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Résumé :
La thèse présentée vise à spécifier les phéno-

mènes physiques appelés à se produire dans la lu-
mière extrêmement intense issue de miroirs plasma
relativistes, d’intensités comprises entre 1024 et
1029 W.cm�2, dans différentes configurations. Ces
travaux s’inscrivent dans la continuité des progrès
continus de l’intensité lumineuse accessible par la-
sers ultra-brefs de haute puissance, motivant la
recherche de phénomènes relevant de l’électrody-
namique quantique en champs forts, quasiment
inobservés à présent. Si réaliser de telles expé-
riences permettrait le test de théories fondamen-
tales, établies ou spéculatives, ainsi que la généra-
tion de sources secondaires de particules remar-
quables, nombre d’entre elles requièrent des in-
tensités supérieures à 1025 W.cm�2, hors de por-
tée même des infrastructures de classe Pétawatt.
Les miroirs plasma relativistes (MPR) offrent une
alternative séduisante, permettant de réaliser les
champs forts requis avec les technologies actuelles.

L’interaction de la lumière MPR avec le vide

quantique du champ électron-positron a été étu-
diée via la diffusion photon-photon, dont nous
calculons les signatures expérimentalement obser-
vables. De même, un seuil d’intensité est défini
pour la conversion du champ électromagnétique
MPR dans le vide en paires électron-positron par
le processus de Schwinger. L’interaction avec de
la matière préexistante a été envisagée sous deux
formes : la focalisation du faisceau MPR sur une
cible solide, ou la collision avec un faisceau d’élec-
trons de 10 GeV. Dans le premier cas, une produc-
tion exponentielle de particules a lieu par l’effet
de « cascade QED », aboutissant à des faisceaux
d’électron-positron relativistes de densité extrême
(> 1028 cm�3) et de durée attoseconde. Dans le
second cas, le champ électrique dans le référentiel
du faisceau d’électrons atteint des valeurs telles
que, selon la conjecture de Ritus-Narozhny, les no-
tions usuelles d’électrons, positrons et photons per-
draient leur validité théorique, ouvrant une pos-
sible fenêtre empirique sur un régime d’interactions
lumière-matière actuellement inconnu.
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Abstract :
The present thesis aims at specifying the phy-

sical processes to occur in the extremely intense
light of relativistic plasma mirrors, with intensities
ranging from 1024 to 1029 W.cm�2, in different
configurations. These works take ground in the
continuous progress of achievable light intensity of-
fered by ultra-short high power lasers, motivating
the search for strong-field Quantum Electrodyna-
mics phenomena, yet essentially unobserved to this
day. While achieving such experiments would allow
for the test of fundamental theories, either establi-
shed or speculative, together with the generation
of remarkable secondary sources of particles, many
would require intensities beyond 1025 W.cm�2

that even Petawatt-class infrastructures can not
reach. Relativistic Plasma Mirrors (RPM) offer one
promising alternative for producing the required
field strengths with present day technology.

RPM light interaction with the quantum va-
cuum of the electron-positron field was studied

through the process of light-by-light scattering,
whose experimentally observable signatures were
computed. We also specified an intensity threshold
for the conversion of RPM light into electron-
positron pairs via the Schwinger process. Inter-
action with pre-existing matter was considered in
two forms : the focusing of the RPM beam on a
solid target, or the collision with a 10 GeV elec-
tron beam. In the first scenario, an exponential
rise of particle number takes place by the effect
of “QED cascade”, resulting in extreme density
(> 1028 cm�3) relativistic electron-positron beam
of attosecond duration. In the second scenario, the
electric field in the reference frame of the incident
electron beam reaches values so high that, accor-
ding to the Ritus-Narozhny conjecture, the usual
notions of electrons, positrons and photons break
down, possibly opening an empirical window on a
currently little known regime of light-matter inter-
action.
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Introduction

Electromagnetic interactions permeate virtually all tangible phenomena, and this reality
was elucidated more than a century ago. Yet, this knowledge could never materialize
as a practical force fully until the laser was invented, o�ering unprecedented degrees of
control on the electromagnetic field, and thus on its interactions with matter. Laser-
based systems have since then blossomed towards all spheres of production, including
fundamental science.

In particular, in the last two decades a consistent research field has emerged around
“ultra-high intensity” physics, studying the interactions of the most intense achievable
laser pulses with matter, thereby converted into particles and plasmas. These e�orts could
uncover many rich phenomena and gave birth to several applications. Though benefiting
from steady progress in laser technology, leading to a continuous rise in laser intensity,
these methods could rely on a qualitatively well-defined set of elementary physical pro-
cesses, all described by the classical mechanics of fields and particles at relativistic energies
[1].

The strong-field frontier of ultra-high intensity physics

The current situation is however likely to be a turning point, for last-generation infras-
tructures, lasers of more than a Petawatt (1015 W) peak power, hold the potential for
revealing radically new processes. All would stem from the quantum aspect of particles
and fields, and collectively delineate the physical realm of “strong-field Quantum Elec-
trodynamics” (sf-QED) [2]. Accessing such phenomena would prove of both fundamental
and practical value, allowing for empirical test of established or speculative theories [3],
and for the generation of exotic sources of radiation and particles [4]. This strong-field
frontier of laser physics has consequently received a growing attention, and now drives the
regular activity of many scientists as well as the commissioning of ambitious experimental
facilities.

Nonetheless, if first signatures of these e�ects can be detected in a near future [3,
4], the path towards deeper regimes of sf-QED unfortunately appears much steeper than
its shores. Consider for definiteness the central sf-QED process of the conversion of a
photon into an electron-positron pair. If forecast facilities can expect to detect some
created positrons, the strong depletion of the field into an electron-positron plasma and
their emitted photon radiation, producing a qualitatively new physical dynamics, would
only occur at ten to a hundred times higher intensities still. However, multi Petawatt-
class infrastructures are now approaching industrial scales, implying ever more complex
laser engineering, so that a technological wall can not be excluded in the short term1 [5].
As a consequence, alternative schemes towards stronger fields already are actively being
investigated [4].

1The issue of scaling is of course not intrinsic to laser physics, as one may find analogous situations in
high-energy accelerators, thermonuclear fusion facilities, and certainly other mature fields reaching the
material scale and cost of competing collective endeavours.
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Introduction

Strong-field Quantum Electrodynamics in the extremely intense
light of relativistic plasma mirrors
Relativistic plasma mirrors appear as one very promising way to achieve the highest
possible fields with present day lasers [6–11]. As an intense pulse reaches a sharp solid
interface, it turns it into a dense plasma which oscillates at speeds close to that of light,
thus reflecting the pulse while compressing it by Doppler e�ect. Properly tuning this
interaction, the reflected pulse can also be naturally focused to spot sizes only limited by
its now shortened wavelength, concentrating light in much tighter volumes than allowed
by the initial laser source, which results in intensity increases between two and five orders
of magnitude [12, 13]. The corresponding fields would come near the critical value at
which a field spontaneously decays into electron-positron pairs, known as the Schwinger
field, which may allow studying critical sf-QED e�ects such as light self-interaction, and
certainly would facilitate entering deep into the quantum-dominated regime of sf-QED.

The core of my work has consisted in specifying the main physical phenomena to be
expected at the interaction point of these relativistic plasma mirror sources. In this the-
sis, I will be presenting the predictions derived from a closer study of di�erent interaction
scenarios. Light couplings to the electron-positron field in a vacuum will be studied first,
deriving observable signatures in di�erent experimental setups, including scattered pho-
ton spectra and Schwinger pair creation threshold. These subtle e�ects when no matter
is there leave room to to prolific pair creation as soon as one charged particle comes
in. This process of field-matter interaction occurs for di�erent types of initial seed, a
Schwinger pair, a dense target, high-energy electron beams, a�ecting the involved ele-
mentary processes and the macroscopic system state. In particular, solid targets could
allow the formation of relativistic quantum and extremely dense electron-positron plasma
jets, while high-energy particle beams collisions with the light pulses could allow testing
the Ritus-Narozhny conjecture, pertaining to the behavior of strong-field Quantum Elec-
trodynamics in a regime where even the notion of photon, electron and positron particles
breaks down.
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The material and intellectual context in which the present thesis
takes ground is exposed, introducing our aims and methods.

Chapter 1 presents the state-of-the-art of ultra-high intensity field
sources and the current horizon of accessing qualitatively new
strong-field phenomena. Relativistic plasma mirrors are introduced
as a bridge towards much stronger fields still, motivating our study
of expected processes in their light.

Chapter 2 reviews a reference theoretical framework encompassing
this physics, and its numerical realization in the form of ab initio

PIC-QED simulations. A more specialized formalism we used for
computing vacuum quantum electrodynamical processes is intro-
duced as well.

Abstract of Part I



Part I

State-of-the-art and aims
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Chapter 1

Plasma mirrors as a path towards
strong electromagnetic fields

In the wake of steady progress in laser technology opening up to an ever wider range
of physical configurations, a consistent research community has developed around so-
called “ultra-high intensity” physics. Although the quantitative meaning of such name
has been shifting by many orders of magnitude already, during the last two decades it
has been referring to a fairly stable set of applications and physical regimes, essentially
described by the classical mechanics of fields and particles at relativistic energies. The
current situation is however likely to be a turning point, for radically di�erent physical
phenomena are expected in last-generation facilities, either planned or under construction,
revealing the quantum aspect of particles and fields.

Relying on a scheme explicitly designed to foster the ongoing transition, the present
thesis fully takes ground in such context. By generating pulses exceeding forecast laser
intensities by two to five orders of magnitude, relativistic plasma mirrors could allow
entering the quantum-dominated regime of strong-field Quantum Electrodynamics, with
fundamental and instrumental implications. Our research was devoted to try and predict
some of them explicitly.

In this chapter, we wish to provide an understanding of how this work articulates
with its overall material context. An overview of ultra-high intensity lasers physics and
technology will be given first, detailing the performances expected from last generation
infrastructures. The novelty encountered at higher intensity will then be exposed, with an
emphasis on the physical consequences of strong-fields, essentially leaving aside the rich
technicalities of their (actively developing) theoretical depiction. After a review of other
means envisaged to reach strong enough fields, relativistic plasma mirrors are introduced
as a promising way to magnify laser intensities, in principle up to near the Schwinger
field, at which the electromagnetic and electron-positron fields significantly interact even
in a the absence of particles. Last section will finally expose the directions pursued in this
work.

1.1 Physics of ultra-high intensity lasers today
Since the first laser systems were built in the 1960s their derivatives have fanned out to
virtually all spheres of production, with individual, industrial and scientific uses. Within
the corresponding variety of designs, some were dedicated to achieving the highest possible
light intensity. This number quantifies the transformation that a laser pulse can induce
in another system, locally in space in some period of time, and thereby determines the
range of underlying physical processes, or regime. For the last two decades at least, these
instruments have grown into an autonomous branch of fundamental research, generating
a specific set of phenomena, opening to exclusive features in applications, thus motivating
ever higher intensity systems.
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Part I, Chapter 1 – Plasma mirrors as a path towards strong electromagnetic fields

In this section we briefly trace back this evolution, grounding the view of an homogene-
ity of the physical regimes accessed in the last two decades, all characterized by classical
electrodynamics with relativistic particles. For definiteness, typical applications will be
reviewed, better illustrating our stance. Finally we will make contact with the state-of-
the-art, operational or forecast systems, so as to introduce the new strong-field regime

they open to, and give a sense of the scales relevant for the corresponding phenomena and
infrastructures.

1.1.1 Decades of progress in attainable light intensity
Electromagnetic intensity The physical notion of “light intensity” refers to local
properties of the electromagnetic field. The formulation of electromagnetic phenomena in
terms of a field distinct from other known physical systems1 certainly is among the most
incidental achievement of XIXth century Physics [14]. When gravitational phenomena can
be neglected, a field is fruitfully conceived as variables attached to each point of space,
physical as they can interact with other physical systems. In particular, field variables
exchange energy among themselves and their environment, which classically translates
into a continuity equation [15],

d

dt

⁄

�

dxuem(x, t) +
j

ˆ�

d‡ · �(x, t) = ≠
⁄

�

dxwm(x, t) (1.1)

with t the time variable, � a space domain of boundary ˆ�, uem the local electromagnetic
energy density, wm the net energy exchange rate with any non-electromagnetic system2

and � the Poynting vector. It therefore appears that energy is transported by the elec-
tromagnetic field from one space region to the next, at a rate given by the flux of the
Poynting vector through the considered interface. Then, for any oriented surface �,

Electromagnetic power [W]: P� =
j

�

d‡ · � (1.2)

is the instantaneous power transmitted by the electromagnetic field through �, expressed
in Watts [W], and we define,

Electromagnetic intensity [W.cm≠2]: I , Î�Î (1.3)

the local instantaneous electromagnetic intensity, conventionally expressed in Watts per
centimetre squared [W.cm≠2] in laser physics. This quantity relates to the local values of
the electric and magnetic vectors as,

I = c2Á0

2 ÎE ◊ BÎ (1.4)

with Á0 the vacuum dielectric permittivity and c the speed of light. On the other hand,
the local instantaneous electromagnetic energy density is given by,

uem = Á0

2
1
E2 + (cB)2

2
(1.5)

In the absence of interaction with matter, the field equations of motion entail the
propagation of any local disturbance in the field at a speed c, resulting in travelling

1See App. A for “physical system”, a “field” is a physical system with an infinite number of variables.
2This essentially coincides with the notion of “matter” in classical physics.
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1.1. Physics of ultra-high intensity lasers today

configurations known as electromagnetic waves. Moreover, such propagation generically
leads to a symmetry between the local values of E and B, resulting in a direct relation
between uem and I. In the limiting case of a plane wave (always indicated by a p.w.
superscript in the following) we find,

I
p.w.= cuem

p.w.= cÁ0E2 (1.6)

Finally, in the presence of charged matter particles,

wm = j · E =
ÿ

i

qiv̄i · E (1.7)

with qi the charge of the i-th kind of present charged particle v̄i their local mean speed,
adopting a macroscopic description as relevant in plasma physics (cf. Sec. 2.1.1). Now as
charged particles are a�ected by the Lorentz force,

f = q (E + v ◊ B) (1.8)

it clearly appears that high intensity fields will induce fast and significant energy transfers.
In concrete terms, immersed in a wave of intensity I = 1018 W.cm≠2, already attain-

able 20 years ago [5], a carbon atom becomes fully ionized simply by potential barrier
suppression [16], and an electron initially at rest becomes relativistic in about 4◊10≠16 s,
that is a fraction of an optical laser period. At the currently highest intensity achieved, of
I = 1◊1023 W.cm≠2 [17], this time would decrease to around 3◊10≠18 s and even protons
would near the speed of light in an optical cycle. All considered “ultra high-intensity”
laser-matter physics therefore consist in the interaction of electromagnetic fields either
with charged particles or plasma states, typically of relativistic kinetic energies.

High-intensity laser systems Lasers Physics forms a vast field of study [18]. From
an instrumental perspective, lasers can simply be conceived as a way to produce elec-
tromagnetic waves with a unique degree of coherency and control, notably on energy,
duration, direction and wavelength in the broadly near-optical range. These properties al-
low in particular for an e�cient focusing of the generated pulses, down to near an optical
wavelength, and thereby very high electromagnetic intensities.

In practice, lasers designed to reach the highest intensities typically emit visible to
near-infrared light with a wavelength centred around ⁄ = 800 nm, corresponding to a
laser period ”t ƒ 2.67 ◊ 10≠15 s © 2.67 fs (“femtoseconds”) and a total duration of about
ten cycles · ƒ 25 fs, defining the class of “ultra-short lasers”. The most commonly used
lasing medium consists of sapphire crystals doped with titanium ions (Ti:Sa) [16]. In a
first approximation, one may consider that the temporal properties of the pulse are mostly
shaped already at its emission from the primary laser cavity, or “oscillator”, however its
energy is then very low, of the order of a few µJ . The pulse therefore is furthermore
“amplified” passing through additional lasing media, leveraging on “chirped pulse amp-
mification” (CPA)3 [1, 19], resulting in final energies of up to hundreds of Joules.

Historical trends for general high-power lasers in the last two decades can be read in
Fig. 1.1. Three distinct data groups can be discerned. Two facilities stand apart on the
far end of the energy spectrum, they are aimed at thermonuclear fusion and therefore not

3This technique consists in spatially separating the laser frequencies so as to decrease the local intensity
in amplifier crystals, thus allowing for higher gains without exceeding the material damage threshold.
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Part I, Chapter 1 – Plasma mirrors as a path towards strong electromagnetic fields

Thermonuclear 
 fusion

Hydrodynamic 
 regime

Ultra-high intensity 
 physics

Intensity

Figure 1.1: Operational and forecast laser facilities worldwide (from [4]). The
intensity projections are calculated from energy and duration assuming ⁄ = 1 µm and a
2⁄ sized focal spot. The splitting and recombination method for intensity increase shown
in the inset is detailed in [20]. Coloured areas correspond to distinct physical regimes;
atomic field (I = 3.5 ◊ 1016 W.cm≠2) corresponds to a one atomic unit field strength;
relativistic electron (I = 1.37◊1018 W.cm≠2) to › = 1 (cf. Sec. 1.1.2); radiation-dominated
dynamics (I = 8 ◊ 1022 W.cm≠2) and avalanche-type cascades (I = 3.5 ◊ 1023 W.cm≠2)
give indications as to when quantum e�ects of high-energy photons emission and decay
into electron-positron pairs become significant in the dynamics; the Schwinger field is
reached at I = 4.65 ◊ 1029 W.cm≠2 for a plane wave (cf. Sec. 1.2.1).

conceived for achieving high intensities4. There is another group centred around a maximal
intensity of 1022 W.cm≠2, with durations of the order of a picosecond (10≠12 s). Those
are called “long pulses” and interact with matter on hydrodynamical scales. However,
their intensity is strongly bounded by their comparatively narrow spectral content which
hinders application of the CPA technique to them.

On the opposite, we see that the most recent lasers responsible for the peak intensity
increase beyond 1022 W.cm≠2 belong to the last category of “ultra-short” lasers, with a
duration of about 20 ≠ 30 fs. Last built facilities typically have a total energy of 20 J
to 100 J for focused intensities of about 1022≠23 W.cm≠2, with a current record set at
1 ◊ 1023 W.cm≠2 [17]. Most forecast facilities envision energies above 100 J but would not
exceed 1024 W.cm≠2, though one notable exception displays the ambition of 1.5 kJ energy
in 15 fs (SEL), which would result in intensities of around 2 ◊ 1024 W.cm≠2.

4The extrapolated 1022 W.cm≠2 intensity displayed on the figure is not relevant, as it assumes the
coherent combination of all (about 200) pulses focused near di�raction limit (w0 = 2⁄). In actual opera-
tions the intensity at experimental chamber focus is set around 1015 W.cm≠2, while at di�raction limit
each individual beam would only reach Ibeam ¥ 5 ◊ 1020 W.cm≠2.
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1.1. Physics of ultra-high intensity lasers today

1.1.2 Ultra-high intensity physics in the classical regime
As made clear in Fig. 1.1, all the more realistically assuming pulse focusing looser than the
di�raction limit, all high-intensity lasers of the last two decades have been fully grounded
in the “relativistic electron” regime. In order to better delineate the corresponding physical
phenomena, we will now provide an elementary formalization of their shared particle
dynamics and briefly review their most actively studied applications.

Classical relativistic particle dynamics in a field Let us simply define the rel-
ativistic regime reasoning on a the dynamics of a single electron in an external field5.
Introducing the three spatial coordinates of the electron q = (q1, q2, q3) as our variables
the Lagrangian writes [22],

L(q, q̇) = ≠mc2

Û

1 ≠ q̇2

c2
≠ eq̇ · A(q) + e„(q) (1.9)

with „ and A the electromagnetic potential components. The canonical momentum is,

P © ˆL

ˆq̇ = p ≠ eA (1.10)

where we have introduced the “kinetic momentum” p = m“q̇ with “ = 1/
Ò

1 ≠ q̇2/c2,
and the Hamiltonian writes,

H = mc2“ ≠ e„ (1.11)
Now the equations of motion simply give,

Y
____]

____[

q̇ = ˆH

ˆP = p
m“

Ṗ = ≠ˆH

ˆq = ≠mc2Ò“ + eÒ„

(1.12)

(1.13)

with Ò = ˆ/ˆq, or focusing on the momentum equation6,

d

dt
(p̃ ≠ a) + c

“
Òa · (p̃ ≠ a) = ≠ c

2“
Òa2 + ÒÏ (1.14)

where we have introduced the normalized kinetic momentum p̃ = p/mc and potentials
a = eA/mc, Ï = e„/mc. The first term on the RHS is quadratic and interestingly does
not depend on the sign of charge, it corresponds to a ponderomotive force, driving all
charges away from strong field regions.

Then, as can be seen e.g. perturbatively expanding p̃ ≠ a for small Òa/“ in a gauge
Ï © 0 in Eq. 1.14, an electron initially at rest will generically evolve in the field with a
normalized momentum amplitude a. For instance, in a plane wave, invariance along the
transverse and wavefronts directions directly yields [23],

Y
__]

__[

p‹
p.w.= a

pÎ
p.w.= a2

2

(1.15)

(1.16)

for an electron initially at rest in a 0 of a, where p‹(pÎ) refer respectively to the transverse
(longitudinal) components with respect to the wavevector.

5Working in the canonical formalism (cf. App. A), the self-consistent description of N particles and
the field would require at least the “contrained” formalism and will therefore not be pursued here [21].
A theoretical framework adequate for plasma physics is introduced in sec. 2.1.1.

6With the dyadic convention Òa · P © ˆi(aj)Pj for aibi ©
q

i aibi.
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Part I, Chapter 1 – Plasma mirrors as a path towards strong electromagnetic fields

Considering a field of maximal amplitude A0
7, we therefore define,

Classical field
strength parameter › , eA0

mc

p.w.© eE0

mcÊ0

(1.17)

where the second equality holds for a monochromatic plane wave of frequency Ê0. If › Ø 1,
we have ÎpÎ Ø mc and the electron motion is relativistic. The parameter › hence controls
dynamics and is called the classical field strength parameter.

In terms of intensity, modelling a focused beam at lowest order in a paraxial approxi-
mation we find the practical relation [4],

› = 0.86⁄0[µm]
Ò

I0[1018 W.cm≠2] (1.18)

where ⁄0 is the central beam wavelength and I0 the peak intensity at focus. Therefore,
dynamics needs indeed be described by relativistic mechanics as soon as I0 Ø Irel =
2 ◊ 1018 W.cm≠2 for the typical laser wavelength ⁄0 = 800 nm.

When relativistic intensities are reached, interactions with matter, i.e. particles and
plasmas, become strongly non-linear, leaving room for physical phenomena such as high-
energy particles acceleration or field harmonics generation. For more definiteness we now
briefly review some of the most salient.

Applications in a vacuum: direct particle acceleration and scattering One
straightforward application of ultra-high intensities is to accelerate electrons directly by
interaction with a light pulse. This configuration is referred to as “Vacuum Laser Ac-
celeration” (VLA) [26–30]. In practice, this method must overcome the di�culty that in
order to perform a net energy gain, electrons must exit the strong field region at the right
time, without entering decelerating field gradients. This implies tuning the spacetime field
profile, or the electron injection conditions on sub-wavelength scales, which indeed proves
highly non-trivial, though plasma mirrors have been suggested to this end (cf. infra).

Another possibility is to proceed in the reverse direction, using the laser pulse to
strongly decelerate high-energy electron, and thereby produce high-energy photon beams
of high brightness. This process is called “Inverse Compton scattering” [4, 31–33]. Using
electron beams of a hundred MeV to a few GeV, multi-MeV photons can be generated [4],
opening to nuclear phenomena. Electron beams in this energy range can be produced in
radio-frequency accelerators, or directly by another laser pulse via as explained below.

Application in an underdense plasma: laser wakefield electron acceleration
One promising use of ultra-short and intense pulses is the acceleration of electrons up to
GeV energies on mm to cm scales [1, 34]. The basic process consists in sending an intense
laser pulse in a gas of density below the critical plasma density at the laser wavelength, or
underdense, allowing the pulse propagation and resonant generation of plasma waves in
its wake by the ponderomotive force. Such plasma structure results in strong electrostatic
fields configurations (around ≥ 100 GV.m≠1) travelling with a phase velocity close to c,
and thus able to e�ciently accelerate copropagating electrons. The present energy record
is around 8 GeV for in 20 cm, and high quality 100 MeV beams achieved on cm scales are
routinely operated [35].

7In a more formal framework it can be given a Lorentz and gauge-invariant meaning [24, 25]. In the
case of a plane wave in the absence of sources, one can simply take a0 © e


≠AµAµ/mc.
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1.1. Physics of ultra-high intensity lasers today

Applications with overdense targets: ions acceleration and plasma mirror high
harmonics generation As the target density is increased, its plasma frequency even-
tually exceeds that of the pulse. At this point, the laser does no longer propagate inside
the plasma giving rise to qualitatively new phenomena. For instance, ion beams can be
expelled from initially solid target with up to MeV energies by the “Target normal sheath
acceleration” mechanism [36–38]. The resulting ion beams have in particular compara-
tively high densities, which is of interest e.g. to study fast nuclear processes [39]. Ion
beams have other interesting properties, relevant notably for medical applications, justi-
fying active research in several laser-based ion acceleration schemes [37, 38].

Solid targets can also be used to act on laser light. In particular, high-harmonics
generation of the fundamental laser frequency can be performed on overdense plasmas
from the non-linear surface electrons oscillatory motion [40]. Besides, relativistic field-
electrons interactions lead to kinetic processes such as electron injection in the reflected
field. These electrons essentially travel in-between the reflected field fronts, driven by its
Lorentz force until they are expelled from the beam as a result of its finite transverse size,
typically after its focal point [41]. When the intensity is increased beyond ≥ 1018 W.cm≠2,
laser-solid interaction can enter the so-called “relativistic plasma mirror” regime which,
by coherent time-compression of incident light into attosecond (10≠18 s) pulses, has been
numerically demonstrated to provide a source for extremely high-intensity fields. This
physical process provides the ground for the present work, and will be detailed in Sec. 1.3.5.

1.1.3 High-intensity physics at the strong-field frontier
All the reviewed applications have been demonstrated experimentally in the last two
decades, at least in their principle, for they simply require reaching › ≥ 1 or even less,
e.g. for laser wakefield acceleration. Though the development of high power lasers [5]
has naturally benefited these fields and significant progresses were made, the underly-
ing elementary physical processes have remained qualitatively the same. This relatively
well-defined set of methods and physical phenomena allowed for a stabilized notion of
“relativistic regime” of laser-matter interactions [1].

This situation is however shifting with the recent commissioning of multi-petawatt
(1 PW = 1015 W) laser facilities, possibly coupled to conventional accelerators [33, 42–
44] (cf. also Fig. 1.1). These infrastructures open the perspective of detecting signatures of
“strong-field” phenomena for the fist time, such as electrons recoils by radiation emission,
electron-positron pairs creation, or optical nonlinearities in a vacuum, defining a new
physical regime of “strong-field electrodynamics” [2]. All those e�ects are controlled by a
field scale called the Schwinger field,

Schwinger field
strengths

Y
_]

_[

ES ƒ 1.32 ◊ 1018 V.m≠1

BS = ES

c
ƒ 4.40 ◊ 109 T

(1.19)

which translates in a plane-wave intensity,

Schwinger intensity IS = cÁ0E
2

S
=ƒ 4.62 ◊ 1029 W.cm≠2 (1.20)
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Part I, Chapter 1 – Plasma mirrors as a path towards strong electromagnetic fields

More specifically, considering processes involving a massive charged particle the rele-
vant interaction parameter is the field in the rest frame of the particle8, namely [4],

Quantum interaction
parameter ‰ =

Ò
≠(Fµ‹p‹)2

mcES

= “

Ò
(E + v ◊ B)2 ≠ (v · E/c)2

ES

(1.21)

If ‰ & 1, strong-field e�ects become sizeable. When electrons are accelerated directly
by the laser field (e.g. laser-target configurations) one finds the scaling law [4],

‰ ƒ 0.09⁄[µm]I0[1023 W.cm≠2] (1.22)

If, alternatively, their incoming energy is large compared to that provided by the laser
(e.g. laser-accelerator configurations) one finds [4],

‰ ƒ 0.18E0[ GeV]
Ò

I0[1021 W.cm≠2] (1.23)

Either way, we understand why only at the highest possible intensity to date strong-
field e�ects start to manifest, and hardly still. In the following, we are going to review
some schemes specifically designed to reach the strong-field regime, using lasers or not,
ending with relativistic plasma mirrors, that we show could allow entering much deeper
into the strong-field dominated regime.

Before proceeding, we now provide a physical understanding of the Schwinger field
value, so as to reach a bird’s eye view of the motivations for achieving strong fields.

1.2 The realm of strong electromagnetic fields
Relating the above given figures for the electromagnetic intensity to distinct physical pro-
cesses requires a definite theoretical framework. All qualitatively new processes at strong
fields are naturally depicted by quantum mechanics in its special relativistic formulation,
that is quantum field theory. As the quantum description of fields has long been remote
from any practical use in a macroscopic context such as laser-plasma interactions, it would
be desirable to properly introduce, if not adapt, concepts from both physical domains and
their connection. Some general elements are provided to this purpose in App. B, and a
more specific focus on some operational methods of strong-field QED in Chapter 2. In
this first section, we take a preliminary step by giving a qualitative justification of the
link between strong and quantum fields, which may appear contradictory at first glance.

On the other hand, the physical configurations in which these quantum processes are
expected to take place, e.g. in the bulk of a dense macroscopic plasma immersed in a strong
coherent electromagnetic field, are very estranged also from those to which Quantum Field
Theory is routinely applied9, and thus tested. In particular, if Quantum Electrodynamics is
rightfully celebrated as the most accurate theory in the history of science, its records were
established in a near vacuum state while, experimentally, the realm of strong fields mostly
remains terra incognita to the present days. We will therefore review the motivations for
actually achieving such exotic configurations in the laboratory, and show that they pertain
both to fundamental and applied physics.

8For a photon last expression still holds with “ © ÎpÎ/mc and v = c, and the intuitive understanding
of ‰ virtually coincides with the case of an ultra-relativistic massive particle of equivalent momentum.

9Notable exceptions are condensed matter systems and heavy ions collisions, both featuring dense
media and ambient fields. They still di�er from the laser-plasma context though, the former due to
usually non-relativistic energy/spacetime scales, the latter due to very di�erent scales also but in the
high energy end and to the predominance of chromodynamical e�ects.

12



1.2. The realm of strong electromagnetic fields

1.2.1 Why do quantum phenomena occur in strong fields?
In the absence of a dimensional constant in the theory of vacuum electromagnetism10,
there is in particular no field scale past which the dynamics should be expected to quali-
tatively change. Furthermore, in the event of such change it can first seem obscure why it
should involve quantum mechanics, commonly associated to “small scale” phenomena11.
As we will now show, this di�culty is lifted when the coupling to charged massive particles
is considered.

Introducing a mass m and charge Q, one can build spatial scales which equivalently
translate in field scales. Depending on the use of the Planck constant in this process or not,
classical and quantum scales can be built and compared. For it plays a primary role as the
lightest known charged particle, general expression will be numerically evaluated for the
(anti-)electron parameters. Starting from the classical theory, a classical electromagnetic
length can be defined as,

Classical
EM radius

rc = Q2

4fiÁ0mc2

eƒ 2.82 ◊ 10≠15 m (1.24)

the distance between two point particles at which their electrostatic interaction energy
equals their rest energy. Such quantity appears in radiation phenomena, in particular
the self-interaction of a particle through its own field [23]. The corresponding field scale
follows as,

Classical
critical field

Ec = mc2

Qrc

= 4fiÁ0m2c4

Q3
(1.25)

eƒ 1.81 ◊ 1020 V.m≠1 (1.26)

which produces a work of mc2 on a distance rc. The predicted physical e�ect consists in
the modification of the particle dynamics as a result of its energy-momentum transfer
to the electromagnetic field. The corresponding force is known as “radiation reaction”
and is very well described by the approximate Landau-Lifschitz equation [23]. Although
some intriguing mathematical questions arise when treating this self-interaction exactly
[46–50], this phenomenon arguably does not lead to fundamentally new physics.

Let us now write the quantum and relativistic length scale12,

Compton
length ⁄C = ~

mc
e= rc/– (1.27)

eƒ 2.43 ◊ 10≠12 m (1.28)

10As read e.g. in the action, or Maxwell’s equations.
11More precisely actions small compared to ~, which quantifies the non-commutativity of conjugate

variables, or equivalently small quantum numbers ÈOÍfl compared to commutators È[O, OÕ]Ífl (cf. App. A
Eqs. A.36-A.37). This is true of the electromagnetic field as well, for instance when the total field energy
becomes of the order of its constituent photons, or more specifically when the photons number per mode
becomes small, revealing their discreteness. Following [45], the intensity below which such e�ect becomes
sizeable can be estimated as I0 ≥ c~Ê0

⁄3
0

, i.e. I0 . 104 W.cm≠2 for a central wavelength ⁄0 = 800 nm.
12It is called the Compton length of the particle. As the scale controlling free propagators in relativistic

quantum theory (cf. App. B.2.2, Eq. B.73), it can be interpreted as the quantum coherence length (that
is, reasoning on a position observable, the wavelength of probability interference terms Eq. A.43) of
processes involving energy-momentum transfers of the order of the particle rest-mass.

13



Part I, Chapter 1 – Plasma mirrors as a path towards strong electromagnetic fields

with – = e2/4fi‘0~c ¥ 1/137 the fine structure constant. Accordingly, the quantum elec-
tromagnetic field scale is,

Quantum
critical field
(Schwinger
field)

Es = m2c3

Q~
e= –Ec (1.29)

eƒ 1.32 ◊ 1018 V.m≠1 (1.30)

The smallness of – therefore implies that in practice the dynamics of fields and particles
changes according to the consequences of quantum mechanics before the classical strong-
field regime is reached. Now as all fundamental systems are fields permeating all space (cf.

Sec.B.1.1), such coupling can never be discarded, even in the absence of charged particles
in the initial state13. Dynamics of the electromagnetic field will therefore depart from
Maxwell’s theory due to interaction with the electron-positron field whenever E, B ≥
ES, BS

14, hence consistently defining a strong field regime of electrodynamics.
We can further understand this quantum threshold Es, known as the Schwinger field,

noticing that it produces a work of mc2 on a distance ⁄C. In other words, it presents
an interaction potential of a rest-mass energy on a quantum coherence scale, therefore
allowing sizeable transition amplitudes between states with di�erent number of parti-
cles. An even more direct picture can be given introducing a field frequency Ê, as then
e⁄CEs/~Ê = nabsorbed = mc2/~Ê, explicitly showing that an electric field amplitude Es

allows the absorption of enough photon to gain a total mc2 energy within a coherence
length.

At this point all features of quantum mechanics naturally intervene, discreteness man-
ifests through matter particles creation/annihilation and finite energy-momentum photon
emission, randomness by the probabilistic nature of any of these processes, and indetermi-
nacy between observations allows for particles self-interactions and notably the so-called
vacuum polarization via transitional electron-positron states. These processes clearly af-
fect the physics of electromagnetism much more profoundly than classical particle self-
interaction, and indeed lead to phenomena as incidental as coherent emission from highly
magnetized pulsars [51–53], disruption [54, 55] and radiation [56, 57] in beam-beam col-
lisions, or substantial depletion of coherent light into electron-positron pairs [58, 59]. We
devote next section to try and obtain a more systematic picture of the interest of actually
observing such fields in the laboratory or in the universe.

1.2.2 The scientific value of accessing strong-field physics
Taking as an anchor point the above given description of the strong-field regime as the
onset of fundamental fields interactions through the non-vanishing electromagnetic field
expectation value, implications of observing such physics in controlled conditions can be
drawn. As we will now expose, strong-fields then appear to open appealing perspectives
for fundamental physics, phenomenology of known systems, as well as instrumental ap-
plications.

13This configuration of “interaction with the vacuum” is the subject of Chapter 8.
14Actually, whenever the local Lorentz-invariants of the field F = ((cB)2 ≠ E2)/2E2

S , G = ≠cB · E/E2

S
near 1 (see Sec. 2.1.2), which usually is a reasonably close criterion for non-crossed fields.
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1.2. The realm of strong electromagnetic fields

An uncharted experimental territory The most naive argument in favor of achiev-
ing fields of unprecedented strengths in the laboratory is that, by definition, we do not yet
know what follows in a strict empirical sense. As technology progresses, the primary role
of scientific research can indeed be conceived as to actually cover the practically available
experimental space. This line of reasoning is typically more authoritative in fundamental
research, for instance particle physics [60], which directly aims at extending the frame
in which observation is thought. Now as of course all that is practically possible cannot
practically be done, and given that ultra-high intensity lasers are becoming of large infras-
tructures scales, refined criteria for what should be pursued have to be put forward based
on relevant theory. It turns out that several arguments have emerged in this direction,
pointing at reasonable possibilities to test speculations beyond the Standard Model with
strong fields [3]. The rationale then is to scan parameter space regions either competitively
compared to more expansive means, or some that could not be reached otherwise.

A first testable class of theories is those predicting new particles outside the Standard
Model. There exists a large number of such theories, for some significant part motivated
by the search of “dark matter” fields that would help solving the persistent gravitational
anomalies observed beyond stellar scales [61]. Strong-fields would typically stimulate some
processes involving such particles if charged, and thus contribute to exclude larger region
in their parameter space. These could be for instance “axion-like” [62–70], “mini-charged”
particles [71–76], or magnetic monopoles [77–80]. Another possibility would be to detect
modifications to QED without additional fields, for instance through nonlinearities in its
lagrangian, as in Born-Infeld theory [81–83], or noncommutativity of spacetime coordi-
nates [84].

A di�erent approach would be to use strong-fields as a source for secondary particles,
e.g. bright high-energy photon or electron beams, so as to probe processes beyond the
Standard Model in their subsequent interaction with a chosen target. This is the idea of
the LUXE-NPOD experiment [85].

Windows to the Standard Model Looking at the trend in high-energy physics,
besides constraining potential extensions of the Standard Model access to a new physical
regime can also prove a valuable source of information on the already discovered fields.
The strong-field directly couples to all electrically charged particles, which thus entails
a variety of electroweak processes [86–89], as well as coupling to the muon generation15.
More generally, one can revisit all kind of processes in the presence of a background
field, which can boost interactions by providing extra-energy momentum to the involved
particle, including Higgs production [90–92], kaon decay, CPT symmetry violation [93]
and Z boson production [94]. As neutrino also indirectly couple to the strong-field via

charged particle loops, an opportunity is given to access some of their properties [95–101].
Though spacetime and field scales are di�erent, some bridges could also be made with
heavy-ion collisions, which indeed generate extremely strong electromagnetic and color
fields [102–108].

A forge for formal tools All the above options require very accurate predictions in
order to result in any experimental evidence. Therefore, research in strong-field QED
is likely to catalyse the development and validation of theoretical tools, that could be
of use in other QFTs as well. One straightforward example is the application of Non-
equilibrium QFT to strong-field QED, which both provides a motivation for pushing

15The tau generation being out of reach of currently realistic field values.

15



Part I, Chapter 1 – Plasma mirrors as a path towards strong electromagnetic fields

forward this framework, and could result in new e.g. numerical methods benefiting all
its domains of use. Another interesting stage is the very high ‰ regime of sf-QED, where
the Ritus-Narozhny motivates the analysis and resummation of higher-order diagrams,
which again one can hope to result in some more general techniques. Particles in strong
fields can also impact theory development as an analogous system, hence allowing to test
our mathematical control of the mimicked theories. Along this line, the interaction of an
electron with a strong plane electromagnetic wave can inform on gravitational observables
through the “double copy” correspondence [109, 110], as well as on Lorentz violating
theories such as “Very special Relativity” by fast and slow variables separation [111–113].

A new physical system: relativistic quantum plasmas However promising for
probing elementary degrees of freedom, yet undisclosed or not, the environments created
by strong fields within established physics prove extremely rich for themselves. Consider-
ing specifically the quantum dominated regime, strong-fields will distinctively give rise to
configurations of photons, electrons and positrons with high density, quasi-neutral charge,
relativistic energy distributions and strongly influenced by non-classical processes. These
states of matter and radiation can be qualified as “relativistic quantum plasmas” [4, 114–
116]. Though essentially unobserved in the laboratory yet, they are predicted at inten-
sities to be reached in the near future and their phenomenology holds the potential to
provide both new explanations for observations and instrumental applications [4, 114].
This can be illustrated in the typical scenario of initially non-relativistic charged par-
ticles, say electrons for definiteness, interacting with fields of increasing magnitude. As
electrons accelerate in the field, they start to transfer momentum to electromagnetic ra-
diation, first in the form of low-energy photons according to the Landau-Lifschitz formula
[4, 23], then according to a quantum corrected one [117]. When the quantum parame-
ter ‰ reaches 1, photon discreteness becomes manifest through stochasticity [118–123],
possibly favoring higher energy emission (straggling) [44, 124, 125], or not emitting at
all (quenching) [126, 127], and revealing a characteristic cut-o� in photon spectrum as-
sociated with energy-momentum conservation in individual emission processes [128]. The
consequence of quantum radiation reaction can be as dramatic as particle trapping and
attraction to the highest field regions [4, 129–133] (“Anomalous Radiative Trapping”).
Given realistic particle densities, these photons typically have (Compton) photon-particle
scattering mean free paths much larger than the high-intensity region size, but their
photon-field interaction length can become much smaller, especially from the onset of
the Breit-Wheeler process of conversion into an electron-positron pair [4, 134–139]. The
combination of photon emission and decay to a pair can thus give rise to exponential cre-
ation of electron-positron pairs, a phenomenon known as “QED cascade”. If the cascade
is e�cient enough to strongly a�ect the background field, then a plasma of electrons and
positrons is formed, relativistic and quantum by nature. In this process, extremely high
density can be reached, up to a million times solid density [4, 114]. In the most extreme
cases, degeneracy e�ects could be triggered [140].

There are many possibilities to exploit these processes as a source for specific particle
beams (see e.g. [20] sec. VI and references therein). For instance, bright gamma beams
can be generated by inverse Compton scattering [20]-VI.A.1, while high photon fluxes
and conversion e�ciency are expected from solid target irradiation [4]-VI.A.2. Another
strongly motivated application of strong fields would be of course to manage positron
production, either with greater e�ciency, ease of coupling to acceleration or interaction
stages, or, promisingly, with very high densities [114]-III, [4]-VI.B.
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Astrophysical strong fields Creating relativistic quantum plasmas in the laboratory
would certainly help understanding similar physics realized elsewhere in the universe.
Though such conditions are understandably rare, they are fully met around compact
magnetized objects, that is magnetized neutron stars [141] and black holes [142]. The
magnetic flux compression in the collapse of stellar-sized objects indeed produces magnetic
fields ranging from 107≠9 T (BS = 4.41 ◊ 109 T) [143], to more than 1011 T in the most
extreme cases known as “magnetars” [144, 145]. The creation of a pair plasma screening
the electric field induced by the stellar magnetic dipole rotation is believed to play a
central role in the pulsar mechanism [146, 147]. This process is however highly unsteady
[148], so that strong electric fields can accelerate particles to more than 10 TeV energies
[143], driving prolific QED cascades [149, 150], photon splitting cascades [151, 152], and,
allegedly, coherent emission [123, 147, 153]. Analogous processes are predicted around
black holes [154–156]. Around magnetars, the (super-)critical regime of sf-QED could be
observed, for instance via the distinctive process of vacuum birefrigence [157, 158].

Beam fields in collisions In configurations where quasi-neutrality is violated, which
could happen as a result of dynamics in a strong-field16 or more generally around charged
beams, yet another type of strong fields can exist sourced by the particles charge. Ac-
counting for sf-QED in such contexts could prove especially crucial to future lepton
collider designs [60, 159], where search for higher brilliance and energies implies dense
highly Lorentz-boosted beams, in turn enabling strong field processes at the interaction
point [160, 161]. This collective field can primarily a�ect the on-coming particles dy-
namics, which is called “disruption” [162, 163], thereby generating radiation, which is
called “beamstrahlung” [164, 165]. The net result can be a reduced center-of-mass energy
of particle collisions as well as additional emissions due to e.g. Breit-Wheeler pairs cre-
ation [166], hindering particle physics observations. For this reason, mitigation strategies
have been developed [167]. However, maximizing these e�ects instead would open a new
path to sf-QED physics, including high luminosity photon-photon collision [168], a high-
brightness photons and electron-positron secondary beams [161], or even, with suitable
collider development, access the fully nonperturbative regime of strong-field QED [169].

1.3 State-of-the-art of strong-fields sources
Driven by the above-listed motivations along with technological progress, there is at
present growing hope to achieve QED-relevant strong fields experimentally. During the
last few decades, some seminal experiments have been able to graze the quantum regime
of ‰ ≥ 1 using conventional accelerators, and evidence the first deviations from classi-
cal dynamics in the strong field of lasers [170, 171] or of nuclei in aligned crystals [172–
175]. The quantum dominated regime of sf-QED, where quantum processes determine the
global system dynamics, is however yet to be reached.

In the following we give an overview of the latest e�orts to approach it, setting the
landscape in which the solution presented in this work operates. In particular, we will show
that purely optical laser systems face an intensity gap of several orders of magnitude
before entering the quantum dominated regime, which jeopardizes a trivial scaling up
solution. We therefore review how laser-accelerator schemes partly bypass this di�culty,
and envisioned methods to fully enter the deep strong-field regime.

16A definite example of this process is exposed in Ch. 9.
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1.3.1 The technological gap ahead of optical laser sources
In the presence of particles, the onset of strong-field processes is characterized by a quan-
tum parameter ‰ & 1 (Eq. B.126). Without assuming externally provided high-energies,
the typical quiver energy of charges in laser fields only allows crossing this threshold above
1024 W.cm≠2 (Eq. B.127), which still lies beyond available intensities [4]. In order to ob-
serve processes in a vacuum directly, even higher intensities must be reached, as noted
in the many schemes devised for observing light self-interaction [176–196], or even pair
creation from the coherent field [58, 59, 197–203] (see sec. 1.4.1). These experiments are
all the more challenging that they require maximizing the electromagnetic field invariants
(cf. infra Eqs. 2.41) instead of ‰, which typically implies colliding multiple laser pulses,
each of about 1024 W.cm≠2 peak intensity.

Relying on standard ultra-intense lasers only, the quantum-dominated regime should
therefore not be attained before several tens of petawatt peak power are achieved. Though
such performances are envisioned in several forecasted facilities [3], all correspond to long
run projects and large scale infrastructures.

1.3.2 Accelerators as a ladder to the edge of strong-fields
One direct way to achieve ‰ > 1 then simply appears to combine lasers with accelerators,
directing ultrarelativistic massive particles into coherent field configurations, which hence
need not be as strong in the laboratory frame (Eq. B.128). The seminal works evoked in
the introduction to this section relied on this principle, for instance in the E144 experiment
combining the 46.6 GeV electron beam of the SLAC facility with a 1.3◊1018 W.cm2 peak
intensity laser (meaning a field E . 10≠6 ◊ ES) [170, 171, 204]. Some photon spectral
signatures could be observed, as well as some pair creation events.

Now this technique can benefit both from an increase in beam energy or field am-
plitude. This motivates plans for updated versions of the same. At SLAC, the E320 ex-
periment will consist in colliding the FACET-II 13 GeV electron beam with a 10 TW
laser, achieving › ≥ 7 and ‰ ≥ 1 [169]. Similarly, the LUXE experiment at the European
XFEL facility comprises a 17.5 GeV beam with a 30 TW laser, allowing for › ≥ 2 and
‰ ≥ 0.4 ≠ 2 [205]. An interesting variation planned in this case is to direct the GeV elec-
tron to a high-Z target so as to convert them into gamma rays by brehmsstrahlung. This
presents a number of advantages [206–209], linked to the fact that photons are classically
not deflected from high fields regions. Several experiments have been proposed along this
line [210, 211]. Wakefield acceleration also holds a good potential for reaching the re-
quired energy. Pushed by rising energy records [212–215] and possibly high charges [216],
all-optical schemes have been devised to collide laser-accelerated high energy electrons
against intense lasers [217]. Experiments with the Gemini laser at the Rutherford Apple-
ton Laboratory have begun detecting quantum corrections to radiation spectra in such
setups [174, 175]. This kind of experiment again find natural complements in the gener-
ation of high energy photons instead of electrons [218, 219]. Besides, some optimizations
of the angle of collision [220] and field focusing have been shown to enhance interactions
[221, 222].

In all mentioned experiments, created particles only amount for a negligible fraction
of the system energy, or equivalently, sf-QED processes occur with too low probability
to trigger sizeable QED cascades, and rather act as corrections to an essentially classical
dynamics. As technology can only improve slowly, further progress at this point requires
qualitatively new schemes.
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1.3.3 Optimizing the field at a fixed power: dipole waves
Interestingly, the limiting case of the optimal coherent superposition of multiple pulses for
achieving the highest intensity from a given total power can be studied analytically, and
has been shown to be relevant also with regards to the maximization of several quantum
processes [20, 223, 224]. Such configuration is known as a “dipole wave” [225], for it is
time-reversal of a dipolar source emission17, and is currently conceived as a plausible way
to achieve significant steps towards the deep strong-field regime.

Pair creation in such fields has been studied in a vacuum through the Schwinger process
[226], as well as from seed electrons [227]. In this configuration, when pair creation occurs
the intensity is high enough so as to confine particles near focus via Anomalous Radiation
Trapping (cf. sec 1.2.2) [20], favoring QED cascades in this region, further enhancing
the e�ect [228]. Simulations predict resulting densities ranging from 1025 cm≠3 at 8 PW
power, to more than 1028 cm≠3 above 20 PW [229]. These exotic conditions could prove
interesting from the standpoint of astrophysics [230]. Interaction with a secondary beam
and subsequent particle radiation has also been envisioned [221, 222]. As manifest from
the expected phenomena, such dipole source could allow entering well into the quantum-
dominated regime of sf-QED. The di�culty naturally lies in building such facility, which
implies the collocation of about ten state-of-the-art multi-PW lasers. It is remarkable
enough that the physics of relativistic quantum plasmas can in principle be studied with
current technology though, and some implementation designs are being studied [231, 232].

1.3.4 An ideally unbounded amplifier: the relativistic mirror
If the pulse energy is ascribed by technological limits, and the dipole wave is the optimal
spatial configuration for a given power, then a natural path to reach higher intensities is to
increase the peak power by compressing the pulse in time. One long-standing suggestion
along these lines is to use a mirror moving at relativistic velocity [233]. In the ideal counter-
propagating case, the reflection of light on a moving mirror with Lorentz factor “M indeed
entails a time compression of the field by a factor 4“2

M
[234], upshifting amplitude and

frequency. Most importantly, the upshifted frequency translates into smaller di�raction
limit, so that for perfect reflection and focusing final intensity gains scale as ≥ “6

M
. The

core issue then is of course to find how to physically realize this simple thought experiment.
The density cusp produced at the rear of the nonlinear wakefields of an intense laser

propagating in an underdense plasma has been envisioned as a relativistic mirror candidate
[235], benefiting also from a focusing parabolic shape [236]. As the same moving mirror
reflects and focuses light, length of the focal spot scales as ≥ 1/“M so that the ideal final
gain in this case is ≥ “4

M
. Accounting for the reflection coe�cient of the wake corrects this

value by factors of “≠3

M
or “≠4

M
depending on plasma models [237]. Tailoring the curvature

of the plasma wake so as to achieve di�raction limit in the laboratory frame has been
proposed [238], and proof-of-principle experiments have been conducted [237, 239–241].
Another implementation of the relativistic mirror relies on the dense electron sheets that
can be ejected by thin solid targets under intense laser irradiation [242–245], so that a
second counterpropagating laser can then benefit from the ≥ “2

M
intensification [246].

In this case also, plasma instabilities in the electron sheet [247], as well as transparency
induced by plasma density drop and pulse frequency upshift in the electrons frame [248],
constrain the final achievable gain.

17Which correctly suggests that two types exist, associated with electric or magnetic source dipole.
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1.3.5 Relativistic plasma mirrors as an open path towards the
Schwinger field

Though currently the only available concept allowing for in principle unbounded intensity
increase from a given electromagnetic energy, an e�ective materialisation of the relativis-
tic mirror idea remains to be desired. The collective non-linear oscillations of electron
populations at laser-irradiated sharp vacuum-overdense plasma interfaces may however
come very close, notably in terms of amplification e�ect.

These so-called “relativistic plasma mirrors” (RPM) are the sources of the fields stud-
ied in this work, allegedly the strongest free fields within reach of present day technology.
Using a Petawatt-class laser as the driver beam could result simultaneously in e�cient
harmonics generation, that is time-compression of each incoming optical cycle to tens of
attoseconds duration pulses, and focusing to wavelength-limited spot sizes, resulting in
intensity gains between two and five orders of magnitude [12]. The corresponding fields
would come near the critical value in the laboratory frame, which may allow studying crit-
ical sf-QED e�ects such as light self-interaction, and certainly would facilitate entering
deep into the quantum-dominated regime of sf-QED.

A more detailed discussion of the physics at RPM focus will be given in section 1.4.
Here, we wish to give an overview of the generating process of this extremely intense light.
The mechanism of electromagnetic pulse compression – equivalently, harmonics generation
– at the plasma surface is long-studied and now relatively well understood. Nonetheless,
it remains a complex, inherently non-linear phenomenon, and analytical models lack the
ability to predict harmonic spectra accurately. Furthermore, the interplay of widespread
spatio-temporal scales, again inherent to the spectral range to be resolved, pushes generic
time-domain PIC algorithms to the limits of current computational capabilities, thus
delaying, if not prohibiting, large scale numerical studies with such tools. Leveraging on
the pseudo-spectral scalable PIC code WarpX18, the PHI group has been able to accurately
compute the harmonics spectra and perform extensive parameter scans. The outcome of
these works on harmonics generation and optimization will be presented in section 1.3.5.
A second step is to focus the generated beam. Several schemes have been put forward to
this end, which implement various notions of curved RPM or separate harmonic beam
focusing, but generically su�er from stringent requirements in terms of laser alignment,
pulses synchronisation or X-UV optics quality. In section 1.3.5 we will concentrate on two
recent proposals, the optically-curved RPM and the optically-flat RPM, that we believe
decisively alleviate the physical constraints usually plaguing this stage.

A. Plasma mirror generated high harmonics beams

Since the advent of the Chirped Pulse Amplification technique [19] ultra-short pulses
duration have been continuously decreasing while comprising more and more energy, so
that irradiated matter could be e�ciently ionized and its electrons set into relativistic
motion (I & 1018 W.cm≠2) already for more than two decades [1]. In particular, studies
of the interaction of ultra-intense femtosecond pulses with solid targets in these regimes
have long been conducted, giving rise to the notion of “relativistic plasma mirrors” [6–
11]. Starting from the physical depiction of this phenomenon, this section will briefly
trace back the accumulated knowledge on these systems, theoretical and practical, with

18See <https://warpx.readthedocs.io/en/latest/> for an overview of the code, for scientific presenta-
tions see [249–255].
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Figure 1.2: Illustrated summary of the relativistic plasma mirror high-order
harmonics generation mechanism. (a) Illustration of the interaction geometry: the
incident infrared beam is reflected in the specular direction, enriched with a high-order
harmonics spectral content (b,c) Temporal and spectral profiles of the pulse respectively
before and after reflection on the RPM, extracted from a PIC simulation. The time-
compression and its counterpart of slowly decreasing harmonic spectrum are clearly vis-
ible. (d) Instantaneous spatial slices of the electron density in the incidence plane on a
full RPM oscillation cycle. An electron layer is pressed by the driving laser (red arrows)
below its initial plane on half a cycle, then accelerated to relativistic energies outwards
the mirror before being quickly stopped, thereby radiating (violet arrows), and then push
back inside the mirror. Note the timestamps are non-uniform; in particular, the strongly
emitting phase (full violet) is concentrated around t ≥ 0.53TL, and lasts for less than a
tenth of the original laser period TL (adapted from [13])

an emphasis on early proposals to exploit them as light-amplifiers along the relativistic
mirror idea.

Physical description of the phenomenon When an ultra-intense (I & 1015 W.cm≠2)
laser interacts with solid matter, atoms are quasi-instantaneously ionized to form a plasma
which interacts with the field and expends towards vacuum. In the case of an infrared ultra-
short pulse, such as produced by the widespread titane-saphire oscillators, plasma densities
np ≥ 1023 cm≠3 reach hundreds of times the critical density n800 nm ƒ 1.7 ◊ 1021 cm≠3,
while expansion is comparatively slow, so that the pulse interacts with an essentially static
vacuum-to-overdense plasma interface characterized by a gradient length L. Finally, by
compressing the laser intensity rise duration [256–258], the plasma expansion time can be
made so small that L becomes a fraction of the incident wavelength [259–262], and the
main pulse hits an optically-smooth surface e�ectively reflecting it in its specular direction
[263]. Under such circumstances, an optical-quality solid target is thus referred to as a
“plasma mirror”, and can play diverse roles in high-intensity optics [6, 12, 264–271].

Turning to intensities of 1019≠22 W.cm≠2 as reached by 100 TW to PW-class lasers,
the irradiated plasma electrons become relativistic, inducing a non-linear oscillating mo-
tion. More specifically, electron populations are pushed towards the target by the Lorentz
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force on half an optical cycle, then pulled back at the surface by the combined second
half-cycle Lorentz force and charge separation fields, thereby reaching Lorentz factors of
“p ≥ › & 10, until the next incoming optical front and reversed-direction charge separation
field suddenly decelerate them, at which point they coherently emit an electromagnetic
burst specularly directed and time-compressed by the beaming e�ect (see Fig 1.2). This
mechanism of relativistic oscillating mirror [8–11, 272–276] is responsible for the con-
version of the femtosecond incident pulse into a train of pulses of (tens of) attoseconds
duration, each separated by one initial laser wavelength. In the spectral domain, this
amounts to the conversion of quasi-monochromatic Ê0-centred light into a high-order har-
monics beam of frequencies {nÊ0}1ÆnÆnh

[263, 277, 278]. As the resulting beam can be
focused down to the e�ective wavelength ≥ ⁄0/nh associated to each individual attosec-
ond pulse, relativistic plasma mirrors have soon been recognized to open the perspective
of extreme light amplification [6, 279] in principle.

Progresses in theoretical understanding Since this general vision emerged, key
progresses have been made towards a definite realization. The theoretical understanding of
RPM dynamics is now well established, with several consistent analytical models available
[8–11, 272–276]. However, the crucial observable of attainable peak intensity at RPM focus
still eludes accurate synthetic prediction. It has long remained out of reach of ab initio

numerical computation as well. Due to the numerical dispersion relation of time-domain
Maxwell solvers used in most PIC algorithms, resolving the wide spectral content of
the reflected beam required prohibitive computational resources [251, 252, 280]. Recent
development of the WarpX-PICSAR pseudo-spectral Maxwell solver [249–252] lifted this
obstacle, allowing for realistic computation of RPM high-order harmonics generation for
the first time [251, 252, 280]. The cut time-to-solution allowed for extensive parametric
studies of the generation mechanism and attainable intensity gain via hundreds of 2D
simulations. As a result, the optimal parameters for RPM light amplification could be
reliably identified [12, 281], revealing the full potential of this paradigm. Namely, above
1 PW peak power (normalized amplitude › & 10 on plasma mirror) magnifications of the
incident laser intensity of up to five orders of magnitude is possible, by coherent focusing
of about a hundred harmonic orders only [281], contrasting with the thousands required
in previous schemes [6, 9, 282].

Experimental achievements and prospects Decisive steps have been crossed on the
experimental side as well. Though most interesting for high-intensity operations, achieving
the plasma mirror e�ect in the relativistic regime has long remained a hurdle. This is due
to time profile of concrete highly amplified laser pulses, where the main femtosecond
pulse is typically preceded by a precursor light called the pedestal, possibly of nanosecond
time extent and low slowly rising intensity, whose ratio to the global peak intensity is
called the contrast. Though an ubiquitous parasite product of CPA technology, pedestal
light can be innocuous or even beneficial depending on the situation. In the context of
relativistic laser-solid interaction, it proves able to totally suppress the plasma mirror
e�ect by early target ionization, removing any control of the vacuum-plasma interface,
let alone a putative gradient scale. As nanosecond irradiation19 can ionize matter at
intensities as low as 1011 W.cm≠2, maintaining target integrity until the rising edge of
a 1018≠22 W.cm≠2 femtosecond pulse requires laser contrasts of the order of 108≠11. This

19On these timescales collisional processes and heating play a role, that is totally eclipsed by mean-field
e�ects at the main pulse time and field scales.
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Figure 1.3: Expected intensities using RPM harmonic beams. The current intensity
record is represented with a red star, it corresonds to I = 1.4 ◊ 1023 W.cm≠2 and was
obtained on the 2.7 PW CoReLs laser [17]. The oc-RPM values correspond to the black
curve (here called p-CRM for “plasma curved relativistic mirror”), while the di�raction
limit is shown with a red curve; the of-RPM values would generically lie anywhere between
those two. (adapted from [13])

was solved by the use of auxiliary plasma mirrors before the main RPM target, on which
the laser is focused so as to to trigger the (non-relativistic) plasma mirror e�ect just at the
rising edge of the main pulse, thus achieving separation from the pedestal [256–258, 283].
In order to then independently control the plasma length L, a critical parameter of RPM
harmonics generation [259, 260, 284], a simple system was devised to extract a pre-pulse
from the now high-contrast main pulse, ionizing the target in advance with known energy
and adjustable delay [265, 267]. In combination, these methods applied to 100-TW class
lasers have lead to many experimental demonstrations that RPMs are highly reproducible
[260, 284–287] and can be finely controlled in practice [259, 264–266, 285, 286, 288, 289].
Accurate spatio-temporal characterization and shaping of the harmonic beams could also
be conducted [285–287].

B. Focusing plasma mirrors as a source for extremely high intensities

Even when time-compressed pulses are generated, they need to be tightly focalized in or-
der to reach their highest possible intensity. A coneptually most straigthforward method
is to treat both stages independently, optically manipulating the RPM beam after gener-
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ation using dedicated X-UV optics [290]. In a more compact design, the generating PM
itself could be taken as the focusing device, simply by carving its surface into a parabolic
shape [6, 11, 248, 291]. In both cases, however, the cost of decorelating generation and fo-
calisation is an extreme sensitivity to physical imperfections — e.g. misalignment, carving
defect, laser jitter20 — eventually translated in a soar of experimental complexity. Several
proof-of principle experiments were conducted without demonstrating sizable intensity
gains [292–294].

A milestone towards higher intensities from ab initio simulations Further inte-
gration proving desirable, the rich optical properties of the PM dynamical system provide
a promising track. It has long been noticed that RPMs produce diverging harmonic beams
[284], which in the context of high-harmonics generation as a source for subsequent pump-
probe studies was perceived as detrimental. However, as e.g. numerical simulation reveal,
this far-field divergence is actually a signature of the focusing nature of the RPM, which
posses a real focal point typically a few primary laser Rayleigh lengths above its sur-
face. As was later elucidated, the inhomogeneous intensity distribution on the PM surface
during the primary laser reflection tends to press electrons at the center more than on
the periphery, which spontaneously induces an optical curvature of the PM. A theoretical
analysis based on momentum balance on the laser-plasma interface showed this PM “dent-
ing” to precisely scale as ≥ ln I, hence forming a parabola for a gaussian transverse laser
profile [295] whose opening depends on the peak intensity. The notion of “optically curved
relativistic plasma mirror” (oc-RPM) naturally follows. Considering a 3 PW ⁄0 = 800 nm
ten cycles laser as the driving beam, ab initio WarpX-PICSAR 3D numerical simulations
were able to show that intensity gains of the order of � ¥3 (I ¥ 1025 W.cm≠2) robustly
arise at RPM focus, simply by the e�ect of the optically induced PM curvature. Studying
the theoretical dependance of � upon the PM denting ”p, all else being equal, one finds
that shifting from ”p ƒ 0.1⁄0 as in the simulation to ”p ƒ ⁄0, the gain moves from � ¥ 103

to 105. The full potential of the oc-RPM thereby appears along with its main limitation.
Indeed, when the plasma length changes of more than a fraction of ⁄0 all else is not equal,
as in particular the harmonics generation e�ciency drops21.

A path towards the Schwinger field In order to reach beyond the oc-RPM, yet
another method disentangling the plasma length and pulse curvature is required. In par-
ticular, as the plasma length is key to e�cient harmonics generation, keeping it around
its optimum value would be very beneficial, which means the RPM should be initially flat
and its optical denting remain as small as possible. The necessary extra aperture then
has to be provided externally again to benefit from the then very high theoretical inten-
sity gains. In regard of the pitfalls evoked earlier when focalization follows generation,
a very appealing idea would simply be to incorporate it from the start in the infrared
driving pulse. If the primary beam reaches the target surface more than approximately
two Rayleigh lengths before its focal plane, then its wavefronts curvature naturally encode
its numerical aperture, which could be accurately transmitted to the specularly reflected
beam, as occurs exactly with ideal flat mirrors. In principle, arbitrary apertures could be

20The quality of an optical element being quantified in terms of pulse wavelength, the magnitude of
such defects should be controlled on a nanometric scale, thus far beyond the standards of ultra-intense
laser engineering.

21Both e�ective harmonics number and PM reflectivity are found to significantly decrease for L & 0.1⁄0,
using 2D simulations parameter scans [12, 281].
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conferred to the harmonic beam in this way, which in practice would inherit the limits of
infrared laser optics — instead of that of X-UV optics. A possibly more serious constraint
could reside in the intensity profile of real laser pulses out of focus which, as adapta-
tive optics is usually applied to optimize it at focus, could turn out quite unpredictable
without specific attention. Again, the major edge of this last scheme, which one may call
“out-of-focus relativistic plasma mirrors” or “optically-flat relativistic plasma mirror”, is
to allow for nearly five orders of magnitude intensity magnification virtually only relying
on conventional laser engineering.

In the event that the RPM harmonics generation and focusing schemes presented above
succeed, sources of unusually strong-fields would thus be made available. For reference one
can map these configurations to interaction parameters diagrams on which the di�erent
sf-QED regimes can be easily located, allowing to picture the regime shift performed
by RPM conversion of standard Petawatt lasers. Assuming perfect focusing, this process
indeed essentially translates into ⁄0 æ ⁄0/nh and › æ ›

Ô
nh. This is shown in Fig. 1.4,

in terms of focused power, normalized potential › (there denoted a0) and wavelength.
One sees that RPM conversion of current and near-term lasers generically brings us from
below to above the quantum dominated regime threshold ‰ & 1. Remarkably, in the most
favorable case the combination of wavelength shortening and pulse amplification results
into a non-vanishing probability of Schwinger pair creation over the total beam volume,
a landmark for the critical regime of sf-QED. This entails that non-trivial processes can
occur in these beams both in the presence or absence of matter at focus.

1.4 Objectives of the thesis
The core of our work has consisted in specifying the main physical phenomena to be
expected at the interaction point of these relativistic plasma mirror sources. In this section,
we will be presenting the expectations derived from a closer study of di�erent interaction
scenarios. Light couplings to the electron-positron field in a vacuum will be studied first,
deriving observable signatures in di�erent experimental setups, including scattered photon
spectra and Schwinger pair creation threshold. These subtle e�ects when no matter is there
leave room to to prolific pair creation as soon as one charged particle comes in. This process
of field-matter interaction occurs for di�erent types of initial seed, a Schwinger pair, a
dense target, high-energy electron beams, a�ecting the involved elementary processes and
the macroscopic system state. These phenomena will be presented in a second section.

1.4.1 Observing vacuum QED processes in the light of relativis-
tic plasma mirror sources

The quasi-stability of the fermionic vacuum state in sf-QED means that, provided it is
strong enough, an electromagnetic field couples to fermionic degrees of freedom even in
the absence of charged particles. The most straightforward manifestation of this fact is
electron-positron pair creation from coherent field decay, which persists even in the limit
of infinitely low field photon frequency, which is known as the Schwinger process. Within
the locally constant field approximation, its local rate can be computed as [199, 296]:
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Figure 1.4: Parameter diagrams displaying the e�ect of Focusing Relativistic
Plasma Mirror harmonics conversion of Petawatt-class optical lasers. (a) RPM
shift in wavelength and normalized potential. The accessed regime is characterized by
‰ > 1, fast radiation of whole electron energy (Ld < ⁄), and may cross the Schwinger
pair creation threshold. (adapted from [4]) (b) RPM shift in wavelength, peak power, and
normalized potential assuming 2⁄ focal size; in the context of interaction with a target at
rest. The quantum regime is accessed, and possibly the quantum dominated regime (here
referred to as “radiation dominated”). (c) Same as (b); in the context of collision with
high-energy electron beams. Collision with a 50 GeV beam would allow enter the fully
non-perturabative regime of sf-QED (dashed blue lines). (adapted from [114])

where ⁄C is the reduced Compton length of the electron. The non-perturbative nature of
the process mathematically translates into non-analyticity of the occurrence rate around
E ≥ 0, which e�ectively results into exponential suppression as long as E . 1. This
implies that so-called “vacuum pair creation” is relevantly conceived as a threshold e�ect,
forbidden below a given field value and growing very fast past it. Note that because the
final probability typically scales as PS © Vsf�S, where Vsf ≥ ⁄4 ∫ ⁄4

C
is the spacetime

volume where a field of wavelength ⁄ is strong, the threshold specific to a macroscopic
configuration can be significantly lower than E ≥ ES in the laboratory frame [197–200].
Nonetheless, the lowest required intensities lying around I & 1027 W.cm≠2 for a working
wavelength of 800 nm [226], observing vacuum pair creation seems precluded in any current
or forecasted facility [3].
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⌅ In contrast, we could demonstrate that focused RPM harmonic beams open a tan-
talizing possibility to achieve this process. If the harmonics produced by a 200 PW
class laser, ranging up to harmonic order . 100, can be e�ciently focused near
di�raction limit w0 ≥ 50 nm, then Schwinger pair creation could be observed in the
laboratory.

In the conservative assumption that such threshold is not crossed though, another yet
unobserved strong-field processes could still occur, the vacuum self-interaction of light.
Even in the absence of real particle creation, intermediate electron-positron states indeed
allow the electromagnetic field to interact with itself, giving rise to macroscopic e�ects
akin to a “vacuum polarization”. From a particle perspective this interaction translates
into photons scattering o� each other, towards final states possibly outside the initial
coherent state spectrum. The detection of these photons has driven significant theoretical
and experimental e�orts during the last two decades, showing that possibilities to observe
them exist within the current laser technological realm (see [3] and references therein).

A major di�culty for these observations is that for kinematic reasons, the scattering
amplitudes are dominated by quasi-elastic channels, where photons are scattered close
to the energy and direction of the incoming ones; as the required Petawatt class lasers
typically comprise more than 1020 photons, discerning a scattering signal proves the main
challenge in these experiments. The relevant quantity is therefore the number of “dis-
cernible photons” generated per shot, that is the ones satisfying a criterion of the form,

nscattered(k) > CNA(k) (1.32)
with C > 0, nscattered(k) and NA(k) the phase space densities around momentum k re-
spectively of scattered and initial field photons. State-of-the-art studies typically find tens
of discernible photons in the collision of two or more laser fields [3] (see e.g. [297]). An ex-
perimental investigation of realistic photon detection and background filtering capabilities
in this context has also been recently conducted [298].

These a priori very harsh constraints call for new schemes improving the signal to noise
ratio, for which as will be shown RPM light proves very promising. A previous study had
already demonstrated that collision of a low order harmonic beam with a fundamental
frequency pulse could open sizeable inelastic channels, both in direction and frequency,
producing robustly discernible photons [299].

⌅ In chapter 8, we will present our own work on the use of RPM light for exploring
vacuum light-by-light scattering, improving on former knowledge through an accu-
rate modelling of RPM spectra and fields, made operational by the use of large
scale computing infrastructures. The main results are first the possibility to pro-
duce as many discernible photons as with two exactly synchronized and aligned
counter-propagating infrared pulses focused at di�raction limit, with a single RPM
harmonic beam, thus considerably simplying the setup. Then, we proceeded to study
the collision of the harmonics with an auxiliary pulse, which allowed us to confirm
the existence of inelastic scattering channels in this case, resulting, all else being
equal, in improvement of the attainable signal-to-noise ratios by several orders of
magnitude over optical frequency configurations.

⌅ This core study was completed by extensive numerical validation of the “Stimu-
lated Vacuum Emission” algorithm, highlighting its behavior under many di�erent
options of implementation. Analytical estimate of the number of scattered photons
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in RPM beams as a function of the field harmonic spectrum could also be derived.
Finally, a theoretical discussion of the di�erent methods employing the Heisenberg-
Euler action could be lead, and the correspondence between the Stimulated Vacuum
Emission algorithm and the resolution of e�ective field equation fully detailed and
clarified, putting forward a condensed view of previous knowledge on the matter.
These studies are presented in part III.

1.4.2 Converting relativistic plasma mirror light into exotic mat-
ter processes and states

The above discussed physics relied on the assumption that strong fields propagate in a
pure fermionic vacuum. However, there are many circumstances in which this might not
be the case, be it from controlled operation, or physical contingency. In this section, we
will expose our work on the physics of these situations where real initial particles are
involved, in the various way they can be introduced. Each of them will be detailed in
chapter 9.

A first possible scenario is the straightforward extension of vacuum propagation when
Schwinger pair creation occurs. The sharp field dependence of the local rate Eq. 2.51
entails that, in a semi-classical kinetic picture, electron-positron pairs will typically be
created at focus when the harmonic field peaks, possibly in several attosecond pulses as
they successively cross the focal plane. At this point, the electromagnetic field is of the
order of F ≥ 1.2 FS, or I ≥ 6 ◊ 1029 W.cm≠2, so that these particles become relativistic
in a fraction of their Compton time ·C ƒ 8 ◊ 10≠21 s. Under a Lorentz-force evolution,
these particles are therefore instantly guided by the relativistic ponderomotive force along
the local wavefronts normal direction, and conservatively estimating their quantum in-
teraction parameter from the plane-wave case yields ‰ ƒ E/ES, where E is the electric
field amplitude in the laboratory frame. As in this case we have E/ES & 1, sf-QED pro-
cesses can occur, and QED cascades instantly start to develop. Moreover, the field is even
locally not a plane wave and, as a consequence of the above, trajectories do not follow
the Lorentz-force, all of which tends to favor higher ‰ parameters. This process leads to
exponential growth of the particle number in the beam for at least as long as E & ES,
concentrated in the attosecond high-field fronts and guided by them, which results in
extremely high density globally neutral electron-positron sheets accelerated up to GeV
energies.

⇤ The final states of these configurations, in between relativistic quantum plasmas and
ultrarelativistic particle beams, are very challenging to predict even numerically,
particularly their maximum particle densities, as the corresponding plasma proper
wavelength-frequency generically tend to exceed any computationally tractable reso-
lution. Partial results could however be obtained, and lower bounds on the maximum
density of the order of & 1029 cm≠3 established, however these preliminary results
will not be presented in this thesis.

A related physics could be observed when the field interacts with external particles
from the beginning, all the more with an abundant particle source, which a priori provides
strong motivations for studying the focusing of RPM fields on solid targets. Significant
enhancement of sf-QED processes could then be evidenced, up to the formation of very
high density, relativistic quantum plasma states.
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1.4. Objectives of the thesis

⌅ A first study was conducted with moderate intensity RPM light22, where the focused
intensity on target reached about ≥ 1025 W.cm≠2 [300]. In this case, a relativistic
quantum plasma was not properly formed, as the harmonics and target plasma
fields determined the dynamics, however a significant increase in produced gamma
photons and Breit-Wheeler pairs was demonstrated compared to direct infrared
pulse irradiation for an equivalent energy. A striking feature of these interactions
was the formation of a depleted channel in the wake of the harmonic beam, which
could propagate inside the solid target on a distance of many wavelengths, due both
to its high frequency content and relativistic transparency.

⌅ In a more extreme RPM light of above ≥ 1027 W.cm≠2 intensity, both these e�ects
are magnified, leading to the formation of very high-density electron-positron plasma
states. These dense particle clusters tend to be accelerated by the RPM field, up
to GeV energies, and charge separation tends to occur under the influence of the
ambient strong fields. The thereby formed gamma, electron and positron beams
properties were studied through their spectra. Though not directly studied here,
their subsequent interaction with matter should display interesting phenomena as
well, providing dense, attosecond, high-energy particle sources.

Another way to study elementary strong-field processes is to collide very high energy
particles with the pulse, allowing for very high ‰ parameters, possibly up to the “fully
non-perturbative” regime of sf-QED. This configuration typically represents the collision
of a high-energy electron beam with the RPM-light beam, and was also investigated.

⌅ The interaction of electron beams with the RPM field was studied for the whole
1026 W.cm≠2≠1029 W.cm≠2 intensity range, with an electron beam energy of 10 GeV,
and an angle of collision maximizing peak ‰ values. In these conditions, it is shown
that the ‰ = 1600 threshold can be exceeded from intensities of 1027 W.cm≠2, open-
ing the perspective of testing the Ritus-Narozhny conjecture. Besides, such configu-
rations also allow for prolific sf-QED processes, that could be observed through the
emitted particle spectra, which we will detail.

22This could result from a sub-Petawatt primary laser, or sub-optimal generation conditions, e.g. angle
of incidence or plasma mirror gradient.
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Chapter 2

Theoretical and numerical methods

Accurate prediction of the expected e�ects when strong fields are achieved requires ap-
propriate theoretical methods. As we know that qualitatively new phenomena will stem
from quantum processes, they have to be grounded in Quantum Electrodynamics. For
conceptual clarity as well as versatility, it would furthermore be desirable for the new
framework to encompass at least the former one, classical relativistic kinetic theory, with
an explicit connection. Ideally, there should exist a map between the old variables and
the new, then highlighting how the latter extend the first and reduce back to them under
suitable physical circumstances1. Such definitive theoretical framework is not currently in
use, and research in this direction is still active2.

Meanwhile, strong-field physics could progress from a combination of a few more
specialized formalisms, well-suited to most studied configurations. In particular, many
concepts and intuitions in the field gravitate around a semi-classical “Boltzmann-QED”
model, which proves flexible, operational, and incidentally constitutes the basis for ab

initio numerical simulations [301] (cf. Chapter 9). This model will be described first, in-
cluding how it casts the historical “Furry picture” [302] into general configurations, from
which di�erent regimes of strong-field QED will be discerned. We will then be able to detail
the principles of ab initio PIC-QED simulations, that numerically realize the Boltzmann-
QED equations, and provide reference for the WarpX code used in the present thesis.
Final sections will be devoted to a formalism aimed at computing e�ects of the electro-
magnetic self-interaction in a vacuum specifically3, and the validation of its numerical
implementation on massively parallel computing infrastructures. It is called “Stimulated
Vacuum Emission” [303], and forms the basis for the work presented in Chapter 8.

2.1 An operational framework for strong-field Quan-
tum Electrodynamics

In the most common formulation of QED, as for that matter of other quantum field
theories, processes are conceived in the basis of free particle states, that are stable in
time when interactions are discarded4. Physically, this means that only transitions from
incoming non-interacting n≠particles states in the asymptotically far past to outgoing
nÕ≠particles states in the asymptotically late future are relevantly modelled, so-called
“scattering events”. If such picture provides operational tools for the empirical context
of high-energy accelerators in which it was forged, it seems unfit to the more general

1This is would be all the more relevant that actual experiments would typically produce such physical
scenarios, e.g. the focusing of a pulse to a transient strong-field region (itself only weakly quantum in
standard facilities), or the screening of driving fields by an electron-positron plasma followed by relaxation.

2Non-equilibrium Quantum Field Theory naturally solves the problem (App. B.2.5), but then requires
to be cast in a computationally, if not analytically, tractable form.

3A connection with the Boltzmann-QED framework is derived in Chapter 5.
4See e.g. App. B for details and terminology.
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macroscopic configurations previously envisioned in classical plasma physics. Incidentally,
the electromagnetic field expectation value in any state with a definite number of photons
vanishes.

As a matter of principle though, quantum theory must be able to fully encompass
its classical counterpart. Besides, non-vanishing field expectation values naturally arise
also in the quantum theory [304]. The above described asymptotic formalism can indeed
be understood as the computation of specific observables (scattering amplitudes) at late
times for few-particles initial states, that are in a sense “near to the vacuum”5. However,
the most general questions of the expectation value of any observable at a finite time
from an arbitrary – possibly mixed – initial state are in principle within reach, through
methods gathered under the name of “Non-equilibrium Quantum Field Theory” [305,
306]. In particular, all correlation functions of a theory can be computed to a given
accuracy at all times, from the data of their initial values. In view of the previously evoked
consistent, versatile and computable theory, a systematic approximation procedure may
then be followed so as to obtain e.g. a suitably extended kinetic formulation of Quantum
Electrodynamics [116, 307].

The most extensive theoretical framework currently underlying strong-field Quantum
Electrodynamics research is one such extension of classical kinetic theory. It was however
built from the opposite direction, adding quantum corrections to the kinetic equations,
in a “bottom-up” motivated approach. In this context, particles are described by 1-body
distribution functions governed by Boltzmann equations, and the electromagnetic field is
classical. All quantum phenomena are encapsulated into i) a collision operator for the
1-particle distribution functions and ii) additional terms in Maxwell’s equations. The
cross-sections entering the collision terms are then computed in an extension of the usual
QED scattering theory that accounts for the presence of an electromagnetic field, called
the “Furry picture” of sf-QED [302, 308]. In this section, our primary aim is to outline
this formulation of sf-QED, grounding both intuition and quantitative results such as
presented in Chapter 9. Introducing the Furry picture in a second part will allow defining
the parameters governing QED processes, and hence classifying the di�erent physical
regimes of strong-field electrodynamics.

2.1.1 The Boltzmann model of strong-field QED

Classical relativistic kinetic theory Let us start from a classical depiction of systems
to be described. They consist in the electromagnetic field interacting with matter particles,
typically in very high number and collectively forming a plasma. Considering indeed an
electron-ions plasma, as produced by ordinary matter interaction with lasers, the critical
plasma density at ⁄0 = 800 nm is n0 = 1.7 ◊ 1021 cm≠3, and matter configurations
typically range from ne ≥ 10≠3n0 for gas jets to ne ≥ 102≠3n0 for solid targets, generically
resulting in more than 106 electrons in a 1 µm3 volume. As a consequence, the exact
system state is practically irrelevant and statistical methods must be used.

The canonical formalism of mechanics usually provides a sound definition of the sta-
tistical behavior of a system. If the system has 6N independent variables, say {xi =
(qi, pi)}iœJ1;NK, and fN(x1, . . . , xN) is the full system state, Liouville’s equation translates

5See Comp. B.3.
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2.1. An operational framework for strong-field Quantum Electrodynamics

in a system of coupled equations for reduced distribution functions6 [309],

fN≠k(x1, . . . , xN≠k) = N !
k!

⁄
dy1 . . . dykfN(y1, . . . , yk, x1, . . . , xN≠k) (2.1)

known as the “Bogolioubov-Born-Green-Kirkwood-Yvon hierarchy”. When closed at order
1, for instance via a “molecular chaos hypothesis” f2(x1, x2) ≥ f1(x1)f1(x2), a Boltzmann
equation for the “1-body” distribution function f1 is obtained,

Boltzmann (1-body) ˆf1

ˆt
+ {f1, H1} = CB[f1] (2.2)

where H1 is the “1-body Hamiltonian”, derived from the full one, and CB[f1] is called a
“collision term”. The (normalized) 1-body distribution f1 has a simple interpretation in
terms of density of (probability to find) particles at point (q, p) in phase space.

Now, in a relativistic theory di�culties arise as physical variables are not all indepen-
dent7, so that the constrained canonical formalism should be used [310, 311]. In practice,
this di�culty is most often circumvented by a more heuristic approach [309, 312–314].
Let us illustrate one such procedure8 noticing that an exact (“pure”) system state can be
encoded in the following singular distribution on the 1-body phase space,

fK(x, t) ©
Nÿ

i=1

”(x ≠ xi(t)) (2.3)

As each particle trajectory can be assumed to be dictated by the Lorentz force, that is,
Y
__]

__[

q̇i = pi

m“i

, with “i =
Û

1 + p2

i

m2c2

ṗi = q [EK(qi) + q̇i ◊ BK(qi)]

(2.4)

(2.5)

where EK , BK follow Maxwell’s equations sourced by the exact currents, deriving Eq. 2.3
with respect to time and gathering terms we find the Klimontovitch-Dupree equation,

Klimontovitch-Dupree ˆfK

ˆt
+ p

m“
· ˆfK

ˆq + q [EK + q̇ ◊ BK ] · ˆfK

ˆp = 0 (2.6)

This equation is exact, but unsolvable as it is equivalent to the 6N equations system
Eqs. 2.4-2.5. In order to relate is with more accessible quantities, one idea then is to
decompose dynamical variables in,

fK = f + ”f (2.7)
EK = E + ”E (2.8)
BK = B + ”B (2.9)

introducing average values X © ÈXKÍ with respect to possible realizations of the system
preserving a certain set of observable (“macroscopic”) quantities9. Typically, we wish to

6Particles are assumed identical so the choice of integration variables does not matter (fN is totally
symmetric). The prefactor simply allows unifying expressions for certain forms of observables [309].

7The momenta components for instance are related by pµpµ = m2.
8We refer to [315] for more details on this presentation.
9In a derivation of kinetic theory from quantum field theory, distribution functions simply are quantum

expectation values.

33



Part I, Chapter 2 – Theoretical and numerical methods

consider averages such that f now coincides with the 1-body distribution function f1 in
its operational interpretation. Averaging Eq. 2.6 and injecting definitions Eqs. 2.7-2.9 we
are then lead to,

Boltzmann (average) ˆf

ˆt
+ p

m“
· ˆf

ˆq + q [E + q̇ ◊ B] · ˆf

ˆp = CK [f, E, B] (2.10)

with, CK [f, E, B] © ≠q

K

[”E + q̇ ◊ ”B] · ˆfK

ˆp

L

(2.11)

In these equations, the average electric and magnetic fields are now be computed from
the averaged currents,

Maxwell (average)

Y
________]

________[

Ò · E = fl

Á0

≠ 1
c2

ˆtE + Ò ◊ B = µ0j

Ò · B = 0
ˆtB + Ò ◊ E = 0

(2.12)

(2.13)

(2.14)
(2.15)

where,

Sources (average)

Y
____]

____[

fl(r) =
ÿ

–

⁄
dpq–f–(r, p, t)

j(r) =
ÿ

–

⁄
dpq–

p
m–“–

f–(r, p, t)

(2.16)

(2.17)

introducing possibly multiple particle species distributions f– defined by their mass m–

and charge q–, each following Eq. 2.10.
Equations Eqs. 2.10-2.17 define a system of coupled partial di�erential equations. Once

closed by the data of the functional CK , it allows computing variables f, E, B and hence
all classical 1-body properties of the system.

A system is well approximated by these quantities if dynamics is dominated by col-
lective e�ects rather than few-particles contributions, seen as fluctuations in Eqs. 2.7-2.9.
In plasma physics, introducing a mean kinetic energy ue for the electrons (or other fast
particles), this criterion typically translates into,

� = ne⁄
3

D
∫ 1 (2.18)

with ⁄D =
Û

Á0ue

e2ne

the Debye length (2.19)

i.e. ⁄D ≥
Û

ue

mec2
⁄p with ⁄p = 2fi

Û
Á0mec2

e2ne

the plasma length (2.20)

In the case of strong fields and plasma interactions, collisions typically are all the more
negligible that electron-field interaction energies are ultra-relativistic (ue ∫ mec2).

Strong-field QED as collision processes The key idea to extend classical kinetic
theory to the strong-field regime of electrodynamics is to embed quantum processes in
the collision term CK . This is made possible by the large scale separation between ⁄C,e ƒ
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2.1. An operational framework for strong-field Quantum Electrodynamics

2.42 ◊ 10≠12 m, the electron Compton length, and the typical field-plasma scales ⁄0, ⁄p &
1 ◊ 10≠8 m10 [301].

As a consequence, one may assume that the coherence scale of quantum processes
is small enough to treat them as punctual events in Eq. 2.10, while all particles behave
classically in-between. Namely, they are described by on-shell 1-body distribution func-
tions following the transport equation Eq. 2.10. The electromagnetic field then receives
a dual description, with classical values E, B corresponding to its quantum expectation
values, and a photon distribution function f“ describing particle-like variables of the quan-
tum electromagnetic field11. Once again, consistency is ensured by the large gap between
frequencies associated with the coherent field (h‹ . 100 eV) and emitted high-energy
photons (Á“ & 1 MeV) [301].

The above assumptions on the scale of quantum processes naturally imply that the
electromagnetic field in which they occur can be considered constant12. This assumption,
known as the “Locally Constant Field Approximation”, takes many forms in strong-field
QED and typically strongly constrains models beyond this semi-classical level. Besides,
quantum processes typically become non-negligible when particles are ultra-relativistic,
in which case the field can also be considered crossed13. All cross-sections in the collision
kernels therefore correspond to QED scattering amplitudes in a constant crossed field.
This explains their dependence on a single quantum interaction parameter ‰ defined in
Eq. B.126, and the existence of exact analytical expressions for the di�erential cross-
sections.

The most significant new processes are (non-linear) Compton scattering of an electron
or positron emitting a photon, and (non-linear) Breit-Wheeler electron-positron pair cre-
ation from a photon in the strong-field. The core equations of the Boltzmann-QED kinetic
model can thus finally be written as [315],

ˆfeû

ˆt
+ p

me“
· ˆfeû

ˆq û e [E + q̇ ◊ B] · ˆfeû

ˆp = CCS[feû ] + CBW[f“]

ˆf“

ˆt
+ c · ˆf“

ˆq = CCS[fe≠ ] + CCS[fe+ ] ≠ CBW[f“]

(2.21)

(2.22)

together with an unchanged Maxwell part14 Eqs. 2.12-2.17, and possibly additional par-
ticle species such as ions.

2.1.2 QED processes in strong fields
In view of the above described picture of QED processes as collision events, we will now
simply draw the implications of the presence of a coherent field for QED scattering ampli-
tudes. Actually, the heuristic formulation used in this part will allow to reach conclusions
beyond the scope of the Boltzmann-QED model. In particular, we will be able to introduce

10Equivalently, between the photon-plasmon energies . 100 eV and the electron characteristic energy
mec2 ƒ 0.511 MeV.

11In a kinetic reduction of Quantum Electrodynamics, “field values” and “photon particles” would
naturally stem respectively from the 1≠point and 2≠points functions [116] (cf. App. B.2.5).

12More refined arguments for defining this so-called “formation length” show that it generally depends
on the local field strength, and decreases as the field increases (see e.g. [2, 4]).

13Indeed, (cB)2 ≠ E2 and B · E are Lorentz-invariant while E2 + (cB)2 ≥ “2.
14See Chapter 5 for the inclusion of vacuum electromagnetic self-interaction.
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the Furry picture of strong-field QED, that is pivotal to virtually all current investiga-
tions as it leads to exact expressions for processes in plane-wave fields, and more generally
allows at least for approximations beyond the LCFA.

Observables in a coherent state Consider an observable of interest O, then vacuum
QED would typically consist in computing its asymptotic expectation value,

ÈOÍ
0

�= È0 | O(t æ +Œ) | 0Í
=

e
0

--- U(+Œ, ≠Œ)†OU(+Œ, ≠Œ)
--- 0

f (2.23)

where we have introduced the vacuum state vector |0Í, U(t, t0) the evolution operator
from t0 to t and the † symbol to denote the adjoint (cf. App. A.4).

Now we aim at computing similar quantities but from a coherent initial state, encoding
the non-vanishing expectation value of the electromagnetic field before the process takes
place15. Let us denote |AÍ the coherent state associated with the classical field A, the new
computation writes

ÈOÍA
�= ÈA | O(t æ +Œ) | AÍ (2.24)

We can reexpress |AÍ from the (photon) vacuum state |0Í introducing the “displacement
operator” DA, expressed in terms of creation-annihilation operators a†

k,p
, ak,p, such that

|AÍ = DA |0Í (2.25)

The canonical commutation relations then allow us to derive the relation16,

D†
AA(x)DA = A(x) + A(x) (2.26)

which together with unitarity of the displacement operator directly implies,

D†
AO(A)DA = O(A + A) (2.27)

�= OA (2.28)

for any operator O depending on the field operator A at any spacetime point. It follows
that observable values in the presence of a field expectation value become,

ÈOÍA =
e
D†

AO(t æ +Œ)DA
f

0

=
e
D†

AU(+Œ, ≠Œ)†OU(+Œ, ≠Œ)DA
f

0

=
e
UA(+Œ, ≠Œ)†OAUA(+Œ, ≠Œ)

f

0
(2.29)

Furry Lagrangian Therefore, the presence of a non-vanishing field expectation value
a�ects the vacuum formalism only by shifting the photon field operator by its mean value.
The essential changes are thus captured in a new Lagrangian for the non-zero field theory:

LA = ≠ 1
4 (Fµ‹ + Fµ‹ [A])(F µ‹ + F µ‹ [A]) + Â̄

Ë
i /̂ ≠ e( /A + /A) ≠ m

È
Â

≠ Jµ(Aµ + Aµ) + LJ

(2.30)

15Coherent state are quantum states entirely characterized by their field expectation value, and the
fact that they realize the equality in the Heinseberg indeterminacy relations of conjugated field variables.
In this sense, among others, they are “the most classical states” of the electromagnetic field, and provide
a natural embedding of classical field configurations in QED [304, 316].

16We omit the identity symbol multiplying scalars in operator expressions.

36



2.1. An operational framework for strong-field Quantum Electrodynamics

where the J current terms assumed to be responsible for creating the coherent field are ex-
plicitly included for consistency, and the Â operator is meant to account for the remaining
fermionic degrees of freedom.

In practice this formalism is only useful when J and A are known, which implies
they have to be specified in advance and therefore cannot account for the self-consistent
interaction between the field expectation value and the quantum processes it triggers17.
For this reason, they are said to be “external”. In QED, J and A are related by Maxwell’s
type equations, ˆµF µ‹ [A] = J‹ , so that,

LA = ≠1
4Fµ‹F µ‹ + Â̄

Ë
i /̂ ≠ e( /A + /A) ≠ m

È
Â

≠ ˆµF µ‹ [A]A‹ ≠ 1
2Fµ‹F µ‹ [A]

≠ 1
4Fµ‹ [A]F µ‹ [A] ≠ JµAµ + LJ

(2.31)

Now integrating by part,

≠ˆµF µ‹ [A]A‹ = F µ‹ [A]ˆµA‹

= 1
2F µ‹ [A]Fµ‹ , by antisymmetry of Fµ‹ [A]

so that, after dropping the non-dynamical terms (third line in Eq. 2.31), we finally reach
[302],

Furry Lagrangian LA = ≠1
4Fµ‹F µ‹ + Â̄

Ë
i /̂ ≠ e( /A + /A) ≠ m

È
Â (2.32)

called the “Furry Lagrangian”.

The Furry picture of strong-field QED Reading last expression, we see that the
only di�erence with respect to the vacuum Lagrangian (Eq. B.60) is the term ≠eÂ̄ /AÂ,
coupling the fermions to the external field, and responsible for “insertion” type diagrams in
the perturbative expansion18. Now, for perturbative theory to make sense, these diagrams
have to be small with respect to the kinetic part. We can qualitatively estimate their
relative magnitude at the Lagrangian level, introducing a characteristic momentum scale
Q and field amplitude A0 for the physics at play we see that,

Y
]

[
iÂ̄ /̂Â ≥ Qj , denoting Â̄“µÂ ≥ j

≠eÂ̄ /AÂ ≥ eA0j
(2.33)

and thus a perturbative expansion is meaningful if,
eA0

Q
. 1 (2.34)

Starting from a non-relativistic fermion configuration, we identify the parameter of the
field strength expansion as,

› = eA0

m
(2.35)

17Non-equilibrium QFT provides a more systematic approach to this purpose (App. B.2.5).
18See App. B.2.4 for a discussion on the occurrence of such diagrams from non-vanishing field expec-

tation values (there illustrated in the Schwinger-Dyson equations of a simple „3 theory).
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This quantity is precisely the “normalized vector potential” in the classical theory, or
“classical field strength parameter” introduced in sec. 1.1.219. Though here given in terms
of gauge field, it can be given a manifestly Lorentz and gauge invariant definition [24,
25]. If › > 1, the interaction of the fermions with the background field has to be treated
non-perturbatively, which amounts to diagonalizing the modified kinetic term,

LA,0 = ≠1
4Fµ‹F µ‹ + Â̄

Ë
i /̂ ≠ e /A ≠ m

È
Â (2.36)

The resulting theory is known as the “Furry picture” of Strong-field Quantum Elec-
trodynamics. It preserves the structure of perturbative QED in its particle content and
interaction term, photons and so-called “dressed” electron-positron states20 interact via
the bare QED interaction vertex, but qualitatively di�ers from its vacuum equivalent
due to the presence of an energy-momentum reservoir constituted by the “background”
field. As a consequence, Furry theorem does not hold, and processes forbidden by energy-
momentum conservation in a vacuum can now occur. This implies in particular that the
vacuum as well as 1-particle states become quasi-stable only.

Regimes of strong-field Electrodynamics All new processes are controlled by the
endogenous field strength scale FS = m

2

e
ƒ 1, 32.1018 V.m≠1, the Schwinger field, which

physically marks the threshold of spontaneous fermionic vacuum decay into real electron-
positron pairs. This scale together with Lorentz invariance lets us build adimensionnal
quantities upon which the sf-QED processes depend, and which control their contribution
to the physics. Considering a particle of momentum pµ and a constant background field21

F̄ µ‹ , these “quantum interaction parameters” write:

‰
�= 1

m

Ò
(pµF̄ µ‹)2

FS

= “

FS

Ò
(E + v ◊ B)2 ≠ (v · E)2

and,
Y
____]

____[

F �= 1
4

F̄µ‹F̄ µ‹

F 2

S

= 1
2F 2

S

(B2 ≠ E2)

G �= 1
4

F̄µ‹
úF̄ µ‹

F 2

S

= ≠ 1
F 2

S

E · B

or equivalently,
Y
_]

_[
E �=

ÒÔ
F2 + G2 ≠ F

B �=
ÒÔ

F2 + G2 + F

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

where úF̄ µ‹ = 1

2
‘µ‹‡flF̄‡fl is the Hodge dual of the field strength tensor. The ‰ parameter

is the electric field magnitude in Schwinger units in the rest frame of the particle, while
19We note that in international units › = eA0/mc, it does not involve the Planck constant and therefore

does a priori not relate to quantum mechanics. However, the connection can be made introducing a typical
field frequency Ê, so that › © eE0/Êmc = eE0⁄C/~Ê, and › & 1 thus sets the threshold at which coherent
multiphoton e�ects arise (more than one field photon absorption over a Compton length).

20As Eq. 2.36 only di�ers from the vacuum Lagrangian by its fermionic part, photon propagators are
una�ected, while fermion propagators are now Green’s functions of the di�erential operator of Dirac
equation in the presence of the background field (see Eq. B.117, see also �0A in Fig. B.7).

21Though we will study non-constant fields, they will be assumed to vary slowly on a Compton scale
so that quantum coherency will be confined to spatiotemporal regions in which the field can be treated
as constant (Locally Constant Field Approximation, “LCFA”, see e.g. [AdQED] for a discussion).

38



2.1. An operational framework for strong-field Quantum Electrodynamics

Formal regime Name Parameters Physics
Perturbative in –
No field

Vacuum QED › , ‰, E , B = 0 Particle scattering

Perturbative in –
Perturbative in ›

Background field
QED › . 1

‰, E , B ≥ 0

Particle and field
photons scattering

Perturbative in –
(–‰2/3 ?)
Non-perturbative
in ›

Strong-field
QED › > 1

‰, E , B < 1

Relativistic
many photons
field-particles

interaction

Quantum
dominated

sf-QED
› > 1
‰ > 1
E , B < 1

Many particles
creations/annihilations

(QED cascades)

Critical
sf-QED

› > 1
‰ > 1
E , B & 1

Vacuum polarization
and coherent field

decay
(Schwinger process)

Non-perturbative
in – ?

Non-perturbative
in ›

Fully
non-perturbative

sf-QED
› > 1
‰ & –≠3/2 ¥ 1600
E , B & 0

Breakdown of loop
processes hierarchy
(Ritus-Narozhny

conjecture)

Table 2.1: Summary of the di�erent considered regimes of strong-field QED.

E and B correspond to the electric and magnetic field magnitude in the reference frame
in which they are colinear (they vanish for a plane wave).

Let us finally note that the study of loop corrections to the two point functions in sf-
QED with constant background fields has lead to the conjecture that the loop expansion is
controlled by the parameter –‰2/3 [317–320], instead of simply the fine structure constant
– as in a vacuum. If this is true, the perturbative expansion of sf-QED is only relevant
so long as ‰ . –≠3/2 ¥ 1600, past which one enters the so-called “fully non-perturbative”
regime of QED. Little is known about this regime in which all-order loop diagrams would
equally contribute to any given process, though one might expect collective e�ects to
play an important role at this scale as the standard particle picture fails. Nevertheless,
this scaling behavior technically remains a conjecture to this day, and the asymptotics
of sf-QED amplitudes even more so in physical, finite energy background fields is still
open [321, 322]. As of today, the high-‰ limit therefore still stands as a frontier in the
understanding of QED [3].

The presence of coherent photons states hence reveals a stratified structure of electro-
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Figure 2.1: Representation of physical variables and their interactions in a PIC-
QED simulation (from [301]). Circles represent the di�erent mathematical-numerical
objects to be computed, arrows show interactions entering in the system evolution. Matter
particles and photons move according to their speed, and fields from Maxwell’s equations.
For charged matter, fields modify speeds through the Lorentz force, and particles generate
sources for the fields. Quantum processes relate particles and photon directly, via local
field values. Dashed arrows stand for discarded quantum processes due to negligible cross-
sections (kinematic suppression).

dynamics, where qualitatively di�erent physics succeed each other as the various invariant
field strength parameters are increased. For convenience, this classification of the di�erent
regimes of electrodynamics is summed up in Table 2.1.

2.2 PIC-QED numerical simulations

The Boltzmann-QED model of strong-field QED has been introduced as a rather natural
extension of relativistic classical kinetic theory, providing theoretical ground for an intu-
itive conception of general field-particles dynamics in strong-field QED. Most decisively,
it also allows for numerical solving with virtually no further approximations, or so-called
ab initio simulations. The underlying algorithm is known as the “Particle-in-Cell” (PIC)
method. It has become standard in high-intensity laser research, now admits extensions to
include QED events, which will be referred to as “PIC-QED” algorithms. This section will
provide a summary of this numerical method. Though significant variations exist in the
implementation, the main structure and functions of the algorithm remain quite stable,
and will be described first. As the present thesis relied on the WarpX code [323], it will
then be discussed briefly.
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2.2. PIC-QED numerical simulations

2.2.1 The PIC-QED algorithm
The general function of a PIC-QED algorithm is to produce numerical solutions to the
closed system of partial di�erential equations Eqs. 2.12-2.17 and 2.21-2.22. An overview
of the involved variables and their interactions is shown in Fig. 2.1. The principle of the
algorithm is to solve the system by time discretization and iterative solving, allowing to
compute quantities at later times from initial time data.

Objects of the algorithm The mathematical distinction between particle distribu-
tion functions and the electromagnetic field values numerically translates in two kinds of
objects in the algorithm.

Fields values are attached to a discrete set of points in space forming a “grid”. The
definition of this grid sets the spatial extent of the simulation. Distribution functions are
computed by the method of characteristics, that is,

f(u(t,t0)(x0), t) = f(x0, t0) (2.42)

i.e.

Y
_____]

_____[

f(x, t) © f0(x0)

with, dx
dt

=
A

ṙ(t)
ṗ(t)

B

=
A

p(t)/m“(p(t))
q [E(r(t)) + ṙ(t) ◊ B(r(t))]

B

and x(t0) = x0

(2.43)

Therefore, the distribution function at all times can be computed from the trajectories of
a set of particles sampling the initial phase space of the system, weighted by the initial
distribution values f0. The sampling particles are called macro-particles

22, and enter the
algorithm through the data of their instantaneous position (non-restricted to grid points),
momenta components, and “weight” quantifying their contribution to the distribution
function values. The value of f at all points is then approximated by interpolation of the
macro-particles weight values, with a given interpolation function or “form factor”.

Core evolution loop Time evolution is computed in discrete timesteps, chosen small
enough for dynamics to be correctly resolved. At each time step, the same workflow
is repeated, forming the loop represented in Fig. 2.2 by the yellow boxes (N/E/S/W
directions). Let us summarize each of them,

i. Particle pusher: The field is known on the particles positions, hence the Lorentz
force also. Positions and momenta are then updated via Eq. 2.43.

ii. Current deposition: The new particles configuration results in new sources for
the electromagnetic field. Charges and current on the grid points are then computed
with Eqs. 2.16-2.17, by interpolation of the macro-particles on grid points through
their form factor.

iii. Field solver: Once currents are known on grid points, sources for the fields are
as well, and field values at the next time can be computed. There exists di�erent
methods to perform this step, or “solvers”, defined in terms of the fields directly or
their Fourrier transforms.

22For brevity we will often simply call them “particles” in the following.
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Figure 2.2: Representation of numerical constituents and schematic workflow
of a PIC algorithm (from [323]). (left) Fields are computed on a set of points in
space forming the nodes of a grid with finite resolution, while distribution functions are
represented by macro-particles freely moving in space (blue/red dots). Interpolation be-
tween grid and macro-particles positions is performed thanks to a particle shape factor
(shown in fading color scale). (right) Evolution is computed via an iterative loop, each
represented step being performed in a sequence.

iv. Field gathering: The new field configuration results in new values of the Lorentz
force on particles. Fields are therefore computed at each macro-particle position
using the same interpolation method as in step ii.

Additional modules and QED processes Additional operations can be performed
besides the core loop, for instance between each step. Looking at Fig. 2.1, we see that only
the (matter) particles-field classical interaction has been described so far (“classical plasma
physics”, including macro-photons uniform motion at c). All other processes are computed
in additional steps in the algorithms, encapsulated in code “modules” (NE/SE/SW/NW
directions in Fig. 2.2). Regarding strong-field QED modules more specifically we can list,

a. Compton scattering and Breit-Wheeler: The two sf-QED processes expected
to dominate are photon emission from an electron or positron (Compton scattering),
and decay of a photon into an electron-positron pair (Breit-Wheeler). Both processes
only involve one incoming particle and the local field values (LCFA), allowing to
compute a probability of occurrence. As a result they can simply be implemented
as a step following step i. Following such event if any, macro-particles are created
and destroyed as appropriate.

b. Schwinger pair production: The process of pair creation from the coherent field
directly rather than a high-energy photon, or Schwinger process, can also be ac-
counted for in the PIC loop. Adopting the LCFA, local rates can be computed with
an analytical expression. The only subtlety stems from the need to compute all field
components at the same grid points, while staggered grids are typically used in PIC
codes, motivating to place this step when the field solver acts23. When such process
occurs, an electron and positron macro-particles are created.

23This is all the more true for Pseudo-spectral solvers, as fields are then Fourier transformed and can
thus be trivially translated in space.

42



2.3. “Stimulated Vacuum Emission” formalism

c. Electromagnetic self-interaction: One could also account for electromagnetic
self-interaction through virtual electron-positron pairs in this framework using e�ec-
tive field equations (Chapter 5). In this case, Maxwell’s equations are supplemented
with additional source terms non-linear in the local field values. The resulting non-
linear equations can then either be solved exactly in the field solver step [196], or
linearized assuming the vacuum currents are small.

2.2.2 Implementation in the WarpX code
The WarpX code is an implementation of the PIC-QED algorithm amenable to high-
performance computing on state-of-the-art infrastructures. In particular, it is compatible
with GPU accelerated nodes. Di�erent implementations of the core PIC loop are available
in the code, most notably a Pseudo-Spectral solver, allowing dispersion-free propagation
of the electromagnetic field. This last feature was crucial to the study lead in Chapter 9,
as in particular the peak intensity reached by a beam comprising ≥ 100 harmonics order
would be very sensitive to any numerical dispersion.

The QED modules of Compton scattering, Breit-Wheeler and Schwinger pair produc-
tion were all implemented and tested in the last three years. More detailed information
on the QED library can be found in [324]. More general information on the code can be
found at [323], and scientific documentation covering its critical features is available in
[249–252, 324, 325].

2.3 “Stimulated Vacuum Emission” formalism
When a definite experimental context is given, a theoretical framework designed for it may
be used, hopefully cutting in the complexity of the full theory. In this section, the situation
we consider is the evolution of an harmonics beam in a vacuum, and we wish predict the
e�ects of its self-interaction through the electron-positron field. Within some realistic
conditions, it would be possible to derive an e�ective classical field theory capturing
the electromagnetic evolution, eventually reducible to non-linear corrections to Maxwell’s
equation24. We here adopt another view called “Stimulated Vacuum Emission” (SVE)
[303], based on photon creation transition amplitudes, which is simply and consistently
defined in terms of fields obeying the classical Maxwell’s equations. After presenting this
formalism, we dedicate a second section to the definition of the classical data of the
harmonics field, which itself proves non-trivial once computational tractability is factored
in.

2.3.1 Stimulated Vacuum Emission formalism
A classical field configuration is naturally embedded in Quantum Electrodynamics under
the form of a coherent state, and in free theory this correspondence commutes with time
evolution [304, 316]. In particular, expectation values of the photon numbers in each mode,
of momentum k and polarisation p, are encoded via the modulus of the Fourier coe�cients
of the classical field, which directly implies they are conserved quantities under Maxwell’s
action. Together with its experimental readiness, this property makes photon numbers an

24Chapter 5.
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observable suited for detecting couplings to the quantum vacuum, and we therefore wish
to compute

d3N(p)(k) = Èn(p)(k)Í
‰A

≠ d3NA
(p)

(k) (2.44)

the change in the expectation value of the photon number operator n(p)(k) measured at
asymptotically late times taking the coherent state ‰A as the initial state, compared to
the initial photon content d3NA

(p)
(k) associated to the classical field with 4-potential A.

Following [303], we discard the marginal e�ects of coherent multi-photon emission and
interference with the classical field to obtain

d3N(p)(k) © dk
(2fi)3

---S(p)(k)
---
2

(2.45)

with, S(p)(k) = È“(p)(k)|�A
int

[a(x)] |0Í (2.46)

where |“(p)(k)Í = a†
(p)

(k) |0Í is the (k, p) mode 1-photon state vector, and �A
int

[a(x)] the ef-
fective interaction operator encoding couplings of the dynamical (operator-valued) photon
field a(x) with other fields for the initial state ‰A.

From orthogonality of the photon basis we can furthermore write [326],

S(p)(k) =
K

“(p)(k)
-----

⁄
d4x

”�A
int

”aµ(x)

-----
a=0

aµ(x)
----- 0

L

(2.47)

or expressing aµ in Lorenz gauge,

S(p)(k) =
Áµú

(p)
(k)

(2fi)3
Ô

2k

⁄
d4xe≠i(kt≠k·x)

”�A
int

”aµ(x)

-----
a=0

, for k = ÎkÎ (2.48)

Within QED, in the limit of slowly varying classical electromagnetic fields, retaining only
the dominant interaction with the electron field then leads to the identification of �A

int

with the 1-loop Heisenberg-Euler action [86, 327, 328], at first order in – = e2/4fi and
nonperturbatively in the classical field strength FA. In such fields varying on characteristic
spatio-temporal scales

⁄ ∫ 1/m

subleading derivative corrections which scale as ≥ 1/(m⁄)2 can be safely neglected, such
that

�A
int

ƒ
⁄

d4xLHE

int
(F )|F æFA(x)+f(x)

with constant-field Heisenberg-Euler interaction Lagrangian LHE

int
and quantized photon

field f . Taking as polarization vectors Áµ

p
(k) = (0, ep(k)) with p œ {1, 2} such that

(k/k, e1(k), e2(k)) forms a direct orthonormal basis, the amplitudes reduce to

S(p)(k) = i

Û
k
2

⁄
d4xe≠i(kt≠k·x) [ep(k) · P(x) + ep+1(k) · M(x)] (2.49)

with formal convention ep+2 = ≠ep, and defining P = ˆLHE

int

ˆE and M = ˆLHE

int

ˆB the induced
vacuum polarisation and magnetisation.

We finally restrict ourselves to field strengths F π FS, so that up to O(F 2/F 2

S
)

corrections we have,

LHE

int
ƒ m4

8fi2

3
e

m2

4
4 Ë

4F2 + 7G2
È

(2.50)
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where we remind F = 1

2
(B2 ≠ E2) and G = ≠B · E are the gauge and Lorentz-invariants

of the field.
The number of Schwinger pair creation events was besides estimated assuming no

particles-field retro-action, by integrating the local production rate derived from the non-
perturbative form of LHE

int
in the simulated space-time volume, as proposed e.g. in ref.

[199, 296]:

NS © 1
4fi2

⁄≠4

C

⁄
d4x EB coth

3
fiB
E

4
exp

3
≠fi

E

4
(2.51)

where ⁄C = ~/mc is the reduced Compton length of the electron and

E = 1
FS

ÒÔ
F2 + G2 + F , B = 1

FS

ÒÔ
F2 + G2 ≠ F (2.52)

The conditions of validity of this approach are further discussed in sec. 8.2.

2.3.2 Numerical implementation
The accurate estimation of the quantities of interest Eqs. 2.44 and 2.51 for arbitrary field
configurations can be performed numerically. In order to achieve this we developed and
optimized a code able to run on large scale parallel computing infrastructures.

Here, we give the general principle of this algorithm, similar in nature to the one
presented in [297, 326]. Let us focus on the computation of Eq. 2.49, which amounts to a
four dimensional on-shell (k0 = ÎkÎ) Fourier transform of third degree polynomials in the
E and B fields values. We numerically estimate it by performing 3D space parallel fast
Fourier transforms of the sources P and M from position to momentum space at each
timestep tj, followed by a 1D time integration of all these contributions multiplied by the
appropriate phase factor, namely

S(p)(k) © i

Û
k
2

Ë
ep(k) · ÂP(k) + ep+1(k) · ÊM(k)

È
(2.53)

where e.g. ÂP(k) ƒ
Ntÿ

j=0

e≠iktj FFT3 [P(E(tj), B(tj))] �t (2.54)

Field values at time tj are accessed by exact Maxwell propagation of an initial field
configuration performed via 3D spatial Fourier transforms (plane wave decomposition).
The computational cost of these simulations stems from the inherently tridimensional
nature of the source fields P and M, and from the necessity to resolve all spacetime scales
from the total beam focusing length and pulse duration to the highest frequency content
of the field. In the case of the harmonic beams, this imposes the use of a supercomputer25.

Several observables of interest are finally extracted from the photon emission ampli-
tudes that will be used as figures of merit for the di�erent configurations:

• Nt, the total number of scattered photons

• N‹, the total number of photons emitted with polarization crossed to the main
polarization direction of the driving beam, typically identifiable as its polarization
direction at focus in all cases we consider

25Chapter 6.
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• N>

t,‹, the corresponding quantities of discernible photons, generically defined as those
emitted outside of the opening cones of the driving beams, as commonly done in
this context [303, 326, 329], with some more detailed criteria that will be specified
in each case of study.

2.3.3 A computationally tractable model of the harmonics field
The above described procedure involves an initialisation step, consisting in defining the
field configuration in space at some given time and computing its amplitude for a given
total energy. The careful definition of this initial condition is all the more important
because, as explicit in Eq. 2.50, QED e�ects depend on the Lorentz invariants of the field,
which can strongly reflect even minor variations in the field structure, as in particular
they would strictly vanish for a plane wave. The investigation of the robustness of the
simulation results upon specific choices in the numerical procedure details and involved
approximations is carried out in Chapter 3. For our primary concern here, namely all
simulations involving harmonics, initial beam configurations were defined by A(Ê), the
time spectrum of their main field component on-axis in a given plane x = x0, under the
assumption that each monochromatic component has a Gaussian spatial profile, given by
the paraxial expressions of the Gaussian beam Epx(x, Ê) [330] and characterized by its
waist and radius of curvature in plane x = x0. The initial field is then reconstructed by
summing over all monochromatic contributions,

E(x, t0) ©
ÿ

Ê

e≠iÊt0Epx(x, Ê)A(Ê) (2.55)

The above field profiles being built from paraxial expressions, they do not exactly satisfy
vacuum Maxwell’s equations, we hence made the choice to project them on the exact
solution space by dropping all longitudinal field components (i.e. making it divergence
free) via,

I
E(k) © a1(k)e1(k) + a2(k)e2(k)
B(k) © a1(k)e2(k) ≠ a2(k)e1(k)

, with ap(k) = ep(k) · E(k) (2.56)

Note that for accurate harmonics spectrum data, which can contain much more than a
hundred frequency sampling points, equation (2.55) can prove computationally intensive.
For 3-d field profiles, which are required as soon as non-symmetrical expressions for the
field are used – e.g. the paraxial Lax series beyond order 0 – the induced overhead indeed
prohibited any practical simulation for our most detailed spectral data. However it was
found that, in our conditions, where in particular all initial configurations can be quanti-
tatively well-approximated by summing 0-th order gaussian beams, the above-described
procedure (2.56) projects configurations built from paraxial series expressions of any order
on manifestly equivalent initial conditions. It therefore was possible to cut the initializa-
tion time drastically, by first computing (2.55) with 2-d 0-th order profiles, reconstruct
the 3-d field by the assumed axisymmetry, and then apply (2.56).

46





Our computation of vacuum processes is made possible in this part,
via our study both of numerical and theoretical elements of vacuum
strong-field Quantum Electrodynamics and relativistic plasma mir-
ror light.

Chapter 3 presents an extensive numerical validation of our imple-
mentation of the Stimulated Vacuum Emission algorithm. Further-
more, seemingly equivalent numerical options were tested, evidenc-
ing a sizeable sensitivity in some cases.

Chapter 4 provides an explicit derivation of the analytical expres-
sion of the number of photons scattered in RPM light as a function
of the harmonic spectrum (Eq. 8.2), leveraging on the solvable case
of a Gaussian pulse.

Chapter 5 discusses the relation between our amplitude-based cal-
culation of vacuum photon scattering and the resolution of e�ective
field equations. Di�erent types of expansions in quantum e�ective
theories of electromagnetism are distinguished, specifying a role of
non-perturbative solutions of approximate equations of motion.

Chapter 6 provides estimates of the computational cost of Stimu-
lated Vacuum Emission simulations.

Chapter 7 provides lineouts of the PIC simulation field temporal
spectra used to model RPM light in our work.

Abstract of Part II



Part II

Theoretical and numerical studies
for vacuum strong-field

Quantum Electrodynamics
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Chapter 3

Stimulated vacuum emission
algorithm validation on reference

configurations

For better comparison with existing literature [297, 326] and understanding of the RPM
light case, results of our SVE code on four reference cases are presented in the following.
As the expected results for each of our observables are known, we could use them to
validate our algorithm, and in particular study the impact of di�erent propagation and
initialization procedures.

To that end, field values at any time are accessed using two di�erent methods. Either
explicit analytical expressions of the fields are used, derived from the paraxial series ex-
pansion [330] taken, unless explicitly specified otherwise, at fifth order and supplemented
with a Gaussian time envelope; or by exact Maxwell propagation of an initial field config-
uration via 3D fast Fourier transforms, as described in previous section. In the following,
we will refer to these mehtods as Cpx and Cex respectively1. In reference cases i), ii) and
iv) as defined in the introduction, purely numerical results have been supplemented with
semi-analytical computations of the amplitudes Cal, where only a 1-dimensional space
integral is left to perform numerically, providing another independent validation of the
code.

All these procedures involve an initialisation step, consisting in defining the spatial field
profile at some given time and computing its amplitude for a given total energy. For pro-
cedure Cex, which involves exact Maxwell propagation, this step is used also to define the
initial condition entering our Maxwell solver and therefore received further attention. For
this purpose four di�erent initialisation modes were tested, either in (f) or out (of) of fo-
cus, using either monochromatic paraxial expressions supplemented with a time-envelope,
E(x, t) = e≠iÊ0tEpx(x, Ê0)a(t ≠ x) (m), or defining the corresponding time spectrum and
summing over all monochromatic contributions, E(x, t) = q

Ê e≠iÊtEpx(x, Ê)a(Ê) (p); we
denote them respectively Im≠f , Ip≠f , Im≠of and Ip≠of . The projection prescription (2.56)
was then applied in all cases. We note that procedure C ex-Ip≠of corresponds to the default
one described in 2.3.3; it indeed stands as the most accurate and general, and is actually
necessary to address all cases involving RPM beams.

3.1 Counterpropagating infrared pulses
Let us start with the reference case of two counter-propagating identical Gaussian pulses
[297, 303, 326, 331, 332]. The importance of this configuration becomes clear noticing
that the field invariants entering the Heisenberg-Euler Lagrangian Eq. 2.50 identically
vanish for a plane wave, making the field of a single loosely focused laser a priori very

1The px and ex indices stand for "paraxial" and "exact" respectively.
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w0/λ

Figure 3.1: Integrated photon numbers as a function of w0 for two counter-
propagating Gaussian pulses. (up) Total number of photons Nt and photons with
crossed-polarization N‹, for the di�erent computation modes. (bottom) Total numbers
of discernible photons, emitted outside of the ◊ = arcsin(Á) (>1e) or ◊ = arcsin(2Á) (>2e)
cones directed along both pulses propagation directions.

sub-optimal for observing quantum vacuum e�ects. The transient standing wave obtained
simply by crossing two such laser pulses on the opposite yields near maximal invariants
for the same total energy, and therefore provides a landmark for the achievable signal in
all-optical frequencies setups.

We considered two counterpropagating pulses with parameters typical of a Petawatt-
class system [5], with the same linear polarization, wavelength ⁄0 = 800 nm, W = 25 J
respective energy, · = 25 fs duration considering a field time profile on-axis of the form:

E(t) © Ee
≠ (t≠x)

2

(·/2)2 (3.1)

and identical waist at focus w0 = ⁄0

fi

1

Á
, where Á . 1/fi is the di�raction parameter.

The resulting values of the total and discernible photon numbers are plotted in Figure
3.1 for several waists at focus, using the di�erent computation methods introduced in
sec. 2.2. Here we define two discernible populations, respectively denoted by a >1e (>2e)
superscript, scattered at an angle ◊ = ^(ex, k) with the optical axis greater than ◊1 =
arcsin(Á) (◊2 = arcsin(2Á)), which corresponds to a background laser photon density drop
o� of at least 1/e2 (1/e8) in a gaussian pulse model. We observe a remarkable consistency
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between all methods for the polarization-insensitive photon number, from the analytical
to the fully numerical calculations, with a standard deviation of 4.9 %, displaying the
expected Á4 scaling. This provides a first evidence for the validity of the code. Moreover,
the maximum total photon number obtained in this case from Cex ≠ Ip≠f , numerical
Maxwell propagation with initialization at focus, is Nt = 241.1, consistent within 7 %
error with the value Nt = 260.4 obtained by the authors of [297] with exactly the same
method. The same holds true for the polarization-insensitive discernible photon numbers,
now with standard deviations of 6.4 % and 6.5 % respectively, and maximum values of
N>1e

t
= 108.6, N>2e

t
= 2.756 for Cex ≠ Ip≠of . Comparing N>1e

t
with the corresponding

value computed in [326] gives a better than 1 % level agreement.
Regarding crossed-polarized photons, we again find agreement between the analytical

and numerical calculation Cpx where the paraxial expressions with time-envelope are used
to define the field at each time step, including the asymptotic Á8 dependency, for the
total and discernible numbers, with standard deviations close to 0.5 % in each case.
All Cex computations however consistently display lower values at weak focusings for
total and discernible photons, while maintaining the same Á scaling; at strong focusings,
out of focus initialization procedures converge towards the common Cal and Cpx result
within at most 30 %, while numerical computations initialized at focus both give a value
about one order of magnitude smaller. The common maximum crossed-polarized photon
numbers obtained for the converging computations are, giving the Cex≠p≠of values for
definiteness, N‹ = 1.176 ◊ 10≠1, N>1e

‹ = 1.104 ◊ 10≠1 (about 60 % of the value in
[326]), N>2e

‹ = 1.321 ◊ 10≠2. This illustrates the sensitivity of this problem to even minor
field variations, here especially manifest for the crossed-polarization photons. Indeed, the
analytical expressions reveal that while Nt and N‹ stem from the same field integral, d3N‹
is suppressed near axis by an additional factor Ã sin4 ◊, making it more dependent on
the higher transverse modes of the source, or equivalently on the transverse field profiles
details.

3.2 Single infrared pulse
We now consider the photon emission from a single focused Gaussian beam [297, 333],
with wavelength ⁄0 = 800 nm, duration · = 25 fs, and energy W = 50 J for easier
comparison with the previous case. In this case the nonvanishing Lorentz invariants stem
from field components beyond the main polarization direction, associated to higher powers
of Á in the paraxial series expansion, and therefore to an overall much weaker signal than
with e.g. two beams crossing at an angle. The results are depicted in Fig. 3.2. For the
maximum total photon numbers we obtain, always giving the Cex ≠ Ip≠of value, Nt =
4.196◊10≠3 (N‹ = 7.275◊10≠5), with a standard deviation of 28 % (17 %) between all the
di�erent methods at w0 = ⁄0. We once again find a very good agreement between paraxial
and analytical calculations, of about 5 % standard deviation, recovering in particular the
Á8 scaling expected from the analytical calculation based on the order 2 paraxial field
expression [330]. We note an agreement within one order of magnitude with previous
results on this configuration [297], while an exact matching is made less likely in this case
by the sensitivity to the field structure beyond zeroth order paraxial approximation; for
the procedure Cex ≠ Im≠f closest to the one described in this reference we nevertheless
find a close to 20 % agreement on Nt. We also find consistency of the di�erent Cex results
between themselves, and with Cal and Cpx for the polarization-insensitive numbers, while
the Cex procedure gives smaller numbers of crossed-polarized photons at weak focusing.
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w0/λ

Figure 3.2: Integrated photon numbers as a function of w0 for a single Gaus-
sian pulse. (up) Total number of photons Nt and with crossed-polarization N‹, for the
di�erent computation modes. (bottom) Total numbers of discernible photons, emitted
outside of the ◊ = arcsin(Á) (>1e) or ◊ = arcsin(2Á) (>2e) cones directed along the pulse
propagation direction.

Defining discernible photons as in the two pulses case, we find at di�raction limit (i.e.

Á = 1/fi) N>1e

t
= 3.492 ◊ 10≠3 (N>1e

‹ = 7.032 ◊ 10≠5), and N>2e

t
= 6.486 ◊ 10≠4 (N>2e

‹ =
2.286 ◊ 10≠5).

Assuming a laser repetition rate comprised between 0.1 and 10 Hz, a realistic bound
for upcoming Petawatt-class laser systems [5, 334], these results indicate that emitting
a single discernible photon would require between a few minutes and several hours of
accumulated operation time, so that building a clear signal in controlled conditions seems
unfeasible with this single pulse configuration. In the following, we consider di�erent ways
to enhance this very low baseline signal without requiring the stringent space and time
overlap of several focused ultra-intense sources.

3.3 Infrared pulse in a monochromatic wave
As a final reference case we consider a focused Gaussian pulse identical to the one of sec
III.B, coupled to an ambient monochromatic plane wave. This setting aims at decorrelat-
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3.4. Single multi-frequency beam

ing the discernibility constraint from the intense field photon distribution, likely di�cult
to finely control, by trying to detect instead the photons of a well-controlled collimated
source scattered o� the intense field region. We consider the same focused beam as be-
fore, a Gaussian pulse of wavelength ⁄0 = 800 nm, duration · = 25 fs, energy W = 50
J energy, and a plane wave of amplitude of E = 5 ◊ 10≠5ES which would correspond
e.g. to a 200 TW laser focused at w0 = 3.32 µm. Such configuration a priori depends
non-trivially on the di�raction parameter of the focused beam, the angle ◊c = ^(k0, kp)
between the wave vector of each beam, and the frequency di�erence between them. In
Fig. 3.3 we plot the dependence with respect to the angle and frequency, taking the fo-
cused beam at di�raction limit. The first feature of these results is the quasi-independence
of the probe frequency and numbers of photons produced, very clear for the total photon
numbers and more obfuscated in the discernible photon numbers due to higher variabil-
ity of these calculations, although no alternative trend clearly appears. Regarding the
collision angle dependence, for Cex all photon numbers are maximized close to counter-
propagation, while a maximum in crossed-polarized photon number is observed around
◊c ƒ 130¶ for the paraxial calculations, confirming similar observations in previous works
[297]. Moreover, we note the very slow variation of the photon number around ◊ = 180¶,
analytically found to follow Nt,‹(◊c) ◊cæfi≥ sin2 ◊c

2
.Nt,‹|◊c=fi, so that collision angles up to

135¶ can be considered to yield near-optimal photon signal. We obtain maximum photon
numbers equal within less than 10 % for all probe frequencies, of Nt = 376.6 (N‹ = 1.507),
N>1e

t
= 37.76 (N>1e

‹ = 9.611 ◊ 10≠1) and N>2e

t
= 1.110 (N>2e

‹ = 4.777 ◊ 10≠2) giving
the Cex ≠ Ip≠of values. However, we can only give credit to the relative values of these
numbers, as the computation was done for a plane wave of infinite duration; we defer the
numerical simulation of more realistic bounded field configurations to sec. 8.3.

3.4 Single multi-frequency beam
Regarding the photon number dependence with w0, we observe seemingly the same trends
as in the single frequency case, as Fig. 3.4 displays for n = 2 and nh = 3. The enhancements
factors with respect to the single frequency case are of anh=2

t = 3.17 (anh=2

‹ = 6.04) for
two harmonics and of anh=3

t = 7.29 (anh=3

‹ = 12.47) for three. We once again find good
agreement between the Cpx and semi-analytical calculation for total photon numbers,
which is lost for the discernible photon numbers though.
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w0/λ

Figure 3.3: Integrated photon numbers as a function of ◊c for a beam focused
at di�raction limit in a plane wave. (up) Total number of photons Nt or with
crossed-polarization N‹, for the di�erent computation modes. Total numbers of discernible
photons, emitted outside of the ◊ = arcsin(Á) (middle) or ◊ = arcsin(2Á) (bottom) cones
directed along the beam propagation direction.
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w0/λ

Figure 3.4: Integrated photon numbers as a function of w0 for a beam made
of either two or three harmonics of its fundamental frequency, with equal
amplitudes at focus. (up) Total number of photons Nt or with crossed-polarization
N‹, for the di�erent computation modes. Total numbers of discernible photons, emitted
outside of the ◊ = arcsin(Á) (middle) or ◊ = arcsin(2Á) (bottom) cones directed along
the beam propagation direction.
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Chapter 4

Analytical estimate of the
RPM-light beam self-scattering

The full-scale numerical calculation of photon scattering within a focused plasma mirror
generated beam is very computationally expensive, while the parameter space describing
such RPM fields is at least as vast as the set of realistic spectra. As a consequence,
a numerical derivation of scaling laws governing RPM-light self-scattering is practically
impossible. On the other hand, an accurate analytical modelling of the field proves di�cult
as well, and the subsequent photon scattering amplitudes calculation rather deterring in
any case.

We can nevertheless find guidance in analytical expressions adopting simple assump-
tions regarding the RPM light field, assimilated to a train of Gaussian pulses. Though
quantitative predictions seem out of reach in this way, general trends can be derived for
relevant quantities as a function of the beam parameters, including a quite flexible de-
scription of the RPM light spectral profile. This chapter exposes this calculation in detail.
The self-scattering of a focused finite duration Gaussian pulse is presented first, the RPM
light case is then treated leveraging on this result.

4.1 Study of a single focused Gaussian pulse
We primarily wish to compute the photon scattering amplitudes Eq. 2.49 for a single
ultra-short laser pulse focused in a vacuum. This will here be achieved following the SVE
method [303].

In the course of this calculation, the introduction of adimensional quantities will sim-
plify some expression. We will therefore adopt the Lorentz-Heaviside units with c = ~ = 1.
The most general problem of vacuum QED photon emission only has one dimensional
scale, the electron mass m = 511 keV = 2, 43.10≠12 m = 8, 10.10≠21 s, from which derives
ES = m

2

e
= 1, 32.1018 V.m≠1 = 4, 41.109 T (= 8, 62.105 keV2). Considering Gaussian

pulses in particular, it is convenient to beside use the central wavenumber k0 as the
spatio-temporal scale. In the following, all quantities can be considered adimensionnal-
ized in this way1. We finally introduce S̃ = k3/2

0 S, the adimensional amplitudes such that
dN Ã |S|2d3k = |S̃|2d3k̃.

4.1.1 Field and photon sources definition
In accordance with a widespread model of ultra-intense laser beams, we consider the field
of a Gaussian beam under the paraxial approximation. Retaining the lowest order terms
giving a non-zero contribution to the “stimulated vacuum emission”, we will be working
at second order in the paraxial expansion parameter, Á = 2

k0w0

.

1Setting explicitly k0 © 1 in expressions if needed.
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A linearly polarized pulse along the z axis propagating along the growing x direction
is then expressed as,

----------------------------------

E = E

-----------

Á›c1

≠ Á2›‹s2

s0 + Á2

C

›2s2 ≠ fl4

4 s3

D ; B = E

-----------

Á‹c1

≠ s0 ≠ Á2

C
fl2

2 s2 ≠ fl4

4 s3

D

0

with, E = E0

e≠r
2
/w

2

u
, w = w0

Ò
1 + x2/x2

R
© w0u

› = z

w0

; ‹ = ≠ y

w0

; fl =
Ò

›2 + ‹2

and, „ = ≠k0(t ≠ x) ≠ arctan(x/xR) + xr2

xRw2
≠ „0

„g = ≠ arctan(x/xR)

cn = 1
un

cos(„ + n„g); sn = 1
un

sin(„ + n„g)

(4.1)

(4.2)

Let us then express the corresponding field invariants,
Y
_]

_[
F �= 1

2
1
B2 ≠ E2

2

G �= ≠E · B

(4.3)

(4.4)
First,

F = E2

2

Y
]

[

A

s0 + Á2

C
›2 + ‹2

2 s2 ≠ fl4s3

4

DB
2

+ Á2‹2c2

1

≠
A

s0 + Á2

C

›2s2 ≠ fl4s3

4

DB
2

≠ Á2›2c2

1

Z
^

\

= Á2E2
‹2 ≠ ›2

2
Ó
s0s2 + c2

1

Ô

Second,

G = ≠E2

I

(Á›c1).(Á‹c1) +
A

≠s0 ≠ Á2

C
›2 + ‹2

2 s2 ≠ fl4s3

4

DB

.(≠Á2›‹s2)
J

= ≠Á2E2›‹
Ó
s0s2 + c2

1

Ô

Now, denoting „1 = „ + „g,

s0s2 = 1
u2

(sin(„1 ≠ „g) sin(„1 + „g))

= 1
u2

1
sin2(„1) cos2(„g) ≠ cos2(„1) sin2(„g)

2

= 1
u2

1
sin2(„1) ≠ sin2(„g)

2

c2

1
= 1

u2
cos2(„1)

so that, s0s2 + c2

1
= 1

u2
cos2(„g)

= 1
u4
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We therefore come to, Y
______]

______[

F = Á2E2

0

e≠2
r2

w2

u6
.
y2 ≠ z2

2w2
0

G = Á2E2

0

e≠2
r2

w2

u6
.
yz

w2
0

(4.5)

(4.6)

The associated polarization and magnetization fields write, in natural units,
I

P = ≠m2C0(4FE + 7GB)
M = m2C0(4FB ≠ 7GE)

, C0 = 1
90fi

Ú
–

fi
ƒ 1, 7.10≠4 (4.7)

we thus obtain,

P = m2C0Á
2E3

0

p˙ ˝¸ ˚------------

O(Á)

7 yz

w2
0

≠ 4y2 ≠ z2

2w2
0

.
e≠3r

2
/w

2

u7
sin „ (4.8)

M = m2C0Á
2E3

0

m˙ ˝¸ ˚------------

O(Á)

≠ 4y2 ≠ z2

2w2
0

≠ 7 yz

w2
0

.
e≠3r

2
/w

2

u7
sin „ (4.9)

Coming to the photon emission amplitudes, we manually add a time envelope a(Ï =
k0(z ≠ t)) to the field profile, so that we can write,

Sp(k) = i

Û
k

2m2C0Á
2E3

0

⁄
d4x eik·x.a(Ï)3

1
ep(k) · p(x) + ep+fi/2(k) · m(x)

2
(4.10)

4.1.2 Analytical expression of the amplitudes
Integrals reduction

With the latter conventions we can write the adimensional amplitudes in a spherical
coordinate system aligned around the z axis,

e◊(k) =

--------

cos ◊ cos Ï

cos ◊ sin Ï

≠ sin ◊

; eÏ(k) =

--------

≠ sin Ï

cos Ï

0
(4.11)

Y
_]

_[

S1(k) = K0.k1/2 [p̃(k) · e◊(k) + m̃(k) · eÏ(k)]

S2(k) = K0.k1/2 [p̃(k) · eÏ(k) ≠ m̃(k) · e◊(k)]
(4.12)

with K0 = iÔ
2

1
m

k0

2
2

C0E3

0
Á2, and tilde denoting on-shell four dimensional Fourier trans-

forms.
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According to (5,6) we can further write,

p̃(k) �=

-------

0
7I2

4I1

(4.13)

m̃(k) �=

-------

0
4I1

≠ 7I2

(4.14)

where, Y
____]

____[

I1 =
⁄

d4x eik·x.
z2 ≠ y2

2w2
0

a(Ï)3
e≠3r

2
/w

2

u7
sin(„)

I2 =
⁄

d4x eik·x.
yz

w2
0

a(Ï)3
e≠3r

2
/w

2

u7
sin(„)

(4.15)

Now, changing variables as (yÕ, zÕ) = Rfi/4 [(y, z)] in I1, and taking note of k‹ · x‹ =
R“ [k‹] · R“ [x‹], it appears that

I1(k) = I2(kÎ, Rfi/4 [k‹]) (4.16)

One can therefore focus on I2 © I.
We further decompose I by shifting to the complex representation of the sine function,

sin x = eix ≠ e≠ix

2i

splitting the integral in two simpler ones. Specifically,

I =
⁄

d4x eik·xf(x). sin „

= 1
2i

3⁄
d4x eik·x+i„f(x) ≠

⁄
d4x eik·x≠i„f(x)

4

�= 1
2i

1
Ĩ(k) ≠

Ë
Ĩ(≠k)

Èú2
(4.17)

where we used the real character of f for the last line. The calculation thereby comes
down to evaluating the quantity Ĩ.

Explicitly,

Ĩ =
⁄

dx.
e≠i(kx≠k0).x

[1 + x2/x2

R
]8/2

. (1 ≠ ix/xR)
⁄

dt.ei(k≠Ák0).ta3(t ≠ x)

◊
⁄

dydz.
yz

w2
0

e≠‰(x)/w
2

0
.(y

2
+z

2
)≠iky .y≠ikz .z

(4.18)

with ‰(x) =
1
3 ≠ i x

xR

2
1

1+x2/x
2

R
.

Evaluation of the integrals

Let us first address the transverse variables y and z. The corresponding integral factorizes,

Ĩ‹ =
⁄

dy.
y

w0

e≠‰(x)/w
2

0
.y

2≠iky .y

⁄
dz.

z

w0

e≠‰(x)/w
2

0
.z

2≠ikz .z (4.19)
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besides,

⁄
du. u.e≠a.u

2
+ib.u = i

Ô
fi

2
b.e≠ b2

4a

a3/2

therefore,

Ĩ‹ = i
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fi

2w0

(≠ky) e≠
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4‰(x)

‰(x)3/2
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2w0
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i.e.

Ĩ‹ = ≠fi

4 w4

0
.kykz

e≠
w2

0
k

2

‹
4‰(x)

‰(x)3
(4.21)

with k2

‹ = k2

x
+ k2

y
.

We then turn to the time integration, for this purpose we assume a Gaussian envelope
of extent · ,

a(t ≠ z) .= e≠ (t≠x)
2

·2 (4.22)

so that we only have another Gaussian integral left,
⁄

dt.ei(k≠k0).ta3(t ≠ x) =
⁄

dt.ei(k≠k0).t≠3
(t≠x)

2

·2 (4.23)

= ei(k≠k0).x·
Ú

fi

3 e≠ ·2

12
(k≠k0)

2 (4.24)

Substituting these results in (18) we are led to,

Ĩ = ≠·w4

0

fi3/2

4
Ô

3
kykze≠ ·2

12
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dx.
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12
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with J =
⁄

dx.
e≠i(kx≠k).x≠

w2

0
k

2

‹
4‰(x)

(1 + (x/xR)2)(3 ≠ ix/xR)3
.(1 ≠ ix/xR) (4.27)

Amplitudes

As a final step we deduce I1 and I2 from the Ĩ(k) via Eqs. 4.13-4.14, and the photon
scattering amplitudes and probabilities follow according to,

S(k) = K0.k1/2

-------

4(cos Ï ≠ sin ◊).I1 + 7 cos ◊ sin Ï.I2

≠4 cos ◊ sin Ï.I1 + 7(cos Ï ≠ sin ◊).I2

(4.28)
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(4.30)

4.2 RPM light field as a train of Gaussian pulses

Let us model the RPM light field by a train of attosecond Gaussian pulses, each spaced
by a period of the fundamental laser frequency. Then the amplitudes take the form,

S © S [Ep] FNp (4.31)

where FNp captures the interference e�ects between the di�erent Np pulses and depends
on the modeling hypotheses, while S [Ep] is the single pulse contribution that will be
estimated.

4.2.1 Di�erential photon numbers

Following [299] we choose to model our field as a Gaussian pulse of duration ·h ≥ ·0/nh,
waist wh ≥ w0/nh and Rayleigh length xRh ≥ xR0/nh, with nh the harmonics order of
the spectrum cut-o� frequency kh = nh.k0. We can besides adopt a generic model for the
power spectrum setting,

”Wn

W
© n≠2s

H2s(nh) (4.32)
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where ”Wn is the energy content of the n-th harmonic and W the total energy, while
Hq(n) , q

n

k=1
1/kq is a generalized harmonic number. The field amplitude follows as,

Eh =
nhÿ

n=1

E0n

with E0n =
Û

”Wn

·w2
0n

= Eg

0 .
n≠s+1

(H2s(nh))1/2
, denoting Eg

0 =
Û

W

·w2
0

(4.33)

so that Eh = Eg

0 .
Hs≠1(nh)

(H2s(nh))1/2
(4.34)

Starting back from the single focused Gaussian beam scattered photons numbers
Eqs. 4.29-4.30 we have,
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(4.36)

for ct,‹ some constant factors, and where the integral factors write, after factoring out
numerical constants,
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We then have to estimate the J integral. Switching to spherical coordinates we have,
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Now it appears that the integrand has the form j(’) © h(’)e≠i
4

Á2

k
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sin
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2
).f(’,◊), where

h has a pole at ’ = i, and
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A
◊

2

B

≠ 1 (4.41)

hence for k < kh, fŒ(◊) < 0 ’◊ (4.42)

so that we can close the integration path in the upper complex plane and use the residue
theorem to find,
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which by analytic continuation holds true also for k > kh. Therefore,
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so that,
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4.2.2 Total photon numbers
We can now integrate this di�erential signal intensities to find the total photon numbers.
We see from the exponential factors that we can apply a small scattering angle approx-
imation ◊ π Á, so that expanding all trigonometric functions to lowest order in ◊ we
find,

⁄
d3ke

≠ 4

Á2

k

kh sin4

A
◊

2

B

sin4 ◊ Ã k7

h

”·h

Á10 (4.46)

So that,
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with Ct,‹ some numerical constants. Finally making the di�raction parameters depen-
dence explicit, we conclude that
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W 3
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If we consider the spectrum generated in optimal laser-plasma interaction conditions
we can take s ≥ 1 for the power spectrum, in which case the harmonics number scaling
reduces to,

N Ã n2

h
(4.49)
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Chapter 5

Relation between Stimulated
Vacuum Emission and e�ective

classical field equations

The Stimulated Vacuum Emission formalism we used in this work is explicitly grounded
in Quantum Electrodynamics. Nevertheless, it lead us to an expression of the number of
photon observable Eqs. 2.45-2.49 in the purely classical terms of a radiated field spec-
trum. We here make explicit the possibility of the converse reasoning, starting from the
equations of motion of the Heisenberg-Euler action, understood as a quantum e�ective
action, so as to compute photon numbers defined from the classical field variables, under-
stood as quantum field expectation values. This approach has also been pursued in the
literature1, with the benefit of a natural embedding in the reference Maxwell-Boltzmann
framework, including PIC-QED numerical implementations allowing to numerically solve
the self-consistent field equations without further approximation. In order to more clearly
discern the predictive power of such methods, the equivalence domain with the amplitude-
based calculation will be precised, and a typology of contributions beyond leading order
highlighted, delineating the role of exact solutions to the e�ective equations of motion.

5.1 Heisenberg-Euler quantum e�ective theory
All predictions of a Quantum Field Theory are entirely encoded in its n≠points functions
and exact equations can be derived for them (cf. sec. B.2.3). In App. B we derived such
relations, the Schwinger-Dyson equations Eq. B.94, simply from local commutation rela-
tions and the Euler-Lagrange equations satisfied by field operators. Now it turns out these
equations can also be derived from a variational principle, formally identical to Hamilton’s
principle Eq. A.2. The generating functional � is then called the quantum e�ective action

of the theory [307]. Considering for definiteness a real scalar field „, this indeed means
that there exists a functionnal � such that,

”�
”f

= 0; ”�
”G

= 0; ”�
”G(3)

= 0; . . . (“Quantum e�ective action”) (5.1)

whose solutions are the exact field expectation value fx, propagator G and any higher-
order correlation function G(n)

1...n, for a given state fl0.
There is a second meaning of “e�ective action” in mechanics, conceptually distinct

but physically related to the first in some contexts, including field theory. Namely, let us
assume our system can be decomposed in two interacting subsystems {qi} = {qa}aœA fi
{qb}bœB, then its action writes S[qi] = SA[qa] + Sint[qa, qb] + SB[qb]. Now consider a config-
uration in which we can assume that the dynamics of qb does practically not depend on
the values of qa. As a consequence qb variables can be treated “non-dynamically”, in the

1See e.g. [335–338], also dedicated section in [3] and references therein.
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Part II, Chapter 5 – Relation between the SVE formalism and e�ective field equations

sense that their evolution can be determined considering system B in isolation. System
A however is a�ected by system B and therefore obeys modified equations of motions,
generated by a new action

S[qa] © Se�

AB
[qa] (“e�ective action”) (5.2)

generically called an e�ective action for system A “integrating out” system B2. This
e�ective action Se�

AB
[qa] has a priori no relation to the quantum e�ective action (e.g. �A

defining the quantum dynamics of SA), and in particular does not share the defining
property of generating exact equations of motion for correlation functions Eq. 5.1 upon
extremization3.

The Heisenberg-Euler action �HE[A] is defined as the “e�ective action” in the sense
Eq. 5.2 of the electromagnetic field (A stands for the 4-potential) integrating out electron-
positron dynamics (or any other charged fermionic particle), for a fermion field in the
vacuum state, computed at first order in the fine-structure constant – (or “one-loop”
order, diagrammatically) for a uniform electromagnetic field expectation value. Now it
turns out that at this order in the loop expansion, this functional coincides with the
electromagnetic part of the quantum e�ective action in the sense Eq. 5.14 [328], so that,

”

”Aµ
�HE[A] = 0 (5.3)

are the equations of motion of the electromagnetic potential expectation value A in QED
at first order in –, with electron-positrons in the vacuum state.

In this section, we will examine more closely this approach to strong-field QED, that
we choose to call “Heisenberg-Euler quantum e�ective theory” for definiteness. In partic-
ular, we will show how the scattered photon number Eq. 2.49 of the Stimulated Vacuum
Emission formalism is then recovered.

5.1.1 Theory definition
We wish to consider the dynamics of the electromagnetic field expectation value (1-point
function) coupled to a fermion field, in a fermionic vacuum state. Equations of motion are
generated by a quantum e�ective action. For a field of frequencies Ê π m, we can adopt
the locally constant field approximation and assume that, at first order in –, an e�ective
action integrating out fermionic variables is provided by,

�HE

A [A] ©
⁄

dxLHE

A(x)
(A(x)) (5.4)

injecting the local electromagnetic field values in the Heisenberg-Euler Lagrangian (cf

sec. 2.3.1)5. At first order in –, this functional coincides with the quantum e�ective action
2In classical theory we simply have Se�

AB [qa] © SA[qa] + Sint[qa, q̄b] with q̄b the known values of qb. In
quantum theory the expression is di�erent but formally straightforward in terms of path integral [307].

3When a system A cannot be considered perfectly isolated, accounting for finer and finer e�ects in the
quantum dynamics (e.g. via quantum e�ective actions of increasing order in a perturbative expansion)
we may reach the point at which these contributions are of the same order of magnitude as the coupling
of A with another system B. In this case, successful prediction requires considering the joint system AB,
for instance via the second kind of “e�ective action” Eq. 5.2. This situation of (possibly weak) coupling
between di�erent kinds of variables is unavoidable in field theory (e.g. the Standard Model), so that in
this sense both concepts of e�ective action are “physically” related in this context.

4This can be established e.g. showing that �HE is the generator of 1-PI diagrams at one-loop order.
5In the following, corrections from non-uniformity of the field (e.g. in the form of derivative terms)

will not be discussed further, relying on the vast gap between even X-UV frequencies and m to assume
they can be neglected before other kinds of higher order contributions at the desired level of accuracy.
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of the electromagnetic field in Quantum Electrodynamics with fermions,

�HE

A © �(1)

QED
[A] (5.5)

that is, L(1)

QED
(A) © L0(A) + LHE

int
(A) , denoting L0 Maxwell’s Lagrangian (5.6)

Expanding Lint (with alleviated notations) at lowest order in normalized invariant field
strengths E , B Eqs. 2.41 we reach,

L0 = ≠F = ≠1
2

Ë
B2 ≠ E2

È

Lint = m4

8fi2

1
45

3
e

m2

4
4 Ë

4F2 + 7G2
È

= m4

8fi2

1
45

3
e

m2

4
4

51
B2 ≠ E2

2
2

+ 7 (E · B)2

6

(5.7)

(5.8)

5.1.2 Equations of motion
Equations of motion are the Euler-Lagrange equations of the quantum e�ective action,

ˆµ

ˆL
ˆ(ˆµA‹) ≠ ˆL

ˆA‹

= 0 (5.9)

i.e. ˆµ

ˆL0

ˆFµ‹

= ≠ˆµ

ˆLint

ˆFµ‹

(5.10)

Let us rewrite them in tridimensional form, recalling,

F µ‹ =
3

0 Ej

≠Ei ÁijkBk

4
(5.11)

from which we deduce, Y
____]

____[

Lint

ˆF0j

= ≠1
2

Lint

ˆEj

Lint

ˆFij

= 1
2Áijk

Lint

ˆBk

(5.12)

Then, for ‹ = 0,

≠1
2ˆiF

i0 = ≠ˆi

ˆLint

ˆFi0

(5.13)

… 1
2ˆiE

i = ≠1
2ˆi

ˆLint

ˆEi

(5.14)

… Ò · D = 0 (5.15)

with D = E + P, and P �= ˆLint

ˆE (5.16)

For ‹ = j,
≠1

2
1
ˆ0F

0j + ˆiF
ij

2
= ≠

A

ˆ0

Lint

ˆF0j

+ ˆi

Lint

ˆFij

B

(5.17)

… ≠1
2

1
ˆ0E

j + ÁijkˆiB
k
2

= ≠1
2

3
≠ˆ0

Lint

ˆEj
+ Áijkˆi

Lint

ˆBk

4
(5.18)

… ≠ˆtD + Ò ◊ H = 0 (5.19)

with H = B ≠ M, and M �= ˆLint

ˆB (5.20)
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Part II, Chapter 5 – Relation between the SVE formalism and e�ective field equations

Besides, the definition of the electromagnetic field tensor F in terms of gauge field A
remains unchanged, F

µ‹
= ˆµA‹ ≠ ˆ‹Aµ, so the homogeneous Maxwell’s equations still

follow. The electric and magnetic fields expectation values are therefore governed by,

Heisenberg-Euler
field equations

-----------

Ò · D = 0
≠ˆtD + Ò ◊ H = 0

Ò · B = 0
ˆtB + Ò ◊ E = 0

(5.21)
(5.22)
(5.23)
(5.24)

from which derive wave equations,

⇤E =
TE [E,B]

˙ ˝¸ ˚
≠Ò (Ò · P) + ˆ2

t
P + ˆtÒ ◊ M

= Òflv + ˆtjv

⇤B =
TB [E,B]

˙ ˝¸ ˚
≠Ò ◊ (Ò ◊ M) ≠ Ò ◊ ˆtP

= ≠Ò ◊ jv

(5.25)

with flv = ≠Ò · P and jv = ˆtP + Ò ◊ M the induced “vacuum” charge and current6.

5.1.3 Number of scattered photons
In order to be able to compute the photon number observable in the present framework, it
should be expressible in terms of field expectation values. One may check that it is indeed
the case, exactly for a coherent state, and neglecting some terms to a good approximation
in a general strong-field state [304, 307]. This expectation value is then found to coincide
with the pre-quantum correspondance rule between a photon and an energy-momentum
unit of the electromagnetic field, in a given polarization. Formally7,

N ©
⁄ d3k

(2fi)3

|E(k)|2 + |B(k)|2
2k (5.26)

and, dNp

d3k
(k) © 1

(2fi)3

|ep(k) · E(k)|2 + |ep+1(k) · B(k)|2
2k (5.27)

with polarization basis vectors as in sec. 2.3.1.
The non-free part of E is generated by the source TE, it can hence be expresed from it

via a Green’s function G, as E = GúTE. We here wish to compute only photons radiated
during the interaction, and thus use the radiative Green’s function,

Grad = Gret ≠ Gad (5.28)
We thereby find,

dNp

d3k
(k) = 1

(2fi)3

|ep(k) ·
s

d·Grad(k, ·)TE(k, t ≠ ·)|2
2k + (E, p ¡ B, p + 1) (5.29)

= 1
(2fi)3

|ep(k) ·
s

dÊ

2fi
e≠iÊtGrad(k, Ê)TE(k, Ê)|2

2k + (E, p ¡ B, p + 1) (5.30)

6Note we could trivially add classical currents as well in Eqs. 5.21-5.22, that could be understood as
the expectation value of part of fermionic variables following a classical dynamics in some approximation.
A systematic procedure to control such reduction can typically be found in a kinetic framework [116].

7Another form of the derivation can be found in [339].
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5.1. Heisenberg-Euler quantum e�ective theory

Green’s functions of the D’Alembertian are solution to the distribution equation,

(≠Ê2 + k2)G(k, Ê) = 1 (5.31)

of general solution[340, 341], G = Vp 1

≠Ê2+k2 +–”(Ê ≠k)+—”(Ê +k) with Vp the principal
value. We can extract physically relevant values for the –, — coe�cients by analytical
continuation of G(Ê) in the complex plane and choice of closing of the integration path
on a contour when shifting to G(·), leading to the prescriptions,

G
ad

ret = lim
sæ0+

1
2k

5 1
≠Ê + k ± is

+ 1
Ê + k ± is

6
(5.32)

or, knowing that lim
yæ0+

1

x±iy
= ûifi”(x) + Vp 1

x
,

G
ad

ret = 1
2k

5
±ifi”(Ê ≠ k) ≠ Vp 1

Ê ≠ k û ifi”(Ê + k) + Vp 1
Ê + k

6
(5.33)

so that, Grad = ifi

k (≠”(Ê ≠ k) + ”(Ê + k)) (5.34)

Injecting Eq. 5.34 in the computation of E(k) Eq. 5.30, we find,

E(k) =
⁄ dÊ

2fi
e≠iÊt

ifi

k (≠”(Ê ≠ k) + ”(Ê + k)) TE(k, Ê) (5.35)

= i

2k
1
≠TE(k, k)e≠ikt + TE(k, ≠k)eikt

2
(5.36)

hence, |E(k)|2 = 1
4k2

1
|TE(k, k)|2 + |TE(k, ≠k)|2

2
(5.37)

≠ 1
2k2

Re
Ë
TE(k, k) · Tú

E
(k, ≠k)e≠2ikt

È

The term in the second line of Eq. 5.37 cancels out in the integral of N for t”T Ê ∫ 1, where
”T Ê is the characteristic variation scale in the spectrum of TE

8. Besides, TE(k, ≠k) =
Tú

E
(≠k, k), so that negative frequencies at k give a contribution identical to positive

frequencies at ≠k when Eq.5.37 is integrated. From these conclusions Eq. 5.30 becomes,
dNp

d3k
(k) .= 1

(2fi)3

1
2k

5 1
4k2

.2|ep(k) · TE(k, k)|2 + 1
4k2

.2|ep+1(k) · TB(k, k)|2
6

(5.38)

= 1
(2fi)3

1
4k3

Ë
|ep(k) · TE(k, k)|2 + |ep+1(k) · TB(k, k)|2

È
(5.39)

Now,
TE(k, k) = k(k · P̃) ≠ k2P̃ + k(k ◊ M̃) (5.40)

= ≠k2
1
P̃‹ ≠ uk ◊ M̃

2
(5.41)

with P̃‹ = P̃ ≠ (uk · P̃)uk (5.42)

TB(k, k) = k ◊ (k ◊ M̃) ≠ k ◊ (kP̃) (5.43)
= ≠k2

1
M̃‹ + uk ◊ P̃

2
(5.44)

noticing uk ◊
1
M̃ ◊ uk

2
= M̃‹ (5.45)

with uk = k/k.
8That is if t/·T ∫ 1 where ·T ≥ 1/”T Ê is the field source duration.
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Then, using the geometrical identity ep(k) · (uk ◊ v) = ≠ep+1(k) · v,

ep(k) · TE(k, k) = ≠k2
1
ep(k) · P̃ + ep+1(k) · M̃

2
(5.46)

ep+1(k) · TB(k, k) = ≠k2
1
+ep+1(k) · M̃ ≠ ep+2(k) · P̃

2
(5.47)

So that we finally come to,

dNp

d3k
(k) = 1

(2fi)3

k
2

---ep(k) · P̃ + ep+1(k) · M̃
---
2

(5.48)

which is formally identical to Eqs. 2.45-2.49.

5.2 Consistency beyond leading order contributions
It appears that e�ective equations of motion for the electromagnetic field together with a
simple strong-field assumption allowed to retrieve exactly the SVE expression of the scat-
tered photon number observable. At this point though, this result may appear as a mere
coincidence. Besides, Eq. 5.48 actually is not exactly the same as Eqs. 2.45-2.49, for in the
latter formula fields were conceived as expectation values in a free coherent state without
mention of field equations Eqs. 5.21-5.24, and thus assumed to follow Maxwell’s equations.
In this section, we will define the equivalence domain between both approaches explicitly.
Furthermore, as the Heisenberg-Euler quantum e�ective theory manifestly contains more
information than the amplitude-based calculation, it is legitimate to ask for the precise
extent of its predictive power. This will be discussed identifying three di�erent kinds of
contributions beyond the leading order. We will argue that in large interaction volumes,
the local hierarchy of interaction terms can collapse due to high multiplicity interaction
sequences; the role of exact solutions to the equations of motion then is identified as en-
suring the consistency of approximations operated at the quantum e�ective action level,
at all point in the system evolution.

5.2.1 Equivalence domain with Stimulated Vacuum Emission
Aside from shared assumptions regarding the expansion order of the e�ective action, or
the validity of its locally constant field expression Eq. 5.4, we can identify two condi-
tions for the equivalence of the direct perturbative expansion and e�ective equations for
the computation of a given observable, or more specifically here the number of photons
Eq. 2.44 in SVE and Eq. 5.27 in Heisenberg-Euler e�ective theory. Namely,

i. ÈO(„)Í strong fields© O(È„Í) + O(higher orders in –) (5.49)
ii. È„Í ƒ „(1)

cl
, with „(1)

cl
= G ú T [„(free)

cl
] (5.50)

and G the free propagator of field „ and T a source term stemming for quantum corrections
to the classical equations of motion (cf. for instance Eqs. 5.25).

Decorrelation of observables in strong fields

The result Eq. 5.49 that at leading order in – observables can be obtained simply from
the 1≠point function is actually true in contexts more general than QED [307]. It can be
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5.2. Consistency beyond leading order contributions

established for instance by power counting, relating diagrammatic properties to the power
of a graph in e and A. In the context of QED with non-zero field expectation value, we
can expect this property realized when eA/m > 1, or eE/Êm > 1.

First order solution to the e�ective field equations

The second condition Eq. 5.50 simply expresses that in the SVE calculation, the photon
source terms are expressed in terms of the free fields. This is equivalent to expressing the
solution to the e�ective field equation as a power series in the source (e.g. E as a series
in TE) and truncating at first order. The outline of this procedure can be sketched more
explicitly writing,

⇤E = T[E] ∆ E © E(free) + E(1) + E(2) + . . . (5.51)
with ⇤E(free) = 0 (5.52)

E(1) = G ú T[
1
E(free)

2
3

] , taking for instance a cubic source term (5.53)

E(2) = 3G ú T[
1
E(free)

2
2

, E(1)] = 3G ú T[
1
E(free)

2
2

, G ú T[
1
E(free)

2
3

]] (5.54)
...

with e2 = 4fi–. This highlights that the SVE formula simply gives the first order result in
–, while solving the e�ective equations and computing e.g. photon numbers from Eq. 5.48
includes higher order terms stemming from the nonlinearity of the equations of motion.

5.2.2 Higher order terms hierarchy
The relevance of the higher order terms included in solving the equations of motion has
to be examined more closely. All the above discussion of the “Heisenberg-Euler quantum
e�ective theory”, in the sense defined below Eq. 5.3, was based on the leading order of a
double expansion scheme of the full quantum e�ective action �[A] of the electromagnetic
field in QED9. First, the quantum e�ective action was expanded in – and truncated at
order one, where its expression coincides with the Heisenberg-Euler functional. Second, the
resulting non-polynomial Heisenberg-Euler Lagrangian was expanded in the field strengths
‘ © max (E , B), and again truncated at lowest order. Only then a third expansion could
appear from the nonlinearity of the equations of motion, when solutions are written as a
(classical) pertubative series Eq. 5.51 capturing the possible numbers of local interaction
events. Calculations of chapter 8 could then be identified as the first order contribution
of this last series.

We will here try and clarify the relevance of higher order contributions in all three
expansions, either as corrections or source for qualitatively new e�ects, so as to better
understand how consistent approximations can be obtained at a given level of accuracy.
Simply writing the double expansion of the quantum e�ective action �[A] will first allow
establishing a hierarchy in local interaction terms. For large interaction volumes, multiple
scattering processes can alter this local ordering and break expansion Eq. 5.51, which will
then be discussed.

9E�ects beyond the LCFA open yet another dimension of possible extensions, that will however be
left aside here.
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Local interaction terms

Let us reason in the framework of the quantum e�ective action method again. If the
electromagnetic field dynamics in QED with e.g. electron-positrons is described by an
action S[A], its exact expectation value in a given state fl0 can be obtained solving the
equation of motion,

”

”A�[A] = 0 (5.55)

where � is the quantum e�ective action. If the exact form of � is a priori out of reach,
approximate expressions may be obtained through an expansion in the parameter –, which
diagrammatically translates in a number of loops. This procedure can be sketched as,

�[A] ©
Œÿ

l=0

–l�(l)[A], with �(0)[A] = S[A] (5.56)

and �(l) are known for l Æ l�. Now in QED more specifically, the action actually depends
on the gauge-invariant field strength tensor, appearing in Lorentz-invariant combinations.
Furthermore, a consequence of gauge-invariance is the cancellation of diagrams with odd
numbers of external photon lines (Furry theorem), so the action is expressed only from
even powers of the field strength. Quantifying their invariant magnitude normalized to
the Schwinger field with the above introduced parameter ‘, we may then perform a weak
field expansion,

�int[A] ©
Œÿ

l,p=1

–l‘2(p+1)�(l,p)

int [A] (5.57)

denoting �int the action term beyond Maxwell’s.
The equations of motion Eq. 5.55 then take the form,

”

”AS[A] = ≠ ”

”A�int[A] (5.58)

∆ ⇤E =
Œÿ

l,p=1

–l‘2pT(l,p)

int [E2p+1] (5.59)

with T(l,p)

int Ã ˆL(l,p)

int

ˆE (5.60)

omitting the B field for better clarity of the argument, and where E should here be
understood normalized such that its amplitude is captured in ‘.

At this point it appears that in this context higher loop orders can not be expected
to induce qualitatively new e�ects, but only refine the precision of the electromagnetic
self-interaction terms appearing from order 1. On the opposite, higher order terms in
the fields manifestly result in distinct phenomena such as harmonics generation at some
frequencies di�ering according to their order in ‘.
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x 

lm-1 

pm

lm-3 

lm 
pm-1

lm-2 

pm-2

pm-3

p1 

l1 

Figure 5.1: Diagrammatic representation of the generic contributions to the
multiplicity m component of the total field. Lines are free Green’s functions (prop-
agators), vertices are represented by circles with two integers (li, pi) specifying their type,
and the leafs are free field insertions (the dotted line stands for the omitted part of the
diagram). Integration over vertices positions is implied. The sum is over all possible tree
diagrams with m vertices.

Propagation and terms mixing

Now expanding solutions to this field equation as well, in terms of number of interactions
or “multiplicity”, we are lead to,

E ©
Œÿ

m=0

Em (5.61)

with Em =
ÿ

{li,pi}iœJ1;mK

–
qm

i=1
li‘2

qm

i=1
pi

◊ G ú T(lm,pm)

int [. . . , G ú T(lm≠1,pm≠1)

int [. . .], . . .] (5.62)

Though quite unwieldy analytically, the content of Em may be more easily grasped in
terms of tree diagrams10. The term of order m is comprised of the sum of all possible
sequences of m interactions, represented by tree diagrams with m vertices, for all possible
combination of vertex types as given by their orders in – and ‘, specified by two integers
l, p. The generic term of such sum is drawn in Fig. 5.1.

We have therefore decomposed the total field in a sum whose terms are indexed
by a multiplicity m, denoting the number of interaction events, and a set of integers
{li, pi}iœJ1;mK labelling the order in – (loop order) and ‘ (number of incoming fields) of
each interaction point. Each term can thereby be assigned the local magnitude,

---Em

{li,pi}

--- Ã –
qm

i=1
li‘2

qm

i=1
pi (5.63)

10A solution to a classical partial di�erential equation with a linear di�erential operator can indeed be
represented by a sum of “tree diagrams”, that is diagrams without loops, where lines are Green’s function
and vertices carry the coe�cients of interaction terms. This can be understood from Green’s method of
solution applied in a perturbative expansion as illustrated in Eqs. 5.51, or diagrammatically drawing an
integral form of the equation as illustrated e.g. in Fig. B.6-a.
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This simply shows that leading order e�ects are provided by the one-loop interaction terms
and multiplicity one contributions. Indeed, relevance of a term to a given observable, e.g.

harmonics generation at specific frequencies, is expected to only be defined by the order p
in ‘. Therefore, a general multiplicity term contribution to this observable has magnitude
–

qm

i=1
li‘2p, besides li Ø 1, hence all contributions of multiplicity m Ø 2 are suppressed by

at least a factor – with respect to the leading m = 1 term.
Furthermore, higher multiplicity terms contribute with a magnitude equal to lower

multiplicity terms originating from higher loop order vertices. As a consequence, correc-
tions beyond the leading order result cannot be consistently obtained only from higher
multiplicities at a fixed loop order, but necessarily imply increasing the loop order of the
quantum e�ective action calculation11.

From there one may conclude that exact fully non-linear solutions of the equations of
motion can never consistently give approximations better than a perturbative solution up
to multiplicity m = l�, where l� is the loop order at which the quantum e�ective action
is given. In particular, in the above one-loop Heisenberg-Euler quantum e�ective theory,
we would not be more accurate than a fully linearized m = 1 solution, such as prescribed
in the SVE formalism. This conclusion however has to be mitigated accounting for long
distance propagation e�ects, as we will now suggest.

A consistency criterion for fully non-linear macroscopic field propagation with
finite order local interactions

Let us try and define more precisely a situation where exact solutions to the equations of
motion are relevant. The only subtlety stems from the approximate character of equations
of motion themselves. For practical purposes one would indeed strongly favor a weak field
expansion of the e�ective action over its ‘≠nonperturbative expression, and its expressions
are only known to low order in –12. For this reason, though Eq. 5.63 simply indicates that
resummation of perturbative field components in multiplicity number would be required
as soon as,

–l‘2p & 1 , for some integers l, p (5.65)

… ‘ & 1
–l/2p

i.e. ‘ & 1 , keeping the broadest condition (5.66)

at this point the e�ective action has to be kept in ‘≠nonperturbative form as well. E�ective
field equations given by a finite weak field Lagrangian such as Eq. 5.8 do therefore not
admit a consistent fully nonlinear strong field regime E , B ≥ ES, BS.

However, starting back e.g. from Eq. 5.62, we see that the prefactor retained in Eq. 5.63
does not capture the full scaling of Em

{li,pi} components. Convolution by the propagator
11This rather natural result can also be understood diagrammatically, indeed we see e.g. in Fig. 5.1

that diagrams obtained from multiplicities higher than 1 are 1-particle reducible (they can be discon-
nected cutting one internal line, cf. sec. B.2.4), while it is clear that there also exists some 1-particle
irreducible diagrams at any given loop order, which are generated by the quantum e�ective action of the
corresponding loop order.

12For reference, at order 1 in – the total Heisenberg-Euler Lagrangian has the non-polynomial integral
form [342],

LHE = ≠ m4

8fi2

⁄ Œ

0

ds

s3
e≠s

;
EB

tanh(Bs) tan(Es) ≠ 1 ≠ s2

3
!
B2 ≠ E2

"<
(5.64)
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5.2. Consistency beyond leading order contributions

functions G can indeed be expected to modify the local terms hierarchy when interactions
take place over large propagation volumes. Introducing the resulting factors as D, of form
to be precised in a given field configuration geometry, we can then write,

---Em

{li,pi}

--- ≥ Dm–
qm

i=1
li‘2

qm

i=1
pi (5.67)

An actual multiplicity-nonperturbative regime threshold thus appears as,

D–l‘2p & 1 , for some integers l, p (5.68)

i.e. D & 1
–‘2

(5.69)

In these conditions, though field magnitudes remain below the Schwinger field and thus
legitimate a weak field (and low –) expansion of the action, high interaction multiplicity
components dominate in the final field so that the perturbative expansion Eq. 5.62 breaks
down and equations of motions Eq. 5.60 (with series truncated at finite l�, p�) have to be
solved exactly13.

This situation in which consistent approximations can be obtained from an expansion
of the action, but not of dynamical quantities, due to a collapse of the local interaction
terms hierarchy from multiple interaction events over large evolution scales, is reminiscent
of the general secularity issue in Non-equilibrium Qunatum Field Theory, as evoked in
sec. B.2.3. In the discussed context of quantum e�ective theories of the electromagnetic
field expectation value, exact solutions of the equations of motion can therefore not be
conceived as approximations to the strong field regime ‘ ≥ 1 or higher order phenomena
in –, both small expansion parameters of the e�ective action. Instead, the role of exact
(multiplicity-nonperturbative) solutions of the nonlinear equations of motion is to ensure
self-consistency of the approximation scheme14 for evolution over any (spacetime) extent.

13This conclusion is in accordance with e.g. [335].
14Mathematically this would refer to a “uniform approximation” of the full dynamics.
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Chapter 6

Computational volume of Stimulated
Vacuum Emission simulations

The general lack of symmetry of the source terms in Eq. 2.49 makes the algorithm
described in sec. 2 potentially very expensive from the computational point of view.
Indeed, working with 3-dimensional numerical arrays we can infer memory needs of
M Ã NxNyNz, while the time complexity stemming from the on-shell Fourier trans-
form is T Ã NtNxNyNz log(NxNyNz). On the other hand, the resolved scales in each
space-time dimension need to range from the field support characteristic length 1/L, in
order to simulate the whole relevant interaction volume, to 2 ◊ ‹max, in order to fulfil the
Shannon criterion associated to the maximal field frequency, as scattering events with sig-
nificant energy exchanges are suppressed in comparison to the elastic channels [303, 326].
For a focused monochromatic Gaussian pulse with waist at focus w0 ≥ ⁄0 and duration
· ≥ 10⁄0, choosing a minimal (maximal) propagation time such that the “front” (“rear”)
of the pulse is at about three Rayleigh lengths from focus implies that fitting the whole
pulse in the simulation space at all times requires a total longitudinal length of about
2 ◊ (· + 3zR) ƒ 40⁄0, and a transverse length close to 20⁄0 as a consequence of the large
divergence of a tightly focused beam. If we furthermore assume the need to work with
about ten 3-dimensional double precision (8 Bytes) arrays at any given moment (e.g. from
field components, Lorentz invariants, etc.), we are then led to,

MGaus ≥ 10 ◊ (2 ◊ ‹0 ◊ 40⁄0) ◊ (2 ◊ ‹0 ◊ 20⁄0)2 ◊ 8 Bytes (6.1)
≥ 10 MB (6.2)

This is a rather modest memory requirement, making such configurations computable on
a laptop. If we now consider a beam comprising harmonics up to order nh ≥ 100, the
maximum frequency is of course ‹max ≥ 100‹0, while the field falling length is still bound
to the global duration of the beam · ≥ 10⁄0, including in the transverse dimensions again
due to the large divergence of a very focused beam, which implies,

Mh ≥ 10 ◊ (2 ◊ 100‹0 ◊ 20⁄0) ◊ (2 ◊ 100‹0 ◊ 10⁄0)2 ◊ 8 Bytes (6.3)
≥ 100 GB (6.4)

Combined with the time constraint, this amounts to a computational volume of about 2.5◊
104 CPUhours/run, and thus marks the need for a large scale computing infrastructure.
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Chapter 7

Harmonic spectra from PIC
simulations

Under suitable interaction conditions, an overdense plasma irradiated by an ultra-intense
laser pulse e�ectively acts as a mirror of optical quality, a�ecting essentially only the time
spectrum of the field from the Doppler e�ect caused by its relativistic oscillations, without
inducing major optical aberrations [9, 12, 260, 272, 284, 343, 344].

In these conditions, it is legitimate to approximate the reflected field by a superposition
of monochromatic components each having a Gaussian spatial profile. Then the field is
entirely determined by the data of wp(Ê), Rp(Ê) and A(Ê), respectively the (frequency-
dependent) beam waist, radius of curvature and time spectrum of the main component
of the electric or magnetic field, all taken in the PM plane. In this work we assumed
that wp and Rp were the same for all frequencies, implying they only encode the opening
angle of the RPM beams (the di�raction parameter then being equal to Á = wp/Rp if
we assume Êwp ∫ 1 for all frequencies Ê). The non trivial information about the PM
harmonics generation is then entirely contained in the frequency spectrum A(Ê), including
its maximal attainable amplitude for a given field energy. This critical data was provided
by Particle-In-Cell simulations using the WarpX+PICSAR framework [249–251, 325], as
presented in sec. 2.2.2.

As specified in the main text, we used two spectra in this study, corresponding either
to sub-optimal or optimized parameters of the laser-plasma interactions generating the
RPM field. In both cases, the simulated laser was of wavelength ⁄0 = 800 nm, duration
· = 20 fs and normalized vector potential amplitude a0 = 80. The bulk to vacuum plasma
(electronic) density profile is ne(x > 0) = nmaxe≠x/Lp , with Lp = ⁄0/20 and nmax = 240nc,
where nc is the plasma critical density for wavelength ⁄0; besides, ne(x < 0) = nmax. The
only di�erence between those two cases is the angle of incidence, of 45¶ and 55¶ respectively
for the sub-optimal and optimized case. Both simulations were run in one dimension in
the Bourdier frame [345]. Extensive parametric scans in 1D and 2D, backed with some 3D
simulations, indeed show that 1D spectra faithfully depict the 3D configuration as long
as the waist on PM is larger than about 4 ⁄0 [281].

The modulus of these numerical spectra is shown in Figure 7.2, in the PM plane and
at focus. The PM plane data corresponds to the output of the PIC simulation. In order
to extract the propagative component of the field from these simulations, field values are
actually recorded in a plane away from the PM surface, and then backpropagated on
PM surface by vacuum Maxwell’s equations. Spectra at PM focus are calculated from
the PM plane spectra assuming perfect focusing, i.e. E(Ê)|x=xfoc

Ã Ê ◊ E(Ê)|x=xP M . It
then appears that slowly decaying spectra can be obtained, with roll-o� parameters (see
sec. 8.2) of s = 7/5 and s = 3/5, with harmonics numbers of the order of a few tens in PM
plane, resulting in quasi-constant harmonics amplitude at PM focus up to an harmonic
order of more than 50 in the optimal case.
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Part II, Chapter 7 – Harmonic spectra from PIC simulations

Figure 7.1: Time spectrum of the main component of the electric field on-axis
extracted from Particle-In-Cell plasma mirror simulations (logscale). Original
spectrum of the sub-optimal RPM beam recorded in the plasma mirror plane (top), and
the resulting spectrum at focus (bottom) assuming perfect focusing. The 10≠1 level is
shown (orange line) so as to provide a proxy for the cuto� harmonic order.
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Figure 7.2: Time spectrum of the main component of the electric field on-axis
extracted from Particle-In-Cell plasma mirror simulations (logscale). Original
spectrum of the optimal RPM beam recorded in the plasma mirror plane (top), and the
resulting spectrum at focus (bottom) assuming perfect focusing. The 10≠1 level is shown
(orange line) so as to provide a proxy for the cuto� harmonic order.
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The results of our work on the physics of extremely intense rela-
tivistic plasma mirror light either in a vacuum or in the presence
of matter are presented.

Chapter 8 details the e�ects of the electromagnetic field couplings
with the electron-positron field in the absence of particles. More
specifically, we compute spectra of photons scattered in the field
in di�erent configurations, and specify a power threshold for the
occurrence of Schwinger pair creation in such fields.

Chapter 9 displays the outcome of the interaction of relativistic
plasma mirror light with matter particles, present either in the
form of an initially solid target, or of a high-energy electron beam.
Distinct properties of the resulting macroscopic configurations are
examined, as well as the involved individual elementary processes.

Abstract of Part III



Part III

Quantum processes in the light of
relativistic plasma mirrors
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Chapter 8

Quantum vacuum processes in the
light of relativistic plasma mirrors

In conceiving a “light beam”, as in particular reflected from a plasma mirror, one often
lends pictures from a well-defined configuration of the electric and magnetic fields in
space. These originate from Maxwell’s classical theory, which remarkably well describes
macroscopic electromagnetic phenomena. In this framework, the field exists in all space,
while matter is localized at some points and interactions are local. This allows conceiving
a “vacuum” state where no matter is there, and all properties of the field derive from
laws devoid of reference to any other physical system1. Formally, in classical theory the
electromagnetic field in a vacuum is an isolated system.

Relativistic quantum theory however reveals that all fundamental degrees of freedom
come in the form of fields permeating all space, and already quantum mechanics asserts
their rest state, which cover the classical notion of absence of particles, can never be
strictly assumed. Therefore an inert vacuum can in principle not exist, nor a single field
be in perfect isolation. Since they can, each constantly interacts with all the other ones,
be it through transitory – so-called “virtual” – states when no particles are observed.
Considering, for our part, an excited electromagnetic field with all other fields at rest,
this universal interaction can be logically displayed in three parts; endogenous evolution
of photons, their direct coupling to charged fields, here via virtual states, and coupling of
these fields to possibly neutral ones including the photon field. A self-interaction of light
e�ectively results, persistently mediated through the other sectors. The empirical success
of classical electrodynamics naturally implies such processes are extremely rare under
usual circumstances. However, as unprecedented intensities are being reached, interaction
of light with the quantum vacuum newly stands both as a tangible e�ect and a promising
probe for fundamental physics.

In this chapter, we present results on the opportunity to use extremely intense, plasma
mirror generated harmonics beams to this purpose. Details on the context of current e�orts
to detect the self-interaction of light will be given first. Computation of vacuum photon
scattering from harmonics beam will then be presented, either from a single focused beam,
in a second section, or using a secondary beam as a probe for the harmonics-polarized
vacuum, in a third section.

8.1 The search for light-by-light scattering
According to the Standard Model, first deviations from free electromagnetic propaga-
tion stem from the coupling to the electron field, controlled by the electron mass m
and the coupling constant e. Together they define the characteristic field scale of Quan-
tum Electrodynamics, FS = m2/e in Lorentz-Heaviside units with c = ~ = 1, that is

1e.g. the free Maxwell’s equations.

89



Part III, Chapter 8 – Quantum vacuum processes in RPM-light

FS ƒ 1.32 ◊ 1018 V.m≠1 ƒ 4.4 ◊ 109 T, which marks the onset of the spontaneous coher-
ent field decay into real electron-positron pairs known as the nonperturbative Schwinger
process [86, 327, 346]. Much below this threshold though, dynamics still bears the mark of
this coupling through virtual electron-positron pairs, giving rise to an e�ective electromag-
netic self-interaction with a perturbative component only suppressed by powers of F/FS

[327, 347–350]. Since the strongest macroscopic fields achievable to date, provided by fem-
tosecond multi Petawatt-class lasers focused near di�raction-limit, reach Flas ≥ 10≠3 ◊FS,
direct observation of fully nonperturbative vacuum processes such as pair creation seems
precluded in a foreseeable future, while research e�orts devoted to light-by-light scatter-
ing have pointed out the yet elusive nature of this process together with the exciting
possibility to attain a discernible signal in several optimized configurations [176–196, 351]
(see also [352] and references therein). These field configurations typically involve multiple
colliding intense optical pulses, or in some cases coupling to a high-energy photon beam,
providing existing and upcoming facilities with challenging experimental programs.

In this chapter, we examine how RPM sources compare in triggering these e�ects
and present quantitative predictions on the quantum vacuum signatures produced by
these extremely intense light sources. To achieve this, we developed and benchmarked at
very large scale state-of-the-art numerical tools able to realistically simulate such field
configurations.

The computational methods have been detailed in sec. 2.3. It consists for the most part
in a parallel numerical implementation of the Stimulated Vacuum Emission theoretical
framework introduced by the authors of [303]. Our plasma mirror generated harmonics
beam model, which relies on the assumption that each monochromatic component of the
field is Gaussian, has been exposed in sec. 2.3.3. The algorithm validation is presented
in Chapter 3, from the results obtained in four simple reference cases: i) two counter-
propagating Gaussian beams ii) a single focused Gaussian beam iii) a Gaussian beam
colliding with a plane wave at an angle iv) an idealized harmonic beam made of nh = 2
and 3 harmonics of a fundamental frequency of equal amplitude at focus. These reference
cases provide, along with extensive analytical studies, both a benchmark for the code
and a basis for understanding the more complex situation of a realistic harmonic beam
produced from laser plasma interaction.

The results obtained with our numerical code applied to RPM generated harmonic
beams are then presented below. In order to gain theoretical insight into the photon signal
dependence upon the harmonic beam spectrum, the RPM beams results are compared
with the idealized harmonic beams of Chapter 3 with 1 Æ nh Æ 16, and supplemented with
analytical predictions derived from a simple model of these field configurations, detailed
in Chapter 4.

Beyond maximizing the number of scattering events, in practice all-optical experiments
for probing the quantum vacuum have to confront with the problem of clearly assessing
the quantum origin of the detected photons. This may prove all the more crucial in the
RPM configuration due to the possibly abundant emission of ”background photons” of
non-quantum origin during the laser-plasma interaction. In view of identifying ways to
relax the associated experimental constraints, two hybrid scenarios are finally presented in
a third section, where the Doppler harmonics field plays the role of an ultra-intense pump
while the polarized vacuum is probed by a controlled auxiliary source. We considered for
the probe either a mildly focused PW-class infrared pulse, or a 100 TW-class green laser
beam.

A conclusion of this study will finally be exposed along with a brief outlook.
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8.2. Photon scattering in the focused harmonics field

8.2 Photon scattering in the focused harmonics field
We here turn to the study of plasma mirror generated fields as sources for the quantum
vacuum processes of photon-photon scattering and Schwinger electron-positron pair cre-
ation. The most basic associated configuration is sketched in Figure 8.1. In the interaction
of a relativistic-intensity laser (normalized vector potential › = eE0/(mcÊ0) > 1) with
a sharp solid-density plasma surface, the electron population e�ectively acts as a “rel-
ativistic oscillating mirror” and thus converts by Doppler e�ect the incident laser pulse
into a train of sub-wavelength pulses, equivalently described as a coherent superposition
of harmonics of the initial laser beam, with e�ective harmonics orders up to nh . 100 [9,
12, 260, 272, 284, 343, 344].

Although crucial to many applications including the present one, the analytical mod-
elling of such fields remains very challenging to date, especially regarding the correct
prediction of the spectrum amplitude and phase, and therefore of the associated maxi-
mum attainable field amplitude. We addressed this di�culty via first-principles kinetic
Particle-In-Cell (PIC) simulations [353] of the harmonics time spectrum at a point near
its region of generation. The numerical data obtained from these simulations allows us to
fully reconstruct a realistic 3-dimensional harmonic field, under the hypotheses that i) the
spatial profiles E(x, Ê) of the harmonic beams are well-described by the Gaussian paraxial
field expressions at each frequency Ê, and ii) all frequencies share the same waist wp and
radius of curvature Rp in the plane of generation, set to coincide with the plasma mirror
plane of the original PIC simulation (see e.g. [12, 281] for a motivation from simulation
results).

We studied two distinct harmonic fields, corresponding to two di�erent conditions of
generation of their original time spectrum. They are both generated by a multi-PW class
laser of wavelength ⁄0 = 800nm, duration · = 20 fs, normalized potential a0 = 80 on the
PM surface, waist on PM wp = 5⁄0, with an optimized vacuum-plasma density gradient
of ⁄0/20 (see [12, 13, 281, 354] for details on optimal harmonics generation and Chapter 7
for simulation details and spectra), and only the incidence angle is varied. The choices
employed here are either 45° or 55°. As the latter angle is found to be an optimum, we
refer to the associated fields as optimal harmonic beams. On the other hand, an angle
of 45° gives rise to a sub-optimal harmonic beam (see Chapter 7). In all studied cases,
the initial field configuration was defined in the PM plane using zeroth order paraxial
expressions [330] before projection (cf. sec. 2.3.3), and the total energy in the harmonic
beam was set to W = 50 J.

8.2.1 Theoretical dependence of the scattered photon numbers
over the harmonics beam parameters

For a single beam of frequency k0, it has been shown [297, 333] (see also Chapter 4
for a detailed calculation) that the number of vacuum scattered photons increases with
tighter focusing, demonstrating that the induced increase in field invariants overcomes
the decrease in interaction volume. More specifically, analytical calculation of the photons
emitted by a single frequency focused Gaussian pulse gives:

Nt,‹ ƒ Ct,‹

A
k0

m

B
3 1

(m·)2

3
W

m

43

Á8 (8.1)
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signal

IR laser

Plasma mirror

wp
Rp

Harmonics 
beam

w0

Figure 8.1: Schematic representation of a RPM configuration. The driving intense
infrared laser impinges on the PM surface with waist wp and is reflected as a focused
harmonics beam with curvature radius Rp and waist at focus w0. The signal photons are
scattered around the direction of propagation of the harmonics beam.

where Ct,‹ is a polarization-dependent constant, m the electron mass, · its duration

assuming a time profile of the form E(t) = E0e
≠ (t≠x)

2

(·/2)2 , W its total energy, and Á =
2/k0w0 its di�raction parameter. The di�raction parameter being physically constrained
to Á . 1/fi, converting the beam to higher frequencies then appears as a straightforward
way to increase the scattered photon number. The technique considered in this study for
physically achieving this conversion involves generation of high-harmonics of the initial
frequency, so that the energy ends up distributed among many di�erent frequencies.

We can refine the calculation to account for this multiple frequency content along
the line of [299]. This is done by assuming that Eh = qnh

n=1 E0n with E0n =
Ú

”Wn
·w

2

0n
=

Eg

0
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(H2s(nh))1/2
for a fundamental frequency Gaussian pulse amplitude Eg

0 =
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W

·w
2

01

and
Hq(n) = q

n

m=1
m≠q, where we have introduced the total beam duration · , energy W ,

roll-o� parameter of the power law spectrum s, and energy fraction ”Wn and waist at
focus w0n of harmonic component of order n. Besides, in the limit nh ∫ 1 and s . 2 the
field profile takes the form of a train of sub-wavelength pulses, whose individual profiles
can then be approximated as Gaussian with ·h ≥ 1/nhk0, wh ≥ w0/nh, leading to

Nh

t,‹ = N g

t,‹
1

(H2s(nh))3

A
Hs≠1(nh)
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B
4

◊ (Hs≠1(nh))2 (8.2)

with N g

t,‹ the photon number corresponding to a fundamental frequency Gaussian beam
of same duration and energy up to a constant proportionality factor. In the case of optimal
PM high-harmonics generation we have s ƒ 1, so that,

Nh

t,‹ Ã n2

h
.N g

t,‹ (8.3)
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8.2. Photon scattering in the focused harmonics field

Figure 8.2: Integrated photon numbers as a function of nh for a model beam
made of nh harmonics of its fundamental frequency, with quasi-equal di�rac-
tion parameter Á, focal point and amplitude at focus, or PM-generated beams
of e�ective number of harmonics nh. The case of two counterpropagating fundamen-
tal frequency pulses (crosses) is shown at nh = 1 for comparison. (top) Total number
of photons Nt or with crossed-polarization N‹. (bottom) Total numbers of discernible
photons, emitted outside of the ◊ = arcsin(2Á) cone directed along the beam propagation
direction. All beams are at di�raction limit (Á = 1/fi).

where nh ≥ 100, implying this method can a priori enhance the emitted photons number
by 4 orders of magnitude over a single tightly focused infrared laser beam of same duration
and energy.

As a first test of the viability of this prediction for PM-generated harmonics, we
consider the simpler case of nh harmonics at s = 1, i.e. such that the amplitude of each
harmonic is equal at focus (cf. for instance [12, 281] and Chapter 7 for comparison with
PM-generated spectra) for nh ranging from 2 to 16. In view of the RPM scenario we simply
considered that all harmonics are perfectly in phase in some plane at a finite distance from
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focus, and share the same waist wp = 5⁄0 and radius of curvature Rp in this plane, so
that they all approximately have the same di�raction parameter and focal point provided
focusing is strong enough (⁄0, w0 π wp). The global duration and energy of the model
beam are taken respectively as · = 25 fs (in practice by defining an A(Ê) with peaks of
appropriate spectral width, cf. sec. 2.3.3), chosen close to the e�ective duration of the
harmonics pulses train, and W = 50 J.

In Fig. 8.2 we plot the number of scattered photons as a function of the harmonic
number nh for fixed other parameters. In particular, we take Rp = fiwp so that all fre-
quencies Ê satisfying Êwp/2 ∫ 1 are at di�raction limit. Besides, we define discernible
photons as those scattered at an angle ◊ = ^(ex, k) with the harmonic propagation di-
rection greater than ◊2 = arcsin(2Á), which corresponds to a background laser photon
density drop o� of at least 1/e8 in a Gaussian beam model. The corresponding numbers
are denoted by a superscript >. The results confirm the increase in signal photons with
the increase of harmonics number, and the scaling law reported in Eq. 8.3 at least for
the total photon numbers. The crossed-polarized photons display an even faster increase
with nh at first, before converging to the n2

h
trend. At nh = 16, photon numbers reach

Nt = 1.443 (N‹ = 8.152 ◊ 10≠3), and N>

t
= 3.955 ◊ 10≠2 (N>

‹ = 6.311 ◊ 10≠4), demon-
strating enhancement factors of at © Nt/Nnh=1

t = 2.1◊102 (a‹ © N‹/Nnh=1

‹ = 1.5◊103)
for the total photon numbers, and a>

t
= 1.8 ◊ 102 (a>

‹ = 7.0 ◊ 102) for the discernible
signal. We note that the smaller increase of the discernible signal may be due to the
discernibility criterion invoked here: as high-frequency photons tend to be more colli-
mated, a frequency-independent exclusion cone generically disfavors configurations with
a substantial high-frequency energy content.

For comparison, we also show the photon numbers attainable with PM-generated
harmonic beams created in sub-optimal or optimal laser-plasma interaction conditions. In
both cases we define their associated e�ective harmonics number as

nh ©
Œÿ

n=1

|Efoc(nÊ0)|/|Efoc(Ê0)| (8.4)

with Efoc the amplitude of harmonic order n at focus, consistently with the s = 1 hy-
pothesis.

This already reveals that while sub-optimal RPM (sub-optimal HB in Fig. 8.2) allows
for enhancement factors of at = 5.9 (a‹ = 3.9 ◊ 101) and a>

t
= 3.5 (a>

‹ = 9.7), it falls well
below the values expected from our model due to the fast decrease of the spectrum in this
case. On the opposite, the optimal harmonic beam results (optimal HB in Fig. 8.2) are
much more closely in line with Eq. 8.3, and even exceed it in total photon numbers, as a
consequence of the slight growth of the harmonics amplitudes at focus for the first dozen
of harmonics orders (cf. Chapter 7).

The corresponding enhancement factors are at = 2.5 ◊ 104 (a‹ = 7.3 ◊ 104) and
a>

t
= 3.1 ◊ 103 (a>

‹ = 8.0 ◊ 103), demonstrating the e�ciency of RPM under these
conditions, and therefore the importance of optimizing harmonic generation to obtain
good photon signal. The resulting total photon numbers for a di�raction limited focusing
(Á = 1/fi) are respectively Nt = 4.738 ◊ 10≠2 (N‹ = 6.047 ◊ 10≠3) for the sub-optimal
beam, and Nt = 170.3 (N‹ = 4.088 ◊ 10≠1) for the optimal beam. The discernible
photon numbers are N>

t
= 7.580 ◊ 10≠4 (N>

‹ = 8.696 ◊ 10≠6) for the sub-optimal beam,
and N>

t
= 1.110 (N>

‹ = 4.777 ◊ 10≠2) for the optimal beam, which implies about one
discernible photon per shot.
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Figure 8.3: Integrated signal photon numbers as a function of w0/⁄, the waist
to wavelength ratio common to all frequencies. Here we present results for
a relativistic PM-generated coherent harmonic beam (HB), a single funda-
mental frequency pulse (Single IR) and two counter-propagating fundamental
frequency pulses (Two ctr. IR), focused in a vacuum. (top) Total number of pho-
tons Nt or with crossed-polarization N‹. (bottom) Total numbers of discernible photons,
emitted outside of the ◊ = arcsin(2Á) cone directed along the beam propagation direction
(both directions for (Two ctr. IR)).

8.2.2 Photon scattering results
Results regarding the photon numbers dependence on the beam di�raction parameter
Á are plotted in Fig. 8.3. In all considered cases, the frequency-dependent waist at focus
satisfies w0(Ê) π wp for all frequencies, from which we can derive Á = 1/fi(w0/⁄) ƒ wp/Rp

so that the di�raction parameter is indeed nearly the same for all frequencies. We observe
manifestly the same trends as in the cases of a single Gaussian beam [297, 333], namely
a scaling with Á8 of all photon numbers. This is fully consistent with the above described
analytical estimates Eq. 8.1 for the single Gaussian beam, and Eq. 8.3 derived from a
Gaussian pulse model of the individual harmonics pulses.

For reference, we can compare these results to the one obtained for the same total
energy with two fundamental frequency pulses in head-on collision, each carrying half
the total energy (Two ctr. IR in Fig. 8.2). The importance of this configuration has
already been exposed in sec. 8.2. With our chosen parameters (50 J total energy, 25 fs
duration, Á = 1/fi)), the resulting values of the total and discernible photon numbers are
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Nt = 241.1 (N‹ = 1.176 ◊ 10≠1) and N>

t
= 2.756 (N>

‹ = 1.321 ◊ 10≠2).
In the optimal case, it therefore appears that although a single beam photon signal

is generically suppressed by at least Á4 compared to counter-propagative beam configu-
rations, individual PM-generated beams reach comparable signal levels, and hence allow
bypassing the fine alignment and synchronisation conditions required to obtain sizable
signals in multi-beam configurations. The final numbers remain admittedly low, so that
the costs and benefits of each approach still has to be carefully determined. In particular,
RPM alleviates the constraint of spatial and temporal synchronization at the micron and
fs level of multiple focused high-power laser beams, demanding instead a fine control of the
laser-plasma interaction conditions. While promising paths are being explored to this end,
it may still happen that the background radiation inherent to the harmonics-generating
plasma excitation overcomes the increase in signal photons, precluding a conclusive vac-
uum photon detection in the harmonic beam direction. In order to overcome this potential
limitation, in sec. 8.3 we present a compromise scenario close to the one put forward in
[299], where a second beam is used to build a vacuum photon signal out of the plasma
radiation direction, while we leverage the extreme harmonic beam intensity to relax the
focusing and intensity constraints on this secondary beam.

8.2.3 Schwinger pair creation
The peak intensity obtained when focusing the optimal harmonic beam with 100 J total
energy is close to 1.4 ◊ 1028 W cm≠2, corresponding to field amplitudes of 17 % of the
Schwinger critical value. At such scales it becomes relevant to investigate electron-positron
pair creation via the Schwinger process. Although strictly speaking the vacuum QED for-
malism used in this work does not hold in the event of one or more pair creation, requiring
e.g. a self-consistent semi-classical evolution of fields and particles as done by PIC-QED
algorithms [301, 355], it nevertheless allows determining the number of pairs produced as-
suming no field-particles retro-action. Under the same hypotheses as for vacuum photon
emission, together with the Keldysh adiabatic condition “K = 1/mlEF ≠1

0 π 1 [356, 357],
where lE is the field transverse space in the polarization direction and F0 its characteristic
amplitude in Schwinger field units, both safely met in our cases of study, this can be done
integrating the local production rate (Eq. 2.51) in the full simulated spacetime volume
[358] .

In Fig. 8.4 we show the resulting numbers for the field configurations of a single fo-
cused Gaussian pulse, two counter-propagating Gaussian pulses (all supplemented with
Gaussian time envelopes as in previous section), and for the optimal harmonic beam.
All beams are focused close to their di�raction limit (Á = 1/fi) and only their energy
(amplitude) is varied. In all cases the number of pairs grows exponentially with the
intensity, and thus increases very fast past the one pair creation threshold. The cor-
responding threshold intensity however varies widely with the field configuration. For
two counter-propagating Gaussian pulses, pair creation becomes significant at intensi-
ties of I0 ƒ 2.4 ◊ 1027 W.cm≠2 (E = 7.21 ◊ 10≠2 ES), two orders of magnitude below the
Schwinger intensity, in agreement with [197–200]. As noticed in the previous studies, this is
possible in spite of the local production rate suppression, due to the macroscopic size of the
interaction volume compared to the electron Compton scale. On the other hand, in a single
beam configuration we find that intensities of I0 ƒ 7.5◊1028 W cm≠2 (E = 7.03◊10≠1 ES)
are required for a similar interaction volume, in agreement with [200, 359], as a conse-
quence of the same invariants suppression discussed previously for photon-photon scat-
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Figure 8.4: Number of Schwinger electron-positron pairs created neglecting
particles-field retroaction. (top) Number of Schwinger pairs created as a function
of peak intensity for the field configurations of two fundamental frequency pulses in head-
on collision (Two ctr. IR), a single one (Single IR) and an optimal PM-generated
harmonic beam (Optimal HB); all beams are focused at di�raction limit. The black
lines show the thresholds of one created pair (solid) and pairs number corresponding to
total field conversion to pairs mass energy (dashed). (bottom) Number of Schwinger
pairs created as a function of driving beam power. In the harmonic beam scenario, power
values stand for the laser incident on plasma mirror surface, accounting for reflection co-
e�cients Rpm set to the realistic value of 70 % [281].

tering. In this regard the smaller interaction volume of the harmonic beam explains its
even higher threshold of I0 ƒ 6.4 ◊ 1029 W cm≠2 (E = 1.18 ES). For that matter, we note
this value implies that exceeding the critical field value on macroscopic space extents is
in principle possible within the RPM scheme. This is in contrast with other beam config-
urations tailored for enhancing vacuum pair production and subsequent QED cascades,
such as counter propagation geometries, where e�cient light to matter conversion once
at least one pair is created e�ectively limits the intensity attainable with such fields [58,
59, 201–203].

Assuming fixed focusing at di�raction limit in all cases, we can then convert these
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intensity thresholds into requirements on the power of the driving beams, which o�ers
a basic assessment of experimental feasibility. In order to avoid unnecessary modelling
specifics we define power as P0 © W/· , where the total beam energy W is our simulation
input and · = 25 fs, matching the duration of the considered Gaussian pulses, and
the approximate harmonics train duration. The power values determined along these
lines correspond either to the sum of the powers of the individual beams in the case of
counterpropagating pulses, to the total beam power in the single pulse case, and to the
hypothetical power of the laser pulse before PM interaction in the case of the harmonic
beam, for a realistic reflection coe�cient of 70 % [281]. We assume in particular that the
harmonic spectrum remains independent of the total field energy. The latter assumption is
an idealization of course, however it does not strictly rely on the invariance of laser-plasma
interactions over a wide intensity range. Indeed one could in principle simply increase the
laser waist on plasma mirror so as to maintain a quasi-constant incident intensity; for
instance, a 200 PW laser with incident waist wp = 25⁄0 reaches a0 ƒ 115, only about
50 % more than a 3 PW laser with wp = 4.5⁄0 (a0 ƒ 75) as used in the PIC simulation
from which the spectrum was extracted. From this perspective, RPM clearly emerges as
the most favorable configuration, as Schwinger pair production first occurs for laser powers
between 160 PW and 200 PW (Wlas . 5 kJ at 25 fs), barely beyond reach of the most
powerful facilities planned to date [5], and allowing a single-beam setup. According to our
computation, achieving the same without harmonics conversion would require close to 2.6
EW cumulative power with two counter-propagating pulses (Wlas = 65 kJ), a value that
could potentially be reduced to 1.1 EW (Wlas = 27 kJ) via the coherent combination of
more individual beams in the so-called dipole wave setup [360]. The latter requirements
remain about one order of magnitude beyond the currently envisioned facilities. Using
a single optical pulse does not stand as a viable option in this respect, with a required
power of 200 EW (Wlas = 6.4 MJ).

8.3 Harmonics assisted secondary beam photon scat-
tering

As demonstrated in [297] and consistently with analytical estimates, the numbers of signal
photons emitted from a Gaussian beam colliding with a plane wave at an angle with the
same linear polarization are maximized for a counter-propagating geometry, and vary
as (1 ≠ cos(◊collision))4 around this optimal collision angle [361]. Besides, as explicited in
Chapter 3, a counter-propagating geometry gives rise to nonvanishing invariants, which
strongly enhances photon emission over a single focused beam situation. We therefore
investigate here the coupling of the focused PM-generated beam, thought of as a high-
intensity “pump” for the quantum vacuum, with a loosely focused counter-propragating
single frequency beam, thought of as a well-controlled “probe” to be scattered o� the
intense, strongly localized harmonic beam focal spot (see Figure 8.5). This can a priori

help to increase the discernible photon number in two ways, namely i) by emitting some
signal photons, which can be interpreted as scattered probe photons, away from the plasma
mirror specular direction likely polluted by background plasma radiations, and ii) by
increasing the scattering angles of the probe photons, due to the high transverse momenta
of the harmonic photons. In a semi-classical picture the latter e�ect can be explained by
di�raction of the probe beam o� the intense pump field polarizing the quantum vacuum
in a sub-wavelength region. For these reasons all photon numbers given in the following
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Figure 8.5: Schematic representation of a secondary beam assisted RPM con-
figuration. A focused harmonics beam with curvature radius Rp and waist at focus w0

is generated as in the basic RPM case, but is now made to collide with a well-controlled
second pulse. Part of the signal photons are then scattered around the “probe” beam
direction, which improves separation from the background photons.

correspond to “scattered probe photons”, i.e. we completely discard photons scattered in
the half (k≠)space around the harmonic beam propagation direction from the outset. We
consider two di�erent options for the probe, namely either (IR) a loosely focused Gaussian
pulse with ⁄0 = 800 nm, · = 25 fs, I0 = 2.5 ◊ 1021 W.cm≠2 and w0 = 9⁄0, or (Gr) an
even less focused green laser with ⁄g = 527 nm, · = 100 fs, I0 = 3.5 ◊ 1019 W.cm≠2

and w0 = 14⁄g. The first one can be thought of as a split part of a multi-Petawatt laser,
whose second part would be driving the harmonic generation. The second option would
typically involve an auxiliary 100 TW green laser close to the one suggested in [362]. In
both cases, two polarizations of the probe beam are envisioned, both linear, with an angle
Â = ^(epr, eh) with the harmonics polarization direction of either Ât = fi/2 or Â‹ = fi/4,
aimed at maximizing the total or crossed-polarized photon numbers respectively [363] (in
this context “crossed-polarized” means polarized in the direction perpendicular to the
main polarization direction of the probe beam).

8.3.1 Theoretical dependence of the scattered photon numbers
over the probe and harmonics beam parameters

In order to clarify to what extent can RPM improve over the single frequency beam
signal in this configuration, we first computed the probe photon numbers scaling with the
number nh of harmonics, using the same model harmonic beam as in Chapter 3, colliding
with the IR secondary beam.

These values show a slow increase in total numbers of photons, and a steeper increase
in crossed-polarized photons; in the optimal harmonic beam case, Np

t reaches levels com-
parable to the one of two counter-propagating beams at di�raction limit while Np

‹ exceeds
those. Most importantly though, the number of discernible photons emitted outside of a
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Figure 8.6: Number of photons from a loosely focused beam scattered o� a
counter-propagating beam made of nh harmonics of its fundamental frequency,
or PM-generated beams with e�ective number of harmonics nh, focused at
di�raction limit. Except from (2 ctr. Gaus.), all shown number correspond to photons
scattered in the half-space towards which the probe beam is directed, as denoted by a
superscript p. The model beams are constructed as in sec. III. The PM-generated harmonic
beams are linearly polarized at an angle Ât = fi/2 compared to the probe beam main
polarization direction.

◊ = arcsin(2Áb) cone around the probe beam direction is almost equal to the total number
of probe scattered photons. This is due mostly to the small probe beam opening angle,
as the e�ect persists even in the single frequency case (nh = 1 in Figure 8.6).

8.3.2 Numerical results and interpretation
The results for the PM-generated beams with varying probe beam parameters are dis-
played in Table 1. It confirms the very high number of probe photons scattered at large
angles compared to the probe beam divergence, and shows that varying the probe beam
polarization e�ectively allows to optimize total or crossed-polarized photon numbers in
most cases.

The final numbers of discernible signal photons then appear significantly higher than
in all the other configurations studied here. More specifically, resorting to RPM allows at
most for a gain of almost two orders of magnitude in discernible photon numbers compared
to directly using a split infrared pulse as both the pump and the probe for vacuum
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HB spectrum probe ^(epr, eh) Np

t Np

‹ Np,>

t Np,>

‹

sub-optimal IR Ât 29.6 3.11◊10≠1 29.1 3.10◊10≠2

Â‹ 19.6 1.38 19.3 1.35
Gr Ât 1.43 7.72◊10≠3 1.40 7.72◊10≠3

Â‹ 9.58◊10≠1 7.49◊10≠2 9.37◊10≠1 7.34◊10≠2

optimal IR Ât 199 4.58 142 | 9.492Ê0
4.58 | 2.612Ê0

Â‹ 132 10.5 94.2 | 6.312Ê0
7.86 | 2.372Ê0

Gr Ât 24.7 4.16 24.5 |1.07Êg+Ê0
4.16 | 0.19Êg+Ê0

Â‹ 16.9 2.25 16.8 |0.70Êg+Ê0
2.22 |0.14Êg+Ê0

Table 8.1: Number of probe beam photons scattered in the collision with a PM-
generated harmonic beam, for di�erent harmonics spectrum, probe beam and
polarization directions. The subscripts stand for numbers of probe photons emitted in
the range �Ê = Ê0/2 around the indicated frequency.

polarization e�ects (comparing optimal HB and two ctr. Gaus. in Fig 8.6). Admittedly
this achievement still has to be weighed against the additional experimental requirements
of PM harmonics generation, however, we can identify two aspects in which the RPM
scenario stands apart from simpler configurations.

First we note that the numbers of crossed-polarized photons benefits from even greater
enhancements than the polarization insensitive photon numbers, reaching values higher
than in any other configuration studied here by one to almost three orders of magnitude,
respectively for the total and discernible populations (Figure 8.6).

Second and most importantly, a significant fraction of the probe photons undergo
inelastic scattering with energy gains of +Ê0, which corroborates the findings of [299]. In
the case of the IR probe beam and optimal spectrum, this fraction can go up to 6.7 %
in total, and 1.8 % of all the emitted photons are both crossed-polarized and have a 2Ê0

frequency, which amounts to more than 2 photons per shot. With the Gr probe beam and
Ât polarization angle, more than one photon per shot is emitted in the Êg + Ê0 ƒ 2.5Ê0

range, and one every five shots adding the crossed-polarization constraint. Such photon
signals are in principle detectable in experiments [298]. For reference, in the case of two
counter-propagating pulses the proportion of inelastically scattered photons (at 3Ê0) is of
the order of 0.01 %, and the model harmonic beam in collision with the IR probe yields
about 0.3 % (at 2Ê0). This indicates that inelastic scattering in the probe beam direction
is inherent to the interaction with a multi-frequency beam.

This property can potentially prove decisive for obtaining a signal discernible from
the background of the driving laser photons beyond reasonable doubt. Indeed, the dis-
cernibility criterion used in our work as well as in many others [303, 326, 329] typically
relies on the idealization of the photon distribution of the background beams as Gaussian,
hence falling to negligible levels at a finite separation from their propagation direction.
However, as there are about 20 orders of magnitude more background than signal pho-
tons, this assumption is extremely vulnerable to any laser imperfections or insu�cient
shielding against parasitic radiation [298], even at crossed-polarization. On the opposite,
a large frequency separation could allow establishing the quantum origin of a photon on
a much firmer ground.
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8.4 Observing quantum vacuum dynamics through
harmonics beams

Observing quantum vacuum processes with electromagnetic fields typically requires ap-
proaching the Schwinger field FS = 1.32 ◊ 1018 V m≠1 = 4.4 ◊ 109 T, several orders of
magnitude above current technological capabilities, and therefore pleads for any scheme
maximizing the attainable field intensity. On the other hand, Lorentz invariance of the
vacuum state implies that all the relevant expectation values depend on the Lorentz in-
variants of the field rather than on its amplitude, which generically explains their strong
dependence upon the interaction geometry, and thus raises the question of the optimal
configuration beyond achieved intensity. In this section, we have shown that optimal fo-
cusing of the harmonic beam produced in the reflection of a single Petawatt-class laser
o� a plasma mirror allows to generate as many vacuum photons as two perfectly counter-
propagating Petawatt infrared pulses focused at di�raction limit and to significantly re-
duce the laser powers required to observe Schwinger pair creation.

The physical relevance of this result nevertheless crucially depends on the degree of
control of the laser-plasma interactions achievable in an experiment. Besides the require-
ments of optimal harmonics generation and focusing [13], the level and nature of back-
ground plasma mirror emissions prevails as to which observations will be accessible. If the
total radiated field after plasma mirror interaction can be consistently assimilated to the
reflected harmonic beam, with sharp enough angular photon distribution, propagating in
a vacuum, as we modelled it in this work, then it would be possible to detect vacuum
photon scattering with the coherent harmonics focusing technique only. The coupling to a
well controlled auxiliary beam significantly alleviates these constraints, only requiring low
background emissions in the “probe” beam direction, which could be set close to counter-
propagation with the harmonic beam. Furthermore, due to the high levels of inelastically
scattered probe photons specific to this case, assessment of the quantum origin of the sig-
nal could then be made on a spectral basis, hence with potentially much higher confidence
than solely on the basis of an angular discernibility criterion. As associated energy gains
are of the order of +Ê0, use of a Êp ”= Ê0 frequency probe can result in even cleaner quan-
tum vacuum signatures in the Êp + Ê0 frequency range. Indeed, provided the probability
of presence of residual charged particles in the overlap region of the beams can be made
small enough such frequencies could not be generated by laser-matter interaction.

Irrespective of the chamber residual gas, whose density can be made small enough
to empty the harmonics focal spot with high probability, the near-specular emission of
relativistic electron beams directly from the plasma mirror surface is an experimentally
established fact [260, 364], so that determining whether the above conditions can be met
calls for a detailed study of these ejected electrons beyond the scope of this work. If these
electrons are expelled from the harmonics field early enough, photon-photon scattering
may still be observed. If on the opposite they radiate enough to preclude observation of
photon-photon scattering, but do not trigger QED cascades, quantum vacuum processes
could still be sought for at higher intensity in the form of Schwinger pair creation. If finally
the electron beam dynamics results in prolific pair creation even before the Schwinger
process can occur, detection of quantum vacuum e�ects from PM-generated beams would
likely require more complex setups. Typically they would involve disentanglement of the
generation and focusing steps, so as to refocus the harmonics beam using broadband
visible-UV optics, either in a shielded part of the PM chamber or possibly even in another
chamber [365]. In turn, direct interaction of the curved PM harmonics beam with matter,

102



8.4. Observing quantum vacuum dynamics through harmonics beams

either in the form of beams or of a secondary target [300], would then open the way to
yet unobserved regimes of plasma dynamics in strong-fields. This perspective is the focus
of our next chapter.
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Chapter 9

From relativistic plasma mirror light
to extreme processes in matter

When charged matter particles are present in the strong field, sf-QED processes will deploy
at a much wider scale than in the fermionic vacuum. Two simple factors directly concur
to this fact. On the scale of elementary processes first, the relevant parameter quantifying
the interaction of a particle of charge Q and mass M with momentum p with a coherent
electromagnetic field F is,

‰ =
Q

Ò
(pµF µ‹)2

M3
(9.1)

p.w.= Q

e

3
m

M

4
2

“
E

ES

(1 + — · uk) (9.2)

where the second line is written for a plane wave of electric field amplitude E and prop-
agation direction uk, with “ = 1/

Ô
1 ≠ —2 the Lorentz factor of the particle. As the

“ dependence indicates, for relativistic momenta this parameter can be orders of magni-
tudes above the field value in the laboratory frame, itself bounding the vacuum interaction
parameters in some of the most favourable cases1. Furthermore, note that high particle
momenta can arise from the field itself as a result of classical dynamics in macroscopic
spacetime regions, or equivalently cumulative field photons absorption, represented by the
elastic scattering process in sf-QED (depicted in Fig. 9.1-a). As a result, the probability of
occurrence of elementary sf-QED processes can be increased dramatically, those involving
the lightest particles above all others2.

Secondly, on the macroscopic scale where many uncorrelated sf-QED processes can
occur, there exists a chain of events leading to the exponential growth of fermion num-
ber, magnifying quantum e�ects in the overall dynamics. This directly derives from the
structure of sf-QED, where single particle decays into two particles are allowed, already at
tree-level3. Namely, a fermion can emit a photon (Compton scattering, CS, c.f. Fig. 9.1-b),
which in turn can decay into a particle-antiparticle pair (Breit-Wheeler pair production,
BW, c.f. Fig. 9.1-c), which can both emit a photon, forming a chain reaction known as a
“QED cascade”. Note that from the CS step onwards, memory is lost of the initial particle
nature, as from Eq. 9.1 the BW process will generically strongly favor electron-positron
pair creation over any other channels simply from the mass di�erence. Combining these
two aspects, it appears that, in the presence of matter, a coherent field strong enough upon
large enough spacetime extents will spontaneously and massively decay into a system of
many photons, electrons and positrons, through sequences known as QED cascades.

1e.g. in the case of two counterpropagating beams forming a transient standing wave at focus.
2In the standard model those are the electrons/positrons, by a mass ratio of about 200 to the muons.
3The lowest order in the sf-QED perturbative expansion in coupling parameter – (see Table 2.1).

105



Part III, Chapter 9 – From RPM-light to extreme particle and plasma processes

e±
b)

e±
c)

e+

a)
e± e±

�

e −

�

Figure 9.1: Leading processes in a “QED cascade”. a) Field-dressed fermion propaga-
tors are represented by a double line, photon propagators by a wavy line, and interaction
vertices by a dot (cf. sec. B.2.5). b) Photon emission by an electron or positron (Compton
scattering); c) photon decay into an electron-positron pair (Breit-Wheeler).

In this section, we will present how this general scenario plays out in the field of RPM
sources so as to predict general properties of resulting systems, identify observable signa-
tures of the described regimes, and provide guidance for subsequent applications. Three
di�erent origins for the initial matter particles can be envisioned. In direct continuity
with the previous chapter on vacuum interactions, pair production can proceed directly
from the coherent field in the fermionic vacuum (Schwinger process). As the laser powers
required to trigger such phenomenon presently remain out of reach, exogenous sources of
matter remain of primary interest. In the optics of maximizing field-matter interaction
while retaining experimental simplicity, focusing on a solid target is presented first. Due
to the large number of seed particles, this configuration is found to allow extremely high
electron-positron densities, possibly up to the formation of a quantum relativistic plasma
in the form of quasi-neutral e+e≠ jets. We then turn to the collision of the RPM beam with
high-energy electrons, producing instead remarkable microscopic processes through very
high ‰ parameters. In suitable collision conditions, it is found that the attainable quantum
interaction parameters exceed the Ritus-Narozhny regime threshold, which would be of
significant theoretical interest. Both these RPM-light matter interaction scenarios entail
significant numerical and theoretical challenges, towards which we will open in a final
section.

9.1 RPM-light plasma interaction in solid targets
A common problem when trying to maximize the interaction of strong-fields with matter
is that, in the relativistic regime, all charged particles are generically expelled from the
highest field regions (cf. Eq. 1.14), so that only a fraction of the maximum quantum
interaction parameter is achieved. Directing the pulse into a dense solid target provides a
straightforward solution. Indeed, assuming e.g. that the ions move slow enough compared
to electrons, the charge separation field then generically pulls electron populations back
into the strong-field. The combination of such plasma dynamics with the shear number of
involved electrons can thus be expected to significantly enhance both elementary sf-QED
processes and subsequent relativistic quantum plasma e�ects.

In this section we will assess this idea for plasma mirror generated fields. In a first part
we detail the overall plasma dynamics, and compare it with the laser-plasma interaction
of infrared pulses. The microscopic properties of created photons, electrons and positrons
will then be given, detailing their origin and final momenta. In the most favorable cases,
corresponding to the highest intensities, the created electron-positron densities can be
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Figure 9.2: Field and electrons distributions at mid-interaction between an inci-
dent beam and a solid plastics target. (adapted from [300]) Black lines are electron
isodensity curves ne = 100nc, the magnetic field component in the normal direction is
shown in blue and red, the black arrow indicates the incidence direction.

so high as to react on the incident RPM-light field, in which case they could form a
macroscopic plasma. This limiting case will be examined in a third section. As the intensity
range covered by such sources extends from at least 1024 W.cm≠2 up to 1029 W.cm≠2 [12,
13] in optimistic projections, all results will be given for both ends of this spectrum4. We
may refer to each respectively as the “medium” and “extreme” intensity regimes, while
the “critical regime” will denote the higher intensity limit I & 1029 W.cm≠2 that will be
found to coincide with our current numerical limitations5.

9.1.1 RPM-light plasma dynamics
As sf-QED processes are generically suppressed in direct propagative electromagnetic
waves interactions with free particles due to the repulsive ponderomotive force, solid
targets may foster quantum processes under the e�ect of plasma fields. Elucidating the
generic RPM-light plasma dynamics then appears as the primary task in order to fully
take advantage of these configurations. In this section we will expose the general features
of this interaction, with an emphasis on the di�erence with the infrared laser case. In
particular, we will show that there exists a qualitative di�erence between both scenarios,
resulting from the high-frequency spectrum of the RPM-light beam.

RPM-light versus infrared-laser interactions with a plasma The field and elec-
tron distributions about 10 fs after incidence of the beam peak on the target are shown
in Fig. 9.2, both for an infrared laser pulse (a) and the RPM beam (b).

The infrared laser is here taken with a wavelength ⁄0 = 800 nm, gaussian spatial and
temporal profile with duration 20 fs, for a peak power of 10 PW. The waist on target
is w0 = 2 µm, corresponding to a peak intensity of I0 ƒ 1.6 ◊ 1023 W.cm≠2, which is a
realistic figure at the current time. The laser incidence angle is taken at 30¶, which has
been shown to maximize sf-QED events [366].

4This parallels the logic of Chapter 8.
5We will expand on this point in Sec. 9.3.
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Figure 9.3: Magnetic field and electrons distributions in the plasma channel;
with trajectory of a pair creating electron. (adapted from [300], WarpX simulations
sec. 2.2.2) It appears that the axial plasma currents (a) generate a cylindrical magnetic
fields in the channel (b), of the order of 1 MT for an RPM field of about 5 MT. a) A
target electron is driven towards an attosecond pulse and emits a photon (CS); b) the
emitted photon decays into an e+e≠ pair (BW) in the next pulse, which is accelerated by
the local field front; c) maximum electron ‰ parameter; d) final positron number.

The RPM beam has a spectrum close to the “sub-optimal” beam studied in Chapter 8
(see also Chapter 7), resulting from an incidence angle on plasma mirror of 45¶ and
plasma gradient length ⁄0/8, close to the optimum [367]. In these conditions, the beam is
focused down to a focal spot of w0h ≥ 100 nm on target and the intensity enhancement
compared to the infrared pulse reaches about 1100, resulting in a peak intensity of I0h ƒ
1.8 ◊ 1026 W.cm≠2.

The target has the electron density of plastic in both cases that is n0e = 230nc, where
nc ƒ 1.8 ◊ 1021 cm≠3 is the critical plasma density for a 800 nm wavelength.

The major di�erence between the two interactions can then be simply understood as
follows. The infrared laser pulse curves the plasma surface but is e�ciently reflected in the
specular direction6 (Fig. 9.2-a), while the RPM beam partially penetrates in the densest

6This is indeed the plasma mirror e�ect, though here not optimized for harmonics generation.
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plasma regions, creating a channel (Fig. 9.2-b). The fact that part of the harmonic beam
also is reflected suggests that this di�erence is explained by the high frequency content of
the RPM beam. Indeed, the maximum plasma density can only reflects harmonics orders
k <

Ò
n0e/nc ¥ 15, while the spectrum extends beyond order 20. Then the reflected part

can be interpreted as resulting from the low frequency content. Relativistic transparency
only increases the overall transmitted part.

Characterization of the plasma channel When the RPM-light beam propagates in
the target, electrons are totally depleted on its way, generating strong sources of electro-
magnetic plasma fields (Fig. 9.3). As visible in Fig. 9.3-b, the plasma fields reach values
up to a fraction of the RPM-light field, therefore strongly deviating plasma electrons. At
the considered medium intensity, the RPM-light field accelerates electrons to relativis-
tic energies of the order of ›e ¥ 0.86 ◊ 100 nm[µm]

Ò
1026 W.cm≠2[1018 W.cm≠2] ¥ 1000

(Eq. B.125), while for ions ›i © ›e/6 ◊ 1836 ¥ 0.1 so that the ponderomotive force
only weakly acts on them and does essentially not displace them compared to the elec-
trons. Accounting for the still shorter wavelengths achieved with the RPM harmonics
spectra leading to the highest studied intensities, this situation would only change for
I0h & 5 ◊ 1028 W.cm≠2. When such ion relativistic threshold is exceeded they become
subject to ponderomotive repulsion from the field as well. As a result charge separation
fields may decrease, and therefore not su�ce to e�ciently bring electrons back into the
strong field regions, so that the most intense pulses can end up reaching their focus in
a near vacuum (Fig. 9.4-a). This e�ect can be simply compensated for by shifting the
RPM-light focus deeper into the target by a few optical cycles (Fig. 9.4-b). The global
plasma configuration remains similar on the whole studied intensity range though, with
a well-formed central channel and some surrounding electrons driven in.

QED processes in the RPM and plasma fields As expected, the RPM-beam plasma
interaction strongly enhances sf-QED processes compared to the infrared pulse (Fig. 9.3-
c,d). This is due to the redirection of plasma electrons towards the strong field region,
continuously fuelling the emission of high energy photons propagating against RPM-beam
pulses, possibly decaying into a pair. As the pair is then quasi-instantly guided by the
strong field fronts, this process leads to a localization of Breit-Wheeler electrons and
positrons in the pulses and their direct acceleration up to high energies, with essentially
no further sf-QED events as long as Elab < ES

7. In all studied configurations the RPM
field remains the vastly dominant source of sf-QED processes, with plasma fields mostly
acting via Lorentz force. The total rate of particle creation is then simply modulated by
the successive focalization of attosecond pulses (see Fig. 9.6), until the beam is totally
absorbed or exits the plasma.

9.1.2 Electron-positron and photon radiations
The plasma electrodynamics of the RPM-beam-target system leads to a high number of
sf-QED processes, resulting in specific distributions of created particles. In this section

7This can be understood from a plane wave calculation, where an electron initially at rest will expe-
rience ‰e

p.w.Ã Elab/ES whatever the energy gained in the wave. Qualitatively, one understands that all
photons of a plane wave being exactly colinear, momentum gained by absorbing them can not influence
interaction with another one.
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we will examine their individual properties, through their process of creation, spectra, as
well as their spatial configuration, critical to the onset of plasma e�ects.

Leading sequence of QED events Let us first identify the dominant sequence of
events leading to pair creation. It can easily be understood reading Fig. 9.3 and Fig. 9.5.
Indeed, the sequence leading to a single pair creation event is represented in the for-
mer, while the statistical representativity of this process can be inferred from the latter.
Namely, an electron from the plasma encounters an RPM-beam pulse with a momentum
component opposite to its propagation direction, resulting in a high ‰ parameter (Fig. 9.5-
a,b,d), allowing CS photon emission in the same direction (Fig. 9.3-a). In crossing either
the same RPM-beam pulse or one more upstream, this photon again acquires a high ‰
(Fig. 9.5-a,c,e), allowing a BW pair creation event (Fig. 9.3-b). At medium intensities
I0h . 1028 W.cm≠2, this sequence is all the more transparent that virtually all pairs come
from a photon emitted from a plasma electron rather than a BW electron (cf. Fig. 9.10).

Now the strong acceleration of BW pairs into the RPM field tends to align their mo-
mentum with the local field front normal E ◊ B, decreasing their ‰ parameter (see high
px population in 9.5-d). More precisely, we know that in a plane wave ‰e

p.w.Ã Elab/ES,
therefore this dynamics can be expected to e�ciently suppress subsequent sf-QED pro-
cesses so long as Elab π ES. We can estimate this intensity threshold more precisely with
the data of Fig. 9.10, showing what could be called the degree of a BW process, namely
the number of CS processes preceding it. It is then found that pairs of degree higher than
1 only become significant for I0h & 1028 W.cm≠2. At this point, the RPM field ampli-
tude is high enough to trigger sf-QED processes from particles directly accelerated by
it, which is sometimes called an “avalanche-like cascade” in the literature8. The spatial
homogeneities of the tightly focused RPM pulses concur to lower this threshold below the
IS = 4.64 ◊ 1029 W.cm≠2 value expected for a plane-wave.

8Technically this regime can be characterized in terms of the Lorentz invariant › and ‰ parameters.
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Figure 9.4: Magnetic field and electrons distributions in the plasma channel for
a 1029 W.cm≠2 beam. The focal spot is w0h ≥ 40 nm for a spectrum corresponding to the
“optimal” beam (Chapter 7), plasma electron density is n0e = 200nc. a) If the RPM-beam
focus is set on the target surface, the ponderomotive force is e�cient enough to strongly
deplete the focal region as the main pulse focuses; b) this e�ect can be compensated by
setting the RPM-beam focus inside the target, here at 2 µm.
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Figure 9.5: Magnetic field and electrons distributions in the plasma channel for
a 1029 W.cm≠2 beam. The focal spot is w0h ≥ 40 nm for a spectrum corresponding to
the “optimal” beam (Chapter 7) a) If the RPM-beam focus is set on the target surface,
the ponderomotive force is e�cient enough to strongly deplete the focal region as the
main pulse focuses; b) this e�ect can be simply compensated by setting the RPM-beam
focus inside the target, here 2 µm away from the surface.

Spectra of created particles The final spectra of emitted CS photons and BW elec-
trons are shown in Fig. 9.9 in the medium, extreme and critical intensity regimes. At
all considered intensities, all created particles are globally accelerated in the RPM beam
propagation direction, at energies of the order of a few GeV.

A clear distinction appears between electrons and positrons dynamics. The former are
mostly accelerated along the optical axis, at energies about two times lower than that of
the latter, which are also deviated in two directions at an angle with respect to the axis.
This di�erence stems from the qualitative di�erence between their reaction to the plasma
channel fields, from the electronic current and ionic charge, diverting positrons away from
the axis towards the RPM-beam fronts, and dragging electrons inside the channel.

Spatial distribution of created particles Because pair creation occurs in the RPM
pulses (that are focused on less than 100 nm transverse sizes and have longitudinal extents
down to c ◊ 50 as ≥ 15 nm) resulting matter densities can reach very high values at the
time of focusing. At medium and extreme intensities, when the pulse then defocuses some
particles remain concentrated in these field fronts, electrons and positrons separating due
to the highly asymmetric field profile, creating very divergent attosecond electron and
positron beams. However, electrons and positrons react di�erently in the plasma fields,
leading to qualitatively distinct spatial distributions as shown in Fig. 9.7. Indeed, the
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Figure 9.6: Time evolution of the maximum positron density for a solid target.
Peak intensity here is 5.5 ◊ 1028 W.cm≠2, electron target density is ne0 = 200nc.
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Figure 9.7: Spatial configuration of Breit-Wheeler e≠ and e+ in an RPM-light
solid interaction. Peak intensity is 1028 W.cm≠2, electron target density is ne0 = 200nc.

plasma channel fields resulting from total electron depletion is focusing for the electrons,
driving them away from the local field fronts, and defocusing for the positrons, pushing
them in the same direction as the local field fronts. As a result, Breit-Wheeler electrons
can disperse in-between attosecond pulses while positrons remain mostly concentrated in
the field fronts.

9.1.3 Relativistic extremely dense e+e≠ plasma jets
At this point all macroscopic dynamics has been considered driven by the initially present
particles, namely the RPM field and plasma, with created particles following trajectories
dictated by the associated fields. However, as high densities are reached the electromag-
netic current of created e≠e+ particles may become large enough to act back on the
ambient fields, resulting in plasma e�ects, in a relativistic and quantum regime. In this
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section we will devise a criterion for the presence of e≠e+ plasma e�ects, evaluate it
for various RPM-light intensities, and give some more details on the very high density
configurations generated at extreme intensities.

A criterion for e+e≠ plasma dynamics A plasma is generically defined as a quasi-
neutral system of charged particles whose interactions are dominated by the electro-
magnetic field they generate. In our case, where the dense electron-positron sheaths are
immersed in an external coherent field, this definition could coincide with the limit in
which this field is screened by the e+e≠ currents. We can however adopt a more flexible
definition, requiring only that the particles own field influences their dynamics at least at

some point in time. As we are now in the presence of an external field inducing charge sep-
aration, a necessary condition would typically be that the high density states last longer
than a Langmuir plasma period. The only subtlety then comes from the fact that our
system drifts with a mean velocity of Lorentz factor “0 in the laboratory frame where the
field and matter quantities are computed.

In order to make sense of this proxy for plasma e�ects,

·ee Ø ·p (9.3)

with ·ee the high-density state duration, we therefore have to relate it to a genuine plasma
oscillation phenomenon of frequency ·p, which may depend on “0. Reasoning on the case of
a plasma interface with transverse translation invariance interacting with a plane wave in
normal incidence, this is simply achieved via a Lorentz transformation from the laboratory
frame Rlab to the plasma rest frame Ree, where the configuration reduces to the well-
known interaction between a plane wave and an infinite plasma at rest. In this frame, the
plasma is indeed driven by the field to oscillate at characteristic frequency9,

‹p|Ree
= 2fi

ı̂ıÙ2 ne|Ree
e2

meÁ0

= 2fi

ı̂ıÙ2 ne|Rlab
e2

“0meÁ0

(9.4)

In the laboratory frame, assuming stationary oscillation (plasma wave with wavevector
k = 0) we thus find10,

‹p|Rlab

= 1
“0

‹p|Ree
= 2fi

“0

ı̂ıÙ2 ne|Rlab
e2

“0meÁ0

(9.5)

i.e. ·p|Rlab

= “3/2

0 ·p0 , with ·p0 © 1
2fi

Û
meÁ0

2 ne|Rlab
e2

(9.6)

Now as maximum densities are achieved on durations of about an harmonic pulse focal-
ization length, itself of the order of ·0 = ⁄0/c near di�raction limit, for ⁄0 the initial pulse
wavelength (Fig. 9.6), our criterion for plasma formation Eq. 9.3 simply translates into,

·0 Ø “3/2

0 ·p0 (9.7)

… 1
“3

0

ne

nc,0

Ø 1 , with nc,0 = meÁ0

8fi2· 2
0 e2

(9.8)

where ne is the electron (or positron) density in Rlab and nc,0 is the critical electron-
positron plasma density for wavelength ⁄0.

9The factor 2 comes from the two-fluid e≠ and e+ motion compared to the ion-electron plasma case.
We neglect relativistic transparency, rather ill-defined in this › & 100 regime.

10This is simply the special relativistic “time dilation” e�ect.
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Figure 9.8: Maximum positron density and plasma criterion for varying inten-
sities. The target electron density is ne0 = 200nc. The Breit-Wheeler electron densities
are within the same order of magnitude, but satisfy the plasma criterion sooner due to
lower energies (Fig. 9.9).

Dynamics of the dense e+e≠ jets Let us then evaluate this criterion numerically on
our full intensity range, for an RPM beam interacting with a ne0 = 200nc solid target. The
results are displayed in Fig. 9.8. The maximum attained density increases exponentially
with the peak intensity, from about 10nc in a solid target at medium intensity up to about
107nc at extreme intensities. As created particles are accelerated on a wide spectrum up to
GeV energies, the criterion Eq. 9.8 is only fulfilled at the highest intensities we were able

to numerically simulate. Backreaction e�ects might become stronger past this threshold
of I & IS, as then avalanche-like QED cascades continue developing, all the more that at
I ≥ 1029 W.cm≠2 already 80% of the beam energy is depleted in photon emission, resulting
in a strong damping of the RPM field. Adopting a less stringent criterion ne/“n0 Ø 1,
e.g. following [368], one may even conclude that plasma-like e�ects can be observed from
I & 1027 W.cm≠2.

These high intensities indeed mark the onset of the “critical regime”, where pairs can
be generated by previously created pairs accelerated in the field, thus strongly enhancing
the particle creation rate. This e�ect can be discerned in Fig. 9.10, showing the proportion
of pairs generated from sequences of degree 4 or higher. This fraction is negligible below
1028 W.cm≠2, after which it quickly rises to represent nearly all pairs at 1029 W.cm≠2. At
this point, densities actually seem to soar and result in local plasma frequencies impossible
to resolve numerically, leading to the crash of corresponding WarpX simulations. This
point will be further discussed in sec. 9.3.

In accordance with the plasma parameter values displayed in Fig. 9.8, the e≠e+

dynamics mostly remains dictated by the RPM-light and target plasma fields up to
I ≥ 1029 W.cm≠2. The resulting particle momenta near final state are shown in Fig. 9.9
for three di�erent intensities.
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Figure 9.9: Emitted electron, positron and photon spectra after RPM-light solid
interactions. a) BW electrons; b) BW positrons; c) CS photons; d) Integrated spectra.
The target electron density is ne0 = 200nc.
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9.2 RPM-light and electron beam collision
As evoked in chapter 1, at this time the only way to trigger some sf-QED processes with
conventional lasers is to make them collide with high energy electrons, so as to reach the
Schwinger field in their rest frame. In last section we have seen that relativistic plasma
mirrors essentially allow to lift these di�culties in a rather simple experimental setup
of direct RPM-light solid interaction. Now it seems natural to investigate what physi-
cal regime would be reached combining both approaches, namely colliding high energy
electrons with an RPM-light beam.

This section exposes results obtained along these lines, for medium to critical RPM-
light intensities. The general characterisation of the di�erent interaction processes and
corresponding physical regimes is presented first. In the most favorable cases, the Ritus-
Narozhny threshold of ‰ Ø –≠3/2 ¥ 1600 is exceeded, opening a window to the yet
unexplored “fully non-perturbative” regime of Electrodynamics [317–320]. Some possible
macroscopic signatures for these interactions in the system final states are then presented
in a second section.

9.2.1 From cascades to the Ritus-Narozhny regime
Electron RPM-light interaction sequence The basic interaction scenario between
a localized coherent field of classical strength parameter › and incoming ultra-relativistic
electrons of Lorentz factor “e ∫ › is the strong deceleration of electrons in the field accom-
panied by high-energy radiation. This process is often referred to as “inverse Compton
scattering”, and is indeed leveraged on to e�ciently convert electron energy into high
energy electromagnetic beams. Depending on the classical and quantum interaction pa-
rameters, this process can be described either by Lorentz-Maxwell’s equations, classical
radiation reaction, or quantum Compton scattering in strong fields. At the envisioned
intensities I Ø 1026 W.cm≠2, counterpropagating electrons typically reach ‰ & 1 for
“e & 100, that is 50 MeV electron energies. On the other hand, current accelerators, in-
cluding laser-plasma accelerators, routinely achieve beam energies between 100 MeV and
100 GeV, so that we can safely assume that radiation should be described by strong-field
quantum Compton scattering.

As a consequence, an electron entering the field will be prone to high energy photon
emission. At these energies, the emitted photon momentum is a significant fraction of the
electron momentumand is emitted within a 1/“e angle in the initial electron propagation
direction. In these conditions the photon ‰ parameter will remain high and Breit-Wheeler
pair creation is favored. At high ‰ the BW cross-section is such that one of the two pairs
tends to carry more energy than the other, however both typically hold a non-negligible
fraction of the total [369]. These pairs hence are in a state comparable to that of the
initial electron, only further in space and with a lower energy. If the initial energy is large
enough, the created electron and (or) positron can themselves emit a photon, forming
a QED cascade sometimes said of “shower type” by contrast with the avalanche type
when particles are accelerated by the coherent field directly. As the cascade develops, the
initial electron beam energy is depleted into pairs and photons escaping the strong fields,
until either particle ‰ parameters fall below the CS or BW threshold, or particles exit the
strong-field region. This scenario essentially captures how sf-QED processes are expected
to be observed with optical lasers.
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Figure 9.10: Proportion of e≠e+ pairs originating from a simple e
CSæ “

BWæ ee or
a degree at least 4 e

CSæ . . .
Ø4 times

BWæ ee sequence in the final state. The degree 1 pairs
fraction is nearly 100% at medium intensity, but quickly drops for I0h & 1028 W.cm≠2

when QED cascades start to develop, and higher degrees dominate. The solid target has
ne0 = 200nc density, and the electron beam collision angle is 45¶ angle.

Attainable quantum interaction parameter In our case, however, this fast energy
depletion can play a very detrimental role by preventing electrons to reach the highest
fields regions with their maximum momentum, and thus lower the e�ectively attainable
quantum parameter ‰. Indeed, for a 100 GeV electron beam the CS threshold ‰ ≥ 1 is
reached at I ≥ 2.4 ◊ 1024 W.cm≠2, far from the maximum field of the RPM pulses even
at medium intensity I0h ≥ 1026 W.cm≠2. With this e�ect in mind, the question of the
maximum attainable ‰ parameter given some field configuration becomes primordial and
less trivial than it first appears.

In the case of a particle beam interacting with a focused field though, it has been
demonstrated that simply adding an angle between the optical and particle beam axes is
enough to recover almost the absolute maximum ‰ parameter [368]. The optimum angle is
numerically found lying between fi/2 and the field opening angle, which can be explained
as ‰ geometrically decreases when the angle is increased (Eq. 9.1), implying a compromise.
The situation is depicted in [220]. Fig. 9.12 shows the case of interaction at an optimum
angle between RPM-light and particle beam axes.

In this situation the attained ‰ parameter reaches very high values, as depicted in
Fig. 9.11 for various intensities, and the Ritus-Narozhny regime can be reached for I0h &
1◊1027 W.cm≠2. Even below this threshold, ‰ values close to 103 are accessible, at which
point new elementary processes could still manifest e.g. as radiative corrections in particle
propagation and interactions.

9.2.2 Signatures in final states
Besides the sf-QED processes of shower type cascades, electrons in the field are subject to
the Lorentz-force dynamics that can strongly a�ect the final state both of beam electrons
and created particles. A characterization of the asymptotic particle properties after inter-
action is therefore desirable, all the more crucially in the Ritus-Narozhny regime where
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Figure 9.11: Maximum ‰ parameter attained by electrons and positrons in the
RPM field. Empty triangles) correspond to 10 GeV electrons incoming on the RPM
beam at a 45¶ angle; Full triangles) correspond to the RPM beam interaction with a
ne0 = 200nc target, with focal point located 2 µm inside the target. The trend is steeper
in RPM-light solid interactions as particles momenta also depend on field.

deviations from first order sf-QED computations would prove of high theoretical interest.

Dynamics intensity dependence Let us first try and discern some qualitatively di�er-
ent regimes of interaction depending on the RPM-light intensity. Regarding BW particles,
we can asses their participation or not to further sf-QED processes. This information re-
lates to the degree of created particles, as particles of degree higher than one originate
from sf-QED processes involving BW particles. The proportion of degree 1 BW particles
is shown in Fig. 9.10, revealing that more than 10% of BW pairs is of degree 2 of higher
already at 1027 W.cm≠2. As photons can escape the field without decaying into a pair,
this figure implies that an even higher fraction of BW pairs has undergone at least one
CS process than visible in the degree 2 BW particle fraction, and we can thus conclude
that sf-QED e�ects significantly a�ects created particles dynamics.

Another macroscopic information about the interaction can be obtained considering
particle spatial distributions after collision with the RPM-light beam. The results are
shown in Fig. 9.12, displaying a transition between almost no beam disruption at medium
intensities to total beam depletion at critical intensity. The progressive transition between
both configurations is interesting, as it implies a strong correlation between the maximum
intensity at focus and the final particles angle-energy distributions.
Quantum interaction regime signatures We can then examine the particle final
states more quantitatively through their energy-angle spectra. One should note that ac-
cessing the asymptotic properties of particles co-propagating with the field proves espe-
cially challenging though. Indeed, they can still undergo acceleration by the RPM-light
field for some time as it defocuses. However including such process in the simulation is very
computationally demanding. In particular, accounting for field defocusing e�ects would
require three-dimensional simulations. In these simulations aimed at gaining a general
understanding of RPM-light and high energy electrons interaction, we will simply assume
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that further energy gains do not a�ect conclusions drawn from distributions shortly after
RPM-light focusing.

The resulting distributions are shown in Fig. 9.13. The reference momentum intro-
duced by the incoming electron beam is again seen to induce a strong correlation of the
final particle distributions with the RPM-light peak intensity. More specifically, some
particles are injected in the beam and accelerated along the optical axis, while others
persist in the electron beam direction, and the ratio between both populations depends
on intensity. This may allow assess the intensity at interaction point experimentally, and
hence trace back the achieved ‰ values.

Breit-Wheeler electrons and positrons di�er only by opposite transverse momenta,
in contrast with the plasma case. This is due to the simpler field form, approximately
symmetric with respect to the optical axis, while field peaks are all of the same “phase”11.
The pairs are accelerated in the field to maximum energies scaling linearly with the RPM-
beam intensity, from about 1 GeV at I ≥ 1027 W.cm≠2 to 15 GeV at I ≥ 1029 W.cm≠2.

In view of studying the elementary processes occurring at very high ‰ specifically, it
would be desirable to be able to relate realistically observable quantities to the maximum
‰ value attained at interaction point. The stochastic character of particle dynamics in
the cascade is an obstruction to such endeavour. Indeed, from the first photon emission
resulting particles properties can overlap with properties of lower energy incoming elec-
tron. The strong dependence of the final energy-angle spectrum on intensity, on the other
hand may at least help access the regime of interaction, and in particular the achied in-
tensity at focus. A more refined numerical study of asymptotic momenta distributions,
displaying sub-sampled angle-energy distributions for particles having reached a certain
value of maximum ‰, might help further disentangling di�erent microscopic processes
contributions. At the time of writing, the corresponding numerical diagnostics are yet to
be implemented in the WarpX code.

11See Fig. 9.5. This contrasts with typical spectrally Gaussian pulses, symmetrical with respect to field
sign inversion up to a “carrier-envelope phase”.

Figure 9.12: Spatial electrons and transverse magnetic field distributions after
interaction. Each frame correspond to a given intensity, from left to right and top to
bottom: I0h[W.cm≠2] œ {1.3 ◊ 1026; 2.8 ◊ 1026; 5.9 ◊ 1026; 1.3 ◊ 1027; 2.7 ◊ 1026; 5.7 ◊
1027; 1.2 ◊ 1028; 2.6 ◊ 1028; 5.5 ◊ 1028; 1.2 ◊ 1029}.
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Figure 9.13: Emitted electron, positron and photon spectra after RPM-light
electron beam interactions. a) Beam electrons; b) BW positrons; c) CS photons; d)
Integrated spectra. The beam energy is 10 GeV, incoming at a 45¶ angle.
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9.3 Theoretical and numerical challenges of extreme
plasma states

All discussed simulations rely on the PIC-QED algorithm, which solves a Boltzmann-
Maxwell system describing the self consistent evolution of the electromagnetic field and
1-body particles distribution functions, encapsulating sf-QED processes in collision terms.
When simulating new physical regime, such as the extreme intensity RPM-light-matter
interactions, it is legitimate to enquire about both the theoretical validity and compu-
tational viability of the model and its numerical implementation. In this section we will
review and discuss the main issues identified along these lines during this work.

9.3.1 Numerical plasma simulation issues
The main di�erence of PIC-QED simulations in the deep quantum regime compared to
the reference cold classical plasma configuration is the prolific particle creation process,
resulting in extremely high densities. Both aspects have specific numerical consequences.

Resampling In PIC codes the electromagnetic field is computed at specific points on
a grid, while each particle type is represented by a 1-body distribution function, that is
sampled and evolved in time via the method of characteristics. The resulting sampling
points are defined by a weight, position and momentum, allowing to identify them with
“macro-particles”, that can typically be interpreted as many individual particles tightly
clustered together in phase space. As each macro-particle occupies some memory space
and requires to be updated at each time step, the final computational expense of a PIC
simulation strongly depends on the overall number of macro-particles.

Now in the PIC-QED algorithm, both Compton scattering and Breit-Wheeler pro-
cesses convert one initial macro-particle (eû or “) into two (eû“ or e≠e+), so that QED
cascades numerically result in an exponential growth of the total macro-particle number.
Performing such simulations in the quantum-dominated regime of sf-QED therefore re-
quires reducing the number of macro-particles, but without overly degrading the faithful-
ness of our distribution function sampling. This general problem is known as “resampling”.

In our simulations, the retained resampling solution is referred to as a “thinning”
method by contrast with “merging” methods, because it suppresses particles based on
their individual properties rather than merges couples of similar particles. The detailed
implementation corresponds to the “levelling thinning” algorithm described in [370]. The
only modification was that thinning was only performed in cells with N > 50 macro-
particles, as it was found to help preserving tails of the distribution12. This module, critical
to the pursuit of high intensity simulations, was found to provide very satisfactory results
with limited computational overhead. An illustration of its e�ect on particle distribution
is provided in Fig. 9.14.

Local plasma scales When resampling allows taming the exponential macro-particle
number growth, prolific QED cascades can be simulated, potentially leading to very high
matter densities. This numerically results in high charge and current densities in Maxwell’s
equations, thereby directly a�ecting the fields. Numerical stability of this field-particles

12Note this could in principle be more than a corrective e�ect, as QED cascade can magnify the e�ects
of a few seed particles in certain configurations.
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dynamics requires at least that the local plasma period is always resolved by the space-
time discretization scheme,

dt
!

< ·p = ·0

Û
nc

ÎneÎŒ
(9.9)

with ·0 = ⁄0/c = 2.6 fs and nc = 1.7 ◊ 1021 cm≠3 the critical plasma density at ⁄0 =
800 nm. According to Fig. 9.8-a, densities as high as 107nc can be reached. This translates
in local plasma periods of less than 10≠3·0, for a total simulation duration of the order of
10·0. In 2 spatial dimensions, this numerical instability prevented exploring the critical
regime I0h & 1029 W.cm≠2, where local plasma frequencies fell below the computationally
maximum attainable resolution dt ≥ ·0 ◊ 10≠4. In three spatial dimensions, such e�ect
would severely restrict the study even of the extreme intensity regime.

Several attempts have been tried to circumvent this di�culty, such as numerical
quanching of high-frequency longitudinal field components, with no satisfactory e�ects
on the simulations. As of today, it seems the most promising path of progress would be
the implementation of a non-uniform, possibly adaptive, grid for the electromagnetic field.
This would allow finely resolving the focal area, where maximum densities are produced,
while keeping the total number of grid points within reasonable bounds. The main chal-
lenge of such strategy in the context of an electromagnetic PIC code is to preserve the
non-dispersive character of the propagation scheme, even at interfaces between di�erent
resolution domains. This general issue becomes critical in the study of strong field RPM
beam, as the field profile is all the more sensitive to dispersion, and its peak intensity
at focus especially. Besides, the exponential dependence of the maximum density with
intensity would still make it di�cult to enter the critical regime too deeply.

9.3.2 Relativistic quantum plasma modelling
The observation of new physical regimes, and possibly even of new elementary processes,
is a key motivation to the study of strong fields. This naturally raises the question of the
adequacy of the current theoretical framework in these configurations, first and foremost
the one underlying ab initio PIC-QED simulations. In this section we will mention several
directions in which this model may be extended.

Figure 9.14: Momentum positron distribution in RPM-light and matter seed
interaction, with and without thinning algorithm. (left) Momentum distribution
without thinning; (right) Momentum distribution with thinning.
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Higher multiplicity collision processes Considering again the distinctive feature of
QED cascades in the RPM-light field, the generation of extremely high electron-positron
densities, in a kinetic framework one natural expectation is the increase of collision rates.
In these conditions, it becomes conceivable that scattering processes with more than one
incoming particle become sizeable. Though such terms are a priori suppressed by at least a
factor e compared to one particle processes, they scale in higher powers of particle density
and could thus play a role in high density configurations. Relevant processes would be the
two-particle scatterings ee æ ee, e“ æ e“, and photon annihilation ““ æ ee [308, 371–
373]. However, the rate of energy-momentum transferred in this manner should not only
be compared to lower order scatterings, but to the Lorentz force exerted by the coherent
field as well, which could still dominate in strong enough fields.

When individual particles quantum interaction parameter become of the order ‰ ≥
103, even without entering the Ritus-Narozhny regime loop corrections to the electron
and photon propagators could also a�ect sf-QED processes.

Degeneracy threshold Another source for deviations from a classical kinetic model
when such electron-positron densities are reached is the rise of Fermi-statistics e�ects,
that is the “quantum degeneracy” of the plasma. Though such thermodynamical notion
is non-trivial to precisely apply to a system as far from equilibrium as the e+e≠ plasma
formed in RPM-light-matter interactions, we can still gain insight in these e�ects by
computing the local Fermi energy [374],

ÁF = mc2

Û3
ne

nC

4
2/3

+ 1 ≠ 1 (9.10)

with, nC = 8fi

3
1
⁄3

C
, i.e. nC ƒ 5.9 ◊ 1029 cm≠3 (9.11)

where ⁄C is the electron Compton length. Evaluating it from Fig. 9.8, we find that for all
simulated intensities,

ÁF (I0h) . mc2 (9.12)

As the typical energy spread of the electron-positrons is of the order of ≥ 103mc2

(GeV), we conclude that degeneracy e�ects can still safely be neglected.

Extensions of the Boltzmann-QED framework There are other well-known as-
sumptions on which the reference “Boltzmann-QED” picture is based, and many results
were obtained in view of extending them. For instance, one of the most notable is the
“Locally constant field approximation”, which could be relaxed or even lifted entirely in
quite general configurations, for some specific processes13. One may conceive these lines of
progress as “bottom-up” approaches, where the rich physics of strong-field electrodynam-
ics is first grasped from the embedding of the Furry picture of sf-QED within a classical
kinetic theory, and then progressively extended in several directions. A major merit of
this approach is its very operational character, as it allows for computationally tractable
simulations, and current experimental conditions usually strongly legitimate these ap-
proximations.

By contrast, an alternative “top-down” method would be to first formulate the exact
theoretical framework fully encompassing the envisioned physical configurations, and then

13See e.g. [375–378] and references.
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proceed to successive approximations until an operational formulation is reached. Though
less direct, one may expect such approach to provide a systematic procedure of modelling,
and control on the approximation error at each stage. In the present discussion such
theory would be Non-equilibrium QED, such as defined e.g. by the equations of motion of
a quantum e�ective action (cf. sec. B.2.5), and the approximation procedure its reduction
to a kinetic theory with classical (on-shell) particle distribution functions.

However, one could then in principle stop at an earlier stage and use the resulting
extension of the Boltzmann-QED model. Following [116], a kinetic description free of
LCFA accounting for QED processes at order e2 including o�-shell e�ects can for instance
be derived. Besides the usual situations where the LCFA fails, such model would typically
be of use to consistently describe coherent field decay through the Schwinger process, or
any more general particles backreaction on the coherent field.
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Conclusion

Relativistic plasma mirrors may o�er the opportunity to access the quantum dominated
regime of strong-field Quantum Electrodynamics in a near future, via fields of intensities
ranging between 1025 W.cm≠2 and 1029 W.cm≠2. In this thesis, we have predicted the
e�ects produced by such light in di�erent configurations, either in a vacuum or in the
presence of external particles.

Quantum vacuum processes were studied in chapter 8. Adopting the Stimulated Vac-
uum Emission formalism [303], we could compute the number of photons scattered in
the RPM beam, for two di�erent beam spectra, corresponding to di�erent conditions of
generation on the plasma mirror. We have shown that the focusing of a single RPM beam
in a vacuum could produce as much scattered photons as the head-on collision of two
1 PW infrared pulses focused at di�raction limit, which may simplify the latter exper-
imental setup. We also computed the number of photons in scattered in a probe beam
when colliding with the RPM pulses, which revealed in particular that some photons
could be scattered with energies absent of the initial colliding beams spectra, potentially
significantly improving the signal-to-noise ratio, critical in these experiments. Finally, a
threshold for Schwinger pair creation was found, indicating a laser required laser power
of around 200 PW, which is high though much below the typical exawatt powers required
in equivalent infrared configurations.

All these results were obtained through a numerical implementation of the Stimulated
Vacuum Emission formalism, adapted to the large size of RPM field simulations, hence
parallelized. This algorithm was extensively validated on known reference configurations,
and against di�erent modes of numerical implementation, as detailed in chapter 3. Guid-
ance in the more complex case of the RPM beams could be gained via analytical estimates,
whose detailed derivation was presented in chapter 4. We also worked towards more the-
oretical clarity by relating our approach with the resolution of e�ective field equations,
also pursued in the literature, as summarized in chapter 5.

The interactions of RPM light with pre-existing matter was presented in chapter 9. In
the case of interaction with a solid target, we could evidence that even at (comparatively)
low intensities of 1025 W.cm≠2 RPM beams enhance sf-QED signatures by several orders of
magnitude compared to direct irradiation of the target with an infrared pulse of equivalent
energy. We could also study dynamics at higher intensity, and find that very high density
electron-positron clusters then form, and are accelerated to GeV energies. In the case of
RPM light collision with a high-energy electron beam, we could compute the achieved ‰
parameter, and establish their relevance for physics around the Ritus-Narozhny regime
of sf-QED, together with signatures of these interactions in the form of emitted particles
spectra.

127



An outline of relativistic quantum theory is proposed. Specifically,
we aim at a viewpoint encompassing both i) a proper delineation
of strong-field Quantum Electrodynamics and ii) paths towards its,
typically more familiar or operational, (semi-)classical aspects.

Chapter A summarizes the procedure of canonical quantization,
highlighting a continuity between classical and quantum descrip-
tions of physical systems.

Chapter B introduces the required elements of Quantum Field The-
ory at an heuristic level, with an emphasis on their relevance in view
of the strong-field regime of Quantum Electrodynamics.

Abstract of Part IV



Part IV

– Appendix –
A primer in view of strong-field

Quantum Electrodynamics
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Appendix A

Landmarks from mechanics

We here motivate and clarify some terminology occurring in the main text with a brief
summary of the canonical connection between the classical and quantum mechanics of a
physical system. Emphasis is placed on the order of exposition rather than mathematical
forms, however technical issues may hopefully be lifted from context, or from provided
references. This material being standard we do not systematically give reference for the
various results, but indicate our main sources at the beginning of each section, and wher-
ever more specific derivations were reproduced.

A.1 Hamilton’s principle
A.1.1 Lagrangian formulation
A physical system is a set of variables {qi} allowing to compute quantities that can
in principle be observed. In the context of non-relativistic classical mechanics, typically
qi œ R and the problem amounts to determining their values at any time qi : t ‘æ qi(t)
given their values at some initial time q(t0) = q0.

Hamilton’s principle states that there exists a functional of the form,

S[qi] =
⁄

t

t0

dt̄L
1
qi(t̄), q̇i(t̄)

2
(A.1)

with q̇ = dq/dt, for which the physical trajectory is an extremal point. S is called the
action and L the Lagrangian of the system. Considering an infinitesimal variation of the
trajectories ”qi such that ”qi(t0) = ”qi(t) = 0, the extremum condition writes1,

”S[qi] = 0 (A.2)

=
⁄

t

t0

dt̄

C
ˆL

ˆqi

≠ d

dt

A
ˆL

ˆq̇i

BD

”qi +
C

ˆL

ˆq̇i

”qi

D
t

t0

, ’”qi (A.3)

where integration by part has been used, which translates into,

Euler-Lagrange: ˆL

ˆqi

≠ d

dt

A
ˆL

ˆq̇i

B

= 0 , ’i (A.4)

called the Euler-Lagrange equations.
Thereby one recovers the usual vision of mechanics as the unfolding of trajectories

in time according to di�erential equations. Such formulation already proves more fruitful
than a simply di�erential view though, in that Eq. A.4 is invariant under any coordinate
change qi ‘æ Qi. As partially displayed in the following, much beyond immediate uses it
is empirically found to provide a unifying language for describing fundamental systems.

†Refs. A.1-A.2: [310, 379, 380]
1Summation over repeated indices is implied throughout the text: aibi ©

q
i aibi.
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A.1.2 Hamiltonian formulation
The Euler-Lagrange equations show that dynamics could be expressed as a di�erential
system of the first order in the extended variables qi, pi, by defining,

pi = ˆL

ˆq̇i

(qi, q̇i) (A.5)

provided this expression can be inverted in q̇i. Equations of motions in the {(qi, pi)}
“phase space” are then generated by elimination of q̇i in the action through the Legendre
transform of L, called the Hamiltonian H2,

S[{qi}] =
⁄

t

t0

dt̄
Ë
piq̇i ≠ H(qi(t̄), pi(t̄))

È
(A.6)

so that upon independent variation of qi and pi Hamilton’s principle now writes,

0 =
⁄

t

t0

dt̄

C

≠
A

ṗi + ˆH

ˆpi

B

”qi +
A

q̇i ≠ ˆH

ˆpi

B

”pi

D

+ [pi”qi]tt0
, ’”qi, ”pi (A.7)

and Hamilton’s equations of motion follow as,

Hamilton:

Y
___]

___[

q̇i = ˆH

ˆpi

ṗi = ≠ˆH

ˆqi

, ’i (A.8)

A.2 From trajectories to observable values
A.2.1 Observables of definite states
The Hamiltonian formalism lends itself to a very operational view of mechanics. Because
evolution is of first order in phase space, each point uniquely specifies the system state3,
and therefore any physical quantity can be expressed as a function defined on it, that is,

Observable values: Ï(t) = O(x(t), t) (A.9)
, O(x0, t) (A.10)

with the abbreviation x = (qi, pi). Rephrasing in view of quantum mechanics, Ï(t) is the
value taken by the “observable” x ‘æ O(x, t) measured on the system at time t, given
initial data x(t0) = x0. As the second line suggests, for the purpose of computing Ï time
evolution can indi�erently be cast in the state or the observables themselves. Indeed,

d

dt
O(x0, t) = ẋ · ˆO

ˆx + ˆO

ˆt

= q̇i

ˆO

ˆqi

+ ṗi

ˆO

ˆpi

+ ˆO

ˆt

= ˆO

ˆqi

ˆH

ˆpi

≠ ˆO

ˆpi

ˆH

ˆqi

+ ˆO

ˆt

i.e.
dO

dt
= {O, H} + ˆO

ˆt
Dynamics of
observables

(A.11)

2It coincides with the energy on known systems, and defines it in general.
3If ˆH/ˆt ”= 0 predicting evolution needs also the data of time. However, in a fundamental system

data of {(qi, pi)} exhausts all information by definition, so that in particular H = H(qi, pi).
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where we have introduced the Poisson bracket:

Poisson bracket {f, g} , ˆf

ˆqi

ˆg

ˆpi

≠ ˆg

ˆqi

ˆf

ˆpi

(A.12)

This operator is at the core of the formal connection between quantum and classical
mechanics. Let us nonetheless further prepare this shift by enlarging the set of admissible
initial data.

A.2.2 Observables of general states
In the above discussion we considered that x(t0) = x0, meaning that the initial state of the
system is known with certainty. However, successful prediction might require to alleviate
this constraint, as for instance for systems with a large number of independent variables.
This can be done introducing a probability density f(x, t)dx for the system to be in state
x at time t. An evolution equation for f is derived from probability conservation in a
phase space volume �(t) comoving in time with phase space points considered as initial
data:

P (t + dt) ≠ P (t) = 0

=
⁄

�(t+dt)

dxf(x, t + dt) ≠
⁄

�(t)

dxf(x, t)

=
⁄

�(t)

dx
C-----

ˆu(t,t+dt)(x)
ˆx

----- f(u(t,t+dt)(x), t + dt) ≠ f(x, t)
D

where u(t,t0) : x0 ‘æ x(t) is the Hamiltonian flow, mapping a point x0 to the point
x(t), solution to Hamilton’s equations at time t for the initial data x(t0) = x0. By this

definition, ˆu(t,t0)/ˆt =
A

ˆH/ˆpi

≠ˆH/ˆqi

B

. Besides, one demonstrates that the Jacobian of any

Hamiltonian flow is one4. Proceeding accordingly,

0 =
⁄

�(t)

dx
A

ˆf

ˆt
+ ˆu(t,t0)

ˆt
· ˆf

ˆx

B

dt + O(dt2)

dtæ0=∆ 0 =
⁄

�

dx
A

ˆf

ˆt
+ {f, H}

B

, ’�

This establishes Liouville’s equation,

0 = {H, f} + ˆf

ˆt
Dynamics of
the states

(A.13)

or, df

dt
= 0 (A.14)

allowing to determine f(x, t) from an initial probability distribution f0(x).
4If J(t) =

--- ˆu(t,t0)(x)

ˆx

--- ©
--- ˆx(t)

ˆx0

---, Jacobi formula gives its time derivative,

J̇ = J(t)Tr
C3

ˆx(t)
ˆx0

4≠1 ˆẋ(t)
ˆx0

D
= J(t)Tr

C3
ˆx(t)
ˆx0

4≠1 ˆẋ(t)
ˆx(t)

ˆx(t)
ˆx0

D

= J(t)Tr
5

ˆẋ(t)
ˆx(t)

6
= J(t)

3
ˆH

ˆpiˆqi
≠ ˆH

ˆqiˆpi

4
= 0 , with use of cyclicity of the trace

and J(t0) =
--- ˆid(x)

ˆx

--- = 1, so J(t) = 1.
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All relevant quantities can then be expressed as the expectation value of an observable
over a general system state,

ÈOÍf =
⁄

dxfO (A.15)

and we can again formulate two equivalent interpretations of the (expectation) value of
an observable at time t5,

Ï̄(t) = ÈOÍf(t) (A.16)

=
⁄

dxf(x, t)O(x) (A.17)

=
⁄

dxf0

1
u≠1

(t,t0)
(x)

2
O(x) , by Liouville’s equation

=
⁄

dxf0(x)O(u(t,t0)(x)) , using
-----
ˆu(t,t0)

ˆx

----- = 1

=
⁄

dxf0(x)O(x, t) (A.18)

= ÈO(t)Íf0
(A.19)

Either the system state evolves to f at time t when a fixed function O is measured, or the
state merely encodes the initial data f0 while all physical variables O evolve with time t.
This transparently parallels the so-called Schrödinger and Heisenberg points of view in
quantum mechanics.

Furthermore, the above reveals a duality between states and observables6. More specif-
ically, any observable is fully determined by its values over a proper set of states, and con-
versely any state can be retrieved by the values that a proper set of observables take on
it. This statement becomes trivial introducing “pure states” fx(y) © ”(y ≠ x), and what
could be called “projections”7 Ox(y) = ”(y ≠ x). Either way, all necessary information
about the physical system can explicitly be encoded in some set of observable values.

A.3 Algebraic aspects of physical observables

A.3.1 An algebra within classical mechanics
This procedure of abstraction of the structure underlying computation of measurement
values can be pushed further, nearly closing the gap with its quantum generalization.
Essentially, such structure crystallizes around the Poisson bracket. This symbol is formally
interesting because it seems to allow rewriting mechanics only in terms of functions on
phase space, that is general observables, independently of the specific variables (qi, pi)
that initially defined it8.

5We now consider an observable without explicit time dependence for better clarity of the argument.
6Mathematically, the expectation value is a scalar product and states are positive normalized linear

forms on the vector space of observables.
7The analogue quantum objects mathematically are projection operators.
†Refs. A.3: [381]
8See e.g. Eq. A.11 or Eq. A.13; we notice in particular that canonical variables are observables them-

selves, and Hamilton’s equations of motion Eqs. A.8 indeed write q̇i = {qi, H}
ṗi = {pi, H}
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This intuition finds ground in the notion of canonical transformation. Let us consider
a change of variables (qi, pi) ‘æ (–j, —j) and see how the Poisson bracket transforms:

{f, g}qp = ˆqifˆpig ≠ ˆqigˆpif , denoting ˆf

ˆx
© ˆxf (A.20)

=
1
ˆqi–jˆ–j f + ˆqi—jˆ—j f

2
(ˆpi–kˆ–k

g + ˆpi—kˆ—k
g)

≠ (ˆqi–kˆ–k
g + ˆqi—kˆ—k

g)
1
ˆpi–jˆ–j f + ˆpi—jˆ—j f

2
(A.21)

= {–j, –k}qpˆ–j fˆ–k
g + {–j, —k}qpˆ–j fˆ—k

g

≠ {–k, —j}qpˆ–k
gˆ—j f ≠ {—k, —j}qpˆ—k

gˆ—j f (A.22)

Therefore, upon the condition that the canonical Poisson brackets are preserved9,

Canonical
Poisson
brackets

--------

{–i, –j}qp = 0
{—i, —j}qp = 0
{–i, —j}qp = ”ij

(A.23)

we find that the Poisson bracket does not change form,

{f, g}qp = ˆqifˆpig ≠ ˆqigˆpif

= ˆ–ifˆ—ig ≠ ˆ–igˆ—if = {f, g}–—

(A.24)

Transformation satisfying Eq. A.23 are called canonical. Restricting to such coordinate
changes10 the Poisson bracket acquires a coordinate-independent meaning, thus depending
only on the structure of phase space.

A characterisation of mechanics can therefore a priori be sought for in the algebraic
properties of {·, ·} considered as a binary operator on the space of observables, i.e. of real
functions on phase space Acl = CŒ({(qi, pi)}, R):

linearity: {f, ⁄g + µh} = ⁄{f, g} + µ{f, h} , ’⁄, µ œ R (A.25)
antisymmetry: {f, g} = ≠{g, f} (A.26)

Jacobi identity: {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0 (A.27)
Leibniz rule: {f, gh} = {f, g}h + g{f, h} (A.28)

Together with the natural operations of pointwise addition and associative pointwise prod-
uct, first three properties make (Acl, {·, ·}) a Lie algebra, and the Leibniz rule, inherited
from the di�erential nature of the Poisson bracket, a Poisson algebra.

A.3.2 Mechanics within Poisson algebras
Now to conclude at a complete characterization of mechanics, one should answer the
converse question: does any real Poisson algebra correspond to the algebra of classical
observables of a physical system? Though manifestly calling for a thorough mathematical
treatment, such problem can shed light on the physical discussion by the following allevi-
ated argument [382, 383]. Let us consider a Poisson algebra over a field K (AP , +, ·, {·, ·}),
comprising a multiplicative unit 1. Then, for a, b, u, v œ AP ,

9Note those are the Poisson brackets of the initial canonical variables set.
10They are already much more general than the usual ones qi ‘æ Qi, as they allow mixing initial

coordinates and conjugate momenta.
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{au, bv} = b{au, v} + {au, b}v

= ba{u, v} + b{a, v}u + a{u, b}v + {a, b}uv (A.29)
by Leibniz rule on the right, then on the left. Proceeding in reverse order,

{au, bv} = a{u, bv} + {a, bv}u

= ab{u, v} + a{u, b}v + b{a, v}u + {a, b}vu (A.30)
we find equating the two,

{a, b}(uv ≠ vu) = (ab ≠ ba){u, v} , ’a, b, u, v œ AP (A.31)
Now let us assume there exists at least one couple u, v such that {u, v} œ 1K, by rescaling
this is equivalent to {u, v} = 1, then using this property in Eq. A.31,

{a, b}[u, v] = [a, b] , ’a, b œ AP (A.32)
introducing the commutator symbol [a, b] , ab ≠ ba. If another couple uÕ, vÕ exists with a
unit Poisson bracket, then writing Eq. A.31 for u, v, uÕ, vÕ directly leads to,

[u, v] = [uÕ, vÕ] © Z (A.33)
Furthermore,

{a, Z} = {a, [u, v]}
= [{a, u}, v] + [u, {a, v}] , by Leibniz rule
= ({{a, u}, v} + {u, {a, v}}) Z , by Eq. A.32
= {a, {u, v}} Z , by antisymmetry and Jacobi identity
but Leibniz rule implies that {a, 1} = 0

therefore,
I

{a, Z} = 0
[a, Z] = 0

, ’a œ AP (A.34)

This property makes the element Z a constant of the system, in the sense that it is invari-
ant under any Hamiltonian flow Eq. A.11, and is uncorrelated to any other observable11.

We have therefore shown that under the condition that at least one couple of variables
is conjugated in the sense of classical mechanics, the defining properties of a Poisson
bracket imply a direct link with the commutator of two elements via a unique constant
in the centre of the Poisson algebra,

÷! Z œ Z(AP ) s.t.
I

[a, b] = Z{a, b}
{a, Z} = 0

, ’a, b œ AP (A.35)

Classical mechanics is then naturally distinguished as a special case in a wider framework,
simply defined by,

Classical mechanics:
I

Z © 0
i.e. [a, b] = 0 , ’a, b œ AP

(A.36)

A direct extension then appears as Z = ⁄1 for ⁄ œ K. Together with a little more
additional structure, quantum mechanics is recovered setting ⁄ œ iR, where i2 = ≠1.
Physically ⁄ © i~, introducing Planck’s constant, so that formally,

Quantum mechanics:
I

Z © i~1
i.e. [a, b] = i~{a, b} , ’a, b œ AP

(A.37)

11For instance, in the algebra of classical mechanics these conditions would imply Z is a constant
function on phase space, or in quantum mechanics that Z = z1 for z œ C and 1 the identity operator.
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The shift from Eq. A.36 to Eq. A.37 is called the canonical quantization of a system,
usually summarized in the direct substitution rule {·, ·} æ ≠ i

~ [·, ·].
Expressed in terms of Poisson bracket, equations of mechanics are unchanged, as well as

their operational interpretation. Of course, the mathematical realizations of the classical
or quantum algebras may di�er a lot in their individual parts12. However, their above
described proximity at an abstract level is faithfully reflected in their global structure13,
or in a physical perspective when thought of in terms of observable values.

Two essential di�erences between classical and quantum mechanics quite often high-
lighted, the non-commutativity of observables and the seemingly necessary occurrence of
complex numbers14, appear at the same time in Eq. A.37. While commutative Poisson
algebras directly lead to the geometric structures underlying classical mechanics known as
symplectic manifolds, the former properties can be linked to so-called Cú-algebras, whose
representations are known to coincide with operators on Hilbert spaces. From there follow
all non-classical features of quantum mechanics15, e�ectively rooting them in one equation.

In some views, it can be interpreted as conveying the “indeterminacy” of physical vari-
ables, generalizing probability theory to systems whose variables can not be assumed to all
simultaneously have a value [385–388]. Alternatively one may require logically grounding
physics on a set of motivated principles, then quantum mechanics can be rebuilt [389, 390]
and Hamilton’s principle, rather unsettling in this regard, explained as a consequence16.

A.4 Observables in Quantum Mechanics
A.4.1 Mathematical represention
Let us conclude this section with a brief review of the realization of the quantum algebra
of observables as self-adjoint operators17 on a Hilbert space H, that is Aq = H(H). States
are linear forms Ê : H(H) æ R satisfying Ê(A†A) > 0 and Ê(1) = 1, which by Riesz
representation theorem can be identified with operators fl œ S(H) called state operators
or density matrices. Using scalar product A · B , Tr(A†B) for the representation, these
operators satisfy,

State
operator

fl† = fl

‡(fl) µ R+ , denoting ‡(fl) the spectrum of fl

Tr(fl) = 1
(A.38)

The expectation value of an observable then writes,

ÈOÍfl = Tr (flO) (A.39)

For consistency, as we shall now explain, one furthermore postulates that the value o
taken by a measured observable O belongs to its spectrum,

Observable values: Ï = o œ ‡(O) (A.40)
12Typically, comparing a collection of point particles coordinates with a wavefunction.
13Precisely because, in a mathematical sense, they are representations of algebraic structures that, in

an informal sense, are found very similar (linked by a single parameter ⁄ œ C).
14Implying up to representations. See e.g. [384] and citations for an entry to this topic.
15e.g. superpositions, Heisenberg indeterminacy relations, entanglement, etc.
16See e.g. the “path-integral” expression of transition amplitudes for an explicit connection [22].

†Refs. A.4: [381, 385, 386]
17We denote the adjoint of A by A†, so that observables satisfy O† = O.

137



Part IV, Chapter A – Landmarks from mechanics

A.4.2 Quantum indeterminacy
From the defining properties, if fl1, fl2 œ S(H) and µ œ [0, 1] then µfl1 + (1 ≠ µ)fl2 œ S(H),
so that states form a convex set. A state operator cannot be decomposed in such a way if
and only if Tr(fl2) = 1, in which case it is called a “pure state”18 and is a one-dimensional
projection operator: ÷ |ÂÍ œ H s.t. flpure © flÂ = |ÂÍÈÂ|, introducing Dirac notations. An
important di�erence with the classical case is that observable values can never be all
predicted with certainty19, even in a pure state. Indeed [391],

È(O ≠ ÈOÍÂ)2ÍÂ = ÈO2ÍÂ ≠ ÈOÍ2

Â

= Tr
1
|ÂÍÈÂ|O2

2
≠ Tr (|ÂÍÈÂ|O)2

= Tr
1
|ÂÍ ÈÂ|ÂÍ ÈÂ| O2

2
≠ ÈÂ| O |ÂÍ ÈÂ| O |ÂÍ

= Tr
1
fl2

Â
O2 ≠ flÂOflÂO

2

= 1
2Tr

1
[flÂ, O]†[flÂ, O]

2
(A.41)

where the self-adjointness of flÂ and O have been used in the last line. Therefore, an
observable is always measured equal to its expectation value in state flÂ if and only if20 it
commutes with the projector |ÂÍÈÂ|, that is if |ÂÍ is an eigenvector of O.

This allows viewing the postulate Eq. A.40 in a new light. Let us indeed require
that two immediately successive21 measurements always give the same result, say oÕ|o =
o, and denote flÂÕ|o the system state after the first measurement. Then, by the above,
this condition is equivalent to requiring that flÂÕ|o be a projector on an eigenvector of
O, implying that oÕ|o œ ‡(O) and therefore o as well. This consistency requirement is
sometimes referred to as the “(Von-Neumann) projection postulate”.

Besides, let O(Õ) = q
i o(Õ)

i
|Ï(Õ)

i
ÍÈÏ(Õ)

i
| be two non-commuting variables22. Then given flÂ

a general pure state and alleviating notations with ciÂ © ÈÏi|ÂÍ and cijÕ © ÈÏi|ÏÕ
j
Í,

ÈOÍÂ = Tr
C

flÂ

ÿ

k

ok|ÏkÍÈÏk|
D

=
ÿ

k

okPk|Â , with Pk|Â © |ckÂ|2 (A.42)

now, Pk|Â = ckÂcú
kÂ

=
ÿ

l,p

cklÕclÕÂ (ckpÕcpÕÂ)ú , using two times 1 =
ÿ

k

|ÏÕ
k
ÍÈÏÕ

k
|

i.e. Pk|Â =
ÿ

l

Pk|lÕPlÕ|Â + 2
ÿ

l<p

I
k|lÕpÕ|Â , with I

k|lÕpÕ|Â © Re [cklÕclÕÂ (ckpÕcpÕÂ)ú] (A.43)

Unobserved values can therefore not simply be assumed existent but unknown as the
first line could suggest, instead all potential values of any non-commuting observables
“interfere” according to the generalized conditional probability formula Eq. A.43.

Together with the existence of an absolute scale of action ~, this specific form of
indeterminacy can be used to capture the major qualitative aspects of quantum mechanics
[386, 392, 393]. Because variables do not have and then take values the theory is discrete,
according to Eq. A.41 this process is random, and potential (observable but unobserved)
values of non-commuting variables bilinearly interfere in final probabilities Eq. A.43.

18It is said “mixed” otherwise. Pure states have maximum information, or lowest possible entropy, and
thereby are the quantum counterpart of previously defined classical pure states fx : y ‘æ ”(y ≠ x).

19Admitting the usual methodological principles pertaining to the relevance of limited (local) data, they
should not be inferred to have any definite value in-between measurements [386–388], cf. also Eq. A.43.

20Recall that A ‘æ Tr(A†A) is a norm of L(H, H) (upon appropriate mathematical restrictions).
21Hence indiscernible.
22Note they could simply be the same variable at two times, or after any other transformation.
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A.4.3 Dynamics of states and observables
Dynamics is given by either mechanical equations Eq. A.11 or Eq. A.13 with the Pois-
son bracket defined by Eq. A.37, leading respectively to Heisenberg and Von-Neumann
equations,

Y
____]

____[

Dynamics of observables :
(Heisenberg) i~dO

dt
= [O, H] + i~ˆO

ˆt
Dynamics of the state :
(Von-Neumann) 0 = [fl, H] + i~ˆfl

ˆt

(A.44)

(A.45)

with H the Hamiltonian observable. Let us for instance consider the Heisenberg equation
more closely, for an observable without extrinsic time-dependence,

dO

dt
= ≠ i

~OH + i

~HO

= dV

dt
V ≠1O + OU≠1

dU

dt
introducing invertible operators U, V s.t. O(t) © V (t)OU(t)

with O(t0) = O (A.46)

so that,

Y
___]

___[

dU

dt
= ≠ i

~UH

dV

dt
= i

~HV

…

Y
___]

___[

dU

dt
= ≠ i

~UH : Evolution (di�erential)

dV

dt

†
= ≠ i

~V †H , because as an observable H† = H

(A.47)

Time independence of the Hamiltonian of fundamental systems derives from anti-symmetry
of the Poisson bracket and is therefore still true. By our definition we clearly have
U(t0) = V (t0) = 1, so that the familiar expressions for the time evolution follow,

Evolution
operator

O(t) = U †(t, t0)OU(t, t0)
with, U(t, t0) = e≠ i

~H(t≠t0) the evolution operator
(A.48)

The evolution operator is easily seen unitary as the Hamiltonian is hermitian, U †U = 1,
conveying again conservation of total probability.

Equivalence of state or variables time evolution, Schrödinger or Heisenberg picture, is
even more transparent than classically:

Ï̄(t) = ÈOÍfl(t) (A.49)
= Tr (fl(t)O) (A.50)
= Tr

1
U(t, t0)fl0U

†(t, t0)O
2

, by Von-Neumann’s equation

= Tr
1
fl0U

†(t, t0)OU(t, t0)
2

, by cyclicity of the trace
= Tr (fl0O(t)) (A.51)
= ÈO(t)Ífl0

(A.52)
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A.4.4 Interaction formalism
In this discussion we have illustrated the invariance of mechanics so as to motivate the
mathematical form of quantum theories, for which exact equations were pivotal. However a
large part of the terminology used to describe quantum fields derives from approximation
methods, almost always required for definite prediction. We will now present one link
between these views.

Let us assume that the Hamiltonian of the system can be written as,

Interaction form : H = H0 + gVI¸˚˙˝
HI

(A.53)

where time-evolution generated by H0 can be solved exactly23 and g œ R. In many contexts
H0 is called the “free” or “kinetic” Hamiltonian, HI the “interaction” term and g the
coupling parameter24.

We can therefore decompose time evolution so as to isolate contributions from HI ,
Y
_]

_[

U(t, t0) © U0(t, t0)UI(t, t0)
dU0

dt
= ≠ i

~U0H0

(A.55)

Substituting in the full equation Eq. A.47 we find,

i~dU

dt
= UH

… i~
A

dU0

dt
UI + U0

dUI

dt

B

= U0UI (H0 + HI)

… U0H0UI + i~U0

dUI

dt
= (H0 + HI) U0UI , using [U, H] = 0

… i~dUI

dt
= U †

0HIU0UI , using [U0, H0] = 0 (A.56)

Now because [H, U ] = 0, the operators within the Hamiltonian of the first line can be
written at any time. Choosing H = H(Q, P), we have,

U †
0HIU0 © H0

I
(t) = HI(Q0(t), P 0(t)) (A.57)

defining, O0(t) , U †
0(t, t0)OU0(t, t0) (A.58)

23This means that U0(t, t0) © e≠ i
~ H0(t≠t0) can be expressed analytically, e.g. by diagonalization. Intro-

ducing a basis of the Hilbert space 1 =
s

dq|qÍÈq|, that diagonalizes the operator Q such that [Q, P ] = i~,
we can define Â : (q, t) ‘æ Èq|U(t, t0)|Â0Í for a given vector |Â0Í œ H. Then by projection Eq. A.47 implies
that,

i~ˆÂ

ˆt
(q, t) =

⁄
dqÕ Èq| H(Q, P) |qÕÍ Â(qÕ, t)

= H(q, ≠i~ ˆ

ˆq
)Â(q, t) (A.54)

where Q and P are the Q and P operators at initial time, and in the second line we have used the
representation of P in the |qÍ basis, which is a consequence of the canonical commutation relation (cf.
Weyl’s form). Hence, finding U0(t, t0) is equivalent to finding a basis of the solution space of Eq. A.54,
the Schrödinger equation, for the Hamiltonian H0.

24Note these notions are quite conventional, but nonetheless find ground in the fact that often H0 stems
from the evolution of two isolated systems, and HI is required to describe their joint evolution.
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Therefore,
Interaction
evolution
(di�erential)

dUI

dt
= ≠ i

~H0

I
UI (A.59)

This equation is di�erent from Eq. A.47 because now the operator H0

I
depends on

time, and does a priori not commute with itself at di�erent times nor with UI . A formal
solution can however be written by integration and recursive substitution,

UI(t, t0) = 1 +
⁄

t

t0

dt̄
dUI

dt
(t̄)

= 1 + 1
i~

⁄
t

t0

dt1H
0

I
(t1)UI(t0, t1)

= 1 + 1
i~

⁄
t

t0

dt1H
0

I
(t1)

+
3 1

i~

42 ⁄
t

t0

dt1

⁄
t1

t0

dt2H
0

I
(t1)H0

I
(t2)UI(t0, t2)

...

= 1 +
Œÿ

k=1

3 1
i~

4k ⁄
t

t0

dt1 · · ·
⁄

tk≠1

t0

dtkH0

I
(t1) · · · H0

I
(tk) (A.60)

Now let us examine more closely the successive integrals,
⁄

t

t0

dt1 · · ·
⁄

tk≠1

t0

dtkH0

I
(t1) · · · H0

I
(tk) =

⁄

t1,...,tkœ[t0,t]

tkÆtk≠1
Æ...Æt1

dt1 . . . dtkH0

I
(t1) · · · H0

I
(tk) (A.61)

so that we simply integrate over all products of operators H0

I
(t̄) with t̄ œ [t0, t] arranged

in order of decreasing time argument. We can rewrite this in terms of unconstrained time
arguments tk œ [t0, t] introducing the “time-ordering” symbol · which returns any product
of time-dependent operators in order of decreasing time argument25:

⁄
t

t0

dt1 · · ·
⁄

tk≠1

t0

dtkH0

I
(t1) · · · H0

I
(tk) ©

1
k!

⁄

t1,...,tkœ[t0,t]

dt1 . . . dtk·
Ë
H0

I
(t1) · · · H0

I
(tk)

È
(A.62)

where division by the permutation number of k elements accounts for the redundancy
induced by allowing all possible orderings of the integration variables t1, . . . , tk.

Substituting in Eq. A.61 we find the so-called Dyson series expression of the interaction
time evolution operator UI ,

UI(t, t0) = 1 +
Œÿ

k=1

1
k!

3 1
i~

4k ⁄

t1,...,tkœ[t0,t]

dt1 . . . dtk·
Ë
H0

I
(t1) · · · H0

I
(tk)

È
(A.63)

which can be compactly written as,

Interaction
evolution operator UI(t, t0) = ·e

≠ i
~

s t

t0

dt̄H
0

I (t̄) (A.64)

25e.g. if ta < tb < tc, then · [B(tb)C(tc)A(ta)] = A(ta)B(tb)C(tc).
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Now substituting in Eq. A.51 any expectation value can be written as,

ÈO(t)Ífl0
= Tr

3
fl0·̄e≠ i

~
s t0

t
dt̄H

0

I (t̄)O0(t)·e
≠ i

~
s t

t0

dt̄H
0

I (t̄)

4
(A.65)

where we have introduced the anti-time ordering symbol ·̄ to express U †
I
. In this expression

we notice that all operators are arranged in increasing time order until O(t), after which
they decrease again. We unite both introducing a contour “ = [t0, t]ü[t, t0], and a “contour
ordering” symbol ·“ which orders operators in order of increasing argument on the the
contour26. Then,

ÈO(t)Ífl0
= Tr

3
fl0·“e

≠ i
~

s
“

dzgH
0

I (z)
O0(t)

4
(A.66)

Naturally, this whole interaction formalism truly proves relevant when the interaction
term can be considered small27, typically for g π 1. In such instance, we can perform a
perturbative expansion of the evolution operator UI , which translates in a decomposition
of all expectation values as power series in g:

ÈO(t)Ífl0
ƒ ÈO0(t)Ífl0

≠ g
i

~

⁄

“

dzÈ·“V 0

I
(z)O0(t)Ífl0

+ g2
1
2!

3≠i

~

42 ⁄

“1

⁄

“2

dz1dz2È·“V 0

I
(z1)V 0

I
(z2)O0(t)Ífl0

+ . . .

(A.67)

Total evolution is thereby seen as a “free” part, generated by U0, corrected by contributions
from all possible numbers of “interaction events”, appearing as products with V 0

I
, of

decreasing relative magnitude.

26This approach leads to the “Schwinger-Keldysh formalism” [307]. It naturally arises working with
general states and extends scattering theory, restricted to the computation of transition amplitudes.

27In the sense e.g. of expectation value compared to that of H0. Note that this condition therefore not
only depends on g but also on the initial state and subsequent dynamics, which, in particular, is precisely
why strong-field QED di�ers from the vacuum theory.

142







Appendix B

Landmarks in view of Quantum
Field Theory and strong fields

We here present some elements of the extension of mechanics to relativistic quantum and
possibly strong fields. More specifically, our aim is to provide motivation and references for
concepts and methods relevant to an understanding of Quantum Field Theory irrespective
of a specific context of application, though appropriate in view of strong-field Quantum
Electrodynamics. For brevity as well as clarity, exposition will operate at an essentially
heuristic level, while trying and preserve accurate enough mapping to the operational
literature.

We will be proceeding through the following issues, in order of physical significance1,

I – Relativity and symmetries Quantum fields are necessary parts of a fundamen-
tal theory insofar as they provide a realization of the principle of relativity. In a
first section we will draw this connection, starting from the canonical formalism of
mechanics. We will then be able to present how symmetry requirements dictate the
form of physical variables, in particular some aspects of the field-particles duality,
and eventually introduce the constituents of Quantum Electrodynamics.

II – Fields observables and diagrammatic representation In classical or quantum
mechanics, canonical variables play the role of generating the algebra of observables
defining a physical system. In systems of finite and small number of variables, this
process often is obscured by the possibility to at least formally consider the joint
evolution of a complete set of observables, possibly summarized in a state2, and only
then compute any quantity of interest. On the opposite, for systems of practically or
conceptually infinite number of variables the e�cient coordinatization of general ob-
servables by a generating subset proves crucial. In this section we will show how this
idea is embedded in the fields n≠points functions. The construction of finite order
perturbation theory is presented first, introducing diagrammatic representations,
followed by a motivation of exact relations more suited to general non-equilibrium
contexts and thus strong fields in particular.

III – Similarity classes of initial states Prediction of observable values are produced in
the form of expectation values, which encode all dependence on the initial data. Some
formalisms, perturbative quantum field theory notably, however make extensive use
of relations existing between intermediate quantities specifically for some initial
state. In this section we briefly present how “reduction formula” unify methods
within some sets of states, e�ectively defining equivalence classes, and how these
distinctions tend to blur in the out-of-equilibrium initial values formulation.

1References are given as in App. A for the same reasons.
2In Quantum Mechanics, this would typically correspond to the computation of all coe�cients of the

state vector in a Hilbert space basis, the latter being given by the common eigenbasis of a “complete set
of commuting observables”.
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B.1 Embedding of symmetry
The very notion of field can be understood as derived from the principle of locality, itself
stemming from Einsteinian relativity of spacetime coordinates. Any fundamental phys-
ical theory therefore has to incorporate the underlying notion of invariance, also called
“symmetry” in this context. Requiring i) actual invariance of physical predictions and ii)

formal invariance of intermediate equations under a change of reference frame has strong
technical implications, as can be guessed already in the above from the pervasive use of
a distinguished time parameter. In an interesting turn, it occurs that the induced con-
straints are so strong they almost determine the physical variables and their interactions.
In other words, a quantum mechanical theory consistent with few basic principles of spe-

cial relativity is virtually driven to be a field(s) theory, whose forms and non-interacting
dynamics are determined by a mass m œ R+ and spin j œ 1

2
N, describing the evolution

of bosonic or fermionic particles3. It has become a standard method also to generate in-
teractions between fields a priori from extended symmetry principles4, generalizing the
notion of relativity.

The axiomatic derivation of QFT can proceed from an algebra of observables compat-
ible with special relativistic locality, giving a primary role to “covariant local fields”, as
the generators of any observable, built through finite dimensional but non-unitary rep-
resentations of the Poincaré group5 [394]. Alternatively, one can consider the action of
the Poincaré group on the Hilbert space of pure states, in which case unitary but infinite
dimensional representations come first, defining the (multi-)particles Hilbert space (Fock
space), and local covariant fields appear so as to enforce Poincaré-invariant dynamics
[395]. Both are mathematically involved6. Here we will simply motivate some constitut-
ing elements of relativistic QFT at an heuristic level, based on these principles and the
canonical formalism of mechanics.

B.1.1 From the Poincaré group to fields
⌅ The set of all changes of inertial reference frame forms a group, called the Lorentz

group L, its extension to include space and time translations is called the Poincaré
group P. The Poincaré group is primarily defined as transformations on Minkowski
space vector coordinates,

Y
]

[
xµ (�,a)≠æ xµ = �µ

‹
x‹Õ + aµ

�fl

µ
�‡

‹
÷fl‡ = ÷µ‹ , with ÷ = diag(1, ≠1, ≠1, ≠1)

(B.1)

where xµ and xµÕ are interpreted as the coordinates of the same event respectively
in the new and old reference frame. From general mechanics we know that Poincaré-

†Refs. B.1:[394–396]
3Together with unitarity, Lorentz-invariance even allows for excluding spins j > 2 and most couplings

between the remaining ones in a fundamental theory (see results along the so-called “bootstrap” program).
4Most notably introducing local transformations of fields under a compact Lie group, known as a

“gauge tranformation”, resulting in “gauge theories” (Quantum Electrodynamics and Chromodynamics
are two prominent examples).

5We will say more on the mathematical notion of “representation” below.
6For that matter, a rigorous mathematical definition of interacting quantum field theory is a noto-

riously open problem. One major obstruction is the existence of multiple inequivalent representations
of the canonical commutation relations (i.e. Poisson brackets, see Eq. A.37) [qj , pj ] = i~ for an infinite
number of variables [394].
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invariant predictions would derive from a Poincaré-invariant action,

S Õ ≠ S = 0 (B.2)

i.e.

⁄

�Õ
d·LÕ ≠

⁄

�

d·L = 0 , ’� (B.3)

where � is an undefined integration domain a priori encapsulating both the sum-
mation over physical variables and the boundaries that we wish to correlate. Now a
natural way to enforce such condition appears to take � as a spacetime domain, for
Poincaré transformations are simply given on Minkowski coordinates and by change
of variable then,

⁄

�Õ
dxLÕ(x) =

⁄

�

dxLÕ(�≠1(x ≠ a)) , using |det(�≠1)| = 1 (cf. Eq. B.1) (B.4)

introducing the “Lagrangian density” L, and so Poincaré-invariance Eq. B.3 simply
translates into,

LÕ(�≠1(x ≠ a)) = L(x) , ’x

… Lorentz-scalar: LÕ(x) = L(�x + a) (B.5)

This relation defines a “Lorentz scalar field”, and simply reflects that the field values
at the same event coincide in both reference frames.
In this context we note that kinematics (the set of physical variables) is not entirely
transparently distinguished from dynamics (their transition from data to predicted
values). The Lorentz-scalar condition inducing causality in the special relativistic
sense, this distinction can be operated by considering a spacelike surface � crossing
all timelike curves of � exactly once7, for all predictions in � are then determined
by appropriate data of the variables on �. We conclude that our physical variables
are {q(x)}xœ�, continuously indexed by a space of dimension 3, and thereby call
them a field.
The canonical quantization of such system should then be a quantum and Poincaré-
invariant theory. Before reviewing general conclusions, let us first illustrate this
procedure in a simple case.

B.1.2 Illustration: canonical quantization of the free scalar field
⌅ A Lagrangian density built from a Lorentz-scalar field evidently is a Lorentz-scalar

itself. We therefore consider the real scalar field {„(x)}xœR3 , taking a simultaneity
plane as our Cauchy surface. In order to include the field time-derivatives in the
invariant Lagrangian, they should appear via scalar products8 of the four derivative
ˆ„

ˆxµ © ˆµ„. Considering a linear theory finally constrains the Lagrangian to,

Scalar field (free): L(„, ˆµ„) = 1
2ˆµ„ˆµ„ ≠ 1

2m2„2 (B.6)

7The existence of such �, called a “Cauchy surface”, then being understood as part of the definition
of �. The limiting case of a lightlike surface also is acceptable and actually finds uses, for instance in the
context of so-called “light-front” quantization.

8Recall that Lorentz transforms preserve the Minkowski scalar product (cf. Eq. B.1): (�x) · (�y) =
x · y , ÷µ‹xµy‹ © xµyµ.
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The Euler-Lagrange equations follow as before,

0 =
⁄

�

dx
Ë
L|

„+”„
(x) ≠ L|

„
(x)

È

=
⁄

�

dx

C
ˆL
ˆ„

”„(x) + ˆL
ˆ(ˆµ„)”ˆµ„(x)

D

=
⁄

�

dx

C
ˆL
ˆ„

≠ ˆµ

A
ˆL

ˆ(ˆµ„)

BD

”„(x) +
j

ˆ�

d‡µ

C
ˆL

ˆ(ˆµ„)”„(x)
D

i.e. 0 = ˆL
ˆ„

≠ ˆµ

A
ˆL

ˆ(ˆµ„)

B

(Euler-Lagrange) (B.7)

For our scalar field we thus find,

Klein-Gordon (ˆ2 + m2)„(x) = 0 (B.8)

Shifting to the Hamiltonian formalism we have,

fi(x) = ˆL
ˆ(ˆ0„(x)) © ˆ0„(x) (B.9)

so that performing the Legendre transform H = fi„ ≠ L,

H(„, Ò„, fi) = 1
2fi2 + 1

2 (Ò„)2 + 1
2m2„2 (B.10)

The equations of motion take the Hamiltonian form,

(Hamilton)
I

ˆ0„(x) = {„(x), H}
ˆ0fi(x) = {fi(x), H}

(B.11)

with Hamiltonian H =
s

dxH(x), and Poisson bracket9,

{f, g} =
⁄

dx ”f

”„(x)
”g

”fi(x) ≠ ”g

”„(x)
”f

”fi(x) (B.12)

The field variables consequently have the equal-time Poisson brackets,
I

{„(x), „(y)}x0=y0 = {fi(x), fi(y)}x0=y0 = 0
{„(x), fi(y)}x0=y0 = ”(x ≠ y)

(B.13)

However, by construction our action is invariant under Lorentz transformations, and
it is a classical result of mechanics that symmetries of the action generate canonical
transformations10, so that,

{f(x), g(y)}„(z)fi(z) = {f(x), g(y)}„(�z)fi(�z) (B.14)
that is, {f(x), g(y)} = {f(�x), g(�y)} (B.15)

Therefore, the equal-time canonical relations actually hold for any spacetime points
in the image of the equal-time plane by the Lorentz group, so that they are spacelike
commutation relations indeed,

Local
Poisson
Brackets

I
{„(x), „(y)}x·y<0 = {fi(x), fi(y)}x·y<0 = 0
{„(x), fi(y)}x·y<0 = ”(x ≠ y)

(B.16)

9The “functionnal derivative” is formally defined by i) ”uv
”f(x)

= ”u
”f(x)

v+u ”v
”f(x)

and ii) ”f(y)

”f(x)
= ”(x≠y).

We besides understand derivatives of delta in the usual sense of distributions, fÒ”(x≠y) = ≠”(x≠y)Òf .
10This equivalence is the Hamiltonian form of Noether’s theorem, see [397–399] for explicit derivations.
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⌅ Canonical quantization provides the commutation relations of the quantum vari-
ables11,

Commutation
Relations
(local)

I
[„(x), „(y)]x·y<0 = [fi(x), fi(y)]x·y<0 = 0
[„(x), fi(y)]x·y<0 = i”(x ≠ y)

(B.17)

In order to proceed further, let us take advantage of the linearity of the equations
of motion to express „ as a Fourier transform,

„(x) =
⁄

dk
1
f(k)e≠ik·x + f †(k)eik·x

2
(B.18)

where the hermitian conjugate part is a consequence of the real values (hermiticity)
of „. From the equations of motion we have the dispersion relation12 f(k) Ã ”(k2 ≠
m2)◊(k0), so that integrating over k0 we find13,

Y
____]

____[

„(x) =
⁄ dk

2Ek

1
a(k)e≠ik·x + a†(k)eik·x

2

fi(x) = ≠i
⁄ dk

2Ek
Ek

1
a(k)e≠ik·x ≠ a†(k)eik·x

2

(B.19)

(B.20)

where k © (Ek, k) now satisfies the relativistic dispersion relation, and a(k), a†(k)
still to be determined. These relations can be inverted,

Y
__]

__[

a(k) = i
⁄

dxeik·x [fi(x) ≠ iEk„(x)]

a†(k) = ≠i
⁄

dxe≠ik·x [fi(x) + iEk„(x)]

(B.21)

(B.22)

and using the equal-time commutation relations we find the canonical commutation
relations (CCR),

Commutation
Relations
(canonical)

Y
]

[
[a(k), a(kÕ)] = [a†(k), a†(kÕ)] = 0

[a(k), a†(kÕ)] = 2Ek”(k ≠ kÕ)
(B.23)

These relations together with the existence of a lowest energy state |0Í entirely
determine the form of state space14. In particular, a(k) |0Í = 0 , ’k and |0Í is called
the vacuum. Defining |k1 . . . knÍ , a†(k1) . . . a†(kn) |0Í, we see that all possible such
vectors form the so-called Fock space,

Fock
space

{|k1 . . . knÍ} © FS = H0

n

nØ1

Q

a
p

kœR3

Hk

R

b
¢Sn

with dim(H0) = dim(Hk) = 1
(B.24)

where H¢n =
n times˙ ˝¸ ˚

H ¢ . . . ¢ H and the S subscript stands for “symmetrized”, as one
easily sees from the commutation relations that states di�ering only by a permuta-
tion of their k-vectors are identified, enforcing a bosonic statistics.

11We use natural units ~ = c = 1.
12We denote the Heaviside step function ◊(x) = 0 if x < 0 and ◊(x) = 1 if x Ø 0.
13We use ”(f(x)) =

q
ri

”(x ≠ ri)/|f Õ(ri)| with {ri} the solutions of f(x) = 0.
14The detailed construction is sometimes referred to as the “ladder operator” method.
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The CCR dictate the action of a†(k) and a(k) on Fock states,
Y
___]

___[

a†(k) |k1 . . . knÍ = |kk1 . . . knÍ

a(k) |k1 . . . knÍ =
nÿ

r=1

2Ekr”(k ≠ kr) |k1 . . . kr≠1kr+1 . . . knÍ

(B.25)

(B.26)

justifying their appellation respectively of “creation” and “annihilation” operator.
The Fock basis therefore diagonalizes the “number operator” n(k) = a†(k)a(k),
whose eigenvalues in a sense count the number of modes k in the state,

n(k) |k1 . . . knÍ =
A

nÿ

r=1

2Ekr”(k ≠ kr)
B

|k1 . . . knÍ (B.27)

We note that setting È0|0Í = 1 the CCR induce the general scalar product,

ÈkÕ
1

. . . kÕ
m

|k1 . . . knÍ = ”mn

ÿ

sœSn

nŸ

l=1

2Ekl
”(kl ≠ kÕ

s(l)
) (B.28)

with Sn the n elements permutation group. It is Lorentz-invariant, as seen e.g. by
integration with the invariant measure dk

2Ek
15.

After some algebra, the total Hamiltonian H =
s

dxH can be reexpressed in terms
of the creation and destruction operators as16,

H =
⁄

dk
3

ñ(k)Ek + 1
2V

4
(B.29)

with ñ(k) = n(k)/2Ek, so its action on states is fully determined,

H |k1 . . . knÍ =
A

nÿ

l=1

Ekl

B

|k1 . . . knÍ (B.30)

It therefore appears that the defining Fock space basis diagonalizes the Hamiltonian,
hence in other words consists of definite energy states, that are stable in time.

⌅ We can further clarify this result by examining the e�ect of a spacetime translation
l on states via the Lorentz-scalar property of fields,

a†(k) læ ≠i
⁄

dxe≠ik·x [fiÕ(x) + iEk„Õ(x)] (B.31)

= ≠i
⁄

dxe≠ik·x [fi(x + l) + iEk„(x + l)] , by scalar property

= eik·la†(k) , by injection of Eqs. B.19-B.20 (B.32)

hence |k1 . . . knÍ læ ei(qn

i=1
ki)·l |k1 . . . knÍ (B.33)

The relativistic invariance property of fields hence determines the transformation
of states under a translation. Let U(l) denote the corresponding endomorphism of
Fock space. By the above we see that U(l) is diagonal in the Fock basis, hence

15We recall dk
2Ek

© dk”(k2 ≠ m2)◊(k0), where the RHS manifestly is Lorentz-invariant.
16An infinite constant Ã V © ”(0) appears in this calculation, which would literally be the vacuum

state energy, but has however no dynamical role in this context and therefore is eventually discarded.
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B.1. Embedding of symmetry

linear, and manifestly unitary17. We can therefore write U(l) = eiP
µ

lµ , where Pµ are
called the infinitesimal generators of the envisioned transformation, here a spacetime
translation. They are hermitian because U is unitary, and all commute as sharing a
common diagonalization basis.
Of course Eq. B.33 allows to concretely determine the action of P µ on states,

P µ |k1 . . . knÍ =
A

nÿ

i=1

kµ

i

B

|k1 . . . knÍ (B.34)

We find that P 0 = H, consistently with the general definition of the Hamiltonian
as the generator of time evolution, but also P |k1 . . . knÍ = (q

n

i=1
ki) |k1 . . . knÍ. In

mechanics, the infinitesimal generator of space translations is identified with kinetic

momentum
18, therefore Fock states also have definite kinetic momentum, found to

coincide with the „ field Fourier modes (times ~ in IU). Besides, single-particle
momenta components (Eq. B.34) satisfy kµkµ = m2. We can consequently interpret
F as the space of all relativistic multi-particle states, with particle mass m.
Let us note that such conceptual move actually is a physical interpretation rather
than a mathematical identification; it has to be, for particles as defined even in
“relativistic” single-particle quantum mechanics (Dirac theory) violate relativistic
locality [395]. However, non-relativistic particle mechanics is correctly recovered
when ÎpÎ/m π 1.

⌅ The same line of thought applies to Lorentz transformations,

a†(k) �æ ≠i
⁄

dxe≠ik·x [fiÕ(x) + iEk„Õ(x)] (B.35)

= ≠i
⁄

dxe≠ik·x [“{fi ≠ — · Ò„}(�x) + iEk„(�x)]

by scalar (vector) property of „ (fiµ), i.e. fiÕ © fi0Õ = �0

‹
fi‹ © �0

‹

ˆL
ˆ(ˆ‹„)

= ≠“ {E�k + — · �k} a(≠�k) ≠ a†(�k)
2Ek

+ a(≠�k) + a†(�k)
2

by Eqs. B.19-B.20, using q · �x = �≠1q · x and change of variable qÕ = �≠1q

= a†(�k) , as the first factor is indeed [�(≠—)�(—)k]0 © k0 = Ek (B.36)

hence |k1 . . . knÍ �æ |�k1 . . . �knÍ (B.37)

where “ = 1/
Ô

1 ≠ —2 is the Lorentz-factor of � and by abuse of notation �u is the
spatial part of the four vector �(u0, u). Fock state P µ eigenvalues therefore transform
as (4-)vectors in a change of reference frame, consistently with an interpretation
in terms of particle’s momenta. Besides, nothing else changes under such Lorentz
transform, which means we must assign spin 0 to these particles19.
Introducing the transformation operator U(�) as before we have, by Lorentz-invariance
of the scalar product Eq. B.28,

ÈU(�)kÕ
1

. . . kÕ
m

|U(�)k1 . . . knÍ = È�kÕ
1

. . . �kÕ
m

|�k1 . . . �knÍ
= ÈkÕ

1
. . . kÕ

m
|k1 . . . knÍ (B.38)

so U(�) also is unitary.
17An operator is unitary if it preserves the scalar product, ÈU„|UÂÍ = È„|ÂÍ, i.e. U†U = UU† = 1.
18e.g. in classical mechanics recall that {O, pi} = ≠ ˆO

ˆqi
, and take qi a particle spatial coordinate.

19One could also compute the total angular momentum J2 and find all states have eigenvalue 0 [395]
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⌅ Let us now summarize the results obtained so far,

• From a mechanical point of view the principle of special
relativity invites to consider a Poincaré-invariant action.

• It can naturally be realized by a three dimensional field system
{A(x)}xœ� with Lorentz-scalar Lagrangian density, entailing a local
Poisson bracket,

Lorentz-scalar (field): LÕ(x) (�,l)= L(�x + l)
Locality: {A(x), A(y)}x·y<0 = {fiA(x), fiA(y)}x·y<0 = 0

{A(x), fiA(y)}x·y<0 = ”(x ≠ y)

• Canonical quantization of a field governed by linear equa-
tions of motion results in a Fock structure of the Hilbert space.
Considering the real Klein-Gordon equation, Fock basis can
be interpreted as the set of all multi-particle states for particles
of mass m and spin 0, satisfying the “mass shell” condition k2 = m2.

• Upon action of the Poincaré group, the Lorentz-scalar prop-
erty of the field translates into a unitary operator in Fock space.
Denoting the corresponding operator by U(�, l), this double trans-
formation law writesa,

Lorentz-scalar
(quantum field) U(�, l)„(x)U †(�, l) = „(�x + l) (B.39)

aUnder a symmetry, if pure states transform as |ÂÍ æ U |ÂÍ invariance of all
expectation values translates into the operator transformation law O æ UOU†.

B.1.3 General Poincaré and gauge covariant local fields
⌅ The relation Eq. B.39 between the transformation of variables as a field on the one

hand, and as an operator on the other hand, is the basis for the general embedding
of special relativity into quantum mechanics. The underlying mathematical notion
is that of group representation, meaning a group morphism,

fi :
I

G æ Gl(V )
g ‘æ fi(g)

(B.40)

s.t. ’g, h œ G, fi(gh) = fi(g)fi(h) (B.41)

for V some vector space and Gl(V ) its linear group. A representation is said unitary
if its image elements are, finite dimensional if V is, and irreducible if it comprises
no subspace stable under all fi(G).
In quantum mechanics, a symmetry group representation must be unitary to pre-
serve predictions, while regarding the algebra of variables it would be desirable to
have only finitely many generators, hence acted on by finite dimensional representa-
tions. We can then read Eq. B.39 as establishing the connection between the unitary
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B.1. Embedding of symmetry

representation acting on operators, and the finite-dimensional representation acting
on the algebra of physical variables. Determining all irreducible unitary and finite
dimensional representations of the Poincaré group P

20 would therefore exhaust all
possibilities for a relativistic and quantum system.
It turns out that the determination of all irreducible representations of P̄ is a well-
posed and solved mathematical problem21 [400]. Because the Poincaré (and Lorentz)
group is non-compact, unitary representations are all infinite dimensional, so finite
dimensional ones are non-unitary. Unitary representations are entirely characterized
by a mass m Ø 0 and a half-integer spin j œ 1

2
N. Finite dimensional representations

are characterized also by a mass m and two half-integers A, B, related to the total
spin j of the representation by,

|A ≠ B| Æ j Æ |A + B| (B.42)

A Lorentz-scalar Lagrangian can then be built from any combination of Lorentz-

covariant fields,

Lorentz-covariance: U(�, l)„n(x)U †(�, l) = Mnm(�)„m(�x + l) (B.43)

with U some unitary representation of P̄, M some finite-dimensional representation
of L̄, and where contraction of all Lorentz indices in the final Lagrangian confers it
the Lorentz-scalar property.
A general linear covariant field then writes22,

„n(x) =
ÿ

‡

⁄ dk
2Ek

1
uAB

n
(k, ‡)a(k, ‡)e≠ik·x + vAB

n
(k, ‡)ac†eik·x

2
(B.44)

with 1 Æ n Æ (2A + 1)(2B + 1), A, B the defining numbers of the finite dimensional
representation, uAB

n
, vAB

n
coe�cient functions, k2 = m2 and ≠j Æ ‡ Æ j denotes

the spin degree of freedom of the induced unitary representation. Together with the
locality condition,

Locality: [„n(x), „m(y)]û
x·y<0

= 0 (B.45)

with [a, b]û = ab û ba the field (anti-)commutator to be precised shortly, the co-
e�cients can be determined for any mass m and spin |A ≠ B| Æ j Æ |A + B|.
A linear relativistic field equation satisfied by the covariant field „n appears as a
consequence23. Besides the non-trivial correspondence is implied,

Spin-statistics:

Y
_]

_[

j œ N ∆ Canonical CR: [·, ·]≠

j œ N + 1
2 ∆ Canonical anti-CR: [·, ·]+

(B.46)

20Actually the representations of its universal cover P̄ ƒ SL(2, C) o R4, in bijective correspondence
with the projective representations of P relevant for quantum states, that are rays of Hilbert space (i.e.
vectors defined up to phase and norm). This shift, clearly motivated by quantum mechanics, is well-known
to be at the origin of non-integer spin representations, which are indeed non-classical in this sense [396].

21See [395] for details on the results to follow.
22We introduce the “antiparticle” annihilation operator ac†, which naturally appears as soon as one

quantizes complex scalar fields. Indeed the canonical procedure then amounts to quantizing two real fields,
hence two independent “creation/annihilation” operators pairs. Invariance of the Lagrangian under phase
multiplication of the field however entails net particle minus antiparticle number conservation.

23For spin 0, one finds back the Klein-Gordon equation
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Part IV, Chapter B – Landmarks in Quantum Field Theory

One concludes only fermionic and bosonic statistics are allowed24, corresponding
respectively to non-integer and integer spin particles.

As an example let us write the Dirac field, probably the most common yet non-
classical object of relativistic field theory. It is realized as the reducible representa-
tion25 (A = 1

2
, B = 0)ü (A = 0, B = 1

2
), direct sum of the two irreducible dimension

2 spin 1

2
representations of the Poincaré group, so itself is dimension 4 and spin 1

2
,

sometimes called a “bi-spinor representation”. Its Fock space describes massive spin
1

2
(fermionic) particles and anti-particle. The field can be written as,

Â =

Q

ccccca

Â 1

2
0

Â≠ 1

2
0

Â
0

1

2

Â
0≠ 1

2

R

dddddb
(B.47)

with left and right indices respectively for the A and B spin indices. Substituting
in the general solution to Eq. B.43 and Eq. B.45 yields,

Â(x) =
ÿ

‡œ{≠ 1

2
,

1

2
}

⁄ dk
2Ek

1
u(k, ‡)b(k, ‡)e≠ik·x + v(k, ‡)d†eik·x

2
(B.48)

Here u(k, ‡) and v(k, ‡) form two 2-dimensional basis for the solution space respec-
tively of,

(/k ≠ m)u(k, ‡) = 0 (B.49)
(/k + m)v(k, ‡) = 0 (B.50)

introducing /a , “µaµ with “0 =
A

0 12

12 0

B

, “i =
A

0 ≠‡i

‡i 0

B

the Dirac matrices and

‡i the Pauli matrices.

This finally entails a covariant field equation for Â, with a generating Lagrangian,

Y
_]

_[

Dirac equation:
1
i /̂ ≠ m

2
Â = 0

Dirac Lagrangian: LD

0
(x) = Â(x)

1
i /̂ ≠ m

2
Â(x)

(B.51)

where Â , Â†“0.

⌅ The Poincaré group may not be the only symmetry of the action, and in practice
requiring new symmetries provides one systematic way to generate Lagrangian with
interacting physical variables. Let us briefly illustrate this general idea, grounding
so-called “gauge theories”, with the simple Dirac Lagrangian just written.

24This result relies on spacetime dimension 4.
25This seemingly non-trivial choice is justified by ruling out simpler possibilities for spin 1

2
particles

(i.e. representations ( 1

2
, 0) or (0, 1

2
)) on the basis that they either are their own anti-particle, and therefore

cannot carry electric charge, or massless [395]. Historically, it naturally appeared looking for the “square
root” of Klein-Gordon equation (e.g. H s.t. H2Â = (i~)2ˆ2

0
Â … (K-G)).
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B.1. Embedding of symmetry

Performing Â æ e≠iqaÂ manifestly leaves LD

0
invariant for any q, a œ R. Then, taking

q as a constant and a in the infinitesimal limit,

”aLD

0
= 0

=
C

ˆLD

0

ˆÂ
≠ ˆµ

A
ˆLD

0

ˆ(ˆµÂ)

BD

”aÂ(x) + ˆµ

C
ˆLD

0

ˆ(ˆµÂ)”aÂ(x)
D

+ ”aÂ(x)
C

ˆLD

0

ˆÂ
≠ ˆµ

A
ˆLD

0

ˆ(ˆµÂ)

BD

+ ˆµ

C

”aÂ(x) ˆLD

0

ˆ(ˆµÂ)

D

E≠L= ˆµ

C
ˆLD

0

ˆ(ˆµÂ)”aÂ(x)
D

where ”aÂ = ≠iqaÂ , and ”aÂ = iqaÂ (B.52)

using Euler-Lagrange equations, and noticing the second divergence term is zero.
We hence obtain,

ˆµjµ = 0 (B.53)

with, jµ = qÂ“µÂ (B.54)

The symmetry of the Lagrangian is thereby seen to imply the existence of a current
conserved by the equations of motion26, leading to a time-invariant charge,

Q ©
⁄

dxj0(x)

=
⁄

dxqÂ†(x)Â(x)

= q
ÿ

‡œ{≠ 1

2
,

1

2
}

⁄ dk
2Ek

1
b†(k, ‡)b(k, ‡) ≠ d†(k, ‡)d(k, ‡)

2

© q(Np̄ ≠ Np) (B.55)

where we have used the normalization relation of basis spinors27, the canonical
anti-commutation relation and discarded the resulting infinite constant. The total
number operators Np̄ and Np clearly correspond to the total numbers of anti-particles
and particles respectively.
Now consider a local transformation Â(x) aæ e≠iqa(x)Â(x), in this case the Lagrangian
changes due to the field derivative,

LD

0

---
a(x)

≠ LD

0
= Â(x)

1
≠iq /̂a(x)

2
Â(x) (B.56)

Invariance under the local “gauge” transformation can thus be enforced introducing
a vector field Aµ transforming as Aµ

aæ Aµ + ˆµa, which allows defining a covariant
derivative,

Dµ , ˆµ + iqAµ (B.57)
making ÂDµÂ gauge-invariant. A gauge-invariant Lagrangian naturally follows,

LD(x) = Â(x)
1
i /D ≠ m

2
Â(x) (B.58)

26This is a simple illustration of Noether’s theorem in Lagrangian form.
27u†(k, ‡)u(kÕ, ‡Õ) = v†(k, ‡)v(kÕ, ‡Õ) = ”‡‡Õ2Ek”(k ≠ kÕ)
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The introduced field Aµ manifestly transforms as a vector, hence is a spin 1 field.
The Poincaré locality-covariance equations then naturally determine a kinetic La-
grangian, while gauge-invariance requires mA = 0, hence the total gauge-invariant
Lagrangian,

LU(1)(x) = Â(x)
1
i /D ≠ m

2
Â(x) ≠ 1

4Fµ‹(x)F µ‹(x) (B.59)

with Fµ‹ = ˆµA‹ ≠ ˆ‹Aµ the “field strength tensor”.

We thereby see how requiring invariance of the Dirac Lagrangian under local trans-
formations, here generated by elements of U(1), translates into a theory of fermions
interacting with the vector (i.e. spin 1, hence bosonic) “gauge field” Aµ carrying the
infinitesimal generator of local gauge transformations, here ≠iq. Setting q = e and
m = me, we physically recognize the Lagrangian of electrons and positrons interact-
ing with the electromagnetic field, and the conserved charge Eq. B.55 is identified
with the total net electric charge. The Lagrangian may then be rewritten so as to
more closely parallel its classical form,

Quantum
Electro-
dynamics

LQED = Â
1
i /̂ ≠ me

2
Â ≠ Aµjµ ≠ 1

4Fµ‹F µ‹ (B.60)

with jµ defined in Eq. B.54. The systematic generalization of this procedure, in
particular to non-abelian symmetry groups, is called Yang-Mills theory.

⌅ The basic canonical formalism inspired from point-particle mechanics we used,
though convenient in view of an ordered exposition, clearly reveals its limits at
this stage. Trying to define the canonical Hamiltonian of Eq. B.60, one finds that,

fiA0
= ˆLQED

ˆ(ˆ0A0)
= 0 (B.61)

as F00 = 0, preventing a consistent formulation of Hamiltonian equations of motion.

Actually, we ran into an inconsistency already when anti-CCR were introduced for
fermions, as an anti-commutator does not share the algebraic properties of the usual
Poisson bracket, breaking the canonical quantization procedure we described.

Both problems can be addressed in an extended canonical formalism, said to de-
scribe systems with “constraints”, the case of fermions furthermore requiring the
introduction of a generalized Poisson bracket defined on algebras of anticommuting
numbers28 [311]. Alternatively, one might use a di�erent approach to the “quanti-
zation” of a mechanical system, most notably the path-integral method leading to
the “functionnal formalism” of quantum mechanics. In practice, the latter approach
currently is the most widely used to circumvent these complications, providing both
a very operational mathematical framework and some physically evocative expres-
sions [307, 396, 401].

28They are called “Grassmann numbers”.
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B.2 Fields correlation functions
A second di�erence of field theory with elementary mechanics is the continuous infinity
of physical variables, at least one per point of space29. Thinking in computational terms
for a moment, quantum mechanics of a single variable q œ E has about the complexity of
the classical mechanics of Âq œ L2(E, C)30, that is a complex field over the space of values
of q. Now considering a typical field {qx}xœR3 œ L2(R3, E), its quantum theory naively
appears as the computation of Âqx œ L2(L2(R3, E), C). This exponential soar of complexity
translates in the formal theory as the necessity to find a hierarchy in physical variables in
order to perform any definite calculation. In particular, a state-centred approach aimed
at computing the full “field wavefunction” appears especially hopeless.

The “n≠points (fields correlation) functions” prove central in this regard, for a field
„(x, x0) they are generically defined by,

G(n)(x1, . . . , xn) , È·“„(x1) . . . „(xn)Ífl0
(B.62)

= Tr [fl0·“„(x1) . . . „(xn)] (B.63)
with ·“ the contour-ordering operator appearing in Eq. A.66. As field operators generate
the algebra of observables, one may in principle express any quantity of interest in terms
of field expectation values, and a finite number of them at some given level of accuracy.
For instance, free 2-points functions form the basis of perturbation theory and its evoca-
tive diagrammatic representation. Let us stress nonetheless that correlation functions are
fundamental objects, they encode all physical predictions and exact equations can be de-
rived for them. Though a priori unsolvable31, these equations allow for approximation
schemes other than scattering theory and more amenable to describing non-equilibrium
states32, for instance via a kinetic theory.

In this section our aim is to provide broad reference for these possible approaches.
Specifically, the usual perturbative expansion based on the interaction picture is intro-
duced so as to make contact with the familiar terminology of particle scattering and
diagrammatic representations. We then present Schwinger-Dyson equations for exact
n≠points functions, and motivate some tools used for kinetic reduction.

B.2.1 Finite order perturbation theory
⌅ If the system’s Lagrangian can be split as L © L0 + LI and dynamics in L0 is

exactly solvable, the interaction formalism provides a systematic approximation
method for the full dynamics. Assuming that the interaction term does not contain
field derivatives we have H = H0 ≠ LI and Eq. A.66 directly rewrites,

ÈO(t)Ífl0
=

=
·“e

i

s
“

dxL0

I(x)
O0(t)

>

fl0

(B.64)

†Refs. B.2: [305–307, 396]
29More of course for realistic fields with internal degrees of freedom, like the four components electro-

magnetic potential.
30Say, for computing the system state after some finite time, as a vector encoded in the list of its

coe�cients in a Hilbert space basis (e.g. the eigenbasis of q).
31They typically take the form of infinite hierarchies of coupled (classical) field equations, whereby

one recovers the computational complexity of a quantum field theory: the set of fundamental variables
consists of all correlation functions.

32An equilibrium state is fleq s.t. [fleq, H] = 0, or ˆfleq
ˆt = 0. Clearly all fl © f(H) are (e.g. thermal

states flT Ã e≠H/kBT ), as well as H eigenvector pure states (e.g. vacuum or in the absence of interactions
multi-particle states flk1...kn Ã a†

k1
. . . a†

kn
|0ÍÈ0|ak1 . . . akn).
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where the integral is understood as extending over all space and running along
the contour in the time direction. Under the common circumstance that L0

I
can be

considered small and is a low degree polynomial in the fields, this expression can be
expanded at a given order and any quantity expressed in terms of a finite sum of
expectation values of finite products of fields,

ÈO(n)(t)Ífl0
=

nÿ

l=0

il

l!

⁄
dx1 . . .

⁄
dxl

e
·“L0

I
(x1) . . . L0

I
(xl)O0(t)

f

fl0

(B.65)

However the real value of this formalism unfolds only when a further reduction is
performed, through an identity known as Wick’s theorem,

--------------------------

If, „x © „+

x
+ „≠

x

with
Ë
[„≠

x
, „+

y
], O

È
= 0, ’O and [„±

x
, „±

y
] = 0

We define the “normal ordered product”,
N [„x1

. . . „xn ] = „+

x1
. . . „+

xn
„≠

x1
. . . „≠

xn

and the “contraction” of two fields,
D0

xy
= ◊(x0

“
≠ y0

“
)[„≠

x
, „+

y
] + ◊(y0

“
≠ x0

“
)[„≠

y
, „+

x
]

Then,

·“ [„x1
. . . „xn ] = N

5
„x1

. . . „xn +
ÿ ;

all possible
contractions

<6 3
Wick’s
theorem

4

(B.66)

where x0

“
, y0

“
are the time contour arguments, and the sum is over both the number

of contractions and possible field pairings33. If the ± components split of free fields
can be operated in such a way that normal ordered products have zero expectation
value34, then free field products expectation values take the particularly simple form,

e
·“„0

x1
. . . „0

x2m+1

f

fl0

= 0 (B.67)
e
·“„0

x1
. . . „0

x2m

f

fl0

=
ÿ

pairings

D0

xi1
xj1

. . . D0

xim xjm
(B.68)

with, D0

xy
©

e
·“„0

x
„0

y

f

fl0

(B.69)

The quantity D0

xy
is the free theory 2-points function, called the free field propagator.

In principle, it allows computing any term of the perturbative expansion Eq. B.71.
As we shall now simply illustrates, it also receives a very visual interpretation.

B.2.2 Illustration: perturbative expansion for „3 interactions
⌅ For definiteness, let us apply the above formalism to the following scalar field theory

[396],
L = 1

2 (ˆµ„)2 ≠ 1
2m2„2

¸ ˚˙ ˝
L0

+ g

3!„
3

¸ ˚˙ ˝
LI

(B.70)

33This relation is easily found true for n = 2 and proved for higher ranks by mathematical induction.
34This is always possible for quadratic free hamiltonian and thermal states [402], including the vacuum

(T æ 0) where the split simply corresponds to positive and negative frequencies of the momentum
decomposition. In general, the state has to be gaussian and field operators centred (È„Ífl0 = 0) [403,
404]. For instance considering a coherent state |‰Í (s.t. È„0(x)Í‰ = ‰(x)), ÈN

#
O(„0)

$
Í‰ = O(‰(x)) so

expectation values of normal ordered products of centred field operators „̄0 © „0 ≠‰ would indeed cancel.
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x 1 x 2x 1

Figure B.1: Diagrammatic representation of Eq. B.73. The full 2-point function is
represented by a circled line and expanded to order g2 in the interaction formalism. Plain
lines between x and y represent the free 2-points function D0

xy
, dots signal interaction

vertices and their position is integrated over.

for a vacuum initial state fl0 = |0ÍÈ0|. We may calculate the 2-points function, at
second order in the coupling g,

È·“„(x1)„(x2)Í0 = È·“„0

x1
„0

x2
Í0 + ig

3!

⁄
dxa

=
·“

1
„0

xa

2
3

„0

x1
„0

x2

>

0

≠ g2

2 ◊ (3!)2

⁄
dxa

⁄
dxb

=
·“

1
„0

xa

2
3

1
„0

xb

2
3

„0

x1
„0

x2

>

0

+ O(g3) (B.71)

using the free fields decomposition Eq. B.19, Wick’s theorem results in35,

È·“„(x1)„(x2)Í0 = D0

12
≠ g2

2 ◊ (3!)2

⁄
dxa

⁄
dxb

5

+ 9D0

12
D0

aa
D0

ab
D0

bb
+ 6D0

12

1
D0

ab

2
3

18D0

1a
D0

2a
D0

ab
D0

bb
+ 9D0

1a
D0

2b
D0

aa
D0

bb
+ 18D0

1a
D0

2b
D0

ab
D0

ab

+ 18D0

1b
D0

2b
D0

ab
D0

aa
+ 9D0

1b
D0

2a
D0

aa
D0

bb
+ 18D0

1b
D0

2a
D0

ab
D0

ab

6
+ O(g4) (B.72)

using the alleviated notation D0

ij
© D0

xixj
. As we integrate over xa and xb, the two

last lines di�ering only by the permutation a ¡ b are found identical, so that we
can write,

È·“„(x1)„(x2)Í0 = D0

12
≠ g2

⁄
dxa

⁄
dxb

5 1
8D0

12
D0

aa
D0

ab
D0

bb
+ 1

12D0

12

1
D0

ab

2
3

+ 1
2D0

1a
D0

2a
D0

ab
D0

bb
+ 1

4D0

1a
D0

2b
D0

aa
D0

bb
+ 1

2D0

1a
D0

2b

1
D0

ab

2
2

6
+ O(g4) (B.73)

At this point, we can develop a diagrammatic interpretation of this expression. Let
us notice that it depends only on doubly indexed quantities that can thereby be
associated to the edges of a graph, linking vertices indexed by their argument. This
result is drawn in Fig. B.1. Actually, we could bypass all the previous calculation by
formalizing this diagrams-expressions correspondence, allowing to write down final

35As suggested already by this basic example the combinatorial procedure of pairing all elements of a
finite set leads to a very fast growing number of terms (though still not of distinct diagrams here), namely
Npairings(2m elements) = (2m)!

m!2m . Diagrammatic methods alleviate the problem at low order of expansion
and correlation function, as we shall discern shortly, but eventually also have to be supplanted by other
tools [307]
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perturbative expressions directly by listing all possible contributing diagrams of a
given order36.

We see that some diagrams have disconnected parts, factorizing in lower order cor-
relation functions linking the end points37. Some even have “floating parts”, un-
conected to any endpoints38. To understand the behavior of these so-called “vacuum
diagrams”39 consider,

È1Ífl0
=

=
·“e

i

s
“

dxL0

I(x)

>

fl0

, by Eq. B.64

… È1Ífl0
= È1Ífl0

+
nÿ

l=1

(ig)l

l!(3!)l

⁄
dx1 . . .

⁄
dxl

=
·“

1
„0

x1

2
3

. . .
1
„0

xl

2
3
>

fl0

… 0 =
⁄

dx1 . . .
⁄

dxl

=
·“

1
„0

x1

2
3

. . .
1
„0

xl

2
3
>

fl0

, ’l œ Nú (B.74)

We hence recognize that all vacuum diagrams cancel order by order. As a con-
sequence, all terms containing them can simply be discarded in the perturbative
expansion. Likewise, disconnected diagrams are clearly expressed in terms of lower
order correlation functions. We therefore reach the conclusion that the relevant in-
formation is entirely contained in the set of connected diagrams.

In these diagrams some lines are attached to fixed locations (x1 and x2), they are
called “external”. Those directly relate to the variable whose expectation value is
considered (here the correlation between „ field values at x1 and x2). Other lines are
attached to vertices, whose position is integrated over the whole system volume and
in the time-interval considered, they are called “internal” and receive a quite fruitful
interpretation in terms of intermediate, unobserved processes. Interestingly, they
allow developing an intuitive spatiotemporal understanding of the behavior of these
integrands once that of D0

xy
is known. In the present theory, and quite generically,

D0

xy
© D0(m(x ≠ y)) displaying oscillations for (x ≠ y)2 > 0 and exponential fall o�

for (x ≠ y)2 < 0, all controlled by the field Compton scale 1/m [395].

In calculating transition probabilities between free particle states40 specifically, the
Fourier transform of these diagrams (“momentum space” diagrams) takes a par-
ticularly vivid interpretation. External lines indeed depend on the initial and fi-
nal momenta, satisfying the relativistic dispersion relation, and hence label initial
and final states, whereas internal lines momenta are integrated over irrespective of
the “mass-shell” condition. They are then said to correspond respectively to “real”
and “virtual” particles. Of course, such terminology reminiscent of classical images
should not obscure the plain quantum mechanical structure of the theory. For that
matter, similar interpretations can be drawn in related formalisms41 without raising
fundamental concerns.

36The result is called the “Feynman rules” of the theory.
37cf. the fourth term in the integral, factor of two 1-points functions.
38cf. the first and second terms in the integral.
39Note that in a general state fl0 these objects have nothing to do with the ground state of the Hamil-

tonian, also called “vacuum state”.
40i.e. È|k1,f . . . km,f ÍÈk1,f . . . km,f |Ífl0 for fl0 = |k1,0 . . . kn,0ÍÈk1,0 . . . kn,0|.
41Notably in statistical mechanics and non-relativistic quantum mechanics.

160



B.2. Fields correlation functions

B.2.3 Exact equations of motion of fields n≠points functions
⌅ The above described perturbative expansion provides a systematic and well-proven

computation method. However, it may appear restrictive in the following sense,

i) Interactions: The interaction formalism is entirely grounded on the assump-
tion that dynamics can be split into L = L0 + LI , where L0 is solvable and LI

is small. Compatibility of both conditions is by no means generally granted.
Though L0 is trivially solved including few enough terms, the reminder may
well be large. Strong-field QED provides an example [2]:

Lsf-QED = ≠1
4Fµ‹F µ‹ + Â

1
i /̂ ≠ me

2
Â

¸ ˚˙ ˝
L0

≠eAµjµ

¸ ˚˙ ˝
Ω?æ

≠eaµjµ

¸ ˚˙ ˝
LI

(B.75)

where Aµ © aµ + Aµ with ÈAµÍ
fl0

= Aµ. If Aµjµ & 1/e the third term is not
small, but in general L0 ≠ eAµjµ is not solvable.

ii) Secular terms: Assuming the interaction formalism applies, in non-equilibrium
states resulting quantities may still fail to provide good approximations at all
times [305, 306]. This problem arises due to so-called “secular terms” growing
in time, which can be traced back to the lack of “self-consistency” of the ap-
proximation scheme. Namely, quantities of a given order in the expansion are
built from quantities of a lower order42, instead of obeying equations of motion
self-consistent in the sense of referring only to the same approximation order43.

iii) Computation: From a more practical point of view, the extreme versatility
of the interaction formalism, that allows calculating virtually any observable
at low expansion order, might generate costs without real profit. The cost is to
solve the L0 dynamics for all operators. However, in many configurations data
of the two or three first correlation functions of a system largely exhaust all
information we may enquire about44, let alone access experimentally [116, 305,
306]. Furthermore, such truncation of the infinite hierarchy of quantum field
variables would ease contact with the classical limit, which is especially desir-
able in the strong-field context. Hopefully, it would eventually allow extending
the extremely powerful and flexible numerical methods developed for classical
fields and particles to some quantum regimes.

A promising starting point to address the above considerations may be to find
equations governing n≠points functions directly rather than the evolution operator.
Then one could hope to close the system at some finite n, so as to obtain a uniform
(self-consistent) approximation of the exact retained correlation functions. It turns
out that exact equations can indeed be derived, leveraging on the field evolution
equations.
For definiteness and simplicity we consider again a real scalar field „. The exact
equations of motion write (cf. Eq. A.44),

eom (Hamilton):
I

ˆ0„(x) = ≠i [„(x), H]
ˆ0fi(x) = ≠i [fi(x), H]

(B.76)

42e.g. in Eq. B.73 the 2-points function at order g2 is built from “free” (order g0) 2-points functions.
43See [305, 306] and references therein for a detailed exposition.
44e.g. 1-points functions provide the fields expectation values (at all points), 2-points functions relate

to density, conductivity, or in a kinetic approximation to the full one-particle distributions in phase-space.
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with the local commutation relations,

I
[„(x), „(y)]x·y<0 = [fi(x), fi(y)]x·y<0 = 0
[„(x), fi(y)]x·y<0 = i”(x ≠ y)

(B.77)

Let us rewrite the equations of motion in a Lagrangian form [395]. First notice how
the commutator of two canonically conjugate variables acts as a derivative:

[„(x), fi(y1)fi(y2)] = [„(x), fi(y1)] fi(y2) + fi(y1) [„(x), fi(y2)]
CCR= i (”(x ≠ y1)fi(y2) + fi(y1)”(x ≠ y2))

© i
ˆ

ˆfi(x)(fi(y1)fi(y2)) (B.78)

[„(x), Òfi(y1) · Òfi(y2)] = [„(x), Òfi(y1)] · Òfi(y2)+
Òfi(y1) · [„(x), Òfi(y2)]

CCR= i (Ò”(x ≠ y1) · Òfi(y2) + Òfi(y1) · Ò”(x ≠ y2))
= ≠i (”(x ≠ y1)Ò · Òfi(y2) + ”(x ≠ y2)Ò · Òfi(y1))

© ≠iÒ · ˆ

ˆÒfi(x)(Òfi(y1) · Òfi(y2)) (B.79)

introducing partial derivatives acting as a formal derivation on the associated symbol
all else fixed. By induction on both relations and reasoning similarly for fi we deduce,

[„(x), F („, fi)] = i
”F

”fi(x) = i

A
ˆF

ˆfi(x) ≠ Ò · ˆF

ˆÒfi(x)

B

(B.80)

[fi(x), F („, fi)] = ≠i
”F

”„(x) = ≠i

A
ˆF

ˆ„(x) ≠ Ò · ˆF

ˆÒ„(x)

B

(B.81)

with use of the functional derivative symbol introduced in Eq. B.12. In order to
insist on the symbolic relations let us now adopt the calculus notation [395],

dF

d„

-----
fi

, ˆF

ˆ„
≠ Ò · ˆF

ˆÒ„
(B.82)

so that we can rewrite,
Y
_____]

_____[

ˆ0„ = dH
dfi

-----
„

ˆ0fi = ≠ dH
d„

-----
fi

(B.83)

However we know that our Hamiltonian derives from a Lagrangian, that is,

fi = ˆL
ˆ(ˆ0„) (B.84)

H(„, Ò„, fi) = fiˆ0„ ≠ L(„, ˆµ„) (B.85)
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Therefore the second Hamilton’s equation of motion becomes,

ˆ0

A
ˆL

ˆ(ˆ0„)

B

= ≠
Q

adH
d„

≠ dH
dfi

-----
„

dfi

d„

R

b

…ˆ0

A
ˆL

ˆ(ˆ0„)

B

= dL
d„

≠
Q

aˆ0„ ≠ dH
dfi

-----
„

R

b dfi

d„

…ˆ0

A
ˆL

ˆ(ˆ0„)

B

= ˆL
ˆ„

≠ Ò · ˆL
ˆÒ„

, by first Hamilton’s equation

… ˆµ

A
ˆL

ˆ(ˆµ„)

B

= ˆL
ˆ„

: eom (Euler-Lagrange) (B.86)

This establishes that the Euler-Lagrange equations are preserved by canonical quan-
tization, providing an alternative description of the dynamics of field operators. To
complete the shift to a Lagrangian description, all canonical momenta fi can be
eliminated through Eq. B.84, leading to a new expression of the commutation rela-
tions, Y

_____]

_____[

[„(x), „(y)]x·y<0 =
C

ˆL
ˆ(ˆ0„)(x), ˆL

ˆ(ˆ0„)(y)
D

x·y<0

= 0
C

„(x), ˆL
ˆ(ˆ0„)(y)

D

x·y<0

= i”(x ≠ y)
(B.87)

With these two equations Eqs. B.86-B.87, we can derive equations of motions for
the correlation functions themselves.

B.2.4 Illustration: Schwinger-Dyson equations for „3 interac-
tions

⌅ For better insight into the general n≠points functions techniques, before reviewing
conclusions we will first be deriving results for a real scalar field governed by the
earlier Lagrangian Eq. B.70,

L = 1
2 (ˆµ„)2 ≠ 1

2m2„2

¸ ˚˙ ˝
L0

+ g

3!„
3

¸ ˚˙ ˝
LI

The equations of motion are,

(ˆ2

x
+ m2)„x = g

2!„
2

x
(B.88)

and the commutation relations write explicitly,
Y
]

[
[„x, „y]x·y<0 = [ˆ0„x, ˆ0„y]

x·y<0
= 0

[„x, ˆ0„y]
x·y<0

= i”(x ≠ y)
(B.89)

Taking contour-ordered expectation values the equation of motion directly yields,

(ˆ2

x
+ m2)È„xÍfl0

= g

2!È·“„2

x
Ífl0

(B.90)

i.e. Field expectation value: (ˆ2

x
+ m2)G(1)

x
= g

2!G
(2)

xx
(B.91)
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that is an equation of motion for G(1) in terms of G(2).
Let us then determine a similar equation for G(2). We wish to compute (ˆ2

x
+m2)G(2)

xx1
,

the only subtlety comes from the ◊ functions enforcing contour-ordering in the ex-
pectation value. We can hence start by applying the time derivatives,

ˆx0G(2)

xx1
= ˆx0È·“„x„x1

Ífl0

= ˆx0

1
◊(x0

“
≠ x0

1“
)È„x„x1

Ífl0
+ ◊(x0

1“
≠ x0

“
)È„x1

„xÍfl0

2

= È·“ˆx0„x„x1
Ífl0

+ ”(x0

“
≠ x0

1“
)È[„x, „x1

]Ífl0

CCR= È·“ˆx0„x„x1
Ífl0

Applying a second time derivative this time we find,

ˆ2

x0G(2)

xx1
= È·“ˆ2

x0„x„x1
Ífl0

+ ”(x0

“
≠ x0

1“
)È[ˆx0„x, „x1

]Ífl0

CCR= È·“ˆ2

x0„x„x1
Ífl0

≠ i”(x ≠ x1)

The other elements of our di�erential operator directly commute with the contour-
ordered expectation value, so that finally,

(ˆ2

x
+ m2)G(2)

xx1
= È·“(ˆ2

x
+ m2)„x„x1

Ífl0
≠ i”(x ≠ x1)

= g

2!È·“„2

x
„x1

Ífl0
≠ i”(x ≠ x1)

i.e. Exact propagator: (ˆ2

x
+ m2)G(2)

xx1
= g

2!G
(3)

xxx1
≠ i”(x ≠ x1) (B.92)

we hence obtain an equation for the exact 2-points function in terms of the exact
three-points function. Note that in the absence of interactions, this implies for the
free 2-points function,

Free propagator: (ˆ2

x
+ m2)D0

xy
= ≠i”(x ≠ y) (B.93)

meaning it is Green’s function of the Euler-Lagrange di�erential operator, which
substantiates its appellation of “free propagator”.
Generalizing this result e.g. by induction we obtain,

Schwinger-Dyson:
(ˆ2

x
+ m2)G(n)

xx1...xn≠1
= g

2!G
(n+1)

xxx1...xn≠1

≠ i~
n≠1ÿ

j=1

”(x ≠ xj)G(n≠2)

x1...xj≠1xj+1...xn

(B.94)

Interestingly from order 2 onward the equation di�ers from the Euler-Lagrange
equations by ” terms. Reinstating ~ in this equation, we see that those terms in-
deed capture the quantum modifications to the classical form of these equations.
In particular it is responsible for the appearance of loop diagrams in the context of
perturbation theory (see e.g. [396]).

46Numerical prefactors are included in the Feynmann rules by dividing each diagram by its number
of geometrical symmetries, and can therefore be omitted in diagram representations (see e.g. [307, 396,
401]).
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+
b)

x 1

x 2

x

x n-1

x 1

x +
n�1
∑
j=1 x x ja) x n-1

x 1
x 2

x n-1

x 1 x j-1

x j+1

x x 1 x x 1 x 1x 

Figure B.2: Diagrammatic representations of the Schwinger-Dyson equations for
the „3 Lagrangian. The full n-points functions are represented by disks with n outgoing
lines, and dots signal interaction vertices, which contribute a factor ig and whose position
is integrated over46. a) Representation of the general relation Eq. B.73; b) Representation
of the exact propagator equation.

We can finally give a diagrammatic depiction of the Schwinger-Dyson equations,
convoluting by iD0 and using Eq. B.93 we find,

G(n)

xx1...xn≠1
= i

g

2!D
0

xy
G(n+1)

yyx1...xn≠1
+

n≠1ÿ

j=1

D0

xxj
G(n≠2)

x1...xj≠1xj+1...xn
(B.95)

where integration over spacetime indices appearing in at least two di�erent operators
is implied. The corresponding diagram is drawn in Fig. B.2.
As becomes particularly clear comparing the exact 2-points functions equation
Fig. B.2-b and the perturbative expansion Fig. B.1, the Schwinger-Dyson equa-
tions simply capture the structure of the interactions in the theory, hence of the
perturbative expansion. Namely, a propagator line between two points either carry
interactions or not, and in the former case it can only do so via one interaction
vertex, followed by anything that can happen in-between the remaining points47.

⌅ There are many di�erent forms of these exact relations between the n≠points func-
tions48. All are equivalent at an exact level, but all do not prove equally fruitful so
as to devise e�cient approximation, or resolution schemes. This can be understood
thinking of the di�erent ways to organize the infinite diagram series summarized in
Fig. B.2.
For instance, in the 3-points diagram appearing on the RHS of Fig. B.2-b, one knows
either from algebra or direct diagrammatic reasoning that at least three qualitatively
di�erent kinds of terms can arise49. As vacuum diagrams cancel, external lines have
to reach x and x1, but in-between they can either be i) disconnected (cf. fifth term
in B.1) ii) connected, with punctual insertion between external lines (fourth term)

47For our „3 interaction term, this translates in the G(n+1) term on the RHS of Eq. B.94
48Relating to many di�erent names, e.g. “Dyson equations”, “Kadano�-Baym equations”, “Martin-

Schwinger hierarchy”, “n≠PI e�ective action equations of motion”.
49cf. our derivation of Eq. B.73 in perturbation theory; in the following we assume that the initial state

fl0 is such that Wick’s theorem is valid (for centred field operators).
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iii) connected, with two or more internal lines between external lines (sixth term).
Disconnected graphs are easily seen to factorize in a product of two 1-point functions,
so that in a sense they do not bring new information at the 2-points level. For this
reason, it would be desirable to separate their contribution to the total 2-points
function from the connected 2-points function.
This can be done again diagrammatically or algebraically. Opting for the latter
approach and recalling that the 1-point function is the field expectation value fx ,
È„xÍfl0

, we can write,

G(2)

xxÕ = È„x„xÕÍfl0

© È(Ïx + fx)(ÏxÕ + fxÕ)Ífl0 , with ÈÏxÍfl0
= 0

= ÈÏxÏxÕÍfl0
+ fxfxÕ

i.e. GxxÕ , G(2)

xxÕ ≠ fxfxÕ is the connected 2-points function (B.96)

Let us now inject the definition Eq. B.96 in the Schwinger-Dyson equation for G(2)

Eq. B.92,

G(2)

xxÕ = D0

xxÕ + ig

2!D
0

xy
G(3)

yyxÕ

… GxxÕ = D0

xxÕ ≠ fxfxÕ + ig

2!D
0

xy
È(Ïy + fy)2(ÏxÕ + fxÕ)Ífl0

… GxxÕ = D0

xxÕ ≠
5
fx ≠ ig

2!D
0

xy

1
Gyy + f 2

y

26
fxÕ

+ ig

2!D
0

xy

Ó
G(3)

yyxÕ + 2fyGyxÕ

Ô
(B.97)

with G(3)

yyxÕ , ÈÏ2

y
ÏxÕÍfl0

the connected 3-points function. However, injecting Eq. B.96
in the Schwinger-Dyson equation for fx Eq.B.91 we obtain,

fx = ig

2!D
0

xy

1
Gyy + f 2

y

2
(B.98)

so that Eq. B.97 becomes,

GxxÕ = D0

xxÕ + ig

2!D
0

xy

Ó
G(3)

yyxÕ + 2fyGyxÕ

Ô
(B.99)

The corresponding diagram equation is,

x x 
’

+ xx x 
’ x+x 

’ x 
’

Figure B.3: Schwinger-Dyson equation for the connected 2-points function. The
connected n-points functions are represented by hatched disks with n outgoing lines51.

51The numerical factor in Eq. B.99 are accounted for by the symmetry factors in the Feynman rules.
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Compared to Fig. B.2-b we see that only connected contributions remain on the
RHS, of both kinds ii) (third term) and iii) (second term).
We can understand better the meaning of this equation by realizing that it is pos-
sible to factor out a connected 2-points function on the right of G(3). Indeed, “all
connected diagrams between y, y and x1” can logically be decomposed as “all con-
nected diagrams between y, y and yÕ”◊“all connected diagrams between yÕ and x1”.
In doing so we define what is called the “self-energy” �,

GxxÕ = D0

xxÕ + ig

2!D
0

xy
{�yyyÕ + 2fy”yyÕ} GyÕxÕ (B.100)

with G(3)

yyxÕ © �yyyÕGyÕxÕ (B.101)

At this point we alleviate notations by adopting an operator form for the convolution
products, AB © AxyByz

52. We can hence rewrite,

G = D0 + D0
Ó
�̃ + f̃

Ô
G with �̃ = ig

2!� and f̃ = igf

… G =
Ë
1 ≠ D0

Ó
�̃ + f̃

ÔÈ≠1

D0

… G =
Œÿ

n=0

1
D0

Ó
�̃ + f̃

Ô2
n

D0 (B.102)

This form makes explicit that, in contrast with finite order perturbation theory,
solving Dyson’s equation automatically includes (“resums”) an infinite number of
diagrams. For the connected 2-points function they consist of n œ N occurrences of
the exact interaction terms appearing on the RHS of Eq. B.100 each spaced by free
propagation.
Now let us disentangle contributions of kinds ii) and iii) in G. This seems a priori

relevant, e.g. in view of some resolution ansatz, because of their di�erent physi-
cal origins: one stems from local interactions with the mean field, the other from
non-local coherent self-interaction53. They also clearly have distinct diagrammatic
properties, which can be characterized by their remainder when external propaga-
tors are removed. For ii) it is a set of diagrams attached to a single point, we will call
them “punctual”. For iii) it is connected diagrams linking two points, such that they
remain connected if one internal line is cut, this property is known as “1-particle
irreducibility” (1-PI).
Simply reasoning diagrammatically again, we can decompose the full connected 2-
points functions between all diagrams with no 1-PI contributions, and diagrams with
at least one. In the latter case, we can factor out (on the left) all contributions before
the 1-PI terms, which hence have no 1-PI contribution, as well as (on the right) all
that is comprised after the 1-PI diagram. Denoting the 2-point function with only
punctual interactions by Df

xxÕ , we conclude at the following decomposition,
Y
_]

_[

G = Df + ig

2!D
f�G

Df = D0 + igD0fDf

(B.103)

52In our limited use ambiguities e.g. for more indices or ”s should be lifted from context.
53Eventually perceived as “collisions” in a kinetic reduction.

167



Part IV, Chapter B – Landmarks in Quantum Field Theory

Consistency of these relations with previous results can be checked explicitly with
straightforward algebra, as they entail,

Y
____]

____[

G =
Œÿ

n=0

1
Df �̃

2
n

Df

Df =
Œÿ

n=0

1
D0f̃

2
n

D0

(B.104)

Expanding the summand
1
D0

Ó
�̃ + f̃

Ô2
n

one sees that each term of the G series in
Eq. B.104 is included in Eq. B.102, conversely expanding Df in Eq. B.104 one finds
back each term of Eq. B.102, hence both series are identical. In summing first Df

though, propagation is now expressed as a succession of exact streaming motion in
the field, generated by punctual diagrams f , interspersed with n œ N self-interaction
sequences, generated by 1-PI diagrams �. Diagrammatically we can draw,

x + xx x 
’ x 

’ x 
’

x x 
’ x x 

’ + x x 
’ + x 

’x +…{
x + xx x 

’ x 
’

x x 
’ x x 

’ + x x 
’ + x 

’x +…{ x 
’

Figure B.4: Exact propagator decomposition. Self-energy is represented by a hatched
square, and the field-dressed propagator by a double line.

As a final move to separate qualitatively di�erent contributions, let us consider
the internal structure of �. Pursuing the argument that allowed to define it54, we
understand that in order to obtain a connected 3-points function all three external
lines have to join a common (connected) central diagram. In summing all the ways
in which this centre can be reached, we can replace each external line by an exact
2-points function, resulting in the factorization,

G(3)

xxÕxÕÕ , GxyGxÕyÕGxÕÕyÕÕ�yyÕyÕÕ (B.105)

The quotient 3-points function � is referred to as the “proper vertex”.

Furthermore thinking of all possible constituting diagrams it is clear that � ©
�[f, G]. However let us consider the f dependence more closely. Because � is con-
nected a 1-point diagram has to be attached to a vertex. In our 3-points interaction
theory we can then list all possibilities. If the two remaining end lines are closed
together, it is a vacuum diagram and hence cancels. If they are attached to di�erent
points, then our 1-point diagram actually is connected to a 2-points diagram. If one
end line is itself a 1-point function, then only one line remains which itself defines a
1-point diagram and we resume to the beginning of our reasoning. Therefore in the
proper vertex all 1-point diagrams are actually attached to a 2-points diagram, so
that �[f, G] © �[G] © �[Df , �].

54Factorization of a connected 2-points function G out of a connected 3-points function G(3)

168



B.2. Fields correlation functions

⌅ We can gather our results at this point. The exact connected one and two points
functions are governed by the relations55,

Y
_________]

_________[

(ˆ2

x
+ m2)fx = g

2!
1
Gxx + f 2

x

2

(ˆ2

x
+ m2 ≠ gfx)GxxÕ = ≠i”xxÕ

+ g

2!

⁄

“

GxaGxb�abc[Df , �]GcxÕ

(ˆ2

x
+ m2 ≠ gfx)Df

xxÕ = ≠i”xxÕ

(B.106)

(B.107)

(B.108)

with
s

“
Ax ©

s
dx

s
“

dzA(x, z).
They form a system of coupled non-linear integro-di�erential equations which is not
closed. The missing information is encapsulated in the unknown functional �. Of
course, the proper vertex � obeys its own equation of motion, which could similarly
be derived from the 3-points Schwinger-Dyson equation (Eq. B.94). Then again an
unknown proper 4-points function � would appear, leading further still in the infinite
correlation functions hierarchy. What has been achieved writing Eqs. B.106-B.108
though is a much clearer physical and mathematical picture of each term compared
to the initial Schwinger-Dyson formulation Eq. B.94. As a consequence, it is easier
to e�ciently truncate the hierarachy from this point, depending on the physical
configuration defined in fl0.

55We here reinstate explicit symbols where integration over repeated indices is intended.

x x + x a)

x + xx x 
’ x 

’ x 
’

b)

x x 
’ x x 

’ + x x 
’

c)

d)
z 3z 2

z 1 z 1

z 3z 2 + z 2 z 3

z 1

+ z 2 z 3

z 1

+…

Figure B.5: Schwinger-Dyson equations for the two first connected n≠points
functions. The proper vertex is represented by a wide full circle. a) Field equation b)
Propagator equation c) Field-dressed propagator equation d) First few terms of the proper
vertex perturbative expansion, we notice their 1-PI property and expansion parameter
g2Df . Note for the connections with the proper vertex that D0D0 = D0.
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This is illustrated in their diagrammatic representation Fig. B.5. The first three
exact relations manifestly display more structural information on the solutions than
Fig. B.2. For instance, Fig. B.5-c directly entails the explicit dependence on f of the
field-dressed propagator Df , displayed in a series form. Besides, even the unknown
proper vertex can be given an ordered perturbative expansion (Fig. B.5-d) based on
its known functional dependence on Df and 1-PI property.

Let us be more specific by imagining a closure scenario in a strong-field regime. We
define it as gf > 1, so that the streaming motion in the field Eq. B.108 has to be
solved exactly. In this context it would be desirable to simplify the field equations
as well. In this regard we notice that on the RHS of Eq. B.106 the second term
corresponds to the classical field equation, so that the first is a quantum correction
that we may hope to neglect56. The quantum source term of the field equations can
be interpreted as a local current density, so that neglecting it in a sense amounts to a
“dilute medium” hypothesis. Assuming such condition holds, we enforce a decoupling
of Eqs. B.106 and Eqs. B.107. Then truncating the proper vertex at lowest order we
have � ¥ ig, leading to,

x a)

x + xx 
’ x 

’
b)

+ …� x x 
’

x x 
’

x x 
’ x x 

’ + x x 
’+x x 

’

x 

Figure B.6: Schwinger-Dyson equations in a strong field approximation. The
diagrams included in a solution G are easily drawn by recursively injecting Fig. B.6-b into
its RHS, as shown with the few first terms in the last line.

Even in these coarse approximations the equations of motion for the two first corre-
lation functions f and G still encode a wealth of phenomena. This can be understood
simply looking at the few first terms of the 2-points function Fig. B.6-b. The 1-body
properties of the system appear to be computed in the field governed by its exact
classical vacuum equations of motion, taking into account an infinite superposition
of virtual processes of particle creation and recombination, without assuming quan-
tum decoherence between each interaction event. The price is indeed a very high
computational complexity. Nonetheless, as a systematic procedure to pursue the re-
duction down to kinetic theory is known, one is in principle free to find an adequate
compromise between accuracy and tractability [116, 305, 306].

56e.g. on the intuitive grounds that strong fields correspond to high particle occupation numbers and
hence globally classical behavior.
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B.2.5 Opening remarks in view of non-equilibrium QFT
⌅ As they rely solely on the Euler-Lagrange equations satisfied by the field operators,

the Schwinger-Dyson relations clearly are extremely general. Without introducing
superfluous complications we can take a glimpse at their general form assuming
that,

L(„, ˆµ„) © L0(„, ˆµ) + LI(„) (B.109)

where L0 leads to linear equations of motion57, or in other words ˆµ

1
ˆL0

ˆ(ˆµ„)

2
≠ ˆL0

ˆ„
©

DL0
[„] is a linear functional of the field. Proceeding as before, the Euler-Lagrange

equations imply an equation for the field correlation functions:

DL0 x[È·“„x„x1
. . . „xnÍfl0

] = È·“LÕ
I
(„x)„x1

. . . „xnÍ
fl0

≠i
n≠1ÿ

j=1

”xxj È·“„x1
. . . „xj≠1

„xj+1
. . . „xnÍfl0

(B.110)

denoting ˆLI/ˆ„ = LÕ
I
.

Now an actual derivation in this general setting would be much more accessible in a
functional formulation of field theory [307] (introducing path integrals), which falls
beyond our scope. Besides this exercise proves rather formal as physically predic-
tive field theories generally feature non-zero spin fields, typically gauge-fields and
fermions, so we will not pursue it further.
Instead we show the (connected) Schwinger-Dyson equations of QED, as an example
of a more interesting system. Retaining only the first two correlation functions, the
system variables are,58,

Y
__]

__[

Aµ

x
= ÈAµ

x
Ífl0

(Electromagnetic potential)
Dµ‹

xxÕ = È·“Aµ

x
A‹

xÕÍfl0
≠ Aµ

x
A‹

xÕ (Photon propagator)
�xxÕ = È·“ÂxÂ

xÕÍfl0
(Electron-Positron propagator)

(B.111)
(B.112)
(B.113)

governed by the Schwinger-Dyson equations [45, 116, 405],
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__________________[
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[D0, �, �0A, M]�cxÕ

1
i /̂

x ≠ e /A ≠ m
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(B.114)

(B.115)

(B.116)

(B.117)

here written in Lorenz gauge with gauge fixing parameter ›; where M (�) is the
fermion (photon) self-energy, and the trace acts on Dirac indices. Their diagram-
matic representation is given in Fig. B.7.

57Hence is itself quadratic.
58This assumes that, as in vacuum, ÈÂxÍfl0 = ÈÂxÍfl0 = 0.
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Figure B.7: Schwinger-Dyson equations for the one and two points functions of
Quantum Electrodynamics. Wavy lines stand for connected free photon propagators
D0µ‹

xxÕ = ÈA0µ

x
A0‹

xÕ Ífl0
≠ A0µ

x
A0‹

xÕ , and straight lines for connected electron-positron 2-points
function �0

xxÕ = ÈÍfl0
Â

0

x
Â0

xÕ . Dots are interaction vertices, with position integrated over and
contributing a factor ≠ie“µ (e2 = 4fi– where – is the fine-structure constant).

The structural analogy with the previous „3 theory is manifest. The main di�erences
are the presence of two interacting fields, leading to coupled equations of motion59,
and the absence of direct self-interaction of the electromagnetic field60. We will not
push this discussion further, but refer the reader to [116] and references therein for
an in-depth study of non-equilibrium QED and its kinetic reduction.

One major missing element so as to make this Schwinger-Dyson approach viable
would be a general closure method of the system, granting fundamental proper-
ties such as self-consistency61 of the approximated equations. It occurs that such
controlled approximation procedure is provided by the notion of n≠PI quantum
e�ective actions of the system [305–307, 406]. Without entering into any more de-
tails, let us mention they prove a very e�cient way of organising the diagrammatic
information of the theory, a fraction of which we encountered and addressed “by
hand” in our illustrative „3 study, and thus a relevant starting point for formulating
Non-equilibrium Quantum Field Theory.

59Gauge freedom also adds some complexity, e.g. by the introduction of gauge-fixing terms.
60In other words photons do not have an electric charge. Non-abelian gauge bosons, e.g. gluons in

Chromodynamics, do directly interact though (gluons have a colour charge).
61cf. introduction of this sec. B.2.3.
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B.3 Similarity classes of initial states

Correlation functions allow computing any physical quantity, and some formalisms make
use of their specific form62. However, being defined as expectation values it would seem
these e�orts have to be repeated for each possible initial state fl0. Fortunately, there are
ways to avoid this duplication for some sets of related state operators, thereby defining
formally equivalent classes of states. Probably the three most common families are the
vacuum, thermal and coherent states, all accompanied by any finite number of additional
particles.

In the context of scattering theory, a central technical tool concurring to such result
for particle transition amplitudes is known as the Lehmann-Symanzik-Zimmermann re-
duction formula. In general (non-equilibrium) field theory, n≠points function can be com-
puted from their initial values, e.g. by Schwinger-Dyson equations, so that in a sense this
formalism already is as state-independent as mechanics can be. However, actual compu-
tations typically need restricting to the few first n Æ p≠points functions, by which initial
conditions with irreducible correlations63 of order no higher than p acquire a distinguished
status [305, 306, 406]. In practice, one would often work only with field expectation val-
ues and propagators and therefore restrict to so-called gaussian states, with no irreducible
correlations higher than 2.

B.3.1 Reduction of particle transition amplitudes

⌅ Following the methods presented in sec. B.2 we would be able to compute correlation
functions in a given initial state. However in a given field theory one would like to
calculate quantities for various initial states. For instance, considering the transition
probability to a given (spin 0) particle state |fÍ © |k1 . . . kmf

Í, one computes,

Pf |fl0
(t) = È|fÍÈf |(t)Ífl0

(B.118)

To be more specific still, in vacuum64 scattering theory, the initial state is itself a
pure particle state fl0 © |iÍÈi| with |iÍ = |q1 . . . qmiÍ, so that,

Pf |i(t) = Tr
Ë
|iÍÈi|U †(t, t0)|fÍÈf |U(t, t0)

È

= |Èf |U(t, t0)|iÍ|2 (B.119)
, |Èf |ioutÍ|2 (B.120)

Then of course repeating derivations for each possible particle state would be un-
manageable. Hopefully this can be avoided via the standard result known as the

†Refs. B.3: [305–307]
62e.g. for writing the Feynmann rules in perturbation theory.
63We call a correlation function of order m irreducible if can not be expressed in terms of correlations

of lower order (in the present context all considered at initial time).
64This terminology is to be justified shortly.
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Lehmann-Symanzik-Zimmermann reduction formula [307, 396, 401],

Èk1 . . . kmf
|q1 . . . qmi outÍ = imi+mf

⁄ miŸ

i=1

dxie
≠iqi·xi(ˆ2

xi
+ m2)

Lehmann-
Symanzik-
Zimmermann

◊
⁄ mfŸ

j=1

dyje
ikj ·yj (ˆ2

yj
+ m2)

È0|·„x1
. . . „xmi

„y1
. . . „ymf

|0outÍ (B.121)

where · is the simple time ordering operator. Therefore, the computation of particle
transition amplitudes is entirely reduced to the computation of so-called “in-out”
vacuum n≠points functions. As this formula merely relies on the field expression of
the Heisenberg creation and annihilation operators a†

k and ak, similar forms exist
for non-zero spin fields.
For the most general problem of an arbitrary observable and initial state, we un-
derstand that similar reductions could be operated again leveraging on the field ex-
pression of the creation/annihilation operators. Let us simply sketch the first steps
of such derivation. We consider a collection of initial particles |q1 . . . qmÍ added to
a general state fl0, that is the modified initial state,

fl0 ü [qi]m1 ,
Q

a
mŸ

j

a†
qj

R

b fl0

Q

a
mŸ

jÕ
aqjÕ

R

b (B.122)

Then using Eq. B.21-B.22 together with the basic identity f(t0) = f(t) ≠
s

t

t0
ˆtf ,

repeating the algebra leading to the LSZ formula we obtain,
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by cyclicity of the trace

=
K
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“

dxj◊+(x0

j
)eiqj ·xj (ˆ2

xj
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◊ O(t)

◊
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jÕ

3
a†

qjÕ (t) ≠ i
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“

dyjÕ◊≠(y0

jÕ)eiqjÕ ·yjÕ (ˆ2

y
Õ
j

+ m2)„yjÕ

4L

fl0

(B.123)

where ◊±(z) is the step function that is one if z belongs to the forward (resp.
backward) branch of the contour and 0 otherwise. This way we see that it would
be possible to break the expectation value in the new state (fl0 |rm

i
qi ) down into

n≠points functions of the state fl0 and their derivatives.

B.3.2 Initial conditions in e�ective actions
⌅ As already advocated in sec. B.2 in the most general case instead of a reduction

formula of the kind Eq. B.123 one may directly compute correlation functions from
their initial values, via some form of Schwinger-Dyson equations. In this case, as
previously mentioned, the main concern is the degree of the highest irreducible
initial correlation. A proper justification of this fact would require introducing the
notion of n≠PI e�ective action, which is hardly formulated outside the functional
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formalism. We refer the reader to [305, 306] and references therein for a recent
introduction.
For our concern, it is su�cient to notice that appling Eq. B.123 at time t0 and
injecting Eqs. B.21-B.22, we find,

ÈO(t0)Ífl0ü[qi]
m
1

= (≠1)m

⁄ mŸ

j

dxje
iqj ·xj

⁄ mŸ

jÕ
dyjÕeiqjÕ ·yjÕ

◊
e1

ˆ0„xj ≠ iEqj „xj

2
O[„x]

1
ˆ0„yjÕ ≠ iEqjÕ „yjÕ

2f

fl0

(B.124)

where we denote Ax © Ax|
x0=t0

and substituted fi by its expression in terms of
„ and ˆ0„ (cf. Lagrangian formulation in sec. B.2.3). As a consequence, initial
time correlators of the field and its derivatives in the modified state fl0 ü [qi]m1 can
be expressed as a linear combination of initial time correlators of the field and its
derivatives in state fl0. This implies that the degree of highest irreducible correlation
function p is preserved by the addition of finitely many initial particles, so that the
same e�ective action can be used with the updated initial correlation values.
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Résumé détaillé

L’interaction électromagnétique imprègne essentiellement tous les phénomènes
sensibles, et cette réalité est élucidée depuis plus d’un siècle. Cependant, cette connais-
sance ne pouvait se matérialiser pleinement comme force pratique qu’avec l’invention
du laser, o�rant un degré de contrôle sans précédent sur le champ électromagnétique,
et ainsi sur ses interactions avec la matière. Les systèmes laser se sont depuis lors
déployés vers toutes les sphères de la production, dont la science fondamentale. Cette
thèse présente les résultats promis dans ce domaine, tant dans ses dimensions théorique
qu’instrumentale, par l’application de l’e�et de «miroir plasma relativiste »à l’obtention
de sources de lumière d’intensité extrême, propres à provoquer des phénomènes inob-
servés à ce jour. Cette section en propose un résumé détaillé, en français, s’attachant
à préciser son contexte et la substance des onze chapitres qui la composent.

Introduction et plan de la thèse
La frontière de la physique à ultra-haute intensité

Parmi la diversité des systèmes laser et de leurs usages, les deux dernières dé-
cennies ont vu émerger un champ de recherche structuré autour de la «physique à
ultra-haute intensité », étudiant les interactions des impulsions laser aux plus hautes
intensités réalisables avec la matière, alors convertie en particules et plasmas. Ces ef-
forts ont pu révéler des phénomènes d’une grande richesse, donnant lieu à de multiples
applications [1]. Quoique bénéficiant des progrès continus de la technologie laser, por-
tant une élévation progressive des intensités laser, ces méthodes ont pu s’appuyer sur un
ensemble qualitativement bien défini de processus physique élémentaires, tous décrits
par la mécanique classique des champs et de particules à cinématique relativiste [1].

La situation actuelle est cependant susceptible de marquer un tournant, car les
infrastructures de dernière génération, les lasers d’une puissance de crête supérieure à
un pétawatt (1015 W), ont le potentiel de révéler des processus radicalement nouveaux.
Tous découleraient de l’aspect quantique des particules et des champs et délimiteraient
collectivement le domaine physique de l’Électrodynamique quantique en champs forts

(EDQ-cf, ou sf-QED dans la littérature anglophone) [2]. L’accès à de tels phénomènes
s’avérerait d’une valeur à la fois fondamentale et pratique, permettant de tester em-
piriquement des théories établies ou spéculatives [3], et de générer des sources exotiques
de rayonnement et de particules [4]. Cette frontière de la physique des lasers a par con-
séquent fait l’objet d’une attention croissante et alimente aujourd’hui l’activité régulière
de nombreux scientifiques ainsi que la mise en service d’installations expérimentales
ambitieuses.

Néanmoins, si les premières signatures de ces e�ets pourront être détectées dans
un avenir proche [3, 4], le chemin vers des régimes plus profonds d’EDQ-cf semble mal-
heureusement beaucoup plus escarpé que ses rives. Considérons par exemple un pro-
cessus central de l’EDQ-cf, la conversion d’un photon en une paire électron-positron.
Si les installations prévues à ce jour peuvent s’attendre à détecter quelques positrons
créés, une forte attrition du champ par la création d’un plasma électron-positron as-
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socié à un fort rayonnement photonique, produisant une dynamique physique quali-
tativement nouvelle, ne se produiraient qu’à des intensités encore dix à cent fois plus
élevées. Cependant, les infrastructures de plusieurs pétawatts approchent maintenant
des échelles industrielles, ce qui implique une ingénierie laser de plus en plus com-
plexe, de sorte qu’un mur technologique ne peut pas être exclu à court terme [5]. Par
conséquent, la recherche de schémas alternatifs en vue d’atteindre les champs les plus
élevés est d’ores et déjà activement poursuivie [4].

Électrodynamique quantique dans la lumière extrêmement in-
tense de miroirs plasma relativistes

Les miroirs plasma relativistes apparaissent comme un moyen très prometteur
d’atteindre les champs les plus élevés possibles avec les lasers actuels [6–11]. Lorsqu’une
impulsion intense atteint une interface solide nette, elle la transforme en un plasma
dense qui oscille à des vitesses proches de celle de la lumière, réfléchissant ainsi l’impulsion
tout en la comprimant par e�et Doppler. En jouant correctement de cette interaction,
notamment à très haute intensité, l’impulsion réfléchie peut également être naturelle-
ment focalisée à des tailles focales uniquement limitées par sa longueur d’onde désor-
mais réduite, concentrant la lumière dans des volumes beaucoup plus restreints que ceux
permis par la longueur d’onde laser initiale, ce qui se traduit par des augmentations
d’intensité focale de deux à cinq ordres de grandeur [12, 13]. Les champs correspondants
s’approcheraient de la valeur critique à laquelle un champ se décompose spontanément
en paires électron-positron, connue sous le nom de champ de Schwinger, ce qui pour-
rait permettre d’étudier des e�ets critiques de la l’EDQ-cf tels que l’auto-interaction
de la lumière, et faciliterait sans aucun doute l’entrée dans le régime quantique profond
de l’EDQ-cf. Le cœur de mon travail a consisté à spécifier les principaux phénomènes
physiques attendus au point d’interaction de telles sources miroirs plasma relativistes
(MPR).

Présentation du plan
La partie I présente l’état de l’art de la physique en champs forts auquel contribue

la thèse. Le contexte évoqué ci-dessus est ainsi exposé au chapitre 1, avec une discussion
des motivations pour atteindre le régime de l’EDQ-cf. Dans cette thèse, je présente les
prédictions dérivées d’une étude approfondie de di�érents scénarios d’interaction. Les
outils théoriques et numériques mobilisés à cette fin sont introduits au chapitre 2.

La partie II aborde les études théoriques et numériques préalables à la caractérisa-
tion des processus d’interaction de champs MPR avec le vide fermionique. Le chapitre 3
présente une validation numérique complète de notre implémentation de l’algorithme
d’«Émission du Vide Stimulée »[303]. De surcroît, des options numériques apparem-
ment équivalentes ont été testées, démontrant une sensibilité non-négligeable des résul-
tats à ces choix dans certains cas. Le chapitre 4 fournit une démonstration explicite de
l’expression analytique du nombre de photons di�usés dans la lumière MPR en fonction
du spectre harmonique (Eq. 8.2), en s’appuyant sur le cas résoluble d’une impulsion
gaussienne. Le chapitre 5 traite de la relation entre notre calcul basé sur l’amplitude de
probabilité de di�usion des photons dans le vide et la résolution d’équations du champ
classiques e�ectives. Nous distinguons di�érents types de développement en série dans
les théories quantiques e�ectives de l’électromagnétisme, en précisant le rôle des solu-
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tions nonperturbatives des équations perturbatives du mouvement. Le chapitre 6 fournit
des estimations du coût en ressources de calcul des simulations d’émission stimulée du
vide. Le chapitre 7 montre les spectres temporels du champ issus de simulation PIC
utilisés pour modéliser la lumière MPR dans notre travail.

La partie III est consacrée aux résultats de nos travaux sur la physique de la
lumière extrêmement intense issue de miroirs plasma relativistes, soit dans le vide,
soit en présence de matière. Le chapitre 8 détaille les e�ets des couplages du champ
électromagnétique avec le champ électron-positron en l’absence de particules. Plus pré-
cisément, nous calculons les spectres des photons di�usés dans le champ électromagné-
tique lui-même dans di�érentes configurations, et spécifions un seuil de puissance pour
l’occurrence de la création de paires de Schwinger dans de tels champs. Le chapitre 9
montre le résultat de l’interaction de la lumière du miroir plasma relativiste avec des
particules de matière, initialement présentes soit sous la forme d’une cible initiale-
ment solide, soit sous la forme d’un faisceau d’électrons à haute énergie. Les propriétés
distinctes des configurations macroscopiques résultantes sont examinées, ainsi que les
processus élémentaires individuels impliqués. En particulier, les cibles solides pour-
raient permettre la formation de jets de plasma électron-positron quantique relativiste
et extrêmement dense, tandis que les collisions de faisceaux de particules à haute én-
ergie avec les impulsions lumineuses pourraient permettre de tester la conjecture de
Ritus-Narozhny, relative au comportement de l’électrodynamique quantique à champ
fort dans un régime où la validité théoriques des notions usuelles de particules, photons,
électrons et positrons, s’e�ondre.

La partie finale IV propose une synthèse du cadre de la théorie quantique des
champs, avec un soin particulier porté à la pertinence en vue de l’électrodynamique en
champs forts, et à ses réductions (semi-)classiques. Le chapitre A o�re un résumé de
la correspondance classique-quantique canonique. Le chapitre B introduit des éléments
de théorie quantique des champs, notamment hors d’équilibre, à un niveau heuristique.

Résumé détaillé par chapitre
Partie I – État de l’art et objectifs

Chapitre 1 – La physique des lasers ultra-intenses aujourd’hui

⌅ La notion d’intensité lumineuse I, exprimée en W.cm¯2, désigne la quantité
d’énergie transmise par le champ électromagnétique par unité de temps à
travers une unité de surfac donnée. Par conséquent, elle quantifie directe-
ment les changments que peut apporter une configuration électromagnétique
donnée à d’autres systèmes, et à quel rythme, définissant donc largement
les processus physiques qui auront lieu. Les lasers ultra-intense atteignent
couramment 1018 W.cm≠2, à laquelle un atome de carbone est entièrement
ionisé par simple suppression de la barrière de potentiel [16], et un électron
initialement au repos devient relativiste en 4 ◊ 10≠16 s environ, soit une
fraction de la période optique du laser. À l’intensité la plus élevée actuelle-
ment atteinte, de I = 1 ◊ 1023 W.cm≠2 [17], ce temps diminuerait à environ
3 ◊ 10≠18 s et même les protons approcheraient la vitesse de la lumière en
un cycle optique. La physique des lasers et de la matière à ultra-haute in-
tensité consiste donc en l’interaction de champs électromagnétiques avec des
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particules chargées ou des états plasma, généralement d’énergies cinétiques
relativistes.

⌅ En pratique, les lasers conçus pour atteindre les intensités les plus élevées
émettent généralement une lumière visible ou en proche infrarouge d’une
longueur d’onde centrée autour de ⁄ = 800 nm, ce qui correspond à une
période laser ”t ƒ 2.67 ◊ 10≠15 s © 2.67 fs (“femtosecondes”) et une durée
totale d’environ dix cycles · ƒ 25 fs, définissant la classe des “laser ultra-
courts”. Le milieu lasant le plus couramment utilisé est constitué de cristaux
de saphir dopés aux ions de titane (Ti:Sa) [16]. Les dernières installations
construites délivrent généralement des impulsions d’énergie totale de 20 J
à 100 J pour des intensités focalisées d’environ 1022≠23 W.cm≠2, le record
actuel étant de 1 ◊ 1023 W.cm≠2 [17]. La plupart des installations en pro-
jet envisagent des énergies supérieures à 100 J, mais ne dépasseraient pas
1024 W.cm≠2, bien qu’une exception notable a�che l’ambition d’une énergie
de 1, 5 kJ en 15 fs (SEL), ce qui se traduirait par des intensités d’environ
2 ◊ 1024 W.cm≠2.

⌅ Dans un champ électromagnétique de fréquence donnée, un électron gagne
une impulsion générique de l’ordre de p ≥ mc›, avec m la masse de l’électron,
c la vitesse de la lumière et [4]:

› ƒ 0.86⁄0[µm]
Ò

I0[1018 W.cm≠2] (B.125)

où ⁄0 est la longueur d’onde du faisceau central et I0 l’intensité maximale
au foyer, › est appelé le paramètre de force de champ classique. Par con-
séquent, la dynamique doit e�ectivement être décrite par la mécanique rela-
tiviste dès que I0 Ø Irel = 2 ◊ 1018 W.cm≠2 pour la longueur d’onde typique
du laser ⁄0 = 800 nm. Lorsque les intensités relativistes sont atteintes, les
interactions avec la matière, i.e. les particules et les plasmas, deviennent
fortement non linéaires, laissant place à des phénomènes physiques tels que
l’accélération de particules à haute énergie ou la génération d’harmoniques
de champ. Il s’agit du domaine classique de la physique à haute intensité,
particulièrement exploré au cours des deux dernières décennies.

⌅ Cet ensemble relativement bien défini de méthodes et de phénomènes physiques
a permis de stabiliser la notion de «régime relativiste»des interactions laser-
matière [1]. Cette situation est toutefois en train de changer avec la mise
en service récente d’installations laser de plusieurs pétawatts (1 PW =
1015 W), éventuellement couplées à des accélérateurs conventionnels [33,
42–44] (cf. également Fig. 1.1). Ces infrastructures ouvrent la perspective
de détecter pour la première fois des signatures de phénomènes de «champ
fort », tels que le recul des électrons par émission de rayonnement, la créa-
tion de paires électron-positron ou des non-linéarités optiques dans le vide,
définissant ainsi un nouveau régime physique d’électrodynamique quantique

en champ fort [2]. Tous ces e�ets sont contrôlés par une échelle de champ
appelée champ de Schwinger,

Champs de
Schwinger

Y
_]

_[

ES ƒ 1.32 ◊ 1018 V.m≠1

BS = ES

c
ƒ 4.40 ◊ 109 T
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se traduisant par une intensité (pour une onde plane) de,

Intensité de Schwinger IS = cÁ0E
2

S
=ƒ 4.62 ◊ 1029 W.cm≠2

Plus précisément, si l’on considère les processus impliquant une particule
massive chargée, électron ou positron, le paramètre d’interaction pertinent
est le champ dans le cadre du repos de la particule, c’est-à-dire [4],

Paramètre quantique
d’interaction

‰ =

Ò
≠(Fµ‹p‹)2

mcES

= “

Ò
(E + v ◊ B)2 ≠ (v · E/c)2

ES

(B.126)
Si ‰ & 1, les e�ets de champ fort deviennent importants. Lorsque les élec-
trons/positrons sont accélérés directement par le champ laser (e.g. configu-
rations laser-cible), on trouve la loi d’échelle [4],

‰ ƒ 0.09⁄[µm]I0[1023 W.cm≠2] (B.127)

Si, au contraire, leur énergie initiale est importante par rapport à celle
fournie par le laser (e.g. configurations laser-accélérateur), on trouve [4],

‰ ƒ 0.18E0[ GeV]
Ò

I0[1021 W.cm≠2] (B.128)

Quoi qu’il en soit, nous comprenons pourquoi les e�ets de champ fort ne
commencent à se manifester qu’à l’intensité la plus élevée possible à ce jour,
et seulement à peine encore. Les miroirs plasma relativistes pourraient per-
mettre d’entrer beaucoup plus profondément dans le régime dominé par le
champ fort.

⌅ Les oscillations collectives non linéaires des populations d’électrons aux in-
terfaces entre le vide et un plasma de densité solide irradié par laser peuvent
se rapprocher d’une réalisation de l’e�et de miroir relativiste [233], notam-
ment en termes d’e�et d’amplification. Ces «miroirs plasma relativistes»(MPR)
sont potentiellement les sources de champs libres les plus intenses à portée
de la technologie actuelle. L’utilisation d’un laser de classe Petawatt comme
faisceau pilote pourrait permettre simultanément de générer des harmoniques
e�cacement, c’est-à-dire la compression temporelle de chaque cycle optique
incident en impulsions d’une durée de plusieurs dizaines d’attosecondes,
et la focalisation à des tailles focales limitées en longueur d’onde, ce qui
se traduirait par des gains d’intensité de deux à cinq ordres de grandeur
[12]. Les champs correspondants I ≥ 1025≠29 W.cm≠2 s’approcheraient de
la valeur critique dans le cadre du laboratoire, ce qui pourrait permettre
d’étudier des e�ets critiques de la sf-QED tels que l’auto-interaction de la
lumière, et faciliterait clairemetn l’entrée dans le régime à dominante quan-
tique de l’EDQ-cf.

Chapitre 2 – Méthodes théoriques et numériques
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⌅ Le cadre théorique le plus complet qui sous-tend actuellement la recherche
sur l’électrodynamique quantique en champ fort est une extension de la
théorie cinétique classique. Il a été construit par une approche heuristique,
en ajoutant des corrections quantiques aux équations cinétiques. Dans ce
contexte, les particules sont décrites par des fonctions de distribution à un
corps régies par les équations de Boltzmann, et le champ électromagnétique
est classique. Tous les phénomènes quantiques sont encapsulés dans i) un
opérateur de collision pour les fonctions de distribution à un corps et ii) des
termes supplémentaires dans les équations de Maxwell. Les sections e�caces
entrant dans les termes de collision sont alors calculées dans une extension de
la théorie de la di�usion en Électrodynamique quantique, qui tient compte
de la présence d’un champ électromagnétique, appelée la représentation de
Furry de l’EDQ-cf [302, 308]. Les nouveaux processus les plus significatifs
sont la di�usion Compton (non linéaire) d’un électron ou d’un positron émet-
tant un photon, et la création de paires électron-positron de Breit-Wheeler
(non linéaire) à partir d’un photon dans le champ fort. Les équations fon-
damentales du modèle cinétique Boltzmann-EDQ peuvent donc finalement
être écrites comme suit [315],

ˆfeû

ˆt
+ p

me“
· ˆfeû

ˆq û e [E + q̇ ◊ B] · ˆfeû

ˆp = CCS[feû ] + CBW[f“]

ˆf“

ˆt
+ c · ˆf“

ˆq = CCS[fe≠ ] + CCS[fe+ ] ≠ CBW[f“]

avec un système de Maxwell inchangée Eqs. 2.12-2.17, et éventuellement des
espèces de particules supplémentaires telles que les ions.

⌅ Le modèle Boltzmann-QED de l’EQD à champ fort a été présenté comme
une extension naturelle de la théorie cinétique classique relativiste, four-
nissant une base théorique pour une conception intuitive de la dynamique
générale champ-particules dans l’EQD à champ fort. De manière plus dé-
cisive, elle permet également une résolution numérique sans approximation
supplémentaire, ou des simulations dites ab initio. L’algorithme sous-jacent
est connu sous le nom de Particle-in-Cell (PIC). Elle est devenu la norme
dans la recherche sur les lasers à haute intensité, et admet maintenant des
extensions pour inclure les événements EDQ, qui seront désignés sous le
nom d’algorithmes «PIC-EDQ». La fonction générale d’un algorithme PIC-
QED est de produire des solutions numériques au système fermé d’équations
aux dérivées partielles Eqs. 2.12-2.17 et 2.21-2.22. Une vue d’ensemble des
variables impliquées et de leurs interactions est présentée dans la Fig. 2.1.
Le principe de l’algorithme consiste à résoudre le système par discrétisation
temporelle et résolution itérative, ce qui permet de calculer les quantités à
des moments ultérieurs à partir de données temporelles initiales.

⌅ Une situation que nous avons étudié en profondeur est l’évolution d’un fais-
ceau MPR dans le vide, et nous souhaitons prédire les e�ets de son auto-
interaction via le champ électron-positron. Dans certaines conditions réal-
istes, il serait possible de dériver une théorie des champs classique e�ec-
tive capturant l’évolution électromagnétique, éventuellement réductible à
des corrections non linéaires de l’équation de Maxwell. Nous avons adopté
un autre point de vue appelé »émission stimulée du vide»(SVE) [303], basé
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sur les amplitudes de transition de création de photons, qui est défini de
manière simple et cohérente en termes de champs obéissant aux équations
classiques de Maxwell. L’estimation précise des quantités d’intérêt, les distri-
butions de photons Eqs. 2.44 et nombre de paires Schwinger Eq. 2.51, peut
être réalisée numériquement pour des configurations de champ arbitraires. À
cette fin, nous avons développé et optimisé un code capable de fonctionner
sur des infrastructures de calcul parallèle à grande échelle.

Partie II – Études théoriques et numériques pour l’électrodynamique
quantique dans le vide

Chapitre 3 – Validation de l’algorithme d’émission stimulée du vide
sur des configurations de référence

⌅ Pour une meilleure comparaison avec la littérature existante [297, 326] et la
compréhension du cas de la lumière MPR, les résultats de notre code SVE
ont été validés sur quatre cas de référence. Les résultats attendus pour cha-
cune de nos observables étant connus, nous avons pu les utiliser pour valider
notre algorithme, et en particulier étudier l’impact de di�érentes procédures
de propagation et d’initialisation. À cette fin, les valeurs des champs à tout
moment ont été calculées par deux méthodes di�érentes. Soit par des ex-
pressions analytiques explicites des champs, dérivées de l’expansion en série
paraxiale [330] prise, sauf indication contraire explicite, à l’ordre 5 et com-
plétée par une enveloppe temporelle gaussienne ; soit par propagation exacte
(Maxwell) d’une configuration de champ initiale via transformées de Fourier
rapides 3D. Dans trois cas de référence sur les quatre étudiés, les résultats
purement numériques ont été complétés par des calculs semi-analytiques des
amplitudes, où il ne reste qu’une intégrale spatiale à une dimension à réaliser
numériquement, ce qui constitue une autre validation indépendante du code.
Ces travaux concluent à une bonne précision du code sous l’une des variantes
d’implémentation possibles que nous avons identifiée.

Chapitre 4 – Estimation analytique de l’auto-di�usion d’un faisceau de
lumière MPR

⌅ Le calcul numérique à grande échelle de la di�usion des photons à l’intérieur
d’un faisceau focalisé généré par un miroir plasma est très coûteux, alors
que l’espace des paramètres décrivant de tels champs MPR est au moins
aussi vaste que l’ensemble des spectres réalistes. Par conséquent, une dériva-
tion numérique des lois d’échelle régissant l’autodi�usion de la lumière MPR
est pratiquement impossible. D’autre part, une modélisation analytique pré-
cise du champ s’avère également di�cile, et le calcul des amplitudes de
di�usion des photons qui en découle est plutôt dissuasif dans tous les cas.
Nous pouvons néanmoins trouver des indications dans des expressions an-
alytiques adoptant des hypothèses simples concernant le champ lumineux
MPR, assimilé à un train d’impulsions gaussiennes. Bien que les prédic-
tions quantitatives semblent hors de portée de cette manière, des tendances
générales peuvent être dérivées pour les quantités pertinentes en fonction
des paramètres du faisceau, y compris une description assez souple du profil
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spectral de la lumière du MPR. Si nous considérons le spectre généré dans
des conditions optimales d’interaction laser-plasma, nous pouvons supposer
le spectre de puissance constant au foyer, auquel cas le nombre total de
photons di�usés dépend simplmemnt du nombre d’harmoniques nh dans le
champ par la relation,

N Ã n2

h

Chapitre 5 – Relation entre l’émission du vide stimulée et des équations
de champs e�ectives

⌅ Le formalisme de l’émission stimulée dans le vide que nous avons utilisé dans
ce travail est explicitement fondé sur l’électrodynamique quantique. Néan-
moins, il nous a conduit à une expression du nombre de photons observables
Eqs. 2.45-2.49 en termes purement classiques d’un spectre de champ rayonné.
Nous explicitons ici la possibilité du raisonnement inverse, en partant des
équations de mouvement de l’action de Heisenberg-Euler, comprise comme
une action e�ective quantique, afin de calculer les nombres de photons défi-
nis à partir des variables de champ classiques, comprises comme des valeurs
d’espérance de champ quantique. Cette approche a également été pour-
suivie dans la littérature, avec l’avantage d’une intégration naturelle dans
le cadre de référence de Maxwell-Boltzmann, y compris les implémentations
numériques PIC-EDQ permettant de résoudre numériquement les équations
de champ autoconsistantes sans autre approximation. Afin de mieux dis-
cerner le pouvoir prédictif de ces méthodes, le domaine d’équivalence avec
le calcul basé sur l’amplitude est précisé, et une typologie des contributions
au-delà de l’ordre principal mise en évidence, délimitant le rôle des solutions
exactes aux équations e�ectives du mouvement.

⌅ Il apparaît que les équations e�ectives du mouvement pour le champ élec-
tromagnétique, associées à une simple hypothèse de champ fort, permettent
de retrouver exactement l’expression SVE du champ di�usé. Nous soutenons
également que dans les grands volumes d’interaction, la hiérarchie locale des
termes d’interaction peut s’e�ondrer en raison de séquences d’interaction de
grande multiplicité ; le rôle des solutions exactes aux équations du mou-
vement e�ectives est alors identifié comme garantissant la cohérence des
approximations opérées au niveau de l’action quantique e�ective, à tout
moment de l’évolution du système.

Chapitre 6 – Volume de calcul des simulations d’émission du vide stim-
ulée

⌅ Si nous considérons un faisceau comprenant des harmoniques jusqu’à l’ordre
nh ≥ 100, la fréquence maximale est bien sûr ‹max ≥ 100‹0, tandis que
la longueur de décroissance du champ est toujours liée à la durée globale
du faisceau · ≥ 10⁄0, y compris dans les dimensions transversales encore
une fois en raison de la grande divergence d’un faisceau très focalisé, ce qui
implique,

Mh ≥ 10 ◊ (2 ◊ 100‹0 ◊ 20⁄0) ◊ (2 ◊ 100‹0 ◊ 10⁄0)2 ◊ 8 Bytes
≥ 100 GB
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Combiné à la contrainte de temps, cela représente un volume de calcul
d’environ 2, 5 ◊ 104 heures CPU par exécution, ce qui souligne la nécessité
d’une infrastructure de calcul à grande échelle.

Chapitre 7 – Spectres MPR issus de simulations PIC

⌅ Voir Figs. 7.2

Partie III – Processus quantiques dans la lumière de miroirs
plasma relativistes

Chapitre 8 – Processus quantiques du vide dans la lumière de miroirs
plasma relativistes

⌅ En dessous du seuil de Schwinger E, B ≥ ES, BS, la dynamique porte néan-
moins la marque du couplage avec le champ électronique par le biais de paires
électron-positron virtuelles, donnant lieu à une auto-interaction électromag-
nétique e�ective avec une composante perturbative seulement supprimée par
des puissances de E/ES, B/BS [327, 347–350]. Étant donné que les champs
macroscopiques les plus puissants pouvant être obtenus à ce jour, fournis par
des lasers femtosecondes de plusieurs pétawatts focalisés près de la limite de
di�raction, atteignent Elas ≥ 10≠3 ◊ ES, l’observation directe de processus
du vide entièrement nonperturbatifs tels que la création de paires semble
exclue dans un avenir prévisible, tandis que les e�orts de recherche con-
sacrés à la di�usion de la lumière par la lumière ont mis en évidence à la fois
la nature encore élusive de ce processus, et la possibilité d’obtenir un sig-
nal perceptible dans plusieurs configurations optimisées [176–180, 182–196,
351] (voir aussi [352] et les références qui y figurent). Ces configurations de
champ impliquent généralement la collision de plusieurs impulsions optiques
intenses ou, dans certains cas, le couplage à un faisceau de photons de haute
énergie, ce qui o�re aux installations existantes et futures des programmes
expérimentaux ambitieux.

⌅ Nous avons montré qu’une focalisation optimale du faisceau produit lors de
la réflexion d’un seul laser de classe Petawatt sur un miroir plasma relativiste
permet de générer autant de photons dans le vide que deux impulsions in-
frarouges Petawatt parfaitement contra-propagatives et focalisées à leur lim-
ite de di�raction, et de réduire de manière significative les puissances laser
nécessaires pour observer la création de paires de Schwinger (P ≥ 200 PW
au lieu des plus de 1 EW requis dans l’infrarouge). La pertinence physique
de ce résultat dépend néanmoins de façon cruciale du degré de contrôle des
interactions laser-plasma réalisable dans une expérience, et du bruit pho-
tonique associé.

⌅ Le couplage à un faisceau auxiliaire bien contrôlé allège considérablement
ces contraintes, car il ne nécessite que de faibles émissions de fond dans la
direction du faisceau de la «sonde», qui pourraient être réglées à proximité
de la contre-propagation avec le faisceau harmonique. En outre, en raison des
niveaux élevés de photons de sonde di�usés de manière inélastique dans ce
cas, l’évaluation de l’origine quantique du signal pourrait alors être e�ectuée
sur une base spectrale, donc avec une confiance potentiellement beaucoup
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plus élevée que sur la seule base d’un critère de discernabilité angulaire.
Comme les gains d’énergie associés sont de l’ordre de +Ê0, l’utilisation d’une
sonde de fréquence Êp ”= Ê0 peut permettre d’obtenir des signatures de vide
quantique encore plus claires dans la gamme de fréquences Êp +Ê0. En e�et,
à condition que la probabilité de présence de particules chargées résiduelles
dans la région de chevauchement des faisceaux soit su�samment faible, ces
fréquences ne pourraient pas être générées par l’interaction laser-matière.

⌅ Si toutefois la dynamique des électrons du miroir plasma entraîne une créa-
tion prolifique de paires avant même que le processus de Schwinger ne se
produise, la détection des e�ets de vide quantique à partir des faisceaux
générés par les particules nécessiterait probablement des installations plus
complexes. Typiquement, ils impliqueraient le désenchevêtrement des étapes
de génération et de focalisation du faisceau MPR, de manière à refocaliser
le faisceau MPR à l’aide d’une optique visible-UV à large bande, soit dans
une partie blindée de la chambre PM, soit peut-être même dans une autre
chambre [365]. À ce moment il deviendrait cepednant d’autant plus facile
d’étudier l’interaction du faisceau MPR avec la matière directement (comme
e.g. dans [300]), ouvrant alors la voie à des régimes non encore observés de
la dynamique des plasmas dans les champs forts. Cette perspective est au
cœur du chapitre 9.

Chapitre 9 – De la lumière des miroirs plasma relativistes aux processus
extrêmes dans la matière

⌅ Lorsque des particules de matière chargées sont présentes dans le champ
fort, les processus sf-QED se déploient à une échelle beaucoup plus vaste
que dans le vide fermionique. Deux facteurs simples concourent directement
à ce fait. A l’échelle des processus élémentaires tout d’abord, le paramètre
pertinent quantifiant l’interaction d’une particule avec un champ électromag-
nétique cohérent est proportionnel à la fois à son impulsion et au champ,
or l’impulsion est proportionnellle au champ. Par conséquent, de très hauts
paramètres microscopique d’interaction peuvent apparaître sous l’e�et d’une
dynamique classique d’accélération dans le champ. Deuxièmement, à l’échelle
macroscopique où de nombreux processus sf-QED non corrélés peuvent se
produire, il existe une chaîne d’événements conduisant à la croissance ex-
ponentielle du nombre de fermions, amplifiant les e�ets quantiques dans la
dynamique globale. Il apparaît qu’en présence de matière, un champ co-
hérent su�samment puissant sur des étendues spatio-temporelles su�sam-
ment grandes se décomposera spontanément et massivement en un système
de nombreux photons, électrons et positrons, à travers des séquences connues
sous le nom de cascades QED. Nous présentons comment ce scénario général
se déroule dans le cas de sources MPR, afin de prédire les propriétés générales
des systèmes résultants, d’identifier les signatures observables des régimes
décrits et de fournir des orientations pour les applications ultérieures.

⌅ On peut envisager trois origines di�érentes pour les particules de matière
initiales. En continuité directe avec le chapitre précédent sur les interac-
tions dans le vide, la production de paires peut se faire directement à par-
tir du champ cohérent dans le vide fermionique (processus de Schwinger).
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Comme les puissances laser requises pour déclencher un tel phénomène
restent actuellement hors de portée, les sources exogènes de matière restent
d’un intérêt primordial. Dans l’optique de maximiser l’interaction champ-
matière tout en conservant la simplicité expérimentale, la focalisation sur une
cible solide est présentée en premier lieu. Grâce au grand nombre de partic-
ules d’amorçage, cette configuration permet des densités électron-positron
extrêmement élevées (> 1028 cm≠3), pouvant aller jusqu’à la formation d’un
plasma relativiste quantique sous la forme de jets e+e≠ quasi-neutres ac-
célérés à des énergie de plusieurs GeV.

⌅ Nous nous intéressons ensuite à la collision du faisceau MPR avec des élec-
trons de haute énergie (10 GeV), produisant des processus microscopiques
remarquables grâce à des paramètres ‰ très élevés (> 1000). Dans des con-
ditions de collision appropriées, on constate que les paramètres d’interaction
quantique atteignables dépassent le seuil du régime de Ritus-Narozhny, ce
qui présente un intérêt théorique de premier ordre. En e�et, le cadre habituel
de l’EDQ-cf, reposant sur un développement en série des interactions pho-
tons hors champ cohérent avec les électrons-positrons «habillés »par le champ,
pourrait alors cesser d’être valide, ouvrant une possible fenêtre empirique
vers un approfondissement de notre compréhension de l’électrodynamique.

Conclusions
Les miroirs plasma relativistes pourraient o�rir la possibilité d’accéder dans un

avenir proche au régime à dominante quantique de l’électrodynamique quantique en
champ fort, via des champs d’intensités comprises entre 1025 W.cm≠2 et 1029 W.cm≠2.
Dans cette thèse, nous avons prédit les e�ets produits par cette lumière dans di�érentes
configurations, soit dans le vide, soit en présence de matière pré-existante.

Les processus quantiques du vide ont été étudiés dans le chapitre 8. En adoptant
le formalisme de l’émission stimulée du vide [303], nous avons pu calculer le nombre
de photons di�usés dans le faisceau MPR, pour deux spectres de faisceau di�érents,
correspondant à di�érentes conditions de génération sur le miroir plasma. Nous avons
montré que la focalisation d’un seul faisceau MPR dans le vide pouvait produire autant
de photons di�usés que la collision frontale de deux impulsions infrarouges de 1 PW
focalisées à la limite de di�raction, ce qui peut simplifier ce dernier dispositif expéri-
mental. Nous avons également calculé le nombre de photons di�usés dans un faisceau
sonde lors de la collision avec une impulsions MPR, ce qui a révélé en particulier que
certains photons pouvaient être di�usés avec des énergies absentes des spectres des
faisceaux initiaux en collision, ce qui pourrait améliorer de manière significative le rap-
port signal-bruit, essentiel dans ces expériences. Enfin, un seuil de création de paires
de Schwinger a été trouvé, indiquant une puissance laser requise d’environ 200 PW, ce
qui est élevé bien que très inférieur aux puissances exawatt typiquement requises dans
les configurations infrarouges équivalentes.

Tous ces résultats ont été obtenus grâce à une implémentation numérique du
formalisme de l’émission stimulée dans le vide, adaptée à la grande taille des simulations
de champ MPR, et donc parallélisée. Cet algorithme a été largement validé sur des
configurations de référence connues, et par rapport à di�érents modes d’implémentation
numérique, comme détaillé dans le chapitre 3. Dans le cas plus complexe des impulsions
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MPR, il a été possible d’obtenir des estimations analytiques, dont la dérivation détaillée
a été présentée au chapitre 4. Nous avons également travaillé à clarifier la théorie en
reliant notre approche à la résolution des équations du champ e�ectif, également étudiée
dans la littérature, comme le résume le chapitre 5.

Les interactions de la lumière MPR avec la matière préexistante ont été présentées
dans le chapitre 9. Dans le cas de l’interaction avec une cible solide, nous avons pu met-
tre en évidence que même à des intensités (comparativement) faibles de 1025 W.cm≠2,
les faisceaux de MPR améliorent les signatures sf-QED de plusieurs ordres de grandeur
par rapport à l’irradiation directe de la cible avec une impulsion infrarouge d’énergie
équivalente. Nous avons également pu étudier la dynamique à une intensité plus élevée
et constater que des amas d’électrons et de positons de très haute densité se forment
alors et sont accélérés jusqu’à des énergies de l’ordre du GeV. Dans le cas d’une col-
lision de lumière MPR avec un faisceau d’électrons de haute énergie, nous avons pu
calculer les paramètres ‰ obtenus, et établir leur pertinence pour la physique autour
du régime de Ritus-Narozhny de l’EDQ-cf, ainsi que les signatures de ces interactions
sous la forme de spectres de particules émises.
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