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The present thesis aims at specifying the physical processes to occur in the extremely intense light of relativistic plasma mirrors, with intensities ranging from 10 24 to 10 29 W.cm 2 , in different configurations. These works take ground in the continuous progress of achievable light intensity offered by ultra-short high power lasers, motivating the search for strong-field Quantum Electrodynamics phenomena, yet essentially unobserved to this day. While achieving such experiments would allow for the test of fundamental theories, either established or speculative, together with the generation of remarkable secondary sources of particles, many would require intensities beyond 10 25 W.cm 2 that even Petawatt-class infrastructures can not reach. Relativistic Plasma Mirrors (RPM) offer one promising alternative for producing the required field strengths with present day technology.
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Résumé :

La thèse présentée vise à spécifier les phénomènes physiques appelés à se produire dans la lumière extrêmement intense issue de miroirs plasma relativistes, d'intensités comprises entre 10 24 et 10 29 W.cm 2 , dans différentes configurations. Ces travaux s'inscrivent dans la continuité des progrès continus de l'intensité lumineuse accessible par lasers ultra-brefs de haute puissance, motivant la recherche de phénomènes relevant de l'électrodynamique quantique en champs forts, quasiment inobservés à présent. Si réaliser de telles expériences permettrait le test de théories fondamentales, établies ou spéculatives, ainsi que la génération de sources secondaires de particules remarquables, nombre d'entre elles requièrent des intensités supérieures à 10 25 W.cm 2 , hors de portée même des infrastructures de classe Pétawatt. Les miroirs plasma relativistes (MPR) offrent une alternative séduisante, permettant de réaliser les champs forts requis avec les technologies actuelles.

L'interaction de la lumière MPR avec le vide quantique du champ électron-positron a été étudiée via la diffusion photon-photon, dont nous calculons les signatures expérimentalement observables. De même, un seuil d'intensité est défini pour la conversion du champ électromagnétique MPR dans le vide en paires électron-positron par le processus de Schwinger. L'interaction avec de la matière préexistante a été envisagée sous deux formes : la focalisation du faisceau MPR sur une cible solide, ou la collision avec un faisceau d'électrons de 10 GeV. Dans le premier cas, une production exponentielle de particules a lieu par l'effet de « cascade QED », aboutissant à des faisceaux d'électron-positron relativistes de densité extrême (> 10 28 cm 3 ) et de durée attoseconde. Dans le second cas, le champ électrique dans le référentiel du faisceau d'électrons atteint des valeurs telles que, selon la conjecture de Ritus-Narozhny, les notions usuelles d'électrons, positrons et photons perdraient leur validité théorique, ouvrant une possible fenêtre empirique sur un régime d'interactions lumière-matière actuellement inconnu.

through the process of light-by-light scattering, whose experimentally observable signatures were computed. We also specified an intensity threshold for the conversion of RPM light into electronpositron pairs via the Schwinger process. Interaction with pre-existing matter was considered in two forms : the focusing of the RPM beam on a solid target, or the collision with a 10 GeV electron beam. In the first scenario, an exponential rise of particle number takes place by the effect of "QED cascade", resulting in extreme density (> 10 28 cm 3 ) relativistic electron-positron beam of attosecond duration. In the second scenario, the electric field in the reference frame of the incident electron beam reaches values so high that, according to the Ritus-Narozhny conjecture, the usual notions of electrons, positrons and photons break down, possibly opening an empirical window on a currently little known regime of light-matter interaction.

Introduction

Electromagnetic interactions permeate virtually all tangible phenomena, and this reality was elucidated more than a century ago. Yet, this knowledge could never materialize as a practical force fully until the laser was invented, o ering unprecedented degrees of control on the electromagnetic field, and thus on its interactions with matter. Laserbased systems have since then blossomed towards all spheres of production, including fundamental science.

In particular, in the last two decades a consistent research field has emerged around "ultra-high intensity" physics, studying the interactions of the most intense achievable laser pulses with matter, thereby converted into particles and plasmas. These e orts could uncover many rich phenomena and gave birth to several applications. Though benefiting from steady progress in laser technology, leading to a continuous rise in laser intensity, these methods could rely on a qualitatively well-defined set of elementary physical processes, all described by the classical mechanics of fields and particles at relativistic energies [1].

The strong-field frontier of ultra-high intensity physics

The current situation is however likely to be a turning point, for last-generation infrastructures, lasers of more than a Petawatt (10 15 W) peak power, hold the potential for revealing radically new processes. All would stem from the quantum aspect of particles and fields, and collectively delineate the physical realm of "strong-field Quantum Electrodynamics" (sf-QED) [2]. Accessing such phenomena would prove of both fundamental and practical value, allowing for empirical test of established or speculative theories [3], and for the generation of exotic sources of radiation and particles [4]. This strong-field frontier of laser physics has consequently received a growing attention, and now drives the regular activity of many scientists as well as the commissioning of ambitious experimental facilities.

Nonetheless, if first signatures of these e ects can be detected in a near future [3,4], the path towards deeper regimes of sf-QED unfortunately appears much steeper than its shores. Consider for definiteness the central sf-QED process of the conversion of a photon into an electron-positron pair. If forecast facilities can expect to detect some created positrons, the strong depletion of the field into an electron-positron plasma and their emitted photon radiation, producing a qualitatively new physical dynamics, would only occur at ten to a hundred times higher intensities still. However, multi Petawattclass infrastructures are now approaching industrial scales, implying ever more complex laser engineering, so that a technological wall can not be excluded in the short term1 [5]. As a consequence, alternative schemes towards stronger fields already are actively being investigated [4].

Strong-field Quantum Electrodynamics in the extremely intense light of relativistic plasma mirrors

Relativistic plasma mirrors appear as one very promising way to achieve the highest possible fields with present day lasers [6][7][8][9][START_REF] Der Brügge | Enhanced relativistic harmonics by electron nanobunching[END_REF][START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF]. As an intense pulse reaches a sharp solid interface, it turns it into a dense plasma which oscillates at speeds close to that of light, thus reflecting the pulse while compressing it by Doppler e ect. Properly tuning this interaction, the reflected pulse can also be naturally focused to spot sizes only limited by its now shortened wavelength, concentrating light in much tighter volumes than allowed by the initial laser source, which results in intensity increases between two and five orders of magnitude [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF][START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF]. The corresponding fields would come near the critical value at which a field spontaneously decays into electron-positron pairs, known as the Schwinger field, which may allow studying critical sf-QED e ects such as light self-interaction, and certainly would facilitate entering deep into the quantum-dominated regime of sf-QED.

The core of my work has consisted in specifying the main physical phenomena to be expected at the interaction point of these relativistic plasma mirror sources. In this thesis, I will be presenting the predictions derived from a closer study of di erent interaction scenarios. Light couplings to the electron-positron field in a vacuum will be studied first, deriving observable signatures in di erent experimental setups, including scattered photon spectra and Schwinger pair creation threshold. These subtle e ects when no matter is there leave room to to prolific pair creation as soon as one charged particle comes in. This process of field-matter interaction occurs for di erent types of initial seed, a Schwinger pair, a dense target, high-energy electron beams, a ecting the involved elementary processes and the macroscopic system state. In particular, solid targets could allow the formation of relativistic quantum and extremely dense electron-positron plasma jets, while high-energy particle beams collisions with the light pulses could allow testing the Ritus-Narozhny conjecture, pertaining to the behavior of strong-field Quantum Electrodynamics in a regime where even the notion of photon, electron and positron particles breaks down.
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The material and intellectual context in which the present thesis takes ground is exposed, introducing our aims and methods.

Chapter 1 presents the state-of-the-art of ultra-high intensity field sources and the current horizon of accessing qualitatively new strong-field phenomena. Relativistic plasma mirrors are introduced as a bridge towards much stronger fields still, motivating our study of expected processes in their light.

Chapter 2 reviews a reference theoretical framework encompassing this physics, and its numerical realization in the form of ab initio PIC-QED simulations. A more specialized formalism we used for computing vacuum quantum electrodynamical processes is introduced as well.
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Part I

State-of-the-art and aims

Chapter 1

Plasma mirrors as a path towards strong electromagnetic fields

In the wake of steady progress in laser technology opening up to an ever wider range of physical configurations, a consistent research community has developed around socalled "ultra-high intensity" physics. Although the quantitative meaning of such name has been shifting by many orders of magnitude already, during the last two decades it has been referring to a fairly stable set of applications and physical regimes, essentially described by the classical mechanics of fields and particles at relativistic energies. The current situation is however likely to be a turning point, for radically di erent physical phenomena are expected in last-generation facilities, either planned or under construction, revealing the quantum aspect of particles and fields.

Relying on a scheme explicitly designed to foster the ongoing transition, the present thesis fully takes ground in such context. By generating pulses exceeding forecast laser intensities by two to five orders of magnitude, relativistic plasma mirrors could allow entering the quantum-dominated regime of strong-field Quantum Electrodynamics, with fundamental and instrumental implications. Our research was devoted to try and predict some of them explicitly.

In this chapter, we wish to provide an understanding of how this work articulates with its overall material context. An overview of ultra-high intensity lasers physics and technology will be given first, detailing the performances expected from last generation infrastructures. The novelty encountered at higher intensity will then be exposed, with an emphasis on the physical consequences of strong-fields, essentially leaving aside the rich technicalities of their (actively developing) theoretical depiction. After a review of other means envisaged to reach strong enough fields, relativistic plasma mirrors are introduced as a promising way to magnify laser intensities, in principle up to near the Schwinger field, at which the electromagnetic and electron-positron fields significantly interact even in a the absence of particles. Last section will finally expose the directions pursued in this work.

Physics of ultra-high intensity lasers today

Since the first laser systems were built in the 1960s their derivatives have fanned out to virtually all spheres of production, with individual, industrial and scientific uses. Within the corresponding variety of designs, some were dedicated to achieving the highest possible light intensity. This number quantifies the transformation that a laser pulse can induce in another system, locally in space in some period of time, and thereby determines the range of underlying physical processes, or regime. For the last two decades at least, these instruments have grown into an autonomous branch of fundamental research, generating a specific set of phenomena, opening to exclusive features in applications, thus motivating ever higher intensity systems.

In this section we briefly trace back this evolution, grounding the view of an homogeneity of the physical regimes accessed in the last two decades, all characterized by classical electrodynamics with relativistic particles. For definiteness, typical applications will be reviewed, better illustrating our stance. Finally we will make contact with the state-ofthe-art, operational or forecast systems, so as to introduce the new strong-field regime they open to, and give a sense of the scales relevant for the corresponding phenomena and infrastructures.

Decades of progress in attainable light intensity

Electromagnetic intensity The physical notion of "light intensity" refers to local properties of the electromagnetic field. The formulation of electromagnetic phenomena in terms of a field distinct from other known physical systems1 certainly is among the most incidental achievement of XIXth century Physics [START_REF] Whittaker | A history of the theories of aether and electricity: from the age of descartes to the close of the nineteenth century[END_REF]. When gravitational phenomena can be neglected, a field is fruitfully conceived as variables attached to each point of space, physical as they can interact with other physical systems. In particular, field variables exchange energy among themselves and their environment, which classically translates into a continuity equation [START_REF] Reuse | Electrodynamique, fr[END_REF],

d dt ⁄ dxu em (x, t) + j ˆ d ‡ • (x, t) = ≠ ⁄ dxw m (x, t) (1.1)
with t the time variable, a space domain of boundary ˆ , u em the local electromagnetic energy density, w m the net energy exchange rate with any non-electromagnetic system2 and the Poynting vector. It therefore appears that energy is transported by the electromagnetic field from one space region to the next, at a rate given by the flux of the Poynting vector through the considered interface. Then, for any oriented surface ,

Electromagnetic power [W]: P

= j d ‡ • (1.2)
is the instantaneous power transmitted by the electromagnetic field through , expressed in Watts [W], and we define,

Electromagnetic intensity [W.cm ≠2 ]: I , Î Î (1.3) the local instantaneous electromagnetic intensity, conventionally expressed in Watts per centimetre squared [W.cm ≠2 ] in laser physics. This quantity relates to the local values of the electric and magnetic vectors as,

I = c 2 Á 0 2 ÎE ◊ BÎ (1.4)
with Á 0 the vacuum dielectric permittivity and c the speed of light. On the other hand, the local instantaneous electromagnetic energy density is given by,

u em = Á 0 2 1 E 2 + (cB) 2 2 (1.5)
In the absence of interaction with matter, the field equations of motion entail the propagation of any local disturbance in the field at a speed c, resulting in travelling configurations known as electromagnetic waves. Moreover, such propagation generically leads to a symmetry between the local values of E and B, resulting in a direct relation between u em and I. In the limiting case of a plane wave (always indicated by a p.w. superscript in the following) we find, I p.w.

= cu em p.w.

= cÁ 0 E 2 (1.6)
Finally, in the presence of charged matter particles,

w m = j • E = ÿ i q i vi • E (1.7)
with q i the charge of the i-th kind of present charged particle vi their local mean speed, adopting a macroscopic description as relevant in plasma physics (cf. Sec. 2.1.1). Now as charged particles are a ected by the Lorentz force,

f = q (E + v ◊ B) (1.8)
it clearly appears that high intensity fields will induce fast and significant energy transfers.

In concrete terms, immersed in a wave of intensity I = 10 18 W.cm ≠2 , already attainable 20 years ago [5], a carbon atom becomes fully ionized simply by potential barrier suppression [16], and an electron initially at rest becomes relativistic in about 4 ◊ 10 ≠16 s, that is a fraction of an optical laser period. At the currently highest intensity achieved, of I = 1◊10 23 W.cm ≠2 [17], this time would decrease to around 3◊10 ≠18 s and even protons would near the speed of light in an optical cycle. All considered "ultra high-intensity" laser-matter physics therefore consist in the interaction of electromagnetic fields either with charged particles or plasma states, typically of relativistic kinetic energies.

High-intensity laser systems Lasers Physics forms a vast field of study [18]. From an instrumental perspective, lasers can simply be conceived as a way to produce electromagnetic waves with a unique degree of coherency and control, notably on energy, duration, direction and wavelength in the broadly near-optical range. These properties allow in particular for an e cient focusing of the generated pulses, down to near an optical wavelength, and thereby very high electromagnetic intensities.

In practice, lasers designed to reach the highest intensities typically emit visible to near-infrared light with a wavelength centred around ⁄ = 800 nm, corresponding to a laser period "t ƒ 2.67 ◊ 10 ≠15 s © 2.67 fs ("femtoseconds") and a total duration of about ten cycles • ƒ 25 fs, defining the class of "ultra-short lasers". The most commonly used lasing medium consists of sapphire crystals doped with titanium ions (Ti:Sa) [16]. In a first approximation, one may consider that the temporal properties of the pulse are mostly shaped already at its emission from the primary laser cavity, or "oscillator", however its energy is then very low, of the order of a few µJ. The pulse therefore is furthermore "amplified" passing through additional lasing media, leveraging on "chirped pulse ampmification" (CPA) 3 [1, 19], resulting in final energies of up to hundreds of Joules.

Historical trends for general high-power lasers in the last two decades can be read in Fig. 1.1. Three distinct data groups can be discerned. Two facilities stand apart on the far end of the energy spectrum, they are aimed at thermonuclear fusion and therefore not conceived for achieving high intensities 4 . There is another group centred around a maximal intensity of 10 22 W.cm ≠2 , with durations of the order of a picosecond (10 ≠12 s). Those are called "long pulses" and interact with matter on hydrodynamical scales. However, their intensity is strongly bounded by their comparatively narrow spectral content which hinders application of the CPA technique to them.

On the opposite, we see that the most recent lasers responsible for the peak intensity increase beyond 10 22 W.cm ≠2 belong to the last category of "ultra-short" lasers, with a duration of about 20 ≠ 30 fs. Last built facilities typically have a total energy of 20 J to 100 J for focused intensities of about 10 22≠23 W.cm ≠2 , with a current record set at 1 ◊ 10 23 W.cm ≠2 [17]. Most forecast facilities envision energies above 100 J but would not exceed 10 24 W.cm ≠2 , though one notable exception displays the ambition of 1.5 kJ energy in 15 fs (SEL), which would result in intensities of around 2 ◊ 10 24 W.cm ≠2 .

Ultra-high intensity physics in the classical regime

As made clear in Fig. 1.1, all the more realistically assuming pulse focusing looser than the di raction limit, all high-intensity lasers of the last two decades have been fully grounded in the "relativistic electron" regime. In order to better delineate the corresponding physical phenomena, we will now provide an elementary formalization of their shared particle dynamics and briefly review their most actively studied applications.

Classical relativistic particle dynamics in a field

Let us simply define the relativistic regime reasoning on a the dynamics of a single electron in an external field 5 . Introducing the three spatial coordinates of the electron q = (q 1 , q 2 , q 3 ) as our variables the Lagrangian writes [22],

L(q, q) = ≠mc 2 Û 1 ≠ q2 c 2 ≠ e q • A(q) + e"(q) (1.9)

with " and A the electromagnetic potential components. The canonical momentum is,

P © ˆL ˆq = p ≠ eA (1.10)
where we have introduced the "kinetic momentum" p = m" q with " = 1/ Ò 1 ≠ q2 /c 2 , and the Hamiltonian writes, H = mc 2 " ≠ e" (1.11) Now the equations of motion simply give,

Y _ _ _ _ ] _ _ _ _ [ q = ˆH ˆP = p m" Ṗ = ≠ ˆH ˆq = ≠mc 2 Ò" + eÒ"
(1.12)

(1. [START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF] with Ò = ˆ/ˆq, or focusing on the momentum equation 6 ,

d dt (p ≠ a) + c " Òa • (p ≠ a) = ≠ c 2" Òa 2 + ÒÏ (1.14)
where we have introduced the normalized kinetic momentum p = p/mc and potentials a = eA/mc, Ï = e"/mc. The first term on the RHS is quadratic and interestingly does not depend on the sign of charge, it corresponds to a ponderomotive force, driving all charges away from strong field regions.

Then, as can be seen e.g. perturbatively expanding p ≠ a for small Òa/" in a gauge Ï © 0 in Eq. 1.14, an electron initially at rest will generically evolve in the field with a normalized momentum amplitude a. For instance, in a plane wave, invariance along the transverse and wavefronts directions directly yields [23], (1.16)

for an electron initially at rest in a 0 of a, where p ‹ (p Î ) refer respectively to the transverse (longitudinal) components with respect to the wavevector. 5 Working in the canonical formalism (cf. App. A), the self-consistent description of N particles and the field would require at least the "contrained" formalism and will therefore not be pursued here [21]. A theoretical framework adequate for plasma physics is introduced in sec. 2.1.1.

6 With the dyadic convention Òa • P © ˆi(a j )P j for a i b i © q i a i b i .

Part I, Chapter 1 -Plasma mirrors as a path towards strong electromagnetic fields

Considering a field of maximal amplitude A 07 , we therefore define, Classical field strength parameter › , eA 0 mc p.w.

© eE 0 mcÊ 0 (1.17)

where the second equality holds for a monochromatic plane wave of frequency Ê 0 . If › Ø 1, we have ÎpÎ Ø mc and the electron motion is relativistic. The parameter › hence controls dynamics and is called the classical field strength parameter.

In terms of intensity, modelling a focused beam at lowest order in a paraxial approximation we find the practical relation [4],

› = 0.86⁄ 0 [µm] Ò I 0 [10 18 W.cm ≠2 ] (1.18)
where ⁄ 0 is the central beam wavelength and I 0 the peak intensity at focus. Therefore, dynamics needs indeed be described by relativistic mechanics as soon as I 0 Ø I rel = 2 ◊ 10 18 W.cm ≠2 for the typical laser wavelength ⁄ 0 = 800 nm.

When relativistic intensities are reached, interactions with matter, i.e. particles and plasmas, become strongly non-linear, leaving room for physical phenomena such as highenergy particles acceleration or field harmonics generation. For more definiteness we now briefly review some of the most salient.

Applications in a vacuum: direct particle acceleration and scattering One straightforward application of ultra-high intensities is to accelerate electrons directly by interaction with a light pulse. This configuration is referred to as "Vacuum Laser Acceleration" (VLA) [26][27][28][29][30]. In practice, this method must overcome the di culty that in order to perform a net energy gain, electrons must exit the strong field region at the right time, without entering decelerating field gradients. This implies tuning the spacetime field profile, or the electron injection conditions on sub-wavelength scales, which indeed proves highly non-trivial, though plasma mirrors have been suggested to this end (cf. infra).

Another possibility is to proceed in the reverse direction, using the laser pulse to strongly decelerate high-energy electron, and thereby produce high-energy photon beams of high brightness. This process is called "Inverse Compton scattering" [4,[31][32][33]. Using electron beams of a hundred MeV to a few GeV, multi-MeV photons can be generated [4], opening to nuclear phenomena. Electron beams in this energy range can be produced in radio-frequency accelerators, or directly by another laser pulse via as explained below.

Application in an underdense plasma: laser wakefield electron acceleration

One promising use of ultra-short and intense pulses is the acceleration of electrons up to GeV energies on mm to cm scales [1,34]. The basic process consists in sending an intense laser pulse in a gas of density below the critical plasma density at the laser wavelength, or underdense, allowing the pulse propagation and resonant generation of plasma waves in its wake by the ponderomotive force. Such plasma structure results in strong electrostatic fields configurations (around ≥ 100 GV.m ≠1 ) travelling with a phase velocity close to c, and thus able to e ciently accelerate copropagating electrons. The present energy record is around 8 GeV for in 20 cm, and high quality 100 MeV beams achieved on cm scales are routinely operated [35].

Applications with overdense targets: ions acceleration and plasma mirror high harmonics generation

As the target density is increased, its plasma frequency eventually exceeds that of the pulse. At this point, the laser does no longer propagate inside the plasma giving rise to qualitatively new phenomena. For instance, ion beams can be expelled from initially solid target with up to MeV energies by the "Target normal sheath acceleration" mechanism [36][37][38]. The resulting ion beams have in particular comparatively high densities, which is of interest e.g. to study fast nuclear processes [39]. Ion beams have other interesting properties, relevant notably for medical applications, justifying active research in several laser-based ion acceleration schemes [37,38].

Solid targets can also be used to act on laser light. In particular, high-harmonics generation of the fundamental laser frequency can be performed on overdense plasmas from the non-linear surface electrons oscillatory motion [START_REF]k m,f ÍÈk 1,f . . . k m,f |Í fl0 for fl 0 = |k 1,0 . . . k n,0 ÍÈk 1[END_REF]. Besides, relativistic fieldelectrons interactions lead to kinetic processes such as electron injection in the reflected field. These electrons essentially travel in-between the reflected field fronts, driven by its Lorentz force until they are expelled from the beam as a result of its finite transverse size, typically after its focal point [41]. When the intensity is increased beyond ≥ 10 18 W.cm ≠2 , laser-solid interaction can enter the so-called "relativistic plasma mirror" regime which, by coherent time-compression of incident light into attosecond (10 ≠18 s) pulses, has been numerically demonstrated to provide a source for extremely high-intensity fields. This physical process provides the ground for the present work, and will be detailed in Sec. 1.3.5.

High-intensity physics at the strong-field frontier

All the reviewed applications have been demonstrated experimentally in the last two decades, at least in their principle, for they simply require reaching › ≥ 1 or even less, e.g. for laser wakefield acceleration. Though the development of high power lasers [5] has naturally benefited these fields and significant progresses were made, the underlying elementary physical processes have remained qualitatively the same. This relatively well-defined set of methods and physical phenomena allowed for a stabilized notion of "relativistic regime" of laser-matter interactions [1].

This situation is however shifting with the recent commissioning of multi-petawatt (1 PW = 10 15 W) laser facilities, possibly coupled to conventional accelerators [33,[42][43][44] (cf. also Fig. 1.1). These infrastructures open the perspective of detecting signatures of "strong-field" phenomena for the fist time, such as electrons recoils by radiation emission, electron-positron pairs creation, or optical nonlinearities in a vacuum, defining a new physical regime of "strong-field electrodynamics" [2]. All those e ects are controlled by a field scale called the Schwinger field, More specifically, considering processes involving a massive charged particle the relevant interaction parameter is the field in the rest frame of the particle8 , namely [4],

Schwinger field strengths

Quantum interaction parameter ‰ = Ò ≠(F µ‹ p ‹ ) 2 mcE S = " Ò (E + v ◊ B) 2 ≠ (v • E/c) 2 E S (1.21)
If ‰ & 1, strong-field e ects become sizeable. When electrons are accelerated directly by the laser field (e.g. laser-target configurations) one finds the scaling law [4],

‰ ƒ 0.09⁄[µm]I 0 [10 23 W.cm ≠2 ] (1.22)
If, alternatively, their incoming energy is large compared to that provided by the laser (e.g. laser-accelerator configurations) one finds [4],

‰ ƒ 0.18E 0 [ GeV] Ò I 0 [10 21 W.cm ≠2 ] (1.23)
Either way, we understand why only at the highest possible intensity to date strongfield e ects start to manifest, and hardly still. In the following, we are going to review some schemes specifically designed to reach the strong-field regime, using lasers or not, ending with relativistic plasma mirrors, that we show could allow entering much deeper into the strong-field dominated regime.

Before proceeding, we now provide a physical understanding of the Schwinger field value, so as to reach a bird's eye view of the motivations for achieving strong fields.

The realm of strong electromagnetic fields

Relating the above given figures for the electromagnetic intensity to distinct physical processes requires a definite theoretical framework. All qualitatively new processes at strong fields are naturally depicted by quantum mechanics in its special relativistic formulation, that is quantum field theory. As the quantum description of fields has long been remote from any practical use in a macroscopic context such as laser-plasma interactions, it would be desirable to properly introduce, if not adapt, concepts from both physical domains and their connection. Some general elements are provided to this purpose in App. B, and a more specific focus on some operational methods of strong-field QED in Chapter 2. In this first section, we take a preliminary step by giving a qualitative justification of the link between strong and quantum fields, which may appear contradictory at first glance.

On the other hand, the physical configurations in which these quantum processes are expected to take place, e.g. in the bulk of a dense macroscopic plasma immersed in a strong coherent electromagnetic field, are very estranged also from those to which Quantum Field Theory is routinely applied 9 , and thus tested. In particular, if Quantum Electrodynamics is rightfully celebrated as the most accurate theory in the history of science, its records were established in a near vacuum state while, experimentally, the realm of strong fields mostly remains terra incognita to the present days. We will therefore review the motivations for actually achieving such exotic configurations in the laboratory, and show that they pertain both to fundamental and applied physics.

Why do quantum phenomena occur in strong fields?

In the absence of a dimensional constant in the theory of vacuum electromagnetism 10 , there is in particular no field scale past which the dynamics should be expected to qualitatively change. Furthermore, in the event of such change it can first seem obscure why it should involve quantum mechanics, commonly associated to "small scale" phenomena 11 . As we will now show, this di culty is lifted when the coupling to charged massive particles is considered.

Introducing a mass m and charge Q, one can build spatial scales which equivalently translate in field scales. Depending on the use of the Planck constant in this process or not, classical and quantum scales can be built and compared. For it plays a primary role as the lightest known charged particle, general expression will be numerically evaluated for the (anti-)electron parameters. Starting from the classical theory, a classical electromagnetic length can be defined as, (1.24) the distance between two point particles at which their electrostatic interaction energy equals their rest energy. Such quantity appears in radiation phenomena, in particular the self-interaction of a particle through its own field [23]. The corresponding field scale follows as,

Classical EM radius r c = Q 2 4fiÁ 0 mc 2 e ƒ 2.82 ◊ 10 ≠15 m

Classical critical field

E c = mc 2 Qr c = 4fiÁ 0 m 2 c 4 Q 3 (1.25) e ƒ 1.81 ◊ 10 20 V.m ≠1 (1.26)
which produces a work of mc 2 on a distance r c . The predicted physical e ect consists in the modification of the particle dynamics as a result of its energy-momentum transfer to the electromagnetic field. The corresponding force is known as "radiation reaction" and is very well described by the approximate . Although some intriguing mathematical questions arise when treating this self-interaction exactly [46][47][48][49][50], this phenomenon arguably does not lead to fundamentally new physics.

Let us now write the quantum and relativistic length scale 12 ,

Compton length ⁄ C = mc e = r c /- (1.27) e ƒ 2.43 ◊ 10 ≠12 m (1.28) 10 
As read e.g. in the action, or Maxwell's equations. 11 More precisely actions small compared to ~, which quantifies the non-commutativity of conjugate variables, or equivalently small quantum numbers ÈOÍ fl compared to commutators È[O, O Õ ]Í fl . This is true of the electromagnetic field as well, for instance when the total field energy becomes of the order of its constituent photons, or more specifically when the photons number per mode becomes small, revealing their discreteness. Following [45], the intensity below which such e ect becomes sizeable can be estimated as I 0 ≥ c ~Ê0 ⁄ 3 0 , i.e. I 0 . 10 4 W.cm ≠2 for a central wavelength ⁄ 0 = 800 nm. 12 It is called the Compton length of the particle. As the scale controlling free propagators in relativistic quantum theory (cf. App. B.2.2, Eq. B.73), it can be interpreted as the quantum coherence length (that is, reasoning on a position observable, the wavelength of probability interference terms Eq. A.43) of processes involving energy-momentum transfers of the order of the particle rest-mass.
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Quantum critical field (Schwinger field)

E s = m 2 c 3 Q~e = -E c (1.29) e ƒ 1.32 ◊ 10 18 V.m ≠1 (1.30)
The smallness of -therefore implies that in practice the dynamics of fields and particles changes according to the consequences of quantum mechanics before the classical strongfield regime is reached. Now as all fundamental systems are fields permeating all space (cf. Sec.B.1.1), such coupling can never be discarded, even in the absence of charged particles in the initial state 13 . Dynamics of the electromagnetic field will therefore depart from Maxwell's theory due to interaction with the electron-positron field whenever E, B ≥ E S , B S 14 , hence consistently defining a strong field regime of electrodynamics. We can further understand this quantum threshold E s , known as the Schwinger field, noticing that it produces a work of mc 2 on a distance ⁄ C . In other words, it presents an interaction potential of a rest-mass energy on a quantum coherence scale, therefore allowing sizeable transition amplitudes between states with di erent number of particles. An even more direct picture can be given introducing a field frequency Ê, as then e⁄ C E s /~Ê = n absorbed = mc 2 /~Ê, explicitly showing that an electric field amplitude E s allows the absorption of enough photon to gain a total mc 2 energy within a coherence length.

At this point all features of quantum mechanics naturally intervene, discreteness manifests through matter particles creation/annihilation and finite energy-momentum photon emission, randomness by the probabilistic nature of any of these processes, and indeterminacy between observations allows for particles self-interactions and notably the so-called vacuum polarization via transitional electron-positron states. These processes clearly affect the physics of electromagnetism much more profoundly than classical particle selfinteraction, and indeed lead to phenomena as incidental as coherent emission from highly magnetized pulsars [51][52][53], disruption [54,55] and radiation [56,57] in beam-beam collisions, or substantial depletion of coherent light into electron-positron pairs [58,59]. We devote next section to try and obtain a more systematic picture of the interest of actually observing such fields in the laboratory or in the universe.

The scientific value of accessing strong-field physics

Taking as an anchor point the above given description of the strong-field regime as the onset of fundamental fields interactions through the non-vanishing electromagnetic field expectation value, implications of observing such physics in controlled conditions can be drawn. As we will now expose, strong-fields then appear to open appealing perspectives for fundamental physics, phenomenology of known systems, as well as instrumental applications.

An uncharted experimental territory

The most naive argument in favor of achieving fields of unprecedented strengths in the laboratory is that, by definition, we do not yet know what follows in a strict empirical sense. As technology progresses, the primary role of scientific research can indeed be conceived as to actually cover the practically available experimental space. This line of reasoning is typically more authoritative in fundamental research, for instance particle physics [60], which directly aims at extending the frame in which observation is thought. Now as of course all that is practically possible cannot practically be done, and given that ultra-high intensity lasers are becoming of large infrastructures scales, refined criteria for what should be pursued have to be put forward based on relevant theory. It turns out that several arguments have emerged in this direction, pointing at reasonable possibilities to test speculations beyond the Standard Model with strong fields [3]. The rationale then is to scan parameter space regions either competitively compared to more expansive means, or some that could not be reached otherwise.

A first testable class of theories is those predicting new particles outside the Standard Model. There exists a large number of such theories, for some significant part motivated by the search of "dark matter" fields that would help solving the persistent gravitational anomalies observed beyond stellar scales [61]. Strong-fields would typically stimulate some processes involving such particles if charged, and thus contribute to exclude larger region in their parameter space. These could be for instance "axion-like" [62-70], "mini-charged" particles [71][72][73][74][75][76], or magnetic monopoles [77][78][79][80]. Another possibility would be to detect modifications to QED without additional fields, for instance through nonlinearities in its lagrangian, as in , or noncommutativity of spacetime coordinates [84].

A di erent approach would be to use strong-fields as a source for secondary particles, e.g. bright high-energy photon or electron beams, so as to probe processes beyond the Standard Model in their subsequent interaction with a chosen target. This is the idea of the LUXE-NPOD experiment [85].

Windows to the Standard Model Looking at the trend in high-energy physics, besides constraining potential extensions of the Standard Model access to a new physical regime can also prove a valuable source of information on the already discovered fields. The strong-field directly couples to all electrically charged particles, which thus entails a variety of electroweak processes [86][87][88][89], as well as coupling to the muon generation 15 . More generally, one can revisit all kind of processes in the presence of a background field, which can boost interactions by providing extra-energy momentum to the involved particle, including Higgs production [90-92], kaon decay, CPT symmetry violation [93] and Z boson production [94]. As neutrino also indirectly couple to the strong-field via charged particle loops, an opportunity is given to access some of their properties [95][96][97][START_REF] Formanek | Strong fields and neutral particle magnetic moment dynamics[END_REF][START_REF] Dvornikov | Spin-flavor oscillations of dirac neutrinos in a plane electromagnetic wave[END_REF][100][101].

Though spacetime and field scales are di erent, some bridges could also be made with heavy-ion collisions, which indeed generate extremely strong electromagnetic and color fields [102][103][104][105][106][107][108].

A forge for formal tools All the above options require very accurate predictions in order to result in any experimental evidence. Therefore, research in strong-field QED is likely to catalyse the development and validation of theoretical tools, that could be of use in other QFTs as well. One straightforward example is the application of Nonequilibrium QFT to strong-field QED, which both provides a motivation for pushing forward this framework, and could result in new e.g. numerical methods benefiting all its domains of use. Another interesting stage is the very high ‰ regime of sf-QED, where the Ritus-Narozhny motivates the analysis and resummation of higher-order diagrams, which again one can hope to result in some more general techniques. Particles in strong fields can also impact theory development as an analogous system, hence allowing to test our mathematical control of the mimicked theories. Along this line, the interaction of an electron with a strong plane electromagnetic wave can inform on gravitational observables through the "double copy" correspondence [109,110], as well as on Lorentz violating theories such as "Very special Relativity" by fast and slow variables separation [111][112][113].

A new physical system: relativistic quantum plasmas However promising for probing elementary degrees of freedom, yet undisclosed or not, the environments created by strong fields within established physics prove extremely rich for themselves. Considering specifically the quantum dominated regime, strong-fields will distinctively give rise to configurations of photons, electrons and positrons with high density, quasi-neutral charge, relativistic energy distributions and strongly influenced by non-classical processes. These states of matter and radiation can be qualified as "relativistic quantum plasmas" [4,[114][115][116]. Though essentially unobserved in the laboratory yet, they are predicted at intensities to be reached in the near future and their phenomenology holds the potential to provide both new explanations for observations and instrumental applications [4,114]. This can be illustrated in the typical scenario of initially non-relativistic charged particles, say electrons for definiteness, interacting with fields of increasing magnitude. As electrons accelerate in the field, they start to transfer momentum to electromagnetic radiation, first in the form of low-energy photons according to the Landau-Lifschitz formula [4,23], then according to a quantum corrected one [117]. When the quantum parameter ‰ reaches 1, photon discreteness becomes manifest through stochasticity [118][119][120][121][122][123], possibly favoring higher energy emission (straggling) [44,124,125], or not emitting at all (quenching) [126,127], and revealing a characteristic cut-o in photon spectrum associated with energy-momentum conservation in individual emission processes [128]. The consequence of quantum radiation reaction can be as dramatic as particle trapping and attraction to the highest field regions [4,[129][130][131][132][133] ("Anomalous Radiative Trapping"). Given realistic particle densities, these photons typically have (Compton) photon-particle scattering mean free paths much larger than the high-intensity region size, but their photon-field interaction length can become much smaller, especially from the onset of the Breit-Wheeler process of conversion into an electron-positron pair [4,[134][135][136][137][138][139]. The combination of photon emission and decay to a pair can thus give rise to exponential creation of electron-positron pairs, a phenomenon known as "QED cascade". If the cascade is e cient enough to strongly a ect the background field, then a plasma of electrons and positrons is formed, relativistic and quantum by nature. In this process, extremely high density can be reached, up to a million times solid density [4,114]. In the most extreme cases, degeneracy e ects could be triggered [140].

There are many possibilities to exploit these processes as a source for specific particle beams (see e.g. [20] sec. VI and references therein). For instance, bright gamma beams can be generated by inverse Compton scattering [20]-VI.A.1, while high photon fluxes and conversion e ciency are expected from solid target irradiation [4]-VI.A.2. Another strongly motivated application of strong fields would be of course to manage positron production, either with greater e ciency, ease of coupling to acceleration or interaction stages, or, promisingly, with very high densities [114]-III, [4]-VI.B.

Astrophysical strong fields

Creating relativistic quantum plasmas in the laboratory would certainly help understanding similar physics realized elsewhere in the universe. Though such conditions are understandably rare, they are fully met around compact magnetized objects, that is magnetized neutron stars [141] and black holes [142]. The magnetic flux compression in the collapse of stellar-sized objects indeed produces magnetic fields ranging from 10 7≠9 T (B S = 4.41 ◊ 10 9 T) [143], to more than 10 11 T in the most extreme cases known as "magnetars" [144,145]. The creation of a pair plasma screening the electric field induced by the stellar magnetic dipole rotation is believed to play a central role in the pulsar mechanism [146,147]. This process is however highly unsteady [148], so that strong electric fields can accelerate particles to more than 10 TeV energies [143], driving prolific QED cascades [149,150], photon splitting cascades [151, 152], and, allegedly, coherent emission [123, 147, 153]. Analogous processes are predicted around black holes [154][155][156]. Around magnetars, the (super-)critical regime of sf-QED could be observed, for instance via the distinctive process of vacuum birefrigence [157,158].

Beam fields in collisions

In configurations where quasi-neutrality is violated, which could happen as a result of dynamics in a strong-field16 or more generally around charged beams, yet another type of strong fields can exist sourced by the particles charge. Accounting for sf-QED in such contexts could prove especially crucial to future lepton collider designs [60,159], where search for higher brilliance and energies implies dense highly Lorentz-boosted beams, in turn enabling strong field processes at the interaction point [160,161]. This collective field can primarily a ect the on-coming particles dynamics, which is called "disruption" [162,163], thereby generating radiation, which is called "beamstrahlung" [164,165]. The net result can be a reduced center-of-mass energy of particle collisions as well as additional emissions due to e.g. Breit-Wheeler pairs creation [166], hindering particle physics observations. For this reason, mitigation strategies have been developed [167]. However, maximizing these e ects instead would open a new path to sf-QED physics, including high luminosity photon-photon collision [168], a highbrightness photons and electron-positron secondary beams [161], or even, with suitable collider development, access the fully nonperturbative regime of strong-field QED [169].

State-of-the-art of strong-fields sources

Driven by the above-listed motivations along with technological progress, there is at present growing hope to achieve QED-relevant strong fields experimentally. During the last few decades, some seminal experiments have been able to graze the quantum regime of ‰ ≥ 1 using conventional accelerators, and evidence the first deviations from classical dynamics in the strong field of lasers [170,171] or of nuclei in aligned crystals [172][173][174][175]. The quantum dominated regime of sf-QED, where quantum processes determine the global system dynamics, is however yet to be reached.

In the following we give an overview of the latest e orts to approach it, setting the landscape in which the solution presented in this work operates. In particular, we will show that purely optical laser systems face an intensity gap of several orders of magnitude before entering the quantum dominated regime, which jeopardizes a trivial scaling up solution. We therefore review how laser-accelerator schemes partly bypass this di culty, and envisioned methods to fully enter the deep strong-field regime.

The technological gap ahead of optical laser sources

In the presence of particles, the onset of strong-field processes is characterized by a quantum parameter ‰ & 1 (Eq. B.126). Without assuming externally provided high-energies, the typical quiver energy of charges in laser fields only allows crossing this threshold above 10 24 W.cm ≠2 (Eq. B.127), which still lies beyond available intensities [4]. In order to observe processes in a vacuum directly, even higher intensities must be reached, as noted in the many schemes devised for observing light self-interaction , or even pair creation from the coherent field [58,59,[197][198][199][200][201][202][203] (see sec. 1.4.1). These experiments are all the more challenging that they require maximizing the electromagnetic field invariants (cf. infra Eqs. 2.41) instead of ‰, which typically implies colliding multiple laser pulses, each of about 10 24 W.cm ≠2 peak intensity.

Relying on standard ultra-intense lasers only, the quantum-dominated regime should therefore not be attained before several tens of petawatt peak power are achieved. Though such performances are envisioned in several forecasted facilities [3], all correspond to long run projects and large scale infrastructures.

Accelerators as a ladder to the edge of strong-fields

One direct way to achieve ‰ > 1 then simply appears to combine lasers with accelerators, directing ultrarelativistic massive particles into coherent field configurations, which hence need not be as strong in the laboratory frame (Eq. B.128). The seminal works evoked in the introduction to this section relied on this principle, for instance in the E144 experiment combining the 46.6 GeV electron beam of the SLAC facility with a 1.3 ◊ 10 18 W.cm 2 peak intensity laser (meaning a field E . 10 ≠6 ◊ E S ) [170,171,204]. Some photon spectral signatures could be observed, as well as some pair creation events. Now this technique can benefit both from an increase in beam energy or field amplitude. This motivates plans for updated versions of the same. At SLAC, the E320 experiment will consist in colliding the FACET-II 13 GeV electron beam with a 10 TW laser, achieving › ≥ 7 and ‰ ≥ 1 [169]. Similarly, the LUXE experiment at the European XFEL facility comprises a 17.5 GeV beam with a 30 TW laser, allowing for › ≥ 2 and ‰ ≥ 0.4 ≠ 2 [205]. An interesting variation planned in this case is to direct the GeV electron to a high-Z target so as to convert them into gamma rays by brehmsstrahlung. This presents a number of advantages [206][207][208][209], linked to the fact that photons are classically not deflected from high fields regions. Several experiments have been proposed along this line [210,211]. Wakefield acceleration also holds a good potential for reaching the required energy. Pushed by rising energy records [212][213][214][215] and possibly high charges [216], all-optical schemes have been devised to collide laser-accelerated high energy electrons against intense lasers [217]. Experiments with the Gemini laser at the Rutherford Appleton Laboratory have begun detecting quantum corrections to radiation spectra in such setups [174,175]. This kind of experiment again find natural complements in the generation of high energy photons instead of electrons [218,219]. Besides, some optimizations of the angle of collision [220] and field focusing have been shown to enhance interactions [221,222].

In all mentioned experiments, created particles only amount for a negligible fraction of the system energy, or equivalently, sf-QED processes occur with too low probability to trigger sizeable QED cascades, and rather act as corrections to an essentially classical dynamics. As technology can only improve slowly, further progress at this point requires qualitatively new schemes.

Optimizing the field at a fixed power: dipole waves

Interestingly, the limiting case of the optimal coherent superposition of multiple pulses for achieving the highest intensity from a given total power can be studied analytically, and has been shown to be relevant also with regards to the maximization of several quantum processes [20,223,224]. Such configuration is known as a "dipole wave" [225], for it is time-reversal of a dipolar source emission17 , and is currently conceived as a plausible way to achieve significant steps towards the deep strong-field regime.

Pair creation in such fields has been studied in a vacuum through the Schwinger process [226], as well as from seed electrons [227]. In this configuration, when pair creation occurs the intensity is high enough so as to confine particles near focus via Anomalous Radiation Trapping (cf. sec 1.2.2) [20], favoring QED cascades in this region, further enhancing the e ect [228]. Simulations predict resulting densities ranging from 10 25 cm ≠3 at 8 PW power, to more than 10 28 cm ≠3 above 20 PW [229]. These exotic conditions could prove interesting from the standpoint of astrophysics [230]. Interaction with a secondary beam and subsequent particle radiation has also been envisioned [221,222]. As manifest from the expected phenomena, such dipole source could allow entering well into the quantumdominated regime of sf-QED. The di culty naturally lies in building such facility, which implies the collocation of about ten state-of-the-art multi-PW lasers. It is remarkable enough that the physics of relativistic quantum plasmas can in principle be studied with current technology though, and some implementation designs are being studied [231,232].

An ideally unbounded amplifier: the relativistic mirror

If the pulse energy is ascribed by technological limits, and the dipole wave is the optimal spatial configuration for a given power, then a natural path to reach higher intensities is to increase the peak power by compressing the pulse in time. One long-standing suggestion along these lines is to use a mirror moving at relativistic velocity [233]. In the ideal counterpropagating case, the reflection of light on a moving mirror with Lorentz factor " M indeed entails a time compression of the field by a factor 4" 2 M [234], upshifting amplitude and frequency. Most importantly, the upshifted frequency translates into smaller di raction limit, so that for perfect reflection and focusing final intensity gains scale as ≥ " 6 M . The core issue then is of course to find how to physically realize this simple thought experiment.

The density cusp produced at the rear of the nonlinear wakefields of an intense laser propagating in an underdense plasma has been envisioned as a relativistic mirror candidate [235], benefiting also from a focusing parabolic shape [236]. As the same moving mirror reflects and focuses light, length of the focal spot scales as ≥ 1/" M so that the ideal final gain in this case is ≥ " 4 M . Accounting for the reflection coe cient of the wake corrects this value by factors of " ≠3 M or " ≠4 M depending on plasma models [237]. Tailoring the curvature of the plasma wake so as to achieve di raction limit in the laboratory frame has been proposed [238], and proof-of-principle experiments have been conducted [237,[239][240][241]. Another implementation of the relativistic mirror relies on the dense electron sheets that can be ejected by thin solid targets under intense laser irradiation [242][243][244][245], so that a second counterpropagating laser can then benefit from the ≥ " 2 M intensification [246]. In this case also, plasma instabilities in the electron sheet [247], as well as transparency induced by plasma density drop and pulse frequency upshift in the electrons frame [248], constrain the final achievable gain.

Relativistic plasma mirrors as an open path towards the Schwinger field

Though currently the only available concept allowing for in principle unbounded intensity increase from a given electromagnetic energy, an e ective materialisation of the relativistic mirror idea remains to be desired. The collective non-linear oscillations of electron populations at laser-irradiated sharp vacuum-overdense plasma interfaces may however come very close, notably in terms of amplification e ect. These so-called "relativistic plasma mirrors" (RPM) are the sources of the fields studied in this work, allegedly the strongest free fields within reach of present day technology. Using a Petawatt-class laser as the driver beam could result simultaneously in e cient harmonics generation, that is time-compression of each incoming optical cycle to tens of attoseconds duration pulses, and focusing to wavelength-limited spot sizes, resulting in intensity gains between two and five orders of magnitude [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]. The corresponding fields would come near the critical value in the laboratory frame, which may allow studying critical sf-QED e ects such as light self-interaction, and certainly would facilitate entering deep into the quantum-dominated regime of sf-QED.

A more detailed discussion of the physics at RPM focus will be given in section 1.4. Here, we wish to give an overview of the generating process of this extremely intense light. The mechanism of electromagnetic pulse compression -equivalently, harmonics generation -at the plasma surface is long-studied and now relatively well understood. Nonetheless, it remains a complex, inherently non-linear phenomenon, and analytical models lack the ability to predict harmonic spectra accurately. Furthermore, the interplay of widespread spatio-temporal scales, again inherent to the spectral range to be resolved, pushes generic time-domain PIC algorithms to the limits of current computational capabilities, thus delaying, if not prohibiting, large scale numerical studies with such tools. Leveraging on the pseudo-spectral scalable PIC code WarpX18 , the PHI group has been able to accurately compute the harmonics spectra and perform extensive parameter scans. The outcome of these works on harmonics generation and optimization will be presented in section 1.3.5. A second step is to focus the generated beam. Several schemes have been put forward to this end, which implement various notions of curved RPM or separate harmonic beam focusing, but generically su er from stringent requirements in terms of laser alignment, pulses synchronisation or X-UV optics quality. In section 1.3.5 we will concentrate on two recent proposals, the optically-curved RPM and the optically-flat RPM, that we believe decisively alleviate the physical constraints usually plaguing this stage.

A. Plasma mirror generated high harmonics beams

Since the advent of the Chirped Pulse Amplification technique [19] ultra-short pulses duration have been continuously decreasing while comprising more and more energy, so that irradiated matter could be e ciently ionized and its electrons set into relativistic motion (I & 10 18 W.cm ≠2 ) already for more than two decades [1]. In particular, studies of the interaction of ultra-intense femtosecond pulses with solid targets in these regimes have long been conducted, giving rise to the notion of "relativistic plasma mirrors" [6][7][8][9][START_REF] Der Brügge | Enhanced relativistic harmonics by electron nanobunching[END_REF][START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF]. Starting from the physical depiction of this phenomenon, this section will briefly trace back the accumulated knowledge on these systems, theoretical and practical, with below its initial plane on half a cycle, then accelerated to relativistic energies outwards the mirror before being quickly stopped, thereby radiating (violet arrows), and then push back inside the mirror. Note the timestamps are non-uniform; in particular, the strongly emitting phase (full violet) is concentrated around t ≥ 0.53T L , and lasts for less than a tenth of the original laser period T L (adapted from [START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF])

an emphasis on early proposals to exploit them as light-amplifiers along the relativistic mirror idea.

Physical description of the phenomenon

When an ultra-intense (I & 10 15 W.cm ≠2 ) laser interacts with solid matter, atoms are quasi-instantaneously ionized to form a plasma which interacts with the field and expends towards vacuum. In the case of an infrared ultrashort pulse, such as produced by the widespread titane-saphire oscillators, plasma densities n p ≥ 10 23 cm ≠3 reach hundreds of times the critical density n 800 nm ƒ 1.7 ◊ 10 21 cm ≠3 , while expansion is comparatively slow, so that the pulse interacts with an essentially static vacuum-to-overdense plasma interface characterized by a gradient length L. Finally, by compressing the laser intensity rise duration [256][257][258], the plasma expansion time can be made so small that L becomes a fraction of the incident wavelength [259][260][261][262], and the main pulse hits an optically-smooth surface e ectively reflecting it in its specular direction [263]. Under such circumstances, an optical-quality solid target is thus referred to as a "plasma mirror", and can play diverse roles in high-intensity optics [6,[START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF][264][265][266][267][268][269][270][271].

Turning to intensities of 10 19≠22 W.cm ≠2 as reached by 100 TW to PW-class lasers, the irradiated plasma electrons become relativistic, inducing a non-linear oscillating motion. More specifically, electron populations are pushed towards the target by the Lorentz force on half an optical cycle, then pulled back at the surface by the combined second half-cycle Lorentz force and charge separation fields, thereby reaching Lorentz factors of " p ≥ › & 10, until the next incoming optical front and reversed-direction charge separation field suddenly decelerate them, at which point they coherently emit an electromagnetic burst specularly directed and time-compressed by the beaming e ect (see Fig 1 .2). This mechanism of relativistic oscillating mirror [8][9][START_REF] Der Brügge | Enhanced relativistic harmonics by electron nanobunching[END_REF][START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF][272][273][274][275][276] is responsible for the conversion of the femtosecond incident pulse into a train of pulses of (tens of) attoseconds duration, each separated by one initial laser wavelength. In the spectral domain, this amounts to the conversion of quasi-monochromatic Ê 0 -centred light into a high-order harmonics beam of frequencies {nÊ 0 } 1AEnAEn h [263,277,278]. As the resulting beam can be focused down to the e ective wavelength ≥ ⁄ 0 /n h associated to each individual attosecond pulse, relativistic plasma mirrors have soon been recognized to open the perspective of extreme light amplification [6,279] in principle.

Progresses in theoretical understanding

Since this general vision emerged, key progresses have been made towards a definite realization. The theoretical understanding of RPM dynamics is now well established, with several consistent analytical models available [8][9][START_REF] Der Brügge | Enhanced relativistic harmonics by electron nanobunching[END_REF][START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF][272][273][274][275][276]. However, the crucial observable of attainable peak intensity at RPM focus still eludes accurate synthetic prediction. It has long remained out of reach of ab initio numerical computation as well. Due to the numerical dispersion relation of time-domain Maxwell solvers used in most PIC algorithms, resolving the wide spectral content of the reflected beam required prohibitive computational resources [251,252,280]. Recent development of the WarpX-PICSAR pseudo-spectral Maxwell solver [249][250][251][252] lifted this obstacle, allowing for realistic computation of RPM high-order harmonics generation for the first time [251,252,280]. The cut time-to-solution allowed for extensive parametric studies of the generation mechanism and attainable intensity gain via hundreds of 2D simulations. As a result, the optimal parameters for RPM light amplification could be reliably identified [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]281], revealing the full potential of this paradigm. Namely, above 1 PW peak power (normalized amplitude › & 10 on plasma mirror) magnifications of the incident laser intensity of up to five orders of magnitude is possible, by coherent focusing of about a hundred harmonic orders only [281], contrasting with the thousands required in previous schemes [6,9,282].

Experimental achievements and prospects

Decisive steps have been crossed on the experimental side as well. Though most interesting for high-intensity operations, achieving the plasma mirror e ect in the relativistic regime has long remained a hurdle. This is due to time profile of concrete highly amplified laser pulses, where the main femtosecond pulse is typically preceded by a precursor light called the pedestal, possibly of nanosecond time extent and low slowly rising intensity, whose ratio to the global peak intensity is called the contrast. Though an ubiquitous parasite product of CPA technology, pedestal light can be innocuous or even beneficial depending on the situation. In the context of relativistic laser-solid interaction, it proves able to totally suppress the plasma mirror e ect by early target ionization, removing any control of the vacuum-plasma interface, let alone a putative gradient scale. As nanosecond irradiation 19 can ionize matter at intensities as low as 10 11 W.cm ≠2 , maintaining target integrity until the rising edge of a 10 18≠22 W.cm ≠2 femtosecond pulse requires laser contrasts of the order of 10 8≠11 . This Figure 1.3: Expected intensities using RPM harmonic beams. The current intensity record is represented with a red star, it corresonds to I = 1.4 ◊ 10 23 W.cm ≠2 and was obtained on the 2.7 PW CoReLs laser [17]. The oc-RPM values correspond to the black curve (here called p-CRM for "plasma curved relativistic mirror"), while the di raction limit is shown with a red curve; the of-RPM values would generically lie anywhere between those two. (adapted from [START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF]) was solved by the use of auxiliary plasma mirrors before the main RPM target, on which the laser is focused so as to to trigger the (non-relativistic) plasma mirror e ect just at the rising edge of the main pulse, thus achieving separation from the pedestal [256][257][258]283]. In order to then independently control the plasma length L, a critical parameter of RPM harmonics generation [259,260,284], a simple system was devised to extract a pre-pulse from the now high-contrast main pulse, ionizing the target in advance with known energy and adjustable delay [265,267]. In combination, these methods applied to 100-TW class lasers have lead to many experimental demonstrations that RPMs are highly reproducible [260,[284][285][286][287] and can be finely controlled in practice [259, 264-266, 285, 286, 288, 289]. Accurate spatio-temporal characterization and shaping of the harmonic beams could also be conducted [285][286][287].

B. Focusing plasma mirrors as a source for extremely high intensities

Even when time-compressed pulses are generated, they need to be tightly focalized in order to reach their highest possible intensity. A coneptually most straigthforward method is to treat both stages independently, optically manipulating the RPM beam after gener-ation using dedicated X-UV optics [290]. In a more compact design, the generating PM itself could be taken as the focusing device, simply by carving its surface into a parabolic shape [6,[START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF]248,291]. In both cases, however, the cost of decorelating generation and focalisation is an extreme sensitivity to physical imperfectionse.g. misalignment, carving defect, laser jitter20 -eventually translated in a soar of experimental complexity. Several proof-of principle experiments were conducted without demonstrating sizable intensity gains [292][293][294].

A milestone towards higher intensities from ab initio simulations Further integration proving desirable, the rich optical properties of the PM dynamical system provide a promising track. It has long been noticed that RPMs produce diverging harmonic beams [284], which in the context of high-harmonics generation as a source for subsequent pumpprobe studies was perceived as detrimental. However, as e.g. numerical simulation reveal, this far-field divergence is actually a signature of the focusing nature of the RPM, which posses a real focal point typically a few primary laser Rayleigh lengths above its surface. As was later elucidated, the inhomogeneous intensity distribution on the PM surface during the primary laser reflection tends to press electrons at the center more than on the periphery, which spontaneously induces an optical curvature of the PM. A theoretical analysis based on momentum balance on the laser-plasma interface showed this PM "denting" to precisely scale as ≥ ln I, hence forming a parabola for a gaussian transverse laser profile [295] whose opening depends on the peak intensity. The notion of "optically curved relativistic plasma mirror" (oc-RPM) naturally follows. Considering a 3 PW ⁄ 0 = 800 nm ten cycles laser as the driving beam, ab initio WarpX-PICSAR 3D numerical simulations were able to show that intensity gains of the order of ¥ 3 (I ¥ 10 25 W.cm ≠2 ) robustly arise at RPM focus, simply by the e ect of the optically induced PM curvature. Studying the theoretical dependance of upon the PM denting " p , all else being equal, one finds that shifting from " p ƒ 0.1⁄ 0 as in the simulation to " p ƒ ⁄ 0 , the gain moves from ¥ 10 3 to 10 5 . The full potential of the oc-RPM thereby appears along with its main limitation. Indeed, when the plasma length changes of more than a fraction of ⁄ 0 all else is not equal, as in particular the harmonics generation e ciency drops21 .

A path towards the Schwinger field In order to reach beyond the oc-RPM, yet another method disentangling the plasma length and pulse curvature is required. In particular, as the plasma length is key to e cient harmonics generation, keeping it around its optimum value would be very beneficial, which means the RPM should be initially flat and its optical denting remain as small as possible. The necessary extra aperture then has to be provided externally again to benefit from the then very high theoretical intensity gains. In regard of the pitfalls evoked earlier when focalization follows generation, a very appealing idea would simply be to incorporate it from the start in the infrared driving pulse. If the primary beam reaches the target surface more than approximately two Rayleigh lengths before its focal plane, then its wavefronts curvature naturally encode its numerical aperture, which could be accurately transmitted to the specularly reflected beam, as occurs exactly with ideal flat mirrors. In principle, arbitrary apertures could be conferred to the harmonic beam in this way, which in practice would inherit the limits of infrared laser optics -instead of that of X-UV optics. A possibly more serious constraint could reside in the intensity profile of real laser pulses out of focus which, as adaptative optics is usually applied to optimize it at focus, could turn out quite unpredictable without specific attention. Again, the major edge of this last scheme, which one may call "out-of-focus relativistic plasma mirrors" or "optically-flat relativistic plasma mirror", is to allow for nearly five orders of magnitude intensity magnification virtually only relying on conventional laser engineering.

In the event that the RPM harmonics generation and focusing schemes presented above succeed, sources of unusually strong-fields would thus be made available. For reference one can map these configurations to interaction parameters diagrams on which the di erent sf-QED regimes can be easily located, allowing to picture the regime shift performed by RPM conversion of standard Petawatt lasers. Assuming perfect focusing, this process indeed essentially translates into ⁄ 0 ae ⁄ 0 /n h and › ae › Ô n h . This is shown in Fig. 1.4, in terms of focused power, normalized potential › (there denoted a 0 ) and wavelength.

One sees that RPM conversion of current and near-term lasers generically brings us from below to above the quantum dominated regime threshold ‰ & 1. Remarkably, in the most favorable case the combination of wavelength shortening and pulse amplification results into a non-vanishing probability of Schwinger pair creation over the total beam volume, a landmark for the critical regime of sf-QED. This entails that non-trivial processes can occur in these beams both in the presence or absence of matter at focus.

Objectives of the thesis

The core of our work has consisted in specifying the main physical phenomena to be expected at the interaction point of these relativistic plasma mirror sources. In this section, we will be presenting the expectations derived from a closer study of di erent interaction scenarios. Light couplings to the electron-positron field in a vacuum will be studied first, deriving observable signatures in di erent experimental setups, including scattered photon spectra and Schwinger pair creation threshold. These subtle e ects when no matter is there leave room to to prolific pair creation as soon as one charged particle comes in. This process of field-matter interaction occurs for di erent types of initial seed, a Schwinger pair, a dense target, high-energy electron beams, a ecting the involved elementary processes and the macroscopic system state. These phenomena will be presented in a second section.

Observing vacuum QED processes in the light of relativistic plasma mirror sources

The quasi-stability of the fermionic vacuum state in sf-QED means that, provided it is strong enough, an electromagnetic field couples to fermionic degrees of freedom even in the absence of charged particles. The most straightforward manifestation of this fact is electron-positron pair creation from coherent field decay, which persists even in the limit of infinitely low field photon frequency, which is known as the Schwinger process. Within the locally constant field approximation, its local rate can be computed as [199,296]: where ⁄ C is the reduced Compton length of the electron. The non-perturbative nature of the process mathematically translates into non-analyticity of the occurrence rate around E ≥ 0, which e ectively results into exponential suppression as long as E . 1. This implies that so-called "vacuum pair creation" is relevantly conceived as a threshold e ect, forbidden below a given field value and growing very fast past it. Note that because the final probability typically scales as P S © V sf S , where

S = 1 4fi 2 ⁄ ≠4 C EB coth 3 fiB E 4 exp 3 ≠ fi E 4 (1.31)
V sf ≥ ⁄ 4 ∫ ⁄ 4
C is the spacetime volume where a field of wavelength ⁄ is strong, the threshold specific to a macroscopic configuration can be significantly lower than E ≥ E S in the laboratory frame [197][198][199][200]. Nonetheless, the lowest required intensities lying around I & 10 27 W.cm ≠2 for a working wavelength of 800 nm [226], observing vacuum pair creation seems precluded in any current or forecasted facility [3].

⌅ In contrast, we could demonstrate that focused RPM harmonic beams open a tantalizing possibility to achieve this process. If the harmonics produced by a 200 PW class laser, ranging up to harmonic order . 100, can be e ciently focused near di raction limit w 0 ≥ 50 nm, then Schwinger pair creation could be observed in the laboratory.

In the conservative assumption that such threshold is not crossed though, another yet unobserved strong-field processes could still occur, the vacuum self-interaction of light. Even in the absence of real particle creation, intermediate electron-positron states indeed allow the electromagnetic field to interact with itself, giving rise to macroscopic e ects akin to a "vacuum polarization". From a particle perspective this interaction translates into photons scattering o each other, towards final states possibly outside the initial coherent state spectrum. The detection of these photons has driven significant theoretical and experimental e orts during the last two decades, showing that possibilities to observe them exist within the current laser technological realm (see [3] and references therein).

A major di culty for these observations is that for kinematic reasons, the scattering amplitudes are dominated by quasi-elastic channels, where photons are scattered close to the energy and direction of the incoming ones; as the required Petawatt class lasers typically comprise more than 10 20 photons, discerning a scattering signal proves the main challenge in these experiments. The relevant quantity is therefore the number of "discernible photons" generated per shot, that is the ones satisfying a criterion of the form,

n scattered (k) > CN A (k) (1.32)
with C > 0, n scattered (k) and N A (k) the phase space densities around momentum k respectively of scattered and initial field photons. State-of-the-art studies typically find tens of discernible photons in the collision of two or more laser fields [3] (see e.g. [297]). An experimental investigation of realistic photon detection and background filtering capabilities in this context has also been recently conducted [298]. These a priori very harsh constraints call for new schemes improving the signal to noise ratio, for which as will be shown RPM light proves very promising. A previous study had already demonstrated that collision of a low order harmonic beam with a fundamental frequency pulse could open sizeable inelastic channels, both in direction and frequency, producing robustly discernible photons [299].

⌅ In chapter 8, we will present our own work on the use of RPM light for exploring vacuum light-by-light scattering, improving on former knowledge through an accurate modelling of RPM spectra and fields, made operational by the use of large scale computing infrastructures. The main results are first the possibility to produce as many discernible photons as with two exactly synchronized and aligned counter-propagating infrared pulses focused at di raction limit, with a single RPM harmonic beam, thus considerably simplying the setup. Then, we proceeded to study the collision of the harmonics with an auxiliary pulse, which allowed us to confirm the existence of inelastic scattering channels in this case, resulting, all else being equal, in improvement of the attainable signal-to-noise ratios by several orders of magnitude over optical frequency configurations.

⌅ This core study was completed by extensive numerical validation of the "Stimulated Vacuum Emission" algorithm, highlighting its behavior under many di erent options of implementation. Analytical estimate of the number of scattered photons in RPM beams as a function of the field harmonic spectrum could also be derived. Finally, a theoretical discussion of the di erent methods employing the Heisenberg-Euler action could be lead, and the correspondence between the Stimulated Vacuum Emission algorithm and the resolution of e ective field equation fully detailed and clarified, putting forward a condensed view of previous knowledge on the matter. These studies are presented in part III.

Converting relativistic plasma mirror light into exotic matter processes and states

The above discussed physics relied on the assumption that strong fields propagate in a pure fermionic vacuum. However, there are many circumstances in which this might not be the case, be it from controlled operation, or physical contingency. In this section, we will expose our work on the physics of these situations where real initial particles are involved, in the various way they can be introduced. Each of them will be detailed in chapter 9.

A first possible scenario is the straightforward extension of vacuum propagation when Schwinger pair creation occurs. The sharp field dependence of the local rate Eq. 2.51 entails that, in a semi-classical kinetic picture, electron-positron pairs will typically be created at focus when the harmonic field peaks, possibly in several attosecond pulses as they successively cross the focal plane. At this point, the electromagnetic field is of the order of F ≥ 1.2 F S , or I ≥ 6 ◊ 10 29 W.cm ≠2 , so that these particles become relativistic in a fraction of their Compton time • C ƒ 8 ◊ 10 ≠21 s. Under a Lorentz-force evolution, these particles are therefore instantly guided by the relativistic ponderomotive force along the local wavefronts normal direction, and conservatively estimating their quantum interaction parameter from the plane-wave case yields ‰ ƒ E/E S , where E is the electric field amplitude in the laboratory frame. As in this case we have E/E S & 1, sf-QED processes can occur, and QED cascades instantly start to develop. Moreover, the field is even locally not a plane wave and, as a consequence of the above, trajectories do not follow the Lorentz-force, all of which tends to favor higher ‰ parameters. This process leads to exponential growth of the particle number in the beam for at least as long as E & E S , concentrated in the attosecond high-field fronts and guided by them, which results in extremely high density globally neutral electron-positron sheets accelerated up to GeV energies.

⇤ The final states of these configurations, in between relativistic quantum plasmas and ultrarelativistic particle beams, are very challenging to predict even numerically, particularly their maximum particle densities, as the corresponding plasma proper wavelength-frequency generically tend to exceed any computationally tractable resolution. Partial results could however be obtained, and lower bounds on the maximum density of the order of & 10 29 cm ≠3 established, however these preliminary results will not be presented in this thesis.

A related physics could be observed when the field interacts with external particles from the beginning, all the more with an abundant particle source, which a priori provides strong motivations for studying the focusing of RPM fields on solid targets. Significant enhancement of sf-QED processes could then be evidenced, up to the formation of very high density, relativistic quantum plasma states.

⌅ A first study was conducted with moderate intensity RPM light 22 , where the focused intensity on target reached about ≥ 10 25 W.cm ≠2 [300]. In this case, a relativistic quantum plasma was not properly formed, as the harmonics and target plasma fields determined the dynamics, however a significant increase in produced gamma photons and Breit-Wheeler pairs was demonstrated compared to direct infrared pulse irradiation for an equivalent energy. A striking feature of these interactions was the formation of a depleted channel in the wake of the harmonic beam, which could propagate inside the solid target on a distance of many wavelengths, due both to its high frequency content and relativistic transparency.

⌅ In a more extreme RPM light of above ≥ 10 27 W.cm ≠2 intensity, both these e ects are magnified, leading to the formation of very high-density electron-positron plasma states. These dense particle clusters tend to be accelerated by the RPM field, up to GeV energies, and charge separation tends to occur under the influence of the ambient strong fields. The thereby formed gamma, electron and positron beams properties were studied through their spectra. Though not directly studied here, their subsequent interaction with matter should display interesting phenomena as well, providing dense, attosecond, high-energy particle sources.

Another way to study elementary strong-field processes is to collide very high energy particles with the pulse, allowing for very high ‰ parameters, possibly up to the "fully non-perturbative" regime of sf-QED. This configuration typically represents the collision of a high-energy electron beam with the RPM-light beam, and was also investigated.

⌅ The interaction of electron beams with the RPM field was studied for the whole 10 26 W.cm ≠2 ≠10 29 W.cm ≠2 intensity range, with an electron beam energy of 10 GeV, and an angle of collision maximizing peak ‰ values. In these conditions, it is shown that the ‰ = 1600 threshold can be exceeded from intensities of 10 27 W.cm ≠2 , opening the perspective of testing the Ritus-Narozhny conjecture. Besides, such configurations also allow for prolific sf-QED processes, that could be observed through the emitted particle spectra, which we will detail.

Chapter 2

Theoretical and numerical methods

Accurate prediction of the expected e ects when strong fields are achieved requires appropriate theoretical methods. As we know that qualitatively new phenomena will stem from quantum processes, they have to be grounded in Quantum Electrodynamics. For conceptual clarity as well as versatility, it would furthermore be desirable for the new framework to encompass at least the former one, classical relativistic kinetic theory, with an explicit connection. Ideally, there should exist a map between the old variables and the new, then highlighting how the latter extend the first and reduce back to them under suitable physical circumstances 1 . Such definitive theoretical framework is not currently in use, and research in this direction is still active 2 . Meanwhile, strong-field physics could progress from a combination of a few more specialized formalisms, well-suited to most studied configurations. In particular, many concepts and intuitions in the field gravitate around a semi-classical "Boltzmann-QED" model, which proves flexible, operational, and incidentally constitutes the basis for ab initio numerical simulations [301] (cf. Chapter 9). This model will be described first, including how it casts the historical "Furry picture" [302] into general configurations, from which di erent regimes of strong-field QED will be discerned. We will then be able to detail the principles of ab initio PIC-QED simulations, that numerically realize the Boltzmann-QED equations, and provide reference for the WarpX code used in the present thesis. Final sections will be devoted to a formalism aimed at computing e ects of the electromagnetic self-interaction in a vacuum specifically 3 , and the validation of its numerical implementation on massively parallel computing infrastructures. It is called "Stimulated Vacuum Emission" [303], and forms the basis for the work presented in Chapter 8.

An operational framework for strong-field Quantum Electrodynamics

In the most common formulation of QED, as for that matter of other quantum field theories, processes are conceived in the basis of free particle states, that are stable in time when interactions are discarded 4 . Physically, this means that only transitions from incoming non-interacting n≠particles states in the asymptotically far past to outgoing n Õ ≠particles states in the asymptotically late future are relevantly modelled, so-called "scattering events". If such picture provides operational tools for the empirical context of high-energy accelerators in which it was forged, it seems unfit to the more general macroscopic configurations previously envisioned in classical plasma physics. Incidentally, the electromagnetic field expectation value in any state with a definite number of photons vanishes.

As a matter of principle though, quantum theory must be able to fully encompass its classical counterpart. Besides, non-vanishing field expectation values naturally arise also in the quantum theory [304]. The above described asymptotic formalism can indeed be understood as the computation of specific observables (scattering amplitudes) at late times for few-particles initial states, that are in a sense "near to the vacuum"5 . However, the most general questions of the expectation value of any observable at a finite time from an arbitrary -possibly mixed -initial state are in principle within reach, through methods gathered under the name of "Non-equilibrium Quantum Field Theory" [305,306]. In particular, all correlation functions of a theory can be computed to a given accuracy at all times, from the data of their initial values. In view of the previously evoked consistent, versatile and computable theory, a systematic approximation procedure may then be followed so as to obtain e.g. a suitably extended kinetic formulation of Quantum Electrodynamics [116,307].

The most extensive theoretical framework currently underlying strong-field Quantum Electrodynamics research is one such extension of classical kinetic theory. It was however built from the opposite direction, adding quantum corrections to the kinetic equations, in a "bottom-up" motivated approach. In this context, particles are described by 1-body distribution functions governed by Boltzmann equations, and the electromagnetic field is classical. All quantum phenomena are encapsulated into i) a collision operator for the 1-particle distribution functions and ii) additional terms in Maxwell's equations. The cross-sections entering the collision terms are then computed in an extension of the usual QED scattering theory that accounts for the presence of an electromagnetic field, called the "Furry picture" of sf-QED [302,308]. In this section, our primary aim is to outline this formulation of sf-QED, grounding both intuition and quantitative results such as presented in Chapter 9. Introducing the Furry picture in a second part will allow defining the parameters governing QED processes, and hence classifying the di erent physical regimes of strong-field electrodynamics.

The Boltzmann model of strong-field QED

Classical relativistic kinetic theory Let us start from a classical depiction of systems to be described. They consist in the electromagnetic field interacting with matter particles, typically in very high number and collectively forming a plasma. Considering indeed an electron-ions plasma, as produced by ordinary matter interaction with lasers, the critical plasma density at ⁄ 0 = 800 nm is n 0 = 1.7 ◊ 10 21 cm ≠3 , and matter configurations typically range from n e ≥ 10 ≠3 n 0 for gas jets to n e ≥ 10 2≠3 n 0 for solid targets, generically resulting in more than 10 6 electrons in a 1 µm 3 volume. As a consequence, the exact system state is practically irrelevant and statistical methods must be used.

The canonical formalism of mechanics usually provides a sound definition of the statistical behavior of a system. If the system has 6N independent variables, say {x i = (q i , p i )} ioeJ1;N K , and f N (x 1 , . . . , x N ) is the full system state, Liouville's equation translates in a system of coupled equations for reduced distribution functions6 [309],

f N ≠k (x 1 , . . . , x N ≠k ) = N ! k! ⁄ dy 1 . . . dy k f N (y 1 , . . . , y k , x 1 , . . . , x N ≠k ) (2.1)
known as the "Bogolioubov-Born-Green-Kirkwood-Yvon hierarchy". When closed at order 1, for instance via a "molecular chaos hypothesis" f 2 (x 1 , x 2 ) ≥ f 1 (x 1 )f 1 (x 2 ), a Boltzmann equation for the "1-body" distribution function f 1 is obtained,

Boltzmann (1-body) ˆf1 ˆt + {f 1 , H 1 } = C B [f 1 ] (2.2)
where H 1 is the "1-body Hamiltonian", derived from the full one, and C B [f 1 ] is called a "collision term". The (normalized) 1-body distribution f 1 has a simple interpretation in terms of density of (probability to find) particles at point (q, p) in phase space. Now, in a relativistic theory di culties arise as physical variables are not all independent7 , so that the constrained canonical formalism should be used [310,311]. In practice, this di culty is most often circumvented by a more heuristic approach [309,[312][313][314]. Let us illustrate one such procedure8 noticing that an exact ("pure") system state can be encoded in the following singular distribution on the 1-body phase space,

f K (x, t) © N ÿ i=1 "(x ≠ x i (t))
(2.3)

As each particle trajectory can be assumed to be dictated by the Lorentz force, that is,

Y _ _ ] _ _ [ qi = p i m" i , with " i = Û 1 + p 2 i m 2 c 2 ṗi = q [E K (q i ) + qi ◊ B K (q i )] (2.4) (2.5)
where E K , B K follow Maxwell's equations sourced by the exact currents, deriving Eq. 2.3 with respect to time and gathering terms we find the Klimontovitch-Dupree equation,

Klimontovitch-Dupree ˆfK ˆt + p m" • ˆfK ˆq + q [E K + q ◊ B K ] • ˆfK ˆp = 0 (2.6)
This equation is exact, but unsolvable as it is equivalent to the 6N equations system Eqs. 2.4-2.5. In order to relate is with more accessible quantities, one idea then is to decompose dynamical variables in,

f K = f + "f (2.7) E K = E + "E (2.8) B K = B + "B (2.9)
introducing average values X © ÈX K Í with respect to possible realizations of the system preserving a certain set of observable ("macroscopic") quantities 9 . Typically, we wish to consider averages such that f now coincides with the 1-body distribution function f 1 in its operational interpretation. Averaging Eq. 2.6 and injecting definitions Eqs. 2.7-2.9 we are then lead to,

Boltzmann (average) ˆf ˆt + p m" • ˆf ˆq + q [E + q ◊ B] • ˆf ˆp = C K [f, E, B] (2.10) with, C K [f, E, B] © ≠q K ["E + q ◊ "B] • ˆfK ˆp L (2.11)
In these equations, the average electric and magnetic fields are now be computed from the averaged currents,

Maxwell (average) Y _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ [ Ò • E = fl Á 0 ≠ 1 c 2 ˆtE + Ò ◊ B = µ 0 j Ò • B = 0 ˆtB + Ò ◊ E = 0 (2.12) (2.13) (2.14) (2.15)
where,

Sources (average)

Y _ _ _ _ ] _ _ _ _ [ fl(r) = ÿ - ⁄ dpq -f -(r, p, t) j(r) = ÿ - ⁄ dpq - p m -" - f -(r, p, t)
(2.16)

(2.17) introducing possibly multiple particle species distributions f -defined by their mass m - and charge q -, each following Eq. 2.10. Equations Eqs. 2.10-2.17 define a system of coupled partial di erential equations. Once closed by the data of the functional C K , it allows computing variables f, E, B and hence all classical 1-body properties of the system.

A system is well approximated by these quantities if dynamics is dominated by collective e ects rather than few-particles contributions, seen as fluctuations in Eqs. 2.7-2.9. In plasma physics, introducing a mean kinetic energy u e for the electrons (or other fast particles), this criterion typically translates into, In the case of strong fields and plasma interactions, collisions typically are all the more negligible that electron-field interaction energies are ultra-relativistic (u e ∫ m e c 2 ).

= n e ⁄ 3 D ∫ 1 (2.18) with ⁄ D = Û Á 0 u e e 2 n

Strong-field QED as collision processes

The key idea to extend classical kinetic theory to the strong-field regime of electrodynamics is to embed quantum processes in the collision term C K . This is made possible by the large scale separation between ⁄ C,e ƒ 2.42 ◊ 10 ≠12 m, the electron Compton length, and the typical field-plasma scales ⁄

0 , ⁄ p & 1 ◊ 10 ≠8 m 10 [301].
As a consequence, one may assume that the coherence scale of quantum processes is small enough to treat them as punctual events in Eq. 2.10, while all particles behave classically in-between. Namely, they are described by on-shell 1-body distribution functions following the transport equation Eq. 2.10. The electromagnetic field then receives a dual description, with classical values E, B corresponding to its quantum expectation values, and a photon distribution function f " describing particle-like variables of the quantum electromagnetic field 11 . Once again, consistency is ensured by the large gap between frequencies associated with the coherent field (h‹ . 100 eV) and emitted high-energy photons (Á " & 1 MeV) [301].

The above assumptions on the scale of quantum processes naturally imply that the electromagnetic field in which they occur can be considered constant 12 . This assumption, known as the "Locally Constant Field Approximation", takes many forms in strong-field QED and typically strongly constrains models beyond this semi-classical level. Besides, quantum processes typically become non-negligible when particles are ultra-relativistic, in which case the field can also be considered crossed 13 . All cross-sections in the collision kernels therefore correspond to QED scattering amplitudes in a constant crossed field. This explains their dependence on a single quantum interaction parameter ‰ defined in Eq. B.126, and the existence of exact analytical expressions for the di erential crosssections.

The most significant new processes are (non-linear) Compton scattering of an electron or positron emitting a photon, and (non-linear) Breit-Wheeler electron-positron pair creation from a photon in the strong-field. The core equations of the Boltzmann-QED kinetic model can thus finally be written as [315],

ˆfe û ˆt + p m e " • ˆfe û ˆq û e [E + q ◊ B] • ˆfe û ˆp = C CS [f e û ] + C BW [f " ] ˆf" ˆt + c • ˆf" ˆq = C CS [f e ≠ ] + C CS [f e + ] ≠ C BW [f " ] (2.21) (2.22)
together with an unchanged Maxwell part 14 Eqs. 2.12-2.17, and possibly additional particle species such as ions.

QED processes in strong fields

In view of the above described picture of QED processes as collision events, we will now simply draw the implications of the presence of a coherent field for QED scattering amplitudes. Actually, the heuristic formulation used in this part will allow to reach conclusions beyond the scope of the Boltzmann-QED model. In particular, we will be able to introduce 10 Equivalently, between the photon-plasmon energies . 100 eV and the electron characteristic energy m e c 2 ƒ 0.511 MeV. 11 In a kinetic reduction of Quantum Electrodynamics, "field values" and "photon particles" would naturally stem respectively from the 1≠point and 2≠points functions [116] (cf. App. B.2.5).

12 More refined arguments for defining this so-called "formation length" show that it generally depends on the local field strength, and decreases as the field increases (see e.g. [2,4]).

13 Indeed, (cB) 2 ≠ E 2 and B • E are Lorentz-invariant while E 2 + (cB) 2 ≥ " 2 .

14 See Chapter 5 for the inclusion of vacuum electromagnetic self-interaction.

the Furry picture of strong-field QED, that is pivotal to virtually all current investigations as it leads to exact expressions for processes in plane-wave fields, and more generally allows at least for approximations beyond the LCFA.

Observables in a coherent state Consider an observable of interest O, then vacuum QED would typically consist in computing its asymptotic expectation value,

ÈOÍ 0 = È0 | O(t ae +OE) | 0Í = e 0 - - -U (+OE, ≠OE) † OU (+OE, ≠OE) - - -0 f (2.23)
where we have introduced the vacuum state vector |0Í, U (t, t 0 ) the evolution operator from t 0 to t and the † symbol to denote the adjoint (cf. App. A.4). Now we aim at computing similar quantities but from a coherent initial state, encoding the non-vanishing expectation value of the electromagnetic field before the process takes place 15 . Let us denote |AÍ the coherent state associated with the classical field A, the new computation writes

ÈOÍ A = ÈA | O(t ae +OE) | AÍ (2.24)
We can reexpress |AÍ from the (photon) vacuum state |0Í introducing the "displacement operator" D A , expressed in terms of creation-annihilation operators a † k,p , a k,p , such that

|AÍ = D A |0Í (2.25)
The canonical commutation relations then allow us to derive the relation 16 ,

D † A A(x)D A = A(x) + A(x) (2.26)
which together with unitarity of the displacement operator directly implies,

D † A O(A)D A = O(A + A) (2.27) = O A (2.28)
for any operator O depending on the field operator A at any spacetime point. It follows that observable values in the presence of a field expectation value become,

ÈOÍ A = e D † A O(t ae +OE)D A f 0 = e D † A U (+OE, ≠OE) † OU (+OE, ≠OE)D A f 0 = e U A (+OE, ≠OE) † O A U A (+OE, ≠OE) f 0 (2.29)
Furry Lagrangian Therefore, the presence of a non-vanishing field expectation value a ects the vacuum formalism only by shifting the photon field operator by its mean value.

The essential changes are thus captured in a new Lagrangian for the non-zero field theory:

L A = ≠ 1 4 (F µ‹ + F µ‹ [A])(F µ‹ + F µ‹ [A]) + Â Ë i / ˆ≠ e( / A + / A) ≠ m È Â ≠ J µ (A µ + A µ ) + L J
(2.30) 15 Coherent state are quantum states entirely characterized by their field expectation value, and the fact that they realize the equality in the Heinseberg indeterminacy relations of conjugated field variables. In this sense, among others, they are "the most classical states" of the electromagnetic field, and provide a natural embedding of classical field configurations in QED [304,316]. 16 We omit the identity symbol multiplying scalars in operator expressions.

where the J current terms assumed to be responsible for creating the coherent field are explicitly included for consistency, and the  operator is meant to account for the remaining fermionic degrees of freedom.

In practice this formalism is only useful when J and A are known, which implies they have to be specified in advance and therefore cannot account for the self-consistent interaction between the field expectation value and the quantum processes it triggers17 . For this reason, they are said to be "external". In QED, J and A are related by Maxwell's type equations, ˆµF µ‹ [A] = J ‹ , so that,

L A = ≠ 1 4 F µ‹ F µ‹ + Â Ë i / ˆ≠ e( / A + / A) ≠ m È Â ≠ ˆµF µ‹ [A]A ‹ ≠ 1 2 F µ‹ F µ‹ [A] ≠ 1 4 F µ‹ [A]F µ‹ [A] ≠ J µ A µ + L J (2.31)
Now integrating by part,

≠ˆµF µ‹ [A]A ‹ = F µ‹ [A]ˆµA ‹ = 1 2 F µ‹ [A]F µ‹ , by antisymmetry of F µ‹ [A]
so that, after dropping the non-dynamical terms (third line in Eq. 2.31), we finally reach [302],

Furry Lagrangian L A = ≠ 1 4 F µ‹ F µ‹ + Â Ë i / ˆ≠ e( / A + / A) ≠ m È Â (2.32)
called the "Furry Lagrangian".

The Furry picture of strong-field QED Reading last expression, we see that the only di erence with respect to the vacuum Lagrangian (Eq. B.60) is the term ≠e  / AÂ, coupling the fermions to the external field, and responsible for "insertion" type diagrams in the perturbative expansion18 . Now, for perturbative theory to make sense, these diagrams have to be small with respect to the kinetic part. We can qualitatively estimate their relative magnitude at the Lagrangian level, introducing a characteristic momentum scale Q and field amplitude A 0 for the physics at play we see that,

Y ] [ i  / ˆÂ ≥ Qj , denoting Â" µ  ≥ j ≠e  / A ≥ eA 0 j (2.33)
and thus a perturbative expansion is meaningful if,

eA 0 Q . 1 (2.34)
Starting from a non-relativistic fermion configuration, we identify the parameter of the field strength expansion as,

› = eA 0 m (2.35)
This quantity is precisely the "normalized vector potential" in the classical theory, or "classical field strength parameter" introduced in sec. 1.1.2 19 . Though here given in terms of gauge field, it can be given a manifestly Lorentz and gauge invariant definition [24,25]. If › > 1, the interaction of the fermions with the background field has to be treated non-perturbatively, which amounts to diagonalizing the modified kinetic term,

L A,0 = ≠ 1 4 F µ‹ F µ‹ + Â Ë i / ˆ≠ e / A ≠ m È Â (2.36)
The resulting theory is known as the "Furry picture" of Strong-field Quantum Electrodynamics. It preserves the structure of perturbative QED in its particle content and interaction term, photons and so-called "dressed" electron-positron states 20 interact via the bare QED interaction vertex, but qualitatively di ers from its vacuum equivalent due to the presence of an energy-momentum reservoir constituted by the "background" field. As a consequence, Furry theorem does not hold, and processes forbidden by energymomentum conservation in a vacuum can now occur. This implies in particular that the vacuum as well as 1-particle states become quasi-stable only.

Regimes of strong-field Electrodynamics

All new processes are controlled by the endogenous field strength scale F S = m 2 e ƒ 1, 32.10 18 V.m ≠1 , the Schwinger field, which physically marks the threshold of spontaneous fermionic vacuum decay into real electronpositron pairs. This scale together with Lorentz invariance lets us build adimensionnal quantities upon which the sf-QED processes depend, and which control their contribution to the physics. Considering a particle of momentum p µ and a constant background field 21 F µ‹ , these "quantum interaction parameters" write:

‰ = 1 m Ò (p µ F µ‹ ) 2 F S = " F S Ò (E + v ◊ B) 2 ≠ (v • E) 2
and,

Y _ _ _ _ ] _ _ _ _ [ F = 1 4 Fµ‹ F µ‹ F 2 S = 1 2F 2 S (B 2 ≠ E 2 ) G = 1 4 Fµ‹ ú F µ‹ F 2 S = ≠ 1 F 2 S E • B or equivalently, Y _ ] _ [ E = Ò Ô F 2 + G 2 ≠ F B = Ò Ô F 2 + G 2 + F (2.37) (2.38) (2.39) (2.40) (2.41)
where ú F µ‹ = 1 2 ' µ‹ ‡fl F ‡fl is the Hodge dual of the field strength tensor. The ‰ parameter is the electric field magnitude in Schwinger units in the rest frame of the particle, while 19 We note that in international units › = eA 0 /mc, it does not involve the Planck constant and therefore does a priori not relate to quantum mechanics. However, the connection can be made introducing a typical field frequency Ê, so that › © eE 0 /Êmc = eE 0 ⁄ C /~Ê, and › & 1 thus sets the threshold at which coherent multiphoton e ects arise (more than one field photon absorption over a Compton length). 20 As Eq. 2.36 only di ers from the vacuum Lagrangian by its fermionic part, photon propagators are una ected, while fermion propagators are now Green's functions of the di erential operator of Dirac equation in the presence of the background field (see Eq. B.117, see also 0A in Fig. B.7).

21 Though we will study non-constant fields, they will be assumed to vary slowly on a Compton scale so that quantum coherency will be confined to spatiotemporal regions in which the field can be treated as constant (Locally Constant Field Approximation, "LCFA", see e.g. [AdQED] for a discussion).

Formal regime Name

Parameters Physics Perturbative in - No field Vacuum QED › , ‰, E, B = 0 Particle scattering Perturbative in - Perturbative in › Background field QED › . 1 ‰, E, B ≥ 0 Particle and field photons scattering Perturbative in - (-‰ 2/3 ?) Non-perturbative in › Strong-field QED › > 1 ‰, E, B < 1 Relativistic many photons field-particles interaction Quantum dominated sf-QED › > 1 ‰ > 1 E, B < 1 Many particles creations/annihilations (QED cascades) Critical sf-QED › > 1 ‰ > 1 E, B & 1
Vacuum polarization and coherent field decay (Schwinger process)

Non-perturbative in -? Non-perturbative in › Fully non-perturbative sf-QED › > 1 ‰ & -≠3/2 ¥ 1600 E, B & 0
Breakdown of loop processes hierarchy (Ritus-Narozhny conjecture)

Table 2.1: Summary of the di erent considered regimes of strong-field QED.

E and B correspond to the electric and magnetic field magnitude in the reference frame in which they are colinear (they vanish for a plane wave).

Let us finally note that the study of loop corrections to the two point functions in sf-QED with constant background fields has lead to the conjecture that the loop expansion is controlled by the parameter -‰ 2/3 [317-320], instead of simply the fine structure constant -as in a vacuum. If this is true, the perturbative expansion of sf-QED is only relevant so long as ‰ . -≠3/2 ¥ 1600, past which one enters the so-called "fully non-perturbative" regime of QED. Little is known about this regime in which all-order loop diagrams would equally contribute to any given process, though one might expect collective e ects to play an important role at this scale as the standard particle picture fails. Nevertheless, this scaling behavior technically remains a conjecture to this day, and the asymptotics of sf-QED amplitudes even more so in physical, finite energy background fields is still open [321,322]. As of today, the high-‰ limit therefore still stands as a frontier in the understanding of QED [3].

The presence of coherent photons states hence reveals a stratified structure of electro- dynamics, where qualitatively di erent physics succeed each other as the various invariant field strength parameters are increased. For convenience, this classification of the di erent regimes of electrodynamics is summed up in Table 2.1.

PIC-QED numerical simulations

The Boltzmann-QED model of strong-field QED has been introduced as a rather natural extension of relativistic classical kinetic theory, providing theoretical ground for an intuitive conception of general field-particles dynamics in strong-field QED. Most decisively, it also allows for numerical solving with virtually no further approximations, or so-called ab initio simulations. The underlying algorithm is known as the "Particle-in-Cell" (PIC) method. It has become standard in high-intensity laser research, now admits extensions to include QED events, which will be referred to as "PIC-QED" algorithms. This section will provide a summary of this numerical method. Though significant variations exist in the implementation, the main structure and functions of the algorithm remain quite stable, and will be described first. As the present thesis relied on the WarpX code [323], it will then be discussed briefly.

The PIC-QED algorithm

The general function of a PIC-QED algorithm is to produce numerical solutions to the closed system of partial di erential equations Eqs. 2.12-2.17 and 2.21-2.22. An overview of the involved variables and their interactions is shown in Fig. 2.1. The principle of the algorithm is to solve the system by time discretization and iterative solving, allowing to compute quantities at later times from initial time data.

Objects of the algorithm

The mathematical distinction between particle distribution functions and the electromagnetic field values numerically translates in two kinds of objects in the algorithm. Fields values are attached to a discrete set of points in space forming a "grid". The definition of this grid sets the spatial extent of the simulation. Distribution functions are computed by the method of characteristics, that is,

f (u (t,t 0 ) (x 0 ), t) = f (x 0 , t 0 ) (2.42) i.e. Y _ _ _ _ _ ] _ _ _ _ _ [ f (x, t) © f 0 (x 0 ) with, dx dt = A ṙ(t) ṗ(t) B = A p(t)/m"(p(t)) q [E(r(t)) + ṙ(t) ◊ B(r(t))] B and x(t 0 ) = x 0 (2.43)
Therefore, the distribution function at all times can be computed from the trajectories of a set of particles sampling the initial phase space of the system, weighted by the initial distribution values f 0 . The sampling particles are called macro-particles22 , and enter the algorithm through the data of their instantaneous position (non-restricted to grid points), momenta components, and "weight" quantifying their contribution to the distribution function values. The value of f at all points is then approximated by interpolation of the macro-particles weight values, with a given interpolation function or "form factor".

Core evolution loop Time evolution is computed in discrete timesteps, chosen small enough for dynamics to be correctly resolved. At each time step, the same workflow is repeated, forming the loop represented in Fig. 2.2 by the yellow boxes (N/E/S/W directions). Let us summarize each of them, i. Particle pusher: The field is known on the particles positions, hence the Lorentz force also. Positions and momenta are then updated via Eq. 2.43.

ii. Current deposition: The new particles configuration results in new sources for the electromagnetic field. Charges and current on the grid points are then computed with Eqs. 2.16-2.17, by interpolation of the macro-particles on grid points through their form factor.

iii. Field solver: Once currents are known on grid points, sources for the fields are as well, and field values at the next time can be computed. There exists di erent methods to perform this step, or "solvers", defined in terms of the fields directly or their Fourrier transforms. iv. Field gathering: The new field configuration results in new values of the Lorentz force on particles. Fields are therefore computed at each macro-particle position using the same interpolation method as in step ii.

Additional modules and QED processes Additional operations can be performed besides the core loop, for instance between each step. Looking at Fig. 2.1, we see that only the (matter) particles-field classical interaction has been described so far ("classical plasma physics", including macro-photons uniform motion at c). All other processes are computed in additional steps in the algorithms, encapsulated in code "modules" (NE/SE/SW/NW directions in Fig. 2.2). Regarding strong-field QED modules more specifically we can list, a. Compton scattering and Breit-Wheeler: The two sf-QED processes expected to dominate are photon emission from an electron or positron (Compton scattering), and decay of a photon into an electron-positron pair (Breit-Wheeler). Both processes only involve one incoming particle and the local field values (LCFA), allowing to compute a probability of occurrence. As a result they can simply be implemented as a step following step i. Following such event if any, macro-particles are created and destroyed as appropriate.

b. Schwinger pair production: The process of pair creation from the coherent field directly rather than a high-energy photon, or Schwinger process, can also be accounted for in the PIC loop. Adopting the LCFA, local rates can be computed with an analytical expression. The only subtlety stems from the need to compute all field components at the same grid points, while staggered grids are typically used in PIC codes, motivating to place this step when the field solver acts23 . When such process occurs, an electron and positron macro-particles are created.

c. Electromagnetic self-interaction: One could also account for electromagnetic self-interaction through virtual electron-positron pairs in this framework using e ective field equations (Chapter 5). In this case, Maxwell's equations are supplemented with additional source terms non-linear in the local field values. The resulting nonlinear equations can then either be solved exactly in the field solver step [196], or linearized assuming the vacuum currents are small.

Implementation in the WarpX code

The WarpX code is an implementation of the PIC-QED algorithm amenable to highperformance computing on state-of-the-art infrastructures. In particular, it is compatible with GPU accelerated nodes. Di erent implementations of the core PIC loop are available in the code, most notably a Pseudo-Spectral solver, allowing dispersion-free propagation of the electromagnetic field. This last feature was crucial to the study lead in Chapter 9, as in particular the peak intensity reached by a beam comprising ≥ 100 harmonics order would be very sensitive to any numerical dispersion.

The QED modules of Compton scattering, Breit-Wheeler and Schwinger pair production were all implemented and tested in the last three years. More detailed information on the QED library can be found in [324]. More general information on the code can be found at [323], and scientific documentation covering its critical features is available in [249-252, 324, 325].

"Stimulated Vacuum Emission" formalism

When a definite experimental context is given, a theoretical framework designed for it may be used, hopefully cutting in the complexity of the full theory. In this section, the situation we consider is the evolution of an harmonics beam in a vacuum, and we wish predict the e ects of its self-interaction through the electron-positron field. Within some realistic conditions, it would be possible to derive an e ective classical field theory capturing the electromagnetic evolution, eventually reducible to non-linear corrections to Maxwell's equation24 . We here adopt another view called "Stimulated Vacuum Emission" (SVE) [303], based on photon creation transition amplitudes, which is simply and consistently defined in terms of fields obeying the classical Maxwell's equations. After presenting this formalism, we dedicate a second section to the definition of the classical data of the harmonics field, which itself proves non-trivial once computational tractability is factored in.

Stimulated Vacuum Emission formalism

A classical field configuration is naturally embedded in Quantum Electrodynamics under the form of a coherent state, and in free theory this correspondence commutes with time evolution [304,316]. In particular, expectation values of the photon numbers in each mode, of momentum k and polarisation p, are encoded via the modulus of the Fourier coe cients of the classical field, which directly implies they are conserved quantities under Maxwell's action. Together with its experimental readiness, this property makes photon numbers an observable suited for detecting couplings to the quantum vacuum, and we therefore wish to compute

d 3 N (p) (k) = Èn (p) (k)Í ‰ A ≠ d 3 N A (p) (k) (2.44)
the change in the expectation value of the photon number operator n (p) (k) measured at asymptotically late times taking the coherent state ‰ A as the initial state, compared to the initial photon content d 3 N A (p) (k) associated to the classical field with 4-potential A. Following [303], we discard the marginal e ects of coherent multi-photon emission and interference with the classical field to obtain

d 3 N (p) (k) © dk (2fi) 3 - - -S (p) (k) - - - 2 (2.45) with, S (p) (k) = È" (p) (k)| A int [a(x)] |0Í (2.46) where |" (p) (k)Í = a † (p) (k) |0Í
is the (k, p) mode 1-photon state vector, and A int [a(x)] the effective interaction operator encoding couplings of the dynamical (operator-valued) photon field a(x) with other fields for the initial state ‰ A .

From orthogonality of the photon basis we can furthermore write [326],

S (p) (k) = K " (p) (k) - - - - - ⁄ d 4 x " A int "a µ (x) - - - - - a=0 a µ (x) - - - - -0 L (2.47)
or expressing a µ in Lorenz gauge,

S (p) (k) = Á µú (p) (k) (2fi) 3 Ô 2k ⁄ d 4 xe ≠i(kt≠k•x) " A int "a µ (x) - - - - - a=0 
, for k = ÎkÎ (2.48) Within QED, in the limit of slowly varying classical electromagnetic fields, retaining only the dominant interaction with the electron field then leads to the identification of A int with the 1-loop 327,328], at first order in -= e 2 /4fi and nonperturbatively in the classical field strength F A . In such fields varying on characteristic spatio-temporal scales ⁄ ∫ 1/m subleading derivative corrections which scale as ≥ 1/(m⁄) 2 can be safely neglected, such that

A int ƒ ⁄ d 4 xL HE int (F )| F aeF A (x)+f (x)
with constant-field Heisenberg-Euler interaction Lagrangian L HE int and quantized photon field f . Taking as polarization vectors Á µ p (k) = (0, e p (k)) with p oe {1, 2} such that (k/k, e 1 (k), e 2 (k)) forms a direct orthonormal basis, the amplitudes reduce to

S (p) (k) = i Û k 2 ⁄ d 4 xe ≠i(kt≠k•x) [e p (k) • P(x) + e p+1 (k) • M(x)]
(2.49)

with formal convention e p+2 = ≠e p , and defining P = We finally restrict ourselves to field strengths F π F S , so that up to O(F 2 /F 2 S ) corrections we have,

L HE int ƒ m 4 8fi 2 3 e m 2 4 4 Ë 4F 2 + 7G 2 È (2.50)
where we remind F = 1 2 (B 2 ≠ E 2 ) and G = ≠B • E are the gauge and Lorentz-invariants of the field.

The number of Schwinger pair creation events was besides estimated assuming no particles-field retro-action, by integrating the local production rate derived from the nonperturbative form of L HE int in the simulated space-time volume, as proposed e.g. in ref. [199,296]:

N S © 1 4fi 2 ⁄ ≠4 C ⁄ d 4 x EB coth 3 fiB E 4 exp 3 ≠ fi E 4 (2.51)
where ⁄ C = ~/mc is the reduced Compton length of the electron and

E = 1 F S Ò Ô F 2 + G 2 + F, B = 1 F S Ò Ô F 2 + G 2 ≠ F (2.52)
The conditions of validity of this approach are further discussed in sec. 8.2.

Numerical implementation

The accurate estimation of the quantities of interest Eqs. 2.44 and 2.51 for arbitrary field configurations can be performed numerically. In order to achieve this we developed and optimized a code able to run on large scale parallel computing infrastructures.

Here, we give the general principle of this algorithm, similar in nature to the one presented in [297,326]. Let us focus on the computation of Eq. 2.49, which amounts to a four dimensional on-shell (k 0 = ÎkÎ) Fourier transform of third degree polynomials in the E and B fields values. We numerically estimate it by performing 3D space parallel fast Fourier transforms of the sources P and M from position to momentum space at each timestep t j , followed by a 1D time integration of all these contributions multiplied by the appropriate phase factor, namely

S (p) (k) © i Û k 2 Ë e p (k) • Â P(k) + e p+1 (k) • Ê M(k) È (2.53)
where e.g.

 P(k) ƒ Nt ÿ j=0 e ≠ikt j FFT 3 [P(E(t j ), B(t j ))] t (2.54)
Field values at time t j are accessed by exact Maxwell propagation of an initial field configuration performed via 3D spatial Fourier transforms (plane wave decomposition). The computational cost of these simulations stems from the inherently tridimensional nature of the source fields P and M, and from the necessity to resolve all spacetime scales from the total beam focusing length and pulse duration to the highest frequency content of the field. In the case of the harmonic beams, this imposes the use of a supercomputer25 .

Several observables of interest are finally extracted from the photon emission amplitudes that will be used as figures of merit for the di erent configurations:

• N t , the total number of scattered photons

• N ‹ , the total number of photons emitted with polarization crossed to the main polarization direction of the driving beam, typically identifiable as its polarization direction at focus in all cases we consider

• N > t,‹ , the corresponding quantities of discernible photons, generically defined as those emitted outside of the opening cones of the driving beams, as commonly done in this context [303,326,329], with some more detailed criteria that will be specified in each case of study.

A computationally tractable model of the harmonics field

The above described procedure involves an initialisation step, consisting in defining the field configuration in space at some given time and computing its amplitude for a given total energy. The careful definition of this initial condition is all the more important because, as explicit in Eq. 2.50, QED e ects depend on the Lorentz invariants of the field, which can strongly reflect even minor variations in the field structure, as in particular they would strictly vanish for a plane wave. The investigation of the robustness of the simulation results upon specific choices in the numerical procedure details and involved approximations is carried out in Chapter 3. For our primary concern here, namely all simulations involving harmonics, initial beam configurations were defined by A(Ê), the time spectrum of their main field component on-axis in a given plane x = x 0 , under the assumption that each monochromatic component has a Gaussian spatial profile, given by the paraxial expressions of the Gaussian beam E px (x, Ê) [330] and characterized by its waist and radius of curvature in plane x = x 0 . The initial field is then reconstructed by summing over all monochromatic contributions,

E(x, t 0 ) © ÿ Ê e ≠iÊt 0 E px (x, Ê)A(Ê)
(2.55)

The above field profiles being built from paraxial expressions, they do not exactly satisfy vacuum Maxwell's equations, we hence made the choice to project them on the exact solution space by dropping all longitudinal field components (i.e. making it divergence free) via,

I E(k) © a 1 (k)e 1 (k) + a 2 (k)e 2 (k) B(k) © a 1 (k)e 2 (k) ≠ a 2 (k)e 1 (k) , with a p (k) = e p (k) • E(k) (2.56)
Note that for accurate harmonics spectrum data, which can contain much more than a hundred frequency sampling points, equation (2.55) can prove computationally intensive. For 3-d field profiles, which are required as soon as non-symmetrical expressions for the field are usede.g. the paraxial Lax series beyond order 0 -the induced overhead indeed prohibited any practical simulation for our most detailed spectral data. However it was found that, in our conditions, where in particular all initial configurations can be quantitatively well-approximated by summing 0-th order gaussian beams, the above-described procedure (2.56) projects configurations built from paraxial series expressions of any order on manifestly equivalent initial conditions. It therefore was possible to cut the initialization time drastically, by first computing (2.55) with 2-d 0-th order profiles, reconstruct the 3-d field by the assumed axisymmetry, and then apply (2.56).

Our computation of vacuum processes is made possible in this part, via our study both of numerical and theoretical elements of vacuum strong-field Quantum Electrodynamics and relativistic plasma mirror light.

Chapter 3 presents an extensive numerical validation of our implementation of the Stimulated Vacuum Emission algorithm. Furthermore, seemingly equivalent numerical options were tested, evidencing a sizeable sensitivity in some cases.

Chapter 4 provides an explicit derivation of the analytical expression of the number of photons scattered in RPM light as a function of the harmonic spectrum (Eq. 8.2), leveraging on the solvable case of a Gaussian pulse.

Chapter 5 discusses the relation between our amplitude-based calculation of vacuum photon scattering and the resolution of e ective field equations. Di erent types of expansions in quantum e ective theories of electromagnetism are distinguished, specifying a role of non-perturbative solutions of approximate equations of motion.

Chapter 6 provides estimates of the computational cost of Stimulated Vacuum Emission simulations.

Chapter 7 provides lineouts of the PIC simulation field temporal spectra used to model RPM light in our work.

Abstract of Part II

Part II

Theoretical and numerical studies for vacuum strong-field Quantum Electrodynamics

Chapter 3

Stimulated vacuum emission algorithm validation on reference configurations

For better comparison with existing literature [297,326] and understanding of the RPM light case, results of our SVE code on four reference cases are presented in the following.

As the expected results for each of our observables are known, we could use them to validate our algorithm, and in particular study the impact of di erent propagation and initialization procedures.

To that end, field values at any time are accessed using two di erent methods. Either explicit analytical expressions of the fields are used, derived from the paraxial series expansion [330] taken, unless explicitly specified otherwise, at fifth order and supplemented with a Gaussian time envelope; or by exact Maxwell propagation of an initial field configuration via 3D fast Fourier transforms, as described in previous section. In the following, we will refer to these mehtods as C px and C ex respectively1 . In reference cases i), ii) and iv) as defined in the introduction, purely numerical results have been supplemented with semi-analytical computations of the amplitudes C al , where only a 1-dimensional space integral is left to perform numerically, providing another independent validation of the code.

All these procedures involve an initialisation step, consisting in defining the spatial field profile at some given time and computing its amplitude for a given total energy. For procedure C ex , which involves exact Maxwell propagation, this step is used also to define the initial condition entering our Maxwell solver and therefore received further attention. For this purpose four di erent initialisation modes were tested, either in (f ) or out (of ) of focus, using either monochromatic paraxial expressions supplemented with a time-envelope, E(x, t) = e ≠iÊ 0 t E px (x, Ê 0 )a(t ≠ x) (m), or defining the corresponding time spectrum and summing over all monochromatic contributions, E(x, t) = q Ê e ≠iÊt E px (x, Ê)a(Ê) (p); we denote them respectively I m≠f , I p≠f , I m≠of and I p≠of . The projection prescription (2.56) was then applied in all cases. We note that procedure C ex -I p≠of corresponds to the default one described in 2.3.3; it indeed stands as the most accurate and general, and is actually necessary to address all cases involving RPM beams.

Counterpropagating infrared pulses

Let us start with the reference case of two counter-propagating identical Gaussian pulses [297,303,326,331,332]. The importance of this configuration becomes clear noticing that the field invariants entering the Heisenberg-Euler Lagrangian Eq. 2.50 identically vanish for a plane wave, making the field of a single loosely focused laser a priori very w0/λ sub-optimal for observing quantum vacuum e ects. The transient standing wave obtained simply by crossing two such laser pulses on the opposite yields near maximal invariants for the same total energy, and therefore provides a landmark for the achievable signal in all-optical frequencies setups.

We considered two counterpropagating pulses with parameters typical of a Petawattclass system [5], with the same linear polarization, wavelength ⁄ 0 = 800 nm, W = 25 J respective energy, • = 25 fs duration considering a field time profile on-axis of the form:

E(t) © Ee ≠ (t≠x) 2 (•/2) 2 (3.1)
and identical waist at focus w 0 = ⁄ 0 fi 1 Á , where Á . 1/fi is the di raction parameter. The resulting values of the total and discernible photon numbers are plotted in Figure 3.1 for several waists at focus, using the di erent computation methods introduced in sec. 2.2. Here we define two discernible populations, respectively denoted by a >1e (>2e) superscript, scattered at an angle ◊ = ^(e x , k) with the optical axis greater than ◊ 1 = arcsin(Á) (◊ 2 = arcsin(2Á)), which corresponds to a background laser photon density drop o of at least 1/e 2 (1/e 8 ) in a gaussian pulse model. We observe a remarkable consistency between all methods for the polarization-insensitive photon number, from the analytical to the fully numerical calculations, with a standard deviation of 4.9 %, displaying the expected Á 4 scaling. This provides a first evidence for the validity of the code. Moreover, the maximum total photon number obtained in this case from C ex ≠ I p≠f , numerical Maxwell propagation with initialization at focus, is N t = 241.1, consistent within 7 % error with the value N t = 260.4 obtained by the authors of [297] with exactly the same method. The same holds true for the polarization-insensitive discernible photon numbers, now with standard deviations of 6.4 % and 6.5 % respectively, and maximum values of

N >1e t = 108.6, N >2e t = 2.756 for C ex ≠ I p≠of . Comparing N >1e t
with the corresponding value computed in [326] gives a better than 1 % level agreement.

Regarding crossed-polarized photons, we again find agreement between the analytical and numerical calculation C px where the paraxial expressions with time-envelope are used to define the field at each time step, including the asymptotic Á 8 dependency, for the total and discernible numbers, with standard deviations close to 0.5 % in each case. All C ex computations however consistently display lower values at weak focusings for total and discernible photons, while maintaining the same Á scaling; at strong focusings, out of focus initialization procedures converge towards the common C al and C px result within at most 30 %, while numerical computations initialized at focus both give a value about one order of magnitude smaller. The common maximum crossed-polarized photon numbers obtained for the converging computations are, giving the C ex≠p≠of values for definiteness,

N ‹ = 1.176 ◊ 10 ≠1 , N >1e ‹ = 1.104 ◊ 10 ≠1 (about 60 % of the value in [326]), N >2e ‹ = 1.321 ◊ 10 ≠2
. This illustrates the sensitivity of this problem to even minor field variations, here especially manifest for the crossed-polarization photons. Indeed, the analytical expressions reveal that while N t and N ‹ stem from the same field integral, d 3 N ‹ is suppressed near axis by an additional factor à sin 4 ◊, making it more dependent on the higher transverse modes of the source, or equivalently on the transverse field profiles details.

Single infrared pulse

We now consider the photon emission from a single focused Gaussian beam [297,333], with wavelength ⁄ 0 = 800 nm, duration • = 25 fs, and energy W = 50 J for easier comparison with the previous case. In this case the nonvanishing Lorentz invariants stem from field components beyond the main polarization direction, associated to higher powers of Á in the paraxial series expansion, and therefore to an overall much weaker signal than with e.g. two beams crossing at an angle. The results are depicted in Fig. 3.2. For the maximum total photon numbers we obtain, always giving the C ex ≠ I p≠of value, N t = 4.196◊10 ≠3 (N ‹ = 7.275◊10 ≠5 ), with a standard deviation of 28 % (17 %) between all the di erent methods at w 0 = ⁄ 0 . We once again find a very good agreement between paraxial and analytical calculations, of about 5 % standard deviation, recovering in particular the Á 8 scaling expected from the analytical calculation based on the order 2 paraxial field expression [330]. We note an agreement within one order of magnitude with previous results on this configuration [297], while an exact matching is made less likely in this case by the sensitivity to the field structure beyond zeroth order paraxial approximation; for the procedure C ex ≠ I m≠f closest to the one described in this reference we nevertheless find a close to 20 % agreement on N t . We also find consistency of the di erent C ex results between themselves, and with C al and C px for the polarization-insensitive numbers, while the C ex procedure gives smaller numbers of crossed-polarized photons at weak focusing. Defining discernible photons as in the two pulses case, we find at di raction limit (i.e.

Á = 1/fi) N >1e t = 3.492 ◊ 10 ≠3 (N >1e ‹ = 7.032 ◊ 10 ≠5 ), and N >2e t = 6.486 ◊ 10 ≠4 (N >2e ‹ = 2.286 ◊ 10 ≠5 ).
Assuming a laser repetition rate comprised between 0.1 and 10 Hz, a realistic bound for upcoming Petawatt-class laser systems [5,334], these results indicate that emitting a single discernible photon would require between a few minutes and several hours of accumulated operation time, so that building a clear signal in controlled conditions seems unfeasible with this single pulse configuration. In the following, we consider di erent ways to enhance this very low baseline signal without requiring the stringent space and time overlap of several focused ultra-intense sources.

Infrared pulse in a monochromatic wave

As a final reference case we consider a focused Gaussian pulse identical to the one of sec III.B, coupled to an ambient monochromatic plane wave. This setting aims at decorrelat-ing the discernibility constraint from the intense field photon distribution, likely di cult to finely control, by trying to detect instead the photons of a well-controlled collimated source scattered o the intense field region. We consider the same focused beam as before, a Gaussian pulse of wavelength ⁄ 0 = 800 nm, duration • = 25 fs, energy W = 50 J energy, and a plane wave of amplitude of E = 5 ◊ 10 ≠5 E S which would correspond e.g. to a 200 TW laser focused at w 0 = 3.32 µm. Such configuration a priori depends non-trivially on the di raction parameter of the focused beam, the angle ◊ c = ^(k 0 , k p ) between the wave vector of each beam, and the frequency di erence between them. In Fig. 3.3 we plot the dependence with respect to the angle and frequency, taking the focused beam at di raction limit. The first feature of these results is the quasi-independence of the probe frequency and numbers of photons produced, very clear for the total photon numbers and more obfuscated in the discernible photon numbers due to higher variability of these calculations, although no alternative trend clearly appears. Regarding the collision angle dependence, for C ex all photon numbers are maximized close to counterpropagation, while a maximum in crossed-polarized photon number is observed around ◊ c ƒ 130 ¶ for the paraxial calculations, confirming similar observations in previous works [297]. Moreover, we note the very slow variation of the photon number around ◊ = 180 ¶ , analytically found to follow N t,‹ (◊ c ) ◊caefi ≥ sin 2 ◊c 2 .N t,‹ | ◊c=fi , so that collision angles up to 135 ¶ can be considered to yield near-optimal photon signal. We obtain maximum photon numbers equal within less than 10 % for all probe frequencies, of N t = 376.6 (N ‹ = 1.507),

N >1e t = 37.76 (N >1e ‹ = 9.611 ◊ 10 ≠1 ) and N >2e t = 1.110 (N >2e ‹ = 4.777 ◊ 10 ≠2
) giving the C ex ≠ I p≠of values. However, we can only give credit to the relative values of these numbers, as the computation was done for a plane wave of infinite duration; we defer the numerical simulation of more realistic bounded field configurations to sec. 8.3.

Single multi-frequency beam

Regarding the photon number dependence with w 0 , we observe seemingly the same trends as in the single frequency case, as Fig. 3.4 displays for n = 2 and n h = 3. The enhancements factors with respect to the single frequency case are of a n h =2 t = 3.17 (a n h =2 ‹ = 6.04) for two harmonics and of a n h =3 t = 7.29 (a n h =3 ‹ = 12.47) for three. We once again find good agreement between the C px and semi-analytical calculation for total photon numbers, which is lost for the discernible photon numbers though. 

w0/λ

Analytical estimate of the RPM-light beam self-scattering

The full-scale numerical calculation of photon scattering within a focused plasma mirror generated beam is very computationally expensive, while the parameter space describing such RPM fields is at least as vast as the set of realistic spectra. As a consequence, a numerical derivation of scaling laws governing RPM-light self-scattering is practically impossible. On the other hand, an accurate analytical modelling of the field proves di cult as well, and the subsequent photon scattering amplitudes calculation rather deterring in any case.

We can nevertheless find guidance in analytical expressions adopting simple assumptions regarding the RPM light field, assimilated to a train of Gaussian pulses. Though quantitative predictions seem out of reach in this way, general trends can be derived for relevant quantities as a function of the beam parameters, including a quite flexible description of the RPM light spectral profile. This chapter exposes this calculation in detail. The self-scattering of a focused finite duration Gaussian pulse is presented first, the RPM light case is then treated leveraging on this result.

Study of a single focused Gaussian pulse

We primarily wish to compute the photon scattering amplitudes Eq. 2.49 for a single ultra-short laser pulse focused in a vacuum. This will here be achieved following the SVE method [303].

In the course of this calculation, the introduction of adimensional quantities will simplify some expression. We will therefore adopt the Lorentz-Heaviside units with c = ~= 1. The most general problem of vacuum QED photon emission only has one dimensional scale, the electron mass m = 511 keV = 2, 43.10 ≠12 m = 8, 10.10 ≠21 s, from which derives E S = m 2 e = 1, 32.10 18 V.m ≠1 = 4, 41.10 9 T (= 8, 62.10 5 keV 2 ). Considering Gaussian pulses in particular, it is convenient to beside use the central wavenumber k 0 as the spatio-temporal scale. In the following, all quantities can be considered adimensionnalized in this way1 . We finally introduce S = k 3/2 0 S, the adimensional amplitudes such that

dN Ã |S| 2 d 3 k = | S| 2 d 3 k.

Field and photon sources definition

In accordance with a widespread model of ultra-intense laser beams, we consider the field of a Gaussian beam under the paraxial approximation. Retaining the lowest order terms giving a non-zero contribution to the "stimulated vacuum emission", we will be working at second order in the paraxial expansion parameter, Á = 2 k 0 w 0 .

A linearly polarized pulse along the z axis propagating along the growing x direction is then expressed as,

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E = E - - - - - - - - - - - Á›c 1 ≠ Á 2 ›‹s 2 s 0 + Á 2 C › 2 s 2 ≠ fl 4 4 s 3 D ; B = E - - - - - - - - - - - Á‹c 1 ≠ s 0 ≠ Á 2 C fl 2 2 s 2 ≠ fl 4 4 s 3 D 0 with, E = E 0 e ≠r 2 /w 2 u , w = w 0 Ò 1 + x 2 /x 2 R © w 0 u › = z w 0 ; ‹ = ≠ y w 0 ; fl = Ò › 2 + ‹ 2 and, " = ≠k 0 (t ≠ x) ≠ arctan(x/x R ) + xr 2 x R w 2 ≠ " 0 " g = ≠ arctan(x/x R ) c n = 1 u n cos(" + n" g ); s n = 1 u n sin(" + n" g ) (4.1) (4.2)
Let us then express the corresponding field invariants,

Y _ ] _ [ F = 1 2 1 B 2 ≠ E 2 2 G = ≠E • B (4.3) (4.4)
First,

F = E 2 2 Y ] [ A s 0 + Á 2 C › 2 + ‹ 2 2 s 2 ≠ fl 4 s 3 4 DB 2 + Á 2 ‹ 2 c 2 1 ≠ A s 0 + Á 2 C › 2 s 2 ≠ fl 4 s 3 4 DB 2 ≠ Á 2 › 2 c 2 1 Z \ = Á 2 E 2 ‹ 2 ≠ › 2 2 Ó s 0 s 2 + c 2 1 Ô Second, G = ≠E 2 I (Á›c 1 ).(Á‹c 1 ) + A ≠s 0 ≠ Á 2 C › 2 + ‹ 2 2 s 2 ≠ fl 4 s 3 4 DB .(≠Á 2 ›‹s 2 ) J = ≠Á 2 E 2 ›‹ Ó s 0 s 2 + c 2 1 Ô Now, denoting " 1 = " + " g , s 0 s 2 = 1 u 2 (sin(" 1 ≠ " g ) sin(" 1 + " g )) = 1 u 2 1 sin 2 (" 1 ) cos 2 (" g ) ≠ cos 2 (" 1 ) sin 2 (" g ) 2 = 1 u 2 1 sin 2 (" 1 ) ≠ sin 2 (" g ) 2 c 2 1 = 1 u 2 cos 2 (" 1 ) so that, s 0 s 2 + c 2 1 = 1 u 2 cos 2 (" g ) = 1 u 4
We therefore come to,

Y _ _ _ _ _ _ ] _ _ _ _ _ _ [ F = Á 2 E 2 0 e ≠2 r 2 w 2 u 6 . y 2 ≠ z 2 2w 2 0 G = Á 2 E 2 0 e ≠2 r 2 w 2 u 6 . yz w 2 0 (4.5) (4.6)
The associated polarization and magnetization fields write, in natural units,

I P = ≠m 2 C 0 (4FE + 7GB) M = m 2 C 0 (4FB ≠ 7GE) , C 0 = 1 90fi Ú - fi ƒ 1, 7.10 ≠4 (4.7)
we thus obtain,

P = m 2 C 0 Á 2 E 3 0 p ˙˝¸- - - - - - - - - - - - O(Á) 7 yz w 2 0 ≠ 4 y 2 ≠ z 2 2w 2 0 . e ≠3r 2 /w 2 u 7 sin " (4.8) M = m 2 C 0 Á 2 E 3 0 m ˙˝¸- - - - - - - - - - - - O(Á) ≠ 4 y 2 ≠ z 2 2w 2 0 ≠ 7 yz w 2 0 . e ≠3r 2
/w 2 u 7 sin " (4.9)

Coming to the photon emission amplitudes, we manually add a time envelope a(Ï = k 0 (z ≠ t)) to the field profile, so that we can write,

S p (k) = i Û k 2 m 2 C 0 Á 2 E 3 0 ⁄ d 4 x e ik•x .a(Ï) 3 1 e p (k) • p(x) + e p+fi/2 (k) • m(x) 2 (4.10)

Analytical expression of the amplitudes

Integrals reduction

With the latter conventions we can write the adimensional amplitudes in a spherical coordinate system aligned around the z axis,

e ◊ (k) = - - - - - - - - cos ◊ cos Ï cos ◊ sin Ï ≠ sin ◊ ; e Ï (k) = - - - - - - - - ≠ sin Ï cos Ï 0 (4.11) Y _ ] _ [ S 1 (k) = K 0 .k 1/2 [p(k) • e ◊ (k) + m(k) • e Ï (k)] S 2 (k) = K 0 .k 1/2 [p(k) • e Ï (k) ≠ m(k) • e ◊ (k)] (4.12) with K 0 = i Ô 2 1 m k 0 2 2 C 0 E 3 0 Á 2 ,
and tilde denoting on-shell four dimensional Fourier transforms.

According to (5,6) we can further write,

p(k) = - - - - - - - 0 7I 2 4I 1 (4.13) m(k) = - - - - - - - 0 4I 1 ≠ 7I 2 (4.14)
where,

Y _ _ _ _ ] _ _ _ _ [ I 1 = ⁄ d 4 x e ik•x . z 2 ≠ y 2 2w 2 0 a(Ï) 3 e ≠3r 2
/w 2 u 7 sin(")

I 2 = ⁄ d 4 x e ik•x . yz w 2 0 a(Ï) 3 e ≠3r 2 /w 2 u 7 sin(") (4.15)
Now, changing variables as (y

Õ , z Õ ) = R fi/4 [(y, z)] in I 1 , and taking note of k ‹ • x ‹ = R " [k ‹ ] • R " [x ‹ ], it appears that I 1 (k) = I 2 (k Î , R fi/4 [k ‹ ]) (4.16)
One can therefore focus on I 2 © I.

We further decompose I by shifting to the complex representation of the sine function,

sin x = e ix ≠ e ≠ix 2i
splitting the integral in two simpler ones. Specifically,

I = ⁄ d 4 x e ik•x f (x). sin " = 1 2i 3⁄ d 4 x e ik•x+i" f (x) ≠ ⁄ d 4 x e ik•x≠i" f (x) 4 = 1 2i 1 Ĩ(k) ≠ Ë Ĩ(≠k) È ú 2 (4.17)
where we used the real character of f for the last line. The calculation thereby comes down to evaluating the quantity Ĩ. Explicitly,

Ĩ = ⁄ dx. e ≠i(kx≠k 0 ).x [1 + x 2 /x 2 R ] 8/2 . (1 ≠ ix/x R ) ⁄ dt.e i(k≠Ák 0 ).t a 3 (t ≠ x) ◊ ⁄ dydz. yz w 2 0 e ≠‰(x)/w 2 0 .(y 2 +z 2 )≠iky.y≠ikz.z (4.18) with ‰(x) = 1 3 ≠ i x x R 2 1 1+x 2 /x 2 R .

Evaluation of the integrals

Let us first address the transverse variables y and z. 

+ib.u = i Ô fi 2 b.e ≠ b 2 4a a 3/2 therefore, Ĩ‹ = i Ô fi 2w 0 (≠k y ) e ≠ w 2 0 k 2 y 4‰(x) ‰(x) 3/2 w 3 0 ◊ i Ô fi 2w 0 (≠k z ) e ≠ w 2 0 k 2 z 4‰(x) ‰(x) 3/2 w 3 0 (4.20) i.e. Ĩ‹ = ≠ fi 4 w 4 0 .k y k z e ≠ w 2 0 k 2 ‹ 4‰(x) ‰(x) 3 (4.21) with k 2 ‹ = k 2 x + k 2 y .
We then turn to the time integration, for this purpose we assume a Gaussian envelope of extent • ,

a(t ≠ z) . = e ≠ (t≠x) 2 • 2 (4.22)
so that we only have another Gaussian integral left,

⁄ dt.e i(k≠k 0 ).t a 3 (t ≠ x) = ⁄ dt.e i(k≠k 0 ).t≠3 (t≠x) 2 • 2 (4.23) = e i(k≠k 0 ).x • Ú fi 3 e ≠ • 2 12 (k≠k 0 ) 2 (4.24)
Substituting these results in (18) we are led to,

Ĩ = ≠• w 4 0 fi 3/2 4 Ô 3 k y k z e ≠ • 2 12 (k≠k 0 ) 2 ◊ ⁄ dx. e ≠i(kx≠k).x≠ w 2 0 k 2 ‹ 4‰(x) (1 + (x/x R ) 2 )(3 ≠ ix/x R ) 3 .(1 ≠ ix/x R ) (4.25) © ≠• w 4 0 fi 3/2 4 Ô 3 k y k z e ≠ • 2 12 (k≠k 0 ) 2 ◊ J (4.26) with J = ⁄ dx. e ≠i(kx≠k).x≠ w 2 0 k 2 ‹ 4‰(x) (1 + (x/x R ) 2 )(3 ≠ ix/x R ) 3 .(1 ≠ ix/x R ) (4.27)

Amplitudes

As a final step we deduce I 1 and I 2 from the Ĩ(k) via Eqs. 4.13-4.14, and the photon scattering amplitudes and probabilities follow according to,

S(k) = K 0 .k 1/2 - - - - - - - 4(cos Ï ≠ sin ◊).I 1 + 7 cos ◊ sin Ï.I 2 ≠4 cos ◊ sin Ï.I 1 + 7(cos Ï ≠ sin ◊).I 2 (4.28) Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ dN tot = 1 2025 - 3 3 m k 0 4 4 .E 6 0 Á 4 3 w 0 2 4 8 • Õ2 . A k 2 B 5 e ≠ • Õ2 24 (k≠k 0 ) 2 ◊ (1 ≠ cos ◊) 2 sin 4 ◊ Ë n 2 F + (n 2 G ≠ n 2 F ) sin 2 (2Ï) È ◊ |J| 2 d 3 k (2fi) 3 dN ‹ = 1 2025 - 3 3 m k 0 4 4 .E 6 0 Á 4 3 w 0 2 4 8 • Õ2 . A k 2 B 5 e ≠ • Õ2 24 (k≠k 0 ) 2 ◊ sin 4 ◊ 1 ≠ sin 2 ◊ sin 2 Ï S U n 2 F 16 . sin 4 ◊ sin 2 (4Ï) + n 2 G .(cos ◊ ≠ 1 + sin 2 ◊ sin 2 Ï) 2 sin 2 (2Ï) + n F n G 2 . sin 2 ◊(cos ◊ ≠ 1 + sin 2 ◊ sin 2 Ï) sin(2Ï) sin(4Ï) T V ◊ |J| 2 d 3 k (2fi) 3 (4.29) (4.30)

RPM light field as a train of Gaussian pulses

Let us model the RPM light field by a train of attosecond Gaussian pulses, each spaced by a period of the fundamental laser frequency. Then the amplitudes take the form,

S © S [E p ] F Np (4.31)
where F Np captures the interference e ects between the di erent N p pulses and depends on the modeling hypotheses, while S [E p ] is the single pulse contribution that will be estimated.

Di erential photon numbers

Following [299] we choose to model our field as a Gaussian pulse of duration • h ≥ • 0 /n h , waist w h ≥ w 0 /n h and Rayleigh length x Rh ≥ x R0 /n h , with n h the harmonics order of the spectrum cut-o frequency k h = n h .k 0 . We can besides adopt a generic model for the power spectrum setting,

"W n W © n ≠2s H 2s (n h ) (4.32)
where "W n is the energy content of the n-th harmonic and W the total energy, while H q (n) , q n k=1 1/k q is a generalized harmonic number. The field amplitude follows as,

E h = n h ÿ n=1 E 0n with E 0n = Û "W n • w 2 0n = E g 0 . n ≠s+1 (H 2s (n h )) 1/2 , denoting E g 0 = Û W • w 2 0 (4.33) so that E h = E g 0 . H s≠1 (n h ) (H 2s (n h )) 1/2 (4.34)
Starting back from the single focused Gaussian beam scattered photons numbers Eqs. 4.29-4.30 we have,

Y _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ [ n t = c t . |I h | 2 .k 5 sin 4 A ◊ 2 B sin 4 ◊. Ó n 2 F + (n 2 G ≠ n 2 F ) sin 2 (2Ï) Ô n ‹ = c ‹ . |I h | 2 .k 5 sin 4 A ◊ 2 B sin 4 ◊ sin 2 (2Ï) 1 ≠ sin 2 ◊ sin 2 Ï ◊ I (n F ≠ n G ) cos(2Ï) cos 2 A ◊ 2 B + 2n 2 G sin 2 A ◊ 2 BJ 2 (4.35) (4.36)
for c t,‹ some constant factors, and where the integral factors write, after factoring out numerical constants,

I h © Á 2 E 3 h ."• h w 4 0h x Rh .e ≠ "• 2 h 12 (k≠k h ) 2 Jh (4.37) Jh = ⁄ d'. e ≠ix Rh (kx≠k).'≠ 1 w 0h k ‹ 2 2 2 1+' 2 3≠i' (1 + i')(3 ≠ i') 3 (4.38)
We then have to estimate the J integral. Switching to spherical coordinates we have,

Jh = ⁄ d'. e ≠i 4 Á 2 k k h sin 2 ( ◊ 2 ) Ë ' 2 +1 '+3i k k h cos 2 ( ◊ 2 )≠' È (1 + i')(3 ≠ i') 3 (4.39)
Now it appears that the integrand has the form j('

) © h(')e ≠i 4 Á 2 k k h sin 2 ( ◊ 2 ).f(',◊)
, where h has a pole at ' = i, and

f (', ◊) ≥ |'|aeOE f OE (◊)' (4.40) with f OE (◊) = k k h cos 2 A ◊ 2 B ≠ 1 (4.41) hence for k < k h , f OE (◊) < 0 '◊ (4.42)
so that we can close the integration path in the upper complex plane and use the residue theorem to find,

Jh = i fi 2 5 e ≠ 4 Á 2 k k h sin 2 ( ◊ 2 ) (4.43)
which by analytic continuation holds true also for k > k h . Therefore,

I h = Á 2 E 3 h ."• h w 4 0h x Rh .e ≠ "• 2 h 12 (k≠k h ) 2 .e ≠ 4 Á 2 k k h sin 2 ( ◊ 2 ) (4.44) so that, Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ n t = c t .Á 4 (E g 0 ) 6 .• 2 0 w 8 0 x 2 R0 . 1 n 12 h (H s≠1 (n h )) 6 (H 2s (n h )) 3 .k 5 e ≠ "• 2 h 6 (k≠k h ) 2 ◊ e ≠ 4 Á 2 k k h sin 2 ( ◊ 2 ) sin 4 A ◊ 2 B sin 4 ◊. Ó n 2 F + (n 2 G ≠ n 2 F ) sin 2 (2Ï) Ô n ‹ = c ‹ .Á 4 (E g 0 ) 6 .• 2 0 w 8 0 x 2 R0 . 1 n 12 h (H s≠1 (n h )) 6 (H 2s (n h )) 3 .k 5 e ≠ "• 2 h 6 (k≠k h ) 2 ◊ e ≠ 4 Á 2 k k h sin 4 A ◊ 2 B sin 4 ◊ sin 2 (2Ï) 1 ≠ sin 2 ◊ sin 2 Ï ◊ I (n F ≠ n G ) cos(2Ï) cos 2 A ◊ 2 B + 2n 2 G sin 2 A ◊ 2 BJ 2 (4.45)

Total photon numbers

We can now integrate this di erential signal intensities to find the total photon numbers. We see from the exponential factors that we can apply a small scattering angle approximation ◊ π Á, so that expanding all trigonometric functions to lowest order in ◊ we find,

⁄ d 3 ke ≠ 4 Á 2 k k h sin 4 A ◊ 2 B sin 4 ◊ Ã k 7 h "• h Á 10 (4.46) So that, Y _ _ _ _ _ ] _ _ _ _ _ [ N t = C t .Á 4 (E g 0 ) 6 .k 7 0 • 0 w 8 0 x 2 R0 . 1 n 4 h (H s≠1 (n h )) 6 (H 2s (n h )) 3 .Á 10 N ‹ = C ‹ .Á 4 (E g 0 ) 6 .k 7 0 • 0 w 8 0 x 2 R0 . 1 n 4 h (H s≠1 (n h )) 6 (H 2s (n h )) 3 .Á 10 (4.47)
with C t,‹ some numerical constants. Finally making the di raction parameters dependence explicit, we conclude that

N t,‹ = C t,‹ .k 3 0 W 3 • 2 . 1 (H 2s (n h )) 3 A H s≠1 (n h ) n h B 4 ◊ (H s≠1 (n h )) 2 .Á 8 (4.48)
If we consider the spectrum generated in optimal laser-plasma interaction conditions we can take s ≥ 1 for the power spectrum, in which case the harmonics number scaling reduces to,

N Ã n 2 h (4.49)
Chapter 5

Relation between Stimulated Vacuum Emission and e ective classical field equations

The Stimulated Vacuum Emission formalism we used in this work is explicitly grounded in Quantum Electrodynamics. Nevertheless, it lead us to an expression of the number of photon observable Eqs. 2.45-2.49 in the purely classical terms of a radiated field spectrum. We here make explicit the possibility of the converse reasoning, starting from the equations of motion of the Heisenberg-Euler action, understood as a quantum e ective action, so as to compute photon numbers defined from the classical field variables, understood as quantum field expectation values. This approach has also been pursued in the literature1 , with the benefit of a natural embedding in the reference Maxwell-Boltzmann framework, including PIC-QED numerical implementations allowing to numerically solve the self-consistent field equations without further approximation. In order to more clearly discern the predictive power of such methods, the equivalence domain with the amplitudebased calculation will be precised, and a typology of contributions beyond leading order highlighted, delineating the role of exact solutions to the e ective equations of motion.

Heisenberg-Euler quantum e ective theory

All predictions of a Quantum Field Theory are entirely encoded in its n≠points functions and exact equations can be derived for them (cf. sec. B.2.3). In App. B we derived such relations, the Schwinger-Dyson equations Eq. B.94, simply from local commutation relations and the Euler-Lagrange equations satisfied by field operators. Now it turns out these equations can also be derived from a variational principle, formally identical to Hamilton's principle Eq. A.2. The generating functional is then called the quantum e ective action of the theory [307]. Considering for definiteness a real scalar field ", this indeed means that there exists a functionnal such that,

" "f = 0; " "G = 0; " "G (3) = 0; . . . ("Quantum e ective action") (5.1)
whose solutions are the exact field expectation value f x , propagator G and any higherorder correlation function G

(n) 1...n , for a given state fl 0 . There is a second meaning of "e ective action" in mechanics, conceptually distinct but physically related to the first in some contexts, including field theory. Namely, let us assume our system can be decomposed in two interacting subsystems {q i } = {q a } aoeA fi {q b } boeB , then its action writes

S[q i ] = S A [q a ] + S int [q a , q b ] + S B [q b ]
. Now consider a configuration in which we can assume that the dynamics of q b does practically not depend on the values of q a . As a consequence q b variables can be treated "non-dynamically", in the sense that their evolution can be determined considering system B in isolation. System A however is a ected by system B and therefore obeys modified equations of motions, generated by a new action S[q a ] © S e AB [q a ] ("e ective action") (5.2)

generically called an e ective action for system A "integrating out" system B2 . This e ective action S e AB [q a ] has a priori no relation to the quantum e ective action (e.g. A defining the quantum dynamics of S A ), and in particular does not share the defining property of generating exact equations of motion for correlation functions Eq. 5.1 upon extremization3 .

The Heisenberg-Euler action HE [A] is defined as the "e ective action" in the sense Eq. 5.2 of the electromagnetic field (A stands for the 4-potential) integrating out electronpositron dynamics (or any other charged fermionic particle), for a fermion field in the vacuum state, computed at first order in the fine-structure constant -(or "one-loop" order, diagrammatically) for a uniform electromagnetic field expectation value. Now it turns out that at this order in the loop expansion, this functional coincides with the electromagnetic part of the quantum e ective action in the sense Eq. 5.1 4 [328], so that,

" "A µ HE [A] = 0 (5.3)
are the equations of motion of the electromagnetic potential expectation value A in QED at first order in -, with electron-positrons in the vacuum state.

In this section, we will examine more closely this approach to strong-field QED, that we choose to call "Heisenberg-Euler quantum e ective theory" for definiteness. In particular, we will show how the scattered photon number Eq. 2.49 of the Stimulated Vacuum Emission formalism is then recovered.

Theory definition

We wish to consider the dynamics of the electromagnetic field expectation value (1-point function) coupled to a fermion field, in a fermionic vacuum state. Equations of motion are generated by a quantum e ective action. For a field of frequencies Ê π m, we can adopt the locally constant field approximation and assume that, at first order in -, an e ective action integrating out fermionic variables is provided by,

HE A [A] © ⁄ dxL HE A(x) (A(x)) (5.4)
injecting the local electromagnetic field values in the Heisenberg-Euler Lagrangian (cf sec. 2.3.1) 5 . At first order in -, this functional coincides with the quantum e ective action of the electromagnetic field in Quantum Electrodynamics with fermions,

HE A © (1) QED [A] (5.5) that is, L (1) QED (A) © L 0 (A) + L HE int (A) , denoting L 0 Maxwell's Lagrangian (5.6)
Expanding L int (with alleviated notations) at lowest order in normalized invariant field strengths E, B Eqs. 2.41 we reach,

L 0 = ≠F = ≠ 1 2 Ë B 2 ≠ E 2 È L int = m 4 8fi 2 1 45 3 e m 2 4 4 Ë 4F 2 + 7G 2 È = m 4 8fi 2 1 45 3 e m 2 4 4 5 1 B 2 ≠ E 2 2 2 + 7 (E • B) 2 6
(5.7)

(5.8)

Equations of motion

Equations of motion are the Euler-Lagrange equations of the quantum e ective action,

ˆµ ˆL ˆ(ˆµA ‹ ) ≠ ˆL ˆA‹ = 0 (5.9) i.e. ˆµ ˆL0 ˆFµ‹ = ≠ˆµ ˆLint ˆFµ‹ (5.10)
Let us rewrite them in tridimensional form, recalling,

F µ‹ = 3 0 E j ≠E i Á ijk B k 4 (5.11) from which we deduce, Y _ _ _ _ ] _ _ _ _ [ L int ˆF0j = ≠ 1 2 L int ˆEj L int ˆFij = 1 2 Á ijk L int ˆBk (5.12)
Then, for ‹ = 0,

≠ 1 2 ˆiF i0 = ≠ˆi ˆLint ˆFi0 (5.13) … 1 2 ˆiE i = ≠ 1 2 ˆi ˆLint ˆEi (5.14) … Ò • D = 0 (5.15)
with D = E + P, and P = ˆLint ˆE (5.16)

For ‹ = j, ≠ 1 2 1 ˆ0F 0j + ˆiF ij 2 = ≠ A ˆ0 L int ˆF0j + ˆi L int ˆFij B (5.17) … ≠ 1 2 1 ˆ0E j + Á ijk ˆiB k 2 = ≠ 1 2 3 ≠ˆ0 L int ˆEj + Á ijk ˆi L int ˆBk 4 (5.18) … ≠ˆtD + Ò ◊ H = 0 (5.19)
with H = B ≠ M, and M = ˆLint ˆB (5.20) Besides, the definition of the electromagnetic field tensor F in terms of gauge field A remains unchanged, F µ‹ = ˆµA ‹ ≠ ˆ‹A µ , so the homogeneous Maxwell's equations still follow. The electric and magnetic fields expectation values are therefore governed by,

Heisenberg-Euler field equations

- - - - - - - - - - - Ò • D = 0 ≠ˆtD + Ò ◊ H = 0 Ò • B = 0 ˆtB + Ò ◊ E = 0
(5.21) (5.22) (5.23) (5.24) from which derive wave equations, (5.25) with fl v = ≠Ò • P and j v = ˆtP + Ò ◊ M the induced "vacuum" charge and current6 .

⇤E = T E [E,B] ˙˝¸≠ Ò (Ò • P) + ˆ2 t P + ˆtÒ ◊ M = Òfl v + ˆtj v ⇤B = T B [E,B] ˙˝¸≠ Ò ◊ (Ò ◊ M) ≠ Ò ◊ ˆtP = ≠Ò ◊ j v

Number of scattered photons

In order to be able to compute the photon number observable in the present framework, it should be expressible in terms of field expectation values. One may check that it is indeed the case, exactly for a coherent state, and neglecting some terms to a good approximation in a general strong-field state [304,307]. This expectation value is then found to coincide with the pre-quantum correspondance rule between a photon and an energy-momentum unit of the electromagnetic field, in a given polarization. Formally7 ,

N © ⁄ d 3 k (2fi) 3 |E(k)| 2 + |B(k)| 2 2k (5.26)
and,

dN p d 3 k (k) © 1 (2fi) 3 |e p (k) • E(k)| 2 + |e p+1 (k) • B(k)| 2 2k (5.27)
with polarization basis vectors as in sec. 2.3.1. The non-free part of E is generated by the source T E , it can hence be expresed from it via a Green's function G, as E = G ú T E . We here wish to compute only photons radiated during the interaction, and thus use the radiative Green's function,

G rad = G ret ≠ G ad (5.28)
We thereby find,

dN p d 3 k (k) = 1 (2fi) 3 |e p (k) • s d• G rad (k, •)T E (k, t ≠ • )| 2 2k + (E, p ¡ B, p + 1) (5.29) = 1 (2fi) 3 |e p (k) • s dÊ 2fi e ≠iÊt G rad (k, Ê)T E (k, Ê)| 2 2k + (E, p ¡ B, p + 1) (5.30)
Green's functions of the D'Alembertian are solution to the distribution equation,

(≠Ê 2 + k 2 )G(k, Ê) = 1 (5.31) of general solution[340, 341], G = Vp 1 ≠Ê 2 +k 2 + -"(Ê ≠ k) + -"(Ê + k)
with Vp the principal value. We can extract physically relevant values for the -, -coe cients by analytical continuation of G(Ê) in the complex plane and choice of closing of the integration path on a contour when shifting to G(• ), leading to the prescriptions,

G ad ret = lim sae0 + 1 2k 5 1 ≠Ê + k ± is + 1 Ê + k ± is 6 (5.32)
or, knowing that lim

yae0 + 1 x±iy = ûifi"(x) + Vp 1 x , G ad ret = 1 2k 5 ±ifi"(Ê ≠ k) ≠ Vp 1 Ê ≠ k û ifi"(Ê + k) + Vp 1 Ê + k 6 (5.33) so that, G rad = ifi k (≠"(Ê ≠ k) + "(Ê + k)) (5.34)
Injecting Eq. 5.34 in the computation of E(k) Eq. 5.30, we find,

E(k) = ⁄ dÊ 2fi e ≠iÊt ifi k (≠"(Ê ≠ k) + "(Ê + k)) T E (k, Ê) (5.35) = i 2k 1 ≠T E (k, k)e ≠ikt + T E (k, ≠k)e ikt 2 (5.36) hence, |E(k)| 2 = 1 4k 2 1 |T E (k, k)| 2 + |T E (k, ≠k)| 2 2 (5.37) ≠ 1 2k 2 Re Ë T E (k, k) • T ú E (k, ≠k)e ≠2ikt È
The term in the second line of Eq. 5.37 cancels out in the integral of N for t" T Ê ∫ 1, where " T Ê is the characteristic variation scale in the spectrum of T E8 . Besides, T E (k, ≠k) = T ú E (≠k, k), so that negative frequencies at k give a contribution identical to positive frequencies at ≠k when Eq.5.37 is integrated. From these conclusions Eq. 5.30 becomes,

dN p d 3 k (k) . = 1 (2fi) 3 1 2k 5 1 4k 2 .2|e p (k) • T E (k, k)| 2 + 1 4k 2 .2|e p+1 (k) • T B (k, k)| 2 6 (5.38) = 1 (2fi) 3 1 4k 3 Ë |e p (k) • T E (k, k)| 2 + |e p+1 (k) • T B (k, k)| 2 È (5.39) Now, T E (k, k) = k(k • P) ≠ k 2 P + k(k ◊ M) (5.40) = ≠k 2 1 P‹ ≠ u k ◊ M2 (5.41) with P‹ = P ≠ (u k • P)u k (5.42) T B (k, k) = k ◊ (k ◊ M) ≠ k ◊ (k P) (5.43) = ≠k 2 1 M‹ + u k ◊ P2 (5.44) noticing u k ◊ 1 M ◊ u k 2 = M‹ (5.45) with u k = k/k.
Then, using the geometrical identity e p (k)

• (u k ◊ v) = ≠e p+1 (k) • v, e p (k) • T E (k, k) = ≠k 2 1 e p (k) • P + e p+1 (k) • M2 (5.46) e p+1 (k) • T B (k, k) = ≠k 2 1 +e p+1 (k) • M ≠ e p+2 (k) • P2 (5.47)
So that we finally come to,

dN p d 3 k (k) = 1 (2fi) 3 k 2 - - -e p (k) • P + e p+1 (k) • M-- - 2 (5.48)
which is formally identical to Eqs. 2.45-2.49.

Consistency beyond leading order contributions

It appears that e ective equations of motion for the electromagnetic field together with a simple strong-field assumption allowed to retrieve exactly the SVE expression of the scattered photon number observable. At this point though, this result may appear as a mere coincidence. Besides, Eq. 5.48 actually is not exactly the same as Eqs. 2.45-2.49, for in the latter formula fields were conceived as expectation values in a free coherent state without mention of field equations Eqs. 5.21-5.24, and thus assumed to follow Maxwell's equations.

In this section, we will define the equivalence domain between both approaches explicitly. Furthermore, as the Heisenberg-Euler quantum e ective theory manifestly contains more information than the amplitude-based calculation, it is legitimate to ask for the precise extent of its predictive power. This will be discussed identifying three di erent kinds of contributions beyond the leading order. We will argue that in large interaction volumes, the local hierarchy of interaction terms can collapse due to high multiplicity interaction sequences; the role of exact solutions to the equations of motion then is identified as ensuring the consistency of approximations operated at the quantum e ective action level, at all point in the system evolution.

Equivalence domain with Stimulated Vacuum Emission

Aside from shared assumptions regarding the expansion order of the e ective action, or the validity of its locally constant field expression Eq. 5.4, we can identify two conditions for the equivalence of the direct perturbative expansion and e ective equations for the computation of a given observable, or more specifically here the number of photons Eq. 2.44 in SVE and Eq. 5.27 in Heisenberg-Euler e ective theory. Namely, i. ÈO(")Í strong fields © O(È"Í) + O(higher orders in -) (5.49) ii. È"Í ƒ "

(1) cl , with " .50) and G the free propagator of field " and T a source term stemming for quantum corrections to the classical equations of motion (cf. for instance Eqs. 5.25).

(1) cl = G ú T [" (free) cl ] ( 5 

Decorrelation of observables in strong fields

The result Eq. 5.49 that at leading order in -observables can be obtained simply from the 1≠point function is actually true in contexts more general than QED [307]. It can be established for instance by power counting, relating diagrammatic properties to the power of a graph in e and A. In the context of QED with non-zero field expectation value, we can expect this property realized when eA/m > 1, or eE/Êm > 1.

First order solution to the e ective field equations

The second condition Eq. 5.50 simply expresses that in the SVE calculation, the photon source terms are expressed in terms of the free fields. This is equivalent to expressing the solution to the e ective field equation as a power series in the source (e.g. E as a series in T E ) and truncating at first order. The outline of this procedure can be sketched more explicitly writing, .51) with ⇤E (free) = 0 (5.52)

⇤E = T[E] ∆ E © E (free) + E (1) + E (2) + . . . ( 5 
E (1) = G ú T[ 1 E (free) 2 3
] , taking for instance a cubic source term (5.53)

E (2) = 3G ú T[ 1 E (free) 2 2 , E (1) ] = 3G ú T[ 1 E (free) 2 2 , G ú T[ 1 E (free) 2 3 ]]
(5.54) . . . with e 2 = 4fi-. This highlights that the SVE formula simply gives the first order result in -, while solving the e ective equations and computing e.g. photon numbers from Eq. 5.48 includes higher order terms stemming from the nonlinearity of the equations of motion.

Higher order terms hierarchy

The relevance of the higher order terms included in solving the equations of motion has to be examined more closely. All the above discussion of the "Heisenberg-Euler quantum e ective theory", in the sense defined below Eq. 5.3, was based on the leading order of a double expansion scheme of the full quantum e ective action [A] of the electromagnetic field in QED 9 . First, the quantum e ective action was expanded in -and truncated at order one, where its expression coincides with the Heisenberg-Euler functional. Second, the resulting non-polynomial Heisenberg-Euler Lagrangian was expanded in the field strengths ' © max (E, B), and again truncated at lowest order. Only then a third expansion could appear from the nonlinearity of the equations of motion, when solutions are written as a (classical) pertubative series Eq. 5.51 capturing the possible numbers of local interaction events. Calculations of chapter 8 could then be identified as the first order contribution of this last series.

We will here try and clarify the relevance of higher order contributions in all three expansions, either as corrections or source for qualitatively new e ects, so as to better understand how consistent approximations can be obtained at a given level of accuracy. Simply writing the double expansion of the quantum e ective action [A] will first allow establishing a hierarchy in local interaction terms. For large interaction volumes, multiple scattering processes can alter this local ordering and break expansion Eq. 5.51, which will then be discussed.

Local interaction terms

Let us reason in the framework of the quantum e ective action method again. If the electromagnetic field dynamics in QED with e.g. electron-positrons is described by an action S[A], its exact expectation value in a given state fl 0 can be obtained solving the equation of motion,

" "A

[A] = 0 (5.55) where is the quantum e ective action. If the exact form of is a priori out of reach, approximate expressions may be obtained through an expansion in the parameter -, which diagrammatically translates in a number of loops. This procedure can be sketched as,

[A] © OE ÿ l=0 -l (l) [A], with (0) [A] = S[A] (5.56)
and (l) are known for l AE l . Now in QED more specifically, the action actually depends on the gauge-invariant field strength tensor, appearing in Lorentz-invariant combinations. Furthermore, a consequence of gauge-invariance is the cancellation of diagrams with odd numbers of external photon lines (Furry theorem), so the action is expressed only from even powers of the field strength. Quantifying their invariant magnitude normalized to the Schwinger field with the above introduced parameter ', we may then perform a weak field expansion,

int [A] © OE ÿ l,p=1 -l ' 2(p+1) (l,p) int [A] (5.57)
denoting int the action term beyond Maxwell's.

The equations of motion Eq. 5.55 then take the form,

" "A S[A] = ≠ " "A int [A] (5.58) ∆ ⇤E = OE ÿ l,p=1 -l ' 2p T (l,p) int [E 2p+1 ] (5.59) with T (l,p) int à ˆL(l,p) int ˆE (5.60)
omitting the B field for better clarity of the argument, and where E should here be understood normalized such that its amplitude is captured in '.

At this point it appears that in this context higher loop orders can not be expected to induce qualitatively new e ects, but only refine the precision of the electromagnetic self-interaction terms appearing from order 1. On the opposite, higher order terms in the fields manifestly result in distinct phenomena such as harmonics generation at some frequencies di ering according to their order in '. 

Propagation and terms mixing

Now expanding solutions to this field equation as well, in terms of number of interactions or "multiplicity", we are lead to,

E © OE ÿ m=0 E m (5.61) with E m = ÿ {l i ,p i } ioeJ1;mK - q m i=1 l i ' 2 q m i=1 p i ◊ G ú T (lm,pm) int [. . . , G ú T (l m≠1 ,p m≠1 ) int [. . .], . . .] (5.62)
Though quite unwieldy analytically, the content of E m may be more easily grasped in terms of tree diagrams 10 . The term of order m is comprised of the sum of all possible sequences of m interactions, represented by tree diagrams with m vertices, for all possible combination of vertex types as given by their orders in -and ', specified by two integers l, p. The generic term of such sum is drawn in Fig. 5.1.

We have therefore decomposed the total field in a sum whose terms are indexed by a multiplicity m, denoting the number of interaction events, and a set of integers {l i , p i } ioeJ1;mK labelling the order in -(loop order) and ' (number of incoming fields) of each interaction point. Each term can thereby be assigned the local magnitude,

- - -E m {l i ,p i } - - -Ã - q m i=1 l i ' 2 q m i=1 p i
(5.63) 10 A solution to a classical partial di erential equation with a linear di erential operator can indeed be represented by a sum of "tree diagrams", that is diagrams without loops, where lines are Green's function and vertices carry the coe cients of interaction terms. This can be understood from Green's method of solution applied in a perturbative expansion as illustrated in Eqs. This simply shows that leading order e ects are provided by the one-loop interaction terms and multiplicity one contributions. Indeed, relevance of a term to a given observable, e.g. harmonics generation at specific frequencies, is expected to only be defined by the order p in '. Therefore, a general multiplicity term contribution to this observable has magnitude q m i=1 l i ' 2p , besides l i Ø 1, hence all contributions of multiplicity m Ø 2 are suppressed by at least a factor -with respect to the leading m = 1 term.

Furthermore, higher multiplicity terms contribute with a magnitude equal to lower multiplicity terms originating from higher loop order vertices. As a consequence, corrections beyond the leading order result cannot be consistently obtained only from higher multiplicities at a fixed loop order, but necessarily imply increasing the loop order of the quantum e ective action calculation 11 .

From there one may conclude that exact fully non-linear solutions of the equations of motion can never consistently give approximations better than a perturbative solution up to multiplicity m = l , where l is the loop order at which the quantum e ective action is given. In particular, in the above one-loop Heisenberg-Euler quantum e ective theory, we would not be more accurate than a fully linearized m = 1 solution, such as prescribed in the SVE formalism. This conclusion however has to be mitigated accounting for long distance propagation e ects, as we will now suggest.

A consistency criterion for fully non-linear macroscopic field propagation with finite order local interactions

Let us try and define more precisely a situation where exact solutions to the equations of motion are relevant. The only subtlety stems from the approximate character of equations of motion themselves. For practical purposes one would indeed strongly favor a weak field expansion of the e ective action over its '≠nonperturbative expression, and its expressions are only known to low order in - 12 . For this reason, though Eq. 5.63 simply indicates that resummation of perturbative field components in multiplicity number would be required as soon as, l ' 2p & 1 , for some integers l, p (5.65)

… ' & 1 -l/2p
i.e. ' & 1 , keeping the broadest condition (5.66) at this point the e ective action has to be kept in '≠nonperturbative form as well. E ective field equations given by a finite weak field Lagrangian such as Eq. 5.8 do therefore not admit a consistent fully nonlinear strong field regime E, B ≥ E S , B S . However, starting back e.g. from Eq. 5.62, we see that the prefactor retained in Eq. 5.63 does not capture the full scaling of E m {l i ,p i } components. Convolution by the propagator

L HE = ≠ m 4 8fi 2 ⁄ OE 0 ds s 3 e ≠s ; EB tanh(Bs) tan(Es) ≠ 1 ≠ s 2 3 ! B 2 ≠ E 2 " < (5.64)
functions G can indeed be expected to modify the local terms hierarchy when interactions take place over large propagation volumes. Introducing the resulting factors as D, of form to be precised in a given field configuration geometry, we can then write,

- - -E m {l i ,p i } - - -≥ D m - q m i=1 l i ' 2 q m i=1 p i (5.67)
An actual multiplicity-nonperturbative regime threshold thus appears as, Dl ' 2p & 1 , for some integers l, p (5.68)

i.e. D & 1 -' 2 (5.69)
In these conditions, though field magnitudes remain below the Schwinger field and thus legitimate a weak field (and low -) expansion of the action, high interaction multiplicity components dominate in the final field so that the perturbative expansion Eq. 5.62 breaks down and equations of motions Eq. 5.60 (with series truncated at finite l , p ) have to be solved exactly 13 .

This situation in which consistent approximations can be obtained from an expansion of the action, but not of dynamical quantities, due to a collapse of the local interaction terms hierarchy from multiple interaction events over large evolution scales, is reminiscent of the general secularity issue in Non-equilibrium Qunatum Field Theory, as evoked in sec. B.2.3. In the discussed context of quantum e ective theories of the electromagnetic field expectation value, exact solutions of the equations of motion can therefore not be conceived as approximations to the strong field regime ' ≥ 1 or higher order phenomena in -, both small expansion parameters of the e ective action. Instead, the role of exact (multiplicity-nonperturbative) solutions of the nonlinear equations of motion is to ensure self-consistency of the approximation scheme 14 for evolution over any (spacetime) extent.

Chapter 6

Computational volume of Stimulated Vacuum Emission simulations

The general lack of symmetry of the source terms in Eq. 2.49 makes the algorithm described in sec. 2 potentially very expensive from the computational point of view. Indeed, working with 3-dimensional numerical arrays we can infer memory needs of M Ã N x N y N z , while the time complexity stemming from the on-shell Fourier transform is

T Ã N t N x N y N z log(N x N y N z ).
On the other hand, the resolved scales in each space-time dimension need to range from the field support characteristic length 1/L, in order to simulate the whole relevant interaction volume, to 2 ◊ ‹ max , in order to fulfil the Shannon criterion associated to the maximal field frequency, as scattering events with significant energy exchanges are suppressed in comparison to the elastic channels [303,326].

For a focused monochromatic Gaussian pulse with waist at focus w 0 ≥ ⁄ 0 and duration • ≥ 10⁄ 0 , choosing a minimal (maximal) propagation time such that the "front" ("rear") of the pulse is at about three Rayleigh lengths from focus implies that fitting the whole pulse in the simulation space at all times requires a total longitudinal length of about 2 ◊ (• + 3z R ) ƒ 40⁄ 0 , and a transverse length close to 20⁄ 0 as a consequence of the large divergence of a tightly focused beam. If we furthermore assume the need to work with about ten 3-dimensional double precision (8 Bytes) arrays at any given moment (e.g. from field components, Lorentz invariants, etc.), we are then led to,

M Gaus ≥ 10 ◊ (2 ◊ ‹ 0 ◊ 40⁄ 0 ) ◊ (2 ◊ ‹ 0 ◊ 20⁄ 0 ) 2 ◊ 8 Bytes (6.1) ≥ 10 MB (6.2)
This is a rather modest memory requirement, making such configurations computable on a laptop. If we now consider a beam comprising harmonics up to order n h ≥ 100, the maximum frequency is of course ‹ max ≥ 100‹ 0 , while the field falling length is still bound to the global duration of the beam • ≥ 10⁄ 0 , including in the transverse dimensions again due to the large divergence of a very focused beam, which implies,

M h ≥ 10 ◊ (2 ◊ 100‹ 0 ◊ 20⁄ 0 ) ◊ (2 ◊ 100‹ 0 ◊ 10⁄ 0 ) 2 ◊ 8 Bytes (6.3) ≥ 100 GB (6.4)
Combined with the time constraint, this amounts to a computational volume of about 2.5◊ 10 4 CPUhours/run, and thus marks the need for a large scale computing infrastructure.

Chapter 7

Harmonic spectra from PIC simulations

Under suitable interaction conditions, an overdense plasma irradiated by an ultra-intense laser pulse e ectively acts as a mirror of optical quality, a ecting essentially only the time spectrum of the field from the Doppler e ect caused by its relativistic oscillations, without inducing major optical aberrations [9,[START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]260,272,284,343,344].

In these conditions, it is legitimate to approximate the reflected field by a superposition of monochromatic components each having a Gaussian spatial profile. Then the field is entirely determined by the data of w p (Ê), R p (Ê) and A(Ê), respectively the (frequencydependent) beam waist, radius of curvature and time spectrum of the main component of the electric or magnetic field, all taken in the PM plane. In this work we assumed that w p and R p were the same for all frequencies, implying they only encode the opening angle of the RPM beams (the di raction parameter then being equal to Á = w p /R p if we assume Êw p ∫ 1 for all frequencies Ê). The non trivial information about the PM harmonics generation is then entirely contained in the frequency spectrum A(Ê), including its maximal attainable amplitude for a given field energy. This critical data was provided by Particle-In-Cell simulations using the WarpX+PICSAR framework [249][250][251]325], as presented in sec. 2.2.2.

As specified in the main text, we used two spectra in this study, corresponding either to sub-optimal or optimized parameters of the laser-plasma interactions generating the RPM field. In both cases, the simulated laser was of wavelength ⁄ 0 = 800 nm, duration • = 20 fs and normalized vector potential amplitude a 0 = 80. The bulk to vacuum plasma (electronic) density profile is n e (x > 0) = n max e ≠x/Lp , with L p = ⁄ 0 /20 and n max = 240n c , where n c is the plasma critical density for wavelength ⁄ 0 ; besides, n e (x < 0) = n max . The only di erence between those two cases is the angle of incidence, of 45 ¶ and 55 ¶ respectively for the sub-optimal and optimized case. Both simulations were run in one dimension in the Bourdier frame [345]. Extensive parametric scans in 1D and 2D, backed with some 3D simulations, indeed show that 1D spectra faithfully depict the 3D configuration as long as the waist on PM is larger than about 4 ⁄ 0 [281].

The modulus of these numerical spectra is shown in Figure 7.2, in the PM plane and at focus. The PM plane data corresponds to the output of the PIC simulation. In order to extract the propagative component of the field from these simulations, field values are actually recorded in a plane away from the PM surface, and then backpropagated on PM surface by vacuum Maxwell's equations. Spectra at PM focus are calculated from the PM plane spectra assuming perfect focusing, i.e. E(Ê)| x=x foc Ã Ê ◊ E(Ê)| x=x P M . It then appears that slowly decaying spectra can be obtained, with roll-o parameters (see sec. 8.2) of s = 7/5 and s = 3/5, with harmonics numbers of the order of a few tens in PM plane, resulting in quasi-constant harmonics amplitude at PM focus up to an harmonic order of more than 50 in the optimal case. The results of our work on the physics of extremely intense relativistic plasma mirror light either in a vacuum or in the presence of matter are presented.

Chapter 8 details the e ects of the electromagnetic field couplings with the electron-positron field in the absence of particles. More specifically, we compute spectra of photons scattered in the field in di erent configurations, and specify a power threshold for the occurrence of Schwinger pair creation in such fields.

Chapter 9 displays the outcome of the interaction of relativistic plasma mirror light with matter particles, present either in the form of an initially solid target, or of a high-energy electron beam. Distinct properties of the resulting macroscopic configurations are examined, as well as the involved individual elementary processes.
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Quantum processes in the light of relativistic plasma mirrors

Chapter 8

Quantum vacuum processes in the light of relativistic plasma mirrors

In conceiving a "light beam", as in particular reflected from a plasma mirror, one often lends pictures from a well-defined configuration of the electric and magnetic fields in space. These originate from Maxwell's classical theory, which remarkably well describes macroscopic electromagnetic phenomena. In this framework, the field exists in all space, while matter is localized at some points and interactions are local. This allows conceiving a "vacuum" state where no matter is there, and all properties of the field derive from laws devoid of reference to any other physical system1 . Formally, in classical theory the electromagnetic field in a vacuum is an isolated system. Relativistic quantum theory however reveals that all fundamental degrees of freedom come in the form of fields permeating all space, and already quantum mechanics asserts their rest state, which cover the classical notion of absence of particles, can never be strictly assumed. Therefore an inert vacuum can in principle not exist, nor a single field be in perfect isolation. Since they can, each constantly interacts with all the other ones, be it through transitory -so-called "virtual" -states when no particles are observed. Considering, for our part, an excited electromagnetic field with all other fields at rest, this universal interaction can be logically displayed in three parts; endogenous evolution of photons, their direct coupling to charged fields, here via virtual states, and coupling of these fields to possibly neutral ones including the photon field. A self-interaction of light e ectively results, persistently mediated through the other sectors. The empirical success of classical electrodynamics naturally implies such processes are extremely rare under usual circumstances. However, as unprecedented intensities are being reached, interaction of light with the quantum vacuum newly stands both as a tangible e ect and a promising probe for fundamental physics.

In this chapter, we present results on the opportunity to use extremely intense, plasma mirror generated harmonics beams to this purpose. Details on the context of current e orts to detect the self-interaction of light will be given first. Computation of vacuum photon scattering from harmonics beam will then be presented, either from a single focused beam, in a second section, or using a secondary beam as a probe for the harmonics-polarized vacuum, in a third section.

The search for light-by-light scattering

According to the Standard Model, first deviations from free electromagnetic propagation stem from the coupling to the electron field, controlled by the electron mass m and the coupling constant e. Together they define the characteristic field scale of Quantum Electrodynamics, F S = m 2 /e in Lorentz-Heaviside units with c = ~= 1, that is F S ƒ 1.32 ◊ 10 18 V.m ≠1 ƒ 4.4 ◊ 10 9 T, which marks the onset of the spontaneous coherent field decay into real electron-positron pairs known as the nonperturbative Schwinger process [86,327,346]. Much below this threshold though, dynamics still bears the mark of this coupling through virtual electron-positron pairs, giving rise to an e ective electromagnetic self-interaction with a perturbative component only suppressed by powers of F/F S [327,[347][348][349][350]. Since the strongest macroscopic fields achievable to date, provided by femtosecond multi Petawatt-class lasers focused near di raction-limit, reach F las ≥ 10 ≠3 ◊F S , direct observation of fully nonperturbative vacuum processes such as pair creation seems precluded in a foreseeable future, while research e orts devoted to light-by-light scattering have pointed out the yet elusive nature of this process together with the exciting possibility to attain a discernible signal in several optimized configurations 351] (see also [352] and references therein). These field configurations typically involve multiple colliding intense optical pulses, or in some cases coupling to a high-energy photon beam, providing existing and upcoming facilities with challenging experimental programs.

In this chapter, we examine how RPM sources compare in triggering these e ects and present quantitative predictions on the quantum vacuum signatures produced by these extremely intense light sources. To achieve this, we developed and benchmarked at very large scale state-of-the-art numerical tools able to realistically simulate such field configurations.

The computational methods have been detailed in sec. 2.3. It consists for the most part in a parallel numerical implementation of the Stimulated Vacuum Emission theoretical framework introduced by the authors of [303]. Our plasma mirror generated harmonics beam model, which relies on the assumption that each monochromatic component of the field is Gaussian, has been exposed in sec. 2.3.3. The algorithm validation is presented in Chapter 3, from the results obtained in four simple reference cases: i) two counterpropagating Gaussian beams ii) a single focused Gaussian beam iii) a Gaussian beam colliding with a plane wave at an angle iv) an idealized harmonic beam made of n h = 2 and 3 harmonics of a fundamental frequency of equal amplitude at focus. These reference cases provide, along with extensive analytical studies, both a benchmark for the code and a basis for understanding the more complex situation of a realistic harmonic beam produced from laser plasma interaction.

The results obtained with our numerical code applied to RPM generated harmonic beams are then presented below. In order to gain theoretical insight into the photon signal dependence upon the harmonic beam spectrum, the RPM beams results are compared with the idealized harmonic beams of Chapter 3 with 1 AE n h AE 16, and supplemented with analytical predictions derived from a simple model of these field configurations, detailed in Chapter 4.

Beyond maximizing the number of scattering events, in practice all-optical experiments for probing the quantum vacuum have to confront with the problem of clearly assessing the quantum origin of the detected photons. This may prove all the more crucial in the RPM configuration due to the possibly abundant emission of "background photons" of non-quantum origin during the laser-plasma interaction. In view of identifying ways to relax the associated experimental constraints, two hybrid scenarios are finally presented in a third section, where the Doppler harmonics field plays the role of an ultra-intense pump while the polarized vacuum is probed by a controlled auxiliary source. We considered for the probe either a mildly focused PW-class infrared pulse, or a 100 TW-class green laser beam.

A conclusion of this study will finally be exposed along with a brief outlook.

Photon scattering in the focused harmonics field

We here turn to the study of plasma mirror generated fields as sources for the quantum vacuum processes of photon-photon scattering and Schwinger electron-positron pair creation. The most basic associated configuration is sketched in Figure 8.1. In the interaction of a relativistic-intensity laser (normalized vector potential › = eE 0 /(mcÊ 0 ) > 1) with a sharp solid-density plasma surface, the electron population e ectively acts as a "relativistic oscillating mirror" and thus converts by Doppler e ect the incident laser pulse into a train of sub-wavelength pulses, equivalently described as a coherent superposition of harmonics of the initial laser beam, with e ective harmonics orders up to n h . 100 [9,[START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]260,272,284,343,344].

Although crucial to many applications including the present one, the analytical modelling of such fields remains very challenging to date, especially regarding the correct prediction of the spectrum amplitude and phase, and therefore of the associated maximum attainable field amplitude. We addressed this di culty via first-principles kinetic Particle-In-Cell (PIC) simulations [353] of the harmonics time spectrum at a point near its region of generation. The numerical data obtained from these simulations allows us to fully reconstruct a realistic 3-dimensional harmonic field, under the hypotheses that i) the spatial profiles E(x, Ê) of the harmonic beams are well-described by the Gaussian paraxial field expressions at each frequency Ê, and ii) all frequencies share the same waist w p and radius of curvature R p in the plane of generation, set to coincide with the plasma mirror plane of the original PIC simulation (see e.g. [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]281] for a motivation from simulation results).

We studied two distinct harmonic fields, corresponding to two di erent conditions of generation of their original time spectrum. They are both generated by a multi-PW class laser of wavelength ⁄ 0 = 800nm, duration • = 20 fs, normalized potential a 0 = 80 on the PM surface, waist on PM w p = 5⁄ 0 , with an optimized vacuum-plasma density gradient of ⁄ 0 /20 (see [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF][START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF]281,354] for details on optimal harmonics generation and Chapter 7 for simulation details and spectra), and only the incidence angle is varied. The choices employed here are either 45°or 55°. As the latter angle is found to be an optimum, we refer to the associated fields as optimal harmonic beams. On the other hand, an angle of 45°gives rise to a sub-optimal harmonic beam (see Chapter 7). In all studied cases, the initial field configuration was defined in the PM plane using zeroth order paraxial expressions [330] before projection (cf. sec. 2.3.3), and the total energy in the harmonic beam was set to W = 50 J.

Theoretical dependence of the scattered photon numbers over the harmonics beam parameters

For a single beam of frequency k 0 , it has been shown [297,333] (see also Chapter 4 for a detailed calculation) that the number of vacuum scattered photons increases with tighter focusing, demonstrating that the induced increase in field invariants overcomes the decrease in interaction volume. More specifically, analytical calculation of the photons emitted by a single frequency focused Gaussian pulse gives: (•/2) 2 , W its total energy, and Á = 2/k 0 w 0 its di raction parameter. The di raction parameter being physically constrained to Á . 1/fi, converting the beam to higher frequencies then appears as a straightforward way to increase the scattered photon number. The technique considered in this study for physically achieving this conversion involves generation of high-harmonics of the initial frequency, so that the energy ends up distributed among many di erent frequencies.

N t,‹ ƒ C t,‹ A k 0 m B 3 1 (m• ) 2 3 W m 4 3 Á 8 ( 8 
We can refine the calculation to account for this multiple frequency content along the line of [299]. This is done by assuming that

E h = q n h n=1 E 0n with E 0n = Ú "Wn • w 2 0n = E g 0 n ≠s+1 (H 2s (n h )) 1/2 for a fundamental frequency Gaussian pulse amplitude E g 0 = Ú W • w 2 01 and H q (n) = q n m=1
m ≠q , where we have introduced the total beam duration • , energy W , roll-o parameter of the power law spectrum s, and energy fraction "W n and waist at focus w 0n of harmonic component of order n. Besides, in the limit n h ∫ 1 and s . 2 the field profile takes the form of a train of sub-wavelength pulses, whose individual profiles can then be approximated as Gaussian with

• h ≥ 1/n h k 0 , w h ≥ w 0 /n h , leading to N h t,‹ = N g t,‹ 1 (H 2s (n h )) 3 A H s≠1 (n h ) n h B 4 ◊ (H s≠1 (n h )) 2 (8.2)
with N g t,‹ the photon number corresponding to a fundamental frequency Gaussian beam of same duration and energy up to a constant proportionality factor. In the case of optimal PM high-harmonics generation we have s ƒ 1, so that, where n h ≥ 100, implying this method can a priori enhance the emitted photons number by 4 orders of magnitude over a single tightly focused infrared laser beam of same duration and energy.

N h t,‹ Ã n 2 h .N g t,‹ (8.3)
As a first test of the viability of this prediction for PM-generated harmonics, we consider the simpler case of n h harmonics at s = 1, i.e. such that the amplitude of each harmonic is equal at focus (cf. for instance [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]281] and Chapter 7 for comparison with PM-generated spectra) for n h ranging from 2 to 16. In view of the RPM scenario we simply considered that all harmonics are perfectly in phase in some plane at a finite distance from focus, and share the same waist w p = 5⁄ 0 and radius of curvature R p in this plane, so that they all approximately have the same di raction parameter and focal point provided focusing is strong enough (⁄ 0 , w 0 π w p ). The global duration and energy of the model beam are taken respectively as • = 25 fs (in practice by defining an A(Ê) with peaks of appropriate spectral width, cf. sec. 2.3.3), chosen close to the e ective duration of the harmonics pulses train, and W = 50 J.

In Fig. 8.2 we plot the number of scattered photons as a function of the harmonic number n h for fixed other parameters. In particular, we take R p = fiw p so that all frequencies Ê satisfying Êw p /2 ∫ 1 are at di raction limit. Besides, we define discernible photons as those scattered at an angle ◊ = ^(e x , k) with the harmonic propagation direction greater than ◊ 2 = arcsin(2Á), which corresponds to a background laser photon density drop o of at least 1/e 8 in a Gaussian beam model. The corresponding numbers are denoted by a superscript >. The results confirm the increase in signal photons with the increase of harmonics number, and the scaling law reported in Eq. 8.3 at least for the total photon numbers. The crossed-polarized photons display an even faster increase with n h at first, before converging to the n 2 h trend. At n h = 16, photon numbers reach N t = 1.443 (N ‹ = 8.152 ◊ 10 ≠3 ), and

N > t = 3.955 ◊ 10 ≠2 (N > ‹ = 6.311 ◊ 10 ≠4 ), demon- strating enhancement factors of a t © N t /N n h =1 t = 2.1 ◊ 10 2 (a ‹ © N ‹ /N n h =1 ‹ = 1.5 ◊ 10 3 )
for the total photon numbers, and a > t = 1.8 ◊ 10 2 (a > ‹ = 7.0 ◊ 10 2 ) for the discernible signal. We note that the smaller increase of the discernible signal may be due to the discernibility criterion invoked here: as high-frequency photons tend to be more collimated, a frequency-independent exclusion cone generically disfavors configurations with a substantial high-frequency energy content.

For comparison, we also show the photon numbers attainable with PM-generated harmonic beams created in sub-optimal or optimal laser-plasma interaction conditions. In both cases we define their associated e ective harmonics number as

n h © OE ÿ n=1 |E foc (nÊ 0 )|/|E foc (Ê 0 )| (8.4)
with E foc the amplitude of harmonic order n at focus, consistently with the s = 1 hypothesis. This already reveals that while sub-optimal RPM (sub-optimal HB in Fig. 8.2) allows for enhancement factors of a t = 5.9 (a ‹ = 3.9 ◊ 10 1 ) and a > t = 3.5 (a > ‹ = 9.7), it falls well below the values expected from our model due to the fast decrease of the spectrum in this case. On the opposite, the optimal harmonic beam results (optimal HB in Fig. 8.2) are much more closely in line with Eq. 8.3, and even exceed it in total photon numbers, as a consequence of the slight growth of the harmonics amplitudes at focus for the first dozen of harmonics orders (cf. Chapter 7).

The corresponding enhancement factors are a t = 2.5 ◊ 10 4 (a ‹ = 7.3 ◊ 10 4 ) and a > t = 3.1 ◊ 10 3 (a > ‹ = 8.0 ◊ 10 3 ), demonstrating the e ciency of RPM under these conditions, and therefore the importance of optimizing harmonic generation to obtain good photon signal. The resulting total photon numbers for a di raction limited focusing (Á = 1/fi) are respectively N t = 4.738 ◊ 10 ≠2 (N ‹ = 6.047 ◊ 10 ≠3 ) for the sub-optimal beam, and N t = 170.3 (N ‹ = 4.088 ◊ 10 ≠1 ) for the optimal beam. The discernible photon numbers are N > t = 7.580 ◊ 10 ≠4 (N > ‹ = 8.696 ◊ 10 ≠6 ) for the sub-optimal beam, and N > t = 1.110 (N > ‹ = 4.777 ◊ 10 ≠2 ) for the optimal beam, which implies about one discernible photon per shot. 

Photon scattering results

Results regarding the photon numbers dependence on the beam di raction parameter Á are plotted in Fig. 8.3. In all considered cases, the frequency-dependent waist at focus satisfies w 0 (Ê) π w p for all frequencies, from which we can derive Á = 1/fi(w 0 /⁄) ƒ w p /R p so that the di raction parameter is indeed nearly the same for all frequencies. We observe manifestly the same trends as in the cases of a single Gaussian beam [297,333], namely a scaling with Á 8 of all photon numbers. This is fully consistent with the above described analytical estimates Eq. 8.1 for the single Gaussian beam, and Eq. 8.3 derived from a Gaussian pulse model of the individual harmonics pulses.

For reference, we can compare these results to the one obtained for the same total energy with two fundamental frequency pulses in head-on collision, each carrying half the total energy (Two ctr. IR in Fig. 8.2). The importance of this configuration has already been exposed in sec. 8.2. With our chosen parameters (50 J total energy, 25 fs duration, Á = 1/fi)), the resulting values of the total and discernible photon numbers are N t = 241.1 (N ‹ = 1.176 ◊ 10 ≠1 ) and N > t = 2.756 (N > ‹ = 1.321 ◊ 10 ≠2 ). In the optimal case, it therefore appears that although a single beam photon signal is generically suppressed by at least Á 4 compared to counter-propagative beam configurations, individual PM-generated beams reach comparable signal levels, and hence allow bypassing the fine alignment and synchronisation conditions required to obtain sizable signals in multi-beam configurations. The final numbers remain admittedly low, so that the costs and benefits of each approach still has to be carefully determined. In particular, RPM alleviates the constraint of spatial and temporal synchronization at the micron and fs level of multiple focused high-power laser beams, demanding instead a fine control of the laser-plasma interaction conditions. While promising paths are being explored to this end, it may still happen that the background radiation inherent to the harmonics-generating plasma excitation overcomes the increase in signal photons, precluding a conclusive vacuum photon detection in the harmonic beam direction. In order to overcome this potential limitation, in sec. 8.3 we present a compromise scenario close to the one put forward in [299], where a second beam is used to build a vacuum photon signal out of the plasma radiation direction, while we leverage the extreme harmonic beam intensity to relax the focusing and intensity constraints on this secondary beam.

Schwinger pair creation

The peak intensity obtained when focusing the optimal harmonic beam with 100 J total energy is close to 1.4 ◊ 10 28 W cm ≠2 , corresponding to field amplitudes of 17 % of the Schwinger critical value. At such scales it becomes relevant to investigate electron-positron pair creation via the Schwinger process. Although strictly speaking the vacuum QED formalism used in this work does not hold in the event of one or more pair creation, requiring e.g. a self-consistent semi-classical evolution of fields and particles as done by PIC-QED algorithms [301,355], it nevertheless allows determining the number of pairs produced assuming no field-particles retro-action. Under the same hypotheses as for vacuum photon emission, together with the Keldysh adiabatic condition

" K = 1/ml E F ≠1 0 π 1 [356, 357],
where l E is the field transverse space in the polarization direction and F 0 its characteristic amplitude in Schwinger field units, both safely met in our cases of study, this can be done integrating the local production rate (Eq. 2.51) in the full simulated spacetime volume [358] .

In Fig. 8.4 we show the resulting numbers for the field configurations of a single focused Gaussian pulse, two counter-propagating Gaussian pulses (all supplemented with Gaussian time envelopes as in previous section), and for the optimal harmonic beam. All beams are focused close to their di raction limit (Á = 1/fi) and only their energy (amplitude) is varied. In all cases the number of pairs grows exponentially with the intensity, and thus increases very fast past the one pair creation threshold. The corresponding threshold intensity however varies widely with the field configuration. For two counter-propagating Gaussian pulses, pair creation becomes significant at intensities of I 0 ƒ 2.4 ◊ 10 27 W.cm ≠2 (E = 7.21 ◊ 10 ≠2 E S ), two orders of magnitude below the Schwinger intensity, in agreement with [197][198][199][200]. As noticed in the previous studies, this is possible in spite of the local production rate suppression, due to the macroscopic size of the interaction volume compared to the electron Compton scale. On the other hand, in a single beam configuration we find that intensities of I 0 ƒ 7.5◊10 28 W cm ≠2 (E = 7.03◊10 ≠1 E S ) are required for a similar interaction volume, in agreement with [200,359], as a consequence of the same invariants suppression discussed previously for photon-photon scat- tering. In this regard the smaller interaction volume of the harmonic beam explains its even higher threshold of I 0 ƒ 6.4 ◊ 10 29 W cm ≠2 (E = 1.18 E S ). For that matter, we note this value implies that exceeding the critical field value on macroscopic space extents is in principle possible within the RPM scheme. This is in contrast with other beam configurations tailored for enhancing vacuum pair production and subsequent QED cascades, such as counter propagation geometries, where e cient light to matter conversion once at least one pair is created e ectively limits the intensity attainable with such fields [58,59,[201][202][203].

Assuming fixed focusing at di raction limit in all cases, we can then convert these intensity thresholds into requirements on the power of the driving beams, which o ers a basic assessment of experimental feasibility. In order to avoid unnecessary modelling specifics we define power as P 0 © W/• , where the total beam energy W is our simulation input and • = 25 fs, matching the duration of the considered Gaussian pulses, and the approximate harmonics train duration. The power values determined along these lines correspond either to the sum of the powers of the individual beams in the case of counterpropagating pulses, to the total beam power in the single pulse case, and to the hypothetical power of the laser pulse before PM interaction in the case of the harmonic beam, for a realistic reflection coe cient of 70 % [281]. We assume in particular that the harmonic spectrum remains independent of the total field energy. The latter assumption is an idealization of course, however it does not strictly rely on the invariance of laser-plasma interactions over a wide intensity range. Indeed one could in principle simply increase the laser waist on plasma mirror so as to maintain a quasi-constant incident intensity; for instance, a 200 PW laser with incident waist w p = 25⁄ 0 reaches a 0 ƒ 115, only about 50 % more than a 3 PW laser with w p = 4.5⁄ 0 (a 0 ƒ 75) as used in the PIC simulation from which the spectrum was extracted. From this perspective, RPM clearly emerges as the most favorable configuration, as Schwinger pair production first occurs for laser powers between 160 PW and 200 PW (W las . 5 kJ at 25 fs), barely beyond reach of the most powerful facilities planned to date [5], and allowing a single-beam setup. According to our computation, achieving the same without harmonics conversion would require close to 2.6 EW cumulative power with two counter-propagating pulses (W las = 65 kJ), a value that could potentially be reduced to 1.1 EW (W las = 27 kJ) via the coherent combination of more individual beams in the so-called dipole wave setup [360]. The latter requirements remain about one order of magnitude beyond the currently envisioned facilities. Using a single optical pulse does not stand as a viable option in this respect, with a required power of 200 EW (W las = 6.4 MJ).

Harmonics assisted secondary beam photon scattering

As demonstrated in [297] and consistently with analytical estimates, the numbers of signal photons emitted from a Gaussian beam colliding with a plane wave at an angle with the same linear polarization are maximized for a counter-propagating geometry, and vary as (1 ≠ cos(◊ collision )) 4 around this optimal collision angle [361]. Besides, as explicited in Chapter 3, a counter-propagating geometry gives rise to nonvanishing invariants, which strongly enhances photon emission over a single focused beam situation. We therefore investigate here the coupling of the focused PM-generated beam, thought of as a highintensity "pump" for the quantum vacuum, with a loosely focused counter-propragating single frequency beam, thought of as a well-controlled "probe" to be scattered o the intense, strongly localized harmonic beam focal spot (see Figure 8.5). This can a priori help to increase the discernible photon number in two ways, namely i) by emitting some signal photons, which can be interpreted as scattered probe photons, away from the plasma mirror specular direction likely polluted by background plasma radiations, and ii) by increasing the scattering angles of the probe photons, due to the high transverse momenta of the harmonic photons. In a semi-classical picture the latter e ect can be explained by di raction of the probe beam o the intense pump field polarizing the quantum vacuum in a sub-wavelength region. For these reasons all photon numbers given in the following A focused harmonics beam with curvature radius R p and waist at focus w 0 is generated as in the basic RPM case, but is now made to collide with a well-controlled second pulse. Part of the signal photons are then scattered around the "probe" beam direction, which improves separation from the background photons.

correspond to "scattered probe photons", i.e. we completely discard photons scattered in the half (k≠)space around the harmonic beam propagation direction from the outset. We consider two di erent options for the probe, namely either (IR) a loosely focused Gaussian pulse with ⁄ 0 = 800 nm, • = 25 fs, I 0 = 2.5 ◊ 10 21 W.cm ≠2 and w 0 = 9⁄ 0 , or (Gr) an even less focused green laser with ⁄ g = 527 nm, • = 100 fs, I 0 = 3.5 ◊ 10 19 W.cm ≠2 and w 0 = 14⁄ g . The first one can be thought of as a split part of a multi-Petawatt laser, whose second part would be driving the harmonic generation. The second option would typically involve an auxiliary 100 TW green laser close to the one suggested in [362]. In both cases, two polarizations of the probe beam are envisioned, both linear, with an angle  = ^(e pr , e h ) with the harmonics polarization direction of either  t = fi/2 or  ‹ = fi/4, aimed at maximizing the total or crossed-polarized photon numbers respectively [363] (in this context "crossed-polarized" means polarized in the direction perpendicular to the main polarization direction of the probe beam).

Theoretical dependence of the scattered photon numbers over the probe and harmonics beam parameters

In order to clarify to what extent can RPM improve over the single frequency beam signal in this configuration, we first computed the probe photon numbers scaling with the number n h of harmonics, using the same model harmonic beam as in Chapter 3, colliding with the IR secondary beam. These values show a slow increase in total numbers of photons, and a steeper increase in crossed-polarized photons; in the optimal harmonic beam case, N p t reaches levels comparable to the one of two counter-propagating beams at di raction limit while N p ‹ exceeds those. Most importantly though, the number of discernible photons emitted outside of a ◊ = arcsin(2Á b ) cone around the probe beam direction is almost equal to the total number of probe scattered photons. This is due mostly to the small probe beam opening angle, as the e ect persists even in the single frequency case (n h = 1 in Figure 8.6).

Numerical results and interpretation

The results for the PM-generated beams with varying probe beam parameters are displayed in Table 1. It confirms the very high number of probe photons scattered at large angles compared to the probe beam divergence, and shows that varying the probe beam polarization e ectively allows to optimize total or crossed-polarized photon numbers in most cases.

The final numbers of discernible signal photons then appear significantly higher than in all the other configurations studied here. More specifically, resorting to RPM allows at most for a gain of almost two orders of magnitude in discernible photon numbers compared to directly using a split infrared pulse as both the pump and the probe for vacuum polarization e ects (comparing optimal HB and two ctr. Gaus. in Fig 8.6). Admittedly this achievement still has to be weighed against the additional experimental requirements of PM harmonics generation, however, we can identify two aspects in which the RPM scenario stands apart from simpler configurations.

First we note that the numbers of crossed-polarized photons benefits from even greater enhancements than the polarization insensitive photon numbers, reaching values higher than in any other configuration studied here by one to almost three orders of magnitude, respectively for the total and discernible populations (Figure 8.6).

Second and most importantly, a significant fraction of the probe photons undergo inelastic scattering with energy gains of +Ê 0 , which corroborates the findings of [299]. In the case of the IR probe beam and optimal spectrum, this fraction can go up to 6.7 % in total, and 1.8 % of all the emitted photons are both crossed-polarized and have a 2Ê 0 frequency, which amounts to more than 2 photons per shot. With the Gr probe beam and  t polarization angle, more than one photon per shot is emitted in the Ê g + Ê 0 ƒ 2.5Ê 0 range, and one every five shots adding the crossed-polarization constraint. Such photon signals are in principle detectable in experiments [298]. For reference, in the case of two counter-propagating pulses the proportion of inelastically scattered photons (at 3Ê 0 ) is of the order of 0.01 %, and the model harmonic beam in collision with the IR probe yields about 0.3 % (at 2Ê 0 ). This indicates that inelastic scattering in the probe beam direction is inherent to the interaction with a multi-frequency beam. This property can potentially prove decisive for obtaining a signal discernible from the background of the driving laser photons beyond reasonable doubt. Indeed, the discernibility criterion used in our work as well as in many others [303,326,329] typically relies on the idealization of the photon distribution of the background beams as Gaussian, hence falling to negligible levels at a finite separation from their propagation direction. However, as there are about 20 orders of magnitude more background than signal photons, this assumption is extremely vulnerable to any laser imperfections or insu cient shielding against parasitic radiation [298], even at crossed-polarization. On the opposite, a large frequency separation could allow establishing the quantum origin of a photon on a much firmer ground.

Observing quantum vacuum dynamics through harmonics beams

Observing quantum vacuum processes with electromagnetic fields typically requires approaching the Schwinger field F S = 1.32 ◊ 10 18 V m ≠1 = 4.4 ◊ 10 9 T, several orders of magnitude above current technological capabilities, and therefore pleads for any scheme maximizing the attainable field intensity. On the other hand, Lorentz invariance of the vacuum state implies that all the relevant expectation values depend on the Lorentz invariants of the field rather than on its amplitude, which generically explains their strong dependence upon the interaction geometry, and thus raises the question of the optimal configuration beyond achieved intensity. In this section, we have shown that optimal focusing of the harmonic beam produced in the reflection of a single Petawatt-class laser o a plasma mirror allows to generate as many vacuum photons as two perfectly counterpropagating Petawatt infrared pulses focused at di raction limit and to significantly reduce the laser powers required to observe Schwinger pair creation.

The physical relevance of this result nevertheless crucially depends on the degree of control of the laser-plasma interactions achievable in an experiment. Besides the requirements of optimal harmonics generation and focusing [START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF], the level and nature of background plasma mirror emissions prevails as to which observations will be accessible. If the total radiated field after plasma mirror interaction can be consistently assimilated to the reflected harmonic beam, with sharp enough angular photon distribution, propagating in a vacuum, as we modelled it in this work, then it would be possible to detect vacuum photon scattering with the coherent harmonics focusing technique only. The coupling to a well controlled auxiliary beam significantly alleviates these constraints, only requiring low background emissions in the "probe" beam direction, which could be set close to counterpropagation with the harmonic beam. Furthermore, due to the high levels of inelastically scattered probe photons specific to this case, assessment of the quantum origin of the signal could then be made on a spectral basis, hence with potentially much higher confidence than solely on the basis of an angular discernibility criterion. As associated energy gains are of the order of +Ê 0 , use of a Ê p " = Ê 0 frequency probe can result in even cleaner quantum vacuum signatures in the Ê p + Ê 0 frequency range. Indeed, provided the probability of presence of residual charged particles in the overlap region of the beams can be made small enough such frequencies could not be generated by laser-matter interaction.

Irrespective of the chamber residual gas, whose density can be made small enough to empty the harmonics focal spot with high probability, the near-specular emission of relativistic electron beams directly from the plasma mirror surface is an experimentally established fact [260,364], so that determining whether the above conditions can be met calls for a detailed study of these ejected electrons beyond the scope of this work. If these electrons are expelled from the harmonics field early enough, photon-photon scattering may still be observed. If on the opposite they radiate enough to preclude observation of photon-photon scattering, but do not trigger QED cascades, quantum vacuum processes could still be sought for at higher intensity in the form of Schwinger pair creation. If finally the electron beam dynamics results in prolific pair creation even before the Schwinger process can occur, detection of quantum vacuum e ects from PM-generated beams would likely require more complex setups. Typically they would involve disentanglement of the generation and focusing steps, so as to refocus the harmonics beam using broadband visible-UV optics, either in a shielded part of the PM chamber or possibly even in another chamber [365]. In turn, direct interaction of the curved PM harmonics beam with matter, either in the form of beams or of a secondary target [300], would then open the way to yet unobserved regimes of plasma dynamics in strong-fields. This perspective is the focus of our next chapter.

Chapter 9

From relativistic plasma mirror light to extreme processes in matter

When charged matter particles are present in the strong field, sf-QED processes will deploy at a much wider scale than in the fermionic vacuum. Two simple factors directly concur to this fact. On the scale of elementary processes first, the relevant parameter quantifying the interaction of a particle of charge Q and mass M with momentum p with a coherent electromagnetic field F is,

‰ = Q Ò (p µ F µ‹ ) 2 M 3 (9.1) p.w. = Q e 3 m M 4 2 " E E S (1 + -• u k ) (9.2)
where the second line is written for a plane wave of electric field amplitude E and propagation direction u k , with " = 1/ Ô 1 ≠ -2 the Lorentz factor of the particle. As the " dependence indicates, for relativistic momenta this parameter can be orders of magnitudes above the field value in the laboratory frame, itself bounding the vacuum interaction parameters in some of the most favourable cases 1 . Furthermore, note that high particle momenta can arise from the field itself as a result of classical dynamics in macroscopic spacetime regions, or equivalently cumulative field photons absorption, represented by the elastic scattering process in sf-QED (depicted in Fig. 9.1-a). As a result, the probability of occurrence of elementary sf-QED processes can be increased dramatically, those involving the lightest particles above all others 2 . Secondly, on the macroscopic scale where many uncorrelated sf-QED processes can occur, there exists a chain of events leading to the exponential growth of fermion number, magnifying quantum e ects in the overall dynamics. This directly derives from the structure of sf-QED, where single particle decays into two particles are allowed, already at tree-level 3 . Namely, a fermion can emit a photon (Compton scattering, CS, c.f. Fig. 9.1-b), which in turn can decay into a particle-antiparticle pair (Breit-Wheeler pair production, BW, c.f. Fig. 9.1-c), which can both emit a photon, forming a chain reaction known as a "QED cascade". Note that from the CS step onwards, memory is lost of the initial particle nature, as from Eq. 9.1 the BW process will generically strongly favor electron-positron pair creation over any other channels simply from the mass di erence. Combining these two aspects, it appears that, in the presence of matter, a coherent field strong enough upon large enough spacetime extents will spontaneously and massively decay into a system of many photons, electrons and positrons, through sequences known as QED cascades.

1 e.g. in the case of two counterpropagating beams forming a transient standing wave at focus. 2 In the standard model those are the electrons/positrons, by a mass ratio of about 200 to the muons. 3 The lowest order in the sf-QED perturbative expansion in coupling parameter -(see Table 2.1). In this section, we will present how this general scenario plays out in the field of RPM sources so as to predict general properties of resulting systems, identify observable signatures of the described regimes, and provide guidance for subsequent applications. Three di erent origins for the initial matter particles can be envisioned. In direct continuity with the previous chapter on vacuum interactions, pair production can proceed directly from the coherent field in the fermionic vacuum (Schwinger process). As the laser powers required to trigger such phenomenon presently remain out of reach, exogenous sources of matter remain of primary interest. In the optics of maximizing field-matter interaction while retaining experimental simplicity, focusing on a solid target is presented first. Due to the large number of seed particles, this configuration is found to allow extremely high electron-positron densities, possibly up to the formation of a quantum relativistic plasma in the form of quasi-neutral e + e ≠ jets. We then turn to the collision of the RPM beam with high-energy electrons, producing instead remarkable microscopic processes through very high ‰ parameters. In suitable collision conditions, it is found that the attainable quantum interaction parameters exceed the Ritus-Narozhny regime threshold, which would be of significant theoretical interest. Both these RPM-light matter interaction scenarios entail significant numerical and theoretical challenges, towards which we will open in a final section.

RPM-light plasma interaction in solid targets

A common problem when trying to maximize the interaction of strong-fields with matter is that, in the relativistic regime, all charged particles are generically expelled from the highest field regions (cf. Eq. 1.14), so that only a fraction of the maximum quantum interaction parameter is achieved. Directing the pulse into a dense solid target provides a straightforward solution. Indeed, assuming e.g. that the ions move slow enough compared to electrons, the charge separation field then generically pulls electron populations back into the strong-field. The combination of such plasma dynamics with the shear number of involved electrons can thus be expected to significantly enhance both elementary sf-QED processes and subsequent relativistic quantum plasma e ects.

In this section we will assess this idea for plasma mirror generated fields. In a first part we detail the overall plasma dynamics, and compare it with the laser-plasma interaction of infrared pulses. The microscopic properties of created photons, electrons and positrons will then be given, detailing their origin and final momenta. In the most favorable cases, corresponding to the highest intensities, the created electron-positron densities can be so high as to react on the incident RPM-light field, in which case they could form a macroscopic plasma. This limiting case will be examined in a third section. As the intensity range covered by such sources extends from at least 10 24 W.cm ≠2 up to 10 29 W.cm ≠2 [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF][START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF] in optimistic projections, all results will be given for both ends of this spectrum4 . We may refer to each respectively as the "medium" and "extreme" intensity regimes, while the "critical regime" will denote the higher intensity limit I & 10 29 W.cm ≠2 that will be found to coincide with our current numerical limitations5 .

RPM-light plasma dynamics

As sf-QED processes are generically suppressed in direct propagative electromagnetic waves interactions with free particles due to the repulsive ponderomotive force, solid targets may foster quantum processes under the e ect of plasma fields. Elucidating the generic RPM-light plasma dynamics then appears as the primary task in order to fully take advantage of these configurations. In this section we will expose the general features of this interaction, with an emphasis on the di erence with the infrared laser case. In particular, we will show that there exists a qualitative di erence between both scenarios, resulting from the high-frequency spectrum of the RPM-light beam.

RPM-light versus infrared-laser interactions with a plasma

The field and electron distributions about 10 fs after incidence of the beam peak on the target are shown in Fig. 9.2, both for an infrared laser pulse (a) and the RPM beam (b).

The infrared laser is here taken with a wavelength ⁄ 0 = 800 nm, gaussian spatial and temporal profile with duration 20 fs, for a peak power of 10 PW. The waist on target is w 0 = 2 µm, corresponding to a peak intensity of I 0 ƒ 1.6 ◊ 10 23 W.cm ≠2 , which is a realistic figure at the current time. The laser incidence angle is taken at 30 ¶ , which has been shown to maximize sf-QED events [366]. The RPM beam has a spectrum close to the "sub-optimal" beam studied in Chapter 8 (see also Chapter 7), resulting from an incidence angle on plasma mirror of 45 ¶ and plasma gradient length ⁄ 0 /8, close to the optimum [367]. In these conditions, the beam is focused down to a focal spot of w 0h ≥ 100 nm on target and the intensity enhancement compared to the infrared pulse reaches about 1100, resulting in a peak intensity of I 0h ƒ 1.8 ◊ 10 26 W.cm ≠2 .

The target has the electron density of plastic in both cases that is n 0e = 230n c , where n c ƒ 1.8 ◊ 10 21 cm ≠3 is the critical plasma density for a 800 nm wavelength.

The major di erence between the two interactions can then be simply understood as follows. The infrared laser pulse curves the plasma surface but is e ciently reflected in the specular direction6 (Fig. 9.2-a), while the RPM beam partially penetrates in the densest plasma regions, creating a channel (Fig. 9.2-b). The fact that part of the harmonic beam also is reflected suggests that this di erence is explained by the high frequency content of the RPM beam. Indeed, the maximum plasma density can only reflects harmonics orders k < Ò n 0e /n c ¥ 15, while the spectrum extends beyond order 20. Then the reflected part can be interpreted as resulting from the low frequency content. Relativistic transparency only increases the overall transmitted part.

Characterization of the plasma channel

When the RPM-light beam propagates in the target, electrons are totally depleted on its way, generating strong sources of electromagnetic plasma fields (Fig. 9.3). As visible in Fig. 9.3-b, the plasma fields reach values up to a fraction of the RPM-light field, therefore strongly deviating plasma electrons. At the considered medium intensity, the RPM-light field accelerates electrons to relativistic energies of the order of › e ¥ 0.86 ◊ 100 nm[µm] Ò 10 26 W.cm ≠2 [10 18 W.cm ≠2 ] ¥ 1000 (Eq. B.125), while for ions › i © › e /6 ◊ 1836 ¥ 0.1 so that the ponderomotive force only weakly acts on them and does essentially not displace them compared to the electrons. Accounting for the still shorter wavelengths achieved with the RPM harmonics spectra leading to the highest studied intensities, this situation would only change for I 0h & 5 ◊ 10 28 W.cm ≠2 . When such ion relativistic threshold is exceeded they become subject to ponderomotive repulsion from the field as well. As a result charge separation fields may decrease, and therefore not su ce to e ciently bring electrons back into the strong field regions, so that the most intense pulses can end up reaching their focus in a near vacuum (Fig. 9.4-a). This e ect can be simply compensated for by shifting the RPM-light focus deeper into the target by a few optical cycles (Fig. 9.4-b). The global plasma configuration remains similar on the whole studied intensity range though, with a well-formed central channel and some surrounding electrons driven in.

QED processes in the RPM and plasma fields As expected, the RPM-beam plasma interaction strongly enhances sf-QED processes compared to the infrared pulse (Fig. 9.3c,d). This is due to the redirection of plasma electrons towards the strong field region, continuously fuelling the emission of high energy photons propagating against RPM-beam pulses, possibly decaying into a pair. As the pair is then quasi-instantly guided by the strong field fronts, this process leads to a localization of Breit-Wheeler electrons and positrons in the pulses and their direct acceleration up to high energies, with essentially no further sf-QED events as long as E lab < E S7 . In all studied configurations the RPM field remains the vastly dominant source of sf-QED processes, with plasma fields mostly acting via Lorentz force. The total rate of particle creation is then simply modulated by the successive focalization of attosecond pulses (see Fig. 9.6), until the beam is totally absorbed or exits the plasma.

Electron-positron and photon radiations

The plasma electrodynamics of the RPM-beam-target system leads to a high number of sf-QED processes, resulting in specific distributions of created particles. In this section we will examine their individual properties, through their process of creation, spectra, as well as their spatial configuration, critical to the onset of plasma e ects.

Leading sequence of QED events Let us first identify the dominant sequence of events leading to pair creation. It can easily be understood reading Fig. 9.3 and Fig. 9.5. Indeed, the sequence leading to a single pair creation event is represented in the former, while the statistical representativity of this process can be inferred from the latter. Namely, an electron from the plasma encounters an RPM-beam pulse with a momentum component opposite to its propagation direction, resulting in a high ‰ parameter (Fig. 9. 5a,b,d), allowing CS photon emission in the same direction (Fig. 9.3-a). In crossing either the same RPM-beam pulse or one more upstream, this photon again acquires a high ‰ (Fig. 9.5-a,c,e), allowing a BW pair creation event (Fig. 9.3-b). At medium intensities I 0h . 10 28 W.cm ≠2 , this sequence is all the more transparent that virtually all pairs come from a photon emitted from a plasma electron rather than a BW electron (cf. Fig. 9.10).

Now the strong acceleration of BW pairs into the RPM field tends to align their momentum with the local field front normal E ◊ B, decreasing their ‰ parameter (see high p x population in 9.5-d). More precisely, we know that in a plane wave ‰ e p.w.

à E lab /E S , therefore this dynamics can be expected to e ciently suppress subsequent sf-QED processes so long as E lab π E S . We can estimate this intensity threshold more precisely with the data of Fig. 9.10, showing what could be called the degree of a BW process, namely the number of CS processes preceding it. It is then found that pairs of degree higher than 1 only become significant for I 0h & 10 28 W.cm ≠2 . At this point, the RPM field amplitude is high enough to trigger sf-QED processes from particles directly accelerated by it, which is sometimes called an "avalanche-like cascade" in the literature 8 . The spatial homogeneities of the tightly focused RPM pulses concur to lower this threshold below the I S = 4.64 ◊ 10 29 W.cm ≠2 value expected for a plane-wave. 8 Technically this regime can be characterized in terms of the Lorentz invariant › and ‰ parameters. 

Spectra of created particles

The final spectra of emitted CS photons and BW electrons are shown in Fig. 9.9 in the medium, extreme and critical intensity regimes. At all considered intensities, all created particles are globally accelerated in the RPM beam propagation direction, at energies of the order of a few GeV.

A clear distinction appears between electrons and positrons dynamics. The former are mostly accelerated along the optical axis, at energies about two times lower than that of the latter, which are also deviated in two directions at an angle with respect to the axis. This di erence stems from the qualitative di erence between their reaction to the plasma channel fields, from the electronic current and ionic charge, diverting positrons away from the axis towards the RPM-beam fronts, and dragging electrons inside the channel.

Spatial distribution of created particles

Because pair creation occurs in the RPM pulses (that are focused on less than 100 nm transverse sizes and have longitudinal extents down to c ◊ 50 as ≥ 15 nm) resulting matter densities can reach very high values at the time of focusing. At medium and extreme intensities, when the pulse then defocuses some particles remain concentrated in these field fronts, electrons and positrons separating due to the highly asymmetric field profile, creating very divergent attosecond electron and positron beams. However, electrons and positrons react di erently in the plasma fields, leading to qualitatively distinct spatial distributions as shown in Fig. 9.7. Indeed, the plasma channel fields resulting from total electron depletion is focusing for the electrons, driving them away from the local field fronts, and defocusing for the positrons, pushing them in the same direction as the local field fronts. As a result, Breit-Wheeler electrons can disperse in-between attosecond pulses while positrons remain mostly concentrated in the field fronts.

Relativistic extremely dense e + e ≠ plasma jets

At this point all macroscopic dynamics has been considered driven by the initially present particles, namely the RPM field and plasma, with created particles following trajectories dictated by the associated fields. However, as high densities are reached the electromagnetic current of created e ≠ e + particles may become large enough to act back on the ambient fields, resulting in plasma e ects, in a relativistic and quantum regime. In this section we will devise a criterion for the presence of e ≠ e + plasma e ects, evaluate it for various RPM-light intensities, and give some more details on the very high density configurations generated at extreme intensities.

A criterion for e + e ≠ plasma dynamics A plasma is generically defined as a quasineutral system of charged particles whose interactions are dominated by the electromagnetic field they generate. In our case, where the dense electron-positron sheaths are immersed in an external coherent field, this definition could coincide with the limit in which this field is screened by the e + e ≠ currents. We can however adopt a more flexible definition, requiring only that the particles own field influences their dynamics at least at some point in time. As we are now in the presence of an external field inducing charge separation, a necessary condition would typically be that the high density states last longer than a Langmuir plasma period. The only subtlety then comes from the fact that our system drifts with a mean velocity of Lorentz factor " 0 in the laboratory frame where the field and matter quantities are computed.

In order to make sense of this proxy for plasma e ects,

• ee Ø • p (9.3) with • ee the high-density state duration, we therefore have to relate it to a genuine plasma oscillation phenomenon of frequency • p , which may depend on " 0 . Reasoning on the case of a plasma interface with transverse translation invariance interacting with a plane wave in normal incidence, this is simply achieved via a Lorentz transformation from the laboratory frame R lab to the plasma rest frame R ee , where the configuration reduces to the wellknown interaction between a plane wave and an infinite plasma at rest. In this frame, the plasma is indeed driven by the field to oscillate at characteristic frequency 9 , 9.4) In the laboratory frame, assuming stationary oscillation (plasma wave with wavevector k = 0) we thus find 10 ,
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Now as maximum densities are achieved on durations of about an harmonic pulse focalization length, itself of the order of • 0 = ⁄ 0 /c near di raction limit, for ⁄ 0 the initial pulse wavelength (Fig. 9.6), our criterion for plasma formation Eq. 9.3 simply translates into,

• 0 Ø " 3/2 0 • p0 (9.7) … 1 " 3 0 n e n c,0 Ø 1 , with n c,0 = m e Á 0 8fi 2 • 2 0 e 2 (9.8)
where n e is the electron (or positron) density in R lab and n c,0 is the critical electronpositron plasma density for wavelength ⁄ 0 . As created particles are accelerated on a wide spectrum up to GeV energies, the criterion Eq. 9.8 is only fulfilled at the highest intensities we were able to numerically simulate. Backreaction e ects might become stronger past this threshold of I & I S , as then avalanche-like QED cascades continue developing, all the more that at I ≥ 10 29 W.cm ≠2 already 80% of the beam energy is depleted in photon emission, resulting in a strong damping of the RPM field. Adopting a less stringent criterion n e /"n 0 Ø 1, e.g. following [368], one may even conclude that plasma-like e ects can be observed from

I & 10 27 W.cm ≠2 .
These high intensities indeed mark the onset of the "critical regime", where pairs can be generated by previously created pairs accelerated in the field, thus strongly enhancing the particle creation rate. This e ect can be discerned in Fig. 9.10, showing the proportion of pairs generated from sequences of degree 4 or higher. This fraction is negligible below 10 28 W.cm ≠2 , after which it quickly rises to represent nearly all pairs at 10 29 W.cm ≠2 . At this point, densities actually seem to soar and result in local plasma frequencies impossible to resolve numerically, leading to the crash of corresponding WarpX simulations. This point will be further discussed in sec. 9.3.

In accordance with the plasma parameter values displayed in Fig. 9.8, the e ≠ e + dynamics mostly remains dictated by the RPM-light and target plasma fields up to I ≥ 10 29 W.cm ≠2 . The resulting particle momenta near final state are shown in Fig. 9.9 for three di erent intensities. 

RPM-light and electron beam collision

As evoked in chapter 1, at this time the only way to trigger some sf-QED processes with conventional lasers is to make them collide with high energy electrons, so as to reach the Schwinger field in their rest frame. In last section we have seen that relativistic plasma mirrors essentially allow to lift these di culties in a rather simple experimental setup of direct RPM-light solid interaction. Now it seems natural to investigate what physical regime would be reached combining both approaches, namely colliding high energy electrons with an RPM-light beam.

This section exposes results obtained along these lines, for medium to critical RPMlight intensities. The general characterisation of the di erent interaction processes and corresponding physical regimes is presented first. In the most favorable cases, the Ritus-Narozhny threshold of ‰ Ø -≠3/2 ¥ 1600 is exceeded, opening a window to the yet unexplored "fully non-perturbative" regime of Electrodynamics [317][318][319][320]. Some possible macroscopic signatures for these interactions in the system final states are then presented in a second section.

From cascades to the Ritus-Narozhny regime

Electron RPM-light interaction sequence The basic interaction scenario between a localized coherent field of classical strength parameter › and incoming ultra-relativistic electrons of Lorentz factor " e ∫ › is the strong deceleration of electrons in the field accompanied by high-energy radiation. This process is often referred to as "inverse Compton scattering", and is indeed leveraged on to e ciently convert electron energy into high energy electromagnetic beams. Depending on the classical and quantum interaction parameters, this process can be described either by Lorentz-Maxwell's equations, classical radiation reaction, or quantum Compton scattering in strong fields. At the envisioned intensities I Ø 10 26 W.cm ≠2 , counterpropagating electrons typically reach ‰ & 1 for " e & 100, that is 50 MeV electron energies. On the other hand, current accelerators, including laser-plasma accelerators, routinely achieve beam energies between 100 MeV and 100 GeV, so that we can safely assume that radiation should be described by strong-field quantum Compton scattering.

As a consequence, an electron entering the field will be prone to high energy photon emission. At these energies, the emitted photon momentum is a significant fraction of the electron momentumand is emitted within a 1/" e angle in the initial electron propagation direction. In these conditions the photon ‰ parameter will remain high and Breit-Wheeler pair creation is favored. At high ‰ the BW cross-section is such that one of the two pairs tends to carry more energy than the other, however both typically hold a non-negligible fraction of the total [369]. These pairs hence are in a state comparable to that of the initial electron, only further in space and with a lower energy. If the initial energy is large enough, the created electron and (or) positron can themselves emit a photon, forming a QED cascade sometimes said of "shower type" by contrast with the avalanche type when particles are accelerated by the coherent field directly. As the cascade develops, the initial electron beam energy is depleted into pairs and photons escaping the strong fields, until either particle ‰ parameters fall below the CS or BW threshold, or particles exit the strong-field region. This scenario essentially captures how sf-QED processes are expected to be observed with optical lasers. Attainable quantum interaction parameter In our case, however, this fast energy depletion can play a very detrimental role by preventing electrons to reach the highest fields regions with their maximum momentum, and thus lower the e ectively attainable quantum parameter ‰. Indeed, for a 100 GeV electron beam the CS threshold ‰ ≥ 1 is reached at I ≥ 2.4 ◊ 10 24 W.cm ≠2 , far from the maximum field of the RPM pulses even at medium intensity I 0h ≥ 10 26 W.cm ≠2 . With this e ect in mind, the question of the maximum attainable ‰ parameter given some field configuration becomes primordial and less trivial than it first appears.

In the case of a particle beam interacting with a focused field though, it has been demonstrated that simply adding an angle between the optical and particle beam axes is enough to recover almost the absolute maximum ‰ parameter [368]. The optimum angle is numerically found lying between fi/2 and the field opening angle, which can be explained as ‰ geometrically decreases when the angle is increased (Eq. 9.1), implying a compromise. The situation is depicted in [220]. Fig. 9.12 shows the case of interaction at an optimum angle between RPM-light and particle beam axes.

In this situation the attained ‰ parameter reaches very high values, as depicted in Fig. 9.11 for various intensities, and the Ritus-Narozhny regime can be reached for I 0h & 1 ◊ 10 27 W.cm ≠2 . Even below this threshold, ‰ values close to 10 3 are accessible, at which point new elementary processes could still manifest e.g. as radiative corrections in particle propagation and interactions.

Signatures in final states

Besides the sf-QED processes of shower type cascades, electrons in the field are subject to the Lorentz-force dynamics that can strongly a ect the final state both of beam electrons and created particles. A characterization of the asymptotic particle properties after interaction is therefore desirable, all the more crucially in the Ritus-Narozhny regime where deviations from first order sf-QED computations would prove of high theoretical interest.

Dynamics intensity dependence

Let us first try and discern some qualitatively di erent regimes of interaction depending on the RPM-light intensity. Regarding BW particles, we can asses their participation or not to further sf-QED processes. This information relates to the degree of created particles, as particles of degree higher than one originate from sf-QED processes involving BW particles. The proportion of degree 1 BW particles is shown in Fig. 9.10, revealing that more than 10% of BW pairs is of degree 2 of higher already at 10 27 W.cm ≠2 . As photons can escape the field without decaying into a pair, this figure implies that an even higher fraction of BW pairs has undergone at least one CS process than visible in the degree 2 BW particle fraction, and we can thus conclude that sf-QED e ects significantly a ects created particles dynamics.

Another macroscopic information about the interaction can be obtained considering particle spatial distributions after collision with the RPM-light beam. The results are shown in Fig. 9.12, displaying a transition between almost no beam disruption at medium intensities to total beam depletion at critical intensity. The progressive transition between both configurations is interesting, as it implies a strong correlation between the maximum intensity at focus and the final particles angle-energy distributions. Quantum interaction regime signatures We can then examine the particle final states more quantitatively through their energy-angle spectra. One should note that accessing the asymptotic properties of particles co-propagating with the field proves especially challenging though. Indeed, they can still undergo acceleration by the RPM-light field for some time as it defocuses. However including such process in the simulation is very computationally demanding. In particular, accounting for field defocusing e ects would require three-dimensional simulations. In these simulations aimed at gaining a general understanding of RPM-light and high energy electrons interaction, we will simply assume that further energy gains do not a ect conclusions drawn from distributions shortly after RPM-light focusing.

The resulting distributions are shown in Fig. 9.13. The reference momentum introduced by the incoming electron beam is again seen to induce a strong correlation of the final particle distributions with the RPM-light peak intensity. More specifically, some particles are injected in the beam and accelerated along the optical axis, while others persist in the electron beam direction, and the ratio between both populations depends on intensity. This may allow assess the intensity at interaction point experimentally, and hence trace back the achieved ‰ values.

Breit-Wheeler electrons and positrons di er only by opposite transverse momenta, in contrast with the plasma case. This is due to the simpler field form, approximately symmetric with respect to the optical axis, while field peaks are all of the same "phase" 11 . The pairs are accelerated in the field to maximum energies scaling linearly with the RPMbeam intensity, from about 1 GeV at I ≥ 10 27 W.cm ≠2 to 15 GeV at I ≥ 10 29 W.cm ≠2 .

In view of studying the elementary processes occurring at very high ‰ specifically, it would be desirable to be able to relate realistically observable quantities to the maximum ‰ value attained at interaction point. The stochastic character of particle dynamics in the cascade is an obstruction to such endeavour. Indeed, from the first photon emission resulting particles properties can overlap with properties of lower energy incoming electron. The strong dependence of the final energy-angle spectrum on intensity, on the other hand may at least help access the regime of interaction, and in particular the achied intensity at focus. A more refined numerical study of asymptotic momenta distributions, displaying sub-sampled angle-energy distributions for particles having reached a certain value of maximum ‰, might help further disentangling di erent microscopic processes contributions. At the time of writing, the corresponding numerical diagnostics are yet to be implemented in the WarpX code. 

Theoretical and numerical challenges of extreme plasma states

All discussed simulations rely on the PIC-QED algorithm, which solves a Boltzmann-Maxwell system describing the self consistent evolution of the electromagnetic field and 1-body particles distribution functions, encapsulating sf-QED processes in collision terms.

When simulating new physical regime, such as the extreme intensity RPM-light-matter interactions, it is legitimate to enquire about both the theoretical validity and computational viability of the model and its numerical implementation. In this section we will review and discuss the main issues identified along these lines during this work.

Numerical plasma simulation issues

The main di erence of PIC-QED simulations in the deep quantum regime compared to the reference cold classical plasma configuration is the prolific particle creation process, resulting in extremely high densities. Both aspects have specific numerical consequences.

Resampling

In PIC codes the electromagnetic field is computed at specific points on a grid, while each particle type is represented by a 1-body distribution function, that is sampled and evolved in time via the method of characteristics. The resulting sampling points are defined by a weight, position and momentum, allowing to identify them with "macro-particles", that can typically be interpreted as many individual particles tightly clustered together in phase space. As each macro-particle occupies some memory space and requires to be updated at each time step, the final computational expense of a PIC simulation strongly depends on the overall number of macro-particles. Now in the PIC-QED algorithm, both Compton scattering and Breit-Wheeler processes convert one initial macro-particle (e û or ") into two (e û " or e ≠ e + ), so that QED cascades numerically result in an exponential growth of the total macro-particle number. Performing such simulations in the quantum-dominated regime of sf-QED therefore requires reducing the number of macro-particles, but without overly degrading the faithfulness of our distribution function sampling. This general problem is known as "resampling".

In our simulations, the retained resampling solution is referred to as a "thinning" method by contrast with "merging" methods, because it suppresses particles based on their individual properties rather than merges couples of similar particles. The detailed implementation corresponds to the "levelling thinning" algorithm described in [370]. The only modification was that thinning was only performed in cells with N > 50 macroparticles, as it was found to help preserving tails of the distribution12 . This module, critical to the pursuit of high intensity simulations, was found to provide very satisfactory results with limited computational overhead. An illustration of its e ect on particle distribution is provided in Fig. 9.14.

Local plasma scales

When resampling allows taming the exponential macro-particle number growth, prolific QED cascades can be simulated, potentially leading to very high matter densities. This numerically results in high charge and current densities in Maxwell's equations, thereby directly a ecting the fields. Numerical stability of this field-particles dynamics requires at least that the local plasma period is always resolved by the spacetime discretization scheme, (9.9) with • 0 = ⁄ 0 /c = 2.6 fs and n c = 1.7 ◊ 10 21 cm ≠3 the critical plasma density at ⁄ 0 = 800 nm. According to Fig. 9.8-a, densities as high as 10 7 n c can be reached. This translates in local plasma periods of less than 10 ≠3 • 0 , for a total simulation duration of the order of 10• 0 . In 2 spatial dimensions, this numerical instability prevented exploring the critical regime I 0h & 10 29 W.cm ≠2 , where local plasma frequencies fell below the computationally maximum attainable resolution dt ≥ • 0 ◊ 10 ≠4 . In three spatial dimensions, such e ect would severely restrict the study even of the extreme intensity regime.

dt ! < • p = • 0 Û n c În e Î OE
Several attempts have been tried to circumvent this di culty, such as numerical quanching of high-frequency longitudinal field components, with no satisfactory e ects on the simulations. As of today, it seems the most promising path of progress would be the implementation of a non-uniform, possibly adaptive, grid for the electromagnetic field. This would allow finely resolving the focal area, where maximum densities are produced, while keeping the total number of grid points within reasonable bounds. The main challenge of such strategy in the context of an electromagnetic PIC code is to preserve the non-dispersive character of the propagation scheme, even at interfaces between di erent resolution domains. This general issue becomes critical in the study of strong field RPM beam, as the field profile is all the more sensitive to dispersion, and its peak intensity at focus especially. Besides, the exponential dependence of the maximum density with intensity would still make it di cult to enter the critical regime too deeply.

Relativistic quantum plasma modelling

The observation of new physical regimes, and possibly even of new elementary processes, is a key motivation to the study of strong fields. This naturally raises the question of the adequacy of the current theoretical framework in these configurations, first and foremost the one underlying ab initio PIC-QED simulations. In this section we will mention several directions in which this model may be extended. Higher multiplicity collision processes Considering again the distinctive feature of QED cascades in the RPM-light field, the generation of extremely high electron-positron densities, in a kinetic framework one natural expectation is the increase of collision rates. In these conditions, it becomes conceivable that scattering processes with more than one incoming particle become sizeable. Though such terms are a priori suppressed by at least a factor e compared to one particle processes, they scale in higher powers of particle density and could thus play a role in high density configurations. Relevant processes would be the two-particle scatterings ee ae ee, e" ae e", and photon annihilation "" ae ee [308,[371][372][373]. However, the rate of energy-momentum transferred in this manner should not only be compared to lower order scatterings, but to the Lorentz force exerted by the coherent field as well, which could still dominate in strong enough fields.

When individual particles quantum interaction parameter become of the order ‰ ≥ 10 3 , even without entering the Ritus-Narozhny regime loop corrections to the electron and photon propagators could also a ect sf-QED processes.

Degeneracy threshold Another source for deviations from a classical kinetic model when such electron-positron densities are reached is the rise of Fermi-statistics e ects, that is the "quantum degeneracy" of the plasma. Though such thermodynamical notion is non-trivial to precisely apply to a system as far from equilibrium as the e + e ≠ plasma formed in RPM-light-matter interactions, we can still gain insight in these e ects by computing the local Fermi energy [374], 9.11) where ⁄ C is the electron Compton length. Evaluating it from Fig. 9.8, we find that for all simulated intensities, Á F (I 0h ) . mc 2 (9.12)

Á F = mc 2 Û 3 n e n C 4 2/3 + 1 ≠ 1 (9.10) with, n C = 8fi 3 1 ⁄ 3 C , i.e. n C ƒ 5.9 ◊ 10 29 cm ≠3 ( 
As the typical energy spread of the electron-positrons is of the order of ≥ 10 3 mc 2 (GeV), we conclude that degeneracy e ects can still safely be neglected.

Extensions of the Boltzmann-QED framework

There are other well-known assumptions on which the reference "Boltzmann-QED" picture is based, and many results were obtained in view of extending them. For instance, one of the most notable is the "Locally constant field approximation", which could be relaxed or even lifted entirely in quite general configurations, for some specific processes 13 . One may conceive these lines of progress as "bottom-up" approaches, where the rich physics of strong-field electrodynamics is first grasped from the embedding of the Furry picture of sf-QED within a classical kinetic theory, and then progressively extended in several directions. A major merit of this approach is its very operational character, as it allows for computationally tractable simulations, and current experimental conditions usually strongly legitimate these approximations.

By contrast, an alternative "top-down" method would be to first formulate the exact theoretical framework fully encompassing the envisioned physical configurations, and then proceed to successive approximations until an operational formulation is reached. Though less direct, one may expect such approach to provide a systematic procedure of modelling, and control on the approximation error at each stage. In the present discussion such theory would be Non-equilibrium QED, such as defined e.g. by the equations of motion of a quantum e ective action (cf. sec. B.2.5), and the approximation procedure its reduction to a kinetic theory with classical (on-shell) particle distribution functions.

However, one could then in principle stop at an earlier stage and use the resulting extension of the Boltzmann-QED model. Following [116], a kinetic description free of LCFA accounting for QED processes at order e 2 including o -shell e ects can for instance be derived. Besides the usual situations where the LCFA fails, such model would typically be of use to consistently describe coherent field decay through the Schwinger process, or any more general particles backreaction on the coherent field.

Conclusion

Relativistic plasma mirrors may o er the opportunity to access the quantum dominated regime of strong-field Quantum Electrodynamics in a near future, via fields of intensities ranging between 10 25 W.cm ≠2 and 10 29 W.cm ≠2 . In this thesis, we have predicted the e ects produced by such light in di erent configurations, either in a vacuum or in the presence of external particles.

Quantum vacuum processes were studied in chapter 8. Adopting the Stimulated Vacuum Emission formalism [303], we could compute the number of photons scattered in the RPM beam, for two di erent beam spectra, corresponding to di erent conditions of generation on the plasma mirror. We have shown that the focusing of a single RPM beam in a vacuum could produce as much scattered photons as the head-on collision of two 1 PW infrared pulses focused at di raction limit, which may simplify the latter experimental setup. We also computed the number of photons in scattered in a probe beam when colliding with the RPM pulses, which revealed in particular that some photons could be scattered with energies absent of the initial colliding beams spectra, potentially significantly improving the signal-to-noise ratio, critical in these experiments. Finally, a threshold for Schwinger pair creation was found, indicating a laser required laser power of around 200 PW, which is high though much below the typical exawatt powers required in equivalent infrared configurations.

All these results were obtained through a numerical implementation of the Stimulated Vacuum Emission formalism, adapted to the large size of RPM field simulations, hence parallelized. This algorithm was extensively validated on known reference configurations, and against di erent modes of numerical implementation, as detailed in chapter 3. Guidance in the more complex case of the RPM beams could be gained via analytical estimates, whose detailed derivation was presented in chapter 4. We also worked towards more theoretical clarity by relating our approach with the resolution of e ective field equations, also pursued in the literature, as summarized in chapter 5.

The interactions of RPM light with pre-existing matter was presented in chapter 9. In the case of interaction with a solid target, we could evidence that even at (comparatively) low intensities of 10 25 W.cm ≠2 RPM beams enhance sf-QED signatures by several orders of magnitude compared to direct irradiation of the target with an infrared pulse of equivalent energy. We could also study dynamics at higher intensity, and find that very high density electron-positron clusters then form, and are accelerated to GeV energies. In the case of RPM light collision with a high-energy electron beam, we could compute the achieved ‰ parameter, and establish their relevance for physics around the Ritus-Narozhny regime of sf-QED, together with signatures of these interactions in the form of emitted particles spectra.

An outline of relativistic quantum theory is proposed. Specifically, we aim at a viewpoint encompassing both i) a proper delineation of strong-field Quantum Electrodynamics and ii) paths towards its, typically more familiar or operational, (semi-)classical aspects.

Chapter A summarizes the procedure of canonical quantization, highlighting a continuity between classical and quantum descriptions of physical systems.

Chapter B introduces the required elements of Quantum Field Theory at an heuristic level, with an emphasis on their relevance in view of the strong-field regime of Quantum Electrodynamics.

Abstract of Part IV

Part IV -Appendix -A primer in view of strong-field Quantum Electrodynamics

A.1.2 Hamiltonian formulation

The Euler-Lagrange equations show that dynamics could be expressed as a di erential system of the first order in the extended variables q i , p i , by defining, .5) provided this expression can be inverted in qi . Equations of motions in the {(q i , p i )} "phase space" are then generated by elimination of qi in the action through the Legendre transform of L, called the Hamiltonian H2 ,

p i = ˆL ˆq i (q i , qi ) (A

S[{q

i }] = ⁄ t t 0 d t Ë p i qi ≠ H(q i ( t), p i ( t)) È (A.6)
so that upon independent variation of q i and p i Hamilton's principle now writes,

0 = ⁄ t t 0 d t C ≠ A ṗi + ˆH ˆpi B "q i + A qi ≠ ˆH ˆpi B "p i D + [p i "q i ] t t 0 , '"q i , "p i (A.7)
and Hamilton's equations of motion follow as, Hamilton:

Y _ _ _ ] _ _ _ [ qi = ˆH ˆpi ṗi = ≠ ˆH ˆqi , 'i (A.8)

A.2 From trajectories to observable values

A.2.1 Observables of definite states

The Hamiltonian formalism lends itself to a very operational view of mechanics. Because evolution is of first order in phase space, each point uniquely specifies the system state3 , and therefore any physical quantity can be expressed as a function defined on it, that is, .10) with the abbreviation x = (q i , p i ). Rephrasing in view of quantum mechanics, Ï(t) is the value taken by the "observable" x ' ae O(x, t) measured on the system at time t, given initial data x(t 0 ) = x 0 . As the second line suggests, for the purpose of computing Ï time evolution can indi erently be cast in the state or the observables themselves. Indeed,

Observable values: Ï(t) = O(x(t), t) (A.9) , O(x 0 , t) (A
d dt O(x 0 , t) = ẋ • ˆO ˆx + ˆO ˆt = qi ˆO ˆqi + ṗi ˆO ˆpi + ˆO ˆt = ˆO ˆqi ˆH ˆpi ≠ ˆO ˆpi ˆH ˆqi + ˆO ˆt i.e. dO dt = {O, H} + ˆO ˆt
Dynamics of observables (A.11) where we have introduced the Poisson bracket:

Poisson bracket {f, g} , ˆf ˆqi ˆg ˆpi ≠ ˆg ˆqi ˆf ˆpi (A.12)
This operator is at the core of the formal connection between quantum and classical mechanics. Let us nonetheless further prepare this shift by enlarging the set of admissible initial data.

A.2.2 Observables of general states

In the above discussion we considered that x(t 0 ) = x 0 , meaning that the initial state of the system is known with certainty. However, successful prediction might require to alleviate this constraint, as for instance for systems with a large number of independent variables. This can be done introducing a probability density f (x, t)dx for the system to be in state x at time t. An evolution equation for f is derived from probability conservation in a phase space volume (t) comoving in time with phase space points considered as initial data:

P (t + dt) ≠ P (t) = 0 = ⁄ (t+dt) dxf (x, t + dt) ≠ ⁄ (t) dxf (x, t) = ⁄ (t) dx C- - - - - ˆu(t,t+dt) (x) ˆx - - - - - f (u (t,t+dt) (x), t + dt) ≠ f (x, t) D
where u (t,t 0 ) : x 0 ' ae x(t) is the Hamiltonian flow, mapping a point x 0 to the point x(t), solution to Hamilton's equations at time t for the initial data x(t 0 ) = x 0 . By this definition, ˆu(t,t 0 ) /ˆt

= A ˆH/ˆp i ≠ˆH/ˆq i B
. Besides, one demonstrates that the Jacobian of any Hamiltonian flow is one 4 . Proceeding accordingly, 0 =

⁄ (t) dx A ˆf ˆt + ˆu(t,t 0 ) ˆt • ˆf ˆx B dt + O(dt 2 ) dtae0 =∆ 0 = ⁄ dx A ˆf ˆt + {f, H} B , '
This establishes Liouville's equation,

0 = {H, f } + ˆf ˆt

Dynamics of the states

(A.13) or, df dt = 0 (A.14)
allowing to determine f (x, t) from an initial probability distribution f 0 (x).

4 If J(t) = - - - ˆu(t,t 0 ) (x) ˆx - - -© - - - ˆx(t) ˆx0
---, Jacobi formula gives its time derivative,

J = J(t)Tr C 3 ˆx(t) ˆx0 4 ≠1 ˆẋ(t) ˆx0 D = J(t)Tr C 3 ˆx(t) ˆx0 4 ≠1 ˆẋ(t) ˆx(t) ˆx(t) ˆx0 D = J(t)Tr 5 ˆẋ(t) ˆx(t) 6 = J(t) 3 ˆH ˆpi ˆqi ≠ ˆH ˆqi ˆpi

4

= 0 , with use of cyclicity of the trace and

J(t 0 ) = - - - ˆid(x) ˆx - - -= 1, so J(t) = 1.
All relevant quantities can then be expressed as the expectation value of an observable over a general system state,

ÈOÍ f = ⁄ dxf O (A.15)
and we can again formulate two equivalent interpretations of the (expectation) value of an observable at time t 5 ,

Ï(t) = ÈOÍ f (t) (A.16) = ⁄ dxf (x, t)O(x) (A.17) = ⁄ dxf 0 1 u ≠1 (t,t 0 ) (x) 2 O(x) , by Liouville's equation = ⁄ dxf 0 (x)O(u (t,t 0 ) (x)) , using - - - - - ˆu(t,t 0 ) ˆx - - - - - = 1 = ⁄ dxf 0 (x)O(x, t) (A.18) = ÈO(t)Í f 0 (A.19)
Either the system state evolves to f at time t when a fixed function O is measured, or the state merely encodes the initial data f 0 while all physical variables O evolve with time t. This transparently parallels the so-called Schrödinger and Heisenberg points of view in quantum mechanics. Furthermore, the above reveals a duality between states and observables 6 . More specifically, any observable is fully determined by its values over a proper set of states, and conversely any state can be retrieved by the values that a proper set of observables take on it. This statement becomes trivial introducing "pure states" f x (y) © "(y ≠ x), and what could be called "projections" 7 O x (y) = "(y ≠ x). Either way, all necessary information about the physical system can explicitly be encoded in some set of observable values.

A.3 Algebraic aspects of physical observables

A.3.1 An algebra within classical mechanics

This procedure of abstraction of the structure underlying computation of measurement values can be pushed further, nearly closing the gap with its quantum generalization. Essentially, such structure crystallizes around the Poisson bracket. This symbol is formally interesting because it seems to allow rewriting mechanics only in terms of functions on phase space, that is general observables, independently of the specific variables (q i , p i ) that initially defined it 8 . 5 We now consider an observable without explicit time dependence for better clarity of the argument. 6 Mathematically, the expectation value is a scalar product and states are positive normalized linear forms on the vector space of observables.

7 The analogue quantum objects mathematically are projection operators. u, {a, v}] , by Leibniz rule = ({{a, u}, v} + {u, {a, v}}) Z , by Eq. A.32 = {a, {u, v}} Z , by antisymmetry and Jacobi identity but Leibniz rule implies that {a, 1} = 0 therefore,

u, v, u Õ , v Õ directly leads to, [u, v] = [u Õ , v Õ ] © Z (A.33) Furthermore, {a, Z} = {a, [u, v]} = [{a, u}, v] + [
I {a, Z} = 0 [a, Z] = 0 , 'a oe A P (A.34)
This property makes the element Z a constant of the system, in the sense that it is invariant under any Hamiltonian flow Eq. A.11, and is uncorrelated to any other observable 11 .

We have therefore shown that under the condition that at least one couple of variables is conjugated in the sense of classical mechanics, the defining properties of a Poisson bracket imply a direct link with the commutator of two elements via a unique constant in the centre of the Poisson algebra,

÷! Z oe Z(A P ) s.t. I [a, b] = Z{a, b} {a, Z} = 0 , 'a, b oe A P (A.35)
Classical mechanics is then naturally distinguished as a special case in a wider framework, simply defined by,

Classical mechanics:

I Z © 0 i.e. [a, b] = 0 , 'a, b oe A P (A.36)
A direct extension then appears as Z = ⁄1 for ⁄ oe K. Together with a little more additional structure, quantum mechanics is recovered setting ⁄ oe iR, where i 2 = ≠1. Physically ⁄ © i~, introducing Planck's constant, so that formally,

Quantum mechanics:

I Z © i~1 i.e. [a, b] = i~{a, b} , 'a, b oe A P (A.37)
The shift from Eq. A.36 to Eq. A.37 is called the canonical quantization of a system, usually summarized in the direct substitution rule {

•, •} ae ≠ i ~[•, •].
Expressed in terms of Poisson bracket, equations of mechanics are unchanged, as well as their operational interpretation. Of course, the mathematical realizations of the classical or quantum algebras may di er a lot in their individual parts 12 . However, their above described proximity at an abstract level is faithfully reflected in their global structure 13 , or in a physical perspective when thought of in terms of observable values.

Two essential di erences between classical and quantum mechanics quite often highlighted, the non-commutativity of observables and the seemingly necessary occurrence of complex numbers14 , appear at the same time in Eq. A.37. While commutative Poisson algebras directly lead to the geometric structures underlying classical mechanics known as symplectic manifolds, the former properties can be linked to so-called C ú -algebras, whose representations are known to coincide with operators on Hilbert spaces. From there follow all non-classical features of quantum mechanics15 , e ectively rooting them in one equation.

In some views, it can be interpreted as conveying the "indeterminacy" of physical variables, generalizing probability theory to systems whose variables can not be assumed to all simultaneously have a value [385][386][387][388]. Alternatively one may require logically grounding physics on a set of motivated principles, then quantum mechanics can be rebuilt [389,390] and Hamilton's principle, rather unsettling in this regard, explained as a consequence16 .

A.4 Observables in Quantum Mechanics

A.4.1 Mathematical represention

Let us conclude this section with a brief review of the realization of the quantum algebra of observables as self-adjoint operators17 on a Hilbert space H, that is A q = H(H). States are linear forms Ê : H(H) ae R satisfying Ê(A † A) > 0 and Ê(1) = 1, which by Riesz representation theorem can be identified with operators fl oe S(H) called state operators or density matrices. Using scalar product A • B , Tr(A † B) for the representation, these operators satisfy,

State operator

fl † = fl ‡(fl) µ R + , denoting ‡(fl) the spectrum of fl Tr(fl) = 1 (A.38)
The expectation value of an observable then writes,

ÈOÍ fl = Tr (flO) (A.39)
For consistency, as we shall now explain, one furthermore postulates that the value o taken by a measured observable O belongs to its spectrum,

Observable values: Ï = o oe ‡(O) (A.40)

A.4.2 Quantum indeterminacy

From the defining properties, if fl 1 , fl 2 oe S(H) and µ oe [0, 1] then µfl 1 + (1 ≠ µ)fl 2 oe S(H), so that states form a convex set. A state operator cannot be decomposed in such a way if and only if Tr(fl 2 ) = 1, in which case it is called a "pure state"18 and is a one-dimensional projection operator: ÷ |ÂÍ oe H s.t. fl pure © fl  = |ÂÍÈÂ|, introducing Dirac notations. An important di erence with the classical case is that observable values can never be all predicted with certainty19 , even in a pure state. Indeed [391],

È(O ≠ ÈOÍ Â ) 2 Í Â = ÈO 2 Í Â ≠ ÈOÍ 2  = Tr 1 |ÂÍÈÂ|O 2 2 ≠ Tr (|ÂÍÈÂ|O) 2 = Tr 1 |ÂÍ ÈÂ|ÂÍ ÈÂ| O 2 2 ≠ ÈÂ| O |ÂÍ ÈÂ| O |ÂÍ = Tr 1 fl 2  O 2 ≠ fl  Ofl  O 2 = 1 2 Tr 1 [fl  , O] † [fl  , O] 2 (A.41)
where the self-adjointness of fl  and O have been used in the last line. Therefore, an observable is always measured equal to its expectation value in state fl  if and only if20 it commutes with the projector |ÂÍÈÂ|, that is if |ÂÍ is an eigenvector of O. This allows viewing the postulate Eq. A.40 in a new light. Let us indeed require that two immediately successive21 measurements always give the same result, say o Õ | o = o, and denote fl Â Õ |o the system state after the first measurement. Then, by the above, this condition is equivalent to requiring that fl Â Õ |o be a projector on an eigenvector of O, implying that o Õ | o oe ‡(O) and therefore o as well. This consistency requirement is sometimes referred to as the "(Von-Neumann) projection postulate".

Besides, let

O (Õ) = q i o (Õ) i |Ï (Õ) i ÍÈÏ (Õ)
i | be two non-commuting variables22 . Then given fl  a general pure state and alleviating notations with

c i © ÈÏ i |ÂÍ and c ij Õ © ÈÏ i |Ï Õ j Í, ÈOÍ Â = Tr C fl  ÿ k o k |Ï k ÍÈÏ k | D = ÿ k o k P k| , with P k| © |c k | 2 (A.42) now, P k| = c k c ú k = ÿ l,p c kl Õ c l Õ Â (c kp Õ c p Õ Â ) ú , using two times 1 = ÿ k |Ï Õ k ÍÈÏ Õ k | i.e. P k| = ÿ l P k|l Õ P l Õ | + 2 ÿ l<p I k| l Õ p Õ | , with I k| l Õ p Õ | © Re [c kl Õ c l Õ Â (c kp Õ c p Õ Â ) ú ] (A.43)
Unobserved values can therefore not simply be assumed existent but unknown as the first line could suggest, instead all potential values of any non-commuting observables "interfere" according to the generalized conditional probability formula Eq. A.43. Together with the existence of an absolute scale of action ~, this specific form of indeterminacy can be used to capture the major qualitative aspects of quantum mechanics [386,392,393]. Because variables do not have and then take values the theory is discrete, according to Eq. A.41 this process is random, and potential (observable but unobserved) values of non-commuting variables bilinearly interfere in final probabilities Eq. A.43.

A.4.4 Interaction formalism

In this discussion we have illustrated the invariance of mechanics so as to motivate the mathematical form of quantum theories, for which exact equations were pivotal. However a large part of the terminology used to describe quantum fields derives from approximation methods, almost always required for definite prediction. We will now present one link between these views.

Let us assume that the Hamiltonian of the system can be written as,

Interaction form : H = H 0 + gV I ¸˚˙H I (A.53)
where time-evolution generated by H 0 can be solved exactly 23 and g oe R. In many contexts H 0 is called the "free" or "kinetic" Hamiltonian, H I the "interaction" term and g the coupling parameter24 . We can therefore decompose time evolution so as to isolate contributions from H I ,

Y _ ] _ [ U (t, t 0 ) © U 0 (t, t 0 )U I (t, t 0 ) dU 0 dt = ≠ i ~U0 H 0 (A.55)
Substituting in the full equation Eq. A.47 we find,

i~d U dt = UH … i~A dU 0 dt U I + U 0 dU I dt B = U 0 U I (H 0 + H I ) … U 0 H 0 U I + i~U 0 dU I dt = (H 0 + H I ) U 0 U I , using [U, H] = 0 … i~d U I dt = U † 0 H I U 0 U I , using [U 0 , H 0 ] = 0 (A.56)
Now because [H, U ] = 0, the operators within the Hamiltonian of the first line can be written at any time. Choosing H = H(Q, P), we have, t≠t0) can be expressed analytically, e.g. by diagonalization. Introducing a basis of the Hilbert space 1 = s dq|qÍÈq|, that diagonalizes the operator Q such that [Q, P ] = i~, we can define  : (q, t) ' ae Èq|U (t, t 0 )| 0 Í for a given vector | 0 Í oe H. Then by projection Eq. A.47 implies that,

U † 0 H I U 0 © H 0 I (t) = H I (Q 0 (t), P 0 (t)) (A.57) defining, O 0 (t) , U † 0 (t, t 0 )OU 0 (t, t 0 ) (A.58) 23 This means that U 0 (t, t 0 ) © e ≠ i ~H0 ( 
i~ˆÂ ˆt (q, t) = ⁄ dq Õ Èq| H(Q, P) |q Õ Í Â(q Õ , t) = H(q, ≠i~ˆq )Â(q, t) (A.54)
where Q and P are the Q and P operators at initial time, and in the second line we have used the representation of P in the |qÍ basis, which is a consequence of the canonical commutation relation (cf. Weyl's form). Hence, finding U 0 (t, t 0 ) is equivalent to finding a basis of the solution space of Eq. A.54, the Schrödinger equation, for the Hamiltonian H 0 .

Therefore, Interaction evolution (di erential)

dU I dt = ≠ i ~H0 I U I (A.59)
This equation is di erent from Eq. A.47 because now the operator H 0 I depends on time, and does a priori not commute with itself at di erent times nor with U I . A formal solution can however be written by integration and recursive substitution,

U I (t, t 0 ) = 1 + ⁄ t t 0 d tdU I dt ( t) = 1 + 1 i~⁄ t t 0 dt 1 H 0 I (t 1 )U I (t 0 , t 1 ) = 1 + 1 i~⁄ t t 0 dt 1 H 0 I (t 1 ) + 3 1 i~4 2 ⁄ t t 0 dt 1 ⁄ t 1 t 0 dt 2 H 0 I (t 1 )H 0 I (t 2 )U I (t 0 , t 2 ) . . . = 1 + OE ÿ k=1 3 1 i~4 k ⁄ t t 0 dt 1 • • • ⁄ t k≠1 t 0 dt k H 0 I (t 1 ) • • • H 0 I (t k ) (A.60)
Now let us examine more closely the successive integrals,

⁄ t t 0 dt 1 • • • ⁄ t k≠1 t 0 dt k H 0 I (t 1 ) • • • H 0 I (t k ) = ⁄ t 1 ,...,t k oe[t 0 ,t] t k AEt k≠1 AE...AEt 1 dt 1 . . . dt k H 0 I (t 1 ) • • • H 0 I (t k ) (A.61)
so that we simply integrate over all products of operators H 0 I ( t) with t oe [t 0 , t] arranged in order of decreasing time argument. We can rewrite this in terms of unconstrained time arguments t k oe [t 0 , t] introducing the "time-ordering" symbol • which returns any product of time-dependent operators in order of decreasing time argument 25 :

⁄ t t 0 dt 1 • • • ⁄ t k≠1 t 0 dt k H 0 I (t 1 ) • • • H 0 I (t k ) © 1 k! ⁄ t 1 ,...,t k oe[t 0 ,t] dt 1 . . . dt k • Ë H 0 I (t 1 ) • • • H 0 I (t k ) È (A.62)
where division by the permutation number of k elements accounts for the redundancy induced by allowing all possible orderings of the integration variables t 1 , . . . , t k . Substituting in Eq. A.61 we find the so-called Dyson series expression of the interaction time evolution operator U I ,

U I (t, t 0 ) = 1 + OE ÿ k=1 1 k! 3 1 i~4 k ⁄ t 1 ,...,t k oe[t 0 ,t] dt 1 . . . dt k • Ë H 0 I (t 1 ) • • • H 0 I (t k ) È (A.63)
which can be compactly written as,

Interaction evolution operator

U I (t, t 0 ) = • e ≠ i ~s t t 0 d tH 0 I ( t) (A.64) 25 e.g. if t a < t b < t c , then • [B(t b )C(t c )A(t a )] = A(t a )B(t b )C(t c ).
Now substituting in Eq. A.51 any expectation value can be written as,

ÈO(t)Í fl 0 = Tr 3 fl 0 • e ≠ i ~s t 0 t d tH 0 I ( t) O 0 (t)• e ≠ i ~s t t 0 d tH 0 I ( t) 4 (A.65)
where we have introduced the anti-time ordering symbol • to express U † I . In this expression we notice that all operators are arranged in increasing time order until O(t), after which they decrease again. We unite both introducing a contour " = [t 0 , t]ü[t, t 0 ], and a "contour ordering" symbol • " which orders operators in order of increasing argument on the the contour26 . Then,

ÈO(t)Í fl 0 = Tr 3 fl 0 • " e ≠ i ~s" dzgH 0 I (z) O 0 (t) 4 (A.66)
Naturally, this whole interaction formalism truly proves relevant when the interaction term can be considered small27 , typically for g π 1. In such instance, we can perform a perturbative expansion of the evolution operator U I , which translates in a decomposition of all expectation values as power series in g:

ÈO(t)Í fl 0 ƒ ÈO 0 (t)Í fl 0 ≠ g i ~⁄" dzÈ• " V 0 I (z)O 0 (t)Í fl 0 + g 2 1 2! 3 ≠i ~42 ⁄ " 1 ⁄ " 2 dz 1 dz 2 È• " V 0 I (z 1 )V 0 I (z 2 )O 0 (t)Í fl 0 + . . . (A.67)
Total evolution is thereby seen as a "free" part, generated by U 0 , corrected by contributions from all possible numbers of "interaction events", appearing as products with V 0 I , of decreasing relative magnitude.

B.1 Embedding of symmetry

The very notion of field can be understood as derived from the principle of locality, itself stemming from Einsteinian relativity of spacetime coordinates. Any fundamental physical theory therefore has to incorporate the underlying notion of invariance, also called "symmetry" in this context. Requiring i) actual invariance of physical predictions and ii) formal invariance of intermediate equations under a change of reference frame has strong technical implications, as can be guessed already in the above from the pervasive use of a distinguished time parameter. In an interesting turn, it occurs that the induced constraints are so strong they almost determine the physical variables and their interactions. In other words, a quantum mechanical theory consistent with few basic principles of special relativity is virtually driven to be a field(s) theory, whose forms and non-interacting dynamics are determined by a mass m oe R + and spin j oe 1 2 N, describing the evolution of bosonic or fermionic particles 3 . It has become a standard method also to generate interactions between fields a priori from extended symmetry principles 4 , generalizing the notion of relativity.

The axiomatic derivation of QFT can proceed from an algebra of observables compatible with special relativistic locality, giving a primary role to "covariant local fields", as the generators of any observable, built through finite dimensional but non-unitary representations of the Poincaré group 5 [394]. Alternatively, one can consider the action of the Poincaré group on the Hilbert space of pure states, in which case unitary but infinite dimensional representations come first, defining the (multi-)particles Hilbert space (Fock space), and local covariant fields appear so as to enforce Poincaré-invariant dynamics [395]. Both are mathematically involved 6 . Here we will simply motivate some constituting elements of relativistic QFT at an heuristic level, based on these principles and the canonical formalism of mechanics.

B.1.1 From the Poincaré group to fields

⌅ The set of all changes of inertial reference frame forms a group, called the Lorentz group L, its extension to include space and time translations is called the Poincaré group P. The Poincaré group is primarily defined as transformations on Minkowski space vector coordinates,

Y ] [ x µ ( ,a) ≠ae x µ = µ ‹ x ‹Õ + a µ fl µ ‡ ‹ ÷ fl ‡ = ÷ µ‹ , with ÷ = diag(1, ≠1, ≠1, ≠1) (B.1)
where x µ and x µÕ are interpreted as the coordinates of the same event respectively in the new and old reference frame. From general mechanics we know that Poincaré-invariant predictions would derive from a Poincaré-invariant action,

S Õ ≠ S = 0 (B.2) i.e. ⁄ Õ d• L Õ ≠ ⁄ d• L = 0 , ' (B.3)
where is an undefined integration domain a priori encapsulating both the summation over physical variables and the boundaries that we wish to correlate. Now a natural way to enforce such condition appears to take as a spacetime domain, for Poincaré transformations are simply given on Minkowski coordinates and by change of variable then,

⁄ Õ dxL Õ (x) = ⁄ dxL Õ ( ≠1 (x ≠ a)) , using |det( ≠1 )| = 1 (cf. Eq. B.1) (B.4)
introducing the "Lagrangian density" L, and so Poincaré-invariance Eq. B.3 simply translates into,

L Õ ( ≠1 (x ≠ a)) = L(x) , 'x … Lorentz-scalar: L Õ (x) = L( x + a) (B.5)
This relation defines a "Lorentz scalar field", and simply reflects that the field values at the same event coincide in both reference frames.

In this context we note that kinematics (the set of physical variables) is not entirely transparently distinguished from dynamics (their transition from data to predicted values). The Lorentz-scalar condition inducing causality in the special relativistic sense, this distinction can be operated by considering a spacelike surface crossing all timelike curves of exactly once7 , for all predictions in are then determined by appropriate data of the variables on . We conclude that our physical variables are {q(x)} xoe , continuously indexed by a space of dimension 3, and thereby call them a field.

The canonical quantization of such system should then be a quantum and Poincaréinvariant theory. Before reviewing general conclusions, let us first illustrate this procedure in a simple case.

B.1.2 Illustration: canonical quantization of the free scalar field

⌅ A Lagrangian density built from a Lorentz-scalar field evidently is a Lorentz-scalar itself. We therefore consider the real scalar field {"(x)} xoeR 3 , taking a simultaneity plane as our Cauchy surface. In order to include the field time-derivatives in the invariant Lagrangian, they should appear via scalar products8 of the four derivative ˆ" ˆxµ © ˆµ". Considering a linear theory finally constrains the Lagrangian to,

Scalar field (free): L(", ˆµ") = 1 2 ˆµ"ˆµ" ≠ 1 2 m 2 " 2 (B.6)
The Euler-Lagrange equations follow as before,

0 = ⁄ dx Ë L| "+"" (x) ≠ L| " (x) È = ⁄ dx C ˆL ˆ" ""(x) + ˆL ˆ(ˆµ") "ˆµ"(x) D = ⁄ dx C ˆL ˆ" ≠ ˆµ A ˆL ˆ(ˆµ") BD ""(x) + j ˆ d ‡ µ C ˆL ˆ(ˆµ") ""(x) D i.e. 0 = ˆL ˆ" ≠ ˆµ A ˆL ˆ(ˆµ") B (Euler-Lagrange) (B.7)
For our scalar field we thus find,

Klein-Gordon (ˆ2 + m 2 )"(x) = 0 (B.8)
Shifting to the Hamiltonian formalism we have,

fi(x) = ˆL ˆ(ˆ0"(x)) © ˆ0"(x) (B.9)
so that performing the Legendre transform

H = fi" ≠ L, H(", Ò", fi) = 1 2 fi 2 + 1 2 (Ò") 2 + 1 2 m 2 " 2 (B.10)
The equations of motion take the Hamiltonian form, [START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF] with Hamiltonian H = s dxH(x), and Poisson bracket 9 ,

I ˆ0"(x) = {"(x), H} ˆ0fi(x) = {fi(x), H} (B. (Hamilton) 
{f, g} = ⁄ dx "f ""(x) "g "fi(x) ≠ "g ""(x) "f "fi(x) (B.
12)

The field variables consequently have the equal-time Poisson brackets,

I {"(x), "(y)} x 0 =y 0 = {fi(x), fi(y)} x 0 =y 0 = 0 {"(x), fi(y)} x 0 =y 0 = "(x ≠ y) (B.13)
However, by construction our action is invariant under Lorentz transformations, and it is a classical result of mechanics that symmetries of the action generate canonical transformations10 , so that,

{f (x), g(y)} "(z)fi(z) = {f (x), g(y)} "( z)fi( z) (B.14) that is, {f (x), g(y)} = {f ( x), g( y)} (B.15)
Therefore, the equal-time canonical relations actually hold for any spacetime points in the image of the equal-time plane by the Lorentz group, so that they are spacelike commutation relations indeed,

Local

Poisson Brackets

I {"(x), "(y)} x•y<0 = {fi(x), fi(y)} x•y<0 = 0 {"(x), fi(y)} x•y<0 = "(x ≠ y) (B.16)
⌅ Canonical quantization provides the commutation relations of the quantum variables 11 , Commutation Relations (local)

I ["(x), "(y)] x•y<0 = [fi(x), fi(y)] x•y<0 = 0 ["(x), fi(y)] x•y<0 = i"(x ≠ y) (B.17)
In order to proceed further, let us take advantage of the linearity of the equations of motion to express " as a Fourier transform,

"(x) = ⁄ dk 1 f (k)e ≠ik•x + f † (k)e ik•x 2 (B.18)
where the hermitian conjugate part is a consequence of the real values (hermiticity) of ". From the equations of motion we have the dispersion relation 12 f (k) Ã "(k 2 ≠ m 2 )◊(k 0 ), so that integrating over k 0 we find 13 ,

Y _ _ _ _ ] _ _ _ _ [ "(x) = ⁄ dk 2E k 1 a(k)e ≠ik•x + a † (k)e ik•x 2 fi(x) = ≠i ⁄ dk 2E k E k 1 a(k)e ≠ik•x ≠ a † (k)e ik•x 2 (B.19) (B.20)
where k © (E k , k) now satisfies the relativistic dispersion relation, and a(k), a † (k) still to be determined. These relations can be inverted,

Y _ _ ] _ _ [ a(k) = i ⁄ dxe ik•x [fi(x) ≠ iE k "(x)] a † (k) = ≠i ⁄ dxe ≠ik•x [fi(x) + iE k "(x)] (B.21) (B.22)
and using the equal-time commutation relations we find the canonical commutation relations (CCR),

Commutation Relations (canonical) Y ] [ [a(k), a(k Õ )] = [a † (k), a † (k Õ )] = 0 [a(k), a † (k Õ )] = 2E k "(k ≠ k Õ ) (B.23)
These relations together with the existence of a lowest energy state |0Í entirely determine the form of state space 14 . In particular, a(k) |0Í = 0 , 'k and |0Í is called the vacuum. Defining |k 1 . . . k n Í , a † (k 1 ) . . . a † (k n ) |0Í, we see that all possible such vectors form the so-called Fock space,

Fock space {|k 1 . . . k n Í} © F S = H 0 n nØ1 Q a p koeR 3 H k R b ¢ S n with dim(H 0 ) = dim(H k ) = 1 (B.24)
where H ¢n = n times ˙˝¸H ¢ . . . ¢ H and the S subscript stands for "symmetrized", as one easily sees from the commutation relations that states di ering only by a permutation of their k-vectors are identified, enforcing a bosonic statistics.

We use natural units ~= c = 1. We denote the Heaviside step function ◊(x) = 0 if x < 0 and ◊(x) = 1 if x Ø 0. We use "(f (x)) = q ri "(x ≠ r i )/|f Õ (r i )| with {r i } the solutions of f (x) = 0. The detailed construction is sometimes referred to as the "ladder operator" method.

After some algebra, the total Hamiltonian H = s dxH can be reexpressed in terms of the creation and destruction operators as 16 ,

H = ⁄ dk 3 ñ(k)E k + 1 2 V 4 (B.29)
with ñ(k) = n(k)/2E k , so its action on states is fully determined,

H |k 1 . . . k n Í = A n ÿ l=1 E k l B |k 1 . . . k n Í (B.30)
It therefore appears that the defining Fock space basis diagonalizes the Hamiltonian, hence in other words consists of definite energy states, that are stable in time.

⌅ We can further clarify this result by examining the e ect of a spacetime translation l on states via the Lorentz-scalar property of fields, 

a † (k) l ae ≠i ⁄ dxe ≠ik•x [fi Õ (x) + iE k " Õ (x)] (B.31) = ≠i ⁄ dxe ≠ik•x [fi(x + l) + iE k "(x + l)] ,
q n i=1 k i) •l |k 1 . . . k n Í (B.33)
The relativistic invariance property of fields hence determines the transformation of states under a translation. Let U (l) denote the corresponding endomorphism of Fock space. By the above we see that U (l) is diagonal in the Fock basis, hence linear, and manifestly unitary 17 . We can therefore write U (l) = e iP µ lµ , where P µ are called the infinitesimal generators of the envisioned transformation, here a spacetime translation. They are hermitian because U is unitary, and all commute as sharing a common diagonalization basis.

Of course Eq. B.33 allows to concretely determine the action of P µ on states,

P µ |k 1 . . . k n Í = A n ÿ i=1 k µ i B |k 1 . . . k n Í (B.34)
We find that P 0 = H, consistently with the general definition of the Hamiltonian as the generator of time evolution, but also P |k 1 . . . k n Í = (

q n i=1 k i ) |k 1 . . . k n Í.
In mechanics, the infinitesimal generator of space translations is identified with kinetic momentum 18 , therefore Fock states also have definite kinetic momentum, found to coincide with the " field Fourier modes (times ~in IU). Besides, single-particle momenta components (Eq. B.34) satisfy k µ k µ = m 2 . We can consequently interpret F as the space of all relativistic multi-particle states, with particle mass m.

Let us note that such conceptual move actually is a physical interpretation rather than a mathematical identification; it has to be, for particles as defined even in "relativistic" single-particle quantum mechanics (Dirac theory) violate relativistic locality [395]. However, non-relativistic particle mechanics is correctly recovered when ÎpÎ/m π 1.

⌅ The same line of thought applies to Lorentz transformations,

a † (k) ae ≠i ⁄ dxe ≠ik•x [fi Õ (x) + iE k " Õ (x)] (B.35) = ≠i ⁄ dxe ≠ik•x ["{fi ≠ -• Ò"}( x) + iE k "( x)]
by scalar (vector) property of " (fi µ ), i.e. fi Õ © fi

0Õ = 0 ‹ fi ‹ © 0 ‹ ˆL ˆ(ˆ‹") = ≠" {E k + -• k} a(≠ k) ≠ a † ( k) 2E k + a(≠ k) + a † ( k) 2 by Eqs. B.19-B.20, using q • x = ≠1 q • x and change of variable q Õ = ≠1 q = a † ( k) , as the first factor is indeed [ (≠-) (-)k] 0 © k 0 = E k (B.36) hence |k 1 . . . k n Í ae | k 1 . . . k n Í (B.37)
where " = 1/ Ô 1 ≠ -2 is the Lorentz-factor of and by abuse of notation u is the spatial part of the four vector (u 0 , u). Fock state P µ eigenvalues therefore transform as (4-)vectors in a change of reference frame, consistently with an interpretation in terms of particle's momenta. Besides, nothing else changes under such Lorentz transform, which means we must assign spin 0 to these particles 19 .

Introducing the transformation operator U ( ) as before we have, by Lorentz-invariance of the scalar product Eq. B.28,

ÈU ( )k Õ 1 . . . k Õ m |U ( )k 1 . . . k n Í = È k Õ 1 . . . k Õ m | k 1 . . . k n Í = Èk Õ 1 . . . k Õ m |k 1 . . . k n Í (B.38)
so U ( ) also is unitary.

An operator is unitary if it preserves the scalar product, ÈU"|UÂÍ = È"|ÂÍ, i.e. U † U = UU † = 1. e.g. in classical mechanics recall that {O, p i } = ≠ ˆO ˆqi , and take q i a particle spatial coordinate. One could also compute the total angular momentum J 2 and find all states have eigenvalue 0 [395] ⌅ Let us now summarize the results obtained so far,

• From a mechanical point of view the principle of special relativity invites to consider a Poincaré-invariant action.

• It can naturally be realized by a three dimensional field system {A(x)} xoe with Lorentz-scalar Lagrangian density, entailing a local Poisson bracket, Lorentz-scalar (field): L Õ (x)

( ,l) = L( x + l) Locality: {A(x), A(y)} x•y<0 = {fi A (x), fi A (y)} x•y<0 = 0 {A(x), fi A (y)} x•y<0 = "(x ≠ y)
• Canonical quantization of a field governed by linear equations of motion results in a Fock structure of the Hilbert space.

Considering the real Klein-Gordon equation, Fock basis can be interpreted as the set of all multi-particle states for particles of mass m and spin 0, satisfying the "mass shell" condition k 2 = m 2 .

• Upon action of the Poincaré group, the Lorentz-scalar property of the field translates into a unitary operator in Fock space. 

B.1.3 General Poincaré and gauge covariant local fields

⌅ The relation Eq. B.39 between the transformation of variables as a field on the one hand, and as an operator on the other hand, is the basis for the general embedding of special relativity into quantum mechanics. The underlying mathematical notion is that of group representation, meaning a group morphism, fi :

I G ae Gl(V ) g ' ae fi(g) (B.40) s.t. 'g, h oe G, fi(gh) = fi(g)fi(h) (B.41)
for V some vector space and Gl(V ) its linear group. A representation is said unitary if its image elements are, finite dimensional if V is, and irreducible if it comprises no subspace stable under all fi(G).

In quantum mechanics, a symmetry group representation must be unitary to preserve predictions, while regarding the algebra of variables it would be desirable to have only finitely many generators, hence acted on by finite dimensional representations. We can then read Eq. B.39 as establishing the connection between the unitary representation acting on operators, and the finite-dimensional representation acting on the algebra of physical variables. Determining all irreducible unitary and finite dimensional representations of the Poincaré group P 20 would therefore exhaust all possibilities for a relativistic and quantum system.

It turns out that the determination of all irreducible representations of P is a wellposed and solved mathematical problem 21 [400]. Because the Poincaré (and Lorentz) group is non-compact, unitary representations are all infinite dimensional, so finite dimensional ones are non-unitary. Unitary representations are entirely characterized by a mass m Ø 0 and a half-integer spin j oe 1 2 N. Finite dimensional representations are characterized also by a mass m and two half-integers A, B, related to the total spin j of the representation by,

|A ≠ B| AE j AE |A + B| (B.42)
A Lorentz-scalar Lagrangian can then be built from any combination of Lorentzcovariant fields,

Lorentz-covariance: U ( , l)" n (x)U † ( , l) = M nm ( )" m ( x + l) (B.43)
with U some unitary representation of P, M some finite-dimensional representation of L, and where contraction of all Lorentz indices in the final Lagrangian confers it the Lorentz-scalar property.

A general linear covariant field then writes 22 , 

" n (x) = ÿ ‡ ⁄ dk 2E k 1 u AB n (k, ‡)a(k, ‡)e ≠ik•x + v AB n (k, ‡)a c † e ik•x
Y _ ] _ [ j oe N ∆ Canonical CR: [•, •] ≠ j oe N + 1 2 ∆ Canonical anti-CR: [•, •] + (B.46)
20 Actually the representations of its universal cover P ƒ SL(2, C) o R 4 , in bijective correspondence with the projective representations of P relevant for quantum states, that are rays of Hilbert space (i.e. vectors defined up to phase and norm). This shift, clearly motivated by quantum mechanics, is well-known to be at the origin of non-integer spin representations, which are indeed non-classical in this sense [396].

21 See [395] for details on the results to follow. 22 We introduce the "antiparticle" annihilation operator a c † , which naturally appears as soon as one quantizes complex scalar fields. Indeed the canonical procedure then amounts to quantizing two real fields, hence two independent "creation/annihilation" operators pairs. Invariance of the Lagrangian under phase multiplication of the field however entails net particle minus antiparticle number conservation.

23 For spin 0, one finds back the Klein-Gordon equation

One concludes only fermionic and bosonic statistics are allowed 24 , corresponding respectively to non-integer and integer spin particles.

As an example let us write the Dirac field, probably the most common yet nonclassical object of relativistic field theory. It is realized as the reducible representation 25 (A = 1 2 , B = 0) ü (A = 0, B = 1 2 ), direct sum of the two irreducible dimension 2 spin 1 2 representations of the Poincaré group, so itself is dimension 4 and spin 1 2 , sometimes called a "bi-spinor representation". Its Fock space describes massive spin 1 2 (fermionic) particles and anti-particle. The field can be written as,

 = Q c c c c c a Â1 2 0  ≠ 1 2 0  0 1 2  0≠ 1 2 R d d d d d b (B.47)
with left and right indices respectively for the A and B spin indices. Substituting in the general solution to Eq. B.43 and Eq. B.45 yields,

Â(x) = ÿ ‡oe{≠ 1 2 , 1 2 } ⁄ dk 2E k 1 u(k, ‡)b(k, ‡)e ≠ik•x + v(k, ‡)d † e ik•x 2 (B.48)
Here u(k, ‡) and v(k, ‡) form two 2-dimensional basis for the solution space respectively of,

(/ k ≠ m)u(k, ‡) = 0 (B.49) (/ k + m)v(k, ‡) = 0 (B.50) introducing / a , " µ a µ with " 0 = A 0 1 2 1 2 0 B , " i = A 0 ≠ ‡ i ‡ i 0 B
the Dirac matrices and ‡ i the Pauli matrices.

This finally entails a covariant field equation for Â, with a generating Lagrangian,

Y _ ] _ [
Dirac equation:

1 i / ˆ≠ m 2  = 0 Dirac Lagrangian: L D 0 (x) = Â(x) 1 i / ˆ≠ m 2 Â(x) (B.51)
where  ,  † " 0 .

⌅ The Poincaré group may not be the only symmetry of the action, and in practice requiring new symmetries provides one systematic way to generate Lagrangian with interacting physical variables. Let us briefly illustrate this general idea, grounding so-called "gauge theories", with the simple Dirac Lagrangian just written.

24 This result relies on spacetime dimension 4.

25 This seemingly non-trivial choice is justified by ruling out simpler possibilities for spin 1 2 particles (i.e. representations ( 1 2 , 0) or (0, 1 2 )) on the basis that they either are their own anti-particle, and therefore cannot carry electric charge, or massless [395]. Historically, it naturally appeared looking for the "square root" of Klein-Gordon equation (e.g. H s.t.

H 2 Â = (i~) 2 ˆ2 0 Â … (K-G)).
Performing  ae e ≠iqa  manifestly leaves L D 0 invariant for any q, a oe R. Then, taking q as a constant and a in the infinitesimal limit,

" a L D 0 = 0 = C ˆLD 0 ˆÂ ≠ ˆµ A ˆLD 0 ˆ(ˆµÂ) BD " a Â(x) + ˆµ C ˆLD 0 ˆ(ˆµÂ) " a Â(x) D + " a Â(x) C ˆLD 0 ˆÂ ≠ ˆµ A ˆLD 0 ˆ(ˆµÂ) BD + ˆµ C " a Â(x) ˆLD 0 ˆ(ˆµÂ) D E≠L = ˆµ C ˆLD 0 ˆ(ˆµÂ) " a Â(x) D
where " a  = ≠iqa , and " a  = iqa (B.52)

using Euler-Lagrange equations, and noticing the second divergence term is zero.

We hence obtain,

ˆµj µ = 0 (B.53) with, j µ = qÂ" µ  (B.54)
The symmetry of the Lagrangian is thereby seen to imply the existence of a current conserved by the equations of motion26 , leading to a time-invariant charge,

Q © ⁄ dxj 0 (x) = ⁄ dxq † (x)Â(x) = q ÿ ‡oe{≠ 1 2 , 1 2 } ⁄ dk 2E k 1 b † (k, ‡)b(k, ‡) ≠ d † (k, ‡)d(k, ‡) 2 © q(N p ≠ N p ) (B.55)
where we have used the normalization relation of basis spinors27 , the canonical anti-commutation relation and discarded the resulting infinite constant. The total number operators N p and N p clearly correspond to the total numbers of anti-particles and particles respectively.

Now consider a local transformation Â(x)

a ae e ≠iqa(x) Â(x), in this case the Lagrangian changes due to the field derivative, 

L D 0 - - - a(x) ≠ L D 0 = Â(x) 1 ≠iq / ˆa(x) 2 Â(x) (B.
L D (x) = Â(x) 1 i / D ≠ m 2 Â(x) (B.58)
The introduced field A µ manifestly transforms as a vector, hence is a spin 1 field. The Poincaré locality-covariance equations then naturally determine a kinetic Lagrangian, while gauge-invariance requires m A = 0, hence the total gauge-invariant Lagrangian,

L U(1) (x) = Â(x) 1 i / D ≠ m 2 Â(x) ≠ 1 4 F µ‹ (x)F µ‹ (x) (B.59)
with F µ‹ = ˆµA ‹ ≠ ˆ‹A µ the "field strength tensor".

We thereby see how requiring invariance of the Dirac Lagrangian under local transformations, here generated by elements of U(1), translates into a theory of fermions interacting with the vector (i.e. spin 1, hence bosonic) "gauge field" A µ carrying the infinitesimal generator of local gauge transformations, here ≠iq. Setting q = e and m = m e , we physically recognize the Lagrangian of electrons and positrons interacting with the electromagnetic field, and the conserved charge Eq. B.55 is identified with the total net electric charge. The Lagrangian may then be rewritten so as to more closely parallel its classical form,

Quantum

Electrodynamics

L QED =  1 i / ˆ≠ m e 2  ≠ A µ j µ ≠ 1 4 F µ‹ F µ‹ (B.60)
with j µ defined in Eq. B.54. The systematic generalization of this procedure, in particular to non-abelian symmetry groups, is called Yang-Mills theory.

⌅ The basic canonical formalism inspired from point-particle mechanics we used, though convenient in view of an ordered exposition, clearly reveals its limits at this stage. Trying to define the canonical Hamiltonian of Eq. B.60, one finds that,

fi A 0 = ˆLQED ˆ(ˆ0A 0 ) = 0 (B.61)
as F 00 = 0, preventing a consistent formulation of Hamiltonian equations of motion.

Actually, we ran into an inconsistency already when anti-CCR were introduced for fermions, as an anti-commutator does not share the algebraic properties of the usual Poisson bracket, breaking the canonical quantization procedure we described.

Both problems can be addressed in an extended canonical formalism, said to describe systems with "constraints", the case of fermions furthermore requiring the introduction of a generalized Poisson bracket defined on algebras of anticommuting numbers 28 [311]. Alternatively, one might use a di erent approach to the "quantization" of a mechanical system, most notably the path-integral method leading to the "functionnal formalism" of quantum mechanics. In practice, the latter approach currently is the most widely used to circumvent these complications, providing both a very operational mathematical framework and some physically evocative expressions [307,396,401].

B.2 Fields correlation functions

A second di erence of field theory with elementary mechanics is the continuous infinity of physical variables, at least one per point of space 29 . Thinking in computational terms for a moment, quantum mechanics of a single variable q oe E has about the complexity of the classical mechanics of  q oe L 2 (E, C) 30 , that is a complex field over the space of values of q. Now considering a typical field {q x } xoeR 3 oe L 2 (R 3 , E), its quantum theory naively appears as the computation of  qx oe L 2 (L 2 (R 3 , E), C). This exponential soar of complexity translates in the formal theory as the necessity to find a hierarchy in physical variables in order to perform any definite calculation. In particular, a state-centred approach aimed at computing the full "field wavefunction" appears especially hopeless.

The "n≠points (fields correlation) functions" prove central in this regard, for a field "(x, x 0 ) they are generically defined by,

G (n) (x 1 , . . . , x n ) , È• " "(x 1 ) . . . "(x n )Í fl 0 (B.62) = Tr [fl 0 • " "(x 1 ) . . . "(x n )] (B.63)
with • " the contour-ordering operator appearing in Eq. A.66. As field operators generate the algebra of observables, one may in principle express any quantity of interest in terms of field expectation values, and a finite number of them at some given level of accuracy.

For instance, free 2-points functions form the basis of perturbation theory and its evocative diagrammatic representation. Let us stress nonetheless that correlation functions are fundamental objects, they encode all physical predictions and exact equations can be derived for them. Though a priori unsolvable 31 , these equations allow for approximation schemes other than scattering theory and more amenable to describing non-equilibrium states 32 , for instance via a kinetic theory. In this section our aim is to provide broad reference for these possible approaches. Specifically, the usual perturbative expansion based on the interaction picture is introduced so as to make contact with the familiar terminology of particle scattering and diagrammatic representations. We then present Schwinger-Dyson equations for exact n≠points functions, and motivate some tools used for kinetic reduction.

B.2.1 Finite order perturbation theory

⌅ If the system's Lagrangian can be split as L © L 0 + L I and dynamics in L 0 is exactly solvable, the interaction formalism provides a systematic approximation method for the full dynamics. Assuming that the interaction term does not contain field derivatives we have H = H 0 ≠ L I and Eq. A.66 directly rewrites, B.2: [305-307, 396] 29 More of course for realistic fields with internal degrees of freedom, like the four components electromagnetic potential.

ÈO(t)Í fl 0 = = • " e i s " dxL 0 I (x) O 0 (t) > fl 0 (B.64) † Refs.
30 Say, for computing the system state after some finite time, as a vector encoded in the list of its coe cients in a Hilbert space basis (e.g. the eigenbasis of q).

31 They typically take the form of infinite hierarchies of coupled (classical) field equations, whereby one recovers the computational complexity of a quantum field theory: the set of fundamental variables consists of all correlation functions.

32 An equilibrium state is fl eq s. where the integral is understood as extending over all space and running along the contour in the time direction. Under the common circumstance that L 0 I can be considered small and is a low degree polynomial in the fields, this expression can be expanded at a given order and any quantity expressed in terms of a finite sum of expectation values of finite products of fields,

ÈO (n) (t)Í fl 0 = n ÿ l=0 i l l! ⁄ dx 1 . . . ⁄ dx l e • " L 0 I (x 1 ) . . . L 0 I (x l )O 0 (t) f fl 0 (B.65)
However the real value of this formalism unfolds only when a further reduction is performed, through an identity known as Wick's theorem,

- - - - - - - - - - - - - - - - - - - - - - - - - - If, " x © " + x + " ≠ x with Ë [" ≠ x , " + y ], O È = 0, 'O and [" ± x , " ± y ] = 0 We define the "normal ordered product", N [" x 1 . . . " xn ] = " + x 1 . . . " + xn " ≠ x 1 . . . " ≠ xn
and the "contraction" of two fields,

D 0 xy = ◊(x 0 " ≠ y 0 " )[" ≠ x , " + y ] + ◊(y 0 " ≠ x 0 " )[" ≠ y , " + x ] Then, • " [" x 1 . . . " xn ] = N 5 " x 1 . . . " xn + ÿ ;
all possible contractions The quantity D 0 xy is the free theory 2-points function, called the free field propagator. In principle, it allows computing any term of the perturbative expansion Eq. B.71. As we shall now simply illustrates, it also receives a very visual interpretation.

B.2.2 Illustration: perturbative expansion for " 3 interactions

⌅ For definiteness, let us apply the above formalism to the following scalar field theory [396],

L = 1 2 (ˆµ") 2 ≠ 1 2 m 2 " 2 ¸˚˙L 0 + g 3! " 3 ¸˚˙L I (B.70)
33 This relation is easily found true for n = 2 and proved for higher ranks by mathematical induction. 34 This is always possible for quadratic free hamiltonian and thermal states [402], including the vacuum (T ae 0) where the split simply corresponds to positive and negative frequencies of the momentum decomposition. In general, the state has to be gaussian and field operators centred (È"Í fl0 = 0) [403,404]. For instance considering a coherent state |‰Í (s.t.

È" 0 (x)Í ‰ = ‰(x)), ÈN # O(" 0 ) $ Í ‰ = O(‰(x)
) so expectation values of normal ordered products of centred field operators "0 © " 0 ≠ ‰ would indeed cancel.

x 2 for a vacuum initial state fl 0 = |0ÍÈ0|. We may calculate the 2-points function, at second order in the coupling g,

x 1 x 2 1 8 x a x b + 1 12 x a x b + 1 2 x a x b + 1 4 + 1 2 O(g 4 ) + x 2 x 1 x 2 x 1 x 2 x 1 x b x a x 2 x 1 x a x b x 1 x 2 x 1
È• " "(x 1 )"(x 2 )Í 0 = È• " " 0 x 1 " 0 x 2 Í 0 + ig 3! ⁄ dx a = • " 1 " 0 xa 2 3 " 0 x 1 " 0 x 2 > 0 ≠ g 2 2 ◊ (3!) 2 ⁄ dx a ⁄ dx b = • " 1 " 0 xa 2 3 1 " 0 x b 2 3 " 0 x 1 " 0 x 2 > 0 + O(g 3 ) (B.71)
using the free fields decomposition Eq. B.19, Wick's theorem results in 35 ,

È• " "(x 1 )"(x 2 )Í 0 = D 0 12 ≠ g 2 2 ◊ (3!) 2 ⁄ dx a ⁄ dx b 5 + 9D 0 12 D 0 aa D 0 ab D 0 bb + 6D 0 12 1 D 0 ab 2 3 18D 0 1a D 0 2a D 0 ab D 0 bb + 9D 0 1a D 0 2b D 0 aa D 0 bb + 18D 0 1a D 0 2b D 0 ab D 0 ab + 18D 0 1b D 0 2b D 0 ab D 0 aa + 9D 0 1b D 0 2a D 0 aa D 0 bb + 18D 0 1b D 0 2a D 0 ab D 0 ab 6 + O(g 4 ) (B.72)
using the alleviated notation D 0 ij © D 0 x i x j . As we integrate over x a and x b , the two last lines di ering only by the permutation a ¡ b are found identical, so that we can write,

È• " "(x 1 )"(x 2 )Í 0 = D 0 12 ≠ g 2 ⁄ dx a ⁄ dx b 5 1 8 D 0 12 D 0 aa D 0 ab D 0 bb + 1 12 D 0 12 1 D 0 ab 2 3 + 1 2 D 0 1a D 0 2a D 0 ab D 0 bb + 1 4 D 0 1a D 0 2b D 0 aa D 0 bb + 1 2 D 0 1a D 0 2b 1 D 0 ab 2 2 6 + O(g 4 ) (B.73)
At this point, we can develop a diagrammatic interpretation of this expression. Let us notice that it depends only on doubly indexed quantities that can thereby be associated to the edges of a graph, linking vertices indexed by their argument. This result is drawn in Fig. B.1. Actually, we could bypass all the previous calculation by formalizing this diagrams-expressions correspondence, allowing to write down final 35 As suggested already by this basic example the combinatorial procedure of pairing all elements of a finite set leads to a very fast growing number of terms (though still not of distinct diagrams here), namely N pairings (2m elements) = (2m)! m!2 m . Diagrammatic methods alleviate the problem at low order of expansion and correlation function, as we shall discern shortly, but eventually also have to be supplanted by other tools [307] perturbative expressions directly by listing all possible contributing diagrams of a given order 36 .

We see that some diagrams have disconnected parts, factorizing in lower order correlation functions linking the end points 37 . Some even have "floating parts", unconected to any endpoints 38 . To understand the behavior of these so-called "vacuum diagrams" 39 consider,

È1Í fl 0 = = • " e i s " dxL 0 I (x) > fl 0
, by Eq. B.64

… È1Í fl 0 = È1Í fl 0 + n ÿ l=1 (ig) l l!(3!) l ⁄ dx 1 . . . ⁄ dx l = • " 1 " 0 x 1 2 3 . . . 1 " 0 x l 2 3 > fl 0 … 0 = ⁄ dx 1 . . . ⁄ dx l = • " 1 " 0 x 1 2 3 . . . 1 " 0 x l 2 3 > fl 0 , 'l oe N ú (B.74)
We hence recognize that all vacuum diagrams cancel order by order. As a consequence, all terms containing them can simply be discarded in the perturbative expansion. Likewise, disconnected diagrams are clearly expressed in terms of lower order correlation functions. We therefore reach the conclusion that the relevant information is entirely contained in the set of connected diagrams.

In these diagrams some lines are attached to fixed locations (x 1 and x 2 ), they are called "external". Those directly relate to the variable whose expectation value is considered (here the correlation between " field values at x 1 and x 2 ). Other lines are attached to vertices, whose position is integrated over the whole system volume and in the time-interval considered, they are called "internal" and receive a quite fruitful interpretation in terms of intermediate, unobserved processes. Interestingly, they allow developing an intuitive spatiotemporal understanding of the behavior of these integrands once that of D 0 xy is known. In the present theory, and quite generically, D 0 xy © D 0 (m(x ≠ y)) displaying oscillations for (x ≠ y) 2 > 0 and exponential fall o for (x ≠ y) 2 < 0, all controlled by the field Compton scale 1/m [395].

In calculating transition probabilities between free particle states 40 specifically, the Fourier transform of these diagrams ("momentum space" diagrams) takes a particularly vivid interpretation. External lines indeed depend on the initial and final momenta, satisfying the relativistic dispersion relation, and hence label initial and final states, whereas internal lines momenta are integrated over irrespective of the "mass-shell" condition. They are then said to correspond respectively to "real" and "virtual" particles. Of course, such terminology reminiscent of classical images should not obscure the plain quantum mechanical structure of the theory. For that matter, similar interpretations can be drawn in related formalisms 41 without raising fundamental concerns.

B.2.3 Exact equations of motion of fields n≠points functions

⌅ The above described perturbative expansion provides a systematic and well-proven computation method. However, it may appear restrictive in the following sense, i) Interactions: The interaction formalism is entirely grounded on the assumption that dynamics can be split into L = L 0 + L I , where L 0 is solvable and L I is small. Compatibility of both conditions is by no means generally granted. Though L 0 is trivially solved including few enough terms, the reminder may well be large. Strong-field QED provides an example [2]:

L sf-QED = ≠ 1 4 F µ‹ F µ‹ +  1 i / ˆ≠ m e 2  ¸˚˙L 0 ≠eA µ j µ ¸˚˙Ω ?ae ≠ea µ j µ ¸˚˙L I (B.75)
where

A µ © a µ + A µ with ÈA µ Í fl 0 = A µ . If A µ j µ &
1/e the third term is not small, but in general L 0 ≠ eA µ j µ is not solvable.

ii) Secular terms: Assuming the interaction formalism applies, in non-equilibrium states resulting quantities may still fail to provide good approximations at all times [305,306]. This problem arises due to so-called "secular terms" growing in time, which can be traced back to the lack of "self-consistency" of the approximation scheme. Namely, quantities of a given order in the expansion are built from quantities of a lower order 42 , instead of obeying equations of motion self-consistent in the sense of referring only to the same approximation order 43 .

iii) Computation: From a more practical point of view, the extreme versatility of the interaction formalism, that allows calculating virtually any observable at low expansion order, might generate costs without real profit. The cost is to solve the L 0 dynamics for all operators. However, in many configurations data of the two or three first correlation functions of a system largely exhaust all information we may enquire about 44 , let alone access experimentally [116,305,306]. Furthermore, such truncation of the infinite hierarchy of quantum field variables would ease contact with the classical limit, which is especially desirable in the strong-field context. Hopefully, it would eventually allow extending the extremely powerful and flexible numerical methods developed for classical fields and particles to some quantum regimes.

A promising starting point to address the above considerations may be to find equations governing n≠points functions directly rather than the evolution operator.

Then one could hope to close the system at some finite n, so as to obtain a uniform (self-consistent) approximation of the exact retained correlation functions. It turns out that exact equations can indeed be derived, leveraging on the field evolution equations.

For definiteness and simplicity we consider again a real scalar field ". The exact equations of motion write (cf. Eq. A.44), eom (Hamilton):

I ˆ0"(x) = ≠i ["(x), H] ˆ0fi(x) = ≠i [fi(x), H] (B.76)
42 e.g. in Eq. B.73 the 2-points function at order g 2 is built from "free" (order g 0 ) 2-points functions.

43 See [305,306] and references therein for a detailed exposition. 44 e.g. 1-points functions provide the fields expectation values (at all points), 2-points functions relate to density, conductivity, or in a kinetic approximation to the full one-particle distributions in phase-space.

with the local commutation relations,

I ["(x), "(y)] x•y<0 = [fi(x), fi(y)] x•y<0 = 0 ["(x), fi(y)] x•y<0 = i"(x ≠ y) (B.77)
Let us rewrite the equations of motion in a Lagrangian form [395]. First notice how the commutator of two canonically conjugate variables acts as a derivative:

["(x), fi(y 1 )fi(y 2 )] = ["(x), fi(y 1 )] fi(y 2 ) + fi(y 1 ) ["(x), fi(y 2 )] CCR = i ("(x ≠ y 1 )fi(y 2 ) + fi(y 1 )"(x ≠ y 2 ))

© i f(x) (fi(y 1 )fi(y 2 )) (B.78) ["(x), Òfi(y 1 ) • Òfi(y 2 )] = ["(x), Òfi(y 1 )] • Òfi(y 2 )+ Òfi(y 1 ) • ["(x), Òfi(y 2 )] CCR = i (Ò"(x ≠ y 1 ) • Òfi(y 2 ) + Òfi(y 1 ) • Ò"(x ≠ y 2 )) = ≠i ("(x ≠ y 1 )Ò • Òfi(y 2 ) + "(x ≠ y 2 )Ò • Òfi(y 1 )) © ≠iÒ • Ò fi(x) (Òfi(y 1 ) • Òfi(y 2 )) (B.79)
introducing partial derivatives acting as a formal derivation on the associated symbol all else fixed. By induction on both relations and reasoning similarly for fi we deduce,

["(x), F (", fi)] = i "F "fi(x) = i A ˆF ˆfi(x) ≠ Ò • ˆF ˆÒfi(x) B (B.80) [fi(x), F (", fi)] = ≠i "F ""(x) = ≠i A ˆF ˆ"(x) ≠ Ò • ˆF ˆÒ"(x) B (B.81)
with use of the functional derivative symbol introduced in Eq. B.12. In order to insist on the symbolic relations let us now adopt the calculus notation [395],

dF d" - - - - - fi , ˆF ˆ" ≠ Ò • ˆF ˆÒ" (B.82) so that we can rewrite, Y _ _ _ _ _ ] _ _ _ _ _ [ ˆ0" = dH dfi - - - - - " ˆ0fi = ≠ dH d" - - - - - fi (B.83)
However we know that our Hamiltonian derives from a Lagrangian, that is,

fi = ˆL ˆ(ˆ0") (B.84) H(", Ò", fi) = fiˆ0" ≠ L(", ˆµ") (B.85)
Therefore the second Hamilton's equation of motion becomes,

ˆ0 A ˆL ˆ(ˆ0") B = ≠ Q a dH d" ≠ dH dfi - - - - - " dfi d" R b …ˆ0 A ˆL ˆ(ˆ0") B = dL d" ≠ Q a ˆ0" ≠ dH dfi - - - - - " R b dfi d" …ˆ0 A ˆL ˆ(ˆ0") B = ˆL ˆ" ≠ Ò • ˆL ˆÒ"
, by first Hamilton's equation

… ˆµ A ˆL ˆ(ˆµ") B = ˆL ˆ" : eom (Euler-Lagrange) (B.86)
This establishes that the Euler-Lagrange equations are preserved by canonical quantization, providing an alternative description of the dynamics of field operators. To complete the shift to a Lagrangian description, all canonical momenta fi can be eliminated through Eq. B.84, leading to a new expression of the commutation relations,

Y _ _ _ _ _ ] _ _ _ _ _ [ ["(x), "(y)] x•y<0 = C ˆL ˆ(ˆ0") (x), ˆL ˆ(ˆ0") (y) D x•y<0 = 0 C "(x), ˆL ˆ(ˆ0") (y) D x•y<0 = i"(x ≠ y) (B.87)
With these two equations Eqs. B.86-B.87, we can derive equations of motions for the correlation functions themselves.

B.2.4 Illustration: Schwinger-Dyson equations for " 3 interactions

⌅ For better insight into the general n≠points functions techniques, before reviewing conclusions we will first be deriving results for a real scalar field governed by the earlier Lagrangian Eq. B.70,

L = 1 2 (ˆµ") 2 ≠ 1 2 m 2 " 2 ¸˚˙L 0 + g 3! " 3 ¸˚˙L I
The equations of motion are,

(ˆ2 x + m 2 )" x = g 2! " 2 x (B.88)
and the commutation relations write explicitly

, Y ] [ [" x , " y ] x•y<0 = [ˆ0" x , ˆ0" y ] x•y<0 = 0 [" x , ˆ0" y ] x•y<0 = i"(x ≠ y) (B.89)
Taking contour-ordered expectation values the equation of motion directly yields,

(ˆ2 x + m 2 )È" x Í fl 0 = g 2! È• " " 2 x Í fl 0 (B.90) i.e. Field expectation value: (ˆ2 x + m 2 )G (1) x = g 2! G (2) xx (B.91)
that is an equation of motion for G (1) in terms of G (2) .

Let us then determine a similar equation for G (2) . We wish to compute (ˆ2 x +m 2 )G (2) xx 1 , the only subtlety comes from the ◊ functions enforcing contour-ordering in the expectation value. We can hence start by applying the time derivatives,

ˆx0G (2) xx 1 = ˆx0È• " " x " x 1 Í fl 0 = ˆx0 1 ◊(x 0 " ≠ x 0 1" )È" x " x 1 Í fl 0 + ◊(x 0 1" ≠ x 0 " )È" x 1 " x Í fl 0 2 = È• " ˆx0" x " x 1 Í fl 0 + "(x 0 " ≠ x 0 1" )È[" x , " x 1 ]Í fl 0 CCR = È• " ˆx0" x " x 1 Í fl 0
Applying a second time derivative this time we find,

ˆ2 x 0 G (2) xx 1 = È• " ˆ2 x 0 " x " x 1 Í fl 0 + "(x 0 " ≠ x 0 1" )È[ˆx0" x , " x 1 ]Í fl 0 CCR = È• " ˆ2 x 0 " x " x 1 Í fl 0 ≠ i"(x ≠ x 1 )
The other elements of our di erential operator directly commute with the contourordered expectation value, so that finally,

(ˆ2 x + m 2 )G (2) xx 1 = È• " (ˆ2 x + m 2 )" x " x 1 Í fl 0 ≠ i"(x ≠ x 1 ) = g 2! È• " " 2 x " x 1 Í fl 0 ≠ i"(x ≠ x 1 ) i.e. Exact propagator: (ˆ2 x + m 2 )G (2) xx 1 = g 2! G (3) xxx 1 ≠ i"(x ≠ x 1 ) (B.92)
we hence obtain an equation for the exact 2-points function in terms of the exact three-points function. Note that in the absence of interactions, this implies for the free 2-points function,

Free propagator:

(ˆ2 x + m 2 )D 0 xy = ≠i"(x ≠ y) (B.93)
meaning it is Green's function of the Euler-Lagrange di erential operator, which substantiates its appellation of "free propagator".

Generalizing this result e.g. by induction we obtain, Schwinger-Dyson:

(ˆ2 x + m 2 )G (n) xx 1 ...x n≠1 = g 2! G (n+1) xxx 1 ...x n≠1 ≠ i~n ≠1 ÿ j=1 "(x ≠ x j )G (n≠2) x 1 ...x j≠1 x j+1 ...xn (B.94)
Interestingly from order 2 onward the equation di ers from the Euler-Lagrange equations by " terms. Reinstating ~in this equation, we see that those terms indeed capture the quantum modifications to the classical form of these equations.

In particular it is responsible for the appearance of loop diagrams in the context of perturbation theory (see e.g. [396]).

46 Numerical prefactors are included in the Feynmann rules by dividing each diagram by its number of geometrical symmetries, and can therefore be omitted in diagram representations (see e.g. [307,396,401]).

+ b)

x We can finally give a diagrammatic depiction of the Schwinger-Dyson equations, convoluting by iD 0 and using Eq. B.93 we find, Namely, a propagator line between two points either carry interactions or not, and in the former case it can only do so via one interaction vertex, followed by anything that can happen in-between the remaining points47 .

1 x 2 x x n-1 x 1 x + n 1 ∑ j=1 x x j a) x n-1 x 1 x 2 x n-1 x 1 x j-1 x j+1 x x 1 x x 1 x 1 x
G (n) xx 1 ...x n≠1 = i g 2! D 0 xy G (n+1) yyx 1 ...x n≠1 + n≠1 ÿ j=1 D 0 xx j G (n≠2)
⌅ There are many di erent forms of these exact relations between the n≠points functions48 . All are equivalent at an exact level, but all do not prove equally fruitful so as to devise e cient approximation, or resolution schemes. This can be understood thinking of the di erent ways to organize the infinite diagram series summarized in iii) connected, with two or more internal lines between external lines (sixth term).

Disconnected graphs are easily seen to factorize in a product of two 1-point functions, so that in a sense they do not bring new information at the 2-points level. For this reason, it would be desirable to separate their contribution to the total 2-points function from the connected 2-points function.

This can be done again diagrammatically or algebraically. Opting for the latter approach and recalling that the 1-point function is the field expectation value f x , È" x Í fl 0 , we can write,

G

(2) 

xx Õ = È" x " x Õ Í fl 0 © È(Ï x + f x )(Ï x Õ + f x Õ )Ífl 0 , with ÈÏ x Í fl 0 = 0 = ÈÏ x Ï x Õ Í fl 0 + f x f x Õ i.e. G xxÕ , G (2) xx Õ ≠ f x f x Õ is
xx Õ = D 0 xx Õ + ig 2! D 0 xy G (3) yyx Õ … G xx Õ = D 0 xx Õ ≠ f x f x Õ + ig 2! D 0 xy È(Ï y + f y ) 2 (Ï x Õ + f x Õ )Í fl 0 … G xx Õ = D 0 xx Õ ≠ 5 f x ≠ ig 2! D 0 xy 1 G yy + f 2 y 2 6 f x Õ + ig 2! D 0 xy Ó G (3) yyx Õ + 2f y G yx Õ Ô (B.97)
with G

(3) yyx Õ , ÈÏ 2 y Ï x Õ Í fl 0 the connected 3-points function. However, injecting Eq. B.96 in the Schwinger-Dyson equation for f x Eq.B.91 we obtain,

f x = ig 2! D 0 xy 1 G yy + f 2 y 2 (B.98)
so that Eq. B.97 becomes,

G xx Õ = D 0 xx Õ + ig 2! D 0 xy Ó G (3) yyx Õ + 2f y G yx Õ Ô (B.99)
The corresponding diagram equation is,

x x ' + x x x ' x + x '
x ' We can understand better the meaning of this equation by realizing that it is possible to factor out a connected 2-points function on the right of G (3) . Indeed, "all connected diagrams between y, y and x 1 " can logically be decomposed as "all connected diagrams between y, y and y Õ "◊"all connected diagrams between y Õ and x 1 ".

In doing so we define what is called the "self-energy" ,

G xx Õ = D 0 xx Õ + ig 2! D 0 xy { yyy Õ + 2f y " yy Õ } G y Õ x Õ (B.100) with G (3) yyx Õ © yyy Õ G y Õ x Õ (B.101)
At this point we alleviate notations by adopting an operator form for the convolution products, AB © A xy B yz 52 . We can hence rewrite,

G = D 0 + D 0 Ó ˜ + f Ô G with ˜ = ig 2! and f = igf … G = Ë 1 ≠ D 0 Ó ˜ + f ÔÈ ≠1 D 0 … G = OE ÿ n=0 1 D 0 Ó ˜ + f Ô2 n D 0 (B.102)
This form makes explicit that, in contrast with finite order perturbation theory, solving Dyson's equation automatically includes ("resums") an infinite number of diagrams. For the connected 2-points function they consist of n oe N occurrences of the exact interaction terms appearing on the RHS of Eq. B.100 each spaced by free propagation.

Now let us disentangle contributions of kinds ii) and iii) in G. This seems a priori relevant, e.g. in view of some resolution ansatz, because of their di erent physical origins: one stems from local interactions with the mean field, the other from non-local coherent self-interaction 53 . They also clearly have distinct diagrammatic properties, which can be characterized by their remainder when external propagators are removed. For ii) it is a set of diagrams attached to a single point, we will call them "punctual". For iii) it is connected diagrams linking two points, such that they remain connected if one internal line is cut, this property is known as "1-particle irreducibility" (1-PI).

Simply reasoning diagrammatically again, we can decompose the full connected 2points functions between all diagrams with no 1-PI contributions, and diagrams with at least one. In the latter case, we can factor out (on the left) all contributions before the 1-PI terms, which hence have no 1-PI contribution, as well as (on the right) all that is comprised after the 1-PI diagram. Denoting the 2-point function with only punctual interactions by D f xx Õ , we conclude at the following decomposition,

Y _ ] _ [ G = D f + ig 2! D f G D f = D 0 + igD 0 f D f (B.103) 52 
In our limited use ambiguities e.g. for more indices or "s should be lifted from context.

53 Eventually perceived as "collisions" in a kinetic reduction.

Consistency of these relations with previous results can be checked explicitly with straightforward algebra, as they entail,

Y _ _ _ _ ] _ _ _ _ [ G = OE ÿ n=0 1 D f ˜ 2 n D f D f = OE ÿ n=0 1 D 0 f 2 n D 0 (B.104)
Expanding the summand

1 D 0 Ó ˜ + f Ô2 n
one sees that each term of the G series in Eq. B.104 is included in Eq. B.102, conversely expanding D f in Eq. B.104 one finds back each term of Eq. B.102, hence both series are identical. In summing first D f though, propagation is now expressed as a succession of exact streaming motion in the field, generated by punctual diagrams f , interspersed with n oe N self-interaction sequences, generated by 1-PI diagrams . Diagrammatically we can draw, 

x + x x x ' x ' x ' x x ' x x ' + x x ' + x ' x +… { x + x x x ' x ' x x ' x x ' + x x ' + x ' x +… { x '
3) xx Õ x ÕÕ , G xy G x Õ y Õ G x ÕÕ y ÕÕ yy Õ y ÕÕ (B.105) ( 
The quotient 3-points function is referred to as the "proper vertex". ⌅ We can gather our results at this point. The exact connected one and two points functions are governed by the relations 55 , 55 We here reinstate explicit symbols where integration over repeated indices is intended. Let us be more specific by imagining a closure scenario in a strong-field regime. We define it as gf > 1, so that the streaming motion in the field Eq. B.108 has to be solved exactly. In this context it would be desirable to simplify the field equations as well. In this regard we notice that on the RHS of Eq. B.106 the second term corresponds to the classical field equation, so that the first is a quantum correction that we may hope to neglect56 . The quantum source term of the field equations can be interpreted as a local current density, so that neglecting it in a sense amounts to a "dilute medium" hypothesis. Assuming such condition holds, we enforce a decoupling of Eqs. B.106 and Eqs. B.107. Then truncating the proper vertex at lowest order we have ¥ ig, leading to,

Y _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ [ (ˆ2 x + m 2 )f x = g 2! 1 G xx + f 2 x 2 (ˆ2 x + m 2 ≠ gf x )G xx Õ = ≠i" xx Õ + g 2! ⁄ " G xa G xb abc [D f , ]G cx Õ (ˆ2 x + m 2 ≠ gf x )D f xx Õ = ≠i" xx Õ ( 
x x + x a) x + x x x ' x ' x ' b) x x ' x x ' + x x ' c) d) z 3 z 2 z 1 z 1 z 3 z 2 + z 2 z 3 z 1 + z 2 z 3 z 1 +…
x a)

x + x x ' x ' b) + … x x ' x x ' x x ' x x ' + x x ' + x x '
x Even in these coarse approximations the equations of motion for the two first correlation functions f and G still encode a wealth of phenomena. This can be understood simply looking at the few first terms of the 2-points function Fig. B.6-b. The 1-body properties of the system appear to be computed in the field governed by its exact classical vacuum equations of motion, taking into account an infinite superposition of virtual processes of particle creation and recombination, without assuming quantum decoherence between each interaction event. The price is indeed a very high computational complexity. Nonetheless, as a systematic procedure to pursue the reduction down to kinetic theory is known, one is in principle free to find an adequate compromise between accuracy and tractability [116,305,306].

B.2.5 Opening remarks in view of non-equilibrium QFT

⌅ As they rely solely on the Euler-Lagrange equations satisfied by the field operators, the Schwinger-Dyson relations clearly are extremely general. Without introducing superfluous complications we can take a glimpse at their general form assuming that, L(", ˆµ") © L 0 (", ˆµ) + L I (") (B.109)

where L 0 leads to linear equations of motion 57 , or in other words

ˆµ 1 ˆL0 ˆ(ˆµ") 2 ≠ ˆL0 ˆ" © D L 0 ["]
is a linear functional of the field. Proceeding as before, the Euler-Lagrange equations imply an equation for the field correlation functions:

D L 0 x [È• " " x " x 1 . . . " xn Í fl 0 ] = È• " L Õ I (" x )" x 1 . . . " xn Í fl 0 ≠i n≠1 ÿ j=1 " xx j È• " " x 1 . . . " x j≠1 " x j+1 . . . " xn Í fl 0 (B.110)
denoting ˆLI /ˆ" = L Õ I . Now an actual derivation in this general setting would be much more accessible in a functional formulation of field theory [307] (introducing path integrals), which falls beyond our scope. Besides this exercise proves rather formal as physically predictive field theories generally feature non-zero spin fields, typically gauge-fields and fermions, so we will not pursue it further.

Instead we show the (connected) Schwinger-Dyson equations of QED, as an example of a more interesting system. Retaining only the first two correlation functions, the system variables are, 58 ,

Y _ _ ] _ _ [ A µ x = ÈA µ x Í fl 0 (Electromagnetic potential) D µ‹ xxÕ = È• " A µ x A ‹ x Õ Í fl 0 ≠ A µ x A ‹ x Õ (Photon propagator) xxÕ = È• "  x  x Õ Í fl 0 (Electron-Positron propagator) (B.111) (B.112) (B.113)
governed by the 116,405], 57 Hence is itself quadratic.

Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 1 ÷ µ ‡ ˆ2 x ≠ Ë 1 ≠ › ≠1 È ˆµ x ˆx ‡ 2 A ‡ x = ≠eTr [" µ (x, x)] 1 ÷ µ ‡ ˆ2 x ≠ Ë 1 ≠ › ≠1 È ˆµ x ˆx ‡ 2 D ‡‹ xx Õ = ≠i÷ µ‹ " xx Õ ≠e" µ ⁄ " xb xc ‡ abc [D 0 , , 0A , M]D µ ‡ ax Õ 1 i / ˆx ≠ e / A ≠ m 2 xx Õ = ≠i" xx Õ ≠e" ‡ ⁄ " D ‡fl xa xb fl abc [D 0 , , 0A , M] cx Õ 1 i / ˆx ≠ e / A ≠ m 2 0A xx Õ = ≠i" xx Õ (B.
58 This assumes that, as in vacuum, 

ÈÂ x Í fl0 = ÈÂ x Í fl0 = 0. x x x + xx x x ' x x ' x x ' x + x x ' x ' xx x x ' x x ' x x ' + x x ' 0 
0µ‹ xxÕ = ÈA 0µ x A 0‹ x Õ Í fl 0 ≠ A 0µ x A 0‹
x Õ , and straight lines for connected electron-positron 2-points function 0 xxÕ = ÈÍ fl 0  0 x  0 x Õ . Dots are interaction vertices, with position integrated over and contributing a factor ≠ie" µ (e 2 = 4fi-where -is the fine-structure constant).

The structural analogy with the previous " 3 theory is manifest. The main di erences are the presence of two interacting fields, leading to coupled equations of motion 59 , and the absence of direct self-interaction of the electromagnetic field 60 . We will not push this discussion further, but refer the reader to [116] and references therein for an in-depth study of non-equilibrium QED and its kinetic reduction.

One major missing element so as to make this Schwinger-Dyson approach viable would be a general closure method of the system, granting fundamental properties such as self-consistency 61 of the approximated equations. It occurs that such controlled approximation procedure is provided by the notion of n≠PI quantum e ective actions of the system [305][306][307]406]. Without entering into any more details, let us mention they prove a very e cient way of organising the diagrammatic information of the theory, a fraction of which we encountered and addressed "by hand" in our illustrative " 3 study, and thus a relevant starting point for formulating Non-equilibrium Quantum Field Theory.

59 Gauge freedom also adds some complexity, e.g. by the introduction of gauge-fixing terms. 60 In other words photons do not have an electric charge. Non-abelian gauge bosons, e.g. gluons in Chromodynamics, do directly interact though (gluons have a colour charge).

61 cf. introduction of this sec. B.2.3.

B.3 Similarity classes of initial states

Correlation functions allow computing any physical quantity, and some formalisms make use of their specific form 62 . However, being defined as expectation values it would seem these e orts have to be repeated for each possible initial state fl 0 . Fortunately, there are ways to avoid this duplication for some sets of related state operators, thereby defining formally equivalent classes of states. Probably the three most common families are the vacuum, thermal and coherent states, all accompanied by any finite number of additional particles.

In the context of scattering theory, a central technical tool concurring to such result for particle transition amplitudes is known as the Lehmann-Symanzik-Zimmermann reduction formula. In general (non-equilibrium) field theory, n≠points function can be computed from their initial values, e.g. by Schwinger-Dyson equations, so that in a sense this formalism already is as state-independent as mechanics can be. However, actual computations typically need restricting to the few first n AE p≠points functions, by which initial conditions with irreducible correlations 63 of order no higher than p acquire a distinguished status [305,306,406]. In practice, one would often work only with field expectation values and propagators and therefore restrict to so-called gaussian states, with no irreducible correlations higher than 2.

B.3.1 Reduction of particle transition amplitudes

⌅ Following the methods presented in sec. B.2 we would be able to compute correlation functions in a given initial state. However in a given field theory one would like to calculate quantities for various initial states. For instance, considering the transition probability to a given (spin 0) particle state |f Í © |k 1 . . . k m f Í, one computes,

P f |fl 0 (t) = È|f ÍÈf |(t)Í fl 0 (B.118)
To be more specific still, in vacuum 64 scattering theory, the initial state is itself a pure particle state fl 0 © |iÍÈi| with |iÍ = |q 1 . . . q m i Í, so that,

P f |i (t) = Tr Ë |iÍÈi|U † (t, t 0 )|f ÍÈf |U (t, t 0 ) È = |Èf |U (t, t 0 )|iÍ| 2 (B.119) , |Èf |i out Í| 2 (B.120)
Then of course repeating derivations for each possible particle state would be unmanageable. Hopefully this can be avoided via the standard result known as the † Refs. B.3: [305-307] 62 e.g. for writing the Feynmann rules in perturbation theory. 63 We call a correlation function of order m irreducible if can not be expressed in terms of correlations of lower order (in the present context all considered at initial time).

64 This terminology is to be justified shortly.

Lehmann-Symanzik-Zimmermann reduction formula [307,396,401],

Èk 1 . . . k m f |q 1 . . . q m i out Í = i m i +m f ⁄ m i Ÿ i=1 dx i e ≠iq i •x i (ˆ2 x i + m 2 ) Lehmann- Symanzik- Zimmermann ◊ ⁄ m f Ÿ j=1 dy j e ik j •y j (ˆ2 y j + m 2 ) È0|• " x 1 . . . " xm i " y 1 . . . " ym f |0 out Í (B.121)
where • is the simple time ordering operator. Therefore, the computation of particle transition amplitudes is entirely reduced to the computation of so-called "in-out" vacuum n≠points functions. As this formula merely relies on the field expression of the Heisenberg creation and annihilation operators a † k and a k , similar forms exist for non-zero spin fields.

For the most general problem of an arbitrary observable and initial state, we understand that similar reductions could be operated again leveraging on the field expression of the creation/annihilation operators. Let us simply sketch the first steps of such derivation. We consider a collection of initial particles |q 1 . . . q m Í added to a general state fl 0 , that is the modified initial state,

fl 0 ü [q i ] m 1 , Q a m Ÿ j a † q j R b fl 0 Q a m Ÿ j Õ a q j Õ R b (B.122)
Then using Eq. B.21-B.22 together with the basic identity f (t 0 ) = f (t) ≠ s t t 0 ˆtf , repeating the algebra leading to the LSZ formula we obtain,

ÈO(t)Í fl 0 ü[q i ] m 1 = K m Ÿ j a q j O(t) m Ÿ j Õ a † q j Õ L fl 0 by cyclicity of the trace = K m Ÿ j 3 a q j (t) ≠ i ⁄ " dx j ◊ + (x 0 j )e iq j •x j (ˆ2 x j + m 2 )" x j 4 ◊ O(t) ◊ m Ÿ j Õ 3 a † q j Õ (t) ≠ i ⁄ " dy j Õ ◊ ≠ (y 0 j Õ )e iq j Õ •y j Õ (ˆ2 y Õ j + m 2 )" y j Õ 4 L fl 0 (B.123)
where ◊ ± (z) is the step function that is one if z belongs to the forward (resp. backward) branch of the contour and 0 otherwise. This way we see that it would be possible to break the expectation value in the new state (fl 0 | r m i q i ) down into n≠points functions of the state fl 0 and their derivatives.

B.3.2 Initial conditions in e ective actions

⌅ As already advocated in sec. B.2 in the most general case instead of a reduction formula of the kind Eq. B.123 one may directly compute correlation functions from their initial values, via some form of Schwinger-Dyson equations. In this case, as previously mentioned, the main concern is the degree of the highest irreducible initial correlation. A proper justification of this fact would require introducing the notion of n≠PI e ective action, which is hardly formulated outside the functional formalism. We refer the reader to [305,306] and references therein for a recent introduction.

For our concern, it is su cient to notice that appling Eq. B.123 at time t 0 and injecting Eqs. B.21-B.22, we find,

ÈO(t 0 )Í fl 0 ü[q i ] m 1 = (≠1) m ⁄ m Ÿ j dx j e iq j •x j ⁄ m Ÿ j Õ dy j Õ e iq j Õ •y j Õ ◊ e1 ˆ0" x j ≠ iE q j " x j 2 O[" x ] 1 ˆ0" y j Õ ≠ iE q j Õ " y j Õ 2f fl 0 (B.124)
where we denote A x © A x | x 0 =t 0 and substituted fi by its expression in terms of " and ˆ0" (cf. Lagrangian formulation in sec. B.2.3). As a consequence, initial time correlators of the field and its derivatives in the modified state fl 0 ü [q i ] m 1 can be expressed as a linear combination of initial time correlators of the field and its derivatives in state fl 0 . This implies that the degree of highest irreducible correlation function p is preserved by the addition of finitely many initial particles, so that the same e ective action can be used with the updated initial correlation values. 
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Résumé détaillé

L'interaction électromagnétique imprègne essentiellement tous les phénomènes sensibles, et cette réalité est élucidée depuis plus d'un siècle. Cependant, cette connaissance ne pouvait se matérialiser pleinement comme force pratique qu'avec l'invention du laser, o rant un degré de contrôle sans précédent sur le champ électromagnétique, et ainsi sur ses interactions avec la matière. Les systèmes laser se sont depuis lors déployés vers toutes les sphères de la production, dont la science fondamentale. Cette thèse présente les résultats promis dans ce domaine, tant dans ses dimensions théorique qu'instrumentale, par l'application de l'e et de «miroir plasma relativiste »à l'obtention de sources de lumière d'intensité extrême, propres à provoquer des phénomènes inobservés à ce jour. Cette section en propose un résumé détaillé, en français, s'attachant à préciser son contexte et la substance des onze chapitres qui la composent.

Introduction et plan de la thèse

La frontière de la physique à ultra-haute intensité

Parmi la diversité des systèmes laser et de leurs usages, les deux dernières décennies ont vu émerger un champ de recherche structuré autour de la «physique à ultra-haute intensité », étudiant les interactions des impulsions laser aux plus hautes intensités réalisables avec la matière, alors convertie en particules et plasmas. Ces efforts ont pu révéler des phénomènes d'une grande richesse, donnant lieu à de multiples applications [1]. Quoique bénéficiant des progrès continus de la technologie laser, portant une élévation progressive des intensités laser, ces méthodes ont pu s'appuyer sur un ensemble qualitativement bien défini de processus physique élémentaires, tous décrits par la mécanique classique des champs et de particules à cinématique relativiste [1].

La situation actuelle est cependant susceptible de marquer un tournant, car les infrastructures de dernière génération, les lasers d'une puissance de crête supérieure à un pétawatt (10 15 W), ont le potentiel de révéler des processus radicalement nouveaux. Tous découleraient de l'aspect quantique des particules et des champs et délimiteraient collectivement le domaine physique de l'Électrodynamique quantique en champs forts (EDQ-cf, ou sf-QED dans la littérature anglophone) [2]. L'accès à de tels phénomènes s'avérerait d'une valeur à la fois fondamentale et pratique, permettant de tester empiriquement des théories établies ou spéculatives [3], et de générer des sources exotiques de rayonnement et de particules [4]. Cette frontière de la physique des lasers a par conséquent fait l'objet d'une attention croissante et alimente aujourd'hui l'activité régulière de nombreux scientifiques ainsi que la mise en service d'installations expérimentales ambitieuses.

Néanmoins, si les premières signatures de ces e ets pourront être détectées dans un avenir proche [3,4], le chemin vers des régimes plus profonds d'EDQ-cf semble malheureusement beaucoup plus escarpé que ses rives. Considérons par exemple un processus central de l'EDQ-cf, la conversion d'un photon en une paire électron-positron. Si les installations prévues à ce jour peuvent s'attendre à détecter quelques positrons créés, une forte attrition du champ par la création d'un plasma électron-positron as-socié à un fort rayonnement photonique, produisant une dynamique physique qualitativement nouvelle, ne se produiraient qu'à des intensités encore dix à cent fois plus élevées. Cependant, les infrastructures de plusieurs pétawatts approchent maintenant des échelles industrielles, ce qui implique une ingénierie laser de plus en plus complexe, de sorte qu'un mur technologique ne peut pas être exclu à court terme [5]. Par conséquent, la recherche de schémas alternatifs en vue d'atteindre les champs les plus élevés est d'ores et déjà activement poursuivie [4].

Électrodynamique quantique dans la lumière extrêmement intense de miroirs plasma relativistes

Les miroirs plasma relativistes apparaissent comme un moyen très prometteur d'atteindre les champs les plus élevés possibles avec les lasers actuels [6][7][8][9][START_REF] Der Brügge | Enhanced relativistic harmonics by electron nanobunching[END_REF][START_REF] Gonoskov | Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[END_REF]. Lorsqu'une impulsion intense atteint une interface solide nette, elle la transforme en un plasma dense qui oscille à des vitesses proches de celle de la lumière, réfléchissant ainsi l'impulsion tout en la comprimant par e et Doppler. En jouant correctement de cette interaction, notamment à très haute intensité, l'impulsion réfléchie peut également être naturellement focalisée à des tailles focales uniquement limitées par sa longueur d'onde désormais réduite, concentrant la lumière dans des volumes beaucoup plus restreints que ceux permis par la longueur d'onde laser initiale, ce qui se traduit par des augmentations d'intensité focale de deux à cinq ordres de grandeur [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF][START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF]. Les champs correspondants s'approcheraient de la valeur critique à laquelle un champ se décompose spontanément en paires électron-positron, connue sous le nom de champ de Schwinger, ce qui pourrait permettre d'étudier des e ets critiques de la l'EDQ-cf tels que l'auto-interaction de la lumière, et faciliterait sans aucun doute l'entrée dans le régime quantique profond de l'EDQ-cf. Le coeur de mon travail a consisté à spécifier les principaux phénomènes physiques attendus au point d'interaction de telles sources miroirs plasma relativistes (MPR).

Présentation du plan

La partie I présente l'état de l'art de la physique en champs forts auquel contribue la thèse. Le contexte évoqué ci-dessus est ainsi exposé au chapitre 1, avec une discussion des motivations pour atteindre le régime de l'EDQ-cf. Dans cette thèse, je présente les prédictions dérivées d'une étude approfondie de di érents scénarios d'interaction. Les outils théoriques et numériques mobilisés à cette fin sont introduits au chapitre 2.

La partie II aborde les études théoriques et numériques préalables à la caractérisation des processus d'interaction de champs MPR avec le vide fermionique. Le chapitre 3 présente une validation numérique complète de notre implémentation de l'algorithme d'«Émission du Vide Stimulée » [303]. De surcroît, des options numériques apparemment équivalentes ont été testées, démontrant une sensibilité non-négligeable des résultats à ces choix dans certains cas. Le chapitre 4 fournit une démonstration explicite de l'expression analytique du nombre de photons di usés dans la lumière MPR en fonction du spectre harmonique (Eq. 8.2), en s'appuyant sur le cas résoluble d'une impulsion gaussienne. Le chapitre 5 traite de la relation entre notre calcul basé sur l'amplitude de probabilité de di usion des photons dans le vide et la résolution d'équations du champ classiques e ectives. Nous distinguons di érents types de développement en série dans les théories quantiques e ectives de l'électromagnétisme, en précisant le rôle des solu-tions nonperturbatives des équations perturbatives du mouvement. Le chapitre 6 fournit des estimations du coût en ressources de calcul des simulations d'émission stimulée du vide. Le chapitre 7 montre les spectres temporels du champ issus de simulation PIC utilisés pour modéliser la lumière MPR dans notre travail.

La partie III est consacrée aux résultats de nos travaux sur la physique de la lumière extrêmement intense issue de miroirs plasma relativistes, soit dans le vide, soit en présence de matière. Le chapitre 8 détaille les e ets des couplages du champ électromagnétique avec le champ électron-positron en l'absence de particules. Plus précisément, nous calculons les spectres des photons di usés dans le champ électromagnétique lui-même dans di érentes configurations, et spécifions un seuil de puissance pour l'occurrence de la création de paires de Schwinger dans de tels champs. Le chapitre 9 montre le résultat de l'interaction de la lumière du miroir plasma relativiste avec des particules de matière, initialement présentes soit sous la forme d'une cible initialement solide, soit sous la forme d'un faisceau d'électrons à haute énergie. Les propriétés distinctes des configurations macroscopiques résultantes sont examinées, ainsi que les processus élémentaires individuels impliqués. En particulier, les cibles solides pourraient permettre la formation de jets de plasma électron-positron quantique relativiste et extrêmement dense, tandis que les collisions de faisceaux de particules à haute énergie avec les impulsions lumineuses pourraient permettre de tester la conjecture de Ritus-Narozhny, relative au comportement de l'électrodynamique quantique à champ fort dans un régime où la validité théoriques des notions usuelles de particules, photons, électrons et positrons, s'e ondre.

La partie finale IV propose une synthèse du cadre de la théorie quantique des champs, avec un soin particulier porté à la pertinence en vue de l'électrodynamique en champs forts, et à ses réductions (semi-)classiques. Le chapitre A o re un résumé de la correspondance classique-quantique canonique. Le chapitre B introduit des éléments de théorie quantique des champs, notamment hors d'équilibre, à un niveau heuristique.

Résumé détaillé par chapitre

Partie I -État de l'art et objectifs Chapitre 1 -La physique des lasers ultra-intenses aujourd'hui ⌅ La notion d'intensité lumineuse I, exprimée en W.cm ¯2, désigne la quantité d'énergie transmise par le champ électromagnétique par unité de temps à travers une unité de surfac donnée. Par conséquent, elle quantifie directement les changments que peut apporter une configuration électromagnétique donnée à d'autres systèmes, et à quel rythme, définissant donc largement les processus physiques qui auront lieu. Les lasers ultra-intense atteignent couramment 10 18 W.cm ≠2 , à laquelle un atome de carbone est entièrement ionisé par simple suppression de la barrière de potentiel [16], et un électron initialement au repos devient relativiste en 4 ◊ 10 ≠16 s environ, soit une fraction de la période optique du laser. À l'intensité la plus élevée actuellement atteinte, de I = 1 ◊ 10 23 W.cm ≠2 [17], ce temps diminuerait à environ 3 ◊ 10 ≠18 s et même les protons approcheraient la vitesse de la lumière en un cycle optique. La physique des lasers et de la matière à ultra-haute intensité consiste donc en l'interaction de champs électromagnétiques avec des particules chargées ou des états plasma, généralement d'énergies cinétiques relativistes. ⌅ En pratique, les lasers conçus pour atteindre les intensités les plus élevées émettent généralement une lumière visible ou en proche infrarouge d'une longueur d'onde centrée autour de ⁄ = 800 nm, ce qui correspond à une période laser "t ƒ 2.67 ◊ 10 ≠15 s © 2.67 fs ("femtosecondes") et une durée totale d'environ dix cycles • ƒ 25 fs, définissant la classe des "laser ultracourts". Le milieu lasant le plus couramment utilisé est constitué de cristaux de saphir dopés aux ions de titane (Ti:Sa) [16]. Les dernières installations construites délivrent généralement des impulsions d'énergie totale de 20 J à 100 J pour des intensités focalisées d'environ 10 22≠23 W.cm ≠2 , le record actuel étant de 1 ◊ 10 23 W.cm ≠2 [17]. La plupart des installations en projet envisagent des énergies supérieures à 100 J, mais ne dépasseraient pas 10 24 W.cm ≠2 , bien qu'une exception notable a che l'ambition d'une énergie de 1, 5 kJ en 15 fs (SEL), ce qui se traduirait par des intensités d'environ 2 ◊ 10 24 W.cm ≠2 . ⌅ Dans un champ électromagnétique de fréquence donnée, un électron gagne une impulsion générique de l'ordre de p ≥ mc›, avec m la masse de l'électron, c la vitesse de la lumière et [4]: [START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF]. Les champs correspondants I ≥ 10 25≠29 W.cm ≠2 s'approcheraient de la valeur critique dans le cadre du laboratoire, ce qui pourrait permettre d'étudier des e ets critiques de la sf-QED tels que l'auto-interaction de la lumière, et faciliterait clairemetn l'entrée dans le régime à dominante quantique de l'EDQ-cf.

› ƒ 0.

Chapitre 2 -Méthodes théoriques et numériques

⌅ Le cadre théorique le plus complet qui sous-tend actuellement la recherche sur l'électrodynamique quantique en champ fort est une extension de la théorie cinétique classique. Il a été construit par une approche heuristique, en ajoutant des corrections quantiques aux équations cinétiques. Dans ce contexte, les particules sont décrites par des fonctions de distribution à un corps régies par les équations de Boltzmann, et le champ électromagnétique est classique. Tous les phénomènes quantiques sont encapsulés dans i) un opérateur de collision pour les fonctions de distribution à un corps et ii) des termes supplémentaires dans les équations de Maxwell. Les sections e caces entrant dans les termes de collision sont alors calculées dans une extension de la théorie de la di usion en Électrodynamique quantique, qui tient compte de la présence d'un champ électromagnétique, appelée la représentation de Furry de l'EDQ-cf [302,308]. Les nouveaux processus les plus significatifs sont la di usion Compton (non linéaire) d'un électron ou d'un positron émettant un photon, et la création de paires électron-positron de Breit-Wheeler (non linéaire) à partir d'un photon dans le champ fort. Les équations fondamentales du modèle cinétique Boltzmann-EDQ peuvent donc finalement être écrites comme suit [315],

ˆfe û ˆt + p m e " • ˆfe û ˆq û e [E + q ◊ B] • ˆfe û ˆp = C CS [f e û ] + C BW [f " ] ˆf" ˆt + c • ˆf" ˆq = C CS [f e ≠ ] + C CS [f e + ] ≠ C BW [f " ]
avec un système de Maxwell inchangée Eqs. 2.12-2.17, et éventuellement des espèces de particules supplémentaires telles que les ions. ⌅ Le modèle Boltzmann-QED de l'EQD à champ fort a été présenté comme une extension naturelle de la théorie cinétique classique relativiste, fournissant une base théorique pour une conception intuitive de la dynamique générale champ-particules dans l'EQD à champ fort. [327,[347][348][349][350]. Étant donné que les champs macroscopiques les plus puissants pouvant être obtenus à ce jour, fournis par des lasers femtosecondes de plusieurs pétawatts focalisés près de la limite de di raction, atteignent E las ≥ 10 ≠3 ◊ E S , l'observation directe de processus du vide entièrement nonperturbatifs tels que la création de paires semble exclue dans un avenir prévisible, tandis que les e orts de recherche consacrés à la di usion de la lumière par la lumière ont mis en évidence à la fois la nature encore élusive de ce processus, et la possibilité d'obtenir un signal perceptible dans plusieurs configurations optimisées [176-180, 182-196, 351] (voir aussi [352] et les références qui y figurent). Ces configurations de champ impliquent généralement la collision de plusieurs impulsions optiques intenses ou, dans certains cas, le couplage à un faisceau de photons de haute énergie, ce qui o re aux installations existantes et futures des programmes expérimentaux ambitieux. ⌅ Nous avons montré qu'une focalisation optimale du faisceau produit lors de la réflexion d'un seul laser de classe Petawatt sur un miroir plasma relativiste permet de générer autant de photons dans le vide que deux impulsions infrarouges Petawatt parfaitement contra-propagatives et focalisées à leur limite de di raction, et de réduire de manière significative les puissances laser nécessaires pour observer la création de paires de Schwinger (P ≥ 200 PW au lieu des plus de 1 EW requis dans l'infrarouge). La pertinence physique de ce résultat dépend néanmoins de façon cruciale du degré de contrôle des interactions laser-plasma réalisable dans une expérience, et du bruit photonique associé. ⌅ Le couplage à un faisceau auxiliaire bien contrôlé allège considérablement ces contraintes, car il ne nécessite que de faibles émissions de fond dans la direction du faisceau de la «sonde», qui pourraient être réglées à proximité de la contre-propagation avec le faisceau harmonique. En outre, en raison des niveaux élevés de photons de sonde di usés de manière inélastique dans ce cas, l'évaluation de l'origine quantique du signal pourrait alors être e ectuée sur une base spectrale, donc avec une confiance potentiellement beaucoup plus élevée que sur la seule base d'un critère de discernabilité angulaire.

Comme les gains d'énergie associés sont de l'ordre de +Ê 0 , l'utilisation d'une sonde de fréquence Ê p " = Ê 0 peut permettre d'obtenir des signatures de vide quantique encore plus claires dans la gamme de fréquences Ê p + Ê 0 . En e et, à condition que la probabilité de présence de particules chargées résiduelles dans la région de chevauchement des faisceaux soit su samment faible, ces fréquences ne pourraient pas être générées par l'interaction laser-matière. ⌅ Si toutefois la dynamique des électrons du miroir plasma entraîne une création prolifique de paires avant même que le processus de Schwinger ne se produise, la détection des e ets de vide quantique à partir des faisceaux générés par les particules nécessiterait probablement des installations plus complexes. Typiquement, ils impliqueraient le désenchevêtrement des étapes de génération et de focalisation du faisceau MPR, de manière à refocaliser le faisceau MPR à l'aide d'une optique visible-UV à large bande, soit dans une partie blindée de la chambre PM, soit peut-être même dans une autre chambre [365]. À ce moment il deviendrait cepednant d'autant plus facile d'étudier l'interaction du faisceau MPR avec la matière directement (comme e.g. dans [300]), ouvrant alors la voie à des régimes non encore observés de la dynamique des plasmas dans les champs forts. Cette perspective est au coeur du chapitre 9.

Chapitre 9 -De la lumière des miroirs plasma relativistes aux processus extrêmes dans la matière ⌅ Lorsque des particules de matière chargées sont présentes dans le champ fort, les processus sf-QED se déploient à une échelle beaucoup plus vaste que dans le vide fermionique. Deux facteurs simples concourent directement à ce fait. A l'échelle des processus élémentaires tout d'abord, le paramètre pertinent quantifiant l'interaction d'une particule avec un champ électromagnétique cohérent est proportionnel à la fois à son impulsion et au champ, or l'impulsion est proportionnellle au champ. Par conséquent, de très hauts paramètres microscopique d'interaction peuvent apparaître sous l'e et d'une dynamique classique d'accélération dans le champ. Deuxièmement, à l'échelle macroscopique où de nombreux processus sf-QED non corrélés peuvent se produire, il existe une chaîne d'événements conduisant à la croissance exponentielle du nombre de fermions, amplifiant les e ets quantiques dans la dynamique globale. Il apparaît qu'en présence de matière, un champ cohérent su samment puissant sur des étendues spatio-temporelles su samment grandes se décomposera spontanément et massivement en un système de nombreux photons, électrons et positrons, à travers des séquences connues sous le nom de cascades QED. Nous présentons comment ce scénario général se déroule dans le cas de sources MPR, afin de prédire les propriétés générales des systèmes résultants, d'identifier les signatures observables des régimes décrits et de fournir des orientations pour les applications ultérieures. ⌅ On peut envisager trois origines di érentes pour les particules de matière initiales. En continuité directe avec le chapitre précédent sur les interactions dans le vide, la production de paires peut se faire directement à partir du champ cohérent dans le vide fermionique (processus de Schwinger).

Comme les puissances laser requises pour déclencher un tel phénomène restent actuellement hors de portée, les sources exogènes de matière restent d'un intérêt primordial. Dans l'optique de maximiser l'interaction champmatière tout en conservant la simplicité expérimentale, la focalisation sur une cible solide est présentée en premier lieu. Grâce au grand nombre de particules d'amorçage, cette configuration permet des densités électron-positron extrêmement élevées (> 10 28 cm ≠3 ), pouvant aller jusqu'à la formation d'un plasma relativiste quantique sous la forme de jets e + e ≠ quasi-neutres accélérés à des énergie de plusieurs GeV. ⌅ Nous nous intéressons ensuite à la collision du faisceau MPR avec des électrons de haute énergie (10 GeV), produisant des processus microscopiques remarquables grâce à des paramètres ‰ très élevés (> 1000). Dans des conditions de collision appropriées, on constate que les paramètres d'interaction quantique atteignables dépassent le seuil du régime de Ritus-Narozhny, ce qui présente un intérêt théorique de premier ordre. En e et, le cadre habituel de l'EDQ-cf, reposant sur un développement en série des interactions photons hors champ cohérent avec les électrons-positrons «habillés »par le champ, pourrait alors cesser d'être valide, ouvrant une possible fenêtre empirique vers un approfondissement de notre compréhension de l'électrodynamique.

Conclusions

Les miroirs plasma relativistes pourraient o rir la possibilité d'accéder dans un avenir proche au régime à dominante quantique de l'électrodynamique quantique en champ fort, via des champs d'intensités comprises entre 10 25 W.cm ≠2 et 10 29 W.cm ≠2 . Dans cette thèse, nous avons prédit les e ets produits par cette lumière dans di érentes configurations, soit dans le vide, soit en présence de matière pré-existante.

Les processus quantiques du vide ont été étudiés dans le chapitre 8. En adoptant le formalisme de l'émission stimulée du vide [303], nous avons pu calculer le nombre de photons di usés dans le faisceau MPR, pour deux spectres de faisceau di érents, correspondant à di érentes conditions de génération sur le miroir plasma. Nous avons montré que la focalisation d'un seul faisceau MPR dans le vide pouvait produire autant de photons di usés que la collision frontale de deux impulsions infrarouges de 1 PW focalisées à la limite de di raction, ce qui peut simplifier ce dernier dispositif expérimental. Nous avons également calculé le nombre de photons di usés dans un faisceau sonde lors de la collision avec une impulsions MPR, ce qui a révélé en particulier que certains photons pouvaient être di usés avec des énergies absentes des spectres des faisceaux initiaux en collision, ce qui pourrait améliorer de manière significative le rapport signal-bruit, essentiel dans ces expériences. Enfin, un seuil de création de paires de Schwinger a été trouvé, indiquant une puissance laser requise d'environ 200 PW, ce qui est élevé bien que très inférieur aux puissances exawatt typiquement requises dans les configurations infrarouges équivalentes.

Tous ces résultats ont été obtenus grâce à une implémentation numérique du formalisme de l'émission stimulée dans le vide, adaptée à la grande taille des simulations de champ MPR, et donc parallélisée. Cet algorithme a été largement validé sur des configurations de référence connues, et par rapport à di érents modes d'implémentation numérique, comme détaillé dans le chapitre 3. Dans le cas plus complexe des impulsions MPR, il a été possible d'obtenir des estimations analytiques, dont la dérivation détaillée a été présentée au chapitre 4. Nous avons également travaillé à clarifier la théorie en reliant notre approche à la résolution des équations du champ e ectif, également étudiée dans la littérature, comme le résume le chapitre 5.

Les interactions de la lumière MPR avec la matière préexistante ont été présentées dans le chapitre 9. Dans le cas de l'interaction avec une cible solide, nous avons pu mettre en évidence que même à des intensités (comparativement) faibles de 10 25 W.cm ≠2 , les faisceaux de MPR améliorent les signatures sf-QED de plusieurs ordres de grandeur par rapport à l'irradiation directe de la cible avec une impulsion infrarouge d'énergie équivalente. Nous avons également pu étudier la dynamique à une intensité plus élevée et constater que des amas d'électrons et de positons de très haute densité se forment alors et sont accélérés jusqu'à des énergies de l'ordre du GeV. Dans le cas d'une collision de lumière MPR avec un faisceau d'électrons de haute énergie, nous avons pu calculer les paramètres ‰ obtenus, et établir leur pertinence pour la physique autour du régime de Ritus-Narozhny de l'EDQ-cf, ainsi que les signatures de ces interactions sous la forme de spectres de particules émises.
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 11 Figure 1.1: Operational and forecast laser facilities worldwide (from [4]). The intensity projections are calculated from energy and duration assuming ⁄ = 1 µm and a 2⁄ sized focal spot. The splitting and recombination method for intensity increase shown in the inset is detailed in [20]. Coloured areas correspond to distinct physical regimes; atomic field (I = 3.5 ◊ 10 16 W.cm ≠2 ) corresponds to a one atomic unit field strength; relativistic electron (I = 1.37◊10 18 W.cm ≠2 ) to › = 1 (cf. Sec. 1.1.2); radiation-dominated dynamics (I = 8 ◊ 10 22 W.cm ≠2 ) and avalanche-type cascades (I = 3.5 ◊ 10 23 W.cm ≠2 ) give indications as to when quantum e ects of high-energy photons emission and decay into electron-positron pairs become significant in the dynamics; the Schwinger field is reached at I = 4.65 ◊ 10 29 W.cm ≠2 for a plane wave (cf. Sec. 1.2.1).

  translates in a plane-wave intensity, Schwinger intensity I S = cÁ 0 E 2 S =ƒ 4.62 ◊ 10 29 W.cm ≠2 (1.20) Part I, Chapter 1 -Plasma mirrors as a path towards strong electromagnetic fields

Figure 1 . 2 :

 12 Figure 1.2: Illustrated summary of the relativistic plasma mirror high-order harmonics generation mechanism. (a) Illustration of the interaction geometry: the incident infrared beam is reflected in the specular direction, enriched with a high-order harmonics spectral content (b,c) Temporal and spectral profiles of the pulse respectively before and after reflection on the RPM, extracted from a PIC simulation. The timecompression and its counterpart of slowly decreasing harmonic spectrum are clearly visible. (d) Instantaneous spatial slices of the electron density in the incidence plane on a full RPM oscillation cycle. An electron layer is pressed by the driving laser (red arrows)below its initial plane on half a cycle, then accelerated to relativistic energies outwards the mirror before being quickly stopped, thereby radiating (violet arrows), and then push back inside the mirror. Note the timestamps are non-uniform; in particular, the strongly emitting phase (full violet) is concentrated around t ≥ 0.53T L , and lasts for less than a tenth of the original laser period T L (adapted from[START_REF] Quéré | Reflecting petawatt lasers o relativistic plasma mirrors: a realistic path to the schwinger limit[END_REF])
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 14 Figure 1.4: Parameter diagrams displaying the e ect of Focusing Relativistic Plasma Mirror harmonics conversion of Petawatt-class optical lasers. (a) RPM shift in wavelength and normalized potential. The accessed regime is characterized by ‰ > 1, fast radiation of whole electron energy (L d < ⁄), and may cross the Schwinger pair creation threshold. (adapted from [4]) (b) RPM shift in wavelength, peak power, and normalized potential assuming 2⁄ focal size; in the context of interaction with a target at rest. The quantum regime is accessed, and possibly the quantum dominated regime (here referred to as "radiation dominated"). (c) Same as (b); in the context of collision with high-energy electron beams. Collision with a 50 GeV beam would allow enter the fully non-perturabative regime of sf-QED (dashed blue lines). (adapted from [114])

Figure 2 . 1 :

 21 Figure 2.1: Representation of physical variables and their interactions in a PIC-QED simulation (from [301]). Circles represent the di erent mathematical-numerical objects to be computed, arrows show interactions entering in the system evolution. Matter particles and photons move according to their speed, and fields from Maxwell's equations. For charged matter, fields modify speeds through the Lorentz force, and particles generate sources for the fields. Quantum processes relate particles and photon directly, via local field values. Dashed arrows stand for discarded quantum processes due to negligible crosssections (kinematic suppression).
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 22 Figure 2.2: Representation of numerical constituents and schematic workflow of a PIC algorithm (from [323]). (left) Fields are computed on a set of points in space forming the nodes of a grid with finite resolution, while distribution functions are represented by macro-particles freely moving in space (blue/red dots). Interpolation between grid and macro-particles positions is performed thanks to a particle shape factor (shown in fading color scale). (right) Evolution is computed via an iterative loop, each represented step being performed in a sequence.

  ˆLHEint ˆE and M = ˆLHE int ˆB the induced vacuum polarisation and magnetisation.
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 31 Figure 3.1: Integrated photon numbers as a function of w 0 for two counterpropagating Gaussian pulses. (up) Total number of photons N t and photons with crossed-polarization N ‹ , for the di erent computation modes. (bottom) Total numbers of discernible photons, emitted outside of the ◊ = arcsin(Á) (>1e) or ◊ = arcsin(2Á) (>2e) cones directed along both pulses propagation directions.

  Figure 3.2: Integrated photon numbers as a function of w 0 for a single Gaussian pulse. (up) Total number of photons N t and with crossed-polarization N ‹ , for the di erent computation modes. (bottom) Total numbers of discernible photons, emitted outside of the ◊ = arcsin(Á) (>1e) or ◊ = arcsin(2Á) (>2e) cones directed along the pulse propagation direction.
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 33 Figure 3.3: Integrated photon numbers as a function of ◊ c for a beam focused at di raction limit in a plane wave. (up) Total number of photons N t or with crossed-polarization N ‹ , for the di erent computation modes. Total numbers of discernible photons, emitted outside of the ◊ = arcsin(Á) (middle) or ◊ = arcsin(2Á) (bottom) cones directed along the beam propagation direction.
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 34 Figure 3.4: Integrated photon numbers as a function of w 0 for a beam made of either two or three harmonics of its fundamental frequency, with equal amplitudes at focus. (up) Total number of photons N t or with crossed-polarization N ‹ , for the di erent computation modes. Total numbers of discernible photons, emitted outside of the ◊ = arcsin(Á) (middle) or ◊ = arcsin(2Á) (bottom) cones directed along the beam propagation direction.
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 51 Figure 5.1: Diagrammatic representation of the generic contributions to the multiplicity m component of the total field. Lines are free Green's functions (propagators), vertices are represented by circles with two integers (l i , p i ) specifying their type, and the leafs are free field insertions (the dotted line stands for the omitted part of the diagram). Integration over vertices positions is implied. The sum is over all possible tree diagrams with m vertices.

  5.51, or diagrammatically drawing an integral form of the equation as illustrated e.g. in Fig. B.6-a.
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 71 Figure 7.1: Time spectrum of the main component of the electric field on-axis extracted from Particle-In-Cell plasma mirror simulations (logscale). Original spectrum of the sub-optimal RPM beam recorded in the plasma mirror plane (top), and the resulting spectrum at focus (bottom) assuming perfect focusing. The 10 ≠1 level is shown (orange line) so as to provide a proxy for the cuto harmonic order.
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 72 Figure 7.2: Time spectrum of the main component of the electric field on-axis extracted from Particle-In-Cell plasma mirror simulations (logscale). Original spectrum of the optimal RPM beam recorded in the plasma mirror plane (top), and the resulting spectrum at focus (bottom) assuming perfect focusing. The 10 ≠1 level is shown (orange line) so as to provide a proxy for the cuto harmonic order.
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 81 Figure 8.1: Schematic representation of a RPM configuration. The driving intense infrared laser impinges on the PM surface with waist w p and is reflected as a focused harmonics beam with curvature radius R p and waist at focus w 0 . The signal photons are scattered around the direction of propagation of the harmonics beam.
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 82 Figure 8.2: Integrated photon numbers as a function of n h for a model beam made of n h harmonics of its fundamental frequency, with quasi-equal di raction parameter Á, focal point and amplitude at focus, or PM-generated beams of e ective number of harmonics n h . The case of two counterpropagating fundamental frequency pulses (crosses) is shown at n h = 1 for comparison. (top) Total number of photons N t or with crossed-polarization N ‹ . (bottom) Total numbers of discernible photons, emitted outside of the ◊ = arcsin(2Á) cone directed along the beam propagation direction. All beams are at di raction limit (Á = 1/fi).
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 83 Figure 8.3: Integrated signal photon numbers as a function of w 0 /⁄, the waist to wavelength ratio common to all frequencies. Here we present results for a relativistic PM-generated coherent harmonic beam (HB), a single fundamental frequency pulse (Single IR) and two counter-propagating fundamental frequency pulses (Two ctr. IR), focused in a vacuum. (top) Total number of photons N t or with crossed-polarization N ‹ . (bottom) Total numbers of discernible photons, emitted outside of the ◊ = arcsin(2Á) cone directed along the beam propagation direction (both directions for (Two ctr. IR)).
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 84 Figure 8.4: Number of Schwinger electron-positron pairs created neglecting particles-field retroaction. (top) Number of Schwinger pairs created as a function of peak intensity for the field configurations of two fundamental frequency pulses in headon collision (Two ctr. IR), a single one (Single IR) and an optimal PM-generated harmonic beam (Optimal HB); all beams are focused at di raction limit. The black lines show the thresholds of one created pair (solid) and pairs number corresponding to total field conversion to pairs mass energy (dashed). (bottom) Number of Schwinger pairs created as a function of driving beam power. In the harmonic beam scenario, power values stand for the laser incident on plasma mirror surface, accounting for reflection coe cients R pm set to the realistic value of 70 % [281].
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 85 Figure 8.5: Schematic representation of a secondary beam assisted RPM configuration. A focused harmonics beam with curvature radius R p and waist at focus w 0 is generated as in the basic RPM case, but is now made to collide with a well-controlled second pulse. Part of the signal photons are then scattered around the "probe" beam direction, which improves separation from the background photons.
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 86 Figure 8.6: Number of photons from a loosely focused beam scattered o a counter-propagating beam made of n h harmonics of its fundamental frequency, or PM-generated beams with e ective number of harmonics n h , focused at di raction limit. Except from (2 ctr. Gaus.), all shown number correspond to photons scattered in the half-space towards which the probe beam is directed, as denoted by a superscript p. The model beams are constructed as in sec. III. The PM-generated harmonic beams are linearly polarized at an angle  t = fi/2 compared to the probe beam main polarization direction.

Figure 9 . 1 :

 91 Figure 9.1: Leading processes in a "QED cascade". a) Field-dressed fermion propagators are represented by a double line, photon propagators by a wavy line, and interaction vertices by a dot (cf. sec. B.2.5). b) Photon emission by an electron or positron (Compton scattering); c) photon decay into an electron-positron pair (Breit-Wheeler).
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 92 Figure 9.2: Field and electrons distributions at mid-interaction between an incident beam and a solid plastics target. (adapted from [300]) Black lines are electron isodensity curves n e = 100n c , the magnetic field component in the normal direction is shown in blue and red, the black arrow indicates the incidence direction.
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 93 Figure 9.3: Magnetic field and electrons distributions in the plasma channel; with trajectory of a pair creating electron. (adapted from [300], WarpX simulations sec. 2.2.2) It appears that the axial plasma currents (a) generate a cylindrical magnetic fields in the channel (b), of the order of 1 MT for an RPM field of about 5 MT. a) A target electron is driven towards an attosecond pulse and emits a photon (CS); b) the emitted photon decays into an e + e ≠ pair (BW) in the next pulse, which is accelerated by the local field front; c) maximum electron ‰ parameter; d) final positron number.
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 9495 Figure 9.4: Magnetic field and electrons distributions in the plasma channel for a 10 29 W.cm ≠2 beam. The focal spot is w 0h ≥ 40 nm for a spectrum corresponding to the "optimal" beam (Chapter 7), plasma electron density is n 0e = 200n c . a) If the RPM-beam focus is set on the target surface, the ponderomotive force is e cient enough to strongly deplete the focal region as the main pulse focuses; b) this e ect can be compensated by setting the RPM-beam focus inside the target, here at 2 µm.
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 9697 Figure 9.6: Time evolution of the maximum positron density for a solid target. Peak intensity here is 5.5 ◊ 10 28 W.cm ≠2 , electron target density is n e0 = 200n c .
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 98 Figure 9.8: Maximum positron density and plasma criterion for varying intensities. The target electron density is n e0 = 200n c . The Breit-Wheeler electron densities are within the same order of magnitude, but satisfy the plasma criterion sooner due to lower energies (Fig. 9.9).
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 99 Figure 9.9: Emitted electron, positron and photon spectra after RPM-light solid interactions. a) BW electrons; b) BW positrons; c) CS photons; d) Integrated spectra. The target electron density is n e0 = 200n c .
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 910 Figure 9.10: Proportion of e ≠ e + pairs originating from a simple e CS ae " BW ae ee or a degree at least 4 e CS ae . . . Ø4 times BW ae ee sequence in the final state. The degree 1 pairs fraction is nearly 100% at medium intensity, but quickly drops for I 0h & 10 28 W.cm ≠2 when QED cascades start to develop, and higher degrees dominate. The solid target has n e0 = 200n c density, and the electron beam collision angle is 45 ¶ angle.
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 911 Figure 9.11: Maximum ‰ parameter attained by electrons and positrons in the RPM field. Empty triangles) correspond to 10 GeV electrons incoming on the RPM beam at a 45 ¶ angle; Full triangles) correspond to the RPM beam interaction with a n e0 = 200n c target, with focal point located 2 µm inside the target. The trend is steeper in RPM-light solid interactions as particles momenta also depend on field.
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 912 Figure 9.12: Spatial electrons and transverse magnetic field distributions after interaction. Each frame correspond to a given intensity, from left to right and top to bottom: I 0h [W.cm ≠2 ] oe {1.3 ◊ 10 26 ; 2.8 ◊ 10 26 ; 5.9 ◊ 10 26 ; 1.3 ◊ 10 27 ; 2.7 ◊ 10 26 ; 5.7 ◊ 10 27 ; 1.2 ◊ 10 28 ; 2.6 ◊ 10 28 ; 5.5 ◊ 10 28 ; 1.2 ◊ 10 29 }.
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 913 Figure 9.13: Emitted electron, positron and photon spectra after RPM-light electron beam interactions. a) Beam electrons; b) BW positrons; c) CS photons; d) Integrated spectra. The beam energy is 10 GeV, incoming at a 45 ¶ angle.
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 914 Figure 9.14: Momentum positron distribution in RPM-light and matter seed interaction, with and without thinning algorithm. (left) Momentum distribution without thinning; (right) Momentum distribution with thinning.

  Denoting the corresponding operator by U ( , l), this double transformation law writes a , Lorentz-scalar (quantum field) U ( , l)"(x)U † ( , l) = "( x + l) (B.39) a Under a symmetry, if pure states transform as |ÂÍ ae U |ÂÍ invariance of all expectation values translates into the operator transformation law O ae U OU † .

  n AE (2A + 1)(2B + 1), A, B the defining numbers of the finite dimensional representation, u AB n , v AB n coe cient functions, k 2 = m 2 and ≠j AE ‡ AE j denotes the spin degree of freedom of the induced unitary representation. Together with the locality condition, Locality: [" n (x), " m (y)] û x•y<0 = 0 (B.45) with [a, b] û = ab û ba the field (anti-)commutator to be precised shortly, the coe cients can be determined for any mass m and spin |A ≠ B| AE j AE |A + B|. A linear relativistic field equation satisfied by the covariant field " n appears as a consequence 23 . Besides the non-trivial correspondence is implied, Spin-statistics:

  t. [fl eq , H] = 0, or ˆfleq ˆt = 0. Clearly all fl © f (H) are (e.g. thermal states fl T à e ≠H/k B T ), as well as H eigenvector pure states (e.g. vacuum or in the absence of interactions multi-particle states fl k1...kn à a † k1 . . . a † kn |0ÍÈ0|a k1 . . . a kn ).

  time contour arguments, and the sum is over both the number of contractions and possible field pairings 33 . If the ± components split of free fields can be operated in such a way that normal ordered products have zero expectation value 34 , then free field products expectation values take the particularly simple form,
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 1 Figure B.1: Diagrammatic representation of Eq. B.73. The full 2-point function is represented by a circled line and expanded to order g 2 in the interaction formalism. Plain lines between x and y represent the free 2-points function D 0 xy , dots signal interaction vertices and their position is integrated over.
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 2 Figure B.2: Diagrammatic representations of the Schwinger-Dyson equations for the " 3 Lagrangian. The full n-points functions are represented by disks with n outgoing lines, and dots signal interaction vertices, which contribute a factor ig and whose position is integrated over 46 . a) Representation of the general relation Eq. B.73; b) Representation of the exact propagator equation.

  x 1 ...x j≠1 x j+1 ...xn (B.95) where integration over spacetime indices appearing in at least two di erent operators is implied. The corresponding diagram is drawn in Fig. B.2. As becomes particularly clear comparing the exact 2-points functions equation Fig. B.2-b and the perturbative expansion Fig. B.1, the Schwinger-Dyson equations simply capture the structure of the interactions in the theory, hence of the perturbative expansion.
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 2 For instance, in the 3-points diagram appearing on the RHS of Fig.B.2-b, one knows either from algebra or direct diagrammatic reasoning that at least three qualitatively di erent kinds of terms can arise 49 . As vacuum diagrams cancel, external lines have to reach x and x 1 , but in-between they can either be i) disconnected (cf. fifth term in B.1) ii) connected, with punctual insertion between external lines (fourth term)
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 3 Figure B.3: Schwinger-Dyson equation for the connected 2-points function. The connected n-points functions are represented by hatched disks with n outgoing lines 51 .
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 4 Figure B.4: Exact propagator decomposition. Self-energy is represented by a hatched square, and the field-dressed propagator by a double line.

Furthermore

  thinking of all possible constituting diagrams it is clear that © [f, G]. However let us consider the f dependence more closely. Because is connected a 1-point diagram has to be attached to a vertex. In our 3-points interaction theory we can then list all possibilities. If the two remaining end lines are closed together, it is a vacuum diagram and hence cancels. If they are attached to di erent points, then our 1-point diagram actually is connected to a 2-points diagram. If one end line is itself a 1-point function, then only one line remains which itself defines a 1-point diagram and we resume to the beginning of our reasoning. Therefore in the proper vertex all 1-point diagrams are actually attached to a 2-points diagram, so that [f, G] © [G] © [D f , ].

"

  dzA(x, z). They form a system of coupled non-linear integro-di erential equations which is not closed. The missing information is encapsulated in the unknown functional . Of course, the proper vertex obeys its own equation of motion, which could similarly be derived from the 3-points Schwinger-Dyson equation (Eq. B.94). Then again an unknown proper 4-points function would appear, leading further still in the infinite correlation functions hierarchy. What has been achieved writing Eqs. B.106-B.108 though is a much clearer physical and mathematical picture of each term compared to the initial Schwinger-Dyson formulation Eq. B.94. As a consequence, it is easier to e ciently truncate the hierarachy from this point, depending on the physical configuration defined in fl 0 .
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 5 Figure B.5: Schwinger-Dyson equations for the two first connected n≠points functions. The proper vertex is represented by a wide full circle. a) Field equation b) Propagator equation c) Field-dressed propagator equation d) First few terms of the proper vertex perturbative expansion, we notice their 1-PI property and expansion parameter g 2 D f . Note for the connections with the proper vertex that D 0 D 0 = D 0 .
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 6 Figure B.6: Schwinger-Dyson equations in a strong field approximation. The diagrams included in a solution G are easily drawn by recursively injecting Fig. B.6-b into its RHS, as shown with the few first terms in the last line.

  written in Lorenz gauge with gauge fixing parameter ›; where M ( ) is the fermion (photon) self-energy, and the trace acts on Dirac indices. Their diagrammatic representation is given in Fig. B.7.

  Figure B.7: Schwinger-Dyson equations for the one and two points functions of Quantum Electrodynamics. Wavy lines stand for connected free photon propagatorsD 0µ‹ xxÕ = ÈA 0µ x A 0‹ x Õ Í fl 0 ≠ A 0µ x A 0‹x Õ , and straight lines for connected electron-positron 2-points function 0 xxÕ = ÈÍ fl 0 Â

E

  86⁄ 0 [µm] Ò I 0 [10 18 W.cm ≠2 ] (B.125) où ⁄ 0 est la longueur d'onde du faisceau central et I 0 l'intensité maximale au foyer, › est appelé le paramètre de force de champ classique. Par conséquent, la dynamique doit e ectivement être décrite par la mécanique relativiste dès que I 0 Ø I rel = 2 ◊ 10 18 W.cm ≠2pour la longueur d'onde typique du laser ⁄ 0 = 800 nm. Lorsque les intensités relativistes sont atteintes, les interactions avec la matière, i.e. les particules et les plasmas, deviennent fortement non linéaires, laissant place à des phénomènes physiques tels que l'accélération de particules à haute énergie ou la génération d'harmoniques de champ. Il s'agit du domaine classique de la physique à haute intensité, particulièrement exploré au cours des deux dernières décennies. ⌅ Cet ensemble relativement bien défini de méthodes et de phénomènes physiques a permis de stabiliser la notion de «régime relativiste»des interactions lasermatière [1]. Cette situation est toutefois en train de changer avec la mise en service récente d'installations laser de plusieurs pétawatts (1 PW = 10 15 W), éventuellement couplées à des accélérateurs conventionnels [33, 42-44] (cf. également Fig. 1.1). Ces infrastructures ouvrent la perspective de détecter pour la première fois des signatures de phénomènes de «champ fort », tels que le recul des électrons par émission de rayonnement, la création de paires électron-positron ou des non-linéarités optiques dans le vide, définissant ainsi un nouveau régime physique d'électrodynamique quantique en champ fort [2]. Tous ces e ets sont contrôlés par une échelle de champ appelée champ de Schwinger, S ƒ 1.32 ◊ 10 18 V.m ≠1 B S = E S c ƒ 4.40 ◊ 10 9 T se traduisant par une intensité (pour une onde plane) de, Intensité de Schwinger I S = cÁ 0 E 2 S =ƒ 4.62 ◊ 10 29 W.cm ≠2Plus précisément, si l'on considère les processus impliquant une particule massive chargée, électron ou positron, le paramètre d'interaction pertinent est le champ dans le cadre du repos de la particule, c'est-à-dire[4], Si ‰ & 1, les e ets de champ fort deviennent importants. Lorsque les électrons/positrons sont accélérés directement par le champ laser (e.g. configurations laser-cible), on trouve la loi d'échelle[4],‰ ƒ 0.09⁄[µm]I 0 [10 23 W.cm ≠2 ] (B.127)Si, au contraire, leur énergie initiale est importante par rapport à celle fournie par le laser (e.g. configurations laser-accélérateur), on trouve[4],‰ ƒ 0.18E 0 [ GeV] Ò I 0 [10 21 W.cm ≠2 ] (B.128) Quoi qu'il en soit, nous comprenons pourquoi les e ets de champ fort ne commencent à se manifester qu'à l'intensité la plus élevée possible à ce jour, et seulement à peine encore. Les miroirs plasma relativistes pourraient permettre d'entrer beaucoup plus profondément dans le régime dominé par le champ fort. ⌅ Les oscillations collectives non linéaires des populations d'électrons aux interfaces entre le vide et un plasma de densité solide irradié par laser peuvent se rapprocher d'une réalisation de l'e et de miroir relativiste [233], notamment en termes d'e et d'amplification. Ces «miroirs plasma relativistes»(MPR) sont potentiellement les sources de champs libres les plus intenses à portée de la technologie actuelle. L'utilisation d'un laser de classe Petawatt comme faisceau pilote pourrait permettre simultanément de générer des harmoniques e cacement, c'est-à-dire la compression temporelle de chaque cycle optique incident en impulsions d'une durée de plusieurs dizaines d'attosecondes, et la focalisation à des tailles focales limitées en longueur d'onde, ce qui se traduirait par des gains d'intensité de deux à cinq ordres de grandeur

  

  

  

  The corresponding integral factorizes,

	besides,									
	Ĩ‹ =	⁄	dy.	y w 0	e ≠‰(x)/w 2 0 .y 2 ≠iky.y	⁄	dz.	z w 0	e ≠‰(x)/w 2 0 .z 2 ≠ikz.z	(4.19)

⁄ du. u.e ≠a.u 2

Table 8 .1: Number of probe beam photons scattered in the collision with a PM- generated harmonic beam, for di erent harmonics spectrum, probe beam and polarization directions.

 8 HB spectrum probe ^(e pr , e h ) The subscripts stand for numbers of probe photons emitted in the range Ê = Ê 0 /2 around the indicated frequency.

	sub-optimal	IR	Â t	N p t 29.6	N p ‹ 3.11◊10 ≠1	N p,> t 29.1	N p,> ‹ 3.10◊10 ≠2
		Gr	 ‹  t	19.6 1.43	1.38 7.72◊10 ≠3	19.3 1.40	1.35 7.72◊10 ≠3
	optimal	IR Gr	 ‹  t  ‹  t  ‹	9.58◊10 ≠1 7.49◊10 ≠2 199 4.58 132 10.5 24.7 4.16 16.9 2.25	9.37◊10 ≠1 142 | 9.49 2Ê 0 94.2 | 6.31 2Ê 0 24.5 |1.07 Êg+Ê 0 4.16 | 0.19 Êg+Ê 0 7.34◊10 ≠2 4.58 | 2.61 2Ê 0 7.86 | 2.37 2Ê 0 16.8 |0.70 Êg+Ê 0 2.22 |0.14 Êg+Ê 0

  bv} = b{au, v} + {au, b}v = ba{u, v} + b{a, v}u + a{u, b}v + {a, b}uv (A.29) by Leibniz rule on the right, then on the left. Proceeding in reverse order, {au, bv} = a{u, bv} + {a, bv}u = ab{u, v} + a{u, b}v + b{a, v}u + {a, b}vu (A.30) we find equating the two, {a, b}(uv ≠ vu) = (ab ≠ ba){u, v} , 'a, b, u, v oe A P (A.31) Now let us assume there exists at least one couple u, v such that {u, v} oe 1K, by rescaling this is equivalent to {u, v} = 1, then using this property in Eq. A.31, {a, b}[u, v] = [a, b] , 'a, b oe A P (A.32) introducing the commutator symbol [a, b] , ab ≠ ba. If another couple u Õ , v Õ exists with a unit Poisson bracket, then writing Eq. A.31 for

† Refs. A.3: [381] 

8 See e.g. Eq. A.11 or Eq. A.13; we notice in particular that canonical variables are observables themselves, and Hamilton's equations of motion Eqs. A.8 indeed write qi = {q i , H} ṗi = {p i , H} {au,

Introduction iii I State-of-the-art and aims 1 Plasma mirrors as a path towards strong electromagnetic fields

  1.1 Physics of ultra-high intensity lasers today . . . . . . . . . . . . . . . . 1.1.1 Decades of progress in attainable light intensity . . . . . . . . . 1.1.2 Ultra-high intensity physics in the classical regime . . . . . . . . 1.1.3 High-intensity physics at the strong-field frontier . . . . . . . . . 1.2 The realm of strong electromagnetic fields . . . . . . . . . . . . . . . . 1.2.1 Why do quantum phenomena occur in strong fields? . . . . . . . 1.2.2 The scientific value of accessing strong-field physics . . . . . . . 1.3 State-of-the-art of strong-fields sources . . . . . . . . . . . . . . . . . . 1.3.1 The technological gap ahead of optical laser sources . . . . . . . 1.3.2 Accelerators as a ladder to the edge of strong-fields . . . . . . . 1.3.3 Optimizing the field at a fixed power: dipole waves . . . . . . . 1.3.4 An ideally unbounded amplifier: the relativistic mirror . . . . . 1.3.5 Relativistic plasma mirrors as a path towards the Schwinger field 1.4 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . The Boltzmann model of strong-field QED . . . . . . . . . . . . 2.1.2 QED processes in strong fields . . . . . . . . . . . . . . . . . . . 2.2 PIC-QED numerical simulations . . . . . . . . . . . . . . . . . . . . . . 2.2.1 The PIC-QED algorithm . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Implementation in the WarpX code . . . . . . . . . . . . . . . . 2.3 "Stimulated Vacuum Emission" formalism . . . . . . . . . . . . . . . . 2.3.1 Stimulated Vacuum Emission formalism . . . . . . . . . . . . . 2.3.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . 2.3.3 A computationally tractable model of the harmonics field . . . .

	1.4.1 Observing vacuum QED processes in the light of RPM sources .
	1.4.2 Converting RPM-light into exotic matter processes and states .
	2 Theoretical and numerical methods
	2.1 An operational framework for strong-field Quantum Electrodynamics .
	2.1.1

II Modelling

and studies for vacuum strong-field QED 3 Stimulated Vacuum Emission algorithm validation

  

3.1 Counterpropagating infrared pulses . . . . . . . . . . . . . . . . . . . . 3.2 Single infrared pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Infrared pulse in a monochromatic wave . . . . . . . . . . . . . . . . . 3.4 Single multi-frequency beam . . . . . . . . . . . . . . . . . . . . . . . .

Études théoriques et numériques pour l'électrodynamique quantique dans le vide Chapitre 3 -Validation de l'algorithme d'émission stimulée du vide sur des configurations de référence ⌅

  De manière plus décisive, elle permet également une résolution numérique sans approximation supplémentaire, ou des simulations dites ab initio. L'algorithme sous-jacent est connu sous le nom de Particle-in-Cell (PIC). Elle est devenu la norme dans la recherche sur les lasers à haute intensité, et admet maintenant des extensions pour inclure les événements EDQ, qui seront désignés sous le nom d'algorithmes «PIC-EDQ». La fonction générale d'un algorithme PIC-QED est de produire des solutions numériques au système fermé d'équations aux dérivées partielles Eqs. 2.12-2.17 et 2.21-2.22. Une vue d'ensemble des variables impliquées et de leurs interactions est présentée dans la Fig. 2.1. Le principe de l'algorithme consiste à résoudre le système par discrétisation temporelle et résolution itérative, ce qui permet de calculer les quantités à des moments ultérieurs à partir de données temporelles initiales. ⌅ Une situation que nous avons étudié en profondeur est l'évolution d'un faisceau MPR dans le vide, et nous souhaitons prédire les e ets de son autointeraction via le champ électron-positron. Dans certaines conditions réalistes, il serait possible de dériver une théorie des champs classique e ective capturant l'évolution électromagnétique, éventuellement réductible à des corrections non linéaires de l'équation de Maxwell. Nous avons adopté un autre point de vue appelé »émission stimulée du vide»(SVE) [303], basé sur les amplitudes de transition de création de photons, qui est défini de manière simple et cohérente en termes de champs obéissant aux équations classiques de Maxwell. L'estimation précise des quantités d'intérêt, les distributions de photons Eqs. 2.44 et nombre de paires Schwinger Eq. 2.51, peut être réalisée numériquement pour des configurations de champ arbitraires. À cette fin, nous avons développé et optimisé un code capable de fonctionner sur des infrastructures de calcul parallèle à grande échelle. Pour une meilleure comparaison avec la littérature existante [297, 326] et la compréhension du cas de la lumière MPR, les résultats de notre code SVE ont été validés sur quatre cas de référence. Les résultats attendus pour chacune de nos observables étant connus, nous avons pu les utiliser pour valider notre algorithme, et en particulier étudier l'impact de di érentes procédures de propagation et d'initialisation. À cette fin, les valeurs des champs à tout moment ont été calculées par deux méthodes di érentes. Soit par des expressions analytiques explicites des champs, dérivées de l'expansion en série paraxiale [330] prise, sauf indication contraire explicite, à l'ordre 5 et complétée par une enveloppe temporelle gaussienne ; soit par propagation exacte (Maxwell) d'une configuration de champ initiale via transformées de Fourier rapides 3D. Dans trois cas de référence sur les quatre étudiés, les résultats purement numériques ont été complétés par des calculs semi-analytiques des amplitudes, où il ne reste qu'une intégrale spatiale à une dimension à réaliser numériquement, ce qui constitue une autre validation indépendante du code. Ces travaux concluent à une bonne précision du code sous l'une des variantes d'implémentation possibles que nous avons identifiée.

	Partie II -

Chapitre 4 -Estimation analytique de l'auto-di usion d'un faisceau de lumière MPR⌅

  Le calcul numérique à grande échelle de la di usion des photons à l'intérieur d'un faisceau focalisé généré par un miroir plasma est très coûteux, alors que l'espace des paramètres décrivant de tels champs MPR est au moins aussi vaste que l'ensemble des spectres réalistes. Par conséquent, une dérivation numérique des lois d'échelle régissant l'autodi usion de la lumière MPR est pratiquement impossible. D'autre part, une modélisation analytique précise du champ s'avère également di cile, et le calcul des amplitudes de di usion des photons qui en découle est plutôt dissuasif dans tous les cas. Nous pouvons néanmoins trouver des indications dans des expressions analytiques adoptant des hypothèses simples concernant le champ lumineux MPR, assimilé à un train d'impulsions gaussiennes. Bien que les prédictions quantitatives semblent hors de portée de cette manière, des tendances générales peuvent être dérivées pour les quantités pertinentes en fonction des paramètres du faisceau, y compris une description assez souple du profil spectral de la lumière du MPR. Si nous considérons le spectre généré dans des conditions optimales d'interaction laser-plasma, nous pouvons supposer le spectre de puissance constant au foyer, auquel cas le nombre total de photons di usés dépend simplmemnt du nombre d'harmoniques n h dans le champ par la relation, N Ã n 2

h Chapitre 5 -

Relation entre l'émission du vide stimulée et des équations de champs e ectives ⌅

  Le formalisme de l'émission stimulée dans le vide que nous avons utilisé dans ce travail est explicitement fondé sur l'électrodynamique quantique. Néanmoins, il nous a conduit à une expression du nombre de photons observables Eqs. 2.45-2.49 en termes purement classiques d'un spectre de champ rayonné. Nous explicitons ici la possibilité du raisonnement inverse, en partant des équations de mouvement de l'action de Heisenberg-Euler, comprise comme une action e ective quantique, afin de calculer les nombres de photons définis à partir des variables de champ classiques, comprises comme des valeurs d'espérance de champ quantique. Cette approche a également été poursuivie dans la littérature, avec l'avantage d'une intégration naturelle dans le cadre de référence de Maxwell-Boltzmann, y compris les implémentations numériques PIC-EDQ permettant de résoudre numériquement les équations de champ autoconsistantes sans autre approximation. Afin de mieux discerner le pouvoir prédictif de ces méthodes, le domaine d'équivalence avec le calcul basé sur l'amplitude est précisé, et une typologie des contributions au-delà de l'ordre principal mise en évidence, délimitant le rôle des solutions exactes aux équations e ectives du mouvement. ⌅ Il apparaît que les équations e ectives du mouvement pour le champ électromagnétique, associées à une simple hypothèse de champ fort, permettent de retrouver exactement l'expression SVE du champ di usé. Nous soutenons également que dans les grands volumes d'interaction, la hiérarchie locale des termes d'interaction peut s'e ondrer en raison de séquences d'interaction de grande multiplicité ; le rôle des solutions exactes aux équations du mouvement e ectives est alors identifié comme garantissant la cohérence des approximations opérées au niveau de l'action quantique e ective, à tout moment de l'évolution du système.

	Chapitre 6 -

Volume de calcul des simulations d'émission du vide stim- ulée⌅

  Si nous considérons un faisceau comprenant des harmoniques jusqu'à l'ordre n h ≥ 100, la fréquence maximale est bien sûr ‹ max ≥ 100‹ 0 , tandis que la longueur de décroissance du champ est toujours liée à la durée globale du faisceau • ≥ 10⁄ 0 , y compris dans les dimensions transversales encore une fois en raison de la grande divergence d'un faisceau très focalisé, ce qui implique,M h ≥ 10 ◊ (2 ◊ 100‹ 0 ◊ 20⁄ 0 ) ◊ (2 ◊ 100‹ 0 ◊ 10⁄ 0 ) 2 ◊ 8 Bytes ≥ 100 GBCombiné à la contrainte de temps, cela représente un volume de calcul d'environ 2, 5 ◊ 10 4 heures CPU par exécution, ce qui souligne la nécessité d'une infrastructure de calcul à grande échelle.

	Chapitre 7 -Spectres MPR issus de simulations PIC
	⌅ Voir Figs. 7.2
	Partie III -

Processus quantiques dans la lumière de miroirs plasma relativistes Chapitre 8 -Processus quantiques du vide dans la lumière de miroirs plasma relativistes⌅

  En dessous du seuil de Schwinger E, B ≥ E S , B S , la dynamique porte néanmoins la marque du couplage avec le champ électronique par le biais de paires électron-positron virtuelles, donnant lieu à une auto-interaction électromagnétique e ective avec une composante perturbative seulement supprimée par des puissances de E/E S , B/B S

The issue of scaling is of course not intrinsic to laser physics, as one may find analogous situations in high-energy accelerators, thermonuclear fusion facilities, and certainly other mature fields reaching the material scale and cost of competing collective endeavours.

See App. A for "physical system", a "field" is a physical system with an infinite number of variables.

This essentially coincides with the notion of "matter" in classical physics.

This technique consists in spatially separating the laser frequencies so as to decrease the local intensity in amplifier crystals, thus allowing for higher gains without exceeding the material damage threshold.

The extrapolated 10 22 W.cm ≠2 intensity displayed on the figure is not relevant, as it assumes the coherent combination of all (about 200) pulses focused near di raction limit (w 0 = 2⁄). In actual operations the intensity at experimental chamber focus is set around 10 15 W.cm ≠2 , while at di raction limit each individual beam would only reach I beam

¥ 5 ◊ 10 20 W.cm ≠2 .

In a more formal framework it can be given a Lorentz and gauge-invariant meaning[24, 25]. In the case of a plane wave in the absence of sources, one can simply take a 0 © e  ≠A µ A µ /mc.

1.1. Physics of ultra-high intensity lasers today

For a photon last expression still holds with " © ÎpÎ/mc and v = c, and the intuitive understanding of ‰ virtually coincides with the case of an ultra-relativistic massive particle of equivalent momentum.

Notable exceptions are condensed matter systems and heavy ions collisions, both featuring dense media and ambient fields. They still di er from the laser-plasma context though, the former due to usually non-relativistic energy/spacetime scales, the latter due to very di erent scales also but in the high energy end and to the predominance of chromodynamical e ects.

The tau generation being out of reach of currently realistic field values.

A definite example of this process is exposed in Ch. 9.

Which correctly suggests that two types exist, associated with electric or magnetic source dipole.

See <https://warpx.readthedocs.io/en/latest/> for an overview of the code, for scientific presentations see[249][250][251][252][253][254][255].

On these timescales collisional processes and heating play a role, that is totally eclipsed by mean-field e ects at the main pulse time and field scales.

The quality of an optical element being quantified in terms of pulse wavelength, the magnitude of such defects should be controlled on a nanometric scale, thus far beyond the standards of ultra-intense laser engineering.

Both e ective harmonics number and PM reflectivity are found to significantly decrease for L & 0.1⁄ 0 , using 2D simulations parameter scans[START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF] 281].

This could result from a sub-Petawatt primary laser, or sub-optimal generation conditions, e.g. angle of incidence or plasma mirror gradient.

See Comp. B.3.

Particles are assumed identical so the choice of integration variables does not matter (f N is totally symmetric). The prefactor simply allows unifying expressions for certain forms of observables[309].

The momenta components for instance are related by p µ p µ = m 2 .

We refer to [315] for more details on this presentation.

In a derivation of kinetic theory from quantum field theory, distribution functions simply are quantum expectation values.

Non-equilibrium QFT provides a more systematic approach to this purpose (App. B.2.5).

See App. B.2.4 for a discussion on the occurrence of such diagrams from non-vanishing field expectation values (there illustrated in the Schwinger-Dyson equations of a simple " 3 theory).

For brevity we will often simply call them "particles" in the following.

This is all the more true for Pseudo-spectral solvers, as fields are then Fourier transformed and can thus be trivially translated in space.

Chapter 5. 

Chapter 6.

The px and ex indices stand for "paraxial" and "exact" respectively.

Part II, Chapter 3 -Stimulated Vacuum Emission algorithm validation

3.4. Single multi-frequency beam

Setting explicitly k 0 © 1 in expressions if needed.

See e.g.[335][336][337][338], also dedicated section in [3] and references therein.

In classical theory we simply have S e AB [q a ] © S A [q a ] + S int [q a , qb ] with qb the known values of q b . In quantum theory the expression is di erent but formally straightforward in terms of path integral[307].

When a system A cannot be considered perfectly isolated, accounting for finer and finer e ects in the quantum dynamics (e.g. via quantum e ective actions of increasing order in a perturbative expansion) we may reach the point at which these contributions are of the same order of magnitude as the coupling of A with another system B. In this case, successful prediction requires considering the joint system AB, for instance via the second kind of "e ective action" Eq. 5.2. This situation of (possibly weak) coupling between di erent kinds of variables is unavoidable in field theory (e.g. the Standard Model), so that in this sense both concepts of e ective action are "physically" related in this context.

This can be established e.g. showing that HE is the generator of 1-PI diagrams at one-loop order.

In the following, corrections from non-uniformity of the field (e.g. in the form of derivative terms) will not be discussed further, relying on the vast gap between even X-UV frequencies and m to assume they can be neglected before other kinds of higher order contributions at the desired level of accuracy.

Note we could trivially add classical currents as well in Eqs.5.21-5.22, that could be understood as the expectation value of part of fermionic variables following a classical dynamics in some approximation. A systematic procedure to control such reduction can typically be found in a kinetic framework[116].

Another form of the derivation can be found in[339].

That is if t/• T ∫ 1 where • T ≥ 1/" T Ê is the field source duration.

E ects beyond the LCFA open yet another dimension of possible extensions, that will however be left aside here.

This rather natural result can also be understood diagrammatically, indeed we see e.g. in Fig.5.1 that diagrams obtained from multiplicities higher than 1 are 1-particle reducible (they can be disconnected cutting one internal line, cf. sec. B.2.4), while it is clear that there also exists some 1-particle irreducible diagrams at any given loop order, which are generated by the quantum e ective action of the corresponding loop order.

[START_REF] Vincenti | Achieving extreme light intensities using optically curved relativistic plasma mirrors[END_REF] For reference, at order 1 in -the total Heisenberg-Euler Lagrangian has the non-polynomial integral form [342],

This conclusion is in accordance with e.g.[335].

Mathematically this would refer to a "uniform approximation" of the full dynamics.

e.g. the free Maxwell's equations.

This parallels the logic of Chapter 8.

We will expand on this point in Sec. 9.3.

This is indeed the plasma mirror e ect, though here not optimized for harmonics generation.

This can be understood from a plane wave calculation, where an electron initially at rest will experience ‰ e p.w.Ã E lab /E S whatever the energy gained in the wave. Qualitatively, one understands that all photons of a plane wave being exactly colinear, momentum gained by absorbing them can not influence interaction with another one.

The factor 2 comes from the two-fluid e ≠ and e + motion compared to the ion-electron plasma case. We neglect relativistic transparency, rather ill-defined in this › &

regime.[START_REF] Der Brügge | Enhanced relativistic harmonics by electron nanobunching[END_REF] This is simply the special relativistic "time dilation" e ect.

See Fig.9.5. This contrasts with typical spectrally Gaussian pulses, symmetrical with respect to field sign inversion up to a "carrier-envelope phase".

Note this could in principle be more than a corrective e ect, as QED cascade can magnify the e ects of a few seed particles in certain configurations.

See e.g. [375-378] and references.

It coincides with the energy on known systems, and defines it in general.

If ˆH/ˆt " = 0 predicting evolution needs also the data of time. However, in a fundamental system data of {(q i , p i )} exhausts all information by definition, so that in particular H = H(q i , p i ).

Note those are the Poisson brackets of the initial canonical variables set.

They are already much more general than the usual ones q i ' ae Q i , as they allow mixing initial coordinates and conjugate momenta.

For instance, in the algebra of classical mechanics these conditions would imply Z is a constant function on phase space, or in quantum mechanics that Z = z1 for z oe C and 1 the identity operator.

Typically, comparing a collection of point particles coordinates with a wavefunction.

Precisely because, in a mathematical sense, they are representations of algebraic structures that, in an informal sense, are found very similar (linked by a single parameter ⁄ oe C).

Implying up to representations. See e.g.[384] and citations for an entry to this topic.

e.g. superpositions, Heisenberg indeterminacy relations, entanglement, etc.

See e.g. the "path-integral" expression of transition amplitudes for an explicit connection [22]. † Refs.A.4: [381, 385, 386] 

We denote the adjoint of A by A † , so that observables satisfy O † = O.

It is said "mixed" otherwise. Pure states have maximum information, or lowest possible entropy, and thereby are the quantum counterpart of previously defined classical pure states f x : y ' ae "(y ≠ x).

Admitting the usual methodological principles pertaining to the relevance of limited (local) data, they should not be inferred to have any definite value in-between measurements[386][387][388], cf. also Eq. A.43.

Recall that A ' ae Tr(A † A) is a norm of L(H, H) (upon appropriate mathematical restrictions).

Hence indiscernible.

Note they could simply be the same variable at two times, or after any other transformation.

Note these notions are quite conventional, but nonetheless find ground in the fact that often H 0 stems from the evolution of two isolated systems, and H I is required to describe their joint evolution.

This approach leads to the "Schwinger-Keldysh formalism"[307]. It naturally arises working with general states and extends scattering theory, restricted to the computation of transition amplitudes.

In the sense e.g. of expectation value compared to that of H 0 . Note that this condition therefore not only depends on g but also on the initial state and subsequent dynamics, which, in particular, is precisely why strong-field QED di ers from the vacuum theory.

References are given as in App. A for the same reasons.

In Quantum Mechanics, this would typically correspond to the computation of all coe cients of the state vector in a Hilbert space basis, the latter being given by the common eigenbasis of a "complete set of commuting observables".

 3 Together with unitarity, Lorentz-invariance even allows for excluding spins j > 2 and most couplings between the remaining ones in a fundamental theory (see results along the so-called "bootstrap" program).4 Most notably introducing local transformations of fields under a compact Lie group, known as a "gauge tranformation", resulting in "gauge theories" (Quantum Electrodynamics and Chromodynamics are two prominent examples).5 We will say more on the mathematical notion of "representation" below.6 For that matter, a rigorous mathematical definition of interacting quantum field theory is a notoriously open problem. One major obstruction is the existence of multiple inequivalent representations of the canonical commutation relations (i.e. Poisson brackets, see Eq. A.37) [q j , p j ] = i~for an infinite number of variables[394].

The existence of such , called a "Cauchy surface", then being understood as part of the definition of . The limiting case of a lightlike surface also is acceptable and actually finds uses, for instance in the context of so-called "light-front" quantization.

Recall that Lorentz transforms preserve the Minkowski scalar product (cf. Eq. B.1): (x) • ( y) = x • y , ÷ µ‹ x µ y ‹ © x µ y µ .

The "functionnal derivative" is formally defined by i) "uv "f (x) = "u "f (x) v +u "v "f (x) and ii) "f (y) "f (x) = "(x≠y). We besides understand derivatives of delta in the usual sense of distributions, f Ò"(x≠y) = ≠"(x≠y)Òf .

This equivalence is the Hamiltonian form of Noether's theorem, see[397][398][399] for explicit derivations.

2E k © dk"(k 2 ≠ m 2 )◊(k 0 ), where the RHS manifestly is Lorentz-invariant.16 An infinite constant à V © "(0) appears in this calculation, which would literally be the vacuum state energy, but has however no dynamical role in this context and therefore is eventually discarded.

This is a simple illustration of Noether's theorem in Lagrangian form.

u † (k, ‡)u(k Õ , ‡ Õ ) = v † (k, ‡)v(k Õ , ‡ Õ ) = " ‡ ‡ Õ 2E k "(k ≠ k Õ )

They are called "Grassmann numbers".

For our " 3 interaction term, this translates in the G (n+1) term on the RHS of Eq. B.94

Relating to many di erent names, e.g. "Dyson equations", "Kadano -Baym equations", "Martin-Schwinger hierarchy", "n≠PI e ective action equations of motion".

49 cf. our derivation of Eq. B.73 in perturbation theory; in the following we assume that the initial state fl 0 is such that Wick's theorem is valid (for centred field operators).

The numerical factor in Eq. B.99 are accounted for by the symmetry factors in the Feynman rules.

Factorization of a connected 2-points function G out of a connected 3-points function G(3) 

e.g. on the intuitive grounds that strong fields correspond to high particle occupation numbers and hence globally classical behavior.
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Appendix A

Landmarks from mechanics

We here motivate and clarify some terminology occurring in the main text with a brief summary of the canonical connection between the classical and quantum mechanics of a physical system. Emphasis is placed on the order of exposition rather than mathematical forms, however technical issues may hopefully be lifted from context, or from provided references. This material being standard we do not systematically give reference for the various results, but indicate our main sources at the beginning of each section, and wherever more specific derivations were reproduced.

A.1 Hamilton's principle

A.1.1 Lagrangian formulation

A physical system is a set of variables {q i } allowing to compute quantities that can in principle be observed. In the context of non-relativistic classical mechanics, typically q i oe R and the problem amounts to determining their values at any time q i : t ' ae q i (t) given their values at some initial time q(t 0 ) = q 0 . Hamilton's principle states that there exists a functional of the form,

with q = dq/dt, for which the physical trajectory is an extremal point. S is called the action and L the Lagrangian of the system. Considering an infinitesimal variation of the trajectories "q i such that "q i (t 0 ) = "q i (t) = 0, the extremum condition writes 1 ,

where integration by part has been used, which translates into, .4) called the Euler-Lagrange equations. Thereby one recovers the usual vision of mechanics as the unfolding of trajectories in time according to di erential equations. Such formulation already proves more fruitful than a simply di erential view though, in that Eq. A.4 is invariant under any coordinate change q i ' ae Q i . As partially displayed in the following, much beyond immediate uses it is empirically found to provide a unifying language for describing fundamental systems. † Refs. A.1-A.2: [310, 379, 380] 1 Summation over repeated indices is implied throughout the text:

A.3. Algebraic aspects of physical observables

This intuition finds ground in the notion of canonical transformation. Let us consider a change of variables (q i , p i ) ' ae (j ,j ) and see how the Poisson bracket transforms:

Therefore, upon the condition that the canonical Poisson brackets are preserved 9 ,

we find that the Poisson bracket does not change form,

Transformation satisfying Eq. A.23 are called canonical. Restricting to such coordinate changes 10 the Poisson bracket acquires a coordinate-independent meaning, thus depending only on the structure of phase space.

A characterisation of mechanics can therefore a priori be sought for in the algebraic properties of {•, •} considered as a binary operator on the space of observables, i.e. of real functions on phase space A cl = C OE ({(q i , p i )}, R):

Together with the natural operations of pointwise addition and associative pointwise product, first three properties make (A cl , {•, •}) a Lie algebra, and the Leibniz rule, inherited from the di erential nature of the Poisson bracket, a Poisson algebra.

A.3.2 Mechanics within Poisson algebras

Now to conclude at a complete characterization of mechanics, one should answer the converse question: does any real Poisson algebra correspond to the algebra of classical observables of a physical system? Though manifestly calling for a thorough mathematical treatment, such problem can shed light on the physical discussion by the following alleviated argument [382,383]. Let us consider a Poisson algebra over a field K (A P , +, •, {•, •}), comprising a multiplicative unit 1. Then, for a, b, u, v oe A P ,

A.4.3 Dynamics of states and observables

Dynamics is given by either mechanical equations Eq. A.11 or Eq. A. 

Time independence of the Hamiltonian of fundamental systems derives from anti-symmetry of the Poisson bracket and is therefore still true. By our definition we clearly have U (t 0 ) = V (t 0 ) = 1, so that the familiar expressions for the time evolution follow,

Evolution operator

The evolution operator is easily seen unitary as the Hamiltonian is hermitian, U † U = 1, conveying again conservation of total probability. Equivalence of state or variables time evolution, Schrödinger or Heisenberg picture, is even more transparent than classically: 

Landmarks in view of Quantum Field Theory and strong fields

We here present some elements of the extension of mechanics to relativistic quantum and possibly strong fields. More specifically, our aim is to provide motivation and references for concepts and methods relevant to an understanding of Quantum Field Theory irrespective of a specific context of application, though appropriate in view of strong-field Quantum Electrodynamics. For brevity as well as clarity, exposition will operate at an essentially heuristic level, while trying and preserve accurate enough mapping to the operational literature.

We will be proceeding through the following issues, in order of physical significance 1 , I -Relativity and symmetries Quantum fields are necessary parts of a fundamental theory insofar as they provide a realization of the principle of relativity. In a first section we will draw this connection, starting from the canonical formalism of mechanics. We will then be able to present how symmetry requirements dictate the form of physical variables, in particular some aspects of the field-particles duality, and eventually introduce the constituents of Quantum Electrodynamics.

II -Fields observables and diagrammatic representation

In classical or quantum mechanics, canonical variables play the role of generating the algebra of observables defining a physical system. In systems of finite and small number of variables, this process often is obscured by the possibility to at least formally consider the joint evolution of a complete set of observables, possibly summarized in a state 2 , and only then compute any quantity of interest. On the opposite, for systems of practically or conceptually infinite number of variables the e cient coordinatization of general observables by a generating subset proves crucial. In this section we will show how this idea is embedded in the fields n≠points functions. The construction of finite order perturbation theory is presented first, introducing diagrammatic representations, followed by a motivation of exact relations more suited to general non-equilibrium contexts and thus strong fields in particular.

III -Similarity classes of initial states

Prediction of observable values are produced in the form of expectation values, which encode all dependence on the initial data. Some formalisms, perturbative quantum field theory notably, however make extensive use of relations existing between intermediate quantities specifically for some initial state. In this section we briefly present how "reduction formula" unify methods within some sets of states, e ectively defining equivalence classes, and how these distinctions tend to blur in the out-of-equilibrium initial values formulation.

The CCR dictate the action of a † (k) and a(k) on Fock states,

justifying their appellation respectively of "creation" and "annihilation" operator.

The Fock basis therefore diagonalizes the "number operator" n(k) = a † (k)a(k), whose eigenvalues in a sense count the number of modes k in the state,

We note that setting È0|0Í = 1 the CCR induce the general scalar product,

with S n the n elements permutation group. It is Lorentz-invariant, as seen e.g. by integration with the invariant measure dk 2E k 15 . 

Conclusion IV Appendix