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Avant-propos

L’être humain, étant l’apprenant le plus puissant de la planète, a accumulé depuis
la nuit des temps un grand nombre de compétences d’apprentissage. L’une d’entre
elles est la flexibilité cognitive face à un environnement en constant changement
(Uddin, 2021). À titre d’exemple, un enfant regardant La Jeune Fille à la perle de
Vermeer, La Tête de Léda de Léonard de Vinci ou une photo de Natalie Portman,
ne devrait avoir aucun problème à reconnaître qu’il s’agit d’une femme malgré le
caractère très différent de chaque portrait. Une tâche aussi simple pour le cerveau
humain peut s’avérer compliquée pour les modèles du machine learning. En ef-
fet, un modèle d’apprentissage supervisé entraîné sur des images photographiques
peut se révéler incapable de généraliser à des dessins ou des tableaux (Venkateswara
et al., 2017).

Cette incapacité est due au fait que les modèles d’apprentissage supervisé reposent
sur une hypothèse fondamentale, à savoir que les données d’apprentissage et de
test sont tirées de la même distribution de probabilité (Mohri et al., 2018). Bien
que ce postulat soit tout à fait légitime dans certaines applications, il devient ir-
raisonnable pour de nombreux problèmes du monde réel (Pan and Yang, 2009).
Pour revenir à notre exemple de classification d’images, la variation des dispositifs
d’acquisition, la présence ou l’absence d’arrière-plan, ou le changement des condi-
tions d’éclairage sont des manifestations d’écart de distribution entre les données
d’apprentissage et de test, et peuvent affecter négativement les performances des
modèles d’apprentissage supervisé (Saenko et al., 2010).

Par ailleurs, si l’étiquetage manuel peut sembler une solution réalisable, une telle
approche n’est pas raisonnable en pratique, car il est souvent excessivement coû-
teux de collecter à partir de zéro un nouvel ensemble de données étiquetées de haute
qualité avec la même distribution que les données de test, en raison du manque de
temps, de ressources ou d’autres facteurs, et ce serait un immense gâchis de rejeter
totalement les connaissances disponibles sur un ensemble d’apprentissage étiqueté
différent, mais connexe.

Cette situation délicate a favorisé l’émergence de l’adaptation de domaine (Redko
et al., 2019b), une branche du machine learning qui tient compte du changement de
distributions entre les données d’apprentissage et les données de test, et dans laque-
lle ces distributions sont respectivement appelées domaines source et cible. Depuis,
la recherche en adaptation de domaine s’est développée selon deux voies complé-
mentaires. La première, purement théorique, vise à identifier les conditions qui re-
flètent la parenté entre les deux domaines et qui permettent d’apprendre malgré le
changement de distribution. Parmi ces conditions, une faible divergence entre les
deux domaines est commune à la quasi-totalité de la littérature sur l’adaptation de
domaine, avec des variations en fonction du choix de la mesure de divergence. La
seconde, plus algorithmique, cherche souvent à réduire la divergence entre les deux
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domaines pour les rendre indiscernables à travers une procédure d’alignement, ré-
duisant ainsi le problème à une tâche classique d’apprentissage supervisé.

Ce double objectif explique le succès sans égal de la théorie du transport optimal
en adaptation de domaine. En effet, le transport optimal (Villani, 2009) induit une
distance bien définie entre les distributions de probabilité, permettant ainsi de quan-
tifier la divergence entre les domaines source et cible, et comme son nom l’indique,
offre une possibilité géométrique de transporter un ensemble de points vers un autre
selon le principe du moindre effort, conduisant ainsi à l’alignement des deux do-
maines. Il n’est donc pas surprenant de constater la production scientifique pro-
lifique qui a suivi le travail fondateur de (Courty et al., 2016), où de nombreux
chercheurs en adaptation de domaine se sont appuyés sur le transport optimal pour
modéliser des tâches, calculer des solutions et fournir des garanties théoriques (Redko
et al., 2017; Courty et al., 2017; Shen et al., 2018; Redko et al., 2019a; Rakotomamonjy
et al., 2022).

Cependant, en exploitant uniquement la capacité naturelle du transport optimal à
capturer la géométrie sous-jacente des données, on laisse de côté d’autres informa-
tions structurelles importantes qui ne sont pas capturées directement à partir des
distances par paires entre les données dans l’espace d’entrée. La définition de struc-
ture dans cette thèse doit être comprise dans le sens implicite du mot, c’est-à-dire
lorsque des labels ou d’autres métadonnées peuvent conférer une structure latente
aux échantillons ou lorsqu’il pourrait y avoir une prior ou un biais structurel sur
la représentation des données (Battaglia et al., 2018). Par opposition au sens tradi-
tionnel qui fait référence à une structure explicite dans les données d’intérêt, par
exemple lorsque celles-ci consistent en des séquences, des arbres ou des graphes.

L’incorporation d’une telle information structurelle peut susciter certaines propriétés
désirables en adaptation de domaine, comme la préservation compacte des classes
pendant le transport. C’est d’ailleurs ce qui a conduit (Courty et al., 2016) à pro-
poser l’inclusion de cette information en ajoutant un régularisateur favorisant la
parcimonie structurelle dans le plan de transport optimal, de telle sorte qu’une don-
née cible ne reçoive des masses que d’échantillons sources appartenant à la même
classe. De leur côté, (Alvarez-Melis et al., 2018) ont tenté d’intégrer l’information
structurelle dans le problème du transport optimal en développant une généralisa-
tion non linéaire basée sur les fonctions sous-modulaires. Cependant, l’application
de cette méthode en adaptation de domaine ne prend en compte que les structures
disponibles dans le domaine source étiqueté, en partitionnant les échantillons en
fonction de leurs labels de classe, alors que chaque échantillon cible forme son pro-
pre cluster. Néanmoins, des structures cachées plus riches dans le domaine cible
peuvent être exploitées.

À ce stade, de nombreuses questions naturelles se présentent à l’esprit : Comment
apprendre les structures cachées dans le domaine cible non étiqueté ? Le transport
optimal peut-il assurer cette tâche ? Est-il possible d’incorporer ces structures dans le
problème du transport optimal ? Si c’est le cas, dans quelle mesure cette incorpora-
tion est bénéfique pour l’adaptation de domaine ? A-t-elle des garanties théoriques,
et que pourraient apporter ces dernières par rapport aux résultats théoriques de
l’état de l’art ? C’est dans cette optique que s’inscrit cette thèse, qui se propose
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d’apporter des éléments de réponse à ces questions, en élaborant des approches in-
corporant dans le transport optimal des structures découvertes par le transport opti-
mal lui-même. L’objectif ici est double, d’abord de trouver les structures cachées par
des outils du transport optimal, puis de les induire dans le processus de transport
pour résoudre efficacement la tâche d’adaptation de domaine.

Plan

Cette thèse couvre la majeure partie des travaux réalisés par l’auteur dans le cadre
du doctorat, et se concentre principalement sur une seule ligne de recherche qui est
le transport optimal structurel pour l’adaptation de domaine. Des travaux supplé-
mentaires basés sur le transport optimal pour le clustering multi-vues et le clustering
collaboratif (Ben Bouazza et al., 2019, 2022) ne sont pas inclus dans cette thèse. Le
reste du manuscrit est organisé de la manière suivante :

• Le chapitre 2 établit le contexte mathématique pour le reste de la thèse. Il
est présenté comme une revue des concepts fondamentaux de la
théorie du transport optimal, mettant en évidence les propriétés et
les résultats clés qui forment la base des concepts présentés dans
tous les chapitres suivants. Bien que ce chapitre contienne des no-
tions cruciales auxquelles il sera fait référence tout au long de la
thèse, un lecteur familier avec le transport optimal peut sans risque
le passer.

• Le chapitre 3 aborde la problématique principale de cette thèse, à savoir l’adapt-
ation de domaine. Après avoir introduit de manière formelle les
principaux concepts de la théorie de l’apprentissage statistique,
nous définissons l’adaptation de domaine ainsi que ses différents
cas de figure. Ensuite, nous mettons l’accent sur les résultats théor-
iques de l’état de l’art, consistant principalement en des bornes de
généralisation et nous examinons plusieurs mesures de divergence
menant à ces bornes. Nous concluons en soulignant les avancées
algorithmiques dans le sujet. Un lecteur chevronné en adaptation
de domaine peut passer cette partie bien qu’elle contienne des con-
cepts cruciaux qui seront discutés tout au long de la thèse.

• Le chapitre 4 présente la première contribution de cette thèse, consacrée au
transport optimal hiérarchique pour l’adaptation de domaine. Il
est basé sur notre publication (El Hamri et al., 2022b) et donne
quelques réponses à la question de l’apprentissage des structures
cibles cachées en utilisant le transport optimal, et leurs incorpo-
ration ensuite dans le processus du transport pour résoudre le
problème d’adaptation de domaine. Il s’agit d’une formulation
structurelle du transport optimal qui exploite, au-delà des infor-
mations géométriques capturées par la métrique de base, des in-
formations structurelles plus riches dans les domaines source et
cible. L’information structurelle dans le domaine source étiqueté
est formée instinctivement en regroupant les échantillons dans des
structures en fonction de leurs étiquettes de classe. L’exploitation
des structures cachées dans le domaine cible non étiqueté est ré-
duite au problème d’apprentissage des mesures de probabilité à
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travers le barycentre de Wasserstein, que nous prouvons théorique-
ment être équivalent au clustering spectral.

• Le chapitre 5 présente la deuxième contribution de cette thèse (El Hamri et al.,
2022d), où nous étudions un nouveau cadre théorique d’adaptation
de domaine à travers le transport optimal hiérarchique. Ce paradi-
gme fournit des garanties théoriques sous la forme de bornes de
généralisation en permettant de considérer l’organisation struc-
turelle implicite des échantillons dans les deux domaines en classes
ou clusters. De plus, nous fournissons une nouvelle mesure de di-
vergence entre les domaines source et cible, appelée la distance de
Wasserstein Hiérarchique, qui indique, sous des hypothèses mod-
érées, quelles structures doivent être alignées pour mener à une
adaptation réussie.

• Le chapitre 6 porte sur une troisième contribution (El Hamri et al., 2021a,b,c),
où nous développons cette fois-ci une approche semi-supervisée
en raison de la nécessité d’autres techniques pour détecter les struc-
tures cachées dans le domaine cible, en dehors du clustering. En
effet, ce travail porte sur l’élaboration d’une approche de propaga-
tion de labels basée sur le transport optimal. L’intérêt du transport
optimal dans ce contexte est de capturer la géométrie de l’espace
d’entrée dans son intégralité et les relations entre les échantillons
étiquetés et non étiquetés avec une vision globale. Cela évitera de
devoir utiliser, comme dans les approches traditionnelles, des re-
lations locales ou par paires entre les données, et les inconvénients
qui en découlent. Cette approche effectue une propagation de la-
bels incrémentale, contrôlée par un score qui surveille la certitude
des prédictions.

• Le chapitre 7 présente la quatrième contribution basée sur (El Hamri et al.,
2022a,c). Il concerne l’utilisation de la technique semi-supervisée
développée dans le chapitre précédent pour apprendre des struc-
tures cachées dans le domaine cible et les utiliser afin de créer de
manière incrémentale des structures sources augmentées, permet-
tant l’apprentissage d’une suite de sous-espaces latents domaine-
invariants et discriminants, au sein desquels il devient facile d’étiq-
ueter progressivement les données du domaine cible.

• Le chapitre 8 résume les principaux résultats présentés dans cette thèse. Nous
discutons également les perspectives d’avenir potentielles pour
chacune des contributions proposées, incluant des versions fédéra-
tives et multi-sources des méthodes d’adaptation de domaine pro-
posées et des extensions des contributions théoriques.



“Nitens lux, horrenda procella, tenebris aeternis involuta.”

- Évariste Galois
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CHAPTER 1

INTRODUCTION

Structures don’t take the streets.

Lucien Goldmann

Humans, as the most powerful learners on the planet, have accumulated since dawn
of time a lot of learning skills. One of these is cognitive flexibility to constantly
changing environment (Uddin, 2021). By way of example, a child looking at Ver-
meer’s Girl with a Pearl Earring, Da Vinci’s Head of Leda, or Natalie Portman’s
photos, should have no problem recognizing that it is a woman despite the very dif-
ferent character of each portrait. Such an ostensibly simple task for human brain can
be complicated for machine learning models. Indeed, a supervised learning model
trained on photographic images may be incapable to generalize well to sketches or
paintings (Venkateswara et al., 2017).

This incapacity is attributable to the reliance of supervised learning models on a
fundamental assumption, namely that training and test data are drawn from the
same probability distribution (Mohri et al., 2018).. While this postulate is quite legit-
imate in some applications, it becomes unreasonable for many real-world problems
(Pan and Yang, 2009). Going back to our example of image classification, the varia-
tion of acquisition devices, the presence or absence of backgrounds, or the change of
lighting conditions are manifestations of the shift between the training and test dis-
tributions, and can negatively affect the performance of supervised learning models
(Saenko et al., 2010).

While manual labeling may appear like a feasible solution, such an approach is un-
reasonable in practice, since it is often prohibitively expensive to collect from scratch
a new large high quality labeled dataset with the same distribution as the test data,
due to lack of time, resources, or other factors, and it would be an immense waste to
totally reject the available knowledge on a different, yet related labeled training set.

Such a challenging situation has promoted the emergence of domain adaptation
(Redko et al., 2019b), a sub-field of machine learning, that takes into account the
distributional shift between training and test data, and in which the training set and
test set distributions are respectively called source and target domains. Since then,
research on domain adaptation has developed along two complementary tracks. The
first, being purely theoretical, aims to identify conditions that reflect the relatedness
between the two domains and help to learn despite the distribution’s shift. Among
these conditions, a slight divergence between source and target domains is com-
mon to almost all the literature on domain adaptation, with variations depending
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on the choice of how to quantify this divergence. The second, more algorithmic,
often seeks to reduce the divergence between the two domains to make them indis-
cernible through an alignment procedure, thus reducing the problem to a classical
supervised learning task.

This dual objective explains the unrivaled success of optimal transport theory in
domain adaptation. Indeed, optimal transport (Villani, 2009) induces a well-defined
notion of distance between probability distributions allowing to quantify the diver-
gence between the source and target domains, and as its name suggests, offers a
geometrically driven possibility of transporting a set of points to another according
to the principle of least effort, thus leading to the alignment of both domains. It is
therefore not surprising to see the prolific scientific production ensuing the seminal
work of (Courty et al., 2016), where many domain adaptation researchers have re-
lied on optimal transport to model tasks, compute solutions, and provide theoretical
guarantees (Courty et al., 2017; Redko et al., 2017; Shen et al., 2018; Redko et al.,
2019a; Rakotomamonjy et al., 2022).

However, exploiting only the natural ability of optimal transport to capture the un-
derlying geometry of the data, leaves other information behind, since there is further
important structural information that remains uncaptured directly from the pair-
wise distances between data in the input space. The definition of structure in this
thesis must be understood in the implicit sense of the word, namely when labels or
other metadata might confer a latent structure to samples or when there could be
structural priors on their representation (Battaglia et al., 2018). As opposed to the
traditional meaning that refers to an explicit structure in the data of interest, such as
when these consist of sequences, trees, or graphs.

Inducing such structural information can elicit some desired properties in domain
adaptation, like preserving compact classes during transportation. It is, moreover,
what led (Courty et al., 2016) to propose the inclusion of this structural information
by adding a regularizer that promotes group sparsity in the optimal transport plan,
such that a given target data receives masses only from source samples belonging to
the same class. On their side, (Alvarez-Melis et al., 2018) attempted to incorporate
structural information into the optimal transport problem by developing a nonlin-
ear generalization based on submodular functions. However, the application of this
method in domain adaptation only takes into account the available structures in the
labeled source domain, by partitioning samples according to their class labels, while
every target sample forms its own cluster. Nonetheless, richer hidden structures in
the target domain can eventually be exploited.

At this stage, many natural questions arise in mind: How to learn hidden structures
in the unlabeled target domain? Can optimal transport handle this task? Is it possi-
ble to incorporate these structures into the optimal transport problem? If this is the
case, to what extent this incorporation is rewarding for domain adaptation? Does
it have any theoretical guarantees, and what could these latters bring compared
to state-of-the-art theoretical results? It is in this light that this thesis takes place,
intending to provide some answers to these questions, by elaborating approaches
incorporating into optimal transport, structures learned by optimal transport itself.
The goal here is twofold, first finding the hidden structures through optimal trans-
port theory and then inducing them into the transportation process to efficiently
solve the domain adaptation task.
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Outline

This thesis covers mostly all the author’s work conducted as part of the Ph.D. re-
quirements, and mainly focuses on a single line of research that is structural optimal
transport for domain adaptation. Additional work based on optimal transport for
multi-view clustering and collaborative clustering (Ben Bouazza et al., 2019, 2022)
are not included in this thesis. The rest of the manuscript is organized in the follow-
ing way:

• Chapter 2 sets up the mathematical background for the rest of the thesis. It
is presented as a review of fundamental concepts of optimal trans-
port theory, highlighting key properties and results that form the
foundation of the concepts presented in all subsequent chapters.
While this chapter contains crucial notions that will be referred to
throughout the thesis, a reader familiar with optimal transport can
safely skip it.

• Chapter 3 addresses the main problematic of this thesis, namely domain adap-
tation. After introducing the major concepts of statistical learning
theory in a formal way, the definition of domain adaptation is pro-
vided as well as its different settings that may occur. After that,
we place great emphasis on the state-of-the-art theoretical results,
consisting mostly of generalization bounds and we cover several
measures of divergence leading to these bounds. We conclude by
pointing out the algorithmic advances in the field. A seasoned do-
main adaptation reader may skip this part although it contains cru-
cial concepts that will be discussed throughout the thesis.

• Chapter 4 is dedicated to hierarchical optimal transport for domain adapta-
tion. It is based on our publication (El Hamri et al., 2022b) and
gives some answers to the question of learning hidden target struc-
tures using optimal transport and subsequently inducing them into
the transportation process to resolve the problem of domain adapta-
tion. This is a structural formulation of optimal transport that lever-
ages beyond the geometrical information captured by the ground
metric, richer structural information in the source and target do-
mains. The additional information in the labeled source domain is
formed instinctively by grouping samples into structures according
to their class labels. While exploring hidden structures in the un-
labeled target domain is reduced to the problem of learning prob-
ability measures through Wasserstein barycenter, which we prove
theoretically to be equivalent to spectral clustering.

• Chapter 5 corresponds to the contribution (El Hamri et al., 2022d), where we
study a new theoretical framework of domain adaptation through
hierarchical optimal transport. This paradigm provides theoreti-
cal guarantees in the form of generalization bounds and allows to
consider the implicit structural organization of samples in both do-
mains into classes or clusters. Additionally, we provide a new di-
vergence measure between the source and target domains called
Hierarchical Wasserstein distance that indicates under mild assump-
tions, which structures have to be aligned to lead to a successful
adaptation.
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• Chapter 6 is based on our publications (El Hamri et al., 2021a,b,c), where we
develop this time a semi-supervised approach because of the ne-
cessity of other techniques to detect hidden structures in the target
domain, outside clustering. Indeed, this work is concerned with
elaborating a label propagation approach based on optimal trans-
port. The appeal of optimal transport in this setting is to capture
the geometry of the entire input space and the relationship between
labeled and unlabeled samples from a global level. This will pre-
vent the necessity of using, as in traditional approaches, local or
pairwise relationships between data, and the inconvenience that
comes with it. This approach performs incremental label propa-
gation, controlled by a score that watches over the certainty of pre-
dictions.

• Chapter 7 represents the fourth contribution based on (El Hamri et al., 2022a,c).
It deals with using the semi-supervised technique developed in the
previous chapter to learn hidden structures in the target domain
and use them to incrementally create augmented source structures,
allowing learning a sequence of domain-invariant and discrimina-
tive latent subspaces, within which it becomes easy to progressively
label the target samples.

• Chapter 8 summarizes the main results presented in this thesis. We also dis-
cuss future perspectives of each contribution, including federated
and multi-source versions of the proposed approaches and exten-
sions of the theoretical contributions.
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CHAPTER 2

OPTIMAL TRANSPORT
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In this chapter, we present the key concepts of optimal transport theory on which
this thesis will rely. This presentation focuses on the theoretical and computational
aspects of optimal transport, with the purpose of using them in domain adapta-
tion and more generally in machine learning problems. We begin by introducing
Monge’s first formulation, followed by the relaxation of Kantorovich and its dual
problem. The connections between the two formulations are outlined. We highlight
the case where the ground cost is a distance to a power, which defines the Wasser-
stein distance. The computational challenges associated with optimal transport will
lead us to study special cases of real line and Gaussian distributions that can be
solved in closed form. Then we present entropy-regularized optimal transport that
can be easily solved using Sinkhorn’s algorithm, followed by its sample complexity.
The problem of Wasserstein barycenter is carefully discussed through special cases
where it has a closed form, and then a numerical approximation scheme. Thereafter,
we address briefly three extensions of optimal transport, namely Sliced Wasserstein
distance, Gromov-Wasserstein distance, and unbalanced optimal transport, before
concluding by highlighting some notable optimal transport toolboxes.
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There is nothing more practical than a good theory.

Kurt Lewin

2.1 Optimal transport: a new twist on an old problem

Well known for several centuries for its logistical and economic applications, the
problem of optimal transport has undergone a spectacular revival because of its
unsuspected links with fluid mechanics, partial differential equations, and other
fields of mathematics. Currently, thanks to a series of theoretical and algorithmic
advances, it is considered the new mathematics of machine learning. In this section,
we briefly trace this two-century journey.

The Founding Fathers: Optimal transport is a long-standing problem that has ma-
tured over time to give birth to a rich mathematical theory and numerous appli-
cations. Roots of optimal transport can be traced back to 1781, when the French
mathematician Gaspard Monge (Monge, 1781), originally motivated by his obser-
vation of workers moving soil from the ground to build fortifications, raised the
problem of optimally mapping two measures µ and ν of equal mass onto each other,
according to a cost that is equal to the distance traveled by the workers per unit of
mass. Owing to its mathematical difficulty, a long period of sleep followed Monge’s
problem until the relaxation of the Soviet mathematician Leonid Kantorovich in the
thick of World War II (Kantorovich, 1942), who instead of optimizing on one-to-one
maps that push forward µ to ν, his sights turned to couplings between µ and ν. This
new formulation has allowed optimal transport theory to thrive since it has been in-
serted into an appropriate framework that gave the possibility to find that solutions
actually exist and to study them. Notably, the formulation of Kantorovich embraces
the case of discrete distributions, which can be interpreted as a problem of resource
allocation as addressed in (Tolstoi, 1930; Hitchcock, 1941). This discrete version of
Kantorovich’s problem was numerically solved by George Dantzig (Dantzig, 1949),
with further algorithmic refinements starting from the 1950s with the development
of the linear programming literature (Dantzig, 1951) and min-cost flow problems
(Ford and Fulkerson, 1962; Goldberg and Tarjan, 1989), marking thus the end of a
fruitful chapter in which optimal transport became one of the fundamental prob-
lems of mathematical programming.

A Phoenix Rising from the Ashes: The mathematical aspects of optimal transport
including the difficult Monge problem, were increasingly better understood in the
late 1980s. In his pioneering paper, (Brenier, 1987) demonstrated the existence of
an optimal Monge map between measures that admit a density in the case of a
quadratic ground cost and characterized this map as the unique transportation map
that is the gradient of a convex function. This groundbreaking result served as a
basis for further theoretical research on Monge maps. Specifically, it allows weav-
ing a link with the Monge-Ampère partial differential equation, which (Caffarelli,
1991) used to show regularity properties of the optimal map in the quadratic case.
(McCann, 1997) then provided measure interpolants that now take his name and
that represent the optimal geodesic transport between two measures according to
the Wasserstein distance, defined by optimal transport when the ground cost is a
distance to a power p ≥ 1. Realizing that the space of measures equipped with the
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Wasserstein distance shares certain central properties with manifolds has opened
the door to the fundamental work of (Jordan et al., 1998), who demonstrated that
the Fokker-Plank equation can be recast as a Wasserstein proximal minimization
scheme, known as the JKO scheme, of functional taking measures as arguments.
This construction was perfected in (Ambrosio et al., 2005), where a gradient flow
theory generalizing that of Euclidean spaces was constructed on the Wasserstein
space. Additional links with partial differential equations and fluid mechanics were
elaborated in (Benamou and Brenier, 2000), given the so-called dynamic formulation
of optimal transport. These works paved the way for decisive contributions by both
(Villani, 2009) and (Figalli et al., 2010) whose respective works on the Ricci curvature
and isoperimetric inequalities, among others, were recognized with Fields medals.

A Swiss Army Knife for Machine Learning: Simultaneously, in the early 2000s,
optimal transport theory began to emerge in more applied domains. In fact, discrete
optimal transport has experienced a spectacular revival in (Rubner et al., 2000) for
image retrieval tasks under the name of the earth mover’s distance. From then, it
was applied in image processing and computer graphics (Rabin et al., 2011; Bonneel
et al., 2011). However, the impact of optimal transport in machine learning com-
munity has long been limited because of its computational complexity that reaches
O(n3log(n)) despite specialized solvers (Pele and Werman, 2009). This issue was
mitigated by the addition of an entropic regularization term to Kantorovich’s prob-
lem by (Cuturi, 2013). Entropic regularization not only guarantees the uniqueness
of the solution by strict convexity but also allows to solve the corresponding prob-
lem in O(n2) using Sinkhorn algorithm (Sinkhorn, 1964). As a consequence, this
regularization has paved the way for a pervasive use in machine learning, for in-
stance in supervised and semi-supervised learning (Frogner et al., 2015; Solomon
et al., 2014), unsupervised learning (Arjovsky et al., 2017; Genevay et al., 2018), nat-
ural language processing (Kusner et al., 2015) and domain adaptation (Courty et al.,
2016, 2017; Redko et al., 2019a), to name a few. However, applications of optimal
transport in machine learning are still hampered by several problems. For example,
the disadvantageous statistical properties of optimal transport due to its high sample
complexity. (Weed and Bach, 2019) have proved that the estimation of Wasserstein
distances necessitates an exponential number of samples with respect to the intrinsic
dimension of the set on which measures are supported. Entropic regularization has
been shown to not only mitigate computational challenges but also to allow for bet-
ter sampling rates (Genevay et al., 2019). The statistical and computational burden
of optimal transport is one of the aspects that the optimal transport community is
currently tackling, yet other interesting lines of research on applications of optimal
transport are also being explored. For example, it turned out in various works that
the marginal constraints of optimal transport might be too constraining for some
applications (Schiebinger et al., 2019; Frogner et al., 2015), which has prompted the
elaboration of unbalanced optimal transport (Chizat, 2017), where the constraints
are replaced by penalties. Another concern of the optimal transport community
is that its applicability is usually restricted to the situation where samples are in a
common ground metric space, which is mostly Euclidean. This restriction inhibits
its application to a range of machine learning problems where there is additional
explicit structural information about the data that cannot usually be described in the
Euclidean framework, e.g. when samples are represented by graphs, trees, or time
series, or when samples are in different metric spaces, which has led to the develop-
ment of optimal transport on incomparable spaces (Vayer, 2020).
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2.2 The problem of Monge

The problem of optimal transport, originally proposed by Gaspard Monge in 1781
(Monge, 1781) was motivated by military applications. The goal was to find how
to transport a certain amount of soil from a quarry (déblai) to a construction site
(remblai) in the most economical way. A formal contemporary formulation of this
problem is given as follows:

Definition 2.1 (The problem of Monge) Let (X , µ) and (Y, ν) be two probability spaces,
c : X × Y → R+ ∪ {+∞} a positive cost function over X × Y , which represents the work
needed to move a unit of mass from x ∈ X to y ∈ Y . The problem of Monge asks to find a
measurable transport map T : X → Y that transports the mass represented by the proba-
bility measure µ to the mass represented by the probability measure ν while minimizing the
total cost of this transportation:

(M) inf
T

{∫
X
c(x,T(x))dµ(x) | T#µ = ν

}
, (2.1)

where T#µ stands for the image measure of µ by T, defined by: for all measurable subset
B ⊂ Y , T#µ(B) = µ(T−1(B)).

FIGURE 2.1: Illustration of Monge’s problem: T is a transport map from X to Y .

In general, finding such an optimal map T of Monge’s problem is quite difficult since
the solution may not exists, it is the case for instance when µ is a Dirac measure and
ν is not. This also highlights the intrinsic asymmetry of this problem, as conversely,
it is always possible to find a Monge map going to a Dirac measure. Moreover, the
problem of Monge is highly nonlinear on T, and the constraint T#µ = ν is not
closed under weak convergence which is one of the major difficulties preventing
from an easy analysis of Monge’s problem. Thus, the problem of Monge has stayed
an open question for many years despite some half-hearted attempts (Appell, 1887)
and results on the existence of the optimal Monge map and how to characterize it
have not even been addressed.

FIGURE 2.2: Monge’s problem in the discrete case: (left) In this situation there is no Monge’s
map of µ onto ν because no function can satisfy T(x1) = y1 and T(x1) = y2 when y1 ̸= y2.
(center) The only possible Monge’s map T is T(x1) = y1 and T(x2) = y1. (right) All points
are equidistant from each other, then the solution of Monge’s problem is not unique.
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2.3 The problem of Monge-Kantorovich

A long period of sleep followed Monge’s formulation until the convex relaxation of
the Soviet mathematician Leonid Kantorovitch in the thick of World War II (Kan-
torovich, 1942). The main underlying idea behind the formulation of Kantorovich is
to consider a probabilistic coupling γ instead of a deterministic map T to describe
the displacement of the mass of µ: instead of specifying for each x, which is the des-
tination T(x) of the mass originally located at x, we specify for each pair (x, y) the
amount of mass going from x to y. A rigorous formulation of this problem is given
in the following way:

Definition 2.2 (The problem of Monge-Kantorovich) Let (X , µ) and (Y, ν) be two prob-
ability spaces, c : X × Y → R+ ∪ {+∞} a positive cost function over X × Y . The problem
of Monge-Kantorovich asks to find a joint probability measure γ ∈ Π(µ, ν) that minimizes:

(MK) inf
γ

{∫
X×Y

c(x, y) dγ(x, y) | γ ∈ Π(µ, ν)

}
, (2.2)

where Π(µ, ν) = {γ ∈ P(X × Y) | projX#γ = µ, projY#γ = ν} is the transport plans
set, constituted of all joint probability measures γ on X × Y with marginals µ and ν.

The constraints projX#γ = µ, projY#γ = ν mean that we restrict our attention to
the movements that really take mass distributed according to µ and move it onto ν.

Example 2.3 (The problem of Monge-Kantorovich between discrete measures) In
the discrete setting, when measures µ and ν are only available through discrete samples
X = {x1, ..., xn} ⊂ X and Y = {y1, ..., ym} ⊂ Y , their empirical distributions can be ex-
pressed as µ =

∑n
i=1 aiδxi and ν =

∑m
j=1 bjδyj , where a = (a1, ..., an) and b = (b1, ..., bm)

are vectors in the probability simplex
∑

n = {a ∈ Rn+ |
∑n

i=1 ai = 1} and
∑

m respectively.
The cost function only needs to be specified for every pair (xi, yj)1≤i≤n

1≤j≤m
∈ X × Y yielding

a cost matrix C ∈ Mn×m(R+). Then, the problem of Monge-Kantorovich becomes a lin-
ear program parametrized by the transportation polytope U(a, b) = {γ ∈ Mn×m(R+) |
γ1m = a and γT1n = b}, which acts as a feasible set, and the matrix C which acts as a cost
parameter:

(DMK) inf
γ∈U(a,b)

⟨γ,C⟩F , (2.3)

where ⟨., .⟩F is the Frobenius inner product, defined by ⟨γ,C⟩F = trace(γTC).

FIGURE 2.3: Continuous setting: The joint probability distribution γ is a transport plan be-
tween µ and ν (left). Discrete setting: The positive entries of the discrete transport plan γ are
displayed as blue disks with a radius proportional to the entry values (right).
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The problem of Monge-Kantorovich (MK) is much easier to handle than the origi-
nal one proposed by Monge (M) for many reasons. For example, it is clear that if
the mass splitting really occurs, then this movement cannot be described by a map
T, whereas Kantorovich’s formulation allows it since mass in x can a priori move to
different destinations y. Moreover, there always exists a transport plan γ in Π(µ, ν),
i.e. γ = µ ⊗ ν, unlike Monge’s formulation where no transport map exists for in-
stance when µ is a Dirac measure and ν is not. Furthermore, transport plans include
transport maps, since T#µ = ν implies that γ = (Id × T)#µ belongs to Π(µ, ν).
And lastly, in contrast to (M), the formulation of Kantorovich (MK) guarantees the
existence of a solution under very general assumptions as shown by the following
theorem:

Theorem 2.4 (Existence of an optimal transport plan) Let (X , µ) and (Y, ν) be two
Polish probability spaces and c : X × Y → R+ ∪ {+∞} a positive lower semi-continuous
cost function. Then, the problem of Monge-Kantorovich (MK) admits a solution.

This existence theorem does not imply that the optimal cost is finite. It might be
that all transport plans lead to an infinite total cost, i.e.

∫
X×Y c(x, y) dγ(x, y) = +∞

∀γ ∈ Π(µ, ν).

2.4 Kantorovich duality

The problem of Monge-Kantorovich (MK) is a constrained convex minimization
problem, and as such, it can be naturally paired with a dual problem called Kan-
torovich dual (KD), which is a constrained concave maximization problem, defined
as follows:

Proposition 2.5 (Kantorovich dual problem) The Kantorovich dual problem (KD) is
the following:

(KD) sup
ψ,ϕ

{∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y) | (ψ, ϕ) ∈ R(c)

}
, (2.4)

where R(c) =
{
(ψ, ϕ) ∈ L1(µ)× L1(ν) : ∀(x, y), ψ(x) + ϕ(y) ≤ c(x, y)

}
is the set of ad-

missible Kantorovich potentials.

Example 2.6 (Kantorovich dual problem between discrete measures) The discrete
Kantorovich dual problem (DKD) is the following:

(DKD) max
f,g∈R(c)

⟨f, a⟩+ ⟨g, b⟩, (2.5)

where R(c) = {(f, g) ∈ Rn × Rm : ∀(i, j) ∈ J1, nK× J1,mK, fi + gj ≤ Ci,j} is the set of
admissible Kantorovich potentials.

One can naturally wonder if the Kantorovich dual problem (KD) leads to the same
optimum as the primal Monge-Kantorovich problem (MK). To answer this ques-
tion, we need to become familiar with a fundamental concept of optimal transport
theory called cyclical monotonicity and the notion of c-concavity.

Definition 2.7 (Cyclical monotonicity) Let X ,Y be arbitrary sets and c : X × Y →
] −∞,+∞] be a function. A subset Γ ⊂ X × Y is said to be c-cyclically monotone if, for
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any N ∈ N, and any family (x1, y1), ..., (xN , yN ) of points in Γ, holds the inequality:

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1), (2.6)

with the convention yN+1 = y1. A transport plan is said to be c-cyclically monotone if it is
concentrated on a c-cyclically monotone set.

The c-cyclical monotonicity suggests that an optimal transport plan can not be im-
proved. Then, it is obvious that an optimal transport plan should be c-cyclically
monotone. The converse property is less obvious, but we will see that it holds true
under mild conditions.

Definition 2.8 (c-transform) Let X ,Y be sets, c : X × Y →] −∞,+∞], and a function
ψ : X → R ∪ {±∞}. Its c-transform is the function ψc : Y → R ∪ {±∞} defined by:

∀y ∈ Y ψc(x) = inf
x∈X

(c(x, y)− ψ(x)). (2.7)

Remark 2.9 If c = −x.y on Rn × Rn, then the c-transform coincides with the usual Leg-
endre transform.

Definition 2.10 (c-concavity) Let X ,Y be sets, and c : X ×Y →]−∞,+∞]. A function
ϕ : U → R ∪ {−∞} is said to be c-concave if it is not identically −∞, and there exists
ψ : Y → R ∪ {±∞} such that ϕ = ψc. Then its c-transform is the function ϕc defined by:

∀x ∈ X ϕc(x) = sup
y∈Y

(ϕ(y)− c(x, y)). (2.8)

Remark 2.11 If c = d is a distance on some metric space X , then a function ϕ is c-concave
if and only if it is Lipschitz continuous with Lipschitz constant less than 1. Moreover, we
have ϕc = −ϕ.

We are now ready to provide the following characterization of the optimal transport
plans:

Theorem 2.12 (Fundamental theorem of optimal transport) Let (X , µ) and (Y, ν) be
two probability spaces, c : X × Y → R+ a lower-semi continuous cost function, such that

inf
γ∈Π(µ,ν)

∫
X×Y c(x, y) dγ(x, y) < ∞. Then for any γ ∈ Π(µ, ν) the following statements

are equivalent:

1. γ is optimal

2. γ is c-cyclically monotone

3. There is a c-concave ψ such that, γ-almost surely, ψ(x) + ψc(y) = c(x, y).

A direct implication of the fundamental theorem of optimal transport is related to
Kantorovich’s duality. In fact, the equivalence between (i) and (iii) is very useful to
prove the main theorem of this section:

Theorem 2.13 (Kantorovich duality) Let (X , µ) and (Y, ν) be two Polish probability
spaces and c : X × Y → R+ ∪ {+∞} a positive lower semi-continuous cost function.
Then, strong duality holds. More precisely the dual Kantorovich problem (KD) leads to the
same optimum as the primal Monge-Kantorovich problem (MK). More formally:

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ(x, y) = sup
(ψ,ϕ)∈R(c)

∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y). (2.9)
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Remark 2.14 The discrete Kantorovich dual problem (DKD) problem leads to the same opti-
mum as the discrete primal Monge-Kantorovich problem (DMK) thanks to the strong duality
for linear programs (Bertsimas and Tsitsiklis, 1997).

2.5 Bridging Monge and Kantorovich

In light of the previous considerations, it is natural to ask under which conditions a
Monge map might exist, and what links exist between Monge and Kantorovich for-
mulations. In fact, in some cases with additional assumptions on the cost function
c, it is possible to prove that the optimal transport plan γ does not allow mass split-
ting. The mass located at x is only sent to a unique destination T(x), thus providing
a solution to the original problem of Monge (M). That is what is done by Brenier
in (Brenier, 1987). This result can be easily adapted to other costs such as strictly
convex functions of the difference x− y (Santambrogio, 2015).

Theorem 2.15 Let µ and ν be two probability measures on a compact Ω ⊂ Rd, such that µ
is absolutely continuous. Consider a cost function c(x, y) = h(x − y) where h is a strictly
convex function. Then, there exists a unique optimal transport map T and a unique optimal
transport plan γ, and T and γ are related by γ = (Id× T)#µ.

Hence, under the conditions of Theorem 2.15, an optimal Monge map exists and can
equivalently be described as an optimal transportation plan supported on its graph.
In particular, Theorem 2.15 holds when c(x, y) = ||x−y||p with p > 1. The p = 2 case
holds a particular place in the optimal transport theory, as shown by Brenier in his
seminal paper (Brenier, 1987). The major contribution of Theorem 2.16 is the unique
characterization of the transport map as the gradient of a convex function.

Theorem 2.16 Let µ and ν be two probability measures on Rd with finite moment of order
2, such that µ is absolutely continuous with respect to the Lebesgue measure, and c(x, y) =
||x−y||2. Then the problem (M) admits a unique solution, which is characterized among all
transport maps as being the gradient of a convex function φ: ∀x ∈ Rd T∗(x) = ∇φ(x).

In the previous theorem, we showed the uniqueness of the optimal transport plan
by giving an explicit expression for the optimal map. Yet, it is possible to use a more
general argument: every time that we know that any optimal transport plan γ must
be induced by a map T, then we have uniqueness of T. The proof is easy and follows
from the convexity of the optimal transport plans set.

2.6 Wasserstein distance

When X = Y is a polish metric space endowed with a distance d, a natural choice
is to use it as a cost function, e.g. c(x, y) = d(x, y)p for p ∈ [1 +∞[. Then, the
problem (MK) induces a metric between probability measures over X , called the
p-Wasserstein distance.

Definition 2.17 (Wasserstein space) Let (X , d) be a Polish metric space and let p ∈
[1,∞[. The Wasserstein space of order p is defined as:

Pp(X ) =
{
µ ∈ P(X ) |

∫
X
d(x0, x)

pdµ(x) < +∞
}
, (2.10)

where x0 ∈ X is arbitrary.
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The space Pp(X ) does not depend on the choice of the point x0. In other words,
Pp(X ) is the space of probability measures that have a finite moment of order p.

Definition 2.18 (Wasserstein distance) Let (X , d) be a Polish metric space and let p ∈
[1,∞[. For any two probability measures µ, ν in Pp(X ), the Wasserstein distance of order p
between µ and ν is defined by:

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
X 2

d(x, y)p dγ(x, y)

)1/p

, (2.11)

where Π(µ, ν) = {γ ∈ P(X 2) | projX#γ = µ, projY#γ = ν} is the transport plans set,
constituted of all joint probability measures γ on X 2 that have marginals µ and ν.

Example 2.19 (Wasserstein distance between discrete measures) Let µ =
∑n

i=1 aiδxi
and ν =

∑m
j=1 bjδyj be two discrete probability distributions on X , the Wasserstein distance

of order p between µ and ν is defined by:

Wp(µ, ν) =

(
min

γ∈U(a,b)
⟨γ,C⟩F

)1/p

, (2.12)

where U(a, b) = {γ ∈ Mn×m(R+) | γ1m = a and γT1n = b} is the transportation
polytope and C ∈ Mn×m(R+) is the matrix of pairwise distances between elements of X
and Y raised to the power p.

Remark 2.20 The distance W1 is commonly called the Kantorovich–Rubinstein distance.
Theorem 2.13 and Remark 2.11 together lead to the useful duality formula: For any µ, ν ∈
P1(X ) :

W1(µ, ν) = sup
||ψ||Lip≤1

{∫
X
ψ dµ−

∫
X
ψ dν

}
, (2.13)

where {ψ : || ψ ||Lip ≤ 1} is the set of all Lipschitz functions on (X , d) with Lipschitz
constant at most 1.

Example 2.21 Wp(δx, δy) = d(x, y). In this example, the distance does not depend on p.

Example 2.22 In the case where c(x, y) = 1x ̸=y, the Wasserstein distance between two
probability distributions is equal to their total variation distance.

The Wasserstein distanceWp enjoys a very interesting property, which is the metriz-
ability of weak convergence in Pp(X ):

Theorem 2.23 (Wasserstein distanceWp metrizes Pp(X )) Let (X , d) be a Polish met-
ric space and let p ∈ [1,∞[, then the Wasserstein Wp metrizes the weak convergence in
Pp(X ). In other words, a sequence of measure (µk)k∈N converges weakly in Pp(X ) to an-
other measure µ if and only ifWp(µk, µ)→ 0.

2.7 Special cases

Two special cases will be addressed in this section, notably, the case where µ and ν
are probability distributions on the real line R and the case when they are Gaussian
distributions in Rd. These special cases are well known to have closed-form solutions
as stated by the next theorems from (Santambrogio, 2015) and (Peyré and Cuturi,
2019) respectively.
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The statement of the closed form solution of probability measures on R requires the
following definition of cumulative distribution function and its pseudo inverse:

Definition 2.24 (Cumulative distribution function and its pseudo inverse) Let µ be
a probability measure on R, i.e. µ ∈ P(R). The cumulative distribution function Fµ : R→
[0, 1] is defined by:

∀x ∈ R Fµ(x) = µ(]−∞, x]). (2.14)

Its pseudo inverse F−1
µ : [0, 1] → R, (also called the generalized quantile function) is given

by:
∀t ∈ [0, 1] F−1

µ (t) = inf
t
{x ∈ R | Fµ(x) ≥ t}. (2.15)

Theorem 2.25 (Closed-form expression on the real-line) Let µ, ν ∈ P(R) be two prob-
ability measures on R. Consider the cost c(x, y) = h(y − x) where h : R→ R+ is a strictly
convex function. Then, the problem of Monge-Kantorovich has a unique solution given by
γ = (F−1

µ × F−1
ν )#L[0,1], where L[0,1] is the Lebesgue measure restricted to [0, 1]. In

the case where µ is atomless, then γ is supported on the map T(x) = F−1
ν (Fµ(x)), i.e.

γ = (Id × T)#µ. If h is only convex then the optimal transport plan γ is still optimal but
not necessarily unique.

For discrete measures, when c(x, y) = |x− y|p, this theorem stipulates that it is suffi-
cient to sort the support of the distributions in order to find the optimal coupling. In
the special case of discrete probability distributions with m = n and a = b = 1n/n,
this corresponds to sort x1 < x2 < ... < xn and y1 < y2 < ... < yn and to associate
x1 with y1, x2 with y2 and so on, in this case the p-Wasserstein distance has the sim-
ple formula: Wp

p (µ, ν) =
1
n

∑n
i=1|xi − yi|p. In the generic case of discrete probability

distributions with m ̸= n or a and b are arbitrary vectors in the probability simplex
Σn and Σm respectively, the previous theorem states that, after sorting the points,
the optimal plan is obtained by putting as much mass as possible from x1 to y1 and
to add the remaining mass to y2. This procedure is repeated until there is no more
mass left.

FIGURE 2.4: Real line discrete transport: uniform weights (left), non-uniform weights
(right).

The other special case of closed-form solutions that arise when probability measures
are Gaussian on Rd is provided by the following statement:

Theorem 2.26 (Closed-form expression for Gaussians) Let µ = N (mµ,Σµ) and ν =
N (mν ,Σν) be two Gaussians in Rd. Consider the cost c(x, y) = h(y − x) where h is a
strictly convex function. Let

T : x 7→ mν +A(x−mµ), (2.16)

where
A = Σ

− 1
2

µ (Σ
1
2
µΣνΣ

1
2
µ )Σ

− 1
2

µ . (2.17)
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Then T is the unique optimal solution of (M) and γ = (Id × T)#µ is the unique optimal
solution of (MK).

In particular, when c(x, y) = ||x − y||2 is the Euclidean distance on Rd, the 2-Wasserstein
distance is given by:

W2
2 (µ, ν) = ||mµ −mν ||22+B(Σµ,Σν)2, (2.18)

where B(Σµ,Σν) = tr(Σµ +Σν − 2(Σ
1
2
µΣνΣ

1
2
µ )

1
2 ) is Bures metric.

Remark 2.27 A similar result of the previous theorem exists for elliptically contoured dis-
tributions that can be seen as a generalization of Gaussians (Gelbrich, 1990). In this case,
theW2 admits also a closed form.

2.8 Entropic regularization of optimal transport

Besides the special cases in the previous section that have closed-form solutions,
solving optimal transport can be expensive to compute, even in the relatively simple
discrete setting. Indeed, as stated before, the problem of optimal transport between
two discrete probability measures µ =

∑n
i=1 aiδxi and ν =

∑m
j=1 bjδyj is a linear pro-

gram, and thus can be solved with the simplex algorithm or interior point methods
exactly in O(r3 log(r)) where r = max(n,m) (Pele and Werman, 2009), which is a
heavy computational price tag specially for large-scale machine learning. A further
limitation of optimal transport is its curse of dimensionality. In fact, considering a
probability measure µ over Rd and its empirical estimation µ̂n, the sample complex-
ity of the estimation of the Wasserstein distance is exponential in the dimension of
the ambient space. More precisely E[Wp(µ, µ̂n)] = O(n

−1
d ) (Weed and Bach, 2019),

thus the empirical distribution µ̂n becomes less and less representative as the di-
mension d of the ambient space Rd becomes large. In this section, we discuss how
entropic regularization can help to overcome these two limitations.

First introduced in (Schrödinger, 1931) in statistical physics, the entropic regulariza-
tion has received renewed attention in machine learning following (Cuturi, 2013),
who showed that Sinkhorn’s algorithm provides an efficient and scalable approxi-
mation to optimal transport. Let’s start by presenting the regularized optimal trans-
port problem and its dual form:

Definition 2.28 (The entropy-regularized optimal transport problem) Let ε > 0 be
the regularization strength. The entropy-regularized optimal transport problem is defined as:

(MKε) inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) + εH(γ|µ⊗ ν), (2.19)

where H(γ|µ⊗ ν) =
∫
X×Y log( dγ(x,y)

dµ(x)dν(y))dγ(x, y)−
∫
X×Y dγ(x, y) +

∫
X×Y dµ(x)dν(y)

is the relative entropy of the transport plan γ with respect to the product measure µ⊗ ν.

As the relative entropy H is strictly convex in its first argument, this regularization
term turns the convex problem (MK) into a strictly convex problem (MKε), and as
such, (MKε) has a unique solution.
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Definition 2.29 (The dual entropy-regularized optimal transport problem) The dual
of entropy-regularized optimal transport problem reads:

(KDε) sup
(ψ,ϕ)∈C(X )×C(Y)

∫
X
ψ(x) dµ(x)+

∫
Y
ϕ(y) dν(y)−ε

∫
X×Y

e
ψ(x)+ϕ(y)−c(x,y)

ε dµ(x)dν(y).

(2.20)

The dual entropy-regularized optimal transport problem can be rewritten as the
maximization of an expectation with respect to the product measure µ⊗ ν (Genevay
et al., 2016):

Proposition 2.30 The dual of entropy-regularized optimal transport (KDε) has the follow-
ing equivalent formulation:

sup
(ψ,ϕ)∈C(X )×C(Y)

Eµ⊗ν
[
fXYε (ψ, ϕ)

]
, (2.21)

where fxyε (ψ, ϕ) = ψ(x) + ϕ(y)− εe
ψ(x)+ϕ(y)−c(x,y)

ε .

The following result from (Genevay, 2019) further shows that strong duality holds:

Proposition 2.31 (Strong duality of entropy-regularized optimal transport problem)
The dual of entropy-regularized optimal transport problem (KDε) leads to the same optimum
as the primal entropy-regularized optimal transport problem (MKε).

Besides, the primal-dual relationship is given by:

dγ(x, y) = exp

(
ψ(x) + ϕ(y)− c(x, y)

ε

)
dµ(x)dν(y) (2.22)

and ψ,ϕ satisfy

ψ(x) = −ε log
(∫

Y
e
ϕ(y)−c(x,y)

ε dν(y)

)
µ− a.s.

ϕ(y) = −ε log
(∫

X
e
ψ(x)−c(x,y)

ε dµ(x)

)
ν − a.s.

(2.23)

Example 2.32 (Discrete entropy-regularized optimal transport problem) In the dis-
crete setting, the entropy-regularized optimal transport is defined as:

(DMKε) min
γ∈U(a,b)

⟨γ,C⟩F + εH(γ|a⊗ b), (2.24)

where H1(γ|a⊗ b) =
∑

i,j γi,j log(
γi,j
aibj

)− γi,j + aibj .

The problem (DMKε) admits the following dual:

(DKDε) max
f∈Rn,g∈Rm

⟨f, a⟩+ ⟨g, b⟩ − ε⟨ef/ε,Keg/ε⟩, (2.25)

where K = e−C/ε.

Strong duality can be proven by the general duality theorem (Karush–Kuhn–Tucker con-
ditions and Lagrangian formulation).

1Entropic regularization of optimal transport was first introduced with the following formulation
of entropy: H(γ) =

∑
i,j γi,j log((γi,j)− 1), (Cuturi, 2013).
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2.8.1 Sinkhorn’s algorithm

This section is devoted to the resolution of the discrete entropy-regularized optimal
transport problem (DMKε) using Sinkhorn’s algorithm.

Proposition 2.33 The solution of the problem (DMKε) is unique and has the form

γ = diag(u)Kdiag(v), (2.26)

for two unknown scaling variable (u, v) ∈ Rn+ × Rm+ . The variables u, v in (2.26) are linked
to f, g in (2.25) through the relations: u = e

f
ε , v = e

g
ε .

According to the previous proposition we have γ = diag(u)Kdiag(v). The variables
(u, v) must therefore satisfy the following nonlinear equations which correspond to
the mass conservation constraints γ ∈ U(a, b):

diag(u)Kdiag(v)1m = a and diag(v)KTdiag(u)1n = b, (2.27)

These two equations can be further simplified, since diag(v)1m is simply v and
diag(u)1n is simply u, thus:

u⊙ (Kv) = a and v ⊙ (KTu) = b, (2.28)

where ⊙ corresponds to entrywise multiplication of vectors.

This problem is known in the numerical analysis community as the matrix scaling
problem. An intuitive way to handle these equations is to solve them iteratively, by
modifying first u so that it satisfies the left-hand side of Equation (2.28) and then v
to satisfy its right-hand side:

u(l+1) =
a

Kv(l)
and v(l+1) =

b

KTu(l+1)
, (2.29)

These two updates define Sinkhorn’s algorithm (Cuturi, 2013) initialized with an
arbitrary positive vector v(0) = 1m. The name of the algorithm is due to Richard
Sinkhorn who first proved the convergence of updates in (2.29) (Sinkhorn, 1964).

Algorithm 2.1 Sinkhorn’s algorithm
Parameters: ε
Input : C
Compute K = e−C/ε

Initialize v(0) = 1m
while not converged do

u(l+1) ← a
Kv(l)

v(l+1) ← b
KTu(l+1)

end
return γ∗ε = diag(u)Kdiag(v)

A practical feature of Sinkhorn’s algorithm is its ease of implementation and the fact
that it can be efficiently parallelized using graphics processing units (GPUs) as noted
in (Cuturi, 2013). Regarding its complexity, (Altschuler et al., 2017) showed that for
n = m, Sinkhorn’s algorithm computes a τ -approximate solution of the original
discrete optimal transport problem in O(n2 log(n)τ−3).
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Proposition 2.34 (Impact of ε) In the limit ε → 0, the unique solution γ∗ε of (DMKε)
converges to the optimal solution with maximal entropy within the set of all optimal solutions
of the Kantorovich problem (DMK). In the limit ε→ +∞, γ∗ε converges to µ⊗ ν.

The previous proposition states that for a small regularization ε, the solution con-
verges to the maximum entropy unregularized optimal transport plan, and for a
large regularization ε, the solution converges to the transport plan with maximal en-
tropy, namely the joint probability µ⊗ ν. Figures 2.5 and 2.6 show visually the effect
of these two convergences.

FIGURE 2.5: Impact of ε on the optimal transport plan γ∗ε between two one-dimensional
probability distributions. As ε increases the transport plan tends to blur and converges to
the product µ⊗ ν.

FIGURE 2.6: Impact of ε on the optimal transport plan γ∗ε between two discrete probability
distributions. As ε increases the transport plan becomes more and more dense.

From a practical point of view Sinkhorn’s algorithm suffers from numerical stability
issues when ε → 0. In fact, when the regularization parameter ε is small compared
to the entries of the cost matrix C, the kernel K = e−C/ε becomes too negligible to
be stored in memory as positive numbers and becomes instead null. This can then
result in a matrix product Kv or KTu with ever smaller entries that become null and
result in a division by 0 in the Sinkhorn update of Equation (2.29). Such issues can
be partly resolved by carrying out computations on the multipliers u and v in the
log domain. To this end (Schmitzer, 2019) suggest a log-sum-exp stabilization trick
whose iterations turn out to be mathematically equivalent to the original iterations
while being stable for arbitrary ε > 0. The downside is that it requires nm computa-
tions of exp at each step.
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Furthermore, Sinkhorn’s algorithm only copes with discrete measures. Thus, tak-
ing advantage of the formulation of the dual entropy-regularized optimal trans-
port problem as the maximization of an expectation, outlined in Proposition 2.30,
(Genevay et al., 2016) proposed to use stochastic optimization tools to cope with
large-scale optimal transport problems and to handle discrete or continuous distri-
butions. In fact, Stochastic Averaged Gradient (SAG) can be used to compute a solu-
tion in the discrete case, each iteration of this algorithm costsO(r) operations where
r = max(n,m), which makes it scale better in large-scale problems than Sinkhorn’s
algorithm, while still enjoying a convergence rate of O(1/k), k being the number of
iterations. The semi-discrete case (when µ is an arbitrary measure and ν is a discrete
measure) can be solved using Averaged SGD with the convergence rate O(1/

√
k).

In the continuous setting, the problem is infinite-dimensional so it can not be solved
using SGD anymore. (Genevay et al., 2016) proposed then to use a kernel expansion
of the dual variables in a reproducing kernel Hilbert space (RKHS) and solve the
problem using a kernel SGD with a quadratic complexity O(k2).

2.8.2 Sample complexity

Let consider the problem of Monge-Kantorovich (MK), and letWc be the total cost:

Wc(µ, ν) = inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ(x, y) (2.30)

and let consider also the entropy-regularized optimal transport problem (MKε), and
letWc,ε be the regularized total cost:

Wc,ε(µ, ν) = inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) + εH(γ|µ⊗ ν). (2.31)

In order to cancel the biasWc,ε(µ, µ) ̸= 0 introduced by the entropic regularization,
(Genevay et al., 2018) introduced the following corrected regularized divergence,
called Sinkhorn divergence SDc,ε, defined as follows:

Definition 2.35 (Sinkhorn divergence) The Sinkhorn divergence SDc,ε between two prob-
ability measures µ, ν is defined as:

SDc,ε(µ, ν) =Wc,ε(µ, ν)−
1

2
Wc,ε(µ, µ)−

1

2
Wc,ε(ν, ν). (2.32)

Far from simply correcting the bias of Wc,ε(µ, µ), the Sinkhorn divergence also ap-
pears as an interpolating discrepancy between Wasserstein distance and Maximum
Mean Discrepancy (MMD) (Genevay et al., 2018):

Theorem 2.36 (Asymptotics of Sinkhorn Divergence with respect to ε) The Sinkhorn
Divergence SDc,ε has the following asymptotic behavior in ε:

1. as ε→ 0, SDc,ε(µ, ν)→Wc(µ, ν)

2. as ε→ +∞, SDc,ε(µ, ν)→ 1
2MMD2

−c(µ, ν)

When −c is a positive definite kernel, MMD−c is the MMD with the kernel that is minus
the cost used in the optimal transport problem.

(Feydy et al., 2019) then proved that the Sinkhorn divergence SDc,ε defines a suitable
loss function:
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Theorem 2.37 Let c(x, y) = ||x − y||p, p ≥ 1. Then for all compactly supported µ, ν ∈
P(Rd), SDc,ε(µ, ν) defines a symmetric positive definite divergence, which is convex in µ
or ν (but not jointly), and metrizes weak convergence.

In statistical contexts, direct access to a distribution of interest µ is generally not
available, instead, we have only access to i.i.d. samples from µ, or, equivalently, to
an empirical distribution µ̂n. For µ̂n to serve as a reasonable proxy to µ, we should
insist that µ̂n and µ are close in the Wasserstein sense. In the large-n limit, this is
indeed the case: if (X , d) is a polish metric space, then for any p ∈ [1,+∞[, we have
Wp(µ, µ̂n) → 0 µ - a.s. thanks to the weak convergence of µ̂n to µ almost surely
(Varadarajan, 1958) and the metrization of weak convergence by the Wasserstein
distance (Villani, 2009). This result raises the question of quantifying the speed or
rate of convergence of µ̂n to µ in Wp distance. This rate is often called the sample
complexity ofWp. Unfortunately, when X = Rd, the convergence of µ̂n to µ exhibits
the so-called curse of dimensionality (Bellman, 1961), since the convergence rate is
E[Wp(µ, µ̂n)] = O(n−

1
d ) (Dudley, 1969). Thus, in the high-dimensional regime, the

empirical distribution µ̂n becomes less and less representative as d becomes large,
so that the convergence of µ̂n to µ in Wasserstein distance is slow. This notion of
sample complexity is crucial in machine learning, as bad sample complexity implies
overfitting and high gradient variance for parameter estimation. Sample complexity
of optimal transport appears to be another major bottleneck for the use of optimal
transport in high-dimensional machine learning problems.

A remedy to this problem lies, again, in entropic regularization. Indeed, (Genevay
et al., 2019) showed that SDc,ε benefits from the same sample complexity as MMD,
scaling in 1/

√
n but with a constant that depends on the inverse of the regularization

parameter:
E[SDc,ε(µ, µ̂n)] ≤ F(ε)O(n−

1
2 ). (2.33)

2.9 Wasserstein barycenter

Wasserstein barycenter has become popular due to its ability to provide a natural
extension of the notion of averaging points to the notion of averaging point clouds.
Importantly, it naturally inherits the ability of optimal transport to capture the ge-
ometric properties of the data. This section is dedicated to the presentation of this
interesting concept.

Definition 2.38 (Wasserstein Barycenter) Given a set (νi)i∈[[1,n]] of probability measures
defined on some space X and a stochastic vector λ ∈ Σn, a Wasserstein barycenter µ̂ of
(νi)i∈[[1,n]] is a minimizer of the following variational problem:

inf
µ∈Pp(X )

n∑
i=1

λiWp
p (µ, νi). (2.34)

Wasserstein barycenter is a special case of the so-called Fréchet mean or Karcher
mean (Karcher, 2014) in the metric space (Pp(X ),Wp). In a general metric space,
finding Fréchet mean is usually a difficult nonconvex optimization problem. For-
tunately, in the case of Wasserstein distance, the problem can be formulated as a
convex program for which existence can be proved as we show in the following
special cases:
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FIGURE 2.7: The Wasserstein barycenter µ̂ of two one-dimensional probability distributions
ν1 and ν2.

2.9.1 Special cases

In the case where X = Rd and c(x, y) = ||x − y||2, (Agueh and Carlier, 2011) show
that the problem of Wasserstein barycenter is convex and if one of the input mea-
sures has a density, then this barycenter is unique.

Also in the specific case, where X = Rd and c(x, y) = ||x − y||2, the barycenter
of Gaussian distributions νi = N (mi,Σi), is itself a Gaussian N (m∗,Σ∗), where
m∗ =

∑n
i=1 λimi and Σ∗ is the minimizer of Σ 7→

∑n
i=1 λiB(Σ,Σi)2, where B is

the Bure metric.

For one-dimensional distributions, the Wasserstein barycenter can be computed al-
most in closed form. The simplest case is for empirical measures with m points,
i.e. µi = 1

m

∑m
j=1 δyi,j , where the points are assumed to be sorted yi,1 ≤ yi,2 ≤

... ≤ yi,m. Then, the barycenter µλ is also an empirical measure on m points: µλ =
1
m

∑m
j=1 δxλ,j , where xλ,j = Aλ(xi,j)j with Aλ is the barycentric map defined by

Aλ(xi)i = argmin
x∈R

∑n
i=1 λi|x− xi|p.

The last special case we present is when n = 2 where X = Rd and c(x, y) = ||x−y||2.
This setting corresponds to the so-called McCann interpolant (McCann, 1997), where
one wants to find:

inf
µ∈Pp(Rd)

(1− t)W2
2 (µ, ν1) + tW2

2 (µ, ν2), (2.35)

with t ∈ [0, 1] and ν1 is regular with respect to Lebesgue measure. Using Brenier’s
theorem we know that there exists a unique push-forward such that T#ν1 = ν2, in
this case the barycenter is unique and obtained with µt = ((1 − t)Id + tT)#ν1. In
practice, when the probability measures ν1, ν2 are discrete with respectively n and
m atoms this interpolant can be computed by µt =

∑n
i=1

∑m
j=1 γ

∗
i,jδ(1−t)xi+tyj where

γ∗ is an optimal transport plan between ν1, ν2.

2.9.2 Numerical scheme of Wasserstein barycenter

Despite the special cases above, it is difficult in practice to find a solution of the
Wasserstein barycenter problem in the general framework. In what follows, we de-
tail a solution for the scenario where the input measures are discrete. More formally
let (νi)i∈[[1,n]] be discrete probability measures with weights bi ∈ Σni and that are
supported on Yi = (yiq)q∈[[1,ni]] ∈ Mni×d(R), for each i ∈ [[1, n]]. Instead of looking at
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all possible discrete probability measures, we can search a k atoms probability mea-
sure i.e. of the form µ̂ =

∑k
j=1 ajδxj where X = (xj)j∈[[1,k]] ∈ Mk×d(R) and a ∈ Σk.

Overall the resulting problem is:

min
a∈Σk,X∈Mk×d(R)
∀i∈[[1,n]], γi∈U(a,bi)

n∑
i=1

λi⟨γi, CXYi⟩F , (2.36)

where CXYi ∈Mk×ni(R+) is the matrix defined by all pair to pair costs between the
points of the barycenter µ̂ and νi, i.e. CXYi = (c(xj , y

i
q))j,q∈[[1,k]]×[[1,ni]].

In (Cuturi and Doucet, 2014) authors proposed to solve the problem (2.36) using
Block Coordinate Descent (BCD) that alternates between minimizing with respect to
a,X and γi while keeping others fixed:

1. The minimization with respect to all γi with a,X fixed involves solving n dis-
crete optimal transport problems.

2. The minimization with respect toX with a, γi fixed can be performed in closed-
form in the case X = Rd and c(x, y) = ||x− y||22:

X = Diag

(
1

n

)( n∑
i=1

λiγiYi

)
(2.37)

3. The minimization with respect to the weight a with X, γi fixed relies on the
optimal dual variables of all optimal transport sub-problems of step (1) and
applies a projected subgradient minimization with respect to a.

These three steps are repeated until convergence of X and a. The major drawback
of this approach is its computational complexity which is driven by the calculation
of many optimal transport problems. When the support X is fixed, the problem
reduces to:

min
a∈Σk

∀i∈[[1,n]], γi∈U(a,bi)

n∑
i=1

λi⟨γi, CXYi⟩F (2.38)

We can use regularized optimal transport to obtain fast and smooth approximations
of the original barycenter problem as given by:

n∑
i=1

λi⟨γi, CXYi⟩F + εH(γ|a⊗ bi) (2.39)

The resulting problem is a smooth convex minimization problem, which can be tack-
led using gradient descent (Cuturi and Doucet, 2014).

2.10 Optimal transport extensions

In this section, we discuss briefly other variants of optimal transport. The first one is
called Sliced Wasserstein distance, which is an alternative optimal transport distance
obtained by computing infinitely many linear projections of the high-dimensional
distribution to one-dimensional distributions and then computing the average of the
Wasserstein distance between these one-dimensional representations. The second
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variant is the Gromov-Wasserstein distance, which allows comparing measures in
different metric spaces. The third variant is the unbalanced optimal transport that
allows the comparison of probability distributions that do not share the same mass.

2.10.1 Sliced Wasserstein distance

Besides entropic regularization of optimal transport, there are many other methods
of approximating the optimal transport plan. One of them is based on the closed-
form expression of optimal transport for probability distributions over the real line
resulting on the so-called Sliced Wasserstein distance (SW) (Rabin et al., 2011). Con-
sidering µ, ν ∈ P(Rd), the main insight is to average the Wasserstein distance be-
tween projections on sampled one-dimensional directions. Specifically:

Definition 2.39 (Sliced Wasserstein Distance) Let µ, ν ∈ P(Rd) and let p ∈ [1,∞[.
The p-Sliced Wasserstein SWp is given by:

SWp
p(µ, ν) =

∫
Sd
Wp
p (Pθ#µ, Pθ#ν)dθ (2.40)

where Sd = {θ ∈ Rd : ||θ|| = 1} is the d-dimensional sphere, and Pθ : x ∈ Rd → R is the
projection.

SW enjoys several interesting properties. First SW2 induces a similar topology than
W2: it defines a distance on Pp(Rd) (Bonnotte, 2013) that metrizes the weak conver-
gence (Nadjahi et al., 2019) and which is equivalent to the Wasserstein distance for
measures with compact supports (Nadjahi et al., 2020). Secondly, from a practical
side, the overall complexity of computing SW is O(n log(n)).

2.10.2 Gromov–Wasserstein distance

The Wasserstein distance provides an efficient way to compare probability measures
when a distance is defined between their supports. Unfortunately, in the case where
the measures are supported on samples living in different metric spaces, the def-
inition of a meaningful ground distance is not straightforward, thus, the Wasser-
stein distance can no longer be defined. In this section, we present the Gromov-
Wasserstein (GW) distance (Mémoli, 2011), which can compare measures lying in
incomparable metric spaces by comparing intra-domain distances.

Before defining Gromov-Wasserstein distance, we need the following definitions
from (Sturm, 2012):

Definition 2.40 (Metric measure space) A metric measure space (mm-space) is a triple
(X , dX , µ) where (X , dX ) is a polish metric space and µ is a Borel probability measure in X .

Definition 2.41 (Isometric metric measure spaces) Two metric measure spaces (X , dX ,
µ) and (Y, dY , ν) are called isometric if there exists a bijection φ : X → Y such that
φ#µ = ν and dY(φ(x), φ(x′)) = dX (x, x

′).

Definition 2.42 (Gromov-Wasserstein distance) Let (X , dX , µ), (Y, dY , ν) be two mea-
sure metric spaces and let p ∈ [1,∞[, one defines:

GWp((µ, dX ), (ν, dY)) =

(
inf

γ∈Π(µ,ν)

∫
X 2×Y2

|dX (x, x′)− dY(y, y′)|p dγ(x, y)dγ(x′, y′)
)1/p

.

(2.41)
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GWp defines a distance between metric measure spaces up to isometries, called the Gromov-
Wasserstein distance of order p.

Example 2.43 (Gromov-Wasserstein distance between discrete measures) Let consi-
der µ =

∑n
i=1 aiδxi and ν =

∑m
j=1 bjδyj two discrete probability measures over (X , dX )

and (Y, dY) respectively. Let p ∈ [1,∞[ and let C1, C2 be the matrices of pair-to-pair
distances inside each space, i.e. ∀i, i′ ∈ [[1, n]], C1(i, i

′) = dX (xi, xi′) and ∀j, j′ ∈
[[1,m]], C2(j, j

′) = dY(yj , yj′). Then the p-Gromov-Wasserstein distance is given by:

GWp((µ,C1), (ν, C2)) =

 inf
γ∈U(a,b)

∑
i,j,i′,j′

|C1(i, i
′)− C2(j, j

′)|p γi,jγi′,j′

1/p

. (2.42)

FIGURE 2.8: Gromov-Wasserstein distance allows to compare two different metric measure
spaces. The resulting coupling tends to associate pairs of points with similar distances within
each pair: the more similar dX (xi, xi′) is to dY(yj , yj′), the stronger the transport coefficients
γi,j and γi′,j′ are.

The Gromov-Wasserstein distance in (2.42) is challenging to compute, as it requires
solving a nonconvex quadratic program that is NP-hard (Peyré et al., 2016). An
entropic regularization has been proposed to reduce this computational burden of
Gromov-Wasserstein (Peyré et al., 2016), and a Sinkhorn-like algorithm can also be
adapted to the entropy-regularized Gromov-Wasserstein problem. More recently, a
sliced variant has been introduced in (Titouan et al., 2019) in the case of the specific
squared Euclidean ground cost.

2.10.3 Unbalanced optimal transport

Due to the mass conservation constraint, optimal transport can not compare mea-
sures with different total masses. Unbalanced optimal transport is a generalization
that relaxes the conservation of mass constraints by replacing them with penalties.

First, let us give a preliminary definition (Csiszár, 1975) necessary for the statement
of unbalanced optimal transport formulation:

Definition 2.44 (φ-divergence) Let φ be a convex, lower semi-continuous function such
that φ(1) = 0. The φ-divergence between probability measures µ and ν is defined by:

Dφ(µ|ν) =
∫
X
φ(
dµ

dν
(x))dν(x) + φ∞µ

⊥(X ), (2.43)



2.11. Optimal transport toolboxes 45

where φ∞ = lim
x→+∞

φ(x)
x and µ⊥(X ) denotes the mass of the part of µ that is not absolutely

continuous with respect to ν in the Lebesgue’s decomposition, i.e. µ = dµ
dν (x)ν + µ⊥.

Example 2.45 (Examples of φ-divergence) Kullback-Leibler KL, Jensen-Shannon JS,
Total Variation TV , and Hellinger H2 are examples of φ-divergence.

Definition 2.46 (Unbalanced optimal transport) Let µ ∈M+(X ) and ν ∈M+(Y) be
two positive measures. Unbalanced Optimal Transport is defined as the following minimiza-
tion problem

(UOT ) inf
γ∈M+(X×Y)

∫
X×Y

c(x, y)dγ(x, y)+τDφ(projX#γ|µ)+τDφ(projY#γ|ν) (2.44)

where τ is the marginal penalization that controls how much mass variations are penalized
as opposed to transportation of the mass.

Note that there is no constraint on the transport plan besides positivity: it is not re-
quired to have marginals equal to µ and ν nor to have mass 1.

Regarding the metric properties of unbalanced optimal transport, we have the fol-
lowing theorem:

Theorem 2.47 Consider the square Euclidean ground cost c(x, y) = ||x−y||2 and Kullback-
Leibler divergenceKL, then the unbalanced optimal transport cost is the Gaussian-Hellinger
distance, which is a distance on P(Rd).

Finally, an unbalanced variant of the Gromov-Wasserstein distance was proposed
and studied in (Séjourné et al., 2021), and it is possible to define an entropic extension
of unbalanced optimal transport that is computable via a generalized Sinkhorn’s
algorithm (Chizat et al., 2018).

2.11 Optimal transport toolboxes

It is a custom for optimal transport papers to be accompanied by their open-source
solvers. However, most of them are either outdated or not currently maintained.
Thankfully, there are many good open-source optimal transport toolboxes, such as
OTT, OTJulia, GeomLoss and OTT-JAX. But, the first reference remains undoubt-
edly POT (Flamary et al., 2021), which is an optimal transport toolbox written in
Python, that has contributed considerably to the democratization of optimal trans-
port in the machine learning community.

Bibliographical notes

The impressive book of the Fields Medalist Villani is definitely the Bible of optimal
transport theory. For a general introduction to this theory with a particular focus
on connections with different fields of applied mathematics, Santambrogio’s book
remains the cornerstone. While the most complete reference about computational
aspects of optimal transport is the excellent book by Peyré and Cuturi. The recent
book by the Fields Medalist Figalli and Glaudo provides on its part a gentle intro-
duction to this theory and can serve as a starting point for exploring the beautiful
world of optimal transport.
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We have on this earth what makes life worth living:
April’s recurrence,
the aroma of bread at dawn,
a woman’s opinion of men,
the writings of Aeschylus,
love’s beginnings,
grass on a stone,
mothers standing on a flute’s thread
and the invader’s fear of memories.

Mahmoud Darwich

3.1 Domain adaptation: simulating human brain flexibility
to environments change

If an image classifier was trained on photo images, would it work on sketch images?
Can an epileptic seizure detector trained using one patient’s electroencephalogram
data diagnose another patient’s brain activity? What if a vehicle detector trained us-
ing daytime images is tested in nighttime images? Is it possible to deploy a seman-
tic segmentation model trained using postmortem imaging during intra-operative
surgery? Answers to these questions lie on the ability of machine learning models to
deal with the common problem of distributional shift between training and test data.

Most supervised learning algorithms strongly rely on an over-simplified assump-
tion, that is, the training and test data are independent and identically distributed
(i.i.d.), while distributional shift scenarios are commonly encountered in practice. As
a consequence, a traditional learning model will typically suffer significant perfor-
mance drops on a test sample drawn from a different distribution than the training
sample. This performance drop does not even spare deep learning models that have
been seriously hampered in front of this shift as revealed by the studies conducted
in (Hendrycks and Dietterich, 2018; Recht et al., 2019).

Statistical learning theory, for its part, guarantees that a model’s empirical risk is
close to its true risk under the standard assumption that the training and test data
are drawn independently from the same probability distribution, but this prolific
theoretical machinery stands on the sidelines when this assumption is violated, and
manifestly fails to establish generalization bounds of a learning model built in a set-
ting that does not preserve the i.i.d. assumption.

This dual challenge, both theoretical and algorithmic, has promoted the rise of do-
main adaptation, a new sub-field of statistical learning theory that takes into account
the shift between training and test data distributions.

This chapter is dedicated to the presentation of theoretical and algorithmic advances
in domain adaptation. For the sake of clarity, we start by defining notions that are
needed to conceptualize the supervised learning problem and then we investigate
it theoretically through statistical learning theory. Subsequently, we formally define
the problem of domain adaptation and we further cover in an exhaustive manner its
theoretical guarantees. Thereafter, we exhibit the most relevant domain adaptation
algorithms that were proposed in the literature.
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3.2 Statistical learning theory

Supervised learning is arguably the most widespread task of machine learning and
has enjoyed much success on a broad spectrum of application domains (Kotsiantis
et al., 2007). In this section, we introduce the usual supervised learning setting and
the different theoretical guarantees based on the concepts of Vapnik-Chervonenkis
dimension (Vapnik, 2006; Vapnik and Chervonenkis, 2015) and Rademacher com-
plexity (Koltchinskii and Panchenko, 2000), those from the more recent algorithmic
stability (Bousquet and Elisseeff, 2002) and algorithmic robustness (Xu and Mannor,
2012) frameworks and finally the generalization bounds related to the PAC-Bayesian
theory (McAllester, 1998).

3.2.1 Preliminary definitions

We denote by X the input space, which is the set of all possible samples, and by
Y the label space composed of all possible output values. In the remainder of the
manuscript, we will focus on the most popular setting X ⊂ Rd, where d is the num-
ber of features describing each sample. As for the output values, we will consider
the classification task 1, where Y is a discrete finite set Y = {C1, ..., Ck} and k ≥ 2 is
the number of candidate classes.

We assume that samples are independently and identically distributed (i.i.d.) ac-
cording to some fixed but unknown joint probability distribution D over X × Y .
In practice, the joint distribution D is observed only through a finite training set
S = {(xi, yi)}mi=1 ∼ (D)m composed of m samples drawn i.i.d. from D.

We further use H = {h | h : X → Y} to denote a predetermined possible infi-
nite set called hypothesis space that consists of functions h representing a possible
deterministic rule of how the output values are generated from the input observa-
tions. These functions h are usually called hypothesis, or more specifically classifiers
or regressors, depending on the nature of Y .

To evaluate the performance of a given hypothesis h, the conventional approach
is to use a function l : Y × Y → R+ quantifying the disagreement between the value
of h(x) and the observed output y. In other words, this function models the loss sus-
tained by hwhen predicting the value of y as h(x), hence the name loss function for l.

The most natural loss function is the 0 − 1 loss, l0−1 : Y × Y → {0, 1}, which is
defined for a training example (x, y) as:

l0−1(h(x), y) =

{
1, ifh(x) ̸= y ,
0, otherwise.

(3.1)

However, the minimization of the 0− 1 loss function is an NP-hard problem (Arora
et al., 1997) and thus other surrogate loss functions should be considered to approx-
imate it. The best proxy to this discontinuous nonconvex function is the hinge loss
(Ben-David et al., 2012) defined for a given pair (x, y) by:

lhinge(h(x), y) = max (0, 1− yh(x)) . (3.2)

1For regression, Y is a continuously infinite subset of Rk, where k ∈ N∗ is the dimension of the
output space.
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Another loss function often used in practice that extends the 0− 1 loss to the case of
real values is the linear loss, llin : R× R→ [0, 1], defined by:

llin(h(x), y) =
1

2
(1− yh(x)) . (3.3)

FIGURE 3.1: Illustration of the 0− 1 loss, the hinge loss and the linear loss.

The aggregation of the losses of single samples to the entire dataset is generally
undertaken by its expectation over the distribution D, known as the true risk.

Definition 3.1 (True risk) Given a hypothesis h ∈ H, a joint probability distribution D,
and a loss function l, the true risk of h over D is:

ϵD(h) = E
(x,y)∼D

l(h(x), y). (3.4)

The calculation of the true risk of a hypothesis h ∈ H is not possible since the gener-
ating distribution D is unknown. However, we can measure the empirical risk of a
hypothesis on the training set S.

Definition 3.2 (Empirical risk) Given a loss function l and a training set S = {(xi, yi)}mi=1,
where each example is drawn i.i.d. from the joint distributionD, the empirical risk of a given
hypothesis h ∈ H is defined as:

ϵD̂(h) =
1

m

m∑
i=1

l(h(xi), yi). (3.5)

where D̂ = 1
m

∑m
i=1 δ(xi,yi) is the empirical distribution associated to the training set S.

3.2.2 No-free lunch theorem

The i.i.d. assumption involves that each sample brings new information that is inde-
pendent from other previously seen samples. This may lead to the belief in the ex-
istence of a universal learner returning a hypothesis that approaches the perfect hy-
pothesis more and more as the sample size increases. However, this belief is wrong,
since any learner can exhibit an arbitrary bad behavior on a set of finite size. This
assertion is usually formalized by the "No-free lunch" theorem (Shalev-Shwartz and
Ben-David, 2014) that can be stated as follows.
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Theorem 3.3 (No-free lunch) LetA be any learning algorithm for the task of binary clas-
sification with respect to the 0 − 1 loss over a space X . Let m be any number smaller than
|X |
2 representing a training set size. Then, there exists a distribution D over X ×{0, 1} such

that:

1. there exists a function h : X → {0, 1} with ϵD(h) = 0,

2. with probability of at least 1
7 over the random choice of S ∼ (D)m, we have that

ϵD(A(S)) ≥ 1
8 .

As stated earlier, this theorem indicates that for every learner, there exists a task on
which it fails, even though that task can be successfully learned by another learner.
In other words, there is no universal learner that succeeds on all tasks. Therefore,
each learner must be designed for a specific task using prior knowledge about that
task in order to succeed, and such prior knowledge can be expressed by restricting
the hypothesis space. We present here several strategies that can be employed to get
a low risk hypothesis, by selecting a good hypothesis space and restricting this latter
to have a reasonable complexity.

3.2.3 Risk minimizing strategies

A number of well-known strategies allowing to find a hypothesis with good gener-
alization capacities and low risk, namely:

3.2.3.1 Empirical risk minimization

Following the law of large numbers, the empirical risk converges to the true risk
when the number of available samples tends to infinity and thus provides a good
proxy for the latter. Therefore, this proposes to look for a hypothesis minimizing the
empirical risk:

h∗ = argmin
h∈H

ϵD̂(h). (3.6)

and hope thatHwas constrained beforehand to a reasonable class of functions using
some a priori knowledge about the learning problem.

Nevertheless, when this knowledge is not available, this strategy may be prone to a
serious shortcoming related to overfitting, where the resulting hypothesis h can per-
fectly fit the observed set S while performing poorly on the underlying distribution
D. This phenomenon is reflected by a high empirical risk of h on a set S′ ̸= S gen-
erated from D that was not employed for learning. The overfitting can be attributed
to one of the two most usual factors:

• The set S may not be sufficiently representative of the unknown distribution
D, this may occur when S is not large enough or when the labels are noisy, and
thus collecting a larger amount of samples helps to overcome this nuisance.

• Although S is large, overfitting may arise due to an excessive richness ofH, im-
ploding that a slight change in the dataset due, for example, to altering a few
learning samples, may change significantly the learned hypothesis. Conse-
quently, the performance of h differs considerably for different samples drawn
from D, which suggests that the performance on the set S cannot be trusted as
a gauge of the performance on the entire distribution. For this reason, overfit-
ting is also known as a high variance or high complexity problem.
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FIGURE 3.2: Illustration of overfitting, underfitting and good fitting. (left) the model is
underfitted and does not properly capture the true behavior of the true distribution function.
(middle) a good model that follows the true distribution of the samples. (right) the model is
overfitted and tries to follow perfectly the points of the available samples.

To prevent overfitting, one needs to collect sufficient samples and somehow pre-
vent the hypothesis under consideration from being excessively flexible. While the
first point concerns the data gathering process itself, the second can be attained by
enforcing some restrictions on the flexibility of the considered hypothesis space H.
This is the motivation behind the following two learning strategies.

3.2.3.2 Structural risk minimization

Originally introduced in (Vapnik, 1991), the structural risk minimization aims at
minimizing the empirical risk while penalizing the structure of the considered hy-
pothesis space based on its complexity.

Actually, as defining the hypothesis space beforehand using a priori knowledge is
generally quite hard, one may rather consider a possibly infinite set of embedded
hypothesis spaces

{Hi | ∀i ∈ I,Hi ⊂ Hi+1}, (3.7)

and a penalization pen(.) applied to the hypothesis spaceHi. pen(.) is an increasing
function for set inclusion, which implies that pen(Hi) ≤ pen(Hi+1).
More formally, the structural risk minimization consists in finding:

h∗ = argmin
h∈Hi,i∈I

ϵD̂(h) + pen(Hi). (3.8)

Consequently, the minimum risk is no longer a decreasing function of the chosen
hypothesis space for set inclusion, and its choice relies on a trade-off between the
complexity ofHi and the empirical risk value.

3.2.3.3 Regularized risk minimization

This strategy introduces a trade-off between searching for a hypothesis with a low
empirical risk and high generalization capacities by penalizing the hypothesis func-
tion itself via a regularizer reg(.) which penalizes excessively flexible hypothesis:

h∗ = argmin
h∈H

ϵD̂(h) + λ.reg(h). (3.9)
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where λ is a positive parameter controlling the trade-off between the empirical risk
minimization and the regularization strength. This approach is by far the most used
risk minimizing strategy, at least when it comes to algorithmic implementations.

3.2.4 Generalization bounds

Statistical learning theory (Vapnik, 1999) yields conditions ensuring the convergence
of the empirical risk to the true risk for a given hypothesis space. These results are
referred to as generalization bounds, and they are commonly stated in the form of
probably approximately correct (PAC) bounds (Valiant, 1984) that have the following
form:

P
S∼Dm

{
|ϵD̂(h)− ϵD(h)| ≤ ε

}
≥ 1− δ, (3.10)

where ε > 0 and δ ∈ (0, 1]. This statement basically indicates that we aim to upper-
bound the gap between the true risk and its estimated counterpart by the least pos-
sible value of ε and with a high probability over the random choice of the learning
set S. The major concern is then to understand whether ϵD̂(h) converges to ϵlD(h)
with an increasing size of the training set, and what is the rate of this convergence.
We now present a number of theoretical frameworks that have been advanced in the
literature to demonstrate the various ingredients on which this speed may depend.

3.2.4.1 Vapnik-Chervonenkis bounds

Vapnik-Charvonenkis (VC) bounds (Vapnik, 1971) are based on the original quan-
tification of the complexity of a given hypothesis space. This concept of complexity
is captured by the famous VC dimension.

The VC dimension is a purely combinatorial notion based on the concepts of di-
chotomy and of shattering.

Definition 3.4 (Dichotomy) Given a binary hypothesis space H, a dichotomy of a subset
X ′ ⊂ X is one of the possible ways of labeling the samples of X ′ using a hypothesis inH.

Definition 3.5 (Growth function) The growth function ΠH : N → N for a hypothesis
spaceH is defined by:

∀m ∈ N, ΠH(m) = max
{x1,...,xm}⊆X

|{(h(x1), ..., h(xm)) : h ∈ H}|. (3.11)

Thus, ΠH(m) is the maximum number of dichotomies for m samples using hypothesis inH.

Definition 3.6 (Shattering) A set X ′ of m ≥ 1 samples is said to be shattered by a binary
hypothesis space H when H realizes all possible dichotomies of X ′, that is when ΠH(m) =
2m.

Definition 3.7 (VC dimension) The Vapnik-Chervonenkis (VC) dimension of a binary
hypothesis space H is the cardinality of the largest subset X ′ ⊂ X that can be labeled in all
of the possible ways by hypothesis fromH. More formally, we have:

VC(H) = max
X ′⊆X

{|X ′| : ΠH(|X ′|) = 2|X
′|}. (3.12)

The VC dimension is a measure of the richness of the hypothesis space H and cap-
tures from which cardinalityH stops behaving like functions from YX , as these latter
can label any finite set X ′ ⊆ X in all of the possible 2|X

′| ways.
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FIGURE 3.3: Illustration of the idea behind VC dimension. Here, half-planes in Rd with
d = 2 can correctly classify at most three points for all possible labelings. The VC dimension
is then 2 + 1.

The following theorem uses the VC dimension of a hypothesis space to upper-bound
the gap between the true and the empirical risk for a given loss function.

Theorem 3.8 Let X be an input space, Y = {−1,+1} the label space, and D their joint
distribution. Let S be a finite sample of size m drawn i.i.d. from D, and H be a hypothesis
space of VC dimension VC(H). Then for any δ ∈ (0, 1] with probability of at least 1 − δ
over the random choice of the training sample S ∼ (D)m, the following holds:

∀h ∈ H, ϵD(h) ≤ ϵD̂(h) +

√
4

m

(
VC(H) ln 2em

VC(H)
+ ln

4

δ

)
. (3.13)

When VC(H) is known, the right hand-side of this inequality can be calculated ex-
plicitly. In general, this bound indicates that for a certain confidence level given by
1 − δ, the empirical risk of a hypothesis approaches its real value when m increases
and this convergence is even faster forH with low VC dimension.

3.2.4.2 Rademacher bounds

Intuitively, the Rademacher complexity quantifies the ability of a given hypothesis
space to withstand noise that potentially could be present in the data. This, in turn,
was shown to lead to more accurate bounds than those based on the VC dimension
(Koltchinskii and Panchenko, 2000). To present the Rademacher bounds, we first
provide a definition of a Rademacher variable.

Definition 3.9 (Rademacher variable) A random variable κ is defined as:

κ =

{
1, with probability 1

2 ,
−1, otherwise. (3.14)

is called the Rademacher variable.

From this definition, a Rademacher variable defines a random binary labeling as
it takes values −1 and 1 with equal probability and allows the introduction of the
Rademacher complexity for an unlabeled sample of size m, as follows.
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Definition 3.10 (Empirical Rademacher complexity) For a given hypothesis space H
and a given unlabeled set S = {(xi)}mi=1, the empirical Rademacher complexity ofH associ-
ated to S is defined as follows:

RS(H) = E
κ

[
sup
h∈H

2

m

m∑
i=1

κih(xi)

]
, (3.15)

where κ is a vector of m independent Rademacher variables.

For a set S, the empirical Rademacher complexityRS(H) measures the ability of hy-
pothesis fromH to correlate with random noise defined by the Rademacher random
variables. If the correlation is high, then the hypothesis are too flexible and may lead
to overfitting.

Definition 3.11 (Rademacher complexity) The Rademacher complexity of a give hypoth-
esis spaceH associated to a sample size m is defined as the expected value ofRS(H):

Rm(H) = E
S∼(D)m

RS(H). (3.16)

The following theorem presents the generalization bound based on Rademacher
complexity (Koltchinskii and Panchenko, 2000; Bartlett and Mendelson, 2002).

Theorem 3.12 Let S = {(xi, yi)}ni=1 be a finite set of m samples drawn i.i.d. from D, and
H be a binary hypothesis space. Then, for any δ ∈ (0, 1] with probability of at least 1 − δ
over the choice of the sample S ∼ (D)m, the following holds:

∀h ∈ H, ϵD(h) ≤ ϵD̂(h) +Rm(H) +

√
ln 1

δ

2m
. (3.17)

3.2.4.3 Algorithmic stability bounds

The previous generalization bounds based on the VC dimension and Rademacher
complexity ignore the specific algorithm used, that is, they hold for any algorithm
using H as a hypothesis space 2. Thus, one may ask if an analysis of the properties
of a specific algorithm could lead to finer guarantees. (Bousquet and Elisseeff, 2002)
introduced generalization bounds that provide an answer to this question based on
the concept of uniform stability of a learning algorithm. We now give its definition.

Definition 3.13 (Uniform stability) An algorithmA has uniform stability β with respect
to the loss function l if the following holds:

∀S ∈ {X × Y}m,∀i ∈ {1, . . . ,m}, sup
(x,y)∈S

|l(hS(x), y)− l(hS\i(x), y)| ≤ β , (3.18)

where S\i = S \ {(xi, yi)} and hS and hS\i are learned by A from S and S\i respectively.

The insight underlying this definition is to say that an algorithm that is supposed to
generalize well should be stable against small perturbations in the training sample.
Therefore, stable algorithms should have an empirical risk that stays close to their
true risk. This idea is confirmed by the following theorem.

2By algorithm, we mean any rule that takes a sample S ∼ (D)m and a hypothesis space H and
outputs a hypothesis h.
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Theorem 3.14 Let A be an algorithm with uniform stability β with respect to a loss func-
tion l, such that 0 ≤ l(hS(x), y) ≤ M , for all (x, y) ∈ (X × Y) and all sets S. Then, for
any m ≥ 1, and any δ ∈ (0, 1], the following bound holds with probability of at least 1 − δ
over the random choice of the sample S:

ϵD(h) ≤ ϵD̂(h) + 2β + (4mβ +M)

√
ln 1

δ

2m
. (3.19)

This theorem says that an algorithm with uniform stability β generalizes well when
β scales as 1

m . We further note that several well-known machine learning algorithms
were shown to verify the uniform stability property.

3.2.4.4 Algorithmic robustness bounds

The principal insight of algorithmic robustness (Xu and Mannor, 2012) is that a ro-
bust algorithm must exhibit similar performance in terms of the classification error
for the test and training samples that are close. The similarity measure used to de-
fine if two samples are close or not is based on partitioning the joint space X × Y in
a way that locates two similar samples of the same class in the same partition. This
partition is further defined using the concept of covering numbers (Kolmogorov and
Tikhomirov, 1959), as introduced below.

Definition 3.15 (Covering number) Let (Z, ϱ) denote a metric space. For Z ′ ⊂ Z, we
say that Ẑ ′ is a ξ-covering of Z ′, if for any element t ∈ Z ′ there is an element t̂ ∈ Ẑ ′ such
that ϱ(t, t̂) ≤ γ. Then the number of ξ-covering of Z ′ is expressed as:

N(ξ, Z ′, ϱ) = min
{
|Ẑ ′| : Ẑ ′ is a ξ-covering of Z ′

}
. (3.20)

In the case where X is a compact space, its covering number N(ξ,X , ϱ) is finite.
Moreover, for the product space X ×Y , the number of ξ-covering is also finite and is
equal to |Y|N(ξ,X , ϱ). As explained earlier, the above partitioning guarantees that
two samples from the same subset belong to the same class and are close to each
other with respect to the metric ϱ. Keeping this in mind, algorithmic robustness is
defined as follows.

Definition 3.16 (Algorithmic robustness) Let S be a training sample of size m where
each example is drawn from the joint distribution D on X ×Y . An algorithmA is said to be
(M, ϵ(·))-robust on D with respect to a loss function l for M ∈ N and ϵ(·) : (X ×Y)m → R
if X × Y can be partitioned into M disjoint subsets denoted by {Zk}Mk=1, so that for all
(x, y) ∈ X × Y , (x′, y′) drawn from D and k ∈ {1, . . . ,M} we have:(

(x, y), (x′, y′)
)
∈ Z2

k =⇒ |l(hS(x), y)− l(hS(x′), y′)| ≤ ϵ(S) , (3.21)

where hS is a hypothesis learned by A on S.

The algorithmic robustness focuses on measuring the divergence between the costs
associated to two similar points, assuming that the learned hypothesis function
should be locally consistent. We are now ready to present the generalization guaran-
tees that characterize robust algorithms that verify the definition presented above.
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Theorem 3.17 Let S be a finite set of size m drawn i.i.d from D, A be (M, ϵ(·))-robust on
D with respect to a loss function l, such that 0 ≤ l(hS(x), y) ≤Ml, for all (x, y) ∈ (X ×Y).
Then, for any δ ∈ (0, 1], the following bound holds with probability of at least 1− δ over the
random draw of the sample S ∼ (D)m:

ϵD(h) ≤ ϵD̂(h) + ϵ(S) +Ml

√
2M ln 2 + 2 ln 1

δ

m
, (3.22)

where hS is a hypothesis learned by A on S.

As ϵ(S) is dependent on the ξ-covering of X × Y and its size M , it naturally in-
volves a trade-off between M and ϵ(S). Similarly to the bounds based on uniform
stability, the bound of this theorem does not depend on the complexity of the hy-
pothesis space and thus its right hand-side can be calculated even if the latter is not
computable or infinite.

3.2.4.5 PAC-Bayesian bounds

The PAC-Bayesian paradigm (Shawe-Taylor and Williamson, 1997; McAllester, 1998)
procures generalization bounds for a hypothesis cast as a weighted majority vote on
the hypothesis spaceH, as, for example, in the ensemble methods (Dietterich, 2000).
In this section, we present the PAC-Bayesian generalization bounds as introduced in
(Germain et al., 2015) in the binary classification setting, where Y = {−1, 1}with the
0 − 1 loss or the linear loss. To derive such a generalization bound, we assume the
existence of a prior distribution π over H, which models an a-priori belief on the hy-
pothesis of H before the observation of the learning sample S ∼ (D)m. Given S, the
learner seeks to find a posterior distribution ρ on H that leads to a well-performing
ρ-weighted majority vote Bρ(x) (called the Bayes classifier), defined as:

Bρ(x) = sign
[
E
h∼ρ

h(x)

]
. (3.23)

Namely, instead of finding the best hypothesis from H, we aim to learn ρ over H,
such that this minimizes the true risk ϵD(Bρ) of the ρ-weighted majority vote. Nev-
ertheless, the PAC-Bayesian generalization bounds do not concern directly the risk
of the deterministic ρ-weighted majority vote Bρ, but give an upper bound on the
expectation over ρ of all of the individual hypothesis true risks, called the Gibbs clas-
sifier, which draws a hypothesis h from H according to the posterior distribution ρ,
and predicts the label of x given by h(x). An important behavior of the Gibbs risk
is that is tightly linked to the deterministic ρ-weighted majority vote. In fact, if Bρ
miss-classifies x ∈ X , then at least half of the classifiers (under the ρ measure) make
a prediction error on x. Consequently, we have:

ϵD(Bρ) ≤ 2 E
h∼ρ

ϵD(h). (3.24)

Thus, an upper bound on E
h∼ρ

ϵD(h) provides an upper bound on ϵD(Bρ) as well.

Note that the PAC-Bayesian generalization bounds do not directly consider the com-
plexity of the hypothesis space H, unlike the Rademacher complexity or the VC di-
mension, but they measure the discrepancy between the prior distribution π and the
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posterior distribution ρ onH through the Kullback-Leibler divergence:

KL (ρ|π) = E
h∼ρ

ln
ρ(h)

π(h)
. (3.25)

Below, we present a generalization bound for the 0− 1 loss function due to (Catoni,
2007), involving the Kullback-Leibler divergence.

Theorem 3.18 For any distribution D on X ×Y , for any hypothesis spaceH, for any prior
distribution π on H, for any δ ∈ (0, 1] and any real number ω > 0, with a probability of at
least 1− δ over the random choice of S ∼ (D)m, we have, for all posterior distribution ρ on
H:

E
h∼ρ

ϵD(h) ≤
ω

1− e−ω

[
E
h∼ρ

ϵS(h) +
KL (ρ|π) + ln 1

δ

mω

]
. (3.26)

In addition to the fact that this bound concerns the ρ-expectation of the risk over H,
the parameter ω reflects a trade-off between the ρ-expected empirical risk Eh∼ρϵS(h)
and the divergence term KL (ρ|π).

3.3 Domain adaptation

Most supervised learning algorithms and theoretical foundations are built on the
crucial assumption that training and test data are drawn from the same probabil-
ity distribution (Pan and Yang, 2009), while in real-world applications, the data-
generating process is often subject to change due to several application-dependent
reasons, as illustrated by the following examples:

• Visual recognition: For brain tumor classification, the training distribution
can differ from the test one, this may arise for example when tumors with
different grades are likely to exhibit different characteristics due to varying
degrees of tumor severity and growth patterns. In addition, in cross-center
collaborations, data acquired even with the same vendor and with the same
acquisition protocol can be substantially different from one another.

• Fraud detection: The heterogeneous nature of the fraudster behavior can lead
to a change in the distributions of training and test data. This behavior may
strongly differ according to the payment system (e.g. e-commerce or shop ter-
minal), the country, and the population segment.

• Sentiment analysis: For product review classification, the drift observed in
the distributions of training and test data is caused by the difference in product
category and the change in word frequencies.

In the three scenarios above, it would not be an overstatement to consider the same
distribution assumption for the training and test samples as unrealistic. Indeed,
changing the measurement instruments, the data acquisition environment, or even
the sampling method induce a shift between the joint distributions of training and
test data. This distributional shift will be likely to degrade significantly the gener-
alization ability of supervised learning models. While manual labeling may appear
like a feasible solution, such an approach is unreasonable in practice, since it is of-
ten prohibitively expensive to collect from scratch a new large high quality labeled
dataset with the same distribution as the test data, due to lack of time, resources, or
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other factors, and it would be an immense waste to totally reject the available knowl-
edge on a different, yet related labeled training set. Such a challenging situation has
promoted the emergence of domain adaptation (Redko et al., 2019b), a sub-field of
statistical learning theory (Vapnik, 1999), that takes into account the shift between
the distributions of training and test data, respectively called source and target do-
mains. Domain adaptation suggests that making use of the relatedness between the
source and target domains in order to transfer knowledge acquired on the former to
the latter, seems to be a much more intelligent solution when compared to learning
each task from scratch.

3.3.1 Formal definition

Transferring the knowledge extracted from a source domain to serve in a target one
lies at the heart of transfer learning, which is a broader field encompassing domain
adaptation. For the sake of clarity and homogeneity, we adopt the formalization of
domain adaptation given by (Kouw and Loog, 2019) 3, stated in the following way:

Definition 3.19 (Domain Adaptation) Let S and T be two different joint probability dis-
tributions over X × Y called respectively the source and target domains. We have access to
a set S = {(xi, yi)}ni=1 of n labeled source samples drawn i.i.d. from the joint distribution
S and a set T = {xj}mj=1 of m unlabeled target samples drawn i.i.d. from the marginal
distribution µT , of the joint distribution T over X , more formally:

S = {(xi, yi)}ni=1 ∼ (S)n, T = {xj}mj=1 ∼ (µT )
m. (3.27)

The aim of unsupervised domain adaptation is to learn from a given hypothesis space H a
hypothesis h with a low target risk:

ϵT (h) = E
(x,y)∼T

l(h(x), y), (3.28)

under the distributional shift assumption S ≠ T .

The considered setting in the definition above corresponds to single-source homo-
geneous closed set unsupervised domain adaptation, characterized as follows:

• Single-source domain adaptation, where the labeled data are available from
only one source domain. In contrast to multi-source domain adaptation, where
labeled data are available from several source domains.

• Homogeneous domain adaptation, where the source and target domains are
represented in the same input space. In contrast to heterogeneous domain
adaptation, where they are represented in different input spaces.

• Closed set domain adaptation, where the source and target domains share the
same label space. In contrast to partial domain adaptation where the target
label space is a proper subset of the source label space, or open set domain
adaptation, where the target label space includes unknown classes that are not
contained in the source one.

3There is another well-known definition of domain adaptation as a special case of transfer learning
due to (Pan and Yang, 2009). This definition is based on a different conception of domains and tasks.
For examples and taxonomy of the different transfer learning settings, we refer the interested reader
to (Pan and Yang, 2009; Redko et al., 2019b).
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• Unsupervised domain adaptation, where labels are only observed from the
source domain. In contrast to semi-supervised domain adaptation, where few
labeled data are also available from the target domain.

Remark 3.20 Unless specified otherwise, we simply use the term domain adaptation to de-
scribe the restricted setting satisfying the assumptions described above.

Remark 3.21 In the rest, we design by the source domain interchangeably the distribution
S and the labeled set S, and by the target domain interchangeably the distribution T and the
unlabeled set T .

3.3.2 Theoretical guarantees

Supervised learning is, beyond a reasonable doubt, the most studied theoretical
framework of machine learning. Many of these theoretical studies are concerned
with estimating the probability that a specific hypothesis can achieve a small true
risk. Uniform convergence theory guarantees the expression of such a probability
in the guise of generalization bounds on the true risk, under the overriding pre-
sumption that training and test samples are drawn from the same probability distri-
bution. However, the theoretical results of supervised learning do not cover some
real-world scenarios where the data-generating processes differ between the training
and test samples. Such a predicament has fostered the emersion of domain adapta-
tion (Redko et al., 2019b), a branch of statistical learning theory (Vapnik, 1999) that
considers the distributional shift between training and test samples.

In domain adaptation theory, existing generalization bounds on the target risk ϵT
of a given hypothesis h are often stated in a generic form implying the source risk
ϵS , a divergence measure between the marginal distributions of the source and tar-
get domains div(µS , µT ), and an ability term a(S, T ) assessing the capability of the
given hypothesis space to successfully resolve the problem of adaptation:

ϵT (h) ≤ ϵS(h) + div(µS , µT ) + a(S, T ), (3.29)

The source risk ϵS is estimable from finite samples and can be minimized by learn-
ing the hypothesis h from the available source labeled data.

The divergence div(µS , µT ) is often estimable from the observed data and is in-
tended to be slight if the two domains are nearby. This divergence is often assessed
by comparing the marginals probability distributions µS and µT instead of the joint
distribution S and T since we do not have access to labels of the target domain. The
most popular frameworks that are used to compare probability distributions in the
context of domain adaptation are φ-divergences (Csiszár, 1975), Integral Probability
Metric (Zolotarev, 1984) and Optimal Transport (Villani, 2009).

The ability term a(S, T ) is non-estimable, and is usually formulated as the com-
bined error of the ideal joint hypothesis.

In what follows, we present several domain adaptation generalization bounds hav-
ing the generic form in 3.29.
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3.3.2.1 Bounds based on the total variation distance

From a theoretical point of view, the domain adaptation problem was rigorously
investigated for the first time by (Ben-David et al., 2006). The authors focused on the
domain adaptation problem following Vapnik–Chervonenkis theory and considered
the 0 − 1 loss function in the setting of binary classification with Y = {−1,+1}.
The authors considered the total variation distance TV to quantify the divergence
between the two domains. The Total Variation is a proper distance on the space
of probability measures that quantifies the largest possible difference between the
probabilities that the two measures µS and µT can assign to the same event B. Its
definition is the following:

Definition 3.22 (Total variation) Let B denote the set of measurable subsets under two
probability distributions µS and µT . The total variation distance TV or the L1-distance
between µS and µT is defined as:

TV (µS , µT ) = 2 sup
B∈B
|µS(B)− µT (B)| . (3.30)

Remark 3.23 The total variation distance is a special case of φ-divergences given in Defini-
tion 2.44 corresponding to the function φ(x) = 1

2 |x− 1|.

Based on the total variation distance TV, the authors provided the following gener-
alization bound.

Theorem 3.24 Let’s consider the setting of binary classification with Y = {−1,+1}. Given
two domains S and T over X × Y , a hypothesis space H and the 0 − 1 loss function, then
∀h ∈ H, the following holds :

ϵT (h) ≤ ϵS(h)+TV (µS , µT )+min

{
E

x∼µS
[|fS(x)− fT (x)|] , E

x∼µT
[|fT (x)− fS(x)|]

}
, (3.31)

where fS and fT are the source and target true labeling functions associated to S and T ,
respectively.

This theorem introduces the earliest generalization bound that links the performance
of a given hypothesis function with respect to two different domains. It involves
that the error obtained by a hypothesis h in the source domain is an upper bound
on the true error on the target domain, where the tightness of the bound depends on
the divergence between their marginal distributions accessed by the total variation
distance and that of the labeling functions.

3.3.2.2 Bounds based on theH∆H-divergence

The employment of the total variation distance as a divergence measure between the
marginal distributions of the source and target domains presents two major weak-
nesses. First, the total variation distance is not directly related to the concerned
hypothesis space, which results in loose generalization bounds, and secondly, it is
not estimable from finite samples drawn from arbitrary probability distributions
(Batu et al., 2000). To overcome these limitations, (Ben-David et al., 2010) intro-
duced a classifier-induced divergence called the H∆H-divergence, based on the A-
divergence provided in (Kifer et al., 2004), which is a relaxation of the total variation
distance.
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Definition 3.25 (A-divergence) Let A be a collection of measurable sets A ⊂ X . The
A-divergence between two probability distributions µS and µT over X is:

dA(µS , µT ) = 2 sup
A∈A
|µS(A)− µT (A)| . (3.32)

Based on the A-divergence, authors in (Ben-David et al., 2010) introduced the H-
divergence, which is a pseudo-metric between the probability measures µS and µT ,
defined with respect to a binary hypothesis space H with Y = {0, 1}. Its definition
is given below:

Definition 3.26 (H-divergence) Given a binary hypothesis spaceH, theH-divergence be-
tween two probability distributions µS and µT over X is:

dH(µS , µT ) = 2 sup
h∈H

∣∣∣∣ P
x∼µS

[h(x) = 1]− P
x∼µT

[h(x) = 1]

∣∣∣∣ . (3.33)

The H-divergence is estimable from finite samples as long as H has a finite Vapnik-
Chervonenkis (VC) dimension, as shown by the following theorem.

Theorem 3.27 Let H be a binary hypothesis space with a finite VC dimension and let con-
sider two unlabeled samples Su, Tu of size m each, drawn independently from µS and µT
respectively. Let δ ∈ (0, 1). Then with a probability at least 1− δ over the choice of samples,
we have:

|dH(µS , µT )− d̂H(Su, Tu)| ≤ 4

√
V C(H) log(2m) + log 2

δ

m
. (3.34)

This theorem shows that with an increasing number of instances and for a hypothe-
sis space of finite VC dimension, the empiricalH-divergence d̂H can be a good proxy
for its true counterpart. The former can be further calculated thanks to the following
result:

Lemma 3.28 Let H be a symmetric binary hypothesis space, i.e. ∀h ∈ H, 1 − h ∈ H, and
let consider two unlabeled samples Su ∼ (µS)

n, Tu ∼ (µT )
m, then:

1

2
d̂H(Su, Tu) = 1−min

h∈H

 1

n

∑
x:h(x)=0

I[x ∈ S] + 1

m

∑
x:h(x)=1

I[x ∈ T ]

 . (3.35)

Note that the expression for the empiricalH-divergence d̂H provided above is effec-
tively the error of the best classifier for the binary classification problem of discrim-
inating between source and target samples pseudo-labeled with 0 and 1. The more
accurate this classifier is, the easier it is to distinguish between the two domains,
hence the more dissimilar they are. Conversely, if the best classifier trying to distin-
guish between the two domains fails, i.e. has a performance that is close to random
guessing, then the domains are expected to be similar in a certain sense.

Next, authors of (Ben-David et al., 2010) define the symmetric difference hypoth-
esis space H∆H for a hypothesis space H, which is very useful in reasoning about
error.

Definition 3.29 (Symmetric difference hypothesis spaceH∆H) Given a set H of bi-
nary hypothesis taking their values in {0, 1}, the symmetric difference hypothesis space
H∆H is defined as follows:

H∆H = {h⊕ h′ | h, h′ ∈ H} = {|h− h′| | h, h′ ∈ H}. (3.36)
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A hypothesis g belongs toH∆H if and only if it is written as a disagreement between
two hypothesis h and h′ from H. Based on the H∆H-divergence, (Ben-David et al.,
2010) proved a bound on the target risk given in the following theorem.

Theorem 3.30 LetH be a hypothesis space of finite VC dimension. Let consider the empiri-
cal estimations of size m µ̂S and µ̂T of µS and µT , respectively, then for any δ ∈ (0, 1) with
probability of at least 1− δ over the random choice of the samples, we have for all h ∈ H:

ϵT (h) ≤ ϵS(h) +
1

2
d̂H∆H(µ̂S , µ̂T ) + 4

√
V C(H) log(2m) + log 2

δ

m
+ λ, (3.37)

where λ is the combined error of the ideal joint hypothesis h∗ that minimizes ϵS(h) + ϵT (h).

This bound shows that a good performance on the source domain, similar marginals
in terms of the H∆H-divergence, and the existence of a low error of the ideal joint
hypothesis are sufficient for successful adaptation. Moreover, we have VC(H∆H) ≤
2VC(H) (Ben-David et al., 2010), hence theH∆H-divergence is estimable from finite
samples as long asH has a finite VC dimension.

3.3.2.3 Bounds based on the l-discrepancy

An obvious shortcoming of theH∆H-divergence is its reliance on the 0 - 1 loss func-
tion. Whereas, it might be desirable to have generalization bounds for a more generic
domain adaptation framework, where any arbitrary loss function with some suitable
properties can be considered. To address this concern, (Mansour et al., 2009) intro-
duced the discrepancy distance discl that expands the previous theoretical analysis
of domain adaptation for any arbitrary loss function, which is symmetric, bounded,
and obeys the triangle inequality. Additionally, the discrepancy distance discl re-
lies on the hypothesis space H, but the complexity term is rather related to the
Rademacher complexity of H. This distinctive refinement provides data-dependent
bounds that are commonly sharper than those derived from Vapnik–Chervonenkis
theory.

Definition 3.31 (Mean disagreement) Given a loss function l and a joint probability D,
the mean disagreement 4 between two hypotheses (h, h′) ∈ H2 is given by E

x∼µD
l(h(x), h′(x)).

Definition 3.32 LetH be a hypothesis space, and let l : Y×Y → R+ define a loss function.
The discrepancy distance discl between two probability distributions µS and µT over X is
defined by:

discl(µS , µT ) = sup
(h,h′)∈H2

∣∣∣ E
x∼µS

(l(h(x), h′(x))− E
x∼µT

(l(h(x), h′(x))
∣∣∣. (3.38)

The l-discrepancy is a pseudo-metric that takes into account the learning task at
hand via the hypothesis space H, a property that it shares with the H-divergence.
Moreover, the l-discrepancy is related to theH∆H-divergence and the total variation
distance. First, for the 0 − 1 loss, we have discl(µS , µT ) = 1

2 dH∆H(µS , µT ) and
for bounded loss function ∀(y, y′) ∈ Y2, l(y, y′) ≤ M for some M > 0, we have
discl(µS , µT ) ≤ M.TV(µS , µT ). Furthermore, the l-discrepancy is estimable from
finite samples as specified by the following theorem.

4By abuse of notations, we can write: ϵD(h, h′) = E
x∼µD

l(h(x), h′(x))
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Theorem 3.33 Let lp : Y2 → R be a loss function defined by lp(y, y′) = |y − y′|p for
some p > 0. Assume there exists M > 0 such that for all h, h′ ∈ H and all x ∈ X ,
l(h(x), h′(x)) ≤M . Then, for any δ ∈ (0, 1), we have with a probability at least 1− δ over
the choice of sample Su ∼ (µS)

n and Tu ∼ (µT )
m:

|discl(µS , µT )− discl(Su, Tu)| ≤ 4p(RSu
(H)+RTu

(H))+ 3M

√
log

4

δ

(
1√
n
+

1√
m

)
. (3.39)

We now present the theorem that relates the source and target errors using discl.

Theorem 3.34 Let S and T be the source and target domains over X ×Y , respectively. Let
H be a hypothesis space, and let l : Y × Y → R+ be a loss function that is symmetric, obeys
the triangle inequality, and is bounded, ∀(y, y′) ∈ Y2, l(y, y′) ≤M for some M > 0. Then,
for h∗S = argmin

h∈H
ϵS(h) and h∗T = argmin

h∈H
ϵT (h) denoting the ideal hypothesis for the source

and target domains, we have ∀h ∈ H:

ϵT (h) ≤ ϵS(h, h
∗
S) + discl(Su, Tu) + 4p(RSu

(H) +RTu
(H)) + 3M

√
log

4

δ

(
1√
n
+

1√
m

)
+ λ′,

(3.40)
where ϵS(h, h∗S) = E

x∼µS
l(h(x), h∗S(x)) and λ′ = ϵS(h

∗
T , h

∗
S) + ϵT (h

∗
T ).

This bound has two notable distinctions from the former ones. First, the source
related term is not the risk of h but rather its disagreement with the best hypothesis
h∗S inH. Second, the ability term λ′ is a sum of the disagreement between h∗S and h∗T
and the risk of h∗T on the target domain.

3.3.2.4 Bounds based on the MMD distance

Despite their numerous advantages, both theH∆H-divergence and the discrepancy
distance discl suffer from a computational burden related to their estimation. In such
a circumstance, it was natural to look for other metrics with some appealing compu-
tational properties to quantify the divergence between the two domains. Following
this trend, (Redko, 2015) appealed to the Maximum Mean Discrepancy (MMD) dis-
tance to infer generalization bounds analogous to that of (Ben-David et al., 2010).
These bounds turned out to be remarkably meaningful since an unbiased estimator
of the squared MMD distance can be computed in linear time, and the complexity
term does not depend on the Vapnik–Chervonenkis dimension but on the empirical
Rademacher complexities of the hypothesis space with respect to the source and tar-
get samples.

The Maximum Mean Discrepancy (MMD) is a special case of the Integral Probability
Metrics (IPMs) (Zolotarev, 1984).

Definition 3.35 (Integral Probability Metrics) Let µS and µT be two probability mea-
sures defined on a measurable space X , the IPM is defined as follows:

IPMF (µS , µT ) = sup
f∈F

∣∣∣∣∫
X
fdµS −

∫
X
fdµT

∣∣∣∣ , (3.41)

where F is a class of real-valued bounded functions defined over X .

As mentioned by (Müller, 1997), the quantity IPMF (µS , µT ) is a semi-metric, and it
is a metric if and only if the function class F separates the set of all signed measures
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with µ(F) = 0. It then follows that for any non-trivial function class F , the quantity
IPMF (µS , µT ) is zero if µS and µT are the same.

For F = {f : ||f ||Hk
≤ 1} where Hk is a Reproducing kernel Hilbert space (RKHS)

with its associated universal kernel k, the IPM distance boils down to the Maximum
Mean Discrepancy (MMD).

Definition 3.36 (Maximum Mean Discrepancy) Let F = {f : ||f ||Hk
≤ 1} where Hk

is a RKHS with its associated universal kernel k. Then the Maximum Mean Discrepancy
MMD distance is defined as follows:

MMD(µS , µT ) = sup
||f ||Hk≤1

∣∣∣∣∫
X
fdµS −

∫
X
fdµT

∣∣∣∣ . (3.42)

Recalling the reproducing kernel property due to Riesz’s representation theorem, we
have f(x) = ⟨f, kx⟩, where kx is the image of x inHk by some mapping. This allows
to separate f from x in the IPM’s definition, and to use the autoduality of the RKHS
norm in order to express the MMD solely in terms of the kernel function k’s values,
as stated by the following proposition:

Proposition 3.37 Given an RKHSHk induced by a universal kernel k, the squared MMD
between µS and µT verifies:

MMD2(µS , µT ) = E
x,x′∼µS

[k(x, x′)] + E
x,x′∼µT

[k(x, x′)]− 2 E
x∼µS
x′∼µT

[k(x, x′)]. (3.43)

The latter form gives the supremum defining the MMD in a closed form and allows
its efficient empirical estimation with the following theorem.

Theorem 3.38 Given an RKHS Hk induced by a universal kernel k, such that ∀x, x′ ∈
X , k(x, x′) ≤ K for some K > 0. Then for any δ ∈ (0, 1), with a probability at least 1 − δ
over the draw of µ̂S ∼ (µS)

n and µ̂T ∼ (µT )
m, we have:

|MMD(µS , µT )−MMD(µ̂S , µ̂T )| ≤
√
K

(
2√
n
+

2√
m

+

√
2 log

2

δ

(
1√
n
+

1√
m

))
. (3.44)

Note that several empirical estimators for the MMD can be used in practice, such as
the unbiased or linear time MMD estimator, as explained in (Gretton et al., 2012).

Based on the MMD distance between the marginals of the source and target do-
mains, (Redko, 2015) proved the following generalization bound that relates the
source and target risks.

Theorem 3.39 Let µ̂S and µ̂T be two empirical estimations of size m drawn i.i.d. from µS
and µT , respectively. Then, with probability of at least 1 − δ, δ ∈ (0, 1) for all h ∈ F =
{f ∈ Hk : ∥f∥Hk

≤ 1}, the following holds:

ϵT (h) ≤ ϵS(h) + MMD(µ̂S , µ̂T ) +
2

m

(
E

x∼µS
[
√
tr(KS)] + E

x∼µT
[
√
tr(KT )]

)
+ 2

√
log( 2δ )

2m
+ λ,

(3.45)
where MMD(µ̂S , µ̂T ) is an empirical counterpart of MMD(µS , µT ), KS and KT are the
kernel functions calculated on samples from µS and µT , respectively, and λ is the combined
error of the ideal hypothesis h∗ that minimizes the joint error of ϵS(h) + ϵT (h).
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We can observe that this theorem is similar in form to Theorem 3.30. The major dis-
tinction is that the complexity term does not depend on the Vapnik-Chervonenkis
dimension, but on two terms that correspond to the empirical Rademacher com-
plexities of H with respect to the source and target data. In both theorems, λ acts as
the combined error of the ideal joint hypothesis.

3.3.2.5 Bounds based on the Wasserstein distance

Some time later, (Redko et al., 2017) presented generalization bounds in terms of the
Wasserstein distanceW1 given in Remark 2.20, as a theoretical analysis of the sem-
inal domain adaptation algorithm based on optimal transport (Courty et al., 2016).
This analysis proved to be very fruitful for several reasons. First, the Wasserstein
distance is computationally attractive, particularly in virtue of the entropic regular-
ization introduced in (Cuturi, 2013). Furthermore, the Wasserstein distance has the
ability to capture the underlying geometry of the data in both domains. Moreover,
the Wasserstein distance is quite strong, and according to (Villani, 2009), it is not so
hard to associate the convergence information in the Wasserstein distance with cer-
tain smoothness bound to obtain convergence in stronger distances. This powerful
asset of the Wasserstein distance gives tighter bounds compared to other results in
state-of-the-art.

Proposition 3.40 Given a ground metric d : X × X → R+, the Wasserstein distanceW1

is the IPM associated to the space F of functions verifying the 1-Lipchitz property, i.e:

F = {f : X → R | ∀x, x′ ∈ X , |f(x)− f(x′)| ≤ d(x, x′)} (3.46)

The Wasserstein distanceW1 can be estimated empirically from finite data and this
empirical estimation can be a good proxy for its true counterpart as justified by the
following result from (Bolley et al., 2007).

Theorem 3.41 Let µ be a probability measure on Rd so that for some α > 0, we have for
any x0 ∈ X ,

∫
X e

αd(x0,x)2dµ(x) < +∞, and let µ̂ = 1
n

∑n
i=1 δxi be its associated empirical

measure defined on a sample of independent variables {xi}ni=1 all distributed according to µ.
Then for any d′ > d and ζ ′ < ζ, there exists some constantN0 depending on d′, ζ ′ and some
square exponential moment of µ, such that for any ε > 0 and N ≥ N0max(ε−(d′+2), 1)

P [W1(µ, µ̂) > ε] ≤ exp

(
−ζ ′

2
Nε2

)
. (3.47)

The following lemma relates the Wasserstein distance with the source and target
error functions for an arbitrary pair of hypothesis.

Lemma 3.42 Let µS , µT ∈ Pp(X ) be two probability measures on Rd. Assume that the
cost function c(x, y) = ∥ϕ(x) − ϕ(y)∥Hk

, where Hk is a reproducing kernel Hilbert space
(RKHS) equipped with kernel k : X × X → R induced by ϕ : X → Hk and k(x, y) =
⟨ϕ(x), ϕ(y)⟩Hk

. Assume further that the loss function lh,f : x 7→ l(h(x), f(x)) is convex,
symmetric, bounded, obeys triangle equality, and has the parametric form |h(x)− f(x)|q for
some q > 0. Assume also that the kernel k in the RKHS Hk is square-root integrable w.r.t.
both µS , µT for all µS , µT ∈ Pp(X ) where 0 ≤ k(x, y) ≤ K,∀x, y ∈ Ω. If ∥l∥Hk

≤ 1, then
the following holds:

∀(h, h′) ∈ H2
k, ϵT (h, h

′) ≤ ϵS(h, h′) +W1(µS , µT ). (3.48)
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We can now use the combination of Lemma 3.42 with the Theorem 3.41 to give the
following generalization bound based on the Wasserstein distanceW1.

Theorem 3.43 With the assumptions of Lemma 3.42. Let µ̂S and µ̂T be two empirical
measures of size n and m drawn i.i.d. from µS and µT , respectively. Then for any d′ > d
and ζ ′ <

√
2, there exists some constant N0 depending on d′, such that for any δ > 0 and

min(n,m) ≥ N0max(δ−(d′+2), 1) with probability of at least 1− δ for all h, we have:

ϵT (h) ≤ ϵS(h) +W1(µ̂S , µ̂T ) +

√
2 log(

2

δ
)/ζ ′

(√
1

n
+

1

m

)
+ λ, (3.49)

where λ is the combined error of the ideal joint hypothesis h∗ that minimizes ϵS(h) + ϵT (h).

The previous bound is the first theoretical justification for the use of optimal trans-
port for domain adaptation. Another bound with the same generic form was given
in (Shen et al., 2018) in terms of the Wasserstein distance, but without imposing any
additional assumptions on the ground metric used in the definition of the Wasser-
stein distance. This bound makes use of the absolute value loss in the following
way.

Theorem 3.44 Let µS , µT ∈ P(X ) be two probability measures. Assume the hypothesis
h ∈ H are all K-Lipschitz continuous for some K and l is the loss function defined by
l(y, y′) = |y − y′|. Then for every h ∈ H the following holds:

ϵT (h) ≤ ϵS(h) + 2KW1(µ̂S , µ̂T ) + 2K

√
2 log(

2

δ
)/ζ ′

(√
1

n
+

1

m

)
+ λ, (3.50)

In the bound above, the hypothesis space is composed of K-Lipschitz continuous
functions for some K. Although this may appear to be too limiting, when the hy-
pothesis are implemented by neural networks, the basic linear mapping functions
and activation functions such as sigmoid and relu are all Lipschitz continuous, so
the hypothesis is not so strong and can be satisfied. Moreover, the weights in the
neural networks are always regularized to avoid overfitting, which means that the
constant K will not be too large.

Additionally, (Courty et al., 2017) proposed another generalization bound for do-
main adaptation based on the Wasserstein distance. This bound introduced the
Wasserstein distance between S and a pseudo-labeled version of the target domain
T̃ , with an additional term related to the Probabilistic Transfer Lipschitzness as-
sumption, which is a modified version of the Probabilistic Lipschitzness. The Prob-
abilistic Lipschitzness assumption is a relaxation of the classic deterministic Lips-
chitzness of a function. It was theoretically studied in (Urner et al., 2011) for semi-
supervised learning and in (Ben-David and Urner, 2014) for domain adaptation, we
give here the definition used in (Ben-David and Urner, 2014).

Definition 3.45 (Probabilistic Lipschitzness) Let (X , d) be a metric space and let con-
sider a function ϕ : X → [0, 1]. We say that f : X → R is ϕ-Lipschitz with respect to a
distribution P over X if, for all λ > 0, we have:

P
x∼P

[
∃x′ ∈ X | |f(x)− f(x′)| > λd(x, x′)

]
≤ ϕ(λ). (3.51)

Deterministic K-Lipschitzness is a particular case of the definition provided above
as it corresponds to the setting ϕ(λ) = [λ < K] where [·] denotes the Iverson bracket
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for indicator functions, and the generalization follows from choosing ϕ to be decreas-
ing. A consequence of this property, when applied to a hypothesis h with continu-
ous values, is that it tends to have the same behavior in high-density regions, thus
having the same output in such regions with high probability. In fact, for binary
hypothesis, deterministic λ-Lipschitzness implies that two points that are at most 1

λ
away from each other must have the same label, whereas probabilistic Lipschitzness
relaxes this requirement.

The Probabilistic Transfer Lipschitzness assumption was proposed in (Courty et al.,
2017) in the following way.

Definition 3.46 (Probabilistic Transfer Lipschitzness) Let (X , d) be a metric space and
let consider a function ϕ : X → [0, 1]. We say that f : X → R is ϕ-Lipschitz with respect
to a distribution P over X 2 and we write f ∈ PTLϕ(P) if, for all λ > 0, we have:

P
(x,x′)∼P

[
|f(x)− f(x′)| > λd(x, x′)

]
≤ ϕ(λ). (3.52)

Based on the Probabilistic Transfer Lipschitzness assumption, (Courty et al., 2017)
provided the following generalization bound.

Theorem 3.47 Let l be an K-Lipschitz loss function for some K > 0, assumed to verify
the triangle inequality. Let h ∈ H and let T̃ be the target domain distribution with labels
predicted by h. For α > 0, let dα,l be the cost function defined over (X × Y)2 as:

dα,l((x, y), (x
′, y′)) = αd(x, x′) + l(y, y′), (3.53)

andW1 its induced Wasserstein distance of order 1 between S and T̃ . Let γ∗ ∈ Π(S, T̃ ) be
a transport plan definingW1. Assume there exists a Lipschitz continuous function f∗ ∈ H
such that:

f∗ = argmin
f∗∈H∩PTLϕ(γ∗)

ϵS(f
∗) + ϵT̃ (f

∗), (3.54)

for some ϕ : R → [0, 1]. Also, assume that |f∗(x) − f∗(x′)| ≤ M,∀x, x′ ∈ X for some
M > 0. Then:

ϵT (h) ≤ W1(Ŝ,
ˆ̃T ) +

√
2 log(

2

δ
)/ζ ′

(√
1

n
+

1

m

)
+ ϵS(f

∗) + ϵT (f
∗) +KMϕ(

α

K
). (3.55)

It is important to note that this bound does not have the generic form in 3.29. In fact
the previous bound includes the joint error associated with the ideal joint hypoth-
esis f∗, however, the latter is restricted to hypothesis that satisfies the Probabilistic
Transfer Lipschitzness with respect to the optimal transport plane γ∗. The last term
ϕ( αK ) assesses the probability under which the Probabilistic Lipschitzness does not
hold. If the last terms are small enough, adaptation is possible if we are able to align
well S and T̃ , provided that f∗ and γ∗ verify the Probabilistic Transfer Lipschitzness.

3.3.2.6 Bounds based on the MDD discrepancy

In (Zhang et al., 2019), the authors generalized the seminal bounds to the multi-class
setting, and introduced a classification margin β > 0 into their results. This was
done by introducing a definition of the error function ϵβD that takes into account the
classification margin, as follows:

ϵβD(h) = E
x∼D

[lβ(h(x), fD(x))], (3.56)
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where lβ is the ramp loss (Shalev-Shwartz and Ben-David, 2014), defined as:

lβ(t) =

{
1− t

β , if 0 ≤ t ≤ β,
[t < 0], otherwise.

(3.57)

which leads to the definition of the Margin Disparity Discrepancy (MDD) given a
hypothesis spaceH of scoring functions, in the following way.

Definition 3.48 (Scoring functions) We consider a multiclass classification with hypoth-
esis space H of scoring functions f : X → R|Y|, where the outputs on each dimension indi-
cate the confidence of prediction. With a little abuse of notations, we consider f : X×Y → R
instead, and f(x, y) indicates the component of f(x) corresponding to the label y. The pre-
dicted label associated to a sample x is the one resulting in the largest score. Thus it induces
a labeling function space F containing hf from X to Y :

hf : x 7→ argmax
y∈Y

f(x, y). (3.58)

Definition 3.49 (Margin Disparity Discrepancy) Given a hypothesis space H of scor-
ing functions and h ∈ H, the Margin Disparity Discrepancy (MDD) is defined by:

dβh,H(µS , µT ) = sup
h′∈H

(
ϵβµS (h

′, y(h))− ϵβµT (h
′, y(h))

)
. (3.59)

As it is the case with theH-divergence and the l-discrepancy, the MDD is defined as
a supremum over the hypothesis space at hand. However, this supremum is taken
over one hypothesis instead of two, thus making the MDD dependent on h and
tighter than theH-divergence for β = 0, corresponding to the 0− 1 loss.

The authors show that the MDD is estimable from finite samples with guarantees
expressed in terms of the Rademacher complexity, the margin parameter β, the class
number k, and sample sizes. Next, the Maximum Disparity Discrepancy (MDD) is
used to bound the misclassification rate on the target domain as stated by the fol-
lowing theorem:

Theorem 3.50 Given a label space Y = {C1, ..., Ck} and a hypothesis space of scoring
functionsH, we have for any β > 0 and h ∈ H:

ϵ
l0−1

T (h) ≤ ϵβS(h) + dβh,H(µS , µT ) + λ(β), (3.60)

where λ(β) = inf
h∈H

(
ϵβS(h) + ϵβT (h)

)
.

This bound has the generic form presented in 3.29, with the particularity of the de-
pendence of the divergence term on the considered hypothesis h. This bound also
offers new insights into the domain adaptation problem, by introducing the margin
violation rate and scoring functions that give the confidence level of belonging to a
class of interest, rather than functions with binary output. However, as they bound
the 0-1 loss on the target domain, it does not indicate the behavior of the margin vio-
lation rate on this latter. It is noteworthy the dependence of the non-estimable term
λ(β) on the classification margin, highlighted by the parameter β > 0, this remains
conceptually similar to the λ term of the other bounds.
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In (Dhouib et al., 2020), authors provided a generalization bound using a translated
version of the ramp loss given in 3.57, defined as:

lρ,β(t) =

{
1− t−ρ

β , if ρ ≤ t ≤ β + ρ,

[t < ρ], otherwise.
(3.61)

for some ρ > 0.

The authors proved a bound that is analogous to 3.60 , but concerning the margin
violation loss ϵρ,0T (h) on the target domain, as follows.

Theorem 3.51 Assume that for any h′ ∈ H′, we have P
x∼µS

[h′(x) = 0] = P
x∼µT

[h′(x) =

0] = 0. Let ρ, β, α > 0 be such that ρ + β < α < 1. Then, for any h ∈ H, the following
bound holds:

ϵρ,0T (h) ≤ ϵ
ρ+β
α
,0

S (h) + dρ,βh,H′(µS , µT ) + λα, (3.62)

where
dρ,βh,H′(µS , µT ) = sup

h′∈H′

∣∣∣ϵρ,βµS (h, h′)− ϵρ,βµT (h, h′)∣∣∣ , (3.63)

and
λα = inf

h∈H′
ϵS(h) + ϵT (h) + P

x∼µS
[|h(x)| < α]. (3.64)

Compared to the bound in 3.60, this bound is more informative on the separation
quality between classes in the target domain, assessed by the margin violation risk
ϵρ,0T (h). Also, the divergence term is continuous in both h and h′ for β > 0, which
makes it more suitable for optimization algorithms. The non estimable term λα is
non symmetric with respect to T and S as it involves an absolute margin violation
risk only for µS . Finally, hypothesis space H′ used to define the divergence and the
λα term on the one hand, and the one concerning h, i.e. H, are not necessarily equal.

3.3.2.7 Algorithmic robustness bounds based on the λ-shift

(Mansour and Schain, 2014) used the concept of algorithmic robustness (Xu and
Mannor, 2012) to define the λ-shift that encodes prior knowledge of the deviation
between the source and target domains. The goal of their definition was to capture
the proximity of the loss associated to a hypothesis on the source and target domains
in the regions defined by partitioning the joint space X × Y . As there is usually no
access to target labels, the authors proposed to consider the conditional distribution
of the label in a given region, and the relation to its sampled value over the given
labeled sample S. To proceed, let ρ be a distribution over the label space Y , and let
σy and σ−y = 1−σy denote the probability of a given label y ∈ Y and the total prob-
ability of the other labels, respectively. The definition of the λ-shift is then given as
follows.

Definition 3.52 (λ-shift) Let σ and ρ be two distributions over Y . ρ is the λ-shift with
respect to σ, denoted by ρ ∈ λ(σ), if for all y ∈ Y we have ρy ≤ σy + λσ−y and ρy ≥
σy(1 − λ). If for some y ∈ Y we have ρy = σy + λσ−y, we say that ρ is strict-λ-shift with
respect to σ.

The above definition means that the λ-shift between two distributions on Y implies
a restriction on the deviation between the probability of a label on the distributions:
this shift might be at most a λ portion of the probability of the other labels or the
probability of the label.
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To analyze the domain adaptation setting, the authors assumed that X × Y can be
partitioned into M disjoint subsets, defined as X × Y =

⋃
i,j Xi × Yj , where the in-

put space is partitioned as X =
⋃MX
i=1 Xi, and the output space as Y =

⋃MY
j=1 Yj and

M =MXMY . Note that, an (M, ϵ)-robust algorithm outputs a hypothesis that has an
ϵ variation in the loss in each region Xi×Yj . We now present the following theorem.

Theorem 3.53 Let A be an (M, ϵ)-robust algorithm with respect to a loss function l, such
that 0 ≤ l(h(x), y) ≤ Ml, for all (x, y) ∈ (X × Y) and h ∈ H. If S is λ-shift of T with
respect to the partition of X for any δ ∈ (0, 1], the following bound holds with probability of
at least 1− δ, over the random draw of the sample S from S, and of the sample T from T of
size m:

∀h ∈ H, ϵT (h) ≤
Mx∑
i=1

T (Xi)lλS(h,Xi) + ϵ+Ml

√
2M ln 2 + 2 ln 1

δ

m
, (3.65)

where T (Xi) = 1
m

∣∣ {x ∈ T ∩ Xi} ∣∣ is the ratio of target points in the region Xi, and

∀i ∈ {1, . . . ,MX }, lλS(h,Xi) ≤ max
y∈Y

li(h, y)λ̄y(Si) + ∑
y′ ̸=y

li(h, y
′)λy

′
(Si)

 , (3.66)

with

li(h, y) =

{
maxx∈S∩Xi×y l(h(x), y) if S ∩ Xi × y ̸= ∅,
Ml otherwise. (3.67)

The main difference between this domain adaptation result and the original robust-
ness bound of Theorem 3.16 is seen in the first term. In the latter case, which is an
upper bound on the source risk, the first term 1

m

∑
(x,y)∈S l(hS(x), y) simply corre-

sponds to the empirical error of the model learned on the source sample. In the for-
mer bound, which upper-bounds the target risk, the first term

∑Mx
i=1 T (Xi)lλS(h,Xi)

depends also on the empirical risk on the source sample, which is a combination
of the λ-shifted source risk of each region weighted by the ratio of target points in
the region. This is reminiscent of the multiplicative dependence between the source
error and the divergence term already mentioned in previous sections.

3.3.2.8 PAC-Bayesian bounds based on the P-disagreement

In order to derive domain adaptation generalization bounds in the PAC-Bayesian
framework, (Germain et al., 2013) introduced the P-disagreement divergence de-
fined as follows.

Definition 3.54 (P-disagreement divergence) Given a probability distribution P over
H, the P-disagreement between two probability distributions µS and µT over X is defined
as:

disP(µS , µT ) =
∣∣∣∣ E
(h,h′)∼P

[ϵl0−1
µS (h, h′)− ϵl0−1

µT (h, h′)]

∣∣∣∣ . (3.68)

This quantity is similar to an IPM but with an expectation over hypothesis in H
instead of a supremum. It is worth noting that the value of disP is always lower
than the H∆H-divergence between µS and µT . Indeed, for every H and P over H,
we have:

disP(µS , µT ) ≤
1

2
dH∆H(µS , µT ) (3.69)
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From the P-disagreement, the authors proved the domain adaptation bound given
by the following theorem.

Theorem 3.55 LetH a hypothesis space. For any posterior distribution P overH, we have:

E
h∼P

ϵ
l0−1

T (h) ≤ E
h∼P

ϵ
l0−1

S (h) +
1

2
disP(µS , µT ) + λP (3.70)

where λP is the deviation between the expected joint errors between pairs for voters on the
target and source domains, defined as:

λP =

∣∣∣∣ E
(h,h′)∼P2

E
x∼µS

l01(h(x), y))× l01(h′(x), y))− E
(h,h′)∼P2

E
x∼µT

l01(h(x), y))× l01(h′(x), y))
∣∣∣∣ .

(3.71)

This theorem seems very similar to the generic form in 3.29 with an important dis-
tinction that consists in substituting the supremum in the domain dissimilarity term
with an expectation. We also note, that the posterior distribution P intercedes even
in the non-estimable term λP , which is not the case for all of the previously presented
bounds.

3.3.3 Algorithmic advances

Since the launching of domain adaptation theory, a large panoply of algorithms was
proposed to deal with it, and they can be roughly divided into shallow (Kouw and
Loog, 2019) and deep (Wilson and Cook, 2020) approaches.

Most shallow algorithms try to solve the unsupervised domain adaptation prob-
lem in two steps by first aligning the source and target domains to make them
indiscernible, which then allows to apply traditional supervised methods on the
transformed data. Such an alignment is typically accomplished through sample-
based approaches, which focus on correcting biases in the sampling procedure (Shi-
modaira, 2000; Sugiyama et al., 2007) or feature-based approaches which focus on
learning domain-invariant representations (Pan et al., 2010; Long et al., 2013) and
finding subspace mappings (Fernando et al., 2013; Sun and Saenko, 2015; Sun et al.,
2016).

Deep domain adaptation algorithms have also gained a renewed interest due to their
feature extraction ability to learn more abstract and robust representations that are
both semantically meaningful and domain invariant (Long et al., 2015; Glorot et al.,
2011; Ganin et al., 2016).

More recent advances in domain adaptation are due to the theory of optimal trans-
port, which allows to learn explicitly the least cost transformation of the source dis-
tribution into the target one, and provide both shallow (Courty et al., 2016, 2017;
Redko et al., 2019a) and deep algorithms (Damodaran et al., 2018; Shen et al., 2018;
Dhouib et al., 2020; Rakotomamonjy et al., 2022).

Below we present the different categories of domain adaptation algorithms and the
most relevant approaches within each one.
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3.3.3.1 Sample-based approaches

This category of approaches relies on two assumptions: the covariate shift and the
absolute continuity assumption µT ≪ µS described bellow.

Definition 3.56 (Covariate shift) The covariate shift assumption corresponds to the set-
ting where the conditional distributions of the source and target domains are equal and the
shift is only due to the distribution of the covariates (the features) as follows:

µS ̸= µT and SY|x = TY|x (3.72)

Definition 3.57 (Absolute continuity) Let µS and µT be two probability distribution
over X . µT is said to be absolutely continuous 5 with respect to µS , and we note µT ≪ µS
if for all measurable subset A ⊂ X :

µS(A) = 0 =⇒ µT (A) = 0 (3.73)

Theorem 3.58 Let µS and µT be two probabilities over X , such that µT ≪ µS . Then there
exists a measurable function f : X → R+, verifying for all measurable subset A ⊂ X :

µT (A) =

∫
A
fdµS (3.74)

The function f is unique µS-almost everywhere and is called the Radon-Nikodym derivative
of µT with respect to µS and we write f = dµT

dµS
.

Defining the importance as w(x) = dµT
dµS

, this approach can be deduced as follows:

ϵT (h) = E
x∼µT

[
E

y∼TY|x
(l(h(x), y))

]
(3.75)

= E
x∼µS

[
dµT
dµS

(x) E
y∼TY|x

(l(h(x), y))

]
(3.76)

= E
x∼µS

[
w(x) E

y∼SY|x
(l(h(x), y))

]
(3.77)

= E
x∼µS

[
E

y∼SY|x
(w(x)l(h(x), y))

]
(3.78)

= E
(x,y)∼S

[
w(x)l(h(x), y)

]
(3.79)

The second line is due to the absolute continuity assumption and the third line is due
to the covariate shift assumption. Hence, minimizing the risk on the target domain
boils down to minimizing a weighted risk on the source domain, with weights w(x)
that are independent of the labels.

Sample re-weighting is one of the earliest approaches in domain adaptation, and
the estimation of weights w(x) is the key challenge in these approaches. For this
approach, the probability weights of the instances from both domains are estimated,
and then the ratio is used to compute w(x). The estimation of every domain’s prob-
ability weights can be parametric (Shimodaira, 2000), non parametric, e.g. by kernel
density estimation (Sugiyama et al., 2007; Baktashmotlagh et al., 2014) or using neu-
ral networks (de Mathelin et al., 2022).

5Some authors prefer to use the term "dominated by" instead of "absolutely continuous w.r.t.".
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3.3.3.2 Feature-based approaches

Approaches of the previous category are limited by the assumption of the abso-
lute continuity of the marginal source distribution with respect to the target one,
an assumption that is violated in several tasks. Feature-based approaches do not
require this assumption and try to match the source samples with the target ones
by learning a transformation that extracts the invariant feature representation across
domains. They typically create a new representation by transforming the original
features into a new feature space, and then minimize the shift between the source
and target domains in an optimization procedure. Below we detail the most relevant
feature-based adaptation categories and discuss some related approaches.

3.3.3.2.1 Subspace mappings

In some cases, source and target domains contain domain-specific noise but com-
mon subspaces. Subspace mappings approaches would involve identifying these
subspaces and matching the source and the target samples along them.

One of the most well-known methods in this category, called subspace alignment
(SA) (Fernando et al., 2013), calculates the first d′ principal components in each do-
main to form two subspaces defined by the matrices CS and CT , where d′ < d. A
transformation matrix M∗ is then computed to aligns the source components with
the target ones by minimizing the following Bregman matrix divergence:

M∗ = argmin
M

||CSM − CT ||2F = CTSCT , (3.80)

where ||.||2F is the Frobenius norm. Then, the matrix M∗ aligns CS with CT , before
projecting data in each domain to their components and training a classifier on the
transformed source data.

In this spirit, the linear correlation alignment (CORAL) (Sun et al., 2016) minimized
the domain shift by aligning the second-order statistics of source and target distri-
butions, by solving the following optimization problem:

min
M
||CŜ − CT ||2F = min

M
||MTCSM − CT ||2F (3.81)

where M is the transformation matrix, and here, CŜ is the covariance of the trans-
formed source features, CS and CT are covariance matrices of source and target
domains, respectively.

Other extensions are possible, such as considering the alignment on both the data
distributions and the subspaces (Sun and Saenko, 2015), and training a classifier
jointly with learning the subspace (Fernando et al., 2015).

Instead of subspaces, some extensions consider non-linear manifolds, such as in
(Aljundi et al., 2015) where a kernelized version of subspace alignment is used.
Other approaches based on non-linear manifolds aim to map the data on a Rieman-
nian manifold and reduce the distance between the two domains on it. Some of
these earliest approaches (Gopalan et al., 2011; Gong et al., 2012) learn the interme-
diate features between the sub-source and the sub-target domains via the geodesic
(shortest path) on a Grassmannian manifold.
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3.3.3.2.2 Domain-invariant spaces

Another common practice focuses on aligning the source and target samples through
a learned domain-invariant space. The advantage of this approach is that classifica-
tion becomes the same as standard supervised learning.

A simple approach to finding a domain-invariant space is Transfer component adap-
tation (TCA) (Pan et al., 2010) that aims to find common latent features having the
same marginal distribution across the source and target domains while maintaining
the intrinsic structure of the original samples. The latent features are learned be-
tween the source and target domains in a RKHS using the maximum mean discrep-
ancy. In order to learn principal componentsC based on joint directions of variation,
the joint domain kernel matrix, K = [KS,S ,KS,T ,KT ,S ,KT ,T ] composed of kernel
matrices of samples in the source domain, target domain, and cross domains, is first
constructed. Data projected onto components C should have minimal distance to
the empirical means in each domain. As such, components are extracted by mini-
mizing the trade-off between the trace of the projected joint domain kernel matrix
and a regularization term tr(CTC) that control the complexity of C:

min
C

trace(CTKLKC) + αtrace(CTC)

s.t. CTKHKC = I
(3.82)

where α is a trade-off parameter, L is the normalization matrix that divides each en-
try in the joint kernel by the sample size of the domain from which it originated, and
H is the centering matrix. The constraint is necessary to avoid trivial solutions, such
as projecting all data to 0. After finding the domain-invariant features, any classical
supervised learning technique can be used to train the final target classifier.

Joint domain adaptation (JDA) (Long et al., 2013) extends (TCA) by matching simul-
taneously marginal and conditional distributions of the source and target domains.
Principal component analysis is employed for optimization and dimensionality re-
duction. To address the divergence in marginal distribution between the domains,
the maximum mean discrepancy distance is used to calculate the marginal distri-
bution differences and is incorporated into the PCA optimization algorithm. The
second part of the solution needs a procedure to rectify the conditional distribution
differences, which requires labeled target samples. Since the target data is unla-
beled, pseudo labels are formed by learning a classifier from the labeled source sam-
ples. The maximum mean discrepancy distance is changed to measure the distance
between the conditional distributions and is integrated into the PCA optimization
algorithm to minimize the conditional distributions:

min
CTXHXTC=I

k∑
c=0

trace(CTXMcX
TC) + α||C||2F (3.83)

where C is an orthogonal transformation matrix, Mc are the MMD matrices involv-
ing class labels and α is a regularization parameter to guarantee the optimization
problem is well-defined. Finally, the features identified by the modified PCA algo-
rithm are used to train the final target classifier.
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3.3.3.2.3 Deep domain adaptation

Firstly, (Long et al., 2015) proposed Deep Adaptation Network (DAN) that employs
deep neural networks to learn transferable features across domains. DAN relies
on the assumption that there is a gap between the marginal distributions while the
conditional distributions stay unchanged. Consequently, it aims to match marginal
distributions across domains by including several adaptation layers for task-specific
representations. The adaptation layers use the multiple kernel variant of the MMD
to integrate all the task-specific representations into a RKHS and align the shift be-
tween the marginal distributions. Deep Transfer Network (DTN) (Zhang et al., 2015),
has been proposed later to align simultaneously both the marginal and conditional
distributions.

Another category of deep adaptation networks uses autoencoders to reduce the di-
vergence between domains by minimizing the reconstruction error and learning an
invariant and transferable representation across domains. The main underlying idea
behind using autoencoders in domain adaptation is to learn the encoder parameters
based on the source samples and adapt the decoder to reconstruct the target sam-
ples. In this vision, (Glorot et al., 2011) proposed a deep domain adaptation network
based on stacked autoencoders (SDA), in order to extract a high-level representation
of source and target samples. SDA yields remarkable results, but it is computa-
tionally expensive and unscalable, especially when dealing with high-dimensional
features. A marginalized version (mSDA) has been proposed in (Chen et al., 2012)
to address SDA limitations by marginalizing the noise with linear denoisers to make
the model learn the parameters in a closed-form solution without using stochastic
gradient descent (SGD). Later on, (Ghifary et al., 2016b) proposed a Deep Recon-
struction Classification Network (DRCN) that consists of a standard convolutional
network (encoder) to predict the source labels and a deconvolutional networks (de-
coder) to reconstruct the target samples.

The popularity of adversarial learning as a strong domain-invariant feature extractor
has prompted many researchers to incorporate it into deep networks. Adversarial
domain adaptation approaches seek to minimize the distributional gap between do-
mains in order to obtain transferable and domain-invariant features. The main idea
of adversarial domain adaptation was inspired by generative adversarial networks
(GAN) (Goodfellow et al., 2014), which aims to minimize the cross-domain discrep-
ancy through an adversarial objective. GANs are generative models based on deep
learning, consisting of a two-player game, a generator model G, and a discriminator
model D. The generator seeks to output samples similar to the domain of interest
from the source data and to confuse the discriminator into making a wrong deci-
sion. The discriminator then tries to discriminate between the true samples of the
domain of interest and the counterfeits generated by the model G. (Ganin et al., 2016)
is one of the most popular deep adaptative networks, which is directly derived from
the seminal theoretical contribution in (Ben-David et al., 2006), its main idea is to
embed domain adaptation into the representation learning process, so that the final
classification decisions are made based on features that are both discriminative and
invariant to domain changes. Later on, the work of (Shrivastava et al., 2017; Bous-
malis et al., 2017; Zhang et al., 2019) provided other noteworthy adversarial learning
algorithms for the problem of domain adaptation.
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3.3.3.2.4 Optimal transport

More recent advances in domain adaptation are due to the theory of optimal trans-
port that allows to learn explicitly the least cost transformation of the source distri-
bution into the target one. This idea was first investigated in the work of (Courty
et al., 2016), where authors have successfully cast the domain adaptation problem
into an optimal transport one to match the shifted marginal distributions of the two
domains:

min
γ∈U(a,b)

⟨γ,C⟩F + εH(γ) + ηΩc(γ), (3.84)

where η > 0 and Ωc(γ) is a class-based regularization, that can be either based on
group sparsity and then promotes an optimal transport plan where a given target
sample receives masses from source samples that have the same labels, or alterna-
tively based on graph Laplacian regularization and then promote a locally smooth
and class-regular structure in the source transported samples. Which then allows to
learn a classifier on the transported data.

Since then, several optimal transport-based domain adaptation approaches have
emerged. In (Courty et al., 2017), authors proposed to avoid the two-steps adap-
tation procedure, by aligning the joint distributions using a coupling accounting for
the marginals and the class-conditional distributions shift jointly:

min
f∈H,γ∈U(a,b)

∑
i,j

[
αd(xi, xj) + l(yi, f(xj))

]
.γi,j + λΩ(f) (3.85)

where Ω(f) is a regularization term on f . Depending on how H is defined, a RKHS
or a function space parametrized by some parameters w ∈ Rp, Ω(f) can be either a
non-decreasing function of the squared-norm induced by the RKHS, or a squared-
norm on the vector parameter, and α, λ > 0.

Authors in (Redko et al., 2019a) performed multi-source domain adaptation under
the target shift assumption, by learning simultaneously the class probabilities of the
unlabeled target samples and the optimal transport plan allowing to align several
probability distributions.

The work of (Dhouib et al., 2020) derived an efficient optimal transport-based ad-
versarial approach from a bound on the target margin violation rate and the more
recent work of (Rakotomamonjy et al., 2022) addressed the problem of generalized
target shift, where we have both label shift and class-conditional distribution shift
by proposing an algorithm that minimizes importance weighted loss in the source
domain and a Wasserstein distance between weighted marginals. Finally, several
deep domain adaptation algorithms based on optimal transport were proposed in
(Damodaran et al., 2018; Shen et al., 2018; Chen et al., 2018; Xu et al., 2020; Li et al.,
2020) to name a few.

Bibliographical notes

The main reference in domain adaptation is undoubtedly the book by Redko et al.
that exhaustively covers the theoretical advances in this field. While a general intro-
duction to statistical learning theory can be found in the books by Mohri et al. and
Shalev-Shwartz and Ben-David and to transfer learning in the book by Yang et al..
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This chapter is based on the paper (El Hamri et al., 2022b) where we propose a
novel approach for unsupervised domain adaptation that relates notions of optimal
transport, learning probability measures, and unsupervised learning. The proposed
approach, HOT-DA, is based on a hierarchical formulation of optimal transport, that
leverages beyond the geometrical information captured by the ground metric, richer
structural information in the source and target domains. The additional informa-
tion in the labeled source domain is formed instinctively by grouping samples into
structures according to their class labels. While exploring hidden structures in the
unlabeled target domain is reduced to the problem of learning probability measures
through Wasserstein barycenter, which we prove to be equivalent to spectral cluster-
ing. Experiments show the superiority of the proposed approach over state-of-the-
art across a range of domain adaptation problems including inter-twinning moons
dataset, Digits, Office-Caltech, and Office-Home. Experiments also show the robust-
ness of our model against structure imbalance.
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Without hardship everyone would reign,
generosity impoverishes and bravery kills.

Al-Mutanabbi

4.1 Introduction

Supervised learning is arguably the most widespread task of machine learning and
has enjoyed much success on a broad spectrum of application domains (Kotsiantis
et al., 2007). However, most supervised learning methods are built on the crucial
assumption that training and test data are drawn from the same probability distri-
bution (Pan and Yang, 2009). In real-world applications, this hypothesis is usually
violated due to several application-dependent reasons: in computer vision, the pres-
ence or absence of backgrounds, the variation of acquisition devices, or the change
of lighting conditions introduce non-negligible discrepancies in data distributions
(Saenko et al., 2010), in product reviews classification, the drifts observed in the
word distributions are caused by the difference of product category and the changes
in word frequencies (Blitzer et al., 2007).

These distributional shifts will be likely to degrade significantly the generalization
ability of supervised learning models. While manual labeling may appear like a
feasible solution, such an approach is unreasonable in practice, since it is often pro-
hibitively expensive to collect from scratch a new large high quality labeled dataset
with the same distribution as the test data, due to lack of time, resources, or other
factors, and it would be an immense waste to totally reject the available knowledge
on a different, yet related labeled training set. Such a challenging situation has pro-
moted the emergence of domain adaptation (Redko et al., 2019b), a sub-field of sta-
tistical learning theory (Vapnik, 1999), that takes into account the distributional shift
between training and test data, and in which the training set and test set distribu-
tions are respectively called source and target domains.

Since the launching of domain adaptation theory, a large panoply of algorithms was
proposed to deal with its unsupervised variant, and they can be roughly divided
into shallow (Kouw and Loog, 2019) and deep (Wilson and Cook, 2020) approaches.
Most shallow algorithms try to solve the unsupervised domain adaptation problem
in two steps by first aligning the source and target domains to make them indis-
cernible, which then allows to apply traditional supervised methods on the trans-
formed data. Such an alignment is typically accomplished through sample-based
approaches which focus on correcting biases in the sampling procedure (Shimodaira,
2000; Sugiyama et al., 2007) or feature-based approaches which focus on learning
domain-invariant representations (Pan et al., 2010; Long et al., 2013) and finding
subspace mappings (Fernando et al., 2013; Sun and Saenko, 2015; Sun et al., 2016).
Deep domain adaptation algorithms have also gained a renewed interest due to their
feature extraction ability to learn more abstract and robust representations that are
both semantically meaningful and domain invariant (Glorot et al., 2011; Long et al.,
2015; Ganin et al., 2016).
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More recent advances in domain adaptation are due to the theory of optimal trans-
port, which allows to learn explicitly the least cost transformation of the source dis-
tribution into the target one. This idea was first investigated in the work of (Courty
et al., 2016), where authors have successfully cast the domain adaptation problem
into an optimal transport one to match the shifted marginal distributions of the
two domains, which then allows to learn a classifier on the transported data. Since
then, several optimal transport-based domain adaptation methods have emerged. In
(Courty et al., 2017), authors proposed to avoid the two-step adaptation procedure,
by aligning the joint distributions using a coupling accounting for the marginals
and the class-conditional distributions shift jointly. Authors in (Redko et al., 2019a)
performed multi-source domain adaptation under the target shift assumption, by
learning simultaneously the class probabilities of the unlabeled target samples and
the optimal transport plan allowing to align several probability distributions. The
recent work of (Dhouib et al., 2020) derived an efficient optimal transport-based ad-
versarial approach from a bound on the target margin violation rate. Finally, several
deep domain adaptation algorithms based on optimal transport were proposed in
(Damodaran et al., 2018; Shen et al., 2018; Chen et al., 2018; Xu et al., 2020; Li et al.,
2020) to name a few.

A common denominator of these approaches is their ability to capture the under-
lying geometry of the data by relying on the cost function that reflects the metric
of the input space. However, these optimal transport-based methods can benefit
from not relying solely on such rudimentary geometrical information, since there
is further important structural information that remains uncaptured directly from
the ground metric, e.g., the local consistency induced by class labels in the source.
The exploitation of this structural information can elicit some desired properties in
domain adaptation like preserving compact classes during the transportation. It is,
moreover, what led authors in (Courty et al., 2016) to propose the inclusion of this
structural information by adding a group-norm regularizer. Such structures, how-
ever, could not be induced directly by the standard formulation of optimal transport.
To the best of our knowledge, (Alvarez-Melis et al., 2018) is the only work that has
attempted to incorporate structural information directly into the optimal transport
problem without the need to add a regularization term. This approach developed
a nonlinear generalization of discrete optimal transport based on submodular func-
tions. However, the application of this method in domain adaptation only takes into
account the available structures in the labeled source domain, by partitioning sam-
ples according to their class labels, while every target sample forms its own cluster.
Nonetheless, richer structures in the target domain can be easily captured differ-
ently, e.g., by grouping, and the incorporation of such target structures directly into
the optimal transport formulation can lead in our view to a significant improvement
in the performance of domain adaptation algorithms.

Contributions: In this chapter, we address the existing limitations of the target-
structure-agnostic algorithms mentioned above by proposing a principally new ap-
proach based on hierarchical optimal transport (Schmitzer and Schnörr, 2013). Hier-
archical optimal transport is an effective and efficient paradigm to induce structural
information into the transportation procedure. It has been recently used for differ-
ent tasks such as multi-level clustering (Ho et al., 2017), multimodal distribution
alignment (Lee et al., 2019), document representation (Yurochkin et al., 2019) and
semi-supervised learning (Taherkhani et al., 2020). The relevance of this paradigm
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for domain adaptation is illustrated in Figure 4.1, where we show that the structure-
agnostic Reg-OT (Cuturi, 2013) and target-structure-agnostic OT-GL (Courty et al.,
2016) algorithms fail to always restrict the transportation of mass across instances of
different structures, whereas, our Hierarchical Optimal Transport for Domain Adap-
tation (HOT-DA) model manages to do it correctly by leveraging the source and tar-
get structures simultaneously, which will subsequently lead to a better adaptation.

FIGURE 4.1: Illustration of the transportation obtained with structure-agnostic Reg-OT (Cu-
turi, 2013) and target-structure-agnostic OT-GL (Courty et al., 2016) methods, and our pro-
posed algorithm HOT-DA.

To the best of our knowledge, the proposed approach is the first hierarchical op-
timal transport method for unsupervised domain adaptation, and the first work to
shed light on the connection between spectral clustering and Wasserstein barycenter.

Outline: The rest of this paper is organized as follows: in the 2nd section, we present
the hierarchical formulation of optimal transport. In the 3rd section, we elaborate
the proposed approach HOT-DA. In the 4th section, we evaluate our algorithm on
a toy dataset and three benchmark visual adaptation problems, and we study the
relevance of Wasserstein-Spectral clustering to HOT-DA as well as the sensitivity of
our approach to unbalanced structures. Finally, we conclude in section 5.

4.2 Hierarchical optimal transport

Hierarchical optimal transport is an attractive formulation that offers an efficient
way to induce structural information directly into the transport process (Schmitzer
and Schnörr, 2013). The main underlying idea behind this formulation is to organize
the data in X and Y into structures (e.g., classes or clusters), this hierarchical orga-
nization allows to look at both X and Y as a collection of structures. To compute the
hierarchical optimal transport plan between these two collections, the cost function
can no longer be evaluated using a distance that quantitatively defines the closeness
between data, such as the Euclidean distance, we must therefore employ another
metric able to measure the discrepancy between structures. Since each structure can
be represented by a discrete measure, the Wasserstein distance is an evident choice.
Obviously, computing the Wasserstein distance between each pair of structures re-
quires solving a prior optimal transport problem between samples of the two struc-
tures. Therefore, if X and Y are composed of h and l structures respectively, then,
the Wasserstein cost matrix would require a prior computation of h×l optimal trans-
port problems, before solving the final optimal transport problem between classes
and clusters, hence the hierarchy.
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More formally, let X be a Polish metric space endowed with a distance d and P(X )
be the space of Borel probability measures on X equipped with the Wasserstein dis-
tance Wp according to (2.11). Since X is a Polish metric space, then P(X ) is also a
Polish metric space (Parthasarathy, 2005).

By a recursion of concepts,P(P(X )) the space of Borel probability measures onP(X )
is a Polish metric space and will be equipped then with the Wasserstein metric that
we note HWp, induced this time by the Wasserstein distance Wp which acts as the
ground metric on P(X ).

Let Φ = {ρ1, ..., ρh} ⊂ P(X ) and Ψ = {ϱ1, ..., ϱl} ⊂ P(X ) be two sets of proba-
bility measures over P(X ) (each probability measure represents a structure). The
empirical distributions of Φ and Ψ can be expressed respectively by ϕ, φ ∈ P(P(X ))
as ϕ =

∑h
i=1 αiδρi and φ =

∑l
j=1 βjδϱj , where α = (α1, ..., αh) and β = (β1, ..., βl)

are vectors in the probability simplex
∑

h and
∑

l respectively (ϕ and φ represent the
two collections of structures). The hierarchical optimal transport problem between
ϕ and φ is then:

(HOT ) min
Γ∈U(α,β)

⟨Γ,W⟩F (4.1)

where the matrix W = (Wp(ρi, ϱj))1≤i≤h
1≤j≤l

∈ Mh×l(R+) stands for the Wasserstein

cost matrix and U(α, β) = {Γ ∈ Mh×l(R+) | Γ1l = α and ΓT1h = β} represents
the new transportation polytope. More intuitive insights are provided in Figure 4.3.

4.3 Hierarchical Optimal Transport for Domain Adaptation

In this section, we introduce the proposed HOT-DA approach, which consists of
three phases, the first one aims to learn hidden structures in the unlabeled target
domain using Wasserstein barycenter, which we prove can be equivalent to spec-
tral clustering, the second phase focuses on finding a one-to-one matching between
structures of the two domains through the hierarchical optimal transport formula-
tion, and the third phase involves transporting samples of each source structure to
its corresponding target structure via the barycentric mapping.

4.3.1 Learning unlabeled target structures through Wasserstein-Spectral
clustering

Samples in the source domain S = {(xi, yi)}ni=1 can be grouped into structures ac-
cording to their class labels, but, data in the target domain T = {xj}mj=1 are not
labeled to allow us to identify directly such structures. Removing this obstacle can-
not be accomplished without using some additional assumptions. In fact, to exploit
efficiently the unlabeled data in the target domain, the most plausible assumption
stems from the structural hypothesis based on clustering, where it is assumed that
the data belonging to the same cluster are more likely to share the same label. This
assumption constitutes the core nucleus for the first phase of our approach, which
aims to prove that spectral clustering can be cast as a problem of learning proba-
bility measures with respect to Wasserstein barycenter. Our proof is based on three
key ingredients: the equivalence between the search for a 2-Wasserstein barycenter
of the empirical distribution that represents unlabeled data and k-means clustering,
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the analogy between traditional k-means and kernel k-means and finally the con-
nection between kernel k-means and spectral clustering. We derive from this result
a novel algorithm able to learn efficiently hidden structures of arbitrary shapes in
the unlabeled target domain.

Firstly, given m unlabeled instances {x1, ..., xm} ⊂ X , k-means clustering (Mac-
Queen et al., 1967) aims to partition the m samples into k clusters Πk = {π1, ..., πk}
in which each sample belongs to the cluster with the nearest center. This results in a
partitioning of the data space into Voronoi cells (Vorq)1≤q≤k generated by the cluster
centers C̃k = {c1, ..., ck}. The goal of k-means then is to minimize the mean squared
error, and its objective function is defined as:

min
c1,...,ck

1

m

m∑
i=1

∥xi − cj∥2 (4.2)

Let ρ̂m =
∑m

i=1
1
mδxi be the empirical distribution of {x1, ..., xm}. Since 1

m

∑m
i=1∥xi−

cj∥2 = Ex∼ρ̂m∥x− C̃k∥2, then according to (Canas and Rosasco, 2012):

1

m

m∑
i=1

∥xi − cj∥2 = W2
2(ρ̂m, πC̃k#ρ̂m) (4.3)

where πC̃k : X → C̃k is the projection function mapping each x ∈ Vorq ⊂ X to
cq. Since k-means minimizes (4.3), it also finds the measure that is closest to ρ̂m
among those with support of size k (Pollard, 1982). Which proves the equivalence
between k-means and searching for a 2-Wasserstein barycenter of ρ̂m in Pk(X ), i.e.,
a minimizer in Pk(X ) of:

f(κ) = W2
2(ρ̂m, κ) (4.4)

Secondly, k-means suffers from a major drawback, namely that it cannot separate
clusters that are nonlinearly separable in the input space. Kernel k-means (Schölkopf
et al., 1998) can overcome this limitation by mapping the input data in X to a high-
dimensional reproducing kernel Hilbert space H by a nonlinear mapping ψ : X →
H, then the traditional k-means is applied on the high-dimensional mappings {ψ(x1),
..., ψ(xm)} to obtain a nonlinear partition. Thus, the objective function of kernel k-
means can be expressed analogously to that of traditional k-means in (4.2):

min
c1,...,ck

1

m

m∑
i=1

∥ψ(xi)− cj∥2 (4.5)

Usually, the nonlinear mapping ψ(xi) cannot be explicitly computed, instead, the
inner product of any two mappings ψ(xi)Tψ(xj) can be computed by a kernel func-
tion K. Hence, the whole data set in the high-dimensional space can be represented
by a kernel matrix K ∈Mm(R+), where each entry is defined as: Ki,j = K(xi, xj) =
ψ(xi)

Tψ(xj).

Thirdly, according to (Zha et al., 2001), the objective function of kernel k-means in
(4.5) can be transformed to the following spectral relaxed maximization problem:

max
Y TY=Ik,Y≥0

trace(Y TKY ) (4.6)
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On the other hand, spectral clustering has emerged as a robust approach for data
clustering (Shi and Malik, 2000; Ng et al., 2002). Here we focus on the normalized
cut for k-way clustering objective function (Gu et al., 2001; Stella and Shi, 2003). Let
G = (V,E, K̃) be a weighted graph, where V = {x1, ..., xm} is the vertex set, E the
edge set, and K̃ the affinity matrix defined by a kernel K̃. The k-way normalized
cut spectral clustering aims to find a disjoint partition {V1, ..., Vk} of the vertex set V ,
such that:

min
V1,...,Vk

k∑
l=1

linkratio(Vl, Vl) (4.7)

where linkratio(Vl, Vl) =
links(Vl,Vl)
degree(Vl)

=

∑
i∈Vl

∑
j∈Vl

K̃ij∑
i∈Vl

∑
j∈V K̃ij

.

Following (Dhillon et al., 2004; Ding et al., 2005), the minimization in (4.7) can be
casted as:

max
ZTZ=Ik,Z≥0

trace(ZT D̃−1/2K̃D̃−1/2Z) (4.8)

where D̃ is the degree matrix of the graph G. Thus, the maximization problem in
(4.8) is identical to the spectral relaxed maximization of kernel k-means clustering in
(4.6) when equipped with the kernel matrix K = D̃−1/2K̃D̃−1/2.

According to the three-dimensional analysis above, we can now give the main re-
sult in the first phase of our method:

Theorem 4.1 Spectral clustering using an affinity matrix K̃ is equivalent to the search
for a 2-Wasserstein barycenter of ϱ̂m =

∑m
i=1

1
mδξ(xi) in the space of probability measures

with support of size k, where ξ is a nonlinear mapping corresponding to the kernel matrix
K = D̃−1/2K̃D̃−1/2 and D̃ is the degree matrix associated to K̃.

In the sequel, we will refer to the search for a 2-Wasserstein barycenter of ϱ̂m as
Wasserstein-Spectral clustering, and we will use it to learn k hidden structures in
the unlabeled target domain T .

Complexity analysis: Wasserstein-Spectral clustering offers an alternative to the
popular spectral clustering algorithm of (Ng et al., 2002) that has limited applica-
bility to large-scale problems due to its prohibitive running time that might be cubic
O(m3) on the size m of the input dataset (Yan et al., 2009; Tsironis et al., 2013). In
fact, there are fast and efficient algorithms to perform Wasserstein-Spectral cluster-
ing as (Cuturi and Doucet, 2014), (Kroshnin et al., 2019) which is based on accel-
erated gradient descent with complexity proportional to m2/ε and (Altschuler and
Boix-Adsera, 2021) which can be computed in polynomial time in fixed dimension
d. Furthermore, when the barycenter is restricted to measures with support of size k,
the recent work of (Izzo et al., 2021) shows that randomized dimensionality reduc-
tion can be used to map the problem to a space of dimensionO(log(k)) independent
of d and that any solution found in the reduced dimension will have its cost pre-
served up to arbitrary small error in the original space. The algorithmic application
of this statement is that one can take any approximation algorithm or heuristic for
computing Wasserstein barycenter and combine it with dimensionality reduction to
cope with the curse of dimensionality burden of Wasserstein barycenter.

It is noteworthy that the computation of Wasserstein barycenter is an increasingly
popular problem in the machine learning and statistics communities and our algo-
rithm can benefit from this renewed interest to reach more faster running time.



86 Chapter 4. Hierarchical Optimal Transport for Domain Adaptation

The theoretical result in Theorem 1 is confirmed by experiments, this is illustrated in
Figure 4.2, where we show that Wasserstein-Spectral clustering performs identically
to the traditional spectral clustering and that both are effective at separating nonlin-
early separable clusters, whereas k-means fails to separate data with non-globular
structures.

(A)

(B)

FIGURE 4.2: (a) Comparison of Wasserstein-Spectral clustering, spectral clustering, and k-
means on Two-Circles dataset. (b) As for (a) but on Moons dataset.

4.3.2 Matching source and target structures through hierarchical optimal
transport

Optimal transport offers a well-founded geometric way for comparing probability
measures in a Lagrangian framework, and for inferring a matching between them
as an inherent part of its computation. Its hierarchical formulation has inherited all
these properties with the extra benefit of inducing structural information directly
without the need to add any regularized term for this purpose, as well as the ca-
pability to split a sophisticated optimization surface into simpler ones that are less
subject to local minima, and the ability to benefit from the entropy-regularization.
Hence the key insight behind its use in the second phase of our method.

To use an appropriate formulation for hierarchical optimal transport, samples in
the source domain S = {(xi, yi)}ni=1 must be partitioning according to their class la-
bels into k classes {C1, ..., Ck}. The empirical distributions of these structures can be
expressed using discrete measures {ρ1, ..., ρk} ⊂ P(X ) as follows:

ρh =

n∑
i=1/xi∈Ch

aiδxi , ∀h ∈ {1, ..., k} (4.9)
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Similarly, samples in the target domain T = {xj}mj=1 are grouped in k clusters
{Cl1, ..., Clk} using Wasserstein-Spectral clustering in the first phase. The empirical
distributions of these structures can be expressed using discrete measures {ϱ1, ..., ϱk}
⊂ P(X ) in the following way:

ϱl =

m∑
j=1/xj∈Cll

bjδxj , ∀l ∈ {1, ..., k} (4.10)

Under the assumption that S and T are two sets of independent and identically
distributed samples, the weights of all instances in each structure are naturally set
to be equal:

ai =
1

|Ch|
and bj =

1

|Cll|
, ∀h, l ∈ {1, ..., k} (4.11)

The set S of labeled source samples and the set T of unlabeled target samples can
be seen in a hierarchical paradigm as a collection of classes and clusters. Thus, the
distribution of S and T can be expressed respectively as a measure of measures ϕ
and φ in P(P(X )) as follows:

ϕ =

k∑
h=1

αhδρh and φ =

k∑
l=1

βlδϱl (4.12)

where α = (α1, ..., αk) and β = (β1, ..., βk) are vectors in the probability simplex∑
k. The weights αh and βl are set to be equal to deal with the problem of structure

imbalance, in the following way:

αh =
1

k
and βl =

1

k
, ∀h, l ∈ {1, ..., k} (4.13)

To learn the correspondences between classes and clusters, we formulate an entropy-
regularized hierarchical optimal transport problem between ϕ and φ in the following
way:

(HOT -DA) min
Γ∈U(α,β)

⟨Γ,W⟩F − εH(Γ) (4.14)

where U(α, β) = {Γ ∈ Mk(R+) | Γ1k = α and ΓT1k = β} represents the trans-
portation polytope and W = (Wh,l)1≤h,l≤k ∈ Mk(R+) stands for the Wasserstein
cost matrix, whose each matrix-entry Wh,l is defined as the 2-Wasserstein distance
between the measures ρh and ϱl:

W2
h,l =W2

2 (ρh, ϱl) = ⟨γ
∗,ε′
h,l , Ch,l⟩F (4.15)

where Ch,l is the cost matrix of pairwise squared-Euclidean distances between ele-
ments of Ch and Cll, and γ

∗,ε′
h,l is the regularized optimal transport plan between ρh

and ϱl.

The optimal transport plan Γ∗
ε in (4.14) can be interpreted as a soft multivalued

matching between ϕ and φ as it provides the degree of association between classes
{C1, ..., Ck} in the source domain S and clusters {Cl1, ..., Clk} in the target domain
T . Then, the one-to-one matching relationship (=̂) between each classCh and its cor-
responding cluster Cll can be inferred by hard assignment from Γ∗

ε , in the following
way:

Ch=̂Cll | l = argmax
j=1,...,k

Γ∗
ε(h, j), ∀h ∈ {1, ..., k} (4.16)
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4.3.3 Transporting source to target structures through the barycentric map-
ping

Besides being a means of comparison and matching, optimal transport has the as-
set of performing thanks to its intrinsic quiddity of transport an alignment between
source and target structures. Hence the main underlying idea of this phase.

Once the correspondence between source and target structures has been determined
according to the one-to-one matching relationship (=̂) in (4.16), the source samples
in each class Ch have to be transported to the target samples in the corresponding
cluster Cll. This transportation can be handily expressed for each instance xi in Ch
with respect to the instances in Cll as the following barycentric mapping (Reich,
2013; Ferradans et al., 2014; Courty et al., 2016):

x̃i = argmin
x∈X

m∑
j=1/xj∈Cll

γ
∗,ε′
h,l (i, j)∥x− xj∥

2 (4.17)

where x̃i is the image of xi in the region occupied by Cll on the target domain, and
γ
∗,ε′
h,l is the optimal transport plan between ρh and ϱl already computed in (4.15). The

barycentric mapping can be formulated for each class Ch as follows:

C̃h = diag(γ
∗,ε′
h,l 1|Cll|)

−1γ
∗,ε′
h,l Cll, ∀h ∈ {1, ..., k} (4.18)

While samples in Ch and Cll are drawn i.i.d. from ρh and ϱl, then this mapping can
be cast as a linear expression:

C̃h = |Ch|γ
∗,ε′
h,l Cll, ∀h ∈ {1, ..., k} (4.19)

After the alignment of each classCh with its corresponding clusterCll has been done
as suggested in (4.19), a classifier η can be learned on the transported labeled source
data S̃ = ∪kq=1 C̃q and evaluated on the unlabeled target data T .

The proposed HOT-DA approach is formally summarized in Algorithm 4.1:

Algorithm 4.1 HOT-DA
Input : S = {(xi, yi)}ni=1, T = {xj}mj=1

Parameter: ε, ε′ Form ρh, ϱl ∀h, l ∈ {1, ..., k} (4.9)(4.10)
Form ϕ, φ (4.12)
Solve the HOT-DA problem between ϕ and φ (4.14)
Get the one-to-one matching between structures (4.16)
Transport the source structures to the target ones to get S̃ (4.19)
Train a classifier η on S̃ and evaluate it on T
return {yj}mj=1

Figure 4.3 below provides an overview of the HOT-DA approach and gives more
intuitive insights on hierarchical optimal transport.
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FIGURE 4.3: Wasserstein-Spectral clustering is used to learn hidden structures in the tar-
get domain as a seminal step before performing hierarchical optimal transport to align the
source and target domains. The optimal plan of this hierarchical transport (in purple) is cal-
culated from the Wasserstein cost matrix (in blue) that measures the distance between the
source classes and the target clusters. The distance between each pair of structures is com-
puted through the optimal transport plan of their points (e.g., orange and green).

4.4 Experimental results

In this section, we evaluate our method on a toy dataset and three challenging real-
world visual adaptation problems.

4.4.1 Inter-twinning moons dataset

In the first experiment, we carry on moons dataset, the source domain is the clas-
sical binary two inter-twinning moons centered at the origin (0,0) and composed of
300 instances, where each class is associated to one moon of 150 samples. We con-
sider 7 different target domains by rotating anticlockwise the source domain around
its center according to 7 angles. Naturally, the greater is the angle, the harder is
the adaptation. The experiments were run by setting ε = ε′ = 0.1, and an SVM
with a Gaussian kernel as classifier to cope with the non-linearity of this dataset.
The width parameter of the SVM was chosen as σ = 1

2V , where V is the variance
of the transported source samples. Our algorithm is compared to an SVM classifier
with a Gaussian kernel trained on the source domain (without adaptation), PBDA
(Germain et al., 2013) and four optimal transport based domain adaptation meth-
ods, OT-GL (Courty et al., 2016), JDOT (Courty et al., 2017), HiWA (Lee et al., 2019)
and MADAOT (Dhouib et al., 2020), with the hyperparameter ranges suggested in
the respective articles. To assess the generalization ability of the compared methods,
they are tested on an independent set of 1000 instances that follow the same distribu-
tion as the target domain. The experiments are conducted 10 times, and the average
accuracy is considered as a comparison criterion. The results are presented in Table
4.1 and the decision boundary of HOT-DA is illustrated in Figure 4.4.
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TABLE 4.1: Average accuracy over moons dataset for 7 rotation angles.

Angle (◦) 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM 1 0.896 0.760 0.688 0.600 0.266 0.172
PBDA 1 0.906 0.897 0.775 0.588 0.374 0.313
OT-GL 1 1 1 0.987 0.804 0.622 0.492
JDOT 0.989 0.955 0.906 0.865 0.815 0.705 0.600
HiWA 0.575 0.579 0.514 0.579 0.579 0.552 0.399
MADAOT 0.995 0.993 0.996 0.996 0.989 0.770 0.641

HOT-DA 1 1 1 1 1 1 0.997

FIGURE 4.4: Illustration of the decision boundary of HOT-DA over moons problem for in-
creasing rotation angles (10◦ to 90◦).

We remark that all the considered algorithms based on optimal transport (except
for HiWa) manage to achieve an almost perfect score on the angles from 10◦ to 40◦,
which is rational, as for these small angles the adaptation problem remains quite
easy. However, the SVM without adaptation has experienced a decline of almost
one-third of its accuracy from 30◦. This proves that moons dataset presents a dif-
ficult adaptation problem that goes beyond the generalization ability of standard
supervised learning models. For the strongest deformation, from 50◦ and up to 90◦,
the proposed method HOT-DA, always provides an almost perfect score, while a
big deterioration in the performance of PBDA and considerable deterioration in the
performance of OT-GL and JDOT from 50◦ was observed, for MADAOT, a signifi-
cant deterioration of performances starts from 70◦. In short, structures leveraged by
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HOT-DA are highlighted by eliminating the increasing difficulty of this adaptation
task, the constancy of the excellent performances of our approach speaks for itself,
while the poor performances of HiWa, which is a multimodal distribution alignment
method that seeks to jointly learn the alignment and the structure-correspondences
is rather surprising, considering that this approach also relies on hierarchical opti-
mal transport.

4.4.2 Visual adaptation datasets

We now evaluate our method on three challenging visual adaptation datasets. We
start by presenting the details of these benchmark datasets, the experimental pro-
tocol, the hyper-parameter tuning, and finish by providing and discussing the ob-
tained results.

Datasets: We consider three visual adaptation datasets: Digits (Hull, 1994; LeCun,
1998), Office-Caltech (Fei-Fei et al., 2004; Saenko et al., 2010) and Office-Home dataset
(Venkateswara et al., 2017). A detailed description of each dataset is given in Table
4.2.

TABLE 4.2: Description of the visual adaptation datasets.

Dataset Domains #Samples #Features #Classes Abbr.

Digits
USPS

MNIST
1800
2000

256
256

10
10

U
M

Office-Caltech

Caltech
Amazon
Webcam

DSLR

1123
958
295
157

4096
4096
4096
4096

10
10
10
10

C
A
W
D

Office-Home

Art
Clipart
Product

Real-World

2427
4365
4439
4357

2048
2048
2048
2048

65
65
65
65

Ar
Cl
Pr

Rw

Experimental protocol: For the problem of Digits recognition, 2000 and 1800 im-
ages are randomly selected respectively from the original MNIST and USPS datasets.
Then, the selected MNIST images are resized to the same 16× 16 resolution as USPS
ones. For the second visual adaptation problem, Office-Caltech dataset is used,
where we randomly sampled a collection of 20 images per class from each domain,
except for DSLR where only 8 images per class are selected. To represent these im-
ages, 4096 DeCaf6 features are used (Donahue et al., 2014). For the last problem, the
more complex Office-Home dataset (Venkateswara et al., 2017) is employed. This
dataset contains 15588 images from four visually very different domains: Artistic
images, Clip Art, Product images, and Real-world images. For this problem, ResNet-
50 was used to extract 2048 features (He et al., 2016).

As a classifier for our approach, we use 1-Nearest Neighbor classifier (1NN) on the
three visual adaptation datasets, which has the advantage of being parameter free.

For the problem of Digits recognition, the comparison is conducted using 1NN clas-
sifier (without adaptation) and five domain adaptation methods, SA (Fernando et al.,
2013) with a linear SVM, JDA (Long et al., 2013) with 1NN classifier, SCA (Ghifary
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et al., 2016a) with 1NN classifier, OT-GL with 1NN classifier (Courty et al., 2016) and
JDOT with a linear SVM (Courty et al., 2017). Concerning Office-Caltech dataset,
the comparison is performed with the same competitors as for Digits in addition to
DeepJDOT (Damodaran et al., 2018). Regarding the more voluminous and challeng-
ing Office-Home dataset, the choice is made to conduct the comparison with five
deep learning approaches to prove the scalability of our method, and its capability
to compete with deep learning models. The competitors are: ResNet-50 (without
adaptation), DAN (Long et al., 2015), DANN (Ganin et al., 2016), JAN (Long et al.,
2017) and DeepJDOT (Damodaran et al., 2018).

Hyper-parameter tuning: For the problem of Digits recognition, the experiments
were performed by setting ε = ε′ = 0.1. For Office-Caltech dataset, each target do-
main is equitably splited into a validation and test set. The validation set is used
to select the best hyper-parameters ε, ε′ in the range of {1, ..., 100}. The accuracy is
then evaluated on the test set, with the chosen hyper-parameters. The experimen-
tation is performed 10 times, and the mean accuracy in % is reported as in (Courty
et al., 2016). For Office-Home dataset, all labeled source samples and unlabeled tar-
get samples are used, and the average classification accuracy in % is computed based
on three random experiments as in (Ganin and Lempitsky, 2015). The best hyper-
parameters ε, ε′ are selected in the range of {1, ..., 100}.

Results: The results of our experiments are reported in Table 4.3, Table 4.4, and
Table 4.5. For each task, we use bold and underlined fonts to indicate the best and
second best results respectively.

TABLE 4.3: Accuracy on Digits dataset.

Task 1NN JDA SA SCA OT-GL JDOT HOT-DA

M→ U 58.33 60.09 67.71 65.10 69.96 64.00 76.39
U→M 39.00 54.52 49.85 48.00 57.85 56.00 63.20

average 48.66 57.30 58.73 56.55 63.90 60.00 69.79

From Table 4.3, we can see that the proposed approach HOT-DA significantly out-
performs the other domain adaptation methods on both tasks of Digits recognition
problem.

Table 4.4 shows that HOT-DA surpasses the other competitors on 5 out of 12 tasks
in Office-Caltech dataset, and has the second best accuracy on another task. Tables
4.3 and 4.4 also present the average results of each algorithm, where we observe a
slight advance in favor of our method compared to competitors, notably JDOT and
DeepJDOT. Therefore, we attribute this gain to the effectiveness of our Wasserstein-
Spectral clustering that succeeds in learning hidden structures in the target domain
even if they do not have globular shapes, which is the case of these two challenging
visual adaptation datasets. Furthermore, the hierarchical formulation incorporates
efficiently these structures, which allows the preservation of compact classes dur-
ing the transportation and limits the mass splitting across different target structures.
However, we see that DeepJDOT significantly outperforms HOT-DA in the three
tasks where Caltech (C) is the target domain, this is explained by the difficulty we
encountered to produce clusters similar to the unknown real classes in this domain.
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TABLE 4.4: Accuracy on Office-Caltech dataset (Decaf6 features).

Task 1NN JDA SA SCA OT-GL JDOT DeepJDOT HOT-DA

A→ C 22.25 81.28 79.20 78.80 85.51 85.22 87.40 80.00
A→ D 20.38 86.25 83.80 85.40 85.00 87.90 88.50 92.53
A→W 23.51 88.33 74.60 75.90 83.05 84.75 86.70 96.74
C→ A 20.54 88.04 89.30 89.50 92.08 91.54 92.30 92.19
C→ D 19.62 84.12 74.40 87.90 87.25 89.91 92.00 96.27
C→W 18.94 79.60 88.50 85.40 84.17 88.81 85.30 95.11
D→ A 27.10 91.32 79.00 90.00 92.31 88.10 91.50 91.33
D→ C 23.97 81.13 92.25 78.10 84.11 84.33 85.30 78.48
D→W 51.26 97.48 79.20 98.60 96.29 96.61 98.70 96.33
W→ A 23.19 90.19 55.00 86.10 90.62 90.71 86.60 91.86
W→ C 19.29 81.97 99.60 74.80 81.45 82.64 84.70 78.20
W→ D 53.62 98.88 81.65 100.00 96.25 98.09 98.70 94.61

average 28.47 86.72 81.65 85.90 88.18 89.05 89.80 90.30

TABLE 4.5: Accuracy on Office-Home dataset (ResNet-50 features).

Task ResNet-50 DAN DANN JAN DeepJDOT HOT-DA

Ar→ Cl 34.9 43.6 45.6 45.9 50.7 48.0
Ar→ Pr 50.0 57.0 59.3 61.2 68.6 69.0
Ar→ Rw 58.0 67.9 70.1 68.9 74.4 75.3
Cl→ Ar 37.4 45.8 47.0 50.4 59.9 61.7
Cl→ Pr 41.9 56.5 58.5 59.7 65.8 63.2
Cl→ Rw 46.2 60.4 60.9 61.0 68.1 67.4
Pr→ Ar 38.5 44.0 46.1 45.8 55.2 54.1
Pr→ Cl 31.2 43.6 43.7 43.4 46.3 39.7
Pr→ Rw 60.4 67.7 68.5 70.3 73.8 75.3
Rw→ Ar 53.9 63.1 63.2 63.9 66.0 67.6
Rw→ Cl 41.2 51.5 51.8 52.4 54.9 47.9
Rw→ Pr 59.9 74.3 76.8 76.8 78.3 78.5

average 46.1 56.3 57.6 58.3 63.5 62.4

The experimental results on Office-Home dataset are shown in Table 4.5. We observe
that HOT-DA outperforms the other methods on 6 out of 12 tasks, while DeepJDOT
performs better in the remaining 6 tasks. DeepJDOT is in the second place 6 times
compared to 3 times for HOT-DA, which experienced a drop in performance in the
3 tasks where Clipart is the target domain. This behavior led to a slight difference in
their average accuracy on Office-Home dataset in favor of DeepJDOT. This is rather
surprising considering that the competitors rely on neural networks to learn the final
classifier and these latter are expected to have higher discriminative power than the
1-Nearest Neighbor classifier used in our approach. Consequently, we attribute this
competitiveness to the efficiency of our hierarchical optimal transport formulation
that manages to better align the two distributions, and that can be seen as an "im-
plicit regularized" optimal transport. This implicit regularization heavily relies on "a
priori knowledge" (clustering), which leads to the injection of structural information
directly into the transport problem.



94 Chapter 4. Hierarchical Optimal Transport for Domain Adaptation

Globally, the mean accuracy of HOT-DA is 0.5% higher than DeepJDOT on Office-
Caltech. In parallel, DeepJDOT shows an improvement of 1.1% compared to our
method on Office-Home. Roughly speaking, the set of experiments shows good
behavior with respect to state-of-the-art methods, especially JDOT and DeepJDOT,
which however manage to outperform our algorithm on several tasks. This com-
petitive behavior is, we believe, due to the commonality between JDOT and Deep-
JDOT on the one hand and HOT-DA on the other hand. The former methods de-
sign a simultaneous optimization problem to find the coupling between the joint
distribution of the source and target domains and the labeling function that solves
the transfer problem. While the second method tries to address the same task se-
quentially by first finding the target structures, which is equivalent to performing
a pseudo-labeling in the target domain, before aligning each source structure with
its corresponding target structure, which can be seen as an alignment of the joint
distributions.

4.4.3 Relevance of Wasserstein-Spectral clustering to HOT-DA

The first step of HOT-DA is not directly integrated into the domain adaptation pro-
cess, and it is questionable whether other well-known clustering algorithms such
as k-means (MacQueen et al., 1967), DBSCAN (Ester et al., 1996) or HDBSCAN
(Campello et al., 2013) can be used to learn the target structures instead of Wasserstein-
Spectral clustering (W-SC).

k-means suffers from several drawbacks, notably its inability to identify clusters
with non-convex shapes, as shown in Figure 4.2. This incapacity can significantly
reduce the performance of HOT-DA on several unsupervised domain adaptation
problems where clusters do not have globular shapes in the target domain. These
problems include but are not limited to, the inter-twinning moons dataset.

On the other hand, DBSCAN relies on detecting areas where points are closely
packed together (points with many nearby neighbors) and marking as outliers points
that lie alone in low-density regions (whose nearest neighbors are too far away). DB-
SCAN does not require specifying the number of clusters a priori, instead, it requires
two parameters: minimum number of neighbors minpts and minimum radius Eps.
Therefore, for clustering high-dimensional data, it becomes very difficult to tune
these parameters to get the desired number of clusters, even using heuristic methods
(Musdholifah et al., 2013). Which can lead to finding a number of clusters very larger
or very smaller than the number of classes k in the source domain, and then to poor
adaptation results. Regarding HDBSCAN, which is a conversion of DBSCAN into a
hierarchical clustering algorithm, from which a simplified hierarchy composed only
of the most significant clusters can be easily extracted. It can find clusters of varying
densities, unlike DBSCAN and it performs well on low to medium dimensional data.
However, its performance tends to decrease as the dimension increases. In general,
the performance of HDBSCAN can see significant decreases already with tens of
dimensions (Campello et al., 2020). The unsupervised domain adaptation settings
can be beneficial for clustering algorithms that require the number of clusters k to
the detriment of DBSCAN and HDBSCAN which do not benefit from this available
information, especially for high-dimensional data (e.g., visual domain adaptation
datasets using ResNet-50 or DeCaf features) where it becomes quite difficult to tune
these parameters to get the desired number of clusters k.
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This analysis is the main motivation behind replacing k-means, DBSCAN, or HDB-
SCAN with spectral clustering which is able to find exactly k clusters, even with non-
globular shapes. This choice was reconsidered for complexity reasons as discussed
in 4.3.1, which led to the establishment of an equivalent algorithm: Wasserstein-
Spectral clustering, which furthermore allows unifying the different steps of our
algorithm under the aegis of optimal transport.

To confirm the insights above, we reproduce the experiments on the following datasets:
Moons, Office-Caltech, and Office-Home using four variants of our algorithm, the
first one uses Wasserstein-Spectral clustering, the second one uses k-means, the third
one is based on DBSCAN and the fourth one is rather based on HDBSCAN. The re-
sults of these experiments are given in Figure 4.5 using Kiviat diagram.

FIGURE 4.5: Kiviat’s accuracy diagram for the four variants of HOT-DA on Office-Caltech,
Office-Home, and Moons datasets. The radar corresponding to the variant based on
Wasserstein-Spectral clustering dominates the other radars on the three datasets

Figure 4.5 indicates ostensibly that the radar corresponding to the variant with W-
SC encompasses the other radars on the three datasets. On the 7 rotation problems
of moons dataset, the variant of HOT-DA based on Wasserstein-Spectral clustering
performs slightly better than the other variants based on DBSCAN and HDBSCAN
and all manage to make a nearly perfect adaptation. This is due to the ability of
Wasserstein-Spectral clustering to capture the structure of the two moons, and the
ease of tuning the parameters for DBSCAN and HDBSCAN to find the desired num-
ber of clusters in a small dimensional space (d = 2). While the variant of HOT-DA
based on k-means has much poorer performance due to the inability of k-means
to correctly explore the two inter-twinning moons. Regarding Office-Caltech and
Office-Home, the high-dimensionality of these datasets (d = 4096 for Office-Caltech
and d=2048 for Office-Home) has strongly impacted the performance of DBSCAN
and HDBSCAN, which fail to find exactly the desired number of clusters (k = 10 for
Office-Caltech and k = 65 for Office-Home), while k-means and Wasserstein-Spectral
clustering benefit from this available information to obtain better results, with sig-
nificant supremacy for this latter.

The above empirical experiments strengthen our choice of Wasserstein-Spectral clus-
tering and clearly demonstrate that it is a well-suited candidate for these unsuper-
vised domain adaptation settings.
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4.4.4 Structure imbalance sensitivity analysis

The problem of structure imbalance where an uneven distribution of samples oc-
curs among a variety of structures can lead to pathological behavior of the mass
transportation, by showing favoritism towards majority target structures in spite of
minority ones which may receive no mass due to the thresholding performed in
(4.16). Fortunately, the choice made to give the same mass to each structure, allows
HOT-DA to avoid this behavior and to achieve the right matching between source
and target structures. The intuition behind this choice is to consider each structure
as an independent entity and to remove the bias induced by its cardinality, which is
quite natural since a class in the source domain and its corresponding cluster in the
target domain do not necessarily have the same proportion of points.

To evaluate the behavior of HOT-DA with respect to the problem of structure im-
balance, an experiment is conducted on a toy dataset composed of two structures
in each domain as shown in Figure 4.6. The experiment is designed to compare the
performance of our proposed approach with Reg-OT (Cuturi, 2013), OT-GL (Courty
et al., 2016) and GW (Gromov-Wasserstein) (Mémoli, 2011; Sturm, 2006), in three
scenarios: balanced structures, moderately unbalanced structures and, extremely
unbalanced structures.

FIGURE 4.6: Behavior of Reg-OT, OT-GL, GW, and, HOT-DA towards the problem of struc-
ture imbalance.

The first part of the experiment concerning the case of balanced structures shows an
ideal behavior of the four methods. The situation begins to change slightly in the
second case of moderately unbalanced structures, where Reg-OT and OT-GL make
some mistakes because of the extra-mass of the red source structure that has to be
sent to the blue target structure, while GW reverses the matching due to this moder-
ate imbalance. However, our approach still achieves an uncontested matching. The
third part concerning the most complicated scenario of extremely unbalanced struc-
tures, demonstrates a catastrophic deterioration in the results of the three methods
Reg-OT, OT-GL, and GW, while our HOT-DA approach continues to provide a flaw-
less result. This proves that HOT-DA is a robust and non-sensitive algorithm to this
kind of imbalance, unlike other approaches. It is noteworthy that our model is less
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sensitive than other optimal transport methods to changes in the value of the en-
tropy regularization parameter thanks to the thresholding carried out by the hard
assignment in (4.16).

4.5 Software

We make our code and the used datasets publicly available at:

https://github.com/MouradElHamri/HOT-DA

4.6 Conclusion and future perspectives

In this chapter, we proposed HOT-DA, a novel approach dealing with unsupervised
domain adaptation, by leveraging the ability of hierarchical optimal transport to in-
duce structural information directly into the transportation process. We also proved
theoretically the equivalence between spectral clustering and the problem of learn-
ing probability measures through Wasserstein barycenter, this latter was used to de-
rive Wasserstein-Spectral clustering, a new alternative of spectral clustering able to
learn hidden structures of arbitrary shapes in the unlabeled target domain, as a sem-
inal step before performing hierarchical optimal transport to align the source and
target domains. The proposed approach has been shown to be efficient on both
simulated and real-world problems compared to several state-of-the-art methods, in
addition to being able to cope with structure imbalance.

The work of this chapter can be extended in different directions:

• From an algorithmic standpoint, we plan to take advantage of the unification
of the different steps of our approach under the banner of optimal transport, in
order to jointly learn the target structures and the optimal transport plan that
aligns them with the source classes and to investigate a possible application of
the proposed approach to multi-source domain adaptation settings.

• From a theoretical standpoint, future work will include the development of
generalization bounds that take into account the hierarchical organization of
source and target samples in structures. These bounds will reflect explicitly
both the excess clustering risk in the target domain and which structures must
be aligned to lead to a good adaptation.

https://github.com/MouradElHamri/HOT-DA
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Recent theoretical advances show that the success of domain adaptation algorithms
heavily relies on their ability to minimize the divergence between the probability dis-
tributions of the source and target domains. However, minimizing this divergence
cannot be done independently of the minimization of other key ingredients such as
the source risk or the combined error of the ideal joint hypothesis. The trade-off
between these terms is often ensured by algorithmic solutions that remain implicit
and not directly reflected by the theoretical guarantees. To get to the bottom of this
issue, we propose in this chapter based on (El Hamri et al., 2022d) a new theoret-
ical framework of domain adaptation through hierarchical optimal transport. This
framework provides more explicit generalization bounds and allows us to consider
the natural hierarchical organization of samples in both domains into classes or clus-
ters. Additionally, we provide a new divergence measure between the source and
target domains called Hierarchical Wasserstein distance that indicates under mild
assumptions, which structures have to be aligned to lead to a successful adaptation.
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And a voice shouts in my heart: We fell,
and a voice shouts in my heart: Get up!

Mourid Al-Barghouti

5.1 Introduction

In domain adaptation theory, existing generalization bounds on the target risk of a
given hypothesis are often stated in a generic form implying the source risk, a di-
vergence measure between the source and target domains, and a term assessing the
ability of the given hypothesis space to successfully resolve the problem of adapta-
tion (3.29). The source risk is estimable from finite samples and can be minimized
by learning the hypothesis from the available source labeled data. Similarly, the di-
vergence is estimable from the observed data and is intended to be slight if the two
domains are nearby. While the last term is non-estimable and is usually formulated
as the combined error of the ideal joint hypothesis.

In the pioneering theoretical work of (Ben-David et al., 2006), the domain adap-
tation problem was carefully addressed using the total variation TV distance, but
its employment as a divergence measure between the marginal distributions of the
source and target domains presents two major weaknesses. First, the TV distance
is not directly related to the concerned hypothesis space, which results in loose
generalization bounds, and secondly, it is not estimable from finite samples drawn
from arbitrary probability distributions (Batu et al., 2000). To overcome these lim-
itations, (Ben-David et al., 2010) introduced a classifier-induced divergence called
theH∆H-divergence, based on the A-divergence provided in (Kifer et al., 2004). In-
deed, theH∆H-divergence explicitly considers the given hypothesis spaceH, which
guarantees that the generalization bounds stay relevant and decidedly linked to the
learning problem in question, and, for a given hypothesis space H of finite Vapnik-
Chervonenkis dimension, the H∆H-divergence can be estimated from finite sam-
ples. Furthermore, the H∆H-divergence is always smaller than the TV distance for
any hypothesis space H, which results in tighter bounds. Nevertheless, an obvi-
ous shortcoming of the H∆H-divergence is its reliance on the 0 - 1 loss function.
Whereas, it might be desirable to have generalization bounds for a more generic do-
main adaptation framework, where any arbitrary loss function with some suitable
properties can be considered. To address this concern, (Mansour et al., 2009) intro-
duced the discrepancy distance discl that expands the previous theoretical analysis
of domain adaptation for any arbitrary loss function, which is symmetric, bounded,
and obeys the triangle inequality. Additionally, the discrepancy distance discl re-
lies on the hypothesis space H, but the complexity term is rather related to the
Rademacher complexity of H. This distinctive refinement provides data-dependent
bounds that are commonly sharper than those derived from Vapnik–Chervonenkis
theory.

Despite their numerous advantages, both theH∆H-divergence and the discrepancy
distance discl suffer from a computational burden related to their estimation. In such
a circumstance, it was natural to look for other metrics with some appealing compu-
tational properties to quantify the divergence between the two domains. Following
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this trend, (Redko, 2015) appealed to the Maximum Mean Discrepancy (MMD) dis-
tance to infer generalization bounds analogous to that of (Ben-David et al., 2010).
These bounds turned out to be remarkably meaningful since an unbiased estimator
of the squared MMD distance can be computed in linear time, and the complexity
term does not depend on the Vapnik–Chervonenkis dimension but on the empir-
ical Rademacher complexities of the hypothesis space with respect to the source
and target samples. Some time later, (Redko et al., 2017) presented generalization
bounds in terms of the Wasserstein distanceW1 as a theoretical analysis of the sem-
inal domain adaptation algorithm based on optimal transport (Courty et al., 2016).
This analysis proved to be very fruitful for several reasons. First, the Wasserstein
distance is computationally attractive, particularly in virtue of the entropic regular-
ization introduced in (Cuturi, 2013). Furthermore, the Wasserstein distance has the
ability to capture the underlying geometry of the data in both domains. Moreover,
the Wasserstein distance is quite strong, and according to (Villani, 2009), it is not so
hard to associate the convergence information in the Wasserstein distance with cer-
tain smoothness bound to obtain convergence in stronger distances. This powerful
asset of the Wasserstein distance gives tighter bounds compared to other results in
state-of-the-art.

Under the above generic form of generalization bounds, it is clear that minimiz-
ing the previous distances between the marginal distributions of the source and
target domains cannot be performed separately from minimizing the source risk
and the ability term. For instance, the minimization of the Wasserstein distance re-
sults from the transport of the source to the target samples such that W1 becomes
quite low when computing between the newly transported source samples and the
target instances. Nevertheless, by minimizing the Wasserstein distance only, the
obtained transformation may transport some source samples of different labels to
the same target samples, and thus, the empirical source error cannot be adequately
minimized. Moreover, the joint error will be negatively affected since no classifier
will be capable of separating these source instances. We may also consider an iron-
ically extreme situation of binary classification task where the transport plan sends
the source data of each class to the target data of the inverse class. In such a case,
the joint error will be drastically impacted. To avoid these pathological scenarios, a
possible remedy was then to promote group sparsity in the optimal transport plan
in order to restrict the source instances of different classes to be transported to the
same target points. This algorithmic solution is implemented through a group-norm
regularizer in (Courty et al., 2016). From a theoretical point of view, this regulariza-
tion constitutes an arrangement to control the trade-off between the three terms of
the bound. However, this trade-off remains imperceptible, and the bound does not
reflect it explicitly.

Recently, (El Hamri et al., 2022b) 1 proposed a new domain adaptation algorithm
based on a hierarchical formulation of optimal transport that leverages beyond the
geometrical information captured by the ground metric, richer structural informa-
tion in the source and target domains. The exploitation of this structural informa-
tion elicited some desired properties in domain adaptation like preserving compact
classes during the transportation, which provided an alternative algorithmic solu-
tion to restrict the source instances of different classes to be transported to the same

1See the previous chapter.
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target points. The main underlying idea behind the hierarchical formulation of opti-
mal transport is to organize samples in the source domain into structures according
to their class labels, and samples in the target domain into structures by clustering.
This organization offers a new paradigm of perceiving each domain as a measure
of measures. Rigorously, each domain can be seen as a distribution over structures,
where the structures are also distributions, but over samples. Hierarchical optimal
transport attempts then to align the structures of both domains while minimizing
the total cost of the transportation quantified by the Wasserstein distance, which acts
as the ground metric. While presenting very interesting empirical performances, it
turns out that the work of (El Hamri et al., 2022b) has no theoretical guarantees, de-
spite it may be an untapped potential solution to avoid the limitations listed above,
specifically the one concerning the imperceptible trade-off between the three terms
of the bound.

Contributions: In this chapter, we address the aforementioned limitations by pro-
viding new generalization bounds based on hierarchical optimal transport. The
main underlying idea behind these bounds is to decompose the two domains into
structures and then indicate explicitly which structures should be aligned together
to lead to a good adaptation.

This paper’s contributions are threefold:

1. We provide a theoretical analysis of the work of (El Hamri et al., 2022b), which
justifies the use of hierarchical optimal transport for domain adaptation.

2. We consider the usual hierarchical organization of data into structures and in-
troduce a new divergence measure to quantify the similarity between source
and target domains in light of this hierarchy, which we call the Hierarchical
Wasserstein distance. We relate the proposed distance to the classical Wasser-
stein distance.

3. We derive generalization bounds on the target risk based on the Hierarchical
Wasserstein distance, for the three domain adaptation settings: unsupervised,
semi-supervised, and multi-source domain adaptation. The proposed general-
ization bounds indicate the distance between which structures should be really
minimized to lead to a good adaptation. This makes the trade-off between the
three terms of the bound more explicit and may suggest the minimization of
each term independently of the others.

Outline: The rest of this paper is organized as follows. The 2nd section introduces
the Hierarchical Wasserstein distance as a divergence measure between the source
and target domains and introduces the link with the classical Wasserstein distance.
The 3rd section proves generalization bounds based on the Hierarchical Wasserstein
distance for three scenarios, unsupervised, semi-supervised, and multi-source do-
main adaptation. Finally, we discuss conclusions and future research directions in
section 4.
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5.2 Hierarchical Wasserstein distance

This section is dedicated to constructing the Hierarchical Wasserstein distanceHWp

on the spacePp(Pp(X )) that will serve as a divergence measure to quantify the close-
ness between the source and target domains.

The Hierarchical Wasserstein distance will allow us to introduce several generaliza-
tion bounds on the target risk in the next section where we will study three scenarios
of domain adaptation as we will see later.

First, let us present the following Theorem from (Villani, 2009) that will be useful
for establishing theHWp distance.

Theorem 5.1 (Topology of the Wasserstein space) Let (X , d) be a Polish metric space
and let p ∈ [1,∞[. Then the Wasserstein space Pp(X ) metrized by the Wasserstein distance
Wp is itself a Polish metric space.

In the following Lemma we show that HWp is effectively a distance on the space
Pp(Pp(X )).

Lemma 5.2 (Hierarchical Wasserstein distance) Let (X , d) be a Polish metric space and
let p ∈ [1,∞[. For any two probability measures ϕ, φ ∈ Pp(Pp(X )), the Hierarchical
Wasserstein distance of order p between ϕ and φ is defined by:

HWp(ϕ, φ) =

(
inf

η∈Π(ϕ,φ)

∫
Pp(X )2

Wp(ρ, ϱ)
p dη(ρ, ϱ)

)1/p

. (5.1)

Furthermore Pp(Pp(X )) metrized byHWp is a Polish metric space.

Proof Let p ∈ [1,∞[. Since (X , d) is a Polish metric space, then (Pp(X ),Wp) is itself
a Polish metric space by Theorem 5.1. By a recursion of concepts, Definition 2.18
ensures thatHWp defines a distance on the space Pp(Pp(X )) and Theorem 5.1 holds
that (Pp(Pp(X )),HWp) is a Polish metric space.

The following Corollary from (Villani, 2009) is of particular interest for the statement
of the link betweenWp andHWp.

Corollary 5.3 (Measurable selection of optimal plans) Let X ,Y be Polish spaces and
let c : X × Y → R be a continuous cost function, inf c > −∞. Let Υ be a measurable
space and let υ 7→ (µυ, νυ) be a measurable function Υ → P(X ) × P(Y). Then there is a
measurable choice υ 7→ πυ such that for each υ, πυ is an optimal transport plan between µυ
and νυ.

In the following Lemma, we prove that the Wasserstein distance enjoys an interest-
ing property that we call hierarchical monotonicity.

Lemma 5.4 (Hierarchical monotonicity of Wasserstein distance) Let (X , d) be a Pol-
ish metric space and let p ∈ [1,∞[. Let ϕ, φ ∈ Pp(Pp(X )) and let µ, ν ∈ Pp(X ) such that
µ =

∫
Pp(X )Xdϕ and ν =

∫
Pp(X )Xdφ for some generic measure-valued random variable

X . The following holds,
Wp(µ, ν) ≤ HWp(ϕ, φ). (5.2)
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Proof Let ϕ, φ ∈ Pp(Pp(X )) and let consider an arbitrary η ∈ Π(ϕ, φ), then:∫
Pp(X )2

Wp
p (ρ, ϱ)dη(ρ, ϱ) =

∫
Pp(X )2

(∫
X 2

d(x, y)pπρ,ϱ(dx, dy)

)
dη(ρ, ϱ) (5.3)

=

∫
X 2

(∫
Pp(X )2

d(x, y)pπρ,ϱdη(ρ, ϱ)

)
(dx, dy) (5.4)

=

∫
X 2

d(x, y)p
(∫

Pp(X )2
πρ,ϱdη(ρ, ϱ)

)
(dx, dy) (5.5)

=

∫
X 2

d(x, y)pπ(dx, dy) (5.6)

≥ Wp
p (µ, ν) = inf

π∈Π(µ,ν)

∫
X 2

d(x, y)p π(dx, dy) (5.7)

First line is obtained by the definition of the Wasserstein distance and by using the
measurable selection of optimal plans, so πρ,ϱ is an optimal transport plan between
ρ and ϱ that is chosen in a measurable way according to Corollary 5.3. Second line is
due to Fubini’s theorem. Third line is trivial. Fourth line follows from the fact that∫
Pp(X )2 πρ,ϱdη(ρ, ϱ) = π for some valid transport plan π ∈ Π(µ, ν), this becomes clear

by marginalizing out y and marginalizing out x, respectively:

∀A ⊂ X :

∫
Pp(X )2

πρ,ϱ(A×X )dη(ρ, ϱ) =
∫
Pp(X )2

ρ(A)dη(ρ, ϱ) (5.8)

=

∫
Pp(X )

ρ(A)dϕ (5.9)

= µ(A) (5.10)

∀B ⊂ X :

∫
Pp(X )2

πρ,ϱ(X × B)dη(ρ, ϱ) =
∫
Pp(X )2

ϱ(B)dη(ρ, ϱ) (5.11)

=

∫
Pp(X )

ϱ(B)dφ (5.12)

= ν(B) (5.13)

The first equalities (5.8) and (5.11) follow from the fact that πρ,ϱ is an optimal trans-
port plan between ρ and ϱ. Second equalities (5.9) and (5.12) follow from the fact that
η is an optimal transport plan between ϕ and φ. Third equalities (5.10) and (5.13) fol-
low from the assumptions made on ϕ and φ, respectively.

Let’s get back to the core of the proof, inequality in the fifth line follows from the
definition of the Wasserstein distance.

The inequality
∫
Pp(X )2W

p
p (ρ, ϱ)dη(ρ, ϱ) ≥ Wp

p (µ, ν) holds for any η ∈ Π(ϕ, φ), then,
we obtain the final result by taking the infimum over η from the left-hand side, i.e.

inf
η∈Π(ϕ,φ)

∫
Pp(X )2

Wp
p (ρ, ϱ)dη(ρ, ϱ) ≥ Wp

p (µ, ν) (5.14)

which gives:

HWp(ϕ, φ) ≥ Wp(µ, ν) (5.15)
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5.3 Generalization bounds based on the Hierarchical Wasser-
stein distance

In this section, we introduce generalization bounds on the target risk when the di-
vergence between the source and target domains is measured by the Hierarchical
Wasserstein distance.

5.3.1 A bound for unsupervised domain adaptation

This subsection focuses on unsupervised domain adaptation where no labeled data
are available in the target domain. We first present the Lemma that introduces Hi-
erarchical Wasserstein distance to relate the source and target risks for an arbitrary
pair of hypothesis.

Lemma 5.5 Let µS , µT ∈ Pp(X ) be two probability measures on a compactX ⊆ Rd and let
φS , φT ∈ Pp(Pp(X )) be two probability measures on Pp(X ) such that µS =

∫
Pp(X )XdφS

and µT =
∫
Pp(X )XdφT for some generic measure-valued random variable X . Assume that

the cost function c(x, y) = ∥ϕ(x) − ϕ(y)∥Hk
, where Hk is a reproducing kernel Hilbert

space (RKHS) equipped with kernel k : X ×X → R induced by ϕ : X → Hk and k(x, y) =
⟨ϕ(x), ϕ(y)⟩Hk

. Assume further that the loss function lh,f : x 7→ l(h(x), f(x)) is convex,
symmetric, bounded, obeys triangle equality, and has the parametric form |h(x)− f(x)|q for
some q > 0. Assume also that the kernel k in the RKHS Hk is square-root integrable w.r.t.
both µS , µT for all µS , µT ∈ Pp(X ) where 0 ≤ k(x, y) ≤ K,∀x, y ∈ X . If ∥l∥Hk

≤ 1, then
the following holds:

∀(h, h′) ∈ H2
k, ϵT (h, h

′) ≤ ϵS(h, h′) +HW1(φS , φT ). (5.16)

Proof Under assumptions of Lemma 5.5, and according to Lemma 3.42, we have:

∀(h, h′) ∈ H2
k, ϵT (h, h

′) ≤ ϵS(h, h′) +W1(µS , µT ) (5.17)

On the other hand, using the property of Hierarchical monotonicity of Wasserstein
distance in Lemma 5.4 for p = 1, we have:

W1(µS , µT ) ≤ HW1(φS , φT ) (5.18)

which gives:

∀(h, h′) ∈ H2
k, ϵT (h, h

′) ≤ ϵS(h, h′) +HW1(φS , φT ) (5.19)

Remark 5.6 Lemma 5.5 and the subsequent results are established for the special case p = 1,
but they can easily be generalized for any p > 1, by applying Hölder’s inequality that states:

p ≤ q ⇒ HWp ≤ HWq (5.20)

Remark 5.7 As reported in (Redko et al., 2017), the parametric form of the loss function
lh,f as |h(x)− f(x)|q for some q > 0 is only an example. Following (Saitoh, 1997), we can
also look at more general nonlinear transformations of h and f that satisfy the hypothesis
made on lh,f above. These transformations can comprise a product of hypothesis and labeling
functions and thus the suggested results are relevant for hinge loss too.
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Remark 5.8 Lemma 5.5 supposes that the cost function c(x, y) = ∥ϕ(x) − ϕ(y)∥Hk
. This

may seem too demanding as in several applications, the Euclidean distance c(x, y) = ∥x−y∥
is considered as the ground metric. But fortunately, this assumption is not that restrictive
and may be bypassed through the duality between RKHS and distance-based metric repre-
sentations, studied by (Sejdinovic et al., 2013). In fact:

∥ϕ(x)− ϕ(y)∥Hk
=
√
⟨ϕ(x)− ϕ(y), ϕ(x)− ϕ(y)⟩Hk

=
√
k(x, x)− 2k(x, y) + k(y, y). (5.21)

Thus, the Euclidean distance can be recovered by considering the kernel provided by the
covariance function of the fractional Brownian motion:

k(x, y) =
1

2

(
∥x∥2 − ∥x− y∥2 + ∥y∥2

)
(5.22)

We report now some preliminary results to show the convergence of an empirical
measure to its true associated measure with respect to the Wasserstein distance.
These results can be extended to the Hierarchical Wasserstein distance, which al-
lows to provide generalization bounds for finite samples rather than true population
measures. First, let’s define Talagrand inequalities Tp as in (Villani, 2009).

Definition 5.9 (Tp inequality) Let (X , d) be a Polish metric space and let p ∈ [1,∞[. Let
ν be a reference probability measure in Pp(X ) and let ζ > 0. It is said that ν satisfies Tp(ζ)
inequality if:

∀µ ∈ Pp(X ) Wp(ν, µ) ≤

√
2H(ν|µ)

ζ
(5.23)

where H is the relative entropy: H(ν|µ) =
∫
dν
dµ log

dν
dµdµ.

We shall say that ν satisfies a Tp inequality if it satisfies Tp(ζ) for some constant ζ > 0.

Probability measures verifying T1 inequality have a characteristic property related
to the existence of a square-exponential moment, as shown in (Bolley and Villani,
2005).

Theorem 5.10 (Characteristic property of T1 inequality) Let X be a measurable space
equipped with a measurable distance d, let ν be a reference probability measure on X , and let
x0 be any element of X . Then ν satisfies T1 inequality if and only if, for some α > 0:∫

X
eαd(x0,x)

2
dν(x) < +∞, (5.24)

In (Bolley et al., 2007), authors assume a Tp inequality for the measure µ, and derive
an upper bound inWp distance, we present here the case p = 1.

Theorem 5.11 (Upper bound inW1) Let (X , d) be a Polish metric space. Let µ be a prob-
ability measure on X so that for some α > 0, we have for any x0 ∈ X ,

∫
X e

αd(x0,x)2dµ(x) <
+∞, and let µ̂ = 1

n

∑n
i=1 δxi be its associated empirical measure defined on a sample of

independent variables {xi}ni=1 all distributed according to µ. Then for any d′ > dim(X )
and ζ ′ < ζ, there exists some constant N0 depending on d′, ζ ′ and some square exponential
moment of µ, such that for any ε > 0 and N ≥ N0max(ε−(d′+2), 1)

P [W1(µ, µ̂) > ε] ≤ exp

(
−ζ ′

2
Nε2

)
. (5.25)
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Remark 5.12 The original version of Theorem 5.11 is established for X = Rd as stated
in Theorem 3.41, but we can find the generalization above for any metric space (X , d) in
(Courty et al., 2017).

Using Lemma 5.5 and Theorem 5.11, we are now ready to give a generalization
bound on the target risk in terms of the Hierarchical Wasserstein distance we have
constructed.

Theorem 5.13 Under the assumptions of Lemma 5.5, let φS , φT ∈ Pp(Pp(X )) satis-
fying a T1(ζ) inequality and let µS , µT ∈ Pp(X ) such that µS =

∫
Pp(X )XdφS and

µT =
∫
Pp(X )XdφT . Let S and T be two sets of size n and m drawn i.i.d. from µS

and µT respectively and let µ̂S = 1
n

∑n
i=1 δxi and µ̂T = 1

m

∑m
j=1 δxj be their associated

empirical measures. Assume further that samples in S and T are grouped respectively
in k classes and k clusters, such that, the empirical measures of φS and φT can be ex-
pressed as φ̂S =

∑k
h=1

1
kδρh and φ̂T =

∑k
l=1

1
kδϱl , where ρh =

∑n
i=1/xi∈Ch

1
|Ch|δxi and

ϱl =
∑m

j=1/xj∈Cll
1

|Cll|δxj are the empirical measure of the he class Ch and le cluster Cll
respectively. Then for any d′ > dim(Pp(X )) and ζ ′ < ζ, there exists some constant k0
depending on d′, such that for any δ > 0 and k ≥ k0max(δ−(d′+2), 1) with probability of at
least 1− δ for all h, the following holds:

ϵT (h) ≤ ϵS(h) +HW1(φ̂S , φ̂T ) + 2

√
2 log

(
1
δ

)
ζ ′k

+ λ , (5.26)

where λ is the combined error of the ideal joint hypothesis h∗ that minimizes the combined
error of ϵS(h) + ϵT (h).

Proof

ϵT (h) ≤ ϵT (h, h∗) + ϵT (h
∗, fT ) (5.27)

= ϵT (h, h
∗) + ϵT (h

∗, fT ) + ϵS(h, h
∗)− ϵS(h, h∗) (5.28)

≤ ϵT (h, h∗) + ϵT (h
∗) + ϵS(h) + ϵS(h

∗)− ϵS(h, h∗) (5.29)
≤ ϵS(h) +HW1(φS , φT ) + ϵS(h

∗) + ϵT (h
∗) (5.30)

≤ ϵS(h) +HW1(φS , φT ) + λ (5.31)
≤ ϵS(h) +HW1(φS , φ̂S) +HW1(φ̂S , φT ) + λ (5.32)

≤ ϵS(h) +

√
2 log

(
1
δ

)
ζ ′k

+HW1(φ̂S , φ̂T ) +HW1(φ̂T , φT ) + λ (5.33)

≤ ϵS(h) +HW1(φ̂S , φ̂T ) + 2

√
2 log

(
1
δ

)
ζ ′k

+ λ (5.34)

First and third lines are obtained using the triangular inequality applied to the error
function. Fourth line is a consequence of Lemma 5.5. Fifth line follows from the def-
inition of λ, sixth, seventh and eighth lines use the fact that Hierarchical Wasserstein
metric is a proper distance and the Theorem 5.11 forHW1 applied to φS and φT .

A straightforward implication of this theorem is that it justifies the application of
hierarchical optimal transport in unsupervised domain adaptation. A similar result
is Theorem 3.47, where authors in (Courty et al., 2017) use the Wasserstein distance
to measure the similarity between the joint distribution of the source domain and
an estimated joint distribution of the target one. Even if this bound does not have
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the generic form in (3.29), it suggests the minimization of the Wasserstein distance
between the joint distributions, which is very close to the minimization of the Hier-
archical Wasserstein distance between classes and clusters in our bound.

Other similar results can be found in Theorem 3.43 of (Redko et al., 2017) and The-
orem 3.44 of (Shen et al., 2018). The only distinction is the use of the Wasserstein
distance in these bounds to measure the similarity between the marginal distribu-
tions of both domains rather than the Hierarchical Wasserstein distance in our case.
Although one might think, due to the inequality in Lemma 5.4 that the proposed
bound is less tight than the one in Theorem 3.43, but our bound has a major advan-
tage, as shown below.

Indeed, the following Corollary gives a more explicit bound based on the devel-
opment of theHW1 distance.

Corollary 5.14 Under the assumptions of Theorem 5.13, let Γ∗ = argmin
Γ∈U(α,β)

⟨Γ,W1⟩F be the

optimal transport plan between φ̂S and φ̂T , with probability of at least 1 − δ for all h, we
have:

ϵT (h) ≤ ϵS(h) +
k∑

h=1

W1(ρh, ϱσ(h)) + k(k − 1)ι+ 2

√
2 log

(
1
δ

)
ζ ′k

+ λ , (5.35)

where σ : {1, ..., k} → {1, ..., k}
h 7→ l∗ = argmax

l

Γ∗
h,l

and ι = max
h,l ̸=σ(h)

W1(ρh, ϱl).

Proof

HW1(φ̂S , φ̂T ) =

k∑
h=1

k∑
l=1

W1(ρh, ϱl)Γ
∗
h,l (5.36)

≤
k∑

h=1

k∑
l=1

W1(ρh, ϱl) (5.37)

=
k∑

h=1

W1(ρh, ϱσ(h)) +
k∑

h=1

k∑
l=1/l ̸=σ(h)

W1(ρh, ϱl) (5.38)

≤
k∑

h=1

W1(ρh, ϱσ(h)) + k(k − 1)ι (5.39)

First line follows from the definition of the Hierarchical Wasserstein distance. Sec-
ond line uses the fact that Γ∗ ∈ U(α, β), then we can bound each Γ∗

h,l by 1 for sim-
plicity 2. Third and fourth lines are trivial.

The work of (El Hamri et al., 2022b) is based on the minimization of the Wasserstein
distance between each class and its corresponding cluster, i.e.

∑k
h=1W1(ρh, ϱσ(h)).

The minimization of this amount leads eventually to the minimization of the Hier-
archical Wasserstein distance in (5.26).

But also, when it is accompanied by a high-quality clustering in the target domain,
it leads to the transportation of labeled source data of each class together without

2A tighter bound can be obtained by bounding each Γ∗
h,l by 1

k
.
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splitting to the region occupied by the target data having the same class label 3. In
this sense, the algorithmic solution suggested in (El Hamri et al., 2022b) in order to
preserve compact classes during the transportation is explicitly reflected by the gen-
eralization bound (5.26), unlike the other bounds by (Redko et al., 2017; Shen et al.,
2018).

Furthermore, this may suggest that one can independently minimize the other terms
ϵS(h) and λ since there is no longer the concern of transporting source data of differ-
ent labels to the same target data.

5.3.2 A bound for semi-supervised domain adaptation

In semi-supervised domain adaptation, when we have access to an additional small
set of labeled instances ϑn drawn independently from µT in conjunction with (1 −
ϑ)n instances drawn independently from µS and labeled by fT and fS , respectively.
The minimization of the target risk may not be the best choice, especially if ϑ is
small, which is usually the case in semi-supervised domain adaptation. Instead, we
can minimize a convex combination of the empirical source and target risk, defined
as follows:

ϵ̂θ(h) = θϵ̂T (h) + (1− θ)ϵ̂S(h) (5.40)

where θ ∈ [0, 1] .

In this section, we bound the target risk of a hypothesis that minimizes ϵ̂θ(h). The
proof of the bound has two main parts, which we state as Lemmas below.

Lemma 5.15 Under the assumptions of Lemma 5.5, let µS , µT ∈ Pp(X ) and let φS , φT ∈
Pp(Pp(X )) such that µS =

∫
Pp(X )XdφS and µT =

∫
Pp(X )XdφT , let D be a labeled

sample of size n with ϑn points drawn from µT and (1− ϑ)n from µS with ϑ ∈ (0, 1), and
labeled according to fS and fT . Then

| ϵθ(h)− ϵT (h) |≤ (1− θ)(HW1(φS , φT ) + λ) (5.41)

Proof

| ϵθ(h)− ϵT (h) | = (1− θ) | ϵS(h)− ϵT (h) | (5.42)
≤ (1− θ)[| ϵS(h)− ϵS(h, h∗) | + | ϵS(h, h∗)− ϵT (h, h∗) |
+ | ϵT (h, h∗)− ϵT (h) |] (5.43)
≤ (1− θ)[| ϵS(h)− ϵS(h)− ϵS(h∗) | + | ϵS(h, h∗)− ϵT (h, h∗) |
+ | ϵT (h) + ϵT (h

∗)− ϵT (h) |] (5.44)
≤ (1− θ) [ϵS(h∗)+ | ϵS(h, h∗)− ϵT (h, h∗) | +ϵT (h∗)] (5.45)
≤ (1− θ)(HW1(φS , φT ) + λ) (5.46)

Second and third lines follow from the triangle inequality for classification error. The
last line relies on Lemma 5.5.

In this Lemma where we bound the difference between the target risk ϵT (h) and the
weighted risk ϵθ(h), we show that as θ approaches 1, we rely increasingly on the
target data, and the distance between domains matters less and less.

3Evidently, the class labels are unknown in the target domain.
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Lemma 5.16 For a fixed hypothesis h, if a random labeled sample of size n is generated by
drawing ϑm points from µT and (1− ϑ)m from µS , and labeling them according to fS and
fT , then for any δ ∈ (0, 1), with probability at least 1− δ over the choice of the samples:

P
[
| ϵ̂θ(h)− ϵθ(h) |> 2

√
K/n(

θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

) + ε

]
≤ exp

(
−ε2n

2K( θ
2

ϑ + (1−θ)2
1−ϑ )

)
(5.47)

The Lemma above from (Redko et al., 2017) bound the difference between the true
weighted risk ϵθ(h) and its empirical counterpart ϵ̂θ(h).

Theorem 5.17 Under the assumptions of Theorem 5.13 and Lemma 5.5, let µS , µT ∈
Pp(X ) and letφS , φT ∈ Pp(Pp(X )) such that µS =

∫
Pp(X )XdφS and µT =

∫
Pp(X )XdφT ,

letD be a labeled sample of size n with ϑn points drawn from µT and (1−ϑ)n from µS with
ϑ ∈ (0, 1), and labeled according to fS and fT . If ĥ is the empirical minimizer of ϵ̂θ(h) and
h∗T = min

h
ϵT (h). Then for any δ ∈ (0, 1), with probability at least 1 − δ over the choice of

the samples:

ϵT (ĥ) ≤ ϵT (h∗T ) + 2

√
2K( (1−θ)

2

1−ϑ + θ2

ϑ ) log(2/δ)

n
+ 4
√
K/n

(
θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

)

+ 2(1− θ)

HW1(φ̂S , φ̂T ) + λ+ 2

√
2 log

(
1
δ

)
ζ ′k

 (5.48)

Proof

ϵT (ĥ) ≤ ϵθ(ĥ) + (1− θ)(HW1(φS , φT ) + λ) (5.49)

≤ ϵ̂θ(ĥ) +

√
2K( (1−θ)

2

1−ϑ + θ2

ϑ ) log(2/δ)

n
+ 2
√
K/n

(
θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

)
+ (1− θ)(HW1(φS , φT ) + λ) (5.50)

≤ ϵ̂θ(h∗T ) +

√
2K( (1−θ)

2

1−ϑ + θ2

ϑ ) log(2/δ)

n
+ 2
√
K/n

(
θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

)
+ (1− θ)(HW1(φS , φT ) + λ) + λ) (5.51)

≤ ϵθ(h∗T ) + 2

√
2K( (1−θ)

2

1−ϑ + θ2

ϑ ) log(2/δ)

n
+ 4
√
K/n

(
θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

)
+ (1− θ)(HW1(φS , φT ) + λ) (5.52)

≤ ϵT (h∗T ) + 2

√
2K( (1−θ)

2

1−ϑ + θ2

ϑ ) log(2/δ)

n
+ 4
√
K/n

(
θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

)
+ 2(1− θ)(HW1(φS , φT ) + λ) (5.53)

≤ ϵT (h∗T ) + 2

√
2K( (1−θ)

2

1−ϑ + θ2

ϑ ) log(2/δ)

n
+ 4
√
K/n

(
θ

nϑ
√
ϑ
+

(1− θ)
n(1− ϑ)

√
1− ϑ

)

+ 2(1− θ)

HW1(φ̂S , φ̂T ) + 2

√
2 log

(
1
δ

)
ζ ′k

+ λ

 (5.54)
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First and fifth lines follow from Lemma 5.15. Second and fourth lines are obtained
using the concentration inequality of Lemma 5.16. Third line follows from the defi-
nition of ĥ and h∗T . Sixth line follows from Theorem 5.5.

This theorem demonstrates that the best hypothesis ĥ that takes into account both
source and target labeled data (i.e., 0 ≤ θ ≤ 1) performs at least as good as the best
hypothesis h∗T learned on only target data (θ = 1). This result is consistent with the
insight that semi-supervised domain adaptation methods are expected to be as good
as or better than unsupervised methods.

5.3.3 Bounds for multi-source domain adaptation

In this section, we consider the scenario of multi-source domain adaptation, where
not one but many source domains are available. More formally, we have N different
source domains. For each source j, we have a labeled sample Sj of size nj = ϑjn
drawn from the associated unknown distribution µSj and labeled by fSj , such that∑N

j=1 ϑj = 1 and
∑N

j=1 nj = n.

We define the empirical weighted multi-source risk of a hypothesis h for some vector
θ = (θ1, ..., θN ) as follows:

ϵ̂θ(h) =
N∑
j=1

θj ϵ̂Sj (h) (5.55)

where
∑N

j=1 θj = 1 and each θj represents the weight of the source domain Sj .

We present in turn two generalization bounds for the setting of multi-source do-
main adaptation. The first bound uses the pairwise Hierarchical Wasserstein dis-
tance between each source and the target domain, while the second bound uses the
combined Hierarchical Wasserstein distance.

The proof of these bounds has a main common component, which we state as Lemma
below.

Lemma 5.18 For a fixed hypothesis h, if a random labeled sample of size n is generated by
drawing ϑjn points from µSj and labeled according to fSj for each j ∈ {1, ..., N} and for
any fixed weight vector θ. Then for any δ ∈ (0, 1), with probability at least 1− δ,

P

| ϵ̂θ(h)− ϵθ(h) |> 2
√
K/n

N∑
j=1

θj

ϑjn
√
ϑj

+ ε

 ≤ exp

 −ε2n

2K
∑N

j=1

θ2j
ϑj

 . (5.56)

This Lemma from (Redko et al., 2017) provides a uniform convergence bound for the
empirical weighted risk.

5.3.3.1 A bound using pairwise Hierarchical Wasserstein distance

The first bound we present considers the pairwise Hierarchical Wasserstein distance
between each source and the target domain. The term

∑N
j=1 θjλj that appears in this

bound plays a role corresponding to λ in the previous sections.
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Before presenting the bound in question, we must prove the Lemma below that
bounds the difference between the target risk ϵT (h) and the weighted risk ϵθ(h).

Lemma 5.19 Under the assumptions of Theorem 5.13 and Lemma 5.5, let D be a sample of
size n, where for each j ∈ {1, ..., N}, ϑjn points are drawn from µSj and labeled according
to fSj . Then:

| ϵθ(h)− ϵT (h) |≤
N∑
j=1

θj(HW1(φSj , φT ) + λj). (5.57)

Proof

| ϵθ(h)− ϵT (h) | = |
N∑
j=1

θjϵSj (h)− ϵT (h) | (5.58)

≤
N∑
j=1

θj | ϵSj (h)− ϵT (h) | (5.59)

≤
N∑
j=1

θj [| ϵSj (h)− ϵSj (h, h∗j ) | + | ϵSj (h, h∗j )− ϵT (h, h∗j ) |

+ | ϵT (h, h∗j )− ϵT (h) |] (5.60)

≤
N∑
j=1

θj [| ϵSj (h)− ϵSj (h)− ϵSj (h∗j ) | + | ϵSj (h, h∗j )− ϵT (h, h∗j ) |

+ | ϵT (h) + ϵT (h
∗
j )− ϵT (h) |] (5.61)

≤
N∑
j=1

θj
[
ϵSj (h

∗
j )+ | ϵSj (h, h∗j )− ϵT (h, h∗j ) | +ϵT (h∗j )

]
(5.62)

≤
N∑
j=1

θj(HW1(φSj , φT ) + λj) (5.63)

Third and fourth lines follow from the triangle inequality for classification error. The
last line relies on Lemma 5.5.

We now prove the bound that considers the data available from each source indi-
vidually, ignoring the relationships between sources, using pairwise Hierarchical
Wasserstein distance.

Theorem 5.20 Under the assumptions of Theorem 5.13 and Lemma 5.5, let D be a sample
of size n, where for each j ∈ {1, ..., N}, ϑjn points are drawn from µSj and labeled according
to fSj . If ĥ is the empirical minimizer of ϵ̂θ(h) and h∗T = min

h
ϵT (h) then for any fixed θ and

δ ∈ (0, 1) with probability at least 1− δ (over the choice of samples),

ϵT (ĥ) ≤ ϵT (h∗T ) + 2

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kθj
ϑjn

+ 2
N∑
j=1

θj

HW1(φ̂Sj , φ̂T ) + λj + 2

√
2 log

(
1
δ

)
ζ ′k

 , (5.64)

where λj = min
h

(ϵSj (h) + ϵT (h)) represents the joint error for each source domain Sj .



5.3. Generalization bounds based on the Hierarchical Wasserstein distance 113

Proof

ϵT (ĥ) ≤ ϵθ(ĥ) +
N∑
j=1

θj(HW1(φSj , φT ) + λj) (5.65)

≤ ϵ̂θ(ĥ) +

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+

√√√√ N∑
j=1

Kθj
ϑjn

+

N∑
j=1

θj(HW1(φSj , φT ) + λj) (5.66)

≤ ϵ̂θ(h∗T ) +

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+

√√√√ N∑
j=1

Kθj
ϑjn

+

N∑
j=1

θj(HW1(φSj , φT ) + λj) (5.67)

≤ ϵθ(h∗T ) + 2

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kθj
ϑjn

+

N∑
j=1

θj(HW1(φSj , φT ) + λj) (5.68)

≤ ϵT (h∗T ) + 2

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kθj
ϑjn

+ 2
N∑
j=1

θj(HW1(φSj , φT ) + λj) (5.69)

≤ ϵT (h∗T ) + 2

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kθj
ϑjn

+ 2
N∑
j=1

θj

HW1(φ̂S , φ̂T ) + 2

√
2 log

(
1
δ

)
ζ ′k

+ λj

 (5.70)

First and fifth lines follow from Lemma 5.19. Second and fourth lines are obtained
using the concentration inequality of Lemma 5.18. Fourth line is a consequence of
Lemma 5.5. Third line follows from the definition of ĥ and h∗T . Sixth line follows
from Theorem 5.5.

5.3.3.2 A bound using combined Hierarchical Wasserstein distance

In the former bound, the Hierarchical Wasserstein distance between domains is only
measured on pair, so it is not required to have a hypothesis that is valid for each
source domain. The alternate bound shown in the next theorem enables us to alter
the source distribution by changing θ. This has two implications. First of all, we now
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need to insist that there is a hypothesis h∗ which has low risk on both the θ-weighted
convex combination of sources and the target domain. Secondly, we measure the Hi-
erarchical Wasserstein distance between the target and a mixture of sources, instead
of between the target and every single source.

Lemma 5.21 Under the assumptions of Theorem 5.13 and Lemma 5.5, let D be a sample of
size n, where for each j ∈ {1, ..., N}, ϑjn points are drawn from µSj and labeled according
to fSj . Then

| ϵθ(h)− ϵT (h) |≤ HW1(φSθ , φT ) + λθ. (5.71)

Proof

| ϵθ(h)− ϵT (h) | ≤| ϵθ(h)− ϵθ(h, h∗) | + | ϵθ(h, h∗)− ϵT (h, h∗) |
+ | ϵT (h, h∗)− ϵT (h) | (5.72)
≤| ϵθ(h)− ϵθ(h) +−ϵθ(h∗) | + | ϵθ(h, h∗)− ϵT (h, h∗) |
+ | ϵT (h) + ϵT (h

∗)− ϵT (h) | (5.73)
≤ ϵθ(h∗)+ | ϵθ(h, h∗)− ϵT (h, h∗) | +ϵT (h∗) (5.74)
≤ HW1(φSθ , φT ) + λθ (5.75)

First and second lines follow from the triangle inequality for classification error. The
last line relies on Lemma 5.5.

We now prove the bound using combined Hierarchical Wasserstein distance.

Theorem 5.22 Under the assumptions of Theorem 5.13 and Lemma 5.5, let D be a sample
of size n, where for each j ∈ {1, ..., N}, ϑjn points are drawn from µSj and labeled according
to fSj . If ĥ is the empirical minimizer of ϵ̂θ(h) and h∗T = min

h
ϵT (h) then for any fixed θ and

δ ∈ (0, 1) with probability at least 1− δ (over the choice of samples)

ϵT (ĥ) ≤ ϵT (h∗T ) + 2

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kθj
ϑjn

+ 2

HW1(φSθ , φT ) + λθ + 2

√
2 log

(
1
δ

)
ζ ′k

 . (5.76)

where λθ = min
h

(ϵSθ(h)+ϵT (h)) represents the joint error of the target and the combination

of the source domains.

Proof

ϵT (ĥ) ≤ ϵθ(ĥ) +HW1(φSθ , φT ) + λθ (5.77)

≤ ϵ̂θ(ĥ) +

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+

√√√√ N∑
j=1

Kθj
ϑjn

+HW1(φSθ , φT ) + λθ (5.78)

≤ ϵ̂θ(h∗T ) +

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+

√√√√ N∑
j=1

Kθj
ϑjn
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+HW1(φSθ , φT ) + λθ (5.79)

≤ ϵθ(h∗T ) + 2

√√√√2K
∑N

j=1

θ2j
ϑj

log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kθj
ϑjn

+HW1(φSθ , φT ) + λθ (5.80)

≤ ϵT (h∗T ) + 2
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log(2/δ)

n
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Kθj
ϑjn

+ 2 (HW1(φSθ , φT ) + λθ) (5.81)

≤ ϵT (h∗T ) + 2
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log(2/δ)

n
+ 2
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Kθj
ϑjn

+ 2

HW1(φSθ , φT ) + 2

√
2 log

(
1
δ

)
ζ ′k

+ λθ

 (5.82)

First and fifth lines follow from Lemma 5.21. Second and fourth lines are obtained
using the concentration inequality of Theorem 5.18. Third line follows from the def-
inition of ĥ and h∗T . Sixth line follows from Theorem 5.5.

5.4 Conclusion and future perspectives

In this chapter, using hierarchical optimal transport we presented a theoretical study
of domain adaptation, a problem in which we have an abundant amount of labeled
samples from a source domain, but we aim to deploy a model in another target
domain with a much smaller amount of labeled samples or even no labeled sam-
ples. Our main results are generalization bounds for both single and multi-source
domain adaptation scenarios, where the divergence between the source and target
domains is measured by the Hierarchical Wasserstein distance. Our generalization
bounds justify the application of hierarchical optimal transport in the context of do-
main adaptation and may suggest under the assumption of successful clustering in
the target domain that one can minimize the other terms ϵS(h) and λ without diffi-
culty independently from the minimization of the Hierarchical Wasserstein distance.

Future perspectives of this work are numerous and concern both the derivation of
new domain adaptation algorithms and the demonstration of new generalization
bounds. Indeed, the work of this chapter can be extended in different directions:

• First of all, we would like to derive a new domain adaptation algorithm based
on the insights provided by the bounds in the multi-source settings.

• Secondly, we aim to produce new generalization bounds that take into account
the quality of clustering in the target domain, by reflecting explicitly the excess
clustering risk.

• Finally, the ability term λ is surprisingly understudied, and we would like to
provide a theoretical analysis of this term using hierarchical optimal transport
and investigate the possibility to estimate it from finite samples.
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CHAPTER 6

OPTIMAL TRANSPORT FOR
SEMI-SUPERVISED LEARNING
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Marked by the necessity for an efficient way to learn hidden structures in the tar-
get domain other than clustering, and by the many drawbacks of traditional semi-
supervised approaches, we tackle in this chapter based on (El Hamri et al., 2021a,b,c),
the problem of transductive semi-supervised learning, that aims to obtain label pre-
dictions for the given unlabeled data according to Vapnik’s principle. The proposed
approach, Optimal Transport Propagation (OTP), performs in an incremental pro-
cess, label propagation through the edges of a complete bipartite edge-weighted
graph, whose affinity matrix is constructed from the optimal transport plan between
empirical measures defined on labeled and unlabeled data. OTP ensures a high de-
gree of prediction certitude by controlling the propagation process using a certainty
score based on Shannon’s entropy. We also provide a convergence analysis of our
algorithm and an extension to out-of-sample data (OTI). Experiments show the su-
periority of the proposed approach over the state-of-the-art.
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Silence is the language of God, all else is
poor translation.

Jalal al-Din Rumi

6.1 Introduction

Semi-supervised learning has recently emerged as one of the most promising parad-
igms to alleviate the lack of massive labeled datasets, especially in learning tasks
where it is prohibitively expensive to collect a large amount of high-quality labeled
data due to lack of time, resources, or other factors, while unlabeled data is cheap
and abundant. This is best illustrated in medicine, where measurements require ex-
pensive machinery and labels are the results of a labor and expensive expert-assisted
time-consuming analysis.

Among many semi-supervised learning approaches, graph-based techniques are in-
creasingly being studied due to their performance and to more and more real graph
datasets. The problem is to predict all the unlabeled vertices in the graph based on
only a small subset of vertices being observed. To date, a number of graph-based al-
gorithms, in particular label propagation methods have been successfully applied to
different fields, such as social network analysis (Boldi et al., 2011; Xie and Szyman-
ski, 2013; Zhang et al., 2017; Jokar and Mosleh, 2019), natural language processing
(Alexandrescu and Kirchhoff, 2007; Tamura et al., 2012; Barba et al., 2020), and image
segmentation (Wang et al., 2007; Breve, 2019).

The performance of label propagation algorithms is often affected by the graph-
construction method and the technique of inferring pseudo-labels. For graph-constr-
uction, traditional label propagation approaches are incapable of exploiting the un-
derlying geometry of the whole input space, and the relations between labeled and
unlabeled data in a global vision. Indeed, authors in (Zhu and Ghahramani, 2002;
Zhou et al., 2003) have adopted pairwise relationships between instances by relying
on a Gaussian function with a free parameter σ, whose optimal value can be hard to
determine if only very few labeled data are available, and even a small perturbation
in its value can affect significantly the classification results. Authors in (Wang and
Zhang, 2007) have suggested deriving another way to avoid the use of σ, by relying
on the local concept of linear neighborhood, although, the linearity assumption is
intended just for computational convenience, and the variance in the neighborhood
size can also drastically change the classification results. Moreover, these algorithms
have the inconvenience of inferring pseudo-labels by hard assignment, ignoring the
different degrees of certainty associated with each prediction. Another drawback of
these algorithms is their inability to generalize for out-of-sample data.

Contributions: In this chapter, we address the existing limitations above by propos-
ing a principally new approach based on optimal transport. Optimal transport is
an efficient paradigm to capture the geometry of the data in the input space and
it has found a renewed interest in semi-supervised learning community (Solomon
et al., 2014; Taherkhani et al., 2020). The proposed algorithm, called Optimal Trans-
port Propagation (OTP), has several points of differentiation from state-of-the-art
approaches. Its main contributions can be summarized as follows:
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1. OTP constructs a complete bipartite edge-weighted graph, to avoid adding
a regularization term in the corresponding objective function for penalizing
predicted labels that do not match the correct ones.

2. OTP infers an enhanced affinity matrix from the optimal transport plan be-
tween empirical measures defined on labeled and unlabeled samples, to bene-
fit from all the geometrical information in the input space.

3. OTP performs label propagation in an incremental process to take advantage
of the dependency of semi-supervised algorithms on the amount of prior in-
formation 1.

4. OTP incorporates a certainty score based on Shannon’s entropy to control the
certitude of the predictions during the incremental propagation process.

5. OTP can efficiently be extended to out-of-sample data, which gives rise to Op-
timal Transport Induction (OTI).

Outline: The rest of this chapter is organized as follows: in the 2nd section, we pro-
vide a brief overview of semi-supervised learning. In the 3rd section, we elaborate
the proposed approach OTP. In the 4th section, we extend OTP to out-of-sample data.
In the 5th section, we evaluate our algorithm on several real-world datasets. Finally,
we conclude in section 6.

6.2 Semi-supervised learning

Semi-supervised learning (Zhu, 2005) is conceptually situated between supervised
and unsupervised learning. The goal of semi-supervised learning is to use a large
amount of unlabeled instances as well as a typically smaller set of labeled samples,
usually assumed to be sampled from the same distribution, in order to improve the
performance that can be obtained either by discarding the unlabeled data and doing
classification (supervised learning) or by discarding the available labels and doing
clustering (unsupervised learning).

In semi-supervised learning settings, we have access to a finite ordered set X =
{x1, ..., xl+u} of l + u samples in X = Rd, and a discrete label set Y = {C1, ..., Ck} of
k classes. The first l points denoted by XL = {x1, ..., xl} ⊂ X are labeled according
to YL = {y1, ..., yl}, where yi ∈ Y for every i ∈ {1, ..., l}, and the remaining data
denoted by XU = {xl+1, ..., xl+u} ⊂ X are unlabeled, usually l≪ u.

Semi-supervised learning makes use of at least one of the following assumptions
(Van Engelen and Hoos, 2020):

• Smoothness assumption: For two samples x, x
′

that are close in the input
space X , the corresponding labels y, y

′
should be the same.

• Low-density assumption: The decision boundary should preferably pass thro-
ugh low-density regions in the input space X .

• Manifold assumption: The high-dimensional input space X is constituted of
multiple lower-dimensional substructures known as manifolds and samples
lying on the same manifold should have the same label.

1We mean by the amount of prior information, the amount of labeled samples.
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• Cluster assumption: Data belonging to the same cluster are likely to have the
same label.

We can differentiate between two categories of semi-supervised learning: transduc-
tive and inductive semi-supervised learning (Van Engelen and Hoos, 2020). The
former is solely concerned with obtaining label predictions for the given unlabeled
samples, whereas the latter attempt to infer a good classifier that can estimate the
label for any instance in the input space, even for previously unseen data.

The nature of transductive semi-supervised methods, make them inherently a per-
fect illustration of Vapnik’s principle: when trying to solve some problem, one should
not solve a more difficult problem as an intermediate step (Chapelle et al., 2009). This
principle naturally suggests finding a way to propagate information via direct con-
nections between samples using a graph-based approach. In fact, if we can define a
graph in which similar samples are connected, information can then be propagated
along its edges, which relieves us from learning a classifier.

Graph-based semi-supervised learning approaches generally involve two separate
phases: graph construction and label propagation. In the first phase, vertices are
connected, based on some similarity measure, and the resulting edges are weighted,
such that, the stronger the similarity the higher the weight. Once the graph is con-
structed, it will be used in the second phase of label propagation to obtain predic-
tions for the unlabeled data (Subramanya and Talukdar, 2014).

The common major inconvenience of transductive methods is their inability to pre-
dict labels for out-of-sample data, so when some previously unseen test data arrive,
transductive learning methods need to fusion these new samples into the previous
data at our disposal to reconstruct a new augmented graph based on merged data,
and then perform label propagation from scratch. This process is too costly, since the
presentation of even, a single new point requires rerunning all the processes already
done in their entirety, which is distasteful in many real-world applications, where
on-the-fly prediction for previously unseen instances is highly requested. Hence the
importance of inductive semi-supervised learning.

6.3 Optimal Transport Propagation

In this section, we introduce the proposed OTP approach, which consists of two
phases, the first one aims to construct a complete bipartite edge-weighted graph
with an enhanced affinity matrix using optimal transport, and the second phase fo-
cuses on using an incremental process to propagate the labels from labeled to unla-
beled samples.

Let X = {x1, ..., xl+u} be a set of l + u samples in the input space X = Rd and
Y = {C1, ..., Ck} a discrete label set consisting of k classes. The first l samples de-
noted byXL = {x1, ..., xl} are labeled according to YL = {y1, ..., yl}, where yi ∈ Y for
every i ∈ {1, ..., l}, and the remaining u samples denoted by XU = {xl+1, ..., xl+u}
are unlabeled. Usually l≪ u. OTP aims to infer the unknown labels YU using all the
samples in X = XL ∪XU and labels YL.
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To use an appropriate formulation to the paradigm of optimal transport, the empir-
ical distribution of XL and XU must be expressed respectively using discrete mea-
sures as:

µ =

l∑
i=1

aiδxi and ν =

l+u∑
j=l+1

bjδxj . (6.1)

Under the assumption that XL and XU are collections of i.i.d. samples, the weights
of all instances in each set are naturally set to be equal:

ai =
1

l
, ∀i ∈ {1, ..., l} and bj =

1

u
,∀j ∈ {l + 1, ..., l + u}. (6.2)

6.3.1 Graph construction

The objective of this phase is to construct a complete bipartite edge-weighted graph
G = (V, E ,W), where V = X is the vertex set, that can be divided into two disjoint
and independent parts L = XL and U = XU , E ⊂ {L × U} is the edge set, and
W ∈Ml,u(R+) is the affinity matrix that denotes the edges weights, the weight wi,j
on the edge ei,j ∈ E reflects the degree of similarity between xi ∈ XL and xj ∈ XU .

One must take into consideration that, intuitively, we want samples that are close
in the input space X to have similar labels (smoothness assumption). Thus, to mea-
sure quantitatively the closeness between samples, we need to use some distance
over the input space. For this purpose, let’s consider the matrix of pairwise squared
Euclidean distances C ∈Ml×u(R+) between samples of XL and XU , defined by:

ci,j = ∥xi − xj∥2, ∀i, j ∈ {1, ..., l} × {l + 1, ..., l + u}. (6.3)

In order to construct an affinity matrix W that captures the underlying geometry
of the whole samples in the input space and all the relations between labeled and
unlabeled samples in a global vision, instead of the pairwise relationships or the
local neighborhood information, a natural choice is to rely on optimal transport,
which is a powerful tool for capturing the underlying geometry of the data. Since
optimal transport suffers from a computational burden, we can overcome this issue
by using its entropic regularized version between µ and ν, in the following way:

γ∗ε = argmin
γ∈U(a,b)

⟨γ,C⟩F − εH(γ). (6.4)

The optimal transport plan γ∗ε provides us the weights of associations between ver-
tices in L and U , thus, γ∗ε can be interpreted in our context as a similarity matrix
between the two parts L and U of the graph G: similar labeled and unlabeled ver-
tices correspond to a higher value in γ∗ε .

To have a class probability interpretation afterwards, we column-normalize γ∗ε to
get a non-square left-stochastic affinity matrixW ∈Ml,u(R+), defined as follows:

wi,j =
γ∗εi,j∑
i γ

∗
εi,j

, ∀i, j ∈ {1, ..., l} × {l + 1, ..., l + u}, (6.5)

where wi,j is then the probability of jumping from the vertex xi ∈ L to the vertex
xj ∈ U .
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6.3.2 Label propagation

The intuition behind this phase is to use the affinity matrix W to identify labeled
samples that should spread their labels to similar unlabeled instances. We suggest
using an incremental process to infer labels of the samples in U . We suggest also to
provide with each pseudo-label a certainty score that measures the certitude of the
prediction and uses it to control the incremental label propagation process.

First, we need to construct a label matrix U ∈ Mu,k(R+) that indicates the proba-
bility of each unlabeled sample xj , j ∈ {l + 1, ..., l + u} to belong to the class ch,
h ∈ {1, ..., k}. For a harmonious construction of the label matrix U with the informa-
tion coming from the optimal transport plan γ∗ε , we propose to define this probability
as the sum of the similarities of xj with the representatives of the class ch:

uj,h =
∑

i/xi∈ch

wi,j , ∀j, h ∈ {l + 1, ..., l + u} × {1, ..., k}. (6.6)

The matrix U is a non-square right-stochastic matrix, and can be interpreted as a
vector-valued function U : XU →

∑
k, which assigns a stochastic vector Uj ∈

∑
k to

each unlabeled sample xj , j ∈ {l + 1, ..., l + u}.

Traditional label propagation approaches infer simultaneously all the pseudo-labels
by hard assignment, without worrying about the fact that these label predictions do
not have the same degree of certainty. This issue, as mentioned by (Iscen et al., 2019),
can degrade significantly the performance of the label propagation approaches. To
prevent this, we suggest to associate a certainty score sj with the label prediction
of each xj , j ∈ {l + 1, ..., l + u}. The proposed certainty score sj is defined in the
following way:

sj = 1− H(Zj)

log2(k)
, ∀j ∈ {l + 1, ..., l + u}, (6.7)

where Zj : Y → R is a real-valued random variable, that assigns to the sample xj
the probability of belonging to a class ch. The probability distribution of the random
variable Zj is encoded in the stochastic vector Uj :

P(Zj = ch) = uj,h, ∀j, h ∈ {l + 1, ..., l + u} × {1, ..., k}, (6.8)

and H is Shannon’s entropy (Shannon, 2001), defined by:

H(Zj) = −
k∑

h=1

P(Zj = ch) log2(P(Zj = ch)) = −
k∑

h=1

uj,h log2(uj,h). (6.9)

Since Shannon’s entropy H is an uncertainty measure that reach its maximal value
log2(k) when all the possible events are equiprobable, i.e. ∀h ≤ k, P(Zj = ch) =

1
k :

H(Zj) = −
k∑

h=1

1

k
log2(

1

k
) = log2(k). (6.10)

Then, by dividing H by log2(k) the certainty score sj is naturally normalized be-
tween 0 and 1.

To control the certainty of the prediction resulting from the propagation process,
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we define a confidence threshold α ∈ [0, 1], and for each unlabeled sample xj , we
make a comparison between α and its associated certainty score sj . If the score sj is
greater than α, we assign to xj a pseudo-label ŷj , in the following way:

ŷj = argmax
ch∈Y

uj,h, ∀j ∈ {l + 1, ..., l + u}. (6.11)

Thus, the unlabeled instance xj will belong to the class ch with the highest class-
probability uj,h, in other words, to the class whose representatives possess the high-
est similarity with xj . Otherwise, we do not give any label to the point xj .

The process above corresponds to one iteration of the proposed incremental ap-
proach. At each iteration, XL is enriched with new instances, and the number of
samples in XU is reduced:

XL = XL ∪ {xj ∈ XU | sj > α} and YL = YL ∪ {ŷj | sj > α}, (6.12)

XU = XU \ {xj ∈ XU | sj > α}. (6.13)

This modification of XL, YL, and XU at each iteration of the incremental process is
of major importance in the context of label propagation, since, the effectiveness of
a label propagation algorithm depends on the amount of prior information, thus,
increasing the size of XL at each iteration, will increase the performance of the pro-
posed approach, and will make it possible to infer the label of the samples remaining
in XU with a high degree of certainty at the next iterations.

We repeat the same whole procedure at each iteration until convergence, here con-
vergence means that all the data initially in XU are labeled during this incremental
process. The proposed OTP approach is formally summarized in Algorithm 6.1:

Algorithm 6.1 OTP
Parameters: ε, α
Input : XL, XU , YL
while not converged do

Compute the cost matrix C (6.3)
Solve the optimal transport problem (6.4)
Compute the affinity matrixW (6.5)
Get the label matrix U (6.6)
for xj ∈ XU do

Compute the certainty score sj (6.7)
if sj > α then

Get the pseudo label ŷj by (6.11)
Inject xj in XL and ŷj in YL (6.12)
Remove xj from XU (6.13)

else
Maintain xj in XU

end
end

end
return YU
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FIGURE 6.1: Overview of OTP. We initiate an incremental approach where at each iteration,
we construct a complete bipartite edge-weighted graph based on the optimal transport plan
between the distribution of labeled instances and unlabeled ones. Then, we propagate labels
through the edges of the graph. Triangles markers correspond to the labeled instances and
circles correspond to the unlabeled data which are gradually pseudo-labeled by OTP. The
class is color-coded.

6.3.3 Convergence analysis

As mentioned earlier, the convergence of OTP means that all the data initially in XU

are labeled during the incremental procedure, i.e. when the set XL absorbs all the
instances initially in XU , or in an equivalent way when XU is reduced to the empty
set ∅. To analyze the convergence of our approach, we can formulate the evolution
of XL and XU over time, as follows :

Let mt be the size of the set XL at time (iteration) t, the evolution of mt is subject
to the following nonlinear dynamical system (R) :

(R) :

{
mt = mt−1 + ζt

m0 = l
(6.14)

where ζt is the number of instances inXU that have been labeled during the iteration
t. Since in an iteration t, we can label all the instances in XU if the parameter α is too
weak, or no instance if α is very large, then the terms of the sequence (ζt)t can vary
between 0 and u, and we have

∑
t≥1 ζt = u.

Symmetrically, let nt be the size of the set XU at time t, the evolution of nt is subject
to the following nonlinear dynamical system (S) :

(S) :

{
nt = nt−1 − ζt
n0 = u

(6.15)
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From a theoretical point of view, our algorithm OTP must converge at the instant
t = τ , which verifies : mτ = m0 +

∑τ
t=1 ζt = m0 + u = l+ u, which corresponds also

to nτ = n0 −
∑τ

t=1 ζt = n0 − u = u− u = 0.

The question is whether OTP will reach the instant τ in a finite number of itera-
tions. Experiments have shown that a suitable choice of α will allow us to label a
large amount ζt of samples in XU at each iteration t, otherwise, it suffices to de-
crease α in the following way: suppose that at an iteration t, we have g unlabeled
samples, whose certainty score sj is lower than the threshold α, which means that
none of these examples can be labeled according to OTP procedure at the iteration t,
the solution lies then in decreasing the value of α as follows :

α← α− min
xj∈[XU ]t

(α− sj), (6.16)

we denote by [XU ]t the set of the g points constituting XU at iteration t. Decreasing
the value of α in this way will allow the point with the greatest certainty score in
[XU ]t to be labeled, and then to migrate from XU to XL.

Certainly, decreasing sharply the value of α will allow us to label many other in-
stances instead of just the sample with the highest certainty score, however, this
gain in terms of the number of points labeled at the same iteration will be paid out
in terms of its predictions certainty. Our intuition behind the modification of α in
the way above is as follows: Since moving an instance from XL to XU , can change
the optimal transport plan between the new distributions µ and ν, and subsequently
the certainty scores in the next iteration, we can try to restore the initial value of α
and continue to label the other samples with the same degree of certainty as before.
If the same scenario is repeated in a future iteration, we can use the same technique
of decreasing α to label a new point, and so on until convergence. This reasoning
shows that the proposed algorithm needs effectively a finite number of iterations to
converge.

FIGURE 6.2: Illustration of the label propagation process (from the left to the right): at the
initial iteration t = 0, at an intermediate iteration 0 < t < τ , and at the last iteration
t = τ . Pentagon markers correspond to the labeled instances and circles correspond to the
unlabeled ones which are gradually pseudo-labeled by OTP. The class is color-coded.
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6.4 Optimal Transport Induction

In the previous section, we have introduced the main process of OTP, but it is just
for the transductive task. In a truly inductive setting, where new examples are given
one after the other and a prediction must be given after each example, the use of
the transductive algorithm again to get a label prediction for the new instances is
very computationally costly, since it needs to be rerun in their entirety, which is un-
pleasant in many real-world problems, where on-the-fly classification for previously
unseen instances is indispensable.

In this section, we propose an efficient way to extend OTP for out-of-sample data. In
fact, we will fix the transductive predictions {yl+1, ..., yl+u} and based on the objec-
tive function of our transductive algorithm OTP we will try to extend the resulting
graph to predict the label of previously unseen instances.

OTP approach can be cast as the minimization of the objective functionCW,l in terms
of the label function values at the unlabeled samples xj ∈ XU :

CtransductionW,l (f) =
∑
xi∈XL

∑
xj∈XU

wxi,xj l(yi, f(xj)) (6.17)

where l is an unsupervised loss function. The objective function in (6.17) is a smooth-
ness criterion that lies for penalizing differences in the label predictions for con-
nected samples in the graph, which means that a good classifying function should
not change too much between similar instances.

To transform the above transductive algorithm into function induction for out-of-
sample data, we need to use the same type of smoothness criterion as before for
a new testing instance xnew, and then we can optimize the objective function with
respect to only the predicted label f̃(xnew) (Bengio et al., 2006). The smoothness
criterion for a new test point xnew becomes then :

CinductionW,l (f̃(xnew)) =
∑

xi∈XL∪XU

wxi,xnew l(yi, f̃(xnew)) (6.18)

If the loss function l is convex, e.g. l = (yi − f̃(xnew))
2, then the cost function

CinductionW,l is also convex in f̃(xnew), the label assignment f̃(xnew) minimizingCinductionW,l

is then given by :

f̃(xnew) =

∑
xi∈XL∪XU wxi,xnewyi∑
xi∈XL∪XU wxi,xnew

(6.19)

6.4.1 Binary classification and multi-class settings

In a binary classification context, where Y = {+1,−1}, the classification problem is
transformed into a regression one, in a way that the predicted class of xnew is thus
sign(f̃(xnew)). {

f̃(xnew) = +1 if sign(f̃(xnew)) ≥ 0,

f̃(xnew) = −1 otherwise.
, (6.20)

While most transductive algorithms can handle multiple classes, the inductive meth-
ods mostly only work in the binary classification setting, where Y = {+1,−1}. Fol-
lowing the same logic as (Delalleau et al., 2005), our optimal transport approach
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can be adapted and extended accurately for multi-class settings, in the following
way: the label f̃(xnew) is given by the weighted majority vote of other samples in
X = XL ∪XU :

f̃(xnew) = argmax
ch∈C

∑
xi∈XL∪XU/yi=ch

wxi,xnew (6.21)

The predicted class of xnew is then the class whose representatives have the highest
similarity with xnew.

Equation (6.20) can be seen as a special case of (6.21) in the binary classification
settings, in fact, if Y = {+1,−1}, then choosing between the class that maximizes∑

xi∈XL∪XU/yi=ck wxi,xnew is equivalent to choosing according to the sign of f̃(xnew),
since the term

∑
xi∈XL∪XU wxi,xnew in (6.19) is always positive.

6.4.2 Transduction-induction consistency

It would be very interesting to see what happens when we apply the induction for-
mula (6.18) on a point xj of XU . Ideally, the induction formula must be consistent
with the prediction get it by the transduction formula (6.17) for an instance xj ∈ XU .
For xnew = xj , j ∈ {l + 1, ..., l + u}, we have:

∂CtransductionW,l

∂f(xj)
= −2

∑
xi∈XL

wi,j(yi − f(xj)) (6.22)

CtransductionW,l is convex in f(xj), and is minimized when :

f(xj) =

∑
xi∈XL wxi,xjyi∑
xi∈XL wxi,xj

=

∑
xi∈XL∪XU wxi,xjyi∑
xi∈XL∪XU wxi,xj

since wxi,xj = 0∀xi ∈ XU (G is a bipartite graph)

= f̃(xj)

(6.23)

hence the consistency.

Our proposed algorithm for the inductive task called Optimal Transport Induction
(OTI), is summarized in Algorithm 6.2, where we use the algorithm (OTP) for train-
ing and (6.21) for testing.

Algorithm 6.2 OTI
Parameters: ε, α
Input : xnew, XL, XU , YL
(1) Training phase
Get YU by Algorithm 6.1
(2) Testing phase
For a new point xnew, compute its label f̃(xnew) (6.21)
return f̃(xnew)
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6.5 Experimental results

In this section, we evaluate our method on a various real-world datasets.

6.5.1 Datasets

The experiment was designed to evaluate the proposed approach on 12 benchmark
datasets. Details of these datasets appear in Table 6.1.

TABLE 6.1: Experimental datasets

Datasets #Instances #Features #Classes
Iris 150 4 3
Wine 178 13 3
Heart 270 13 2
Ionosphere 351 34 2
Dermatology 366 33 6
Breast 569 31 2
WDBC 569 32 2
Isolet 1560 617 26
Waveform 5000 21 3
Digits 5620 64 10
Statlog 6435 36 6
MNIST 10000 784 10

6.5.2 Evaluation measures

Three widely used evaluation measures were employed to evaluate the performance
of the proposed approach: the accuracy (ACC) (Liu et al., 2019), the Normalized Mu-
tual Information (NMI) (Dom, 2012), and the Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985).

The accuracy (ACC) is the percentage of correctly classified samples, formally, ac-
curacy has the following definition:

Accuracy =
Number of correct predictions

Total number of predictions
(6.24)

Normalized Mutual Information (NMI) is a normalization of the Mutual Informa-
tion (MI) score to scale the results between 0 (no mutual information) and 1 (perfect
correlation). In this function, mutual information is normalized by some generalized
mean of true labels Y and predicted labels Ŷ .

NMI(Y, Ŷ ) = 2I(Y,Ŷ )

H(Y )+H(Ŷ )

where I is the mutual information of Y and Ŷ , defined as: I(Y, Ŷ ) = H(Y )−H(Y |Ŷ )
with H is the entropy defined by: H(Y ) =

∑
y p(y) log(p(y))

The Rand index is a measure of the similarity between two partitions A and B and
is calculated as follows :
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Rand(A,B) = a+d
a+b+c+d

where a is the number of pairs of elements that are placed in the same cluster in A
and the same cluster in B, b denotes the number of pairs of elements in the same
cluster in A but not in the same cluster in B, c is the number of pairs of elements in
the same cluster in A but not in the same cluster in B and d denotes the number of
pairs of elements in different clusters in both partitions. The values a and d can be
interpreted as agreements, and b and c as disagreements.

The Rand index is then “adjusted for chance” into the ARI using the following
scheme:

ARI = Rand−ExpectedRand
maxRand−ExpectedRand

The adjusted Rand index is thus ensured to have a value close to 0 for random la-
beling independently of the number of clusters and samples and exactly 1 when the
clustering is identical (up to a permutation).

6.5.3 Experimental protocol

Experiments compared the proposed algorithm with three semi-supervised approa-
ches, including LP (Zhou et al., 2003) and LS (Zhu and Ghahramani, 2002), which
are the classical label propagation algorithms, LNP (Wang and Zhang, 2007), which
is an improved label propagation algorithm with modified affinity matrix, and the
spectral clustering algorithm SC (Ng et al., 2001) without prior information.

To compare these different algorithms, their related parameters were specified as
follows :

• The number of clusters k for spectral clustering was set equal to the true num-
ber of classes on each dataset.

• Each of the compared algorithms LP, LS, and NLP, require a Gaussian kernel
controlled by a free parameter σ to be specified to construct the affinity matrix,
in the comparisons, each of these algorithms was tested with different σ values,
and its best result with the highest ACC, NMI and ARI values on each dataset
was selected.

• The efficiency of a semi-supervised algorithm depends on the amount of prior
information. Therefore, in the experiment, the amount of prior information
data was set to 15, 25, and 35 percent of the total number of samples included
in a dataset.

• The effectiveness of a semi-supervised approach depends also on the quality
of prior information. Therefore, in the experiment, given the amount of prior
information, all the compared algorithms were run with 10 different sets of
prior information to compute the average results for ACC, NMI, and ARI on
each dataset.

• To give an overall vision of the best approach on all the datasets, we define the
following score:

SCORE(Ai) =
∑
j

Perf(Ai, Dj)

maxi Perf(Ai, Dj)
(6.25)

where Perf indicates the performance according to one of the three evaluation
measures above of each approach Ai on each datasets Dj .
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6.5.4 Results

TABLE 6.2: Performances according to Accuracy values

Datasets Percent LP LS LNP OTP SC
15% 0.9437 0.9453 0.8852 0.9507

Iris 25% 0.9531 0.9540 0.9261 0.9610 0.7953
35% 0.9561 0.9571 0.9392 0.9796
15% 0.9296 0.9296 0.8462 0.9250

Wine 25% 0.9417 0.9417 0.8597 0.9343 0.8179
35% 0.9482 0.9482 0.8727 0.9388
15% 0.7261 0.7304 0.5683 0.7696

Heart 25% 0.7734 0.7833 0.6826 0.8424 0.3411
35% 0.8239 0.8352 0.7731 0.8693
15% 0.8300 0.8310 0.8051 0.8796

Ionosphere 25% 0.8439 0.8462 0.8146 0.8871 0.4461
35% 0.8458 0.8476 0.8293 0.8978
15% 0.9324 0.9327 0.8948 0.9488

Dermatology 25% 0.9438 0.9438 0.9163 0.9520 0.4943
35% 0.9536 0.9536 0.9428 0.9566
15% 0.9566 0.9566 0.9153 0.9587

Breast 25% 0.9578 0.9578 0.9296 0.9649 0.7830
35% 0.9649 0.9649 0.9427 0.9730
15% 1.0000 1.0000 0.9568 1.0000

WDBC 25% 1.0000 1.0000 0.9879 1.0000 0.9682
35% 1.0000 1.0000 0.9970 1.0000
15% 0.7558 0.7558 0.6519 0.7559

Isolet 25% 0.7782 0.7782 0.6908 0.7767 0.5385
35% 0.8077 0.8077 0.7249 0.8053
15% 0.8318 0.8334 0.7719 0.8469

Waveform 25% 0.8401 0.8419 0.7892 0.8504 0.3842
35% 0.8423 0.8425 0.8062 0.8599
15% 0.9589 0.9589 0.9363 0.9678

Digits 25% 0.9737 0.9737 0.9571 0.9774 0.7906
35% 0.9801 0.9801 0.9784 0.9827
15% 0.8740 0.8730 0.8249 0.8516

Statlog 25% 0.8779 0.8771 0.8371 0.8533 0.6516
35% 0.8831 0.8821 0.8474 0.8538
15% 0.9210 0.9218 0.8247 0.9421

MNIST 25% 0.9460 0.9451 0.8371 0.9540 0.5719
35% 0.9551 0.9571 0.8408 0.9632

ALL Datasets SCORE 35.4544 35.4975 33.3619 35.8855 8.1971
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TABLE 6.3: Performances according to NMI values

Datasets Percent LP LS LNP OTP SC
15% 0.8412 0.8442 0.7534 0.8447

Iris 25% 0.8584 0.8621 0.8269 0.8667 0.7980
35% 0.8621 0.8649 0.8314 0.8852
15% 0.7821 0.7821 0.6815 0.7384

Wine 25% 0.8127 0.8127 0.7573 0.7790 0.7808
35% 0.8289 0.8289 0.7897 0.7963
15% 0.1519 0.1575 0.1091 0.2181

Heart 25% 0.2291 0.2472 0.1432 0.3683 0.1880
35% 0.3313 0.3546 0.2718 0.4374
15% 0.3502 0.3535 0.3256 0.4676

Ionosphere 25% 0.3848 0.3911 0.3572 0.5000 0.2938
35% 0.3972 0.4014 0.3725 0.5383
15% 0.8770 0.8779 0.8349 0.8935

Dermatology 25% 0.8932 0.8932 0.8692 0.9033 0.6665
35% 0.9128 0.9128 0.8959 0.9164
15% 0.7340 0.7360 0.6971 0.7449

Breast 25% 0.7451 0.7465 0.7192 0.7550 0.6418
35% 0.7909 0.7909 0.7706 0.8106
15% 1.0000 1.0000 0.9049 1.0000

WDBC 25% 1.0000 1.0000 0.9347 1.0000 0.9163
35% 1.0000 1.0000 0.9715 1.0000
15% 0.7785 0.7785 0.7184 0.7657

Isolet 25% 0.7987 0.7987 0.7503 0.7852 0.7545
35% 0.8210 0.8210 0.7869 0.8077
15% 0.4950 0.5009 0.4628 0.5256

Waveform 25% 0.5124 0.5192 0.4763 0.5319 0.3646
35% 0.5192 0.5229 0.4807 0.5421
15% 0.9150 0.9150 0.8891 0.9290

Digits 25% 0.9443 0.9443 0.9268 0.9489 0.8483
35% 0.9570 0.9570 0.9318 0.9607
15% 0.7396 0.7383 0.6792 0.6753

Statlog 25% 0.7483 0.7477 0.6859 0.6800 0.6139
35% 0.7572 0.7571 0.6907 0.6821
15% 0.8019 0.8028 0.7759 0.8177

MNIST 25% 0.8389 0.8367 0.7931 0.8442 0.6321
35% 0.8542 0.8599 0.8136 0.8730

ALL Datasets SCORE 33.9980 34.2042 31.6326 35.5237 9.5770
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TABLE 6.4: Performances according to ARI values

Datasets Percent LP LS LNP OTP SC
15% 0.8453 0.8492 0.7861 0.8621

Iris 25% 0.8680 0.8704 0.8321 0.8884 0.7455
35% 0.8754 0.8783 0.8424 0.9027
15% 0.7936 0.7936 0.7148 0.7814

Wine 25% 0.8267 0.8267 0.7346 0.8050 0.7912
35% 0.8455 0.8455 0.7741 0.8192
15% 0.2110 0.2190 0.1562 0.2875

Heart 25% 0.3176 0.2955 0.2283 0.4662 0.2031
35% 0.4163 0.4464 0.3688 0.5430
15% 0.4221 0.4248 0.3998 0.5723

Ionosphere 25% 0.4606 0.4673 0.4324 0.5927 0.3971
35% 0.4650 0.4702 0.4418 0.6281
15% 0.8807 0.8813 0.8438 0.8996

Dermatology 25% 0.8972 0.8972 0.8751 0.9093 0.4783
35% 0.9146 0.9146 0.9007 0.9218
15% 0.8328 0.8327 0.7956 0.8404

Breast 25% 0.8371 0.8284 0.8039 0.8636 0.7018
35% 0.8632 0.8632 0.8413 0.8940
15% 1.0000 1.0000 0.9349 1.0000

WDBC 25% 1.0000 1.0000 0.9691 1.0000 0.9565
35% 1.0000 1.0000 0.9905 1.0000
15% 0.6002 0.6002 0.5064 0.5998

Isolet 25% 0.6333 0.6332 0.5526 0.6299 0.5284
35% 0.6735 0.6735 0.5992 0.6683
15% 0.5639 0.5678 0.5163 0.5945

Waveform 25% 0.5819 0.5864 0.5279 0.6031 0.3788
35% 0.5870 0.5880 0.5342 0.6182
15% 0.9126 0.9127 0.8993 0.9306

Digits 25% 0.9432 0.9432 0.9287 0.9508 0.7846
35% 0.9567 0.9567 0.9407 0.9621
15% 0.7658 0.7640 0.7167 0.7122

Statlog 25% 0.7730 0.7714 0.7318 0.7284 0.6031
35% 0.7820 0.7806 0.7391 0.7336
15% 0.7930 0.7944 0.7697 0.8393

MNIST 25% 0.8487 0.8466 0.8152 0.8685 0.5153
35% 0.8721 0.8777 0.8438 0.8935

ALL Datasets SCORE 33.9814 34.0574 31.6888 35.7239 8.8581
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Tables 6.2, 6.3 and 6.4 list the performance of the different algorithms on all the
datasets. These comparisons indicate that the proposed algorithm is superior to
the spectral clustering algorithm, this suggests that prior information can improve
the label propagation effectiveness, this statement is also confirmed by the fact that
given the datasets, all the label propagation algorithms show growth in their perfor-
mance in parallel with the increase of the amount of prior information. Furthermore,
the tables show that the proposed approach is clearly more accurate than LP, LS, and
NLP on most tested datasets. However, on some datasets, OTP performed slightly
less accurately than LP. The tables also present the proposed score results of each al-
gorithm, which show that the best score belongs to the proposed label propagation
approach based on optimal transport, followed by LS and LP.

6.5.5 Friedman and Nemenyi tests

To confirm the superiority of our algorithm over the compared approaches, and es-
pecially LP, we suggest using the Friedman test and Nemenyi test (Demšar, 2006).
First, algorithms are ranked according to their performance on each dataset, then
there are as many rankings as there are datasets. The Friedman test is then con-
ducted to test the null hypothesis under which all algorithms are equivalent, and in
this case, their average ranks should be the same. If the null hypothesis is rejected,
then the Nemenyi test will be performed. If the average ranks of two approaches
differ by at least the critical difference (CD), then it can be concluded that their per-
formances are significantly different. We set the significance level α = 0.05. Figure
6.3 shows a critical diagram representing a projection of the average ranks of the
algorithms on the enumerated axis. The algorithms are ordered from left (the best)
to right (the worst) and a thick line connects the groups of algorithms that are not
significantly different (for the significance level α = 5%). As shown in figure 6.3,
OTP seems to achieve a significant improvement over LNP and SC, in fact, for the
three evaluation measures, the statistical hypothesis test shows that OTP is more ef-
ficient. For LS and LP, we can see that OTP is ahead of them, but the difference is
not statistically very significant.

6.5.6 Sensitivity analysis

To further show how our approach compares to that of our competitors, we are
conducting a sensitivity analysis using the Box-Whisker plots (Turkey, 1977). Box-
Whisker plots are a non-parametric method to represent graphically groups of nu-
merical data through their quartiles, in order to study their distributional charac-
teristics. In figure 6.4, for each evaluation measure, Box-Whisker plots are drawn
from the performance of our algorithm and the compared ones over all the tested
datasets. To begin with, performances are sorted. Then four equal-sized groups are
made from the ordered scores. That is, 25% of all performances are placed in each
group. The lines dividing the groups are called quartiles, and the four groups are
referred to as quartile groups. Usually, we label these groups 1 to 4 starting at the
bottom. In a Box-Whisker plot, the ends of the box are the upper and lower quar-
tiles, so the box spans the interquartile range, the median is marked by a vertical
line inside the box, the whiskers are the two lines outside the box that extend to the
highest and lowest observations.



134 Chapter 6. Optimal Transport for Semi-supervised Learning

FIGURE 6.3: Friedman and Nemenyi tests: approaches are ordered from left (the best) to
right (the worst).
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Sensitivity Box-Whisker plots represent a synthesis of the performances into five cru-
cial pieces of information identifiable at a glance: position measurement, dispersion,
asymmetry, length of Whiskers and outliers. The position measurement is charac-
terized by the dividing line on the median. Dispersion is defined by the length of
the Box-Whiskers. Asymmetry is defined as the deviation of the median line from
the center of the Box-Whiskers. The length of the Whiskers is the distance between
the ends of the Whiskers to the length of the Box-Whiskers. Outliers are plotted as
individual points.

Figure 6.4 shows further details on the performance of our algorithm for the three
evaluation measures. Indeed, regarding the accuracy, we note that the Box-Whisker
plot corresponding to OTP is comparatively short, this suggests that, overall, its per-
formance on the different datasets has a high level of agreement with each other,
implying stability comparable to that of LP and LS, and significantly better than that
of LNP and SC. For NMI, the Box-Whisker plot corresponding to our approach is
much higher than that of LNP and SC, also noting the presence of 2 outliers for LP
and LS, these outliers correspond to Heart and Ionosphere datasets, where both ap-
proaches have achieved very low scores, on the other hand, there is an absence of
outliers for OTP, these indicators confirm the improvement in terms of NMI by our
approach over LP and LS. Concerning ARI, we notice that the medians of LP, LS,
and OTP are all at the same level, however, the Box-Whisker of OTP is compara-
tively short, implying better stability.

The sensitivity analysis above confirms the superiority of our approach over LNP
and SC and also shows some points of difference between our algorithm, LP and LS,
which are rather in favor of OTP, such as the absence of outliers and the compara-
tively short length of OTP’s Box-Whisker.

These results are mainly attributed to the ability of the proposed algorithm to cap-
ture much more information than the previous algorithms thanks to the enhanced
affinity matrix constructed by optimal transport. It is equally noteworthy that the
effectiveness of the proposed algorithm lies in the fact that the incremental process
takes advantage of the dependency of semi-supervised algorithms on the amount of
prior information, then the enrichment of the labeled set at each iteration with new
data allows to the unlabeled instances to be labeled with high certainty. Another
reason for the superiority of OTP over the other algorithms is its capacity to control
the certitude of the label predictions thanks to the certainty score used, which allows
instances to be labeled only if they have a high degree of prediction certainty.

6.6 Software

We make our code publicly available at:

https://github.com/MouradElHamri/OTP

The used datasets are available at:

https://archive.ics.uci.edu/

https://github.com/MouradElHamri/OTP
https://archive.ics.uci.edu/
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FIGURE 6.4: Sensitivity analysis using Box-Whiskers plots
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6.7 Conclusion and future perspectives

Motivated by the necessity to leverage other ways of learning hidden structures in
the target domain, we have addressed in this chapter the limitations of traditional
label propagation methods by proposing a principally new approach based on opti-
mal transport named OTP. The proposed approach consists in inferring an improved
affinity matrix from the optimal transport plan between empirical measures defined
on labeled and unlabeled data. Furthermore, to take advantage of the reliance of
semi-supervised methods to the amount of prior information, we adopted an incre-
mental process to propagate labels through the edges of a complete bipartite edge-
weighted graph. To reinforce the certitude of the predictions, we incorporated a
certainty score that controls the incremental propagation process. We also provided
a convergence analysis for the proposed approach and an extension to out-of-sample
data. Experiments have shown that OTP outperforms current state-of-the-art meth-
ods.

The work of this chapter can be extended in different directions:

• From a theoretical standpoint, we plan to develop theoretical analysis of semi-
supervised learning with optimal transport.

• From an algorithmic standpoint, we intend to investigate how one can take
advantage of the proposed algorithm to solve the unsupervised domain adap-
tation problem. Indeed we wish using OTP to perform progressive and certain
labeling of the target data after projecting them in conjunction with the source
data in discriminating reduced spaces.
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This chapter, based on (El Hamri et al., 2022a,c) deals with the problem of unsu-
pervised domain adaptation, using the semi-supervised technique (OTP) developed
in (El Hamri et al., 2021c). OTP will be used to learn hidden structures in the target
domain in order to use them to incrementally create augmented source structures 1.
This will allow learning a sequence of discriminative and domain-invariant latent
subspaces based on Linear Discriminant Analysis, within which it becomes easy to
progressively label the target samples in a self-training fashion. A theoretical anal-
ysis of self-training methods can be used to explain the good empirical behavior of
our approach.

1Augmented source structures are composed of labeled source samples and pseudo-labeled target
samples.
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True knowledge leads to humility. The more
a person knows, the more they realize they
know nothing.

Ibn Arabi

7.1 Introduction

A common practice of domain adaptation approaches focuses on matching marginal
source and target distributions by learning a domain-invariant joint subspace. How-
ever, an exact domain-level alignment does not imply a fine-grained class-to-class
overlap, since the conditional distribution of the target domain can be misaligned
with that of the source domain, which implies that, the latent subspace may not
only push the source and target domains closer but also confuse instances with dif-
ferent class labels. To prevent this, further directions were pursued by incorporating
additional structural information contained in the unlabeled target domain.

Structural information in the target domain can be acquired using unsupervised
learning techniques such as clustering or semi-supervised learning techniques such
as pseudo-labeling. In this chapter, we focus on the second family of domain adap-
tation approaches based on pseudo-labels (Long et al., 2013; Wang et al., 2018; Xie
et al., 2018).

The problem with these pseudo-labeling methods is their heavy reliance on the as-
sumption that correctly pseudo-labeled data can reduce the bias caused by falsely
pseudo-labeled ones. Whereas, in reality, falsely pseudo-labeled instances in the
early iterations of the learning process can potentially lead to catastrophic damage
due to the accumulation of errors in the subsequent iterations.

To address this issue, selective pseudo-labeling was employed in (Chen et al., 2019;
Wang and Breckon, 2020; Gallego et al., 2020). Selective pseudo-labeling takes into
account the certainty of predictions in the target domain. Precisely, these methods
operate in the following manner: a small amount of target instances are selected to
be assigned with pseudo-labels, and only these selected pseudo-labeled target sam-
ples are integrated with the labeled source data in the next iteration of the learning
process. This makes these methods a specific form of self-training, which is a popu-
lar technique that has proven to be very effective for learning with unlabeled data.

Despite their very intuitive nature and good empirical performance, these methods
have bottlenecks related to the amount and the way the pseudo-labels are selected.
Moreover, they lack theoretical guarantees.

Contribution: To address these limitations, we propose in this chapter to learn
the hidden structures in the target domain using the label propagation approach
in (El Hamri et al., 2021c). From these, we select a subset of pseudo-labeled sam-
ples to create augmented source structures that will be used to learn incrementally
a sequence of discriminative and domain-invariant latent subspaces, within which
it becomes easy to progressively label the target samples. The proposed approach is
backed up by a theoretical analysis of self-training.
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Outline: The rest of this chapter is organized as follows: in the 2nd section, we elab-
orate the proposed approach OTP-DA. In the 3th section, we present a theoretical
analysis of self-training methods that can be extended to the proposed approach. In
the 4th section, we evaluate our algorithm on two benchmark datasets. Finally, we
conclude in section 5.

7.2 Optimal Transport Propagation for Domain Adaptation

The proposed approach OTP-DA aims to learn a joint subspace from the source and
target domains such that the projected data into this subspace are domain invariant
and well separated. To accomplish this aim, linear discriminant analysis (LDA) ap-
pears to be a good candidate for many reasons, principally for its capacity to find
a linear combination of features, which separates two or more classes of data no
matter the domain they come from, providing an appropriate approach for the un-
supervised domain adaptation problem, where the source and target data come from
different distributions. Nonetheless, LDA needs labeled data to learn the projection
matrix. To surmount this challenge, we use pseudo-labels in the target domain pro-
duced by OTP (El Hamri et al., 2021c).

The reason for choosing OTP is its ability to capture the geometry of data thanks to
optimal transport. Furthermore, OTP falls into the class of selective pseudo-labeling
methods, so it avoids mislabeled target instances from impeding the subspace learn-
ing process by spreading the errors to the next iteration, which can reduce the ro-
bustness of the learned classifier.

Thus, we use the labeled source data and the selected pseudo-labeled target data
provided by OTP to incrementally learn a sequence of lower-dimensional domain-
invariant and discriminative latent subspaces where a classifier can progressively
label the target samples in a self-training fashion.

7.2.1 Domain Alignment via Linear Discriminant Analysis

To learn a domain-invariant and discriminative subspace X̃ from X , we use Linear
Discriminant Analysis (LDA) (Fisher, 1936), which is a common technique used for
dimensionality reduction. LDA can also provide class separability by drawing a de-
cision region between the different classes.

Let X ∈ Md,n(R) be a labeled data matrix composed of n samples. Basically, LDA
seeks to find a projection matrix W for which the low-dimensional projection of X
yields a cloud of points that are close when they are in the same class relative to
the overall spread. This projection matrix can be found by maximizing the Rayleigh
quotient of the within scatter matrix Sw and between scatter matrix Sb:

W = argmax
V

|V TSbV |
|V TSwV |

(7.1)

The maximization problem in (7.1) is equivalent to the following generalized eigen-
value problem:

Sbw = λSww (7.2)
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The eigenvectors of (7.2) represent the directions of the lower-dimensional feature
space learned by LDA, and the corresponding eigenvalues represent the ability of
the eigenvectors to discriminate between different classes, i.e. increase the between-
class variance, and decrease the within-class variance of each class. The eigenvectors
with the d1 highest eigenvalues give us the LDA projection matrix W=[w1, ..., wd1 ] ∈
Md,d1(R), from which we can learn the lower-dimensional discriminant representa-
tion X̃ ∈Md1,n(R):

X̃ =W TX (7.3)

7.2.2 Self-Training via Optimal Transport Propagation

To learn a domain-invariant and discriminative subspace X̃ from X using the pro-
jection matrix W of LDA we need labeled data as stated above. Nevertheless, in
unsupervised domain adaptation settings, labeled data in the target domain are un-
available. To address this limitation, we propose to use Optimal Transport Propaga-
tion (OTP) to perform selective pseudo-labeling in the target domain.

Once the LDA projection matrixW is learned 2, the projection of both source samples
S and target samples T in the joint subspace can be obtained as follows:

S̃ =W TS and T̃ =W TT (7.4)

Pseudo-labeling in the target domain can then be performed using OTP considering
that:

XL = S̃ and XU = T̃ (7.5)

The intuition behind the use of OTP as a pseudo-labeling technique is its capability
to capture the geometry of the underlying subspace and its selective ability based
on the incorporated certainty score which makes it closely related to entropy min-
imization, where the model’s predictions are encouraged to be low-entropy (i.e.,
high-confidence) on unlabeled data.

Thus, instead of using all the pseudo-labeled target samples to learn the next projec-
tion, we incrementally select a subset T̃p ⊂ T̃ that contains an amount of p pseudo-
labeled target samples with the highest certainty score.

Nevertheless, this technique has the potential risk of only selecting instances from
particular classes and overlooking the other ones. To prevent this issue, we con-
duct a class-wise selection in order to ensure that pseudo-labeled target samples
of each class have an equal opportunity to be selected. Precisely, for each class ch,
∀h ∈ {1, ..., k}we select p/k target samples pseudo-labeled as class ch.

Thereafter, the projected source data is combined with the selected pseudo-labeled
target data to form augmented source structures, simultaneously, the pseudo-labeled
target data must be removed from the target domain in the following way:

S ← S̃ ∪ T̃p and T ← T̃ \ T̃p (7.6)

2At the first iteration, the projection matrix is learned using only the labeled source data
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Equations (7.6) are used to incrementally update the source and target domains. At
each iteration, a classifier η is trained on the augmented source samples in a self-
training manner (using labeled source data in conjunction with selected pseudo-
labeled target data).

The intuition behind this idea is that at each iteration the classifier becomes more
and more robust since it is trained on both the source data and the selected pseudo-
labeled target data so that in the last iteration, it will be trained on the source samples
and the totality of pseudo-labeled target instances.

The overall OTP-DA algorithm is summarized in Algorithm 7.1.

Algorithm 7.1 OTP-DA
Parameters: Dimensionality of LDA d1, sampling rate p
Input : Labeled source data S, Unlabeled target data T
while not converged do

Learn the projection W using source data S (7.2)
Get the projected source and target samples S̃ and T̃ (7.4)
Assign pseudo-labels for the projected target data T̃ using OTP (7.5)
Select a subset of pseudo-labeled target data T̃p
Update the source domain S ← S̃ ∪ T̃p (7.6)
Update the target domain T ← T̃ \ T̃p (7.6)
Learn a classifier η on S

end
return Predicted labels of the original target data T using η

Figure 7.1 below provides an overview of the OTP-DA approach. For the sake of
clarity, we omit the incremental aspect.

FIGURE 7.1: Overview of OTP-DA. We initiate an incremental approach where at each iter-
ation, we learn a latent subspace using LDA. In the latent subspace, we perform selective
pseudo-labeling with OTP. The selected pseudo-labeled target data are used in combination
with labeled source data to learn a new decision boundary in a self-training fashion.
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7.3 Theoretical Analysis

Self-training methods train a model to fit pseudo-labels, that is, predictions on un-
labeled data made by a previously-learned model. The empirical phenomenon that
self-training on pseudo-labels often improves over the pseudo-labeler Fpl despite no
access to true labels, has been explained in (Wei et al., 2020) by Theorem 7.7. We first
need the following definitions and assumptions.

Definition 7.1 (Transformation set) Let T be the set of some transformations obtained
via data augmentation, the transformation set of x is defined as:

B(x) = {x′ | ∃Tr ∈ T such that ∥ x′ − Tr(x) ∥≤ r} (7.7)

B(x) is the set of points with distance r from some data augmentation of x.

Definition 7.2 (Neighborhood) The neighborhood of x denoted by N (x) is the set of
points whose transformation sets overlap with that of x:

N (x) = {x′ : B(x) ∩B(x′) ̸= ∅} (7.8)

For S ⊂ X , the neighborhood of S is defined as the union of neighborhoods of its elements:
N (S) = ∪

x∈S
N (x).

Assumption 7.3 ((a,c)-expansion) Let P be the distribution of unlabeled target data, and
Pi for i ≤ k be the class-conditional distribution of x ∈ X conditioned on the class Ci. We
say that the class-conditional distribution Pi satisfies (a, c)-expansion if for all V ⊂ X with
Pi(V ) ≤ a, the following holds:

Pi(N (V )) ≥ min{cPi(V ), 1} (7.9)

If Pi satisfies (a, c)-expansion for all i ≤ k, then we say P satisfies (a, c)-expansion.

This assumption states that a low-probability subset of the data must expand to a
neighborhood with large probability relative to the subset.

Definition 7.4 (Population consistency loss) We define the population consistency loss
RB(x)(F ) as the fraction of examples where a classifier F is not robust to input transforma-
tions:

RB(F ) = EP [1(∃x′ ∈ B(x) such that F (x′) ̸= F (x))] (7.10)

Assumption 7.5 (Separation) We assume P is B-separated with probability 1 − δ by
ground-truth classifier F ∗, as follows: RB(F ∗) ≤ δ.

Assumption 7.6 Define a = max
i≤k
{Pi(M(Fpl))} to be the maximum fraction of incorrectly

pseudo-labeled examples in any class: M(Fpl) = {x | Fpl(x) ̸= F ∗(x)}. We assume that
a < 1

3 and P satisfies (a, c)-expansion for a > 3. .

Theorem 7.7 Define c = min{ 1a , c}. Suppose Assumptions 7.5 and 7.6 hold. Then for any
minimizer F̃ of L(F ) = c+1

c−1L0−1(F, Fpl)+
2c
c−1RB(F )−Err(Fpl), which fits the classifier

to the pseudo-labels while regularizing input consistency, we have:

Err(F̃ ) ≤ 2

c− 1
Err(Fpl) +

2c

c− 1
δ. (7.11)
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Which explains the perhaps surprising fact that self-training with pseudo-labeling
often improves over the pseudo-labeler Fpl even though no additional information
about true labels is provided. This result is based on a simple and realistic expan-
sion assumption that intuitively states that the data distribution has good continuity
within each class.

This theoretical analysis 3 can be extended to our proposed approach that trains
a classifier η in each iteration using the labeled source data and a small portion of
pseudo-labeled target data provided by OTP.

7.4 Experiments

In this section, we provide empirical experimentation for the proposed algorithm
and the compared algorithms.

7.4.1 Datasets

We adopt two datasets that are benchmarks in domain adaptation: ImageCLEF-DA
and Office31.

ImageCLEF-DA dataset (Caputo et al., 2014) consists of four domains. We use three
of them in our experiments: Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal
VOC 2012 (P). There are 12 classes and 50 images for each class in each domain.

Office31 dataset (Saenko et al., 2010) composed of 4110 images. The dataset con-
sists of three domains: Amazon, Webcam, and DSLR, 31 common classes from the
three domains are used.

7.4.2 Experimental Protocol

We use ResNet50 features (d = 2048) for ImageCLEF-DA and Office31 datasets (He
et al., 2016). Our proposed approach consists of two hyper-parameters, the dimen-
sionality d1 of LDA that we set equal to 128 and the sampling rate p that we set
equal to 48 for ImageCLEF-DA and 62 for Office31 dataset. We use an SVM with a
Gaussian kernel as a classifier (Benabdeslem and Bennani, 2006). The width param-
eter of the SVM was chosen as σ = 1

2V , where V is the variance of the source samples.

Following the standard protocol (Gong et al., 2012), the comparison is conducted us-
ing three deep learning models RTN (Long et al., 2016), MADA (Pei et al., 2018) and
iCAN (Zhang et al., 2018), and with a manifold embedded distribution alignment
technique based on deep features MEDA (Wang et al., 2018). We use the average
accuracy as the evaluation metric in all our experiments.

7.4.3 Results

We use bold and underlined fonts to indicate the best and the second best results
respectively.

3A theoretical study adapted to our algorithm is being prepared for an invited submission to Inter-
national Journal of Neural Systems.
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TABLE 7.1: Accuracy on ImageCELF-DA dataset (ResNet50 features).

.

Task RTN MADA iCAN MEDA OT-DA

I→ P 75.6 75.0 79.5 79.7 78.9

P→ I 86.8 87.9 89.7 92.5 91.8

I→ C 95.3 96.0 94.7 95.7 97.8

C→ I 86.9 88.8 89.9 92.2 92.6

C→ P 72.7 75.2 78.5 78.5 78.2

P→ C 92.2 92.2 92.0 95.5 95.8

average 84.9 85.8 87.4 89.0 89.4

TABLE 7.2: Accuracy on Office31 dataset (ResNet50 features).

.

Task RTN MADA iCAN MEDA OTP-DA

A→W 84.5 90.0 92.5 86.2 93.3

D→W 96.8 97.4 98.8 97.2 99.0

W→ D 99.4 99.6 100.0 99.4 99.6

A→ D 77.5 87.8 90.1 85.3 90.7

D→ A 66.2 70.3 72.1 72.4 71.9

W→ A 64.8 66.4 69.9 74.0 71.3

average 81.6 85.2 87.2 85.7 87.6

The classification accuracy of our proposed approach and other baseline methods
are illustrated in Table 7.1 and Table 7.2, from which we can see that our proposed
approach achieves the highest average accuracy over the two benchmark datasets.

Specifically, OTP-DA achieves an average accuracy of 89.4% on ImageCELF-DA
dataset (Table 7.1), slightly better than MEDA which has an average accuracy of
89.0%. On the Office31 dataset (Table 7.2), OTP-DA outperforms all other baseline
models with an average accuracy of 87.6% against 85.7% by MEDA and 87.2% by
iCAN. Besides, OTP-DA achieves the best performance in three out of six tasks and
the second-best results in two other tasks for both datasets.

In summary, the proposed approach is highly competitive compared to several state-
of-the-art methods, and can outperform both deep learning models and traditional
feature transformation approaches on many tasks of the two domain adaptation
problems. These results are mainly attributed to the capacity of OTP to capture
much more information than the other methods of pseudo-labeling thanks to the
enhanced affinity matrix constructed by optimal transport and to its intrinsic prop-
erty of selectivity which make it a good candidate for pseudo-labeling target data.

7.5 Software

We make our code and the used datasets publicly available at:

https://github.com/MouradElHamri/OTP-DA

https://github.com/MouradElHamri/OTP-DA
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7.6 Conclusion and future perspectives

With the possibility of exploring hidden structures in the target domain using Op-
timal Transport Propagation, we proposed to use them to incrementally create aug-
mented source structures, composed of labeled source data and selected pseudo-
labeled target data. The augmented source structures allow learning a sequence
of discriminative and domain-invariant latent subspaces, using Linear Discriminate
Analysis, within which it becomes convenient to progressively label the data of the
target domain in a self-training manner.

The work of this chapter can be extended in different directions:

• From a theoretical standpoint, we are currently writing an extended version of
this work, in which we develop a theoretical analysis specific to our algorithm
based on the notion of weak learner (Freund et al., 1996). Indeed, there are few
theoretical studies of domain adaptation methods based on self-labeling, and
the published theoretical studies suffer from several limitations, for example,
(Habrard et al., 2013) deals with a limited setting where a random selection
of pseudo-labeled target examples is performed at each iteration. The current
work attempts to overcome this non-optimal setup and proposes a theoreti-
cal analysis in which pseudo-labels are selected according to a deterministic
procedure that reflects the functioning of OTP.

• From an algorithmic standpoint, it would be interesting to go beyond the do-
main adaptation special case we considered. A direct extension would be to
include some target labels in a semi-supervised setting, we believe that this lat-
ter will be more advantageous for the proposed approach since the unlabeled
target data will be drawn from the same distribution as the small amount of
the available labeled ones, which will lead to learning latent subspaces with a
higher discriminatory power.
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CHAPTER 8

CONCLUSION AND PERSPECTIVE
FOR FURTHER WORKS

The worst thing one can tell you is that
you’re intelligent.

My mom to her eldest son, 2002

Throughout this dissertation, we tackled the challenging problem of domain adap-
tation, and we provided contributions to it using different approaches that may be
unified under the banner of structural optimal transport.

Motivated by the lack of methods that leverages structures in both domains, our first
contribution considers a hierarchical formulation of optimal transport that aligns the
source structures with the target ones. Structures in the source domain are formed
by grouping samples according to their class labels, while structures in the target do-
main are learned using Wasserstein-Spectral clustering, an algorithm derived from
the equivalence we proved between the problem of learning probability measures
through Wasserstein barycenter and spectral clustering. Incorporating the structures
of the two domains into the hierarchical formulation of optimal transport yielded
good empirical results in domain adaptation.

The need to give a theoretical cover to the first contribution, led us in the second,
to prove novel generalization bounds on the target risk for three scenarios, unsuper-
vised, semi-supervised, and multi-source domain adaptation, where the divergence
between the source and target domains is measured by the Hierarchical Wasserstein
distance. Our generalization bounds justify the use of hierarchical optimal transport
for domain adaptation and indicate under mild assumptions, which structures have
to be aligned to lead to a good adaptation. These generalization bounds explicitly
reflect, unlike the other state-of-the-art bounds, the algorithmic solution that was
used to lead to a successful adaptation.

Marked by the necessity for an efficient way to learn hidden structures in the tar-
get domain in lieu of clustering, and by the many drawbacks of traditional semi-
supervised approaches, we developed in the third contribution a label propagation
technique based on optimal transport. The proposed approach captures the geome-
try of the input space and the relationships between labeled and unlabeled samples
in a global level. This approach incrementally performs a label propagation process
controlled by a score that watches over the certainty of predictions. This approach
has shown good empirical performance compared to the state-of-the-art methods.
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Finally, having the possibility of exploring hidden structures in the target domain
using the developed label propagation technique, we proposed to use them to in-
crementally create augmented source structures, composed of labeled source data
and selected pseudo-labeled target data. The augmented source structures allow
learning a sequence of discriminative and domain-invariant latent subspaces, within
which it becomes convenient to gradually label the data of the target domain.

Our contributions have several possible future research directions that we high-
lighted at the conclusions of their respective chapters. We now detail the ones we
find to have significant potential for future work. For the first one of them, we note
that the alignment process is done in several steps, it is first necessary to learn the
hidden structures in the target domain and then to find the correspondences with
the source structures. We would like to avoid this, by proposing to jointly learn the
target structures and the optimal transport plan that aligns them with the source
classes. In addition, we want to extend the proposed approach to a multi-source
domain adaptation setting.

Second, our theoretical study of domain adaptation through the hierarchical for-
mulation of optimal transport encourages us to attempt to derive other generaliza-
tion bounds that take into account the quality of clustering in the target domain,
by reflecting explicitly the excess clustering risk. Recently, (Li and Liu, 2021) pro-
posed a unified clustering framework that encompasses k-means, kernel k-means,
soft k-means, neural network clustering, and spectral clustering, and investigated its
excessive risk bounds, obtaining state-of-the-art upper bounds under mild assump-
tions. The equivalence between Wasserstein-spectral clustering and spectral cluster-
ing will allow us to use this framework to derive excess clustering risk bounds for
the former and then try to find a means to merge them into the domain adaptation
generalization bounds.

The third contribution leads us to the question of whether it is possible to establish
generalization bounds for semi-supervised learning using optimal transport. For the
last contribution, we are currently writing an extended version, in which we develop
a theoretical analysis specific to our algorithm based on the notion of weak learner
(Freund et al., 1996). Indeed, there are few theoretical studies of domain adaptation
methods based on self-labeling, and the published theoretical studies suffer from
several limitations, for example, (Habrard et al., 2013) deals with a limited setting
where a random selection of pseudo-labeled target examples is performed at each
iteration. The current work attempts to overcome this non-optimal setup and pro-
poses a theoretical analysis in which pseudo-labels are selected according to a deter-
ministic procedure that reflects the functioning of OTP.

From a more high-level perspective, many questions remain open as the possibil-
ity to extend our methods and theoretical guarantees to data living in incomparable
spaces, using in particular approaches developed by (Vayer et al., 2019, 2020). We
also aim to extend our approaches to the multi-source setting by leveraging our other
work on collaborative and federated learning (Ben Bouazza et al., 2022). Regarding
applications, we are at the beginning of a collaboration with a team of surgeons from
Avicenne Hospital to apply our algorithms in various medical problematics, for ex-
ample, we are currently considering the possibility to deploy a model trained using
postmortem imaging during intra-operative surgery.
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APPENDIX A

SOME PREREQUISITES

A.1 Probabilities

Definition A.1 ( σ-algebra ) Let Ω be a set. A subset F of the power set P (Ω) is called a
σ-algebra if it satisfies the following conditions:

1. Ω ∈ F .

2. ∀A ∈ F , Ω \A ∈ F , (closed under complementation).

3. For any sequence (Ai)i∈N such thatAi ∈ F , we have
⋃
i∈NAi ∈ F (closed under

countable unions).

In this case, (Ω,F) is called a measurable space.

Definition A.2 ( Measurable function ) With the previous notations, let (E,K) be a mea-
surable space. A map f : Ω→ E is said to be measurable if: ∀B ∈ K, f−1(B) ∈ F .

Definition A.3 ( Probability measure ) With the previous notations, let P : F → R+. P
is a probability if:

1. P(Ω) = 1

2. For any sequence (Ai)i∈N such that Ai ∈ F and Ai ∩ Aj = if i ̸= j, we have:
P
(⋃

i∈NAi
)
=
∑

i∈N P(Ai)

In this case, (Ω,F ,P) is called a probability space.

A.2 Topology

Definition A.4 ( Metric ) For a set X , an application d : X × X → R+ is a metric if it
verifies the following properties:

1. ∀x, x′ ∈ X , d(x, x′) = 0⇐⇒ x = x′ (separation).

2. ∀x, x′ ∈ X , d(x, x′) = d(x′, x) (symmetry).

3. ∀x, x′, x′′ ∈ X , d(x, x′) ≤ d(x, x′′) + d(x′′, x′) (triangle inequality).

In this case, (X , d) is called a metric space.

Definition A.5 ( Lipschitzness ) Let (X , dX ) and (Y, dY) be two metric spaces. An ap-
plication f : X → Y verifies the Lipschitz property if there is some K > 0 such that for all
x, x′ ∈ X , we have:

dY(f(x), f(x
′)) ≤ K.dX (x, x′) (A.1)

In this case we also say that f is K-Lipschitz continuous.
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Definition A.6 ( Norm ) For a real vector space E, an application ||.|| : E→ R+ is a norm
if it verifies the following properties:

1. ∀x ∈ E, ||x|| = 0⇐⇒ x = 0 (Positive definiteness).

2. ∀λ ∈ R,∀x ∈ E, ||λx|| = λ||x|| (Absolute homogeneity).

3. ∀x, x′ ∈ E, ||x+ x′|| ≤ ||x||+ ||x′|| (triangle inequality).

In this case, (E, ||.||) is called a normed vector space.

Proposition A.7 Any normed space (E, ||.||) is a metric space for d : (x, x′) 7→ ||x− x′||.

Definition A.8 ( Complete space ) We say that a metric space (X , d) is complete if every
Cauchy sequence in X has a limit in X , i.e., every Cauchy sequence is convergent.

Definition A.9 ( Separable space ) Let X be a metric space. A set B is dense in X if
cl(B) = X . We say that a metric space is separable if it has a countable dense subset.

Definition A.10 ( Polish space ) A topological space X is

1. completely metrizable if there is a metric d defining the topology of X such that (X , d)
is complete

2. Polish if it is separable and completely metrizable

Definition A.11 ( Lower semi-continuity ) Let (X , d) be a polish metric space, f : X →
R ∪ {+∞} is lower semi-continuous at x ∈ X if and only if, for every sequence (xn)n∈N
converged to x, we have

f(x) ≤ lim
n→+∞

f(xn)

f is lower semi-continuous if it is lower semi-continuous at each point in X .

A.3 Functional analysis

Definition A.12 ( Hilbert space ) A Hilbert space is a complete inner product space with
respect to the norm defined by the inner product.

Definition A.13 ( RKHS ) A Hilbert space H of functions f : X → R, defined on a non-
empty set X is said to be a Reproducing Kernel Hilbert Space (RKHS) if the evaluation
functional evx : f 7→ f(x) is continuous ∀x ∈ X .

Definition A.14 ( Reproducing kernel ) A function k : X × X → R is called a repro-
ducing kernel ofH if it satisfies:

1. ∀x ∈ X , k(., x) ∈ H

2. ∀x ∈ X,∀f ∈ H, f(x) = ⟨f, k(., x)⟩H (the reproducing property).

Theorem A.15 H is a reproducing kernel Hilbert space (i.e., its evaluation functionals are
continuous), if and only ifH has a reproducing kernel.
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Résumé: La théorie du transport optimal permet non
seulement de définir une distance entre les mesures de probabil-
ité, mais offre également un moyen géométrique de transporter
un ensemble de points vers un autre selon le principe du moin-
dre effort. Ce double aspect a laissé la porte grande ouverte
pour les applications en adaptation de domaine, une branche
de l’apprentissage statistique qui tient compte du change-
ment de distributions entre les données d’apprentissage et les
données de test, respectivement appelées domaines source et
cible. Toutefois, il existe souvent dans les deux domaines
un biais structurel sur la représentation des données ou des
structures latentes qui ne sont pas prises en compte par la
formulation classique du transport optimal, et l’incapacité à
incorporer pleinement ces structures peut entraver le succès
de l’adaptation de domaine. Cette thèse présente plusieurs
approches pour incorporer les informations structurelles au
sein du transport optimal. La première contribution s’appuie
sur une formulation hiérarchique du transport optimal pour
aligner les structures sources et cibles. Les structures sources
sont formées instinctivement en regroupant les données en
classes selon leurs étiquettes, tandis que l’apprentissage des
structures cachées dans le domaine cible est réduit au problème
d’apprentissage de mesures de probabilité via le barycentre
de Wasserstein, dont nous prouvons l’équivalence avec le clus-
tering spectral. Notre deuxième contribution est une analyse

théorique de l’adaptation de domaine à travers le transport op-
timal hiérarchique, où nous fournissons des bornes de général-
isation pour trois scénarios, à savoir, l’adaptation de domaine
non supervisé, semi-supervisé et multi-sources. Ces bornes de
généralisation sont basées sur une nouvelle mesure de diver-
gence que nous appelons la distance de Wasserstein Hiérar-
chique, qui indique, sous des hypothèses modérées, quelles
structures doivent être alignées pour mener à une adapta-
tion réussie. Dans notre troisième contribution, nous élargis-
sons le cadre d’apprentissage des structures cibles en dehors
du clustering, en développant une approche de propagation
de labels basée sur le transport optimal. L’intérêt du trans-
port optimal dans ce contexte est de capturer la géométrie
de l’espace d’entrée dans son intégralité. Cette approche ef-
fectue une propagation incrémentale de labels, contrôlée par
un score qui surveille la certitude des prédictions. Enfin, en
s’appuyant sur ce nouvel algorithme de propagation de la-
bels, nous présentons la dernière contribution, qui permets de
créer de manière progressive des structures sources augmen-
tées, permettant l’apprentissage d’une suite de sous-espaces
latents domaine-invariants et discriminants, au sein desquels
il devient facile d’étiqueter graduellement les données du do-
maine cible.
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Abstract: Optimal transport theory not only defines a dis-
tance between probability measures but also provides a ge-
ometric way to transport a set of points to another accord-
ing to the principle of least effort. This dual aspect has left
the door wide open for applications in domain adaptation, a
subfield of statistical learning theory that takes into account
the change in distributions between training and test data, re-
spectively called source and target domains. However, there
is often a structural bias on the data representation or la-
tent structures in both domains that are not captured by the
classical optimal transport formulation, and the inability to
fully incorporate these structures can hinder the success of do-
main adaptation. This thesis presents several approaches to
incorporating structural information into the optimal trans-
port problem. The first contribution relies on a hierarchical
formulation of optimal transport to align source and target
structures. The source structures are formed instinctively by
grouping data into classes according to their labels while learn-
ing hidden structures in the target domain is reduced to the
problem of learning probability measures through Wasserstein

barycenter, which we prove to be equivalent to spectral cluster-
ing. Our second contribution is a new theoretical framework
of domain adaptation through hierarchical optimal transport,
where we provide generalization bounds for three scenarios,
namely, unsupervised, semi-supervised, and multi-source do-
main adaptation. These generalization bounds are based on a
new divergence measure that we call Hierarchical Wasserstein
distance, indicating, under mild assumptions, which structures
need to be aligned to lead to successful adaptation. In our third
contribution, we extend the framework of learning target struc-
tures outside of clustering, by developing a label propagation
approach based on optimal transport. The appeal of optimal
transport in this context is to capture the geometry of the
input space in its entirety. This approach performs incremen-
tal label propagation, controlled by a score that watches over
the certainty of predictions. Finally, based on this new label
propagation algorithm, we present the last contribution, which
allows the progressive creation of augmented source structures,
allowing to learn a sequence of latent domain-invariant and dis-
criminative subspaces, within which it becomes easy to grad-
ually label the target data.
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