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Abstract

Progress in physics has gone hand in hand with improvements in measurement
precision. Heisenberg’s uncertainty principle puts some bounds on the minimum
amount of measurement noise but classical measurement devices are generally
unable to get very close to this fundamental limit. In this thesis, we showcase
three different experiments that push measurements beyond the classical limit.
These three experiments are performed using the same superconducting circuit
called the quantum node. The first chapters of this thesis are dedicated to
presenting the uncertainty principle, the tools circuit quantum electrodynamics
provide us to approach this limit and the presentation of the quantum node
circuit.

In the first experiment, we show how one can non-destructively resolve the
energy of a single microwave pulse down to the single photon. We then perform a
tomography of the measured state to show the fundamental principle of quantum
back-action. In the second experiment, we devise a scheme using two simulta-
neous parametric couplings capable of stabilizing a long-lived electromagnetic
mode in a squeezed state well beyond the conventional 3 dB limit. Finally, in the
third experiment, we present the first microwave realization of a quantum radar
which despite its limited practical applications is a rare example of a quantum
metrological improvement robust to noise.
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Résumé

Le progrès en physique va de pair avec l’amélioration de la précision des mesures.
Le principe d’incertitude d’Heisenberg met une limite sur le niveau minimal de
bruit de la mesure mais les appareils de mesure classiques sont généralement
incapables de s’approcher de cette limite fondamentale. Dans cette thèse, nous
présentons trois expériences qui vont au-delà de la limite classique. Ces trois
expériences sont réalisées en utilisant un même circuit supraconducteur appelé
nœud quantique. Les premiers chapitres de cette thèse présentent le principe
d’incertitude, les outils que l’électrodynamique quantique peut nous apporter
pour s’approcher de cette limite ainsi que le circuit du nœud quantique lui-même.

Dans la première expérience, nous montrons comment on peut résoudre l’énergie
d’une unique impulsion micro-ondes jusqu’au niveau du photon sans le détruire.
Nous réalisons ensuite une tomographie de l’état mesuré pour montrer le principe
fondamental de la rétro-action de la mesure quantique. Dans la deuxième expérience,
nous utilisons deux interactions paramétriques simultanément pour stabiliser un
mode électromagnétique dans un état comprimé bien plus fortement que la limite
habituelle des 3 dB. Finalement, dans la troisième expérience, nous présentons
la première réalisation d’un radar quantique fonctionnant dans les fréquences
micro-ondes. Malgré ses applications pratiques limitées, cette expérience est un
rare exemple d’amélioration en métrologie quantique qui est robuste au bruit.
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chance.

J’aimerais tout d’abord remercier mon directeur de thèse Benjamin Huard
pour son encadrement. Benjamin m’a grandement impressionné par sa capacité
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expériences. Son aide dans la rédaction des deux derniers articles a été partic-
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6
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Chapter 1

Introduction

1.1 Measurement

Performing measurements is a central element of physics, a science which can
be defined as an attempt at quantitatively understanding nature. It is thus only
natural for physicists to desire ever more precise and accurate measurements.
Modern metrology was born at the end of the 18th century in revolutionary
France with the first attempt at a universal unit system: the metric system [1].
As measurements got more and more precise over the next century, this newly
found precision enabled many technological improvements: from sea chronome-
ters able to keep time with a high enough precision (a few seconds a day only!)
to enable longitude measurements in the first half of the 19th century to the
high-precision atomic clocks at the heart of the Galileo system able to locate any
receiver on Earth within 10 cm almost instantly.

These measurement accuracy improvements were driven by better measure-
ment apparatus which became less sensitive to outside noise and less impactful
on the measured system as well as better unit definitions which rely on well un-
derstood physical constants instead of artifacts that are hard to distribute and
can drift over time.

But in 1927, in a seminal paper [2] written by Heisenberg after a lengthy
discussion with Einstein about his very recent matrix mechanics, he proved that
quantum mechanics predicts an ultimate limit on the precision of a set of incom-
patible measurements of the same system. Incompatible measurements can be
as simple as determining the momentum and position of a single particle.

At the time, this so-called uncertainty principle was seen as the ultimate
extension of a more informal concept called the observer effect which states
that all measurements have an impact on the measured system. For example,
an ammeter has a non-zero resistance, a voltmeter has a finite impedance, a
length measurement relying on the measurement of the time of flight of lights
has thermal and radiation pressure effects on the length... However, contrary
to this classical observer effect which can be made arbitrary small by improving
the measurement apparatus, Heisenberg’s inequality principle is linked to the
absolute minimum amount of back-action that a measurement can have: the

11



12 CHAPTER 1. INTRODUCTION

quantum back action.

Reaching the limits predicted by Heisenberg has now been done in a variety of
systems [3–5] and some experiments can now also use the quantum back-action
of the measurement to prepare a system in interesting, non-classical states.

This thesis like a lot of research in the field of circuit quantum electrodynam-
ics is at the edge between fundamental research and engineering. The theory
of quantum electrodynamics describing these circuits has been so successful that
they can be engineered to implement a wide range of dynamics. The three exper-
iments presented here are proofs of principle that show how one can use quantum
engineering to push the limits of sensitivity in the measurements of electromag-
netic energy, field quadratures and radar. These experiments also constitute a
good example of the second quantum revolution, a concept introduced by the
2022 Nobel prize winner Alain Aspect. Indeed, all three experiments rely on the
coherent manipulation of highly coherent quantum systems to provide a quantum
sensing advantage.

The core of this thesis is composed of three articles, two of which are already
published and a third one still in preparation at the time of this writting. The
articles have been reproduced in this manuscript with minimal editing. These
articles are preceded by a couple of more theoretical chapters and a general
introduction to the superconducting circuit used in all three experiments.

The first one recalls some well known results about quantum measurements
and gives a quick introduction to quantum electrodynamics and gaussian states
which are quite useful in getting a more intuitive understanding of the third
experiment presented in this manuscript.

The second chapter gives some of the basics of circuit quantum electrodynam-
ics by showing how the QED concepts can be translated into concrete circuits
with modes in the GHz range.

1.2 Photon-counting

The discovery of the dual wave and particle nature of light is one of the greatest
discoveries of the early 20th century and comes at the tail end of centuries of
debate regarding the nature of light which oscillated between corpuscular and
wavelike theories. Great thinkers such as Democritus, Newton and Einstein
proposed useful corpuscular theories and Descartes with Huygens, Fresnel and
Maxwell, to cite a few, were also successfully explaining experiments by describ-
ing light as a wave.

While the photoelectric effect provides a good direct experimental proof of
the corpuscular nature of light, manipulating and measuring single photons long
remained impossible due to the extremely small energy of a single photon. Even
though at optical frequencies, the comparatively large single photon energy en-
abled the development of photo-multiplier tubes capable of single photon sensitiv-
ity in the 1930s [6] , single photon detection and manipulation in the microwave
range has lagged behind. The energy of a photon at 10GHz is only 7 × 10−24 J
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which is 5 to 6 orders of magnitude smaller than the energy of a visible photon.
Moreover, because of blackbody radiation, manipulating single microwave pho-
tons requires temperatures much below 1K which imposes to use cumbersome
cryogenic coolers: either Helium 3 refrigerators for higher frequencies (sometimes
called mm-wave) or dilution refrigerators for the 4-12 GHz frequency range ex-
plored in this thesis.

The work presented in the first experiment constitutes the first realization of
a microwave detector possessing two desirable characteristics at the same time:
the ability to detect propagating photons (as opposed to stationary photons
inside of a cavity) and to resolve the number of photons in each pulse up to
4 photons (as opposed to detectors which are only sensitive to the parity or
those which saturate above 1 photon). It opens the way to replicating many
optical experiments at microwave frequencies and a similar detector [7] is already
being used to improve the sensitivity of electron-spin resonance experiments [8,
9] down to single spin sensitivity (unpublished as of time of writing). Contrary to
most optical detectors, it also has the added feature of realizing non-destructive
measurements which open the way for new and interesting experiments.

1.3 Steady-state squeezing

The second experiment presented highlights how dissipation can be used to gen-
erate non-classical states instead of destroying them. It showcases an elegant
solution to a fundamental problem encountered when trying to squeeze the light
inside of a cavity. As long as the cavity is exclusively linearly coupled to the
outside, the squeezing inside cannot exceed a factor of two (3 dB).

Dissipation and decoherence have been studied since the beginning of quan-
tum mechanics but their study in the context of superconducting circuits has
surged in the last few years due to the community interest in quantum computing.
Current quantum computers are still in the so-called NISQ (noisy intermediate-
scale quantum) era where the decoherence of the qubits is too large to easily
implement large-scale error-correction codes (or any other error mitigation strat-
egy). This has led to a lot of study of the mechanism of relaxation and has led to
a large improvement in qubit lifetimes from a few ns in the first Rabi oscillations
demonstrated by Nakamura in 1999 [10] to hundreds of µs in 2020 [11] to ms [12]
by mitigating the microscopic sources of relaxation. However, engineered relax-
ation also has a place in the quantum engineer’s toolbox to stabilize interesting
states in a very robust fashion. This dissipation engineering technique has been
used to stabilize cat states [13] which implement a partial passive quantum error
correction as well as in the work presented here (and a previous opto-mechanical
version [14]). Dissipation engineering is actually quite powerful and it has been
proven to be powerful enough to synthesize many different states [15].
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1.4 Quantum radar

The third and final experiment shown is about trying to improve a classical sensor
using non-classical states of light as a resource. The radar terminology might be
a little misleading at first given the fact that the quantum radar problem usually
entails building a binary detector able to tell whether or not a known fixed noisy
target at known range is present or not. While this might not seem very useful
to build a real-world radar, this problem raises some interesting questions. For
example, one might wonder why the quantum advantage present in the quantum
radar increases with the noise present on the target instead of decreasing like in
some other quantum sensing applications. While the calculation show that using
a non-classical state improves the performance of such simplified radars, the exact
nature of the quantum resource used to create this quantum advantage is still
not known and whether such noise resistant protocols exist to provide quantum
advantage in other problems is also an open question. Section 7.1 briefly discusses
how a quantum resource called quantum discord has been linked to the quantum
advantage predicted and observed in quantum radars.

Because of the binary nature of this radar, one might also recast this ex-
periment as trying to transmit one bit of information between the target and
the radar operator. In this new language, the radar quantum advantage gets
translated into overcoming the Shannon’s limit on the rate of classical informa-
tion through a noisy channel. It had already been known for some time that a
quantum channel could carry more information than a classical channel [16, 17]
but to our knowledge, the work presented here is the first to demonstrate this
quantum advantage in the case of very noisy channels.
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Chapter 2

General concepts

2.1 Observables in quantum mechanics

In classical physics we usually define the state of the system as an element s
of a set E . This set may be infinite and can be explicitly defined in many
situations. For example, when describing a single point-like particle, the state
of the system is completely defined by the position and velocity of the particle
which can be represented as a sextuplet of real numbers so one can use E =
R6. Any measurement we make on the system is perfectly deterministic up to
the imperfections of the measurement apparatus and can be seen as a function
O : E 7−→ R such that each state s of the system is associated to a unique
measurement result O(s).

In quantum mechanics, the situation is quite different. The state of the sys-
tem is now an element |ψ⟩ of a Hilbert space H which is typically much larger
than the corresponding classical set of states E . Going back to the free particle ex-
ample, the Hilbert space is up to an isometry L2

C(R3) the set of square-integrable
complex functions of R3 since the particle state is modelled by a complex wave-
function ψ(x, y, z) which verifies

∫
R3 |ψ(x, y, z)|2dxdydz = 1. Measurement re-

sults in quantum mechanics are not necessarily deterministic in the sense that
for a given state |ψ⟩, the measurement result is not always the same. The set
of possible measurement results and their associated probabilities are described
by a hermitian operator Ô acting on H called observable. The possible mea-
surement results are the set of eigenvalues O which is a subset of R because of
the hermiticity of Ô. Given a possible measurement result o ∈ O, we define the
associated eigenvector |o⟩ such that Ô |o⟩ = o |o⟩ and the probability of obtaining
this measurement result is given by

P (o) = |⟨x|o⟩|2 (2.1)

Interestingly, after getting a measurement result o, the system immediately
jumps to the state |o⟩ such that repeating ideal measurements one after the other
always gives the same result. This instantaneous, non-unitary evolution is called
quantum back-action and is at the core of many interesting concepts such as

17
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active reset, measurement based quantum computing or some forms of quantum
error correction.

Quantum back-action is also responsible for the uncertainty principle. To un-
derstand why, let’s consider two observables Â and B̂1. If we assume that they
can’t be diagonalized in the same basis (which is equivalent to saying that they
don’t commute), then performing multiple alternate measurements of theses two
observables will not necessarily yield repeatable results. Indeed, after the first
measurement of Â, if some value a1 is obtained, then the state of the system be-
comes |a1⟩. Measuring the second observable yields some value b1 which projects
the system in a possibly new state |b1⟩. Measuring Â a second time will yield
the result a1 with a probability that is only |⟨b1|a1⟩|2 which can be different that
one. In this case Â and B̂ are said to be incompatible observables and measuring
both of them at the same time will add noise to both measurements.

We can generalize and formalize this statement by proving the Heisenberg
inequality (also called Robertson or Robertson-Schrödinger inequality as it was
first shown by Robertson in [18]). If we consider two observables Â and B̂, then

σAσB ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣ (2.2)

where σ2
A and σ2

B are the variance of the measurement results of Â and B̂ and〈[
Â, B̂

]〉
is the average value of the commutator of Â and B̂.

If the system is in a state |ψ⟩, The variance σA can be expressed as

σ2
A = ⟨ψ|(Â− ⟨ψ|Â|ψ⟩)2|ψ⟩ = ⟨fa|fa⟩ (2.3)

with |fa⟩ = (Â− ⟨ψ|Â|ψ⟩) |ψ⟩. We can also define |fB⟩ analogously such that

σ2
Aσ

2
B = ⟨fa|fa⟩ ⟨fb|fb⟩ (2.4)

Applying the Cauchy-Schwartz inequality yields

σ2
Aσ

2
B ≥ |⟨fa|fb⟩|2. (2.5)

To derive the Robertson inequality, we finally note that

|⟨fa|fb⟩|2 = Re(⟨fa|fb⟩)2 + Im(⟨fa|fb⟩)2 ≥ Im(⟨fa|fb⟩)2 =
(
⟨fa|fb⟩ − ⟨fb|fa⟩

2i

)2

.

(2.6)
Furthermore,

⟨fa|fb⟩ = ⟨ψ|ÂB̂|ψ⟩ − ⟨ψ|Â|ψ⟩ ⟨ψ|B̂|ψ⟩ (2.7)

⟨fb|fa⟩ = ⟨ψ|B̂Â|ψ⟩ − ⟨ψ|Â|ψ⟩ ⟨ψ|B̂|ψ⟩ . (2.8)

1We assume non degenerate spectra for Â and B̂
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Hence the difference of these two quantities involves the commutator [Â, B̂] =
ÂB̂ − B̂Â,

⟨fa|fb⟩ − ⟨fb|fa⟩ =
〈[
Â, B̂

]〉
. (2.9)

Finally, combining this identity with Eq. (2.6) and Eq. (2.5), we find

σ2
Aσ

2
B ≥


〈[
Â, B̂

]〉
2i

2

(2.10)

which is simply the Robertson inequality squared.
An interesting note that can be seen from this derivation is that this inequality

is not very tight and a tighter bound can be found by including the real part
of ⟨fa|fb⟩ in the calculation of the lower bound. This tighter inequality is less
commonly used and was proven by Schrödinger one year later in [19]

σ2
Aσ

2
B ≥


〈[
Â, B̂

]〉
2i

2

+


〈{

Â, B̂
}〉

−
〈
Â
〉〈

B̂
〉

2

2

(2.11)

2.1.1 Example: the harmonic oscillator

In order to make things more concrete, let us illustrate these concepts on one
of the simplest models in quantum mechanics: the harmonic oscillator. The
oscillator is characterized by its mass m and its stiffness k. We also define its
resonance frequency as ω0 =

√
k/m. The Hamiltonian of the system is

Ĥ =
P̂ 2

2m
+
kX̂2

2
=
P̂ 2

2m
+
mω2

0X̂
2

2
(2.12)

with P̂ and X̂ the momentum and position operator respectively. We could
directly solve the eigenvalue equations to find the energy spectrum and their
corresponding eigenmodes but it is useful to introduce the ladder operators â
and â† to simplify the calculations. These two operators are defined as follows:

X̂ =

√
ℏ

2mω0

(â† + â) (2.13)

P̂ = i

√
ℏmω0

2
(â† − â). (2.14)

From this, the Hamiltonian can be simplified to

Ĥ = ℏω0

(
â†â+

1

2

)
. (2.15)

Hence the eigenvectors of â†â are also the eigenvectors of Ĥ. One can
show [20] that the spectrum of â†â is the set of natural integers N. We thus
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call |n⟩ (n ∈ N) the eigenvector of â†â with eigenvalue n, i.e. â†â |n⟩ = n |n⟩.
These eigenstates of the Hamiltonian are called Fock states and have an associ-
ated eigenenergy En = ℏω0

(
n+ 1

2

)
.

Interestingly these states are non-classical and are not the ones we generate
by applying a periodic classical drive on the oscillator for example. The ground
state |0⟩ is an exception and a good example of the Heisenberg inequality. While
classically the lowest energy state of the harmonic oscillator has 0 energy and
fixed position and momentum of 0, the quantum ground state has an energy of
1
2
called zero-point energy and a non-zero variance of position and momentum

called zero-point fluctuations:

σ2
X,zpf = ⟨0|X2|0⟩ = ℏ

2mω0

⟨0|(â† + â)2|0⟩ = ℏ
2mω0

(2.16)

σ2
P,zpf = ⟨0|P 2|0⟩ = ℏmω0

2
⟨0|(â† + â)2|0⟩ = ℏmω0

2
. (2.17)

These fluctuations are mimimal in the sense that they saturate the Heisenberg
inequality. Indeed, one can show [20] that [X̂, P̂ ] = iℏ, hence

σXσP ≥ ℏ
2
= σX,zpfσP,zpf . (2.18)

There is actually an entire family of states |α⟩ defined as |α⟩ = eαâ
†−α∗â |0⟩

which have the same property σx = σp =
√

ℏ/2. These states are called coherent
states and they are the quantum equivalent of the classical states with position√

ℏ
mω0

Re(α) and momentum
√
ℏmω0 Im(α).

The value of the fluctuations of these coherent states is called the standard
quantum limit and represents the best achievable uncertainty on a quadrature
(position or momentum) measurement when the system remains in classical-
like state. Despite the very small values, this limit has been reached in a few
systems, most impressively in the measurement of the position of the massive
(40 kg) mirrors at the heart of the LIGO interferometer [21].

2.1.2 Going beyond the standard quantum limit

There are two main ways of reducing the uncertainties below the standard limit:
using a non-classical state where there is an imbalance between the uncertainties
on position and momentum (as the product still needs to obey the Heisenberg
inequality) or measuring a completely different quantity that has a lower uncer-
tainty.

Squeezing

The first technique is generally called squeezing and formally, the squeezed states
of a harmonic oscillator are defined as

|α, r⟩ = D(α)S(r) |0⟩ (2.19)
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with D(α) = eαâ
†−α∗â the displacement operator and S(r) = e

1
2
(r∗â2−râ†2) the

squeezing operator. They have uncertainties σX = σX,zpfe
−r and σP = σP,zpfe

r.

Figure 2.1: A few different quantum harmonic oscillator states represented in
phase space by their Husimi Q function. Top left: Classical state with perfectly
well defined position and momentum. Top right: Coherent state which is the
quantum state most similar to the classical state. Bottom left: Squeezed state
where one of the two quadratures variance is below the vacuum variance at the
cost of increased variance on the other quadrature. Bottom right: Fock state
with perfectly well defined energy but indeterminate phase.

Squeezing is also used in the LIGO experiment [21] to bring an up to 3.5 dB
improvement to the sensitivity and has been demonstrated for many mechanical
and electromagnetic [3, 22–24] oscillators over a wide range of frequencies. The
state of the art for the uncertainty improvement e−r in these various systems
ranges from 2 to around 10.

Non classical measurements

Sometimes position or momentum are not the observable that needs to be mea-
sured but are simply used to calculate it. An example of such a quantity is

the energy E =
〈
Ĥ
〉
. One can compute the energy of a harmonic oscillator by

measuring the position x and momentum p at the same instant and calculating
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E = p2

2m
+ mω0x2

2
. Regardless of the quantum state of the oscillator, the uncer-

tainties on the measurement of position and momentum will combine to give a
non-zero uncertainty on the energy.

Fock states |n⟩ on the other hand are states with a zero variance energy of
E = (n+1/2)ℏω0 meaning that directly measuring their energy always yields the
same measurement result E. Interestingly, using the back-action of an energy
measurement is a common way of preparing Fock states. Indeed, starting from
an arbitrary state, an ideal non-demolition measurement of the energy places the
system in the Fock state with the corresponding energy.

2.2 Quantum electro-dynamics

2.2.1 Historical introduction

In the early 20th century, the description of light changed dramatically with the
introduction of the theory of special relativity by Einstein in 1905 [25] and the
introduction of photons to explain the photo-electric effect also by Einstein in
1905 [26].

Despite both concepts being introduced in the same year by the same man
they seemed almost contradictory at the time. Special relativity is a very elegant
generalization of the four Maxwell equations which describe the dynamics of the
electromagnetic field. These equations are not invariant under Galilean trans-
formation and special relativity solves that issue by postulating that the speed
of light that appears in the equations is the same in all frames. These classical
and relativistic descriptions of electromagnetism use the concepts of fields and
waves: for each point in space, at all times, they define an electric field E and a
magnetic field B. This description is perfectly continuous in time and space.

The photoelectric effect on the other hand was explained by Einstein by con-
sidering the fact that the electromagnetic field energy is not converted continu-
ously to electronic voltage but rather in chunks with a fixed voltage proportional
to the light frequency. This scaling factor between frequency and voltage is
related to the Planck constant h that Planck had to introduce in his 1901 pa-
per [27] to explain the thermal radiation of a black body. The term photon was
introduced later [28] to describe this packet of electromagnetic energy.

During some time these two competing theories which explain different prop-
erties of light: refraction, reflexion and interferences for the Maxwell and rel-
ativistic descriptions and thermal spectrum, photoelectric effect and Compton
scattering for the photon one were coexisting. Unifying those two theories into
one was seen as both a fundamental theoretical issue of the new quantum me-
chanics as well as a practical problem since it was not clear which description
one should use for any given problem. This problem is called the wave-particle
duality and its interpretation is still heavily debated.

A practical solution was however devised to unify the relativistic and quantum
descriptions of light under the name quantum electrodynamics by quantifying the
solutions of Maxwell equations. A first version of the theory was proposed by
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Heisenberg, Born and Jordan in 1926 [29]. This theory neglects all relativistic
effect and only describes free fields: it cannot describe the charges and cur-
rents that would create or absorb the electromagnetic fields. A more complete
non-relativistic theory was proposed by Dirac in 1927 [30] and this description
includes atoms obeying quantum mechanics interacting with the electromagnetic
field. This non-relativistic theory is still in use today and is the one I will de-
scribe hereafter. The full relativistic case was derived quickly after by Jordan
and Pauli in 1928 [31] but its physical interpretation proved to be much harder
requiring a so-called renormalization [32] procedure to avoid diverging results.

2.2.2 Quantifying the free electromagnetic field

Quantifying the free electromagnetic field consists in just a few steps

1. Solving the classical Maxwell equations taking into account the geometry
of the system

2. Choosing a solution basis

3. Writing down the Hamiltonian by considering each element of the solution
basis as a quantum harmonic oscillator.

We’ll consider the example of a rectangular box of dimensions L⃗ = (Lx, Ly, Lz).
After considering the perfect conductor boundary conditions which require the
tangential electric field to vanish on all 6 walls, one can show that the stationary
electric fields which are solutions to Maxwell equations are of the form

Ex = Ex0 cos(kxx) sin(kyy) sin(kzz)e
iωt (2.20)

Ey = Ey0 sin(kxx) cos(kyy) sin(kzz)e
iωt (2.21)

Ez = Ez0 sin(kxx) sin(kyy) cos(kzz)e
iωt (2.22)

with k⃗ = (kx, ky, kz) =
(

πnx

Lx
, πny

Ly
, πnz

Lz

)
and n⃗ = (nx, ny, nz) ∈ N3. n⃗ is the mode

index. After injecting these equations into ∇⃗ · E⃗ = 0, one can find that the field
amplitude E⃗0 = (Ex0, Ey0, Ez0) verifies

E⃗0 · k⃗ = 0 (2.23)

which means that the field is exclusively transverse. One can also obtain the

dispersion relation in a similar fashion using ∇2E⃗ − 1
c2

∂E⃗
∂t

= 0

ωn⃗ = c
∣∣∣⃗kn⃗∣∣∣ (2.24)

which is linear as expected for this problem with no charges or currents.
In this case, the modal decomposition is quite simple and the modes are in-

dexed by the polarization E⃗0 and their wavevector k⃗. Because of the constraints
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on the polarization and the possible normalization of the basis vectors, the solu-
tions can be uniquely identified by the mode index n⃗ and one normalized vector
e⃗ in the plane perpendicular to k⃗: E⃗n⃗,e⃗.

As can be expected, the finite size of the box introduces a minimum reso-

nant frequency called the fundamental frequency ω0 = πc
√

1
L2
x
+ 1

L2
y
(assuming

Lx, Ly ≥ Lz).
Quantifying the electromagnetic field is finally done by writing the total

hamiltonian as a sum of independent quantum harmonic oscillators describing
each mode:

Ĥ =
∑

n⃗∈N3,e⃗∈R2,|e|=1

ℏωn⃗

(
â†n⃗,e⃗ân⃗,e⃗ +

1

2

)
. (2.25)

These creation and annihilation operators â†n⃗,e⃗ and ân⃗,e⃗ obey the same com-

mutation relation as in the harmonic oscillator case [ân⃗,e⃗, â
†
n⃗′,e⃗′ ] = δn⃗,n⃗′δe⃗,e⃗′ and

can be used to define the two dimensionless quadratures of the electromagnetic
field:

În⃗,e⃗ =
ân⃗,e⃗ + â†n⃗,e⃗

2
(2.26)

Q̂n⃗,e⃗ =
ân⃗,e⃗ − â†n⃗,e⃗

2i
. (2.27)

Just like position and momentum in the quantum harmonic oscillator, these
two quadratures are conjugate variables which verify [În⃗,e⃗, Q̂n⃗′,e⃗′ ] =

i
2
δn⃗,n⃗′δe⃗,e⃗′ and

thus satisfy the following Heisenberg inequality

σIσQ ≥ 1

4
. (2.28)

2.2.3 Qubits

While a consistent theory of the quantification of electromagnetic energy in free
space only appeared in the 1920s, we have known about the discrete emission
and absorption spectra of dilute gases for much longer. For example, in 1814,
Fraunhofer systematically studied the absorption lines in the sun spectrum docu-
menting hundreds of them. The origin of these discrete lines was only understood
in 1859 by Kirchoff who noticed that some of those lines matched up with the
emission lines of heated salts thereby suggesting that each element is associated
with a distinct discrete spectrum. A physical understanding of this discrete spec-
trum was not achieved before 1913 when Bohr introduced his somewhat ad-hoc
atomic model which identified these lines as electronic transitions of the atoms
present in the gas.

Finally, a complete quantum theory of the interaction of light and matter was
proposed in 1927 by Dirac and is still used today. To simplify the problem, we
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only consider a single atom and only one its transition, i.e. we model it using a
two-level system (TLS).

Two-level systems

The Hamiltonian of a single, free, two-level systems is entirely determined by the
energy separating its two levels. We usually use |g⟩ and |e⟩ to denote the ground
and excited state of the TLS and write its Hamiltonian as

Ĥ =
ℏωq

2
σ̂z (2.29)

with ωq the energy separation (in units of frequency) and σ̂z =

(
1 0
0 −1

)
in the

basis (|e⟩ , |g⟩).
In general, the state of the TLS can be written

|ψ⟩ = α |g⟩+ β |e⟩ (2.30)

with |α|2 + |β|2 = 1. If we also fix the global phase, we can rewrite the state as

|ψ⟩ = cos θ |g⟩+ eiφ sin θ |e⟩ (2.31)

with θ ∈ [0, π] and φ ∈ [0, 2π].

This enables us to represent any TLS state as a point on a sphere with angular
coordinates (θ, φ). This sphere is called the Bloch sphere and a few examples
are represented in Fig. 2.2.

Figure 2.2: Bloch sphere representation of the qubit states |g⟩, |e⟩ and |ψ⟩ =
cos θ |g⟩+ eiφ sin θ |e⟩.
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Coupling TLSs with quantum light

While historically, some semi-classical models where only the atom is quantified
and the light is classical were first devised, we will here consider the coupling
between a single quantum TLS and a single mode of light modeled by a harmonic
oscillator using the model [33] introduced by Jaynes and Cummings in 1963.

We choose to decompose the Hamiltonian into three parts

Ĥ = Ĥatom + Ĥlight + Ĥinteraction (2.32)

where Ĥatom = ℏωq

2
σ̂z is the simplified atomic Hamiltonian, Ĥlight = ℏωcâ

†â is

the single-mode light Hamiltonian and Ĥinteraction is the interaction Hamiltonian
which we will derive using the correspondence principle.

Classically, to first order, the atom can be modeled as an electric dipole
with dipolar moment D⃗. This dipole interacts with the electric field E⃗ with an
interaction energy −D⃗ · E⃗. If we neglect spatial variations (by considering a 0D
problem), the electric field is proportional to the electromagnetic field quadrature
â† + â and the atomic dipolar moment is proportional to σ̂+ + σ̂− by analogy.
Indeed, σ̂+ = |e⟩⟨g| is the raising operator which is can be seen as the truncated
version of an annihilation operator b̂† and σ̂− = |g⟩⟨e| is the lowering operator
which is a truncated version of b̂. In the end, we find that this interaction term
can be written as

Ĥinteraction = ℏg(â† + â)(σ̂+ + σ̂−), (2.33)

where g is the coupling rate. For a physical atom, this coupling rate depends
on the details of the atomic transition as well as the polarization matching be-
tween the light mode and the atomic transition. Here we will always assume
g ≪ ωq, ωc because this is the simpler and more experimentally relevant regime.
The other regime is called the ultrastrong coupling regime and is qualitatively
quite different. To simplify this term a little, we apply the rotating wave approx-
imation (RWA) to the first order to remove the terms which are never resonant.
These terms correspond to the rare cases where there is the spontaneous cre-
ation or annihilation of a photon - atomic excitation pair because of the vacuum
fluctuations. After this RWA, we thus have

ĤRWA
interaction = ℏg(â†σ̂− + âσ̂+). (2.34)

Even simplified, this Hamiltonian is already quite rich and complex but we
can study it in a couple regions of the parameter space.

Dispersive regime The first relevant regime is the dispersive regime where
∆ = |ωc − ωq| ≫ g. This is the regime usually found in circuit quantum electro-
dynamics (cQED) where a qubit is coupled to a largely detuned resonator. In
this regime, the two dressed modes are only slightly different from the bare light
and qubit modes and the main effect is that the presence of excitations in one of
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the two modes shifts the frequency of the other. In this regime, the Hamiltonian
can be rewritten as [34]

Ĥ =
ℏωq

2
σ̂z + ℏωcâ

†â− ℏχ
2
â†âσz (2.35)

where χ = g2

∆
is called the dispersive shift. We can interpret this coupling term

as the fact that the frequency of the light mode shifts by χ when the qubit goes
from the ground state to the excited state (which is a property used to readout
the state of the qubit) or equivalently as the qubit frequency decreasing by an
amount χ for each photon present in the light mode. Since the eigenmodes of
the system are close to the bare eigenstates of the two isolated subsystems, the
eigenbasis can be approximated by (|g, n⟩ , |e, n⟩)n∈N with |σ, n⟩ = |σ⟩ ⊗ |n⟩ and
σ = ±1 corresponding to |g⟩ and |e⟩. The associated eigenenergy of these states
is Eσ,n = ℏωq

2
σ + ℏωcn− ℏχ

2
nσ.

Resonant (Rabi) regime The second interesting regime is when the two
modes are perfectly in resonance, i.e. ∆ = 0. In this case, the two dressed eigen-
modes of the system are very different from the bare eigenmodes and the excita-
tions of these modes are sometimes referred to as ”phobits” and ”qutons” [35].
If an excitation is initially present in one of the two subsystems, the excitation
will oscillate between the two subsystems such that if the qubit is measured, its
excited population will oscillate between 0 and 1 with a frequency g: this is a
quantum version of the famous (semi-classical) Rabi oscillations. The main dif-
ference between the two models is that in the typical semi-classical model used to
describe Rabi oscillations (the Bloch equations), the back-action of the qubit on
the electromagnetic field is neglected because the light is assumed to be lost after
interacting with the qubit whereas in the Jaynes-Cummings model the system is
assumed to be perfectly closed. One can recover the semi-classical picture from
the Jaynes-Cummings model by using a Lindlbad master and including a large
photon loss rate as well as a constant drive resonant with the cavity frequency.

2.2.4 Gaussian states

Definition

Gaussian states are a set of states of particular interest for any single or multi-
mode bosonic system (i.e. any system described by a set of creation and annihi-
lation operators {â†i , âi}i≤N that verify the commutation relation [âi, â

†
j] = δi,j).

Gaussian states are defined as the states whose Wigner representation is gaus-
sian.

In this section, we will briefly review a few mathematical results on these
states which will be useful in the following section without going too deeply into
the mathematical proofs. The main reference for this part is [36] which is a well
written and comprehensive review of the mathematical properties of these states
as well as their uses in quantum information.
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To start off, let’s consider any, possibly mixed, state represented by its den-
sity matrix ρ̂ =

∑
i pi |i⟩⟨i| with Tr ρ̂ =

∑
i pi = 1. We can define a generalized

quadrature vector ⃗̂x = (Î1, Q̂1, Î2, Q̂2, ..., Q̂N)
T and rewrite the commutation re-

lation on the quadratures in matrix form as

[x̂i, x̂j] =
iΩij

2
(2.36)

with Ω the symplectic form defined as

Ω =
N⊕
i=1

ω =
N⊕
i=1

(
0 1
−1 0

)
. (2.37)

We can finally define the Wigner function of this state as a function R2N → R
by

W (x⃗) =
1

π2N

∫
R2N

d2N ξ⃗ exp
(
−ix⃗TΩξ⃗

)
Tr

(
ρ exp

(
ix⃗TΩξ⃗

))
. (2.38)

This Wigner function is said to be gaussian if, and only if, there exist a vector
¯⃗x ∈ R2N and a symmetric matrix V ∈ S2N(R) such that

W (x⃗) =
2N

πN
√
detV

exp

(
−1

2
(x⃗− ¯⃗x)TV −1(x⃗− ¯⃗x)

)
. (2.39)

If that is the case, then ¯⃗x is the expectation value of the generalized quadra-

ture vector ¯⃗x = Tr
(
ρ⃗̂x

)
and V is the covariance matrix of the state

Vij =
1

2
⟨x̂ix̂j + x̂jx̂i⟩ − ⟨x̂i⟩ ⟨x̂j⟩ (2.40)

and the state ρ is completely characterized by these two quantities ¯⃗x and V .

Coherent states

Let us now consider a few examples of commonly used single mode gaussian states
starting with coherent states. The most elementary coherent state is the vacuum
|0⟩ which is the ground state in the quantum harmonic oscillator example. It
is characterized by a zero mean vector ¯⃗x = (0, 0)T and the diagonal covariance
matrix V = 1

4
I2 with I2 the 2× 2 identity matrix .

All the other coherent states α have the same covariance matrix V as the
vacuum but they have a non-zero mean vector ¯⃗x = (Re{α}, Im{α}). Coherent
states have thus fluctuations exactly equal to the vacuum: the standard quantum
limit.

They can be generated from the vacuum using the displacement operator
D̂(α) = eαâ

†−α∗â

D̂(α) |0⟩ = |α⟩ . (2.41)

They are also the eigenstates of the annihilation operator â
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â |α⟩ = α |α⟩ . (2.42)

Thermal states

Thermal states are the states which maximize the Von-Neumann entropy S(ρ̂) =
−Tr(ρ̂ ln ρ̂) for a given average number of photons Tr

(
ρ̂â†â

)
= n̄. Their mean

is ¯⃗x = 0⃗ and their covariance is V = 2n̄+1
4
I2. As expected the photon number

distribution follows a Boltzmann law and in the photon-number basis we can
write the state as

ρ̂th(n̄) =
∑
n∈N

n̄n

(n̄+ 1)n+1
|n⟩⟨n| . (2.43)

Single mode squeezed states

While coherent and thermal states are classical-like in their nature, squeezed
states are not. These states are obtained from the vacuum by applying the
squeezing operator Ŝ defined by

Ŝ(r) = er(â
2−â†2) (2.44)

onto the vacuum (or any other coherent state) where r is called the squeezing
parameter. This operator transforms the generalized according to

⃗̂x 7→
(
e−r 0
0 er

)
⃗̂x (2.45)

which in turn gives the states a covariance matrix

V =
1

4

(
e−2r 0
0 e2r

)
. (2.46)

All squeezed states saturate the Heisenberg inequality σIσQ ≥ 1/4 but in-
stead of spreading the uncertainty equally onto the two quadratures like coherent
states, they squeeze the uncertainty on one of the two quadratures below the vac-
uum at the cost of needing to anti-squeeze the uncertainty on the other. These
states are thus key to many measurements that aim to beat the standard quan-
tum limit [3].

Note that we have defined squeezing as happening on the Î quadrature but
this choice is arbitrary and we can add a pair of conjugate phase rotations before
and after to squeeze on any axis. A phase rotation consists in applying the
unitary R(θ) = e−iθâ†â which is equivalent to applying a rotation matrix of angle

θ on the mean vector ⃗̂x.
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General one-mode gaussian state

In general, any one-mode gaussian state can be seen as a displaced squeezed
thermal state [36], i.e. for any single mode gaussian state ρ̂, there exist α ∈
C, θ, φ ∈ [0, 2π], r ∈ R, n̄ ∈ R+ such that

ρ̂ = D̂(α)R̂(θ)Ŝ(r)R̂(φ)ρ̂th(n̄). (2.47)

Two-mode squeezing

Systematically exploring all the two-mode gaussian states is much more difficult
than just the single-mode states but one set of states is of particular interest:
two-modes squeezed states. Assuming that the annihilation operators of the two
considered modes are â and b̂, then the two-mode squeezing operator is defined
in a similar fashion to the single mode squeezing one by

Ŝ2(r) = er(âb̂−â†b̂†). (2.48)

This is equivalent to applying the following symplectic map on the generalized
coordinate vector:

ˆ⃗x 7→


cosh r 0 sinh r 0

0 cosh r 0 − sinh r
sinh r 0 cosh r 0
0 − sinh r 0 cosh r

 ˆ⃗x. (2.49)

If we apply this operator on the vacuum we obtain a two-mode squeezed
vacuum state (TMSV) also called EPR state with 0 mean and covariance

V =
1

4


c 0 s 0
0 c 0 −s
s 0 c 0
0 −s 0 c

 (2.50)

with c = cosh 2r and s =
√
c2 − 1 = sinh 2r. The presence of nonzero off-

diagonal elements in the covariance matrix imply the presence of correlations
between the two modes. In fact, the two-modes are actually entangled and the
correlations between their quadratures can be seen by looking at the variance of

Î− = Îa−Îb√
2

and Q̂+ = Q̂a+Q̂b√
2

. For Î−, we have

V (Î−) =
V (Îa) + V (Îb)− 2Cov(Îa, Îb)

2
=
c+ c− 2s

8
=
e−2r

4
(2.51)

and with the same reasoning, V (Q̂+) = V (Î−) = e−2r

4
which means that these

correlations are stronger than the vacuum fluctuations which imply entangle-
ment. Interestingly, tracing out one of the two modes of a TMSV, one finds
a simple thermal state with photon number n̄ = sinh2 r = c−1

2
such that its

covariance matrix is

(
c 0
0 c

)
.



Chapter 3

Superconducting circuits

3.1 Introduction

Observing the predictions of quantum electro-dynamics down to the single atom
and single photon level was long thought to be impossible: as late as 1952, the
father of quantum mechanics, Erwin Schrödinger was confidently claiming [37]
that ”We never experiment with just one electron or atom or (small) molecule.
In thought-experiments we sometimes assume that we do; this invariably entails
ridiculous consequences”. Today, experiments observing such ridiculous conse-
quences using single atoms, electrons or even photons are performed daily all
across the world.

Progress actually started soon after Schrödinger’s pessimistic statement with
the invention of quadrupolar ion traps (Penning and Paul traps) by Dehmelt [38]
and Paul [39] respectively. Those two traps are very similar. They both use a
quadrupolar electric field but they differ in the method used to obtain confine-
ment on the third axis: the Penning trap uses a static magnetic field while the
Paul traps uses an RF electric field.

These traps allowed scientists to manipulate single ions instead of the macro-
scopically large ensemble of atoms contained in low-pressure glass vials. For
these discoveries, Dehmelt and Paul shared half of the 1989 Nobel prize. Pre-
cise quantum control using lasers of these trapped ions was achieved after a few
decades of work by one of Dehmelt’s student: David Wineland [40]. At the same
time, Serge Haroche’s team in France was studying the decoherence of photons
trapped in a very high finesse microwave cavity using streams of cooled atoms
placed in a highly excited state called Rydberg state. These states are character-
ized by their very large dipole moment, enabling very large interaction strength
between atoms and photons. This interaction is so large that the interaction
of a single photon with a single atom was measured [41, 42], finally enabling
the experimental verification of QED. Since Haroche used a cavity to enhance
the light-matter coupling (essentially by allowing the photon to interact multiple
times with the atom before being lost), this field of study is commonly referred
as cavity QED. Wineland and Haroche shared the 2012 Nobel prize for their
progress in the field of QED.

31
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The other key element in circuit QED is superconductivity. Superconduc-
tivity was discovered in 1911 by Onnes [43] soon after he invented the first
refrigerator able to liquefy helium and cool down metals to very low tempera-
tures (around 4K). When he measured the resistivity of mercury as a function
of temperature, he expected a smooth variation as a function of temperature.
This is what he observed at first: from 300K down to around 4K, the resistivity
smoothly decreases. This was already an interesting discovery since some like
Lord Kelvin thought that the charge carriers would ”freeze” at low temperature
which would have resulted in a sharp resistivity increase close to some very small
finite critical temperature. Even more surprsingly, below that temperature, the
resistivity goes down to essentially zero extremely quickly. However, supercon-
ductivity is not only characterized by this drastic resistivity drop but also by
the repulsion of all magnetic fields inside the bulk of the superconductor. This
effect was discovered in 1933 by Meissner [44] and soon after a classical and
phenomenological set of equations was devised by London [45] to explain this ef-
fect. A more refined theory was then introduced by Ginzburg in 1950 [46] using
Landau’s work on second order phase transitions and adding an ad-hoc complex
order parameter to describe the system state. Finally, in 1957, Bardeen, Cooper
and Schrieffer introduced the first microscopic explanation of superconductivity
which gives a strong theoretical basis to the Ginzburg-Landau equations that it
also predicts [47].

The BCS theory gave a new meaning to the complex order parameter intro-
duced by Ginzburg: it can be seen as a macroscopic wave function emerging from
the collective behavior of a very large amount of pairs of electrons called Cooper
pairs which obey a bosonic statistic. This macroscopic state actually corresponds
to a coherent state of many indistinguishable Cooper pairs. While the BCS the-
ory was immediately successful from a mathematical standpoint, it was not clear
at the time whether this macroscopic wavefunction would exhibit the expected
same quantum mechanical effects as a single atom. Indeed, how could such large
numbers of interacting electrons embedded in an impure polycrystalline lattice
could behave as a single atom isolated in vacuum? A key element that was used
to design experiments to verify this BCS prediction was discovered by Josephson
during his PhD in 1962 [48]: the Josephson effect. Josephson predicted using
the BCS theory that a tunnel junction (i.e. a thin insulating layer) between two
superconductors would exhibit an exotic current-phase relation:

I = Ic sin(ϕ) (3.1)

with Ic a critical current that depends on the superconductors and insulating
barrier characteristics and ϕ the phase difference between the macroscopic wave
functions of the two superconductors. If the phase was indeed incoherent, the
current would be zero and the effect invisible but one year later, Anderson and
Rowell [49] observed the effect as predicted.

Later experiments also observed some of the predictions of the BCS and
Josephson theories using superconducting quantum interference devices (SQUIDs)
and junctions biased with an AC voltage. However, none of those experiments
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proved the quantum nature of the macroscopic wavefunction which behaves clas-
sically (like a magnetization for example) in all of these experiments due to
decoherence. A true proof of the quantum nature of this order parameter re-
quired the a demonstration of quantum superposition which requires a lot of
care in avoiding interaction with the decoherence-inducing environment [50].

In 1985, Martinis, Devoret and Clarke first demonstrated the existence of
discrete energy levels in a Josephson junction [51]. However, achieving a coherent
control over this discrete quantum degree of freedom proved quite difficult and
was achieved more than fourteen year later by Nakamura in 1999 [10].

At this point, the field of cavity QED was already starting to develop and
over time a lot of the results were reproduced using superconducting circuits and
Josephson junctions instead of Fabry-Pérot cavities and atoms. While the physics
used to explain both types of experiments is exactly the same, the circuit QED
experiments typically feature much larger light-matter coupling at the expense
of lower coherence times which enable different experiments for the two types of
systems.

We will now review a few useful tools that most current circuit QED experi-
ments use.

3.2 Resonators

The first tool in the cQED quantum engineer toolbox is the electromagnetic
resonator. The resonators used in cQED are typically in the 2–12 GHz range.
This frequency range is chosen for multiple reasons: the temperatures achieved by
the dilution refrigerators used to cool down those circuits is around 10mK which
sets a lower bound on the mode frequencies which require low thermal occupation
at equilibrium and the upper range is bounded by the superconducting gap of
the superconductors used. The superconducting gap of aluminum is 40GHz
but even at much lower frequencies, quasiparticles can be created by multi-
photon processes so a large difference should be kept between the maximum
frequency used and the superconducting gap of the weakest superconductor.
This frequency band also has the added advantage of benefiting from decades
of research into radar and telecommunications which make a lot of affordable
components available to buy such as splitters, mixers, amplifiers, coaxial cables,
waveguides, ...

At these frequencies, distributed resonators relying on finite lengths of trans-
mission lines are the most common. There are two kinds of designs for these
distributed microwave resonators.

3D resonators can be made from a rectangular metallic box (see Section 2.2.2),
i.e. a section of rectangular waveguide shorted at both ends, a section of coaxial
cable shorted at one end and open at the other sometimes called post resonators,
...

2D resonators can be fabricated by etching a thin superconducting film on
top of a a low loss insulating substrate (typically silicon, sapphire or quartz).
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The resonators can be made by combining lumped elements such as inductors
and capacitors, or, more commonly at these frequencies, by considering a finite
length of transmission line as a resonator. There is a wide array of transmission
line geometries available but the most commonly used is the coplanar waveguide
(CPW) which has its name suggest only requires one layer: a central conductor
is spaced out from the ground plane on both sides by a gap etched in the su-
perconductor. Just like a coaxial cable, the characteristic impedance of this line
can be controlled by adjusting the widths of the central conductor and gap.

A section of transmission line open or shorted at both ends has a fundamental
mode with a wavelength λ equal to twice the length of the section. Indeed, these
boundary conditions impose either the current or the electric field to be 0 at
both ends so a sinusoidal or cosinusoidal excitation with spatial frequency equal
to twice the length can always satisfy these conditions. These resonators are thus
called λ/2 resonators. If one end of the section is open and the other is shorted,
the resonator length is equal to a quarter of the wavelength.

The dielectric used in 3D resonators is most commonly vacuum which makes
the resonators rather bulky: a 2–12 GHz range roughly translates into a 2–10 cm
range. This size has some advantages in terms of losses because of the reduced
peak electric fields and the quality factors of such resonators is unrivaled at these
frequencies as they can reach upwards of 1010 in the single photon regime [52].
The highest quality factor resonators are made using superconducting metals
such as aluminum or niobium.

2D resonators are placed on substrates with much higher dielectric constants
and the transmission lines used typically have a much smaller cross section (a
few 10s of microns) which make them much more compact for a given frequency.
Since they are etched on a small chip, the can easily be connected to Josephson
junctions fabricated on the same chip which make them convenient for building
elaborate circuits.The higher peak electric fields of these resonators also increases
the maximum achievable coupling with the artificial superconducting atoms (al-
though very large couplings are still achievable with a 3D geometry). Quality
factors up to 7 · 106 [53] have been achieved and some of the most often used su-
perconductors are aluminum, niobium, tantalum and NbTiN. These resonators
are the ones used in all of the work presented in this thesis and the chosen
superconductor is niobium .

3.3 Josephson junction and transmon qubits

There exist a large variety of superconducting circuits utilizing one or more
Josephson junctions to implement a quantum system with discrete, non-degenerate
energy splitting in the GHz range. One of the most conceptually simple and most
commonly used is the transmon circuit [54] which can be analyzed as a weakly
anharmonic oscillator: the quantum equivalent of a Duffing oscillator.

The transmon qubit is simply a Josephson junction placed in parallel with
a large capacitor. The Hamiltonian of the circuit is the sum of the Josephson
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energy and the capacitive energy stored in the resonator

Ĥ = 4Ecn̂
2 − EJ cos φ̂ (3.2)

with n̂ the number of charges stored in the resonator, EC = e2

2C
the single charge

capacitive energy, EJ = Φ0Ic
2π

(Φ0 = h
2e

is the flux quantum). To be in the
transmon regime, we need to have EJ/Ec ≳ 40.

At first order in the phase difference φ, we can replace the cos φ̂ by 1−φ̂2 in the
Hamiltonian and we then recognize the Hamiltonian of an harmonic oscillator
where position and momentum have been replaced by normalized charge and
phase.

When we continue the expansion, we find the quantum version of a pendulum
(the Hamiltonians are formally identical) where oscillations with larger ampli-
tudes have a lower frequency. For the transmon, if we denote by En the energy of
nth energy level, then the anharmonicity α is defined as α = (E2−E1)−(E1−E0).
At first order, we have α = −EC . Given the two constraints of wanting the first
transition E1 −E0 to be in the 4-8 GHz range for compatibility with commonly
used control electronics and EJ/Ec ≳ 40 for resilience against charge noise, α/h
is typically in the 80-250 MHz range. To be used as a qubit, this anharmonicity
needs to be larger than the decoherence rate Γ2/(2π) which is the the case since
Γ2/(2π) is typically in the 1-100 kHz range. This separation allows the first two
levels to be resolved spectroscopically and the corresponding two-level system
to coherently manipulated in a time of order h/α [55]. Since we will focus al-
most exclusively on the first two levels and are able to cooldown the qubit to its
ground state by lowering the temperature of the sample to around 10mK, we
can simply truncate the Hamiltonian and rewrite the Hamiltonian as the atomic
Hamiltonian

Ĥ =
ℏω0

2
σz. (3.3)

Coupling these artificial atoms to the superconducting resonators is quite
straightforward using capacitors or inductors and almost always lead to the trans-
verse coupling described in Section 2.2.3.

EJ EC EJ EC

Figure 3.1: Electric schematic of a transmon qubit (left) compared to a linear
resonator with identical fundamental frequency (right)
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3.4 Quantum limited amplifiers

The final kind of elementary circuit solves a practical problem: how can we detect
the weak signals emitted by these superconducting circuits? The signals we are
dealing with are typically much weaker than the thermal (Johnson-Nyquist noise)
at room temperature thus cryogenic detectors or amplification is required to raise
the signal above the room-temperature noise floor.

The first kind of amplifiers used were transistor-based amplifiers using high-
electron mobility transistors (HEMT). Nowadays, these amplifiers show excellent
performance with an added noise temperature of around 1K [56] as well as
excellent gain and bandwidth: typically 35 dB over 3 octaves (4-12 GHz). Their
main drawback for use at the lowest temperatures is the large thermal dissipation
of order 1-10 mW. Since the cooling power of the dilution refrigerators used
to cool down superconducting circuits is of order 10µW at 20mK, the HEMT
amplifiers need to be placed at a warmer stage: typically on the 4K stage which
limits the ultimate noise performance. Thus, a new kind of pre-amplifiers with
minimal added noise needed to be designed to maximize the signal to noise
ratio at the input of the HEMT amplifiers while operating within an extremely
limited thermal budget. Just like measurement devices, quantum mechanics
places bounds on the noise performance of amplifiers. Amplifiers approaching
these bounds are referred to as quantum-limited amplifiers. In the following
paragraphs, we will derive these bounds with minimal calculations by relying on
the bosonic nature of the electromagnetic field.

Quantum theory of amplifiers

Let us try to imagine what a perfect noiseless amplifier would do. In the
Heisenberg picture, it would take an electromagnetic field described by a pair
of time varying operators (â, â†) as an input and output an amplified signal
(
√
Gâ,

√
Gâ†). This linear amplification would preserve the signal integrity by

amplifying the two quadratures identically but this operation is unfortunately
not allowed by quantum mechanics because this output amplified field wouldn’t
verify the bosonic commutation relations. Indeed[√

Gâ,
√
Gâ†

]
= G

[
â, â†

]
= G (3.4)

which is not 1 except for the trivial G = 1 case corresponding to doing nothing.
There are two ways of solving this issue: compromising on signal integrity by
amplifying only one of the two quadratures (phase-sensitive amplification) or
adding an extra mode to satisfy the commutation relations.

The phase-sensitive case corresponds to amplifying the Î = â+â†

2
quadrature

by
√
G as before but deamplifying the other quadrature Q̂ by 1√

G
. In that

case the commutation relation is verified for all values of gain G but only one
quadrature can be effecienly measured and this kind of amplification requires the
phase between the signal and amplifier to be precisely controlled over time to
make sure that it is the correct quadrature which is amplified at all times. This
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kind of amplification does not add any noise onto the amplified signal quadrature
meaning that contrary to all classical and phase-insensitive amplifiers, it does not
necessarily degrade the initial signal-to-noise: the signal and noise can both get
amplified by the same amount.

Phase-insensitive amplification requires the contribution of another distinct
electromagnetic mode called idler b̂. The amplifier operates on the two modes at
the same time according to the following unitary operation

â 7→
√
Gâ+

√
G− 1b̂† (3.5)

b̂ 7→
√
Gb̂+

√
G− 1â†. (3.6)

Here, we can recognize the transformation corresponding to a two-mode
squeezing operation Ŝ2(r) with a squeezing parameter r = arcosh

√
G as pre-

viously described in Section 2.2.4. In practice, this kind of unitary evolution can
be achieved by engineering a Hamiltonian of the form

ĤTMS ∝ âb̂+ â†b̂†. (3.7)

Assuming that the â mode starts in a coherent state of amplitude α and b̂ in
a vacuum state, then, using the results from Section 2.2.4, we can see that the
output state â has a mean

√
Gα as desired but the variance of its two quadratures

is now 2G−1
4

which means that in the large gain limit G≫ 1, the variance of each
quadrature is almost doubled compared to the absolute minimum G

4
, i.e., the

signal to noise ratio is divided by two. This additional noise comes entirely from
the vacuum fluctuations of the idler mode b̂ and constitutes a fundamental limit
on noise performance of linear amplifiers as those same vacuum fluctuations are
required to satisfy the bosonic commutation relation.

When considering finite temperatures for the idler and signal modes, one can
easily see that both will affect the amplified signal noise so designing and using
this kind of amplifier requires cooling both signal and idler modes.

Interestingly, phase-sensitive amplification can be seen as a special case of
phase-insensitive amplification where b̂ = â. In that case, from Eq. (3.5) and
Section 2.2.4, one can recognize a single-mode squeezing operation Ŝ(r) with a
squeezing parameter r = arcosh

√
G. A coherent state α gets squeezed as shown

on Section 3.4.
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Figure 3.2: Husimi phase-space representations Q(X + iP ) of various states.
Top-left: coherent spate before amplification. Top-right: Coherent state after
an unphysical noiseless amplification of the coherent state with a gain G = 25.
This representation is only a guide to compare the two other amplifier types.
Bottom right: Coherent state amplified by an ideal phase-insensitive amplifier
with identical gain G = 25. The added noise compared to the previous case
is visible. Bottom-right: Coherent state amplified by an ideal phase-sensitive
amplifier with a gain of G = 25 and the phase set to 45◦ in order maximize the
signal.
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Quantum node

4.1 Concept

The quantum node is the name given to the circuit used in all three main exper-
iments presented in this thesis. It is centered around a resonator called memory.
On one side, this memory is coupled to another resonator called buffer which is
highly coupled to a transmission line. The memory has a comparatively high-Q
factor giving it a decay time around 4 µs which makes it possible to use it to store
and retrieve quantum states without much decoherence. This coupling is realized
with a non-linear parametric coupler Josephson ring modulator (JRM)[57]. This
has the advantage of making the coupling between the two modes tunable at the
ns scale with microwave pumps. On the other side, the memory is also coupled
to a transmon qubit which also has its own readout resonator. A schematic of
this circuit is shown in Section 4.3.

This concept that was first developed in the group by Emmanuel Flurin [58] is
that the memory can exchange quantum information with the transmission line
with the help of the buffer resonator. The JRM enables the quantum information
stored inside the memory to be protected against decoherence when not in use.
Adding a qubit enables arbitrary preparation and tomography of states in the
memory. In the experiments presented here, it is mainly used to measure the
number of photons in the memory in various ways or to realize full Wigner
tomographies but it could also be used to manipulate the state of the memory
using a combination of gates and measurements.

4.2 System dynamic

Formally the quantum node can also be seen as an asymmetric Josephson Para-
metric Converter (JPC) [57] where one of the two modes is coupled to a qubit/readout
resonator system. Deriving the Hamiltonian of the JPC is not trivial but a de-
tailed derivation has already been shown in [59]. Let us define the buffer, memory
and readout modes annihilation operators as b̂, m̂ and r̂. The qubit is represented
by the usual Pauli operator σ̂z. If we assume that the JPC is biased at the three

39
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wave mixing point, we can write the full system Hamiltonian as

Ĥ = ℏωmm̂
†m̂+ ℏωbb̂

†b̂+
ℏω̂q

2
σz + ℏωrr̂

†r̂ − ℏχrr̂
†r̂ |e⟩⟨e|

− ℏχm̂†m̂ |e⟩⟨e|+ ℏgamp(m̂b̂+ m̂†b̂†) + ℏgswap(m̂b̂† + m̂†b̂)
(4.1)

where ωb, ωm, ωr, ωq are the eigenfrequencies of the buffer, memory, readout and
qubit modes, χ and χr are the qubit dispersive shifts with respect to the memory
and readout resonators respectively, gamp and gswap are the parametric coupling
that can be tuned in-situ since they are proportional to the amplitude of the RF
pumps at frequencies ωb + ωm and ωb − ωm respectively.

The term gamp(m̂b̂+ m̂†b̂†) is a two-mode squeezing term. It creates correla-
tions between the buffer and memory modes by adding or subtracting correlated
excitations in both modes. When of the two modes is initially in a coherent state
and the other is in its vacuum state, this can be seen as an amplification since
the amplitude of this coherent state increases over time at the cost of additional
noise compared to a pure coherent state. When both states are initially vacuum
states, this term produces the continuous version of photon pairs and the result-
ing states are called EPR or two-mode squeezed vacuum states (TMSV) [36].

The other non linear term gswap(m̂b̂
†+m̂†b̂) is a frequency conversion term that

induces oscillations between the populations of the buffer and memory modes.
This conversion is in principle noiseless and perfectly preserves the state. One
interesting note is that this term does not conserve the total energy but instead
preserves the total number of excitations in the two modes, i.e. it commutes
with m̂†m̂ + b̂†b̂. This is particularly interesting in our device since the buffer
and memory modes are very different in terms of frequency and coupling rate to
the environment. This quickly tunable term can be used to shape the emission
of the memory mode into the transmission line [58] via the buffer as was first
demonstrated in [60].

Unfortunately, a purely Hamiltonian description of the system is insufficient
to explain its rich physics due to presence of decoherence and relaxation coming
from the open nature of the system, especially in the case of the buffer. We
thus have to resort to a Lindblad master equation description [34]. To do so,
we simply need to add some jump operators to describe the decoherence. For
the three harmonic modes buffer, memory and readout, we use a pair of jump
operators representing the thermalization of the modes with the external bath.
These modes have relaxation rates κb, κm and κr and the baths they relax towards
have an average number of photons nb

th, n
m
th and nr

th. The jump operators can
thus be thus as

L̂↑
i =

√
κini

thî
† (4.2)

L̂↓
i =

√
κi(1 + ni

th)̂i (4.3)
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with i ∈ {b,m, r}. The qubit decoherence is characterized by a relaxation rate
Γ1 and a pure dephasing rate Γϕ as well as the average number of photons in the
bath nq

th. The relaxation jumps are analogous to the harmonic mode relaxation
operators with the creation and annihilation operators î† and î replaced by σ+
and σ−. On the other hand, the dephasing jump operator L̂ϕ

q is proportional to
σ̂z:

L̂↑
q =

√
Γ1n

q
thσ̂+ (4.4)

L̂↓
q =

√
Γ1(1 + nq

th)σ̂− (4.5)

L̂ϕ
q =

√
Γϕ

2
σ̂z. (4.6)

Finally, the dynamics of the system density matrix ρ is given by the Lindblad
master equation

dρ

dt
= − i

ℏ
[Ĥ, ρ] +

∑
i,σ

(
L̂σ
i ρL̂

σ†
i − 1

2
ρL̂σ†

i L̂
σ
i −

1

2
L̂σ†
i L̂

σ
i ρ

)
. (4.7)

4.3 Realization

The sample realizing the Hamiltonian and Lindbladin discussed above was de-
signed and fabricated by Théau Peronnin [61] during his PhD work [61] and is
shown in Section 4.3. It is entirely realized with 2D structures etched on a thin
niobium layer that was sputtered onto a low conductivity, undoped, intrinsic sil-
icon substrate. The four Josephson junctions of the JRM and the single junction
of the transmon qubit are fabricated using the Dolan bridge method [62] and are
made of two aluminum layers separated by a thin aluminum oxide layer.

The buffer and memory resonators are realized as λ/2 coplanar waveguide
resonators which are intersected in their center by the JRM. Since the JRM is a
current-sensitive device and the center of the two λ/2 resonators is the current
anti-node (and the voltage node), the coupling is maximized. To increase the
coupling even further, the characteristic impedance of the buffer resonator was
chosen to be Zb = 25Ω [63] which is close to the minimum impedance easily
reached with a coplanar waveguide (CPW) transmission line. The width of the
central conductor is 220µm while the gap between the central conductor and the
ground plane is only 10µm. Indeed, the coupling scales as

√
Zb [59] which means

this design choice leads to a
√
2 coupling improvement compared to a standard

50Ω transmission line.
The JRM design is heavily inspired by previous realizations in the group[59]

it consists of four junctions arranged in a a ring shunted together with four
additional inductors as shown in Section 4.3.

This structure defines four loops that can be biased in flux. We chose to
use an external bias coil and an identical loop area in order to apply the same
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Memory

Buffer

Qubit
Readout

a b
Figure 4.1: a. Schematic of the quantum node. The long lines represent coplanar
waveguides which are used to form the three harmonic resonators: buffer, mem-
ory and readout. The qubit is a transmon design consisting of a single Josephson
junction shunted by a large coplanar capacitor. b. Picture of the sample. The
pink hue is due to the microscope and stitching used to generate the image. The
sample looks dark grey to the eye. The top inset shows a zoomed-in optical
picture of the JRM and the bottom inset shows a zoomed-in optical picture of
the the thin wire interrupted by a Josephson junction that shunts the two islands
of the capacitor to form the transmon.

flux bias in each of the four loops. In all the experiments presented here, we are
operate very close to the Kerr-free point [59] where the Hamiltonian is given by
Eq. (4.1). Interestingly, this flux bias point is the only flux point where all self
and cross-Kerr nonlinearities1 cancel out which enable us to consider the buffer
and memory modes as harmonic oscillators.

The buffer is coupled with a large coplanar capacitor to a transmission line
leaving the sample. This line is used to drive and measure the buffer as well as
to inject the two parametric pumps used to tune the Hamiltonian. The resulting
coupling results in a dissipation rate of κb/(2π) = 20MHz for a center frequency
of ωb/(2π) = 10.20GHz.

The memory on the other hand is only very weakly coupled to a transmission
line used to drive it with coherent drives. The coupling was chosen to be much
lower than the intrinsic loss rate. The characteristic relaxation time of the mem-
ory is not quite at the state of the art but it still reaches Tmem

1 = 1/κm = 4.1 µs.
A rather low frequency of ωm/(2π) ≈ 3.75GHz was chosen to limit intrinsic losses
that scale up with frequency (such as parasitic two level systems and dielectric
losses [64]) as well as to limit the frequency crowding unavoidable with a large

1terms such as (m̂†m̂)2 or (m̂†m̂)(b̂†b̂)
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Figure 4.2: Josephson ring modulator. a) Schematic of the ring in the quantum
node with the connections to the four half-resonators. b) Picture of a practical
realization of the device in another, nominally identical, version of the quantum
node

non-linear multi-mode system.

The qubit is a simple transmon design with a center frequency of ωq/(2π) ≈
4.45GHz (the frequency drifted down by a few MHz over the last four years
of multiple thermal cycles). It features a relaxation time T1 = 1/Γ1 = 6.7 µs
and a transverse relaxation time T2 = ( 2

Γ1
+ 1

Γϕ
)−1 = 13 µs. It is quite strongly

coupled to the memory in the sense that the measured dispersive shift between
memory and qubit χ/(2π) = 2.05 − 4.75MHz coupled with a detuning ∆ =
ωq−ωm ≈ 700MHz places the qubit-memory system at the edge of the dispersive
approximation Section 2.2.3. This results in some effects beyond the rotating
wave approximation (RWA) as well as significant higher order non-linearities
when the memory population increases. An important innovation of this design
is the fact that the memory is coupled at both ends to the qubit shunt capacitor
which suppresses common-mode coupling. This in turn enables us to use higher
amplification and swap pump powers without inducing a high enough electric
field around the qubit to damage its coherence. The dispersive shift with respect
to the readout resonator is a χr/(2π) = 2.1MHz. The coupling was chosen to
be close to the optimal regime χr/κr = 1 that maximizes the readout signal-
to-noise ratio of the measurement [65]. The readout resonator has a frequency
ωr/(2π) = 6.3GHz. It is also a CPW λ/2 design with a capacitor to the qubit
at one end to set the χr and a capacitor to a transmission line at the other end
that is used to drive and measure the resonator and qubit.

4.4 Possible improvements

All three experiments presented here were mostly limited by the decay times
of the qubit and memory resonator. Recent understanding in the microscopic
origin of such losses such as two level systems losses could be used to improve
these coherence times. For example, the geometry of the memory resonator and
the qubit capacitor could be improved to reduce the participation ratio of lossy
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interfaces [66].
Another improvement that could be made would be to include a Purcell filter

on the readout line [67] to improve the readout efficiency without degrading the
qubit coherence time. This would require an additional weakly coupled line to
directly drive the qubit but it could also help increase the qubit coherence.

In the end, given that these improvements would only amount to a limited
increase in the quantitative performance of the device without increasing its
capabilities, it was decided that it was not worth the large time expense especially
given the unproven capabilities of the fabrication facilities at the ENS de Lyon
at the time (the original sample was fabricated in Paris in the ENS clean room).



Chapter 5

Photon-counting

5.1 Context

The first experiment I performed consists in using the quantum node to imple-
ment a microwave photon detector both able to work with propagating modes
as well as resolve the number of photons contained inside the mode. These
are two desirable properties in a photodetector but implementing them is quite
challenging.

5.1.1 Propagating photons

Working with propagating photons as opposed to stationary photons is a chal-
lenge that dates back to the origin of cavity QED. The gist of the issue is that
without a cavity amplifying the light matter coupling, it is extremely challenging
to reach the single photon sensitivity that we are aiming for. The challenge is
compounded by the low energy of microwave photons compared to optical pho-
tons. Indeed, single optical photons are in the 1-10 eV range which is higher
than the semiconductor gap of many semiconductors including silicon or GaAs.
This enables the conversion of single photons into excitons and is the basis for
most room-temperature optical detectors with sensitivity going down to single
photons in the case of single-photons avalanche photodiodes [68]. Moreover, the
energy of optical photons is also much higher than the superconducting gap of
most superconductors which similarly enable the conversion of optical photons
into quasiparticles. These detectors can also reach single photon sensitivity us-
ing a similar avalanche mechanism in superconducting nanowire photo detectors
(SNSPD) [69].

None of these strategies are available for the 4-12 GHz band since the photon
energies are much lower than all semi and superconductors gaps. While some
absorption-based single photons have been proposed [70] most single-photon mi-
crowave detectors rely instead on the dispersive interaction between a qubit and
a photon as in [71, 72]. These dispersive detectors have the advantage of having
an efficiency independent of the photon energy at the cost of complexity and
bandwidth typically.

45
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The approach we have chosen in this work tries to combat this low band-
width issue by inserting the relatively wide buffer resonator (κb/(2π) = 20MHz
bandwidth centered around ωb/(2π) = 10.2GHz) in the signal path before the
memory cavity where the transmon-photon interaction takes place. The high
quality factor of the memory enhances the quantum efficiency at no cost to the
bandwidth which is entirely given by the buffer linewidth. Indeed, the additional
photon lifetime gives more time for the qubit to entangle itself with the photon
before relaxation takes place. In order for that approach to be successful, we
needed to use the JRM to convert the photons from the buffer to the memory.
This swap is fast enough to reach a transfer efficiency into the memory above
92%.

5.1.2 Binary decimation

Counting the exact number photons as compared to simply emitting a click if
there is one or more photons is desirable as a photo-counter is a basic building
block of the linear optical quantum computation paradigm [73]. Optical detectors
able to resolve the energy of wavepackets down to the single photon resolution
are quite new (compared to the first photomultiplier capable of detecting single
photons in the 1930s) but they are already quite performant with one example
reaching 85% of quantum efficiency while having the ability to count up to three
to five photons [74].

This number-resolving requirement is he second difficulty in implementing
this detector. In the second step of the detection where the incoming wavepacket
has been converted into a stationary memory quantum state, the qubit is used
to count the number of photons up to N . The commonly used way of photon-
counting by performing a photon-number qubit spectroscopy is not fast enough
even when restricting the sampling to the firstN peaks given the memory lifetime
of 4 µs. A faster method that only requires log2N steps relying on a binary
decimation idea is used when operating the detector. Although to our knowledge
no experimental realization of the binary decimation method was published at
the time, this method had been proposed a few decades ago by Haroche, Brune
and Raymond [75]. Due to the way their Rydberg atom experiment was setup,
it was not practical for them to implement this proposal but they managed
to implement a single-shot photon-resolved photocounter nonetheless [76]. This
binary decimation method was also used in an unpublished experiment by Reiner
Heeres and Philip Reinhold at Yale when they were working in Rob Schoelkopf’s
group.

5.2 Article

This section is closely adapted from [77].
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5.2.1 Introduction

Photon detectors are an important element in the quantum optics toolbox. At
optical frequencies, detectors such as single-photon avalanche photodiodes or
superconducting nanowire single-photon detectors are readily available [78]. In
contrast, at GHz frequencies, these kinds of absorptive detectors are harder to
realize due to the low energy of the microwave photons, roughly 5 orders of mag-
nitude lower compared to their optical counterparts. Detecting and counting the
microwave photons of a stationary mode is nowadays routinely performed us-
ing the dispersive interaction with a qubit [76, 79–82]. These operations remain
challenging for propagating photons because the light-matter interaction time
is smaller. Yet some photon detectors for propagating modes have been pro-
posed [83–93] and developed based on various approaches: direct absorption [70,
94], encoding parity in the phase of a qubit [71, 72], encoding the probability
to have a single photon in a qubit excitation [95] or reservoir engineering [7].
Several implementations of a photocounter – a microwave photodetector able to
resolve the photon number – for a propagating mode have been proposed [72,
83, 93, 96, 97]. However, such a device has yet to be demonstrated. Indeed,
Refs. [71, 72] only distinguish the parity of the photon number. References [7,
95] only distinguish Fock state |1⟩ from the rest while Refs. [70, 94] distinguish
0 photon from at least 1.

Here, we demonstrate a photocounter that resolves the number of photons in
a given propagating mode. To optimize the efficiency of our counter, we devise a
way to calibrate in situ the arrival time and envelope of the propagating mode.
The device can distinguish between 0, 1, 2, and 3 photons in a 20-MHz band
around 10.220GHz using measurement-based feedback. Finally, we propose a
parameter-free model that accurately predicts the behavior of the counter, as
demonstrated by coherent-state photocounting and Wigner tomography.

5.2.2 Device and operation

The purpose of a photocounter is to count the photon number in a propa-
gating mode with state |ψ⟩ by providing an integer outcome n with probabil-
ity |⟨ψ|n⟩|2. Our photocounter proceeds in three steps (Fig. 5.1.a). In step

1 , it catches the incoming wavepacket and converts it into a high-Q station-

ary mode (memory). Then, in step 2 , it counts the number of photons in

the memory using an ancillary qubit. Finally (step 3 ), it resets the mem-
ory and qubit in their ground state. The catch and memory-reset operations
( 1 , 3 ) are performed by frequency conversion using a Josephson ring modu-
lator (JRM) [98, 99]. The input transmission line is coupled to a buffer mode
at frequency ωb/2π = 10.220GHz, which sets the operating bandwidth of the
counter to κb = 2π × 20MHz = (8.0 ns)−1. When pumped by a coherent tone
of amplitude p(t) at ωb − ωm, the JRM introduces a frequency-conversion term
ĤJRM = g3p(t)b̂m̂

† + h.c. between the buffer b̂ and the memory m̂. The memory
resonates at ωm/2π = 3.745 27GHz with a relaxation time T1,m = 4 µs. When the
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a)

qubit readoutmemorybuffer
catch

b)

1

count2

resetreset3

Figure 5.1: Principle of operation and device. a) A propagating microwave mode

in state |ψ⟩ is sent to the device via a buffer resonator. It is caught 1 into
the memory by pumping the Josephson ring modulator (JRM). The qubit then

counts 2 the photon number in the memory. The device is finally reset 3 .
Pumping the JRM empties the memory by releasing its photons into an arbitrary
outgoing mode. The qubit is put into its ground state by measurement-based
feedback. b) False color image of the device where a JRM (left inset) is located
at the crossing between buffer and memory λ/2 resonators. A transmon qubit
(right inset) is coupled both to the memory and readout resonators.

memory is initially empty, this term enables us to catch the incoming wavepacket
onto the buffer by storing its quantum state in the memory. Conversely, when
the counting operation is over, we use it to release the photons from the memory
into an arbitrary outgoing wavepacket.

From the point of view of the memory, the pumped JRM induces a tunable
coupling to a transmission line [63]. It is thus possible to catch or release an arbi-
trary wavepacket into and from the memory [59, 100–105]. Besides, the parasitic
nonlinearities induced by the Josephson junctions of the JRM can be canceled by
setting the flux through the JRM optimally, which we did (Section 5.3.2). Using
input-output formalism in the rotating frame, and neglecting the relaxation of
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the memory, the dynamics is captured by

db̂

dt
=− κb

2
b̂− g3p

∗(t)m̂+
√
κbb̂in(t),

dm̂

dt
=g∗3p(t)b̂. (5.1)

For any given envelope ⟨bin(t)⟩ of the incoming wavepacket that fits inside the
buffer bandwidth κb, there exists an optimal pump popt(t) for which the incoming
quantum state is perfectly swapped into the memory [106]. For instance if the

incoming wavepacket is ⟨bin(t)⟩ ∝ 1/ cosh
(√

π/2 t/σ
)
(Fig. 5.5.a), the optimal

catching pump is given by

popt(t) ∝
[
1 +

λ

2
tanh (λκbt/4)

]
(eλκbt/2 + 1− λ/2)−1/2 (5.2)

where λ =
√
8π/κbσ. Note that even at nonoptimal flux through the JRM or

with finite relaxation time of the memory, an optimal pump can be found to
catch the entire wavepacket (Section 5.3.4).

5.2.3 Built-in sample and hold power meter

In order to generate the optimal pump popt(t) for an arbitrary incoming wavepacket
at ωb, one needs to determine the envelope ⟨bin(t)⟩. Interestingly, the envelope
of any incoming waveform, can be determined in situ. The photocounter can
indeed operate as a sample-and-hold power meter. Turning on the pump for a
short sampling time of 20 ns after a variable delay td and counting the mean num-
ber of photons in the memory, using the coupled transmon qubit (Section 5.3.5),

enables us to directly probe
〈
b†inbin

〉
up to a global prefactor [Fig. 5.2.a]. We

demonstrate this functionality on a variety of generated waveforms displayed in
Fig. 5.2.b (left panel). The distortion of the waveforms introduced by the finite
bandwidth κb of the counter and the nonzero sampling time can be seen in the
measured mean photon number ⟨n⟩ as a function of td (right panel). The simple
model Eq. (5.1) accurately reproduces the measured envelopes, where the only
free parameter is the 15-ns difference in propagation time between buffer and
pump lines.

5.2.4 Catch efficiency

In order to measure the catch efficiency η, we follow a catch-wait-release protocol

as in Refs. [58, 59]. We send an input signal ⟨bin(t)⟩ ∝ 1/ cosh
(√

π/2 t/σ
)
of

width σ = 52 ns and use the corresponding optimal pump shape, computed
using Eq. (5.1). The calibration consists in measuring the outgoing amplitude
bout in various configurations. First, we measure the directly reflected amplitude
boffout without pumping, which provides a reference. Then, we measure the re-
emitted amplitude bonout after optimally catching, waiting a time tw and releasing.
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Figure 5.2: In situ calibration of the incoming wavepacket envelope. a) Ampli-
tude of an arbitrary incoming wavepacket sent onto the buffer and of the sampling
pump pulse. A following measurement of the mean photon number ⟨n(td)⟩ in the
memory is performed using the qubit. b) Left panels: various incoming wave-
forms. Right panels: solid blue (dashed red) lines show the measured [predicted
using Eq. (5.1)] mean photon number ⟨n⟩ normalized by its maximum nmax.

The round-trip efficiency is then given by ηCWR = ⟨bonout⟩
2 /

〈
boffout

〉2
. Besides,

assuming that the catch and release operations have the same efficiency η, we
get ηCWR = η2e−tw/T1,m , and thus an estimation of η.

In practice, due to the finite directivity of the directional coupler used to drive
the buffer (Section 5.3.1), there are interferences between the signal parasitically
bypassing the coupler towards the output line and the desired signal coming from
the buffer. This problem exclusively affects the denominator of the measured
energy ratio since the parasitic signal does not spatially overlap with the signal
that is released after tw. In our case, the interferences are destructive, which
leads to an underestimation of the denominator. As a consequence, we obtain
apparent energy ratios in excess of 100%.

It is, however, possible to get a lower bound on the actual efficiency ηCWR(tw)
by measuring the coupler directivity. Right after the run, we measure a 16-
dB directivity at room temperature using a calibrated vector network analyzer.
In Fig. 5.3, the lowest possible values of ηCWR(tw) (dots) are shown assuming
fully destructive interferences in the denominator (correction by a factor 0.746
on the apparent energy ratio). Fitting these lower values by an exponential
decreasing function at rate 1/T1,m, we get a lower bound on the catch efficiency

η =
√
ηCWR(tw = 0) ≥ 0.92.

5.2.5 Binary decomposition of the photon number

Once the incoming wavepacket is characterized and efficiently caught, step 2
consists in measuring the photon number present in the memory in a single-shot
manner. To do so, we use a transmon qubit at frequency ωq/2π = 4.327 31GHz
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buffer

pump
on/off catch reset

Figure 5.3: Red solid line: round trip efficiency ηCWR as a function of the waiting
time tw assuming that the only imperfection comes from the memory decay with
a characteristic time T1,m. Blue dots: lower bound on the measured round-trip
efficiency ηCWR. Blue solid line: exponential decay with characteristic time T1,m.
Orange error bar: range of possible values for η2 that leads to a catch efficiency
η = 0.96 ± 0.04. Inset: pulse sequence of the catch-wait-release protocol. We

measure the average outgoing amplitude
〈
b
on/off
out

〉
when the pump is on or off,

from which we compute the round trip efficiency ηCWR = ⟨bonout⟩
2 /

〈
boffout

〉2
.

dispersively coupled to the memory such that Ĥqm = −χm̂†m̂ |e⟩⟨e|. Owing to a
dispersive shift χ/2π = 3.28MHz much larger than the qubit decoherence rate
Γ2 = (13.6 µs)−1, the device operates in the photon-number-resolved regime [107].
It is thus possible to access information about the photon number by entangling
the memory mode with the qubit and reading out its state. It is made possible
by another resonator (readout), with frequency ωr/2π = 6.293GHz, dispersively
coupled to the qubit. We optimize the readout fidelity up to 97% in 252 ns, using
a CLEAR-like sequence [108], mostly limited by the finite qubit relaxation time
T1 = 7.1 µs (Section 5.3.3). The actual counting uses a scheme that measures the
photon number bit by bit [75, 109]. We denote uk the k-th least significant bit of
n = [uNuN−1...u1]2. Starting from u1, each value of uk is encoded into the qubit
state and then read out. The main difficulty in implementing this scheme comes
from the need to know the value of nk−1 = [uk−1 · · ·u1]2 in order to extract uk.
Each step Qk (Fig. 5.4.a) of the recursive determination of the uk’s is based on
the relation

2kuk = n− nk−1 mod 2k. (5.3)

The qubit is prepared in |g⟩+i|e⟩√
2

with a π
2
pulse (Fig. 5.4.b 1 ). Then, the memory

and qubit interact dispersively for a time Tk = 2π
χ2k

. Tk is chosen such that the

qubit ends up in one of two orthogonal states |uk = 0⟩ and |uk = 1⟩ that only

depend on the value uk (Fig. 5.4.b 2 ). Precisely, the phase of the qubit states

picks up an offset ϕ(nk−1) = −nk−12π

2k
for uk = 0. Finally, using the knowledge of

nk−1, it is possible to map |uk = 0⟩ and |uk = 1⟩ onto |e⟩ and |g⟩ using a second

π/2 pulse around the right axis (Fig. 5.4.b 3 ). Reading out the qubit state
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Figure 5.4: Binary decomposition. a) Pulse sequence used to extract uk experi-
mentally. Green corresponds to taking the remainder modulo 2k of the photon
number, red to the subtraction of the previously found digits nk−1 = [uk−1 · · ·u1]2
and blue to the extraction of the result via a measurement of the qubit. The
π
2
pulses consist of sech waveforms with σ = 4ns truncated at 4σ further op-

timized to mitigate the effect of the transmon qubit’s low anharmonicity of
−98MHz [111]. b) Trajectory of the qubit on the Bloch sphere when the cavity

is in a Fock state |n⟩ with yet unknown bit uk. Left 1 : the qubit is prepared in

(|g⟩ + i |e⟩)/
√
2 with an unconditional π/2 pulse around x. Middle 2 : trajec-

tory of the qubit states |uk = 0⟩ and |uk = 1⟩ corresponding to the two possible
values of the k-th bit of the photon number during the waiting time Tk. Right
3 : the last π/2 pulse around an axis shifted by an angle ϕ(nk−1) from the x
axis maps uk onto ground or excited states.

thus provides uk directly. This scheme minimizes the number of qubit readouts
required as each binary question Qk is able to extract one bit of new information
about the photon number. The number of binary questions required to determine
a photon number n is N = ⌈log2 n⌉, with the caveat that the necessary precision
in the waiting time increases exponentially with N . Note that it is possible to
avoid the feedback for nk−1 using an optimal quantum-control algorithm [110],
although with the device used here, it leads to longer questioning time and thus
degraded counting fidelities.

5.2.6 Single-shot photocounting

We now demonstrate the number-resolved photocounting using questions Q1 and
Q2. The device thus resolves photon numbers from 0 to 3. The feedback of n1

is performed with minimal added latency (200 ns) using Quantum Machines’
FPGA-based control system (OPX). To benchmark the photocounter, we send
at its input a sech waveform in a coherent state of complex amplitude α using
a microwave source (Fig. 5.5.a). This state is caught in the memory using an
optimal pump followed by the two binary questions Q1 and Q2 that reveal a
number n2 = [u2u1]2 between 0 and 3. Owing to an active reset, the counter
presents a short nondeterministic average dead time of 4.5 µs. The memory is
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reset by applying a release pump on the JRM that empties its photons into the
transmission line. The qubit is reset to its ground state using a measurement-
based feedback loop.

In an ideal photocounter, the distribution of n2 follows a Poisson distribution
modulo 4, Pn2 = e−|α|2 ∑

j[|α|
2(n2+4j)/(n2 + 4j)!] [dashed lines in Fig. 5.5.(b)].

The measured probabilities Pn2 (green diamonds) qualitatively follow the ideal
Poisson distribution. However, we obtain a more quantitative agreement by
solving a master equation that takes into account imperfections like the finite
lifetimes of the memory and qubit, the nonzero effective temperature, and non-
linear terms [112]

hatHK = −Km̂†2m̂2 −Ke |e⟩⟨e| m̂†2m̂2.

In the following, owing to large but uncertain value of the catch efficiency η,
we set it to 1 in the simulations. The transmon qubit nonlinearity induces a
self-Kerr term on the memory with rate K/2π = 27 kHz. When the transmon
is excited in |e⟩, the self-Kerr rate is offset by Ke/2π = 75 kHz. All the above
parameters are calibrated using independent measurements (Section 5.3.2).

A more stringent test for this model consists in predicting the measurement
backaction on the quantum state of the incoming mode. Using the qubit, it
is possible to perform a Wigner tomography of the collapsed quantum state
of the memory conditioned on the outcome n2 of the counter [113–115] (Sec-
tion 5.3.7). The top panels of Fig. 5.5.c show the Wigner functions for n2

from 0 to 3 after catching a coherent state of amplitude |α| =
√
0.5. The

bottom panels show the computed Wigner functions using our model above.
For an outcome n2, an ideal photocounter would project the incoming state |ψ⟩
into |ψn2⟩ ∝

∑
j |n2 + 4j⟩ ⟨n2 + 4j|ψ⟩. Given the small mean photon number

|α|2 = 0.5, the ideal state is close to Fock state |n2⟩. The measured Wigner func-
tions W (β) for n2 ≤ 2 are indeed close to what would be obtained for pure Fock
states |n2⟩. However for n2 = 3, the relaxation of both memory and qubit induce
a mixture of various Fock states, and the Wigner function does not exhibit the ex-
pected fringes. To quantify this agreement, we compute the fidelity F(ρ, ρn2) be-
tween the collapsed quantum state of the memory ρ and the ideal projected quan-
tum state ρn2 = |ψn2⟩⟨ψn2|. Many definitions of fidelity exist for mixed states. We
chose the fidelity [116, 117] F(ρ, ρ′) = Tr(ρρ′)+

√
[1− Tr(ρ2)][1− Tr(ρ′2)], which

can be computed in a numerically robust manner from the measured Wigner
functions since Tr(ρ1ρ2) = π

∫
Wρ1(β)Wρ2(β) d

2β. From the measured Wigner
functions in Fig. 5.5.c (top panels), we obtain fidelities of 86, 52, 32, and 4.9%
for n2 = 0, 1, 2, and 3 respectively. This deviation from the ideal case is well
captured by our model, which predicts the measured collapsed quantum states
with fidelities between top and bottom panels of Fig. 5.5.c above 97% for the
four outcomes of the counter. Simulations show that the dominant origin for the
nonidealities is the qubit and memory relaxation (Section 5.3.8).

Since the model is backed up by the photon-number statistics and by the
Wigner tomography, we can compute the probabilities P|n⟩(m) that the counter
would have measured m mod 4 if a Fock state |n⟩ was sent at the input (see
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Table 5.1). If the detector is giving totally random outcomes, the probabilities
are equal to 25% since there are four possible answers. Here, we obtain fidelities
P|n⟩(n) well above 25% and infidelities P|n⟩(m ̸= n) smaller or of the same order
of 25%. Interestingly, downgraded to a photodetector that clicks when m ̸= 0,
these figures imply a detection fidelity of 1 − P|1⟩(0) = 93(4)% for a single
photon. The model reveals three main sources of errors: the finite lifetimes of
the memory and qubit and the rate Ke (Section 5.3.8). The finite qubit lifetime
affects the various n2 values differently owing to the choice of encoding in the
qubit state during questions Qk’s. It is possible to choose which photon number
to affect the least by swapping the roles of |g⟩ and |e⟩. The photon number
corresponding to the qubit being in the excited state after each question is the
one with maximum error. Here, we choose to minimize the error on n2 = 0 and
thus minimize the dark count of the counter to a measured probability of 3%
(measurement of 1 − P0 at α = 0 in Fig. 5.5.b). When the incoming photon
number increases, the memory relaxation starts to limit the fidelity since the
loss rate of the memory increases with photon number. It explains most of
the decrease of fidelity with photon number from 99% down to 56%. Finally,
because of the nonzero Ke, during the time Tk of the question Qk, the qubit
acquires an additional parasitic phase that rapidly increases with the photon
number resulting in larger infidelities for higher n.

P|n⟩(m) |0⟩ |1⟩ |2⟩ |3⟩
m = 0 99% (7∓ 4)% (24∓ 3)% (9∓ 4)%
m = 1 <1% 76(3) % 4.2(2)% 27(1)%
m = 2 <1% 1.03(1)% 71(3) % 9.7(3)%
m = 3 <1% 16(1)% 1.5(1)% 54(2) %

Table 5.1: Probabilities of getting the outcomem if the incoming mode is in Fock
state |n⟩. The probabilities are computed using the master equation validated
by Fig. 5.5. The uncertainties correspond to the range of possible values on the
catch efficiency η. Diagonal terms are all above 25%, which would correspond
to a completely random counter with 4 possible outcomes.

5.2.7 Conclusion

We develop a photocounter using measurement-based feedback that is able to
resolve the photon number from n = 0 up to n = 3 in a propagating microwave
mode. The counter features a time-resolved power meter able to determine the
envelope of the incoming waveform in situ, which optimizes the detection ef-
ficiency up to η = 0.96 ± 0.04. Future devices with longer lifetimes would
considerably improve the fidelities F above. The reset would then release a
faithfully collapsed quantum state into the line, making the photocounter quan-
tum nondemolition. The counter would then quickly scale up to resolve higher
photon number thanks to its logarithmic complexity. The photocounter can also
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Figure 5.5: Photocounting coherent states. a) Pulse sequence showing an in-
coming mode on the buffer with a coherent state of amplitude α and the opti-
mal shape of the pump to catch the wavepacket with minimal distortion (Sec-
tion 5.3.4). The qubit performs photocounting bit by bit with pulse sequences
Qk’s described in Fig. 5.4. Q2 uses the outcome of Q1 in a feedback protocol
that adds as little as 200-ns delay. Finally, a direct Wigner tomography of the
memory can be performed [113–115] before the memory and qubit are reset. b)
Green diamonds: measured probabilities Pn2 of finding a number n2 = n mod 4
photons as a function of the mean photon number |α|2 of the incoming coher-
ent state after 200000 runs of the sequence. Dashed lines: modulo-4 Poisson
distribution. Solid lines: master-equation solution without any free parameter.
c) Corresponding measured (top) and simulated (bottom) Wigner functions for
α =

√
0.5 mean photons (Sections 5.3.6 and 5.3.7). From left to right, the Wigner

function is heralded on the counter outcome n2 = 0, 1, 2, and 3 out of a total of
44000 realizations per pixel.

be used in a degraded mode to measure parity by asking a single question Q1

as in Refs. [71, 72], and thus perform propagating Wigner tomography [118].
Microwave photodetection and photocounters enable quantum-optics-like exper-
iments in the microwave range and facilitate the implementation of a quantum
network. For instance, photodetection has made possible the entanglement be-
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tween remote stationary qubits [95, 104, 105]. However any protocol requiring
feedback on the photon number in a propagating mode needs a single-shot pho-
tocounter. Therefore, a direct application consists in reaching the quantum limit
for the discrimination between two coherent states [119], with obvious applica-
tions in quantum sensing.
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5.3 Supplementary material

5.3.1 Measurement setup

The sample and its fabrication are described in Ref. [63]. The sample is cooled
down to 24mK in a BlueFors LD250 dilution refrigerator. The diagram of the mi-
crowave wiring is given in Fig. 5.6. The buffer, memory, qubit and readout pulses
are generated by modulation of continuous microwave tones produced, respec-
tively, by generators E8752D from Keysight, SGS100A from Rohde&Schwarz,
SGS100A from Rohde&Schwarz, and SynthHD PRO from Windfreak set, re-
spectively, at frequencies fb+50, fm−120, fq+200, and fr+51MHz. The pump
pulses are also generated by modulation of continuous microwave tone, however
the local oscillator at fb − fm+170MHz is produced by mixing the buffer and
the memory rf sources for phase stability. The readout is modulated through
a single sideband mixer while the others are modulated via IQ mixers. The
IF modulation pulses are generated by nine channels of an OPX from Quan-
tum Machines with a sample rate of 1GS/s. The acquisition is performed, after
down-conversion by their local oscillators, by digitizing a 51MHz (readout) or
a 50MHz (buffer) signal with the 1GS/s analog-to-digital converter (ADC) of
the OPX from Quantum Machines. The signals coming out of the buffer mode
and of the readout mode are multiplexed into a single transmission line using a
diplexer before getting amplified by a traveling wave parametric amplifier [121]
(TWPA, provided by IARPA and the Lincoln Labs). The TWPA is pumped at a
frequency fTWPA = 7.636GHz and at a power that allowed the TWPA to reach a
system efficiency of 18% from the buffer output to the ADC. The signal coming
out of the buffer mode is filtered using a 20 cm waveguide WR62 with a cutoff fre-
quency at 9.8GHz in order to prevent the strong pump of the JRM from reaching
the TWPA and reciprocally. The next stage of amplification is performed by a
HEMT amplifier (from Caltech) at 4K and by two room-temperature amplifiers.
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Figure 5.6: Scheme of the measurement setup. The rf sources color refers to the
frequency of the matching element in the device up to a modulation frequency.
Identically colored sources represent a single instrument with a split output.

5.3.2 System characterization and flux dependence

Using a vector network analyzer we measure the buffer resonance frequency as
a function of the current running through a superconducting coil directly above
the sample. The extracted buffer frequency ωb is displayed in Fig. 5.7.a. The
current is generated by applying a voltage Vcoil to a resistor in series with the
coil. The periodicity of the buffer frequency allows us to convert the voltage Vcoil
into a flux Φext through the four inner loops of the JRM.
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Even though the qubit consists in a single junction transmon, its frequency
ωq has a slight flux dependence due to its coupling with the memory. The
qubit frequency, as a function of the flux, is extracted from Ramsey oscillations
(Fig. 5.7.c). With these measurements, we are also able to extract the qubit
coherence time T2 as a function of flux Φext (solid line in Fig. 5.7.d).

The memory cannot be probed directly in reflection nor in transmission with
the measurement setup. To measure its frequency ωm (Fig. 5.7.b), we use the
qubit to determine at what excitation frequency the memory gets populated.
We send a probe pulse on the memory via its weakly coupled port followed by
a conditional π pulse on the qubit at ωq. The qubit is thus excited only if the
memory has zero photons. Measuring the qubit average excitation as a function
of probe frequency leads to determining the frequency ωm at which the state |0⟩
is most depleted. We also measure the relaxation times of the qubit T1,q (see
Fig. 5.7.d). The qubit decoherence time is limited by the relaxation since T2 is
close to 2T1,q.

a) b)

d)c)

Figure 5.7: a) Buffer frequency, b) memory frequency, c) qubit frequency, d)
qubit decoherence time T2 (dashed line) and lifetime T1,q (solid line) as a function
of flux Φext in the inner loops of the JRM. Notice that the flux range is different
in a) compared to b-d). Vertical dashed line: working point for the main text.

We extract the buffer self-Kerr rate Kbb from the dependence of its frequency
ωb as a function of probe power (Fig. 5.8.a). To measure the pump-buffer cross-
Kerr rate Kbp (Fig. 5.8.b), we measure ωb while driving the pump at various
powers. The pump is driven off resonance from ωb − ωm to avoid frequency
conversion. The buffer self-Kerr and buffer-pump cross-Kerr rates both vanish at
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a)

c) d)

b)

Figure 5.8: Rates of nonlinear terms in the device as a function of the external
flux Φext. Notice that the flux range is different for each panel. a) Buffer self-Kerr
rate Kbb, b) Pump-buffer cross-Kerr rate Kbp, c) Dots, memory self-Kerr rate
K, stars, nonlinear rate Ke. d) Dispersive shift χ between qubit and memory.

the same flux point [59], which we hence choose as our working point. A nonzero
cross-Kerr rate would indeed make the pump optimization more challenging for
catch and reset operations.

The measurement of the memory self-Kerr rate K and the qubit-dependent
nonlinear rate Ke are done in a previous cool down by monitoring the average
phase acquired by a coherent state in the memory mode as a function of time
while varying the mean photon number and the initial qubit state. Having
prepared the qubit in either |g⟩ or |e⟩, we load the memory with a coherent
state of amplitude α =

√
n. We then wait for a time tint. Finally, we release

the state of the memory into the transmission line and record the average phase
ϕ(tint) of the released pulse. The detuning δωm between the resonant frequency
of the memory ωm and a reference resonant frequency (when the memory is in
the vacuum state and the qubit in |g⟩) can be determined as δωm = dϕ

dtint
. The

slope of δωm as a function of mean photon number n then gives the self-Kerr
rate K (Ke +K) when the qubit is prepared in |g⟩ (|e⟩). The rates K and Ke

are plotted as a function of flux in Fig. 5.8.c.

Using a populated Ramsey protocol (see details in Fig. 5.10) as function of
flux, we also extract the qubit-memory dispersive coupling χ (Fig. 5.8.d). It is
also performed in a previous cool down.
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a) c)b)

Figure 5.9: Readout optimization. a) CLEAR-like readout pulse sequence. Driv-
ing amplitude rin of the readout as a function of time t. Blue, readout excitation;
orange, readout reset. b) Histogram of the two demodulated quadratures I and
Q of the reflected readout pulse for 104 realizations after applying a π/2 pulse
on the qubit. The two peaks correspond to the |g⟩ and |e⟩ states of the qubit.
The few points in the upper-left corner correspond to the transmon in an ionized
state. c) Probability to observe the transmon outside of its qubit subspace as a
function of the mean number of photons inside of the memory for the readout
power used in the main text.

5.3.3 Readout optimization

The readout strategy is a compromise between readout speed, fidelity and QND-
ness. Note that the feedback protocol of the photocounter requires a QND mea-
surement so that non-QNDness limits the counter fidelity. In order to make fast
and faithful qubit measurements, we implement a CLEAR-like sequence [108]
with amplitude rin(t) shown in Fig. 5.9.a. The QNDness of the readout is lim-
ited by the possible ionization of the transmon out of the qubit subspace [122,
123]. We find that not only this constraint limits the amplitude of the readout
pulse but also that the ionizaiton probability increases with the occupation of the
memory mode (Fig. 5.9.b). In future design, the efficiency of the photocounter
could be improved by using less sensitive coupling schemes [124–126].

In order to determine the state of the qubit as a function of the reflected
signal with the best fidelity, we use a set of optimized demodulation weights that
we compute to maximize the complex signal difference between the ground and
excited states as shown in Ref. [127]. It is convenient to quantify the readout
error using the overlap ϵ0 between the two Gaussian distributions corresponding
to the two qubit states [67].

The qubit temperature is measured by repeatedly measuring the qubit, record-
ing the demodulated signal from the readout into a complex histogram (such as
the one shown in Fig. 5.9b) and fitting it with a set of two two-dimensionnal
(2D) Gaussians of equal width. The temperature is then extracted by taking
the ratio of the amplitudes of the two Gaussians. For additional precision, the
center of the Gaussian corresponding to the qubit being in the excited state |e⟩
is estimated by doing the same measurements after performing a π pulse such
that the final fit only had two free parameters: the center of the Gaussian cor-
responding to |g⟩ and the qubit temperature. We find an effective temperature
of 33mK.
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5.3.4 Optimal catching pump

In this section, we derive the optimal pump to catch an arbitrary wavepacket
with a bandwidth smaller than the bandwidth of the buffer κb = 2π ·20MHz. We
first derive the optimal pump to catch an incoming wavepacket assuming κm = 0
and we then show that a small memory relaxation rate κm and a cross-Kerr rate
Kbp do not prevent the catch from being complete.

Ideal case

Let us consider the Langevin equations for the buffer b and memory m with a
conversion pump p in the frame rotating with bin and m

db

dt
= −κb

2
b(t)− g3p

∗(t)m(t) +
√
κbbin(t)

dm

dt
= g3p(t)b(t),

where, for simplicity, we assume that the external flux used is chosen such that
all the self-Kerr and cross-Kerr terms cancel out. Note that an arbitrary choice
of phase reference allows us to constrain b to be a real function.

We start by parametrizing the equations with dimensionless variables using
τ = κb

2
t, u = 2g3p

κb

ḃ = −b− u∗m+
2

√
κb
bin

ṁ = ub

where the dots denote the derivatives with respect to τ .
Catching the incoming wavepacket bin perfectly comes down to finding the

pump u(τ) such that bout = 0 uniformly. Since bin+bout =
√
κbb, u is the solution

of the following differential equations

um∗ = b− ḃ (5.4)

ṁ = ub. (5.5)

For any signal with a bandwidth lower than the buffer coupling rate κb, these
equations can be solved numerically. In the following subsection, we focus on
the case of a sech input waveform, where the calculation can be carried out
analytically.

Case of an incoming hyperbolic secant waveform In the experiment, we

frequently use an incoming hyperbolic secant waveform b(τ) =

√
λ/2

2
sech(λτ/2).

To do so, we remark that
y = |m|2 + b2
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is a flat output [128], meaning that m, u and b can be expressed as functions of
y, ẏ and ÿ. Combining Eq. (5.4) and Eq. (5.5), we get m∗ṁ = (b− ḃ)b. Taking
the real part and using the limited bandwidth (ẏ ≤ 2y) and the assumption that
there is no loss (0 ≤ ẏ), we get

b2 = ẏ/2, |m|2 = y − ẏ/2. (5.6)

Setting y = 1
1+e−λτ with 0 ≤ λ ≤ 2, using Eq. (5.6), we get b(τ) =

√
λ/2

2
sech(λτ/2)

as desired and |m| =
√

eλτ+1−λ/2

2
sech(λτ/2). Multiplying Eq. (5.4) by its com-

plex conjugate, we get |u| = b−ḃ
|m| . From Eq. (5.4), we can also see that arg(u) =

arg(m). Hence, there is a function θ such that m = |m|eiθ and u = |u|eiθ. By
multiplying Eq. (5.5) by m∗ and using Eq. (5.4) one gets ṁm∗ = (b− ḃ)b. Since
b is real, the imaginary part, yields θ̇ = 0. For simplicity, we choose θ(τ) = 0,
which leads to

u =
b− ḃ

|m|
. (5.7)

Finally we find

u(τ) =

√
λ/2

eλτ + 1− λ/2

(
1 +

λ

2
tanh(λτ/2)

)
. (5.8)

Going back to the original time variable t, we conclude that an incoming

wavepacket with a shape bin(t) =
√

λ
8κb

sech(λκbt/4) is perfectly caught by a

pump popt(t) =
2g3
κb

√
λ/2

eλκbt/2+1−λ/2

(
1 + λ

2
tanh(λκbt/4)

)
.

Finite memory lifetime

In order to account for the memory relaxation rate κm, the Langevin equations
become

db

dt
= −κb

2
b(t)− g3p

∗(t)m+
√
κbbin(t)

dm

dt
= −κm

2
m(t) + g3p(t)b(t).

Without loss of generality, we assume that bin and p are real, hence m and b are
also real. Using the same definition for y and introducing ε = κm/κb, we get the
following modified version of Eq. (5.6) to derive b and m as algebraic functions
of y and ẏ.

(1 + ε)b2 = ẏ/2 + εy, (1 + ε)|m|2 = y − ẏ/2 (5.9)

Given Eq. (5.7), u can be expressed as an algebraic function of y, ẏ, and ÿ. In
this case the no-loss assumption is replaced by the weaker constraint that the
ratio between the outgoing power −dy

dt
and the total energy y is smaller than κm,

i.e., dy
dt

≥ −κmy (i.e., ẏ/2 + εy ≥ 0). The bandwidth limit dy
dt

≤ κby remains
valid (i.e., ẏ ≤ 2y).
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To carry on the calculation analytically, we set y = 1
e2ετ+e−λτ so that

b(τ) =

√
λ/2 + ε

1 + ε

1

e(λ/2+2ε)τ + e−λτ/2
.

We also get

m(τ) =

√
e(λ+2ε)τ +

1− λ/2

1 + ε

1

e(λ/2+2ε)τ + e−λτ/2
.

From the above expressions for b and m, we can then compute u using Eq. (5.7).
Given the small value of ε ≈ 0.002 in the device of the main text, we choose to
neglect the memory relaxation and to use the results from the ideal case above.

Finite cross-Kerr rate

Even in the presence of a small cross-Kerr rate Kbp between the buffer and the
pump, an optimal catch pump can be found which guarantees that no signal is
reflected i.e. bout = 0. The modified Langevin equations are as follows

db

dt
= −

(κb
2

+ iKbp|p(t)|2
)
b(t)− g3p

∗(t)m(t) +
√
κbbin(t)

dm

dt
= −κm

2
m(t) + g3p(t)b(t).

Introducing the dimensionless cross-Kerr rate k = Kbpκb/g
2
3, we get a modified

version of equations (5.4) and (5.5)

um∗ = b− ḃ+ ik|u|2b
ṁ = −εm+ ub.

Since b is real, the real quantity y = |m|2 + b2 can still be used to parametrize
the system, despite the fact that m and u are now complex. The values of b and
|m| can still be expressed as functions of y and ẏ by Eq. (5.9). The modulus |u|
of the pump is obtained by solving

|u|2|m|2 = (b− ḃ)2 + k2|u|4b2.

The argument θm of m results from the integration

θm(τ) = θm(0) + k

∫ τ

0

|u(s)|2b(s)2

|m(s)|2
ds ,

where |u|, |m| and b are algebraic functions of y, ẏ and ÿ. The argument θu of
u is given by the argument of m(b − ḃ + ik|u|2b) which coincides then with the
argument of (ṁ+ εm)/b.

Using the above derivation, one sees that finding the optimal pump in the
case of cross-Kerr effect requires not only to adjust the envelope of the pump, as
done in the main text, but also adjusting the phase of the pump θu dynamically
to compensate for the time-dependent buffer frequency shift.
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5.3.5 Different methods for measuring the mean photon
number

a) b)

c) d)

Figure 5.10: Three methods for calibrating the memory-displacement amplitude.
The measurements are performed on a previous cool down. a) Photon-number
selective π pulse. Dots: measured probability to have n photons in the memory
as a function of |α|2. Solid lines: Poisson distribution fitted to calibrate the mean
photon number on the x axis. b) Vacuum detector. Dots: probability P|0⟩,α(e)
that the memory is empty as a function of waiting time for various preparation
amplitudes. Solid lines: fit of the measured probabilities using the expression
for memory relaxation in the text. c) Populated Ramsey. Dots: signal difference
S+−S− between two encodings of the Ramsey-like interferences in the presence of
various mean photon numbers ⟨n⟩. Solid lines: theoretical prediction allowing to
calibrate the displacement amplitude and the thermal occupancy nth. d) Result
of the calibration using the three methods: photon number selective π pulse in
orange diamonds, vacuum detector in blue dots and populated Ramsey in green
stars. The black dashed line represents the overall fitted value for µ.

We use several methods to measure the mean photon number ⟨n⟩ in the mem-
ory in order to calibrate the buffer and memory displacement pulses (Fig. 5.10).
The experiment begins by a displacement pulse on the memory mode with a driv-
ing voltage µα, where µ is a conversion factor between voltages and amplitudes
to be determined. The following procedures then determine the mean photon
number ⟨n⟩ = |α|2 + nth as a function of the driving voltage by different ways
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and thus calibrate µ. nth is the residual equilibrium thermal photon number in
the memory.

Photon number selective π pulse

The first method relies on the possibility to perform a π pulse Π|n⟩ conditionally
on the photon number n. It is done by driving the qubit at frequency ωq − χn
with a long enough pulse so that the frequency spreading is smaller than χ/2.
The pulse maps the probability to have n photons P (n, α) into the measured
probabilities P|n⟩,α(e) for the qubit to be found in its excited state (Fig. 5.10.a).
Fitting the distribution P (n, α) for each α by a Poisson distribution, we calibrate
µ neglecting the thermal population. A limitation of this method occurs at high
photon number. Indeed, the dispersive shift χ slightly depends on photon number
n, so that the qubit drive frequency is off resonant.

Vacuum detector

To calibrate the conversion factor µ at high photon numbers |α|2 ≫ 1, we perform
another method, which is to use the qubit as a vacuum detector [63]. Applying
a π pulse Π|0⟩ encodes the probability that the memory is empty into the prob-
ability for the qubit to be in the excited state. Now, after a waiting time t, the
memory has relaxed and, neglecting nth for the large |α|2, the measured probabil-
ity P|0⟩,α(e) evolves following exp

(
−|α|2e−t/T1,m

)
(Fig. 5.10.b). Fitting the value

of µ for each value of µα to match this expression with the measured P|0⟩,α(e, t)
leads to an accurate determination of the conversion factor µ as a function of α.
This photon number calibration has a higher range than the previous one but is
less sensitive for low average photon numbers.

Populated Ramsey oscillations

Our last method to calibrate the conversion factor µ relies on a Ramsey-like
sequence [129] (Fig. 5.10.c). After the coherent displacement of the memory,
we prepare the qubit in an equal superposition of ground and excited states by
applying an unconditional π

2
pulse. After a waiting time t, the phase of the

superposition increases by χnt for each Fock state |n⟩. We then apply a second
unconditional ±π

2
pulse giving the signal S±. The signal difference is given by

S+ − S− = cos(⟨n⟩ sin(χt)) exp(⟨n⟩ (cos(χt)− 1)− t/T2) from which we extract
the mean photon number ⟨n⟩. Without driving the memory, the measured mean
number gives the thermal population of the memory nth = 0.014 corresponding to
an effective temperature of 44mK. Offsetting the measured ⟨n⟩ by this thermal
occupation leads to a calibration of µ. This last method has a good sensitivity
at low photon numbers, however, it cannot be used for large photon numbers
where the pattern becomes insensitive to ⟨n⟩.
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Comparison

In Fig. 5.10.d, we show the outcome of the three methods by plotting the mea-
sured |α|2 as a function of driving power. The methods agree over their respective
ranges. For large mean photon number |α|2 > 20, due to memory self-Kerr, the
mean photon number is expected to differ and be smaller than the linear behavior
|µα|2.

5.3.6 Numerical model

We simulate our system using the QuantumOptics.jl library[130].
The device Hamiltonian reads [63]

Ĥ/ℏ =ωbb̂
†b̂+ ωmm̂

†m̂+
ωq

2
σ̂z

+ g3pm̂
†b̂+ g∗3p

∗m̂b̂†

− χm̂†m̂ |e⟩⟨e| −Km̂†2m̂2 −Ke |e⟩⟨e| m̂†2m̂2.

To simplify the model, we restrict the transmon to its first two levels and we do
not consider the readout resonator and its dispersive coupling to the qubit. We
simulate the readout of the qubit by an instantaneous projective measurement
taking place at half of our experimental readout duration. During the readout
time, before and after the projection, the system evolves freely. We also take
into account the overlap error εo [67] in the readout, which we measure to be
below 1%.

Moreover, we consider the catch of the wavepacket incoming onto the buffer
to be optimal (Section 5.3.4). Thus, we further reduce the numerical Hilbert
space by putting aside the buffer and the pump. The catch is then simulated by
an instantaneous displacement on the memory field.

Finally, we model our system in the memory and qubit rotating frame using
the following Hamiltonian.

Ĥ/ℏ =− χm̂†m̂ |e⟩⟨e| −Km̂†2m̂2 −Ke |e⟩⟨e| m̂†2m̂2

+Re(f(t))σ̂x + Im(f(t))σ̂y (5.10)

with f(t) the complex envelope containing all the qubit drives. Using a time-
dependent Hamiltonian allows us to simulate the optimal counting with the ques-
tions Q0 and Q1. For instance, we can thus accurately take into account the finite
duration of the π

2
pulses. A Lindblad master equation enables us to take into

account the qubit relaxation time T1,q and pure dephasing time Tϕ and the cav-
ity lifetime T1,m as well as temperatures of qubit and memory. We restrict the
Hilbert space of the memory mode between 0 and 29 photons.

5.3.7 Wigner tomography

We use the method of Refs. [113–115] to directly measure the Wigner function

W (β) = 2
π

〈
DβPD†

β

〉
of the memory mode. We perform a displacement D†

β of
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a)

b)

Figure 5.11: Measured (a) and computed (b) Wigner functions after catching a
coherent state with a mean photon number |α|2 = 0.5, 1, 1.5 and 2 from top
to bottom respectively and heralding on a detected number n2 = 0, 1, 2 or 3
from left to right respectively. For each panel, the fidelity between the measured
Wigner function and the predicted one does not get below 95%.

amplitude −β (sech-shape with σ = 13ns) followed by a parity measurement.
P = exp

(
iπm†m

)
is the photon parity operator. The Wigner functions are mea-

sured on a 51x51 square matrix of amplitudes β where |Re(β)|, |Im(β)| ≤ 2.2.
The measured Wigner functions for mean photon numbers |α|2 = 0, 1, 1.5 and 2
are shown in Fig. 5.11.a. Each column corresponds to postselected measurements
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a) b) c)

d) e) f)

Figure 5.12: Success probabilities P|0⟩(0) (blue), P|1⟩(1) (orange), P|2⟩(2) (green)
and P|3⟩(3) (red) as a function of the ratio between the parameter in the model
and the same parameter in experiment. All curves are calculated in the case of
an initial coherent state of amplitude |α| =

√
0.5. Vertical dashed lines indicate

the result of the model for the actual experiment. Each panel probes the errors
coming from a) the qubit relaxation time T1,q, b) the memory relaxation time
T1,m, c) both qubit and memory relaxation times T1 = (T1,q, T1,m), d) qubit
and memory thermal population, e) additional Kerr rate Ke when the qubit is
excited, and f) readout error ϵ0.

for a given detected photon number n2.

Our numerical model above allows us to compute the predicted Wigner func-
tions for each panel of the figure. The predictions are shown in Fig. 5.11.b.
Note that these figures are obtained by computing the Wigner function directly
without modeling the readout of the parity photon number after displacement.

For an arbitrary outcome n2, the photocounter would ideally project the in-
coming state |ψ⟩ into |ψn2⟩ ∝

∑
j |n2 + 4j⟩ ⟨n2 + 4j|ψ⟩. We discuss nonidealities

in the measurement backaction in the main text. They are mainly due to the
finite lifetimes of the qubit and memory for low mean photon numbers |α|2.

In Fig. 5.11, some Wigner functions are not invariant by a phase shift as one
could expect from mixtures of Fock states. These patterns in the figure indi-
cate coherences between Fock states. Our simulations show that the coherences
originate from two main phenomena. First, the photon number measurement is
performed modulo 4, which preserves coherences between different photon num-
bers modulo 4 by projection. Second, due to the finite duration of the π/2 pulses
in the pulse sequence that performs question Qk, the encoding of the k-th bit of
the photon number in the qubit state is imperfect. Therefore, postselecting on
the measured binary code n2 preserves some coherence between the Fock states
that compose the initial coherent state |α⟩. Finally, the Wigner functions appear
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a) b) c)

d) e) f)

Figure 5.13: QNDness of the detector. Fidelity F between the quantum state ρ
predicted by our model and the ideal projected state ρn2 after catching a coherent
state of amplitude |α| =

√
0.5 for the outcomes n2 = 0 (blue), n2 = 1 (orange),

n2 = 2 (green) and n2 = 3 (red). Each panel addresses the same parameter as
in Fig. 5.12. Insets are the Wigner functions heralded on the counter outcome
n2 = 3 for the maximal value of the model parameter. Note that on the top
panels, the maximal value improves QNDness while it deteriorates it for bottom
panels.

distorted due to the memory nonlinear rates K and Ke.
The deviations from the ideal projected quantum state (fidelities in Table 5.2)

are further investigated in Section 5.3.8.

5.3.8 Error budget of the photocounter

In this section we numerically investigate the origin of the errors on the success
probabilities P|n⟩(n) to find n photons when the incoming wavepacket is in a Fock
state |n⟩ and on the QNDness, which is characterized by the fidelities F above.
We study the error budget by sweeping one (or more) parameters independently
of the others in our model.

• The finite qubit relaxation time T1,q entails different errors depending on
the choice of encoding the outcome n2 in the qubit state during questions
Qk’s. This choice is done by the sign of the second π/2 pulse in the se-
quence of Fig. 3. For each question Qk, the outcome on the k-th bit of
the photon number corresponding to the qubit excited state will get mixed
with the outcome corresponding to the qubit ground state. These errors
scale exponentially with 1/Tmodel

1,q (Fig. 5.12.a and Fig. 5.13.a).

• The finite memory relaxation time T1,m causes errors except for |n = 0⟩
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F(ρ, ρn2) n2 = 0 n2 = 1 n2 = 2 n2 = 3

|α|2 = 0.5 86% 52% 32% 4.9%

|α|2 = 1 77% 50% 34% 11%

|α|2 = 1.5 58% 48% 38% 18%

|α|2 = 2 39% 42% 37% 22%

Table 5.2: Fidelities F between the measured collapsed quantum states ρ and
the ideal quantum states ρn2 = |ψn2⟩⟨ψn2| for various outcomes n2 and various
mean photon numbers |α|2.

(Fig. 5.12.b and Fig. 5.13.b). The dominant source of error is then the
mixing of the outcome n2 with n2 − 1.

• The finite lifetimes T1,q and T1,m are our main sources of errors as the count-
ing probabilities P|n⟩(n) (Fig. 5.12.c) and state fidelities F (Fig. 5.13.c) get
close to 1 when both T1,q and T1,m increase. If both T1,q and T1,m increase
by an order of magnitude, the success probability will not get below 85%
for all outcomes (Fig. 5.12.c). The QNDness is more demanding and one
would need to increase by more than two orders of magnitude the lifetimes
in order to get fidelities beyond 80% (insets of Fig. 5.13.a-c). Note that
current state of the art in three-dimensional (3D) cavities and new mate-
rials demonstrates lifetimes indeed larger than 2 orders of magnitude [11,
131].

• Our device does not seem to be limited by thermal excitations (Fig. 5.12.d
and Fig. 5.13.d).

• A more faithful qubit readout would not bring significant improvements in
the success probabilities and QNDness (Fig. 5.12.f and Fig. 5.13.f).

• The memory self-Kerr rate K does not seem to affect the success proba-
bilities and QNDness (not shown). Indeed, the Fock states are eigenstates
of the self-Kerr term. However, the additional self-Kerr rate Ke when the
qubit is in |e⟩ has an important impact (Fig. 5.12.e and Fig. 5.13.e). Dur-
ing the interaction time Tk of question Qk, the qubit acquires an additional
parasitic phase n2KeTk for each Fock state |n⟩. Therefore, for n ≥ 1 and
each question Qk, the qubit phase does not end up in the right value, which
undermines the photon number encoding. As long as n2Ke2π/(χ2

k) ≪ 1,
this effect can be neglected. For our device, it translates into n ≪ 3.7.
This square dependence on the photon number n is the main limitation
of this scheme for increasing the maximal number of photons the detector
can resolve.

Similar to Ref [132], we compute the rate Ke using perturbation theory to
the fourth order in the transverse coupling strength

g =
√
χ∆(∆−Kq)/(2Kq).
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It is obtained as a function of the detuning ∆ = ωm−ωq, transmon anhar-
monicity −Kq = −EC/ℏ and dispersive shift χ

Ke =
χ2

Kq

(2∆3 − (∆−Kq)
3)

2∆(∆−Kq)(∆ +Kq)
(5.11)

It is then possible to reduce Ke considerably while preserving the behavior
of the device for large photon numbers by careful optimization of the device
parameters. For example setting the detuning accurately to ∆ = Kq

(1− 3√2)

cancels the rate Ke completely.
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Chapter 6

Steady-state squeezing

This chapter presents our work on dissipation engineering with the goal of sta-
bilizing a squeezed state with the memory with more than 3 dB of squeezing.
This idea is not new to quantum optics in general but is to our knowledge ap-
plied for the first time to an electromagnetic resonator instead of a mechanical
one [14, 133]. The amount of intra-cavity squeezing achieved (8.2(8) dB) com-
pares quite favorably to one of the main alternatives which consist in using an
external squeezer [134, 135].

Contrary to previous realizations of this squeezing protocol, the memory
mode has a significant Kerr anharmonicity (i.e. a term proportional to (m̂†m̂)2

in its Hamiltonian) which gives it an interesting relaxation dynamic once the
stabilization pumps are switched off. Interestingly, although the data taken is
only preliminary, detuning the quantum node from its Kerr-free point seems to
sometimes increase the steady-state squeezing (in terms of noise reduction com-
pared to a vacuum state) despite the crescent-like deformation this effect induces
on the state. Combining Hamiltonian and dissipation engineering techniques for
state stabilization seems to be a possibly fruitful direction as is shown in [136]
for a different class of states called cat states which are coherent superposition
of two coherent states |α⟩ and |−α⟩.

6.1 Article

This section is closely adapted from [137].

6.1.1 Introduction

One of the most striking predictions of quantum mechanics is that even in the
ground state of an harmonic oscillator, any quadrature measurement is noisy.
Zero point fluctuations can however be engineered and lowered for one quadra-
ture of the field at the expense of the other. These squeezed states have become
a central resource for quantum information processing. They can be used to
boost the sensitivity of many measurements including gravitational wave de-
tection [21, 138–140], perform quantum secure communication [141, 142] and

73
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used for measurement-based continuous-variable quantum computing [142, 143].
Squeezing is usually generated by parametrically pumping a resonator. This pro-
cess generates squeezing of both the intra-resonator and outgoing fields. While
any amount of squeezing can theoretically be obtained for the outgoing field,
the steady-state intra-resonator squeezing is limited to 3 dB below the zero point
fluctuations.

Intra-resonator squeezing beyond 3 dB can in principle be attained by inject-
ing squeezed light into the resonator input using an external source of squeezed
radiation [72, 134, 135]. In practice however, the achievable squeezing in such
schemes is limited by losses associated with transporting and injecting the ex-
tremely fragile squeezed state into the resonator. A more attractive approach
is to use reservoir-engineering techniques [144], where tailored driving results
in the cavity being coupled to effective squeezed dissipation [145–147]. These
methods can also surpass the 3 dB limit, and do not involve transporting an
externally-prepared squeezed state. Reservoir-engineering intracavity squeezing
beyond 3 dB has recently been achieved for mechanical modes, both in optome-
chanical systems [14, 148–150] as well as in a trapped ion platform [133].

In this work, we experimentally demonstrate that reservoir-engineering squeez-
ing beyond 3 dB can also be achieved for purely electromagnetic intracavity
modes, namely a microwave-frequency mode in a superconducting quantum cir-
cuit. Using the well developed circuit-QED toolbox, we also perform a direct
tomography of the intra-resonator squeezed state instead of inferring the res-
onator state from the measured output mode. This is achieved through the use
of an ancillary superconducting qubit, which enables in-situ Wigner tomography
of the squeezed intracavity microwave mode. The intracavity squeezing factor
reaches at least −6.7(2) dB, going well beyond the 3 dB limit. We also probe the
non-classicality of the squeezed state by investigating its photon number statis-
tics [151], and use our tomographic method to carefully study the full dynamics
of the dissipative generation of squeezing. This work thus presents an interesting
platform to stabilize, manipulate and characterize Gaussian states in-situ. Our
stabilization technique could also be extended beyond simple squeezed states to
other continuous variable states such as cat or grid states [152–157] by taking
advantage of the large non-linearities that can be engineered in circuit-QED.

6.1.2 System and model

Our device consists in a Josephson Ring Modulator (JRM) [98] coupling one
mode (the cavity) which we would like to stabilize in a squeezed state, and a
second auxiliary mode strongly coupled to a transmission line (the dump). The
cavity and dump have resonant frequencies ωc/2π = 3.741 55GHz and ωd/2π =
11.382GHz and decay rates κc/2π = 40 kHz and κd/2π = 8MHz. Our setup also
has an ancillary transmon qubit coupled to the cavity; its only role is to perform
intra-resonator Wigner tomography (Fig. 6.1.a).

When applying a pump at frequency ω− = ωd − ωc, and within the rotating-
wave approximation (RWA) and stiff pump condition, the JRM leads to a beam-
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cavity dump
Wigner 
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Figure 6.1: a) Principle of the experiment. A cavity mode (green) at frequency
ωc is coupled to a dump mode at frequency ωd (orange) via a Josephson Ring
Modulator (JRM, in purple). The dump mode is strongly coupled to a cold trans-
mission line through which the JRM is pumped at both frequencies ω+ = ωc+ωd

(two-mode squeezing) and ω− = ωd − ωc (photon conversion). A squeezed vac-
uum state is stabilized into the cavity as a result. An ancillary qubit with an
ancillary readout resonator is used as a Wigner tomograph. The contours of the
Wigner functions of each mode are shown as colored regions in the quadrature
phase space, while a dashed circle represents the vacuum state. b) Frequencies
of the involved modes and drives. c) Pulse sequence. The sum pump at ω+

with amplitude g+ and the difference pump at ω− with amplitude g− are applied
for a time ts. After a waiting time tw, the Wigner function of the cavity W (α)
is measured using a cavity displacement by −α followed by a parity measure-
ment [113–115].
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splitter interaction Hamiltonian Ĥ−/ℏ = g−d̂
†ĉ + g∗−d̂ĉ

†, where the pump am-
plitude controls the coupling strength g− between the cavity and dump modes
described by bosonic operators ĉ and d̂. It mediates coherent exchange of pho-
tons between the cavity and the dump and thus lossless frequency conversion [57,
158]. In contrast, a pump applied at frequency ω+ = ωd+ωc mediates a paramet-
ric down conversion process involving cavity and dump, Ĥ+/ℏ = g+d̂

†ĉ† + g∗+d̂ĉ.
The pump amplitude controls the coupling strength g+. On its own, this kind
of pumping leads to phase-preserving amplification [98, 99] and generation of
two-mode squeezed states [159]. Note that in order to avoid parasitic nonlinear
effects, we operate the JRM at a flux point which maximizes these three-wave
mixing terms while cancelling the four-wave mixing terms [63, 77].

Simultaneously pumping at these two frequencies enables various interesting
phenomena such as effective ultrastrong coupling [160, 161] or directional am-
plification [162–164]. Here, using a long-lived cavity mode, we show that this
double pumping scheme can stabilize a squeezed state [145, 146]. Indeed, in the
rotating frame, and setting the phase references such that g± are positive, the
total Hamiltonian reads

Ĥ/ℏ =d̂(g+ĉ+ g−ĉ
†) + h.c. (6.1)

In the case where g+ < g−, this Hamiltonian can be reinterpreted as a
beam splitter interaction between the dump mode and a Bogoliubov mode β̂ =
cosh(r)ĉ+ sinh(r)ĉ† with r = tanh−1(g+/g−). It reads

Ĥ/ℏ = Gd̂β̂† + h.c., (6.2)

where the coupling strength is G =
√
g2− − g2+. In the ideal case where the

coupling rate κd of the dump mode to a reservoir at zero temperature is much
larger than any other rates, and where the cavity lifetime κ−1

c is unlimited, the
Hamiltonian leads to the relaxation of the Bogoliubov mode into its ground
state. In that state, the cavity mode is a vacuum squeezed state with squeezing
parameter r = tanh−1(g+/g−).

The signature of this squeezing is best seen in the quadrature phase space of
the cavity mode. We denote X− and X+ the quadratures of the cavity mode that
have the smallest and largest variances in a given state. In the vacuum state of
the cavity (r = 0), the variance of the quadratures corresponds to the zero point
fluctuations

〈
X2

±
〉
|0⟩ = X2

0 . The squeezing factor one can generate in the ground

state of the Bogoliubov mode is simply a scaling of the variances by the factor
S± =

〈
X2

±
〉
/X2

0 = e±2r. In the general case, where the Bogoliubov mode is not
cooled down to its ground state, these factors become [146]

S± = e±2r
〈
(β ∓ β†)2

〉
. (6.3)

We thus see that in principle, the 3 dB squeezing limit can be surpassed ar-
bitrarily by having g+ approach g− from below (as this causes the squeezing
parameter r to diverge). However, in this limit the effective coupling rate G of
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a) b)

c)

Figure 6.2: Characterization of the stabilized squeezed state. a) Top panels:
measured steady-state squeezing S− =

〈
X2

−
〉
/X2

0 (left) and anti-squeezing S+ =〈
X2

+

〉
/X2

0 (right) factors. Bottom panels: theoretical prediction for S± using

Eq. (6.4). Green dashed lines correspond to the value gopt− as a function of
g+ that minimizes the squeezing S− according to Eq. (6.4) (i.e. calculated by
neglecting Kerr nonlinearities). b) Purity P (top, green), squeezing S− (bottom,
blue) and anti-squeezing S+ (bottom, orange) factors as a function of g+/g−
for a fixed value g−/2π = 1.85MHz (cut along the arrow in Fig. a). Circles
are the normalized eigenvalues of the covariance matrix of the measured Wigner
functions at each pump amplitudes as shown in (c) and reach a squeezing factor
as low as S− = −6.7(2) dB. Points with error bars are the values obtained when
correcting for cavity evolution during Wigner tomography (see Section 6.2.9),
which reveals a stabilized squeezing reaching as low as S− = −8.2(8) dB. Solid
lines come from the model Eq. (6.4). c) Selected measured Wigner functions
along the same axis g−/2π = 1.85MHz, for various g+/g− ratios as indicated in
the labels. The star indicates the Wigner function at optimum squeezing.
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the Bogoliubov mode to the dump goes down to zero. As a result, the compe-
tition between this engineered decay channel and the intrinsic cavity loss (rate
κc) prevents the Bogoliubov mode from reaching its ground state. This both de-
grades the effective squeezing of the steady state, as well as its purity. Thus, for
any value of g− there exists an optimum value of g+ that minimizes the variance〈
X2

−
〉
. This minimum increases with the value of g− and is finally expected to

saturate to a level set by the damping rates S− ≥ κc/(κc+κd), which reflects the
fact that the damping rate of the dump κd sets an upper limit to the coupling
of the bosonic mode to the effective squeezed reservoir.

We thus see that a prerequisite for achieving squeezing well beyond 3 dB is
to engineer a large ratio κd/κc. For our sample parameters, we have κd ≃ 200κc,
leading to a lower bound of S− ≥ −23 dB [146]. Further, taking into account
the thermal equilibrium occupancies nth

c and nth
d of the cavity and dump modes,

and in the limit of the experiment where κc,G ≪ κd, Eq. (6.3) leads to (see
Section 6.2.7 or [14] for formula without approximation)

S± ≃ κc(2n
th
c + 1) + Γ±(2n

th
d + 1)

κeff
(6.4)

where we introduce κeff = κc + 4G2/κd and Γ± = 4(g− ± g+)
2/κd. Eq. (6.4)

also makes it clear that the intrinsic loss rate κc and non-zero environmental
temperatures also lower the purity of the steady state P = Tr(ρ2) below 1,
where ρ is the steady state cavity density matrix. This follows from the fact that
P = 1/

√
S−S+ for a Gaussian state.

To measure the squeezing and anti-squeezing factors S±, we perform a full
in-situ Wigner tomography [113–115] using an ancillary transmon qubit at fre-
quency ωq/2π = 4.327 31GHz (Fig. 6.1.a). It couples dispersively to the cavity
with a dispersive shift χ/2π = −3.28MHz. A third resonator, at frequency
ωr/2π = 6.293GHz, is used to perform single-shot readout of the qubit state
with a fidelity of 96% in a 380 ns integration time. From the Wigner function,
we compute the covariance matrix of the cavity mode quadratures and diagonal-
ize it to extract the minimum and maximum cavity quadrature variances ⟨X2

±⟩.
Due to its coupling to the qubit, the cavity acquires an induced parasitic self-
Kerr nonlinearity −Kĉ†2 ĉ2 and a qubit-state-dependent self-Kerr −Keĉ

†2 ĉ
2 |e⟩⟨e|

with K/2π = 20 kHz and Ke/2π = 70 kHz (measured in a previous run of the
experiment). These non-linearities distort the squeezed state and thus reduce
the effective squeezing factor, similarly to what occurs for Josephson paramet-
ric amplifiers (JPA) [165]. While no analytical solution taking into account the
Kerr effects exists, Eq. (6.3) and Eq. (6.4) still provide a good description when
G ≫ K. In the future, these non-linearities could be harnessed as a resource to
stabilize more complex non-Gaussian states [152, 153, 166, 167].

6.1.3 Steady-state squeezing

The key advantage of reservoir engineering is that the desired target state is pre-
pared in the steady state, independent of the initial cavity state: one can simply
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turn on the pumps and wait. We thus turn on g+ and g− for a duration ts = 4µs
(cf Fig. 6.1.c) that is long enough to establish a steady state, and immediately
afterwards measure the Wigner function W (α). To perform the measurement
at each amplitude α, we start by applying a calibrated displacement D(−α) to
the cavity state using a cavity drive at ωc with a pulse shape chosen to be a
13 ns wide hyperbolic secant and whose complex amplitude is proportional to
−α. We then measure the cavity parity operator by reading out the qubit state
after performing two π/2 unconditional pulses on the qubit separated by a wait-
ing time π/χ = 152 ns. We perform phase-cycling, running each sequence twice
with an opposite phase for the second π/2 pulse, so as to remove most of the
parasitic contribution of higher order Kerr effects [168]. The Wigner function
is probed on a discretized phase space using a rectangular grid of 25x25 pixels
approximately aligned to the squeezing axis. Due to the finite window size (cf
Section 6.2.12), we could only resolve anti-squeezing up to 11 dB (dotted dash
line in Fig. 6.2.b). Each Wigner tomogram is averaged over 5000 realizations. To
increase the repetition rate and limit the low-frequency drifts, the cavity is first
emptied by applying a difference pump g−, cooling it down to a thermal vacuum
state with residual population nth

c = nth
d = 0.017 ± 0.003 (see Section 6.2.5).

The qubit is also reset to its ground state using measurement-based feedback.
Furthermore, to minimize the low-frequency noise as much as possible, we in-
terleave pump-on-measurements with pump-off-measurement. We thus obtain
experimental squeezing factors S± =

(〈
X2

±
〉
/ ⟨X2⟩off

)
·(⟨X2⟩off /X2

0 ) by first nor-
malizing the measured variances

〈
X2

±
〉
with the measured pumps-off variances

⟨X2⟩off and then correcting for the thermal occupancy ⟨X2⟩off /X2
0 = 0.15(3) dB.

The pumping strengths g+ and g− are calibrated using independent measure-
ments (Section 6.2.3). We estimate a statistical uncertainty of ±0.2 dB on the
variances extracted from the measured Wigner functions.

The obtained steady-state squeezing and anti-squeezing factors are displayed
in Fig. 6.2.a) as a function of g+ and g−. We observe a maximum squeezing
of −6.7(2) dB well below the −3 dB limit, which we believe to be the highest
squeezing factor observed in an intracavity microwave mode. Correspondingly,
we extract an anti-squeezing of 7.7(2) dB and thus a state purity of −0.5(2) dB.
For each value of the rate g+, the largest squeezing we observe occurs for g− close
to g+. This trend is expected from the analytical Kerr-free model Eq. (6.4) of
the system, which predicts the working point of largest squeezing as a function
of g+ (green dashed line in Fig. 6.2.a) [146]. However, contrary to the expected
monotonic increase of the optimal squeezing factor S− with g+ (Kerr-free pre-
diction in bottom panels of Fig. 6.2.a), we find a global maximum squeezing at
a finite value of (g−, g+). Note that for g+ > g− the system becomes unstable:
the qubit gets ionized [123], preventing us from measuring the Wigner functions
(grey shade area).

In Fig. 6.2.b-c), we show the squeezing and anti-squeezing as a function of
g+/g− as well as some measured Wigner tomograms, for g−/2π = 1.85MHz.
For g+ < 0.7g−, the measured variances are well captured by Eq. (6.4) with
exponentially increasing squeezing factors. For g+ > 0.7g−, the measured vari-
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ances start deviating from the theory (solid lines in Fig. 6.2.b). As can be seen
in Fig. 6.2.c), the squeezed states are not Gaussian anymore in this parameter
region. The Wigner functions develop an S-shape, a typical signature of the
cavity self-Kerr. We attribute this effect to higher order terms we have so far
neglected: the self-Kerr rate induced by the qubit on the cavity, as well as a
residual four-wave mixing term in the JRM Hamiltonian (see Section 6.2.10).

While the raw measurement of the Wigner function provides a good estimate
of the steady-state squeezing parameter (circles in Fig. 6.2.b), the finite measure-
ment time needed to perform tomography leads to a systematic error. During
this finite measurement time, the pump tones g± are off, implying that the cavity
is no longer coupled to an effective squeezed reservoir. The squeezed state thus
degrades due to the intrinsic cavity loss. A further error is caused by evolution
under the cavity-self Kerr nonlinearity during this time. Both these effects cause
our Wigner function methods to underestimate the true value of the steady-state
squeezing.

It is possible to correct for this measurement error and retro-predict via nu-
merical simulation the squeezing factors S± associated with the state prepared
at the end of the stabilization period [169]. To that end, we consider a series
of input model Gaussian states for which we numerically implement our exper-
imental Wigner tomography measurement. At the end of these simulations, we
obtain a mapping from Gaussian states to measured squeezing and anti-squeezing
factors that we are able to invert in order to retro-predict the stabilized state
(Section 6.2.9). Using this correction improves the best squeezing estimate to
−8.2(8) dB (dots with error bars in Fig. 6.2.b) with purity −0.4(4) dB.

It is interesting to compare our stabilization technique to other intra-resonator
microwave squeezing generation schemes. One possibility consists in driving a
cavity with a squeezed input state that is externally generated by a Josephson
parametric amplifier (JPA) [135, 170]. High squeezing factors [165, 170–172]
(≃ −10 dB) can be achieved in the amplifier output field. However, transferring
this state into a cavity is challenging as it is extremely sensitive to microwave
losses, resulting in degraded squeezing and purity. For comparison, we consider
a resonator driven by a pure squeezing source (in practice a JPA). To achieve
the same intracavity squeezing and purity as our setup (S− = −8.2 dB and
P = −0.4 dB respectively), the source would need to generate an output squeez-
ing better than ∼−9.1 dB and the losses between the source and the resonator
would need to be kept below 0.15 dB. This level of loss is smaller than the typical
insertion loss of common microwave components. It is hard to achieve, even if
all elements are fabricated in a single-chip architecture. We can also compare
against another approach for generating (but not stabilizing) a squeezed state,
based on the use of arbitrary state preparation techniques (e.g. the SNAP gate
protocol [173]). In Ref. [174], the authors used such an approach to obtain a
squeezing factor of −5.71 dB for a purity of −0.86 dB with a non-deterministic
success rate of 15%.
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6.1.4 Nonclassical photon distribution

One of the hallmarks of vacuum squeezed states is that they are quantum su-
perpositions involving only even-number photon Fock states. Such ideal states

have the form |ψ⟩ =
∑∞

k=0 tanh(r)
k
√

(2k)!

2kk!
|2k⟩. Our device allows us to directly

verify this unique, non-classical aspect of the squeezed states we stabilize in our
cavity [151]. This is because our coupling to the ancilla qubit is strong enough
to place us in photon-number-resolved regime where distinct cavity photon num-
bers can be resolved by measuring the effective qubit frequency, i.e. χ≫ Γ2 with
Γ2 = (11µs)−1 the qubit coherence rate.

After preparing the squeezed state, we perform spectroscopy of the qubit
using a narrow-bandwidth π-pulse at a varying probe frequency ω followed by
qubit readout (green curve in Fig. 6.3.a). The observed peak heights at each
frequency ω − ωq ≈ nχ allow us to determine the cavity photon-number distri-
bution P(n) [107]. We correct this dataset for the qubit residual thermal popu-
lation (1 %), the finite fidelity of the π-pulse and readout errors. Interestingly,
the peaks are not evenly spaced in frequency due to the higher nonlinear term
−Keĉ

†2 ĉ
2 |e⟩⟨e| with Ke/2π = 70 kHz. The photon number distribution P(n) are

then obtained from the qubit excitation probability at ωq − n(χ + 2Ken) (ver-
tical lines). For comparison, we also measure the photon number distribution
P(n) for two other cavity states: a thermal equilibrium state when no pumps are
applied (blue in Fig. 6.3) and a thermal state that we create by only applying
a sum pump g+/2π = 0.43MHz (orange curve). Note that this thermal state
is obtained by tracing out the dump mode for the vacuum two mode squeezed
state that is stabilized between cavity and dump [58].

For the squeezed state (green curve with g−/2π = 2.2MHz, g+/2π = 1.42MHz),
we observe a non-monotonic behavior: the weight of even photon numbers is en-
hanced, whereas that of odd photon numbers is suppressed (note the log scale
here). The non-zero but small population of odd Fock states indicates a devi-
ation from an ideal squeezed vacuum state. The measured data closely fits to
our numerical simulation (dots in Fig. 6.3.a). The measurement done with the
pumps off gives the thermal population of the cavity nth

c = 0.017 (blue dots) and
also indicates the measurement noise floor. For the thermal state, we observe a
Bose-Einstein distribution with a population nth

c = 1.5 (orange dots).

Even though their Wigner function is always positive, squeezed states are
typically regarded as non-classical states as they cannot be represented as sta-
tistical mixtures of coherent states. Formally, this means that they do not
have well-behaved Glauber-Sudarshan P representations [175]. Equivalently,
it also manifests itself in the behaviour of so-called Klyshko numbers Kn =
(n + 1)P(n − 1)P(n + 1)/nP(n)2. A state is non-classical if for one or more in-
tegers n, Kn < 1 (as this implies that the P function cannot be well behaved).
For example, a perfect squeezed vacuum state, as it only includes even photon
numbers, exhibits infinite odd Klyshko numbers and zero even Klyshko numbers.
Ref. [151] computed the Klyshko numbers for a squeezed state generated by an
external JPA and observed a Klyshko number smaller than 1, even though they
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a)

b)

Figure 6.3: a) Number photon distribution measurement using qubit spec-
troscopy. Solid lines: measured probability P|e⟩ that the qubit gets excited by
a 200 ns wide hyperbolic secant π-pulse of frequency ω after a cavity state is
stabilized. Blue: near vacuum state when no pumps are applied. Orange: ther-
mal state when only a pump g+ is applied. Green: squeezed vacuum state when
both pumps g+ and g− are applied. Vertical lines indicate the qubit resonance
frequency conditioned on the cavity having n photons. Filled circles: numerical
simulations. b) Dots with error bars: Klyshko number Kn (see main text) calcu-
lated from the qubit spectroscopy. Orange bars: expected Klyshko number for a
thermal state at any temperature. Green bars: Klyshko numbers predicted with
the model described in the text.

only observed monotonic behavior in the photon distribution P(n).
For a thermal state, the Klyshko number are given by Kth

n = (n+1)/n inde-
pendently of temperature (orange bars in Fig. 6.3.b). We observe this universal
relation with the prepared thermal state (orange points with errorbar). Inter-
estingly, it is a striking demonstration of the fact that a two mode squeezed
state generates a thermal distribution when tracing out one of the modes. It is
expected from the maximally entangled state at a given average energy. We do
not show the Klyshko numbers when the pumps are off because P(n) is below
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the noise floor.
For the squeezed state, we observe ample oscillations in the Klyshko numbers

(notice the log scale again). We measure K2 = 0.23 and K4 = 0.5 that are well
below one (green points with errorbars). Similarly to the cavity population P(n),
our numerical model (green bars) reproduces the observed Klyshko numbers.

6.1.5 Stabilization dynamics and decay of squeezing

a)

b)

Figure 6.4: Dynamics of the squeezing factors. a) Measured squeezing (dots) and
anti-squeezing (diamonds) factors normalized by their steady state values Sss

± as
a function of the stabilization time ts for g+/2π = 1.16MHz and various g−. The
data are shifted by 1 for each value of g− ranging in g−/2π = [1.48, 1.85, 2.22,
2.59, 2.96, 3.33] MHz (from light green to dark blue). Solid lines: results of the
numerical simulation. Rectangles indicate the predicted characteristic stabiliza-
tion times κd/G2 assuming 2% relative uncertainty on g+ and g−. b) Selected
measured Wigner tomograms for g−/2π = 1.85MHz and g+/2π = 1.16MHz af-
ter various stabilization times ts.

Our measurements establish that, as expected, the reservoir engineering scheme
we implement is able to stabilize a squeezed state in the cavity. In addition to
characterizing the steady state, it is also interesting to ask how long the scheme
takes to prepare the steady state. For the ideal (Kerr-free) system, and in the
limit of a large dump-mode damping, one can use adiabatic elimination to show
that this preparation timescale is κd/G2 [146].
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We can directly test this prediction in our experiment. The measured squeez-
ing and anti-squeezing factors are shown in Fig. 6.4.a) as a function of the time
ts during which the pumps are turned on for g+/2π = 1.16MHz and for various
values of g−. By normalizing the squeezing and anti-squeezing factors S± by their
steady-state values Sss

± , we observe, as expected, that the steady-state is reached
in a typical time of κd/G2 that decreases with g− (rectangles in Fig. 6.4.a). As
a consequence, the stabilization time increases with squeezing when considering
a fixed g+ value, as long as G dominates both the cavity loss rate κc and its
self-Kerr rate K. This is well-understood from the cooling dynamics of the Bo-
goliubov mode: larger squeezing parameters r = tanh−1(g+/g−) are obtained for
smaller values of G =

√
g2− − g2+ but they lead to a longer relaxation time. The

evolution of the squeezing factors is reproduced using numerical simulation of
the master equation (solid lines in Fig. 6.4.a).

It is also interesting to examine experimentally the time-evolution of the full
cavity Wigner functions. In Fig. 6.4.b), the evolution at g+/2π = 1.16MHz
and g−/2π = 1.85MHz (global minimum of the squeezing factor) shows how the
squeezing establishes with some rotation and distortion of the Gaussian distri-
bution due to Kerr effect as the average number of photons gets larger.

a)

b)

Figure 6.5: Decay of the squeezed state towards thermal equilibrium. a) Dots:
measured squeezing factor S− (blue) and anti-squeezing factor S+ (orange) as
a function of the waiting time tw during which the pumps are turned off after
they were at g+/2π = 1.42MHz and g−/2π = 2.6MHz. Solid lines: numerical
simulations using K/κc = 0.5. Dashed lines: same simulations but without self-
Kerr (K = 0). b) Measured Wigner functions after various pump off times tw
from 20 ns to 15.8µs as indicated on each label.
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The steady-state is thus reached in about κd/G2 but how fast does it disappear
once the pumps are turned off? Operating at g+/2π = 1.42MHz and g−/2π =
2.6MHz, we perform a Wigner tomography and compute the squeezing and anti-
squeezing after a waiting time tw (Fig. 6.5.a). A fast decrease of the squeezing
factor is observed in a characteristic time shorter than the cavity relaxation
time κ−1

c . We attribute this deviation from the behavior expected of a perfectly
harmonic oscillator (dashed lines) to the self-Kerr effect induced by the transmon
qubit onto the cavity. The corresponding predicted evolution of squeezing factors
is shown with K/κc = 0.5 as solid lines in Fig. 6.5.a). In numerical simulations,
we observe a transition from over-damped to under-damped oscillations of the
squeezing factor S− as K/κc increases beyond about 1 (Section 6.2.11). Since
K ≃ κc in the experiment, we are close to a critical damping regime.

6.1.6 Conclusion

Using dissipation engineering, we have shown the stabilization of a squeezed state
in a microwave resonator with a squeezing factor greatly exceeding the standard
3 dB limit for coherent in-situ parametric pumping. We directly measure the
squeezing factor by performing a direct Wigner tomography using an ancillary
qubit. Correcting for state evolution during measurement, we infer that we
achieve a squeezing factor of −8.2(8) dB. While reservoir-engineered squeezing
of mechanical modes has previously been demonstrated, this is the first demon-
stration of this method (to our knowledge) in an electromagnetic system. The
reservoir engineering technique used here thus extends the state-of-the-art for
intra-resonator microwave squeezing. Moreover, the produced squeezed state is
close to a pure state with purity of −0.4(4) dB. A displaced vacuum squeezed
state could also be stabilized in our system by adding a coherent drive on the
dump.

Beyond the stabilization of Gaussian squeezed states, the techniques pre-
sented here could be useful for the stabilization of far more complex states.
As discussed, Kerr nonlinearities already play an appreciable role in our ex-
periment. Future work could use this nonlinearity directly as a resource for
non-Gaussian state preparation. Recent work has demonstrated that the com-
bination of squeezing-via-parametric driving with Kerr interactions can be used
to generate cat states [152, 166] and even entangled cat states [167]. The com-
bination of dissipative squeezing (as realized here) with Kerr interactions could
similarly yield complex cat-like states. Our techniques could also be used to
generate squeezed Fock states [176], squeezed Schrödinger’s cat states [177] or
for the preparation of grid states without the need for measurement [154–157].
These engineered squeezed states could find many applications. Indeed, used
to erase which-path information, they can increase gate fidelity [178]; used to
increase distinguishability, they can improve qubit state readout [124, 134, 147,
179]. Squeezing can also be used in spin detection to enhance the light-matter
coupling [180, 181]. Finally, dissipative squeezing techniques employed on a sin-
gle site of a lattice of microwave resonators (see e.g. Ref. [182]) can serve as a
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shortcut for effectively generating highly-entangled many-body states [183, 184].
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6.2 Supplementary material

6.2.1 Steady-state Wigners tomograms

The Wigners tomograms of all the points of Fig. 6.2 are available on [185].

6.2.2 Sample and setup

The sample is the same as in Ref.[77] albeit for a different cool-down. The mea-
surement setup is also similar with the addition of the pump at the sum frequency
(Fig. 6.6). The two local oscillators for the pumps are generated by mixing the
output of the two microwave sources that are used to generate the dump and
cavity drives. Intermediate frequency (IF) signals – tens of MHz – generated by
the Quantum Machines’ OPX hardware are upconverted by these local oscilla-
tors. Finally, we combine and amplify the two pumps before combining them to
the dump port inside of the dilution refrigerator.

To successfully stabilize and measure a squeezed state on a well-defined
squeezing axis (g± real), a good phase coherence is required between the pumps
and cavity drives. Our setup ensures this condition by deriving the pumps from
the dump and cavity local oscillators. One difficulty of our experiment is the
large power required for the pumps to reach maximal squeezing factor. This re-
quires the use of a room-temperature amplifier after the mixers (Fig. 6.6). This
amplifier has a slow temperature-induced drift in gain, leading to a relative error
of 2% on the pump amplitudes (corresponding to the horizontal errorbars in
Fig. 6.2.b).

6.2.3 Calibration of the pumps

This section shows how to relate the IF amplitudes A− and A+ to the rates g−
and g+.

To calibrate g−, we measure the mean photon number in the cavity after
applying the pump when the cavity is initially populated with a coherent state
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Figure 6.6: Schematic of the measurement setup. The rf sources color refers to
the frequency of the matching element in the device up to a modulation frequency.
Multiple instances of a microwave source with the same color represent a single
instrument with split outputs. The sum (blue) and difference (red) pumps are
obtained by mixing the cavity and dump rf sources to ensure phase stability.
The TWPA [121] was provided by Lincoln Labs.

α =
√
6. Depending on the amplitude A− and duration 4σ of the pump pulse,

the rate at which the cavity coherently exchanges excitations with the dump
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varies (Fig. 6.7). Due to the large dissipation rate of the dump, the oscillations
of the cavity mean photon number ⟨n⟩ are damped. By fitting the oscillations
using a master equation, we find, as expected, a linear dependence of g− as a
function of A− that we use as calibration.

Figure 6.7: Calibration of the rate g−. Dot: measured mean photon number in
the cavity as a function of pump pulse width σ with a hyperbolic secant shape
for three amplitudes A−. Solid lines: prediction of the photon number using a
master equation using g−/A− = 74MHz/V.

Figure 6.8: Calibration of the rate g+. Dots: measured mean photon number
nth
c as function of the amplitude A+. Numerical simulations allow us to extract

the rate g+ (top axis) that leads to a given nth
c (see text). Solid line: third order

polynomial fit of g+ as function of A+ that is used as an empirical calibration.

To calibrate g+, we measure the mean photon number in the cavity nth
c after

applying a square pulse with amplitude A+ for 100 ns when the cavity is initially
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in vacuum. The mean photon number is measured via cavity-induced Ramsey
oscillations [77]. The only difference with the former reference is that the dis-
tribution of photon numbers is thermal instead of Poissonian. Hence, the phase
acquired by the qubit during the waiting time of the Ramsey sequence differs
and leads to a final qubit excitation probability of

Pe(t) =
nth
c (1− cosχt) + 1

2(1− cosχt)(nth
c + 1)nth

c + 1
e−Γ2t.

Using a time dependent master equation, the mean photon number is converted
into a two-mode squeezing rate g+. The curve g+ as function of A+ is non linear
(Fig. 6.8), likely due to higher order non-linearities in the Hamiltonian. The
calibration g+(A+) is then obtained by interpolating the measurement.

6.2.4 Cavity displacement calibration

The calibration of the displacement of the cavity under a pulsed coherent drive is
performed by counting the mean photon number. The method chosen to count
the mean photon number is to use the ancillary qubit and readout as a vacuum
detector [77]. This method also allows us to extract the cavity decay rate.

6.2.5 Cavity thermal population

The cavity thermal population is extracted from the cavity-induced Ramsey
oscillations of the ancillary qubit [77]. With the reset protocol, consisting of
a swap pulse (g−) between cavity and dump modes followed by a measurement-
based feedback initialisation of the qubit in its ground state, we measured a mean
photon number nth

c = 1.7± 0.3 · 10−2 corresponding to an effective temperature
of 44(2)mK for the cavity.

6.2.6 Correction and uncertainty on the quadrature vari-
ances

We wish to extract the squeezing and anti-squeezing factors by normalizing the
measured variances to the zero-point fluctuations. However, the residual thermal
population offsets the measured value of the zero-point-fluctuations by a factor
2nth + 1. This also means that all the measured squeezing factors have to be
offset by 0.15(3) dB. Due to other sources of uncertainty, such as fluctuations on
the cavity displacement pulses, we measure a higher statistical uncertainty for
the pump-off variances of ±0.2 dB.

6.2.7 Kerr-free analytical model

This derivation, which can be found in Ref. [14], is given here for complete-
ness. When continuously pumping at the difference and sum of the resonance
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frequencies with rates g− and g+, the Langevin equations read

˙̂
d = −κd

2
d̂+ i(g−ĉ+ g+ĉ

†) +
√
κdd̂in

˙̂c = −κc
2
ĉ+ i(g−d̂+ g+d̂

†) +
√
κcĉin, (6.5)

where the cavity (dump) input field operators ĉin (d̂in) verify [b̂in(t), b̂in(t
′)] =

δ(t − t′) and
〈
b̂†in(t)b̂in(t

′)
〉

= nth
b δ(t − t′) for b = c, d. Solving the Langevin

equations for the steady-state, the squeezing S− and anti-squeezing S+ factors
are given by

S± =
4(g− ∓ g+)

2κd(2n
th
d + 1)

(κd + κc)(4G2 + κdκc)

+
[4G2 + κd(κd + κc)]κc(2n

th
c + 1)

(κd + κc)(4G2 + κdκc)
. (6.6)

Assuming G, κc ≪ κd, Eq. (6.6) gives the simplified Eq. (6.4) given in the main
text.

6.2.8 Modeling the Kerr effect

The Kerr effect is not included in the analytical model described in Section 6.2.7.
It induces spurious effects, which reduce the maximal squeezing factor and ac-
celerate the relaxation of squeezing. In this section, we show how to take these
effects into account. We simulate our system using the QuantumOptics.jl li-
brary [130]. The steady-state simulations are run on an Nvidia Geforce 1080Ti
GPU, which allows us to reach Hilbert space dimensions of about 1800. All of the
other simulations are run on the CPU. Except for the Wigner tomography retro-
prediction, the qubit is not simulated but we take into account the Kerr effect
it induces on the cavity. In the case of the Wigner tomography retro-prediction,
the dump is adiabatically eliminated.

6.2.9 Retro-prediction of the Wigner tomography

In order to correct for the error introduced by the cavity evolution during Wigner
tomography, we resort to simulations of the cavity and qubit alone. Indeed, in
the absence of pumps, the effect of the JRM on the cavity is negligible. We
numerically implement our experimental Wigner tomography pulse sequence on
a truncated Hilbert with up to 50 excitations for the cavity and the two qubit
states. Starting from a range of initial squeezed states for the cavity, with vari-
ances (Si

−, S
i
+), we simulate the outcome of the faulty Wigner tomography by

computing the variances (SW
− , SW

+ ) of the simulated Wigner tomograms.
This data-set provides a function fW that maps actual variances (Si

−, S
i
+) of

the pre-measured quantum state to the variances (SW
− , SW

+ ) extracted from the
measured Wigner tomograms. As this function empirically appears bijective, the
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c)

d) f)

e)a)

b)

Figure 6.9: a-b) Representation of the map f−1
W . Pre-measurement squeezing

Si
− and anti-squeezing Si

+ as a function of the measured squeezing and anti-
squeezing factors SW

± . Circles: simulated values. Colors: linear interpolation
of f−1

W . c-d) Version of Fig. 6.2.a corrected for the measurement error during
Wigner tomography. e-f) Color: retro-predicted uncertainty on the squeezing
factors ∆Si

− and ∆Si
+ owing to a measurement uncertainty of ±0.2 dB on SW

± .

retro-prediction is performed by interpolating its inverse f−1
W . The interpolated

f−1
W for the initial squeezing and anti-squeezing, as well as the simulated points,
are shown in Fig. 6.9.a and b respectively. The retro-predicted initial squeez-
ing and anti-squeezing corresponding to Fig. 6.2.a-b are shown in Fig. 6.9.c-d
respectively.

Assuming the±0.2 dB of uncertainty on the measured SW
± , and retro-predicting

the evolution during Wigner tomography, we obtain an uncertainty ∆S± on the
retro-predicted squeezing and anti-squeezing factors that depends on the value
of the measured squeezing and anti-squeezing (Fig. 6.9.e-f).

6.2.10 Steady-state simulations

As seen in Fig. 6.2.b, the analytical Kerr-free model fails to quantitatively de-
scribe the squeezing factor at g+ > 0.7g− (Fig. 6.10.a). Here, we compute how
higher order terms in the Hamiltonian may explain this difference. The first
term we consider is the Kerr effect −Kc†2c2 induced by the qubit on the cav-
ity (Fig. 6.10.b). This simulation accurately predicts the optimal g+ but still
fails to reproduce the measured squeezing factors above g+/g− = 0.7. Exper-
imentally, we aim for a JRM flux bias that maximizes the three-wave mixing
term while cancelling the four-wave mixing term. However, small deviations
from this sweet spot create four-wave mixing terms between the cavity, dump
and pumps. Contrary to the retroprediction simulations which model a situa-
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b)a) c)

Figure 6.10: a, b and c) Crosses, retro-predicted squeezing factors for g−/2π =
1.85MHz as in Fig. 6.2.b. Shaded areas correspond to different models with 2%
uncertainty on g+ and g−; in a), Kerr-free analytical model, in b), steady-state
simulations with K/2π = 20(2) kHz, in c), steady state simulations including
in addition to the Kerr effect some JRM four-wave mixing terms, Kcd/2π =
250 kHz, Kpc|p−|2/2π = 172(4) kHz and Kpd|p−|2/2π = 172(4) kHz.

tion where the pumps are turned off, these extra terms may have a significant
impact on the squeezing factor where the pumps are turned on. In the RWA,
the four wave-mixing term leads to three kinds of interactions, a cross-Kerr be-
tween cavity and dump Kcdc

†cd†d, an AC-Stark frequency shift due to the pumps
2(|p−|2 + |p+|2)(Kpcc

†c +Kpdd
†d) and parametric squeezing drive due to pump

inter-modulation Kpcp+p
∗
−c

†2 +Kpdp
∗
+p

∗
−d

†2 +h.c.. The JRM also induces a self-
Kerr interaction for the dump, but we neglected it as it is one order of magnitude
smaller than Kpdp

∗
+p

∗
− in our case [59] and much smaller than the dissipation rate

κd anyway. The rates Kcd, Kpc and Kpd are not measured in this run. Realistic
values Kcd/2π = 250 kHz, Kpc|p−|2/2π = 172 kHz and Kpd|p−|2/2π = 172 kHz
can change the squeezing factors at the large g+, which comforts the assumption
that higher order nonlinearities may explain the deviations we observe between
our analytical model and the measured squeezing factors.

To numerically compute the steady-state squeezing and anti-squeezing as
a function of g− and g+, we use an iterative method to find the Liouvillian
eigenvalues on a truncated Hilbert space comprising up to 60 excitations for the
cavity and 30 excitations for the dump.

6.2.11 Simulations of the squeezing dynamics

The dynamics of stabilization and decay of squeezing are computed by solving
the master equation on a truncated Hilbert space comprising up to 20 excitations
for the cavity and 16 excitations for the dump.

To understand the effect of the self-Kerr term on the squeezing decay, we
simulate the evolution of squeezing for varying waiting time tw and various self-
Kerr rates K (Fig. 6.11). We initialize the cavity state at tw = 0 in a Gaussian
state with the measured S− = −5.7 dB and S+ = 6.2 dB of Fig. 6.5.a. Dismissing
the Kerr effect (K = 0), we observe an exponential damping of squeezing due to
the cavity relaxation. For nonzero K, the squeezing factor also oscillates in time.
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Our experimental value K/2π = 20 kHz is closed to the critically damped regime
where the effective decay time is maximally reduced. This observation highlights
the crucial role of Kerr effect in the imperfections of our Wigner tomography
technique used to estimate the variances.

Figure 6.11: Color: simulated squeezing factor S− as a function of waiting time
tw and cavity self-Kerr rate K for an initial state with squeezing factor S− =
−5.7 dB and anti-squeezing of S+ = 6.2 dB. The dashed line indicates our device
parameter K/2π = 20 kHz.

6.2.12 Effect of finite size Wigner tomograms

Due to experimental constraints, the probed quadrature phase space must be
finite. A rectangular window −x0 ≤ Im(α) ≤ x0 and −y0 ≤ Re(α) ≤ y0 is
chosen, where x0 = 1.4 and y0 = 2.7. This induces a systematic error on the
estimation of the variances. Indeed, the variances

〈
X2

−
〉
and

〈
X2

+

〉
are com-

puted from the Wigner function using
〈
X2

−
〉
= minθ

∫∞
−∞ Im(αeiθ)2W (α)d2α and〈

X2
+

〉
= maxθ

∫∞
−∞ Re(αeiθ)2W (α)d2α. Assuming a vacuum squeezed state with

minimal variance
〈
X2

−
〉
= σ2 and maximal variance

〈
X2

+

〉
= 1/σ2, its Wigner

function is given by:

W (α) =
2

π
exp

(
−Re(αeiθmin)2σ2 − Im(αeiθmin)2/σ2

)
Knowing only the Wigner function in a window [−y0, y0] over the real axis, the
inferred maximum variance is〈

X2
+

〉
y0

=
(
− 2σy0e

−y20σ
2

/
√
π + Erf(y0σ)

) 1

σ2

This variance saturates as function of σ towards a value of 11 dB in our case.
This means that we are unable to resolve any variance above 11 dB along the
real axis.
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Chapter 7

Quantum radar

This chapter deals with the practical implementation of a quantum detector
called a quantum radar. As of writing this thesis, the article presenting these
results is in preparation and the latest draft has been included in Section 7.3. A
couple of sections (Section 7.1 and Section 7.2) putting these results into context
is also included. They are written to be self-standing and can be read before or
after the article.

7.1 Quantum discord and quantum illumination

While a classical radar works by sending coherent light on a target and measuring
the amplitude of the reflected signal using a homodyne detector, it is possible,
under various assumptions, to make a better radar using one half of a two-mode
squeezed vacuum state as the signal and the other as an idler. By measuring the
reflected signal and idler together the quantum radar can achieve better target
detection performance [186] if the classical and quantum radar are both using
very low signal energy and the thermal environment of the target is very hot.

The improvement in measurement speed could theoretically go up to a factor
of 4 (i.e. 6 dB) but practical proposals that do not rely on storing large numbers
of quantum states before measuring all of them at once are limited to a more
modest 3 dB improvement. This quantum advantage is quite surprising at first
since it works best in the high noise regime contrary to most quantum sensing
protocols [187]. This poses the question of the underlying quantum resource used
in the quantum radar protocol providing this factor of 2 (or even 4) detection
time advantage. Indeed, it cannot be squeezing or entanglement since the state
of the system after reflection on the warm target has no entanglement left. It has
been suggested in a few articles [188, 189] that the underlying quantum resource
could be linked to quantum discord. In this section, we will review what is
quantum discord and try to assess whether this proposed link could be true.

95
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7.1.1 Quantum discord

Quantum discord is a quantum information quantity associated to a bipartite
state and was introduced in 2001 [190, 191]. Before looking at quantum discord,
let us review a couple of results of classical information theory introduced by
Claude Shannon [192]. The entropy associated to a random variable X is defined
as

H(X) = −
∑
x

P (X = x) log2 P (X = x). (7.1)

This quantity is in units of bits and represent the average amount of infor-
mation that can be stored in the variable X. This is very much analogous to
the thermodynamical entropy introduced by Boltzmann with the only difference
being the scaling factor kb ln 2 ≈ 1.38× 10−23 J/K ln 2.

When considering two random variables X and Y , one can also define a joint
entropy H(X, Y ) and a conditional entropy H(X|Y ) in a similar fashion

H(X, Y ) = −
∑
x

∑
y

P (X = x ∩ Y = y) log2 P (X = x ∩ Y = y) (7.2)

H(X|Y ) = −
∑
x

∑
y

P (X = x ∩ Y = y) log2 P (x = x|Y = y). (7.3)

The joint entropy is a bit difficult to interpret intuitively: it is the amount of
information contained in a virtual (X, Y ) random variable. It is always lower
than the sum of the entropies of X and Y , i.e. H(X, Y ) ≤ H(X) +H(Y ) with
the idea being that correlations between X and Y can only reduce the disorder.

The conditional entropy H(X|Y ) is the average amount of information re-
quired to describe X when Y is known.

Another quantity of interest is the mutual information which is defined as as

I(X;Y ) =
∑
x

∑
y

P (X = x ∩ Y = y) log2

(
P (X = x ∩ Y = y)

P (X = x)P (X = y)

)
. (7.4)

This quantity can be interpreted as a measurement of the independence of the
two variables. When X and Y are independent, I(X;Y ) = 0. The mutual
information is closely related to the entropy with

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (7.5)

By applying Bayes rule, it is also easy to show that

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (7.6)

In quantum mechanics, the concept of density matrix ρ̂ =
∑

i pi |i⟩⟨i| can be
seen as a random variable whose outcome is |i⟩ with a probability pi. It is thus
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natural to extend the concept of entropy to a density matrix as Von Neumann
did.

S(ρ̂) = −
∑
i

pi log2 pi = −Tr(ρ̂ log2 ρ̂) (7.7)

with the second equality valid in all bases. Extending the definition of joint
entropy to a bipartite state is also natural. If the density matrix ρ̂ now represents
a bipartite state composed of two subsystemsA andB, the joint quantum entropy
S(A,B) is still given by: S(A,B) = S(ρ̂).

One can also define the subsystem states using the partial trace operation
ρ̂A = TrB ρ̂ and ρB = TrA ρ̂ which means that a quantum mutual information
can also be defined

I(A;B) = S(A) + S(B)− S(A,B). (7.8)

There is however a major hurdle in generalizing the classical information
results for conditional probabilities when dealing with density matrix. If we
naively define the joint quantum entropy as

S(A|B) = S(A,B)− S(B) (7.9)

then we seemingly recover a quantum equivalent of Eq. (7.6) but this joint quan-
tum entropy can now be negative when A and B are entangled. It thus can’t be
interpreted as the information left in A after measuring B. So another general-
ization of the classical conditional entropy is desirable. One idea is to take the
minimum joint entropy of the system after any measurement of B. This would
lead to an alternative, asymmetrical definition of mutual information

J(A;B) = S(B)− min
{ΠA}

S(B|ΠA) (7.10)

where the minimum is taken over all possible projective measurements ΠA and
S(B|ΠA) =

∑
a paS(ρ̂B|a). By definition the quantum discord is the difference

between the two quantum generalizations of mutual information I(A;B) and
J(A,B)

δ(A|B) = I(A;B)− J(A;B). (7.11)

This quantity has a nice interpretation: it is the amount of total information
destroyed by the measurement of the A subsystem. It is zero for systems with
purely classical correlations [193] and for pure states it is a measure of entangle-
ment [194]. Another nice property of quantum discord is that it is much more
resilient to losses than entanglement. When considering a two-mode squeezed
state for example, if one introduces losses on one half of the state (by adding
a beamsplitter interaction with a vacuum field for example), then the entan-
glement goes down to zero at a finite value of attenuation while the quantum
discord always remains strictly positive [189].
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One of the main issues in using quantum discord is that it is a very hard quan-
tity to compute in general due to the optimization on all possible measurements.
A much simpler quantity to compute is the gaussian quantum discord [195] which
restricts the optimization to gaussian measurements. For gaussian states, this
is equivalent to optimizing over all observables [196], i.e., the gaussian quantum
discord of gaussian states is equal to their quantum discord. In general however,
the gaussian quantum discord of a bipartite state is larger than the quantum
discord.

7.1.2 Encoding quantum discord and quantum advantage

It has been suggested [188, 189] that the quantum advantage in quantum illumi-
nation is equal to the amount of discord used to encode the presence or absence
of the target. Formally, if we consider that the state of the reflected probe R0

(R1) and idler I can be represented by a density matrix ρ̂0 (ρ1) when the target
is absent (present). If we don’t know the state of the target (present or absent)
but know its probability p of presence (in practice, we often take p = 0.5) then
the system in the state ρ̂ = pρ̂1 +(1− p)ρ0 and the encoding quantum discord is
defined as

δenc = pδ(R1|I) + (1− p)δ(R0|I)− δ(ρ̂|ρ̂I). (7.12)

This quantity can also be seen as the average difference of discord in the sys-
tem between knowing and not knowing if the target is present. It is however not
a very intuitive quantity. It requires optimizing over all possible measurements
for the three different discords that need to be computed and is not an intrinsic
property of the probe state but it depends on the probe state, the added noise
and the target characteristics. Some states such as a beamsplitted thermal state
for example can have nonzero quantum discord [197] but cannot provide any
quantum advantage in a quantum radar.

Weedbrook first showed in 2016 [189] that this encoding quantum discord is
exactly equal to the information gain caused by going from an optical classical
probe to an optimal quantum probe in the very specific case of discrete variable
quantum illumination. Bradshaw then numerically computed one year [188] later
the quantum discord and quantum advantage of a continuous-variable quantum
radar akin to the one discussed here and found a very close approximate equality
between the two. He also proved a theorem that formally proves the equality
provided an important hypothesis is verified. This hypothesis is that the quan-
tum discord of the non-gaussian state ρ̂ is equal to its gaussian quantum discord
and that the optimal measurement is the heterodyne measurement. The latter
hypothesis has been proven true for a large family of gaussian states [196] and
given the very limited number of gaussian measurements is not too strong. The
former hypothesis however is much harder to prove and casts some doubts about
the result especially given the fact that numerical computations also make that
hypothesis.
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This fact and the lack of a direct link between the ”quantumness” of the
probe alone and the quantum advantage independent of the target call for more
investigation in the matter as this kind of noise resilient quantum resource could
provide exciting short-term applications of quantum technology.

7.2 Is the quantum radar the future of radar

technology?

In this section, we will discuss the potential real-world applications of the quan-
tum radar. The points in this discussion are based on [198–201]. This section
should be read knowing that the quantum radar has garnered considerable inter-
est from the military sector with the likes of Lockheed Martin, Raytheon, Saab
and Dassault having shown interest.

Despite the quantum radar name, the experiment discussed in this chapter
has little to do with radars as they are commonly thought of today. Real world
radars are used to detect the range and velocity of targets in a very large volume
and not only the presence or absence of a static target at a known distance.
Military applications especially use large amounts of power but even automotive
radars can use up to 10mW which is many orders of magnitude larger than the
quantum radar discussed here which send pulses containing fractions of a photon
every few µs which amounts to around 10−17 W.

Adapting the quantum radar to work in the real world faces many seemingly
impossible challenges. The quantum advantage demonstrated only works in the
very low signal-to-noise ratio regime where the signal is dwarfed by the thermal
noise of the target. This regime entails a very large detection time which is
seemingly incompatible with a practical radar. Modern radar are also able to
spatially multiplex (MIMO) the signal using phased arrays: many detectors are
placed in a grid and the relative phase of the reflected probe at each of this many
detectors is used to reconstruct the target position allowing the radar to quickly
scan large solid angles. This reconstruction is often done in the digital domain
thanks to the advent of fast high-performance ADCs. For a quantum radar, this
would entail the storage of many idlers and the usage of a very low loss and
completely analog circuitry to split the returned signals into the different spatial
modes as any measurement or amplification would destroy the correlations with
the idler.

A counter point often brought forward by some is that the quantum radar
could be useful in military applications to defeat radar warning receivers which
are able to inform the target of the presence of a radar beam by measuring the
RF power present in a certain frequency band. However, as currently presented,
the quantum radar is very easy to detect using a very similar hardware. The
requirement for high purity and low energy of the probe state mean that its
effective temperature is close to 0K. Hence, when the target goes through the
beam of a quantum radar, it would experience a drop in the noise background
of radiations coming from the direction of the quantum radar antenna. To avoid
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this drop, one would need to increase the power considerably which might bring
the quantum radar out of the small quantum advantage window. A more general
point is that given the low sensitivity of radar warning receivers required to avoid
false positives, a much larger power might be used without risking detection
which would place the radar in the region with no quantum advantage.

Quantum illumination thus seems very far from practical applications in radar
especially given the fact that current radars are still quite far away from being
optimal as, using our current technology, it would require the use of dilution
refrigerators, quantum limited amplifiers and very efficient homodyne detectors
which are still restricted to laboratories given the lack of commercial offerings as
well as the large power, cost, space and weight demands of such systems.

7.3 Article

This section is closely adapted from a paper in preparation.

7.3.1 Introduction

While quantum entanglement can enhance the performance of several technolo-
gies such as computing, sensing and cryptography, its widespread use is hindered
by its sensitivity to noise and losses. Interestingly, even when entanglement has
been destroyed [186, 194, 202], some tasks still exhibit a quantum advantage Q,
defined by a Q-time speedup, over any classical strategies. A prominent example
is the quantum radar [186], which enhances the detection of the presence of a
target in noisy surroundings. To beat all classical strategies, Lloyd [186] pro-
posed to use a probe initially entangled with an idler that can be recombined
and measured with the reflected probe. Observing any quantum advantage re-
quires exploiting the quantum correlations through a joint measurement of the
probe and the idler [188]. In addition to successful demonstrations of such quan-
tum illumination protocols at optical frequencies [203, 204], the proposal of a
microwave radar [205], closer to conventional radars, gathered a lot of interest.
However, current microwave implementations [206–212] have not demonstrated
any quantum advantage as no joint measurement was performed [198, 200, 213].
In this work, we implement such a measurement using a superconducting circuit
and demonstrate a quantum advantage Q > 1 for microwave radar. Storing the
idler mitigates the detrimental impact of microwave loss on the quantum advan-
tage, and the purity of the initial entangled state emerges as the next limit. While
the experiment is a proof-of-principle performed inside a dilution refrigerator, it
exhibits some of the inherent difficulties in implementing quantum radars such
as the limited range of parameters where a quantum advantage can be observed
or the requirement for very low probe and idler temperatures.

We focus on the simplest radar protocol, where the goal is to detect whether
a target is present with a minimum number M of attempts. Each attempt
corresponds to using a single microwave mode in time-frequency space to probe
the target, with the constraint that the probe contains a fixed number NS of
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signal photons on average (Fig 7.1a) and is detected in a background noise of NN

photons. We consider that all other parameters are known: target position, speed
and reflectivity κ. Several metrics can quantify the performance of a radar. We
choose the error exponent defined as E = limM→∞− 1

M
logPerror(M). It gives the

asymptotic scaling of the average error probability Perror(M) ∼ poly(M)e−EM ,
where M the number of probe modes used and poly(M) is a polynomial of
M . For simplicity, we assume no prior knowledge on the target state: initially
the target is present with a probability 1

2
. Under the assumptions of the central

limit theorem, the number of required attempts to reach a given error probability
scales as 1/E . The quantum advantage can thus be defined as Q = E/Ecl, where
Ecl is the error exponent of the best classical strategy.

Given a certain probe state, the largest achievable error exponent for any mea-
surement apparatus is the so-called quantum Chernoff bound [214]. De Palma
and Boregaard [215] showed that the best classical strategy (i.e. without quan-
tum memory) is to use a coherent state as a probe, which gives an optimum
Ecl = κNS

4NN
. This limit is asymptotically reached by a homodyne measurement in

the large noise (NN ≫ 1) limit [216]. Quantum strategies rely on initially entan-
gling the probe with an idler [186]. The quantum Chernoff bound for quantum
radar is Emax =

κNS

NN
in the low signal NS ≪ 1, high noise NN ≫ 1 regime [215],

which shows that the quantum advantage is at best Qmax = 4 for radars. Effec-
tively, it can be reached using one mode of a two-mode squeezed vacuum state
(TMSV) to illuminate the target [217]. However, there is no known detector
that can reach this advantage Qmax = 4 without global joint measurements of
the 2M modes of all attempts [218]. Using simpler pairwise joint measurements
instead [216, 219], it is nevertheless possible to reach Q = 2 with Epair = κNS

2NN
.

Here we implement this pairwise joint measurement using a superconducting
circuit [63, 77, 137] that also generates the TMSV state [159, 220–222], and
stores the idler mode while the signal probe travels. We then experimentally
determine the error exponent of this quantum radar for various signal and noise
photon numbers. To ensure a fair determination of the experimental quantum
advantage Q, the absolute best classical error exponent Ecl must be determined.
Previous microwave radar experiments managed to exceed the error exponent of
one instance of classical radar [206–212], but could not break the classical upper
bound Ecl. A central challenge of the experiment thus consists in performing
precise calibrations of the target and radar parameters κ, NS and NN .

7.3.2 Microwave Quantum Radar Implementation

Our superconducting device contains two resonators called buffer and memory
and operates at 15mK (Fig. 7.1b). The buffer, which emits and receives the probe
signal, has frequency ωb/(2π) = 10.20GHz and is coupled to a transmission line
with rate γb/(2π) = 25MHz. The memory, which stores the idler, has frequency
ωm/(2π) = 3.746 17GHz and a decay rate of γm/(2π) = 40 kHz. The resonators
are coupled by a Josephson Ring Modulator (JRM, purple in Fig. 7.1b) [57,
98, 99]. We apply a first pump tone at a frequency ωp = ωb + ωm for 28 ns,
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Figure 7.1: Quantum radar principle and implementation. a) An emitter sends a
signal mode with photon number NS to determine the presence of a target using
the least possible number of attempts. The signal is reflected or not from the
target, with reflectivity κ, in a thermal environment with mean photon number
NN . A receiver processes all reflected signals and decides whether the target is
present or not. Quantum probes can be initially entangled with an idler whose
processing by the receiver leads to faster determination and thus a quantum ad-
vantage compared to any classical probe. The advantage crucially relies on the
exploitation of quantum correlations by a joint measurement between idler and
received signal. b) Superconducting circuit (left) probing a target composed of a
delay line and tunable notch filter (right). It comprises a non-linear device (pur-
ple) generating and decoding entangled pairs between buffer mode (orange) and
idler memory mode (blue). A transmon qubit (grey) completes the joint measure-
ment. The entangling pump and thermal noise background are injected through
a directional coupler into the buffer port. c) Pulse sequence of the quantum
radar experiment. The phase difference ∆φ and delay τd between pump pulses,
as well as the gain G of the second pump pulse can all be tuned to maximize
the error exponent. The dashed box represents the observable measurement by
the qubit on the memory for the quantum radar but can be replaced by other
photocounting schemes for calibration purposes (see Methods).

generating a TMSV state between the memory and a probe mode immediately
exiting the buffer [58] (see Fig. 7.1c). The probe propagates to the target and
comes back when present, yet attenuated by a factor κ. The target is composed
of a flux tunable notch filter (see Methods) followed by a 12m-long coaxial cable,
allowing to tune the target reflectivity in situ from maximum (target is present)
to a value two orders of magnitude lower (target is absent). The reflected probe
is then combined with thermal noise injected via a weakly coupled auxiliary line.
The noise is generated at room temperature by amplifying the Johnson-Nyquist
noise of a 50Ω resistor with tunable gain (see Methods). A quantum advantage
can only be observed for NN > 1, yet the generation of the TMSV state requires
the buffer to be as cold as possible. We thus only switch on the noise source
after the TMSV state has been prepared and exited the buffer mode.
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The joint measurement is finally performed as follows. We drive the JRM by
a pump at ωp. The resulting two-mode squeezing operation prepares a memory
state that encodes the presence or absence of quantum correlations between probe
and idler [216]. The proposal of Guha and Erkmen [216] recommends to measure
the number of photons in the memory to reach up to Q = 2. Due to finite coher-
ence times, we chose a different detector based on an ancillary transmon qubit
dispersively coupled to the memory. Despite the large noise background, the
memory population remains small and it is sufficient to probe the occupation of
its first two states. The measurement consists in asking two questions: we apply
successively two π-pulse flipping the qubit state from ground |g⟩ to excited |e⟩
state when there is exactly 0 (first question) or 1 (second question) in the mem-
ory, each immediately followed by a qubit readout (see Fig. 7.1c and Methods).
For an iteration of the experiment, this protocol yields four possible outcomes:
gg, ge, eg, and ee, corresponding to the two measured qubit states, from which we
can build an observable x̂i = λgg |gg⟩⟨gg|+λge |ge⟩⟨ge|+λeg |eg⟩⟨eg|+λee |ee⟩⟨ee|,
where the coefficients λ⃗ can be chosen at will. We repeat the experiment M
times to build the sum X̂ =

∑M
i=1 x̂i. Owing to the central limit theorem, the

error exponent is then [216]

E =

(〈
X̂yes

〉
−
〈
X̂no

〉)2

2(σ(X̂yes) + σ(X̂no))2
, (7.13)

with
〈
X̂yes/no

〉
and σ(X̂yes/no) the average and standard deviation of X̂ when

the target is present or absent. For each value of the signal NS and noise NN ,
we numerically fine tune the coefficients λ⃗ in the chosen observable x̂ in order to
maximize the error exponent.

7.3.3 Tuning up the quantum radar

The optimal exploitation of quantum correlations between probe and idler also
requires to finely tune the pump pulse that recombines these modes. In con-
trast to the pump amplitude, the delay τd and phase offset φ between the two
pump pulses (see Fig. 7.1c) can be chosen by operating the radar without added
noise (NN = 0), and at the largest signal setting (NS ≈ 0.1). With the tar-
get present, we measure the average number of photons in the memory after
the first (NM,1,yes) and the second pulse (NM,2,yes) (see Methods). Figure 7.2a
shows the ratio NM,2,yes/NM,1,yes as a function of the phase difference between
the two pump pulses for a delay τd = 86 ns, exhibiting its cosine dependence
on φ. For the quantum radar experiment, we operate at the maximum of this
cosine function. The cosine dependence originates from an interference. In fact,
our experiment implements a new kind of SU(1,1) interferometer [159, 223, 224],
where one of the arms that host the TMSV is a stationary mode. In this partic-
ular case, the asymmetric loss probability κ on one arm prohibits witnessing any
remaining entanglement. At this optimal φ, we optimize τd by measuring the
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Figure 7.2: Tuning up the interferometer. a) Dots: measured average photon
number in the memory after the second pump pulse NM,2,yes as a function of
the phase difference ∆φ when the target is present, with NS ≈ 0.1, and without
thermal noise NN = 0. The number is normalized by the measured average
number of photons in the memory after the first pump pulse NM,1,yes. Line:
cosine function fitted to the oscillation with a phase offset ∆φopt = 4.385 b)
Dots: measured average photon number change in the memory after the second
pump pulse when the target is present or absent as a function of the delay τd.

average number of photons in the memory after the second pulse with (NM,2,yes)
and without (NM,2,no) the target. The population in the memory is maximum
for τd,opt ≈ 86 ns, see (Fig. 7.2b).

The last parameter we vary to tune the joint measurement is the amplitude
of the second pump, which can be recast as a gain G of the second two-mode
squeezing operation. There is no known closed form for the optimal gain G for a
given set of NS, NN and κ, in particular if the photo-counting errors are factored
in. We set NS and NN to particular values and measure the error exponent
E for several values of G. For the settings of Fig. 7.3, it reaches a maximum
E = 2.9(2) · 10−5 for a gain of about G ≈ 1.015. The amplification and the
error exponents are very small but it is precisely the regime where a quantum
advantage is expected [216]. The corresponding choice of measured observable
is shown in the inset of Fig. 7.3 for that maximum.

7.3.4 Quantum advantage and inherent limitations

In order to compute the quantum advantage Q = E/Ecl, we now need to carefully
calibrate the three parameters that set Ecl: the signal photon number NS, the
injected noise photon number NN and target reflectivity κ. Each parameter is
determined during the same experimental run, using a dedicated protocol.

The signal photon number is set by the first squeezing operation, in which the
circuit acts as a phase-preserving amplifier of gain G0, giving NS = G0n

b
th+(G0−

1) (1 + nm
th) with nb

th and nm
th the initial thermal populations of the buffer and

memory resonators. The pump amplitude tunes the gain to small values G0 ≳ 1
to ensure NS ≪ 1. To characterize NS, we make use of the fact that the first
squeezing operation creates a photon number for the idler of NI = NS−nb

th+n
m
th.

Determining NS thus only requires to calibrate the initial thermal population of
both buffer and memory and measure NI (see Methods). Without any active
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Figure 7.3: Observation of a quantum advantage for a microwave radar. Dots:
measured error exponent of the quantum radar Eq. (7.13) as a function of the
gain G of the squeezing operation involved in the joint measurement of signal and
idler. Here, the number of signal and noise photons are independently measured
to be NS = 3.53(4) · 10−2 and NN = 10.8(3). Each point is obtained using 15
series of 5·105 tries. After each series, NN andNS are re-calibrated. Green dashed
line: quantum Chernoff bound providing the upper bound on the error exponent
of any classical radar under the same conditions. The error bars and the colored
area represent the uncertainties (see Methods). Inset: raw measurements for the
highlighted point. For each possible outcome m, the table shows the number of
occurrences where m is found with the target being present (nyes) or not (nno).
The observable x̂ that is used to reach the highest error exponent is described
by the four λ coefficients. At this point, the quantum advantage is Q = 1.2(1).

cooling, the thermal equilibrium population of the memory is about 1.5·10−2. We
further improve the purity of the TMSV state by initiating all the experimental
realizations with sideband cooling of the memory down to nm

th = 2.5(5) · 10−3,
corresponding to a temperature of 29(1) mK. We also measure an upper bound
on nb

th of 5 · 10−3, which contributes to the error bars in Fig. 7.3.

To characterize NN , we use the fact that when pumped at ω∆ = ωb − ωm

with a large enough amplitude, the JRM induces a beam-splitter interaction
between the memory and buffer which equilibrates the thermal fluctuations of
the two modes. We thus use the qubit to perform a steady-state measurement of
the thermal population in the memory when noise and beam-splitter pump are
injected to obtain NN (see Methods).

To precisely measure the target reflectivity κ, we use the superconducting
device as a quantum vector network analyzer at the signal frequency. We send
a coherent state via the auxiliary input line on the buffer that is either directly
captured into the memory mode [63, 77, 137] by using a pump at ω∆ or captured
only after it reflected off the buffer, went through the target and came back into
the buffer. The reflectivity is given by the ratio of the average amplitudes of the
states captured into the memory, which we characterize by performing a Wigner
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Figure 7.4: Quantum advantage sensitivity to parameters. a) Contour plot of
the predicted quantum advantage Q as a function of the signal and noise pho-
ton numbers NS and NN . The model (see Methods) is an extended version of
Ref. [216] with a simplified model of photocounting. The superimposed colored
dots represent the measured quantum advantage Q as a function of signal and
noise photon numbers NS and NN . For each dot, we have measured the quan-
tum advantage Q as a function of receiver gain G and only show its maximum
value. The uncertainty on Q is not shown but ranges from 7 · 10−3 to 0.1. The
dots’ width and height represent the 4σ uncertainties on NS and NN . The initial
thermal population in the buffer resonator nb

th is set to 2 · 10−3. b) Predicted
quantum advantage as a function of the signal photon number NS for a fixed
value of noise NN = 10 for various buffer thermal populations ranging from 0 to
5 · 10−3.

tomography of the memory mode (see Methods). We find κ = 3.02(8) · 10−2

(3.2(9) · 10−4 ) when the target is present (or not).

In Fig. 7.3, the measurements of NS = 3.53(4) · 10−2, NN = 10.8(3) and κ =
3.02(8) · 10−2 enable us to compute the upper bound on the error exponent that
can be reached using coherent illumination: Ecl = 2.1(1) · 10−5. This quantum
radar thus beats the best possible classical one by a factor Q = 1.2(1). Note that
taking into account the non-zero reflectivity when the target is absent would only
lead to a slightly better quantum advantage since Ecl would decrease by about
1%.

The quantum advantage we observe is obtained for a small signal photon
number NS and a large noise photon number NN . In order to determine the
domain in the NS, NN parameter space where a quantum advantage can be
observed, we reproduce this measurement for various values of NS and NN and
identify the maximal quantum advantage Q as a function of receiver gain G, with
the results shown in Figure 7.4a. As these measurements and their associated
calibrations take at least few hours per point, we explore only a subset of the
parameter space. Besides, the error exponent Ecl = κNS/NN gets smaller and
smaller as NN increases or NS decreases so that it requires a longer measurement
time. From this measurement it appears that the quantum advantage increases
with NN as expected. Guha and Erkmen [216] also predict that Q increases at
low NS until reaching its maximum values of Q = 2. In our experiment we rather
observe that Q diminishes when NS becomes too small.
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We find that this behavior originates from the nonzero initial thermal oc-
cupation nb

th and nm
th of the signal and idler modes respectively. A model (see

Methods) taking nb
th and nm

th into account and using an idealized version of our
photon-counting measurement is shown in Figure 7.4a and qualitatively repro-
duces the experimental results in Fig. 7.4a. However we note that the model sys-
tematically underestimates the measured quantum advantage. While the origin
of this discrepancy remains an open question, the modeling of the measurement
of observable x̂ could be a likely culprit. Note that for this figure, we set nb

th to
be 2 · 10−3 which qualitatively reproduces our result better than the most pes-
simistic value of 5 · 10−3 used in Fig. 7.3 to demonstrate a quantum advantage.
On Fig. 7.4b, we evaluate this model for different values of nb

th, and reveal how
the window of signal photon number that exhibit a quantum advantage Q > 1
first shrinks then disappears as nb

th increases. We thus find that this thermal
population is a major limitation in our experiment, contrary to idler loss [205].
In our case, the latter only lowers the error exponent by 1− e−γmτd ≈ 2%.

7.3.5 Conclusion

In conclusion, we have demonstrated an advantage of quantum radar versus clas-
sical radar in the microwave domain. The experiment reveals the crucial impor-
tance of the purity of the TMSV state used to illuminate the target. Beyond the
loss of idler photons, this limitation imposes a stringent upper bound on the idler
temperature. The experiment makes clear that using this quantum advantage in
practical settings is a tremendous challenge. Strategies that perform the mea-
surement at room temperature and use post-processing to extract correlations
between signal and idler [210, 212] cannot show a quantum advantage Q > 1,
since the key part of the quantum radar resides in their joint measurement. Our
work highlights what is required to implement such a measurement apparatus.
While it is thus difficult to envision a possible future for applications in quantum
radar [198–200, 213], the origin of this quantum advantage is still a fascinating
puzzle [188, 189, 225, 226]. As the experiment confirms, quantum radar provides
an oddity in quantum technologies since the quantum advantage increases with
added noise. In another context, it is interesting to recast the quantum radar
as the signaling of a bit of information (target present or not) through a noisy
communication channel beyond the classical Shannon limit [17].

7.4 Methods

7.4.1 Measurement setup and samples

The cryogenic microwave setup is shown in Fig. 7.5. The superconducting device
in the Cryoperm shield is the exact same device that was used in the experiments
of Refs. [63, 77, 137]. The 12 m delay line is made of three microwave cables
in series. They are made of a 3.58mm semi-rigid coaxial cable constructed with
silver plated copper clad steel inner conductor, solid PTFE dielectric and tinned
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aluminum outer conductor. At the output of the buffer port, and right beyond
the directional coupler that injects the pump and noise into the buffer port on
demand, a tee with two bandpass filters routes the probe signal at ωb ≈ 10.2 GHz
towards the target while it routes the reflected pump at ωp ≈ 14 GHz into a
termination load. The spying line was not used during the experiment.
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Figure 7.5: Schematic of the wiring inside the Bluefors LD250 dilution refriger-
ator used for the experiment with a base temperature at 15 mK. The Josephson
Traveling Wave Parametric Amplifier (TWPA) was graciously provided by the
Lincoln Lab.

A key component of the target is realized by a tunable notch filter. It is a
stub filter made of a superconducting λ/2 resonator that shorts the transmission
line to ground when on resonance with the signal (Fig. 7.6a). The tunabil-
ity comes from the two Josephson junctions in a loop (SQUID) that terminate
the resonator. This device is made of sputtered Tantalum on a sapphire chip
while the Josephson junctions and the loop are made using e-beam evaporated
Al/AlOx/Al. A flux line is able to flux bias the loop fast enough so that one out
of two measurements is performed in the present or absent configuration.

Before being placed in the final setup described in Fig. 7.5, the tunable filter
part of the target was tested in a separate dilution refrigerator and its trans-
mission was measured as a function of the current applied through the flux line.
In Fig. 7.6b is shown the measured transmission κswitch (ratio of output and in-
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Figure 7.6: a. Schematics of the tunable notch filter. b. Measured power ratio
between output and input power transmitted through the filter as a function of
flux bias ϕ and signal frequency ω. A dashed line indicates the buffer frequency
that sets the probe signal frequency in the quantum radar experiment.

put powers) as a function of signal frequency and flux threading the loop. We
measure a bandwidth of around 100MHz, an isolation of around 20 dB and a
tunability of several GHz. In the experiment, circulators ensure that the signal
that gets out of the buffer port first reaches the tunable notch filter and only
comes back through the delay line if the target is present.
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7.4.2 Memory mode photo-counting

To count the photon number in the memory (NM or NI depending on context),
we use the dispersive interaction −χm†m |e⟩⟨e| with strength χ/2π = 4.75MHz
between the memory and the transmon qubit, whose resonance frequency is
4.23GHz. The qubit lifetime T1 = 6.5µs and coherence time T2 = 12µs put it
in the photon-number resolved regime [107]. In the experiment, we use three
different ways to perform the photocounting of the memory mode. The first one
is detailed in Fig. 7.1c. The others are detailed below.

To measure NI when it is not larger than 2, we use a technique based on
Ramsey interferometry explained in Ref [77]. It consists in performing a π/2
pulse on the qubit, waiting a varying amount of time t, sending another π/2
pulse and finally measuring the qubit using homodyne detection s+(t) of the
readout resonator output. In order to avoid experimental drifts in gain and
phase, we interleave this measurement with another one where the second π/2
pulse is a −π/2 pulse, which gives a measurement record s−(t). We then compute
s(t) = s+(t)− s−(t). A typical measurement is shown in Fig. 7.8. Because of the
dispersive coupling between the memory and the qubit, we observe oscillations
of the readout record s(t). Finally, we can fit those oscillations s(t). Assuming
that the memory is in a thermal state, and for t≪ T2 or NI ≪ 1, we find

s(t) ∝ e−t/T2

∞∑
k=0

Nk
I

(NI + 1)k+1
cos

(
t(χk + βk2)

)
, (7.14)

with β/(2π) = 70 kHz the next higher order non-linear term −β(m†m)2 |e⟩⟨e|
in the Hamiltonian and T2 = 12 µs the qubit decoherence time. The factors

Nk
I

(NI+1)k+1 are the probability to find k photons in a thermal state with average
photon number NI .

When NI is larger, we use another method based on the relaxation of the
probability of having 0 photons in the resonator towards its equilibrium. To
measure the probability of having 0 photons in the memory, we use a long π-
pulse on the qubit that is selective on the presence of 0 photons in the cavity and
then repeatedly measure the qubit population Pe(t) for various waiting times
t between the initialization of the memory and the photon number selective π-
pulse. By assuming a that the memory is initially in a thermal state with average
photon number NI , we find that

Pe(t) =
1

NIe−t/T1 + (1− e−t/T1)nm
th + 1

≈ 1

NIe−t/T1 + 1
, (7.15)

with T1 = 4.1 µs the relaxation time of the memory. We can then fit the measured
qubit excitation to this equation to find the average photon number initially
contained in the memory.

Calibration of nm
th

Using the Ramsey interferometry technique described above, we measured a
thermal equilibrium population of 1.5(1) ·10−2 for the memory mode, which cor-
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responds to an approximate temperature of 41mK. To improve the performance
of the radar, we actively cool down the memory using a beam-splitter interaction
between the memory and a higher frequency mode activated by pumping at the
difference of the two frequencies. Since this other mode has a much lower qual-
ity factor than the memory and the beam-splitter interactions tends to even the
number of photons, we are able to cool the cavity down to nm

th = 2.5(5) ·10−3. By
chance, this cooling transition is merely 79MHz above of the two-mode squeez-
ing transition enabling us to use the same mixer and lines for initial cooling and
radar operation. All of the error exponent measurements we present are preceded
by this 1.2 µs long cooling pulse.

Calibration of NS

The calibration of the signal photon number NS is realized by measuring the
average number of photons NI in the memory right after the first two-mode
squeezing operation. The two are related by NI − nm

th = NS − nb
th.

Finally to convert this average number of idler photons NI into an average
number of signal photons NS we need to know the difference between the thermal
populations of buffer and memory and while we were able to measure the thermal
population of the memory with a relatively good precision to nm

th = 2.5(5) ·
10−3, we were only able to place an upper bound of 5 · 10−3 on the number of
thermal photons of the buffer using a technique similar to the one described in
Section 7.4.2.

We also use this measurement to estimate the receiver gain G. Indeed the
number of photons NI we measure after a two-mode squeezing operation of gain
G is given by NI = Gnm

th + (G− 1)
(
1 + nb

th

)
leading to G = (1+NI + nb

th)/(1 +
nm
th + nb

th).
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Figure 7.8: Typical result of an average signal measurement sequence using the
Ramsey interferometry technique right after the first two-mode squeezing op-
eration of the radar sequence. Dots: measured signal s. Solid line: fit of the
oscillations using Eq. (7.14) with NI = 0.104(1).
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Noise setup and calibration of NN

As shown in Fig. 7.7, the noise photons NN are generated at room tempera-
ture by amplifying the Johnson-Nyquist noise of a 50Ω resistor using a chain of
amplifiers. To avoid saturating the final amplifiers or overloading the cooling ca-
pacity of the dilution refrigerator, bandpass filters are used to suppress the noise
outside of the buffer frequency window. The filters used are Marki FB 1050 with
a 1.5GHz bandwidth which is much larger than the 20MHz bandwidth of the
buffer making the noise perfectly thermal from the point of view of the buffer. To
adjust the noise, an electrically tunable attenuator is used as well as a solid-state
switch (HMC-C019) which is able to turn the noise on after the generation of
the signal/idler pair but before the signal possibly comes back from the target.

To calibrate the noise in-situ, while the noise is turned on, we first activate
the beam-splitter interaction between memory and buffer by pumping the JRM
at ω∆ = ωb − ωm which equalizes the photon number population inside both
resonators. Once a steady state is reached, we switch off this pump and measure
the average number of photons in the memory NN using the relaxation method
described above.
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Figure 7.9: Typical measurement of the noise photon number NN using the
relaxation method. Dots: excited population of the qubit as a function of waiting
time t after the measurement sequence. Solid line: fit of the relaxation Eq. (7.15)
with NN = 8.6(5).

7.4.3 Calibration of target κ

To measure the target reflectivity κ, we implemented a sort of narrow-band vector
network analyzer (VNA) using the superconducting circuit as a sensor: first, we
send a short coherent pulse (a 28 ns long wavepacket shaped by a hyperbolic
secant) through the directional coupler, the wavepacket then enters the buffer
where we can choose to either measure it or let it bounce back, through the
target and back to the buffer again with the attenuation κ we want to estimate.
To measure the average amplitudes of this wavepacket before and after going
through the target, we swap the buffer with the memory either before or after the
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wavepacket goes through the target and then perform a full Wigner tomography
of the memory state using the qubit. By fitting the Wigner function with a
Gaussian function, we can find the amplitude α1 and α2 of the incident and

reflected signals and deduce the target reflectivity κ =
∣∣∣α2

α1

∣∣∣2. Note that the

results are independent of the swap efficiency since the same swap sequence is
used for the incident and reflected waves. We measure κyes = 3.02(8) · 10−2

when the target is nominally present and a residual κno = 3.2(9) · 10−4 when the
target is nominally absent which agrees well with our independent 20 dB isolation
measurement.

7.4.4 Quantum radar model

When the initial state is generated by a squeezing operation with gain G0, the
signal and idler modes form a gaussian state with a zero mean described by the
covariance matrix of the two pairs of creation and annihilation operators (â†S, âS)

and (â†I , âI): VE =
〈
(â†S â

†
I âS âI)

†(â†S â
†
I âS âI)

〉

VE =


NS + 1 0 0 NC

0 NI + 1 NC 0
0 NC NS 0
NC 0 0 NI

 (7.16)

with NC =
√
G0(G0 − 1)(1 + nm

th + nb
th), NS = G0n

b
th + (G0 − 1)(nm

th + 1) and
NI = (G0 − 1)(nb

th + 1) +G0n
m
th.

The attenuation by the noisy target transforms the operator âS into a re-
flected âR =

√
κâS +

√
1− κâN (when the target is absent, we take κ = κno)

with âN the operator describing a thermal field with average photon number NN

1−κ
.

Hence at the receiver, the state is still gaussian with zero mean and a covariance
matrix

VR =


κNS +NN + 1 0 0

√
κNC

0 NI + 1
√
κNC 0

0
√
κNC κNS +NN 0√

κNC 0 0 NI

 . (7.17)

Finally, after the recombination step between the reflected signal and idler
with a two-mode squeezing operation of gain G and at the optimal phase offset
∆φopt, the state present in the memory is a gaussian state with zero mean and

with an annihilation operator âM =
√
GâI +

√
G− 1â†R. Before being measured,

the memory thus contains an average number of photons

〈
a†MaM

〉
= GNI + (G− 1)(1 + κNS +NN) + 2

√
κG(G− 1)NC . (7.18)

In the experiment, we perform a measurement that tries to measure the
probabilities that mode aM has 0 or 1 photons. However, finite lifetimes and
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coherence times of the qubit and memory modes lead to errors in this photo-
counting. In practice, the quantum advantage is obtained by optimizing the
observable x̂i by tuning the λ⃗ coefficients (see main text). The model simplifies
this procedure by assuming a perfect photocounter and truncating the simulated
measured outcome to 0, 1 or 2. The latter is chosen if more than 2 photons are
found.



Chapter 8

Appendices

8.1 Usage of cryogenic electromechanical RF switches

A common issue in measurements performed inside of a dilution refrigerator is the
desire to plug and unplug coaxial cables without doing a full warm-up and cool-
down cycle. In some cases, this can be achieved using an electromechanical switch
positioned in the coolest stage of the dilution refrigerator. For the quantum
illumination experiment, I initially used a Radiall model R573423600 latching
single-pole 6-throw SMA switch. This switch can be actuated by passing a large
current (10s of mA) into one of six coils to actuate a plunger which opens or
closes the connection depending on the sign of the current. The performance
of the switch at room temperature is excellent in terms of impedance matching
(less than 1.4 VSWR below 12GHz) and isolation (above 60 dB below 12GHz).
This switch can operate without any modifications at cryogenic temperatures
with a reduced actuation voltage (from 24V down to 12V) due to the reduced
coil resistance.

To avoid heating up the dilution refrigerator while actuating the switch, I
used a pulse generator to send a short pulse of around 50ms instead of using
a push button which would have sent an impulse of a irreproducible length.
Unfortunately, despite my best efforts, actuating the switch would sometimes
trap flux into the nearby quantum node, requiring a thermal cycle above 1K.
This would be characterized by a sudden change in the frequencies of the buffer
and memory resonators and a change in the variation of the frequencies as a
function of flux. This phenomenon didn’t occur at every switch actuation but
often enough to require frequent fridge cycling. Adding DC blocks on all the
ports of the switch reduced the frequency of the problem but didn’t eliminate it.
We suspect that eliminating this issue would have required an increased physical
separation between the switch and the sample (which were placed very close
together due to space constraints) and better shielding between the sample coil
wires and the wires feeding the switch coils to prevent stray inductive coupling.

115
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Figure 8.1: Picture of the switch installed on the coldest plate of the dilution re-
frigerator with the magnetic shield containing the quantum node sample directly
on the right. The large coil of coaxial cable on the top of the plate is the 12m
long delay line.

8.2 An automated measurement framework: qualib

A large part of the time spent in the lab can be dedicated to calibrating the
device under study. For a well known sample, this entails tedious and repetitive
measurements of the frequencies of the different elements, calibration of gates,
parametric amplifier pump settings, readout settings, ... It might be necessary
to perform this full suite of calibrations due to slow drifts over time, thermal
cycling of the dilution refrigerator or operating point changes (such as flux point
in the case of the quantum node). With the help of Bastien Voirin, we designed
an automated calibration framework called qualib [227] that can automate away
some of those tedious measurements.

A full description of qualib would be out of scope for this manuscript but
the general idea behind the program is that at all points, it keeps a dictionary
of assumptions containing the current best estimation of all the parameters one
wishes to calibrate. The chosen approach acknowledges that calibrations gener-
ally cannot be laid out in a tree (a directed acyclic graph) but need to be laid
out in a more general directed graph with some cycles. A list of measurements



8.3. ON-THE-FLY DEMODULATION 117

is specified in a calibration script to provide the program with a path through
the calibration graph. After each measurement is performed, it is analyzed using
a custom analysis program written in Python and the results are saved to the
assumption dictionary. At the end of the calibration cycle, a calibration report
is generated in the form of a Jupyter notebook to allow the user to inspect the
calibrations, spot any unusual pattern or simply save parameters of interest.

8.3 On-the-fly demodulation

Performing long measurements can represent a considerable challenge. Indeed,
the acquisition cards used to digitize the signal received from the readout have
very high data rates. In the group, for some experiments, we use acquisition
cards with data rates ranging from 0.5 to 2.5 GSps (Giga Samples per second).

Fortunately, most of time a few µs of measurement is enough to estimate
the state of the qubit with a good (> 95%) fidelity. This problem thus only
occurs when needing to perform long measurements or rapidly repeated mea-
surements. These measurements can be needed to measure the quantum jumps
of a qubit [228] for example. In practice, the data can be compressed consid-
erably by demodulating the signal: since the signal coming out of the readout
has a finite self-correlation time (due its limited coupling rate κ), the data can
be processed by time steps of order 1/κ which is usually in the 100 ns range.
In each of the time steps, the signal can be demodulated and compressed into
two floating point numbers thus limiting the data rate to only a few hundreds
of Mbit/s down from the initial 30 Gbit/s (12 bit samples coming at a rate of
2.5× 109 s−1).

The challenge here is to realize this processing in real time since storing the
data in memory is not an option for more than a few seconds of measurements
and pausing in between repeated measurements can considerably slow down data
acquisition.

Computing the two quadratures In and Qn of the signal oscillating at fre-
quency ω for each time step n requires computing

In =

(n+1)T∑
t=nT

st cos(ωt) (8.1)

Qn =

(n+1)T∑
t=nT

st sin(ωt) (8.2)

with T the length of each timestep (all the times are in units of sampling period).
The conversion to volts and normalization is done at the end of the measurement
to preserve accuracy through the calculations by only using integer additions and
multiplications.

To increase the speed of the calculations, the cos(ωt) and sin(ωt) are pre-
computed for all possible values of ωt mod 2π. Despite this optimization, these
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calculations require 5×109 s−1 additions and multiplications per channel and de-
modulation (the card has two channels and data can be multiplexed in frequency
in each channel). Thus on a modern computer clocked at a few GHz, this re-
quires carefully optimized code to be able to utilize all of the integer throughput
of the CPU.

Since our acquisition software Exopy is written in Python, an interpreted
programing language, writing the algorithm naively was not an option as these
calculations need to be run natively and not interpreted. To do so, with the help
of our intern Bastien Voirin, we first tried using numpy, a python library written
in C and Fortran, to speed up the calculations. Unfortunately, integer matrix
multiplications turned out to be much slower than floating point matrix multi-
plications due to the BLAS backend of numpy not implementing such operations
and numpy defaulting to an unoptimized implementation. Our second attempt
was more successful and leverages Numba [229] to compile python code on the
fly to optimized native code. The calculations are written naively using two
nested for loops but the JIT Numba compiler allows it to demodulate at a rate
of about 1 GSps. Given the fact that the duty cycle of typical experiments is a
few 10−2 (to allow the system time to reset), this is enough to demodulated peak
data rates of around 100 GSPs which more than fast enough for rapidly repeated
measurements (even if they require multiple demodulations). However, for long
measurements that have a higher duty cycle, a reduced sampling rate/faster CPU
is still necessary to keep up with the demodulation.

8.4 Fabrication recipe

Here is the fabrication recipe for the tunable notch filter (or reflective narrow-
band switch) used as part of the target of the quantum radar (Chapter 7). A
slightly modified version featuring larger evaporation angles was used to fabri-
cate some SNAILs parametric amplifiers (SPA) samples which were not used in
any experiments.

The starting point of the recipe is a sapphire chip measuring around 9x8mm
which has been diced out of wafer sputtered with a thin layer of tantalum. The
sputtering is performed by StarCryo in their facilities in Santa Fe after a piranha
cleaning to remove organic contaminants. The dicing is done in the Nanolyon
clean room.

8.4.1 Sample cleaning

I always performed this process in the standard fume hood of the chemistry room
and not in a clean room.

Place the sample in a beaker filled with NMP (N-methyl-2pyrrolidone also
called PG remover) in the bath of a sonicator heated to 60°C for at least 30
minutes with the sonication turned on. Rinse the sample with IPA (iso-propyl
alcohol) and dry with nitrogen on a cleanroom wipe.
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8.4.2 Optical resist spin coating

This step is entirely performed in the clean room.
Sonicate the sample for a few minutes in a room temperature acetone bath.

Rinse it with IPA and dry it with nitrogen before placing it for at least 3 minutes
a the hot plate preheated to 115°C. Let the chip cool down for at least one minute
and spin coat a few drops of S1813 resist at 4000 RPM for 1 minute. Bake at
115°C on the hot plate for 1 minute.

8.4.3 Optical lithography

I prepared the optical lithography masks using the python library drawpy [230]
and exported them in GDS format. I then imported and rasterized the GDS in
the Microlight 3D Smart Print software. The maskless nature of this lithography
machine allowed for quick iteration at the cost of longer exposure times and lower
resolution (on the order of 3 µm). The dose is not calibrated but I used 0.55s
exposure time with the high resolution mode 500x300 to avoid the edges of
the DMD (digital micromirror device at the heart of the maskless lithography
machine) which have aberrations.

Due to the large size of the sample, stitching was required to expose the entire
pattern, which, due to the large stitching errors, lowered the yield of this step to
around 1 in 3 or 4.

8.4.4 Development of the optical resist

Development is done in the chemistry room by holding the sample using tweezers
and agitating it for 50 s in a TMAH solution (Tetramethyammonium hydroxide,
MF319). The sample is then washed in deionized water and dried with nitrogen.

8.4.5 Etching

The sample is then etched in a nitric acid and hydrofluoric acid solution (Transene
Tantalum Etchant 111) for 19 s. The sample is then quickly and thoroughly
washed in deionized water.

At this point, the sample is inspected and if the etch is satisfying, the rest
of the resist is removed by another cleaning step consisting of 30 minutes of
sonication in an NMP bath heated to 60°C followed by an IPA rinse and nitrogen
dry.

8.4.6 Spin coating the electronic bilayer resist

The resist stack for the electronic lithography steps consists of a first layer
of PMGI (based on polydimethylglutarimide, PMGI SF7) with a thickness of
around 550 nm below a second thinner layer of PMMA (poly(methylmethacrylate),
PMMA A4) with an approximate thickness of 150 nm.
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The sample is first dried on the hot plate while it heats up to 200°C (around
10 minutes). It is cooled down for 2 minutes and then spin coated with a few
drops of PMGI at 2000 RPM for 60 s and then baked for 5 minutes at 200°C.

Because of adhesion issues of the PMGI (especially after a few cycles of
electronic lithography and cleaning), the baking was later increased to 10 minutes
at 210°C.

The sample is once again left two minutes to cool down and then spin coated
with PMMA at 4000 RPM for 60s and baked for 15 minutes at 180°C. This
long baking time was chosen to minimize carbon contamination of the sensitive
electronic microscope used for lithography.

8.4.7 Electronic lithography

Electronic lithography is performed using a Zeiss Supra 55VP microscope aug-
mented with a fast shutter, a DAC and the NPGS software (by JC Nabity). The
lithography masks are also generated using drawpy, exported in GDS and con-
verted in DesignCAD format by NPGS. The acceleration voltage is set to 30 kV
and the electronic dose is set to around 300µC/cm2 for a pixel size of around
2x2 nm.

Because the resist is not electrically conductive, a 10 nm layer of aluminum
is evaporated onto the sample before the exposure.

8.4.8 Development of the electronic bilayer resist

The first steps consist in removing the thin aluminum layer added for charge
management in the previous step. The aluminum is dissolved in a bath of potas-
sium hydroxide and the sample is then rinsed in deionized water and dried with
nitrogen.

The PMMA is then developed in a 1:3 MIBK/IPA solution (MIBK: methyl
isobutyl ketone) for 60 s and washed for 20 s in a pure IPA solution and dried
using a nitrogen blower. At this point the sample can be inspected under an
optical microscope to make sure that the lithography was successful.

The PMGI can now be etched in a cold MF319 beaker (around 5°C) for 40 s,
rinsed in deionized water and nitrogen dried.

8.4.9 Junctions evaporation

The junctions are now ready to be evaporated. To do so, the sample is mounted
in the load lock of a Plassys MEB550S electron beam evaporator. First, the
tantalum oxide is removed using an argon ion milling process, then a first layer
of 20 nm of aluminum is evaporated onto the sample at a rate of 0.5 nm/s while
the sample is tilted at 22°. An oxide layer is then grown by adding around 1mbar
of oxygen in the chamber for 50 minutes. The exact pressure and time is adjusted
to tune the junction resistance. Finally, a second layer of 40 nm of aluminum is
evaporated at the same 0.5 nm/s rate with the sample tilted at -22°.
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8.4.10 Lift-off

To lift-off the excess resist and aluminum, the sample is placed for around 1 hour
in a 60°C NMP bath. The sonication is turned for a few seconds at the end of
the process, the sample is then washed in IPA and dried using nitrogen.

At this point, the resistance of the test junctions is measured. If they are
satisfying, the sample is wire-bonded to a carrier PCB, placed in a sample holder,
connected inside the dilution refrigerator and cooled down. If not, the junctions
are removed using potassium hydroxide, the sample is cleaned in a hot NMP
bath and the process is repeated starting from Section 8.4.6 with an updated
junction design or some modified oxidation parameters.

8.5 Testing of the JAWS sample holder

Part of my time during my PhD was spent investigating a new sample holder
called JAWS (Joint Assembly for the Wiring of Superconducting Circuits) de-
veloped by Marius Villiers at ENS Paris to share among various French research
teams using superconducting circuits. The idea behind this project is that many
teams are spending large amount of time in RF engineering to design and build
various sample holders which all aim to fulfil the same design goals.

A sample holder for superconducting circuit should provide a few things:

1. a good thermalization of the superconducting film. This limits the number
of quasi-particles and cools down all the electromagnetic modes of the
sample.

2. a low-loss way to couple signals in and out the chip. Usually this is done by
wirebonding the sample to a carrier PCB and soldering coaxial connectors
(SMA for example) on the other side of the PCB. Direct connection to
coaxial connectors can also be used [231].

3. a good isolation from the noisy electromagnetic environment found outside
the sample holder. One very successful strategy used is to place the sample
in a cavity. All the radiations below the fundamental frequency of the cavity
is thus severely attenuated. The cavity needs to be small enough to have
a fundamental frequency above all the frequencies used in the sample and
should have a high enough quality factor to provide good filtering.

The sample holder used in all three experiments described in this thesis use
a sample holder fulfilling points 1 and 2 but not really point 3 due to the design
which is far from being light-tight.

The JAWS sample holder promises to fulfil all three points. It consists of three
gold-plated copper pieces housing a carrier PCB and in its center, the sample.
The sample, designed to be slightly under 10x11mm, is placed in a high quality
factor rectangular gold plated cavity with a fundamental resonant frequency of
around 11.5GHz. The JAWS sample holder uses 6 SMA connectors for the RF
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connections: the core of the connector is a glass bead directly soldered in a hole
drilled on the side of the box. An additional 8 DC connections are provided on
a micro-D connector. The bottom and top plates are designed to squeeze the
top and bottom of the PCB to create a good seal around the central cavity and
increase the cavity quality factor.

Assembly of the sample holder is quite difficult and time consuming because of
the soldering of the glass beads connectors, the very tight DC connector assembly
and the choice to solder the PCB to the central box segment using shark fins
(see Section 8.5).

The sample holder seems to perform well in terms of coherence with the pre-
liminary measurements of some high coherence qubits. A Ramsey spectroscopy
measurement also seems to confirm the high quality factor of the box [232] We
haven’t tested the performance ourselves and it would be hard to compare with
the old sample holder given the fact that the two sample holders are designed
for different sample sizes but it stands to reason that the small, relatively high-
Q cavity surrounding the sample is much preferable to the large low Q cavity
present in the old sample holders.
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Figure 8.2: Room temperature characterization of the JAWS sample holder.
Left: calibrated transmission measurements of three pairs of ports. The ports
are connected together by a dummy sample. Right: Reflection measurement of
the 6 RF ports with the other 5 terminated by a 50Ω resistor.

The main characterization we performed was the measurement of the trans-
mission and reflection coefficients at room temperature of the sample holder itself.
In order to do so, we connected the 6 RF lines two by two using a small pur-
pose=designed chip in place of the sample. The results shown in Section 8.5 are
somewhat disappointing. First of all the reflection measurements clearly show
that there are two different kind of ports: ports 1 and 6 have a very different
(and worse) reflection curve compared to the other 4. This makes sense given
the symmetry of the sample holder: ports 2 through 5 are quite symmetrical and
the transmission line on the PCB are (up to rotations and translations) identical
whereas ports 1 and 6 are connected to longer transmission lines on the PCB
(see Section 8.5). They also show a performance that generally degrades with
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frequency with all ports reaching −15 dB return loss at only 5.2GHz and −10 dB
at around 15GHz. This general behavior points to the limited bandwidth of the
buried CPW line. More worryingly, some resonances are clearly visible at much
lower frequencies. The first resonance is at 4.44GHz for the 2-3 line and given
the fact that it is not seen in the other, nominally identical 4-5 line, it points
to a mistake in the assembly or wirebond. This wavelength is around the total
length of the line so it can be caused by a simple impedance mismatch. The 1-6
line exhibits two much larger resonances centered around 6.7GHz and 10GHz
with losses increased by as much as 3 dB compared to the the other two lines.

Figure 8.3: 3D view of the PCB inside the sample holder. The 6 RF connectors
are labelled RF1 to RF6 and the transmission line connecting them to the sample
have been highlighted. Credits: Felix Rautschke.

To understand the first problem better of general performance decrease at
higher frequencies, I performed some RF simulations of the PCB transmission
line using Ansys HFSS. The transmission line consists of three sections: the
sections are the two ends are standard coplanar waveguide sections with a bottom
ground and a central section where the CPW is buried under another top ground
plane. This top plane then contacts the top part of the sample holder which closes
the sample cavity. The results are shown in Section 8.5) and predict a 3 dB cut-
off frequency of around 18GHz. This frequency is quite low for some parametric
circuits where high-frequency pumps at 2 or 3 times the resonant frequencies are
used and it explains some of the general drop in measured transmission at the
higher frequencies. This behavior is caused by the limited stitching of the two (or
three) ground planes. When the wavelength becomes a significant fraction of the
physical separation between two ground vias, waveguide modes can propagate
between the ground planes which is seen as losses from the point of view of the
input coaxial port. Solving this issue would simply require adding more vias and
shrinking all the dimensions of the transmission line.



124 CHAPTER 8. APPENDICES

0 5 10 15 20
Frequency (GHz)

60

50

40

30

20

10

0

Re
tu

rn
 lo

ss
 (d

B)

7

6

5

4

3

2

1

0

Tr
an

sm
iss

io
n 

(d
B)

Return loss
Transmission

Figure 8.4: Left: 3D model of the simulated transmission line. The signal is in-
jected from the pin in the top right, travels through a short section of grounded
CPW, then through a longer buried section and finally emerges for a short dis-
tance before reaching the sample (not simulated). Vias are used to stitch the two
(or three) ground planes together. Right: Simulated transmission and reflection
coefficients

Finally, I investigated the parasitic resonances of the sample holder by look-
ing into the coaxial to CPW transition. Indeed, impedance mismatches are
commonly found at such transitions and the parasitic mode frequencies in the
GHz suggest that the modes could be on the PCB. A picture of the simulated
geometry is shown in Section 8.5. The matching with the most precise geome-
try indicates an input impedance discontinuity of around 55 ohms as seen in the
time domain reflectometry (TDR). Moreover this discontinuity seems to be very
sensitive on the exact geometry of the transition. In particular, the small gap
between the PCB and the wall of the sample holder create a larger inductance
for the return path than for the signal path. This causes an increase in the char-
acteristic impedance of the line. The solution to this problem is to simply reduce
this gap from 250µm down to around 120 µm. This unfortunately requires the
design and manufacture of new PCBs which has not been done as of writing.
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Figure 8.5: Model used for the simulation of the coaxial to CPW transition. The
large block in the top right represents the wall of the sample holder. It is drilled
to house a coaxial cable. At its end the glass bead and the hole it has been
soldered into are carefully modeled. The beginning of the PCB is a simplified
version of the previously simulated transmission line. The initially suspect lumps
of solder connecting the central pin and the shark-like fins to the PCB are also
included.
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