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Résumé. Nous présentons un estimateur pour l’ajustement, en grande dimension, d’un mod-
èle linéaire avec interactions quadratiques. Un tel modèle ayant un très grand nombre de
variables, son estimation soulève de nombreux défis statistiques et numériques. Ainsi, son es-
timation a motivé de nombreux travaux ces deux dernières décennies, et reste un enjeu dans
de nombreuses applications. Statistiquement, un des enjeux est de pouvoir faire de la sélec-
tion de variables, pour faciliter l’interprétabilité du modèle. De plus, les variables d’interactions
ajoutées pouvant être fortement corrélées, une régularisation adaptée doit permettre de les pren-
dre en compte. On propose alors d’adapter l’estimateur ElasticNet, pour prendre en compte les
potentielles corrélations via la pénalité `2 et obtenir un modèle parcimonieux via la pénalité `1.

Aussi, une approche communément utilisée dans la littérature, pour favoriser les effets prin-
cipaux tout en réduisant le nombre d’interactions à considérer, est l’hypothèse d’hérédité. Cette
hypothèse n’autorise à inclure une interaction que si et seulement si les effets principaux asso-
ciés sont sélectionnés dans le modèle. Ainsi, elle mène à des modèles parcimonieux, plus faciles
à interpréter, tout en réduisant le nombre d’interactions à visiter et le coût computationnel.
Cependant, elle ne permet pas d’explorer les variables d’interactions dont les effets principaux
ne sont pas sélectionnés, alors que ces variables peuvent être pertinentes à considérer. Aussi,
on propose de s’affranchir de cette hypothèse structurelle d’hérédité, et de pénaliser davantage
les interactions que les effets simples, pour favoriser ces dernières et l’interprétabilité.

Aussi, on sait que les estimateurs pénalisés tels que l’Elastic Net biaisent les coefficients en
les réduisant agressivement vers zéro. Une conséquence est la sélection de variables supplémen-
taires pour compenser la perte d’amplitude des coefficients pénalisés, affectant la calibration des
hyperparamètres lors de la validation croisée. Une solution simple est alors de sélectionner les
variables par l’Elastic Net, puis d’estimer ces coefficients par l’estimateur des moindres carrés,
pour chaque hyperparamètre. Cependant, si les variables sont fortement corrélées, l’étape des
moindres carrés peut échouer. Aussi, on choisit d’adapter une méthode de débiaisage permet-
tant d’obtenir simultanément les coefficients de l’Elastic Net et leur version débiaisée.

Un premier enjeu de ce travail est de développer un algorithme qui ne requiert pas de stocker
la matrice des interactions, qui peut dépasser la capacité mémoire d’un ordinateur. Pour ce faire,
on adapte un algorithme de descente par coordonnées, permettant de construire les colonnes
de cette matrice à la volée sans les stocker, mais ajoute des calculs supplémentaires à chaque
mise-à-jour d’un coefficient d’interactions, augmentant les temps de calculs. Aussi, sachant que
notre estimateur est parcimonieux, ces calculs peuvent être d’autant plus inutiles que beaucoup
de coefficients d’interactions sont nuls, et donc inutilement mis à jour. Un second enjeu est de
proposer un algorithme qui reste efficace, malgré le grand nombre d’interactions à considérer et
ce surcoût de calculs. Par conséquent, afin d’exploiter la parcimonie de l’estimateur et de réduire
le nombre de coefficients d’interactions à mettre à jour, on adapte un algorithme d’ensembles
actifs. Enfin, on adapte l’accélération d’Anderson, qui permet d’accélérer les algorithmes de
descente par coordonnées pour les problèmes type LASSO.

Finalement, les performances de notre estimateur sont illustrées aussi bien sur données

simulées que sur données réelles, et comparées avec des méthodes de l’état de l’art.

Mots-clés. Modèle linéaire, Interactions quadratiques, Elastic Net, parcimonie, algorithme

d’ensembles actifs, optimisation convexe non-lisse





Abstract. We present an estimator for the high-dimensional fitting of a linear model with
quadratic interactions. As such a model has a very large number of features, its estimation
raises many statistical and computational challenges. Thus, its estimation has motivated a
lot of work over the last two decades, and remains a challenge in many applications. From a
statistical point of view, one of the challenges is to be able to select the features, to facilitate
the interpretability of the model. Moreover, since the added interaction features can be highly
correlated, an adapted regularization must be able to take them into account. We then propose
to adapt the Elastic Net estimator, to take into account the potential correlations thanks to the
`2 penalty, and to obtain a parsimonious model using the `1 penalty.

Moreover, a common approach used in the literature, to favor main effects while reducing
the number of interactions to be considered, is the heredity assumption. This assumption allows
the inclusion of an interaction only if and when the associated main effects are selected in the
model. Thus, it leads to parsimonious models, easier to interpret, while reducing the number of
interactions to be visited and the computational cost. However, it does not allow the exploration
of interaction variables whose main effects are not selected, although these variables may be
relevant to consider. We therefore propose to emancipate ourselves from this structural heredity
assumption, and to penalize interactions more than main effects, in order to favor the latter
and interpretability.

It is also known that penalized estimators such as Elastic Net bias the coefficients by ag-
gressively shrinking them towards zero. A consequence is the selection of additional features to
compensate for the loss of amplitude of the penalized coefficients, which affects the calibration
of the hyperparameters during cross-validation. A simple solution is then to select the features
by the Elastic Net, then to estimate these coefficients by the Least Squares estimator, for each
hyperparameter. However, if the features are highly correlated, the Least Squares step may
fail. Therefore, we choose to adapt a debiasing method allowing to obtain simultaneously the
Elastic Net coefficients and their debiased version.

A first challenge of this work is to develop an algorithm that does not require to store
the interaction matrix, which could exceed the memory capacity of a computer. To do this,
we adapt a coordinate descent algorithm, allowing to build the columns of this matrix on-
the-fly . Although this step avoids storage, it adds extra computations to each step of the
algorithm, thus increasing its computation time. Moreover, knowing that our estimator is
parsimonious, these computations may be all the more useless as many interaction coefficients
are zero, and thus unnecessarily updated. A second issue is then to propose an algorithm that
remains computationally efficient, despite the large number of interactions to consider and this
computational overhead. Therefore, to exploit the parsimony of the estimator and to reduce the
number of interaction coefficients to be updated, we adapt an active set algorithm. Second, we
adapt the Anderson acceleration, which allows us to speed up the coordinate descent algorithms
for solving LASSO type problems.

Finally, the performance of our estimator is illustrated on simulated and real data, and

compared with state-of-the-art methods.

Keywords. Linear Model, Quadratic Interactions, Elastic Net, Sparsity, Active Sets Algo-

rithm, non-smooth convex optimization
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Résumé en Français

Dans cette thèse, nous présentons un estimateur pour l’ajustement, en grande dimension,
d’un modèle linéaire avec interactions quadratiques.

Motivations. Pouvoir prendre en compte les effets cocktails entre des variables est un
enjeu dans de nombreuses applications, puisqu’ils peuvent donner une meilleure com-
préhension des phénomènes étudiés. En génomique, par exemple, de nombreux travaux
visent à étudier ces effets cocktails entre gènes [Ritchie et al., 2001, Marchini et al., 2005,
Park and Hastie, 2008, D’Angelo et al., 2009, Wu et al., 2010, Wang et al., 2014, Wang
and Chen, 2018, Vandel et al., 2019, Zrimec et al., 2021], ou entre gènes et environ-
nement [Liu et al., 2013, Figueiredo et al., 2014, Laville et al., 2020, Zhou et al., 2021,
Zemlianskaia et al., 2022].

Modèle linéaire avec interactions quadratiques, section 1.1. Aussi, estimer un
modèle linéaire avec interactions (Equation (1.1)) est devenu un défi majeur au cours
des deux dernières décennies. Cependant, même limité aux interactions quadratiques,
un tel modèle considère un très grand nombre de variables additionnelles. Ainsi, son
estimation soulève de nombreux défis statistiques et numériques, et ne doit pas se faire
au prix de son interprétabilité.

Dans cet objectif, lorsque la matrice des interactions peut être construite et stockée
en mémoire, les estimateurs connus pour leur parcimonie tels que le LASSO [Tibshirani,
1996, Chen et al., 1998] ou l’Elastic Net [Zou and Hastie, 2005] peuvent encore être utilisés
pour estimer de tels modèles. Cependant, lorsque le nombre de variables augmente,
ces approches standards peuvent devenir inutilisables pour deux raisons. La première
raison est numérique, puisque la taille de la matrice des interactions peut rapidement
dépasser la capacité de mémoire de l’ordinateur (Figure 1.1a). La deuxième raison est
statistique, car les variables principales deviennent rapidement minoritaires et sont noyées
parmi les variables d’interactions (Figure 1.1b). Ainsi, traiter les effets principaux et les
effets d’interaction de la même façon peut donner des modèles ayant detecté seulement
quelques effets principaux, parmi de nombreuses interactions sélectionnées, les rendant
plus difficiles à interpréter.
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FRENCH SUMMARY

Approches avec hypothèses d’hérédité, section 1.2. Pour résoudre les problèmes
de régression quadratiques et effectuer la sélection des variables, une approche commune
consiste à considérer des hypothèses de structure hiérarchique entre les effets principaux
et les interactions. Elles se dérivent principalement en deux versions : l’hérédité forte
(Figure 1.2a) et l’hérédité faible (Figure 1.2b). La première n’autorise à inclure une
interaction que si et seulement si les effets principaux associés sont sélectionnés dans le
modèle, alors que la deuxième n’exige la présence que d’un seul effet principal. De nom-
breux moyens ont été proposés pour imposer ces structures, notamment des approches
basées sur l’optimisation (section 1.2.1), ou des procédures pas à pas (section 1.2.2).

Les approches basées sur un problème d’optimisation [Yuan et al., 2009, Radchenko
and James, 2010, Bien et al., 2013, Lim and Hastie, 2015, Haris et al., 2016, Hazimeh and
Mazumder, 2020] imposent la structure d’hérédité en ajoutant des contraintes ou des pé-
nalités supplémentaires à un estimateur imposant déjà la parcimonie, tels que le LASSO.
Les procédures pas à pas [Park and Hastie, 2008, Hao and Zhang, 2014, Hao et al., 2018]
peuvent brièvement se résumer comme suit. Une première étape permet de sélectionner
les effets principaux actifs tandis qu’une deuxième étape sélectionne les interactions ac-
tives entre les effets principaux sélectionnés à la première étape. Les méthodes basées
sur l’optimisation bénéficient de meilleures propriétés statistiques, puisqu’elles consid-
èrent les effets principaux et d’interactions ensemble, alors que les procédures pas à pas
considèrent un nombre d’interactions réduit, ce qui est numériquement avantageux.

Ainsi, les hypothèses d’hérédités mènent à des modèles parcimonieux, plus faciles à
interpréter, tout en réduisant le nombre d’interactions à visiter et le coût computationnel.
Cependant, elles ne permettent pas d’explorer les variables d’interactions dont les effets
principaux ne sont pas sélectionnés, alors que ces variables peuvent être pertinentes
à considérer. En génomique, par exemple, l’expression des gènes nécessite souvent la
présence de protéines coopérantes, c’est-à-dire que la présence d’une seule protéine ne
peut pas activer l’expression des gènes [Vandel et al., 2019, Zrimec et al., 2021].

Approches sans hypothèses d’hérédités, section 1.3. En général, aucun a priori
n’est connu sur la structure sous-jacente des interactions. Aussi, deux types d’approches
ont été développées pour s’affranchir des hypothèses d’hérédité, via des hypothèses sup-
plémentaires sur les données (section 1.3.1), ou via le tri des interactions (section 1.3.2).

Le premier type d’approche [Nakagawa et al., 2015, 2016, Le Morvan and Vert, 2018]
repose sur l’hypothèse que les coefficients de la matrice de design sont binaires ou continus
dans r0, 1s. Grâce à cette hypothèse et en exploitant la structure d’arbre des interac-
tions, ces travaux fournissent différents critères permettant de filtrer les interactions non
pertinentes, réduisant le nombre d’interactions à visiter. Bien que ces approches soient
numériquement très efficaces, cette hypothèse restreint leur potentiel applicatif.
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Le second type d’approche [Fan et al., 2016, Reese et al., 2018] repose sur le tri des in-
teractions selon un certain critère, généralement basé sur la corrélation entre l’interaction
et la réponse, pour ne sélectionner que celles ayant un score supérieur à un seuil donné.
Si cela est très efficace numériquement, une limite est de ne pas considérer conjointement
les effets principaux et les interactions dans un même problème d’optimisation.

Aussi, on décide dans cette thèse de s’affranchir des hypothèses sur la structure
d’hérédité et de celles sur les données, avec l’objectif d’estimer l’ensemble des interactions
et des variables principales dans un seul problème d’optimisation.

Notre approche, Chapitre 2. Dans cette thèse, nous développons un estimateur
pour l’ajustement, en grande dimension, d’un modèle de régression linéaire avec inter-
actions quadratiques (section 2.1). Aussi, pour estimer un tel modèle tout en restant
interprétable, on adapte l’estimateur Elastic Net [Zou and Hastie, 2005], pour bénéficier
à la fois de la parcimonie grâce à la pénalité `1 et prendre en compte les potentielles
corrélations entre variables grâce à la pénalité `2 (Equation (2.3)).

Cet estimateur ayant une pénalité composée de 4 termes et de 4 hyper-paramètres
à ajuster, on propose une re-paramétrisation de l’Elastic Net avec Interactions (sec-
tion 2.1.1). Les objectifs sont de réduire le nombre d’hyper-paramètres à ajuster pour
réduire le coût computationnel associé, et d’adapter ces pénalités au cas des interac-
tions, notamment en proposant de pénaliser les interactions plus que les effets principaux,
comme dans Hao et al. [2018], Hazimeh and Mazumder [2020].

Ensuite, un des enjeux de cette thèse est de développer un algorithme qui ne re-
quiert pas de stocker la matrice des interactions, qui peut dépasser la capacité mémoire
d’un ordinateur. Dans cet objectif, on adapte l’algorithme de descente par coordonnées
[Tseng, 2001, Friedman et al., 2007], dont le principe consiste à transformer un problème
d’optimisation de taille p en p problèmes d’optimisation à 1 dimension (section 2.1.2).
Ainsi, il permet de mettre à jour les coefficients d’interactions un par un, permettant de
construire des colonnes de la matrice des interactions à la volée sans jamais avoir besoin
de la stocker entièrement en mémoire (Algorithme 2). Néanmoins, l’inconvénient de cette
approche est que la mise à jour de chaque coefficient d’interactions nécessite des calculs
supplémentaires, augmentant le temps de calcul de l’algorithme. Par ailleurs, on sait
que la solution de l’Elastic Net avec Interactions est parcimonieuse, i.e., de nombreux
coefficients d’interactions sont nuls à la solution et donc leurs mises à jour sont d’autant
plus inutiles.

Les premiers résultats statistiques illustrent que pénaliser les interactions plus que les
effects principaux améliore significativement les performances de sélection de variables
(Figures 2.2 et 2.3) sans déteriorer les performances prédictives (Figure 2.1, section 2.1.3).
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Débiaisage d’estimateurs pénalisés, section 2.2. Aussi, il est connu que les esti-
mateurs pénalisés tels que l’Elastic Net biaisent les coefficients en les réduisant agressive-
ment vers zéro (Figure 1.4). Une conséquence est la sélection de variables supplémentaires
pour compenser la perte d’amplitude des coefficients pénalisés, affectant la calibration
des hyper-paramètres lors de la validation croisée.

Dans un premier temps, on rappelle une solution simple [Efron et al., 2004, Belloni and
Chernozhukov, 2013, Lederer, 2013] qui est de sélectionner les variables par l’Elastic Net,
puis d’estimer les coefficients associés par l’estimateur des moindres carrés, pour chaque
hyper-paramètre (section 1.4). Bien que cette approche soit assez simple, elle souffre de
plusieurs inconvénients. Le premier vient du fait que, si les variables actives identifiées
par l’Elastic Net sont fortement corrélées, l’étape des moindres carrés peut échouer,
car elle est censée être utilisée sur une matrice de plein rang. Néanmoins, l’inconvénient
principal est la complexité du pipeline permettant de réaliser une telle méthode, puisqu’il
doit être fait sur toute la grille des hyper-paramètres testés par l’Elastic Net, et pour
chaque sous-ensemble de la procédure de validation croisée.

Pour ces raisons, on choisit d’adapter une méthode de débiaisage permettant d’obtenir
simultanément les coefficients de l’Elastic Net avec Interactions et leur version débiaisée.
Pour ce faire, nous adaptons l’estimateur CLEAR (Covariant LEAst-square Reffiting,
[Deledalle et al., 2017]), à l’Elastic Net avec Interactions, appelé CLEAR-Enet avec
Interactions par la suite (section 2.2.2). Le principal intérêt d’adapter CLEAR à notre
contexte est qu’il préserve les propriétés de l’Elastic Net, notamment la parcimonie.
L’objectif est alors de déterminer un hyper-paramètre amenant à sélectionner moins de
coefficients que l’Elastic Net avec Interactions pour une erreur de prédiction similaire,
afin de faciliter l’interprétabilité du modèle. Ensuite, l’estimateur CLEAR nécessitant
le calcul de la Jacobienne de l’Elastic Net avec Interactions, on adapte un schéma de
différenciation automatique pour calculer efficacement cette dernière (section 2.2.3).

Enfin, les résultats statistiques montrent que l’étape de débiaisage ne diminue jamais
les performances de l’Elastic Net avec Interactions (section 2.2.4). Au contraire, pour
certains scénarios de standardisation, CLEAR-Enet avec Interactions améliore même
significativement les performances de sélection de variables (Figures 2.4 et 2.5). En
effet, pour une erreur prédictive similaire, ce dernier diminue le nombre de faux positifs
de l’Elastic Net avec Interactions, i.e., réduit le nombre de variables sélectionnées à
tort par l’estimateur. Aussi, on observe que le temps de calcul de CLEAR-Enet avec
Interactions est environ le double de celui de l’Elastic Net avec Interactions (Figure 2.6).
Finalement, ces résultats montrent également que pénaliser les interactions plus que les
effets principaux permet de réduire le temps de calcul dans tous les cas.

4



Algorithmes d’ensembles actifs, Chapitre 3. Ensuite, le second enjeu numérique
de cette thèse est d’exploiter la parcimonie de l’Elastic Net avec Interactions, afin de
limiter autant que possible le nombre de variables d’interactions à mettre à jour et les
calculs supplémentaires associés.

Pour ce faire, des algorithmes d’ensembles actifs [Fan et al., 2008, Kim and Park,
2010, Boisbunon et al., 2014, Johnson and Guestrin, 2015, Massias et al., 2017, 2018,
Bertrand et al., 2022] ont été développés. Ces derniers visent à trier puis sélectionner
un sous-ensemble de variables, résoudre le sous-problème associé, puis à tester si le
problème global est résolu. Si le sous-ensemble de variables sélectionnées contient toutes
les variables actives attendues, l’algorithme s’arrête, sinon, la procédure recommence sur
un sous-ensemble plus grand de variables (Figure 1.7). Des algorithmes d’ensembles actifs
ont déjà été employés dans la littérature sur les interactions [Hazimeh and Mazumder,
2020, Le Morvan and Vert, 2018], cependant ces travaux reposent soit sur l’hypothèse
d’hérédité, soit sur une hypothèse sur la matrice de design.

Aussi, pour adapter cette approche au cas des interactions en s’affranchissant de ces
hypothèses, on adapte CELER [Massias et al., 2018]. Pour limiter le plus possible les
coûts de calcul associés aux interactions (Algorithme 7), nous proposons de différencier les
ensembles de travail des effets principaux et des interactions (section 3.2.2), et d’évaluer
des heuristiques d’arrêts entre chaque itération (section 3.2.3). En effet, un enjeu est
d’éviter le cas critique où toutes les interactions ont été identifiées mais pas tous les
effets principaux, entraînant un coût computationnel élevé sur les interactions alors que
les effets principaux sont moins coûteux à explorer. Aussi, si CELER vérifie l’optimalité
du problème global à chaque itération de l’algorithme, ces calculs sont prohibitifs dans
notre cas, puisqu’ils requièrent de visiter toutes les interactions (Figure 3.1b). On propose
alors d’évaluer des heuristiques d’arrêts entre chaque itération, afin de ne pas calculer
trop tôt et inutilement le critère d’arrêt du problème global.

On adapte l’accélération d’Anderson [Anderson, 1965, Scieur et al., 2016, Zhang et al.,
2020, Mai and Johansson, 2020, Bertrand and Massias, 2021], qui permet d’accélérer les
algorithmes de descente par coordonnées pour les problèmes type LASSO (section 3.3).

Finalement, on compare les performances numériques de notre approche à scikit-
learn et CELER , via Moreau et al. [2022], qui permet de comparer différents solveurs
pour un même problème d’optimisation (section 3.4). On note que stocker la matrice
des interactions, en grande dimension, augmente le temps de calcul par rapport aux
algorithmes qui la construisent à la volée. Aussi, si l’accélération d’Anderson réduit le
nombre d’itérations nécessaires pour atteindre la solution optimale, son coût computa-
tionnel peut être trop grand par rapport au gain observé. Finalement, sur nos données
génomiques (section 1.6.2) c’est l’approche combinant l’accéleration d’Anderson et les en-
sembles actifs qui est la plus rapide, avec des performances similaires à celles de CELER.
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Performances Statistiques, Chapitre 4. Pour finir, on compare les performances
statistiques de notre estimateur à celles d’HierNet [Bien et al., 2013] et de RAMP [Hao
et al., 2018], deux estimateurs imposant les structures de hiérarchies fortes et faibles,
le premier via un problème d’optimisation et le deuxième via une procédure pas à pas.
Pour ce faire, on compare 5 différents scenarios d’hérédité (Figures 1.2 et 1.3), aussi bien
sur des données semi-simulées (section 4.1), que sur données réelles (section 4.2).

Sur données semi-simulées, les resultats montrent que notre approche fournit les
meilleures performances prédictives dans tous les cas (Figures 4.1, 4.4 et 4.7).

Concernant la sélection des variables, les simulations montrent qu’on obtient des
performances: meilleures que celles d’HierNet et comparables à celles de RAMP, dans
les scénarios de hiérarchie fortes et faibles (Figures 4.2, 4.5 et 4.8). Cependant, on observe
des comportements légèrement différents. En effet, RAMP sélectionne un petit nombre
de variables actives, menant à sélectionner peu de faux positifs, mais manque certaines
variables importantes en contrepartie. À l’inverse, notre estimateur sélectionne plus
de variables, privilégiant l’ajout de faux positifs au fait de manquer certaines variables
importantes. Enfin, HierNet sélectionne plus de variables et oublie moins de faux positifs
que l’Elastic Net avec Interactions, mais il inclut beaucoup plus de faux positifs que notre
approche manque de variables importantes.

Sur le plan computationel, la première simulation montre qu’HierNet n’est pas com-
pétitif, tandis que notre approche sans débiaisage apparaît être parmi les plus rapides
(comparée aux différentes versions de RAMP), sur l’ensemble des simulations (Figures
4.3, 4.6 et 4.9).

Sur données réelles, on montre que notre méthode obtient le meilleur score de pré-
cision (Figure 4.10), et que l’étape de débiaisage réduit drastiquement le nombre de
variables actives dans certains scénarios de standardisation (Figure 4.11). Enfin, on note
que considérer le maximum entre interactions à la place du produit améliore les perfo-
mances prédictives sur nos données génomiques, et peut avoir plus de sens au regard de
l’application étudiée.
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CHAPTER 1. INTRODUCTION

Targeting cocktail effects between features has become a main challenge in many
applications over the last twenty years, as it can provide new insights. In genomics, for
example, numerous works aim at studying such cocktail effects between genes [Ritchie
et al., 2001, Marchini et al., 2005, Park and Hastie, 2008, D’Angelo et al., 2009, Wu et al.,
2010, Wang et al., 2014, Wang and Chen, 2018, Vandel et al., 2019, Zrimec et al., 2021]
or between genes and environment [Liu et al., 2013, Figueiredo et al., 2014, Laville et al.,
2020, Zhou et al., 2021, Zemlianskaia et al., 2022]. However, interactions are not only of
interest for genomic applications. More recently, in their studies on food additives, the
authors of Chazelas et al. [2020, 2021] explain in the conclusion that cocktail effects, i.e.,
interactions between the main effects they have selected, should be explored.

Nonetheless, targeting such interactions should not be done at the cost of the model
interpretability. For example, the Random Forest method [Breiman, 2001] easily allows
exploring interactions, since using a tree with a depth of k means considering the in-
teractions of order k between k features. However, it is admitted that these methods
perform poorly as a feature selection method and do not provide an interpretable model.

Due to their interpretability, linear models have been widely used for many learning
tasks. Also, developing a sparse linear model estimator which takes account the quadratic
interactions between features has become a challenge over the past two decades, since
it raises many statistical and optimization challenges. Most works in this area assume
either a heredity assumption between main effects and interactions effects, or that the
design matrix is binary.

In this thesis, we aim to develop an estimator for a linear model with quadratic
interactions, for any design matrix, and which is not based on any structural assumptions
between main effects and interactions. Such estimator must provide sparse estimate to
be interpretable, while being computationally tractable.

The aim of this chapter is to present the linear model with quadratic interactions
and the associated challenges in section 1.1. Then, section 1.2 presents the heredity as-
sumptions and the estimators of the linear model with interactions based on them. Also,
section 1.2.1 details the approaches based on optimization problems while section 1.2.2
describe the one based on stage-wise procedures. Then, section 1.3 details the methods
that are free from the heredity hypothesis, based on assumptions on the design matrix
or based on a sorting criterion. We present our approach in section 1.3.3, based on a pe-
nalized estimator without any hypothesis. Since regularized methods suffer from a bias
due to the penalties, section 1.4 details the impact of such bias and presents a simple
approach to correct it. Moreover, section 1.5 gives the optimization techniques allowing
to solve our optimization problem and to accelerate it. Finally, section 1.6 presents the
gene regulation problem and the associated statistical problems that challenges us.
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1.1. LINEAR MODEL WITH INTERACTIONS

1.1 Linear Model with interactions

If the standard linear model does not naturally take into account cocktail effects, it is
possible to extend it to target quadratic interactions between the variables. Therefore,
we recall the formulation of the linear model with second order interactions. Denoting
n the number of samples of a dataset, p the number of main features and q “ ppp`1q

2

the number of quadratic interactions (including pure quadratic effects, i.e., interaction
of one feature with itself), we tackle the following quadratic regression problem:

y “ β01n `Xβ ` ZΘ` ε , (1.1)

where we denote by X “ rx1, x2, . . . , xps P Rnˆp and β P Rp the main effects design
matrix and the associated coefficients vector. Let d be a non-additive element-wise
operation, we note zjj “ xj1dxj2 an interaction between xj1 and xj2 main effects. Then,
we note Z “ rz1, z2, . . . , zqs “ rx1dx1, x1dx2, . . . , xp´1dxp, xpdxps P Rnˆq and Θ P Rq

the interactions design matrix and associated coefficients vector, y P Rn the response
vector, 1n P Rn the vector of size n with only 1’s, β0 P R the intercept, and ε some
Gaussian noise.

Nonetheless, when targeting k-order interactions effects between features, linear model
quickly include too many features, and it is painstaking to interpret the relevance of each
of them. Indeed, even limited to pairwise effects, considering a linear regression model
with second order interactions implies estimating a quadratic number of coefficients,
which quickly brings statistical and computational challenges.

Different interactions operations. While the most commonly used interaction in
the literature is the element-wise product, any other non-additive operation is possible,
such as the element-wise maximum or minimum, for example.

Naive approaches. Of course, for a moderate number p of main features, the inter-
actions design matrix Z can be build and stored in memory. Then, statistical inference
can be performed with standard tools developed for linear model as LASSO [Tibshirani,
1996, Chen et al., 1998], Ridge [Tikhonov, 1943, Hoerl and Kennard, 1970] or Elastic Net
[Zou and Hastie, 2005]. In such case, it amounts to solving the following optimization
problem:

pβ0, pβ, pΘ P arg min
β0PR,βPRp,ΘPRq

1

2n
‖y ´ β01n ´Xβ ´ ZΘ‖2

2 ` pen pβ,Θ, α1, α2q , (1.2)
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CHAPTER 1. INTRODUCTION

where the penalties are defined respectively for the LASSO, Ridge and Elastic Net in
Equations (1.3) to (1.5) as:

pen`1 pβ,Θ, α1, α2q “ α1 p‖β‖1 ` ‖Θ‖1q , (1.3)

pen`2 pβ,Θ, α1, α2q “ α2

`

‖β‖2
2 ` ‖Θ‖

2
2

˘

, (1.4)

pen pβ,Θ, α1, α2q “ α1 p‖β‖1 ` ‖Θ‖1q `
α2

2

`

‖β‖2
2 ` ‖Θ‖

2
2

˘

. (1.5)

Scaling problem. However, as the number p of main features increases, these naive
approaches may became numerically unfeasible, as the size of the interactions matrix
Z may quickly exceed the memory capacity of the computer. For example, Figure 1.1a
shows that for a dataset that contains n “ 1 000 samples and p “ 1 000 features, the main
and interactions design matrix require more than 1 Gb to be stored. Another striking
example is the Leukemia classification dataset [Golub et al., 1999], which is widely used
to test optimization algorithms. While this dataset only has p « 7 000 features for about
n « 70 samples, the number of interactions is q « 24ˆ106, and the overall design matrix
to store is around 14 Gb.
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Figure 1.1: Evolution of the size of main and interactions matrix on the left while right-
hand side illustrates the evolution of the number of features to be estimated. Interactions
design matrix quickly increases and main effects are drowned out by interactions.

Features selection and model interpretability. For all that follows, we call an
active feature a feature whose estimated coefficient is non-zero, and the set of all active
features is called the support. Statistically, another problem is that the proportion of
interactions to the total number of features tends to one, as represented in Figure 1.1b,
hence main effects become a minority. Thus, treating main effects and interaction effects
at the same level can lead to models with only a few active main effects, among many
active interactions, leading to more difficult to interpret and unstable models.
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1.2. STRUCTURAL ASSUMPTIONS FOR FEATURE SELECTION

1.2 Structural assumptions for feature selection

Therefore, to tackle quadratic regression problems and perform variable selection, a
common approach is to consider hierarchical structure assumptions between main and
interactions effects: principle of heredity or marginality [Nelder, 1977, Peixoto, 1987,
Hamada and Wu, 1992, Chipman, 1996]. Such heredity assumption assesses that an
interaction feature may be selected in the model if both main effects are selected (Equa-
tion (1.6)) or if at least one (Equation (1.7)) of the main effects is selected. The former
is called strong heredity while the latter is called weak heredity.

Θi,j ‰ 0 ñ βi ‰ 0 and βj ‰ 0 , (1.6)

Θi,j ‰ 0 ñ βi ‰ 0 or βj ‰ 0 . (1.7)

As illustrated in Figure 1.2, these assumptions drastically reduce the number of inter-
actions to consider and lead to sparse models, which encourage main effects and remain
easy to interpret. In particular, in the strong hierarchy setting illustrated by Figure 1.2a,
if k main effects are active, only kpk`1q

2
second order effects can be active; here in Fig-

ure 1.2a there are three possible interactions. While, for weak hierarchy setting, there
are

řk
i“0pp´iq possibles actives interactions, here in Figure 1.2b: 19 possible interactions.

(a) Strong Heredity (b) Weak Heredity

Figure 1.2: Graphical illustration of the strong and weak heredity assumptions with ten
main effects (scored from 0 to 9), two of which are active in orange, while the blue ones
represent null coefficients. The upper-right matrix represents the state of the interaction
coefficients (vector Θ), where active coefficients are highlighted in orange, while zero
coefficients are in blue. We observe that strong heredity (a) is much more restrictive
than weak (b), leading to models with fewer possible interactions.
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CHAPTER 1. INTRODUCTION

Many ways have been proposed to enforce these structures, including optimization-
based approaches, stage-wise procedures or Bayesian approaches [Chipman, 1996, Thanei
et al., 2018].

The former enforces hierarchy by adding supplementary constraints or penalties to the
problem, which leads to solve an optimization problem considering main and interaction
effects altogether [Yuan et al., 2009, Radchenko and James, 2010, Bien et al., 2013, Lim
and Hastie, 2015, Haris et al., 2016, Hazimeh and Mazumder, 2020].

Alternatively, stage-wise procedures can be briefly summarized as a first step aiming
to discover active main effects, and a second step aiming to detect active interactions
between active main effects only [Park and Hastie, 2008, Hao and Zhang, 2014, Hao
et al., 2018]. The main practical advantage of the latter approach is that the number of
interactions to consider is drastically reduced, which is numerically advantageous.

However, optimization-based approaches benefit from better statistical properties,
since they consider main and interaction effects altogether.

1.2.1 Optimization based approaches

A large amount of works exists in the literature, to enforce strong or weak hierarchy,
with a constrained or penalized problem. For instance, Yuan et al. [2009] adapt the
non-negative garrote of Breiman [1995] by adding a supplementary constraint to en-
force both strong or weak hierarchy, while to estimate linear and non-linear regression
model, Radchenko and James [2010] provide a penalized problem enforcing hierarchical
constraint.

Alternatively, the authors of GLINTERNET [Lim and Hastie, 2015] developed an
estimator to target regression and binary classification problem, using group lasso penal-
ties to enforce strong hierarchy, with each group consisting of two main features and
associated interactions.

The work called FAMILY [Haris et al., 2016] tackles regression and logistic regression,
to enforce both strong and weak hierarchy, with a penalty using three terms. A speci-
ficity of their work is that, given two design matrices XA and XB, they only consider
interactions between XA and XB, but not interactions of XA or XB with itself.

While these approaches naturally lead to a convex optimization problem, the au-
thors of HierScale [Hazimeh and Mazumder, 2020] first transpose the strong hierarchy
constraint into a mixed integer program (MIP) problem. However, this problem being
NP-Hard, and difficult to scale, they propose to solve a convex relaxation of it.

We decide to compare our work with previous works [Bien et al., 2013], since to the
best of our knowledge, they are the most used in the literature and will be suitable for
comparison in the following.
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1.2. STRUCTURAL ASSUMPTIONS FOR FEATURE SELECTION

HierNet [Bien et al., 2013]. To enforce a hierarchical structure, in regression setting,
HierNet solves the following constrained and regularized convex problem. Unlike our
notation (eq. (1.1)), the interaction coefficients are represented by a matrix, denoted by
Θ P Rpˆp, in this problem:

arg min
β0PR,β˘PRp,

ΘPRpˆp

1

2

∥∥∥∥y ´ β01n ´Xpβ
`
´ β´q ´ Z

VecpΘq

2

∥∥∥∥2

2

` α1Jn pβ
`
´ β´q `

α

2
‖Θ‖1 ,

(1.8)

s.t. Θ “ ΘJ, @j P J1, pK,

$

&

%

‖Θj‖1 ď β`j ` β
´
j ,

β`j ě 0, β´j ě 0 ,

where β` represents the positive part of the main effects, and β´ the negative one.

Thanks to this formulation, HierNet can enforce both strong and weak heredity. The
difference is that when a strong heredity constraint is enforced, the interaction coefficients
matrix Θ must be symmetric, whereas the symmetric constraint of Equation (1.8) is
removed when weak heredity is enforced. To solve their optimization problem in a
weak heredity setting, they develop a generalized gradient descent algorithm. While,
to solve the strong heredity constraint, they develop an Alternating Direction Method
of Multipliers (ADMM, [Boyd et al., 2011]) algorithm, where the generalized gradient
descent of the weak constraint, slightly modified, is used as inner solver. Moreover, an
interesting point for comparison with us is that they proposed an Elastic Net version of
their work.

1.2.2 Stage-wise procedures

As mentioned above, another way used to enforce heredity is to apply stage-wise pro-
cedures. The main advantage of this type of procedure is its computational efficiently,
since it considers an interaction feature only if the associated main effects have been
selected.

For example, in Park and Hastie [2008], the authors propose to tackle binary classi-
fication with interaction through a modified logistic regression, with a supplementary `2

norm. To obtain a sparse and interpretable estimate, which the Ridge penalty does not
provide, they propose to estimate such models using forward selection step, followed by
a backward deletion step.

Another example by Hao and Zhang [2014], who proposed IFORT and IFORM, stage-
wise approaches based on forward selection method with Least Squares estimators. The
first is a two-stage procedure, which first selects the main effects through a forward
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procedure, and then, builds the interaction from the main effects selected in the first
step. A second stage of forward selection is done on the set of all possible main effects
(i.e., not only the ones active at the first stage) and the interactions allowed according
to the heredity structure. IFORM is a forward approach which selects the main and the
interactions effects altogether. The forward step starts by selecting a main effect, and
then selects interactions according to the main effects possibly added earlier.

The main advantage of these procedures is that they explore only the interactions
of the quadratic features that respect the structure of heredity, thus allowing the design
matrix of this small number of variables to be stored.

Then, we take interest in a latter approach from the same authors, called RAMP,
which is a path-stage method, that we describe in the following.

RAMP [Hao et al., 2018]. In their paper, the authors propose RAMP, a path-stage
procedure based on LASSO to tackle quadratic regression problem. Their approach is
based on a modified LASSO estimator, which includes the interactions features at the
k-th alpha on the regularization path from the non-zero main features at the previous
alpha.

Let us define the sets Ak´1
β and Ak´1

Θ : the index of active main effects and interactions
at the k ´ 1 step. They define Mk´1 the set of main effects which are parents of
an active interaction at αk´1 associated problem. Immediately, by heredity structure,
Ak´1
β ĎMk´1. They also define ĎMk´1 “ J1, pK´Mk´1, the set of indices which are not

active and which are not parents of an active interaction.

Finally, they define the set of possible interactions at step k by Ik, according to the
heredity structure and the active main effects in Ak´1

β . Then, they solve the following
optimization problem, to find Ak´1

β and Ak´1
Θ :

arg min
β0,β,ΘIk´1

1

2n
‖y ´ β01n ´Xβ ´ ZIk´1ΘIk´1‖2

2 ` αk p‖βĎMk´1‖1 ` ‖ΘIk‖1q . (1.9)

Afterwards, once they obtain the support of the main and the interaction effects, they
perform a Least Squares step on both, to finally estimate coefficients of the active fea-
tures.

As for IFORM, a key advantage of this approach is that it is computationally efficient,
since it does not explore all possible interactions but only those that have at least one
active main effect (weak heredity). Moreover, in their R implementation, they propose
an optional feature to penalize interactions more than main effects, as we have proposed
in this work, in Chapter 2.
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1.3 Approaches without heredity hypothesis

Nevertheless, while heredity structures can lead to sparse (interpretable) models, they do
not allow us to easily explore interaction variables whose main effects are not selected,
which may nonetheless be relevant. In genomics, for example, gene expression often
requires the presence of cooperating proteins (i.e., the presence of a single protein cannot
activate gene expression) [Vandel et al., 2019, Zrimec et al., 2021].

In particular, there are three other heredity scenarios in the literature (see for ex-
ample Tibshirani et al. [2012]), which are used to test the performance of the different
quadratic estimators: anti-heredity, interactions only, and main effects only, as depicted
in Figure 1.3. For example, anti-heredity settings (1.10) assume that an interaction is
non-zero if and only if both associated main effects are zeros, while interaction only (1.11)
and main only (1.12) indicate that only interaction are active, with all main effects being
zeroed for the former and inversely for the latter.

Θi,j ‰ 0 ñ βi “ βj “ 0 , (1.10)

D pi, jq P J1, pK, Θi,j ‰ 0 and @ i P J1, pK, βi “ 0 , (1.11)

D i P J1, pK, βi ‰ 0 and @ pi, jq P J1, pK, Θi,j “ 0 . (1.12)

(a) Anti-heredity (b) Interactions Only (c) Main Effects Only

Figure 1.3: Others heredity settings used in simulation studies.

In general, no prior is known about the underlying interactions structure. In particu-
lar, depending on the application, the underlying structure is probably a mixture of the
five possible interaction structures.

This observation leads us to attempt to estimate a quadratic regression model without
any further heredity assumption, leading to consider a more difficult problem to solve.
We first describe approaches which rely on data hypothesis without heredity assumptions,
while we secondly describe ranking methods and lastly our approach.
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1.3.1 Approaches based on data structure

In the case where xi,j belongs to t0, 1u or r0, 1s, to reduce the number of interactions to
visit in a linear model with k-order interactions, with k ě 2, the authors of Nakagawa
et al. [2015, 2016] suggest exploiting the tree structure of interactions. The interactions
of order k form a tree of depth k, whose roots are constituted by the main effects, while
the leaves of the tree are constituted by the interactions of order k. Moreover, the set of
interactions of order k1 ` 1 descending from an interaction of order k1, is a tree branch.
They developed a pruning criterion for the interaction’s tree such that an interaction
and all its descendants are sure to be non-active variables, thus reducing the number
of interactions to visit. This idea also inspired WHInter [Le Morvan and Vert, 2018],
an efficient LASSO solver for the linear quadratic model, in the specific case where xi,j
belongs to t0, 1u.

1.3.2 Ranking methods

Still in the idea of efficiently discarding interaction features without any structural or
data assumptions, another approach aims to rank each feature according to some criteria,
and then discarding all features with a score lower than some constant.

For example, the authors of interaction pursuit [Fan et al., 2016], abbreviated IP,
aim to develop a criterion to rank main and interactions features, without the need
to visit each interaction. They use the marginal correlation between pure quadratic
effects x2

j1
and the squared response y2, i.e., they compute p terms of corrpx2

j , y
2q instead

of computing q terms corrpxj1 d xj2 , yq. Then, IP selects all the interactions features
xj1x1, . . . , xj1xp whose correlation corrpx2

j , y
2q is higher than a threshold to be determined.

Another similar approach can be found in [Reese et al., 2018], where the authors
develop a method for ultra-high dimensional data called Joint Cumulant Interaction
Screening, abbreviated JCIS. The JCIS method consists in computing a ranking criterion
for each interaction, inspired by the Pearson correlation, to select the features whose rank
is higher than a threshold, which remains to be determined. However, these methods
do not allow estimating the associated coefficients, but can be used as a pre-processing
step, to estimate a subset of coefficients with Least Squares or LASSO type estimator,
for example.

The main advantage of these approaches is that they are very efficient and that theo-
retical properties prove their screening consistency. However, as for stage-wise procedure,
the approaches which evaluate main effects and interactions altogether are considered to
have better statistical properties.
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1.3.3 Our approach

Consequently, in this thesis, we aim to develop an estimator of linear regression model
with second-order interactions, which does not rely on any structural or data assumptions
and which considers both main and interactions effects in a single optimization problem.
With this idea in mind, we aim to develop an Elastic Net with Interactions estimator
to tackle the quadratic regression problem, which depends on four hyperparameters:
α “ pα1,1, α1,2, α2,1, α2,2q, associated to the following penalty:

pen pβ,Θ, αq “ α1,1 ‖β‖1 ` α1,2 ‖Θ‖1 `
α2,2

2
‖β‖2 `

α2,2

2
‖Θ‖2 . (1.13)

We will sometimes abbreviate Elastic Net by Enet in figures, table and algorithms.
By doing so, we will have a flexible penalty which allow us to notably manage the sparsity
of main effects and interaction, separately. However, finding four hyperparameters can
be time-consuming, thus, in Chapter 2, we parametrize the penalty to easily tune it.

1.4 Debiasing regularization estimator: a naive way

While penalized estimators are efficient to deal with over-parametrized models or overly
correlated features, they also bias the estimated coefficients as they shrink large coef-
ficients aggressively toward zero [Hastie et al., 2009, Haris et al., 2016, Salmon, 2017].
Here we detail the consequences of such bias and a naive approach to address it. The
first consequence is that the amplitude of the active features is not fully recovered, which
is often compensated by including wrongly more features. This may lead to adding too
many false positive and downgrade the selection ability of the estimator. In particular,
Elastic Net as a trade-off between LASSO and Ridge estimators, suffers from the bias of
both penalties. We detail the 1D case for each estimator, which are also illustrated in
Figure 1.4:

flassopx, α1q “ signpxqmaxp|x| ´ α1, 0q , (1.14)

fridgepx, α2q “
x

1` α2

, (1.15)

fenetpx, α1, α2q “
signpxq ˆmaxp|x| ´ α1, 0q

1` α2

. (1.16)

As shown in Figure 1.4, the LASSO penalty (1.14) shrinks the coefficients aggressively
toward zero between r´α1, α1s, then contracts coefficients from a factor α1. Alterna-
tively, near the origin, Ridge penalty eq. (1.15) contracts the coefficients less, but more
than LASSO for large coefficients. Hence, as a mixture between these two penalties
Equation (1.16), Elastic Net is more biased, as observed in Figure 1.4.
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Figure 1.4: LASSO, Ridge and Elastic Net penalties in orthogonal cases, i.e.,XJX “ Id1.
For values of x close to 0, LASSO penalizes more than Ridge, while the opposite trend
is observed after. In all cases, Elastic Net penalizes always more.

To avoid deteriorating the feature selection ability of such a method, a solution con-
sists of a two-stage procedure [Efron et al., 2004, Belloni and Chernozhukov, 2013, Led-
erer, 2013], where the regularization method aims at selecting the set of active features
and then, in a second step, a Least Squares step is performed to estimate their coeffi-
cients, as detailed in Equation (1.17). This method is known as Naive-LSEnet.

pβLS0 , pβLS, pΘLS
P arg min

β0PR,βPRp,ΘPRq ,
supppβq“suppppβEnetα1,α2q
supppΘq“suppppΘEnetα1,α2q

1

2n
‖y ´ β01n ´Xβ ´ ZΘ‖2

2 . (1.17)

This approach is quite simple, but suffers from several drawbacks. The first comes from
the Least Squares, if the active features identified by Elastic Net are highly correlated,
it may fail, as it is supposed to be used on full column rank design matrix. The second
reason is that the pipeline to perform such a method is complex, since it must be done
not only on the final hyperparameter obtained by Elastic Net, but on the whole grid of
hyperparameters tested by Elastic Net, and for each fold of cross-validation procedure.
For these reasons, it is preferable to compute a debiased version of the coefficients along
with Elastic Net with Interactions, an approach we will detail in Chapter 2.

In all cases, with or without debiasing step, the main challenge to estimate Elastic Net
with Interactions is to develop an efficient algorithm to solve the associated minimization
problem and to ensure that the optimization process is achieved. In both cases, the
challenge is to avoid storing the whole interaction matrix. We adapt a cyclic coordinate
gradient descent [Fu, 1998, Tseng, 2001, Friedman et al., 2007, 2010] algorithm, building
on-the-fly the interactions features, as classical approaches in interactions settings [Lim
and Hastie, 2015, Hazimeh and Mazumder, 2020].
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1.5 Optimization framework to solve Elastic Net

Here we present an algorithm to solve the Elastic Net problem without interactions.

1.5.1 Proximal coordinate gradient descent algorithm

For nearly two decades, the coordinate gradient descent algorithm has been widely used
to solve convex machine learning problems [Tseng, 2001, Friedman et al., 2007]. The basic
principle of the coordinate (gradient) descent algorithm is to transform an optimization
problem of size p into p 1-dimensional optimization problems. So, instead of solving a
problem of p variables, p ´ 1 features are frozen and a 1-dimension problem is solved
iteratively, as illustrated in Algorithm 1. There γ1, . . . , γp are coordinate-wise step-size
parameters, usually chosen based on directional Lipschitz constant computations.

Algorithm 1: Proximal Coordinate Gradient Descent for: min fpβq ` αgpβq,
with f a convex differentiable function, g a separable function and α P R`.
1 Initialization: t “ 0, βp0q “ 0p P Rp and γ P Rp
2 while stopping criterion is not respected do

3 β
pt`1q
1 Ð prox α

γ1

¨

˝β
ptq
1 ´

1

γ1

Bf
´

β1 , β
ptq
2 , β

ptq
3 , ¨ ¨ ¨ , β

ptq
p

¯

Bβ1

˛

‚

4 β
pt`1q
2 Ð prox α

γ2

¨

˝β
ptq
2 ´

1

γ2

Bf
´

β
pt`1q
1 , β2 , β

ptq
3 , ¨ ¨ ¨ , β

ptq
p

¯

Bβ2

˛

‚

5
...

6 β
pt`1q
p Ð prox α

γp

¨

˝βptqp ´
1

γp

Bf
´

β
pt`1q
1 , β

pt`1q
2 , β

pt`1q
3 , ¨ ¨ ¨ , βp

¯

Bβp

˛

‚

Output : βpt`1q

In particular, proximal cyclic coordinate descent algorithm has become a state-of-the-
art algorithm to solve the LASSO [Friedman et al., 2007, 2010]. We detail in Chapter 2
how to get the closed-form expression allowing to solve the one-dimensional problem of
Elastic Net using coordinate descent. Here, the focus is to detail the weaknesses of this
algorithm applied to the LASSO, and to present some classical solutions that have been
applied in the interaction literature.

Although coordinate descent is easy to use, applied to LASSO type problem, it suffers
from a major drawback: it optimizes features that will be null at the end of the opti-
mization problem, as illustrated in Figure 1.5. Indeed, LASSO type problem is expected
to bring a sparse estimate. Hence, coordinate descent by optimizing all features will
unnecessarily update these coefficients, which slows down the algorithm and becomes
even more critical in a quadratic setting. Another challenge is to stop the coordinate
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descent to avoid unnecessary updates. In the following section, we detail the duality gap,
one of the standard criteria used for LASSO type problems.

1.5.2 Stopping criterion

Since `1 penalized methods are not differentiable, multiple stopping criteria have been
used in the literature, such as the duality gap [Kim et al., 2007]. Such a criterion
relies on the fact that, associated to the minimization problem Ppβq of LASSO type
estimators, a maximization problem Dpνq in ν variable is of interest. We detail the
maximization problem and how to compute the associated dual variable pν of Elastic
Net with Interactions in Chapter 3. These maximization and minimization problems are
linked by the fact that the difference between their optimal values vanishes, when strong
duality holds, which is the case for LASSO. Hence, denoting pd and dd the optimal
values of the minimization and maximization problems in one hand, and pptq and dptq the
values of the minimization and maximization after the tth iteration, we define the duality
gap G pβ, νq as follows:

pptq ´ pd ď pptq ´ dptq “ Ppβptqq ´Dpνptqq “ G
`

βptq, νptq
˘

. (1.18)

Since computing the dual gap costs as much time as one pass of coordinate descent on
all features, in standard LASSO implementations, the duality gap is evaluated not after
each pass, but every five or ten passes of coordinate descent. While this criterion ensures
stopping at a certain tolerance, it is also closely linked to the screening and active set or
working set strategies, state-of-the-art approaches to reduce the computational burden
of coordinate descent for LASSO and Elastic Net. These methods attempt to identify
the coefficients which will be zeroed, so that no time is wasted optimizing them. We first
detail screening and then active set strategies in the following.

1.5.3 Screening rules

Screening strategies aim at discarding as many coefficients as possible that are guaranteed
to be null, to reduce the number of visited features. The core idea comes from Karush-
Khun-Tucker (KKT) conditions of the LASSO problem, see for example Massias et al.
[2018], which state that:

@j P J1, pK,
ˇ

ˇxJj pν
ˇ

ˇ ă 1 ñ pβj ‰ 0 . (1.19)

Hence, we obtain the first screening rule: the correlation between the optimal dual
variable and the jth feature. Unfortunately, this criterion is impossible to use, because
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Legend: Active: β‹i ‰ 0 InActive: β‹i “ 0 Visited: βi Unvisited: βi
Signal:

β‹1 β‹2 β‹3 β‹4 β‹5 β‹6 β‹7 β‹8 β‹9 β‹10

CD:

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

While Stopping Criterion

Figure 1.5: Representation of the functioning of a coordinate descent algorithm to solve
a LASSO type problem, where features 1 to 5, and 10 have non-zeros coefficients at
solution and where coefficients of features 6 to 9 are expected to be null.

it requires the knowledge of the exact dual variable. A solution to address this problem
is to construct a set C, called Safe Region, such that pν is contained in C. This allows to
establish the safe screening rules [El Ghaoui et al., 2012]:

If pν P C, then: max
νPC

ˇ

ˇxJj ν
ˇ

ˇ ă 1 ùñ
ˇ

ˇxJj pν
ˇ

ˇ ă 1 ùñ pβj “ 0 . (1.20)

Hence, the literature focuses on the efficient construction of smaller C regions that
always contain pν, since, bigger the region is, fewer screened variables are. In particular,
thanks to their simplicity, sphere-based regions have been well studied (see for examples
El Ghaoui et al. [2012], Fercoq et al. [2015], Ndiaye et al. [2017]), to improve the center
and the radius of the sphere. Also, one thing that helps to build a more efficient region
is to take into account the solution of the previous hyperparameter LASSO problem [El
Ghaoui et al., 2012]. Still with the idea of benefiting from the optimization process,
the dynamic safe sphere rule [Bonnefoy et al., 2014, 2015, Fercoq et al., 2015, Ndiaye
et al., 2017] aims to benefit from the coordinate descent algorithm to refine the set of
discarded features. In particular, last works [Fercoq et al., 2015, Ndiaye et al., 2017] have
developed the Gap Safe Rule, which uses duality gap, to increase the set of discarded
features along the optimization steps:

ˇ

ˇxJj ν
ˇ

ˇ`

˜

c

2G pβ, νq
nα2

¸

‖xj‖2 ă 1 ùñ pβj “ 0 . (1.21)

Hence, even if only a few features are discarded at the beginning of the process, their
number increases as the optimization progresses, as illustrated in the Figure 1.6.
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Legend: Active: β‹i ‰ 0 InActive: β‹i “ 0 Visited: βi Unvisited: βi
Signal:

β‹1 β‹2 β‹3 β‹4 β‹5 β‹6 β‹7 β‹8 β‹9 β‹10

Screening 1:

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Screening 2:
While Stopping Criterion on Sub-Problem

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

While Stopping Criterion on Sub-Problem

Figure 1.6: Representation of the functioning of a coordinate descent algorithm with
screening strategy.

1.5.4 Active set

While safe screening rules aim at discarding features guaranteed to be zero at the opti-
mum and then reducing the number of visited coefficients, the working set or active set
algorithm, abbreviated WS and AS respectively, (see [Fan et al., 2008, Kim and Park,
2010, Boisbunon et al., 2014, Johnson and Guestrin, 2015, Massias et al., 2017, 2018,
Bertrand et al., 2022]) aims at selecting a subset of a few features Wptq and solving the
associated subproblem then testing if the global problem is solved by computing the
duality gap on the whole dataset. If the global problem is satisfied, i.e., the subset of se-
lected features contains all the expected actives features, the algorithm stops. Otherwise,
it means that the first one does not contain one or more active features and therefore it
must start over on an increased set, as depicted in Figure 1.7.

Although this procedure seems simple, it raises two main questions: what are the
criteria to classify and selecting the features, and how to increase the feature set. In
the following, we detail CELER [Massias et al., 2018], a state-of-the-art working set
algorithm to solve LASSO type problems.
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Legend: Active: β‹i ‰ 0 InActive: β‹i “ 0 Visited: βi Unvisited: βi
Signal:

β‹1 β‹2 β‹3 β‹4 β‹5 β‹6 β‹7 β‹8 β‹9 β‹10

WS 1:

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

While Stopping Criterion on Sub-Problem

WS 2:

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

While Stopping Criterion on Sub-Problem

Figure 1.7: Representation of the functioning of a coordinate descent algorithm with
active or working set strategies.

CELER [Massias et al., 2018]. From the safe screening rules [Fercoq et al., 2015,
Ndiaye et al., 2017], CELER derives the following criterion dj (1.22) to rank each possible
feature:

djpνq “
1´

ˇ

ˇxJj ν
ˇ

ˇ

‖xj‖2

ą

c

2G pβ, νq
nα

ñ pβj “ 0 . (1.22)

This criterion allows us to prioritize the features to be added, from the smallest dj to the
largest, with the smallest corresponding to the features expected to be the most relevant.

Regarding the way to increase the size of the set, CELER suggests doubling its size.
A more aggressive option, called pruning, allows taking twice many features than the
number of actives features in the current set. Finally, another key point of CELER it
to propose to use an improved dual point, to improve the criterion which ranks features,
but mostly to stop the optimization earlier.

We summarize the CELER algorithm in Figure 1.8.
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Initialization: βp0q, νp0q, pp0q, max_iter, ε, . . .

While t ď max_iter or Gpβptq, νptqq ě ε

Compute djpνptqq and sort it !

Build Wptq: pptq features with lowest djpνptqq

Solve sub-problem restricted to Wptq

Compute duality gap: Gpβptq, νptqq,
with different dual points

Figure 1.8: CELER algorithm in a schematic way: as long as the duality gap on the
whole problem does not reach a tolerance of ε, CELER continues. We observe that
between each sub-problem, it computes the duality gap and updates the ranking rules.

1.5.5 Screening and active set in interactions literature

Since the quadratic regression problem has even more coefficients, these strategies have
been widely applied for the selection of interaction effects. For example, the GLIN-
TERNET [Lim and Hastie, 2015] method relies on strong rules [Tibshirani et al., 2012]
to discard main effects and then add interactions respecting strong heredity. However,
screening allow us to address the problem of quadratic regression without heredity as-
sumptions. For example, the tree pruning criterion of Nakagawa et al. [2015, 2016] is
based on screening rules, while working set strategies are used by HierScale in Hazimeh
and Mazumder [2020] and in WHInter [Le Morvan and Vert, 2018]. In particular, WHIn-
ter exploits the tree structure of interactions to determine which interactions should con-
stitute the working set, without having to sort them all. To this end, WHInter’s criterion
allows, from a criterion based on a main effect, to indicate if the associated branch con-
tains active interactions that are not yet present in the current working set. Finally, in
the case where the criterion would not ensure that all the active interactions in a branch
are already present in the current set, WHInter adapts a variant of the maximum inner
product search problem to quickly sort all the quadratic variables in a branch.

In our turn, we aim to develop an active set algorithm to estimate Elastic Net with
Interactions, relying on CELER solver, since we have no data or structural hypothesis.
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1.6 Gene expression regulation mechanism

While we first aim to develop an estimator to tackle interaction in a wide range of
applications, we will use a genomic dataset from Bessière et al. [2018] to illustrate its
interest and analyse the performance of our approach.

1.6.1 Gene expression regulation

DNA structure. The genetic information enables the development, functioning, growth
and reproduction of an organism. All this information is stored in the genome, a (macro)-
molecule called deoxyribonucleic acid, most classically abbreviated DNA.

The DNA was initially discovered by Friedrich Miescher in 1869 but its double helix
structure was discovered in 1953 by Watson, Crick, Wilkins, and Franklin. The DNA

sequence is constituted by only four base elements called nucleotides: Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T). The DNA is a double-stranded chain, where
both strands are complementary. The nucleotides form pairs two by two: Adenine with
Thymine, and Cytosine with Guanine.

Transcription process. Some subsequences of the DNA sequence (in particular genes
coding for proteins, but not only) can be transcribed, that is copied into a single-stranded
molecule called Ribonucleic Acid, traditionally abbreviated RNA.

A sequence of nucleotides in the DNA sequence that encodes an RNA molecule is called
a gene. Some genes, called coding-genes, produce a certain type of RNA, Messenger RNA,
shortened mRNA, which is in a second step translated into a protein. Coding genes are
the ones that interest us in the following.

A gene is said to be expressed when transcriptions of this gene are operated. Genes
can be transcribed from several Transcription Start Site, abbreviated TSS. Gene se-
quences can be divided into 2 types of subsequences: exons and introns. Introns, which
represent half of the genome, are the part of coding genes which are deleted from mRNA

but play a role in transcription control process. Only the exons are present in the mat-
urated mRNA. Moreover, gene sequences start and finish with Untranslated Transcribed
Regions (UTR). The starting gene sequence, corresponding to the opening of the gene,
is called 5UTR while the ending gene sequence is called 3UTR.

We take interest in gene regulation which is the whole mechanism orchestrating tran-
sition from DNA to RNA or protein.
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1.6.2 Dataset Description

We take over the linear model proposed in Bessière et al. [2018], where the aim is to
explain the amount of mRNA produced for each gene, according to DNA statistical summary
associated to this gene. To perform both estimation and features selection, they propose
to use the LASSO estimator, from centered response and standardized predictors.

Measurements details. We attempt to express the mRNA copy number of n “ 16 294

human genes from different cancerous cells, in function of DNA resume. RNA-Seq data,
measuring the copy number associated with each mRNA, was extracted from the TCGA
Research Network database (https://www.cancer.gov/tcga) for 12 different cancer types,
with around 20 patients for each type, leading to a matrix of responses Y P Rnˆm,
m “ 241. To fit a linear model, the counts were log-transformed. The DNA resume X
is constituted of DNA 1-words, i.e., nucleotide frequencies (letters A, C, G and T) and
2-words frequencies, i.e., frequencies of dinucleotide (couples of letters: AA, . . . , TT),
for 8 regions associated to each gene.

Region descriptions. The frequencies have been measured in 5UTR, 3UTR and in
the introns (abbreviated Intr), but equally in five others regions. Three of them were
centered on the first TSS to take into account the information contained in the beginning
of the gene. The first is Core region, which starts arbitrarily 500 nucleotides before the
TSS and ends 500 after. We have also two more distant regions: Distal Upstream
and Distal Downstream, respectively abbreviated DU and DD. These three regions are
illustrated in Figure 1.9.

DNA
Gene Coding

mRNA

-2000 +2000-500 +5000

PROMOTERS

CORE
Distal

Upstream

Transcription

TSS : Transcription Start Site
 = Nucleotide base from TSS

A
C
G
T

A A A A A A AC CC C C C
C C C C C C C

G G G G G G G GGT T T T T T T
A A A A A AGGG GG GGT T T T T T T T T

A AC
C C

GT T TC C
A A AG GG T

AC
C

GT TC C
A A AGG T

Distal
Downstream

*

* * * *

TSS

A
C
G
U

Figure 1.9: Gene-Regulation problem illustration, with three regions: Core, DU, DD.
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The DU region starts 2000 nucleotides before the TSS and ends where the Core begins.
The DD region starts with the end of Core region and finishes 2000 nucleotides before
the TSS. Then, we have the CDS regions, for Coding DNA Sequence, which represent the
set of the nucleotide which can be present in mRNA.Finally, the last region is DFR, for
Downstream Flanking Regions, which corresponds to the region which spans on 1000

nucleotides right after the end of the genes.

Figure 1.10: Gene-Regulation problem illustration, with the all eight regions from
[Bessière et al., 2018] article.

1.6.3 Statistical Challenges

Dataset dimension. Hence, with 4 nucleotides (A, C, G, T) and 16 dinucleotides
(AA, AC, AG, AT, CA, ..., TT) rates, we have 20 features of interest for each of the
8 regions, so a total number of 160 covariates. Adding the interactions, this leads to
having 12 720 or 12 880 features, depending on whether we include pure quadratic terms
or not, for each of the n “ 16 294 human genes. Furthermore, the interaction design
matrix requires 1.67 Gby to be stored in memory.

Interactions. As mentioned in the beginning, element wise product is mainly consid-
ered. However, product is not always interpretable and other non-additive operations
can be useful to bring new insight in comprehension. Indeed, element wise maximum
can be interpreted as a logical AND since, a low maximum corresponds to two both low
frequencies, while high maximum indicates that at least one of the features has a high
frequency, which can bring more interpretability, than product.
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First Standardization Scheme (STD 1)

Second Standardization Scheme (STD 2)

Get X Build Z from X Standardize X and Z

Get X Standardize X Build Z from standardized X Standardize Z

Figure 1.11: Representation of the standardization scheme.

Standardization scheme. While, for only main effects problems, there exists a stan-
dard standardization, interaction problem brings two possibilities. The first is to build,
on the fly as well as to store it, the interactions matrix Z from X, and then standardize X
and Z altogether, as illustrated in the upper part of Figure 1.11 (STD 1). However, an-
other standardization scheme is possible, which starts by standardizing the main design
matrix X, then builds Z from this standardized X matrix, and to finish, standardizes Z
as depicted in the lower part of Figure 1.11 (STD 2). While these two standardization
processes are not proper to this dataset, we will see that they affect both correlation and
condition number, the latter representing how much the optimization problem is hard to
solve.

While, the dimension indicates that, even with interactions, there are more samples
(n “ 16 294) than features (p`q “ 160`12 880 “ 13 040), the main challenge comes from
correlation between main features but also between interactions, what makes identifying
relevant features difficult as well as solving the optimization problem.

Correlation. This dataset has highly correlated features which makes variable selec-
tion difficult, and high conditioning number, which affect the estimator convergence.
One reason of this high level of correlation comes from the construction of the dataset,
since the measures record the frequencies of each nucleotide, frequencies which sum to
one. Hence, one of the nucleotide rates can be obtained by subtracting the three others
from one. The same thing appears with the 16 di-nucleotides rates.

We represent in Figure 1.12 the correlation of nucleotide and di-nucleotides between
themselves for each region. While the first row of the figure presents only main effects,
which are already highly correlated, the others row present product in row two and
three, while maximum is illustrated in the rows four and five. The first observation is
that clustermaps of maximum indicates higher correlation than for product. We observe
that the second standardization scheme helps to reduce the correlation level for both
element-wise product and maximum interactions.
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Core - Main Only DU - Main Only DD - Main Only 5UTR - Main Only 3UTR - Main Only DFR - Main Only CDS - Main Only INTR - Main Only

Core - PDT (STD 1) DU - PDT (STD 1) DD - PDT (STD 1) 5UTR - PDT (STD 1) 3UTR - PDT (STD 1) DFR - PDT (STD 1) CDS - PDT (STD 1) INTR - PDT (STD 1)

Core - PDT (STD 2) DU - PDT (STD 2) DD - PDT (STD 2) 5UTR - PDT (STD 2) 3UTR - PDT (STD 2) DFR - PDT (STD 2) CDS - PDT (STD 2) INTR - PDT (STD 2)

Core - MAX (STD 1) DU - MAX (STD 1) DD - MAX (STD 1) 5UTR - MAX (STD 1) 3UTR - MAX (STD 1) DFR - MAX (STD 1) CDS - MAX (STD 1) INTR - MAX (STD 1)

Core - MAX (STD 2) DU - MAX (STD 2) DD - MAX (STD 2) 5UTR - MAX (STD 2) 3UTR - MAX (STD 2) DFR - MAX (STD 2) CDS - MAX (STD 2) INTR - MAX (STD 2)

Figure 1.12: Correlations matrices for each region, without interactions for the first line
and then for product and maximum. First, we observe that considering the interactions
increases the level of correlation between the features, however we observe that the
second standardization scheme decreases this level of correlation. Lastly, we observe
that maximum increases more the level of correlation than the product.

Figure 1.13: Correlation matrices of the complete data set, without interactions on the
left, then for product and maximum in function of standardization scheme. As for
correlations matrices of each region, we observe that second standardization manages
correlation level while maximum tends to increase it.

This effect is also observable on the whole dataset. Again, we observe on the correla-
tion clustermaps between W “ rX,Zs that the second standardization scheme helps to
reduce correlation level. Hence, this second standardization scenario will be statistically
helpful.
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Conditioning Number. In this last part, we discuss the matrix conditioning number
ρpXq which is defined as the ratio between the highest and lowest singular values, i.e.,
ρpXq “ σmaxpXq

σminpXq
. This number indicates how difficult the numerical problem is to solve.

We observe an identical behavior in Figure 1.14 as in Figures 1.12 and 1.13, hence consid-
ering interactions, in particular maximum increases the difficulty to solve the associated
problem. In addition, the second standardization scheme also reduces the difficulty of
the optimization problem.
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Figure 1.14: Conditioning number for each region, with element-wise product interac-
tions on the left-hand side and element-wise maximum interactions on the right-hand
side. As for the level of correlation, we observe that maximum increases the level of
correlation, whereas the second standardization scheme (STD-2) succeeds in reducing
the conditioning number.

1.7 Thesis organization

The thesis is organized as follows.
In Chapter 2, we first explain how to tackle the interactions problem in section 2.1, by

suggesting first to reparameterize Elastic Net problem in section 2.1.1. We then provide
an algorithm which allows to compute on-the-fly the interactions columns in section 2.1.2,
avoiding to store the interactions matrix. We then discuss first results on toy example
in section 2.1.3. In a second part, we detail the solution applied to take into account
the bias of the Elastic Net penalty in section 2.2. We detail the debiasing method in
section 2.2.1 while in section 2.2.2 we provide a differentiation algorithm necessary for
its implementation. However, this first algorithm being intractable for computational
reasons, we provide a tractable version in section 2.2.3 as well as the first statistical
results of our approach with the debiasing step in section 2.2.4.

Then, in Chapter 3, we start by deriving the dual problem associated to our approach
in section 3.1, and in particular, we illustrate its computational burden. Afterwards, we
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develop in section 3.2 an active set algorithm whose main idea is to avoid as much
as possible to explore the set of quadratics interactions. In this purpose, we develop
an algorithm which approximates CELER rules in one hand, and develop heuristic
stopping criterion, to avoid computing the duality gap. Lastly, in section 3.3 we adapt
Anderson Acceleration to accelerate again our algorithm whereas the last part of the
chapter illustrates numerical performances in section 3.4.2.

Finally, in Chapter 4, we perform comparisons with RAMP and HierNet estimators.
The first part of the chapter provides comparisons on the semi-artificial datasets, allowing
to discuss predictive performances, as well as selection ability scores and computational
performances, on three different simulations studies. Then, the last part section 4.2 pro-
vides statistical results on real datasets, and show that our approach improves predictive
performances whereas our debiasing step allows us to reduce number of active features
and thus promotes interpretability.
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A debiased Elastic Net with
Interactions
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In this chapter, we describe the technical and statistical reasons, motivated by our
genomics data, that led us to estimate a linear model with interactions using an adapted
version of the Elastic Net estimator.

The first reason is that, to estimate the coefficients of a linear model for high dimen-
sional data while preserving interpretability, `1 estimators are commonly used for their
sparsity, especially in interaction setting.

Nevertheless, we have seen in section 1.6.3 that the genomics datasets that challenge
us, have highly correlated features. Then, it is well-known that correlated features lead
to decrease the selection performances of the LASSO estimator, which tends to select
only one feature from a group of several relevant correlated features. Therefore, adding
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a `2 penalty allows us to handle these correlations and ill-conditioning, which helps to
solve the associated optimization problem.

For these reasons, we chose to adapt the Elastic Net [Zou and Hastie, 2005] estimator
to fit linear models with interactions. The Elastic Net (2.1) has been introduced as a
regularization and feature selection estimator, which benefits from sparsity thanks to the
`1 penalty and can select groups of correlated features, with `2 penalty.

pβ P arg min
βPRp

‖y ´Xβ‖2

2n
` α1 ‖β‖1 `

α2

2
‖β‖2

2 . (2.1)

However, it is well-know that penalized estimators lead to shrink the coefficients towards
zero, implying a loss of amplitude for the coefficients from the set of active features. In
practice, this amplitude loss leads to include false positive features, which affects the
selection ability of the method. In order to recover the amplitude loss, we adapt the
CLEAR framework to the Elastic Net case, to debias the Elastic Net estimate along its
estimation.

Nonetheless, other estimators than Elastic Net, which do not suffer from penalization
bias, would have been interesting to study and do not require a debiasing step. Among
the possible estimators, the best subset selection estimator [Beale et al., 1967, Hocking
and Leslie, 1967] has recently seen a surge of interest. This estimator is based on the `0

norm, as written in its penalized form in Equation (2.2), leading to a non-convex problem
that is NP-hard to solve.

pβ P arg min
βPRp

‖y ´Xβ‖2

2n
` α ‖β‖0 . (2.2)

However, recent progress [Bertsimas et al., 2016] has been done to speed up the opti-
mization of the best subset selection problem, using mixed integer optimization (MIO).
While previously, using the best subset estimator was commonly limited to p “ 10 main
features, the new solver allows tackling problem with p “ 1000 main features. Unfortu-
nately, taking interactions into account induces a total number of features that quickly
exceeds 1000 features. Moreover, some extensive studies [Hastie et al., 2020] have shown
that, in simulated setting with a low signal-to-noise ratio (SNR), LASSO outperforms
the best subset selection estimator while having a faster solver (around 0.01 s for LASSO
against more than 1 hour).

Lastly, other estimators, for example Fan and Li [2001], Zhang [2010], have been
developed to tackle the linear regression problem while removing nearly all penalty bias.
Unfortunately, such estimators provide a non-convex optimization problem and may
suffer from local minima, which causes difficulties to stop the algorithm.

This chapter is organized as follows. In a first part, section 2.1 specifies how we tackle
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the interactions problem. Section 2.1.1 describes how we parametrize Elastic Net with
Interactions, while section 2.1.2 details how to solve the Elastic Net with Interactions
problem, thanks to proximal coordinate descent algorithm. Section 2.1.3 presents the
first statistical results on a toy example. In a second part, section 2.2 describes how
we propose to tackle Elastic Net bias problem, with CLEAR estimator [Deledalle et al.,
2017]. Section 2.2.1 details the CLEAR framework, while section 2.2.2 describes how
to adapt it to interactions cases, by adapting an automatic differentiation scheme to
address the main challenge: computing the Jacobian of our estimator. Then, section 2.2.3
details how we handle the numerical challenges of this automatic differentiation scheme
to reduce both its storage and computational burden. Finally, section 2.2.4 presents the
first statistical results on a toy example.

2.1 Elastic Net for linear models with interactions

A direct adaptation of Elastic Net to the second order interactions cases leads to the
following estimator Elastic Net with Interactions (2.3), which was initiated in our works
[Bascou et al., 2020, 2021].

ppβ, pΘq P arg min
βPRp
ΘPRq

‖y ´Xβ ´ ZΘ‖2

2n
` penpβ,Θ;α “ pα1,1, α1,2, α2,1, α2,2qq , (2.3)

with penpβ,Θ;αq “ α1,1 ‖β‖1 ` α1,2 ‖Θ‖1 `
α2,1

2
‖β‖2

2 `
α2,2

2
‖Θ‖2

2 ,

This equation requires the estimation of four hyperparameters, implying a search in
R4. The computational cost of estimating these parameters is prohibitive, so we detail
in the following the two approaches explored in this work to reduce the number of
hyperparameters.

2.1.1 Elastic Net parametrization

A first approach to reduce the computational burden is to set α1 “ α1,1 “ α1,2 and
α2 “ α2,1 “ α2,2, which reduces the hyperparameter search to R2. Moreover, to further
reduce the search space, we introduce, as in GLMNET [Friedman et al., 2010] and scikit-
learn [Pedregosa et al., 2011], an additional parameter: γ P s0, 1s which controls the
trade-off between the penalty `1 and `2, with γ “ 1 corresponding to LASSO. Finally,
this supplementary parameter is not tested on hundreds of values, but only on a few,
such as γ P t1, 0.95, 0.9, 0.5u, for example. Hence, the following penalty (2.4) reduces the
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hyperparameter search to R times the number of discrete values tested for γ and κ.

pen pβ,Θ;αq “ αγ p‖β‖1 ` ‖Θ‖1q `
1

2
αp1´ γq

`

‖β‖2
2 ` ‖Θ‖

2
2

˘

. (2.4)

While this first approach helps to reduce hyperparameters search, it leads to consider
main effects and interactions effects at the same level. This can lead to having more
active interactions than main effects, which may be painstaking for interpretability.

Hence, we propose adding a supplementary hyperparameter to penalize more the
interactions than the main effects. This approach is already considered in [Hao et al.,
2018, Hazimeh and Mazumder, 2020]. We denote this parameter by κ, set up by default
to κ “ 5, whose importance is discussed in sections 2.1.3.2 and 2.2.4.1. Once γ and κ are
fixed, we need a non-increasing grid, as for the classical Elastic Net problem. Usually,
such a grid is initialized to α0 “

‖yJX‖8
nˆγ

, sometimes referred as αmax, such that the
solution of Elastic Net is the null vector, i.e., pβ “ 0p. So, we propose to build such a
grid for main Equation (2.5) and one for interactions Equation (2.6), as follows:∥∥XJy

∥∥
8

nˆ γ
“ α0

β ą α1
β ą ¨ ¨ ¨ ą αKβ “ εˆ α0

β , (2.5)∥∥ZJy∥∥
8

nˆ γ
“ α0

Θ ą α1
Θ ą ¨ ¨ ¨ ą αKΘ “ εˆ α0

Θ . (2.6)

The main interest of this double grid is that it avoids favoring interaction over main
effects, in the case where ‖ZJy‖8 is much larger than ‖XJy‖8, while the search space
is still R. So on, we parametrize our problem as follows and denoted Ppβ,Θq:

ppβ, pΘq P arg min
βPRp
ΘPRq

‖y ´Xβ ´ ZΘ‖2

2n
` penpβ,Θ;α “ pαβ, αΘ, γ, κqq , (2.7)

with penpβ,Θ;αq “ αβγ ‖β‖1 ` αΘκγ ‖Θ‖1 `
αβp1´ γq ‖β‖2

2 ` αΘκp1´ γq ‖Θ‖2
2

2
,

where γ P s0, 1s control the trade-off between `1 and `2 penalties, and κ allows penalizing
more the interactions than the main effects.

Finally, we propose to adjust those hyperparameters using cross-validation (with "five
folds" as default). For ease of presentation, we will also use the following notation:

α1,1 “ αβγ, α1,2 “ αΘκγ, α2,1 “ αβp1´ γq, α2,2 “ αΘκp1´ γq . (2.8)

In the following, we explain how to solve the optimization problem (2.7), with coordinate
descent.
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2.1.2 Coordinate descent for Elastic Net with interactions

To solve this optimization problem, we first adapt a cyclic coordinate gradient descent
algorithm [Friedman et al., 2007, 2010], to avoid storing the interaction matrix in mem-
ory. Similarly to [Lim and Hastie, 2015, Hazimeh and Mazumder, 2020], we propose
to evaluate on-the-fly the interaction columns, i.e., we build each interaction column
when we update the associated coefficients. Then, a key point is to efficiently find which
columns j1 and j2 of main design matrix X, are required to build the associated inter-
action columns. We suggest using a matrix, called Rosetta and abbreviated R, to easily
and efficiently do it.

Rosetta matrix. This matrix, given an interaction index jj P J1, qK, returns the two
associated main index j1, j2 P J1, pK. Hence, we get a bijection between an interaction
index and the associated main doublet. For example, in the case where we consider
interactions with pure quadratic effect, i.e., the interaction columns of an index with

itself xj1 d xj1 , this Rosetta R P R
3ˆ

ppp`1q
2 matrix is defined as:

R “

»

—

–

1 ¨ ¨ ¨ p p` 1 ¨ ¨ ¨ 2p´ 1 2p ¨ ¨ ¨ 3p´ 2 ¨ ¨ ¨ q

1 ¨ ¨ ¨ 1 2 ¨ ¨ ¨ 2 3 ¨ ¨ ¨ 3 ¨ ¨ ¨ p

1 ¨ ¨ ¨ p 2 ¨ ¨ ¨ p 3 ¨ ¨ ¨ p ¨ ¨ ¨ p

fi

ffi

fl

. (2.9)

This matrix is used as follows: if R1,jj is the index of an interaction, we obtain the first
main effect associated index j1 with the coordinate R2,jj while the second index j2 is
given with R3,jj. The matrix is similar when dropping the quadratic effects, with R P

R3ˆ
ppp´1q

2 , the columns corresponding to pure quadratic effects being erased accordingly.
It allows iterating efficiently on interaction matrix giving a subset of actives interactions
AΘ, and to build a coordinate gradient descent algorithm that may not visit all quadratic
features. Notably, Rosetta allow us to build an interaction between j1 and j2 columns
even if j1 or j2 are not features which are in Aβ, the set of active first order features.
Finally, a key advantage is that this matrix can easily be computed and then stored at
the beginning of the cross-validation procedure and then used throughout the pipeline.

Proximal coordinate descent algorithm. Then, the first step to build a proximal
gradient descent to solve our Elastic Net with Interactions estimator is to be able to
minimize the associated one-dimensional problem. The following proposition gives the
solution of each one-dimensional problem.

Proposition 2.1.1. We write pβptq and pΘptq for the coefficients computed at the t-th
pass over the data by the cyclic proximal coordinate gradient descent algorithm, and

37



CHAPTER 2. A DEBIASED ELASTIC NET WITH INTERACTIONS

r “ y´X pβptq´Z pΘptq is the associated residuals (at the t-th pass). The coordinate update
rules for the j0 main effects and j10 interaction coordinate read:

pβ
pt`1q
j0

“
1

‖xj0‖
2
` nα2,1

ST
´

xJj0

´

r ` pβ
ptq
j0
xj0

¯

, nα1,1

¯

, (2.10)

pΘ
pt`1q

j10
“

1∥∥zj10∥∥2
` nα2,2

ST
´

zJj10

´

r ` pΘ
ptq

j10
zj10

¯

, nα1,2

¯

, (2.11)

and ST represents the soft-thresholding operator, defined for any x P R by:

STpx, αq “ max p0, |x| ´ αq signpxq “ p|x| ´ αq
`

signpxq . (2.12)

Applying these rules to coordinate descent, with one main effects for loop and one
interactions for loop, leads to Algorithm 2, which describes how to make one pass on
the index set of main Aβ and quadratic AΘ features.

Algorithm 2: One epoch of cyclic coordinate descent algorithm
Input : X, y, βptq, Θptq, α “ pα1,1, α1,2, α2,1, α2,2q, Aβ “ J1, pK, AΘ “ J1, qK
Init : r “ y ´X pβptq ´ Z pΘptq

1 for j P Aβ do // set of updated main features

2 β
pt`1q
j “ 1

‖xj‖2
`nα2,1

STpxJj pr ` β
ptq
j xjq, nα1,1q

3 if βpt`1q
j ‰ β

ptq
j then

4 r `“
´

β
ptq
j ´ β

pt`1q
j

¯

xj // update residuals

5 for jj P AΘ do // set of updated interactions features
6 j1, j2 “ Rjj // Rosetta transforms index of Z in double indices
7 zjj “ xj1 d xj2
8 Θ

pt`1q
jj “ 1

‖zjj‖2
`nα2,2

STpzJjjpr `Θ
ptq
jj zjjq, nα1,2q

9 if Θ
pt`1q
jj ‰ Θ

ptq
jj then

10 r `“
´

Θ
ptq
jj ´Θ

pt`1q
jj

¯

zjj // update residuals

Output : βpt`1q, Θpt`1q

This algorithm requires defining a set of main features Aβ and a set of interaction
features AΘ among which it iterates. It is defined by default to Aβ “ J1, pK for the
main effects and to AΘ “ J1, qK for the interactions, which allows to explore all possible
features. Nevertheless, since the Elastic Net solution is expected to be sparse, many
coefficients will be null and updated unnecessarily, thus generating an avoidable com-
putational cost. Also, one of the challenges to have an efficient solver is to efficiently
identify the set of relevant features, in order to build the most refined sets possible. We
will address in Chapter 3 how to build these sets, to use this algorithm as a key inner
solver.
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2.1.3 Statistical results on toy example

Since it is difficult to replicate the true correlation (structure and level) of a real dataset,
we decide to evaluate Elastic Net with Interactions and other methods with semi-artificial
datasets, as in [Bühlmann and Mandozzi, 2014]. The semi artificial datasets are generated
as follows:

y “ β‹01n `Xβ
‹
` ZΘ‹

` ε , (2.13)

where X is a genomic dataset detailed in section 1.6.2, while β‹0 , β‹ and Θ‹ are true
coefficients, chosen according different heredity structures and ε is a Gaussian noise.

2.1.3.1 Semi-generative datasets process

To evaluate the importance of the parameter κ, on different heredity scenarios and under
different levels of sparsity, we choose to select a subset of samples and features, as a
minimal example. Since the dataset have naturally many correlations, we decided to
simply randomly select c columns and m rows, which constitute the design matrix X.
Fo this illustration, it is p “ 30 main effects, q “ 465 interactions effects (including pure
quadratic terms for simplicity), and with n “ 325 samples.

Interactions construction. Regarding the interaction matrix Z, it is generated on-
the-fly using element-wise product between columns of X, according to one of the two
standardization process described in section 1.6.3. Hence, in both cases, the two design
matrix X and Z are standardized such that each column has zero mean and variance
equal to one. Doing this, we expect that no column has higher importance than others, in
particular, main and interactions effects have equal importance in the generative process.
Consequently, we also choose to set the truth intercept β‹0 to zero.

Heredity generative scenario. The support of the true coefficients, i.e., the active
coefficients of β‹ and Θ‹ are chosen according to one of the five hierarchical interaction
scenarios, detailed in section 1.2, that we briefly resume. In the Strong and Weak hered-
ity scenarios eqs. (2.14) and (2.15), an interaction coefficient is active for the former if
and only if both main coefficients are active, while for the latter, at least one main coef-
ficient must be active. Alternatively, in anti-heredity scenario eq. (2.16), an interaction
coefficient is active if and only if none of the associated main coefficients is active. Lastly,
interactions only and main effects only eqs. (2.17) and (2.18) neglect main effects for the
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first and then interactions for the latter.

Θi,j ‰ 0 ñ βi ‰ 0 and βj ‰ 0 , (2.14)

Θi,j ‰ 0 ñ βi ‰ 0 or βj ‰ 0 , (2.15)

Θi,j ‰ 0 ñ βi “ βj “ 0 , (2.16)

D pi, jq P J1, pK, Θi,j ‰ 0 and @ i P J1, pK, βi “ 0 , (2.17)

D i P J1, pK, βi ‰ 0 and @ pi, jq P J1, pK, Θi,j “ 0 . (2.18)

Regarding the active coefficients of β‹ and Θ‹, we choose them randomly between ˘1.
Also, in the strong, weak and anti heredity setting, we choose randomly 10 main effects
to be active and then have r5, 10, 15, 20, 25u possible active interactions, hence ‖Θ‹‖0 P

t5, 10, 15, 20, 25u. For the main only case and interaction only case, the number of
possible features also lives in t5, 10, 15, 20, 25u, such that ‖β‹‖0 P t5, 10, 15, 20, 25u and
‖Θ‹‖0 P t5, 10, 15, 20, 25u.

Controlling noise. In addition, we control the noise by the signal-to-noise ratio
(SNR), defined in [Bühlmann and Mandozzi, 2014] and that we adapt to interaction
(2.19), to generate the noise ε from a normal distribution with zero mean and σ Idnˆn

variance-covariance matrix:

SNR “

d

β‹JXJXβ‹ `Θ‹JZJZΘ‹

nσ2
. (2.19)

For all the following, we set the SNR to 8.

Elastic Net with Interactions optimization parameters. As for the standard
LASSO method, Elastic Net with Interactions performances rely on hyperparameters
which require to be determined. To find them for CLEAR-Enet with Interactions, we
implement cross validation, set by default to "five folds". Moreover, other important
parameters are the number of α’s in the grid, the depth ε of the grid and the tolerance
stopping criteria of the different models, since they control both time resolution and
statistical performance. For all the following, we use nα “ 100 points in the grid of all
methods, a depth ε “ 0.001 and a tolerance of 10´4 as stopping criteria, which seems
standard regarding the classical implementation of LASSO solvers.

Performance metrics. For the following, we divide the data into train (80%) and
test (20%) samples. We also define the following predictive error for the semi-artificial
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datasets, since we know the original signal, which we will call MSE by abuse of language:

MSE “

∥∥∥Xtest

´

β‹ ´ pβ
¯

` Ztest

´

Θ‹ ´ pΘ
¯
∥∥∥2

2

2ntest
. (2.20)

In addition, to compare the feature selection ability of the methods, we measure precision,
recall and as a trade-off between both, F1-score. While these scores are generally used
for binary classification problems, i.e., to compare the predicted class and the true class,
we used them to compare the true active support and the estimated one. In more detail,
we note:

• True Positive (TP) are non-zero coefficients for both estimation and truth;

• True Negative (TN) are zero coefficients for both estimation and truth;

• False Negative (FN) are coefficients whose estimate is zero while the associated
truth is non-zero;

• False Positive (FP) are estimated active coefficients, i.e., non-zero, while in truth
they are inactive, i.e., null.

Therefore, we are able to compute precision, recall and F1-score, whose measures closest
to one are those associated with the best statistical performance.

• Precision: TP
TP`FP P r0, 1s: measures how many false positive features are added by

the estimator;

• Recall: TP
TP`FN P r0, 1s: measures how many active features are retrieved by the

estimator;

• F1-score: 2ˆ precisionˆrecall
precision`recall P r0, 1s: measures a trade-off between precision and recall,

while allowing to take into account the high number of true negative coefficients,
which are numerous in LASSO settings, expected to be parcimonious.

Moreover, the size of the estimated support is also investigated, since it is closely linked
to model interpretability. Finally, in order to average the predictive and selection ability
measures, we repeat each experiment ten times.

2.1.3.2 Statistical results

Predictive performance. Figure 2.1 illustrates the predictive performances of LASSO
and Elastic Net with Interactions, in function of both standardization of the generative
process in one hand, but also of estimation process, in function of sparsity level for the
five possible hierarchical settings.
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We observe that predictive performances can be improved by not penalizing equally
the main features and the interactions (κ “ 1). In particular, Figures 2.1a and 2.1b show
that penalizing more the interactions improves the MSE when the generative process uses
only the main effects, even if, in pure interaction setting, penalizing more the interactions
increases the MSE.

For other scenarios, the MSE result depends on the standardization and the γ ratio
level. For example, penalizing 5 more and penalizing equally, perform closely, while
penalizing more i.e., 10 or 25 leads to downgrade predictive performance. Lastly, the
Elastic Net estimator performs better than LASSO in the first standardization setting,
while inversely, LASSO performs better in the second standardization process, which we
recall is the standardization setting with the least correlation, which explains the success
of the LASSO.
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Figure 2.1: Predictive performances of LASSO and Elastic Net with Interactions in
function of different levels of interaction penalty (κ), in two different standardization
settings. Note that the predictive performances can be improved by not penalizing main
and interaction features equally (κ “ 1).

Features selection performance. Figures 2.2 and 2.3 detail the precision, recall, F1-
score and the number of active features, i.e., the support, in LASSO case for the former
and Elastic Net for the latter.

In Figures 2.2 and 2.3, precision increases with κ, for both standardization, LASSO
and Elastic Net with Interactions, hence penalizing interactions more than main effects
helps to reduce the number of false positive.
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In particular, for both LASSO and Elastic Net with Interactions estimators, pre-
cision favors the first standardization scheme. Regarding the recall score, the second
standardization scheme helps the estimator to find all relevant features, since it does not
matter: κ penalization level is close to one, in all hierarchical settings. Regarding the
first standardization scheme, except in interactions settings, penalizing equally leads to
poor results, in particular in LASSO case. Nevertheless, penalizing too much the inter-
actions deteriorates the performances, since κ “ 5 leads to the best recall result. Lastly,
regarding F1-score, penalizing equally leads to the poorly result, while for the penalized
cases, the results are close (except for LASSO with κ “ 25 in first standardization).
Furthermore, it appears that support decreases with penalty on the one hand, while on
the other hand, the second standardization scheme leads to bigger support.
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Figure 2.2: Features selection performances of LASSO with Interactions in function of
different levels of interaction penalty (κ), in two different standardization settings. Note
that predictive performances can be improved by not penalizing main and interaction
features equally (κ “ 1), in particular κ “ 5 seems a good compromise.
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Figure 2.3: Feature selection performances of Elastic Net with Interactions as a function
of different levels of interaction penalty (κ), in two different standardization settings.
Note that predictive performances can be improved by not penalizing main and interac-
tion features equally (κ “ 1), in particular κ “ 5 seems a good compromise.

Finally, LASSO with Interactions outperforms Elastic Net with Interactions com-
pared to F1-score, in all interaction settings, except when the generative signal is only
composed of interactions.

In any case, penalized estimators such as LASSO or Elastic Net tend to produce
biased coefficients, which may affect features selection by two points. Firstly, due to
the penalization, the real coefficients tend to be shrinked toward zero, which may hurt
predictive tasks. Secondly, to compensate the loss of magnitude of the fitted coefficients,
LASSO and Elastic Net tend to add other features to balance. So on, unbiased estimate
can be useful, especially when feature selection is the final aim of a statistical study.
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2.2 CLEAREnet: a debiased Elastic Net

Since Naive-LSEnet approach (section 1.4) has many drawbacks, we instantiate Covari-
ant LEAst-square Refitting (CLEAR) [Deledalle et al., 2017]. Thus, while estimating
the coefficients with Elastic Net with Interactions, CLEAR allows to obtain a debiased
version. A key advantage is that it can fit well with our coordinate descent algorithm.
In addition, CLEAR preserves the theoretical properties of the original estimator, the
sparsity in our case. Moreover, in most cases, CLEAR finds the same solution as a
post-refitting with Least Squares, here Naive-LSEnet, while being more robust. Indeed,
since its estimation is done jointly with the initial estimator, it is less sensitive to the
support identification error than the methods identifying the support after the estima-
tion. Statistically, we have shown in [Bascou et al., 2021] that debiasing Elastic Net with
Interactions with CLEAR effectively leads to fewer features being selected for a simi-
lar prediction error. We named CLEARLASSO with Interactions the resulting method,
when γ “ 1, and CLEAR-Enet with Interactions otherwise.

Section 2.2.1 describes the CLEAR framework, while in section 2.2.2 we adapt an
automatic differentiation scheme to compute the Jacobian of Elastic Net with Interac-
tions. Then, we provide computational tricks for this scheme in section 2.2.3, and lastly,
section 2.2.4 provides statistical results and illustrates the numerical cost of the debiasing
step.

2.2.1 CLEAR framework

CLEAR is based on a first order correction of the coefficients [Tukey, 1977, Osher et al.,
2005], which for main effects estimator is defined as follows:

Definition 2.2.1. The CLEAR estimator of an almost everywhere (a.e.) differentiable
estimator Rn Q y ÞÑ pβpyq P Rp is, for all y P Rn:

rβpyq :“ pβpyq ` ρJpy ´X pβpyqq with ρ :“

$

’

&

’

%

xXJδ|δy

‖XJδ‖2 , if XJδ ‰ 0,

1 , otherwise,
(2.21)

where δ “ y ´X pβpyq et J “ J
pβpyq “

Bpβpyq

By
P Rpˆn is the Jacobian matrix of pβ at y.

We observe that CLEAR’s definition mainly involves some matrix products in addi-
tion to the Jacobian of the original estimator, Elastic Net in our case.

CLEAR background The CLEAR estimator follows a first debiasing work [Deledalle
et al., 2015]. In this paper, the debiased estimator called invariant refitting, proposes
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a linearly invariant refitting of the initial estimator, allowing to keep some properties
of the initial estimator. For example, in the LASSO case, looking for the best linearly
invariant estimator of the LASSO estimator, is equivalent to orthogonally projecting y
onto the subset of β coefficients sharing the same support as the LASSO solution. Thus,
searching for a linearly invariant estimator in the LASSO case preserves sparsity and is
equivalent to performing the Naive-LSLASSO procedure. However, this approach fails
to recover certain first-order properties of the initial estimator, called covariant, such as
the regularity of the solution, which is desirable in some contexts.

The CLEAR estimator is motivated to capture these first-order properties of the ini-
tial estimator by imposing to preserve, at least locally, the Jacobian structure of the
estimator. Thus, intuitively, a covariant refitting estimator rβpyq of an initial estima-
tor pβpyq should be a solution of the following constrained problem (definition 5 from
[Deledalle et al., 2017], with z “ y):

rβ P arg min
βPH

‖Xβpyq ´ y‖2
2 , (2.22)

where H is the set of maps β : Rn Ñ Rp satisfying for all y P Rn:

1. Affine map: βpyq “ Ay ` b for some A P Rnˆp, b P Rp,

2. Covariant preserving: Jβpyq “ ρJ
pβpyq for some ρ P R,

3. Coherent map: β
´

X pβpyq
¯

“ pβpyq.

The first constraint is to restrict the debiased estimator rβpyq to a class of estimators that
are easy to compute. The second constraint enforces to maintain locally the Jacobian
between the initial pβpyq estimator and the debiased estimator rβpyq, to preserve the first-
order properties of the original estimator. Then, the third constraint means that the
application of refitting to a prediction made with the initial estimator, must not change
the latter.

Lastly, it was proved [Deledalle et al., 2017, Theorem 6] that an estimator respecting
this constrained problem is necessarily the CLEAR estimator, with formula given in
definition 2.2.1. Hence, the CLEAR estimator preserves the sparsity but also the first
order properties of the original estimator. In the following, we start by deriving a simple
one-dimensional example to show how CLEAR works.

One-dimensional example: Let px, yq P R2, we want to solve:

arg min
βPR

F pβ, yq :“ arg min
βPR

ˆ

1

2
pβ ´ yq2 ` α1,1|β| `

α2,1

2
β2

˙

. (2.23)
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We get the following (partial) sub-gradient for F :

Bβ pF pβ, yqq “ pβ ´ yq ` α1,1Bp|β|q ` α2,1β “ p1` α2,1qβ ´ y ` α1,1Bp|β|q , (2.24)

So, with the following convention p¨q` “ maxp¨, 0q, Fermat rule gives:

0 P Bβ

´

F
´

β̂, y
¯¯

ðñ β̂ “
signpyqp|y| ´ α1,1q`

p1` α2,1q
. (2.25)

Finally, a simple estimator of β is:

pβpyq “
signpyqp|y| ´ α1,1q`

p1` α2,1q
“

$

&

%

y`signpyqα1,1

p1`α2,1q
, if |y| ą α1,1,

0 , if |y| ď α1,1.
(2.26)

We can see that y is shrunk in two ways: by the subtraction and the division associated
respectively to the `1 and `2 regularization. We obtain the following Jacobian J and δ:

J “

$

’

&

’

%

1

1`α2,1

, if |y| ą α1,1

0, if |y| ď α1,1

; δ “

$

’

&

’

%

α2,1y´α1,1signppβpyqq

p1` α2,1q
if |y| ą α1,1 ,

y if |y| ď α1,1 .

(2.27)

Thus,

XJδ “

$

’

&

’

%

α2,1y ´ α1,1 signppβpyqq

p1` α2,1q
2 if |y| ą α1,1 ,

0 otherwise .
(2.28)

Hence, if |y| ą α1,1 we get:

‖XJδ‖2
“

´

α2,1y ´ α1,1 signppβpyqq
¯2

p1` α2,1q
4 and xXJδ|δy “

´

α2,1y ´ α1,1 signppβpyqq
¯2

p1` α2,1q
3 .

(2.29)

Then,

ρ “

$

&

%

p1` α2,1q if |y| ą α1,1 ,

1 if |y| ď α1,1 ,
so ρJ “

$

&

%

1 if |y| ą α1,1 ,

0 if |y| ď α1,1 .
(2.30)

Finally, the CLEAR estimator associated to this one-dimensional Elastic Net is:

rβpyq “ pβpyq ` ρJpy ´X pβpyqq “

$

&

%

y if |y| ą α1,1 ,

0 if |y| ď α1,1 .
(2.31)

Hence, one recovers the hard-thresholding in this context.
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2.2.2 Adapting CLEAR to Elastic Net with Interactions

Then, from CLEAR Definition 2.2.1, we immediately get CLEAR for interactions.

Definition 2.2.2 (CLEAR for Interactions). The Covariant LEAst-square Refitting as-
sociated to an a.e. differentiable estimator y ÞÑ

´

pβpyq, pΘpyq
¯

is, for almost all y P Rn,
given by:

rβpt`1q
pyq “ pβpyq ` ρJ

pβpyq

´

y ´X pβpyq ´ Z pΘpyq
¯

, (2.32)

rΘpt`1q
pyq “ pΘpyq ` ρJ

pΘpyq

´

y ´X pβpyq ´ Z pΘpyq
¯

. (2.33)

where:

ρ “

$

&

%

xWJδ|δy
‖WJδ‖ , if , WJδ ‰ 0

1, otherwise,
with W “ rX,Zs P Rnˆpp`qq . (2.34)

and δ “ y´X pβpyq´Z pΘpyq and J “
´

J
pβpyq, JpΘpyq

¯

is the Jacobian matrix of
´

pβpyq, pΘpyq
¯

at the point y.

The main difficulty in our case is the computation of the two Jacobians of
´

pβpyq, pΘpyq
¯

at the point y, i.e., get J
pβpyq and JpΘpyq To compute it, we adapt an automatic differenti-

ation scheme, proposed by Deledalle et al. [2014], which leads to the following iterative
coefficients updates:

Proposition 2.2.1. Let us suppose that the coefficients pβpyq and pΘpyq are iteratively
updated with the following scheme, where we define residuals as r “ y ´X pβptq ` Z pΘptq:

pβ
pt`1q
j “

ST
´

xJj

´

r ` pβ
ptq
j xj

¯

,nα1,1

¯

‖xj‖2
` nα2,1

, (2.35)

pΘ
pt`1q
jj “

ST
´

zJjj

´

r ` pΘ
ptq
jj zjj

¯

,nα1,2

¯

‖zjj‖2
` nα2,2

. (2.36)

Nothing that ej and ejj are the canonical basis vector of Rp and Rq respectively, we
can compute iteratively the Jacobian of β and Θ applied to the residuals r: J

pβ
pt`1q
j

r and
J
pΘ
pt`1q
jj

r, with the scheme:

J
pt`1q
pβj

r“

`

ej ‖xj‖2
´XJxj

˘J
J
ptq
β r´

`

xJj Z
˘J
J
ptq
Θ r`xJj r

‖xj‖2
` nα2,1

1
t|xJj pr`pβ

ptq
j xjq|ěnα1,1u

, (2.37)

J
pt`1q
pΘjj

r“

`

ejj‖zjj‖2´ZJzjj
˘J
J
ptq
Θ r´

`

XJzjj
˘J
J
ptq
β r`zJjjr

‖zjj‖2 ` nα2,2

1
t|zJjjpr`pΘ

ptq
jj zjjq|ěnα1,2u

. (2.38)
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2.2. CLEARENET: A DEBIASED ELASTIC NET

Hence, with ρpt`1q “

@

rX,ZsrJ
pt`1q
pβ

r, J
pt`1q
pΘ

rsJ,rpt`1q
D

∥∥∥rX,ZsrJpt`1q
pβ

r, J
pt`1q
pΘ

rsJ
∥∥∥2 , the CLEAR estimate of Elastic Net with

Interactions, which we call CLEAR-Enet with Interactions is:

rβpt`1q
“ pβpt`1q

` ρpt`1qJ
pt`1q
pβ

r , (2.39)

rΘpt`1q
“ pΘpt`1q

` ρpt`1qJ
pt`1q
pΘ

r . (2.40)

Proof. We note: tj “ xJj

´

rk ` pβ
ptq
j xj

¯

and recall that J
pβ
pt`1q
j

“
Bpβ

pt`1q
j

By
, so:

Bpβ
pt`1q
j

By
“

1

‖xj‖2`nα2,1

B ST ptj, nα1,1q

By

“
1

‖xj‖2`nα2,1

˜

B ST ptj, nα1,1q

Bβ

Bpβptq

By
`
B ST ptj, nα1,1q

BΘ

BpΘptq

By
`
B ST ptj, nα1,1q

By

¸

“
1

‖xj‖2`nα2,1

ˆ

B ST ptj, nα1,1q

Bβ
J
pβptq`

B ST ptj, nα1,1q

BΘ
J
pΘptq`

B ST ptj, nα1,1q

By

˙

“
1

‖xj‖2 ` nα2,1

´

`

ej ‖xj‖2
´ xJj X

˘J
J
pβptq ´ x

J
j Z

JJ
pΘptq ` x

J
j

¯

1t|tj |ěnα1,1u .

Finally, by factorizing on the left by xJj and thus applied residuals r on the right, we get:

J
pt`1q
pβj

r“

`

ej ‖xj‖2
´XJxj

˘J
J
ptq
β r ´

`

xJj Z
˘J
J
ptq
Θ r ` xJj r

‖xj‖2
` nα2,1

1
t|xJj pr`pβ

ptq
j xjq|ěnα1,1u

. (2.41)

The results for the Jacobian of interactions can be established in a similar way.

Nevertheless, we observe that computing the Jacobian involves many matrix products,
in Equations (2.37) and (2.38): XJxj, Z

Jxj, X
Jzjj, Z

Jzjj. While these matrix products
are identical from one coordinate pass to the next, in the context of interaction solvers,
we can not compute them once and store the result before running the algorithm.

Indeed, the last product, i.e., ZJzjj, must be performed for each possible interaction
and then leads to save ZJZ P Rqˆq, which is in general much larger than Z P Rnˆq.
Therefore, we can not store this whole matrix, but on the other hand, computing such
products ZJZ P Rqˆq on-the-fly each time the coefficient is updated represents a much
too large computational burden.

Since storing a too large matrix or calculating on-the-fly are not tractable solutions,
we detail in the next section the calculation tricks that make this possible.
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2.2.3 A tractable version of CLEAR-Enet with Interactions

In this section, we rely on a computational trick from Bertrand et al. [2020] to make
Jacobian computations possible. Taking Equation (2.38), the full computation is not
ZJzjj but zJjjZJ

pt`1q
Θ r, however the second part ZJ pt`1q

Θ r lies in Rn, which is easy to
store. Hence, drβ “ XJ

pt`1q
β r P Rn and drΘ “ ZJ

pt`1q
Θ r P Rn can be updated efficiently

(lines 5 and 13) and allow efficient Jacobian updates rules (lines 4 and 12 of Algorithm 3).

Algorithm 3: One epoch of coordinate descent algorithm with CLEAR

Input : X, y, βptq, Θptq, J
ptq
βj
r, J

ptq
Θj
r, α, Aβ, AΘ

Init : r “ y ´X pβptq ´ Z pΘptq , drβ “ XJ
ptq
βj
r , drΘ “ ZJ

ptq
Θj
r

1 for j P Aβ do // set of updated main features

2 β
pt`1q
j “ 1

‖xj‖2
`nα2,1

STpxJj pr ` β
ptq
j xjq, nα1,1q

3 if βpt`1q
j ‰ β

ptq
j then // debiasing main features

4 J
pt`1q
βj

r “

`

ej ‖xj‖2
˘J
J
ptq
β r ` xJj pdrβ ` drΘq ` x

J
j r

‖xj‖2
` nα2

1
t|xJj pr`β

ptq
j xjq|ěnα1u

5 drβj `“
´

J
ptq
βjj
r ´ J

pt`1q
βjj

r
¯

xj // update computational trick

6 r `“
´

β
ptq
j ´ β

pt`1q
j

¯

xj // update residuals

7 for jj P AΘ do // set of updated interaction features

8 j1, j2 “ Rjj // Rosetta transforms index of Z in double indices

9 zjj “ xj1 d xj2

10 Θ
pt`1q
jj “ 1

‖zjj‖2
`nα2,2

STpzJjjpr `Θ
ptq
jj zjjq, nα1,2q

11 if Θ
pt`1q
jj ‰ Θ

ptq
jj then // debiasing interactions features

12 J
pt`1q
Θjj

r “
pejj‖zjj‖2q

J
J
ptq
Θ r ` zJjj pdrβ ` drΘq ` z

J
jjr

‖zjj‖2 ` nα2

1
t|zJjjpr`Θ

ptq
jj zjjq|ěnα1u

13 drΘjj `“

´

J
ptq
Θjj
r ´ J

pt`1q
Θjj

r
¯

zjj // update computational trick

14 r `“
´

Θ
ptq
jj ´Θ

pt`1q
jj

¯

zjj // update residuals

Output : βpt`1q, Θpt`1q, J
pt`1q
β r, J

pt`1q
Θ r

For Algorithms 2 and 3, we initialize all the terms βptq, Θptq and J
ptq
βj
r, J

ptq
Θj
r into

null vectors at the first regularization parameters of the path, while for the others, we
re-use the solution provided by the previous path regularization parameter. In addition,
residuals r “ y ´ X pβptq ´ Z pΘptq and computational tricks drβ “ XJ

ptq
βj
r, drΘ “ ZJ

ptq
Θj
r

are not re-computed at each novel pass but updated on-the-fly ; they are in initialization
part of the algorithms only to ease their presentation.

Lastly, when the stopping criterion of Elastic Net with Interactions (defined sec-
tion 3.1) is verified, the updates of the Jacobian stop. The algorithm ends with the
computation of ρpt`1q (eq. (2.34)), allowing the debiasing of the coefficients.
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2.2.4 Statistical results on a toy example

To discuss the effects of debiasing on statistical and computational performance, we reuse
the generative process detailed previously in section 2.2.4. The first part deals with the
predictive and selection ability of the estimator, while the second part illustrates the
computational cost of the debiasing step.

2.2.4.1 Statistical results with a debiasing step

For ease of analysis, we have separated standardization schemes into different figures.
Hence, Figures 2.4a and 2.5a show CLEARLASSO and CLEAR-Enet with Interactions
performances in the first standardization scheme, while Figures 2.4b and 2.5b show it
for the second.

Predictive performances. We first focus on the MSE measure, shown in the first col-
umn of each figure. For the first standardization scheme, CLEAR-Enet with Interactions
as well as CLEARLASSO with Interactions do not improve the predictive performances
compared to their non-debiased version. Nevertheless, the second shows that the de-
biasing step slightly improves the statistical performance, in particular for the LASSO
case.

Features selection performance. As previously, we measure precision, recall, F1-
score and number of active features, and we observe that standardization matters a
lot. Indeed, the first standardization scheme shows that for both LASSO and Elastic
Net, the debiasing step does not improve but does not degrade these measures either,
except for main only settings, where debiasing improves precision without deteriorating
the recall. However, for the second standardization scheme, the debiasing step improves
the precision in all interaction settings, i.e., it reduces the number of false positives, in
particular for the LASSO, without deteriorating the recall. Therefore, this second case
greatly improves the F1-score, and reduces the number of active features, which implies
a better interpretability for the costumers.

In conclusion, while performing a debiasing step neither improves nor degrades the
statistical performances in the first standardization setting, it shows in the second one a
great improvement on selection ability performances. Moreover, we also observe a slight
improvement for MSE whereas it reduces the number of active features, as expected.
Lastly, for all the following, we will consider CLEARLASSO with Interactions with
κ “ 5, as it showed the best results overall all parameters.

51



CHAPTER 2. A DEBIASED ELASTIC NET WITH INTERACTIONS

10
1

10
0

M
S

E

STRONG

0.0

0.5

1.0

P
R

E
C

IS
IO

N

STRONG

0.0

0.5

1.0

R
E

C
A

LL

STRONG

0.0

0.5

1.0

F1
 S

C
O

R
E

STRONG

25

50

75

S
U

P
P

O
R

T

STRONG

10
1

10
0

M
S

E

WEAK

0.0

0.5

1.0
P

R
E

C
IS

IO
N

WEAK

0.0

0.5

1.0

R
E

C
A

LL

WEAK

0.0

0.5

1.0

F1
 S

C
O

R
E

WEAK

25

50

75

100

S
U

P
P

O
R

T

WEAK

10
1

10
0

M
S

E

ANTI

0.0

0.5

1.0

P
R

E
C

IS
IO

N

ANTI

0.0

0.5

1.0

R
E

C
A

LL

ANTI

0.0

0.5

1.0

F1
 S

C
O

R
E

ANTI

25

50

75

100

S
U

P
P

O
R

T

ANTI

10
2

10
1

10
0

M
S

E

INTERACTION

0.0

0.5

1.0

P
R

E
C

IS
IO

N

INTERACTION

0.0

0.5

1.0
R

E
C

A
LL

INTERACTION

0.0

0.5

1.0

F1
 S

C
O

R
E

INTERACTION

25

50

75

S
U

P
P

O
R

T

INTERACTION

10 20 30
Total Active Features

10
2

10
1

M
S

E

MAIN

10 20 30
Total Active Features

0.0

0.5

1.0

P
R

E
C

IS
IO

N

MAIN

10 20 30
Total Active Features

0.0

0.5

1.0

R
E

C
A

LL

MAIN

10 20 30
Total Active Features

0.0

0.5

1.0

F1
 S

C
O

R
E

MAIN

10 20 30
Total Active Features

25

50

75

S
U

P
P

O
R

T

MAIN

LASSO INT -  = 1 STD 1
CLEARLASSO INT -  = 1 STD 1

LASSO INT -  = 5 STD 1
CLEARLASSO INT -  = 5 STD 1

LASSO INT -  = 10 STD 1
CLEARLASSO INT -  = 10 STD 1

LASSO INT -  = 25 STD 1
CLEARLASSO INT -  = 25 STD 1

(a) CLEARLASSO with Interactions case with first standardization scheme
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(b) CLEARLASSO with Interactions case with second standardization scheme

Figure 2.4: Performances of CLEARLASSO with Interactions in function of different
levels of interaction penalty (κ), in both standardization settings. While first standard-
ization does not imply improvement with debiasing step, second slightly improve MSE,
greatly improve selection ability for a reduced number of active features.
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(a) CLEAR-Enet with Interactions case with first standardization scheme
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Figure 2.5: Performances of CLEAR-Enet with Interactions in function of different levels
of interaction penalty (κ), in both standardization settings. While first standardization
does not imply improvement with debiasing step, second slightly improve MSE, greatly
improve selection ability for a reduced number of active features, even if the difference
are less visible than for CLEARLASSO.
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2.2.4.2 Impact of the debiasing step on computation time

Lastly, we detail in Figure 2.6 the impact of the debiasing step on the computation
time. The times given are those obtained with the active set algorithm developed in
Chapter 3, and not those with Algorithms 2 and 3, since the only purpose of this figure
is to illustrate the cost of the debiasing step.

Obviously, the debiasing step increases computing time, but as detailed in Figure 2.6,
CLEAR-Enet with Interactions and CLEARLASSO with Interactions have a compara-
ble computing time to the non-debiased version. Indeed, debiasing only increases the
computational cost by a factor 2 or 3, however, choice of κ and γ have an impact on
computation time. For example, with the active set solver, the LASSO estimator is faster
than the Elastic Net and penalizes more the interactions than the main effects. It also
reduces the computing time, since fewer interactions have to be visited.
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Figure 2.6: Computation time (in second) of Elastic Net with Interactions and LASSO
with Interactions with and without debiasing step. While debiasing increases by 2 or 3
the computational time, others parameters such as κ and γ also matter.

Finally, these experiments confirm that CLEARLASSO with Interactions, with κ “ 5

is also a good compromise, since it achieves a better computational time than κ “ 1 but
close to κ “ 10 and κ “ 25.
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2.3 Conclusion

In this chapter, we have presented an Elastic Net with Interactions, adapted from Elastic
Net. The first step was to propose a reparametrization of the hyperparameters, to reduce
the number of parameters to be adjusted and the associated computation time. One of
the main ideas of this reparametrization is to penalize the interactions more than the
main effects, to favor the latter in the model. The first results have shown that this penal-
ization allows significantly improving the performance of the feature selection, without
degrading the predictive performance, if the level of penalization remains moderate (i.e.,
κ “ 5).

Then, we developed a debiased version of our estimator, with the objective of selecting
fewer coefficients than the Elastic Net with Interactions, for a similar prediction error.
The first statistical results showed that the contribution of the debiasing step depends
mainly on the chosen standardization. In all cases, the debiasing step does not deteriorate
the performances of the Elastic Net with Interactions, and allows to significantly improve
them in the second standardization scenario (STD2).

Finally, these experiments were made possible by the algorithms developed in this
chapter, adapted from coordinate descent, which allows to build the interactions matrix
on-the-fly without having to store it entirely in memory. The second numerical issue
is then to take advantage of the parsimony of the Elastic Net to limit the number of
interaction features to be updated.

The next chapter develops and illustrates the numerical cost of the duality gap in
our case, and then proposes an active set algorithm, to take advantage of the parsimony
and to reduce the computation time.
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Chapter 3

An accelerated algorithm for Elastic
Net with Interactions
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In this chapter, we describe an optimization framework allowing to develop a scalable
algorithm to estimate Elastic Net with Interactions and CLEAR-Enet with Interactions.
The first part section 3.1 focuses on the choice of a stopping criterion, a point that has
not been detailed so far. Computing a stopping criterion, e.g., a duality gap, might cost
as much as one pass over the full set of coordinates, as it requires visiting all interactions
features. Hence, we observe that computing duality gaps must be done parsimoniously,
as in Figure 3.1. Furthermore, as CELER [Massias et al., 2018, 2020] relies strongly
on creating dual variables, a modification of the structure of this working set algorithm
is hence required. Moreover, to avoid computing duality gaps, we develop an active set
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algorithm which differentiates main and interactions features (section 3.2.2) and leverages
the sparsity induced by the Soft-Thresholding operator to build our active set. Lastly, in
section 3.3 we adapt Anderson acceleration, a non-linear acceleration which has recently
gotten a surge of interest to accelerate LASSO type solvers.

3.1 Duality gap of Elastic Net with Interactions

Since LASSO and Elastic Net are not differentiable, multiple stopping criteria have
been considered in the literature. A classical stopping criterion is the duality gap [Kim
et al., 2007, Massias et al., 2018] which is the difference between the value of the original
minimization problem (also named primal problem), and a maximization problem, called
the dual problem. Morevoer, strong duality holds for LASSO (see Massias et al. [2018])
and hence at the optimum, the difference between the primal and dual problems, i.e.,
the duality gap, vanishes. We detail below the (dual) maximization problem.

Proposition 3.1.1. To the Elastic Net with Interactions minimization problem Ppβ,Θq
(eq. (2.7)), is associated a maximization problem, called dual problem Dpνq:

pνptq “ arg max
νP∆X,Z

˜

1

2n
‖y‖2

2 ´
nα2

2

∥∥∥ν ´ y

αn

∥∥∥2

2
´

ˆ

nα

c
ptq
α

˙2
´α2,1

2

∥∥βptq∥∥2

2
`
α2,2

2

∥∥Θptq
∥∥2

2

¯

¸

,

(3.1)

with α “
1

4
pα1,1 ` α1,2 ` α2,1 ` α2,2q ,

cptqα “αmax

ˆ

n,
‖XJr ´ nα2,1β

ptq‖8
α1,1

,
‖ZJr ´ nα2,2Θptq‖8

α1,2

˙

,

∆X,Z “

#

ν P Rn : max

˜

‖XJν ´ nα2,1

c
ptq
α

βptq‖8
α1,1

,
‖ZJν ´ nα2,2

c
ptq
α

Θptq‖8
α1,2

¸

ď
1

α

+

.

A canonical dual variable pν is the rescaled residuals [Mairal, 2010], defined as follows:

pνptq “
r

c
ptq
α

“
y ´X pβptq ´ Z pΘptq

c
ptq
α

. (3.2)

Proof. We obtain Elastic Net with Interactions dual problem from the dual lasso for-
mulation (see for example [Massias et al., 2018]). We first add interaction terms in the
original problem while in a second step, we use the fact that Elastic Net is a LASSO
problem with increased matrix and signal (see [Zou and Hastie, 2005]). We provide the
full proof in section 6.2 of appendix (chapter 6).

Hence, Elastic Net being a reformulation of a LASSO problem, strong duality holds,
and the duality gap provides an upper bound converging to zero as for Elastic Net.

58



3.1. DUALITY GAP OF ELASTIC NET WITH INTERACTIONS

Proposition 3.1.2. Being Ppβptq,Θptqq the objective value of the minimization problem
after t epochs and being Dpνptqq the value of the maximization problem, with the dual
variable νptq computed from rescaled residuals. Then, the duality gap Gpβptq,Θptqq is:

Ppβptq,Θptq
q ´ Ppβd,Θd

q ď Ppβptq,Θptq
q ´Dpνptqq “ Gpβptq,Θptq

q ,

where βd and Θd are the optimal values of main and interactions coefficients.

Unfortunately, even if this criterion enjoys good theoretical properties, the rescaling
constant cptqα requires to compute ZJνptq whose cost is quickly prohibitive, as in Figure 3.1.
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Figure 3.1: Cost of computing the dual variable for different number of samples and
features. The left part illustrates the memory cost associated to store Z (interactions
design matrix); the right part shows the time budget needed to evaluate ZJy with stored
interaction matrix (blue) or without (orange), thanks to Numba [Lam et al., 2015]). For
a dataset with n “ 10 000 observations and p “ 100, computing on-the-fly requires more
than 0.1 s and more than 1 s for p “ 250. For our genomics dataset, the cost is between
0.1 s and 1 s, limiting dual gap evaluations drastically.

Figure 3.1 illustrates the memory cost to store Z on the left part, while the right
part indicates in orange the computational time to evaluate on-the-fly ZJy P Rq and in
blue the same quantity with Z stored in memory. As expected, computing on-the-fly
increases computational burden. For our genomics dataset, the evaluation takes between
0.1 s and 1 s, which limits the use of duality gap as a stopping criterion on the whole
dataset. However, we observe that restricted to a small subset of features, for the same
number of observations, computing ZJy is faster. Hence, even if the duality gap cost is
prohibitive for the whole problem, its computation is fast enough to test sub-problem
convergence for (relatively small) inner problems.
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3.2 Active set for coordinate descent

One challenge of building active sets in our context is to reduce as much as possible
the number of duality gap evaluations for the full problem, a key difference between
CELER implementation and ours. Indeed, between two active sets, CELER computes
the duality gap and uses the new dual point to update the feature "ranking" and create
the active set. We detail in the following a direct and naive application of CELER to
handle interactions and then describe our proposed approach.

Limitations of a naive adaptation of CELER. With a duality gap and associated
dual features computation, CELER is able to build precise priority rules. However,
updating the dual variable costs one pass over the dataset, and updating priorities costs
another one, which in interactions settings is prohibitive. Hence, we restrict our use
of the duality gap between two active sets, by using a heuristic stopping criterion as a
first criterion before computing a duality gap. Moreover, a drawback to apply CELER
directly it does not differentiate main and interaction features, whereas the former has
a much lower computational cost than the latter. In particular, although it probably
rarely happens, having to find and estimate all the important interaction variables but
having to continue because the active set of main effects has missed an important main
effect results in unnecessary extra computational cost.

Hence, a first challenge is to intensively use heuristic criterion to avoid computing
prohibitive duality gaps on the full problem. For this purpose, we develop two heuristic
stopping criteria in section 3.2.3, which if satisfied are complemented by an evaluation
of the duality gap on the whole problem. Otherwise the algorithm continues, without
evaluating unnecessarily the duality gap on the complete problem. We first derive in
section 3.2.1 the CELER ranking rules for Elastic Net with Interactions and discuss
the choice to approximate it and to differentiate the way main and interactions effects
are handled. We detail in section 3.2.2 how we use the Soft-Thresholding operator to
refine active sets. Lastly, we also detail in section 3.2.2 how differentiation affects growth
strategies of main and interactions of actives sets.

3.2.1 Ranking rules for Elastic Net with Interactions

The first step is to derive the Elastic Net with Interactions priority rules from the CELER
ones (from LASSO) to rank each possible main and interaction features.

Proposition 3.2.1 (Celer for Elastic Net with Interactions). Let pν a dual feasible point
of the dual problem and cα the associated constant (to rescale residuals), as in Proposi-
tion 3.1.1. We get the following dj and djj priority rules, for the main and interactions
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effects respectively:

dj ppνq “

1´

ˇ

ˇ

ˇ

ˇ

xJj pν ´
α1,2n

cα
βj

ˇ

ˇ

ˇ

ˇ

b

‖xj‖2
2 ` α1,2n

and djj ppνq “
1´

ˇ

ˇ

ˇ

ˇ

zJjjpν ´
α2,2n

cα
Θjj

ˇ

ˇ

ˇ

ˇ

b

‖zjj‖2
2 ` α2,2n

. (3.3)

Proof. We obtain these rules applying to the CELER priorities rules Equation (1.22)
adapting the duality gap computation proof for Elastic Net with Interactions (Proposi-
tion 3.1.1). Again, we provide the full proof in section 6.3 of appendix (chapter 6).

These rules allow us to rank the main effects thanks to dj and the quadratic effects
thanks to djj. A naive adaptation of active set algorithms to the interactions setting
will lead to take the pp0q best ranked main effects and qp0q first for the quadratics ones,
to have two first working set of potential features: W0q

p for first order and Wp0q
q for

second. These two lists are then concatenated to solve the inner problem restricted to
the union of these two sets. As explained before, in interactions settings, it can happen
thatWptq

q contains all quadratics relevant features, whileWptq
p misses some main features.

These cases lead to unnecessary growth of Wptq
q which leads to unnecessary updates and

increases computational time since the bottleneck is visiting the interactions, and not
main features.

Therefore, we decide to not apply these ranking rules on the main features and
consider Wptq

p “ J1, pK. Hence, we only rank interactions features, as summarized in
Algorithm 4. The priority rule must be computed for each interaction, and requires
an evaluation of dual variable and the associated rescaled constant, which are costly
to compute. Hence, to reduce the computational cost associated to evaluating dαkjj , we
approximate it using the dual variable pναk´1 and cαk´1

obtained for a previous set of
hyperparameters. However, these two variables are not available when the algorithm is
first used, i.e., for the first hyperparameter considered, so we decide to initialize them
to cα0 “ αn and then pνα0 “

y
cα0

.
Lastly, since computing the priority rule list djj for jj “ t1, . . . , qu is equivalent to

a pass on all interactions, we decide to compute it only once at the initialization of the
algorithm and then to freeze it for a fixed αk, except if it is the first hyperparameter
considered. In this particular case, if the evaluation of the duality gap on the complete
problem does not stop the algorithm, it is then allowed to recompute once the priority
rule.

So, with this strategy, the main features working setWptq
p “ J1, pK contain all features,

while interactions features working set Wptq
q can be highly inaccurate and contain irrele-

vant features, depending on how close αk´1 and αk are. Consequently, in the following,
we describe a second strategy to refine working sets to build our final active set.
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Algorithm 4: Compute ranking criterion

Input : X “ rx1, . . . , xps, ν
ptq, c

ptq
α , α “ pα1,1, α1,2, α2,1, α2,2q

1 for jj “ 1, . . . , q do
2 j1, j2 “ Rjj // Rosetta transforms index of Z in double indices

3 zjj “ xj1 d xj2

4 djj “

ˆ

1´

ˇ

ˇ

ˇ

ˇ

zJjjν
ptq ´

α2,2n

c
ptq
α

pΘjj

ˇ

ˇ

ˇ

ˇ

˙

M

b

‖pzjjq‖2
2 ` α2,2n

Output : djj

3.2.2 Active sets definition and growth strategies

Active set definition. To reduce the amount of interactions visited, and to avoid
visiting all main features, we perform a second ranking step, using the Soft-Thresholding
ability to zero out coefficients.

In detail, we perform a single pass of Algorithm 2 (detailed in section 2.1.2), over
all the main features, i.e., over Wptq

p and over the interactions working set Wptq
q built

previously. Then, we create the active sets Aptqβ and AptqΘ that correspond to the current
support of main and interaction features, i.e., Aptqβ and AptqΘ is constituted from the set
of non-zeroed main and interaction features. This allows to take into account the fact
that the list of djj’s is approximated by avoiding wasting time optimizing variables in
the working set Wptq

q that are finally found to be zeroed.

Growth strategies. We then discuss strategies controlling the growth of working sets
between two iterations. We start by discussing the two growth strategies proposed by
CELER. The size of the new working set Wptq

q is,

• either doubled, i.e., the number of variables considered in Wptq
q is twice that of the

previous working set Wpt´1q
q ;

• or increased by taking into account the number of active variables in Wpt´1q
q , i.e.,

the number of variables considered in Wptq
q is twice the support of Wpt´1q

q . This
second strategy is called pruning.

The first strategy doubles the size of the working set, which is advantageous to detect
the relevant variables, especially during the first iterations, but can lead to consider sets
too large compared to the true support when most of the variables have already been
identified, implying an unnecessary computational overload. Alternatively, the pruning
strategy allows refining by growing slower, and even to reduce the size of the working set
if the initial size is too large.
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Problem with these strategies in the case of interactions. Although these two
strategies are efficient, they depend heavily on the priority rule, which is prohibitively
expensive to update in the case of interactions, unlike CELER where it is done between
each working set. Also, if the sorting rule has wrongly classified some active variables, the
first strategy can lead from one iteration to another to consider a very large set without
detecting any new active variables. Conversely, with the pruning rule in our case, it is
possible that the algorithm stops growing by failing to detect some misclassified variables
that should be active.

Our approach. Thus, the adaptation of CELER to the case of interactions requires
to define an adapted strategy, which allows to quickly increase the size of the working
set, in particular during the first iterations, and then to do it more moderately once
most of the active variables have been identified. To do so, we propose to determine the
largest rank qptq of the active variables of the working set and to grow according to this
rank qptq rather than the size of the working set or its support.

This rank qptq is necessarily lower than the size of the working set and higher than the
size of its support. Thus, if this rank qptq is close to the size of the working set Wpt´1q

q ,
the growth corresponds to the first strategy, which is useful during the first iterations.
Conversely, if this rank qptq is close to the size of the support, the growth corresponds to
the pruning strategy, which is useful to control their growth and allow them to shrink if
necessary.

Finally, if an iteration has not identified any additional active variable and the stop-
ping heuristics (as follows in section 3.2.3) are satisfied, the complete duality gap is
calculated. If the latter completes the desired tolerance, the algorithm stops, otherwise,
we propose to perform a pass on each of the possible interactions, to detect those to be
added to the working set and update the rank qptq.

Algorithm 5 summarizes active sets definitions and growth strategies.

Algorithm 5: Growing strategy and active set construction
Input : X, y, βptq, Θptq, α “ pα1,1, α1,2, α2,1, α2,2q, q

ptq

1 Wptq
q “

 

jj P rps : djj among 2qptq smallest values of djj
(

// Update Wptq
q

2 Get βptq,Θptq with a solver applied to
´

βptq,Θptq, J1 : pK,Wptq
q , itr “ 1

¯

// 1 pass

3 Aptqβ ,A
ptq
Θ “

!

j P J1 : pK : β
ptq
j ‰ 0, jj PWptq

q : Θ
ptq
jj ‰ 0

)

// Update Aptq
β ,Aptq

Θ

Output : Aptqβ ,A
ptq
Θ
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3.2.3 Avoid computing duality gap

We now detail how to control the optimization progress between two active sets, without
having to compute the duality gap on the whole features. With this objective in mind,
we derive two naive stopping criteria: the absolute difference between the current and
the previous iterate on consecutive actives sets and the difference between the current
and previous objective function (eq. (3.4)).

max
`
∥∥βpt`1q

´ βptq
∥∥
8
,
∥∥Θpt`1q

´Θptq
∥∥
8

˘

ď ε and
ˇ

ˇ

ˇ
objptq´ objpt`1q

ˇ

ˇ

ˇ
ď ε . (3.4)

In more details, after solving the sub problem associated to Aptqβ and AptqΘ , we perform a
single pass on Wpt`1q

p and Wpt`1q
q , to evaluate these criteria. Hence, if an added feature

is different from zero and appears in Wpt`1q
q or if the difference between two consecutive

objective values is too important, the algorithm continues; otherwise the (full) duality
gap is computed.

3.3 Inner solver with Anderson extrapolation

While working set or active set as well as screening exploit the sparsity of the LASSO
solution to improve numerical performances, more generic optimization tools as inertial
or non-linear acceleration also permit obtaining additional speed up. The former, also
known as Nesterov Acceleration [Nesterov, 1983] has been widely studied and has notably
lead to Fast Iterative Soft-Tresholding Algoritm, abbreviated FISTA [Beck and Teboulle,
2009].

We focus on Anderson’s acceleration which has recently received a surge of interest
in modern machine learning optimization problems. Consider a fixed point iteration
problem, as follows:

βpt`1q
“ Tβptq ` b , (3.5)

where T P Rpˆp represents an iteration matrix with a spectral radius ρpT q ă 1. An-
derson acceleration [Anderson, 1965] aims to improve convergence of such problems by
extrapolating a new point βE from a linear combination of previous iterates βptq:

βE “
T
ÿ

t“0

ctβ
ptq , (3.6)

where pctq0ďtďT is a sequence of weights, which leads to lower objective function.
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Anderson acceleration for proximal coordinate descent. Main results are pro-
vided to solve quadratic problem with symmetric iteration matrix T [Scieur et al., 2016].
Moreover, it can be shown that gradient descent iterates [Bertrand and Massias, 2021]
can be written as a fixed point iteration problem with a such symmetric matrix. Since
proximal gradient descent is widely used in machine learning problems, recent works
have adapted Anderson acceleration [Zhang et al., 2020, Mai and Johansson, 2020] to it.
In addition, proximal coordinate descent algorithm is known to have much better results
than proximal gradient descent on numerous machine learning problem, unfortunately,
Bertrand and Massias [2021] shown that the iterates of this algorithm can be written
as a fixed point iteration problem, but with a non-symmetric matrix. Hence, to ensure
convergence of Anderson acceleration, they propose to check that the extrapolated point
achieves a lower objective than the current iterate. In particular, regarding proximal
coordinate descent algorithm, they prove that asymptotically, the iterates of the algo-
rithm follow noisy linear iterations, which allow applying Anderson acceleration to such
problem, and hence allow to perform such acceleration on proximal coordinate descent
[Bertrand and Massias, 2021], recently coupled with active set [Bertrand et al., 2022].

Anderson acceleration for Elastic Net with Interactions. Bertrand and Massias
[2021] provide two versions, the offline and online. The former uses a linear combination
of all the iterates, while the online version only requires the K last iterates. We rely
on the latter, since it needs to store less coefficients and limit the memory burden in
interactions settings. Moreover, following their recommandation, we choose K “ 5 and
compute the weight sequence from c “

`

UJU
˘´1

1K{1
J
K

`

UJU
˘´1

1K , where U is the
matrix of iterates difference, as Line 5 of Algorithm 6.

Algorithm 6: Proximal Coordinate Descent with Anderson Extrapolation

Input : X, y, βp0q, Θp0q, α “ pα1,1, α2,1, α1,2, α2,2q, ν
p0q,Ap0qβ , Ap0qΘ , qp0q,R

param. : ε “ 10´6, itr “ 104, R, K “ 5
1 for t “ 1, . . . , T do
2 Get βptq, Θptq with Algorithm 2 // Make one pass on actives sets
3 if t “ 0 mod K then // Do Anderson acceleration each K epoch

4 Compute objptq with Equation (2.7)

5 U “
´

rβ,Θspt´K`1q
´ rβ,Θspt´Kq , . . . , rβ,Θsptq ´ rβ,Θspt´1q

¯

6 c “
`

UJU
˘´1

1K{1
J
K

`

UJU
˘´1

1K // Compute extrapolation weight

7 βA,ΘA “
řK
k“1 ckβ

pt´K`kq,
řK
k“1 ckΘ

pt´K`kq // Compute extrapolation

8 Compute obj
ptq
A with Equation (2.7) // Compute objective of extrapolate

9 if obj
ptq
A ď objptq then // Update coefficients only if objective is lower

10 βptq,Θptq “ βA,ΘA

Output : βptq,Θptq
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3.4 Summary and benchmark with Benchopt

We first provide a short summary of our active set algorithm with Anderson extrapola-
tion, while the second part presents Benchopt [Moreau et al., 2022] which allows com-
paring different solvers for a given machine learning problem on different data. Then,
the two last parts illustrate on a moderate scale (section 3.4.3) and then on a higher
scale (section 3.4.4) comparisons between LASSO solvers. We compare different versions
of our own approach but also use two others Python implementation: CELER (active
set with dual extrapolation) and scikit-learn (classical proximal coordinate descent al-
gorithm). With regard to our approach, we compare coordinate descent algorithm with
and without Anderson acceleration, and with and without active set scheme.

3.4.1 Summary: double active set coordinate descent

To summarize, we build a two-step active set algorithm whose key idea is to avoid visiting
all the interaction features. To reduce the computational cost to estimate the main
and interaction coefficients, we rely on approximate priority rules and soft-thresholding
ability to zeroed coefficients. On the another hand, we intensively use heuristic stopping
criteria to avoid computing duality gap of the full problem and thus, reduce stopping
criterion cost. Lastly, we use proximal coordinate descent with Anderson acceleration
(Algorithm 6) as inner solver of the active set. This leads to Algorithm 7 that we
implement in Python using Numba [Lam et al., 2015] just-in-time compiler to accelerate
computing intensive parts.

3.4.2 Benchopt adaptation to quadratic problems

We rely on Benchopt to measure the computational cost of the different solvers. Ben-
chopt CELER and scikit-learn are not initially build to taking account interactions. A
simple adjustment for Benchopt is to replace the design matrix of main effects by the
main and interactions matrix if it can be stored in memory. Regarding CELER and
scikit-learn solvers, we also compute the interaction design matrix and then store it to
feed the solvers. However, to perform fair comparisons with our approach, we include the
time to build and store the quadratic matrix associated to each solver. Moreover, as the
standardization or normalization process can differ from one solver to another, we only
consider settings where the intercept term is considered, i.e., we subtract to each column
its mean, without rescaling it. In each setting, we will consider three penalties levels
α P αmax ˆ t0.1, 0.01, 0.001u, to evaluate performance on different parts of the LASSO
path.
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Algorithm 7: Double Active-Set coordinate descent

Input : X, y, βp0q, Θp0q, α “ pα1,1, α1,2, α2,1, α2,2q, ν
p0q,Ap0qβ , Ap0qΘ , qp0q

Init : ε “ 10´6, itr “ 104.

1 Compute objp1q with Equation (2.7) applied to pβp0q,Θp0q, αq

2 Get βp1q,Θp1q with a solver applied to pβp0q,Θp0q,Ap0qβ ,Ap0qΘ , tol “ εq // WarmStart

3 Get djj with Algorithm 4 applied to pX,Θp1q, νp1q, c
p1q
α , αq // Rank interactions

4 Get Ap1qβ ,Ap1qΘ with Algorithm 5 applied to pX, y, βp0q, Θp0q, α,Ap0qβ , Ap0qΘ , qp0qq

for t “ 1, . . . , T do // Until stop, solve sub-problem and update Aptq
β and Aptq

Θ

5 Get βpt`1q,Θpt`1q with a solver applied to pβptq,Θptq,Aptqβ ,A
ptq
Θ , tol “ εq

6 Update qpt`1q, then get Apt`1q
β ,Apt`1q

Θ from Algorithm 5

7 Compute objpt`1q with Equation (2.7) applied to pβptq,Θptq, αq

8 if maxp|βpt`1q ´ βptq|, |Θpt`1q ´Θptq|q ď ε and pobjpt`1q
´ objptqq ď ε then

9 Get νpt`1q from Equation (3.2) // Compute dual variable

10 if |Gpβpt`1q,Θpt`1q; νpt`1qq| ď ε then break // test dual gap

11 else // Make one pass on all features and update actives sets

12 Get Apt`1q
β ,Apt`1q

Θ with Algorithm 5 applied to pX, y, βpt`1q,Θpt`1q, α, qq

Output : βp¨q,Θp¨q, νp¨q,Ap¨qβ ,A
p¨q

Θ , q
p¨q

Parametrization of algorithms. With respect to scikit-learn and CELER solver,
we keep the initial parameters from LASSO Benchopt benchmark. In detail, scikit-
learn duality gap stopping criterion is fixed at 0 while number of iteration increase as
defined by inner Benchopt code. The CELER solver sets the duality gap tolerance to
10´12 and allows one million iterations in the inner solver, while the maximum number
of working set iteration increases by one at each Benchopt step. Regarding LASSO with
Interactions, we also fix the duality gap tolerance to 10´12 in Benchopt but allow only
one thousand iterations in the inner solver. However, thanks to our heuristic stopping
criterion, if the thousand interactions are not sufficient to solve the subproblem, the al-
gorithm updates the active set if needed and continue the optimization problem, without
the costly full duality gap computation. Additionally, we increase the maximum number
of active sets iteration five by five between each Benchopt step.

Benchopt Methodology and Limits of the approach. The key idea of Benchopt
is to measure the computational cost of a solver for an optimization task. Given a
predetermined penalty level, Benchopt measures the computational cost to perform k

iterations of a solver, then evaluates primal and dual problem from coefficients returned
with such iterations budget and continues for the next iteration budget k ` 1. Hence,
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the Benchopt framework allows to easily compare solvers, even when they have different
stopping criteria. Nonetheless, it does not yet handle the time required to fit an entire
path or the computational performance of a solver which use warm-start from a previous
LASSO problem, on which we rely in our active set algorithm.

3.4.3 Moderate scale studies

We start by two small problems, to be able to perform benchmark with all solvers. The
first one is done with the first hundred columns of the Leukemia dataset [Golub et al.,
1999], which is a problem with more features than samples: n “ 72 ă p “ 100 ă q “

5050. The second benchmark considers the sixty-first column of the genomics dataset,
then the problem have fewer features than samples p “ 60 ă q “ 1830 ă n “ 16294.

Leukemia dataset: first 100 features. In this experiment, CELER is the fastest
method, in particular on the two first penalties level, while in the last our approach with
active set algorithm and which benefit from stored design matrix perform closely. We
also remark that duality gap curve of CELER solver stop before others solvers: this
is explained by the fact that CELER perform dual extrapolation to build better dual
point and hence stop earlier algorithm, as illustrated here. In particular, we observe that
LASSO with Interactions without active set achieves immediately the optimal score,
which is explained by the fact by this option perform k ˆ 103 iteration, on the whole
problem. Nevertheless, those two cases are the longest to run, in all settings, even if we
observe that Anderson acceleration can accelerate convergence with and without active
set schemes. In particular, LASSO with Interactions with active set algorithm appears
to be as effective as CELER in the lowest penalties, i.e., pα “ αmax ˆ 0.001q. Notably,
LASSO with Interactions with active set strategy appears to be faster than scikit-learn in
the two smallest penalties. Lastly, we observe that evaluating on-the-fly the interactions’
matrix does not increase too much the running time.

Genomics dataset: first 60 features. For this dataset, methods without active set
strategies are the slowest and behave similarly as for the Leukemia dataset. Moreover,
the method leveraging on-the-fly interaction matrix appears the fastest in the case where
α “ αmax ˆ 0.1, and works as fast as CELER, compared to scikit-learn and method
without active set. Lastly, extrapolation also helps to accelerate convergence in all cases.
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(a) Primal: α “ 0.1ˆ αmax

4.
0e
−3

5.
0e
−3

6.
0e
−3

7.
0e
−3

8.
0e
−3

9.
0e
−3

1.
0e
−2

2.
0e
−2

3.
0e
−2

4.
0e
−2

5.
0e
−2

6.
0e
−2

7.
0e
−2

8.
0e
−2

9.
0e
−2

1.
0e
−1

1.0e−10

1.0e−8

1.0e−6

1.0e−4

1.0e−2

1.0e+0

Time [sec]

F(
x)

 -
 F

(x
*)

(b) Duality Gap: α “ 0.1ˆ αmax
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(c) Primal: α “ 0.01ˆ αmax
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(d) Duality Gap: α “ 0.01ˆ αmax
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(e) Primal: α “ 0.001ˆ αmax
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(f) Duality Gap: α “ 0.001ˆ αmax
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Figure 3.2: Primal convergence on the left and duality gap convergence on the right, with
the first hundred columns of Leukemia dataset, leading to q “ 5050 interactions features,
for n “ 72 samples. CELER is the fastest algorithm while LASSO with Interactions
with non-linear acceleration and active set reach similar results for the smallest penalty.
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(a) Primal: α “ αmax ˆ 0.1
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(b) Duality Gap: αmax ˆ 0.1
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(c) Primal: αmax ˆ 0.01
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(d) Duality Gap: αmax ˆ 0.01
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(e) Primal: αmax ˆ 0.001
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(f) Duality Gap: αmax ˆ 0.0011.
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Figure 3.3: Primal convergence on the left and duality gap convergence on the right,
with the first sixty columns of Genomics dataset, leading to q “ 1830 interactions, for
n “ 16294 samples. LASSO with Interactions with active set and acceleration are the
fastest for the two largest penalties while CELER achieves slightly better in last penalty.
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Conclusion of moderate scale studies. From these two benchmarks, we conclude
that even with a moderate number of main features, method not using active sets fail to
be competitive with the ones leveraging active sets. With regard to Anderson accelera-
tion, while in Leukemia two first α penalties they increase the computational cost, on the
last Leukemia penalty while it improves time on Genomics dataset. Lastly, our approach
with the optional possibility to store the interaction matrix seems to have similar per-
formance with the version without storage. In particular, it appears that storage helps
to accelerate algorithms for Leukemia (Figures 3.2e and 3.2f) while it does not speed up
on genomics (Figures 3.3e and 3.3f). For all these reasons, we only keep CELER and
LASSO with Interactions with active set, with or without Anderson acceleration, with
the possibility of storing the interaction matrix on the setting with non-linear accelera-
tion.

3.4.4 Large scale studies

In this last part, comparisons are made on a higher number of features, using first the
first thousand columns of Leukemia dataset, leading to almost a half million interactions
features, while we secondly perform optimization on the complete genomics dataset,
which even if it is a problem with more samples than main and quadratic features (p “
160 ă q “ 12880 ă n “ 16294), is numerically hard to solve, as we illustrate in Figure 3.5.

Leukemia dataset: first 1000 features. The first thing that we observe is that unlike
the first study on Leukemia, our approach which performs Anderson acceleration is the
longest for the three penalties, even if we observe that non-linear acceleration permits
to reduce the number of active set iterations. Hence, while it reduces the number of
iterations again, the associated computational cost of the acceleration is not competitive
in this case. Notably, here storing the design matrix leads to the poorest computational
performance. Regarding CELER, it obtains the best computational time in the first
penalty (Figures 3.4a and 3.4b), a slightly better in the second one (Figures 3.4c and 3.4d)
but appears to be longer that our active set without acceleration in the last penalty
(Figures 3.4e and 3.4f).

Genomics dataset: whole dataset. For this last benchmark, we observe that non-
linear extrapolation helps to achieve the lowest computational time in the two last penal-
ties and notably permits reaching high precision compared to LASSO with Interactions
without such acceleration in Figures 3.5e and 3.5f. Moreover, we observe that CELER
working set is slower than our approach in the two first penalties, while it is slightly faster
than us in the last penalties. Lastly, stored design matrix shows in this benchmark the
worst result in all the cases.

71



CHAPTER 3. AN ACCELERATED ALGORITHM FOR ELASTIC NET WITH
INTERACTIONS

9.
0e
−1

1.
0e
+0

2.
0e
+0

3.
0e
+0

4.
0e
+0

5.
0e
+0

6.
0e
+0

7.
0e
+0

8.
0e
+0

1.0e−10

1.0e−8

1.0e−6

1.0e−4

1.0e−2

1.0e+0

Time [sec]

F(
x)

 -
 F

(x
*)

(a) Primal: αmax ˆ 0.1
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(b) Duality Gap: αmax ˆ 0.1
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(c) Primal: αmax ˆ 0.01
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(d) Duality Gap: αmax ˆ 0.01
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(e) Primal: αmax ˆ 0.001
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Figure 3.4: Primal convergence on the left and duality gap convergence on the right,
with the first thousand columns of Leukemia dataset, leading to q “ 500 500 interactions
features, for n “ 72 samples. The first striking thing is that Anderson acceleration costs
more computation time than it reduces the number of iterations. Moreover, storing the
interactions matrix, in this case slows down solvers. Lastly, CELER appears to be faster
on the two first cases, while it takes more time than our active set in the last case.
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(b) Duality Gap: αmax ˆ 0.1
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(c) Primal: αmax ˆ 0.01
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(d) Duality Gap: αmax ˆ 0.01
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(f) Duality Gap: αmax ˆ 0.001

9.
0e
+0

1.
0e
+1

2.
0e
+1

3.
0e
+1

4.
0e
+1

5.
0e
+1

6.
0e
+1

7.
0e
+1

8.
0e
+1

9.
0e
+1

1.
0e
+2

2.
0e
+2

3.
0e
+2

4.
0e
+2

5.
0e
+2

6.
0e
+2

7.
0e
+2

8.
0e
+2

9.
0e
+2

1.0e−9

1.0e−6

1.0e−3

1.0e+0

1.0e+3

1.0e+6

Solver
Celer[fit_interaction=True]

LASSO[primal_acc=False,active_set=True,store_Z=False]

LASSO[primal_acc=True,active_set=True,store_Z=False]

LASSO[primal_acc=True,active_set=True,store_Z=True]

Time [sec]

F(
x)

 -
 F

(x
*)

(g) Solvers Legend

Figure 3.5: Primal convergence on the left and duality gap convergence on the right, with
the whole dataset, i.e., the one hundred sixty columns of Genomics dataset, leading
to q “ 12 880 interactions features, for n « 16 294 samples. Non-linear acceleration
improves time in the two last penalties and notably allows performance close to CELER
in the last one. Again, storing the interactions matrix slows down active set solvers.

73



CHAPTER 3. AN ACCELERATED ALGORITHM FOR ELASTIC NET WITH
INTERACTIONS

Conclusion of large scale studies. To conclude, we observe that storing the inter-
actions design matrix slows down our solver in all the cases, in addition to needing more
memory. We also observe that depending on the dataset, non-linear acceleration can
effectively speed up solvers, while depending on the dataset, our approach is faster or
slower than CELER. Lastly, we recall that Benchopt can not measure how solvers be-
have when warm-start i.e., solution of the previous LASSO problem, is available whereas
CELER and our active set improve their perfomance thanks to such pipeline.

3.5 Conclusion

In this chapter, we first detailed the dual problem associated with the Elastic Net with
Interactions allowing to compute the duality gap, as well as the computational cost of its
evaluation. This numerical cost is equivalent to that of a pass over all the variables, since
it requires visiting all the interactions. Also, it appears from the first numerical results
that the cost of this evaluation is prohibitive, compared to the computational cost of a
pass on a subset of variables.

From this observation, we developed an algorithm that does not evaluate the duality
gap on the full problem between two iterations, but only heuristic stopping criteria
with a negligible computational cost. Also, the developed algorithm allows treating
simple effects and interactions on two different scales. Moreover, it uses a flexible growth
criterion for the working set of interactions between two iterations, allowing to grow
quickly during the first iterations and then more slowly once the majority of the active
variables have been identified.

Finally, we also adapted Anderson acceleration to further reduce the computation
time of the estimator. Comparisons of the numerical performances of our algorithm with
scikit-learn and CELER showed that our algorithm was competitive. In particular, it
appeared that storing the interaction matrix, in high dimension, increases the computa-
tion time of the working set algorithms compared to those that build it on-the-fly . It
appeared that although Anderson acceleration reduces the number of working set itera-
tions needed to reach the optimal solution, the associated computational cost may be too
large compared to the observed gain. Finally, on the genomic data we are interested in,
we observe that the approach combining Anderson acceleration with active set strategy
is the fastest of our approach with numerical performances similar to those of CELER.

In the next chapter, we will focus on the statistical performances of our approach,
on both simulated and real data, by comparing to state-of-the-art methods that enforce
heredity.
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In this chapter, we perform statistical analysis with different state-of-the-art com-
petitors: HierNet, RAMP and CLEAR-Enet with Interactions.

We first evaluate these methods on semi-artificial data, as for CLEAR-Enet with
Interactions parameters in Chapter 2.

In a second part, we focus on a real dataset describing genomic features to explain
the gene expression regulation. In particular, this real data application is an opportunity
to observe the behaviour of two operators defining interaction (product or maximum)
and two standardization schemes (STD1 or STD2).

4.1 Semi-Artificial Datasets

We first briefly explain the semi-artificial data generative process and present the results
obtained in 3 simulation contexts.
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4.1.1 Semi-Generative data process

We follow the semi-generative process detailed in section 2.1.3.1, with the difference
that we focus only on the first standardization scenario since RAMP and HierNet do
not support estimation with the second standardization scenario (STD2). We build the
interactions matrix on-the-fly and consider standardized main and interaction effects
(STD1 only). The generative heredity scenario process does not change, we continue to
explore the five different heredity assumptions but at three different scales, which we
will detail in each simulation. Regarding the noise level, we again consider a normal
distribution with zero mean and σ Idnˆn variance-covariance matrix, where the value of
σ is controlled by a signal-to-noise ratio (SNR) fixed at 8. Then we further divide the
datasets into training sets (80%) and test sets (20%) and again consider MSE, Recall,
Precision, F1-score but also the number of non-zero coefficients and computational time
for each estimator. Finally, in order to average the results, we repeat each simulation
setting ten times. We recall hereafter the optimization parameters of CLEAR-Enet with
Interactions and detail those used for RAMP and HierNet.

Hyperparameters of estimators. RAMP, HierNet and CLEAR-Enet with Interac-
tions are path methods. Penalty path hyperparameters are set as follows: we consider a
grid of nα “ 100 points and geometrically distributed between αmax and αmin “

αmax

1000
i.e.,

the depth ε is set to 0.001. Regarding the estimation of the α hyperparameter, we follow
HierNet and use 5-fold cross validation, except for RAMP for which the R package does
not provide cross validation. However, the authors of RAMP propose several methods
to tune the hyperparameter among which AIC, BIC or Extended BIC [Chen and Chen,
2008]. This last criterion is the one that had the best results in their article, we will
also use this criterion. The stopping criterion tolerance of each method is set to 10´4.
Regarding CLEAR-Enet with Interactions parameters, based on Chapter 2 results, we
consider LASSO case i.e., CLEARLASSO with Interactions, where interaction coeffi-
cients are penalized five times more than those of the main effects (i.e., κ “ 5). RAMP
offers a similar option in its R implementation, hence we also compare two versions of
the method: one that penalizes main and interaction coefficients equally, simply denoted
RAMP, and another that penalizes quadratic effects five times more than main effects,
denoted RAMP κ . We enforce both strong and weak heredity constraints with RAMP,
respectively denoted RAMP-ST and RAMP-WK. For computational reasons, we only
consider the weak heredity constraint with HierNet. However, we consider both LASSO
and Elastic Net penalties of HierNet, the former is denoted HierNet-`1 while the latter
is simply denoted HierNet. Lastly, we also consider the LASSO and CLEARLASSO
versions of our work without interaction features (targeting only the main effects).
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4.1.2 Simulation 1: p=30 features and n=325 samples

In our first simulation, we take the same setting as in section 2.1.3, i.e., p “ 30, q “ 465

(with pure quadratic terms) and n “ 325. Also, we recall that in strong, weak and anti-
heredity settings, ‖β‹‖0 “ 10, while ‖Θ‹‖0 P t5, 10, 15, 20, 25u. In main only setting, we
have ‖β‹‖0 P t5, 10, 15, 20, 25u and in interaction only setting ‖Θ‹‖0 P t5, 10, 15, 20, 25u.

Predictive performances. We first detail the Mean Squared Error (MSE) results
shown in Figure 4.1. The first thing we notice is that LASSO with Interactions and its
debiased version have similar performance and get the lowest MSE score in all param-
eters. The second thing that we observe is the poor performance of RAMP-WK in all
settings, followed by RAMP-ST in all settings except strong heredity case. While RAMP-
WK κ and RAMP-ST κ bring a lower score than RAMP, they do not reach a score as
low as HierNet or our approach. In particular, we observe that LASSO version of Hier-
Net outperforms the Elastic Net version, in all sparsity levels and heredity cases. Lastly,
when the true coefficients are only main effects, we observe that CLEARLASSO with
and without quadratic coefficients behave in the same way. Hence, considering quadratic
effects (whereas not needed here) did not deteriorate the results. Our approach is very
flexible and succeeded in all settings. We can notice that, without enforcing any heredity
assumption, we achieved a better MSE performance even in settings supported by strong
and weak heredity.
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Figure 4.1: Mean Squared Error (MSE) comparisons of CLEARLASSO with Interactions
with RAMP and HierNet solution, in the case where p “ 30, q “ 465 and n “ 325. We
observe that LASSO with Interactions and CLEARLASSO with Interactions outperform
the other methods in all heredity scenarios.

Features selection performances. We now discuss the selection ability performance
of the estimators given in Figure 4.2. We observe that both HierNet and RAMP-WK
fail as feature selection methods, for the former because of a high number of active
features and then a low precision score, while the latter selects a small number of active
but irrelevant features, i.e., adds False Positive features except in interaction settings.
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Inversely, RAMP-ST succeeds in limiting the number of false positives i.e., reaches a high
precision score, notably in strong heredity and main settings, leading to a high F1-score
but as expected, fails to recover relevant features in weak, anti and interaction settings,
leading to a lower selection ability in those cases. Moreover, we observe that RAMP-ST
κ and RAMP-WK κ which penalize interactions more than main effects, again perform
equally while the former enforces strong heredity and the latter weak. These results
suggest that penalizing interactions more than main effects is more important than the
heredity structure. Both methods bring the highest F1-score in main and strong heredity
settings, and a good F1-score in weak heredity case. Nonetheless, in interactions and anti
heredity settings, even if they fail to add relevant features, they succeed in not adding
false positives and finally, reach a good F1-score. Lastly, our approach obtains the best
F1-score in the main part of weak, anti and interactions heredity settings, while we are
close the highest score of RAMP κ in strong and main settings. One thing to notice is
that the debiasing step in main settings helps to reduce false positive rate, i.e., achieves
a better precision for a similar recall and thus leads to a better F1-score, even if we get a
higher number of active features than RAMP or estimators targeting only main effects.
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Figure 4.2: Precision, Recall, F1-score and support comparison between CLEARLASSO
with Interactions, HierNet and RAMP, in the case where p “ 30, q “ 465 and n “ 325.
A detailed interpretation of the results is given in the paragraph Features Selection
Performances.
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Computational time performances. Computation times measured in seconds are
shown in Figure 4.3. We immediately observe that HierNet is not time competitive, partly
because the cross-validation step is not parallelized, unlike our approach. Debiasing
the LASSO and LASSO with Interactions reasonably increases computational time, and
finally, CLEARLASSO with Interactions leads to computational time close to RAMP-ST.
The other RAMP methods have similar computational time to LASSO with Interactions
while the estimators targeting only main effects are the fasted, as expected. Note that
the high computation time of the LASSO estimator in the case of strong heredity is due
to the first (and last) compilation by Numba of our Python code which is shared between
our different estimators, that benefit from this first compilation.
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Figure 4.3: Computational time (in second) of CLEARLASSO with Interactions, HierNet
and RAMP for hyperparameter selection and final refitting, in the case where p “ 30,
q “ 465 and n “ 325. Except for HierNet which is the longest approach, the other
estimators have a similar computation time.

Summary of this first simulation. From this first study, it appears in such simula-
tion settings that HierNet achieves good predictive performances, but fails as a feature
selection, and its computational cost is too important compared to RAMP or CLEAR-
LASSO with Interactions. Therefore, since the following experiments are on a larger
scale, both in terms of number of features and samples, we do not continue to use the
HierNet methods. Regarding RAMP method, even if RAMP-WK fails in all settings as
predictive or features selection method, RAMP-ST performs better while both RAMP
κ versions appear to have good selection ability, in particular in high sparsity level of
experiments, for a low computational cost. However, the poor predictive performance
of RAMP may be explained in part by the fact that, unlike the EBIC criterion, the
cross-validation method optimizes the MSE. Lastly, our approach performs well in all
situations and debiasing step significantly improves performances in main effects only.
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4.1.3 Simulation 2: p=160 features and n=1629 samples

For this second experiment, we take the following simulation settings: p “ 160, so
q “ 12 880, and n “ 1629. In strong, weak and anti-heredity settings, ‖β‹‖0 “ 40,
while ‖Θ‹‖0 P t20, 40, 60, 80, 100u. Regarding main only settings, we have ‖β‹‖0 P

t20, 40, 60, 80, 100u and while ‖Θ‹‖0 P t20, 40, 60, 80, 100u in interactions only setting.

Predictive performances. We are interested again, in a first step, in the predictive
performances Figure 4.4. As before it appears, that RAMP-WK fail since it get in
all settings the worst Mean Squared Error. While RAMP-WK κ , RAMP-ST κ and
RAMP-ST bring a lower score than RAMP-WK, they do not reach a score as low as our
approach. However, CLEARLASSO with Interactions always achieve the lowest MSE,
except in the main only settings, where estimators targeting only the main effects get
similar results.
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Figure 4.4: Mean Squared Error (MSE) comparisons of CLEARLASSO with Interac-
tions with RAMP in the case where p “ 160, q “ 12 880 and n “ 1629. As in first
simulation, RAMP-WK fails to predict new outcome, while LASSO with Interactions
and CLEARLASSO with Interactions outperform all methods.

Features selection performances. Then, we focus on features selection ability per-
formances Figure 4.5. We first observe that LASSO and CLEARLASSO with Interactions
have the largest number of active features, followed by method targeting only main ef-
fects and then by the RAMP estimators, nonetheless, all methods achieve close F1-score
in strong, weak and main only settings, except RAMP-WK which fails again. More pre-
cisely, RAMP-ST κ and RAMP-WK κ have the same performance and notably obtain
the highest precision in all settings, except interactions settings. Unfortunately, they
also achieve the lowest recall, notably in anti and interaction settings, and then achieve
low F1-score in anti and interactions cases. Then, regarding RAMP-ST, it behaves as
RAMP-ST κ and RAMP-WK κ . With regard to CLEARLASSO with Interactions
approach, it achieves in all cases the best recall score, followed by method targeting only
main-effects, except in interactions settings where it fails as expected. Finally, RAMP
κ and our approach have a similar F1-score score in strong and weak setting, while
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in anti heredity and interactions only setting, LASSO and CLEARLASSO with Interac-
tions perform better. Regarding main only settings, we observe that debiasing step helps
to improve precision and thus the F1-score. Hence, debiasing step achieves a F1-score
close to RAMP κ in the highest sparsity level, while CLEARLASSO with Interactions
achieves the best F1-score when the sparsity level is low. As in the previous example, the
RAMP method adds fewer false positive features than our approach, while conversely,
LASSO and CLEARLASSO with Interactions miss less relevant features than RAMP.

0.0

0.5

1.0

P
R

E
C

IS
IO

N

STRONG

0.0

0.5

1.0

R
E

C
A

LL

STRONG

0.0

0.5

1.0

F1
 S

C
O

R
E

STRONG

100

200

S
U

P
P

O
R

T

STRONG

0.0

0.5

1.0

P
R

E
C

IS
IO

N

WEAK

0.0

0.5

1.0

R
E

C
A

LL

WEAK

0.0

0.5

1.0
F1

 S
C

O
R

E
WEAK

100

200

S
U

P
P

O
R

T

WEAK

0.0

0.5

1.0

P
R

E
C

IS
IO

N

ANTI

0.0

0.5

1.0

R
E

C
A

LL

ANTI

0.0

0.5

1.0

F1
 S

C
O

R
E

ANTI

100

200

S
U

P
P

O
R

T

ANTI

0.0

0.5

1.0

P
R

E
C

IS
IO

N

INTERACTION

0.0

0.5

1.0

R
E

C
A

LL

INTERACTION

0.0

0.5

1.0

F1
 S

C
O

R
E

INTERACTION

100

200
S

U
P

P
O

R
T

INTERACTION

50 100
Total Active Features

0.0

0.5

1.0

P
R

E
C

IS
IO

N

MAIN

50 100
Total Active Features

0.0

0.5

1.0

R
E

C
A

LL

MAIN

50 100
Total Active Features

0.0

0.5

1.0

F1
 S

C
O

R
E

MAIN

50 100
Total Active Features

50

100

S
U

P
P

O
R

T

MAIN

LASSO
CLEARLASSO

LASSO INT
CLEARLASSO INT

RAMP-ST 
RAMP-WK 

RAMP-ST
RAMP-WK

Figure 4.5: Precision, Recall, F1-score and support comparison between CLEARLASSO
with Interactions and RAMP, in the case where p “ 160, q “ 12 880 and n “ 1629. As a
resume, RAMP methods add less false positive features than LASSO with Interactions
and CLEARLASSO with Interactions, while the latter miss less relevant features.

Computational performances. Regarding computational performances Figure 4.6,
we observe that computational cost are all quite similar. In detail, RAMP-WK is the
fastest estimator that targets quadratic regression coefficients while other RAMP esti-
mators take more time than LASSO with Interactions and a similar time that with the
debiasing step.

Summary of this second simulation. Since RAMP-ST and RAMP-WK leads to
the poorest result, we do not consider it again. Moreover, RAMP and CLEARLASSO
with Interactions perform similarly with respect to F1-score, while regarding precision
and recall, RAMP favors the former while LASSO with Interactions the latter.
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Figure 4.6: Computational time (in second) of CLEARLASSO with Interactions and
RAMP for hyperparameter selection and final refitting, in the case where p “ 160,
q “ 12 880 and n “ 1629.

4.1.4 Simulation 3: p=160 features and n=16294 samples

This last artificial experiment focuses on same scale that our biological application,
i.e., p “ 160, q “ 12 880 and n “ 16294. As previously, in strong, weak and anti-
heredity settings, ‖β‹‖0 “ 40, while ‖Θ‹‖0 P t20, 40, 60, 80, 100u. In other case, we have
‖β‹‖0 P t20, 40, 60, 80, 100u in main only settings and ‖Θ‹‖0 P t20, 40, 60, 80, 100u in
interaction only setting.

Predictive performances. Again, we start by predictive performances Figure 4.7:
while the method targeting only main effects fails, we observe that RAMP κ and our
approach obtain close MSE when the umber of active features is low, however, when
this number increases, LASSO with Interactions achieves a lower MSE than RAMP κ .
Lastly, with respect to RAMP-ST κ and RAMP-WK κ , the former fails in anti-heredity
settings while the latter fails in pure interactions. This may be explained by the fact
that the first selection step of RAMP κ selected highly correlated features and then, the
second estimation step done performed by Least Squares fails because of a non-full rank
matrix. Nevertheless, in main only settings, all methods perform similarly.
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Figure 4.7: Mean Squared Error (MSE) comparisons of CLEARLASSO with Interactions
with RAMP in the case where p “ 160, q “ 12 880 and n “ 16294. LASSO and CLEAR-
LASSO which do not target interaction perform the worst MSE score, whereas LASSO
with Interactions and CLEARLASSO with Interactions outperform others methods in
all scenarios with active interactions. More detail in paragraph Predictive Performances.
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Features selection performances. Figure 4.8 illustrates features selection ability.
We observe that all estimators get close F1-score in strong and weak cases, while LASSO
with Interactions does slightly better in anti-heredity and much better in interactions
only settings. Regarding main only settings, the non-debiased version achieve the lowest
F1-score, even the standard LASSO without interactions, while both debiased version
recover result close to RAMP κ estimator. With regard to precision, in strong, weak and
anti heredity settings, all methods achieve close score, while LASSO with Interactions
gets better results in interactions only settings. We observe similar precision result than
F1-score, in main only settings. Finally, LASSO and CLEARLASSO with Interactions
achieve the best recall performance, which must be related to the large number of active
features, followed by RAMP which unlike second experiments, gets higher number of
active features than method targeting only main effects.
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Figure 4.8: Precision, Recall, F1-score and support comparison between CLEARLASSO
with Interactions and RAMP, in the case where p “ 160, q “ 12 880 and n “ 16294.
In this experiment, all estimators perform closely, with similar precision in strong, weak
and anti heredity settings, while we achieve better precision in interaction, but lower
than RAMP κ in main effects only.

Finally, RAMP-ST κ and RAMP-WK κ do not fail in this experiment, whereas they
have failed with respect to the MSE score Figure 4.7 in some experiments, suggesting that
the selection ability works, but the estimation failed due to highly correlated features.
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Computational performances. We conclude with the computational performances
in Figure 4.9, where we obtain similar results compare to the second experiment: RAMP-
WK κ is the estimator which have the heaviest computational cost, followed by CLEAR-
LASSO with Interactions and then RAMP-ST κ . Hence, LASSO with Interactions
achieves the lowest computational cost among estimators targeting quadratic coefficients.
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Figure 4.9: Computational time (in second) of CLEARLASSO with Interactions and
RAMP for hyperparameter selection and final refitting, in the case where p “ 160,
q “ 12 880 and n “ 16294. LASSO with Interactions is the fastest method in this
experiment among method targeting interactions features.

Summary of this third simulation. Lastly, to summarize, we observe that RAMP
and LASSO with Interactions (and its debiased version) achieve similar both predictive
and features selection performances, even if, LASSO and CLEARLASSO with Interac-
tions seem to be less sensitive to highly correlated features than RAMP according MSE
and succeed to adapt to all the different interactions settings, while RAMP or HierNet
cannot. Finally, we also notice that with an equal number of features between the second
and the third experiments, the computational time of the latter which have more sample
greatly increases. To conclude, for all estimators, we observe that recall and F1-score are
identical between strong, weak, and anti heredity, while precision decreases from strong
to weak heredity, and then further decreases from weak to anti-heredity.

4.2 Experiments on real dataset

For real data application, we consider the same genomics dataset from [Bessière et al.,
2018] described in introduction (section 1.6.2) and used for semi-artificial data in sim-
ulation study. We keep the same optimization parameters as in the previous part and
continue to split the dataset in 80% for the train set and 20% for the test set. We consider
10 samples (with size n “ 16294 genes, p “ 160 main effects and q “ 12 880 interactions)
measured in different cancer types, in order to compare RAMP with CLEARLASSO with
Interactions and CLEAR-Enet with Interactions approach. Based on its performance on
the semi-artificial data, we decided to keep only the RAMP κ version of the method
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for the real dataset study. Considering other interaction operators than element-wise
product can improve the prediction as well as interpretation. For example, in the con-
text of this genomic dataset, products between features are not easily interpretable. We
therefore consider here the element-wise maximum which can be interpreted as a logical
AND if both frequencies are low, while a high maximum indicates that at least one of the
features has a high frequency and can be interpreted as a logical OR (section 1.6.3). Ad-
ditionally, we compare our solvers with both standardization schemes (STD 1 and STD
2) described in the introduction section 1.6.3 and investigated in Chapter 2. We start
by discussing the predictive performance, the number of active features and the compu-
tational cost for each of the studied methods, while in a second part, we are interested
in the interpretations of these results, in relation to our biological problem.

4.2.1 Statistical performance

In this section, we analyze the studied methods in terms of predictive performance,
number of selected features and computation time.
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Figure 4.10: Mean Squared Error comparison of RAMP with different versions of
CLEAR-Enet with Interactions estimators. While RAMP κ perform as well as main
effects methods, CLEAR-Enet with Interactions reduces the MSE, notably with maxi-
mum interactions. Regarding standardization, we observe that the first scheme (STD 1)
leads to a lower MSE than the second (STD 2), however, interactions choice has more
importance.

Predictive performances. Boxplots of the mean square error obtained with each
method on the 10 samples are shown in Figure 4.10. Our different approaches with in-
teractions succeed to reduce MSE compared to methods based on main effect only (top 4
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boxplots: Elastic Net, CLEAR-Enet, LASSO and CLEARLASSO), or even to RAMP κ

method. RAMP-ST κ and RAMP-WK κ again have similar behavior and obtain MSE
similar to methods which do not target quadratic effects, but we know that RAMP’s hy-
perparameter selection method does not optimize MSE (unlike cross-validation). Among
our approaches exploiting feature interactions, we observe that the first standardization
scheme (STD 1) leads to smaller MSE, with or without a debiasing step, while the second
standardization scheme (STD 2), slightly decreases the performances, in particular when
debiasing step is applied. Lastly, we observe that considering maximum interactions
slightly reduces the MSE with respect to the product.
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Figure 4.11: Number of active features of RAMP with different versions of CLEAR-Enet
with Interactions estimators. We observe that RAMP κ methods obtain a number of
active features smaller than methods targeting main features only. It appears that while
the choice of a LASSO or Elastic Net penalties affects the number of active features,
the choice of interactions or standardization have more influences. Notably, the product
interactions provides a more parsimonious estimate, but it is the debiasing step with the
second standardization scheme that most reduces the number of active features.

Number of active features. Boxplots of the number of active features are plotted
in Figure 4.11. The method including the lowest number of active features is RAMP κ

. Indeed, LASSO and Elastic Net, even with debiasing step, select more features than
RAMP κ , for a similar MSE. Regarding our approach with interactions, the number of
features estimated non-zeros varies greatly depending on the estimators (pure LASSO
or an Elastic Net). As expected, LASSO provides fewer active features than Elastic Net
does. However, the most noticeable result here is that the number of active features is
drastically reduced when using the standardization process (STD 2) (i.e., building the
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interactions design matrix Z from standardized main design matrix X) combined with
the debiased step, while keeping a small MSE (Figure 4.10). Notably, we observe that,
with the element-wise product for modeling interactions, debiasing reduces the number
of active features to a number similar to that without interaction.

Computational cost. Finally, regarding computational burden, we observe in Fig-
ure 4.12 that RAMP κ , methods which only target main effects and finally LASSO
with Interactions and Elastic Net with Interactions for element-wise product have a
similar computational cost. However, we also observe that considering the maximum
takes longer than the product, which may be partly explained by the higher level of
correlation of the element-wise maximum interactions. Also, we see in Figure 4.11 that
considering maximum interactions increases the number of active features, hence, more
features requires to be estimated. Lastly, it appears that regardless the interactions or
the standardization scenario; the debiasing step of CLEARLASSO and CLEAR-Enet
with Interactions increases by a factor two or three the computational burden.
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Figure 4.12: Computational cost of RAMP with different versions of CLEAR-Enet with
Interactions estimators. Regarding maximum, it greatly increases computational time,
but the factor which increase it the most is the debiasing step, since it double or even
triples the computational cost.

Summary. Even if CLEARLASSO with Interactions with maximum interactions need
a long time to be estimated, it achieves a low MSE and brings highly sparse estimates
using an interpretable operator for interactions. Hence CLEARLASSO with Interactions
constitutes the best choice in this application.
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4.2.2 Features decomposition

In this section, we begin by discussing the distribution of active features between main
and interaction effects. We also want to know whether the active interactions satisfy the
assumptions of strong or weak heredity, although our approach does not enforce it.

Decomposition of active features. The first thing that we observe in Figure 4.13
is that RAMP selects mainly main effects and only a few active interaction features.
Regarding LASSO with Interactions and Elastic Net with Interactions, these estimators
select mostly quadratic features, as expected since they have only 160 main effects.
Moreover, it appears that they always have less than one hundred main active features,
even with the debiasing step. Notably, debiasing step in the second standardization
settings mainly discard interactions, and does not seem to erase main effects as much.
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Figure 4.13: Decomposition of active features between main and interactions. We ob-
serve that RAMP κ only selects a few interactions, notably compare to LASSO with
Interactions and Elastic Net with Interactions. However, debiasing step can discard
many active interactions, without delete as many main effects. Thus, in plus to reduce
the number of active features, it aims to bring estimate with more main effects, which
are more stable.

Hierachial decomposition. Figure 4.14 illustrates whether or not the quadratic ac-
tive coefficients respect the strong or weak hierarchy assumptions. It appears that in
product interaction settings, the half of the interactions appears to satisfy weak hierar-
chical settings, i.e., the half of the interactions has at least one of their main associated
effects which is active. With respect to maximum interactions, they have a one-third of
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the active quadratic coefficients that appears to respect strong heredity, whereas two-
third seems respects the weak assumptions. Hence, even if we do not enforce strong or
weak hierarchy, it appears that most active features respect a hierarchy, regardless of the
normalization scheme or the debiasing step.
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Figure 4.14: Hierarchical Decomposition of active interactions. Main part of the actives
interactions satisfies a heredity assumption, regardless of the standardization or choice
of interactions.

4.2.3 Biological interpretation

In this last part, we are interested in biological interpretation of active interactions.
In the first Figure 4.15, we illustrate the number of interaction which have these both
main effects in the same DNA regions. Moreover, in the second Figure 4.16 we show the
number of active features in each of the eight regions, while in the third Figure 4.17,
we illustrate the number of nucleotides and dinucleotides which are non-zero for each
estimator. Lastly, Figures 4.18 and 4.19 give the couples of active regions-regions.

Decomposition of interactions features. We observe that the active quadratic fea-
tures are mainly constituted, for product as well as for maximum interactions, by inter-
actions whose associated main effects remains in different DNA regions. Hence, it appears
that interactions between regions seems more important than interactions intra-regions.
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Figure 4.15: Study of number of active quadratic features which have associated main
effects in different regions. It appears that the main part of interactions are associated
to main effects which are not present in the same DNA regions.
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Figure 4.16: Regions where main effects associated to actives interactions are present.
All regions seem to be present in a similar way.

Regions which contain main effects associated to actives quadratic coeffi-
cients. Regarding Figure 4.16, all the eight DNA regions are represented, in similar pro-
portions. However, the debiasing step of CLEARLASSO with Interactions and CLEAR-
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Enet with Interactions with the second standardization scheme in the maximum case,
reduces all the regions but 5UTR, 3UTR, CDS and INTR seem less decreased.

Nucleotide and di-nucleotide associated to active quadratic coefficients. We
illustrate in fig. 4.17, which are the features associated to active interactions. The four
nucleotides are represented in the left of each bar, while the sixteen di-nucleotides are
represented on the right after nucleotides.
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Figure 4.17: Nucleotide and Di-Nucleotide Distribution among the features associated
to active interactions. The left part of each bar represented the nucleotides while the
right part associated show di-nucleotides. The former are less represented in the decom-
position, while the latter seems more represented even if all di-nucleotides do not have
equal part.

We observe that the four nucleotides are in the minority compared to the total number
of features, while all sixteen di-nucleotides are represented. However, we observe that
some di-nucleotides are more represented than others, as TG for example.

Region-region pairs of main effects corresponding to the active interactions.
Figure 4.18 illustrates the region-region pair for the LASSO with Interactions for maxi-
mum and product, whereas Figure 4.19 illustrates it for the CLEARLASSO with Interac-
tions estimator. We decide to rank all the pair in function of CLEARLASSO with Inter-
actions with the element-wise maximum in the second standardization scheme (STD-2)
results. These graphs tend to confirm what we have already observed in Figure 4.16,
most pairs of regions are considered, but it seems once again that the regions UTR3,
UTR5 and CDS are more selected than others.
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Figure 4.18: Region-region pairs of main effects corresponding to the active interactions
for LASSO with Interactions. All pairs seem to be present in a similar way, even if the
pairs that involve the regions UTR3, UTR5 and CDS seem more represented.
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Figure 4.19: Region-region pairs of main effects corresponding to the active interactions
for CLEARLASSO with Interactions. Debiasing reduce the number of active pair region
in second standardization, however, the pairs which involve the regions UTR3, UTR5
and CDS seem again more represented.

4.3 Conclusion

In this chapter, we are interested in the statistical performance of our approach on semi-
simulated and real datasets.
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Semi-simulated data The first part on semi-simulated data, has first allowed to show
that our approach, with or without the debiasing step, always obtained the lowest pre-
dictive error (Figures 4.1, 4.4 and 4.7).

It also showed that in terms of features selection, it was competitive in the strong
and weak heredity simulation scenarios, while in the anti-hierarchical or pure interactions
scenarios, it succeeds to obtain better F1-score than others estimators (Figures 4.2, 4.5
and 4.8). If we are interested in the precision score, we observe that RAMP has a smaller
number of active features than us, thus it includes less false positives and obtains a higher
precision score than ours. However, this smaller support also leads it to miss relevant
features, so we obtain a better recall score. Conversely, HierNet estimates a large number
of non-zero features and get a better recall than us, but failing to limit the number of false
positives, leading to low a precision score. Also, these global performances in features
selection are lower than ours or RAMP’s as illustrated by the F1-score.

Moreover, since we enforce no heredity structure, on the first three scenarios: strong,
weak and anti-hierarchical heredity, we obtain relatively constant recall and F1-score,
although the precision scores decrease slightly from strong to weak heredity, then from
weak to anti-hierarchical. Also, these results tend to indicate that regardless of the
generative scenario, our approach obtains constant results.

Moreover, if we focus on the generative scenario involving only main effects, we
observe that the debiasing step of CLEARLASSO with Interactions allows to match the
performances of the methods involving only main effects.

Finally, concerning the numerical aspect, our algorithm, without the debiasing step,
is the fastest among those that search for interactions (Figures 4.3, 4.6 and 4.9), except
in comparison to RAMP-WK which however gets the worst statistical results.

Real dataset. In a second part, we compare only RAMP κ to our approach on real
dataset, HierNet being computationally intractable. In particular, we proposed to use
our approach with two possible interactions: the product and the maximum, but also
with the two possible standardization scenarios. We observe that RAMP selects very
few interactions (Figure 4.13) but still manages to obtain a prediction similar to the
method searching only the main effects. Moreover, thanks to its debiasing step, RAMP
obtains a smaller support than the latter. Regarding our results, we observed that
we outperform competitor in predictive performance (Figure 4.10), while managing to
limit the number of active features thanks to debiasing in the second standardization
scenario (Figure 4.11). Also, although the maximum and the debiasing step favor the
interpretability, the numerical cost of the approach is still higher (Figure 4.11).

Furthermore, regarding our approach, we observe in Figure 4.11 that the majority of
the selected features are interactions. Moreover, Figure 4.14 illustrates the fact that the
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main part of these interactions respect the hypothesis of weak heredity. In addition, we
observe in Figure 4.15 that the majority of the selected interactions have the two main
effects in different regions, which encourages us to study the interactions between regions,
rather than the ones within the regions. Also, it appears in Figures 4.16, 4.18 and 4.19
that the main effects associated with active interactions are present equally in all regions,
if we look at the results without debiasing. On the other hand, if we look at the results
with the debiasing step, it appears that the regions UTR3, UTR5 and CDS are favored.
Finally, concerning the distinction between nucleotides and di-nucleotides, we observe
in Figure 4.17 that nucleotides are very little selected in contrast to the di-nucleotides,
which all seem to be selected in similar proportions, except for the two di-nucleotides
TG and CA which are slightly preferred.
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Conclusions and Perspectives

Conclusions. In this thesis, we first introduced an Elastic Net with Interactions based
estimator to tackle quadratic regression problems, with an additional debiasing step to
counterweight the bias from both `1 and `2 penalties. Experiments on semi-artificial
datasets have shown that penalizing the interactions coefficients more than the main
effects coefficients improves statistical performance, while the debiasing step provides
additional improvement in most settings.

Then, in a second part, we developed a scalable algorithm based on an active set
strategy, to benefit from the sparse solution of Elastic Net with Interactions, whose
key idea is to avoid as much of as possible visiting the full interactions design matrix
Z. In addition, we adapted the Anderson Acceleration to provide additional speedup.
Experiments have shown that our algorithm scales to a large number of both features
and samples, without ever storing the interaction matrix.

Finally, the last part of the thesis focuses on the comparison of CLEAR-Enet with
Interactions with two standard estimators of the quadratic regression problem under hier-
archical constraints: HierNet and RAMP. We have illustrated on semi-artificial datasets
that CLEAR-Enet with Interactions performs as well as RAMP and better than HierNet
in strong and weak scenarios, while in anti-hierarchical and pure interaction scenarios
CLEAR-Enet with Interactions performs better than both approaches. Moreover, con-
trolled experiments have shown that when only the main effects are active, CLEAR-Enet
with Interactions thanks to the debiasing step, performs as well as the methods without
interactions.

Thus, it seems that CLEAR-Enet with Interactions does not add interaction features
if the truth does not contain any. Concerning the experiments on real data, the results
have shown that taking interactions into account effectively reduces the predictive error.
In particular, it illustrates the interest of considering interactions in applications, since
element-wise maximum reduce the predictive error compared to the element-wise prod-
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uct. Lastly, we observe that the debiasing step effectively reduces the number of active
features for a similar predictive error, in some standardization settings.

Perspectives. An immediate perspective would be to consider a MultiTaskElasticNet
with Interactions estimator, to take into account the multiple responses for each cancer of
the genomics dataset. A first step to consider such an estimator is to adapt the proximal
gradient coordinate descent of Elastic Net with Interactions by proximal gradient block
coordinate descent, and then adapt MultiTaskLASSO [Obozinski et al., 2010] the duality
gap and working set strategies from MultiTaskLASSO CELER works [Massias et al.,
2020].

A second perspective with greater potential for application would be to adapt our
work to the sparse logistic regression case [Koh et al., 2007]. However, [Hsieh et al., 2014]
proves that unlike the LASSO case, first-order algorithms such as proximal gradient
coordinate descent are slower than second-order algorithms such as Proximal Newton
algorithm for solving sparse logistic problems. Hence, Massias et al. [2020] have provided
WorkingSet algorithm, whose inner solver is based on the latter. A first step to adapt
these estimators to the interactions’ case would require to adapt their algorithm.

In both cases, the main challenge is again to provide an algorithm that avoids as
much as possible visiting the quadratic coefficients and the associated design matrix.
Lastly, since the debiasing step greatly improves the selection ability of Elastic Net with
Interactions, a second step will be to adapt the CLEAR update rules in this context.

96



Chapter 6
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In this chapter, we provide the proofs of propositions 3.1.1 and 3.2.1 from chapter 3.
We first provide in section 6.1 the proof of the equivalence between LASSO with Inter-
actions and Elastic Net with Interactions. Then, thanks to this equivalence, we provide
the duality gap proof in section 6.2 and the CELER for Elastic Net with Interactions
proof in section 6.3.

6.1 Equivalence between LASSO and Elastic Net

From [Zou and Hastie, 2005, Lemma 1], we know that Elastic Net can be written as a
LASSO with augmented data. The following proposition shows the equivalence between
LASSO and Elastic Net in the interaction settings.

Proposition 6.1.1. Let us recall the Elastic Net with Interactions estimator:

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

‖y ´Xβ ´ ZΘ‖2
2

2n
`α1,1 ‖β‖1`α1,2 ‖Θ‖1`

α2,1 ‖β‖2
2`α2,2 ‖Θ‖2

2

2
, (6.1)

Given a dataset py,X, Zq, we define the following augmented artificial dataset py˚, X˚, Z˚q:

y˚ “

¨

˚

˝

y

0p

0q

˛

‹

‚

and X˚
“

¨

˚

˝

X
?
α2,1n Idpˆp

0qˆp

˛

‹

‚

and Z˚ “

¨

˚

˝

Z

0pˆq
?
α2,2n Idqˆq

˛

‹

‚

. (6.2)
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The Elastic Net estimator can be rewritten as a LASSO with augmented dataset:

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

ˆ

1

2n
‖y˚ ´X˚β ´ Z˚Θ‖2

2 ` α1,1 ‖β‖1 ` α1,2 ‖Θ‖1

˙

. (6.3)

Proof. We define pen`1 pβ,Θ;αq “ α1,1 ‖β‖1 ` α1,2 ‖Θ‖1, to shorten the equations. The
proof is simple linear algebra:

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

1

2n
‖y ´Xβ ´ ZΘ‖2

2`
α2,1 ‖β‖2

2`α2,2 ‖Θ‖2
2

2
` pen`1 pβ,Θ;αq ,

ðñ

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

1

2n
‖y ´Xβ ´ ZΘ‖2

2 `

∥∥?α2,1β
∥∥2

2
`
∥∥?α2,2Θ

∥∥2

2

2
` pen`1 pβ,Θ;αq ,

ðñ

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

1

2n

˜

n
ÿ

i“1

pyi ´ xi,:β ´ zi,:Θq
2
`

p
ÿ

i“1

`?
nα2,1βi

˘2
`

q
ÿ

i“1

`?
nα2,2Θi

˘2

¸

` pen`1 pβ,Θ;αq ,

ðñ

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

1

2n

n`p`q
ÿ

i“1

py˚i ´ x
˚
i,:β ´ z

˚
i,:Θq

2
` pen`1 pβ,Θ;αq ,

ðñ

´

pβ, pΘ
¯

P arg min
βPRp
ΘPRq

1

2n
‖y˚ ´X˚β ´ Z˚Θ‖2

2 ` pen`1 pβ,Θ;αq .

6.2 Duality Gap for Elastic Net proof

Proposition 6.2.1. To the Elastic Net with Interactions minimization problem Ppβ,Θq
(eq. (2.7)), is associated a maximization problem, called dual problem Dpνq:

pν “ arg max
νP∆X,Z

˜

1

2n
‖y‖2

2 ´
nα2

2

∥∥∥ν ´ y

αn

∥∥∥2

2
´

ˆ

nα

cα

˙2
´α2,1

2
‖β‖2

2 `
α2,2

2
‖Θ‖2

2

¯

¸

,

(6.4)

with α “
1

4
pα1,1 ` α1,2 ` α2,1 ` α2,2q and r “ y ´Xβ ´ ZΘ ,

cα “αmax

ˆ

n,
‖XJr ´ nα2,1β‖8

α1,1

,
‖ZJr ´ nα2,2Θ‖8

α1,2

˙

,

∆X,Z “

#

ν P Rn : max

˜

‖XJν ´ nα2,1

cα
β‖8

α1,1

,
‖ZJν ´ nα2,2

cα
Θ‖8

α1,2

¸

ď
1

α

+

.
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A canonical dual variable pν is the rescaled residuals [Mairal, 2010], defined as follows:

pν “
r

cα
“
y ´X pβ ´ Z pΘ

cα
. (6.5)

We use the result from the proposition 6.1.1 to adapt the duality gap from LASSO
to the Elastic Net with Interactions estimator.

Proof. Starting from the maximization problem of LASSO [Kim et al., 2007], we provide
the maximization problem associated to Elastic Net with Interactions. From the LASSO
dual problem, we get that LASSO with Interactions dual problem is the following:

max
νP∆X˚,Z˚

˜

‖y˚‖2
2

2n
´
nα2

2

∥∥∥∥ν˚ ´ y˚

αn

∥∥∥∥2

2

¸

(6.6)

with: ∆X˚,Z˚ :“

"

ν P Rn`p`q,

"∥∥∥X˚Jν˚α1,1

∥∥∥
8
ď

1

α

*

X

"∥∥∥Z˚Jν˚α1,2

∥∥∥
8
ď

1

α

**

.

Immediately, we get that: ‖y˚‖2
2 “ ‖y‖

2
2, while the residuals are defined as follows:

y˚ ´X˚β ´ Z˚Θ “

¨

˚

˝

y

0p

0q

˛

‹

‚

´

¨

˚

˝

X
?
α2,1n Idpˆp

0qˆp

˛

‹

‚

β ´

¨

˚

˝

Z

0pˆq
?
α2,2n Idqˆq

˛

‹

‚

Θ (6.7)

“

¨

˚

˝

y ´Xβ ´ ZΘ

´
?
α2,1nβ

´
?
α2,1nΘ

˛

‹

‚

(6.8)

Also, the dual variable ν, correspond to the residuals rescaled by the maximum cα:

cα “ αmax

˜

n,

∥∥X˚Jpy˚ ´X˚β ´ Z˚Θq
∥∥
8

α1,1

,

∥∥Z˚Jpy˚ ´X˚β ´ Z˚Θq
∥∥
8

α1,2

¸

(6.9)

Let us adapt this constant, denoting r “ y ´Xβ ´ ZΘ:

X˚J
py˚ ´X˚β ´ Z˚Θq “

´

XJ ?
α2,1n Idpˆp 0qˆp

¯

¨

˚

˝

r

´
?
α2,1nβ

´
?
α2,2nΘ

˛

‹

‚

(6.10)

“ XJr ´ nα2,1β (6.11)

In the same way, it comes that: Z˚J py˚ ´X˚β ´ Z˚Θq “ ZJr ´ nα2,2Θ.
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So, the maximum cα is:

cα “ αmax

˜

n,

∥∥XJr ´ nα2,1β
∥∥
8

α1,1

,

∥∥ZJr ´ nα2,2Θ
∥∥
8

α1,2

¸

(6.12)

Hence, we get the dual variable of Elastic Net with Interactions:

ν˚ “
y˚ ´X˚β ´ Z˚Θ

cα
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y ´Xβ ´ ZΘ

cα

´

?
nα2,1β

cα

´

?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ν

´

?
nα2,1β

cα

´

?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.13)

Then, to compute the second norm of eq. (6.6), we need:

ν˚ ´
y˚

αn
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ν

´

?
nα2,1β

cα

´

?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˚

˚

˚

˝

y

αn

0p

0q

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ν ´
y

αn

´

?
nα2,1β

cα

´

?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.14)

Hence, we get:∥∥∥∥ν˚ ´ y˚

αn

∥∥∥∥2

2

“

n`p`q
ÿ

i“1

ˆ

ν˚i ´
y˚i
nα

˙2

(6.15)

“

n
ÿ

i“1

´

νi ´
yi
nα

¯2

`

p
ÿ

i“1

ˆ

´
?
α2,1n

βi
cα

˙2

`

q
ÿ

i“1

ˆ

´
?
α2,2n

Θi

cα

˙2

(6.16)

“

∥∥∥ν ´ y

αn

∥∥∥2

2
`
nα2,1

c2
α

‖β‖2
2 `

nα2,2

c2
α

‖Θ‖2
2 (6.17)

In order to compute the set of constraints, we need to compute X˚Jν˚ and Z˚Jν˚:

X˚Jν˚ “
´

XJ ?
α2,1n Idpˆp 0pˆq

¯

¨

˚

˚

˚

˚

˚

˚

˝

ν

´
?
nα2,1β

cα

´
?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‚

“ XJν ´ nα2,1
β

cα
(6.18)
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Then, we also obtain: Z˚Jν˚ “ ZJν ´ nα2,2
Θ

cα
.

Hence, the set of the feasible dual variable ∆X,Z is:

∆X,Z :“

#

ν P Rp,

#
∥∥∥∥∥XJν ´ nα2,1

β
cα

α1,1

∥∥∥∥∥
8

ď
1

α

+

X

#
∥∥∥∥∥ZJν ´ nα2,2

Θ
cα

α1,2

∥∥∥∥∥
8

ď
1

α

++

(6.19)

Finally, we get the following duality gap:

ðñ arg max
ν˚P∆X˚,Z˚

˜

1

2n
‖y˚‖2

2 ´
nα2

2

∥∥∥∥ν˚ ´ y˚

αn

∥∥∥∥2

2

¸

(6.20)

ðñ arg max
νP∆X,Z

˜

‖y‖2
2

2n
´
nα2

2

∥∥∥ν ´ y

αn

∥∥∥2

2
´

ˆ

nα

cα

˙2
´α2,1

2
‖β‖2

2 `
α2,2

2
‖Θ‖2

2

¯

¸

(6.21)

6.3 CELER for Elastic Net proof

As for the proof of proposition 3.1.1, we use the result from the proposition 6.1.1 to
adapt CELER LASSO ranking rules to Elastic Net with Interactions case.

Proposition 6.3.1 (Celer for Elastic Net with Interactions). Let pν a dual feasible point
of the dual problem and cα the associated constant (to rescale residuals), as in Proposi-
tion 3.1.1. We get the following dj and djj priority rules, for the main and interaction
effects respectively:

dj ppνq “

1´

ˇ

ˇ

ˇ

ˇ

xJj pν ´
α1,2n

cα
βj

ˇ

ˇ

ˇ

ˇ

b

‖xj‖2
2 ` α1,2n

and djj ppνq “
1´

ˇ

ˇ

ˇ

ˇ

zJjjpν ´
α2,2n

cα
Θjj

ˇ

ˇ

ˇ

ˇ

b

‖zjj‖2
2 ` α2,2n

. (6.22)

Proof. The CELER ranking rules[Massias et al., 2018], for main effects and by extension
for the interaction effects, are defined as follows:

djpν
˚
q “

1´ |x˚Jj ν˚|∥∥x˚j∥∥2

and djjpν˚q “
1´ |z˚Jjj ν

˚|∥∥z˚jj∥∥2

(6.23)

where x˚j (resp. z˚jj) is the jth (resp. jjth) column of the augmented design matrix X˚

(resp. Z˚) and ν˚ the dual variable associated to the LASSO augmented problem.
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From the proof of proposition 3.1.1 (or equivalently proposition 6.2.1), we get:

ν˚ “
y˚ ´X˚β ´ Z˚Θ

cα
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y ´Xβ ´ ZΘ

cα

´

?
nα2,1β

cα

´

?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ν

´

?
nα2,1β

cα

´

?
nα2,2Θ

cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.24)

So, we immediately get
ˇ

ˇx˚Jj ν˚
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

xJj ν ´
nα2,1

cα
βj

ˇ

ˇ

ˇ

ˇ

and
ˇ

ˇz˚Jjj ν
˚
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

zJjjν ´
nα2,2

cα
Θjj

ˇ

ˇ

ˇ

ˇ

.

Moreover,

∥∥x˚j∥∥2
“

g

f

f

e

n`p`q
ÿ

i“1

px˚i,jq
2 “

d

n
ÿ

i“1

pxi,jq2 ` p
?
nα2,1q

2 ` 0 “

b

‖xj‖2
2 ` nα2,1 (6.25)

Also,
∥∥z˚j ∥∥2

“

b

‖zj‖2
2 ` nα2,2.

Finally, we get the following ranking rules:

djpν
˚
q “

1´

ˇ

ˇ

ˇ

ˇ

xJj ν ´
α1,2n

cα
βj

ˇ

ˇ

ˇ

ˇ

b

‖xj‖2
2 ` α1,2n

and djjpν˚q “
1´

ˇ

ˇ

ˇ

ˇ

zJj ν ´
α2,2n

cα
Θjj

ˇ

ˇ

ˇ

ˇ

b

‖zj‖2
2 ` α2,2n

(6.26)
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