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Abstract i

Abstract

Understanding the dynamic behavior of fuel pins subjected to seismic loading is one of the
major concerns for the design of SFRs (Sodium-cooled Fast Reactors) and in particular for the
design of the ASTRID prototype. In this field, two physical aspects are important: the strong
non-linearity due to the contacts (between the fuel pins and between the pins and the wrapper
tube) and the fluid-structure interaction with the coolant.

These phenomena are taken into consideration with the fluid-elastic force model proposed by
Paidoussis and a penetration impact law. Several parameters engaged with these models are to
be determined with experiments. To this end, a test bench CARNEAU equipped with a fast
camera as measurement is designed to capture the motion history of the fuel pins in water flow
of different velocities and under sine sweep excitation. It is anticipated to identify the global
parameters lumping the effects of the detailed physics with modal analysis, unfortunately the
experiments were not carried out.

With the parameters decided with the inspiration from the previous experiments and theoretic
works, two numeric methods have been used to exploit the model: the traditional method using
implicit Newmark integration and the global periodic time integration (GPTI) method. The
modelling enables us to have a phenomenal analysis on the nonlinear dynamics of the fuel pins:
the relatively simple global vibration and the local impact-related chatters of much smaller time
scale, which is the origin of the complexity of the dynamic behavior. The two methods have
both their advantages and limits with the impact-related problem. The direct time-integration is
quite direct and can be applied for any contact rigidity, but it is difficult to cover the coexisting
regimes led by the nonlinearity as it is sensible to the initial condition. The GPTI method allows
to unfold the solution branch for a varying parameter and each solution point corresponds to a
vibration regime, but the difficulty with the continuation leads to a limited range of contact
stiffness and excitation amplitude. With an increasing amplitude, more and more solution
branches coexist for the periodic dynamic responses of the fuel pin resulting in a great
complexity, the GPTI method does not neither guarantee the observation of all the possible
periodic solutions, the direct time-integration can be complementary but not exhaustive.

The fluid-structure coupling is also an essential element for the correct modeling of the system.
The effects of the fluid on the structure have been taken into account in the previous model. To
go further, it is necessary to take into account the effects of the structure on the flow. To this
end, a spatial averaging method considering the space-and-time dependent RVEs has been
proposed. It makes it possible to establish the equations of motion of the fluid by averaging the
Navier Stockes equation in the form of Arbitrary Lagrangian Eulerian (ALE). The coupling
with the structure is accounted for by using the hydraulic model of Paidoussis.
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Résumé

La compréhension du comportement dynamique des aiguilles combustibles soumises a un
chargement sismique est une des préoccupations majeures pour la conception des RNR
(Réacteurs a Neutrons Rapides) et notamment pour la conception du prototype ASTRID. Dans
ce domaine, deux aspects physiques sont importants : la forte non-linéarité due aux contacts
(entre les aiguilles combustibles et entre les aiguilles et le tube hexagonal) et I'interaction fluide-
structure avec le caloporteur.

Ces phénomenes sont pris en compte en utilisant le modele de la force fluide-élastique proposé
par Paidoussis et une loi de contact par pénalisation. Plusieurs parametres associés a ces
modeles sont a déterminer expérimentalement en utilisant la méthode d’analyse modale. A cet
effet, un banc d'essai CARNEAU équipé d'une caméra rapide a été concu pour visualiser la
vibration des aiguilles sous écoulement d'eau & différentes vitesses et sous sollicitation
dynamique de type balayage sinusoidal. Malheureusement, les essais visagés n‘ont pas pu étre
réalisés dans le cadre de ce travail.

En utilisant les parametres déterminés dans la littérature (expérimentalement ou bien par des
approches théoriques), le modele numérique développé dans ce travail a pu étre exploité en
mettant en ceuvre deux méthodes : la méthode traditionnelle en utilisant I'intégration de
Newmark implicite et la méthode GPTI (global periodic time integration). Ces modélisations
nous permettent d'avoir une analyse phénoménologique de la dynamique non linéaire des
aiguilles combustible : la vibration globale, qui reste relativement simple, et les vibrations
parasites liées aux contacts se produisant sur des échelles de temps beaucoup plus petites, d’ou
la complexité du comportement dynamique. Les deux méthodes ont leurs propres avantages et
limites pour les problemes de contacts. La premiére méthode est assez directe et utilisable avec
n'importe quelle rigidité de contact, mais des difficultés apparaisent pour obtenir les régimes
coexistants sensibles aux conditions initiales choisies et générés par la non-linéarité. La
méthode GPIT permet de déployer une branche de solution pour un parametre variable
(fréquence, amplitude de la sollicitation, ...) et chaque point solution correspond a un régime de
vibration. Cependant la difficulté induite par la continuation conduit a une plage limitée de la
raideur de contact et de I'amplitude de sollicitation. Avec 1’augmentation de 1’amplitude, de
plus en plus de branches de réponses périodiques coexistent pour la dynamique de l'aiguille et
présentent une grande complexité pour I’analyse. Par ailleurs, la méthode GPIT ne garantit pas
I'observation de toutes les branches, et donc la méthode d’intégration directe peut étre une
solution complémentaire mais ne permet pas de trouver toutes les solutions correspondantes
aux comportements dynamiques des aiguilles.

La prise en compte du couplage fluide structure est aussi un élément essentiel a la bonne
modélisation du systeme. Les effets du fluide sur la structure ont bien été pris en compte dans
le cadre du modele précédent. Pour aller plus loin, une prise en compte des effets de la structure
sur 1I’écoulement est nécessaire. Pour cela, une approche par moyenne spatiale, sur chaque
Volume Elémentaire Représentative dépendante de I’espace et du temps, a été proposée. Elle
permet d’établir les équations du mouvement du fluide en moyennant I’équation de Navier-
Stokes sous une forme ALE (Arbitrary Lagrangian Eulerian). Le couplage avec la structure est
pris en compte en utilisant le modele hydraulique de Paidoussis.
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Introduction 1

Introduction

The nuclear industry has very demanding safety requirements. A new prototype must undergo
a risk analysis involving several disciplines. The CEA launched a Sodium Fast Reactor project
ASTRID in 2008 and even though suspended in 2019, the numeric modelling of the design
phase is always in progress. This thesis work makes a part of it.

The fuel sub-assembly of the ASTRID reactor is wrapped by a hollow hexagonal tube, which
allows the passage of the axial coolant flow of about 20 kg/s. Inside is inserted a bundle of 217
fuel pins arranged in a hexagonal configuration. The claddings of the fuel pins are closed tubes
of about one centimeter in diameter and two meters in length, containing the fuel in the form of
pellets. A wire helically wound around the cladding will make it possible to maintain the
spacing between the pins, improve the heat exchanges and also guard the pin bundle against the
flow induced vibrations (FIV). The fuel pins are only held on the lower part by a grid and left
free on the upper part, so as not to be thermally stressed. As a result, they are relatively mobile
inside the wrapper tube especially at the start of life when the clearance between them is not
closed. Under external loads like an earthquake, the fuel pins will have collisions with the
wrapper tube and among themselves. The significant number of shocks is a challenge to the
integrity of the fuel claddings, which constitute the first barrier against the release of radioactive
products. In order to estimate the impact forces, it is of great importance to understand the
dynamic behaviors of the fuel pins. And this has proved to be a challenging task, as the multi-
physics setup involving fluid-structure interaction with turbulent flow and impact-induced
strong non-linearity, is quite complex.

The purpose of this work is to describe accurately the dynamic responses of the fuel pins to an
excitation, of which the amplitude and the frequency varies in the range of an earthquake-
induced load. In fact, the aspect of numerous potential impacts in air has been studied both
experimentally and numerically in the thesis work by Catterou [12], our goal is thus to take the
fluid aspect into consideration. Similarly, both the experiments and the numeric modellings are
in plan. Basing on the experiences from the earlier test projects, a bench is designed to carry
out the sweep sine excited experiments under different flow velocity and a guaranteed
measurement is anticipated to calibrate the parameters engaged in the numerical models.

As for the simulation part, a model incorporating globally the effect of axial flow on the fuel
pin is firstly constructed, different numerical methods are proposed to exploit it. Given that the
flow acts as a damper under a critical velocity of fluid-elastic instability, dynamic responses
more regular than those in air can be expected. The traditional approach, which consists in using
implicit time-integration, is used to have an overview on the contact related phenomena. It is
able to predict the history of motions of the system under an excitation with a given combination
of amplitude and frequency. As it is well known that some parameter combinations lead to
coexisting vibration regimes when non-linearity is involved, the different initial conditions are
to be searched and it is difficult to fully cover the possible outcomes. Therefore, a periodic
response searching method is developed, which combined with the continuation allows to
unfold the solution branch for a varying parameter and associate each of the solution point to a
particular dynamical behavior. The methods of this type are known to have a good performance
in the weakly nonlinear problem, hence their performances in the impact problems are evaluated
and then applied to study the model of the fuel pin.
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The model firstly constructed is more suited to the study of the single fuel pin, in order to be
able to simulate the coupling motion of several fuel pins, an improved model is proposed basing
on a modified spatial averaging method. Equations of motion for an equivalent fluid is
established by spatially averaging the Navier—Stokes equation written with an arbitrary
Lagragian Eulerian (ALE) approach. Structure related effects on the fluid are accounted for by
a body force, which is also defined from the fluid forces acting on a beam subjected to an axial
flow. The fuel pins are modelled as a porous medium subjected to the opposite of the body
force.

The manuscript is organized into five chapters. The first one gives firstly a description of the
ASTRID reactor and offers a literature overview on the experiments and the numerical models
on the physical phenomena involved our problem, such as the impact and nonlinear damping
for the structures, the hydraulic characteristics and the fluid-structure interaction.

The second chapter is dedicated to the design of a test bench CARNEAU. It is anticipated to
perform the dynamic experiments of one single fuel pin and a row of pins in air, in still water
and in water flow of different speed, in order to determine with modal analysis the empirical
parameters associated with the numerical models used and to give a reference to validate the
modelling. Unfortunately, we were not able to perform the experiments as a result of the budget
limitation and the difficulty arising from the health crisis.

The third chapter establishes the model for analyzing the dynamics of the fuel pin in fluid with
contact points and under earthquake. Due to the lack of experiments, an estimation of the
coefficients in our model has been performed based on the previous theoretical and
experimental studies. With the direct time-integration method, the qualitative description not
thorough of the phenomenon relative to impact will be given with some particular cases.

The forth chapter gives an overview on the existing periodic response searching methods. The
classical Harmonic Balance Method (HBM) is found to have limitations in the context of our
study with a simplified fuel pin model with less contact points. A global periodic time
integration method is therefore developed and its performance with the impact problems is
firstly evaluated with the vibro-impact problem. Then it is applied to the study of the fuel pin
with some compromises.

The final chapter is dedicated to the formulation of an improved model, which is able to take
into consideration the coupling of the motions of several fuel pins. It is based on a modified
spatial averaging method by considering a deformable Representative Volume Element (RVE).
The hypothesis used for deriving the model are presented.
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Chapter 1 State of the Art

This chapter offers a literature overview on the physical phenomena involving our problem.
Firstly, a SFR reactor ASTRID is introduced as the context of our study. In fact, many topics
are discussed. From the structural aspect, the models and experiments regarding the impact and
nonlinear damping are presented. The experimental and numerical studies on the hydraulics
characteristics under SFR fuel assembly configurations give us an insight on the flow pattern.
Finally, a detailed summary of researches done on date on the fluid-structure interaction is given.

1.1 Industry context
1.1.1 Sodium Fast reactors in France

The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected
by the Generation IV International Forum (GIV). Contrary to a large majority of Nuclear
Reactors in the world cooled by water, the SFR is a concept cooled by sodium which may play
an important role in the future of nuclear energy production because of the excellent potential
for natural resource utilization and ability to reduce the volume and lifetime of nuclear waste.

The schematic diagram of an SFR is presented in Figure 1.1. The core, where the chain reaction
and the production of energy occur, is immersed in a main vessel filled with sodium. The
sodium circulates both around and in the fuel assembly. Its temperature at the inlet of the core
is approximately 400°C and reaches 550°C on an average at core outlet. The hot primary sodium
then flows into an intermediate exchanger which transfers the heat of the primary sodium to the
sodium of a second independent system called “secondary system”. The main vessel is topped
by a slab used as a cover. The slab includes a rotating plug above the core to allow insertion
and removal of the sub-assemblies, and to allow the penetration of the core control rod
mechanisms and the core measuring devices.

France launched its first SFR project RAPSODIE in 1958, only 24 years after the discovery of
artificial radioactivity. The power of this reactor reached 20 MW during its first divergence in
1967 and was then increased to 40 MW. The project was not aimed at generating electricity,
but for data collection on core material, especially the irradiation swelling, and verification on
the selection of fuel, providing experience for the research of PHENIX reactor.

PHENIX is a prototype with electric power of 250 MW which operated from 1973 to 2010. It
was initially designed to generate electricity, and then after the halt of SUPERPHENIX, its goal
extended to the study of the transmutation of long-lived radioactive waste. The operation of
PHENIX was punctuated by several shutdowns due to sodium leaks in secondary circuit before
1989. Thanks to the knowledge gained from the incidents, SUPERPHENIX experienced only
3 leaks during its 10 years of operation.

SUPERPHENIX, launched in 1974 under cooperation of Italy, Germany and France, was
designed to generate a power comparable to that of a conventional nuclear power plant: 1200
MW. On the consequence of the Chernobyl disaster, the lack of transparency and
communication has led to the mistrust of the public on nuclear security. SUPERPHENIX was
forced to suspend operations several times by the demonstrations (53 months of operation in 10
years), and finally out of service in 1997 due to politics and financial problem.
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The most recent project ASTRID was launched in 2008. The designed electric power was
initially 600 MW and it was reduced to 100 — 200 MW due to the financial concern in 2018.
Until its suspension in 2019, ASTRID was always under detailed design phase.

——

Steam
generator

Cold plenum

Hot plenum *

Control
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Figure 1.1. Schematic diagram of a sodium-cooled fast reactor
1.1.2 Description of ASTRID reactor

The core of ASTRID is made up of a large number of hexagonal tubes, called assemblies of
about 17cm wide and 4.5m high. Several types of sub-assemblies exist. As is shown in Figure
1.2, the fuel sub-assemblies, in the center of the core in yellow and red, contain 217 thin pins
in which the fuel is in the form of pellets. The absorber devices are distributed among the fuel
sub-assemblies, making it possible to regulate the reactivity. At the periphery, the lateral
reflector in blue and shielding arrangement in gray surround the fuel sub-assemblies in order to
reduce neutron leaks.

O Inner fuel S/A . Diverse Control/Shutdown rod

@ outer fuel S/A . Internal storage position

. Reflector S/A (MgO) Debugging position

() Neutron shielding S/A (BsC) @ safety device for severe accident prevention
@ Control/Shutdown rod (O safety device for severe accident mitigation

Figure 1.2. Representation of the core of ASTRID
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A representation of a fuel sub-assembly is given in Figure 1.3. The spike is inserted into a
support with a key system that does not interfere with the core assemblies. On the upper part of
the spike, contact occurs between its spherical part and a conical area of the support.

The sub-assembly consists of 217 fuel pins with a 9.70 mm outer diameter separated by a 1
mm-diameter spacer wire helically wound around the pins. The spacer wire guard the pin
bundle against the flow induced vibrations (FIV). It also acts as a mixing device to avoid the
trapping of the coolant so that the heat transfer can be enhanced and the pressure loss is
increased.

The pin’s lower plugs are mounted on the rails of a stainless-steel single-part grid to form a
bundle that is vertically held within the hexagonal wrapper tube. To ensure suitable clearance
between the sub-assemblies in the core, a rectangular spacer pad is stamped through each side
of the hexcan just above the fuel pins. The pads play a central role in the mechanical equilibrium
of the core, they also enhance safety by preventing reactivity increases due to a core compaction
that follows a flowering, which may occur when core is subjected to dynamic stresses such as
earthquake or internal pulse load release.

Lifting Wrapper tube

Removable head / \
upper -

neutron

shielding

Spacer
pads

Sodium

plenum
location

g Thickness

Stamped spacer pads

i Wrapper
tube

S8LE

Section of a hexagonal wrapper
tube with stamped spacer pads

00st

Fuel pins I
bundle =™

96+C

W ; <
i ;! _Grid plate
Timit

Pressure — 7.

drop | )
device Spik:’

SIL

Fuel pins bundle

Figure 1.3. ASTRID fuel sub-assembly

The inner core fuel pin is axially heterogeneous with fertile zone sandwiched between the two
fissile zones, as we can see in Figure 1.4. The fissile zone in the inner part of the core is made
of UPuO2 pellets that undergo nuclear chain reaction producing energy. The thick fertile zone
contains fertile material that becomes fissile with neutron bombardment. Two plugs close the
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pin at its ends and hold the spacer wire in position. The fuel pellets are inserted into the sheath
about half the height, leaving a plenum to contain the gases released by the fission reaction.
The clearance between the pellets and the cladding initially exists and evolves during the life
of the pin under irradiation. The fuel column is held by a spring at the top and a crimped spacer
at the bottom. Fuel pellets are so heavy elements that the distribution of the mass will therefore
be extremely heterogeneous, 75% of the total mass is concentrated in its upper half. In addition,
during the life of the sub-assembly, the cladding of the pin will swell under irradiation. This
swelling is very heterogeneous in the height of the pin and influences the distribution of
clearances in the fuel pin bundle.

80

e

Upper < Lower
plug Fissile zones Spacer plenum

v

Spring Tf;mer feniile Lower axial Lower%
. zone | blanket : plug '
s 20 . 30 z
> A g<—°>;

' & 5
' & -

Figure 1.4. Configuration of inner core fuel pin
1.1.3 Dynamic behavior under seismic loading

The sub-assembly, formed by pin bundle, is susceptible to accidental scenario during its service
life. An earthquake generates relative movements between the components during the
functioning of the core, thus causing chocks that could lead to structural cracking and system
failure. Therefore, the characterization of the dynamics of fuel pins is one of the major safety
issues.

In the following, we will describe the different physical phenomena involved in the problem,
and a literature overview of the previous studies and models on these phenomena will be carried
out.

1.2 Nonlinear dynamics of fuel pins

The fuel pins have a rich dynamic behaviors because of strong nonlinearities. It typically means
a nonlinear stiffness and a nonlinear damping, which is due to the impacts and friction between
the components. For all these stresses, of very different duration, amplitude and frequency, it is
necessary to determine criteria not to be exceeded in order to guarantee the good mechanical
strength of the pins and to avoid sheath breakage.

1.2.1 Impact modelling

All the pins in the bundle are oriented in the same direction. The impacts happen at the altitudes
predetermined by the pitch of spacer wire, whether between a wire and a clad (Figure 1.5a) or
a wire and one surface of the wrapper tube (Figure 1.5b). Therefore, there is a plan with contact
points every 1/12™ of the helical pitch noted Lp. In a fuel subassembly of ASTRID, with a
helical pitch of 180 mm and a pin length of 2.136 m, the subassembly contains approximately
15,000 potential contact points.
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Figure 1.5. Sub assembly sections and schematic representation of contacts [2]

Due to the great number of collisions, the numeric implementation of contacts remains
challenging. Fadaee and Yu [3] has proposed the linear complementarity problem (LCP)
formulation for handling the frictional contact problem. The study is conducted on an array of
37 rods of CANDU type inside a tube. The rod-to-rod contact is supposed to be frictionless and
the multiple unilateral frictional constraints between rod and the outer tube are reduced through
a coordinate transformation and an auxiliary incremental displacement variable. Several
frictional models were applied by Hassan and Rogers [4] to understand the effect of tube-
support clearance and preload on the predicted work rate.

There are several ways to model the normal contact in structural dynamics [5]. There are two
major categories: non-smooth laws for which the contact is instantaneous and the velocity is
discontinuous, and smooth laws for which solids in contact will be able to interpenetrate each
other. In non-smooth dynamics, a restitution parameter, which refers to the ratio between
absolute values of velocity before and after the shock, is introduced to model the damping [6].
The discontinuity of velocity represents a challenge for the usual time-stepping integration
schemes. As a consequence, specialized methods have been devised to treat such problems [7].
In smooth dynamics, the support exerts a restoring force F, on the structure for the duration of
contact, which occurs over a finite time interval rather than instantaneously. The non-linear
force is introduced with a penalty formulation depending on the distance & between reference
points of solids in contact [8]:

(0 if §>0
Fe(0) = {9(6) +h(6,8) if6<0 (1.1)

The simplest impact law is “linear spring dashpot” [9] where g (&) represents a linear spring of
stiffness k. and h(8) a linear impact damper to account for energy losses resulting from impacts,
which is analogous to the role of a restitution coefficient. In comparison with the non-smooth
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laws, besides enhanced ease for numerical simulations, this approach has the advantage of being
physically significant, as the parameter k. is a measurable quantity which represents the cross-
section deformation during impact. Catterou [12] has proposed a non-linear contact law by
taking into account all the possible phenomena, as schematized in Figure 1.6. The contact forces
generated by the ovalization of clad and spacer wire are computed by using Fourier series
decomposition and solving a fourth order system of equation [10], which are proportional to §
and the contact force generated by the spacer wire-to-clad or spacer wire-to-wrapper tube local
deformation is modeled by the Hertz theory [11], which is non-linear whatever the surface in
contact. The spring combination is quasi-linear, but Hertz stiffnesses add a substantial
flexibility to the contact point [2], so that equation (1.1) can be applied.

Figure 1.6. Ovalization and local deformation

1.2.2 Nonlinear damping

Catterou [12] performed bending release tests on pins of two different pellet materials. Three
different phases of damping are identified, as shown in Figure 1.7. A phenomenological model
is proposed and reveals that the high damping for large oscillations is due to friction between
pellets and the phases for smaller oscillations are due to the viscous damping of the clad and of
the pellets. The nonlinear aspect due to the presence of pellets has been studied for the first time
by Lee [13] who computed the displacement of the pellets column introduced inside a clad with
clearance. His work has been extended by Choi [14]. Then recently, several papers discussed
about nonlinear damping on fuel rod, particularly the increase of damping due to loading
magnitude and the effect of the pellets/clad clearance [15]-[17].
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Figure 1.7. Three phases of damping for a lead-antimony pin [12]

1.3 Hydraulics in fuel sub-assembly

The study on the flow pattern in wire-wrapped fuel bundle is of interest since the prediction of
the thermo-hydraulics characteristics is vital to estimate the performance and safety of SFR
reactors.
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1.3.1 Experiments

Few experiments with sodium as the coolant in forced convection regime were conducted in
the 1970s and 1980s [18][23]. Many experiments have been performed in earlier reactor design
stages to measure the pressure drop due to friction in a channel with length L and hydraulic

diameter D;, :

1. 1L
— 2
bp=3fop-pv (1.2)

with f;, the Darcy friction factor.

Novendstern developed a semi-empirical model to predict pressure losses in a hexagonal array
of wire-wrapped pins in the turbulent flow regime [24]. Rehme, who performed a vast number
of experiments, proposed a model based on an effective velocity, taking into account the swirl
motion. Additionally, a parameter was incorporated to take into account the influence of the
number of pins [25]. Cheng and Todreas introduced their hydrodynamic models for sub-channel
friction factors and mixing parameters in a 37-pin fuel bundle, which covered the laminar,
transition and turbulent flow regimes [26]. In the detailed correlation (CTD), the friction factor
in all three types of subchannels are computed. In the edge and corner subchannels pressure
drop is mainly caused by skin friction due to a swirling, induced by the wire, while in the interior
subchannels the pressure drop originates from a combination of wire drag and skin friction. As
the evaluation of this correlation is quite tedious, the same authors also gave a simplified
correlation (CTS), lumping the effect of the three types of subchannels in one global coefficient.
A summary [27] of pressure-drop correlations and their application range are given in Table
1.1. These correlations are then evaluated by more experiments with different geometrical
parameters and pin numbers [28][30].

Table 1.1. Summary of pressure-drop correlations and their application range (The geometrical
parameters are indicated on Figure 1.8)

Model | Number of pins P/D Helical pitch/D Flow type Re
NOV 19 - 217 1.06 - 1.42 8 -96 Trans. / Turb. | 2600 — 2.10°

Rehme 7-217 1.1-1.42 8-50 Trans. / Turb. | 1000 - 3.10°
CTD 19 - 217 1.0-1.42 4-52 All 50 - 10°
CTS 19 - 217 1.025-1.42 8 -50 All 50 - 106
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Figure 1.8. Typical wire-wrapped triangular rod bundle with some common notation: P -
pitch, D - rod diameter, Dw - wire diameter, W — edge pitch diameter [27]

More detailed flow characteristics are also studied by some experiments. Roidt [31]
investigated the pressure drops and hydraulic velocity field inside a 217-pin wire-spacer
assembly with the probes. More recently, the high spatial and temporal resolution
measurements of the pressure and velocity fields at different locations in a 61-pin fuel bundle
of MYRRHA-reactor have been performed by employing the matched-index-of-refraction
(MIR) technique to allow laser diagnostic velocity measurement techniques, especially, particle
image velocimetry (PIV) [32][33]. The recent experiments offer the validation of numeric
simulations [34].

1.3.2 Numeric studies

Modeling the flow in wire-wrapped pin bundles is still a challenging problem. Large
uncertainties exist in the treatment of wire spacers and drag models used for momentum transfer
in current low resolution (lumped parameter) models. Some traditional subchannel codes treat
the wire effects solely as an enhancement of turbulent mixing but ignore the directional cross
flow between subchannels [35][36]. Others, such as COBRA-IV [37], ASFRE [38], and
MATRA-LMR-FB [39], apply “forcing function” type models to account for the diversion flow
but are limited in their applications to certain validated conditions (flow regime, channel
geometry, or operating conditions) and rely on complex coefficients which were derived from
fitting certain sets of experimental data.

In most of the cases, the insight of the flow characteristics in wire-wrapped pin bundles is
offered by Computational Fluid Dynamics (CFD) tools. These simulations have received
extensive interest. There are three CFD approaches of different levels of accuracy for modelling
the turbulent flow: Reynolds Averaged Navier Stokes (RANS), Large Eddy Scale (LES) and
Direct Numerical Simulation (DNS). In DNS, the meshing size should be of the Kolmogorov
scales, which is proportional to 1/Re®/*. Therefore, the simulation with DNS for high Re
number is very time consuming.

RANS Studies

The principal of RANS method is to decompose the variables in to a time averaged part and a
fluctuating part, which is considered as the influence of turbulence. The main advantage of this
method is its low computational cost and time taken to have average steady state results.
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Taking the velocity v for example of decomposition:

1 t+At
vzﬂf vdt+v' =v+ v (1.3)
t

with At the time step of the temporal discretization. The Reynolds averaged Navier-Stokes
equations for incompressible flow are as follows:

Vv=0 (1.4)
ov 1 d(v/v))
(V)T = ——-VUp 2~ 77 1.5
5t + @ -V)v pr + vV 0%, (1.5)

The Reynolds decomposition of variables into time averaged and fluctuating quantities leads to
additional term — product of fluctuating velocities called as Reynolds stresses. Only the
equations for time averaged variables are simulated while the Reynolds stresses are modelled.
There are two major categories of RANS turbulence model — Eddy Viscosity Model (EVM)
and Reynolds Stress Models (RSM). The EVM is a first order turbulence model that uses the
Boussinesq hypothesis. The RSM is the second order turbulence model that solves a separate
differential transport equations for each component of Reynolds stress.

EVMs are the common used model to simulate the flow pattern in wire-wrapped fuel bundle.
Depending on the way the eddy viscosity is modelled, there exists: zero equation model like
mixing length model, one equation model based on equation for turbulent kinetic energy k, two
equations model like k-& model, k- model [40], Shear Stress Transport (SST) model [41].

Ahmad and Kim [42] and De Ridder [43] performed RANS simulations of 7- and 19-pin
bundles using the k- SST turbulent model. Natesan [44] studied with several turbulence
models (k-g, k-w and RSM) in a range of Reynolds numbers between 50000 and 150000, while
Rolfo’s work [45] is a complementary by decreasing the interested range of Reynolds numbers.
Gajapathy performed RANS simulations on 7-pin bundles using the k-¢ model [46]. RANS
calculations for 37-pin fuel bundle using k-& and k- turbulence models were presented in Rasu
[47] and Jeong [48].

LES Studies

In LES, only the large scales of motions which are carriers of energy are simulated, and the
smaller scales of motion which undergo energy dissipation are modelled using sub-grid model.
A filtering operation G is defined to filter out the turbulent scales, taking the velocity v for
example:

+00
v = J Gx —&Hv(&)déE+v" =(v)+v" (1.6)
v"" denotes the sub-grid value for the small isotropic scales, which is considered as the turbulent
effect. The LES space filtered equations for incompressible flow are as follows:
V(v) =0 .7

a(v) 1 5 0
2 T (v) - V)(v) = —;V(P) +vV4(w) + o (vidv;) — (v;v))) (1.8)

7y = (Uiv;) — (viv)) (1.9)
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The new term t is the sub-grid-scale stress tensor, which represents the transfer of momentum
due to sub-grid viscous forces. The sub-grid-scale turbulence models employ the Boussinesq
hypothesis as in the RANS models, computing sub-grid-scale turbulent stresses as shown below:

Tij — %Tkk&-j = _th<5ij) (110)
_1/0(w) a(v;)
(Sij) = E( 5%, +0_xl> (1.11)

where v, is the sub-grid viscosity, (S;;) is the filtered rate of deformation. Smagorinsky
supposed that there is no production and dissipation of energy in the sub grid and model the

eddy-viscosity by [49]:
Vi = (CsA)Z /2<Sij)(5ij) (1.12)

where C; is the Smagorinsky constant and A is the filter length.

The application of LES to the geometry of sub-assembly with spacer-wire is limited. Fischer
performed hydraulic calculation using LES method on central local region of fuel pin with a
part of neighboring pins and axial periodicity [50]. In the work of Saxena [51], the RANS
method is used at first to give information about the steady state velocity, pressure and
temperature field in the complete sub-assembly with 217 fuel pins of ASTRID type. The
information about higher order statistics of these physical quantities is then obtained by
performing LES calculation on the local region of the sub-assembly, which is of the similar
geometry as that used by Fischer.

With all the above experiments and CFD simulations, the main flow characteristics can be
concluded. As shown in Figure 1.9, the flow has two distinct region: the central flow and the
peripheral flow. In the central part, the sodium follows a helical movement along the spacer
wire whereas in the periphery the fluid rotates around the hexagonal duct wall, which is called
swirl flow. Close to the wire a wake exists, arising from the flow crossing the wire. When the
wire passes through an inter-channel connection a steady vortex is shed from the wake of the
wire. The wire additionally causes axial flow velocity variations, with a low flow velocity in
the gap between the rod and its wire, in the wake of the wire and in the vortex shed from it. To
ensure continuity the axial flow velocity is higher directly outside these regions. The increased
flow velocity zones cause coherent and steady pressure differences across the bundle.
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Figure 1.9. The velocity distribution for 19 pin sub-assembly showing (a) dimensionless
streamwise velocity and (b) transverse velocity [45]

1.4 Fluid-Structure Interaction

Understanding and modelling the interaction forces is of fundamental importance in order to be
capable of predicting the dynamic behaviors of the fuel pins under seismic loading. As the flow
described in the previous section is mainly aligned with the fuel pin bundle and the remaining
cross-flow is changing direction multiple times along the full height, the investigation of fluid-
structure interaction of the system consists of flexible cylinders in axial flow.

1.4.1 Solitary cylinder in axial flow

Many of the analytical models for slender cylinders or related structures in axial flow that are
used nowadays are mainly based on motion-induced hydraulic forces, by assuming that the
axial flow is steady and uniform, and are thus not based on the full Navier-Stokes equations.
Paidoussis [52] built a dynamic theory for a single flexible slender cylinder in axial flow, based
on Lighthill’s theory [53] which was used to deal with the inviscid force, and Taylor’s theory
[54] which was applied to get the viscous force imposed on cylinder. Later on, Paidoussis
modified his theory [55] by taking gravity into account and modifying frictional force.

The inviscid force derived F, from potential flow theory is related to the added mass M:

62 2 2
Fp=M|—+2 + U — 1.13
A (E)tz dtox E)x2> v (1.13)

where U the bulk velocity of the axial flow and w is the centerline displacement of the cylinder.
The added mass is equal to pA for unconfined flow, with p the density of fluid and A the cross
section area of the cylinder, while for a confined flow it increases as the diameter of the flow
channel decreases [56][57]. A parameter related to confinement is introduced and M = ypA.

x = (D&, +D?) /(D& — D?) (1.14)
with D, the diameter of confining channel. Experiments [55][56] demonstrate clearly that the
cylinder is greatly destabilized by confinement, which means a smaller critical velocity for the
divergence (buckling around the cylinder’s static equilibrium) of the cylinder.

The viscous forces based on Taylor’s theory, respectively in normal and longitudinal direction,
can be linearized for the small displacement by:
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Fy = = pDUC (6W+an>+1 pc, 2 (1.15)
N T PEYEN G TV ax) T 2PP R e '
1
F, =5 pDUCy (1.16)

In the expression for the normal forces, Cp governs the friction due to the movement in a
viscous medium without flow. Cy and C are the friction drag coefficients corresponding to
normal and tangential frictions. The values used for the coefficients of these forces have been
studied by many experiments, as summarized in the works of Paidoussis ([58] Appendix D and
[59] Appendix A).

However, more recent combined experimental and numerical work by Divaret [60] has found
that, contrary to expectations, (i) the normal force on a yawed cylinder is dominated by lift
rather than drag; (i) for small yaw angles, damping depends linearly, rather than quadratically
on the yaw angle; (iii) the damping rate increases linearly with axial flow velocity. These
important new results cast doubt on the validity of Taylor’s model. This work was pursued by
Joly [61], both numerically and experimentally. One important finding is that C, has a much
larger value, thus 0.11 is reported rather than 0.0125, which is habitually used [57][62].

The dynamic behavior of a cantilevered cylinder is affected strongly by the velocity of fluid
along the cylinder, as well as by the boundary condition at free end. Assuming that the cross-
sectional area is tapered smoothly from A to zero over a distance [ sufficiently short over the
total length L and the lateral velocity of cylinder to be considered constant, the boundary
condition on tapered end, if frictional and gravity effects are neglected, can be expressed as
[52][63]:

63

) MU(aW+UaW) (m+ fM) aZW—0 (1.17)
gz TIMU\Gr+Ugr) —m+ fM)xe 57 = '

where EI is the flexural rigidity, m is the mass per unit length of the cylinder and y, =
%fLL_lA(x)dx. Considerably more elaborate forms of Eq. (1.17), taking into account friction

and gravity effects, are available in the works of Lopes [58][64]. f is the parameter dealing
with the shape of the free end. For a well streamlined end, f tends to 1 and for blunter ends, f
tends to 0. Experiments [52],[65][66] have been conducted to study the effect of end shape on
the cylinder dynamics. For a cylinder with a fairly well streamed end, the onset of divergence
occurred at a certain flow velocity and when the flow velocity was increased further, a second-
mode flutter developed (oscillatory instability), while for less well-streamlined free-end shapes,
the system is more stable, i.e. the critical flow velocities for both divergence and flutter are
higher. Numerical studies [65][67] on the parametric effect on the dynamics of cantilevered
cylinder shows a reasonable agreement with the experimental observations. For most

theoretical calculations, the base drag at free end, expressed as % pD2U?C,, is related to its shape

and C, = %(1 — f) was taken arbitrarily due to the lack of refinement in dealing with the free-

end boundary conditions [58]. These works are in the context that the cylinder is of length
relatively short, de Langre [68] has then extended the similar studies into the case of a very long
cantilevered cylinder.

Studies have also been conducted on the dynamics of a cylinder in axial flow by means of
numerical simulations, utilizing CFD-CSM (computational fluid dynamics and solid mechanics)
methodologies. Liu [69] obtained solutions utilizing the arbitrary Lagrange—Euler (ALE)
framework to solve the Navier—Stokes equations. A more extensive study was conducted by De
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Ridder [43]. In the CFD part, the Reynolds-averaged Navier—Stokes (RANS) equations were
solved, with turbulence modelled by the k- model. They obtained values for the critical flow
velocities for static divergence and flutter comparable to those of experiments [70] for cylinders
with clamped ends. More recently, Ter Hofstede [71] deployed SST k- and RSM model and
found that dominant vibration frequency of the cylinder in turbulent flow matched reasonably
well with the experimental data reported in Lillberg [72]. The random pressure fluctuations
resulting from the main flows were found to be the main factor responsible for the vibration of
the cylinder. However, these two models could only capture large-scale flow structures which
were responsible for low frequency pressure fluctuations. De Santis [73], based on the SST
turbulence model, studied the dependence of the modal characteristics of a cylinder from that
of experiments. Another study was made by Lu [74] on the dynamics of a clamped—clamped
cylinder in axial flow, with special emphasis on the effect of turbulence intensity on the
dynamics.

1.4.2 Clustered cylinders in axial flow

It is obvious that there exists coupling in the motions within a cluster: when one cylinder moves
laterally, the fluid is accelerated and transverse forces are generated on the moving cylinder and
on all other cylinders.

The earliest studies have been performed by Chen [75], Paidoussis [76][77] and many others.
The hydrodynamic normal inviscid force is, instead of one added mass for each cylinder,
generalized into an added mass matrix. For a cluster of K cylinders under axial flow, it has been
shown that free motions are coupled, so that the different modes of the system are characterized
not only by the axial modal shapes of each cylinder, but also by the cross-sectional patterns of
motion involving all cylinders in the cluster, i.e. 2K modes with each flexural mode shape,
differing from one another by different cross-sectional patterns of motion. The viscous coupling
matrix was first presented by Lin [78]. The expressions of the forces are given in [58].

The modal and spectral characteristics and flow-induced vibration of four-cylinder clusters
were studied both theoretically and experimentally by Paidoussis and Gagnon [79][80][81].
Good agreement was found. The works revealed that the clustered cylinders in close spacing
lost stability by buckling and flutter at high flow velocities, similarly to isolated cylinder in an
unbounded flow, however, the critical flow velocities were much lower.

A great deal of works are devoted to the small-amplitude vibrations of clusters excited by
turbulence in the flow, in which case the flow velocity is below the threshold of fluid-elastic
instabilities, they are synthesized by Paidoussis and Curling [82]. Stochastic analytical
equations for obtaining the vibratory response of bundles of cylinders in turbulent axial flow
are presented [83]. The cross-spectral densities (CSDs) of wall-pressure fluctuations around the
circumferences of the cylinders are necessary for characterizing the excitation field (lateral CSD
of the turbulent fluid force-per-unit-length), thus the calculation of the spectral densities of the
random vibration response of the cylindrical structures. Measurements [81][84][85] of the
pressure field have been performed.

Numerical studies on a cluster of cylinders, utilizing CFD-CSM have been conducted. Liu [86]
studied the fluid—structure interaction of two- and four-cylinder clusters in axial flow with the
arbitrary ALE framework to solve the Navier—Stokes equations. De Ridder [87] generalized his
work [43] into the study of the modal characteristics of a 7-rod bundle. De Santis [88]
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subsequently studied the dynamics of two- and seven-cylinders cluster with SST k- turbulent
model.

While the works above depict the dynamics of each cylinder in the cluster, Ricciardi [89]
proposed a homogenization method, based on the Paidoussis theory, to study the global
dynamics of a Pressurized Water Reactor (PWR) fuel assembly (a cluster of cylinders with two
ends clamped). Then this work is extended to the simulations of a row of 3 fuel assemblies
separated by by-passes with axial flow [90], utilizing the model proposed in a precedent work
[91]. It is found that the coupling between the assemblies by the flow appears to be significant.

It is noted that the numerical studies are concerned with the cluster of cylinders with two ends
fixed, but the methods can be applied to the studies on the cluster of cantilevered cylinders.
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Chapter 2 Test bench CARNEAU

The fuel pin bundle in axial turbulent flow is a complex system, involving several potential
contact zones and fluid-structure interaction. In order to take all these physical phenomena into
consideration when characterizing the dynamics of fuel pins, the models discussed in the
precedent chapter will be applied. Therefore, many empirical parameters are to be determined.
The design of our test bench is inspired by the earlier experiments conducted in CEA.

2.1 Earlier impact tests on SFR fuel pins
2.1.1 Experiments of Pelloux

Pelloux was interested in the dynamics of a row of fuel pins under earthquake [92]. The tests
were conducted with fuel pin sections hung by strings on a fixed frame and enclosed in a
carriage filled with air or water. The number of the fuel pin sections and the clearance between
them are adjustable. The instrumentation consisted of two accelerometers and force sensors at
the plates on the wall of carriage, which measure the impact between fuel pins and wrapper
tube. The stiffness and damping of impact have been identified by release tests of one hanged
fuel pin section, considering it as the Newton’s pendulum. Forcing tests have also been done
with the carriage solicited by a frequency-adjustable vibrant.

In order to study the effect of clearance, experimental results have been compared with the
numerical results from a simplified mass-spring model, where the spring models the bending
of fuel pins. Numerical calculations seemed to show that the low clearance results in a greater
impact force (from 10 to 25%), but the experimental tests, due to the low acquisition frequency
and parameter uncertainties, have the difficulty in proving this phenomenon. Therefore, the
model is not representative of the real system, complete models such as the BELIER test bench
had to be conducted.

2.1.2 BELIER test bench

The BELIER tests are the impact tests on a truncated PHENIX sub-assembly in air or water
carried out between the 1989 and 1995 [93][94][95]. The impacts are measured with the release
tests against a fixed stopper stiffened in bending and in torsion by braces, making it possible to
obtain the shocks on the plates. A device consisting of a pull rod and a trigger is used to impose
the initial arc of the sub-assembly. The foot is embedded in a pedestal (instead of a ball joint
and a sliding pivot connection) and its diameter has been adjusted to obtain an equivalent
stiffness close to that of the PHENIX sub-assembly at the level of the mid-plan. The mass of
the lead sinker at the head of sub-assembly has been adjusted to have the frequency of the first
mode close to that of the actual assembly. A sensor measuring the force and displacement at
the head make it possible to quantify the energy of the impact and the deformation gauges on
fuel pins make it possible to estimate the stresses during the test.

The experimental campaign showed the very strong sensitivity of the sub-assembly to the
smallest defects, especially on the conditions of alignment of the components and on the fuel
pin clearances and the parasitic vibrations, which result in the dynamic behaviors of the model
not representative of the real system. It was difficult to conclude with the experimental results
which configuration (free or compacted) is the most restrictive.

2.1.3 CARNAC test bench
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In general, the precedent experiments confirmed the order of magnitude of the theoretical and
numerical results, they were found to be imperfect or incomplete on the instrumentation used
or on the configurations tested. A new test bench CARNAC was developed by Catterou [2] in
order to precisely understand the dynamic behavior of a fuel pin isolated from the bundle. It
was intended to carry out the release and the forcing tests with the fuel pin of different
geometries, in particular of ASTRID or PHENIX type, and with adaptable impact clearances.
As shown in Figure 2.1, the fuel pin cantilevered at its foot is placed in a vertical position in a
rigid frame. The forces of different frequencies and amplitudes are applied on the head of the
pin using a shaker. Stoppers are placed on either side of the pin to represent the pin-to-wrapper
tube and pin-to-pin contacts. The forces at each stopper are measured with force sensors and
the velocity of fuel pin are measured at pre-defined points with laser vibrometers. The
experiments conducted allowed to obtain the parameters of the impact force and also the non-
linear damping of the vibration, as explained in section 1.2.

p
O Laser sensor
Spacer wire

P> Clamping points
Deformed shape

‘ Grid embedding

Figure 2.1. CARNAC test bench and schematic representation of bending release

However, only the experiments in air can be carried out with the CARNAC test bench. In order
to obtain not only the parameters of impact force in flow, but also the coefficients characterizing
the hydraulic forces, a new test bench combing the hydraulic part should be developed. Some
earlier experiments on fluid-structure interaction can give us some inspirations.

2.2 Earlier experiments on fluid-structure interaction

Until now, the hydraulic experiments carried out in CEA are all with the PWR assemblies. The
experimental campaigns began from 1991 by observing this strong fluid damping on the full-
scale fuel assemblies [96]. The release tests were carried out and measured the assembly
displacement through plexiglass front face by camera. The confinement were adjustable by
screwing the PVC plates into the test section.

Later on, the difficulties are observed in determining the damping by the classical logarithmic
decrement method: the damping being so strong that the oscillations disappear in less than one
period. These difficulties of the release tests lead to the installation of a new experimental
device: one assembly will henceforth be subjected to a quasi-harmonic excitation thanks to a
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hydraulic jack [97], as shown in Figure 2.2. The force measurement at the level of this jack and
the laser velocimetry measurements make it possible to obtain the transfer function and
therefore fitting with the least square method to identify the fluid damping, for the first mode
[98], and even for higher modes [99].
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Figure 2.2. Schematic representation and configuration of Hermes test bench

Further experiments were conducted with the array of reduced fuel assemblies. The
COUPLAGE experiments, made of 3*3 highly reduced fuel assemblies, allowed to study
coupling force between the fuel assemblies and to outline the presence of non-negligible
interaction forces between assemblies placed on different rows [89]. To be more representative,
the ICARE facility has been designed [100]. Experimental results related to dynamical response
of one excited assembly are presented and the coupling effects between different fuel
assemblies are analyzed.

2.3 CARNEAU test bench development

Inspired by the previous experiments, a new test bench dedicated to estimate the impact forces
under axial flow and the coupling between the fuel pins will be developed. The objective of the
CARNEAU test bench is on one hand to identify a certain number of model parameters and on
the other hand to give an experimental basis to validate the modeling of fuel pins under axial
flow.

2.3.1 General description of CARNEAU test bench
The CARNEAU test bench is made up of the following main components:
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1) A test vein to accommodate one, three or six pins in a row. This vein is a rectangular case
with plexiglass portholes and entry/ exit connections.

2) A row of fake pins with fixed pellets, which were used in CARNAC tests, embedded in the
foot of the vein.

3) A hydraulic loop supplying the water flow in the vein: a pump, the flexible supplying pipes
and a temperature regulator.

4) A sliding rail allowing the horizontal mobility of the vein in the plane of the row of pins.

5) A shaker soliciting the vein in the direction of the sliding rail.

6) A spring for release tests.

7) Guidance at the top of the vein.

8) Instrument for measuring the displacement of the vein and the pins.

Experimental studies on the dynamic behaviors of SFR fuel pins have already been carried out
in air on CARNAC test bench. The CARNEAU bench will be installed on the frame of the
already existing CARNAC bench. We have carried out a preliminary design of the CARNEAU
bench, which is shown in Figure 2.3. Even though this preliminary draft does not necessarily
represent the ideal design to meet all the needs, it has offered an example to the enterprises and
to this end, the holders have proposed other technical solutions and gave a price estimation.

In this preliminary draft, six pins are connected at the foot of the test vein by a mounting rail,
this is representative of a row of fuel pins in the bundle with the wrapper tube being simulated
by the right and left walls of the vein. The number of pins applied can also be reduced to one
or three pins by screwing the blocks. The water flow, of which the temperature can be controlled,
is supplied by a pump and circulates in the vein from the bottom to the top. In this way, an
asymmetry on the water distribution can be imposed and the turbulence is well developed at the
entrance. A sliding rail is used to connect the vein to the frame so that the movement is always
in the x-z plane. The guiding pads will be installed on the upper part of the vein to prevent out-
of-plane movements.

Two types of tests will be performed: release tests with the spring, and forced vibration tests
for which the solicitation is exerted at the level of the connection between the vein and the pins.
The shaker can provide the sinusoidal signals, of which the frequency and the amplitude are
adjustable, to be representative of an earthquake.

A displacement measurement will be made through the plexiglass portholes by a fast camera
supplied by CEA. To this end, the pins will be painted black with white dots every 2 cm in the
axial direction and the displacements on these dots can be recorded and then analyzed by the
existing software to obtain the parameters for different modes.

2.3.2 Demands on different components

The CARNEAU test bench have the objective of performing hydraulic tests in water, it will
therefore be exposed to the water and to the atmosphere of the test hall. To this end, all the
components will need to resist oxidation and corrosion.

2.3.2.1  Hydraulic vein

The test duct will be integrated into the CARNAC frame, therefore the constraints on the size
and on the mechanical aspect must be respected, as detailed below. A schematic representation
of the vein is shown in Figure 2.4.
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As the vein contains water, it must be sealed up to the maximum operating pressure, 3 bar. We
propose a stainless steel case with symmetrical holes, equipped with 4 plexiglass portholes
allowing optical measurements with cameras. The portholes must be flush with the internal face
of the vein so as not to disturb the hydraulic channel. In order to have the vein enough rigid, the
number and size of the portholes should be determined by the enterprises. But it should be
guaranteed that the total height of the portholes allows the visualization of 90% the length of
pins and the width allow visualizing the displacement of six fuel pins (Lx > 65.9mm).

The displacement of pins will be measured using a fast camera through the portholes at front
face. The portholes will be installed on both the front and back faces so as to respect the
symmetry to avoid twisting movements of the vein. The maximum amplitude of the
displacement of the vein at the level of the sliding rail is of +/- 1 cm. The camera must be able
to visualize through the portholes the interior of the vein between the supports of the CARNAC
frame, the spacing of which in the direction x is 130 mm.
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Figure 2.4. Schematic representation of the vein

The vein will be designed to contain, for the purposes of the tests, different numbers of pins (1,
3 or 6) with a clearance of 0.1 mm (clearance between the spacer wire and the clad of the
neighboring pin). The maximum internal dimensions of the vein will therefore be imposed by
the maximum number of pins to be integrated (see Figure 2.5). To perform the tests with a
smaller number of pins (1 or 3), the internal dimension of the vein should be able to be reduced
via removable blocks. For the sake of contact properties, the blocks will also be incorporated
for the 6-pin configuration. The blocks and their means of fixing, whether from the top or from
the side of the vein, will be designed in order to be capable of the manual operation when
changing the test configuration. They must be fixed parallel to the internal walls of the vein,
with an ignorable clearance to avoid the disturbance on the fuel pin vibration during tests. In
all cases, the seal of the vein must be ensured.

In order to stabilize the flow, it will be necessary to maximize the distance d1 between the
supplies and the foot of fuel pins and the distance d2 between the top of fuel pins and the outlets,
as shown in Figure 2.5. The total height of the vein is however limited by the CARNAC frame:
the CARNAC supports are 2700 mm long, and the lower and upper fixing pieces are 90 mm
high, the total height of the vein with the sliding rail is therefore limited at 2520 mm.

The thickness of the stainless steel vein will be designed in order to guarantee the rigidity of
the vein during dynamic tests. The displacement at the head of the vein along the x axis is
expected to remain less than 3 mm for an acceleration of 0.5 g.

2.3.2.2 Mounting rail of the fuel pins

In a real fuel assembly, the connection is carried out by inserting the rails into a groove at the
lower plug of the pins. The rail is used for mounting the fuel pin bundle, since it makes possible
to join the pins of the same row. The embedding of the pins, being representative of the real
rail, at the foot of the vein ensures their positioning in the vein. It will be designed to be
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removable for the ease of changing the fuel pin number. Letting the pass by of the flow, the
connection with the vein will be made at the ends of the rail (in red in Figure 2.6). Respecting
the dimensions, the enterprises will be asked to make the propositions in order to guarantee the

rigidity of the mounting rail.
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Figure 2.5. Detailed views of the pre-project CARNEAU vein

2.3.2.3  Sliding connections

The vein must be free in translation in the x direction, it will therefore be connected in its lower
part to the CARNAC frame via a sliding rail (see Figure 2.3). In these pre-project studies, we
consider a ball bearing slide, shown in Figure 8. As explained in section 2.3.2.1, the amplitude
of the displacement during the dynamic tests is limited by the distance between the two supports
of the CARNAC frame (130 mm). The length of the slide must make it possible to guide the
vein in vibration in the desired frequency range (0-50 Hz) and amplitude (+/- 1 cm). If necessary,
the slide can be extended to allow removing the vein from the frame and facilitate the mounting
of the various components (pins, mounting rail and blocks). The clearance in the directions
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perpendicular to the displacement must be minimal, ideally zero, in order to limit parasitic
vibrations.

For dimensioning of the sliding rail, a force, equal to the product of the total mass (vein, pins
and water) by an acceleration of 0.5 g, is applied to the center of gravity of the vein in a 6-pin
configuration and filled with water. The force will result in a moment around the y axis. The
rotation of the vein due to deformation of the slide is expected to remain negligible compared
to the maximum deflection of the pins (0.6 mm), and therefore that the rotation of the vein
around the y axis does not induce a displacement of the pins at the level of the upper plug
greater than 0.06 mm.

The guidance will be installed at the top of the vein to limit its deflection in axis y. As shown
in Figure 2.3, they are adjustable in y and z directions. Two sliding pads will be glued to the
vein to reduce friction with the guidance.
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Figure 2.7. Ball bearing slide

2.3.24  Spring

To perform release tests with free oscillations of the vein, a spring will be placed at the lower
part of the vein, as close as possible to the sliding rail, cf. Figure 2.8. The spring should be able
to be tensioned by hand, thus a maximum spring stiffness of 15,000 N/m. For the forced
vibration tests, the spring will be removed and replaced by a shaker.
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Figure 2.9. Position of the extension rod of the shaker

2.3.25 Shaker

The forced vibration tests are performed by stimulating the vein with a sinusoidal signal of
variable frequency and amplitude using a shaker associated with an amplifier. The frequency
range will be between 0 and 50 Hz, the maximum amplitude of the displacement will be +/- 5
mm and the maximum acceleration will be 0.5g. The shaker must withstand the dynamic forces
imposed by the vein.

The rod of the shaker will be connected to the vein along the x axis at the level of the mounting
rail. Drills must be made on the CARNAC frame supports to fix the shaker, as shown in Figure
2.3. The connection between the shaker and the vein is to be well defined. The strain on the
vein should be minimized to avoid the flexion and torsion outside the xOz plane. Therefore, the
force must be directed in the x direction and centered in relation to the thickness of the vein.
The deviation of the position of the rod from the axis of symmetry of the vein should be less
than 0.2 mm, as shown in Figure 2.9.

2.3.2.6  Hydraulic loop

A hydraulic loop will be installed to perform the tests under axial flow. It consists of a pump, a
temperature regulator and symmetrical pipes at the inlet and outlet of the vein as shown in
Figure 11. In order to guarantee the symmetry of the flow distribution, the vein is here supplied
with water via four nozzles in the lower part. The water flow comes out of the vein through 4
nozzles in the upper part to go back into the pump. The inlet tapings must have an identical
pressure of +/- 0.1 bar. Sensors are installed at upper and lower part of the vein to measure the
pressure drop along the fuel pins.

The water temperature will be limited so that the components are not damaged. To approximate
the properties of sodium in a reactor, the water temperature should be adjustable between 40
and 60 ° C. Two temperature sensors will be installed respectively at the inlet and outlet of the
test vein.

The fuel sub-assembly in ASTRID reactor will experience an axial flow of approximately 25
kg/s of liquid sodium at 400°C from bottom to top [1], thus the coolant speed is around 4.56
m/s. The flow velocity of the test bench can therefore be estimated according to the Burgreen
criterion:
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where U, is the water flow speed and Uy, is the sodium coolant speed. At a given temperature,
Pne and p,, are the respective densities while uy, and u,, are the dynamic viscosities. Finally
Espr/Ecxp and Mgpr/M,,,, are the ratios at SFR operation and test temperature of the Young
moduli and the mass per unit length, respectively.

The resulting water flow speed in the testing temperature range is as shown in Figure 2.10,
which yields a lower Reynolds number (around 3 x 10%) comparing to that in the ASTRID fuel
sub-assembly (5 x 10%). It is not of much significance on the turbulence intensity, since we are
working in a fully developed turbulent flow region. A flow meter will be installed in the circuit
to control the flow velocity according to the temperature.
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Figure 2.11. Water flow speed at test bench temperature

2.3.3 Experiments anticipated and difficulties encountered

As described in Section 1.3, the flow is mainly aligned with the fuel pin. However, the existence
of spacer wire complicates the flow pattern: the remaining cross-flow is changing direction
multiple times along the full height. This arises the difficulty in the investigation of local fluid-
structure interaction of the fuel pin. However, the global parameters associated with the
numerical model, which will be introduced in the following chapter, can be determined with
the experiments.

In order to obtain the empiric parameters of the hydraulic forces and of the impacts, it is
anticipated to perform the experiments in air, in still water and in water flow of different speed.
As inspired by the previous experiments [97], the quasi-static (very low frequency) and sweep
sine excitation are applied by the shaker. The modal analysis [101] is performed in each case
to obtain the respective eigen frequencies and damping ratios. This allows to identify the global
parameters, which take the effect of spacer wire on hydraulics into consideration.

Unfortunately, we were not able to perform the experiments as a result of the budget limitation
and the difficulty arising from the health crisis.
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Chapter 3 Dynamics of fuel pins: direct time-integration analysis

3.1 Numerical model

The objective of this section is to establish a numerical model to better understand the effect of
fluid-structure interaction and of the impacts on the dynamics of the fuel pin.

The numerical simulation with finite element method for modelling the impacts in air has been
discussed by Catterou [2]. Errors with different types of elements have been estimated with the
static calculation of the displacement at the center of a pipe placed on four supports subjected
to a distributed loading. With the dimensions of the ASTRID fuel pin, the choice of using
Bernouilli beam elements associated with particular impact laws, which takes the ovalization
into account is satisfying.

Given that the fuel pin can be modelled as the Euler-Bernouilli beam, the fluid related effects
can be integrated as the hydraulic forces that the axial flow exerts on the slender body, whose
expressions are proposed by Paidoussis [58]. The local phenomena are globally accounted for
in the coefficients of the fluid-elastic model.

3.1.1 General formulation of a cantilevered cylinder in confined axial flow

Under the assumption that the flow velocity is perfectly axial, uniform and steady, the random
excitation by turbulence is neglected as the fluctuations from turbulent fields introduce
perturbations on the limit cycles of the system, without altering its underlying dynamics [102].
This means that, for fixed parameter values, the number and nature of coexisting attractors is
unchanged by turbulence. A summary of the Paidoussis model for a vertical hanging cylinder
is given below, focusing on the force balance which leads to write the equation of motion for a
cylinder in axial flow.
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/ Zoo
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(Fy+ Fy) dx
{a) mg{'h' ()

Figure 3.1. (a) An element 6x of the cylinder showing forces and moments acting on it; (b) an
equivalent rigid element surrounded by fluid

The forces and moments acting on an element 6x of the cylinder undergoing small oscillations,
w(X, t) are shown in Figure 3.1(a), where F, represents the inviscid hydrodynamic force, Fy and
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F, are the viscous forces per unit length in the normal and longitudinal direction respectively.
F,. and F,,, are the hydrostatic forces in the x and y direction, Q is the lateral shear force, M the
bending moment, T the axial tension, and m the mass of the cylinder per unit length. Hence, the
equations of motion in the x and y directions may be written as:

oT ow

T TG+ Ft (Fy + F) 5o = Fpe = 0 (3.1)
00 0 [ ow ow 0w
9% _ (2 AL 4 3.2
o (Fy +F) +E,, + e (T 6x> +F oo =mos (3.2)

where the fact that w and its derivatives are small has been utilized; the inertial forces in the
axial direction are of second order of magnitude for small lateral motions of large wavelength
and have been neglected. Similarly, the effects of angular acceleration of the element are
neglected and, by elementary Euler—Bernoulli beam theory, we have:

_ o9 (9w 3
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Where ET is the flexural rigidity. In order to determine the forces F,, and F,,, (resultants of the
mean pressure p acting on the external surface of the element), we can consider Figure 3.1(b)
which represents the element of the cylinder momentarily frozen and immersed in fluid on all
sides. The resultant of all the forces is known to be the buoyancy force and, by assuming that
the pressure is a linear function of x, we can write:

opd) 6'+[F a(AaW)]a'— j@ dA = MVdV— P )i
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Where A denotes the cross section area. Hence,

dp d(pA) 0 aw
Fox = 50 = Fov = 3 (P 55) (34
For a cylinder of uniform cross section, F,, = 0.
Substituting now equation (3.4) into equations (3.1) and (3.2), one obtains:
9] dp adw
— -2 — = 3.5
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By integrating (3.5) from x to L, which denotes the total length of the cylinder, and combining
it with equations (3.6) and (3.3), one obtains:
4 L 2
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op _ow 92w 3.7)
dx mﬁ
For a cylinder in confined flow, the pressure drop is closely related to friction forces exerted on
the cylinder and on the flow channel. Considering a fluid element 6x of overall flow area Ach,

one has approximately:

=0
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d YiS+S
Aot = B ==~ A g (3.8)
Where the lateral surface of the cylinder is S and the lateral surface of flow channel is S, p is
the density of fluid. Recalling the expressions of the hydraulic forces for small lateral motions
(1.13) — (1.16):
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Consider next the term (T + pA), in equation (3.7), for the case where the cylinder is free at X
= L. Recalling that the pA terms arise from the pressure on the sides of the cylinder, and
considering a slice of the cylinder at x = L, one obtains T, = —p,A, where p,, is the base
pressure, hence (T + pA), = (p, — pp)A. Since p, < p, generally, this is something like form
drag, more accurately referred to as base drag, which may be expressed as:

1
(T + pA), = EpDZUZCb (3.9)

Therefore, by substituting equations (3.9), and (1.13) — (1.16) into equation (3.7), after some
manipulation the equation of small lateral motions of the cantilevered cylinder is obtained as:

E164W+ A g +Ua 2
ot TAPAG T UGD W
1 D 1 2w
—{[(m—pA)g +—pDU2CT<1 +—)]-(L—x)+—pD2U2Cb}—
2 Dy, 2 dx? (3.10)
+1 DUC <6W+an>+1 DC aW+[( A) +1 DU%C D]aw |
2 PPV g TV gy ) T2 PP e T T PG TR PETET D | ox
2
_=0
+m6t2
4Acn

Where D, = is the hydraulic diameter.

XjS+Scn
3.1.2 Boundary conditions

For a cantilevered cylinder fixed at x = 0, there is no displacement nor rotation, the boundary
condition can be expressed as:

w(0,t) = w'(0,£) = 0 (3.11)
At the free end, it is assumed that the cross sectional area tapers smoothly from A to zero over

a distance [ sufficiently short over the total length L, so that w and the lateral velocity (% +

U ;—x)w may be considered constant. This requirement allows the forces acting on the tapered

end to be lumped and considered in appropriate boundary conditions [63]. Equating the lateral
shear and inertial forces to the rate of change of lateral momentum over the tapered end (L —
l <x <L), and neglecting frictional and gravity effects, the boundary condition can be
expressed as:
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Where y, = %fLL_lA(x)dx and M = ypA. The parameter f, which is equal to unity for slender-

body inviscid flow theory, has been introduced because the theoretical lateral force at the free
end may not be fully realized as a result of boundary-layer effects. Accordingly, f will normally
be less than unity [63].

Lopes [64] has then gave a more careful deviation, taking into account gravity and friction
effects:

23w ow ow 0w 0%*w 2w
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Where 7; = = [*, D(x)dx.

It is understood, of course, that [ /L « 1, so that the boundary conditions may be considered to
apply at x = L. Furthermore, to first order, it may be assumed that the bending moment at the
free end is zero, so that:

w'(L,t) =0 (313)
3.1.3 Model for ASTRID fuel pin subjected to an earthquake

The earthquake is often taken into account as a sinusoidal acceleration imposed on the reactor.
Transforming to the non-inertial reference frame which follows the global vibration, the fuel
pins are considered to be subjected to an acceleration opposite to the sinusoidal acceleration
induced by the earthquake, thus the fictitious inertial force is modelled by a load uniformly
distributed along the cylinder’s span q(t) . The external force results in the relative
displacement between the fuel pins and between the fuel pin and the wrapper tube, as described
in section 1.2.1, and thus generates the impact forces at all potential contact points, of which
the set of coordinates is defined as x. = {xcq, X2, -+, X, }- The impact at each contact point is
computed as:

_ max(k.(w(x.;) — d),0) if iis pair
vi € [1,nc], Fe(xer) = {min(kc(w(xa-) +d),0)if i is odd
Where k. denotes the contact stiffness and d is the clearance between the fuel pin and the
contact point. The energy losses resulting from impacts and the squeeze film effect [103] is
difficult to be quantified. The damper is lumped with that of the pellets and will be accounted
for by a structural viscous damping, often modelled as a Rayleigh damping.

(3.14)

Therefore the fuel pin is subjected to a total external force expressed as:

Fext(x, 1) = q(t) + F,(W)6x (%) (3.15)
Where &, (x) = {(1) Z:ﬁ ; iz

Furthermore, the axial flow circulates from bottom to top in ASTRID fuel assembly, small
modifications on the equation of motion (3.10) should be made to adapt to the studied case:
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3.1.4 Method of solution

The equations of motion to be solved in structural vibrations result from the finite-element
discretization of the continuous expression of dynamical equilibrium. They are sets of
nonlinearly-coupled, second-order, ordinary differential equations whose analytical solutions
are generally impossible to find. Hence, numerical methods are fundamental in investigating
their dynamic behavior. The finite element formulation of (3.16) is developed with the principle
of virtual work:
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Applying integration by parts on the first term of (3.17):
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We denotes the deviation with respect to x by ’ and that with respect to t by . Since we
have the boundary conditions sw(0) = éw’(0) = 0 and w"'(L) = 0, hence
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Where §(x — L) is the Dirac’s delta function. By combining (3.12b) and (3.18) into (3.17), the

weak formulation becomes:

L L
f 5W”E1W”dx+f
0

0

Sw ({)(pAUZ - EpDUZCT (1 +2) —(m —pA)g] (L —x)

1 62 1 , 1 , aw
20040 Y 4 (1 DUC +1 Dc)a LA
XP. axot p N pULp ot m T Xp. otz X

(3.19)

N fL U (6W N U6 ) 0%w - azw azw
SO TIMUN G+ UG ) Mo P M G TV Gax )| e
ow ow

1pDUCN( U—);Te> 5(x — L)dx

2 _
+[2”DU Crp—m— ”A)g]a Xet s ot TVoax

= f OWF,,.dx
0

The equation (3.19) is discretized with Bernouilli beam element of two nodes by cubic Hermite
interpolation. Applying the procedure detailed in appendix A, and take into the structural
damper modelled by the Rayleigh damping:
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Cr=aM,+ K (3.20)
we obtain the following general form of the second order ordinary differential equation:

(Ms+M)X+ (Cr+CHX + (Ks+ Kp)X + F. = Fr e ()Q (3.21)
Where X is the generalized coordinates.

3.1.5 Assessment of the finite element method with a stability analysis

In the literatures [58][64][68], the stability analysis is usually performed with the dimensionless
formulation.

In order to render the linear partial differential equation (3.16) and the boundary conditions (eq.
(3.12b) and eg. (3.13)) dimensionless, the following relations are used:
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The equation of motion and the boundary conditions for a cantilevered cylinder are thus
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xe (Gecru?h—y)y' =0
The dimensionless form of equation (3.21) can be obtained with the same procedure. The
stability analysis is performed by converting it into a set of first order ordinary differential

equations ¥ = AY with ¥ = [ﬂ and A written as:

0 1

A= [—M-lK —M-1C

The eigenvalue problem is finally solved using MATLAB code for eigenvalues A of matrix 4,
which correspond to the dimensionless complex frequencies w (iw = A1) of the cantilevered
cylinder. The imaginary part of w, Im(w) represents the damping, whereas the real part Re(w)
represents the dimensionless oscillation frequency.

Implementing the dimensionless parameters used by Paidoussis [55], which are § = 0.5, ecy =
ecr=1,f=08,xy=1,x,=0.01and ec =c, = h =y = 0, the Argand diagram for the
first three modes at dimensionless velocity, u ranging from 0 to 9 is as shown in Figure 3.2. The
calculation with our code is in good agreement with the results obtained with the so called
‘extended Galerkin method’ by Paidoussis.
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Figure 3.2. Argand diagram of the complex frequencies of the first three modes (a)
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Figure 3.3. Dimensionless oscillation frequency and damping of the first three modes as
function of u

From Figure 3.3, it is observed that cylinder motions caused by perturbation are damped at
small u. At sufficiently high u, the cylinder first loses stability by divergence in its first mode,
via a pitchfork bifurcation, at ucrd1 = 2.042. The symbol cr represents the critical value for the
onset of instability, d stands for static divergence and 1 represents the first mode shape. The
system then re-stabilizes at us1 = 4.965, and then loses stability by second mode flutter, via a
Hopf bifurcation, at ucrs2 = 5.173 with a corresponding dimensionless frequency 10.47.

3.1.6 Time integration scheme

Numerical time-integration techniques are fundamental in capturing transient behavior of
dynamical systems. There are two categories of integration schemes: the explicit schemes for
which the position at moment t depends only on the data at the preceding moments, and the
implicit schemes, for which the calculation of the position at moment t is carried out by iteration



34 Dynamics of fuel pins: direct time-integration analysis

until a convergence criterion is reached. In general, explicit schemes are more suitable for
dealing with contact problems because they allow faster calculations and turn out to be stable
when the calculation time step is small enough. But implicit schemes are sometimes used to
solve contact problems when it is preferable to use a larger time step [104][105].

The most widely-used method in structure mechanics is the Newmark family:

Xn+1 = Xn + At[(l - V)X + VXn+1]
At2 (3.26)
X1 =X, +AtX, +— [(1 —Zﬂ)X +28X41]

Catterou [2] in his study has taken § = 0 andy = 5 L to obtain an explicit Newmark scheme,

called ‘centered difference’. This scheme is conditionally stable, a calculation time step too
large or a non-linearity too strong can lead to accumulating errors.

It is unconditionally stable by choosing % <y <2B.Whenp = i andy = % we obtain the

implicit scheme called "average acceleration”. Therefore, a larger time step compared to the
explicit one can be used thanks to the Newton-Raphson iteration. By defining the notation (k)
as the iteration counter, the position of the next iteration is calculated by adding the difference
between successive iterations AX:

t+ALy (k) — Ax (k) 4 t+Aty(k-1) (3.27)

The acceleration and velocity of the next iteration “*4:¥®) and *4:x(®) can therefore be
calculated by replacing (3.27) into (3.26):

2 2
tHALG(K) _ 2 (t+btyp(k) _ ty) _ ty _ 2|4 reratp) _ ty) .ty ty| oty
X\ = X X = X X X X X
ac( ) i ac ) ]
4
t+Aty (k) _ ty) _ f ty  ty
X X X X
Atz( ) At (3.28)
4 (k) t+Atx(k 1) tX 4 tX t)'(' .
= —AX oty _
— %AXUC) + t+AtX(k 1)

t+At (k) zi(t+AtX(k) — ) - % =£AX(") +£(t+AtX(k—1) — )t
At At At (3.29)
2 .
— _AX(R) + t+AtX(k—1)
At

By replacing (3.28) and (3.29) into (3.21), we obtain:

Mt+At)'('(k—1) +Ct+AtX(k—1) +Kt+AtX(k—1) +Fc(t+AtX(k—1)) +< 4 M +£C+K+K) AX(k)

At? At
t+At
Fext
Where K = and the residue is evaluated by:
R(t+AtX(k)) — t+AtFext — MEHALR ) _ Ct+AtX(k) _ gAY (O _ Fc(t+AtX(k)) (3_30)

AX ™ can be calculated by solving the linear equation:

4 2
(Atz M+ =CHK+ K) AX1) = R(F+arx k-1 (3.31)
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There exist three convergence criterions, respectively on displacement, on impact force and on
energy, as listed in Table 3.1. We adopt the criterion on impact force in our study.

Table 3.1. Convergence criterions and respective comments

Criterion Comment
For the cases where the
[ax®| displacement evolves
Displacement W <e€p slowly dyriqg the iteration,
2 the criterion could be
satisfied with a bad result.
. In the case where the
+ . .
IR(“FAx @), contact point is soft, a
Impact force < €p||" A Fone — Fo( 'X) small error in the force
-M X -C'X-K X, could lead to a large
deviation in the
displacement.
This criterion is complex
)T pt+aty (k)
A" R(THx ) r but the most commonly
Ener < eg [AX SO (i used, since it contains
9y —F(X)-M%E-cX information on the
_K tX)] displacement and also on
the force.

3.2 Parametric study

As explained in Section 2.3.3, the investigation of the fluid-structure interaction of ASTRID
fuel pin can be performed, basing on the model of bare cylinder in axial flow introduced above,
since the effect of spacer wire on the hydraulics is lumped into the global coefficients
determined by the experiments. In consequence, the spacer wire is considered only as the
potential contact points.

Without the results from experiments, the coefficients can be estimated with some models
previously derived [52][106] and empirical findings [66][107][27]. In order to understand the
effect of hydraulic forces, studies of the force coefficients on the eigenfrequencies and damping
of the ASTRID fuel pin will be carried out. The eigenfrequencies of fuel pin in air are calculated
as a reference.

3.2.1 Flexion of fuel pinin air

By neglecting the flow density (p = 0), equation (3.16) is reduced to the motion equation of
the flexion of fuel pin in air. The effect of pellets are taken into consideration by an added mass
in the pellet span and also by a viscous damping, modelled by eq. (3.20).

With an eigenvector ¢; of My 'K and the associated eigenvalue w,;?, the corresponding
damping ratio ¢; is calculated by:

) Pl Crpy  ap] Mg + B Ksp;
SO0 T TG M

= (a+ B wyi?) (3.32)
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By taking the damping ratio for the first two modes equal to 3% [2], the eigenfrequencies f; =
fo.i /1 — &7 and damping ratios of the first six modes are listed in Table 3.2. It shows that the
effect of damping become more important with higher modes.

Table 3.2. Eigenfrequencies and damping ratios of the first six modes of flexion of ASTRID
fuel pin in air

N° mode 1 2 3 4 5 6
Frequency (Hz) 0.89 6.65 22.87 44.20 67.32 98.18
Damping ratio 3% 3% 9.23% 17.91% | 27.89% | 43.31%

3.2.2  Flexion of fuel pin in still water

According to equation (3.14), the only coefficients engaged are the coefficient related to the
confinement y and the zero-flow normal coefficient C,,. The end-shape parameter f also plays
a role on the boundary condition. Hannoyer [66] proposed the expression of f as:

4)(32
=2 3.33
f 4y,% + D? ( )

With the geometrical parameters of ASTRID fuel pin, we obtain f ~ 0.3.

The drag coefficient for a long cylinder oscillating in quiescent viscous fluid has been discussed
[58]. The viscous force per unit length is found to be given by:

F = — Cywphw (3.34)
Where C, is a drag coefficient. Comparing with F = %pDCDW, a correlation between C; and
Cp is obtained:

T
Cp = (E)D“’Cd (3.35)
Sinyavskii [106] derived the expression for Cd as:

o 2V2 1+y,°
4T Vst (1 -y)?
2
Where y, = Dﬂ is a confinement parameter, being related with y by y = 1+—:2 And St is the

(3.36)

1_
Stokes number expressed as:

= 3.37
St=—- (3.37)

Where v is the kinematic viscosity. w can be determined as in the previous sections. Therefore,
The iterative solution starts by considering an initial guess for Cp equal to zero. w is calculated
and then substituted in eq. (3.37) to calculate St. Hereafter, egs. (3.36), (3.35) are used in order
to get the new value of Cp. The iteration is repeated until a converged value of Cj, is obtained.

Preliminary parametric study has been carried out with the linear model by taking the
parameters of ASTRID fuel pin. The effect of confinement on the zero-flow normal coefficient
is as shown in Figure 3.4. When the system becomes more confined, Cj increases, leading to
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an increasing damping. The increasing confinement also results in a more important added mass.
In this case, the effect of C, on the eigenfrequencies and corresponding damping ratios is
illustrated in Figure 3.5. The eigenfrequencies of the first two modes decrease and the damping
ratios increase, while the damping ratio of for the third mode can decrease with an increasing
eigenfrequency. It means that the effect of added mass is more important.

In our study, the confinement parameter y = 3 and Cp = 0.11, which results in a ¢ =

1
%(%)2 LCp =~ 0.01. Paidoussis [58] recommended that for metal cylinders ¢ = 0.008, of the

same order of the magnitude with our result. The resulting eigenfrequencies and the damping
ratios are as listed in Table 3.3.

Table 3.3. Eigenfrequencies and damping ratios of the first six modes of flexion of ASTRID
fuel pin in confined still water (f = 0.3,y = 3 and Cp = 0.11)

N° mode 1 2 3 4 5 6
Frequency (Hz) | 0.76 5.33 16.68 30.99 50.72 74.01
Damping ratio ¢ 9.86% 3.69% 7.25% 12.73% | 20.78% | 31.60%
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Figure 3.5. Effect of Cj on the eigenfrequencies and damping ratios of the first three modes
of flexion of ASTRID fuel pin in still water

3.2.3 Flexion of fuel pin in water flow

By fixing the value of f, y and Cp, the longitudinal and normal viscous coefficients Cr and Cy
along with the base drag coefficient C, are to be discussed in the case of water flow.

In many previous works [64][68], ¢, = %Cb is roughly estimated to be equal to 1 — f in the
case of tapered end. Paidoussis [65] has conducted further experiments by having part of the
tapered end lopped off, and found that f was only slightly reduced but c;, became substantially

higher as a result of the flat end, which is the case of the ASTRID fuel pin. Therefore, ¢, should
be greater than 0.7 in our case, which proposed by Hoerner [107] is approximately 0.82.

The estimation of C; is carried out with the empiric formulation of the pressure drop along the
flow channel. The pressure drop due to friction is expressed as:

1 L
Ap = EpUforicD_h (338)

Where L is the tube length, D, the hydraulic diameter of the flow channel. Relating with eq.

(3.8), where if the gravity is neglected Ap =~ pDU2Cr— ‘;LTD), a correlation between f;,. and Cr
h

is obtained:

T
Cr = foric (3.39)
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Friction factor for the wire-wrapped fuel bundle in the simplified Cheng-Todreas model [26] is
calculated based on the following correlations:

_ G
ffriC - Re 018

o

(3.40)

1.78—25
D

Where H is the helical pitch and P is the fuel pin pitch. With the geometrical parameters, f,.;

is estimated to be equal to 0.023, which is in the range proposed by Paidoussis (0.01-0.025).

H H 5 P 97 H
Crr = (0.8063 — 0.9022log (5) + 0.3526(log (5)) ) X (5) ' ( )

The estimation of Cy is quite difficult, and the uncertainty on Cj, is also transferred to it as we
adopt the estimation procedure in the previous section while the flow patterns for an oscillating
cylinder in quiescent fluid and in axial flow cannot be very similar [58]. Ortloff [108] suggested
that the physically realizable range for cy is governed by 1/2 < cy/cy < 2, where ¢y /cp = 2
holds for smooth cylinders and cy/cr = 1/2 for very rough ones. Some very careful
experiments have been conducted [57], using clamped-clamped and cantilevered rods in axial
water-flow, excited electromagnetically, with the vibration being sensed optically and cy was
found to range between 0.025 and 0.103. The effect of Cy is studied by taking its value of
different order of magnitude. The results are as listed in Table 3.4, it is observed that the effect
of Cy is noticeable for the first mode and becomes much less important for the higher modes.
Given the results, even though it is not usually realistic, it is acceptable to suppose Cy = Cyr as
in some previous works [52][55].

Table 3.4. Eigenfrequencies and damping ratios of the first four modes of flexion of ASTRID
fuel pin in confined water flow of 5 m/s with different Cy

Cn fi(Hz)/ §3 fo(H2)/ &, f3(Hz)/ &3 fo(Hz)/ §,
0.004 0.81/ 27.6% 5.40/ 7.93% 16.75/ 8.82% | 31.06/ 13.56%
0.01 0.82/ 28.9% 5.40/ 8.25% 16.75/8.95% | 31.05/13.63%
0.02 0.84/ 31.6% 5.40/ 8.95% 16.74/9.25% | 31.05/ 13.79%
0.04 0.86/ 35.0% 5.41/9.86% 16.74/9.64% | 31.04/ 14.00%

0.1 0.91/ 45.5% 5.41/13.05% | 16.73/11.02% | 31.01/ 14.73%

3.2.4 Summary

In this part, due to the lack of experimental data, an estimation of the coefficients in our model
based on the previous theoretical and experimental studies has been performed. Their effects
on the eigenfrequencies and the damping ratios of the cylinder have been estimated in air and
in water.

A first study in air showed that Rayleigh damping, which accounts for the energy losses due to
the impacts and the existence of pellets, acts mainly on higher modes with a weak effect on
lower modes. This implies that bending waves that can be generated by the impacts will be
damped quickly. In still water, the main influence on the system is brought by the added mass
of fluid. The study in water flow showed that the effect of the viscous hydraulic forces is mainly
on the first mode of the system.
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3.3 Temporal results

In the following, the temporal simulations will be conducted with the parameters determined in
the above section. The effect of contact will be taken into consideration. The dynamic responses
of the fuel pin to the sinusoidal external accelerations of different frequencies and amplitudes
Ayt are studies. The range of amplitude for an ASTRID reactor with seismic isolator is 0 <
aore < 3m/s?(0.3g)and we are interested in the range of frequency which includes the first
two eigenfrequencies, thus 0.4 Hz < f,,, < 6 Hz.

3.3.1 Fuel pin with one contact point at half-length

clearance
i
i

|

i

Contact
point

T

Water flow [
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ﬁ excitation

Figure 3.6. Fuel pin with one contact point at half-length under flow

In order to understand the effect of the impact, the study starts with a less strong nonlinear case,
where only one contact point is introduced at the half length of the fuel pin, as schematized in
Figure 3.6.
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Figure 3.7. Motional spectrum of the fuel pin with one contact point with different amplitudes
of the external acceleration (a,,; = 0.02, 0.03, 0.05, 0.1, 0.3 and 1 m/s?).

When the fuel pin is subjected to an external acceleration, it finally reaches a steady-state
vibration after the transient behavior dies out. Figure 3.7 shows the variation of the normalized
amplitude, which is defined as the ratio between the amplitude of the steady-state vibration and
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the amplitude of the external acceleration, with the external frequency. When the external
acceleration is too small to have the impact happens, we are in the linear case. A resonance
peak is observed on the motional spectrum. The first impact happens with an acceleration equal
to 0.03 m/s?, a slight offset of the resonance peak is observed. Going beyond this value, the
resonance peak splits into two peaks around the resonance frequency. As is shown in Figure
3.8, multiples of f,,; occurs in the temporal response in the two-peak region. Similarly for the

second resonance peak corresponding to the second eigenfrequency of the fuel pin, the
nonlinearity is interpreted by this vibration pattern.

Another type of nonlinear response due to a bifurcation of period-doubling is observed in Figure
3.9 with f,,; between the two resonance frequencies. The period-doubling cascade was
reported in many literatures [109] as a common route by which nonlinear dynamical systems

develop chaos, even though in the range studied of a,,; the temporal response of the fuel pin is
always periodic.
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Figure 3.8. Temporal response and corresponding Fourier transformation of the fuel pin with
one contact point (a,,, = 1m/s?and f,,, = 0.68 Hz)
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Figure 3.9. Periodic response of the fuel pin with one contact point (a,,; = 3 m/s?
and f,,: = 3 Hz)
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3.3.2 Fuel pin with several contact points

In this section, we are interested in a more realistic case. The spacer wire is taken into account
as a periodically distributed contact points along the fuel pin span. The schematic contacts
between a fuel pin and the wrapper tube is as shown in Figure 3.10.

Half of

Water flow [ helical pitch

Sinusoidal

ﬁ excitation

Figure 3.10. Fuel pin with contact points modelling the spacer wire

As there are more potential contact points, the nonlinearity of the system is stronger and we
observe more complex dynamic behaviors of the fuel pin. Besides the linear zone where no
contact happens during steady-state vibration, two types of nonlinear periodic responses are
observed. A rough classification of the responses to the excitation of different accelerations and
different frequencies is as shown in Figure 3.11. It is “rough” because the computation is not
exhaustive (the separation lines are obtained with some sample points) and the transition
between the periodic response and the chaotic response is quite vague. We distinguish them by
the Fast Fourier Transform of the temporal evolution of the displacement at free end: the
periodic response presents clear spectral peaks, like the cases shown in Figure 3.14 and Figure
3.15a, whereas the chaotic response presents a large bandwidth of the peaks due to noises and
even the occurrence of a peak at f ~ 0 Hz, as shown in Figure 3.15c. The change is sometimes
not that sudden at an exact value, but sometimes it is with noises of greater and greater level
that the periodicity becomes less and less obvious. Anyway, we can have a fair idea of the
different dynamic responses.

In fact, the dynamic response of a fuel pin against repeated impacts is composed of a global
behavior, of which the period is of the order of that of the excitation, and the local chatters in
much smaller time scale. Here, the local chatters mean the repeated impacts and rebounds in a
short time interval. The local behavior is very sensitive to the choice of the impact law and
numerically sensitive to the time integration scheme and the time step. As a result, the strict
periodicity is only observed in a very limited range ( a.4: Not much greater than the linear level),
in most cases what we obtain is a “globally periodic” response, where the periodicity of the
global vibration is clear but the chatters can differ from period to period. These chatters are the
origin of the noises observed in the spectrum. It is concluded that the global dynamic behavior
of the fuel pin under excitation is relatively simple in our studied range and the complexity is
mainly due to the local vibrations. In the following, the qualitative description of the
phenomenon relative to impact will be given with some particular cases.
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Figure 3.11. Classification of the vibration patterns in the investigated range of a,; and f,;

It is observed that with a low external frequency (f.,: < 2Hz), the dynamic responses are
always globally periodic. In this case, the fuel pin vibrates from right to left remaining "stuck™
with the contact points (see Figure 3.16(a)), the chatters generated by the impacts are damped
during the “sticking” procedure. With an increasing a.y, the chatters become more and more
important and result in the non-periodicity due to numeric sensitivity. Analyzed with the Fourier
transform, the temporal responses contain the multiples of f,,. The odd multiples are generally
more weighted, as shown in Figure 3.12.

When the frequency becomes higher, the periodic vibrations with sub-harmonics happen, as for
example shown in Figure 3.13. Apart from the imposed frequency and its multiples, a sub-
harmonics of half the imposed frequency along with its multiples occur. There exists also
periodic vibrations with sub-harmonics of other frequencies, like one third the imposed
frequency, as shown in Figure 3.14. In this case besides the “sticking” contact with chatters,
alternately during separation at free end, the impact-induced flexural wave travelling along the
beam is strong enough to cause another contact at the points around half-length and results in a
rebound (see Figure 3.16(b)) at free end without being stuck. This appears to be the origin of
the sous-harmonics, thus results in the period-doubling bifurcation.



displacement at free end (m)

displacement at free end (m)

0.57T

-1.6

44 Dynamics of fuel pins: direct time-integration analysis

%10 <108

sticking

]
e

—
—
——
—

)

(4]

harmonics amplitude (m

-1r Lh h hh =
1k ,
18 o LY ) SV W
2 4 6 8 10 12 14 16 18 2

0 2 4 6 8 10 12 14 16 18 20

ts) f (Hz)

Figure 3.12. Temporal response and corresponding Fourier transformation of the fuel pin with
contact points modelling the spacer wire (a,,; = 3 m/s?and f,,; = 0.8 Hz)
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Figure 3.13. Temporal response and corresponding Fourier transformation of the fuel pin with
contact points modelling the spacer wire (a,,; = 0.25m/s?and f,,; = 2.6 Hz)

With the case where the frequency was imposed at 3 Hz, the transition between the periodic
behavior (Figure 3.15a) and chaotic behavior (Figure 3.15b) can be observed. The chaotic
behavior results from a random alternation of the two mechanisms, “sticking” and “rebound”,
at contact points. With a.; increases, the dynamic behavior of the fuel pin is chaotic due to
the sub-harmonics and their multiples (Figure 3.15c). As for the phenomenon of the vibration,
the chaotic behavior is mainly caused by the mixing of different “rebounds”. Finally, a re-
stabilization is observed beyond the chaotic zone (Figure 3.15d). This phenomenon can only be
observed at an external frequency relatively low.

0
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Figure 3.16. Vibration patterns of (a) “sticking” contact; (b) “rebound”

3.3.3 Six fuel pins in a row

The study now involves a row of 6 fuel pins with 120 pin-to-pin contact points and 24 pin-to-
wrapper tube contact points, as schematized in Figure 3.17. This preliminary simulation does
not take into consideration the coupling by the flow between the fuel pins, which means that
the motion equation of each fuel pin is the same and only the impacts due to the relative
displacements are modelled.

Figure 3.17. Schema of a row of six fuel pins with 144 contact points

We can observe that the dynamic responses to an imposed frequency equal to 4 Hz are always
globally periodic in the investigated range of the amplitude, the periodic response with a,,; =
3 m/s? is shown in Figure 3.18(a). Furthermore, when the frequency of the excitation is 6 Hz,
the periodic behavior can be observed until a,,, = 1.5 m/s?(Figure 3.18(b)). In the sense that
the chaotic response arrives with a greater amplitude and a higher frequency of the excitation,
it can be concluded that this system is less nonlinear comparing with the fuel pin with several
contacts. This difference of behavior can probably be explained by the fact that a row of fuel
pins is less constrained in space than a single pin.
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Figure 3.18. Temporal responses of six fuel pins in a row: a) globally periodic response with
foxt = 4Hz and a,,; = 3 m/s?; b) periodic response with f,,, = 6Hz and a,,; = 1.5 m/s?

3.4 Conclusion

In this chapter, the model for analyzing the dynamics of the fuel pin with contact points and
under earthquake has been constructed, basing on the model of hydraulic forces in axial flow
proposed by Paidoussis [58] and the impact law taking the ovalization into account [2]. The
numeric method consists in the finite element method with the 2-node element of Bernouilli
beam with the cubic Hermite interpolation, the implicit Newmark scheme which is carried out
by Newton-Raphson iteration until a convergence criterion on force is reached.

Due to the lack of experiments, an estimation of the coefficients in our model has been
performed based on the previous theoretical and experimental studies [27][52][66][106][107].
Their effects on the eigenfrequencies and the damping ratios of the fuel pin have been evaluated
in air, in still water and in water flow.

With these parameters, the analyses on the nonlinear responses of the fuel pin have been
performed. For the fuel pin with one contact at half-length, the motional spectrum with different
excitation amplitudes is obtained, and the different nonlinear vibration patterns, of multiples of
imposed frequency and of period-doubling, have been identified.

For the fuel pin with several contacts modelling the spacer wire, a rough classification of the
vibration behaviors has been conducted in the investigated range of the acceleration and
frequency. It is found that the global dynamic behavior of the fuel pin under excitation is
relatively simple in our studied range and the complexity is mainly due to the local chatters in
much smaller time scale. The periodic behavior composed of multiples of the imposed
frequency, which corresponds to the “sticking” contact, and the one identifying the sub-
harmonics, which corresponds to the “rebound” are observed. The transition to chaotic response
has been figured out, being due to the random alternation of the “sticking” contacts and the
“rebounds”. Another type of chaotic response caused by the mixing of different sub-harmonics
is also observed with our simulations.

It is found that the chaotic response of the system of six fuel pins in a row arrives with a greater
amplitude and a higher frequency of the excitation, comparing with the fuel pin with several
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contacts. The nonlinearity is weaker, even with a greater number of contact points, is possibly
due to the greater space for the vibration.

In conclusion, the complexity of the nonlinear responses for the impact problems is mainly due
to the interaction between the impact-induced transient waves and the contact points. The
simulation of the local vibrations due to the repeated impact is sensitive to the choice of the
impact law and the time-integration scheme.
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Chapter 4 Dynamics of fuel pins: periodic solution finding

4.1 Introduction

As the steady-state responses of the fuel pin determine the long-term behavior, the search for
periodic solutions is of particular importance. Again, it is reasonable to assume that the random
excitation of turbulence is negligible, since after an initial transient period, turbulent flows
become statically steady, in the sense that mean flow features do not vary over time. The focus
is therefore to search the periodic solutions of the model developed in section 3.1.

In the previous chapter, the time-integration method is adopted to observe the vibration patterns.
Nevertheless, it is inefficient as computations have to be performed over a large-enough interval
to ensure that the transient response has faded, thus require considerable resources both in terms
of computation time and data storage.

As an alternative, the methods for searching directly the periodic responses have been
developed. They are usually subdivided into two main groups: those relying on the frequency-
domain formulation and those relying on the time-domain formulation. The first group
corresponds to the so-called harmonic balance method (HBM) [110] where the unknown
variables are decomposed into truncated Fourier series. The second group consists of methods
where a time integration algorithm or a collocation approach, which is generally limited to a
single period, is used to transform the original differential system into a system of algebraic
equations, in which the unknowns are the values of the original unknown variables at grid points
along the periodic orbit.

With these methods, once one periodic solution is found, a whole branch of solutions can be
unfolded by the continuation method, which consists in treating one of the system’s parameters
as a new unknown and following the equilibrium path. Different approaches for path-following
have been employed over the years, with the most popular variants being arc-length
continuation [111] and the Asymptotic Numerical Method (ANM) [112]. The former consists
in taking a step along the tangent direction to the path at a given solution, followed by
orthogonal corrections until convergence. The latter, on the other hand, uses a series expansion
to locally represent the path in the vicinity of the initial solution, iteratively solving for the
expansion coefficients. Arc-length continuation can be seen as a first-order truncation of the
corresponding series expansion.

In this chapter, the periodic solution searching methods are explored in the context of the study
of dynamics of fuel pins. Different methods have been evaluated and compared. All the
calculations are performed with the software Manlab [113]. It is an interactive software
program developed in LMA (Laboratoire de Mécanique et d’Acoutique) for the continuation
and bifurcation analysis of algebraic systems, based on ANM continuation.

4.2 Harmonic Balance Method
4.2.1 State of the art

Krylov and Bogoliubov [114] were probably the first to have proposed a semi-analytic method
whose principle was to look for periodic solutions in the form of truncated Fourier series. A
Galerkin projection of the differential equations of motion onto a base of trigonometric
functions, which are mutually orthogonal, transforms the initial problem into a system of
nonlinear algebraic equations whose unknowns are the Fourier coefficients up to a certain
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harmonic component. The estimation of the number of terms required to correctly capture
periodic motion is seldom possible [109]. The study by Nakhla and Vlach [115] is often said to
be a milestone in the modern formulation of HBM as they succeeded in circumventing this
issue. Dynamical equilibrium is formulated as a minimization problem for an error function,
and the number of harmonics is adjusted accordingly. Although the classical HBM is simple in
its principle, the Fourier expansion of the nonlinear force can be cumbersome or even
impracticable, when the system contains complex nonlinearities and when a large number of
harmonics is required, i.e. more than 5 or 10 [116].

To overcome these shortcomings, many variations of the basic algorithm have been proposed.
Lau [117] introduced the Incremental HB method (IHBM) to study geometrically-nonlinear
systems with one or several degrees of freedom. This method balances the harmonics only for
the linearized problems that appear in the continuation process. This approach was followed by
Pierre [118] and Ferri [119] for the study of friction-damped systems. Another approach is the
Alternating Frequency-Time (AFT) procedure proposed by Cameron and Griffin [120]. The
main idea is to transfer the “most nonlinear” unknowns to the time domain using the inverse
fast Fourier transform (IFFT) at each iteration in the continuation procedure so as to compute
the nonlinear force in the time domain. Then using fast Fourier transform (FFT) the nonlinear
force is switched back to the frequency domain. This technique has been used, for instance, to
analyze nonlinear vibrations in mechanical systems with contact and dry friction [102][121].
Finally, Cochelin and Vergez [110] proposed a high-order frequency-based HB method which
recasts the nonlinearities present in the original system into purely polynomial quadratic terms.
A very large class of systems with smooth equations can indeed be transformed in quadratic
form by making a few algebraic manipulations and a few additions of equations and auxiliary
variables. In comparison with the AFT procedures, no problems of convergence, which can be
difficult with AFT [122], arise with the quadratic recast method and the computational cost is
fairly rather low.

With the quadratic recast HBM, the Jacobian can be calculated analytically. But on the other
hand, for very nonlinear systems, the error introduced in the Jacobian estimation results in
inaccurate updates of the unknowns and a large number of iterations and possibly no
convergence. Therefore, an outstanding performance can be expected for inherently smooth
systems, whereas it is less suited to treat regularized nonsmooth nonlinearities like impacts or
friction. Works are still done for the systems with impact. Karkar [123] searched for the periodic
solutions of a vibro-impact with exponential regularization. A very high number (1000) of
harmonics in the HBM is used in the case of a stiff regularization (a ratio of 200 between the
contact stiffness and the stiffness of the oscillator). Moussi [124] computed the nonlinear
normal modes of a clamped simply supported linear elastic beam connected to a bilateral
nonlinear elastic contactor. Unlike the local method [125] which consider an individual number
of harmonics for each algebraic equation, he partitioned the linear and nonlinear equations as
with the AFT. A low number of harmonics is applied for the linear part whereas a high number
of harmonics for the strongly nonlinear part of the model.

4.2.2 Formulation of HBM for the fuel pin with contact points

Recalling the formulation of the forced fuel pin with potential contact points constructed in
Section 3.1.4:

MX + CX + KX + F, = F,cos(wt)Q (4.1)
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Where X is the generalized coordinates, which is expressed as:

X" = [Wa @2 .. Wit Ongq]

The impact forces locate only at the potential contact points, coinciding with the nodes
numbered c; (i € [1, nc]) and they are alternatively situated at left and right side of the fuel pin.
The not-zero elements of the vector F, are therefore:

max(kc(wci - d), 0) if iispair
min(kc(wci + d), 0) if iisodd
The nonsmooth nonlinear force is regularized into the polynomial form:

Vi € [1,nc],Fc(2c; — 1) = Fo(X(2¢; — 1)) = {

2
%(Wci—d)+\][%(wci —d)] + ¢ if iispair
vi € [1,nc],F,(2¢c; — 1) = 4.2)

2
lt%(wcﬁd)—\/[%(wcﬁd)] +e if iisodd

Where € is an adjustable regularization parameter. An example of the regularized nonlinear
impact law is as shown in Figure 4.1.

non-smooth impact law
regularized impact law

-04 -02 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4.1. Regularized impact force with respect to displacement (k, = 10 N/m, d = 1 m,
£ =0.01)

Three auxiliary variables u, r and z are used to recast the system quadratic, for Vi € [1, nc],
they are written as:

k
é(wci - d) if iispair

ke 2 if iis odd
?(Wci+ )lfllSO 4.3)

rf=u’+e¢
r =z’
The third equation is to guarantee that the elements of r are always positive. Therefore,

equation (4.1) can be rewritten into the quadratic form if the forcing pulsation is chosen as the
continuation parameter A, for vi € [1, nc]:
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(X = LY
MY =F, cos(At)Q CY — KX — F,
0= i F Q-1 -—u-mn i if iis pair
0= . FQa-D-wtn | if i is odd
k : ok
) Ozéfcd §§—7CX(2ci—1)+ul- Lif Lis pair (4.4)
ke, ke o
0=§—7d —7X(2ci—1)+ui Lif iisodd
0=- | R
L 0= : 7 - 72

Itisalso p053|ble to carry out the continuation by varylng the amplltude of the external force F,,
then the forcing pulsation should be fixed and the constant term in the second line of eq. (4.4)
becomes Acos(wt)Q. There are in total N, = 4N + 4nc algebraic equations, which can be
globally expressed with an extended variable Z = [X; Y; F¢(2¢; — 1);u; r; 2] (i € [1, nc]):

d(Z)=cL )+ 1L, (2) + ,(Z,2) (4.5)
Where c is the constant (in blue case) related to the continuation parameter A, d (terms at the
left side) and [, (in red case) are linear operators and [, (in green case) is a bilinear operator.

Applying the HBM to equation (4.5), the extended variable is decomposed into Fourier series
with H harmonics:

H H
Z(t) =Zy+ Z Z cos(kwt) + 2 Z, sin(kwt) (4.6)
=1 =1

The number of harmonic coefficients is selected on the basis of the number of significant
harmonics expected in the non-linear dynamical response. Generally speaking, harmonic
components become less significant when H increases. The forcing frequency is related to the
response frequency by putting A = w, then this formulation includes only harmonic and super-
harmonic responses of the system. The sub-harmonics are taken into account by choosing A =
pw with p an integer. As a result, c(4, t) can be expanded into ¢, + ¢, ,cos(pwt).

In order to determine the value of the N, X (2H + 1) unknown coefficients, eq. (4.6) is
introduced into eg. (4.5), and balancing the harmonics a new quadratic system is obtained:

wD(U) = (Cy + C.p) + Ly (U) + L, (U, U) 4.7
where U regroups the unknowns:

U=20Zc0;Zs1;Zc25 2525 Zew; Zsys | (4.8)
and the new operators D, C, + C.,, L, and L, that apply to U depend only on the operators d, c,
l; and [, of Eq. (4.5) and on the number of harmonics H [110].

If the continuation is performed with respect to w, the algebraic equations to be solved is
therefore:

R(O)=Cc+L,(0)+L;(0,0)=0
(4.9)
L,(0,0) = L,(U,U) — wD(U)
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with U = [U, w]. For each solution of eq. (4.9), and provided it is not a bifurcation point, the
implicit function theorem guarantees the existence of a locally unique one-dimensional
continuum of periodic solutions called a solution branch (or solution family) [126]. The ANM
relies on a high-order Taylor series expansion of the solution branch with respect to the pseudo-

arclength parameter s = (0 — 0,)T,", where T, is a solution point and D is the tangent vector
at U, [110]:

UGs) =0y +sU,y + 52U, + +s"U, (4.10)
Replacing the series (4.10) into eq. (4.9), and each power of s should be equated to zero:

(U(s)) C+1L, (kzn;s Uk> +1, (Zn: s*0, gskﬁk>

0

_c+ZS Ll(Uk)+Z (Z (T, 17,-)> (4.11)
= R(0,) +ZS" <L1(ﬁk) + z L (0 ﬁi))

i+j=k

Jo(0) = 1 (0x) + T(T0, 04) + L0, 0o) = = > L0 0is) (4.12)

i=1
with /g, the Jacobian matrix of R evaluated at U,. The range of utility of the truncated power
series is the interval [0, s,,4,] for limiting the residual inferior to a given tolerance.

4.2.3 Analysis with simple model

In this section, a preliminary study on the advantages and the limits of the HBM method will
be conducted with a simple model, as schematized in Figure 4.2, where one cantilevered beam
with a totally blunt end is immersed in water flow. Four contact points with two on each side
are located in the beam’s span with a uniform pitch.

Vi 1 1

e

Figure 4.2. Cantilevered beam with four contact points

Without the contact points, the effect of the existence of fluid and the velocity of fluid flow can
be observed in Figure 4.3. The existence of fluid brings an added mass into the system so that
the natural frequency diminishes. With the added stiffness and the supplementary damping
generated by the flow velocity, the amplitude of deformation diminishes and the resonance
peaks are shifted a little bit.
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w1073 with fluid

vi=0 m/s |

=71

[\ ;"'-,I Mo fluid

Harmonics amplitude
.

Figure 4.3. Effect of the existence of fluid and the velocity of fluid flow (without contact)

The effect of the potential contact points on the motional spectrum will be studied with both
the HBM method and the temporal calculations. Recalling equation (4.2), the impact force is
regularized into a polynomial form and it brings a supplementary stiffness of about ¢/k.d? (as
the regularization parameter € « 1) to the system when the beam is not deformed. The force
existing before contact happens could have a physical meaning of the film effect. The
supplementary stiffness should be negligible before the bending stiffness of the cantilevered
beam, which is estimated by 3EI/L3 ~10 N/m, however a too small value can pose a numeric
problem in continuation.

4231 First result with a hard stiffness contact

For the particular case with representative values of fuel pin (k. = 2.46 X 10 N/m and d =
0.1 mm), analysis has been done by choosing £/k.d? = 0.1. The continuation with respect to
the imposed pulsation 1 = 2w is performed with a very low acceleration of amplitude equal to
0.001g. Variation of the amplitude of the first harmonic (cos(wt) and sin(wt)) of the
displacement at free end is obtained with different numbers of harmonics, as shown in Figure
4.4. 1t is observed that a number not enough (H = 32) may generate fluctuations on the branch
and the difficulty in continuation (the branch can go no longer further at A = 6.15). The
unexpected (with temporal calculation) bifurcation points occur on the solution branches as a
result of the misrepresented contact, which is detailed in Figure 4.5. Taking the temporal
calculation as a reference, it is observed that with H = 32, the “sticking” contact is not well
represented and a fake period-doubling bifurcation is observed. Even with H = 96, the result
does not perfectly correspond to that of the temporal calculation. It is logic that the
representation of the sticking contact demands a Fourier expansion of great order, and this will
make the computation more expensive in time (with H = 32, one continuation step costs less
than 1 seconds while it takes about 8s with H = 96).

By fixing the imposed pulsation at 3 rad/s, the continuation with respect to the amplitude (1 =
F,) can reach until 0.0048g with H = 96. This range with the HBM is quite limited comparing
with what we are interested in. At higher excitation amplitude and frequency, more oscillations
when the free end is “stuck” with the contact points occur, which also challenges the expression
of the impact with Fourier series, as shown in Figure 4.6. Physically, the impact forces should
never change their signs while the Fourier series of order 96 is not enough to describe the sharp
variations.



Dynamics of fuel pins: periodic solution finding

x10°

55

35

x107*

b) H=64

55 6.5

%107

c) H=96

Figure 4.4. Variation of the amplitude of the first harmonic (cos(wt) and sin(wt)) of the
displacement at free end with respect to A by taking different numbers of harmonics
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Figure 4.5. Periodic response at the free end in two periods (1 = 5.88 rad/s) of excitation
obtained with temporal calculation and HBM with different numbers of harmonics
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Figure 4.6. Periodic response of displacement and impact force at the free end with a,,; =
0.02m/s? and A = 9.76 rad/s

4.2.3.2  Analysis with a reduced contact stiffness

The difficulties of the HBM arise from a contact point too rigid, as has been reported in
[102][124]. In order to enlarge the study range and better observe the advantages of the HBM,
here we take a contact stiffness of 50 times of the bending stiffness of the beam, which is usually
the case in the previous studies. A larger clearance is also taken to ease the initialization of the
calculation.

The distortion of the resonance peak due to the impact is observed in Figure 4.7. A small contact
stiffness is considered as no contact existing, while with a contact stiffness equal to 500 N/m,
A in the range of 13 to 13.8 rad/s corresponds no more to a unique amplitude. These different
states resulting from the same external force are critically dependent on the chosen initial
conditions. A comparison is conducted between the result of HBM and that of temporal
simulation for the case with a still flow. Figure 4.8 represents the evolution with the imposed
pulsation of the displacement amplitude at the free end obtained with the temporal calculation,
the blue points and red points are solutions with different initial conditions. It is observed that
the form of two curves obtained with two methods are coherent except that the HBM result
presents only the first harmonic’s amplitude while the temporal result presents the norm of all
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the harmonics. The HBM has the advantage in finding all the possible responses, including the
instable ones, to an external force at the same time. A supplementary analysis of instability,
which is more time-consuming, is possible as presented in Figure 4.9, the dashed line represents
instable solutions.
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Figure 4.7. Distortion of the resonance peak due to the impacts
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Figure 4.8. Motional spectrum of the displacement at free end with temporal calculation (vf=0
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Figure 4.9. Stability analysis of the dynamics of the beam under external force

In this case, the HBM calculation with 32 harmonics is already enough. The computation time
to obtain the whole solution branch is much reduced comparing with the temporal calculation.
It takes only 5 or 6 iterations for initialization and dozens of steps with each step costing less
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than one second, the total calculation time is therefore less than 1 minutes while the temporal
calculation costs around 11 seconds for each point and several points to form the curve, with
post treatment included it takes about 15 minutes.
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Figure 4.10. Evolution of the harmonics amplitude of the displacement at free end versus
imposed pulsation: a) principle harmonics with different a.,; b) H1 and Hz denoting
respectively the principle harmonics and the sous-harmonics of pulsation w/2 with a,,; =
0.5m/s?

The occurrence of the period-doubling bifurcation can be easily observed with the HBM
method. The continuation with respect to the imposed pulsation A = 2w is performed with
different acceleration amplitudes (from 0.1 m/s? to 0.5 m/s?). It is observed from Figure 4.10
that the contacts happen from 0.2 m/s? and the first period-doubling bifurcation occurs

with ape = 0.5 m/s2. The bifurcation is observed in the range w = 14.12 ~14.66 rad/s.
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Figure 4.11. Motional spectrum of the displacement at free end with different acceleration
amplitude with temporal calculation

Again, the motional spectrum of the displacement at free end obtained with the temporal
calculation is presented in Figure 4.11. The curves are of the similar shape as the result of the
HBM. A bulge on the curve with a.; = 0.5 m/s?is observed, which corresponds to the
amplitude of the sous-harmonics. The range of observing the bifurcation is w = 14,03 — 14,7
rad/s, which is in good agreement with the result of the HBM. The period-doubling of the
displacement can be observed with the two methods, as shown in Figure 4.12.
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Figure 4.12. Period-doubling of the displacement at free end with w = 14,18 rad/s
4.2.4 Summary

The HBM is an efficient method in finding the periodic solutions of the nonlinear systems in
terms of the computation time and data storage. Furthermore, the occurrence of the bifurcation
can be easily detected.

However, this method has an outstanding performance for inherently smooth systems, but is
less suited to treat nonsmooth nonlinearities like impacts. When it comes to a very rigid contact
point, the difficulty in describing the “sticking” contact and the resulting impact force with
Fourier series is obvious. What’s more, the calculation with a Fourier expansion of great order
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IS quite time-consuming. The difficulty of continuation with respect to excitation amplitude
limits the range of our study.

In order to study the impact problems, different variations of the classical HBM have been
applied in the previous works, such as the method [124] which considers a greater number of
harmonics only for nonlinear equations, and the HBM-AFT method [102] which is quite
sensitive to the time discretization. But in fact, in these works the ratio between the contact
stiffness and the stiffness of the system is often no more than 50. Hereafter, we seek to treat the
impact problem of a greater contact stiffness with the formulation relying on the time-
integration.

4.3 Global periodic time integration (GPTI)
4.3.1 State of the art

The formulation depending on a time integration algorithm, which is generally limited to a
single period, is an alternative to transform the original differential system into a system of
algebraic equations, which are then solved by continuation. With these methods, the unknowns
in the algebraic system are the values of the original unknown variables at grid points along the
periodic orbit. In the following, three methods of this type will be introduced.

The shooting technique [111] seeks periodic solutions by a so-called Boundary-Value Problem
(BVP), by which a shooting function to be equal to zero is defined to represent the difference
between the initial and final states of one period T. Starting from some assumed initial condition,
the motion at T', which can be known in advance (forced oscillations) or an additional unknown
to be found (autonomous oscillations, for example in the case of self-excited motions), is
obtained by numerical time integration of the equations of motion. Through an iterative
procedure to solve the BVP, the initial conditions which satisfy dynamical equilibrium as well
as periodicity are found. Peeters et al. [127] employed Newmark's method and a Newton—
Raphson iteration scheme to study the nonlinear beams. The symmetries in time and space and
a sensitivity analysis were exploited to reduce the computation cost, making the shooting a
suitable candidate for addressing large-scale, complex systems. This method can also be applied
to study the vibration absorbers [128] and the forced vibrations of rotor systems [129]. A similar
approach was undertook by Dimitriadis [130] to study the parametric behavior of limit-cycle
oscillations in an aeroelastic system. Shooting is per se limited by the capabilities of time
integration algorithms. It can fail for strongly unstable systems, as reported in [111], and it
hardly deals with piecewise linear or nonsmooth systems, unless specific time integration
techniques or regularization are considered. An additional difficulty with shooting is that the
small step sizes that are required for accurate time integration increase the sensitivity to high-
order harmonics present in the response [131].

The orthogonal collocation method considers the discrete periodic solution, where the period is
divided into nat time intervals. The steady-state solution is assumed to be a combination of p-
order Lagrange polynomials and the discretization of the equation of motion is carried out by
the collocation at Gauss points for each interval. Combining with the periodicity condition, the
system of N dofs is transformed into an algebraic system comprising 2N (pn,; + 1) equations
that can be solved using a Newton-like approach. This method has been implemented into
numerous software, such as AUTO [132] and MATCONT [133]. If the collocation method is
accurate and can benefit from adaptive meshing strategies for the time interval [132], the
method can become computationally intensive for large finite element models comparing with
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the shooting technique. The performances of the HBM and the collocation method for the vibro-
impact oscillator (see Figure 4.13(a)) are compared by Karkar [134]. The HBM required about
200 harmonics to obtain a periodic orbit with almost no visible difference with the reference
solution and was shown to exhibit the classical Gibbs phenomenon (see Figure 4.13(b)). The
orbit obtained with orthogonal collocation in Figure 4.13(c) is smoother and appears to better
capture the reference solution, because the continuity of the trajectory is only imposed between
two successive time intervals. However, without adaptive meshing strategies, at least 202
intervals were needed to obtain one time interval during the impact time and properly capture
this region. For both smooth and nonsmooth systems, he concluded in a better convergence of
the HBM compared to orthogonal collocation.

A global periodic time-integration (GPTI) method has been proposed [113],[135] to find the
periodic solution in temporally discretized form. The equation of motion discretized with the
finite element method can be generally expressed as Z = f(Z, t, 1), with Z the state vector for
each node. Therefore, the global periodic method means an unknown vector which groups the
state vector at each time step in one period T, i.e. Z; = [Zg; Zy; *+; Zp,,] With ny, the
number of time intervals and Vk € [0, n4.], Z, = Z(t;). The system to be solved is therefore
written as:

R(ZyT = tn,, ) = {Vk € [0,n4; = 11, Zis1 = 9(Zio Zio Ziew 1, i tiewn) (4.13)
ZO = ZnAt
Where g is the function associated with a chosen time integration scheme. This method is not
much studied, and we are interested in its performance for the impact problems.
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Figure 4.13. (a) Vibro-impact system; (b) phase diagram given by the HB method (blue:
H=20; green: H=50, red: H=100; orange: H=200); (c) phase diagram given by orthogonal
collocation (blue: n,,=16; green: n,,=64; red: n,,=202; orange: n,,=400).

4.3.2 Analysis with vibro-impact problem

In this section, the performance of the GPTI method for the impact problem is evaluated with
avibro-impact system. The clearance between a contact point of stiffness k. and a system mass-
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spring with mass m, spring stiffness k and damping c is d. The equation of motion of the forced
system can be written as:

mX + cx + kx + f, = fcos(wt) (4.14)
with f, denoting the regularized impact force, of the same expression as equation (4.2). The
non-dimensional form of the equation of motion can be expressed as:

GE+ 2T+ T+ @1+ j[f (% — 1)]? + & = acos(7) (4.15)

W =w/wy,X=x/d1t=wt,
wo =Jk/m,& =c/2Vmk k. = k./k, § = €/d*k?,a = f/kd

At equilibrium point (¥ = 0), the non-dimensional impact force is:

(4.16)

1

7o k. - 48\2 £
‘T2 k2 ke
By fixing the damping ratio at 5%, the parameter study will be engaged with (k., & &, a). The
system is recast into quadratic form to facilitate the continuation. Choosing the excitation
pulsation as the continuation parameter, the formulation with Newmark scheme can be written
for vn € [[1, Nygmpie ] 3s:
( h?
Xp41 = Xp + hvy + 7 [(1 - 2B)ay + 2ﬁan+1]
Un41 = VUp + h[(1 - y)a, + Van+1]
stample+1 = X1, stample"’1 ="
! 0-a, =280V, —x, — (W, + 1) + @ cos[(n — 1)A] (4.17)

k
Wn = 76 (x, — 1)
Z=w2+e
1, = z2 (to make sure that r is always positive)
\Q = w?
Where h = 21 /Nggmpie is the time step. The first four lines are equations corresponding
respectively to the time-integration scheme, the periodicity condition and the motion
equilibrium. The rest equations are related to the auxiliary unknowns in order to recast the
system into quadratic form required for the continuation calculation.

4321 Effect of regularization parameter &

The effect of regularization parameter is firstly studied by fixing k. = 10, @ = 0.2. The
motional spectrum is obtained by taking different £ (0.1, 0.05, 0.01, 5.103, 1073, 5.10%). It is
observed in Figure 4.14 that the smaller € is, the more evident is the turning point of the
distorted resonance peak. However, it takes more steps of continuation in case of smaller &, i.e.
longer calculation time and when & becomes too small, the Gibbs phenomenon occurs around
the resonance peak. By increasing the sample number, the Gibbs phenomenon can be eliminated,
but it does not reduce the continuation steps, as shown in Figure 4.15. A moderate & = 0.005
can be chosen to have a compromise between the efficiency and the accuracy.
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Figure 4.15. Motion spectrum of the oscillator with & = 5.107 by taking 200 time samples

4.3.2.2  Effect of contact stiffness ratio k, = k./k

Taking Nggmpie = 200 and a = 0.2, £ = 0.005, computations have been performed with
different k_ (5, 10, 20, 30, 50, 100). In order to obtain the motional spectrum in the same range
of excitation pulsation, the numbers of continuation steps which determines the calculation time
are as listed in Table 4.1. The resultant resonance peaks are as shown in Figure 4.16, the greater
the contact stiffness is, the more is the resonance peak distorted. The Gibbs phenomenon is
observed with a greater k_, a smaller time step is then necessary to get rid of it. For example,
for the case with k, = 50, Nsampie = 400 is enough to have the smooth curve. The number of
continuation steps is also a little bit increased (from 1360 to 1500).

It is observed in Figure 4.17 that with &, becoming more important, the curve of impact force
time evolution becomes more and more pointed. Noting that the phase of temporal solution
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changes along with the continuation (Figure 4.18), which means that the peak of the contact
force moves on the axis t step by step. The difficulty in continuation will occur in consequence
since a small movement results in a sharp change on the value of the force at a certain instance,
causing the difficulty of convergence during continuation. In the following, we are interested

in the limit on k_ of this method.

Table 4.1. Continuation steps needed for difference contact stiffness to obtain the motional
spectrum

k. 5 10 20 30 50 100
Continuation steps | 320 550 820 1040 1360 2020

Amplitude of x

Figure 4.16. Resonance peak with difference contact stiffness k. = 5, 10, 20, 30, 50, 100

157

10¢

Figure 4.17. Time evolution of impact force with different contact stiffness k. = 5, 10, 20, 30,
50, 100
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Figure 4.19. Resonance peak with contact stiffness k. = 100 and 1000 by taking 500 time
samples
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Figure 4.20. Difficulty in continuation for the case when k_ = 1000 and Ngampie = 1000

In order to have the convergence easier, there is a need to refine the time discretization, i.e. to
increase the sample number. However, it is observed that a great sample number results in the
necessity of increasing the error tolerance. What’s more, it may lead to the difficulty in

continuation. Taking the case when k, = 1000 and a = 0.2, we can obtain the spectrum by
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taking Nggmpie = 500 (see Figure 4.19), while with Nggp,. = 1000 the continuation can go
no longer further (Figure 4.20). Therefore, the choice of N4, Should be carefully made and
k. = 1000 is considered as the limit.

Better performance with an adaptive time stepping

In fact, it is only when the contact happens that we need to refine the time discretization. The
formulation with variable time steps is as shown in equation (4.17). By defining a tanh law of
variable time steps, as shown in Figure 4.21 for example, when the vibrator comes into contact,
the time step is inferior to 0.2 while when the contact does not happen the time step is around
5 times its value. With this law, we arrive at decreasing the sample number so that the need on
computation time is decreased (for example, with N4y, = 100, 720 continuation steps are
enough to obtain a curve without the Gibbs phenomenon for k, = 100). With the variable time
steps, the limit on k_ increases to 5000. When we attempted with the time discretization law
allowing to have a greater ratio of time step between the cases without and with contact, which

means a sharper slope k; of eq. (4.18), difficulty in convergence is observed, more works of
optimization should be done in the future.

p

(xn+1 = Xp + hpvp + 771 [((1—=2B)a, + 2Banq]
Vngt1 = U + hp[(1 = ¥)ayn + van4q]
0 * a, = —2¢wv, — x, — (W, + 1) + a cos(tau,)

k
Wy = ?C (xp— 1)
w=w2+e¢
{ T =z, (4.18)
0 = w?

1

B = hynax (501 +0.5)
¢; = tanh(c,)
c; =k;(1—x)+ by
tau = cumsum(h)
tau(Nggmpre + 1) = 21

1

0.9
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0.7 |

0.6
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Figure 4.21. tanh law of variable time discretization
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4.3.2.3  Effect of excitation amplitude a

The effect of excitation amplitude on the dynamics behavior is studied by fixing Nggmpie =
200 and# = 0.005.

Firstly, the study is carried out with a contact not that rigid, where k, = 10. The value of «
varies (0.2, 0.4, 0.6, 0.8, 0.87). When « is superior to 0.88, the nonlinearity is already not
negligible at the equilibrium position of the pseudo-stationary system. In order to avoid the
difficulty in initialization, the algorithm for continuation with a should be performed and the
solution points are taken as the starting point of the continuation with excitation pulsation. The
greater the excitation amplitude is, more continuation steps are necessary to obtain the motional

spectrum.

According to Figure 4.22, Figure 4.23 and Figure 4.24, five dynamic behaviors are observed:
1) linear dynamic behavior; 2) one oscillation with one contact during the period, corresponding
to the deformed resonance peak and the transition between the behaviors numbered 5 and 3; 3)
two oscillations with one contact during the period, corresponding to the transition between the
behaviors numbered 2 and 4; 4) two oscillations with two contacts during the period,
corresponding to the second peak of the motion spectrum; 5) three oscillations with one contact
corresponding to the third peak. The contacts are observed in these figures by the sharp variation
of the velocity when the points of the lines are scattered.

Amplitude of x
n
S
3

Figure 4.22. Motion spectra with different excitation amplitudes with k, = 10



68 Dynamics of fuel pins: periodic solution finding

dx/dt
o

Figure 4.24. Time evolution of displacement and velocity corresponding to different regimes

The study with a quite rigid contact point is in the following presented. Taking @ = 0.2 for the
case k. = 100, the result of continuation with the excitation amplitude « is as shown in Figure
4.25. At first, no contact happens so the amplitude is proportional to . The curve becomes flat
when the first contact happens (point (a)) and several oscillations during one period are
observed. Then the rebound near the contact becomes more important, the second contact
occurs (point (b)) and the curve rises again. New rebound arises after the second contact when
a becomes greater. With this new rebound becoming more and more important, the third
contact happens (point (c)), the curve goes down and then rises. The occurrence of the forth
(point (d)) and fifth contact (point (e)) is of the same procedure as that of the third contact, and
the separation between the contacts becomes shorter and shorter, resulting in the sticking
contact with chatters. Furthermore, when more and more contacts happen, the continuation
becomes more and more difficult, the Gibbs phenomenon of the continuation curve becomes
more and more evident.
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Figure 4.25. Evolution of displacement amplitude with respect to the excitation amplitude for
k., =100

It allows us to calculate the motion spectrum with a greater excitation by taking the result of
continuation with « as the starting point of continuation with é&. The result is as shown in Figure
4.26. The first two curves (@ = 0.8 and @ = 0.9) are of the same shape as the case when k, =
10, the corresponding dynamic behaviors are also the same.

a = 1 is the critical condition for the happening of the first contact when the system is pseudo-
stationary, i.e. @ is very small. For @ inferior to 0.3, the oscillator performs as one contact
happens with several oscillations during one period. The smaller @ is, the longer is the period
and therefore, more oscillations induced by the impact can be observed (Figure 4.27(a)). The
peak around @ = 0.4 of the motion spectrum shown in Figure 4.26(a) corresponds to two
contacts with three oscillations during one period. The transition between this regime and the
dynamic behavior with higher @ is presented as one contact with three oscillations during one
period (Figure 4.27(b)). For @ superior to 0.5, its dynamic behaviors are the same as the
preceding cases with smaller a.

When a is greater than 1, it is easy to imagine that the contact is sticking with chatters when
the system is pseudo stationary. For example, by taking @ = 1.1, at very small @, the temporal
displacement of the oscillator is as shown in Figure 4.28. Between @ = 0.2 and 0.33, two
contacts happen with several impact-induced waves during one period (Figure 4.29 (a)). The
transition between the peak of the motion spectrum at @ = 0.33 and the peak afterwards shown
in Figure 4.26 (a) is of the pattern where two contacts with two oscillations are observed during
one period (Figure 4.27 (b)). Similar to the case when a = 1, the dynamic behavior of two
contacts with three oscillations corresponds to the transition between the deformed peak around
@ = 0.4 and the small peak around @ = 0.5, after which the oscillation pattern is of no
difference from the other curves.

With a =1.2 (see Figure 4.26 (b)), the dynamic response to @ between 0.33 and 0.46 is similar
as that of the case with« = 1 and @ = 0.4 - 0.5, where two contacts are observed with three
oscillations. The peak at @ = 0.26 of the motion spectrum is the separating point between the
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pattern of three contacts and two contacts. As is always the case, for the transition between @ =
0.26 and 0.33, the greater & is, the impact-induced oscillations are observed during one period.

The motion spectrum for @ =1.3 is of similar shape as that of @ =1.2, except that the peak
around @ = 0.46 corresponds to the pattern of two contacts with three oscillations while for @
from 0.32 to 0.45 four oscillations are observed. The peak at @ = 0.3 corresponds to the
occurrence of the third contact and more chatters around the contact point are observed with @
getting smaller. The peak at @ = 0.23 is the separating point between the pattern with three
and four contacts. The interpretation of the curve corresponding to a =1.4 is almost the same
except that there is another peak at @ = 0.22 which separates the pattern with four and five
successive contacts.

Amplitude of x

‘15 I 1 1 I I 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(@) Motion spectra for « = 0.8,0.9,1 and 1.1

Amplitude of x

0.3 0.4 0.5 0.6 0.7 0.8

(b) Motion spectra for « = 1.2,1.3 and 1.4

Figure 4.26. Motion spectra for k., = 100 with different external forces
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4.3.3 Summary

In this section, the performance of the GPTI method is evaluated with the dimensionless vibro-

impact system. It can be concluded that this method has the potential to be used for the very

rigid contact problems with a temporal discretization well defined. The difficulty in

continuation is mainly due to the change of phase, which result in the sharp variation of the

impact force. The excitation amplitude is therefore limited due to the occurrence of the “sticking”
contacts with chatters, where successive peaks of impact force challenge the numeric

convergence.

4.4 Application to the fuel pin

Hereafter, the GPTI method is applied to study the dynamic response of a beam with several
contact points under excitation. Similarly as in 4.2.2, there are contact points alternatively at
left and right side of the beam, the formulation with Newmark scheme of the vibro-impact
problem (4.17) is then modified into:

( h?

Xns1 = Xp + AV, + 7 [((1—2B)Apn + 2BAn44]

Vosr = Vo + h[(1 = y)An + vAn 4]

Xstample"‘1 = Xl’ VNsample+1 = V1

0-MA, = —wCV, — KX, — F., + F, cos[(n — 1)h] Q
Fon (26 cging — 1) = wy, (D) + (D) if iis pair

< Fen (20i|ie[[1'nc]] - 1) = w,()) —r,(0) ifiisodd (4.18)
~ _k p .
wy (i) = 7C (Xn (Zcilie[[l,nc]] - 1) — d) if iis pair

wo(@) = 5 (%o (26 — 1) +d)  if iis odd

2 =w2+e¢

1, = z2 (to make sure that r is always positive)
\ O = w?
Continuation with excitation amplitude has been performed with the representative values of
fuel pin (k, = 2.46 x 10° N/m and d = 0.1 mm). As can be observed in Figure 4.30, the very

small continuation step occurs when a reaches the nonlinear level due to the great value of k.
and the continuation can go no longer further shortly after the first contact happens.

4.4.1 Performance evaluation with less rigid contact points

In order to avoid the difficulty of continuation and to enlarge the study region, a contact stiffness
of 3000 N/m is chosen to evaluate the performance of this method, which is not representative
of the case of a fuel pin but already enough rigid and a clearance set to be 1 mm. Figure 4.31
presents the motion spectrum of the free end at a relatively high excitation amplitude a,,; =
1.54 m/s? obtained with one period discretized into 201 time intervals (an odd number of
intervals is chosen to avoid the singularity of matrix when performing the Jacobian calculation
with Manlab). A large number of continuation steps is necessary to obtain the curve (289
continuation steps), which challenges the computation time.

The curve not smooth is verified by arbitrarily choosing the points on this solution branch and
comparing the corresponding periodic responses with the results obtained from the direct time-
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integration method using the same time interval. Examples are as shown in Figure 4.32 and
Figure 4.33, the time evolution of the displacement, the velocity and the impact forces are taken
for the comparison and perfect agreement can be observed. Specially, it can be figured out in
Figure 4.31 that there exists three periodic solutions with the value of w taken between 8.71
and 8.93, among which two can be reproduced with direct time-integration by taking different
initial conditions and an instable one only identified with the global periodic method. Observing
the periodic solutions on the rough plateau of the solution branch of w between 7.5 and 8.93
(see Figure 4.34), the maximum and minimum displacements of successive solution points are
not obtained at the same instance due to the phase variation so that they can fall into the time
interval, thus not presented on the curve. The fluctuations of the continuation curve are therefore
not caused by the physical phenomenon, but result from the time discretization: the more fine
is the discretization during the contact, the less obvious are the fluctuations.
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Figure 4.30. Continuation curve with step points and evolution of displacement amplitude at
free end with the excitation amplitude for the excitation frequency fixed at 3 Hz
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Figure 4.31. Motion spectrum of the displacement at free end with a,,, = 1.54 m/s?
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Figure 4.32. Time responses in one period of the displacement and velocity at free end and the

impact forces at the first two contact points (counting from the free end) to an excitation of

Aoy = 1.54 m/s? and w = 5 rad/s obtained with the global periodic method (left column)
and the direct time-integration method (right column).
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Figure 4.33. Time evolution in one period of the displacement and velocity at free end and the
impact forces at the first two contact points (counting from the free end) to an excitation of
acxt = 1.54 m/s? and w = 8.75 rad/s: a) two stable and one instable responses obtained
with the global periodic method; b) and c) stable responses obtained with the direct time-

integration method using different initial conditions
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Figure 4.34. Fluctuating displacement amplitude due to rough time discretization
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As noted in the previous section, even with a smaller contact stiffness, the computation is quite
demanding in time as a large number of continuation steps is necessary to obtain the motion
spectrum. The short arc-length of the continuation is mainly due to the successive impact forces
caused by the local chatters and the phase variation along with the continuation. A contact
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damper is therefore introduced to calm these chatters. A simple impact law [136], of which the
damping coefficient is proportional to the penetration into the contact point, is expressed as:

(kc(wci — d) + c.w )H(Wci — d)if iis pair
(k.(we, + d) + cave)H(—w,, — d)if iis odd
. = n(wci — d) if i' i's pair (4.19)
—n(wci — d) if iisodd

_3k.(1—e)

- Zewciro
where we, = w(x.;), we; = w(x;) With xe = {x¢1, xc2, -+, x, .} the coordinates of the contact
points, H(-) is the Heaviside function, w; , denotes the velocity at the time immediately before
impact and e represents the coefficient of restitution. This law can be regularized into:

Vi € [[1,nc]],FC(wCi,v'vci) = {

Vi € [1,nc], Fo(x.;)
(

1 1 2
(k. + nwg;) 2 (Wcl. —d) + \/[E (Wcl, — d)] + ¢ pif iispair
(4.20)

1 1 z
— (k. — ;) _E(W” +d) + \/[5 (w,, + d)] +e pif iisodd
\
The damping coefficient related with the kinetic energy dissipation during the contact can only
be determined with the experiments since it depends much on the path of the contact phase.
Due to the lack of the experiments, we refer to some previous works, even if not representative,
to have an idea of the order of magnitude. Pelloux [92] identified a restitution coefficient of
0.55 in water with his experiments by considering the truncated SUPERPHENIX fuel pin as a
Newton’s pendulum (see Section 2.1.1). Combining with the computation results in the
previous section, which shows that the prior-impact velocity is of the order of 0.01 m/s, the
damping coefficient n is of the order of 10k.. By supposing w, = 1.2 X 10~3sin(5t) and n =
30k,, the non-smooth impact law (4.19) and the regularized impact law (4.20) are as shown in
Figure 4.35.

OIS ICROn Imnpact law
megulanedl Impact law

LMy

% im 10~

Figure 4.35. Non-smooth and regularized impact law with a contact damper
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Figure 4.36 shows the effect of the contact damper on the local chatters and the global vibration
by taking different values of n (30k., 60k., 100k.). It is observed that the contact damper does
not much influence the global behavior except that the phase is a little bit shifted. As for the
local chatters, the effect on the first penetration is not as evident as that on the following
vibrations. The impact force peaks, especially those after the first one, become less pointed,
which can result in an easier continuation.
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Figure 4.36. Time evolution in one period of the displacement and velocity at free end and the
impact forces at the first two contact points (counting from the free end) to an excitation of
Aoyr = 1.54m/s? and w = 7.3 rad/s

Taking n = 60k, a continuation with the same parameters as that of Figure 4.31 is carried out.
There is a need of less continuation steps (100 continuation steps in place of 289 steps) to obtain
the motion spectrum presented in Figure 4.37. The solution branches with and without contact
damper are of similar form except that the plateau disappears and no increase is observed at
w = 10. By comparing the periodic responses (see Figure 4.38 and Figure 4.39), the difference
does not come from the global behavior but rather from the second chatter at the left contact
point (negative displacement and negative impact force), which are of the same order of
magnitude as the first chatter when there is no contact damper. Besides, it is noted that the
phenomenon of two stable periodic solutions at w = 8.71 — 8.93 disappears. It is not
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surprising as we can see in Figure 4.33 that the difference of the different periodic solutions lies
in the local chatters after the first penetration into the contact, which are almost totally damped
in this case. Again the fluctuations of the motion spectrum are caused by the phase variation
and the time discretization, as has been explained in the previous section.
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Figure 4.37. Motion spectrum of the displacement at free end with a,,, = 1.54 m/s? and the
damping coefficient n = 60k,
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4.4.3 Global dynamic behavior of fuel pin

The limited capacity of the GPTI method with the very rigid contact points arises from the
difficult continuation due to the very pointed peak of impact force, even by adding a contact
damper. Regardless of the impact forces, a reduced contact stiffness allows studying the
dynamic behavior of the fuel pin without too much changing its global vibration, as can be seen
from Figure 4.40. The simulations are performed with the direct time-integration method under
the damped contact model, by choosing the real clearance (0.1 mm) and an excitation amplitude
of value rather greater than the linear level, the resultant time evolution of the displacement and
the velocity at free end present the similar form while the evolution of the impact forces
becomes much smoother in terms of a longer contact duration and a smaller impact. Therefore,
given the difficulty with the real contact stiffness, it is rather reasonable to study with the
reduced contact stiffness of 3000 N/m to have an idea of the global dynamic behavior of the
fuel pin.
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Figure 4.40. Periodic responses of displacement and velocity at free end of the fuel pin with
real contact stiffness (red) and reduced k. = 3000 N /m (orange) and the corresponding impact
forces at the first two contact points (counting from the free end) with a,,, = 0.3 m/s? and
w=6mws!

Hereafter, the study is carried out by taking the damped impact law with contact stiffness equal
to 3000 N/m and a clearance of 0.1mm. Figure 4.41 presents the periodic solution branch of a
fixed excitation frequency of 3 Hz. The solution points are in good agreement with the
responses obtained with direct time-integration method when the excitation amplitude is
inferior to 0.31 m/s?, and the dynamic behavior is periodic with multiples of the imposed
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frequency, as shown in Figure 4.42. However, the solution points with a greater excitation
amplitude corresponds no longer with the results of direct time-integration using the same initial
condition as previous calculations (see Figure 4.43(a)(b)). It is with another initial condition
that we obtain the same results (see Figure 4.43(c)), thus this solution is stable and there should
exist another solution branch, which is not obtained with the continuation in Figure 4.41.
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Figure 4.41. Periodic solution branch with respect to excitation amplitude with w = 6w s~1
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Figure 4.44. Periodic solution branch obtained with another starting point

In order to be able to figure out the period-doubling bifurcation at even greater acceleration
amplitude, a calculation in two periods of excitation is carried out (replacing the external force
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term in eq. (4.18) by F, cos[2(n — 1)h] Q). By taking the periodic solution of Figure 4.43(b)
as the starting point of the continuation, a new solution branch is obtained, as presented in
Figure 4.44. 1t is observed that the second stable periodic solution occurs when excitation
amplitude equals to 0.31 m/s?. From this point, there are two paths: one rises smoothly without
difficulty of continuation along with the increasing amplitude, however the solution points of
which appears to be instable, and the other one descends firstly and then goes up sharply at 0.35
m/s?, of which the continuation step is much smaller and the solution points appear to be what
we are searching for. A stability analysis should be developed as further investigation.

By taking a solution point of Figure 4.41, a solution branch with two-period calculation is as
shown in Figure 4.45. With an excitation amplitude between 0.31 m/s?and 0.45 m/s?, the result
is the same as the previous simulation, which means the response is still periodic only with the
multiples of the excitation frequency. It is when the excitation amplitude is superior to 0.45
m/s?, the continuation path differs from that obtained with the one-period calculation, of which
the solution points are no longer stable. As presented in Figure 4.46, the period-doubling
bifurcation is observed, it is evidently a result of the phenomenon of alternative “sticking”
contact and rebound as described in Section 3.3.2. Combining with the solution branch in Figure
4.44, another periodic response showing only multiples of the imposed frequency is also stable
with this excitation.

It can be also observed in Figure 4.45 that with the amplitude between 0.531 m/s? and 0.566
m/s?, two stable periodic responses exist on this solution branch, to obtain which with direct
time-integration method different initial conditions should be taken. One example is presented
in Figure 4.47. As presented in Figure 4.48, a third stable periodic solution is observed via the
solution branch of Figure 4.44.

Even though the continuation can go further with an amplitude superior to 0.58 m/s?, it does
not reproduce the results from the direct time-integration method, since from this excitation
amplitude the dynamic behavior is no longer perfectly periodic.
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Figure 4.48. Periodic response on solution branch Figure 4.44 with a,,; = 0.56 m/s?

4.5 Conclusion

As it is the steady-state responses of the fuel pin that determine the long-term dynamic behavior,
the direct time-integration method is not enough effective in capturing these periodic solutions.
The numeric methods for searching directly the periodic dynamic behaviors are therefore of
great interest in terms of economizing the computation resources, i.e. the calculation time and
the data storage. A literature overview of the two categories of these methods is firstly presented.

Then, the classical frequency-domain method HBM has been applied to study a simplified fuel
pin model with only four contact points. The difficulty of describing the sticking contact and
the resulting impact forces with the Fourier series has been identified when the contact points
are very rigid (with the real contact stiffness). Whereas, a good agreement of the results with
the HBM and with the direct time-integration method has been observed in the case with less
rigid contact points. Besides, the HBM calculation costs much less time and has the advantage
of obtaining all the possible dynamic response on one solution branch, for which it is necessary
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to search for different initial conditions with direct time-integration method, and detecting
easily the period-doubling bifurcation. However, the range of the excitation amplitude that can
be studied with the HBM is limited since when the excitation becomes stronger, the difficulty
related with the sticking contact occurs again.

In order to overcome the limitation on the contact stiffness and the study range, we turn to the
so-called GPTI method. Since this method is not much studied, its performance with the impact
problems is firstly evaluated with a parametric study of the 1-dof vibro-impact system. This
method has the potential to study the very rigid contact problems: the limit on the stiffness ratio
between the contact point and the system is of 1000 with uniform time steps and of 5000 with
adaptive time discretization. The difficulty is mainly due to the change of phase along with the
continuation, which results in the sharp variation of the impact force, and is also due to the
demanding computation memory. The excitation amplitude is therefore limited due to the
occurrence of the “sticking” contacts with chatters, where successive peaks of impact force
challenge the numeric convergence.

The GPTI method for problems of multiple dofs with several contact points is then developed
and applied to the study of the fuel pin model. In the case with great contact stiffness, the
continuation steps become very small shortly after first contact happens and the continuation
can go no longer. Again the performance of this method is firstly evaluated with less rigid
contact points. The continuation can be carried out in the investigated range of excitation
amplitude and frequency. It is verified by comparing the periodic solutions on the continuation
branch with the steady-state vibrations obtained with the direct time-integration method and the
curve not smooth is caused by the phase variation and the time discretization, which can be
eliminated by refining the time intervals. However, the continuation is rather difficult in terms
of the short arc-length, which results in a large number of continuation steps, thus demands a
large computation time. In order to make the continuation easier, a linear contact damper is
introduced, allowing to calm the chatters following the first penetration into the contact point
and have the peaks of the impact force less pointed.

In fact, given that even with the effort of introducing a contact damper, the continuation is still
difficult for a very rigid contact problem, it is acceptable to study the global dynamic behavior
of the fuel pin with a reduced contact stiffness if regardless of the impact forces. The two
methods have both their advantages and limits with the impact-related problem. With the
continuous solution branch, the GPTI method has the advantage of interpreting easily the
change of the periodic patterns, such as the occurrence of the period-doubling phenomenon.
The dynamic behavior of the fuel pin with several contact points is so complex that there exists
different solution branches for the same excitation, and we are not able to obtain all the possible
periodic responses with one continuation computation. Even though the direct time-integration
result can be a complementary method of finding the start points of the solution branches, it can
never be exhaustive since it is very sensible to the initial condition chosen for a system of
complex dynamic behaviors.

In conclusion, both the direct time-integration and the GPTI have the advantages and limits in
interpreting the complex dynamic behavior of the fuel pin. The direct time-integration is quite
direct and can be applied for any contact rigidity and excitation amplitude, but it is difficult to
cover the coexisting regimes led by the nonlinearity as it is sensible to the initial condition. The
GPTI method allows in some manner to obtain the coexisting solutions but the complexity of
the dynamic response makes it difficult to be exhaustive. Besides, the difficulty with the
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continuation leads to a limited range of contact stiffness and excitation amplitude. It has been
observed that the complex coexisting regimes differ from one another only in the local
behaviors. Introducing a contact damper physically permits some kind of smoothing of the
responses, but the difficulty remains and prevents us to think of modeling a complete fuel pin
bundle. As a last comment, the mathematically based smoothing method seems necessary if we
want to overcome the difficulty caused by the local chatters but up to date there is no mature
tool for the study of an industry-scale problem.
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Chapter 5 Attempt of a macroscopic model

5.1 Introduction

In section 3.3.3, the model to study the dynamics of a row of six fuel pins does not take into
account the modification of the surrounding flow due to the motion of the pins. However, the
motion of the fuel pins does have some effects on the surrounding flow, which results in the
coupling between the fuel pins. The model is to be improved to take this effect into
consideration with the homogenization method. This chapter presents an attempt to build a
macroscopic model for the coupled problem with a homogenization method.

The principle of homogenization consists in assimilating the arrangement of structures to a
porous medium by using formalisms for changing scales intended for the modeling of these
heterogeneous systems. There are mainly two methods: the asymptotic homogenization [137]
and the volume averaging method.

In our case, the structure is periodic in the undeformed configuration and the use of the
asymptotic expansion method appears to be attractive. This method consists in introducing an
asymptotic multi-scale expansion (generally with respect to a ratio of dimensions between the
Representative Volume Element - RVE- and the studied domain) in the governing equations of
the problem. When making this ratio tends to zero, it leads to a homogenized macroscopic
problem for which the homogeneous medium is characterized by the way of problems posed
on the RVE. Jacqueline [138] applied this method to model the dynamic behavior of a bundle
of 16 PWR assemblies in air (incompressible, irrotational and inviscid flow) under a sinusoidal
excitation by considering each assembly as an elementary structure. Under the same
assumptions on the flow, Hammami [139] opted for the homogenization to the core of a
RAPSODIE core. The homogenized model is 2-dimensional in the cross-section plan of the
assemblies and each assembly is considered as a harmonic oscillator. Validated by the
experiments, the sensitivity study of the model to the nature of the fluid highlights the need to
faithfully describe the evolution of the average pressure surrounding the structures. The
adequacy between the proposed model — particularly in water — and the experimental
measurements is qualitatively encouraging and represents significant progress for this type of
approach. Nevertheless, it is difficult with this method to take into account strong non linearities
due for example to the important convective transport effect [143] and the use of averaging
method is then envisaged.

The averaging method aims at transforming by an averaging operator the local equations on the
microscopic scale where the material appears as a juxtaposition of distinct phases, to a global
equation at the macroscopic scale, which is characterized by a RVE. This method was firstly
introduced to model the porous medium [140], such as sedimentary rocks, aquifers or concretes
and cements. It was then adapted to the turbulent flow [141]. The method was applied by Sigrist
and Broc [142] and Ricciardi [89] for the seismic analysis of PWR cores. They assimilated each
fuel assembly to a porous medium and proposed a local averaging method aiming at modeling
the displacements of the assemblies in interaction with an axial turbulent flow. Their formalism
has the particularity of using spatial filters to describe the effects of turbulence and those related
to the porous scale: the flow within the assemblies is modeled using the LES model [49]. The
fluid-structure interaction for different core prototypes is simulated numerically and compared
to vibration measurements obtained on equivalent scale models. However, the distance between
assemblies is considered constant over time and limits the field of application of the method to
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overall movements. Gineau [143] applied a 2-dimensional model in the cross-section plan to
study the vibratory response of the bundles of cylindrical tubes and hexagonal tubes in the
laminar flow. Even though the particularly important confinement in the hexagonal
configuration gives rise to a coupling of modes which is difficult to reproduce by the
homogenized model, the multi-scale approach implemented remains a good compromise
between the cost of the numerical realizations and the expected agreement with the references.
This method is limited to the case where the structural displacements are small enough to be
always limited in their associated RVESs which are independent of space and time.

In our studied case, the relative displacements of the fuel pins should be modeled to take the
impacts between them into account. What’s more, their displacements under external loads can
be relatively high. Basing on the existing methods, modifications should be made to remove
the restriction on the vibratory amplitude. In this case, in order to preserve an individual
description for each fuel pin, it would be necessary to envisage the deformable and mobile
RVEs. The originality of the approach resides in the fact that the RVE (volume and geometry)
to which the averaging operators will be applied will be considered depending on space and
time to follow the overall motion of the pins.

5.2 Modified averaging method

The model to study the dynamic behavior of a row of six fuel pins, taking the coupling between
them into account, is developed based on the volume averaging method. The idea is to
assimilate the row of beams immersed in an axial flow as pores regularly distributed inside the
studied domain, as is shown in Figure 5.1. The method consists in space averaging the
governing equation of fluid on the RVE, which is defined to be composed of a section of beam
(orange part) and the surrounding fluid (blue part), so that the equivalent porous fluid
characterized by the averaged properties could be defined and be coupled with the motion
equation of the beam by the hydraulic forces model proposed by Paidoussis [58].

% 1

R 111117 7

— —

{ Space average ! ) ]

\ | : >

!
L * S GRme e
/ — o .

Figure 5.1. Principal idea of porous method

5.2.1 Spatial averaging theorems

For purposes of averaging, some notations should be defined. The RVE is denoted by 2(x, t) =
2(x,t) U N6 (x,t) with 2 and (2 representing respectively the structure and the fluid domain.
Its centroid is marked by the system of variables (x,t). Let us note the components of x =
xi1e1 + x,e, + x3e3, where (x;,x,,x3) are the coordinates on the orthogonal basis (eq, ez, e3).
A local coordinate system (¢, t) of which the axes are parallel with x marks the relative position
of a point with respect to the centroid of the RVE. The RVE is characterized by the macroscopic
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properties, which are spatial averages defined either on the total volume V; or on the fluid
volume V. The notations are defined as:

_ 1
PO =5 [ G+ g0dy;
.Qf(x,t)

t

) (5.1)
o) =~ P(x+§&t)dV;
fJ05(x0)
-
pan =3 =1 (5.2)

with B denoting the porosity, defined as the fluid fraction in the control volume.

The averaging of the equations governing microscopic phenomena requires the application of
permutation theorems between the volume integral and partial derivations in order to obtain the
formulation of the equivalent macroscopic problem. As explained above, in order to be able to
model the relatively great displacements, the RVE are defined to be deformable and mobile.
Basing on the Leibniz integral rule and the divergence theorems, two permutation theorems
over a space-and time-dependent volume are as follows (see Appendix B for the proof):

1
— dive(x + &, t) dVe
ViJosae

1 1 1
=div <—f o(x+¢, t)dVSe) +—=VV;- (—f o(x+¢& t)dV,’;> (5.3)
Vi 25(x,t) Ve Ve 2 (xt)

-V - e(x+§ t)dS;

_Vt aﬂf(x,t)
1 d +$,t
. f tp(xat $.t) av,
t ﬂf(x,t)
d (1 f 10V, (1
_9(L av, |+ =2t —f v 5.4
at(Vt .(Zf(x,t)(P 5) Vt at <Vt ,Qf(x,t)(p f) ( )
1
- (vp M) dS;
Ve Joo o

Where a2 denotes the border of the domain (¢, n is its outward-pointing unit normal vector
and vy, is it velocity. Particularly in our case, 4.2, can be decomposed into two parts: the fluid-
structure interface A and the fluid-fluid interface A defined by the boundary of RVE. At any
instance t, the position of the structure u is independent of the RVE, thus we have on A,:

VE=—I (5.5)
Therefore, equations (5.3) is rewritten into:
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1
— divp(x+ &, t) dVg
Ve Jast)
_ 1 _ 1
= div(p+—VVt-(p+—f n-@(x+§t)dS; (5.6)
Vi Ve Ja,
A (n-V§) - @(x+¢§ t)dS
t JAp(x,t)

5.2.2 Space-averaging of the Navier-Stokes equations

Since the RVE 1 is deformable and mobile, the microscopic observation volume dQ is
therefore temporally variable. This results in the necessity of the arbitrary lagrangian eulerian
(ALE) description of fluid. The flow is classically considered to be Newtonian, incompressible
and viscous, the Navier-Stokes equations in ALE form are:

divv = 0 (5.7)

v
Prag + pr[(w — D) - V]v = dives + prg (5.8)
Where v and v are respectively the velocity of fluid and of the microscopic observation volume
dq in laboratory reference, py is the density of fluid and o denotes the Cauchy stress tensor.

Since the fluid is supposed to be Newtonian and incompressible, the Cauchy stress tensor is
expressed as:

o5 = —pl+ p(Vv + V'v) (5.9)
Where p denotes the pressure, u refers to the viscosity and I is the identity tensor.
The spatial averaging theorems are applied on the (5.7) and (5.8) to obtain the governing

equations of the equivalent fluid in the RVE. Firstly, the averaged continuity equation is
expressed as:

1
div®@) + —VV, - v
Ve

(5.10)
=0
The momentum equation (5.6) is averaged term by term:
1 w . (av+ 1oV, 1 ( yods
—| Pl =p|l o+ VvV Vp -n)vdSe
1
- — (vp - M)V dSe
Ve Japxt)
¥ = v, on the boundaries A, and A¢. The second term can be separated into two parts:
1 N 1 ) N
— | prl(w—D) - V]vdVy = —py J divlv@v)d2 — | (¥-V)vdV; (5.12)
Vt .Qf Vf .Qf .Qf
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The two terms can be simplified as following:

1
—pff diviv Q v)dN
Vt -Qf
(1 1 1
= pr [dlv (V,f vQ® vdV§> + VVVt ' (Vf v® Ude) (513)
t .Qf t t .Qf
1
+— v -n)vdS; — — n-V§ - -(w®v)dS;
Vi Ag(x,t) Ve Ar(x,t)
1 = 1 R 1 = o
P @ - V)vaV; = prI Vv - vdV; = Pryy f v(¥-n)dS; —f vdivodV (5.14)
t -Qf t .Qf t a.Qf .Qf

Since the fluid is viscous, its velocity on A, is equal to that of A, the third term in eq. (5.13)
and the third term in eq. (5.11) are equal:

1
(v -nm)vdS; = —

(vp - n)vdS;
Vt As(x,t)

Vt Ag(x,t)

According to the turbulence model, velocity can be divided into a spatial average and a
fluctuation v':

1
v=c| vdVe+v =v+7 (5.15)
Vi Jo,
By substituting (5.15) into Vl fﬂf v ® vdf2, we obtain:
t

1 1 10,
— v®vdV€=—f (g@y)dVg+—f v @ v'dV;
Vt .Qf Vt -Qf

Vt .Qf
=B ) @)+ OV Qv
(5.16)
The Reynolds tensor corresponds to the turbulence effect:
Ore =PV Q@ V' (5.17)

Classically, it is modeled by the turbulent viscosity model proposed by Smagorinsky [49]:

2
ORe = —§.0fkTI +ur(Vo + V') (5.18)

As a result, equation (5.13) is simplified into



94 Attempt for a macroscopic model

1
fo diviv Q v)dN
t -Qf

. 1 1 -
= py [dw (Bx®v))+ A (Brv))+ Vtis(x,t)(v mvdS;  (5.19)

(n-v§) (v ®v)dS;

1
- + div(Boge) + VVVt(ﬁO'Re)
tJas(xt) t

In consequence, the left hand of the equivalent momentum equation is:

1f Y ol —9) Vivlay,
Vo), \Prae T PA@ TP Vivpde
v 10V,_ ,
_pf<a+vt¥v +dlv(,6’(g®y))
(5.20)
1
+ W (B2 © )
1
> + div(ﬁaRe) + Vvvt (.BGRe)
t
The right hand of the averaged momentum equation is
1
Vt .Qf
e, 1 —
= dlU(O'f) + VtVVt . O'f (521)
+ Bprg

From the equations (5.10), (5.20) and (5.21), besides the terms with the macroscopic properties,
there exists still many terms (in blue), especially those on the fluid-fluid boundary A, difficult
to be dealt with. In order to obtain the equivalent fluid model, hypothesis need to be made to
simplify the equations and also to make appear the information of the structure positions.

5.2.3 Hypothesis

In order to establish equivalent governing equations, we make the following assumptions: the
fluid (in this case water) is classically assumed to be viscous, incompressible and Newtonian.
Gravity effects are negligible compared to the inertial and viscous forces. As classically
assumed in slender body theory, the sections of the rods do not deform. Turbulent kinetic energy
is assumed to be negligible in comparison with the turbulent diffusion.

The studied system is made up of a row of N identical beams, and their individual movements
make the system pseudo-periodic. In order to preserve an individual description for each fuel
pin, the homogenized problem will be solved on a set of discrete volumes. The study domain is
divided into N non-material control volumes hereinafter and each volume boundary is assumed
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to be located on the midpoint between neighboring beams, as presented in Figure 5.2, to never
have the beams exceeding the corresponding RVE during their motion.

e,© Ye

2

Figure 5.2. Horizontal section of the studied case

All the hypotheses are recapitulated below:
H1 The fluid is Newtonian, incompressible and viscous.
H2 The sections of beams are not deformable and the fluid cannot enter into the structure.

H3 Turbulent Kkinetic energy is assumed to be negligible in comparison with the turbulent
diffusion. The turbulent viscosity is supposed to be constant in time and space and it is much
more important than the dynamic viscosity.

H4 The displacement of the beam is considered to be only in the plan (eq, e3). They can be
considered as the Bernoulli beam and their rotation is very small: QUi 0(1073), with u;

6x1 -
the position of the centroid of the i" beam.

H5 The configuration is infinitely periodic in direction e3, i.e. no exchange between the rows.

H6 The left and right boundaries are supposed to be located at the midpoints of adjacent beams.
The position on the e, axis of the fluid surfaces A¢ of the control volume are noted 4; and
therefore can be expressed as:

0 i=1
u; +u;_

A, ={‘Tll 2<i<N (5.22a)
N-P  i=N+1

with P the pitch of the beams at t = 0. To make the gradient terms meaningful, the
continuous 2(x,t) coherent with the discrete ones should also be defined with the
interpolation between the discrete RVEs, as shown in Figure 5.3.
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homothety +
_ o
translation
homothety +
translation

Figure 5.3. Continuous 2(x, t) (horizontal section marked by the red case) defined with the
interpolation between the discrete RVEs of which the centroid is noted by a cross

The domain is therefore described as 2(x,t) = {(x + &, t)|§ € [—%%] X [A,?2 — X3, Af, —
x,| X [—g,g]}, with A; and Af being piecewise linear functions with respect to x,. h is the

thickness of the control volume in the e4 direction and is chosen small compared the other
dimensions. The segments corresponds respectively to the three processes presented in
Figure 5.3, thus for Vi € [1, N + 1], they are expressed as:

For Aiv1tAi X, < Ui+Ui11—2R
—= A2

2 2 !
A% (0, t) = Z 2
faim Ui Ui — 2R Ajyq t A
2 2
Ai1 H4; u; + ujp 1 — 2R
A (ot = (g = 5D (Wir1 —R) + F— 51— - x2)Aina
(00 = Ut Uiy —2R A t 4
2 2
For ui+ui;1—2R < xz < ui+ui;_1+2R'
u; +u;4.1 — 2R u; + ujyq + 2R
oy < T R BT )
2%t = 2R '
u; +u;.1 — 2R u; +uj.1 + 2R
A5 (5.0 (g ——5—)(Wi+1 — R) + —5———x2) (Wis1 + R)
2t = 2R
For ui+ui;1+2R <x, < Ai+2;Ai+1’
u; + ujpq + 2R Aipp + A
iy = C2 T A (A ) 4 R)
x,t) =
f2 Aisr ;Ai+1 _ut ui§1 + 2R
u; +ujq + 2R A +4A;
ey = 02T M A 4 R ) 4 R)
f2 X0 =

Ajsy ;Ai+1 _ut ui}-l + 2R
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R is the radius of the beam. The domain is discretized into ;; = 2(x;,, t) with x;; = (( +
%)h Al“”‘ (x15,),0), the left and right boundaries are denoted as Aj; and A;;,,. The

notatlons j and i indicates respectively the discretization in direction e; and e,. We
suppose that h «< P.

5.2.4 Attempts of simplifications

Firstly, the hypothesis H2 imposes the simplification for each Q

f n-vdSs; =0 (5.23)
As;;

With the definition (5.22b) of 2(x, t), and the evolution of its boundary with respect to x (the
term n- V¢ in eq. (5.10), eq. (5.20) and eq. (5.21)) can be calculated. On the boundaries normal
to e; and es, its value is zero since 2(x, t) is not deformable in these two directions. Therefore,
we have:

1
-8 @dS;: =—¢ (n-V§)- @dS; +—5£ (n-V§) - @dS; (5.24)
Vt Af Ve A7, Af,

With the hypothesis H4, particularly for €; ;:

ou; 1 aul’ aAfTZ
. L ( i- +_)’__ + 1,0 5.25a
( f)lA]_l < afl afl axz X2=X2ji ( )
n-vél, = ( l+—l+1)’l - o
( f)|A1,1+1 ( & 0¢, 0x; Xp=Xzj ( )

Since h « P (from H6), eq. (5.25a) and (5.25b) is supposed to be constant and equal to the value
at half height (¢; = 0). Therefore, we can define a new macroscopic property by area averaging:

1
s P @dSe=ou, (5.26)

AJl A]l
Again with the hypothesis H4 of small rotations, we suppose that their surface is equal to their
projection on the plan (eq,e3), i.e. Sa;; = Saj, ® P, and by multiplying with the width

defined at half height ;; = (4,41 — 4, l)| the total volume can be obtained.

In conclusion, the continuity equation (5.10) can be simplified into:

1
div(ﬂz)+7tvvt-ﬁy——((n VDL, Va1 TNy, Vs, ) = 0 (5.27)
]

Where VitVVt = ivlj,i and (n- v§)| 4, are functions dependent on w;_y, u; and u.

As for the left hand of the momentum equation (5.20), since with hypothesis H4 v is only in
the direction e,, ¥ - n is not equal to zero only on the boundaries 4;; and 4; ;.. According to
the definition in H6:

@ -n)vdS; =

1 1 (g + 1 Wi + Uigq
L, ) e

Vl’ Af
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Similarly, the term concerning the evolution of the boundary of the RVE can be written as:

1
A n-V§) - (v ®v)dS;
tJAap(xt)
W ® v)dS; + (n-V
- l],l (n f) |Aj,i SAj’i Aj’i (v v) f (n f) |Aj,i+1 (529)
_(f (v ® v)dS;
Aji+1 Y Ajiv1

Recalling the turbulence model, this time the volume average is replaced by an area average,
1 ’.
thus on boundary 4;;, v = <§” fﬁA,-_i vd55> +v".
1 1 1 1
— ¢ w@vydse=|— 3§ vdSe | @ [ — 3@ vds; | +—¢ @ ®v)ds;  (5.30)
SAj,i Aji SAj.i Aji SAj.i Aji SAj,i Aj

1
ORela;; = Prs A v @ v')dS;
jiJaj

) 1 1 (5.31)
= —=prkrl + uT(V—f vdSe + VI —¢  vdS;)
3 Saji Sajida;;
As a result, substituting eg. (5.30) and eq. (5.31) into eq. (5.29), and with H3 we have:
1
A (n-V§) - (v ®v)dSe
t Af(x,t)
1 5.32
= - l_{(n ) Vf)lAj'i ' [(vAj,i ® vAj’i) + ‘u'T (vaj,i + vTvAj,i):I ( )

j,i

+ (- Vf)lAj,i+1 | [(vAj,i+1 ® vAj,i+1) +ur (VvAj,iH + VTvAj,i+1)]}
Since ¥ and v are both constant and equal to the velocity of the structure, §, (¥ - n)vdSg = 0.
The term is then simplified as (5.28):

1 1 1
—-—— v(ﬁ-n)d55=——j€ (ﬁ-n)vdsg——é @ -n)vds;
Ve Jaq, Ve Ja, Ve lay (5.33)

1+ Ui + Ujpq
]_ 2 vAj,i - 2 Aji+1

=1
The last term to be explained in (5.20) is Vlfﬂfv - divvdV. According to the definition of the
t

boundary positions in H5, ¥ inside the RVE should also be a piecewise linear function with
respect to &,:
divv
U — Ui U4 +u;
|(u- _lu, 11—12R (x1j +80,t) if l 1—2 l (x1ji +&1) <&+ x5 <ui(xg; +&)—R
l 1=
= { 0 ifui(xlj’i+$1)—R S€2+X2]"i Sui(xlj_i+fl)+R
[ W — .
m(xm +&,t) ifu(xj +&)+FR<SE+ x5, <
Again with the hypothesis h « P, it is supposed that the variation of div® with respect to &; is
negligible in Q; ;. With an assumption quite strong as below:

(5.34)

Uit T U;
— (xlj,i + ¢
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1
t _Qf
1 l(xlj l.) R o 1
= l]_l fui%m(xm)dwv; A,-,inSSC dé,
Uiy iy (5.35a)
) H(x150) 1
+ divd ff vdS; dé,
ui(xlj,i)+R Aj,i+1 Aj,i+1
1
= l_ 01 (xj,i; t, Ui—1, ui)vA] i I - 92 (x] ir t, u;, uH_l)vA] 141
]t i
0 if uy—uj_y — 2R =0
9 X It u ,u u )
1(11 i-1 ) { 11(1“) if not b
0 if Uipy —u— 2R =0 (5.35b)
0 X ) t U; ) u =<Uu '
2( Jii i l+1) { i+1 ( 1“) lf not

Similarly, the term of the right hand of the momentum equation (5.21) can be simplified as:

(n-V§) - opdSe

Vt A
f
1 1
:_l]_z (n- Vf)|A]l T.{lnﬂfdsg*'(n'vf)hj,iﬂ (5.36)
ji Y Aji
1
- }Q o dS;
Ajiv1 YAjiv1

By substituting eq. (5.28), eq. (5.32), eq. (5.33) and eqg. (5.34) into eg. (5.20) and by replacing
eq. (5.9) and eq. (5.36) into eq. (5.21), with the hypothesis that the dynamic viscosity is much
lower than the turbulent viscosity, the equivalent momentum equation expressed with the
macroscopic properties is as below:

Kl 1 dV, 1

+ div(ﬁuT (Vv +V'p)) + Vivvt(ﬁuT(Vz +V'p))
t

+ %{[(ui_l F UV, — (g + )V, | — (T,
: [(vAji ® vA].L.) + ur (VvA.. + VTvA..)] —M-Vly;,,, (5.37)

. [( Aji+1 ® Va;, l+1) +Hr (va i TV vA]l+1)]

+ Ol(xj l’t ul 1,u )‘DA + 92(?6] Ut ullul+1)vA]l+1}
 1av,_
=—VP—WEP+ZJ—1((71 Vf)|A“ PA”+(n Vf)|A,L+1 PA,LH)

+ Bprg+ Fstructure—>fluide

0 —
LoV _ BinTUin (o 1) is & function dependent on w;_; and ug,;.

Ve Ot Ujp1—Ui—g

Where =
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The last term represents the structure body force acting on the fluid and thus allows the coupling
between the fluid and the structure:

1
Fstructure—fluide = Vf Or "N dSe (5.38)
tJAs(xt)
Recalling the model proposed by Paidoussis for the hydraulic forces (1.13) — (1.16):
1
Fstructure—>fluide = _?(FA +Fy+Fp) (5.39)
J,tl

9 9
Fo=—ms [a (i) = v2j0) + 2007 g (i) = v250)

azui
+ 15,7 ?12 (xlj,i)] e,
1 . aui
Fy=- EpDzlj,iCN wi(xq) — vaji + zlj,ia_fl(xlj,i) (5.40)

1
+ EpDCD (fli(xlj,i) - 22]',1')‘ €2

1 2 1 2 aui
Fy =-pDvy;;*Creq +=pDvy;;>Cr——(x1;)e€2
2 2 9%,

Where Sj,i = lj,i - P
In conclusion, the variables in the equivalent governing equations of the fluid are:

e The volume averaging velocity of fluid v (in e4 and e;)
e The area averaging velocity of fluid on the moving boundaries v, and v, ,

e The volume averaging pressure of fluid p
e The area averaging pressure on the moving boundaries p,,; and py;, ,

e The displacement of the beam u;_,, u; and u; 4

For a layer with N beam sections in a row, there are 3N equations for fluid, coupling with N
equations for 7N-1 (2N for v, 2(N-1) for vy, N forp, N+1 for Pa;; and N for u;) unknowns.

By building a relationship between the volume averaging properties and the area averaging ones,
the problem can be closed. Gineau [143] in her work applied the co-located finite volume
method and thus established the relationship by equating their integrals on the boundary. This
idea can be reused in our further study.

5.3 Discussion

In this chapter, we aim at constructing an improved model which takes into consideration the
coupling between the fuel pins by the flow between them. In order to avoid the large number
of degrees of freedom necessary in a CFD calculation, the space averaging method is adopted
to build a global model characterized by the macroscopic properties.

There are already many existing works [89],[142],[143] utilizing this idea and obtaining good
agreements between the simulation results and the experiments. However, these methods need
to be modified since in our studied case, the relative displacements of the fuel pins should be
modeled to be able to take the impacts between them into account. What’s more, their
displacements under external loads can be relatively large. As a result, in order to preserve an
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individual description for each fuel pin, it would be necessary to use the deformable and mobile
RVEs.

The work is started with a theoretical work on the modified spatial averaging theorem for the
RVEs of which the volume is space-dependent. Then, it is applied on the local Navier-Stokes
equations in ALE form to obtain the equivalent governing equations for fluid. There exists
many new terms involving the deformability of the RVEs, which accounts for the exchanges
between them. These terms make appear the macroscopic properties defined by the area
averaging. The problem can be closed by establishing the relationships between the area
averaging properties and the volume averaging ones.

In the process of transforming the local governing equations to the global ones, many
hypothesis have been made, some can be quite strong (the one used to treating the space-
dependent velocity of the observation volume) and risk to lose too much accuracy. Therefore,
the verification of the resulting macroscopic model is necessary. There are mainly two ways,
either by the experiments or by the accurate CFD calculations, which makes up a prospective
for this part of work.
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Conclusion and perspectives

This chapter is a recapitulation of the work presented in this document. The main outcomes of
the PhD are presented and a discussion will be opened on perspectives.

Conclusion

This thesis work makes up a part of the risk analysis for the design of ASTRID reactor. When
there is an external load, such as an earthquake, the fuel pins will collide with the wrapper tube
and among themselves, challenging the integrity of cladding. For this safety concern, we search
to describe accurately the dynamic responses of the fuel pins to an excitation. Special concern
is paid on two physical phenomena quite complex: the strong non-linearity induced by the
impacts and also the fluid structure interaction.

In fact, the aspect of numerous potential impacts in air has been studied both experimentally
and numerically in the thesis work by T. Catterou, our goal is thus to take the fluid aspect into
consideration. The first effort was to incorporate the fluid-elastic forces, basing on the widely
used expression proposed by Paidoussis, into the structure model. Therefore, many parameters
related to the hydraulic forces and the impact law are to be determined by the experiments.
Inspired by the experiences from the previous tests, a new bench, named as CARNEAR,
allowing to carry out the sweep sine excited experiments under different flow velocity with one
single fuel pin and a row of fuel pins are designed. A guaranteed measurement with fast camera
is anticipated to record the temporal history of motion. Even though the existence of spacer
wire complicates the flow pattern and thus arises the difficulty in the investigation of local
effects, the global parameters lumping the effects of different physics can be determined with
the modal analysis. Besides, it can give an experimental basis to validate the modeling.
Unfortunately, we were not able to perform the experiments as a result of the budget limitation
and the difficulty arising from the health crisis.

The model taking the aforementioned physical phenomena into consideration by the
Paidoussis’s expression of the hydraulic forces and a penetration impact law is then exploited
with the implicit Newmark scheme combining the Newton-Raphson iteration with a
convergence criterion on force. Due to the lack of experiments, an estimation of the coefficients
has been performed by a parametric study of their effects based on the previous theoretical and
experimental outcomes. The phenomenal analyses on the nonlinear responses of the fuel pin
have been performed. It is found that the global dynamic behavior of the fuel pin under
excitation is relatively simple in our studied range and the complexity is mainly due to the local
chatters in much smaller time scale. Different nonlinear vibration patterns, of multiples of
imposed frequency and of period-doubling, have been identified. The former one corresponds
to the “sticking” contact, and the latter one identifying the sub-harmonics corresponds to the
alternative “sticking” contact and simple “rebound”. The chaotic response has been figured out
as the random alternation. The mixing of different sub-harmonics is also observed to be another
source of the transition to the chaos. Besides, the nonlinearity of the system of a row of fuel
pins is observed to be weaker, even with a greater number of contact points. It is possibly due
to the greater space for the vibration.

The nonlinearity can lead to coexisting vibration regimes, it is difficult to for the direct time-
integration to fully cover the possible outcomes since the different initial conditions are to be
searched. The periodic dynamic response searching methods, well known for the good
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performance with the smooth nonlinearity in terms of economizing the computation resources
and good agreement with the reference, are applied to address this problem. Their performance
with impact problems are evaluated before applying the full fuel pin model.

The first evaluation is on the classical frequency-domain method HBM, of the high order purely
frequency-based type, with a simplified fuel pin model with only four contact points. A good
agreement with the direct time-integration method is obtained in the case with less rigid contact
points, costing less time and detecting easily the period-doubling bifurcation points. This
observation is coherent with the previously reported work as their studied range of the stiffness
ratio between the contact and the system is less than 100. The difficulty of describing the
sticking contact and the resulting impact forces with the Fourier series has been identified when
the contact points are very rigid. This also results in a quite limited range of the excitation
amplitude that can be studied.

In order to overcome these limitations, we turn to the so-called global periodic time integration
(GPTI) method, which consists in searching for the state vector for each node at each time step
in one period. Since this method is not much studied, its performance with the impact problems
is firstly evaluated with a parametric study of the 1-dof vibro-impact system and is found to
have the potential to study the very rigid contact problems: the limit on the stiffness ratio
between the contact point and the system is of 1000 with uniform time steps and of 5000 with
adaptive time discretization. The difficulty is mainly due to the change of phase along with the
continuation, which results in the sharp variation of the impact force. The excitation amplitude
is therefore limited due to the occurrence of the “sticking” contacts, where successive peaks of
impact force challenge the numeric convergence.

Since it appears to have a better performance than the HBM, the GPTI method for problems of
multiple dofs with several contact points is then developed and applied to the study of the fuel
pin model. The verification is performed with less rigid contact points by comparing the
periodic solutions on the continuation branch with the steady-state vibrations obtained with the
direct time-integration method. The continuation is be performed in our interested range but is
rather difficult in terms of the short arc-length, which results in a large number of continuation
steps, thus demands a large computation memory. A linear contact damper, allowing to calm
the chatters following the first penetration into the contact point and have the peaks of the
impact force less pointed, makes the continuation easier.

The GPTI method is still not applicable to a very rigid contact problem even with the effort of
introducing a contact damper, as the impact forces are still too pointed to have an easy
continuation. In fact, it is acceptable to study the global dynamic behavior of the fuel pin with
a reduced contact stiffness if regardless of the impact forces. With the continuous solution
branch, the global periodic time integration method has the advantage of interpreting easily the
change of the periodic patterns, such as the occurrence of the period-doubling phenomenon.
The dynamic behavior of the fuel pin with several contact points is so complex that there exists
different solution branches for the same excitation. Not like the study of the systems with less
complex dynamics, we are not able to obtain all the possible periodic responses with one
continuation computation. Even though the direct time-integration result can be a
complementary method of finding the start points of the solution branches, it can never be
exhaustive since it is very sensible to the initial condition chosen for a system of complex
dynamic behaviors. Therefore, the periodic searching method and the direct time-integration
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method are both limited in interpreting the dynamic behavior of the fuel pin when it becomes
complex.

The model used above is more suited to the study of a single fuel pin, in order to be able to
simulate the coupling motion of several fuel pins, an improved model, characterized by the
macroscopic properties is proposed basing on the space averaging method. Overcoming the
limits of the existing methods, modifications have been made to allow modelling the relatively
big displacements of the fuel pins and their relative displacements by considering the
deformable and mobile RVEs. The verification of the hypothesis used for deriving this model
needs further investigation.

Perspectives

Many perspectives are opened as a result of this PhD thesis either for experiments, or the
modeling and the associated numerical methods.

First of all, the experiments anticipated in CARNEAU are expected to be realized to the model
parameters and offer a validation of the proposed models and the numeric methods.

As for the global periodic time integration method, it should be optimized in terms of its
functionality. The associated stability analysis and the detection of the bifurcation point for the
other solution branches are anticipated. And optimization for the initialization and the
compression of the number of variables for a shorter computation time.

It was shown in the work of Catterou that global dynamics of systems with impacts are affected
greatly by the configuration. The continuation with respect to the related parameters, such as
the clearance can be carried out with the existing method. This suggests the investigation of a
coupled problem whose objective is to model long-term behavior with evolving gaps due to the
contacts or the irradiation.

In fact, part of the difficulty with the rigid impact problems arises from the fact that we are
simulating simultaneously two physical phenomena of very different time scales: the global
vibration and the local chatters induced by the impacts. An existing idea is to model the global
vibration with an appropriate shock law which does not describe the penetrations in detail but
only presents the sticking or the rebound.

The model taking the coupling between adjacent fuel pins into account is to be implemented.
The verification of the model by either the experiments or the accurate CFD simulations is also
necessary. It can be exploited with both the traditional time-integration approach and the
periodic searching method. Therefore, the coupling effect can be evaluated by comparing with
the results from the former model.
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Appendix A

The discretization of the equation (3.17) is accomplished with the Bernoulli beam element.
Using N uniform finite elements, the length of which is [ = L/N. The coordinates of the nodes
are x; (i =1, ..., N + 1). For each node, there are two degrees of freedom: displacement w (or
deflection) and rotation ¢ = dw/dx. On each element, the displacement can be represented by:

w(x) = wiN; (%) + @1 N,(x) + w,N3(x) + @, N, (x) = N'q

Where the shape functions N; (i = 1, ...,4) are Hermite polynomials of third order. In vector
form, the shape functions are written as:

(-2 (35 +3)]
J1(1-92(

3 1-9 1( '*1'5) with & = ZX—an—xn+1
A+ (3-36)

S1(1+6%¢ - D)

It is associated with the degrees of freedom of the element:

N =

q" = [wy, 91, W2, 95]

For each element, there are stiffness matrices associated with the structure, the added mass,
the gravity and the viscous forces:
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The damping matrices associated with the added mass and the viscous forces for each element

is expressed as:
C.=C5+ C;’ner,f

Respectively,
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And the mass matrix for each element is written as:
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The boundary condition is accounted on the N™ element by the matrices expressed as follows:
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The matrices for the whole beam is constructed by assembling the elementary matrices
described above. As shown in Figure A.1, the boundary condition at x = 0 is translated by
imposing w; = 0 and ¢, = 0 at node x;, thus the first two rows and the first two columns of
the complete matrix are removed (in grey).

1 2 3 4 5

1 pi 3 1 5

Figure A.1. Assemblage of elementary matrices

The vector for each element correspondlng to the external force IS written as:

L
f F,.0wdx = U 5q" f F, oo (x, )NAE = U 5q"F,
0

ie=1 ie=1

If the external force is uniformly distributed, thus,

l
Fo = Fout (£)Q, = ext(t)_l
[ 1]

The procedure of assemblage of the elementary vector Q. is similar to that of the matrices.
If the external forces F, (i € [1,nc]) are concentrated at certain points, which for

simplification are supposed to coincide with the nodes localized at x. = {xcq, X2, ", X¢,, .}
then F, is a vector with (2c; — 1) element equal to F; and others equal to 0.
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Finally, we obtain the following general form of the second order ordinary differential equation:
Mg+Mp)X+CeX+ (Ks+Kp)X+F.=F,,(D)Q

X" = [Wa @2 .. Wit Ongq]
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Appendix B

Let Q, be the reference configuration, of which the centroid is the origin of the coordinates 7;
of the deformable and moving domain Q, . with x defining its centroid and ¢ the time. The local
coordinates relative to x in Q, . are marked by &;. We now consider a mapping v, , which at
time ¢t associates to a point n € Q, a point § € £, , such that:

lpx,t: Q0 - -Qx,t
N =& =)
The Jacobian matrix of i, is denoted by J,, = V,¥,, and J,. its determinant. The
instantaneous velocity of Q. , denoted as ¥ is defined as:

(B.1)

0
2(¢,6) = 725 (82)

The proof of the averaging theorem associated with divergence eq. (5.3) is as following, here
we adopt the Einstein notations:

d
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Since when we observe the local phenomena in Q, ., x is fixed, therefore inside the integral
V.+¢= V¢ And with the following process we obtain the so-called Abel’s formula:

(B.4)
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with the chain rule, we have:
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Therefore (B.5) can be calculated term by term and gives:
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Substituting (B.6) into (B.4), we can obtain:
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Combining (B.3) with (B.7), we finally obtain the permutation rule of integral and divergence
for obtaining the theorem (5.3):

dwf (p(x+f t)dVe —j

dive(x + &, t)dVe + j (Vx§-n) - @dV; (B.8)
Oyt Q

x,t

The permutation rule for obtaining the theorem (5.4) is the famous Reynolds transport equation.
The proof is similar as the previous one.
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With the Euler expansion formula, which is obtained with the similar process as in (B.4) and
(B.5):
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The permutation rule of integral and divergence for obtaining the theorem (5.4) is therefore:
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