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cellules photovoltäıques
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Title: Analysis of a multiscale finite element method applied to the design of photovoltaic
cells
fg
Abstract: The objective of this thesis is the mathematical and numerical study of wave
propagation in periodic and heterogeneous media modeled by the Helmholtz equation with
quasi-periodic boundary conditions. In the current context of climate change, photovoltaic
solar devices are emerging as an effective tool for a clean energy transition. This circum-
stance significantly pushes scientific research on the development of these devices. In turn,
this background motivates the study of light propagation in these solar cells, which the
Helmholtz equation can model with a quasi-periodic boundary condition. This unusual
boundary condition represents a particular case of trapping geometries and gives rise to
the appearance of some quasi-resonant frequencies. This work presents frequency-explicit
stability results in the homogeneous case revealing the effect of these quasi-resonant fre-
quencies on the use of perfectly matched layers (PML) and finite element discretizations.
The Fourier expansion available in this case allows our study to go through the analysis of
some parameterized one-dimensional Helmholtz problems satisfied by the Fourier modes.
We also provide a frequency-explicit analysis for more general physical coefficients where
Fourier expansion does not work. Specifically, we consider multilayer media, and our study
uses the alternative “Morawetz multiplier” technique to obtain frequency-explicit results,
which are of particular interest since they enter into the stability and convergence analysis
of finite element discretizations. The second part of this work is devoted to the use of
a two-level finite element method named the multiscale hybrid-mixed (MHM) method to
solve our model problem. This method arises from a hybridization procedure using coarse
mesh, and its multiscale basis functions are locally computed via independent cell prob-
lems. We first provide frequency-explicit error estimates, showing that the MHM method is
more accurate and stable than the standard finite element method in the presence of quasi-
resonant frequencies. Then, having in mind the nanoscale texturation used to ameliorate
solar cells efficiently, an MHM multiscale convergence analysis is presented. The obtained
error estimates hold uniformly when the characteristic length δ of the texturation goes to
zero, which signifies that the MHM method keeps its robustness and capture small-scale
heterogeneities using coarse meshes.

fg
Keywords: Wave propagation, periodic structure, Helmholtz equation, quasi-periodic
boundary condition, numerical analysis, finite element methods, multiscale methods.
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Titre: Analyse d’une méthode d’éléments finis multi-échelles appliquée à la conception de
cellules photovoltäıques
fg
Résumé: L’objectif de cette thèse est l’étude mathématique et numérique de la prop-
agation des ondes dans des milieux périodiques et hétérogènes modélisés par l’équation
de Helmholtz avec des conditions aux limites quasi-périodiques. Dans le contexte actuel
du changement climatique, les dispositifs solaires photovoltäıques apparaissent comme un
outil efficace pour une transition énergétique propre. Ces circonstances encouragent con-
sidérablement la recherche scientifique sur le développement de ces dispositifs. À son tour,
ce cadre motive l’étude de la propagation de la lumière dans ces cellules solaires, que
l’équation de Helmholtz peut modéliser avec une condition limite quasi-périodique. Cette
condition aux limites inhabituelle représente un cas particulier de géométries “captantes”
et donne lieu à l’apparition de certaines fréquences quasi-résonantes. Ce travail présente
des résultats de stabilité explicites en fréquence dans le cas homogène révélant l’effet de ces
fréquences quasi-résonantes sur l’utilisation de couches parfaitement adaptées (PML) et sur
les discrétisations par éléments finis. L’expansion de Fourier disponible dans ce cas permet
à notre étude de passer par l’analyse de quelques problèmes de Helmholtz unidimensionnels
paramétrés satisfaits par les modes de Fourier. Nous fournissons également une analyse ex-
plicite en fréquence pour des coefficients physiques plus généraux pour lesquels l’expansion
de Fourier ne fonctionne pas. Plus précisément, nous considérons des milieux multicouches,
et notre étude utilise la technique du “multiplicateur de Morawetz” pour obtenir des
résultats explicites en fréquence, qui sont d’un intérêt particulier puisqu’ils interviennent
dans l’analyse de stabilité et de convergence des discrétisations par éléments finis. La
deuxième partie de ce travail est consacrée à l’utilisation d’une méthode d’éléments finis
à deux niveaux, appelée la méthode Multiéchelle Hybride-Mixte (MHM), pour résoudre
notre problème modèle. Cette méthode est issue d’une procédure d’hybridation utilisant
un maillage grossier, et ses fonctions de base multi-échelles sont calculées localement via
des problèmes indépendants dans chaque cellule. Nous fournissons d’abord des estima-
tions d’erreurs explicites en fréquence, montrant que la méthode MHM est plus précise et
plus stable que la méthode des éléments finis standard en présence de fréquences quasi-
résonantes. Ensuite, ayant à l’esprit la texturation à l’échelle nanométrique utilisée pour
améliorer l’efficacité des cellules solaires, une analyse de convergence multi-échelle de la
méthode MHM est présentée. Les estimations d’erreur obtenues sont uniformes lorsque la
longueur caractéristique δ de la texturation tend vers zéro, ce qui signifie que la méthode
MHM garde sa robustesse et capture les hétérogénéités à petite échelle en utilisant des
mailles grossières.

fg
Mots clés: Propagation des ondes, structure périodique, équation de Helmholtz, condition
aux limites quasi-périodique, analyse numérique, méthodes des éléments finis, méthodes
multi-échelles.
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Chapter 1

Introduction

Classified as a way of energy displacement, electromagnetic radiation is an extremely
present phenomenon in our daily lives. For example, sunlight, microwaves oven, and med-
ical scanners (including X-rays) all represent forms of electromagnetic wave propagation.
This wide range of applications has greatly accelerated and pushed scientific research in
the field of numerical simulations of electromagnetic wave propagation. Therefore, robust
numerical methods are required, especially when the propagation domain has particular
properties such as heterogeneity and periodicity.

The main objective of this Ph.D. thesis is to develop, analyze and evaluate a new
multi-scale finite element method to simulate the propagation of electromagnetic waves in
highly heterogeneous and periodic media. To achieve our goal, it is necessary to first go
through mathematical study and analysis of the properties of our model problem. In the
time-harmonic context, this propagation is perfectly modeled by the Helmholtz equation.
Having in mind the immense influence of frequency and heterogeneities on the Helmholtz
solution, we focus on explicit results that allow us to identify these influences.

Photovoltaics (PV). Among the possible applications mentioned in the first para-
graph, PV cells for exploiting solar energy have undergone considerable progress over the
past decade. Sunlight is considered the largest source of energy received or existing on
the earth, and solar cells represent a useful way to harness solar energy to generate elec-
tric power. Having in mind the world’s general orientation towards renewable energies,
researchers and engineers are working intensively to improve the efficiency and reduce the
production cost of these solar cells. In the research projects, scientists are trying to over-
come weaknesses that may affect the essential properties of a solar cell, namely electrical
efficiency, optical absorption, and manufacturing cost. To minimize manufacturing costs,
the trend has always been to develop solar devices with an increasingly thin thickness. But
at the same time, this reduction in thickness can lead to optical losses and, therefore, a
reduction in overall solar device efficiency. Hence, fabrication materials represent the most
influencing factor on the aforementioned properties, and scientific research is necessarily
oriented towards the optimization of light trapping (in order to maximize the absorption
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and minimize the reflection and the cost), which requires numerical simulations of light
propagation in these materials. Currently, the solar panel market consists of three gener-
ations, crystalline silicon wafer-based devices, thin-film solar cells, and a new generation
based on nanostructured materials. For each device of the three mentioned generations,
the solar cell is the core building block. In detail, as represented in Figure 1.1, a solar
array is a series of modules/panels, which also consists of a periodic arrangement of cells.
This periodic construction in cells allows the scientific study to be focused on a single cell
and then extended to the whole device.

Figure 1.1: Solar cell, module, panel, and array. Source: DOI 10.1007/978-3-030-27824-3

Absorption and light trapping techniques Since their inception, the majority of
solar cells have been using semiconductor materials to convert sunlight into electrical en-
ergy. The chemical transformation that allows semiconductor materials, when illuminated,
to produce an electrical voltage is known as the photovoltaic effect. Unfortunately, due
to their physical properties, each one of these materials absorbs only a part of the solar
spectrum, and they tend to produce some undesirable reflections of sunlight. In order to
overcome the first difficulty and to maximize the absorption, crystalline silicon and thin-
film technologies of solar cells are stacking layers of varied materials: each layer absorbs its
specific portion of the solar spectrum as in [131]. On the other hand, to minimize reflec-
tion losses, the standard approach is to cover these layers with an anti-reflective coating to
limit these optical reflection losses. In the last decades, nano-texturing and light trapping
techniques (Figure 1.2) have been used to deal with reflection problems. These techniques
allow the sunlight to be focused and trapped in the absorber layer and to increase its op-
tical path in the active layer [25, 44, 93, 132, 107]. Compared to the random one, periodic
nano-texturation (see Figure 1.3) provides an additional approach to improve solar cells ef-
ficiency. For instance, both mono- and bi-periodic nano-texturation have been studied and
proved viable options for improving the efficiency of organic solar cells [126, 104, 128, 50].
Similarly, periodic texturation have been designed to reduce the undesired reflection of
sunlight for both photonic-crystal solar cells [135] and thin-film cells [97]. We also refer
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to the reviews [64, 21] for more detailed discussions of the nano-texturation benefits on
different solar devices.

Incoming light Incoming light

Figure 1.2: Standard solar surface (left) and light trapping surface (right).

Figure 1.3: mono-periodic texturation (left) and bi-periodic texturation (right).

Motivated by the results of this great amount of research targeting solar cell improve-
ment, we are led to study the propagation of the electromagnetic field in these periodic
structures of solar cells. In particular, we will study the continuous properties of the
problem that models this propagation and use a new multi-scale finite element method to
numerically approximate this model and analyze its robustness in the considered circum-
stances.

Wave propagation in periodic structures has many challenging and vital applications,
e.g., metasurfaces [100, 37], photonic crystals [92], electromagnetic band gap structures [91],
frequency selective surfaces [105], photovoltaic devices, and many other systems (Figure
1.4). To improve the performance of these devices, wave propagation in periodic structures
is receiving considerable attention in the numerical simulation community. A key point
of the periodic characterization is the possibility of focusing the study on the unit cell
level. Furthermore, the results sought by the numerical simulation in a unit periodic cell
can be divided into two components. First, the performance study of a periodic device
by providing accurate numerical solutions to mathematical equations (direct problems).



4

Second, developing new and more efficient periodic configurations through the numerical
approximation of optimal design problems (inverse problems). In addition to their interest
in the context of solar cell design, all the results found in this work can be interesting for
these different applications that use periodical and/or multilayer structures.

(a) A periodic construction
of an optical metasurface
(source: [37]).

(b) Periodic modulation of one, two-
and three-dimensional photonic crystal
structures.

(c) Shape examples of unit constructive cells of
frequency selective surfaces (source: [105]).

Figure 1.4: Three examples of periodic structures.

Maxwell’s equations are the fundamental laws that govern electromagnetic wave prop-
agation [71]. They are formulated in the time domain, which means that their solution
depends on both the spatial variable x and the temporal variable t. In this work, we
focus on bi-dimensional time-harmonic wave propagation problems (the solution time de-
pendence is U(x, t) = u(x)eiωt). In this case, we switch to the frequency domain, where
the unknown (i.e., u(x)) depends only on the spatial variable. Indeed, Maxwell’s system
is simplified into a bi-dimensional Helmholtz equation by considering the two fundamental
polarizations, the transverse electric (TE) polarization and the transverse magnetic (TM)
polarization (see, e.g., [106] Remark 2.1). Once obtained, the Helmholtz equation has two
main parameters, the frequency, which depends on the propagating wave, and the per-
mittivity and the permeability, which depend on the propagation medium (see subsection
2.1.2 for more details).
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Domain truncation. Bounded propagation media represent a critical factor in the
numerical simulation of wave propagation. Therefore, truncation of the unbounded domain
appears to be an essential step before applying domain-based numerical methods (such as
finite element methods). Certainly, some domains are naturally and physically reduced
and easier to truncate than others. For example, in the problems studied in this thesis,
which are the mono-periodic texturation case (Figure 1.3, also known as the 1D-grating
problem), the domain and the texturation are constant in one of the space directions. In
this context, we can naturally switch from a 3D to a 2D simulation setting by taking a
cross-section. Also, as mentioned earlier, the natural truncation of a periodic medium by
cells is to restrict the study to one cell and consider some periodic properties on the cell
edges. However, the truncation of an unbounded propagation domain is much more diffi-
cult to achieve. Mathematically, propagation in an unbounded domain is represented by
the Sommerfeld radiation condition (s.g. Section 1.1.3 in [87]). Numerically, when using
domain-based methods, different truncation approaches have been used to bound the com-
putational domain. Certainly, the ultimate objective of these truncation approaches is to
replace the Sommerfeld condition without causing much perturbation to the original solu-
tion. The main idea is to create artificial boundaries, without physical signification, to limit
the computational domain. Then, ”absorbing” or ”non-reflective” boundary conditions are
imposed on these artificial boundaries. The works of Enguist and Madja [56, 57] repre-
sent the first results of these truncation approaches. There, the authors develop perfectly
absorbing boundary conditions using a non-local pseudo-differential operator named the
”Dirichlet-to-Neumann” (DtN) operator. In general, this operator is not explicitly com-
putable except for special geometries (circular, spherical, cartesian); in these cases, it allows
us to treat the exact solution in the domain of interest (s.g. [73, 87]). Unfortunately, since
the DtN operator is necessarily non-local, it is not really suited for numerical calculations
as its discretization is very expensive. For this reason, several authors have approached
the DtN operator by developing improved local boundary conditions (e.g. [56, 45, 67, 68]).
On the other hand, introduced by Berenger to truncate the unbounded propagation of
electromagnetic waves in [17, 18], the perfectly matched layer (PML) approach quickly be-
came very popular due to its efficiency and ease of implementation [86, 133, 43, 42, 85]. In
fact, the physical domain is surrounded by an additional layer, characterized by its length
ℓP and its absorption function νP, and in which the outgoing waves are absorbed without
reflecting waves. Thanks to these simple features, the PML technique has been used in
many configurations and has shown its mathematical performance due to the exponen-
tial convergence (depending on the PML characteristics ℓP and νP) of the PML solution
towards the original one [137, 138, 96, 82]. Unfortunately, in the case of scattering by peri-
odic structures in a single direction, the standard PML method (with a Dirichlet condition
in the external boundary of the PML layer) can lose its efficiency and accuracy. Indeed,
the periodic conditions caused by the periodicity of the medium generate quasi-resonant
modes, also known as anomalous modes (or Rayleigh frequencies) [137]. The main char-
acteristic of these quasi-resonant modes is their propagation in the periodic direction and
their constant value in the direction truncated by the PML. Thus, the amplitude of the
reflected wave by the PML is not small enough, and it can contaminate the solution.
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In this work, we focus on analyzing the effect of quasi-resonant modes on the stability of
the PML problem and on the error between the PML solution and the original solution.
We note that Chen and Wu in [40] developed a FE method with PML based on an a-
posteriori error analysis which excludes the case of quasi-resonant modes. And recently,
in [134], they proposed another FE-PML method that handles well these quasi-resonant
modes. Similarly, in the thesis [136], and in order to have an automatic adaptive PML
method, the author uses an a-posteriori criterion based on a PML error that takes into
account the quasi-resonant modes. Here, we give an explicit and detailed error analysis of
the PML error for our case, but not for the purpose of adapting a finite element method
with optimized PML. We focus more on the well-posedness of the PML problem, the effect
of quasi-resonant modes on its stability, and the convergence of the PML solution to the
exact one using energy Sobolev norms.

Stability analysis. Like a wide range of applications of time-harmonic wave propaga-
tion, electromagnetic wave propagation in solar cells is often characterized by high values
of the frequency. Coupled with the sensitivity of the numerical methods to the frequency,
this feature impacts the choice of the numerical simulation method. More precisely, in the
high-frequency regime, the Helmholtz solution oscillates much more and becomes difficult
to simulate. Theoretically, when the frequency is large, the negative term depending on the
frequency in the Helmholtz operator (i.e., −k2u−∆u), becomes larger, which causes a lack
of coercivity of the sesquilinear forms that appear naturally by integration by parts of the
Helmholtz equation. This lack of coercivity impacts the stability and quasi-optimality of
standard FE schemes on coarse meshes (the so-called ”pollution effect”) [88, 89]. In addi-
tion, it is found that the stability of a numerical scheme is necessarily linked to the stability
of the continuous problem, which is obtained by controlling the norm of the solution oper-
ator with respect to the norm of the data multiplied by a stability constant. Namely, when
the quasi-optimality of the FE solution is studied, we usually use the Schatz argument, e.g.,
[125, 8] (an adaptation of the standard Aubin-Nitsche duality argument used for coercive
problems, e.g., [114, 6]), and it is established that the stability constant appears in the
quasi-optimality conditions on the mesh (e.g., [103, 101]). Therefore, frequency-explicit
stability estimates play a crucial role in the numerical analysis of the numerical schemes.
In particular, they allow for a better understanding of the behavior of numerical schemes
with respect to the frequency and then optimally choose the discretization parameters
(mesh size, polynomial degree, etc.).

Frequency-explicit stability estimates are then a major key to rigorously understanding
the performance of numerical methods for solving the Helmholtz equation. Their impor-
tance is illustrated by their usage in several works aiming at an explicit convergence analy-
sis in frequency. For example, for convergence analysis studies that use frequency-explicit
stability estimate, we cite [32, 33] for finite element methods, [58, 59] for DG methods,
[70, 62] for integral-equation methods and [15, 36] for some multiscale finite element meth-
ods. Many other papers, motivated by applications in numerical analysis, have sought to
prove frequency-explicit stability estimates [16, 30, 29, 106, 124]. However, this multiplic-
ity of works is due to the significant influence of medium characteristics (its regularity,
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homogeneous/heterogeneous, the coefficients smoothness and the boundary conditions) on
the stability constant and on the technique to prove it. In general, the stability constant
is strongly related to the inf-sup condition of Helmholtz problem, which is equivalent to
the well-posedness of the problem [7].
Having in mind the strong influence of the properties of the medium on the frequency
dependence of the stability constant and the fact that scattering by periodic structures
represents a particular case of geometries and boundary conditions that can have a signifi-
cant impact on the stability constant, we will seek in this work frequency-explicit stability
estimates in two different cases, either when the solar cell consists of one material, or when
it is made up several finely textured layers to show the effect of this periodic conditions. To
do this, in the case of a single layer, we will use the periodic property, and we will proceed
with a stability analysis of parameterized one-dimensional Helmholtz problems. In the
multi-layer case, we will adapt and extend another proof approach named the ”Morawetz
multiplier” technique.

Multiscale methods. As mentioned earlier, nanoscale texturations can be extremely
beneficial for solar cells to achieve good energy performance. Therefore, numerical simula-
tions are required to optimize the nanotexturation layout. Nonetheless, the simulation of
light propagation in a nanostructured material is difficult to realize with precision. This is
due to the various spatial scales within the problem, including cell size, wavelength, and
nanostructure size (see Figure 1.5).

x

λ

δ

LΩ

Figure 1.5: Example of the different scales of a one-dimensional propagation problem: the size

of the domain LΩ, the wavelength λ and the size of the heterogeneities δ.

For such multiscale problems, standard simulation methods show limitations. For ex-
ample, to get a significant solution that captures all the different information from the
small-scale heterogeneities, the discretization step must be very small [83], which gives
more degrees of freedom and a very large system to solve. In the context of second-order
elliptic problems, it has been observed that these limitations are due to polynomial basis
functions that are unable to manage small-scale heterogeneities. With this in mind, mul-
tiscale methods have been developed where the basis functions are constructed as local
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solutions of the PDE in each mesh element. Since the analytical solution of these local
PDEs is not available in general, a common essential point between multiscale approaches
is going through a second level allowing to approximate these local basis functions. As a
result, these basic functions are adapted to the local properties and capture small-scale in-
formation in each mesh element. Well-known multiscale methods include, the Generalized
multiscale finite element methods (GMsFEM) [84, 55, 54], the Heterogeneous Multiscale
Method (HMM) [130, 53], the Localized Orthogonal Decomposition (LOD) [79, 112] and
the Multiscale Hybrid Mixed Method [76, 3].

For the highly heterogeneous Helmholtz equation, adaptations of these methods and
other strategies have been recently proposed. In [115], the authors adapted the HMM
method to capture the heterogeneous Helmholtz solution on coarse meshes, but their anal-
ysis is limited to locally periodic media. In the spirit of the LOD method, Peterseim
and his collaborators have developed the Petrov-Galerkin stabilization technique to elim-
inate the pollution effect in the homogeneous case [63, 119], then for a particular class
of smooth heterogeneous coefficients assumed constant in each mesh element in [22] and
recently for a more general class of piecewise constant coefficients in [120]. During his the-
sis, Chaumont-Frelet introduced the multiscale medium approximation method (MMAM)
based on high-order polynomial basis functions, which gave excellent results for the acous-
tic Helmholtz equation, provided that the density is constant. Unfortunately, the results of
the MMAM are not fully satisfactory for non-constant density media and elastic mediums.

In [36], Chaumont-Frelet and Valentin approximate Helmholtz solution using an adap-
tation of the MHM method that was initially developed for the Darcy equation in [76, 3]
and used later for other problems [77, 75, 78, 95, 14, 69]. In the context of wave propaga-
tion, the MHMmethod was first used by Lanteri and his collaborators to solve time-domain
Maxwell’s equations in [95], then for the same model problem Gobe gave additional numer-
ical details and validations in his thesis [69]. In [36], an MHM analysis was presented for
highly heterogeneous Helmholtz coefficients allowing variation within the mesh elements.
There, the MHM method appears as a very efficient multiscale strategy in the case of
heterogeneous media using coarse meshes, and also it is computationally efficient since the
local problems are elementwise and naturally parallelized. Furthermore, the authors have
shown that using polynomial basis functions for the first MHM level, the MHM method
can produce exact solutions for some propagation directions. Based on these properties, we
believe that the MHM method can achieve very accurate results when simulating propaga-
tion in periodic and/or nanotextured solar cells. To clarify, MHM has shown its ability and
effectiveness against the two major problems encountered in solar cell simulation. First,
it performs very well in highly heterogeneous media, and this has been shown in [116] by
a multiscale convergence analysis. Therefore, it can capture the small-scale information
represented by the nanotexturation. Second, we know that quasi-resonant frequencies are
plane waves traveling in the periodic direction, and the fact that the MHM method can
give an exact solution for this direction makes the MHM desirable for these periodic cases.
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Contributions and thesis outline The manuscript is structured as follow:

� In chapter 2, we introduce our model of the Helmholtz problem, especially the
quasi-periodic boundary condition, which explains how periodic geometries affect
Helmholtz solutions. We then turn to the main objective of this chapter, namely
the frequency-explicit stability analysis of our model problem for two different cases.
First, we consider the case of a homogeneous propagation medium and go through
the stability analysis of specific one-dimensional Helmholtz problems satisfied by the
Fourier expansion modes. Additionally, we show that our stability bounds are sharp
with respect to the frequency and present numerical examples illustrating the impact
of these stability results on the stability of finite element discretizations. Second, we
employ the “Morawetz multiplier” technique to provide stability estimates for phys-
ical coefficients that model the case of finely structured layered media.

� In chapter 3, we use the PML technique to approximate the DtN operator and
analyze the well-posedness properties of the resulting “PML problem”. We start by
establishing error estimates that control the difference between the original solution
and the solution of the PML problem and reveal the effect of the presence of quasi-
resonant modes on this convergence. We then turn to the frequency-explicit stability
analysis of the PML problem in two different cases. On the one hand, we will treat the
case of a homogeneous medium for which we can show an optimal stability estimate
with the same frequency dependence as for the DtN problem. This result will be
proved by following the same approach used for the homogeneous DtN problem. On
the other hand, we will provide a general well-posedness result of the PML problem
as soon as the corresponding DtN problem is well-posed.

� Chapter 4 is concerned wit the periodic homogenization theory applied to our model
problem. Specifically, our study is motivated by the convergence analysis of mul-
tiscale numerical methods. We consider the case of finely textured layered media
with a periodicity assumption and analyze the problem through the lens of periodic
homogenization theory. In particular, using the explicit stability results found in
Chapters 2 and 3, we derive frequency-explicit error estimates controlling the dif-
ference between the solutions of the homogenized problem and the solution of the
oscillating problem.

� Chapter 5 is dedicated to the MHM method for the Helmholtz problem with PML
and quasi-periodic boundary conditions. As a two-level method, the MHM method
characterizes the solution as a collection of local contributions that are tied together
through a global problem. We start by presenting an MHM formulation of our model
problem showing the effect of the considered boundary conditions and analyzing
the well-posedness of the one- and two-level formulations. Then, we rely on the
Fourier expansion and some properties of the MHM method to provide a one-level
convergence analysis of the MHM scheme showing its robustness to the presence of
quasi-resonances, and we also present numerical examples that illustrate these MHM
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performances. Finally, motivated by the nanoscale texturation used to improve the
efficiency of solar cells, we consider the case of periodically finely textured layered
media. In fact, we use the homogenization error results of Chapter 4 to obtain robust
MHM error estimates when the small characteristic length of the texturing goes to
zero. We then present numerical examples illustrating our convergence estimates.

� The numerical illustrations were obtained by adapting and modifying two existing
codes written in Fortran (for MHM) and C++ (for FEM).
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Chapter 2

Stability analysis with DtN boundary
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The goal of this chapter is to study the properties of our model boundary value problem.
Specifically, we are interested in stability properties that are explicit with respect to the
frequency. We start by rigorously introducing our model problem in Section 2.1. To do so,
we specify the functional framework in Subsection 2.1.1 and collect preliminary definitions
in Subsections 2.1.3 to 2.1.8. We introduce our model Helmholtz problem in Subsection
2.1.9, and discuss the choice of energy norm in which we derive our stability results in
Subsection 2.1.10. Sections 2.2 and 2.3 then contain our stability analysis. Specifically, the
case of a homogeneous propagation medium is considered in Section 2.2, whereas Section
2.3 treats the case of finely structured layered media.

2.1 Helmholtz problem in periodic structures

2.1.1 Functional spaces

The precise definition and analysis of weak formulations for Helmholtz problems requires
suitable functional spaces that we introduce here.

If D ⊂ R2 is an open domain with Lipschitz boundary, L2(D) is the usual Lebesgue
space of complex-valued square integrable functions defined on D. We denote by

∥v∥2D :=

∫
D

|v|2 ∀v ∈ L2(D)

the usual norm of L2(D). L2(D) := [L2(D)]2 contains vector valued functions, and we still
employ the notation ∥·∥D for its usual norm. The notation (·, ·)D is used for both the inner
products of L2(D) and L2(D).

If ρ : D → R is measurable function such that 0 < ρmin ≤ ρ ≤ ρmax < +∞ a.e. in D
for two constant ρmin, ρmax ∈ R, then

∥v∥2ρ,D :=

∫
D

ρ|v|2 ∀v ∈ L2(D)

is a norm on L2(D) equivalent to the standard one that we shall frequently employ. Sim-
ilarly, if A : D → R2×2 is a symmetric matrix with two constant αmin, αmax ∈ R such
that

0 < αmin ≤ min
ξ∈R2

|ξ|=1

A(x)ξ · ξ max
ξ,ξ′∈R2

|ξ|=|ξ′|=1

A(x)ξ · ξ′ ≤ αmax < +∞

for a.e. x in D, then we will often employ the following norm

∥v∥2A,D :=

∫
D

Av · v ∀v ∈ L2(D)

on L2(D).
If Γ ⊂ R2 is a one-dimensional manifold, then L2(Γ), (·, ·)Γ and ∥·∥Γ are defined similarly

using the surface measure on Γ.
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If v ∈ L2(D), and n = 1 or 2, the symbol ∂v/∂xn stands for the weak derivative of v
in the sense of distributions. Then, the following Sobolev spaces

H1(D) :=

{
v ∈ L2(D) | ∂v

∂xn

∈ L2(D); 1 ≤ n ≤ 2

}
,

and

H2(D) :=

{
v ∈ L2(D) | ∂2v

∂xnxm

∈ L2(D); 1 ≤ n,m ≤ 2

}
will be useful. If v ∈ H1(D), we will employ the compact notation

∇v :=

(
∂v

∂x1

,
∂v

∂x2

)
∈ L2(Ω)

for its the weak gradient.
We respectively refer the reader to chapters 4 and 9 of [20] for more details on the

Lebesgue and Sobolev spaces.

2.1.2 From Maxwell to Helmholtz equations

Since light is an electromagnetic wave, its propagation is modeled by Maxwell’s equations
(see e.g. [4, Chapter 1]). Namely, the electric field E and the magnetic field H are linked
through the equations

∇×E = −µ∂H
∂t

,

s d j

∇×H = ε
∂E

∂t
.

(2.1.1)

As can be seen from (2.1.1), E and H are in general time-dependent space-varying vec-
tor fields. In this work, we focus on the time-harmonic framework, where we assume a
sinusoidal time-behaviour. Specifically, we assume that

E(x, t) = Re(E(x)e−ikt) and H(x, t) = Re(H(x)e−ikt). (2.1.2)

for a fixed and known frequency k. Substituting (2.1.2) in (2.1.1), electromagnetic fields
satisfy the following frequency-domain Maxwell equations:

∇×E = ikµH ,
s d j

∇×H = −ikεE,
(2.1.3)

where the unknown fields now only depend on the space variable x.
The equations in (2.1.3) are still complicated to handle mathematically, as they involve

vector-valued unknowns and curl operators, for which the functional framework is very in-
volved [4, Chapters 2 and 3]. In this work, we focus on a two-dimensional setting for which,
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fortunately, we can reformulate (2.1.3) with a scalar unknown only. Indeed, assuming that
E and H are independent of x3, (2.1.3) decouples into two different two-dimensional prob-
lems corresponding to distinct polarization. (i) In the transverse magnetic (TM) mode, the
magnetic fieldH is aligned with the x3-axis. Then, H = (0, 0, H3), whereH3 = H3(x1,x2)
is independent of x3 and satisfies the following Helmholtz problem

−k2µH3 −∇ ·
(
1

ε
∇H3

)
= 0. (2.1.4)

On the other hand (ii), In the transverse electric (TE) mode, the electric field takes the
form E = (0, 0, E3(x1,x2)), with E3 solution to

−k2εE3 −∇ ·
(
1

µ
∇E3

)
= 0. (2.1.5)

We can reformulate both (2.1.4) and (2.1.5) under the same setting, namely, the following
Helmholtz equation

−k2κu−∇ ·
(
1

ρ
∇u

)
= 0,

where κ, ρ and u depend on the polarization.

2.1.3 Plane waves and right-hand sides

Plane waves are a special case of waves whose physical characteristics are constant in one
spatial direction. As a result, a plane wave can be characterized by its frequency and
traveling direction. The general expression of a plane wave is thus

ξd(x) := eikd·x,

where k is the frequency, d := (d1, d2) is a unit vector representing the direction of propa-
gation and x = (x1,x2) represents the space coordinates.

In the case of solar cell simulations, the incoming waves actually originate from the Sun.
Since relative to the characteristic wavelength and size of the device, the Sun is located
extremely far from the Earth, the incoming light can be accurately modeled by a plane
wave, which we will do hereafter. This is depicted in Figure 2.1.

The physical phenomenon we want to model thus corresponds to an incoming plane
wave, which can be injected through a boundary of the domain as a surfacic right-hand
side. However, as we will describe later on, we will carry out convergence and stability
analysis of numerical schemes using duality arguments that require volumic right-hand
sides. With this in mind, we will consider as a model problem a Helmholtz equation with
a volumic right-hand side. We will see that it allows covering both duality arguments for
the analysis of numerical schemes, and the injection of incoming plane waves for the actual
simulations.
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Sun
Earth

Spherical waves Plane waves

Figure 2.1: Sunlight: from spherical to plane waves.

2.1.4 Description of the propagation medium

A mono-periodic structure as the one shown in Figure 1.3, can be described without loss of
generality by assuming that its physical characteristics are constant in the x3 direction, and
periodic in x1 direction, with a period equal to a ℓ1. In this context, taking a cross-section,
we obtain a two-dimensional medium posed in the x1 − x2 plane, and the ℓ1−periodicity
allows us to restrict our study to a single cell of width ℓ1.

Mathematically, we are led to the setting illustrated in Figure 2.3, which is known in
the literature as a “1D grating problem”. It is related to the two-dimensional scattering
of waves by periodic structures. Since the 80’s, many works have been interested in this
problem in the applied mathematical community, see e.g. [38, 113, 47, 9, 13].

Let Ω = (0, ℓ1) × (0, ℓ2) be a two-dimensional rectangular domain. Its boundary is
divided into three parts:

� Γ♯ corresponds to the vertical sides of the rectangle. Namely Γ♯ := Γ♯
+ ∪ Γ♯

−,
Γ♯

− = {0} × (0, ℓ2) Γ♯
+ = {ℓ1} × (0, ℓ2). On Γ♯, we impose quasi-periodic boundary

conditions (see subsection 2.1.5 for more details). To simplify further discussions, we
introduce the notations v+ = v|Γ♯

+ and v− = v|Γ♯
− for all v ∈ H1(Ω).

� ΓD := (0, ℓ1) × {0} is the bottom of the rectangle. We assume that no light is
transmitted through this interface, which we model with a Dirichlet condition.

� ΓA := (0, ℓ2) × {ℓ2} is the top of rectangle. This interface is not physical, and
corresponds to an artificial boundary used to close the computational domain. On
ΓA, we prescribe a “transparent” boundary condition to account for a semi-infinite
propagation medium. This is detailed in subsection 2.1.8 below.

The materials contained in Ω are physically characterized by their dielectric permittivity
ε: Ω → R and magnetic permeability µ: Ω → R2×2. In fact, the inverse of the permeability
A := µ−1 directly enters the equation.
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In this chapter, we will focus on two different situations. First, we will consider the one
layer case, where we assume that ε = 1 andA = I in Ω. This correspond to a homogeneous
medium. Second, we will consider the multi-layers case, where the coefficients ε and A
are respectively required to increase and decrease when x2 increases. This is detailed in
Assumption 2.1.1 (e.g., the illustration in Figure 2.2).

Assumption 2.1.1. The matrix A is diagonal, i.e.

A :=

(
A1 0
0 A2

)
for two measurable scalar functions A1, A2 : Ω → R, and ε : Ω → R is a measurable
function. There exist constants εmin, εmax ∈ R and Amin, Amax ∈ R such that 0 < εmin ≤
ε ≤ εmax < +∞, 0 < Amin ≤ A1 ≤ Amax < +∞ and 0 < Amin ≤ A2 ≤ Amax < +∞ a.e. in
Ω. There exists a neighborhood of ΓA in which ε ≡ 1 and A ≡ I.

In addition, we assume that Ω is partitioned into N subdomains {Ωj}Nj=1 in such way
that:

(i) For 1 ≤ j ≤ N − 1 let Γj := Ωj ∩ Ωj+1, and nj := nΩj
. We assume that

nj
2 ≥ 0.

and that ∂Ωj \ Γ♯ ⊂ Γj−1 ∪ Γj for 1 ≤ j ≤ N , where we wrote Γ0 := ΓD and ΓN := ΓA for
the sake of simplicity.

(ii) The coefficients are smooth in each subdomains, meaning that ε|Ωj
, A1|Ωj

, A2|Ωj
∈

C1,1(Ωj), for 1 ≤ j ≤ N .

(iii) For 1 ≤ j ≤ N , we assume that the periodic extension Ω♯
j of Ωj is of class C2 in

the sense of [20, section 9.6]. Roughly speaking, it means that the periodic extension Γ♯
j

of the interface of each interface Γ♯
j can be locally expressed as the graph of a function of

class C2.
(iv) ε is increasing with x2 whereas A is decreasing. Specifically

∂ε|Ωj

∂x2

≥ 0
∂A1|Ωj

∂x2

≤ 0
∂A2|Ωj

∂x2

≤ 0

for 1 ≤ j ≤ N , and
[[ε]]Γj

≥ 0 [[A1]]Γj
≤ 0 [[A2]]Γj

≤ 0

for 1 ≤ j ≤ N − 1, where we employed the standard notation

[[v]]Γj
=
(
v|Ωj+1

)
|Γj

−
(
v|Ωj

)
|Γj

for the jump of a function v ∈ C1,1(Ωj) ∪ C1,1(Ωj+1) through an interface Γj.

Remark 2.1.2 (Minimal wavespeed). An important consequence of (iv) in Assumption
(2.1.1) is that

εmax = 1 and Amin = 1. (2.1.6)
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Physically, it implies in particular that the minimal wave speed is 1.
The assumption that of ΓA we have ε ≡ 1 and A ≡ I in a neighborhood is made for

convenience, and a similar analysis could be done by only assuming that ε is constant and
that A is constant and isotropic in a neighborhood of ΓA.

ΓA

ΓD

Γ♯− Γ♯+

•
•
•

Layer 1

Layer 2

Layer N

ΓA

ΓD

Γ♯− Γ♯+

Figure 2.2: One layer case (left) and multi-layers case (right).

2.1.5 Quasi-periodicity

As explained above and depicted in Figure 2.3, we consider a two dimensional structure
periodic in the x1 direction, with period ℓ1, and an incoming plane wave ξθ(x) := eikd·x,
where k is the frequency and d := (sin θ,− cos θ) is a unit vector representing the direction
of propagation with θ being the angle of incidence. When θ := 0, we have d = (0,−1) and
the incident wave approaches vertically. This is know as “normal incidence”. The limiting
values of θ are ±π/2 corresponding to horizontal incoming waves. The cases where θ ̸= 0
are known as “oblique incidences”.

Straightforward computations show that

ξθ(x1 + ℓ1,x2) = eiαℓ1ξθ(x1,x2), α := k sin θ.

and we say that the incident wave satisfies a quasi-periodicity condition. In this case, the
field u generated by the incident wave is assumed to satisfy the same quasi-periodicity
condition than the incident wave and its values can always been deduced from the interval
(0, ℓ1). As a result, we will simply say that u : (0, ℓ1)× R+ → C is quasi-periodic if

u(ℓ1,x2) = eiαℓ1u(0,x2),
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and we are going to write
u+ − eiαℓ1u− = 0 on Γ♯. (2.1.7)

This definition also applies with slight modifications to univariate functions u : (0, ℓ1) → C.
The following Sobolev space, incorporating the quasi-periodic boundary conditions, will

be useful
H1

♯ (Ω) :=
{
v ∈ H1(Ω,C) | v|ΓD

= 0 and v+ = eiαℓ1v−

}
.

We denote by H
1/2
♯ (ΓA) the image of H1

♯ (Ω) through the trace operator on ΓA.

x1

x2

Γ♯ Γ♯

Incoming light

θ

ℓ10

0

ℓ2

Figure 2.3: A cross section of a mono-periodic texturation (presented in Figure 1.3).

2.1.6 Fourier expansion

Expansion into Fourier series is a standard tool that will often be useful throughout this
manuscript. In particular, we will employ it to reduce the study of a two-dimensional PDE
to a system of uncoupled one-dimensional PDEs. Standard Fourier expansion applies to
periodic functions. However, we show here that the technique also works on quasi-periodic
functions, up to slight adjustments.

Let I1, I2 ⊂ R be two open bounded interval, D := I1×I2, and consider a quasi-periodic
function u ∈ H1(D). It is easily seen that the function v(x) := u(x)e−iαx1 is ℓ1-periodic
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in the x1 direction. Applying Fourier expansion to v, we get the expansion

u(x) =
∑
n∈Z

ûn(x2)e
i(α+αn)x1 . (2.1.8)

where the convergence takes place in H1(Ω), and

αn :=
2nπ

ℓ1
, ûn(x2) :=

1

ℓ1

∫ ℓ1

0

u(x1,x2)e
−i(α+αn)x1dx1,

for a.e. x2 ∈ I2. We also have the Parseval identity

∥u∥2D = ℓ1
∑
n∈Z

∥ûn∥2I2 . (2.1.9)

Now if u ∈ H2(Ω), then the function f := −k2u −∆u ∈ L2(Ω) is quasi-periodic, and
each mode satisfies

−
[
k2 − (α + αn)

2
]
ûn −

d2ûn
dx2

2

= f̂n.

To simplify the above equation, we define nc as the smallest integer such that (α+ αn)
2 −

k2 ≤ 0 for −nc ≤ n ≤ nc. We then define βn :=
√

|k2 − (α + αn)2|, and

kn :=

{
βn if |n| ≤ nc

iβn otherwise.
(2.1.10)

Notice that kn is either a non-negative real number and kn = |kn|, or a pure imaginary
number with positive imaginary part and kn = i|kn|. The notation

k⋆ := min
n∈Z

|kn| (2.1.11)

will be useful in many places throughout the manuscript. We also notice that due to our
definition of kn, we have

−k2nûn − û′′n = f̂n. (2.1.12)

We can equip H
1/2
♯ (ΓA) with the norm

∥v∥2
H

1/2
♯ (ΓA)

:= ℓ1
∑
n∈Z

(1 + n)|v̂n|2 ∀v ∈ H
1/2
♯ (ΓA). (2.1.13)

2.1.7 Quasi-resonant modes

An important aspect of the mathematical and numerical studies of 1D grating problems
is the presence of so-called quasi-resonant frequencies (also called anomalous modes or
Rayleigh frequencies) [137, 136]. Indeed, the presence of these quasi-resonances substan-
tially affects the properties of the solution. In fact, because their presence makes the anal-
ysis more complex, many works in the literature on 1D gratings exclude these anomalous
modes from their study. Among them, we may cite, for instance [10, 11, 12, 40, 46, 47].
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Here, we pay particular attention to the presence of anomalous modes and to their
impact on various properties of the solution. This is especially important as anomalous
modes also strongly impact numerical schemes.

Normal incidence (θ = 0)

ℓ1

λ

Γ♯ Γ♯

Figure 2.4: Quasi-resonant mode for a normal incidence in homogeneous cases.

A quasi-resonant mode ûn corresponds to a value of n for which kn = 0. In our setting,
it can appear if there exists a value of n ∈ N such that

(1− sin θ)ℓ1k = 2πn.

In the particular case of normal incidence when θ = 0, this expression simplifies to

ℓ1k = 2πn,

meaning that the periodicity length ℓ1 is a multiple the wavelength λ = 2π/k. Notice that
for “most” frequencies k, there is no quasi-resonance. However, we shall see that quasi-
periodic boundary conditions impact the stability properties of the Helmholtz problem for
all frequencies.

2.1.8 Dirichlet-to-Neumann map

As previously mentioned, we will eventually need bounded computational domains in view
of finite element discretizations. The Dirichlet-to-Neumann (DtN) operator is a convenient
way to represent unbounded problems in a bounded domain with suitable boundary con-
ditions. The truncation of the domain is not only crucial for FEM discretizations, but it
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is also very convenient for the abstract analysis of the properties of the solution. In the
context of wave propagation, such boundary conditions, based on the DtN operator are
often refered to as transparent boundary conditions.

In our setting, the DtN operator can be explicitly constructed through Fourier series
[11]. Consider a quasi-periodic function u ∈ H2

loc((0, ℓ1)×(ℓ2,+∞)) such that −k2u−∆u =
0. We then know from the previous section that we have the decomposition

u(x) =
∑
n∈N

ûn(x2)e
i(α+αn)x1

with each mode ûn satisfying the one-dimensional equation

−k2nûn − û′′n = 0.

It is then easily seen that for each n ∈ N,

ûn(x2) = c+e
iknx2 + c−e

−iknx2 .

for two complex numbers c± ∈ C. Then, there are two distinct scenarios. If |n| ≤ nc,
then kn = |kn|. The first term corresponds to a wave going up, while the second term
corresponds to a wave going down. In the second case where |n| > nc, we have ikn = −|kn|
and the second term is blowing up, while the first term corresponds to an evanescent wave.
In both cases, only the first term is physically releveant, and the condition

û′n(ℓ2) = iknûn(ℓ2) (2.1.14)

will ensure that c− = 0. This leads to the formal definition of the DtN operator

Rv := i
∑
n∈N

knv̂ne
i(α+αn)x1

for any “suitable” function v : (0, ℓ1)×(0, ℓ2) → C. Mathematically, we can summarize the
key properties of the DtN operator as follows.

Theorem 2.1.3 (DtN operator). We have R : H
1/2
♯ (ΓA) →

(
H

1/2
♯ (ΓA)

)′
, with the defini-

tion
Rv := i

∑
n∈Z

knv̂ne
i(α+αn)x1 ∀v ∈ H

1/2
♯ (ΓA). (2.1.15)

In addition, we have

1

ℓ1
⟨Rv, v⟩ΓA

= i
∑

|n|≤nc

|kn||v̂n|2 −
∑

|n|≥nc

|kn||v̂n|2 ∀v ∈ H
1/2
♯ (ΓA) (2.1.16)

and
1

ℓ1
∥Rv∥2ΓA

=
∑

|n|≤nc

|kn|2|v̂n|2 +
∑

|n|≥nc

|kn|2|v̂n|2 ∀v ∈ H1
♯ (ΓA). (2.1.17)
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Proof. Let us consider two smooth functions v, ϕ ∈ C∞(ΓA). We have

(Rv, ϕ)ΓA
= i
∑
n∈Z

knv̂n(e
i(α+αn)x1 , ϕ)ΓA

= iℓ1
∑
n∈Z

knv̂nϕ̂n,

so that by Holdër inequality

|(Rv, ϕ)ΓA
| ≤ ℓ1

∑
n∈Z

|kn||v̂n||ϕ̂n| ≤
(
sup
n∈Z

|kn|
1 + n

)
ℓ1
∑
n∈Z

(1 + |n|)|v̂n||ϕ̂n| ≤

(
sup
n∈Z

|kn|
1 + n

)(
ℓ1
∑
n∈Z

(1 + |n|)|v̂n|2
)1/2(

ℓ1
∑
n∈Z

(1 + |n|)|ϕ̂n|2
)1/2

=

(
sup
n∈Z

|kn|
1 + |n|

)
∥v∥

H
1/2
♯ (ΓA)

∥ϕ∥
H

1/2
♯ (ΓA)

,

and by density of C∞(ΓA) in H
1/2
♯ (ΓA), we obtain that

∥Rv∥
(H

1/2
♯ (ΓA))′

≤
(
sup
n∈Z

|kn|
1 + |n|

)
∥v∥

H
1/2
♯ (ΓA)

.

Then, a careful inspection of the definition kn := given at (2.1.10) reveals that

|kn| =

√√√√∣∣∣∣∣k2 −
(
α +

2nπ

ℓ1

)2
∣∣∣∣∣,

so that

lim
|n|→+∞

|kn|
1 + |n|

=
2π

ℓ1

and
∥Rv∥

(H
1/2
♯ (ΓA))′

≤ C∥v∥
H

1/2
♯ (ΓA)

,

for all smooth v, showing that R indeed maps H
1/2
♯ (ΓA) into its dual using again the

density of smooth functions.
Then, (2.1.16) and (2.1.17) follows from the following simple computations:

1

ℓ1
⟨Rv, v⟩ΓA

= i
∑
n∈N

knv̂n⟨
1

ℓ1
ei(α+αn), v⟩ΓA

= i
∑
n∈N

kn|v̂n|2

= i
∑

|n|≤nc

|kn||v̂n|2 −
∑

|n|≥nc

|kn||v̂n|2 ∀v ∈ H
1/2
♯ (ΓA),

and

1

ℓ1
∥Rv∥2ΓA

= −
∑
n∈N

k2n|v̂n|2 = −
∑

|n|≤nc

|kn|2|v̂n|2 +
∑

|n|≥nc

|kn|2|v̂n|2 ∀v ∈ H1
♯ (ΓA).
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2.1.9 The model Helmholtz problem

We are now ready to state our model boundary value problem modeling the propagation
of the electromagnetic field in the domain of interest. Let Ω := (0, ℓ1) × (0, ℓ2) for 0 <
ℓ1, ℓ2 < +∞. The electric field, denoted here by u : Ω → C, is solution of the following
Helmholtz problem 

−k2εu−∇ · (A∇u) = εf in Ω,
A∇u · n− Ru = 0 on ΓA,

u = 0 on ΓD,
u+ − eiαℓ1u− = 0 on Γ♯.

(2.1.18)

where ε and A describe the permittivity and (inverse of the) permeability of the medium
and f ∈ L2(Ω) represents the electromagnetic source.

The variational (or weak) formulation of (2.1.18) consists in looking for u ∈ H1
♯ (Ω)

such that
b(u, v) = (εf, v)Ω ∀v ∈ H1

♯ (Ω), (2.1.19)

where
b(u, v) := −k2(εu, v)Ω − ⟨Ru, v⟩ΓA

+ (A∇u,∇v)Ω.

2.1.10 Inf-sup condition and energy norms

Hereafter, we are interested in well-posedness in the sense of Hadamar, which means that for
each right-hand side f , there exists a unique u solution to (2.1.19), and that u continuously
depends on f . Since we are considering a linear problem, it is well-known that well-
posedness is equivalent to an inf-sup condition [20, Theorems 2.20 and 2.21]. Specifically,
Problem (2.1.19) is well-posed if and only if

inf
u∈H1

♯ (Ω)

∥u∥⋆=1

sup
v∈H1

♯ (Ω)

∥v∥⋆=1

Re b(u, v) > 0,

where ∥·∥⋆ is any Hilbertian norm on H1
⋆ (Ω).

For a fixed frequency, the choice of the ∥·∥⋆ norm is not extremely important. However,
we will be interested in the dependence of the inf-sup constant on the frequency. In this
case, it turns out that the “correct” norm has to be k-weighted, see e.g. [101]. We will
thus consider the following “energy” norm

|||v|||2k,Ω := k2∥v∥2ε,Ω + ∥∇v∥2A,Ω ∀v ∈ H1(Ω), (2.1.20)

and introduce the inf-sup constant Cis,

1

Cis

:= inf
u∈H1

♯ (Ω)

|||u|||k,Ω=1

sup
v∈H1

♯ (Ω)

|||v|||k,Ω=1

Re b(u, v) > 0, (2.1.21)

that satisfies 0 < Cis < +∞ whenever Problem (2.1.19) is well-posed.
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The inf-sup condition is actually equivalent to the existence of a unique solution u ∈
H1

♯ (Ω) for every generalized right-hand side f ∈ (H1
⋆ (Ω))

′
with the estimate

|||u|||k,Ω ≤ Cis sup
v∈H1

♯ (Ω)

|||v|||k,Ω=1

Re ⟨f, v⟩Ω .

In the next Lemma, we follow [102] to show that in the particular case of Helmholtz
problems, establishing a stability estimate for L2(Ω) right-hand sides is equivalent to derive
an inf-sup condition.

Lemma 2.1.4. Assume that for every f ∈ L2(Ω), there exists a unique u ∈ H1
♯ (Ω) solution

to (2.1.19) and that

k∥u∥ε,Ω ≤ Cst

k
∥f∥ε,Ω. (2.1.22)

Then, we have

|||u|||k,Ω ≤ Cst,e

k
∥f∥ε,Ω, Cst,e := 1 + 2Cst (2.1.23)

and (2.1.21) holds true with

Cis ≤ 1 + 2Cst,e = 3 + 4Cst. (2.1.24)

Conversely, if (2.1.21) holds true, then (2.1.22) and (2.1.23) hold with the constants

Cst ≤ Cst,e ≤ Cis. (2.1.25)

Proof. We start by establishing (2.1.23). To do so, we fix f ∈ L2(Ω,C) and assume that
u ∈ H1

♯ (Ω) solves (2.1.19) with the estimate in (2.1.22). We start by observing that due to
(2.1.16), we have

Re {−⟨Ru, u⟩ΓA
} ≥ 0,

so that
Re b(u, u) ≥ ∥∇u∥2A,Ω − k2∥u∥2ε,Ω. (2.1.26)

Hence,

|||u|||2k,Ω ≤ Re b(u, u) + 2k2∥u∥2ε,Ω = Re(εf, u)Ω + 2k2∥u∥2ε,Ω

≤
(
1

k
∥f∥ε,Ω + 2k∥u∥ε,Ω

)
k∥u∥ε,Ω

≤
(
1

k
∥f∥ε,Ω + 2k∥u∥ε,Ω

)
|||u|||k,Ω ,

and it follows from the assumption (2.1.22) that

|||u|||k,Ω ≤ 1

k
∥f∥ε,Ω + 2k∥u∥ε,Ω ≤ 1 + 2Cst

k
∥f∥ε,Ω,
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thus showing (2.1.23).
We then establish (2.1.24). Let u ∈ H1

♯ (Ω) be arbitary, and define ξ as the only element
of H1

♯ (Ω) such that

b(w, ξ) = 2k2(εw, u)Ω

for all w ∈ H1
♯ (Ω). Letting v = u+ ξ ∈ H1

♯ (Ω), we have

Re b(u, v) = Re b(u, u) + Re b(u, ξ) = |||u|||2k,Ω .

On the other hand, recalling (2.1.23)

|||ξ|||k,Ω ≤ 2Cst,ek∥u∥ε,Ω ≤ 2Cst,e |||u|||k,Ω

by assumption, and therefore |||v|||k,Ω ≤ (1 + 2Cst,e) |||u|||k,Ω, and

Re b(u, v) = |||u|||2k,Ω ≥ 1

1 + 2Cst,e

|||u||| |||v||| ,

which shows (2.1.24).
We finally turn to the converse estimate, and assume that the inf-sup condition (2.1.21)

holds true and that u ∈ H1
♯ (Ω) solves (2.1.19). Then, we have

|||u|||k,Ω ≤ Cis sup
v∈H1

⋆(Ω)
|||v|||k,Ω=1

Re b(u, v) ≤ Cis sup
v∈H1

⋆(Ω)
|||v|||k,Ω=1

Re (εf, v)Ω

≤ Cis sup
v∈H1

⋆(Ω)
|||v|||k,Ω=1

(
1

k
∥f∥ε,Ω |||v|||k,Ω

)
≤ Cis

k
∥f∥ε,Ω,

which shows that (2.1.23) holds with Cst,e ≤ Cis. The estimate in (2.1.22) then follows
since k∥u∥ε,Ω ≤ |||u|||k,Ω.

2.2 Frequency-explicit stability estimates in the one-

layer case

In this section, our goal is to derive stability estimates of the form

k∥u∥ε,Ω ≤ Cst

k
∥f∥ε,Ω, (2.2.1)

where f ∈ L2(Ω) is an arbitrary right-had side, u ∈ H1
♯ (Ω) is the associated solution to

(2.1.19), and Cst is a “stability” constant independent of f . We are especially interested
in “frequency-explicit” stability estimates where the dependency of Cst on k is explicitly
tracked. Besides their intrinsic value, frequency-explicit stability estimates are of particular
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interest, as they immediately enters the stability and convergence analysis of finite element
discretizations [33, 94, 101].

We shall first mention that in the case of coercive elliptic problems, stability estimates
easily follows from Lax-Milgram theory [20, Corollary 5.8]. Unfortunately, this theory is
not applicable to Helmholtz problems except for small frequencies. In fact, the sesquilinear
form b(·, ·) in (2.1.19) is not coercive in general, but satisfies the weaker property

Re b(v, v) ≥ |||v|||2k,Ω − 2k2∥v∥2ε,Ω ∀v ∈ H1
♯ (Ω) (2.2.2)

called the “G̊arding inequality”. It shows that the sesquilinear form fails to be coercive,
up to a “compact perturbation”. Indeed, the negative term in (2.2.2) is an L2(Ω) norm,
and the injection H1(Ω) ⊂ L2(Ω) is compact, due to the Rellich-Kondrachow theorem [20,
Theorem 9.16]. As a result, Fedholm alternative applies [20, Theorem 6.6], and existence
and stability hold if one can show uniqueness. Uniqueness itself can often be showed by
invoking the unique continuation principle [1]. Unfortunately, although this method is very
powerful to show the well-posedness (2.1.19) in general settings, it provides no information
about the stability constant Cst a part from the fact that it is finite.

For Helmholtz problems, the behavior of Cst may be linked with the geometry of the
domain Ω. The simplest setting to explain this link is the case of scattering by a bounded
(as opposed to periodic) obstacle with a Dirichlet boundary. In this case direct connections
between the trajectories of the rays reflected by the obstacle and the stability constant can
be drawn, and the rigorous way to do so is through semi-classical analysis, see e.g. [139,
Section 5.3]. In particular, there is an important difference between non-trapping where
all rays escape the domain after a finite amount of time, and trapping geometries where
some rays are trapped on a periodic orbit, see Figure 2.5.

For non-trapping geometries, the stability constant behaves as in a homogeneous medium,
and it can be shown that

Cst ∼ kℓ. (2.2.3)

Since on the other hand, it is shown in [31] that Cst ≳ kℓ, this situation is the best possible.
Trapping geometries can be further broken down into three categories named hyperbolic,
parabolic and elliptic trapping as depicted on Figure 2.6.

In hyperbolic trapping, it can shown that

Cst ∼ ln(1 + kℓ)kℓ, (2.2.4)

so that the stability loss is very mild [24, 90]. This is due to the fact only a single ray is
trapped. In the parabolic case, an infinite number of rays are trapped, but their trajectories
are not stable, polynomial estimates of the form

Cst ∼ (kℓ)3, (2.2.5)

can be shown in this case [29]. Finally, in the elliptic case [23, 26], it is shown that the
best possible estimates are of the form

Cst ∼ eα(kℓ), α > 0. (2.2.6)
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We will see that the quasi-periodic conditions act very similarly to the parallel bound-
aries of the two squares in Figure 2.6b. In fact, the Helmholtz problems we consider in this
manuscript undergo a parabolic trapping, and we will obtain polynomial stability bounds
similar to (2.2.5).

In this section, we focus on the one layer case where ε ≡ 1 and A ≡ I. We employ the
Fourier expansion techniques of subsection 2.1.6, and then study the resulting family of
one-dimensional homogeneous Helmholtz problems with frequency kn. For one-dimensional
homogeneous Helmholtz problems with a real frequency κ, several approaches are available
to derive explicit stability estimates. In particular, one can employ the explicit represen-
tation of the solution using the Green’s function, this approach is pursued for instance in
[49, 88]. Another possibility used in [8, 30, 99] is to multiply the PDE by xu′ and perform
integration by parts. We will follow this approach here.

The funtion xu′ is a particular case of a Morawetz (or Rellich) multiplier. Multiplying
the PDE by a multiplier is a technique that also work in multiple space dimensions and
some types of heterogeneous media. We will discuss this aspect in more depth in section
2.3.

(a) All rays escape (b) Some rays are trapped

Figure 2.5: Examples of trapping and non-trapping situations.
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(a) Hyperbolic (b) Parabolic (c) Elliptic

Figure 2.6: Different kinds of trapping

2.2.1 Analysis of the one dimensional Helmholtz problem

As described in subsection 2.1.6, after expansion in Fourier series, we are left with a
parameterized one-dimensional Helmholtz problem that we analyze in this section. Hence,
going through the stability analysis of these one-dimensional problems is a key step in
obtaining a stability estimate for our 2D Helmholtz problem. This desired 2D-stability
result is then obtained by using the relation between the norms of the unknown u and
the norms of its Fourier modes ûn. Using the definition of kn ∈ C given in (2.1.10), if we
substitute the Fourier expansion (2.1.8) in the Helmholtz problem (2.1.18), we find then
that Fourier modes ûn satisfy −k2nûn − û′′n = f̂n in (0, ℓ2)

ûn(0) = 0
û′n(ℓ2)− iknu(ℓ2) = 0.

(2.2.7)

In this subsection, L2(0, ℓ2) stands for the set of complex-valued functions that are
square integrable on (0, ℓ2), and ∥·∥ and (·, ·) denote the standard norm and inner product
of L2(0, ℓ2). The following Sobolev space

W :=
{
w ∈ H1(0, ℓ2) | w(0) = 0

}
will also be useful.

Formally, assuming that f̂n ∈ L2(0, ℓ2) the weak formulation of (2.2.7) then consists in
finding ûn ∈ W such that

bn(ûn, v̂n) = (f̂n, v̂n) ∀v̂n ∈ W, (2.2.8)

where
bn(ûn, v̂n) := −k2n(ûn, v̂n)− iknu(ℓ2)v̂n(ℓ2) + (û′n, v̂

′
n).
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We note that when kn = iβn, we have

bn(ûn, v̂n) = β2
n(ûn, v̂n) + βnûn(ℓ2)v̂n(ℓ2) + (û′n, v̂

′
n). (2.2.9)

We will prove now a useful Poincaré inequality

Lemma 2.2.1 (Poincaré inequality). We have

∥v̂n∥ ≤ 2ℓ2∥v̂′n∥ (2.2.10)

for all v̂n ∈ W .

Proof. Let v̂n ∈ W . Since (|v|2)′ = 2Re vv′, and since v̂n(0) = 0, we have

|v̂n(x)|2 = 2Re

∫ x

0

v̂nv̂n
′ ≤ 2

∫ x

0

|v̂n||v̂′n| ≤ 2

∫ ℓ2

0

|v̂n||v̂′n| ≤ 2∥v̂n∥∥v′∥,

and the result follows after integrating both sides on (0, ℓ2).

Depending on the nature of the wave number kn, the proof of a stability estimate for
ûn will be done in three main steps: imaginary wave numbers, small real wave numbers,
and large real wave numbers.

Lemma 2.2.2 (Imaginary wave numbers). Assume that kn = iβn. Then there exists a
unique ûn solution to (2.2.8). In addition, the estimate

∥ûn∥ ≤ min
(
4, (|kn|ℓ2)−2

)
ℓ22∥f̂n∥ (2.2.11)

holds true. In addition, we have

∥ûn∥ ≤ min
(
4, 2(|kn|ℓ2)−1

)
ℓ22∥f̂n∥. (2.2.12)

Proof. It is clear from (2.2.9) that we have

β2
n∥ûn∥2 + βn|ûn(ℓ2)|2 + ∥û′n∥2 = Re(f̂n, ûn) ≤ ∥f̂n∥∥ûn∥. (2.2.13)

Hence, we immediatly see that β2
n∥ûn∥ ≤ ∥f̂n∥, and since |kn| = βn,

∥ûn∥ ≤ (|kn|ℓ2)−2ℓ22∥f̂n∥. (2.2.14)

On the other hand, using Poincaré inequality (2.2.10) in the right-hand side of (2.2.13)

reveals that ∥û′n∥ ≤ 2ℓ2∥f̂n∥, and using (2.2.10) again shows that

∥ûn∥ ≤ 4ℓ22∥f̂n∥. (2.2.15)

Estimate (2.2.11) then follows from (2.2.14) and (2.2.15).
To establish (2.2.12), we observe that the “second branch” of the of the minimum in

(2.2.11) is only achived if (|kn|ℓ2)−1 ≤ 2. As a result, we have (|kn|ℓ2)−2 ≤ 2(|kn|ℓ2)−1 in
this regime.
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We now consider the case where k is real positive, but “small”.

Lemma 2.2.3 (Small real wavenumbers). Assume that 0 ≤ knℓ2 < 1/2. Then there exists
a unique ûn solution to (2.2.7), and we have

∥ûn∥ ≤ 4ℓ22
1− 4k2nℓ

2
2

∥f̂n∥. (2.2.16)

In particular, if 0 ≤ knℓ2 ≤ 1/4, then

∥ûn∥ ≤ 6ℓ22∥f̂n∥. (2.2.17)

Proof. Poincaré inequality (2.2.10) imply that(
1− 4|kn|2ℓ22

)
∥û′n∥2 ≤ −k2n∥ûn∥2 + ∥û′n∥2 = Re bn(ûn, ûn),

so that b is coercive, and (2.2.8) admits a unique solution. We then have

(1− 4k2nℓ
2
2)∥û′n∥2 = Re(f̂n, ûn) ≤ ∥f̂n∥∥ûn∥ ≤ 2ℓ2∥f̂n∥∥û′n∥,

so that

∥û′n∥ ≤ 2ℓ2
1− 4k2nℓ

2
2

∥f̂n∥,

and (2.2.16) follows from employing (2.2.10) again. When knℓ2 ≤ 1/4, estimate (2.2.17)
follows from (2.2.16) since

4

1− 4k2nℓ
2
2

≤ 4

1− 1/4
=

16

3
≤ 6.

The last scenario we need to cover is the case of a “large” real wave number.

Lemma 2.2.4 (Large real wave numbers). Assume that kn > 0. Then we have

∥ûn∥ ≤ 3

knℓ2
ℓ22∥f̂n∥. (2.2.18)

Proof. Our analysis hinges on the so-called “Morawetz identity”

k2n∥w∥2 + ∥w′∥2 = k2nℓ2|w(ℓ2)|2 + ℓ2|w′(ℓ2)|2 + 2Re

∫ ℓ2

0

(−k2nw − w′′)xw′ (2.2.19)

valid for w ∈ H2(0, ℓ2).
Picking the test function v̂n = ûn in (2.2.8) and taking the imaginary part yields

−kn|ûn(ℓ2)|2 = Im(f̂n, ûn).
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On the other hand, since f̂n ∈ L2(0, ℓ2), then if a solution ûn to (2.2.7) exists, then it is
H2(0, ℓ2). In addition, Morawetz identity (2.2.19) shows that

k2n∥ûn∥2 + ∥û′n∥2 = 2Re(f̂n, xû
′
n) + 2k2nℓ2|ûn(ℓ2)|2 = 2Re(f̂n, xu

′)− 2knℓ2 Im(f̂n, ûn)

As a result, we have

k2n∥ûn∥2+∥û′n∥2 ≤ 2ℓ2∥f̂n∥∥û′n∥+2knℓ2∥f̂n∥∥ûn∥ ≤ ℓ22∥f̂n∥2+∥û′n∥2+2ℓ22∥f̂n∥2+
k2n
2
∥ûn∥2,

and as a result
k2n
2
∥ûn∥2 ≤ 3ℓ22∥f̂n∥2,

and (2.2.18) follows since √
6 ≤ 3.

The main stability result for one-dimensional problems is obtained by combining the
lemmas covering imaginary, small real, and large real wave numbers.

Theorem 2.2.5 (Estimate for the 1D case). For all kn, there exists a unique ûn solution
to (2.2.7) and we have

∥ûn∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥. (2.2.20)

Proof. We focus first on the real wave numbers case where kn ≥ 0. Assuming that knℓ2 ≥ 1,
estimate (2.2.18) imply

∥ûn∥ ≤ 3(knℓ2)
−1ℓ22∥f̂n∥ ≤ 3min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥.

Next, if knℓ2 ≤ 1, we distinguish two scenarios. When knℓ2 ≤ 1/4, estimate (2.2.17) yields

∥ûn∥ ≤ 6ℓ22∥f̂n∥ ≤ 12ℓ22∥f̂n∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥.

On the other hand, for 1/4 ≤ knℓ2 ≤ 1, we have 1 ≤ (knℓ2)
−1 ≤ 4, and it follows from

(2.2.18) that

∥ûn∥ ≤ 3(knℓ2)
−1ℓ22∥f̂n∥ ≤ 12ℓ22∥f̂n∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥.

This shows (2.2.20) for the case of real wave numbers.
We now consider an imaginary wave number kn = iβn. If |kn|ℓ2 ≥ 1, estimate (2.2.12)

implies that

∥ûn∥ ≤ 2(|kn|ℓ2)−1ℓ22∥f̂n∥ ≤ 2min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥.

When |kn|ℓ2 ≤ 1, we distinguish two scenarios. Assuming |kn|ℓ2 ≤ 1/2, estimate (2.2.12)
yields

∥ûn∥ ≤ 4ℓ22∥f̂n∥ ≤ 12ℓ22∥f̂n∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥.
For the remaining cases where 1/2 ≤ |kn|ℓ2 ≤ 1, estimate (2.2.12) shows that

∥ûn∥ ≤ 2(|kn|ℓ2)−1ℓ22∥f̂n∥ ≤ 4ℓ22∥f̂n∥ ≤ 12min(1, (|kn|ℓ2)−1)ℓ22∥f̂n∥,

which concludes the proof.
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2.2.2 Frequency-explicit stability estimates

In this subsection, a frequency-explicit stability estimate is obtained by combining the
Fourier expansion introduced in subsection 2.1.6 with the one-dimensional stability esti-
mate (2.2.20). We first provide a preliminary result linking k⋆ to k.

Lemma 2.2.6 (One dimensional wave numbers). We have

k⋆ℓ1 = min
n∈Z

|kn|ℓ1 ≥ Λk,ℓ,θ

√
kℓ1 (2.2.21)

where Λk,ℓ,θ ∈ [0, 1] is defined by

Λk,ℓ,θ :=

√
2πmin

({
kℓ1(1− sin θ)

2π

}
,

{
kℓ1(1 + sin θ)

2π

})
,

with {x} = minn∈N |x− n| for x ∈ R.

Proof. For all n ∈ Z, we have

|kn|2 = |βn|2 = |k2 − (α + αn)
2| = |(k − (α + αn))(k + (α + αn))|.

We then write
|kn|2 = |k − (α + αn)||k + (α + αn)|

Then, we first treat the case where (α + αn) ≥ 0. In this case, we have

|kn|2 ≥ k|k − (α + αn)| = k

∣∣∣∣k − k sin θ − 2nπ

ℓ1

∣∣∣∣ = 2π
k

ℓ1

∣∣∣∣(kℓ1)(1− sin θ)

2π
− n

∣∣∣∣ .
It follows that

|kn|2ℓ21 ≥ 2πkℓ1

{
kℓ1(1− sin θ)

2π

}
. (2.2.22)

In the other case where (α + αn) < 0, we have

|kn|2 ≥ k|k + (α + αn)| = k

∣∣∣∣k + k sin θ +
2nπ

ℓ1

∣∣∣∣ = 2π
kℓ1
ℓ1

∣∣∣∣(kℓ1)(1 + sin θ)

2π
+ n

∣∣∣∣
thus

|kn|2ℓ21 ≥ 2πkℓ1

{
kℓ1(1 + sin θ)

2π

}
. (2.2.23)

Then, (2.2.21) follows from (2.2.22), (2.2.23) and the definition of Λk,ℓ,θ.

We are now in a position to establish the main frequency-explicit stability result in the
following theorem.
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Theorem 2.2.7 (Stability in homogeneous media). Assume that ε ≡ 1 and A ≡ I. Then
estimate (2.1.22) holds with

Cst ≤ 12min
(
1, (k⋆ℓ2)

−1
)
(kℓ2)

2. (2.2.24)

In particular, we have

Cst ≤ 12min

(
1,
ℓ1
ℓ2

1

Λk,ℓ,θ

√
kℓ1

)
(kℓ2)

2. (2.2.25)

Proof. Using Fourier expansion, we have

∥u∥2Ω = ℓ1
∑
n∈Z

∥ûn∥2.

The one dimensional result (2.2.20) leads, to

∥u∥2Ω ≤ 122ℓ1
∑
n∈Z

min(1, (|kn|ℓ2)−2)ℓ42∥f̂n∥2.

Thus, the result follows by applying (2.2.21)

∥u∥2Ω ≤ 122min

(
1,

ℓ1
ℓ22kΛ

2
k,ℓ,θ

)
ℓ42∥f∥2Ω.

The stability bound (2.2.24) is fully explicit (explicit for all problem parameters: the
frequency k, the angle of incidence θ, and the medium parameters ℓ1 and ℓ2) ,which is
a very useful result because of the significant role played by the stability constant in the
analysis of numerical discretizations.

The effect of quasi-resonant modes on the continuous problem stability is neatly identi-
fied by the analysis of the bound (2.2.24). For example, if the solution is constructed from
a single Fourier mode ûn with a wave number kn close to zero (kn ≈ 0), this implies that
Λk,ℓ,θ ≈ 0 and that the stability constant Cst will be equivalent to (kℓ2)

2. Furthermore,
the best stability case (in terms of frequency dependence) with quasi-periodic boundary
conditions is given when all modes are far from quasi-resonances. In this case, we have
Λk,ℓ,θ ≈ 1, and the stability constant is equivalent to Cst ≈ (kℓ2)

3/2. In contrast, the stan-
dard stability estimate for star-shaped domains surounded by a absorbing or DtN condition
(thus, without quasi-periodic boundary conditions) is Cst ≈ kℓ, where ℓ is the diameter of
the domain. This is highlighted in Corollary 2.2.8 below.

Corollary 2.2.8 (Simplified stability estimates). Assuming that ε ≡ 1 and A ≡ I, we
have

Cst ≤ 12(kℓ2)
2.

Under the additional assumption that Λk,ℓ,θ≥δ> 0, we have the improved estimate

Cst ≤ 12

√
ℓ1
ℓ2

1

δ
(kℓ2)

3/2.
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2.2.3 Sharpness of the stability bounds

In this subsection, we show that our stability bounds are sharp with respect to the frequency
k. Specifically, we want to show that in the worst case scenario, the stability constants
scales as (kℓ2)

2, but also highlight that even when we consider a favorable situation avoiding
quasi-resonances, the scaling is still (kℓ2)

3/2, i.e., half an order higher than for star-shaped
domains without quasi-periodicity. These results are proved by constructing two infinite
sequences of wave numbers and right-hand sides for which the norm of the solution grows
exactly as dictated by our stability bounds.

Theorem 2.2.9 (Sharpness of the stability bounds). For all k ∈ R+ there exists a right-
hand side f ∈ L2(Ω) such that the associated solution u ∈ H1

♯ (Ω) to (2.1.19) satisfies

∥u∥Ω ≥ 1

2
√
105

1

1 + k⋆ℓ2
ℓ22∥f∥Ω. (2.2.26)

In particular, the stability constant Cst in (2.1.22) satisfies

Cst ≥
1

2
√
105

1

1 + k⋆ℓ2
(kℓ2)

2 ≥ 1

4
√
105

min(1, (k⋆ℓ2)
−1)(kℓ2)

2. (2.2.27)

Remark 2.2.10 (Optimality of the stability estimates). By combining (2.2.24) and (2.2.27),
we have

1

4
√
105

min(1, (k⋆ℓ2)
−1)(kℓ2)

2 ≤ Cst ≤ 12min(1, (k⋆ℓ2)
−1)(kℓ2)

2,

for any stability constant Cst in (2.2.24). This means in particular that our frequency
dependence is optimal. In addition, our leading constant is sharp up to factor at most

12× 4
√
105 = 48

√
105 ≤ 492.

Proof. Consider k ∈ R+ and n ∈ Z. We start by introducing the cutoff

χ(x2) := ℓ
7/2
2 x2(x2 − ℓ2)

2 ∀x2 ∈ (0, ℓ2).

Tedious, but straightfoward, computations reveal that

∥χ∥ =
1√
105

, ∥χ′∥ =

√
2

15

1

ℓ2
, ∥χ′′∥ =

2

ℓ22
.

We also can easily check that χ(0) = χ(ℓ2) = χ′(ℓ2) = 0.
Due to the boundary conditions satisfied by χ the function wn(x2) := χ(x2)e

iknx2

satisfies 
−k2nwn − w′′

n = ϕn in (0, ℓ2)
ŵn(0) = 0

ŵ′
n(ℓ2)− iknwn(ℓ2) = 0,

with ϕn(x2) := − (χ(x2)
′′ + 2iknχ

′(x2)) e
iknx2 .
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Recalling the discussion on Fourier expansion of quasi-periodic functions in Section
2.1.6, we see that introducing

u(x1,x2) := wn(x2)e
i(α+αn)x1 f(x1,x2) := ϕn(x2)e

i(α+αn)x1 ,

we have 
−k2u−∆u = f in Ω,

∇u · n− iknu = 0 on ΓA,
u = 0 on ΓD,

u+ − eiαℓ1u− = 0 on Γ♯.

The remaining of the proof consists in respectively bounding the norms of u and f from
below and above. For the solution, we readily compute

ℓ
−1/2
1 ∥u∥Ω = ∥χ∥ =

1√
105

For the right-hand side, we have

ℓ
−1/2
1 ∥f∥Ω = ∥χ′′ + 2iknχ

′∥ ≤ ∥χ′′∥+ 2|kn|∥χ′∥ =
2

ℓ22
+ 2|kn|

(√
2

15

1

ℓ2

)
≤ 2

ℓ22
(1 + |kn|ℓ2),

and therefore

1 ≥ ℓ22
2

1

1 + |kn|ℓ2
ℓ
−1/2
1 ∥f∥Ω

and it follows that √
105∥u∥Ω = 1 ≥ ℓ22

2

1

1 + |kn|ℓ2
∥f∥Ω,

and

∥u∥Ω ≥ 1

2
√
105

1

1 + |kn|ℓ2
ℓ22∥f∥Ω.

Then, (2.2.26) follows by selecting n ∈ Z such that |kn| = k⋆.
To establish (2.2.27), we observe that the first inequality is a direct consequence of the

definition of Cst in (2.1.22) and (2.2.26). On the other hand, the second inequality follows
if we can show that

1

1 + k⋆ℓ2
≥ 1

2
min

(
1, (k⋆ℓ2)

−1
)
.

We establish this by distinguishing to cases. First, when k⋆ℓ2 ≤ 1, we have

2

1 + k⋆ℓ2
≥ 1 ≥ min(1, (k⋆ℓ2)

−1).

Second, if k⋆ℓ2 ≥ 1, we have k⋆ℓ2/2 ≥ 1/2, so that

k⋆ℓ2 ≥
1 + k⋆ℓ2

2
,
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and
2

1 + k⋆ℓ2
≥ 1

k⋆ℓ2
≥ min(1, (k⋆ℓ2)

−1).

Corollary 2.2.11 (Frequency scalings with and without quasi-resonances). Considering
the sequence of wavenumber k(j) := α+αj, j ∈ N, there exists a sequence of right-hand side
(f (j))j∈N ⊂ L2(Ω) such that

k(j)∥u(j)∥Ω ≥ 1

21
(k(j)ℓ2)

2 1

k(j)
∥f (j)∥Ω. (2.2.28)

Considering the sequence of wavenumber k(j) :=
(
1 +

√
(α + αj)2ℓ22 + 1

)
/ (2ℓ2), j ∈ N,

there exists a sequence of right-hand side (f (j))j∈N ⊂ L2(Ω) such that

k(j)∥u(j)∥Ω ≥ 1

42
(k(j)ℓ2)

3/2 1

k(j)
∥f (j)∥Ω. (2.2.29)

Proof. Recalling (2.2.26), the estimate in (2.2.28) simply follows from the fact that for the

selected sequence, k
(j)
n = 0, and that 2

√
105 ≤ 21. To establish (2.2.29), we observe that

for the second sequence of wave numbers, (k
(j)
n )2 = k(j)/ℓ2, so that

1 + k(j)⋆ ℓ2 = (k(j)ℓ2)
1/2 + 1 ≤ (k(j)ℓ2)

1/2 + (k(j)ℓ2)
1/2 ≤ 2(k(j)ℓ2)

1/2.

2.2.4 Numerical illustrations

Here, we illustrate our stability results by highlighting how they impact the stability of
finite element discretizations. To this end, we consider a first-order finite element dis-
cretization of (2.1.19) where the DtN operator is approximated by a perfectly matched
layer (with length ℓP := 1 and damping factor γ := 5). We do not present in detail here
the finite element method nor the perfectly matched layer treatment, as this topics will be
addressed in detail in Chapters 3 and 5.

We fix the domain Ω := (0, 1)2 (i.e. ℓ1 = ℓ2 = 1), and consider the coefficients ε ≡ 1,
A ≡ I. We select the right-hand side f ∈ L2(Ω) so that

u(x) := χ(x)eikd
in·x + eikd

out·x, ∀x ∈ Ω

with din · din = dout · dout = 1, din
1 = dout

1 = α + mπ for some m ∈ N , din
2 ≤ 0 and

dout
2 = −din

2 , and the cutoff function

χ(x) :=


1 if 0 ≤ x2 ≤ 1

2
,

16
(
x2 − 3

4

)2
(8x2 − 3) if 1

2
≤ x2 ≤ 3

4
,

0 if 3
4
≤ x2 ≤ 1.

(2.2.30)
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The cutoff function actually enables us to consider a plane wave source as volumic data
(noted at the end of subsection 2.1.3). Figures 2.7 and 2.8 depict the function f and the
associated solution u for the frequency k = 15π and the incidence angle θ = 20°.

Figure 2.7: Right-hand side f for k = 15π, θ = 20° and m = 0. Real part (left) and
imaginary part (right).

Figure 2.8: Solution u for k = 15π, θ = 20° and m = 0. Real part (left) and imaginary
part (right).
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Figure 2.9: Solution u for k = 10π, θ = 45° and m = 1. Real part (left) and imaginary
part (right).

Our goal here is to illustrate how the stability of the finite element method is affected
by the angle of incidence θ. For this purpose, we fix a frequency k a mode m ∈ N, and a
mesh, and plot the relative interpolation error and finite element error versus the angle θ
on Figures 2.10 and 2.11.
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Figure 2.10: Interpolation and finite element errors for m = 0 with k = 10π (left) and
k = 15π (right).
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Figure 2.11: Interpolation and finite element errors for m = 1 with k = 10π (left) and
k = 15π (right).

Figures 2.10 and 2.11 show that quasi-resonant modes increases the “pollution effect”
that manifests as a gap between the finite element error and the interpolation error. More
precisely, the phenomenon is particularly notable for θ = 90° and k = 10π and k = 15π
when m = 0 and θ = 53.13°, and θ = 60.07° for k = 10π and k = 15π, respectively when
m = 1. On the other hand, the link between these numerical results and the theoretical
results of stability is quite clear: the increased gaps correspond to values of θ leading to
k⋆ = 0, worsening the stability constant from Cst ≈ (kℓ2)

3/2 to Cst ≈ (kℓ2)
2.

2.3 Frequency-explicit stability estimates: multi-layer

case

In this section, we allow for more generality for the coefficients ε andA. Specifically, we will
consider multi-layered media covered by Assumption 2.1.1. In such a setting, the Fourier
expansion techniques do not work, because the coefficients are allowed to depend on the x1

variable. As a result, we will rely on the alternative technique of “Morawetz multiplier” that
consists in multiplying the PDE by a well chosen test function and performing integration
by parts.

Morawetz multiplier are named after Cathleen S. Morawetz due to her seminal works
linked with the stability of Helmholtz problems [108, 109, 111, 110]. They are also some-
times called “Rellich multipliers” due to his earlier work on eigenvalue problems [122]. This
key idea was subsequently used in a plethora of works, some of which we discuss hereafter.

At its core, the original idea consists in multiplying the Helmholtz PDE by x · ∇u,
where u is the solution. Formally, simple integration by parts (see e.g. [15, Equations (4)
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and (5)]) show that

2Re(f,x ·∇u)Ω = 2k2∥u∥2Ω − k2
∫
∂Ω

|u|2x · n+

∫
∂Ω

|∇u|2x · n.

The boundary conditions together with geometrical requirements can then be used to
ensure that the boundary terms have proper signs, leading to stability estimates [80, 127].
In particular, when consider a scattering problem by star-shaped Dirichlet obstacle, this
technique provides the optimal non-trapping stability estimate

Cst ∼ kℓ.

The approach can also be used for non-constant coefficients, leading to the same estimate
under radial monotonicity conditions for ε and A, see [15, 28, 106, 118].

Although being powerful, the original Morawetz multiplier is not suited to study ge-
ometries featuring parabolic trapping. Consider for simplicity a Dirichlet boundary, the
field x multiplying ∇u must enter the domain through the Dirichlet boundary and leave
the domain through the DtN boundary. This is for instance the case in Figure 2.12a, where
the obstacle is indeed star-shaped. However, for a geometry similar to the one we consider,
we can see in Figure 2.12c that the field x would flow outside the domain through the
Dirichlet boundary, leading to “wrong” signs in the boundary terms. It turns out that this
difficulty may be circumvented by replacing the field x by (0,x2), as can be seen on Figure
2.12d. We call the function (0,x2) · ∇u = x2∂u/∂x2 a “directional” multiplier. To the
best of our knowledge, this idea was first introduced in [27] to study scattering by rough
surfaces. A blend of the directional multiplier and the original multiplier was then also
used in [29] to study scattering by bounded obstacles with parabolically trapped rays, as
described in Figure 2.12b. The same multiplier is also used in [35] to study scattering by
finely layered obstacles.

In this section, we will see that the quasi-periodic conditions act similarly as Dirichlet
boundary conditions would, as far as Morawetz multipliers are concerned. As a result, as
sketched on Figure 2.13, we cannot use the standard Morawetz multiplier for scattering
by periodic structures, but the directional multiplier has a favorable behavior along the
quasi-periodic boundary conditions.
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(a) Standard Morawetz multiplier x (b) Directional multiplier (χx1,x2)

(c) Standard Morawetz multiplier x (d) Directional multiplier (0,x2)

Figure 2.12: Morawetz multiplier fields
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(a) The vector field x. (b) The vector field (0,x2).

Figure 2.13: Multipliers in periodic structures

2.3.1 A Morawetz identity for quasi-periodic boundary condi-
tions

Morawetz-type (also known as Rellich-type) identities are obtained after multiplying Helmholtz
equation by a Morawetz multiplier and applying the divergence theorem. The purpose of
this subsection is to derive a Morawetz identity, which will be used afterwards to bound
the energy norm of the solution. Under the conditions of Assumption 2.1.1, we multiply
the first equation in (2.1.18) by a directional Morawetz multiplier in order to obtain the
identity (2.3.1), which will help get an explicit stability estimate for this case.

Recall from Assumption 2.1.1 that for each 1 ≤ j ≤ N , Ωj corresponds to one of the
layers where the coefficients ε and A are smooth. The following Sobolev space of functions
which are H2-regular in each layer will be useful in this subsection

H2(P) :=
{
v ∈ L2(Ω) | v|Ωj

∈ H2(Ωj); 1 ≤ j ≤ N
}
.

Lemma 2.3.1 (Morawetz identity). For all u ∈ H1
♯ (Ω) ∩H2(P) solution to (2.1.18), we
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have

2

∫
Ω

A2

∣∣∣∣ ∂u∂x2

∣∣∣∣2 + k2
N−1∑
j=1

∫
Γj

[[ε]]|u|2x2n
j
2 −

N−1∑
k=1

∫
Γj

{
[[A1]]

∣∣∣∣ ∂u∂x1

∣∣∣∣2 + [[A2]]

∣∣∣∣ ∂u∂x2

∣∣∣∣2
}
x2n

j
2

+ k2
∫
Ω

∂ε

∂x2

x2|u|2 −
∫
Ω

{
∂A1

∂x2

x2

∣∣∣∣ ∂u∂x1

∣∣∣∣2 + ∂A1

∂x2

x2

∣∣∣∣ ∂u∂x1

∣∣∣∣2
}

− Re

{∫
ΓA

Ru ū

}

= 2Re

∫
Ω

εf

(
x2

∂ū

∂x2

+
1

2
ū

)
+ ℓ2

∫
ΓA

{
k2ε|u|2 +

∣∣∣∣ ∂u∂x2

∣∣∣∣2 − ∣∣∣∣ ∂u∂x1

∣∣∣∣2
}
. (2.3.1)

In particular, we have

2

∫
Ω

A2

∣∣∣∣ ∂u∂x2

∣∣∣∣2 ≤ 2Re

∫
Ω

εf

(
x2

∂ū

∂x2

+
1

2
ū

)
+ ℓ2

∫
ΓA

{
k2ε|u|2 +

∣∣∣∣ ∂u∂x2

∣∣∣∣2 − ∣∣∣∣ ∂u∂x1

∣∣∣∣2
}
.

(2.3.2)

Proof. We multiply the first equation in (2.1.18) by the (conjugate of the) directional
Morawetz multiplier

x2
∂u

∂x2

+
1

2
u,

we obtain

2Re

∫
Ω

f

(
x2

∂ū

∂x2

+
1

2
ū

)
= 2Re

∫
Ω

(
−k2εu−∇ · (A∇u)

)(
x2

∂ū

∂x2

+
1

2
ū

)
. (2.3.3)

We will develop the terms in the right hand side of (2.3.3). Let us first recall that the
identity

2Reϕ
∂ϕ̄

∂xj

=
∂

∂xj

|ϕ|2 (2.3.4)

holds for any sufficiently smooth function ϕ and j = 1 or 2. In particular, we have

2Re εu
∂ū

∂x2

= ε
∂

∂xj

|u|2

Then, recalling from Assumption 2.1.1 that nj = (nj
1,n

j
2) the unit upward normal to
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Γj, we have

2Re

∫
Ω

−k2εux2
∂ū

∂x2

= −k2
N∑
j=1

2Re

∫
Ωj

εx22Re

{
u
∂ū

∂x2

}

= −k2
N∑
j=1

∫
Ωj

εx2
∂

∂x2

|u|2

= −k2
N∑
j=1

{
−
∫
Ωj

∂

∂x2

(εx2)|u|2 +
∫
Γj

εx2|u|2nj
2 −

∫
Γj−1

εx2|u|2nj−1
2

}

= k2
∫
Ω

ε|u|2 + k2
∫
Ω

∂ε

∂x2

x2|u|2 + k2
N−1∑
j=1

∫
Γj

[[ε]]jx2|u|2nj
2 − k2ℓ2εN

∫
ΓA

|u|2.

Moreover, we have

2Re

∫
Ω

−k2εu
(
1

2
ū

)
= −k2

∫
Ω

ε|u|2.

On the other hand, using the formula∫
Ω

−∇ · (A∇u)v̄ =

∫
Ω

A∇u ·∇v̄ −
∫
ΓA

Ru v̄ ∀v ∈ H1
♯ (Ω),

we have

2Re

∫
Ω

−∇ · (A∇u)

(
1

2
ū

)
=

∫
Ω
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Ru ū
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∂ū
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∫
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∂2ū
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+ 2

∫
Ω
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+ 2Re
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A2x2
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∂x2

∂

∂x2

∂ū

∂x2

− 2ℓ2
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∣∣∣∣ ∂u∂x2

∣∣∣∣2 (2.3.5)
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developing the first expression of (2.3.5) and using again (2.3.4), we obtain

2Re

∫
Ω

A1x2
∂u

∂x1

∂2ū

∂x2∂x1

=
N∑
j=1

∫
Ωj

A1x2
∂

∂x2
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A1x2
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2 +

∫
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∣∣∣∣2nj
2 −
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developing the second expression

2Re
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and, we obtain (2.3.1) by combining the above results. Furthermore, we establish estimate
(2.3.2) since Assumption (2.1.1) and the DtN properties (2.1.16) assert that all therms on
the left side of (2.3.1) are positive.

2.3.2 Frequency-explicit stability estimates

The Morawetz identity of Lemma 2.3.1 applies under the assumption that the solution is
piecewise smooth. We start by showing that this is indeed the case, due to the regularity
of the interfaces Γj.

Lemma 2.3.2 (A priori smoothness). Assume that ε and A satisfies Assumption 2.1.1.
Then, if f ∈ L2(Ω) and u ∈ H1

♯ (Ω) solves (2.1.19), we have u ∈ H2(P).

Proof. The proof is standard [20, Section 9.6], and we shall only sketch it. First, we extend
u by quasi-periodicity in the x1 direction to a function ũ defined over R × (0, ℓ2). This
function now satisfies

−εũ−∇ · (A∇ũ) = f̃

where f̃ is the quasi-periodic extension of f and ε and A are the periodic extension of ε
and A. We then consider a family of smooth functions {χj}j such that∑

j

χj = 1 in Ω
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and the support of each χj only contains one interface Γj. We then look at the function
uj := χjũ which solves

−εũ−∇ · (A∇ũ) = f̃ −∇ · (A∇χj) ũ− 2∇χj ·A∇ũ

in R2 but with only one interface or boundary condition. We can then find a coordinate
change that flatten this interface or boundary, and apply the method of tangential differ-
ential quotient to show that uj ∈ H2(R2 \Γj), which in turns proves that u ∈ H2(P).

Based on Lemma 2.3.2, the Morawetz identity in (2.3.1) and the DtN map properties
in (2.1.16) and (2.1.17), we are now able to derive a frequency-explicit stability estimate
for the textured multilayer case, corresponding to coefficients satisfying Assumption 2.1.1.

Theorem 2.3.3 (Stability in layered media). Assume that ε and A satisfy Assumption
2.1.1. Then, (2.1.19) is well-posed, and we have

Cst ≤ 4 (1 + kℓ2) (kℓ2)
2. (2.3.6)

Proof. We fix f ∈ L2(Ω) and that u ∈ H1
♯ (Ω) is a solution to (2.1.19). Then, by Lemma

2.3.2, we know that u ∈ H2(P), so that the Morawetz identity of Lemma 2.3.1 may be
applied.

We start by using the Fourier expansion presented in (2.1.8) to write that∫
ΓA

k2|u|2 = k2
∫
ΓA

∑
n∈Z

|ûn|2 = k2ℓ1
∑
n∈Z

|ûn(ℓ2)|2,
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|û′n|2 = ℓ1
∑
n∈Z

|û′n(ℓ2)|2 = ℓ1
∑
n∈Z

|kn|2|ûn(ℓ2)|2.

Recalling that ε = 1 and A = I in a neighborhood of ΓA, we have

ℓ2

∫
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{
k2|u|2 +
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2
)
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}
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and therefore
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{
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= 2ℓ2ℓ1
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|n|≤nc

|kn|2|ûn(ℓ2)|2. (2.3.7)
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Next, we pick v = u as a test function in (2.1.19) and taking the imaginary part yields

ℓ1
∑

|n|≤nc

kn |ûn(ℓ2)|2 = Im⟨Ru, u⟩ΓA
= − Im(εf, u)Ω. (2.3.8)

Therefore, since 0 ≤ kn ≤ k for n ≤ nc, we have

2ℓ2ℓ1
∑

|n|≤nc

|kn|2|ûn(ℓ2)|2 ≤ 2kℓ2ℓ1
∑

|n|≤nc

kn|ûn(ℓ2)|2

≤ 2kℓ2∥f∥ε,Ω∥u∥ε,Ω.

Now, using (2.3.2) , we have∥∥∥∥ ∂u∂x2

∥∥∥∥2
A2,Ω

≤ 1

2

{
2ℓ2∥f∥ε,Ω

∥∥∥∥ ∂u∂x2

∥∥∥∥
ε,Ω

+ ∥f∥ε,Ω∥u∥ε,Ω + 2kℓ2∥f∥ε,Ω∥u∥ε,Ω

}

≤

{
ℓ2

√
εmax

Amin

∥f∥ε,Ω
∥∥∥∥ ∂u∂x2

∥∥∥∥
A2,Ω

+

(
1

2
+ kℓ2

)
∥f∥ε,Ω∥u∥ε,Ω

}
.

On the other hand, since u ∈ H1(Ω) and u = 0 on ΓD, the Poincaré inequality (2.2.10)
give

∥u∥ε,Ω ≤
√
εmax∥u∥Ω ≤ 2

√
εmaxℓ2

∥∥∥∥ ∂u∂x2
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0,Ω

≤ 2

√
εmax

Amin

ℓ2

∥∥∥∥ ∂u∂x2
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A2,Ω

= 2ℓ2

∥∥∥∥ ∂u∂x2

∥∥∥∥
A2,Ω

, (2.3.9)

where we used the fact that εmax = 1 and Amin = 1. As a result∥∥∥∥ ∂u∂x2

∥∥∥∥2
A2,Ω

≤ 2 (1 + kℓ2) ℓ2∥f∥ε,Ω
∥∥∥∥ ∂u∂x2

∥∥∥∥
A2,Ω

,

and ∥∥∥∥ ∂u∂x2

∥∥∥∥
A2,Ω

≤ 2 (1 + kℓ2) ℓ2∥f∥ε,Ω.

Finally, re-using (2.3.9)
∥u∥ε,Ω ≤ 4 (1 + kℓ2) ℓ

2
2∥f∥ε,Ω,

so that
k∥u∥ε,Ω ≤ 4 (1 + kℓ2) (kℓ2)ℓ2∥f∥ε,Ω,

which implies (2.3.6) under the assumption that u does exist. Now, (2.3.6) implies that if
f = 0, we must have u = 0, so that the solution, if it exists, must be unique. As a result,
Fredholm alternative ensures the existence and uniqueness of the solution, completing the
proof.
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The one-layer case where ε ≡ 1 and A = I is covered by Assumption 2.1.1 as a
particular case. Then, our bounds simplifies as

Cst ≤ 4(1 + kℓ2)(kℓ2)
2 ≈ (kℓ2)

3,

for large frequencies. It is interesting to note that the estimate obtained in the previous
subsection, namely

Cst ≤ 12min
(
1, k⋆ℓ2)

−1
)
(kℓ2)

2 ≤ 12(kℓ2)
2,

is much sharper (and is even improved away from quasi-resonances). This is the reason why
Fourier expansion techniques are interesting, even though they are restricted to specific
situations. The stability bound derived in this subsection, on the other hand, has the
advantage to apply to a wider range of situations. In particular, the x1 variations of the
coefficients are not restricted at all by Assumption 2.1.1. We will see in Chapter 5 that it
allows to perform periodic homogenization for layers with highly oscillating interfaces.



49

Chapter 3

Error and stability analysis of
perfectly matched layers
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Many simulation tools, including finite difference, finite element and Trefftz methods,
operate on a bounded computational domain. Wave propagation problems are, on the
other hand, often set in unbounded media, so that a “domain truncation” strategy must
be applied before discretizing the problem with the aforementioned techniques. The DtN
operator we have introduced in the previous chapter is not really suited for this purpose,
as it is non-local and leads to a dense block in the discretization matrix (see Figure 3.1).

Several strategies have therefore been developed to approximate the DtN operator by
a local, or at least, computationally efficient, boundary condition. We may cite, among
many, infinite element methods [5], low- and high-order absorbing boundary conditions
[66, 45], FEM-BEM coupling [81] and perfectly matched layers [17, 18, 31]. Here, we will
focus on the latter.

ΓA

ΓD

Γ♯− Γ♯+


× × 0 0 0 ×
0 × × × 0 0
0 0 × × × 0
0 0 0 × × ×
× 0 0 0 × ×


(a) local boundary condition

ΓA

ΓD

Γ♯− Γ♯+


× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


(b) non-local boundary condition

Figure 3.1: Communication and matrix patterns associated with boundary conditions

Perfectly matched layers (PML) were introduced in the seminal works of Berenger
[17, 18]. Strictly speaking, a PML is not a boundary condition. Instead, the computa-
tional domain is extended by adding an absorbing layer that will damp outgoing waves
(see Figure 3.2a). Mathematically, these absorbing layers are represented by material co-
efficients that are anisotropic and complex-valued. This coefficients are carefully chosen so
that the transmission condition from the physical medium to the absorbing layer does not
produce unwanted reflections. This may also be interpreted as a complex change of coor-
dinates for the solution in the absorbing layer [52, Chapter 4.5]. In practice, although the
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computational domain is slightly enlarged, the computational cost remains relatively min-
imal compared a non-local boundary condition. In addition, due to the limited accuracy of
lowest order ABCs and the difficulty of implementing high order ABCs (containing high-
order derivatives), PML techniques have become very popular for the numerical simulation
of waves in unbounded domains [43, 42, 85, 86, 133].

When considering scattering by bounded obstacle (i.e. without quasi-periodic boundary
conditions), it is shown in [45, 82, 96, 61] that the solution of the PML problem converges
exponentially fast to the exact solution when the thickness of the PML and/or the damping
coefficient increase. However, we will see in this chapter that the situation is different
for scattering by periodic structures. An intuitive way to understand why PMLs behave
differently in periodic structures is illustrated in Figure 3.2b. Indeed, quasi-resonant modes
are allowed to travel orthogonaly to the layer, so that they are only weakly damped. We
will provide quantitative estimates illustrating this phenomenon.

In this chapter, we employ a PML to approximate the DtN operator. Our objective is to
analyze the properties of the resulting “PML problem”. In particular, we focus on two key
sets of results. First (i), we show that the solution to the PML problem converges toward
the solution of the original problem if the PML parameters are suitably chosen. Second
(ii), we analyze the inf-sup stability of the PML problem. Notice that this is a subtle
issue, and in particular, the convergence mentioned at (i) does not imply (ii). Indeed,
convergence analysis only applies to (physically meaningful) right-hand sides contained
in the original domain, whereas inf-sup stability also requires the anlaysis of right-hand
sides contained in the absorbing layer. Although such right-hand sides are non-physical,
there are paramount in the stability and convergence study of numerical methods. This
analysis is actually complicated, and we will consider two separate cases. On the one
hand (iia), we will treat the case of a homogeneous medium with quasi-periodic boundary
conditions, for which we provide optimal stability results. On the other hand (iib), we will
provide a general inf-sup condition for the PML problem under the general assumption
that the original problem is also inf-sub stable. In this case, we believe that our result is
sub-optimal, as the PML inf-sup constant is deteriorated compared to the original one.

3.1 The PML Helmholtz problem in periodic struc-

tures

In this section, we rigorously introduce the “PML problem” set in an enlarged domain Ω̃.
We also show that we can equivalently reformulate the PML onto the original domain Ω
by introducing a PML boundary operator RP that may be viewed as a perturbation of the
exact DtN operator R, and we provide an explicit expression for the perturbed operator
RP.
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Outgoing wave Reflected wave

PML

ΓD

Γ♯− Γ♯+

(a) Non quasi-resonant mode

Outgoing wave Reflected wave

PML

ΓD

Γ♯− Γ♯+

(b) Quasi-resonant mode

Figure 3.2: Absorption in a PML

3.1.1 The PML Helmholtz problem and its variational formula-
tion

Our absorbing layer is characterized by a depth ℓP > 0 and two dimensionless constants
γr, γi > 0. The notations

χP(x) := 1x2>ℓ2 , χI := 1− χP, ν := (γr + iγi)χP + χI,

and
γ⋆ = min(γr, γi), γ⋆ = sup(γr, γi)

will be useful. For the sake of simplicity, we will assume throughout this work that γr, γi ≥
1. In particular, setting νP = γr + iγi, we have

√
2 ≤ |νP| ≤

√
2γ⋆. (3.1.1)

Notice that in essence, our results remain valid if γr, γi < 1, but the constants may blow
up as γr → 0 or γi → 0.

The PML problem is set on the enlarged domain Ω̃ := (0, ℓ1) × (0, ℓ2 + ℓP). Ω̃ is
composed of two parts, the physical domain Ω := (0, ℓ1) × (0, ℓ2) and the absorbing layer

ΩP := (0, ℓ1)× (ℓ2, ℓP). Its boundary is partitioned as ∂Ω̃ = ΓP ∪ ΓD ∪ Γ̃♯, where

ΓP := (0, ℓ1)× {ℓ2 + ℓP}
Γ̃♯, := Γ̃♯+ ∪ Γ̃♯−,

Γ̃−
♯ := {0} × (0, ℓ2 + ℓP),

Γ̃+
♯ := {ℓ1} × (0, ℓ2 + ℓP).

(3.1.2)
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The geometrical setting is illustrated on Figure 3.3.

ΩP

Ω

ΓD

ΓP

Γ♯+

ΓP,♯+

Γ̃♯+

Figure 3.3: Geometrical setting of the PML problem

The PML problem is obtained by formally replacing the ∂/∂x2 operator by ν−1∂/∂x2.
Since ν does not depend on x1, we can then multiply the resulting equation by ν, leading
to the following: Find ũ: Ω̃ → C such that

−k2νεũ− ∂

∂x1

(
νA1

∂ũ

∂x2

)
− ∂

∂x2

(
ν−1A2

∂ũ

∂x2

)
= εf̃ in Ω̃

ũ = 0 on ΓP

ũ = 0 on ΓD

ũ+ − eiαℓ1ũ− = 0 on Γ̃♯.

(3.1.3)

Introducing the Sobolev space

H1
♯ (Ω̃) :=

{
v ∈ H1(Ω̃,C) | v|ΓD

= v|ΓP
= 0 and v|

Γ̃♯+
= eiαℓ1v|

Γ̃♯−

}
,

and assuming that f̃ ∈ L2(Ω̃), we can recast the above PML problem as follows: Find

ũ ∈ H1
♯ (Ω̃) such that

b̃(ũ, ṽ) = (εf̃ , ṽ)Ω̃ ∀ṽ ∈ H1
♯ (Ω̃), (3.1.4)

where
b̃(ũ, ṽ) = −k2(νεũ, ṽ)Ω̃ + (νA1∂1ũ, ∂1ṽ)Ω̃ + (ν−1A2∂2ũ, ∂2ṽ)Ω̃.

Remark 3.1.1 (Damping function). Remark that the PML damping function ν is chosen
as piecewise constant, which simplifies the numerical implementation compared to other
damping functions. A constant damping function has already been used in [134]. Moreover,
different functions have been used for 1D-periodic geometry, including power functions in
[40, 39] and non-integrable functions in [19, 123].
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Remark 3.1.2 (Damping coefficient). The original PML condition takes γr = 1 in the
PML region. In contrast, we consider a variable γr (γr ̸= 1) in order to attenuate both
propagating and evanescent waves in this region (see numerical examples 3.2.3 for valida-
tion).

Remark 3.1.3 (Dirichlet boundary condition). We chose a Dirichlet boundary condition
on the external PML boundary ΓP. As in [134, 40, 39], one could use other boundary
conditions (e.g., Neumann or Robin condition) and the upcoming analysis would be largely
similar.

3.1.2 PML as a DtN approximation

The goal of this subsection is to understand the PML as a perturbation of DtN operator.
To do so, we will focus on the case where the right-hand side f̃ ∈ L2(Ω̃) of (3.1.4) is
supported in Ω, and we will rewrite an equivalent definition ũ|Ω through a PDE problem
only set in Ω. This problem, although set in Ω as the original Helmholtz problem (2.1.19),
will have a different boundary condition on ΓA. Actually, we will see that this boundary
condition is in fact a DtN operator, but associated with the with the absorbing layer ΩP

instead of the semi-infinite strip (0, ℓ1)× (ℓ2,+∞).
We first note that any solution ũ to (3.1.3) satisfies the original Helmholtz PDE

−k2εũ−∇ · (A∇ũ) = f̃ ,

in the physical domain, since ν = 1 in Ω. Therefore, ũ must satisfy the original problem
in Ω, but with a different boundary condition. To make this boundary condition explicit,
we rewrite the PML problem as: Find u0 : Ω → C and uP : ΩP → C such that

−k2εu0 −∇ · (A∇u0) = εf̃ in Ω,
u0 = 0 on ΓD,

u0+ − eiαℓ1u0− = 0 on Γ♯,
∇u0 · n = ν−1∇uP · n on ΓA,

(3.1.5)

and 
−k2ν2PuP − ν2P

∂2uP

∂x21
− ∂2uP

∂x22
, = νPf̃ in ΩP

uP = 0 on ΓP,
uP+ − eiαℓ1uP− = 0 on ΓP,♯,

uP = u0 on ΓA.

(3.1.6)

Notice that the two boundary conditions on ΓA in (3.1.5) and (3.1.6), imply that if set
ũ := u0χI + uPχP, then [[ũ]] = 0 and [[ν−1∂2ũ]] = 0 on ΓA, so that ũ is indeed a solution to
(3.1.3).
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Assuming that f̃ |Ω = f and f̃ |ΩP
= 0 and that Problem (3.1.6) admits a unique

solution for any u0 ∈ H
1/2
♯ (ΓA), we may define a bounded linear operator RP : H

1/2
♯ (ΓA) →(

H
1/2
♯ (ΓA)

)′
as

RPu
0 := ν−1∇uP · n, (3.1.7)

and (3.1.5) then reads 
−k2εu−∇ · (A∇u) = εf in Ω,

u = 0 on ΓD,
u+ − eiαℓ1u− = 0 on Γ♯,

A∇u · n− RPu = 0 on ΓA.

(3.1.8)

We thus see that the PML problem is similar to the original one (2.1.18): it amounts
to replacing R by RP. Therefore, the error between the operators R and RP will reflect
the convergence of the PML solution in the domain of interest toward the original solution.
The sesquilinear form

bP(ϕ, v) := −k2(εϕ, v)Ω − ⟨RPϕ, v⟩ΓA
+ (A∇ϕ,∇v)Ω ∀ϕ, v ∈ H1

♯ (Ω) (3.1.9)

associated with the weak form of (3.1.8) will be useful later. The definition of RP shows

that whenever f̃ ∈ L2(ΩP) is supported in Ω, if ũ ∈ H1
♯ (Ω̃) solves (3.1.4), ũ|Ω can be

equivalently defined as the unique element of H1
♯ (Ω) such that

bP(ũ|Ω, v) = (f̃ , v)Ω ∀v ∈ H1
♯ (Ω).

The next lemma shows that RP is indeed well-defined, and that an explicit expression
is available. Here, we use the fact that we have chosen ν constant inside the PML layer.

Lemma 3.1.4. For all u0 ∈ H
1/2
♯ (ΓA), Problem (3.1.6) admits a unique solution uP ∈

H1
♯ (ΩP) with f̃ = 0. In addition, we have

RPU = i
∑
n∈Z

1 + e2iνknℓP

1− e2iνknℓP
knÛne

i(α+αn)x1 ∀U ∈ H
1/2
♯ (ΓA). (3.1.10)

Remark 3.1.5. In the presence of quasi-resonance, there exists values of n ∈ Z for which
knℓP = 0, so that the expression

1 + e2iνknℓP

1− e2iνknℓP
kn

is not well-defined. In this case, it should be interpreted as

1

ℓP

1 + e2iν0

1− e2iν0
0 := − 1

νℓP
= lim

kℓP→0

1

ℓP

1 + e2iνkℓP

1− e2iνkℓP
kℓP.
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Proof. For the sake of simplicity, we write U ∈ H
1/2
♯ (ΓA) for the boundary data and

u ∈ H1
♯ (ΩP) the solution. We have

−k2ν2u− ν2
∂2u

∂x21
− ∂2u

∂x22
= 0

in ΩP together with the boundary conditions u|ΓP
= 0, u|ΓA

= U , and quasi-periodicity.
Using Fourier expansion, we then obtain that

−k2nν2ûn − û′′n = 0 (3.1.11)

with the additional conditions that ûn(ℓ2) = Ûn and ûn(ℓ2 + ℓP) = 0. We may first write
that

ûn(x2) = c−e
−iknν(x2−ℓ2−ℓP ) + c+e

iknν(x2−ℓ2−ℓP ).

Then
0 = ûn(ℓ2 + ℓP) = c− + c+ = 0,

so that
ûn(x2) = c(eiknν(x2−ℓ2−ℓP) − e−iknν(x2−ℓ2−ℓP)).

and then
Ûn = ûn(ℓ2) = c(e−iknνℓP − eiknνℓP),

thus

ûn(x2) = Ûn
eiknν(x2−ℓ2−ℓP) − e−iknν(x2−ℓ2−ℓP)

e−iknνℓP − eiknνℓP
,

and

û′n(x2) = iknνÛn
eiknν(x2−ℓ2−ℓP) + e−iknν(x2−ℓ2−ℓP)

e−iknνℓP − eiknνℓP
,

as well as

ν−1û′n(ℓ2) = iknÛn
e−iknνℓP + eiknνℓP

e−iknνℓP − eiknνℓP
= ikn

1 + e2iknνℓP

1− e2iknνℓP
Ûn.

As a result, if kn ̸= 0 for all n ∈ Z, we have

RPu =
∑
n∈Z

1 + e2iknνℓP

1− e2iknνℓP
iknûn.

Now, if kn = 0 for some n ∈ Z, instead of (3.1.11) we have

−û′′n = 0,

with the boundary conditions ûn(ℓ2) = Ûn and ûn(ℓ2 + ℓP) = 0. Then

ûn(x2) =
Ûn

ℓP
(ℓP + ℓ2 − x2) ,
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as well as

û′n(x2) =
−Ûn

ℓP
.

As a result, we get

ν−1û′n(ℓ2) =
−1

νℓP
Ûn.

Since

lim
kn→0

=
1 + e2iknνℓP

1− e2iknνℓP
ikn = − 1

νℓP
,

we will maintain the notation

RPu =
∑
n∈Z

1 + e2iknνℓP

1− e2iknνℓP
iknûn,

where the multiplicative coefficients are to be understood as explained in Remark 3.1.5.

3.2 Error estimates

The goal of this section is to establish error estimates that control (i) the difference between
the DtN operators R and RP, and (ii) the difference between the original solution u and
the solution to the PML problem ũ. These estimates are certainly of interest in view of
error control of finite element discretization. As a result, these questions have already
been partly adressed in the literature. For instance, we may cite works on adaptive finite
element schemes [40, 39, 134]. One limitation of these works is that they explicitly exclude
quasi-resonances from their study. Another interesting work is the PhD [136] where the
difference (R − RP) is controlled, but the corresponding estimate on (u − ũ)|Ω is not
rigorously established.

3.2.1 Error estimates for the DtN approximation

In this subsection, we measure how well RP approximates R. Specifically, we will pro-
vide an upper bound for (R − RP) in a suitable operator norm. This is done thanks to
expressions of R and RP that we explicitly obtained in terms of Fourier modes earlier.

Theorem 3.2.1 (Error estimate for the DtNs). We have R −RP : L2(ΓA) → L2(ΓA). In
addition, the estimate

sup
U∈H1

♯ (ΓA)

∥U∥ΓA
=1

∥(R − RP)U∥ΓA
≤ εminkEP (3.2.1)

holds true with

EP :=
1

εmin

1

γ⋆

1

kℓP

(
1 + γ⋆Λk,ℓ,θ

√
kℓ1

ℓP
ℓ1

)
exp

(
−γ⋆Λk,ℓ,θ

√
kℓ1

ℓP
ℓ1

)
.



58

Proof. Recalling Definition (2.1.15) of R and characterization (3.1.10) of RP, we have

(R − RP)U = i
∑
n∈Z

(
1− 1 + ei2νknℓP

1− ei2νknℓP

)
knÛne

i(α+αn)x1 = − 1

νℓP

∑
n∈Z

γnÛne
i(α+αn)x1 ,

with

γn := (i2νknℓP)
ei2νknℓP

1− ei2νknℓP
.

Next, recalling that νP = γr + iγi, we have

ei2νknℓP = ei2knγrℓPe−2knγiℓP .

Then, either kn = βn and |ei2νknℓP| = e−2|kn|γiℓP or kn = iβn and |ei2νknℓP| = e−2|kn|γrℓP ,
leading to

|ei2νknℓP| ≤ e−2γ⋆|kn|ℓP . (3.2.2)

Combining (3.2.2) with the reverse triangle inequality |1 − ei2νknℓP| ≥ 1 − |ei2νknℓP|, we
arrive at

|γn| ≤ 2|ν||kn|ℓP
e−2γ⋆|kn|ℓP

1− e−2γ⋆|kn|ℓP
=

|ν|
γ⋆
h(2γ⋆|kn|ℓP),

where h(x) := xe−x/(1− e−x). Then, elemental analysis shows that

h(x) ≤ g(x) := (1 + x)e−x,

where g is a non-increasing function of x ≥ 0. It follows that

|γn| ≤
|ν|
γ⋆
g(γ⋆|kn|ℓP) ≤

|ν|
γ⋆
g(γ⋆min

n∈Z
|kn|ℓP),

and (3.2.1) follows from (2.2.21).

Remark 3.2.2 (Converge rates). Far from quasi-resonances, the convergence is exponen-
tial of the PML approximation exponential. Suppose for example that 2k⋆γ⋆ℓP > ln 2, then

EP ≤ 4

εmin

k⋆
k
e−2γ⋆|k⋆|ℓP . (3.2.3)

Thus, exponential convergence is ensured when the thickness ℓP and/or the damping coef-
ficients γ⋆ of the PML layer go to infinity.

In contrast, we only maintain a linear convergence for modes close to quasi-resonances.
In fact, if k⋆ = 0, we simply have

EP ≤ 1

kεmin

1

γ⋆ℓP
, (3.2.4)

and the convergence becomes linear depending on PML thickness ℓP and its damping coef-
ficients γ⋆.
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Equally important observation is that the appearance of γ⋆ in the bound (3.2.1) is due
to inequality (3.2.2). Moreover, because of equation (3.2.1), if kn is associated with an
outgoing wave (i.e. non-negative real number kn = |kn|), then γ⋆ can be replaced by γi.
Consequently, the variation of the damping coefficient γi will affect the absorption of the
outgoing propagative modes. On the other hand, if kn is associated with an evanescent
wave (pure imaginary number with positive imaginary part and kn = i|kn|), then γ⋆ can be
replaced by γr. Therefore, as indicated in remark 3.1.1, the variation of the coefficient γr
will affect the absorption of evanescent modes.

Remark 3.2.3 (Truncation with a Neumann boundary condition). Let us we rapidly dis-
cuss the case of a Neumann boundary condition instead of the Dirichlet boundary condition
to truncate the PML, and show that no substantial gain in efficiency should be expected.

Considering a homogeneous Neumann boundary condition on ΓP, we get then the PML

map RN
P : H

1/2
♯ (ΓA) →

(
H

1/2
♯ (ΓA)

)′
as

RN
PU = i

∑
n∈N

τnÛne
i(α+αn)x1 ,

where

τn =
1− e2iνknℓP

1 + e2iνknℓP
kn.

Thus,
lim
kn→0

τn = 0,

and this result allows the operator to be efficient and to treat exactly the quasi-resistant
modes where kn = 0. However, this is not the case for the modes near the quasi-resonance.
In fact, we have

(R − RN
P )U = i

∑
n∈N

(
1− 1− ei2νknℓP

1 + ei2νknℓP

)
knÛne

i(α+αn)x1 =
1

νℓP

∑
n∈N

δnÛne
i(α+αn)x1 ,

with

δn := (i2knℓP)
ei2νknℓP

1 + eiνknℓP
.

Considering ν = 1 + iγi, similar calculations to proof of Theorem 3.2.1 show that

|δn| ≤
1

ℓP
g(2|kn|ℓP),

where

g(t) :=
te−t

|1 + e−iγite−t|
t ≥ 0.

In addition, elemental analysis shows that if t→ 0 and x→ π/γi then g(t) → 1. Then,
the exponential convergence of the PML solution turns linear in this case. To help illustrate
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Figure 3.4: Function g for γi = 30.

the variation of the PML error in this case of the Neumann boundary condition, Figure
3.4 depicts the function g for γi = 30.

The graph of g shows that it vanishes at zero, which explains the exact treatment of
quasi-resonant modes (kn = 0). But, also shows that for small values of kn, the PML
solution keeps only the linear convergence (g(t) ≈ 1 for some t ≈ 0).

3.2.2 Error estimates for the PML solution

Having establish an error error estimate controlling R − RP, we now focus on controlling
the difference (u − ũ)|Ω between the Helmholtz solution associated with the operator R
and RP. We start by establishing a useful trace inequality.

Lemma 3.2.4 (Trace inequality). For all v ∈ H1(Ω), the following trace inequality holds
true:

εmink∥v∥2ΓA
≤ |||v|||2k,Ω . (3.2.5)

Proof. We simply need to show (3.2.5) for smooth functions. The general results will then
follow by density. Let us thus consider v ∈ C∞(Ω) with v|ΓD

= 0. Let x1 ∈ (0, ℓ1). Since
v(x1, 0) = 0, we have

k∥v(x1, ℓ2)∥2 = 2kRe

∫ ℓ2

0

v(x1,x2)
∂v

∂x2

(x1,x2)dx2,

and integrating over x1 shows that

k∥v∥2ΓA
= 2kRe

∫
Ω

v
∂v

∂x2

≤ 2k∥v∥Ω
∥∥∥∥ ∂v∂x2

∥∥∥∥
Ω

≤ 2(kε
−1/2
min ∥v∥ε,Ω)∥∇v∥A,Ω,

and (3.2.5) follows from Young’s inequality.
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The next step of our analysis is to establish an inf-sup condition for bP assuming that
EP is sufficiently small.

Lemma 3.2.5 (Inf-sup condition for bP). Assume that CisEP < 1. Then, the inf-sup
constant

1

Cis,P

:= inf
ϕ∈H1

♯ (Ω)

|||ϕ|||k,Ω=1

sup
v∈H1

♯ (Ω)

|||v|||k,Ω=1

Re bP(ϕ, v) (3.2.6)

is finite and we have

Cis,P ≤ Cis

1− CisEP

. (3.2.7)

Proof. Let ϕ ∈ H1
♯ (Ω) with |||ϕ|||k,Ω = 1. Since H1

♯ (Ω) is Hilbert space, we may replace

the supremum in (2.1.21) by maximum, and as a result, there exists v⋆ ∈ H1
♯ (Ω) with

|||v⋆|||k,Ω = 1 such that

Re b(ϕ, v⋆) ≥ 1

Cis

.

Then, we have

Re bP(ϕ, v
⋆) = Re b(ϕ, v⋆)− Re⟨(RP − R)ϕ, v⋆⟩ΓA

≥ 1

Cis

− kEPεmin∥ϕ∥ΓA
∥v⋆∥ΓA

.

Recalling (3.2.5), we have εmink∥u∥ΓA
∥v⋆∥ΓA

≤ |||u|||k,Ω |||v⋆|||k,Ω = 1, and as a result

Re bP(ϕ, v
⋆) ≥ 1

Cis

− EP =
1− CisEP

Cis

.

Estimate (3.2.7) then follows since ϕ was arbitrary.

We are finally ready to deliver the key result of this section.

Theorem 3.2.6 (PML error estimate). If u and ũ respectively denote the solutions to the
original and PML Helmholtz problems (2.1.19) and (3.1.4) with right-hand side f ∈ L2(Ω),
the error estimates

|||u− ũ|||k,Ω ≤ CisEP

1− CisEP

|||u|||k,Ω , (3.2.8)

and

k |||u− ũ|||k,Ω ≤ CisEP

1− CisEP

Cis∥f∥ε,Ω, (3.2.9)

hold true.

Proof. For all v ∈ H1
♯ (Ω), we have

b(u, v) = (f, v) = bP(ũ, v),
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and it follows in particular that

bP(u− ũ, v) = bP(u, v)− b(u, v) = ⟨(R − RP)u, v⟩.

Employing (3.2.1) and (3.2.5), we have

|bP(u− ũ, v)| ≤ ∥(R − RP)u∥ΓA
∥v∥ΓA

≤ εminkEP∥u∥ΓA
∥v∥ΓA

≤ EP |||u|||k,Ω |||v|||k,Ω ,

Then, (3.2.6) implies that there exists v⋆ ∈ H1
♯ (Ω) with |||v|||k,Ω = 1 such that

|||u− ũ|||k,Ω ≤ Cis,P Re bP(u− ũ, v⋆) ≤ Cis,PEP |||u|||k,Ω |||v⋆|||k,Ω = Cis,PEP |||u|||k,Ω ,

which, together with (3.2.6), proves (3.2.8). Then, (3.2.9) simply follows from (2.1.25).

3.2.3 Numerical examples

In this subsection, we present numerical experiments illustrating our theoretical conver-
gence results on the PML approach. We employ the same setting than in subsection 2.2.4.
Namely, we fix ℓ1 = ℓ2 = 1 so that Ω = (0, 1)2, and we select the source term f ∈ L2(Ω)
such that the analytical solution u ∈ H1

♯ (Ω) reads

u(x) := χ(x)eikd
in·x + eikd

out·x, ∀x ∈ Ω,

with din · din = dout · dout = 1, din
1 = dout

1 = α + mπ for some m ∈ N , din
2 ≤ 0 and

dout
2 = −din

2 . The cutoff function χ ∈ C1,1(Ω) is defined by

χ(x) :=


1 if 0 ≤ x2 ≤ 1

2
,

16
(
x2 − 3

4

)2
(8x2 − 3) if 1

2
≤ x2 ≤ 3

4
,

0 if 3
4
≤ x2 ≤ 1.

We employ a first-order finite element method to compute an approximate solution ũH of
ũ.

Similarly to what we have done in subsection 2.2.4, we can select θ in such a way that
u is composed of single Fourier mode ûn, meaning that it is chosen such that

k2n = k2 − (k sin(θ) + 2mπ)2.

We fix m = 1 and k = 6.8284π, leading to a quasi-resonance for θ = 45o. Figure 3.5
reports the convergence of the PML ũH towards the original solution u for different values
of θ and parameters ℓP, γi and γr. In all cases, we separate the case where (i) θ < 45o so
that k2n > 0, (ii) θ = 45o so that k2n = 0 and (iii) θ > 45o so that k2n < 0. In these plots,
the y-axis is in log-scale, so that straight lines correspond to exponential convergence.

In Figure 3.5a, we observe an exponential convergence rate as ℓP is increased whenever
k2n ̸= 0. Indeed, the curves are straight lines, until they reach a plateau where the finite
element error dominates. The slope of this straight lines decreases as k2n approaches zero.
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When k2n = 0 a linear convergence rate is observed. These results are in agreement with
our analysis.

Figures 3.5b and 3.5c also nicely illustrate our analysis. We see a linear convergence
rate as γi and γr as increased for k2n = 0. For γi, we see exponential convergence if k2n > 0
and no convergence for k2n < 0. The converse happens for γr, where there is no convergence
for k2n > 0 and exponential convergence when k2n < 0.
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(a) γr = 1 and γi = 0.6.
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(b) ℓP := 1/8 and γr := 1.
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(c) ℓP := 1/8 and γi := 1.

Figure 3.5: Convergence of ∥∇(u− ũH)∥Ω/∥∇u∥Ω for different PML parameters and inci-
dent angles.
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3.3 Stability of the PML Helmholtz problem

In the last section, we have shown that the PML problem is well-posed for right-hand sides
f ∈ L2(Ω) supported in the original domain, but vanishing in the absorbing layer ΩP.
Although this setting does describe the situations that are of “physical interest”, duality
proofs for the stability and convergence of finite element methods requires the stability of
the problem for general right-hand sides f ∈ L2(Ω̃). More generally, in this section, we

address the inf-sup stability of the sesquilinear form b̃ corresponding to the PML problem
set on Ω̃.

To the best of our knowledge, the first stability estimate for the PML Helmholtz problem
was given in [74] for a one-dimensional homogeneous media. This setting allows the use

of a Green function that the authors use to show C̃st ∼ (kℓ), i.e. the same estimate
than for the one-dimensional Helmholte problem without the PML. Then, for the two-
dimensional homogeneous problem without periodicity assumptions, full-space problem
and under certain conditions on the frequency and on the PML coefficients, the estimate

C̃st ∼ (kℓ)3/2 was proved in [41]. Such estimate half-an-order worst that the corresponding
estimates with the exact DtN operator. In fact, it is suboptimal, and it was letter improved

to C̃st ∼ (kℓ) for two- and three-dimensional homogeneous media in [98]. The same estimate
was then extending to scattering problem by star-shaped obstacles in [31]. Finally, it has
been recently be shown that for scattering by a bounded obstacle or heterogeneity, the
stability constants of the original and PML problems exhibit the same dependence on kℓ,

i.e., C̃st ∼ Cst [61].
Here, we first focus on the homogeneous case, for which we can show an optimal stability

estimate with the same frequency dependence as for the DtN problem. This estimate will
be proved by following the same approach as the one used for the homogeneous DtN
problem. Namely, by analyzing the one-dimensional Helmholtz problems satisfied by the
Fourier modes ûn of the solution ũ. In addition, we will present additional results that will
be used in the next chapter, such as the estimation of the L∞ norms of the Fourier modes
derivatives.

In the second subsection, we will show that the PML problem (3.1.3) is well-posed
as soon as the corresponding DtN problem is inf-sup stable (this includes in particular

heterogeneous media). Unfortunately, we believe that the stability constant C̃st we obtain
for the PML problem is suboptimal, as it increases faster with k than the stability constant

Cst of the corresponding DtN problem. Specifically, C̃st ∼ (kℓ)3/2Cst.

3.3.1 The one-layer case

We start by considering the one-layer case where ε ≡ 1 and A ≡ I in Ω. Similar to section
2.2, we rely on Fourier decomposition and analyze the resulting one-dimensional problem
for the Fourier modes.
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3.3.1.1 A one dimensional problem

Here, given, ℓ, ℓP > 0, κ ∈ C and f : (0, ℓ+ℓP) → C, we study the following one-dimensional
PML Helmholtz problem with: Find u : (0, ℓ+ ℓP) → C such that −νκ2u− (ν−1u′)

′
= f in (0, ℓ+ ℓP)

u(0) = 0,
u(ℓ+ ℓP) = 0,

(3.3.1)

where ν := 1 + iγχP, and χP(x) = 1 if x ∈ (ℓ, ℓ + ℓP) and zero otherwise. For the sake of
simplicity, we also introduce χI = 1 − χP. Notice that for the case of simplicity, we have
set γr = 1 and γi = γ.

Throughout this subsection, we will employ the notations ∥·∥ and (·, ·) for the natural
norm and inner of L2(0, ℓ+ ℓP). The additional notations

∥v∥I := ∥χIv∥ ∥v∥P := ∥χPv∥ ∀v ∈ L2(0, ℓ+ ℓP)

and the following Sobolev space

W :=
{
v ∈ H1(0, ℓ+ ℓP) | v(0)= v(ℓ+ ℓP) = 0

}
.

will also be useful.
Assuming that f ∈ L2(0, ℓ+ ℓP), the weak form of (3.3.1) is to find u ∈ W such that

b(u, v) = (f, v) ∀v ∈ W, (3.3.2)

where
b(u, v) := −κ2(νu, v) + (ν−1u′, v′).

For later use, we record that

|ν|2 = 1 + γ2χP ν−1 = χI +
1− iγ

1 + γ2
χP, Im ν = γχP, Im ν−1 = − γ

1 + γ2
χP. (3.3.3)

Since κ will eventually correspond to a Fourier wave number kn, we will focus here on
the case where κ ≥ 0 or κ = iβ, with β ≥ 0. In short, we will write κ ∈ R+ ∪ iR+. As in
section 2.2, our analysis is divided into three branches where we separately treat imaginary
wavenumbers, small real wavenumbers and large real wavenumbers.

To simplify the proofs, for ζ > 0, we introduce the compact notation µζ := 1+ζ. These
simple properties will be useful afterwards

1 ≤ µζ ζ ≤ µζ 1 + ζ2 ≤ µ2
ζ . (3.3.4)

We start by recording a set of inequalities that are simple, but useful.

Lemma 3.3.1 (Poincaré inequalities). The Poincaré inequalities

∥v∥I ≤ 2ℓ∥v′∥I ∥w∥ ≤ 2µℓP/ℓℓ∥w′∥ (3.3.5)

hold true for all v ∈ H1(0, ℓ) with v(0) = 0 and w ∈ H1(0, ℓ+ ℓP) with w(0) = 0.
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3.3.1.2 Imaginary wave numbers

We start by addressing imaginary wave numbers, that are easily dealt with since the
sesquilinear form b in (3.3.2) is coercive in this case.

Lemma 3.3.2 (Imaginary wave numbers). Assume that κ∈ iR+. Then, for all f ∈
L2(0, ℓ+ ℓP), there exists a unique u∈ W solution to (3.3.1). In addition, the estimates

∥u∥ ≤ µ2
γµ

2
ℓP/ℓ

min
(
4, (|κ|ℓ)−2

)
ℓ2∥f∥, (3.3.6)

and
∥u∥ ≤ µ2

γµ
2
ℓP/ℓ

min
(
4, 2(|κ|ℓ)−1

)
ℓ2∥f∥, (3.3.7)

hold true.

Proof. We select the test function v = u in (3.3.2) and take the real part. Recalling that
|ν| ≥ 1, we have

β2∥u∥2 + |ν|−2∥u′∥2 ≤ β2∥u∥2 + ∥u′∥2I +
1

|ν|2
∥u′∥2P = Re(f, u) ≤ ∥f∥∥u∥. (3.3.8)

Hence, we immediately see that β2∥u∥ ≤ ∥f∥, and since |κ| = β,

∥u∥ ≤ (|κ|ℓ)−2ℓ2∥f∥. (3.3.9)

On the other hand, using Poincaré inequality (3.3.5), we have

∥u∥2 ≤ 4µ2
ℓP/ℓ

ℓ2∥u′∥2 ≤ 4µ2
ℓP/ℓ

|ν|2ℓ2∥f∥∥u∥,

and recalling that |ν|2 = 1 + γ2 ≤ µ2
γ, we have

∥u∥ ≤ 4µ2
γµ

2
ℓP/ℓ

ℓ2∥f∥. (3.3.10)

Estimate (3.3.6) then follows from (3.3.9) and (3.3.10) since µ2
γµ

2
ℓP/ℓ

≥ 1.

To establish (3.3.7), we observe that for (|κ|ℓ)−1 ≤ 2

min
(
4, (|κ|ℓ)−2

)
= (|κ|ℓ)−2 ≤ 2(|κ|ℓ)−1.

3.3.1.3 Small real wave numbers

We then consider small real wave numbers. Again, the stability proof is easy as the
sesquilinear form b is coercive due to Poincaré inequality.

Lemma 3.3.3 (Small real wavenumbers). Assume that

κℓ ≤ 1√
8

1

µγµℓP/ℓ

.

Then, for all f ∈ L2(0, ℓ+ ℓP), there exists a unique u ∈ W solution to (3.3.2) and we have

∥u∥ ≤ 8µ2
γµ

2
ℓP/ℓ

ℓ2∥f∥. (3.3.11)
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Proof. First, we have

Re b(u, u) = −κ2∥u∥2 + ∥u′∥2I + |ν|−2∥u′∥2P
≥ µ−2

γ ∥u′∥2 − κ2∥u∥2

≥
(
µ−2
γ − 4κ2µℓP/ℓℓ

2
)
∥u′∥2

= µ−2
γ

(
1− 4µ2

γµ
2
ℓP/ℓ

(κℓ)2
)
∥u′∥2.

Assuming that 4µ2
γµ

2
ℓP/ℓ

(κℓ)2 ≤ 1/2, we thus have

µ−2
γ

2
∥u′∥2 ≤ Re b(u, u) ≤ ∥f∥∥u∥,

and it follows that
∥u∥2 ≤ 4µ2

ℓP/ℓ
ℓ2∥u′∥2 ≤ 8µ2

γµ
2
ℓP/ℓ

ℓ2∥f∥∥u∥,
and the result follows.

3.3.1.4 Large real wave numbers

We finally consider large real wave numbers κ ∈ R+, which is the more subtle case. Similar
to the proof with a Robin boundary condition u′(ℓ) = iκu(ℓ), our analysis will rely on a
Morawetz identity. The key difference is the treatment of the dissipative terms. Indeed,
considering a Robin boundary condition, the identity

Im b(u, u) = κ|u(ℓ)|2 = |u′(ℓ)|2

immediately provides control on u(ℓ) and u′(ℓ) on the boundary. In the PML approach,
the situation is more complicated, and the next two Lemmas are dedicated to obtain a
similar bound. This is done by first controlling volumic terms in the absorbing layer in
Lemma 3.3.4 and then control u(ℓ) and u′(ℓ) with a trace inequality from the absorbing
layer.

Lemma 3.3.4 (Volume estimate in the PML). Let κ ∈ R+ and f ∈ L2(0, ℓ + ℓP), and
assume that u ∈ W solves (3.3.2). Then, we have

κ2∥u∥2P + ∥u′∥2P ≤
µ3
γ

γ2

(
2∥f∥I∥u∥I +

1

κ2
∥f∥2P.

)
(3.3.12)

Proof. First, we pick the test function v = u in (3.3.2). Recalling (3.3.3) and taking the
imaginary part, we have

κ2γ∥u∥2P +
γ

1 + γ2
∥u′∥2P = − Im b(u, u) = − Im(f, u).

On the other hand, the following estimate holds true

|(f, u)| ≤ ∥f∥I∥u∥I + ∥f∥P∥u∥P ≤ ∥f∥I∥u∥I +
1

2γκ2
∥f∥2P +

γκ2

2
∥u∥2P,
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leading to
κ2γ

2
∥u∥2P +

γ

1 + γ2
∥u′∥2P ≤ ∥f∥I∥u∥I +

1

2γκ2
∥f∥2P.

We then obtain (3.3.12) by observing that

1

2

γ

µ2
γ

(
κ2∥u∥2P + ∥u′∥2P

)
≤ κ2γ

2
∥u∥2P +

γ

1 + γ2
∥u′∥2P

and

∥f∥I∥u∥I +
1

2γκ2
∥f∥2P ≤ 1

2

µγ

γ

(
2∥f∥I∥u∥I +

1

κ2
∥f∥2P

)
.

Lemma 3.3.5 (Trace estimate). We have

κ2ℓ|u(ℓ)|2 + ℓ|u′(ℓ)|2 ≤ 9
µ2
ℓ/ℓP

µ10
γ

γ4
(1 + (κℓ)−1)2ℓ2∥f∥2 + κ2

2
∥u∥2I . (3.3.13)

Proof. We start by presenting the following multiplicative trace inequality

ℓ|w(ℓ)|2 ≤ µℓ/ℓP

(
∥w∥2P + 2ℓ∥w∥P∥w′∥P

)
, (3.3.14)

valid for all w ∈ H1(ℓ, ℓ+ ℓP). To establish it we write that

ℓP|w(ℓ)|2 = [(x− ℓ− ℓP)|w(x)|2]ℓ+ℓP
ℓ

=

∫ ℓ+ℓP

ℓ

|w(x)|2dx+ 2Re

∫ ℓ+ℓP

ℓ

(x− ℓ− ℓP)w(x)w′(x)dx

≤ ∥w∥P + 2ℓP∥w∥P∥w′∥P,

and multiply both sides by ℓ/ℓP to obtain

ℓ|w(ℓ)|2 ≤ ℓ

ℓP
∥w∥2P + 2ℓ∥w∥P∥w′∥P.

Estimate (3.3.14) now follows follows since ℓ/ℓP ≤ µℓ/ℓP and 1 ≤ µℓ/ℓP .
Since f ∈ L2(ℓ, ℓ + ℓP), by elliptic regularity, u ∈ H2(ℓ, ℓ + ℓP), and applying (3.3.14)

to both u and u′, we have

κ2ℓ|u(ℓ)|2+ℓ|u′(ℓ)|2 ≤ µℓ/ℓP

(
κ2∥u∥2P + 2ℓκ2∥u∥P∥u′∥P + ∥u′∥2P + 2ℓ∥u′∥P∥u′′∥P

)
. (3.3.15)

Next, we want to remove the second derivative in the right-hand side of (3.3.15). To
do so, we observe that −u′′ = νf + ν2κ2u in (ℓ, ℓ+ ℓP), so that

∥u′′∥P ≤ µγ∥f∥P + µ2
γκ

2∥u∥2P,
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and

κ2ℓ|u(ℓ)|2 + ℓ|u′(ℓ)|2

≤ µℓ/ℓP

(
κ2∥u∥2P + ∥u′∥2P + 2ℓκ2∥u∥P∥u′∥P + 2ℓµγ∥u′∥P∥f∥P + 2ℓµ2

γκ
2∥u′∥P∥u∥P

)
≤ µℓ/ℓPµ

2
γ

(
κ2∥u∥2P + ∥u′∥2P + 4ℓκ2∥u∥P∥u′∥P + 2ℓ∥u′∥P∥f∥P

)
.

By employing the Young’s inequalities

4ℓκ2∥u∥P∥u′∥P ≤ 2κℓ
(
κ2∥u∥2P + ∥u′∥2P

)
, 2ℓ∥u′∥P∥f∥P ≤ ℓ2∥f∥2P + ∥u′∥2P,

we can further simplify the right-hand side to

κ2ℓ|u(ℓ)|2 + ℓ|u′(ℓ)|2 ≤ 2µℓ/ℓPµ
2
γ

(
(1 + κℓ)

(
κ2∥u∥2P + ∥u′∥2P

)
+ ℓ2∥f∥2P

)
. (3.3.16)

The final step of the proof consists in using the volume estimate (3.3.12) in the absorbing
layer from Lemma 3.3.4 in the right-hand side of (3.3.16). We proceed as follows:

(1 + κℓ)
(
κ2∥u∥2P + ∥u′∥2P

)
≤
µ3
γ

γ2
(1 + κℓ)

(
2∥f∥I∥u∥I +

1

κ2
∥f∥2P

)
≤ 2

µ3
γ

γ2
(1 + κℓ)∥f∥I∥u∥I +

µ3
γ

γ2
1 + κℓ

(κℓ)2
ℓ2∥f∥2P

leading to

κ2ℓ|u(ℓ)|2 + ℓ|u′(ℓ)|2 ≤ 2µℓ/ℓPµ
2
γ

(
2
µ3
γ

γ2
(1 + κℓ)∥f∥I∥u∥I +

µ3
γ

γ2
1 + κℓ+ (κℓ)2

(κℓ)2
ℓ2∥f∥2P

)
≤ 4

µℓ/ℓPµ
5
γ

γ2

(
(1 + κℓ)∥f∥I∥u∥I +

1 + κℓ+ (κℓ)2

(κℓ)2
ℓ2∥f∥2P

)
.

Finally, we algebraically simplify the right-hand side to make it easier to read and manip-
ulate. On the one hand, we have

1 + κℓ+ (κℓ)2

(κℓ)2
≤ (1 + (κℓ))2

(κℓ)2
= (1 + (κℓ)−1)2,

and on the other hand, we have

4
µℓ/ℓPµ

5
γ

γ2
(1 + κℓ)∥f∥I∥u∥I ≤

16

2κ2
µ2
ℓ/ℓP

µ10
γ

γ4
(1 + κℓ)2∥f∥2I +

κ2

2
∥u∥2I

= 8
µ2
ℓ/ℓP

µ10
γ

γ4
(1 + (κℓ)−1)2ℓ2∥f∥2I +

κ2

2
∥u∥2I .

which leads to

κ2ℓ|u(ℓ)|2 + ℓ|u′(ℓ)|2 ≤ 9
µ2
ℓ/ℓP

µ10
γ

γ4
(1 + (κℓ)−1)2ℓ2∥f∥2 + κ2

2
∥u∥2I .
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With the boundary estimate (3.3.13) at our disposal, we are finally ready to state our
stability results for large real wave numbers using a Morawetz multplier technique.

Lemma 3.3.6 (Large real wave numbers). Let κ ∈ R+. For all f ∈ L2(0, ℓ + ℓP) there
exists a unique u ∈ W solution to (3.3.2) and we have

∥u∥ ≤
√
30
µℓ/ℓPµ

5
γ

γ2
(1 + (κℓ)−1)

1

κℓ
ℓ2∥f∥. (3.3.17)

Proof. We first observe that the following Morawetz identity

κ2∥w∥2I + ∥w′∥2I = κ2ℓ|w(ℓ)|2 + ℓ|w′(ℓ)|2 + 2Re

∫ ℓ

0

(−κ2w − w′′)xw′, (3.3.18)

may be easily obtained for w ∈ H2(0, ℓ) by integration by parts.
We then assume that u ∈ W solves (3.3.2), and apply (3.3.18) to u, showing that

κ2∥u∥2I + ∥u′∥2I ≤ κ2ℓ|u(ℓ)|2 + ℓ|u′(ℓ)|2 + 2ℓ∥f∥I∥u′∥I.

Incorporating (3.3.13) and

2ℓ∥f∥I∥u′∥2I ≤ ℓ2∥f∥2I + ∥u′∥2I ,

gives
κ2

2
∥u∥2I ≤ 9

µ2
ℓ/ℓP

µ10
γ

γ4
(1 + (κℓ)−1)2ℓ2∥f∥2 + ℓ2∥f∥2I ,

leading to

κ2∥u∥2I ≤ 20
µ2
ℓ/ℓP

µ10
γ

γ4
(1 + (κℓ)−1)2ℓ2∥f∥2,

and

∥u∥I ≤ 2
√
5
µℓ/ℓPµ

5
γ

γ2
(1 + (κℓ)−1)

1

κℓ
ℓ2∥f∥. (3.3.19)

At this point, we have control over the “physical” domain (0, ℓ). We now need to extend
this control into the absorbing layer (ℓ, ℓ+ ℓP). This can be done by recalling the estimate
(3.3.12) for ∥u∥P in terms of ∥f∥P and ∥u∥I in Lemma 3.3.4. Specifically, plugging (3.3.12)
into (3.3.19), we have

κ2∥u∥2P ≤
µ3
γ

γ2

(
4
√
5
µℓ/ℓPµ

5
γ

γ2
(1 + (κℓ)−1)

1

κℓ
ℓ2∥f∥2 + 1

κ2
∥f∥2P

)
,

and the conclusion follows by algebrically simplifying the right-hand side. Indeed, we have

1

κ2
≤ 1 + κ2ℓ2

κ2
≤ (1 + (κℓ)−1)2ℓ2,
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and
1

κℓ
≤ 1 + κℓ

κℓ
= 1 + (κℓ)−1,

leading to

κ2∥u∥2P ≤
µ3
γ

γ2
10
µℓ/ℓPµ

5
γ

γ2
(1 + (κℓ)−1)2ℓ2∥f∥2

≤ 10
µ2
ℓ/ℓP

µ10
γ

γ4
(1 + (κℓ)−1)2ℓ2∥f∥2. (3.3.20)

Then, (3.3.17) follows by adding (3.3.19) and (3.3.20).
So far, we have only established (3.3.17) under the assumption that u solves (3.3.2) in

the first place. However, due to Fredholm alternative, a priori stability implies existence,
which shows the existence and uniqueness of u.

3.3.1.5 Stability estimates for the one-dimensional PML problem

We can finally summarize our findings for the one-dimensional PML problem by regrouping
the three different branches.

Theorem 3.3.7 (One-dimensional PML problem). For all κ ∈ R+ ∪ iR+, we have

∥u∥ ≤ 61
(1 + γ)7

γ2

(
1 +

ℓ

ℓP

)(
1 +

ℓP
ℓ

)2

min
(
1, (|κ|ℓ)−1

)
ℓ2∥f∥. (3.3.21)

Proof. We first focus on real wave numbers κ ≥ 0. To do, let us set

Θ :=
1√
8

1

µγµℓP/ℓ

< 1.

and observe that for |κ|ℓ ≥ Θ, we have

(1 + (κℓ)−1)
1

κℓ
=

√
8µγµℓP/ℓ(1 +

√
8µγµℓP/ℓ) ≤ 11µ2

γµ
2
ℓP/ℓ

, (3.3.22)

whereas if |κ|ℓ ≤ Θ, the estimate

(1 + (κℓ)−1)
1

κℓ
≤

2
√
8µγµℓP/ℓ

κℓ
(3.3.23)

holds true. Assuming that Θ ≤ κℓ ≤ 1, estimate (3.3.17) together with (3.3.22) imply that

∥u∥ ≤
√
30
µℓ/ℓPµ

5
γ

γ2
(1 + (κℓ)−1)

1

κℓ
ℓ2∥f∥ ≤ 11

√
30
µℓ/ℓPµ

2
ℓP/ℓ

µ7
γ

γ2
ℓ2∥f∥

≤ 61
µℓ/ℓPµ

2
ℓP/ℓ

µ7
γ

γ2
ℓ2∥f∥ ≤ 61

µℓ/ℓPµ
2
ℓP/ℓ

µ7
γ

γ2
min

(
1, (|κ|ℓ)−1

)
ℓ2∥f∥.
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Otherwise, if κℓ ≤ Θ, estimate (3.3.11) ensures that

∥u∥ ≤ 8µ2
γµ

2
ℓP/ℓ

ℓ2∥f∥ ≤ 61
µℓ/ℓPµ

2
ℓP/ℓ

µ7
γ

γ2
ℓ2∥f∥ ≤ 61

µℓ/ℓPµ
2
ℓP/ℓ

µ7
γ

γ2
min

(
1, (|κ|ℓ)−1

)
ℓ2∥f∥.

Assuming now that κℓ ≥ 1, (3.3.17) and (3.3.23) yield

∥u∥ ≤
√
30
µℓ/ℓPµ

5
γ

γ2
(1 + (κℓ)−1)

1

κℓ
ℓ2∥f∥ ≤ 2

√
224

µℓ/ℓPµℓP/ℓµ
6
γ

γ2
(κℓ)−1ℓ2∥f∥

≤ 61
µℓ/ℓPµ

2
ℓP/ℓ

µ7
γ

γ2
(κℓ)−1ℓ2∥f∥ ≤ 61

µℓ/ℓPµ
2
ℓP/ℓ

µ7
γ

γ2
min

(
1, (|κ|ℓ)−1

)
ℓ2∥f∥.

This shows (3.3.7) for the case of real wave numbers.
On the other hand, for imaginary wave numbers, (3.3.7) gives

∥u∥ ≤ µ2
γµ

2
ℓP/ℓ

min
(
4, 2(|κ|ℓ)−1

)
ℓ2∥f∥ ≤ 4µ2

γµ
2
ℓP/ℓ

min
(
1, (|κ|ℓ)−1

)
ℓ2∥f∥

≤ 61
µℓ/ℓPµ

2
ℓP/ℓ

µ7
γ

γ2
min

(
1, (|κ|ℓ)−1

)
ℓ2∥f∥,

which concludes the proof.

3.3.1.6 Stability estimates for the PML problem in the one-layer case

We are now ready to conclude the study of the one-layer case. As mentioned, using the
quasi-periodic boundary conditions, this will be done using the Fourier expansion technique
presented in Subsection 2.1.6. For the reader’s convenience, we recall that since ũ ∈ H1

♯ (Ω̃)
we may express u as

ũ(x1,x2) =
∑
n∈Z

ûn(x2)e
i(α+αn)x1 ,

with kn ∈ R+ ∪ iR+ defined in (2.1.10) as k2n := k2 − (α + αn)
2. Substituting this Fourier

expansion in the PML Helmholtz problem (3.1.3), we find that for each n ∈ Z, the Fourier
mode ûn satisfies the following one-dimensional PML problem −νkn2ûn − (ν−1û′n)

′
= f̂n in (0, ℓ2 + ℓP),

ûn(0) = 0,
û′n(ℓ2 + ℓP) = 0,

which is exactly (3.3.1) studied the above with κ = kn.

Theorem 3.3.8 (Stability of PML problem in homogeneous media). Assume that ε ≡ 1
and A ≡ I. Then the PML problem (3.1.3) is well-posed, and we have

C̃st ≤ 61
(1 + γ)7

γ2

(
1 +

ℓ2
ℓP

)(
1 +

ℓP
ℓ2

)2

min

(
1,

1

k⋆ℓ2

)
(kℓ2)

2. (3.3.24)
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In other words, for all f ∈ L2(Ω̃), the solution ũ ∈ H1
♯ (Ω̃) satisfies

k∥ũ∥Ω̃ ≤ 61
(1 + γ)7

γ2

(
1 +

ℓ2
ℓP

)(
1 +

ℓP
ℓ2

)2

min

(
1,

1

k⋆ℓ2

)
(kℓ2)

2 1

k
∥f̃∥Ω̃. (3.3.25)

Proof. Using Fourier expansion technique introduced in section 2.1.6, we have

∥ũ∥2
Ω̃
= ℓ1

∑
n∈Z

∥ûn∥2,

where for each n ∈ Z, ûn is the only element of H1
0 (0, ℓ+ ℓP) such that

−k2n(νûn, v̂) + (ν−1û′n, v̂
′) = (f̂n, v̂) ∀v̂ ∈ H1

0 (0, ℓ+ ℓP).

The one-dimensional stability result (3.3.21) from Theorem 3.3.7 then shows that

∥u∥2
Ω̃
≤ ℓ1

∑
n∈Z

{
61

(1 + γ)7

γ2

(
1 +

ℓ2
ℓP

)(
1 +

ℓP
ℓ2

)2

min

(
1,

1

|kn|ℓ2

)
ℓ22

}2

∥f̂n∥2

≤

{
61

(1 + γ)7

γ2

(
1 +

ℓ2
ℓP

)(
1 +

ℓP
ℓ2

)2

min

(
1,

1

k⋆ℓ2

)
ℓ22

}2

ℓ1
∑
n∈Z

∥f̂n∥2

=

{
61

(1 + γ)7

γ2

(
1 +

ℓ2
ℓP

)(
1 +

ℓP
ℓ2

)2

min

(
1,

1

k⋆ℓ2

)
ℓ22

}2

∥f∥2
Ω̃
.

Interestingly, the stability constant in (3.3.24) is equivalent to the one found for the
homogeneous DtN problem (2.2.24), up to a multiplicative constant depending on the PML
parameters. In particular, both constants exhibit the same behaviour with respect to the
frequency.

3.3.1.7 Improved estimates for the vertical derivative

In section 5.3, we will provide sharp stability properties of the MHM method in homo-
geneous medium with quasi-periodic boundary conditions. The analysis is subtle, and
requires finer stability estimates that we derive here. For the sake of simplicity, we do not
track the dependence of the constant on the PML parameters here, and instead, we let C
denote a generic constant that may depend on γ and ℓ2/ℓP , but that is independent of k.

Our proofs again rely on Fourier expansion and the associated one-dimensional PML
problem (3.3.2). Throughout this subsection, we thus fix a right-hand side f ∈ L2(0, ℓ+ℓP)
and denote by u the (unique) associated solution.

In this subsection, if v : (0, ℓ + ℓP) → C is a measurable function, we employ the
notation

∥v∥∞ := inf{0 ≤M ≤ +∞ | λ ({|v(x)| ≤M}) = 0},
for the usual L∞(0, ℓ+ ℓP) norm, where λ denotes the Lebesgue measure.

We start by analyzing imaginary wave numbers.
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Lemma 3.3.9 (Imaginary wave numbers). Assume that κ∈ iR+, we have

∥u′∥ ≤ Cℓ∥f∥, (3.3.26)

and
∥u′∥∞ ≤ C

√
ℓ∥f∥. (3.3.27)

Proof. Recalling (3.3.8) and using Poincaré inequality (3.3.5), we have

∥u′∥ ≤ 2|ν|2(ℓP + ℓ)∥f∥ ≤ 2µ2
γµℓP/ℓℓ|f∥= ℓC∥f∥. (3.3.28)

Furthermore, since −u′′ = f −|κ|2u in (0, ℓ) and −u′′ = νf − ν2|κ|2u in (ℓ, ℓ+ ℓP), we have

∥u′′∥ ≤ |ν|∥f∥+ |ν|2|κ|2∥u∥ = C
(
∥f∥+ |κ|2∥u∥

)
≤ C∥f∥.

On the other hand, we have

∥u′∥2L∞ ≤ 1

ℓP + ℓ
∥u′∥2 + 2∥u′∥∥u′′∥ = C

(
ℓ−1∥u′∥2 + ℓ∥u′′∥2

)
,

and we conclude with the bounds on ∥u′∥ and ∥u′′∥ obtained above.

The next step is to consider small real wave numbers.

Lemma 3.3.10 (Small real wave numbers). Assume that 0 ≤ κ ≤ 2/ℓ, we have

∥u′∥ ≤ Cℓ∥f∥, (3.3.29)

and
∥u′∥∞ ≤ C

√
ℓ∥f∥. (3.3.30)

Proof. Suppose that 0 ≤ κ ≤ 2ℓ−1, then

|ν|−2∥u′∥2 = Re b(u, u) + κ2∥u∥ ≤ ∥f∥∥u∥+ κ2∥u∥2

≤ ∥f∥∥u∥+ ℓ−2∥u∥2 ≤ C
(
ℓ2∥f∥2 + ℓ−2∥u∥2

)
,

and recalling from (3.3.11) that
∥u∥ ≤ Cℓ2∥f∥,

we obtain
∥u′∥ ≤ Cℓ∥f∥.

Since −u′′ = f + κ2u in (0, ℓ) and −ν−1u′′ = f + νκ2u in (ℓ, ℓ+ ℓP), we conclude that

∥u′′∥ ≤ C∥f∥,

from the smallness assumption on κ. Then, (3.3.30) follows from the multiplicative trace
inequality

∥u′∥2∞ ≤ C
(
ℓ−1∥u′∥2 + ℓ∥u′′∥2

)
,

we already employed in the proof of Lemma 3.3.9.
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The last key argument is the case of large real wave numbers.

Lemma 3.3.11 (Large real wave numbers). Assume that κ ≥ 2/ℓ, we have

∥u′∥ ≤ Cℓ|f∥, (3.3.31)

and
∥u′∥∞ ≤ C

√
ℓ∥f∥. (3.3.32)

Proof. Since −κ2u− u′′ = f in (0, ℓ), with κ > 0, we can write that

u(x) = c−e
−iκx + c+e

iκx +
i

2κ

∫ ℓ

0

f(ξ)eiκ|x−ξ|dξ. ∀x ∈ (0, ℓ), (3.3.33)

for two constants c± ∈ C. Since here (|κ|ℓ)−1 ≥ C by assumption, the L2(0, ℓ+ℓP) stability
bound (3.3.21) we derived in Theorem 3.3.21 simplifies into

∥u∥ ≤ C
ℓ

κ
∥f∥. (3.3.34)

Besides, the Hölder inequality gives that∣∣∣∣ i2κ
∫ ℓ

0

f(ξ)eiκ|x−ξ|dξ

∣∣∣∣ ≤ 1

2κ

∫ ℓ

0

|f(ξ)|dξ ≤
√
ℓ

2κ
∥f∥.

As a result, we can write that∥∥c−e−iκx + c+e
iκx
∥∥
I
≤ ∥u∥+

∥∥∥∥ 1

2κ

∫ ℓ

0

f(ξ)eiκ|x−ξ|dξ

∥∥∥∥
I

≤ ∥u∥+
√
ℓ

∣∣∣∣ 12κ
∫ ℓ

0

f(ξ)eiκ|x−ξ|dξ

∣∣∣∣
≤ C

ℓ

κ
∥f∥.

But on the other, we also have∥∥c−e−iκx + c+e
iκx
∥∥2
(0,ℓ)

=

∫
I

|c−|2 + |c+|2 + 2Re c+c̄−e
2iκx

= (|c−|2 + |c+|2)ℓ+ 2Re c+c̄−
1

2iκ

[
e2iκx

]ℓ
0

≥ (|c−|2 + |c+|2)ℓ−
2

κ
|c+||c−|

≥ (|c−|2 + |c+|2)
(
ℓ− 1

κ

)
,

and since κ > 2/ℓ, we obtain that

|c−|2 + |c+|2 ≤ C
2ℓ

κ2
∥f∥2.
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Recalling expression (3.3.33), we obtain (3.3.32) in the physical domain by observing that

∥χIu
′∥∞ ≤ κ|c−|+ κ|c+|+

1

2

∫
I

|f(ξ)|dξ

≤ 2κ
√
(|c−|2 + |c+|2) +

√
ℓ

2
∥f∥

≤ C
√
ℓ∥f∥.

Then, holders inequality gives
∥u′∥2I ≤ ℓ∥χIu∥2∞,

which is (3.3.31) restricted to the physical domain..
We still have to control the norms of u′ in the absorbing layer. To do so, we will again

employ the inequality

∥χPu
′∥2∞ ≤ C

(
ℓ−1∥u′∥2P + ∥u′∥P∥u′′∥P

)
. (3.3.35)

Recalling the volume estimate in the PML (3.3.12)

κ2∥u∥2P + ∥u′∥2P ≤ C

(
∥f∥I∥u∥I +

1

κ2
∥f∥2P.

)
we derived in Lemma 3.3.4, and using (3.3.34)

κ2∥u∥2P + ∥u′∥2P ≤ C

(
ℓ

κ
∥f∥2I

1

κ2
∥f∥2P

)
≤ C

1

κ

(
ℓ+ κ−1

)
∥f∥2 ≤ C

ℓ

κ
∥f∥2,

where we employ the assumption that κ−1 ≤ Cℓ in the last inequality. Using again the
assumption on κ, we have ℓ/κ ≤ ℓ2, so that we have in particular

∥u′∥P ≤ C

√
ℓ

κ
∥f∥ ≤ Cℓ∥f∥, (3.3.36)

from which (3.3.31) follows. We also see that

κ2∥u∥P ≤ C
√
κℓ∥f∥.

Hence, since −u′′ = νf + ν2κ2u in (ℓ, ℓ+ ℓP), we have

∥u′′∥P ≤ C
(
∥f∥P + κ2∥u∥P

)
≤ C(1 +

√
κℓ)∥f∥ ≤ C

√
κℓ∥f∥,

due to the largness assumption on κ. Thus, using (3.3.35) and the first inequality in
(3.3.36), we see that

∥χPu
′∥2∞ ≤ C

(
1

κ
+ ℓ

)
∥f∥2 ≤ Cℓ∥f∥2,

due again to the assumption that κ ≥ 2/ℓ. This concludes the proof.
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We can now provide our improved estimates for the one-dimensional PML problem. The
proof simply follows by treating the imaginary, small real, and large real wave numbers by
the above lemmas.

Theorem 3.3.12 (Improved estimates for the one-dimensional PML problem). For all
κ ∈ R+ ∪ iR+ and f ∈ L2(0, ℓ+ ℓP), the solution u ∈ H1

0 (0, ℓ+ ℓP) satisfies

∥u′∥ ≤ Cℓ∥f∥, ∥u′∥∞ ≤ C
√
ℓ∥f∥. (3.3.37)

3.3.2 From DtN to PML stability estimates

In the two previous sections, we analyzed the stability of the PML problem in the one-layer
case “from scratch” without relying on the estimates we previously derived for the original
problem involving the DtN operator. Here, we follow a different path, and assuming that
the DtN problem is well-posed, our goal will be to show that the associated PML problem
is also well-posed (for a “absorbing enough” layer), and to link the stability constant of
the PML problem to the one of the DtN problem.

3.3.2.1 Auxiliary PML problem

This subsection focuses on the auxiliary problem in the absorbing layer associated with
the definition of the DtN PML operator RP. Specifically, given f

P : ΩP → C, we consider
the problem of finding uP : ΩP → C such that

−k2νuP −∇ · (D∇uP) = fP in ΩP,
uP+ − eiαℓ1uP− = 0 on Γ♯,

uP = 0 on ΓP,
uP = 0 on ΓA.

Assuming that fP ∈ L2(ΩP), the weak form consists in finding uP ∈ H1
♯,0(ΩP) such that

b̃P(uP, vP) = (fP, vP)ΩP
∀vP ∈ H1

♯,0(ΩP), (3.3.38)

with
H1

♯,0(ΩP) :=
{
v ∈ H1(ΩP,C) | v|ΓA

= v|ΓP
= 0 and v+ = eiαℓ1v−,

}
and

b̃P(uP, vP) := −k2(νuP, vP)ΩP
+

(
ν
∂uP

∂x1

,
∂vP

∂x1

)
ΩP

+

(
ν−1∂u

P

∂x2

,
∂vP

∂x2

)
ΩP

.

As usual, we will treat this problem by Fourier expansion in the x1 variable. Clearly, the
sesquilinear form associated with each Fourier mode is given by

b̂n(û, v̂) = −k2nνP(û, v̂) + ν−1
P (û′, v̂′) ∀û, v̂ ∈ H1

0 (ℓ2, ℓ2 + ℓP),

for each n ∈ Z, where (·, ·) denotes the inner product of L2(ℓ2, ℓ2+ ℓP) and || · || will denote
its usual norm.
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We start by establishing the coercivity of b̂n for each n ∈ Z. The following Poincaré
inequality will be useful:

∥û∥ ≤ ℓP∥û′∥ ∀û ∈ H1
0 (ℓ2, ℓ2 + ℓP), (3.3.39)

where || · || denotes the usual norm of L2(ℓ2, ℓ2 + ℓP).

Lemma 3.3.13 (Coercivity). For all n ∈ Z and for all û ∈ H1
0 (ℓ2, ℓ2 + ℓP), there exists

θn ∈ C with |θn| = 1 such that

Re b̂n(û, θnû) ≥ |kn|2∥û∥2 + |νP|−2∥û′∥2. (3.3.40)

In particular, we have

ℓ2PRe b̂n(û, θnû) ≥ (|νP|−2 + |kn|2ℓ2P)∥û∥2. (3.3.41)

Proof. On the one hand, if k2n ≤ 0, we have

Re b̂n(û, û) = −k2nγr∥û∥2 + |νP|−2γr∥û′∥2

= γr
(
|kn|2∥û∥2 + |νP|−2∥û′∥2

)
≥ |kn|2∥û∥2 + |νP|−2∥û′∥2,

since γr ≥ 1. This shows (3.3.40) for k2n ≤ 0 with θn = 1.
On the other hand, if k2n > 0, we have

b̂n(û,−iû) = −k2niνP∥û∥2 + iν−1
P ∥û′∥2 = −k2niνP∥û∥2 +

iνP
|νP|2

∥û′∥2,

so that

Re b̂n(û,−iû) = γi

(
k2n∥û∥+

1

|νP|2
∥û′∥2

)
≥ |kn|2∥û∥+

1

|νP|2
∥û′∥2

since k2n > 0 and γi ≥ 1, which is (3.3.40) for k2n ≤ 0 with θn = −i.
The estimate in (3.3.41) then simply follows by multiplying (3.3.40) by ℓ2P and applying

Poincaré inequality (3.3.39).

We establish a special boundary estimate that will be useful later on.

Lemma 3.3.14 (Sharp boundary estimate). For all f̂n ∈ L2(ℓ2, ℓ2 + ℓP), there exists a
unique ûn ∈ H1

0 (ℓ2, ℓ2 + ℓP) such that

b̂n(ûn, v̂n) = (f̂n, v̂n) v̂n ∈ H1
0 (ℓ2, ℓ2 + ℓP).

In addition û′n ∈ L∞(ℓ2, ℓ2 + ℓP), and we have

|û′n(ℓ2)| ≤ 5|ν|2 1

1 + (|kn|ℓP)1/2
ℓ
1/2
P ∥f̂n∥. (3.3.42)
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Proof. Recalling (3.3.40) and (3.3.41). Since,

Re b̂n(ûn, θnûn) = Re(f̂n, θnûn) ≤ ∥f̂n∥∥ûn∥,

for all θn ∈ C with |θn| = 1, we have

|νP|−2∥û′n∥2 ≤ ∥f̂n∥∥ûn∥, (3.3.43)

and
(|νP|−2 + (|kn|ℓP)2)∥ûn∥ ≤ ℓ2P∥f̂n∥. (3.3.44)

Plugging (3.3.44) into (3.3.43), we deduce that

∥û′n∥2 ≤
|νP|4

1 + (|kn|ℓP)2
ℓ2P∥f̂n∥2 ≤ |νP|4ℓ2P∥f̂n∥2

so that

∥û′n∥ ≤
√
2|νP|2

1

1 + |kn|ℓP
ℓP∥f̂n∥ (3.3.45)

and

∥û′n∥2 ≤ 2|νP|4
1

1 + |kn|ℓP
ℓ2P∥f̂n∥2. (3.3.46)

We see from (3.3.44) that |kn|2∥ûn∥ ≤ ∥f̂n∥, and since −ν−1
P û′′n = f̂n + νPk

2
nûn, we have

∥û′′n∥ ≤ |νP|∥f̂n∥+ |νP|2|kn|2∥ûn∥ ≤ |νP|∥f̂n∥+ |νP|2∥f̂n∥ ≤ 2|νP|2∥f̂n∥. (3.3.47)

We then notice that

ℓP|û′n(ℓ)|2 = [(x− ℓ− ℓP)|û′n(x)|2]
ℓ+ℓP
ℓ (3.3.48)

=

∫ ℓ+ℓP

ℓ

|û′n(x)|2dx+ 2Re

∫ ℓ+ℓP

ℓ

(x− ℓ− ℓP)û
′
n(x)û

′′
n(x)dx

≤ ∥û′n∥2 + 2ℓP∥û′n∥∥û′′n∥,

and inserting (3.3.45), (3.3.46) and (3.3.47) into (3.3.48), it follows that

ℓP|û′n(ℓ)|2 ≤
(
2|νP|4

ℓ2P
1 + |kn|ℓP

+ 2ℓP

(√
2

|νP|2ℓP
1 + |kn|ℓP

)(
2|νP|2

))
∥f̂n∥2

= 6
√
2|νP|4

1

1 + |kn|ℓP
ℓ2P∥f̂n∥2

≤ 12
√
2|νP|4

1

(1 + (|kn|ℓP)1/2)2
ℓ2P∥f̂n∥2

≤ 25|νP|4
1

(1 + (|kn|ℓP)1/2)2
ℓ2P∥f̂n∥2.
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Relying on Fourier expansion, we easily deduce the inf-sup stability of the sesquilinear
form b̃P from the coercivity of each b̂n.

Lemma 3.3.15 (Inf-sup stability). For all uP ∈ H1
♯,0(ΩP), there exists vP ∈ H1

♯,0(ΩP) with∣∣∣∣∣∣vP∣∣∣∣∣∣
k,ΩP

=
∣∣∣∣∣∣uP∣∣∣∣∣∣

k,ΩP
such that

|ν|2ℓ2PRẽbP(uP, vP) ≥ (1 + (k⋆ℓP)
2)∥uP∥2ε,ΩP

. (3.3.49)

In addtion, we have

sup
vP∈H1

♯,0(ΩP)

|||vP|||
k,ΩP

=1

Re b̃P(uP, vP) ≥ 1

2|ν|4
1

1 + (kℓP)2
∣∣∣∣∣∣uP∣∣∣∣∣∣

k,ΩP
. (3.3.50)

Proof. Consider uP ∈ H1
♯,0(ΩP) and set

vP :=
∑
n∈Z

θnûne
i(α+αn)x1 .

It is clear that
∣∣∣∣∣∣vP∣∣∣∣∣∣

k,ΩP
=
∣∣∣∣∣∣uP∣∣∣∣∣∣

k,ΩP
, and we have

ℓ2PRẽb
P(uP, vP) = ℓ2Pℓ1

∑
n∈Z

Rêbn(ûn, v̂n) = ℓ2Pℓ1
∑
n∈Z

Rêbn(ûn, θnûn) ≥ ℓ1
∑
n∈Z

(|νP|−2+(|kn|ℓP)2)∥ûn∥2

Since |νP| ≥ 1 and |kn| ≥ k⋆, (3.3.49) follows.
We can further write that

Re b̃P(uP, uP) = −k2Re ν∥uP∥2ε,ΩP
+Re ν

∥∥∥∥∂uP∂x1

∥∥∥∥2
A1,ΩP

+Re ν−1

∥∥∥∥∂uP∂x2

∥∥∥∥2
A2,ΩP

= −k2γr∥uP∥2ε,ΩP
+ γr

∥∥∥∥∂uP∂x1

∥∥∥∥2
A1,ΩP

+
γr
|ν|2

∥∥∥∥∂uP∂x2

∥∥∥∥
A2,ΩP

≥ −k2∥uP∥2ε,ΩP
+

∥∥∥∥∂uP∂x1

∥∥∥∥2
A1,ΩP

+
1

|ν|2

∥∥∥∥∂uP∂x2

∥∥∥∥
A2,ΩP

,

and

Re b̃P(uP, uP + 2|ν|2(kℓP)2vP) ≥ k2∥uP∥2ε,ΩP
+

∥∥∥∥∂uP∂x1

∥∥∥∥2
A1,ΩP

+
1

|ν|2

∥∥∥∥∂uP∂x2

∥∥∥∥
A2,ΩP

,

≥ |ν|−2
∣∣∣∣∣∣uP∣∣∣∣∣∣2

k,ΩP
.
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Lemma 3.3.16 (Auxiliary PML operator). For all fP ∈ L2(ΩP), there exists a unique
solution LPf

P := uP solution to (3.3.38), and the estimates

∣∣∣∣∣∣LPf
P
∣∣∣∣∣∣

k,ΩP
≤ 2|νP|3

(
1

kℓP
+

kℓP
1 + (k⋆ℓP)2

)
ℓP∥fP∥ε,ΩP

, (3.3.51a)

∥∂2(LPf
P)∥ΓA

≤ 5|νP|2

1 + (k⋆ℓP)1/2
ℓ
1/2
P ∥f∥2ε,ΩP

, (3.3.51b)

hold true.

Proof. We fix fP ∈ L2(ΩP) and let uP := LPf
P. We have

(1 + (k⋆ℓP)
2)∥uP∥2ε,ΩP

≤ |ν|2ℓ2P Re b̃P(uP, vP⋆ ) = |ν|2ℓ2P(εfP, vP⋆ )ΩP
≤ |ν|2ℓ2P∥fP∥ε,ΩP

∥uP∥ε,ΩP
,

hence

k∥uP∥ε,ΩP
≤ |νP|2

kℓP
1 + (k⋆ℓP)2

ℓP∥fP∥ε,ΩP
.

On the other hand, we have

−k2∥uP∥2ε,ΩP
+ ∥∂1uP∥2A1,ΩP

+ |νP|−2∥∂2uP∥2A2,ΩP
=

1

γr
Re
(
−k2νP∥uP∥2ε,ΩP

+ νP∥∂1uP∥2A1,ΩP

+ν−1
P ∥∂2uP∥2A2,ΩP

)
=

1

γr
Re(εfP, uP)ΩP

.

Then, since

Re(εfP, uP) ≤ 2k2∥uP∥2ε,ΩP
+

1

8k2
∥fP∥2ε,ΩP

≤ 2k2∥uP∥2ε,ΩP
+

1

k2
∥fP∥2ε,ΩP

,

we have

|uP|2A,ΩP
≤ |νP|2∥∂1uP∥A1,ΩP

+ ∥∂2uP∥A2,ΩP

=
|νP|2

γr
Re(εfP, uP)ΩP

+ k2|νP|2∥uP∥2ε,ΩP

≤ |νP|2

k2
∥fP∥2ε,ΩP

+ 3k2|νP|2∥uP∥2ε,ΩP
,

and ∣∣∣∣∣∣uP∣∣∣∣∣∣2
k,ΩP

≤ 2
|νP|2

k2
∥fP∥2ε,ΩP

+ 4k2|νP|2∥uP∥2ε,ΩP
,

≤ 4|νP|6
(

1

(kℓP)2
+

(
kℓP

1 + (k⋆ℓP)2

)2
)
ℓ2P∥fP∥2ε,ΩP

,
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and (3.3.51a) follows since
√
a2 + b2 ≤ a+ b.

We then show (3.3.51b). Recalling the quasi-periodicity condition satisfied by uP, we
get the Fourier expansion

uP =
∑
n∈Z

ûne
i(α+αn)x1 ,

where for each n ∈ Z, ûn satisfies

b̂n(ûn, v̂) = (f̂n, v̂) ∀v̂ ∈ H1
0 (ℓ2, ℓ2 + ℓP).

Using (3.3.42), we then have

∥∂2(uP)∥2ΓA
= ℓ1

∑
n∈Z

∥û′n(ℓ2)∥2

≤ 25|νP|4ℓPℓ1
∑
n∈Z

(
1

1 + (|kn|ℓP)1/2

)2

∥f̂n∥2

≤ 25|νP|4ℓP
(

1

1 + (k⋆ℓP)1/2

)2

∥f∥2ε,ΩP
.

3.3.2.2 Stability of the PML problem

We now present a key lemma showing how we can relate the stability of the PML problem
to that of the original problem.

Lemma 3.3.17. Let f̃ ∈ L2(Ω̃) and assume that ũ ∈ H1
♯ (Ω̃) satisfies

b̃(ũ, ṽ) = (εf̃ , ṽ)Ω̃ ∀ṽ ∈ H1
♯ (Ω̃). (3.3.52)

Then, we have

bP(ũ|Ω, v) = (εf̃ |Ω, v)Ω + ν−1⟨∂2(LP(f̃ |ΩP
), v⟩ΓA

, ∀v ∈ H1
♯ (Ω). (3.3.53)

Proof. Let f̃ ∈ L2(Ω̃) and let ũ ∈ H1
♯ (Ω̃) satisfy (3.3.52). For the sake of simplicity, let us

write
u = ũ|Ω, uP := ũ|ΩP

.

Since ũ ∈ H1(Ω), its trace is the same on both sides of ΓA, and we have
−k2νPuP − ∂

∂x1

(
νP

∂uP

∂x1

)
− ∂

∂x2

(
ν−1
P

∂uP

∂x2

)
= fP in ΩP

uP = u|ΓA
on ΓA

uP+ − eiαℓ1uP− = 0 on Γ♯

uP = 0 on ΓP,
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and in particular
ν−1
P (∂2u

P)|ΓA
= ν−1

P ∂2(LPf
P) + RP(u|ΓA

).

Since ũ solves (3.3.52), we must also have [[ν−1∂2ũ]] = 0, leading to

(∂2u)|ΓA
= ν−1

P ∂2(LPf
P) + RP(u|ΓA

). (3.3.54)

Since u ∈ H1
♯ (Ω) and

−k2εu−∇ · (A∇u) = εf in Ω,

integration by parts shows that

−k2(εu, v)Ω − ⟨∂2u, v⟩ΓA
+ (A∇u,∇v)Ω = (εf, v)Ω ∀v ∈ H1

♯ (Ω).

Recalling (3.3.54), this leads to

bP(u, v) = (εf, v)Ω + ν−1(∂2(LPf
P), v)ΓA

,

for all v ∈ H1
♯ (Ω).

The next tool we need is “mirror” operator.

Lemma 3.3.18 (Mirror operator through ΓA). Consider the change of coordinates

ϕ : ΩP ∋ x→ ϕ(x) =

(
x1, ℓ2 +

ℓ2
ℓP

(ℓ2 − x2)

)
∈ Ω.

We then define the mirror operator M : H1(Ω) → H1(ΩP) by M v = v ◦ ϕ and we have

|||M v|||k,ΩP
≤
√
ℓP
ℓ2

+
ℓ2
ℓP

1
√
εmin

|||v|||k,Ω , (3.3.55)

for all v ∈ H1(Ω). In addition, if ũ ∈ H1
♯ (Ω̃), then ũ|ΩP

− M (ũ|Ω) ∈ H1
0,♯(ΩP).

Proof. Let v ∈ L2(Ω), then

∥M v∥2ΩP
=

∫
ΩP

|M v|2 =
∫
ΩP

|v ◦ ϕ|2,

and using the change of variables y = ϕ(x) we get

∥M v∥20,ΩP
=
ℓP
ℓ2

∫
Ω

|v|2 = ℓP
ℓ2
∥v∥2Ω.

In addition, if v ∈ H1(Ω) we have

∥∇(M v)∥2ΩP
=

∫
ΩP

|∂1(M v)|2 +
∫
ΩP

|∂2(M v)|2 =
∫
ΩP

|M (∂1v)|2 +
ℓ22
ℓ2P

∫
ΩP

|M (∂2v)|2
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and using the same change of variables y = ϕ(x) we obtain

∥∇(M v)∥20,ΩP
=
ℓP
ℓ2
∥∂1v∥20,Ω +

ℓ2
ℓP

∥∂2v∥20,Ω

≤
(
ℓP
ℓ2

+
ℓ2
ℓP

)
∥∇v∥2Ω.

Then, (3.3.55) simply follows from the fact that Amin = 1.

We are now ready to establish an explicit stability bound of ũ in Ω.

Theorem 3.3.19. Suppose that

b̃(ũ, ṽ) = (εf̃ , ṽ)Ω̃, ∀ṽ ∈ H1
♯ (Ω̃),

then, the PML weak formulation (3.1.4) is well-posed and

k |||ũ|||k,Ω̃ ≤ 4|νP|5
(
ℓ2
ℓP

+
ℓP
ℓ2

)1/2 (√
3 + kℓP

)3/2
(1 + Cis,P)∥f̃∥ε,Ω̃. (3.3.56)

In particular, we have

C̃st ≤ 20|νP|5
1

√
εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)1/2 (√
3 + kℓP

)3/2
(1 + Cis,P).

Remark 3.3.20. In the derivation of (3.3.56) we use the (in general) pessimistic estimate
k⋆ ≥ 0, so that the estimate can be slightly improved in the absence of quasi-resonances.
However, The resulting constant as a very involved expression, and we have chosen to
present (3.3.56) in this form for the sake of simplicity.

Proof. We start by employing the inf-sup condition for bP together with (3.3.53) to show
that

|||ũ|||k,Ω ≤ Cis,P sup
v∈H1

♯ (Ω)

|||v|||k,Ω=1

bP(u, v) = Cis,P sup
v∈H1

♯ (Ω)

|||v|||k,Ω=1

{
(εf̃ , v)Ω + ν−1

P (∂2LPf
P, v)ΓA

}
.

On the one hand, using (3.3.51b) we have

|ν−1
P (∂2(LPf

P), v)ΓA
)| ≤ |νP|−1∥∂2(LPf

P)∥ΓA
∥v∥ΓA

≤ |νP|−1
(
5|νP|2ℓ1/2P ∥fP∥ε,ΩP

)(
k−1/2 |||v|||k,Ω

)
≤ 5|νP|(kℓP)−1/2ℓP∥fP∥ε,ΩP

|||v|||k,ΩP
,

and on the other hand

(εf̃ , v)Ω ≤ ∥f̃∥ε,Ω∥v∥ε,Ω ≤ (kℓP)
−1ℓP∥f∥ε,Ω |||v|||k,Ω ,
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so that

k |||u0|||k,Ω ≤ 5|νP|Cis,P

(
1 + (kℓP)

1/2
)
∥f̃∥ε,Ω̃. (3.3.57)

We have uP − Mu ∈ H1
0,♯(ΩP), and

b̃P(uP − Mu, vP) = (εfP, vP)ΩP
− b̃P(Mu, vP).

Since ∣∣∣(εfP, vP)ΩP
− b̃P(Mu, vP)

∣∣∣ ≤ (1

k
∥fP∥ε,ΩP

+ |||Mu|||k,ΩP

) ∣∣∣∣∣∣vP∣∣∣∣∣∣
ε,ΩP

recalling (3.3.50), we have∣∣∣∣∣∣uP − Mu
∣∣∣∣∣∣

k,ΩP
≤ 2|ν|4(1 + (kℓP)

2)

(
1

k
∥fP∥ε,ΩP

+ |||Mu|||k,ΩP

)
,

and therefore ∣∣∣∣∣∣uP∣∣∣∣∣∣
k,ΩP

≤ 2|ν|4(2 + (kℓP)
2)

(
1

k
∥fP∥ε,ΩP

+ |||Mu|||k,ΩP

)
and

k2
∣∣∣∣∣∣uP∣∣∣∣∣∣2

k,ΩP
≤ 8|ν|8(2 + (kℓP)

2)2
(
∥fP∥2ε,ΩP

+ k2
1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
|||u|||2k,Ω

)
. (3.3.58)

Summing the two equations (3.3.57) and (3.3.58), we have

k2 |||u|||2k,Ω̃ ≤ 8|ν|8(3 + (kℓP)
2)2
(
∥fP∥2ε,ΩP

+ k2
1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
|||u|||2k,Ω

)
≤ 8|ν|8(3 + (kℓP)

2)2
(
∥fP∥2ε,ΩP

+
1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
25|νP|2C 2

is,P

(
1 + (kℓP)

1/2
)2 ∥f̃∥2

ε,Ω̃

)
≤ 8|ν|8(3 + (kℓP)

2)2(1 + Cis,P)
2 1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
25|νP|2

(
1 + (kℓP)

1/2
)2 ∥f̃∥2

ε,Ω̃

≤ 200|ν|10(3 + (kℓP)
2)
(
1 + (kℓP)

1/2
)2

(1 + Cis,P)
2 1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
∥f̃∥2

ε,Ω̃

≤ 400|ν|10(3 + (kℓP)
2) (1 + (kℓP)) (1 + Cis,P)

2 1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
∥f̃∥2

ε,Ω̃

≤ 400|ν|10(
√
3 + kℓP)

3(1 + Cis,P)
2 1

εmin

(
ℓ2
ℓP

+
ℓP
ℓ2

)
∥f̃∥2

ε,Ω̃

Theorem 3.3.21. Assume that CisEP < 1. Then, we have

inf
ũ∈H1

♯ (Ω̃)

|||ũ|||
k,Ω̃

=1

sup
ṽ∈H1

♯ (Ω̃)

|||ṽ|||
k,Ω̃

=1

b̃(ũ, ṽ) ≥ 1

|νP|
1

1 + 2γrC̃st

. (3.3.59)
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Proof. Let ũ ∈ H1
♯ (Ω̃) with |||ũ|||k,Ω̃ = 1. We have

Re b̃(ũ, ũ) = −k2∥ũ∥2ε,Ω + ∥∇ũ∥2A,Ω − k2Re νP∥ũ∥2ε,ΩP
+Re νP

∥∥∥∥ ∂ũ∂x1

∥∥∥∥2
A1,ΩP

+Re ν−1
P

∥∥∥∥ ∂ũ∂x2

∥∥∥∥2
A2,ΩP

= −k2∥ũ∥2ε,Ω + ∥∇ũ∥2A,Ω +

∥∥∥∥ ∂ũ∂x1

∥∥∥∥2
A1,ΩP

− k2γr∥ũ∥2ε,ΩP
+ γr

∥∥∥∥ ∂ũ∂x1

∥∥∥∥2
A1,ΩP

+
γr
|νP|

∥∥∥∥ ∂ũ∂x2

∥∥∥∥2
A2,ΩP

≥ −γrk2∥ũ∥2ε,Ω̃ +
1

|νP|
∥∇ũ∥2

A,Ω̃
.

Let now ξ ∈ H1
♯ (Ω̃) solve

b̃(w, ξ) = (εw, ũ)Ω̃,

so that
b̃(ũ, ξ) = ∥ũ∥2

ε,Ω̃

and
k |||ξ|||k,Ω̃ ≤ C̃st∥ũ∥ε,Ω̃ k2 |||ξ|||k,Ω̃ ≤ C̃st |||ũ|||k,Ω̃ .

As a result

Re b̃(ũ, ũ+ 2γrk
2ξ) ≥ k2γr∥ũ∥2ε,Ω̃ +

1

νP
∥∇ũ∥2

A,Ω̃
≥ 1

νP
|||ũ|||2k,Ω̃ .

Furthermore, we have

|||ũ+ 2γrξ|||k,Ω̃ ≤ |||ũ|||k,Ω̃ + 2γrk
2 |||ξ|||k,Ω̃ ≤

(
1 + 2γrC̃st

)
|||ũ|||k,Ω̃ ,

so that letting ṽ := ũ+ 2γrk
2ξ, we have

Re b̃(ũ, ṽ) ≥ 1

|νP|
1

1 + 2γrC̃st

|||ũ|||k,Ω̃ |||ṽ|||k,Ω̃ .
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Chapter 4

Periodic homogenization of finely
textured layers
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Transparent front contact

Semi-conductor material 1

Semi-conductor material 2

Semi-conductor material 3

Semi-conductor material 4

Metal back contact

Glass

Figure 4.1: Structure of a silicon solar cell.

In this chapter, we consider the case of finely textured layered media. This study is
physically motivated by solar cells similar to the one represented on Figure 4.1. Mathe-
matically, we will work with a periodicity assumption and consider coefficients as described
on Figure 4.2. Specifically, we want to analyze layers with oscillating interfaces of the form

Γδ :=
{
x ∈ Ω | x2 = ϕ

(x1

δ

)}
,

where ϕ is a smooth function and δ > 0 is small parameter representing the characteristic
length of the layers texturation.

We will analyze this problem through the lens of periodic homogenization theory [48].
More precisely, similar to [35], we will observe that the stability bounds we established
in chapters 2 and 3 are not only explicit in frequency, but also uniform in δ. In fact,
more generally, our stability bounds are oblivious to variations of the coefficients along
the x1 direction. As a result, we may be tempted to “pass to the limit” as δ → 0.
This limit process is usually called “homogenization”, as we will show that the solution
uδ converges to the solution u0 of a Helmholtz problem with non-oscillating coefficients
that are often called “effective” or “homogenized” coefficients. We will see that indeed,
these homogenized coefficients correspond to some averaging of the oscillating coefficients.
Following the standard theory in [48] and adapted to Helmholtz equation in [35], we will
provide error estimates between u0 and uδ. Crucially, the fact that our stability bounds
are uniform in δ will enable us to derive frequency-explicit error estimates controlling the
difference between the solutions u0 of the homogenized problem and uδ of the oscillating
problem.
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ΩP
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Γ̃♯− Γ̃♯+

Figure 4.2: Example of the considered domain (modeling a cross section of a solar cell).

Beyond their intrinsic interest, the results we derive in this section are instrumental
in the analysis of multiscale numerical methods. In fact, we will also heavily rely on the
results on this chapter to analyze the properties of multiscale hybrid-mixed discretization
of problems with finely textured layers in section 5.4.

4.1 Model problem

We start by introducing our model problem, and verifying that the stability results of
chapters 2 and 3 do apply.

4.1.1 Oscillating coefficients

In the remainder of this chapter, δ > 0 will denote a small real number. Since our problem
correspond to one periodic slab of a solar cell structure, we will always implicitly assume
that δ := ℓ1/M for some large integer M .

The concept of “fast” and “slow” variables will be very useful for our analysis. Specif-
ically, we will often work with functions of the form

ϕδ(x1,x2) = ϕ̂
(
x2,
{x1

δ

})
where ϕ(x2, y) is a 1-periodic function in y and {t} := t − ⌊t⌋ denotes the fractional part
of t ∈ R. In particular, the functions describing the physical coefficients corresponding to
Figure 4.2 are of this form. In this context, x1 is known as the slow variable, whereas we
say that y is the fast variable. Thus, the following notations will be useful.
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In the remainder of this chapter we set Y := (0, 1) for the periodic cell in which the
fast variable y lives. If v̂ : (0, ℓ2 + ℓP)× Y → C, we employ the notations

⟨v̂⟩Y (x2) :=

∫
Y

v̂(x2, y)dy ∀x2 ∈ (0, ℓ2 + ℓP),

and
v̂δ(x) = v̂

(
x2,
{x1

δ

})
∀x ∈ Ω̃.

The following identities

∂v̂δ

∂x1

=
1

δ

(
∂v̂

∂y

)δ
∂v̂δ

∂x2

=

(
∂v̂

∂x2

)δ

(4.1.1)

are simple, and will often be useful.
In this chapter, we will work with coefficients that are highly oscillating in the x1

direction. Specifically, we consider functions ε̂, Â1, Â2 : (0, ℓ2 + ℓP)× Y → R such that: (i)

ε, Â1 and Â2 are smooth, (ii) ε̂ is increasing with x2 and Â1 and Â2 are decreasing with

x2 and (iii) ε ≡ 1, and Â1 ≡ Â2 ≡ 1 for x2 ∈ (ℓ2, ℓ2 + ℓP).
An important consequence of those assumptions is that the corresponding oscillating

coefficients ε̂δ, and Â
δ
satisfy the requirements of Assumption 2.1.1 with one layer (N = 1).

We also notice that our assumptions on the coefficients imply that ε̂ ≤ εmax := 1 and
A1, A2 ≥ Amin =: 1. We will denote by εmin and Amax the other bounds of the coefficients.

Remark 4.1.1 (Periodicity assumption). Notice that due to our periodicity assumption,
the whole solar cell structure is periodic with period δ. As explained in the introduction, it
means that in principle, we could reformulate the whole problem on a periodic slab of size
δ, i.e. with ℓ1 = δ. However, the periodicity assumption we make in this chapter is only
of a technical nature, and what we are striving for are layers with a rough texture that are
part of a periodic pattern, as described for instance on Figure 4.1.

Remark 4.1.2 (Smoothness assumption). For technical reasons, we need to assume that
the coefficients are smooth. It means that they do not exactly represent layers with sharp
boundaries as described on Figure 4.2 as they are continuous along the x2 direction. In fact,

our coefficients ε̂δ and Â
δ
really correspond to a “blurry” version of what is represented on

Figure 4.2.

4.1.2 Homogenized coefficients

As δ → 0, one expects the solution to only see an homogenized version of ε̂δ and Â
δ
. A

naive guess would be that the corresponding effective coefficient is ⟨ε⟩Y and ⟨Â⟩Y , but the
reality is more complicated. In general, the expression of the effective parameters is not
explicit, and involves a boundary value problem on the periodic cell Y as shown in [48,
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sections 6.1 and 6.2]. Here, because the periodic cell is one dimensional, explicit expressions
are actually available, and they are as follows

εH := ⟨ε̂⟩Y AH
1 := 1/⟨Â−1

1 ⟩Y AH
2 := ⟨Â2⟩Y . (4.1.2)

The situation is in fact similar to what is considered in [48, section 5.4]. Notice that
even in this simpler case, the homogenization formula is not obvious: it involves both the
arithmetic and the harmonic means.

Since in this chapter we will be considering a family of Helmholtz problems (param-
eterized by δ), it will be convenient to work with a single energy norm. As a result, we
introduce

|||v|||2k,Ω̃ := k2∥v∥2
εH,Ω̃

+ ∥∇v∥2
AH,Ω̃

, (4.1.3)

for all v ∈ H1
♯ (Ω̃).

In this chapter, we assume that the PML parameters are chosen such that EP is suffi-
ciently small. In addition, in the remaining, ℓ will denote the diameter of Ω̃ and we will
assume for simplicity that kℓ ≥ 1. As tracking the dependency of multiplicative constants
of this section will be tedious, we introduce the following notation: for A,B ≥ 0, we will
write A ≲ B if there exists a constant C > 0 which is independent of A, B, δ and k, but
which possibly depends on Ω̃, εmin, Amax, ν,

ℓ

∥∥∥∥ ∂ε̂∂x2

∥∥∥∥
L∞(Ω̃)

, ℓ

∥∥∥∥∥∂Â1

∂x2

∥∥∥∥∥
L∞(Ω̃)

and ℓ

∥∥∥∥∥∂Â2

∂x2

∥∥∥∥∥
L∞(Ω̃)

,

such that A ≤ CB. We also write A ≳ B when B ≲ A.
We close this subsection with some simple properties of the homogenized coefficients.

Lemma 4.1.3 (Simple properties of the homogenized coefficients). We have εH, AH
1 , A

H
2 ∈

C1,1(Ω̃). In addition εH, AH
1 and AH

2 only depend on the x2 variable, and we have

0 ≤ ∂εH

∂x2

≲
1

ℓ
− 1

ℓ
≲
∂AH

1

∂x2

≤ 0 − 1

ℓ
≲
∂AH

2

∂x2

≤ 0, (4.1.4)

and
εmin ≤ εH ≤ 1 1 ≤ AH

1 ≤ Amax 1 ≤ AH
2 ≤ Amax.

Proof. Recalling the expressions (4.1.2), it is clear that the homogenized coefficients are
independent of y which implies their independence from x1. Also, the C

1,1-smoothness of
εH, AH

1 and AH
2 is a direct consequence of the smoothness assumption on ε̂, Â1 and Â2. In

addition, we use the monotonicity condition on εH, AH
1 and AH

2 to obtain the bounds 0 at
(4.1.4), and given that

∂εH

∂x2

(x) =

〈
∂ε̂δ

∂x2

〉
Y

(x1) =

〈(
∂ε̂

∂x2

)δ
〉

Y

(x1) ≲

∣∣∣∣ ∂ε̂∂x2

(x1)

∣∣∣∣ ≲ 1

ℓ
,
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the other bounds at (4.1.4) follow since the hidden constants in ≲ may depends on

ℓ

∥∥∥∥ ∂ε̂∂x2

∥∥∥∥
L∞(Ω̃)

, ℓ

∥∥∥∥∥∂Â1

∂x2

∥∥∥∥∥
L∞(Ω̃)

and ℓ

∥∥∥∥∥∂Â2

∂x2

∥∥∥∥∥
L∞(Ω̃)

.

On the other hand, since εmin ≤ ε̂ ≤ 1 and 1 ≤ A1, A2 ≤ Amax, then by averaging over
Y we have

εmin ≤ εH ≤ 1 1 ≤ AH
1 ≤ Amax 1 ≤ AH

2 ≤ Amax.

4.1.3 Oscillating problem

We are now ready to state our model problem. For δ > 0 and f ∈ L2(Ω̃), it consists in

finding uδ ∈ H1
♯ (Ω̃) such that

bδ(uδ, v) = (εHf, v)Ω̃ ∀v ∈ H1
♯ (Ω̃), (4.1.5)

where the sesquilinear form is given by bδ(ϕ, v) := bΩ̃δ (ϕ, v) where

bDδ (ϕ, v) = −k2(νεδϕ, v)D +

(
νAδ

1

∂ϕ

∂x1

,
∂v

∂x1

)
D

+

(
ν−1Aδ

2

∂ϕ

∂x2

,
∂v

∂x2

)
D

for all ϕ, v ∈ H1(D) and open sets D ⊂ Ω̃. We will refer to (4.1.5) as the “oscillating

problem”. The notation bDδ (·, ·) will be useful in the proofs to work on subsets of Ω̃.
Notice that we employed the oscillating coefficients to define the sesquilinear form

bδ(·, ·), but used the homogenized coefficients εH in the right-hand side. This choice is
mostly done for technical reasons, in order to simplify the analysis. However, it is not an
oversimplification in practice. Indeed, (i) in applications, the right-hand side f usually
corresponds to an incoming field, and is supported near the top of Ω where ε̂δ = εH = 1.
Besides (ii), we will see in Chapter 5 that this setting is sufficient to derive optimal error
estimates for multiscale numerical methods.

As we next show, the stability result derived in Theorem 2.3.3 applies straightforwardly
here. In fact, a single slight adjustment is needed in order to account for the fact that
we consider an energy norm with the homogenized coefficients instead of the oscillating
coefficients.

Lemma 4.1.4 (Uniform stability of the oscillating problem). For all δ > 0, and f ∈ L2(Ω̃),

problem (4.1.5) admits a unique solution uδ ∈ H1
♯ (Ω̃). In addition, the estimate

k |||uδ|||k,Ω̃ ≲ Cst∥f∥εH,Ω̃,

holds uniformly in δ with
Cst := (kℓ)9/2. (4.1.6)



93

Proof. Assume that CisEP < 1, Theorem 3.3.19 from Chapter 3 implies that the problem
(4.1.5) admits a unique solution uδ ∈ H1

♯ (Ω̃) and that

k |||uδ|||k,Ω̃ ≲ (kℓ)9/2∥f∥εH,Ω̃,

the hidden constant depends on Ω̃, ν, Amax and εmin.

4.1.4 Homogenized problem

In the homogenized problem, we replace the oscillating coefficients ε̂δ and Â
δ
by their

effective counterparts εH and AH. Namely, for f ∈ L2(Ω̃), the “homogenized problem”

consists in finding u0 ∈ H1
♯ (Ω̃) such that

bH(u0, v) = (εHf, v)Ω̃ ∀v ∈ H1
♯ (Ω̃), (4.1.7)

where the sesquilinear form is given by bH(ϕ, v) := bΩ̃H(ϕ, v) where

bDH(ϕ, v) := −k2(νεHϕ, v)D +

(
νAH

1

∂ϕ

∂x1

,
∂v

∂x1

)
D

+

(
ν−1AH

2

∂ϕ

∂x2

,
∂v

∂x2

)
D

,

for all ϕ, v ∈ H1(D) and open sets D ⊂ Ω̃.

Lemma 4.1.5 (Stability of the homogenized problem). For all f ∈ L2(Ω̃), there exists a

unique solution u0 ∈ H1
♯ (Ω̃) to (4.1.7), and the estimate

k |||u0|||k,Ω̃ ≲ Cst∥f∥εH,Ω̃,

holds true with Cst given by (4.1.6).

4.2 Convergence analysis

We now proceed to show that the solution uδ to the oscillating problem converges to the
solution u0 of the homogenized problem in an appropriate sense as δ → 0. We will prove
this results using the “multiple-scale” method described in [48, Chapter 7]. This approach
has recently been employed to analyze a Helmholtz problem [35], but in a different setting.
Specifically, the problem considered in [35] describes scattering by a bounded obstacle, so
that no quasi-periodic boundary conditions are involved. Besides, fine layers are considered
in [35], which turn out to leads to a different proof than the finely textured layers we
consider here.
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4.2.1 Correctors

Following [48, Section 7.1], we need to introduce specific functions (0, ℓ2 + ℓP) × Y → R
to perform the convergence analysis. Such functions are often called “correctors” in this
context. In general, these functions are defined as the solution to PDEs on the reference

cell Y , and there analytical expression is not explicitly available. Here, because ε̂δ and Â
δ

only oscillate in the x1 direction, these PDEs are actually one-dimensional problems for
which we can write down closed form formula.

We start by introducing the “first-order corrector”.

Lemma 4.2.1 (First-order corrector). Define χ̂ : (0, ℓ2 + ℓP)× Y → R as

χ̂(x2, y) := y − AH
1 (x2)

∫ y

0

Â−1
1 (x2, z)dz ∀(x2, y) ∈ (0, ℓ2 + ℓP)× Y. (4.2.1)

Then, we have

Â1
∂χ̂

∂y
= Â1 − AH

1 . (4.2.2)

In addition, we have χ̂δ ∈ C1,1(Ω̃) with

∥χ̂δ∥L∞(Ω̃) ≲ 1,

∥∥∥∥∂χ̂δ

∂x1

∥∥∥∥
L∞(Ω̃)

≲ δ−1,

∥∥∥∥∂χ̂δ

∂x2

∥∥∥∥
L∞(Ω̃)

≲ ℓ−1. (4.2.3)

Besides χ̂δ = 0 on ΩP.

Proof. The fact that (4.2.2) holds true is a direct consequence of the definition we chose

for χ̂ in (4.2.1). It is clear that χ̂ is smooth, due to the smoothness assumption on Â1. To

ensure that χ̂δ ∈ C1,1(Ω̃), we must additionally check that

χ̂(x2, 0) = χ̂(x2, 1)
∂χ̂

∂x2

(x2, 0) =
∂χ̂

∂x2

(x2, 1),

for all x2 ∈ (0, ℓ2 + ℓP). The function

ϕ : x2 → AH
1 (x2)

∫ 1

0

Â−1(x2, y)dy,

will be useful. Observe that ϕ = AH
1 ⟨Â−1⟩Y = 1, due to the definition of AH

1 , so that

ϕ ≡ 1
∂ϕ

∂x2

≡ 0.

We then observe that
χ̂(x2, 1) = 1− ϕ(x2) = 0 = χ̂(x2, 0),
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for all x2 ∈ (0, ℓ2 + ℓP). On the other hand,

∂χ̂

∂x2

(x2, 0) =
∂y

∂x2

= 0,

and
∂χ̂

∂x2

(x2, 1) =
∂ϕ

∂x2

(x2) = 0,

so that
∂χ̂

∂x2

(x2, 0) =
∂χ̂

∂x2

(x1, 1).

To show that χ̂δ = 0 on ΩP, it suffices to observe that

χ̂(x2, y) = y − AH
1 (x2)

∫ y

0

Â−1
1 (x2, z)dz = y −

∫ y

0

dz = 0,

since Â−1
1 (x2, y) = ⟨Â−1⟩Y (x2) for all x2 ∈ (ℓ2, ℓ2 + ℓP), as Â1 does not depend on y if

x2 > ℓ2.

We next introduce another key function τ̂ . The function τ̂ is specifically required in
our analysis because the coefficients only oscillate in one-direction instead of two.

Lemma 4.2.2 (Corrector for the non-oscillating direction). Define the function τ̂ : (0, ℓ2+
ℓP)× Y → R by

τ̂(x2, y) =
1

AH
2 (x2)

∫ y

0

Â2(x2, z)dz − y ∀(x2, y) ∈ (0, ℓ2 + ℓP)× Y. (4.2.4)

Then, we have

AH
2

∂τ̂

∂y
= Â2 − AH

2 , (4.2.5)

In addition, τ̂ δ ∈ C1,1(Ω̃) and

∥τ̂ δ∥L∞(Ω̃) ≲ 1 ∥∇τ̂ δ∥L∞(Ω) ≲ δ−1. (4.2.6)

Proof. On can readily check that (4.2.5) holds true based on (4.2.4). Besides, it is clear
that τ̂ is smooth, and we only need to verify periodicity conditions to ensure that τ̂ δ is
smooth as well. Due to the definition of AH

2 , the function ϕ(x2) := ⟨Â2⟩Y (x2)/A
H
2 (x2)

satisfies ϕ ≡ 1 on (0, ℓ2 + ℓP). We then observe that

τ̂(x2, 1) = 1− ϕ(x2) = 0 = τ̂(x2, 0).

On the other hand, we have

∂τ̂

∂x2

(x2, 1) = ϕ′(x2) = 0,

and
∂τ̂

∂x2

(x2, 0) = − ∂y

∂x2

= 0.
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Finally η̂ is the so-called “second-order” corrector. The properties of η̂ are obtained
exactly as the ones of τ̂ , so that for the sake of shortness, we do not repeat the proof.

Lemma 4.2.3 (Second-order corrector). Let

η̂(x2, y) :=
1

εH(x2)

∫ y

0

ε̂(x2, z)dz − y, (4.2.7)

for all (x1, y) ∈ (0, ℓ2 + ℓP)× Y . Then, we have

εH
∂η̂

∂y
= ε̂− εH, (4.2.8)

and
∥η̂δ∥L∞(Ω̃) ≲ 1. (4.2.9)

4.2.2 Technical results

We pursue our convergence analysis with some preliminary results that employs the func-
tions η̂, χ̂ and τ̂ introduced and analyzed in subsection 4.2.1. In this subsection, D ⊂ Ω̃
is a fixed Lipschitz domain with diameter hD. The situations we have in mind are when
D = Ω or D = K for an element K ∈ TH .

We recall that the following multiplicative trace inequality

∥v∥2∂D ≤ Ctr(D)

(
1

hD
∥v∥2D + ∥v∥D∥∇v∥D

)
, (4.2.10)

always holds true [72, Theorem 1.5.1.10], and in the remaining of this subsection, we allow
the hidden constant in the ≲ notation to depend on Ctr(D).

Then, we observe that from the definition of the coefficients, we have

∥∇v∥εH,D ≲ |||v|||k,D ∀v ∈ H1(D). (4.2.11)

Finally, an easy consequence of (4.2.10) and (4.2.11) is that

k∥v∥2εH,∂D ≲

(
1 +

1

khD

)
|||v|||2k,D ∀v ∈ H1(D). (4.2.12)

Our first technical result concerns the L2 inner product arising in the sesquilinear forms
bδ(·, ·) and bH(·, ·).

Lemma 4.2.4. For all u0, v ∈ H1(D), we have

∣∣k2 ((ε̂δ − εH)u0, v
)
D

∣∣ ≲ (kδ + δ

hD

)
|||u0|||k,D |||v|||k,D . (4.2.13)
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Proof. Let u0, v ∈ H1(D). Recalling (4.2.8) from Lemma 4.2.3, we have

ε̂δ − εH = (ε̂− εH)δ =

(
εH
∂η̂

∂y

)δ

= δεH
∂η̂δ

∂x1

,

and therefore (
(ε̂δ − εH)u0, v

)
D
= δ

(
εH
∂η̂δ

∂x1

u0, v

)
D

.

Recalling that εH does not depend on x1, and integrating by parts, we have(
εH
∂η̂δ

∂x1

u0, v

)
D

=

∫
D

∂η̂δ

∂x1

(εHu0v)

=

∫
∂D

εHη̂δu0vn1 −
∫
D

η̂δ
∂

∂x1

(εHu0v)

=

∫
∂D

εHη̂δu0vn1 −
∫
D

εHη̂δ
(
∂u0
∂x1

v + u0
∂v

∂x1

)
,

leading to

∣∣k2 ((ε̂δ − εH)u0, v
)
D

∣∣ ≲ kδ

(
k∥u0∥εH,∂D∥v∥εH,∂D +

∥∥∥∥∂u0∂x1

∥∥∥∥
εH,D

k∥v∥εH,D + k∥u0∥εH,D

∥∥∥∥ ∂v∂x1

∥∥∥∥
εH,D

)
,

where we employed (4.2.9) to estimate ∥ηδ∥L∞(D). Then, (4.2.13) follows since (4.2.11) and
(4.2.12) imply that

k∥u0∥εH,∂D∥v∥εH,∂D+

∥∥∥∥∂u0∂x1

∥∥∥∥
εH,D

k∥v∥εH,D+k∥u0∥εH,D

∥∥∥∥ ∂v∂x1

∥∥∥∥
εH,D

≲

(
1 +

1

khD

)
|||u0|||k,D |||v|||k,D .

Our next result deals with the inner product involving the x1 derivatives in the sesquilin-
ear forms.

Lemma 4.2.5. For all u0 ∈ H2(D) and v ∈ H1(D), we have∣∣∣∣bDδ (δχ̂δ ∂u0
∂x1

, v

)
−
(
ν(Aδ

1 − AH
1 )
∂u0
∂x1

,
∂v

∂x1

)
D

∣∣∣∣
≲

(
δ

ℓ
|||u0|||k,D + δ

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

)
|||v|||k,D . (4.2.14)

Proof. Recall the function χ̂ from Lemma 4.2.1. Using (4.1.1), we write that

∂

∂x1

(
χ̂δ ∂u0
∂x1

)
= χ̂δ ∂

2u0
∂x2

1

+
∂χ̂δ

∂x1

∂u0
∂x1

= χ̂δ ∂
2u0
∂x2

1

+
1

δ

(
∂χ̂

∂y

)δ
∂u0
∂x1

,
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which, after multiplying by δνÂ1
δ , leads to

δνÂδ
1

∂

∂x1

(
χ̂δ ∂u0
∂x1

)
= δνÂδ

1χ̂
δ ∂

2u0
∂x2

1

+ ν

(
Â1
∂χ̂

∂y

)δ
∂u0
∂x1

= δνÂδ
1χ̂

δ ∂
2u0
∂x2

1

+ ν(Âδ
1 − AH

1 )
∂u0
∂x1

,

where we have used (4.2.2) in the last equality. As a result, for all v ∈ H1(D), we have(
ν(Âδ

1 − AH
1 )
∂u0
∂x1

,
∂v

∂x1

)
D

=

(
νÂδ

1

∂

∂x1

(
δχ̂δ ∂u0

∂x1

)
,
∂v

∂x1

)
D

− δ

(
νÂδ

1χ
δ ∂

2u0
∂x1

1

,
∂v

∂x1

)
D

,

and since(
νÂδ

1

∂

∂x1

(
δχ̂δ ∂u0

∂x1

)
,
∂v

∂x1

)
D

= bDδ

(
δχ̂δ ∂u0

∂x1

, v

)
+ k2

(
ε̂δδχ̂δ ∂u0

∂x1

, v

)
D

−
(
Âδ

2

∂

∂x2

(
δχ̂δ ∂u0

∂x1

)
,
∂v

∂x2

)
D

,

we arrive at(
ν(Âδ

1 − AH
1 )
∂u0
∂x1

,
∂v

∂x1

)
D

− bDδ

(
δχ̂δ ∂u0

∂x1

, v

)
=

k2δ

(
ε̂δχ̂δ ∂u0

∂x1

, v

)
D

− δ

(
Âδ

2

∂

∂x2

(
χ̂δ ∂u0
∂x1

)
,
∂v

∂x2

)
D

− δ

(
νÂδ

1χ
δ ∂

2u0
∂x1

1

,
∂v

∂x1

)
D

,

and it remains to bound the three terms in the right-hand side.
First, using (4.2.3), and by definition of the energy norm, we immediatly have

k2δ

∣∣∣∣(ε̂δχ̂δ ∂u0
∂x1

, v

)
D

∣∣∣∣ ≲ k2δ

∥∥∥∥∂u0∂x1

∥∥∥∥
ε̂δ,D

∥v∥ε̂δ,D ≲ δ

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

|||v|||k,D .

For the second term, we first write that

δ

∣∣∣∣(Âδ
2

∂

∂x2

(
χ̂δ ∂u0
∂x1

)
,
∂v

∂x2

)
D

∣∣∣∣ ≲ δ

∥∥∥∥ ∂

∂x2

(
χ̂δ ∂u0
∂x1

)∥∥∥∥
Âδ

2

∥∥∥∥ ∂v∂x2

∥∥∥∥
Âδ

2

≲

∥∥∥∥ ∂

∂x2

(
χ̂δ ∂u0
∂x1

)∥∥∥∥
Âδ

2

|||v|||k,D ,

and then observe that∥∥∥∥ ∂

∂x2

(
χ̂δ ∂u0
∂x1

)∥∥∥∥
Âδ

2

≲

∥∥∥∥χ̂δ ∂

∂x2

(
∂u0
∂x1

)∥∥∥∥
Âδ

2

+

∥∥∥∥∂χ̂δ

∂x2

∂u0
∂x1

∥∥∥∥
Âδ

2

≲

∥∥∥∥ ∂

∂x2

(
∂u0
∂x1

)∥∥∥∥
Âδ

2

+ ℓ−1

∥∥∥∥∂u0∂x1

∥∥∥∥
Âδ

2

≲

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

+ ℓ−1 |||u0|||k,D ,



99

leading to

δ

∣∣∣∣(Âδ
2

∂

∂x2

(
χ̂δ ∂u0
∂x1

)
,
∂v

∂x2

)
D

∣∣∣∣ ≲
(
δ

ℓ
|||u0|||k,D + δ

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

)
|||v|||k,D .

Finally, the last term is easily dealt with using (4.2.3)

δ

∣∣∣∣(νÂδ
1χ

δ ∂
2u0
∂x1

1

,
∂v

∂x1

)
D

∣∣∣∣ ≲ δ

∥∥∥∥∂2u0∂x2
1

∥∥∥∥
Âδ

1,D

∥∥∥∥ ∂v∂x1

∥∥∥∥
Âδ

1,D

≲ δ

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

|||v|||k,D .

We finally analyze the terms linked with the x2 derivatives. This last term requires
more subtle arguments.

Lemma 4.2.6. For all u0 ∈ H2(D) and v ∈ H1(D), we have∣∣∣∣((Âδ
2 − AH

2 )
∂u0
∂x2

,
∂v

∂x2

)
D

∣∣∣∣ ≲{(√
δ

hD
+
δ

ℓ

)
|||u0|||k,D + (δ +

√
δhD)

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

}
|||v|||k,D . (4.2.15)

Proof. Let u0 ∈ H2(D) and v ∈ H1(D). We will use the function τ̂ from Lemma 4.2.2.
Invoking (4.1.1) and (4.2.5), we start by writing that

I :=

(
(Âδ

2 − AH
2 )
∂u0
∂x2

,
∂v

∂x2

)
D

=

(
AH

2

(
∂τ̂

∂y

)δ
∂u0
∂x2

,
∂v

∂x2

)
D

= δ

(
AH

2

∂τ̂ δ

∂x1

∂u0
∂x2

,
∂v

∂x2

)
D

.

Since we also have

∂τ̂ δ

∂x1

∂u0
∂x2

=
∂

∂x1

(
τ̂ δ
∂u0
∂x2

)
− τ̂ δ

∂2u0
∂x1∂x2

,

we end up with the identity I = I1 + I2, where

I1 := δ

(
AH

2

∂

∂x1

(
τ̂ δ
∂u0
∂x2

)
,
∂v

∂x2

)
D

I2 := δ

(
AH

2 τ̂
δ ∂2u0
∂x1∂x2

,
∂v

∂x2

)
D

.

Actually, the second term is the simplest to deal with, so we shall address it first. In fact,
using (4.2.6) to bound ∥τ̂ δ∥L∞(D), we have

|I2| ≲ δ

∥∥∥∥ ∂2u0
∂x1∂x2

∥∥∥∥
AH

2 ,D

∥∥∥∥ ∂v∂x2

∥∥∥∥
AH

2 ,D

≲ δ

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

|||v|||k,D .
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For the other term, since AH
2 does not depend on x1, we have

I1 = δ

(
∂

∂x1

(
AH

2 τ̂
δ ∂u0
∂x2

)
,
∂v

∂x2

)
D

= I1,1 + I1,2,

with

I1,1 := δ

(
∂

∂x2

(
AH

2 τ̂
δ ∂u0
∂x2

)
,
∂v

∂x1

)
D

, I1,2 := δ

(
∇
(
AH

2 τ̂
δ ∂u0
∂x2

)
× n, v

)
∂D

,

where we have employed the integration by part formula(
∂ϕ

∂x1

,
∂w

∂x2

)
D

=

(
∂ϕ

∂x2

,
∂w

∂x1

)
D

+ (∇ϕ× n, w)∂D,

valid for all ϕ ∈ H2(D) and w ∈ H1(D).
For the I1,1 term, we expand

∂

∂x2

(
AH

2 τ̂
δ ∂u0
∂x2

)
=

∂

∂x2

(
AH

2 τ̂
δ
) ∂u0
∂x2

+ AH
2 τ̂

δ ∂
2u0
∂x2

2

=

(
τ̂ δ
∂AH

2

∂x2

+
∂τ̂ δ

∂x2

AH
2

)
∂u0
∂x2

+ AH
2 τ̂

δ ∂
2u0
∂x2

2

,

leading to

I1,1 = δ

{(
AH

2 τ̂
δ

{(
1

AH
2

∂AH
2

∂x2

)
+
∂τ̂ δ

∂x2

}
∂u0
∂x2

,
∂v

∂x1

)
D

+

(
AH

2 τ̂
δ ∂

2u0
∂x2

2

,
∂v

∂x1

)
D

}
,

and

|I1,1| ≲ δ

(
ℓ−1 |||u0|||k,D +

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

.

)
|||v|||k,D

We now analyze I1,2, which is the most technical. Let us formally introduce the operator
L : H1(∂D) → L2(∂D) by

L (ψ) := ∇
(
AH

2 τ̂
δψ
)
× n.

Notice that we also have L : L2(∂D) → H−1(∂D). We have

∥L (ψ)∥L2(∂D) ≲ Amax

(
δ−1∥ψ∥L2(∂D) + |ψ|H1(D)

)
,

and
∥L (ψ)∥H−1(∂D) ≲ Amax∥ψ∥L2(D),

so that, see [129], by interpolation

∥L (ψ)∥H−1/2(∂D) ≲ Amax

(
δ−1/2∥ψ∥L2(∂D) + |ψ|H1/2(∂D)

)
.



101

We finally observe that
(L (ψ), 1)∂D = 0.

It follows that

|I1,2| = δ

∣∣∣∣(L

(
∂u0
∂x2

)
, v

)
∂D

∣∣∣∣
= δ

∣∣∣∣(L

(
∂u0
∂x2

)
, v − v∂D

)
∂D

∣∣∣∣
≲ δAmax

(
δ−1/2

∥∥∥∥∂u0∂x2

∥∥∥∥
L2(∂D)

+

∣∣∣∣∂u0∂x2

∣∣∣∣
H1/2(∂D)

)
∥v − v∂D∥H1/2(∂D)

≲ Amax

(
δ1/2

∥∥∥∥∂u0∂x2

∥∥∥∥
L2(∂D)

+ δ

∣∣∣∣∂u0∂x2

∣∣∣∣
H1/2(∂D)

)
|v|H1/2(∂D)

≲ (Amax)
1/2

(
δ1/2

∥∥∥∥∂u0∂x2

∥∥∥∥
L2(∂D)

+ δ

∣∣∣∣∂u0∂x2

∣∣∣∣
H1(D)

)
|||v|||k,D .

We then have ∥∥∥∥∂u0∂x2

∥∥∥∥
L2(∂D)

≲ h
−1/2
D

∥∥∥∥∂u0∂x2

∥∥∥∥
L2(D)

+ h
1/2
D

∣∣∣∣∂u0∂x2

∣∣∣∣
H1(D)

,

leading to

|I1,2| ≲

(√
δ

hD
|||u0|||k,D + (

√
δhD + δ)

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,D

)
|||v|||k,D,

and (4.2.15) follows.

4.2.3 Error estimates

In this subsection, we state our main convergence result. We start by showing that the
homogenized solution is regular.

Lemma 4.2.7 (Regularity of the homogenized solution). Let f ∈ L2(Ω̃). For the associated

solution u0 ∈ H1
♯ (Ω̃) to (4.1.7), we have u0 ∈ H2(Ω) ∪H2(ΩP) with

k |||u0|||k,Ω +

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

k |||u0|||k,ΩP
+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,ΩP

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,ΩP

≲ Cst∥f∥εH,Ω̃. (4.2.16)

Proof. We first use 4.1.5 to obtain

k |||u0|||k,Ω + k |||u0|||k,ΩP
≲ Cst∥f∥εH,Ω̃. (4.2.17)
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Now, for the H2 regularity, we observe that

−∇ ·
(
DAH∇u

)
= εHf + k2νεHu in Ω̃.

Then, the coefficients (piecewise) smoothness and the standard elliptic regularity results
(see, e.g. [20, Section 9.6]) imply that u0 ∈ H2(Ω) ∪H2(ΩP) and∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,ΩP

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,ΩP

≲ ∥f∥εH,Ω̃ + k2∥u∥εH,Ω̃ ≲ Cst∥f∥εH,Ω̃.

We are now ready to provide the main result of this chapter.

Theorem 4.2.8 (Error estimate). For all δ > 0 and f ∈ L2(Ω̃), we have

k

∣∣∣∣∣∣∣∣∣∣∣∣uδ − u0 − χ̂δ ∂u0
∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω̃

≲ C 2
st

(√
kℓ
√
kδ + kδ

)
∥f∥εH,Ω̃.

Proof. Recalling that χ̂(x2, y) = 0 whenever x2 > ℓ2, we have

bδ

(
χ̂δ ∂u0
∂x1

, v

)
= bΩδ

(
χ̂δ ∂u0
∂x1

, v

)
.

Therefore

bδ

(
uδ − u0 − χ̂δ ∂u0

∂x1

, v

)
= b0(u0, v)− bδ(u0, v)− bδ

(
χ̂δ ∂u0
∂x1

, v

)
= −k2

(
(εH − εδ)u0, v

)
Ω

+

(
(AH

1 − Aδ
1)
∂u0
∂x1

,
∂v

∂x1

)
Ω

− bΩδ

(
χ̂δ ∂u0
∂x1

, v

)
+

(
(AH

2 − Aδ
2)
∂u0
∂x2

,
∂v

∂x2

)
Ω

.

It follows that for all v ∈ H1
♯ (Ω̃) with |||v|||k,Ω̃ = 1, we have∣∣∣∣bδ (uδ − u0 − χ̂δ ∂u0

∂x1

, v

)∣∣∣∣ ≲ (kδ + δ

ℓ

)
|||u0|||k,Ω

+ δ

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

√
δ

ℓ
|||u0|||k,Ω + (δ +

√
δℓ)

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

≲

(
kδ +

√
δ

ℓ
+
δ

ℓ

)
|||u0|||k,Ω + (δ +

√
δℓ)

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

)

≲

(
kδ +

√
δ

ℓ

)
|||u0|||k,Ω +

√
δℓ

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

)
.
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As a result

k

∣∣∣∣bδ (uδ − u0 − χ̂δ ∂u0
∂x1

, v

)∣∣∣∣ ≲
(
kδ +

√
δ

ℓ

)
k |||u0|||k,Ω + k

√
δℓ

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

)

≲

(
kδ +

(√
kℓ
)−1√

kδ

)
k |||u0|||k,Ω

+
√
kδ

√
kℓ

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

)

≲
(
kδ +

√
kδ

√
kℓ
)(

k |||u0|||k,Ω +

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,Ω

))

Then, (4.2.16) implies that

k

∣∣∣∣bδ (uδ − u0 − χ̂δ ∂u0
∂x1

, v

)∣∣∣∣ ≲ Cst

(
kδ +

√
kδ

√
kℓ
)
∥f∥εH,Ω̃,

and since

uδ − u0 − χ̂δ ∂u0
∂x1

∈ H1
♯ (Ω̃),

the result follows from the inf-sup condition (3.3.59) of the sesquilinear form bδ over the

space H1
♯ (Ω̃).
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Numerical simulations of wave propagation in realistic two- or three-dimensional prob-
lems are often characterized by multiscale structures. However the numerical approxima-
tion of these multiscale problems by standard tools is extremely expensive, as resolving the
fine scales result in a very large number of degrees of freedom coupled together. Henceforth,
using multiscale methods represents an appropriate and effective option for dealing with
such problems. The common feature of these multiscale methods is the use of a coarse
mesh coupled with special basis functions adapted to local medium properties in each
coarse mesh ”macro element”. These basis functions are constructed as solutions to com-
pletely independent element-wise local problems. Therefore, for most of these multiscale
techniques, it is interesting to introduce a second-level algorithm in which the multiscale
basis functions are computed by solving the local problems. Consequently, this feature
makes the algorithms derived from these multiscale methods particularly interesting for
use in parallel computing environments.

This chapter focuses on a multiscale finite element method called the multiscale hybrid-
mixed (MHM) method. First introduced and presented in [76] for the heterogeneous Darcy
equation, the MHM method derives from the primal hybridization of the original equation
(see [121]). In this hybrid formulation, the regularity of the unknown is relaxed using
an element-wise Sobolev space (piecewise H1 regularity). Then, the solution continuity
is weakly imposed by the action of Lagrange multipliers space. Subsequently, the MHM
method relies on this hybrid formulation, and it characterizes the solution by decomposition
into a global formulation posed on the skeleton of a (coarse) mesh of the domain and
solutions to independent local problems. As we will see, unlike other multiscale methods,
the local problems responsible for the multiscale basis functions are embedded in a natural
way, and their numerical approximation corresponds to the second-level MHM method.

After introducing the method in [76], F. Valentin and his collaborators studied the
convergence of the method for the Darcy model in [3]. First, they showed that it produces
accurate numerical primary and dual variables with respect to the mesh size H. Then,
considering the same model, they demonstrated its convergence and robustness with respect
to the (small) characteristic of the physical coefficients for highly oscillatory cases [116].
With the same multiscale formulation steps, the MHM method was further extended to
various operators, linear elasticity [75], advective-reactive [77], Maxwell equations [95, 69],
and recently Oseen equation [2].

The method was extended and adapted to the highly heterogeneous acoustic Helmholtz
equation by T. Chaumont-frelet and F. Valentin in [36]. There, they considered the case
of a bounded domain with a boundary composed of two parts: a Dirichlet condition in
one part and a first-order radiation condition in the other. For their model, they proposed
a numerical analysis showing the well-posedness of the MHM formulation and the quasi-
optimality of its numerical solution. In addition, they show that the MHM can produce
exact solutions for precise propagation directions under certain conditions.

This chapter is dedicated to the analysis of the MHM method applied to the two-
dimensional PML Helmholtz problem given in (5.1.1). We start by proposing a hybrid
formulation of our model problem in Sections 5.1 followed by the derivation of the MHM
formulation and the study of its well-posedness in and 5.2. Next, we present a conver-
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gence with first-order polynomial discretizations showing the performance of the MHM
method in the presence of the quasi-resonant frequencies in Section 5.3. We then turn to
the convergence analysis of the MHM with respect to the (small) characteristic length of
oscillations, assuming highly oscillatory coefficients in Section 5.4.

5.1 An hybrid reformulation

The starting point to establish the MHM method is the so-called “primal hybrid formula-
tion” introduced in [121] for the Poisson problem. The goal of this section is to establish
such a formulation for a Helmholtz problem in periodic structures. The primal hybrid
formulation of a Helmholtz problem has already been introduced in [36]. Here, the key
novelties are the treatment of perfectly matched layers and quasi-periodic boundary con-
ditions.

5.1.1 The model problem

For the reader’s convenience, we recall the statement of the PML Helmholtz problem here.
Ω̃ := (0, ℓ1) × (0, ℓ2 + ℓP) is a rectangular domain composed of two parts. The physical
domain is Ω := (0, ℓ1) × (0, ℓ2), and the materials contained in Ω are characterized by
the coefficients coefficient ε and A. The absorbing layer ΩP := (0, ℓ1) × (ℓ2, ℓP) is an
artificial device used to bound the computational domain. The properties of the absorbing
layer are described by its damping coefficient νP = γr + iγi, where γr, γi ≥ 1. We also let
ℓ :=

√
ℓ21 + (ℓ2 + ℓP)2 denote the diameter of Ω̃.

As defined in (3.1.2), the domain boundary is made of three parts ∂Ω̃ = ΓP ∪ ΓD ∪ Γ̃♯.

We consider the PML problem consists in finding u ∈ H1
♯ (Ω̃) such that

−k2νεu−∇ · (DA∇u) = εf, in Ω̃
u = 0 on ΓP,
u = 0 on ΓD,

u+ − eiαℓ1u− = 0 on Γ̃♯,

(5.1.1)

where

A =

(
A1 0
0 A2

)
and D =

(
ν 0
0 ν−1

)
.

Let us recall that assuming f ∈ L2(Ω̃), the above PML problem is equivalent to: Find

u ∈ H1
♯ (Ω̃) such that

b(u, v) = (εf, v)Ω̃ ∀v ∈ H1
♯ (Ω̃), (5.1.2)

where

b(u, v) := −k2(νεu, v)Ω̃ +

(
νA1

∂u

∂x1

,
∂v

∂x1

)
Ω̃

+

(
ν−1A2

∂u

∂x2

,
∂v

∂x2

)
Ω̃

,

and
H1

♯ (Ω̃) :=
{
v ∈ H1(Ω̃,C) | v|ΓD

= v|ΓP
= 0 and v|

Γ̃♯+
= eiαℓ1v|

Γ̃♯−

}
.
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Assumption 5.1.1 (Stability of the PML problem). For all f ∈ L2(Ω̃), there exists a

unique u ∈ H1
♯ (Ω̃) solution to (5.1.2). In addition we have

|||u|||k,Ω̃ ≤ Cst

k
∥f∥ε,Ω̃, (5.1.3)

for a constant Cst > 1 independent of f and u.

Remark 5.1.2 (Tilda notation). In chapter 3, we employed the notations b̃, ũ and f̃
instead of b, u and f for the solution and data of (5.1.2). We made this choice in chapter
3 in order to distinguish between the DtN and PML problems. Here, we shall only work
with the PML problem, and as a result, we drop the ·̃ superscript in order to lighten the
notations.

Remark 5.1.3 (Validity of Assumption 5.1.1). We have established in chapter 3 that
assumption 5.1.1 is valid in large number of relevant situations, where we can in fact
provide an explicit estimate for Cst.

5.1.2 Functional spaces for hybridization

We will need additional function spaces linked with the divergence operator to rigorously
write down the primal hybrid formulation. We shall describe these spaces here.

5.1.2.1 Piecewise smooth functions

In the primal hybrid formulation, we want to relax the continuity of functions at the
interfaces of the mesh. As a result, our core energy space will incorporate the mesh in its
definition. Thus, in the remainder of this section, we consider a mesh TH of Ω̃. We assume
that the elements K ∈ TH are open triangles and that either entirely lie in Ω or in ΩP.
For the sake of simplicity, we also require that the mesh TH is conforming, meaning if the
intersection ∂K+ ∩ ∂K− of two elements K± ∈ TH is not empty, it is either a single vertex
or a full face of both K+ and K−. The space

H1(TH) :=
{
v ∈ L2(Ω̃) | v|K ∈ H1(K) ∀K ∈ TH

}
collects functions that have piecewise H1 regularity onto the mesh TH . It will be the space
where we seek the solution to the Helmholtz problem.

When dealing with functions in H1(TH), we will employ the notation

(·, ·)TH :=
∑
K∈TH

(·, ·)K , ∥·∥2TH := (·, ·)TH ,

for broken inner-products and norms (we also employ the same notations for weighted
norms). In particular, the energy norm

|||v|||2k,TH := k2∥v∥2ε,TH + ∥∇v∥2A,TH ∀v ∈ H1(TH),

will be useful.
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5.1.2.2 Vector-valued Sobolev space

As the continuity of functions in H1(TH) is relaxed, it should be weakly enforced by some
other means to obtain an equivalent formulation of the Helmholtz problem. To do so, the
key concept we need is the Sobolev space

H(div, Ω̃) :=
{
q ∈ L2(Ω̃) | ∇ · q ∈ L2(Ω̃)

}
,

of vector-valued function with square-integrable divergence [65].
The following expression

(q · n, v)∂Ω̃ = (∇ · q, v)Ω̃ + (q,∇v)Ω̃,

is valid for all smooth functions q and v. Since the right-hand side is continuous for
q ∈ H(div, Ω̃) and v ∈ H1(Ω̃) in the sense that

|(∇ · q, v)Ω̃ + (q,∇v)Ω̃| ≤ ∥∇ · q∥Ω̃∥v∥Ω̃ + ∥q∥Ω̃∥∇v∥Ω̃,

it appears that the normal trace q ·n belongs to the dual of the trace space of H1(Ω̃). This

is in fact true, and we have q · n ∈ H−1/2(∂Ω̃) := (H1/2(∂Ω̃))′ for all q ∈ H(div, Ω̃). In

addition, the normal trace mapping is surjective from H(div, Ω̃) onto H−1/2(∂Ω̃), see [65].

5.1.2.3 Characterization of H1
0 (Ω̃)

As a result of the above discussion, we can actually write that

H1
0 (Ω̃) :=

{
v ∈ H1(Ω̃) | (∇ · q, v)Ω̃ + (q,∇v)Ω̃ = 0 ∀q ∈ H(div, Ω̃)

}
.

In other words, we can characterize H1
0 (Ω̃), the space of H1(Ω̃) function with vanishing

trace using H(div, Ω̃) functions. In the primal hybrid formulation, we want to work with
piecewise H1 function, instead of globally H1 function. A key idea introduced in [121] is

that we can also use H(div, Ω̃) functions to characterize piecewise H1 functions that are
actually globally H1.

A key result established in [121] is then that

H1
0 (Ω̃) =

{
v ∈ H1(TH) | (∇ · q, v)TH + (q,∇v)TH = 0 ∀q ∈ H(div, Ω̃)

}
. (5.1.4)

The characterization of H1
0 (Ω̃) in (5.1.4) is the starting point of the primal hybrid formu-

lation, and therefore, is central in the design of the MHM method.
Here, our energy space is notH1

0 (Ω̃). Instead,H
1
♯ (Ω̃) incorporates quasi-periodic bound-

ary conditions. The remaining of this section is thus dedicated to a characterization similar
to (5.1.4) of H1

♯ (Ω̃).
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5.1.2.4 Characterization of quasi-periodic functions

As we demonstrate below, the correct space we need to weakly impose continuity is a
Sobolev space of vector valued functions that incorporates quasi-periodic boundary itself.
Specifically, we introduce

H♯(div, Ω̃) :=
{
q ∈ H(div, Ω̃)

∣∣ q+ · n+ + eiαℓ1q− · n− = 0 on Γ♯

}
.

The rigorous mathematical definition of the traces spaces involved in the definition of
H♯(div, Ω̃) is subtle, and we refer the reader to [60] for more details.

Theorem 5.1.4 (Characterization of H1
♯ (Ω̃)). We have

H1
♯ (Ω̃) =

{
v ∈ H1(TH) | (∇ · q, v)TH + (q,∇v)TH = 0 ∀q ∈ H♯(div, Ω̃)

}
.

Proof. This proof employs delicate specific spaces for the traces of functions on part of the
boundary. For the sake of simplicity, we do not report these definition here, but they can
be found in [60].

Let us first assume that v ∈ H1
♯ (Ω̃). Then, for all q ∈ H♯(div, Ω̃), we have

(∇ · q, v)TH + (q,∇v)TH = ⟨q · n, v⟩∂Ω̃ = ⟨q · n, v⟩Γ♯+
+ ⟨q · n, v⟩Γ♯−

(5.1.5)

where the second identity follows from the fact that v|ΓD
= 0 and v|ΓD

= 0. We also note

that duality the pairings in (5.1.5) are well-defined over H−1/2(Γ♯
±) and H

1/2
00 (Γ♯

±). Then
it remains to observe that using the quasi-periodicity properties of q and v, we have

⟨q · n, v⟩Γ♯+
=⟨(q1)+, v+⟩Γ♯+

= ⟨eiαℓ1(q1)−, e
iαℓ1v−⟩Γ♯+

= ⟨(q1)−, v−⟩Γ♯−
= −⟨q · n, v−⟩Γ♯−

because the normal vector changes sign. This shows that we indeed have

(∇ · q, v) + (q,∇v) = 0.

On the other hand, let us now consider v ∈ H1(TH) such that

0 = (v,∇ · q)TH + (∇v, q)TH .

We start by observing that if ψ : Ω̃ → C is smooth compactly supported, then the
(ψ, 0), (0, ψ) ∈ H♯(Ω̃). Thus, if we let q = (ψ, 0), ∇ · q = ∂ψ/∂x1, and we see that(

v,
∂ψ

∂x1

)
Ω̃

= −(∇v, q)TH = −
(
∂v

∂x1

, ψ

)
TH

= − (G,ψ)Ω̃ ,

where G ∈ L2(Ω̃) is defined element wise as ∂v/∂x1. It follows that the distributional

derivative of v in fact coincides with its broken derivative, and thus ∂v/∂x1 ∈ L2(Ω̃) in the

sense of distribution. The same argument shows that ∂v/∂x2 ∈ L2(Ω̃), so that v ∈ H1(Ω̃).
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We now know that v ∈ H1(Ω̃), and we need to check the boundary conditions. To do
so, we first observe that any smooth vector functions q vanishing in a neighborhood of Γ♯

+

and Γ♯
− belongs to H♯(div, Ω̃). It follows that for such q

0 = (∇·q, v)TH+(q,∇v)TH = (∇·q, v)Ω̃+(q,∇v)Ω̃ = ⟨q·n, v⟩∂Ω̃ = ⟨q·n, v⟩ΓP
+⟨q·n, v⟩ΓD

,

where the duality pairing are understood between
(
H1/2(ΓD)

)′
and H1/2(ΓD) (and similarly

for ΓP). Since q is an arbitrary smooth function vanishing in a neighborhood of Γ♯
+ and

Γ♯
−, it follows by density that v|ΓD

= 0 and v|ΓP
= 0. We now only need to check the

quasi-periodic conditions. Since v vanishes on v|ΓD
= 0 and v|ΓP

= 0, we can now write
that

0 = (∇ · q, v)Ω̃ + (q,∇v)Ω̃ =⟨q · n, v+⟩Γ♯
+ + ⟨q · n, v−⟩Γ♯

− ,

with duality pairing between H−1/2(Γ♯
±) and H

1/2
00 (Γ♯

±). Using the quasi-periodic bound-
ary condition on q, we thus have

0 = ⟨q · n, v+⟩Γ♯
+ − ⟨eiαℓ1q · n, v−⟩Γ♯

+ = ⟨q · n, v+ − e−iαℓ1v−⟩Γ♯
+ ,

so that v+ = eiαℓ1v− in the sense of H
1/2
00 . This completes the proof.

5.1.3 The primal hybrid formulation

We are going to look for the solution in V := H1(TH). Currently, the sesquilinear form in

the weak formulation (5.1.2) of the Helmholtz problem is only defined on H1
♯ (Ω̃). To be

able to work in H1(TH), we extend the definition of the sesquilinear form to H1(TH) by
introducing

bTH
(ϕ, v) = −k2 (νεϕ, v)TH + (DA∇ϕ,∇v)TH ∀ϕ, v ∈ V.

Next, we want to use the space H♯(div, Ω̃) to weakly impose the continuity and bound-
ary conditions in H1(TH). An important remark is that in fact, only the normal traces of

the field q ∈ H♯(div, Ω̃) on the elements boundary are used, not the actual values inside
the element. As a result, we introduce the quotient space

Λ :=
{
µ ∈ H−1/2(∂K) | ∃q ∈ H♯(div, Ω̃); µ|∂K = q · nK ∀K ∈ TH

}
,

and the duality pairing

⟨µ, v⟩∂TH =
∑
K∈TH

⟨µ, v⟩∂K ∀(µ, v) ∈ Λ×H1(TH).

It is shown in [3, Lemma 8.3] that the application

∥µ∥Λ,k := sup
v∈V

|||v|||k,TH=1

⟨µ, v⟩∂TH ,
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is a Hilbertian norm on Λ. In fact, it shown that it is a norm on the space Λ used with-
out quasi-periodic boundary conditions, but the proof easily carries over to the situation
considered here.

Lemma 5.1.5 (Characterization of H1
♯ (Ω̃)). We have

H1
♯ (Ω̃) = {v ∈ V | ⟨µ, v⟩∂TH = 0 ∀µ ∈ Λ} .

Proof. Let q ∈ H♯(div, Ω̃), and define µ ∈ Λ by setting µ|∂K := q · nK for all K ∈ TH .
Then, we have

0 = ⟨µ, v⟩∂TH = ⟨q · n, v⟩∂TH = (∇ · q, v)TH + (q,∇v)TH .

Hence, the result follows from Theorem 5.1.4.

The primal hybrid formulation consists in finding a couple (λ, u) ∈ Λ× V such that{
bTH

(u, v) + ⟨λ, v⟩∂TH = (εf, v)Ω̃ ∀v ∈ V,
⟨µ, v⟩∂TH = 0 ∀µ ∈ Λ.

(5.1.6)

As we show next, (5.1.6) is indeed an equivalent reformulation of (5.1.2).

Theorem 5.1.6. Problem (5.1.6) has a unique solution (λ, u) ∈ Λ × V . Moreover u ∈
H1

♯ (Ω̃) is the solution of problem (5.1.1) and

λ = −DA∇u · nK on ∂K ∀K ∈ TH .

Proof. Let (λ, u) ∈ Λ× V , be a solution to (5.1.6). The second equation of (5.1.6) is

⟨µ, u⟩∂TH = 0 ∀µ ∈ Λ,

and Lemma 5.1.5 then implies that u ∈ H1
♯ (Ω̃). On the other hand, picking a test function

v ∈ H1
♯ (Ω̃) ⊂ V in the first equation of (5.1.6), we see that

bTH
(u, v)= b(u, v) = (εf, v)Ω̃,

since ⟨λ, v⟩∂TH = 0, due to Lemma 5.1.5 again. Since this is the usual weak formulation of
the PML Helmholtz problem, we conclude that u is the weak solution to (5.1.1).

Then, considering a function v ∈ H1(K) ⊂ V in the first equation of (5.1.6), we have

bTH
(u, v) + ⟨λ, v⟩∂K = (εf, v)K ,

and integrating by part the weak formulation in a, we obtain that

(εf, v)K + ⟨DA∇u · nK , v⟩+ ⟨λ, v⟩∂K = (εf, v)K ,

so that λ = −DA∇u · nK on ∂K.
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This shows that the solution to (5.1.6) is unique, if it exists. To show the existence, we

let u ∈ H1
♯ (Ω̃) be the solution to (5.1.1). Firstly, Lemma 5.1.5 gives that

⟨µ, u⟩∂TH = 0 ∀µ ∈ Λ.

Secondly, taking v ∈ V and applying a elementwise integration by parts to (5.1.1), we
obtain

bTH
(u, v) + ⟨λ, v⟩∂TH = (εf, v)Ω̃ ∀v ∈ V,

where λ = −DA∇u · nK on ∂K, for all K ∈ TH .

Remark 5.1.7 (Link with optimization). When the sesquilinar form bTH
(·, ·) is coercive,

the original formulation of the problem (5.1.2) can be viewed as the Euler-Lagrange equa-
tions to the minimization problem

min
u∈H1

⋆(Ω̃)
Re

{
1

2
bTH (u, u)− (εf, u)Ω̃

}
. (5.1.7)

We can think of the looking for u ∈ V instead of H1
⋆ (Ω̃) as a unconstrained minimization

problem. The theory of Lagrange multipliers then allows us to equivalently rewrite (5.1.7)
as

max
λ∈Λ

min
u∈V

Re

{
1

2
bTH (u, u)− (εf, u)Ω̃ + ⟨λ, u⟩TH

}
. (5.1.8)

In this context, (5.1.8) is known as a saddle point problem, and λ as a Lagrange multiplier.
In the context of Helmholtz problems, b(·, ·) is not coercive, so that the primal hybrid

formulation (5.1.6) does not correspond to the Euler-Lagrange equations of (5.1.8). Nev-
ertheless, (5.1.6) still characterizes a critical point of the functional appearing in (5.1.8).
For the reason, we will sometimes refer to (5.1.6) as a saddle point problem and to λ as a
Lagrange multiplier.

5.2 The multiscale hybrid-mixed method

In the MHM formulation, we substitute u for λ in order to obtain a problem set on the
skeleton ∂TH of the mesh involving only λ as unknown. We will see that it amounts to
characterize the solution of (5.1.6) as a collection of local solutions that are tied together
through a global problem.

To do so, we start with the first equation of the hybrid formulation (5.1.6), and write
that

bTH
(u, v) = (εf, v)Ω̃ − ⟨λ, v⟩∂TH .

We remark that at least formally, by linearity, the solution can be written as

u = T̂ f + Tλ, (5.2.1)
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where T : Λ → X and T̂ : L2(Ω̃) → X are two linear bounded operators defined by

bTH
(T̂ f, v) = (εf, v)Ω̃ ∀v ∈ V, (5.2.2)

and
bTH

(Tλ, v) = −⟨λ, v⟩∂TH ∀v ∈ V. (5.2.3)

Thus, using the definition of the applications bTH
and ⟨·, ·⟩∂TH in the broken space V ,

we find that the operators T and T̂ are defined locally in each element K ∈ TH as the
solutions to the following local Neumann Helmholtz problems{

−k2νεTKλ−∇ · (DA∇TKλ) = 0 in K,
DA∇ (TKλ) · n = −λ on ∂K.

(5.2.4a)

and  −k2νεT̂Kf −∇ ·
(
DA∇T̂Kf

)
= εf in K,

DA∇
(
T̂Kf

)
· n = 0 on ∂K.

(5.2.4b)

Assuming that the above problems lead to a sound definition of the operators T and T̂ ,
we can substitute the decomposition u = T̂ f + Tλ in the second equation of the hybrid
formulation (5.1.6), leading to the global MHM problem: Find λ ∈ Λ such that

⟨µ, Tλ⟩∂TH = −⟨µ, T̂ f⟩∂TH ∀µ ∈ Λ, (5.2.5)

where λ is the only unknown.
The MHM solution splitting (5.2.1) and the definition (5.2.4) suggest that the solution

can be expressed in each element as a sum of two operators which are solutions to a
element-wise Helmholtz problem. The global problem (5.2.5) then ties together these local
contributions. This is illustrated in Figure 5.1.
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A coarse mesh of Ω̃

∂TH TH The operators T̂ f and Tλ are
computed locally using

independent local problems independent local problems

The MHM unknown λ is
solution of the global
skeleton problem

The operators T̂ f and Tλ are
computed locally using

independent local problems

independent local problems

The MHM unknown λ is
solution of a global

skeleton problem

Ω̃ = TH + ∂TH

Assembly of the solution :
u = T̂ f + Tλ

Figure 5.1: Support of the global and local MHM formulations.

In the remainder of this section, we will address the well-posedness of the global MHM
problem (5.2.5) and of its discretization. Specifically, in subsection 5.2.1, we will show
that the local problem (5.2.4a) and (5.2.4b) are well-posed, which in turns guarantee that

the operators T and T̂ are well-defined. We will then show in subsection 5.2.2 an inf-sup
condition for the sesquilinear form ⟨·, T ·⟩∂TH appearing in (5.2.5). Subsection 5.2.3 then
deals with stability and convergence of discretizations to (5.2.5). Finally, we present some
implementation details in subsection 5.2.4.

Remark 5.2.1. The local problems (5.2.4) are very similar to the ones derived in [36] where
the authors study the Helmholtz equation, but without quasi-periodic boundary conditions.
The main differences between [36] and the present work is the presence of PML (which
changes the coefficients) and quasi-periodic boundary conditions (which change the space
Λ).

5.2.1 Elementwise problems

We start by analyzing the well-posedness of the local MHM problems (5.2.4) defining the

operators T and T̂ . As indicated in Section 2.1.10, the well-posedness of these Helmholtz
problems is equivalent to establishing an ins-sup condition the sesquilinear form.
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The local problems (5.2.4) defining the operators are Helmholtz problems with Neu-
mann boundary conditions. Such problems are not always well-posed for all frequencies.
Specifically, the problem is not well-posed at resonant frequencies, which correspond to
(the square of) an eigenvalue of the Laplace operator with Neumann boundary condition
on ∂K. As observed in [36], however, resonant frequencies can be ruled out if the mesh TH

is sufficiently fine. This leads us to the following assumption.

Assumption 5.2.2. All the elements K ∈ TH are convex, and there exists τ > 0 such that

kHK

ϑK

≤
(
|νK |−2 − τ

)1/2
π, (5.2.6)

where νK := ν|K ∈ C and

ϑK := min
K

min(A1, A2)/max
K

ε.

In our local problems well-posedness analysis, we proceed in the same way as in [36]
for a Helmholtz equation with a first-order absorbing condition. Here, considering a PML
layer, the derivation of the global-local MHM formulations seems to be similar. However,
the PML damping coefficient ν affects the definition of the sesquilinear form ”bTH

”, and
condition (5.2.6) shows that we need slightly smaller elements in the PML region to get
the local problems coercivity.

Below, we use the following notation: for two positive real numbers A,B ≥ 0, we will
write A ≲ B if there exists a constant C > 0 which is independent of A, B, H and k, but
which possibly depends on Ω̃, εmin, εmax, Amin, Amax, γr, γi, and τ such that A ≤ CB. We
also write A ≳ B when B ≲ A.

We start by observing that the continuity of bTH on V × V can be straightforwardly
established by a triangle inequality.

Lemma 5.2.3 (Continuity). For all ϕ, v ∈ V , it holds that

|bTH
(ϕ, v)| ≲ |||ϕ|||k,TH |||v|||k,TH . (5.2.7)

For convenience, we introduce the local sesquilinear from

bK(ϕ, v) = −k2(νεϕ, v)K + (DA∇ϕ,∇v)K ∀ϕ, v ∈ H1(K)

Straightforward computations reveal that identities

Re bK(v, v) = γr

(
−k2∥v∥ε,K +

∥∥∥∥ ∂u∂x1

∥∥∥∥
A1,K

+ |ν|−2

∥∥∥∥ ∂u∂x2

∥∥∥∥
A2,K

)
,

and

Im bK(v, v) = γi

(
−k2∥v∥ε,K +

∥∥∥∥ ∂v∂x1

∥∥∥∥
A1,K

− |ν|−2

∥∥∥∥ ∂u∂x2

∥∥∥∥
A2,K

)
.

We then show that these local sesquilinear forms satisy inf-sup conditions.
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Lemma 5.2.4 (Local inf-sup constants). Let K ∈ TH . For u ∈ H1(K), there exists an
element u⋆ ∈ H1(K) such that

Re bK(u, u
⋆) ≳ |||u|||2k,K and |||u|||k,K ≳ |||u⋆|||k,K . (5.2.8)

Proof. Fix K ∈ TH and u ∈ H1(K). Let

u0 =
1

|K|

∫
K

u and u⊥ = u− u0.

Using the function v⋆ = u− 2u0 and that ∇u0 = 0, we have

Re bK(u, v
⋆) = Re bK(u

⊥ + u0, u
⊥ − u0)

= Re bK(u
⊥, u⊥)− Re bK(u0, u0)

= Re bK(u
⊥, u⊥) + k2

∫
K

εγr|u0|2,

so that
Re bK(u, v

⋆) ≥ Re bK(u
⊥, u⊥). (5.2.9)

Using that u⊥ has zero mean value and recalling that K is convex with diameter HK , we
apply the Poincare-Wirtinger inequality [117] to get

∥u⊥∥K ≤ HK

π
∥∇u⊥∥K ,

hence

∥u⊥∥2ε,K ≤ H2

π2

εK,max

AK,min

∥∇u⊥∥2A,K ,

and we deduce

Re bK(u
⊥, u⊥) ≥ −γrk2∥u⊥∥2ε,K + γr

(
∥∂1u⊥∥2A1,K

+ |ν|−2∥∂2u⊥∥2A2,K

)
≥ γr

(
|ν|−2 − εK,max

AK,min

k2H2
K

π2

)
∥∇u⊥∥2A,K

= γr

(
|ν|−2 − k2H2

K

π2ϑ2
K

)
∥∇u∥2A,K .

Assumption (5.2.6) gives
H2k2

π2ϑ2
K

≤ |ν|−2 − τ ,

and therefore
bK(u

⊥, u⊥) ≥ τγr∥∇u∥2A,K , (5.2.10)

Thus, using (5.2.9) and (5.2.10) we obtain

Re bK(u, v
⋆) ≥ τγr∥∇u∥2A,K . (5.2.11)
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On the other hand, observe that

Re bK(u,−u) = γrk
2∥u∥2ε,K − γr∥∂1u∥2A1,K

− γr
|ν|2

∥∂2u∥2µ2,K

≥ γrk
2 ∥u∥2ε,K − γr∥∇u∥2A,K ,

as a result

Re bK
(
u, 2τ−1v⋆ − u

)
≥ γrk

2 ∥u∥2ε,K + γr |∇u|2A,K

≥ γr

(
k2 ∥u∥2ε,K + |∇u|2A,K

)
≥ γr |||u|||2k,K ,

and (5.2.8) follows by taking u⋆:=2τ−1v⋆ − u.

Lemma 5.2.5 (Inf-sup condition). For u ∈ V , it holds that

sup
v∈V

Re bTH
(u, v)

|||v|||k,TH
≳ |||u|||k,TH . (5.2.12)

Proof. Let u ∈ V . Then, for each element K ∈ TH , we have u|K ∈ H1(K). We can then
define u⋆ ∈ V by defining (u⋆)|K = (u|K)⋆ as in Lemma 5.2.4. Then, we have

Re bK(u, u
⋆) ≳ |||u|||2k,K and |||u|||2k,K ≳ |||u⋆|||2k,K ,

and it follows by summation over K ∈ TH that

Re bTH
(u, u⋆) ≳ |||u|||2k,TH and |||u|||2k,TH ≳ |||u⋆|||2k,TH ,

so that (5.2.12) follows from

sup
v∈V

Re bTH
(u, v)

|||v|||k,TH
≥ Re bTH

(u, u⋆)

|||u⋆|||k,TH
≳

|||u|||2k,TH
|||u⋆|||k,TH

≳
|||u|||k,TH |||u⋆|||k,TH

|||u⋆|||k,TH
= |||u|||k,TH .

As a result, the local problems defining T and T̂ are well-posed, and we can obtain
explicit stability estimates in Theorem 5.2.6 below.

Theorem 5.2.6 (Well-posedness of the local problems). For all µ ∈ Λ and f ∈ L2(Ω̃),

there exist unique elements Tλ, T̂ f∈ V such that

bTH
(Tλ, v) = ⟨λ, v⟩∂TH bTH

(T̂ f, v) = (εf, v)Ω̃ ∀v ∈ V.

In addition, we have

|||Tλ|||k,TH ≲ ∥λ∥Λ,k and
∣∣∣∣∣∣∣∣∣T̂ f ∣∣∣∣∣∣∣∣∣

k,TH
≲ k−1∥f∥ε,Ω̃. (5.2.13)
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Proof. For each µ ∈ Λ and f ∈ L2(Ω̃), the existence and uniqueness of Tλ and T̂ f is
ensured by the continuity of the sesquilinear form bTH

given in (5.2.7) together with the
inf-sup condition (5.2.12). Furthermore, if λ ∈ Λ, we have

|||Tλ|||k,TH ≲ sup
v∈V

Re bTH
(Tλ, v)

|||v|||k,TH
= − sup

v∈V

Re ⟨λ, v⟩∂TH
|||v|||k,TH

=∥λ∥Λ,k.

Similarly, for f ∈ L2(Ω̃), we can write

Re bTH
(T̂ f, v) = Re(εf, v)Ω̃ ≲ ∥f∥ε,Ω̃∥v∥ε,Ω̃ ≲ k−1∥f∥ε,Ω̃ |||v|||k,TH ,

so that ∣∣∣∣∣∣∣∣∣T̂ f ∣∣∣∣∣∣∣∣∣
k,TH

≲ sup
v∈V

Re bTH
(T̂ f, v)

|||v|||k,TH
≲ k−1∥f∥ε,Ω̃.

We close this subsection by the following norm equivalence result.

Lemma 5.2.7 (Norm equivalence). The norms ∥·∥Λ,k and |||T ·|||k,TH are equivalent on Λ.
Specifically, we have

∥µ∥Λ,k ≲ |||Tµ|||k,TH ≲ ∥µ∥Λ,k ∀µ ∈ Λ. (5.2.14)

Proof. Let µ ∈ Λ. On the one hand, we have

|||Tµ|||k,TH ≲ sup
v∈V

Re bTH
(Tµ, v)

|||v|||k,TH
using inf-sup condition (5.2.12)

= sup
v∈V

{
−
Re ⟨µ, v⟩∂TH
|||v|||k,TH

}
using the definition of T in (5.2.3)

≲ ∥µ∥Λ,k using the norm ∥·∥Λ,k definition.

On the other hand

∥µ∥Λ,k ≲ sup
v∈V

Re ⟨µ, v⟩∂TH
|||v|||k,TH

using the norm ∥·∥Λ,k definition

= sup
v∈V

{
−Re bTH

(Tµ, v)

|||v|||k,TH

}
using the definition of T in (5.2.3)

≲ |||Tµ|||k,TH using the continuity of bTH
(·, ·).
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5.2.2 The MHM formulation

We now show that the global MHM problem is well-posed. We will largely follow the
analysis in [36] with slight modifications to accommodate for the absorbing layer and the
quasi-periodic boundary conditions.

Theorem 5.2.8. There exists a unique solution λ ∈ Λ solution to (5.2.5). In addition, we
have

k∥λ∥Λ,k ≲ Cst∥f∥ε,k. (5.2.15)

Proof. Proposition 5.1.6 affirms that there exists a unique couple (u, λ) ∈ V × Λ solution
of the hybrid problem (5.1.6), where u is the usual solution to the Helmholtz equation
and λ is defined as DA multiplied by the normal derivative of u on the boundary of each
elements K ∈ TH .

Furthermore, recalling Theorem 5.2.6, the operators T and T̂ are well-defined and
invertible. As a result, the first equation of (5.1.6) shows that

u = T̂ f + Tλ. (5.2.16)

Injecting 5.2.16 into the second equation of (5.1.6) shows that λ = −DA∇u · nK is the
solution to the continuous MHM formulation (5.2.5), and existence follows.

Furthermore, uniqueness follows as the couple (u, λ) is unique. Recalling (5.2.16), we
have

∥λ∥Λ,k ≲ |||Tλ|||k,TH using the norm equivalence (5.2.14)

≲ |||u|||k,TH +
∣∣∣∣∣∣∣∣∣T̂ f ∣∣∣∣∣∣∣∣∣

k,TH
using the solution splitting (5.2.16)

≲

(
Cst

k
+ k−1

)
∥f∥ε,Ω̃ using (5.2.13) and (5.1.3),

and the result follows since Cst ≥ 1.

The next goal of this subsection is to derive an inf-sup condition of the sesquilinear
form ⟨·, T ·⟩∂TH and find the frequency dependence of its inf-sup constant. The first step to
do so is to show a symettry property of ⟨·, T ·⟩∂TH .

Lemma 5.2.9 (Symmetry of ⟨T ·, ·⟩∂TH ). For all µ, λ ∈ Λ, we have

⟨µ, Tλ⟩∂TH =
〈
λ, Tµ

〉
∂TH

.

Proof. Let µ, λ ∈ Λ. We have

⟨µ, Tλ⟩∂TH = ⟨µ, Tλ⟩∂TH = −bTH
(Tµ, Tλ) = −bTH

(Tλ, T µ̄) = ⟨λ, T µ̄⟩∂TH ,

and the result follows by taking the complex conjugate.

We then introduce a key function used in duality argument.
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Lemma 5.2.10. For λ ∈ Λ, define ηλ ∈ Λ as the unique solution to

⟨µ, Tηλ⟩∂TH = −⟨µ, T̂
(
Tλ
)
⟩∂TH µ ∈ Λ. (5.2.17)

Then we have
⟨ηλ, Tλ⟩∂TH = ∥Tλ∥2

ε,Ω̃
, (5.2.18)

and

|||Tηλ|||k,TH ≲
Cst

k
∥Tλ∥ε,Ω̃. (5.2.19)

Proof. Let λ ∈ Λ. According to Theorem 5.2.8 the definition (5.2.17) is well-posed and ηλ
exists and it is well-defined. Then, recalling Lemma 5.2.9, it holds that

⟨ηλ, Tλ⟩∂TH = ⟨λ, Tηλ⟩∂TH = −⟨λ, T̂
(
Tλ
)
⟩∂TH .

Next, using the definitions of T and T̂ , we show that

− ⟨λ̄, T̂ (Tλ)⟩∂TH = −⟨λ, T̂ (Tλ)⟩∂TH = bTH
(Tλ, T̂ (Tλ))

= bTH
(T̂ (Tλ), Tλ) = (εTλ, Tλ)Ω̃ = ∥Tλ∥2

ε,Ω̃
,

and taking the complex conjugate we get

−⟨λ, T̂ (Tλ)⟩∂TH = ∥Tλ∥2
ε,Ω̃

= ∥Tλ∥2
ε,Ω̃

= ∥Tλ∥2
ε,Ω̃

and (5.2.18) follows. Finally, the estimate (5.2.19) follows from the definition of ηλ and
Theorem 5.2.8.

We are now ready to derive an inf-sup condition of the MHM global problem (5.2.5).

Theorem 5.2.11. We have

inf
λ∈Λ

∥λ∥Λ,k=1

sup
µ∈Λ

∥µ∥Λ,k=1

Re ⟨µ, Tλ⟩∂TH ≳
1

Cst

. (5.2.20)

Proof. Let λ ∈ Λ, we have

−Re ⟨λ, Tλ⟩∂TH = Re bTH
(Tλ, Tλ)

= γr

(
∥∂1(Tλ)∥2A1,Ω̃

+ |ν|−2∥∂2(Tλ)∥2A2,Ω̃
− k2∥Tλ∥2

ε,Ω̃

)
≥ γr

(
|ν|−2∥∇(Tλ)∥2

A,Ω̃
− k2∥Tλ∥2

ε,Ω̃

)
.

Next, we define µ = γ−1
r λ− 2k2ηλ, where ηλ is defined as in Lemma 5.2.10 we obtain

−Re ⟨µ, Tλ⟩∂TH = −γ−1
r Re ⟨λ, Tλ⟩∂TH + 2k2Re ⟨ηλ, Tλ⟩∂TH

≳ |ν|−2∥∇(Tλ)∥2
A,Ω̃

− k2∥Tλ∥2
ε,Ω̃

+ 2k2∥Tλ∥2
ε,Ω̃

≳ |ν|−2 |||Tλ|||2k,TH .
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Hence, it remains to show that |||Tµ|||k,TH ≲ Cst |||Tλ|||k,TH
|||Tµ|||k,TH ≲ |||Tλ|||k,TH + 2k2 |||Tηλ|||k,TH

≲ |||Tλ|||k,TH + 2k2
Cst

k
∥Tλ∥ε,Ω̃

≲ (1 + 2Cst) |||Tλ|||k,TH
≲ Cst |||Tλ|||k,TH .

5.2.3 Discretization

This subsection deals with the discretization of the MHM formulation given in (5.2.5).
Specifically, the MHM formulation involves the infinite-dimensional space Λ that we need
to discretize to obtain a square-linear system. Although several options are possible, in
this work, we focus on the simplest discretization space, and we set

ΛH :=
{
µH ∈ Λ ∩ L2(∂TH) | µH |K ∈ P0(FK) ∀K ∈ TH

}
, (5.2.21)

where P0(FK) stands for the subset of L2(∂K) of functions that take a constant value on
each face F ∈ FK of K.

The discrete problem then consists in finding λH ∈ ΛH such that

⟨µH , TλH⟩∂TH = −⟨µH , T̂ f⟩∂TH ∀µH ∈ ΛH . (5.2.22)

Once λH is computed as the solution to (5.2.22), an approximation to u is obtained by
setting

uH := T̂ f + TλH . (5.2.23)

5.2.3.1 Abstract convergence analysis

We first provide an abstract stability and convergence analysis for (5.2.22). We will follow
convergence studies based on Shatz argument of the finite element method in [101] and the
MHM method in [36]. In such analysis, a central concept is the approximation factor: a
real number that helps characterizing the approximation properties of ΛH ⊂ Λ. Speficially,
we set

Capp := k sup
f∈L2(Ω̃)
∥f∥

ε,Ω̃
=1

inf
µH∈ΛH

∥λf − µH∥Λ,k, (5.2.24)

where λf is the unique element of Λ such that

⟨µ, Tλf⟩∂TH = −⟨µ, T̂ f⟩∂TH ,

for all µ ∈ Λ. As a consequence of (5.2.24), for all f ∈ L2(Ω̃) there exists an element
µH ∈ ΛH such that

k∥λf − µH∥Λ,k ≤ Capp∥f∥ε,Ω̃. (5.2.25)



123

The following Theorem presents a well-posedness result of the discrete global MHM
problem (5.2.22).

Theorem 5.2.12 (Discrete inf-sup condition). There exists a constant C ⋆ solely depending
on the extremal values of the coefficients, such that, if Capp ≤ C ⋆, then

inf
λH∈ΛH

∥λH∥Λ,k=1

sup
µH∈ΛH

∥µH∥Λ,k=1

Re ⟨µH , TλH⟩∂TH ≳
1

Cst

, (5.2.26)

with a hidden constant wish is independent of Capp.

Proof. Let λH ∈ ΛH . Recalling the proof of Theorem 5.2.11, we have

−Re ⟨µ, TλH⟩∂TH ≳ |ν|−2 |||TλH |||2k,TH ,

where µ = γ−1
r λH − 2k2ηλH

. So ,we define µH ∈ ΛH as

µH = γ−1
r λH − 2k2ηH ,

where ηH is the best approximation of ηλH
. It follows that

µ− µH = 2k2(ηλH
− ηH),

and, recalling the definitions of ηλH
from Lemma 5.2.10 and the definition of Capp, we see

that

|||T (µ− µH)|||k,TH ≲ 2k2 |||T (ηλH
− ηH)|||k,TH

≲ 2kCapp∥TλH∥ε,Ω̃
≲ 2Capp |||TλH |||k,TH .

Thus, there exist two constants B1, B2 such that

−Re ⟨µH , TλH⟩∂TH = −Re ⟨µ, TλH⟩∂TH +Re ⟨µ− µH , TλH⟩∂TH
≥ B1|ν|−2 |||TλH |||2k,TH −B2 |||T (µ− µH)|||k,TH |||TλH |||k,TH
≥ B1|ν|−2 |||TλH |||2k,TH − 2B2Capp) |||TλH |||2k,TH

≥ B2

(
B1

B2

|ν|−2 − 2Capp

)
|||TλH |||2k,TH

As a resut, defining

C ⋆ :=
1

4

B1

B2

|ν|−2,

we have
B1

B2

|ν|−2 − 2Capp ≥ B1

B2

|ν|−2 − 2C ⋆ ≥ 1

2

B1

B2

|ν|−2 − 2Capp ≳ 1
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so that
−Re⟨µH , TλH⟩TH ≳ |||TλH |||2k,TH .

Thus, it remains to show that

|||TµH |||k,TH ≲ Cst |||TλH |||k,TH .

We have

|||TµH |||k,TH ≤ |||Tµ|||k,TH + |||T (µ− µH)|||k,TH ≲

(Cst + 2Capp) |||TλH |||k,TH ≲ Cst |||TλH |||k,TH ,

using again the smallness assumption on Capp.

Lemma 5.2.13 (Aubin-Nitsche trick). Let λ ∈ Λ solve (5.2.5) and λH ∈ ΛH satisfy
(5.2.22). It holds that

k∥T (λ− λH)∥ε,Ω̃ ≲ Capp |||T (λ− λH)|||k,TH . (5.2.27)

Proof. As in Lemma 5.2.10, we define η ∈ Λ

⟨µ, T η̄⟩∂TH = −
〈
µ, T̂

(
T (λ− λH)

)〉
∂TH

,

so that
⟨η, T (λ− λH)⟩∂TH = ∥T (λ− λH)∥2ε,Ω̃.

Then, for all ηH ∈ ΛH , it holds that

∥T (λ− λH)∥2ε,Ω̃ = ⟨η, T (λ− λH)⟩∂TH
≲ ⟨η − ηH , T (λ− λH)⟩∂TH by Galerkin’s orthogonality
≲

〈
η̄ − ηH , T (λ− λH)

〉
∂TH

by Lemma 5.2.9

≲ −bTH
(T (η − ηH), T (λ− λH)) by the definition of T

≲ |||T (η̄ − ηH)|||k,TH
∣∣∣∣∣∣T (λ− λH)

∣∣∣∣∣∣
k,TH

by the continuity of bTH
(·, ·).

In addition, by definition of Capp in (5.2.24), there exists an ηH ∈ ΛH such that

k |||T (η̄ − ηH)|||k,TH ≤ Capp∥T (λ− λH)∥ε,Ω̃

and (5.2.27) follows.

Theorem 5.2.14 (Quasi-optimality). There exists a constant C ⋆ solely depending on the
extremal values of the coefficients, such that, if Capp ≤ C ⋆, then there exists a unique
λH ∈ ΛH solution to (5.2.22), and we have

∥λ− λH∥Λ,k ≲ min
µH∈ΛH

∥λ− µH∥Λ,k, (5.2.28)

where the hidden constant does not depend on Capp.
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Proof. By the definitions of bTH
(·, ·) and ⟨·, ·⟩∂TH , we have that

− Re ⟨(λ− λH), T (λ− λH)⟩∂TH
= Re bTH

(T (λ− λH), T (λ− λH))

= γr

(
∥∂1(T (λ− λH))∥2µ1,Ω̃

+ |ν|−2∥∂2(T (λ− λH))∥2µ2,Ω̃
− k2∥T (λ− λH)∥2ε,Ω̃

)
≥ γr

(
−k2∥T (λ− λH)∥2ε,Ω̃ + |ν|−2|T (λ− λH)|2A,Ω̃

)
≥ γr

(
|ν|−2 |||T (λ− λH)|||2k,TH − 2k2∥T (λ− λH)∥2ε,Ω̃

)
.

Recalling Lemma 5.2.13, there exist a constant B3 such that

2k2∥T (λ− λH)∥2ε,Ω̃ ≲ 2B3C
2
app |||T (λ− λH)|||2k,TH ,

it follows that

−Re bTH
((λ− λH), T (λ− λH)) ≳

(
|ν|−2 − 2B3C

2
app

)
|||T (λ− λH)|||2k,TH .

As a result, selecting C ⋆ such that

2B3(C
⋆)2 =

1

2
|ν|−2,

we obtain that

−Re bTH
((λ− λH), T (λ− λH)) ≳ |||T (λ− λH)|||2k,TH .

We can now end the proof of error estimate (5.2.28) using Galerkin’s orthogonality. Indeed,
using Galerkin’s orthogonality, it holds that

|||T (λ− λH)|||2k,TH ≲ |⟨(λ− λH), T (λ− λH)⟩∂TH |
≲ |⟨(λ− µH), T (λ− λH)⟩∂TH |
≲ ∥λ− µH∥Λ,k |||T (λ− λH)|||k,TH ,

for all µH ∈ ΛH , and (5.2.28) follows from norm equivalence (5.2.14).

5.2.3.2 Convergence rates

We now use the abstract stability analysis to provide convergence rates for the method.
Specifically, we will provide qualitative estimate on the dependence of Capp on the frequency
k and the mesh size H. To do so, following [34, 121], we define an “interpolation” operator
πH : Λ ∩ L2(∂TH) → ΛH by requiring that

(πHµ, q)∂K = (µ, q)∂K ∀q ∈ P0(FK),

for all K ∈ TH . Error estimate for the interpolation operator πH , specifically, the proof of
the estimates (5.2.29) and (5.2.30) below can respectively be found in [121, Lemma 9] and
[34]
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Lemma 5.2.15 (Interpolation error estimate). Let µ ∈ Λ and assume that there exists
u ∈ H2(TH) such that µ|K = DA∇u · n|K for all K ∈ TH . Then, the error estimate

∥µ− πHµ∥Λ,k ≲ H|u|H2(TH), (5.2.29)

holds true.
Besides, if µ ∈ Λ ∩H1(FH), then we have

∥µ− πHµ∥Λ,k ≲ H3/2|µ|H1(FH). (5.2.30)

Equipped with Lemma 5.2.15, we can provide a first coarse convergence result.

Theorem 5.2.16 (Basic convergence result). Assume that for all f ∈ L2(Ω̃), the solution

u ∈ H1
♯ (Ω̃) to (5.1.2) belongs to H2(TH) with∣∣∣∣∣∣∣∣∣∣∣∣ ∂u∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂u∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

≲ Cst∥f∥ε,Ω̃. (5.2.31)

Then, we have
Capp ≲ CstkH.

In particular, if CstkH is small enough, there is a unique solution λH ∈ ΛH to the discrete
MHM formulation (5.2.22), and we have

k |||u− uH |||k,TH ≲ CstkH∥f∥ε,Ω̃.

Proof. Let u ∈ H1
♯ (Ω̃) be the solution to (5.1.2) and λ its associated one-level MHM

solution. Then, the definition of Capp given in (5.2.24) implies that

Capp = k sup
f∈L2(Ω̃)
∥f∥

ε,Ω̃
=1

inf
µH∈ΛH

∥λ− µH∥Λ,k

≤ k∥λ− πHλ∥Λ,k
≲ kH|u|H2(TH)

≲ kH

(∣∣∣∣∣∣∣∣∣∣∣∣ ∂u∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂u∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

)
≲ CstkH,

where we have used (5.2.29) and (5.2.31).
On the other hand, since Capp ≲ CstkH, we may assume that CstkH is small enough

that Capp ≤ |ν|−2/2. Then, Theorems 5.2.12 and 5.2.14 imply that there exists a unique
λH ∈ ΛH solution to (5.2.22), and we have

k |||u− uH |||k,TH = k |||Tλ− TλH |||k,TH ≲ k∥λ− λH∥Λ,k ≲ k inf
µH∈ΛH

∥λ− µH∥Λ,k

≲ k∥λ− πHλ∥Λ,k ≲ CstkH∥f∥ε,Ω̃,

where we use Theorem 5.2.14 and the definition of Capp in (5.2.24).
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While Theorem 5.2.16 ensures the convergence of the MHM method in a rather general
setting, it is not fully satisfactory. Specifically, in the case of homogeneous media, the
constant Cst may be large at quasi-resonances, whereas we expect the method to be robust
in this case. Besides, in the case of finely textured layered, the hidden constant would blow
up as 1/δ when the characteristic length δ of the texturation goes to zero. It is the goal of
sections 5.3 and 5.4 to derive sharper error estimates in these two cases.

5.2.4 Implementation details

We conclude this section with some comments on the computer implementation of the
MHM method.

5.2.4.1 One- and two-level MHM method

The MHM method is based on the discretization of the coupled global-local problems
(5.2.4)-(5.2.5). In practice, this discretization can actually be performed in two steps.

Indeed, although problem (5.2.22) correspond to a finite-dimensional linear system, it

still employs the operators T and T̂ in its definition. It is important to realize that these
operators correspond to the solve of PDE problems, and therefore, they are not explicitly
available in general. This leads to the two-level MHM method, where the operators T
and T̂ are replaced with corresponding Galerkin approximations. Interestingly, because
the PDE problems defining T and T̂ are independent and element-wise, a fine mesh can
usually be employed, leading to a multiscale procedure.

Generally, the MHM algorithm is rather flexible and can accept a large variety of
numerical discretization schemes to approximate the local problems. For instance, mixed
finite element [51] and discontinuous Galerkin [95] discretizations have been employed in
the past. However, the simplest setting is to consider a second-level Galerkin discretization,
whereby we introduce a discretization space Vh ⊂ V , leading to the following definitions of
T̂h, Th ∈ Vh,

bTH
(T̂hf, vh) = (εf, vh)Ω̃, bTH

(Thλ, vh) = −⟨λ, vh⟩∂TH , ∀vh ∈ Vh.

for all f ∈ L2(Ω̃) and λ ∈ Λ. Then, the two-level MHM solution reads as follows: Find
λH,h ∈ ΛH such that

⟨µH , ThλH,h⟩∂TH =
〈
µH , T̂hf

〉
∂TH

,

and set
uH,h = T̂hf + ThλH,h.

In this work, we will only analyze the one-level MHM discretization. In practice, it
means that the second-level mesh defining the space Vh has to be sufficiently refined for
our result to apply.
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5.2.4.2 Practical MHM algorithm

Here, we present a brief overview of the MHM algorithm. To this end, we start by con-
sidering a mesh TH and a finite-dimensional discretization space ΛH ∈ Λ. It is important
to realize that the MHM discretization allows to completely decouple the global problem
(5.2.22) ”first level MHM” from the local problems (5.2.4) ”second level MHM ”. If (µj)

n
j=1

is a basis of ΛH , the MHM algorithm can be described as follows:

� The ”second level MHM ” method is a pre-processing step before solving the global
MHM problem and it is responsible for computing the MHM multiscale basis func-
tions (ψj)

n
j=1 and ψf images of (µj)

n
j=1 and f by the operators Th and T̂h, respectively.

To clarify, ψj = Thµj and ψf = T̂hf are solution to

bTH
(ψf , vh) = (εf, vh)Ω̃, and bTH

(ψj, vh) = −⟨µj, vh⟩∂TH , ∀vh ∈ Vh.

These computations correspond to a collection of local problems that can be solved
in parallel.

� Once the multiscale basis functions (ψj)
n
j=1 and ψf are available from the local prob-

lems, we can build the first level MHM method designed to solving the global skeleton
problem (5.2.22). We first note that the MHM approximation λH of λ is given by
λH =

∑n
j=1 cjµj, where cj ∈ C. Then, using the linearity of operator Th we have

ThλH =
n∑

j=1

cjThµj =
n∑

j=1

cjψj.

Henceforth, the global formulation (5.2.22) allows to compute the degrees of freedom
cj by solving the following n× n linear system

n∑
j=1

⟨µp, ψj⟩∂TH c̄j = −⟨µp, ψf⟩∂TH , ∀p ∈ {1, . . . , n}.

� Then, the MHM approximate solution follows from (5.2.1) as

uH,h =
n∑

j=1

cjψj + ψf .

5.2.4.3 Quasi-periodic meshes

Quasi-periodic boundary conditions are used to simulate periodic geometries and allow the
study to be restricted to a single periodic cell. Then, in order to simulate the connection
between the studied cell and its neighboring cells, an identical discretization of the periodic
boundaries Γ♯− and Γ♯+ is necessary to obtain a conforming finite element mesh. To do this,
each edge of the periodic boundary Γ♯− must match its opposite face element in the other
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periodic boundary Γ♯+. Therefore, each mesh element has two neighbors in the periodic
direction, and the mesh of a periodic cell will therefore be similar to the mesh of a vertical
cylinder. See Figure 5.2 for an illustration.

After designing the periodic mesh, the desired MHM discretization space ΛH can be
easily constructed. Thereby, quasi-periodic Lagrange multipliers for the MHM formulation
can be considered as follows: for every two elements K− and K+ connected on the periodic
edge Γ♯ (which have a shared face belonging to Γ♯), if the first element K− (on the side
Γ♯−) receives the basis function µj = µH as a data to solve the local problem, then the
opposite element K+ (on the side Γ♯−) will receive the basis function µj = µHe

iαℓ1 .

Γ♯+Γ♯−

Γ♯

µHeiαℓ1µH

Figure 5.2: Periodic mesh

5.3 Convergence in homogeneous media

As shown in the first chapter, the presence of quasi-resonant modes affects the numerical
methods performances. This effect has been illustrated in the numerical examples for the
finite element method in Section 2.2.4. Besides, it is due to the relative lack of stability
in the presence of these quasi-resonant frequencies. In this section, we present a one-level
convergence analysis of the MHM method showing its robustness in facing these quasi-
resonances. We will use a one-level Cartesian mesh to achieve our goal.

We restrict our analysis to the homogeneous case. However, we believe that the robust-
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ness of MHM remains valid for a larger class of layered media. This restriction is due in the
first place to the optimal stability constant that can be established for the homogeneous
case and which is not the case for the multilayer media.

5.3.1 Exact representation of planewaves

The field of application, which is that of photovoltaic cells, and the rectangular medium
model considered in this work allow us to use Cartesian meshes. Furthermore, on a Carte-
sian mesh, we have two sets of faces FH ; the set of vertical faces Fv

H and the set of horizontal
faces Fh

H . Specifically, one easily sees that

nF = ±(0, 1) ∀F ∈ Fh
H ,

and
nF = ±(1, 0) ∀F ∈ Fv

H .

On the other hand, for a plane wave function u traveling in the mesh directions, we have

u = eikx1 for a plane wave traveling in x1 direction,

and
u = eikx2 for a plane wave traveling in x2 direction.

As a result , we actually see that for all F ∈ FH

λ|F = D∇u · nF |F ∈ P0(F ).

Consequently, using a Cartesian mesh and the first-order polynomial approximation space
given by (5.2.21), the one-level MHM scheme is expected to produce exact solution for
plane waves traveling in the mesh directions.

Figure 5.3: Plane waves traveling in the mesh directions; x1-direction (right) and x2-
direction (left).
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Recall from Section 2.1.7, that quasi-resonant modes are Fourier modes ûn correspond-
ing to a value of n for which kn = 0. Hence, ûn(x2) is generally constant and the associated
solution u = ûne

i(α+αn)x1 is a plane wave traveling in x1 direction. Coupled with the result
concerning the MHM scheme exactness for plane waves, elaborated just before, the MHM
method is expected to perform well in the presence of quasi-resonant frequencies.

5.3.2 The solution splitting

As mentioned above, the stability constant and its frequency dependence are key ingre-
dients for the convergence analysis of a numerical method. Moreover, the relative lack of
stability for our model problem is due to the quasi-resonant modes and it is represented by
the loss of a frequency half power in the stability constant. For this reason, our analysis
will rely on the Fourier expansion (2.1.8) to avoid this difficulty. Using the linearity of
the Helmholtz operator, we will split our quasi-periodic solution into two Fourier parts.
On the one hand, one part consists of Fourier modes far from quasi-resonances and may
therefore have the best frequency dependence for its stability constant. For this part, the
usual convergence analysis gives the desired optimal error estimate. On the other hand,
a second part consists of Fourier modes close to quasi-resonances. Therefore, its stability
constant loses in its frequency-order dependence, and the usual convergence analysis using
the stability constant must be ignored. Henceforth, some particularities of the considered
MHM scheme will be used to show its expected performance in the case of quasi-resonances.

5.3.2.1 Splitting

Actually, using the Fourier expansion (2.1.8), we split the solution as u = ũ+ ŭ, where

ŭ:=
∑

2|kn|2<k2

ûne
i(α+αn)x1 and ũ:=

∑
2|kn|2≥k2

ûne
i(α+αn)x1 . (5.3.1)

The discussion in Section 2.1.6 imply that ŭ and ũ respectively solve of the Helmholtz
problem (5.1.1) with the right hand sides

f̆ =
∑

2|kn|2<k2

f̂ne
i(α+αn)x1 and f̃ =

∑
2|kn|2≥k2

f̂ne
i(α+αn)x1 .

Before going further, applying the same steps of the MHM formulation to the two
functions ũ and ŭ, we will note λ̃ and λ̆ the solutions associated with their global MHM
problems {

Find λ̃ ∈ Λ such that:

⟨µ, T λ̃⟩∂TH = −⟨µ, T̂ f̃⟩∂TH ∀µ ∈ Λ.
(5.3.2)

and {
Find λ̆ ∈ Λ such that:

⟨µ, T λ̆⟩∂TH = −⟨µ, T̂ f̆⟩∂TH ∀µ ∈ Λ.
(5.3.3)
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Proposition 5.3.1. Let f ∈ L2(Ω̃) and u ∈ H1
♯ (Ω̃) be the associated solution to (5.1.1).

If f̆ and f̃ are splitting of f and ŭ and ũ are the splitting of u, the estimates

k∥ũ∥ε,Ω̃ ≲ (1 + kℓ2)
1

k
∥f̃∥ε,Ω̃ (5.3.4)

and

k∥ŭ∥ε,Ω̃ ≲ (1 + (kℓ2)
2)
1

k
∥f̆∥ε,Ω̃ (5.3.5)

hold true.

Proof. Let u ∈ H1
♯ (Ω̃) be the solution to (5.1.1) associated to the right hand side f ∈ L2(Ω̃).

If f̆ and f̃ are splitting of f and ŭ and ũ are the splitting of u. Then, it is clear that ŭ and
ũ respectively solve the Helmholtz problem (5.1.1) with the right hand sides f̆ and f̃ . In
addition, we have

∥ŭ∥2
0,Ω̃

= ℓ1
∑

2|kn|2≥k2

∥ûn∥2 and ∥ũ∥2
0,Ω̃

= ℓ1
∑

2|kn|2≤k2

∥ûn∥2,

where for each n ∈ Z, ûn is the only element of H1
0 (0, ℓ+ ℓP) such that

−k2n(νûn, v̂) + (ν−1û′n, v̂
′) = (f̂n, v̂) ∀v̂ ∈ H1

0 (0, ℓ+ ℓP).

Focus first on the estimate (5.3.4). On the one hand, if kn is a real wave number (kn ∈ R+),
the one-dimensional stability result (3.3.17) shows that

∥ûn∥ ≲ (1 + (knℓ2)
−1)

1

kn
ℓ2∥f̂n∥.

On the other hand, if kn is a imaginary wave number (kn ∈ iR+), the one-dimensional
stability estimate (3.3.6) shows that

∥ûn∥ ≲ min
(
4, (|kn|ℓ2)−2

)
ℓ22∥f̂n∥ ≲ |kn|−2∥f̂n∥ ≲ (1 + (|kn|ℓ2)−1)

1

|kn|ℓ2
ℓ22∥f̂n∥.

And since 2|kn|2 ≥ k2 we get

k2∥ũ∥2
0,Ω̃

= k2ℓ1
∑

2|kn|2≥k2

∥ûn∥2

≲ k2ℓ1
∑

2|kn|2≥k2

(1 + (|kn|ℓ2)−1)2
1

(|kn|ℓ2)2
ℓ42∥f̂n∥2

≲ (1 + (kℓ2)
−1)2(kℓ2)

2 1

k2
ℓ1

∑
2|kn|2≥k2

∥f̂n∥2

≲ (1 + kℓ2)
2 1

k2
∥f̃∥2

ε,Ω̃
,
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and (5.3.4) follows. Finally, to establish the estimate (5.3.5), we use the fact that 2|kn|2 ≤
k2 and combine the one-dimensional stability results (3.3.11) and (3.3.22) to obtain

∥ûn∥ ≲ ℓ22∥f̂n∥,

therefore

k2∥ŭ∥2
0,Ω̃

= k2ℓ1
∑

2|kn|2≥k2

∥ûn∥2

≲ k2ℓ1
∑

2|kn|2≥k2

ℓ42∥f̂n∥2

≲ (kℓ2)
4 1

k2
ℓ1

∑
2|kn|2≥k2

∥f̂n∥2

≲ (kℓ2)
4 1

k2
∥f̆∥2

ε,Ω̃
.

In the following, we study the convergence of the two functions ŭ and ũ separately.

5.3.2.2 High-frequency component

Since the high-frequency component ũ has a favorable estimate in (5.3.4), we can follow
the standard convergence proof.

Lemma 5.3.2. Consider f ∈ L2(Ω̃), and let λ̃ ∈ Λ be the solution to (5.3.3). Then, we
have

k∥λ̃− πH λ̃∥Λ,k≲(1 + kℓ)kH∥f̃∥ε,Ω̃. (5.3.6)

Proof. Using the estimate (5.2.29) from Lemma 5.2.15, we have

∥λ̃− πH λ̃∥Λ,k ≲ H|ũ|2,Ω̃.

On the other hand, recalling (5.1.1), we have

ν2
∂2ũ

∂x21
+
∂2ũ

∂x22
= νf̃ + k2ν2ũ,

and standard elliptic regularity (see, e.g. [20, Section 9.6]) shows that

|ũ|2,Ω̃ =≲ ∥f̃∥ε,Ω̃ + k2∥ũ∥ε,Ω̃ ≲ (1 + kℓ2)∥f̃∥ε,Ω̃,

thanks to (5.3.4). As a result

∥λ̃− πH λ̃∥Λ,k ≲ H(1 + kℓ2)∥f̃∥ε,Ω̃.
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5.3.2.3 Low-frequency component

We now focus on the convergence analysis of the low-frequency solution part ŭ, whose
Fourier modes are close to quasi-resonant modes (kn ≈ 0). As shown in (5.3.5), the
naive stability estimate for those modes has the worst frequency dependence, making it
a more subtle case to study. To avoid the unfavorable stability constant, our analysis
combines the improved stability estimates of Theorem 3.3.12, the alternative interpolation
estimate (5.2.30) and the fact that we are using a Cartesian mesh. This actually reflects
the point discussed in subsection 5.3.1, that the MHM method exactly reproduced plane
waves traveling in the mesh direction.

Lemma 5.3.3. Consider f ∈ L2(Ω̃) and let λ̆ ∈ Λ be the solution to (5.3.2), then

k∥λ̆− πH λ̆∥Λ,k ≲ (1 + kℓ)kH∥f̆∥ε,Ω̃. (5.3.7)

Proof. We have

∑
F∈FH

|λ̆|2H1(F ) =
∑
F∈FH

∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥2
F

=

N1∑
j=0

∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥
Γv
j

+

N2∑
j=0

∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥
Γh
j

,

where N1 and N2 are respectively the number of the vertical and the horizontal lines of
the Cartesian mesh.

On the one hand, fixing j ∈ {0, . . . , N2}, we have∥∥∥∥ ∂2u

∂x1∂x2

∥∥∥∥2
Γh
j

=
∑
n∈Z

2|kn|2<k2

∥∥(α + αn)û
′
n(x2)e

i(α+αn)x1
∥∥2
Γh
j

≤ ℓ1
∑
n∈Z

2|kn|2<k2

|α + αn|2∥û′n∥2L∞(0,ℓ2+ℓP)
≲ k2ℓ1

∑
n∈Z

2|kn|2<k2

∥û′n∥2L∞(0,ℓ2+ℓP)
,

since |α + αn|2 ≲ k2 for the considered set of indices n. We now recall from (3.3.37) in
Chapter 3 that

∥û′n∥L∞(0,ℓ2+ℓP) ≲
√
ℓ2∥f̂n∥L2(0,ℓ2+ℓP),

leading to ∥∥∥∥ ∂2u

∂x1∂x2

∥∥∥∥2
Γh
j

≤ k2ℓ1ℓ2
∑
n∈Z

2|kn|2<k2

∥f̂n∥2L2(0,ℓ2+ℓP)
≤ k2ℓ2∥f̆∥2ε,Ω̃

since N2 ∼ ℓ/H, we arrive at

N2∑
j=0

∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥2
Γh
j

≲ k2ℓ2H−1∥f̆∥2
ε,Ω̃
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and

k2H3

N2∑
ℓ=0

∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥2
Γh
ℓ

≲ k4ℓ2H2∥f̆∥2
ε,Ω̃

= (kℓ)2(kH)2∥f̆∥2
ε,Ω̃
.

On the other hand, if we fix j ∈ {0, . . . , N1}, we have∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥2
Γv
j

=
∑
n∈Z

2|kn|2<k2

∥∥(α + αn)û
′
n(x2)e

i(α+αn)x1
∥∥2
Γv
j

= ℓ1
∑
n∈Z

2|kn|2<k2

|α + αn|2∥û′n∥2L2(0,ℓ2+ℓP)

≲ (kℓ)2
∑
n∈Z

2|kn|2<k2

∥f̂n∥2L2(0,ℓ2+ℓP)

= k2ℓ∥f̆∥2
ε,Ω̃
,

where we have used the inequality

∥û′n∥L2(0,ℓ2+ℓP) ≲ ℓ2∥f̂n∥L2(0,ℓ2+ℓP),

derived from (3.3.37) in Chapter 3. Now, since N1 ∼ ℓ1/H, we arrive at

k2H3

N1∑
j=0

∥∥∥∥ ∂2ŭ

∂x1∂x2

∥∥∥∥2
Γv
j

≲ (kℓ)2(kH)2∥f̆∥2
ε,Ω̃
.

We have thus established that

k2H3
∑
F∈FH

|λ̆|2H1(F ) ≲ (kℓ)2(kH)2∥f̆∥2
ε,Ω̃
.

and (5.3.7) follows from the interpolation error estimates in (5.2.30).

5.3.3 Stability and convergence

We can now present the key result of this section by combining the estimates we obtained
for each part of the splitting.

Theorem 5.3.4 (Control of the approximation factor). We have

Capp ≲ (1 + kℓ)kH.
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Proof. Let u ∈ H1
♯ (Ω̃) be the solution to (5.1.2) and λ its associated one-level MHM

solution. Then, the definition of Capp given in (5.2.24) implies that

Capp = k sup
f∈L2(Ω̃)
∥f∥

ε,Ω̃
=1

inf
µH∈ΛH

∥λ− µH∥Λ,k

≤ k∥λ− (πH λ̆+ πH λ̃)∥Λ,k
≤ k

(
∥λ̆− πH λ̆∥Λ,k + ∥λ̃− πH λ̃∥Λ,k

)
≲ (1 + kℓ)kH,

where we have used (5.3.6) and (5.3.7) in the last inequality.

Corollary 5.3.5 (Error estimate). Assume that (1 + kℓ)kH is small enough, then there
exists a unique λH ∈ ΛH solution to (5.2.22), and we have

|||u− uH |||k,TH ≲ (1 + kℓ)H∥f∥ε,Ω̃.

Proof. Since Capp ≲ (1 + kℓ)kH, we may assume that (1 + kℓ)kH is small enough that
Capp ≤ |ν|−2/2.

Then, Theorems 5.2.12 and 5.2.14 imply that there exists a unique λH ∈ ΛH solution
to (5.2.22), and we have

|||u− uH |||k,TH = |||Tλ− TλH |||k,TH by (5.2.1) and (5.2.23)

≲ ∥λ− λH∥Λ,k by norm equivalence (5.2.14)

≲ inf
µH∈ΛH

∥λ− µH∥Λ,k by Theorm 5.2.14

≲ ∥λ− πHλ∥Λ,k by the minimum definition

≲ (1 + kℓ)H∥f∥ε,Ω̃ by Lemmas 5.3.2 and 5.3.3 .

The results of the previous two Lemmas 5.3.2 and 5.3.3 show that the MHM method
supports the same frequency-orders of convergence (1 + kℓ)kH, for both low- (ŭ) and
high- ũ frequency component. Furthermore, the quasi-optimality of the MHM method
is uniformly established if (1 + kℓ)kH is small enough (Capp ≲ (1 + kℓ)kH). Theoreti-
cally, the current results suggest that the MHM method will not suffer from the pollution
effect close to the quasi-resonances. In contrast, the error curves of the finite element
method (see the numerical illustrations in Section 2.2.4) show the important effect of quasi-
resonances on the finite element scheme. Moreover, the standard finite element analysis
of our model Helmholtz problem shows that the finite element solution is quasi-optimal
provided that Capp ≲ (Cst)kH ≈ (1 + (kℓ)2)kH. This difference of one frequency-power in
the quasi-optimal condition allows the MHM method to remain performant in the presence
of anomalous frequencies.
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5.3.4 Numerical experiments

In this subsection, we evaluate our theoretical convergence results and show the perfor-
mance of the MHM method on periodic domains. In particular, its robustness to quasi-
resonant frequencies will be nicely illustrated. To this end, we will compare the first-order
MHM and finite element schemes through a sequence of numerical tests.

For the following numerical examples, we use Cartesian meshes TH made of square ele-
ments and the first-order polynomial space ΛH defined in (5.2.21) as a MHM approximation
space.

The analytical function that we seek to approximate is solution of the following 2D
Helmholtz problem posed in a homogeneous unite square Ω := (0, 1)2:

−k2νũ− ∂

∂x1

(
ν
∂ũ

∂x2

)
− ∂

∂x2

(
ν−1 ∂ũ

∂x2

)
= f in Ω̃

ũ = 0 on ΓP

ũ = 0 on ΓD

ũ+ − eiαℓ1ũ− = 0 on Γ̃♯,

(5.3.8)

where the source f ∈ L2(Ω̃) (illustrated in Figure 2.7) is chosen so that

u(x) = χ(x)eikdin·x + eikdout·x,

where din ·din = dout ·dout = 1, din1 = din1 = α+mπ/ℓ1 for m ∈ N, din2 < 0 and dout2 = −din2 ,
and and the cutoff function χ defined in (2.2.30).

As for the previous numerical examples, we will choose a source term f so that the
solution u is composed of one Fourier mode ûj. In this case, there exists an integer j ∈ N
such that the one-dimensional wave number is:

k2j = k2 − (k sin(θ) + 2πj)2.

Thus, for a fixed integer j and frequency k, the quasi-resonance cases (kj = 0) will depend
on the angle of incidence θ.

In the following experiments, we plot the relative H1 errors with respect to the angle of
incidence θ. In particular, we are interested in cases close to quasi-resonances. Therefore,
we expect that approaching a quasi-resonance, the MHM error remains controlled and
much smaller than the FEM error.

Our goal here is to illustrate the effect of the quasi-resonant mode (characterized by its
angle of incidence θ) on the finite element and MHM methods. For this purpose, we fix
a frequency k a mode j ∈ N , and a mesh of size H, and plot the relative H1 FEM and
MHM errors versus the angle θ on Figures 5.4 and 5.5.
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Figure 5.4: MHM and FEM errors for j = 0 with k = 10π (left) and k = 15π (right).
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Figure 5.5: MHM and FEM errors for j = 1 with k = 10π (left) and k = 15π (right).

Figures 5.4 and 5.5 show that quasi-resonant modes have a considerable effect on finite
element errors. This effect is manifested by a large increase in the error value close to quasi-
resonant modes. Besides, we notice that the MHM method maintains its optimality, and
its error value does not produce almost any increase near the quasi-resonant frequencies.
As can be seen, there is at least a ten percent difference between the two H1 relative MHM
and FEM errors. Especially, this situation is particularly for θ = 90° and k = 10π and
k = 15π when j = 0 (Figure 5.4) and for θ = 53.13°, and θ = 60.07° for k = 10π and
k = 15π, respectively when j = 1 (Figure 5.5).
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5.4 Convergence in finely textured layered media

As a multiscale method, the MHM method is designed to capture small-scale hetero-
geneities using coarse meshes. In this section, we will focus on the case of finely textured
layers where δ ≪ H, and obtain error estimates that are robust in δ. Such a situation was
out of the scope of the work in [36], so that those results are entirely new.

5.4.1 Settings

For the remainder of this section, we assume that the coefficients ε, A1 and A2 satisfy the
assumptions of Chapter 4. Specifically, we assume that for a given δ > 0, the coefficients
are given by

ε(x) = ε̂δ(x) := ε̂
(
x2,
{x1

δ

})
, Aj(x) = Âδ

j(x) := Âj

(
x2,
{x1

δ

})
,

where ε̂, Âj : (0, ℓ2 + ℓP) × (0, 1) → R, for j = 1 and 2, are smooth functions periodic in
the second variable.

Our model problem is to approximate the solution uδ associated with the oscillating

coefficients ε̂δ and Â
δ
. For δ > 0 and f ∈ L2(Ω̃), the global MHM problem then consists

in finding λδ ∈ Λ such that

⟨µ, Tδλδ⟩∂TH = −⟨µ, T̂δf⟩∂TH ∀µ ∈ Λ, (5.4.1)

where the local operators are defined by

bδ(T̂δf, v) = (εHf, v)Ω̃ bδ(Tδλδ, v) = −⟨λδ, v⟩∂TH ∀v ∈ H1(TH).

Our analysis will also rely on the homogenized problem

⟨µ, T0λ0⟩∂TH = −⟨µ, T̂0f⟩∂TH ∀µ ∈ Λ, (5.4.2)

with the local operators

bH(T̂0f, v) = (εHf, v)Ω̃ bH(T0λ0, v) = −⟨λ0, v⟩∂TH ∀v ∈ H1(TH).

Notice that the meshing condition for the well-posedness of the local problems we
obtained in section 5.2.1 only involves the maximum and minimum values of the coefficients.
In particular it does not depend on δ.

5.4.2 Technical results

This subsection presents a few key preliminary results we employ in the convergence proof.
We start by showing that T̂0f is always piecewise H2.
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Lemma 5.4.1 (Piecewise regularity for T̂0). For all f ∈ L2(Ω̃), we have T̂ f ∈ H2(TH)
with

k
∣∣∣∣∣∣∣∣∣T̂0f ∣∣∣∣∣∣∣∣∣

k,TH
+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x1

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x2

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

≲ ∥f∥εH,Ω̃. (5.4.3)

Proof. The first part of the estimate, namely

k
∣∣∣∣∣∣∣∣∣T̂0f ∣∣∣∣∣∣∣∣∣

k,TH
≲ ∥f∥εH,Ω̃ (5.4.4)

has already been established at (5.2.13) in Theorem 5.2.6. For the piecewiseH2, we proceed
element by element. Thus, let us consider K ∈ TH . We then observe that{

−∇ ·
(
DAH∇(T̂0f)

)
= εHf + k2εHT̂ f in K

∇(T̂0f) · n = 0 on ∂K.

Then, since K is convex, standard elliptic regularity results [72, Theorems 3.1.3.1 and

3.2.1.2] implies that T̂0f ∈ H2(K), with∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x1

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x2

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

≲ ∥f + k2u∥εH,Ω̃

Then, (5.4.3) follows from (5.4.4) since

∥f + k2u∥εH,Ω̃ ≤ ∥f∥εH,Ω̃ + k2∥u∥εH,Ω̃ ≲ ∥f∥εH,Ω̃ + k |||u|||k,K ≲ ∥f∥εH,Ω̃.

We then provide an homogenization error estimate similar to the one we derived in
Chapter 4, but for the local problems instead of the global Helmholtz problem. We start
with the local problems corresponding with the operator T̂δ

Lemma 5.4.2 (Homogenization for the operator T̂δ). For all δ > 0 and f ∈ L2(Ω̃), we
have

k

∣∣∣∣∣∣∣∣∣∣∣∣T̂δf − T̂0f − δχ̂δ ∂

∂x1

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

≲

(
kH + kδ +

√
δ

H
+

δ

H

)
∥f∥εH,Ω̃ (5.4.5)

Proof. Fix an element K ∈ TH . Let us set uδ := (T̂δf)|K ∈ H1(K) and u0 := (T̂0f)|K ∈
H1(K). For all v ∈ H1(K), we have Let |||v|||k,D = 1. Since ν is constant in K, we have

bKδ (uδ − u0, v) = bKH (u0, v)− bKδ (u0, v) = −k2νK
(
(εH − ε̂δ)u0, v

)
K

+

(
ν(AH

1 − Âδ
1)
∂u0
∂x1

,
∂v

∂x1

)
K

+ ν−1
K

(
(AH

2 − Âδ
2)
∂u0
∂x2

,
∂v

∂x2

)
K

,
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and

bKδ

(
uδ − u0 − δχ̂δ ∂u0

∂x1

, v

)
= −k2νK

(
(εH − ε̂δ)u0, v

)
K

+

(
ν(AH

1 − Âδ
1)
∂u0
∂x1

,
∂v

∂x1

)
K

− bKδ

(
δχ̂δ ∂u0

∂x1

, v

)
+ ν−1

K

(
(AH

2 − Âδ
2)
∂u0
∂x2

,
∂v

∂x2

)
K

,

and therefore

Re bKδ

(
uδ − u0 − δχ̂δ ∂u0

∂x1

, v

)
≲ k2

∣∣((εH − ε̂δ)u0, v
)
K

∣∣
+

∣∣∣∣(ν(AH
1 − Âδ

1)
∂u0
∂x1

,
∂v

∂x1

)
K

− bKδ

(
δχ̂δ ∂u0

∂x1

, v

)∣∣∣∣
+

∣∣∣∣((AH
2 − Âδ

2)
∂u0
∂x2

,
∂v

∂x2

)
K

∣∣∣∣ .
Recalling Lemma 5.4.1, we actually have u0 ∈ H2(K). As a result, we can apply (4.2.13),
(4.2.14) and (4.2.15) from subsection 4.2.2 to show that

kRe bKδ

(
uδ − u0 − δχ̂δ ∂u0

∂x1

, v

)
≲{(

kδ +

√
δ

HK

+
δ

HK

)
k |||u0|||k,D + k(δ +

√
δHK)

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

)}
|||v|||k,K ,

which, using that δ +
√
δHK ≲ δ +HK , we simplify as

kRe bKδ

(
uδ − u0 − δχ̂δ ∂u0

∂x1

, v

)
≲(

kδ + kHK +

√
δ

HK

+
δ

HK

){
k |||u0|||k,D +

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

)}
|||v|||k,K .

After summing up this identity over all K ∈ TH , we have

kRe bδ

(
T̂δf − T̂0f − δχ̂δ ∂

∂x1

(T̂0f), v

)
≲

(
kδ + kHK +

√
δ

HK

+
δ

HK

)
{
k
∣∣∣∣∣∣∣∣∣T̂0f ∣∣∣∣∣∣∣∣∣

k,TH
+

(∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x1

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x2

(T̂0f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

)}
|||v|||k,TH ,

and we arrive at

kRe bδ

(
T̂δf − T̂0f − δχ̂δ ∂

∂x1

(T̂0f), v

)
≲

(
kδ + kHK +

√
δ

HK

+
δ

HK

)
∥f∥εH,Ω̃ |||v|||k,TH ,
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using (5.4.3), and (5.4.5) follows from inf-sup condition (5.2.12) for the sesquilinear form
bδ(·, ·) over V × V .

We then provide a similar homogenization error estimate for the operator Tδ.

Lemma 5.4.3 (Homogenization for the operator Tδ). Let f ∈ L2(Ω̃), and consider the
solution λ0 ∈ V to the homogenized MHM formulation (5.4.2). Then∣∣∣∣∣∣∣∣∣∣∣∣Tδλ0 − T0λ0 − δχ̂δ ∂

∂x1

(T0λ)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

≲ Cst

(
kH + kδ +

√
δ

H
+

δ

H

)
∥f∥εH,Ω̃

Proof. We start by looking at a single element K ∈ TH . We let v0 = (T0λ0)K ∈ H1(K),

and vδ = (Tδλ0). We know that u0 := T0λ0 + T̂0f ∈ H2(Ω̃) since it is the original solution

ot the problem. As a result, since we previously showed that T̂ f ∈ H2(TH), we have

v0 = u0|K − (T̂ f)|K ∈ H2(K). In addition, using (4.2.16) and (5.4.3), we have

k |||v0|||k,K +

∣∣∣∣∣∣∣∣∣∣∣∣ ∂v0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂v0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,H

≲ k |||u0|||k,K +

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,H

+ k
∣∣∣∣∣∣∣∣∣T̂ f ∣∣∣∣∣∣∣∣∣

k,K
+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x1

(T̂ f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂x2

(T̂ f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,H

≲ k |||u0|||k,K +

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,K

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,H

+ ∥f∥εH,K .

Then, the proof follows exactly the lines of the one of Lemma 5.4.2, with u0 and uδ replaced
by v0 and vδ.

5.4.3 Error estimate

We are now ready to establish our key result concerning the MHM in highly heterogeneous
media.

Theorem 5.4.4. Let f ∈ L2(Ω̃), and let λδ ∈ Λ be the solution to the oscillating MHM
formulation (5.4.1). Then, we have

k∥λδ − πHλ0∥Λ,k ≲

{
Cst

(
kH + kδ +

√
δ

H
+

δ

H

)
+ C 2

st

(√
kℓ
√
kδ + kδ

)}
∥f∥εH,Ω̃.

(5.4.6)
In particular,

Capp ≲ Cst

(
kH + kδ +

√
δ

H
+

δ

H

)
+ C 2

st

(√
kℓ
√
kδ + kδ

)
(5.4.7)
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Proof. We start with the triangular inequality

∥λδ − πHλ0∥Λ,k ≤ ∥λδ − λ0∥Λ,k + ∥λ0 − πHλ0∥Λ,k.
To deal with the second term, we cans imply employed the usual MHM interpolation
estimate (5.2.29) together with the H2(TH) estimate (4.2.16) for u0 = T0λ0 + T̂0f as
follows:

k∥λ0 − πHλ0∥Λ,k ≲ kH

(∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x1

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣∂u0∂x2

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

)
≲ CstkH∥f∥εH,Ω̃.

For the first term, we write that

∥λδ − λ0∥Λ,k ≲ |||Tδλδ − Tδλ0|||k,TH

≲

∣∣∣∣∣∣∣∣∣∣∣∣Tδλδ − T0λ0 − δχ̂δ ∂

∂x1

(Tλ0)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣Tδλ0 − T0λ0 − δχ̂δ ∂

∂x1

(Tλ0)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

≲
∣∣∣∣∣∣uδ − u0 − δχ̂δu0

∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣T̂δf − T̂0f − δχ̂δ ∂

∂x1

(T̂ f)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

+

∣∣∣∣∣∣∣∣∣∣∣∣Tδλ0 − T0λ0 − δχ̂δ ∂

∂x1

(Tλ0)

∣∣∣∣∣∣∣∣∣∣∣∣
k,TH

,

so that (5.4.6) follows from Theorem 4.2.8 and Lemmas 5.4.2 and 5.4.3. Then, (5.4.7) is a
direct consequence of the definition of Capp in (5.2.24).

5.4.4 Numerical examples

The purpose of this section is to assess the theoretical convergence results of the previous
section. To do this, we consider a problem with a highly-oscillatory medium coefficient de-
picted in Figure 5.6. The domain is a unit square with prescribed quasi-periodic boundary
conditions and PML layer.

Periodic cell Y

Layer 5 (ε5, A5)

Layer 4 (ε4, A4)

Layer 3 (ε3, A3)

Layer 2 (ε2, A2)

Layer 1 (ε1, A1)

PML

Figure 5.6: A highly-oscillatory medium coefficient
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The oscillation are assumed to be periodic with a period δ, as depicted in Figure 5.6.
Furthermore, we use the same source f as in the previous numerical tests (illustrated in
Figure 2.7).

In this example, no exact solution is available. As a result, we construct a reference
solution using a mesh size H = 1

2560
. The error is calculated on five horizontal lines of size

ℓ1 = 1, located in x2 =
2
8
, x2 =

3
8
, x2 =

4
8
, x2 =

5
8
, x2 =

6
8
.

In the following experiments, we investigate the convergence with respect to the mesh
size H for a small fixed value of δ. In particular, we plot the relative H1 errors with respect
to H, and we are interested on the effect of the resonance error term δ

H
. To do this end,

we fix a frequency k = 12.6π, an incident angle θ = 23°, and the PML parameters ℓP = 0.5
and γr = γi = 4. The length of the texturation teeth is also fixed at 1

16
. We have also

chosen to fix the physical coefficient A = 1 and choose the following permittivity values:
ε1 = 1, ε2 = 0.6, ε3 = 0.3, ε4 = 0.2, ε5 = 0.1.

1
8

1
16

1
32

1
64

1
128

1
256

1
512

10−3

10−2

10−1

100

EMHM

H

R
el
at
iv
e
|·|

H
1
(T

H
)
er
ro
rs

1
8

1
16

1
32

1
64

1
128

1
256

1
512

10−3

10−2

10−1

100

EMHM

H

R
el
at
iv
e
|·|

H
1
(T

H
)
er
ro
rs

Figure 5.7: MHM errors for with δ = 1
64

(left) and δ = 1
128

k = 15π (right).

Figure 5.7 shows that the error curve is composed of three regimes. In the two regimes
where H < δ

2
or H > 2δ, we observe that the error decreases with an order of H. However,

in the other regime, the behavior of the error curves when H ≈ δ is different. In particular,
we observe a stabilization of the error curve corresponding to the resonance term δ

H
, which

validates the theoretical convergence results found in the previous section.
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Chapter 6

Conclusion

Summary

This thesis was concerned with a mathematical and numerical study of the two-dimensional
Helmholtz equation with quasi-periodic boundary conditions. The properties of the model
problem have been chosen in the context of solar cell applications often characterized by
periodic and textured multilayer devices.

Having in mind its particular interest in stability and convergence analysis of finite ele-
ment discretizations, we have started with frequency-explicit stability analysis of the con-
tinuous Helmholtz solution. Our stability estimates, presented in Chapter 2, are frequency-
explicit, and they were obtained for two cases of physical coefficients. In the first case, we
considered a homogeneous model, and we were interested in the effect of the quasi-periodic
boundary conditions. Our main achievements, in this case, are the derivation of stability
estimates that are explicit and optimal with respect to the frequency and that clearly show
the effect of the quasi-periodic boundary conditions on the problem’s well-posedness. We
illustrated then these optimal stability results by highlighting how they impact the stability
of finite element discretizations. For the second case, our results are valid for more gen-
eral physical coefficients satisfying a monotonicity hypothesis. The estimates obtained in
this case are less sharp in terms of frequency but are uniform to the variation of the coeffi-
cients in the periodic direction, so they are valid for layers with highly oscillating interfaces.

In the second contribution, we replace the non-local absorption conditions with a PML
layer, keeping in mind efficient numerical schemes. We then focused on two central results.
Firstly, for the case of the right-hand sides contained in the original domain, we proposed
an explicit convergence analysis showing that the PML problem’s solution converges to
the original problem’s solution when the PML parameters are correctly chosen. The pro-
posed error estimates are explicit and clearly show the effect of the quasi-resonant modes.
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Numerical experiments illustrating our theoretical convergence results are then presented.
Secondly, we focused on the PML problem’s well-posedness and considered the case of the
right-hand sides contained in the absorbing layer, which is paramount in the stability and
convergence study of numerical methods. We have presented our well-posedness analysis
for two different cases. On the one hand, we provided optimal stability results for the case
of a homogeneous medium. On the other hand, we provided a well-posedness study for
the PML problem with general physical coefficients. Our results, in this case, rely on the
well-posedness results of the original problem obtained in Chapter 2. As a result, they are
sub-optimal compared to those stability results obtained for the original DtN problem.

In the fourth chapter, we considered physical coefficients with small periodic oscilla-
tions. Then, we analyzed our Helmholtz problem using the homogenization theory. Indeed,
we used that the stability bounds achieved in chapters 2 and 3 are uniform to the variation
of the physical coefficients in the periodic direction. We therefore derived frequency-explicit
error estimates controlling for the difference between the oscillating and homogenized so-
lutions. The homogenization results obtained in this chapter appeared in our study as an
essential pre-step to analyze the properties of the MHM method. However, these results
are interesting for homogenization theory and can be applied to the analysis of a wide
range of multiscale numerical methods.

Regarding the analysis of the MHM method, we have shown the effect of the PML
and the quasi-periodic boundary conditions on the MHM formulation. In particular, their
effect on the primal and dual MHM variables. We have also studied the well-posedness
of local and global MHM formulations. Then, we presented two convergence analyses to
show the performance of the MHM method both in the presence of the quasi-resonant
frequencies and when considering highly oscillatory coefficients. In the first part, we have
built on the optimal stability results obtained in Chapters 2 and 3 and have been able
to gain one frequency-power in the MHM quasi-optimal condition compared to the FEM
quasi-optimal condition, which allows the MHM method to remain efficient in the presence
of anomalous frequencies. A sequence of numerical tests was presented at the end of this
part, illustrating the robustness of the MHM method compared to the FEM method in
the presence of quasi-resonant frequencies. The second part dealt with the case of finely
textured layers. There, we presented an MHM multiscale convergence analysis based on
the homogenization results obtained in chapter 4. The acquired results show that the
MHM method is robust in this case and can capture small-scale heterogeneities using
coarse meshes. Furthermore, these theoretical results have been evaluated via examples
with highly oscillating medium coefficients.
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Perspectives

Concerning the stability results presented for the homogeneous case in Chapter 2 for
Helmholtz DtN problems and in Chapter 3 for PML problems, the derived estimates are
optimal, and they lose a half power of frequency compared to the standard case without
quasi-periodic boundary condition. A possible extension of the approach used in this case,
namely Fourier mode analysis, can be applied to layered media with flat interfaces. We
expect that with additional theoretical developments for this case, optimal estimates can
be obtained. However, the stability analysis of the textured layer case is more delicate
to manage. By adjusting the chosen ”Morawetz multipliers,” we can follow [30] and re-
move the monotonicity hypothesis. In addition, to avoid the deterioration of the stability
constant obtained for the general PML problem, a possible application of the technique
is possible with further computations to control the norms of the solution in the PML
layer. On the other hand, we can also expect an extension of the error analysis between
the original solution and the solution of the PML problem for the case of non-constant
PML damping functions.

In the homogenization analysis presented in this thesis, we considered smooth coeffi-
cients, which means that they do not exactly represent textured layers. This hypothesis
has been used in the analysis of homogenization correctors. As a result, a desired extension
path of the homogenization analysis is the consideration of physical coefficients represent-
ing the textured multilayered cases.

As the MHM method is a relatively new multiscale method, several extensions are
imaginable. Although, concerning our problem model, we have seen that the parameters
of the PML can impact the MHM formulation. Therefore, a fully-explicit well-posedness
analysis is desired for the local and global MHM formulations. Other extension possi-
bilities are either to perform a detailed second-level analysis or to provide a multiscale
convergence analysis, including the impact of face partitions. Furthermore, an evident
numerical extension of the method for 3D Helmholtz equations is expected. Finally, from
an implementation point of view, the MHM code used in this work only accepts Cartesian
meshes. Thus, generalizing this restriction can allow the numerical analysis of the method
to progress.
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[19] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodrı. An optimal perfectly
matched layer with unbounded absorbing function for time-harmonic acoustic scat-
tering problems. Journal of computational Physics, 223(2):469–488, 2007.

[20] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations, vol-
ume 2. Springer, 2011.

[21] M. L Brongersma, Y. Cui, and S. Fan. Light management for photovoltaics using
high-index nanostructures. Nature materials, 13(5):451–460, 2014.

[22] D. L. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin Method
for High-Frequency Heterogeneous Helmholtz Equations. In Meshfree methods for
partial differential equations VIII, pages 85–115. Springer, 2017.
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