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Abstract

This thesis investigates the problem of classi�cation in presence of adversarial attacks. An adver-
sarial attack is a small and humanly imperceptible perturbation of input designed to fool start-of-
the-art machine learning classi�ers. In particular, deep learning systems, used in safety critical AI
systems as self-driving cars are at stake with the eventuality of such attacks. What is even more
striking is the ease to create such adversarial examples and the di�culty to defend against them
while keeping a high level of accuracy. Robustness to adversarial perturbations is a still misunder-
stood �eld in academics. In this thesis, we aim at understanding better the nature of the adversarial
attacks problem from a theoretical perspective.

Can we �nd a principled way to defend against adversarial examples?

In a �rst part, we tackle the problem of adversarial examples from a game theoretic point of
view. We study the open question of the existence of mixed Nash equilibria in the zero-sum game
formed by the attacker and the classi�er. To that extent, we consider a randomized classi�er and
we introduce a more general attacker that can move each point randomly in the proximity of
original points. While previous game theoretic approaches usually allow only one player to use
randomized strategies, we show the necessity of considering randomization for both the classi�er
and the attacker. We demonstrate that this game has no duality gap, meaning that it always admits
approximate Nash equilibria. We also provide the �rst optimization algorithms to learn a mixture
of a �nite number of classi�ers that approximately realizes the value of this game, i.e. procedures
to build an optimally robust randomized classi�er.

In a second part, we study the problem of surrogate losses in the adversarial examples case. In
classi�cation, the goal is to maximize the accuracy, but in practice, the accuracy is not e�ciently
optimizable. Instead, it is usual to minimize a convex and continuous loss that satisfy what is
called the consistency property. In the adversarial case, we tackle this problem and show that a wide
range of usually consistent losses cannot be consistent. In particular, convex losses are not good
surrogate losses for the adversarial attack problem. Finally, we pave a way towards designing a class
of consistent losses, but this question is partially treated and left as further work.

In a �nal section, we study the robustness of neural networks from a dynamical system perspec-
tive. Residual Networks can indeed be interpreted as a discretization of a �rst order parametric
di�erential equation. By studying this system, we provide a generic method to build 1-Lipschitz
Neural Networks and show that some previous approaches are special cases of this framework.
We extend this reasoning and show that ResNet �ows derived from convex potentials de�ne 1-
Lipschitz transformations, that lead us to de�ne the Convex Potential Layer (CPL).
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Résumé

Cette thèse étudie le problème de classi�cation en présence d’attaques adverses. Une attaque ad-
verse est une petite perturbation humainement imperceptible de l’entrée d’un algorithme, con-
struite pour tromper les meilleurs classi�eurs d’apprentissage automatique. En particulier, les
réseaux de neurones profonds (« deep learning »), utilisés dans des systèmes critiques d’intelligence
arti�cielle comme les voitures autonomes, présentent des risques considérables avec l’éventualité
de telles attaques. Il est d’autant plus surprenant qu’il est très facile de créer des attaques adverses
et qu’il est di�cile de se défendre contre celles-ci en gardant un haut niveau de précision. La
robustesse aux perturbations adverses est encore mal comprise par la communauté scienti�que.
Dans cette thèse, notre but est des comprendre mieux la nature de ce problème en adoptant un
point de vue théorique.

Pouvons-nous trouver une façon générale pour nous défendre contre les exemples
adverses ?

Dans une première partie, nous abordons le problème des exemples adverses du point de vue de
la théorie des jeux. Nous étudions la question ouverte de l’existence d’équilibres de Nash mixtes
dans le jeu à somme nulle formé par l’attaquant et le classi�cateur. Pour cela, nous considérons un
classi�eur aléatoire et nous introduisons un attaquant plus général qui peut déplacer chaque point
de façon aléatoire à proximité des points originaux. Alors que les approches précédentes reposant
sur la théorie des jeux permettent généralement à un seul joueur d’utiliser des stratégies aléatoires,
nous montrons la nécessité de considérer l’aléatoire à la fois pour le classi�eur et l’attaquant. Nous
démontrons que ce jeu n’a pas de saut de dualité, ce qui signi�e qu’il admet toujours des équili-
bres de Nash approximatifs. Nous fournissons également les premiers algorithmes d’optimisation
pour apprendre un mélange d’un nombre �ni de classi�cateurs qui réalise approximativement la
valeur de ce jeu, c’est-à-dire des procédures pour construire un classi�cateur aléatoire optimale-
ment robuste.

Dans une deuxième partie, nous étudions le problème du choix des fonctions objectives dans
le cas de la classi�cation en présence d’exemples adverses. En classi�cation, le but est de maximiser
la précision, mais en pratique, la précision n’est pas optimisable e�cacement. Au lieu de cela, il
est habituel de minimiser une fonction objective convexe et continue qui satisfait une propriété
appelée « consistance ». Dans le cas de la classi�cation en présence d’exemples adverses, nous
abordons ce problème et montrons qu’un large éventail de pertes habituellement cohérentes ne le
sont pas. En particulier, les fonctions objectives convexes ne sont des bonnes fonctions objectives
pour le problème des attaques adverses. En�n, nous traçons un chemin vers la construction de
fonctions objectives consistantes, mais cette question est traitée partiellement et laissée en suspens.

Dans la dernière section, nous étudions la robustesse des réseaux neuronaux du point de vue
des systèmes dynamiques. Les réseaux de neurones résiduels (ResNets) peuvent en e�et être in-
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terprétés comme une discrétisation d’une équation di�érentielle paramétrique du premier ordre.
En étudiant ce système, nous fournissons une méthode générique pour construire des réseaux
neuronaux 1-Lipschitz et montrons que certaines approches précédentes sont des cas particuliers
de ce cadre. Nous étendons ce raisonnement et montrons que les �ux ResNet dérivés de poten-
tiels convexes dé�nissent des transformations 1-Lipschitz, ce qui nous conduit à dé�nir le Convex
Potential Layer (CPL, couche à potentiel convexe).
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1.1 Arti�cial Intelligence foundations

Machine Learning, the computer science subdomain dedicated to building and studying com-
puter systems that automatically improve with experience, is at the very core of the recent ad-
vances in Arti�cial Intelligence. Finding its roots in statistical analysis, it has been widely studied
over the past thirty years from algorithmic and mathematical perspectives, giving rise to a new
discipline, computational learning theory. With the availability of massive amounts of data and
computing power at low price, the last two decades have witnessed a growing interest in real-world
applications of the domain. This interest is even stronger since 2012, with the remarkable success
of AlexNet [Krizhevsky et al., 2012] on the ImageNet challenge [Deng et al., 2009], using neural
networks with several layers. The era of Deep Learning started then, with unexpected achieve-
ments in several domains: generative modeling [Goodfellow et al., 2014], natural language pro-
cessing [Vaswani et al., 2017], etc. The success of Deep Learning (arti�cial neural networks with
a lot of layers) can be explained by the conjunction of the following factors:

• Availability of data: the amount and the cost of data have largely decreased since the
emergence of web platforms, and tools for large-scale data management.

• Computational power: new specialized hardware architectures such as GPUs and TPUs
allow faster and larger training algorithms.
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• Algorithmic scalability: algorithms are scalable to large models (Distributed Comput-
ing, etc.) and large number of data (Stochastic Gradient Descent [Bottou, 2010], etc.)

• Open Source projects: Large projects in Machine Learning are nowadays open-sourced
(TensorFlow [Abadi et al., 2016], PyTorch [Paszke et al., 2017], Scikit Learn [Pedregosa
et al., 2011], etc.) stimulating the emergence of large communities.

It is worth noting here that Arti�cial Intelligence, as a scienti�c domain, exists since early 20th
century. Protean in nature, it encompasses several notions and �elds, beyond Machine Learning,
and Deep Learning. Its birth is inseparable from the development of computer science. The �rst
e�cient computer was built by Charles Babbage and ran Ada Lovelace’s algorithm. Computer
Science was formalized and theorized in the Church-Turing thesis [Turing, 1950], which de�nes
the notion of computability, i.e. functions are computable if they can be out as a list of prede�ned
instructions to be followed. Such instructions are called algorithms. Arti�cial Intelligence, or at
the least the term, was “o�cially founded” as a research �eld in 1956 at the Dartmouth Work-
shop [McCarthy et al., 1955], organized by Marvin Minsky, John McCarthy, Claude Shannon
and Nathan Rochester. During this conference, the term “Arti�cial intelligence” was proposed
and adopted by the community of researchers. Since then, the �eld has oscillated between hype
and disappointment, with no less than two major period of disinterest as the AI winters. This the-
sis is clearly developed during the third hype’s period, but we keep in mind the very enlightening
history of the discipline.

1.2 Risks with Learning Systems

1.2.1 Common Threats

Cybersecurity is at the core of computer science. Cryptography has been one of the hottest topics
during the last thirty years. Despite their performances, learning systems are subject to many types
of vulnerabilities and, by their popularity, are then prone to malicious attacks. Probably, the most
known vulnerability that got public attention is privacy. While the amount of available data is
exponentially growing, recovering identities by crossing datasets is easier when data are not pro-
tected. As it was exhibited in the de-anonymization of the Net�ix 1M$ prize dataset [Narayanan
and Shmatikov, 2008], hiding identities in datasets is not su�cient to protect the privacy data.
Computer scientists have then intensi�ed their e�ort to propose ways to protect data, leading
to the emergence to what is considered as a gold standard for data protection: Di�erential Pri-
vacy [Dwork, 2008]. It barely consists in adding noise to data to make them unrecoverable with-
out too much deteriorating their utility. It is appealing because it comes with strong theoretical
guarantees, while being simple to manipulate, allowing to tradeo� between the degree of privacy
through noise injection and the quality of the information one can infer from the data. Common
privacy attacks are:

• Model stealing [Tramèr et al., 2016]: An attacker aims at stealing the parameters of a
given model.

• Membership inference [Shokri et al., 2017]: Inferring whether a data sample was present
or not in a training set.
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1.2 Risks with Learning Systems

In response to privacy threats, European authorities conceived the GDPR (General Data Pro-
tection Regulation)1, adopted in 2016, which de�nes new rules on the use of data and on privacy.
Today, GDPR is part of any data management plan of private companies. As an update of the
GDPR, a second law proposition regarding data sharing from public and private companies has
been introduced by the European Commission on The Governance of Data2 in 2020.

Another type of vulnerability in Machine Learning is model failure. A malicious user, by mod-
ifying either the model or the data, can make it performs very poorly. The most known attacks
aiming at model failures are:

• Data poisoning attacks [Kearns and Li, 1993]: changing some data in the training set
so that the model performs very poorly on the hold-out set.

• Evasion attacks [Biggio et al., 2013, Szegedy et al., 2014]: small imperceptible pertur-
bations at inference time. We will refer them to “adversarial attacks”.

Known and gaining interest in academia, these threats are not well-known by most of the com-
panies [Kumar et al., 2020b]. More importantly, such vulnerabilities hinder the use of state-of-
the-art models in critical systems (autonomous vehicles, healthcare, etc.). In the manuscript we
will focus on adversarial attacks. We introduce this threat more in details in the next paragraph.

References to adversarial examples in European Commission law proposal on Arti�cial
Intelligence systems

As part of the introduction: “Cybersecurity plays a crucial role in ensuring that AI systems
are resilient against attempts to alter their use, behavior, performance or compromise their
security properties by malicious third parties exploiting the system’s vulnerabilities. Cyberat-
tacks against AI systems can leverage AI specific assets, such as training data sets (e.g. data
poisoning) or trained models (e.g. adversarial attacks), or exploit vulnerabilities in the AI
system’s digital assets or the underlying ICT infrastructure. To ensure a level of cybersecurity
appropriate to the risks, suitable measures should therefore be taken by the providers of high-
risk AI systems, also taking into account as appropriate the underlying ICT infrastructure.”

Title III (High risk AI systems), Chapter II (Requirements for high risk AI system), Arti-
cle 14.52 (Human oversight): “High-risk AI systems shall be resilient as regards attempts by
unauthorized third parties to alter their use or performance by exploiting the system vulner-
abilities. The technical solutions aimed at ensuring the cybersecurity of high-risk AI systems
shall be appropriate to the relevant circumstances and the risks. The technical solutions to
address AI specific vulnerabilities shall include, where appropriate, measures to prevent and
control for attacks trying to manipulate the training dataset (‘data poisoning’), inputs de-
signed to cause the model to make a mistake (‘adversarial examples’), or model flaws.”

A �rst regulation text on Arti�cial Intelligence3 systems was proposed by the European com-
mission in April 2021. This text includes a large section dedicated to “High Risk AI”. High risk

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767
3https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
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AI is referred to any autonomous system than can endanger human lives. This text aims at deal-
ing with many threats in Learning Systems. Two direct references are made to adversarial attacks,
underlying the need for companies to deal with them. The di�culty is to unify and create precise
rules in a domain where results and certi�cates are mostly empirical. As mentioned earlier, it is
known that robust models are often less performing and can make autonomous systems unusable
in real world scenarii. Thus, this text is a �rst step towards a uni�ed regulation on autonomous
systems but might miss precise requirements for models to be used in production.

1.2.2 Adversarial attacks against Machine Learning Systems

Despite the recent gain of interest in studying adversarial attacks in Machine Learning, the prob-
lematic exists however for a while and takes its source in SPAM classi�cation where adversaries
were spammers whose goal was to evade from the taken decision4.

With the recent success of Deep Learning algorithms, in particular in computer vision, several
authors [Biggio et al., 2013, Szegedy et al., 2014] have highlighted their vulnerability to adversarial
attacks. Adversarial attacks in this case are widely understood as “imperceptible” perturbations
of an image, i.e. slight changes in the pixels, so that this image remains unchanged from human
sights. This characteristic might be surprising but is actually a severe curb in applying state-of-
the-art deep learning methods in critical systems. There are plenty of issues that makes di�cult
building and evaluating robust models for real life applications:

1. The notion of imperceptibility is not well understood: numerically measuring human per-
ception is still an open problem. Hence, detecting the change of perception due to adversar-
ial attacks is an ill-posed problem. Most of the research in the domain focused on pixel-wise
perturbations (e.g. `p norms), while real world threats would be crafted by inserting some
misleading objects in the environment (e.g. patches [Brown et al., 2017], T-shirts [Xu et al.,
2020], textures [Wiyatno and Xu, 2019],etc.).

2. Robustness is often empirically measured: there exist only a few methods with formal guar-
antees on the robustness and these guarantees are often loose. Robustness is usually mea-
sured on a set of possible attacks and not all possible perturbations are spanned by these
attacks, leaving rooms for potential blind spots.

3. There exists a trade-o� between robustness and accuracy. Most models that are robust suf-
fer from a performance drop on natural data. For instance, a robustly trained robot will
perform much lower on natural tasks than an accurate non-robust robot. That makes ro-
bust models unusable in real world applications [Lechner et al., 2021].

1.3 Adversarial Classi�cation in Machine Learning

In this manuscript, we will focus on the task of classi�cation in Machine Learning. The purpose
of this task is to “learn” how to classify some input x into some label(s). The input can be an
image, a text, an audio, etc. For instance, in computer vision, a known dataset is ImageNet where

4Dalvi et al. [2004] showed that linear classi�ers used in spam classi�cation could be fooled by simple “evasion attacks”
as spammers inserted “good words” into their spam emails.
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1.3 Adversarial Classification in Machine Learning

Figure 1.1: Bias-Variance tradeo�. A model with low complexity will have a low variance but a high bias. A
model with high complexity will have a low bias but a high variance.

the goal is to learn how to classify high quality images into 1000 labels [Deng et al., 2009]. In
natural language processing, the IMDB Movie Review Sentiment Classi�cation dataset [Maas
et al., 2011] aims at classifying positive or negative sentiments from movie reviews. To learn a
classi�er, the task is often supervised, i.e, we have access to labeled inputs, which constitutes the
so-called training set. To assess the quality of the learned model, we evaluate it on other images
that constitute the test set.

1.3.1 A Learning Approach for Classi�cation

From now, we will assume that the inputs are in some space X and the labels form a set Y :=
{1, . . . ,K}. To learn an adequate classi�cation model, we denote {(x1, y1), . . . , (xN , yN )}
theN elements ofX ×Y forming the training set. We furthermore assume that these inputs are
independent and identically distributed (i.i.d.) from some distribution P onX × Y . The aim is
now to learn a function/hypothesis from these samples h : X → Y to classify an input xwith a
label y. To assess the quality of a classi�er, the metric of interest is often the misclassi�cation rate
of the model, or the 0/1 loss risk, and it is de�ned as:

R0/1(h) := P(h(x) 6= y) = E(x,y)∼P
[
1h(x) 6=y

]
The optimal classi�er, minimizing the standard risk is called the Bayes optimal classi�er and is
de�ned as h(x) = argmaxk P(y = k | x). As the sampling distribution P is usually unknown,
the optimal Bayes classi�er is also unknown. The accuracy is often empirically evaluated on a test
set {(x′1, y′1), . . . , (x′M , y

′
M )} independent of the training set and i.i.d. sampled from P. To �nd

this classi�erh, we learn a function f : X → RK returning scores, or logits, (f1(x), . . . , fK(x))
corresponding to each label. Then h is set to h(x) = argmaxk fk(x). The function f is usually
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1 Introduction

learned by minimizing the empirical risk for a certain convenient loss function L over some class
of functionsH.

inf
f∈H
R̂N (f) :=

1

N

N∑
i=1

L(f(xi), yi).

This problem is called Empirical Risk Minimization (ERM). The theory of this problem has
been widely studied and is well understood. It is often argued that there is a tradeo� on the “size”
ofH: having a too smallH may lead to under�tting, i.e. not enough parameters to describe the
optimal possible function while a too largeHmay lead to over�tting, i.e. �tting too much training
data. We often talk about bias-complexity tradeo� (see Figure 1.1). A penalty termΩH(f) can also
be added to the ERM objective to prevent from over�tting. This tradeo� was recently questioned
by the double descent [Belkin et al., 2019] phenomenon where overparametrized (i.e. number of
parameters largely over the number of training samples) regimes lower the risk.

The presence of adversaries in classi�cation questions the knowledge we have in standard statis-
tical learning. Indeed, most standard results do not hold in presence of adversaries, hence, opening
a new research area dedicated to studying and understanding the classi�cation problem in pres-
ence of adversarial attacks, and more importantly, deepens our understanding of machine learn-
ing/deep learning in high dimensional regimes.

1.3.2 Classi�cation in Presence of Adversarial Attacks

Though a model can be very well performing on natural samples, small perturbations of these
natural samples can lead to unexpected and critical behaviors of classi�cation models [Biggio
et al., 2013, Szegedy et al., 2014]. To formalize that, we will assume the existence of a “percep-
tion” distance d : X 2 → R such that a perturbation x′ of an input x remains imperceptible if
d(x, x′) ≤ ε for some constant ε ≥ 0. This “perception” distance is di�cult to de�ne in practice.
For images, the ‖·‖∞ distance over pixels is often used, but is not able to capture all imperceptible
perturbations. This choice is purely arbitrary: for instance, we will highlight in the manuscript
that ‖·‖2 perturbations can also be imperceptible while having a large ‖·‖∞. Image classi�cation
algorithms are also vulnerable to geometric perturbations, i.e. rotations and translations [Kan-
bak et al., 2018, Engstrom et al., 2019]. A typical example of an adversarial attack is shown in
Figure 1.2.

Therefore, the goal of an attacker is to craft an adversarial input x′ from an input x that is
imperceptible , i.e. d(x, x′) ≤ ε and misclassi�es the input, i.e. h(x′) 6= y. Such a sample x′
is called an adversarial attack. The used criterion cannot be the misclassi�cation rate anymore,
we need to take into account the possible presence of an adversary that maliciously perturbs the
input. We then de�ne the robust/adversarial misclassi�cation rate or robust/adversarial 0/1 loss
risk:

R0/1,ε(h) := P(x,y)(∃x′ ∈ X s.t. d(x, x′) ≤ ε and h(x′) 6= y)

= E(x,y)∼P

[
sup

x′∈X s.t. d(x,x′)≤ε
1h(x′)6=y

]
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1.3 Adversarial Classification in Machine Learning

Figure 1.2: Example of a pixel-level adversarial attack on a Stop Sign. It underlines the safety issues triggered
by the possibility of such attacks.

Akin standard risk minimization, we aim to learn a function f : X → RK such that h(x) =
argmaxk fk(x). Usually in adversarial classi�cation we aim at solving the following optimization
problem, that we will call adversarial empirical risk minimization:

inf
f∈H
R̂Nε (f) :=

1

N

N∑
i=1

sup
x′∈X s.t. d(x,x′)≤ε

L(f(xi), yi).

This problem is more challenging to tackle than the standard risk minimization since it involves
a hard inner supremum problem [Madry et al., 2018b]. Guarantees in the adversarial setting are
therefore di�cult to obtain both in terms of convergence and statistical guarantees. The usual
technique to solve this problem is called Adversarial Training [Goodfellow et al., 2015b, Madry
et al., 2018b]. It consists in alternating inner and outer optimization problems. Such a technique
improves in practice adversarial robustness but lacks theoretical guarantees. So far, most results
and advances in understanding and harnessing adversarial attacks are empirical [Ilyas et al., 2019,
Rice et al., 2020], leaving many theoretical and practical questions open. Moreover, robust mod-
els su�er from a performance drop and vulnerability of models is currently still very high (see
Table 1.3), which leaves room for substantial improvements.

Attacker Paper reference Standard Acc. Robust Acc.

None [Zagoruyko and Komodakis, 2016] 94.78% 0%
`∞(ε = 8/255) [Rebu� et al., 2021] 89.48% 62.76%
`2(ε = 0.5) [Rebu� et al., 2021] 91.79% 78.80%

Table 1.3: State-of-the-art accuracies on adversarial tasks on a WideResNet 28x10 [Zagoruyko and Ko-
modakis, 2016]. Results are reported from [Croce et al., 2020a]
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1.4 Outline and Contributions

We will �rst introduce in Chapter 2 the necessary background regarding Machine Learning and
Adversarial Examples. We will then analyze adversarial attacks from three complementary points
of view outlined as follows.

1.4.1 A Game Theoretic Approach to Adversarial Attacks

A line of research, following Pinot et al. [2020], to understand adversarial classi�cation is to rely
on game theory. In Chapter 4, we will build on this approach and de�ne precisely the motivations
for both the attacker and the classi�er. We will cast it naturally as a zero-sum game. We will in
particular, study the problem of the existence of equilibria. More precisely, we will answer the
following open question.

Question 1

What is the nature of equilibria in the adversarial examples game?

In game theory, there are many types of equilibria. In this manuscript, we will focus on Stack-
elberg and Nash equilibria. We will show the existence of both when both the classi�er and the
attacker play randomized strategies. To reach such equilibria, the classi�er will be random, and
the attacker will move randomly the samples at a maximum distance of ε. Then, we will propose
two di�erent algorithms to compute the optimal randomized classi�er in the case of a �nite num-
ber of possible classi�ers. We will �nally propose a heuristic algorithm to train a mixture of neural
networks and show experimentally the improvements we achieve over standard methods. This
work was published at ICML2021 [Meunier et al., 2021d].

1.4.2 Loss Consistency in Classi�cation in Presence of an Adversary

In standard classi�cation, consistency with regard to 0/1 loss is a desired property for the surrogate
loss L used to train the model. In short, a loss L is said to be consistent if for every probability
distribution, a sequence of classi�ers (fn)n∈N that minimizes the risk associated with the loss L,
it also minimizes the 0/1 loss risk. Usually, in standard classi�cation, the problem is simpli�ed
thanks to the notion of calibration. We will see that the question of consistency in the adversarial
case is much harder.

Question 2

Which losses are consistent with regard to the 0/1 loss in the adversarial classi�-

cation setting?

We tackle this question by showing that usual convex losses are not calibrated for the adver-
sarial classi�cation loss. Hence this negative result emphasizes the di�culty of understanding the
adversarial attack problem, and building provable defense mechanisms. We pave a way towards
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solving this question by proposing candidate losses and giving arguments for their consistency.
This work was published NeurIPS2022 [Meunier et al., 2022b].

1.4.3 Building Certi�able Models

The last problem we deal with in this manuscript is the implementation of robust certi�able mod-
els. In short, a classi�er is said to be certi�able at an input x at level ε if one can ensure there exist
no adversarial examples in the ball of radius ε. This problem is challenging since it is far from
trivial to come up with non-vacuous bounds that are exploitable in practice.

Question 3

How to e�ciently implement certi�able models with non-vacuous guarantees?

To this end, we propose a general method that enforces Lipschitzness on the predictions of
neural networks. This method draws its inspiration from the continuous �ow interpretation
of residual networks. We provide discretization strategies and recover many existing methods to
build 1-Lipschitz layers in neural networks. In particular, we show that using a gradient �ow of
a convex function, our network is 1-Lipschitz. Based on this insight, we design a Lipschitz layer,
that we call Convex Potential Layer (CPL). We show empirically and theoretically the robustness
bene�ts of this approach. This work was published at ICML2022 [Meunier et al., 2022a].

1.4.4 Additional Works

In addition to the works we present in the main document, we also present some other contribu-
tions we made during the thesis. These are deferred to the appendices.

Regarding adversarial examples, we will present additional works complete the study we lead
in the main document:

• On the robustness of randomized classi�ers to adversarial examples (see Appendix A):

we show that by adding a noise on an input of a classi�er, we are able to get guarantees on
the decision up to some level ε. This work was published at NeurIPS2019 [Pinot et al.,
2019] and under review in an extended journal version [Pinot et al., 2021].

• Yet another but more e�cient black-box adversarial attack: tiling and evolution

strategies (see Appendix B): we provide a method based on evolutionary strategies to
craft black-box adversarial attacks. This work is a preprint and has not been published [Me-
unier et al., 2019].

• Advocating for Multiple Defense Strategies against Adversarial Examples (see Ap-

pendix C): We show that, in high-dimensional settings, the balls overlaps for two di�erent
`p norms are fundamentally di�erent. This induces to rethink robustness against attacks
using di�erent norms. This work was published at a workshop at ECML2020 [Araujo
et al., 2020].
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• Adversarial Attacks on Linear Contextual Bandits (see Appendix D): we build prov-
able attacks against online recommendation systems, namely Linear Contextual Bandits.
This work was published at NeurIPS2020 [Garcelon et al., 2020].

• ROPUST: Improving Robustness through Fine-tuning with Photonic Processors

and Synthetic Gradients (see Appendix E): we use an Optical Processor Unit (OPU)
over existing state-of-the-art defenses to improve adversarial robustness. This work was
published at ICASSP2022 [Cappelli et al., 2021b].

We published a paper in optimal transport on Equitable and Optimal Transport with Mul-

tiple Agents (see Appendix F) at AISTATS2021 [Scetbon et al., 2021a] where we introduce a
way to deal with multiple costs in optimal transport by equitably partitioning transport among
costs. We also submitted recenty a paper on Conditional Independence Testing [Scetbon et al.,
2021b] on an `p-based Kernel Conditional Independence Test (see Appendix G). In this
paper we present a new kernel-based Conditional Independence Test. Its advantages are its com-
putational simplicity and a very simple asymptotic distribution under null hypothesis. Moreover,
it performs competitively with other test for Conditional Independence.

With Olivier Teytaud, research scientist at Meta AI and co-supervisor of this thesis, we also
published some works in the �eld of evolutionary algorithms:

• Variance Reduction for Better Sampling in Continuous Domains (see Appendix H):
we show that, in one shot optimization, the optimal search distribution, used for the sam-
pling, might be more peaked around the center of the distribution than the prior distribu-
tion modelling our uncertainty about the location of the optimum. This work was pub-
lished at PPSN2020 [Meunier et al., 2020c].

• On averaging the best samples in evolutionary computation (see Appendix I): we
prove mathematically that a single parent leads to a suboptimal simple regret in the case
of the sphere function. We provide a theoretically-based selection rate that leads to bet-
ter progress rates. This work was published at PPSN2020 [Meunier, Chevaleyre, Rapin,
Royer, and Teytaud, 2020a].

• Asymptotic convergence rates for averaging strategies (see Appendix J): we extend
the results from the previous paper to a wide class of functions including C3 functions
with unique optima. This work was published at FOGA2021 [Meunier et al., 2021a].

• Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through

Massive Benchmarking (see Appendix K): We propose a wide range of benchmarks in-
tegrated in Nevergrad [Rapin and Teytaud, 2018] platform. This work was published in
the journal TEVC [Meunier et al., 2021b].
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2 Background

This chapter introduces the required background on classi�cation on adversarial examples.

Contents

2.1 Supervised Classi�cation . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Classi�cation Task in Supervised Learning . . . . . . . . . . . . 12
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2.2.3 Defending against adversarial examples . . . . . . . . . . . . . 19
2.2.4 Theoretical knowledge in Adversarial classi�cation . . . . . . . . 22

2.3 Game Theory in a Nutshell . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Two-player zero-sum games . . . . . . . . . . . . . . . . . . . 23
2.3.2 Equilibria in two-player zero-sum games . . . . . . . . . . . . . 24
2.3.3 Strong Duality Theorems . . . . . . . . . . . . . . . . . . . . 24

2.4 Optimal Transport concepts . . . . . . . . . . . . . . . . . . . . . 25

2.1 Supervised Classi�cation

A classi�cation task aims at learning a function that assigns a label to a given input. Along with
regression, classi�cation is one of the supervised learning tasks. One can �nd classi�cation tasks
in Computer Vision [LeCun and Cortes, 2010, Krizhevsky et al., Deng et al., 2009], Natural
Language Processing [Vaswani et al., 2017], Speech Recognition [Dong et al., 2018], etc. In this
thesis, most examples will be from Computer Vision and Image Recognition.

2.1.1 Notations

In this section, we formalize the task of classi�cation. First, we de�ne the notions of inputs and
labels:
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• Consider an input space X , typically images. We assume this space is endowed with an
arbitrary metric d, possibly a perception distance or any `p norm. In the following of the
manuscript, unless it is speci�ed, (X , d) will be a proper (i.e. closed balls are compact) Polish
(i.e. completely separable) metric space. Note that for any norm ‖·‖, (Rd, ‖·‖) is a proper
Polish metric space.

• Each input x ∈ X has to be associated with a label y. A label is a descriptor of the input.
The set of labels is discrete, and we designate it by Y := {1, . . . ,K}. Y is endowed with
the trivial metric d′(y, y′) = 1y 6=y′ . Note that (X × Y, d ⊕ d′) is also a proper Polish
space.

The purpose of classi�cation is to learn a classi�er h : X → Y . It is usual to learn a function
f : X → RK such that: h(x) = argmaxk∈Y fk(x). In a classi�cation problem in machine
learning, the data is assumed to be sampled from an unknown probability distribution P over
X × Y . We will assume from now that all the probability distributions we consider are Borel
distributions. For any Polish Space Z , we will denote B(Z) the Borel σ-algebra and the set of
Borel distributions over Z will be denotedM+

1 (Z). We recall that on Polish space, all Borel
probability distributions are Radon measures. We also recall the notion of universal measurabil-
ity: a set A ⊂ Z is said to be universally measurable if it is measurable for every complete Borel
probability measure. We also recall the notion of weak topology on the space of probability distri-
bution: we say that Pn converges weakly towards P if for every bounded continuous function f ,∫
fdPn →

∫
fdP. Note that calling this property weak topology is an abuse of language, it is

closer to a notion of weak-? topology.
When Z and Z ′ are two measurable spaces endowed with their Borel σ-algebra (unless speci-

�ed), we will denoteF(Z,Z ′) the space of measurable functions fromZ toZ ′. Without loss of
generality, whenZ ′ = R, we will simply denote: F(Z) := F(Z,Z ′).

2.1.2 Classi�cation Task in Supervised Learning

In standard classi�cation, we usually aim at maximizing the accuracy of the classi�er, or equiva-
lently, at minimizing the risk associated with the 0/1 loss de�ned as follows.

De�nition 1. Let P be a Borel probability distribution over X × Y . Let h : X → Y be a Borel
measurable classifier. Then, the risk of h associated with 0/1 loss (or error of h) is defined as:

RP(h) := P(h(x) 6= y) = E(x,y)∼P
[
1h(x)6=y

]
(2.1)

The Optimal Bayes risk is defined as the optimal risk over measurable classifiersF(X ,Y):

R?P := inf
h∈F(X ,Y)

RP(h) (2.2)

If f : X → RK , then the risk of f is defined asRP(f) := P(argmaxk∈Y fk(x) 6= y)

Note that this quantity is well-de�ned when h or f is Borel or universally measurable. The
optimal classi�er is called the Optimal Bayes classifier and is de�ned ash?(x) = argmaxk P(y =
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2.1 Supervised Classification

Figure 2.1: Illustration of a convolutional neural network: stacking convolutional operators and non-linear
activation functions.

k | x). We remark that the disintegration theorem ensures that x 7→ P(y = k | x) is indeed
Borel measurable.

In practice, the access to the Optimal Bayes classi�er is not possible because it requires full
knowledge of the probability distribution P which is not the case in general. Instead, in the su-
pervised learning setting, the learner has access to data points {(x1, y1), . . . , (xN , yN )}, that
constitutes the training set. Knowing the Optimal Bayes classi�er on training points is not su�-
cient to generalize on points out of the training set. Hence, one needs to reduce the search space
of measurable functions to a much smaller one, denotedH in the sequel. The 0/1 loss is not con-
vex neither continuous, and minimizing directly the 0/1 loss risk onH might be NP-hard even
for simple set of hypotheses as linear classi�ers. We usually minimize a well-chosen surrogate loss
function L. A loss function L : RK × Y → R is a non-negative Borel measurable function. An
example of such a loss is the cross entropy loss de�ned as L(f(x), y) = −∑K

i=1 1y=i log fi(x)
where fi(x) is the probability learned by the model with input x belonging to the class i. Hence,
the objective is to minimize the empirical risk associated withH using the lossL de�ned as:

R̂L(f) :=
1

N

N∑
i=1

L(f(xi), yi).

Neural Networks A popular set of classi�ers are Neural Networks. They gained in popularity
due to their exceptional performances in Image Recognition [Krizhevsky et al., 2012, He et al.,
2016b] or Natural Language Processing for instance [Vaswani et al., 2017]. In its simpler form, a
neural network is a concatenation of linear operators and non-linear functions (called activations).
This concatenation are called layers. Formally a neural network withL layers writes:

f(x) = (WLσ(WL−1 . . . σ(A1x+ b1) . . .) + bL)

where Wi are called the weight matrices and bi the biases. In the case of image recognition, the
weights may have a special structure of convolution: such networks are called Convolutional Net-
works. We illustrate a convolutional layer in Figure 2.1.

To train neural networks, the backpropagation is a standard algorithm based on the chain rule.
This algorithm is subject to gradient vanishing, or gradient explosion issues. To circumvent these
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problems, many tricks were proposed as using ReLU-like activation functions [Xu et al., 2015,
Ramachandran et al., 2017], Dropout [Srivastava et al., 2014], Batch Normalization [Io�e and
Szegedy, 2015] or the use of Residual Layers [He et al., 2016b]. More, despite their popularity, it
is di�cult to understand the outstanding performances of neural networks.

2.1.3 Surrogate losses, consistency and calibration

Binary Classi�cation. In this section, we recall the main results about surrogate losses in bi-
nary classi�cation. We assume that Y = {−1,+1}. In this case, a classi�er is a measurable func-
tion f : X → R such that an input x is classi�ed as 1 if f(x) > 0 and as−1 if f(x) ≤ 0. Then
the 0/1 loss is de�ned as 1y×sign(f(x))≤0. As mentioned earlier, optimizing the risk associated
with the 0/1 loss is a di�cult task. We need to properly introduce notions of surrogate losses.

A margin loss is a loss L such that there exist a measurable function φ : R → R+, satis-
fying, L(x, y, f) = φ(yf(x)). The risk associated with a margin loss φ is then Rφ,P(f) :=
EP[φ(yf(x))]. A loss φ is said to be classification-consistent if every minimizing sequence for the
risk associated with the φ loss is also a minimizing sequence for the risk associated with the 0/1-
loss. In other words, for a given P ∈ M+

1 (X × Y), φ is classi�cation-consistent for P if for all
sequences (fn)n∈N of measurable functions:

Rφ,P(fn)→ R?φ,P := inf
f∈F(X )

Rφ,P(f) =⇒ RP(fn)→ R?P (2.3)

While this notion seems complicated to study, Zhang [2004b], Bartlett et al. [2006], Steinwart
[2007] have focused on a relaxation named calibration. A loss is said to be classification-calibrated
if for every ε > 0, there exists δ > 0 such that for every α ∈ R and η ∈ [0, 1]:

ηφ(α) + (1− η)φ(−α)−min
β∈R

[ηφ(β) + (1− η)φ(−β)] ≤ δ =⇒ sign

(
(η − 1

2
)α

)
= 1

We remark the notion of calibration is basically a pointwise notion of consistency with η corre-
sponding to P(y = 1|x). Zhang [2004b], Bartlett et al. [2006], Steinwart [2007] proved the
equivalence of the two notions in the case of standard-binary classi�cation. In particular, they
show that a wide range of convex margin losses are actually classi�cation-consistent: ifφ is convex
and di�erentiable at 0, then φ is calibrated if and only if φ′(0) < 0.

The problem of consistency have been investigated in the case of multi-label classi�cation by Zhang
[2004a]. The results can be similarly derived, and it was show that large range of convex functions
are actually consistent for classi�cation problems.

2.1.4 Empirical Risk Minimization and Generalization

As mentioned earlier, the learner has access to training points {(x1, y1), . . . , (xN , yN )} and not
to the whole distribution. We aim at learning the classi�er on a set of functionsH. The classi�er
f̂N is then chosen to minimize the empirical risk given a lossL:

f̂N = argmin
f∈H

R̂L(f) = argmin
f∈H

1

N

N∑
i=1

L(f(xi), yi).
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2.1 Supervised Classification

Since the learning procedure takes into account a �nite number of samples and a setH of hy-
potheses, one need to control the risk of the classi�er f̂N .

Risk Decomposition and bias-complexity tradeo�. The excess risk of a classi�er is de�ned
as the di�erence between the risk and the optimal risk: RL(fn) − R?L. The excess risk can be
decomposed as follows:

RL(f̂N )−R?L =
(
RL(f̂N )−R?L,H

)
+
(
R?L,H −R?L

)
with R?L,H = inff∈HRL(f). The two terms in the previous decomposition corresponds

respectively to:

• The estimation risk: the empirical riskR(f̂N ) (i.e., training error) is only an estimate of
the optimal risk, and so f̂N is only an estimate of the predictor minimizing the true risk.
The estimation risk depends on the training set size N and on the size, or complexity, of
H. The more samples we have the smaller will be the estimation risk and more complexH
is the larger the estimation error will be.

• The approximation risk: the approximation risk is the error made by optimizing over
H instead of minimization over the whole space of measurable functions. As the function
spaceH grows, the approximation naturally decreases.

This decomposition induces a tradeo� on the complexity ofH named bias-complexity tradeo�
or bias-variance tradeo�. On one hand, ifH is not enough rich, then the estimation risk would be
small, but the approximation error can be large, it is called underfitting. On the other hand, ifH
is too rich, then the approximation risk would be small but the estimation error large, it is called
overfitting. To overcome these issues in practice, it is usual to add a regularization parameter to
the empirical risk depending on the setH:

f̂N = argmin
f∈H

R̂L(f) + λ×ΩH(f) = argmin
f∈H

1

N

N∑
i=1

L(f(xi), yi) + λ×ΩH(f).

The convergence of regularized least squares regression has been largely studied on Reproduc-
ing Kernel Hilbert Space (RKHS). A RKHS (H, 〈·, ·〉H) is characterized by a symmetric, pos-
itive de�nite function called a kernel over X such that for all f ∈ H and x ∈ X , f(x) =
〈f, k(x, ·)〉H. In this case, the regularization parameterΩH(f) is the square norm of f : ‖f‖2H.

Uniform Convergence. Since f̂N is dependent on the training samples, it is usually di�cult
to estimateR(f̂N ) from training samples. A natural thing to do is to upperbound this quantity
using:

|R̂(f̂N )−R(f̂N )| ≤ sup
f∈H
|R̂(f)−R(f)|

The convergence of the right-end term is referred as uniform convergence or Provably Approx-
imately correct (PAC) learning [Valiant, 1984]. It can be bounded either with high probability or
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in expectation (i.e. L1 convergence). We remark the speed of convergence depends on the com-
plexity of H: more complex H is, the slower the convergence will be, hence exhibiting again a
tradeo� on the expressivity ofH. There have been a lot of research that proposed tools to study
this convergence. Now, we recall a fundamental tool, namely the Rademacher complexity.

The Rademacher complexity was introduced by Bartlett and Mendelson [2002] to study the
problem of uniform convergence. Given a set of functions H, and a set of observations S =
{z1, . . . , zN} from a distribution P, the empirical Rademacher complexity is de�ned as:

R̂adS(H) :=
2

N
Eσ

[
sup
h∈H
|
N∑
i=1

σih(zi)|
]

where σi are independent samples from Rademacher law: P [σi = +1] = P [σi = −1] = 1
2 .

The Rademacher complexity satisfy the following composition property of Rademacher com-
plexity: when φ is aM -Lipschitz function:

R̂adS(φ ◦ H) ≤M R̂adS(H)

This property is particularly useful because it allows to study the Rademacher complexity regard-
less the loss function. WhenH is not too complex (for instance, �nite set or linear classi�ers), one
can bound the Rademacher complexity by O(n−1/2). It was proven by Bartlett and Mendelson
[2002] that the Rademacher complexity upperbounds the uniform risk error as follows:

ES∼PN
[

sup
h∈H
|eS(h)− eP(h)|

]
≤ 2ES∼PN

[
R̂adS(H)

]
where eP(h) = Ez∼P[h(z)] and eS(h) = 1

N

∑N
i=1 h(zi). This property leads to the following

generalization error bound derived from classical concentration bounds: with probability 1 − δ
(over the sampling S), for every h ∈ H:

eS(h)− eP(h) ≤ 2R̂adS(H) + 4

√
2 log(4/δ)

n
.

Rademacher complexity along with VC-dimension [Vapnik, 1998] are the main tools for deriv-
ing generalization bounds. The two concepts are linked and one can upperbound the Rademacher
complexity with the VC dimension.

2.2 Introduction to Adversarial Classi�cation

In this section, we present the required background about adversarial classi�cation. In the �rst
part, we present formally what is an adversarial attack, then how to craft them in practice. After,
we present ways for defending against adversarial examples. Finally, we state the main results about
current theoretical understanding of adversarial examples.
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2.2 Introduction to Adversarial Classification

2.2.1 What is an adversarial example?

In classi�cation tasks, an adversarial example is a perturbation of an input that is imperceptible to
humans, but that state-of-the-art classi�ers are unable to classify accurately. In the following of
the manuscript we de�ne adversarial attacks as follows.

De�nition 2. Let h : X → Y be a classifier. An adversarial attack of level ε on the input x with
label y against the classifier h is a perturbation x′ such that:

h(x′) 6= y and d(x, x′) ≤ ε .

This de�nition is very simple and general. The distance d can refer to an `p distance, taken as a
surrogate to a perception distance. We can associate to adversarial examples a notion of adversarial
risk. The adversarial risk is the worst case risk if each point is optimally attacked at level ε.

De�nition 3. Let P be a Borel distribution overX ×Y . Let h : X → Y be a classifier. We define
the adversarial risk of h at level ε as:

Rε(h) := P
[
∃x′ ∈ Bε(x), h(x′) 6= y

]
= E(x,y)∼P

[
sup

x′∈Bε(x)
1h(x′)6=y

]

whereBε(x) = {x′ ∈ X | d(x, x′) ≤ ε}. If f : X → RK , then the adversarial risk of f at
level ε is defined as

Rε(f) := P
[
∃x′ ∈ Bε(x), argmax

k∈Y
fk(x

′) 6= y

]
A �rst property is that the adversarial risk is well-de�ned in the sense of measurability stated

below. While this result seems trivial, it requires advanced arguments from measure theory.

Proposition 1. Let P be a Borel distribution over X × Y . Let h : X → Y be a classifier. If h is
Borel measurable then (x, y) 7→ supx′∈Bε(x) 1h(x′)6=y is universally measurable.

Proof. For h ∈ F(X ,Y), we de�ne φε(x, y, h) = supx′∈Bε(x) 1h(x)6=y . We have :

φε(x, y, h) = sup
(x′,y′)∈X×Y

1h(x′)6=y′ −∞× 1{d(x′, x) ≥ ε or y′ 6= y}

Then, (
(x, y), (x′, y′)

)
7→ 1h(x′)6=y′ −∞× 1{d(x′, x) ≥ ε or y′ 6= y}

de�nes a measurable, hence upper semi-analytic function. Using [Bertsekas and Shreve, 2004,
Proposition 7.39, Corollary 7.42], we get that for all h ∈ F(X ), (x, y) 7→ φε(x, y, h) is a
universally measurable function.
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2 Background

Similarly to the standard classi�cation setting, we de�ne the optimal Bayes risk for adversarial
classi�cation.

De�nition 4. Let P be a Borel distribution overX ×Y . We call adversarial Optimal Bayes risk of
level ε, the infimum of adversarial risk of level ε over the set of Borel measurable classifiersF(X ,Y):

R?ε := inf
h∈F(X ,Y)

Rε(h)

Contrarily to the standard case, the existence of optimal Bayes classi�ers for the adversarial risk
is a di�cult question.

2.2.2 Casting Adversarial examples

The probably most puzzling about adversarial examples is the facility to craft them. Let us con-
sider an attacker that aim at �nding an adversarial perturbationx′ of an inputx for a given classi�er
f : X → RK . In order to craft an adversarial example, typically the cross-entropy, the attacker
maximizes the following objective given a di�erentiable lossL:

max
x′∈X s.t. d(x,x′)≤ε

L
(
f(x′), y)

)
. (2.4)

In this case the attack is said to be untargeted, i.e. the classi�er aims at evading the label y. On the
other side, a targeted attack aims at perturbing a label x to make it classify to a target label y. In
this case, the attacker objective writes: minx′∈X s.t. d(x,x′)≤ε L(f(x′), y)). An attacker may also
target at �nding the smallest perturbation problem [Moosavi-Dezfooli et al., 2016, Carlini and
Wagner, 2017]. Many attacks were proposed that we will categorize into two parts: white-box
attacks and black-box attacks.

White box attacks: In this setting, the attacker has full knowledge of the function f and its pa-
rameters. Hence, these attacks often takes advantages of the di�erentiability off and the loss func-
tionL. Then, such attacks usually takes the gradient∇xL

(
f
(
xt
)
, y
)

as ascent direction for craft-
ing adversarial examples. These attacks are called gradient based attacks. The most popular white
box attacks are PGD attack Kurakin et al. [2016], Madry et al. [2018b], FGSM attack [Good-
fellow et al., 2015b], Carlini&Wagner attack [Carlini and Wagner, 2017], AutoPGD [Croce and
Hein, 2020a], FAB [Croce and Hein, 2020a], etc. As an illustration of the simplicity of crafting
adversarial examples, we show hereafter how to design a PGD attack in an `p case.

Example (PGD attack). Let x0 ∈ Rd be an input. The projected gradient descent (PGD) Kurakin
et al. [2016], Madry et al. [2018b] of radius ε, recursively computes

xt+1 =
∏

Bp(x,ε)

(
xt + α argmax

δ s.t. ||δ||p≤1
〈∆t, δ〉

)

where Bp(x, ε) = {x + τ | ‖τ‖p ≤ ε}, ∆t = ∇xL
(
f
(
xt
)
, y
)

, α is a gradient step size,
and

∏
S is the orthogonal projection operator on S. Many attacks are extensions of this one, e.g.

AutoPGD [Croce et al., 2020b] and SparsePGD [Tramèr and Boneh, 2019]
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2.2 Introduction to Adversarial Classification

Black box attacks: In this setting, the attacker has limited knowledge of the classi�er. The at-
tacker does not have access to the parameters of the classi�er, but can query either the predicted
logits or the predicted label for a given input x. To craft adversarial examples, it was proposed to
mimic gradient-based attacks using gradient estimation as in the ZOO attack [Chen et al., 2017]
and in the NES attack [Ilyas et al., 2018a, 2019]. Attacks might also be based on other optimization
methods such as combinatorial methods [Moon et al., 2019] or evolutionary computation [An-
driushchenko et al., 2019].

Adversarial Examples beyond Image Classi�cation. Adversarial examples do not only ex-
ist in Image Classi�cation, although it is the most spectacular example as images are perceptually
unchanged. We can enumerate, non exhaustively, the following examples of adversarial classi�ca-
tion:

• Image Segmentation and Object Detection: Xie et al. [2017] proposed to attack image
segmentation and object detection. The goal of such attack is to enforce an undesirable
detection or segmentation in an image.

• Video classi�cation: Videos are series of images. Adversarial attacks against video classi�-
cation systems are close to adversarial examples in standard Image Classi�cation. Adversar-
ial attacks might aim at changing either a bit many frames [Jiang et al., 2019] or a lot only
a few frames [Mu et al., 2021].

• Audio systems: Audio systems can be fooled by adding inaudible adversarial noise to an
audio �le [Carlini and Wagner, 2018]. These attacks raise issues in the massive use of per-
sonal vocal assistants [Zhang et al., 2019b].

• NLP classi�cation tasks: Adversaries change some words in a text to make it misclassi�ed.
However, such examples can also change the meaning of the text and consequently change
its classi�cation also to humans. Examples of attempts for adversarial examples against NLP
systems can be either black box [Jin et al., 2019, Li et al., 2020a] or gradient-based [Guo
et al., 2021]

• Recommender Systems A recent line of work Jun et al. [2018], Liu and Shro� [2019],
Garcelon et al. [2020] aimed at crafting adversarial attacks against bandit algorithms [Lat-
timore and Szepesvári, 2018]. The goal of these attacks are to force the learner to choose
the wrong arms a linear number of times. While these works are mostly theoretical, their
potential use in practical settings might raise issues for businesses in a close future.

2.2.3 Defending against adversarial examples

Defending against adversarial examples is still an open research question with only a few answers
to it. One can classify the methods in two categories: empirical defenses and provable defenses.

Provable defenses. A defense is said to be provable if there is a theoretical guarantee to ensure
a level of robustness. Formally, a classi�er h is said to be certifiably robust at level ε at input xwith
label y if there exist no adversarial example of level ε onh at the point (x, y), i.e. for allx′ such that
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d(x, x′) ≤ ε, h(x′) = y. Researchers have focused on �nding ways to certify robustness. The
�rst categories of defenses rely on convex relaxation of layers [Wong and Kolter, 2018, Wong et al.,
2018]. It consists in considering a convex outer approximation of the set of activations reachable
through a norm-bounded perturbation of an input. In the case of ReLU activation, the robust
optimization problem that minimizes the worst case loss over this outer region writes as a linear
program. Another developed method is noise injection to the input [Lecuyer et al., 2019, Cohen
et al., 2019, Pinot et al., 2019, Salman et al., 2019]. By adding a noise, the inputs can be seen as
distributions. The certi�cates are derived by determining which classi�er would be the most pow-
erful to distinguish two inputs. This idea is closely related to the notions of statistical tests [Cohen
et al., 2019], information theory [Pinot et al., 2019] and di�erential privacy [Lecuyer et al., 2018].
Finally, a last trend to develop provably robust neural networks is to enforce Lipschitzness prop-
erty [Tsuzuku et al., 2018]. Many papers have worked on designing Lipschitz layers [Li et al.,
2019b, Trockman et al., 2021, Singla and Feizi, 2021] and activations [Anil et al., 2019, Singla
et al., 2021a, Huang et al., 2021b].

Algorithm 1: Adversarial Training algorithm
T : number of iterations, Level of attack ε
for t = 1, . . . , T do

LetBt be a batch of data.
B̃t ←Attack of level ε on images inBt for the model fθt (using PGD for instance)
θtk ←Update θt−1

k with B̃t with an SGD or Adam step
end

Empirical defenses. Defenses against adversarial examples often have no theoretical guarantees
and are based on training heuristics. The �rst defense that was proposed is Adversarial Train-
ing [Goodfellow et al., 2015b, Madry et al., 2018b]. This defense is a heuristic to minimize the
adversarial risk. We describe the adversarial training defense in Algorithm 1 to training a classi�er
fθ parametrized by θ. It consists in alternating minimization steps and attacks on the classi�er
to make it more robust. To our knowledge there exists no proof of convergence for this defense.
Many other empirical defenses are variants of Adversarial Training, e.g. TRADES [Zhang et al.,
2019a] or MART [Wang et al., 2019b]. For instance, TRADES aims at minimizing the following
objective:

f 7→ E
[
L(f(x), y) + λ× max

x′∈Bε(x)
L(f(x′), f(x))

]
.

The �rst term aims at optimizing standard robustness and the second term is a regularization
for adversarial robustness. The objective is to better balance the tradeo� between robustness and
standard accuracy. Similarly to Adversarial Training, the inner supremum is optimized using PGD
algorithm.

Another promising way to defend against adversarial examples is to augment the dataset. For
instance, Carmon et al. [2019b], Rebu� et al. [2021] proposed to use unlabeled data to improve
Adversarial Training strategies. Other works such as [Wang et al., 2019b] proposed to use arti-
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2.2 Introduction to Adversarial Classification

�cially generated inputs to improve adversarial robustness. We do not go deeper into details of
these but most powerful defenses use one of these techniques [Croce et al., 2020a].

Evaluation Protocol. Unless the used defense mechanisms are provable and provide guaran-
tees, evaluating and assessing adversarial robustness is a painstaking task for empirical defenses.
For instance, many papers introduced “defenses” that were actually proven to be “false” [Atha-
lye et al., 2018a, Carlini et al., 2019]. Indeed, when proposing a defense, one needs to adapt the
attack model to the defense. We describe the following common issues. For instance, when evalu-
ating against randomized classi�ers in either white-box or black-box setting, the return output is
a random variable, hence the computation of an attack against it needs to be adapted to the non-
deterministic nature of the classi�er. To do so, Athalye et al. [2018a] proposed to average either the
logits or the gradient of the classi�er to build a suitable attack against a randomized classi�er. This
procedure was called Expectation Over Transformation (EOT). A second example is defenses that
aims at using non-di�erentiable activation functions such as Heaviside functions. Athalye et al.
[2018c] proposed to use BPDA (Backward Pass Di�erentiable Approximation), i.e. di�erentiable
approximations to circumvent the “defense”. Black-box attacks are also a way to build e�cient
attacks in this case.

To answer the need of adversarial examples research community to evaluate accurately their
models against adversarial examples, Croce et al. [2020a] proposed RobustBench as a uni�ed plat-
form for benchmarking adversarial defenses. The platform evaluates models on di�erent black-
box and white-box, targeted and untargeted attacks (AutoPGD [Croce et al., 2020b], FAB [Croce
and Hein, 2020a], SquareAttack [Andriushchenko et al., 2019]). However, this platform has its
limitations: for instance, it does not propose to evaluate the robustness of randomized classi�ers.

State-of-the-art in Image Classi�cation To evaluate the performance of an attack of a classi-
�cation algorithm, one needs to train and evaluate on datasets. In image classi�cation evaluation,
three datasets are mainly used:

• MNIST [LeCun]: A dataset of black and white low-quality images representing the 10
digits. The training set contains 50000 images and test set 10000 images. These images are
of dimension 28× 28× 1 (784 in total). This dataset is known to be easy (> 99% can be
obtained using simple classi�ers). In adversarial classi�cation, the problem is also easy to be
solved. Evaluation on MNIST is not su�cient to assess the performance of a classi�er or
even a defense against adversarial examples.

• CIFAR10 and CIFAR100 [Krizhevsky and Hinton, 2009]: Datasets of colored low-
quality images representing the 10 labels and 100 labels for respectively CIFAR10 and CI-
FAR100. Each training set contains 50000 images and test set 10000 images. These images
are of dimension 32× 32× 1 (3072 in total). The current state-of-the-art on CIFAR10 in
standard classi�cation is > 99% of accuracy with most recent methods. On CIFAR100,
the current state-of-the-art is around 94%. In adversarial classi�cation both datasets are
challenging and di�cult. The evolution of state-of-the-art in adversarial classi�cation is
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available in RobustBench1. Benchmark in adversarial classi�cation are often made on these
datasets.

• ImageNet [Deng et al., 2009]: ImageNet refers to a dataset containing 1.2 million of
images labeled into 1000 classes. Images are of diverse qualities, but models often takes in-
put of dimension 224×224×3 (dimension 150528 in total). The current state-of-the-art
on ImageNet is about 87%. It is worth noting that adversarial classi�cation on ImageNet
is still a very-challenging task. Further than the standard dataset, ImageNet project is still
in development: the project gathers 14197122 images and 21841 labels on August 31st,
2021.

2.2.4 Theoretical knowledge in Adversarial classi�cation

Curse of dimensionality. From the seminal paper on adversarial examples on deep learning
systems [Szegedy et al., 2014], the input dimension has been considered as an argument for in-
evitability of adversarial attacks. To assess this intuition, Gilmer et al. [2018], Shafahi et al. [2018]
proved that for a wide range of distributions P on the unit sphere of dimensionD, and any classi-
�erh, it is possible to �nd an attack on examplesxwith high probability, exponentially depending
on the dimension ofX . The arguments rely on isoperimetric inequalities and was extended to log-
concave distributions on Riemannian manifolds and uniform distributions over positively curved
Riemannian manifolds [Dohmatob, 2019].

Simon-Gabriel et al. [2019] also tried to explain the existence of adversarial examples for neural
networks under the light of the high dimensionality of inputs. The authors assumed that net-
works have ReLU activations and that the distributions of weight are Gaussian. Under such hy-
potheses, they proved that the gradient norm with regard to the input is highly dependent on the
dimension of the input, then justifying again that the dimensionality of the input is a reason for
the existence of adversarial examples.

Generalization Bounds in Adversarial Learning. Similarly to the standard classi�cation
case, research has focused on computing uniform bounds for adversarial classi�cation. These
works are often inspired from generalizations of standard tools such as VC-dimension [Cullina
et al., 2018] or Rademacher complexity [Yin et al., 2019, Khim and Loh, 2018, Awasthi et al.,
2020] in the adversarial case. They exhibit generalization bounds that are highly dependent on
the dimension of the input. Indeed the Rademacher complexity for classes adapted to the ad-
versarial case adds a polynomial term in the dimensionD of the input. However, for randomized
classi�ers, it is di�cult to adapt PAC-Bayes bounds to the adversarial setting [Viallard et al., 2021].
Indeed, the proof schemes cannot be used in the adversarial setting. Moreover, there is still a lack
of understanding of the bias-complexity tradeo� in the adversarial case [Wang et al., 2018].

Adversarial Bayes Risk. The adversarial Bayes risk has been studied only very recently by the
community Bhagoji et al. [2019], Pydi and Jog [2021a], Trillos and Murray [2020] expressed the
adversarial risk as an optimal transport problem for a suitable cost. Another approach was to study

1https://robustbench.github.io/
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the adversarial risk from a game theoretic perspective. We will explain in details these contribu-
tions in Section 3.1.1.

One of the recent contributions is the existence of optimal classi�ers for the adversarial set-
ting. The problem is not trivial because of the inner supremum and the di�culty to de�ne a
suitable topology on the space of measurable functions. The two papers [Awasthi et al., 2021b,
Bungert et al., 2021] propose two di�erent approaches for proving the existence of Bayes classi-
�ers. Bungert et al. [2021] proposed anL1 + TV decomposition [Chan and Esedoglu, 2005] of
the adversarial risk. To this end, the authors introduced a non-local perimeter satisfying the sub-
modularity property. They got interested in a suitable relaxation of the adversarial by replacing
the inner supremum in the adversarial risk with a ν-essential supremum where ν is a well-chosen
distribution. This allows to study the problem in L∞(X , ν). The properties of this relaxation
are nice (i.e. compactness and semi-continuity) which allows the authors to prove the existence
of a minimizer for the relaxed problem. From this solution, the authors built a solution to the ad-
versarial problem that is Borel measurable. The authors studied the regularity properties of these
minimizers.

2.3 Game Theory in a Nutshell

Game theory studies strategic interactions among agents assuming their actions are rational. It has
many applications in social science [Moulin, 1986] and more recently in machine learning [Good-
fellow et al., 2014] for instance. In this section, we recall the main concepts in game theory that
will help us better understanding the problem of adversarial examples.

2.3.1 Two-player zero-sum games

An important subclass of game theoretic problems are two-person zero-sum games. In such a
game there are two players namely Player 1 and Player 2 with opposite objectives. When Player 1
plays an actionx in some spaceA1 and Player 2 plays an actiony in some spaceA2, Player 1 receives
a reward u1(x, y) (also named utility) and Player 2 receives a reward u2(x, y) = −u1(x, y).
The objective for each player is to �nd what is the best strategy to play against the other player to
maximize their utility. These strategies are of two types:

• deterministic strategies: the player plays a strategy x (for Player 1) or y (for Player 2),

• mixed strategies: the player pick upx (for Player 1) or y (for Player 2) randomly according
to some probability distributionµ. In this case, the utility functions are averaged according
to the strategies µ and ν for respectively Player 1 and Player 2. The average reward of the
Player 1 is then Ex∼µ,y∼ν [u1(x, y)].

An important feature is the order of play in the game: the strategies might be di�erent if the
player knows what was the action of the player before him. This leads us to the notion of best re-
sponse. Assume that a mixed strategyµwas played by Player 1, then the set of the best responses for
Player 2 to Player 1 strategy is a strategy that maximizes the utility: arg maxν Ex∼µ,y∼ν [u1(x, y)].
We denote this setBR2(µ). Game theory aims at studying and computing the nature of strategies
in response to other players strategies.
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2.3.2 Equilibria in two-player zero-sum games

In game theory, optimal strategies for players are studied under the name of equilibria. Depending
on the game, we might have interest in two types of equilibria: Nash equilibria where players do
not cooperate and have to choose a strategy simultaneously, and Stackelberg equilibria where a
player de�nes its strategy before the other one. We only focus on two-player zero-sum game.

Nash Equilibria. In a Nash equilibrium, each player is assumed to know the equilibrium strate-
gies of the player, and no player has anything to gain by changing only their own strategy. In other
words, it is the strategy a rational player should adopt without any cooperation with the other.
Note that the existence of a Nash equilibrium is not always guaranteed. Formally, a Nash equilib-
rium is a tuple of actions (x?, y?) for Players 1 and 2 such that for all other actions x for Player 1
and y for Player 2 we have:

u1(x?, y?) ≥ u1(x, y?) and u2(x?, y?) ≥ u2(x?, y)

Note that here the strategies can be either mixed or deterministic. In a two-player zero-sum game
we can restate the previous condition as

u1(x, y?) ≤ u1(x?, y?) ≤ u1(x?, y)

We remark that a Nash equilibrium is de�ned as a best response to each other strategy, i.e. (x?, y?)
is a Nash equilibrium if and only if x? ∈ BR1(y?) and y? ∈ BR2(x?). We can then come to a
necessary and su�cient condition for the existence of Nash equilibria in the case of a two-player
zero-sum game:

max
x

min
y
u1(x, y) = min

y
max
x

u1(x, y)

It is a strong duality condition on the function u1, with the additional property that the optima
are attained. If there is duality, but the optima are not attained, we can state the existence of δ-
approximate Nash equilibria for every δ > 0, i.e. (xδ, yδ) such that:

u1(xδ, yδ) ≥ u1(x, yδ)− δ and u2(xδ, yδ) ≥ u2(xδ, y)− δ

Stackelberg Equilibria. A Stackelberg game is a game where Player 1 de�nes its strategy before
Player 2. Stackelberg equilibria are a tuple of optimal strategies for each player. As Player 1 needs
to de�ne its strategy before Player 2, the strategy x? of Player 1 has to maximize miny u1(x, y).
The strategy for Player 2 is then just to play an action that maximizes its utility given that Player 1
played x?. In other words, he has to choose a best response to x?. Note that if (x?, y?) is a Nash
equilibrium then it is also a Stackelberg equilibrium.

2.3.3 Strong Duality Theorems

Finite action sets. In a two-player zero-sum game where the actions space is �nite for both
players, the rewards can be cast in a matrixA ∈ Rn×m whereAij = u1(xi, yj). In this case, Von
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Neumann [Von Neumann, 1937] proved that there always exists a mixed equilibrium. A mixed
strategy of n actions can be embedded in the probability simplex:

∆n :=

{
(p1, . . . , pn) ∈ Rn+|

n∑
i=1

pi = 1

}

Theorem 1 (Von Neumann’s Theorem [Von Neumann, 1937]). LetA ∈ Rn×m then:

max
x∈∆n

min
y∈∆m

xTAy = min
y∈∆m

max
x∈∆n

xTAy

In�nite action sets. For in�nite action sets, Von Neumann’s Theorem is usually not su�cient.
There are two main extensions with di�erent hypotheses, namely Sion’s Theorem [Sion, 1958]
and Fan’s Theorem [Fan, 1953].

Theorem 2 (Sion’s Theorem [Sion, 1958] ). LetX be a compact convex set and Y be a convex set
of a linear topological space. Let u : X × Y → R be a function such that for all y ∈ Y , u(·, y)
is quasi-concave and upper semi-continuous; and for all x ∈ X , u(x, ·) is quasi-convex and lower
semi-continuous, then:

max
x∈X

inf
y∈Y

u(x, y) = inf
y∈Y

max
x∈X

u(x, y)

Moreover, if Y is compact, then the infimum is attained.

Note that a function is said to be quasi-convex if its lower level sets are convex sets. In particular,
convex functions are quasi-convex.

Theorem 3 (Fan’s Theorem [Fan, 1953]). Let X be a compact convex set and Y be a convex set
(not necessarily topological). Let u : X × Y → R be a function such that for all y ∈ Y , u(·, y) is
concave and upper semi-continuous; and for all x ∈ X , u(x, ·) is convex, then:

max
x∈X

inf
y∈Y

u(x, y) = inf
y∈Y

max
x∈X

u(x, y)

Moreover, if Y is compact and for all x ∈ X , u(x, ·) is lower semi-continuous, the infimum is
attained.

The hypotheses are close since both concern convexity or quasi convexity of the reward func-
tion and the semi-continuity of the partial reward. The di�erences are subtle and there are cases
where one may use either Sion’s or Fan’s Theorem. For in�nite action sets, it is usual to consider
mixed strategies as probability distributions on X or Y . In this case, we often endowM1

+(X )
andM1

+(Y) with the weak-∗ (or narrow) topology of measures and use Sion’s or Fan’s Theorem
directly on these probability spaces.

2.4 Optimal Transport concepts

Optimal Transport have gained interest in Machine Learning applications during the past years.
Indeed, Optimal Transport has the ability to model many problems, e.g. Generative Adversar-
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ial Networks [Arjovsky et al., 2017], or Adversarial Learning [Sinha et al., 2017, Pydi and Jog,
2021a, Bhagoji et al., 2019]. In particular, it will be a central tool in this thesis with the notion of
distributionally robust optimization introduced in Section 3.1.2. The computation methods for
optimal transport problems have also been considerably improved recently. Originally introduced
by Monge, this Optimal Transport was a problem where the aim was to move some quantity x
to some places y while minimizing the total cost of transport. LetZ be a Polish space. Let P and
Q be two Borel probability distributions overZ and c : Z2 → R̄+ be a non-negative function.
Formally, the problem was posed as follows:

inf
T | T]P=Q

Ez∼P[c(z, T (z))]

where T is a measurable mapping and T]P de�nes the pushforward measure of P by the function
T :

T]P(A) = P
[
T−1(A)

]
for all measurable setsA.

The main di�culty with the previous problem, is that there may exist no mapping fromP toQ,
for instance when P is a single Dirac distribution and Q support contains more than two points.
To overcome this issue, Kantorovich proposed to interest in couplings in mappings. Formally
couplings between distributions are de�ned as follows.

De�nition 5 (Couplings between distributions). Let Z be a Polish space. Let P and Q be two
Borel probability distributions overZ . The set of coupling distributions between P and Q is defined
as:

ΓP,Q :=
{
γ ∈M1

+(Z2) | Π1,]γ = P, Π2,]γ = Q
}

whereΠi,] represents the push-forward of the projection on the i-th component.
Setting this de�nition, one can de�ne a well-posed version of the Monge problem, often re-

ferred to Kantorovich problem.

De�nition 6 (Optimal Transport). Let Z be a Polish space. Let c : Z2 → R̄+ be a lower semi-
continuous non-negative function. Let P and Q be two Borel probability distributions over Z . The
Optimal Transport problem or Wasserstein problem between P and Q associated with cost function
c is defined as:

Wc(P,Q) := inf
γ∈ΓP,Q

∫
c(x, y)dγ(x, y) = inf

γ∈ΓP,Q
E(x,y)∼γ [c(x, y)]

A clear introduction to this problem can be found in Villani [2003]. In particular, it was
proved that the in�mum is attained. When X is endowed with a ground metric d, one can en-
dow the space of probability distributions with bounded p-moments with a metric named the
p-Wasserstein metric de�ned as:

Dp(P,Q) := inf
γ∈ΓP,Q

E(x,y)∼γ [dp(x, y)]1/p
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With this metric, the space of probability distributions with bounded p-moments metrizes the
weak topology of measures. When p =∞, theD∞ can be de�ned in the limit as:

D∞(P,Q) := inf
γ∈ΓP,Q

γ − ess sup
(x,y)

d(x, y)

The∞-Wasserstein metric can be extended to other costs and will be denotedW∞,c.

Entropic Regularized Optimal Transport. The computation time of the exact Optimal Trans-
port solution is often prohibitive: the complexity is supercubic in the number of samples in the
empirical distributions. Cuturi [2013], Peyré et al. [2019] proposed an entropic regularization of
Optimal Transport to accelerate the computation, which writes

W ε
c (P,Q) := inf

γ∈ΓP,Q

∫
c(x, y)dγ(x, y) + ε×KL(γ||P⊗Q)

= inf
γ∈ΓP,Q

E(x,y)∼γ [c(x, y)] + ε×KL(γ||P⊗Q)

where KL is the Kullback-Leibler divergence de�ned as KL(µ||ν) =
∫

log dµ
dν dµ +

∫
dν −∫

dµ if µ � ν, and +∞ otherwise. To solves this problem, Cuturi [2013] proposed to use
Sinkhorn iterations which considerably accelerate the computation of an approximate solution
to the optimal transport problem.

Kantorivch Duality. A fundamental theorem in Optimal Transportation is the Kantorovich
duality theorem which writes as follows.

Theorem 4 (Kantorovich duality). Let Z be a Polish space. Let c : Z2 → R̄+ be a lower semi-
continuous non-negative function. Let P and Q be two Borel probability distributions overZ . Then
the following strong duality theorem holds:

Wc(P,Q) = sup
f,g∈C(Z), f⊕g≤c

∫
fdP +

∫
fdQ

where for all x, y ∈ Z , f ⊕ g(x, y) := f(x) + g(y) and C(Z) is the set of continuous functions
overZ .

One can �nd a proof of this result in [Villani, 2003]. The main arguments are that the dual
of continuous functions on a compact space is the space of Radon measures, and the Rockafellar
duality theorem. We can also mention its entropic regularized version.

Theorem 5 (Kantorovich duality). Let Z be a Polish space. Let c : Z2 → R̄+ be a lower semi-
continuous non-negative function. Let P and Q be two Borel probability distributions overZ . Then
the following strong duality theorem holds:

Wc(P,Q) = sup
f,g∈C(Z)

∫
fdP +

∫
fdQ− ε

(∫
e
f(x)+g(y)−c(x,y)

ε dµ(x)dν(y)− 1

)
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where for all x, y ∈ Z , f ⊕ g(x, y) := f(x) + g(y) and C(Z) is the set of continuous functions
overZ .
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3.1 A Game Theoretic Approach to Adversarial Classi�cation

While adversarial classi�cation can be naturally understood as a game between the attacker and
the classi�er, it has only been very recent that the problem has been studied from a game theo-
retic perspective. Adversarial examples have been studied under the notions of Stackelberg game
in Brückner and Sche�er [2011], and zero-sum game in Rota Bulò et al. [2017], Perdomo and
Singer [2019], Bose et al. [2021].

In [Bose et al., 2021], the authors consider a setting with a convex loss functionL : Rk×Y →
R, a convex set of deterministic classi�ersH and a generative attacker g : X ×Y ×Z → X (i.e.
a measurable function) such that:

d(g(x, y, z), x) ≤ ε

for allx, y, z and z is sampled from a latent distributionpz . The set of such functions g is denoted
Gε. In this setting the authors show there is no duality gap for the game between the attacker and
the learner:

min
f∈H

max
g∈Gε

E(x,y)∼P,z∼pz [L(f(g(x, y, z), y)] = max
g∈Gε

min
f∈H

E(x,y)∼P,z∼pz [L(f(g(x, y, z), y)]

However, this setting is limited due to the convexity assumptions. As we will see in Chapter 5, one
can prove that no convex loss can be a good surrogate for the 0/1 loss in the adversarial setting.
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The goal of the paper is to build a framework to design new zero-shot black-box adversarial attacks
from generative attackers. Such an attack is called a No Box attack.

Pinot et al. [2020] proposed to study the adversarial attacks problem from a game theoretic
point of view. The authors proposed to treat the case of binary classi�cation with 0/1 loss where
the classi�er can be either allowed to deterministically play a continuous function or randomly
chose a continuous function. In game theoretic terminology, the classi�er can play mixed strate-
gies of continuous functions. On the other side, the attacker is deterministic. Formally, its set of
actions is:

Fε = {f ∈ F(X × Y,X × Y) | ∀(x, y) ∈ X × Y, ‖f1(x, y)− x‖ ≤ ε and f2(x, y) = y}

In their work, the authors also assume that the attacker su�ers a regularization. The �rst consid-
ered regularization penalizes the average perturbation for the attacker:

Ω(f) = E(x,y)∼P[‖x− f1(x, y)‖]

The second one penalizes the attacker if she attacks “too many points”:

Ω(f) = E(x,y)∼P
[
1x 6=f1(x,y)

]
Given one of these regularization, the score function for the classi�er h and an attacker f , is de-
�ned as:

EP[L(h(f(x)), y)]− λ×Ω(f)

whereλ is a non-negative constant. In this setting, the authors show that there do not exist a pure
Nash Equilibrium. In particular, the risk for randomized classi�ers is strictly smaller than the risk
for deterministic classi�ers. The question of the nature of equilibria was remained open.

3.1.1 Adversarial Risk Minimization and Optimal Transport

Optimal Transport is a key element when studying Adversarial Classi�cation problems. Let P
be a distribution on the input-label space X × Y . We recall that the problem of adversarial risk
minimization is de�ned as

R?ε,P = inf
h
P(x,y)

[
∃x′ ∈ Bε(x), h(x′) 6= y

]
A recent line of work [Bhagoji et al., 2019, Pydi and Jog, 2021a, Trillos and Murray, 2020] draw
important links betweenR?ε,P and Optimal Transport problems in the case of binary classi�cation
(Y = {−1,+1}) when the space X satis�es a midpoint property, i.e. for all x1, x2 ∈ X there
exists x ∈ X such that d(x, x1) = d(x, x2) = d(x1,x2)

2 . It was shown that in this case:

R?ε,P =
1

2
− 1

2
Wcε(P,PS)
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where PS := TS] P with TS(x, y) = (x,−y) and

cε
(
(x, y), (x′, y′)

)
= 1d(x,x′)>2ε,y 6=y′

Note thatTS only switches the label of a pair (x, y). When ε = 0,Wcε(P,PS) equals the total
variation distance between P and PS , which was a result proved in [Trillos and Murray, 2020].
While this property does not have practical properties yet, there is a hope that this relation might
help at building more robust classi�ers to adversarial examples.

3.1.2 Distributionally Robust Optimization

Another close link between adversarial attacks and Optimal Transport can be made under the
light of distributionally robust optimization. Let Z and Θ be Polish spaces. Let P be a Borel
probability distribution overZ . Let f : Θ × Z → R be an upper semi continuous function in
its second variable. Consider the following problem:

min
θ∈Θ

Ez∼P[f(θ, z)] = min
θ∈Θ

∫
f(θ, z)dP(z) (3.1)

This problem can typically be a risk minimization problem in Machine Learning when P is a
distribution over input-label pairs andΘ is a parameter space for the classi�er. A distributionally
robust optimization (DRO) problem is a problem similar to Equation (3.1), but the learner aims
at being robust to a change in the distribution P. Typically, if D is an uncertainty metric for
distributions, the DRO problem writes as follows:

min
θ∈Θ

sup
Q∈M+

1 (Z)| D(P,Q)≤ε
Ez∼Q[f(z)]

For instance, D be the Kullback-Leibler divergence or other f -divergences [Duchi et al., 2016,
Namkoong and Duchi, 2016], total variation distances [Jiang and Guan, 2018, Rahimian et al.,
2019] or optimal transport distances [Sha�eezadeh Abadeh et al., 2015, Raghunathan et al., 2018,
Blanchet and Murthy, 2019].

In the case of Wasserstein uncertainty sets, let c : Z → R̄+ be a lower semi-continuous non-
negative function. Then a Wasserstein distributionally robust optimization (DRO) problem is
de�ned as follows:

min
θ∈Θ

sup
Q∈M+

1 (Z)|Wc(P,Q)≤ε
Ez∼Q[f(z)]

The Wasserstein balls writes as

Bc(P, ε) :=
{
Q ∈M+

1 (Z) |Wc(P,Q) ≤ ε
}

This problem induces an attack on the distributionP. Informally, one can interpret a Wasserstein
ball as an attacker moving each point x of the distribution P to a distribution Qx so that the
average “distance” Ex∼P[Ey∼Qx [c(x, y)]] at most equals to ε. With this interpretation, we can
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start linking the Wasserstein DRO problem to the adversarial learning problem. Indeed, in the
adversarial attack problem, the attacker is authorized to move each point to another at distance at
most ε, i.e. he is authorized a mapping T such that d(x, T (x)) ≤ ε for every x almost surely.

Properties of Wasserstein balls. The Wasserstein balls inherit from nice properties. Since
Q 7→ Wc(P,Q) is convex, they are convex sets. Moreover, the function Q 7→ Wc(P,Q) is
lower semi-continuous for the narrow topology of measures, then the set Bc(P, η) is closed for
the narrow topology too. Concerning the compactness of this set, if Z is compact then the set
Bc(P, η) is also compact as a closed subset of the compact setM+

1 (Z). Yue et al. [2020] proved
the compactness for p-Wassertein balls.

Duality results The problem of computing DRO solutions is di�cult since it concerns opti-
mization over distribution. A strong duality leading to a relaxation of the problem was proved
by Blanchet and Murthy [2019]. We state this theorem as follows.

Theorem 6 (Wasserstein DRO duality). Let P be a Borel probability distribution over Z . Let
f : Z → R be an upper semi continuous function. Let c : Z → R+ be a lower semi-continuous
non-negative function. Then the following duality result holds

sup
Q∈M+

1 (Z)|Wc(P,Q)≤ε
Ez∼Q[f(z)] = inf

λ≥0
Ez∼P

[
sup
z′∈Z

f(z′)− λc(z, z′)
]

+ λε

This theorem was proved by [Blanchet and Murthy, 2019] using similar arguments to Kan-
torovich duality. The link with the adversarial attack problem is made clearer with this theorem.
Indeed, Ez∼P[supz′∈Z f(z′)− λc(z, z′)] is closed to the adversarial attacks problem. We will
make a direct link in the Chapter 4.

Adversarial classi�cation as a Wasserstein-∞DRO problem. The adversarial attack prob-
lem was studied under the light of DRO from a statistical point of view [Raghunathan et al.,
2018], or to prove that adversarial classi�cation is exactly a Wasserstein-∞ problem with a well-
suited cost function [Pydi and Jog, 2021a]. The previous result from [Blanchet and Murthy,
2019] does not directly apply to Wasserstein-∞ distances but can be adapted. The Wasserstein-
∞DRO problem can be understood as follows: each point x of the distribution P can be moved
to a distribution Qx so that the worst-case “distance” c(x, y) is smaller that ε. In general, one
can state the following result that proves that the adversarial classi�cation problem is actually a
Wasserstein-∞DRO problem.

Theorem 7 (Duality for Wasserstein-∞ DRO). Let Z be a Polish space. Let P be a probability
distribution overZ . Let c be a non-negative lower-semicontinuous function overZ2 andf : Z → R
be a Borel measurable function. Then the following strong duality holds

sup
Q|W∞,c(P,Q)≤ε

Ez∼Q[f(z)] = Ez∼P

[
sup

z′∈Z| c(z,z′)≤ε
f(z′)

]
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This result can be found in special case in [Pydi and Jog, 2021a]. For sake of completeness, we
provide a proof of the result.

Proof. Let us de�ne:

f̃ : (z, z′) ∈ Z2 7→ f(z′)−∞× 1c(z,z′)>ε .

f̃ is Borel measurable, hence upper semi-analytic [Bertsekas and Shreve, 2004, Chapter 7].
We then deduce that

z ∈ Z 7→ sup
z′∈Z

f̃(z, z′) = sup
z′∈Z| c(z,z′)≤ε

f(z′)

is universally measurable, hence justifying the de�nition of the left-hand term in the Theo-
rem.

Now let Q be such thatW∞,c(P,Q) ≤ ε. There exists γ ∈ ΓP,Q such that c(z, z′) ≤ ε
γ-almost surely. Then we deduce

Ez′∼Q
[
f(z′)

]
= E(z,z′)∼γ

[
f(z′)

]
≤ E(z,z′)∼γ

[
sup

z′∈Z| c(z,z′)≤ε
f(z′)

]

≤ Ez∼P

[
sup

z′∈Z| c(z,z′)≤ε
f(z′)

]

We have then

sup
Q|W∞,c(P,Q)≤ε

Ez∼Q[f(z)] ≤ Ez∼P

[
sup

z′∈Z| c(z,z′)≤ε
f(z′)

]

Thanks to Bertsekas and Shreve [2004, Proposition 7.50], for any δ > 0, there exists a
universally measurable mappingT : Z → Z such that f̃(z, T (z)) ≥ supz′∈Z f̃(z, z′)−δ
for every z ∈ Z . De�ning Q = T]P, we get thatW∞,c(P,Q) ≤ ε and that:

sup
Q|W∞,c(P,Q)≤ε

Ez∼Q[f(z)] ≥ Ez∼P

[
sup

z′∈Z| c(z,z′)≤ε
f(z′)

]
− δ

Consequently, we deduce the expected result of the Theorem.

When the problem is a classi�cation problem (i.e., Z = X × Y with Y = JKK), one can
replace f withL(f(x), y) withL a measurable loss function and set the cost c equals to:

c((x, y), (x′, y′)) :=

{
d(x, x′) if y = y′

+∞ otherwise.
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Hence, we recover the Adversarial classi�cation problem using a Wasserstein-∞DRO problem.
We will see in Chapter 4, the geometric and topological properties of this set.

DRO, Game Theory and Adversarial Attacks. Recently, Pydi and Jog [2021b] studied the
adversarial binary classi�cation game where the attacker can play a randomized strategy in the∞-
Wasserstein ball of radius ε and the classi�er is allowed to play any measurable function. In this
case the authors proved the existence of Nash Equilibria, meaning that the classi�er can be deter-
ministic and optimal and the attacker requires to be “randomized”. We will discuss and compare
to this work in details in Chapter 4.

3.2 Surrogate losses in the Adversarial Setting

To account for the possibility of an adversary manipulating the inputs at test time, we need to
revisit the standard risk minimization problem by penalizing any classi�cation model that might
change its decision when the point of interest is slightly changed. Essentially, this is done by replac-
ing the standard (pointwise) 0/1 loss with an adversarial version that mimics its behavior locally
but also penalizes any error in a given region around the point on which it is evaluated.

Yet, just like the 0/1 loss, its adversarial counterpart is not convex, which renders the risk min-
imization di�cult. To circumvent this limitation, we take inspiration from the standard learning
theory approach which consists in solving a simpler optimization problem where the non-convex
loss function is replaced by a convex surrogate. In general, the surrogate loss is chosen to have a
property called consistency [Zhang, 2004b, Bartlett et al., 2006, Steinwart, 2007], which guaran-
tees that any sequence of classi�ers that minimizes the surrogate objective must also be a sequence
that minimizes the Bayes risk. In the context of standard classi�cation, a large family of convex
losses, called classifier-consistent, exhibits this property. This class notoriously includes the hinge
loss, the logistic loss and the square loss.

However, the adversarial version of these surrogate losses needs not to have the same consistency
properties with respect to the adversarial 0/1 loss. In fact, most existing results in the standard
framework rely on a reduction of the global consistency problem to a local point-wise problem,
called calibration. However, the same approach is not feasible in the adversarial setting, because
the new losses are by nature non-point-wise. Then the optimum for a given input may depend on
yet a whole other set of inputs [Awasthi et al., 2021a,c]. Studying the concepts of calibration and
consistency in the adversarial setting remains an open and understudied problem. Furthermore,
this is a complex and technical area of research, that requires a rigorous analysis, since small tweaks
in de�nitions can quickly make results meaningless or inaccurate. This di�culty is illustrated in
the literature, where articles published in high pro�le conferences tend to contradict or refute
each other Bao et al. [2020], Awasthi et al. [2021a,c].

Setting. In this section, let us consider a classi�cation task with input spaceX and output space
Y = {−1,+1}. Let (X , d) be a proper Polish (i.e. completely separable) metric space represent-
ing the inputs space. For all x ∈ X and δ > 0, we denote Bδ(x) the closed ball of radius δ and
center x. We also assume that for all x ∈ X and δ > 0,Bδ(x) contains at least two points1. Let

1For instance, for any norm ‖·‖, (Rd, ‖·‖) is a Polish metric space satisfying this property.
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us also endow Y with the trivial metric d′(y, y′) = 1y 6=y′ . Then the space (X × Y, d⊕ d′) is a
proper Polish space. For any Polish spaceZ , we denoteM1

+(Z) the Polish space of Borel proba-
bility measures on Z . We will denote F(Z) the space of real valued Borel measurable functions
onZ . Finally, we denote R̄ := R ∪ {∞,+∞}.

3.2.1 Notions of Calibration and Consistency

The 0/1-loss is both non-continuous and non-convex, and its direct minimization is a di�cult
problem. The concepts of calibration and consistency aim at identifying the properties that a loss
must satisfy in order to be a good surrogate for the minimization of the 0/1-loss. In this section,
we de�ne these two concepts and explain the di�erence between them. First, we need to give a
general de�nition of a loss function.

De�nition 7 (Loss function). A loss function is a function L : X × Y × F(X )→ R such that
L(·, ·, f) is a Borel measurable for all f ∈ F(X ).

Note that this de�nition is not speci�c to the standard neither adversarial case. In general, a
loss can either depend only on f(x), or on other points related tox (e.g. the set of points within a
distance ε ofx). We now recall the de�nition of the risk associated with a lossL and a distribution
P.

De�nition 8 (L-risk of a classi�er). For a given loss functionL, and a Borel probability distribu-
tion P overX ×Y we define the risk of a classifier f associated with the lossL and a distribution P
as

RL,P(f) := E(x,y)∼P[L(x, y, f)].

We also define the optimal risk associated with the lossL as

R?L,P := inf
f∈F(X )

RL,P(f) .

In the literature [Zhang, 2004b, Bartlett et al., 2006, Steinwart, 2007], the notion of surrogate
losses has been studied as a consistency problem. Formally, the notion of consistency is as follows.

De�nition 9 (Consistency). LetL1 andL2 be two loss functions. For a given P ∈M+
1 (X ×Y),

L2 is said to be consistent for P with respect toL1 if for all sequences (fn)n ∈ F(X )N :

RL2,P(fn)→ R?L2,P =⇒ RL1,P(fn)→ R?L1,P (3.2)

Furthermore,L2 is said consistent with respect to a lossL1 the above holds for any distribution P.

Note that one can reformulate equivalently the previous de�nition as follows. For all ε > 0,
there exists δ > 0 such that for every f ∈ F(X ),

RL2,P(f)−R?L2,P ≤ δ =⇒ RL1,P(f)−R?L1,P ≤ ε
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Consistency is in general a di�cult problem to study because of its high dependency on the dis-
tribution P at hand. Accordingly, several previous works [Zhang, 2004b, Bartlett and Mendel-
son, 2002, Steinwart, 2007] introduced a weaker notion to study consistency from pointwise
viewpoint. The simpli�ed notion is called calibration and corresponds to consistency when P is
a combination of Dirac distributions. The main building block in the analysis of the calibration
problem is the calibration function, de�ned as follows.

De�nition 10 (Calibration function). LetL be a loss function. The calibration function CL writes
as

CL(x, η, f) := ηL(x, 1, f) + (1− η)L(x,−1, f),

for any η ∈ [0, 1], x ∈ X and f ∈ F(X ). We also define the optimal calibration function as

C?L(x, η) := inf
f∈F(X )

CL(x, η, f).

Note that for any x ∈ X and η ∈ [0, 1], CL(x, η, f) = RL,P(f) with P = ηδ(x,+1) + (1−
η)δ(x,−1). The calibration function thus corresponds to a pointwise notion of the risk, evaluated
at point x. We now de�ne what is meant by calibration of a surrogate loss.

De�nition 11 (Calibration). Let L1 and L2 be two loss functions. We say that L2 is calibrated
with regard to L1 if for every ε > 0, η ∈ [0, 1] and x ∈ X , there exists δ > 0 such that for all
f ∈ F(X ),

CL2(x, η, f)−C?L2
(x, η) ≤ δ =⇒ CL1(x, η, f)− C?L1

(x, η) ≤ ε.

Furthermore, we say that L2 is uniformly calibrated with regard to L1 if for every ε > 0, there
exists δ > 0 such that for all η ∈ [0, 1], x ∈ X and f ∈ F(X ) we have

CL2(x, η, f)− C?L2
(x, η) ≤ δ =⇒ CL1(x, η, f)− C?L1

(x, η) ≤ ε.

Similarly to consistency, one can also introduce a sequential characterization for calibration
and uniform calibration: L2 is calibrated with regard to L1 if for all η ∈ [0, 1], x ∈ X , for all
(fn)n ∈ F(X )N:

CL2(x, η, fn)− C?L2
(x, η) −−−→

n→∞
0 =⇒ CL1(x, η, fn)− C?L1

(x, η) −−−→
n→∞

0 .

Also,L2 is uniformly calibrated with regard toL1 if for all (fn)n ∈ F(X )N:

sup
η∈[0,1],x∈X

CL2(x, η, fn)− C?L2
(x, η) −−−→

n→∞
0

=⇒ sup
η∈[0,1],x∈X

CL1(x, η, fn)− C?L1
(x, η) −−−→

n→∞
0 .

Connection between calibration and consistency. Calibration is a necessary condition for
consistency. In general, the converse is not true. However, in the speci�c context of standard
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classi�cation with a well-de�ned 0/1-loss, the notions of consistency and calibration have been
shown to be equivalent [Zhang, 2004b, Bartlett et al., 2006, Steinwart, 2007]. The next section
discusses existing results on calibration and consistency in the standard classi�cation setting.

3.2.2 Existing Results in the Standard Classi�cation Setting

In binary classi�cation, h is often de�ned as the sign of a real valued function f ∈ F(X ). The
loss usually used to characterize classi�cation tasks corresponds to the accuracy of the classi�er h.
When h is de�ned as above, this loss is de�ned as follows.

De�nition 12 (0/1 loss). Let f ∈ F(X ). We define the 0/1 loss as follows

L0/1(x, y, f) = 1y×sign(f(x))≤0

with a convention for the sign, e.g. sign(0) = 1. We will denoteRP(f) := RL0/1,P(f),R?P :=
R?L0/1,P, C(x, η, f) := CL0/1(x, η, f) and C?(x, η) := C?L0/1

(x, η).

Note that this 0/1-loss is di�erent from the one introduced by Bao et al. [2020], Awasthi et al.
[2021a,c]: they used L≤(x, y, f) = 1y×f(x)≤0 which is a usual 0/1 loss but not adapted to
consistency and calibration study. This loss penalizes indecision: i.e. predicting 0 would lead to
a pointwise risk of 1 for y = 1 and y = −1 while the 0/1 loss L0/1 returns 1 for y = 1 and
0 for y = −1. This de�nition was used by Bao et al. [2020], Awasthi et al. [2021a,c] to prove
their calibration and consistency results. While Bartlett et al. [2006] was not explicit on the choice
of the 0/1 loss, Steinwart [2007] explicitly mentions that the 0/1 loss is not a margin loss. The
use of this loss is not suited for studying consistency and leads to inaccurate results as shown in
the following counterexample. On X = R, let P be de�ned as P = 1

2(δx=0,y=1 + δx=0,y=−1)
and φ : R → R be a margin loss. The φ-risk minimization problem writes infα

1
2(φ(α) +

φ(−α)). For any convex functional φ the optimum is attained for α = 0. fn : x 7→ 0 is a
minimizing sequence for the φ-risk. However,RL≤(fn) = 1 for all n andR∗L≤ = 1

2 . Then we
deduce that no convex margin loss is consistent w.r.t. L≤. Consequently, the 0/1 loss to be used in
adversarial consistency needs to satisfy L0/1,ε(x, y, f) = supx′∈Bε(x) 1ysign(f(x))≤0, otherwise
the obtained results might be inaccurate.

Some of the most prominent works [Zhang, 2004b, Bartlett et al., 2006, Steinwart, 2007] focus
on the concept of margin losses, as de�ned below.

De�nition 13 (Margin loss). A lossL is said to be a margin loss if there exists a measurable function
φ : R→ R+ such that:

L(x, y, f) = φ(yf(x))

Without loss of generality, we will say that φ is a margin loss function, and we will denoteRφ
the risk associated with the margin loss φ and Cφ the calibration function. Notably, it has been
demonstrated in several previous works [Zhang, 2004b, Bartlett et al., 2006, Steinwart, 2007]
that, for a margin loss φ, we always have C?φ(x, η) = infα∈R ηφ(α) + (1 − η)φ(−α). This is
in particular one of the main observation allowing to show the following strong result about the
connection between consistency and calibration.
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Theorem 8 (Zhang [2004b], Bartlett et al. [2006], Steinwart [2007]). Let φ : R → R+ be a
continuous margin loss. Then the three following assertions are equivalent.

1. φ is calibrated with regard toL0/1,

2. φ is uniformly calibrated w.r.t. L0/1,

3. φ is consistent with regard toL0/1.

Moreover, if φ is convex and di�erentiable at 0, then φ is calibrated if and only φ′(0) < 0.

The Hinge loss φ(t) = max(1− t, 0) and the logistic loss φ(t) = log
(
1 + e−t

)
are classical

examples of convex consistent losses. Convexity is a desirable property for faster optimization of
the loss, but there exist other non-convex losses that are calibrated such as the ramp loss (φ(t) =
max(1 − t, 0) + max(1 + t, 0)) or the sigmoid loss (φ(t) = (1 + et)−1). In the next section,
we present the adversarial classi�cation setting for which Theorem 8 may not hold anymore.

Remark 1. The equivalence between calibration and consistency is a consequence of the fact that,
over the large space of measurable functions, minimizing the loss pointwisely in the input by desinte-
grating with regard to x is equivalent to minimizing the whole risk over measurable functions. This
result is very powerful and simplify the study of calibration in the standard setting.

3.2.3 Calibration and Consistency in the Adversarial Setting.

We now consider the adversarial classi�cation setting where an adversary tries to manipulate the
inputs at test time. Given ε > 0, they can move each point x ∼ P to another point x′ which is
at distance at most ε from x2. The goal of this adversary is to maximize the 0/1 risk the shifted
points from P. Formally, the appropriated loss with adversarial classi�cation is de�ned as follows.

De�nition 14 (Adversarial 0/1 loss). Let ε ≥ 0. We define the adversarial 0/1 loss of level ε
associated as:

L0/1,ε(x, y, f) = sup
x′∈Bε(x)

1ysign(f(x))≤0

We will denoteRε,P(f) := R?L0/1,ε,P(f),R?ε,P := R?L0/1,ε,P, Cε(x, η, f) := CL0/1,ε
(x, η, f)

and C?ε (x, η) := C?L0/1,ε
(x, η) for every P, x, f and η.

Speci�city of the adversarial case. The adversarial risk minimization problem is much more
challenging than its standard counterpart because an inner supremum is added to the optimiza-
tion objective. With this inner supremum, it is no longer possible to reduce the distributional
problem to a pointwise minimization as it is usually done in the standard classi�cation framework.
In fact, the notions of consistency and calibration are signi�cantly di�erent in the adversarial set-
ting. This means that the results obtained in the standard classi�cation may no longer be valid in
the adversarial setting (e.g., the calibration needs not be su�cient for consistency), which makes
the study of consistency much more complicated. As a �rst step towards analyzing the adversarial
classi�cation problem, we now adapt the notion of margin loss to the adversarial setting.

2Note that after shifting x to x′, the point needs not to be in the support of P anymore.
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De�nition 15 (Adversarial margin loss). Letφ : R→ R+ be a margin loss and ε ≥ 0. We define
the adversarial loss of level ε associated with φ as:

φε(x, y, f) = sup
x′∈Bε(x)

φ(yf(x′)) .

We say that φ is adversarially calibrated (resp. uniformly calibrated, resp. consistent) at level ε if
φε is calibrated (resp. uniformly calibrated, resp. consistent) w.r.t. L0/1,ε.

The calibration functions for φ and φε are actually equal. This property might seem counter-
intuitive at �rst glance as the adversarial risk is most of the time strictly larger than its standard
counterpart. However, the calibration functions are only pointwise dependent, hence having
the same prediction for any element of the ball Bε(x) su�ces to reach the optimal calibration
C?φ(x, η).

Proposition 2. Let ε > 0. Let φ be a continuous classification margin loss. For all x ∈ X and
η ∈ [0, 1], we have

C?φε(x, η) = inf
α∈R

ηφ(α) + (1− η)φ(−α) = C?φ(x, η) .

The last equality also holds for the adversarial 0/1 loss.

H-consistency andH-calibration Bao et al. [2020] and Awasthi et al. [2021a,c] proposed to
studyH-calibration andH-consistency in the adversarial setting, i.e. calibration and consistency
when minimizing sequences inH. Similarly to the calibration function, theH-calibration func-
tion is de�ned as follows.

De�nition 16 (H-calibration function). LetH ⊂ F(X ). Let L be a loss function. The optimal
H-calibration function is defined as

C?L,H(x, η) := inf
f∈H
CL(x, η, f)

De�nition 17 (H-calibration). Let H ⊂ F(X ). Let H ⊂ F(X ). Let L1 and L2 be two loss
functions. We say that L2 isH-calibrated with regard to L1 if for every ε > 0, for all η ∈ [0, 1],
x ∈ X , there exists δ > 0 for every f ∈ H:

CL2(x, η, f)−C?L2,H(x, η) ≤ δ =⇒ CL1(x, η, f)− C?L1,H(x, η) ≤ ε .

Furthermore, we say that L2 is uniformlyH-calibrated with regard to L1 if for every ε > 0, there
exists δ > 0, for all η ∈ [0, 1], x ∈ X , for every f ∈ H:

CL2(x, η, f)− C?L2,H(x, η) ≤ δ =⇒ CL1(x, η, f)− C?L1,H(x, η) ≤ ε .

However, even in the standard classi�cation setting, the link between both notions in this ex-
tended setting is not clear at all since a pointwise minimization of the risk cannot be done. To the
best our knowledge, there is only one paper [Long and Servedio, 2013] that focuses on this notion
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in standard setting. The authors studied the restricted case of realizability, i.e. when the standard
optimal risk associated with the 0/1 loss equals 0. We believe that studyingH-consistency and
H-calibration in the adversarial setting is a bit early. In Chapter 5, we mainly focus on calibration
and consistency on the space of measurable functionsF(X ) even if some results can be adapted
toH-calibration.

3.3 Robustness and Lipchitzness

In this section, we overview the deep link that exist between adversarial examples and Lipschitz-
ness. Indeed, a Lipschitz function is a function that does not vary a lot when changing its input
and a classi�er is robust if a small perturbation does not change the prediction. Formally, we recall
a classi�er h is certifiably robust at level ε at input xwith label y if there exists a property depend-
ing on h, x, y and ε that implies that for all x′ such that d(x, x′) ≤ ε, h(x′) = y. We �rst
recall a property linking Lipschitzness to Robustness. Then, we present the existing methods for
building Lipschitz Neural Networks.

3.3.1 Lipschitz Property of Neural Networks

The Lipschitz constant has seen a growing interest in the last few years in the �eld of deep learn-
ing [Virmaux and Scaman, 2018, Fazlyab et al., 2019, Combettes and Pesquet, 2020, Béthune
et al., 2021]. Indeed, numerous results have shown that neural networks with a small Lipschitz
constant exhibit better generalization [Bartlett et al., 2017], higher robustness to adversarial at-
tacks [Szegedy et al., 2014, Farnia et al., 2019, Tsuzuku et al., 2018], better training stability [Xiao
et al., 2018, Trockman et al., 2021], improved Generative Adversarial Networks [Arjovsky et al.,
2017], etc. Formally, we de�ne the Lipschitz constant with respect to the `2 norm of a Lipschitz
continuous function f as follows:

Lip2(f) = sup
x,x′∈X
x6=x′

‖f(x)− f(x′)‖2
‖x− x′‖2

.

Intuitively, if a classi�er is Lipschitz, one can bound the impact of a given input variation on
the output, hence obtaining guarantees on the adversarial robustness. We can formally character-
ize the robustness of a neural network with respect to its Lipschitz constant with the following
proposition:

Proposition 3 (Tsuzuku et al. [2018]). Let f : X → RK be an L-Lipschitz continuous classifier
for the `2 norm. Let ε > 0, x ∈ X and y ∈ Y the label of x. If at point x, the marginMf (x)
satisfies:

Mf (x) := max(0, fy(x)−max
y′ 6=y

fy′(x)) >
√

2Lε

then we have for every τ such that ‖τ‖2 ≤ ε:

argmax
k

fk(x+ τ) = y
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From Proposition 3, it is straightforward to compute a robustness certi�cate for a given point.
Consequently, in order to build robust neural networks the margin needs to be large and the
Lipschitz constant small to get optimal guarantees on the robustness for neural networks. Beyond
adversarial robustness, Lipschitzness has shown its utility in Wasserstein Generative Adversarial
Networks. Indeed, the discriminator objective writes as a Wasserstein-1 distance in its dual form:

W1(P, G]Pz) = sup
f : 1-Lip

Ex∼P[f(x)]− Ez∼Pz [f(G(z))]

where Pz denotes the latent space, andG the generator function. It is worth noting that Wasser-
stein GANs highly improved the stability of training for GANs.

Lipschitz Constant of Neural Networks. A neural network is a function f de�ned as a suc-
cession of linear and non-linear activation functions σ:

f(x) = (ALσ(AL−1 . . . σ(A1x+ b1) . . .) + bL)

Assuming that σ is 1-Lipschitz, we have:

‖f(x)− f(y)‖2 ≤ ‖A1‖2 . . . ‖AL‖2‖x− y‖2

with ‖A‖2 is the spectral norm ofA de�ned as

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

=
√
λmax(ATA)

where λmax(ATA) denotes the greatest eigenvalue ofATA. Note that ‖A‖2 is also the greatest
singular value of A. Then the Lipschitz constant of f is upperbounded by ‖A1‖2 . . . ‖AL‖2.
Hence, to control the Lipschitz constant of a neural network, it is usual to control the spectral
norm of each layer. It could be done either in penalizing this upperbound or imposing a spectral
norm equals or smaller than 1 for each layer.

Lipschitz Regularization of Neural Networks. Based on the insight that Lipschitz Neural
Networks are more robust to adversarial attacks, researchers have developed several techniques
to regularize and constrain the Lipschitz constant of neural networks by adding a regularization
Ω(f) to the classi�cation objective to encourage a smaller Lipschitz constant. However, the com-
putation of the Lipschitz constant of neural networks has been shown to be NP-hard [Virmaux
and Scaman, 2018]. Most methods therefore tackle the problem by reducing or constraining the
Lipschitz constant at the layer level. For instance, the work of Cisse et al. [2017], Huang et al.
[2020a] and Wang et al. [2020a] exploit the orthogonality of the weights matrices to build Lips-
chitz layers. Other approaches [Gouk et al., 2018, Jia et al., 2017, Sedghi et al., 2018, Singla et al.,
2021b, Araujo et al., 2021] proposed to estimate or upper-bound the spectral norm of convolu-
tional and dense layers using for instance the power iteration method [Golub et al., 2000]. While
these methods have shown interesting results in terms of accuracy, empirical robustness and e�-
ciency, they can not provide provable guarantees since the Lipschitz constant of the trained net-
works remains unknown or vacuous.
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Algorithm 2: Spectral normalization algorithm
Require: Matrix W, Nb. Iter. n
Initialize u and v
v ←Wu/‖Wu‖2
u←W>v/‖W>v‖2

 n iterations
h← 2/(

∑
i(Wu · v)i)

2

return h

3.3.2 Learning 1-Lipschitz layers

Several works proposed methods to build 1-Lipschitz layers in order to boost adversarial ro-
bustness. These worls provide deterministic guarantees for adversarial robustness. One can ei-
ther normalize the weight matrices by their largest singular values making the layer 1-Lipschitz, as
in [Yoshida and Miyato, 2017, Miyato et al., 2018, Farnia et al., 2019, Anil et al., 2019] or project
the weight matrices on the Stiefel manifold [Li et al., 2019b, Trockman et al., 2021, Singla and
Feizi, 2021].

The �rst natural idea to learn 1-Lipschitz layers is to normalize the matrices in the forward pass
of a Neural Networks : Ai ← Ai

‖Ai‖2 . This natural idea was exploited by Miyato et al. [2018].
A key di�culty is the computation of the spectral norm ‖Ai‖2. The authors proposed to use
the power iteration method to compute the spectral norm (see Algorithm 2). The number of
iterations might be prohibitive, hence the authors proposed to use only one step in the training
phase to make it faster. This method e�ectively approximates well the spectral norm of the last
layer. However, this method presents some disadvantages. The spectral normalization has for side
e�ect reducing the importance of smaller singular values. A consequence is the gradient vanishing
that is very present in this structure.

Other approaches [Anil et al., 2019, Singla et al., 2021a, Huang et al., 2021b] proposed methods
leveraging the properties of activation functions to constraint the Lipschitz constant of Neural
Networks. These works are usually useful to help to improve the performance of linear orthogonal
layers. We now present how methods that focus on learning orthogonal layers.

Learning Orthogonal layers A workaround for the limitations of previously presented meth-
ods is to build norm preserving linear layers, i.e. orthogonal layers. We recall a matrixΩ ∈ Rd×d
is said to be orthogonal if for every x ∈ Rd, ‖Ωx‖2 = ‖x‖2. Indeed, such layers exactly preserve
the norm, hence avoiding the reducing the importance all singular values and gradient vanishing
issues. Recently, there have been a trend in aiming at learning Orthogonal Layers in neural net-
works. While all works have similar objectives, their execution is di�erent. It is a di�cult question
to conciliate the convolution structure with orthogonality of linear layers. The presented works
of Li et al. [2019b], Trockman et al. [2021] and Singla and Feizi [2021] (denoted BCOP, Cayley
and SOC respectively) present the advantage of being “compatible” with convolutional structure
in layers.
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The BCOP layer (Block Convolution Orthogonal Parameterization) uses an iterative algorithm
proposed by Björck et al. [1971] to orthogonalize a linear transformation. The BCOP layer relies
on the following algorithm to orthonormalize a linear operatorM :

M ×
(
I +

1

2
Q+

3

8
Q2 + · · ·+ (−1)p

(
1
2

p

)
Qp + . . .

)

with Q = I − MTM . To build a “convolutional layer” from the BCOP procedure, the au-
thors proposed to work directly on the kernels of the convolutions, proposing block operations
to orthogonalize convolutions.

Two other alternatives, the SOC layer (Skew Orthogonal Convolution) and the Cayley layer,
used two di�erent parametrizations of the Special Orthogonal GroupSOn(R) using skew-symmetric
matrices. Indeed, in Riemmanian geometry, the space of skew-symmetric matrices is isomorphic
to the tangent space of SOn(R) at any point.

SOC layers use the exponential mapping of a skew symmetric matrix de�ned using the follow-
ing Taylor expansion:

exp{A} :=
∞∑
k=0

Ak

k!

which de�nes an orthogonal matrix, indeed (exp{A})T exp{A} = I . More precisely, the appli-
cationA 7→ exp{A} de�nes a surjective mapping ofSOn(R) from the space of skew-symmetric
matrices. To approximate the exponential of a matrix, the authors proposed to use a �nite number
of terms in its Taylor series expansion. To be adapted to convolutions, a skew-symmetric linear
transformation A = M − MT can be computed in a Deep Learning libraries as Pytorch or
Tensor�ow using the convolution and convolution-transpose operators.

The Cayley method proposed by Trockman et al. [2021] use the Cayley transform to orthog-
onalize the weights matrices. Given a skew symmetric matrixA, the Cayley transform consists in
computing the orthogonal matrix:

Cayley(A) = (I −A)−1(I +A) .

Akin exponential mapping, the Cayley Transform de�nes a surjective mapping of SOn(R) from
the space of skew-symmetric matrices. To craft such operators, the authors proposed to work in
the Fourier domain and directly on the kernels to compute the Cayley Transform.

Reshaped Kernel Methods. It has been shown by Cisse et al. [2017] and Tsuzuku et al. [2018]
that the spectral norm of a convolution can be upper-bounded by the norm of a reshaped kernel
matrix. Consequently, orthogonalizing directly this matrix upper-bound the spectral norm of the
convolution by 1. While this method is more computationally e�cient than orthogonalizing the
whole convolution, it lacks expressivity as the other singular values of the convolution are certainly
too constrained.
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3.3.3 Residual Networks

During the training phase in neural networks, it may occur some issues such as gradient vanishing
or gradient explosion [Hochreiter et al., 2001]. These issues limited the emergence of scalable
and very deep neural networks until He et al. [2016b] proposed the Residual Network (ResNet)
architecture de�ned with the following forward pass:{

x0 = x ∈ X
xt+1 = xt + Ft(xt) for t ∈ {0, . . . , T}

where Ft(xt) is typically a two layer neural networks:

Ft(xt) = W2,tσ(W1,txt)

for some weight matrices W1,t,W2,t and activation function σ. The ResNet uses residual con-
nection that have the e�ect of limiting gradient vanishing issues. Combined with batch normal-
ization, the issue of gradient explosion can also be mitigated, hence opening the possibility to very
deep and stable architecture.

To theoretically analyze the ResNet architecture, several works [Haber et al., 2017, E, 2017, Lu
et al., 2018, Chen et al., 2018b] proposed a “continuous time” interpretation of the forward pass
inspired by dynamical systems that can be de�ned as follows.

De�nition 18. Let (Ft)t∈[0,T ] be a family of functions onRd, we define the continuous time Resid-
ual Networks flow associated with Ft as:{

x0 = x ∈ X
dxt
dt = Ft(xt) for t ∈ [0, T ]

This continuous time interpretation helps as it allows us to consider the stability of the forward
propagation through the stability of the associated dynamical system. A dynamical system is said
to be stable if two trajectories starting from an input and another one remain su�ciently close to
each other all along the propagation. This stability property takes all its sense in the context of
adversarial classi�cation.

It was argued by Haber et al. [2017] that when Ft does not depend on t or vary slowly with
time3, the stability can be characterized by the eigenvalues of the Jacobian matrix ∇xFt(xt):
the dynamical system is stable if the real part of the eigenvalues of the Jacobian remains negative
throughout the propagation. This property however only relies on intuition and this condition
might be di�cult to verify in practice. In Chapter 6, in order to derive stability properties, we
study gradient �ows and convex potentials, which are subclasses of Residual networks.

Other works [Huang et al., 2020b, Li et al., 2020b] also proposed to enhance adversarial ro-
bustness using dynamical systems interpretations of Residual Networks. Both works argue that
using particular discretization schemes would make gradient attacks more di�cult to compute
due to numerical stability. These works did not provide any provable guarantees for such ap-
proaches. We bridge this gap providing principled guarantees for Residual Networks.

3This blurry de�nition of "vary slowly" makes the property di�cult to apply.
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In this chapter, we answer Question 1: “What is the nature of equilibria in the adver-

sarial examples game?” by proving the existence of Mixed Nash equilibria in the adversarial
example game when both the adversary and the classi�er can use randomized strategies. First, we
motivate in Section 4.1 the necessity for using randomized strategies both with the attacker and
the classi�er. Then, we extend the work of Pydi and Jog [2021a], by rigorously reformulating the
adversarial risk as a linear optimization problem over distributions. In fact, we cast the adversar-
ial risk minimization problem as a Distributionally Robust Optimization (DRO) [Blanchet and
Murthy, 2019] problem for a well suited cost function. This formulation naturally leads us, in
Section 4.2, to analyze adversarial risk minimization as a zero-sum game. We demonstrate that,
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in this game, the duality gap always equals 0, meaning that it always admits approximate mixed
Nash equilibria.

Afterwards, we aim at designing an e�cient algorithm to learn an optimally robust random-
ized classi�er. We focus on learning a �nite mixture of classi�ers. Drawing inspiration from robust
optimization Sinha et al. [2017] and subgradient methods Boyd [2003], we derive in Section 4.3
a �rst oracle algorithm to optimize a �nite mixture. Then, following the line of work of [Cu-
turi, 2013], we introduce an entropic regularization to e�ectively compute an approximation of
the optimal mixture. We validate our �ndings with experiments on simulated and real datasets,
namely CIFAR-10 an CIFAR-100 Krizhevsky and Hinton [2009].

4.1 The Adversarial Attack Problem

4.1.1 A Motivating Example

Figure 4.1: Motivating example: blue distribution represents label−1 and the red one, label +1. The height
of columns represents their mass. The red and blue arrows represent the attack on the given clas-
si�er. On left: deterministic classi�ers (f1 on the left, f2 in the middle) for whose, the blue point
can always be attacked. On right: a randomized classi�er, where the attacker has a probability
1/2 of failing, regardless of the attack it selects.

Consider the binary classi�cation task illustrated in Figure 4.1. We assume that all input-output
pairs (X,Y ) are sampled from a distribution P de�ned as follows

P(Y = ±1) = 1/2 and

{
P(X = 0 | Y = −1) = 1

P(X = ±1 | Y = 1) = 1/2

Given access toP, the adversary aims to maximize the expected risk, but can only move each point
by at most 1 on the real line. In this context, we study two classi�ers: f1(x) = −x − 1/2 and
f2(x) = x − 1/21. Both f1 and f2 have a standard risk of 1/4. In the presence of an adversary,
the risk (a.k.a. the adversarial risk) increases to 1. Here, using a randomized classi�er can make
the system more robust. Consider f where f = f1 w.p. 1/2 and f2 otherwise. The standard risk
of f remains 1/4 but its adversarial risk is 3/4 < 1. Indeed, when attacking f , any adversary will
have to choose between moving points from 0 to 1 or to−1. Either ways, the attack only works
half of the time; hence an overall adversarial risk of 3/4. Furthermore, if f knows the strategy the
adversary uses, it can always update the probability it gives to f1 and f2 to get a better (possibly

1(X,Y ) ∼ P is misclassi�ed by fi if and only if fi(X)Y ≤ 0
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deterministic) defense. For example, if the adversary chooses to always move 0 to 1, the classi�er
can set f = f1 w.p. 1 to retrieve an adversarial risk of 1/2 instead of 3/4.

Now, what happens if the adversary can use randomized strategies, meaning that for each point
it can �ip a coin before deciding where to move? In this case, the adversary could decide to move
points from 0 to 1 w.p. 1/2 and to−1 otherwise. This strategy is still optimal with an adversarial
risk of 3/4 but now the classi�er cannot use its knowledge of the adversary’s strategy to lower the
risk. We are in a state where neither the adversary nor the classi�er can bene�t from unilaterally
changing its strategy. In the game theory terminology, this state is called a Mixed Nash equilib-
rium.

4.1.2 General setting

Let us consider a loss function: L : Θ × (X × Y) → [0,∞) satisfying the following set of
assumptions.

Assumption 1 (Loss function). 1) The loss functionL is a non negative Borel measurable function.
2) For all θ ∈ Θ, L(θ, ·) is upper-semi continuous. 3) There existsM > 0 such that for all θ ∈ Θ,
(x, y) ∈ X × Y , 0 ≤ L(θ, (x, y)) ≤M .

It is usual to assume upper-semi continuity when studying optimization over distributions [Vil-
lani, 2003, Blanchet and Murthy, 2019]. Furthermore, considering bounded (and positive) loss
functions is also very common in learning theory [Bartlett and Mendelson, 2002] and is not re-
strictive.

In the adversarial examples framework, the loss of interest is the 0/1 loss, for whose surrogates
are misunderstood and is the object of Chapter 5; hence it is essential that a 0/1 loss satis�es
Assumption 1. In the binary classi�cation setting (i.e. Y = {−1,+1}) a possible 0/1 loss writes
L0/1(θ, (x, y)) = 1yfθ(x)≤0. Then, assuming that for all θ, fθ(·) is continuous and for all x,
f·(x) is continuous, the 0/1 loss satis�es Assumption 1. In particular, it is the case for neural
networks with continuous activation functions.

4.1.3 Measure Theoretic Lemmas

We �rst recall and prove some important lemmas about measure theory.

Lemma 1 (Fubini’s theorem). LetL : Θ×(X ×Y)→ [0,∞) satisfying Assumption 1. Then for
allµ ∈M1

+(Θ),
∫
L(θ, ·)dµ(θ) is Borel measurable; forQ ∈M1

+(X×Y),
∫
L(·, (x, y))dQ(x, y)

is Borel measurable. Moreover:
∫
L(θ, (x, y))dµ(θ)dQ(x, y) =

∫
L(θ, (x, y))dQ(x, y)dµ(θ)

Lemma 2. LetL : Θ× (X ×Y)→ [0,∞) satisfying Assumption 1. Then for all µ ∈M1
+(Θ),

(x, y) 7→
∫
L(θ, (x, y))dµ(θ) is upper semi-continuous and hence Borel measurable.
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Proof. Let (xn, yn)n be a sequence of X × Y converging to (x, y) ∈ X × Y . Let M be
an upper bound on the loss L. For all θ ∈ Θ, M − L(θ, ·) is non negative and lower semi-
continuous. Then by Fatou’s Lemma :∫

M − L(θ, (x, y))dµ(θ) ≤
∫

lim inf
n→∞

M − L(θ, (xn, yn))dµ(θ)

≤ lim inf
n→∞

∫
M − L(θ, (xn, yn))dµ(θ)

We then have:
∫
M −L(θ, ·)dµ(θ) is lower semi-continuous and then

∫
L(θ, ·)dµ(θ) is

upper-semi continuous.

Lemma 3. LetL : Θ× (X ×Y)→ [0,∞) satisfying Assumption 1. Then for all µ ∈M1
+(Θ),

Q 7→
∫
L(θ, (x, y))dµ(θ)dQ(x, y) is upper semi-continuous for the weak topology of measures.

Proof. −
∫
L(θ, ·)dµ(θ) is lower semi-continuous from Lemma 2. ThenM−

∫
L(θ, ·)dµ(θ)

is lower semi-continuous and non negative. Letus denote v this function. Let (vn)n be a
non-decreasing sequence of continuous bounded functions such that vn → v. Let (Qk)k
converge weakly towards Q. Then by monotone convergence theorem:

∫
vdQ = lim

n

∫
vndQ = lim

n
lim
k

∫
vndQk ≤ lim inf

k

∫
vdQk

Then Q 7→
∫
vdQ is lower semi-continuous and then

Q 7→
∫
L(θ, (x, y))dµ(θ)dQ(x, y)

is upper semi-continuous for weak topology of measures.

4.1.4 Adversarial Risk Minimization

The standard risk for a single classi�er θ associated with the lossL satisfying Assumption 1 writes:
R(θ) := E(x,y)∼P[L(θ, (x, y))]. Similarly, the adversarial risk of θ at level ε associated with the
lossL is de�ned as

Rε(θ) := E(x,y)∼P

[
sup

x′∈X , d(x,x′)≤ε
L(θ, (x′, y))

]
.

It is clear that R0(θ) = R(θ) for all θ. We can generalize these notions with distributions
of classi�ers. In other terms the classi�er is then randomized according to some distribution
µ ∈M1

+(Θ). A classi�er is randomized if for a given input, the output of the classi�er is a prob-
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ability distribution. The standard risk of a randomized classi�er µ writesR(µ) = Eθ∼µ[R(θ)].
Similarly, the adversarial risk of the randomized classi�er µ at level ε is

Rε(µ) := E(x,y)∼P

[
sup

x′∈X , d(x,x′)≤ε
Eθ∼µ

[
L(θ, (x′, y))

]]
.

For instance, for the 0/1 loss, the inner maximization problem, consists in maximizing the proba-
bility of misclassi�cation for a given pair (x, y). Note thatR(δθ) = R(θ) andRε(δθ) = Rε(θ).
In the remainder of this section, we study the adversarial risk minimization problems with ran-
domized and deterministic classi�ers and denote

Vrandε := inf
µ∈M1

+(Θ)
Rε(µ), Vdetε := inf

θ∈Θ
Rε(θ) (4.1)

Note that we can show that the standard risk in�ma are equal : Vrand0 = Vdet0 .

Proposition 4. Let P be a Borel probability distribution on X × Y , and L a loss satisfying As-
sumption 1, then:

inf
µ∈M1

+(Θ)
R(µ) = inf

θ∈Θ
R(θ)

Proof. We have infµ∈M1
+(Θ)R(µ) ≤ infθ∈ΘR(θ). Now, let µ ∈M1

+(Θ), then:

R(µ) = Eθ∼µ(R(θ)) ≥ essinf
µ

Eθ∼µ(R(θ))

≥ inf
θ∈Θ
R(θ).

where essinf denotes the essential in�mum.

Remark 2. No randomization is needed for minimizing the standard risk. Denoting V this com-
mon value, we also have the following inequalities for any ε > 0, V ≤ Vrandε ≤ Vdetε .

4.1.5 Distributional Formulation of the Adversarial Risk

To account for the possible randomness of the adversary, we rewrite the adversarial attack problem
as a convex optimization problem over distributions. Let us �rst introduce the set of adversarial
distributions.

De�nition 19 (Set of adversarial distributions). LetP be a Borel probability distribution onX×Y
and ε > 0. We define the set of adversarial distributions as

Aε(P) :=
{
Q ∈M+

1 (X × Y) | ∃γ ∈M+
1

(
(X × Y)2

)
,

d(x, x′) ≤ ε, y = y′ γ-a.s., Π1]γ = P, Π2]γ = Q
}

whereΠi denotes the projection on the i-th component, and g] the push-forward measure by a mea-
surable function g.
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An attacker that can move the initial distributionP anywhere inAε(P) is not applying a point-
wise deterministic perturbation as considered in the standard adversarial risk. In other words, for a
point (x, y) ∼ P, the attacker could choose a distribution q(· | (x, y)) whose support is included
in {(x′, y′) | d(x, x′) ≤ ε, y = y′} from which he will sample the adversarial attack. In this
sense, we say the attacker is allowed to be randomized.

Link with DRO. We immediately remark thatAε(P) corresponds to the Wasserstein-∞ set
associated with the cost

d′((x, y), (x′, y′)) 7→
{
d(x, x′) if y = y′

+∞ otherwise.

Such a set can be de�ned from usual (not∞) Wasserstein uncertainty sets: for an arbitrary ε > 0,
we de�ne the cost cε as follows

cε((x, y), (x′, y′)) :=

{
0 if d(x, x′) ≤ ε and y = y′

+∞ otherwise.

This cost is lower semi-continuous and penalizes to in�nity perturbations that change the label
or move the input by a distance greater than ε. As Proposition 5 shows, the Wasserstein ball asso-
ciated with cε is equal toAε(P).

Proposition 5. Let P be a Borel probability distribution on X × Y and ε > 0 and η ≥ 0, then
Bcε(P, η) = Aε(P). Moreover,Aε(P) is convex and compact for the weak topology ofM+

1 (X ×
Y).

Proof. Letη > 0. LetQ ∈ Aε(P). There existsγ ∈M+
1

(
(X × Y)2

)
such that,d(x, x′) ≤

ε, y = y′ γ-almost surely, andΠ1]γ = P, and Π2]γ = Q. Then
∫
cεdγ = 0 ≤ η. Then,

Wcε(P,Q) ≤ η, and Q ∈ Bcε(P, η). Reciprocally, let Q ∈ Bcε(P, η). Then, since the
in�mum is attained in the Wasserstein de�nition, there exists γ ∈ M+

1

(
(X × Y)2

)
such

that
∫
cεdγ ≤ η. Since cε((x, x′), (y, y′)) = +∞ when d(x, x′) > ε and y 6= y′, we

deduce that, d(x, x′) ≤ ε and y = y′, γ-almost surely. Then Q ∈ Aε(P). We have then
shown that:Aε(P) = Bcε(P, η).

The convexity ofAε(P) is immediate from the relation with the Wasserstein uncertainty
set.

Let us show �rst thatAε(P) is relatively compact for the weak topology. To do so we will
show thatAε(P) is tight and apply Prokhorov theorem. Let δ > 0, (X × Y, d⊕ d′) being
a Polish space, {P} is tight then there exists Kδ compact such that P(Kδ) ≥ 1 − δ. Let
K̃δ := {(x′, y′) | ∃(x, y) ∈ Kδ, d(x′, x) ≤ ε, y = y′}. Recalling that (X , d) is proper
(i.e. the closed balls are compact), so K̃δ is compact. Moreover for Q ∈ Aε(P), Q(K̃δ) ≥
P(Kδ) ≥ 1− δ. And then, Prokhorov’s theorem holds, andAε(P) is relatively compact for
the weak topology.

Let us now prove that Aε(P) is closed to conclude. Let (Qn)n be a sequence of Aε(P)
converging towards some Q for weak topology. For each n, there exists γn ∈ M1

+(X × Y)

50



4.1 The Adversarial Attack Problem

such that d(x, x′) ≤ ε and y = y′ γn-almost surely and Π1]γn = P, Π2]γn = Qn.
{Qn, n ≥ 0} is relatively compact, then tight, then

⋃
n ΓP,Qn is tight, then relatively com-

pact by Prokhorov’s theorem. (γn)n ∈
⋃
n ΓP,Qn , then up to an extraction, γn → γ. Then

d(x, x′) ≤ ε and y = y′ γ-almost surely, and by continuity, Π1]γ = P and by continuity,
Π2]γ = Q. And henceAε(P) is closed.

FinallyAε(P) is a convex compact set for the weak topology.

Thanks to this result, we can reformulate the adversarial risk as the value of a convex problem
overAε(P).

Proposition 6. Let P be a Borel probability distribution on X × Y and µ a Borel probability
distribution onΘ. LetL : Θ × (X × Y)→ [0,∞) satisfying Assumption 1. Let ε > 0. Then:

Rε(µ) = sup
Q∈Aε(P)

E(x′,y′)∼Q,θ∼µ
[
L(θ, (x′, y′))

]
. (4.2)

The supremum is attained. Moreover Q∗ ∈ Aε(P) is an optimum of Problem (4.2) if and only if
there exists γ∗ ∈ M+

1

(
(X × Y)2

)
such that: Π1]γ

∗ = P, Π2]γ
∗ = Q∗, d(x, x′) ≤ ε, y = y′

andL(x′, y′) = supu∈X ,d(x,u)≤ε L(u, y) γ∗-almost surely.

Proof. Let µ ∈M1
+(Θ). Let us de�ne f̃ as

f̃ : ((x, y), (x′, y′)) 7→ Eθ∼µ[L(θ, (x, y))]− cε((x, y), (x′, y′)) .

f̃ is upper-semi continuous, hence upper semi-analytic. Then, by upper semi continuity
of Eθ∼µ[L(θ, ·)] on the compact {(x′, y′) | d(x, x′) ≤ ε, y = y′} and [Bertsekas and
Shreve, 2004, Proposition 7.50], there exists a universally measurable mapping T such that
Eθ∼µ[L(θ, T (x, y))] = sup(x′,y′), d(x,x′)≤ε,y=y′ Eθ∼µ[L(θ, (x, y))]. Let Q = T]P, then
Q ∈ Aε(P). And then

E(x,y)∼P

[
sup

(x′,y′), d(x,x′)≤ε,y=y′
Eθ∼µ

[
L(θ, (x′, y′))

]]
≤ sup

Q∈Aε(P)
E(x,y)∼Q[Eθ∼µ[L(θ, (x, y))]] .

Reciprocally, let Q ∈ Aε(P). There exists γ ∈M1
+((X ×Y)2), such that d(x, x′) ≤ ε

and y = y′ γ-almost surely, and,Π1]γ = P andΠ2]γ = Q. Then: Eθ∼µ[L(θ, (x′, y′))] ≤
sup(u,v), d(x,u)≤ε,y=v Eθ∼µ[L(θ, (u, v))] γ-almost surely. Then, we deduce that:

E(x′,y′)∼Q
[
Eθ∼µ

[
L(θ, (x′, y′))

]]
= E(x,y,x′,y′)∼γ

[
Eθ∼µ

[
L(θ, (x′, y′))

]]
≤ E(x,y,x′,y′)∼γ

[
sup

(u,v), d(x,u)≤ε,y=v
Eθ∼µ[L(θ, (u, v))]

]
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≤ E(x,y)∼P

[
sup

(u,v), d(x,u)≤ε,y=v
Eθ∼µ[L(θ, (u, v))]

]

Then we deduce the expected result:

Rε(µ) = sup
Q∈Aε(P)

E(x,y)∼Q[Eθ∼µ[L(θ, (x, y))]]

Let us show that the optimum is attained. Q 7→ E(x,y)∼Q[Eθ∼µ[L(θ, (x, y))]] is upper
semi continuous by Lemma 3 for the weak topology of measures, and Aε(P) is compact
by Proposition 5, then by Prop. 7.32 from [Bertsekas and Shreve, 2004], the supremum is
attained for a certain Q∗ ∈ Aε(P).

The adversarial attack problem is a DRO problem for the cost cε. Proposition 6 means that,
against a �xed classi�er µ, the randomized attacker that can move the distribution inAε(P) has
exactly the same power as an attacker that moves every single point x in the ball of radius ε. By
Proposition 6, we also deduce that the adversarial risk can be casted as a linear optimization prob-
lem over distributions.

Remark 3. In a recent work, [Pydi and Jog, 2021a] proposed a similar adversary using Markov
kernels but left as an open question the link with the classical adversarial risk, due to measurability
issues. Proposition 6 solves these issues. The result is similar to [Blanchet and Murthy, 2019]. Al-
though we believe its proof might be extended for infinite valued costs, [Blanchet and Murthy, 2019]
did not treat that case. We provide an alternative proof in this special case.

4.2 Nash Equilibria in the Adversarial Game

4.2.1 Adversarial Attacks as a Zero-Sum Game

Thanks to Proposition 4.1, the adversarial risk minimization problem can be seen as a two-player
zero-sum game that writes as follows,

inf
µ∈M1

+(Θ)
sup

Q∈Aε(P)
E(x,y)∼Q,θ∼µ[L(θ, (x, y))]. (4.3)

In this game, the classi�er’s objective is to �nd the best distributionµ ∈M+
1 (Θ) while the adver-

sary is manipulating the data distribution. For the classi�er, solving the in�mum problem in Equa-
tion (4.3) simply amounts to solving the adversarial risk minimization problem – Problem (4.1),
whether the classi�er is randomized or not. Then, given a randomized classi�erµ ∈M+

1 (Θ), the
goal of the attacker is to �nd a new data-set distribution Q in the set of adversarial distributions
Aε(P) that maximizes the risk of µ. More formally, the adversary looks for

Q ∈ argmax
Q∈Aε(P)

E(x,y)∼Q,θ∼µ[L(θ, (x, y))].
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In the game theoretic terminology,Q is also called the best response of the attacker to the classi�er
µ.

Remark 4. Note that for a given classifier µ there always exists a “deterministic” best response, i.e.
every single point (x, y) is mapped to another single point T (x, y). Let T : X × Y → X × Y be
defined such that for all (x, y) ∈ X ×Y , Eθ∼µ[L(T (x, y))] = supx′, d(x,x′)≤ε Eθ∼µ[L(x′, y)].
Thanks to Prop. 7.50 from [Bertsekas and Shreve, 2004], T is P-measurable. Moreover, we get that
Q = (T, id)]P belongs to the best response to µ. Therefore, T is the optimal “deterministic” attack
against the classifier µ.

4.2.2 Dual Formulation of the Game

Every zero sum game has a dual formulation that allows a deeper understanding of the frame-
work. Here, from Proposition 6, we can de�ne the dual problem of adversarial risk minimization
for randomized classi�ers. This dual problem also characterizes a two-player zero-sum game that
writes as follows,

sup
Q∈Aε(P)

inf
µ∈M1

+(Θ)
E(x,y)∼Q,θ∼µ[L(θ, (x, y))]. (4.4)

In this dual game problem, the adversary plays �rst and seeks an adversarial distribution that has
the highest possible risk when faced with an arbitrary classi�er. This means that it has to select
an adversarial perturbation for every input x, without seeing the classi�er �rst. In this case, as
pointed out by the motivating example in Section 4.1.1, the attack can (and should) be randomized
to ensure maximal harm against several classi�ers. Then, given an adversarial distribution, the
classi�er objective is to �nd the best possible classi�er on this distribution. Let us denoteDε the
value of the dual problem. Since the weak duality is always satis�ed, we get

Dε ≤ Vrandε ≤ Vdetε . (4.5)

Inequalities in Equation (4.5) mean that the lowest risk the classi�er can get (regardless of the
game we look at) is Dε. In particular, this means that the primal version of the game, i.e. the
adversarial risk minimization problem, will always have a value greater or equal to Dε. As we
discussed in Section 4.1.1, this lower bound may not be attained by a deterministic classi�er. As
we will demonstrate in the next section, optimizing over randomized classi�ers allows to approach
Dε arbitrary closely.

Note that, we can always de�ne the dual problem when the classi�er is deterministic,

sup
Q∈Aε(P)

inf
θ∈Θ

E(x,y)∼Q[L(θ, (x, y))].

We can deduce an immediate corollary from Proposition 4 that the dual problems for deter-
ministic and randomized classi�ers have the same value.

Corollary 1. Under Assumption 1, the dual for randomized and deterministic classifiers are equal.
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4.2.3 Nash Equilibria for Randomized Strategies

In the adversarial examples game, a Nash equilibrium is a couple (µ∗,Q∗) ∈ M1
+(Θ)×Aε(P)

where both the classi�er and the attacker have no incentive to deviate unilaterally from their strate-
gies µ∗ and Q∗. More formally, (µ∗,Q∗) is a Nash equilibrium of the adversarial examples game
if (µ∗,Q∗) is a saddle point of the objective function

(µ,Q) 7→ E(x,y)∼Q,θ∼µ[L(θ, (x, y))].

Alternatively, we can say that (µ∗,Q∗) is a Nash equilibrium if and only ifµ∗ solves the adversarial
risk minimization problem – Problem (4.1), Q∗ the dual problem – Problem (4.6), and Dε =
Vεrand. In our problem, Q∗ always exists but it might not be the case for µ∗. Then for any δ > 0,
we say that (µδ,Q∗) is a δ-approximate Nash equilibrium if Q∗ solves the dual problem and µδ
satis�esDε ≥ Rε(µδ)− δ.

We now state our main result: the existence of approximate Nash equilibria in the adversarial
examples game when both the classi�er and the adversary can use randomized strategies. More
precisely, we demonstrate that the duality gap between the adversary and the classi�er problems
is zero, which gives as a corollary the existence of Nash equilibria.

Theorem 9. Let P ∈ M1
+(X × Y). Let ε > 0. Let L : Θ × (X × Y) → [0,∞) satisfying

Assumption 1. Then strong duality always holds in the randomized setting:

inf
µ∈M+

1 (Θ)
max

Q∈Aε(P)
Eθ∼µ,(x,y)∼Q[L(θ, (x, y))] (4.6)

= max
Q∈Aε(P)

inf
µ∈M+

1 (Θ)
Eθ∼µ,(x,y)∼Q[L(θ, (x, y))]

The supremum is always attained. IfΘ is a compact set, and for all (x, y) ∈ X × Y ,L(·, (x, y))
is lower semi-continuous, the infimum is also attained.

Proof. Aε(P), endowed with the weak topology of measures, is a Hausdor� compact con-
vex space, thanks to Proposition 5. Moreover, M1

+(Θ) is clearly convex and (Q, µ) 7→∫
LdµdQ is bilinear, hence concave-convex. Moreover thanks to Lemma 3, for all µ, Q 7→∫
LdµdQ is upper semi-continuous. Then Fan’s theorem applies and strong duality holds.

Corollary 2. Under Assumption 1, for any δ > 0, there exists a δ-approximate Nash-Equibilrium
(µδ,Q∗). Moreover, if the infimum is attained, there exists a Nash equilibrium (µ∗,Q∗) to the
adversarial examples game.

Bose et al. [2021] mentioned a particular form of Theorem 9 for convex cases. It is still a direct
corollary of Fan’s theorem. This theorem can be stated as follows:

Theorem 10. LetP ∈M1
+(X ×Y), ε > 0 andΘ a convex set. LetL be a loss satisfying Assump-

tion 1, and also, (x, y) ∈ X × Y ,L(·, (x, y)) is a convex function, then we have the following:

inf
θ∈Θ

sup
Q∈Aε(P)

EQ[L(θ, (x, y))] = sup
Q∈Aε(P)

inf
θ∈Θ

EQ[L(θ, (x, y))]
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The supremum is always attained. IfΘ is a compact set then, the infimum is also attained.

Theorem 9 shows that Dε = Vεrand. From a game theoretic perspective, this means that the
minimal adversarial risk for a randomized classi�er against any attack (primal problem) is the same
as the maximal risk an adversary can get by using an attack strategy that is oblivious to the classi�er
it faces (dual problem). This suggests that playing randomized strategies for the classi�er could
substantially improve robustness to adversarial examples. In the next section, we will design an
algorithm that e�ciently learn a randomized classi�er and show improved adversarial robustness
over classical deterministic defenses.

Remark 5. Theorem 9 remains true if one replaces Aε(P) with any other Wasserstein compact
uncertainty sets (see [Yue et al., 2020] for conditions of compactness).

4.3 Finding the Optimal Classi�ers

4.3.1 An Entropic Regularization

Let {(xi, yi)}Ni=1 samples independently drawn from P and denote P̂ := 1
N

∑N
i=1 δ(xi,yi) the

associated empirical distribution. One can show the adversarial empirical risk minimization can
be cast as:

R̂?ε := inf
µ∈M+

1 (Θ)

N∑
i=1

sup
Qi∈Γi,ε

E(x,y)∼Qi,θ∼µ[L(θ, (x, y))]

where Γi,ε is de�ned as :

Γi,ε :=
{
Qi |

∫
dQi =

1

N
,

∫
cε((xi, yi), ·)dQi = 0

}
.

Proposition 7. Let P̂ := 1
N

∑N
i=1 δ(xi,yi). Let l be a loss satisfying Assumption 1. Then we have:

1

N

N∑
i=1

sup
x, d(x,xi)≤ε

Eθ∼µ[L(θ, (x, y))] =

N∑
i=1

sup
Qi∈Γi,ε

E(x,y)∼Qi,θ∼µ[L(θ, (x, y))]

where Γi,ε is defined as :

Γi,ε :=
{
Qi |

∫
dQi =

1

N
,

∫
cε((xi, yi), ·)dQi = 0

}
.

Proof. This proposition is a direct application of Proposition 6 for Dirac distributions δ(xi,yi).
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In the following, we regularize the above objective by adding an entropic term to each inner
supremum problem. Let α := (αi)

N
i=1 ∈ RN+ such that for all i ∈ {1, . . . , N}, and let us

consider the following optimization problem:

R̂?ε,α := inf
µ∈M+

1 (Θ)

N∑
i=1

sup
Qi∈Γi,ε

EQi,µ[L(θ, (x, y))]

− αiKL
(
Qi

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
where U(x,y) is an arbitrary distribution of support equal to:

S
(ε)
(x,y) :=

{
(x′, y′) | cε((x, y), (x′, y′)) = 0

}
,

and for all Q,U ∈M+(X × Y),

KL(Q||U) :=

{ ∫
log
(
dQ
dU

)
dQ + |U| − |Q| if Q� U

+∞ otherwise.

Note that whenα = 0, we recover the problem of interest R̂?ε = R̂?ε,0. Moreover, we show the
regularized supremum tends to the standard supremum whenα→ 0.

Proposition 8. For µ ∈M+
1 (Θ), one has

lim
αi→0

sup
Qi∈Γi,ε

EQi,µ[L(θ, (x, y))]− αiKL
(
Q
∣∣∣∣∣∣ 1

N
U(xi,yi)

)
= sup

Qi∈Γi,ε
E(x,y)∼Qi,θ∼µ[L(θ, (x, y))].

Proof. Let us �rst show that forα ≥ 0, supQi∈Γi,ε EQi,µ[L(θ, (x, y))]−αKL
(
Qi

∣∣∣∣∣∣ 1
NU(xi,yi)

)
admits a solution. Let α ≥ 0, (Qn

α,i)n≥0 a sequence such that

EQnα,i,µ[L(θ, (x, y))]− αKL
(
Qn
α,i

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
−→
n

sup
Qi∈Γi,ε

EQi,µ[L(θ, (x, y))]− αKL
(
Qi

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
.

As Γi,ε is tight ((X , d) is a proper metric space therefore all the closed ball are compact)
and by Prokhorov’s theorem, we can extract a subsequence which converges toward Q?

α,i.
Moreover, L is upper semi-continuous (u.s.c), thus Q → EQ,µ[L(θ, (x, y))] is also u.s.c.a
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Moreover, Q → −αKL
(
Q
∣∣∣∣∣∣ 1
NU(xi,yi)

)
is also u.s.c. b, therefore, by considering the limit

superior as n goes to in�nity we obtain that

lim sup
n→+∞

EQnα,i,µ[L(θ, (x, y))]− αKL
(
Qn
α,i

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
= sup

Qi∈Γi,ε
EQi,µ[L(θ, (x, y))]− αKL

(
Qi

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
≤ EQ?α,i,µ[L(θ, (x, y))]− αKL

(
Q?
α,i

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
from which we deduce that Q?

α,i is optimal.
Let us now show the result. We consider a positive sequence of (α

(`)
i )`≥0 such thatα(`)

i →
0. Let us denote Q?

α
(`)
i ,i

and Q?
i the solutions of respectively:

max
Qi∈Γi,ε

EQi,µ[L(θ, (x, y))]− α(`)
i KL

(
Qi

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
and

max
Qi∈Γi,ε

EQi,µ[L(θ, (x, y))] .

Since Γi,ε is tight, (Q?

α
(`)
i ,i

)`≥0 is also tight and we can extract by Prokhorov’s theorem a
subsequence which converges towards Q?. Moreover we have

EQ?i ,µ[L(θ, (x, y))]− α(`)
i KL

(
Q?
i

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
≤ EQ?

α
(`)
i
,i
,µ[L(θ, (x, y))]− α(`)

i KL
(
Q?

α
(`)
i ,i

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
from which follows that

0 ≤ EQ?i ,µ[L(θ, (x, y))]− EQ?
α

(`)
i
,i
,µ[L(θ, (x, y))]

≤ α(`)
i

(
KL
(
Q?
i

∣∣∣∣∣∣ 1

N
U(xi,yi)

)
− KL

(
Q?

α
(`)
i ,i

∣∣∣∣∣∣ 1

N
U(xi,yi)

))
Then by considering the limit superior we obtain that

lim sup
`→+∞

EQ?
α

(`)
i
,i
,µ[L(θ, (x, y))] = EQ?i ,µ[L(θ, (x, y))]

from which follows that

EQ?i ,µ[L(θ, (x, y))] ≤ EQ?,µ[L(θ, (x, y))]
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and by optimality of Q?
i we obtain the desired result.

aIndeed, by considering a decreasing sequence of continuous and bounded functions which converge towards
Eµ[L(θ, (x, y))] and by de�nition of the weak convergence the result follows.

bFor α = 0 the result is clear, and if α > 0, note that KL
(
·
∣∣∣∣∣∣ 1
N
U(xi,yi)

)
is lower semi-continuous

By adding an entropic term to the objective, we obtain an explicit formulation of the supremum
involved in the sum: as soon as α > 0 (which means that each αi > 0), each sub-problem be-
comes just the Fenchel-Legendre transform of KL(·|U(xi,yi)/N) which has the following closed
form:

sup
Qi∈Γi,ε

EQi,µ[L(θ, (x, y))]− αiKL
(
Qi||

1

N
U(xi,yi)

)
=
αi
N

log

(∫
X×Y

exp

(
Eθ∼µ[L(θ, (x, y))]

αi

)
dU(xi,yi)

)
.

Finally, we end up with the following problem:

inf
µ∈M+

1 (Θ)

N∑
i=1

αi
N

log

(∫
exp

Eµ[L(θ, (x, y))]

αi
dU(xi,yi)

)
.

In order to solve the above problem, one needs to compute the integral involved in the objective.
To do so, we estimate it by randomly sampling mi ≥ 1 samples (u

(i)
1 , . . . , u

(i)
mi) ∈ (X × Y)mi

from U(xi,yi) for all i ∈ {1, . . . , N}which leads to the following optimization problem

inf
µ∈M+

1 (Θ)

N∑
i=1

αi
N

log

 1

mi

mi∑
j=1

exp
Eµ
[
L(θ, u

(i)
j )
]

αi

 (4.7)

denoted R̂mε,α wherem := (mi)
N
i=1 in the following. Now we aim at controlling the error made

with our approximations. We decompose the error into two terms

|R̂mε,α − R̂?ε| ≤ |R̂?ε,α − R̂mε,α|+ |R̂?ε,α − R̂?ε|

where the �rst one corresponds to the statistical error made by our estimation of the integral, and
the second to the approximation error made by the entropic regularization of the objective. First,
we show a control of the statistical error using Rademacher complexities [Bartlett and Mendelson,
2002].

Proposition 9. Let m ≥ 1 and α > 0 and denote α := (α, . . . , α) ∈ RN and m :=
(m, . . . ,m) ∈ RN . Then by denoting M̃ = max(M,α) with M as in Assumption 1, we have
with a probability of at least 1− δ

|R̂?ε,α − R̂mε,α| ≤
2eM/α

N

N∑
i=1

Ci + 6M̃eM/α

√
log
(

4
δ

)
2mN
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whereCi := 1
mEσ

[
supθ∈Θ

∑m
j=1 σjL(θ, u

(i)
j )
]

andσ := (σ1, . . . , σm) withσi i.i.d. sampled
as P[σi = ±1] = 1/2.

Proof. Let us denote for all µ ∈M+
1 (Θ),

R̂m

ε,α(µ) :=
N∑
i=1

αi
N

log

 1

m

m∑
j=1

exp
Eµ
[
L(θ, u

(i)
j )
]

αi

.
Let us also consider (µ

(m)
n )n≥0 and (µn)n≥0 two sequences such that

R̂m

ε,α(µ(m)
n ) −−−−−→

n→+∞
R̂m

ε,α, R̂ε,α(µn) −−−−−→
n→+∞

R̂?ε,α.

Since R̂m

ε,α ≤ R̂m

ε,α(µn), we remark that

R̂m

ε,α − R̂?ε,α = R̂m

ε,α − R̂m

ε,α(µn)

+ R̂m

ε,α(µn)− R̂ε,α(µn)

+ R̂ε,α(µn)− R̂?ε,α
≤ sup

µ∈M+
1 (Θ)

∣∣∣R̂m

ε,α(µ)− R̂ε,α(µ)
∣∣∣

+ R̂ε,α(µn)− R̂?ε,α,

and by considering the limit, we obtain that

R̂m

ε,α − R̂?ε,α ≤ sup
µ∈M+

1 (Θ)

∣∣∣R̂m

ε,α(µ)− R̂ε,α(µ)
∣∣∣

Similarly we have that

R̂?ε,α − R̂m

ε,α ≤ R̂?ε,α − R̂ε,α(µ(m)
n )

+ R̂ε,α(µ(m)
n )− R̂m

ε,α(µ(m)
n )

+ R̂m

ε,α(µ(m)
n )− R̂m

ε,α

from which follows that

R̂?ε,α − R̂m

ε,α ≤ sup
µ∈M+

1 (Θ)

∣∣∣R̂m

ε,α(µ)− R̂ε,α(µ)
∣∣∣
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Therefore we obtain that

∣∣∣R̂?ε,α − R̂m

ε,α

∣∣∣ ≤ N∑
i=1

α

N
sup

µ∈M+
1 (Θ)

∣∣∣ log

 1

mi

mi∑
j=1

exp

Eθ∼µ
[
L(θ, u

(i)
j ))

]
α


− log

(∫
X×Y

exp

(
Eθ∼µ[L(θ, (x, y))]

α

)
dU(xi,yi)

)∣∣∣.
Observe thatL is non negative, therefore because the log function is 1-Lipschitz on [1,+∞),
we obtain that

∣∣∣R̂?ε,α − R̂m

ε,α

∣∣∣ ≤ N∑
i=1

α

N
sup

µ∈M+
1 (Θ)

∣∣∣ 1

m

m∑
j=1

exp

Eθ∼µ
[
L(θ, u

(i)
j ))

]
α


−
∫
X×Y

exp

(
Eθ∼µ[L(θ, (x, y))]

α

)
dU(xi,yi)

∣∣∣.
Let us now denote for all i = 1, . . . , N ,

Ĉi(µ,u
(i)) :=

1

m

m∑
j=1

exp

Eθ∼µ
[
L(θ, u

(i)
j ))

]
α


Ci(µ) :=

∫
X×Y

exp

(
Eθ∼µ[L(θ, (x, y))]

α

)
dU(xi,yi).

and let us de�ne

f(u(1), . . . ,u(N)) :=

N∑
i=1

α

N
sup

µ∈M+
1 (Θ)

∣∣∣Ĉi(µ,u(i))− Ci(µ)
∣∣∣

where u(i) := (u
(i)
1 , . . . , u

(m)
1 ). By denoting z(i) = (u

(i)
1 , . . . , u

(i)
k−1, z, u

(i)
k+1, . . . , u

(i)
m ),

we have that

|f(u(1), . . . ,u(N))− f(u(1), . . . ,u(i−1), z(i),u(i+1), . . . ,u(N))|
≤ α

N

∣∣∣ sup
µ∈M+

1 (Θ)

∣∣∣Ĉi(µ,u(i))− Ci(µ)
∣∣∣

− sup
µ∈M+

1 (Θ)

∣∣∣Ĉi(µ, z(i))− Ci(µ)
∣∣∣∣∣∣

≤ sup
µ∈M+

1 (Θ)

|Ĉi(µ,u(i))− Ĉi(µ, z(i))|
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=
α

N

∣∣∣ 1

m

exp

Eθ∼µ
[
L(θ, u

(i)
k ))

]
α

− exp

(
Eθ∼µ

[
L(θ, z(i)))

]
α

)∣∣∣
≤ 2α exp(M/α)

Nm

where the last inequality comes from the fact that the lossL is upper bounded byM . Then
by applying the McDiarmid Inequality, we obtain that with a probability of at least 1− δ,

∣∣∣R̂?ε,α − R̂m

ε,α

∣∣∣ ≤ E(f(u(1), . . . ,u(N))) +
2α exp(M/α)√

mN

√
log(2/δ)

2
.

We have that

E(f(u(1), . . . ,u(N))) =
α

n

N∑
i=1

E

(
sup

µ∈M+
1 (Θ)

∣∣∣Ĉi(µ,u(i))− Ci(µ)
∣∣∣) .

From the properties of Rademacher complexity (see Section 2.1.4), we have for every i :

E

(
sup

µ∈M+
1 (Θ)

∣∣∣Ĉi(µ)− Ci(µ)
∣∣∣) ≤ 2E(Rad(T ◦ u(i)))

where we recall for any class of functionsH de�ned on Z and point z : (z1, . . . , zq) ∈
Zq

H ◦ z :=
{

(f(z1), . . . , f(zq)), f ∈ F
}

,

Rad(T ◦ z) :=
1

q
Eσ∼{±1}

[
sup
f∈H

q∑
i=1

σif(zi)

]
,

T :=
{
u→ exp

(
Eθ∼µ[L(θ, u))]

α

)
, µ ∈M+

1 (Θ)
}
.

Moreover, as mentioned in Section 2.1.4,x 7→ exp(x/α) is exp(M/α)
α -Lipschitz on (−∞,M ],

we have

Rad(T ◦ u(i)) ≤ exp(M/α)

α
Rad(H ◦ u(i))

where

H :=
{
u→ Eθ∼µ[L(θ, u))], µ ∈M+

1 (Θ)
}
.
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Let us now de�ne

g(u(1), . . . ,u(N)) :=

N∑
j=1

2 exp(M/α)

N
Rad(H ◦ u(j)).

We observe that

|g(u(1), . . . ,u(N))− g(u(1), . . . ,u(i−1), z(i),u(i+1), . . . ,u(N))|

≤ 2 exp(M/α)

N
|Rad(H ◦ u(i))− Rad(H ◦ z(i))|

≤ 2 exp(M/α)

N

M

m
.

By Applying the McDiarmid’s Inequality, we have that with a probability of at least 1− δ

E(g(u(1), . . . ,u(N))) ≤ g(u(1), . . . ,u(N)) +
2 exp(M/α)M√

mN

√
log(2/δ)

2
.

Remarks also that

Rad(H ◦ u(i)) =
1

m
Eσ∼{±1}

 sup
µ∈M+

1 (Θ)

m∑
j=1

σiEµ(L(θ, u
(i)
j ))


=

1

m
Eσ∼{±1}

sup
θ∈Θ

m∑
j=1

σiL(θ, u
(i)
j )


Finally, applying a union bound leads to the desired result.

We deduce from the above Proposition that in the particular case where Θ is �nite such that
|Θ| = l, with probability of at least 1− δ

|R̂?ε,α − R̂mε,α| ∈ O
(
MeM/α

√
log(l)

m

)
.

This case is of particular interest when one wants to learn the optimal mixture of some given
classi�ers in order to minimize the adversarial risk. In the following proposition, we control the
approximation error made by adding an entropic term to the objective.

Proposition 10. Denote for β > 0, (x, y) ∈ X × Y and µ ∈M+
1 (Θ),

A
(x,y)
β,µ := {u| sup

v∈S(ε)
(x,y)

Eµ[L(θ, v)] ≤ Eµ[L(θ, u)] + β}
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where

S
(ε)
(x,y) :=

{
(x′, y′) | cε((x, y), (x′, y′)) = 0

}
,

If there existsCβ such that for all (x, y) ∈ X ×Y andµ ∈M+
1 (Θ), U(x,y)

(
A

(x,y)
β,µ

)
≥ Cβ then

we have

|R̂?ε,α − R̂?ε| ≤ 2α| log(Cβ)|+ β.

The assumption made in the above Proposition states that for any given random classi�er µ,
and any given point (x, y), the set of β-optimal attacks at this point has at least a certain amount
of mass depending on the β chosen. This assumption is always true when β is su�ciently large.
However, in order to obtain a tight control of the error, a trade-o� exists betweenβ and the small-
est amount of massCβ of β-optimal attacks.

Proof. Following the same steps as for the proof of Proposition 9, let (µεn)n≥0 and (µn)n≥0

be two sequences such that

R̂εε,α(µεn) −−−−−→
n→+∞

R̂?ε,α, R̂εε(µn) −−−−−→
n→+∞

R̂?ε.

Remarks that

R̂?ε,α − R̂?ε ≤ R̂?ε,α − R̂εε,α(µn)

+ R̂εε,α(µn)− R̂εε(µn)

+ R̂εε(µn)− R̂?ε
≤ sup

µ∈M+
1 (Θ)

∣∣∣R̂εε,α(µ)− R̂εε(µ)
∣∣∣

+ R̂εε(µn)− R̂?ε

Then by considering the limit we obtain that

R̂?ε,α − R̂?ε ≤ sup
µ∈M+

1 (Θ)

∣∣∣R̂εε,α(µ)− R̂εε(µ)
∣∣∣.

Similarly, we obtain that

R̂?ε − R̂?ε,α ≤ sup
µ∈M+

1 (Θ)

∣∣∣R̂εε,α(µ)− R̂εε(µ)
∣∣∣,
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from which follows that∣∣∣R̂?ε,α − R̂?ε∣∣∣ ≤ 1

N

N∑
i=1

sup
µ∈M+

1 (Θ)

∣∣∣α log

(∫
X×Y

exp

(
Eµ[L(θ, (x, y))]

α

)
dU(xi,yi)

)
− sup
u∈Sε

(xi,yi)

Eµ[L(θ, u)]
∣∣∣.

Let µ ∈M+
1 (Θ) and i ∈ {1, . . . , N}, then we have∣∣∣α log

(∫
X×Y

exp

(
Eµ[L(θ, (x, y))]

α

)
dU(xi,yi)

)
− sup
u∈Sε

(xi,yi)

Eµ[L(θ, u)]
∣∣∣

=
∣∣∣α log

(∫
X×Y

exp

(Eµ[L(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[L(θ, u)]

α

)
dU(xi,yi)

)∣∣∣
= α

∣∣∣ log

(∫
A

(xi,yi)

β,µ

exp

(Eµ[L(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[L(θ, u)]

α

)
dU(xi,yi)

+

∫
(A

(xi,yi)

β,µ )c
exp

(Eµ[L(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[L(θ, u)]

α

)
dU(xi,yi)

)∣∣∣
≤ α

∣∣∣ log

(
exp

(
−β
α

)
U(xi,yi)

(
A

(xi,yi)
β,µ

))∣∣∣
+ α

∣∣∣ log(1+

exp(β/α)

U(xi,yi)

(
A

(xi,yi)
β,µ

) ∫
(A

(xi,yi)

β,µ )c
exp

(Eµ[L(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[L(θ, u)]

α

)
dU(xi,yi)

∣∣∣
≤ α log(1/Cβ) + β +

α

Cβ

≤ 2α log(1/Cβ) + β

Note that (A
(xi,yi)
β,µ )c denotes the complementary set ofA(xi,yi)

β,µ .

Now that we have shown that solving (4.7) allows to obtain an approximation of the true so-
lution R̂?ε , we next aim at deriving an algorithm to compute it.

4.3.2 Proposed Algorithms

From now on, we focus on �nite class of classi�ers. Let Θ = {θ1, . . . , θl}, we aim to learn the
optimal mixture of classi�ers in this case. The adversarial empirical risk is therefore de�ned as:

R̂ε(λ) =

N∑
i=1

sup
Qi∈Γi,ε

E(x,y)∼Qi

[
l∑

k=1

λkL(θk, (x, y))

]
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for λ ∈ ∆l := {λ ∈ Rl+ s.t.
∑l

i=1 λi = 1}, the probability simplex of Rl. One can notice
that R̂ε(·) is a continuous convex function, hence minλ∈∆l R(λ) is attained for a certain λ?.
Then there exists a non-approximate Nash equilibrium (λ?,Q?) in the adversarial game when
Θ is �nite. Here, we present two algorithms to learn the optimal mixture of the adversarial risk
minimization problem.

Algorithm 3: Oracle-based Algorithm
λ0 = 1l

l ;T ; η = 2
M
√
lT

for t = 1, . . . , T do

Q̃ s.t. ∃Q? ∈ Aε(P) best response toλt−1 and for all k ∈ [l],
|EQ̃(L(θk, (x, y)))− EQ?(L(θk, (x, y)))| ≤ δ
gt =

(
EQ̃(L(θ1, (x, y)), . . . ,EQ̃(L(θl, (x, y))

)T
λt = Π∆l(λt−1 − ηgt)

end
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Figure 4.2: On left, 40 data samples with their set of possible attacks represented in shadow and the opti-
mal randomized classi�er, with a color gradient representing the probability of the classi�er. In
the middle, convergence of the oracle (α = 0) and regularized algorithm for di�erent values of
regularization parameters. On right, in-sample and out-sample risk for randomized and deter-
ministic minimum risk in function of the perturbation size ε. In the latter case, the randomized
classi�er is optimized with oracle Algorithm 3.

An Entropic Relaxation. Using the results from Section 4.3.1, adding an entropic term to
the objective allows to have a simple reformulation of the problem, as follows:

inf
λ∈∆l

N∑
i=1

α

N
log

 1

mi

mi∑
j=1

exp

(∑l
k=1 λkL(θk, u

(i)
j )

α

)
Note that inλ, the objective is convex and smooth. One can apply the accelerated PGD [Beck and
Teboulle, 2009, Tseng, 2008] which enjoys an optimal convergence rate for �rst order methods
ofO(T−2) for T iterations.

A First Oracle Algorithm. Besides entropic regularization, we present an oracle-based al-
gorithm inspired from [Sinha et al., 2017] and the convergence of projected subgradient meth-
ods [Boyd, 2003]. The computation of the inner supremum problem is usually NP-hard. Let us
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justify it on a mixture of linear classi�ers in binary classi�cation: fθk,bk(x) = 〈θk, x〉 + bk for
k ∈ JlK and λ = 1l/l. Let us consider the `2 norm and x = 0 and y = 1. Then the problem of
attacking x is the following:

sup
τ, ‖τ‖≤ε

1

l

l∑
k=1

1〈θk,x+τ〉+bk≤0

This problem is equivalent to a linear binary classi�cation problem on τ , which is known to be
NP-hard. Assuming the existence of a δ-approximate oracle to this supremum, the algorithm is
presented in Algorithm 3. We get the following guarantee for this algorithm.

Proposition 11. Let Θ = (θ1, . . . , θl), L : Θ × (X × Y) → [0,∞) be a loss satisfying
Assumption 1,M bed defined as in Assumption 1 and T ≥ 1. Then, Algorithm 3 satisfies:

min
t∈JT−1K

R̂ε(λt)− R̂?ε ≤ 2δ +
2M
√
l√

T

Proof. Thanks to Danskin theorem, if Q? is a best response toλ, then

g? := (EQ? [L(θ1, (x, y))], . . . ,EQ? [L(θl, (x, y))])T

is a subgradient ofλ→ R(λ). In particular for everyλ? optimal classi�er:

〈gt,λ? − λt−1〉 ≤ Rε(λ?)−Rε(λt−1) .

Moreover, we also have

|〈g?t − gt,λt−1 − λ?〉| ≤ ‖g?t − gt‖∞‖λt−1 − λ?‖1
≤ δ(‖λt−1‖1 + ‖λ?‖1)

≤ 2δ .

We also have that ‖gt‖2 ≤
√
lδ. Let η ≥ 0 be the learning rate. Then we have for all t ≥ 1:

‖λt − λ?‖2 ≤ ‖λt−1 − ηgt − λ?‖2

= ‖λt−1 − λ?‖2 − 2η〈gt,λt−1 − λ?〉+ η2‖gt‖22
≤ ‖λt−1 − λ?‖2 − 2η〈g?t ,λt−1 − λ?〉
+ 2η〈g?t − gt,λt−1 − λ?〉+ η2M2l

≤ ‖λt−1 − λ?‖2 − 2η(Rε(λt−1)−Rε(λ?)) + 4ηδ + η2M2l
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We then deduce by summing:

2η

T−1∑
t=0

Rε(λt)−Rε(λ?) ≤ 4δηT + ‖λ0 − λ?‖2 + η2M2lT

Then we have:

min
t∈JT−1K

Rε(λt)−Rε(λ?) ≤ 2δ +
4

ηT
+M2lη

The left-hand term is minimal for η = 2
M
√
lT

, and for this value:

min
t∈JT−1K

Rε(λt)−Rε(λ?) ≤ 2δ +
2M
√
l√

T

.
The main drawback of the above algorithm is that one needs to have access to an oracle to

guarantee the convergence of the proposed algorithm. The entropic regularized algorithm is made
to �nd an approximate the solution and do not require access to an oracle.

4.3.3 A General Heuristic Algorithm

So far, our algorithms are not easily practicable in the case of deep learning. Adversarial examples
are known to be easily transferrable from one model to another [Tramèr et al., 2017, Papernot
et al., 2016a]. So we aim at learning diverse models. To this end, and support our theoretical
claims, we propose an heuristic algorithm (see Algorithm 4) to train a robust mixture of l clas-
si�ers. We alternatively train these classi�ers with adversarial examples against the current mix-
ture and update the probabilities of the mixture according to the algorithms we proposed in Sec-
tion 4.3.2.

4.4 Experiments

4.4.1 Synthetic Dataset

To illustrate our theoretical claims, we start by testing our learning algorithm on the following
synthetic two-dimensional problem. Let us consider the distributionP de�ned asP(Y = ±1) =
1/2, P(X | Y = −1) = N (0, I2) and P(X | Y = 1) = 1

2 [N ((−3, 0), I2) +N ((3, 0), I2)].
We sample 1000 training points from this distribution and randomly generate 10 linear classi�ers
that achieves a standard training risk lower than 0.4. To simulate an adversary with budget ε in `2
norm, we proceed as follows. For every sample (x, y) ∼ P we generate 1000 points uniformly at
random in the ball of radius ε and select the one maximizing the risk for the 0/1 loss. Figure 4.2
(left) illustrates the type of mixtures we obtain after convergence of our algorithms. Note that
in this toy problem, we are likely to �nd the optimal adversary with this sampling strategy if we
sample enough attack points.
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Algorithm 4: Adversarial Training for Mixtures
l: number of models, T : number of iterations,
Tθ: number of updates for the models θ,
Tλ: number of updates for the mixtureλ,
λ0 = (λ1

0, . . . λ
l
0), θ0 = (θ1

0, . . . θ
l
0)

for t = 1, . . . , T do

LetBt be a batch of data.
if t mod (Tθl + 1) 6= 0 then

k sampled uniformly in {1, . . . , l}
B̃t ←Attack of images inBt for the model (λt,θt)
θtk ←Update θt−1

k with B̃t for �xedλt with a SGD step
else

λt ←Updateλt−1 onBt for �xed θt with oracle-based or regularized algorithm
with Tλ iterations.

end

end

To evaluate the convergence of our algorithms, we compute the adversarial risk of our mixture
for each iteration of both the oracle and regularized algorithms. Figure 4.2 illustrates the con-
vergence of the algorithms w.r.t the regularization parameter. We observe that the risk for both
algorithms converge. Moreover, they converge towards the oracle minimizer when the regulariza-
tion parameter α goes to 0.

Finally, to demonstrate the improvement randomized techniques o�er against deterministic
defenses, we plot in Figure 4.2 (right) the minimum adversarial risk for both randomized and
deterministic classi�ers w.r.t. ε. The adversarial risk is strictly better for randomized classi�er
whenever the adversarial budget ε is bigger than 2. This illustration corroborates our analysis of
Theorem 9, and motivates an in-depth study of a more challenging framework, namely image
classi�cation with neural networks.

4.4.2 CIFAR Datasets

Experimental Setup. We now implement our heuristic algorithm (Alg. 4) on CIFAR-10 and
CIFAR-100 datasets for both Adversarial Traning [Madry et al., 2018b] and TRADES [Zhang
et al., 2019a] loss. To evaluate the performance of Algorithm 4, we trained from 1 to 4 ResNet18 [He
et al., 2016b] models on 200 epochs per model2. We study the robustness with regards to `∞
norm and �xed adversarial budget ε = 8/255. The attack we used in the inner maximization of
the training is an adaptative version of PGD for mixtures of classi�ers with 10 steps. Note that for
one single model, Algorithm 4 exactly corresponds to adversarial training [Madry et al., 2018b]
or TRADES. For each of our setups, we made two independent runs and select the best one. The
training time of our algorithm is around four times longer than a standard Adversarial Training
(with PGD 10 iter.) with two models, eight times with three models and twelve times with four
models. We trained our models with a batch of size 1024 on 8 Nvidia V100 GPUs.

2L× 200 epochs in total, whereL is the number of models.
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Evaluation Protocol. At each epoch, we evaluate the current mixture on test data against PGD
attack with 20 iterations. To select our model and avoid over�tting [Rice et al., 2020], we kept
the most robust against this PGD attack. To make a �nal evaluation of our mixture of models,
we used an adapted version of AutoPGD (APGD) untargeted attacks [Croce et al., 2020b] for
randomized classi�ers with both Cross-Entropy (CE) and Di�erence of Logits Ratio (DLR) loss.
For both attacks, we made 100 iterations and 5 restarts.

Optimizer. For each of our models, The optimizer we used in all our implementations is SGD
with learning rate set to 0.4 at epoch 0 and is divided by 10 at half training then by 10 at the three
quarters of training. The momentum is set to 0.9 and the weight decay to 5 × 10−4. The batch
size is set to 1024.

Adaptation of Attacks. Since our classi�er is randomized, we need to adapt the attack accord-
ingly. To do so we used the expected loss:

L̃((λ,θ), (x, y)) =

l∑
k=1

λkL(θk, (x, y))

to compute the gradient in the attacks, regardless the loss (DLR or CE). For the inner maximiza-
tion at training time, we used a PGD attack on the cross-entropy loss with ε = 0.03.

Regularization in Practice. The entropic regularization in higher dimensional setting need
to be adapted to be more likely to �nd adversaries. To do so, we computed PGD attacks with only
3 iterations with 5 di�erent restarts instead of sampling uniformly 5 points in the `∞-ball. In our
experiments in the main paper, we use a regularization parameter α = 0.001. The learning rate
for the minimization onλ is always �xed to 0.001.

Alternate Minimization Parameters. Algorithm 4 implies an alternate minimization algo-
rithm. We set the number of updates of θ to Tθ = 50 and, the update ofλ to Tλ = 25.

4.4.3 E�ect of the Regularization

In this subsection, we experimentally investigate the e�ect of the regularization. In Figure 4.4, we
notice that the regularization has the e�ect of stabilizing, reducing the variance and improving
the level of the robust accuracy for adversarial training of mixtures (Algorithm 4). The standard
accuracy curves are very similar in both cases.

Results. The results are presented in Figure 4.3. We remark our algorithm outperforms the
standard adversarial training procedure in all the cases by more 1% on CIFAR-10 and CIFAR-
100, without additional loss of standard accuracy as it is shown in the left �gures. On TRADES,
the gain is even more important by more than 2% in robust accuracy. Moreover, it seems that
our algorithm, by adding more and more models, reduces the over�tting of adversarial training.
It also appears that robustness increases as the number of models increases. So far, experiments
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are computationally very costly, and it is di�cult to draw precise conclusions. Further, hyperpa-
rameter tuning [Gowal et al., 2020a] such as architecture, unlabeled data [Carmon et al., 2019b]
or activation function may still improve the results.

4.4.4 Additional Experiments on WideResNet28x10

We now evaluate our algorithm on WideResNet28x10 Zagoruyko and Komodakis [2016] archi-
tecture. Due to computation costs, we limit ourselves to 1 and 2 models, with regularization
parameter set to 0.001. Results are reported in Figure 4.5. We remark this architecture can lead
to more robust models, corroborating the results from Gowal et al. [2020a].

4.4.5 Over�tting in Adversarial Robustness

We further investigate the over�tting of our heuristic algorithm. We plotted in Figure 4.6 the
robust accuracy on ResNet18 with 1 to 5 models. The most robust mixture of 5 models against
PGD with 20 iterations occurs at epoch 198, i.e. at the end of the training, contrary to 1 to 4
models, where the most robust mixture occurs around epoch 101. However, the accuracy against
AutoPGD with 100 iterations in lower than the one at epoch 101 with global robust accuracy
of 47.6% at epoch 101 and 45.3% at epoch 198. This strange phenomenon would suggest that
the more powerful the attacks are, the more the models are subject to over�tting. We leave this
question to future works.

4.5 Discussions and Open Questions

On the need of Randomization. While we give a concrete example where randomization of
classi�ers is needed to be optimal in Section 4.1.1, [Pydi and Jog, 2021b] show there is no duality
gap when the classi�er is allowed to play a deterministic measurable classi�er. In other words, ran-
domization would not be useful for this game. We conjecture, as the hypothesis classΘ grows, the
duality gap decreases to 0. However, in �nite samples cases, it is not realistic to optimize over the
space of measurable functions. One may ask if we could �nd conditions on the space of classi�ers
and the distribution P such that randomization is required. Pinot et al. [2020] partially answered
this question when the attacker is regularized, but the general case is still an open question.

Statistical guarantees for randomized classi�ers. Although it is possible to derive uniform
convergence bounds for the adversarial classi�cation problem [Yin et al., 2019, Awasthi et al.,
2020] for deterministic classi�ers, deriving bounds for randomized classi�ers is still an open ques-
tion. One may think of adapting PAC-Bayes bounds [Guedj, 2019], but the proof scheme cannot
apply for adversarial classi�cation. A �rst attempt to derive such bounds was proposed by Viallard
et al. [2021], but the subject is still in its infancy.

Learning Optimal Randomized Classi�ers. For a given loss, learning the optimal random-
ized classi�er for a continuous parameter space is also an open question. It is a di�cult one though
since it requires learning over the space of distributions. Attempts have been made to optimize
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over the space of distributions [Chizat, 2021b,a, Kent et al., 2021] often using Wasserstein Gra-
dient Flows [Ambrosio et al., 2005] and particular �ows [Wibisono, 2018]. Recently, Domingo-
Enrich et al. [2020] proposed a particular �ow to optimize a min-max problem in the space of
distributions. While this paper gives good insights, the results are too preliminary to be adapted
and applied to adversarial learning problems.
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Adversarial Training, CIFAR-10 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.

1 81.9% 47.6% 47.7% 45.6%

2 81.9% 49.0% 49.6% 47.0%

3 81.7% 49.0% 49.3% 46.9%

4 82.6% 49.7% 49.8% 47.2%
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TRADES, CIFAR-10 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.

1 79.6% 50.9% 48.9% 48.3%

2 80.3% 52.3% 51.2% 50.2%

3 80.7% 52.8% 51.7% 50.7%

4 80.9% 53.0% 51.8% 50.8%
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Adversarial Training, CIFAR-100 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.

1 55.2% 24.1% 23.8% 22.5%

2 55.2% 25.3% 26.1% 23.6%

3 55.4% 25.7% 26.8% 24.2%

4 55.3% 26.0% 27.5% 24.5%
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Figure 4.3: Upper plots: Adversarial Training, CIFAR-10 dataset results. Middle plots: TRADES,
CIFAR-10 dataset results. Bottom plots: CIFAR-100 dataset results. On left: Comparison
of our algorithm with a standard adversarial training (one model). We reported the results for
the model with the best robust accuracy obtained over two independent runs because adversar-
ial training might be unstable. Standard and Robust accuracy (respectively in the middle and
on right) on CIFAR-10 test images in function of the number of epochs per classi�er with 1 to
3 ResNet18 models. The performed attack is PGD with 20 iterations and ε = 8/255.

72



4.5 Discussions and Open Questions

0 25 50 75 100 125 150 175 200
Epochs per model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy

1 models
2 models
3 models
4 models

0 25 50 75 100 125 150 175 200
Epochs per model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

1 models
2 models
3 models
4 models

0 25 50 75 100 125 150 175 200
Epochs per model

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

1 models
2 models
3 models
4 models

0 25 50 75 100 125 150 175 200
Epochs per model

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

1 models
2 models
3 models
4 models

Figure 4.4: On top: Standard accuracies over epochs with respectively no regularization and regularization
set to α = 0.001. On bottom: Robust accuracies for the same parameters against PGD attack
with 20 iterations and ε = 0.03.

Models Acc. APGDCE APGDDLR Rob. Acc.

1 85.2% 49.9% 50.2% 48.5%

2 86.0% 51.5% 52.1% 49.6%
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Figure 4.5: Comparison of our algorithm with a standard adversarial training (one model) on WideRes-
Net28x10. We reported the results for the model with the best robust accuracy obtained over
two independent runs because adversarial training might be unstable. Standard and Robust
accuracy (respectively in the middle and on right) on CIFAR-10 test images in function of the
number of epochs per classi�er with 1 and 2 WideResNet28x10 models. The performed attack
is PGD with 20 iterations and ε = 8/255.
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Figure 4.6: Standard and Robust accuracy (respectively on left and on right) on CIFAR-10 test images in
function of the number of epochs per classi�er with 1 to 5 ResNet18 models. The performed
attack is PGD with 20 iterations and ε = 8/255. The best mixture for 5 models occurs at the
end of training (epoch 198).
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The objective of this chapter is to study the problem of calibration and consistency in pres-
ence of adversaries and answer Question 2: “Which losses are consistent with regard to the

0/1 loss in the adversarial classi�cation setting?”. We study, in Section 5.1, the problem of
calibration in the adversarial setting and provide both necessary and su�cient conditions for a
loss to be calibrated in this setting. It is also worth noting that our results are easily extendable to
H-calibration (see Section 5.1.4). One on the main takeaways of our analysis is that no convex sur-
rogate loss can be calibrated in the adversarial setting. We however characterize a set of non-convex
loss functions, namely shifted odd functions that solve the calibration problem in the adversarial
setting. Finally, we focus on the problem of consistency in the adversarial setting in Section 5.2.
Based on min-max arguments, we provide insights that might help paving the way to prove con-
sistency of shifted odd functions in the adversarial setting. Speci�cally, we proved strong duality
results for these losses and show tight links with the 0/1-loss. From these insights, we are able to
provide a close but weaker property to consistency.

Setting. Let us consider a classi�cation task with input spaceX and output spaceY = {−1,+1}.
Let (X , d) be a proper Polish (i.e. completely separable) metric space representing the inputs
space. For all x ∈ X and δ > 0, we denote Bδ(x) the closed ball of radius δ and center x. We
also assume that for all x ∈ X and δ > 0,Bδ(x) contains at least two points1. Let us also endow
Y with the trivial metric d′(y, y′) = 1y 6=y′ . Then the space (X × Y, d ⊕ d′) is a proper Polish
space. For any Polish spaceZ , we denoteM+

1 (Z) the Polish space of Borel probability measures
1For instance, for any norm ‖·‖, (Rd, ‖·‖) is a Polish metric space satisfying this property.
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onZ . We will denoteF(Z) the space of real valued Borel measurable functions onZ . Finally, we
denote R̄ := R ∪ {∞,+∞}. Moreover, we take back the de�nitions introduced in Section 3.2.

5.1 Solving Adversarial Calibration

In this section, we study the calibration of adversarial margin losses with regard to the adversarial
0/1 loss. We �rst provide necessary and su�cient conditions under which margin losses are ad-
versarially calibrated. We then show that a wide range of surrogate losses that are calibrated in the
standard setting are not calibrated in the adversarial setting. Finally we propose a class of losses
that are calibrated in the adversarial setting, namely the shifted odd losses.

5.1.1 Necessary and Su�cient Conditions for Calibration

One of our main contributions is to �nd necessary and su�cient conditions for calibration in the
adversarial setting. In a brief, we identify that for studying calibration it is central to understand
the case where there might be indecision for classi�ers (i.e. η = 1/2). Indeed, in this case, either
labelling positively or negatively the input xwould lead the same loss for x. Next result provides
a necessary condition for calibration.

Theorem 11 (Necessary condition for Calibration). Letφ be a continuous margin loss and ε > 0.
If φ is adversarially calibrated at level ε, then φ is calibrated in the standard classification setting
and 0 6∈ argminα∈R̄

1
2φ(α) + 1

2φ(−α).

While the condition of calibration in the standard classi�cation setting seems natural, we need
to understand why 0 6∈ argminα∈R̄

1
2φ(α) + 1

2φ(−α). The intuition behind this result is that a
sequence of functions simply converging towards 0 in the ball of radius ε around some x can take
positive and negative values thus leading to suboptimal 0/1 adversarial risk.

Proof. Let us show that if 0 ∈ argminα∈R̄ φ(α) + φ(−α) then φ is not calibrated for the
adversarial problem. For that, let x ∈ X and we �x η = 1

2 . Forn ≥ 1, we de�ne fn(u) = 1
n

for u 6= x and− 1
n for u = x. Since |Bε(x)| ≥ 2, we have

Cφε(x,
1

2
, fn) = max

(
φ(

1

n
), φ(− 1

n
)

)
−−−→
n→∞

φ(0)

As, φ(0) = infα∈R̄
1
2(φ(α) + φ(−α)), the above means that (fn)n is a minimizing se-

quence forα 7→ 1
2(φ(α) + φ(−α)). Then thanks to Proposition 2, (fn)n is also a minimiz-

ing sequence forf 7→ Cφε(x, 1
2 , f). However, for every integern, we haveC0/1,ε(x,

1
2 , fn) =

1 6= 1
2 . As inff∈F(X ) Cε(x, 1

2 , f) = 1
2 , φ is not calibrated with regard to the 0/1 loss in the

adversarial setting at level ε. We also immediately notice that if φ is calibrated with regard to
0/1 loss in the adversarial setting at level ε then φ is calibrated in the standard setting.

It turns out that, given an additional assumption, this condition is actually su�cient to ensure
calibration.
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Theorem 12 (Su�cient condition for Calibration). Letφ be a continuous margin loss and ε > 0.
If φ is decreasing and strictly decreasing in a neighbourhood of 0 and calibrated in the standard
setting and 0 6∈ argminα∈R̄

1
2φ(α) + 1

2φ(−α), then φ is adversarially uniformly calibrated at
level ε.

Proof. Let ε ∈ (0, 1
2). Thanks to Theorem 8, φ is uniformly calibrated in the standard

setting, then there exists δ > 0, such that for all x ∈ X , η ∈ [0, 1], f ∈ F(X ):

Cφ(x, η, f)− C?φ(x, η) ≤ δ =⇒ C0/1(x, η, f)− C?0/1(x, η) ≤ ε.

Case η 6= 1
2 : Let x ∈ X and f ∈ F(X ) such that:

Cφε(x, η, f)− C?φε(x, η) = sup
u,v∈Bε(x)

ηφ(f(u)) + (1− η)φ(−f(v))− C?φε(x, η) ≤ δ

We recall thanks to Proposition 2 that for every u, v ∈ X ,

C?φε(u, η) = C?φ(v, η) = inf
α∈R

ηφ(α) + (1− η)φ(−α) .

Then in particular, for all x′ ∈ Bε(x), we have:

Cφ(x′, η, f)− C?φ(x′, η) ≤ sup
u,v∈Bε(x)

ηφ(f(u)) + (1− η)φ(−f(v))− C?φε(x, η)

≤ δ .

Then since φ is calibrated for standard classi�cation, for all x′ ∈ Bε(x), C(x′, η, f) −
C?(x′, η) ≤ ε. Since, ε < 1

2 , we have C(x′, η, f) = C?(x′, η) and then for all x′ ∈ Bε(x),
f(x′) < 0 if η < 1/2 or f(x′) ≥ 0 if η > 1/2. We then deduce that

Cε(x, η, f) = η sup
x′∈Bε(x)

1f(x′)≤0 + (1− η) sup
x′∈Bε(x)

1f(x′)>0

= min(η, 1− η) = C?ε (x, η)

Then we deduce, Cε(x, η, f)− C?ε (x, η) ≤ ε.
Case η = 1

2 : This shows us that calibration problems will only arise when η = 1
2 , i.e.

on points where the Bayes classi�er is indecise. For this case, we will reason by contradiction:
we can construct a sequence of points αn and βn, whose risks converge to the same opti-
mal value, while one sequence remains close to some positive value, and the other to some
negative value. Assume that for all n, there exist fn ∈ F(X ) and xn ∈ X such that

Cφε(xn,
1

2
, fn)− C?φε(xn,

1

2
) ≤ 1

n
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and there exists un, vn ∈ Bε(xn), such that

fn(un)fn(vn) ≤ 0

Let us denoteαn = fn(un) and βn = fn(vn). Moreover, we have thanks to Proposition 2:

0 ≤ 1

2
φ(αn) +

1

2
φ(−αn)− inf

u∈R

[
1

2
φ(u) +

1

2
φ(u)

]
≤ Cφε(x,

1

2
, fn)− C?φε(x,

1

2
)

≤ 1

n

Then we deduce that (αn)n is a minimizing sequence for u 7→ 1
2φ(u) + 1

2φ(−u) and simi-
larly (βn)n is also a minimizing sequence for u 7→ 1

2φ(u) + 1
2φ(−u) . Now note that there

always existα, β ∈ R̄ such that, up to an extraction of a subsequence, we haveαn −−−→
n→∞

α

and βn −−−→
n→∞

β. Furthermore by continuity of φ and since 0 6∈ argminφ(u) + φ(−u),
α 6= 0 and β 6= 0. Without loss of generality one can assume that α < 0 < β, then for n
su�ciently large, αn < 0 < βn. Moreover we have

0 ≤ 1

2
max(φ(αn), φ(βn)) +

1

2
max(φ(−αn), φ(−βn))− C?φε(x,

1

2
)

≤ Cφε(x,
1

2
, fn)− C?φε(x,

1

2
) ≤ 1

n

so that we deduce:

1

2
max(φ(αn), φ(βn)) +

1

2
max(φ(−αn), φ(−βn)) −→ inf

u∈R

[
1

2
φ(u) +

1

2
φ(u)

]
(5.1)

Since, for n su�ciently large, αn < 0 < βn and φ is decreasing and strictly decreasing in
a neighbourhood of 0, we have that:

max(φ(αn), φ(βn)) = φ(αn)

and
max(φ(−αn), φ(−βn)) = φ(−βn)

. Moreover, there exists λ > 0 such that for n su�ciently large φ(αn)− φ(βn) ≥ λ. Then
for n su�ciently large:

1

2
max(φ(αn), φ(βn)) +

1

2
max(φ(−αn), φ(−βn))

=
1

2
φ(αn) +

1

2
φ(−βn)

=
1

2
(φ(αn)− φ(βn)) +

1

2
φ(−βn) +

1

2
+ φ(βn)
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Figure 5.1: On the left, illustration of common standardly calibrated losses. On the right plot of their sym-
metrized version. Here we notice that 0 ∈ argminα φ(α) + φ(−α) for all these losses. Thus
none of them are adversarially calibrated.

≥ 1

2
λ+ inf

u∈R

[
1

2
φ(u) +

1

2
φ(u)

]
which leads to a contradiction with Equation 5.1. Then there exists a non zero integer n0

such that for all f ∈ F(X ), x ∈ X

Cφε(x,
1

2
, f)− C?φε(x,

1

2
) ≤ 1

n0
=⇒ ∀u, v ∈ Bε(x), f(u)× f(v) > 0.

The right-hand term is equivalent to: for all u ∈ Bε(x), f(u) > 0 or for all u ∈ Bε(x),
f(u) < 0. Then Cε(x, η, f) = 1

2 and then Cε(x, η, f) = C?ε (x, η)

Putting all that together, for all x ∈ X , η ∈ [0, 1], f ∈ F(X ):

Cφε(x, η, f)− C?φε(x, η) ≤ min(δ,
1

n0
) =⇒ Cε(x, η, f)− C?ε (x, η) ≤ ε.

Then φ is adversarially uniformly calibrated at level ε

Remark 6 (Decreasing hypothesis). For the reciprocal, the additional assumption thatφ is decreas-
ing and strictly decreasing in a neighborhood of 0 is not restrictive for usual losses. In Theorem 8,
this assumption is stated as a necessary and sufficient condition for convex losses to be calibrated.

5.1.2 Negative results

Thanks to Theorem 11, we can present two notable corollaries invalidating the use of two im-
portant classes of surrogate losses in the standard setting. The �rst class of losses are convex mar-
gin losses. These losses are maybe the most widely used in modern day machine learning as they
comprise the logistic loss or the margin loss that are the building block of most classi�cation algo-
rithms.

Corollary 1. Let ε > 0. Then no convex margin loss can be adversarially calibrated at level ε.

A convex loss satis�es 1
2φ(α) + 1

2φ(−α) ≥ φ(0), hence 0 ∈ argminα∈R φ(α) + φ(−α).
From Theorem 11, we deduce the result. Then, φ is not adversarially calibrated at level ε. This
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5 Calibration and Consistency in Presence of Adversarial Attacks

result seems counter-intuitive and highlights the di�culty of optimizing and understanding the
adversarial risk. Since convex losses are not calibrated, one may hope to rely on famous non-convex
losses such as sigmoid and ramp losses. But, unfortunately, such losses are not either calibrated.

Corollary 2. Let ε > 0. Let λ ∈ R and ψ be a lower-bounded odd function such that for all
α ∈ R, ψ > −λ. We define ψ as φ(α) = λ + ψ(α). Then φ is not adversarially calibrated at
level ε.

Indeed, 1
2φ(α) + 1

2φ(−α) = λ, so that argminα∈R
1
2φ(α) + 1

2φ(−α) = R. Thanks to
Theorem 11, φ is not adversarially calibrated at level ε. But, unfortunately, such losses are not
calibrated either as illustrated in Figure 5.1.

5.1.3 Positive results

Theorem 12 also gives su�cient conditions for φ to be adversarially calibrated. Leveraging this
result, we devise a class of margin losses that are indeed calibrated in the adversarial settings. We
call this class shifted odd losses, and we de�ne it as follows.

De�nition 20 (Shifted odd losses). We say thatφ is a shifted odd margin loss if there existsλ ≥ 0,
τ > 0, and a continuous lower bounded strictly decreasing odd function ψ in a neighborhood of 0
such that for all α ∈ R, ψ(α) ≥ −λ and φ(α) = λ+ ψ(α− τ).

The key di�erence between a standard odd margin loss and a shifted odd margin loss is the
variations of the functionα 7→ 1

2φ(α)+ 1
2φ(−α). The primary di�erence is that, in the standard

case the optima of this function are located at 0 while they are located in −∞ and +∞ in the
adversarial setting. Let us give some examples of margin shifted odd losses below.

Example (Shifted odd losses). For every ε > 0 and every τ > 0, the shifted logistic loss, defined as
follows, is adversarially calibrated at level ε: φ : α 7→ (1 + exp{(α− τ)})−1 This loss is plotted
on left in Figure 5.2. We also plotted on right in Figure 5.2 α 7→ 1

2φ(α) + 1
2φ(−α) to justify that

0 6∈ argminα∈R̄
1
2φ(α) + 1

2φ(−α). Also note that the shifted ramp loss also satisfies the same
properties.

A consequence of Theorem 12 is that shifted odd losses are adversarially calibrated, as demon-
strated in Proposition 12 stated below.

Proposition 12. Let φ be a shifted odd margin loss. For every ε > 0, φ is adversarially calibrated
at level ε.

Proof. Let λ > 0, τ > 0 and φ be a strictly decreasing odd function such that φ̃ de�ned as
φ̃(α) = λ+ φ(α− τ) is non-negative.

Proving that 0 /∈ argmint∈R̄
1
2 φ̃(t) + 1

2 φ̃(−t). φ is clearly strictly decreasing and non-
negative then it admits a limit l := − limt→+∞ φ̃(t) ≥ 0. Then we have:

lim
t→+∞

φ̃(t) = λ+ l and lim
t→−∞

φ̃(t) = λ− l
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5.1 Solving Adversarial Calibration

Consequently we have:

lim
t→∞

1

2
φ̃(t) +

1

2
φ̃(−t) = λ

On the other side φ̃(0) = λ + φ(−τ) > λ + φ(0) = λ since τ > 0 and φ is strictly
decreasing. Then 0 /∈ argmint∈R̄

1
2 φ̃(t) + 1

2 φ̃(−t).

Proving that φ̃ is calibrated for standard classi�cation. Let ε > 0, η ∈ [0, 1], x ∈ X .
If η = 1

2 , then for all f ∈ F(X ), C(x, 1
2 , f) = C?(x, 1

2) = 1
2 . Let us now assume that

η 6= 1
2 , we have for all f ∈ F(X ):

Cφ̃(x, η, f) = λ+ ηφ(f(x)− τ) + (1− η)φ(−f(x)− τ)

= λ+ (η − 1

2
)(φ(f(x)− τ)− φ(−f(x)− τ))

+
1

2
(φ(f(x)− τ) + φ(−f(x)− τ))

Let us show that argmint∈R̄
1
2 φ̃(t) + 1

2 φ̃(−t) = {−∞,+∞}. We have for all t:

1

2
φ̃(t) +

1

2
φ̃(−t) = λ+

1

2
(φ(t− τ) + φ(−t− τ))

= λ+
1

2
(φ(t− τ)− φ(t+ τ)) > λ

since t− τ < t+ τ and φ is strictly decreasing. Hence by continuity of φ the optimum are
attained when t→∞ or t→ −∞. Then argmint∈R̄

1
2 φ̃(t) + 1

2 φ̃(−t) = {−∞,+∞}.
Without loss of generality, let η > 1/2, then

t 7→ (η − 1

2
)(φ(t− τ)− φ(−t− τ))

is strictly decreasing and argmint∈R̄
1
2(φ(t− τ) + φ(−t− τ)) = {−∞,+∞}, then we

have

argmin
t∈R̄

λ+ (η − 1

2
)(t− τ)− φ(−t− τ)) +

1

2
(φ(t− τ) + φ(−t− τ)) = {+∞} .

By continuity of φ, we deduce that for δ > 0 su�ciently small:

Cφ̃(x, η, f)−C?
φ̃
(x, η) ≤ δ =⇒ f(x) > 0

The same reasoning holds for η < 1
2 . Then we deduce that φ̃ is calibrated for standard

classi�cation.

Finally, we obtain that φ̃ is calibrated for adversarial classi�cation for every ε > 0.
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Figure 5.2: Illustration of the a calibrated loss in the adversarial setting. The sigmoid loss satisfy the hy-
pothesis for ψ. Its shifted version is then calibrated for adversarial classi�cation.

5.1.4 AboutH-calibration

Our results naturally extend toH-calibration. With mild assumptions onH, it is possible to re-
cover all the results made on calibration onF(X ). First, it is worth noting that, ifH contains all
constant functions, then most results about calibration in the adversarial setting extend. Propo-
sition 2 naturally extends toH-calibration as long asH contains all constant functions.

Proposition. LetH ⊂ F(X ). Let us assume thatH contains all constant functions. Let ε > 0
and φ be a continuous classification margin loss. For all x ∈ X and η ∈ [0, 1], we have

C?φε,H(x, η) = C?φ,H(x, η) = inf
α∈R

ηφ(α) + (1− η)φ(−α) = C?φε(x, η) = C?φ(x, η) .

The last equality also holds for the adversarial 0/1 loss.

The proof is exactly the same as for Proposition 2 since we used a constant function to prove the
equality. Under the same assumptions, the notion ofH-calibration and uniformH-calibration
are equivalent in the standard setting.

Proposition. LetH ⊂ F(X ). Let us assume thatH contains all constant functions. Let φ be a
continuous classification margin loss. φ is uniformlyH-calibrated for standard classification if and
only if φ is uniformly calibrated for standard classification. It also holds for non-uniform calibra-
tion.

Proof. Let us assume thatφ is a continuous classi�cation margin loss and thatφ is uniformly
calibrated. Let ε > 0. There exists δ > 0 such that, for allη ∈ [0, 1],x ∈ X and f ∈ F(X ):

Cφ(x, η, f)− C?φ(x, η) ≤ δ =⇒ C(x, η, f)− C?(x, η) ≤ ε .

Let η ∈ [0, 1], x ∈ X and f ∈ H such that Cφ(x, η, f) − C?φ,H(x, η) ≤ δ. Thanks to
Proposition 5.1.4, C?φ,H(x, η) = C?φ(x, η), and f ∈ F(X ), then Cφ(x, η, f)−C?φ(x, η) ≤
δ and then:

C(x, η, f)− C?H(x, η) = C(x, η, f)− C?(x, η) ≤ ε
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Then φ is uniformlyH-calibrated in standard classi�cation.
Reciprocally, let us assume that φ is a continuous classi�cation margin loss and that φ is

uniformlyH-calibrated. Let ε > 0. There exists δ > 0 such that, for all η ∈ [0, 1], x ∈ X
and f ∈ H:

Cφ(x, η, f)− C?φ,H(x, η) ≤ δ =⇒ C(x, η, f)− C?H(x, η) ≤ ε .

Letη ∈ [0, 1],x ∈ X andf ∈ H such thatCφ(x, η, f)−C?φ,H(x, η) ≤ δ. Cφ(x, η, f) =

ηφ(f(x)) + (1 − η)φ(−f(x)). Let f̃ : u 7→ f(x) for all u ∈ X , then f̃ ∈ H since f̃ is
constant, Cφ(x, η, f) = Cφ(x, η, f̃) and C(x, η, f) = C(x, η, f̃). Thanks to the previous
proposition, C?φ,H(x, η) = C?φ(x, η). Then: Cφ(x, η, f̃)− C?φ,H(x, η) ≤ δ and then:

C(x, η, f)− C?φ,H(x, η) = C(x, η, f̃)− C?φ(x, η) ≤ ε

Then φ is uniformly calibrated in standard classi�cation.

We can now obtain the necessary and su�cient conditions as follows. They are really similar to
the adversarial calibration ones.

Proposition (Necessary conditions forH-Calibration of adversarial losses). Let ε > 0. LetH ⊂
F(X ). Let us assume that H contains all constant functions and that there exists x ∈ X and
(fn)n ∈ HN such that fn(u)→ 0 for all u ∈ Bε(x) and for all n ∈ N, supu∈Bε(x) fn(u) > 0
and infu∈Bε(x) fn(u) < 0 Let φ be a continuous margin loss . If φ is adversarially uniformly
H-calibrated at level ε, then φ is uniformly calibrated in the standard classification setting and
0 6∈ argminα∈R̄

1
2φ(α) + 1

2φ(−α).

Proposition (Su�cient conditions forH-Calibration of adversarial losses). LetH ⊂ F(X ). Let
us assume thatH contains all constant functions. Letφ be a continuous strictly decreasing margin loss
and ε > 0. If φ is calibrated in the standard classification setting and 0 6∈ argminα∈R̄

1
2φ(α) +

1
2φ(−α), then φ is adversarially uniformlyH-calibrated at level ε.x

The proofs are the same as for the adversarial calibration setting. Note however that the as-
sumptions onH are very weak: for instance, the set of linear classi�ers

H =
{
x 7→ 〈w, x〉+ b | w ∈ Rd, b ∈ R

}
satis�es the existence of x ∈ X and (fn)n ∈ HN such that fn(u) → 0 for all u ∈ Bε(x) and
for all n ∈ N, supu∈Bε(x) fn(u) > 0 and infu∈Bε(x) fn(u) < 0.

5.2 Towards Adversarial Consistency

We focus our study now on the problem of adversarial consistency. In a �rst part, taking inspira-
tion from Long and Servedio [2013], Awasthi et al. [2021a], we study the ε-realisable case, i.e. the
case where the adversarial risk at level ε equals zero. In a second part, we analyze the behavior of a
candidate class of losses, namely the 0/1-like margin losses.
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5.2.1 The Realizable Case

The realizable case is important since there are no possible adversaries for the Bayes optimal clas-
si�er. Formally, this means that the adversarial risk equals 0, as stated in the following de�nition.

De�nition 21 (ε-realisability). Let P be a Borel probability distribution on X × Y and ε ≥ 0.
We say that P is ε-realisable ifR?ε,P = 0.

In the case of realizable probability distribution, calibrated (and consequently consistent) mar-
gin losses in the standard classi�cation setting are also calibrated and consistent in the adversarial
case.

Proposition 13. Let ε > 0. Let P be an ε-realisable distribution and φ be a calibrated margin
loss in the standard setting. Then φ is adversarially consistent at level ε.

The intuition behind this result is that if a probability distribution is ε-realisable, the marginal
distributions are su�ciently separated, so that there are no possible adversarial attacks, each point
in the ε-neighbourhood of the support of the distribution can be classi�ed independently of each
other. To formally prove this result, we need a preliminary lemma.

Lemma 4. Let P be an ε-realisable distribution and φ be a calibrated margin loss in the standard
setting. ThenR?φε,P = infα∈R φ(α).

Proof. Let a ∈ R be such that φ(a)− infα∈R φ(α) ≤ ε. P being ε-realisable, there exists a
measurable function f such that:

Rε,P(f) = EP

[
sup

x′∈Bε(x)
1ysign(f(x))≤0

]
= P

[
∃x′ ∈ Bε(x), sign(f(x′)) 6= y

]
≤ ε′ := ε

max(1, φ(−a))
.

Denoting p = P(y = 1), P1 = P[·|y = 1] and P−1 = P[·|y = −1], we have:

p× P1

[
∃x′ ∈ Bε(x), f(x′) < 0

]
≤ ε′

and

(1− p)× P−1

[
∃x′ ∈ Bε(x), f(x′) ≥ 0

]
≤ ε′ .

Let us now de�ne g as:

g(x) =

{
a if f(x) ≥ 0

−a if f(x) < 0

We have:
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Rφε,P(g) = EP

[
sup

x′∈Bε(x)
φ(yg(x))

]

= p× EP1

[
sup

x′∈Bε(x)
φ(g(x))

]
+ (1− p)× EP−1

[
sup

x′∈Bε(x)
φ(−g(x))

]

We have:

p× EP1

[
sup

x′∈Bε(x)
φ(g(x))

]

≤ p× EP1

[
sup

x′∈Bε(x)
φ(g(x))1f(x′)<0

]
+ p× EP1

[
sup

x′∈Bε(x)
φ(g(x))1f(x′)≥0

]
= φ(−a)× p× P1

[
∃x′ ∈ Bε(x), f(x′) < 0

]
+ φ(a)× p×

(
1− P1

[
∃x′ ∈ Bε(x), f(x′) < 0

])
≤ φ(−a)ε′ + p× φ(a)

≤ p× inf
α∈R

φ(α) + 2ε

Similarly, we have:

(1− p)× EP−1

[
sup

x′∈Bε(x)
φ(−g(x))

]
≤ (1− p)× inf

α∈R
φ(α) + 2ε

We get:Rφε,P(g) ≤ infα∈R φ(α) + 4ε and, henceR?φε,P = infα∈R φ(α).

We are now ready to prove the result of consistency in the realizable case.

Proof. Let 0 < ε < 1. Thanks to Theorem 8, φ is uniformly calibrated for standard classi�-
cation, then, there exists δ > 0 such that for all f ∈ F(X ) and for all x:

φ(yf(x))− inf
α∈R

φ(α) ≤ δ =⇒ 1ysignf(x)≤0 = 0

Let now f ∈ F(X ) be such thatRφε,P(f) ≤ R?φε,P +δε. Thanks to Lemma 4, we have:

Rφε,P(f)−R?φε,P = EP

[
sup

x′∈Bε(x)
φ(yf(x))− inf

α∈R
φ(α)

]
≤ δε
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Then by Markov inequality:

P

[
sup

x′∈Bε(x)
φ(yf(x))− inf

α∈R
φ(α) ≥ δ

]
≤

EP

[
supx′∈Bε(x) φ(yf(x))− infα∈R φ(α)

]
δ

≤ ε

So we have P[∀x′ ∈ Bε(x), φ(yf(x))− infα∈R φ(α) ≤ δ] ≥ 1− ε and then

P
[
∀x′ ∈ Bε(x),1ysign(f(x))≤0 = 0

]
≥ 1− ε .

Since P is ε-realisable, we haveR?ε,P = 0 and:

Rε,P(f)−R?ε,P = Rε,P(f) = P
[
∃x′ ∈ Bε(x), sign(f(x′)) 6= y

]
≤ ε

which concludes the proof.

5.2.2 Towards the General Case

In this section, we seek to pave the way towards proving the consistency of shifted odd losses. We
will observe that their behavior is actually very similar to that of the 0/1 loss, which makes them
good candidates to be consistent losses. To this end, we �rst add an extra hypothesis to the odd
shifted losses in order to simplify our technical analysis.

De�nition 22 (0/1-like margin losses). φ is a 0/1-like margin loss if there exists λ ≥ 0, τ ≥ 0,
and a continuous lower bounded strictly decreasing odd functionψ in a neighbourhood of 0 such that
for all α ∈ R, ψ(α) ≥ −λ and φ(α) = λ+ ψ(α− τ) and

lim
t→−∞

φ(t) = 1 and lim
t→+∞

φ(t) = 0

Note here that the losses here are not necessarily shifted, making this condition weaker. Con-
sequently, we cannot hope that such losses are consistent neither calibrated, but they might help
in �nding the path towards consistency. Note also that if φ is an odd or shifted odd loss, one can
always �nd a rescaling of φ such that φ becomes a 0/1-like margin loss. Note also that such a
rescaling does neither change the notion of consistency and calibration for φ nor for its rescaled
version.

Based on min-max arguments, we provide below some results better characterizing 0/1-like
margin loss functions in the adversarial setting. Let us �rst recall the notions of midpoint property
and adversarial distributions set that will be useful from now on as well as an important existing
result from Pydi and Jog [2021b].

De�nition 23. Let (X , d) be a proper Polish metric space. We say that X satisfy the midpoint
property if for all x1, x2 ∈ X there exist x ∈ X such that d(x, x1) = d(x, x2) = d(x1,x2)

2 .

We recall also the setAε(P) of adversarial distributions introduced in Chapter 4.
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De�nition 24. LetP be a Borel probability distribution and ε > 0. We define the set of adversarial
distributionsAε(P) as:

Aε(P) :=
{
Q ∈M+

1 (X × Y) | ∃γ ∈M+
1

(
(X × Y)2

)
,

d(x, x′) ≤ ε, y = y′ γ-a.s., Π1]γ = P, Π2]γ = Q
}

Theorem 13 (Pydi and Jog [2021b]). Let X be a Polish space satisfying the midpoint property.
Then strong duality holds:

R?ε(P) = inf
f∈F(X )

sup
Q∈Aε(P)

RQ(f) = sup
Q∈Aε(P)

inf
f∈F(X )

RQ(f)

Moreover the supremum of the right-hand term is attained.

Note that in the original version of the theorem, Pydi and Jog [2021b] did not prove that the
supremum is attained.

Proof. To prove that, note that for every Borel probability distribution Q overX × Y ,

inf
f∈F(X )

RQ(f) = (1− q) + inf
f∈C(X ), 0≤f≤1

∫
fd(qQ1 + (q − 1)Q−1)

where q = Q[y = 1] and Qi = Q[· | y = i]. When f is continuous and bounded, the
function:

µ ∈M(X ) 7→
∫
fdµ

is continuous for the weak topology of measures, then:

µ ∈M(X ) 7→ inf
f∈C(X ), 0≤f≤1

∫
fdµ

is upper semi continuous for the weak topology of measures, as it is the in�num of con-
tinuous functions. Then using the compacity of Aε(P), we deduce that the supremum is
attained.

Connections between 0/1-like margin loss and 0/1 loss: a min-max viewpoint. Thanks
the the above concepts, we can now present some results identifying the similarity and the dif-
ferences between the 0/1 loss and 0/1-like margin losses. We �rst show that for a given �xed
probability distribution P, the adversarial optimal risk associated with a 0/1-like margin loss and
the 0/1 loss are equal.

Theorem 14. Let X be a Polish space satisfying the midpoint property. Let ε ≥ 0, P be a Borel
probability distribution overX × Y , and φ be a 0/1-like margin loss. Then, we have:

R?φε,P = R?ε,P
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In particular, we note that this property holds true for the standard risk. To prove this result,
we need the following lemma.

Lemma 5. Let Q be a Borel probability distribution over X × Y and φ be a 0/1-like shifted odd
loss, then:R?φ,Q = R?Q.

Proof. Bartlett et al. [2006], Steinwart [2007] proved that: for every margin losses φ,

R?φ,Q = inf
f∈F(X )

E(x,y)∼Q[φ(yf(x))]

= Ex∼Qx
[

inf
α∈R

[Q(y = 1|x)φ(α) + (1−Q(y = −1|x))φ(−α)]

]
= Ex∼Qx

[
C?φ(Q(y = 1|x), x)

]

We also haveR?Q = Ex∼Qx [C?(Q(y = 1|x), x)]. Moreover, if φ is a 0/1-like shifted odd
loss, then: for every x ∈ X and η ∈ [0, 1], C?φ(η, x) = min(η, 1− η) = C?(η, x). We can
then conclude thatR?φ,Q = R?Q.

We can now prove Theorem 14.

Proof. Let ε > 0 and P be a Borel probability distribution over X × Y . Let f such that
Rε,P(f) ≤ R?ε,P + ε. Let a > 0 such that φ(a) ≥ 1− ε and φ(−a) ≤ ε. We de�ne g as:

g(x) =

{
a if f(x) ≥ 0

−a if f(x) < 0

We have φ(yg(x)) = φ(a)1ysign(f(x))≤0 + φ(−a)1ysign(f(x))>0. Then

Rφε,P(g) = EP

[
sup

x′∈Bε(x)
φ(yg(x))

]

= EP

[
sup

x′∈Bε(x)
φ(a)1ysign(f(x′))≤0 + φ(−a)1ysign(f(x′))>0

]

≤ EP

[
sup

x′∈Bε(x)
1ysign(f(x′))≤0

]
+ φ(−a)

≤ R?ε,P + 2ε .

Then we haveR?φε,P ≤ R?ε,P. On the other side, we have:
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R?φε,P ≥ sup
Q∈Aε(P)

inf
f∈F(X )

Rφ,Q(f) = sup
Q∈Aε(P)

R?φ,Q

= sup
Q∈Aε(P)

R?Q = sup
Q∈Aε(P)

inf
f∈F(X )

RQ(f)

= inf
f∈F(X )

sup
Q∈Aε(P)

RQ(f) = R?ε,P

The last step is a consequence of Theorem 13. Then �nally we get thatR?φε,P = R?ε,P.

From this result, we can derive two interesting corollaries about 0/1-like margin losses. First,
strong duality holds for the risk associated with φ.

Corollary 3 (Strong duality for φ). Let us assume thatX is a Polish space satisfying the midpoint
property. Let ε ≥ 0, P be a Borel probability distribution overX ×Y , and φ be a 0/1-like margin
loss. Then, we have:

inf
f∈F(X )

sup
Q∈Aε(P)

Rφ,Q(f) = sup
Q∈Aε(P)

inf
f∈F(X )

Rφ,Q(f)

Moreover the supremum is attained.

Note that there is no reason that the in�mum is attained. A second interesting corollary is the
equality of the set of optimal attacks, i.e. distributions ofAε(P) that maximize the dual problem:
an optimal attack for the 0/1 loss is also an optimal attack for a 0/1-like margin, and vice versa.

Corollary 4 (Optimal attacks). Let assume thatX be a Polish space satisfying the midpoint prop-
erty. Let ε ≥ 0 and P be a Borel probability distribution overX ×Y . Then, an optimal attack Q?

of level ε exists for both the 0/1 loss and φ. Moreover, for Q ∈ Aε(P). Q is an optimal attack for
the loss φ if and only if it is an optimal attack for the 0/1 loss.

Proof. We have:

inf
f∈F(X )

sup
Q∈Aε(P)

Rφ,Q(f) = R?φε,P = R?ε,P by Theorem 14

= inf
f∈F(X )

sup
Q∈Aε(P)

RQ(f)

= sup
Q∈Aε(P)

inf
f∈F(X )

RQ(f)

= sup
Q∈Aε(P)

R?Q(f) = sup
Q∈Aε(P)

R?φ,Q(f) by Lemma 5

= sup
Q∈Aε(P)

inf
f∈F(X )

Rφ,Q(f)
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Q 7→ inff∈F(X )Rφ,Q(f) = inff∈F(X )RQ(f) is upper semi-continuous for the weak
topology of measures. Moreover,Aε(P) is compact for the weak topology of measures, then
Q 7→ inff∈F(X )Rφ,Q(f) admits a maximum overAε(P). And Q is an optimal attack for
the loss φ if and only if it is an optimal attack for the 0/1 loss.

A step towards consistency. From the previous results, we are able to prove a �rst result to-
ward the demonstration of consistency. This result is much weaker than consistency result, but it
guarantees that if a sequence minimizes the adversarial risk, then it minimizes the risk for optimal
attacks, i.e. in a game where the attacker plays before the classi�er

Proposition 14. Let us assume thatX be a Polish space satisfying the midpoint property. Let ε ≥ 0
and P be a Borel probability distribution over X × Y . Let Q? be an optimal attack of level ε. Let
(fn)n∈N be a sequence ofF(X ) such thatRφε,P(fn)→ R?φε,P. ThenRQ?(fn)→ R?ε,P.

Proof. Let (fn)n∈N be a sequence of F(X ) such thatRφε,P(fn) → R?φε,P. Let Q? be an
optimal attack of level ε. From Corollary 3, we get that:

R?φε,P = R?φ,Q? .

Then we get

0 ≤ Rφ,Q?(fn)−R?φ,Q? ≤ Rφε,P(fn)−R?φε,P

from which we deduce that: Rφ,Q?(fn) → R?φ,Q? . Since φ is consistent in the standard
classi�cation setting, we then have

RQ?(fn)→ R?Q? .

We hope this result and its proof may lead to a full proof of consistency. This result is sig-
ni�cantly weaker than consistency as stated in the following remark. In the proof of the previous
results, we did not use the assumptions that losses are shifted. In our opinion, it is the key element
that we miss and need to use to conclude the consistency of this family of losses. The shift in the
loss would force the classi�er to goes to±∞ on the ε neighborhood support of the distribution
of P. This question is complicated and is left as further work.

5.3 Discussions and Open Questions

In this chapter, we set some solid theoretical foundations for the study of adversarial consistency.
We highlighted the importance of the de�nition of the 0/1 loss, as well as the nuance between
calibration and consistency that is speci�c to the adversarial setting. Furthermore, we solved the
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calibration problem, by giving a necessary and su�cient condition for decreasing, continuous
margin losses to be adversarially calibrated. Since this is a necessary condition for consistency, an
important consequence of this result is that no convex margin loss can be consistent. This rules
out most of the commonly used surrogates, and spurs the need for new families of consistent, yet
easily optimisable families of losses.

Consistency of 0/1-like shifted margin losses. In Section 5.2.2, we introduced candidates
losses for consistency. While these losses might lead to promising results, there is still a gap to
prove the consistency of these losses. This question is left as further work.

Necessary and su�cient conditions for consistency. While we provided necessary and suf-
�cient conditions for calibration in the adversarial setting, it is a di�cult and open question to
solve the problem of consistency. One may ask if the conditions we found for calibration might
be necessary or su�cient for consistency. While there is an intuition that the notion of calibra-
tion is much weaker than consistency, we did not prove this. It would be challenging to �nd a
counter-example for a loss that is calibrated but not consistent in the adversarial setting.
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In this chapter, we study the design of Lipschitz Layers under the light of the dynamical system
interpretation of Neural Networks, hence answering Question 3: “How to e�ciently imple-

ment certi�able models with non-vacuous guarantees?”. We recall brie�y the continuous
time interpretation of Residual Networks. Let (Ft)t∈[0,T ] be a family of functions on Rd, we
de�ne the continuous time Residual Networks �ow associated with Ft as:{

x0 = x ∈ X
dxt
dt = Ft(xt) for t ∈ [0, T ]

Typically, Ft designates a two layer neural network. Note that this can be interpreted as the for-
ward pass of a Neural Networks From this continuous and dynamical interpretation, we analyze
the Lipschitzness property of Neural Networks. We then study the discretization schemes that
can preserve the Lipschitzness properties. With this point of view, we can readily recover sev-
eral previous methods that build 1-Lipschitz neural networks [Trockman et al., 2021, Singla and
Feizi, 2021]. Therefore, the dynamical system perspective o�ers a general and �exible framework
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to build Lipschitz Neural Networks facilitating the discovery of new approaches. In this vein,
we introduce convex potentials in the design of the Residual Network �ow and show that this
choice of parametrization yields to by-design 1-Lipschitz neural networks. At the very core of our
approach lies a new 1-Lipschitz non-linear operator that we call Convex Potential Layer which
allows us to adapt convex potential �ows to the discretized case. These blocks enjoy the desir-
able property of stabilizing the training of the neural network by controlling the gradient norm,
hence overcoming the exploding gradient issue. We experimentally demonstrate our approach by
training large-scale neural networks on several datasets, reaching state-of-the art results in terms
of under-attack and certi�ably-robust accuracy.

6.1 A Framework to design Lipschitz Layers

The continuous time interpretation allows us to better investigate the robustness properties and
assess how a di�erence of the initial values (the inputs) impacts the inference �ow of the model.
Let us consider two continuous �owsxt and zt associated withFt but di�ering in their respective
initial values x0 and z0. Our goal is to characterize the time evolution of ‖xt−zt‖ by studying its
time derivative. We recall that every matrixM ∈ Rd×d can be uniquely decomposed as the sum of
a symmetric and skew-symmetric matrixM = S(M) +A(M). By applying this decomposition
to the Jacobian matrix∇xFt(x) of Ft, we can show that the time derivative of ‖xt − zt‖2 only
involves the symmetric part S(∇xFt(x)).

For two symmetric matrices S1, S2 ∈ Rd×d, we denote S1 � S2 if, for all x ∈ Rd, 〈x, (S2 −
S1)x〉 ≥ 0. By focusing on the symmetric part of the Jacobian matrix we can show the following
proposition.

Proposition 15. Let (Ft)t∈[0,T ] be a family of di�erentiable functions almost everywhere on Rd.
Let us assume that there exists two measurable functions t 7→ µt and t 7→ λt such that

µtI � S(∇xFt(x)) � λtI

for all x ∈ Rd, and t ∈ [0, T ]. Then the flow associated with Ft satisfies for all initial conditions
x0 and z0:

‖x0 − z0‖e
∫ t
0 µsds ≤ ‖xt − zt‖ ≤ ‖x0 − z0‖e

∫ t
0 λsds

Proof. Consider the time derivative of the square di�erence between the two �ows xt and zt
associated with the function Ft and following the de�nition 18:

d

dt
‖xt − zt‖22 = 2

〈
xt − zt,

d

dt
(xt − zt)

〉
= 2
〈
xt − zt, Fθt(xt)− Fθt(zt)

〉
= 2
〈
xt − zt,

∫ 1

0
∇xFθt(zt + s(xt − zt))(xt − zt)ds

〉
by Taylor-Lagrange formula
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= 2

∫ 1

0

〈
xt − zt,∇xFθt(zt + s(xt − zt))(xt − zt)

〉
ds

= 2

∫ 1

0

〈
xt − zt, S(∇xFθt(zt + s(xt − zt)))(xt − zt)

〉
ds

In the last step, we used that for every skew-symmetric matrixA and vector x, 〈x,Ax〉 = 0.
Since µtI � S(∇xFθt(zt + s(xt − zt))) � λtI , we get

2µt‖xt − zt‖22 ≤
d

dt
‖xt − zt‖22 ≤ 2λt‖xt − zt‖22

Then by Gronwall Lemma, we have

‖x0 − y0‖e
∫ t
0 µsds ≤ ‖xt − yt‖ ≤ ‖x0 − y0‖e

∫ t
0 λsds

which concludes the proof.

The symmetric part plays even a more important role since one can show that a twice di�er-
entiable function whose Jacobian is always skew-symmetric is actually linear. Indeed, let F :=
(F1, . . . , Fd) : Rd → Rd be a twice di�erentiable function such that∇F (x) is skew-symmetric
for all x ∈ Rd. Then we have for all i, j, k:

∂i∂jFk = −∂i∂kFj = −∂k∂iFj = ∂k∂jFi = ∂j∂kFi = −∂j∂iFk = −∂i∂jFk

So we have ∂i∂jFk = 0 and then F is linear: there exists a skew-symmetric matrix A such that
F (x) = Ax. Moreover, constraining S(∇xFt(x)) in the general case is technically di�cult
and a solution resorts to a more intuitive parametrization of Ft as the sum of two functions F1,t

and F2,t whose Jacobian matrix are respectively symmetric and skew-symmetric. Thus, such a
parametrization enforcesF2,t to be linear and skew-symmetric. For the choice ofF1,t, we propose
to rely on potential functions: a functionF1,t : Rd → Rd derives from a simpler family of scalar
valued function inRd, called the potential, via the gradient operation. Moreover, since the Hessian
of the potential is symmetric, the Jacobian for F1,t is then also symmetric. If we had the convex
property to this potential, its Hessian would have positive eigenvalues. Therefore, we introduce
the following corollary.

Corollary 3. Let (ft)t∈[0,T ] be a family of convex di�erentiable functions on Rd and (At)t∈[0,T ]

a family of skew symmetric matrices. Let us define

Ft(x) = −∇xft(x) +Atx,

then the flow associated with Ft satisfies for all initial conditions x0 and z0:

‖xt − zt‖ ≤ ‖x0 − z0‖
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Proof. For all t, x, we have Ft(x) = −∇xft(x) + Atx so ∇xFt(x) = −∇2
xft(x) +

At. Then S(∇xFt(x)) = −∇2
xft(x). Since f is convex, we have ∇2

xft(x) � 0. So by
application of Proposition 15, we deduce ‖xt− yt‖ ≤ ‖x0− y0‖ for all trajectories starting
from x0 and y0.

This simple property suggests that if we could parameterizeFt with convex potentials, it would
be less sensitive to input perturbations and therefore more robust to adversarial examples. We also
remark that the skew symmetric part is then norm-preserving. However, the discretization of such
�ow is challenging in order to maintain this property of stability.

6.1.1 Discretized Flows

To study the discretization of the previous �ow, let t = 1, . . . , T be the discretized time steps and
from now we consider the �ow de�ned byFt(x) = −∇ft(x) +Atx, with (ft)t=1,...,T a family
of convex di�erentiable functions on Rd and (At)t=1,...,T a family of skew symmetric matrices.
The most basic is method the explicit Euler scheme as de�ned by:

xt+1 = xt + Ft(xt)

However, if At 6= 0, this discretized system might not satisfy ‖xt − zt‖ ≤ ‖x0 − z0‖. Indeed,
consider the simple example where ft = 0. We then have:

‖xt+1 − zt+1‖2 − ‖xt − zt‖2 = ‖At(xt − zt)‖2.

Thus explicit Euler scheme cannot guarantee Lipschitzness when At 6= 0. To overcome this
di�culty, the discretization step can be split into two parts, one for∇xft and one forAt:{

xt+ 1
2

= step1(xt,∇xft)
xt+1 = step2(xt+ 1

2
, At)

This type of discretization scheme can be found for instance from Proximal Gradient methods
where one step is explicit and the other is implicit. Then, we dissociate the Lipschitzness study of
both terms of the �ow.

6.1.2 Discretization scheme for∇xft

To apply the explicit Euler scheme to∇xft, an additional smoothness property on the potential
functions is required to generalize the Lipschitzness guarantee to the discretized �ows. Recall that
a function f is said to beL-smooth if it is di�erentiable and if x 7→ ∇xf(x) isL-Lipschitz.

Proposition 16. Let t ∈ {1, · · · , T}. Let us assume that ft isMt-smooth. We define the following
discretized ResNet gradient flow using ht as a step size:

xt+ 1
2

= xt − ht∇xft(xt)
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Consider now two trajectories xt and zt with initial points x0 = x and z0 = z respectively, if
0 ≤ ht ≤ 2

Mt
, then

‖xt+ 1
2
− zt+ 1

2
‖2 ≤ ‖xt − zt‖2

Proof. With ct = ‖xt − zt‖22, we can write:

ct+ 1
2
− ct =− 2ht

〈
xt − zt,∇xFθt(xt)−∇xFθt(zt)

〉
+ h2

t ‖∇xFθt(zt)−∇xFθt(zt)‖22

This equality allows us to derive the equivalence between ct+1 ≤ ct and:

ht
2
‖∇xFθt(xt)−∇xFθt(zt)‖22 ≤ 〈xt − zt,∇Fθt(xt)−∇Fθt(zt)〉

Moreover, assuming that Fθt being that:

1

Mt
‖∇xFθt(xt)−∇xFθt(zt)‖22 ≤

〈
xt − zt,∇xFθt(xt)−∇xFθt(zt)

〉
We can see with this last inequality that if we enforce ht ≤ 2

Mt
, we get ct+ 1

2
≤ ct which

concludes the proof.

In Section 6.2, we describe how to parametrize a neural network layer to implement such a
discretization step by leveraging the recent work on Input Convex Neural Networks Amos et al.
[2017].

Remark 7. Another solution relies on the implicit Euler scheme: xt+ 1
2

= xt −∇xft(xt+ 1
2
). Let

us remark that xt+ 1
2

is uniquely defined as:

xt+ 1
2

= argmin
x∈Rd

1

2
‖x− xt‖2 + ft(x)

We recognized here the proximal operator of ft that is uniquely defined since ft is convex. Moreover,
we have for two trajectories xt and zt:

‖xt − zt‖22 = ‖xt+ 1
2
− zt+ 1

2
+∇xft(xt+ 1

2
)−∇xft(zt+ 1

2
)‖22

= ‖xt+ 1
2
− zt+ 1

2
‖2 + 2〈xt − zt,∇xft(xt+ 1

2
)−∇xft(zt+ 1

2
)〉

+ ‖∇xft(xt+ 1
2
)−∇xft(zt+ 1

2
)‖22

≥ ‖xt+ 1
2
− zt+ 1

2
‖2

where the last inequality is deduced from the convexity of ft. So, without any further assumption
on ft, the discretized implicit convex potential flow is 1-Lipschitz. Then, this strategy defines a
1-Lipschitz flow without further assumption on ft than convexity. To compute such a layer, one
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could compute the proximal operator which is a strongly convex-minimization optimization prob-
lem. However, This strategy is not computationally efficient and not scalable and preliminary exper-
iments did not show competitive results while the training time is prohibitive. We leave this solution
for future work.

6.1.3 Discretization scheme for At

The second step of discretization involves the term with skew-symmetric matrices At. As men-
tioned earlier, the challenge is that the explicit Euler discretization is not contractive. More pre-
cisely, the following property

‖xt+1 − zt+1‖ ≥ ‖xt+ 1
2
− zt+ 1

2
‖

is satis�ed with equality only in the special and useless case ofxt+ 1
2
−zt+ 1

2
∈ ker(At). Moreover,

the implicit Euler discretization induces an increasing norm and hence does not satisfy the desired
property of norm preservation neither.

Midpoint Euler method. We thus propose to use Midpoint Euler method, de�ned as follows:

xt+1 = xt+ 1
2

+At
xt+1 + xt+ 1

2

2

⇐⇒ xt+1 =

(
I − At

2

)−1(
I +

At
2

)
xt+ 1

2
.

SinceAt is skew-symmetric, I−At
2 is invertible. This update corresponds to the Cayley Transform

of At2 that induces an orthogonal mapping. This kind of layers was introduced and extensively
studied in [Trockman et al., 2021].

Exact Flow. One can de�ne the simple di�erential equation corresponding to the �ow associ-
ated withAt

dut
ds

= Atus, u0 = xt+ 1
2
,

There exists an exact solution since At is linear. By taking the value at s = 1
2 , we obtain the

following transformation:

xt+1 := u 1
2

= e
A
2 xt+ 1

2
.

This step is therefore clearly norm preserving but the matrix exponentiation is challenging and it
requires e�cient approximations. This trend was recently investigated under the name of Skew
Orthogonal Convolution (SOC) Singla and Feizi [2021].
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6.2 Parametrizing Convex Potentials Layers

As presented in the previous section, parametrizing the skew symmetric updates has been studied
by Trockman et al. [2021], Singla and Feizi [2021]. Here, we focus on the parametrization of
symmetric updates with the convex potentials proposed in Proposition 16. For that purpose, the
Input Convex Neural Network (ICNN) [Amos et al., 2017] provide a relevant starting point that
we will extend.

6.2.1 Gradient of ICNN

We use 1-layer ICNN [Amos et al., 2017] to de�ne an e�cient computation of Convex Potentials
Flows. For any vectors w1, . . . wk ∈ Rd, and bias terms b1, . . . , bk ∈ R, and for φ a convex
function, the potential F de�ned as:

Fw,b : x ∈ Rd 7→
k∑
i=1

φ(w>i x+ bi)

de�nes a convex function in x as the composition of a linear and a convex function. Its gradient
with respect to its input x is then:

x 7→
k∑
i=1

wiφ
′(w>i x+ bi) = W>φ′(Wx+ b)

with W ∈ Rk×d and b ∈ Rk are respectively the matrix and vector obtained by the concate-
nation of, respectively, w>i and bi, and φ′ is applied element-wise. Moreover, assuming φ′ is M -
Lipschitz, we have that Fw,b is M‖W‖22-smooth. ‖W‖2 denotes the spectral norm of W. The
reciprocal also holds: if σ : R → R is a non-decreasingM -Lipschitz function, W ∈ Rk×d and
b ∈ Rk, there exists a convexM‖W‖22-smooth function Fw,b such that

∇xFw,b(x) = W>σ(Wx+ b),

where σ is applied element-wise. The next section shows how this property can be used to imple-
ment the building block and training of such layers.

6.2.2 Convex Potential layers

From the previous section, we derive the following Convex Potential Layer:

z = x− 2

‖W‖22
W>σ(Wx+ b)
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Algorithm 5: Computation of a Convex Potential Layer
Require: Input: x, vector: u, weights: W, b
Ensure: Compute the layer z and return u
v ←Wu/‖Wu‖2
u←W>v/‖W>v‖2

 1 iter. for training
100 iter. for inferenceh← 2/(

∑
i(Wu · v)i)

2

return x− h
[
W>σ(Wx+ b)

]
, u

Written in a matrix form, this layer can be implemented with every linear operation W. In the
context of image classi�cation, it is bene�cial to use convolutions1 instead of generic linear trans-
forms represented by a dense matrix.

Remark 8. When W ∈ R1×d, b = 0 and σ : x 7→ ReLU(x) = max(x, 0), the Convex
Potential Layer is equivalent to the HouseHolder activation function introduced in Singla et al.
[2021a].

Residual Networks [He et al., 2016b] are also composed of other types of layers which increase
or decrease the dimensionality of the �ow. Typically, in a classical setting, the number of input
channels is gradually increased, while the size of the image is reduced with pooling layers. In order
to build a 1-Lipschitz Residual Network, all operations need to be properly scaled or normalized
in order to maintain the Lipschitz constant.

Increasing dimensionsionality. To increase the number of channels in a convolutional Con-
vex Potential Layer, a zero-padding operation can be performed: an input x of size c×h×w can
be extended to some x′ of size c′ × h × w, where c′ > c, which equals x on the c �rst channels
and 0 on the c′ − c other channels.

Reducing dimensionsionality. Dimensionality reduction is another essential operation in neu-
ral networks. On one hand, its goal is to reduce the number of parameters and thus the amount
of computation required to build the network. On the other hand it allows the model to pro-
gressively map the input space on the output dimension, which corresponds in many cases to the
number of di�erent labels K . In this context, several operations exist: pooling layers are used to
extract information present in a region of the feature map generated by a convolution layer. One
can adapt pooling layers (e.g. max and average) to make them 1-Lipschitz [Bartlett et al., 2017].
Finally, a simple method to reduce the dimension is the product with a non-square matrix. We
simply implement it as the truncation of the output. This obviously maintains the Lipschitz con-
stant.

6.2.3 Computing spectral norms

Our Convex Potential Layer, described in Equation 6.2.2, can be adapted to any kind of linear
transformations (i.e. Dense or Convolutional) but requires the computation of the spectral norm

1For instance, one can leverage the Conv2D and Conv2D_transpose functions of the PyTorch framework [Paszke et al.,
2019]
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for these transformations. The exact computation of the spectral norm of a linear operator is
computationally prohibitive, an e�cient approximate method is required during training to keep
the complexity tractable.

Many techniques exist to approximate the spectral norm (or the largest singular value), and
most of them exhibit a trade-o� between e�ciency and accuracy. Several methods exploit the
structure of convolutional layers to build an upper bound on the spectral norm of the linear trans-
form performed by the convolution [Jia et al., 2017, Singla et al., 2021b, Araujo et al., 2021]. While
these methods are generally e�cient, they are less relevant in certain settings. For instance in our
context, using a loose upper bound of the spectral norm will hinder the expressive power of the
layer and make it too contracting.

For these reasons we rely on the Power Iteration Method (PM). This method converges at a
geometric rate towards the largest singular value of a matrix. More precisely the convergence rate
for a given matrix W is O((λ2

λ1
)k) after k iterations, independently of the choice of the starting

vector, where λ1 > λ2 are the two largest singular values of W. While it can appear computa-
tionally expensive due to the large number of required iterations for convergence, it is possible to
drastically reduce the number of iterations during training. Indeed, as in [Miyato et al., 2018], by
considering that the weights’ matrices W change slowly during training, one can perform only
one iteration of the PM for each step of the training and let the algorithm slowly converges along
with the training process2. We describe with more details in Algorithm 5, the operations per-
formed during a forward pass with a Convex Potential Layer.

However, for evaluation purpose, we need to compute the certi�ed adversarial robustness, and
this requires to ensure the convergence of the PM. Therefore, we perform 100 iterations for each
layer3 at inference time. Also note that at inference time, the computation of the spectral norm
only needs to be performed once for each layer.

6.3 Experiments

To evaluate our new 1-Lipschitz Convex Potential Layers, we conducted an extensive set of ex-
periments. In this section, we �rst describe the details of our experimental setup. We then recall
the concurrent approaches that build 1-Lipschitz Neural Networks and stress their limitations.
Our experimental results are �nally summarized in Section 6.3.1. By computing the certi�ed
and empirical adversarial accuracy of our networks on CIFAR10 and CIFAR100 classi�cation
tasks [Krizhevsky and Hinton, 2009], we show that our architecture is competitive with state-
of-the-art methods (Sections 6.3.3). We also study the in�uence of some hyperparameters and
demonstrate the stability and the scalability of our approach by training very deep neural net-
works up to 1000 layers without normalization tricks or gradient clipping.

6.3.1 Training and Architectural Details

We demonstrate the e�ectiveness of our approach on a classi�cation task with CIFAR10 and CI-
FAR100 datasets [Krizhevsky and Hinton, 2009]. We use a similar training con�guration to the

2Note that a typical training requires approximately 200K steps where 100 steps of PM is usually enough for conver-
gence

3100 iterations of Power Method is su�cient to converge with a geometric rate.
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# S M L XL

Conv. Layers 20 30 50 70
Channels 45 60 90 120

Lin. Layers 7 10 15 15
Lin. Features 2048 2048 4096 4096

Table 6.1: Architectures description for our Convex Potential Layers (CPL) neural networks with di�erent
capacities. We vary the number of Convolutional Convex Potential Layers, the number of Linear
Convex Potential Layers, the number of channels in the convolutional layers and the width of
fully connected layers. They will be reported respectively as CPL-S, CPL-M, CPL-L and CPL-
XL.

one proposed in [Trockman et al., 2021]. We trained our networks with a batch size of 256 over
200 epochs. We use standard data augmentation (i.e. random cropping and �ipping), a learn-
ing rate of 0.001 with Adam optimizer [Diederik P. Kingma, 2014] without weight decay and a
piecewise triangular learning rate scheduler. We used a margin parameter in the loss set to 0.7.

As other usual convolutional neural networks, we �rst stack few Convolutional CPLs and then
stack some Linear CPLs for classi�cation tasks. To validate the performance and the scalability of
our layers, we evaluate four di�erent variations of di�erent hyperparameters as described in Ta-
ble 6.1, respectively named CPL-S, CPL-M, CPL-L and CPL-XL, ranked according to the num-
ber of parameters they have. In all our experiments, we made 3 independent trainings to evaluate
accurately the models. All reported results are the average of these 3 runs.

6.3.2 Concurrent Approaches

We compare our networks with SOC [Singla and Feizi, 2021] and Cayley Trockman et al. [2021]
networks which are to our knowledge the best performing approaches for deterministic 1-Lipschitz
Neural Networks. Since our layers are fundamentally di�erent from these ones, we cannot com-
pare with the same architectures. We reproduced SOC results for with 10 and 20 layers, that we
call respectively SOC-10 and SOC-20 in the same training setting, i.e. normalized inputs, cross
entropy loss, SGD optimizer with learning rate 0.1 and multi-step learning rate scheduler. For
Cayley layers networks, we reproduced their best reported model, i.e. KWLarge with width fac-
tor of 3.

The work of Singla et al. [2021a] propose three methods to improve certi�able accuracies from
SOC layers: a new HouseHolder activation function (HH), last layer normalization (LLN), and
certi�cate regularization (CR). The code associated with this approach is not open-sourced yet,
so we just reported the results from their paper in ours results (Tables 6.1 and 6.2) under the name
SOC+. We were being able to implement the LLN method in all models. This method largely
improve the result of all methods on CIFAR100, so we used it for all networks we compared on
CIFAR100 (ours and concurrent approaches).
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Standard Accuracy Provable Accuracy (ε) Time per epoch (s)

36/255 72/255 108/255

CPL-S 75.6 62.3 46.9 32.2 21.9
CPL-M 76.8 63.3 47.5 32.5 40.0
CPL-L 77.7 63.9 48.1 32.9 93.4
CPL-XL 78.5 64.4 48.0 33.0 163

Cayley (KW3) 74.6 61.4 46.4 32.1 30.8

SOC-10 77.6 62.0 45.0 29.5 33.4
SOC-20 78.0 62.7 46.0 30.3 52.2

SOC+-10 76.2 62.6 47.7 34.2 N/A
SOC+-20 76.3 62.6 48.7 36.0 N/A

Table 6.1: Results on the CIFAR10 dataset on standard and provably certi�able accuracies for di�erent val-
ues of perturbations ε on CPL (ours), SOC and Cayley models. The average time per epoch in
seconds is also reported in the last column. None of these networks uses Last Layer Normaliza-
tion.

6.3.3 Results

In this section, we present our results on adversarial robustness. We provide results on provable `2
robustness as well as empirical robustness on CIFAR10 and CIFAR100 datasets for all our models
and the concurrent ones
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Figure 6.2: Certi�ably robust accuracy w.r.t. the perturbation ε for our CPL networks and its concurrent
approaches (SOC and Cayley models) on CIFAR10 and CIFAR100 datasets.

Certi�ed Adversarial Robustness. Results on CIFAR10 and CIFAR100 dataset are reported
respectively in Tables 6.1 and 6.2. We also plotted certi�ed accuracy w.r.t. ε on Figure 6.2. On
CIFAR10, our method outperforms the concurrent approaches in terms of standard and certi-
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Standard Accuracy Provable Accuracy (ε) Time per epoch (s)

36/255 72/255 108/255

CPL-S 44.0 29.9 19.1 11.0 22.4
CPL-M 45.6 31.1 19.3 11.3 40.7
CPL-L 46.7 31.8 20.1 11.7 93.8
CPL-XL 47.8 33.4 20.9 12.6 164

Cayley (KW3) 43.3 29.2 18.8 11.0 31.3

SOC-10 48.2 34.3 22.7 14.0 33.8
SOC-20 48.3 34.4 22.7 14.2 52.7

SOC+-10 47.1 34.5 23.5 15.7 N/A
SOC+-20 47.8 34.8 23.7 15.8 N/A

Table 6.2: Results on the CIFAR100 dataset on standard and provably certi�able accuracies for di�erent
values of perturbations ε on CPL (ours), SOC and Cayley models. The average time per epoch
in seconds is also reported in the last column. All the reported networks use Last Layer Normal-
ization.

�ed accuracies for every level of ε except SOC+ that uses additional tricks we did not use. On
CIFAR100, our method performs slightly under the SOC networks but better than Cayley net-
works. Overall, our methods reach competitive results with SOC and Cayley layers.

Note that we observe a small gain using larger and deeper architectures for our models. This
gain is less important as ε increases but the gain is non negligible for standard accuracies. In term
of training time, our small architecture (CPL-S) trains very fast compared to other methods, while
larger ones are longer to train.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

PGD Accuracy CIFAR10

CPL-S
CPL-M
CPL-L
CPL-XL
SOC-10
SOC-20
Cayley

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

PGD Accuracy CIFAR100

CPL-S
CPL-M
CPL-L
CPL-XL
SOC-10
SOC-20
Cayley

Figure 6.3: Accuracy against PGD attack with 10 iterations w.r.t. the perturbation ε for our CPL networks
and its concurrent approaches on CIFAR10 and CIFAR100 datasets.
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Empirical Adversarial Robustness. We also reported in Figure 6.3 the accuracy of all the
models against PGD `2-attack [Kurakin et al., 2016, Madry et al., 2018b] for various levels of
ε. We used 10 iterations for this attack. We remark here that our method brings a large gain of ro-
bust accuracy over all other methods. On CIFAR10 for ε = 0.8, the gain of CPL-S over SOC-10
approach is more than 10%. For CIFAR100, the gain is about 10% too for ε = 0.6. We remark
that using larger architectures lead in a more substantial gain in empirical robustness.

Our layers only provide an upper bound on the Lipschitz constant, while orthonormal layers
such as Cayley and SOC are built to exactly preserve the norms. This might negatively in�uence
the certi�ed accuracy since the e�ective Lipschitz constant is smaller than the theoretical one,
hence leading to suboptimal certi�cates. This might explain why our method performs so well
for empirical robustness tasks.

Batch Standard Acc. Provable Accuracy (ε) T./epoch (s)

36/255 72/255 108/255

CPL-S

64 76.5 62.9 47.3 32.0 48
128 76.1 62.8 47.1 32.3 31
256 75.6 62.3 46.9 32.2 22

CPL-M

64 77.4 63.6 47.4 32.1 77
128 77.2 63.5 47.5 32.1 50
256 76.8 63.2 47.4 32.4 40

CPL-L

64 78.4 64.2 47.8 32.2 162
128 78.2 64.3 47.9 32.5 109
256 77.6 63.9 48.1 32.7 93

CPL-XL

64 78.9 64.2 47.2 31.2 271
128 78.9 64.2 47.5 31.8 198
256 78.5 64.4 47.8 32.4 163

Table 6.3: Results on the CIFAR10 dataset on standard and provably certi�able accuracies for di�erent
values of perturbations ε on CPL (ours) models with various batch sizes. The average time per
epoch in seconds is also reported in the last column. All the reported networks use Last Layer
Normalization.

E�ect of Batch Size in Training. In Tables 6.3 and 6.4, we tried three di�erent batch sizes (64,
128 and 256) for training our networks on CIFAR10 and CIFAR100 datasets, we remark a gain in
standard accuracy in reducing the batch size for all settings. As the perturbation becomes larger,
the gain in accuracy is reduced and even in some cases we may loose some points in robustness.

E�ect of the Margin Parameter. In these experiments we varied the margin parameter in the
margin loss in Figures 6.4 and 6.5. It clearly exhibits a tradeo� between standard and robust ac-
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Batch Standard Acc. Provable Acc. (ε) T./epoch (s)

36/255 72/255 108/255

CPL-S

64 45.6 30.8 19.3 11.2 47
128 44.9 30.7 19.2 11.0 31
256 44.0 29.9 19.1 10.9 23

CPL-M

64 46.6 31.6 19.6 11.6 78
128 46.3 31.1 19.7 11.5 55
256 45.6 31.1 19.3 11.3 41

CPL-L

64 48.1 32.7 20.3 11.7 163
128 47.4 32.3 20.0 11.8 116
256 46.8 31.8 20.1 11.7 95

CPL-XL

64 49.0 33.7 21.1 12.0 293
128 48.0 33.7 21.0 12.1 209
256 47.8 33.4 20.9 12.6 164

Table 6.4: Results on the CIFAR100 dataset on standard and provably certi�able accuracies for di�erent
values of perturbations ε on CPL (ours) models with various batch sizes. The average time per
epoch in seconds is also reported in the last column. All the reported networks use Last Layer
Normalization.

curacy. When the margin is large, the standard accuracy is low, but the level of robustness remain
high even for “large” perturbations. On the opposite, when the margin is small, we obtain a high
standard accuracy but we are unable to keep a good robustness level as the perturbation increases.
It is veri�ed both on certi�ed and empirical robustness.

6.3.4 Training stability: scaling up to 1000 layers

While the Residual Network architecture limits, by design, gradient vanishing issues, it still su�ers
from exploding gradients in many cases [Hayou et al., 2021]. To prevent such scenarii, batch
normalization layers [Io�e and Szegedy, 2015] are used in most Residual Networks to stabilize
the training.

Recently, several works [Miyato et al., 2018, Farnia et al., 2019] have proposed to normalize the
linear transformation of each layer by their spectral norm. Such a method would limit exploding
gradients but would again su�er from gradient vanishing issues. Indeed, spectral normalization
might be too restrictive: dividing by the spectral norm can make other singular values vanishingly
small. While more computationally expensive (spectral normalization can be done with 1 Power
Method iteration), orthogonal projections prevent both exploding and vanishing issues.

On the contrary the architecture proposed has the advantage to naturally control the gradient
norm of the output with respect to a given layer. Therefore, our architecture can get the best of
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Figure 6.4: Certi�ably robust accuracy w.r.t. the perturbation ε for our CPL-S network with di�erent mar-
gin parameters on CIFAR10 and CIFAR100 datasets.
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Figure 6.5: Certi�ably robust accuracy w.r.t. the perturbation ε for our CPL-S network with di�erent mar-
gin parameters on CIFAR10 and CIFAR100 datasets.

both worlds: limiting exploding and vanishing issues while maintaining scalability. To demon-
strate the scalability of our approach, we experiment the ability to scale our architecture to very
high depth (up to 1000 layers) without any additional normalization/regularization tricks, such
as Dropout [Srivastava et al., 2014], Batch Normalization [Io�e and Szegedy, 2015] or gradient
clipping [Pascanu et al., 2013]. With the work done by Xiao et al. [2018], which leverage Dynam-
ical Isometry and a Mean Field Theory to train a 10000 layers neural network, we believe, to the
best of our knowledge, to be the second to perform such training. For the sake of computation
e�ciency, we limit this experiment to architecture with 30 feature maps. We report the accuracy
in terms of epochs for our architecture in Figure 6.6 for a varying number of convolutional lay-
ers. It is worth noting that for the deepest networks, it may take a few epochs before the start of
convergence. As Xiao et al. [2018], we remark there is no gain in using very deep architecture for
this task.

6.3.5 Relaxing linear layers

Table 6.5 shows the result of the relaxed training of our CPL architecture, i.e. we �xed the step
ht in the discretized convex potential �ow of Proposition 16. Increasing the constant h allows for
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Figure 6.6: Standard test accuracy w.r.t. the number of epochs (log-scale) for various depths for our neural
networks (100, 300, 500, 700, 1000).

h = 1.0 h = 0.1 h = 0.01

Standard 85.10 82.23 78.53
PGD (ε = 36/255) 61.45 62.99 60.98

Table 6.5: Level of accuracy of CPL networks when the constraints on the step-size is relaxed. We �xed the
step-size h to di�erent values and measured standard and empirically robust accuracy. Here the
CPL-M model is used.

an important improvement in the standard accuracy, but we loose in robust empirical accuracy.
While computing the certi�ed accuracy is not possible in this case due to the unknown value of
the Lipschitz constant, we can still notice that the training of the network are still stable without
normalization tricks, and o�er a non-negligible level of robustness.

6.4 Discussions and Open questions

In this chapter, we presented a new generic method to build 1-Lipschitz layers. We leverage the
continuous time dynamical system interpretation of Residual Networks and show that using con-
vex potential �ows naturally de�nes 1-Lipschitz neural networks. After proposing a parametriza-
tion based on Input Convex Neural Networks [Amos et al., 2017], we show that our models
reach competitive results in classi�cation and robustness in comparison which other existing 1-
Lipschitz approaches. We also experimentally show that our layers provide scalable approaches
without further regularization tricks to train very deep architectures.

Exploiting the ResNet architecture for devising �ows has gained interest for example, in the
context of generative modeling, Invertible Neural Networks [Behrmann et al., 2019] and Normal-
izing Flows [Rezende and Mohamed, 2015, Verine et al., 2021]. Sylvester Normalizing Flows [van den
Berg et al., 2018] or Convex Potential Flows [Huang et al., 2021a] have had similar ideas to this
present work but for a very di�erent setting and applications. In particular, they did not have in-
terest in the contraction property of convex �ows and the link with adversarial robustness has not
been exploited.
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Expressivity of discretized convex potential �ows. Proposition 15 suggests to constraint
the symmetric part of the Jacobian of Ft. We proposed to decompose Ft as a sum of potential
gradient and a skew symmetric matrix. Finding other parametrizations is an open challenge. Our
models may not express all 1-Lipschitz functions. Knowing which functions can be approximated
by our CPL layers is di�cult even in the linear case. Indeed, let us de�ne S1(Rd×d) the space of
real symmetric matrices with singular values bounded by 1. Let us also de�neU1(Rd×d) the space
of real matrices with singular values bounded by 1 in absolute value. Let P(Rd×d) = {A ∈
Rd×d|∃n ∈ N, S1, . . . , Sn ∈ S1(Rd × d) s.t. A = S1 . . . Sn}. Then one can prove4 that
P(Rd×d) 6= U1(Rd×d). Thus there exists A ∈ U1(Rd×d) such that for all matrices n, for all
matrices S1, . . . , Sn ∈ S1(Rd×d) such that M 6= S1, . . . , Sn. Applied to the expressivity of
discretized convex potential �ows, the previous result means that there exists a 1-Lipschitz linear
function that cannot be approximated as a discretized �ow of any depth of convex linear 1-smooth
potential �ows as in Proposition 16. Indeed such a �ow would write: x 7→∏

i(1− 2Si)xwhere
Si are symmetric matrices whose eigenvalues are in [0, 1], in other words such transformations
are exactly described by x 7→ Mx for someM ∈ P(Rd×d). This is an important question that
requires further investigation.

Going beyond ResNets One can also think of extending our work to other dynamical sys-
tems. Recent architectures such as Hamiltonian Networks [Greydanus et al., 2019] and Momen-
tum Networks [Sander et al., 2021a] exhibit interesting properties and it is worth digging into
these architectures to build Lipschitz layers. Finally, we hope to use similar approaches to build
robust Recurrent Neural Networks [Sherstinsky, 2020] and Transformers [Vaswani et al., 2017].
For Transformers, Vuckovic et al. [2020], Sander et al. [2021b] has proposed a dynamical system
interpretation of a �ow on particles (i.e. the words in the initial sentence for NLP tasks). This
can be seen as an interacting �ow over a distribution. The question of robustness and Lipschitz-
ness is way more technical since it implies Lipschitzness in the space of distributions. One could
imagine to use Wasserstein Gradient �ows [Ambrosio et al., 2005] as tools for deriving Lipschitz
guarantees for Transformers.

4A proof and justi�cation of this result can be found here.

109

https://mathoverflow.net/questions/60174/factorization-of-a-real-matrix-into-hermitian-x-hermitian-is-it-stable




7 Conclusion

Contents

7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 Optimizing the Adversarial Attacks Problem . . . . . . . . . . . 112

7.2.2 Understanding the Learning Dynamics in the Adversarial Setting . 113

7.2.3 Scaling Provably Robust Neural Networks . . . . . . . . . . . 113

7.1 Summary of the Thesis

In this thesis, we studied the problem of classi�cation in presence of adversaries from di�erent
points of view for theoretical and practical purposes. We have tried to analyze the problem using
both a high level and a more precise analysis. We summarize our �ndings as follows.

Summary of contributions

1. We provided a better understanding of the adversarial attacks problem by study-
ing the nature of equilibria in this game and then, proved the existence of mixed
Nash equilibria for very general settings. There is a hope this research direction will
lead to principled results that can be used in practice for better defending against
adversarial examples using randomized classi�ers.

2. We studied and closed the problem of calibration in the adversarial binary-
classi�cation setting providing necessary and su�cient conditions. We paved the
way to prove consistency results, and hope being able to conclude on consistency
of shifted odd losses. It remains open to �nd necessary and su�cient conditions for
consistency.

3. We derived a principled way based on dynamical system to build 1-Lipschitz lay-
ers. Interestingly, we recovered some existing methods from the literature, but we
were also able to build new well-performing layers, namely the Convex Potential
Layers. We hope this work would lead to study other possible dynamical systems
and provide new provably robust neural networks.
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7 Conclusion

Although this thesis proposed some solutions to the adversarial attacks problem, we also opened
many questions that would require further investigation.

7.2 Open Questions

7.2.1 Optimizing the Adversarial Attacks Problem

The optimization of the adversarial attacks problem is still an open from multiple point of views.
Recall that the adversarial risk minimization problem writes

inf
h∈H

E(x,y)∼P

[
sup

x′∈X| d(x,x′)≤ε
L(h(x), y)

]

In classi�cation, the end-objective is the accuracy, hence one need to optimize the 0/1 loss. How-
ever, optimizing the 0/1 loss is not computationally tractable. In the adversarial setting, the choice
of a good surrogate lossL to the 0/1 loss is a di�cult question. In particular, we have shown that
no convex losses can be a good surrogate in Chapter 5. We have seen there might exist continu-
ous and di�erentiable losses that are consistent with regard to the 0/1 loss, but it is still an open
problem.

Does there exist a simple principled way to train the adversarial attacks problem for both
the classifier and the attacker?

Since no convex loss can be a good surrogate for the adversarial classi�cation problem, the op-
timization of a suitable empirical risk would be a non-convex optimization problem which is mis-
understood so far. The di�culty of this problem is also highlighted by the inner supremum which
is also non-convex. Then there is still a gap to bridge to understand the optimization of the adver-
sarial problem. In Chapter 4, we proposed the following adversarial problem where the classi�er
and the attacker compete as follows

inf
µ∈M+

1 (H)
sup

Q∈Aε(P)
Eµ∼H,(x,y)∼Q[L(h(x), y)]

This naturally leads to understand the adversarial problem as game between the attacker and the
classi�er with utility Eµ∼H,(x,y)∼Q[L(h(x), y)]. We showed the existence of Nash equilibria for
this game in Chapter 4. Although, we propose a way to learn the optimal mixtures of classi�ers
when their number is �nite, the question of computing equilibria has not been studied and would
be a natural further step. On one hand, it would help to build a robust classi�er against every at-
tack inAε(P), and on the other hand, the attacker that would have been built would be robust
to change in the mixture of classi�ers. This problem is a min-max optimization problem over
the set of probability distributions, hence a di�cult problem. Although the problem writes as
a convex-concave problem over the space of distributions, the utility is not geodisically convex-
concave in the Wassertein-2 space. Applying directly results on Wasserstein Gradient Flow is not
possible. Deriving a tractable algorithm with convergence guarantees is also di�cult. There have
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been some attempts by the Machine Learning community to �nd mixed Nash equilibria using
optimization over distribution techniques [Hsieh et al., 2019, Domingo-Enrich et al., 2020] with
applications to Generative Adversarial Networks for instance. Understanding and �nding equi-
libria in games in Machine Learning such as the adversarial attacks problem and GANs is essential
for the community to understand better these problems.

7.2.2 Understanding the Learning Dynamics in the Adversarial Setting

Statistical and Computational learning theory have focused on analyzing what can be inferred on
the error outside the training set, often called generalization error. To analyze it, the risk is decom-
posed in bias-complexity form. This bias complexity tradeo� has been question recently by double
descent phenomenon [Belkin et al., 2018, 2019], suggesting that higher complexity models might
lead to lower generalization errors. These recent �ndings underline the lack of understanding we
have about generalization of Neural Networks.

Analyzing generalization in the adversarial setting case is still an underdeveloped question. There
have been some works using Rademacher complexity [Yin et al., 2019, Awasthi et al., 2020] to
craft uniform convergence bounds. But, to our knowledge, very few works have focused on un-
derstanding the bias-complexity tradeo� in the adversarial case.

How does statistical generalization work in the adversarial attacks setting?

This problem can be attacked from di�erent angles. First, understanding the need or not of
randomization for obtaining optimally robust classi�ers is an important problem. From Chap-
ter 4 and Pydi and Jog [2021b], the answer of this question depends mostly on two things: the set
of hypothesesH and the distribution P. IfH is small and cannot be optimal for P, there might
be an interest for randomization, while when it is complex and su�ciently expressive, for instance
the set of measurable functions [Pydi and Jog, 2021b], there is no need for randomization.

However, choosing complex sets of hypotheses might lead to over�tting, justifying the need of
understanding generalization properties of randomized classi�ers in the adversarial setting. While
the question of uniform convergence bounds have been treated, generalization of randomized
classi�ers in the adversarial setting has only been partly tackled by Viallard et al. [2021] under the
PAC-Bayes framework [Guedj, 2019] .

Beyond PAC-like bounds, convergence rates of optimal classi�ers in the adversarial setting as it
was done by Fischer and Steinwart [2020] in the case of kernel least squares regression is an impor-
tant and yet not studied problem. Even the question of the choice of the norm for the convergence
is di�cult since the adversarial setting involves points outside the support of the distribution.

7.2.3 Scaling Provably Robust Neural Networks

In Chapter 5, we provided a general method to build provably Lipschitz layers. However, every
single methods only lead to limited results on CIFAR10 dataset [Krizhevsky et al.] with standard
accuracies under 80% and certi�able accuracies under 65% for ε = 36/255. The performances
are far under the state-of-the-art on CIFAR10 standard classi�cation task (> 95%). There is still
a huge gap we need to bridge to have performant certi�ably robust neural networks. Since we are
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unable to reach decent performances on simple datasets, the question of being robust on larger
datasets as ImageNet [Deng et al., 2009] is a bit anticipated.

Is it possible to build non-vacuous certifiable neural networks on highly-dimensional
large-scale datasets?

Building robust neural networks with deterministic non-vacuous guarantees is an active re-
search area. Current methods that scale on ImageNet dataset rely on non-deterministic bounds
using for instance randomized smoothing [Cohen et al., 2019, Salman et al., 2019]. The advan-
tages and the weaknesses of these methods are the same: while deterministic methods highly
depend on the structure of the networks, randomized smoothing methods are agnostic to the
structure of neural networks. One may hope using the structure of deep neural networks to get
provable strategies. The question of robustness is also understudied for the recent Transform-
ers [Vaswani et al., 2017] neural networks whose basic element is an attention block:

Attention(Q,K, V ) = softmax
(
QKT

√
dK

)
V

where dK is the common dimension ofQ andK . The Transformers architectures are today state
of the art both in NLP tasks [Devlin et al., 2018] and computer vision tasks [Dosovitskiy et al.,
2020]. These approaches are very recent, and their robustness have not been investigated yet. This
question de�nitely worth more attention!

Beyond, this question of scalability and robustness of architectures, one may ask the feasibility
of such tasks. Enforcing Lipschitz constraints on the networks may hinder the networks perfor-
mances. In complex datasets like ImageNet, it might not be possible to get simultaneously good
performances and non-vacuous certi�cates. Moreover, the proposed defenses often rely on a single
norm, often the `2 norm. Designing networks that are “universally” robust for human perception
is a utopia, that we may never reach.
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A On the Robustness of Randomized

Classi�ers to Adversarial Examples

This paper investigates the theory of robustness against adversarial attacks. We focus on random-
ized classi�ers (i.e. classi�ers that output random variables) and provide a thorough analysis of
their behavior through the lens of statistical learning theory and information theory. To this aim,
we introduce a new notion of robustness for randomized classi�ers, enforcing local Lipschitzness
using probability metrics. Equipped with this de�nition, we make two new contributions. The
�rst one consists in devising a new upper bound on the adversarial generalization gap of random-
ized classi�ers. More precisely, we devise bounds on the generalization gap and the adversarial gap
(i.e. the gap between the risk and the worst-case risk under attack) of randomized classi�ers. The
second contribution presents a yet simple but e�cient noise injection method to design robust
randomized classi�ers. We show that our results are applicable to a wide range of machine learn-
ing models under mild hypotheses. We further corroborate our �ndings with experimental results
using deep neural networks on standard image datasets, namely CIFAR-10 and CIFAR-100. All
robust models we trained can simultaneously achieve state-of-the-art accuracy (over 0.82 clean ac-
curacy on CIFAR-10) and enjoy guaranteed robust accuracy bounds (0.45 against `2 adversaries
with magnitude 0.5 on CIFAR-10).

A.1 Introduction

In the last few years, there has been a growing concern on adversarial example attacks in machine
learning. An adversarial attack refers to a small (humanly imperceptible) change of an input specif-
ically designed to fool a machine learning model. These attacks have recently come to light thanks
to works by Biggio et al. [2013] and Szegedy et al. [2014] studying deep neural networks for image
classi�cation, although it was an existing topic in spam �lter analysis [Dalvi et al., 2004, Lowd
and Meek, 2005, Globerson et al., 2006]. The vulnerability of state-of-the-art classi�ers to these
attacks has genuine security implications especially for deep neural networks used in AI-driven
technologies such as self-driving cars, as repetitively demonstrated by Sharif et al. [2016], Sitawarin
et al. [2018] and Yao et al. [2020]. Besides security issues, this shows how little we know about
the worst-case behaviors of models the industry uses daily. It is essential for the community to
understand the very nature of this phenomenon in order to mitigate the threat.

Accordingly, a large body of works has been trying to design new models that would be less vul-
nerable to the adversarial setting [Goodfellow et al., 2015b, Metzen et al., 2017, Xie et al., 2018, Hu
et al., 2019, Verma and Swami, 2019] but most of them were proven (in time) to o�er only limited
protection against more sophisticated attacks [Carlini et al., 2017, He et al., 2017, Athalye et al.,
2018b, Croce et al., 2020b, Tramer et al., 2020]. Among the defense strategies, randomization
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has proven e�ective in some contexts [Xie et al., 2018, Dhillon et al., 2018, Liu et al., 2018, Rakin
et al., 2018]. Albeit these signi�cant e�orts, randomization techniques lack theoretical arguments.
In this paper, we generalize the prior results from Pinot et al. [2019] by studying a general class of
randomized classi�ers, including randomized neural networks, for which we demonstrate adver-
sarial robustness guarantees and analyze their generalization properties.

A.1.1 Supervised learning for image classi�cation

Let us consider the supervised classi�cation problem with an input spaceX and an output space
Y . In the following, w.l.o.g. we will consider X ⊂ [−1, 1]d to be a set of images, and Y :=
{1, . . . ,K} a set of labels describing them. The goal of a supervised machine learning algorithm
is to design classi�er that maps any image x ∈ X to a label y ∈ Y . To do so, the learner has access
to a training sample of n image-label pairs S := {(x1, y1), . . . , (xn, yn)}. Each training pair
(xi, yi) is assumed to be drawn i.i.d. from a ground-truth distributionP. To build a classi�er, the
usual strategy is to select a hypothesis function h : X → Y from a pre-de�ned hypothesis class
H to minimize the risk with respect to P. This risk minimization problem writes

inf
h∈H
R(h) := E(x,y)∼P

[
L0/1(h(x), y)

]
, (A.1)

whereL0/1, the 0/1 loss, outputs 1 when h(x) 6= y, and zero otherwise.
In practice, the learner does not have access to the ground-truth distribution; hence it cannot

estimate the riskR(h). To �nd an approximate solution for Problem (A.1), a learning algorithm
solves the empirical risk minimization problem instead. In this case, we simply replace the risk by
its empirical counterpart over the training sampleS := {(x1, y1), . . . , (xn, yn)}. The empirical
risk minimization problem writes

inf
h∈H
R̂(h) :=

1

n

n∑
i=1

L0/1(h(xi), yi) . (A.2)

Then, to evaluate how far the selected hypothesis is from the optimum, one wants to upper bound
the di�erence between the risk and the empirical risk of any h ∈ H. This di�erence is known as
the generalization gap.

A.1.2 Classi�cation in the presence of an adversary

Given a hypothesis h ∈ H and a sample (x, y) ∼ P, the goal of an adversary is to �nd a perturba-
tion τ ∈ X such that the following assertions both hold. First, the perturbation is imperceptible
to humans. This means that a human cannot visually distinguish the standard example x from
the adversarial example x+τ . Second, the perturbation modi�es x enough to make the classi�er
misclassify. More formally, the adversary seeks a perturbation τ ∈ X such that h(x+ τ) 6= y.

Although the notion of imperceptible modi�cation is very natural for humans, it is genuinely
hard to formalize. Despite these di�culties, in the image classi�cation setting, a su�cient condi-
tion to ensure that the attack will remain undetected is to constrain the perturbation τ to have
a small `p norm. This means that for any p ∈ [1,∞], there exists a threshold ε > 0 for which
any perturbation τ is imperceptible as soon as ‖τ‖p ≤ ε. The literature on adversarial attacks
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for image classi�cation usually uses either an `∞ norm akin Madry et al. [2018a] or an `2 norm
akin Carlini et al. [2017] as a surrogate for imperceptibility. Other authors such as Chen et al.
[2018a] and Papernot et al. [2016c] also used an `1 norm or an `0 semi-norm.

To account for adversaries possibly manipulating the input images, one needs to revisit the
standard risk minimization by incorporating the adversary in the problem. The goal becomes to
minimize the worst-case risk under ε-bounded manipulations. We call this problem the adversar-
ial risk minimization. It writes

inf
h∈H
Rε(h) := E(x,y)∼D

[
sup

τ∈Bp(ε)
L0/1(h(x+ τ), y)

]
, (A.3)

whereBp(ε) := {τ ∈ X | ‖τ‖p ≤ ε}. In this new formulation, the adversary focuses on opti-
mizing the inner maximization, while the learner tries to get the best hypothesis fromH “under at-
tack”. By analogy with the standard setting, givenn training examplesS := {(x1, y1), . . . , (xn, yn)},
we want to �nd an approximate solution to the adversarial risk minimization by studying its
empirical counterpart, the empirical adversarial risk minimization. This optimization problem
writes

inf
h∈H
R̂N (h) :=

1

n

n∑
i=1

sup
τ∈Bp(ε)

L0/1(h(xi + τ), yi) . (A.4)

In the presence of an adversary, two major issues appear in the empirical risk minimization. First,
as recently pointed out by Madry et al. [2018a], the adversarial generalization error (i.e. the gap
between the empirical adversarial risk and the adversarial risk) can be much larger than in the
standard setting. Indeed, the adversary makes the problem dependent on the dimension of X .
Hence, in high-dimension (e.g. for images) one needs much more samples to classify correctly as
pointed out by Schmidt et al. [2018] as well as Simon-Gabriel et al. [2019]. Moreover, �nding an
approximate solution to the adversarial risk minimization is not always su�cient. Indeed, recent
works by Tsipras et al. [2019] and Zhang et al. [2019a] g ave theoretical evidence that training a
robust model may lead to an increase of its standard risk. Hence �nding a good approximation for
Problem (A.3) may lead to a poor solution for Problem (A.1). Accordingly, it is natural to wonder
whether we can find a class of modelsH for which we can control both the standard and
adversarial risks?

In this paper, we provide answers to the above question by conducting an in depth analysis of
a special class of models called randomized classi�ers, i.e. classi�ers that output random variables
instead of labels. Our main contributions summarize as follows.

A.1.3 Contributions

Our �rst contribution consists in studying randomized classi�ers. By analogy with the determin-
istic case, we de�ne a notion of robustness for randomized classi�ers. This de�nition amounts to
making the classi�er locally Lipschitz with respect to the `p norm onX , and a probability metric
on Y (e.g. the total variation distance or the Renyi divergence). More precisely, if we denote D
the probability metric at hand, a randomized classi�erm is called (ε, α)-robust w.r.t.D if for any
x, x′ ∈ X ∥∥x− x′∥∥

p
≤ ε =⇒ D(m(x),m(x′)) ≤ α.
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DenotingMD(ε, α) the class of randomized classi�ers that respect this local Lipschitz condition,
we present the following results.

1. If D is either the total variation distance or the Renyi divergence, we show that for any
m ∈ MD(ε, α), we can upper-bound the gap between the risk and the adversarial risk
of m. Notably, if D is the total variation distance, for any m ∈ MD(ε, α) we have
Rε(m) − R(m) ≤ α. Hence, α controls the maximal trade-o� between robust and
standard accuracy for locally Lipschitz randomized classi�er. We demonstrate similar re-
sults whenD is the Renyi divergence showing thatRε(m)−R(m) ≤ 1−O(e−α). This
means that, for the class of locally Lipschitz randomized classi�ers, solving the risk mini-
mization problem, i.e., Problem (A.1), gives an approximate solution to the adversarial risk
minimization problem, i.e., Problem (A.3), up to an additive factor that depends on the
robustness parameter α.

2. We devise an upper-bound on the generalization gap of anym inMD(ε, α). In particular,
when D is the total variation distance, we demonstrate that for any m ∈ MD(ε, α) we
have

R(m)− R̂(m) ≤ O
(√

N ×K
n

)
+ α,

where N is the external ε-covering number of the input samples. This means that, when
N/n →

n→∞
0, solving the empirical risk minimization problem, i.e., Problem (A.2), on

MD(ε, α) provides an approximate solution to the risk minimization problem, i.e., Prob-
lem (A.1). Since we can also bound the gap between the adversarial and the standard risk,
we can combine the two results to bound the adversarial generalization gap onMD(ε, α).
Note however, that this result relies on a strong assumption on X that does not always
avoid dimensionality issues. The problem of �nding a subclass ofMD(ε, α) that provides
tighter generalization bounds is an open question.

For our second contribution, we present a practical way to design this classM(ε, α) by using
a simple yet e�cient noise injection scheme. This allows us to build randomized classi�ers from
state-of-the-art machine learning models, including deep neural networks. More precisely our
contribution is as follows.

1. Based on information-theoretic properties of the total variation distance and the Renyi di-
vergence (e.g., the data processing inequality) we design a noise injection scheme to turn a
state-of-the-art machine learning model into a robust randomized classi�er. More formally,
Let us denote Φ the c.d.f. of a standard Gaussian distribution. Let us consider h a deter-
ministic hypothesis, we show that the randomized classi�erm : x 7→ h(x+ n) with n ∼
N (0, σ2Id) is both (α2,

(α2)2

2σ )-robust w.r.t. the Renyi divergence and (α2, 2Φ
(
α2
2σ

)
−1)-

robust w.r.t. the total variation distance. Our results on randomized classi�ers are applica-
ble to a wide range of machine learning models including deep neural networks.

2. We further corroborate our theoretical results with experiments using deep neural net-
works on standard image datasets, namely CIFAR-10 and CIFAR-100 [Krizhevsky and
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Hinton, 2009]. These models can simultaneously provide accurate prediction (over 0.82
clean accuracy on CIFAR-10) and reasonable robustness against `2 adversarial examples
(0.45 against `2 adversaries with magnitude 0.5 on CIFAR-10).

A.2 Related Work

Contrary to other notions such as training corruption, a.k.a. poisoning attacks [Kearns and Li,
1993, Kearns et al., 1994], the theoretical study of adversarial robustness is still in its infancy. So
far, empirical observations tend to show that 1) adversarial examples on state-of-the-art models
are hard to mitigate and 2) robust training methods give poor generalization performances. Some
recent works started to study the problem through the lens of learning theory either to under-
stand the links between robustness and accuracy or to provide bounds on the generalization gap
of current learning procedures in the adversarial setting.

A.2.1 Accuracy vs robustness trade-o�

A �rst line of research [Su et al., 2018, Jetley et al., 2018, Tsipras et al., 2019] suggests that designing
robust models might be inconsistent with standard accuracy. These works argue with experiments
and toy examples that robust and standard classi�cation are two concurrent problems. Following
this line, Zhang et al. [2019a] observed that the adversarial risk of any hypothesis h decomposes
as follows,

Rε(h) = R(h) +R>0
ε (h), (A.5)

whereR>0
ε (m) is the amount of risk that the adversary gets with non-null perturbations. Look-

ing at Equation (A.5), we realize that minimizing the adversarial risk is not enough to control
standard accuracy, as one could only optimize over the second term. This indicates that adversar-
ial risk minimization, i.e., Problem (A.3), is harder to solve than the standard risk minimization,
i.e., Problem (A.1).

While this indicates that both goals maybe di�cult be achieve simultaneously, Equation (A.5),
along with the empirical studies from the literature do not highlight any fundamental trade-o�
between robustness and accuracy. Moreover, no upper-bound onR>0

ε (h) has been demonstrated
yet. Hence the questions whether this trade-o� exists and can be controlled remain open. In
this paper, we provide a rigorous answer to these questions by identifying classesMD(ε, α) of
randomized classi�ers for which we can upper bound the trade-o� termR>0

ε (m) for any m ∈
MD(ε, α). Hence, we can control the maximum loss of accuracy that the model can su�er in the
adversarial setting. It also challenges the intuitions developed by previous works [Su et al., 2018,
Jetley et al., 2018, Tsipras et al., 2019] and argues in favor of using randomized mechanisms as a
defense against adversarial attacks.

A.2.2 Studying adversarial generalization

To further compare the hardness of the two problems, a recent line of research began to explore
the notion of adversarial generalization gap. In this line, Schmidt et al. [2018] presented some �rst
intuitions by studying a simpli�ed binary classi�cation framework where P is a mixture of multi-
dimensional Gaussian distributions. In this framework the authors show that without attacks, we
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only needO(1) training samples to have a small generalization gap. But against an `∞ adversary,
we needO(

√
d) training samples instead. In the discussion of their work, the authors present the

problem of obtaining similar results without making any assumption about the distribution as an
open problem.

This issue was recently studied using the Rademacher complexity by Khim and Loh [2018],
Yin et al. [2019] and Awasthi et al. [2020]. These papers relate the adversarial generalization error
of linear classi�ers and one-hidden layer neural networks with the dimension of the problem.
They show that the adversarial generalization depends on the dimension of the problem. At a
�rst glance, the di�culty of adversarial generalization seems to contradict previous conclusions
on the link between robustness and generalization presented by Xu and Mannor [2012]. But,
as we will discuss in the sequel, these results assume that the input spaceX can be partitioned in
O(1) sub-space in which the classi�cation function has small variations. This assumption may not
always hold when dealing with high dimensional input spaces (e.g., images) and very sophisticated
classi�cation algorithms (e.g., deep neural networks).

Going further, it should be noted that the generalization gap measures only the di�erence be-
tween empirical and theoretical risks. In practice, the empirical adversarial risk is hard to estimate,
since we cannot compute the exact solution to the inner maximization problem. The following
question therefore remains open: even if we can set up a learning procedure with a controlled
generalization gap, can we give guarantees on the standard and adversarial risks? In this paper, we
start answering this question by providing techniques that provably o�er both small standard risk
and reasonable robustness against adversarial examples (see Section A.1.3 for more details).

A.2.3 Defense against adversarial examples based on noise injection

Injecting noise into algorithms to improve train time robustness has been used for ages in detec-
tion and signal processing tasks [Zozor and Amblard, 1999, Chapeau-Blondeau and Rousseau,
2004, Mitaim and Kosko, 1998, Grandvalet et al., 1997]. It has also been extensively studied in
several machine learning and optimization �elds, e.g., robust optimization [Ben-Tal et al., 2009]
and data augmentation techniques [Perez and Wang, 2017]. Concurrently to our work, noise in-
jection techniques have been adopted by the adversarial defense community under the random-
ized smoothing name. The idea of provable defense through noise injection was �rst proposed by
Lecuyer et al. [2019] and re�ned by Li et al. [2019a], Cohen et al. [2019], Salman et al. [2019]
and Yang et al. [2020a]. The rational behind randomized smoothing is very simple: smooth
h after training by convolution with a Gaussian measure to build a more stable classi�er. Our
work belongs to the same line of research, but the nature of our results is di�erent. Randomized
smoothing is an ensemble method that builds a deterministic classi�er by smoothing a pre-trained
model with a Gaussian kernel. This scheme requires to compute a Monte-Carlo estimation of
the smoothed classi�er; hence requiring many rounds of evaluations to output a deterministic
label. Our method is based on randomization and only requires one evaluation round for infer-
ring a label, making the prediction randomized and computationally e�cient. While randomized
smoothing focuses on the construction of certi�ed defenses, we study the generalization prop-
erties of randomized mechanisms both in the standard and the adversarial setting. Our analysis
presents the fundamental properties of randomized defenses, including (but not limited to) ran-
domized smoothing (c.f. Section A.7).
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A.3 De�nition of Risk and Robustness for Randomized classi�ers

In this work, the goal is to analyze how randomized classi�ers can solve the problem of classi-
�cation in the presence of an adversary. Let us start by de�ning what we mean by randomized
classi�ers.

Remark 9 (Note on measurability). Trough the paper, we assume every spaces Z to be associated
with a σ-algebra denoted A(Z). Furthermore, we denoteM+

1 (Z) the set of probability distribu-
tions defined on the measurable space (Z,A(Z)). In the following, for simplicity, we refer toA(Z)
only when necessary.

De�nition 25 (Probabilistic mapping). Let Z and Z ′ be two arbitrary spaces. A probabilistic
mapping from Z to Z ′ is a mapping m : Z → M+

1 (Z ′), whereM+
1 (Z ′) is the space of proba-

bility measures on Z ′. When Z = X and Z ′ = Y , m is called a randomized classi�er. To get a
numerical answer for an input x, we sample ŷ ∼ m(x).

Any mapping can be considered as a probabilistic mapping, whether it explicitly considers ran-
domization or not. In fact, any deterministic classi�er can be considered as a randomized one,
since it can be characterized by a Dirac measure. Accordingly, the de�nition of a randomized
classi�er is fully general and equally consider classi�ers with or without randomization scheme.

A.3.1 Risk and adversarial risk for randomized classi�ers

To analyze this new hypothesis class, we can adapt the concepts of risk and adversarial risk for
a randomized classi�er. The loss function we use is the natural extension of the 0/1 loss to the
randomized regime. Given a randomized classi�erm and a sample (x, y) ∼ P it writes

L0/1(m(x), y) := Eŷ∼m(x)[1{ŷ 6= y}]. (A.6)

This loss function evaluates the probability of misclassi�cation ofm on a data sample (x, y) ∼ P.
Accordingly, the risk ofmwith respect to P writes

R(m) := E(x,y)∼P
[
L0/1(m(x), y)

]
. (A.7)

Finally, given m and (x, y) ∼ P, the adversary seeks a perturbation τ ∈ Bp(ε) that maximizes
the expected error of the classi�er on x (i.e. Eŷ∼m(x+τ)[1{ŷ 6= y}]). Therefore, the adversarial
risk ofm under ε-bounded perturbations writes

Rε(m) := E(x,y)∼P

[
sup

τ∈Bp(ε)
L0/1(m(x+ τ), y)

]
. (A.8)

By analogy with the deterministic setting, we denote

R̂(m) :=
1

n

n∑
i=1

L0/1(m(xi), yi), and (A.9)
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R̂N (m) :=
1

n

n∑
i=1

sup
τ∈Bp(ε)

L0/1(m(xi + τ), yi), (A.10)

the empirical risks ofm for a given training sample S := {(x1, y1), . . . , (xn, yn)}.

A.3.2 Robustness for randomized classi�ers

We could de�ne the notion of robustness for a randomized classi�er depending on whether it
misclassi�es any test sample (x, y) ∼ P. But in practice, neither the adversary nor the model
provider have access to the ground-truth distribution P. Furthermore, in real-world scenarios,
one wants to check before its deployment that the model is robust. Therefore, it is required for
the classi�er to be stable on the regions of the space where it already classi�es correctly. Formally
a (deterministic) classi�er c : X → Y is called robust if for any (x, y) ∼ P such that c(x) = y,
and for any τ ∈ X one has

‖τ‖p ≤ ε =⇒ c(x) = c(x+ τ). (A.11)

By analogy with this, we de�ne robustness for a randomized classi�er below.

De�nition 26 (Robustness for a randomized classi�er). A randomized classifier m : X →
M+

1 (Y) is called (ε, α)-robust w.r.t. D if for any x, τ ∈ X , one has

‖τ‖p ≤ ε =⇒ D(m(x),m(x+ τ)) ≤ α .

Where D is a metric/divergence between two probability measures. Given such a metric/divergence
D, we denoteMD(ε, α) the set of all randomized classifiers that are (ε, α)-robust w.r.t. D.

Note that we did not add the constraint thatm classi�es well on (x, y) ∼ P, since it is already
encompassed in the probability distribution itself. If the two probabilities m(x) and m(x +
τ) are close, and if m(x) outputs y with high probability, then it will be the same for m(x +
τ). This formulation naturally raises the question of the choice of the metric D. Any choice of
metric/divergence will instantiate a notion of adversarial robustness, and it should be carefully
selected. In the present work, we focus our study on the total variation distance and the Renyi
divergence. The question whether these metrics/divergences are more appropriate than others
remains open but these two divergences are su�ciently general to cover a wide range of other
de�nitions (see Appendix A.11 for more details). Furthermore, these notions of distance comply
with both a theoretical analysis (Section A.5) and practical considerations (Section A.8).

A.3.3 Divergence and probability metrics

Let us now recall the de�nition of total variation distance and Renyi divergence. Let Z be an
arbitrary space, and ρ, ρ′ be two measures inM+

1 (Z)1. The total variation distance between ρ
and ρ′ is

DTV

(
ρ, ρ′

)
:= sup

Z⊂A(Z)
|ρ(Z)− ρ′(Z)| , (A.12)

1Recall from De�nition 25 thatM+
1 (Z) is the set of probability measures onZ
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where A(Z) is the σ-algebra associated with the set of measuresM+
1 (Z). The total variation

distance is one of the most commonly used probability metrics. It admits several very simple in-
terpretations, and is a very useful tool in many mathematical �elds such as probability theory,
Bayesian statistics or optimal transport [Villani, 2003, Robert, 2007, Peyré et al., 2019]. In op-
timal transport, it can be rewritten as the solution of the Monge-Kantorovich problem with the
cost function cost(z, z′) = 1{z 6= z′},

DTV (ρ, ρ′) = inf

∫
Z2

1
{
z 6= z′

}
dπ(z, z′) , (A.13)

where the in�mum is taken over all joint probability measures π inM+
1 (Z × Z) with marginals

ρ and ρ′. According to this interpretation, it seems quite natural to consider the total variation
distance as a relaxation of the trivial distance on [0, 1] (for deterministic classi�ers).

Let us now suppose that ρ and ρ′ admit probability density functions g and g′ according to a
third measure ν. Then the Renyi divergence of order β between ρ and ρ′ writes

Dβ

(
ρ, ρ′

)
:=

1

β − 1
log

∫
Y
g′(y)

(
g(y)

g′(y)

)β
dν(y) . (A.14)

The Renyi divergence [Rényi, 1961] is a generalized divergence de�ned for any β on the interval
[1,∞]. It equals the Kullback-Leibler divergence when β → 1, and the maximum divergence
when β → ∞. It also has the property of being non-decreasing with respect to β. This diver-
gence is very common in machine learning and Information theory [van Erven and Harremos,
2014], especially in its Kullback-Leibler form as it is widely used as the loss function, i.e., cross en-
tropy, of classi�cation algorithms. In the remaining, we denoteMβ(ε, α) the set of (ε, α)-robust
classi�ers w.r.t. Dβ .

Let us now give some properties of these divergences that will be useful for our analysis. First
we recall the probability preservation property of the Renyi divergence, �rst presented by Langlois
et al. [2014].

Proposition 17 (Langlois et al. [2014]). Let ρ and ρ′ be two measures inM+
1 (Z). Then for any

Z ∈ A(Z), the following holds,

ρ(Z) ≤
(
exp
(
Dβ(ρ, ρ′)

)
ρ′(Z)

)β−1
β .

Now thanks to previous works by Gilardoni [2010] and Vajda [1970], we also get the following
results relating the total variation distance and the Renyi divergence.

Proposition 18 (Inequality between total variation and Renyi divergence). Let ρ and ρ′ be two
measures inM+

1 (Z), and β ≥ 1. Then the following holds,

DTV (ρ, ρ′) ≤ min

3

2

(√
1 +

4Dβ(ρ, ρ′)

9
− 1

)1/2

,
exp(Dβ(ρ, ρ′) + 1)− 1

exp(Dβ(ρ, ρ′) + 1) + 1

.
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Proof. Thanks to Gilardoni [2010], one has

D1(ρ, ρ′) ≥ 2DTV (ρ, ρ′)2 +
4DTV (ρ, ρ′)4

9
.

From which it follows that

DTV (ρ, ρ′) ≤ 3

2

(√
1 +

4D1(ρ, ρ′)

9
− 1

)1/2

.

Moreover, using inequality from Vajda [1970], one gets

D1(ρ, ρ′) + 1 ≥ log

(
1 +DTV (ρ, ρ′)

1−DTV (ρ, ρ′)

)
.

This inequality leads to the following

exp(D1(ρ, ρ′) + 1)− 1

exp(D1(ρ, ρ′) + 1) + 1
≥ DTV (ρ, ρ′).

By combining the above inequalities and by monotony of Renyi divergence regarding β, one
obtains the expected result.

From now on, we denoteMTV (α, α) andMβ(α, α) the set of (α, α)-robust classi�ers respec-
tively forDTV andDβ . The next section gives bounds on the generalization gap in the standard
and the adversarial settings for these speci�c hypothesis classes.

A.4 Risks’ gap and Generalization gap for robust randomized

classi�ers

As discussed in Section A.2.1, we can always decompose the adversarial risk of a classi�erRε(m)
in two terms. First the standard riskR(m) and second the amount of risk the adversary creates
with non-zero perturbationsR>0

ε (m). Hence minimizingR(m) can give poor values forRε(m)
and vice-versa. In this section, we upper-bound the risks’ gapR>0

ε (m), i.e. the gap between the
risk and the adversarial risk of a robust classi�er.

A.4.1 Risks’ gap for robust classi�ers w.r.t. DTV

First, let us consider m ∈ MTV (ε, α). We can control the loss of accuracy under attack of this
classi�er with the robustness parameter α.

Theorem 15 (Risk’s gap for robust classi�ers w.r.tDTV ). Letm ∈MTV (ε, α) . Then we have

Rε(m) ≤ R(m) + α .
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Proof. Let m be an (ε, α)-robust classi�er w.r.t. DTV , (x, y) ∼ P and τ ∈ X such that
‖τ‖p ≤ ε. By de�nition of the 0/1 loss we have

L0/1(m(x+ τ), y) = Eŷ∼m(x+τ)[1{ŷ 6= y}].

Furthermore, by de�nition of the total variation distance we have

Eŷ∼m(x+τ)[1{ŷ 6= y}]− Eŷ∼m(x)[1{ŷ 6= y}] ≤ DTV (m(x),m(x+ τ)).

Sincem ∈MTV (ε, α), the above amounts to write

L0/1(m(x+ τ), y)− L0/1(m(x), y) ≤ α.

Finally, this holds for any (x, y) ∼ P and any ε bounded perturbation τ , then we get

E(x,y)∼P

[
sup

τ∈Bp(ε)
L0/1(m(x+ τ), y)

]
− E(x,y)∼P

[
L0/1(m(x), y)

]
≤ α.

The above inequality concludes the proof.

This result means that if we can design a classMTV (ε, α) with small enoughα, then minimizing
the risk of m ∈ MTV (ε, α) is also su�cient to control the adversarial risk. It is relatively easy
to obtain, but it has an interesting consequence on the understanding we have of the trade-o�
between robustness and accuracy. It says that there exists some classes of randomized classi�ers
for which robustness and standard accuracy may not be at odds, since we can upper-bound the
maximal loss of accuracy the model may su�er under attack. This questions previous intuitions
developed on deterministic classi�ers by Su et al. [2018], Jetley et al. [2018], Tsipras et al. [2019]
and Zhang et al. [2019a] and advocates for the use of randomization schemes as defenses against
adversarial attacks. Note, however, that we did not evade the trade-o� between robustness and
accuracy, we only showed that with certain hypothesis classes it can be controlled.

A.4.2 Risks’ gap for robust classi�ers w.r.t. Dβ

We now extend the previous results the Renyi divergence. We show that, for any randomized
classi�er inMβ(ε, α), we can bound the gap between the risk and the adversarial risk ofm. Using
the Renyi divergence, the factor that controls the classi�er’s loss of accuracy under attack can be
either multiplicative or additive, and depends both on the robustness parameter α and on the
divergence parameter β.

Theorem 16 (Multiplicative risks’ gap for Renyi-robust classi�ers). Let m ∈ Mβ(ε, α). Then
we have

Rε(m) ≤ (eαR(m))
β−1
β .

125



A On the Robustness of Randomized Classifiers to Adversarial Examples

Proof. Let m be an (ε, α)-robust classi�er w.r.t. Dβ , (x, y) ∼ P and τ ∈ X such that
‖τ‖p ≤ ε. With the same reasoning as above, and with Proposition 17, we get

L0/1(m(x+ τ), y) = Eŷ∼m(x+τ)[1{ŷ 6= y}]
= Pŷ∼m(x+τ)[ŷ 6= y]

≤
(
eDβ(m(x+τ),m(x))Pŷ∼m(x)[ŷ 6= y]

)β−1
β (Prop. 17)

=
(
eDβ(m(x+τ),m(x))Eŷ∼m(x)[1{ŷ 6= y}]

)β−1
β

≤
(
eαL0/1(m(x), y)

)β−1
β .

Since this holds for any (x, y) ∼ P and any ε bounded perturbation τ , we get

Rε(m) = E(x,y)∼D

[
sup

τ∈Bp(ε)
L0/1(m(x+ τ), y)

]
≤E(x,y)∼D

[
e
β−1
β
α
L0/1(m(x), y)

β−1
β

]
≤ e

β−1
β
αE(x,y)∼D

[
L0/1(m(x), y)

β−1
β

]
.

Finally, using the Jensen inequality, one gets

≤ e
β−1
β
αE(x,y)∼D

[
L0/1(m(x), y)

]β−1
β = (eαR(m))

β−1
β .

The above inequality concludes the proof.

This �rst result gives a multiplicative bound on the gap between the standard and adversarial
risks. This means that if we can design a classMβ(ε, α) with small enoughα, and big enough β,
then minimizing the risk of anym ∈ Mβ(ε, α) is su�cient to also minimize the adversarial risk
ofm. Nevertheless, multiplicative factors are not easy to analyze.

Remark 10. More general bounds can be computed if we assume that for every randomized classi-
fierm there exists a convex function f such that for allx and τ with ‖τ‖p ≤ ε, we havem(x)(Z) ≤
f(m(x + τ)(Z)) for all measurable sets Z . In this case, we getRε(m) ≤ f(R(m)). This has a
close link with randomized smoothing [Cohen et al., 2019] and f -di�erential privacy [Dong et al.,
2019] where both try to fit the best possible f using Neyman-Pearson lemma.

The following result provides an additive counterpart to Theorem 16. It gives a control over
the loss of accuracy under attack with respect to the robustness parameter α and the Shannon
entropy ofm.

Theorem 17 (Additive risks’ gap for Renyi-robust classi�ers). Letm ∈Mβ(ε, α), then we have

Rε(m)−R(m) ≤ 1− e−αEx∼D|X
[
e−H(m(x))

]

126



A.4 Risks’ gap and Generalization gap for robust randomized classifiers

whereH is the Shannon entropy ( i.e. for any ρ ∈M+
1 (Y), H(ρ) = − ∑

k∈Y
ρk log(ρk)) andD|X

is the marginal distribution of P forX .

Proof. Letm ∈Mβ(ε, α), then

Rε(m)−R(m)

= E(x,y)∼P

[
sup

τ∈Bp(ε)
L0/1(m(x+ τ), y)− L0/1(m(x), y)

]
.

By de�nition of the 0/1 loss, this amounts to write

= E(x,y)∼P

[
sup

τ∈Bp(ε)
Eŷadv∼m(x+τ),ŷ∼m(x)[1(ŷadv 6= y)− 1(ŷ 6= y)]

]

≤E(x,y)∼P

[
sup

τ∈Bp(ε)
Eŷadv∼m(x+τ),ŷ∼m(x)[1(ŷadv 6= ŷ)]

]

= E(x,y)∼P

[
sup

τ∈Bp(ε)
Pŷadv∼m(x+τ),ŷ∼m(x)[ŷadv 6= ŷ]

]

= E(x,y)∼P

[
sup

τ∈Bp(ε)
1− Pŷadv∼m(x+τ),ŷ∼m(x)[ŷadv = ŷ]

]

= E(x,y)∼P

[
sup

τ∈Bp(ε)
1−

K∑
i=1

m(x)i ×m(x+ τ)i

]
.

Now, note that for any (x, y) ∼ P and τ ∈ X , by de�nition of a probability vector in
M+

1 (Y), and thanks to Jensen inequality we can write

K∑
i=1

m(x)i ×m(x+ τ)i ≥ exp

(
K∑
i=1

m(x)i logm(x+ τ)i

)
.

Then by de�nition of the entropy and the Kullback Leibler divergence we have

exp

(
K∑
i=1

m(x)i logm(x+ τ)i

)
= exp

(
−D1(m(x),m(x+ τ))−H(m(x))

)
.

Finally, by combining the above inequalities and sincem ∈Mβ(ε, α) we get

E(x,y)∼P

[
sup

τ∈Bp(ε)
Pŷadv∼m(x+τ),ŷ∼m(x)(ŷadv 6= ŷ)

]
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≤E(x,y)∼P

[
sup

τ∈Bp(ε)
1− e−D1(m(x),m(x+τ))−H(m(x))

]
≤E(x,y)∼P

[
1− e−α−H(m(x))

]
= 1− e−αEx∼P|X

[
e−H(m(x))

]
.

The above inequality concludes the proof.

This result is interesting because it relates the accuracy of m with the bound we obtain. In
words, when m(x) has large entropy (i.e. H(m(x)) → log(K)) the output distribution tends
towards the uniform distribution; hence α → 0. This means that the classi�er is very robust
but also completely inaccurate, since it outputs classes uniformly at random. On the opposite,
if H(m(x)) → 0, then α → ∞. The classi�er may be accurate, but it is not robust anymore
(at least according to our de�nition). Hence we need to �nd a classi�er that achieves a trade-o�
between robustness and accuracy.

A.5 Standard Generalization gap

In this section we devise generalization gap bounds for randomized classi�ers when they are robust
according either to the total variation distance or the Renyi divergence. To do so, we upper-bound
the Rademacher complexity of the loss space for TV-robust classi�ers

LMTV (ε,α) := {(x, y) 7→ L0/1(h(x), y) | m ∈MTV (ε, α)}.

The empirical Rademacher complexity, �rst introduced by Bartlett and Mendelson [2002], is one
of the standard measures of generalization gap. It is particularly useful to obtain quality bounds
for complex classes such as neural networks since it does not depend on the number of parameters
in the network contrary to combinatorial notions such as the VC dimension.

De�nition 27 (Rademacher complexity). For any class of real-valued functionsF := {(x, y) 7→
R}, given a training sample S = {(x1, y1), . . . , (xn, yn)}, the empirical Rademacher complex-
ity ofF is defined as

RadS(F) :=
1

n
Eri

[
sup
f∈F

n∑
i=1

rif(xi, yi)

]
,

whith ri i.i.d. drawn from a Rademacher measure, i.e. P(ri = 1) = P(ri = −1) = 1
2 .

The empirical Rademacher complexity measures the uniform convergence rate of the empirical
risk towards the risk on the function class F as demonstrated by Mohri et al. [2018]. Thanks
to this notion of complexity, we can bound with high probability the generalization gap of any
hypothesism in a classM.
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Theorem 18 (Mohri et al. [2018]). LetM be a class of possibly randomized classifiers andLM :=
{Lm : (x, y) 7→ L0/1(m(x), y) | m ∈ M}. Then for any δ ∈ (0, 1), with probability at least
1− δ, the following holds for anym ∈MTV (ε, α),

R(m)− R̂(m) ≤ 2RadS(LM) + 3

√
ln(2/δ)

2n
.

A.5.1 Generalization error for robust classi�ers

Accordingly, we want to upper bound the empirical Rademacher complexity ofLMTV (ε,α), which
motivates the following de�nition.

De�nition 28 (α-covering and external covering number). Let us consider (X , ‖.‖p) a vector
space equipped with the `p norm,B ⊂ X and α ≥ 0. Then

• C = {c1, . . . , cm} is an α-covering of B for the `p norm if for any x ∈ B there exists
ci ∈ C such that ‖x− ci‖p ≤ α.

• The external covering number of B writes N
(
B, ‖.‖p, α

)
. It is the minimal number of

points one needs to build an α-covering ofB for the `p norm.

The covering number is a well-known measure that is often used in statistical learning the-
ory [Shalev-Shwartz and Ben-David, 2014] and asymptotic statistics [Van der Vaart, 2000] to eval-
uate the complexity of a set of functions. Here we use it to evaluate the number of `p balls we need
to cover the training samples, which gives us the following bound on the Rademacher complexity
ofLMTV (ε,α).

Theorem 19 (Rademacher complexity for TV-robust classi�ers). LetLMTV (ε,α) be the loss func-
tion class associated withMTV (ε, α). Then, for anyS := {(x1, y1), . . . , (xn, yn)}, the following
holds,

RS
(
LMTV (ε,α)

)
≤

√
N ×K
n

+ α.

WhereN = N
(
{x1, . . . , xn}, ‖.‖p, ε

)
is theε-external covering number of the inputs{x1, . . . , xn}

for the `p norm.

Proof. We denote S := {(x1, y1), . . . , (xn, yn)} and N = N
(
{x1, . . . , xn}, ‖.‖p, ε

)
.

By de�nition of a covering number, there existsC = {c1, . . . , cN} anε-covering of{x1, . . . xn}
for the `p norm. Furthermore, for j ∈ {1, . . . , N} and y ∈ {1, . . . ,K}, we de�ne

Ey,j =

{
i ∈ {1, . . . , n} | yi = y and arg min

l∈{1,...,N}
‖xi − cl‖ = j

}
.
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We also denoteEj = ∪
y∈[K]

Ey,j . Finally, we denoteLm : (x, y) 7→ L0/1(m(x), y). Then,

by de�nition of the empirical Rademacher complexity, we can write

RS
(
LMTV (ε,α)

)
=

1

n
Eri

[
sup

m∈MTV (ε,α)

n∑
i=1

riLm(xi, yi)

]
.

Then we can useEj to write

RS
(
LMTV (ε,α)

)
=

1

n
Eri

 sup
m∈MTV (ε,α)

N∑
j=1

∑
i∈Ej

riLm(xi, yi)

.
Furthermore for any m ∈ MTV (ε, α) and i ∈ Ej , there exists αi ∈ [−α, α] such that:
Lm(xi, yi) = Lm(cj , yi) + αi. Then we have

RS
(
LMTV (ε,α)

)
≤ 1

n
Eri

 sup
m∈MTV (ε,α)

N∑
j=1

∑
i∈Ej

riLm(cj , yi)


+

1

n
Eri

 sup
αi∈[−α,α]

N∑
j=1

∑
i∈Ej

riαi

.
Let us start by studying the second term. We have

1

n
Eri

 sup
αi∈[−α,α]

N∑
j=1

∑
i∈Ej

riαi

 =
1

n
Eri

[
sup

αi∈[−α,α]

n∑
i=1

riαi

]
=

1

n

n∑
i=1

α = α.

Now looking at the �rst term. SinceLm(x, y) ∈ [0, 1] for all (x, y) we have

1

n
Eri

 sup
m∈MTV (ε,α)

N∑
j=1

∑
i∈Ej

riLm(cj , yi)


=

1

n
Eri

 sup
m∈MTV (ε,α)

N∑
j=1

K∑
y=1

Lm(cj , y)
∑
i∈Ey,j

ri


≤ 1

n
Eri

 N∑
j=1

K∑
y=1

∣∣∣∣∣∣
∑
i∈Ey,j

ri

∣∣∣∣∣∣
 .
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Finally using the Khintchine inequality and the Cauchy Schartz inequality we get

1

n
Eri

 N∑
j=1

K∑
y=1

∣∣∣∣∣∣
∑
i∈Ey,j

ri

∣∣∣∣∣∣
 ≤ 1

n

N∑
j=1

K∑
y=1

√
|Ey,j | (Khintchine)

≤ 1

n

√
N ×K

√√√√ N∑
j=1

K∑
y=1

|Ey,j | (Cauchy)

=

√
N ×K
n

.

By combining the upper-bounds we have for each term, we get the expected result,

RS
(
LMTV (ε,α)

)
≤
√
N ×K
n

+ α.

The above result means that, if we can cover the n training samples with O(1) balls, then we
can bound the generalization gap of any randomized classi�erm ∈MTV (ε, α) byO

(
1√
n

)
+α.

Furthermore, a natural corollary of Theorem 19 bounds the Rademacher complexity of the class
LMβ(ε,α).

Corollary 4. Let LMβ(ε,α) be the loss function class associated withMβ(ε, α). Then, for any
S := {(x1, y1), . . . , (xn, yn)}, the following holds,

RS

(
LMβ(ε,α)

)
≤

√
N ×K
n

+ min

3

2

√1 +
4α

9
− 1

1/2

,
eα+1 − 1

eα+1 + 1

.
WhereN = N

(
{x1, . . . , xn}, ‖.‖p, ε

)
is theε-external covering number of the inputs{x1, . . . , xn}

for the `p norm.

Proof. This corollary is an immediate consequence of Theorem 19 and Proposition 18.

Thanks to Theorems 18 and 19 and Corollary 4, one can easily bound the generalization gap of
robust randomized classi�ers.

A.5.2 Discussion and dimensionality issues

Xu and Mannor [2012] previously studied generalization bounds for learning algorithms based
on their robustness. Although we use very di�erent proof techniques, their results and ours are
similar. More precisely, both analyses conclude that robust models generalize well if the training
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samples have a small covering number. Note, however, that we base our formulation on an adap-
tive partition of the samples, while the initial paper from Xu and Mannor [2012] only focuses
on a �xed partition of the input space. Wre refer the reader to the discussion section in [Xu and
Mannor, 2012] for more details.

These �ndings seem to contradict the current line of works on the hardness of generalization
in the adversarial setting. In fact, if the ground truth distribution is su�ciently concentrated (e.g.
lies in a low dimensional subspace of x), a small number of balls can cover S with high proba-
bility; hence N = O(1). This means that we can learn robust classi�ers with the same sample
complexity as in the standard setting. But if the ground truth distribution is not concentrated
enough, the training samples will be far one from another; hence forcing the covering number
to be large. In the worse case scenario, we need to cover the whole space [0, 1]d giving a covering
numberN = O

(
1

(ε)d

)
which is exponential in the dimension of the problem.

Therefore, in the worst-case scenario, our bound is in O
(

1
(ε)d
√
n

)
+ α. When ε is small and

the dimension of the problem is high, this bound is too large to give any meaningful insight on
the generalization gap of the problem. Therefore, we still need to tighten our analysis to show
that robust learning for randomized classi�ers is possible in high dimensional spaces.

Remark 11. Note that, we provided a very general result for randomized classifiers under the only
assumption that they are robust w.r.t. the total variation distance. Our result applies to any class
of classifiers and not only linear classifiers or one-hidden layer neural networks. To build a finer
analysis, and to evade the curse of dimensionality, we should consider designing specific sub-classes
M⊂MTV (ε, α) and adapt the proofs to make the termN smaller in the worst-case scenario.

A.6 Building robust randomized classi�ers

In this section we present a simple yet e�cient way to transform a non-robust, non-randomized
classi�er into a robust randomized classi�er. To do so, we use a key property of both the Renyi
divergence and the total variation distance called the Data processing inequality. It is a well-known
result from information theory which states that “post-processing cannot increase information”.
The data processing inequality is as follows.

Theorem 20 (Cover and Thomas [2012]). Let us consider two arbitrary spaces Z,Z ′, ρ, ρ′ ∈
M+

1 (Z) andD ∈ {DTV , Dβ}. Then for any ψ : Z → Z ′ we have

D
(
ψ#ρ, ψ#ρ′

)
≤ D

(
ρ, ρ′

)
,

where ψ#ρ denotes the pushforward of distiburtion ρ by ψ.

In the context of robustness to adversarial examples, we use the data processing inequality to
ease the design of robust randomized classi�ers. In particular, let us suppose that we can build
a randomized pre-processing p : X → M+

1 (X ) such that for any x ∈ X and any ε-bounded
perturbation τ , we have

D(p(x), p(x+ τ)) ≤ α, withD ∈ {DTV , Dβ}. (A.15)
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Then, thanks to the data processing inequality, we can take any deterministic classi�er h to build
an (ε, α) robust classi�er w.r.tD de�ned asm : x 7→ h#p(x). This considerably simpli�es the
problem of building a class of robust models. Therefore, we want to build p a randomized pre-
processing for which we can control the Renyi divergence and/or total variation distance between
two inputs. To do this, we analyze the simple procedure of injecting random noise directly on the
image before sending it to a classi�er. Since the Renyi divergence and the total variation distances
are particularly well suited to the study of Gaussian distributions, we �rst use this type of noise
injection. More precisely, in this section, we focus on a mapping that writes as follows.

p : x 7→ N (x,Σ), (A.16)

for some given non-degenerate covariance matrixΣ ∈Md×d(R). We refer the interested reader
to Pinot et al. [2019] for more general classes of noise, namely exponential families. Let us now
evaluate the maximal variation of Gaussian pre-processing p when applied to an image x ∈ X
with and without perturbation.

Lemma 6. Let β > 1, x, τ ∈ X and Σ ∈ Md×d(R) a non-degenerate covariance matrix. Let
ρ = N (x,Σ) and ρ′ = N (x+ τ,Σ), thenDβ(ρ, ρ′) = β

2 ‖τ‖
2
Σ−1 .

Thanks to the above lemma, we know how to evaluate the level of Renyi-robustness that a
Gaussian noise pre-processing brings to a classi�er. Now that we have this result, thanks to Propo-
sition 18, we can also upper-bound the total variation distance between N (x,Σ) and N (x +
τ,Σ). But this bound is not always tight. Besides, we can directly evaluate the total variation
distance between two Gaussian distributions as follows.

Lemma 7. Let x, x′ ∈ X and Σ ∈ Md×d(R) a non-degenerate covariance matrix. Let ρ =

N (x,Σ) and ρ′ = N (x+ τ,Σ), thenDTV (ρ, ρ′) = 2Φ
(
‖τ‖Σ−1

2

)
− 1 withΦ the cumulative

density function of the standard Gaussian distribution.

Note that both bounds increase with the Mahalanobis norm of τ . Furthermore, we see that the
greater the entropy of the Gaussian noise we inject, the smaller the distance between distributions.
If we simplify the covariance matrix by settingΣ = σ2Id, it means that we can build more or less
robust randomized classi�ers against `2 adversaries, depending on σ.

Theorem 21 (Robustness of Gaussian pre-processing). Let us consider c : X → Y a determin-
istic classifier, σ > 0 and p : x 7→ N (x, σ2Id) a pre-processing probabilistic mapping. Then the
randomized classifierm := c#p is

• (α2,
(α2)2β

2σ )-robust w.r.t.Dβ against `2 adversaries.

• (α2, 2Φ
(
α2
2σ

)
− 1)-robust w.r.t.DTV against `2 adversaries.

Proof. Let x, τ ∈ X such that ‖τ‖2 ≤ α2. Thanks to Lemma 6 we have

Dβ(p(x), p(x+ τ)) =
β

2
‖τ‖2Σ−1 =

β

2σ2
‖τ‖22 ≤

β(α2)2

2σ2
.
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Similarly, thanks to Lemma 7, we get

DTV (p(x), p(x+ τ)) = 2Φ

(‖τ‖Σ−1

2

)
− 1 ≤ 2Φ

(α2

2σ

)
− 1.

Finally, from the data processing inequality, i.e., thm 20, we get both

Dβ(m(x),m(x+ τ)) ≤ β(α2)2

2σ2
,

and

DTV (m(x),m(x+ τ)) ≤ 2Φ
(α2

2σ

)
− 1.

The above inequalities conclude the proof.

Theorem 21 means that we can build simple noise injection schemes as pre-processing of state-
of-the-art image classi�cation models and keep track of the maximal loss of accuracy under attack
of the resulting randomized classi�er. These results also highlight the profound link between ran-
domized classi�ers and randomized smoothing as presented by Cohen et al. [2019]. Even though
our �ndings are of di�erent nature, both techniques use the same base mechanism (Gaussian noise
injection). Therefore, Gaussian pre-processing is a principled defense method that can be analyzed
through several standpoints, including certi�ed robustness and statistical learning theory.

A.7 Discussion: Mode preservation property and Randomized

Smoothing

Even though randomized classi�ers have some interesting properties regarding generalization er-
ror, we can also study them through the prism of deterministic robustness. Let us for example
consider the classi�er that outputs the class with the highest probability form(x), a.k.a. the mode
ofm(x). It writes

hrob : x 7→ argmax
k∈[K]

m(x)k (A.17)

Then checking whether hrob is robust boils down to demonstrating that the mode of m(x)
does not change under perturbation. It turns out thatDTV robust classi�ers have this property.
We call it the mode preservation property ofMTV (ε, α).

Proposition 19 (Mode preservation for DTV -robust classi�ers). Let m ∈ MTV (ε, α) be a
robust randomized classifier and x ∈ X such that m(x)(1) ≥ m(x)(2) + 2α. Then, for any
τ ∈ X , the following holds,

‖τ‖p ≤ ε =⇒ hrob(x) = hrob(x+ τ) .
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Proof. Let x, τ ∈ X such that ‖τ‖p ≤ ε andm ∈MTV (ε, α) such that

m(x)(1) ≥ m(x)(2) + 2α.

By de�nition ofMTV (ε, α), we have that

DTV (m(x),m(x+ τ)) ≤ α.

Then, for all k ∈ {1, . . . ,K}we have

m(x)k − α ≤ m(x+ τ)k ≤ m(x)k + α .

Let us denote k∗ the index of the biggest value in m(x), i.e., m(x)k∗ = m(x)(1). For any
k ∈ {1, . . . ,K} with k 6= k∗, we have m(x)k∗ ≥ m(x)k + 2α. Finally, for any k 6= k∗,
we get

m(x+ τ)k∗ ≥ m(x)k∗ − α ≥ m(x)k + α ≥ m(x+ τ)k.

Then, argmax
k∈[K]

m(x)k = argmax
k∈[K]

m(x+ τ)k. This concludes the proof.

Similarly, we can demonstrate a mode preservation property for robust classi�ers w.r.t. the Renyi
divergence.

Proposition 20 (Mode preservation for Renyi-robust classi�ers). Letm ∈Mβ(ε, α) be a robust
randomized classifier and x ∈ X such that

(
m(x)(1)

) β
β−1 ≥ exp

(
(2− 1

β
)α

)(
m(x)(2)

)β−1
β .

Then, for any τ ∈ X , the following holds,

‖τ‖p ≤ ε =⇒ hrob(x) = hrob(x+ τ),

where hrob(x) := argmax
k∈[K]

m(x)k .

Proof. Let x, τ ∈ X such that ‖τ‖p ≤ ε andm ∈Mβ(ε, α) such that

(
m(x)(1)

) β
β−1 ≥ exp

(
(2− 1

β
)α

)(
m(x)(2)

)β−1
β .

Then by de�nition ofMβ(ε, α), we have

Dβ(m(x),m(x+ τ)) ≤ α.
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Furthermore, by using Proposition 17, for any k ∈ {1, . . . ,K}we have

(∗)m(x)k ≤ (exp(α)m(x+ τ)k)
β−1
β and (∗∗)m(x+ τ)k ≤ (exp(α)m(x)k)

β−1
β .

Let us denote k∗ the index such thatm(x)k∗ = m(x)(1). Then using (∗) we get

m(x+ τ)k∗ ≥ exp(−α)(m(x)k∗)
β
β−1 .

Furthermore for any k ∈ {1, . . . ,K} where k 6= k∗, we can use the assumption we made
onm to get

exp(−α)(m(x)k∗)
β
β−1 ≥ exp

(
β − 1

β
α

)
(m(x)k)

β−1
β .

Finally, using (∗∗) we have

exp

(
β − 1

β
α

)
(m(x)k)

β−1
β ≥ m(x+ τ)k.

The above gives us argmax
k∈[K]

m(x)k = argmax
k∈[K]

m(x+ τ)k. This concludes the proof.

Coming back to the decomposition in Equation (A.5), with the above result, we can bound
the risk the adversary induces with non-zero perturbations by the mass of points on which the
classi�er hrob gives the good response but based on a low probability of success, i.e., with small
con�dence

R>0
ε (m) ≤ P(x,y)∼P

[
hrob(x) = y andm(x)(1) < m(x)(2) + 2α

]
. (A.18)

This means that the only points on which the adversary may induce misclassi�cation are the
points on whichm already has a high risk. Once more, this says something fundamental about the
behavior of robust randomized classi�ers. On undefended models, the adversary could change the
decision on any point it wanted; now it is limited to changing points on which the classi�er is al-
ready inaccurate. This considerably mitigates the threat model we should consider. Furthermore,
for any deterministic classi�er designed as in Equation (A.17), we can also bound the maximal loss
of accuracy under attack the classi�er may su�er. This bound may, however, be harder to evaluate
since it now depends on both the classi�er and the dataset distribution. The classi�er we de�ne in
Equation (A.17) and the mode preservation property ofm are closely related to provable defenses
based on randomized smoothing. The core idea of randomized smoothing is to take a hypothesis
h and to build a robust classi�er that writes

crob : x 7→ argmax
k∈[K]

Pz∼N (0,σ2I)[h(x+ z) = k] . (A.19)

From a probabilistic point of view, for any inputx, randomized smoothing amounts to output
the most probable class of the probability measurem(x) := h#N

(
x, σ2I

)
. Hence, randomized
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smoothing uses the mode preservation property of m to build a provably robust (deterministic)
classi�er. Therefore, the above results (Proposition 19 and Equation A.18) also hold for prov-
able defenses based on randomized smoothing. Studying randomized smoothing from our point
of view could give an interesting new perspective on that method. So far no results have been
published on the generalisation gap of this defense in the adversarial setting. We could devise
generalization bounds by similarity with our analysis. Furthermore, the probabilistic interpreta-
tion stresses that randomized smoothing is somewhat restrictive since it only considers probability
measures which are the expectation on a simple noise injection scheme. The mode preservation
property explains the behavior of randomized smoothing, but also presents fundamental proper-
ties of randomized defenses that could be used to construct more general defense schemes.

A.8 Numerical validations against `2 adversary

To illustrate our �ndings, we train randomized neural networks with Gaussian pre-processing
during training and inference on CIFAR-10 and CIFAR-100. Based on this randomized classi�er,
we study the impact of randomization on the standard accuracy of the network, and observe the
theoretical trade-o� between accuracy and robustness.

A.8.1 Architecture and training procedure

All the neural networks we use in this section are WideResNets [Zagoruyko and Komodakis,
2016] with 28 layers, a widen factor of 10, a dropout factor of 0.3 and LeakyRelu activation with
a 0.1 slope. To train an undefended standard classi�er we use the following hyper-parameters2.

• Number of Epochs: 200

• Batch size: 400

• Loss function: Cross Entropy Loss

• Optimizer : Stochastic gradient descent algorithm with momentum 0.9, weight decay of
2× 10−4 and a learning rate that decreases during the training as follows:

lr =


0.1 if 0 ≤ epoch < 60

0.02 if 60 ≤ epoch < 120

0.004 if 120 ≤ epoch < 160

0.0008 if 160 ≤ epoch < 200.

To transform these standard networks into randomized classi�ers, we inject noise drawn from
Gaussian distributions, each with various standard deviations directly on the image before passing
it through the network. Both during training and test, for computational e�ciency, we evaluate
the performance of the the algorithm over a single run for every images; hence no Monte Carlo

2Reusable code can be found in the following repository: https://github.com/MILES-PSL/

Adversarial-Robustness-Through-Randomization
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estimator is used. However, in practice, the test-time accuracy is stable when evaluated over the
entire test dataset.

A.8.2 Results

Figures A.1 and A.2 show the accuracy and the minimum level of accuracy under attack of our
randomized neural network for several levels of injected noise. We can see (Figure A.1) that the
precision decreases as the noise intensity grows. In that sense, the noise must be calibrated to
preserve both accuracy and robustness against adversarial attacks. This is to be expected, because
the greater the entropy of the classi�er, the less precise it gets.

Figure A.1: Impact of the standard deviation of the Gausian noise on accuracy in a randomized model on
CIFAR-10 and CIFAR-100 dataset.

Furthermore, when injecting Gaussian noise as a defense mechanism, the resulting randomized
networkm is both (α2,

(α2)2

2σ )-robust w.r.t.D1 and (α2, 2Φ
(
α2
2σ

)
−1)-robust w.r.t.DTV against

`2 adversaries. Therefore thanks to thms 15 and 17 we have that

Rε(m)−R(m) ≤ 2Φ
(α2

2σ

)
− 1, and (A.20)

Rε(m)−R(m) ≤ 1− e−
(α2)2

2σ Ex∼D|X
[
e−H(m(x))

]
. (A.21)

Figure A.2 illustrates the theoretical lower bound on accuracy under attack (based on the min-
imum gap between Equations (A.20) and (A.21)) for di�erent standard deviations. The term in
entropy has been estimated using a Monte Carlo method with 104 simulations. The trade-o� be-
tween accuracy and robustness appears with respect to the noise intensity. With small noises, the
accuracy is high, but the guaranteed accuracy drops fast with respect to the magnitude of the ad-
versarial perturbation. Conversely, with bigger noises, the accuracy is lower but decreases slowly
with respect to the magnitude of the adversarial perturbation. Overall, we get strong accuracy
guarantees against small adversarial perturbations, but when the perturbation is bigger than 0.5
on CIFAR-10 (resp. 0.3 on CIFAR-100, the guarantees are still not su�cient).
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Figure A.2: Guaranteed accuracy of di�erent randomized models with Gaussian noise given the `2 norm
of the adversarial perturbations.

A.9 Lesson learned and future work

This paper brings new contributions to the theory of robustness to adversarial attacks. We pro-
vided an in depth analysis of randomized classi�er, demonstrating their interest to defend against
adversarial attacks. We �rst de�ned a notion of robustness for randomized classi�ers using proba-
bility metrics/divergences, namely the total variation distance and the Renyi divergence. Second,
we demonstrated that when a randomized classi�er complies with this de�nition of robustness,
we can bound their loss of accuracy under attack. We also studied the generalization properties
of this class of functions and gave results indicating that robust randomized classi�ers can gen-
eralize. Finally, we showed that randomized classi�ers have a mode preservation property. This
presents a fundamental property of randomized defenses that can be used to explain randomized
smoothing from a probabilistic point of view. To support our theoretical �ndings we presented
a simple yet e�cient scheme for building robust randomized classi�ers. We show that Gaussian
noise injection can provide principled robustness against `2 adversarial attacks. We ran a set of
experiments on CIFAR-10 and CIFAR-100 using Gaussian noise injection with advanced neural
network architectures to build accurate models with controlled loss of accuracy under attack.

Future work will focus on studying the combination of randomization with more sophisti-
cated defenses and on devising new tight bounds on the adversarial generalization and the adver-
sarial risk gap of randomized classi�ers. Based on the connections we established we randomized
smoothing in Section A.7, we will also aim at devising bounds on the gap between the standard
and adversarial risks for this defense. Another interesting direction would be to show that the
classi�ers based on randomized smoothing have a generalization gap similar to the classes of ran-
domized classi�ers we studied.

A.10 Appendix: Proof of technical Lemmas

A.10.1 Proof of Lemma 6
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Proof. Let β > 1. Let us denote g and g′ respectively the probability density functions of ρ
and ρ′ with respect to the Lebesgue measure. We also set x′ = x + τ for readability. Then
we have

Dβ(ρ, ρ′) =
1

β − 1
logEz∼ρ′

[(
g(z)

g′(z)

)β]

=
1

β − 1
logEz∼ρ′

[
exp

(β
2

(
(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x)

))]
.

By change of variable we get

=
1

β − 1
logEz∼N (0,Σ)

[
exp

(
β

2

(
zᵀΣ−1z − (z + τ)ᵀΣ−1(z + τ)

))]
=

1

β − 1
logEz∼N (0,Σ)

[
exp

(
β

2

(
−2zᵀΣ−1τ − ‖τ‖2Σ−1

))]

=
1

β − 1
log

∫
Rd

exp
(
−1

2z
ᵀΣ−1z − β

2 2zᵀΣ−1τ − β
2 ‖τ‖

2
Σ−1

)
(2π)d det(Σ)d/2

dz .

Furthermore, for any z ∈ Rd, we have

− 1

2
zᵀΣ−1z − β

2
2zᵀΣ−1τ − β

2
‖τ‖2Σ−1

=− 1

2
(z + βτ)ᵀΣ−1(z + βτ) +

β2 − β
2
‖τ‖2Σ−1 .

Then we can re-write the Renyi divergence as follows

Dβ(ρ, ρ′) =
1

β − 1
logEz∼N (−βτ,Σ)

[
exp

(
β2 − β

2
‖τ‖2Σ−1

)]
=

1

β − 1
log

(
exp

(
β2 − β

2
‖τ‖2Σ−1

))
=
β

2
‖τ‖2Σ−1 .

This concludes the proof.

A.10.2 Proof of Lemma 7

Proof. Let us denote g and g′ respectively the probability density functions of ρ and ρ′ with
respect to the Lebesgue measure. Furthermore, we denote x′ = x + τ . Then by de�nition
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of the total variation distance, we haveDTV (ρ, ρ) = ρ(Z)− ρ′(Z) withZ = {z | g(z) ≥
g′(z)}. In our case g(z) ≥ g′(z) is equivalent to

(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x) ≥ 0.

Then with the same simpli�cation as above, we have

ρ(Z) = Pz∼N (x,Σ)

(
(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x) ≥ 0

)
= Pz∼N (0,Σ)

(
(z − τ)ᵀΣ−1(z − τ)− zᵀΣ−1z ≥ 0

)
= Pz∼N (0,Σ)

(
−2zᵀΣ−1τ + ‖τ‖2Σ−1 ≥ 0

)
= Pz∼N (0,Id)

(
zᵀΣ−1/2τ ≤ 1

2
‖τ‖2Σ−1

)
.

Furthermore, if z ∼ N (0, Id) then zᵀΣ−1/2τ ∼ N (0, ‖τ‖2Σ−1); hence we also have
zᵀΣ−1/2τ
‖τ‖Σ−1

∼ N (0, 1). Accordingly we get

ρ(Z) = Pz∼N (0,1)

(
z ≤ 1

2
‖τ‖Σ−1

)
= Φ

(
1

2
‖τ‖Σ−1

)
.

By symmetry we get that ρ′(A) = 1− ρ(A) = 1− Φ
(

1
2‖τ‖Σ−1

)
. We then get

DTV (µ, ν) = 2Φ

(‖τ‖Σ−1

2

)
− 1

which concludes the proof.

A.11 Discussion on probability metrics

As mentioned earlier in this paper, the choice of the metric/divergence is crucial as it characterizes
the notion of adversarial robustness we are examining. We focus on the total variation distance
and Renyi divergence, but the question of whether these metrics/divergences are more appropri-
ate than others remains open. It should be noted, however, that our de�nition of robustness is
monotonous depending on the metric/divergence we use.

Proposition 21 (Monotonicity of the robustness). Let m be a randomized classifier, and let D
andD′ be two divergences/metrics onM+

1 (Y). If there exists a non decreasing function f : R 7→ R
such that ∀ρ, ρ′ ∈M+

1 (Y),D(ρ, ρ′) ≤ f(D′(ρ, ρ′)), then the following assertion holds.

m is (ε, α)-robust w.r.t.D′ =⇒ m is (ε, f(α))-robust w.r.t.D.

The proof straightforwardly comes from the de�nition of robustness.
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Proof. Let us consider m a randomized classi�er (ε, α)-robust w.r.t. D′. Then for any x ∼
P, and τ | ‖τ‖p ≤ ε, since f is non decreasing, we have

D(m(x),m(x+ τ)) ≤ f
(
D′(m(x),m(x+ τ))

)
≤ f(α).

Thenm is (ε, f(α))-robust w.r.t.D which concludes the proof.

The above result suggests that the di�erent notions of robustness we might conceive are more
related than they appear. Here are some of the most classical divergences used in machine learning.
Let ρ, ρ′, ν three measures inM+

1 (Y). We denotes g and g′ the probability density functions of
ρ and ρ′ with respect to ν. Then we can de�ne the Wasserstein distance as follows

DW (ρ, ρ′) := inf

∫
Y2

dist
(
y, y′

)
dπ(y, y′), (A.22)

where dist is some ground distance on Y , and the in�mum is taken over all joint distributions π
inM+

1 (Y × Y) with marginals ρ and ρ′.

Remark 12. In transportation theory, the Wasserstein distance is solution of the Monge-Kantorovich
problem with the cost function c(y, y′) = dist(y, y′). Then, the definitions of total variation and
Wasserstein distance match when we use the trivial distance dist(y, y′) = 1{y 6= y′}.

We also de�ne respectively the Hellinger distance and the Separation distance as follows.

DH(ρ, ρ′) :=

[∫
Y

(√
g −

√
g′
)2
dν

]1/2

. (A.23)

DS(ρ, ρ′) := sup
y∈Y

(
1− g(y)

g′(y)

)
. (A.24)

If we take any of the above metrics/divergences to instantiate a notion of adversarial robustness
we might get very di�erent semantics for them. However, we can show that any of these de�ni-
tions can be covered – with respect to Proposition 21 – either by the Renyi or the total variation
robustness. Figure A.3 summarizes the links we can make between all these di�erent de�nitions
of robustness, and Propositions 22 and 23 present the associated results. We can see that the total
variation distance and the Renyi divergence are both central since they can cover any of the other
robustness notions. This does not mean that they are more appropriate than the others, but at
least they are general enough to cover a wide range of possible de�nitions.

Proposition 22. Let m be a randomized classifier. If m is (ε, α)-robust w.r.t. DTV then the fol-
lowing assertions hold.

• m is (ε, α×Diam(Y))-robust w.r.t.DW , whereDiam(Y) := max
y,y′∈Y

dist(y, y′).

• m is
(
ε,
√

2α
)

-robust w.r.t.DH .
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Figure A.3: Summary of the relations between the di�erent robustness notions from Propositions 22
and 23.

Proof. Let us consider ρ and ρ′ ∈M+
1 (Y). Thanks to Gibbs and Su [2002] we have

• DW (ρ, ρ′) ≤ Diam(Y)DTV (ρ, ρ′).

• DH(ρ, ρ′) ≤
√

2DTV (ρ, ρ′).

Hence, by using Proposition 21 respectively with f : x 7→ Diam(Y)x and f : x 7→
√

2x
we get the expected results.

Proposition 23. Letm be a randomized classifier. Ifm is (ε, α)-robust w.r.t.Dβ then the follow-
ing assertions hold.

• m is (ε, α′)-robust w.r.t.DTV with α′ = min

(
3
2

(√
1 + 4α

9 − 1
)1/2

, exp(α+1)−1
exp(α+1)+1

)
.

• m is (ε,
√
α)-robust w.r.t.DH .

• If β =∞, thenm is (ε, α) robust w.r.t.DS .

Proof. 1) First, let us suppose that β ≥ 1. Thanks to Proposition 18 and to [Gibbs and Su,
2002], for any ρ, ρ′ ∈M+

1 (Y) we have

• DH(ρ, ρ′) ≤
√
D1(ρ, ρ′) ≤

√
Dβ(ρ, ρ′) (see Gibbs and Su [2002]).

• DTV (ρ, ρ′) ≤ min

(
3
2

(√
1 +

4Dβ(ρ,ρ′)
9 − 1

)1/2

,
exp(Dβ(ρ,ρ′)+1)−1

exp(Dβ(ρ,ρ′)+1)+1

)
(Prop. 18).
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Hence, by using Proposition 21, as above, we get the expected results.
2) Now let us suppose that β =∞. By de�nition of the supremum divergence, we have

D∞(ρ, ρ′) = sup
B⊂Y

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣.
Furthermore, note that the function x 7→ 1 − x − |ln(x)| is negative on R, therefore for
any y ∈ Y one has

1− ρ(y)

ρ′(y)
≤
∣∣∣∣ln ρ(y)

ρ′(y)

∣∣∣∣.
Since the above inequality is true for any y ∈ Y , we have

DS

(
ρ, ρ′

)
= sup

y∈Y

(
1− ρ(y)

ρ′(y)

)
≤ sup

y∈Y

∣∣∣∣ln ρ(y)

ρ′(y)

∣∣∣∣ ≤ sup
B⊂Y

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣ = D∞(ρ, ρ′).

Finally, by using Proposition 21 with f : x 7→ xwe get the expected results.
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and evolution strategies

We introduce a new black-box attack achieving state of the art performances. Our approach is
based on a new objective function, borrowing ideas from `∞-white box attacks, and particularly
designed to �t derivative-free optimization requirements. It only requires to have access to the
logits of the classi�er without any other information which is a more realistic scenario. Not only
we introduce a new objective function, we extend previous works on black box adversarial attacks
to a larger spectrum of evolution strategies and other derivative-free optimization methods. We
also highlight a new intriguing property that deep neural networks are not robust to single shot
tiled attacks. Our models achieve, with a budget limited to 10, 000 queries, results up to 99.2%
of success rate against InceptionV3 classi�er with 630 queries to the network on average in the
untargeted attacks setting, which is an improvement by 90 queries of the current state of the art.
In the targeted setting, we are able to reach, with a limited budget of 100, 000, 100% of success
rate with a budget of 6, 662 queries on average, i.e. we need 800 queries less than the current state
of the art.

B.1 Introduction

Despite their success, deep learning algorithms have shown vulnerability to adversarial attacks [Big-
gio et al., 2013, Szegedy et al., 2014], i.e. small imperceptible perturbations of the inputs, that lead
the networks to misclassify the generated adversarial examples. Since their discovery, adversar-
ial attacks and defenses have become one of the hottest research topics in the machine learning
community as serious security issues are raised in many critical �elds. They also question our
understanding of deep learning behaviors. Although some advances have been made to explain
theoretically [Fawzi et al., 2016, Sinha et al., 2017, Cohen et al., 2019, Pinot et al., 2019] and ex-
perimentally [Goodfellow et al., 2015b, Xie et al., 2018, Meng and Chen, 2017, Samangouei et al.,
2018, Araujo et al., 2019] adversarial attacks, the phenomenon remains misunderstood and there
is still a gap to come up with principled guarantees on the robustness of neural networks against
maliciously crafted attacks. Designing new and stronger attacks helps building better defenses,
hence the motivation of our work.

First attacks were generated in a setting where the attacker knows all the information of the
network (architecture and parameters). In this white box setting, the main idea is to perturb the
input in the direction of the gradient of the loss w.r.t. the input [Goodfellow et al., 2015b, Kurakin
et al., 2016, Carlini and Wagner, 2017, Moosavi-Dezfooli et al., 2016]. This case is unrealistic
because the attacker has only limited access to the network in practice. For instance, web services
that propose commercial recognition systems such as Amazon or Google are backed by pretrained
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neural networks. A user can query this system by sending an image to classify. For such a query,
the user only has access to the inference results of the classi�er which might be either the label,
probabilities or logits. Such a setting is coined in the literature as the black box setting. It is more
realistic but also more challenging from the attacker’s standpoint.

As a consequence, several works proposed black box attacks by just querying the inference re-
sults of a given classi�er. A natural way consists in exploiting the transferability of an adversarial
attack, based on the idea that if an example fools a classi�er, it is more likely that it fools another
one [Papernot et al., 2016a]. In this case, a white box attack is crafted on a fully known classi-
�er. Papernot et al. [2017a] exploited this property to derive practical black box attacks. Another
approach within the black box setting consists in estimating the gradient of the loss by querying
the classi�er [Chen et al., 2017, Ilyas et al., 2018a,b]. For these attacks, the PGD attack [Kurakin
et al., 2016, Madry et al., 2018b] algorithm is used and the gradient is replaced by its estimation.

In this paper, we propose e�cient black box adversarial attacks using stochastic derivative free
optimization (DFO) methods with only access to the logits of the classi�er. By e�cient, we mean
that our model requires a limited number of queries while outperforming the state of the art in
terms of attack success rate. At the very core of our approach is a new objective function partic-
ularly designed to suit classical derivative free optimization. We also highlight a new intriguing
property that deep neural networks are not robust to single shot tiled attacks. It leverages results
and ideas from `∞-attacks. We also explore a large spectrum of evolution strategies and other
derivative-free optimization methods thanks to the Nevergrad framework [Rapin and Teytaud,
2018].

Outline of the paper. We present in Section B.2 the related work on adversarial attacks. Sec-
tion B.3 presents the core of our approach. We introduce a new generic objective function and dis-
cuss two practical instantiations leading to a discrete and a continuous optimization problems. We
then give more details on the best performing derivative-free optimization methods, and provide
some insights on our models and optimization strategies. Section B.4 is dedicated to a thorough
experimental analysis, where we show we reach state of the art performances by comparing our
models with the most powerful black-box approaches on both targeted and untargeted attacks.
We also assess our models against the most e�cient so far defense strategy based on adversarial
training. We �nally conclude our paper in Section B.5.

B.2 Related work

Adversarial attacks have a long standing history in the machine learning community. Early works
appeared in the mid 2000’s where the authors were concerned about Spam classi�cation [Biggio
et al., 2009]. Szegedy et al. [2014] revives this research topic by highlighting that deep convolu-
tional networks can be easily fooled. Many adversarial attacks against deep neural networks have
been proposed since then. One can distinguish two classes of attacks: white box and black box
attacks. In the white box setting, the adversary is supposed to have full knowledge of the network
(architecture and parameters), while in the black box one, the adversary only has limited access to
the network: she does not know the architecture, and can only query the network and gets labels,
logits or probabilities from her queries. An attack is said to have suceeded (we also talk about At-
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tack Success Rate), if the input was originally well classi�ed and the generated example is classi�ed
to the targeted label.

The white box setting attracted more attention even if it is the more unrealistic between the two.
The attacks are crafted by by back-propagating the gradient of the loss function w.r.t. the input.
The problem writes as a non-convex optimization procedure that either constraints the perturba-
tion or aims at minimizing its norm. Among the most popular ones, one can cite FGSM [Goodfel-
low et al., 2015b], PGD [Kurakin et al., 2016, Madry et al., 2018b], Deepfool [Moosavi-Dezfooli
et al., 2016], JSMA [Papernot et al., 2016b], Carlini&Wagner attack [Carlini and Wagner, 2017]
and EAD [Chen et al., 2018a].

The black box setting is more realistic, but also more challenging. Two strategies emerged in
the literature to craft attacks within this setting: transferability from a substitute network, and
gradient estimation algorithms. Transferability has been pointed out by Papernot et al. [2017a].
It consists in generating a white-box adversarial example on a fully known substitute neural net-
work, i.e. a network trained on the same classi�cation task. This crafted adversarial example can be
transferred to the targeted unknown network. Leveraging this property, Moosavi-Dezfooli et al.
[2017] proposed an algorithm to craft a single adversarial attack that is the same for all examples
and all networks. Despite the popularity of these methods, gradient estimation algorithms out-
perform transferability methods. Chen et al. [2017] proposed a variant of the powerful white-box
attack introduced in [Carlini and Wagner, 2017], based on gradient estimation with �nite di�er-
ences. This method achieves good results in practice but requires a high number of queries to the
network. To reduce the number of queries, Ilyas et al. [2018a] proposed to rely rather on Natural
Evolution Strategies (NES). These derivative-free optimization approaches consist in estimating
the parametric distribution of the minima of a given objective function. This amounts for most
of NES algorithms to perform a natural gradient descent in the space of distributions [Ollivier
et al., 2017]. In [Al-Dujaili and O’Reilly, 2019], the authors propose to rather estimate the sign of
the gradient instead of estimating the its magnitude suing zeroth-order optimization techniques.
They show further how to reduce the search space from exponential to linear. The achieved re-
sults were state of the art at the publication date. In Liu et al. [2019], the authors introduced a
zeroth-order version of the signSGD algorithm, studied its convergence properties and showed its
e�ciency in crafting adversarial black-box attacks. The results are promising but fail to beat the
state of the art. In Tu et al. [2019], the authors introduce the AutoZOOM framework combining
gradient estimation and an auto-encoder trained o�ine with unlabeled data. The idea is appealing
but requires training an auto-encoder with an available dataset, which an additional e�ort for the
attacker. Besides, this may be unrealistic for several use cases. More recently, Moon et al. [2019]
proposed a method based on discrete and combinatorial optimization where the perturbations
are pushed towards the corners of the `∞ ball. This method is to the best of our knowledge the
state of the art in the black box setting in terms of queries budget and success rate. We will focus
in our experiments on this method and show how our approaches achieve better results.

Several defense strategies have been proposed to diminish the impact of adversarial attacks on
networks accuracies. A basic workaround, introduced in [Goodfellow et al., 2015b], is to aug-
ment the learning set with adversarial attacks examples. Such an approach is called adversarial
training in the literature. It helps recovering some accuracy but fails to fully defend the network,
and lacks theoretical guarantees, in particular principled certi�cates. Defenses based on random-
ization at inference time were also proposed [Lecuyer et al., 2018, Cohen et al., 2019, Pinot et al.,
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2019]. These methods are grounded theoretically, but the guarantees cannot ensure full protec-
tion against adversarial examples. The question of defenses and attacks is still widely open since
our understanding of this phenomenon is still in its infancy. We evaluate our approach against
adversarial training, the most powerful defense method so far.

B.3 Methods

B.3.1 General framework

Let us consider a classi�cation task X 7→ [K] where X ⊆ Rd is the input space and [K] =
{1, ...,K} is the corresponding label set. Let f : Rd → RK be a classi�er (a feed forward
neural network in our paper) from an input space X returning the logits of each label in [K]
such that the predicted label for a given input is arg maxi∈[K] fi(x). The aim of ||.||∞-bounded
untargeted adversarial attacks is, for some input x with label y, to �nd a perturbation τ such
that arg maxi∈[K] fi(x) 6= y. Classically, ||.||∞-bounded untargeted adversarial attacks aims at
optimizing the following objective:

max
τ :||τ ||∞≤ε

L(f(x+ τ), y) (B.1)

whereL is a loss function (typically the cross entropy) and y the true label. For targeted attacks,
the attacker targets a label yt by maximizing−L(f(x + τ), yt). With access to the gradients of
the network, gradient descent methods have proved their e�ciency [Kurakin et al., 2016, Madry
et al., 2018b]. So far, the outline of most black box attacks was to estimate the gradient using either
�nite di�erences or natural evolution strategies. Here using evolutionary strategies heuristics, we
do not want to take care of the gradient estimation problem.

B.3.2 Two optimization problems

In some DFO approaches, the default search space is Rd. In the `∞ bounded adversarial attacks
setting, the search space is B∞(ε) = {τ : ||τ ||∞ ≤ ε}. It requires to adapt the problem in
Eq B.1. Two variants are proposed in the sequel leading to continuous and discretized versions of
the problem.

The continuous problem. As in Carlini and Wagner [2017], we use the hyperbolic tangent
transformation to restate our problem since B∞(ε) = ε tanh (Rd). This leads to a continuous
search space on which evolutionary strategies apply. Hence our optimization problem writes:

max
τ∈Rd

L(f(x+ ε tanh(τ)), y). (B.2)

We will call this problem DFOc− optimizer where optimizer is the used black box derivative
free optimization strategy.

The discretized problem. Moon et al. [2019] pointed out that PGD attacks [Kurakin et al.,
2016, Madry et al., 2018b] are mainly located on the corners of the `∞-ball. They consider opti-
mizing the following

max
τ∈{−ε,+ε}d

L(f(x+ τ), y). (B.3)
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The author in [Moon et al., 2019] proposed a purely discrete combinatorial optimization to solve
this problem (Eq. B.3). As in Zoph and Le [2017], we here consider how to automatically con-
vert an algorithm designed for continuous optimization to discrete optimization. To make the
problem in Eq. B.3 compliant with our evolutionary strategies setting, we rewrite our problem by
considering a stochastic function f(x + ετ) where, for all i, τi ∈ {−1,+1} and P(τi = 1) =
Softmax(ai, bi) = eai

eai+ebi
. Hence our problem amounts to �nd the best parameters ai and bi

that optimize:
min
a,b

Eτ∼Pa,b(L(f(x+ ετ), y) (B.4)

We then rely on evolutionary strategies to �nd the parameters a and b. As the optima are deter-
ministic, the optimal values for a and b are at in�nity. Some ES algorithms are well suited to such
setting as will be discussed in the sequel. We will call this problem DFOd− optimizer where
optimizer is the used black box derivative free optimization strategy for a and b. In this case, one
could reduce the problem to one variale ai with P(τi = 1) = 1

1+e−ai
, but experimentally the

results are comparable, so we concentrate on Problem B.4.

B.3.3 Derivative-free optimization methods

Derivative-free optimization methods are aimed at optimizing an objective function without ac-
cess to the gradient. There exists a large and wide literature around derivative free optimisation.
In this setting, one algorithm aims to minimize some function f on some space X . The only
thing that could be done by this algorithm is to query for some points x the value of f(x). As
evaluating f can be computationally expensive, the purpose of DFO methods is to get a good
approximation of the optima using a moderate number of queries. We tested several evolution
strategies [Rechenberg, 1973, Beyer, 2001]: the simple (1+1)-algorithm [Matyas, 1965, Schumer
and Steiglitz, 1968], Covariance Matrix Adaptation (CMA [Hansen and Ostermeier, 2003]). For
these methods, the underlying algorithm is to iteratively update some distributionPθ de�ned on
X . Roughly speaking, the current distributionPθ represents the current belief of the localization
of the optimas of the goal function. The parameters are updated using objective function values
at di�erent points. It turns out that this family of algorithms, than can be reinterpreted as natural
evolution strategies, perform best. The two best performing methods will be detailed in Section
B.3.3; we refer to references above for other tested methods.

Our best performing methods: evolution strategies

The (1 + 1)-ES algorithm. The (1 + 1)-evolution strategy with one-�fth rule [Matyas, 1965,
Schumer and Steiglitz, 1968] is a simple but e�ective derivative-free optimization algorithm (in
supplementary material, Alg. 6). Compared to random search, this algorithm moves the center of
the Gaussian sampling according to the best candidate and adapts its scale by taking into account
their frequency. Yao and Liu [1996] proposed the use of Cauchy distributions instead of classical
Gaussian sampling. This favors large steps, and improves the results in case of (possibly partial)
separability of the problem, i.e. when it is meaningful to perform large steps in some directions
and very moderate ones in the other directions.
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CMA-ES algorithm. The Covariance Matrix Adaptation Evolution Strategy [Hansen and Os-
termeier, 2003] combines evolution strategies [Beyer, 2001], Cumulative Step-Size Adaptation [Chotard
et al., 2012], and a speci�c method for adaptating the covariance matrix. An outline is provided
in supplementary material, Alg. 7. CMA-ES is an e�ective and robust algorithm, but it becomes
catastrophically slow in high dimension due to the expensive computation of the square root of
the matrix. As a workaround, Ros and Hansen [2008] propose to approximate the covariance
matrix by a diagonal one. This leads to a computational cost linear in the dimension, rather than
the original quadratic one.

Link with Natural Evolution Strategy (NES) attacks. Both (1+1)-ES and CMA-ES can be
seen as an instantiation of a natural evolution strategy (see for instance Ollivier et al. [2017], Wier-
stra et al. [2014]). A natural evolution strategy consists in estimating iteratively the distribution
of the optima. For most NES approaches, a fortiori CMA-ES, the iterative estimation consists
in a second-order gradient descent (also known as natural gradient) in the space of distributions
(e.g. Gaussians). (1+1)-ES can also be seen as a NES, where the covariance matrix is restricted to be
proportional to the identity. Note however that from an algorithmic perspective, both CME-ES
and (1+1)-ES optimize the quantile of the objective function.

Hypotheses for DFO methods in the adversarial attacks context

The state of the art in DFO and intuition suggest the followings. Using softmax for exploring
only points in the corner (Eq. B.3) is better for moderate budget, as corners are known to be good
adversarial candidates; however, for high precision attacks (with small τ ) a smooth continuous
precision (Eq B.2) is more relevant. With or without softmax, the optimum is at in�nity 1, which
is in favor of methods having fast step-size adaptation or samplings with heavy-tail distributions.
With an optimum at in�nity, [Chotard et al., 2012] has shown how fast is the adaptation of the
step-size when using cumulative step-size adaptation (as in CMA-ES), as opposed to slower rates
for most methods. Cauchy sampling [Yao and Liu, 1996] in the (1 + 1)-ES is known for favoring
fast changes; this is consistent with the superiority of Cauchy sampling in our setting compared
to Gaussian sampling.

Newuoa, Powell, SQP, Bayesian Optimization, Bayesian optimization are present in Nevergrad
but they have an expensive (budget consumption linear is linear w.r.t. the dimension) initial sam-
pling stage which is not possible in our high-dimensional / moderate budget context. The targeted
case needs more precision and favors algorithms such as Diagonal CMA-ES which adapt a step-
size per coordinate whereas the untargeted case is more in favor of fast random exploration such
as the (1 + 1)-ES. Compared to Diagonal-CMA, CMA with full covariance might be too slow;
given a number of queries (rather than a time budget) it is however optimal for high precision.

B.3.4 The tiling trick

Ilyas et al. [2018b] suggested to tile the attack to lower the number of queries necessary to fool the
network. Concretely, they observe that the gradient coordinates are correlated for close pixels in

1i.e. the optima of the ball constrained problem B.1, would be close to the boundary or on the boundary of the `∞
ball. In that case, the optimum of the continuous problem B.2 will be at∞ or “close” to it. On the discrete case B.4
it is easy to see that the optimum is when ai or bi →∞.
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Tile size: 6 pixels

+ 0.03 x =

Figure B.1: Illustration of the tiling trick: the same noise is applied on small tile squares.

the images, so they suggested to add the same noise for small square tiles in the image (see Fig. B.1).
We exploit the same trick since it reduces the dimensionality of the search space, and makes hence
evolutionary strategies suited to the problem at hand. Besides breaking the curse of dimension-
ality, tiling leads surprisingly to a new property that we discovered during our experiments. At a
given tiling scale, convolutional neural networks are not robust to random noise. Section B.4.2
is devoted to this intriguing property. Interestingly enough, initializing our optimization algo-
rithms with a tiled noise at the appropriate scale drastically speeds up the convergence, leading to
a reduced number of queries.

B.4 Experiments

B.4.1 General setting and implementation details

We compare our approach to the “bandits” method [Ilyas et al., 2018b] and the parsimonious at-
tack [Moon et al., 2019]. The latter (parsimonious attack) is, to the best of our knowledge, the
state of the art in the black-box setting from the literature; bandits method is also considered in
our benchmark given its ties to our models. We reproduced the results from [Moon et al., 2019] in
our setting for fair comparison. As explained in section B.3.2, our attacks can be interpreted as `∞
ones. We use the large-scale ImageNet dataset [Deng et al., 2009]. As usually done in most frame-
works, we quantify our success in terms of attack success rate, median queries and average queries.
Here, the number of queries refers to the number of requests to the output logits of a classi�er for
a given image. For the success rate, we only consider the images that were correctly classi�ed by
our model. We use InceptionV3 [Szegedy et al., 2017] , VGG16 [Simonyan and Zisserman, 2014]
with batch normalization (VGG16bn) and ResNet50 [He et al., 2016b] architectures to measure
the performance of our algorithm on the ImageNet dataset. These models reach accuracy close
to the the state of the art with around 75 − 80% for the Top-1 accuracy and 95% for the Top-5
accuracy. We use pretrained models from PyTorch [Paszke et al., 2017]. All images are normalized
to [0, 1]. Results on VGG16bn and ResNet50 are deferred in supplementary material B.10. The
images to be attacked are selected at random.

We �rst show that convolutional networks are not robust to tiled random noise, and more sur-
prisingly that there exists an optimal tile size that is the same for all architectures and noise inten-
sities. Then, we evaluate our methods on both targeted and untargeted objectives. We considered
the following losses: the cross entropy L(f(x), y) = − log(P(y|x)) and a loss inspired from
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Figure B.2: Success rate of a single shot random attacks on ImageNet vs. the number of tiles used to craft
the attack. On the left, attacks are plotted against InceptionV3 classi�er with di�erent noise
intensities (ε ∈ {0.01, 0.03, 0.05, 0.1}). On the right, ε is �xed to 0.05 and the single shot
attack is evaluated on InceptionV3, ResNet50 and VGG16bn.

the “Carlini&Wagner” attack: L(f(x), y) = −P(y|x) + maxy′ 6=y P(y′|x) where P(y|x) =
[Softmax(f(x))]y , the probability for the classi�er to classify the input x to label y. The results
for the second loss are deferred in supplementary material B.8. For all our attacks, we use the Nev-
ergrad [Rapin and Teytaud, 2018] implementation of evolution strategies. We did not change the
default parameters of the optimization strategies.

B.4.2 Convolutional neural networks are not robust to tiled random noise

In this section, we highlight that neural neural networks are not robust to `∞ tiled random noise.
A noise on an image is said to be tiled if the added noise on the image is the same on small squares of
pixels (see Figure B.2). In practice, we divide our image in equally sized tiles. For each tile, we add
to the image a randomly chosen constant noise: +εwith probability 1

2 and−εwith probability 1
2 ,

uniformly on the tile. The tile trick has been introduced inIlyas et al. [2018a] for dimensionality
reduction. Here we exhibit a new behavior that we discovered during our experiments. As shown
in Fig. B.1 for reasonable noise intensity (ε = 0.05), the success rate of a one shot randomly tiled
attack is quite high. This fact is observed on many neural network architectures. We compared
the number of tiles since the images input size are not the same for all architectures (299×299×3
for InceptionV3 and 224× 224× 3 for VGG16bn and ResNet50). The optimal number of tiles
(in the sense of attack success rate) is, surprisingly, independent from the architecture and the
noise intensity. We also note that the InceptionV3 architecture is more robust to random tiled
noise than VGG16bn and ResNet50 architectures. InceptionV3 blocks are parallel convolutions
with di�erent �lter sizes that are concatenated. Using di�erent �lter sizes may attenuate the e�ect
of the tiled noise since some convolution sizes might be less sensitive. We test this with a single
random attack with various numbers of tiles (cf. Figure B.1, B.2). We plotted additional graphs
in supplementary material B.7.

B.4.3 Untargeted adversarial attacks

We �rst evaluate our attacks in the untargeted setting. The aim is to change the predicted label
of the classi�er. Following [Moon et al., 2019, Ilyas et al., 2018b], we use 10, 000 images that are
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Figure B.3: The cumulative success rate in terms the number of queries for the number of queries required
for attacks on ImageNet with ε = 0.05 in the untargeted (left) and targeted setting (right).
The number of queries (x-axis) is plotted with a logarithmic scale.

initially correctly classi�ed and we limit the budget to 10, 000 queries. We experimented with 30
and 50 tiles on the images. Only the best performing methods are reported in Table B.4. We
compare our results with [Moon et al., 2019] and [Ilyas et al., 2018b] on InceptionV3 (cf. Table
B.4). We also plotted the cumulative success rate in terms of required budget in Figure B.3. We
also evaluated our attacks for smaller noise in supplementary material B.9. We achieve results
outperforming or at least equal to the state of the art in all cases. More remarkably, We improve
by far the number of necessary queries to fool the classi�ers. The tiling trick partially explains why
the average and the median number of queries are low. Indeed, the �rst queries of our evolution
strategies is in general close to random search and hence, according to the observation of Figs
B.1-B.2, the �rst steps are more likely to fool the network, which explains why the queries budget
remains low. This Discrete strategies reach better median numbers of queries - which is consistent
as we directly search on the limits of the `∞-ball; however, given the restricted search space (only
corners of the search space are considered), the success rate is lower and on average the number of
queries increases due to hard cases.

B.4.4 Targeted adversarial attacks

We also evaluate our methods in the targeted case on ImageNet dataset. We selected 1, 000 images,
correctly classi�ed. Since the targeted task is harder than the untargeted case, we set the maximum
budget to 100, 000 queries, and ε = 0.05. We uniformly chose the target class among the incor-
rect ones. We evaluated our attacks in comparison with the bandits methods [Ilyas et al., 2018b]
and the parsimonious attack [Moon et al., 2019] on InceptionV3 classi�er. We also plotted the
cumulative success rate in terms of required budget in Figure B.3. CMA-ES beats the state of the
art on all criteria. DiagonalCMA-ES obtains acceptable results but is less powerful that CMA-ES
in this speci�c case. The classical CMA optimizer is more precise, even if the run time is much
longer. Cauchy (1 + 1)-ES and discretized optimization reach good results, but when the task
is more complicated they do not reach as good results as the state of the art in black box targeted
attacks.
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Table B.4: Comparison of our method with the parsimonious and bandits attacks in the untargeted setting
on ImageNet on InceptionV3 pretrained network for ε = 0.05 and 10, 000 as budget limit.

Method # of tiles Average queries Median queries Success rate

Parsimonious - 702 222 98.4%
Bandits 30 1007 269 95.3%
Bandits 50 995 249 95.1%

DFOc−Cauchy(1 + 1)-ES 30 466 60 95.2%
DFOc−Cauchy(1 + 1)-ES 50 510 63 97.3%

DFOc−DiagonalCMA 30 533 189 97.2%
DFOc−DiagonalCMA 50 623 191 98.7%

DFOc−CMA 30 589 232 98.9%
DFOc−CMA 50 630 259 99.2%

DFOd−DiagonalCMA 30 424 20 97.7%
DFOd−DiagonalCMA 50 485 38 97.4%

B.4.5 Untargeted attacks against an adversarially trained network

In this section, we experiment our attacks against a defended network by adversarial training [Good-
fellow et al., 2015b]. Since adversarial training is computationally expensive, we restricted our-
selves to the CIFAR10 dataset [Krizhevsky et al., 2009] for this experiment. Image size is 32 ×
32 × 3. We adversarially trained a WideResNet28x10 [Zagoruyko and Komodakis, 2016] with
PGD `∞ attacks [Kurakin et al., 2016, Madry et al., 2018b] of norm 8/256 and 10 steps of size
2/256. In this setting, we randomly selected 1, 000 images, and limited the budget to 20, 000
queries. We ran PGD `∞ attacks [Kurakin et al., 2016, Madry et al., 2018b] of norm 8/256 and
20 steps of size 1/256 against our network, and achieved a success rate up to 36%, which is the
the state of the art in the white box setting. We also compared our method to the Parsimonious
and bandit attacks. Results are reported in Appendix B.11. On this task, the parsimonious attack
method is slightly better than our best approach.

B.5 Conclusion

In this paper, we proposed a new framework for crafting black box adversarial attacks based on
derivative free optimization. Because of the high dimensionality and the characteristics of the
problem (see Section B.3.3), not all optimization strategies give satisfying results. However, com-
bined with the tiling trick, evolutionary strategies such as CMA, DiagonalCMA and Cauchy
(1+1)-ES beats the current state of the art in both targeted and untargeted settings. In particu-
lar, DFOc−CMA improves the state of the art in terms of success rate in almost all settings. We
also validated the robustness of our attack against an adversarially trained network. Future work
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Table B.5: Comparison of our method with the parsimonious and bandits attacks in the targeted setting
on ImageNet on InceptionV3 pretrained network for ε = 0.05 and 100, 000 as budget limit.

Method # of tiles Average queries Median queries Success rate

Parsimonious - 7184 5116 100%
Bandits 50 25341 18053 92.5%

DFOc−Cauchy(1 + 1)-ES 50 9789 6049 83.2%
DFOc−DiagonalCMA 50 6768 3797 94.0%

DFOc−CMA 50 6662 4692 100%

DFOd−DiagonalCMA 50 8957 4619 64.2%

will be devoted to better understanding the intriguing property of the e�ect that a neural network
is not robust to a one shot randomly tiled attack.
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B.6 Appendix: Algorithms

B.6.1 The (1+1)-ES algorithm

Algorithm 6: The (1 + 1) Evolution Strategy.
Require: Function f : Rd → R to minimize
m← 0,C ← Id, σ ← 1
for t = 1...n do

(Generate candidates)
Generatem′ ∼ m+ σX whereX is sampled from a Cauchy or Gaussian distribution.
if f(m′) ≤ f(m) then

m← m′, σ ← 2σ
else

σ ← 2−
1
4σ

end if

end for
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B.6 Appendix: Algorithms

B.6.2 CMA-ES algorithm

Algorithm 7: CMA-ES algorithm. The T subscript denotes transposition.
Require: Function f : Rd → R to minimize, parameters b, c,w1 > . . . , wµ > 0, pc and

others as in e.g. [Hansen and Ostermeier, 2003].
m← 0,C ← Id, σ ← 1
for t = 1...n do

Generate x1, ..., xλ ∼ m+ σN (0, C).
De�ne x′i the ith best of the xi.
Update the cumulation forC: pc ← cumulation of pc, overall direction of progress.
Update the covariance matrix:

C ← (1− c) C︸︷︷︸
inertia

+
c

b
(pc × pTc )︸ ︷︷ ︸

overall direction

+c(1− 1

b
)

µ∑
i=1

wi
x′i −m
σ

× (x′i −m)T

σ︸ ︷︷ ︸
“covariance” of the 1

σx
′
i

Update mean:

m←
µ∑
i=1

wixi:λ

Update σ by cumulative step-size adaptation [Chotard et al., 2012].
end for
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B.7 Appendix: Additional plots for the tiling trick
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Figure B.6: Random attack success rate against InceptionV3 (left), ResNet50 (center), VGG16bn (right)
for di�erent noise intensities. We just randomly draw one tiled attack and check if it is success-
ful.
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Figure B.7: Random attack success rate for di�erent noise intensities ε ∈ {0.01, 0.03, 0.05, 0.1} (from
right to left) against di�erent architectures. We just randomly draw one tiled attack and check
if it is successful.
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B.8 Appendix: Results with “Carlini&Wagner” loss

In this section, we follow the same experimental setup as in Section B.4.3, but we built our attacks
with the “Carlini&Wagner” loss instead of the cross entropy. We remark the results are comparable
and similar.

Table B.8: Comparison of our method with“Carlini&Wagner” loss versus the parsimonious and bandits
attacks in the untargeted setting on InceptionV3 pretrained network for ε = 0.05 and 10, 000
as budget limit.

Method # of tiles Average queries Median queries Success rate

DFOc−Cauchy(1 + 1)-ES 30 353 57 97.2%
DFOc−Cauchy(1 + 1)-ES 50 347 63 98.8%

DFOc−DiagonalCMA 30 483 167 98.8%
DFOc−DiagonalCMA 50 528 181 99.2%

DFOc−CMA 30 475 225 99.2%
DFOc−CMA 50 491 246 99.4%

DFOd−DiagonalCMA 30 482 27 98.0%
DFOd−DiagonalCMA 50 510 37 98.0%
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B.9 Appendix: Untargeted attacks with smaller noise intensities

We evaluated our method on smaller noise intensities (ε ∈ {0.01, 0.03, 0.05}) in the untargeted
setting on ImageNet dataset. In this framework, we also picked up randomly 10, 000 images and
limited our budget to 10, 000 queries. We compared to the bandits method [Ilyas et al., 2018b]
and to the parsimonious attack [Moon et al., 2019] on InceptionV3 network. We limited our
experiments to a number of tiles of 50. We report our results in Table B.9. We remark our attacks
reach state of the art for ε = 0.03 and ε = 0.05 both in terms of success rate and queries budget.
For ε = 0.01, we reach results comparable to the state of the art.

Table B.9: Results of our method compared to the parsimonious and bandit attacks in the untargeted
setting on InceptionV3 pretrained network for di�erent values of noise intensities ε ∈
{0.01, 0.03, 0.05} and a maximum of 10, 000 queries.

ε Method # of tiles Avg. queries Med. queries Success rate

0.05

Parsimonious - 722 237 98.5%
Bandits 50 995 249 95.1%

DFOc−Cauchy(1 + 1)-ES 50 510 63 97.3%
DFOc−DiagonalCMA 50 623 191 98.7%

DFOc−CMA 50 630 259 99.2%

DFOd−DiagonalCMA 50 485 38 97.4%

0.03

Parsimonious - 1104 392 95.7%
Bandits 50 1376 466 92.7%

DFOc−Cauchy(1 + 1)-ES 50 846 203 93,2%
DFOc−DiagonalCMA 50 971 429 96,5%

DFOc−CMA 50 911 404 96.7%

DFOd−DiagonalCMA 50 799 293 94,1%

0.01

Parsimonious - 2104 1174 80.3%
Bandits 50 2018 992 72.9%

DFOc−Cauchy(1 + 1)-ES 50 1668 751 72,1%
DFOc−DiagonalCMA 50 1958 1175 79.2%

DFOc−CMA 50 1921 1107 80.4%

DFOd−DiagonalCMA 50 1188 849 71,3%
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B.10 Appendix: Untargeted attacks against other architectures

We also evaluated our method on di�erent neural networks architectures. For each network we
randomly selected 10, 000 images that were correctly classi�ed. We limit our budget to 10, 000
queries and set the number of tiles to 50. We achieve a success attack rate up to 100% on every
classi�er with a budget as low as 8 median queries for the VGG16bn for instance (see Table B.10).
One should notice that the performances are lower on InceptionV3 as it is also reported for the
bandit methods in [Ilyas et al., 2018b]. This possibly due to the fact that the tiling trick is less
relevant on the Inception network than on the other networks (see Fig. B.2).

Table B.10: Comparison of our method on the ImageNet dataset with InceptionV3 (I), ResNet50 (R) and
VGG16bn (V) for ε = 0.05 and 10, 000 as budget limit.

Method Tile size Avg queries Med. queries Succ. Rate

I R V I R V I R V
DFOc−Cauchy(1 + 1)-ES 30 466 163 86 60 19 8 95.2% 99.6% 100%

DFOc−Cauchy(1 + 1)-ES 50 510 218 67 63 32 4 97.3% 99.6% 99.7%
DFOc−DiagonalCMA 30 533 263 174 189 95 55 97.2% 99.0% 99.9%
DFOc−DiagonalCMA 50 623 373 227 191 121 71 98.7% 99.9% 100%

DFOc−CMA 30 588 256 176 232 138 72 98.9% 99.9% 99.9%
DFOc−CMA 50 630 270 219 259 143 107 99.2% 100% 99.9%

DFOd−DiagonalCMA 50 485 617 345 38 62 6 97.4% 99.2% 99.6%
DFOd−DiagonalCMA 30 424 417 211 20 20 2 97.7% 98.8% 99.5%
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B.11 Appendix: Table for attacks against adversarially tranined

network

Table B.11: Adversarial attacks against an adversarially trained WideResnet28x10 network on CIFAR10
dataset for ε = 0.03125 and 20, 000 as budget limit.

Method # of tiles Avg. queries Med. queries Success rate

PGD (not black-box) - 20 20 36%
Parsimonious - 1130 450 42%

Bandits 10 1429 530 29.1%
Bandits 20 1802 798 33.8%
Bandits 32 1993 812 34.8%

DFOc−Cauchy(1 + 1)-ES 10 429 60 29.5%
DFOc−Cauchy(1 + 1)-ES 20 902 93 30.5%
DFOc−Cauchy(1 + 1)-ES 32 1865 764 31.7%

DFOc−DiagonalCMA 10 395 85 30.5%
DFOc−DiagonalCMA 20 624 151 31.3%
DFOc−DiagonalCMA 32 1379 860 34.7%

DFOc−CMA 10 363 156 30.4%
DFOc−CMA 20 1676 740 40.2%
DFOc−CMA 32 2311 1191 40.2%
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B.12 Appendix: Failing methods

In this section, we compare our attacks to other optimization strategies. We run our experiments
in the same setup as in Section B.4.3. Results are reported in Table B.12. DE and Normal (1+1)-ES
performs poorly, probably because these optimization strategies converge slower when the optima
are at “in�nity”. We reformulate this sentence accordingly in the updated version of the paper. Fi-
nally, as the initialization of Powell is linear with the dimension and with less variance, it performs
poorer than simple random search. Newuoa, SQP and Cobyla algorithms have also been tried on
a smaller number images (we did not report the results), but their initialization is also linear in the
dimension, so they reach very poor results too.

Table B.12: Comparison with other DFO optimization strategies in the untargeted setting on ImageNet
dataset InceptionV3 pretrained network for ε = 0.05 and 10, 000 as budget limit.

Method # of tiles Avg. queries Med. queries Success rate

DFOc−Cauchy(1 + 1)-ES 30 466 60 95.2%
DFOc−Cauchy(1 + 1)-ES 50 510 63 97.3%

DFOc−DiagonalCMA 30 533 189 97.2%
DFOc−DiagonalCMA 50 623 191 98.7%

DFOc−CMA 30 589 232 98.9%
DFOc−CMA 50 630 259 99.2%
DFOc−DE 30 756 159 78.8%
DFOc−DE 50 699 149 76.0%

DFOc−Normal(1 + 1)-ES 30 581 45 87.6%
DFOc−Normal(1 + 1)-ES 50 661 66 92.8%

DFOc−RandomSearch 30 568 6 37.9%
DFOc−RandomSearch 50 527 5 38.2%

DFOc−Powell 30 4889 5332 14.4%
DFOc−Powell 50 4578 4076 7.3%
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C Advocating for Multiple Defense

Strategies against Adversarial

Examples

It has been empirically observed that defense mechanisms designed to protect neural networks
against `∞ adversarial examples o�er poor performance against `2 adversarial examples and vice
versa. In this paper we conduct a geometrical analysis that validates this observation. Then, we
provide a number of empirical insights to illustrate the e�ect of this phenomenon in practice.
Then, we review some of the existing defense mechanism that attempts to defend against mul-
tiple attacks by mixing defense strategies. Thanks to our numerical experiments, we discuss the
relevance of this method and state open questions for the adversarial examples community.

C.1 Introduction

Deep neural networks achieve state-of-the-art performances in a variety of domains such as nat-
ural language processing Radford et al. [2018], image recognition He et al. [2016b] and speech
recognition Hinton et al. [2012]. However, it has been shown that such neural networks are vul-
nerable to adversarial examples, i.e., imperceptible variations of the natural examples, crafted to
deliberately mislead the models Globerson et al. [2006], Biggio et al. [2013], Szegedy et al. [2014].
Since their discovery, a variety of algorithms have been developed to generate adversarial examples
(a.k.a. attacks), for example FGSM [Goodfellow et al., 2015b], PGD [Madry et al., 2018b] and
C&W [Carlini and Wagner, 2017], to mention the most popular ones.

Because it is di�cult to characterize the space of visually imperceptible variations of a natural
image, existing adversarial attacks use surrogates that can di�er from one attack to another. For
example, Goodfellow et al. [2015b] use the `∞ norm to measure the distance between the original
image and the adversarial image whereas Carlini and Wagner [2017] use the `2 norm. When the
input dimension is low, the choice of the norm is of little importance because the `∞ and `2
balls overlap by a large margin, and the adversarial examples lie in the same space. An important
insight in this paper is to observe that the overlap between the two balls diminishes exponentially
quickly as the dimensionality of the input space increases. For typical image datasets with large
dimensionality, the two balls are mostly disjoint. As a consequence, the `∞ and the `2 adversarial
examples lie in di�erent areas of the space, and it explains why `∞ defense mechanisms perform
poorly against `2 attacks and vice versa.

Building on this insight, we advocate for designing models that incorporate defense mecha-
nisms against both `∞ and `2 attacks and review several ways of mixing existing defense mecha-
nisms. In particular, we evaluate the performance of Mixed Adversarial Training (MAT) Good-
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fellow et al. [2015b] which consists of augmenting training batches using both `∞ and `2 adver-
sarial examples, and Randomized Adversarial Training (RAT) Salman et al. [2019], a solution to
bene�t from the advantages of both `∞ adversarial training, and `2 randomized defense.

Outline. The rest is organized as follows. In Section C.2, we recall the principle of existing at-
tacks and defense mechanisms. In Section C.3, we conduct a theoretical analysis to show why
the `∞ defense mechanisms cannot be robust against `2 attacks and vice versa. We then corrob-
orate this analysis with empirical results using real adversarial attacks and defense mechanisms.
In Section C.4, we discuss various strategies to mix defense mechanisms, conduct comparative
experiments, and discuss the performance of each strategy.

C.2 Preliminaries on Adversarial Attacks and Defenses

Let us �rst consider a standard classi�cation task with an input space X = [0, 1]d of dimension
d, an output spaceY = [K] and a data distributionD overX ×Y . We assume the model fθ has
been trained to minimize the expectation overD of a loss functionL as follows:

min
θ

E(x,y)∼D[L(fθ(x), y)]. (C.1)

C.2.1 Adversarial attacks

Given an input-output pair (x, y) ∼ D, an adversarial attack is a procedure that produces a
small perturbation τ ∈ X such that fθ(x + τ) 6= y. To �nd the best perturbation τ , existing
attacks can adopt one of the two following strategies: (i) maximizing the loss L(fθ(x + τ), y)
under some constraint on ‖τ‖p1 (a.k.a. loss maximization); or (ii) minimizing ‖τ‖p under some
constraint on the lossL(fθ(x+ τ), y) (a.k.a. perturbation minimization).

(i) Loss maximization. In this scenario, the procedure maximizes the loss objective function,
under the constraint that the `p norm of the perturbation remains bounded by some value ε, as
follows:

argmax
‖τ‖p≤ε

L(fθ(x+ τ), y). (C.2)

The typical value of ε depends on the norm ‖·‖p considered in the problem setting. In order
to compare `∞ and `2 attacks of similar strength, we choose values of ε∞ and ε2 (for `∞ and
`2 norms respectively) which result in `∞ and `2 balls of equivalent volumes. For the particular
case of CIFAR-10, this would lead us to choose ε∞ = 0.03 and ε2 = 0.8 which correspond to
the maximum values chosen empirically to avoid the generation of visually detectable perturba-

1with p ∈ {0, · · · ,∞}.
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tions. The current state-of-the-art method to solve Problem (C.2) is based on a projected gradient
descent (PGD) Madry et al. [2018b] of radius ε. Given a budget ε, it recursively computes

xt+1 =
∏

Bp(x,ε)

(
xt + α argmax

δ s.t. ||δ||p≤1

(
∆t|δ

))
(C.3)

whereBp(x, ε) = {x+ τ s.t. ‖τ‖p ≤ ε},∆t = ∇xL
(
fθ
(
xt
)
, y
)

, α is a gradient step size, and∏
S is the projection operator on S. Both PGD attacks with p = 2, and p = ∞ are currently

used in the literature as state-of-the-art attacks for the loss maximization problem.

(ii) Perturbation minimization. This type of procedure search for the perturbation that has
the minimal `p norm, under the constraint thatL(fθ(x+ τ), y) is bigger than a given bound c:

argmin
L(fθ(x+τ),y)≥c

‖τ‖p. (C.4)

The value of c is typically chosen depending on the loss function L2. Problem (C.4) has been
tackled in Carlini and Wagner [2017], leading to the following method, denoted C&W attack in
the rest of this appendix. It aims at solving the following Lagrangian relaxation of Problem (C.4):

argmin
τ
‖τ‖p + λ× g(x+ τ) (C.5)

where g(x + τ) < 0 if and only if L(fθ(x + τ), y) ≥ c. The authors use a change of variable
τ = tanh(w) − x to ensure that−1 ≤ x + τ ≤ 1, a binary search to optimize the constant c,
and Adam or SGD to compute an approximated solution. The C&W attack is well de�ned both
for p = 2, and p =∞, but there is a clear empirical gap of e�ciency in favor of the `2 attack.

In this appendix, we focus on the Loss Maximization setting using the PGD attack. How-
ever we conduct some of our experiments using Perturbation Minimization algorithms such as
C&W to capture more detailed information about the location of adversarial examples in the vec-
tor space3.

C.2.2 Defense mechanisms

Adversarial Training (AT). Adversarial Training was introduced in Goodfellow et al. [2015b]
and later improved in Madry et al. [2018b] as a �rst defense mechanism to train robust neural
networks. It consists in augmenting training batches with adversarial examples generated during
the training procedure. The standard training procedure from Equation (C.1) is thus replaced by
the following min max problem, where the classi�er tries to minimize the expected loss under
maximum perturbation of its input:

min
θ

E(x,y)∼D

[
max
‖τ‖p≤ε

L(fθ(x+ τ), y)

]
. (C.6)

2For example, ifL is the 0/1 loss, any c > 0 is acceptable.
3As it has a more �exible geometry than the Loss Maximization attacks.
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In the case where p =∞, this technique o�ers good robustness against `∞ attacks Athalye et al.
[2018a]. AT can also be used with `2 attacks but as we will discuss in Section C.3, AT with one
norm o�ers poor protection against the other. The main weakness of Adversarial Training is its
lack of formal guarantees. Despite some recent work providing great insights Sinha et al. [2017],
Zhang et al. [2019a], there is no worst case lower bound yet on the accuracy under attack of this
method.

Noise injection mechanisms (NI). Another important technique to defend against adversar-
ial examples is to use Noise Injection. In contrast with Adversarial Training, Noise Injection
mechanisms are usually deployed after training. In a nutshell, it works as follows. At inference
time, given a unlabeled sample x, the network outputs

f̃θ(x) := fθ(x+ η) (instead of fθ(x)) (C.7)

where η is a random variable on Rd. Even though, Noise Injection is often less e�cient than Ad-
versarial Training in practice (see e.g., Table C.5), it bene�ts from strong theoretical background.
In particular, recent work Lecuyer et al. [2018], followed by Cohen et al. [2019], Pinot et al. [2019]
demonstrated that noise injection from a Gaussian distribution can give provable defense against
`2 adversarial attacks. In this work, besides the classical Gaussian noises already investigated in pre-
vious works, we evaluate the e�ciency of Uniform distributions to defend against `2 adversarial
examples.

C.3 No Free Lunch for Adversarial Defenses

In this Section, we show both theoretically and empirically that defenses mechanisms intending
to defend against `∞ attacks cannot provide suitable defense against `2 attacks. Our reasoning is
perfectly general; hence we can similarly demonstrate the reciprocal statement, but we focus on
this side for simplicity.

(a) (b) (c)

Figure C.1: Left: 2D representation of the `∞ and `2 balls of respective radius ε and ε′. Middle: a classi�er
trained with `∞ adversarial perturbations (materialized by the red line) remains vulnerable to
`2 attacks. Right: a classi�er trained with `2 adversarial perturbations (materialized by the blue
line) remains vulnerable to `∞ attacks.
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C.3.1 Theoretical analysis

Let us consider a classi�er f∞ that is provably robust against adversarial examples with maximum
`∞ norm of value ε∞. It guarantees that for any input-output pair (x, y) ∼ D and for any
perturbation τ such that ‖τ‖∞ ≤ ε∞, f∞ is not misled by the perturbation, i.e., f∞(x+ τ) =
f∞(x). We now focus our study on the performance of this classi�er against adversarial examples
bounded with a `2 norm of value ε2. Using Figure C.1(a), we observe that any `2 adversarial
example that is also in the `∞ ball, will not fool f∞. Conversely, if it is outside the ball, we have
no guarantee.

To characterize the probability that such an `2 perturbation fools an `∞ defense mechanism
in the general case (i.e., any dimension d), we measure the ratio between the volume of the inter-
section of the `∞ ball of radius ε∞ and the `2 ball of radius ε2. As Theorem 22 shows, this ratio
depends on the dimensionality d of the input vector x, and rapidly converges to zero when d in-
creases. Therefore a defense mechanism that protects against all `∞ bounded adversarial examples
is unlikely to be e�cient against `2 attacks.

Theorem 22 (Probability of the intersection goes to 0). LetB2,d(ε) :=
{
τ ∈ Rd s.t ‖τ‖2 ≤ ε

}
andB∞,d(ε′) :=

{
τ ∈ Rd s.t ‖τ‖∞ ≤ ε′

}
. If for alld, we select εand ε’ such that Vol(B2,d(ε)) =

Vol(B∞,d(ε
′)), then

Vol(B2,d(ε)
⋂
B∞,d(ε

′))

Vol(B∞,d(ε′))
→ 0 when d→∞.

Proof. Without loss of generality, let us �x ε = 1. One can show that for all d,

Vol

(
B2,d

(
2√
π
Γ

(
d

2
+ 1

)1/d
))

= Vol(B∞,d(1)) (C.8)

where Γ is the gamma function. Let us denote

r2(d) =
2√
π
Γ

(
d

2
+ 1

)1/d

. (C.9)

Then, thanks to Stirling’s formula

r2(d) ∼
√

2

πe
d1/2. (C.10)

Finally, if we denote US , the uniform distribution on set S, by using Hoe�ding inequality
between Equation C.14 and C.15, we get:

Vol(B2,d(r2(d))
⋂
B∞,d(1))

Vol(B∞,d(1))
(C.11)

=Px∼UB∞,d(1)
[x ∈ B2,d(r2(d))] (C.12)
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=Px∼UB∞,d(1)

[∑d
i=1 |xi|2 ≤ r2

2(d)
]

(C.13)

≤ exp
{
−d−1

(
r2

2(d)− dE|x1|2
)2} (C.14)

≤ exp

{
−
(

2

πe
− 1

3

)2

d+ o(d)

}
. (C.15)

Then the ratio between the volume of the intersection of the ball and the volume of the ball
converges towards 0 when d goes to∞.

Theorem 22 states that, when d is large enough, `2 bounded perturbations have a null proba-
bility of being also in the `∞ ball of the same volume. As a consequence, for any value of d that is
large enough, a defense mechanism that o�ers full protection against `∞ adversarial examples is
not guaranteed to o�er any protection against `2 attacks4.

Table C.2: Bounds of Theorem 22 on the volume of the intersection of `2 and `∞ balls at equal volume
for typical image classi�cation datasets. When d = 2, the bound is 10−0.009 ≈ 0.98.

Dataset Dim. (d) Vol. of the intersection

– 2 10−0.009 (≈ 0.98)
MNIST 784 10−144

CIFAR 3072 10−578

ImageNet 150528 10−28946

Note that this result defeats the 2-dimensional intuition: if we consider a 2 dimensional prob-
lem setting, the `∞ and the `2 balls have an important overlap (as illustrated in Figure C.1(a)) and
the probability of sampling at the intersection of the two balls is bounded by approximately 98%.
However, as we increase the dimensionality d, this probability quickly becomes negligible, even
for very simple image datasets such as MNIST. An instantiation of the bound for classical image
datasets is presented in Table C.2. The probability of sampling at the intersection of the `∞ and
`2 balls is close to zero for any realistic image setting. In large dimensions, the volume of the corner
of the `∞ ball is much bigger than it appears in Figure C.1(a).

C.3.2 No Free Lunch in Practice

Our theoretical analysis shows that if adversarial examples were uniformly distributed in a high-
dimensional space, then any mechanism that perfectly defends against `∞ adversarial examples
has a null probability of protecting against `2-bounded adversarial attacks. Although existing
defense mechanisms do not necessarily assume such a distribution of adversarial examples, we
demonstrate that whatever distribution they use, it o�ers no favorable bias with respect to the
result of Theorem 22. As we discussed in Section C.2, there are two distinct attack settings: loss

4Th. 22 can easily be extended to any two balls with di�erent norms. For clarity, we restrict to the case of `∞ and `2
norms.
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maximization (PGD) and perturbation minimization (C&W). Our analysis is mainly focusing
on loss maximization attacks. However, these attacks have a very strict geometry5. This is why, to
present a deeper analysis of the behavior of adversarial attacks and defenses, we also present a set
of experiments that use perturbation minimization attacks.

Table C.3: Average norms of PGD-`2 and PGD-`∞ adversarial examples with and without `∞ adversarial
training on CIFAR-10 (d = 3072).

Attack PGD-`2 Attack PGD-`∞

Unprotected AT-`∞ Unprotected AT-`2

Average `2 norm 0.830 0.830 1.400 1.640
Average `∞ norm 0.075 0.200 0.031 0.031

Adversarial training vs. loss maximization attacks To demonstrate that `∞ adversarial
training is not robust against PGD-`2 attacks we measure the evolution of `2 norm of adversarial
examples generated with PGD-`∞ between an unprotected model and a model trained with AT-
`∞, i.e., AT where adversarial examples are generated with PGD-`∞ 6. Results are presented in
Table C.3. 7

The analysis is unambiguous: the average `∞ norm of a bounded `2 perturbation more than
double between an unprotected model and a model trained with AT PGD-`∞. This phenomenon
perfectly re�ects the illustration of Figure C.1 (c). The attack will generate an adversarial example
on the corner of the `∞ ball thus increasing the `∞ norm while maintaining the same `2 norm.
We can observe the same phenomenon with AT-`2 against PGD-`∞ attack (see Figure C.1 (b) and
Table C.3). PGD-`∞ attack increases the `2 norm while maintaining the same `∞ perturbation
thus generating the perturbation in the upper area.

As a consequence, we cannot expect adversarial training `∞ to o�er any guaranteed protection
against `2 adversarial examples .

Adversarial training vs. perturbation minimization attacks. To better capture the behav-
ior of `2 adversarial examples, we now study the performances of an `2 perturbation minimization
attack (C&W) with and without AT-`∞. It allows us to understand in which area C&W discovers
adversarial examples and the impact of AT-`∞. In high dimensions, the red corners (see Figure C.1
(a)) are very far away from the `2 ball. Therefore, we hypothesize that a large proportion of the
`2 adversarial examples will remain unprotected. To validate this assumption, we measure the

5Due to the projection operator, all PGD attacks saturate the constraint, which makes them all lies in a very small
part of the ball.

6To do so, we use the same experimental setting as in Section C.4 with ε∞ and ε2 such that the volumes of the two
balls are equal.

7All experiments in this section are conducted on CIFAR-10, and the experimental setting is fully detailed in Sec-
tion C.4.1.
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proportion of adversarial examples inside of the `2 ball before and after `∞ adversarial training.
The results are presented in Figure C.4 (left: without adversarial training, right: with adversarial
training).

ε′ = ε ε′ = ε×
√
d

0

0.5

0.1

·104

ε′ = ε ε′ = ε×
√
d

0

0.5

0.1

·104

Figure C.4: Comparison of the number of adversarial examples found by C&W, inside the `∞ ball (lower,
blue area), outside the `∞ ball but inside the `2 ball (middle, red area) and outside the `2 ball
(upper gray area). ε is set to 0.3 and ε′ varies along the x-axis. Left: without adversarial training,
right: with adversarial training. Most adversarial examples have shifted from the `∞ ball to the
cap of the `2 ball, but remain at the same `2 distance from the original example.

On both charts, the blue area represents the proportion of adversarial examples that are inside
the `∞ ball. The red area represents the adversarial examples that are outside the `∞ ball but
still inside the `2 ball (valid `2 adversarial examples). Finally, the brown-beige area represents the
adversarial examples that are beyond the `2 bound. The radius ε′ of the `2 ball varies along the x-
axis from ε′ to ε′

√
d. On the left chart (without adversarial training) most `2 adversarial examples

generated by C&W are inside both balls. On the right chart most of the adversarial examples
have been shifted out the `∞ ball. This is the expected consequence of `∞ adversarial training.
However, these adversarial examples remain in the `2 ball, i.e., they are in the cap of the `2 ball.
These examples are equally good from the `2 perspective. This means that even after adversarial
training, it is still easy to �nd good `2 adversarial examples, making the `2 robustness of AT-`∞
almost null.

C.4 Reviewing Defenses Against Multiple Attacks

Adversarial attacks have been an active topic in the machine learning community since their dis-
covery Globerson et al. [2006], Biggio et al. [2013], Szegedy et al. [2014]. Many attacks have been
developed. Most of them solve a loss maximization problem with either `∞ Goodfellow et al.
[2015b], Kurakin et al. [2016], Madry et al. [2018b], `2 Carlini and Wagner [2017], Kurakin et al.
[2016], Madry et al. [2018b], `1 Tramèr and Boneh [2019] or `0 Papernot et al. [2016] surro-
gate norms. As we showed, these norms are really di�erent in high dimension. Hence, defending
against one norm-based attack is not su�cient to protect against another one. In order to solve
this problem, we review several strategies to build defenses against multiple adversarial attacks.
These strategies are based on the idea that both types of defense must be used simultaneously in
order for the classi�er to be protected against multiple attacks. The detailed description of the
experimental setting is described in Section C.4.1.
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Table C.5: This table shows a comprehensive list of results consisting of the accuracy of several defense
mechanisms against `2 and `∞ attacks. This table main objective is to compare the overall per-
formance of ‘single‘ norm defense mechanisms (AT and NI presented in the Section C.2.2)
against mixed norms defense mechanisms (MAT & RAT mixed defenses presented in Sec-
tion C.4).

Baseline AT MAT NI RAT-`∞ RAT-`2

– `∞ `2 Max Rand N U N U N U

Natural 0.94 0.85 0.85 0.80 0.80 0.79 0.87 0.74 0.80 0.79 0.87
PGD-`∞ 0.00 0.43 0.37 0.37 0.40 0.23 0.22 0.35 0.40 0.23 0.22
PGD-`2 0.00 0.37 0.52 0.50 0.55 0.34 0.36 0.43 0.39 0.34 0.37

C.4.1 Experimental Setting

To compare the robustness provided by the di�erent defense mechanisms, we use strong adver-
sarial attacks and a conservative setting: the attacker has a total knowledge of the parameters of
the model (white-box setting) and we only consider untargeted attacks (a misclassi�cation from
one target to any other will be considered as adversarial). To evaluate defenses based on Noise
Injection, we use Expectation Over Transformation (EOT), the rigorous experimental protocol
proposed by Athalye et al. [2018c] and later used by Athalye et al. [2018a], Carlini et al. [2019] to
identify �awed defense mechanisms.

To attack the models, we use state-of-the-art algorithms PGD. We run PGD with 20 iterations
to generate adversarial examples and with 10 iterations when it is used for adversarial training. The
maximum `∞ bound is �xed to 0.031 and the maximum `2 bound is �xed to 0.83. As discussed
in Section C.2, we chose these values so that the `∞ and the `2 balls have similar volumes. Note
that 0.83 is slightly above the values typically used in previous publications in the area, meaning
the attacks are stronger, and thus more di�cult to defend against.

All experiments are conducted on CIFAR-10 with the Wide-Resnet 28-10 architecture. We use
the training procedure and the hyper-parameters described in the original paper by Zagoruyko
and Komodakis [2016]. Training time varies from 1 day (AT) to 2 days (MAT) on 4 GPUs-V100
servers.

C.4.2 MAT – Mixed Adversarial Training

Earlier results have shown that AT-`p improves the robustness against corresponding `p-bounded
adversarial examples, and the experiments we present in this section corroborate this observation
(See Table C.5, column: AT). Building on this, it is natural to examine the e�ciency of Mixed
Adversarial Training (MAT) against mixed `∞ and `2 attacks. MAT is a variation of AT that
uses both `∞-bounded adversarial examples and `2-bounded adversarial examples as training ex-
amples. As discussed in Tramèr and Boneh [2019], there are several possible strategies to mix the
adversarial training examples. The �rst strategy (MAT-Rand) consists in randomly selecting one
adversarial example among the two most damaging `∞ and `2, and to use it as a training example,
as described in Equation (C.16):
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MAT-Rand :

min
θ

E(x,y)∼D

[
Ep∼U({2,∞}) max

‖τ‖p≤ε
L(fθ(x+ τ), y)

]
. (C.16)

An alternative strategy is to systematically train the model with the most damaging adversarial
example (`∞ or `2). As described in Equation (C.17):

MAT-Max :
min
θ

E(x,y)∼D

[
max

p∈{2,∞}
max
‖τ‖p≤ε

L(fθ(x+ τ), y)

]
. (C.17)

The accuracy of MAT-Rand and MAT-Max are reported in Table C.5 (Column: MAT). As ex-
pected, we observe that MAT-Rand and MAT-Max o�er better robustness both against PGD-`2
and PGD-`∞ adversarial examples than the original AT does. More generally, we can see that
AT is a good strategy against loss maximization attacks, and thus it is not surprising that MAT
is a good strategy against mixed loss maximization attacks. However e�cient in practice, MAT
(for the same reasons as AT) lacks theoretical arguments. In order to get the best of both worlds,
Salman et al. [2019] proposed to mix adversarial training with randomization.

C.4.3 RAT – Randomized Adversarial Training

We now examine the performance of Randomized Adversarial Training (RAT) �rst introduced
in Salman et al. [2019]. This technique mixes Adversarial Training with Noise Injection. The
corresponding loss function is de�ned as follows:

min
θ

E(x, y) ∼ D
[

max
‖τ‖p≤ε

L
(
f̃θ(x+ τ), y)

)]
. (C.18)

where f̃θ is a randomized neural network with noise injection as described in Section C.2.2, and
‖·‖p de�ne which kind of AT is used. For each setting, we consider two noise distributions, Gaus-
sian and Uniform as we did with NI. We also consider two di�erent Adversarial training AT-`∞
as well as AT-`2.

The results of RAT are reported in Table C.5 (Columns: RAT-`∞ and RAT-`2). We can ob-
serve that RAT-`∞ o�ers the best extra robustness with both noises, which is consistent with
previous experiments, since AT is generally more e�ective against `∞ attacks whereas NI is more
e�ective against `2-attacks. Overall, RAT-`∞ and a noise from uniform distribution o�ers the
best performances but is still weaker than MAT-Rand. These results are also consistent with the
literature, since adversarial training (and its variants) is the best defense against adversarial exam-
ples so far.

C.5 Conclusion & Perspective

In this paper, we tackled the problem of protecting neural networks against multiple attacks crafted
from di�erent norms. We demonstrated and gave a geometrical interpretation to explain why
most defense mechanisms can only protect against one type of attack. Then we reviewed existing
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strategies that mix defense mechanisms in order to build models that are robust against multi-
ple adversarial attacks. We conduct a rigorous and full comparison of Randomized Adversarial
Training and Mixed Adversarial Training as defenses against multiple attacks.

We could argue that both techniques o�er bene�ts and limitations. We have observed that
MAT o�ers the best empirical robustness against multiples adversarial attacks but this technique
is computationally expensive which hinders its use in large-scale applications. Randomized tech-
niques have the important advantage of providing theoretical guarantees of robustness and being
computationally cheaper. However, the certi�cate provided by such defenses is still too small for
strong attacks. Furthermore, certain Randomized defenses also su�er from the curse of dimen-
sionality as recently shown by Kumar et al. [2020a].

Although, randomized defenses based on noise injection seem limited in terms of accuracy un-
der attack and scalability, they could be improved either by Learning the best distribution to use
or by leveraging di�erent types of randomization such as discrete randomization �rst proposed
in Pinot et al. [2020]. We believe that these certi�ed defenses are the best solution to ensure the
robustness of classi�ers deployed into real-world applications.
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D Adversarial Attacks on Linear

Contextual Bandits

Contextual bandit algorithms are applied in a wide range of domains, from advertising to recom-
mender systems, from clinical trials to education. In many of these domains, malicious agents may
have incentives to force a bandit algorithm into a desired behavior. For instance, an unscrupulous
ad publisher may try to increase their own revenue at the expense of the advertisers; a seller may
want to increase the exposure of their products, or thwart a competitor’s advertising campaign.
In this paper, we study several attack scenarios and show that a malicious agent can force a linear
contextual bandit algorithm to pull any desired arm T − o(T ) times over a horizon of T steps,
while applying adversarial modi�cations to either rewards or contexts with a cumulative cost that
only grow logarithmically asO(log T ). We also investigate the case when a malicious agent is in-
terested in a�ecting the behavior of the bandit algorithm in a single context (e.g., a speci�c user).
We �rst provide su�cient conditions for the feasibility of the attack and an e�cient algorithm to
perform an attack. We empirically validate the proposed approaches in synthetic and real-world
datasets.

D.1 Introduction

Recommender systems are at the heart of the business model of many industries like e-commerce
or video streaming Davidson et al. [2010], Gomez-Uribe and Hunt [2015]. The two most com-
mon approaches for this task are based either on matrix factorization Park et al. [2017] or bandit
algorithms Li et al. [2010], which both rely on a unaltered feedback loop between the recom-
mender system and the user. In recent years, a fair amount of work has been dedicated to under-
standing how targeted perturbations in the feedback loop can fool a recommender system into
recommending low quality items.

Following the line of research on adversarial attacks in supervised learning Biggio et al. [2012],
Goodfellow et al. [2015b], Jagielski et al. [2018], Li et al. [2016], Liu et al. [2017], attacks on rec-
ommender systems have been focused on �ltering-based algorithms Christakopoulou and Baner-
jee [2019], Mehta and Nejdl [2008] and o�ine contextual bandits Ma et al. [2018]. The question
of adversarial attacks for online bandit algorithms has only been studied quite recently Jun et al.
[2018], Liu and Shro� [2019], Immorlica et al. [2018], Guan et al. [2020], and solely in the multi-
armed stochastic setting. Although the idea of online adversarial bandit algorithms is not new (see
Exp3 algorithm in Auer et al. [2002]), the focus is di�erent from what we are considering in this
article. Indeed, algorithms like Exp3 or Exp4 Lattimore and Szepesvári [2018] are designed to
�nd optimal actions in hindsight in order to adapt to any rewards stream.
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The opposition between adversarial and stochastic bandit settings has sparked interests in study-
ing a middle ground. In Bubeck and Slivkins [2012], the learning algorithm has no knowledge of
the type of feedback it receives (either stochastic or adversarial). In Lykouris et al. [2018], Li et al.
[2019d], Gupta et al. [2019a], Lykouris et al. [2019], Kapoor et al. [2019], the rewards are assumed
to be corrupted by adversarial rewards. The authors focus on building algorithms able to �nd the
optimal actions even in the presence of some non-random perturbations. This setting is di�er-
ent from what is studied in this article because those perturbations are bounded and agnostic to
arms pulled by the learning algorithm, i.e., the adversary corrupt the rewards before the algorithm
chooses an arm.

In the broader Deep Reinforcement Learning (DRL) literature, the focus is placed on modi-
fying the observations of di�erent states to fool a DRL system at inference time Hussenot et al.
[2019], Sun et al. [2020b] or the rewards Ma et al. [2019].

Contribution. In this work, we �rst follow the research direction opened by Jun et al. [2018]
where the attacker has the objective of fooling a learning algorithm into taking a speci�c action
as much as possible. For example in a news recommendation problem, as described in Li et al.
[2010], a bandit algorithm chooses between K articles to recommend to a user, based on some
information about them, called context. We assume that an attacker sits between the user and
the website, they can choose the reward (i.e., click or not) for the recommended article observed
by the recommending algorithm. Their goal is to fool the bandit algorithm into recommending
some articles to most users. The contributions of our work can be summarized as follows:

• We extend the work of Jun et al. [2018], Liu and Shro� [2019] to the contextual linear ban-
dit setting showing how to perturb rewards for both stochastic and adversarial algorithms,
forcing any bandit algorithms to pull a speci�c set of arms, o(T ) times for logarithmic cost
for the attacker.

• We analyze, for the �rst time, the setting in which the attacker can only modify the context
x associated with the current user (the reward is not altered). The goal of the attacker is
to fool the bandit algorithm into pulling arms of a target set for most users (i.e., contexts)
while minimizing the total norm of their attacks. We show that the widely knownLinUCB
algorithm Abbasi-Yadkori et al. [2011], Lattimore and Szepesvári [2018] is vulnerable to this
new type of attack.

• We present a harder setting for the attacker, where the latter can only modify the context
associated to a speci�c user. This situation may occur when a malicious agent has infected
some computers with a Remote Access Trojan (RAT). The attacker can then modify the
history of navigation of a speci�c user and, as a consequence, the information seen by the
online recommender system.We show how the attacker can attack the two very common
bandit algorithms LinUCB and Linear Thompson Sampling (LinTS) Agrawal and Goyal
[2013], Abeille et al. [2017] and, in certain cases, force them to pull a set of arms most of the
time when a speci�c context (i.e., user) is presented to the algorithm (i.e., visits a website).
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D.2 Preliminaries

We consider the standard contextual linear bandit setting with K ∈ N arms. At each time t,
the agent observes a context xt ∈ Rd, selects an action at ∈ J1,KK and observes a reward:
rt,at = 〈θat , xt〉 + ηtat where for each arm a, θa ∈ Rd is a feature vector and ηtat is a condi-
tionally independent zero-mean, σ2-subgaussian noise. The contexts are assumed to be sampled
stochastically except in App. D.11.

Assumption 2. There existL > 0 andD ⊂ Rd, such that for all t, xt ∈ D and, ∀x ∈ D,∀a ∈
J1,KK, ‖x‖2 ≤ L and 〈θa, x〉 ∈ (0, 1]. In addition, we assume that there exists S > 0 such that
‖θa‖2 ≤ S for all arms a.

The agent minimizes the cumulative regret after T steps RT =
∑T

t=1〈θa?t , xt〉 − 〈θat , xt〉,
where a?t := argmaxa〈θa, xt〉. A bandit learning algorithm A is said to be no-regret when it
satis�esRT = o(T ), i.e., the average expected reward received byA converges to the optimal one.
Classical bandit algorithms (e.g., LinUCB and LinTS) compute an estimate of the unknown
parameters θa using past observations. Formally, for each arm a ∈ [K] we de�ne Sta as the set
of times up to t − 1 (included) where the agent played arm a. Then, the estimated parameters
are obtained through regularized least-squares regression as θ̂ta = (Xt,aX

>
t,a + λI)−1Xt,aYt,a,

where λ > 0, Xt,a = (xi)i∈Sta ∈ Rd×|Sta| and Yt,a = (ri,ai)i∈Sta ∈ R|Sta|. Denote by Vt,a =

λI+Xt,aX
>
t,a the design matrix of the regularized least-square problem and by‖x‖V =

√
x>V x

the weighted norm w.r.t. any positive matrix V ∈ Rd×d. We de�ne the con�dence set:

Ct,a =
{
θ ∈ Rd :

∥∥θ − θ̂t,a∥∥Vt,a ≤ βt,a} (D.1)

where βt,a = σ
√
d log

(
(1 + L2(1 + |Sta|)/λ)/δ

)
+ S
√
λ, which guarantees that θa ∈ Ct,a,

for all t > 0, w.p. 1−δ. This uncertainty is used to balance the exploration-exploitation trade-o�
either through optimism (e.g., LinUCB) or through randomization (e.g., LinTS).

D.3 Online Adversarial Attacks on Rewards

The ultimate goal of a malicious agent is to force a bandit algorithm to perform a desired behavior.
An attacker may simply want to induce the bandit algorithm to perform poorly—ruining the
users’ experience—or to force the algorithm to suggest a speci�c arm. The latter case is particularly
interesting in advertising where a seller may want to increase the exposure of its product at the
expense of the competitors. Note that the users’ experience is also compromised by the latter
attack since the suggestions they will receive will not be tailored to their needs. Similarly to Liu and
Shro� [2019], Jun et al. [2018], we focus on the latter objective, i.e., to fool the bandit algorithm
into pulling arms inA†, a set of target arms, for T − o(T ) time steps (independently of the user).

A way to obtain this behavior is to dynamically modify the reward in order to make the bandit
algorithm believe that a† is optimal, for some a† ∈ A†. Clearly, the attacker has to pay a price in
order to modify the perceived bandit problem and fool the algorithm. If there is no restriction on
when and how the attacker can alter the reward, the attacker can easily fool the algorithm. How-
ever, this setting is not interesting since the attacker may pay a cost higher than the loss su�ered
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by the attacked algorithm. An attack strategy is considered successful when the total cost of the
attack is sublinear in T .

In this section, we show that under Assumption 2, there exists an attack algorithm that is suc-
cessful against any bandit algorithm, stochastic or adverserial.

Setting. We assume that the attacker has the same knowledge as the bandit algorithm A about
the problem (i.e., knows σ and L). The attacker is assumed to be able to observe the context xt,
the arm at pulled byA, and can modify the reward received byA. When the attacker modi�es the
reward rt,at into r̃t,at the instantaneous cost of the attack is de�ned as ct :=

∣∣rt,at − r̃t,at∣∣. The
goal of the attacker is to fool algorithm A such that the arms inA† are pulled T −o(T ) times and∑T

t=1 ct = o(T ). We also assume that the action for the arms in the target set is strictly positive for
every contextx ∈ D. That is to say that∆ := minx∈D

{
〈x, θ

a†?(x)
〉 −max

a∈A†,a 6=a†?(x)
〈x, θa〉

}
>

0 where a†?(x) = arg maxa∈A†〈x, θa〉 for every x ∈ D.
Attack idea. We leverage the idea presented in Liu and Shro� [2019] and Jun et al. [2018]

where the attacker lowers the reward of arms a /∈ A† so that algorithm A learns that an arm of
the target set is optimal for every context. Since A is assumed to be no-regret, the attacker only
needs to modify the rewards o(T ) times to achieve this goal. Lowering the rewards has the e�ect
of shifting the vectors (θa)a/∈A† to new vectors (θ′a)a/∈A† such that for all arms a /∈ A† and all
contexts x ∈ D, there exists an arm a† ∈ A† such that 〈θ′a, x〉 ≤ 〈θa† , x〉. Since rewards are
assumed to be bounded (see Asm. 2), this objective can be achieved by simply forcing the reward
of non-target arms a /∈ A† to the minimum value. Contextual ACE (see Fig. D.2) implements a
soft version of this idea by leveraging the knowledge of the reward distribution. At each round t,
Contextual ACE modi�es the reward perceived by A as follows:

r̃1
t,at = η′t1{at /∈A†} + rt,at1{at∈A†} (D.2)

where η′t is a σ-subgaussian random variable generated by the attacker independently of all
other random variables. Contextual ACE transforms the original problem into a stationary bandit
problem in which there is a targeted arm that is optimal for all contexts and all non targeted arms
have expected reward of 0. The following propostion shows that the cumulative cost of the attack
is sublinear.

Proposition 24. For any δ ∈ (0, 1/K], when using Contextual ACE algorithm (Fig. D.1) with
perturbed rewards r̃1, with probability at least 1 −Kδ, algorithm A pulls an arm inA† for T −
o(T ) time steps and the total cost of attacks is o(T ).

The proof of this proposition is provided in App. D.8.1. While Prop. 24 holds for any no-regret
algorithm A, we can provide a more precise bound on the total cost by inspecting the algorithm.
For example, we can show (see App. D.12), that, with probability at least 1 − Kδ, the number
of times LinUCB Abbasi-Yadkori et al. [2011] pulls arms not inA† is at most

∑
j /∈A† Nj(T ) ≤

64Kσ2λS2

∆2

(
d log

(
λ+TL2

d
δ2

))2
. This directly translates into a bound on the total cost.

Comparison with ACE Liu and Shro� [2019]. In the stochastic setting, the ACE algo-
rithm Liu and Shro� [2019] leverages a bound on the expected reward of each arm in order to
modify the reward. However, the perturbed reward process seen by algorithmA is non-stationary
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D.3 Online Adversarial Attacks on Rewards

and in general there is no guarantee that an algorithm minimizing the regret in a stationary ban-
dit problem keeps the same performance when the bandit problem is not stationary anymore.
Nonetheless, transposing the idea of the ACE algorithm to our setting would give an attack of
the following form, where at time t, Alg. A pulls arm at and receives rewards r̃2

t,at :

r̃2
t,at = (rt,at + max(−1,min(0, Ct,at)))1{at /∈A†} + rt,at1{at∈A†}

withCt,at = (1−γ) mina†∈A† minθ∈C
t,a†
〈θ, xt〉−maxθ∈Ct,at 〈θ, xt〉. Note thatCt,a is de�ned

as in Eq. D.1 using the non-perturbed rewards, i.e., Yt,a = (ri,ai)i∈Sta .

Bounded Rewards. The bounded reward assumption is necessary in our analysis to prove
a formal bound on the total cost of the attacks for any no-regret bandit algorithm, otherwise
we need more information about the attacked algorithm. In practice, the second attack on the
rewards, r̃2, can be used in the case of unbounded rewards for any algorithms. The di�culty for
unbounded reward is that the attacker has to adapt to the environment reward but in order to do
so the reward process observed by the bandit algorithm becomes non-stationary under the attack.
Thus, there is no guarantee that an algorithm likeLinUCBwill pull a target arm as the proof relies
on the environment observed by the bandit algorithm being stationary. We observe empirically
that the total cost of attack is sublinear when using r̃2.

Jun et al. [2018] does not assume that rewards are bounded but focus on attacking algorithms
in the stochastic multi-armed setting. That is to say they study attacks only designed for ε-greedy
and UCB while we provide an e�cient attack for any algorithms in the linear contextual case. We
can extend their work, and thus remove the bounded reward assumption, in the linear contextual
case by using the following attack, designed only for LinUCB:

r̃3
t,at =

(
rt,at + min

a†∈A†
min
θ∈C

t,a†
〈θ, xt〉 − max

θ∈Ct,at
〈θ, xt〉

)
1{at /∈A†} + rt,at1{at∈A†} (D.3)

withCt,a de�ned as in Eq. (D.1). Although, the attack r̃3 is not stationary, it is possible to prove
that the total cost of attack isO(log(T )) because we know that the attacked bandit algorithm is
LinUCB.

Constrained Attack. When the attacker has a constraint on the instantaneous cost of the
attack, using the perturbed reward r̃1 may not be possible as the cost of the attack at time t is not
decreasing over time. Using the perturbed reward r̃2 o�ers a more �exible type of attack with more
control on the instantaneous cost thanks to the parameter γ. But it still su�ers from a minimal
cost of attack from lowering rewards of arms not inA†.

Defense mechanism. The attack based on reward r̃1 is hardly detectable without prior known-
ledge about the problem. In fact, the reward process associated to r̃1 is stationary and compatible
with the assumption about the true reward (e.g., subgaussian). While having very low rewards is
reasonable in advertising, it can make the attack easily detectable in some other problems. On the
other hand, the fact that r̃2 is a non-stationary process makes this attack easier to detect. When
some data are already available on each arm, the learner can monitor the di�erence between the
average rewards per action computed on new and old data.
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D Adversarial Attacks on Linear Contextual Bandits

D.4 Online Adversarial Attacks on Contexts

In this section, we consider the attacker to be able to alter the contextxt perceived by the algorithm
rather than the reward. The attacker is now restricted to change the type of users presented to the
learning algorithmA, hence changing its perception of the environment. We show that under the
assumption that the attacker knows a lower-bound to the reward of the target set, it is possible to
fool LinUCB.

Setting. As in Sec. D.3, we consider the attacker to have the same knowledge about the prob-
lem as A. The main di�erence with the previous setting is that the attacker attacks before the
algorithm. We adopt a white-box Goodfellow et al. [2015b] setting attacking LinUCB. The goal
of the attacker is unchanged: they aim at forcing the algorithm to pull arms inA† for T − o(T )
time steps while paying a sublinear total cost. We denote by x̃t the context after the attack and by
ct = ‖xt − x̃t‖2 the instantaneous cost.

Di�erence between attacks on contexts and rewards. Perturbing contexts is fundamen-
tally di�erent from perturbing the rewards. The attacker only modi�es the context that is shown
to the bandit algorithm. The true context, which is used to compute the reward, remains un-
changed. In other words, the attacker cannot modify the reward observed by the bandit algorithm.
Instead, the attack algorithm described in this section fools the bandit algorithm by making the
rewards appear small relative to the contexts and requires more assumptions on the bandit algo-
rithm than in Sec. D.3.

Attack Idea. The idea of the attack in this setting is similar to the attack of Sec. D.3. The
attacker builds a bandit problem where arm an a† ∈ A† is optimal for all contexts by lowering
the perceived value of all other arms not inA†. The attacker cannot modify the reward but, thanks
to the linear reward assumption, they can scale the contexts to decrease the predicted rewards in
the original context.

At time t, the attacker receives the contextxt and computes the attack. Thanks to the white-box
setting, it computes the arm at that algorithm A would pull if presented with context xt. If at /∈
A† then the attacker changes the context to x̃t = αatxt withαat > maxx∈Dmina†∈A†〈θat , x〉/〈θa† , x〉.This
factor is chosen such that for a ridge regression computed on the dataset (αxi, 〈θ, xi〉)i outputs a
parameter close to θ/α therefore the attacker needs to chooseα such that for every contextx ∈ D,
〈x, θ/α〉 ≤ maxa†∈A†〈x, θa† , x〉. In other words, the attacker performs a dilation of the incom-
ing context every time algorithm A does not pull an arm in A†. The fact that the decision rule
used by LinUCB is invariant by dilation guarantees that the attacker will not inadvertently lower
the perceived rewards for arms in A†. Because the rewards are assumed to be linear, presenting
a large context αx and receiving the reward associated with the normal context x will skew the
estimated rewards of LinUCB. The attack protocol is summarized in Fig. D.2.

In order to compute the parameter α used in the attack, we make the following assumption
concerning the performance of the arms in the target set:

Assumption 3. For all x ∈ D, there exists a† ∈ A†, such that 0 < ν ≤ 〈x, θa†〉 and ν is known
to the attacker.

Knowing ν. For advertising and recommendation systems, knowing ν is not problematic. In-
deed in those cases, the reward is the probability of impression of the ad (r ∈ [0, 1]). The attacker
has the freedom to choose one of multiple target arms with strictly positive click probability in
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For time t = 1, 2, ..., T do

1. Alg. A chooses arm at based on context xt
2. Environment generates reward: rt,at =
〈θat , xt〉 + ηt with ηtat conditionally σ2-
subgaussian

3. Attacker observes reward rt,at and feeds
the perturbed reward r̃1t,at (or r̃2t,at ) to A

Figure D.1: Contextual ACE algorithm

Input: attack parameter: α
For time t = 1, 2, ..., T do

1. Attacker observes the context xt, computes po-
tential arm a′t and sets x̃t = xt + (α(xt) −
1)xt 1{a′t /∈A†}

2. Alg. A chooses arm at based on context x̃t
3. Environment generates reward: rt,at =
〈θat , xt〉 + ηt with ηt conditionally σ2-
subgaussian

4. Alg. A observes reward rt,at

Figure D.2: ConicAttack algorithm.

every context. This freedom is an important aspect for the attacker since it allows the attacker to
cherry pick the target ad(s). In particular, the attacker can estimate ν based on data from previous
campaigns (only for the target ad). For instance, a company could have run many ad campaigns
for one of their products and try to get the defender’s system to advertise it.

An issue is that the norm of the attacked context can be greater that the upper bound L of
Assumption 2. To prevent this issue, we choose a context-dependent multiplicative constant
α(x) = min{2/ν, L/‖x‖2} which amounts to clip the norm of the attacked context to L. In
Sec. D.6, we show that this attack is e�ective for di�erent size of target arms sets. We also show
that in the case of contexts such that ‖x‖2 ≤ νL/2 that the cost of attacks is logarithmic in the
horizon T .

Proposition 25. Using the attack described in Fig. D.2 and assuming that ‖x‖2 ≤ νL/2 for all
contexts x ∈ D, for any δ ∈ (0, 1/K], with probability at least 1 − Kδ, the number of times
LinUCB does not pull an arm inA† before time T is at most

∑
j /∈A†

Nj(T ) ≤ 32K2

(
λ

α2
+ σ2d log

(
λd+ TL2α2

dλδ

))3

withNj(T ) the number of times arm j has been pulled during the first T steps, The total cost for the

attacker is bounded by:
∑T

t=1 ct ≤ 64K2

ν

(
λ
α2 + σ2d log

(
λd+TL2α2

dλδ

))3
with α = 2/ν.

The proof of Proposition 25 (see App. D.8.2) assumes that the attacker can attack at any time
step, and that they can know in advance which arm will be pulled by Alg. A in a given context.
Thus it is not applicable to random exploration algorithms likeLinTSAgrawal and Goyal [2013]
and ε-greedy. We also observed empirically that thowe two randomized algorithms are more
robust to attacks (see Sec. D.6) than LinUCB.

Norm Clipping. Clipping the norm of the attacked contexts is not bene�cial for the attacker.
Indeed, this means that an attacked context was violating the assumption (used by the bandit algo-
rithm) that contexts are bounded byL. The attack could then be easily detectable and may succeed
only because it is breaking an underlying assumption used by the bandit algorithm. Prop. 25 pro-
vides a theoretical grounding for the proposed attack when contexts are bounded by νL/2 and
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not only L. Although, we can not prove a bound on the cumulative cost of attacks in general,
we show in Sec. D.6 that attacks are still successful for multiple datasets where contexts are not
bounded by νL/2.

D.5 O�ine attacks on a Single Context

Previous sections focused on the man-in-the-middle (MITM) attack either on reward or context.
The MITM attack allows the attacker to arbitrarily change the information observed by the rec-
ommender system at each round. This attack may be hardly feasible in practice, since the exchange
channels are generally protected by authentication and cryptographic systems. In this section, we
consider the scenario where the attacker has control over a single user u. As an example, consider
the case where the device of the user is infected by a malware (e.g., Trojan horse), giving full con-
trol of the system to the malicious agent. The attacker can thus modify the context of the speci�c
user (e.g., by altering the cookies) that is perceived by the recommender system. We believe that
changes to the context (e.g., cookies) are more subtle and less easily detectable than changes to
the reward (e.g., click). Moreover, if the reward is a purchase, it cannot be altered easily by taking
control of the user’s device. Clearly, the impact of the attacker on the overall performance of the
recommender system depends on the frequency of the speci�c user, that is out of the attacker’s
control. It may be thus di�cult to obtain guarantees on the cumulative regret of algorithm A.
For this reason, we mainly focus on the study of the feasibility of the attack.

The attacker targets a speci�c user (i.e., the infected user) associated to a context x†. Similarly
to Sec. D.4, the objective of the attacker is to �nd the minimal change to the context presented
to the recommender system A such that A selects an arm inA†. A observes a modi�ed context x̃
instead of x†. After selecting an arm at, A observes the true noisy reward rt,at = 〈θat , x†〉+ηtat .
We still study a white-box setting: the attacker can access all the parameters of A.

In this section, we show under which condition it is possible for an attacker to fool both an
optimistic and posterior sampling algorithm.

D.5.1 Optimistic Algorithm: LinUCB

We consider the LinUCB algorithm which chooses the arm to pull by maximizing an upper-
con�dence bound on the expected reward. For each arm a and context x, the UCB value is given
by maxθ∈Ct,a〈x, θ〉 = 〈x, θ̂ta〉+ βt,a‖x‖Ṽ −1

t,a
. The objective of the attacker is to force LinUCB

to pull an arm inA† once presented with contextx†. This means to �nd a perturbation of context
x† that makes any arm inA† the most optimistic arm. Clearly, we would like to keep the pertur-
bation as small as possible to reduce the cost for the attacker and the probability of being detected.
Formally, the attacker needs to solve the following non-convex optimization problem:

min
y∈Rd

‖y‖2 s.t max
a/∈A†

max
θ∈C̃t,a

〈x† + y, θ〉+ ξ ≤ max
a†∈A†

max
θ∈C̃

t,a†

〈x† + y, θ〉 (D.4)

where ξ > 0 is a parameter of the attacker and C̃t,a :=
{
θ | ‖θ − θ̂ta‖Ṽt,a ≤ βt,a

}
is the

con�dence set constructed by LinUCB. We use the notation C̃, Ṽ to stress the fact that LinUCB
observes only the modi�ed context. In contrast to Sec. D.3 and D.4, the attacker may not be able
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D.5 Offline attacks on a Single Context

to force the algorithm to pull any of the target arms inA†. In other words, Problem D.4 may not
be feasible. However, we are able to characterize the feasibility of (D.4).

Theorem 23. Problem (D.4) is feasible at time t i�.

∃θ ∈ ∪a†∈A† C̃t,a† , θ 6∈ Conv
(
∪a/∈A† C̃t,a

)
(D.5)

The condition given by Theorem 23 says that this attack can be done when there exists a vec-
tor x for which an arm in A† is assumed to be optimal according to LinUCB. The condition
mainly stems from the fact that optimizing a linear product on a convex compact set will reach
its maximum on the edge of this set. In our case this set is the convex hull of the con�dence el-
lipsoids of LinUCB. Although it is possible to use an optimization algorithm for this class of
non-convex problems—e.g., DC programming Tuy [1995]—they are still slow compared to con-
vex algorithms. Therefore, we present a simple convex relaxation of the previous problem for a
single target arm a† ∈ A† that still enjoys some empirical performance compared to Problem
(D.4). The �nal attack can then be computed as the minimum of the attacks obtained for each
a† ∈ A†. The relaxed problem is the following for each a† ∈ A†:

min
y∈Rd

‖y‖2 s.t max
a6=a†,a 6∈A†

max
θ∈Ct,a

〈x† + y, θ − θ̂ta†〉 ≤ −ξ (D.6)

Since the RHS of the constraint in Problem (D.4) can be written as maxθ∈C
t,a†
〈θ, x† + y〉 for

any y, the relaxation here consists in using 〈θ, x†+ y〉 as a lower-bound to this maximum for any
θ ∈ Ct,a† .

For the relaxed Problem (D.6), the same type of reasoning as for Problem (D.4) gives that Prob-
lem (D.6) is feasible if and only if θ̂a†(t) 6∈ Conv

(⋃
a6=a†,a 6∈A† Ct,a

)
.

If Condition (D.5) is not met, no arm a† ∈ A† can be pulled by LinUCB. Indeed, the proof
of Theorem 23 shows that the upper-con�dence of every arm in A† is always dominated by an-
other arm for any context. In other words, if any arm in A† is optimal for some contexts then
the condition is satis�ed a linear number of times for LinUCB (for formal proof of this fact see
App. D.8.4).

D.5.2 Random Exploration Algorithm: LinTS

The previous subsection focused on LinUCB, however we can obtain similar guarantees for al-
gorithms with random exploration such as LinTS. In this case, it is not possible to guarantee that
a speci�c arm will be pulled for a given context because of the randomness in the arm selection
process. The objective is to guarantee that an arm fromA† is pulled with probability at least 1−δ.
Similarly to the previous subsection, the problem of the attacker can be written as:

min
y∈Rd

‖y‖ s.t P
(
∃a† ∈ A†, ∀a 6∈ A†, 〈x† + y, θ̃a − θ̃a†〉 ≤ −ξ

)
≥ 1− δ (D.7)

where the θ̃a for di�erent arms a are independently drawn from a normal distribution with
mean θ̂a(t) and covariance matrix υ2V̄ −1

a (t) with υ = σ
√

9d ln(T/δ). Solving this problem is
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not easy and in general not possible, even for a single arm. For a given x and arm a, the random
variable 〈x, θ̃a〉 is normally distributed with mean µa(x) := 〈θ̂a(t), x〉 and variance σ2

a(x) :=

ν2||x||2
V̄ −1
a (t)

. We can then write 〈x, θ̃a〉 = µa(x) + σa(x)Za with (Za)a ∼ N (0, IK). For
the sake of clarity, we drop the variable xwhen writing µa(x) and σa(x).

Let’s imagine (just for this paragraph) that A† = {a†}, then the constraint in Problem (D.7)
becomes

[
1− EZ

a†

(
Πa6∈A†Φ

(
σ
a†Za†+µa†−µa

σa

))]
≤ δwhereΦ is the cumulative distribution

function of a normally distributed Gaussian random variable. Unfortunately, computing exactly
this expectation is an open problem.

In the more general case where |A†| ≥ 1, rewriting the constraints of Problem (D.7) is not
possible. Following the idea of Liu and Shro� [2019], for every single target arm a† ∈ A†, a
possible relaxation of the constraint in Problem (D.7) is, to ensure that there exists an arma† ∈ A†
such that for every arm a 6∈ A†, 1−Φ

(
(µa† − µa − ξ)/(

√
σ2
a + σ2

a†
)
)
≤ δ

K−|A†| , where |A†|
is the cardinal ofA†. Thus the relaxed version of the attack on LinTS for a single arm a† is:

min
y∈Rd

‖y‖ s.t. ∀a 6∈ A†, 〈x† + y, θ̂a† − θ̂a〉 − ξ ≥ νΦ−1
(

1− δ
K−|A†|

)∥∥x† + y
∥∥
V̄ −1
a +V̄ −1

a†

(D.8)

Problem (D.8) is similar to Problem (D.6) as the constraint is also a Second Order Cone Program
but with di�erent parameters (see App. D.10). As in section D.5.1, we compute the �nal attack as
the minimum of the attacks computed for each arm inA†.

D.6 Experiments

In this section, we conduct experiments on the attacks on contextual bandit problems with sim-
ulated data and two real-word datasets: MovieLens25M Harper and Konstan [2015] and Jester
Goldberg et al. [2001]. The synthetic dataset and the data preprocessing step are presented in
App. D.9.1.

D.6.1 Attacks on Rewards

We study the impact of the reward attack for 4 contextual algorithms: LinUCB,LinTS,ε-greedy
and Exp4. As parameters, we use L = 1 for the maximal norm of the contexts, δ = 0.01,
υ = σ

√
d ln(t/δ))/2, εt = 1/

√
t at each time step t and λ = 0.1. We choose only a unique

target arm a†. For Exp4, we useN = 10 experts withN − 2 experts returning a random arm at
each time, one expert choosing arm a† every time and one expert returning the optimal arm for
every context. With this set of experts the regret of bandits with expert advice is the same as in the
contextual case. To test the performance of each algorithm, we generate 40 random contextual
bandit problems and run each algorithm for T = 106 steps on each. We report the average cost
and regret for each of the 40 problems. Figure D.4 (Top) shows the attacked algorithms using the
attacked reward r̃1 (reported as “stationary CACE”) and the rewards r̃2 (reported as CACE).

These experiments show that, even though the reward process is non-stationary, usual stochas-
tic algorithms like LinUCB can still adapt to it and pull the optimal arm for this reward process
(which is arm a†). The true regret of the attacked algorithms is linear as a† is not optimal for all
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contexts. In the synthetic case, for the algorithms attacked with the rewards r̃2, over 1M iterations
and γ = 0.22, the target arm is drawn more than 99.4% of the time on average for every algo-
rithm and more than 97.8% of the time for the stationary attack r̃1 (see Table D.7 in App. D.9.2).
The dataset-based environments (see Figure D.4 (Left)) exhibit the same behavior: the target arm
is pulled more than 94.0% of the time on average for all our attacks on Jester and MovieLens and
more than 77.0% of the time in the worst case (for LinTS attacked with the stationary rewards)
(see Table D.7).

D.6.2 Attacks on Contexts

We now illustrate the e�ectiveness of the attack in Alg. D.2. We study the behavior of attacked
LinUCB, LinTS, ε-greedy with di�erent size of target arms set (|A†|/K ∈ {0.3, 0.6, 0.9}
withK the total number of arms). We test the performance of LinUCB with the same parame-
ters as in the previous experiments. Yet since the variance is much smaller in this case, we generate
a random problem and run 20 simulations for each algorithm. The target arms are chosen ran-
domly and we use the exact lower-bound on the reward of those arms to compute ν.

Table D.3: Percentage of iterations for which the algorithm pulled an arm in the target setA† (with a target
set size of 0.3K arms) (Left) Online attacks using ContextualConic (CC) algorithm. Percent-
ages are averaged over 20 runs of 1M iterations. (Right) O�ine attacks with exact (Full) and
Relaxed optimization problem. Percentages are averaged over 40 runs of 1M iterations.

Synthetic Jester Movilens

LinUCB 28.91% 26.59% 31.13%
CC LinUCB 98.55% 98.36% 99.61%
ε-greedy 25.7% 25.85% 31.78%
CC ε-greedy 89.71% 99.85% 99.92%
LinTS 27.2% 26.10% 33.24%
CC LinTS 30.93% 97.26% 98.82%

Synthetic Jester MovieLens

LinUCB 0.07% 0.01% 0.39%

LinUCB Relaxed 13.76% 97.81% 4.09%

LinUCB Full 88.30% 99.98% 99.99%

ε-greedy 0.01% 0.00% 0.03%

ε-greedy Full 99.98% 99.95% 99.97%

LinTS 0.02% 0.01% 0.05%

LinTS Relaxed 18.21% 80.48% 5.56%

Table D.3 (Left) shows the percentage of times an arm in A†, for |A†| = 0.3K , has been
selected by the attacked algorithm. We see that, as expected, CCLinUCB reaches a ratio of almost
1, meaning the target arms are indeed pulled a linear number of times. A more surprising result
(at least not covered by the theory) is that ε-greedy exhibits the same behavior. Similarly to
LinTS, ε-greedy exhibits some randomness in the action selection process. It can cause an arm
a† ∈ A† to be chosen when the context is attacked and interfere with the principle of the attack.
We suspect that is what happens for LinTS. Fig. D.4 (Bottom) shows the total cost of the attacks
for the attacked algorithms . Despite the fact that the estimate of θa† can be polluted by attacked
samples, it seems thatLinTS can still pick up a† as being optimal for some dataset like MovieLens
and Jester but not on the simulated dataset.

D.6.3 O�ine attacks on a Single Context

We now move to the setting described in Sec. D.5 and test the same algorithms as in Sec. D.6.2.
We run 40 simulations for each algorithm and each attack type. The target context x† is chosen
randomly and the target arm as the arm minimizing the expected reward for x†. The attacker is
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CACE LinUCB, γ = 0.5
Stationary CACE LinUCB
CACE LinTS, γ = 0.5
Stationary CACE LinTS
CACE Exp4, γ = 0.5
Stationary CACE Exp4
CACE ε-greedy, γ = 0.5
Stationary CACE ε-greedy
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Figure D.4: Total cost of attacks on rewards for the synthetic (Left,γ = 0.22), Jester (Center,γ = 0.5) and
MovieLens (Right, γ = 0.5) environments. Bottom, total cost of ContextualConic attacks
on the synthetic (Left), Jester (Center) and MovieLens (Right) environments.

only able to modify the incoming context for the target context (which corresponds to the context
of one user) and the incoming contexts are sampled uniformly from the set of all possible contexts
(of size 100). Table D.3 (Right) shows the percentage of success for each attack. We observe
that the non-relaxed attacks on ε-greedy and LinUCB work well across all datasets. However,
the relaxed attack for LinUCB and LinTS are not as successful, on the synthetic dataset and
MovieLens25M. The Jester dataset seems to be particularly suited to this type of attacks because
the true feature vectors are well separated from the convex hull formed by the feature vectors of
the other arms: only 5% of Jester’s feature vectors are within the convex hull of the others versus
8% for MovieLens and 20% for the synthetic dataset. As expected, the cost of the attacks is linear
on all the datasets (see Figure D.9 in App. D.9.4). The cost is also lower for the non-relaxed than
for the relaxed version of the attack onLinUCB. Unsurprisingly, the cost of the attacks onLinTS
is the highest due to the need to guarantee that a† will be chosen with high probability (95% in
our experiments).

D.7 Conclusion

We presented several settings for online attacks on contextual bandits. We showed that an attacker
can force any contextual bandit algorithm to almost always pull an arbitrary target arm a† with
only sublinear modi�cations of the rewards. When the attacker can only modify the contexts, we
prove that LinUCB can still be attacked and made to almost always pull an arm inA† by adding
sublinear perturbations to the contexts. When the attacker can only attack a single context, we
derive a feasibility condition for the attacks and we introduce a method to compute some attacks
of small instantaneous cost for LinUCB, ε-greedy and LinTS. To the best of our knowledge,
this paper is the �rst to describe e�ective attacks on the contexts of contextual bandit algorithms.
Our numerical experiments, conducted on both synthetic and real-world data, validate our results
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and show that the attacks on all contexts are actually e�ective on several algorithms and with more
permissible settings.

D.8 Appendix: Proofs

In this appendix, we present the proofs of di�erent theoretical results presented in the paper.

D.8.1 Proof of Proposition 24

Proposition. For any δ ∈ (0, 1/K], when using Contextual ACE algorithm (Alg. D.1) with
perturbed rewards r̃1, with probability at least 1 −Kδ, algorithm A pulls an arm inA† for T −
o(T ) time steps and the total cost of attacks is o(T ).

Proof. Let us consider the contextual bandit problemA1, withK arms with contextsx ∈ D
such that every arm in a† ∈ A† has mean reward 〈θa† , x〉 and all other arms has mean 0.
Then the regret of algorithm A for this bandit problem is upper-bounded with probability
at least 1 − δ by a function fA(T ) such that fA(T ) = o(T ). In addition, the reward pro-
cess fed to Alg. A by the attacker is a stationary reward process with σ2-subgaussian noise.
Therefore, the number of times algorithm A pulls an arm not in A† is upper-bounded by
fA(T )/minx∈D∆(x) where for every context x ∈ D, let a†?(x) := arg maxa∈A†〈x, θa〉
and∆(x) = 〈x, θ

a†?(x)
〉 −max

a∈A†,a6=a†?(x)
〈x, θa〉.

In addition, the total cost of the attack is upper-bounded by maxa∈J1,KK maxx∈D |〈x, θa〉|(T−
NA†(T )) whereNA†(T ) is the number of times an arm inA† has been pulled up to time T .
Thanks to the previous argument, T −NA†(T ) ≤ fA(T )/minx∈D∆(x).

D.8.2 Proof of Proposition 25

Proposition. Using the attack described in Alg. D.2, for any δ ∈ (0, 1/K], with probability at
least 1−Kδ, the number of times LinUCB does not pull an arm inA† is at most:

∑
j /∈A†

Nj(T ) ≤ 32K2

(
λ

α2
+ σ2d log

(
λd+ TL2α2

dλδ

))3

with Nj(T ) the number of times arm j has been pulled after T steps, ||θa|| ≤ S for all arms a,
λ the regularization parameter of LinUCB and for all x ∈ D, ||x||2 ≤ L. The total cost for the
attacker is bounded by:

T∑
t=1

ct ≤
64K2

ν

(
λ

α2
+ σ2d log

(
λd+ TL2α2

dλδ

))3
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Proof. Let at be the arm pulled by LinUCB at time t. For each arms a, let θ̃a(t) be the
result of the linear regression with the attacked context and θ̂a(t, λ/α2) the one with the
unattacked context and a regularization of λ

α2 . At any time step t, we can write, for alla 6∈ A†:

θ̃a(t) =

λId +

t∑
l=0,al=a

α2xlx
ᵀ
l

−1
t∑

k=0,ak=a

rkαxk

=
1

α

 λ

α2
Id +

t∑
k=0,ak=a

xkx
ᵀ
k

−1
t∑

k=0,ak=a

rkxk

=
θ̂a(t, λ/α

2)

α

We also note that, since the contexts are not modi�ed for arms in a† ∈ A†: θ̃a†(t) =
θ̂a†(t, λ). In addition, for any context x and arm a /∈ A†, the exploration term used by
LinUCB becomes:

||x||Ṽ −1
a,t

=
1

α
||x||V̂ −1

a,t
(D.9)

where Ṽa,t = λId +
∑t

l=0,al=a
α2xlx

ᵀ
l and V̂ −1

a,t = λ/α2Id +
∑t

k=0,ak=a xkx
ᵀ
k. For a

time t, if presented with context xt LinUCB pulls arm at /∈ A†, we have:

α

(〈
θ̂a†(t), xt

〉
+ βa†(t)||xt||V −1

a†,t

)
≤
〈
θ̂at(t, λ/α

2), xt

〉
+ βat(t)||xt||V̂ −1

at,t

As α = 2
ν ≥ mina†∈A†

2

〈θa† ,xt〉
, we deduce that on the event that the con�dence sets

(Theorem 2 in Abbasi-Yadkori et al. [2011]) hold for arm a?:

2 ≤
〈
θ̂at(t, λ/α

2), xt

〉
+ βat(t)||xt||V̂ −1

at,t
≤ 〈θat , xt〉+ 2βat(t)||xt||V̂ −1

at,t

Thus, 1 ≤ 2− 〈θat , xt〉 ≤ 2βat(t)||xt||V̂ −1
at,t

. Therefore,

T∑
t=1

1{at /∈A†} ≤
T∑
t=1

min(2βat(t)||xt||V̂ −1
at,t
, 1)1{at /∈A†}

≤
∑
j /∈A†

2βj(T )

√√√√ T∑
t=1

1{at=j}

T∑
t=1,at=j

min(1, ||xt||2V̂ −1
j,t

)
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But using Lemma 11 from Abbasi-Yadkori et al. [2011] and the bound on the βj(T ) for all
arms j, we have with Jensen inequality:

T∑
t=1

1{at /∈A†} ≤4

√√√√K

T∑
t=1

1{at /∈A†}d log

(
1 +

α2TL2

λd

)

×
(√

λ/α2S + σ

√
2 log(1/δ) + d log

(
1 +

α2TL2

λd

))

D.8.3 Proof of Theorem 23

Theorem. For any ξ > 0, Problem (D.4) is feasible if and only if:

∃θ ∈
⋃

a†∈A†
Ct,a† , θ 6∈ Conv

 ⋃
a/∈A†

Ct,a

 (D.10)

where for every arm a, Ct,a :=
{
θ | ||θ − θ̂a(t)||Ṽa,t ≤ βa(t)

}
with θ̂a(t) the least squares

estimate for arm a built by LinUCB and

Ṽa,t = λId +
t∑

l=1,xl 6=x†
1{al=a}xlx

ᵀ
l +

t∑
l=1,xl=x†

1{al=a}x̃lx̃
ᵀ
l

the design matrix of LinUCB at time t for all arms a (where x̃l is the modified context)

Proof. The proof of Theorem 23 is decomposed in two parts.
First, let us assume that Equation (D.10) is satis�ed. Then, let us de�ne a† ∈ A† such that

θ ∈ Ct,a† \Conv
(⋃

a/∈A† Ct,a
)

, then by the theorem of separation of convex sets applied to
Ct,a† and {θ}. There exists a vector v and c1 < c2 such that for all y ∈ Conv

(⋃
a6=a† Ct,a

)
:

〈y, v〉 ≤ c1 < c2 ≤ 〈θ, v〉.

Hence, for ξ > 0 we have that for ṽ = ξ
c2−c1 v that:

〈y, ṽ〉+ ξ ≤ 〈θ, ṽ〉

So the problem is feasible.
Secondly, let us assume that an attack is feasible. Then there exists a vector y such that:

max
a†∈A†

max
θ∈C

t,a†
〈y, θ〉 > c1 := max

a/∈A†
max
θ∈Ct,a

〈y, θ〉 (D.11)
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Let us reason by contradiction. We assume that
⋃
a∈A† Ct,a† ⊂ Conv

(⋃
a/∈A† Ct,a

)
and

consider

θ∗ ∈
⋃
a∈A†

Ct,a† such that 〈y, θ∗〉 = max
a†∈A†

max
θ∈C

t,a†
〈y, θ〉

As we assumed
⋃
a∈A† Ct,a† ⊂ Conv

(⋃
a/∈A† Ct,a

)
, there exists n ∈ N?, λ1, · · · , λn ≥ 0

and θ1, · · · , θn ∈
⋃
a/∈A† Ct,a such that

θ∗ =

n∑
i=1

λiθi and
n∑
i=1

λi = 1

Thus

〈y, θ∗〉 =
∑
i

λi〈y, θi〉 ≤ c1

n∑
i=1

λi = c1 (D.12)

We assumed that the problem is feasible, so c1 < 〈y, θ∗〉 according to Eq. D.11. It contradicts
Eq. D.12.

D.8.4 Condition of Sec. D.5

θ̂1

θ̂2

θ̂4
θ̂3

θ1

θ2

θ3 θ4

Figure D.5: Illustrative example of condition (D.5). The target arm is arm 3 or 5 and the dashed black line
is the convex hull of the other con�dence sets. The ellipsoids are the con�dence sets Ct,a for
each arm a. If we consider only arms {1, 2, 4, 5}, and we use 5 as the target arm, the condition
(D.5) is satis�ed as there is a θ outside the convex hull of the other con�dence sets. On the
other hand, if we consider arms {1, 2, 3, 4} and we use 3 as the target arm, the condition is not
satis�ed anymore.

Let us assume that there is an arm in a† ∈ A† which is optimal for some contexts. More
formally, there exists a subspace V ⊂ D such that:

∀x ∈ V,∃a†?(x) ∈ A†, ∀a ∈ J1,KK \ {a†?(x)} 〈x, θ
a†?(x)
〉 > 〈x, θa〉.
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We also assume that the distribution of the contexts is such that, for all t, µ := P(xt ∈ V ) > 0.
Then, the regret is lower-bounded in expectation by:

E(RT ) = E

(
T∑
t=1

1{xt∈V }
(〈
xt, θa†?(xt)

− θat
〉))

≥ µm(T ) min
x∈V

max
a6=a†?(x)

〈θ
a†?(x)

− θa, x〉

where m(T ) is the expected number of times t ≤ T such that condition (D.5) is not met. Lin-
UCB guarantees that E(RT ) ≤ O(

√
T ) for every T . Hence,

m(T ) ≤ O
( √

T

µminx∈V max
a6=a†?(x)

〈θ
a†?(x)

− θa, x〉

)

This means that, in an unattacked problem, condition (D.5) is met T − O(
√
T ) times. On the

other hand, when the algorithm is attacked the regret of LinUCB is not sub-linear as the con�-
dence bound for the target arm is not valid anymore. Hence we cannot provide the same type of
guarantees for the attacked problem.

D.9 Appendix: Experiments

D.9.1 Datasets and preprocessing

We present here the datasets used in the article and how we preprocess them for numerical exper-
iments conducted in Section D.6.

We consider two types of experiments, one on synthetic data with a contextual MAB problems
with K = 10 arms such that for every arm a, θa is drawn from a folded normal distribution in
dimension d = 30. We also use a �nite number of contexts (10), each of them is drawn from
a folded normal distribution projected on the unit circle multiplied by a uniform radius variable
(i.i.d. across all contexts). Finally, we scale the expected rewards in (0, 1] and the noise is drawn
from a centered Gaussian distributionN (0, 0.01).

The second type of experiments is conducted in the real-world datasets Jester Goldberg et al.
[2001] and MovieLens25M Harper and Konstan [2015]. Jester consists of joke ratings on a con-
tinuous scale from −10 to 10 for 100 jokes from a total of 73421 users. We use the features
extracted via a low-rank matrix factorization (d = 35) to represent the actions (i.e., the jokes).
We consider a complete subset of 40 jokes and 19181 users . Each user rates all the 40 jokes. At
each time, a user is randomly selected from the 19181 users and mean rewards are normalized
in [0, 1]. The reward noise isN (0, 0.01). The second dataset we use is MovieLens25M. It con-
tains 25000095 ratings created by 162541 users on 62423 movies. We perform a low-rank matrix
factorization to compute users features and movies features. We keep only movies with at least
1000 ratings, which leave us with 162539 users and 3794 movies. At each time step, we present
a random user, and the reward is the scalar product between the user feature and the recommend
movie feature. All rewards are scaled to lie in [0, 1] and a Gaussian noiseN (0, 0.01) is added to
the rewards.
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D.9.2 Attacks on Rewards

In this appendix, we present empirical evolution of the total cost and the number of draws for a
unique target arm as a function of the attack parameter γ for the Contextual ACE attack with
perturbed rewards r̃2 on generated data.
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Figure D.6: Total cost of attacks and number of draws of the target arm at T = 106 as a function of γ on
synthetic data

Fig. D.6 (left) shows that the total cost of attacks seems to be quite invariant w.r.t. γ except when
γ → 0 because the di�erence between the target arm and the other becomes negligible. This is
also depicted by the total number of draws (Fig. D.6, Right) as the number of draws plummets
when γ → 0.

D.9.3 Attacks on all Contexts

Fig. D.8 shows the regret for all the attacks. This �gure shows that even though the total cost
of attacks is linear for algorithms like LinTS in the synthetic dataset, the regret is linear. More
generally, we observe that the regret is linear for all attacked algorithms on all datasets.

D.9.4 Attack on a single context

The attacks are computed by solving the optimization problems D.4 and D.6 (Sec. D.5). We
choose the libraries according to their e�ciency for each problem we need to solve. For Problem
(D.6) and Problem (D.8) we use cvxpy Agrawal et al. [2018] and the ECOS solver. For Problem
(D.4) we use the SLSQPmethod from the Scipy optimize library Virtanen et al. [2019] to solve the
full LinUCB problem (Equation D.4) and quadprog to solve the quadratic problem to attack
ε-greedy.

D.10 Appendix: Problem (D.8) as a Second Order Cone (SOC)

Program

Problem (D.6) and Problem (D.8) are both SOC programs. We can see the similarities between
both problems as follows. Let us de�ne for every arm a 6∈ A†, the ellipsoid:

C′t,a :=
{
y ∈ Rd | ||y − θ̂a(t)||A−1

a (t) ≤ υΦ−1

(
1− δ

K − |A†|

)}

194



D.10 Appendix: Problem (D.8) as a Second Order Cone (SOC) Program

Table D.7: Number of draws of the target arm a† at T = 106, for the synthetic data, γ = 0.22 for the
Contextual ACE algorithm and for the Jester and MovieLens datasets γ = 0.5.

Synthetic Jester Movilens

LinUCB 86, 731.6 23, 548.16 25, 017.31

CACE LinUCB 996, 238.6 921, 083.69 944, 721.28

Stationary CACE LinUCB 995, 578.88 862, 095.67 931, 531.6

ε-greedy 111, 380.44 21, 911.54 3, 165.81

CACE ε-greedy 999, 812.92 999, 755.72 999, 776.82

Stationary CACE ε-greedy 999, 806.32 999, 615.98 999, 316.76

LinTS 91, 664.8 23, 398.3 30, 189.84

CACE LinTS 998, 997.04 976, 708.9 990, 250.67

Stationary CACE LinTS 977, 850.96 784, 715.62 845, 512.98

Exp4 93, 860.4 29, 147.01 17, 985.78

CACE Exp4 992, 793.36 989, 214.36 936, 230.4

Stationary CACE Exp4 993, 673.24 988, 463.56 934, 304.23

Attacked LinUCB, |A| = 0.3K

Attacked LinUCB, |A| = 0.6K

Attacked LinUCB, |A| = 0.9K

Attacked ε-greedy, |A| = 0.3K

Attacked ε-greedy, |A| = 0.6K

Attacked ε-greedy, |A| = 0.9K

Attacked LinTS, |A| = 0.3K

Attacked LinTS, |A| = 0.6K

Attacked LinTS, |A| = 0.9K
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Figure D.8: Regret for all attacks

withAa(t) = Ṽ −1
a (t)+ Ṽ −1

a†
(t) with Ṽa(t) and Ṽa†(t) the design matrix built by LinTS and

θ̂a(t) the least squares estimate of θa at time t. Therefore for an arm a, the constraint in Problem
(D.8) can be written for any y ∈ Rd and some arm a† ∈ A† as:〈

x? + y, θ̂a†(t)
〉
− ξ ≥ max

z∈C′t,a
〈z, x? + y〉

Indeed for any x ∈ Rd,

max
y∈C′t,a

〈y, x〉 =
〈
x, θ̂a(t)

〉
+ υΦ−1

(
1− δ

K − |A†|

)
× max
||A−1/2

a (t)u||2≤1

〈u, x〉

=
〈
x, θ̂a(t)

〉
+ υΦ−1

(
1− δ

K − |A†|

)
max
||z||2≤1

〈
z,A1/2

a (t)x
〉
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Figure D.9: Total cost of the attacks for the attacks one one context on respectively our synthetic dataset,
Jester and MovieLens. As expected, the total cost is linear.

=
〈
x, θ̂a(t)

〉
+ υΦ−1

(
1− δ

K − |A†|

)
‖A1/2

a (t)x‖2

Thus, the constraint is feasible if and only if:

θ̂a†(t) 6∈ Conv

 ⋃
a6∈A†

C′t,a



D.11 Appendix: Attacks on Adversarial Bandits

In the previous sections, we studied algorithms with sublinear regretRT , i.e., mainly bandit algo-
rithms designed for stochastic stationary environments. Adversarial algorithms like Exp4 do not
provably enjoy a sublinear stochastic regret RT (as de�ned in the introduction) 1. In addition,
because this type of algorithms are, by design, robust to non-stationary environments, one could
expect them to induce a linear cost on the attacker. In this section, we show that this is not the case
for most contextual adversarial algorithms. Contextual adversarial algorithms are studied through
the reduction to the bandit with expert advice problem. This is a bandit problem with K arms
where at every step, N experts suggest a probability distribution over the arms. The goal of the
algorithm is to learn which expert gets the best expected reward in hindsight afterT steps. The re-
gret in this type of problem is de�ned asRexp

T = E
(

maxm∈J1,NK
∑T

t=1

∑K
j=1E

(t)
m,jrt,j − rt,at

)
whereE(t)

m,j is the probability of selecting arm j for expertm. In the case of contextual adversarial
bandits, the experts �rst observe the context xt before recommending an expert m. Assuming
the current setting with linear rewards, we can show that if an algorithm A, like Exp4, enjoys a
sublinear regret Rexp

T , then, using the Contextual ACE attack with either r̃1 or r̃2, the attacker
can fool the algorithm into pulling arm a† a linear number of times under some mild assump-

1Exp4 enjoys a sublinear hindsight regret though. Showing a sublinear upper-bound for the stochastic regret of Exp4
is still an open problem (see Section 29.1 in Lattimore and Szepesvári [2018])
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tions. However, attacking contexts for this type of algorithm is di�cult because, even though the
rewards are linear, the experts are not assumed to use a speci�c model for selecting an action.

Proposition 26. Suppose an adversarial algorithm A satisfies a regretRexp
T of order o(T ) for any

bandit problem and that there exists an expert m? such that T −∑T
t=1 E

(
E

(t)

m?,a†t,?

)
= o(T )

with a†t,? the optimal arim in A† at time t. Then attacking alg. A with Contextual ACE leads to
pulling arm a†, T − o(T ) of times in expectation with a total cost of o(T ) for the attacker.

Proof. Similarly to the proof of Proposition 24, let’s de�ne the bandit with expert advice
problem,Ai, such that at each time t the reward vector is (r̃it,a)a (with i ∈ {1, 2}). The re-
gret of this algorithm is: R̃i,exp

T = E
(

maxm∈J1,NK
∑T

t=1E
(t)
m r̃it − r̃it,at

)
∈ o(T ). The re-

gret of the learner is: E
(

maxm∈J1,NK
∑T

t=1E
(t)
m rt − rt,at

)
where at are the actions taken

by algorithmAi to minimize R̃i,exp
T . Then we have:

R̃
i,exp
T ≥ E

 T∑
t=1

K∑
j=1

(E
(t)
m?,j − 1{j=a†t,?})r̃

i
t,j +

T∑
t=1

r̃i
t,a†t,?

− r̃it,at


Therefore,

E

(
T∑
t=1

r̃i
t,a†t,?

− r̃it,at

)
≤ R̃i,exp

T + E

 T∑
t=1

K∑
j=1

(1{j=a†t,?}
− E(t)

m?,j)r̃
i
t,j


≤ R̃i,exp

T + E

(
T∑
t=1

(1− E(t)

m?,a†t,?
)r̃it,j

)

≤ R̃i,exp
T + E

(
T∑
t=1

(1− E(t)

m?,a†t,?
)

)

For strategy i = 1, we have:

E

(
T∑
t=1

r̃1
t,a†t,?

− r̃1
t,at

)
=

T∑
t=1

E
(
r
t,a†t,?

− 1{at∈A†}
)
≥
(
T − E

(
T∑
t=1

1{at=a†t,?}

))
∆

where∆ := minx∈D

{
〈θa†(x), x〉 −maxa∈A†,a 6=a†(x)〈θa′ , x〉

}
witha†(x) := arg maxa∈A†〈θa, x〉.

Then, as R̃1,exp
T ∈ o(T ) and E

(∑T
t=1(1− E(t)

m?,a†t,?
)

)
∈ o(T ), we deduce that

E(
∑
t

1{at=a†t,?}
) = T − o(T ) .
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For strategy i = 2, and δ > 0, let us denote by Eδ the event that all con�dence intervals
hold with probability 1− δ. But on the eventEδ , for a time twhere at 6= a†t,? and such that
−1 ≤ Ct,at ≤ 0:

r̃2
t,at = rt,at + Ct,at = (1− γ) min

a†∈A†
min
θ∈C

t,a†
〈θ, xt〉+ ηat,t + 〈θa, xt〉 − max

θ∈Ct,at
〈θ, xt〉

≤ (1− γ)〈θ
a†t,?

, xt〉+ ηat,t

whenCt,at > 0 (still on the eventEδ):

r̃2
t,at = rt,at ≤ (1− γ)〈θ

a†t,?
, xt〉+ ηat,t

becauseCt,at > 0 means that (1−γ)〈θ
a†t,?

, xt〉 ≥ (1−γ) mina†∈A† minθ∈C
t,a†
〈θ, xt〉 ≥

maxθ∈Ct,at 〈θ, xt〉 ≥ 〈θa, xt〉. But �nally, whenCt,at ≤ −1, r̃2
t,at = rt,at − 1 ≤ ηat,t ≤

(1− γ)〈θ
a†t,?

, xt〉+ ηat,t. But on the complementary eventEcδ , r̃2
t,at ≤ rt,at . Thus, given

that the expected reward is assumed to be bounded in (0, 1] (Assumption 2):

E

(
T∑
t=1

r̃2
t,a†t,?

− r̃2
t,at

)
= E

(
T∑
t=1

(rt,a† − r̃2
t,at)1{at 6=a†t,?}

)

≥ E

(
T∑
t=1

min{γmin
x∈D
〈x, θ

a†t,?
〉, ∆}1{at 6=a†t,?}1{Eδ}

)
− Tδ

Finally, putting everything together we have:

E

(
T∑
t=1

γmin
x∈D
〈x, θ

a†t,?
〉1{at 6=a†t,?}

)
≤ R̃

2,exp
T + E

(
T∑
t=1

(1− E(t)

m?,a†t,?
)

)

+ δT

(
min{γ min

a†∈A†
min
x∈D
〈x, θa†〉, ∆}+ 1

)
Hence, because R̃1,exp

T = o(T ) and E
(∑T

t=1(1− E(t)

m?,a†
)
)

= o(T ) we have that for
δ ≤ 1/T , the expected number of pulls of the optimal arm in A† is of order o(T ). In
addition, the cost for the attacker is bounded by:

E

(
T∑
t=1

ct

)
= E

(
T∑
t=1

1{at 6=a†t,?}
∣∣max(−1,min(Ct,at , 0))

∣∣) ≤ E

(
T∑
t=1

1{at 6=a†t,?}

)

The proof is similar to the one of Prop. 24. The condition on the expert in Prop. 26 means
that there exists an expert which believes an arm a† ∈ A† is optimal most of the time. The
adversarial algorithm will then learn that this expert is optimal. Algorithm Exp4 has a regretRexp

T

bounded by
√

2TK log(N), thus the total number of pulls of arms not in A† is bounded by
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√
2TK log(M)/γ. This result also implies that for adversarial algorithms like Exp3 Auer et al.

[2002], the same type of attacks could be used to foolA into pulling arms inA† because the MAB
problem can be seen as a reduction of the contextual bandit problem with a unique context and
one expert for each arm.

D.12 Appendix: Contextual Bandit Algorithms

In this appendix, we present the di�erent bandit algorithms studied in this paper. All algorithms
we consider except Exp4 uses disjoint models for building estimate of the arm feature vectors
(θa)a∈J1,KK. Each algorithm (except Exp4) builds least squares estimates of the arm features.

Algorithm 8: Contextual LinUCB
Input: regularization λ, number of armsK , number of rounds T , bound on context norms:
L, bound on norms θa: D
Initialize for every arm a, V̄ −1

a (t) = 1
λId, θ̂a(t) = 0 and ba(t) = 0

for t = 1, ..., T do

Observe context xt
Compute βa(t) = σ

√
d log

(
1+Na(t)L2/λ

δ

)
withNa(t) the number of pulls of arm a

Pull arm at = argmaxa〈θ̂a(t), xt〉+ βa(t)||xt||V̄ −1
a (t)

Observe reward rt and update parameters θ̂a(t) and V̄ −1
a (t) such that:

V̄at(t+ 1) = V̄at(t) + xtx
ᵀ
t , bat(t+ 1) = bat(t) + rtxt,

θat(t+ 1) = V̄ −1
at (t+ 1)bat(t+ 1)

end for

Algorithm 9: Linear Thompson Sampling with Gaussian prior
Input: regularization λ, number of armsK , number of rounds T , variance υ
Initialize for every arm a, V̄ −1

a (t) = λId and θ̂a(t) = 0, ba(t) = 0
for t = 1, ..., T do

Observe context xt
Draw θ̃a ∼ N (θ̂a(t), υ

2V̄ −1
a (t))

Pull arm at = argmaxa∈J1,KK

〈
θ̃a, xt

〉
Observe reward rt and update parameters θ̂a(t) and V̄ −1

a (t)

V̄at(t+ 1) = V̄at(t) + xtx
ᵀ
t , bat(t+ 1) = bat(t) + rtxt,

θat(t+ 1) = V̄ −1
at (t+ 1)bat(t+ 1)

end for
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D Adversarial Attacks on Linear Contextual Bandits

Algorithm 10: ε-greedy
Input: regularization λ, number of armsK , number of rounds T , exploration parameter
(ε)t
Initialize, for all arms a, V̄ −1

a (t) = λId and θ̂a(t) = 0, εt = 1, ba(t) = 0
for t = 1, ..., T do

Observe context xt
With probability εt, pull at ∼ U(J1,KK), or pull at = argmax〈θa, xt〉
Observe reward rt and update parameters θ̂a(t) and V̄ −1

a (t)

V̄at(t+ 1) = V̄at(t) + xtx
ᵀ
t , bat(t+ 1) = bat(t) + rtxt,

θat(t+ 1) = V̄ −1
at (t+ 1)bat(t+ 1)

end for

Algorithm 11: Exp4
Input: number of armsK , experts: (Em)m∈J1,NK, parameter η
SetQ1 = (1/N)j∈J1,NK
for t = 1, ..., T do

Observe context xt and probability recommendation (E
(t)
m )m∈J1,NK

Pull arm at ∼ Pt where Pt,j =
∑N

k=1Qt,kE
(t)
j,k

Observe reward rt and de�ne for all arms i r̂t,i = 1− 1{at=i}(1− rt)/Pt,i
De�ne X̃t,k =

∑
aE

(t)
k,ar̂t,a

UpdateQt+1,j = exp(ηQt,i)/
∑N

j=1 exp(ηQt,j) for all experts i
end for

D.13 Appendix: Semi-Online Attacks

Liu and Shro� [2019] studies what they call the o�ine setting for adversarial attacks on stochas-
tic bandits. They consider a setting where a bandit algorithm is successively updated with mini-
batches of �xed sizeB. The attacker can tamper with some of the incoming mini-batches. More
precisely, they can modify the context, the reward and even the arm that was pulled for any entry
of the attacked mini-batches. The main di�erence between this type of attacks and the online at-
tacks we considered in the main paper is that we do not assume that we can attack from the start
of the learning process: the bandit algorithm may have already converged by the time we attack.

We can still study the cumulative cost for the attacker to change the mini-batch in order to fool a
bandit algorithm to pull a target arm a† (here we takeA† = {a†}). Contrarily to Liu and Shro�
[2019], we call this setting semi-online. We �rst study the impact of an attacker on LinUCB
where we show that, by modifying only (K − 1)d entries from the batch B, the attacker can
forceLinUCB to pull arm a†,M ′B−o(M ′B) times withM ′ the number of remaining batches
updates. The cost of our attack is

√
MB withM the total number of batches.
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Cost of an attack: If presented with a mini-batch B, with elements (xt, at, rt) composed of
the context xt presented at time t, the action taken at and the reward received rt, the attacker
modi�es element i, namely (xit, a

i
t, r

i
t) into (x̃it, ã

i
t, r̃

i
t). The cost of doing so is cit = ||xit −

x̃it||2 +
∣∣r̃it − rit∣∣ + 1{ait 6=ãit} and the total cost for mini-batch B is de�ned as cB =

∑
i∈B c

i
t.

Finally, we consider the cumulative cost of the attack overM di�erent mini-batchesB1, . . . ,BM ,∑M
l=1 cBl . The interaction between the environment, the attacker and the learning algorithm is

summarized in Alg. 12.

Algorithm 12: Semi-Online Attack Setting.
Input: Bandit alg. A, size of a mini-batch: B
Set t = 0
while True do

A observe context xt
A pulls arm at and observes reward rt
Interaction (xt, at, rt) is saved in mini-batch B
if

∣∣B∣∣ = B then

Attacker modi�es mini-batch B into B̃
Update alg. A with poisoned mini-batch B̃

end if

end while

The attack presented here is based on the Ahlberg–Nilson–Varah bound Varah [1975], which
gives a control on the sup norm of a matrix with dominant diagonal elements. More precisely,
when presented with a mini-batch B, the attacker needs to modify the contexts and the rewards.
We assume that the attacker knows the number of mini-batch updates M and has access to a
lower-bound on the reward of the target arm, ν as in Assumption 3.

The attacker changes (K − 1)× d rows of the �rst mini-batch to rewards of 0 with a context
δaei for each arm a 6= a† with (ei) the canonical basis of Rd. Moreover, δa is chosen such that:

δa > max

(√
2MBL2d

ν
+ dMB,

√
4β2

maxL
2d

ν2
+ dMB

)
(D.13)

with βmax = maxMB
t=0 βa(t) andM the number of mini-batch updates.

Proposition 27. After the first attack, with probability 1− δ, LinUCB always pulls arm a†,

Proof. After having poisoned the �rst mini-batch B, the latter can be partitioned into two
subsets,Bc (with non-perturbed rows) andBnc (with the poisoned rows). The design matrix
of arm a 6= a† for every time t after the poisoning is:

Vt,a = λId +
t∑

l=1,al=a

xlx
ᵀ
l + δ2

a

d∑
i=1

eie
ᵀ
i (D.14)
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For every time t, non diagonal elements of Vt,a = (vi,j)i,j are bounded by:

∀i, ri :=
∑
j 6=i

vi,j ≤
∑
j 6=i

t∑
l=1,al=a

‖xlxᵀl ‖∞ ≤ dNa(kB) (D.15)

Whereas for all diagonal elements, vi,i ≥ δ2
a > ri. Thus Vt,a is strictly diagonal dominant

and by the Ahlberg–Nilson–Varah bound Varah [1975]:

‖V −1
t,a ‖∞ ≤

1

mini(‖vi,i‖ − ri)
≤ 1

δ2
a − dMB

(D.16)

Then, for every arm a 6= a† and any context x ∈ D and any time t after the attack:

〈θ̂a,t, x〉+ βa(t)||x||V −1
t,a
≤

t∑
l=1,al=a

rt(V
−1
t,a xt)

ᵀx+ βa(t)||x||1
√
‖V −1

t,a ‖∞

≤ ‖V −1
t,a ‖∞dNt(a) sup

y∈D
||y||22

+ βmax
√
d sup
y∈D
||y||2

√
‖V −1

t,a ‖∞ < ν

We have shown that for any arm a 6= a† and any time step t after the attack, the upper
con�dence bound computed by LinUCB is upper-bounded bu ν the arm a†. Then, with
probability 1 − δ, the con�dence set for arm a† holds and, for all x ∈ D, arm a† is chosen
by LinUCB. The total cost of this attack is d

∑
a6=a† δaL = O(

√
MB)
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E ROPUST: Improving Robustness

through Fine-tuning with Photonic

Processors and Synthetic Gradients

Robustness to adversarial attacks is typically obtained through expensive adversarial training with
Projected Gradient Descent. Here we introduce ROPUST, a remarkably simple and e�cient
method to leverage robust pre-trained models and further increase their robustness, at no cost
in natural accuracy. Our technique relies on the use of an Optical Processing Unit (OPU), a pho-
tonic co-processor, and a �ne-tuning step performed with Direct Feedback Alignment, a synthetic
gradient training scheme. We test our method on nine di�erent models against four attacks in
RobustBench, consistently improving over state-of-the-art performance. We perform an ablation
study on the single components of our defense, showing that robustness arises from parameter
obfuscation and the alternative training method. We also introduce phase retrieval attacks, specif-
ically designed to increase the threat level of attackers against our own defense. We show that even
with state-of-the-art phase retrieval techniques, ROPUST remains an e�ective defense.

E.1 Introduction

Adversarial examples Goodfellow et al. [2015a] threaten the safety and reliability of machine learn-
ing models deployed in the wild. Because of the sheer number of attack and defense scenarios,
true real-world robustness can be di�cult to evaluate Bubeck et al. [2019]. Standardized bench-
marks, such as RobustBench Croce et al. [2020a] using AutoAttack Croce and Hein [2020b],
have helped better evaluate progress in the �eld. Furthermore, the development of defense-speci�c
attacks is also crucial Tramèr and Boneh [2019]. To date, one of the most e�ective defense tech-
niques remains adversarial training with Projected Gradient Descent (PGD) Madry et al. [2018a].
Adversarial training of a model can be resource-consuming, but robust networks pre-trained with
PGD are now widely available.

This motivates the use of these pre-trained robust models as a solid foundation for develop-
ing simple and widely applicable defenses that further enhance their robustness. To this end, we
introduce ROPUST, a drop-in replacement for the classi�er of already robust models. Our de-
fense is unique in that it leverages a photonic co-processor (the Optical Processing Unit, OPU)
for physical parameter obfuscation Cappelli et al. [2021a]: because the fixed random parameters
are optically implemented, they remain unknown at training and inference time. Additionally, a
synthetic gradient method, Direct Feedback Alignment (DFA) Nøkland [2016], is used for �ne-
tuning the ROPUST classi�er.
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Figure E.1: ROPUST systematically improves the test accuracy of already robust models. Trans-
fer refers to the performance when attacks are generated on the base model and transferred
to the ROPUST model. Models from the RobustBench model zoo: Hendrycks et al., 2019
Hendrycks et al. [2019], Sehwag et al., 2021 Sehwag et al. [2021], Wu et al., 2020 Wu et al.
[2020], Zhang et al., 2020 Zhang et al. [2020], Wong et al., 2020 Wong et al. [2020], Ding
et al., 2020 Ding et al. [2020], Carmon et al., 2019 Carmon et al. [2019a], Gowal et al., 2020
Gowal et al. [2020b].

We evaluate extensively our method against AutoAttack on nine di�erent models in Robust-
Bench, and consistently improve robust accuracies over the state-of-the-art (Section E.3 and Fig.
E.1). We perform an ablation study, in Section E.4, and �nd that the robustness of our defense
against white-box attacks comes from both parameter obfuscation and DFA. Surprisingly, we also
discover that simply retraining the classi�er of a robust model on natural data increases its ro-
bustness to square attacks, a phenomenon that warrants further study. Finally, in Section E.5, we
develop a phase retrieval attack targeting speci�cally the parameter obfuscation of our defense,
and show that even against state-of-the art phase retrieval techniques, ROPUST achieves fair ro-
bustness.

E.1.1 Related work

Attacks. Adversarial attacks have been framed in a variety of settings: white-box, where the
attacker is assumed to have unlimited access to the model, including its parameters (e.g. FGSM
Goodfellow et al. [2015a], PGD Madry et al. [2018a], Kurakin et al. [2016], Carlini & Wagner
Carlini and Wagner [2017]); black-box, assuming only limited access to the network for the at-
tacker, such as the label or logits for a given input, with methods attempting to estimate the gra-
dients Chen et al. [2017], Ilyas et al. [2018a,b], or more recently derived from genetic algorithms
Andriushchenko et al. [2019], Meunier et al. [2019] and combinatorial optimization Moon et al.
[2019]; transfer attacks, where an attack is crafted on a similar model that is accessible to the at-
tacker, and then applied to the target network Papernot et al. [2016a]. Automated schemes, such
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as AutoAttack Croce and Hein [2020b], have been proposed to autonomously select which at-
tack to perform against a given network, and to automatically tune its hyperparameters.

Defenses. Adversarial training adds adversarial robustness as an explicit training objective Good-
fellow et al. [2015a], Madry et al. [2018a], by incorporating adversarial examples during the train-
ing. This has been, and still is, one of the most e�ective defense against attacks. Repository of
pre-trained robust models have been compiled, such as the RobustBench Model Zoo1. Con-
versely, theoretically grounded defenses have been proposed [Lecuyer et al., 2018, Cohen et al.,
2019, Alexandre Araujo and Negrevergne, 2020, Pinot et al., 2019, Wong et al., 2018, Wong and
Kolter, 2018], but these fail to match the clean accuracy of state-of-the-art networks, making ro-
bustness a trade-o� with performance. Many empirical defenses have been criticized for providing
a false sense of security Athalye et al. [2018a], Tramèr and Boneh [2019], by not evaluating on at-
tacks adapted to the defense.

Obfuscation. Gradient obfuscation, through the use of a non-di�erentiable activation func-
tion, has been proposed as a way to protect against white-box attacks Papernot et al. [2017b].
However, gradient obfuscation can be easily bypassed by Backward Pass Di�erentiable Approxi-
mation (BPDA) Athalye et al. [2018a], where the defense is replaced by an approximated and dif-
ferentiable version. Parameter obfuscation has been proposed with dedicated photonic co-processor
Cappelli et al. [2021a], enforced by the physical properties of said co-processor. However, by itself,
this kind of defense falls short of adversarial training.

Fine-tuning and analog computing. Previous work introduced adversarial fine-tuning Jeddi
et al. [2020]: �ne-tuning a non-robust model with an adversarial objective. In this work instead we
�ne-tune a robust model without adversarial training. Additionally, it was shown that robustness
improves transfer performance Salman et al. [2020] and that robustness transfers across datasets
Shafahi et al. [2020]. The advantage of non-ideal analog computations in terms of robustness has
been investigated in the context of NVM crossbars Roy et al. [2020], while we here focus on a
photonic technology, readily available to perform computations at scale.

E.1.2 Motivations and contributions

We propose to simplify and extend the applicability of photonic-based parameter obfuscation
defenses. Our defense, ROPUST, is a universally and easily applicable drop-in replacement for
classi�ers of already robust models. In contrast with existing parameter-obfuscation methods, it
leverages pre-trained robust models, and achieves state-of-the-art performance.

Beyond silicon and beyond backpropagation. We leverage photonic hardware and alterna-
tive training methods to achieve adversarial robustness. The use of dedicated hardware to perform
the random projection physically guarantees parameter obfuscation. Direct Feedback Alignment
enables us to train and/or �ne-tune the model despite non-di�erentiable analog hardware being
used in the forward pass. In our ablation study, we �nd that both these components contribute
to adversarial robustness, providing a holistic defense.

1Accessible at: https://github.com/RobustBench/robustbench.
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Simple, universal, and state-of-the-art. ROPUST can be dropped-in to supplement any ro-
bust pre-trained model, replacing its classi�er. Fine-tuning the ROPUST classi�er is fast and does
not require additional changes to the model architecture. This enables any existing architecture
and adversarial countermeasure to leverage ROPUST to gain additional robustness, at limited
cost. We evaluate on RobustBench, across 9 pre-trained models, against AutoAttack sampling
from a pool of 4 attacks. We achieve state-of-the-art performance on the leaderboard, and, in light
of our results, we suggest the extension of RobustBench to include obfuscation-based methods.

The Square attack mystery. Performing an ablation study on Square attack Andriushchenko
et al. [2019], we �nd that simply retraining from scratch the classi�er of a robust model on natural
data increases its robustness against it. This phenomenon remains unexplained and occurs even
when the original fully connected classi�cation layer is retrained, without using our ROPUST
module.

Phase retrieval attacks. Drawing inspiration from the �eld of phase retrieval, we introduce
a new kind of attack against defenses relying on parameter obfuscation, phase retrieval attacks.
These attacks assume the attacker leverage phase retrieval techniques to retrieve the obfuscated
parameters in full, and we show that ROPUST remains robust even against state-of-the-art re-
trieval methods.

E.2 Methods

E.2.1 Automated adversarial attacks

We evaluate our model against the four attacks implemented in RobustBench: APGD-CE and
APGD-T Croce and Hein [2020b], Square attack Andriushchenko et al. [2019], and Fast Adap-
tive Boundary (FAB) attack Croce and Hein [2020a]. APGD-CE is a standard PGD where the
step size is tuned using the loss trend information, squeezing the best performance out of a lim-
ited iterations budget. APGD-T, on top of the step size schedule, substitutes the cross-entropy loss
with the Di�erence of Logits Ratio (DLR) loss, reducing the risk of vanishing gradients. Square
attack is based on a random search. Random updates δ are sampled from an attack-norm depen-
dent distribution at each iteration: if they improve the objective function they are kept, otherwise
they are discarded. FAB attack aims at �nding adversarial samples with minimal distortion with
respect to the attack point. With respect to PGD, it does not need to be restarted and it achieves
fast good quality results. In RobustBench, using AutoAttack, given a batch of samples, these are
�rst attacked with APGD-CE. Then, the samples that were successfully attacked are discarded,
and the remaining ones are attacked with APGD-T. This procedure continues with Square and
FAB attack.

E.2.2 Our defense
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Figure E.2: ROPUST replaces the classi�er of already robust models, enhancing their adversarial

robustness. Only the ROPUST classi�er needs �ne-tuning; the convolutional stack is frozen.
Convolutional features �rst go through a fully-connected layer, before binarization for use in
the Optical Processing Unit (OPU). The OPU performs a non-linear random projection, with
fixed unknown parameters. A fully-connected layer is then used to obtain a prediction from the
output of the OPU. Direct Feedback Alignment is used to train the layer underneath the OPU.

Optical Processing Units. Optical Processing Units (OPU)2 are photonic co-processors dedi-
cated to e�cient large-scale random projections. Assuming an input vectorx, the OPU computes
the following operation using light scattering through a di�usive medium:

y = |Ux|2 (E.1)

With U a fixed complex Gaussian random matrix of size up to 106×106, which entries are not
readily known. In the following, we sometimes refer to U as the transmission matrix (TM). The
input x is binary (1 bit – 0/1) and the output y is quantized in 8-bit. While it is possible to simulate
an OPU and implement ROPUST on GPU, this comes with two signi�cant drawbacks: (1) part
of our defense relies on U being obfuscated to the attacker, which is not possible to guarantee on
a GPU; (2) at large sizes, storing U in GPU memory is costly Ohana et al. [2020].

BecauseU is physically implemented through the di�usive medium, the random matrix will re-
main unknown even if the host system is compromised. Assuming unfettered access to the OPU,
an attacker has to perform phase retrieval to retrieve the coe�cients of U. As only the non-linear
intensity |Ux|2 can be measured and notUx directly, this phase retrieval step is computationally
costly. This problem is well studied, and state-of-the-art methods haveO(MN logN) time com-
plexity Gupta et al. [2020], and do not result in a perfect retrieval. We develop an attack scenario
based on this method in Section E.5.

Direct Feedback Alignment. Because the �xed random parameters implemented by the OPU
are unknown, it is impossible to backpropagate through it. We bypass this limitation by training
layers upstream of the OPU using Direct Feedback Alignment (DFA) Nøkland [2016]. DFA is an
alternative to backpropagation, capable of scaling to modern deep learning tasks and architectures
Launay et al. [2020], relying on a random projection of the error as the teaching signal.

2Accessible through LightOn Cloud: https://cloud.lighton.ai.
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In a fully connected network, at layer i out ofN , neglecting biases, with Wi its weight matrix,
fi its non-linearity, andhi its activations, the forward pass can be written asai = Wihi−1,hi =
fi(ai). h0 = X is the input data, and hN = f(aN ) = ŷ are the predictions. A task-speci�c
cost functionL(ŷ,y) is computed to quantify the quality of the predictions with respect to the
targets y. The weight updates are obtained through the chain-rule of derivatives:

δWi = − ∂L
∂Wi

= −[(WT
i+1δai+1)� f ′i(ai)]hTi−1, δai =

∂L
∂ai

(E.2)

where� is the Hadamard product. With DFA, the gradient signal WT
i+1δai+1 of the (i+1)-th

layer is replaced with a random projection of the gradient of the loss at the top layer δay–which
is the error e = ŷ − y for commonly used losses, such as cross-entropy or mean squared error:

δWi = −[(Biδay)� f ′i(ai)]hTi−1, δay =
∂L
∂ay

(E.3)

Learning with DFA is enabled by an alignment process, wherein the forward weights learn a
con�guration enabling DFA to approximate BP updates Re�netti et al. [2020].

ROPUST To enhance the adversarial robustness of pretrained robust models, we propose to
replace their classi�er with the ROPUST module (Fig. E.2). We use robust models from the
RobustBench model zoo, extracting and freezing their convolutional stack. The robust convo-
lutional features go through a fully connected layer and a binarization step (a sign function),
preparing them for the OPU. The OPU then performs a non-linear random projection, with
�xed unknown parameters. Lastly, the predictions are obtained through a �nal fully-connected
layer. While the convolutional layers are frozen, we train the ROPUST module on natural data
using DFA to bypass the non-di�erentiable photonic hardware.

Attacking ROPUST. While we could use DFA to attack ROPUST, previous work has shown
that methods devoid of weight transport are not e�ective in generating compelling adversarial
examples Akrout [2019]. Therefore, we instead use backward pass di�erentiable approximation
(BPDA) when attacking our defense. For BPDA, we need to �nd a good di�erentiable relaxation
to non-di�erentiable layers. For the binarization function, we simply use the derivative of tanh in
the backward pass, while we approximate the transpose of the obfuscated parameters with a dif-
ferent �xed random matrix drawn at initialization of the module. More speci�cally, if we consider
the expression for the forward pass of the ROPUST module:

y = softmax(W3|Usign(W1x)|2) (E.4)

In the backward we substitute UT (that we do not have access to) with a di�erent �xed random
matrix R, in a setup similar to Feedback Alignment Lillicrap et al. [2014]. We also relax the sign
function derivative to the derivative of tanh.

We present empirical results on RobustBench in the following Section E.3. We then ablate the
components of our defense in E.4, demonstrating its holistic nature, and we �nally create a phase
retrieval attack to challenge parameter obfuscation in Section E.5.
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Figure E.3: Our ROPUST defense comes at no cost in natural accuracy. In some cases, natural ac-
curacy is even improved. The model from Zhang, 2020 Zhang et al. [2020] is an isolated ex-
ception. Models from the RobustBench model zoo: Hendrycks et al., 2019 Hendrycks et al.
[2019], Sehwag et al., 2021 Sehwag et al. [2021], Wu et al., 2020 Wu et al. [2020], Zhang et al.,
2020 Zhang et al. [2020], Wong et al., 2020 Wong et al. [2020], Ding et al., 2020 Ding et al.
[2020], Carmon et al., 2019 Carmon et al. [2019a], Gowal et al., 2020 Gowal et al. [2020b].

E.3 Evaluating ROPUST on RobustBench

All of the attacks are performed on CIFAR-10 Krizhevsky [2009], using a di�erentiable backward
pass approximation Athalye et al. [2018a] as explained in Section E.2.2. For our experiments,
we use OPU input size 512 and output size 8000. We use the Adam optimizer Kingma and Ba
[2014], with learning rate 0.001, for 10 epochs. The process typically takes as little as 10 minutes
on a single NVIDIA V100 GPU.

We show our results on nine di�erent models in RobustBench in Fig. E.1. The performance of
the original pretrained models from the RobustBench leaderboard is reported as Base. ROPUST
represents the same models equipped with our defense. Finally, Transfer indicates the perfor-
mance of attacks created on the original model and transferred to fool the ROPUST defense. For
all models considered, ROPUST improves the robustness signi�cantly, even under transfer.

For transfer, we also tested crafting the attacks on the Base model while using the loss of the
ROPUST model for the learning rate schedule of APGD. We also tried to use the predictions
of ROPUST, instead of the base model, to remove the samples that were successfully attacked
from the next stage of the ensemble; however, these modi�cations did not improve transfer per-
formance.

Finally, we remark that the robustness increase typically comes at no cost in natural accuracy;
we show the accuracy on natural data of the Base and the ROPUST models in Fig. E.3.
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Figure E.4: Removing either parameter obfuscation or DFA from our defense causes a large drop

in accuracy. This con�rms the intuition that robustness is given by the inability to e�ciently
generate attacks in a white-box settings when the parameters are obfuscated, and that DFA is
capable of generating partially robust features. We note that even though the non-linearity |.|2
does not contribute to robustness, it is key to obfuscation, preventing trivial retrieval. Transfer
performance does not change much when removing components of the defense. While the
Base model is not ablated, we leave its performance as a term of comparison.

Figure E.5: Square attack can be evaded by simply retraining on natural data the classi�er of a

robust model. We con�rm the same result when retraining the standard fully connected clas-
si�cation layer in the pretrained models in place of the ROPUST module (Defense-free result
in the chart on the right). While the Base model is not ablated, we leave its performance as a
term of comparison.
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Figure E.6: Simpli�ed modelling of phase retrieval. The retrieved matrix U′ is modeled as the linear
interpolation between the real transmission matrix U and a random matrix R, only for some
columns selected by a mask. Varying the value of α and the percentage of masked columns
allows to modulate the knowledge of the attacker without running resource-hungry phase re-
trieval algorithms.

E.4 Understanding ROPUST: an ablation study

We use the model from Wong et al. [2020] available in the RobustBench model zoo to perform
our ablation studies. It consists in a PreAct ResNet-18 He et al. [2016a], pretrained with a "revis-
ited" FGSM of increased e�ectiveness.

Holistic defense. We conduct an ablation study by removing a single component of our de-
fense at a time in simulation: binarization, DFA, parameter obfuscation, and non-linearity |.|2
of the random projection. To remove DFA, we also remove the binarization step and train the
ROPUST module with backpropagation, since we have access to the transpose of the transmis-
sion matrix in the simulated setting of the ablation study. We show the results in Fig. E.4: we see
that removing the non-linearity |.|2 and the binarization does not have an e�ect, with the robust-
ness given by parameter obfuscation and DFA, as expected. However, note that |.|2 is central to
preventing trivial phase retrieval, and is hence a key component of our defense.

Robustness to Square attack While the ablation study on the APGD attack is able to pinpoint
the exact sources of robustness for a white-box attack, the same study on the black-box Square
attack has surprising results. Indeed, as shown in Fig. E.5, no element of the ROPUST mechanism
can be linked to robustness against Square attack. Interestingly, we found an identical behaviour
when retraining the standard fully connected classi�cation layer from scratch on natural (non
perturbed) data, shown in the same Fig. E.5 under the Defense-free label.

E.5 Phase retrieval attack

Our defense leverages parameter obfuscation to achieve robustness. Yet, however demanding, it
is still technically possible to recover the parameters through phase retrieval schemes Gupta et al.
[2019b, 2020]. To provide a thorough and fair evaluation of our attack, we study in this section
phase retrieval attacks. We �rst consider an idealized setting, and then confront this setting with
a real-world phase retrieval algorithm from Gupta et al. [2020].
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Figure E.7: Performance of an APGD-CE attack with a retrieved matrix in place of the, other-

wise unknown, transpose of the transmission matrix. As expected, a better knowledge of
the transmission matrix, i.e. higher alpha and/or higher percentage of known columns corre-
lates with the success of the attack, with a sharp phase transition. At �rst glance, it may seem
that even a coarse-grained knowledge of the TM can help the attacker. However, optical phase
retrieval works on the output correlation only: accordingly, we �nd that even state-of-the-art
phase retrieval methods operates only in the white contoured region, where the robustness is
still greater than the Base models. We highlighted the accuracies achieved under attack in this
region in the heat-map.

Ideal retrieval model. We build an idealized phase retrieval attack, where the attacker knows a
certain fraction of columns, up to a certain precision, schematized in Figure E.6. To smoothly vary
the precision, we model the retrieved matrix U′ as a linear interpolation of the real transmission
matrix U and a completely di�erent random matrix R:

U′ = αU + (1− α)R (E.5)

In real phase retrieval, this model is valid for a certain fraction of columns of the transmission
matrix, and the remaining ones are modeled as independent random vectors. We can model this
with a Boolean mask matrix M, so our retrieval model in the end is:

U′ = αU�M + (1− α)R (E.6)

In this setting, we vary the knowledge of the attacker from the minimum to the maximum by
varying α and the percentage of retrieved columns, and we show how the performance of our
defense changes in Fig. E.7. In this simpli�ed model only a crude knowledge of the parameters
seems su�cient, given the sharp phase transition. We now need to chart where state-of-the-art
retrieval methods are on this graph to estimate their ability to break our defense.
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Real-world retrieval performance. State-of-the-art phase retrieval methods seek to maximize
output correlation, i.e. the correlation on y in Eq. E.1, in place of the correlation with respect to
the parameters of the transmission matrix, i.e. U in Eq. E.1. This leads to a retrieved matrix that
may well approximate the OPU outputs, but not the actual transmission matrix it implements.
We �nd this is a signi�cant limitation for attackers. In Fig. E.7, following numerical experiments,
we highlight with a white contour the operating region of a state-of-the-art phase retrieval algo-
rithm Gupta et al. [2020], showing that it can manage to only partially reduce the robustness of
ROPUST.

E.6 Conclusion

We introduced ROPUST, a drop-in module to enhance the adversarial robustness of pretrained
already robust models. Our technique relies on parameter obfuscation guaranteed by a photonic
co-processor, and a synthetic gradient method: it is simple, fast and widely applicable.

We thoroughly evaluated our defense on nine di�erent models in the standardized Robust-
Bench benchmark, reaching state-of-the-art performance. In light of these results, we encourage
to extend RobustBench to include parameter obfuscation methods.

We performed an ablation study in the white-box setting, con�rming our intuition and the re-
sults from Cappelli et al. [2021a]: the robustness comes from the parameter obfuscation and from
the hybrid synthetic gradient method. The non-linearity |.|2 on the random projection, while not
contributing to robustness on its own, is key to prevent trivial deobfuscation by hardening RO-
PUST against phase retrieval. A similar study in the black-box setting was inconclusive. However
it shed light on a phenomenon of increased robustness against Square attack when retraining from
scratch the classi�er of robust architectures on natural data. This phenomenon appears to be uni-
versal, i.e. independent of the structure of the classi�cation module being �ne-tuned, warranting
further study.

Finally, we developed a new kind of attacks, phase retrieval attacks, speci�cally suited to param-
eter obfuscation defense such as ours, and we tested their e�ectiveness. We found that the typical
precision regime of even state-of-the-art phase retrieval methods is not enough to completely break
ROPUST.

Future work could investigate how the robustness varies with the input and output size of the
ROPUST module, and if there are di�erent parameter obfuscation trade-o�s when such dimen-
sions change. The combination of ROPUST with other defense techniques, such as adversarial
label-smoothing Goibert and Dohmatob [2019], could also be of interest to further increase ro-
bustness. By combining beyond silicon hardware and beyond backpropagation training meth-
ods, our work highlights the importance of considering solutions outside of the hardware lottery
Hooker [2020].

Broader impact. Adversarial attacks have been identi�ed as a signi�cant threat to applications
of machine learning in-the-wild. Developing simple and accessible ways to make neural networks
more robust is key to mitigating some of the risks and making machine learning applications safer.
In particular, more robust models would enable a wider range of business applications, especially
in safety-critical sectors.
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We do not foresee negative societal impacts from our work, beyond the risk of our defense being
broken by future developments of research in adversarial attacks.

A limit of our work is that we prove increased robustness only empirically and not theoreti-
cally. However, we note that theoretically grounded defense methods typically fall short of other
techniques more used in practice. We also rely on photonic hardware, that is however accessible
by anyone similarly to GPUs or TPUs on commercial cloud providers.

We performed all of our experiments on single-GPU nodes with NVIDIA V100, and an OPU,
on a cloud provider. We estimate a total of∼ 500 GPU hours was spent.
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F Equitable and Optimal Transport with

Multiple Agents

We introduce an extension of the Optimal Transport problem when multiple costs are involved.
Considering each cost as an agent, we aim to share equally between agents the work of transporting
one distribution to another. To do so, we minimize the transportation cost of the agent who
works the most. Another point of view is when the goal is to partition equitably goods between
agents according to their heterogeneous preferences. Here we aim to maximize the utility of the
least advantaged agent. This is a fair division problem. Like Optimal Transport, the problem can
be cast as a linear optimization problem. When there is only one agent, we recover the Optimal
Transport problem. When two agents are considered, we are able to recover Integral Probability
Metrics de�ned by α-Hölder functions, which include the widely-known Dudley metric. To the
best of our knowledge, this is the �rst time a link is given between the Dudley metric and Optimal
Transport. We provide an entropic regularization of that problem which leads to an alternative
algorithm faster than the standard linear program.

F.1 Introduction

Optimal Transport (OT) has gained interest last years in machine learning with diverse applica-
tions in neuroimaging [Janati et al., 2020], generative models [Arjovsky et al., 2017, Salimans
et al., 2018], supervised learning [Courty et al., 2016], word embeddings [Alvarez-Melis et al.,
2018], reconstruction cell trajectories [Yang et al., 2020b, Schiebinger et al., 2019] or adversarial
examples [Wong et al., 2019]. The key to use OT in these applications lies in the gain of com-
putation e�ciency thanks to regularizations that smoothes the OT problem. More speci�cally,
when one uses an entropic penalty, one recovers the so called Sinkhorn distances [Cuturi, 2013].
In this paper, we introduce a new family of variational problems extending the optimal transport
problem when multiple costs are involved with various applications in fair division of goods/work
and operations research problems.

Fair division [Steinhaus, 1949] has been widely studied by the arti�cial intelligence [Lattimore
et al., 2015] and economics [Moulin, 2004] communities. Fair division consists in partitioning
diverse resources among agents according to some fairness criteria. One of the standard problems
in fair division is the fair cake-cutting problem [Dubins and Spanier, 1961, Brandt et al., 2016].
The cake is an heterogeneous resource, such as a cake with di�erent toppings, and the agents have
heterogeneous preferences over di�erent parts of the cake, i.e., some people prefer the chocolate
toppings, some prefer the cherries, others just want a piece as large as possible. Hence, taking into
account these preferences, one might share the cake equitably between the agents. A generaliza-
tion of this problem, for which achieving fairness constraints is more challenging, is when the
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splitting involves several heterogeneous cakes, and where the agents have linked preferences over
the di�erent parts of the cakes. This problem has many variants such as the cake-cutting with
two cakes [Cloutier et al., 2010], or the Multi Type Resource Allocation [Mackin and Xia, 2015,
Wang et al., 2019a]. In all these models it is assumed that there is only one indivisible unit per type
of resource available in each cake, and once an agent choose it, he or she has to take it all. In this
setting, the cake can be seen as a set where each element of the set represents a type of resource, for
instance each element of the cake represents a topping. A natural relaxation of these problems is
when a divisible quantity of each type of resources is available. We introduceEOT (Equitable and
Optimal Transport), a formulation that solves both the cake-cutting and the cake-cutting with
two cakes problems in this setting.

Our problem expresses as an optimal transportation problem. Hence, we prove duality results
and provide fast computation based on Sinkhorn algorithm. As interesting properties, some Inte-
gral Probability Metrics (IPMs) [Müller, 1997] as Dudley metric [Dudley et al., 1966], or standard
Wasserstein metric [Villani, 2003] are particular cases of the EOT problem.

Contributions. In this paper we introduce EOT an extension of Optimal Transport which
aims at �nding an equitable and optimal transportation strategy between multiple agents. We
make the following contributions:

• In Section F.3, we introduce the problem and show that it solves a fair division problem
where heterogeneous resources have to be shared among multiple agents. We derive its
dual and prove strong duality results. As a by-product, we show that EOT is related to
some usual IPMs families and in particular the widely known Dudley metric.

• In Section F.4, we propose an entropic regularized version of the problem, derive its dual
formulation, obtain strong duality. We then provide an e�cient algorithm to compute
EOT. Finally we propose other applications of EOT for Operations Research problems.

F.2 Related Work

Optimal Transport. Optimal transport aims to move a distribution towards another at low-
est cost. More formally, if c is a cost function on the ground space X × Y , then the relaxed
Kantorovich formulation of OT is de�ned for µ and ν two distributions as

Wc(µ, ν) := inf
γ

∫
X×Y

c(x, y)dγ(x, y)

where the in�mum is taken over all distributions γ with marginalsµ and ν. Kantorovich theorem
states the following strong duality result under mild assumptions [Villani, 2003]

Wc(µ, ν) = sup
f,g

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)

where the supremum is taken over continuous bounded functions satisfying for all x, y, f(x) +
g(y) ≤ c(x, y). The question of considering an optimal transport problem when multiple costs
are involved has already been raised in recent works. For instance, [Paty and Cuturi, 2019] pro-
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posed a robust Wasserstein distance where the distributions are projected on a k-dimensional sub-
space that maximizes their transport cost. In that sense, they aim to choose the most expensive
cost among Mahalanobis square distances with kernels of rank k. In articles [Li et al., 2019c, Sun
et al., 2020a], the authors aim to learn a cost given observed matchings by inversing the optimal
transport problem [Dupuy et al., 2016]. In [Petrovich et al., 2020] the authors study “feature-
robust” optimal transport, which can be also seen as a robust cost selection for optimal transport.
In articles [Genevay et al., 2017, Scetbon and Cuturi, 2020], the authors learn an adversarial cost
to train a generative adversarial network. Here, we do not aim to consider a worst case scenario
among the available costs but rather consider that the costs work together in order to split equi-
tably the transportation problem among them at lowest cost.

Entropic relaxation of OT. Computing exactly the optimal transport cost requires solving
a linear program with a supercubic complexity (n3 log n) [Tarjan, 1997] that results in an out-
put that is not di�erentiable with respect to the measures’ locations or weights [Bertsimas and
Tsitsiklis, 1997]. Moreover, OT su�ers from the curse of dimensionality [Dudley, 1969, Fournier
and Guillin, 2015] and is therefore likely to be meaningless when used on samples from high-
dimensional densities. Following the line of work introduced by Cuturi [2013], we propose an
approximated computation of our problem by regularizing it with an entropic term. Such regu-
larization in OT accelerates the computation, makes the problem di�erentiable with regards to the
distributions [Feydy et al., 2018] and reduces the curse of dimensionality [Genevay et al., 2018].
Taking the dual of the approximation, we obtain a smooth and convex optimization problem
under a simplicial constraint.

Fair Division. Fair division of goods has a long standing history in economics and computa-
tional choice. A classical problem is the fair cake-cutting that consists in splitting the cake between
N individuals according to their heterogeneous preferences. The cakeX , viewed as a set, is divided
in X1, . . . ,XN disjoint sets among the N individuals. The utility for a single individual i for a
slice S is denoted Vi(S). It is often assumed that Vi(X ) = 1 and that Vi is additive for disjoint
sets. There exists many criteria to assess fairness for a partitionX1, . . . ,XN such as proportional-
ity (Vi(Xi) ≥ 1/N ), envy-freeness (Vi(Xi) ≥ Vi(Xj)) or equitability (Vi(Xi) = Vj(Xj)). The
cake-cutting problem has applications in many �elds such as dividing land estates, advertisement
space or broadcast time. An extension of the cake-cutting problem is the cake-cutting with two
cakes problem [Cloutier et al., 2010] where two heterogeneous cakes are involved. In this prob-
lem, preferences of the agents can be coupled over the two cakes. The slice of one cake that an
agent prefers might be in�uenced by the slice of the other cake that he or she might also obtain.
The goal is to �nd a partition of the cakes that satis�es fairness conditions for the agents sharing
the cakes. Cloutier et al. [2010] studied the envy-freeness partitioning. Both the cake-cutting and
the cake-cutting with two cakes problems assume that there is only one indivisible unit of supply
per element x ∈ X of the cake(s). Therefore sharing the cake(s) consists in obtaining a paritition
of the set(s). In this paper, we show that EOT is a relaxation of the cutting cake and the cake-
cutting with two cakes problems, when there is a divisible amount of each element of the cake(s).
In that case, cakes are no more sets but distributions that we aim to divide between the agents
according to their coupled preferences.
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Integral Probability Metrics. In our work, we make links with some integral probability
metrics. IPMs are (semi-)metrics on the space of probability measures. For a set of functions F
and two probability distributions µ and ν, they are de�ned as

IPMF (µ, ν) = sup
f∈F

∫
fdµ−

∫
fdν.

For instance, when F is chosen to be the set of bounded functions with uniform norm less or
equal than 1, we recover the Total Variation distance [Steerneman, 1983] (TV). They recently
regained interest in the Machine Learning community thanks to their application to Generative
Adversarial Networks (GANs) [Goodfellow et al., 2014] where IPMs are natural metrics for the
discriminator [Dziugaite et al., 2015, Arjovsky et al., 2017, Mroueh and Sercu, 2017, Husain et al.,
2019]. They also helped to build consistent two-sample tests [Gretton et al., 2012, Scetbon and
Varoquaux, 2019a]. However when a closed form of the IPM is not available, exact computation
of IPMs between discrete distributions may not be possible or can be costful. For instance, the
Dudley metric can be written as a Linear Program [Sriperumbudur et al., 2012] which has at least
the same complexity as standard OT. Here, we show that the Dudley metric is in fact a particular
case of our problem and obtain a faster approximation thanks to the entropic regularization.

Negative Euclidean Cost: -0.56
Negative Square Euclidean Cost: -0.56
Negative 1.5 L1 Cost: -0.56

Figure F.1: Equitable and optimal division of the resources between N = 3 di�erent negative costs (i.e.
utilities) given by EOT. Utilities have been normalized. Blue dots and red squares represent
the di�erent elements of resources available in each cake. We consider the case where there is
exactly one unit of supply per element in the cakes, which means that we consider uniform
distributions. Note that the partition between the agents is equitable (i.e. utilities are equal)
and proportional (i.e. utilities are larger than 1/N ).

F.3 Equitable and Optimal Transport

Notations. Let Z be a Polish space, we denoteM(Z) the set of Radon measures on Z . We
callM+(Z) the sets of positive Radon measures, andM1

+(Z) the set of probability measures.
We denote Cb(Z) the vector space of bounded continuous functions onZ . LetX andY be two
Polish spaces. We denote for µ ∈ M(X ) and ν ∈ M(Y), µ ⊗ ν the tensor product of the
measuresµ and ν, andµ� ν means that ν dominatesµ. We denoteΠ1 : (x, y) ∈ X ×Y 7→ x
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andΠ2 : (x, y) ∈ X × Y 7→ y respectively the projections onX and Y , which are continuous
applications. For an application g and a measureµ, we denote g]µ the pushforward measure ofµ
by g. ForX andY two Polish spaces, we denote LSC(X ×Y) the space of lower semi-continuous
functions onX ×Y , LSC+(X ×Y) the space of non-negative lower semi-continuous functions
onX×Y and LSC−∗ (X×Y) the set of negative bounded below lower semi-continuous functions
onX×Y . We also denote C+(X×Y) the space of non-negative continuous functions onX×Y
and C−∗ (X × Y) the set of negative continuous functions onX × Y . LetN ≥ 1 be an integer
and denote ∆+

N := {λ ∈ RN+ s.t.
∑N

i=1 λi = 1}, the probability simplex of RN . For two
positive measures of same mass µ ∈ M+(X ) and ν ∈ M+(Y), we de�ne the set of couplings
with marginals µ and ν:

Πµ,ν := {γ s.t. Π1]γ = µ , Π2]γ = ν} .

We introduce the subset of (M1
+(X )×M1

+(Y))N representing marginal decomposition:

ΥNµ,ν :=
{

(µi, νi)
N
i=1 s.t.

∑
i

µi = µ,
∑
i

νi = ν

and ∀i, µi(X ) = νi(Y)
}
.

We also de�ne the following subset ofM+(X × Y)N corresponding to the coupling decompo-
sition:

ΓNµ,ν :=
{

(γi)
N
i=1 s.t. Π1]

∑
γi = µ , Π2]

∑
γi = ν

}
.

F.3.1 Primal Formulation

Consider a fair division problem where several agents aim to share two sets of resources,X andY ,
and assume that there is a divisible amount of each resourcex ∈ X (resp. y ∈ Y) that is available.
Formally, we consider the case where resources are no more sets but rather distributions on these
sets. Denote µ and ν the distribution of resources on respectively X and Y . For example, one
might think about a situation where agents want to share fruit juices and ice creams and there is
a certain volume of each type of fruit juices and a certain mass of each type of ice creams avail-
able. Moreover each agent de�nes his or her paired preferences for each couple (x, y) ∈ X × Y .
Formally, each person i is associated to an upper semi-continuous mapping ui : X × Y −→ R+

corresponding to his or her preference for any given pair (x, y). For example, one may prefer
to eat chocolate ice cream with apple juice, but may prefer pineapple juice when it comes with
vanilla ice cream. The total utility for an individual i and a pairing γi ∈ M+(X × Y) is then
given by Vi(γi) :=

∫
uidγi. To partition fairly among individuals, we maximize the minimum

of individual utilities.
From a transport point of view, let assume that there are N workers available to transport a

distribution µ to another one ν. The cost of a worker i to transport a unit mass from location x
to the location y is ci(x, y). To partition the work among theN workers fairly, we minimize the
maximum of individual costs.
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These problems are in fact the same where the utility ui, de�ned in the fair division problem,
might be interpreted as the opposite of the cost ci de�ned in the transportation problem, i.e. for
all i, ci = −ui. The two above problem motivate the introduction of EOT de�ned as follows.

De�nition 29 (Equitable and Optimal Transport). Let X and Y be Polish spaces. Let c :=
(ci)1≤i≤N be a family of bounded below lower semi-continuous cost functions on X × Y , and
µ ∈ M1

+(X ) and ν ∈ M1
+(Y). We define the equitable and optimal transport primal prob-

lem:

EOTc(µ, ν) := inf
(γi)

N
i=1∈ΓNµ,ν

max
i

∫
cidγi . (F.1)

We prove along with Theorem 24 that the problem is well de�ned and the in�mum is attained.
Lower-semi continuity is a standard assumption in OT. In fact, it is the weakest condition to
prove Kantorovich duality [Villani, 2003, Chap. 1]. Note that the problem de�ned here is a
linear optimization problem and whenN = 1 we recover standard optimal transport. Figure F.1
illustrates the equitable and optimal transport problem we consider. Figure F.5 in Appendix F.9
shows an illustration with respect to the transport viewpoint in the exact same setting, i.e. ci =
−ui. As expected, the couplings obtained in the two situations are not the same.

We now show that in fact, EOT optimum satis�es equality constraints in case of constant sign
costs, i.e. total utility/cost of each individual are equal in the optimal partition. See Appendix F.6.2
for the proof.

Proposition 28 (EOT solves the problem under equality constraints). Let X and Y be Polish
spaces. Let c := (ci)1≤i≤N ∈ LSC+(X × Y)N ∪ LSC−∗ (X × Y)N , µ ∈ M1

+(X ) and
ν ∈M1

+(Y). Then the following are equivalent:
• (γ∗i )Ni=1 ∈ ΓNµ,ν is solution of Eq. (F.1),

• (γ∗i )Ni=1 ∈ argmin
(γi)

N
i=1∈ΓNµ,ν

{
t s.t. ∀i

∫
cidγi = t

}
.

Moreover,

EOTc(µ, ν) = min
(γi)

N
i=1∈ΓNµ,ν

{
t s.t. ∀i

∫
cidγi = t

}
.

This property highly relies on the sign of the costs. For instance if two costs are considered, one
always positive and the other always negative, then the constraints cannot be satis�ed. When the
cost functions are non-negatives, EOT refers to a transportation problem while when the costs
are all negatives, costs become utilities and EOT refers to a fair division problem. The two points
of view are concordant, but proofs and interpretations rely on the sign of the costs.

F.3.2 An Equitable and Proportional Division

When the cost functions considered ci are all negatives, EOT become a fair division problem
where the utility functions are de�ned as ui := −ci. Indeed according to Proposition 28, EOT
solves

max
(γi)

N
i=1∈ΓNµ,ν

{
t s.t. ∀i,

∫
uidγi = t

}
.
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Recall that in our model, the total utility of the agent i is given by Vi(γi) :=
∫
uidγi. Therefore

EOT aims to maximize the total utility of each agent i while ensuring that they are all equal. Let
us now analyze which fairness conditions the partition induced by EOT veri�es. Assume that the
utilities are normalized, i.e., ∀i, there exists γi ∈M1

+(X ×Y) such thatVi(γi) = 1. For example
one might consider the cases where ∀i, γi = µ ⊗ ν or γi ∈ argminγ∈Πµ,ν

∫
cidγ. Then any

solution (γ∗i )Ni=1 ∈ ΓNµ,ν of EOT satis�es:

• Proportionality: for all i, Vi(γ∗i ) ≥ 1/N ,

• Equitablity: for all i, j, Vi(γ∗i ) = Vj(γ
∗
j ).

Proportionality is a standard fair division criterion for which a resource is divided amongN agents,
giving each agent at least 1/N of the heterogeneous resource by his/her own subjective valuation.
Therefore here, this situation corresponds to the case where the normalized utility of each agent
is at least 1/N . Moreover, an equitable division is a division of an heterogeneous resource, in
which each partner is equally happy with his/her share. Here this corresponds to the case where
the utility of each agent are all equal.

The problem solved by EOT is a fair division problem where heterogeneous resources have to
be shared among multiple agents according to their preferences. This problem is a relaxation of
the two cake-cutting problem when there are a divisible amount of each item of the cakes. In
that case, cakes are distributions and EOT makes a proportional and equitable partition of them.
Details are left in Appendix F.6.2.

Fair Cake-cutting. Consider the case where the cake is an heterogeneous resource and there is
a certain divisible quantity of each type of resource available. For example chocolate and vanilla
are two types of resource present in the cake for which a certain mass is available. In that case,
each type of resource in the cake is pondered by the actual quantity present in the cake. Up to a
normalization, the cake is no more the set X but rather a distribution on this set. Note that for
the two points of view to coincide, it su�ces to assume that there is exactly the same amount of
mass for each type of resources available in the cake. In that case, the cake can be represented by the
uniform distribution over the setX , or equivalently the setX itself. When cakes are distributions,
the fair cutting cake problem can be interpreted as a particular case of EOT when the utilities of
the agents do not depend on the variable y ∈ Y . In short, we consider that utilities are functions
of the form ui(x, y) = vi(x) for all (x, y) ∈ X × Y . The normalization of utilities can be cast
as follows: ∀i, Vi(µ) =

∫
vi(x)dµ(x) = 1. Then Proposition 28 shows that the partition of the

cake made byEOT is proportional and equitable. Note that forEOT to coincide with the classical
cake-cutting problem, one needs to consider that the uniform masses of the cake associated to
each type of resource cannot be splitted. This can be interpreted as a Monge formulation [Villani,
2003] of EOT which is out of the scope of this paper.

F.3.3 Optimality of EOT

We next investigate the coupling obtained by solving EOT. In the next proposition, we show that
under the same assumptions of Proposition 28, EOT solutions are optimal transportation plans.
See Appendix F.6.3 for the proof.

221



F Equitable and Optimal Transport with Multiple Agents

Proposition 29 (EOT realizes optimal plans). Under the same conditions of Proposition 28, for
any (γ∗i )Ni=1 ∈ ΓNµ,ν solution of Eq. (F.1), we have for all i ∈ {1, . . . , N}

γ∗i ∈ argmin
γ∈Πµ∗

i
,ν∗
i

∫
cidγ

where µ∗i := Π1]γ
∗
i , ν

∗
i := Π2]γ

∗
i ,

(F.2)

and
EOTc(µ, ν) = min

(µi,νi)
N
i=1∈ΥNµ,ν

t

s.t. ∀iWci(µi, νi) = t .
(F.3)

Given the optimal matchings (γ∗i )Ni=1 ∈ ΓNµ,ν , one can easily obtain the partition of the agents
of each marginals. Indeed for all i, µ∗i := Π1]γ

∗
i and ν∗i := Π2]γ

∗
i represent respectively the

portion of the agent i from distributions µ and ν.

Remark 13 (Utilitarian and Optimal Transport). To contrast with EOT, an alternative problem
is to maximize the sum of the total utilities of agents, or equivalently minimize the sum of the total
costs of agents. This problem can be cast as follows:

inf
(γi)

N
i=1∈ΓNµ,ν

∑
i

∫
cidγi (F.4)

Here one aims to maximize the total utility of all the agents, while in EOT we aim to maximize the
total utility per agent under egalitarian constraint. The solution of (F.4) is not fair among agents
and one can show that this problem is actually equal to Wmini(ci)(µ, ν). Details can be found in
Appendix F.8.1.

F.3.4 Dual Formulation

Let us now introduce the dual formulation of the problem and show that strong duality holds
under some mild assumptions. See Appendix F.6.4 for the proof.

Theorem 24 (Strong Duality). LetX andY be Polish spaces. Let c := (ci)
N
i=1 be bounded below

lower semi-continuous costs. Then strong duality holds, i.e. for (µ, ν) ∈M1
+(X )×M1

+(Y):

EOTc(µ, ν) = sup
λ∈∆+

N

(f,g)∈Fλc

∫
fdµ+

∫
gdν (F.5)

whereFλc := {(f, g) ∈ Cb(X )× Cb(Y) s.t. ∀i ∈ {1, ..., N}, f ⊕ g ≤ λici}.

This theorem holds under the same hypothesis and follows the same reasoning as the one in [Vil-
lani, 2003, Theorem 1.3]. While the primal formulation of the problem is easy to understand, we
want to analyse situations where the dual variables also play a role. For that purpose we show in
the next proposition a simple characterisation of the primal-dual optimality in case of constant
sign cost functions. See Appendix F.6.5 for the proof.
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Figure F.2: Left, middle left, middle right: the size of dots and squares is proportional to the weight of their
representing atom in the distributions µ∗k and ν∗k respectively. The utilities f∗k and g∗k for each
point in respectively µ∗k and ν∗k are represented by the color of dots and squares according to
the color scale on the right hand side. The gray dots and squares correspond to the points that
are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ∗k
or ν∗k . Right: the size of dots and squares are uniform since they correspond to the weights of
uniform distributions µ and ν respectively. The values of f∗ and g∗ are given also by the color
at each point. Note that each agent gets exactly the same total utility, corresponding exactly to
EOT. This value can be computed using dual formulation (F.5) and for each �gure it equals
the sum of the values (encoded with colors) multiplied by the weight of each point (encoded
with sizes).

Proposition 30. LetX andY be compact Polish spaces. Let c := (ci)1≤i≤N ∈ C+(X ×Y)N ∪
C−∗ (X × Y)N , µ ∈ M1

+(X ) and ν ∈ M1
+(Y). Let also (γk)

N
k=1 ∈ ΓNµ,ν and (λ, f, g) ∈

∆+
n × Cb(X )× Cb(Y). Then Eq. (F.5) admits a solution and the following are equivalent:

• (γk)
N
k=1 is a solution of Eq. (F.1) and (λ, f, g) is a solution of Eq. (F.5).

• 1. ∀i ∈ {1, ..., N}, f ⊕ g ≤ λici
2. ∀i, j ∈ {1, ..., N}

∫
cidγi =

∫
cjdγj

3. f ⊕ g = λici γi-a.e.

Remark 14. It is worth noting that when we assume that c := (ci)1≤i≤N ∈ C+
∗ (X × Y)N ∪

C−∗ (X ×Y)N , then we can refine the second point of the equivalence presented in Proposition 30 by
adding the following condition: ∀i ∈ {1, ..., N} λi 6= 0.

Given two distributions of resources represented by the measures µ and ν, andN utility func-
tions denoted (ui)

N
i=1, we want to �nd an equitable and stable partition among the agents in case

of transferable utilities. Let k be an agent. We say that his or her utility is transferable when once
x ∈ X and y ∈ Y get matched, he or she has to decide how to split his or her associated utility
uk(x, y) . She or he divides uk(x, y) into a quantity fk(x) which can be seen as the utility of
having x and gk(y) for having y. Therefore in that problem we ask for (γk, fk, gk)

N
k=1 such that

uk(x, y) = fk(x) + gk(y) γk-a.e. (F.6)
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Moreover, for the partition to be stable [Sotomayor and Roth, 1990], we want to ensure that, for
every agent k, none of the resources x ∈ X and y ∈ Y that have not been matched together for
this agent would increase their utilities, fk(x) and gk(y), if there were matched together in the
current matching instead. Formally we ask that for k ∈ {1, . . . , N} and all (x, y) ∈ X × Y ,

fk(x) + gk(y) ≥ uk(x, y) . (F.7)

Indeed if there exist k, x and y such that uk(x, y) > fk(x) + gk(y), then x and y will not be
matched together in the share of the agent k and he can improve his utility for both x and y by
matching xwith y.

Finally we aim to share equitably the resources among the agents which boils down to ask

∀i, j ∈ {1, ..., N}
∫
uidγi =

∫
ujdγj (F.8)

Thanks to Proposition 30, �nding (γk, fk, gk)
N
k=1 satisfying (F.6), (F.7) and (F.8) can be done by

solving Eq. (F.1) and Eq. (F.5). Indeed let (γk)
N
k=1 an optimal solution of Eq. (F.1) and (λ, f, g)

an optimal solution of Eq. (F.5). Then by denoting for all k = 1, . . . , N , fk = f
λk

and gk =
g
λk

, we obtain that (γk, fk, gk)
N
k=1 solves the equitable and stable partition problem in case of

transferable utilities. Note that again, we end up with equality constraints for the optimal dual
variables. Indeed, for all i, j ∈ {1, . . . , N}, at optimality we have

∫
fi + gidγi =

∫
fj +

gjdγj . Figure F.2 illustrates this formulation of the problem with dual potentials. Figure F.7 in
Appendix F.9 shows the dual solutions with respect to the transport viewpoint in the exact same
setting, i.e. ci = −ui. Once again, the obtained solutions di�er.

F.3.5 Link with other Probability Metrics

In this section, we provide some topological properties on the object de�ned by theEOTproblem.
In particular, we make links with other known probability metrics, such as Dudley and Wasser-
stein metrics and give a tight upper bound.

When N = 1, recall from the de�nition (F.1) that the problem considered is exactly the stan-
dard OT problem. Moreover any EOT problem with k ≤ N costs can always be rewritten as a
EOTproblem withN costs. See Appendix F.8.2 for the proof. From this property, it is interesting
to note that, for anyN ≥ 1, EOT generalizes standard Optimal Transport.

Optimal Transport. Given a cost function c, if we consider the problem EOT with N costs
such that, for all i, ci = N × c then, the problem EOTc is exactly Wc. See Appendix F.8.2 for
the proof.

Now we have seen that all standard OT problems are sub-cases of the EOT problem, one may
ask whether EOT can recover other families of metrics di�erent from standard OT. Indeed we
show that the EOT problem recovers an important family of IPMs with supremum taken over
the space of α-Hölder functions with α ∈ (0, 1]. See Appendix F.6.6 for the proof.
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Proposition 31. Let X be a Polish space. Let d be a metric on X 2 and α ∈ (0, 1]. Denote c1 =
2× 1x 6=y , c2 = dα and c := (c1, (N − 1)× c2, ..., (N − 1)× c2) ∈ LSC(X ×X )N then for
any (µ, ν) ∈M1

+(X )×M1
+(X )

EOTc(µ, ν) = sup
f∈Bdα (X )

∫
X
fdµ−

∫
X
fdν (F.9)

whereBdα(X ) :=
{
f ∈ Cb(X ): ‖f‖∞ + ‖f‖α ≤ 1

}
and ‖f‖α := supx 6=y

|f(x)−f(y)|
dα(x,y) .

Dudley Metric. When α = 1, then for (µ, ν) ∈M1
+(X )×M1

+(X ), we have

EOTc(µ, ν) = EOT(c1,d)(µ, ν) = βd(µ, ν)

where βd is the Dudley Metric [Dudley et al., 1966]. In other words, the Dudley metric can be
interpreted as an equitable and optimal transport between the measures with the trivial cost and
a metric d. We acknowledge that Chizat et al. [2018] made a link between Unbalanced Opti-
mal Transport and the “�at metric”, an IPM close to the Dudley metric, de�ned on the space
{f : ‖f‖∞ ≤ 1, ‖f‖1 ≤ 1}.

Weak Convergence. When d is an unbounded metric on X , it is well known that Wdp with
p ∈ (0,+∞) metrizes a convergence a bit stronger than weak convergence [Villani, 2003, Chap.
7]. A su�cient condition for Wasserstein distances to metrize weak convergence on the space of
distributions is that the metric d is bounded. In contrast, metrics de�ned by Eq. (F.9) do not
require such assumptions and EOT(1x 6=y ,dα) metrizes the weak convergence of probability mea-
sures [Villani, 2003, Chap. 1-7].

For an arbitrary choice of costs (ci)1≤i≤N , we obtain a tight upper control of EOT and show
how it is related to the OT problem associated to each cost involved. See Appendix F.6.7 for the
proof.

Proposition 32. Let X and Y be Polish spaces. Let c := (ci)1≤i≤N be a family of nonnegative
lower semi-continuous costs. For any (µ, ν) ∈M1

+(X )×M1
+(Y)

EOTc(µ, ν) ≤
(

N∑
i=1

1

Wci(µ, ν)

)−1

(F.10)

Proposition 32 means that the minimal cost to transport all goods under the constraint that
all workers contribute equally is lower than the case where agents share equitably and optimally
the transport with distributions µi and νi respectively proportional to µ and ν, which equals the
harmonic sum written in Equation (F.10).

Example. Applying the above result in the case of the Dudley metric recovers the following inequal-
ity [Sriperumbudur et al., 2012, Proposition 5.1]

βd(µ, ν) ≤ TV(µ, ν)Wd(µ, ν)

TV(µ, ν) + Wd(µ, ν)
.
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F.4 Entropic Relaxation

In their original form, as proposed by Kantorovich Kantorovich [1942], Optimal Transport dis-
tances are not a natural �t for applied problems: they minimize a network �ow problem, with a
supercubic complexity (n3 log n) [Tarjan, 1997]. Following the work of Cuturi [2013], we pro-
pose an entropic relaxation of EOT, obtain its dual formulation and derive an e�cient algorithm
to compute an approximation of EOT.

F.4.1 Primal-Dual Formulation

Let us �rst extend the notion of Kullback-Leibler divergence for positive Radon measures. Let
Z be a Polish space, for µ, ν ∈ M+(Z), we de�ne the generalized Kullback-Leibler divergence
as KL(µ||ν) =

∫
log dµ

dν dµ +
∫
dν −

∫
dµ if µ � ν, and +∞ otherwise. We introduce the

following regularized version of EOT.

De�nition 30 (Entropic relaxed primal problem). LetX andY be two Polish spaces,c := (ci)1≤i≤N
a family of bounded below lower semi-continuous costs lower semi-continuous costs on X × Y and
ε := (εi)1≤i≤N be non negative real numbers. For (µ, ν) ∈ M1

+(X ) ×M1
+(Y), we define the

EOT regularized primal problem:

EOTεc(µ, ν) := inf
γ∈ΓNµ,ν

max
i

∫
cidγi +

N∑
j=1

εjKL(γj ||µ⊗ ν)

Note that here we sum the generalized Kullback-Leibler divergences since our objective is func-
tion ofN measures inM+(X ×Y). This problem can be compared with the one from standard
regularized OT. In the case where N = 1, we recover the standard regularized OT. For N ≥ 1,
the underlying problem is

∑N
i=1 εi−strongly convex. Moreover, we prove the essential property

that as ε → 0, the regularized problem converges to the standard problem. See Appendix F.8.3
for the full statement and the proof. As a consequence, entropic regularization is a consistent ap-
proximation of the original problem we introduced in Section F.3.1. Next theorem shows that
strong duality holds for lower semi-continuous costs and compact spaces. This is the basis of the
algorithm we will propose in Section F.4.2. See Appendix F.6.8 for the proof.

Theorem 25 (Duality for the regularized problem). Let X and Y be two compact Polish spaces,
c := (ci)1≤i≤N a family of bounded below lower semi-continuous costs on X × Y and ε :=
(εi)1≤i≤N be non negative numbers. For (µ, ν) ∈M1

+(X )×M1
+(Y), strong duality holds:

EOTεc(µ, ν) = sup
λ∈∆+

N

sup
f∈Cb(X )
g∈Cb(Y)

∫
fdµ+

∫
gdν (F.11)

−
N∑
i=1

εi

(∫
e
f(x)+g(y)−λici(x,y)

εi dµ(x)dν(y)− 1

)
and the infimum of the primal problem is attained.
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F.4 Entropic Relaxation

As in standard regularized optimal transport there is a link between primal and dual variables at
optimum. Let γ∗ solving the reguralized primal problem and (f∗, g∗, λ∗) solving the dual one:

∀i, γ∗i = exp

(
f∗ + g∗ − λ∗i ci

εi

)
· µ⊗ ν

.
F.4.2 Proposed Algorithms

Algorithm 13: Projected Alternating Maximization
Input: C = (Ci)1≤i≤N , a, b, ε,Lλ Init: f0 ← 1n; g0 ← 1m;
λ0 ← (1/N, ..., 1/N) ∈ RN for k = 1, 2, ... do

Kk ←∑N
i=1K

λk−1
i

i , ck ← 〈fk−1,Kkgk−1〉, fk ← cka
Kkgk−1 , dk ←

〈fk,Kkgk−1〉, gk ← dkb
(Kk)T fk

, λk ←
Proj∆+

N

(
λk−1 + 1

Lλ
∇λF εC(λk−1, fk, gk)

)
.

end

Result: λ, f, g

We can now present algorithms obtained from entropic relaxation to approximately compute
the solution ofEOT. Letµ =

∑n
i=1 aiδxi andν =

∑m
j=1 bjδyj be discrete probability measures

where a ∈ ∆+
n , b ∈ ∆+

m, {x1, ..., xn} ⊂ X and {y1, ..., ym} ⊂ Y . Moreover for all i ∈
{1, . . . , N} and λ > 0, de�ne C := (Ci)1≤i≤N ∈ (Rn×m)

N with Ci := (ci(xk, yl))k,l the
N cost matrices and Kλ

i := exp(−λCi/ε). Assume that ε1 = · · · = εN = ε. Compared to
the standard regularized OT, the main di�erence here is that the problem contains an additional
variable λ ∈ ∆+

N . When N = 1, one can use Sinkhorn algorithm. However when N ≥ 2,
we do not have a closed form for updating λ when the other variables of the problem are �xed.
In order to enjoy from the strong convexity of the primal formulation, we consider instead the
dual associated with the equivalent primal problem given when the additional trivial constraint
1Tn (
∑

i Pi)1m = 1 is considered. In that the dual obtained is

ÊOT
ε

C(a, b) = sup
λ∈∆+

N
f∈Rn, g∈Rm

〈f, a〉+ 〈g, b〉 − ε
[

log

(∑
i

〈ef/ε,Kλi
i e

g/ε〉
)

+ 1

]

We show that the new objective obtained above is smooth w.r.t (λ, f, g). See Appendix F.8.4
for the proof. One can apply the accelerated projected gradient ascent [Beck and Teboulle, 2009,
Tseng, 2008] which enjoys an optimal convergence rate for �rst order methods ofO(k−2) for k
iterations.

It is also possible to adapt Sinkhorn algorithm to our problem. See Algorithm 13. We denoted
by Proj∆+

N
the orthogonal projection on ∆+

N [Shalev-Shwartz and Singer, 2006], whose com-
plexity is inO(N logN). The smoothness constant inλ in the algorithm isLλ = maxi ‖Ci‖2∞/ε.
In practice Alg. 13 gives better results than the accelerated gradient descent. Note that the pro-
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Figure F.3: Comparison of the time-accuracy tradeo�s between the di�erent proposed algorithms. Left:
we consider the case where the number of days isN = 2, the size of support for both measures
is n = m = 100 and we vary ε from 0.005 to 0.5. Middle: we �x n = m = 100 and the
regularization ε = 0.05 and we vary the number of days N from 3 to 5. Right: the setting
considered is the same as in the �gure in the middle, however we increase the sample size such
that n = m = 500. Note that in that case, LP is too costly to be computed.

posed algorithm di�ers from the Sinkhorn algorithm in many points and therefore the conver-
gence rates cannot be applied here. Analyzing the rates of a projected alternating maximization
method is, to the best of our knowledge, an unsolved problem. Further work will be devoted to
study the convergence of this algorithm. We illustrate Algorithm 13 by showing the convergence
of the regularized version ofEOT towards the ground truth when ε→ 0 in the case of the Dudley
Metric. See Figure F.8 in Appendix F.9.

F.5 Other applications of EOT

Minimal Transportation Time. Assume there areN internet service providers who propose
di�erent debits to transport data across locations, and one needs to transfer data from multiple
servers to others, the fastest as possible. We assume that ci(x, y) ≥ 0 corresponds to the trans-
portation time needed by provider i to transport one unit of data from a server x to a server y.
For instance, the unit of data can be one Megabit. Then

∫
cidγi corresponds the time taken by

provider i to transport µi = Π1]γi to νi = Π2]γi. Assuming the transportation can be made
in parallel and given a partition of the transportation task (γi)

N
i=1, maxi

∫
cidγi corresponds to

the total time of transport the data µ = Π1]
∑
γi to the locations ν = Π2]

∑
γi according to

this partition. Then EOT, which minimizes maxi
∫
cidγi, is �nding the fastest way to transport

the data from µ to ν by splitting the task among the N internet service providers. Note that at
optimality, all the internet service providers �nish their transportation task at the same time (see
Proposition 28).

Sequential Optimal Transport. Consider the situation where an agent aims to transport goods
from some stocks to some stores in the nextN days. The cost to transport one unit of good from
a stock located at x to a store located at y may vary across the days. For example the cost of trans-
portation may depend on the price of gas, or the daily weather conditions. Assuming that he or she
has a good knowledge of the daily costs of theN coming days, he or she may want a transportation
strategy such that his or her daily cost is as low as possible. By denoting ci the cost of transporta-
tion the i-th day, and given a strategy (γi)

N
i , the maximum daily cost is then maxi

∫
cidγi, and
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EOT therefore �nds the cheapest strategy to spread the transport task in the next N days such
that the maximum daily cost is minimized. Note that at optimality he or she has to spend the
exact same amount everyday.

In Figure F.3 we aim to simulate the Sequential OT problem and compare the time-accuracy
trade-o�s of the proposed algorithms. Let us consider a situation where one wants to trans-
port merchandises from µ = 1

n

∑n
i=1 δxi to ν = 1

m

∑m
j=1 δyj in N days. Here we model

the locations {xi} and {yj} by drawing them independently from two Gaussian distributions
in R2: ∀i, xi ∼ N (( 3

3 ), ( 0 1
1 0 )) and ∀j, yj ∼ N

(
( 4

4 ),
(

1 −.2
−.2 1

))
. We assume that every-

day there is wind modeled by a vector w ∼ U(B(0, 1)) where B(0, 1) is the unit ball in R2

that is perfectly known in advance. We de�ne the cost of transportation on day i as ci(x, y) =
‖y − x‖ − 0.7〈wi, y − x〉 to model the e�ect of the wind on the transportation cost. In the fol-
lowing �gures we plot the estimates of EOT obtained from the proposed algorithms in function
of the runtime for various sample sizes n, number of days N and regularizations ε. PAM de-
notes Alg. 13, APGA denotes Alg. 14 (See Appendix C.4), LP denotes the linear program which
solves exactly the primal formulation of the EOT problem. Note that when LP is computable
(i.e. n ≤ 100), it is therefore the ground truth. We show that in all the settings, PAM performs
better than APGA and provides very high accuracy with order of magnitude faster than LP.

F.6 Appendix: Proofs

F.6.1 Notations

Let Z be a Polish space, we denoteM(Z) the set of Radon measures on Z endowed with total
variation norm: ‖µ‖TV = µ+(Z) + µ−(Z) with (µ+, µ−) is the Dunford decomposition of
the signed measure µ. We callM+(Z) the sets of positive Radon measures, andM1

+(Z) the set
of probability measures. We denote Cb(Z) the vector space of bounded continuous functions on
Z endowed with ‖·‖∞ norm. We recall the Riesz-Markov theorem: if Z is compact,M(Z) is
the topological dual of Cb(Z). Let X and Y be two Polish spaces. It is immediate that X × Y
is a Polish space. We denote for µ ∈ M(X ) and ν ∈ M(Y), µ ⊗ ν the tensor product of the
measuresµ and ν, andµ� ν means that ν dominatesµ. We denoteΠ1 : (x, y) ∈ X ×Y 7→ x
andΠ2 : (x, y) ∈ X × Y 7→ y respectively the projections onX and Y , which are continuous
applications. For an application g and a measure µ, we denote g]µ the pushforward measure of
µ by g. For f : X → R and g : Y → R, we denote f ⊕ g : (x, y) ∈ X × Y 7→ f(x) + g(y)
the tensor sum of f and g. For X and Y two Polish spaces, we denote LSC(X × Y) the space
of lower semi-continuous functions onX ×Y , LSC+(X ×Y) the space of non-negative lower
semi-continuous functions on X × Y and LSC−∗ (X × Y) the set of negative bounded below
lower semi-continuous functions onX ×Y . LetN ≥ 1 be an integer and denote∆+

N := {λ ∈
RN+ s.t.

∑N
i=1 λi = 1}, the probability simplex of RN . For two positive measures of same mass

µ ∈M+(X ) and ν ∈M+(Y), we de�ne the set of couplings with marginals µ and ν:

Πµ,ν := {γ s.t. Π1]γ = µ , Π2]γ = ν} .
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For µ ∈M1
+(X ) and ν ∈M1

+(Y), we introduce the subset of (M1
+(X )×M1

+(Y))N repre-
senting marginal decomposition:

ΥNµ,ν :=
{

(µi, νi)
N
i=1 s.t.

∑
i µi = µ,

∑
i νi = ν and ∀i, µi(X ) = νi(Y)

}
.

We also de�ne the following subset ofM+(X × Y)N corresponding to the coupling decompo-
sition:

ΓNµ,ν :=

{
(γi)

N
i=1 s.t. Π1]

∑
i

γi = µ , Π2]

∑
i

γi = ν

}
.

F.6.2 Proof of Proposition 28

Proof. First, it is clear that EOTc(µ, ν) ≥ infγ∈ΓNµ,ν{t s.t. ∀i, t =
∫
cidγi}. Let us

now show that in fact it is an equality. Thanks to Theorem 24, the in�mum is attained
for infγ∈Γµ,ν maxi

∫
cidγi. Indeed, we recall that ΓNµ,ν is compact and that the objective

is lower semi-continuous. Let γ∗ be such a minimizer. Let I be the set of indices i such that∫
cidγ

∗
i = EOTc(µ, ν). Assume that there exists j such that, EOTc(µ, ν) >

∫
cjdγ

∗
j .

In case of costs of LSC+(X × Y), for all i ∈ I , there exists (xi, yi) ∈ Supp(γ∗i ) such
that ci(xi, yi) > 0. Let us denote A(xi,yi) measurable sets such that (xi, yi) ∈ A(xi,yi)

and let us denote γ̃ de�ned as for all k /∈ I ∪ {j}, γ̃k = γ∗k , for i ∈ I , γ̃i = γ∗i −
ε1A(xi,yi)

γ∗i and γ̃j = γ∗j +
∑

i∈I ε1A(xi,yi)
γ∗i for ε su�ciently small so that γ̃ ∈ ΓNµ,ν .

Now, maxk
∫
ckdγ

∗
k > maxk

∫
ckdγ̃k, which contradicts that γ∗ is a minimizer. Then for

i, j,
∫
cidγ

∗
i =

∫
cjdγ

∗
j . And then: EOTc(µ, ν) = infγ∈ΓNµ,ν maxi

∫
cidγi.

In case of costs in LSC−∗ (X×Y), there exists (x0, y0) ∈ Supp(γ∗j ) such that cj(x0, y0) <
0. Let us denote A(x0,y0) a measurable set such that (x0, y0) ∈ A(x0,y0) and let us denote
γ̃ de�ned as for all k /∈ I ∪ {j}, γ̃k = γ∗k and for all i ∈ I , γ̃i = γ∗i + ε

|I|1A(x0,y0)
γ∗j and

γ̃j = γ∗j − ε1A(x0,y0)
γ∗j for ε su�ciently small so that γ̃ ∈ ΓNµ,ν . Now, maxk

∫
ckdγ

∗
k >

maxk
∫
ckdγ̃i, which contradicts that γ∗ is a minimizer. Then for i, j,

∫
cidγ

∗
i =

∫
cjdγ

∗
j .

And then: EOTc(µ, ν) = infγ∈ΓNµ,ν maxi
∫
cidγi.

It is clear that equity is veri�ed thanks to the previous proof. For proportionality, assume
the normalization: ∀i, there exists γi ∈ M1

+(X × Y) such that Vi(γi) = 1. Then for
each i, Vi(γi/N) = 1/N and (γi)i ∈ ΓNµ,ν . Then at optimum: ∀i, Vi(γ∗i ) ≥ 1/N and
proportionality is veri�ed.

F.6.3 Proof of Proposition 29

Proof. We prove along with Theorem 24 that the in�mum de�ning EOTc(µ, ν) is attained.
Let γ∗ be this in�mum. Then at optimum we have shown that for all i, j,

∫
cidγ

∗
i =∫

cjdγ
∗
j = t. Let denote for all i, µi = Π1]γ

∗
i and νi = Π2]γ

∗
i .
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Let assume there exists i such that
∫
cidγ

∗
i > Wci(µi, νi). Let γ′i realizing the in�mum

of Wci(µi, νi). Let ε > 0 be su�ciently small, then let de�ne γ̃ as follows: for all j 6= i,
γ̃j = (1 − ε)γ∗j and γ̃i = γ′i + ε

∑
j 6=i γ

∗
j . Then for all j 6= i,

∫
cjdγ̃j = (1 − ε)t and∫

cidγ̃i = Wci(µi, νi) + ε
∑

j 6=i
∫
cidγ

∗
j . It is clear that γ̃ ∈ ΓNµ,ν . For ε > 0 su�ciently

small, maxi
∫
cidγ̃i = (1− ε)t < t, which contradicts the optimality of γ∗.

A possible reformulation for EOT is:

EOTc(µ, ν) = min
(µi,νi)

N
i=1∈ΥNµ,ν

∀i, γi∈Πµ,ν

{
t s.t.

∫
cidγi = t

}

We previously show that at optimum the couplings are optimal transport plans, then:

EOTc(µ, ν) = min
(µi,νi)

N
i=1∈ΥNµ,ν

{t s.t. ∀i, Wci(µi, νi) = t}

which concludes the proof.

F.6.4 Proof of Theorem 24

To prove this theorem, one need to prove the three following technical lemmas. The �rst one
shows the weak compacity of ΓNµ,ν .

Lemma 8. LetX and Y be Polish spaces, and µ and ν two probability measures respectively onX
andY . ThenΓNµ,ν is sequentially compact for the weak topology induced by ‖γ‖ = max

i=1,..,N
‖γi‖TV.

Proof. Let (γn)n≥0 a sequence in ΓNµ,ν , and let us denote for all n ≥ 0, γn = (γni )Ni=1.
We �rst remark that for all i ∈ {1, ..., N} and n ≥ 0, ‖γni ‖TV ≤ 1 therefore for all i ∈
{1, ..., N}, (γni )n≥0 is uniformly bounded. Moreover as {µ} and {ν} are tight, for any
δ > 0, there existK ⊂ X andL ⊂ Y compact sets such that

µ(Kc) ≤ δ

2
and ν(Lc) ≤ δ

2
. (F.12)

Therefore, we obtain that for any for all i ∈ {1, ..., N},

γni (Kc × Lc) ≤
N∑
k=1

γnk (Kc × Lc) (F.13)

≤
N∑
k=1

γnk (Kc × Y) + γnk (X × Lc) (F.14)

≤ µ(Kc) + ν(Lc) = δ. (F.15)

Therefore, for all i ∈ {1, ..., N}, (γni )n≥0 is tight and uniformly bounded and Prokhorov’s
theorem [Dupuis and Ellis, 2011, Theorem A.3.15] guarantees for all i ∈ {1, ..., N}, (γni )n≥0
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admits a weakly convergent subsequence. By extracting a common convergent subsequence,
we obtain that (γn)n≥0 admits a weakly convergent subsequence. By continuity of the pro-
jection, the limit also lives in ΓNµ,ν and the result follows.

Next lemma generalizes Rockafellar-Fenchel duality to our case.

Lemma 9. Let V be a normed vector space and V ∗ its topological dual. Let V1, ..., VN be convex
functions and lower semi-continuous on V and E a convex function on V . Let V ∗1 , ...V ∗N , E∗ be
the Fenchel-Legendre transforms of V1, ...VN , E. Assume there exists z0 ∈ V such that for all i,
Vi(z0) <∞,E(z0) <∞, and for all i, Vi is continuous at z0. Then:

inf
u∈V

∑
i

Vi(u) + E(u) = sup
γ1...,γN ,γ∈V ∗∑

i γi=γ

−
∑
i

V ∗i (−γi)− E∗(γ)

Proof. This Lemma is an immediate application of Rockafellar-Fenchel duality theorem [Brezis,
2010, Theorem 1.12] and of Fenchel-Moreau theorem [Brezis, 2010, Theorem 1.11]. Indeed,

V =
N∑
i=1

Vi(u) is a convex function, lower semi-continuous and its Legendre-Fenchel trans-

form is given by:

V ∗(γ∗) = inf
N∑
i=1

γ∗i =γ∗

N∑
i=1

V ∗i (γ∗i ). (F.16)

Last lemma is an application of Sion’s Theorem to this problem.

Lemma 10. LetX andY be Polish spaces. Let c = (ci)1≤i≤N be a family of bounded below lower
semi-continuous costs onX × Y , then for µ ∈M1

+(X ) and ν ∈M1
+(Y), we have

EOTc(µ, ν) = sup
λ∈∆+

N

inf
γ∈ΓNµ,ν

N∑
i=1

λi

∫
X×Y

ci(x, y)dγi(x, y) (F.17)

and the infimum is attained.

Proof. Taking for granted that a minmax principle can be invoked, we have

sup
λ∈∆+

N

inf
γ∈ΓNµ,ν

N∑
i=1

λi

∫
X×Y

ci(x, y)dγi(x, y) = inf
γ∈ΓNµ,ν

sup
λ∈∆+

N

N∑
i=1

λi

∫
X×Y

ci(x, y)dγi(x, y)

= EOTc(µ, ν)
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But thanks to Lemma 8, we have that ΓNµ,ν is compact for the weak topology. And ∆+
N is

convex. The objective function f : (λ, γ) ∈ ∆+
N × ΓNµ,ν 7→

∑N
i=1 λi

∫
X×Y c

n
i dγi is bilin-

ear, hence convex and concave in its variables, and continuous with respect to λ. Moreover,
let (cni )n be non-decreasing sequences of bounded cost functions such that ci = supn c

n
i .

By monotone convergence, we get f(λ, γ) = supn
∑

i λi
∫
cni dγi, f(λ, .). So f the supre-

mum of continuous functions, then f is lower semi-continuous with respect to γ, therefore
Sion’s minimax theorem [Sion, 1958] holds.

We are now able to prove Theorem 24.

Proof. LetX andY be two Polish spaces. For all i ∈ {1, .., N}, we de�ne ci : X ×Y → R
a bounded below lower-semi cost function. The proof follows the exact same steps as those
in the proof of [Villani, 2003, Theorem 1.3]. First we suppose that X and Y are compact
and that for all i, ci is continuous, then we show that it can be extended to X and Y non
compact and �nally to ci only lower semi continuous.

First, let assumeX andY are compact and that for all i, ci is continuous. Let �xλ ∈ ∆+
N .

We recall the topological dual of the space of bounded continuous functions Cb(X × Y)
endowed with ‖.‖∞ norm, is the space of Radon measuresM(X ×Y) endowed with total
variation norm. We de�ne, for u ∈ Cb(X × Y):

V λ
i (u) =

{
0 if u ≥ −λici

+∞ else

and:

E(u) =

{∫
fdµ+

∫
gdν if ∃(f, g) ∈ Cb(X )× Cb(Y), u = f + g

+∞ else

One can show that for all i, V λ
i is convex and lower semi-continuous (as the sublevel sets are

closed) and Eλ is convex. More over for all i, these functions continuous in u0 ≡ 1 the
hypothesis of Lemma 9 are satis�ed.

Let now compute the Fenchel-Legendre transform of these function. Letγ ∈M(X×Y)
:

V λ∗
i (−γ) = sup

u∈Cb(X×Y)

{
−
∫
udγ; u ≥ −λici

}

=

{∫
λicidγ if γ ∈M+(X × Y)

+∞ otherwise
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On the other hand:

Eλ∗(γ) =

{
0 if ∀(f, g) ∈ Cb(X )× Cb(Y),

∫
fdµ+

∫
gdν =

∫
(f + g)dγ

+∞ else

This dual function is �nite and equals 0 if and only if that the marginals of the dual variable
γ are µ and ν.

Applying Lemma 9, we get:

inf
u∈Cb(X×Y)

∑
i

V λ
i (u) + E(u) = sup

γ1,...,γN ,γ∈M(X×Y)∑
γi=γ

∑
−V λ∗

i (γi)− Eλ∗(−γ)

Hence, we have shown that, whenX and Y are compact sets, and the costs (ci)i are con-
tinuous:

sup
(f,g)∈Fλc

∫
fdµ+

∫
gdν = inf

γ∈ΓNµ,ν

∑
i

λi

∫
cidγi

Let now prove the result holds when the spacesX andY are not compact. We still suppose
that for all i, ci is uniformly continuous and bounded. We denote‖c‖∞ := supi sup(x,y)∈X×Y |ci(x, y)|.
Let de�ne Iλ(γ) :=

∑
i λi
∫
X×Y cidγi

Let γ∗ ∈ ΓNµ,ν such that Iλ(γ∗) = minγ∈ΓNµ,ν I
λ(γ). The existence of the minimum

comes from the lower-semi continuity of Iλ and the compacity of ΓNµ,ν for weak topology.
Let �x δ ∈ (0, 1). X andY are Polish spaces then∃X0 ⊂ X ,Y0 ⊂ Y compacts such that

µ(X c0 ) ≤ δ and µ(Yc0) ≤ δ. It follows that ∀i, γ∗i ((X0 × Y0)c) ≤ 2δ. Let de�ne γ∗0 such
that for all i, γ∗0i =

1X0×Y0∑
i γ
∗
i (X0×Y0)γ

∗
i . We de�ne µ0 = Π1]

∑
i γ
∗0
i and ν0 = Π2]

∑
i γ
∗0
i .

We then naturally de�neΓN0,µ0,ν0
:=
{

(γi)1≤i≤N ∈M+(X0 × Y0)N s.t. Π1]
∑

i γi = µ0 andΠ2]
∑

i γi = ν0

}
and Iλ0 (γ0) :=

∑
i λi
∫
X0×Y0

cidγ0,i for γ0 ∈ ΓN0,µ0,ν0
.

Let γ̃0 verifying Iλ0 (γ̃0) = minγ0∈ΠN
0,µ0,ν0

Iλ0 (γ0). Let γ̃ = (
∑

i γ
∗
i (X0 × Y0))γ̃0 +

1(X0×Y0)cγ
∗ ∈ ΓNµ,ν . Then we get

Iλ(γ̃) ≤ min
γ0∈ΓN0,µ0,ν0

Iλ0 (γ0) + 2
∑
|λi|‖c‖∞δ

We have already proved that:

sup
(f,g)∈Fλ0,c

Jλ0 (f, g) = inf
γ0∈ΓN0,µ0,ν0

Iλ0 (γ0)
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with Jλ0 (f, g) =
∫
fdµ0 +

∫
gdν0 and Fλ0,c is the set of (f, g) ∈ Cb(X0) × Cb(Y0)

satisfying, for every i, f ⊕ g ≤ mini λici. Let (f̃0, g̃0) ∈ Fλ0,c such that :

Jλ0 (f̃0, g̃0) ≥ sup
(f,g)∈Fλ0,c

Jλ0 (f, g)− δ

Since Jλ0 (0, 0) = 0, we get sup Jλ0 ≥ 0 and then, Jλ0 (f̃0, g̃0) ≥ δ ≥ −1. For every
γ0 ∈ ΓN0,µ0,ν0

:

Jλ0 (f̃0, g̃0) =

∫
(f̃0(x) + g̃0(y))dγ0(x, y)

then we have the existence of (x0, y0) ∈ X0 × Y0 such that : f̃0(x0) + g̃0(y0) ≥ −1.
If we replace (f̃0, g̃0) by (f̃0 − s, g̃0 + s) for an accurate s, we get that: f̃0(x0) ≥ 1

2 and
g̃0(y0) ≥ 1

2 , and then ∀(x, y) ∈ X0 × Y0:

f̃0(x) ≤ c′(x, y0)− g̃0(y0) ≤ c′(x, y0) +
1

2

g̃0(y) ≤ c′(x0, y)− f̃0(x0) ≤ c′(x0, y) +
1

2

where c′ := mini λici. Let de�ne f̄0(x) = infy∈Y0 c
′(x, y) − g̃0(y) for x ∈ X . Then

f̃0 ≤ f̄0 on X0. We then get Jλ0 (f̄0, g̃0) ≥ Jλ0 (f̃0, g̃0) and f̄0 ≤ c′(., y0) + 1
2 on X . Let

de�ne ḡ0(y) = infx∈X c
′(x, y)− f̄0(y). By construction (f0, g0) ∈ Fλc since the costs are

uniformly continuous and bounded and Jλ0 (f̄0, ḡ0) ≥ Jλ0 (f̄0, g̃0) ≥ Jλ0 (f̃0, g̃0). We also
have ḡ0 ≥ c′(x0, .) + 1

2 on Y . Then we have in particular: ḡ0 ≥ −‖c‖∞ − 1
2 on X and

f̄0 ≥ −‖c‖∞ − 1
2 onY . Finally:

Jλ(f̄0, ḡ0) :=

∫
X0

f̄dµ0 +

∫
Y0

ḡ0dν

=
∑
i

γ∗i (X0 × Y0)

∫
X0×Y0

(f̄0(x) + ḡ0(y))d

(∑
i

γ∗0i (x, y)

)

+

∫
(X0×Y0)c

f̄0(x) + ḡ0(y)d

(∑
i

γ∗i (x, y)

)

≥ (1− 2δ)

(∫
X0

f̄0dµ0 +

∫
Y0

ḡ0dν0

)
− (2‖c‖∞ + 1)

∑
i

γ∗((X0 × Y0)c)

≥ (1− 2δ)Jλ0 (f̄0, ḡ0)− 2
∑
|λi|(2‖c‖∞ + 1)δ

≥ (1− 2δ)Jλ0 (f̃0, g̃0)− 2
∑
|λi|(2‖c‖∞ + 1)δ

≥ (1− 2δ)(inf Iλ0 − δ)− 2
∑
|λi|(2‖c‖∞ + 1)δ
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≥ (1− 2δ)(inf Iλ − (2
∑
|λi|‖c‖∞ + 1)δ)− 2

∑
|λi|(2‖c‖∞ + 1)δ

This being true for arbitrary small δ, we get sup Jλ ≥ inf Iλ. The other sens is always
true then:

sup
(f,g)∈Fλc

∫
fdµ+

∫
gdν = inf

γ∈ΓNµ,ν

∑
i

λi

∫
cidγi

for ci uniformly continuous andX andY non necessarily compact.

Let now prove that the result holds for lower semi-continuous costs. Let c := (ci)i
be a collection of lower semi-continuous costs. Let (cni )n be non-decreasing sequences of
bounded below cost functions such that ci = supn c

n
i . Let �x λ ∈ ∆+

N . From last step, we
have shown that for all n:

inf
γ∈ΓNµ,ν

Iλn(γ) = sup
(f,g)∈Fλcn

∫
fdµ+

∫
gdν (F.18)

where Iλn(γ) =
∑

i λi
∫
cni dγi. First it is clear that:

sup
(f,g)∈Fλc

∫
fdµ+

∫
gdν ≤ sup

(f,g)∈Fλcn

∫
fdµ+

∫
gdν (F.19)

Let show that:

inf
γ∈ΓNµ,ν

Iλ(γ) = sup
n

inf
γ∈ΓNµ,ν

Iλn(γ) = lim
n

inf
γ∈ΓNµ,ν

Iλn(γ)

where Iλ(γ) =
∑

i λi
∫
cidγi.

Let (γn,k)k a minimizing sequence ofΓNµ,ν for the problem infγ∈ΓNµ,ν
∑

i λi
∫
cni dγi. By

Lemma 8, up to an extraction, there exists γn ∈ ΓNµ,ν such that (γn,k)k converges weakly to
γn. Then:

inf
γ∈ΓNµ,ν

Iλn(γ) = Iλn(γn)

Up to an extraction, there also exists γ∗ ∈ ΓNµ,ν such that γn converges weakly to γ∗. For
n ≥ m, Iλn(γn) ≥ Iλm(γn) ≥ Iλm(γm), so by continuity of Iλm:

lim
n
Iλn(γn) ≥ lim sup

n
Iλm(γn) ≥ Iλm(γ∗)

By monotone convergence, Iλm(γ∗)→ Iλ(γ∗) and limn I
λ
n(γn) ≥ Iλ(γ∗) ≥ infγ∈ΓNµ,ν I

λ(γ).
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Along with Eqs. F.18 and F.19, we get that:

inf
γ∈ΓNµ,ν

Iλ(γ) ≤ sup
(f,g)∈Fλc

∫
fdµ+

∫
gdν

The other sens being always true, we have then shown that, in the general case we still have:

inf
γ∈ΓNµ,ν

Iλ(γ) = sup
(f,g)∈Fλc

∫
fdµ+

∫
gdν

To conclude, we apply Lemma 10, and we get:

sup
λ∈∆+

N

sup
(f,g)∈Fλc

∫
fdµ+

∫
gdν = sup

λ∈∆+
N

inf
γ∈ΓNµ,ν

Iλ(γ)

= EOTc(µ, ν)

F.6.5 Proof of Proposition 30

Proof. Let recall that, from standard optimal transport results:

EOTc(µ, ν) = sup
u∈Φc

∫
udµdν

withΦc :=
{
u ∈ Cb(X × Y) s.t. ∃λ ∈ ∆+

N , ∃φ ∈ Cb(X ), u = φcc ⊕ φc with c = mini λici
}

where φc is the c-transform of φ, i.e. for y ∈ Y , φc(y) = infx∈X c(x, y)− φ(x).
Let denote ω1, . . . , ωN the continuity modulii of c1, ..., cN . The existence of continuity

modulii is ensured by the uniform continuity of c1, . . . , cN on the compact sets X × Y
(Heine’s theorem). Then a modulus of continuity for mini λici is

∑
i λiωi. As φc and φcc

share the same modulus of continuity than c = mini λici, for u is Φc, a common modulus
of continuity is 2 ×∑i ωi. More over, it is clear that for all x, y, {u(x, y) s.t. u ∈ Φc}
is compact. Then, applying Ascoli’s theorem, we get, that Φc is compact for ‖.‖∞ norm.
By continuity of u →

∫
udµdν, the supremum is attained, and we get the existence of the

optimum u∗. The existence of optima (λ∗, f∗, g∗) immediately follows.
Let �rst assume that (γk)

N
k=1 is a solution of Eq. (F.1) and (λ, f, g) is a solution of Eq. (F.5).

Then it is clear that for all i, j, f ⊕ g ≤ λici, (γk)
N
k=1 ∈ ΓNµ,ν and

∫
cjdγj =

∫
cidγi (by

Proposition 28). Let k ∈ {1, . . . , N}. Moreover, by Theorem 24:

0 =

∫
fdµ+

∫
gdν −

∫
cidγi
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=
∑∫

(f(x) + g(y))dγi(x, y)−
∑
i

λi

∫
ci(x, y)dγi(x, y)

=
∑∫

(f(x) + g(y)− λici(x, y))dγi(x, y)

Since f⊕g ≤ λici and γi are positive measures then f⊕g = λici, γi-almost everywhere.
Reciprocally, let assume that there exist (γk)

N
k=1 ∈ ΓNµ,ν and (λ, f, g) ∈ ∆+

n ×Cb(X )×
Cb(Y) such that ∀i ∈ {1, ..., N}, f ⊕ g ≤ λici, ∀i, j ∈ {1, ..., N}

∫
cidγi =

∫
cjdγj

and f ⊕ g = λici γi-a.e.. Then, for any k:∫
ckdγk =

∑
i

λi

∫
cidγi

=
∑
i

∫
(f(x) + g(y))dγi(x, y)

=

∫
f(x)dµ(x) +

∫
g(y)dν(y)

≤ EOTc(µ, ν) by Theorem 24

then γk is solution of the primal problem. We also have for any k:

∫
fdµ+

∫
gdν =

∑
i

∫
(f(x) + g(y))dγi(x, y)

=
∑
i

∫
λicidγi

=

∫
ckdγk

≥ EOTc(µ, ν)

then, thanks to Theorem 24, (λ, f, g) is solution of the dual problem.
Let now proof the result stated in Remark 14. Let assume the costs are strictly positive or strictly

negative. If there exist i such thatλi = 0, thanks to the condition f⊕g ≤ λici, we get f⊕g ≤ 0
and then f ⊕ g = 0 which contradicts the conditions f ⊕ g = λkck for all k.

F.6.6 Proof of Proposition 31

Before proving the result let us �rst introduce the following lemma.
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Lemma 11. LetX and Y be Polish spaces. Let c := (ci)1≤i≤N a family of bounded below contin-
uous costs. For (x, y) ∈ X × Y and λ ∈ ∆+

N , we define

cλ(x, y) := min
i=1,...,N

(λici(x, y))

then for any (µ, ν) ∈M1
+(X )×M1

+(Y)

EOTc(µ, ν) = sup
λ∈∆+

N

Wcλ(µ, ν) (F.20)

Proof. Let (µ, ν) ∈ M1
+(X ) ×M1

+(Y) and c := (ci)1≤i≤N cost functions on X × Y .
Let λ ∈ ∆+

N , then by Proposition 24:

EOTc(µ, ν) = sup
λ∈∆+

N

sup
(f,g)∈Fλc

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)

Therefore by denoting cλ := mini(λici) which is a continuous. The dual form of the
classical Optimal Transport problem gives that:

sup
(f,g)∈Fλc

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y) = Wcλ(µ, ν)

and the result follows.

Let us now prove the result of Proposition 31.

Proof. Let µ and ν be two probability measures. Let α ∈ (0, 1]. Note that if d is a metric
then dα too. Therefore in the following we consider d a general metric on X × X . Let
c1 : (x, y)→ 2× 1x 6=y and c2 = dα. For all λ ∈ [0, 1):

cλ(x, y) := min(λc1(x, y), (1− λ)c2(x, y)) = min(2λ, (1− λ)d(x, y))

de�nes a distance onX × X . Then according to [Villani, 2003, Theorem 1.14]:

Wcλ(µ, ν) = sup
f s.t. f 1−cλ Lipschitz

∫
fdµ−

∫
fdν

Then thanks to Lemma 11 we have

EOT(c1,c2)(µ, ν) = sup
λ∈[0,1],f s.t. f 1−cλ Lipschitz

∫
fdµ−

∫
fdν

Let now prove that in this case: EOT(c1,c2)(µ, ν) = βd(µ, ν). Let λ ∈ [0, 1) and f a
cλ Lipschitz function. f is lower bounded: let m = inf f and (un)n a sequence satisfying
f(un) → m. Then for all x, y, f(x) − f(y) ≤ 2λ and f(x) − f(y) ≤ (1 − λ)d(x, y).

239



F Equitable and Optimal Transport with Multiple Agents

Let de�ne g = f − m − λ. For x �xed and for all n, f(x) − f(un) ≤ 2λ, so taking
the limit in n we get f(x) − m ≤ 2λ. So we get that for all x, y, g(x) ∈ [−λ,+λ] and
g(x)− g(y) ∈ [−(1−λ)d(x, zy), (1−λ)d(x, y)]. Then ||g||∞ ≤ λ and ||g||d ≤ 1−λ.
By construction, we also have

∫
fdµ−

∫
fdν =

∫
gdµ−

∫
gdν.Then ||g||∞+ ||g||d ≤ 1.

So we get that EOT(c1,c2)(µ, ν) ≤ βd(µ, ν).
Reciprocally, let g be a function satisfying ||g||∞+||g||d ≤ 1. Let de�nef = g+||g||∞ and
λ = ||g||∞. Then, for all x, y, f(x) ∈ [0, 2λ] and so f(x) − f(y) ≤ 2λ. It is immediate
that f(x) − f(y) ∈ [−(1 − λ)d(x, y), (1 − λ)d(x, y)]. Then we get f(x) − f(y) ≤
min(λ, (1 − λ)d(x, y)). And by construction, we still have

∫
fdµ −

∫
fdν =

∫
gdµ −∫

gdν. So EOT(c1,c2)(µ, ν) ≥ βd(µ, ν).

Finally we get EOT(c1,c2)(µ, ν) = βd(µ, ν) when c1 : (x, y) → 2 × 1x 6=y and c2 = d
a distance onX × X .

F.6.7 Proof of Proposition 32

Lemma 12. Let x1, . . . , xN ≥ 0, then:

sup
λ∈∆+

N

min
i
λixi =

1∑
i

1
xi

Proof. First if there exists i such thatxi = 0, we immediately have supλ∈∆+
N

mini λixi = 0.
g : λ 7→ mini λixi is a continuous function on the compact set λ ∈ ∆+

N . Let denote λ∗
the maximum of g.
Let show that for all i, j, λ∗ixi = λ∗jxj . Let denote i0, . . . , ik the indices such that λ∗ilxil =
mini λ

∗
ixi. Let assume there exists j0 such that: λ∗j0xj0 > mini λ

∗
ixi, and that all other

indices i have a larger λ∗ixi ≥ λ∗j0xj0 . Then for ε > 0 su�ciently small, let λ̃ de�ned as:
λ̃j0 = λ∗j0 − ε, λ̃il = λ∗il + ε/k for all l ∈ {1, . . . , k} and λ̃i = λ∗i for all other indices.
Then λ̃ ∈ ∆+

N and g(λ∗) < g(λ̃), which contradicts that λ∗ is the maximum.
Then at the optimum for all i, j, λ∗ixi = λ∗jxj . So λ∗ixi = C for a certain constant C .
Moreover

∑
i λ
∗
i = 1. Then 1/C =

∑
i 1/xi. Finally, for all i,

λ∗i =
1/xi∑
i 1/xi

and then:

sup
λ∈∆+

N

min
i
λixi =

1∑
i

1
xi

.
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Proof. Let µ and ν be two probability measures respectively onX andY . Let c := (ci)i be
a family of cost functions. Let de�ne for λ ∈ ∆+

N , cλ(x, y) := mini(λici(x, y)). We have,
by linearity Wcλ(µ, ν) ≤ mini(λiWci(µ, ν)). So we deduce by Lemma 11:

EOTc(µ, ν) = sup
λ∈∆+

N

Wcλ(µ, ν)

≤ sup
λ∈∆+

N

min
i
λiWci(µ, ν)

=
1∑

i
1

Wci (µ,ν)

by Lemma 12

which concludes the proof.

F.6.8 Proof of Theorem 25

Proof. To show the strong duality of the regularized problem, we use the same sketch of
proof as for the strong duality of the original problem. Let �rst assume that, for all i, ci is

continuous on the compact setX ×Y . Let �x λ ∈ ∆+
N . We de�ne, for all u ∈ Cb(X ×Y):

V λ
i (u) = εi

(∫
(x,y)∈X×Y

exp

{−u(x, y)− λici(x, y)

εi

}
dµ(x)dν(y)− 1

)

and:

E(u) =

{∫
fdµ+

∫
gdν if ∃(f, g) ∈ Cb(X )× Cb(Y), u = f + g

+∞ else

Let compute the Fenchel-Legendre transform of these functions. Let γ ∈M(X × Y):

V λ∗
i (−γ) = sup

u∈Cb(X×Y)

−
∫
udγ − εi

(∫
(x,y)∈X×Y

exp

{−u(x, y)− λici(x, y)

εi

}
dµ(x)dν(y)− 1

)

However, by density of Cb(X × Y) in L1
dµ⊗ν(X × Y), the set of integrable functions for

µ⊗ ν measure, we deduce that

V λ∗
i (−γ) = sup

u∈L1
dµ⊗ν(X×Y)

−
∫
udγ − εi

(∫
(x,y)∈X×Y

exp

{−u(x, y)− λici(x, y)

εi

}
dµ(x)dν(y)− 1

)
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This supremum equals +∞ if γ is not positive and not absolutely continuous with regard to
µ⊗ν. Let us now denoteFγ,λ(u) := −

∫
udγ−εi

(∫
(x,y)∈X×Y exp

{
−u(x,y)−λici(x,y)

εi

}
dµ(x)dν(y)− 1

)
.

Fγ,λ∗ is Fréchet di�erentiable and its maximum is attained for u∗ = εi log
(

dγ
dµ⊗ν

)
+ λici.

Therefore we obtain that

V λ∗
i (−γ) = εi

(∫
log

(
dγ

dµ⊗ ν

)
dγ + 1− γ(X × Y)

)
+ λi

∫
cidγ

= λi

∫
cidγ + εiKL(γi||µ× ν)

Thanks to the compactness of X × Y , all the V λ
i for i ∈ {1, ..., N} are continuous on

Cb(X × Y). Therefore by applying Lemma 9, we obtain that:

inf
u∈Cb(X×Y)

∑
i

V λ
i (u) + E(u) = sup

γ1...,γN ,γ∈M(X×Y)∑
i γi=γ

−
∑
i

V λ∗
i (γi)− E∗(−γ)

sup
f∈Cb(X ), g∈Cb(Y)

∫
fdµ+

∫
gdν

−
N∑
i=1

εi

(∫
(x,y)∈X×Y

exp

{
f(x) + g(y)− λici(x, y)

εi

}
dµ(x)dν(y)− 1

)

= inf
γ∈ΓNµ,ν

N∑
i=1

λi

∫
cidγi + εiKL(γi||µ⊗ ν)

Therefore by considering the supremum over the λ ∈ ∆N , we obtain that

sup
λ∈∆+

N

sup
f∈Cb(X ), g∈Cb(Y)

∫
fdµ+

∫
gdν

−
N∑
i=1

εi

(∫
(x,y)∈X×Y

exp

{
f(x) + g(y)− λici(x, y)

εi

}
dµ(x)dν(y)− 1

)

= sup
λ∈∆+

N

inf
γ∈ΓNµ,ν

N∑
i=1

λi

∫
cidγi + εiKL(γi||µ⊗ ν)

Let f : (λ, γ) ∈ ∆+
N×ΓNµ,ν 7→

∑N
i=1 λi

∫
cidγi+εiKL(γi||µ⊗ν). f is clearly concave

and continuous in λ. Moreover γ 7→ KL(γi||µ ⊗ ν) is convex and lower semi-continuous
for weak topology [Dupuis and Ellis, 2011, Lemma 1.4.3]. Hence f is convex and lower-semi
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continuous in γ. ∆+
N is convex, and ΓNµ,ν is compact for weak topology (see Lemma 8). So

by Sion’s theorem, we get the expected result:

min
γ∈ΓNµ,ν

sup
λ∈∆+

N

∑
i

λi

∫
cidγi +

∑
i

εiKL(γi||µ⊗ ν)

= sup
λ∈∆+

N

sup
(f,g)∈Cb(X )×Cb(Y)

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)

−
N∑
i=1

εi

(∫
X×Y

e
f(x)+g(y)−λici(x,y)

εi dµ(x)dν(y)− 1

)

Moreove by �xing γ ∈ ΓNµ,ν , we have

sup
λ∈∆+

N

∑
i

λi

∫
cidγi +

∑
i

εiKL(γi||µ⊗ ν)

= max
i

∫
cidγi +

∑
j

εjKL(γj ||µ⊗ ν)

which concludes the proof in case of continuous costs. A similar proof as the one of the
Theorem 25 allows to extend the results for lower semi-continuous cost functions.
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F.7 Appendix: Discrete cases

F.7.1 Exact discrete case

Let a ∈ ∆+
N and b ∈ ∆+

m and C := (Ci)1≤i≤N ∈ (Rn×m)
N be N cost matrices. Let also

X := {x1, ..., xn} and Y := {y1, ..., ym} two subset of X and Y respectively. Moreover
we de�ne the two following discrete measure µ =

∑n
i=1 aiδxi and ν =

∑n
i=1 biδyi and for

all i, Ci = (ci(xk, yl))1≤k≤n,1≤l≤m where (ci)
N
i=1 a family of cost functions. The discretized

multiple cost optimal transport primal problem can be written as follows:

EOTc(µ, ν) = ÊOTC(a, b) := inf
P∈ΓNa,b

max
i
〈Pi, Ci〉

where ΓNa,b :=
{

(Pi)1≤i≤N ∈
(
Rn×m+

)N s.t. (
∑

i Pi)1m = a and (
∑

i P
T
i )1n = b

}
. As in

the continuous case, strong duality holds and we can rewrite the dual in the discrete case also.

Proposition 33 (Duality for the discrete problem). Let a ∈ ∆+
N and b ∈ ∆+

m and C :=

(Ci)1≤i≤N ∈ (Rn×m)
N beN cost matrices. Strong duality holds for the discrete problem and

ÊOTC(a, b) = sup
λ∈∆+

N

sup
(f,g)∈FλC

〈f, a〉+ 〈g, b〉.

whereFλC := {(f, g) ∈ Rn+ × Rm+ s.t. ∀i ∈ {1, ..., N}, f1Tm + 1ng
T ≤ λiCi}.

F.7.2 Entropic regularized discrete case

We now extend the regularization in the discrete case. Let a ∈ ∆+
n and b ∈ ∆+

m and C :=

(Ci)1≤i≤N ∈ (Rn×m)
N beN cost matrices and ε = (εi)1≤i≤N be nonnegative real numbers.

The discretized regularized primal problem is:

ÊOT
ε

C(a, b) = inf
P∈ΓNa,b

max
i
〈Pi, Ci〉 −

N∑
i=1

εiH(Pi)

whereH(P ) =
∑

i,j Pi,j(logPi,j−1) forP = (Pi,j)i,j ∈ Rn×m+ is the discrete entropy. In the
discrete case, strong duality holds thanks to Lagrangian duality and Slater su�cient conditions:

Proposition 34 (Duality for the discrete regularized problem). Let a ∈ ∆+
n and b ∈ ∆+

m and
C := (Ci)1≤i≤N ∈ (Rn×m)

N be N cost matrices and ε := (εi)1≤i≤N be non negative reals.
Strong duality holds and by denotingKλi

i = exp(−λiCi/εi), we have

ÊOT
ε

C(a, b) = sup
λ∈∆+

N

sup
f∈Rn, g∈Rm

〈f, a〉+ 〈g, b〉 −
N∑
i=1

εi〈ef/εi ,Kλi
i e

g/εi〉.

The objective function for the dual problem is strictly concave in (λ, f, g) but is neither smooth
or strongly convex.
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Proof. The proofs in the discrete case are simpler and only involves Lagrangian duality [Boyd
et al., 2004, Chapter 5]. Let do the proof in the regularized case, the one for the standard
problem follows exactly the same path.

Let a ∈ ∆+
N and b ∈ ∆+

m and C := (Ci)1≤i≤N ∈ (Rn×m)
N beN cost matrices.

ÊOT
ε

C(a, b) = inf
P∈ΓNa,b

max
1≤i≤N

〈Pi, Ci〉 −
N∑
i=1

εiH(Pi)

= inf
(t,P )∈R×(Rn×m+ )

N

(
∑
i Pi)1m=a

(
∑
i P

T
i )1n=b

∀j, 〈Pj ,Cj〉≤t

t−
N∑
i=1

εiH(Pi)

= inf
(t,P )∈R×(Rn×m+ )

N
sup

f∈Rn, g∈Rm, λ∈RN+
t+

N∑
j=1

λj(〈Pj , Cj〉 − t)−
N∑
i=1

εiH(Pi)

+ fT

(
a−

∑
i

Pi1m

)
+ gT

(
b−

∑
i

P Ti 1n

)

The constraints are quali�ed for this convex problem, hence by Slater’s su�cient condi-
tion [Boyd et al., 2004, Section 5.2.3], strong duality holds and:

ÊOT
ε

C(a, b) = sup
f∈Rn, g∈Rm, λ∈RN+

inf
(t,P )∈R×(Rn×m+ )

N
t+

N∑
j=1

λj(〈Pj , Cj〉 − t)−
N∑
j=1

εjH(Pj)

+ fT

a− N∑
j=1

Pi1m

+ gT

b− N∑
j=1

P Ti 1n


= sup

f∈Rn
g∈Rm
λ∈∆+

N

〈f, a〉+ 〈g, b〉+

N∑
j=1

inf
Pj∈Rn×m+

(
〈Pj , λjCj − f1Tn − 1mg

T 〉 − εjH(Pj)
)

But for every i = 1, .., N the solution of

inf
Pj∈Rn×m+

(
〈Pj , λjCj − f1Tn − 1mg

T 〉 − εjH(Pj)
)

is

Pj = exp

(
f1Tn + 1mg

T − λjCj
εi

)
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Finally we obtain that

ÊOT
ε

C(a, b) = sup
f∈Rn, g∈Rm, λ∈∆+

N

〈f, a〉+ 〈g, b〉 −
N∑
k=1

εk
∑
i,j

exp

(
fi + gj − λkCi,jk

εk

)
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F.8 Appendix: Other results

F.8.1 Utilitarian and Optimal Transport

Proposition 35. LetX andY be Polish spaces. Let c := (ci)1≤i≤N be a family of bounded below
continuous cost functions onX × Y , and µ ∈M1

+(X ) and ν ∈M1
+(Y). Then we have:

inf
(γi)

N
i=1∈ΓNµ,ν

∑
i

∫
cidγi = Wmini(ci)(µ, ν) (F.21)

Proof. The proof is a by-product of the proof of Theorem 24. The continuity of the costs
is necessary since mini(ci) is not necessarily lower semi-continuous when the costs are sup-
posed lower semi-continuous.

Remark 15. We thank an anonymous reviewer for noticing that the utilitarian problem can be
written also as an Optimal Transport on the spaceZ = (X ×{1, . . . , N})× (Y ×{1, . . . , N}):

min
γ∈Γ̃µ,ν

∫
x,i,y,j

c((x, i), (y, j))dγ(x, i, y, j)

where the constraint space is Γ̃µ,ν :=
{
γ ∈M+

1 (Z) s.t. ΠXγ = µ, ΠYγ = ν
}

.

F.8.2 MOT generalizes OT

Proposition 36. Let X and Y be Polish spaces. Let N ≥ 0, c = (ci)1≤i≤N be a family of
nonnegative lower semi-continuous costs and let us denote for allk ∈ {1, . . . , N}, ck = (ci)1≤i≤k .
Then for all k ∈ {1, . . . , N}, there exists a family of costs dk ∈ LSC(X × Y)N such that

EOTdk(µ, ν) = EOTck(µ, ν) (F.22)

Proof. For all k ∈ {1, ..., N}, we de�ne dk := (c1, ..., (N − k + 1) × ck, ..., (N − k +
1)× ck). Therefore, thanks to Lemma 11 we have

EOTdk(µ, ν) = sup
λ∈∆+

N

Wcλ(µ, ν) (F.23)

= sup
(λ,γ)∈∆kn

inf
γ∈Γµ,ν

∫
X×Y

min(λ1c1, .., λk−1ck−1, λkck)dγ (F.24)

where∆k
n := {(λ, γ) ∈ ∆+

N×R+: γ = (N−k+1)×min(λk, ..., λN )}. First remarks
that

γ = 1−
k−1∑
i=1

λi ⇐⇒ (N − k + 1)×min(λk, ..., λN ) =

N∑
i=k

λi (F.25)
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⇐⇒ λk = ... = λN (F.26)

But in that case (λ1, ..., λk−1, γ) ∈ ∆k and therefore we obtain that

EOTdk(µ, ν) ≥ sup
λ∈∆k

inf
γ∈Γµ,ν

∫
X×Y

min(λ1c1, .., λk−1ck−1, γck)dγ = EOTck(µ, ν)

Finally by de�nition we have γ ≤∑N
i=k λi = 1−∑k−1

i=1 λi and therefore

∫
X×Y

min(λ1c1, .., λk−1ck−1, γck)dγ ≤
∫
X×Y

min

(
λ1c1, .., λk−1ck−1,

(
1−

k−1∑
i=1

λi

)
ck

)

Then we obtain that

EOTdk(µ, ν) ≤ EOTck(µ, ν)

and the result follows.

Proposition 37. Let X and Y be Polish spaces and c := (ci)1≤i≤N a family of nonnegative
lower semi-continuous costs on X × Y . We suppose that, for all i, ci = N × c1. Then for any
(µ, ν) ∈M1

+(X )×M1
+(Y)

EOTc(µ, ν) = EOTc1(µ, ν) = Wc1(µ, ν). (F.27)

Proof. Let c := (ci)1≤i≤N such that for all i, ci = c1. for all (x, y) ∈ X ×Y andλ ∈ ∆+
N ,

we have:

cλ(x, y) := min
i

(λici(x, y)) = min
i

(λi)c1(x, y)

Therefore we obtain from Lemma 11 that

EOTc(µ, ν) = sup
λ∈∆+

N

Wcλ(µ, ν) (F.28)

But we also have that:

Wcλ(µ, ν) = inf
γ∈Γ (µ,ν)

∫
X×Y

min
i

(λici(x, y))dγ(x, y)

= min
i

(λi) inf
γ∈Γ (µ,ν)

∫
X×Y

c1(x, y)dγ(x, y)

= min
i

(λi)Wc1(µ, ν)

Finally by taking the supremum over λ ∈ ∆+
N we conclude the proof.
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F.8.3 Regularized EOT tends to EOT

Proposition 38. For (µ, ν) ∈M1
+(X )×M1

+(Y) we have lim
ε→0

EOTεc(µ, ν) = EOTc(µ, ν).

Proof. Let (εl = (εl,1, . . . , εl,N ))l a sequence converging to 0. Letγl = (γl,1, . . . , γl,N ) be
the optimum ofEOTεlc (µ, ν). By Lemma 8, up to an extraction,γl → γ? = (γ?1 , . . . , γ

?
N ) ∈

ΓNµ,ν . Let now γ = (γ1, . . . , γN ) be the optimum of EOTc(µ, ν). By optimality of γ and
γl, for all i:

0 ≤
∫
cidγl,i −

∫
cidγi ≤

∑
i

εl,i(KL(γi||µ⊗ ν)− KL(γl,i||µ⊗ ν))

By lower semi continuity of KL(.||µ ⊗ ν) and by taking the limit inferior as l → ∞, we
get for all i, lim inf`→∞

∫
cidγl,i =

∫
cidγi. Moreover by continuity of γ →

∫
cidγi

we therefore obtain that for all i,
∫
cidγ

?
i ≤

∫
cidγi. Then by optimality of γ the result

follows.

F.8.4 Projected Accelerated Gradient Descent

Proposition 39. Let a ∈ ∆+
N and b ∈ ∆+

m and C := (Ci)1≤i≤N ∈ (Rn×m)
N be N cost

matrices and ε := (ε, ..., ε) where ε > 0. Then by denotingKλi
i = exp(−λiCi/ε), we have

ÊOT
ε

C(a, b) = sup
λ∈∆+

N

sup
f∈Rn, g∈Rm

F εC(λ, f, g) := 〈f, a〉+ 〈g, b〉 − ε
[

log

(
N∑
i=1

〈ef/ε,Kλi
i e

g/ε〉
)

+ 1

]
.

Moreover,F εC is concave, di�erentiable and∇F is
max

(
max

1≤i≤N
‖Ci‖2∞,2N

)
ε Lipschitz-continuous on

RN × Rn × Rm.

Proof. LetQ :=
{
P := (P1, ..., PN ) ∈ (Rn×m+ )N :

∑N
k=1

∑
i,j P

i,j
k = 1

}
. Note that

ΓNa,b ⊂ Q, therefore from the primal formulation of the problem we have that

ÊOT
ε

C(a, b) = sup
λ∈∆+

N

inf
P∈ΓNa,b

N∑
i=1

λi〈Pi, Ci〉 − εH(Pi)

= sup
λ∈∆+

N

inf
P∈Q

sup
f∈Rn, g∈Rm

N∑
i=1

λi〈Pi, Ci〉 − εH(Pi)

+ fT

(
a−

∑
i

Pi1m

)
+ gT

(
b−

∑
i

P Ti 1n

)
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The constraints are quali�ed for this convex problem, hence by Slater’s su�cient condi-
tion [Boyd et al., 2004, Section 5.2.3], strong duality holds. Therefore we have

ÊOT
ε

C(a, b) = sup
λ∈∆+

N

sup
f∈Rn, g∈Rm

inf
P∈Q

N∑
i=1

λi〈Pi, Ci〉 − εH(Pi)

+ fT

(
a−

∑
i

Pi1m

)
+ gT

(
b−

∑
i

P Ti 1n

)
= sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

〈f, a〉+ 〈g, b〉

+ inf
P∈Q

N∑
k=1

∑
i,j

P i,jk

(
λkC

i,j
k + ε

(
log
(
P i,jk

)
− 1
)
− fi − gj

)

Let us now focus on the following problem:

inf
P∈Q

N∑
k=1

∑
i,j

P i,jk

(
λkC

i,j
k + ε

(
log
(
P i,jk

)
− 1
)
− fi − gj

)
Note that for all i, j, k and some small δ,

P i,jk

(
λkC

i,j
k − ε

(
log
(
P i,jk

)
− 1
)
− fi − gj

)
< 0

if P i,jk ∈ (0, δ) and this quantity goes to 0 as P i,jk goes to 0. Therefore P i,jk > 0 and the
problem becomes

inf
P>0

sup
ν∈R

N∑
k=1

∑
i,j

P i,jk

(
λkC

i,j
k + ε

(
log
(
P i,jk

)
− 1
)
− fi − gj

)
+ ν

 N∑
k=1

∑
i,j

P i,jk − 1

.
The solution to this problem is for all k ∈ {1, .., N},

Pk =
exp
(
f1Tn+1mgT−λkCk

ε

)
∑N

k=1

∑
i,j exp

(
fi+gj−λkCi,jk

ε

)
Therefore we obtain that

ÊOT
ε

C(a, b) = sup
λ∈∆+

N

sup
f∈Rn, g∈Rm

〈f, a〉+ 〈g, b〉
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− ε
N∑
k=1

∑
i,j

P i,jk

log

 N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,jk

ε

)+ 1


= sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

〈f, a〉+ 〈g, b〉 − ε

log

 N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,jk

ε

)+ 1

.
From now on, we denote for all λ ∈ ∆+

N

ÊOT
ε,λ

C (a, b) := inf
P∈ΓNa,b

N∑
i=1

λi〈Pi, Ci〉 − εH(Pi)

ÊOT
ε,λ

C (a, b) := sup
f∈Rn, g∈Rm

〈f, a〉+ 〈g, b〉 − ε

log

 N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,jk

ε

)+ 1


which has just been shown to be dual and equal. Thanks to [Nesterov, 2005, Theorem 1], as
for all λ ∈ RN , P ∈ ΓNa,b →

∑N
i=1 λi〈Pi, Ci〉 − εH(Pi) is ε-strongly convex, then for all

λ ∈ RN , (f, g)→ ∇(f,g)F (λ, f, g) is ‖A‖
2
1→2
ε Lipschitz-continuous whereA is the linear

operator of the equality constraints of the primal problem. Moreover this norm is equal to
the maximum Euclidean norm of a column of A. By de�nition, each column of A contains
only 2N non-zero elements, which are equal to one. Hence, ‖A‖1→2 =

√
2N . Let us now

show that for all (f, g) ∈ Rn×Rm λ ∈ RN → ∇λF (λ, f, g) is also Lipschitz-continuous.
Indeed we remarks that

∂2F

∂λq∂λk
=

1

εν2
[σq,1(λ)σk,1(λ)− ν(σk,2(λ)11k=q)]

where 11k=q = 1 i� k = q and 0 otherwise, for all k ∈ {1, ..., N} and p ≥ 1

σk,p(λ) =
∑
i,j

(Ci,jk )p exp

(
fi + gj − λkCi,jk

ε

)

ν =
N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,jk

ε

)
.

Let v ∈ RN , and by denoting ∇2
λF the Hessian of F with respect to λ for �xed f, g we

obtain �rst that

vT∇2
λFv =

1

εν2

( N∑
k=1

vkσq,1(λ)

)2

− ν
N∑
k=1

v2
kσk,2
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≤ 1

εν2

(
N∑
k=1

vkσq,1(λ)

)2

− 1

εν2

 N∑
k=1

|vk|

√√√√∑
i,j

exp

(
fi + gj − λkCi,jk

ε

)√√√√∑
i,j

(Ci,jk )2 exp

(
fi + gj − λkCi,jk

ε

)2

≤ 1

εν2

( N∑
k=1

vkσq,1(λ)

)2

−

 N∑
k=1

|vk|
∑
i,j

|Ci,jk | exp

(
fi + gj − λkCi,jk

ε

)2
≤ 0

Indeed the last two inequalities come from Cauchy Schwartz. Moreover we have

1

εν2

( N∑
k=1

vkσq,1(λ)

)2

− ν
N∑
k=1

v2
kσk,2

 = vT∇2
λFv ≤ 0

−
∑N

k=1 v
2
kσk,2

εν
≤

−

∑N
k=1 v

2
k max

1≤i≤N
(‖Ci‖2∞)

ε
≤

Therefore we deduce thatλ ∈ RN → ∇λF (λ, f, g) is
max

1≤i≤N
(‖Ci‖2∞)

ε Lipschitz-continuous,

hence∇F (λ, f, g) is
max

(
max

1≤i≤N
‖Ci‖2∞,2N

)
ε Lipschitz-continuous onRN×Rn×Rm.

DenoteL :=
max

(
max

1≤i≤N
‖Ci‖2∞,2N

)
ε the Lipschitz constant ofF εC. Moreover for all λ ∈ RN ,

let Proj∆+
N

(λ) the unique solution of the following optimization problem

min
x∈∆+

N

‖x− λ‖22. (F.29)

Let us now introduce the following algorithm.
Beck and Teboulle [2009], Tseng [2008] give us that the accelerated projected gradient ascent

algorithm achieves the optimal rate for �rst order methods of O(1/k2) for smooth functions.
To perform the projection we use the algorithm proposed in Shalev-Shwartz and Singer [2006]
which �nds the solution of (F.29) afterO(N log(N)) algebraic operations [Wang and Carreira-
Perpinan, 2013].

F.8.5 Fair cutting cake problem

LetX , be a set representing a cake. The aim of the cutting cake problem is to divide it inX1, . . . ,XN
disjoint sets among theN individuals. The utility for a single individual i for a slice S is denoted
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Algorithm 14: Accelerated Projected Gradient Ascent Algorithm
Input: C = (Ci)1≤i≤N , a, b, ε,L Init: f−1 = f0 ← 0n; g−1 = g0 ← 0m;
λ−1 = λ0 ← (1/N, ..., 1/N) ∈ RN for k = 1, 2, ... do

(v, w, z)T ← (λk−1, fk−1, gk−1)T +
k−2
k+1

(
(λk−1, fk−1, gk−1)T − (λk−2, fk−2, gk−2)T

)
;λk ←

Proj∆+
N

(
v + 1

L∇λF εC(v, w, z)
)
; (gk, fk)T ← (w, z)T + 1

L∇(f,g)F
ε
C(v, w, z).

end

Result: λ, f, g

Vi(S). It is often assumed that Vi(X ) = 1 and that Vi is additive for disjoint sets. There ex-
ists many criteria to assess fairness for a partitionX1, . . . ,XN such as proportionality (Vi(Xi) ≥
1/N ), envy-freeness (Vi(Xi) ≥ Vi(Xj)) or equitability (Vi(Xi) = Vj(Xj)). A possible problem
to solve equitability and proportionality in the cutting cake problem is the following:

inf
X1,...,XN
tNi=1Xi=X

max
i
Vi(Xi) (F.30)

Note that here we do not want to solve the problem under equality constraints since the prob-
lem might not be well de�ned. Moreover the existence of the optimum is not immediate. A nat-
ural relaxation of this problem is when there is a divisible quantity of each element of the cake
(x ∈ X ). In that case, the cake is no more a set but rather a distribution on this set µ. Following
the primal formulation of EOT, it is clear that it is a relaxation of the cutting cake problem where
the goal is to divide the cake viewed as a distribution. For the cutting cake problem with two cakes
X andY , the problem can be cast as follows:

inf
X1,...,XN s.t. tNi=1Xi=X
Y1,...,YN s.t. tNi=1Yi=Y

max
i
Vi(Xi,Yi) (F.31)

HereEOT is the relaxation of this problem where we split the cakes viewed as distributions instead
of sets themselves. Note that in this problem, the utility of the agents are coupled.
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F.9 Appendix: Illustrations and Experiments

F.9.1 Primal Formulation

Here we show the couplings obtained when we consider three negative costs c̃i which corresponds
to the situation where we aim to obtain a fair division of goods between three agents. Moreover we
show the couplings obtained according to the transport viewpoint where we consider the opposite
of these three negative cost functions, i.e. ci := −c̃i. We can see that the couplings obtained in the
two situations are completely di�erent, which is expected. Indeed in the fair division problem, we
aim at �nding couplings which maximize the total utility of each agent (

∫
cidγ

1
i ) while ensuring

that their are equal while in the other case, we aim at �nding couplings which minimize the total
transportation cost of each agent (

∫
cidγ

2
i ) while ensuring that their are equal. Obviously we

always have that

∀i
∫
cidγ

2
i ≤

∫
cidγ

1
i .

Negative Euclidean Cost: -1.34 Negative Square Euclidean Cost: -1.62 Negative 1.5 L1 Cost: -1.53

Negative Euclidean Cost: -0.56
Negative Square Euclidean Cost: -0.56
Negative 1.5 L1 Cost: -0.56

Figure F.4: Comparison of the optimal couplings obtained from standard OT for three di�erent costs and
EOT in case of negative costs (i.e. utilities). Blue dots and red squares represent the locations of
two discrete uniform measures. Left, middle left, middle right: Kantorovich couplings between
the two measures for negative Euclidean cost (−‖·‖2), negative square Euclidean cost (−‖·‖22)
and negative 1.5 L1 norm (−‖ · ‖1.51 ) respectively. Right: Equitable and optimal division of the
resources between theN = 3 di�erent negative costs (i.e. utilities) given byEOT. Note that the
partition between the agents is equitable (i.e. utilities are equal) and proportional (i.e. utilities
are larger than 1/N .
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Euclidean Cost: 0.586 Square Euclidean Cost: 0.326 Square L1 Cost: 0.453

Euclidean Cost: 0.125
Square Euclidean Cost: 0.125
Square L1 Cost: 0.125

Figure F.5: Comparison of the optimal couplings obtained from standard OT for three di�erent costs and
EOT in case of postive costs. Blue dots and red squares represent the locations of two discrete
uniform measures. Left, middle left, middle right: Kantorovich couplings between the two
measures for Euclidean cost (‖ ·‖2), square Euclidean cost (‖ ·‖22) and 1.5 L1 norm (‖ ·‖1.51 ) re-
spectively. Right: transport couplings ofEOT solving Eq. (F.1). Note that each cost contributes
equally and its contribution is lower than the smallest OT cost.

F.9.2 Dual Formulation

Here we show the dual variables obtained in the exact same settings as in the primal illustrations.
Figure F.6 shows the dual associated to the primal problem exposed in Figure F.4 and Figure F.7
shows the dual associated to the primal problem exposed in Figure F.5.

Negative Euclidean Cost: -0.56 Negative Square Euclidean Cost: -0.56 Negative 1.5 L1 Cost: -0.56

Negative Euclidean Cost: -0.56
Negative Square Euclidean Cost: -0.56
Negative 1.5 L1 Cost: -0.56

1.0

0.8

0.6

0.4

0.2

0.0

Figure F.6: Left, middle left, middle right: the size of dots and squares is proportional to the weight of their
representing atom in the distributions µ∗k and ν∗k respectively. The utilities f∗k and g∗k for each
point in respectively µ∗k and ν∗k are represented by the color of dots and squares according to
the color scale on the right hand side. The gray dots and squares correspond to the points that
are ignored by agent k in the sense that there is no mass or almost no mass in distributions µ∗k
or ν∗k . Right: the size of dots and squares are uniform since they correspond to the weights of
uniform distributions µ and ν respectively. The values of f∗ and g∗ are given also by the color
at each point. Note that each agent gets exactly the same total utility, corresponding exactly to
EOT. This value can be computed using dual formulation (F.5) and for each �gure it equals
the sum of the values (encoded with colors) multiplied by the weight of each point (encoded
with sizes).
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Transport viewpoint of the Dual Formulation. Assume that the N agents are not able to
solve the primal problem (F.1) which aims at �nding the cheapest equitable partition of the work
among the N agents for transporting the distributions of goods µ to the distributions of stores
ν. Moreover assume that there is an external agent who can do the transportation work for them
with the following pricing scheme: he or she splits the logistic task into that of collecting and then
delivering the goods, and will apply a collection price f̃(x) for one unit of good located at x (no
matter where that unit is sent to), and a delivery price g̃(y) for one unit to the location y (no
matter from which place that unit comes from). Then the external agent for transporting some
goods µ to some stores ν will charge

∫
x∈X f̃(x)dµ(x) +

∫
y∈Y g̃(y)dν(y). However he or she

has the constraint that the pricing must be equitable among the agents and therefore wants to
ensure that each agent will pay exactly 1

N

∫
x∈X f̃(x)dµ(x) +

∫
y∈Y g̃(y)dν(y). Denote f = f̃

N ,
g = g̃

N and therefore the price paid by each agent becomes
∫
x∈X f(x)dµ(x)+

∫
y∈Y g(y)dν(y).

Moreover, to ensure that each agent will not pay more than he would if he was doing the job
himself or herself, he or she must guarantee that for allλ ∈ ∆+

N , the pricing scheme (f ,g) satis�es:

f ⊕ g ≤ min(λici).

Indeed under this constraint, it is easy for the agents to check that they will never pay more than
what they would pay if they were doing the transportation task as we have∫

x∈X
f(x)dµ(x) +

∫
y∈Y

g(y)dν(y) ≤
∫
X×Y

min
i

(λici)dγ

which holds for every γ in particular for γ∗ =
∑N

i=1 γ
∗
i optimal solution of the primal prob-

lem (F.1) from which follows∫
x∈X

f(x)dµ(x) +

∫
y∈Y

g(y)dν(y) ≤
N∑
i=1

∫
X×Y

min
i

(λici)dγ
∗
i

≤
N∑
i=1

λi

∫
X×Y

cidγ
∗
i

= EOTc(µ, ν)

Therefore the external agent aims to maximise his or her selling price under the above constraints
which is exactly the dual formulation of our problem.

Another interpretation of the dual problem when the cost are non-negative can be expressed
as follows. Let us introduce the subset of (Cb(X )× Cb(Y))N :

GNc :=
{

(fk, gk)
N
k=1 s.t. ∀k, fk ⊕ gk ≤ ck

}
Let us now show the following reformulation of the problem. See Appendix F.9.2 for the

proof.
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Proposition 40. Under the same assumptions of Proposition 28, we have

EOTc(µ, ν) = sup
(fk,gk)Nk=1∈GNc

inf
t∈R

(µk,νk)Nk=1∈Υ
N
µ,ν

t (F.32)

s.t. ∀k,
∫
fkdµk +

∫
gkdνk = t

Proof. Let us �rst introduce the following Lemma which guarantees that compacity of ΥNµ,ν
for the weak topology.

Lemma 13. LetX and Y be Polish spaces, and µ and ν two probability measures respectively
on X and Y . Then ΥNµ,ν is sequentially compact for the weak topology induced by ‖γ‖ =
max
i=1,..,N

‖µi‖TV + ‖νi‖TV.

Proof. Let (γn)n≥0 a sequence inΥNµ,ν , and let us denote for alln ≥ 0,γn = (µni , ν
n
i )Ni=1.

We �rst remarks that for all i ∈ {1, ..., N} and n ≥ 0, ‖µni ‖TV ≤ 1 and ‖νni ‖TV ≤ 1
therefore for all i ∈ {1, ..., N}, (µni )n≥0 and (νni )n≥0 are uniformly bounded. More-
over as {µ} and {ν} are tight, for any δ > 0, there exists K ⊂ X and L ⊂ Y
compact such that µ(Kc) ≤ δ and ν(Lc) ≤ δ. Then, we obtain that for any
for all i ∈ {1, ..., N}, µni (Kc) ≤ δ and νni (Lc) ≤ δ. Therefore, for all i ∈
{1, ..., N}, (µni )n≥0 and (νni )n≥0 are tight and uniformly bounded and Prokhorov’s
theorem [Dupuis and Ellis, 2011, Theorem A.3.15] guarantees for all i ∈ {1, ..., N},
(µni )n≥0 and (νni )n≥0 admit a weakly convergent subsequence. By extracting a com-
mon convergent subsequence, we obtain that (γn)n≥0 admits a weakly convergent sub-
sequence. By continuity of the projection, the limit also lives in ΥNµ,ν and the result
follows.

We can now prove the Proposition. We have that for any λ ∈ ∆N

sup
(f,g)∈Fλc

∫
x∈X

f(x)dµ(x) +

∫
y∈Y

g(y)dν(y)

≤ sup
(fk,gk)Nk=1∈GNc

inf
(µk,νk)Ni=1∈ΥNµ,ν

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]
≤ EOTc(µ, ν)

Then by taking the supremum over λ ∈ ∆N , and by applying Theorem 24 we obtain that

EOTc(µ, ν) = sup
λ∈∆N

sup
(fk,gk)Nk=1∈GNc

inf
(µk,νk)Nk=1∈ΥNµ,ν

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]
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Let GNc and ΥNµ,ν be endowed respectively with the uniform norm and the norm de�ned in
Lemma 13. Note that the objective is linear and continuous with respect to (µk, νk)

N
k=1 and

also (fk, gk)
N
k=1. Moreover the spaces GNc and ΥNµ,ν are clearly convex. Finally thanks to

Lemma 13, ΥNµ,ν is compact with respect to the weak topology we can apply Sion’s theorem
Sion [1958] and we obtain that

EOTc(µ, ν) = sup
(fk,gk)Nk=1∈GNc

inf
(µk,νk)Nk=1∈ΥNµ,ν

sup
λ∈∆N

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]

Let us now �x (fk, gk)
N
k=1 ∈ GNc and (µk, νk)

N
k=1 ∈ ΥNµ,ν , therefore we have:

sup
λ∈∆N

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]

= sup
λ

inf
t
t×
(

1−
N∑
i=1

λi

)
+

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]

= inf
t

sup
λ
t+

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)− t
]

= inf
t

{
t s.t. ∀k,

∫
fkdµk +

∫
gkdνk = t

}
where the inversion is possible as the Slater’s conditions are satis�ed and the result follows.
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Euclidean Cost: 0.125 Square Euclidean Cost: 0.125 Square L1 Cost: 0.125

Euclidean Cost: 0.125
Square Euclidean Cost: 0.125
1.5 Euclidean Cost: 0.125
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Figure F.7: Left, middle left, middle right: the size of dots and squares is proportional to the weight of their
representing atom in the distributionsµ∗k and ν∗k respectively. The collection “cost” f∗k for each
point inµ∗k, and its delivery counterpartg∗k inν∗k are represented by the color of dots and squares
according to the color scale on the right hand side. The gray dots and squares correspond to
the points that are ignored by agent k in the sense that there is no mass or almost no mass in
distributions µ∗k or ν∗k . Right: the size of dots and squares are uniform since they corresponds
to the weights of uniform distributions µ and ν respectively. The values of f∗ and g∗ are given
also by the color at each point. Note that each agent earns exactly the same amount of money,
corresponding exactly EOT cost. This value can be computed using dual formulation (F.5) or
its reformulation (F.32) and for each �gure it equals the sum of the values (encoded with colors)
multiplied by the weight of each point (encoded with sizes).

F.9.3 Approximation of the Dudley Metric

Figure F.8 illustrates the convergence of the entropic regularization approximation when ε→ 0.
To do so we plot the relative error from the ground truth de�ned as RE := EOTε

c−βd
βd

for di�erent
regularizations where βd is obtained by solving the exact linear program and EOTεc is obtained by
our proposed Alg. 13.

259



F Equitable and Optimal Transport with Multiple Agents
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Figure F.8: In this experiment, we draw 100 samples from two normal distributions and we plot the relative
error from ground truth for di�erent regularizations. We consider the case where two costs are
involved: c1 = 2×1x 6=y , and c2 = dwhere d is the Euclidean distance. This case corresponds
exactly to the Dudley metric (see Proposition 31). We remark that as ε→ 0, the approximation
error goes also to 0.
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G An Asymptotic Test for Conditional

Independence using Analytic Kernel

Embeddings

We propose a new conditional dependence measure and a statistical test for conditional indepen-
dence. The measure is based on the di�erence between analytic kernel embeddings of two well-
suited distributions evaluated at a �nite set of locations. We obtain its asymptotic distribution un-
der the null hypothesis of conditional independence and design a consistent statistical test from
it. We conduct a series of experiments showing that our new test outperforms state-of-the-art
methods both in terms of type-I and type-II errors even in the high dimensional setting.

G.1 Introduction

We consider the problem of testing whether two variablesX andY are independent given a set of
confounding variablesZ , which can be formulated as a hypothesis testing problem of the form:

H0 : X ⊥ Y |Z vs. H1 : X 6⊥ Y |Z.

Testing for conditional independence (CI) is central in a wide variety of statistical learning prob-
lems. For example, it is at the core of graphical modeling [Lauritzen, 1996, Koller and Friedman,
2009], causal discovery [Pearl, 2009, Glymour et al., 2019], variable selection [Candès et al., 2018],
dimensionality reduction [Li, 2018], and biomedical studies [Richardson and Gilks, 1993, Dobra
et al., 2004, Markowetz and Spang, 2007].

Testing for H0 in such applications is known to be a highly challenging task [Shah and Pe-
ters, 2020, Neykov et al., 2021]. A large line of work has focused on the design of measures for
conditional dependence based for example on kernel methods Fukumizu et al. [2008], Sheng and
Sriperumbudur [2019], Park and Muandet [2020], Huang et al. [2020c] and rank statistics Azad-
kia and Chatterjee [2021], Shi et al. [2021b]. Testing for conditional independence is even a more
di�cult as it requires both designing a test statistic which measures the conditional dependen-
cies and controlling its quantiles. Indeed, existing tests may fail to control the type-I error, es-
pecially when the confounding set of variables is high-dimensional with a complex dependency
structure Bergsma [2004]. Furthermore, even if the test is valid, the availability of limited data
makes the problem of discriminating between the null and alternative hypotheses extremely di�-
cult, resulting in a test of low power. These challenges has motivated the development of a series
of practical methods attempting to reliably test for conditional independence. These include tests
based on kernels [Zhang et al., 2012, Doran et al., 2014, Strobl et al., 2019, Zhang et al., 2017],
ranks Runge [2018], Mittag [2018], models [Sen et al., 2017, 2018, Chalupka et al., 2018, Shah
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and Peters, 2020], permutations and samplings [Berrett et al., 2020, Candès et al., 2018, Bellot
and van der Schaar, 2019, Shi et al., 2021a, Javanmard and Mehrabi, 2021], and optimal trans-
port Warren [2021].

In this paper, we propose a new kernel-based test for conditional independence with asymp-
totic theoretical guarantees. Taking inspiration from Chwialkowski et al. [2015], Jitkrittum et al.
[2017], Scetbon and Varoquaux [2019b], we use the `p distance between two well-chosen analytic
kernel mean embeddings evaluated at a �nite set of locations. We show that this measure encodes
the conditional dependence relation of the random variables under study. Under common as-
sumptions on the richness of the RKHS, we derive the asymptotic null distribution of our mea-
sure, and design a simple nonparametric test that is distribution-free under the null hypothesis.
Furthermore, we show that our test is consistent. Lastly, we validate our theoretical claims and
study the performance of the proposed approach using simulated conditionally (in)dependent
data and show that our testing procedure outperforms state-of-the-art methods.

G.1.1 Related Work

Zhang et al. [2012] propose a kernel based-test (KCIT), by leveraging the characterization of con-
ditional independence derived in [Daudin, 1980] to form a test statistic. The authors of this work
obtain the asymptotic null distribution of the proposed statistic and derived a practical procedure
from it to test forH0. However, one main practical issue of the proposed test is that the asymptotic
null distribution of their statistic cannot be computed directly as it involved unknown quantities.
To address this problem, the authors propose to approximate it either with Monte Carlo simu-
lations or by �tting a Gamma distribution. In our work, we propose a new kernel-based statistic
to test for conditional independence and show that its asymptotic null distribution is simply the
standard normal distribution. In addition Zhang et al. [2012] extended the Gaussian process (GP)
regression framework to the multi-output case, which allowed them to �nd the hyperparameters
involved in the test statistic, maximizing the marginal likelihood. We also deploy a similar opti-
mization procedure to that of Zhang et al. [2012], however, in our case the output of the GP
regression is univariate and therefore more computationally e�cient.

Other CI tests proposed in the literature suggest testing relaxed forms of conditional indepen-
dence. For instance, Shah and Peters [2020] propose the generalised covariance measure (GCM)
which only characterises weak conditional dependence Daudin [1980] and Zhang et al. [2017]
propose a kernel-based test which focuses only on individual e�ects of the conditioning variable
Z on X and Y . Some other tests are based on the knowledge of the conditional distributions in
order to measure conditional dependencies. For example Candès et al. [2018] assume that one has
access to the exact conditional distributions, Bellot and van der Schaar [2019], Shi et al. [2021a]
approximate them using generative models and Sen et al. [2017] consider model-based methods to
generate samples from the conditional distributions. In our work, we design a test statistic which
characterizes the exact conditional independence of random variables and obtain its asymptotic
null distribution without assuming any knowledge on the conditional distributions. Under some
mild assumptions on the RKHSs considered, we also derive an approximate test statistic which
admits the same asymptotic distribution and obtain a simple testing procedure from it.
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G.2 Background and Notations

We �rst recall some notions on kernels and mean embeddings which will be useful in the deriva-
tion of our conditional independence test. Let (D,A) be a Borel measurable space and denote
M+

1 (D) the space of Borel probability measures onD. Let also (H, k) be a measurable RKHS
onD, i.e. a functional Hilbert space satisfying the reproducing property: for all f ∈ H , x ∈ D,
f(x) = 〈f, kx〉H . Let ν ∈ M+

1 (D). If Ex∼ν [
√
k(x, x)] is �nite, we de�ne for all t ∈ D the

mean embedding as µν,k(t) :=
∫
x∈D k(x, t)dν(x). Note that µν,k is the unique element in H

satisfying for all f ∈ H , Ex∼ν(f(x)) = 〈µν,k, f〉H . If ν 7→ µν,k is injective, then the kernel k is
said to be characteristic. This property is essential for the separation property to be veri�ed when
de�ning a kernel metric between distributions, such as the MMD [Gretton et al., 2012], or the `p
distance [Scetbon and Varoquaux, 2019b].
`p-distance between mean embeddings. Let k be a de�nite positive, characteristic, contin-

uous, and bounded kernel on Rd and p ≥ 1 an integer. Scetbon and Varoquaux [2019b] showed
that given an absolutely continuous Borel probability measure Γ on Rd, the following function
de�ned for any (P,Q) ∈M+

1 (Rd)×M+
1 (Rd) as

dp(P,Q) :=

[∫
Rd
|µP,k(t)− µQ,k(t)|pdΓ (t)

] 1
p

(G.1)

is a metric onM+
1 (Rd). When the kernel k is analytic1, Scetbon and Varoquaux [2019b] also

showed that for any J ≥ 1,

dp,J(P,Q) :=

 1

J

J∑
j=1

|µP,k(tj)− µQ,k(tj)|p
 1
p

, (G.2)

where (tj)
J
j=1 are sampled independently from theΓ distribution, is a random metric2 onM+

1 (Rd).
In what follows, we consider distributions on Euclidean spaces. More precisely, letdx, dy, dz ≥

1, X := Rdx , Y := Rdy , and Z := Rdz . Let (X,Z, Y ) be a random vector on X × Z × Y
with law PXZY . We denote by PXY , PX , and PY the law of (X,Y ), X , and Y , respectively.
We also denote by Ẍ := X × Z , Ẍ := (X,Z), and PẌ its law. Let PX ⊗ PY be the product
of the two measures PX and PY . Given (HẌ , kẌ ) and (HY , kY), two measurable reproducing
kernel Hilbert spaces (RKHS) on Ẍ and Y , respectively, we de�ne the tensor-product RKHS
H = HẌ ⊗HY associated with its tensor-product kernel k = kẌ ⊗kY , de�ned for all ẍ, ẍ′ ∈ Ẍ
and y, y′ ∈ Y , as k((ẍ, y), (ẍ′, y′)) = kẌ (ẍ, ẍ′)× kY(y, y′).

G.3 A new `p kernel-based testing procedure

In this section, we present our statistical procedure to test for conditional independence. We begin
by introducing a general measure based on the `p distance dp between mean embeddings which

1An analytic kernel on Rd is a positive de�nite kernel such that for all x ∈ Rd, k(x, ·) is an analytic function, i.e., a
function de�ned locally by a convergent power series.

2A random metric is a random process which satis�es all the conditions for a metric almost-surely.
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characterizes the conditional independence. We derive an oracle test statistic for which we obtain
its asymptotic distribution under both the null and alternative hypothesis. Then, we provide an
e�cient procedure to e�ectively compute an approximation of our oracle statistic and show that
it has the exact same asymptotic distribution. To avoid any bootstrap or permutation procedures,
we o�er a normalized version of our statistic and derive a simple and consistent test from it.

G.3.1 Conditional Independence Criterion

Let us �rst introduce the criterion we use to de�ne our statistical test. We de�ne a probability
measure PẌ⊗Y |Z on Ẍ × Y as

PẌ⊗Y |Z(A×B) := EZ
[
EẌ|Z [1A|Z]EY |Z [1B|Z]

]
,

for any (A,B) ∈ B(Ẍ ) × B(Y), where 1A is the characteristic function of a measurable set
A and similarly for B. One now characterize the independence of X and Y given Z as follows:
X ⊥ Y |Z if and only if PXZY = PẌ⊗Y |Z [Fukumizu et al., 2004, Theorem 8]. Therefore,
we have a �rst simple characterization of the conditional independence: X ⊥ Y |Z if and only if
dp(PXZY , PẌ⊗Y |Z) = 0. With this in place, we now state some assumptions on the kernel k
considered in the rest of this paper.

Assumption 4. The kernel k : (Ẍ × Y) × (Ẍ × Y) → R is definite positive, characteristic,
bounded, continuous and analytic. Moreover, the kernel k is a tensor product of kernels kẌ and kY
on Ẍ andY , respectively.

It is worth noting that a su�cient condition for the kernelk to be characteristic, bounded, con-
tinuous and analytic, is that both kernels kẌ and kY are characteristic, bounded, continuous and
analytic [Szabó and Sriperumbudur, 2018]. For example, if the kernels kẌ and kY are Gaussian
kernels3 on Ẍ and Y respectively, then k = kẌ ⊗ kY satis�es Assumption 4 [Jitkrittum et al.,
2017]. Using the analyticity of the kernel k, one can work with dp,J de�ned in (G.2) instead of
dp to characterize the conditional independence.

Proposition 41. Let p ≥ 1, J ≥ 1, k be a kernel satisfying Assumption 4, Γ an absolutely
continuous Borel probability measure on Ẍ × Y , and {(t(1)

j , t
(2)
j )}Jj=1 sampled independently

from Γ . Then Γ -almost surely, dp,J(PXZY , PẌ⊗Y |Z) = 0 if and only ifX ⊥ Y |Z .

Proof. Recall thatX ⊥ Y |Z if and only ifPXZY = PẌ⊗Y |Z [Fukumizu et al., 2008]. If k
is bounded, characteristic, and analytic, then, by invoking [Scetbon and Varoquaux, 2019b,
Theorem 4] we get that dpp,J is a random metric on the space of Borel probability measures.
This concludes the proof.

The key advantage of usingdp,J(PXZY , PẌ⊗Y |Z) to measure the conditional dependence is that
it only requires to compute the di�erences between the mean embeddings ofPXZY andPẌ⊗Y |Z

3A gaussian kernelK onW ⊂ Rd satis�es for allw,w′ ∈ W ,K(w,w′) := exp
(
‖w−w′‖22

2σ2

)
.

264



G.3 A new `p kernel-based testing procedure

at J locations. In what follows, we derive from it a �rst oracle test statistic for conditional inde-
pendence.

G.3.2 A First Oracle Test Statistic

When the kernel k considered satis�es Assumption 4, we can obtain a simple expression of our
measuredp,J(PXZY , PẌ⊗Y |Z). Indeed, the tensor formulation of the kernelk allows us to write
the mean embedding of PẌ⊗Y |Z for any (t(1), t(2)) ∈ Ẍ × Y as:

µPẌ⊗Y |Z ,kẌ ·kY (t(1), t(2)) =

EZ
[
EẌ
[
kẌ (t(1), Ẍ)|Z

]
EY
[
kY(t(2), Y )|Z

]]
.

(G.3)

Then, by de�ning the witness function as

∆(t(1), t(2)) := E
[(
kẌ (t(1), Ẍ)− EẌ

[
kẌ (t(1), Ẍ)|Z

])
×
(
kY(t(2), Y )− EY

[
kY(t(2), Y )|Z

])]
,

and by considering {(t(1)
j , t

(2)
j )}Jj=1 sampled independently according to Γ , we get that (see

Appendix G.6.1 for more details)

dp,J(PXZY , PẌ⊗Y |Z) =

 1

J

J∑
j=1

∣∣∣∆(t
(1)
j , t

(2)
j )
∣∣∣p
1/p

.

Estimation. Givennobservations{(xi, zi, yi)}ni=1 that are drawn independently fromPXZY ,
we aim at obtaining an estimator of dpp,J(PXZY , PẌ⊗Y |Z). To do so, we introduce the following
estimate of∆(t(1), t(2)), de�ned as

∆n(t(1), t(2)) :=
1

n

n∑
i=1

(
kẌ (t(1), ẍi)− E

[
kẌ (t(1), Ẍ)|zi

])
×
(
kY(t(2), yi)− E

[
kY(t(2), Y )|zi

])
.

With this in place, a natural candidate to estimate dpp,J(PXZY , PẌ⊗Y |Z) (up to the constant J )
can be expressed as

CIn,p :=

J∑
j=1

∣∣∣∆n(t
(1)
j , t

(2)
j )
∣∣∣p,

where (t
(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J ) ∈ Ẍ × Y are sampled independently from Γ .
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We now turn to derive the asymptotic distribution of this statistic. For that purpose, de�ne,
for all j ∈ {1, . . . , J} and i ∈ {1, . . . , n},

ui(j) :=
(
kẌ (t

(1)
j , ẍi)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

])
×
(
kY(t

(2)
j , yi)− EY

[
kY(t

(2)
j , Y )|Z = zi

])
,

ui := (ui(1), . . . , ui(J))T andΣ := E(u1u
T
1 ). We also denote by Sn := 1

n

∑n
i=1 ui. Ob-

serve that CIn,p = ‖Sn‖pp. In the following proposition we obtain the asymptotic distribution
of our statistic CIn,p.

Proposition 42. Suppose that Assumption 4 is verified. Letp ≥ 1,J ≥ 1 and ((t
(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J )) ∈

(Ẍ×Y). Then, underH0, we have:
√
nSn → N (0,Σ). Moreover, underH1, if ((t

(1)
j , t

(2)
j ))Jj=1

are sampled independently according toΓ , thenΓ -almost surely, for anyq ∈ R, limn→∞ P (np/2CIn,p ≥
q) = 1.

Proof. Recall that Sn = 1
n

∑n
i=1 ui where ui are i.i.d. samples. Under H0, E[ui] = 0.

Using the Central Limit Theorem, we get:
√
nSn → N (0,Σ). Using the analyticity of the

kernel k, underH1, Γ -almost surely, there exists a j ∈ {1, . . . , J} such that E[u1(j)] 6= 0.
Therefore, we can deduce that Γ -almost surely, S := E[u1] 6= 0. Now, for all q > 0, we
get: P (np/2CIn,p > q)→ 1 because CIn,p → ‖S‖pp when n→∞.

From the above proposition, we can de�ne a consistent statistical test at level 0 < α < 1, by re-
jecting the null hypothesis if np/2CIn,p is larger than the (1−α) quantile of the asymptotic null
distribution, which is the law associated with ‖X‖pp, where X follows the multivariate normal
distributionN (0,Σ). However, in practice, CIn,p cannot be computed as it requires the access
to samples from the conditional means involved in the statistic, namelyEẌ

[
kẌ (t

(1)
j , Ẍ)|Z

]
and

EY
[
kY(t

(2)
j , Y )|Z

]
for all j ∈ {1, . . . , J}, which are unknown. Below, we show how to esti-

mate these conditional means by using Regularized Least-Squares (RLS) estimators.

G.3.3 Approximation of the Test Statistic

Our goal here is to estimate EẌ
[
kẌ (t

(1)
j , Ẍ)|Z = ·

]
and EY

[
kY(t

(2)
j , Y )|Z = ·

]
for all j ∈

{1, . . . , J} in order to e�ectively approximate of our statistic. To do so, we consider kernel-based
regularized least squares (RLS) estimators. Let 1 ≤ r ≤ n and {(xi, zi, yi)}ri=1 be a subset of
r samples. Let also j ∈ {1, . . . , J}, and denote by H1,j

Z and H2,j
Z two separable RKHSs on

Z . Denote also by k1,j
Z and k2,j

Z their associated kernels and λ(1)
j,r , λ

(2)
j,r > 0 the regularization

parameters involved in the RLS regressions. Then, the RLS estimators are the unique solutions
of the following problems:

min
h∈H2,j

Z

1

r

r∑
i=1

(
h(zi)− kY(t

(2)
j , yi)

)2
+ λ

(2)
j,r ‖h‖2H2,j

Z
and
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min
h∈H1,j

Z

1

r

r∑
i=1

(
h(zi)− kẌ (t

(1)
j , (xi, zi))

)2
+ λ

(1)
j,r ‖h‖2H1,j

Z
,

which we denote by h(2)
j,r and h(1)

j,r , respectively. These estimators have simple expressions in term
of the kernels involved. For example, letkẌ (t

(1)
j , Ẍr) := [kẌ (t

(1)
j , (x1, z1)), . . . , kẌ (t

(1)
j , (xr, zr))]

T ,
then for any z ∈ Z , the estimator h(1)

j,r can be expressed as

h
(1)
j,r (z) =

r∑
i=1

[α
(1)
j,r ]ik

1,j
Z (zi, z) , with

α
(1)
j,r := (K1,j

r,Z + rλ
(1)
j,r Idr)−1kẌ (t

(1)
j , Ẍr) ∈ Rr,

where K1,j
r,Z := (k1,j

Z (zi, zj))1≤i,j≤r. Similarly, we obtain simple expressions of h(2)
j,r . We can

now introduce our new estimator of the witness function at each location (t
(1)
j , t

(2)
j ) as follows:

∆̃n,r(t
(1)
j , t

(2)
j ) :=

1

n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− h(1)

j,r (zi)
)

×
(
kY(t

(2)
j , yi)− h(2)

j,r (zi)
)
,

and the proposed test statistic becomes

C̃In,r,p :=

J∑
j=1

∣∣∣∆̃n,r(t
(1)
j , t

(2)
j )
∣∣∣p .

Asymptotic Distribution. To get the asymptotic distribution, we need to make two extra
assumptions. Let us de�ne, for m ∈ {1, 2} and j ∈ {1, . . . , J}, Lm,jZ —the operator on
L2(Z, PZ) asLm,jZ (g)(·) =

∫
Ẍ k

m,j
Z (·, z)g(z)dPZ(z).

Assumption 5. There exists Q > 0, and γ ∈ [0, 1] such that for all λ > 0, m ∈ {1, 2} and
j ∈ {1, . . . , J}:

Tr((Lm,jZ + λI)−1Lm,jZ ) ≤ Qλ−γ .

Assumption 6. There exists 2 ≥ β > 1 such that for any j ∈ {1, . . . , J}, (t(1), t(2)) ∈ Ẍ ×Y ,

EẌ
[
kẌ (t(1), Ẍ)|Z = ·

]
∈ R

([
L1,j
Z

]β/2)
,

EY
[
kY(t(2), Y )|Z = ·

]
∈ R

([
L2,j
Z

]β/2)
,
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whereR
([
Lm,jZ

]β/2)
is the image space of

[
Lm,jZ

]β/2
. Moreover, there existsL, σ > 0 such that

for all l ≥ 2 and PZ -almost all z ∈ Z

EẌ

[∣∣∣kẌ (t(1), Ẍ)− EY
[
kẌ (t(1), Ẍ)

]∣∣∣l] ≤ l!σ2Ll−2

2
,

E|Z=z

[∣∣∣kY(t(2), Y )− EY |Z=z

[
kY(t(2), Y )

]∣∣∣l] ≤ l!σ2Ll−2

2
.

These assumptions are central in our proofs and are common in kernel statistic studies [Capon-
netto and De Vito, 2007, Fischer and Steinwart, 2020, Rudi and Rosasco, 2017]. Under these as-
sumptions, Fischer and Steinwart [2020] proved optimal learning rates for RLS in RKHS norm,
which is essential to guarantee that our new statistic C̃In,r,p, estimated with RLS, has the same
asymptotic law as our oracle estimator CIn,p.

To derive the asymptotic distribution of our new test statistic, we also need to de�ne for all j ∈
{1, . . . , J} and i ∈ {1, . . . , n}, ũi,r(j) := (kẌ (t

(1)
j , ẍi)−h(1)

j,r (zi))(kY(t
(2)
j , yi)−h(2)

j,r (zi)),
ũi,r := (ũi,r(1), . . . , ũi,r(J))T , and S̃n,r := 1

n

∑n
i=1 ũi,r. Note that C̃In,r,p = ‖S̃n,r‖pp. In

the following proposition, we show the asymptotic behavior of the statistic of interest. The proof
of this proposition is given in Appendix G.6.2.

Proposition 43. Suppose that Assumptions 4-5-6 are verified. Letp ≥ 1,J ≥ 1, ((t(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J )) ∈

(Ẍ ×Y)J , rn such thatn
β+γ
2β ∈ o(rn) andλrn = r

− 1
1+γ

n . Then, underH0, we have
√
nS̃n,rn →

N (0,Σ). Moreover, underH1, if the ((t
(1)
j , t

(2)
j ))Jj=1 are sampled independently according toΓ ,

then Γ -almost surely, for any q ∈ R, limn→∞ P (np/2C̃In,rn,p ≥ q) = 1.

From the above proposition, we can derive a consistent test at level α for 0 < α < 1. Indeed,
we obtain the asymptotic null distribution of np/2C̃In,rn,p and we show that under the alterna-
tive hypothesis H1, Γ -almost surely, np/2C̃In,rn,p is arbitrarily large as n goes to in�nity. For a
�xed level α, the test rejects H0 if np/2C̃In,rn,p exceeds the (1 − α)-quantile of its asymptotic
null distribution and this test is therefore consistent. For example, when p ∈ {1, 2}, the asymp-
totic null distribution of np/2C̃In,rn,p is either a sum of correlated Nakagami variables4 (p = 1)
or a sum of correlated chi square variables (p = 2). However, computing the quantiles of these
asymptotic null distributions can be computationally expensive as it requires a bootstrap or per-
mutation procedure. In the following, we consider a di�erent approach in which we normalize
the statistic to obtain a simple asymptotic null distribution.

4the probability density function of a Nakagami distribution of parametersm ≥ 1
2

and ω > 0 is for all x ≥ 0,
f(x,m, ω) = 2mm

G(m)ωm
x2m−1 exp

(−m
ω
x2

)
whereG is the Euler Gamma function.
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G.3.4 Normalization of the Test Statistic

Herein, we consider a normalized variant of our statistic C̃In,r,p in order to obtain a tractable
asymptotic null distribution. DenoteΣn,r := 1

n

∑n
i=1 ũi,rũ

T
i,r and let δn > 0, then the nor-

malized statistic considered is given by

ÑCIn,r,p := ‖(Σn,r + δnIdJ)−1/2S̃n,r‖pp.

In the next proposition, we show that our normalized approximate statistic converges in law to
the standard multivariate normal distribution. The proof is given in Appendix G.6.3.

Proposition 44. Suppose that Assumptions 4-5-6 are verified. Letp ≥ 1,J ≥ 1, ((t(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J )) ∈

(Ẍ × Y)J , rn such that n
β+γ
2β ∈ o(rn), λn = r

− 1
1+γ

n and (δn)n≥0 a sequence of positive real
numbers such that limn→∞ δn = 0. Then, underH0, we have

√
n(Σn,r + δnIdJ)−1/2Sn,rn →

N (0, IdJ). Moreover, under H1, if the ((t
(1)
j , t

(2)
j ))Jj=1 are sampled independently according to

Γ , then Γ -almost surely, for any q ∈ R, limn→∞ P (np/2ÑCIn,rn,p ≥ q) = 1.

Remark 16. We emphasize that J need not increase with n for test consistency. Note also that the
regularization parameter δn allows to ensure that (Σn,r + δnIdJ)−1/2 can be stably computed. In
practice, δn requires no tuning, and can be set to be a very small constant.

Our normalization procedure allows us to derive a simple statistical test, which is distribution-
free under the null hypothesis.

Statistical test at level α: Compute np/2ÑCIn,r,p, choose the threshold τ corresponding to
the (1−α) quantile of the asymptotic null distribution, and reject the null hypothesis whenever
np/2ÑCIn,r,p is larger than τ . For example, if p = 2, the threshold τ is the (1 − α)-quantile of
χ2(J), i.e., a sum of J independent standard χ2 variables.

Total Complexity: Our normalized statistic ÑCIn,r,p requires �rst to computeα(1)
j,r andα(2)

j,r .
These quantities can be evaluated in at most O(r2d + r3) algebraic operations where d corre-
sponds to the computational cost of evaluating the kernels involved in the RLS regressions. We
will use the above for the complexity analysis of our method, although one can apply the Copper-
smith–Winograd algorithm [Coppersmith and Winograd, 1987] that reduces the computational
cost toO(r2d+r2.376). Onceα(1)

j,r andα(2)
j,r are available, evaluating the RLS estimatorsh(1)

j,r and
h

(2)
j,r require onlyO(rd) operations. Then ∆̃n,r can be evaluated inO(nrd+r2d+r3) operations

and C̃In,r,p has therefore a computational complexity ofO(J(nrd+ r2d+ r3)). The computa-
tion of ÑCIn,r,p requires inverting a J ×J matrixΣn,r + δnIdJ , but this is fast and numerically
stable: we empirically observe that only a small value of J is required (see Section G.4), e.g. less than
10. Finally the total computational cost to evaluate ÑCIn,r,p isO(J(nrd+r2d+r3)+nJ2+J3).
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G.3.5 Hyperparameters

The hyperparameters of our statistics ÑCIn,r,p fall into two categories: those directly involved
with the test and those of the regression. We assume from now on that all the kernels involved in
the computation of our statistics are Gaussian kernels, and considern i.i.d. observations{(xi, zi, yi)}ni=1.

The �rst category includes both the choice of the locations ((tx, tz)j , (ty)j))
J
j=1 on which

di�erences between the mean embeddings are computed and the choice of the kernels kẌ and
kY . Each location tx, ty, tz is randomly chosen according to a Gaussian variable with mean and
covariance of {xi}ni=1, {yi}ni=1, and {zi}ni=1, respectively. As we consider Gaussian kernels, we
should also choose the bandwidths. Here, we restrict ourselves to one-dimensional kernel band-
widths σX , σY , and σZ for the kernels kX , kY , and kZ , respectively. More precisely, we select
the median of {‖xi − xj‖}ni,j=1, {‖yi − yj‖}ni,j=1, and {‖zi − zj‖}ni,j=1 for σX , σY , and σZ ,
respectively.

The other category contains all the kernels km,j and the regularization parameters λ(m)
j,r in-

volved in the RLS problems. These parameters should be selected carefully to avoid either under-
�tting of the regressions, which may increase the type-I error, or over�tting, which may result in a
large type-II error. To optimize these, similarly to Zhang et al. [2012], we consider a GP regression
that maximizes the likelihood of the observations. While carrying out a precise GP regression can
be prohibitive, in practice, we run this method only on a batch of size 200 observations randomly
selected and we perform only 10 iterations for choosing the hyperparameters involved in the RLS
problems. Hence, our optimization procedure does not a�ect the total computational cost as it is
independent of the number of observations n.

G.4 Experiments
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Figure G.1: Comparison of the KS statistic (left) and the AUPC (right) of our test statistic ÑCIn,r,p when
the data is generated respectively from the models de�ned in (G.4) and (G.5) with Gaussian
noises for multiple p and J . For each problem, we draw n = 1000 samples and repeat the
experiment 100 times. We set r = 1000 and report the results obtained when varying the
dimension dz of each problem from 1 to 10. Observe that when J = 1, for all p ≥ 1

ÑCIn,r,1 = ÑCIn,r,p, therefore there is only one common black curve.
The goal of this section is three fold: (i) to investigate the e�ects of the parameters J and p

on the performances of our method, (ii) to validate our theoretical results depicted in Proposi-
tions 42 and 44, and (iii) to compare our method with those proposed in the literature. In more
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Figure G.2: Comparisons between the empirical distributions of the normalized version of the oracle statis-
tic ĈIn,p and the approximate normalized statistic ÑCIn,r,p, with the theoretical asymptotic
null distribution when the data is generated either from the model de�ned in (G.6) (left) or
the one de�ned in (G.7) (right). We set the dimension of Z to be either dz = 5 (top row) or
dz = 20 (bottom row). For each problem, we draw n = 1000 samples and repeat the exper-
iment 1000 times. In all the experiments, we set J = 5 and p = 2, thus the asymptotic null
distribution follows a χ2(5). Observe that both the oracle statistic and the approximated one
recover the true asymptotic distribution under the null hypothesis. When H1 holds, we can
see that the two statistics manage to reject the null hypothesis. This �gure also illustrates the
empirical distribution of our approximate statistic when we do not optimize the hyperparam-
eters involved in the RLS estimators: in this case we do not control the type-I error in the high
dimensional setting.
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Figure G.3: Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is
better) of our test procedure with other SoTA tests on the two problems presented in (G.4)
and (G.5) with Gaussian noises. Each point in the �gures is obtained by repeating the experi-
ment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each
test when varying the dimension dz from 1 to 10; here, the number of samples n is �xed and
equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each test when
varying the number of samples n from 100 to 1000; here, the dimension dz is �xed and equals
to 10.

detail, we �rst compare the performance of our method, both in terms of both power and type-I
error, by varying the hyperparameters J and p. We show that our method is robust to the choice
of p, and also show that the power increases as J increases. Then, we explore synthetic toy prob-
lems where one can derive an explicit formulation of the conditional means involved in our test
statistic. In these cases, we can compute our proposed oracle statistic ĈIn,p and its normalized
version, allowing us to show that under the null hypothesis we recover the theoretical asymptotic
null distribution obtained in Proposition 42. We also reach to similar conclusions regarding our
approximate normalized test statistic, ÑCIn,r,p. In addition, in this experiment, we investigate the
e�ect of the proposed optimization procedure for choosing the hyperparameters involved in the
RLS estimators of ÑCIn,r,p, and show its bene�ts. Finally, we demonstrate on several synthetic
experiments that our proposed testing procedure outperforms state-of-the-art (SoTA) methods
both in terms of statistical power and type-I error, even in the high dimensional setting.
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Benchmarks. We consider 6 synthetic data sets and compare the power and type-I error of our
test ÑCIn,r,p to the following 6 existing CI methods: KCIT [Zhang et al., 2012], RCIT [Strobl
et al., 2019], CCIT [Sen et al., 2017], CRT [Candès et al., 2018] using correlation statistic from
[Bellot and van der Schaar, 2019], FCIT [Chalupka et al., 2018] and GCM [Shah and Peters,
2020]. Software packages of all the above tests are freely available online and each experiment was
run on a single CPU.

Evaluation. To evaluate the performance of the tests, we consider four metrics. Under H0,
we report either the Kolmogorov-Smirnov (KS) test statistic between the distribution of p-values
returned by the tests and the uniform distribution on [0, 1], or the type-I errors at level α =
0.05. Note that a valid conditional independence test should control the type-I error rate at any
level α. Here, a test that generates a p-value that follows the uniform distribution over [0, 1] will
achieve this requirement. The latter property of the p-values translates to a small KS statistic
value. Under H1, we compute either the area under the power curve (AUPC) of the empirical
cumulative density function of the p-values returned by the tests, or the resulting type-II error. A
conditional test has higher power when its AUPC is closer to one. Alternatively, the smaller the
type-II error is, the more powerful the test is.
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Figure G.4: Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests
on the two problems presented in Eq. (G.8) and Eq. (G.9) with Laplace noises. Each point in
the �gures is obtained by repeating the experiment for 100 independent trials. (Left, middle-
left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimen-
sion dz from 1 to 10; here, the number of samplesn is �xed and equals to 1000. (Middle-right,
right): the KS and AUPC (respectively), obtained by each test when varying the number of
samples n from 100 to 1000; here, the dimension dz is �xed and equals to 10.

E�ects of p, J and r. Our �rst experiment studies the e�ects of p and J on our proposed
method. In addition we investigate the sensitivity of the method when varying the rank regression
r both in term of performance and time. To do so, we follow the synthetic experiment proposed
in Strobl et al. [2019]. To evaluate the type-I error, we generate data that follows the model:

X = f1(εx), Y = f2(εy), and Z ∼ N (0d, Idz), (G.4)

whereZ , εx, and εy are samples from jointly independent standard Gaussian or Laplace distribu-
tions, andf1 andf2 are smooth functions chosen uniformly from the set{(·), (·)2, (·)3, tanh(·), exp(−| · |)}.
To compare the power of the tests, we also consider the model:

X = f1(εx + 0.8εb), Y = f2(εy + 0.8εb), (G.5)

where εb is sampled from a standard Gaussian or Laplace distribution. In Figure G.1, we compare
the KS statistic and the AUPC of our method when varying p and J . That �gure shows that (i)
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our method is robust to the choice of p, and (ii) the performances of the test do not necessarily
increase asJ increases. In Figure G.5 (see Appendix G.7.2), we also show that the power of the test
is not very sensible to the choice of the rank r, however, we observe that the type-I error decreases
as the rank r increases. Armed with theses observations, in the following experiments, we always
set p = 2, J = 5 and r = n for our method.

Illustrations of our theoretical �ndings. The following experiment con�rms that validity of
our theoretical results from Propositions 42 and 44. For that purpose, we generate two synthetic
data sets for which eitherH0 orH1 holds. Concretely, we de�ne a �rst triplet (X,Y, Z) as follows:

X = P1(Z) + εx, Y = P1(Z) + εy. (G.6)

Above, εx and εy follow two independent standard normal distributions,Z ∼ N (0dz , Σ) with
Σ ∈ Rdz×dz . The covariance matrix Σ is obtained by multiplying product of a random matrix
whose entries are independent and follow standard normal distribution, by its transpose, and P1

is a projection onto the �rst coordinate. As a result, in this case, we have that X ⊥ Y | Z . We
also consider a modi�cation of the above data generating function for which H1 holds. This is
done by adding a noise component εb that is shared acrossX and Y as follows:

X = P1(Z) + εx + εb, Y = P1(Z) + εy + εb, (G.7)

where εb follows the standard normal distribution. Since we consider Gaussian kernels, we can ob-
tain an explicit formulation of EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = ·

]
and EY

[
kY(t

(2)
j , Y )|Z = ·

]
for both

data generation functions. See Appendix G.7.1 for more details. Consequently, we are able to
compute both the normalized version of our oracle statistic ĈIn,p and our approximate normal-
ized statistic ÑCIn,r,p. In Figure G.2, we show that both statistics manage to recover the asymp-
totic distribution underH0, and reject the null hypothesis underH1. In addition, we show that
in the high dimensional setting, only our optimized version of ÑCIn,r,p—obtained by optimiz-
ing the hyperparameters involved in the RLS estimators of our statistic—manages to recover the
asymptotic distribution underH0.

Comparisons with existing tests. In our next experiments, we compare the performance
of our method (implemented with the optimized version of our statistic) with state-of-the-art
techniques for conditional independence testing. We �rst study the two data generating functions
from (G.4) and (G.5). For each of these problems, we consider two settings. In the �rst, we �x the
dimensiondz while varying the number of samplesn. In the second, we �x the number of samples
while varying the dimension of the problem. To evaluate the performance of the tests, we compare
the type-I errors at level α = 0.05 under the �rst model (G.4), and, for second model (G.5), we
evaluate the power of the test by presenting the type-II error. Figures G.3 (Gaussian case) and G.9
(Laplace case) demonstrate that our method consistently controls the type-I error and obtains a
power similar to the best SoTA tests. In Figures G.7 and G.10, we also compare the KS statistic
and the AUPC of the di�erent tests, and obtain similar conclusions. In addition, we investigate
the high dimensional regime and show in Figure G.8 and G.11 that our test is the only one which
manages to control the type-I error while being competitive in term of power with other methods.
See Appendix G.7.3 for more details.
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We now conduct another series of experiments that build upon the synthetic data sets presented
in [Zhang et al., 2012, Li and Fan, 2020, Doran et al., 2014, Bellot and van der Schaar, 2019]. To
compare type-I error rates, we generate simulated data for whichH0 is true:

X = f1

(
Z̄ + εx

)
, Y = f2

(
Z̄ + εy

)
. (G.8)

Above, Z̄ is the average of Z = (Z1, · · · , Zdz), εx and εy are sampled independently from
a standard Gaussian or Laplace distribution, and f1 and f2 are smooth functions chosen uni-
formly from the set {(·), (·)2, (·)3, tanh(·), exp(−| · |)}. To evaluate the power, we consider
the following data generating function:

X = f1

(
Z̄ + εx

)
+ εb, Y = f2

(
Z̄ + εy

)
+ εb, (G.9)

where εb is a standard Gaussian or Laplace distribution. As in the previous experiment, for each
model, we study two settings by either �xing the dimension dz , or the sample sizen. In Figure G.4
(Laplace case) and G.13 (Gaussian case), we compare the KS and the AUPC of our method with
the SoTA tests and demonstrate that our procedure manages to be powerful while controlling the
type-I error. In Figures G.12 and G.15, we also compare the type-I and type-II errors of the di�er-
ent tests, and obtain similar conclusions. In addition, we investigate the high dimensional regime
and show in Figure G.14 and G.17 that our test outperforms all the other proposed methods in
most of the settings. See Appendix G.7.4 for more details.

G.5 Conclusion

We introduced a new kernel-based statistic for testing CI. We derived its asymptotic null distri-
bution and designed a simple testing procedure that emerges from it. To our knowledge, we are
the �rst article to propose an asymptotic test for CI with a tractable null distribution. Using var-
ious synthetic experiments, we demonstrated that our approach is competitive with other SoTA
methods both in terms of type-I and type-II errors, even in the high dimensional setting.

G.6 Appendix: Proofs

G.6.1 On the Formulation of the Witness Function

Let (tj)
J
j=1 sampled independently from the Γ distribution, then by de�nition of dp,J(·, ·), we

have that

dp,J(PXZY , PẌ⊗Y |Z) :=

 1

J

J∑
j=1

∣∣∣µPXZY ,kẌ ·kY (tj)− µPẌ⊗Y |Z ,kẌ ·kY (tj)
∣∣∣p
 1
p

,

Moreover thanks to Assumption 4, we have that for any (t(1), t(2)) ∈ Ẍ × Y

µPẌ⊗Y |Z ,kẌ ·kY (t(1), t(2)) = EZ
[
EẌ
[
kẌ (t(1), Ẍ)|Z

]
EY
[
kY(t(2), Y )|Z

]]
,
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and
µPXZY ,kẌ ·kY (t(1), t(2)) = E

[
kẌ (t(1), Ẍ)kY(t(2), Y )

]
.

Let us now introduce the following witness function

∆(t(1), t(2)) := E
[(
kẌ (t(1), Ẍ)− EẌ

[
kẌ (t(1), Ẍ)|Z

])
×
(
kY(t(2), Y )− EY

[
kY(t(2), Y )|Z

])]
.

Therefore we obtain that

∆(t(1), t(2)) = E
[
kẌ (t(1), Ẍ)(kY(t(2), Y )

]
− E

[
kẌ (t(1), Ẍ)EY

[
kY(t(2), Y )|Z

]]
+ E

[
EẌ
[
kẌ (t(1), Ẍ)|Z

]
EY
[
kY(t(2), Y )|Z

]]
− E

[
EẌ
[
kẌ (t(1), Ẍ)|Z

]
kY(t(2), Y )

]
.

Now remarks that

E
[
kẌ (t(1), Ẍ)EY

[
kY(t(2), Y )|Z

]]
= E

[
E
[
kẌ (t(1), Ẍ)EY

[
kY(t(2), Y )|Z

]∣∣Z]]
= E

[
EY
[
kY(t(2), Y )|Z

]
EẌ
[
kẌ (t(1), Ẍ)|Z

]]
.

Simiarly, we have that

E
[
EẌ
[
kẌ (t(1), Ẍ)|Z

]
kY(t(2), Y )

]
= E

[
EY
[
kY(t(2), Y )|Z

]
EẌ
[
kẌ (t(1), Ẍ)|Z

]]
from which follows that

∆(t(1), t(2)) = E
[
kẌ (t(1), Ẍ)(kY(t(2), Y )

]
− E

[
EY
[
kY(t(2), Y )|Z

]
EẌ
[
kẌ (t(1), Ẍ)|Z

]]
= µPXZY ,kẌ ·kY (t(1), t(2))− µPẌ⊗Y |Z ,kẌ ·kY (t(1), t(2)) .

G.6.2 Proof of Proposition 43

Proof. For all j ∈ [J ]:

√
n∆̃n,r(t

(1)
j , t

(2)
j ) (G.10)

=
√
n

1

n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− h(1)

j,r (zi)
)(
kY(t

(2)
j , yi)− h(2)

j,r (zi)
)

=
√
n∆n(t

(1)
j , t

(2)
j ) (G.11)
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+
√
n

1

n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

])(
EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)

j,r (zi)
)

(G.12)

+
√
n

1

n

n∑
i=1

(
EẌ
[
kẌ (t

(1)
j , Ẍ)|Z = zi

]
− h(1)

j,r (zi)
)(
kY(t

(2)
j , yi)− EY

[
kY(t

(2)
j , Y )|Z = zi

])
(G.13)

+
√
n

1

n

n∑
i=1

(
EẌ
[
kẌ (t

(1)
j , Ẍ)|Z = zi

]
− h(1)

j,r (zi)
)(

EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)

j,r (zi)
)

(G.14)

Let us treat the four terms of this decomposition. The term (G.11) has been treated by
Propostion 42, and satis�es, under the null hypothesisH0

√
n∆n(t

(1)
j , t

(2)
j )

→n→∞ N
(

0,E
[(
kẌ (t

(1)
j , Ẍ)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z

])(
kY(t

(2)
j , Y )− EY

[
kY(t

(2)
j , Y )|Z

])])
Let us now show that the last term (G.14) converges towards 0 in probability. Let us denote

for all j, e(1)
j : z → EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = z

]
and e(2)

j : z → EY
[
kẌ (t

(2)
j , Y )|Z = z

]
,

both elements ofHZ by Assumption 6. Then we have, for all i ∈ [n]:

(
e

(1)
j (zi)− h(1)

j,r (zi)
)(
e

(2)
j (zi)− h(2)

j,r (zi)
)

= 〈
(
e

(1)
j − h

(1)
j,r

)
⊗
(
e

(2)
j − h

(2)
j,r

)
, kZ(zi, ·)⊗ kZ(zi, ·)〉.

Then we deduce, by denoting: µZZ := E[kZ(Z, ·)kZ(Z, ·)] and µ̂ZZ := 1
n

∑n
i=1 kZ(zi, ·)kZ(zi, ·),

that

1

n

n∑
i=1

(
EẌ
[
kẌ (t

(1)
j , Ẍ)|Z = zi

]
− h(1)

j,r (zi)
)(

EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)

j,r (zi)
)

= 〈
(
e

(1)
j − h

(1)
j,r

)
⊗
(
e

(2)
j − h

(2)
j,r

)
,

1

n

n∑
i=1

kZ(zi, ·)⊗ kZ(zi, ·)〉

= 〈
(
e

(1)
j − h

(1)
j,r

)
⊗
(
e

(2)
j − h

(2)
j,r

)
, µZZ〉+ 〈

(
e

(1)
j − h

(1)
j,r

)
⊗
(
e

(2)
j − h

(2)
j,r

)
, µ̂ZZ − µZZ〉 .

Then remarks that:

|〈
(
e

(1)
j − h

(1)
j,r

)
⊗
(
e

(2)
j − h

(2)
j,r

)
, µZZ〉| = |EZ

[(
e

(1)
j (Z)− h(1)

j,r (Z)
)(
e

(2)
j (Z)− h(2)

j,r (Z)
)]
|

≤ ‖e(1)
j − h

(1)
j,r ‖L2(PZ)‖e(2)

j − h
(2)
j,r ‖L2(PZ)
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Under the Assumptions 5-6, for λr = 1
rβ+γ , we have, using the results from Fischer and

Steinwart [2020]: ‖e(1)
j − h

(1)
j,r ‖2L2(PZ) ≤ Cτ2

r
β

β+γ

with probability 1 − 4e−τ and ‖e(2)
j −

h
(2)
j,r ‖2L2(PZ) ≤ Cτ2
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The terms (G.12) and (G.13) are similar and can be treated the same way. We only focus
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kẌ (t

(1)
j , ẍi)− EẌ
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)
≤ 2

√
C
δ . Moreover,

under Assumption 5-6, using the results from Fischer and Steinwart [2020], we have that
‖e(2)
j − h

(2)
j,r ‖HZ converges towards 0 in probability. Then the term (G.12) converges in

probability towards 0. The same reasoning holds for (G.13).
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j , Ẍ)− EẌ
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G.6.3 Proof of Proposition 44

Proof. First notice that:
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T
i

and 1
n

∑n
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n,rS̃n,r converges to a standard gaussian distribution N (0, Id).
The second part of the proposition is the same than the proof of Proposition 43.

G.7 Appendix: Additional Experiments

G.7.1 A note on the computation of Oracle statistic in Figure G.2

To compute the oracle statistic we needed to compute exactly the conditional expectation implied
in our statistic. In the case of gaussian kernels and gaussian distributed data for Z , the computa-
tion of this conditional expectation is reduced to the computation of moment-generating func-
tion of a non-centered χ2 distribution.
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G.7.2 Choice of the rank regression r

In this experiment, we show the e�ect of the rank regression r on the performances of our pro-
posed method. For that purpose, in Figure G.5, we consider the two problems presented in (G.4)
and (G.5) with Gaussian noises and show the type-I and type-II when varying the ratio r/n for
multiple sample size n. We observe that the rank r does not a�ect the power of the method, how-
ever we observe that the type-I error decreases as the ratio increases. Therefore the rank r allows
in practice to deal with the tradeo� between the computational time and the control of the type-I
error.
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Figure G.5: Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is
better) of our test procedure with other SoTA tests on the two problems presented in (G.4)
and (G.5) with Gaussian noises. Each point in the �gures is obtained by repeating the exper-
iment for 100 independent trials. (Left, Middle): type-I and type-II errors obtained by each
test when varying the ratio regression rank/total number of samples for di�erent number of
samples. (Right): time in seconds (log-scale) to compute the statistic when varying the ratio
regression rank/total number of samples for di�erent number of samples.
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G.7.3 Additional experiments on Problems (G.4) and (G.5)
Gaussian Case
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Figure G.6: Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is
better) of our test procedure with other SoTA tests on the two problems presented in (G.4)
and (G.5) with Gaussian noises. Each point in the �gures is obtained by repeating the experi-
ment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each
test when varying the dimension dz from 1 to 10; here, the number of samples n is �xed and
equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each test when
varying the number of samples n from 100 to 1000; the dimension dz is �xed and equals 10.
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Figure G.7: Comparison of the KS statistic (lower is better) and the AUPC (higher is better) of our test-
ing procedure with other SoTA tests on the two problems presented in (G.4) and (G.5) with
Gaussian noises. Each point in the �gures is obtained by repeating the experiment forx 100
independent trials. (Left, middle-left): the KS and AUPC obtained by each test when varying
the dimension dz from 1 to 10, while �xing the number of samples n to 1000. (Middle-right,
right): the KS and AUPC obtained by each test when varying the number of samples n from
100 to 1000, while �xing the dimension dz to 10.
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Figure G.8: Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better),
KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems
presented in Eq. (G.4) and Eq. (G.5) with Gaussian noises. Each point in the �gures is obtained
by repeating the experiment for 100 independent trials. In each plot the dimensiondz is varying
from 10 to 50; here, the number of samples n is �xed and equals to 1000.
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Laplace Case
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Figure G.9: Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower
is better) of our test procedure with other SoTA tests on the two problems presented in (G.4)
and (G.5) with Laplace noises. Each point in the �gures is obtained by repeating the experiment
for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each test
when varying the dimension dz from 1 to 10; here, the number of samplesn is �xed and equals
to 1000. (Middle-right, right): type-I and type-II errors obtained by each test when varying
the number of samples n from 100 to 1000; here, the dimension dz is �xed and equals to 10.
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Figure G.10: Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA
tests on the two problems presented in Eq. (G.4) and Eq. (G.5) with Laplace noises. Each
point in the �gures is obtained by repeating the experiment for 100 independent trials. (Left,
middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying
the dimension dz from 1 to 10; here, the number of samples n is �xed and equals to 1000.
(Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying
the number of samples n from 100 to 1000; here, the dimension dz is �xed and equals to 10.
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Figure G.11: Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better),
KS statistic and the AUPC of our testing procedure with other SoTA tests on the two prob-
lems presented in Eq. (G.4) and Eq. (G.5) with Laplace noises. Each point in the �gures is
obtained by repeating the experiment for 100 independent trials. In each plot the dimension
dz is varying from 10 to 50; here, the number of samples n is �xed and equals to 1000.
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G.7.4 Additional experiments on Problems (G.8) and (G.9)
Gaussian Case
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Figure G.12: Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is
better) of our test procedure with other SoTA tests on the two problems presented in (G.8)
and (G.9) with Gaussian noises. Each point in the �gures is obtained by repeating the experi-
ment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each
test when varying the dimension dz from 1 to 10; here, the number of samples n is �xed and
equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each test when
varying the number of samplesn from 100 to 1000; here, the dimension dz is �xed and equals
to 10.
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Figure G.13: Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA
tests on the two problems presented in Eq. (G.8) and Eq. (G.9) with Gaussian noises. Each
point in the �gures is obtained by repeating the experiment for 100 independent trials. (Left,
middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying
the dimension dz from 1 to 10; here, the number of samples n is �xed and equals to 1000.
(Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying
the number of samples n from 100 to 1000; the dimension dz is �xed and equals 10.
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Figure G.14: Comparison of the type-I error at levelα = 0.05 (dashed line), type-II error (lower is better),
KS statistic and the AUPC of our testing procedure with other SoTA tests on the two prob-
lems presented in Eq. (G.8) and Eq. (G.9) with Gaussian noises. Each point in the �gures is
obtained by repeating the experiment for 100 independent trials. In each plot the dimension
dz is varying from 10 to 50; here, the number of samples n is �xed and equals to 1000.
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Laplace Case
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Figure G.15: Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is
better) of our test procedure with other SoTA tests on the two problems presented in (G.8)
and (G.9) with Laplace noises. Each point in the �gures is obtained by repeating the experi-
ment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each
test when varying the dimension dz from 1 to 10; here, the number of samples n is �xed and
equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each test when
varying the number of samples n from 100 to 1000; the dimension dz is �xed and equals 10.
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Figure G.16: Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA
tests on the two problems presented in Eq. (G.8) and Eq. (G.9) with Laplace noises. Each
point in the �gures is obtained by repeating the experiment for 100 independent trials. (Left,
middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying
the dimension dz from 1 to 10; here, the number of samples n is �xed and equals to 1000.
(Middle-right, right): the KS and AUPC (respectively), obtained by each test when varying
the number of samples n from 100 to 1000; the dimension dz is �xed and equals 10.
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Figure G.17: Comparison of the type-I error at levelα = 0.05 (dashed line), type-II error (lower is better),
KS statistic and the AUPC of our testing procedure with other SoTA tests on the two prob-
lems presented in Eq. (G.8) and Eq. (G.9) with Laplace noises. Each point in the �gures is
obtained by repeating the experiment for 100 independent trials. In each plot the dimension
dz is varying from 10 to 50; here, the number of samples n is �xed and equals to 1000.
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Sampling in Continuous Domains

Design of experiments, random search, initialization of population-based methods, or sampling
inside an epoch of an evolutionary algorithm uses a sample drawn according to some probabil-
ity distribution for approximating the location of an optimum. Recent papers have shown that
the optimal search distribution, used for the sampling, might be more peaked around the center
of the distribution than the prior distribution modelling our uncertainty about the location of
the optimum. We con�rm this statement, provide explicit values for this reshaping of the search
distribution depending on the population size λ and the dimension d, and validate our results
experimentally.

H.1 Introduction

We consider the setting in which one aims to locate an optimal solutionx∗ ∈ Rd for a given black-
box problem f : Rd → R through a parallel evaluation of λ solution candidates. A simple, yet
e�ective strategy for this one-shot optimization setting is to choose theλ candidates from a normal
distributionN (µ, σ2), typically centered around an a priori estimateµof the optimum and using
a variance σ2 that is calibrated according to the uncertainty with respect to the optimum. Ran-
dom independent sampling is – despite its simplicity – still a very commonly used and performing
good technique in one-shot optimization settings. There also exist more sophisticated sampling
strategies like Latin Hypercube Sampling (LHS McKay et al. [1979b]), or quasi-random construc-
tions such as Sobol, Halton, Hammersley sequences Dick and Pillichshammer [2010], Matoušek
[2010] – see Bergstra and Bengio [2012], Cauwet et al. [2019] for examples. However, no gen-
eral superiority of these strategies over random sampling can be observed when the benchmark
set is su�ciently diverse Bossek et al. [2019]. It is therefore not surprising that in several one-shot
settings – for example, the design of experiments Niederreiter [1992], McKay et al. [1979a], Ham-
mersley [1960], Atanassov [2004] or the initialization (and sometimes also further iterations) of
evolution strategies – the solution candidates are frequently sampled from random independent
distributions (though sometimes improved by mirrored sampling Teytaud et al. [2006]). A sur-
prising �nding was recently communicated in Cauwet et al. [2019], where the authors consider
the setting in which the optimum x∗ is known to be distributed according to a standard normal
distribution N (0, Id), and the goal is to minimize the distance of the best of the λ samples to
this optimum. In the context of evolution strategies, one would formulate this problem as min-
imizing the sphere function with a normally distributed optimum. Intuitively, one might guess
that sampling the λ candidates from the same prior distribution, N (0, Id), should be optimal.
This intuition, however, was disproved in Cauwet et al. [2019], where it is shown that – unless
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Figure H.1: Average regret, normalized by d, on the sphere function for var-
ious dimensions and budgets in terms of rescaled standard de-
viation. Each mean has been estimated from 100, 000 samples.
Table on the right: Average regret for σ∗ =

√
log(λ)/d and

σ = 1.

d λ σ∗ σ = 1

20
100 0.73 0.88

500 0.63 0.72

1000 0.59 0.66

50
100 0.89 1.23

500 0.83 1.10

1000 0.81 1.05

100
100 0.94 1.44

500 0.91 1.33

1000 0.90 1.29

150
100 0.96 1.53

500 0.94 1.44

1000 0.93 1.41

500
100 0.99 1.74

500 0.98 1.68

1000 0.98 1.66

the sample size λ grows exponentially fast in the dimension d – the median quality of sampling
fromN (0, Id) is worse than that of sampling a single point, namely the center point 0. A simi-
lar observation was previously made in Rahnamayan and Wang [2009], without mathematically
proven guarantees.

Our Theoretical Result. It was left open in Cauwet et al. [2019] how to optimally scale the
variance σ2 when sampling the λ solution candidates from a normal distribution N (0, σ2Id).
While the result from Cauwet et al. [2019] suggests to use σ = 0, we show in this work that a
more e�ective strategy exists. More precisely, we show that setting σ2 = min{1, Θ(log(λ)/d)}
is asymptotically optimal, as long as λ is sub-exponential, but growing in d. Our variance scaling
factor reduces the median approximation error by a 1−ε factor, with ε = Θ(log(λ)/d). We also
prove that no constant variance nor any other variance scaling asω(log(λ)/d) can achieve such an
approximation error. Note that several optimization algorithms operate with rescaled sampling.
Our theoretical results therefore set the mathematical foundation for empirical rules of thumb
such as, for example, used in e.g. Rahnamayan and Wang [2009], Esmailzadeh and Rahnamayan
[2011], Mahdavi et al. [2016], Esmailzadeh and Rahnamayan [2012], Ergezer and Sikder [2011],
Yang et al. [2011], Cauwet et al. [2019].

Our Empirical Results. We complement our theoretical analyses by an empirical investiga-
tion of the rescaled sampling strategy. Experiments on the sphere function con�rm the results.
We also show that our scaling factor for the variance yields excellent performance on two other
benchmark problems, the Cigar and the Rastrigin function. Finally, we demonstrate that these
improvements are not restricted to the one-shot setting by applying them to the initialization of
iterative optimization strategies. More precisely, we show a positive impact on the initialization of
Bayesian optimization algorithms Jones et al. [1998] and on di�erential evolution Storn and Price
[1997].
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Related Work. While the most relevant works for our study have been mentioned above, we
brie�y note that a similar surprising e�ect as observed here is the “Stein phenomenon” Stein
[1956], James and Stein [1961]. Although an intuitive way to estimate the mean of a standard
gaussian distribution is to compute the empirical mean, Stein showed that this strategy is sub-
optimal w.r.t. mean squared error and that the empirical mean needs to be rescaled by some factor
to be optimal.

H.2 Problem Statement and Related Work

The context of our theoretical analysis is one-shot optimization. In one-shot optimization, we are
allowed to select λ points x1, . . . , xλ ∈ Rd. The quality f(xi) of these points is evaluated,
and we measure the performance of our samples in terms of simple regret Bubeck et al. [2009]
mini=1,...,λ f(xi) − infx∈Rd f(x).1 That is, we aim to minimize the distance – measured in
quality space – of the best of our points to the optimum. This formulation, however, also covers
the case in which we aim to minimize the distance to the optimum in the search space: we simply
take as f the root of the sphere function fx∗ : Rd → R, x 7→ ‖x− x∗‖2, where here and in the
following ‖.‖ denotes the Euclidean norm.

Rescaled Random Sampling for Randomly Placed Optimum. In the setting studied in
Sec. H.3 we assume that the optimum x∗ is sampled from the standard multivariate Gaussian
distributionN (0, Id), and that we aim to minimize the regret mini=1,...,λ‖xi − x∗‖2 through
i.i.d. samples xi ∼ N (0, σ2Id). That is, in contrast to the classical design of experiments (DoE)
setting, we are only allowed to choose the scaling factor σ, whereas in DoE more sophisticated
(often quasi-random and space-�lling designs – which are typically not i.i.d. samples) are admissi-
ble. Intuitively, one might be tempted to guess that σ = 1 should be a good choice, as in this case
the λ points are chosen from the same distribution as the optimum x∗. This intuition, however,
was refuted in [Cauwet et al., 2019, Theorem 1], where is was shown that the middle point sam-
pling strategy, which usesσ = 0 (i.e., allλ points collapse to (0, . . . , 0)) yields smaller regret than
sampling fromN (0, Id) unlessλ grows exponentially in d. More precisely, it is shown in Cauwet
et al. [2019] that, for this regime of λ and d, the median of ‖x∗‖2 is smaller than the median of
‖xi − x∗‖2 for i.i.d. xi ∈ N (0, Id). This shows that sampling a single point can be better than
sampling λ points with the wrong scaling factor, unless the budget λ is very large.
Our goal is to improve upon the middle point strategy, by deriving a scaling factor σ such that the
λ i.i.d. samples yield smaller regret with a decent probability. More precisely, we aim at identifying
σ such that

P
[

min
1≤i≤λ

‖xi − x∗‖2 ≤ (1− ε)‖x∗‖2
]
≥ δ, (H.1)

for some δ ≥ 1/2 and ε > 0 as large as possible. Here, in line with Cauwet et al. [2019], we have
switched to regret, for convenience of notation. Cauwet et al. [2019] proposed, without proof,
such a scaling factor: our proposal is dramatically better in some regimes.

1This requires knowledge of infx f(x), which may not be available in real-world applications. In this case, without
loss of generality (this is just for the sake of plotting regret values), the in�mum can be replaced by an empirical
minimum. In all applications considered in this work the value of infx f(x) is known.
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Figure H.2: Comparison of methods: without rescaling (σ = 1), middle point sampling (σ = 0), and our

rescaling method (σ =
√

log λ
d ). Each mean has been estimated from 105 samples. (On left)

Average regret, normalized by d, on the sphere function for diverse population sizes λ at �xed
dimension d = 20. The gain of rescaling decreases as λ increases. (On right) Distribution of
the regret for the strategies on the 50d-sphere function for λ = 1000.

H.3 Theoretical Results

We derive su�cient and necessary conditions on the scaling factor σ such that Eq. (H.1) can be
satis�ed. More precisely, we prove that Eq. (H.1) holds with approximation gain ε ≈ log(λ)/d
when the variance σ2 is chosen proportionally to log λ/d (and λ does not grow too rapidly in
d). We then show that Eq. (H.1) cannot be satis�ed for σ2 = ω(log(λ)/d). Moreover, we prove
that ε = O(log(λ)/d), which, together with the �rst result, shows that our scaling factor is
asymptotically optimal. The precise statements are summarized in Theorems 26, 27, and 28,
respectively. Proof sketches are available in Sec. H.3. Proofs are left in the full version available on
the ArXiv version Meunier et al. [2020b].

Theorem 26 (Su�cient condition on rescaling). Let δ ∈ [1
2 , 1). Let λ = λd, satisfying :

λd →∞ as d→∞ and log(λd) ∈ o(d) (H.2)

. Then there exist two positive constants c1, c2, and d0, such that for all d ≥ d0 it holds that

P
[

min
i=1,...,λ

‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2
]
≥ δ (H.3)

when x∗ is sampled from the standard Gaussian distributionN (0, Id), x1, . . . , xλ are indepen-
dently sampled fromN (0, σ2Id) with σ2 = σ2

d = c2 log(λ)/d and ε = εd = c1 log(λ)/d.

Theorem 26 shows that i.i.d. Gaussian sampling can outperform the middle point strategy
derived in Cauwet et al. [2019] (i.e., the strategy using σ2 = 0) if the scaling factor σ is chosen
appropriately. Our next theorem summarizes our �ndings for the conditions that are necessary for
the scaling factorσ2 to outperform this middle point strategy. This result, in particular, illustrates
why neither the natural choice σ = 1, nor any other constant scaling factor can be optimal.
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Figure H.3: Comparison of various one-shot optimization methods from the point of view of the sim-
ple regret. Reading guide in Sec. H.4.2. Results are averaged over objective functions Cigar,
Rastrigin, Sphere in dimension 20, 200, 2000, and budget 30, 100, 3000, 10000, 30000,
100000. MetaTuneRecentering performs best overall. Only the 30 best performing methods
are displayed as columns, and the 6 best as rows. Red means superior performance of row vs
col. Rows and cols ranked by performance.

Theorem 27 (Necessary condition on rescaling). Considerλ = λd satisfying assumptions (H.2).
There exists an absolute constant C > 0 such that for all δ ∈ [1

2 , 1), there exists d0 > 0 such that,
for all d > d0 and for all σ the property

∃ε > 0,P
[

min
i=1,...,λ

‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2
]
≥ δ (H.4)

for x∗ ∼ N (0, Id) and x1, . . . , xλ independently sampled fromN (0, σ2Id), implies that σ2 ≤
C log(λ)/d.

While Theorem 27 induces a necessary condition on the scaling factor σ to improve over the
middle point strategy, it does not bound the gain that one can achieve through a proper scaling.
Our next theorem shows that the factor derived in Theorem 26 is asymptotically optimal.

Theorem 28 (Upper bound for the approximation factor). Consider λ = λd satisfying assump-
tions (H.2). There exists an absolute constantC ′ > 0 such that for all δ ∈ [1

2 , 1), there existsd0 > 0
such that, for alld > d0 and for allε, σ > 0, it holds that ifP

[
mini=1,...,λ‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

]
≥

δ forx∗ ∼ N (0, Id) andx1, . . . , xλ independently sampled fromN (0, σ2Id), thenε ≤ C ′ log(λ)/d.

Proof Sketches. We �rst notice that as x∗ is sampled from a standard normal distribution
N (0, Id), its norm satis�es ‖x∗‖2 = d+ o(d) as d→∞. We then use that, conditionally to x∗,
it holds that

P
[
mini∈[λ]‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗] = 1−
(
1− P

[
‖x− x∗‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗])λ
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We therefore investigate when the condition

P
[
‖x− x∗‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗] > 1− (1− δ) 1
λ (H.5)

is satis�ed. To this end, we make use of the fact that the squared distance ‖x∗‖2 of x∗ to the
middle point 0 follows the central χ2(d) distribution, whereas, for a given point x∗ ∈ Rd, the
distribution of the squared distance ‖x− x∗‖2/σ2 for x ∼ N (0, σ2Id) follows the non-central
χ2(d, µ) distribution with non-centrality parameter µ := ‖x∗‖2/σ2. Using the concentration
inequalities provided in [Zhang and Zhou, 2018, Theorem 7] for non-central χ2 distributions,
we then derive su�cient and necessary conditions for condition (H.5) to hold. With this, and
using assumptions (H.2), we are able to derive the results from Theorems 26, 27, and 28.

H.4 Experimental Performance Comparisons

The theoretical results presented above are in asymptotic terms, and do not specify the constants.
We therefore complement our mathematical investigation with an empirical analysis of the rescal-
ing factor. Whereas results for the setting studied in Sec. H.3 are presented in Sec. H.4.1, we show
in Sec. H.4.2 that the advantage of our rescaling factor is not limited to minimizing the distance
in search space. More precisely, we show that the rescaled sampling achieves good results also in
a classical DoE task, in which we aim for minimizing the regret for the Cigar and for the Rastri-
gin functions. Finally, we investigate in Sec. H.4.3 the impact of initializing two common opti-
mization heuristics, Bayesian Optimization (BO) and di�erential evolution (DE), by a population
sampled from the Gaussian distributionN (0, σ2Id) using our rescaling factorσ =

√
log(λ)/d.

H.4.1 Validation of Our Theoretical Results on the Sphere Function

Fig. H.1 displays the normalized average regret 1
dE
[
mini=1,...,λ‖x∗ − xi‖2

]
in terms ofσ/

√
log(λ)/d

for di�erent dimensions and budgets. We observe that the best parametrization of σ is around√
log(λ)/d in all displayed cases. Moreover, we also see that – as expected – the gain of the

rescaled sampling over the middle point sampling (σ = 0) goes to 0 as d → ∞ (i.e. we get a
result closer to the case σ = 0 as dimension goes to in�nity). We also see that, for the regimes
plotted in Fig. H.1, the advantage of the rescaled variance grows with the budget λ. Figure H.2
(on left) displays the average regret (average over multiple samplings and multiple positions of
the optimum) as a function of increasing values of λ for the di�erent rescaling methods (σ ∈
{0,
√

log λ/d, 1}). We remark, unsurprisingly, that the gain of rescaling is diminishing as λ →
∞. Finally, Figure H.2 (on right) shows the distribution of regrets for the di�erent rescaling meth-
ods. The improvement of the expected regret is not at the expense of a higher dispersion of the
regret.

H.4.2 Comparison with the DoEs Available in Nevergrad

Motivated by the signi�cant improvements presented above, we now investigate whether the ad-
vantage of our rescaling factor translates to other optimization tasks. To this end, we �rst analyze
a DoE setting, in which an underlying (and typically not explicitly given) function f is to be min-
imized through a parallel evaluation of λ solution candidates x1, . . . , xλ, and regret is measured
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Sphere function Cigar function Rastrigin function

Figure H.4: Same experiment as Fig. H.3, but separately over each objective function. Results are still av-
eraged over 6 distinct budgets (30, 100, 3000, 10000, 30000, 100000) and 3 distinct dimen-
sionalities (20, 200, 2000). MetaTuneRecentering performs well in each case, and is not limited
to the sphere function for which it was derived. Variants of LHS are sometimes excellent and
sometimes not visible at all (only the 30 best performing methods are shown).

in terms of mini f(xi) − infx f(x). In the broader machine learning literature, and in partic-
ular in the context of hyper-parameter optimization, this setting is often referred to as one-shot
optimization Bergstra and Bengio [2012], Cauwet et al. [2019].

Experimental Setup. All our experiments are implemented and freely available in the Never-
grad platform Rapin and Teytaud [2018]. Results are presented as shown in Fig. H.3. Typically,
the six best methods are displayed as rows. The 30 best performing methods are presented as
columns. The order for rows and for columns is the same: algorithms are ranked by their average
winning frequency, measured against all other algorithms in the portfolio. The heatmaps show
the fraction of runs in which algorithm x (row) outperformed algorithm y (column), averaged
over all settings and all replicas (i.e. random repetitions). The settings are typically sweepings over
various budgets, dimensions, and objective functions.2For each tested (algorithm, problem) pair,
20 independent runs are performed: a case with N settings is thus based on a total number of
20 × N runs. The number N of distinct problems is at least 6 and often high in the dozens,
hence the minimum number of independent runs is at least 120.

Algorithm Portfolio. Several rescaling methods are already available on Nevergrad. A large
fraction of these have been implemented by the authors of Cauwet et al. [2019]; in particular:

• The replacement of one sample by the center. These methods are named “midpointX” or
“XPlusMiddlePoint”, where X is the original method that has been modi�ed that way.

• The rescaling factor MetaRecentering derived in Cauwet et al. [2019]: σ = 1+log(λ)
4 log(d) .

• The quasi-opposite methods suggested in Rahnamayan and Wang [2009], with pre�x “QO”:
when x is sampled, then another sample c− rx is added, with r uniformly drawn in [0, 1]
and c the center of the distribution.

We also include in our comparison a di�erent type of one-shot optimization techniques, indepen-
dent of the present work, currently available in the platform: they use the information obtained

2Detailed results for individual settings are available at http://dl.fbaipublicfiles.com/nevergrad/allxps/list.

html.
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from the sampled points to recommend a point x that is not necessarily one of the λ evaluated
ones. These “one-shot+1” strategies have the pre�x “Avg”. We keep all these and all other sampling
strategies available in Nevergrad for our experiments. We add to this existing Nevergrad portfolio
our own rescaling strategy, which uses the scaling factor derived in Sec. H.3; i.e.,σ =

√
log(λ)/d.

We refer to this sampling strategy as MetaTuneRecentering, de�ned below. Both scaling factors
MetaRecentering Cauwet et al. [2019] and MetaTuneRecentering (our equations) are applied to
quasirandom sampling (more precisely, scrambled Hammersley Hammersley [1960], Atanassov
[2004]) rather than random sampling. We provide detailed speci�cations of these methods and
the most important ones below, whereas we skip the dozens of other methods: they are open
sourced in Nevergrad Rapin and Teytaud [2018].

From [0, 1]d to Gaussian quasi-random, random or LHS sampling: Random sampling,
quasi-random sampling, Latin Hypercube Sampling (or others) have a well known de�nition in
[0, 1]d (for quasi-random, see Halton Halton [1960] or Hammersley Hammersley [1960], possi-
bly boosted by scrambling Atanassov [2004]; for LHS, see McKay et al. [1979a]). To extend to
multidimensional Gaussian sampling, we use that ifU is a uniform random variable on [0, 1] and
Φ the standard Gaussian CDF, thenΦ−1(U) simulates aN (0, 1) distribution. We do so on each
dimension: this provides a Gaussian quasi-random, random or LHS sampling.

Then, one can rescale the Gaussian quasi-random sampling with the corresponding factorσ for
MetaRecentering (σ = 1+log(λ)

4 log(d) Cauwet et al. [2019]) and MetaTuneRecentering (σ =
√

log(λ)/d):
for i ≤ λ and j ≤ d, xi,j = σφ−1(hi,j) where hi,j is the jth coordinate of a ith Scrambled-
Hammersley point.

Results for the Full DoE Testbed in Nevergrad. Fig. H.3 displays aggregated results for the
Sphere, the Cigar, and the Rastrigin functions, for three di�erent dimensions and six di�erent
budgets. We observe that our MetaTuneRecentering strategy performs best, with a winning fre-
quency of 80%. It positively compares against all other strategies from the portfolio, with the
notable exception of AvgLHS, which, in fact, compares favorably against every single other strat-
egy, but with a lower average winning frequency of 73.6%. Note here that AvgLHS is one of the
“oneshot+1” strategies, i.e., it has not only one more sample, but it is also allowed to sample its
recommendation adaptively, in contrast to our fully parallel MetaTuneRecentering strategy. It per-
forms poorly in some cases (Rastrigin) and does not make sense as an initialization (Sect. H.4.3).

Selected DoE Tasks. Fig. H.4 breaks down the aggregated results from Fig. H.3 to the three
di�erent functions. We see that MetaTuneRecentering scores second on sphere (where AvgLHS is
winning), third on Cigar (after AvgLHS and QORandom), and �rst on Rastrigin. This �ne perfor-
mance is remarkable, given that the portfolio contains quite sophisticated and highly tuned meth-
ods. In addition, the AvgLHS methods, sometimes performing better on the sphere, besides using
more capabilities than we do (as it is a “oneshot+1” method), had poor results for Rastrigin (not
even in the 30 best methods). On sphere, the di�erence to the third and following strategies is
signi�cant (87.3% winning rate against 77.5% for the next runner-up). On Cigar, the di�erences
between the �rst four strategies are greater than 4 percentage points each, whereas on Rastrigin
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the average winning frequencies of the �rst �ve strategies is comparable, but signi�cantly larger
than that of the sixth one (which scores 78.8% against >94.2% for the �rst �ve DoEs). Fig. H.5
zooms into the results for the sphere function, and breaks them further down by available budget
λ (note that the results are still averaged over the three tested dimensions). MetaTuneRecentering
scores second in all six cases. A breakdown of the results for sphere by dimension (and aggregated
over the six available budgets) is provided in Fig. H.6 and Fig. H.7. For dimension 20, we see
that MetaTuneRecentering ranks third, but, interestingly, the two �rst methods are “oneshot+1”
style (Avg pre�x). In dimension 200, MetaTuneRecentering ranks second, with considerable ad-
vantage over the third-ranked strategy (88.0% vs. 80.8%). Finally, for the largest tested dimension,
d = 2000, our method ranks �rst, with an average winning frequency of 90.5%.

H.4.3 Application to Iterative Optimization Heuristics

We now move from the one-shot settings considered thus far to iterative optimization, and show
that our scaling factor can also be bene�cial in this context. More precisely, we analyze the impact
of initializing e�cient global optimization (EGO Jones et al. [1998], a special case of Bayesian op-
timization) and di�erential evolution (DE Storn and Price [1997]) by a population that is sampled
from a distribution that uses our variance scaling scheme. It is well known that a proper initial-
ization can be very critical for the performance of these solvers; see Feurer et al. [2015], Surry and
Radcli�e [1996], Rahnamayan and Wang [2009], Maaranen et al. [2004], Bossek et al. [2020]
for discussions. Fig. H.8 summarizes the results of our experiments. As in the previous setups,
we compare against existing methods from the Nevergrad platform, to which we have just added
our rescaling factor termed MetaTuneRecentering. For each initialization scheme, four di�erent
initial population sizes are considered: denoting by d the dimension, by w the parallelism (i.e.,
the number of workers), and by b the total budget that the algorithms can spend on optimizing
the given optimization task, the initial population λ is set as λ =

√
b for Sqrt, as λ = d for Dim,

λ = w for no su�x, and as λ = 30 when the su�x is 30. As in Sec. H.4.2 we superpose our scal-
ing scheme on top of the quasi-random Scrambled Hammersley sequence suggested in Cauwet
et al. [2019], but we also consider random initialization rather than quasi-random (indicated by
the su�x “R”) and Latin Hypercube Sampling McKay et al. [1979a] (su�x “LHS”). The left chart
in Fig. H.8 is for the Bayesian optimization case. It aggregates results for 48 settings, which stem
from Nevergrad’s “parahdbo4d” suite. It comprises the four benchmark problems Sphere, Cigar,
Ellipsoid and Hm. Results are averaged over the total budgets b ∈ {25, 31, 37, 43, 50, 60}, di-
mension d ∈ {20, 2000}, and parallelism w = max(d, bb/6c). We observe that a BO version
using our MetaTuneRecentering performs best, and that several other variants using this scaling
appear among the top-performing con�gurations. The chart on the right of Fig. H.8 summarizes
results for Di�erential Evolution. Since DE can handle larger budgets, we consider here a total
number of 100 settings, which correspond to the testcase named “paraalldes” in Nevergrad. In
this suite, results are averaged over budgets b ∈ {10, 100, 1000, 10000, 100000}, dimensions
d ∈ {5, 20, 100, 500, 2500}, parallelism w = max(d, bb/6c), and again the objective func-
tions Sphere, Cigar, Ellipsoid, and Hm. Specialized versions of DE perform best for this testcase,
but we see that DE initialized with our MetaTuneRecentering strategy ranks �fth (outperformed
only by ad hoc variants of DE), with an overall winning frequency that is not much smaller than
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that of the top-ranked NoisyDE strategy (76.3% for ChainDEwithMetaTuneRecentering vs. 81.7% for
NoisyDE) - and almost always outperforms the rescaling used in the original Nevergrad.

H.5 Conclusions and Future Work

We have investigated the scaling of the variance of random sampling in order to minimize the ex-
pected regret. While previous work Cauwet et al. [2019] had already shown that, in the context
of the sphere function, the optimal scaling factor is not identical to that of the prior distribution
from which the optimum is sampled (unless the sample size is exponentially large in the dimen-
sion), it did not answer the question how to scale the variance optimally. We have proven that a
standard deviation scaled as σ =

√
log(λ)/d gives, with probability at least 1/2, a sample that

is signi�cantly closer to the optimum than the previous known strategies. We have also proven
that the gain achieved by our scaling strategy is asymptotically optimal and that any decent scaling
factor is asymptotically at most as large as our suggestion.
The empirical assessment of our rescaled sampling strategy con�rmed decent performance not
only on the sphere function, but also on other classical benchmark problems. We have further-
more given indications that the sampling might help improve state-of-the-art numerical heuris-
tics based on di�erential evolution or using Bayesian surrogate models. Our proposed one-shot
method performs best in many cases, sometimes outperformed by e.g. AvgLHS, but is stable on a
wide range of problems and meaningful also as an initialization method (as opposed to AvgLHS).
Whereas our theoretical results can be extended to quadratic forms (by conservation of barycen-
ters through linear transformations), an extension to wider families of functions (e.g., families of
functions with order 2 Taylor expansion) is not straightforward. Apart from extending our results
to broader function classes, another direction for future work comprises extensions to the multi-
epoch case. Our empirical results on DE and BO gives a �rst indication that a properly scaled
variance can also be bene�cial in iterative sampling. Note, however, that in the latter case, we only
adjusted the initialization, not the later sampling steps. This forms another promising direction
for future work.

H.6 Appendix: Relevant Concentration Bounds for χ2

Distributions

We recall some basic de�nitions and properties of the central and the non-centralχ2 distributions,
which are needed in the proofs of Theorems 26 and 27.

De�nition 31. (Centralχ2-distribution) LetX1, ..., Xd bed independent random variables drawn
from the standard normal distributionN (0, 1). Then the random variableU = X2

1 + ...+X2
d

follows a central χ2(d) distribution with d degrees of freedom.

As mentioned previously, the squared distance ‖x∗‖2 of x∗ to the middle point 0 follows the
central χ2(d) distribution. This is thus also the distribution of the performance of the random
sampling strategy using σ2 = 0. In our proofs we will make use of the following properties of
this distribution.
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Property 1. (Properties ofχ2 distribution) LetU ∼ χ2(d). Then E(U) = d, var(U) = 2d, and
for all t ∈ [0, 1] it holds that P

[
|Ud − 1| ≥ t

]
≤ 2 exp

(
−dt2

8

)
.

While the centralχ2 distribution su�ces for the analysis of the middle point sampling strategy,
non-central χ2 distribution are required in the analysis of our Gaussian sampling with rescaled
variance.

De�nition 32. (Non-central χ2-distribution) Let X1, ..., Xd be independently drawn random
variables satisfyingXi ∼ N (µi, 1). LetU = X2

1 +...+X2
d . The random variableU follows a cen-

tral χ2(d, µ) distribution with d degrees of freedom and non-centrality parameter µ =
∑d

i=1 µ
2
i .

Note here that the non-central χ2 distribution only depends on
∑d

i=1 µ
2
i , but not on the in-

dividual values (µ1, ..., µd). Note further that, for a given point x∗ ∈ Rd, the distribution of the
squared distance ‖x−x∗‖2 for x ∼ N (0, I) follows the non-centralχ2(d, µ) distribution with
non-centrality parameter µ := ‖x∗‖2.

We recall some important properties of the non-central χ2 distribution.

Property 2. (Properties of the non-central χ2 distribution) Let U ∼ χ2(d, µ). Then E(U) =
d+ µ, var(U) = 2(d+ 2µ), and for any β > 1 there exist positive constantsC1,Cβ such that for
all x ≤ (µ+ d)/β it holds that

P (U ≤ −x) ≥ C1 exp

{(
−Cβ

x2

2µ+ d

)}
. (H.6)

Moreover, for all x > 0, it holds that

P (U ≤ −x) ≤ exp

{(
−1

4

x2

2µ+ d

)}
. (H.7)

Proofs for the concentration inequalities H.6 and H.7 can be found in [Zhang and Zhou, 2018,
Theorem 7].

H.7 Appendix: Proof of Theorem 26 (Su�cient condition)

Proof. We now present the proof of Theorem 26, the su�cient condition for the scaling
factorσ2 to be bene�cial over sampling the middle point. Let δ,λ andd satisfy the conditions
of Theorem 26. Let ε, σ > 0. By the law of total probability it holds that, for all t ≤ 1,

P
[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

]
= P

[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2 | |‖x

∗‖2
d
− 1| ≤ t

]
P
[
|‖x
∗‖2
d
− 1| ≤ t

]
+ P

[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣|‖x∗‖2
d
− 1| > t

]
P
[
|‖x
∗‖2
d
− 1| > t

]
.
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Eq. H.3 is therefore satis�ed if

P
[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣|‖x∗‖2
d
− 1| ≤ t

]
P
[
|‖x
∗‖2
d
− 1| ≤ t

]
≥ δ.

This equation, in turn, is satis�ed if for all y with |‖y‖2d − 1| ≤ t it holds that

P
[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗ = y

]
≥ δ

P
[
|‖x∗‖2d − 1| ≤ t

] . (H.8)

For the following computations, we �x t := d−1/3 and we set δ′ := δ/P
[
|‖x∗‖2d − 1| ≤ t

]
.

Let x∗ be such that |‖x∗‖2d − 1| ≤ t. Then, conditionally to x∗, we have

P
[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗]
= 1− P

[
min
i∈[λ]
‖x∗ − xi‖2 ≥ (1− ε)‖x∗‖2

∣∣x∗]
= 1− P

[
‖x− x∗‖2 ≥ (1− ε)‖x∗‖2

∣∣x∗]λ
= 1−

(
1− P

[
‖x− x∗‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗])λ
for an x is distributed as a normal distributionN (0, σ2I). We recall that for such an x the
distribution of the term ‖x−x∗‖2/σ2 (for �xedx∗) follows the non-centralχ2(d, µ) distri-
bution with non-centrality parameterµ := ‖x∗‖2/σ2. We therefore obtain (through simple
algebraic manipulations) that condition (H.8) holds if and only if

P
[
U ≤ (1− ε)‖x

∗‖2
σ2

]
≥ 1− (1− δ′)1/λ ,

withU ∼ χ2(d, µ). LetY := U−
(
‖x∗‖2
σ2 + d

)
. Then the previous condition is equivalent

to
P
[
Y ≤ −

(
ε
‖x∗‖2
σ2

+ d

)]
≥ 1− (1− δ)1/λ .

According to the concentration inequality H.6, it holds that for any β > 1, there exist
constantsC1 > 0 andCβ > 0 such that if

ε
‖x∗‖2
σ2

+ d ≤ 1

β

(‖x∗‖2
σ2

+ d

)
, (H.9)

then

P
(
Y ≤ −

(
ε
‖x∗‖2
σ2

+ d

))
≥ C1 exp

{(
−Cβ

(ε‖x
∗‖2
σ2 + d)2

2‖x
∗‖2
σ2 + d

)}
.
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H.8 Appendix: Proof of Theorem 27 (Necessary condition)

We deduce a su�cient condition for (H.8), by noting that it is satis�ed if, for all x∗ such that
|‖x∗‖2d − 1| ≤ t, it holds that (

ε‖x
∗‖2
σ2 + d

)2

2‖x
∗‖2
σ2 + d

≤ Aλ, (H.10)

withAλ := − 1
Cβ

(
log
(
1− (1− δ′)1/λ

)
− logC1

)
.

Let us now �x β := 2, ε := c1
log λ
d and σ2 := c2

log λ
d , with c1 := 1

3Cβ
and c2 := c1.

We show that, with these choices of β, ε and σ, inequalities (H.9) and H.10 are satis�ed if d
is su�ciently large and x∗ satis�es |‖x∗‖2d − 1| ≤ t. To this end, �rst note that

ε‖x
∗‖2
σ2 + d

(‖x
∗‖2
σ2 + d)

≤
c1
c2

(1 + t) + 1
d

c2 log λ(1− t) + 1
.

Under the assumptions stated in (H.2) the term
c1
c2

(1+t)+1

d
c2 log λ

(1−t)+1
converges to zero as d→∞.

We therefore obtain that, for d su�ciently large and x∗ satisfying |‖x∗‖2d − 1| ≤ t, it holds
that

ε‖x
∗‖2
σ2 + d

‖x∗‖2
σ2 + d

≤ 1

β
,

which proves (H.9).
To show (H.10), we �rst note that

(ε‖x
∗‖2
σ2 + d)2

2‖x
∗‖2
σ2 + d

≤

(
c1
c2

(1 + t) + 1
)2

2 d
c2 log λ(1− t) + 1

.

Under the assumptions stated in (H.2), and since d→∞, we approximate

c1
c2

(1 + t) + 1
d

c2 log λ(1− t) + 1
=
c2

2

(
c1

c2
+ 1

)2

log λ+ o(log λ) =
2

3Cβ
log λ+ o(log λ)

and Aλ = 1
Cβ

log λ + o(log λ), which shows that condition H.10 holds for d su�ciently

large and x∗ satisfying |‖x∗‖2d − 1| ≤ t.

H.8 Appendix: Proof of Theorem 27 (Necessary condition)
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Proof. We now prove the necessary condition which we have stated in Theorem 27. Let
d, λ, ε, and σ satisfy the condition of Theorem 27. As in the beginning of the proof for
Theorem 26, we can deduce the following necessary condition. For all t ≤ 1 it holds that

P
[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣|‖x∗‖2
d
− 1| ≤ t

]
P
[
|‖x
∗‖2
d
− 1| ≤ t

]
+P
[
|‖x
∗‖2
d
− 1| > t

]
≥ δ

Then there exists x∗ such that |‖x∗‖2d − 1| ≤ t and

P
[
min
i∈[λ]
‖x∗ − xi‖2 ≤ (1− ε)‖x∗‖2

∣∣x∗] ≥ δ − P
[
|‖x∗‖2d − 1| > t

]
P
[
|‖x∗‖2d − 1| ≤ t

] . (H.11)

Set δ′ :=
δ−P

[
| ‖x
∗‖2
d
−1|>t

]
P
[
| ‖x
∗‖2
d
−1|≤t

] . Then the necessary condition (H.11) can be written as

P
[
Y ≤ −

(
ε
‖x∗‖2
σ2

+ d

)]
≥ 1− (1− δ′)1/λ

withY := U−(‖x
∗‖2
σ2 +d) andU being distributed according to a non-centralχ2 distribu-

tion with d degrees of freedom and non-centrality parameter ‖x∗‖2/σ2. According to the
concentration bound (H.7), we have

P
(
Y ≤ −

(
ε
‖x∗‖2
σ2

+ d

))
≤ exp

{(
−1

4

(ε‖x
∗‖2
σ2 + d)2

2‖x
∗‖2
σ2 + d

)}
.

Condition (H.11) therefore requires

exp

{(
−1

4

(ε‖x
∗‖2
σ2 + d)2

2‖x
∗‖2
σ2 + d

)}
≥ 1− (1− δ′)1/λ.

From this we deriveε ≤
(√

Ãλ

(
2‖x

∗‖2
σ2 + d

)
− d
)

σ2

‖x∗‖2 ,with Ãλ = −4 log
(
1− (1− δ′)1/λ

)
.

As ε > 0, we obtain that

σ2 < σ̃2 := 2
‖x∗‖2/d
d
Āλ
− 1

.
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Fixing t = d−1/3 and considering the requirements stated in (H.2) we obtain that σ̃ =

2 Ãλd +o
(
Ãλ
d

)
= 8 log λ

d +o
(

log λ
d

)
, which concludes the proof of the necessary condition,

as it shows σ2 ∈ O
(

log λd
d

)
.

H.9 Appendix: Proof of Theorem 28 (Upper Bound for the Gain)

Proof. The proof of Theorem 28 uses the same argument as the one of Theorem 27. We
have proved that σ2 must be between 0 and σ̃ = 2‖x

∗‖2/d
d
Āλ
−1

. Then we get that:

ε ≤ sup
σ∈[0,σ̃]

(√
Ãλ

(
2
‖x∗‖2
σ2

+ d

)
− d
)

σ2

‖x∗‖2 .

Noticing that:

sup
σ∈[0,σ̃]

(√
Ãλ

(
2
‖x∗‖2
σ2

+ d

)
− d
)

σ2

‖x∗‖2

= sup
α∈[0,1]

(√
Ãλ

(
2
‖x∗‖2
ασ̃2

+ d

)
− d
)
ασ̃2

‖x∗‖2

We get after simple algebraic simpli�cations and for d su�ciently large under assump-
tions (H.2):

sup
σ∈[0,σ̃]

(√
Ãλ

(
2
‖x∗‖2
σ2

+ d

)
− d
)

σ2

‖x∗‖2

≤ dσ̃2

‖x∗‖2 sup
α∈[0,1]

α

√α−1 +
Ãλ
d2
− 1


≤ dσ̃2

‖x∗‖2 sup
α∈[0,1]

α
(√

α−1 + 1− 1
)

≤ 8
log λ

d
+ o

(
log λ

d

)
Then ε ∈ O

(
log λd
d

)
, which concludes the proof of Theorem 28.
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Budget λ = 30 Budget λ = 100

Budget λ = 3000 Budget λ = 10000

Budget λ = 30000 Budget λ = 100000

Figure H.5: Methods ranked by performance on the sphere function, per budget. Results averaged over
dimension 20, 200, 2000. MetaTuneRecentering performs among the best in all cases. LHS is
excellent on this very simple setting, namely the sphere function.

Dimension 20 Dimension 200 Dimension 2000

Figure H.6: Results on the sphere function, per dimensionality. Results are averaged over 6 values of the
budget: 30, 100, 3000, 10000, 30000, 100000. Our method becomes better and better as the
dimension increases.
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Dimension 20 Dimension 200

Dimension 2000 Dimension 20000
Figure H.7: Same context as Fig. H.6, with x-axis = budget and y-axis = average simple regret. We see the

failure of MetaRecentering in the worsening performance as budget goes to in�nity: the budget
has an impact on σ which becomes worse, hence worse overall performance. We note that
quasi-opposite sampling can perform decently in a wide range of values. Opposite Sampling
is not much better than random search in high-dimension. Our MetaTuneRecentering shows
decent performance: in particular, simple regret decreases as λ→∞.

Figure H.8: Performance comparison of di�erent strategies to initialize Bayesian Optimization (BO,
left) and Di�erential Evolution (DE, right). A detailed description is given in Sec. H.4.3.
MetaTuneRecentering performs best as an initialization method. In the case of DE, methods
di�erent from the traditional DE remain the best on this testcase: when we compare DE with
a given initialization and DE initialized with MetaTuneRecentering, MetaTuneRecentering per-
forms best in almost all cases.
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I On averaging the best samples in

evolutionary computation: the sphere

function case

Choosing the right selection rate is a long standing issue in evolutionary computation. In the
continuous unconstrained case, we prove mathematically that a single parent µ = 1 leads to a
sub-optimal simple regret in the case of the sphere function. We provide a theoretically-based
selection rate µ/λ that leads to better progress rates. With our choice of selection rate, we get
a provable regret of order O(λ−1) which has to be compared with O(λ−2/d) in the case where
µ = 1. We complete our study with experiments to con�rm our theoretical claims.

I.1 Introduction

In evolutionary computation, the selected population size often depends linearly on the total pop-
ulation size, with a ratio between 1/4 and 1/2: 0.270 is proposed in Beyer and Schwefel [2002a],
Hansen and Ostermeier [2003], Beyer and Sendho� [2008] suggest 1/4 and 1/2. However, some
sources Escalante and Reyes [2013] recommend a lower value 1/7. Experimental results in Tey-
taud [2010] and theory in Fournier and Teytaud [2010] together suggest a ratio min(d, λ/4) with
d the dimension, i.e. keep a population size at most the dimension. Jebalia and Auger [2010] sug-
gests to keep increasingµ besides that limit, but slowly enough so that that ruleµ = min(d, λ/4)
would be still nearly optimal. There is, overall, limited theory around the optimal choice of µ for
optimization in the continuous setting. In the present paper, we focus on a simple case (sphere
function and single epoch), but prove exact theorems. We point out that the single epoch case is
important by itself - this is fully parallel optimization Niederreiter [1992], McKay et al. [1979a],
Bergstra and Bengio [2012], Bousquet et al. [2017]. Experimental results with a publicly available
platform support the approach.

I.2 Theory

We consider the case of a single batch of evaluated points. We generateλ points according to some
probability distribution. We then select the µ best and average them. The result is our approxi-
mation of the optimum. This is therefore an extreme case of evolutionary algorithm, with a single
population; this is commonly used for e.g. hyperparameter search in machine learning Bergstra
and Bengio [2012], Bousquet et al. [2017], though in most cases with the simplest case µ = 1.
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I On averaging the best samples in evolutionary computation: the sphere function case

I.2.1 Outline

We consider the optimization of the simple functionx 7→ ‖x−y‖2 for an unknowny ∈ B(0, r).
In Section I.2.2 we introduce notations. In Section I.2.3 we analyze the case of random search
uniformly in a ball of radius h centered on y. We can, therefore, exploit the knowledge of the
optimum’s position and assume that y = 0. We then extend the results to random search in a ball
of radius r centered on 0, provided that r >‖y‖ and show that results are essentially the same up
to an exponentially decreasing term (Section I.2.4).

I.2.2 Notations

We are interested in minimizing the function f : x ∈ Rd 7→ ‖x− y‖2 for a �xed unknown y in
parallel one-shot black box optimization, i.e. we sample λ pointsX1, ..., Xλ from some distribu-
tionD and we search for x? = arg minx f(x). In what follows we will study the sampling from
B(0, r), the uniform distribution on the `2-ball of radius r; w.l.o.g. B(y, r) will also denote the
`2-ball centered in y and of radius r.
We are interested in comparing the strategy “µ-best” vs “1-best”. We denote X(1), ..., X(λ), the
sorted values ofXi i.e. (1),. . . ,(λ) are such that f(X(1)) ≤ ... ≤ f(X(λ)). The “µ-best” strategy
is to return X̄(µ) = 1

µ

∑µ
i=1X(i) as an estimate of the optimum and the “1-best” is to return

X(1). We will hence compare : E
[
f
(
X̄(µ)

)]
and E

[
f
(
X(1)

)]
. We recall the de�nition of the

gamma functionΓ : ∀z > 0,Γ (z) =
∫∞

0 tz−1e−tdt, as well as the propertyΓ (z+1) = zΓ (z).

I.2.3 When the center of the distribution is also the optimum

In this section we assume that y = 0 (i.e. f(x) = ‖x‖2) and consider sampling inB(0, r) ⊂ Rd.
In this simple case, we show that keeping the bestµ > 1 sampled points is asymptotically a better
strategy than selecting a single best point. The choice of µwill be discussed in Section I.2.4.

Theorem 29. For all λ > µ ≥ 2 and d ≥ 2, r > 0, for f(x) = ‖x‖2,

EX1,...,Xλ∼B(0,r)

[
f
(
X̄(µ)

)]
< EX1,...,Xλ∼B(0,r)

[
f
(
X(1)

)]
.

To prove this result, we will compute the value of E
[
f
(
X̄(µ)

)]
for all λ and µ. The following

lemma gives a simple way of computing the expectation of a function depending only on the norm
of its argument.

Lemma 14. Let d ∈ N∗. Let X be drawn uniformly in B(0, r) the d-dimensional ball of radius
r. Then for any measurable function g : R→ R, we have

EX∼B(0,r)[g(‖X‖)] =
d

rd

∫ r

0
g(α)αd−1dα.

In particular, we have EX∼B(0,r)

[
‖X‖2

]
= d

d+2 × r2.
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I.2 Theory

Proof. Let V (r, d) be the volume of a ball of radius r in Rd and S(r, d) be the surface of a
sphere of radiusr inRd. Then∀r > 0, V (r, d) = πd/2

Γ( d2 +1)
rd andS(r, d−1) = 2πd/2

Γ( d2 )
rd−1.

Let g : R→ R be a continuous function. Then:

EX∼B(0,r)[g(‖X‖)] =
1

V (r, d)

∫
x:‖x‖≤r

g(‖x‖)dx

=
1

V (r, d)

∫ r

α=0

∫
θ:‖θ‖=α

g(α)dθdα

=
1

V (r, d)

∫ r

α=0
g(α)S(α, d− 1)dα

=
S(1, d− 1)

V (r, d)

∫ r

α=0
g(α)αd−1dα =

d

rd

∫ r

α=0
g(α)αd−1dα.

So, EX∼B(r)

[
‖X‖2

]
=

d

rd

∫ r

α=0
α2αd−1dα

=
d

rd

[
αd+2

d+ 2

]r
0

=
d

d+ 2
r2.

We now use the previous lemma to compute the expected regretBubeck et al. [2009] of the average
of theµ best points conditionally to the value of f(X(µ+1)). The trick of the proof is that, condi-
tionally to f(X(µ+1)), the order ofX(1), ..., X(µ) has no in�uence over the average. Computing
the expected regret conditionally to f(X(µ+1)) thus becomes straightforward.

Lemma 15. For all d > 0, r2 > h > 0 and λ > µ ≥ 1, for f(x) = ‖x‖2,

EX1,...,Xλ∼B(y,r)

[
f
(
X̄(µ)

)
| f(X(µ+1)) = h

]
=
h

µ
× d

d+ 2
.

Proof. Let us �rst compute E
[
f
(
X̄(µ)

)
| f(X(µ+1)) = h

]
. Note that for any function g :

Rd → R and distributionD, we have

EX1...Xλ∼D
[
g(X̄(µ)) | f(X(µ+1)) = h

]
= EX1...Xµ∼D

[
g

(
1

µ

µ∑
i=1

Xi

)
| X1 . . . Xµ ∈ {x : f(x) ≤ h}

]

= EX1...Xµ∼Dh

[
g

(
1

µ

µ∑
i=1

Xi

)]
,
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where Dh is the restriction of D to the level set {x : f(x) ≤ h}. In our setting, we have
D = B(0, r) andDh = B(0,

√
h). Therefore,

EX1,...,Xλ∼B(0,r)

[
f
(
X̄(µ)

)
| f(X(µ+1)) = h

]
= EX1,...,Xλ∼B(0,r)

[
‖X̄(µ)‖2 | f(X(µ+1)) = h

]
= EX1...Xµ∼B(0,

√
h)

[
‖ 1

µ

µ∑
i=1

Xi‖2
]

=
1

µ2
EX1...Xµ∼B(0,

√
h)

 µ∑
i,j=1

XT
i Xj


=

1

µ2

µ∑
i,j=1,i 6=j

EXi...Xj∼B(0,
√
h)

[
XT
i Xj

]
+

1

µ2

µ∑
i=1

EXi∼B(0,
√
h)

[
‖Xi‖2

]
=

1

µ
EX∼B(0,

√
h)

[
‖X‖2

]
.

By Lemma 14, we have: EX∼B(0,
√
h)

[
‖X‖2

]
= d

d+2h. Hence EX1,...,Xλ∼B(0,r)

[
f
(
X̄(µ)

)
| f(X(µ+1)) = h

]
=

d
d+2

h
µ .

The result of Lemma 15 shows that E
[
f
(
X̄(µ)

)
| f(X(µ+1)) = h

]
depends linearly on h. We

now establish a similar dependency for E
[
f
(
X(1)

)
| f(X(µ+1)) = h

]
.

Lemma 16. For d > 0, h > 0, λ > µ ≥ 1, and f(x) = ‖x‖2,

EX1,...,Xλ∼B(0,r)

[
f
(
X(1)

)
| f(X(µ+1)) = h

]
= h

Γ (d+2
d )Γ (µ+ 1)

Γ (µ+ 1 + 2/d)
.

Proof. First note that using the same argument as in Lemma 15, ∀β ∈ (0, h]:

PX1...Xλ∼B(0,
√
h)

[
f
(
X(1)

)
> β | f(X(µ+1)) = h

]
= PX1...Xµ∼B(0,

√
h)[f(X1) > β, . . . , f(Xµ) > β]

= PX∼B(0,
√
h)[f(X) > β]µ.

Recall that the volume of a d-dimensional ball of radius r is proportional to rd. Thus, we
get:

PX∼B(0,
√
h)[f(X) < β] =

√
β
d

√
h
d

=

(
β

h

) d
2

.
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It is known that for every positive random variableX , E(X) =
∫∞

0 P(X > β)dβ. There-
fore:

ES
[
f
(
X(1)

)
| f(X(µ+1)) = h

]
=

∫ h

0
P
[
f
(
X(1)

)
> β | f(X(µ+1)) = h

]
dβ

=

∫ h

0

(
1−

(
β

h

) d
2

)µ
dβ

= h

∫ 1

0

(
1− u d2

)µ
du

= h
2

d

∫ 1

0
(1− t)µt2/d−1dt = h

Γ (d+2
d )Γ (µ+ 1)

Γ (µ+ 1 + 2/d)
.

To obtain the last equality, we identify the integral with the beta function of parametersµ+1
and 2

d .

We now directly compute EX1,...,Xλ∼B(0,r)

[
f(X(1))

]
.

Lemma 17. For all d > 0, λ > 0 and r > 0:

EX1,...,Xλ∼B(0,r)

[
f(X(1))

]
= r2Γ (d+2

d )Γ (λ+ 1)

Γ (λ+ 1 + 2/d)
.

Proof. As in Lemma 16, we have for any β ∈ (0, r2]:

PX1...Xλ∼B(0,r)

[
f
(
X(1)

)
> β

]
= PX1...Xλ∼B(0,r)[f(X1) > β, ..., f(Xλ) > β]

= PX∼B(0,r)[f(X) > β]λ

=

(√
β

r

)d
.

The result then follows by reasoning as in the proof of Lemma 16.

By combining the results above, we obtain the exact formula for E
[
f(X̄(µ))

]
.

Theorem 30. For all d > 0, r > 0 and λ > µ ≥ 1:

EX1...Xλ∼B(0,r)

[
f(X̄(µ))

]
=

r2d× Γ (λ+ 1)Γ (µ+ 1 + 2/d)

µ(d+ 2)Γ (µ+ 1)Γ (λ+ 1 + 2/d)
.

Proof. The proof follows by applying our various lemmas and integrating over all possible
values for h. We have:

EX1...Xλ∼B(0,r)

[
f(X̄(µ))

]
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= E
[
E
[
f(X̄(µ)) | f

(
X(µ+1)

)]]
=

1

µ

d

d+ 2
E
[
f
(
X(µ+1)

)]
by Lemma 15

=
1

µ

d

d+ 2

Γ (µ+ 1 + 2/d)

Γ (µ+ 1)Γ (d+2
d )

E
[
E
[
f(X(1)) | f

(
X(µ+1)

)]]
by Lemma 16

=
1

µ

d

d+ 2

Γ (µ+ 1 + 2/d)

Γ (µ+ 1)Γ (d+2
d )

E
[
f(X(1))

]
=

r2d× Γ (λ+ 1)Γ (µ+ 1 + 2/d)

µ(d+ 2)Γ (µ+ 1)Γ (λ+ 1 + 2/d)
by Lemma 17.

We have checked experimentally the result of Theorem 31 (see Figure I.1): the result of Theo-
rem 29 follows from Theorem 31 since for d ≥ 2, λ and r �xed, E

[
f(X̄(µ))

]
is strictly decreasing

in µ. In addition, we can obtain asymptotic progress rates:

Corollary 5. Consider d > 0. When λ→∞, we have

EX1...Xλ∼B(0,r)

[
f(X̄(µ))

]
∼ λ− 2

d
r2d× Γ (µ+ 1 + 2/d)

µ(d+ 2)Γ (µ+ 1)
,

while if λ→∞ and µ(λ)→∞, EX1...Xλ∼B(0,r)

[
f(X̄(µ(λ)))

]
∼ r2 d

d+ 2

µ(λ)
2
d
−1

λ
2
d

.

As a result, ∀c ∈ (0, 1), E
(
f(X̄(bcλc))

)
∈ Θ

(
1
λ

)
and E

(
f(X(1))

)
∈ Θ

(
1

λ2/d

)
.

Proof. We recall the Stirling equivalent formula for the gamma function: when z →∞,

Γ (z) =

√
2π

z

(z
e

)z(
1 +O

(
1

z

))
.

Using this approximation, we get the expected results.

This result shows that by keeping a single parent, we lose more than a constant factor: the progress
rate is signi�cantly impacted. Therefore it is preferable to use more than one parent.

I.2.4 Convergence when the sampling is not centered on the optimum

So far we treated the case where the center of the distribution and the optimum are the same.
We now assume that we sample from the distribution B(0, r) and that the function f is f(x) =

‖x− y‖2 with ‖y‖ ≤ r. We de�ne ε = ‖y‖
r .

Lemma 18. Let r > 0, d > 0, λ > µ ≥ 1, we have:

PX1...Xλ∼B(0,r)(f(X(µ+1)) > (1− ε)2r2) = PU∼B(λ,(1−ε)d)(U ≤ µ),
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I.2 Theory

whereB(λ, p) is a binomial law of parameters λ and p.

Proof. We have f(X(µ+1)) > (1 − ε)r ⇐⇒ ∑λ
i=1 1{f(Xi)≤(1−ε)2r2} ≤ µ since

1{f(Xi)≤(1−ε)2r2} are independent Bernoulli variables of parameter (1− ε)d, hence the re-
sult.

Using Lemma 18, we now get lower and upper bounds on E
[
f
(
X(µ+1)

)]
:

Theorem 31. Consider d > 0, r > 0, λ > µ ≥ 1. The expected value of f(X̄(µ)) satisfies both

EX1...Xλ∼B(0,r)

[
f(X̄(µ))

]
≤4r2PU∼B(λ,(1−ε)d)(U ≤ µ)

+
r2d× Γ (λ+ 1)Γ (µ+ 1 + 2/d)

µ(d+ 2)Γ (µ+ 1)Γ (λ+ 1 + 2/d)

and EX1...Xλ∼B(0,r)

[
f(X̄(µ))

]
≥ r2d× Γ (λ+ 1)Γ (µ+ 1 + 2/d)

µ(d+ 2)Γ (µ+ 1)Γ (λ+ 1 + 2/d)
.

Proof.

E
[
f(X̄(µ))

]
= E

(
f(X̄(µ))|f(X(µ+1)) ≥ (1− ε)2r2

)
P
(
f(X(µ+1)) ≥ (1− ε)2r2

)
+ E

(
f(X̄(µ))|f(X(µ+1)) < (1− ε)2r2

)
P
(
f(X(µ+1)) < (1− ε)2r2

)
.

In this Bayes decomposition, we can bound the various terms as follows:

E
(
f(X̄(µ))|f(X(µ+1)) ≥ (1− ε)2r2

)
≤ 4r2,

P
(
f(X(µ+1)) ≥ (1− ε)2r2

)
≤ 1,

E
[
f(X̄(µ))|f(X(µ+1)) < (1− ε)2r2

]
≤ r2d× Γ (λ+ 1)Γ (µ+ 1 + 2/d)

µ(d+ 2)Γ (µ+ 1)Γ (λ+ 1 + 2/d)
.

Combining these equations yields the �rst (upper) bound. The second (lower) bound is
deduced from the centered case (i.e. when the distribution is centered on the optimum) as
in the previous section.

Figure I.2 gives an illustration of the bounds. Untilµ ' (1−ε)dλ, the centered and non centered
case coincide when λ → ∞: in this case, we can have a more precise asymptotic result for the
choice of µ.

Theorem 32. Consider d > 0, r > 0 and y ∈ Rd. Let ε = ‖y‖
r ∈ [0, 1) and f(x) = ‖x− y‖2.

When using µ = bcλc with 0 < c < (1− ε)d, we get as λ→∞, for a fixed d,

EX1...Xλ∼B(0,r)

[
f(X̄(µ))

]
=
dr2c2/d−1

(d+ 2)λ
+ o

(
1

λ

)
.
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Figure I.1: Centered case: validation of the theoretical formula for EX1...Xλ∼B(0,r)
[
f(X̄(µ))

]
when y =

0 from Theorem 30 for d = 5, λ = 1000 and R = 1. 1000 samples have been drawn to esti-
mate the expectation. The two curves overlap, showing agreement between theory and practice.

Proof. Let µλ = bcλc with 0 < c < (1 − ε)d. We immediately have from Hoe�ding’s
concentration inequality:

PU∼B(λ,(1−ε)d)(U ≤ µλ) ∈ o( 1

λ
)

when λ→∞. From Corollary 5, we also get:

r2d× Γ (λ+ 1)Γ (µλ + 1 + 2/d)

µλ(d+ 2)Γ (µλ + 1)Γ (λ+ 1 + 2/d)
∼ d r2c2/d−1

(d+ 2)λ
.

Using the inequalities of Theorem 31, we obtain the desired result.

The result of Theorem 32 shows that a convergence rate O(λ−1) can be attained for the µ-best
approach with µ > 1. The rate for µ = 1 is Θ(λ−2/d), proving that the µ-best approach leads
asymptotically to a better estimation of the optimum. If we consider the problem minµ maxy:‖y‖≤εr E

[
fy(X̄(µ))

]
with fy the objective function x 7→ ‖x− y‖2, then µ = bcλc with 0 < c < (1− ε)d achieves
theO

(
λ−1

)
progress rate.

All the results we proved in this section are easily extendable to strongly convex quadratic func-
tions. For larger class of functions, it is less immediate, and left as future work.

I.2.5 Using quasi-convexity

The method above was designed for the sphere function, yet its adaptation to other quadratic
convex functions is straightforward. On the other hand, our reasoning might break down when
applied to multimodal functions. We thus consider an adaptive strategy to de�ne µ. A desir-
able property to a µ-best approach is that the level-sets of the functions are convex. A simple
workaround is to choose µ maximal such that there is a quasi-convex function which is identi-
cal to f on {X(1), . . . , X(µ)}. If the objective function is quasi-convex on the convex hull of
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Figure I.2: Non centered case: validation of the theoretical bounds for EX1...Xλ∼B(0,r)
[
f(X̄(µ))

]
when

‖y‖ = R
3 (i.e. ε = 1

3 ) from Theorem 31 for d = 5 and R = 1. We implemented λ = 100
and λ = 10000. 10000 samples have been drawn to estimate the expectation. We see that such
a value for µ is a good approximation of the minimum of the empirical values: we can thus
recommend µ = bλ(1 − ε)dc when λ → ∞. We also added some classical choices of values
for µ from literature: when λ→∞, our method performs the best.

{X(1), . . . , X(µ̃)} with µ̃ ≤ λ, then: for any i ≤ µ̃, X(i) is on the frontier (denoted ∂) of the
convex hull of {X(1), . . . , X(i)} and the value

h = max
{
i ∈ [1, λ], ∀j ≤ i,X(j) ∈ ∂

[
ConvexHull(X(1), . . . , X(j))

]}
veri�es h ≥ µ̃ so that µ = min(h, µ̃) is actually equal to µ̃. As a result:

• in the case of the sphere function, or any quasi-convex function, if we set µ̃ = bλ(1−ε)dc,
using µ = min(h, µ̃) leads to the same value of µ = µ̃ = bλ(1− ε)dc. In particular, we
preserve the theoretical guarantees of the previous sections for the sphere function x 7→
‖x− y‖2.

• if the objective function is not quasi-convex, we can still compute the quantity h de�ned
above, but we might get a µ smaller than µ̃. However, this strategy remains meaningful at
it prevents from keeping too many points when the function is “highly” non-quasi-convex.

I.3 Experiments

To validate our theoretical �ndings, we �rst compare the formulas obtained in Theorems 30
and 31 with their empirical estimates. We then perform larger scale experiments in a one-shot
optimization setting.

I.3.1 Experimental validation of theoretical formulas

Figure I.1 compares the theoretical formula from Theorem 30 and its empirical estimation: we
note that the results coincide and validate our formula. Moreover, the plot con�rms that taking
the µ-best points leads to a lower regret than the 1-best approach.

We also compare in Figure I.2 the theoretical bounds from Theorem 31 with their empirical
estimates. We remark that for µ ≤ (1− ε)dλ the convergence of the two bounds to E(f(X̄(µ)))
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I On averaging the best samples in evolutionary computation: the sphere function case

Figure I.3: Experimental curves comparing various methods for choosingµ as a function ofλ in dimension
3. Standard deviations are shown by lighter lines (close to the average lines). Each x-axis value
is computed independently. Our proposed formulas HCHAvg and THCHAvg perform well overall.
See Fig. I.4 for results in dimension 25.

is fast. There exists a transition phase around µ ' (1 − ε)dλ on which the regret is reaching
a minimum: thus, one needs to choose µ both small enough to reduce bias and large enough to
reduce variance. We compared to other empirically estimated values forµ from Beyer and Schwefel
[2002a], Hansen and Ostermeier [2003], Beyer and Sendho� [2008]. It turns out that if the
population is large, our formula for µ leads to a smaller regret. Note that our strategy assumes
that ε is known, which is not the case in practice. It is interesting to note that if the center of the
distribution and the optimum are close (i.e. ε is small), one can choose a larger µ to get a lower
variance on the estimator of the optimum.

I.3.2 One-shot optimization in Nevergrad

In this section we test di�erent formulas and variants for the choice of µ for a larger scale of ex-
periments in the one-shot setting. Equations I.1-I.6 present the di�erent formulas for µ used in
our comparison.

µ = 1 No pre�x (I.1)

µ = clip

(
1, d,

λ

4

)
Pre�x: Avg (averaging) (I.2)

µ = clip

(
1,∞, λ

1.1d

)
Pre�x: EAvg (Exp. Averaging) (I.3)

µ = clip

(
1,min

(
h,
λ

4

)
, d+

λ

1.1d

)
Pre�x: HCHAvg (h from Convex Hull) (I.4)

µ = clip

(
1,∞, λ

1.01d

)
Pre�x: TEAvg (Tuned Exp. Avg) (I.5)

µ = clip

(
1,min

(
h,
λ

4

)
, d+

λ

1.01d

)
Pre�x: THCHAvg (Tuned HCH Avg) (I.6)
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Figure I.4: Experimental curves comparing various methods for choosingµ as a function ofλ in dimension
25 (Fig. I.3, continued for dimension 25; see Fig. I.5 for dimension 200). Our proposals lead to
good results but we notice that they are outperformed by TEAvg and EAvg for Rastrigin: it is bet-
ter to not take into account non-quasi-convexity because the overall shape is more meaningful
that local ruggedness. This phenomenon does not happen for the more rugged HM (Highly
Multimodal) function. It also does not happen in dimension 3 or dimension 200 (previous
and next �gures): in those cases, THCH performed best. Con�dence intervals shown in lighter
color (they are quite small, and therefore they are di�cult to notice).

where clip(a, b, c) = max(a,min(b, c)) is the projection of c in [a, b] and h is the maximum i
such that, for all j ≤ i,X(j) is on the frontier of the convex hull of{X(1), . . . , X(j)} (Sect. I.2.5).
Equation I.1 is the naive recommendation “pick up the best so far”. Equation I.2 existed before the
present work: it was, until now, the best rule Teytaud [2010] , overall, in the Nevergrad platform.
Equations I.3 and I.5 are the proposals we deduced from Theorem 32: asymptotically on the
sphere, they should have a better rate than Equation I.1. Equations I.4 and I.6 are counterparts of
Equations I.3 and I.5 that combine the latter formulas with ideas from Teytaud [2010]. Theorem
32 remains true if we add to µ some constant depending on d so we �ne tune our theoretical
equation (Eq. I.3) with the one provided by Teytaud [2010], so thatµ is close to the value in Eq. I.2
for moderate values of λ. We perform experiments in the open source platform Nevergrad Rapin
and Teytaud [2018].

While previous experiments (Figures I.1 and I.2) were performed in a controlled ad hoc envi-
ronment, we work here with more realistic conditions: the sampling is Gaussian (i.e. not uniform
in a ball), the objective functions are not all sphere-like, and budgets vary but are not asymp-
totic. Figures I.3, I.4, I.5 present our results in dimension 3, 25 and 200 respectively. The ob-
jective functions are randomly translated usingN (0, 0.2Id). The objective functions are de�ned
as fSphere(x) = ‖x‖2, fCigar(x) = 106

∑d
i=2 x

2
i + x2

1, fHM (x) =
∑d

i=1 x
2
i × (1.1 +

cos(1/xi)), fRastrigin(x) = 10d + fsphere(x) − 10
∑

i cos(2πxi). Our proposed equations
TEAvg and EAvg are unstable: they sometimes perform excellently (e.g. everything in dimension
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Figure I.5: Experimental curves comparing various methods for choosingµ as a function ofλ in dimension
200 (Figures I.3 and I.4, continued for dimension 200). Con�dence intervals shown in lighter
color (they are quite small, and therefore they are di�cult to notice). Our proposed methods
THCHAvg and HCHAvg perform well overall.

25, Figure I.4), but they can also fail dramatically (e.g. dimension 3, Figure I.3). Our combina-
tions THCHAvg and HCHAvg perform well: in most settings, THCHAvg performs best. But the gap with
the previously proposed Avg is not that big. The use of quasi-convexity as described in Section
I.2.5 was usually bene�cial: however, in dimension 25 for the Rastrigin function, it prevented
the averaging from bene�ting from the overall “approximate” convexity of Rastrigin. This phe-
nomenon did not happen for the “more” multimodal function HM, or in other dimensions for
the Rastrigin function.

I.4 Conclusion

We have proved formally that the average of the µ best is better than the single best in the case of
the sphere function (simple regret O(1/λ) instead of O(1/λ2/d)) with uniform sampling. We
suggested a value µ = bcλc with 0 < c < (1 − ε)d. Even better results can be obtained in
practice using quasi-convexity, without losing the theoretical guarantees of the convex case on the
sphere function. Our results have been successfully implemented in Rapin and Teytaud [2018].
The improvement compared to the state of the art, albeit moderate, is obtained without any com-
putational overhead in our method, and supported by a theoretical result.
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J Asymptotic convergence rates for

averaging strategies

J.1 Introduction

Finding the minimum of a function from a set ofλ points (xi)i≤λ and their images (f(xi))i≤λ is
a standard task used for instance in hyper-parameter tuning Bergstra and Bengio [2012], or control
problems. While random search estimate of the optimum consists in returning arg min f(xi)i≤λ,
in this paper we focus on the similar strategy that consists in averaging the µ best samples, i.e. re-
turning 1

µ

∑µ
i=1 x(i) where f(x(1)) ≤ . . . ≤ f(x(λ)).

These kinds of strategies are used in many evolutionary algorithms such as CMA-ES. Although
experiments show that these methods perform well, it is not still understood why taking the av-
erage of best points actually leads to a lower regret. In Meunier et al. [2020a], it is proved in the
case of quadratic functions that the regret is indeed lower for the averaging strategy than for pure
random search. In this paper, we extend the result of this paper by proving convergence rates for
a wide class of functions including three times continuously di�erentiable functions with unique
optima.

J.1.1 Related Work

Better than picking up the best

Given a �nite number of samples λ equipped with their �tness values, we can simply pick up
the best, or average the “best ones” Beyer [1995], Meunier et al. [2020a], or apply a surrogate
model Gupta et al. [2021], Sudret [2012], Dushatskiy et al. [2021], Auger et al. [2005a], Rudi
et al. [2020]. Overall, the best is quite robust, but the surrogate or the averaging usually provides
better convergence rates. Using surrogate modeling is fast when the dimension is moderate and
the objective function is smooth (simple regret in O(λ−m/d) for λ points in dimension d with
m times di�erentiability, leading to superlinear rates in evolutionary computation Auger et al.
[2005a]). In this paper, we are interested in the rates obtained by averaging the best samples for a
wide class of functions. We extend the results of Meunier et al. [2020a] which only hold for the
sphere function.

Weighted averaging

Among the various forms of averaging, it has been proposed to take into account the fact that the
sampling is not uniform (evolutionary algorithms in continuous domains typically use Gaussian
sampling) in Teytaud and Teytaud [2009]: we here simplify the analysis by considering a uniform
sampling in a ball, though we acknowledge that this introduces the constraint that the optimum
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is indeed in the ball. Arnold et al. [2009], Auger et al. [2011] have proposed weights depending
on the �tness value, though they acknowledge a moderate impact: we here consider equal weights
for the µ best.

Choosing the selection rate

The choice of the selection rate µ/λ is quite debated in evolutionary computation: one can �nd
µ = λ/7 Escalante and Reyes [2013], µ = λ/2 Beyer and Sendho� [2008], µ = 0.27λ Beyer
and Schwefel [2002a], µ = λ/4 Hansen and Ostermeier [2003], µ = min(d, λ/4) Teytaud
[2007], Fournier and Teytaud [2010] and still others in Beyer [1995], Jebalia and Auger [2010].
In this paper, we focus on the selection rate when the number of samplesλ is very large in the case
of parallel optimization. In this case, the selection ratio would tend to 0. We carefully analyze this
ratio and derive convergence rates using this selection ratio.

Taking into account many basins

While averaging the best samples, the non-uniqueness of an optimum might lead to averaging
points coming from di�erent basins. Thus we consider at �rst the case of a unique optimum and
hence a unique basin. Then we aim to tackle the case where there are possibly di�erent basins.
Island models Skolicki [2007] have also been proposed for taking into account di�erent basins.
Meunier et al. [2020a] has proposed a tool for adaptingµdepending on the (non) quasi-convexity.
In the present work, we extend the methodology proposed in Meunier et al. [2020a].

J.1.2 Outline

In the present paper, we �rst introduce, in Section J.2, the large class of functions we will study,
and study some useful properties of these functions in Section J.3. Then, in Section J.4, we prove
upper and lower convergence rates for random search for these functions. In Section J.5, we ex-
tend Meunier et al. [2020a] by showing that asymptotically in the number of samples λ, the han-
dled functions satisfy a better convergence rate than random search. We then extend our results
on wider classes of functions in Section J.6. Finally we validate experimentally our theoretical
�ndings and compare with other parallel optimization methods.

J.2 Beyond quadratic functions

In the present section, we present the assumptions to extend the results from Meunier et al.
[2020a] to the non-quadratic case. We will denote B(0, r) the closed ball centered at 0 of ra-
dius r in Rd endowed with its canonical Euclidean norm denoted by ‖·‖. We will also denote by
◦
B(0, r) the corresponding open ball. All other balls intervening in what follows will also follow
that notation. For any subset S ⊂ B(0, r), we will denoteU(S) the uniform law on S.

Let f : B(0, r) → R be a continuous function for which we would like to �nd an optimum
point x∗. The existence of such an optimum point is guaranteed by continuity on a compact set.
For the sake of simplicity, we assume that f(x?) = 0. We de�ne the h-level sets of f as follows.
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De�nition 33. Let f : B(0, r)→ R be a continuous function. The closed sublevel set of f of level
h is defined as:

Sh := {x ∈ B(0, r) | f(x) ≤ h}.

We now describe the assumptions we will make on the function f that we optimize.

Assumption 7. f : B(0, r) → R is a continuous function and admits a unique optimum point
x? such that ‖x?‖ < r. Moreover we assume that f can be written:

f(x) = (x− x?)TH(x− x?) +
(

(x− x?)TH(x− x?)
)α/2

ε(x− x?)

for some bounded function ε (there existsM > 0 such that for all x, |ε(x)| ≤M ), H a symmetric
positive definite matrix and α > 2 a real number.

Note that H is uniquely de�ned by the previous relation. In the following we will denote
by e1(H) and ed(H) respectively the smallest and the largest eigenvalue of H. As H is positive
de�nite, we have 0 < e1(H) ≤ ed(H). We will also set ‖x‖H =

√
xTHx, which is a norm (the

H-norm) on Rd as H is symmetric positive de�nite. We then have f(x) = ‖x− x?‖2H + ‖x−
x?‖αHε(x− x?)

Remark 17 (Why a unique optimum ?). The uniqueness of the optimum is an hypothesis required
to avoid that chosen samples come from two or more wells for f . In this case the averaging strategy
would lead to a mistaken point because points from the di�erent wells would be averaged. Nonethe-
less, multimodal functions can be tackled using our non-quasiconvexity trick (Section J.6.2).

Remark 18 (Which functions f satisfy Assumption 7?). One may wonder if Assumption 7 is
restrictive or not. We can remark that three times continuously di�erentiable functions satisfy the
assumption with α = 3, as long as the unique optimum satisfies a strict second order stationary
condition. Also, we will see in Section J.6.1 that results are immediately valid for strictly increasing
transformations of any f for which Assumption 7 holds, so that we indirectly include all piecewise
linear functions as well as long as they have a unique optimum. So the class of functions is very large,
and in particular allows non symmetric functions to be treated, which might seem counter intuitive
at first.

The aim of this paper is to study a parallel optimization problem as follows. We sampleX1, · · · , Xλ

from the uniform distribution onB(0, r). LetX(1), · · · , X(λ) denote the ordered random vari-
ables, where the order is given by the objective function

f(X(1)) ≤ · · · ≤ f(X(λ)).

We then introduce the µ-best average

X(µ) =
1

µ

µ∑
i=1

X(i)
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In the following of the paper, we will compare the standard random search algorithm (i.e. µ =
1) with the algorithm that consists in returning the average of the µ best points. To this end, we
will study the expected simple regret for functions satisfying the assumption:

E
[
f(X(µ))

]
J.3 Technical lemmas

In this section, we prove two technical lemmas on f that will be useful to study the convergence
of the algorithm. The �rst one shows that f can be upper bounded and lower bounded by two
spherical functions.

Lemma 19. Under Assumption 7, there exist two real numbers 0 < l ≤ L, such that, for all
x ∈ B(0, r):

l‖x− x?‖2 ≤ f(x) ≤ L‖x− x?‖2. (J.1)

Moreover such l andLmust satisfy 0 < l ≤ e1(H) ≤ ed(H) ≤ L.

Proof. As H is symmetric positive de�nite, we have the following classical inequality for the
H-norm

e1(H)‖x− x?‖2 ≤ ‖x− x?‖2H ≤ ed(H)‖x− x?‖2 (J.2)

Now set for x ∈ B(0, r) \ {x?}

φ(x) :=
f(x)− f(x?)

‖x− x?‖2 =
‖x− x?‖2H
‖x− x?‖2 (1 + ‖x− x?‖α−2

H ε(x− x?)).

By the above inequalities, we have

e1(H)(α−2)/2‖x− x?‖α−2 ≤ ‖x− x?‖α−2
H ≤ ed(H)(α−2)/2‖x− x?‖α−2.

Thus, as α > 2, we obtain ‖x − x?‖α−2
H →x→x? 0. By assumption, the function ε is also

bounded as x→ x?.
We thus conclude that there exists δ > 0 such that, for all x ∈

◦
B(x?, δ)

1

2
e1(H) ≤ φ(x) ≤ 2ed(H).

Now notice thatB(0, r) \
◦
B(x?, δ) is a closed subset of the compact setB(0, r) hence it is

also compact. Moreover, by assumption f is continuous onB(0, r) and f(x) > 0 = f(x?)
for all x 6= x?. Hence φ is continuous and positive on this compact set. Thus it attains its
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minimum and maximum on this set and its minimum is positive. In particular, we can write,
on this set, for some l0, L0 > 0

l0 ≤ φ(x) ≤ L0.

We now set l = min{l0, 1
2e1(H)}. Note that l > 0 because l0 > 0 and e1(H) > 0 (as

H is positive de�nite). We also setL = max{L0, 2e1(H)}which is also positive. These are
global bounds for φwhich gives the �rst part of the result.
For the second part, let u1 be a normalized eigenvector respectively associated to e1(H).
Then

f(x? + εu1)

‖εu1‖2
= e1(H) + εα−2ε(εu1)

Taking the limit as ε → 0. we get that, if l satis�es (J.1), then l ≤ e1(H). Similarly, we can
prove thatL ≥ ed(H).

Secondly, we frameSh into two ellipsoids as h→ 0. This lemma is a consequence of the assump-
tions we make on f .

Lemma 20. Under Assumption 7, there exists h0 ≥ 0 such that for h ≤ h0, we haveAh ⊂ Sh ⊂
Bh where:

Ah := {x | ‖x− x?‖H ≤ φ−(h)}
Bh := {x | ‖x− x?‖H ≤ φ+(h)}

with φ−(h) and φ+(h) two functions satisfying

φ−(h) =
√
h− M

2
h(α−1)/2 + o(h(α−1)/2)

and φ+(h) =
√
h+

m

2
h(α−1)/2 + o(h(α−1)/2)

when h → 0 for some constants m > 0 and M > 0 which are respectively a (specific) lower and
upper bound for ε.

Proof. By assumption |ε| ≤M , hence we have:

{x ∈ B(0, r) | ‖x− x?‖2H +M‖x− x?‖αH ≤ h} ⊂ Sh

Let g : u 7→ u2 + Muα. This is a continuous, strictly increasing function on [0,+∞).
By a classical consequence of the intermediate value theorem, this implies that g admits a
continuous, strictly increasing inverse function. Note that g(0) = 0 hence g−1(0) = 0.
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Thus we can write {u ≥ 0|u2 + Muα ≤ h} = [0, g−1(h)]. We now denote g−1 by φ−.
As φ− is non-decreasing, we get

{x ∈ B(0, r) | ‖x− x?‖2H +M‖x− x?‖αH ≤ h} = Ah ∩B(0, r)

Now observe that for h su�ciently small

{x ∈ B(0, r) | ‖x− x?‖2H +M‖x− x?‖αH ≤ h} = Ah.

Indeed, if x ∈ Ah, we have by the triangle inequality and (J.2)

‖x‖ ≤ ‖x?‖+ ‖x− x?‖
≤ ‖x?‖+ e1(H)−1/2‖x− x?‖H
≤ ‖x?‖+ e1(H)−1/2φ−(h)

Recall that by assumption ‖x?‖ < r and let δ = r − ‖x?‖. As φ−(h) →h→0 0, for h
su�ciently small, we have e1(H)−1/2φ−(h) ≤ δ hence ‖x‖ ≤ r for h su�ciently small,
which gives the inclusionAh ⊂ Sh.
For the asymptotics of φ−, as we have by de�nition φ−(h)2(1 + Mφ−(h)α−2) = h, and
as φ−(h)→h→0 0 we deduce that φ−(h) ∼0

√
h. Let us de�ne u(h) = φ−(h)−

√
h. We

have u(h) ∈ o(
√
h). We then compute:

(
√
h+ u(h))2 +M(

√
h+ u(h))α = h

This gives

u(h)(u(h) + 2
√
h) = −Mhα/2(1 +

u(h)√
h

)α

u(h)(
u(h)

2
√
h

+ 1) = −M
2
h(α−1)/2(1 +

u(h)√
h

)α

As u(h) ∈ o(
√
h) for h→ 0, we obtain

u(h) ∼ −M
2
h(α−1)/2.

which concludes for φ−.
On the other side, we recall that f(x) > 0 for all x 6= x? as x? is the unique minimum of

f onB(0, r). Write

0 < ‖x− x?‖2H(1 + ‖x− x?‖α−2
H ε(x− x?)).
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Now observe that, as ‖x?‖ < r, we have for x ∈ B(0, r), by the triangle inequality, ‖x −
x?‖ < 2r. Hence, by the classical inequality for the H-norm (J.2), we get

ε(x− x?) > − 1

‖x− x?‖α−2
H

≥ −
(√

ed(H)2r
)−(α−2)

=: −m

So we have:

Sh ⊂ {x ∈ B(0, r) | ‖x− x?‖2H −m‖x− x?‖αH ≤ h}

The function g : u 7→ u2 − muα is di�erentiable. A study of the derivative shows that g
is continuous, strictly increasing on [0, r0] and continuous, strictly decreasing on [r0,+∞[
where r0 = ( 2

αm)1/(α−2). Hence g|[0,r0] admits a continuous strictly increasing inverse φ+

and g|[r0,+∞[ a continuous strictly decreasing inverse φ̃. We thus write

{u ≥ 0|u2 −muα ≤ h} = [0, φ+(h)] ∪ [φ̃(h),+∞).

Hence

{x ∈ B(0, r) |‖x− x?‖2H −m‖x− x?‖αH ≤ h}
=
(
Bh ∩B(0, r)

)
∪
(
B(0, r) ∩ Vh

)
with Vh = {x ∈ Rd| ‖x− x?‖H > φ̃(h)}. We now show that for h su�ciently small

{x ∈ B(0, r) | ‖x− x?‖2H −m‖x− x?‖αH ≤ h} = Bh.

Indeed, note �rst that if x ∈ B(0, r), we obtain by (J.2)

‖x− x?‖2H ≤ ed(H)‖x− x?‖2 < 4ed(H)r2.

where we have used that, as ‖x‖ < r, the triangle inequality gives ‖x − x?‖ < 2r. Hence
B(0, r) ⊂ {x ∈ Rd| ‖x − x?‖2H < 4ed(H)r2}. We now show that B(0, r) ⊂ {x ∈
Rd| ‖x− x?‖H ≤ φ̃(h)}. Indeed, at h = 0, 0 = φ+(0) < φ̃(0) are by de�nition, the two
roots of

u2 −muα = 0.

Hence φ̃(0) =
√
ed(H)2r. By continuity of φ̃(h) at h = 0, we obtain that B(0, r) ⊂

{x ∈ Rd| ‖x− x?‖H ≤ φ̃(h)} for h su�ciently small. As φ+(h) ≤ φ̃(h), we thus obtain
that, for h su�ciently small, Vh ∩B(0, r) = ∅. Next, the same line of reasoning as the one
for φ−, using that φ+(h) →h→0 0 and ‖x?‖ < r, shows that Bh ∩ B(0, r) = Bh for h
su�ciently small.
Hence, for h small enough we have

{x ∈ B(0, r) | ‖x− x?‖2H −m‖x− x?‖αH ≤ h} = Bh.
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This gives Sh ⊂ Bh.
Finally, similarly toφ−, we can show thatφ+(h) =

√
h+m

2 h
(α−1)/2+o(h(α−1)/2), which

concludes the proof of this lemma.

J.4 Bounds for random search

In this section we provide upper bounds and lower bounds for the random search algorithm for
functions satisfying Assumption 7. These bounds will also be useful for analyzing the conver-
gence of the µ-best approach.

J.4.1 Upper Bound

First, we prove an upper bound for functions satisfying Assumption 7.

Lemma 21 (Upper bound for random search algorithm). Let f be a function satisfying Assump-
tion 7. There exists a constantC0 > 0 and an integer λ0 ∈ N such that for all integers λ ≥ λ0:

EX1,··· ,Xλ∼U(B(0,r))

[
f
(
X(1)

)]
≤ C0λ

− 2
d .

Proof. Let us �rst recall the following classical property about the expectation of a positive
valued random variable:

EX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)]
=

∫ ∞
0

P
[
f
(
X(1)

)
≥ t
]
dt

By independence of the samples we have:∫ ∞
0

P
[
f
(
X(1)

)
≥ t
]
dt =

∫ ∞
0

PX∼U(B(0,r))[f(X) ≥ t]λdt

Then thanks to Lemma 19:∫ ∞
0

PX∼U(B(0,r))[f(X) ≥ t]λdt

≤
∫ ∞

0
PX∼U(B(0,r))

[
L‖X − x?‖2 ≥ t

]λ
dt

=

∫ L(r+‖x?‖)2

0
P

[
‖X − x?‖ ≥

√
t

L

]λ
dt
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where the second equality follows because ‖X−x?‖ ≤ r almost surely. Then, by de�nition
of the uniform law as well as the non-increasing character of t 7→ PX∼U(B(0,r))

[
‖X − x?‖ ≥

√
t
L

]
,

we obtain∫ L(r+‖x?‖)2

0
PX∼U(B(0,r))

[
‖X − x?‖ ≥

√
t

L

]λ
dt

=

∫ L(r−‖x?‖)2

0
PX∼U(B(0,r))

[
‖X − x?‖ ≥

√
t

L

]λ
dt

+

∫ L(r+‖x?‖)2

L(r−‖x?‖)2
PX∼U(B(0,r))

[
‖X − x?‖ ≥

√
t

L

]λ
dt

≤
∫ L(r−‖x?‖)2

0

1−
(√

t

Lr2

)dλdt
+ L

(
(r + ‖x?‖)2 − (r − ‖x?‖)2

)
P[‖X − x?‖ ≥ r − ‖x?‖]λ

≤
∫ Lr2

0

[
1−

(
t

Lr2

) d
2

]λ
dt+ 4Lr‖x?‖P[‖X − x?‖ ≥ r − ‖x?‖]λ

= Lr2

∫ 1

0

[
1− u d2

]λ
du+ 4Lr‖x?‖P[‖X − x?‖ ≥ r − ‖x?‖]λ

Note thatP[‖X − x?‖ < r − ‖x?‖] < 1. Thus the second term in the last equality satis�es
P[‖X − x?‖ < r − ‖x?‖]λ ∈ o(λ−2/d). The �rst term has a closed form given in Meunier
et al. [2020a]: ∫ 1

0

[
1− u d2

]λ
du =

Γ (d+2
d )Γ (λ+ 1)

Γ (λ+ 1 + 2/d)

Finally thanks to the Stirling approximation, we conclude:

EX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)]
≤ C1λ

−2/d + o(λ−2/d)

whereC1 > 0 is a constant independent from λ.

This lemma proves that the strategy consisting in returning the best sample (i.e. random search)
has an upper rate of convergence of order λ−2/d, which depends on dimension of the space. It
also worth noting this result is common in the literature Rudi et al. [2020], Bergstra and Bengio
[2012]
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J.4.2 Lower Bound

We now give a lower bound for the convergence of the random search algorithm. We also prove
a conditional expectation bound that will be useful for the analysis of the µ-best averaging ap-
proach.

Lemma 22 (Lower bound for random search algorithm). Let f be a function satisfying Assump-
tion 7. There exist a constant C1 > 0 and λ1 ∈ N such that for all integers λ ≥ λ1, we have the
following lower bound for random search:

EX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)]
≥ C1λ

−2/d .

Moreover, let (µλ)λ∈N be a sequence of integers such that ∀λ ≥ 2, 1 ≤ µλ ≤ λ−1 andµλ →∞.
Then, there exist a constantC2 > 0 and λ2 ∈ N such that for all h ∈ [0,max f ] and λ ≥ λ2, we
have the following lower bound when the sampling is conditioned:

EX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)
| f(X(µλ+1)) = h

]
≥ C2hµ

−2/d
λ .

Proof. The proof is very similar to the previous one. Let us �rst show the unconditional
inequality. We use the identity for the expectation of a positive random variable

EX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)]
=

∫ ∞
0

PX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)
≥ t
]
dt

Since the samples are independent, we have∫ ∞
0

PX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)
≥ t
]
dt

=

∫ ∞
0

PX∼U(B(0,r))[f(X) ≥ t]λdt

Using Lemma 19, we get:∫ ∞
0

PX∼U(B(0,r))[f(X) ≥ t]λdt

≥
∫ ∞

0
PX∼U(B(0,r))

[
l‖X − x?‖2 ≥ t

]λ
dt

≥
∫ l(r−‖x?‖)2

0
PX∼U(B(0,r))

[
l‖X − x?‖2 ≥ t

]λ
dt

=

∫ l(r−‖x?‖)2

0

1−
(√

t

lr2

)dλdt

324



J.4 Bounds for random search

We can decompose the integral to obtain:

∫ l(r−‖x?‖)2

0

1−
(√

t

lr2

)dλdt
=

∫ lr2

0

1−
(√

t

lr2

)dλ − ∫ lr2

l(r−‖x?‖)2

1−
(√

t

lr2

)dλdt
≥ lr2Γ (d+2

d )Γ (λ+ 1)

Γ (λ+ 1 + 2
d)
− l(r2 − (r − ‖x?‖)2)

[
1−

(
r − ‖x?‖

r

)d]λ
≥ 1

2
lr2Γ (

d+ 2

d
)λ−2/d for λ su�ciently large.

where the last inequality follows by Stirling’s approximation applied to the �rst term and
because the second term is o(λ−2/d) as in previous proof.
This concludes the proof of the �rst part of the lemma. Let us now treat the case of the
conditional inequality. Using the same �rst identity as above we have

EX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)
| f(X(µλ+1)) = h

]
=

∫ ∞
0

PX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)
≥ t | f(X(µλ+1)) = h

]
dt

Remark 19. Note that if we sample λ independent variables X1 . . . Xλ while conditioning
on f(X(µ+1)) = h and keep only the µ-best variablesXi such that f(Xi) ≤ h, this is exactly
equivalent to sampling directly X1 . . . Xµ from the h-level set. This result was justified and
used in Meunier et al. [2020a] in their proofs.

Hence we obtain∫ ∞
0

PX1,...,Xλ∼U(B(0,r))

[
f
(
X(1)

)
≥ t | f(X(µλ+1)) = h

]
dt

=

∫ ∞
0

PX∼U(Sh)[f(X) ≥ t]µλdt

Using Lemma 19, we get:∫ ∞
0

PX∼U(Sh)[f(X) ≥ t]µλdt

≥
∫ ∞

0
PX∼U(Sh)

[
l‖X − x?‖2 ≥ t

]µλdt
≥
∫ ∞

0
P
X∼U(B(x?,

√
h
l
))

[
l‖X − x?‖2 ≥ t

]µλdt
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where the last inequality follows from the inclusion Sh ⊂ B(x?,
√

h
l ), which is also a con-

sequence of Lemma 19. We then get∫ ∞
0

P
X∼U(B(x?,

√
h
l
))

[
l‖X − x?‖2 ≥ t

]µλdt
=

∫ h

0
P
X∼U(B(x?,

√
h
l
))

[
l‖X − x?‖2 ≥ t

]µλdt
=

∫ h

0

1−
(√

t

h

)dµλdt
= h

Γ (d+2
d )Γ (µλ + 1)

Γ (µλ + 1 + 2/d)

≥ 1

2
hΓ (

d+ 2

d
)µ
−2/d
λ for λ su�ciently large.

This lemma, along with Lemma 21, proves that for any function satisfying Assumption 7, its rate
of convergence is exponentially dependent on the dimension and of order λ−2/d where λ is the
number of points sampled to estimate the optimum.

Remark 20 (Convergence of the distance to the optimum). It is worth noting that, thanks to
Lemma 19, the convergence rates are also valid for the square distance to the optimum x?.

J.5 Convergence rates for the µ-best averaging approach

In the next section we focus on the case where we average theµ best samples among theλ samples.
We �rst prove a lemma when the sampling is conditional on the (µ+ 1)-th value.

Lemma 23. Let f be a function satisfying Assumption 7. There exists a constantC3 > 0 such that
for all h ∈ [0,max f ] and λ and µ two integers such that 1 ≤ µ ≤ λ − 1, we have the following
conditional upper bound:

EX1,...Xλ∼U(B(0,r))

[
f(X̄(µ))|f(X(µ+1)) = h

]
≤ C3

(
h

µ
+ hα−1

)
.

Proof. We �rst decompose the expectation as follows.

EX1,...Xλ∼U(B(0,r))

[
f(X̄(µ))|f(X(µ+1))) = h

]
= EX1,...Xµ∼U(Sh)

[
f(X̄µ)

]
= EX1,··· ,Xµ∼U(Sh)

[
‖X̄µ − x?‖2H

]
(J.3)

+ EX1,··· ,Xµ∼U(Sh)

[
‖X̄µ − x?‖αHε(X̄µ − x?)

]
(J.4)
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where we have use the same argument as in Remark 19 in the �rst equality. We will treat
the terms (J.3) and (J.4) independently. We �rst look at (J.3). We have the following “bias-
variance” decomposition.

EX1,··· ,Xµ∼U(Sh)‖X̄µ − x?‖2H =(1− 1

µ
)‖EX∼U(Sh)X − x?‖2H

+
1

µ
EX∼U(Sh)‖X − x?‖2H

We will use Lemma 20. We haveAh ⊂ Sh ⊂ Bh. Hence for the variance term

1

µ
EX∼U(Sh)‖X − x?‖2H ≤

1

µ
EX∼U(Sh)φ+(h)2 ≤ φ+(h)2

µ
∼0

h

µ
.

where ∼0 means ”is equivalent to . . . when h → 0, in other words, u(h) ∼0 v(h) i�
u(h)
v(h) → 0 as h→ 0. For the bias term, recall that

EX∼U(Sh)[X − x?] =
1

vol(Sh)

∫
Sh

(x− x?)dx.

We then have by inclusion of sets

vol(Ah) ≤ vol(Sh) ≤ vol(Bh)

Note that the volume of the d-dimensional ellipsoidBh satis�es vol(Bh) = φ+(h)d ωd
det(H)

with ωd = vol(B(0, 1)) and similarly forAh. From this we deduce by the squeeze theorem
that

vol(Sh) ∼ ωdh
d/2

det(H)
.

We now decompose the integral∫
Sh

(x− x?)dx =

∫
Ah

(x− x?)dx+

∫
Sh\Ah

(x− x?)dx

=

∫
Sh\Ah

(x− x?)dx

(becauseAh is an ellipsoid centered at x? hence the integral of x− x? over it is 0). We then
upper-bound using the triangle inequality for the H−norm:

‖
∫
Sh\Ah

(x− x?)dx‖H ≤
∫
Sh\Ah

‖x− x?‖Hdx

≤ φ+(h)vol(Sh \Ah)

= φ+(h)(vol(Sh)− vol(Ah))

≤ φ+(h)(vol(Bh)− vol(Ah))
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∼ d ωd
det(H)

m+M

2
hd/2h(α−1)/2

For the last equivalent, we used a Taylor expansion for the volume of Ah and Bh. We con-
clude that there exist h1 > 0 and a constantC > 0 not depending on λ and µ such that for
h ≤ h1,

‖EX∼U(Sh)[X]− x?‖2H ≤ Chα−1

Sinceh is upper bounded by max f , the previous inequality can be extended toh ∈ [0,max f ],
with a possibly larger constant still not depending on λ and µ. Let us now upper bound the
remainder term (J.4). As ε ≤M by assumption, we can write

EX1,··· ,Xµ∼U(Sh)

[
‖X̄µ − x?‖αHε(X̄µ − x?)

]
≤MEX1,··· ,Xµ∼U(Sh)

[
‖X̄µ − x?‖αH

]
We have X1, · · · , Xµ ∈ Sh ⊂ Bh hence by the convexity of Bh (which is a ball for the

H-norm) we also have X̄µ ∈ Bh and thus, for h su�ciently small, we have:

‖X̄µ − x?‖H ≤ φ+(h).

Note that φ+(h) ∼0

√
h thus, for h su�ciently small, ‖X̄µ − x?‖H ≤ 1 almost surely,

hence, as α > 2

‖X̄µ − x?‖αH ≤ ‖X̄µ − x?‖2H

almost surely. Since h is upper bounded, we have the existence of a constant C ′ > 0 not
depending on λ and µ, such that for all h ∈ [0,max f ],

‖X̄µ − x?‖αH ≤ C ′‖X̄µ − x?‖2H

Thus we can upper bound the remainder with the same bounds as the one for the main term
(up to constants), for any h ∈ [0,max f ]. We now group the “main” term and remainder
term to get the existence of a constant C3 > 0 not depending on λ and µ such that for all
h ∈ [0,max f ],

EX1,...Xλ∼U(B(0,r))

[
f(X̄(µ))|f(X(µ+1)) = h

]
≤ C3

(
h

µ
+ hα−1

)
.

We are now set to prove our main result, which is an upper convergence rate for the µ-best
approach. This is the main result of the paper.
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Theorem 33. Let f be a function satisfying Assumption 7. Let (µλ)λ∈N be a sequence of integers
such that ∀λ ≥ 2, 1 ≤ µλ ≤ λ− 1 and µλ →∞. Then, there exist two constantsC,C ′ > 0 and
λ̃ ∈ N such that for λ ≥ λ̃, we have the upper bound:

EX1,...,Xλ∼U(B(0,r))

[
f(X̄(µλ))

]
≤ Cµ

2(α−1)
d

λ

λ
2(α−1)

d

+ C ′
µ

2
d
−1

λ

λ
2
d

.

In particular if µλ ∼ C
′′
λ

2(α−2)
d+2(α−2) for someC ′′ > 0, we obtain:

EX1,...,Xλ∼U(B(0,r))

[
f(X̄(µλ))

]
≤ C ′′′λ−

2(α−1)
d+2(α−2)

for someC ′′′ > 0 independent of λ.

We note that µλ → 0 as λ → 0. This makes sense intuitively: we average points in a sublevel
set, which makes sense only if, asymptotically in λ, this sublevel set shrinks to a neighborhood of
the optimum.

Proof. The random variable f(X(µλ+1)) takes its values in [0,max f ] almost surely. As
such, thanks to Lemma 23, there exists a constantC3 > 0 such that for all λ ≥ 1:

E
[
f(X̄(µλ))

]
= E

[
E
[
f(X̄(µλ)) | f(X(µλ+1))

]]
≤ E

[
C3

(
1

µλ
f(X(µλ+1)) + f(X(µλ+1))

α−1

)]
= C3

(
1

µλ
E
[
f(X(µλ+1))

]
+ E

[
f(X(µλ+1))

α−1
])

Let us �rst bound E
[
f(X(µλ+1))

]
. Thanks to Lemma 22, there exist a constantC2 > 0

and λ2 ∈ N such that:

E
[
f(X(µλ+1))

]
≤ µ

2/d
λ

C2
E
[
E
[
f(X(1)) | f(X(µλ+1))

]]
=
µ

2/d
λ

C2
E
[
f(X(1))

]
Thanks to Lemma 21, there exists a constantC0 > 0 and an integer λ0 ∈ N such that for

all integers λ ≥ λ0:

EX1,··· ,Xλ∼U(B(0,r))

[
f
(
X(1)

)]
≤ C0λ

− 2
d .

Then �nally for λ ≥ max(λ0, λ2)

E
[
f(X(µλ+1))

]
≤ C0

C2

µ
2/d
λ

λ2/d
.
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Figure J.1: Assume that we consider a �xed ratio µ/λ and that λ goes to∞. The average of selected points,
in an unweighted setting and with uniform sampling, converges to the center of the area cor-
responding to the ratio µ/λ: we will not converge to the optimum if that optimum is not the
middle of the sublevel. This explains why we need µ/λ→ 0 as λ→∞: we do not want to stay
at a �xed sublevel.

For the term E
[
f(X(µλ+1))

α−1
]

, we write thanks to Lemma 22

E
[
f(X(µλ+1))

α−1
]
≤ µ

2(α−1)/d
λ

Cα−1
2

E
[
E
[
f(X(1)) | f(X(µλ+1))

]α−1
]
.

Then, by Jensen’s inequality for the conditional expectation, we get

E
[
f(X(µλ+1))

α−1
]
≤ µ

2(α−1)/d
λ

Cα−1
2

E
[
f(X(1))

α−1
]
.

Similarly to Lemma 21, by replacing‖X−x?‖2 by‖X−x?‖2(α−1), one can showE
[
f(X(1))

α−1
]
≤

C ′3λ
−2(α−1)/d for some C ′3 > 0 independent of λ. We thus get E

[
f(X(µλ+1))

α−1
]
≤

C
µ

2(α−1)/d
λ

λ2(α−1)/d for someC > 0 independent of λ, which, combined with the above bound on
E
[
f(X(µλ+1))

]
, concludes the proof of the main bound.

To conclude for the �nal bound, it su�ces to notice that this choice of µλ ensures that the
two terms in the upper bound are of the same order.

This theorem gives an asymptotic upper rate of convergence for the algorithm that consists
in averaging the best samples to optimize a function with parallel evaluations. The proof of the
optimality of the rate is left as further work. We also remark that the selection ratio depends on the
dimension and goes to 0 as λ→∞. It sounds natural since the level sets might be assymetric and
then keeping a constant selection rate would give a biased estimate of the optimum (see Figure J.1).
However, the choice proposed forµ is the best one can make with regards to the upper bound we
obtained. We make two important remarks about the theorem.

Remark 21 (Comparison with random search). The asymptotic rate obtained for the µ-best av-

eraging approach is of order λ−
2(α−1)
d+2(α−2) , which is strictly better than the λ−2/d rate obtained with

random search, as soon as d > 2 (because α > 2) . This theorem then proves our claim on a wide
range of functions.

Remark 22 (Comparison with Meunier et al. [2020a]). Meunier et al. [2020a] obtained a rate
of order λ−1 for the sphere function. This rate is better than the one described in Theorem 33. This
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comes from the bias term in Lemma 23. Indeed for the sphere function, sublevel sets are symmetric,
hence the bias term equals 0, which is not the case in general for functions satisfying Assumption 7. In
this paper we are able to deal with potentially non symmetric functions. One can remark, that if the
sublevel sets are symmetric the bias term vanishes and we recover the rate of Meunier et al. [2020a].

J.6 Handling wider classes of functions

The results we proved are valid for functions satisfying Assumption 7. In particular, the functions
are supposed to be regular and have a unique optimum point. In this section, we propose to extend
our results to wider classes of functions.

J.6.1 Invariance by Composition with Non-Decreasing Functions

Mathematical results are typically proved under some smoothness assumptions: however, algo-
rithms enjoying some invariance to monotonic transformations of the objective functions do con-
verge on wider spaces of functions as well Akimoto et al. [2020]. Since the method is based on
comparison between the samples, the rank is invariant when the function f is composed with a
strictly increasing function g. Let f be a function satisfying Assumption 7 and g be a strictly
increasing function. Consider h = g ◦ f . Then h admits a unique minimum x? coinciding
with the one of f . As such, the expectation EX1,...Xλ∼U(B(0,r))

[
‖X(µ) − x?‖2

]
satis�es the

same rates than Theorem 33. This an immediate consequence of Lemma 19. In particular, us-
ing the square distance criteria, the rate are preserved even for potentially non regular functions.
For example, our theorem can be adapted to convex piecewise-linear functions, compositions of
quadratic functions with non-di�erentiable increasing functions, and many others. Results based
on surrogate models are not applicable here.

J.6.2 Beyond Unique Optima: the Convex Hull trick, Revisited

One of the drawbacks of averaging strategies is that they do not work when there are two basins
of optima. For instance, if the two best points x(1) and x(2) have objective values close to those of
two distinct optima x?, y? respectively then averaging x(1) and x(2) may result in a point whose
objective value is close to neither. However, in the presence of quasi-convexity this can be coun-
tered. It thus makes sense to take into account the possible obstructions to the quasi-convexity of
the function and try to counter these, while still maintaining the same basic algorithm as in the
case of a unique optimum. Meunier et al. [2020a] proposed to take into account contradictions
to quasi-convexity by restricting the number µ of points used in the averaging. Based on their
ideas, we propose the following heuristic.

Let us �x the number of initially selected points equal to µmax. Let x(1), . . . , x(µmax) be these
points ranked from best to worst. De�neSi = (x(1), . . . , x(i)) andCi the interior of the convex
hull of Si. Assume that there is no tie in �tness values, that is no i 6= j such that f(xi) = f(xj).
Given µmax, choose µmaximal such that

∀i ≤ µ, x(i) 6∈ Ci. (J.5)
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One can remark that x(µ) ∈ Cµ ⇒ f is not quasi-convex onCµ. However, this may not
detect all cases in which f is not quasi-convex onCµ. More generally,

∃j > µ− 1, x(j) ∈ Cµ ⇒ f is not quasi-convex onCµ. (J.6)

If such a j is notµ, Eq. (J.5) does not detect the non-quasiconvexity: therefore, (J.6) detects more
non-quasiconvexities than Eq. (J.5).

Therefore we choose µmaximal such that for all i < µ, j > i, x(j) 6∈ Ci. This heuristic leads
to a choice of average which is "consistent" with the existence of multiple basins.
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Figure J.2: Average regret f(X̄(µ))− f(x?) in logarithmic scale in function of the selection ratio µ/λ for
di�erent values of λ ∈ {5000, 10000, 20000, 50000}. The experiments are run on Sphere,
Rastrigin and Perturbed Sphere function for di�erent dimensions d ∈ {3, 6, 9}. All results
are averaged over 30 independent runs. We observe, consistently with our theoretical results
and intuition, that (i) the optimal r = µ

λ decreases as d increases (ii) we need a smaller r when
the function is multimodal (Rastrigin) (iii) we need a smaller r in case of dissymmetry at the
optimum (perturbed sphere).

J.7 Experiments

We divide the experimental section in two parts. In a �rst part, we focus on validating theoretical
�ndings, then we compare with existing optimization methods.
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J.7 Experiments

J.7.1 Validation of Theoretical Findings

In this section, we will assume that r = 1 and that the optimum x∗ will be sampled uniformly in
the ball of radius 0.9. We compare results on the following functions:

1. Sphere function:

f(x) =
d∑
i=1

(xi − x?i )2

2. Rastrigin function:

f(x) =

d∑
i=1

(xi − x?i )2 + 1− cos (2π(xi − x?i ))

3. Perturbed sphere function:

f(x) =

d∑
i=1

(xi − x?i )2 +

(
d∑
i=1

g(xi − x?i )
)3

with g(x) = x if x > 0 and −2x otherwise. This function has highly non symmetric
sublevel sets, but still satis�es Assumption 7.

We plotted in Figure J.2 the regret f(X̄(µ)) − f(x?) as a function of µ/λ for di�erent di-
mensions d and number of samples λ. The experiments are averaged over 30 runs. We remark
for instance on the Rastrigin function that for the µ-best averaging approach to be better than
random search, we need a very large number of samples as the dimension increases. Overall, these
plots validate our theoretical �ndings that averaging a few best points leads to a better regret than
only taking the best one.

J.7.2 Comparison with Other Methods

In this section, we compare averaging strategies with other standard strategies, using the Never-
grad library Rapin and Teytaud [2018]. Figure J.3 presents experimental results based on Never-
grad. Instead of the uniform sampling used in the theoretical results and the previous experimen-
tal validation, we use Gaussian sampling in this set of experiments. Following the notation from
Meunier et al. [2020a], we consider distinct averaging pre�xes:

• AvgXX = method XX, plus averaging of the µ = λ/(1.1d) best points in dimension d.

• HAvgXX = = method XX, plus averaging of the λ/(1.1d) best points, restricted by the convex
hull trick (Section J.6.2).

Many other methods are included: we refer to Rapin and Teytaud [2018] for more information.
Recently, Cauwet et al. [2019], Meunier et al. [2020c] pointed out that when the optimum is ran-
domly drawn from a standard normal distribution, we should use rescaling methods for focusing
closer to the center in high dimensional setting. Several such methods have been proposed:
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Figure J.3: Experimental results: row A and col B presents the frequency (over all 144 test cases) at which
A outperforms B in terms of average loss. Then rows are sorted per average winning rate and we
keep the 6 best ones. Zero is a naive method just choosing zero: we see that, consistently with
Cauwet et al. [2019], many methods are worse than that when the dimension is huge compared
to the budget.
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• QOXX = method XX, plus quasi-opposite sampling Rahnamayan et al. [2007], i.e. each time
we draw xwithN , we also use−rxwhere r is uniformly independently drawn in (0, 1).

• XXPlusMiddlePoint = method XX, except that there is one point forced at the center of the
domain.

• MetaRecentering Cauwet et al. [2019]: rescaling σ = (1 + log(n))/(4 log(d)), i.e. we
randomly draw with σ ×N (0, Id) instead ofN (0, Id).

• MetaTuneRecentering Meunier et al. [2020c]: rescaling σ =
√

log(λ)/d, i.e. we randomly
draw with σ ×N (0, Id) instead ofN (0, Id).

Experimental setup. We measure the simple regret and compare methods by average frequency
of win against other methods. For each test case, we randomly draw the optimum as N (0, Id)
(multivariate standard Gaussian), with di�erent budgetsλ in{30, 100, 300,1000, 3000, 10000, 100000}
and dimensions d in {3, 10, 30, 100, 300, 1000, 3000}. Due to their time of evaluation, we did
not run the cases with both d = 3000 and λ = 100000. We evaluated on 3 di�erent functions:
the sphere function, the Griewank function, and the Highly Multimodal function. Previous re-
sults Bousquet et al. [2017] from the literature have already shown that replacing random sam-
pling by scrambled Hammersley sampling (i.e. modern low discrepancy sequences compatible
with high dimension) leads to better results.

Analysis of results. Analyzing the table results from Figure J.3, we observe that

• Averaging performs well overall: AvgXX is better than XX;

• The quasi-convex trick from Section J.6.2 does work: HAvgXX is better than AvgXX;

• The rescaling strategy from Meunier et al. [2020c] outperforms the ones in Cauwet et al.
[2019] (MetaTuneRecenteringbetter than MetaRecenteringor than PlusMiddlePoint) which
are already better than standard quasi-random sampling. Quasi-Opposite sampling is also
competitive.

We also include various methods present in the platform, including those which are based on
Cauchy or Hammersley without scrambling (Hammersley in the name without “Scr” pre�x), or
sophisticated uses of convex hulls for estimating the location of the optimum (HCH in the name).

J.8 Conclusion

We proved that averaging µ > 1 points rather than picking up the best works even for non
quadratic functions, in the sense that the convergence rate is better than the one obtained just
by picking up the best point. We also proved faster rates than methods based on meta-models
(such as Rudi et al. [2020]) unless the objective function is very smooth and low dimensional.
We also show that our results cover a wider family of functions (Section J.6.1). We also propose a
rule for choosing µ, depending on λ and the dimension. This shows that the optimal µ/λ ratio
decreases to 0 as the dimension goes to in�nity, which is con�rmed by Fig. J.2. We also note, by
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comparing with Meunier et al. [2020a], that the optimal ratio should be smaller (Fig. J.1), which
is con�rmed by our experiments on the perturbed sphere (Fig. J.2). We also propose a method for
adapting thisµ, by automatically detecting non-quasi-convexity and reducing it: and prove that it
detects more non-quasiconvexities than the method proposed in Meunier et al. [2020a]. Finally,
we validate the approach on a reproducible open-sourced platform (Fig. J.3).

Further Work

Using density-dependent weights as in Teytaud and Teytaud [2009] should allow us to get rid
of the constraint ||x∗|| < r using a Gaussian sampling instead of a uniform sampling. Better
rates might be obtained with rank-dependent weights as in Arnold et al. [2009]. We also leave as
further work the proof of the optimality of the rate for this strategy. Moreover, we also believe
better rates can be obtained for smoother functions, and leave this study for further work. The
case of noisy objective functions Arnold and Beyer [2006] is critical. The study is harder, and
good evolutionary algorithms use large populations, making the overall algorithm closer to a small
number of one-shot optimization algorithms: actually, some fast algorithms use mainly learning
Astete-Morales et al. [2015], Coulom [2011], Audet et al. [2018]. Population controlHellwig and
Beyer [2016] is successful and its last stage looks exactly like a one-shot optimization method.
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K Black-Box Optimization Revisited:

Improving Algorithm Selection

Wizards through Massive

Benchmarking

Existing studies in black-box optimization su�er from low generalizability, caused by a typically
selective choice of problem instances used for training and testing of di�erent optimization algo-
rithms. Among other issues, this practice promotes over�tting and poor-performing user guide-
lines. We address this shortcoming by introducing in this work a general-purpose algorithm se-
lection wizard that was designed and tested on a previously unseen breadth of black-box opti-
mization problems, ranging from academic benchmarks to real-world applications, from discrete
over numerical to mixed-integer problems, from small to very large-scale problems, from noisy
over dynamic to static problems, etc. Not only did we use the already very extensive benchmark
environment available in Nevergrad, but we also extended it signi�cantly by adding a number of
additional benchmark suites, including Pyomo, Photonics, LSGO, and MuJoCo. Our wizard
achieves competitive performance on all benchmark suites. It signi�cantly outperforms previous
state-of-the-art algorithms on some of the suites, including YABBOB and LSGO. Its excellent
performance is obtained without any task-speci�c parametrization.

The algorithm selection wizard, all of its base solvers, as well as the benchmark suites are avail-
able for reproducible research in the open-source Nevergrad platform.

K.1 Introduction: State of the Art

Many real-world optimization challenges are e�ectively black-box problems; i.e., the main source
of information when solving them is the evaluation of solution candidates. These evaluations of-
ten require simulations or even physical experiments. Black-box optimization methods are thus
widely applied in practice, with a particularly growing impact in machine learning Salimans et al.
[2016], Wang et al. [2020b], to the point that they are considered a key research area of arti�-
cial intelligence. Black-box optimization algorithms are typically easy to implement and easy to
adjust to di�erent problem types. To achieve peak performance, however, proper algorithm se-
lection and con�guration are key, since black-box optimization algorithms have complementary
strengths and weaknesses Rice [1976], Kerschke et al. [2019]. But while automated algorithm se-
lection has become standard in SAT solving Xu et al. [2008] and AI planning Vallati et al. [2015],
a manual selection and con�guration of the algorithms—often entirely based on users previous
experience and not necessarily on broader performance data—is still predominant in the broader
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black-box optimization context. To reduce the bias inherent to such manual choices, and to sup-
port the automation of algorithm selection and con�guration, sound comparisons of the di�er-
ent black-box optimization approaches are needed. Existing benchmarking suites, however, are
rather selective in the problems they cover. This leads to specialized algorithm frameworks whose
performance su�er from poor generalizability. We address this �aw in black-box optimization by
presenting a high-performing algorithm selection wizard, ABBO (Automated Black-Box Opti-
mization). ABBO uses very basic information about the problem and the available computational
resources to select one or several algorithms, which are run for the allocated budget of function
evaluations. The wizard was developed within the Nevergrad platform Rapin and Teytaud [2018],
which we have signi�cantly extended for this work to obtain an even broader set of benchmark
problems.

In summary, our key contributions are as follows: (1) Algorithm Selection Wizard ABBO:

Our algorithm selection technique, ABBO can be seen as an extension of the Shiwa wizard pre-
sented in Liu et al. [2020]. The wizard takes as input information on the problem (the dimension
of the search domain, the type and range of each variable, and their order), the presence of noise in
the evaluation (but not its intensity), and the computational resources that are available to solve the
problem (the budget and the degree of parallelism, i.e., number of solution candidates that can
be evaluated simultaneously). Based on this input, the wizard outputs one or several algorithms
that it suggests to execute on the given problem. ABBO uses three types of selection techniques:
passive algorithm selection (choosing an algorithm as a function of a priori available features Liu
et al. [2020]), active algorithm selection (a bet-and-run strategy which runs several algorithms for
some time and stops all but the strongest after a prede�ned number of evaluations Mersmann
et al. [2011], Pitzer and A�enzeller [2012], Fischetti and Monaci [2014], Malan and Engelbrecht
[2013], Muñoz et al. [2015], Cauwet et al. [2016], Kerschke et al. [2019]), and chaining (running
several algorithms in turn, in an a priori de�ned order Molina et al. [2009]).

Our wizard selects from and combines a very large number of base algorithms, among them
algorithms suggested in Virtanen et al. [2019], Hansen and Ostermeier [2001], Storn and Price
[1997], Powell [1964, 1994], Liu et al. [2020], Hellwig and Beyer [2016], Artelys [2015], Doerr
et al. [2017, 2021]. We compare the performance of ABBO to all these algorithms, as well as to its
predecessor Shiwa, and to all other algorithms available in Nevergrad.

(2) Benchmark Collection: By integrating a number of additional benchmark suites into the
Nevergrad platform, we obtain a huge benchmark collection that covers a previously unseen breadth
of black-box optimization problems, ranging from academic benchmarks to real-world applica-
tions, from discrete over numerical to mixed-integer problems, from small to very large-scale prob-
lems, from noisy over dynamic to static problems, etc.

Structure of the Paper: We motivate in Sec. K.2 why we have chosen to develop ABBO
within the Nevergrad benchmarking environment and how we have extended it. Sec. K.3 sum-
marizes ABBO and discusses di�erences to previous versions. Experimental results can be found
in Sec. K.4. Sec. K.5 concludes our paper with an outlook to future work.

Availability of Data and Code: Our algorithm selection wizard ABBO, its base solvers, and
the benchmark collection have all been merged to the main Nevergrad master, where they are
available for reproducible, open-source research. Nevergrad periodically reruns all algorithms and
makes all data available on the public dashboard Rapin and Teytaud [2020]. Note that ABBO is
called NGOpt8 within the Nevergrad environment, to allow for better version control in the lat-
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ter: NGOpt is the name of the latest version of the optimization wizard, the current version (July
2021) is NGOpt14. Since Nevergrad is developing at fast pace, we have saved a frozen version of

its code base. Together with the performance data used for this paper and the videos illustrat-
ing the performance of the policies learned for MuJoCo, this code is available on zenodo Meunier
et al. [2021c].

Table K.1: Properties of selected benchmark collections (details in the main text). “+” means that the fea-
ture is present, “-” that the feature is missing, and “NA” means that it is not applicable.

Testbed BBOB MuJoCo LSGO BBComp Nevergrad

Large scale - NA + - +
Translations + NA + + +

Symmetrizations / rotations + NA + - +
One-line reproducibility - - - - +

Periodically automated dashboard NA NA NA NA +
Complex or real-world - + - + +

Available open source and no licensing issues + - + + +
Ask/tell/recommend framework - NA + + +
Human excluded / client-server - - - + -

K.2 Sound Black-Box Optimization Benchmarking

We discuss in this section which features we consider desirable for sound benchmarking, and how
di�erent suites address these. This discussion motivates our decision to design and to evaluate
ABBO within the Nevergrad environment Rapin and Teytaud [2018]. Tab. K.1 summarizes how
some of the common benchmarking environments address the properties discussed below.

K.2.1 Desirable Properties for Sound Benchmarking

Generalization: The most obvious issue in terms of generalization is the statistical one: we need
su�ciently many experiments for conducting valid statistical tests and for evaluating the robust-
ness of algorithms’ performance. However, this is probably not the main issue. A biased bench-
mark, excluding large parts of the real world needs, leads to biased conclusions, no matter how
many experiments we perform. Inspired by Recht et al. [2018] in the case of image classi�cation,
and similar to the spirit of cross-validation for supervised learning, we use a much broader collec-
tion of benchmark problems for evaluating algorithms in an unbiased manner. Another subtle
issue in terms of generalization is the case of instance-based choices of (hyper-)parameters: an
experimenter modifying the algorithm or its parameters speci�cally for each instance can easily
achieve considerable performance improvements. In this paper, we consider that only the follow-
ing problem properties are known in advance (and can hence be used for algorithm selection and
con�guration): the dimension of the domain, the type and range of each variable, their order,
the presence of noise (but not its intensity), the budget, and the degree of parallelism (i.e., num-
ber of solution candidates that can be evaluated simultaneously). To mitigate the common risk
of over-tuning, we evaluate algorithms on a broad range of problems, from academic benchmark
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problems to real-world applications. Each algorithm runs on all benchmarks without any change
or task-speci�c tuning.

Large scale: Since practical problems can reach very large dimensions, we consider it desirable
to include benchmark suites that comprise such problems. A “+” in Table K.1 indicates that the
collection provides benchmark problems in dimension≥ 1 000.

Translations: The search point zero frequently plays a special role in optimization. For exam-
ple, complexity penalization often “pushes” towards zero. Also, large values in a neural network
lead to saturation Glorot and Bengio [2010]: then, we get a plateau and cannot learn from the sam-
ples. In arti�cial experiments, several classical test functions have their optimum at (0, . . . , 0). To
avoid misleading conclusions, it is now a standard procedure, advocated in particular in Hansen
et al. [2012], to randomly translate the objective functions. Concretely, we consider that there is
translation when optima are randomly translated by a N (0, σ2) shift. This property is mainly
interesting for arti�cially created benchmarks, but is unfortunately not always applied.

Symmetrizations / Rotations: Some optimization methods may perform well on separable
objective functions but degrade signi�cantly when optimizing non-separable functions. If the
dimension of a separable objective function is d, these methods can reduce the objective func-
tion into d one-dimensional optimization processes Salomon [1996]. Therefore, Hansen et al.
[2012, 2011] proposed that objective functions should be rotated to generate more di�cult non-
separable objective functions. In Bousquet et al. [2017], the importance of dummy variables,
which are not invariant under rotation, was pointed out. Several references in the genetic algo-
rithms literature, including Holland [1973], argue that rotations may not always be the right ap-
proach, in particular when the order of the variables carries a meaning. Nevergrad uses rotations,
but separates the rotated and non-rotated cases in its evaluation, allowing users to focus on the
setting of their choice. Assuming an optimum at 0 up to a translation step, we consider rotation
as the replacement of the functionx 7→ f(x) byx 7→ f(M(x)) for a randomly selected rotation
matrix M . We speak of symmetrization when x 7→ f(x) is replaced by x 7→ f(S(x)), where S
is a randomly chosen diagonal matrix whose entries are either 1 or−1.

One-line reproducibility: Where reproducibility requires signi�cant coding, it is unlikely to
be of great use outside of a very small set of specialists. One-line reproducibility is given when the
e�ort to reproduce an entire experiment does not require more than the execution of a single line.
This is possible in Nevergrad, as an example <python -m nevergrad.benchmark yabbob –plot > will
reproduce YABBOB results on 30 cores.

Periodically automated dashboard: Some platforms do not collect the algorithms, which
severely limits their reproducibility, as their implementations may not be available for public com-
parison. An automated and periodically rerun dashboard mitigates this risk. It is also convenient
because new problems can be added “on the go” without causing problems, as all algorithms will
be executed on all these new problem instances.

Complex or real-world: Benchmarks that contain real-world optimization problems, or at
least complex simulators are desirable to evaluate our methods in realistic environments. MuJoCo
is an example of a complex simulator.

Open sourced / no license: Another important aspect of benchmarking environments is
whether or not algorithms, problems, and data are available under an open source agreement.
BBOB does not collect algorithms, MuJoCo requires a license, BBComp is no longer maintained.
As part of our work we integrated MuJoCo into Nevergrad, making it available to a broad pub-
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lic, since users can upload their algorithms in Nevergrad and they will be run on all benchmarks,
including MuJoCo.

Ask/tell/recommend framework: Formalizing the concept of numerical optimization is typ-
ically made through the formalism of oracles or parallel oracles Rogers Jr [1987]. A recent trend
is the adoption of the ask-and-tell format developed in Breitkopf and Coelho [2013]. The bandit
literature pointed out that we should distinguish ask, tell, and recommend: the way we choose a
point for gathering more information (“ask”) is not necessarily close to the way we choose an ap-
proximation of the optimum (“recommend”), see Bubeck et al. [2011], Coulom [2012], Decock
and Teytaud [2013] for detailed discussions. The di�erence is particularly important in noisy op-
timization, where an algorithm that just happens to do one lucky evaluation should not be able
to get credit unless it would actively recommend that solution. A closely related issue is that a run
with budget T is not necessarily close to the truncation of a run in budget 10T .

Human excluded / client-server: Whether or not the problem instances are truly black-box.
In the proper black-box setting, algorithms can only suggest points and observe function values,
but neither the algorithm nor its designer have access to any other information about the problem
apart from the number of variables, their type, ranges, and order. It is impossible to repeat exper-
iments for tuning hyperparameters without “paying” the budget of the tuning. Nevergrad does
not reproduce the extreme black-box nature of BBComp Škvorc et al. [2019], where the objec-
tive function is evaluated on a server and the algorithms really only perform function evaluations
over the internet without having access to any other source of information about the problem at
hand. Still, by integrating a wide range of benchmarks in a single open-source framework, which,
in addition, is periodically re-run, we nevertheless conclude that Nevergrad provides the right en-
vironment for the development and the evaluation of ABBO.

K.2.2 Benchmarking Suites (Now) Available in Nevergrad

As a result of our work, Nevergrad now includes PBT (a small scale version of Population-Based
Training Jaderberg et al. [2017]), Pyomo Hart et al. [2017], Photonics (problems related to optical
properties and nanometric materials), YABBOB and variants, LSGO Li et al. [2013], MLDA Gal-
lagher and Saleem [2018], PowerSystems, FastGames, 007, Rocket, SimpleTSP, Realworld Rapin
and Teytaud [2018], Liu et al. [2020], MuJoCo Todorov et al. [2012], and others, including
a (currently small) benchmark of hyperparameters of Scikit-Learn Pedregosa et al. [2011], and
Keras-tuning. In this list, underlined means that the benchmark is either new (i.e., created by
us), or, in the case of PowerSystems and SimpleTSP, signi�cantly modi�ed compared to previous
works, or, in the case of Pyomo, LSGO, and MuJoCo, included for the �rst time inside Never-
grad. For MuJoCo, we believe that interfacing with Nevergrad is particularly useful, to ensure fair
comparisons, which rely very much on the precise setup of MuJoCo. Some more details about
the suites will be given in Sec. K.4 when we discuss results for selected benchmark collections.

K.3 The ABBO Algorithm Selection Wizard

Base Solvers: Black-box optimization problems are often tackled using evolutionary computa-
tion. Evolution strategies Beyer and Schwefel [2002b], Beyer [2001], Rechenberg [1989] have
been particularly dominant in the continuous case, in experimental comparisons based on the
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Algorithm 15: High-level overview of ABBO. Selection rules are followed in this order,
�rst match applied. d = dimension, budget b = number of evaluations. Details of ABBO
and the con�guration of its base solvers are available in the Nevergrad platform Rapin and
Teytaud [2018], where ABBO is listed as NGOpt8.

Case Choice

A: Discrete decision variables only, noise-free case

Noisy optimization with categorical variables Genetic algorithm mixed with bandits Heidrich-Meisner and
Igel [2009], Liu et al. [2020].

alphabets of size< 5, sequential evaluations (1 + 1)-Evolutionary Alg. with linearly decreasing stepsize
alphabets of size< 5, parallel case Adaptive (1 + 1)-Evolutionary Alg. Doerr et al. [2021].
Other discrete cases with �nite alphabets Convert to the continuous case using SoftMax as in Liu et al.

[2020] and apply CMandAS2 Rapin et al. [2019]
Presence of in�nite discrete domains FastGA Doerr et al. [2017]

B: Numerical decision variables only, evaluations are subject to noise

d > 100 progressive optimization as in Berthier [2016].
d ≤ 30 TBPSA Hellwig and Beyer [2016]
b > 100 sequential quadratic programming
Other cases TBPSA Hellwig and Beyer [2016]

C: Numerical decision variables only, high degree of parallelism, noise-free

Parallelism> b/2 or b < d MetaTuneRecentering Meunier et al. [2020c]
Parallelism> b/5, d < 5, and b < 100 DiagonalCMA-ES Ros and Hansen [2008]
Parallelism> b/5, d < 5, and b < 500 Chaining of DiagonalCMA-ES (100 asks), then CMA-

ES+meta-model Auger et al. [2005b]
Parallelism> b/5, other cases NaiveTBPSA as in Cauwet and Teytaud [2020]

D: Numerical decision variables only, sequential evaluations, noise-free

b > 6 000 and d > 7 Chaining of CMA-ES and Powell, half budget each.
b < 30d and d > 30 (1 + 1)-Evol. Strategy w/ 1/5-th rule Rechenberg [1989]
d < 5 and b < 30d CMA-ES + meta-model Auger et al. [2005b]
b < 30d Cobyla Powell [1994]

E: other cases. Noisy discrete cases: progressive methods. Other continuous noise-free cases than C and E
apply DE or CMA depending on the dimension (see code and Liu et al. [2020]).

Black-Box Optimization Benchmark BBOB Hansen et al. [2012] or variants thereof. Paralleliza-
tion advantages Salimans et al. [2016] are particularly appreciated in the machine learning context.
Di�erential Evolution Storn and Price [1997] is a key component of most winning algorithms
in competitions based on variants of Large Scale Global Optimization (LSGO Li et al. [2013]).
LSGO is more based on correctly identifying a partial decomposition and scaling to ≥ 1 000
variables, whereas BBOB focuses (mostly, except Varelas et al. [2020]) on≤ 40 variables. Math-
ematical programming techniques Powell [1964, 1994], Nelder and Mead [1965], Artelys [2015]
are rarely used in the evolutionary computation world, but they have won competitions Artelys
[2015] and signi�cantly improved evolution strategies through memetic methods Radcli�e and
Surry [1994]. Methods focused on MuJoCo Mania et al. [2018], Sener and Koltun [2020a] have
rarely been tested on other benchmarks such as BBOB or LSGO. Reproducibility in MuJoCo is
problematic as its results can depend on very small details in the implementation. Closer to ma-
chine learning, e�cient global optimization Jones et al. [1998] is widely used, although it su�ers
from the curse of dimensionality more than other methods Snoek et al. [2012]. The LAMTCS
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algorithm presented in Wang et al. [2020b] applies black-box optimization on MuJoCo, i.e., for
the control of various realistic robots Todorov et al. [2012].

Algorithm Selection Wizards: As mentioned, ABBO combines the various base algorithms
available in Nevergrad in three di�erent ways (see Sec. K.1). Its high-level structure is summa-
rized in Algorithm 15 for selected optimization scenarios. We cannot replicate the full set of case
distinctions here. All details are accessible via the implementation of ABBO in Nevergrad. Writ-
ten in Python, this implementation is comparatively easy to navigate even for users with limited
programming experience.

The most relevant predecessor of ABBO is the Shiwa algorithm presented in Liu et al. [2020].
Shiwa was also developed within Nevergrad and was shown to outperform each of the base al-
gorithms when averaged over diverse benchmark problems. Also our ABBO entirely relies on
the base algorithms as available in Nevergrad; that is, we did not modify the con�guration of
any method. We have, however, added a number of di�erent algorithms for the development of
ABBO, almost exclusively taken from the research literature (see below for details). We therefore
acknowledge that the e�ciency of ABBO heavily relies on the quality of these base components,
which is based on cumulative e�ort of numerous research teams.

From a high-level perspective, ABBO extends Shiwa by the following features:

(1) Better use of chaining Molina et al. [2009] and more intensive use of mathematical pro-
gramming techniques for the last part of the optimization run, i.e., the local convergence, thanks
to Meta-Models (simple quadratic forms trained on the best points, used in the parallel case) and
more time spent in Powell’s method Powell [1964] (in the sequential case). This explains the im-
provement visible in Sec. K.4.1.

(2) Better performance in discrete optimization, achieved, in particular, by adaptive mutation
rates (i.e., step size distributions).

(3) Better segmentation of the di�erent cases of continuous optimization.

More concretely, and for the parts of the ABBO that are detailed in Algorithm 15, the main
di�erences between ABBO and Shiwa are as follows. (A) We have added several evolutionary al-
gorithms with variable mutation rates, 36 for the parallel cases and one for the sequential case
(using a linearly decreasing mutation rate). We also introduced active algorithm selection (“bet-
and-run”) with CMandAS2, which—depending on the budget b—races three copies of CMA-
ES or two copies of CMA-ES and a (1+1) ES for b/10 steps. (B) We use progressive methods (i.e.,
progressively adding variables in the optimization run, starting at a small set and then growing to
the entire set of variables, as in Berthier [2016]) for high-dimensional cases, and we use Sequen-
tial Quadratic Programming (SQP) Artelys [2015] when the budget is su�cient for training a
quadratic model. (C) We make use of the space �lling design MetaTuneRecentering proposed
in Meunier et al. [2020c]: we use it in the highly parallel case, but also in the sequential setting
if the budget is smaller than the dimension. (D) We also use meta-models for some small dimen-
sional cases. Overall, meta-models are helping our algorithms in the continuous setting except for
sequential or high-dimensional cases.
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Table K.2: Rank of ABBO, Shiwa, and CMA-ES on Selected Benchmark Suites. See main text for an ex-
planation of symbols.

Benchmark Use for ABBO # of con�gs ranking ABBO best competitor

ABBO Shiwa CMA-ES

HDBO Designing 24 2/21 1† 2 Shiwa
PARAMULTIMODAL Designing 112 1/27 3† 6 DiagonalCMA-ES Ros and Hansen [2008]
Realworld Designing 486 1/6 2† 3 Shiwa
Illcondi Designing 12 1/24 3† 8 Cobyla
Illcondipara Designing 12 5/28 7† 3 DiagonalCMA-ES
YABBOB Designing* 630 1/8 2 5 Shiwa
YAPARABBOB Designing* 630 1/6 4 5 MetaModel
YAHDBBOB Designing* 378 2/19 3 18 (1 + 1)-ES
YANOISYBBOB Designing* 630 2/11 6 10 SQP
YAHDNOISYBBOB Designing* 630 4/24 2 13 SQP
YASMALLBBOB Designing* 378 1/8 2 7 Shiwa

HdMultimodal Validation 42 1/14 2† 4 Shiwa
Noisy Validation 96 16/28 19† NA RecombiningOptimisticNoisyDiscrete(1 + 1)

RankNoisy Validation 72 4/25 NA 19 ProgD13
AllDEs Validation 60 1/28 2† 3 Shiwa

Pyomo Evaluating 104 1/19 3† 10 Shiwa
Rocket Evaluating 13 5/18 4† 3 DiagonalCMA-ES Ros and Hansen [2008]
SimpleTSP Evaluating 52 3/15 2† 7 PortfolioDiscrete(1 + 1)

Seq. Fastgames Evaluating 20 3/28 4† 23 OptimisticDiscrete(1 + 1)

LSGO Evaluating 45 1/6 4† 6 MiniLHSDE
Powersystems Evaluating 48 10/26 NA 25 (1 + 1)-ES

K.4 Experimental Results

When presenting results on a single benchmark function, we present the average objective func-
tion value for di�erent budget values. When a collection comprises multiple benchmark prob-
lems, we present the aggregated experimental results with two distinct types of plots:

(1) Loss: normalized average (over all runs) objective value for each budget, averaged over all
problems. The normalized objective value is the average objective value linearly rescaled to [0, 1]:
then we normalize over di�erent problems.

(2) Heatmaps, showing for each pair (x, y) of optimization algorithms the frequency at which
Algorithm x outperforms Algorithm y. Algorithms are ranked by average winning frequency. For
instance, in Figure K.1, ABBO wins in 63.8% of the cases against other algorithms, whereas CMA
wins 50.4%.

High-Level Overview: Tab. K.2 summarizes the rank of ABBO on some of the benchmark
suites. The rank is based on the winning rate in Nevergrad’s dashboard Rapin and Teytaud [2020].
Each of the suites listed in Tab. K.2 comprises several problems and di�erent settings with respect
to budget, objective function, possibly dimension, and noise level. We separate benchmarks that
were used for designing ABBO from those used for its validation, and those only used for testing.

The “*” symbol marks suites that were used for designing ABBO’s predecessor Shiwa. Some
of our modi�cations also improve the performance of Shiwa compared to the version published
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Figure K.1: Average normalized loss and heatmap for YABBOB. Additional plots for High-dimensional
(HD), NoisyHD, and Large budgets are available in Fig. K.4. Other variants include parallel,
di�erences of budgets, and combinations of those variants, with excellent results for ABBO.

in Liu et al. [2020]; for example, our chaining implies that the (k + 1)-st code starts from the
best point obtained by the k-th algorithm, which signi�cantly improves in particular the chaining
CMA-ES+Powell or CMA-ES+SQP. Experiments with “†” in the ranking of Shiwa correspond
to this improved version of Shiwa.

Since the submission of this paper, several variants of bandit-based algorithms have been added
for high-dimensional noisy optimization. They outperform ABBO, hence its poor rank for these
cases.

K.4.1 Suites Used for Designing and Validating ABBO

YABBOB (Yet Another Black-Box Optimization Benchmark Rapin et al. [2019]), is an adapta-
tion of BBOB Hansen et al. [2012], with extensions such as parallelism and noise management. It
contains many variants, including noise, parallelism, high-dimension (prior to Varelas et al. [2020]
BBOB was limited to dimension < 50). Results are available in Figures K.1 and K.4. The high-
dimensional suite is inspired by Li et al. [2013], the noisy one is related to the noisy counterpart of
BBOB but implements the di�erence between ask and recommend as discussed in Sec. K.2. The
parallel one generalizes YABBOB to settings in which several evaluations can be executed in par-
allel. Results on PARAMULTIMODAL are presented in Fig. K.6 (left). In addition, ABBO was
run on ILLCONDI & ILLCONDIPARA (ill conditioned functions), HDMULTIMODAL (a
multimodal case focusing on high-dimension), NOISY & RANKNOISY (two noisy continu-
ous testbeds), YAWIDEBBOB (a broad range of functions including discrete cases and cases with
constraints).

AllDEs and Hdbo are benchmark collections speci�cally designed to compare DE variants
(AllDEs) and high-dimensional Bayesian Optimization (Hdbo), respectively Rapin and Teytaud
[2018]. These benchmark functions are similar to the ones used in YABBOB. Many variants of
DE (resp. BO) are considered. Results are presented in Fig. K.5. They show that the performance
of ABBO, relatively to DE or BO, is consistent over a wide range of parametrizations of DE or
BO, at least in their most classical variants, which are all available in Nevergrad for empirical com-
parisons.
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Figure K.2: Additional problems: Pyomo (left �gure, covering Knapsack, P-median and others) and Se-
quentialFastgames (on the right, presented as heatmaps due to the high noise. Subsumes Guess-
Who, War, Batawaf, Flip). Rockets, SimpleTSP, PowerSystems, and LSGO plots are available
in Figs. K.7, and K.8. Pyomo and SimpleTSP include discrete variables. Pyomo includes con-
straints. Rocket, PowerSystems, SequentialFastGames are based on open source simulators.

Realworld: A test of ABBO is performed on the Realworld optimization benchmark suite
proposed in Rapin and Teytaud [2018]. This suite includes testbeds from MLDA Gallagher and
Saleem [2018] and from Liu et al. [2020]. Results for this suite, presented in Fig. K.6, con�rm
that ABBO performs well also on benchmarks that were not explicitly used for its design. How-
ever, this benchmark was used for designing Shiwa, which was the starting point for the design
of ABBO. A rigorous cross-validation, on benchmarks totally independent from the design of
Shiwa, is provided in the next sections.

K.4.2 New Benchmark Suites Used Only for Evaluating ABBO

Pyomo is a modeling language in Python for optimization problems Hart et al. [2017]. It has
been adopted for formulating large models for complex and real-world systems, including energy
systems and network resource systems. We implemented an interface to Pyomo for Nevergrad.
Experimental results are summarized in Fig. K.2. They show that ABBO also performs decently
in discrete settings and in constrained cases.

Additional new arti�cial and real-world functions: LSGO Li et al. [2013] combines vari-
ous functions into an aggregated testbed including composite highly multimodal functions. Cor-
rectly decomposing the problem is essential. Various implementations of LSGO exist; in partic-
ular, the Octave and C++ versions do not match exactly for F3/F6/F10. We match the C++ ver-
sion, which is the one used in Li et al. [2013]. For F7, there is a di�erence between the code and
the paper and we match the code rather than the paper. Following Li et al. [2013], our imple-
mentation comprises functions with subcomponents (i.e., groups of decision variables) having
non-uniform sizes and non-uniform, even con�icting, contributions to the objective function.
We also present experimental results on SequentialFastgames from the Nevergrad benchmarks,
and three newly introduced benchmarks, namely Rocket, Simple TSP (a set of traveling sales-
man problems, where a vector x ∈ Rd is converted into a permutation σ by letting σ(i) be the
index of the i-th largest element in x (ties broken at random)), and power systems (unit com-
mitment problems Padhy [2004]). Experimental results are presented in Figs. K.2, K.7, and K.8,
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Figure K.3: Results on the MuJoCo testbeds. Dashed lines show the standard deviation. Compared to the
state of the art in Wang et al. [2020b], with an algorithm adapted manually for the di�erent
tasks, we get overall better results for Humanoid, Ant, and Walker. We get worse results for
Swimmer (could match if we had modi�ed our code for the three easier tasks as done in Wang
et al. [2020b]), similar for Hopper and Cheetah: we reach the target for 5 of the 6 problems
(see main text). Runs of Shiwa correspond to the improvement of Shiwa due to chaining, as
explained in Sec. K.3.

respectively. They show that ABBO performs well on new benchmarks, never used for its design
nor for that of the low-level heuristics used inside ABBO.

MuJoCo: Some articles Sener and Koltun [2020b], Wang et al. [2020b] studied the MuJoCo
testbeds Todorov et al. [2012] in the black-box setting. MuJoCo tasks correspond to control prob-
lems. De�ned in Wang et al. [2020b], Mania et al. [2018], the objective is to learn a linear mapping
from states to actions. It turned out that the scaling of the variables is critical Mania et al. [2018]:
following the recommendation from Meunier et al. [2020c] to sample close to zero in the high
dimensional setting, we chose to initialize all the variables of the problem with a variance decaying
with the dimension, for all methods run in Fig. K.3. We remark that ABBO and Shiwa perform
well, even when compared to gradient-based methods, while having the advantage of being appli-
cable to settings in which gradients are not available. In comparison to gradient-based methods,
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Table K.3: Results on MuJoCo for a linear policy in the black-box setting from Wang et al. [2020b] and ref-
erences therein. We compare various published results to results from ABBO. Two last columns
= average reward for the maximum budget tested in Wang et al. [2020b], namely 1k, 4k, 4k, 40k,
30k, 40k, respectively. “ioa” = iterations on average for reaching the target. “iter” = iterations
for target reached for median run. “*” refers to problems for which the target was not reached
by Wang et al. [2020b]: then BR means “best result in 10 runs”. ABBO reaches the target for
Humanoid and Ant whereas previous (black-box) papers did not; we get nearly the same ioa for
Hopper and HalfCheetah (Nevergrad computed the expected value instead of computing the
ioa, so we cannot compare exactly; see Fig. K.3 for curves). ABBO is slower than LA-MCTS on
Swimmer. Note that we keep the same method for all benchmarks whereas LA-MCTS modi�ed
the algorithm for 3 rows. On HDMULTIMODAL, ABBO performs better than LA-MCTS,
as detailed in the text, and as con�rmed in Wang et al. [2020b], which acknowledges the poor
results of LA-MCTS for high-dimensional Ackley and Rosenbrock.

Task Target LA-MCTS results ABBO result LA-MCTS avg reward ABBO avg reward

Swimmer-v2 325 132 ioa around 450 iter 358 365

Hopper-v2 3120 2897 ioa around 3 000 iter 3292 1787
HalfCheetah-v2 3430 3877 ioa around 4 000 iter 3227 4730

Walker2d-v2* 4390 BR: 3314 (not reached) BR: 4398, budget< 64 000 2769 2949

Ant-v2* 3580 BR: 2791 (not reached) BR: 5325, budget< 32 000 2511 3532

Humanoid-v2* 6 000 BR: 3384 (not reached) BR (budget 5 00000): 4870 2511 4620

Figure K.4: YAHDBBOB (dimension ≥ 50) and YANOISYHDBBOB (noisy + dimension ≥ 50)
heatmaps.

black-box methods do not require computation of the gradient, and hence, save computational
time.

We use the same experimental setup as Wang et al. [2020b] (linear policy, o�ine whitening of
states). We get better results than LA-MCTS, in a setting without using any expensive surrogate
model (Tab. K.3). Our runs with CMA-ES and Shiwa are better than those in Wang et al. [2020b].
We acknowledge that LMRS Sener and Koltun [2020b] outperforms our method on all MuJoCo
tasks, using a deep network as a surrogate model: however, we point out that a part of their code is
not open sourced, making the experiments not reproducible. In addition, when rerunning their
repository without the closed source part, it solved Half-Cheetah within budget 56k, which is
larger than ours. For Humanoid, the target was reached at 768k, which is again larger than our
budget. The results from ABBO are comparable to, and are usually better than (for the 3 hardest
problems) the results from LA-MCTS, while ABBO is entirely reproducible. In addition, it runs
the same method for all benchmarks and it is not optimized for each task speci�cally as in Sener
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Figure K.5: ABBO vs speci�c families of optimization algorithms (DE on the left in dimension 5, 20 and
100; and BO in dimension 20 on the right) on Cigar, Hm, Ellipsoid, Sphere functions. Not
all run algorithms are mentioned, for short. Bayesian optimization (Nevergrad uses Nogueira
[2014–]), often exploring boundaries �rst, is outperformed in high dimension Wang et al.
[2020b].

Figure K.6: Left: experiments for the parallel multimodal setting PARA-
MULTIMODAL. Budget up to 100 000, parallelism 1 000, Ack-
ley+Rosenbrock+DeceptiveMultimodal+Griewank+Lunacek+Hm. Right: Realworld
benchmark from Nevergrad: games, Sammon mappings, clustering, small traveling salesman
instance, small power systems.

and Koltun [2020b], Wang et al. [2020b]. In contrast to ABBO, LA-MCTS Wang et al. [2020b]
uses di�erent underlying regression methods and sampling methods depending on the MuJoCo
task, and it is not run on other benchmarks except for some of the HDMULTIMODAL ones.
On the latter, ABBO performances are signi�cantly better for Ackley and Rosenbrock in dimen-
sion 100 (average results around 100 and 10−8 after 10k iterations for Rosenbrock and Ackley
respectively for ABBO, vs. 500 and 0.5 in Wang et al. [2020b]). From the curves in Wang et al.
[2020b] and those presented here in this paper, we expect LA-MCTS to perform well with an
adapted choice of parametrization and with a low budget, for tasks related to MuJoCo, whereas
ABBO is adapted for wide ranges of tasks and budgets.

As mentioned at the end of the introduction, videos illustrating the performance of the learnt
policies are available at Meunier et al. [2021c].

K.5 Conclusions

We have introduced in this paper ABBO, an improved algorithm selection wizard that signi�-
cantly improves upon its predecessor Shiwa Liu et al. [2020]. For the development and the eval-
uation of ABBO we have considerably extended the Nevergrad platform by adding several real-

349



K Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive
Benchmarking

Figure K.7: Additional problems (1): on left, Rocket (26 continuous variables, budget up to 1600, sequen-
tial or parallelism 30) and on right, SimpleTSP (10 to 1 000 decision variables).

Figure K.8: Additional problems (2): on left, PowerSystems (1806 to 9646 neural decision variables) and
on right, LSGO (mix of partially separable, overlapping, shifted cases as in Li et al. [2013]).

world and academic benchmark suites. All our work is available in the master branch of Never-
grad, where it is available for reproducible, open-source research. ABBO is listed as NGOpt8 in
Nevergrad.

Despite its simplicity, ABBO shows very promising performance across the whole benchmark
suite, often outperforming the previous state-of-the-art, problem-speci�c solvers. Highlights of
our performance comparison include: (a) by solving 5 of the 6 MuJoCo cases without any task-
speci�c hyperparameter tuning, ABBO outperforms LA-MCTS, which was specialized for each
single task, (b) ABBO outperforms Shiwa on YABBOB and its variants, which is the benchmark
suite that was used to design Shiwa in the �rst place, (c) ABBO is also among the best methods on
LSGO and almost all other benchmarks.

Future work: Nevergrad implements most of the desirable features outlined in Sec. K.2, with
one notable exception, the true black-box setting, which other benchmark environments have
implemented through a client-server interaction Škvorc et al. [2019]. A possible combination be-
tween our platform and such a challenge, using the dashboard to publish the results, could be use-
ful, to o�er a meaningful way for cross-validation. Further improving ABBO is on the roadmap.
In particular, we are experimenting with the automation of the still hand-crafted selection rules.
Note, though, that it is important to us to maintain a high level of interpretability, which we con-
sider key for a wide acceptance of the wizard. Another avenue for future work is a proper con�g-
uration of the low-level heuristics subsumed by ABBO. At present, some of them are merely text-
book implementations, and signi�cant room for improvement can therefore be expected. Newer
variants of CMA-ES Loshchilov [2014], Akimoto and Hansen [2016], Loshchilov et al. [2018],
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of LMRS Sener and Koltun [2020b], recent Bayesian optimization libraries (e.g. Eriksson et al.
[2019]), as well as per-instance algorithm con�guration such as Belkhir et al. [2017] are not un-
likely to result in important improvements for various benchmarks. We also plan on extending the
benchmark collection available through Nevergrad further, both via interfacing existing bench-
mark collections/problems and by designing new benchmark problems ourselves.
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L Résumé Détaillé en Francais

Dans cette annexe, nous présentons un résumé en français de cette thèse. Elle comporte princi-
palement une traduction du contexte et des motivations de mon travail ainsi que les grandes lignes
de chacune de mes contributions.

Contents

L.1 Les fondements de l’Intelligence Arti�cielle . . . . . . . . . . . . . 353

L.2 Risques avec les Systèmes Autonomes . . . . . . . . . . . . . . . . 354

L.2.1 Menaces Courantes . . . . . . . . . . . . . . . . . . . . . . 354
L.2.2 Attaques adverses contre les systèmes d’apprentissage automatique 357

L.3 Classi�cation Adverse en Apprentissage Automatique . . . . . . . . 357

L.3.1 Une Approche d’Apprentissage pour la Classi�cation . . . . . . 358
L.3.2 Classi�cation en présence d’attaques adverses . . . . . . . . . . 359

L.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

L.4.1 Une approche de théorie des jeux au problème des attaques adverses 361
L.4.2 Consistence des fonctions de perte dans la classi�cation en présence

d’adversaires . . . . . . . . . . . . . . . . . . . . . . . . . . 364
L.4.3 Constuction de modèles certi��ables . . . . . . . . . . . . . . 366

L.5 Travaux complémentaires . . . . . . . . . . . . . . . . . . . . . . 368

L.1 Les fondements de l’Intelligence Arti�cielle

L’apprentissage automatique, sous-domaine de l’informatique dédié à la construction et à l’étude
de systèmes informatiques qui s’améliorent automatiquement avec l’expérience, est au cœur des
récentes avancées en Intelligence Arti�cielle. Prenant ses racines dans l’analyse statistique, il a
été largement étudié au cours des trente dernières années sous des perspectives algorithmiques et
mathématiques, donnant naissance à une nouvelle discipline, la théorie informatique de l’apprentissage.
Grâce à la disponibilité de quantités massives de données et de puissance de calcul à bas coût, les
deux dernières décennies ont connu un intérêt croissant pour les applications réelles du domaine.
Cet intérêt est encore plus fort depuis 2012, avec le succès remarquable d’AlexNet [Krizhevsky
et al., 2012] sur le jeu de données ImageNet [Deng et al., 2009], utilisant des réseaux de neu-
rones à plusieurs couches. L’ère de l’apprentissage profond a commencé alors avec des innovations
spectaculaires dans plusieurs domaines : modèles génératifs [Goodfellow et al., 2014], traitement
du langage naturel [Vaswani et al., 2017], etc. Le succès de l’apprentissage profond (réseaux de
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neurones arti�ciels avec beaucoup de couches) peut être expliqué par la conjonction des facteurs
suivants :

• Disponibilité des données: la quantité et le coût des données ont largement diminué
depuis l’apparition de plateformes web et d’outils de gestion de grandes quantités de don-
nées.

• Puissance de calcul: de nouvelles architectures matérielles spécialisées telles que les GPU
et les TPU permettent des algorithmes de formation plus rapides et plus grands.

• Scalabilité algorithmique: les algorithmes sont évolutifs pour les modèles de grande taille
(calcul distribué, etc.) et un grand nombre de données (descente de gradient stochastique [Bot-
tou, 2010], etc.)

• Projets Open Source: les grands projets en apprentissage automatique sont aujourd’hui
en libre accès en ligne (TensorFlow [Abadi et al., 2016], PyTorch [Paszke et al., 2017], Scikit
Learn [Pedregosa et al., 2011], etc.) permettant l’émergence de grandes communautés.

Il est important de noter ici que l’Intelligence Arti�cielle, en tant que domaine scienti�que,
existe depuis le début du XXe siècle. Elle englobe plusieurs notions et domaines, en dehors de
l’apprentissage automatique et de l’apprentissage profond. Sa naissance est indissociable du développe-
ment de l’informatique. Le premier ordinateur e�cace a été construit par Charles Babbage et a
exécuté l’algorithme d’Ada Lovelace. La science informatique a été formalisée et théorisée dans la
thèse de Church-Turing [Turing, 1950], qui dé�nit la notion de calculabilité, c’est-à-dire que les
fonctions sont calculables si elles peuvent être décrites sous forme de liste d’instructions prédé�nies
à suivre. Ces instructions sont appelées algorithmes. L’Intelligence Arti�cielle, ou du moins le
terme, a été "o�ciellement fondée" en tant que champ de recherche en 1956 lors de la conférance
de Dartmouth [McCarthy et al., 1955], organisé par Marvin Minsky, John McCarthy, Claude
Shannon et Nathan Rochester. Au cours de cette conférence, le terme "Intelligence Arti�cielle"
a été proposé et adopté par la communauté de chercheurs. Depuis lors, le domaine a oscillé en-
tre l’hystérie et la déception, avec au moins deux périodes majeures d’indi�érence connues sous
le nom de "hivernaux AI". Cette thèse est clairement développée pendant la troisième période
d’hystérie, mais nous gardons à l’esprit l’histoire très éclairante de la discipline.

L.2 Risques avec les Systèmes Autonomes

L.2.1 Menaces Courantes

La cybersécurité est au cœur de l’informatique. La cryptographie a été l’un des sujets les plus
brûlants au cours des trente dernières années. En dépit de leurs performances, les systèmes d’apprentissage
sont sujets à de nombreux types de vulnérabilités et, de par leur popularité, sont alors sujets à
des attaques malveillantes. La vulnérabilité la plus connue qui a retenu l’attention du public est
probablement la con�dentialité des données. Alors que la quantité de données disponibles sur le
web augmente de façon exponentielle, il devient de plus en plus facile d’identi�er des individus
en croisant des ensembles de données lorsque celles-ci ne sont pas protégées. Comme l’a montré
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la désanonymisation de l’ensemble de données du prix Net�ix 1M$ [Narayanan and Shmatikov,
2008], cacher les identités dans les ensembles de données n’est pas su�sant pour protéger les don-
nées privées. Les informaticiens ont alors intensi�é leurs e�orts pour proposer des moyens de
protéger les données, ce qui a conduit à l’émergence de ce qui est considéré comme un standard
pour la protection des données : la con�dentialité di�érentielle [Dwork, 2008]. Elle consiste à
ajouter un léger bruit aléatoire aux données pour les rendre non identi�ables sans trop détériorer
leur utilité. La con�dentialité di�érentielle est séduisante car elle s’accompagne de solides garanties
théoriques, tout en étant simple à manipuler, permettant de faire un compromis entre le degré de
con�dentialité par injection de bruit et la qualité des informations que l’on peut déduire des don-
nées. Les attaques courantes sur la con�dentialité sont:

• Vol de modèles [Tramèr et al., 2016]: Un attaquant veut “voler” les paramètres d’un
modèle donné.

• Inférence d’appartenance [Shokri et al., 2017]: Inférer si un échantillon de données
étaient présent ou non dans le jeu d’entrainement.

En réponse aux menaces sur la vie privée des individus, les autorités européennes ont conçu la
réglementation RGPD (Règlement Général sur la Protection des Données)1, adopté en 2016, qui
dé�nit de nouvelles règles sur l’utilisation des données et sur la vie privée. Aujourd’hui, RGPD
fait partie de tout plan de gestion des données des entreprises privées. En tant que mise à jour du
GDPR, une deuxième proposition de loi concernant le partage des données entre les entreprises
publiques et privées a été introduite par la Commission européenne sur la gouvernance des don-
nées en 2020.

Un autre type de vulnérabilité dans l’apprentissage automatique concerne la défaillance des
modèles. Un utilisateur malveillant, en modi�ant soit le modèle, soit les données, peut rendre
les performances du modèle très médiocres. Les attaques les plus connues visant à faire échouer
un modèle sont les suivantes :

• Attaque par empoisonnement des données [Kearns and Li, 1993]: modi�cation de
certaines données dans l’ensemble d’apprentissage de sorte que le modèle soit très peu per-
formant sur l’ensemble de retenue.

• Attaques par évasion [Biggio et al., 2013, Szegedy et al., 2014] : petites perturbations
imperceptibles au moment de l’inférence. Nous les appellerons “attaques adverses”.

Connues et suscitant de plus en plus d’intérêt dans le monde universitaire, ces menaces ne sont
pourtant pas connues de la plupart des entreprises [Kumar et al., 2020b]. Plus important encore,
ces vulnérabilités entravent l’utilisation de modèles de pointe dans les systèmes critiques (véhicules
autonomes, soins médicaux, etc.). Dans ce manuscrit, nous nous concentrerons sur les attaques
adverses. Nous présentons cette menace plus en détail dans le paragraphe suivant.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Références aux attaques adverses dans la proposition de loi de la Commission Européenne
sur les Systèmes d’Intelligence Arti�cielle

Dans l’introduction: “La cybersécurité joue un rôle crucial pour garantir la résilience des
systèmes d’IA face aux tentatives de détourner leur utilisation, leur comportement, leurs
performances ou de compromettre leurs propriétés de sûreté par des tiers malveillants ex-
ploitant les vulnérabilités du système. Les cyberattaques contre les systèmes d’IA peuvent
faire usage de ressources spécifiques à l’IA, telles que des jeux de données d’entraînement
(par exemple l’empoisonnement de données) ou des modèles entraînés (par exemple les at-
taques adversaires), ou exploiter les vulnérabilités des ressources numériques du système d’IA
ou de l’infrastructure TIC sous-jacente. Pour garantir un niveau de cybersécurité adapté
aux risques, des mesures appropriées devraient donc être prises par les fournisseurs de sys-
tèmes d’IA à haut risque, en tenant également compte, si nécessaire, de l’infrastructure TIC
sous-jacente.”

Titre III (Systèmes d’IA à haut risque), Chapitre II (Exigences applicables aux systèmes
d’IA à haut risque), Article 15.6 (Exactitude, robustesse et cybersécurité)): “Les systèmes
d’IA à haut risque résistent aux tentatives de tiers non autorisés visant à modifier leur util-
isation ou leurs performances en exploitant les vulnérabilités du système. Les solutions tech-
niques visant à garantir la cybersécurité des systèmes d’IA à haut risque sont adaptées aux
circonstances pertinentes et aux risques. Les solutions techniques destinées à remédier aux
vulnérabilités spécifiques à l’IA comprennent, le cas échéant, des mesures ayant pour but de
prévenir et de maîtriser les attaques visant à manipuler le jeu de données d’entraînement
(«empoisonnement des données»), les données d’entrée destinées à induire le modèle en er-
reur («exemples adverses») ou les défauts du modèle.”

Un premier texte de réglementation sur les systèmes d’Intelligence Arti�cielle2 a été proposé
par la Commission Européenne en avril 2021. Ce texte comprend une large section consacrée
à l’"IA à haut risque". L’IA à haut risque se réfère à tout système autonome qui peut mettre
en danger des vies humaines. Ce texte vise à traiter de nombreuses menaces dans les systèmes
d’apprentissage. Deux références directes sont faites aux attaques adverses, soulignant la nécessité
pour les entreprises d’y faire face. La di�culté est d’uni�er et de créer des règles précises dans un
domaine où les résultats et les certi�cats sont principalement empiriques. Comme mentionné
précédemment, il est connu que les modèles robustes sont souvent moins performants et peuvent
rendre les systèmes autonomes inutilisables dans les scénarios du monde réel. Ainsi, ce texte est un
premier pas vers une réglementation uni�ée sur les systèmes autonomes mais pourrait manquer
d’exigences précises pour les modèles à utiliser en production.

2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
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L.2.2 Attaques adverses contre les systèmes d’apprentissage automatique

Malgré le récent intérêt pour l’étude des attaques adverses contre les algorithmes d’apprentissage
automatique, la problématique existe depuis un certain temps: en classi�cation de SPAM, les ad-
versaires étaient des spammeurs dont le but était de contourner la décision de l’algorithme3.

En dépit du succès des algorithmes d’apprentissage profond, notamment en vision par ordi-
nateur, plusieurs auteurs [Biggio et al., 2013, Szegedy et al., 2014] ont mis en évidence leur vul-
nérabilité aux attaques adverses. Dans le cas de la vision par ordinateur, les attaques adverses sont
généralement comprises comme des perturbations "imperceptibles" d’une image, c’est-à-dire de
légers changements au niveau des pixels, de sorte que cette image reste inchangée pour la percep-
tion humaine. L’existence de telles vulnérabilités peut paraître surprenante, mais elle constitue
un frein important à l’application des méthodes d’apprentissage profond les plus récentes dans les
systèmes critiques. De nombreux problèmes rendent di�cile la construction et l’évaluation de
modèles robustes pour des applications concrètes :

1. La notion d’imperceptibilité n’est pas bien comprise : la mesure numérique de la percep-
tion humaine reste un problème ouvert. Par conséquent, la détection d’un changement de
perception dû à des attaques adverses est un problème que l’on peut considéré mal posé. La
plupart des recherches dans ce domaine se sont concentrées sur les perturbations au niveau
des pixels (par exemple, en norme `p), alors que les menaces réelles seraient créées en in-
sérant des objets trompeurs dans l’environnement (par exemple, des patchs [Brown et al.,
2017], des T-shirts [Xu et al., 2020], des textures [Wiyatno and Xu, 2019], etc.)

2. La robustesse est souvent évaluée de manière empirique : il n’existe que quelques méth-
odes avec des garanties formelles sur la robustesse et ces garanties sont souvent relativement
faibles. La robustesse est généralement mesurée sur un ensemble d’attaques possibles et
toutes les perturbations possibles ne sont pas couvertes par ces attaques, ce qui laisse place
à des angles morts potentiels d’attaque.

3. Il existe un compromis entre la robustesse et la précision. La plupart des modèles robustes
sou�rent d’une baisse de performance sur des données naturelles. Par exemple, un robot en-
traîné de manière robuste aura des performances bien plus faibles sur des tâches naturelles
qu’un robot précis mais non robuste. Cela rend généralement les modèles robustes inutil-
isables dans les applications du monde réel [Lechner et al., 2021].

L.3 Classi�cation Adverse en Apprentissage Automatique

Dans ce manuscrit, nous allons nous concentrer sur la tâche de classi�cation supervisée en ap-
prentissage automatique. Le but de cette tâche est d’"apprendre" comment classer une entrée x
dans une ou plusieurs labels. L’entrée peut être une image, un texte, un �chier audio, etc. Par
exemple, dans le domaine de la vision par ordinateur, un jeu de données relativement standard est
ImageNet, dont l’objectif est d’apprendre à classer des images de haute qualité parmi 1000 labels
di�érentes [Deng et al., 2009]. En traitement du langage naturel, le jeu de données IMDB Movie

3Dalvi et al. [2004] a montré que les classi�eurs linéaires utilisés dans la classi�cation du spam pouvaient être trompés
par de simples "attaques d’évasion", les spammeurs insérant de "bons mots" dans leurs courriers indésirables.
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Figure L.1: Compromis Biais-Variance. Un modèle avec une complexité faible aura une une faible variance
mais un biais élevé. Un modèle avec une grande complexité aura un biais faible mais une variance
élevée.

Review Sentiment Classi�cation [Maas et al., 2011] vise à classer les sentiments positifs ou négatifs
des critiques de �lms. Pour apprendre un classi�eur, la tâche est souvent supervisée, c’est-à-dire
que nous avons accès à des entrées étiquetées, qui constituent ce qu’on appelle l’ensemble des don-
nées d’entrainemnt. Pour évaluer la qualité du modèle appris, nous l’évaluons sur d’autres images
qui constituent l’ensemble de test.

L.3.1 Une Approche d’Apprentissage pour la Classi�cation

À partir de maintenant, nous supposerons que les entrées vivent dans un espaceX et que les labels
forment un ensemble Y := {1, . . . ,K}. Pour apprendre un modèle de classi�cation adéquat,
nous désignons par {(x1, y1), . . . , (xN , yN )} les N éléments de X × Y formant l’ensemble
d’apprentissage. Nous supposons en outre que ces entrées sont indépendantes et identiquement
distribuées (i.i.d.) à partir d’une distribution P surX ×Y . L’objectif est maintenant d’apprendre
une fonction/hypothèse à partir de ces échantillons h : X → Y pour classer une entrée x avec
une label y. Pour évaluer la qualité d’un classi�eur, la métrique d’intérêt est souvent le taux de
classi�cation erronée du modèle, ou le risque de perte 0/1, et il est dé�ni ainsi:

R0/1(h) := P(h(x) 6= y) = E(x,y)∼P
[
1h(x)6=y

]
Le classi�eur optimal, minimisant le risque standard est appelé classi�eur Bayes-optimal et est

dé�ni par h(x) = argmaxk P(y = k | x). Comme la distribution d’échantillonage P est
en général inconnue, le classi�eur Bayes-optimal est également inconnu. La précision est sou-
vent évalué sur un ensemble d’échantillons de test {(x′1, y′1), . . . , (x′M , y

′
M )} indépendants de

l’ensemble d’entrainements and i.i.d. échantillonés de la distributiionP. Pour trouver ce classi�eur
h, nous apprenons une fonction f : X → RK renvoyant des scores (ou logits), (f1(x), . . . , fK(x))
correspondants à chaque label. h est alors dé�ni commeh(x) = argmaxk fk(x). Cette fonction
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f est généralement apprise en minimisant le risque empirique pour une certaine fonction de perte
L adéquament choisie sur une classe de fonctionsH:

inf
f∈H
R̂N (f) :=

1

N

N∑
i=1

L(f(xi), yi).

Ce problème est appelé minimisation empirique des risques (ERM). La théorie de ce problème
a été grandement étudiée et est bien comprise par la communauté scienti�que. Il est souvent
avancé qu’il existe un compromis sur la "taille" de H : avoir une trop petite H peut conduire à
un sous-ajustement, c’est-à-dire à un nombre insu�sant de paramètres pour décrire la fonction
optimale possible, tandis qu’une trop grandeH peut conduire à un surajustement, c’est-à-dire de
trop coller aux données d’apprentissage. Nous parlons souvent du compromis biais-complexité
(voir la �gure L.1). Un terme de pénalitéΩH(f) peut également être ajouté à l’objectif ERM pour
éviter le surajustement. Ce compromis a été récemment remis en question par le phénomène
de double descente [Belkin et al., 2019] où les régimes surparamétrés (c’est-à-dire le nombre de
paramètres largement supérieur au nombre d’échantillons d’apprentissage) diminuent le risque.

La présence d’adversaires dans la classi�cation remet en question les connaissances que nous
avons dans l’apprentissage statistique standard. En e�et, la plupart des résultats standards ne sont
pas valables en présence d’adversaires, ouvrant ainsi un nouveau domaine de recherche dédié à
l’étude et à la compréhension du problème de la classi�cation en présence d’attaques adverses, et
plus important encore, approfondissant notre compréhension de l’apprentissage automatique/apprentissage
profond en régime de haute dimension.

L.3.2 Classi�cation en présence d’attaques adverses

Bien qu’un modèle puisse être très performant sur des échantillons naturels, de petites perturba-
tions de ces échantillons naturels peuvent conduire à des comportements inattendus et critiques
sur les modèles de classi�cation [Biggio et al., 2013, Szegedy et al., 2014]. Pour formaliser cela, nous
supposerons l’existence d’une “distance de "perception” d : X 2 → R telle qu’une perturbation
x′ d’une entrée x reste imperceptible si d(x, x′) ≤ ε pour une constante ε ≥ 0. Cette distance
de perception est di�cile à dé�nir en pratique. Pour les images, la distance ‖·‖∞ sur les pixels est
souvent utilisée, mais elle ne permet pas de capturer toutes les perturbations imperceptibles. Ce
choix est purement arbitraire : par exemple, nous mettrons en évidence dans le manuscrit que les
perturbations ‖·‖2 peuvent également être imperceptibles tout en ayant une grande ‖·‖∞. Les al-
gorithmes de classi�cation d’images sont également vulnérables aux perturbations géométriques,
c’est-à-dire aux rotations et aux translations [Kanbak et al., 2018, Engstrom et al., 2019]. Un ex-
emple typique d’une attaque adverse est présenté dans la �gure L.2.

Par conséquent, le but d’un attaquant est de construire un exemple adverse x′ à partir d’une
entrée x qui est imperceptible, c’est-à-dire d(x, x′) ≤ ε et qui classi�e mal l’entrée, c’est-à-dire
h(x′) 6= y. Un tel échantillon x′ est appelé une attaque adverse. Le critère utilisé ne peut plus
être le taux de mauvaise classi�cation, nous devons prendre en compte la présence possible d’un
adversaire qui perturbe malicieusement l’entrée. Nous dé�nissons alors le taux de mauvaise clas-
si�cation robuste/adversaire ou le risque de perte 0/1 robuste/adversaire :
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Figure L.2: Exemple d’une attaque adverse au niveau des pixels sur un panneau Stop. Cela souligne les
problèmes de sécurité soulevés par l’éventualité de telles attaques.

R0/1,ε(h) := P(x,y)(∃x′ ∈ X s.t. d(x, x′) ≤ ε and h(x′) 6= y)

= E(x,y)∼P

[
sup

x′∈X s.t. d(x,x′)≤ε
1h(x′) 6=y

]

Comme pour la minimisation du risque standard, notre objectif est d’apprendre une fonction
f : X → RK telle que h(x) = argmaxk fk(x). Habituellement, en classi�cation contra-
dictoire, nous cherchons à résoudre le problème d’optimisation suivant, que nous appellerons
minimisation du risque empirique adverse :

inf
f∈H
R̂Nε (f) :=

1

N

N∑
i=1

sup
x′∈X s.t. d(x,x′)≤ε

L(f(xi), yi).

Ce problème est plus di�cile à aborder que la minimisation du risque standard car il implique
un problème interne di�cile de maximisation [Madry et al., 2018b]. Les garanties dans le cadre
adverse sont di�ciles à obtenir, tant en termes de convergence que de garanties statistiques. La
méthode usuelle pour résoudre ce problème est appelée entraînement adverse [Goodfellow et al.,
2015b, Madry et al., 2018b]. Elle consiste à alterner les problèmes d’optimisation interne et ex-
terne. Une telle technique améliore en pratique la robustesse adverse mais manque de garanties
théoriques. Jusqu’à présent, la plupart des résultats et des avancées dans la compréhension et
l’exploitation des attaques adverses sont empiriques [Ilyas et al., 2019, Rice et al., 2020], laissant de
nombreuses questions théoriques et pratiques en suspens. De plus, les modèles robustes sou�rent
d’une baisse de performance et la vulnérabilité des modèles est actuellement encore très élevée (voir
tableau L.3), ce qui laisse de la place pour des améliorations substantielles.
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Attaque Référence Précision standard Précision robuste

None [Zagoruyko and Komodakis, 2016] 94.78% 0%
`∞(ε = 8/255) [Rebu� et al., 2021] 89.48% 62.76%
`2(ε = 0.5) [Rebu� et al., 2021] 91.79% 78.80%

Table L.3: Etat de l’art des précisions en présence d’adversaires sur WideResNet 28x10 [Zagoruyko and Ko-
modakis, 2016].Les résultats proviennent de [Croce et al., 2020a]

L.4 Contributions

L.4.1 Une approche de théorie des jeux au problème des attaques adverses

Une ligne de recherche, suivant [Pinot et al., 2020], pour comprendre la classi�cation adverse est
de s’appuyer sur la théorie des jeux. Dans le chapitre 4, nous nous baserons sur cette approche
et dé�nirons précisément les motivations de l’attaquant et du classi�eur. Nous le présenterons
naturellement comme un jeu à somme nulle. Nous étudierons en particulier le problème de
l’existence d’équilibres. Plus précisément, nous répondrons à la question ouverte suivante.

Question 1

Quelle est la nature des équilibres dans le jeu des exemples adverses?

En théorie des jeux, il existe plusieurs types d’équilibres. Dans ce manuscrit nous nous focal-
isons sur les équilibres de Stackelberg et de Nash. Nous montrons l’existence d’équilibres de Nash
dès lors que l’attaquant et le classi�eur jouent des stratégies randomisés.

Classi�eurs randomisés Nous nous placons dans un cadre paramétrique où les classi�eurs
sont dé�nies sur un ensembleΘ. Le risque standard pour un simple classi�eur θ s’écrit:R(θ) :=
E(x,y)∼P[L(θ, (x, y))]. De manière similaire, le risque adverse de θ est dénini par

Rεε(θ) := E(x,y)∼P

[
sup

x′∈X , d(x,x′)≤ε
L(θ, (x′, y))

]
.

On peut généraliser ces notions à des classi�eurs randomisés:un classi�eur randomisé est dé�ni
comme une distribution µ sur l’espace de paramètres Θ. Autrement dit, un classi�eur est ran-
domisé si pour une entrée donnée, la sortie du classi�eur est une distribution de probabilité. Le
risque standard d’un tel classi�eur est alors dé�ni commeR(µ) = Eθ∼µ[R(θ)]. Egalement le
risque adverse d’un classi�eur randomisé µ est

Rεε(µ) := E(x,y)∼P

[
sup

x′∈X , d(x,x′)≤ε
Eθ∼µ

[
L(θ, (x′, y))

]]
.
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Ainsi, il existe deux problèmes de minimisation du risques:

Vεrand := inf
µ∈M1

+(Θ)
Rεε(µ), Vεdet := inf

θ∈Θ
Rεε(θ) (L.1)

Attaquants randomisés Pour prendre en compte le potentiel caractère aléatoire de l’attaquant,
nous introduisons la notion d’attaquant randomizés de la manière suivante

De�nition 34 (Ensemble des distributions adverses). Soit P une distribution de probabilité sur
X × Y and ε > 0. L’ensemble des distributions adverses est défini par:

Aε(P) :=
{
Q ∈M+

1 (X × Y) | ∃γ ∈M+
1

(
(X × Y)2

)
,

d(x, x′) ≤ ε, y = y′ γ-a.s., Π1]γ = P, Π2]γ = Q
}

oùΠi dénote la projection sur la i-ème composante, et g] la mesure push-forward par la fonction g.

Un attaquant qui peut déplacer la distribution initiale P n’importe où dansAε(P) n’applique
pas une perturbation déterministe ponctuelle telle que considérée dans le cas standard. En d’autres
termes, pour un point (x, y) ∼ P, l’attaquant pourrait choisir une distribution q(· | (x, y)) dont
le support est inclus dans {(x′, y′) | d(x, x′) ≤ ε, y = y′} à partir de laquelle il échantillonnera
l’attaque contradictoire. Dans ce sens, nous disons que l’attaquant est autorisé à être aléatoire.
Nous montrons que l’attaquant randomisé satisfait pour tout classi�eur µ:

Rεε(µ) = sup
Q∈Aε(P)

E(x′,y′)∼Q,θ∼µ
[
l(θ, (x′, y′))

]
. (L.2)

Jeu des exemples adverses Nous expliquons maintenant comment nous évrivons le problème
des attaques adverses comme un jeu à somme nulle. De nos dé�nitions précédentes nous dé-
duisons une formulation primale au problème:

inf
µ∈M1

+(Θ)
sup

Q∈Aε(P)
E(x,y)∼Q,θ∼µ[L(hθ(x), y)]

Il s’agit de l’objectif du classi�eur: être robuste face à toutes les attaques. Nous remarquons qu’il
sagit du problème de minimisation du risque adverse. Similairement nous dé�nissons le problème
dual:

sup
Q∈Aε(P)

inf
µ∈M1

+(Θ)
E(x,y)∼Q,θ∼µ[L(hθ(x), y)]

Il s’agit cette fois-ci du problème de l’attaquant: trouver une attaque qui puisse tromper n’importe
quel classi�eur. Nous montrons la dualité forte du jeu et ainsi l’existence d’équilibres de Nash
approximatifs:
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inf
µ∈M+

1 (Θ)
max

Q∈Aε(P)
Eθ∼µ,(x,y)∼Q[l(θ, (x, y))] = max

Q∈Aε(P)
inf

µ∈M+
1 (Θ)

Eθ∼µ,(x,y)∼Q[l(θ, (x, y))]

En�n nous proposons des algorithmes pour trouver le classi�eur optimal dans le cas d’un nom-
bre �ni de classi�eurs. Le premier est basé sur un algorithme oracle à base de sous-gradient, et le
second grâce à une régularisation entropique [Cuturi, 2013] du problème.

Résultats expérimentaux Nous étendons l’algorithme précédent en une heuristique pour en-
trainer des mélanges �nis de réseaux de neurones. Nous testons notre algorithme pour di�érents
nombres de modèles sur l’architecture WideRestNet28x10 [Zagoruyko and Komodakis, 2016].
Nous évaluons face à des attaques de type PGD (voir Figure L.4) avec TRADES [Zhang et al.,
2019a] et l’apprentissage adverse [Madry et al., 2018a] sur les jeux de données CIFAR-10 et CIFAR-
100. Nous remarquons que le fait d’augmenter le nombre de modèles a deux e�ets béné�ques:
l’amélioration de la robustesse face aux exemples adverses, ainsi que la réduction du surapprentis-
sage de l’apprentissage en présence d’adversaires.

Models Acc. APGDCE APGDDLR Rob. Acc.

1 81.9% 47.6% 47.7% 45.6%

2 81.9% 49.0% 49.6% 47.0%

3 81.7% 49.0% 49.3% 46.9%

4 82.6% 49.7% 49.8% 47.2%
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Apprentissage adverse, sur le jeu de données CIFAR-10

Models Acc. APGDCE APGDDLR Rob. Acc.

1 79.6% 50.9% 48.9% 48.3%

2 80.3% 52.3% 51.2% 50.2%

3 80.7% 52.8% 51.7% 50.7%

4 80.9% 53.0% 51.8% 50.8%
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TRADES, sur le jeu de données CIFAR-10

Models Acc. APGDCE APGDDLR Rob. Acc.

1 55.2% 24.1% 23.8% 22.5%

2 55.2% 25.3% 26.1% 23.6%

3 55.4% 25.7% 26.8% 24.2%

4 55.3% 26.0% 27.5% 24.5%
0 25 50 75 100 125 150 175 200

Epochs per model

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

1 models
2 models
3 models
4 models

0 25 50 75 100 125 150 175 200
Epochs per model

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

1 models
2 models
3 models
4 models

Apprentissage adverse, sur le jeu de données CIFAR-10

Figure L.4: Résultats de mélange de classi�eurs en utilisant notre algorithme
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L.4.2 Consistence des fonctions de perte dans la classi�cation en présence

d’adversaires

En classi�cation standard, la consistence par rapport à la perte 0/1 est une propriété souhaitée
pour la fonction de perte de subsitutionLutilisée pour entraîner le modèle. Pour faire simple, une
fonction de perteL est dite consistente si pour toute distribution de probabilité, une séquence de
classi�eurs (fn)n∈N qui minimise le risque associé à la fonction de perte L, minimise également
le risque de perte 0/1. Habituellement, dans la classi�cation standard, le problème est simpli�é
grâce à la notion de calibration. La question de la consistence dans le cas adverse est beaucoup
plus di�cile.

Question 2

Quelles fonctions de pertes sont consistentes par rapport à la fonction de perte

0/1 dans le cas de la classi�cation en présence d’adversaires?

Dans cette section uniquement, nous nous focalisons sur le cas binaire Y = {−1,+1}. Un
classi�eur f est alors une fonction f : X → R.

Consistence et calibration Le choix de la fonction de substitution se fait à travers la propriété
de consistence des fonctions de perte. Une fonction de substition L2 est consistente par rapport
à une fonction de perteL1 si et seulement si, pour tout suite de fonctions mesurables (fn)n deX
vers R et pour toute distribution P surX × Y

RL2,P(fn)→ R?L2,P =⇒ RL1,P(fn)→ R?L1,P (L.3)

Cette propriété est complexe en raison de la dépendence sur toute la distribution P. Une no-
tion ponctuelle de la consistence plus faible, mais plus facile à étudier a été introduite par [Zhang,
2004b, Bartlett and Mendelson, 2002, Steinwart, 2007]. Cette notion simpli�ée s’appelle cali-
bration et correspond à la consistence quand P est une combination de distributions Dirac. La
fonction de calibration pour une fonction de perteL est dé�nie par

CL(x, η, f) := ηL(x, 1, f) + (1− η)L(x,−1, f),

pour tout η ∈ [0, 1], x ∈ X et f ∈ F(X ). Notons que quand P = ηδ(x,+1) + (1− η)δ(x,−1),
nous avons CL(x, η, f) = RL,P(f). Soient L1 and L2 deux fonctions de perte. On dit que L2

est calibrée relativement àL1 si pour tout ξ > 0, η ∈ [0, 1] and x ∈ X , there exists δ > 0 tel que
pour tout f ∈ F(X ),

CL2(x, η, f)− C?L2
(x, η) −−−→

n→∞
0 =⇒ CL1(x, η, f)− C?L1

(x, η) −−−→
n→∞

0 .

Il faut noter que la calibration est toujours une condition nécessaire à la consistence.
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Figure L.5: A gauche, illustration de fonctions de pertes calibrées dans le cas standard. A droite, leurs ver-
sions symmetrisées. Nous remarque que 0 ∈ argminα φ(α)+φ(−α) for toutes ces fonctions,
donc aucune n’est calibrée dans le cas adverse.

Cas standard Choisir la bonne fonction de perte est un problème largement étudié dans le cas
standard. Soitf : X → R. On dé�nit la fonction la fonction de perte 0/1 commeL0/1(x, y, f) =
1y×sign(f(x))≤0 avec une convention pour le signe, e.g. sign(0) = 1. L’étude des fonctions de
perte à marge est commune dans la littérature: Lφ(x, y, f) = φ(yf(x)). Dans le cas standard,
nous avons le résultat suivant qui montre l’équivalence entre calibration et consitence dans le cas
standard:

Theorem 34 (Consistence dans le cas standard Zhang [2004b], Bartlett et al. [2006], Steinwart
[2007]). Soit φ : R → R+ une fonction de perte à marge continue. φ est calibrée relativement à
L0/1 si et seulement si φ est consistente relativement àL0/1.

Si φ est convexe et dérivable en 0, alors φ est calibré si et seulement si φ′(0) < 0.

Des exemples communs sont les fonctions de perte Hinge φ(t) = max(1− t, 0) et logistique
φ(t) = log

(
1 + e−t

)
qui sont convexes. Bien que la convexité soit une propriété désirable, elle

n’est pas nécessaires et on peut trouver des fonctions de perte calibrés non-convexes: la fonction
rampeφ(t) = 1

2(max(1− t, 0) + max(−1− t, 0)) et la fonction logistiqueφ(t) = (1+et)−1

par exemple. Ces fonctions de pertes sont montrés à gauche dans la Figure L.5.

Calibration dans le cas adverse Le cas adverse est plus technique car la consistence ne peut pas
se réduire à un problème de calibration. Toutefois, la calibration reste une condition nécessaire
d’où l’intérêt de l’étudier. Nous montrons qu’un fonction de perte à marge φ est calibrée dans le
cas adverse si et seulement si elle est calibrée dans le cas standard et 0 6∈ argminα φ(α) +φ(−α).

Ce résultat permet d’écarter la plupart des fonctions de perte usuelles comme candidates à la
consistence dans le cas adverse. En particulier, aucune fonction de perte convexe n’est calibrée, ni
les fonctions logistiques et à rampe qui ne satisfont pas 0 ∈ argminα φ(α) + φ(−α). Ceci est
illustrée dans la Figure L.5.

Cependant nous sommes en mesure de montrer que les fonctions de perte qui sont impaires
comme la rampe et la logistique peuvent être translatés a�n de les rendre calibrées. La Figure L.6
illustre de telles fonctions de perte. En e�et, cette translation permet de préserver la calibration
standard mais de corriger le minimum de α 7→ φ(α) + φ(−α)
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Figure L.6: Illustration d’une fonction calibrée dans le cas adverse: la fonction sigmoide translatée.

Vers la consistence dans le cas adverse

L.4.3 Constuction de modèles certi��ables

Le dernier problème que nous abordons dans ce manuscrit est l’implémentation de modèles cer-
ti�ables robustes. En bref, un classi�eur est dit certi�able à une entrée x au niveau ε si l’on peut
s’assurer qu’il n’existe pas d’exemples adverses dans la boule de rayon ε. Ce problème est un dé�,
car il est loin d’être trivial de trouver des garanties qui soient exploitables en pratique.

Question 3

Comment implémenter e�cacement des modèles certi�ables avec des garanties ex-

ploitables?

Fonction Lipschitz et robustesse Une fonction est robuste aux exemples adverses si le label ne
change pas pour une perturbation faible des entrées. Cette propriété peut être naturellement reliée
à la notion de fonctions Lipschitz car de telles fonctions permettent de contrôler les variations
de la fonction. Plus formellement, nous pouvons relier robustesse et fonctions Lipschitz par la
propriété suivante.

Proposition 45 (Tsuzuku et al. [2018]). Soit f un classifieur L-Lipschitz pour la norme `2.Soit
ε > 0, x ∈ X et y ∈ Y le label de x. Si pour un point x, la margeMf (x) satisfait:

Mf (x) := max(0, fy(x)−max
y′ 6=y

fy′(x)) >
√

2Lε

alors, for tout τ tel que ‖τ‖2 ≤ ε:

argmax
k

fk(x+ τ) = y

Cela permet de dé�nir une notion de précision certi�ée, c’est à dire que l’on a une propriété qui
permet d’attester l’absence d’adversaires dans un rayon autour de chaque entrée. Dans ce chapitre,
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nous proposons de construire des réseaux de neurones Lipschitz grâce à l’interpretation système
dynamique des réseaux de neurones.

Réseaux résiduels Lipschitziens Les réseaux résiduels ont été introduits par [He et al., 2016b]
a�n de palier aux problèmes d’explosion et de disparition du gradient. Le schéma couche par
couche d’un tel réseau s’écrit de la forme:

xt+1 = xt + Ft(xt)

oùFt est souvent un réseau très simple à deux couches. On peut facilement voir en ce schéma une
discrétisation d’un schéma continu de la forme suivante:{

x0 = x ∈ X
dxt
dt = Ft(xt) pour t ∈ [0, T ]

Sous reserve queFt soit dérivable, nous pouvons montrer que si la partie symmétrique du Jaco-
bien Ft a toutes ses valeurs propres négatives alors le �ot dé�ni par Ft est 1-Lispchitz: pour toute
entrée du réseau x0 et z0

‖xt − zt‖ ≤ ‖x0 − z0‖

La di�culté réside alors dans deux points: trouver des fonctions Ft satisfaisant la propriété
précédente et trouver la discrétisation adéquate. Pour le premier point, nous montrons que les
fonctions de la forme Ft(x) = −∇ft(x) +Atx où ft sont convexes etAt sont antisymétriques
satisfont la propriété sur le Jacobien. Pour la discrétisation, le schéma Euler explicite ne permet
pas de garder la propriété Lipschitz. La discrétisation Euler implicite le permet mais n’est pas cal-
culable facilement. Nous proposons d’utiliser des schémas hybrides: un pas pour −∇ft(x) et
un autre pas pour At. A�n de préserver exactement les normes, e pas pour At peut être soit une
discretisation Midpoint Euler ou une résolution explicite. Ces schémas ont été étudiés dans la
littérature respectivement sous le nom de “couches Cayley” [Trockman et al., 2021] et “couches
Skew Orthogonal” [Singla and Feizi, 2021]. Pour la discretisation de ∇ft, le schéma Euler ex-
plicite avec un pas su�sammment petit satisfait la propriété Lipschitz. Reste à savoir comment
paramétrer ft.

Couche à Potentiel Convexe A�n de paramétrer∇ft, nous proposons d’utiliser un ICNN
(Réseau de neurones convexe en son entrée [Amos et al., 2017]) à une couche:

f : x 7→
n∑
i=1

φ(wᵀ
i x+ bi)
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où φ est une fonction convexe. En mettant tout bout à bout, nous en déduisons une nou-
veau couche 1-Lipschitz que l’on appelle Couche à Potentiel Convexe, ou Convex Potential Layer
(CPL) en anglais:

z 7→ x− 2

‖W‖2
Wᵀφ(Wx+ b)

oùW etb sont la concaténation deswi et bi, et ‖W‖2 désigne la norme spectrale deW. Notons
que cela cette couche s’adapte bien à tout type d’opérateurs linéaires dont les convolutions. Pour
le calcul de la norme spectrale, nous proposons d’utiliser l’algorithme itératif de la itération des
puissances.

Résultat expérimentaux Nous comparons notre Couche à Potentiel Convexe (CPL) aux ap-
proches état de l’art Skew Orthogonal Convolutions (SOC) et les couches Cayley. Nous utilisons
les jeux de données CIFAR10 et CIFAR100 pour di�érents niveaux de profondeurs de réseaux.
Nos critères d’évaluation sont la précision certi�ée (voir Figure L.7) ainsi que la précision sous-
attaque (voir Figure L.8), ici PGD avec 10 pas. Nous remarquons que nos couches ont des per-
formances similaires en terme de précision certi�ée, mais bien meilleures en précision sous attaque.
Cela s’explique sans doute par le fait que notre couche n’a pas pour but de préserver exactement
les distances.
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Figure L.7: Précisions certi�ée en fonction de la perturbation ε pour nos réseaux CPL and et les approches
concurrentes sur les jeux de données CIFAR10 et CIFAR100.

L.5 Travaux complémentaires

Relativement aux exemples adverses, nous présentons des travaux complémentaires à ceux présen-
tés dans le document principal:

• On the robustness of randomized classi�ers to adversarial examples (voir Appendix A):

nous montrons qu’en ajoutant un bruit à l’entrée d’un classi�eur, nous sommes capables
d’obtenir des garanties sur la décision jusqu’à un certain niveau ε. Ce travail fut publié à
NeurIPS2019 [Pinot et al., 2019] et publié dans une version journal étendue à MLJ [Pinot
et al., 2021].
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Figure L.8: Précision sous attaque PGD avec 10 iterations en fonction de la perturbation εpour nos réseaux
CPL and et les approches concurrentes sur les jeux de données CIFAR10 et CIFAR100.

• Yet another but more e�cient black-box adversarial attack: tiling and evolution

strategies (voir Appendix B): nous proposons une méthode basée sur des stratégies évo-
lutionnaires pour élaborer des attaques adverses boîte noire. Ce travail n’a jamais été pub-
lié [Meunier et al., 2019].

• Advocating for Multiple Defense Strategies against Adversarial Examples (voir Ap-

pendix C): Nous montrons que, dans le cas de la haute dimension, les recouvrements de
boules pour deux normes `p di�érentes sont fondamentalement di�érents. Cela induit de
repenser la robustesse contre les attaques utilisant des normes di�érentes. Ce travail fut
publié à un workshop à ECML2020 [Araujo et al., 2020].

• Adversarial Attacks on Linear Contextual Bandits (voir Appendix D): we build
provable attacks against online recommendation systems, namely Linear Contextual Ban-
dits. Ce travail fut publié à NeurIPS2020 [Garcelon et al., 2020].

• ROPUST: Improving Robustness through Fine-tuning with Photonic Processors

and Synthetic Gradients (voir Appendix E): Nous utilisons un Optical Processor Unit
(OPU) au dessus des défenses existantes dans l’état de l’art pour améliorer la robustesse face
aux adversaires. Ce travail fut publié à ICASSP2022 [Cappelli et al., 2021b].

Nous avons également publié un article sur le transport optimal sur Equitable and Optimal

Transport with Multiple Agents (voir Appendix F) à AISTATS2021 [Scetbon et al., 2021a]
où nous introduisons une façon de traiter les coûts multiples dans le transport optimal en parti-
tionnant équitablement le transport entre les coûts. Nous avons également soumis récemment
un article sur le test d’indépendance conditionnelle [Scetbon et al., 2021b] sur an `p-based Ker-

nel Conditional Independence Test (voir Appendix G). Dans cet article, nous présentons un
nouveau test d’indépendance conditionnelle basé sur le noyau. Ses avantages sont sa simplicité de
calcul et une distribution asymptotique très simple sous l’hypothèse nulle. De plus, ses perfor-
mances sont compétitives par rapport aux autres tests d’indépendance conditionnelle.

Avec Olivier Teytaud, chercheur à Meta AI and co-encadrant de cette thèse, nous avons égale-
ment publiés des articles de recherches sur les algorithmes génétiques:
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• Variance Reduction for Better Sampling in Continuous Domains (voir Appendix H):
nous montrons que, dans l’optimisation “one-shot”, la distribution de la recherche opti-
male, utilisée pour l’échantillonnage des points d’essais, peut être plus piquée autour du cen-
tre de la distribution que la distribution d’échantillonage de l’optimum, ce qui re�ète notre
incertitude quant à la localisation de l’optimum. Ce travail fut publié à PPSN2020 [Meu-
nier et al., 2020c].

• On averaging the best samples in evolutionary computation (voir Appendix I): nous
prouvons mathématiquement qu’un seul parent dans un algorithme génétique conduit à
un regret simple sous-optimal dans le cas de la fonction sphère. Nous fournissons un taux
de sélection basé sur la théorie qui conduit à de meilleurs résultats. Ce travail a été publié
PPSN2020 [Meunier, Chevaleyre, Rapin, Royer, and Teytaud, 2020a].

• Asymptotic convergence rates for averaging strategies (voir Appendix J): Nous éten-
dons les résultats de l’article précédent à une large classe de fonctions incluant les fonctions
C3 avec des optima uniques. Ce travail a été publié à FOGA2021 [Meunier et al., 2021a].

• Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through

Massive Benchmarking (voir Appendix K): Nous proposons un large éventail de bench-
marks intégrés dans la plateforme Nevergrad [Rapin and Teytaud, 2018]. Ce travail fut
publié dans le journal TEVC [Meunier et al., 2021b].
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ABSTRACT 
 
This thesis investigates the problem of classification in presence of adversarial attacks. An 
adversarial attack is a small and humanly imperceptible perturbation of input designed to 
fool start-of-the-art machine learning classifiers. In particular, deep learning systems, used 
in safety critical AI systems as self-driving cars are at stake with the eventuality of such 
attacks. What is even more striking is the ease to create such adversarial examples and 
the difficulty to defend against them while keeping a high level of accuracy. Robustness to 
adversarial perturbations is a still misunderstood field in academics. In this thesis, we aim 
at understanding better the nature of the adversarial attacks problem from a theoretical 
perspective. 

MOTS CLÉS 
 
Attaques adverses – Apprentissage Automatique – Robustesse – Transport Optimal – 
Théorie des Jeux – Systèmes Dynamiques 

RÉSUMÉ 
 
Cette thèse étudie le problème de classification en présence d’attaques adverses. Une 
attaque adverse est une petite perturbation humainement imperceptible de l’entrée d’un 
algorithme, construite pour tromper les meilleurs classifieurs d’apprentissage automatique. 
En particulier, les réseaux de neurones profonds (« deep learning »), utilisés dans des 
systèmes critiques d’intelligence artificielle comme les voitures autonomes, présentent des 
risques considérables avec l’éventualité de telles attaques. Il est d’autant plus surprenant 
qu’il est très facile de créer des attaques adverses et qu’il est difficile de se défendre contre 
celles-ci en gardant un haut niveau de précision. La robustesse aux perturbations adverses 
est encore mal comprise par la communauté scientifique. Dans cette thèse, notre but est 
de comprendre mieux la nature de ce problème en adoptant un point de vue théorique. 

KEYWORDS 
 
Adversarial Attacks – Machine Learning – Robustness – Optimal Transport – Game 
Theory – Dynamical Systems 
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