and admits a unique optimum point x such that x < r. Moreover we assume that f can be written:

f (x) = (x -x ) T H(x -x ) + (x -x ) T H(x -x ) α/2 ε(x -x )
for some bounded function ε (there exists M > 0 such that for all x, |ε(x)| ≤ M ), H a symmetric positive definite matrix and α > 2 a real number.

Note that H is uniquely de ned by the previous relation. In the following we will denote by e 1 (H) and e d (H) respectively the smallest and the largest eigenvalue of H. As H is positive de nite, we have 0 < e 1 (H) ≤ e d (H). We will also set x H = √ x T Hx, which is a norm (the H-norm) on R d as H is symmetric positive de nite. We then have f

(x) = x -x 2 H + x - x α H ε(x -x )
Remark (Why a unique optimum ?). The uniqueness of the optimum is an hypothesis required to avoid that chosen samples come from two or more wells for f . In this case the averaging strategy would lead to a mistaken point because points from the di erent wells would be averaged. Nonetheless, multimodal functions can be tackled using our non-quasiconvexity trick (Section J. . ).

Remark

(Which functions f satisfy Assumption ?). One may wonder if Assumption is restrictive or not. We can remark that three times continuously di erentiable functions satisfy the assumption with α = 3, as long as the unique optimum satisfies a strict second order stationary condition. Also, we will see in Section J. . that results are immediately valid for strictly increasing transformations of any f for which Assumption holds, so that we indirectly include all piecewise linear functions as well as long as they have a unique optimum. So the class of functions is very large, and in particular allows non symmetric functions to be treated, which might seem counter intuitive at first. The aim of this paper is to study a parallel optimization problem as follows. We sample X 1 , • • • , X λ from the uniform distribution on B(0, r). Let X (1) , • • • , X (λ) denote the ordered random variables, where the order is given by the objective function

f (X (1) ) ≤ • • • ≤ f (X (λ) ).
We then introduce the µ-best average

X (µ) = 1 µ µ i=1 X (i)
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In the following of the paper, we will compare the standard random search algorithm (i.e. µ = 1) with the algorithm that consists in returning the average of the µ best points. To this end, we will study the expected simple regret for functions satisfying the assumption:

E f (X (µ) )

J. Technical lemmas

In this section, we prove two technical lemmas on f that will be useful to study the convergence of the algorithm. The rst one shows that f can be upper bounded and lower bounded by two spherical functions.

Lemma . Under Assumption , there exist two real numbers 0 < l ≤ L, such that, for all x ∈ B(0, r):

l x -x 2 ≤ f (x) ≤ L x -x 2 .
(J. )

Moreover such l and L must satisfy 0 < l ≤ e 1 (H) ≤ e d (H) ≤ L.

Proof. As H is symmetric positive de nite, we have the following classical inequality for the

H-norm e 1 (H) x -x 2 ≤ x -x 2 H ≤ e d (H) x -x 2 (J. ) Now set for x ∈ B(0, r) \ {x } φ(x) := f (x) -f (x ) x -x 2 = x -x 2 H x -x 2 (1 + x -x α-2 H ε(x -x )).
By the above inequalities, we have

e 1 (H) (α-2)/2 x -x α-2 ≤ x -x α-2 H ≤ e d (H) (α-2)/2 x -x α-2 .
Thus, as α > 2, we obtain xx α-2 H → x→x 0. By assumption, the function ε is also bounded as x → x . We thus conclude that there exists δ > 0 such that, for all x ∈

• B(x , δ) 1 2 e 1 (H) ≤ φ(x) ≤ 2e d (H). Now notice that B(0, r) \ • B(x , δ
) is a closed subset of the compact set B(0, r) hence it is also compact. Moreover, by assumption f is continuous on B(0, r) and f (x) > 0 = f (x ) for all x = x . Hence φ is continuous and positive on this compact set. Thus it attains its minimum and maximum on this set and its minimum is positive. In particular, we can write, on this set, for some l 0 , L 0 > 0 l 0 ≤ φ(x) ≤ L 0 .

We now set l = min{l 0 , 1 2 e 1 (H)}. Note that l > 0 because l 0 > 0 and e 1 (H) > 0 (as H is positive de nite). We also set L = max{L 0 , 2e 1 (H)} which is also positive. These are global bounds for φ which gives the rst part of the result. For the second part, let u 1 be a normalized eigenvector respectively associated to e 1 (H). Then

f (x + u 1 ) u 1 2 = e 1 (H) + α-2 ε( u 1 )
Taking the limit as → 0. we get that, if l satis es (J. ), then l ≤ e 1 (H). Similarly, we can prove that L ≥ e d (H).

Secondly, we frame S h into two ellipsoids as h → 0. This lemma is a consequence of the assumptions we make on f .

Lemma . Under Assumption , there exists h 0 ≥ 0 such that for h ≤ h 0 , we have A h ⊂ S h ⊂ B h where:

A h := {x | x -x H ≤ φ -(h)} B h := {x | x -x H ≤ φ + (h)} with φ -(h) and φ + (h) two functions satisfying φ -(h) = √ h - M 2 h (α-1)/2 + o(h (α-1)/2 ) and φ + (h) = √ h + m 2 h (α-1)/2 + o(h (α-1)/2 )
when h → 0 for some constants m > 0 and M > 0 which are respectively a (specific) lower and upper bound for ε.

Proof. By assumption |ε| ≤ M , hence we have:

{x ∈ B(0, r) | x -x 2 H + M x -x α H ≤ h} ⊂ S h Let g : u → u 2 + M u α
. This is a continuous, strictly increasing function on [0, +∞). By a classical consequence of the intermediate value theorem, this implies that g admits a continuous, strictly increasing inverse function. Note that g(0) = 0 hence g -1 (0) = 0.
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Thus we can write {u ≥ 0|u 2 + M u α ≤ h} = [0, g -1 (h)]. We now denote g -1 by φ -. As φ -is non-decreasing, we get

{x ∈ B(0, r) | x -x 2 H + M x -x α H ≤ h} = A h ∩ B(0, r)
Now observe that for h su ciently small

{x ∈ B(0, r) | x -x 2 H + M x -x α H ≤ h} = A h .
Indeed, if x ∈ A h , we have by the triangle inequality and (J. )

x ≤ x + x -x ≤ x + e 1 (H) -1/2 x -x H ≤ x + e 1 (H) -1/2 φ -(h)
Recall that by assumption x < r and let δ = rx . As φ -(h) → h→0 0, for h su ciently small, we have e 1 (H) -1/2 φ -(h) ≤ δ hence x ≤ r for h su ciently small, which gives the inclusion A h ⊂ S h .

For the asymptotics of φ -, as we have by de nition φ

-(h) 2 (1 + M φ -(h) α-2 ) = h, and as φ -(h) → h→0 0 we deduce that φ -(h) ∼ 0 √ h. Let us de ne u(h) = φ -(h) - √ h. We have u(h) ∈ o( √ h).
We then compute:

( √ h + u(h)) 2 + M ( √ h + u(h)) α = h This gives u(h)(u(h) + 2 √ h) = -M h α/2 (1 + u(h) √ h ) α u(h)( u(h) 2 √ h + 1) = - M 2 h (α-1)/2 (1 + u(h) √ h ) α As u(h) ∈ o( √ h) for h → 0, we obtain u(h) ∼ - M 2 h (α-1)/2 .
which concludes for φ -.

On the other side, we recall that f (x) > 0 for all x = x as x is the unique minimum of f on B(0, r). Write

0 < x -x 2 H (1 + x -x α-2 H ε(x -x )).
Now observe that, as x < r, we have for x ∈ B(0, r), by the triangle inequality, xx < 2r. Hence, by the classical inequality for the H-norm (J. ), we get

ε(x -x ) > - 1 x -x α-2 H ≥ - e d (H)2r -(α-2) =: -m
So we have:

S h ⊂ {x ∈ B(0, r) | x -x 2 H -m x -x α H ≤ h}
The function g : u → u 2mu α is di erentiable. A study of the derivative shows that g is continuous, strictly increasing on [0, r 0 ] and continuous, strictly decreasing on [r 0 , +∞[ where r 0 = ( 2 αm ) 1/(α-2) . Hence g |[0,r 0 ] admits a continuous strictly increasing inverse φ + and g |[r 0 ,+∞[ a continuous strictly decreasing inverse φ. We thus write

{u ≥ 0|u 2 -mu α ≤ h} = [0, φ + (h)] ∪ [ φ(h), +∞). Hence {x ∈ B(0, r) | x -x 2 H -m x -x α H ≤ h} = B h ∩ B(0, r) ∪ B(0, r) ∩ V h with V h = {x ∈ R d | x -x H > φ(h)}. We now show that for h su ciently small {x ∈ B(0, r) | x -x 2 H -m x -x α H ≤ h} = B h .
Indeed, note rst that if x ∈ B(0, r), we obtain by (J. )

x -x 2 H ≤ e d (H) x -x 2 < 4e d (H)r 2 .
where we have used that, as x < r, the triangle inequality gives xx < 2r. Hence B(0, r) 0) are by de nition, the two roots of u 2mu α = 0.

⊂ {x ∈ R d | x -x 2 H < 4e d (H)r 2 }. We now show that B(0, r) ⊂ {x ∈ R d | x -x H ≤ φ(h)}. Indeed, at h = 0, 0 = φ + (0) < φ(
Hence φ(0) = e d (H)2r. By continuity of φ(h) at h = 0, we obtain that B(0, r) ⊂ {x ∈ R d | xx H ≤ φ(h)} for h su ciently small. As φ + (h) ≤ φ(h), we thus obtain that, for h su ciently small, V h ∩ B(0, r) = ∅. Next, the same line of reasoning as the one for φ -, using that φ + (h) → h→0 0 and x < r, shows that B h ∩ B(0, r) = B h for h su ciently small. Hence, for h small enough we have

{x ∈ B(0, r) | x -x 2 H -m x -x α H ≤ h} = B h .
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This gives S h ⊂ B h . Finally, similarly to φ -, we can show that φ + (h) = √ h+ m 2 h (α-1)/2 +o(h (α-1)/2 ), which concludes the proof of this lemma.

J. Bounds for random search

In this section we provide upper bounds and lower bounds for the random search algorithm for functions satisfying Assumption . These bounds will also be useful for analyzing the convergence of the µ-best approach.

J. . Upper Bound

First, we prove an upper bound for functions satisfying Assumption .

Lemma (Upper bound for random search algorithm). Let f be a function satisfying Assumption . There exists a constant C 0 > 0 and an integer λ 0 ∈ N such that for all integers λ ≥ λ 0 :

E X 1 ,••• ,X λ ∼U (B(0,r)) f X (1) ≤ C 0 λ -2 d .
Proof. Let us rst recall the following classical property about the expectation of a positive valued random variable:

E X 1 ,...,X λ ∼U (B(0,r)) f X (1) = ∞ 0 P f X (1) ≥ t dt
By independence of the samples we have:

∞ 0 P f X (1) ≥ t dt = ∞ 0 P X∼U (B(0,r)) [f (X) ≥ t] λ dt
Then thanks to Lemma :

∞ 0 P X∼U (B(0,r)) [f (X) ≥ t] λ dt ≤ ∞ 0 P X∼U (B(0,r)) L X -x 2 ≥ t λ dt = L(r+ x ) 2 0 P X -x ≥ t L λ dt
where the second equality follows because Xx ≤ r almost surely. Then, by de nition of the uniform law as well as the non-increasing character of t → P X∼U (B(0,r)) Xx ≥ t L , we obtain

L(r+ x ) 2 0 P X∼U (B(0,r)) X -x ≥ t L λ dt = L(r-x ) 2 0 P X∼U (B(0,r)) X -x ≥ t L λ dt + L(r+ x ) 2 L(r-x ) 2 P X∼U (B(0,r)) X -x ≥ t L λ dt ≤ L(r-x ) 2 0   1 - t Lr 2 d   λ dt + L (r + x ) 2 -(r -x ) 2 P[ X -x ≥ r -x ] λ ≤ Lr 2 0 1 - t Lr 2 d 2 λ dt + 4Lr x P[ X -x ≥ r -x ] λ = Lr 2 1 0 1 -u d 2 λ du + 4Lr x P[ X -x ≥ r -x ] λ Note that P[ X -x < r -x ] < 1.
Thus the second term in the last equality satis es

P[ X -x < r -x ] λ ∈ o(λ -2/d ).
The rst term has a closed form given in Meunier et al. [ a]:

1 0 1 -u d 2 λ du = Γ ( d+2 d )Γ (λ + 1) Γ (λ + 1 + 2/d)
Finally thanks to the Stirling approximation, we conclude:

E X 1 ,...,X λ ∼U (B(0,r)) f X (1) ≤ C 1 λ -2/d + o(λ -2/d ) where C 1 > 0 is a constant independent from λ.
This lemma proves that the strategy consisting in returning the best sample (i.e. random search) has an upper rate of convergence of order λ -2/d , which depends on dimension of the space. It also worth noting this result is common in the literature 

J. . Lower Bound

We now give a lower bound for the convergence of the random search algorithm. We also prove a conditional expectation bound that will be useful for the analysis of the µ-best averaging approach.

Lemma

(Lower bound for random search algorithm). Let f be a function satisfying Assumption . There exist a constant C 1 > 0 and λ 1 ∈ N such that for all integers λ ≥ λ 1 , we have the following lower bound for random search:

E X 1 ,...,X λ ∼U (B(0,r)) f X (1) ≥ C 1 λ -2/d . Moreover, let (µ λ ) λ∈N be a sequence of integers such that ∀λ ≥ 2, 1 ≤ µ λ ≤ λ -1 and µ λ → ∞.
Then, there exist a constant C 2 > 0 and λ 2 ∈ N such that for all h ∈ [0, max f ] and λ ≥ λ 2 , we have the following lower bound when the sampling is conditioned:

E X 1 ,...,X λ ∼U (B(0,r)) f X (1) | f (X (µ λ +1) ) = h ≥ C 2 hµ -2/d λ .
Proof. The proof is very similar to the previous one. Let us rst show the unconditional inequality. We use the identity for the expectation of a positive random variable

E X 1 ,...,X λ ∼U (B(0,r)) f X (1) = ∞ 0 P X 1 ,...,X λ ∼U (B(0,r)) f X (1) ≥ t dt
Since the samples are independent, we have

∞ 0 P X 1 ,...,X λ ∼U (B(0,r)) f X (1) ≥ t dt = ∞ 0 P X∼U (B(0,r)) [f (X) ≥ t] λ dt
Using Lemma , we get:

∞ 0 P X∼U (B(0,r)) [f (X) ≥ t] λ dt ≥ ∞ 0 P X∼U (B(0,r)) l X -x 2 ≥ t λ dt ≥ l(r-x ) 2 0 P X∼U (B(0,r)) l X -x 2 ≥ t λ dt = l(r-x ) 2 0   1 - t lr 2 d   λ dt
We can decompose the integral to obtain:

l(r-x ) 2 0   1 - t lr 2 d   λ dt = lr 2 0   1 - t lr 2 d   λ - lr 2 l(r-x ) 2   1 - t lr 2 d   λ dt ≥ lr 2 Γ ( d+2 d )Γ (λ + 1) Γ (λ + 1 + 2 d ) -l(r 2 -(r -x ) 2 ) 1 - r -x r d λ ≥ 1 2 lr 2 Γ ( d + 2 d )λ -2/d for λ su ciently large.
where the last inequality follows by Stirling's approximation applied to the rst term and because the second term is o(λ -2/d ) as in previous proof. This concludes the proof of the rst part of the lemma. Let us now treat the case of the conditional inequality. Using the same rst identity as above we have

E X 1 ,...,X λ ∼U (B(0,r)) f X (1) | f (X (µ λ +1) ) = h = ∞ 0 P X 1 ,...,X λ ∼U (B(0,r)) f X (1) ≥ t | f (X (µ λ +1) ) = h dt
Remark . Note that if we sample λ independent variables X 1 . . . X λ while conditioning on f (X (µ+1) ) = h and keep only the µ-best variables X i such that f (X i ) ≤ h, this is exactly equivalent to sampling directly X 1 . . . X µ from the h-level set. This result was justified and used in Meunier et al. [ a] in their proofs.

Hence we obtain

∞ 0 P X 1 ,...,X λ ∼U (B(0,r)) f X (1) ≥ t | f (X (µ λ +1) ) = h dt = ∞ 0 P X∼U (S h ) [f (X) ≥ t] µ λ dt
Using Lemma , we get:

∞ 0 P X∼U (S h ) [f (X) ≥ t] µ λ dt ≥ ∞ 0 P X∼U (S h ) l X -x 2 ≥ t µ λ dt ≥ ∞ 0 P X∼U (B(x , h l )) l X -x 2 ≥ t µ λ dt
where the last inequality follows from the inclusion S h ⊂ B(x , h l ), which is also a consequence of Lemma . We then get

∞ 0 P X∼U (B(x , h l )) l X -x 2 ≥ t µ λ dt = h 0 P X∼U (B(x , h l )) l X -x 2 ≥ t µ λ dt = h 0   1 - t h d   µ λ dt = h Γ ( d+2 d )Γ (µ λ + 1) Γ (µ λ + 1 + 2/d) ≥ 1 2 hΓ ( d + 2 d )µ -2/d λ
for λ su ciently large.

This lemma, along with Lemma , proves that for any function satisfying Assumption , its rate of convergence is exponentially dependent on the dimension and of order λ -2/d where λ is the number of points sampled to estimate the optimum.

Remark

(Convergence of the distance to the optimum). It is worth noting that, thanks to Lemma , the convergence rates are also valid for the square distance to the optimum x .

J. Convergence rates for the µ-best averaging approach

In the next section we focus on the case where we average the µ best samples among the λ samples. We rst prove a lemma when the sampling is conditional on the (µ + 1)-th value.

Lemma . Let f be a function satisfying Assumption . There exists a constant C 3 > 0 such that for all h ∈ [0, max f ] and λ and µ two integers such that 1 ≤ µ ≤ λ -1, we have the following conditional upper bound:

E X 1 ,...X λ ∼U (B(0,r)) f ( X(µ) )|f (X (µ+1) ) = h ≤ C 3 h µ + h α-1 .
Proof. We rst decompose the expectation as follows.

E X 1 ,...X λ ∼U (B(0,r)) f ( X(µ) )|f (X (µ+1) )) = h = E X 1 ,...Xµ∼U (S h ) f ( Xµ ) = E X 1 ,••• ,Xµ∼U (S h ) Xµ -x 2 H (J. ) + E X 1 ,••• ,Xµ∼U (S h ) Xµ -x α H ε( Xµ -x ) (J. )
where we have use the same argument as in Remark in the rst equality. We will treat the terms (J. ) and (J. ) independently. We rst look at (J. ). We have the following "biasvariance" decomposition.

E X 1 ,••• ,Xµ∼U (S h ) Xµ -x 2 H =(1 - 1 µ ) E X∼U (S h ) X -x 2 H + 1 µ E X∼U (S h ) X -x 2

H

We will use Lemma . We have A h ⊂ S h ⊂ B h . Hence for the variance term

1 µ E X∼U (S h ) X -x 2 H ≤ 1 µ E X∼U (S h ) φ + (h) 2 ≤ φ + (h) 2 µ ∼ 0 h µ .
where ∼ 0 means "is equivalent to . . . when h → 0, in other words, u(h)

∼ 0 v(h) i u(h) v(h) → 0 as h → 0.
For the bias term, recall that

E X∼U (S h ) [X -x ] = 1 vol(S h ) S h (x -x )dx.
We then have by inclusion of sets

vol(A h ) ≤ vol(S h ) ≤ vol(B h ) Note that the volume of the d-dimensional ellipsoid B h satis es vol(B h ) = φ + (h) d ω d det(H)
with ω d = vol(B(0, 1)) and similarly for A h . From this we deduce by the squeeze theorem that

vol(S h ) ∼ ω d h d/2
det(H) .

We now decompose the integral

S h (x -x )dx = A h (x -x )dx + S h \A h (x -x )dx = S h \A h (x -x )dx
(because A h is an ellipsoid centered at x hence the integral of xx over it is 0). We then upper-bound using the triangle inequality for the H-norm:

S h \A h (x -x )dx H ≤ S h \A h x -x H dx ≤ φ + (h)vol(S h \ A h ) = φ + (h)(vol(S h ) -vol(A h )) ≤ φ + (h)(vol(B h ) -vol(A h ))
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∼ d ω d det(H) m + M 2 h d/2 h (α-1)/2
For the last equivalent, we used a Taylor expansion for the volume of A h and B h . We conclude that there exist h 1 > 0 and a constant C > 0 not depending on λ and µ such that for h ≤ h 1 ,

E X∼U (S h ) [X] -x 2 H ≤ Ch α-1
Since h is upper bounded by max f , the previous inequality can be extended to h ∈ [0, max f ], with a possibly larger constant still not depending on λ and µ. Let us now upper bound the remainder term (J. ). As ε ≤ M by assumption, we can write

E X 1 ,••• ,Xµ∼U (S h ) Xµ -x α H ε( Xµ -x ) ≤ M E X 1 ,••• ,Xµ∼U (S h ) Xµ -x α H We have X 1 , • • • , X µ ∈ S h ⊂ B h
hence by the convexity of B h (which is a ball for the H-norm) we also have Xµ ∈ B h and thus, for h su ciently small, we have:

Xµ -x H ≤ φ + (h). Note that φ + (h) ∼ 0 √ h thus, for h su ciently small, Xµ -x H ≤ 1 almost surely, hence, as α > 2 Xµ -x α H ≤ Xµ -x 2
H almost surely. Since h is upper bounded, we have the existence of a constant C > 0 not depending on λ and µ, such that for all h ∈ [0, max f ],

Xµx α H ≤ C Xµx 2

H

Thus we can upper bound the remainder with the same bounds as the one for the main term (up to constants), for any h ∈ [0, max f ]. We now group the "main" term and remainder term to get the existence of a constant C 3 > 0 not depending on λ and µ such that for all h ∈ [0, max f ],

E X 1 ,...X λ ∼U (B(0,r)) f ( X(µ) )|f (X (µ+1) ) = h ≤ C 3 h µ + h α-1 .
We are now set to prove our main result, which is an upper convergence rate for the µ-best approach. This is the main result of the paper.

Theorem . Let f be a function satisfying Assumption . Let (µ λ ) λ∈N be a sequence of integers such that ∀λ ≥ 2, 1 ≤ µ λ ≤ λ -1 and µ λ → ∞. Then, there exist two constants C, C > 0 and λ ∈ N such that for λ ≥ λ, we have the upper bound:

E X 1 ,...,X λ ∼U (B(0,r)) f ( X(µ λ ) ) ≤ C µ 2(α-1) d λ λ 2(α-1) d + C µ 2 d -1 λ λ 2 d . In particular if µ λ ∼ C λ 2(α-2)
d+2(α-2) for some C > 0, we obtain:

E X 1 ,...,X λ ∼U (B(0,r)) f ( X(µ λ ) ) ≤ C λ - 2(α-1) d+2(α-2)
for some C > 0 independent of λ.

We note that µ λ → 0 as λ → 0. This makes sense intuitively: we average points in a sublevel set, which makes sense only if, asymptotically in λ, this sublevel set shrinks to a neighborhood of the optimum.

Proof. The random variable f (X (µ λ +1) ) takes its values in [0, max f ] almost surely. As such, thanks to Lemma , there exists a constant C 3 > 0 such that for all λ ≥ 1:

E f ( X(µ λ ) ) = E E f ( X(µ λ ) ) | f (X (µ λ +1) ) ≤ E C 3 1 µ λ f (X (µ λ +1) ) + f (X (µ λ +1) ) α-1 = C 3 1 µ λ E f (X (µ λ +1) ) + E f (X (µ λ +1) ) α-1
Let us rst bound E f (X (µ λ +1) ) . Thanks to Lemma , there exist a constant C 2 > 0 and λ 2 ∈ N such that:

E f (X (µ λ +1) ) ≤ µ 2/d λ C 2 E E f (X (1) ) | f (X (µ λ +1) ) = µ 2/d λ C 2 E f (X (1) )
Thanks to Lemma , there exists a constant C 0 > 0 and an integer λ 0 ∈ N such that for all integers λ ≥ λ 0 :

E X 1 ,••• ,X λ ∼U (B(0,r)) f X (1) ≤ C 0 λ -2 d . Then nally for λ ≥ max(λ 0 , λ 2 ) E f (X (µ λ +1) ) ≤ C 0 C 2 µ 2/d λ λ 2/d . Figure J.
: Assume that we consider a xed ratio µ/λ and that λ goes to ∞. The average of selected points, in an unweighted setting and with uniform sampling, converges to the center of the area corresponding to the ratio µ/λ: we will not converge to the optimum if that optimum is not the middle of the sublevel. This explains why we need µ/λ → 0 as λ → ∞: we do not want to stay at a xed sublevel.

For the term E f (X (µ λ +1) ) α-1 , we write thanks to Lemma

E f (X (µ λ +1) ) α-1 ≤ µ 2(α-1)/d λ C α-1 2 E E f (X (1) ) | f (X (µ λ +1) ) α-1 .
Then, by Jensen's inequality for the conditional expectation, we get

E f (X (µ λ +1) ) α-1 ≤ µ 2(α-1)/d λ C α-1 2 E f (X (1) ) α-1 .
Similarly to Lemma , by replacing X-x 2 by X-x 2(α-1) , one can show

E f (X (1) ) α-1 ≤ C 3 λ -2(α-1)/d for some C 3 > 0 independent of λ. We thus get E f (X (µ λ +1) ) α-1 ≤ C µ 2(α-1)/d λ
λ 2(α-1)/d for some C > 0 independent of λ, which, combined with the above bound on E f (X (µ λ +1) ) , concludes the proof of the main bound. To conclude for the nal bound, it su ces to notice that this choice of µ λ ensures that the two terms in the upper bound are of the same order. This theorem gives an asymptotic upper rate of convergence for the algorithm that consists in averaging the best samples to optimize a function with parallel evaluations. The proof of the optimality of the rate is left as further work. We also remark that the selection ratio depends on the dimension and goes to 0 as λ → ∞. It sounds natural since the level sets might be assymetric and then keeping a constant selection rate would give a biased estimate of the optimum (see Figure J. ). However, the choice proposed for µ is the best one can make with regards to the upper bound we obtained. We make two important remarks about the theorem.

Remark

(Comparison with random search). The asymptotic rate obtained for the µ-best averaging approach is of order λ -2(α-1) d+2(α-2) , which is strictly better than the λ -2/d rate obtained with random search, as soon as d > 2 (because α > 2) . This theorem then proves our claim on a wide range of functions.

Remark

(Comparison with Meunier et al. [ a]). Meunier et al. [ a] obtained a rate of order λ -1 for the sphere function. This rate is better than the one described in Theorem . This comes from the bias term in Lemma . Indeed for the sphere function, sublevel sets are symmetric, hence the bias term equals 0, which is not the case in general for functions satisfying Assumption . In this paper we are able to deal with potentially non symmetric functions. One can remark, that if the sublevel sets are symmetric the bias term vanishes and we recover the rate of Meunier et al. [ a].

J. Handling wider classes of functions

The results we proved are valid for functions satisfying Assumption . In particular, the functions are supposed to be regular and have a unique optimum point. In this section, we propose to extend our results to wider classes of functions.

J. . Invariance by Composition with Non-Decreasing Functions

Mathematical results are typically proved under some smoothness assumptions: however, algorithms enjoying some invariance to monotonic transformations of the objective functions do converge on wider spaces of functions as well Akimoto et al. [ ]. Since the method is based on comparison between the samples, the rank is invariant when the function f is composed with a strictly increasing function g. Let f be a function satisfying Assumption and g be a strictly increasing function. Consider h = g • f . Then h admits a unique minimum x coinciding with the one of f . As such, the expectation E X 1 ,...X λ ∼U (B(0,r)) X (µ)x 2 satis es the same rates than Theorem . This an immediate consequence of Lemma . In particular, using the square distance criteria, the rate are preserved even for potentially non regular functions. For example, our theorem can be adapted to convex piecewise-linear functions, compositions of quadratic functions with non-di erentiable increasing functions, and many others. Results based on surrogate models are not applicable here.

J. . Beyond Unique Optima: the Convex Hull trick, Revisited

One of the drawbacks of averaging strategies is that they do not work when there are two basins of optima. For instance, if the two best points x (1) and x (2) have objective values close to those of two distinct optima x , y respectively then averaging x (1) and x (2) may result in a point whose objective value is close to neither. However, in the presence of quasi-convexity this can be countered. It thus makes sense to take into account the possible obstructions to the quasi-convexity of the function and try to counter these, while still maintaining the same basic algorithm as in the case of a unique optimum. Meunier et al. [ a] proposed to take into account contradictions to quasi-convexity by restricting the number µ of points used in the averaging. Based on their ideas, we propose the following heuristic.

Let us x the number of initially selected points equal to µ max . Let x (1) , . . . , x (µmax) be these points ranked from best to worst. De ne S i = (x (1) , . . . , x (i) ) and C i the interior of the convex hull of S i . Assume that there is no tie in tness values, that is no i = j such that f (x i ) = f (x j ). Given µ max , choose µ maximal such that ∀i ≤ µ, x (i) ∈ C i .

(J. )

J Asymptotic convergence rates for averaging strategies

One can remark that x (µ) ∈ C µ ⇒ f is not quasi-convex on C µ . However, this may not detect all cases in which f is not quasi-convex on C µ . More generally,

∃j > µ -1, x (j) ∈ C µ ⇒ f is not quasi-convex on C µ . (J. )
If such a j is not µ, Eq. (J. ) does not detect the non-quasiconvexity: therefore, (J. ) detects more non-quasiconvexities than Eq. (J. ). Therefore we choose µ maximal such that for all i < µ, j > i, x (j) ∈ C i . This heuristic leads to a choice of average which is "consistent" with the existence of multiple basins. All results are averaged over 30 independent runs. We observe, consistently with our theoretical results and intuition, that (i) the optimal r = µ λ decreases as d increases (ii) we need a smaller r when the function is multimodal (Rastrigin) (iii) we need a smaller r in case of dissymmetry at the optimum (perturbed sphere).

J. Experiments

We divide the experimental section in two parts. In a rst part, we focus on validating theoretical ndings, then we compare with existing optimization methods. ], many methods are worse than that when the dimension is huge compared to the budget.

• QOXX = method XX, plus quasi-opposite sampling Rahnamayan et al. [ ], i.e. each time we draw x with N , we also use -rx where r is uniformly independently drawn in (0, 1).

• XXPlusMiddlePoint = method XX, except that there is one point forced at the center of the domain.

• Experimental setup. We measure the simple regret and compare methods by average frequency of win against other methods. For each test case, we randomly draw the optimum as N (0, I d ) (multivariate standard Gaussian), with di erent budgets λ in {30, 100, 300, 1000, 3000, 10000, 100000} and dimensions d in {3, 10, 30, 100, 300, 1000, 3000}. Due to their time of evaluation, we did not run the cases with both d = 3000 and λ = 100000. We evaluated on di erent functions: the sphere function, the Griewank function, and the Highly Multimodal function. Previous results Bousquet et al. [ ] from the literature have already shown that replacing random sampling by scrambled Hammersley sampling (i.e. modern low discrepancy sequences compatible with high dimension) leads to better results.

Analysis of results. Analyzing the table results from Figure J. , we observe that

• Averaging performs well overall: AvgXX is better than XX;

• The quasi-convex trick from Section J. . does work: HAvgXX is better than AvgXX;

• The rescaling strategy from Meunier et al. [ c] outperforms the ones in Cauwet et al. [ ] (MetaTuneRecentering better than MetaRecentering or than PlusMiddlePoint) which are already better than standard quasi-random sampling. Quasi-Opposite sampling is also competitive.

We also include various methods present in the platform, including those which are based on Cauchy or Hammersley without scrambling (Hammersley in the name without "Scr" pre x), or sophisticated uses of convex hulls for estimating the location of the optimum (HCH in the name).

J. Conclusion

We proved that averaging µ > 1 points rather than picking up the best works even for non quadratic functions, in the sense that the convergence rate is better than the one obtained just by picking up the best point. We also proved faster rates than methods based on meta-models (such as Rudi et al. [ ]) unless the objective function is very smooth and low dimensional. We also show that our results cover a wider family of functions (Section J. . ). We also propose a rule for choosing µ, depending on λ and the dimension. This shows that the optimal µ/λ ratio decreases to 0 as the dimension goes to in nity, which is con rmed by Fig. J. . We also note, by comparing with Meunier et al. [ a], that the optimal ratio should be smaller (Fig. J. ), which is con rmed by our experiments on the perturbed sphere (Fig. J. ). We also propose a method for adapting this µ, by automatically detecting non-quasi-convexity and reducing it: and prove that it detects more non-quasiconvexities than the method proposed in Meunier et al. [ a]. Finally, we validate the approach on a reproducible open-sourced platform (Fig. J. ).

Further Work

Using density-dependent weights as in Teytaud and Teytaud [ ] should allow us to get rid of the constraint ||x * || < r using a Gaussian sampling instead of a uniform sampling. Better rates might be obtained with rank-dependent weights as in Arnold et al. [ ]. We also leave as further work the proof of the optimality of the rate for this strategy. Moreover, we also believe better rates can be obtained for smoother functions, and leave this study for further work. ] is successful and its last stage looks exactly like a one-shot optimization method.

K Black-Box Optimization Revisited:

Improving Algorithm Selection Wizards through Massive Benchmarking

Existing studies in black-box optimization su er from low generalizability, caused by a typically selective choice of problem instances used for training and testing of di erent optimization algorithms. Among other issues, this practice promotes over tting and poor-performing user guidelines. We address this shortcoming by introducing in this work a general-purpose algorithm selection wizard that was designed and tested on a previously unseen breadth of black-box optimization problems, ranging from academic benchmarks to real-world applications, from discrete over numerical to mixed-integer problems, from small to very large-scale problems, from noisy over dynamic to static problems, etc. Not only did we use the already very extensive benchmark environment available in Nevergrad, but we also extended it signi cantly by adding a number of additional benchmark suites, including Pyomo, Photonics, LSGO, and MuJoCo. Our wizard achieves competitive performance on all benchmark suites. It signi cantly outperforms previous state-of-the-art algorithms on some of the suites, including YABBOB and LSGO. Its excellent performance is obtained without any task-speci c parametrization. The algorithm selection wizard, all of its base solvers, as well as the benchmark suites are available for reproducible research in the open-source Nevergrad platform.

K. Introduction: State of the Art

Many real-world optimization challenges are e ectively black-box problems; i.e., the main source of information when solving them is the evaluation of solution candidates. These evaluations often require simulations or even physical experiments. Black-box optimization methods are thus widely applied in practice, with a particularly growing impact in machine learning Salimans et ], a manual selection and con guration of the algorithms-often entirely based on users previous experience and not necessarily on broader performance data-is still predominant in the broader K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking black-box optimization context. To reduce the bias inherent to such manual choices, and to support the automation of algorithm selection and con guration, sound comparisons of the di erent black-box optimization approaches are needed. Existing benchmarking suites, however, are rather selective in the problems they cover. This leads to specialized algorithm frameworks whose performance su er from poor generalizability. We address this aw in black-box optimization by presenting a high-performing algorithm selection wizard, ABBO (Automated Black-Box Optimization). ABBO uses very basic information about the problem and the available computational resources to select one or several algorithms, which are run for the allocated budget of function evaluations. The wizard was developed within the Nevergrad platform Rapin and Teytaud [ ], which we have signi cantly extended for this work to obtain an even broader set of benchmark problems.

In summary, our key contributions are as follows: ( ) Algorithm Selection Wizard ABBO: Our algorithm selection technique, ABBO can be seen as an extension of the Shiwa wizard presented in Liu et al. [ ]. The wizard takes as input information on the problem (the dimension of the search domain, the type and range of each variable, and their order), the presence of noise in the evaluation (but not its intensity), and the computational resources that are available to solve the problem (the budget and the degree of parallelism, i.e., number of solution candidates that can be evaluated simultaneously). Based on this input, the wizard outputs one or several algorithms that it suggests to execute on the given problem. ABBO et al. [ , ]. We compare the performance of ABBO to all these algorithms, as well as to its predecessor Shiwa, and to all other algorithms available in Nevergrad.

( ) Benchmark Collection: By integrating a number of additional benchmark suites into the Nevergrad platform, we obtain a huge benchmark collection that covers a previously unseen breadth of black-box optimization problems, ranging from academic benchmarks to real-world applications, from discrete over numerical to mixed-integer problems, from small to very large-scale problems, from noisy over dynamic to static problems, etc.

Structure of the Paper:

We motivate in Sec. K. why we have chosen to develop ABBO within the Nevergrad benchmarking environment and how we have extended it. Sec. K. summarizes ABBO and discusses di erences to previous versions. Experimental results can be found in Sec. K. . Sec. K. concludes our paper with an outlook to future work. Table K. : Properties of selected benchmark collections (details in the main text). "+" means that the feature is present, "-" that the feature is missing, and "NA" means that it is not applicable. 

Availability of Data and

K. Sound Black-Box Optimization Benchmarking

We discuss in this section which features we consider desirable for sound benchmarking, and how di erent suites address these. This discussion motivates our decision to design and to evaluate ABBO within the Nevergrad environment Rapin and Teytaud [ ]. Tab. K. summarizes how some of the common benchmarking environments address the properties discussed below.

K. . Desirable Properties for Sound Benchmarking

Generalization: The most obvious issue in terms of generalization is the statistical one: we need su ciently many experiments for conducting valid statistical tests and for evaluating the robustness of algorithms' performance. However, this is probably not the main issue. A biased benchmark, excluding large parts of the real world needs, leads to biased conclusions, no matter how many experiments we perform. Inspired by Recht et al. [ ] in the case of image classi cation, and similar to the spirit of cross-validation for supervised learning, we use a much broader collection of benchmark problems for evaluating algorithms in an unbiased manner. Another subtle issue in terms of generalization is the case of instance-based choices of (hyper-)parameters: an experimenter modifying the algorithm or its parameters speci cally for each instance can easily achieve considerable performance improvements. In this paper, we consider that only the following problem properties are known in advance (and can hence be used for algorithm selection and con guration): the dimension of the domain, the type and range of each variable, their order, the presence of noise (but not its intensity), the budget, and the degree of parallelism (i.e., number of solution candidates that can be evaluated simultaneously). To mitigate the common risk of over-tuning, we evaluate algorithms on a broad range of problems, from academic benchmark K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking problems to real-world applications. Each algorithm runs on all benchmarks without any change or task-speci c tuning.

Large scale: Since practical problems can reach very large dimensions, we consider it desirable to include benchmark suites that comprise such problems. A "+" in Table K. indicates that the collection provides benchmark problems in dimension ≥ 1 000.

Translations:

The search point zero frequently plays a special role in optimization. For example, complexity penalization often "pushes" towards zero. Also, large values in a neural network lead to saturation Glorot and Bengio [ ]: then, we get a plateau and cannot learn from the samples. In arti cial experiments, several classical test functions have their optimum at (0, . . . , 0). To avoid misleading conclusions, it is now a standard procedure, advocated in particular in Hansen et al. [ ], to randomly translate the objective functions. Concretely, we consider that there is translation when optima are randomly translated by a N (0, σ 2 ) shift. This property is mainly interesting for arti cially created benchmarks, but is unfortunately not always applied.

Symmetrizations / Rotations: Some optimization methods may perform well on separable objective functions but degrade signi cantly when optimizing non-separable functions. If the dimension of a separable objective function is d, these methods can reduce the objective function into d one-dimensional optimization processes Salomon [ ]. Therefore, Hansen et al. [ , ] proposed that objective functions should be rotated to generate more di cult nonseparable objective functions. In Bousquet et al. [ ], the importance of dummy variables, which are not invariant under rotation, was pointed out. Several references in the genetic algorithms literature, including Holland [ ], argue that rotations may not always be the right approach, in particular when the order of the variables carries a meaning. Nevergrad uses rotations, but separates the rotated and non-rotated cases in its evaluation, allowing users to focus on the setting of their choice. Assuming an optimum at 0 up to a translation step, we consider rotation as the replacement of the function x → f (x) by x → f (M (x)) for a randomly selected rotation matrix M . We speak of symmetrization when x → f (x) is replaced by x → f (S(x)), where S is a randomly chosen diagonal matrix whose entries are either 1 or -1.

One-line reproducibility:

Where reproducibility requires signi cant coding, it is unlikely to be of great use outside of a very small set of specialists. One-line reproducibility is given when the e ort to reproduce an entire experiment does not require more than the execution of a single line. This is possible in Nevergrad, as an example <python -m nevergrad.benchmark yabbob -plot > will reproduce YABBOB results on cores.

Periodically automated dashboard: Some platforms do not collect the algorithms, which severely limits their reproducibility, as their implementations may not be available for public comparison. An automated and periodically rerun dashboard mitigates this risk. It is also convenient because new problems can be added "on the go" without causing problems, as all algorithms will be executed on all these new problem instances.

Complex or real-world: Benchmarks that contain real-world optimization problems, or at least complex simulators are desirable to evaluate our methods in realistic environments. MuJoCo is an example of a complex simulator.

Open sourced / no license: Another important aspect of benchmarking environments is whether or not algorithms, problems, and data are available under an open source agreement. BBOB does not collect algorithms, MuJoCo requires a license, BBComp is no longer maintained. As part of our work we integrated MuJoCo into Nevergrad, making it available to a broad pub-lic, since users can upload their algorithms in Nevergrad and they will be run on all benchmarks, including MuJoCo.

Ask/tell/recommend framework: Formalizing the concept of numerical optimization is typically made through the formalism of oracles or parallel oracles Rogers Jr [ ]. A recent trend is the adoption of the ask-and-tell format developed in Breitkopf and Coelho [ ]. The bandit literature pointed out that we should distinguish ask, tell, and recommend: the way we choose a point for gathering more information ("ask") is not necessarily close to the way we choose an approximation of the optimum ("recommend"), see Bubeck et al. [ ], Coulom [ ], Decock and Teytaud [ ] for detailed discussions. The di erence is particularly important in noisy optimization, where an algorithm that just happens to do one lucky evaluation should not be able to get credit unless it would actively recommend that solution. A closely related issue is that a run with budget T is not necessarily close to the truncation of a run in budget 10T .

Human excluded / client-server: Whether or not the problem instances are truly black-box. In the proper black-box setting, algorithms can only suggest points and observe function values, but neither the algorithm nor its designer have access to any other information about the problem apart from the number of variables, their type, ranges, and order. It is impossible to repeat experiments for tuning hyperparameters without "paying" the budget of the tuning. Nevergrad does not reproduce the extreme black-box nature of BBComp Škvorc et al. [ ], where the objective function is evaluated on a server and the algorithms really only perform function evaluations over the internet without having access to any other source of information about the problem at hand. Still, by integrating a wide range of benchmarks in a single open-source framework, which, in addition, is periodically re-run, we nevertheless conclude that Nevergrad provides the right environment for the development and the evaluation of ABBO. ], and Keras-tuning. In this list, underlined means that the benchmark is either new (i.e., created by us), or, in the case of PowerSystems and SimpleTSP, signi cantly modi ed compared to previous works, or, in the case of Pyomo, LSGO, and MuJoCo, included for the rst time inside Nevergrad. For MuJoCo, we believe that interfacing with Nevergrad is particularly useful, to ensure fair comparisons, which rely very much on the precise setup of MuJoCo. Some more details about the suites will be given in Sec. K. when we discuss results for selected benchmark collections. ], the noisy one is related to the noisy counterpart of BBOB but implements the di erence between ask and recommend as discussed in Sec. K. . The parallel one generalizes YABBOB to settings in which several evaluations can be executed in parallel. Results on PARAMULTIMODAL are presented in , con rm that ABBO performs well also on benchmarks that were not explicitly used for its design. However, this benchmark was used for designing Shiwa, which was the starting point for the design of ABBO. A rigorous cross-validation, on benchmarks totally independent from the design of Shiwa, is provided in the next sections.

K. . Benchmarking Suites (Now) Available in Nevergrad

K. The ABBO Algorithm Selection Wizard

K. . New Benchmark Suites Used Only for Evaluating ABBO

Pyomo is a modeling language in Python for optimization problems Hart et al. [ ]. It has been adopted for formulating large models for complex and real-world systems, including energy systems and network resource systems. We implemented an interface to Pyomo for Nevergrad. Experimental results are summarized in Fig. K. . They show that ABBO also performs decently in discrete settings and in constrained cases.

Additional new arti cial and real-world functions: LSGO Li et al. [

] combines various functions into an aggregated testbed including composite highly multimodal functions. Correctly decomposing the problem is essential. Various implementations of LSGO exist; in particular, the Octave and C++ versions do not match exactly for F /F /F . We match the C++ version, which is the one used in Li et al. [ ]. For F , there is a di erence between the code and the paper and we match the code rather than the paper. Following Li et al. [ ], our implementation comprises functions with subcomponents (i.e., groups of decision variables) having non-uniform sizes and non-uniform, even con icting, contributions to the objective function. We also present experimental results on SequentialFastgames from the Nevergrad benchmarks, and three newly introduced benchmarks, namely Rocket, Simple TSP (a set of traveling salesman problems, where a vector x ∈ R d is converted into a permutation σ by letting σ(i) be the index of the i-th largest element in x (ties broken at random)), and power systems (unit commitment problems Padhy [ ]). Experimental results are presented in Figs. K. , K. , and K. , , with an algorithm adapted manually for the di erent tasks, we get overall better results for Humanoid, Ant, and Walker. We get worse results for Swimmer (could match if we had modi ed our code for the three easier tasks as done in Wang et al. [ b]), similar for Hopper and Cheetah: we reach the target for of the problems (see main text). Runs of Shiwa correspond to the improvement of Shiwa due to chaining, as explained in Sec. K. . respectively. They show that ABBO performs well on new benchmarks, never used for its design nor for that of the low-level heuristics used inside ABBO. ]: following the recommendation from Meunier et al. [ c] to sample close to zero in the high dimensional setting, we chose to initialize all the variables of the problem with a variance decaying with the dimension, for all methods run in Fig. K. . We remark that ABBO and Shiwa perform well, even when compared to gradient-based methods, while having the advantage of being applicable to settings in which gradients are not available. In comparison to gradient-based methods, K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking black-box methods do not require computation of the gradient, and hence, save computational time.

We use the same experimental setup as Wang et al.

[ b] (linear policy, o ine whitening of states). We get better results than LA-MCTS, in a setting without using any expensive surrogate model (Tab. K. ). Our runs with CMA-ES and Shiwa are better than those in Wang et al. [ b]. We acknowledge that LMRS Sener and Koltun [ b] outperforms our method on all MuJoCo tasks, using a deep network as a surrogate model: however, we point out that a part of their code is not open sourced, making the experiments not reproducible. In addition, when rerunning their repository without the closed source part, it solved Half-Cheetah within budget k, which is larger than ours. For Humanoid, the target was reached at k, which is again larger than our budget. The results from ABBO are comparable to, and are usually better than (for the hardest problems) the results from LA-MCTS, while ABBO is entirely reproducible. In addition, it runs the same method for all benchmarks and it is not optimized for each task speci cally as in Sener b] and those presented here in this paper, we expect LA-MCTS to perform well with an adapted choice of parametrization and with a low budget, for tasks related to MuJoCo, whereas ABBO is adapted for wide ranges of tasks and budgets.

As mentioned at the end of the introduction, videos illustrating the performance of the learnt policies are available at Meunier et al. [ c].

K. Conclusions

We have introduced in this paper ABBO, an improved algorithm selection wizard that signicantly improves upon its predecessor Shiwa Liu et al Future work: Nevergrad implements most of the desirable features outlined in Sec. K. , with one notable exception, the true black-box setting, which other benchmark environments have implemented through a client-server interaction Škvorc et al. [ ]. A possible combination between our platform and such a challenge, using the dashboard to publish the results, could be useful, to o er a meaningful way for cross-validation. Further improving ABBO is on the roadmap. In particular, we are experimenting with the automation of the still hand-crafted selection rules. Note, though, that it is important to us to maintain a high level of interpretability, which we consider key for a wide acceptance of the wizard. Another avenue for future work is a proper con guration of the low-level heuristics subsumed by ABBO. At present, some of them are merely textbook implementations, and signi cant room for improvement can therefore be expected. Newer ] are not unlikely to result in important improvements for various benchmarks. We also plan on extending the benchmark collection available through Nevergrad further, both via interfacing existing benchmark collections/problems and by designing new benchmark problems ourselves.

Dans cette annexe, nous présentons un résumé en français de cette thèse. Elle comporte principalement une traduction du contexte et des motivations de mon travail ainsi que les grandes lignes de chacune de mes contributions. 

L. Les fondements de l'Intelligence Arti cielle

L'apprentissage automatique, sous-domaine de l'informatique dédié à la construction et à l'étude de systèmes informatiques qui s'améliorent automatiquement avec l'expérience, est au coeur des récentes avancées en Intelligence Arti cielle. Prenant ses racines dans l'analyse statistique, il a été largement étudié au cours des trente dernières années sous des perspectives algorithmiques et mathématiques, donnant naissance à une nouvelle discipline, la théorie informatique de l'apprentissage. Grâce à la disponibilité de quantités massives de données et de puissance de calcul à bas coût, les deux dernières décennies ont connu un intérêt croissant pour les applications réelles du domaine. Cet intérêt est encore plus fort depuis , avec le succès remarquable d'AlexNet [Krizhevsky et al., ] sur le jeu de données ImageNet [Deng et al., ], utilisant des réseaux de neurones à plusieurs couches. L'ère de l'apprentissage profond a commencé alors avec des innovations spectaculaires dans plusieurs domaines : modèles génératifs [Goodfellow et al., ], traitement du langage naturel [Vaswani et al., ], etc. Le succès de l'apprentissage profond (réseaux de L Résumé Détaillé en Francais neurones arti ciels avec beaucoup de couches) peut être expliqué par la conjonction des facteurs suivants :

• Disponibilité des données: la quantité et le coût des données ont largement diminué depuis l'apparition de plateformes web et d'outils de gestion de grandes quantités de données.

• Puissance de calcul: de nouvelles architectures matérielles spécialisées telles que les GPU et les TPU permettent des algorithmes de formation plus rapides et plus grands.

• Scalabilité algorithmique: les algorithmes sont évolutifs pour les modèles de grande taille (calcul distribué, etc.) et un grand nombre de données (descente de gradient stochastique [Bottou, ], etc.) ], etc.) permettant l'émergence de grandes communautés.

Il est important de noter ici que l'Intelligence Arti cielle, en tant que domaine scienti que, existe depuis le début du XXe siècle. Elle englobe plusieurs notions et domaines, en dehors de l'apprentissage automatique et de l'apprentissage profond. Sa naissance est indissociable du développement de l'informatique. Le premier ordinateur e cace a été construit par Charles Babbage et a exécuté l'algorithme d'Ada Lovelace. La science informatique a été formalisée et théorisée dans la thèse de Church-Turing [Turing, ], qui dé nit la notion de calculabilité, c'est-à-dire que les fonctions sont calculables si elles peuvent être décrites sous forme de liste d'instructions prédé nies à suivre. Ces instructions sont appelées algorithmes. L'Intelligence Arti cielle, ou du moins le terme, a été "o ciellement fondée" en tant que champ de recherche en lors de la conférance de Dartmouth [McCarthy et al., ], organisé par Marvin Minsky, John McCarthy, Claude Shannon et Nathan Rochester. Au cours de cette conférence, le terme "Intelligence Arti cielle" a été proposé et adopté par la communauté de chercheurs. Depuis lors, le domaine a oscillé entre l'hystérie et la déception, avec au moins deux périodes majeures d'indi érence connues sous le nom de "hivernaux AI". Cette thèse est clairement développée pendant la troisième période d'hystérie, mais nous gardons à l'esprit l'histoire très éclairante de la discipline.

L. Risques avec les Systèmes Autonomes L. . Menaces Courantes

La cybersécurité est au coeur de l'informatique. La cryptographie a été l'un des sujets les plus brûlants au cours des trente dernières années. En dépit de leurs performances, les systèmes d'apprentissage sont sujets à de nombreux types de vulnérabilités et, de par leur popularité, sont alors sujets à des attaques malveillantes. La vulnérabilité la plus connue qui a retenu l'attention du public est probablement la con dentialité des données. Alors que la quantité de données disponibles sur le web augmente de façon exponentielle, il devient de plus en plus facile d'identi er des individus en croisant des ensembles de données lorsque celles-ci ne sont pas protégées. Comme l'a montré L. Risques avec les Systèmes Autonomes la désanonymisation de l'ensemble de données du prix Net ix M$ [Narayanan and Shmatikov, ], cacher les identités dans les ensembles de données n'est pas su sant pour protéger les données privées. Les informaticiens ont alors intensi é leurs e orts pour proposer des moyens de protéger les données, ce qui a conduit à l'émergence de ce qui est considéré comme un standard pour la protection des données : la con dentialité di érentielle [Dwork, ]. Elle consiste à ajouter un léger bruit aléatoire aux données pour les rendre non identi ables sans trop détériorer leur utilité. La con dentialité di érentielle est séduisante car elle s'accompagne de solides garanties théoriques, tout en étant simple à manipuler, permettant de faire un compromis entre le degré de con dentialité par injection de bruit et la qualité des informations que l'on peut déduire des données. Les attaques courantes sur la con dentialité sont: En réponse aux menaces sur la vie privée des individus, les autorités européennes ont conçu la réglementation RGPD (Règlement Général sur la Protection des Données) , adopté en , qui dé nit de nouvelles règles sur l'utilisation des données et sur la vie privée. Aujourd'hui, RGPD fait partie de tout plan de gestion des données des entreprises privées. En tant que mise à jour du GDPR, une deuxième proposition de loi concernant le partage des données entre les entreprises publiques et privées a été introduite par la Commission européenne sur la gouvernance des données en . Un autre type de vulnérabilité dans l'apprentissage automatique concerne la défaillance des modèles. Un utilisateur malveillant, en modi ant soit le modèle, soit les données, peut rendre les performances du modèle très médiocres. Les attaques les plus connues visant à faire échouer un modèle sont les suivantes :

• Attaque par empoisonnement des données [Kearns and Li, ]: modi cation de certaines données dans l'ensemble d'apprentissage de sorte que le modèle soit très peu performant sur l'ensemble de retenue.

• Attaques par évasion [Biggio et al., , Szegedy et al., ] : petites perturbations imperceptibles au moment de l'inférence. Nous les appellerons "attaques adverses".

Connues et suscitant de plus en plus d'intérêt dans le monde universitaire, ces menaces ne sont pourtant pas connues de la plupart des entreprises [Kumar et al., b]. Plus important encore, ces vulnérabilités entravent l'utilisation de modèles de pointe dans les systèmes critiques (véhicules autonomes, soins médicaux, etc.). Dans ce manuscrit, nous nous concentrerons sur les attaques adverses. Nous présentons cette menace plus en détail dans le paragraphe suivant. . Ce texte comprend une large section consacrée à l'"IA à haut risque". L'IA à haut risque se réfère à tout système autonome qui peut mettre en danger des vies humaines. Ce texte vise à traiter de nombreuses menaces dans les systèmes d'apprentissage. Deux références directes sont faites aux attaques adverses, soulignant la nécessité pour les entreprises d'y faire face. La di culté est d'uni er et de créer des règles précises dans un domaine où les résultats et les certi cats sont principalement empiriques. Comme mentionné précédemment, il est connu que les modèles robustes sont souvent moins performants et peuvent rendre les systèmes autonomes inutilisables dans les scénarios du monde réel. Ainsi, ce texte est un premier pas vers une réglementation uni ée sur les systèmes autonomes mais pourrait manquer d'exigences précises pour les modèles à utiliser en production.

L. . Attaques adverses contre les systèmes d'apprentissage automatique

Malgré le récent intérêt pour l'étude des attaques adverses contre les algorithmes d'apprentissage automatique, la problématique existe depuis un certain temps: en classi cation de SPAM, les adversaires étaient des spammeurs dont le but était de contourner la décision de l'algorithme .

En dépit du succès des algorithmes d'apprentissage profond, notamment en vision par ordinateur, plusieurs auteurs [Biggio et al., , Szegedy et al., ] ont mis en évidence leur vulnérabilité aux attaques adverses. Dans le cas de la vision par ordinateur, les attaques adverses sont généralement comprises comme des perturbations "imperceptibles" d'une image, c'est-à-dire de légers changements au niveau des pixels, de sorte que cette image reste inchangée pour la perception humaine. L'existence de telles vulnérabilités peut paraître surprenante, mais elle constitue un frein important à l'application des méthodes d'apprentissage profond les plus récentes dans les systèmes critiques. De nombreux problèmes rendent di cile la construction et l'évaluation de modèles robustes pour des applications concrètes :

. La notion d'imperceptibilité n'est pas bien comprise : la mesure numérique de la perception humaine reste un problème ouvert. . Il existe un compromis entre la robustesse et la précision. La plupart des modèles robustes sou rent d'une baisse de performance sur des données naturelles. Par exemple, un robot entraîné de manière robuste aura des performances bien plus faibles sur des tâches naturelles qu'un robot précis mais non robuste. Cela rend généralement les modèles robustes inutilisables dans les applications du monde réel [Lechner et al., ].

L. Classi cation Adverse en Apprentissage Automatique

Dans ce manuscrit, nous allons nous concentrer sur la tâche de classi cation supervisée en apprentissage automatique. Le but de cette tâche est d'"apprendre" comment classer une entrée x dans une ou plusieurs labels. L'entrée peut être une image, un texte, un chier audio, etc. Par exemple, dans le domaine de la vision par ordinateur, un jeu de données relativement standard est ImageNet, dont l'objectif est d'apprendre à classer des images de haute qualité parmi labels di érentes [Deng et al., ]. En traitement du langage naturel, le jeu de données IMDB Movie Le classi eur optimal, minimisant le risque standard est appelé classi eur Bayes-optimal et est dé ni par h(x) = argmax k P(y = k | x). Comme la distribution d'échantillonage P est en général inconnue, le classi eur Bayes-optimal est également inconnu. La précision est souvent évalué sur un ensemble d'échantillons de test {(x 1 , y 1 ), . . . , (x M , y M )} indépendants de l'ensemble d'entrainements and i.i.d. échantillonés de la distributiion P. Pour trouver ce classi eur h, nous apprenons une fonction f : X → R K renvoyant des scores (ou logits), (f 1 (x), . . . , f K (x)) correspondants à chaque label. h est alors dé ni comme h(x) = argmax k f k (x). Cette fonction L. Classification Adverse en Apprentissage Automatique f est généralement apprise en minimisant le risque empirique pour une certaine fonction de perte L adéquament choisie sur une classe de fonctions H:

inf f ∈H R N (f ) := 1 N N i=1 L(f (x i ), y i ).
Ce problème est appelé minimisation empirique des risques (ERM). La théorie de ce problème a été grandement étudiée et est bien comprise par la communauté scienti que. Il est souvent avancé qu'il existe un compromis sur la "taille" de H : avoir une trop petite H peut conduire à un sous-ajustement, c'est-à-dire à un nombre insu sant de paramètres pour décrire la fonction optimale possible, tandis qu'une trop grande H peut conduire à un surajustement, c'est-à-dire de trop coller aux données d'apprentissage. Nous parlons souvent du compromis biais-complexité (voir la gure L. ). Un terme de pénalité Ω H (f ) peut également être ajouté à l'objectif ERM pour éviter le surajustement. Ce compromis a été récemment remis en question par le phénomène de double descente [Belkin et al., ] où les régimes surparamétrés (c'est-à-dire le nombre de paramètres largement supérieur au nombre d'échantillons d'apprentissage) diminuent le risque.

La présence d'adversaires dans la classi cation remet en question les connaissances que nous avons dans l'apprentissage statistique standard. En e et, la plupart des résultats standards ne sont pas valables en présence d'adversaires, ouvrant ainsi un nouveau domaine de recherche dédié à l'étude et à la compréhension du problème de la classi cation en présence d'attaques adverses, et plus important encore, approfondissant notre compréhension de l'apprentissage automatique/apprentissage profond en régime de haute dimension.

L. . Classi cation en présence d'attaques adverses

Bien qu'un modèle puisse être très performant sur des échantillons naturels, de petites perturbations de ces échantillons naturels peuvent conduire à des comportements inattendus et critiques sur les modèles de classi cation [Biggio et al., , Szegedy et al., ]. Pour formaliser cela, nous supposerons l'existence d'une "distance de "perception" d : X 2 → R telle qu'une perturbation x d'une entrée x reste imperceptible si d(x, x ) ≤ ε pour une constante ε ≥ 0. Cette distance de perception est di cile à dé nir en pratique. Pour les images, la distance • ∞ sur les pixels est souvent utilisée, mais elle ne permet pas de capturer toutes les perturbations imperceptibles. Ce choix est purement arbitraire : par exemple, nous mettrons en évidence dans le manuscrit que les perturbations • 2 peuvent également être imperceptibles tout en ayant une grande • ∞ . Les algorithmes de classi cation d'images sont également vulnérables aux perturbations géométriques, c'est-à-dire aux rotations et aux translations [Kanbak et al., , Engstrom et al., ]. Un exemple typique d'une attaque adverse est présenté dans la gure L. . Par conséquent, le but d'un attaquant est de construire un exemple adverse x à partir d'une entrée x qui est imperceptible, c'est-à-dire d(x, x ) ≤ ε et qui classi e mal l'entrée, c'est-à-dire h(x ) = y. Un tel échantillon x est appelé une attaque adverse. Le critère utilisé ne peut plus être le taux de mauvaise classi cation, nous devons prendre en compte la présence possible d'un adversaire qui perturbe malicieusement l'entrée. Nous dé nissons alors le taux de mauvaise classi cation robuste/adversaire ou le risque de perte 0/1 robuste/adversaire : L Résumé Détaillé en Francais Ce problème est plus di cile à aborder que la minimisation du risque standard car il implique un problème interne di cile de maximisation [Madry et al., b]. Les garanties dans le cadre adverse sont di ciles à obtenir, tant en termes de convergence que de garanties statistiques. La méthode usuelle pour résoudre ce problème est appelée entraînement adverse [Goodfellow et al., b, Madry et al., b]. Elle consiste à alterner les problèmes d'optimisation interne et externe. Une telle technique améliore en pratique la robustesse adverse mais manque de garanties théoriques. Jusqu'à présent, la plupart des résultats et des avancées dans la compréhension et l'exploitation des attaques adverses sont empiriques [Ilyas et al., , Rice et al., ], laissant de nombreuses questions théoriques et pratiques en suspens. De plus, les modèles robustes sou rent d'une baisse de performance et la vulnérabilité des modèles est actuellement encore très élevée (voir tableau L. ), ce qui laisse de la place pour des améliorations substantielles. 

L. Contributions

Attaque

L Résumé Détaillé en Francais

Ainsi, il existe deux problèmes de minimisation du risques:

V ε rand := inf µ∈M 1 + (Θ) R ε (µ), V ε det := inf θ∈Θ R ε (θ) (L. )
Attaquants randomisés Pour prendre en compte le potentiel caractère aléatoire de l'attaquant, nous introduisons la notion d'attaquant randomizés de la manière suivante

De nition (Ensemble des distributions adverses). Soit P une distribution de probabilité sur X × Y and ε > 0. L'ensemble des distributions adverses est défini par: d(x, x ) ≤ ε, y = y γ-a.s., Π 1 γ = P, Π 2 γ = Q où Π i dénote la projection sur la i-ème composante, et g la mesure push-forward par la fonction g.

A ε (P) := Q ∈ M + 1 (X × Y) | ∃γ ∈ M + 1 (X × Y) 2 ,
Un attaquant qui peut déplacer la distribution initiale P n'importe où dans A ε (P) n'applique pas une perturbation déterministe ponctuelle telle que considérée dans le cas standard. En d'autres termes, pour un point (x, y) ∼ P, l'attaquant pourrait choisir une distribution q(• | (x, y)) dont le support est inclus dans {(x , y ) | d(x, x ) ≤ , y = y } à partir de laquelle il échantillonnera l'attaque contradictoire. Dans ce sens, nous disons que l'attaquant est autorisé à être aléatoire. Nous montrons que l'attaquant randomisé satisfait pour tout classi eur µ: En n nous proposons des algorithmes pour trouver le classi eur optimal dans le cas d'un nombre ni de classi eurs. Le premier est basé sur un algorithme oracle à base de sous-gradient, et le second grâce à une régularisation entropique [Cuturi, ] du problème. 

Résultats expérimentaux

L. . Consistence des fonctions de perte dans la classi cation en présence d'adversaires

En classi cation standard, la consistence par rapport à la perte 0/1 est une propriété souhaitée pour la fonction de perte de subsitution L utilisée pour entraîner le modèle. Pour faire simple, une fonction de perte L est dite consistente si pour toute distribution de probabilité, une séquence de classi eurs (f n ) n∈N qui minimise le risque associé à la fonction de perte L, minimise également le risque de perte 0/1. Habituellement, dans la classi cation standard, le problème est simpli é grâce à la notion de calibration. La question de la consistence dans le cas adverse est beaucoup plus di cile.

Question

Quelles fonctions de pertes sont consistentes par rapport à la fonction de perte 0/1 dans le cas de la classi cation en présence d'adversaires?

Dans cette section uniquement, nous nous focalisons sur le cas binaire Y = {-1, +1}. Un classi eur f est alors une fonction f : X → R.

Consistence et calibration Le choix de la fonction de substitution se fait à travers la propriété de consistence des fonctions de perte. Une fonction de substition L 2 est consistente par rapport à une fonction de perte L 1 si et seulement si, pour tout suite de fonctions mesurables (f n ) n de X vers R et pour toute distribution P sur X × Y R L 2 ,P (f n ) → R L 2 ,P =⇒ R L 1 ,P (f n ) → R L 1 ,P (L. )

Cette propriété est complexe en raison de la dépendence sur toute la distribution P. Une notion ponctuelle de la consistence plus faible, mais plus facile à étudier a été introduite par [Zhang, b, Bartlett and Mendelson, , Steinwart, ]. Cette notion simpli ée s'appelle calibration et correspond à la consistence quand P est une combination de distributions Dirac. La fonction de calibration pour une fonction de perte L est dé nie par C L (x, η, f ) := ηL(x, 1, f ) + (1η)L(x, -1, f ), pour tout η ∈ [0, 1], x ∈ X et f ∈ F(X ). Notons que quand P = ηδ (x,+1) + (1η)δ (x,-1) , nous avons C L (x, η, f ) = R L,P (f ). Soient L 1 and L 2 deux fonctions de perte. On dit que L 2 est calibrée relativement à L 1 si pour tout ξ > 0, η ∈ [0, 1] and x ∈ X , there exists δ > 0 tel que pour tout f ∈ F(X ),

C L 2 (x, η, f ) -C L 2 (x, η) ---→ n→∞ 0 =⇒ C L 1 (x, η, f ) -C L 1 (x, η) ---→ n→∞ 0 .
Il faut noter que la calibration est toujours une condition nécessaire à la consistence. Cas standard Choisir la bonne fonction de perte est un problème largement étudié dans le cas standard. Soit f : X → R. On dé nit la fonction la fonction de perte 0/1 comme L 0/1 (x, y, f ) = 1 y×sign(f (x))≤0 avec une convention pour le signe, e.g. sign(0) = 1. L'étude des fonctions de perte à marge est commune dans la littérature: L φ (x, y, f ) = φ(yf (x)). Dans le cas standard, nous avons le résultat suivant qui montre l'équivalence entre calibration et consitence dans le cas standard: Des exemples communs sont les fonctions de perte Hinge φ(t) = max(1t, 0) et logistique φ(t) = log 1 + e -t qui sont convexes. Bien que la convexité soit une propriété désirable, elle n'est pas nécessaires et on peut trouver des fonctions de perte calibrés non-convexes: la fonction rampe φ(t) = 1 2 (max(1t, 0) + max(-1t, 0)) et la fonction logistique φ(t) = (1+e t ) -1 par exemple. Ces fonctions de pertes sont montrés à gauche dans la Figure L. .

Theorem

Calibration dans le cas adverse

Le cas adverse est plus technique car la consistence ne peut pas se réduire à un problème de calibration. Toutefois, la calibration reste une condition nécessaire d'où l'intérêt de l'étudier. Nous montrons qu'un fonction de perte à marge φ est calibrée dans le cas adverse si et seulement si elle est calibrée dans le cas standard et 0 ∈ argmin α φ(α) + φ(-α).

Ce résultat permet d'écarter la plupart des fonctions de perte usuelles comme candidates à la consistence dans le cas adverse. En particulier, aucune fonction de perte convexe n'est calibrée, ni les fonctions logistiques et à rampe qui ne satisfont pas 0 ∈ argmin α φ(α) + φ(-α). 

Vers la consistence dans le cas adverse L. . Constuction de modèles certi ables

Le dernier problème que nous abordons dans ce manuscrit est l'implémentation de modèles certi ables robustes. En bref, un classi eur est dit certi able à une entrée x au niveau ε si l'on peut s'assurer qu'il n'existe pas d'exemples adverses dans la boule de rayon ε. Ce problème est un dé , car il est loin d'être trivial de trouver des garanties qui soient exploitables en pratique.

Question

Comment implémenter e cacement des modèles certi ables avec des garanties exploitables? Fonction Lipschitz et robustesse Une fonction est robuste aux exemples adverses si le label ne change pas pour une perturbation faible des entrées. Cette propriété peut être naturellement reliée à la notion de fonctions Lipschitz car de telles fonctions permettent de contrôler les variations de la fonction. Plus formellement, nous pouvons relier robustesse et fonctions Lipschitz par la propriété suivante.

Proposition (Tsuzuku et al. [ ])

. Soit f un classifieur L-Lipschitz pour la norme 2 .Soit ε > 0, x ∈ X et y ∈ Y le label de x. Si pour un point x, la marge M f (x) satisfait:

M f (x) := max(0, f y (x) -max y =y f y (x)) > √ 2Lε
alors, for tout τ tel que τ 2 ≤ ε:

argmax k f k (x + τ ) = y
Cela permet de dé nir une notion de précision certi ée, c'est à dire que l'on a une propriété qui permet d'attester l'absence d'adversaires dans un rayon autour de chaque entrée. Dans ce chapitre, L. Contributions nous proposons de construire des réseaux de neurones Lipschitz grâce à l'interpretation système dynamique des réseaux de neurones.

Réseaux résiduels Lipschitziens

Les réseaux résiduels ont été introduits par [He et al., b] a n de palier aux problèmes d'explosion et de disparition du gradient. Le schéma couche par couche d'un tel réseau s'écrit de la forme:

x t+1 = x t + F t (x t )
où F t est souvent un réseau très simple à deux couches. On peut facilement voir en ce schéma une discrétisation d'un schéma continu de la forme suivante:

x 0 = x ∈ X dxt dt = F t (x t ) pour t ∈ [0, T ]
Sous reserve que F t soit dérivable, nous pouvons montrer que si la partie symmétrique du Jacobien F t a toutes ses valeurs propres négatives alors le ot dé ni par F t est 1-Lispchitz: pour toute entrée du réseau x 0 et z 0 x tz t ≤ x 0z 0 La di culté réside alors dans deux points: trouver des fonctions F t satisfaisant la propriété précédente et trouver la discrétisation adéquate. Pour le premier point, nous montrons que les fonctions de la forme F t (x) = -∇f t (x) + A t x où f t sont convexes et A t sont antisymétriques satisfont la propriété sur le Jacobien. Pour la discrétisation, le schéma Euler explicite ne permet pas de garder la propriété Lipschitz. La discrétisation Euler implicite le permet mais n'est pas calculable facilement. Nous proposons d'utiliser des schémas hybrides: un pas pour -∇f t (x) et un autre pas pour A t . A n de préserver exactement les normes, e pas pour A t peut être soit une discretisation Midpoint Euler ou une résolution explicite. Ces schémas ont été étudiés dans la littérature respectivement sous le nom de "couches Cayley" [Trockman et al., ] et "couches Skew Orthogonal" [Singla and Feizi, ]. Pour la discretisation de ∇f t , le schéma Euler explicite avec un pas su sammment petit satisfait la propriété Lipschitz. Reste à savoir comment paramétrer f t . 

Couche à Potentiel Convexe

L. Travaux complémentaires

Relativement aux exemples adverses, nous présentons des travaux complémentaires à ceux présentés dans le document principal:

• • Adversarial Attacks on Linear Contextual Bandits (voir Appendix D): we build provable attacks against online recommendation systems, namely Linear Contextual Bandits. Ce travail fut publié à NeurIPS [Garcelon et al., ].

• ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients (voir Appendix E): Nous utilisons un Optical Processor Unit (OPU) au dessus des défenses existantes dans l'état de l'art pour améliorer la robustesse face aux adversaires. Ce travail fut publié à ICASSP [Cappelli et al., b].

Nous avons également publié un article sur le transport optimal sur Equitable and Optimal

Transport with Multiple Agents (voir Appendix F) à AISTATS [Scetbon et al., a] où nous introduisons une façon de traiter les coûts multiples dans le transport optimal en partitionnant équitablement le transport entre les coûts. Nous avons également soumis récemment un article sur le test d'indépendance conditionnelle [Scetbon et al., b] nous montrons que, dans l'optimisation "one-shot", la distribution de la recherche optimale, utilisée pour l'échantillonnage des points d'essais, peut être plus piquée autour du centre de la distribution que la distribution d'échantillonage de l'optimum, ce qui re ète notre incertitude quant à la localisation de l'optimum. Ce travail fut publié à PPSN [Meunier et al., c].

• On averaging the best samples in evolutionary computation (voir Appendix I): nous prouvons mathématiquement qu'un seul parent dans un algorithme génétique conduit à un regret simple sous-optimal dans le cas de la fonction sphère. Nous fournissons un taux de sélection basé sur la théorie qui conduit à de meilleurs résultats. Ce travail a été publié PPSN [Meunier, Chevaleyre, Rapin, Royer, and Teytaud, a].

• Asymptotic convergence rates for averaging strategies (voir Appendix J): Nous étendons les résultats de l'article précédent à une large classe de fonctions incluant les fonctions C 3 avec des optima uniques. Ce travail a été publié à FOGA [Meunier et al., a]. 
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 . Figure . : Bias-Variance tradeo . A model with low complexity will have a low variance but a high bias. A model with high complexity will have a low bias but a high variance.

Figure . :

 . Figure . : Example of a pixel-level adversarial attack on a Stop Sign. It underlines the safety issues triggered by the possibility of such attacks.
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 . Figure . : Illustration of a convolutional neural network: stacking convolutional operators and non-linear activation functions.

  and SOC respectively) present the advantage of being "compatible" with convolutional structure in layers.

Figure . :

 . Figure . : Motivating example: blue distribution represents label -1 and the red one, label +1. The height of columns represents their mass. The red and blue arrows represent the attack on the given classi er. On left: deterministic classi ers (f 1 on the left, f 2 in the middle) for whose, the blue point can always be attacked. On right: a randomized classi er, where the attacker has a probability 1/2 of failing, regardless of the attack it selects.

Figure . :

 . Figure . : On left, 40 data samples with their set of possible attacks represented in shadow and the optimal randomized classi er, with a color gradient representing the probability of the classi er. In the middle, convergence of the oracle (α = 0) and regularized algorithm for di erent values of regularization parameters. On right, in-sample and out-sample risk for randomized and deterministic minimum risk in function of the perturbation size ε. In the latter case, the randomized classi er is optimized with oracle Algorithm .

Figure . :

 . Figure . : Comparison of our algorithm with a standard adversarial training (one model) on WideRes-Net x . We reported the results for the model with the best robust accuracy obtained over two independent runs because adversarial training might be unstable. Standard and Robust accuracy (respectively in the middle and on right) on CIFAR-test images in function of the number of epochs per classi er with 1 and 2 WideResNet x models. The performed attack is PGD with 20 iterations and ε = 8/255.

Figure . :

 . Figure . : On the left, illustration of common standardly calibrated losses. On the right plot of their symmetrized version. Here we notice that 0 ∈ argmin α φ(α) + φ(-α) for all these losses. Thus none of them are adversarially calibrated.

  Figure . : Illustration of the a calibrated loss in the adversarial setting. The sigmoid loss satisfy the hypothesis for ψ. Its shifted version is then calibrated for adversarial classi cation.
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  For instance, one can leverage the Conv D and Conv D_transpose functions of the PyTorch framework[Paszke et al., ] 

Figure . :

 . Figure . : Certi ably robust accuracy w.r.t. the perturbation ε for our CPL networks and its concurrent approaches (SOC and Cayley models) on CIFAR and CIFAR datasets.

Figure . :

 . Figure . : Accuracy against PGD attack with iterations w.r.t. the perturbation ε for our CPL networks and its concurrent approaches on CIFAR and CIFAR datasets.

Figure . :Figure . :

 .. Figure . : Certi ably robust accuracy w.r.t. the perturbation ε for our CPL-S network with di erent margin parameters on CIFAR and CIFAR datasets.

Figure . :

 . Figure . : Standard test accuracy w.r.t. the number of epochs (log-scale) for various depths for our neural networks (100, 300, 500, 700, 1000).
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  only need O(1) training samples to have a small generalization gap. But against an ∞ adversary, we need O( √ d) training samples instead. In the discussion of their work, the authors present the problem of obtaining similar results without making any assumption about the distribution as an open problem. This issue was recently studied using the Rademacher complexity by Khim and Loh [ ], Yin et al. [ ] and Awasthi et al. []. These papers relate the adversarial generalization error of linear classi ers and one-hidden layer neural networks with the dimension of the problem. They show that the adversarial generalization depends on the dimension of the problem. At a rst glance, the di culty of adversarial generalization seems to contradict previous conclusions on the link between robustness and generalization presented by Xu and Mannor [

Figure

  Figure A. : Impact of the standard deviation of the Gausian noise on accuracy in a randomized model on CIFAR-and CIFAR-dataset.

Figure

  Figure A. : Guaranteed accuracy of di erent randomized models with Gaussian noise given the 2 norm of the adversarial perturbations.

Figure

  Figure A. : Summary of the relations between the di erent robustness notions from Propositions and .

B

  Black-box adversarial attacks: tiling and evolution strategies CMA-ES algorithm. The Covariance Matrix Adaptation Evolution Strategy [Hansen and Ostermeier, ] combines evolution strategies [Beyer, ], Cumulative Step-Size Adaptation [Chotard et al.,

  Strategy (NES) attacks. Both ( + )-ES and CMA-ES can be seen as an instantiation of a natural evolution strategy (see for instance Ollivier et al. [ ], Wierstra et al. [ ])

FigureFigure

  Figure B. : Random attack success rate against InceptionV (left), ResNet (center), VGG bn (right)for di erent noise intensities. We just randomly draw one tiled attack and check if it is successful.

  neural networks achieve state-of-the-art performances in a variety of domains such as natural language processing Radford et al. [ ], image recognition He et al. [ b] and speech recognition Hinton et al. [ ]. However, it has been shown that such neural networks are vulnerable to adversarial examples, i.e., imperceptible variations of the natural examples, crafted to deliberately mislead the models Globerson et al. [ ], Biggio et al. [ ], Szegedy et al. [ ]. Since their discovery, a variety of algorithms have been developed to generate adversarial examples (a.k.a. attacks), for example FGSM [Goodfellow et al., b], PGD [Madry et al., b] and C&W

  Goodfellow et al. [ b] and later improved inMadry et al. [ b] as a rst defense mechanism to train robust neural networks. It consists in augmenting training batches with adversarial examples generated during the training procedure. The standard training procedure from Equation (C. ) is thus replaced by the following min max problem, where the classi er tries to minimize the expected loss under maximum perturbation of its input:

  Figure C. : Left: D representation of the ∞ and 2 balls of respective radius and . Middle: a classi er trained with ∞ adversarial perturbations (materialized by the red line) remains vulnerable to

  Figure C. (a)) and the probability of sampling at the intersection of the two balls is bounded by approximately %. However, as we increase the dimensionality d, this probability quickly becomes negligible, even for very simple image datasets such as MNIST. An instantiation of the bound for classical image datasets is presented in Table C. . The probability of sampling at the intersection of the ∞ and 2 balls is close to zero for any realistic image setting. In large dimensions, the volume of the corner of the ∞ ball is much bigger than it appears in Figure C. (a).

Figure

  Figure C. : Comparison of the number of adversarial examples found by C&W, inside the ∞ ball (lower, blue area), outside the ∞ ball but inside the 2 ball (middle, red area) and outside the 2 ball (upper gray area). is set to 0.3 and varies along the x-axis. Left: without adversarial training, right: with adversarial training. Most adversarial examples have shifted from the ∞ ball to the cap of the 2 ball, but remain at the same 2 distance from the original example.

  Adversarial attacks have been an active topic in the machine learning community since their discovery Globerson et al. [ ], Biggio et al. [ ], Szegedy et al. [ ]. Many attacks have been developed. Most of them solve a loss maximization problem with either ∞ Goodfellow et al. [ b], Kurakin et al. [ ], Madry et al. [ b], 2 Carlini and Wagner [ ], Kurakin et al. [ ], Madry et al. [ b], 1 Tramèr and Boneh [ ] or 0 Papernot et al. [

  systems are at the heart of the business model of many industries like e-commerce or video streaming Davidson et al. [ ], Gomez-Uribe and Hunt [ ]. The two most common approaches for this task are based either on matrix factorization Park et al. [ ] or bandit algorithms Li et al. [

  In this work, we rst follow the research direction opened by Jun et al. [ ] where the attacker has the objective of fooling a learning algorithm into taking a speci c action as much as possible. For example in a news recommendation problem, as described in Li et al. [

Figure

  Figure D. : ConicAttack algorithm.

  Figure D. : Total cost of attacks on rewards for the synthetic (Left, γ = 0.22), Jester (Center, γ = 0.5) and MovieLens (Right, γ = 0.5) environments. Bottom, total cost of ContextualConic attacks on the synthetic (Left), Jester (Center) and MovieLens (Right) environments.

)

  11 from Abbasi-Yadkori et al. [

Figure

  Figure D. : Illustrative example of condition (D. ). The target arm is arm 3 or 5 and the dashed black lineis the convex hull of the other con dence sets. The ellipsoids are the con dence sets C t,a for each arm a. If we consider only arms {1, 2, 4, 5}, and we use 5 as the target arm, the condition (D. ) is satis ed as there is a θ outside the convex hull of the other con dence sets. On the other hand, if we consider arms {1, 2, 3, 4} and we use 3 as the target arm, the condition is not satis ed anymore.

Figure

  Figure D. : Total cost of attacks and number of draws of the target arm at T = 10 6 as a function of γ on synthetic data

Fig

  Fig. D.shows the regret for all the attacks. This gure shows that even though the total cost of attacks is linear for algorithms like L TS in the synthetic dataset, the regret is linear. More generally, we observe that the regret is linear for all attacked algorithms on all datasets.

  The attacks are computed by solving the optimization problems D. and D. (Sec. D. ). We choose the libraries according to their e ciency for each problem we need to solve. For Problem(D. ) and Problem (D. ) we use Agrawal et al. [ ] and the ECOS solver. For Problem (D. ) we use the SLSQP method from the Scipy optimize library Virtanen et al. [ ] to solve the full L UCB problem (Equation D. ) and to solve the quadratic problem to attack ε .

  Figure D. : Regret for all attacks

  Figure D. : Total cost of the attacks for the attacks one one context on respectively our synthetic dataset, Jester and MovieLens. As expected, the total cost is linear.

=

  

E 4

 4 enjoys a sublinear hindsight regret though. Showing a sublinear upper-bound for the stochastic regret of E 4 is still an open problem (see Section 29.1 in Lattimore and Szepesvári [ ])

Figure

  Figure E. : ROPUST systematically improves the test accuracy of already robust models. Transfer refers to the performance when attacks are generated on the base model and transferred to the ROPUST model. Models from the RobustBench model zoo: Hendrycks et al., Hendrycks et al. [ ], Sehwag et al., Sehwag et al. [ ], Wu et al., Wu et al. [ ], Zhang et al., Zhang et al. [ ], Wong et al., Wong et al. [ ], Ding et al., Ding et al. [ ], Carmon et al., Carmon et al. [ a], Gowal et al., Gowal et al. [ b].

Fine-tuning and

  analog computing. Previous work introduced adversarial fine-tuning Jeddi et al. [ ]: ne-tuning a non-robust model with an adversarial objective. In this work instead we ne-tune a robust model without adversarial training. Additionally, it was shown that robustness improves transfer performance Salman et al. [ ] and that robustness transfers across datasets Shafahi et al. [ ]. The advantage of non-ideal analog computations in terms of robustness has been investigated in the context of NVM crossbars Roy et al. [

Figure

  Figure E. : ROPUST replaces the classi er of already robust models, enhancing their adversarial robustness. Only the ROPUST classi er needs ne-tuning; the convolutional stack is frozen. Convolutional features rst go through a fully-connected layer, before binarization for use in the Optical Processing Unit (OPU). The OPU performs a non-linear random projection, with fixed unknown parameters. A fully-connected layer is then used to obtain a prediction from the output of the OPU. Direct Feedback Alignment is used to train the layer underneath the OPU.

  Alignment. Because the xed random parameters implemented by the OPU are unknown, it is impossible to backpropagate through it. We bypass this limitation by training layers upstream of the OPU using Direct Feedback Alignment (DFA) Nøkland []. DFA is an alternative to backpropagation, capable of scaling to modern deep learning tasks and architecturesLaunay et al. [ 

Attacking ROPUST .

 . While we could use DFA to attack ROPUST, previous work has shown that methods devoid of weight transport are not e ective in generating compelling adversarial examples Akrout [

Figure

  Figure E. : Our ROPUST defense comes at no cost in natural accuracy. In some cases, natural accuracy is even improved. The model from Zhang, Zhang et al. [ ] is an isolated exception. Models from the RobustBench model zoo: Hendrycks et al., Hendrycks et al. [ ], Sehwag et al., Sehwag et al. [ ], Wu et al., Wu et al. [ ], Zhang et al., Zhang et al. [ ], Wong et al., Wong et al. [ ], Ding et al., Ding et al. [ ], Carmon et al., Carmon et al. [ a], Gowal et al., Gowal et al. [ b].

  Fig. E. .

Figure

  Figure E. : Removing either parameter obfuscation or DFA from our defense causes a large dropin accuracy. This con rms the intuition that robustness is given by the inability to e ciently generate attacks in a white-box settings when the parameters are obfuscated, and that DFA is capable of generating partially robust features. We note that even though the non-linearity |.| 2 does not contribute to robustness, it is key to obfuscation, preventing trivial retrieval. Transfer performance does not change much when removing components of the defense. While the

Figure E . :

 . Figure E. : Square attack can be evaded by simply retraining on natural data the classi er of a robust model. We con rm the same result when retraining the standard fully connected classi cation layer in the pretrained models in place of the ROPUST module (Defense-free result in the chart on the right). While the Base model is not ablated, we leave its performance as a term of comparison.

Figure

  Figure E. : Performance of an APGD-CE attack with a retrieved matrix in place of the, otherwise unknown, transpose of the transmission matrix.As expected, a better knowledge of the transmission matrix, i.e. higher alpha and/or higher percentage of known columns correlates with the success of the attack, with a sharp phase transition. At rst glance, it may seem that even a coarse-grained knowledge of the TM can help the attacker. However, optical phase retrieval works on the output correlation only: accordingly, we nd that even state-of-the-art phase retrieval methods operates only in the white contoured region, where the robustness is still greater than the Base models. We highlighted the accuracies achieved under attack in this region in the heat-map.

Figure

  Figure F. : Equitable and optimal division of the resources between N = 3 di erent negative costs (i.e.utilities) given by EOT. Utilities have been normalized. Blue dots and red squares represent the di erent elements of resources available in each cake. We consider the case where there is exactly one unit of supply per element in the cakes, which means that we consider uniform distributions. Note that the partition between the agents is equitable (i.e. utilities are equal) and proportional (i.e. utilities are larger than 1/N ).

Figure

  Figure F. : Left, middle left, middle right: the size of dots and squares is proportional to the weight of their representing atom in the distributions µ * k and ν * k respectively. The utilities f * k and g * k for each point in respectively µ * k and ν * k are represented by the color of dots and squares according to the color scale on the right hand side. The gray dots and squares correspond to the points that are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ * k or ν * k . Right: the size of dots and squares are uniform since they correspond to the weights of uniform distributions µ and ν respectively. The values of f * and g * are given also by the color at each point. Note that each agent gets exactly the same total utility, corresponding exactly to EOT. This value can be computed using dual formulation (F. ) and for each gure it equals the sum of the values (encoded with colors) multiplied by the weight of each point (encoded with sizes).

Figure

  Figure F. : Comparison of the time-accuracy tradeo s between the di erent proposed algorithms. Left:we consider the case where the number of days is N = 2, the size of support for both measures is n = m = 100 and we vary ε from 0.005 to 0.5. Middle: we x n = m = 100 and the regularization ε = 0.05 and we vary the number of days N from to . Right: the setting considered is the same as in the gure in the middle, however we increase the sample size such that n = m = 500. Note that in that case, LP is too costly to be computed.

Figure

  Figure F. : Comparison of the optimal couplings obtained from standard OT for three di erent costs and EOT in case of postive costs. Blue dots and red squares represent the locations of two discrete uniform measures. Left, middle left, middle right: Kantorovich couplings between the two measures for Euclidean cost ( • 2 ), square Euclidean cost ( • 2 2) and . L norm ( • 1.5 1 ) respectively. Right: transport couplings of EOT solving Eq. (F. ). Note that each cost contributes equally and its contribution is lower than the smallest OT cost.

Figure

  Figure F. : Left, middle left, middle right: the size of dots and squares is proportional to the weight of their representing atom in the distributions µ * k and ν * k respectively. The utilities f * k and g * k for each point in respectively µ * k and ν * k are represented by the color of dots and squares according to the color scale on the right hand side. The gray dots and squares correspond to the points that are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ * k or ν * k . Right: the size of dots and squares are uniform since they correspond to the weights of uniform distributions µ and ν respectively. The values of f * and g * are given also by the color at each point. Note that each agent gets exactly the same total utility, corresponding exactly to EOT. This value can be computed using dual formulation (F. ) and for each gure it equals the sum of the values (encoded with colors) multiplied by the weight of each point (encoded with sizes).

  Other CI tests proposed in the literature suggest testing relaxed forms of conditional independence. For instance, Shah and Peters [ ] propose the generalised covariance measure (GCM) which only characterises weak conditional dependence Daudin [ ] and Zhang et al. [ ] propose a kernel-based test which focuses only on individual e ects of the conditioning variable Z on X and Y . Some other tests are based on the knowledge of the conditional distributions in order to measure conditional dependencies. For example Candès et al. [ ] assume that one has access to the exact conditional distributions, Bellot and van der Schaar [ ], Shi et al. [ a] approximate them using generative models and Sen et al. [

  Figure G. : Comparison of the KS statistic (left) and the AUPC (right) of our test statistic NCI n,r,p whenthe data is generated respectively from the models de ned in (G. ) and (G. ) with Gaussian noises for multiple p and J. For each problem, we draw n = 1000 samples and repeat the experiment times. We set r = 1000 and report the results obtained when varying the dimension d z of each problem from to . Observe that when J = 1, for all p ≥ 1 NCI n,r,1 = NCI n,r,p , therefore there is only one common black curve.

  Figure G. : Comparisons between the empirical distributions of the normalized version of the oracle statistic CI n,p and the approximate normalized statistic NCI n,r,p , with the theoretical asymptotic null distribution when the data is generated either from the model de ned in (G. ) (left) or the one de ned in (G. ) (right). We set the dimension of Z to be either d z = 5 (top row) or d z = 20 (bottom row).For each problem, we draw n = 1000 samples and repeat the experiment times. In all the experiments, we set J = 5 and p = 2, thus the asymptotic null distribution follows a χ 2 (5). Observe that both the oracle statistic and the approximated one recover the true asymptotic distribution under the null hypothesis. When H 1 holds, we can see that the two statistics manage to reject the null hypothesis. This gure also illustrates the empirical distribution of our approximate statistic when we do not optimize the hyperparameters involved in the RLS estimators: in this case we do not control the type-I error in the high dimensional setting.

  Figure G. : Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure with other SoTA tests on the two problems presented in (G. ) and (G. ) with Gaussian noises. Each point in the gures is obtained by repeating the experiment for independent trials. (Left, middle-left): type-I and type-II errors obtained by each test when varying the dimension d z from to ; here, the number of samples n is xed and equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each test when varying the number of samples n from to ; here, the dimension d z is xed and equals to 10.

  Figure G. : Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in Eq. (G. ) and Eq. (G. ) with Laplace noises. Each point in the gures is obtained by repeating the experiment for independent trials. (Left, middleleft): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension d z from to ; here, the number of samples n is xed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying the number of samples n from to ; here, the dimension d z is xed and equals to 10.

  ε b is a standard Gaussian or Laplace distribution. As in the previous experiment, for each model, we study two settings by either xing the dimension d z , or the sample size n. In Figure G. (Laplace case) and G. (Gaussian case), we compare the KS and the AUPC of our method with the SoTA tests and demonstrate that our procedure manages to be powerful while controlling the type-I error. In Figures G. and G. , we also compare the type-I and type-II errors of the di erent tests, and obtain similar conclusions. In addition, we investigate the high dimensional regime and show in Figure G. and G. that our test outperforms all the other proposed methods in most of the settings. See Appendix G. . for more details.

Figure

  Figure G. : Comparison of the KS statistic (lower is better) and the AUPC (higher is better) of our testing procedure with other SoTA tests on the two problems presented in (G. ) and (G. ) with Gaussian noises. Each point in the gures is obtained by repeating the experiment forx independent trials. (Left, middle-left): the KS and AUPC obtained by each test when varying the dimension d z from to , while xing the number of samples n to 1000. (Middle-right, right): the KS and AUPC obtained by each test when varying the number of samples n from to , while xing the dimension d z to 10.

Figure

  Figure G. : Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in Eq. (G. ) and Eq. (G. ) with Laplace noises. Each point in the gures is obtained by repeating the experiment for independent trials. (Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension d z from to ; here, the number of samples n is xed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying the number of samples n from to ; here, the dimension d z is xed and equals to 10.

  Figure G. : Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in Eq. (G. ) and Eq. (G. ) with Gaussian noises. Each point in the gures is obtained by repeating the experiment for independent trials. (Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension d z from to ; here, the number of samples n is xed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying the number of samples n from to ; the dimension d z is xed and equals 10.

  Figure G. : Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better), KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in Eq. (G. ) and Eq. (G. ) with Gaussian noises. Each point in the gures is obtained by repeating the experiment for independent trials. In each plot the dimension d z is varying from to ; here, the number of samples n is xed and equals to 1000.

  Figure G. : Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in Eq. (G. ) and Eq. (G. ) with Laplace noises. Each point in the gures is obtained by repeating the experiment for independent trials. (Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension d z from to ; here, the number of samples n is xed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying the number of samples n from to ; the dimension d z is xed and equals 10.

  Figure G. : Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better), KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in Eq. (G. ) and Eq. (G. ) with Laplace noises. Each point in the gures is obtained by repeating the experiment for independent trials. In each plot the dimension d z is varying from to ; here, the number of samples n is xed and equals to 1000.

Figure

  Figure H. : Average regret, normalized by d, on the sphere function for various dimensions and budgets in terms of rescaled standard deviation. Each mean has been estimated from 100, 000 samples.Table on the right: Average regret for σ * = log(λ)/d and σ = 1.

  Figure H. : Comparison of methods: without rescaling (σ = 1), middle point sampling (σ = 0), and our rescaling method (σ = log λ d ). Each mean has been estimated from 10 5 samples. (On left) Average regret, normalized by d, on the sphere function for diverse population sizes λ at xed dimension d = 20. The gain of rescaling decreases as λ increases. (On right) Distribution of the regret for the strategies on the 50d-sphere function for λ = 1000.

Figure

  Figure H. : Comparison of various one-shot optimization methods from the point of view of the simple regret. Reading guide in Sec. H. . . Results are averaged over objective functions Cigar, Rastrigin, Sphere in dimension 20, 200, 2000, and budget 30, 100, 3000, 10000, 30000, 100000. MetaTuneRecentering performs best overall. Only the best performing methods are displayed as columns, and the best as rows. Red means superior performance of row vs col. Rows and cols ranked by performance.

Fig

  Fig. H. displays the normalized average regret 1d E min i=1,...,λ x *x i 2 in terms of σ/ log(λ)/d for di erent dimensions and budgets. We observe that the best parametrization of σ is around log(λ)/d in all displayed cases. Moreover, we also see that -as expected -the gain of the rescaled sampling over the middle point sampling (σ = 0) goes to 0 as d → ∞ (i.e. we get a result closer to the case σ = 0 as dimension goes to in nity). We also see that, for the regimes plotted in Fig.H. , the advantage of the rescaled variance grows with the budget λ. Figure H. (on left) displays the average regret (average over multiple samplings and multiple positions of the optimum) as a function of increasing values of λ for the di erent rescaling methods (σ ∈ {0, log λ/d, 1}). We remark, unsurprisingly, that the gain of rescaling is diminishing as λ → ∞. Finally, Figure H. (on right) shows the distribution of regrets for the di erent rescaling methods. The improvement of the expected regret is not at the expense of a higher dispersion of the regret.

  Figure H. : Same experiment as Fig. H. , but separately over each objective function. Results are still averaged over distinct budgets (30, 100, 3000, 10000, 30000, 100000) and distinct dimen-sionalities (20, 200, 2000). MetaTuneRecentering performs well in each case, and is not limited to the sphere function for which it was derived. Variants of LHS are sometimes excellent and sometimes not visible at all (only the best performing methods are shown).

  MetaRecentering (σ = 1+log(λ) 4 log(d) Cauwet et al. [ ])and MetaTuneRecentering (σ = log(λ)/d):

  Fig. H. breaks down the aggregated results from Fig. H. to the three di erent functions.

  Fig. H. summarizes the results of our experiments. As in the previous setups, we compare against existing methods from the Nevergrad platform, to which we have just added our rescaling factor termed MetaTuneRecentering. For each initialization scheme, four di erent initial population sizes are considered: denoting by d the dimension, by w the parallelism (i.e., the number of workers), and by b the total budget that the algorithms can spend on optimizing the given optimization task, the initial population λ is set as λ = √ b for Sqrt, as λ = d for Dim, λ = w for no su x, and as λ = 30 when the su x is . As in Sec. H. . we superpose our scaling scheme on top of the quasi-random Scrambled Hammersley sequence suggested inCauwet et al. [ ], but we also consider random initialization rather than quasi-random (indicated by the su x "R") and Latin Hypercube SamplingMcKay et al. [ a] (su x "LHS"). The left chart in Fig.H. is for the Bayesian optimization case. It aggregates results for settings, which stem from Nevergrad's "parahdbo d" suite. It comprises the four benchmark problems Sphere, Cigar, Ellipsoid and Hm. Results are averaged over the total budgets b ∈ {25

  log C 1 . Let us now x β := 2, ε := c 1 log λ d and σ 2 := c 2 log λ d , with c 1 := 1 3C β and c 2 := c 1 . We show that, with these choices of β, ε and σ, inequalities (H. ) and H. are satis ed if d is su ciently large and x * satis es | x * 2 d -1| ≤ t. To this end, rst note that

Fixing.

  t = d -1/3 and considering the requirements stated in (H. ) we obtain that σ = 2 Ãλ d + o Ãλ d = 8 log λ d + o log λ d , which concludes the proof of the necessary condition, as it shows σ 2 ∈ O log λ d d

H

  Figure H. : Methods ranked by performance on the sphere function, per budget. Results averaged over dimension 20, 200, 2000. MetaTuneRecentering performs among the best in all cases. LHS is excellent on this very simple setting, namely the sphere function.

Figure

  Figure H. : Performance comparison of di erent strategies to initialize Bayesian Optimization (BO, left) and Di erential Evolution (DE, right). A detailed description is given in Sec. H. . . MetaTuneRecentering performs best as an initialization method. In the case of DE, methods di erent from the traditional DE remain the best on this testcase: when we compare DE with a given initialization and DE initialized with MetaTuneRecentering, MetaTuneRecentering performs best in almost all cases.

Figure

  Figure I. gives an illustration of the bounds. Until µ (1-) d λ, the centered and non centered case coincide when λ → ∞: in this case, we can have a more precise asymptotic result for the choice of µ.Theorem . Consider d > 0, r > 0 and y ∈ R d . Let = y r ∈ [0, 1) and f (x) = xy 2 . When using µ = cλ with 0 < c < (1 -) d , we get as λ → ∞, for a fixed d,

  Figure I. : Centered case: validation of the theoretical formula for E X1...X λ ∼B(0,r) f ( X(µ) ) when y = 0 from Theorem for d = 5, λ = 1000 and R = 1. 1000 samples have been drawn to estimate the expectation. The two curves overlap, showing agreement between theory and practice.

Figure

  Figure I. : Non centered case: validation of the theoretical bounds forE X1...X λ ∼B(0,r) f ( X(µ) ) when y = R 3 (i.e. =13 ) from Theorem for d = 5 and R = 1. We implemented λ = 100 and λ = 10000. 10000 samples have been drawn to estimate the expectation. We see that such a value for µ is a good approximation of the minimum of the empirical values: we can thus recommend µ = λ(1 -) d when λ → ∞. We also added some classical choices of values for µ from literature: when λ → ∞, our method performs the best.

Figure

  Figure I. : Experimental curves comparing various methods for choosing µ as a function of λ in dimension 3. Standard deviations are shown by lighter lines (close to the average lines). Each x-axis value is computed independently. Our proposed formulas HCHAvg and THCHAvg perform well overall. See Fig. I. for results in dimension .

  Figure I. : Experimental curves comparing various methods for choosing µ as a function of λ in dimension 25 (Fig. I. , continued for dimension ; see Fig. I. for dimension 200).Our proposals lead to good results but we notice that they are outperformed by TEAvg and EAvg for Rastrigin: it is better to not take into account non-quasi-convexity because the overall shape is more meaningful that local ruggedness. This phenomenon does not happen for the more rugged HM (Highly Multimodal) function. It also does not happen in dimension or dimension (previous and next gures): in those cases, THCH performed best. Con dence intervals shown in lighter color (they are quite small, and therefore they are di cult to notice).

Figure

  Figure I. : Experimental curves comparing various methods for choosing µ as a function of λ in dimension 200 (Figures I. and I. , continued for dimension ). Con dence intervals shown in lighter color (they are quite small, and therefore they are di cult to notice). Our proposed methods THCHAvg and HCHAvg perform well overall.

  Figure J. : Average regret f ( X(µ) )f (x ) in logarithmic scale in function of the selection ratio µ/λ for di erent values of λ ∈ {5000, 10000, 20000, 50000}. The experiments are run on Sphere, Rastrigin and Perturbed Sphere function for di erent dimensions d ∈ {3, 6, 9}.All results are averaged over 30 independent runs. We observe, consistently with our theoretical results and intuition, that (i) the optimal r = µ λ decreases as d increases (ii) we need a smaller r when the function is multimodal (Rastrigin) (iii) we need a smaller r in case of dissymmetry at the optimum (perturbed sphere).

Figure

  Figure J. : Experimental results: row A and col B presents the frequency (over all test cases) at which A outperforms B in terms of average loss. Then rows are sorted per average winning rate and we keep the best ones. Zero is a naive method just choosing zero: we see that, consistently with Cauwet et al. [], many methods are worse than that when the dimension is huge compared to the budget.

  MetaRecentering Cauwet et al. [ ]: rescaling σ = (1 + log(n))/(4 log(d)), i.e. we randomly draw with σ × N (0, I d ) instead of N (0, I d ).• MetaTuneRecenteringMeunier et al. [ c]: rescaling σ = log(λ)/d, i.e. we randomly draw with σ × N (0, I d ) instead of N (0, I d ).

  Code: Our algorithm selection wizard ABBO, its base solvers, and the benchmark collection have all been merged to the main Nevergrad master, where they are available for reproducible, open-source research. Nevergrad periodically reruns all algorithms and makes all data available on the public dashboard Rapin and Teytaud [ ]. Note that ABBO is called NGOpt within the Nevergrad environment, to allow for better version control in the lat-K. Sound Black-Box Optimization Benchmarking ter: NGOpt is the name of the latest version of the optimization wizard, the current version (July ) is NGOpt . Since Nevergrad is developing at fast pace, we have saved a frozen version of its code base. Together with the performance data used for this paper and the videos illustrating the performance of the policies learned for MuJoCo, this code is available on zenodo Meunier et al. [ c].

C:

  Figure K. : Average normalized loss and heatmap for YABBOB. Additional plots for High-dimensional (HD), NoisyHD, and Large budgets are available in Fig. K. . Other variants include parallel, di erences of budgets, and combinations of those variants, with excellent results for ABBO.

  Figure K. : Additional problems: Pyomo (left gure, covering Knapsack, P-median and others) and Se-quentialFastgames (on the right, presented as heatmaps due to the high noise. Subsumes Guess-Who, War, Batawaf, Flip). Rockets, SimpleTSP, PowerSystems, and LSGO plots are available in Figs. K. , and K. . Pyomo and SimpleTSP include discrete variables. Pyomo includes constraints. Rocket, PowerSystems, SequentialFastGames are based on open source simulators.

Figure

  Figure K. : Results on the MuJoCo testbeds. Dashed lines show the standard deviation. Compared to the state of the art in Wang et al. [ b], with an algorithm adapted manually for the di erent tasks, we get overall better results for Humanoid, Ant, and Walker. We get worse results for Swimmer (could match if we had modi ed our code for the three easier tasks as done inWang et al. [ b]), similar for Hopper and Cheetah: we reach the target for of the problems (see main text). Runs of Shiwa correspond to the improvement of Shiwa due to chaining, as explained in Sec. K. .

MuJoCo:

  Some articles Sener and Koltun [ b], Wang et al. [ b] studied the MuJoCo testbeds Todorov et al. [ ] in the black-box setting. MuJoCo tasks correspond to control problems. De ned in Wang et al. [ b], Mania et al. [ ], the objective is to learn a linear mapping from states to actions. It turned out that the scaling of the variables is critical Mania et al. [

  TableK. : Results on MuJoCo for a linear policy in the black-box setting from Wang et al.[ b] and references therein. We compare various published results to results from ABBO. Two last columns = average reward for the maximum budget tested inWang et al. [ b], namely k, k, k, k, k, k, respectively. "ioa" = iterations on average for reaching the target. "iter" = iterations for target reached for median run. "*" refers to problems for which the target was not reached byWang et al. [ b]: then BR means "best result in runs". ABBO reaches the target for Humanoid and Ant whereas previous (black-box) papers did not; we get nearly the same ioa for Hopper and HalfCheetah (Nevergrad computed the expected value instead of computing the ioa, so we cannot compare exactly; see Fig.K. for curves). ABBO is slower than LA-MCTS on Swimmer. Note that we keep the same method for all benchmarks whereas LA-MCTS modi ed the algorithm for rows. On HDMULTIMODAL, ABBO performs better than LA-MCTS, as detailed in the text, and as con rmed in Wang et al.[ b], which acknowledges the poor results of LA-MCTS for high-dimensional Ackley and Rosenbrock.

Figure

  Figure K. : YAHDBBOB (dimension ≥ 50) and YANOISYHDBBOB (noisy + dimension ≥ 50)heatmaps.

Figure

  Figure K. : ABBO vs speci c families of optimization algorithms (DE on the left in dimension , and ; and BO in dimension on the right) on Cigar, Hm, Ellipsoid, Sphere functions. Not all run algorithms are mentioned, for short. Bayesian optimization (Nevergrad uses Nogueira [ -]), often exploring boundaries rst, is outperformed in high dimension Wang et al. [ b].

Figure

  Figure K. : Left: experiments for the parallel multimodal setting PARA-MULTIMODAL. Budget up to , parallelism , Ack-ley+Rosenbrock+DeceptiveMultimodal+Griewank+Lunacek+Hm.Right: Realworld benchmark from Nevergrad: games, Sammon mappings, clustering, small traveling salesman instance, small power systems.

  . [ ]. For the development and the evaluation of ABBO we have considerably extended the Nevergrad platform by adding several real-K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking

Figure

  Figure K. : Additional problems ( ): on left, Rocket ( continuous variables, budget up to , sequential or parallelism ) and on right, SimpleTSP ( to decision variables).

Figure

  Figure K. : Additional problems ( ): on left, PowerSystems ( to neural decision variables) and on right, LSGO (mix of partially separable, overlapping, shifted cases as in Li et al. [ ]).

  recent Bayesian optimization libraries (e.g. Eriksson et al. [ ]), as well as per-instance algorithm con guration such as Belkhir et al. [
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•

  Vol de modèles [Tramèr et al., ]: Un attaquant veut "voler" les paramètres d'un modèle donné. • Inférence d'appartenance [Shokri et al., ]: Inférer si un échantillon de données étaient présent ou non dans le jeu d'entrainement.

  Dalvi et al. [] a montré que les classi eurs linéaires utilisés dans la classi cation du spam pouvaient être trompés par de simples "attaques d'évasion", les spammeurs insérant de "bons mots" dans leurs courriers indésirables.

Figure

  Figure L. : Compromis Biais-Variance. Un modèle avec une complexité faible aura une une faible variance mais un biais élevé. Un modèle avec une grande complexité aura un biais faible mais une variance élevée.

Figurex

  Figure L. : Exemple d'une attaque adverse au niveau des pixels sur un panneau Stop. Cela souligne les problèmes de sécurité soulevés par l'éventualité de telles attaques.

Question

  Quelle est la nature des équilibres dans le jeu des exemples adverses?En théorie des jeux, il existe plusieurs types d'équilibres. Dans ce manuscrit nous nous focalisons sur les équilibres de Stackelberg et de Nash. Nous montrons l'existence d'équilibres de Nash dès lors que l'attaquant et le classi eur jouent des stratégies randomisés.Classi eurs randomisésNous nous placons dans un cadre paramétrique où les classi eurs sont dé nies sur un ensemble Θ. Le risque standard pour un simple classi eur θ s'écrit: R(θ) := E (x,y)∼P [L(θ, (x, y))]. De manière similaire, le risque adverse de θ est dénini par R ε (θ) := E (x,y)∼P sup x ∈X , d(x,x )≤ε L(θ, (x , y)) . On peut généraliser ces notions à des classi eurs randomisés:un classi eur randomisé est dé ni comme une distribution µ sur l'espace de paramètres Θ. Autrement dit, un classi eur est randomisé si pour une entrée donnée, la sortie du classi eur est une distribution de probabilité. Le risque standard d'un tel classi eur est alors dé ni comme R(µ) = E θ∼µ [R(θ)]. Egalement le risque adverse d'un classi eur randomisé µ est R ε (µ) := E (x,y)∼P sup x ∈X , d(x,x )≤ε E θ∼µ L(θ, (x , y)) .

EE

  ,y )∼Q,θ∼µ l(θ, (x , y )) . (L. ) Jeu des exemples adverses Nous expliquons maintenant comment nous évrivons le problème des attaques adverses comme un jeu à somme nulle. De nos dé nitions précédentes nous déduisons une formulation primale au problème: y)∼Q,θ∼µ [L(h θ (x), y)] Il s'agit de l'objectif du classi eur: être robuste face à toutes les attaques. Nous remarquons qu'il sagit du problème de minimisation du risque adverse. Similairement nous dé nissons le problème dual: (x,y)∼Q,θ∼µ [L(h θ (x), y)] Il s'agit cette fois-ci du problème de l'attaquant: trouver une attaque qui puisse tromper n'importe quel classi eur. Nous montrons la dualité forte du jeu et ainsi l'existence d'équilibres de Nash approximatifs: θ∼µ,(x,y)∼Q [l(θ, (x, y))]

  Figure L. : Résultats de mélange de classi eurs en utilisant notre algorithme

  Figure L. : A gauche, illustration de fonctions de pertes calibrées dans le cas standard. A droite, leurs versions symmetrisées. Nous remarque que 0 ∈ argmin α φ(α)+φ(-α) for toutes ces fonctions, donc aucune n'est calibrée dans le cas adverse.

  Soit φ : R → R + une fonction de perte à marge continue. φ est calibrée relativement à L 0/1 si et seulement si φ est consistente relativement à L 0/1 . Si φ est convexe et dérivable en 0, alors φ est calibré si et seulement si φ (0) < 0.

  Figure L. : Illustration d'une fonction calibrée dans le cas adverse: la fonction sigmoide translatée.

  Figure L. : Précisions certi ée en fonction de la perturbation ε pour nos réseaux CPL and et les approches concurrentes sur les jeux de données CIFAR et CIFAR .

•

  Figure L. : Précision sous attaque PGD avec iterations en fonction de la perturbation ε pour nos réseaux CPL and et les approches concurrentes sur les jeux de données CIFAR et CIFAR .

  

  The sigmoid loss satisfy the hypothesis for ψ. Its shifted version is then calibrated for adversarial classi cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. This table shows a comprehensive list of results consisting of the accuracy of several defense mechanisms against 2 and ∞ attacks. This table main objective is to compare the overall performance of 'single' norm defense mechanisms (AT and NI presented in the Section C. . ) against mixed norms defense mechanisms (MAT & RAT mixed defenses presented in Section C. ). . . . . . . . . . . . .

D. Contextual ACE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. ConicAttack algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

systematically improves the test accuracy of already robust mod- els.

  Transfer refers to the performance when attacks are generated on the base model and transferred to the ROPUST model. Models from the RobustBench model zoo: Hendrycks et al., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Only the ROPUST classi er needs ne-tuning; the convolutional stack is frozen. Convolutional features rst go through a fullyconnected layer, before binarization for use in the Optical Processing Unit (OPU). The OPU performs a non-linear random projection, with fixed unknown parameters. A fully-connected layer is then used to obtain a prediction from the output of the OPU. Direct Feedback Alignment is used to train the layer underneath the OPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	E.	ROPUST Hendrycks et al. [	], Sehwag et al.,
		Sehwag et al. [	], Wu et al.,	Wu et al. [	], Zhang et al.,	Zhang
		et al. [	], Wong et al.,		Wong et al. [	], Ding et al.,	Ding et al.
		[	], Carmon et al.,	Carmon et al. [	a], Gowal et al.,	Gowal
	et al. [ b]. E. ROPUST replaces the classi er of already robust models, enhancing their
	adversarial robustness. E. Our ROPUST defense comes at no cost in natural accuracy. In some cases,
		natural accuracy is even improved. The model from Zhang,	Zhang et al.
		[	] is an isolated exception. Models from the RobustBench model zoo: Hendrycks
		et al.,	Hendrycks et al. [	], Sehwag et al.,	Sehwag et al. [	], Wu
		et al.,	Wu et al. [	], Zhang et al.,	Zhang et al. [	], Wong et
		al.,	Wong et al. [	], Ding et al.,	Ding et al. [	], Carmon et al.,
		Carmon et al. [	

a],

Gowal et al., Gowal et al. [ b]

. . . . . . .

  Variants of LHS are sometimes excellent and sometimes not visible at all (only the best performing methods are shown). . . . . . . . . . . . . H. Methods ranked by performance on the sphere function, per budget. Results averaged over dimension 20, 200, 2000. MetaTuneRecentering performs among the best in all cases. LHS is excellent on this very simple setting, namely the sphere function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Our method becomes better and better as the dimension increases. . . . . . . . . . . . . . .

H. Results on the sphere function, per dimensionality. Results are averaged over values of the budget: 30, 100, 3000, 10000, 30000, 100000.

H. Same context as
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  Open Source projects: Large projects in Machine Learning are nowadays open-sourced (TensorFlow [Abadi et al., ], PyTorch [Paszke et al., ], Scikit Learn [Pedregosa et al.,

  Image Classi cation. Adversarial examples do not only exist in Image Classi cation, although it is the most spectacular example as images are perceptually unchanged. We can enumerate, non exhaustively, the following examples of adversarial classi cation: Xie et al. [ ] proposed to attack image segmentation and object detection. The goal of such attack is to enforce an undesirable detection or segmentation in an image.

• Image Segmentation and Object Detection: • Video classi cation: Videos are series of images. Adversarial attacks against video classication systems are close to adversarial examples in standard Image Classi cation. Adversarial attacks might aim at changing either a bit many frames [Jiang et al., ] or a lot only a few frames [Mu et al.,

Lipschitz Regularization of Neural Networks. Based on the insight that Lipschitz

  Then the Lipschitz constant of f is upperbounded by A 1 2 . . . A L 2 .

	Hence, to control the Lipschitz constant of a neural network, it is usual to control the spectral
	norm of each layer. It could be done either in penalizing this upperbound or imposing a spectral
	norm equals or smaller than 1 for each layer.
				Neural
	Networks are more robust to adversarial attacks, researchers have developed several techniques
	to regularize and constrain the Lipschitz constant of neural networks by adding a regularization
	Ω(f ) to the classi cation objective to encourage a smaller Lipschitz constant. However, the com-
	putation of the Lipschitz constant of neural networks has been shown to be NP-hard [Virmaux
	and Scaman,	]. Most methods therefore tackle the problem by reducing or constraining the
	Lipschitz constant at the layer level. For instance, the work of Cisse et al. [	], Huang et al.
	[	a] and Wang et al. [	a] exploit the orthogonality of the weights matrices to build Lips-
	chitz layers. Other approaches

Contents . The Adversarial Attack Problem

  . . . . . . . . . . . . . . . . . . .

	. .	A Motivating Example . . . . . . . . . . . . . . . . . . . . .
	. .	General setting . . . . . . . . . . . . . . . . . . . . . . . . .
	. .	Measure Theoretic Lemmas . . . . . . . . . . . . . . . . . .
	. .	Adversarial Risk Minimization . . . . . . . . . . . . . . . . .
	. .	Distributional Formulation of the Adversarial Risk . . . . . . . .

.

Nash Equilibria in the Adversarial Game

  . . . . . . . . . . . . . . .

	. .	Adversarial Attacks as a Zero-Sum Game . . . . . . . . . . . .
	. .	Dual Formulation of the Game . . . . . . . . . . . . . . . . .
	. .	Nash Equilibria for Randomized Strategies . . . . . . . . . . .

.

Finding the Optimal Classi ers

  . . . . . . . . . . . . . . . . . . .

	. .	An Entropic Regularization . . . . . . . . . . . . . . . . . .
	. .	Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . .
	. .	A General Heuristic Algorithm . . . . . . . . . . . . . . . . .
	. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	. .	Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . .
	. .	CIFAR Datasets . . . . . . . . . . . . . . . . . . . . . . . .
	. .	E ect of the Regularization . . . . . . . . . . . . . . . . . . .
	. .	Additional Experiments on WideResNet x	. . . . . . . . .
	. .	Over tting in Adversarial Robustness . . . . . . . . . . . . . .

.

Discussions and Open Questions .

  . . . . . . . . . . . . . . . . . .

	In this chapter,

we answer Question : "What is the nature of equilibria in the adver- sarial examples game?" by

  proving the existence of Mixed Nash equilibria in the adversarial example game when both the adversary and the classi er can use randomized strategies. First, we motivate in Section . the necessity for using randomized strategies both with the attacker and the classi er. Then, we extend the work of Pydi and Jog [

  The most robust mixture of 5 models against PGD with 20 iterations occurs at epoch 198, i.e. at the end of the training, contrary to 1 to 4 models, where the most robust mixture occurs around epoch 101. However, the accuracy against AutoPGD with iterations in lower than the one at epoch 101 with global robust accuracy of 47.6% at epoch 101 and 45.3% at epoch

Table . :

 . Architectures description for our Convex Potential Layers (CPL) neural networks with di erent capacities. We vary the number of Convolutional Convex Potential Layers, the number of Linear Convex Potential Layers, the number of channels in the convolutional layers and the width of fully connected layers. They will be reported respectively as CPL-S, CPL-M, CPL-L and CPL-XL.

	#	S	M	L	XL
	Conv. Layers				
	Channels				
	Lin. Layers				
	Lin. Features				
	Note that a typical training requires approximately	K steps where	steps of PM is usually enough for conver-
	gence				
	100 iterations of Power Method is su cient to converge with a geometric rate.	

  Experiments

		Standard Accuracy	Provable Accuracy (ε)	Time per epoch (s)
			/	/	/	
	CPL-S	.	.	.	.	.
	CPL-M	.	.	.	.	.
	CPL-L	.	.	.	.	.
	CPL-XL	.	.	.	.	
	Cayley (KW )	.	.	.	.	.
	SOC-	.	.	.	.	.
	SOC-	.	.	.	.	.
	SOC+-	.	.	.	.	N/A
	SOC+-	.	.	.	.	N/A

Table . : Results on the CIFAR dataset on standard and provably certi able accuracies for di erent values of perturbations ε on CPL (ours), SOC and Cayley models. The average time per epoch in seconds is also reported in the last column. None of these networks uses Last Layer Normalization.

Table . :

 . t. ε on Figure . . On CIFAR , our method outperforms the concurrent approaches in terms of standard and certi-A Dynamical System Perspective for Lipschitz Neural Networks Results on the CIFAR dataset on standard and provably certi able accuracies for di erent values of perturbations ε on CPL (ours), SOC and Cayley models. The average time per epoch in seconds is also reported in the last column. All the reported networks use Last Layer Normalization.

		Standard Accuracy	Provable Accuracy (ε)	Time per epoch (s)
			/	/	/	
	CPL-S	.	.	.	.	.
	CPL-M	.	.	.	.	.
	CPL-L	.	.	.	.	.
	CPL-XL	.	.	.	.	
	Cayley (KW )	.	.	.	.	.
	SOC-	.	.	.	.	.
	SOC-	.	.	.	.	.
	SOC+-	.	.	.	.	N/A
	SOC+-	.	.	.	.	N/A

Table . :

 . Results on the CIFAR dataset on standard and provably certi able accuracies for di erent values of perturbations ε on CPL (ours) models with various batch sizes. The average time per epoch in seconds is also reported in the last column. All the reported networks use Last Layer Normalization.

		Batch Standard Acc.		Provable Acc. (ε)	T./epoch (s)
			/	/	/
		.	.	.	.
	CPL-S	.	.	.	.
		.	.	.	.
		.	.	.	.
	CPL-M	.	.	.	.
		.	.	.	.
		.	.	.	.
	CPL-L	.	.	.	.
		.	.	.	.
		.	.	.	.
	CPL-XL	.	.	.	.
		.	.	.	.

Table . :

 . Level of accuracy of CPL networks when the constraints on the step-size is relaxed. We xed the step-size h to di erent values and measured standard and empirically robust accuracy. Here the CPL-M model is used.

  One can also think of extending our work to other dynamical systems. Recent architectures such as Hamiltonian Networks [Greydanus et al., ] and Momentum Networks [Sander et al., a] exhibit interesting properties and it is worth digging into these architectures to build Lipschitz layers. Finally, we hope to use similar approaches to build robust Recurrent Neural Networks [Sherstinsky, ] and Transformers [Vaswani et al., ]. For Transformers, Vuckovic et al. [

  Albeit these signi cant e orts, randomization techniques lack theoretical arguments. In this paper, we generalize the prior results fromPinot et al. [ ] by studying a general class of randomized classi ers, including randomized neural networks, for which we demonstrate adversarial robustness guarantees and analyze their generalization properties.

		A On the Robustness of Randomized Classifiers to Adversarial Examples
		has proven e ective in some contexts [Xie et al.,	, Dhillon et al.,	, Liu et al.,	, Rakin
		et al.,	].	
					al.,	b, Metzen et al.,	, Xie et al.,	, Hu
	et al.,	, Verma and Swami,	] but most of them were proven (in time) to o er only limited
	protection against more sophisticated attacks [Carlini et al.,	, He et al.,	, Athalye et al.,
	b, Croce et al.,	b, Tramer et al.,	]. Among the defense strategies, randomization

  The literature on adversarial attacks A. Introduction for image classi cation usually uses either an ∞ norm akin Madry et al. [ a] or an 2 norm akin Carlini et al. [ ] as a surrogate for imperceptibility. Other authors such as Chen et al. [ a] and Papernot et al.

  al. [ ] as well as Simon-Gabriel et al. [ ]. Moreover, nding an approximate solution to the adversarial risk minimization is not always su cient. Indeed, recent works by Tsipras et al. [

  Furthermore, a natural corollary of Theorem bounds the Rademacher complexity of the class

The above result means that, if we can cover the n training samples with O(1) balls, then we can bound the generalization gap of any randomized classi er m ∈ M T V (ε, α) by O 1 √ n +α.

B Black-box adversarial attacks: tiling and evolution strategies

  We introduce a new black-box attack achieving state of the art performances. Our approach is based on a new objective function, borrowing ideas from ∞ -white box attacks, and particularly designed to t derivative-free optimization requirements. It only requires to have access to the logits of the classi er without any other information which is a more realistic scenario. Not only we introduce a new objective function, we extend previous works on black box adversarial attacks to a larger spectrum of evolution strategies and other derivative-free optimization methods. We also highlight a new intriguing property that deep neural networks are not robust to single shot tiled attacks. Our models achieve, with a budget limited to 10, 000 queries, results up to 99.2% of success rate against InceptionV classi er with 630 queries to the network on average in the untargeted attacks setting, which is an improvement by 90 queries of the current state of the art.

  The black box setting is more realistic, but also more challenging. Two strategies emerged in the literature to craft attacks within this setting: transferability from a substitute network, and gradient estimation algorithms. Transferability has been pointed out by Papernot et al. [ a]. It consists in generating a white-box adversarial example on a fully known substitute neural network, i.e. a network trained on the same classi cation task. This crafted adversarial example can be transferred to the targeted unknown network. Leveraging this property, Moosavi-Dezfooli et al. [ ] proposed an algorithm to craft a single adversarial attack that is the same for all examples and all networks. Despite the popularity of these methods, gradient estimation algorithms outperform transferability methods. Chen et al. [ ] proposed a variant of the powerful white-box attack introduced in [Carlini and Wagner,

			al.,	, Madry et al.,	b], Deepfool [Moosavi-Dezfooli
	et al.,	], JSMA [Papernot et al.,	b], Carlini&Wagner attack [Carlini and Wagner,	]
	and EAD [Chen et al.,	a].	

Table B .

 B : Comparison with other DFO optimization strategies in the untargeted setting on ImageNet dataset InceptionV pretrained network for = 0.05 and 10, 000 as budget limit.It has been empirically observed that defense mechanisms designed to protect neural networks against ∞ adversarial examples o er poor performance against 2 adversarial examples and vice versa. In this paper we conduct a geometrical analysis that validates this observation. Then, we provide a number of empirical insights to illustrate the e ect of this phenomenon in practice. Then, we review some of the existing defense mechanism that attempts to defend against multiple attacks by mixing defense strategies. Thanks to our numerical experiments, we discuss the relevance of this method and state open questions for the adversarial examples community.

	C Advocating for Multiple Defense
	Strategies against Adversarial
	Examples	
	Method	# of tiles Avg. queries Med. queries Success rate
	DFO c -Cauchy(1 + 1)-ES DFO c -Cauchy(1 + 1)-ES DFO c -DiagonalCMA DFO c -DiagonalCMA DFO c -CMA DFO c -CMA DFO c -DE DFO c -DE DFO c -Normal(1 + 1)-ES DFO c -Normal(1 + 1)-ES DFO c -RandomSearch DFO c -RandomSearch DFO c -Powell DFO c -Powell	. % . % . % . % . % . % . % . % . % . % . % . % . % . %

  Advocating for Multiple Defense Strategies against Adversarial Examples fellow et al. [ b] which consists of augmenting training batches using both ∞ and 2 adversarial examples, and Randomized Adversarial Training (RAT) Salman et al. [ ], a solution to bene t from the advantages of both ∞ adversarial training, and 2 randomized defense.

  is a random variable on R d . Even though, Noise Injection is often less e cient than Adversarial Training in practice (see e.g., Table C. ), it bene ts from strong theoretical background. In particular, recent work Lecuyer et al. [ ], followed by Cohen et al. [ ], Pinot et al. [ ] demonstrated that noise injection from a Gaussian distribution can give provable defense against 2 adversarial attacks. In this work, besides the classical Gaussian noises already investigated in previous works, we evaluate the e ciency of Uniform distributions to defend against 2 adversarial examples.

Table C .

 C : Bounds of Theorem on the volume of the intersection of 2 and ∞ balls at equal volume for typical image classi cation datasets. When d = 2, the bound is 10 -0.009 ≈ 0.98.

	Dataset	Dim. (d)	Vol. of the intersection
	-		10 -0.009 (≈ . )
	MNIST		10 -144
	CIFAR		10 -578
	ImageNet		10 -28946

Table C .

 C : Average norms of PGD-2 and PGD-∞ adversarial examples with and without ∞ adversarial training on CIFAR-(d = 3072). To demonstrate that ∞ adversarial training is not robust against PGD-2 attacks we measure the evolution of 2 norm of adversarial examples generated with PGD-∞ between an unprotected model and a model trained with AT-

		Attack PGD-2	Attack PGD-∞
		Unprotected	AT-∞	Unprotected	AT-2
	Average 2 norm	.	.	.	.
	Average ∞ norm	.	.	.	.
	Adversarial training vs. loss maximization attacks		

∞ , i.e., AT where adversarial examples are generated with PGD-∞ . Results are presented in Table C. . The analysis is unambiguous: the average ∞ norm of a bounded 2

Table C .

 C : This table shows a comprehensive list of results consisting of the accuracy of several defense mechanisms against 2 and ∞ attacks. This table main objective is to compare the overall performance of 'single' norm defense mechanisms (AT and NI presented in the Section C. . ) against mixed norms defense mechanisms (MAT & RAT mixed defenses presented in Section C. ).

		Baseline	AT			MAT	NI		RAT-∞	RAT-2
		-	∞	2	Max Rand	N	U	N	U	N	U
	Natural	.	.	.	.	.	.	.	.	.	.	.
	PGD-∞	.	.	.	.	.	.	.	.	.	.	.
	PGD-2	.	.	.	.	.	.	.	.	.	.	.

  Earlier results have shown that ATp improves the robustness against corresponding p -bounded adversarial examples, and the experiments we present in this section corroborate this observation (See Table C. , column: AT). Building on this, it is natural to examine the e ciency of Mixed Adversarial Training (MAT) against mixed ∞ and 2 attacks. MAT is a variation of AT that uses both ∞ -bounded adversarial examples and 2 -bounded adversarial examples as training examples. As discussed in Tramèr and Boneh [ ], there are several possible strategies to mix the adversarial training examples. The rst strategy (MAT-Rand) consists in randomly selecting one adversarial example among the two most damaging ∞ and 2 , and to use it as a training example, as described in Equation (C. ):

	C Advocating for Multiple Defense Strategies against Adversarial Examples
	MAT-Rand :

  Table C. (Column: MAT). As expected, we observe that MAT-Rand and MAT-Max o er better robustness both against PGD-2 and PGD-∞ adversarial examples than the original AT does. More generally, we can see that AT is a good strategy against loss maximization attacks, and thus it is not surprising that MAT is a good strategy against mixed loss maximization attacks. However e cient in practice, MAT (for the same reasons as AT) lacks theoretical arguments. In order to get the best of both worlds, Salman et al. [ ] proposed to mix adversarial training with randomization.

C. . RAT -Randomized Adversarial Training

We now examine the performance of Randomized Adversarial Training (RAT) rst introduced in Salman et al. [ ]. This technique mixes Adversarial Training with Noise Injection. The corresponding loss function is de ned as follows:

  Although the idea of online adversarial bandit algorithms is not new (see E 3 algorithm in Auer et al. [ ]), the focus is di erent from what we are considering in this article. Indeed, algorithms like E 3 or E 4 Lattimore and Szepesvári [

						Biggio et al. [	],
	Goodfellow et al. [	b], Jagielski et al. [	], Li et al. [	], Liu et al. [	], attacks on rec-
	ommender systems have been focused on ltering-based algorithms Christakopoulou and Baner-
	jee [	], Mehta and Nejdl [	] and o ine contextual bandits Ma et al. [	]. The question
	of adversarial attacks for online bandit algorithms has only been studied quite recently Jun et al.
	[	], Liu and Shro [	], Immorlica et al. [	], Guan et al. [	], and solely in the multi-
	armed stochastic setting.		

  Slivkins [ ], the learning algorithm has no knowledge of the type of feedback it receives (either stochastic or adversarial). In Lykouris et al. [ ], Li et al. [ d], Gupta et al. [ a], Lykouris et al. [ ], Kapoor et al. [

  For time t = 1, 2, ..., T do . Alg. A chooses arm a t based on context x t For time t = 1, 2, ..., T do . Attacker observes the context x t , computes potential arm a t and sets x t = x t + (α(x t ) -1)x t 1 {a t / ∈A † } . Alg. A chooses arm a t based on context x t . Environment generates reward: r t,at = θ at , x t + η t with η t conditionally σ 2subgaussian . Alg. A observes reward r t,at

	Input: attack parameter: α
	. Environment generates reward: r t,at =
	θ at , x t + η t with η t at conditionally σ 2 -
	subgaussian
	. Attacker observes reward r t,at and feeds
	the perturbed reward r 1 t,at (or r 2 t,at ) to A
	Figure D. : Contextual ACE algorithm

Table D .

 D : Percentage of iterations for which the algorithm pulled an arm in the target set A † (with a target set size of 0.3K arms) (Left) Online attacks using ContextualConic (CC) algorithm. Percentages are averaged over runs of M iterations. (Right) O ine attacks with exact (Full) and Relaxed optimization problem. Percentages are averaged over runs of M iterations.

		Synthetic Jester Movilens		Synthetic	Jester	MovieLens
	L UCB	. %	. %	. %	L UCB	0.07%	0.01%	0.39%
	CC LinUCB ε CC ε	. % . % . %	. % . % . %	. % . % . %	L UCB Relaxed 13.76% 97.81% L UCB Full 88.30% 99.98% ε 0.01% 0.00% ε Full 99.98% 99.95%	4.09% 99.99% 0.03% 99.97%
	L TS	. %	. %	. %	L TS	0.02%	0.01%	0.05%
	CC L TS	. %	. %	. %	L TS Relaxed	18.21% 80.48%	5.56%

Table D .

 D : Number of draws of the target arm a † at T = 10 6 , for the synthetic data, γ = 0.22 for the Contextual ACE algorithm and for the Jester and MovieLens datasets γ = 0.5.

					Synthetic	Jester	Movilens
	L UCB				86, 731.6	23, 548.16	25, 017.31
	CACE L UCB				996, 238.6 921, 083.69 944, 721.28
	Stationary CACE L UCB		995, 578.88 862, 095.67 931, 531.6
	ε				111, 380.44 21, 911.54	3, 165.81
	CACE ε				999, 812.92 999, 755.72 999, 776.82
	Stationary CACE ε				999, 806.32 999, 615.98 999, 316.76
	L TS				91, 664.8	23, 398.3	30, 189.84
	CACE L TS				998, 997.04 976, 708.9 990, 250.67
	Stationary CACE L TS		977, 850.96 784, 715.62 845, 512.98
	E 4				93, 860.4	29, 147.01	17, 985.78
	CACE E 4				992, 793.36 989, 214.36 936, 230.4
	Stationary CACE E 4			993, 673.24 988, 463.56 934, 304.23
	Attacked LinUCB, |A| = 0.3K Attacked LinUCB, |A| = 0.6K Attacked LinUCB, |A| = 0.9K Attacked ε-greedy, |A| = 0.3K Attacked ε-greedy, |A| = 0.6K Attacked ε-greedy, |A| = 0.9K Attacked LinTS, |A| = 0.3K Attacked LinTS, |A| = 0.6K Attacked LinTS, |A| = 0.9K				
	0	2	4	6	8
					•10 5

  Input: regularization λ, number of arms K, number of rounds T , exploration parameter (ε) t Initialize, for all arms a, V -1 a (t) = λI d and θa (t) = 0, ε t = 1, b a (t) = 0 for t = 1, ..., T doObserve context x t With probability ε t , pull a t ∼ U( 1, K ), or pull a t = argmax θ a , x t Observe reward r t and update parameters θa (t) and V -1 a (t) Vat (t + 1) = Vat (t) + x t x t , b at (t + 1) = b at (t) + r t x t ,

	D Adversarial Attacks on Linear Contextual Bandits
	Algorithm : ε
	θ at (t + 1) = V -1 at (t + 1)b at (t + 1)
	end for
	Algorithm : E 4
	1)b at (t + 1)
	end for

Input: number of arms K, experts:

(E m ) m∈ 1,N , parameter η Set Q 1 = (1/N ) j∈ 1,N for t = 1, ...,

T do Observe context x t and probability recommendation (E (t) m ) m∈ 1,N Pull arm a t ∼ P t where P

:

  Semi-Online Attack Setting.

	Input: Bandit alg. A, size of a mini-batch: B
	Set t = 0
	while True do
	A observe context x t
	A pulls arm a t and observes reward r t
	Interaction (x

t , a t , r t ) is saved in mini-batch B if B = B then

Attacker modi es mini-batch B into B Update alg. A with poisoned mini-batch B

  Gradient obfuscation, through the use of a non-di erentiable activation function, has been proposed as a way to protect against white-box attacksPapernot et al. [ b]. However, gradient obfuscation can be easily bypassed by Backward Pass Di erentiable Approximation (BPDA) Athalye et al.[ a], where the defense is replaced by an approximated and differentiable version. Parameter obfuscation has been proposed with dedicated photonic co-processorCappelli et al. [ a], enforced by the physical properties of said co-processor. However, by itself, this kind of defense falls short of adversarial training.

					E. Introduction
	as AutoAttack Croce and Hein [	b], have been proposed to autonomously select which at-
	tack to perform against a given network, and to automatically tune its hyperparameters.
	Defenses. Adversarial training adds adversarial robustness as an explicit training objective Good-
	fellow et al. [	a], Madry et al. [	a], by incorporating adversarial examples during the train-
	ing. This has been, and still is, one of the most e ective defense against attacks. Repository of
	pre-trained robust models have been compiled, such as the RobustBench Model Zoo . Con-
	versely, theoretically grounded defenses have been proposed [Lecuyer et al.,	, Cohen et al.,
	, Alexandre Araujo and Negrevergne,	, Pinot et al.,	, Wong et al.,	, Wong and
	Kolter,	], but these fail to match the clean accuracy of state-of-the-art networks, making ro-
	bustness a trade-o with performance. Many empirical defenses have been criticized for providing
	a false sense of security Athalye et al. [	a], Tramèr and Boneh [	], by not evaluating on at-
	tacks adapted to the defense.	
	Obfuscation.		
			al. [	a], PGD Madry et al. [	a], Kurakin et al. [	], Carlini & Wagner
	Carlini and Wagner [	]); black-box, assuming only limited access to the network for the at-
	tacker, such as the label or logits for a given input, with methods attempting to estimate the gra-
	dients Chen et al. [	], Ilyas et al. [	a,b], or more recently derived from genetic algorithms
	Andriushchenko et al. [	], Meunier et al. [	] and combinatorial optimization Moon et al.
	[	]; transfer attacks, where an attack is crafted on a similar model that is accessible to the at-
	tacker, and then applied to the target network Papernot et al. [	a]. Automated schemes, such

  We use the model from Wong et al. [ ] available in the RobustBench model zoo to perform our ablation studies. It consists in a PreAct ResNet-He et al. [ a], pretrained with a "revisited" FGSM of increased e ectiveness.

  the law of large numbers, we have: μ1 ẌZ and μ2 ẌZ converge almost surely towards µ ẌZ . Moreover by Markov inequality, μ1 ẌZµ ẌZ H Ẍ ⊗H Z ≤

	G An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings
	1 -δ, and μ2 ẌZ -µ ẌZ H Ẍ ⊗H Z ≤	C nδ with probability 1 -δ. Then with probability
	1	
		C nδ with probability

  Table on the right: Average regret for σ * = log(λ)/d and σ = 1. the sample size λ grows exponentially fast in the dimension d -the median quality of sampling from N (0, I d ) is worse than that of sampling a single point, namely the center point 0. A similar observation was previously made in Rahnamayan and Wang [ ], without mathematically proven guarantees. It was left open in Cauwet et al. [

	d	λ	σ *	σ = 1
		100	0.73	0.88
		500	0.63	0.72
		1000	0.59	0.66
		100	0.89	1.23
		500	0.83	1.10
		1000	0.81	1.05
		100	0.94	1.44
		500	0.91	1.33
		1000	0.90	1.29
		100	0.96	1.53
		500	0.94	1.44
		1000	0.93	1.41
		100	0.99	1.74
		500	0.98	1.68
		1000	0.98	1.66
	Our Theoretical Result.			

  While the most relevant works for our study have been mentioned above, we brie y note that a similar surprising e ect as observed here is the "Stein phenomenon"Stein [ ], James and Stein [ ].

			H. Problem Statement and Related Work
	Related Work.
	Bayesian optimization algorithms Jones et al. [	] and on di erential evolution Storn and Price
	[	].

  Bergstra and Bengio [ ], Cauwet et al. [ ]. All our experiments are implemented and freely available in the Nevergrad platform Rapin and Teytaud [ ]. Results are presented as shown in Fig. H. . Typically, the six best methods are displayed as rows. The best performing methods are presented as columns.

	Experimental Setup.

  More precisely, we analyze the impact of initializing e cient global optimization (EGO Jones et al. [ ], a special case of Bayesian optimization) and di erential evolution (DE Storn and Price []) by a population that is sampled from a distribution that uses our variance scaling scheme. It is well known that a proper initialization can be very critical for the performance of these solvers; seeFeurer et al. [ 

				], Surry and
	Radcli e [	], Rahnamayan and Wang [	], Maaranen et al. [	], Bossek et al. [	]
	for discussions.				

  Arnold et al. [ ], Auger et al. [ ] have proposed weights depending on the tness value, though they acknowledge a moderate impact: we here consider equal weights for the µ best.

	Choosing the selection rate		
	The choice of the selection rate µ/λ is quite debated in evolutionary computation: one can nd
	µ = λ/7 Escalante and Reyes [	], µ = λ/2 Beyer and Sendho [	], µ = 0.27λ Beyer
	and Schwefel [	a], µ = λ/4 Hansen and Ostermeier [	], µ = min(d, λ/4) Teytaud
	[	], Fournier and Teytaud [	] and still others in Beyer [	], Jebalia and Auger [	].

  The case of noisy objective functions Arnold and Beyer [] is critical. The study is harder, and good evolutionary algorithms use large populations, making the overall algorithm closer to a small number of one-shot optimization algorithms: actually, some fast algorithms use mainly learning

	Astete-Morales et al. [	], Coulom [	], Audet et al. [	]. Population controlHellwig and
	Beyer [			

  al. [ ], Wang et al. [ b], to the point that they are considered a key research area of articial intelligence. Black-box optimization algorithms are typically easy to implement and easy to adjust to di erent problem types. To achieve peak performance, however, proper algorithm selection and con guration are key, since black-box optimization algorithms have complementary strengths and weaknesses Rice [ ], Kerschke et al. [ ]. But while automated algorithm selection has become standard in SAT solving Xu et al. [ ] and AI planning Vallati et al. [

  uses three types of selection techniques: passive algorithm selection (choosing an algorithm as a function of a priori available features Liu et al. []), active algorithm selection (a bet-and-run strategy which runs several algorithms for some time and stops all but the strongest after a prede ned number of evaluations Mersmann

	et al. [	], Pitzer and A enzeller [	], Fischetti and Monaci [	], Malan and Engelbrecht
	[	], Muñoz et al. [	], Cauwet et al. [	], Kerschke et al. [	]), and chaining (running
	several algorithms in turn, in an a priori de ned order Molina et al. [	]).
		Our wizard selects from and combines a very large number of base algorithms, among them
	algorithms suggested in Virtanen et al. [		], Hansen and Ostermeier [	], Storn and Price
	[	], Powell [	,	], Liu et al. [		], Hellwig and Beyer [	], Artelys [	], Doerr

:

  High-level overview of ABBO. Selection rules are followed in this order, rst match applied. d = dimension, budget b = number of evaluations. Details of ABBO and the con guration of its base solvers are available in the Nevergrad platformRapin and Teytaud [ ], where ABBO is listed as NGOpt .

	K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive
	Benchmarking			
	Algorithm Case	Choice	
	A: Discrete decision variables only, noise-free case
	Noisy optimization with categorical variables	Genetic algorithm mixed with bandits Heidrich-Meisner and
		Igel [	], Liu et al. [	].
	alphabets of size < 5, sequential evaluations	(1 + 1)-Evolutionary Alg. with linearly decreasing stepsize
	alphabets of size < 5, parallel case	Adaptive (1 + 1)-Evolutionary Alg. Doerr et al. [	].
	Other discrete cases with nite alphabets	Convert to the continuous case using SoftMax as in Liu et al.
		[	] and apply CMandAS Rapin et al. [	]
	Presence of in nite discrete domains	FastGA Doerr et al. [	]
	B: Numerical decision variables only, evaluations are subject to noise
	d > 100	progressive optimization as in Berthier [	].
	d ≤ 30	TBPSA Hellwig and Beyer [	]
	b > 100	sequential quadratic programming
	Other cases	TBPSA Hellwig and Beyer [	]
	Base Solvers: Black-box optimization problems are often tackled using evolutionary computa-
	tion. Evolution strategies Beyer and Schwefel [	b], Beyer [	], Rechenberg [	] have
	been particularly dominant in the continuous case, in experimental comparisons based on the

•

  Projets Open Source: les grands projets en apprentissage automatique sont aujourd'hui en libre accès en ligne (TensorFlow [Abadi et al., ], PyTorch [Paszke et al., ], Scikit Learn [Pedregosa et al.,

  Références aux attaques adverses dans la proposition de loi de la Commission Européenne sur les Systèmes d'Intelligence Arti cielle Dans l'introduction: "La cybersécurité joue un rôle crucial pour garantir la résilience des systèmes d'IA face aux tentatives de détourner leur utilisation, leur comportement, leurs performances ou de compromettre leurs propriétés de sûreté par des tiers malveillants exploitant les vulnérabilités du système. Les cyberattaques contre les systèmes d'IA peuvent faire usage de ressources spécifiques à l'IA, telles que des jeux de données d'entraînement (par exemple l'empoisonnement de données) ou des modèles entraînés (par exemple les attaques adversaires), ou exploiter les vulnérabilités des ressources numériques du système d'IA ou de l'infrastructure TIC sous-jacente. Pour garantir un niveau de cybersécurité adapté aux risques, des mesures appropriées devraient donc être prises par les fournisseurs de systèmes d'IA à haut risque, en tenant également compte, si nécessaire, de l'infrastructure TIC sous-jacente." Titre III (Systèmes d'IA à haut risque), Chapitre II (Exigences applicables aux systèmes d'IA à haut risque), Article . (Exactitude, robustesse et cybersécurité)): "Les systèmes d'IA à haut risque résistent aux tentatives de tiers non autorisés visant à modifier leur utilisation ou leurs performances en exploitant les vulnérabilités du système. Les solutions techniques visant à garantir la cybersécurité des systèmes d'IA à haut risque sont adaptées aux circonstances pertinentes et aux risques. Les solutions techniques destinées à remédier aux vulnérabilités spécifiques à l'IA comprennent, le cas échéant, des mesures ayant pour but de prévenir et de maîtriser les attaques visant à manipuler le jeu de données d'entraînement («empoisonnement des données»), les données d'entrée destinées à induire le modèle en erreur («exemples adverses») ou les défauts du modèle." Un premier texte de réglementation sur les systèmes d'Intelligence Arti cielle a été proposé par la Commission Européenne en avril

	L Résumé Détaillé en Francais	
	https://eur-lex.europa.eu/eli/reg/	/	/oj

  Par conséquent, la détection d'un changement de perception dû à des attaques adverses est un problème que l'on peut considéré mal posé. La plupart des recherches dans ce domaine se sont concentrées sur les perturbations au niveau des pixels (par exemple, en norme p ), alors que les menaces réelles seraient créées en insérant des objets trompeurs dans l'environnement (par exemple, des patchs [Brown et al., ], des T-shirts [Xu et al., ], des textures [Wiyatno and Xu, ], etc.) . La robustesse est souvent évaluée de manière empirique : il n'existe que quelques méthodes avec des garanties formelles sur la robustesse et ces garanties sont souvent relativement faibles. La robustesse est généralement mesurée sur un ensemble d'attaques possibles et toutes les perturbations possibles ne sont pas couvertes par ces attaques, ce qui laisse place à des angles morts potentiels d'attaque.

Table L .

 L : Etat de l'art des précisions en présence d'adversaires sur WideResNet x [Zagoruyko andKomodakis, ].Les résultats proviennent de[Croce et al., a] 

		Référence			Précision standard Précision robuste
	None	[Zagoruyko and Komodakis,	]	. %	%
	∞ (ε = 8/255)	[Rebu et al.,	]		. %	. %
	2 (ε = 0.5)	[Rebu et al.,	]		. %	. %
	L. Contributions			

L. .

Une approche de théorie des jeux au problème des attaques adverses

  Une ligne de recherche, suivant[Pinot et al., ], pour comprendre la classi cation adverse est de s'appuyer sur la théorie des jeux. Dans le chapitre , nous nous baserons sur cette approche et dé nirons précisément les motivations de l'attaquant et du classi eur. Nous le présenterons naturellement comme un jeu à somme nulle. Nous étudierons en particulier le problème de l'existence d'équilibres. Plus précisément, nous répondrons à la question ouverte suivante.

  Nous étendons l'algorithme précédent en une heuristique pour entrainer des mélanges nis de réseaux de neurones. Nous testons notre algorithme pour di érents nombres de modèles sur l'architecture WideRestNet x [Zagoruyko and Komodakis, ]. Nous évaluons face à des attaques de type PGD (voir Figure L. ) avec TRADES [Zhang et al., a] et l'apprentissage adverse [Madry et al., a] sur les jeux de données CIFAR-et CIFAR-. Nous remarquons que le fait d'augmenter le nombre de modèles a deux e ets béné ques: l'amélioration de la robustesse face aux exemples adverses, ainsi que la réduction du surapprentissage de l'apprentissage en présence d'adversaires.Apprentissage adverse, sur le jeu de données CIFAR-

	Models	Acc. 81.9% 81.9% 81.7% 82.6%	APGD CE 47.6% 49.0% 49.0% 49.7%	APGD DLR 47.7% 49.6% 49.3% Accuracy 49.8%	0.5 0.4 0.2 0.3 0.0 0.1	Rob. Acc. 45.6% 47.0% 46.9% 47.2% 0 25 50 75 100 125 150 175 200 Epochs per model 1 models 2 models 3 models 4 models	Accuracy	0.8 0.7 0.6 0.4 0.5 0.3 0.0 0.1 0.2	0	25	50	Epochs per model 75 100 125 150 175 200 1 models 2 models 3 models 4 models
	Models	Acc.	APGD CE	APGD DLR	0.5	Rob. Acc.		0.7 0.8			
		79.6% 80.3% 80.7% 80.9%	50.9% 52.3% 52.8% 53.0%	48.9% 51.2% 51.7% 51.8%	Accuracy	0.4 0.2 0.3 0.0 0.1	0	48.3% 50.2% 50.7% 50.8% 25 50	75 100 125 150 175 200 Epochs per model 1 models 2 models 3 models 4 models	Accuracy	0.6 0.4 0.5 0.3 0.0 0.1 0.2	0	25	50	Epochs per model 75 100 125 150 175 200 1 models 2 models 3 models 4 models
			TRADES, sur le jeu de données CIFAR-				
	Models	Acc.	APGD CE	APGD DLR		Rob. Acc.					
		55.2%	24.1%	23.8%				22.5%						
		55.2%	25.3%	26.1%				23.6%						
		55.4%	25.7%	26.8%				24.2%						
		55.3%	26.0%	27.5%				24.5%						

based Ker- nel Conditional Independence Test (voir Appendix G).

  sur an p -Dans cet article, nous présentons un nouveau test d'indépendance conditionnelle basé sur le noyau. Ses avantages sont sa simplicité de calcul et une distribution asymptotique très simple sous l'hypothèse nulle. De plus, ses performances sont compétitives par rapport aux autres tests d'indépendance conditionnelle.Avec Olivier Teytaud, chercheur à Meta AI and co-encadrant de cette thèse, nous avons également publiés des articles de recherches sur les algorithmes génétiques:• Variance

Reduction for Better Sampling in Continuous Domains (voir Appendix H):

  

• Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking (voir Appendix K):

  Nous proposons un large éventail de benchmarks intégrés dans la plateforme Nevergrad[Rapin and Teytaud, ]. Ce travail fut publié dans le journal TEVC[Meunier et al., b]. Sandra Astete-Morales, Marie-Liesse Cauwet, and Olivier Teytaud. Evolution strategies with additive noise: A convergence rate lower bound. In Proceedings of the ACM Conference on Foundations of Genetic Algorithms XIII, FOGA ' , page -, New York, NY, USA, . Association for Computing Machinery. ISBN . doi: . / . . URL https://doi.org/ . Atanassov. On the discrepancy of the Halton sequences. Math. Balkanica (NS), ( -): -, . Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas Krause, editors, Proceedings of the th International Conference on Machine Learning, volume of Bibliography Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In Proceedings of the th International Conference on Machine Learning, ICML , July b. URL https://arxiv.org/ abs/ . . Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples. In Jennifer Dy and Andreas Krause, editors, Proceedings of the th International Conference on Machine Learning, volume of Proceedings of Machine Learning Research, pages -, Stockholmsmässan, Stockholm Sweden, -Jul c. PMLR. URL http: //proceedings.mlr.press/v /athalye b.html. Charles Audet, Amina Ihaddadene, Sébastien Le Digabel, and Christophe Tribes. Robust optimization of noisy blackbox problems using the mesh adaptive direct search algorithm. Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, ( -): -, . Anne Auger, Marc Schoenauer, and Olivier Teytaud. Local and global order / convergence of a surrogate evolutionnary algorithm. In Beyer and O'Reilly [ ], page . ISBN ---. Anne Auger, Marc Schoenauer, and Olivier Teytaud. Local and global order / convergence of a surrogate evolutionary algorithm. In Beyer and O'Reilly [ Natalie Frank, and Mehryar Mohri. Adversarial learning guarantees for linear hypotheses and neural networks. International Conference on Machine Learning, . Pranjal Awasthi, Natalie Frank, Anqi Mao, Mehryar Mohri, and Yutao Zhong. Calibration and consistency of adversarial surrogate losses. arXiv preprint arXiv: . , a. Pranjal Awasthi, Natalie Frank, and Mehryar Mohri. On the existence of the adversarial bayes classi er. Advances in Neural Information Processing Systems, , b. Sylvain Gelly, and Jérémie Mary. On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy. In Proceedings of PPSN, pages -, . doi: . / \_ . URL https://doi.org/ . Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In IEEE/RSJ international conference on intelligent robots and systems, pages -. IEEE, . Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations. In Advances in Neural Information Processing Systems, pages -, . Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine learning models via prediction apis. In th {USENIX} Security Symposium ({USENIX} Security ), pages -, . Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space of transferable adversarial examples. arXiv preprint arXiv: . , . Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial example defenses. arXiv preprint arXiv: . , . Nicolás García Trillos and Ryan Murray. Adversarial classi cation: Necessary conditions and geometric ows. arXiv preprint arXiv: . , . Asher Trockman et al. Orthogonalizing convolutional layers with the cayley transform. In International Conference on Learning Representations, . Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM Journal on Optimization, , . Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness may be at odds with accuracy. International Conference on Learning Representation, . Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certi cation of perturbation invariance for deep neural networks. In Advances in Neural Information Processing Systems, . Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In Proceedings of the AAAI Conference on Artificial

	Teytaud, /	_ .
	/ . doi: . Peter Auer, ], pages . . timization Letters, ( ): -, /s --//scholar.google.com/scholar?cluster= . ---. doi: . / . . URL https://doi.org/ . -. URL https: Op--. ISBN / . . Anne Auger, Dimo Brockho , and Nikolaus Hansen. Mirrored sampling in evolution strategies with weighted recombination. In Proceedings of the th Annual Conference on Genetic and Evolutionary Computation, GECCO ' , page -, New York, NY, USA, . Associ-ation for Computing Machinery. ISBN . doi: . / . . URL https://doi.org/ . / . . Pranjal Awasthi, Pranjal Awasthi, Anqi Mao, Mehryar Mohri, and Yutao Zhong. A ner calibration analysis for adversarial robustness. arXiv preprint arXiv: . , c. Emanuel Todorov, Intelligence, volume , pages -, . AM Turing. Computing machinery and intelligence. Mind, ( ): -, . Emanouil I Proceedings of Machine Learning Research, pages -, Stockholmsmässan, Stockholm Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence. The Annals Hoang Tuy. Dc optimization: theory, methods and algorithms. In Handbook of global optimiza-
	Sweden, -Jul of Statistics, ( ): -tion, pages -. Springer, a. PMLR. , .	.

(ε = 0.5)[Rebu et al., ] . % . %

For instance, for any norm • , (R d , • ) is a Polish metric space satisfying this property.

norms respectively) which result in ∞ and 2 balls of equivalent volumes. For the particular case of CIFAR-, this would lead us to choose ∞ = 0.03 and 2 = 0.8 which correspond to the maximum values chosen empirically to avoid the generation of visually detectable perturbawith p ∈ {0, • • • , ∞}.

attacks. Right: a classi er trained with 2 adversarial perturbations (materialized by the blue line) remains vulnerable to ∞ attacks.

J=1, p=1 J=1, p=2 J=3, p=1 J=3, p=2 J=5, p=1 J=5, p=2 J=10, p=1 J=10, p=2 J=15, p=1 J=15, p=2

This requires knowledge of infx f (x), which may not be available in real-world applications. In this case, without loss of generality (this is just for the sake of plotting regret values), the in mum can be replaced by an empirical minimum. In all applications considered in this work the value of infx f (x) is known.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX% A PC
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the images, so they suggested to add the same noise for small square tiles in the image (see Fig. B. ). We exploit the same trick since it reduces the dimensionality of the search space, and makes hence evolutionary strategies suited to the problem at hand. Besides breaking the curse of dimensionality, tiling leads surprisingly to a new property that we discovered during our experiments. At a given tiling scale, convolutional neural networks are not robust to random noise. Section B. . is devoted to this intriguing property. Interestingly enough, initializing our optimization algorithms with a tiled noise at the appropriate scale drastically speeds up the convergence, leading to a reduced number of queries.

B. Experiments B. . General setting and implementation details

We compare our approach to the "bandits" method [Ilyas et al., b] and the parsimonious attack [Moon et al., ]. The latter (parsimonious attack) is, to the best of our knowledge, the state of the art in the black-box setting from the literature; bandits method is also considered in our benchmark given its ties to our models. We reproduced the results from [Moon et al., ] in our setting for fair comparison. As explained in section B. . , our attacks can be interpreted as ∞ ones. We use the large-scale ImageNet dataset [Deng et al., ]. As usually done in most frameworks, we quantify our success in terms of attack success rate, median queries and average queries.

Here, the number of queries refers to the number of requests to the output logits of a classi er for a given image. For the success rate, we only consider the images that were correctly classi ed by our model. We use InceptionV [Szegedy et al., ] , VGG [Simonyan and Zisserman, ] with batch normalization (VGG bn) and ResNet [He et al., b] architectures to measure the performance of our algorithm on the ImageNet dataset. These models reach accuracy close to the the state of the art with around 75 -80% for the Top-accuracy and 95% for the Topaccuracy. We use pretrained models from PyTorch [Paszke et al., ]. All images are normalized to [0, 1]. Results on VGG bn and ResNet are deferred in supplementary material B. . The images to be attacked are selected at random.

We rst show that convolutional networks are not robust to tiled random noise, and more surprisingly that there exists an optimal tile size that is the same for all architectures and noise intensities. Then, we evaluate our methods on both targeted and untargeted objectives. We considered the following losses: the cross entropy L(f (x), y) =log(P(y|x)) and a loss inspired from B Black-box adversarial attacks: tiling and evolution strategies the "Carlini&Wagner" attack: L(f (x), y) = -P(y|x) + max y =y P(y |x) where P(y|x) = [Softmax(f (x))] y , the probability for the classi er to classify the input x to label y. The results for the second loss are deferred in supplementary material B. . For all our attacks, we use the Nevergrad [Rapin and Teytaud, ] implementation of evolution strategies. We did not change the default parameters of the optimization strategies.

B. . Convolutional neural networks are not robust to tiled random noise

In this section, we highlight that neural neural networks are not robust to ∞ tiled random noise. A noise on an image is said to be tiled if the added noise on the image is the same on small squares of pixels (see Figure B. ). In practice, we divide our image in equally sized tiles. For each tile, we add to the image a randomly chosen constant noise: + with probability 1 2 andwith probability 1 2 , uniformly on the tile. The tile trick has been introduced inIlyas et al. [ a] for dimensionality reduction. Here we exhibit a new behavior that we discovered during our experiments. As shown in Fig. B. for reasonable noise intensity ( = 0.05), the success rate of a one shot randomly tiled attack is quite high. This fact is observed on many neural network architectures. We compared the number of tiles since the images input size are not the same for all architectures (299×299×3 for InceptionV and 224 × 224 × 3 for VGG bn and ResNet ). The optimal number of tiles (in the sense of attack success rate) is, surprisingly, independent from the architecture and the noise intensity. We also note that the InceptionV architecture is more robust to random tiled noise than VGG bn and ResNet architectures. InceptionV blocks are parallel convolutions with di erent lter sizes that are concatenated. Using di erent lter sizes may attenuate the e ect of the tiled noise since some convolution sizes might be less sensitive. We test this with a single random attack with various numbers of tiles (cf. Figure B. , B. ). We plotted additional graphs in supplementary material B. .

B. . Untargeted adversarial attacks

We rst evaluate our attacks in the untargeted setting. The aim is to change the predicted label of the classi er. Following [Moon et al., , Ilyas et al., b], we use 10, 000 images that are The number of queries (x-axis) is plotted with a logarithmic scale.

initially correctly classi ed and we limit the budget to 10, 000 queries. We experimented with and tiles on the images. Only the best performing methods are reported in Table B. . We compare our results with [Moon et al., ] and [Ilyas et al., b] on InceptionV (cf. Table B. ). We also plotted the cumulative success rate in terms of required budget in Figure B. . We also evaluated our attacks for smaller noise in supplementary material B. . We achieve results outperforming or at least equal to the state of the art in all cases. More remarkably, We improve by far the number of necessary queries to fool the classi ers. The tiling trick partially explains why the average and the median number of queries are low. Indeed, the rst queries of our evolution strategies is in general close to random search and hence, according to the observation of Figs B. -B. , the rst steps are more likely to fool the network, which explains why the queries budget remains low. This Discrete strategies reach better median numbers of queries -which is consistent as we directly search on the limits of the ∞ -ball; however, given the restricted search space (only corners of the search space are considered), the success rate is lower and on average the number of queries increases due to hard cases.

B. . Targeted adversarial attacks

We also evaluate our methods in the targeted case on ImageNet dataset. We selected 1, 000 images, correctly classi ed. Since the targeted task is harder than the untargeted case, we set the maximum budget to 100, 000 queries, and = 0.05. We uniformly chose the target class among the incorrect ones. We evaluated our attacks in comparison with the bandits methods [Ilyas et al., b] and the parsimonious attack [Moon et al., ] on InceptionV classi er. We also plotted the cumulative success rate in terms of required budget in Figure B. . CMA-ES beats the state of the art on all criteria. DiagonalCMA-ES obtains acceptable results but is less powerful that CMA-ES in this speci c case. The classical CMA optimizer is more precise, even if the run time is much longer. Cauchy (1 + 1)-ES and discretized optimization reach good results, but when the task is more complicated they do not reach as good results as the state of the art in black box targeted attacks. 

B Black-box adversarial attacks: tiling and evolution strategies

B. . Untargeted attacks against an adversarially trained network

In this section, we experiment our attacks against a defended network by adversarial training [Goodfellow et al., b]. Since adversarial training is computationally expensive, we restricted ourselves to the CIFAR dataset [Krizhevsky et al., ] for this experiment. Image size is 32 × 32 × 3. We adversarially trained a WideResNet x [Zagoruyko and Komodakis, ] with PGD ∞ attacks [Kurakin et al., , Madry et al., b] of norm 8/256 and 10 steps of size 2/256. In this setting, we randomly selected 1, 000 images, and limited the budget to 20, 000 queries. We ran PGD ∞ attacks [Kurakin et al., , Madry et al., b] of norm 8/256 and 20 steps of size 1/256 against our network, and achieved a success rate up to 36%, which is the the state of the art in the white box setting. We also compared our method to the Parsimonious and bandit attacks. Results are reported in Appendix B. . On this task, the parsimonious attack method is slightly better than our best approach.

B. Conclusion

In this paper, we proposed a new framework for crafting black box adversarial attacks based on derivative free optimization. Because of the high dimensionality and the characteristics of the problem (see Section B. . ), not all optimization strategies give satisfying results. However, combined with the tiling trick, evolutionary strategies such as CMA, DiagonalCMA and Cauchy ( + )-ES beats the current state of the art in both targeted and untargeted settings. In particular, DFO c -CMA improves the state of the art in terms of success rate in almost all settings. We also validated the robustness of our attack against an adversarially trained network. Future work

B. Conclusion

Table B. : Comparison of our method with the parsimonious and bandits attacks in the targeted setting on ImageNet on InceptionV pretrained network for = 0.05 and 100, 000 as budget limit.

Method # of tiles Average queries Median queries Success rate

will be devoted to better understanding the intriguing property of the e ect that a neural network is not robust to a one shot randomly tiled attack.

B. Appendix: Algorithms

B. . The ( + )-ES algorithm

Algorithm : The (1 + 1) Evolution Strategy.

Require: Function

B. Appendix: Results with "Carlini&Wagner" loss

In this section, we follow the same experimental setup as in Section B. . , but we built our attacks with the "Carlini&Wagner" loss instead of the cross entropy. We remark the results are comparable and similar.

Table B. : Comparison of our method with"Carlini&Wagner" loss versus the parsimonious and bandits attacks in the untargeted setting on InceptionV pretrained network for = 0.05 and 10, 000 as budget limit.

Method # of tiles Average queries Median queries Success rate

B Black-box adversarial attacks: tiling and evolution strategies

B. Appendix: Untargeted attacks with smaller noise intensities

We evaluated our method on smaller noise intensities ( ∈ {0.01, 0.03, 0.05}) in the untargeted setting on ImageNet dataset. In this framework, we also picked up randomly 10, 000 images and limited our budget to 10, 000 queries. We compared to the bandits method [Ilyas et al., b] and to the parsimonious attack [Moon et al., ] on InceptionV network. We limited our experiments to a number of tiles of . We report our results in Table B. . We remark our attacks reach state of the art for = 0.03 and = 0.05 both in terms of success rate and queries budget. For = 0.01, we reach results comparable to the state of the art. 

B. Appendix: Untargeted attacks against other architectures

We also evaluated our method on di erent neural networks architectures. For each network we randomly selected 10, 000 images that were correctly classi ed. We limit our budget to 10, 000 queries and set the number of tiles to . We achieve a success attack rate up to 100% on every classi er with a budget as low as median queries for the VGG bn for instance (see Table B. ). One should notice that the performances are lower on InceptionV as it is also reported for the bandit methods in [Ilyas et al., b]. This possibly due to the fact that the tiling trick is less relevant on the Inception network than on the other networks (see Fig. 

F Equitable and Optimal Transport with

Multiple Agents

We introduce an extension of the Optimal Transport problem when multiple costs are involved.

Considering each cost as an agent, we aim to share equally between agents the work of transporting one distribution to another. To do so, we minimize the transportation cost of the agent who works the most. Another point of view is when the goal is to partition equitably goods between agents according to their heterogeneous preferences. Here we aim to maximize the utility of the least advantaged agent. This is a fair division problem. Like Optimal Transport, the problem can be cast as a linear optimization problem. When there is only one agent, we recover the Optimal Transport problem. When two agents are considered, we are able to recover Integral Probability Metrics de ned by α-Hölder functions, which include the widely-known Dudley metric. To the best of our knowledge, this is the rst time a link is given between the Dudley metric and Optimal Transport. We provide an entropic regularization of that problem which leads to an alternative algorithm faster than the standard linear program. samples from two normal distributions and we plot the relative error from ground truth for di erent regularizations. We consider the case where two costs are involved: c 1 = 2 × 1 x =y , and c 2 = d where d is the Euclidean distance. This case corresponds exactly to the Dudley metric (see Proposition ). We remark that as ε → 0, the approximation error goes also to 0.

F. . Approximation of the Dudley Metric

G An Asymptotic Test for Conditional

Independence using Analytic Kernel Embeddings

We propose a new conditional dependence measure and a statistical test for conditional independence. The measure is based on the di erence between analytic kernel embeddings of two wellsuited distributions evaluated at a nite set of locations. We obtain its asymptotic distribution under the null hypothesis of conditional independence and design a consistent statistical test from it. We conduct a series of experiments showing that our new test outperforms state-of-the-art methods both in terms of type-I and type-II errors even in the high dimensional setting.

G. Introduction

We consider the problem of testing whether two variables X and Y are independent given a set of confounding variables Z, which can be formulated as a hypothesis testing problem of the form: et al. [ b]. Testing for conditional independence is even a more di cult as it requires both designing a test statistic which measures the conditional dependencies and controlling its quantiles. Indeed, existing tests may fail to control the type-I error, especially when the confounding set of variables is high-dimensional with a complex dependency structure Bergsma [ ]. Furthermore, even if the test is valid, the availability of limited data makes the problem of discriminating between the null and alternative hypotheses extremely dicult, resulting in a test of low power. These challenges has motivated the development of a series of practical methods attempting to reliably test for conditional independence. These include tests based on kernels [Zhang et al., , Doran et al., , Strobl et 

G. . A First Oracle Test Statistic

When the kernel k considered satis es Assumption , we can obtain a simple expression of our measure d p,J (P XZY , P Ẍ⊗Y |Z ). Indeed, the tensor formulation of the kernel k allows us to write the mean embedding of P Ẍ⊗Y |Z for any (t (1) , t (2) ) ∈ Ẍ × Y as:

Then, by de ning the witness function as

and by considering {(t

j )} J j=1 sampled independently according to Γ , we get that (see Appendix G. . for more details)

Estimation. Given n observations {(x i , z i , y i )} n i=1 that are drawn independently from P XZY , we aim at obtaining an estimator of d p p,J (P XZY , P Ẍ⊗Y |Z ). To do so, we introduce the following estimate of ∆(t (1) , t (2) ), de ned as

With this in place, a natural candidate to estimate d p p,J (P XZY , P Ẍ⊗Y |Z ) (up to the constant J) can be expressed as

G An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

We now turn to derive the asymptotic distribution of this statistic. For that purpose, de ne, for all j ∈ {1, . . . , J} and i ∈ {1, . . . , n},

. We also denote by S n := 1 n n i=1 u i . Observe that CI n,p = S n p p . In the following proposition we obtain the asymptotic distribution of our statistic CI n,p .

Proposition . Suppose that Assumption is verified. Let p ≥ 1, J ≥ 1 and ((t

Then, under H 0 , we have:

are sampled independently according to Γ , then Γ -almost surely, for any q ∈ R,

Using the Central Limit Theorem, we get:

√ nS n → N (0, Σ). Using the analyticity of the kernel k, under H 1 , Γ -almost surely, there exists a j ∈ {1, . . . , J} such that E[u 1 (j)] = 0. Therefore, we can deduce that Γ -almost surely, S := E[u 1 ] = 0. Now, for all q > 0, we get:

From the above proposition, we can de ne a consistent statistical test at level 0 < α < 1, by rejecting the null hypothesis if n p/2 CI n,p is larger than the (1α) quantile of the asymptotic null distribution, which is the law associated with X p p , where X follows the multivariate normal distribution N (0, Σ). However, in practice, CI n,p cannot be computed as it requires the access to samples from the conditional means involved in the statistic, namely

)|Z for all j ∈ {1, . . . , J}, which are unknown. Below, we show how to estimate these conditional means by using Regularized Least-Squares (RLS) estimators.

G. . Proof of Proposition

Proof. First notice that:

By the law of large numbers, we get that under H 0 : Σ n → Σ. Moreover:

l,r (z which has been proven to converge in probability to 0 in the proof of Proposition . Then

T also converge in probability to 0. Then by Slutsky Lemma, Σ n,r converges in probability to Σ. By Slutsky's lemma (again) and by Propostion , we have that: Σ -1 n,r S n,r converges to a standard gaussian distribution N (0, Id). The second part of the proposition is the same than the proof of Proposition .

G. Appendix: Additional Experiments G. . A note on the computation of Oracle statistic in Figure G.

To compute the oracle statistic we needed to compute exactly the conditional expectation implied in our statistic. In the case of gaussian kernels and gaussian distributed data for Z, the computation of this conditional expectation is reduced to the computation of moment-generating function of a non-centered χ 2 distribution.

G. . Choice of the rank regression r

In this experiment, we show the e ect of the rank regression r on the performances of our proposed method. For that purpose, in Figure G. , we consider the two problems presented in (G. ) and (G. ) with Gaussian noises and show the type-I and type-II when varying the ratio r/n for multiple sample size n. We observe that the rank r does not a ect the power of the method, however we observe that the type-I error decreases as the ratio increases. Therefore the rank r allows in practice to deal with the tradeo between the computational time and the control of the type-I error. Choosing the right selection rate is a long standing issue in evolutionary computation. In the continuous unconstrained case, we prove mathematically that a single parent µ = 1 leads to a sub-optimal simple regret in the case of the sphere function. We provide a theoretically-based selection rate µ/λ that leads to better progress rates. With our choice of selection rate, we get a provable regret of order O(λ -1 ) which has to be compared with O(λ -2/d ) in the case where µ = 1. We complete our study with experiments to con rm our theoretical claims.

I. Introduction

In evolutionary computation, the selected population size often depends linearly on the total population size, with a ratio between 1/4 and 1/2: 0.270 is proposed in ] suggests to keep increasing µ besides that limit, but slowly enough so that that rule µ = min(d, λ/4) would be still nearly optimal. There is, overall, limited theory around the optimal choice of µ for optimization in the continuous setting. In the present paper, we focus on a simple case (sphere function and single epoch), but prove exact theorems. We point out that the single epoch case is 

I. Theory

We consider the case of a single batch of evaluated points. We generate λ points according to some probability distribution. We then select the µ best and average them. The result is our approximation of the optimum. This is therefore an extreme case of evolutionary algorithm, with a single population; this is commonly used for e.g. hyperparameter search in machine learning Bergstra and Bengio [ ], Bousquet et al. [ ], though in most cases with the simplest case µ = 1.

I On averaging the best samples in evolutionary computation: the sphere function case

I. . Outline

We consider the optimization of the simple function x → x-y 2 for an unknown y ∈ B(0, r).

In Section I. . we introduce notations. In Section I. . we analyze the case of random search uniformly in a ball of radius h centered on y. We can, therefore, exploit the knowledge of the optimum's position and assume that y = 0. We then extend the results to random search in a ball of radius r centered on 0, provided that r > y and show that results are essentially the same up to an exponentially decreasing term (Section I. . ).

I. . Notations

We are interested in minimizing the function f : x ∈ R d → xy 2 for a xed unknown y in parallel one-shot black box optimization, i.e. we sample λ points X 1 , ..., X λ from some distribution D and we search for

In what follows we will study the sampling from B(0, r), the uniform distribution on the 2 -ball of radius r; w.l.o.g. B(y, r) will also denote the 2 -ball centered in y and of radius r.

We are interested in comparing the strategy "µ-best" vs "1-best". We denote X (1) , ..., X (λ) , the sorted values of X i i.e. (1),. . . ,(λ) are such that f (X (1) ) ≤ ... ≤ f (X (λ) ). The "µ-best" strategy is to return

as an estimate of the optimum and the " -best" is to return X (1) . We will hence compare : E f X(µ) and E f X (1) . We recall the de nition of the gamma function Γ : ∀z > 0, Γ (z) = ∞ 0 t z-1 e -t dt, as well as the property Γ (z +1) = zΓ (z).

I. . When the center of the distribution is also the optimum

In this section we assume that y = 0 (i.e. f (x) = x 2 ) and consider sampling in B(0, r) ⊂ R d . In this simple case, we show that keeping the best µ > 1 sampled points is asymptotically a better strategy than selecting a single best point. The choice of µ will be discussed in Section I. . .

To prove this result, we will compute the value of E f X(µ) for all λ and µ. The following lemma gives a simple way of computing the expectation of a function depending only on the norm of its argument.

Lemma . Let d ∈ N * . Let X be drawn uniformly in B(0, r) the d-dimensional ball of radius r. Then for any measurable function g : R → R, we have

In particular, we have

I. Theory

Proof. Let V (r, d) be the volume of a ball of radius r in R d and S(r, d) be the surface of a sphere of radius r in R d . Then ∀r > 0,

Let g : R → R be a continuous function. Then:

We now use the previous lemma to compute the expected regretBubeck et al. [ ] of the average of the µ best points conditionally to the value of f (X (µ+1) ). The trick of the proof is that, conditionally to f (X (µ+1) ), the order of X (1) , ..., X (µ) has no in uence over the average. Computing the expected regret conditionally to f (X (µ+1) ) thus becomes straightforward.

Lemma . For all

Note that for any function g : R d → R and distribution D, we have

J. . Validation of Theoretical Findings

In this section, we will assume that r = 1 and that the optimum x * will be sampled uniformly in the ball of radius 0.9. We compare results on the following functions:

. Sphere function:

. Rastrigin function:

. Perturbed sphere function:

x > 0 and -2x otherwise. This function has highly non symmetric sublevel sets, but still satis es Assumption .

We plotted in Figure J. the regret f ( X(µ) )f (x ) as a function of µ/λ for di erent dimensions d and number of samples λ. The experiments are averaged over 30 runs. We remark for instance on the Rastrigin function that for the µ-best averaging approach to be better than random search, we need a very large number of samples as the dimension increases. Overall, these plots validate our theoretical ndings that averaging a few best points leads to a better regret than only taking the best one.

J. . Comparison with Other Methods

In this section, we compare averaging strategies with other standard strategies, using the Nevergrad library Rapin and Teytaud [ ]. Algorithm Selection Wizards: As mentioned, ABBO combines the various base algorithms available in Nevergrad in three di erent ways (see Sec. K. ). Its high-level structure is summarized in Algorithm for selected optimization scenarios. We cannot replicate the full set of case distinctions here. All details are accessible via the implementation of ABBO in Nevergrad. Written in Python, this implementation is comparatively easy to navigate even for users with limited programming experience.

The most relevant predecessor of ABBO is the Shiwa algorithm presented in Liu et al. [

]. Shiwa was also developed within Nevergrad and was shown to outperform each of the base algorithms when averaged over diverse benchmark problems. Also our ABBO entirely relies on the base algorithms as available in that is, we did not modify the con guration of any method. We have, however, added a number of di erent algorithms for the development of ABBO, almost exclusively taken from the research literature (see below for details). We therefore acknowledge that the e ciency of ABBO heavily relies on the quality of these base components, which is based on cumulative e ort of numerous research teams.

From a high-level perspective, ABBO extends Shiwa by the following features:

( ) Better use of chaining Molina et al. [ ] and more intensive use of mathematical programming techniques for the last part of the optimization run, i.e., the local convergence, thanks to Meta-Models (simple quadratic forms trained on the best points, used in the parallel case) and more time spent in Powell's method Powell [ ] (in the sequential case). This explains the improvement visible in Sec. K. . . ( ) Better performance in discrete optimization, achieved, in particular, by adaptive mutation rates (i.e., step size distributions).

( ) Better segmentation of the di erent cases of continuous optimization.

More concretely, and for the parts of the ABBO that are detailed in Algorithm , the main di erences between ABBO and Shiwa are as follows. (A) We have added several evolutionary algorithms with variable mutation rates, for the parallel cases and one for the sequential case (using a linearly decreasing mutation rate). We also introduced active algorithm selection ("betand-run") with CMandAS , which-depending on the budget b-races three copies of CMA-ES or two copies of CMA-ES and a ( + ) ES for b/10 steps. (B) We use progressive methods (i.e., progressively adding variables in the optimization run, starting at a small set and then growing to the entire set of variables, as in Berthier [ ]) for high-dimensional cases, and we use Sequential Quadratic Programming (SQP) Artelys [ ] when the budget is su cient for training a quadratic model. (C) We make use of the space lling design MetaTuneRecentering proposed in Meunier et al. [ c]: we use it in the highly parallel case, but also in the sequential setting if the budget is smaller than the dimension. (D) We also use meta-models for some small dimensional cases. Overall, meta-models are helping our algorithms in the continuous setting except for sequential or high-dimensional cases. 

K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking

K. Experimental Results

When presenting results on a single benchmark function, we present the average objective function value for di erent budget values. When a collection comprises multiple benchmark problems, we present the aggregated experimental results with two distinct types of plots: ( ) Loss: normalized average (over all runs) objective value for each budget, averaged over all problems. The normalized objective value is the average objective value linearly rescaled to [0, 1]: then we normalize over di erent problems.

( ) Heatmaps, showing for each pair (x, y) of optimization algorithms the frequency at which Algorithm x outperforms Algorithm y. Algorithms are ranked by average winning frequency. For instance, in Figure K. , ABBO wins in . % of the cases against other algorithms, whereas CMA wins 50.4%.

High-Level Overview: Tab. K. summarizes the rank of ABBO on some of the benchmark suites. The rank is based on the winning rate in Nevergrad's dashboard Rapin and Teytaud [ ]. Each of the suites listed in Tab. K. comprises several problems and di erent settings with respect to budget, objective function, possibly dimension, and noise level. We separate benchmarks that were used for designing ABBO from those used for its validation, and those only used for testing.

The "*" symbol marks suites that were used for designing ABBO's predecessor Shiwa. Some of our modi cations also improve the performance of Shiwa compared to the version published 

ABSTRACT

This thesis investigates the problem of classification in presence of adversarial attacks. An adversarial attack is a small and humanly imperceptible perturbation of input designed to fool start-of-the-art machine learning classifiers. In particular, deep learning systems, used in safety critical AI systems as self-driving cars are at stake with the eventuality of such attacks. What is even more striking is the ease to create such adversarial examples and the difficulty to defend against them while keeping a high level of accuracy. Robustness to adversarial perturbations is a still misunderstood field in academics. In this thesis, we aim at understanding better the nature of the adversarial attacks problem from a theoretical perspective.
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