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l’Université Claude Bernard Lyon 1
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Abstract

This thesis explores the control of the morphology of extended physical systems involving stochastic
or nonlinear dynamics. More precisely, we are interested in the problem of achieving in finite
time a target morphology that is as arbitrary as possible through “model-based” or “model-free”
control methods. In the model-based approach, complete knowledge of the physical laws governing
the system is exploited to compute an optimal control strategy. If this knowledge is not available,
a control strategy can be learned by the model-free approach by interacting with the dynamical
system itself and “reinforcing” the actions that maximize a certain reward signal.

We have applied model-based control to the case of small two-dimensional islands of a few
particles under the effect of an external macroscopic field, such as an electric field or a temperature
gradient, which acts as a control parameter to reach a target shape. This model describes single-
layer clusters of atoms, nanoparticles, or colloids. We considered the case of a dynamics governed
by stochastic diffusion of particles along the periphery of the island, which thus conserves the
number of particles during the dynamics. Reaching a target shape for the island can be seen as
a first-passage problem in the space of configurations, and the choice of the external field can
be studied in the framework of Markov decision processes. The finite number of configurations
allowed us to apply tabular algorithms (which list all the states of the system in an array). We
have also derived some analytical results using a high temperature expansion.

In the absence of an external field, we showed that sufficiently large compact shapes exhibit
an optimal temperature at which they are reached in minimum time. In the presence of field,
we used the so-called dynamic programming method to solve the Markov decision process and
find an optimal control strategy to reach the target shapes in minimum time. This strategy
results in a time gain that increases when increasing the size of the islands or decreasing the
temperature. Moreover, the optimal strategy is not unique, and its degeneracy is mainly related
to the symmetries of the system. Furthermore, the optimal strategy presents a discrete set
of transitions as the temperature varies. As the cluster size increases, a continuous density of
transitions emerges.

With model-free control, we modeled a situation that mimics an experimental setup, where an
automated controller learns to manipulate a small cluster. We have shown that the reinforcement
learning methods of Monte Carlo and Q-learning type allow one to reach control performances
close to the optimal performances computed by dynamic programming, except at high temperature
where the fluctuations are important and the influence of the external field is weak.

Finally, we have studied the model-free control of the morphology of extended deterministic

v



continuous systems. The control is obtained by adjusting a global parameter that governs the
stability of the system, such as the temperature difference from the critical point in a system
undergoing a phase transition. In the framework of a one-dimensional model based on a time-
dependent generalization of the Allen-Cahn (or Ginzburg-Landau) equation, we have been able
to control the number of phase domains appearing in the system by using neural network-based
approximation techniques (deep Q-learning). Preliminary results have also allowed us to classify
the shape of domains undergoing a fingering instability obtained by a two-dimensional phase-field
model, a result that marks a first step towards the morphological control of these systems.
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Résumé

Cette thèse explore le contrôle de la morphologie de systèmes physiques étendus mettant en jeu
une dynamique stochastique ou nonlinéaire. Plus précisément, nous nous sommes intéressés au
problème d’atteinte en temps fini une morphologie cible aussi arbitraire que possible grâce à des
méthodes de contrôle “basées sur un modèle” ou “sans modèle”. Dans l’approche basée sur les
modèles, la connaissance complète des lois qui régissent le système est exploitée pour calculer
une stratégie de contrôle optimale. Si cette connaissance n’est pas disponible, on peut apprendre
une stratégie de contrôle par l’approche sans modèle en interagissant avec le système dynamique
lui-même et en “renforçant” les actions qui maximisent un certain signal de récompense.

Nous avons appliqué le contrôle basé sur un modèle au cas de petits ı̂lots bidimensionnels de
quelques particules sous l’effet d’un champ macroscopique extérieur, tel qu’un champ électrique
ou un gradient de température, qui joue le rôle de paramètre de contrôle. Ce modèle décrit des
amas monocouche d’atomes, de nanoparticules, ou de collöıdes. Nous avons considéré le cas d’une
dynamique régie par la diffusion stochastique des particules le long de la périphérie de l’̂ılot, qui
conserve donc le nombre de particules pendant la dynamique. L’atteinte d’une forme cible pour
l’̂ılot peut être vue comme un problème de premier passage dans l’espace des configurations,
et le choix du champ peut être étudié dans le cadre des processus de décision Markoviens. Le
nombre fini de configurations nous permet d’appliquer des algorithmes tabulaires (qui listent
l’ensemble des états du système dans un tableau). Nous avons également dérivé quelques résultats
analytiques à l’aide d’un développement à haute température.

En l’absence de champ externe, nous avons montré que les formes compactes suffisamment
grandes présentent une température optimale à laquelle elles sont atteintes en un temps minimum.
En présence de champ, nous avons utilisé la méthode dite de programmation dynamique pour
résoudre le processus de décision Markovien et trouver une stratégie optimale pour atteindre
les formes cibles dans un temps minimal. Cette stratégie entrâıne un gain de temps qui crôıt
lorsqu’on augmente la taille des ı̂lots ou que l’on diminue la température. Par ailleurs, la stratégie
optimale n’est pas unique, et sa dégénérescence est principalement liée aux symétries du système.
De plus, la stratégie optimale présente un ensemble discret de transitions lorsque la température
varie. Quand la taille du cluster augmente, une densité continue de transitions émerge.

Avec le contrôle sans modèle, nous avons modélisé une situation qui mime un dispositif
expérimental, où un contrôleur automatisé apprend à manipuler un petit ı̂lot. Nous avons montré
que les méthodes d’apprentissage par renforcement de type Monte Carlo et Q-learning permettent
en général d’atteindre des performances de contrôle proches des performances optimales calculées
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par programmation dynamique, sauf à haute température où les fluctuations sont importantes et
l’influence du champ extérieur est faible.

Enfin, nous avons étudié le contrôle sans modèle de la morphologie de systèmes déterministes
étendus. Le contrôle est obtenu en ajustant un paramètre global qui gouverne la stabilité du
système, tel que l’écart de température par rapport au point critique dans un système subissant
une transition de phase. Dans le cadre d’un modèle unidimensionnel basé sur une généralisation
de l’équation d’Allen-Cahn (ou Ginzburg-Landau dépendante du temps), nous avons pu contrôler
le nombre de domaines apparaissant dans le système en utilisant des techniques d’approximation
basées sur des réseaux de neurones (deep Q-learning). Des résultats préliminaires ont aussi
permis de classifier les formes de domaines subissant une instabilité de digitation obtenues par
un modèle de champ de phase bidimensionnel, un résultat qui marque un premier pas vers le
contrôle morphologique de ces systèmes.
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CHAPTER 1

Introduction

Linking the macroscopic world and the world of atoms, molecules and nanostructures is a long-
standing technological challenge. The difficulties we are confronted with were already envisioned
by Richard Feynman in 1959, when he described the problems of small-scale manufacturing in
his famous talk “There’s Plenty of Room at the Bottom” [1]. More than sixty years later, a
fundamental question is still driving and inspiring many research investigations: “How do we
manipulate and control objects on a small scale?”.

Techniques to control and interact with extremely small objects are usually referred to as
micro- and nanomanipulation and are considered to be key technologies for the upcoming decades
or even century [2], with applications in various fields, including chemistry, materials science,
biology and medicine [3].

In the macroscopic world, matter can be easily manipulated using direct physical methods
(e.g. etching and lithography [4]), and an object of a desired shape can be carved out of a larger
part. This is a common approach used to make macroscopic components and devices. However,
this top-down strategy of sculpting matter to form shapes becomes increasingly challenging as
dimensions approach the nanoscale [5, 6]. Hence, engineers also tried a radically different approach,
mimicking the bottom-up strategy that can be observed in nature, where small individual building
blocks self-assemble to produce structures with defined geometries and specific functions, such as
biomolecules.

In this theoretical work, we investigate a novel paradigm for controlling the morphology of
matter at small scales. This approach does not require the manipulation of atoms or particles
one by one, but instead relies on the use of a macroscopic control parameter that can impose a
global driving force on the system, as illustrated in Fig. 1.1. In this way, it is not necessary to
resort to tools that can perform microscopic actions, such as focused electron beams for atoms
and molecules or optical tweezers for micro- and nanoparticles, in order to achieve shape control.

The main theme of this thesis is to exploit the dynamics of an out-of-equilibrium physical
system, which naturally explores different configurations over time, and to guide this exploration
towards a target shape using a macroscopic control parameter. We have considered two sources
of shape exploration in physical systems. The first comes from thermal fluctuations. For this
case, we have looked at a discrete lattice model, which describes the stochastic dynamics of small
clusters of atoms, molecules, or colloidal particles. The second one comes from the presence of
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How to 
change F ?

Figure 1.1: Schematic illustration of the main question of this work: how can we tune a
macroscopic control parameter acting globally on a microscopic dynamical system (e.g. a cluster
of nanoparticles undergoing thermal fluctuations) in order to achieve a desired morphology?

morphological instabilities, such as the Mullins-Sekerka instability in crystal growth or spinodal
decomposition in phase transitions, and for this we considered a continuous deterministic model.
To these discrete and continuous models we applied several techniques from control theory to
determine how to tune the control parameter in order to achieve the desired reshaping of the
system.

This introductory chapter is divided into three main parts. In the first, we give a brief
historical perspective to the problem of shape manipulation in small-scale physical systems, with
an overview of relevant research that has been done on the topic, focusing on the specificity of
our approach with respect to what already exists in the literature. In the second part, we give a
concise presentation of the original contributions contained in this thesis. Finally, the third part
aims at introducing the key concepts of control theory.

1.1 Shape control at the micro- and nanoscale

A milestone in the history of nanomanipulation were the experiments performed in 1990 at IBM,
where 35 individual xenon atoms were positioned on a nickel substrate at low temperature to
form the IBM logo [7], reaching atomic-scale control on the organization of matter (see Fig. 1.2a).
These experiments were based on the development of the scanning tunnelling microscope (STM)
by Binnig and Rohrer [8] for which they were awarded the Nobel Prize in Physics 1986.

During the 1990s manipulation experiments with instruments based on the STM or the atomic
force microscope (AFM) [9, 2] gained momentum and also dedicated equipment for micro- and
nanomanipulation were developed. In the following decades, many examples of organization of
atoms, molecules, or nanoparticles with STM or AFM, but also colloids with tools like optical
tweezers [10, 11, 12] or magnetic tweezers [13, 14] have been obtained (see Figs. 1.2c and 1.2d).

In 2013, scientists at IBM research where able to create a stop-motion animated short film
entitled “A Boy And His Atom”, where a cartoon character plays with a ball. Each frame has
been created individually by precisely positioning, using STM, carbon monoxide molecules on a
copper surface and imaging each configuration (see Fig. 1.2b). This has been recognized as the
world’s smallest movie [15].

Typically, manipulating single atoms or nanoparticles is an interactive procedure that requires
human intervention. This makes it a generally slow, non-repeatable and inaccurate process. For
this reason, automated nanomanipulation methods have been developed for AFM [19, 20, 17],
where an algorithm detects the particle positions and plans the pushing paths to reach a desired
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(a) Xe atoms arranged on a Ni substrate at 4 K to form the
letters IBM. Each letter is 40 Å from top to bottom. Image
from Ref. [7].

(b) (45×25 nm2) CO molecules arranged on a
Cu(111) substrate at 5 K to form a frame of the
world’s smallest movie. Image from Ref. [15].

(c) (30×30 nm2) Cluster of Ir (left) and W (right)
nanoparticles on a G/Ir(111) substrate at∼300 K, each
particle contains ∼50 atoms. Image from Ref. [16].

(d) Two different patterns obtained arranging 26 colloidal
silica spheres of around 1 m in diameter using optical
tweezers. Image from Ref. [10]

(e) Pattern composed of 20 latex nanoparticles (diameter 50 nm) on a Si substrate. Left: initial configuration,
middle: pushing paths computed by the algorithm, right: final configuration. Image from Ref. [17].

(f) Two user-defined arrays of Rb atoms obtained from initial random configurations using a real-time control system
and a moving optical tweezers. Image from Ref. [18].

Figure 1.2: (a) One of the earliest STM images of an atomic-precision nanomanipulation ex-
periment and (b) a more recent one. (c) Clusters of nanoparticles positioned with STM, (d)
clusters of colloidal particles positioned with optical tweezers. (e) Automatic nanomanipulation
experiment with AFM on nanoparticles and (f) with optical tweezers on atoms.
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configuration (see Fig. 1.2e). Similar methods have been developed also for optical tweezers [18]
in order to obtain atomic arrays of arbitrary geometries (see Fig. 1.2f).

Research on the control of small particle clusters does not stop there. There are many
important challenges that are still open. One of them is to control matter at the nanoscale with
an external macroscopic field that does not act on one single particle or atom at a time, but on
the whole cluster. In the literature, there are several examples of systems where the interaction
between macroscopic fields and microscopic clusters were shown to lead to complex equilibrium or
non-equilibrium shapes, such as light acting on metal nanoparticle clusters [21] or electric fields
acting on two-dimensional (monolayer) atomic clusters [22, 23, 24]. However, these shapes, which
are dictated by the physics of the interaction of the driving force with the system, are usually
uncontrolled, in the sense that they are not chosen a priori by the experimentalist.

Another challenge lies in the ability to obtain refined control of nanostructure shapes in the
presence of thermal fluctuations that activate the random diffusion of particles and atoms, leading
to shape fluctuations [25, 24, 26]. In fact, nanomanipulation experiments are usually performed
at temperatures such that the thermal energy kBT in the system is much lower than the typical
binding energy between particles J , in order to forbid surface diffusion. For example, if we look at
Figs. 1.2a and 1.2b, we can see that, for atoms and small molecules, the experiments were carried
out at very low temperatures, around 5 K, whereas the experiment with the metal nanoparticles
of Fig. 1.2c was carried out at room temperature, because the binding energy in this system is
much higher.

Some progress in these two directions has been made for colloids. We will now list a few
relevant works where some control has been achieved on colloidal clusters at finite temperature
using macroscopic fields. The reader interested in a more complete overview of the existing
techniques for the control of colloidal assemblies can refer to the reviews of Refs. [27, 28].

Using external electric fields, several papers have reported the possibility of controlling the
assembly and disassembly of colloidal crystals of few hundreds of particles [29] (see Fig. 1.3a),
their crystallinity [32], and even the precise number of particles in the cluster [33]. These three
works are particularly relevant to us because they use a closed-loop (or feedback) control approach,
where the experimental apparatus is coupled to an automated controller that changes the external
field as a function of the observed configuration of the system. This approach is a cornerstone of
our contribution.

Using light (optical traps), the generation of static structures of colloidal particles and their
translation or rotation in a controlled manner has been achieved [30] (see Fig. 1.3b). By applying
a combination of rotating and static magnetic fields, the authors of Ref. [31] managed to assemble
and actuate microscale pumps made of few magnetic particles in a microfluidic environment (see
Fig. 1.3c).

These are just a few examples that highlight the growing interest in the control of the assembly
of micro- and nano-objects at small scales through the use of various types of macroscopic fields,
without directly manipulating individual particles [3]. However, to our knowledge, the control of
the reshaping of an already formed cluster is still an open question. In particular, the idea of how
external fields can be tuned in time to guide the stochastic evolution of a particle cluster from
one shape to another has not yet been investigated.

All the works cited above focus on two-dimensional clusters of atoms (i.e. monolayers) or
particles. This is indeed the type of system that we have considered in this thesis, and for
several reasons. The first is dictated by the choice of a closed-loop control approach, where
changes to the external macroscopic field are made as a function of the observed shape of the
cluster. Two-dimensional clusters on a surface are relatively easy to observe. There are many
experiments where this has been done in detail, see, for example Refs. [34, 35] for 2d metal
atomic clusters (also called monolayer islands), and Refs. [36, 37] for nano- and microscopic 2d
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(a) Dynamic feedback controlled assembly of a colloidal crystal of ∼ 130 silica
particles (diamter ∼ 3 m). Experimental optical video microscopy images (top)
and particle trajectories for the assembly process (bottom). Image from Ref. [29].

(b) Controlled rotation of colloidal clusters made of 19 silica beads
(diamter ∼ 2 m ) with interferometric optical traps. Image from
Ref. [30].

(c) Directed self-assembly of 7 magnetic col-
loidal particles (diameter 4.5 m) into a com-
pact micropump in the presence of a rotating
magnetic field. Image from Ref. [31].

Figure 1.3: Micromanipulation of colloidal clusters by means of macroscopic fields, using (a) an
electric field, (b) optical traps, and (c) a magnetic field.

colloidal clusters. Another reason for this choice is that we want to exploit thermal fluctuations
to guide the dynamics of the system towards a desired shape. A 2d cluster has a 1d interface,
and this causes the fluctuations of the interface to be strong, as they become larger when the
dimensionality is decreased [38].

Finally, there are well-established models for describing the evolution of a fluctuating 2d cluster
under the effect of an external field. The one we have chosen is a discrete lattice model (explained
in detail in Chapter 2), which has been used extensively for describing metal monolayer islands
in the presence of an external electric field. This field can bias the diffusion of mobile atoms
along the edge of the cluster (this phenomenon is known as electromigration), see, for example,
Refs. [39, 24, 40]. This model also aims at describing other systems consisting of fluctuating
particle clusters with biased edge diffusion, such as clusters of colloids or nanoparticles under the
effect of a temperature gradient (i.e. thermophoresis), an electric field (i.e. electrophoresis) or a
magnetic field.

Moreover, the discrete nature of this model has allowed us to apply a class of control algorithms
that is relatively simple to implement and allows one to obtain accurate results for small (few-
atoms) clusters.
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1.2 Control of continuous systems

Interest in shape control of small-scale physical systems is not limited to discrete clusters, but
is also directed toward spatially-extended continuous systems. The type of systems we have
considered are those in which there is an evolving interface—of which we want to control the
morphology—such as in the growth of a crystal, or in the phase separation of a binary mixture.
Following the same lines as for clusters, in this thesis we have turned our attention toward a
control strategy for continuous systems based on the effect of a global parameter, rather than on
localized manipulation.

The idea that one can influence the morphology of an evolving physical interface by varying
global parameters of the surrounding environment is not completely new. For instance, changes
in the shapes of ice crystals (snowflakes), depending on ambient temperature and water vapour
supersaturation, were first documented as early as the 1950s [41] and are still actively studied
today, as the underlying physical mechanisms that drive the puzzling growth behaviours of
snowflakes are not well understood [42].

For the past 20 years, Kenneth Libbrecht, a professor of physics at the California Institute of
Technology, has been studying how ice crystals form and has refined his technique of obtaining
what he calls “designer crystals” [43, 44]. These crystals are grown under controlled conditions
in his lab, where he can create a specific growth pattern by adjusting the applied temperature,
humidity, and other environmental factors by hand as a function of time. In this way, he can
get plates, branches and other desired effects, practically designing the final morphology of the
snowflake at his will. Some examples of the crystals he obtained are shown in Fig. 1.4. Libbrecht
was also recently featured in an educational video where he shows his work and his experimental
setup [45].

Figure 1.4: Three examples of Kenneth Libbrecht’s designer crystals, obtained by manually
varying the temperature and humidity of the environment during growth. Image from Ref. [43].

Libbrecht’s designer crystals are essentially an artistic endeavour, which can be seen as a
novel kind of ice sculpture, discarding the chisel in favour of using molecular self-assembly and
the laws of crystal growth to create beautiful crystalline structures. Nevertheless, there are also
several scientific publications where some kind of morphological control of an interface by means
of a varying macroscopic parameter has been studied. One of the simplest approaches to this
kind of control is that of slowly decreasing or increasing the temperature at a constant rate.
Experimental and theoretical works have shown that, in a solution undergoing a phase separation
(or spinodal decomposition), the heating or cooling rate can influence the characteristic length of
the phase domains [46, 47] and even lead to surprising periodic oscillations of this length [48, 49].
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Phase-separation models under an external field that favours one phase with respect to
the other have also been extensively studied in the applied mathematics literature [50, 51, 52,
53]. Instead, we have chosen to control the parameter that allows for the appearance of the
instability. A related approach to control phase separation has been conducted recently by
Kurita and Tsukada [54, 55, 56]. They use a space- and time-dependent temperature field, called
“phase-separation trigger”. Some of the patterns that they were able to obtain with their method
are shown in Fig. 1.5. We will report more in detail on this and other theoretical works that are
relevant to this thesis in Chapter 4, which is devoted to continuous systems.

(a) (b) (c) (d)

Figure 1.5: Different patterns formed during simulated phase separation controlled by means of
a space- and time-dependent temperature field. (a) A random droplet pattern, (b) concentric
circles, (d) a dendritic pattern, and (e) a combination of concentric circle and dendritic patterns.
Image from Ref. [54].

As stated before, we are not interested in space-dependent or spatially-localized control, hence,
unlike the works of Kurita and Tsukada cited above, we chose to use a spatially-uniform control
parameter that can vary only in time, similarly to Libbrecht’s method for designing snowflakes.
Like in the case of particle clusters, we have used a closed-loop approach, where the control
parameter is changed over time as a function of the observed state of the system by an automated
controller. Since in this case we are dealing with continuous interfaces with infinitely many
degrees of freedom, we had to resort to advanced algorithms that use artificial neural networks to
process relevant information about the shape of the system and find an approximate solution to
the control problem.

1.3 Main contributions of this thesis

The core idea that we have explored in this thesis is the control of the morphology in dynamical
systems. More precisely, we want to tackle the problem of reaching a target configuration, or
shape, of an evolving physical system in finite time. We consider the target shape to be as
arbitrary as possible.

To achieve this goal, we applied several techniques from control theory, that can be divided
into two categories: model-based and model-free control methods.

In the model-based approach, complete knowledge of the governing laws (i.e. the dynamical
model) of the system is exploited to compute an optimal control strategy. If this knowledge is
not available, or is incomplete, then one can try to solve the control problem by interacting with
the dynamical system itself and observing its response. In this case, the idea is to learn a control
strategy by trying many times different actions and “reinforcing” those that maximize a certain
reward signal. This second approach is called model-free, since it relies only on observing the
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response of the system when acting on it, without the need for knowledge on the model that
governs the system.

Although historically they developed mostly independently [57], the first approach having his
roots in optimal control theory and the second one in reinforcement learning, nowadays these two
classes of methods are closely interrelated, and can be seen as two complementary approaches to
achieve the same goal.

We applied model-based control to the case of small two-dimensional clusters of particles
evolving by thermally-activated diffusion under the effect of an external macroscopic field, such
as an electric field or a temperature gradient, that plays the role of the control parameter. This
is a discrete stochastic system with a total number of configurations, or states, that is fixed, if
the number of particles in the cluster is conserved. As we will see in more detail in the next
section, having a set of states that is discrete and finite allows us to apply control algorithms in a
relatively simple form, called tabular, which takes advantage of the possibility of listing the states
of the system one by one in a table.

We modelled the system using a well-known lattice model and we laid down the mathematical
framework of the problem of shape control in small particle clusters. Within this model, the
problem of reaching a target cluster shape can be rephrased as a first passage process in the space
of configurations. Then, using dynamic programming, which is the standard model-based method
to solve stochastic control problems, we computed optimal policies for tuning the external field in
order to reach different target shapes in minimum time.

Taking advantage of the formalism of dynamic programming, we also derived some analytical
results based on a high-temperature expansion. This expansion allowed us to investigate the
physical time required to reach a target shape, both in the case where there is no external field
(equilibrium dynamics) and in the presence of the field. Without external field, we found that
compact shapes that are large enough exhibit an optimal temperature at which they are reached
in minimum time. Then, we have computed the optimal strategy (also called policy) to set the
external field as a function of the observed state of the system in order to minimize the time to
reach a desired target shape. We found that this leads to a gain of time (with respect to the
absence of the field or to the presence of an unoptimized, randomly varying field) that grows
when increasing cluster size or decreasing temperature.

We have also found that the optimal way to set the external field is non-unique, and its
degeneracy is mainly related to symmetries of the system. Furthermore, the optimal policy
exhibits a discrete set of transitions when the temperature is varied. As the size of the cluster
increases, a continuum density of temperature transitions emerges. These results are reported in
Chapter 2.

With model-free control, we performed a computational analysis of an experiment-like situation,
where an automated controller learns to manipulate a small cluster by interacting with it. We
compared different learning methods and showed that, with this approach, it is possible to reach
control performances that are close to the optimal ones calculated in Chapter 2. However, there
are limitations, mainly related to the difficulty of learning at high temperature, where thermal
noise is strong. The results of this analysis are reported in Chapter 3.

Finally, Chapter 4 focuses on morphological instabilities in continuous deterministic systems.
Differently from the case of clusters, here control is not achieved by adding an external field,
but by directly tuning a global parameter of the model that has the role of governing the stable
or unstable character of the system, such as the temperature difference from the critical point
in a mixture undergoing a phase transition. We were able to obtain promising results for the
control of a simple one-dimensional model based on a generalisation of the Allen-Cahn equation,
also known as time-dependent Ginzburg-Landau equation. In this case, we chose to focus on
model-free methods. We could not apply tabular methods, since the set of states is continuous,
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and had to resort to advanced approximation techniques based on neural networks, such as deep
Q-learning, discussed in the next section. This method has allowed us to control the number of
domains that appear in the system.

We also considered a more complicated two-dimensional phase-field model that can describe
growth phenomena, such as the solidification of a crystal from a melt, and with this model we
were able to perform shape classification for domains undergoing a fingering instability. This is a
result that marks a first step toward morphological control of growth processes.

1.4 Control theory in a nutshell

In nature as well as in man-made products, dynamical systems—systems with a state that changes
over time—can be found everywhere: from physical systems, such as a growing crystal, to social
systems, such as economy, to life systems, such as population growth. The idea of influencing
the behaviour of such systems in order to drive them to a desired state is at the heart of control
theory [58].

In this section we will illustrate in a concise and simplified way the main ideas of control
theory that are relevant to the work presented in this thesis. The reader interested in an in-depth
treatment of these topics can refer to the book by Sutton and Barto [57].

As stated in the previous section, control methods can be divided into two main classes: model-
based and model-free methods. We will now present the key concepts of these two approaches
through the formal framework of Markov decision processes.

1.4.1 Markov decision processes

Markov decision processes, or MDPs, are a classical formalization of decision making problems.
They rely on the concept of the agent-environment interface, where a decision maker, called the
agent, can take actions that affect the state of a given dynamical system (real or simulated), called
the environment. These interact continually, the agent selecting actions and the environment
evolving accordingly, presenting new situations to the agent. The environment also gives rise to
rewards, i.e. numerical values that the agent seeks to maximize over time through its choice of
actions.

Figure 1.6: The agent-environment interface in a Markov decision process. Image from Ref. [57].

For simplicity, we restrict attention to discrete-time MDPs, where the agent and environment
interact at each of a sequence of discrete time steps, t = 0, 1, 2, 3, ... . At each discrete time t, the
agent receives a representation of the current state of the environment, St ∈ S, and on that basis
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selects an action, At ∈ A1. One time step later, in part as a consequence of its action, the agent
receives a numerical reward, Rt+1 ∈ R, and finds the environment in a new state, St+1, and so
on2. We assume that the process is always stopped at some point, either because the environment
reached a designated target state or because there is a time limit. The MDP thereby gives rise to
a sequence of states and actions, called a trajectory or an episode, that looks like this:

S0, A0, S1, A1, ... , Stf−1, Atf−1, Rtf , Stf , (1.1)

where tf is a final time. The sum of all the rewards is the return associated to a trajectory

G = R1 +R2 + ... +Rtf . (1.2)

Start End

Figure 1.7: Schematic representation of a trajectory in state space.

The control strategy followed by the agent is encoded in a function π called a policy, which
determines what action to take in each state. Policies are in general stochastic, and are written
using the notation of conditional probability π(a | s). The latter is a function that assigns
a probability distribution over the possible actions a for each state s. A policy can also be
deterministic, and in that case π(a | s) is a delta function peaked on the only action a to be taken
in state s.

The expected value of the return G depends on which policy π is used to choose the actions.
Solving an MDP consists in finding, among all the possible policies, an optimal policy π∗ which
maximizes the expected return:

π∗ ∈ argmax
π

Eπ [G] , (1.3)

where argmaxx f(x) is the set of values of x at which f(x) takes its maximal value and the
notation Eπ [G] denotes the expected value of the random variable G, given that the agent follows
policy π. Note that there might be more than one optimal policy that maximizes G, hence the
set membership symbol ∈.

Finding a policy that satisfies Eq. (1.3) is the standard goal of control theory. The choice
among methods that could achieve this goal depends crucially on our knowledge of the laws that
govern the environment’s dynamics. The latter are characterized by the function

p(s′, r | s, a) = Pr {St+1 = s′, Rt+1 = r | St = s,At = a} , (1.4)

for all s′, s ∈ S, r ∈ R, and a ∈ A. The function p defines the dynamics of the MDP and it gives
the probability of transitioning to state s′ and receiving r as a reward when taking action a from
state s. Capital letters are used for random variables, whereas lower case letters are used for the
values of random variables. As for the policy, the vertical bar in the middle comes again from

1In general, the set of possible actions can be different in each state, hence we should write A(s). However, to
simplify notation, we assume the special case in which the action set is the same in all states and write it simply
as A.

2Following the notation of Ref. [57], we use Rt+1 instead than Rt to denote the reward due to At because it
emphasizes that the next reward and next state, Rt+1 and St+1, are jointly determined.
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the notation for conditional probability, but here it is used just to remind us that p specifies a
probability distribution for each choice of s and a, i.e.

∑
s′,r p(s

′, r | s, a) = 1, for all s ∈ S, a ∈ A.
Note that, in an MDP, the probability of each possible value for St+1 and Rt+1 depends only

on the immediately preceding state and action, St and At, rather than on the whole sequence of
states and actions encountered up to time t. This is the Markov property.

From the four-argument function p one can compute anything else one might want to know
about the dynamics of the environment, such as the state-transition probabilities

p(s′ | s, a) = Pr {St+1 = s′ | St = s,At = a} =
∑
r∈R

p(s′, r | s, a) , (1.5)

and the expected reward for any state-action pair

�(s, a) = E [Rt+1 | St = s,At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a) . (1.6)

Depending on our knowledge of the dynamics function p we can, at this point, differentiate
between model-based and model-free control approaches. Model-based methods assume a complete
knowledge of the dynamics and rely on planning an optimal trajectory as their primary component.
In contrast, model-free techniques do not assume any knowledge of the dynamics—encoded in
the transition probability Eq. (1.4)—and primarily rely on learning how to take actions in order
to maximize the overall reward.

1.4.2 Model-based control

So far we have discussed the objective of solving an MDP quite informally. To go further, we
need to generalize the definition of the return given in Eq. (1.2) to an arbitrary starting time.
We now define3 the return Gt as the sum of all the rewards observed after time t up to the final
time step tf :

Gt = Rt+1 +Rt+2 +Rt+3 + ...+Rtf =

tf∑
k=t+1

Rk . (1.7)

The expected value of the return when starting in a state s and then following a policy π is
called the value function of state s under π and denoted vπ(s). We can define vπ formally by

vπ(s) = Eπ [Gt | St = s] . (1.8)

A fundamental property of the value function is that it satisfies a recursive relation. For any
policy π and any state s, the following condition holds (see Appendix A.1 for details):

vπ(s) = Eπ [Gt | St = s] = Eπ [Rt+1 +Gt+1 | St = s]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + Eπ [Gt+1 | St+1 = s′ ]

]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + vπ(s
′)] ,

(1.9)

3To be even more general, it is possible to include in the definition of return a discount factor β, so that
Gt = Rt+1 + βRt+2 + β2Rt+3 + ... . The discount factor, which has to be between 0 and 1, determines how much
the agent cares about the future. The closer it is to 0, the more the agent is “myopic” and is only concerned with
maximizing immediate rewards. As β approaches 1, the agent becomes more farsighted. For the sake of simplicity,
we restrict this discussion to the special case β = 1.
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where the actions a, the next states s′ and the rewards r are taken respectively from the sets of
the possible actions A, the set of the states of the system S and the set of the possible rewards
R. Equation (1.9) is called the Bellman equation for vπ, and it is a fundamental result both for
model-based and model-free control. It expresses a relationship between the value of a state and
the values of its successor states. We can visualize the meaning of this equation by thinking of
looking ahead from a state s to its possible future states, as suggested by the diagram in Fig. 1.8.

Figure 1.8: Diagram for vπ. Image from Ref. [57].

Each open circle represents a state and each solid circle an action. Starting from state s, the
root node at the top, the agent could take any of some set of actions (three are shown in the
diagram) based on its policy π. From each of these, the environment could respond with one of
several next states, s′ (two are shown in the figure), along with a reward, r, depending on its
dynamics given by the function p. The Bellman equation (1.9) averages over all the possibilities,
weighting each possibility by its probability of occurring. It states that the value of the starting
state must equal the value of the expected next state, plus the reward expected along the way.

Policy evaluation

With Eq. (1.9) it is quite straightforward to derive a numerical scheme to compute the value func-
tion vπ for an arbitrary policy π. Consider a sequence of approximate value functions v0, v1, v2, ... .
The initial approximation, v0, is chosen arbitrarily, and each successive approximation is obtained
by using the Bellman equation for vπ (1.9) as an update rule:

vk+1(s) = Eπ [Rt+1 + vk(St+1) | St = s]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + vk(s
′)] . (1.10)

Clearly, vk = vπ is a fixed point for this update rule because the Bellman equation for vπ assures
us of equality in this case. The sequence {vk} can be shown in general to converge to vπ as
k →∞ [57]. This algorithm is called iterative policy evaluation. One simple approach to check
the convergence is to test the quantity maxs |vk+1(s)− vk(s)| at each iteration and to stop when
it is sufficiently small. A sequential pseudocode to implement efficiently Eq. (1.10) is given in
Appendix A.2.

Policy improvement

We have seen how to evaluate the performance of a policy π by computing its value function
(with an uncertainty that is controlled by the convergence of the method discussed above). Now
we will see how to find an optimal policy π∗ which maximizes the expected return.
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A policy π is defined to be better than or equal to a policy π′ if its expected return is greater
than or equal to that of π′ for all states. In other words, π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for
all states s in the system. There is always at least one policy that is better than or equal to all
other policies, and this is an optimal policy [57]. This policy is not necessarily unique, but all
optimal policies share the same value function, called the optimal value function, denoted v∗, and
defined as

v∗(s) = max
π

vπ(s) . (1.11)

Because v∗ is the value function for a policy, it must satisfy the self-consistency condition given
by the Bellman equation (1.9). Since it is the optimal value function, its consistency condition
can be written in a special form without reference to any specific policy. This is the Bellman
equation for v∗, or the Bellman optimality equation. Intuitively, it expresses the fact that the
value of a state under an optimal policy must equal the expected return for the best action from
that state:

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + v∗(s′)] . (1.12)

Once one has v∗, it is relatively easy to determine an optimal policy. Indeed, for each state s,
there will be one or more actions at which the maximum is obtained in the Bellman optimality
equation. Any policy that chooses these actions in state s is an optimal policy. If we define the
set of optimal actions in state s as

A∗(s) = argmax
a

∑
s′,r

p(s′, r | s, a) [r + v∗(s′)] , (1.13)

we can write such an optimal policy as

π∗(a | s) = IA∗(s)(a) , (1.14)

where IA∗(s)(a) is the indicator function of A∗(s), i.e. a function that maps the elements a
belonging to A∗(s) to 1 and the others to 0.

For finite MDPs, i.e. when the sets of states, actions, and rewards (S, A, and R) all have a
finite number of elements, Eq. (1.12) has a unique solution. This equation is actually a system of
|S| equations in |S| unknowns. Here, |S| is the number of states in the set of states S, and the
unknowns are the optimal values v∗(s). If the dynamics p of the environment are known, then in
principle one can directly solve this system of equations for v∗ based on an exhaustive listing
of all possible combinations of actions. When the number of states is high, however, this direct
procedure can become difficult or even impossible.

The body of methods that have been developed to solve Eq. (1.12) belongs to the field of
dynamic programming (DP). The term dynamic programming was originally coined in the 1950s by
Richard Bellman4 to describe the mathematical optimization of multistage decision processes [60].
Nowadays, it refers more specifically to a collection of algorithms that can be used to compute
optimal policies given complete knowledge of a MDP [57]. For the sake of concision, we will
report here only the DP method that we used in this work, called value iteration.

In a similar way as we did for policy evaluation, we can turn the Bellman optimality equation
(1.12) into an update rule, to obtain

vk+1(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + vk(s
′)] . (1.15)

4A small curiosity about the origin of the term comes directly from Bellman’s autobiography [59], where he
says: “Let’s take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense.
It also has a very interesting property as an adjective, and that is it’s impossible to use the word, dynamic, in a
pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It’s impossible.
Thus, I thought dynamic programming was a good name.”
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Note that the value iteration update is identical to the iterative policy evaluation update (1.10),
except that it requires a maximum to be taken over all actions at each iteration. Like policy
evaluation, value iteration formally requires an infinite number of iterations to converge exactly
to v∗. In practice, we stop once the value function changes by only a small amount after an
iteration. A pseudocode for a program that implements Eq. (1.15) is given in Appendix A.2.

Tabular and approximate solution methods

An important remark should be made at this point. If the set of states S is discrete, finite and
small enough for the value function to be represented as an array, or a table, then the control
methods described above can be shown to converge to an exact solution [57]. That is, they can
find with arbitrary precision the optimal value function and the associated optimal policy. This
is called the tabular case, and the corresponding algorithms are called tabular methods.

If the set of states is continuous, or if it is discrete but there are infinitely many or far more
states than there could possibly be entries in a table stored in a computer, then handling such an
array becomes impossible. This issue proved to be relevant to the work presented in Chapter 4 of
this thesis, where we dealt with continuous deterministic systems. In this case, there are several
options to deal with the problem.

A first option is to maintain a model-based approach and fix the initial condition of the system.
With a deterministic model and a known initial condition, it is no longer necessary to observe the
state of the system to decide what action to take, since each sequence of actions corresponds to a
trajectory in the space of states. This approach, called open-loop, simplifies the control problem,
since it requires to compute only one trajectory of the dynamics at a time, which is easier than
solving the continuous equivalent of the Bellman optimality equation for all states. We have not
investigated this approach.

Another option is to use methods to approximate the continuous state space. Algorithms
of this type belong to the class of approximate solution methods. This is, in fact, the direction
we have chosen to control continuous systems. We have chosen to develop this approach within
the frame of model-free methods. Later in this section, we will take a closer look at how these
techniques work and introduce deep Q-learning, the approximate control algorithm we used for
our work.

1.4.3 Model-free control

Unlike the previous section, with model-free control methods we do not assume complete knowledge
of the dynamics of the environment5. These kind of methods require only experience—sample
sequences of states, actions, and rewards from actual or simulated interaction with an environment.
Of course, when dealing with a simulated environment, a model is still required to generate the
dynamics, however, model-free control algorithms do not have access to the model, but only to
sample observations of trajectories.

The simplest model-free control techniques are those of Monte Carlo (MC) methods, which
are ways of solving the MDP based on averaging sample returns. For simplicity, we consider only
episodic tasks, that is, we assume that experience is divided into episodes, and that all episodes
eventually terminate at a final time tf , either because the environment reached a target state
(which in this case corresponds to a so-called terminal state), or because, even if the target state
has not been reached, there is a maximum time limit at which the dynamics is stopped.

5More precisely, we do not assume any knowledge of the dynamics beyond its Markovian character. However,
we have to assume complete knowledge of a class of states and actions that covers all possible observations and
decisions.
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Monte Carlo estimation of action values

We begin by considering MC methods for learning the state-value function for a given arbitrary
policy. Recall that the value of a state is the expected return starting from that state. An obvious
way to estimate it from experience, then, is simply to average the returns observed after visits to
that state. As more returns are observed, the average will converge to the expected value.

In particular, suppose we wish to estimate vπ(s), the value of a state s under policy π, given
a set of episodes obtained by following π and passing through s. Each occurrence of state s in an
episode is called a visit to s. Then, a straightforward way of estimating vπ(s) is to average the
returns of the visits to s.

However, in model-free methods, it is particularly useful to estimate action values (the value
associated to each specific action in a state) rather than state values. Indeed, with a model,
state values alone are sufficient to determine a policy, because the dynamics function p can be
used to predict whichever action leads to the best combination of reward and next state, as in
model-based methods (see Eq. (1.12)). Without a model, instead, the function p is not available
and one must explicitly estimate the value of each action in order for the values to be useful in
computing a policy.

Similarly to how we defined the state-value function vπ(s) in Eq. (1.8), we can define the
action-value function qπ(s, a) as the expected return starting from s, taking the action a, and
thereafter following policy π:

qπ(s, a) = Eπ [Gt | St = s,At = a] . (1.16)

The policy evaluation problem for action values is to estimate qπ(s, a). The MC method for
this is essentially the same as just discussed for state values, except now we talk about visits to a
state-action pair rather than to just a state. A state-action pair s, a is said to be visited in an
episode if ever the state s is visited and action a is taken in it.

Suppose we have a sequence of returns G(1), G(2), . . . , G(n), all starting from the same state-
action pair s, a. Then, the MC estimate of the action-value function for the pair after n visits,
that we denote with Q(n), is simply

Q(n) =
1

n

n∑
i=1

G(i) . (1.17)

There is a complication, though: many state-action pairs may never be visited. Indeed, if for
example π is a deterministic policy, then in following π the agent will observe returns only for
one of the actions from each state. With no returns to average, the estimates of the other actions
will not improve with experience, and this is a problem because, to compare alternatives and
learn an optimal policy, the agent needs to estimate the value of all the actions from each state.
This is in essence the problem of exploration in model-free control tasks.

For policy evaluation to work for action values, we must assure continual exploration. One
way to do this is by specifying that the episodes start in a state-action pair, and that every pair
has a nonzero probability of being selected as the start. This guarantees that all state-action
pairs will be visited an infinite number of times in the limit of an infinite number of episodes.
This method is called exploring starts.

Monte Carlo control

For learning an optimal policy using MC estimates, the basic idea is to alternate steps of
policy evaluation and policy improvement. The approximated action-value function Qπ is
repeatedly altered to approximate more closely the action-value function for the current policy,
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and simultaneously the policy π is improved with respect to the current action-value function, as
suggested by the diagram in Fig. 1.9. After enough iterations of this scheme, both policy and
value function will approach optimality.

Figure 1.9: General scheme to obtain an optimal policy by alternating evaluation and improvement.
Image from Ref. [57].

Policy evaluation is done as described in the previous section. Policy improvement is done
by making the policy greedy with respect to the current estimate of the action-value function.
For any action-value function q, the corresponding greedy policy is the one that, for each s ∈ S,
deterministically chooses an action with maximal action-value argmaxa qπ(s, a).

This deterministic policy update rule, however, has the risk of not encouraging enough
exploration. For a finite number of episodes, even if we allow for the assumption of exploring
starts, there are still some state-actions pairs that may be selected too infrequently to be properly
evaluated. To avoid this problem, one can consider ε-greedy policies, such a policy by definition
chooses most of the time an action that has maximal estimated action value, but with probability
ε it selects instead an action at random. That is

π(a | s) =
{
1− ε+ ε/|A| if a = argmaxa qπ(s, a) ,

ε/|A| otherwise (a is not optimal) .
(1.18)

The introduction of ε-greedy policies brings us to one of the central issues of model-free
methods: the trade-off between exploration and exploitation. To obtain a high reward, the agent
must prefer actions that it has tried in the past and found to be effective in producing reward.
But to discover such actions, it has to try actions that it has not selected before. Hence, the
agent has to exploit what it has already experienced in order to obtain reward, but it also has to
explore in order to make better action selections in the future.

If we use a purely greedy policy (ε = 0), then we are only exploiting our current knowledge of
the values of the actions. Conversely, if we use a completely random policy (ε = 1), then we are
just exploring, because this enables us to improve our estimate of the values of the non-optimal
actions. The agent must try a variety of actions and progressively favour those that appear to be
best. In mathematical terms, this translates into a gradual decay of the value of ε as learning
proceeds.

A simple strategy is to alternate between evaluation and improvement on an episode-by-episode
basis. After each episode, the observed returns are used for policy evaluation, and then the policy
is improved at all the states visited in the episode. A complete algorithm along these lines is
given in pseudocode in Appendix A.2.

As an additional note, we would like to add that the control method presented here is not the
only one based on Monte Carlo estimates of action values. Technically, this method is part of the
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so-called on-policy methods, in the sense that it tries to evaluate and improve the same policy
that is used to make decisions and generate experience. This is the main reason why we had to
introduce the ε-greedy policy, in order to ensure that the agent still explores all available actions,
progressively exploiting those that are estimated to be optimal. This is not the only approach to
tackle the problem of exploration. There are methods, called off-policy, where the idea is to use
two policies, one that is learned and becomes the optimal policy (and that does not have to be
ε-greedy), and one that is more exploratory and is used to generate experience from interactions
with the environment.

Let us now look at one model-free control technique that is slightly more sophisticated than
the simple MC learning scheme. This method is called Q-learning and it incorporates ideas from
the MC approach and the DP approach seen in Section 1.4.2.

Q-learning

The explanation of Q-learning that we report here is quite informal, we just want to give a general
idea of how the method works. For a detailed treatment of the topic, the interested reader can
refer to the original publication by Watkins [61] or to the book by Sutton and Barto [57].

Let us look at the MC estimate formula of Eq. (1.17). In order to apply it, we need to
maintain, for each state-action pair s, a , the cumulative sum of returns

∑
iG

(i), and this can be
computationally costly. However, we can write an incremental implementation of that formula:

Q(n) =
1

n

n∑
i=1

G(i) =
1

n

[
G(n) +

n−1∑
i=1

G(i)

]
=

=
1

n

[
G(n) + (n− 1)Q(n−1)

]
= Q(n−1) +

1

n

[
G(n) −Q(n−1)

]
.

(1.19)

This implementation of the MC estimate Q(n) requires memory only for the old estimate Q(n−1)

and n. This update rule is of a form that occurs frequently in model-free methods. This form is

NewEstimate← OldEstimate+ StepSize [Target−OldEstimate] , (1.20)

where the arrow represents an assignment. At every iteration (i.e. when a new return for the
s, a pair is observed), the old estimate is updated by taking a step toward the “target”, which is
presumed to indicate a desirable direction in which to move, though it may be noisy. In the case
above, the target is the n-th return.

Using Eq. (1.20), we can generalise Eq. (1.19) for the MC estimate of the action-value function
to an arbitrary step size. For every state-action pair St, At observed at a time t during an episode,
with the corresponding return Gt, the general update rule is

Q(St, At)← Q(St, At) + α [Gt −Q(St, At)] , (1.21)

where α is a constant step-size parameter between 0 and 1, called learning rate. This formula is
basically the same as Eq. (1.19), with the difference that the step-size parameter is now a small
constant.

In order to determine the increment to Q(St, At), MC methods must wait until the end of
the episode, because only then Gt (i.e. the sum of rewards starting from t up to the final time
tf ) is known. However, by making a simple assumption, we can drop this constraint and write a
formula that allows us to obtain updates at each time step during the episode. The assumption
is that we can estimate Gt = Rt+1 + βGt+1 with the quantity Rt+1 + βQ(St+1, At+1), where we
have introduced the discount factor β for generality (see footnote on page 11). In other words,
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we are approximating the return starting from the next time step Gt+1 with the estimate of the
action-value function of the next state-action pair Q(St+1, At+1). By inserting this estimate in
Eq. (1.21), we get

Q(St, At)← Q(St, At) + α [Rt+1 + βQ(St+1, At+1)−Q(St, At)] . (1.22)

At each transition from a state-action pair St, At, we form a new target and make an update using
the observed reward Rt+1 and the estimate Q(St+1, At+1). To obtain a control scheme based on
this update rule, we just need to alternate between evaluation of the action-value function and
improvement of the policy, as discussed earlier for MC methods. The resulting control algorithm
is called Sarsa. Sarsa is an on-policy method.

We now introduce Q-learning, an off-policy method, which effectively uses two policies: one,
non-optimal, to generate experience, and one that is instead optimal, for which the update rule
estimates the action-value function q∗. The Q-learning algorithm is basically a modified version
of Eq. (1.22):

Q(St, At)← Q(St, At) + α
[
Rt+1 + βmax

a
Q(St+1, a)−Q(St, At)

]
. (1.23)

The intuition behind this formula is that now the learned action-value function Q directly
approximates q∗, the optimal action-value function, independent of the policy being followed
to generate experience. The exploration policy has still to provide for sufficient exploration of
state space, i.e. to ensure that all state-action pairs are visited frequently enough. Under this
assumption, the estimate Q has been shown to converge with probability 1 to q∗ [61]. Once
we have q∗, an optimal deterministic policy is readily obtained by assigning the best action
argmaxa q∗(s, a) for each state s in S. A pseudocode for a program that implements Q-learning
is given in Appendix A.2.

Deep Q-learning

So far, we have assumed to be dealing with a finite and discrete set of states, thus having the
possibility to apply tabular control algorithms. In this last part, we discuss approximate control
methods, which allow to handle a continuous or infinitely large set of the states.

We have already mentioned that managing large state spaces in a tabular way is practically
impossible. The problem is not just the computer memory needed to store large arrays, but the
time and data needed to fill them. If the state space is too large (or infinite), almost every state
encountered will never have been seen before. For an agent to make sensible decisions in such
states it is necessary to generalize from previous encounters with different states that are in some
sense similar to the current one.

The key issue when dealing with an infinite state space is that of generalization: experience
with a limited subset of state space has to be usefully generalized to produce a good approximation
over a much larger subset. One way to address this problem is to represent the action-value
function not as a table but as a parametrized functional form Q̂(s, a,w) with weight vector w.
For example, Q̂ might be a linear function in features of the state, with w the vector of feature
weights. One may also resort to nonlinear approximation methods. As an example, Q̂ might be
the function computed by an artificial neural network, with w the vector of connection weights
in all the layers.

The main difference from the tabular implementation of Q-learning is that, in the tabular
case, the update rule for the action-value function of a pair s, a only affects the table entry Q(s, a)
of this pair, which is shifted a fraction of the way towards the target, while the estimated value
of all other pairs is left unchanged. Now, in contrast, the update is performed on the weights
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that parametrize the q function, and the update after the observation of a pair s, a generalizes so
that the estimated values of many other states-action pairs are changed as well.

What we need now is an update rule for the weight vector w that makes the approximate
action-value function Q̂(s, a,w) come closer to the true q(s, a). A natural way to do this is by
implementing a stochastic gradient-descent update rule in the space of weights that decreases the
squared error

Error =
∑
s,a

[q(s, a)− Q̂(s, a,w)]2 . (1.24)

The word “stochastic” comes from the randomness of the order in which state-action pairs are
selected. The direction of the update is computed at each observation of a pair. If we assume
that we can update w each time that we observe a state-action pair St, At, and we call wt the
weight vector at each timestep, then such a rule is

wt+1 = wt − 1

2
α∇w

[
q(St, At)− Q̂(St, At,wt)

]2
= wt + α

[
q(St, At)− Q̂(St, At,wt)

]
∇wQ̂(St, At,wt) ,

(1.25)

where α is again a positive step-size parameter, and ∇wQ̂ denotes the vector of partial derivatives
of Q̂ with respect of the components of w. This equation can be rewritten in the more general
form

wt+1 = wt + α
[
Yt − Q̂(St, At,wt)

]
∇wQ̂(St, At,wt) , (1.26)

where Yt represent the target of the update. Applying the Q-learning update rule Eq. (1.23) to
the parameters w results in the estimated target

Y Q
t = Rt+1 + βmax

a
Q̂(St+1, a,wt) . (1.27)

The method that we have used in Chapter 4 belongs to a class of algorithms combining
Q-learning and deep neural networks, called deep Q-learning. This class of methods have been
successfully applied to solve complex problems such as computer games, sometimes exceeding
human performances [62, 63].

There are several possible ways of parametrizing the action-value function q using a neural
network. Because q maps state-action pairs to scalar estimates of their action-value (also called
the Q-value), the state and the action have been used as inputs to the neural network by
some approaches [64, 65]. This type of architecture has, however, the drawback of having a
computational cost that scales linearly with the number of actions.

To address this issue, another type of architecture has been proposed [66], called deep Q
network (DQN). In this architecture, there is a separate output unit for each possible action, and
only the state representation is an input to the neural network. The outputs correspond to the
predicted Q-values of the individual actions for the input state. More specifically, a DQN is a
multi-layered (deep) neural network with weights w, that for a given state s outputs a vector of
action values Q̂(s, ·,w). The difference between the tabular representation of the action-value
function and the approximation through a DQN is illustrated in Fig. 1.10.

Two important ingredients for an efficient DQN-based learning algorithm have been proposed
by Mnih et al. [66]: the use of a target network, and the use of experience replay. The target
network is another DQN which has exactly the same structure as Q̂, except that it has different
weights w−. The target network is used to form the target

Y DQN
t = Rt+1 + βmax

a
Q̂(St+1, a,w

−
t ) , (1.28)
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State, Action

State, Action Value
1567.2
2364.1
4384.9
999.1
580.1
1988.8

...
5711.3

1
2
3
4
5
6
...

Q-value

(a) Tabular representation of the Q function.

Q-value action 1

Q-value action 2
State

Q-value action 

(b) Approximation of the Q function through a DQN.

Figure 1.10: Differences in the management of the Q function according to the sizes of the state
space and the action space. (a) When these spaces are of reasonable size, the Q function can
be modelled by an array of dimensions |S| × |A| storing the values of the state-action pairs. (b)
When the dimension of one of the two spaces (or both) is too large, it is possible to use an
approximation function such as a DQN, which returns, for a given state, the set of values of the
different associated state/action pairs.

and its parameters are are periodically updated to match w, so that w−
t = wt only at certain

timesteps t, and kept fixed on all other steps. The idea behind this modification is that the
standard Q-learning target Eq. (1.27) depends on the current estimate of q, which changes over
time (this is known as a non-stationary target). This can make the algorithm unstable, contrary
to supervised learning algorithms, for example, where the target is known and constant. Switching
to a target that varies less frequently in time increases the stability of the algorithm.

The second ingredient is experience replay [67], where observed transitions St, At → Rt+1, St+1

are stored for some time in a buffer memory and then sampled from this memory. This allows to
refine the update of the network weights in Eq. (1.26) by replacing the gradient with a stochastic
estimate of the gradient on a mini-batch (i.e. a small list) of transitions sampled uniformly from
the buffer. As the memory size is finite, the oldest transitions are replaced by new ones once
the memory is full. The target network and the experience replay dramatically improve the
performance of the DQN method [66].

There is one more improvement that we need to consider in order to obtain the final method
that we have used. The max operator used in standard Q-learning (Eq. (1.27)) and in DQN
(Eq. (1.28)) uses the same values both to select and to evaluate an action. This makes it more
likely to select overestimated values, resulting in overoptimistic value estimates. To prevent this,
we can decouple the selection of the optimal action from its evaluation. In this method, called
double Q-learning [68], two different value functions are learned by assigning experiences randomly
to update one of the two value functions, resulting in two sets of weights, w and w′. For each
update, one set of weights is used to determine the greedy policy (i.e. the optimal action) and
the other to determine its value.

For clarity, we can untangle the selection and the evaluation in Q-learning and rewrite the
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target of Eq. (1.27) as

Y Q
t = Rt+1 + βQ̂(St+1, argmax

a
Q̂(St+1, a,wt),wt) . (1.29)

The double Q-learning target can then be written as

Y DoubleQ
t = Rt+1 + βQ̂(St+1, argmax

a
Q̂(St+1, a,wt),w

′
t) , (1.30)

where the weights wt are used for the selection of the optimal action (i.e. the argmax operator)
while the second set of weights w′

t is used to fairly evaluate the value of the policy. This second
set of weights can be updated periodically by switching the roles of w and w′.

Instead than introducing another DQN with weights w′, van Hasselt et al. [69] propose to use
the target network that we introduced above, with weights w−. The resulting algorithm is called
double DQN, and it is the one that we have used to control continuous systems. Its update rule is
the same as DQN, but replacing the target Y DQN

t with

Y DoubleDQN
t = Rt+1 + βQ̂(St+1, argmax

a
Q̂(St+1, a,wt),w

−
t ) . (1.31)

In comparison to double Q-learning Eq. (1.30), the weights of the second network w′
t are replaced

with the weights of the target network w−
t for the evaluation of the current greedy policy.

The update to the target network stays unchanged from DQN, and remains a periodic copy of
Q̂(s, ·,w).
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CHAPTER 2

Model-based control and equilibrium dynamics
of fluctuating 2d clusters

In this chapter, we consider the case of model-based control applied to discrete stochastic systems.
Our aim is to control the morphology of a fluctuating few-particle monolayer cluster. More
precisely, we investigate how an arbitrary target shape of the cluster can be reached in minimum
time in the presence of thermal fluctuations and with or without a macroscopic external field.
Some examples of 2d monolayer clusters made of Pt atoms interacting by metallic bonding, C60

nanopartices (fullerenes) bound by van der Waals interactions, and micron-sized PS colloids held
together by depletion forces are shown in Fig. 2.1.

(a) Image from Ref. [34]. (b) Image from Ref. [70]. (c) Image from Ref. [71]. (d) Image from Ref. [37].

Figure 2.1: Examples of particle clusters at different scales. (a) Atomic monolayer island: Pt on
Pt(111), (b) clusters of C60 nanoparticles (fullerenes), (c) cluster of polystyrene (PS) particles
(diameter ∼ 1 �m) on a square lattice and (d) on an hexagonal lattice.

A cluster subjected to thermal fluctuations is a discrete system that evolves over time,
stochastically exploring different configurations, or shapes, due to the random hopping motion of
particles. Thus, its dynamics can be seen as a random walk in the space of cluster configurations,
which we identify with the states of the system. Our question is then recast into a first-passage
problem on the state space of the cluster, which we solve numerically. We first study the
equilibrium dynamics in the absence of external forces, and we obtain the striking result that large
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compact target shapes exhibit an optimal temperature at which they are reached in minimum
time.

Then, using the value iteration algorithm introduced in Section 1.4.2, we compute the closed-
loop optimal policy that sets the external field as function of the cluster shape in order to minimize
the time to reach a desired target configuration, at a fixed temperature. This leads to a gain in
the time to reach the target that grows when increasing cluster size or decreasing temperature.
We find that this gain can shift the optimal temperature to lower temperatures, or even create
one when it is not present in the absence of the external field.

We also show that the optimal policy is not unique. This non-uniqueness appears to be
mainly dictated by symmetry properties. In addition, we find that the optimal policy can undergo
transitions when the temperature is varied. The non-uniqueness and the number of temperature
transitions both increase drastically with the size of the cluster. Due to computational constraints,
we limit our study to clusters consisting of up to 12 particles. Then, with the help of a high-
temperature expansion, we discuss and interpret our findings and speculate on the generalization
of our results for clusters larger than 12 particles.

We focus on the case of a monolayer cluster of particles on a square lattice with edge diffusion,
i.e. the movement of particles at edge or kink sites, where the mobile particle maintains its
proximity to the cluster throughout the process. Edge diffusion has been observed with STM in
atomic monolayer islands of various types of metals. It is dominant at low enough temperatures,
when detachment of atoms from the edge is negligible. Some examples of systems where edge
diffusion has been observed include Cu on Cu(001) below 600 K [72] and on Cu(111) below
500 K [73], Pt on Pt(111) below 800 K [74], and Ag on Ag(111) below 450 K [75, 35]. This
process also appears in colloidal clusters, in particular for ligand-coated Au nanoparticles of a
few nanometers in diameter in drop-drying experiments [76, 36].

We consider the case of metal islands under electromigration as a first candidate of experimental
system where our approach could be applied. Electromigration refers to the phenomenon of
current-induced mass transport: when electrical current passes through a conductor, the current
carriers can scatter on atoms at interfaces and transfer momentum to atoms in these regions,
resulting in biased diffusion of mobile atoms. When mass transport occurs via edge diffusion, this
ultimately results in an overall island displacement in the direction of the electron flow, as shown
in Figs. 2.2a and 2.2b.

Experimental studies [35] have shown that this phenomenon can lead to a biased island
displacement of tens of nanometers, proving that the position of a nanometric island on a surface
can be significantly controlled by using an external electric field. On the other hand, kinetic
Monte Carlo simulations and continuum models [24, 77, 23, 22] have shown that not only the
position of the island can be influenced by the effects of electromigration, but also its shape, as
shown in Fig. 2.2c. For islands that are large enough, these morphological changes can trigger
a splitting instability, leading to island breakup. This instability appears for islands with an
average radius greater than a critical value

Rc =

(
χc
l2β̃

F0

)1/2

, (2.1)

where χc ≈ 10.65 is a constant, l is the lattice constant, β̃ is the step stiffness, and F0 is the
magnitude of the external force. To get an idea of the order of magnitude of Rc, we can insert
the values l = 0.288 nm, β̃ = 0.65 eV/nm and F0 = 1.3 × 10−2 meV/nm for Ag islands on
Ag(111) [78, 35], and obtain Rc ≈ 210 nm, corresponding to ∼ 730 lattice constants.

In our study we do not observe this instability, since we focus on very small clusters of a few
atoms consisting of at most 12 atoms. Nevertheless, even if these small islands are morphologically
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(a) (500×500 nm2) Biased displacement of a monolayer Ag island driven by
electromigration at T = 318 K. An external electric field induces a current
with downward direction, the island displacement is hence upward, in the
same direction of the electron flow. Image from Ref. [35].

(b) Scheme of biased edge diffusion.
Image from Ref. [24].

(c) Kinetic Monte Carlo simulation showing the emergence of the splitting instability, for islands that are above a
critical size. Image from Ref. [24].

Figure 2.2: (a) STM image of electromigration-induced displacement of a metal monolayer island.
(b) Schematics of edge diffusion biased by an external force. (c) A simulation of the morphological
instability appearing for islands with an average radius greater than Rc.

stable, their thermal fluctuations can be used to reach a target shape. Our strategy is to use the
external force when the resulting bias is sufficiently strong to reduce significantly the time to
reach the target. When the force is too weak, we resort to a different strategy and let thermal
fluctuations randomly drive the cluster towards the target shape. We then ask the question of
finding if there is an optimal temperature where this occurs in minimum time.

Our model is inspired from the case of metal atomic islands under electromigration, but it
is adapted to describe in general any fluctuating particle cluster with biased edge diffusion. In
the case of colloidal or nanoparticle clusters, the biasing force could be imposed, for example, by
means of a temperature gradient (thermophoresis) [79], an electric field (electrophoresis) [28] or a
magnetic field [80].

It should be noted that the orders of magnitude involved in these different systems can vary
significantly. One relevant quantity is F0l/J , where J is the energy of the bond between two
particles. This dimensionless number represents the typical ratio between the work done by
the force for a nearest-neighbor particle movement on the lattice and the energy to break a
bond. The higher this ratio, the larger the effect of the force on the dynamics of the cluster. For
electromigration of atomic islands, this quantity is of the order of 10−4 [35]. For nanoparticle
clusters under thermophoresis, it can be higher, up to 10−1 for fullerenes [81]. For colloids, the
bond energy J can be fine-tuned using a variety of techniques (e.g. depletion forces [37], surface
functionalization [82], or optical lattices [12]). For example, using depletants, one can obtain J
around a few units of thermal energy kBT [37]. Thermophoretic forces [79, 83, 84] for PS beads
of radius 2.5 �m are F0 ≈ 10 kBT/�m [79]. Hence, micron-size colloids can lead to a ratio F0l/J
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of the order of one.
Another relevant dimensionless number is the ratio between the thermal energy in the system

and the binding energy kBT/J . As we already discussed in Chapter 1, nanomanipulation
experiments that rely on control of single particles are usually performed in the low-temperature
regime kBT/J 
 1, to reduce thermally-induced diffusion. For our purposes, however, we want
to use thermal fluctuations to our advantage, so we do not limit ourselves to this regime, but
instead consider a wide range of temperatures.

2.1 Lattice model

We now present a two-dimensional lattice model to describe the dynamics of a fluctuating cluster
under an external field and formulate our problem as a Markov decision process (MDP), following
the formalism introduced in Section 1.4.1. We start by defining the dynamical model of our
environment, i.e. the function p(s′, r | s, a) that gives the probability of transitioning to state s′

and receiving reward r when being in state s and taking action a, along with the policy π, that
in this framework corresponds to the strategy to set the external field in order to reach a target
state. Then, we define the value function v(s) and the associated Bellman equation. For this
problem, the value of a state is minus the expected time to reach the target configuration, which
is the quantity that we want to minimize.

2.1.1 Formalization as an MDP

We consider a small cluster on a two-dimensional square lattice with lattice parameter l and
nearest-neighbor bonds J under an external force that biases diffusion, following the same lines as
in previous modelling of monolayer clusters in the presence of electromigration [24, 85]. A state s
is associated to each cluster configuration on the lattice. The state s can change to another state
s′ via the motion of a single particle to one of its nearest or next-nearest neighbor sites, for a
total of 8 possible moves. Moves are allowed only if they do not break the cluster. As shown in
Fig. 2.3a, this leads to edge diffusion dynamics.

We use a closed-loop control approach, so that the actions taken by the agent are chosen based
on the observation of the current state s, i.e. the shape of the cluster. The actions correspond to
the choice of the external force in each state s, and are encoded in the deterministic policy

π(a | s) = δa−φ(s) =

{
1 if a = φ(s) ,

0 otherwise ,
(2.2)

where φ(s) is a function that assigns to state s the force provided by action a1. In the case of a
deterministic policy that is considered here, the function φ(s) completely characterizes π(a | s),
and, for convenience, we also refer to φ as the “policy”. For simplicity, we set the force to be
always oriented along the x̂ direction, and allow only 3 possible values. The set of actions—i.e.
the possible forces in each state—is then A = {−F0x̂,0, F0x̂}, with F0 > 0.

The dynamics of the cluster is governed by a master equation that describes the time evolution
of the probability density function Pφ(s, t) to find the cluster in state s at time t, when the force
in s is set according to φ(s) [86]

∂Pφ(s, t)

∂t
=

∑
s′∈S

[Pφ(s
′, t)γφ(s′, s)− Pφ(s, t)γφ(s, s

′)] , (2.3)

1To simplify the notation and avoid the use of a function that maps action indices to force values, we define
actions directly as the values of the external force. With this definition, actions are therefore vectors.

26



where the sum runs over all system states S and γφ(s, s
′) is the average transition rate from state

s to state s′, again when the force in s is given by φ(s). The states of the system correspond
to the possible configurations of the cluster. Transitions from one state to another are caused
by atomic moves. As we will see in a moment, to each atomic jump along the edge corresponds
exactly one state transition (for clusters of size larger than 2 atoms). We can therefore identify
γφ(s, s

′) with the atomic hopping rates. Because of the Markovian nature of the dynamics, these
quantities are independent of the system history and thus an exclusive function of the properties
of the two states s and s′ involved.

Following usual models for biased diffusion based on transition state theory [87, 85, 24], the
atomic hopping rate is assumed to take an Arrhenius form

γφ(s, s
′) = ν exp(−Eφ(s, s

′)/kBT ) , (2.4)

where ν is the attempt frequency, a constant related to the vibration of the particle near its
equilibrium position. Attempt frequencies for surface diffusion of metal atoms are typically of the
order of 1012 - 1013 Hz [88]. The effect of the external field is taken into account as a direction-
dependent bias in the hopping barriers Eφ. This can be visualized as a linear contribution that is
added to the diffusion energy potential, which favours atomic movements in the direction of the
force, as illustrated schematically in Fig. 2.3b.

(a)

s s

(b)

Figure 2.3: Lattice model for biased edge diffusion. (a) Hopping of a particle. In this example,
uss′ = +(1/2)x̂ and nss′ = 2. (b) Schematic representation of the diffusion energy potential.

The total energy barrier from state s to state s′ is then written

Eφ(s, s
′) = nss′J − φ(s) · uss′ , (2.5)

where nss′ is the number of in-plane nearest neighbors of the moving atom in state s before
hopping and uss′ is half the displacement vector between the initial and the final state [24], as
shown in Fig. 2.3a. More generally, uss′ is the displacement vector between the equilibrium
position of the particle before the move and the saddle point of the diffusion energy potential in
the absence of a field. The first term of Eq. (2.5) is based on an intuitive picture where atoms have
to break all the bonds with their neighbours in order to reach an excited state where they are able
to move. More realistic and quantitatively accurate models are known for specific systems [89],
however, the bond-breaking model of Eq. (2.5) is still the most commonly used in the literature.
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Furthermore, more sophisticated microscopic descriptions of electromigration [90, 91] suggest
that the migration force could depend on the configuration of the surface around the moving atom.
The influence of these variations of the force on the dynamics of step edges were discussed [92].
Here, we use the simplest available description of electromigration with Eq. (2.5).

To gain computation time, we freeze atoms with nss′ = 4. In addition, we use normalized
units where kB = 1, J = 1, and l = 1. As shown in Fig. 2.4, Eqs. (2.4) and (2.5) define the rates
to go from a given state s to all states s′ that can be reached with one atomic move, under the
force φ(s). These rates are uniquely defined, since we consider rotations and reflections of shapes
as distinct cluster configurations, and therefore to each atomic move corresponds exactly one
transition from s to s′. Also, remark that, for clusters with 3 or more atoms, there is a unique
move that allows for the transition between two states s and s′.

Figure 2.4: For a given configuration s and force φ(s), the hopping rates γφ(s, s
′) to reachable

states s′ are given by Eq. (2.4).

Our goal is to minimize the time to reach a given target cluster configuration s̄. Thus, the
reward in our MDP will be related to the physical time that passes in state s before moving to
another state s′. The expectation value of this quantity is called the expected residence time tφ(s)
and is given by the reciprocal of the sum of all possible hopping rates in state s (see Section 3.1
for derivation):

tφ(s) =
1∑

s′∈Bs
γφ(s, s′)

, (2.6)

where the set Bs of neighboring states of s is composed of the states that can be reached from s
via a single atomic move.

We are now able to formulate the dynamics of the MDP with the help of transition probabilities.
For simplicity, we introduce the notation pφ(s, s

′) to indicate the state-transition probability to
state s′ starting from s when the force φ(s) is set according to action a = φ(s). Hence, we have

p(s′ | s,a = φ(s)) = pφ(s, s
′) . (2.7)

This probability is simply given by the hopping rate γφ(s, s
′) divided by the sum of all hopping

rates in s:

pφ(s, s
′) =

γφ(s, s
′)∑

s′∈Bs
γφ(s, s′)

= γφ(s, s
′) tφ(s) . (2.8)

We define the reward associated to the state-action pair s, a to be a deterministic quantity.
In the usual formalism of MDPs, the goal is to maximize the expected rewards (see Section 1.4.1).
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However, our objective here is to minimize the time to reach the target shape. For this reason,
the expected reward in this case is simply the opposite of the expected residence time:

�(s,a = φ(s)) = −tφ(s) . (2.9)

In summary, the transition probabilities that describe the dynamics of the environment take the
form

p(s′, r | s,a = φ(s)) = pφ(s, s
′) δr+tφ(s) . (2.10)

Note that, by plugging this equation in the definition of the expected reward Eq. (1.6), we obtain
Eq. (2.9).

2.1.2 Recursion relation

The time to reach a target shape s̄ can be seen as a first passage time in a random walk on the
space of cluster configurations. A similar concept has been adopted previously in the literature to
describe the shape evolution of 2d clusters by edge diffusion. Specifically, it has been used to study
the irreversible relaxation of clusters towards an equilibrium shape at low temperature [93], and
the dominant kinetic pathways that allow surface diffusion of the cluster onto the substrate [94].
However, these works focus on special paths in the space of configurations of the cluster, while
we are interested in describing all possible trajectories to be able to reach arbitrary target shapes.
The space of cluster configurations can be represented by a graph, as shown in Fig. 2.5 for a
tetramer (4-particle) cluster.

Under a given policy φ, the expected first passage time τφ(s, s̄) from state s �= s̄ to a given
target s̄ obeys a recursion relation, which can be directly obtained by identifying the value of a
state as the opposite2 of the expected first passage time from s to the target s̄:

vφ(s) = −τφ(s, s̄) , (2.11)

and by plugging the deterministic policy and the dynamical model given by Eqs. (2.2) and (2.8)
into the Bellman equation (1.9). In this way, we obtain

τφ(s, s̄) = tφ(s) +
∑
s′∈Bs

pφ(s, s
′)τφ(s′, s̄) . (2.12)

Equation (2.12) expresses a relationship between the expected first passage time to reach the
target from a state and the expected first passage times of its successor states. Indeed, since
the dynamics is Markovian, the first passage time is equal to the expected residence time tφ(s)
in state s plus the first passage time from the neighboring state s′ after the move [86]. This is
expressed in Eq. (2.12) as a weighted sum of τφ(s

′, s̄), where the weights are the state-transition
probabilities pφ(s, s

′). In addition, the system is already on the target when s = s̄, and we
therefore have

τφ(s̄, s̄) = 0 . (2.13)

This relation acts as a boundary condition to solve Eq. (2.12).
We also define the expected return time to target, i.e. the expected time spent outside the

target before returning to it when the system starts in the target itself

τ rφ(s̄) =
∑
s∈Bs̄

pφ(s̄, s)τφ(s, s̄) , (2.14)

2For the same reason that the expected reward of Eq. (2.9) is defined with a minus sign.
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(a)

(b)

Figure 2.5: Graph of configurations of a tetramer (4-particle) cluster at T = 0.24 for (a) unbiased
edge diffusion (φ(s) = 0 in all states) and (b) under an optimal policy φ∗(s) to reach the target
shape shown in orange, with F0 = 0.4. The size of the nodes is proportional to the expected
residence time on the state tφ(s), while the size and shade of the edges are proportional to
the probability of transition pφ(s, s

′). The arrows in the nodes represent the actions, crosses
correspond to φ(s) = 0.
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This definition requires to extend the policy and to define an additional force on the target state
itself. Due to the Markovian character of the dynamics, this does not affect the mean first passage
time to target and the optimal policy in the other states outside the target. We choose to set
the force on the target so as to minimize τ rφ(s̄). This is done by adding to S an additional state
ŝ which is an artificial copy of the target state s̄, with the same shape than the target but a
residence time equal to zero tφ(ŝ) = 0, as shown schematically in Fig. 2.6 for a trimer. The
introduction of ŝ in the set of states is useful also on a computational level, because it allows to
obtain the expected return time to target simply as the opposite of the value of this state, since
vφ(ŝ) = −τ rφ(s̄).

Figure 2.6: Schematic representation of the method to extend the policy to the target. An
artificial copy ŝ (in red) of the target state s̄ (in orange) is added to the state space, with residence
time tφ(ŝ) = 0.

For the sake of concision, we will mainly focus on the analysis of τ rφ(s̄) instead of τφ(s, s̄)
which is different for each s. Since τ rφ(s̄) appears as a linear combination of τφ(s, s̄) in Eq. (2.14),
we expect that it exhibits similar properties as τφ(s, s̄). In addition, we will see below that τ rφ(s̄)
is a convenient quantity for the analytical investigation of the high-temperature regime.

2.2 High-temperature regime of the expected return time
to target

A first glimpse of the behaviour of τ rφ(s̄) can be gained in the high-temperature regime. Indeed,
we obtain a simple result for the infinite-temperature limit T →∞. In addition, we perform a
high-temperature expansion to get a correction to linear order in 1/T to this simple result.

Before moving to the high-temperature analysis, remark that transition state theory, which
is the theoretical basis of Eq. (2.4) is derived in the limit J � kBT . Although these rates are
often used for J ∼ kBT , they are certainly not valid in the very high temperature limit J 
 kBT .
However, this limit provides useful insight into the physical behaviour of τ rφ(s̄).

As a preamble, we start by rewriting Eq. (2.14) in a way that is convenient for the study of
the high-temperature regime. Dividing the recursion relation Eq. (2.12) by tφ(s) and summing
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over all states but the target state, we obtain∑̄
s

τφ(s, s̄)

tφ(s)
= SN − 1 +

∑̄
s

∑
s′∈Bs

pφ(s, s
′)

tφ(s)
τφ(s

′, s̄) , (2.15)

where the symbol
∑̄
s =

∑
s∈S\{s̄} indicates the sum over all states in the system except for the

target state s̄, and SN is the total number of states for a cluster with N particles.
All physical moves except for those coming from the target are summed over in the last term

of the right hand side of Eq. (2.15). Hence, we can invert the indices s and s′ in the sum if we
subtract the contribution of the moves starting from the target, leading to∑

s

τφ(s, s̄)

tφ(s)
= SN − 1 +

∑
s

∑
s′∈Bs

pφ(s
′, s)

tφ(s′)
τφ(s, s̄)−

∑
s∈Bs̄

pφ(s̄, s)

tφ(s̄)
τφ(s, s̄) . (2.16)

where we have dropped the exclusion of the target state (indicated by the bar) in the sum since
τφ(s̄, s̄) = 0. The last term is proportional to the expected return time to target Eq. (2.14). We
can therefore rewrite Eq. (2.16) as

τ rφ(s̄) = tφ(s̄) (SN − 1) + tφ(s̄)
∑
s

τφ(s, s̄)

[( ∑
s′∈Bs

pφ(s
′, s)

tφ(s′)

)
− 1

tφ(s)

]
. (2.17)

Then, using Eq. (2.6) to write tφ and pφ as a function of γφ, we obtain

τ rφ(s̄) = tφ(s̄) (SN − 1) + tφ(s̄)
∑
s

τφ(s, s̄)
∑
s′∈Bs

(γφ(s
′, s)− γφ(s, s′)) . (2.18)

This latter equation will be the starting point for the analysis of the high-temperature regime.

2.2.1 Infinite-temperature limit

In the limit of infinitely high temperatures T →∞, the rates (2.4) are independent of the initial
and final state and on the force: γφ(s, s

′) → 1. As a consequence, τ rφ(s̄) is independent of the
policy φ at infinite temperature τ rφ(s̄)→ τ r∞(s̄). From Eq. (2.6), we obtain

tφ(s)→ 1

ds
, (2.19)

where ds, called the degree of state s, is the number of possible atomic moves from s. Note that
ds = |Bs|, where the notation |Z| denotes the cardinal of the set Z. As a consequence, Eq. (2.18)
implies

τ rφ(s̄)→ τ r∞(s̄) =
SN − 1

ds̄
(2.20)

in the infinite-temperature limit. This remarkably simple result is known in the literature [95].
In addition, the general recursion relation Eq. (2.12) can be re-written as

1 =
∑
s′∈Bs

γφ(s, s
′)(τφ(s, s̄)− τφ(s′, s̄)) . (2.21)

In the limit of infinite temperatures, this expression takes the form of the usual discretized
Laplacian for the expected first passage times to the target τ∞(s, s̄)

1 =
∑
s′∈Bs

(τ∞(s, s̄)− τ∞(s′, s̄)) . (2.22)
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This relation is valid everywhere but at the target state, where τ∞(s̄, s̄) = 0. The value of τ∞(s, s̄)
depends in general on the precise structure of the dynamical graph.

A vast literature is dedicated to the study of the first passage times on random graphs [96,
97]. However, most studies are devoted to the case where tφ(s) = 1, which is different from our
infinite-temperature limit, which leads to Eq. (2.19). The difference lies in the factor 1/ds in
tφ(s). A trace of this simple difference is that the mean first passage time (MFPT), which is the
average of the first passage time over all initial states for a fixed target state, discussed in the
literature with tφ(s) = 1, exhibits a lower bound for large SN [98, 99]

MFPT ≥ SN 〈ds〉/ds̄ , (2.23)

where 〈ds〉 is the average of ds over all states. Up to the factor 〈ds〉, this lower bound is identical
to the expression of the expected return time to target at infinite temperature τ r∞(s̄) in Eq. (2.20).

2.2.2 High-temperature expansion

We now perform an expansion to linear order in 1/T to obtain the first correction to Eq. (2.20).
We start with the expansion of the rates, defined in Eq. (2.4)

γφ(s, s
′) ≈ 1 +

1

T
(−nss′ + ϕ(s)uss′) , (2.24)

where we recall that nss′ is the initial number of bonds of the atom which moves in the transition
from state s to state s′. In addition, we have uss′ = 1/2, 0, 0 or −1/2 when the move is in the
direction +x̂, −ŷ, +ŷ or −x̂ respectively. Remark that, for the displacement vector, the following
symmetry relation holds

uss′ = −us′s , (2.25)

while there is no similar trivial symmetry for nss′ . Moreover, ϕ(s) = −F0, 0, or +F0 is the scalar
force in the state s given by the policy φ, so that

φ(s) = ϕ(s) x̂ . (2.26)

Inserting this expression in the expected return time Eq. (2.18), we obtain to linear order in
1/T

τ rφ(s̄) = τ r∞(s̄)

(
1 +

Mφ(s̄)

T

)
, (2.27)

where the normalized high-temperature slope reads

Mφ(s̄) =
1

ds̄

∑
s∈Bs̄

(ns̄s − ϕ(s̄)us̄s) + 1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(nss′ − ns′s)

+
1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(ϕ(s′)us′s−ϕ(s)uss′) .
(2.28)

We see the main advantage of an expansion based on Eq. (2.18): we do not need to expand
τφ(s, s̄), which depends on T , and we only refer to τ∞(s, s̄), which is independent of T and of φ.
However, we do not have an analytical expression for τ∞(s, s̄), and we therefore need to compute
this quantity numerically. The normalized slope Mφ(s̄) can be rewritten as (see Appendix A.4
for details) (

1− 1

SN

)
Mφ(s̄) =

〈
(1− δss̄)〈nss′〉s′∈Bs

− dsgn(s, s̄)
〉
s∈S

−
〈
ϕ(s)

(
(1− δss̄)〈uss′〉s′∈Bs

− dsgu(s, s̄)
)〉

s∈S
,

(2.29)
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where δss′ is the two-arguments Kronecker delta and the notation

〈qs〉s∈Z =
1

|Z|
∑
s∈Z

qs (2.30)

indicates the average of qs taken over the states s belonging to the set of states Z with cardinal
|Z|. In addition, we have defined the local covariances

gn(s, s̄) =
〈(
nss′ − 〈nss′′〉s′′∈Bs

)(
τ∞(s′, s̄)− 〈τ∞(s′′, s̄)〉s′′∈Bs

)〉
s′∈Bs

(2.31)

gu(s, s̄) =
〈(
uss′ − 〈uss′′〉s′′∈Bs

)(
τ∞(s′, s̄)− 〈τ∞(s′′, s̄)〉s′′∈Bs

)〉
s′∈Bs

(2.32)

that are averaged over the neighboring states of state s.

2.3 Equilibrium dynamics in the absence of forces

Before looking at the control problem with the optimization of the forces, let us study the
expected return time to a target configuration without external bias, i.e. with the force set to
zero φ(s) = 0 in all states, as illustrated in the dynamical graph of Fig. 2.5a. This case leads to
standard equilibrium fluctuation dynamics that have been investigated thoroughly in the case of
edge diffusion, in particular to determine diffusion coefficients for clusters of various sizes [25, 75,
26], and the relaxation of their shape towards equilibrium [100, 101].

Equilibrium dynamics of atomic steps and clusters has also been studied to derive time-
correlation functions of fluctuating steps [75, 102] and to characterize the stability of fluctuating
nanostructures over finite times and finite deviations through persistence exponents [103, 104].
Although persistence properties involve quantities that are related to first passage processes, there
is to our knowledge no study of the first passage time to a fixed cluster configuration.

2.3.1 Numerical results from value iteration

We have evaluated the first passage time numerically: for a fixed s̄, we iterate the evaluation
of τφ(s, s̄) by substitution of its value in the right hand side of Eq. (2.12). This procedure
corresponds to the method of iterative policy evaluation explained in Section 1.4.2, with the
special policy φ(s) = 0 for all s in S. We have implemented the iterative policy evaluation
algorithm reported in Appendix A.2 in Python, with a convergence condition that depends on
the size of the cluster (see Appendix A.5 for details).

Since we are using a tabular method, it is necessary that all states in the system are listed,
and this can be done only for small clusters, which correspond to our focus in this work. Because
we are forbidding the breaking of the cluster, once the number of particles N is fixed, the total
number of cluster configurations SN—or the cardinality of the set of states S— correspond to the
number of fixed polyominoes [105, 106] with N cells3. This number grows exponentially with N :

SN ∼ cλN

N
, (2.33)

with λ ≈ 4.0626 and c ≈ 0.3169 [107]. We have performed simulations with N ≤ 12, where
S12 ≈ 5× 105 states.

3In Appendix A.6 we explain the method we used to uniquely encode each polyomino into a numerical identifier,
so that we have a list of states that can be easily handled by the computer.
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The resulting expected return time to target with zero force τ r0(s̄) is shown in Fig. 2.7 as a
function of 1/T , for three targets of different size. For small clusters, τ r0(s̄) increases monotonously
as the temperature is decreased. This is expected as thermally activated hopping diffusion events
become slower at low temperatures. However, the expected return time to target exhibits a
minimum as a function of temperature for clusters that are larger and more compact.

0 1 2 3 4 5 6 7 8
1/T

101

102

103

104

τ
r 0
(s̄
)

Figure 2.7: Expected return time to target in the absence of forces τ r0(s̄) as a function of 1/T .
The × symbols correspond to the analytical expression Eq. (2.20) of τ r∞(s̄) for T →∞.

As shown in Fig. 2.8a, a similar minimum is found in the time τ0(s, s̄) to reach the target
starting from any state s. This striking result implies that some targets exhibit an optimal
temperature at which the target can be reached in minimum time.

Target:

(a)

Target:

(b)

Figure 2.8: Expected time to reach the target as a function of 1/T , starting from the target state
itself (return time), and from all the other states in the system. (a) Zero-force case and (b) under
an optimal policy φ∗, with F0 = 0.4. The number of blue curves in these graphs is equal to the
number of states minus one (the target), i.e. S9 − 1 = 9909.
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2.3.2 High-temperature behaviour

The presence of a minimum is associated to a change of slope of τ r0(s̄) as a function of 1/T at
high temperatures. We therefore study the high-temperature behaviour in more details. We have
seen in the previous section that, in the infinite-temperature limit T →∞, all moves have the
same rate, therefore, the expected return time to target is independent of the policy, and we find
Eq. (2.20). When the temperature is decreased, this is no longer true, and the moves become
sensitive to the energy.

In the absence of an external force φ(s) = 0, the system will eventually reach equilibrium,
characterized by a probability P0(s) of being in any state s that does not change over time
∂P0(s)/∂t = 0. From the master equation (2.3), this condition leads to∑

s′∈S

P0(s
′, t)γ0(s′, s) =

∑
s′∈S

P0(s, t)γ0(s, s
′) . (2.34)

The stationary distribution P0(s) of a system at equilibrium is given by the Boltzmann
distribution [86]

P0(s) =
1

Z
exp

(
−H(s)

kBT

)
, (2.35)

where Z is the partition function

Z =
∑
s∈S

exp

(
−H(s)

kBT

)
, (2.36)

and H(s) is the energy of state s, which can be expressed by the formula4

H(s) = Ls
J

2
, (2.39)

where Ls is the perimeter of the cluster. This equation has a simple intuitive interpretation.
Dividing a cluster into two by cutting it along a straight line of length L requires a total energy of
JL. The cut produces 2L new unit edges, each contributing to the system with a certain energy
Eedge, for a total energy increase of 2LEedge. Imposing equality between the energy introduced
into the system and the energy increase, we obtain Eedge = J/2, which expresses the fact that
every edge of the cluster has an energy of J/2.

4The energy of an island configuration s can be linked to the Hamiltonian of an equivalent Ising model on a 2d
square lattice, without external field [108]

HIsing = −J

4

∑

i,j

ςiςj , (2.37)

where the variable ςi ∈ {1,−1} represents the spin of lattice site i, and the sum runs over pairs of adjacent spins,
i.e. nearest neighbours. Then, by defining the variable ni = (ςi +1)/2 which is either 1 or 0, depending on whether
the site i is occupied by an atom, we obtain

H = −J

4

∑

i,j

[4ninj − 2(ni + nj) + 1]

=
J

2

∑

i,j

[ni(1− nj) + nj(1− ni)]−Nsites
J

2
,

(2.38)

where Nsites is the total number of sites on the lattice. The first term on the right hand side is equal to 1 if
and only if one of the two neighbouring sites i, j is occupied and the other is empty, while in the other cases
is 0. Hence, this term is equal to the perimeter Ls of the atomic island in the configuration s of which we are
calculating the energy. The second term is a constant.

36



For our system defined by the rates in Eq. (2.4), there is actually a stronger equilibrium
condition than Eq. (2.34) that can be applied [109], and it is that of detailed balance:

P0(s
′, t)γ0(s′, s) = P0(s, t)γ0(s, s

′) . (2.40)

This condition expresses the fact that, at equilibrium, the average frequency of occurrence of an
elementary process (i.e. an atomic movement) is equal to the average frequency of occurrence of
its reverse process. Plugging the steady state distribution Eq. (2.35) in Eq. (2.40), we obtain the
following relation for the rate of a process and the rate of its reverse process

γ0(s, s
′) = γ0(s

′, s) exp
(
H(s)−H(s′)

kBT

)
. (2.41)

Hence, a move from s to s′ that leads to a decrease of energy H(s′) < H(s) has a larger rate than
the reverse process γ0(s, s

′) > γ0(s
′, s). As a consequence, the cluster goes faster towards states

with lower energy.
As the temperature is decreased, the difference between the rate of a move and its reverse

becomes larger, and the time to reach a target decreases if the target has a lower energy. However,
this trend is only describing relative variations of the time to reach different targets. When
decreasing the temperature, there is also a global slowing-down of the dynamics because of the
Arrhenius dependence of the rates on temperature in Eq. (2.4). The decrease or increase of first
passage times to the target—or equivalently of τ rφ(s̄)—depends on the competition between these
two effects: relative energy effect vs global slowing down.

The global slowing down is always dominant at low temperatures, and τ rφ therefore always
increases when the temperature is decreased at low temperatures. However, the global slowing
down can be dominated by the relative energy effect at high temperature. In this case, τ rφ
decreases with decreasing temperature at high temperatures. We then expect a minimum of τ rφ
at some finite (non-zero) temperature.

This competition can be analysed quantitatively with the help of the high-temperature
expansion that we carried out in the previous section. In the case of zero force, Eq. (2.27) reads

τ r0(s̄) =

(
1 +

M0(s̄)

T

)
τ r∞(s̄) , (2.42)

where the high-temperature slope is readily obtained by setting ϕ(s) = 0 in Eq. (2.29):

M0(s̄) =
1

1− S−1
N

〈
(1− δss̄)〈nss′〉s′∈Bs − dsgn(s, s̄)

〉
s∈S

. (2.43)

The existence of a minimum is then associated to a negative value of the high-temperature
slope M0. In Fig. 2.9a, we see that the expression Eq. (2.43) is in good agreement with the
value M sim

0 (s̄) found with a fit of the numerical solution obtained from iterative evaluation (see
Appendix A.7 for details). Small deviations are caused by the freezing of 4-neighbors atoms in
simulations.

2.3.3 Approximate expression of M0

In Eq. (2.43), the first term 〈(1 − δss̄)〈nss′〉s′∈Bs
〉s∈S is the average over all possible states s

except the target s̄ of the average number of bonds nss′ that are broken to perform a move from s.
This term essentially accounts for the global slowing down of the dynamics when the temperature
is decreased. Indeed, the higher this average number of bonds to be broken for atom motion, the
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Figure 2.9: Estimates of the high-temperature slope for (a) zero force and (b) optimal force.
M sim

0 (s̄) and M sim
∗ (s̄) refer to the slope extracted from a parabolic fit at high temperatures

(T = 5, 10, 20) of the expected return time to target τ rφ(s̄) obtained from iterative numerical

methods. These quantities and the approximations Mappr
0 (s̄) and Mappr

∗ (s̄) defined in Eqs. (2.51)
and (2.58) are plotted against the analytical expressions of Eqs. (2.43) and (2.55).

slower the dynamics. The number ds of possible moves from a given state s grows approximately
linearly with N (since the cluster has N atoms, and each atom has at maximum 7 allowed moves,
the average number ds of possible moves is smaller than 7N), as shown in Fig. 2.10. In contrast,
the total number of states SN grows exponentially with N . As a consequence, the contribution of
the moves that start from the target is negligible when N is large enough. Hence, the first term
in Eq. (2.43) can be approximated with the average 〈〈nss′〉s′∈Bs

〉s∈S of nss′ over all states. Since
nss′ is bounded (1 ≤ nss′ ≤ 4), this average converges quickly to a value ρ0 around 1.64 as N is
increased. A fit of

ρ0(N) = 〈〈nss′〉s′∈Bs〉s∈S (2.44)

for N > 2, as provided in Fig. 2.11, shows that this convergence is approximately exponential

ρ0(N) = ρ0 − ρ̃0 exp(− N

N0
) , (2.45)

with ρ̃0 ≈ 0.89 and N0 ≈ 5.4.
The second term 〈dsgn(s, s̄)〉s∈S in Eq. (2.43) accounts for the correlations between the number

of bonds that are broken and the first passage time to target at infinite temperature when starting
from a given state s. We therefore interpret this second term as an indication for the relative
trend of the system to go faster towards low-energy states. Indeed, since τ∞(s, s̄) decreases when
s approaches the target s̄ where τ∞(s, s̄) = 0, this second term indicates if moves from states
that are closer to the target require more or less bonds to break on average.

We introduce the concept of rings, following the study of first-passage times in random graphs
in Ref. [97]. The index of the rings m is defined as the minimum number of moves to reach the
target. A ring Rm is the ensemble of states with the same ring index m. Note that our definitions
are such that R1 = Bs̄, the neighboring states of the target s̄. The first passage time to target
at infinite temperature τ∞(s, s̄) is known to increase quickly up to an asymptotic value as m
increases [97]. The asymptotic value is reached after a few rings. A plot of the mean first passage
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time to target as a function of the ring index is reported in Fig. 2.12. We therefore simply assume
that the second term of Eq. (2.43) is dominated by the contributions related the large variation
of τ∞(s, s̄) between the target state s̄ where τ∞(s̄, s̄) = 0 and the first ring Bs̄.
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Figure 2.12: Mean on rings of the first passage time to target at infinite temperature as a function
of the ring index m for three different targets with N = 12.

When evaluating the term 〈dsgn(s, s̄)〉s∈S in Eq. (2.43) we therefore need to sum only over

39



the moves from states in Bs̄ to the target s̄. Hence, an approximation of this term reads

〈dsgn(s, s̄)〉s∈S =
1

SN

∑
s∈S

dsgn(s, s̄) ≈ 1

SN

∑
s∈Bs̄

dsgn(s, s̄) =
ds̄
SN
〈dsgn(s, s̄)〉s∈Bs̄

=
ds̄
SN

〈 ∑
s′∈Bs

(
nss′ − 〈nss′′〉s′′∈Bs

)(
τ∞(s′, s̄)− 〈τ∞(s′′, s̄)〉s′′∈Bs

)〉
s∈Bs̄

≈ − ds̄
SN
〈(nss̄ − 〈nss′′〉s′′∈Bs

)〈τ∞(s′′, s̄)〉s′′∈Bs
〉s∈Bs̄

,

(2.46)

where in the last line we have retained in the sum only the contributions of s′ = s̄, i.e. the moves
from Bs̄ leading to the target, and we have used the boundary condition τ∞(s̄, s̄) = 0. Then,
using the high-temperature recursion relation Eq. (2.22) (see Eq. (A. 15) in appendix for details),
we obtain an approximation of 〈τ∞(s′′, s̄)〉s′′∈Bs as

〈τ∞(s′′)〉s′′∈Bs = τ∞(s, s̄)− 1

ds
≈ τ∞(s, s̄) , (2.47)

where we have used 1/ds 
 τ∞(s, s̄), which is valid for N large enough. In summary, we obtain

〈dsgn(s, s̄)〉s∈S≈− ds̄
SN
〈(nss̄ − 〈nss′′〉s′′∈Bs

) τ∞(s, s̄)〉s∈Bs̄
. (2.48)

Finally, we simply assume the statistical independence of the two terms in the product in the
brackets of Eq. (2.48), leading to

〈dsgn(s, s̄)〉s∈S ≈ − ds̄
SN
〈nss̄ − 〈nss′′〉s′′∈Bs

〉s∈Bs̄
〈τ∞(s, s̄)〉s∈Bs̄

. (2.49)

From Eq. (2.20), we have 〈τ∞(s, s̄)〉s∈Bs̄ = τ r∞(s̄) = (SN − 1)/ds̄. Then, taking the limit SN � 1,
we finally obtain

〈dsgn(s, s̄)〉s∈S ≈ −〈nss̄ − 〈nss′′〉s′′∈Bs
〉s∈Bs̄

. (2.50)

This approximate relation is shown to be accurate in Fig. 2.13 up to a multiplicative factor
ρ1 ≈ 1.60. When the target shape is compact, then nss̄ is smaller than the average of the nss′
on the neighbors s′ of the states s of the first ring. Hence, compact shapes lead to a positive
contribution to 〈dsgn(s, s̄)〉s∈S, and a negative contribution to M0. As a consequence, compact
shapes are expected to lead to a minimum in the temperature dependence of τ r0(s̄). Furthermore,
compact shapes are also those which exhibit a lower energy, as we can see from the Hamiltonian
of Eq. (2.39). Therefore, a minimum will be obtained for shapes with a low energy.

Combining the approximations of both contributions to Eq. (2.43), we obtain

M0(s̄) ≈Mappr
0 (s̄) = ρ0(N) + ρ1〈nss̄ − 〈nss′′〉s′′∈Bs

〉s∈Bs̄
. (2.51)

As shown in Fig. 2.9a, Mappr
0 (s̄) provides a fair approximation toM0(s̄). The sign ofMappr

0 (s̄) can
serve as a simple guide to the possible presence of a minimum as a function of T , i.e. an optimal
temperature, and also makes explicit the link between the minimum and the compactness of the
target. For example, for a linear one-atom-thick target, only the two atoms at the tips can move, so
that 〈nss̄〉s∈Bs̄

= 1 and an inspection of the possible moves shows that 〈〈nss′′〉s′′∈Bs
〉s∈Bs̄

= 6/5,
as illustrated in Fig. 2.14. This leads to Mappr

0 (s̄) = ρ0(N) − ρ1/5 ≈ 1.08 > 0 for N = 7, in
agreement with M sim

0 (s̄) ≈ 1.04 found by iterative evaluation.
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0 (s̄) = ρ0(N)−ρ1〈nss̄−〈nss′′〉s′′∈Bs〉s∈Bs̄ ,
with ρ0(N = 3) = 1.1 and ρ0(N = ∞) = 1.64 (the minimum and the asymptotic value of
〈〈nss′〉s′∈Bs

〉s∈S, see Fig. 2.11).
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Figure 2.14: The numbers on the edges represent the number of broken bonds for the transition.
The four neighboring states of the target all have nss̄ = 1, so that 〈nss̄〉s∈Bs̄

= 1. Then, for any
of these four states, we find 〈nss′′〉s′′∈Bs

= 6/5, hence 〈〈nss′′〉s′′∈Bs
〉s∈Bs̄

= 6/5.

In contrast, in the limit of large compact square or rectangular target shapes, most of the
moves are related to the atoms along the edges, which are the majority compared to the four
atoms at the corners. Hence 〈nss̄〉s∈Bs̄

= 1 and 〈〈nss′′〉s′′∈Bs
〉s∈Bs̄

→ 3. With these numbers, we
obtain Mappr

0 (s̄) = −1.57 < 0 leading to a minimum.
Since the presence of the minimum depends only on the generic competition between the
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relative energy effect and global slowing down, we speculate that it should not depend on the
details of the kinetics, such as edge or surface diffusion, or dislocation-mediated dynamics, etc.
(as long as the number of atoms is conserved).

2.3.4 Random policy

Beyond the zero-force policy, another natural candidate for a reference policy that does not
contain information on the system is to pick a force at random. There are several possible ways
to implement this idea. A first choice is to set the force to a randomly chosen value in each state
once for all. Another one is to switch the force randomly at each move. We have chosen this
latter procedure.

Note that Eq. (2.29) suggests that the high-temperature behaviour should be independent of
the policy ϕ(s) for a random policy. Indeed 〈ϕ(s)〉 = 0 and ϕ(s) is not correlated with the other
quantities. This suggests that the normalised high-temperature slope is the same for zero-force
and random policies.

In Fig. 2.15 we show a plot of the expected return time to target for three different targets.
We can see that the two policies are not only identical in the high-temperature regime, but also
similar in the full temperature range considered.
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Figure 2.15: Comparison of the expected return time to target τ rπ(s̄) for the zero-force case and
under a random policy πrand, with F0 = 0.4 (i.e. a policy that chooses a random force with equal
probability in each state) for the three targets shown in the figure, as a function of 1/T .

2.4 Optimal policy in the presence of forces

Our goal now is to determine the optimal policy φ∗ that maximizes the value function of our
MDP. Since we associate state values to the opposite of expected first passage times to reach the
target s̄ (see Eq. (2.11)), this corresponds to finding φ∗ that minimizes τφ(s, s̄), and the resulting
optimal first passage time τ∗(s, s̄) = minφ(s) τφ(s, s̄) for non-zero forces.

Such a problem can be solved using well-known dynamic programming algorithms [57, 110].
We have implemented the value iteration method described in Section 1.4.2 in Python. We
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substitute the optimal policy in Eq. (2.12) to obtain the Bellmann optimality equation for the
optimal first passage time to target

τ∗(s, s̄) = min
φ(s)

[
tφ(s) +

∑
s′∈Bs

pφ(s, s
′)τ∗(s′, s̄)

]
. (2.52)

Then, as in the zero-force case, we iterate Eq. (2.52), but now a minimization over the possible
values of the force in state s must be taken at each iteration.

An example of optimal policy is shown in Fig. 2.5b. If we compare this graph with that of
unbiased dynamics of Fig. 2.5a, we see that the optimal policy tries to avoid the compact state in
the center, which is the slowest, by decreasing the transition probabilities leading to it.

As an important observation, the force can drive the cluster towards any target shape even if
the symmetries of the target are not compatible with those of the force. In other words, since
in a closed-loop approach the control agent can see the cluster during evolution, it can drive
the dynamics toward a shape that does not have the left-right symmetry, even if this left-right
symmetry is a symmetry of the action set A = {−F0x̂,0, F0x̂}. The blue target of Fig. 2.16 is
an example of target shape without the left-right symmetry.

In Fig. 2.16 we show the resulting optimal return time to target τ r∗(s̄) for the three targets
that we already considered for the zero-force case in Fig. 2.7. The first important observation is
that the optimal policy significantly decreases the expected return time to target, especially at
low temperatures and for bigger targets. At T →∞, the curves for τ r∗(s̄) and τ

r
0(s̄) both approach

the theoretical value of τ r∞(s̄) given by Eq. (2.20). This is expected, since at infinite temperature
all transition rates are equal and the external force has no effect on the dynamics.
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Figure 2.16: Expected return time to target as a function of 1/T . Zero-force case τ r0(s̄), random-
force case τ rrand(s̄) and under an optimal policy τ r∗(s̄), with F0 = 0.4. The × symbols correspond
to τ r∞(s̄).

Furthermore, we can see that the optimal policy can shift the minimum of the return time to
target to a lower optimal temperature (this is the case for the 9-atoms square target), or even
create one, if it was not present in the absence of force (this is the case for the 7-atoms target).

The decrease in the expected return time to target can be better visualized through the
optimization gain, defined as the ratio between τ r0(s̄) and τ

r
∗(s̄) (in Section 2.3.4 we show that

using the random-force policy as a reference leads to similar results).
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The gain due to the application of the optimal policy is reported in Fig. 2.17, for different
magnitudes of the external force F0 and for different values of N . As seen from Fig. 2.17a, the
gain increases not only when the force is increased, but also when the temperature is decreased.
This temperature dependence is intuitively expected since the relative change between different
rates due to the force increases monotonously when the temperature is decreased.
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Figure 2.17: Gain τ r0(s̄)/τ
r
∗(s̄) in the return time to target due to the optimization of the forces.

(a) As a function of the force magnitude F0, for a fixed target at different T . (b) For similar
targets of increasing size, with T = 0.24 and F0 = 0.4.

In addition, the gain increases when the size of the cluster increases, as shown in Fig. 2.17b. A
naive explanation for this trend is that an increase of N leads to an increase of the number of states
SN , and therefore to an increase of the number of ways to tune the policy φ in order to minimize
τφ(s, s̄). Again, the high-temperature expansion provides further hints on the dependence in N .

To linear order, the optimal return time to target reads (see Eq. (2.27))

τ r∗(s̄) =
(
1 +

M∗(s̄)
T

)
τ r∞(s̄) , (2.53)

where the normalized slope for the optimal policy is calculated as follows.
From Eq. (2.29), we see that τ rφ(s̄) is linear in the forces ϕ(s). Hence, we obtain the optimal

policy φ∗(s) = ϕ∗(x)x̂ from the sign of the prefactor of ϕ(s) in Eq. (2.29):

ϕ∗(s) = −F0 sign [dsgu(s, s̄)− 〈uss′〉s′∈Bs ] ,

ϕ∗(s̄) = −F0 sign [gu(s̄)] .
(2.54)

If the terms in the squared brackets vanish, then the contribution of the force term is at least
second order in 1/T , and should therefore be negligible for temperatures that are high enough.

Using Eq. (2.54) in Eq. (2.29), we obtain the high-temperature correction to the optimal
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expected return time to target

M∗(s̄) =
1

1− S−1
N

{〈
(1− δss̄)〈nss′〉s′∈Bs

− dsgn(s, s̄)
〉
s∈S

− F0

〈∣∣∣(1− δss̄)〈uss′〉s′∈Bs
− dsgu(s, s̄)

∣∣∣〉
s∈S

}

=M0(s̄)− F0

1− S−1
N

〈∣∣∣(1− δss̄)〈uss′〉s′∈Bs
− dsgu(s, s̄)

∣∣∣〉
s∈S

.

(2.55)

As we did for the zero-force case, we now derive an approximate expression for the high-temperature
slope M∗.

2.4.1 Approximate expression of M∗
Heuristically, we expect that the presence of an absolute value in the second term of Eq. (2.55)
forbids the cancellation of contributions with randomly different signs, leading to a behaviour
which is qualitatively different from that of M0. Indeed, we speculate that the average is not
dominated by the largest terms coming from the strong change of τ∞(s, s̄) between the target
and its first neighbors, but by the typical values of |dsgu(s, s̄)| in all states (as we will see later,
the terms 〈uss′〉s′∈Bs are small and their contribution to the average is negligible).

Assuming for the sake of simplicity complete uncorrelation between uss′ and τ∞(s′, s̄), the
covariance |dsgu(s, s̄)| can be approximated as the product of the standard deviations σu and
στ∞(s̄) of uss′ and τ∞(s, s̄) in Bs, times the absolute value of a sum of ds random signs that
account for the possible signs of the products. This sum is approximated by the standard formula
for the expectation value of the absolute distance after ds steps as (2ds/π)

1/2 [111, 112]. The
standard deviations are defined as

σu =
〈〈

(uss′ − 〈uss′′〉s′′∈Bs)
2
〉1/2
s′′∈Bs

〉
s∈S

,

στ∞(s̄) =
〈〈

(τ∞(s′, s̄)− 〈τ∞(s′′, s̄)〉s′′∈Bs)
2
〉1/2
s′∈Bs

〉
s∈S

.

(2.56)

As a consequence, we have

〈|dsgu(s, s̄)|〉s∈S ≈
(
2

π

)1/2

〈d1/2s 〉s∈S σu στ∞(s̄) . (2.57)

As shown in Fig. 2.18, this expression provides a fair approximation to 〈|dsgu(s, s̄)|〉s∈S. The
contributions of the averages 〈uss′〉s′∈Bs to the term 〈|(1 − δss̄)〈uss′〉s′∈Bs − dsgu(s, s̄)|〉s∈S is
negligible. This is also shown in Fig. 2.18, where the difference between 〈|dsgu(s, s̄)|〉s∈S and
〈|dsgu(s, s̄)− 〈uss′〉s′∈Bs

|〉s∈S is seen to be small.
Therefore, by using Eq. (2.57) to approximate the average of Eq. (2.55) and since SN � 1, we

obtain

M∗(s̄) ≈Mappr
∗ (s̄) =M0(s̄)−

(
2

π

)1/2

〈d1/2s 〉s∈S σu στ∞(s̄)F0 . (2.58)

This formula can serve as a basis to analyse the dependence of M∗(s̄) with N . Using the
approximate expression Eq. (2.51), M0 is seen to be composed of two contributions. The first
one is ρ0(N), which is bounded and converges exponentially with N as already discussed in
Section 2.3.3. The second contribution 〈nss̄ − 〈nss′′〉s′′∈Bs

〉s∈Bs̄
is bounded because 1 ≤ nss′ ≤ 4.
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Hence, from Eq. (2.51), the approximation of M0(s̄) is bounded. Let us now consider the second
term of Eq. (2.58), which is proportional to F0. This term is proportional to the three factors σu,

στ∞(s̄), and 〈d1/2s 〉s∈S, that we discuss separately in the following.
In figure Fig. 2.19 we plot σu as a function of N for 3 ≤ N ≤ 11 and show that it converges to

a constant roughly equal to 0.44 (the points have been fitted with a decaying exponential). This
is expected, as this quantity is bounded, because −1/2 ≤ −uss′ ≤ 1/2. As seen from Fig. 2.20,
στ∞(s̄) grows with N . This plot does not allow us to conclude if στ∞(s̄) never exceeds some finite
upper bound, or if this quantity can grow without bound when N increases. However, since the
average of τ∞(s̄) in the first ring is equal to the mean return time to target τ r∞(s̄), which grows
exponentially with N from Eq. (2.20), it is tempting to speculate that στ∞(s̄) grows without
bound.
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The last factor to be considered in the last term of Eq. (2.58) is 〈d1/2s 〉s∈S. As seen in Fig. 2.10,
this term also grows with N . Since ds can be roughly estimated to be proportional to the length
of the periphery of the cluster, we expect that ds grows at least like N

1/2, as the periphery of
compact clusters, and at most like N , as the periphery of ramified clusters. Hence, we expect

that 〈d1/2s 〉s∈S grows without bound as N to some finite power. Multiplying the three factors, we
therefore expect the second contribution in Eq. (2.58) to grow without bound as N increases.

Hence, the contribution proportional to F0 in Eq. (2.58) grows without bound with N and
should always dominate over the term M0(s̄) for large N . Thus when N is large enough, we
speculate that M∗(s̄) should be negative and an optimal temperature should be generically
present. This trend is confirmed by Fig. 2.9a and Fig. 2.21. However, we cannot conclude on the
behaviour of very ramified shapes for large N , because ramification leads to an increase of the
slope M∗(s̄) that competes with the decrease expected from an increase of N . In addition, the
iterative solution of Eq. (2.52) does not converge in this regime.
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Figure 2.21: Optimal return time to target τ r∗(s̄) as a function of 1/T for targets with N = 12,
with F0 = 0.4. All the curves exhibit a minimum, corresponding to an optimal temperature.
× correspond to the analytical expression of τ r∞(s̄) for T →∞.

2.4.2 Non-uniqueness of the optimal policy

As we already mentioned in Section 1.4.1, there can be more than one optimal policy that is
solution of an MDP. In Fig. 2.22 we show a graph of the dynamics of the trimer (N = 3) cluster,
with the optimal policy to reach the horizontal bar target shape in orange, computed with value
iteration. Indeed, we can see that there are two states, the vertical bar (top left node) and the
target itself, where the force can be set equivalently to the right or to the left, or, in other words,
where the optimal action is degenerate (the numerical procedure to check degeneracy of the
actions is reported in Appendix A.8). The non-uniqueness of the optimal policy is not exclusive
to trimers, but appears for clusters of all the sizes that we have investigated, with 2 ≤ N ≤ 12.
We think that this feature is related to target symmetries, in the way that we will now explain.

Let us consider an optimal policy for a given target s̄, which associates a force φ∗(s) to each
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Figure 2.22: Trimer dynamics with the optimal policy computed at T = 0.61 to reach the orange
target. In the target and in the upper left state, the optimal action is degenerate, and the force
can be equivalently set to the right or left.

state s. Performing one of the transformations x→ −x, y → −y, or (x, y)→ (−x,−y) on all the
states and forces, we obtain another optimal policy. If the target s̄ is transformed in itself, then
the new policy is again an optimal policy for s̄. In addition, if a state s is transformed in itself
and the force in s is transformed into its opposite, then the force φ∗(s) and its opposite −φ∗(s)
are both optimal in state s.

Let us focus on the transformations x→ −x or (x, y)→ (−x,−y) that invert the x direction.
Let us call f one of these transformations, and let us consider a target s̄ which is invariant under
the transformation f , i.e. which obeys fs̄ = s̄. The states can then be classified in two groups:
the group of invariant states such that fs = s, and the variant states such that fs �= s. Let us
first consider the variant states. A common property of the two symmetry transformations is
that f2 is the identity, i.e. ffs = s. A a consequence, the variant states appear in pairs (s, fs),
one member of the pair being transformed into the other by f . In all the simulation results
that we have obtained so far, the forces of an optimal policy are opposite within these pairs,
i.e. φ∗(s) = −φ∗(fs). We will therefore assume this property for this discussion (note however
that we do not have a proof of its general validity, and we therefore do not know if there are
policies that do not obey this rule). Two examples illustrating this property of the optimal policy
are shown in Fig. 2.22 for a trimer, and in Fig. 2.23 for a tetramer. In particular, in Fig. 2.23,
the states of the system are arranged such that the invariant states lie along a central axis of
symmetry of the graph, while the variant states lie on opposite sides.

Under the f transformation that inverts the x direction, the optimal force transforms to its
opposite fφ∗(s) = −φ∗(s). Thus, for a variant state fφ∗(s) = −φ∗(s) = φ∗(fs). This relation
indicates that, under the f transformation, the policy is invariant in the variant states. In contrast,
the policy is reversed by the transformation f in all invariant states, which obey fφ(s) = −φ(s).
As a summary, applying the f transformation, we obtain another optimal policy which is not
changed in the variant states, and is reversed in all invariant states. In other words, reverting
simultaneously all the forces in the invariant states of an optimal policy leads to another optimal
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policy. However, due to the Markovian character of the dynamics, it is clear that each excursion
of the dynamics into the variant part of the states has a symmetric counterpart with the same
transition probabilities. This is again clearly visible in Fig. 2.23, where the two halves of the
graph have an identical structure, both in terms of nodes connectivity and weights of the edges
(which are proportional to the transition probabilities). As a consequence, choosing the forces in
an invariant state to have a value or its opposite will lead to the same statistical properties of the
first passage times. As a conclusion from this discussion, under the assumption that the optimal
forces are opposite within pairs of variant states, we expect that the forces in each invariant state
can be reverted independently from the others.

Hence, there are two possibilities for the force in an invariant state s. First possibility, the
force vanishes. Indeed, it is clear that φ∗(s) = 0 is equal to its opposite. Second possibility, the
force is non-zero. Then, both φ∗(s) = F0x̂ and φ∗(s) = −F0x̂ are solutions, and the state is said
to be degenerate. As a summary, if a target s̄ and state s are both invariant under a symmetry
transformation and if the force in s is reversed under this transformation, then the state s has
either a vanishing force, or a degenerate force.

Indeed, we can see in Fig. 2.23 that all the invariant states under the x→ −x transformation
(which lie along the axis of the graph) are degenerate. Note that, since we are extending the
policy to the target itself, the optimal action is degenerate also on the target state.

Figure 2.23: Dynamical graph of a tetramer cluster at T = 0.24, with the optimal policy to reach
the orange target. F0 = 0.4.

For the most trivial case of a dimer (N = 2) with only two states (S2 = 2) that are both
invariant under the x→ −x transformation, the policies are therefore trivially degenerate. The
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dimer case can actually be solved analytically.

Analytical solution of the dimer

There are only two states of the dimer cluster: the vertical and the horizontal bar, as shown
in Fig. 2.24. Let us pick the latter as our target s̄ (the calculation is identical if we choose the
vertical bar) and let us calculate the optimal policy φ(s) in the other state.

Figure 2.24: Graph of configurations of a dimer, with the 4 possible atomic moves to reach the
orange target. Top two moves have uss′ = 1/2 while the two bottom ones have uss′ = −1/2.

Since on the target τφ(s̄, s̄) = 0, the expected time to reach the target starting from the
vertical bar is simply the residence time τφ(s, s̄) = tφ(s). There are 4 possible atomic moves when
going from s to s̄, which are also shown in Fig. 2.24. This is a specific property of dimers. Indeed,
larger clusters always exhibit a unique transition from one state to another5. Two moves are
in the positive horizontal direction and have uss′ = 1/2 while the other two are in the negative
direction and have uss′ = −1/2, hence

τφ(s, s̄) = τ rφ(s̄) = tφ(s) =

{
2 exp

(
−1− ϕ(s)/2

T

)
+ 2 exp

(
−1 + ϕ(s)/2

T

)}−1

=

{
2 exp

(
− 1
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)[
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(
ϕ(s)
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)
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(−ϕ(s)
2T

)]}−1

=

exp

(
1
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)

4 cosh

(
ϕ(s)

2T

) ,

(2.59)

where we recall that ϕ(s) is the scalar force in state s, so that φ(s) = ϕ(s) x̂.
Since the hyperbolic cosine is a symmetric function, both choices ϕ(s) = ±F0 result in

the same expected time to target τφ(s, s̄). Moreover, these choices are both optimal, because
cosh (±F0/(2T )) > cosh(0) = 1, for F0 > 0. Thus, for the dimer, we have two equivalent optimal
policies φ∗(s) = ±F0x̂.

2.4.3 Degeneracy in bigger clusters

To investigate the relation between degeneracy of the optimal actions and symmetries in more
details, we define five mutually exclusive symmetry classes of states. One example of each class
is shown in the first line of Fig. 2.25. The first class V includes clusters with mirror symmetry
with respect to a vertical y axis, or invariance under the x→ −x transformation. The second
class H includes clusters with mirror symmetry with respect to a horizontal x axis, or invariance

5Because of the presence of multiple atomic moves for the transition between two states, our previously defined
notation γφ(s, s

′), which identifies both to the atomic rates Eq. (2.4) and to the transition rates Eqs. (2.6) and (2.8)
is not suitable for dimers. In order to avoid the introduction of a new notation, we simply avoid the use of γφ(s, s

′)
for the analysis of dimers, and use these notations in the case where it is valid, i.e. for N ≥ 3.
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under the y → −y transformation. The third class I corresponds to clusters with space inversion
symmetry, or invariance under the transformation (x, y)→ (−x,−y). The fourth class A includes
clusters that are separately invariant under the x→ −x transformation and under the y → −y
transformation. The fifth class N corresponds to cluster with none of the above symmetries.
These five classes cover all cluster configurations and have no overlap, in the sense that each
shape belongs to only one class, corresponding to the class with the highest symmetry where it
can be included.

Let us consider how states belonging to these five symmetry classes and the associated optimal
force are transformed when the entire dynamical graph of the system and the force are transformed
under one of the three transformations x→ −x, y → −y, or (x, y)→ (−x,−y). This is illustrated
in the table of Fig. 2.25. Among the 15 cases in the table, four cases have a transformed shape
which is identical to the initial one, with a force that is flipped. These 4 cases, which correspond
either to a vanishing or degenerate optimal force, have a background colored in yellow in the
table.

Figure 2.25: The five symmetry classes and their transformations.

More precisely, we expect the following symmetry rules. For a V target, all states that are
invariant with respect to the x→ −x transformation, i.e. the V and A states, will be either degen-
erate or with a zero-force optimal action. Instead, for a I target, all states that are invariant with
respect to the (x, y)→ (−x,−y) transformation, i.e. the I and A states, will be either degenerate
or with a zero-force optimal action. Finally, for a target in the A symmetry class, all states that
are invariant with respect to either the x→ −x, or the (x, y)→ (−x,−y) transformation, i.e. the
V, I and A states, will be either degenerate or with a zero-force optimal action.

We have checked the validity of the above symmetry rules for all possible targets with N ≤ 7
(S7 = 760): states belonging the above mentioned classes have either a vanishing or a degenerate
optimal force. Due to computational limitations, we were able to check only some arbitrarily
selected targets with 8 ≤ N ≤ 12. Again, all states obeying the symmetry rules mentioned above
exhibit a vanishing or degenerate optimal force.

However, when a state do not obey these symmetry rules, we have no indication about its
possible degeneracy. Indeed, other “hidden” symmetries of the graph could come into play. We
found only 10 cases of degenerate states outside these symmetry rules, and they all correspond to
the tetramer (N = 4, SN = 19) cases. Two examples of such targets are shown in Fig. 2.26. The
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(a)

(b)

Figure 2.26: Dynamical graphs of a tetramer cluster at T = 0.24, with the optimal policies to
reach the two orange targets, for F0 = 0.4. The target in (a) belongs to the N symmetry class,
while the one in (b) belongs to the H symmetry class. However, in both cases, the bottom left
state shows a degenerate optimal action.
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other 8 correspond to all the possible rotations and reflections of these two that belong to the N
or H symmetry class. They are the only cases for N ≤ 7, however we do not know if there are
other cases for 8 ≤ N ≤ 12, since we could not check all possible targets in this range.

For clusters with N ≥ 4, the dynamical graph is too large to be displayed. Therefore, to study
degeneracy in bigger clusters, we focus on the frequency of appearance of degenerate states. We
define DN (s̄) as the number of degenerate states in the optimal policy of a target s̄ of size N .
The fraction of degenerate states DN (s̄)/SN for targets of size 4 ≤ N ≤ 12 is plotted in Fig. 2.27a
for a fixed temperature T = 0.24. In Fig. 2.27a, we have reported all targets with 4 ≤ N ≤ 7,
and some arbitrary selected targets with 8 ≤ N ≤ 12. Beyond the exceptions at N = 4, the
fraction DN (s̄)/SN vanishes for the H and N classes. In contrast, the targets belonging to the
other classes of symmetry exhibit a non-zero fraction of degenerate states. We also observe that
the variation of the values of the fraction of degenerate states for different targets with the same
N is small as compared to the variation with N . We therefore conclude that the most relevant
parameter for the variation of the fraction of degenerate states is N .

The fraction DN (s̄)/SN for targets that belong to V, I, or A symmetry classes is found to
decay exponentially with N . Let us define PN , the number of polyominoes of size N belonging to
one of the three symmetry classes V , I or A. In Fig. 2.27b, the fraction of symmetric polyominoes
PN/SN (for 4 ≤ N ≤ 14) is found to exhibit the same exponential decay as Redelmeier’s results
from Ref. [113] up to N = 24 (and extended to N = 28 by Oliveira e Silva [114]). Note that
the fractions of symmetric polyominoes computed by Redelmeier are larger than ours because
they take into account more symmetry classes, however the scaling of this fraction with respect
to N is the same ∼ μN , where μ ≈ 0.51 (the fit was done by considering odd and even values
of N separately). The fraction of degenerate states for the V, I, and A classes of targets in
Fig. 2.27a also behaves according to the same scaling DN (s̄)/SN ∼ μN . A value μ < 1 indicates
that DN (s̄)/SN → 0 for large N . However, the number of degenerate states in a given class
DN (s̄) ∼ (λμ)N with λμ ≈ 2.07 > 1 grows exponentially with N .
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Figure 2.27: (a) Fraction of degenerate states for several targets at a fixed temperature T = 0.24.
The lines correspond to the scaling DN (s̄)/SN ∼ μN , with μ ≈ 0.51 obtained fitting Redelmeier’s
data in the (b) fraction of symmetric polyominoes with area N . Our results consider only V, I
and A symmetry classes, while Redelmeier’s results include more classes.

As discussed above, states that obey the symmetry rules are also compatible with a zero force.
Thus, the number of degenerate states is not fixed by symmetry and can vary with temperature.
However, an analysis reported in Appendix A.9 shows that DN (s̄)/SN only varies weakly with
temperature. Hence, the results discussed above on the variation of DN (s̄)/SN with N at T = 0.24
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are expected to hold at other temperatures.
As a summary, two conclusions can be drawn from this analysis of degenerate states. First,

degeneracies in the optimal actions are mostly associated to symmetries of the target state. Second,
although the number of degenerate states increases exponentially, the fraction of degenerate states
vanishes as N increases.

2.4.4 Transitions of the optimal policy with the temperature

The second interesting feature is that φ∗ is, in general, not constant as a function of temperature.
As opposed to the dimer case, where the policy is independent from the temperature, transitions
in the policy are often observed. An example of policy transition for the trimer is shown in
Fig. 2.28. In the state at the center of the graph, the optimal action flips from right to left at a
critical temperature T = Tc, with 0.66 < Tc < 0.67. The optimal policies above and below the
transition at T ≤ 0.66 and T ≥ 0.67 are represented in Fig. 2.28.

Figure 2.28: Trimer dynamics with two optimal policies for reaching the target in orange at
different temperatures: T = 0.66 (in blue) and T = 0.67 (in red). In the state in the center, the
optimal policy changes between low and high temperature.

The mean return time to target τ r∗(s̄) for the trimer target of Fig. 2.28 is reported in Fig. 2.29.
The transition at Tc is seen to be continuous for τ r∗(s̄), but discontinuous for its first derivative
with respect to the inverse temperature. The continuity of τ r∗(s̄) means that the low-temperature
and the high-temperature policies have the same performance at the transition. However, the
derivatives are properties of the policies themselves, and are therefore expected to be different on
the left and right sides of the transition. The first passage times to the target from the other 5
states outside the target exhibit the same features and are reported in Appendix A.10.

As an additional remark, the discontinuity of the derivative is always negative. Indeed, let us
denote the high-temperature and low-temperature optimal policies on both sides of the transition
as φHT and φLT . The discontinuity corresponds to a crossing of the functions τ rφLT

(s̄) and
τ rφLT

(s̄) that must be optimal at high and low temperatures respectively. As shown in Fig. 2.30,
the policy φLT on the low-temperature side must have a smaller slope than φHT as a function of
the inverse temperature. As a consequence, the jump of the derivative of τ r∗(s̄) is always negative.
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The increase of the cluster size N leads to a strong increase of the number of transitions of
the optimal policy. As N reaches 12, the number of transitions is so large that identifying each
single transition is clearly not a meaningful approach. As we did for degeneracy in the previous
section, we cannot rely on a visual analysis of dynamical graphs when looking at bigger clusters.
We therefore resort to a statistical analysis of the transitions. We define the density of change

ρN (T, s̄) =
ΔSN (T, s̄)

SNΔT
, (2.60)

where ΔSN (T, s̄) is the number of states where the optimal action has changed between T and
T + ΔT , for a target s̄ of size N . In Fig. 2.31, we show ρN (T, s̄) with ΔT = 0.02 for several
targets of size 7 and 12.

The first important feature that emerges from this plot is that ρN (T, s̄) is of the order of one,
and therefore ΔSN (T, s̄) grows exponentially like SNΔT when N increases. Second, ρN (T, s̄)
becomes smoother for N = 12, suggesting that the density of transitions tends to a well defined
smooth function of T as N increases. To analyse this behavior more systematically, we have
computed the roughness of the function ρN (T, s̄) for 7 ≤ N ≤ 12 at different values of ΔT ,
ranging from 0.005 to 0.1. We use a simple measure of the roughness, defined as the number of
local extrema (obtained by counting the sign changes of the slope) divided by the total number
of points in the curve.

A plot of the roughness of the density of change (averaged over several targets for each value
of N) as a function of ΔT is reported in Fig. 2.32a. We can then set a threshold for the roughness
above which the density of transitions can be considered to be smooth. For each N , there is a
critical value of ΔT , that we call (ΔT )sm, above which ρN (T, s̄) becomes smooth. In Fig. 2.32b
we plot the trend of (ΔT )sm as a function of N for four thresholds of the roughness. Even for
the most restrictive threshold of 5%, the critical value of ΔT above which the density of change
becomes smooth is consistently decreasing to zero as N increases, confirming the trend first seen
in Fig. 2.31.

It is tempting to speculate that the emergence of a kind of continuum limit for a system as
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Figure 2.32: Roughness of the temperature transition density ρN (T, s̄). (a) Average roughness
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targets for N = 10. For ΔT = 0.005 and N = 12, the average is performed on 2 targets and in a
smaller temperature range 0.21 ≤ T ≤ 0.3). (b) Critical value (ΔT )sm for different thresholds of
roughness.

small as N = 12 particles relies on the double-exponential increase of the number of policies

3SN ∼ 3cλ
N/N which reaches quickly very large numbers (∼ 1010

5

for N = 12). However, at this
point, we have no theoretical understanding of the convergence of the density of transitions to a
possible continuum limit.
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2.5 Discussion and perspectives

We have studied the first passage time to a target shape at equilibrium for a monolayer cluster
evolving via random motion of atoms along the periphery of the cluster.

We have seen how thermal fluctuations—which are usually considered to be detrimental—can
be used to reach desired nano-cluster shapes. We found that there is an optimal temperature
where compact target shapes that are large enough are reached in minimum time. In the presence
of a feedback-controlled (i.e. closed loop) macroscopic field that biases diffusion, the time to
reach the target shape can be decreased by orders of magnitude, with a gain that increases with
decreasing temperature and with increasing cluster size.

For the majority of metals where edge diffusion is observed (e.g., Ag and Cu), the edge
diffusion barrier ∼ J or kink energies ∼ J/2 suggest that J ≈ 0.2 and 0.3 eV [115, 116, 117, 118,
75]. For the square 9-atom target depicted in Fig. 2.16 the optimal temperature corresponds to
J/kBT ≈ 2. Choosing J = 0.2 eV we obtain an optimal temperature of about 103 K, which is
too high to be observed in usual experiments. Indeed, such a high temperature should lead to
detachment of atoms from the cluster. As a consequence, the expected first passage time to target
should decrease with temperature in the usual experimental temperature range. In addition,
using the typical order of magnitude of F0l/J ≈ 10−4 for electromigration of atomic islands, we
can see from Fig. 2.17a that this value would be too small to allow for an appreciable control of
few-atoms clusters. However, since the gain in the time to reach the target grows quickly with
the cluster size N , control might be possible to achieve for clusters that are larger—but not much
larger— than the biggest cluster (N = 12) that we have investigated.

Moreover, lower energy barriers can exist in more complicated metallic systems. For example,
in Ag/NiAl(110) the edge diffusion barriers have been estimated with STM observations and
ab-initio calculations to be 0.29 eV in one direction and 0.13 eV in the other (perpendicular)
one [119, 120], however we cannot say whether our results would be applicable to such a system
since our model has a higher 4-fold symmetry.

In the case of colloids, a theoretical investigation [76] compared to experimental observations
of the drop drying of ligand-coated Au nanoparticles in solution [36] suggests that some amount
of edge diffusion can be observed. However, most experiments on colloids clusters report mass
transport dominated by attachment-detachment of particles at the edges, such in the case of silica
or PS microparticles on single crystalline colloidal substrates [71]. Our analysis could also be
extended to this regime when considering the detachment-diffusion-reattachment events within
vacancy clusters, which preserve the total volume [16, 121, 122]. In contrast to the case of atomic
clusters, colloid clusters should allow for the observation of control via an external force. As we
have seen in the beginning of this chapter, for colloidal systems the ratio F0l/J can be tuned up
to values of order one, which allows for control.

The method that we have presented is versatile and can be easily be adapted to fit modified
objectives. One obvious extension is to vary the temperature in time. We have not investigated
this direction, but a simple example to show how this could be used is the case in which the
experimental goal is to keep the system as much as possible in the target state, once it is reached.
In this case, a simple strategy is to quench the system with a low temperature once the target is
observed, in order to slow down the dynamics as much as possible. Another way to achieve this
goal without varying the temperature is to set the force in the target state so as to maximize the
residence time in the target.

In our model, we decided to forbid cluster breaking by particle detachment. We made
this choice mainly for technical reasons: in this way, the number N of particles in the cluster
is conserved and the possible configurations can be straightforwardly calculated as the fixed
polyominoes with N cells. However, even when the experimental conditions are such that edge
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diffusion is the dominant process of mass transport, detachment of particles from the edge can
always occur. Furthermore, we have seen that in a colloidal system there are ways to increase the
magnitude of the external force, and this could lead to the splitting instability discussed in the
introduction of this chapter, since the critical radius of the instability decreases when increasing
the force (see Eq. (2.1)). One possible direction is to use the force to avoid cluster breaking.
This could be achieved by adding the atomic moves that would lead to breaking in the list of
possible moves and to assign them an arbitrary negative reward. In this way, the value iteration
algorithm converges to an optimal policy that reaches the target in minimum time, while at the
same time trying to avoid breaking. The balance between the two objectives can be controlled by
the magnitude of the breaking reward.

In order to apply our approach to the quantitative description of specific physical systems, it
would be important to refine the physical model to account, for example, for other lattices and
for accurate values of hopping rates. Moreover, we have taken into account only particle-particle
lateral bonds, discarding particle-substrate interactions. In the simple case where the bond
between the particles and the substrate is assumed to be equal to J , we just have to multiply all
rates of Eq. (2.4) by exp(−J/kBT ) to consider the presence of the extra bond, which results in a
rescaling of all the timescales by exp(J/kBT ). In Appendix A.11 we show that this procedure
leads to results that are qualitatively identical to those reported above, but with a decrease of
the depth of the minimum in the mean return time to target.
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CHAPTER 3

Model-free control of fluctuating 2d clusters

The work we present in this chapter is closely related to that of Chapter 2 on model-based control.
Using the same lattice model introduced in Section 2.1, we explore the control of 2d fluctuating
clusters using model-free techniques. We simulate the dynamics of the environment with a kinetic
Monte Carlo method, to which we couple the two model-free tabular control algorithms introduced
in Section 1.4.3.

The results of this chapter complement those of the previous one and can be seen as a first
step towards an experimental realisation of our methodology, where the control agent would only
have access to observations of the physical environment and not to the full dynamical model.

As we mentioned in Section 1.4.3, a key issue in model-free control methods is that of exploring
the space of states and actions of the environment. The usual way to approach this problem is to
consider ε-greedy policies such as the one defined in Eq. (1.18), which select with a probability
ε a random action instead of the optimal one. Unlike in the previous chapter where we used
deterministic policies, we therefore use here a stochastic ε-greedy policy π(a | s). For consistency
of notation, we still use the function φ(s), which sets the force provided by action a on state s,
but here this function is not sufficient to completely characterise the policy. Hence, within this
chapter, we will refer to π as the “policy”.

3.1 Kinetic Monte Carlo implementation of the dynamics

In computational physics, the term Monte Carlo (MC) refers to a broad class of algorithms that
rely on the use of random numbers to obtain numerical results1. They first emerged in the 1950s
as computers came into use, and they offer a powerful way to evaluate equilibrium proprieties
of physical systems. In the 1960s, a different type of MC algorithm began to be developed to
dynamically evolve systems from one state to another. The terminology for this approach settled
in as kinetic Monte Carlo (KMC). The popularity and range of applications of this method has
continued to grow and KMC is now a common tool in material science and statistical physics. In
the rest of this section, we describe this well-known method.

1The name alludes to the famous casino in Monte Carlo, where random numbers are extracted by the croupiers
(for exclusively non-scientific purposes).
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A particle cluster undergoing thermal fluctuations is characterised by occasional transitions
from one state to another, with long periods of relative inactivity between these transitions. This
is sometimes called an infrequent-event system. Each state s corresponds to a single minimum in
the energy landscape of the system, and the long time between transitions arises because the
system must overcome an energy barrier that is larger than the thermal energy kBT to get from
one minimum to another, as we already discussed in the previous chapter when presenting our
lattice model, and illustrated in Fig. 2.3b.

As the particles of the cluster vibrate erratically around their equilibrium position, assuming
they have not escaped over an energy barrier yet, the system is considered to remain state s.
Adjacent to state s there are other potential minima, corresponding to the states Bs that are
reachable from s, each separated from s by an energy barrier Eφ(s, s

′), defined in Eq. (2.5).
When a particle overcomes a potential barrier, the system has been taken to a new state s′. The
key property of an infrequent-event system is that, when it is in a particular potential minimum,
it stays there for a long time (relative to the typical time of one vibrational period), and hence
it “forgets” how it got there. This allows us to define escape rates γφ(s, s

′) to adjacent states s′

that do not depend on the previous states visited by the system. This characteristic, that the
transition rates for exiting state s are independent of the history prior to entering state s, is the
defining property of a Markovian system.

Let us define P surv
φ (s, t) as the probability that the system has not yet escaped from state s

under a force φ(s)—i.e. that state s survives—up to a time t. The escape of the system from a
state is a process with exponential decay statistics (analogous, for example, to nuclear decay),
and therefore obeys a Poisson probability distribution. This can be easily seen if we consider that
P surv
φ (s, t) is equal to the probability that no particle movement has occurred up to time t, thus,

for a small time increment dt

P surv
φ (s, t+ dt) = P surv

φ (s, t)(1− Γtot
φ (s) dt) −−−→

dt→0
P surv
φ (s, t) = exp(−Γtot

φ (s) t) , (3.1)

where Γtot
φ (s) =

∑
s′∈Bs

γφ(s, s
′) is the total escape rate from the state.

We are interested in the probability distribution function P first
φ (s, t) for the time of first escape

from state s, which can be obtained by considering that the integral of P first
φ (s, t) to some time t′

gives the probability that the system has escaped by time t′, which must equate to 1−P surv
φ (s, t′).

Hence∫ t′

0

P first
φ (s, t)dt = 1−P surv

φ (s, t′) = 1−exp(−Γtot
φ (s)t′) ⇒ P first

φ (s, t) = Γtot
φ (s) exp(−Γtot

φ (s)t) .

(3.2)
The average time that the system spends in state s before escaping to any other state corresponds
to the expected residence time that we already introduced in Section 2.1, and it is just the first
moment of this distribution:

tφ(s) =

∫ ∞

0

t P first
φ (s, t) dt =

1

Γtot
φ (s)

. (3.3)

When a transition from state s occurs, we have to determine which state s′ is reached.
The probability to perform a transition to state s′ is pφ(s, s′) = γφ(ss

′)tφ(s), as discussed in
Section 2.1. The procedure to choose s′ is shown schematically in Fig. 3.1. We imagine that
for each of the |Bs| moves2 we have an object with a length equal to the rate γφ(s, s

′) for the
pathway associated to that move. We put these objects end to end, giving a total length Γtot

φ (s).

2Recall that, for N ≥ 2, each atomic move corresponds to a transition from state s to a different state s′, so
there are as many possible moves as there are neighboring states Bs.
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We then choose a single random position along the length of this stack of objects by extracting a
random number between 0 and Γtot

φ (s). This random position will “point” to one of the objects,
and this is the energetic pathway that we choose for the system to follow. This procedure gives a
probability of choosing a particular particle move that is proportional to the rate of the move.

Random

Figure 3.1: Illustration of the procedure for picking a move to advance the system to the next
state in the standard KMC algorithm. To each escape rate in a given state s is associated an
object (a box for this illustration) with a length proportional to the rate. These objects are
“stacked” in a list that adds up to Γtot

φ (s). Then, the extraction of a random number between 0

and Γtot
φ (s) is used to select a move in the list. In this example, the highest rates correspond

to atoms with 1 bond moving in the direction of the force (in orange), while the lowest ones
correspond to atoms with 2 bonds moving opposite to the force (in green).

To advance the simulation time, we need to draw a time of first escape tdrawφ (s) from the

distribution P first
φ (s, t), i.e. generate an exponentially-distributed random number. This can be

done in the following way. We consider a random number u, with a uniform distribution p(u) = 1,
and 0 < u ≤ 1. Then, we impose the equality of the probability densities P first

φ (s, t) dt = −p(u) du,
leading to the following variable change:

du

dt
= −P first

φ (s, t) ⇒ u = exp(−Γtot
φ (s) t) . (3.4)

Hence, in the KMC algorithm, we first extract a uniformly-distributed random number u
between 0 and 1, and then form the time advancement

tdrawφ (s) = − log(u)

Γtot
φ (s)

. (3.5)

A time drawn in this way is an appropriate realization for the time of first escape for a process
with total escape rate Γtot

φ (s). Note that the time advance is independent from the event that is
chosen. The time to escape depends only on the total escape rate.

Once the move is selected and performed, the system is in the new state. Then, the list of
possible moves and the associated rates are updated, and the procedure is repeated. This KMC
scheme is often referred to as the BKL algorithm (or the n-fold algorithm), due to the 1975 paper
by Bortz, Kalos and Lebowitz [123].

As a technical note, it should be added that the above scheme is valid whenever the transition
rates between states are constant in time. If, however, one is dealing with time-varying rates,
then more complicated time-dependent algorithms should be considered [124]. In our model, the
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external force varies in the course of time. However, the external field is assumed to be switched
instantaneously just after the transition from state s to state s′. As a consequence, the rates are
constant when the system is in a given state, and the standard KMC algorithm can be used. In
any experiment, the observation of the transition would take a finite time tobs, the processing of
this information and the decision to switch the external field takes a finite time tproc, and the
switching of the external force also takes a finite time tswitch. Our assumptions are that these
three times are much smaller than the residence times tφ(s).

3.2 Equilibrium dynamics

With KMC, it is straightforward to simulate the equilibrium dynamics of a fluctuating cluster.
We use the same rules described in Section 2.1, that is, we forbid atom detachment and cluster
breaking, and freeze atoms with 4 nearest neighbours. We have seen in Section 2.3.2 that, at
equilibrium, the probability P0(s) of being in a state s is given by the Boltzmann distribution of
Eq. (2.35), with the energy of the island configuration s given by the simple formula H(s) = LsJ/2,
where Ls is the length of the perimeter of the island. Hence, we expect that, in the absence of
external forces, the fraction of time that the system spends on a given state s is given by P0(s).

We have implemented the KMC algorithm described above in Python, and we have performed
several simulations of the dynamics of a 7-atom cluster at different temperatures. Each simulation
was done with 106 steps. During the simulations, we kept track of the time that the system
spent on five selected states by summing the stochastic time advancements tdrawφ (s) on these

states. The ratio between these times tdrawφ (s) over the total simulation time (i.e. the total sum of

tdrawφ (s) for all states) is shown in Fig. 3.2. In this figure, we also show the theoretical equilibrium
probabilities P0(s) for states with Ls = 12, Ls = 14 and Ls = 16.
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Figure 3.2: Fraction of time spent on a state s over the total time, for 8 independent simulations
with 106 steps, for 5 different 7-atom states. These fractions correspond to the probabilities P0(s).

The three states s1, s2 and s3 all have the same perimeter Ls = 12, and hence the same
occupation probability P0(s). The states s4 and s5, instead, have respectively Ls = 14 and
Ls = 16, which correspond to higher energies, and thus to lower probabilities. Overall, we
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can see that, a part from some deviations at low temperature for state s5, that are likely due
to low statistics, the KMC simulations are correctly reproducing the equilibrium occupation
probabilities.

It should be noted that freezing the motion of atoms with 4 nearest neighbours actually
violates the equilibrium condition of detailed balance given by Eq. (2.40), because in this way
there are some processes that have no reverse process, like the move shown in Fig. 3.3, which
brings a particle with 2 nearest neighbours (unfrozen) to a position with 4 nearest neighbours
(frozen). However, we can see from Fig. 3.2 that this does not affect significantly the equilibrium
dynamics of the cluster, which still obey the expected probability distributions.

Figure 3.3: A process that violates detailed balance. When freezing the motion of atoms with 4
nearest neighbours, this move has no reverse move.

3.3 Performance of model-free control

Following the framework described in Section 1.4.1, we have implemented, in Python, two model-
free tabular methods for the control of the dynamics of a fluctuating particle cluster in the
presence of an external field. The control agent and the environment—i.e. the KMC simulation
of the cluster—are interfaced according to the scheme represented in Fig. 3.4. At every step t of
the simulation, the agent “observes” the state St of the cluster (i.e. its shape) and receives a
representation of such shape in a form of a numerical identifier, as explained in Appendix A.6. It
is useful to uniquely encode each state of the environment into a number, so that the states can
be easily stored and managed by the computer in a table.

Environment
KMC simulation

Figure 3.4: The agent-environment interface for the control of a fluctuating particle cluster in the
presence of an external field.

Using the same approach as in the previous chapter for model-based control, we define the
action set as the three possible values A = {−F0x̂,0, F0x̂} of the external force. Based on the
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observation of state St = s, the agent chooses an action At = a ∈ A, which corresponds to setting
the external force a = φ(s) to one of the three values.

In contrast to what we did in the previous chapter, here we choose the reward to be a stochastic
quantity. We define the reward Rt+1 associated to state St = s and action At = a = φ(s) as the
opposite of the stochastic realisation of the time of first escape from state s given by Eq. (3.5):

Rt+1 ← −tdrawφ (St = s), (3.6)

where the symbol ← correspond to an assignment statement. The minus sign is due again to the
fact the our goal is to minimize the time to reach a target configuration, while the control agent
seeks to maximize the rewards.

We use an ε-greedy stochastic policy π(a | s), as defined in Eq. (1.18), with the parameter ε,
determining its exploratory character, which decays linearly during the learning process.

3.3.1 Convergence scheme

Our goal is to learn optimal policies to minimize the time to reach a target cluster configuration
s̄. As in the previous chapter, we use the expected return time to target τ rπ(s̄) to evaluate the
performance of a policy π. However, since we are using model-free control methods here, we do
not assume any knowledge of the master equation of the system, and only rely on observations
of the environment in order to estimate τ rπ(s̄). Specifically, we run a KMC simulation starting
from the target state s̄ and with the force that is changed during the dynamics according to the
policy to be evaluated π, and obtain a number of samples nsam of the return time to target. The
estimate of τ rπ(s̄) is obtained simply by averaging over the samples.

We also assume no knowledge of the optimal return time to target τ r∗(s̄) computed by model-
based methods. Thus, we cannot use this quantity to decide when to stop the learning task, but
must resort to a convergence condition based on the evolution of the algorithm’s performance
with respect to the zero-force return time τ r0(s̄). The convergence condition we used is given in
pseudocode in Fig. 3.5.

The general idea of this convergence scheme is based on controlling the “improvement” of
the policy 1− τ rπ(s̄)/τ r0(s̄), which is similar to the concept of gain we used in Chapter 2, except
that this factor is, in principle, bounded between 0 and 1 (because we expect a learned policy
to produce a return time to target that is smaller or, at worst, similar to the zero-force return
time τ rπ(s̄) � τ r0(s̄)). First, we obtain an estimate of the zero-force return time to target τ r0(s̄),
which will be used as a reference. Next, we perform an initial learning run on nepi episodes
and estimate the return time of the learned policy τ rπ(s̄). We then calculate the improvement
factor and evaluate whether it is better than the best improvement factor we had during previous
runs (this factor is initially set to 0), within a small tolerance Itol. If it is, we update the best
improvement factor and reset a counter which keeps track of how many runs we did without
improvement, otherwise, we increase this non-improvement counter.

The cycle is then repeated but doubling the number of learning episodes, then tripling it, and
so on. Whenever the counter of runs without improvement reaches a value nruns, we consider
that the learning algorithm would not benefit from a further increase in the number of episodes,
and stop the cycle.

Each time the selected learning algorithm is called, the learning run is executed with a value
of ε of the ε-greedy policy that starts from an initial value εi and then is linearly decreased over
the course of learning, reaching a final value εf at the last episode of the run, as illustrated
schematically in Fig. 3.6. This process is similar to the concept of simulated annealing [125], which
is often used in molecular dynamics or equilibrium Monte Carlo simulations to find the ground
state of a system. In simulated annealing, one or more thermal cycles formed by a temperature
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Figure 3.5: Pseudocode of the general convergence scheme for the learning task

Parameters:
Number of samples nsam to evaluate the return time to target of a policy
Number of runs nruns that must pass without improvement before learning is stopped
Number of episodes of the first learning run nepi

Small number Itol representing the tolerance on the improvement check

Run KMC simulation to estimate τ r0(s̄) of the zero-force policy with nsam
k ← 1
Counter ← 0
Impr∗ ← 0
While Counter < nruns :

Run learning algorithm on nepi × k episodes, which outputs a policy π
Run KMC simulation to estimate τ rπ(s̄) of the learned policy π with nsam

Impr ← 1− τ rπ(s̄)/τ r0(s̄)
If Impr > Impr∗ × (1 + Itol) :

Impr∗ ← Impr
Counter ← 0

Else:
Counter ← Counter + 1

k ← k + 1

Output: π ≈ π∗

rise followed by slow cooling allow the system to explore the energy landscape, progressively
relaxing towards low-energy states and avoiding getting stuck in local energy minima. In our
case, ε is the parameter that characterizes the degree of exploration of the policy, and thus has,
in a sense, the same role as the temperature in simulated annealing.

Figure 3.6: Schematic representation of the evolution of ε over the course of the whole learning
task. At the beginning of each learning run, ε is reset to εi, and then decayed linearly, reaching
εf at the end of the run. At the end of each run, the performance of the policy is evaluated.

We implemented the two tabular control algorithms described in Section 1.4.3 and given in
pseudocode in Appendix A.2: Monte Carlo control and Q-learning. For both algorithms, we
set the discount factor β = 1 and used the following parameters for the convergence scheme:
nsam = 2000, nruns = 3, nepi = 1000, Itol = 0.02 . For Monte Carlo, we used εi = 0.9 and εf = 0,
while for Q-learning we used εi = 1, εf = 0.1 and set the learning rate α = 0.05 . We have also
set the maximum number of KMC moves in a single episode to 1000, after which the episode is
terminated even if the target has not been reached. These values were obtained empirically.
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We now present the results for these two control algorithms compared to the optimal perfor-
mance obtained with the model-based approach in Chapter 2.

3.3.2 Results for Monte Carlo and Q-learning algorithms

In Figs. 3.7 and 3.8 we show the evaluated return time to target as a function of inverse temperature
for some selected targets with 3 ≤ N ≤ 10. The return time corresponding to the policies learned
with Monte Carlo and Q-learning is plotted together with the optimal return time and the
zero-force return time computed with the dynamic programming method of value iteration.
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Figure 3.7: Mean return time to target τ rπ(s̄) as a function of 1/T for some selected compact
targets. The Monte Carlo (MC) and Q-learning (QL) optimal policies are plotted together with
the zero-force and optimal policies computed with dynamic programming (DP).
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Figure 3.8: Mean return time to target τ rπ(s̄) as a function of 1/T for some selected less compact
targets. The Monte Carlo (MC) and Q-learning (QL) optimal policies are plotted together with
the zero-force and optimal policies computed with dynamic programming (DP).
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For each temperature considered, we performed 10 independent learning tasks for each learning
method, following the convergence scheme described above. The markers in figure correspond
to the return time of the best policy obtained out of 10 (which, for plotting purposes, was
re-evaluated after the learning with nsam = 104, to have better statistics). This best policy is
used as a basis for defining the performance. The dashed lines indicate the mean of the 10 return
times obtained with the learning tasks, and the shaded area represents the standard error of the
mean (defined as the standard deviation divided by the square root of the sample size, which is
equal to 10).

In Fig. 3.7, we grouped the most compact (i.e. low-energy) targets among those selected for
this analysis. We can see that, for the 4-particle square in Fig. 3.7a, the performances of the
best policies learned with both Monte Carlo (MC) and Q-learning (QL) are essentially the same
as the optimal case obtained with the model-based method (DP). For the N = 6 and N = 8
rectangles in Figs. 3.7b and 3.7c, some differences between the two methods begin to appear,
with Q-learning performing slightly better than Monte Carlo, especially at low temperatures.
This behaviour becomes even more pronounced for the N = 10 rectangular target in Fig. 3.7e.
Interestingly, in the case of the 9-particle square of Fig. 3.7d, Q-learning performs better than
Monte Carlo at intermediate to high temperatures

In Fig. 3.8, instead, we show the results for less compact (i.e. high-energy) targets. Again,
for small clusters made up of 3, 4 or 5 particles (Figs. 3.8a, 3.8b and 3.8c), the performances of
the two methods are similar, and the best learned policies produce a mean return time to target
that is very close to the one computed with dynamic programming. For all the other cases, with
N ≥ 6, instead, Q-learning performs better than Monte Carlo.

It is interesting to compare the 6-particle compact target in Fig. 3.7b with the two less compact
targets of the same size in Figs. 3.8d and 3.8e. We can notice that, as the shape of the target
becomes less compact, the gap in performance between Q-learning and Monte Carlo becomes
larger. For the least compact of the three (Fig. 3.8e), the mean return time to target obtained
with Monte Carlo is closer to the zero-force return time than to the theoretical optimal return
time computed with dynamic programming. The same considerations hold when comparing the
8-particle compact target in Fig. 3.7c and the less compact one in Fig. 3.8g.

For the 7-particle target in Fig. 3.8f, the advantage of Q-learning is again more pronounced
towards high temperatures (like the N = 9 square in Fig. 3.7d), with both methods performing
very well at low temperatures. For the N = 8 and N = 9 targets in Figs. 3.8g and 3.8h, Q-learning
outperforms Monte Carlo over almost the entire temperature range.

In general, we can conclude that the two model-free control methods are able to learn to drive
a fluctuating cluster of particles towards a desired target shape using a macroscopic field, at least
for the targets that we have considered. At high temperatures, both methods appear to have
difficulties in learning an optimal policy, probably due to the difficulty in observing the effects of
actions when the system is subject to large thermal fluctuations (or, in other words, when the
transition rates are too similar). At low temperatures, learning is generally good, especially with
Q-learning, but the standard error bars become wider, showing that there is greater dispersion
of the performances of the learned policies. This suggests that, in this temperature range, it is
more difficult to efficiently explore the space of states, and the learned policies are highly variable.
Overall, Q-learning performs better than Monte Carlo, especially for bigger and less compact
clusters.

As a technical note, the computational times required to converge to an optimal policy are
comparable for the two methods.
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3.3.3 Performance as a function of the observation time

In the previous section, we saw that it is possible for the two model-free algorithms to learn
optimal policies by observing and interacting with the simulated environment. These policies
have a performance that is comparable to the theoretical values obtained using the model-based
iterative evaluation method introduced in Chapter 2.

To learn these policies, the control algorithms require observing the dynamics of the simulated
cluster for an extended period of time. To show how the performance of the learning algorithms
evolves as a function of observation time, we executed several learning runs on fixed numbers of
episodes, with no convergence condition. At the end of each run, we tested the learned policy on
nsamples = 10000 and plot the resulting mean return time to target as a function of the total time
of the learning run, obtained as a sum of all the stochastic time increments given by Eq. (3.5)
during all the episodes of the run. The results of this analysis are reported in Fig. 3.9, for the
7-particle target of Fig. 3.8f at T = 0.22 (left) and T = 0.62 (right).
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Figure 3.9: Mean return time to target τ rπ(s̄) as a function of the observation time for the
7-particle target of Fig. 3.8f, at (a) T = 0.22 and (b) T = 0.62. The dashed lines correspond to
a parabolic fit of the respective simulation points and are just a guide to the eye to show the
general decreasing trend of the evaluated mean return times.

We can see that, for the lower temperature, the mean return time to target converges to a
value very close to that obtained with dynamic programming at an observation time of about
107 dimensionless units. For the higher temperature, the mean return time to target decreases
more slowly with the observation time, but, in this case as well, at values of the order of 107

dimensionless units the two algorithms have achieved a performance that is much closer to that
of the dynamic programming optimal policy than to that of the zero-force or the random policy.
But what does this number correspond to, in physical units?

We have argued in Section 2.5 that colloidal clusters are a candidate system that should allow
for control via an external force, since they have a ratio F0l/J that can be tuned up to values of
order one. For colloidal clusters of ligand-coated Au nanoparticles in solution, in which some
amount of edge diffusion can be observed, a theoretical study [76] suggests that the energy barrier
Ee for the edge diffusion of a particle along a straight edge is of the order of 0.1 ∼ 0.3 eV, for
particles of diameter ranging from 4.9 to 8 nm at room temperature (which roughly corresponds
to 1/T = Ee/kBTroom � 4 ∼ 10 in our simulations). This corresponds to an edge-diffusion
hopping rate of the order of 105 ∼ 106 s−1. Hence, in such a system, we could predict that a
learning algorithm would need an observation time of a few tens or hundreds of seconds in order
to reach an appreciable performance.

However, we doubt that there are experimental techniques that allow for cluster observation,
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processing, and real-time switching of the external field in timescales shorter than milliseconds.
The edge-diffusion rates derived from Ref. [76], therefore, correspond to hopping processes that
are probably too fast to be observable in a closed-loop control experiment. Since interactions in
colloidal clusters are highly tunable, we hypothesize that it should be possible, in principle, to
design a system with hopping rates that are of the order of 1 kHz, and thus adapted to a control
experiment. If we assume that the realization of such a system is possible, then in this case the
control algorithm would need a few hours of observation to learn how to control the cluster.

3.4 Discussion and perspectives

Using kinetic Monte Carlo, we have implemented the stochastic dynamics of a fluctuating particle
cluster described by the lattice model introduced in Chapter 2. This has allowed us to define a
simulated environment to which we coupled the two model-free tabular control methods described
in Chapter 1, in order to test their performance. We found that Monte Carlo and Q-learning
algorithms can learn optimal control policies to drive the cluster towards some selected target
shapes using a macroscopic field. The two methods perform similarly for small (N ≤ 5) clusters,
while Q-learning has better results for bigger clusters, especially when the target shape is not
very compact.

What we have presented here is not intended to be an exhaustive analysis of the performance
of these model-free control algorithms on a stochastic system. There is certainly still room for
technical improvement in the choice of algorithm parameters and in the design of the convergence
scheme. For example, we have noticed that the value of the learning rate α for Q-learning
can have a strong impact on the performance of the algorithm. For this application, we found
empirically that the value α = 0.05 produces satisfactory results, however a systematic analysis
could probably allow us to further optimize the performance of Q-learning. It is also possible to
decay this parameter during the learning process (as we did for ε) and it has been shown that
this approach can improve the performance of Q-learning [126, 127]. We have not explored this
direction.

Instead, our analysis should be regarded as a proof of concept, suggesting that our control
approach should, in principle, be experimentally applicable. We believe that a promising candidate
for the experimental implementation of our method is given by colloidal particle clusters. As we
discussed in the previous section, it appears that in a system of ligand-coated Au nanoparticles in
solution, the edge diffusion processes are too rapid to be controlled in real time. However, we are
confident that experimental physicists with expertise in colloids will be able to fine-tune particle
interactions and design experimental potentials that allow for edge diffusion with timescales on
the order of kHz, which should allow for real-time observation and control.

An interesting research perspective, would also be to look at diffusion inside monolayer
vacancy clusters. This case has been studied extensively in the literature, both experimentally
and theoretically [128, 129, 130, 24, 131]. In this scenario, the volume is preserved even in
the regime of detachment-diffusion-reattachment of particles at the edges [16, 121, 122]. The
diffusion-deattachment-reattachment regime has been observed in many experiments on colloidal
clusters, such as silica or PS microparticles on single crystalline colloidal substrates [71]. However,
we have not found detailed experimental studies of the dynamics of colloid vacancy clusters in
the literature.

Finally, we want to emphasize on the fact that our approach is not limited to the case of biased
edge diffusion, but can readily be extended to any type of evolution rules that preserve the volume
of the cluster, such as dislocation-mediated cluster rearrangements in colloids [132] and metal
nanoclusters [133, 134], or configurational changes of adsorbed molecules and polymers [135].
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Provided that the range of accessible cluster size is limited (to have a finite state space), then
our approach could also be extended to systems with various types of particle-particle and particle-
field interactions, such as clusters of magnetic beads manipulated by rotating magnetic fields [136,
80], acoustically-bound bubble crystals manipulated by a sound field (Bjerknes forces) [137, 138,
139], light-driven nanoparticles [21], active crystals of self-propelled colloidal particles controlled
by a combination of light and magnetic field [140], active Janus particles [141, 142], microbial
aggregates [143], or floating granular rafts [144]. See Fig. 3.10 for some examples.

The control of bigger clusters, with a number of states that is too large to be handled by
tabular methods, is not out of the question, but rather represents another exciting perspective
for our study. In this case, one possibility is to use approximate control methods, as discussed in
Section 1.4.

(a) (∼ 50×50 m2) Image from
Ref. [136].

(b) (∼ 500 × 500 m2) Image
from Ref. [137].

(c) (Scale bar indicates 600 nm)
Image from Ref. [21].

(d) (Scale bar indicates 10 m)
Image from Ref. [140].

(e) (∼ 15×15 m2) Image from
Ref. [141].

(f) (Scale bar indicates 1 cm)
Image from Ref. [144].

Figure 3.10: Monolayer particle clusters in different physical systems. These systems constitute
examples to which our model could be extended. (a) Cluster of magnetic beads, (b) acoustically-
bound bubble crystals, (c) cluster of light-driven nanoparticles, (d) colloidal active crystals, (e)
aggregate of Janus particles, with its geometric definition superimposed, (f) two granular rafts
floating on an oil-water interface.
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CHAPTER 4

Approximate control and classification of morphological instabilities

In this last chapter, we focus on the control of shapes in continuous deterministic systems. For
this aim, we rely on model-free learning methods coupled with approximation techniques. We
wish to achieve control on morphologies that can emerge from the dynamics of evolving interfaces
that separate domains—or phases—in spatially extended physical systems.

A rich variety of morphologies can arise from the non-equilibrium dynamics of continuous
physical systems [145, 146], such as hydrodynamic instabilities [147], growth processes [148,
42, 102], and phase-separation phenomena [149, 150]. Some examples of complex interface
morphologies that appear in such systems are shown in Figs. 4.1 and 4.2.

(a) A snowflake. Image from Ref. [43]. (b) A branching pattern formed by
a colony of the P. dendritiformis
bacteria. Image from Ref. [151].

(c) Viscous fingering in a Hele-
Shaw cell. Image from Ref. [152].

Figure 4.1: Complex shapes appearing in three different growth processes.

In the same spirit in which we studied the control of small discrete stochastic systems in
Chapters 2 and 3, we propose here a control strategy for continuous systems based on the
tuning of a global parameter (that is time-dependent ant space-independent) rather than on
localized manipulation. Again we use a closed-loop control approach, where changes to the control
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(a) Ordering of twisted nematic liquid crystals (TNLC) during a relaxation
towards equilibrium. Different shades of grey correspond to twists of opposite
handedness in the nematic director field. Time increases from left to right, final
time: 170 seconds. Image from Ref. [153].

.
(b) Killing-mediated phase sep-
aration in a dense V. cholerae
bacterial population. The col-
ors corresponds to two different
strains. Image from Ref. [154].

Figure 4.2: Complex shapes forming during phase separation.

parameter are made by a model-free agent depending on the observation of the state of the
system.

However, there are major differences with respect to the cluster control problem. The first
is that in this case we have to deal with a continuous set of states, and this forces us to use
approximation techniques. We have considered two approximation methods. One method is based
on deep neural networks (DNN), which allowed us to obtain promising results on the control of
an interface in a one-dimensional system. Another approach is the curvature scale space (CSS)
method, which relies on a reduction of the dimensionality of the description of the interface, with
which we were able to compare two-dimensional shapes.

The second difference is that we are dealing with deterministic dynamics. A well known
method to control deterministic systems is optimal control. In this model-based method, one
finds an open-loop policy (i.e. an evolution of the control parameter as a function of time that
does not rely on the observation of the state of the system during the dynamics) that takes the
system from a specific initial condition to a specific target state [155]. Here instead, we look for a
closed-loop model-free strategy that is able to take the system from an arbitrary initial condition
to given target shape, and that requires observation of the system at all times.

Many studies have already reported that different environmental conditions in evolving
nonequilibrium physical systems can lead to a wide diversity of morphologies. This fact has long
been known for snow crystals, which can vary from columns to thin slabs, sometimes branched,
hollow, or faceted, depending on different growth conditions—in particular temperature and water
vapour supersaturation. This is shown in the diagram of Fig. 4.3a, called the Nakaya diagram
after the Japanese physicist Ukichiro Nakaya, who pioneered the study of snowflake morphologies
in the 1950s.

Similar morphological diversity also exist for other dynamical systems, for example in the
growth of bacterial colonies [156, 157]. In this case, the properties of the patterns depend on two
main factors: the concentration of nutrients, which influences the growth rate of the colony, and
the concentration of agar, which determines the hardness of the substrate, and therefore, the
mobility of the bacteria (see Fig. 4.3b).

In the following sections, we will introduce diffuse interface models, which are the mathematical
framework we used to model this kind of extended systems in which there is an interface that
evolves over time, and then we will discuss more specifically the two dynamical models we
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(a) Diagram describing qualitatively the growth of snow
crystals as a function of temperature and water vapor
supersaturation. Image from Ref. [42].

(b) Morphological diagram of B. subtilis colony pat-
terns obtained when varying hardness of agar surface
and nutrient concentration. Image from Ref. [156].

Figure 4.3: Morphological diagrams showing the different shapes that can arise by varying ambient
conditions during (a) ice growth and (b) growth of a bacterial colony.

considered: the Allen-Cahn equation, typically used to describe phase transitions or reaction-
diffusion processes (see Fig. 4.2) and model C, also known as the phase-field model, a very
versatile tool suitable for describing diverse growth phenomena, such as solidification [158, 159],
growth of atomic steps [160], or viscous fingering [161] (see Fig. 4.1). Model C is also formally
similar to reaction-diffusion models [162] that are ubiquitous models for patter-forming systems
that can describe a wide variety of systems, from nonlinear waves to the growth of bacterial
colonies [163]. After that, we will present the methods and results concerning the control and
classification of nonequilibrium morphologies that emerge from the dynamics of these models.

4.1 Diffuse-interface models

The dynamics of an interface is traditionally modelled by using the so-called sharp-interface
description, which provides an explicit law for its local normal velocity vn. A typical evolution
law is [164]

vn = −κ , (4.1)

where κ is the mean curvature of the interface. Equation (4.1) is known as mean curvature flow,
or motion by curvature.

This equation describes for example the evolution of a physical interface between a crystalline
phase and another phase. We can define the equilibrium conditions as the physical conditions
under which a flat interface does not grow or recede. In equilibrium conditions, the free energy—
which is proportional to the interface area—decreases. The way the interface area decreases is
described by Eq. (4.1). For an interface which is flat on average, small interface protuberances—
which have a positive κ, and small concavities—which have a negative κ, both decay leading
to a smoothing of the interface. Motion by curvature also induces the shrinking of finite-size
crystals which exhibit a positive average curvature via dissolution or melting. Similarly, it induces
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the shrinking of voids or cavities inside crystals which exhibit a finite average negative interface
curvature via growth.

However, this kind of formulation can have strong limitations. The main drawback is that
the numerical simulation of such models turns out to be more difficult than diffuse-interface
models. The most challenging aspect is the complex interactions between interfaces that can
undergo topological changes during the evolution, such as merging and pinch-off. Such situations
are often addressed by applying somewhat arbitrary criteria for describing the dynamics when
interface merging or pinch-off occurs, and manually adjusting the topology. It is noteworthy that
numerical codes for sharp-interface models are often very lengthy and complex.

A way to avoid some of these problems is to use a different modelling paradigm, called
phase-field method. This technique was introduced by Fix [165, 166] and Langer [167] in the
1980s and it deals with the problem of tracking topological changes of the interface by introducing
an auxiliary continuous field, the phase field, that has the role of an order parameter. This field
takes two distinct constant values (for instance +1 and −1) in the bulk of each phase, smoothly
interpolating between both values across a thin boundary layer around the interface, which is
then diffuse with a finite width, as depicted in Fig. 4.4. A discrete location of the interface may
be defined as the collection of all points where the phase field takes a certain value (e.g. 0).

Figure 4.4: A two-phase microstructure and the order parameter ψ profile is shown on a line
across the domain. Gradual change of order parameter from one phase to another shows diffuse
nature of the interface. Image from Wikimedia Commons.

Historically, diffuse-interface models have first been developed as models for phase transitions.
For example, from the perspective of condensed matter physics, the phase field ψ may be seen as
an order parameter describing the degree of crystallinity or atomic order in a phase. In these
models, the finite width of the interface is the true physical interface width. Later in the 1990s, it
was realized that they define a class of models that are very useful for numerical simulations, they
were called phase-field models. However, the physical width of the interface is often much smaller
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than the width that makes the simulations fast and efficient. The idea then emerged that the width
could be chosen arbitrarily as long as it is small enough as compared to the other characteristic
lengthscales of the problem, to ensure that the evolution of the interface obeys well-defined
sharp-interface equations. This property of being small enough was established mathematically
by means of some asymptotic analysis, called the “sharp” or “thin” interface limits, where the
interface width is a small parameter. The conditions of validity of these asymptotics can actually
be fulfilled even if the interface width is much larger than the physical interface width. Hence, in
phase-field models, the interface width is often just a numerical tool to ensure convergence to a
given sharp-interface model.

Traditional phase-field models are connected to thermodynamics by a phenomenological
free-energy functional F written in terms of the phase field ψ and possibly other fields (e.g.
temperature or material concentration). In its simpler form, F depends only on ψ and reads [168]

F =

∫
Ω

{
1

2
(∇ψ)2 + f(ψ)

}
dx , (4.2)

where the bounded domain Ω is the volume of the system and the function f(ψ) is the free-energy
density, a double well having two global minima for values of ψ corresponding to the two stable
phases of the system. Equation (4.2) is often referred to as the Ginzburg-Landau free energy [169].

The next step is to write a partial differential equation for the rate of change of the phase
field. This is done through dissipative minimization of this free energy. We will focus here on the
case where the order parameter associated to ψ does not evolve constrained to a conservation
law, or, in other words, when it is non-conserved. This is the case, for example, of magnetic
domain growth, order/disorder transitions, or isothermal solidification of a pure material (in the
absence of a density jump). The simplest dissipative dynamical evolution for a non-conserved
order parameter is given by [170]

∂ψ

∂t
= −δF

δψ
= ∇2ψ − ∂f

∂ψ
, (4.3)

where δF/δψ is the functional derivative.
A phenomenological interpretation of Eqs. (4.2) and (4.3) is the following. The system evolves

toward a more stable state by reducing its free energy F . To decrease F , the gradient term in the
integral of Eq. (4.2), which is the energy associated to the interface, makes the phase-field profile
to spread out, i.e. to widen the transition region. On the other hand, the double-well potential
f(ψ) makes the bulk phases stable, and hence has the effect to sharpen the transient region.
The diffuse interface maintains a stable width by a balance between these two opposite effects.
Once the stable diffuse interface is formed, the two terms start to cooperate to decrease the total
volume (or area, in the 2d case) of the diffuse interfacial region, where ∇ψ is not vanishing. This
is corresponding to the motion by curvature contribution in the classical sharp-interface model
given by Eq. (4.1).

We will now proceed to formulate two models based on Eq. (4.3). The first one is the
Allen-Cahn equation, which is obtained by considering a simple free-energy density that depends
only on the phase field ψ. To this model, we will then add a global control parameter that we
will use to control pattern formation. The second one is the so-called model C, which instead is
derived by plugging in Eq. (4.3) a more arbitrary double-well potential function for the free-energy
density, that depends not only on ψ but also on a second field. This field is associated to another
varying quantity in the system, for example temperature or concentration, and it has its own
evolution equation, which is coupled to Eq. (4.3).
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4.2 Allen-Cahn equation

The Allen-Cahn equation was first considered as a model for matter of a non-uniform composition
by Van der Waals [171] in 1893. Allen and Cahn [172] observed in 1978 that the interface
between the two phases obeys the mean curvature flow. This equation, sometimes called the time-
dependent Ginzburg-Landau equation, describes the universal dynamics of the phase-separation
process of a binary system close to the critical point of the transition. The most iconic and
perhaps simple example of such a system is the 2d Ising model of ferromagnetism, but problems
of this kind are found in, essentially, all branches of science and at very different scales [173] (see
Fig. 4.2 for two examples).

The basic assumption of this model is that, close to a continuous transition point denoted by
the critical value of the temperature θc (or any equivalent thermodynamic quantity playing the
role of the temperature in a phase transition), the mean value of the order parameter associated to
ψ is small, since at a temperature θ ≥ θc the system is completely disordered, and the free-energy
density f(ψ) can be expressed as a Taylor series expansion about the disordered phase. Then,
f(ψ) has the form of a symmetric double-well function (see, for example, Ref. [170] or Ref. [109]
for a full derivation)

f(ψ) = −ε
2
ψ2 +

1

4
ψ4 , (4.4)

where ε is a small parameter (|ε| 
 1) proportional to the temperature difference from the critical
point ε = (θc − θ)/θc. Hence, the parameter ε changes sign when the temperature of the system
is above or below the critical temperature. Note that, for simplicity, Eq. (4.4) is normalised so as
to remove prefactors and obtain a dimensionless form.

The free-energy potential Eq. (4.4) is illustrated in Fig. 4.5. When θ > θc, there is only one
minimum at ψ = 0. Minimizing this potential thus leads globally to a zero-value of the order
parameter associated to ψ. For θ < θc, instead, two symmetric minima are present, and two
phases associated to non-zero values of ψ can coexist.

0
ψ

0

f
(ψ

)

θ < θc

θ = θc

θ > θc

Figure 4.5: Sketch of the free energy density of a simple binary mixture or Ising model. Two
stable phases arise continuously from one for θ < θc.
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Inserting Eq. (4.4) into the evolution law for the phase field Eq. (4.3), we obtain the Allen-Cahn
equation

∂ψ

∂t
= ∇2ψ + εψ − ψ3 . (4.5)

It can be shown that this equation converges to the sharp-interface model of mean curvature
flow Eq. (4.1) when the interface width goes to zero [174, 168], as we discussed heuristically in
the previous section. In the case of the coexistence of two phases, Eq. (4.5) typically leads to
morphologies related to the progressive increase of the size of the phase domains, a phenomenon
called coarsening [175], as shown in Fig. 4.6 for a two-dimensional system.

Time

Figure 4.6: Coarsening dynamics in the two-dimensional Allen-Cahn equation with ε = 1.

In one dimension, the zero-dimensional diffuse interfaces, which are called kinks, have no
curvature. Therefore, there is no motion by curvature. However, coarsening is also obtained, as
shown in Fig. 4.7. This coarsening in one dimension is caused by an attractive interaction between
kinks, that leads to the shrinking of the smallest domains. Since this attractive interaction decays
exponentially with the distance, the resulting coarsening process is very slow, and gives rise to a
logarithmic growth of the average domain size with time.

Time

Figure 4.7: Coarsening dynamics in the one-dimensional Allen-Cahn equation with ε = 1.

4.2.1 Adding the control parameter

We are interested in controlling the morphology of the solutions of Eq. (4.5) in one dimension,
by dynamically varying the temperature θ of the system close to the critical point. In order
to do this, we substitute the ε parameter by the quantity εC(εt), where C is a time-dependent
control function of order one. This substitution corresponds to both small and slow temperature
variations.
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By rescaling time, space, and the phase field respectively by t → t/ε, x → x/ε1/2, and
ψ → ε1/2ψ, we obtain the normalized, critically-controlled Allen-Cahn equation

∂ψ

∂t
= ∇2ψ + C(t)ψ − ψ3 . (4.6)

C(t) is the control function that the agent will be able to change in order to reach a target
morphology. For the sake of simplicity, and in analogy to what we did in the case of discrete
clusters in the previous chapters, we choose three possible values of C—the actions—that can be
used by the control algorithm. The action set is then A = {−1, 0, 1}.

4.2.2 Related approaches in the literature

Extensive work has been done on control of Allen-Cahn type systems, especially in the applied
mathematics and control theory communities. A widespread approach is that of distributed
control, in which a control function C is added to Eq. (4.5), resulting in

∂ψ

∂t
= ∇2ψ + εψ − ψ3 + C . (4.7)

The idea is then to define an objective functional to be minimised, of the form

J (ψ,C) =
1

2

∫ L

0

[
ψ(tf , x)− ψ̄(x)

]2
dx+

1

2

∫ L

0

∫ tf

0

C2 dx dt , (4.8)

where ψ̄ is the desired target pattern and tf is a fixed final time. The first term in Eq. (4.8)
accounts for the control task itself, while the second one aims to limit the variations of C. Finding
the control function C that minimises the objective functional J is a typical optimal control
(model-based) task. There are many publications devoted to this kind of problems (see, for
example, Refs. [52, 53, 176]), however they differ from our approach in many ways.

The most significant difference is that distributed control corresponds to an external force
added to the system1, whereas what we propose here is to control the system by dynamically
varying the parameter associated with the distance from the critical point of the phase separation
(e.g. the temperature θ near θc). The control problem that we aim to tackle, embodied in
the critically-controlled Allen-Cahn equation (4.6), is fundamentally different from the one of
Eq. (4.7). In our case, the control function C multiplies the phase field ψ (in mathematics this
known as a bilinear form in the variables C, ψ), and this makes the associated optimal control
problem a much more challenging task [177]. In addition, the added external force breaks the
ψ → −ψ symmetry, while the multiplicative control parameter does not.

Another major difference lies in the fact that we aim to control pattern formation starting
from a family of random initial conditions, whereas the works cited above assume a fixed initial
state. This constraint also greatly complicates the model-based approach. Finally, most work
on this type of problems uses a control function C(x, t) that is space-dependent, whereas we are
interested in a function that is uniform in space and varies only in time.

Some recent work by Kurita and Tsukada [54, 55, 56] explores an approach to controlled
pattern formation that is closer to ours. Their model is based on a phenomenological equation for
phase-separation dynamics under an inhomogeneous temperature proposed by Jaiswal et al. [178].
The resulting model equation reads

∂ψ

∂t
= ∇2

[
C(x, t)ψ + ψ3 −∇2ψ

]
, (4.9)

1Incidentally, this is instead the approach we used for the control of clusters in previous chapters, where we
considered the presence of an external field.
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where C(x, t) is a control function called “phase-separation trigger”. This function can be
either +1 or −1 and locally triggers the phase separation. As we can see from Eq. (4.9), their
approach is indeed similar to ours. However, their model describes the dynamics of a conserved
order parameter, and thus is based on a different equation (the Cahn-Hilliard equation), rather
than the Allen-Cahn equation. Moreover, they use a space-dependent control function, and
most importantly they do not attempt to reach a desired target pattern. What they do is to
systematically explore the morphologies that emerge when phase-separation triggers with different
spatial distribution and speed are considered (see Fig. 1.5).

Other work exploring an approach similar to ours has been conducted by Golovin et al. In
particular, in Ref. [179], they present a closed-loop control approach for pattern-forming systems
described by the 2d Swift-Hohenberg equation. This equation is used to model a large class of
nonlinear systems that exhibit spatiotemporal pattern formation, such as the Rayleigh-Bénard
convection in fluids [180]. In a rescaled form, it can be written as

∂ψ

∂t
= Cψ − (1 +∇2)2ψ + aψ2 − bψ3 , (4.10)

where C is the critical parameter which is proportional to the distance from the instability
threshold, a is a parameter that characterizes the competition between stripes and hexagonal
patterns, and b = ±1. The case b = +1 corresponds to a regime in which Eq. (4.10) describes
relaxational dynamics leading to the formation of stripes or hexagonal patterns, while the case
b = −1 leads to a blowup and does not describe pattern formation dynamics.

In Ref. [179], the authors investigate two different closed-loop control approaches of Eq. (4.10).
The first is to control the competition between the formation of stripes and hexagons by tuning
the parameter a, in the b = +1 regime, and the second is to suppress the blowup by controlling
the critical parameter C, in the b = −1 regime. In the latter, the spatially-constant critical
parameter C is varied over time as a function of ψ, in an approach that is similar to ours for
the Allen-Cahn equation. However, they choose a specific functional form C = C0 − pmaxx |ψ|,
with p > 0, to prevent blowup. This is different from out approach where wo do not assume any
specific functional form, and we wish to reach a specific target pattern in finite time.

4.2.3 Linear stability analysis

The constant profile ψ(x, t) = 0 = ψ0 is a stationary (time independent) solution of the controlled
Allen-Cahn equation. Depending on the value of the control parameter C, the stability of ψ
with respect to a small perturbation δψ(x, t) varies. Indeed, by plugging the perturbed profile
ψ = ψ0 + δψ into Eq. (4.6), we obtain the linear equation

∂δψ

∂t
≈ ∇2δψ + C(t)δψ , (4.11)

where we neglected the nonlinear term because of its small amplitude. Let us consider a small
harmonic perturbation of the form δψ = A exp (i(ωt− qx)) with A
 1 in Eq. (4.11). With C
independent of time, we obtain the linear stability equation

iω = C − q2 . (4.12)

The quantity Re (iω) corresponds to the growth rate (or decay, depending on its sign) of the
perturbation. If the perturbation grows with time, it is said to be unstable. The behaviour of
the growth rate for the three possible values of C is illustrated in Fig. 4.8. When C ≤ 0, any
perturbation decreases spontaneously, and the profile ψ is therefore stable. Higher wavenumbers
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Figure 4.8: Growth rate of the perturbation δψ for different values of the control parameter C.

q, corresponding to smaller wavelengths, decay faster. When C > 0, the range of values of the
wavenumber 0 ≤ |q| ≤ C1/2 has a positive growth rate, corresponding to an unstable perturbation.

This analysis also allows us to justify the restricted choice of C values used for control
{−1, 0, 1}. Indeed, having more values of C, or even allowing C to vary continuously within an
interval, would not give the learning agent a qualitatively different control over the stable or
unstable character of the perturbation.

For C > 0, the critical wave number qc = C1/2 defines a characteristic length of the system

xc =
2π

qc
=

2π

C1/2
, (4.13)

which is related to the minimum size of features in the profiles that appear during the dynamics.
Similarly, we can define a characteristic time associated with the largest growth rate

tc =
1

max (Re (iω))
=

1

C
, (4.14)

which corresponds to the typical timescale associated with the development of features in the
profiles of the controlled Allen-Cahn equation. Since in our control problem the only allowed
positive value of C is 1, we simply obtain xc = 2π and tc = 1.

4.2.4 Simulation parameters

To simulate the dynamics of Eq. (4.6) we have used a pseudo-spectral method called exponential
time differencing (ETD), explained in detail in Ref. [181]. In particular, we have implemented
the “second-order Runge-Kutta ETD” (ETDRK2) integration scheme in Python.

The Allen-Cahn equation is symmetric with respect to the phase field ψ, i.e. invariant to
the ψ → −ψ transformation. It is also invariant to spatial translation x → (x + x0) type
transformations) and reflection symmetry (x→ −x). To reflect the translational symmetry and
for simplicity, we naturally choose to simulate the dynamics of this equation in a space with
periodic boundary conditions. We have used a periodic box of length L discretized into uniformly
spaced bins of size dx.
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The characteristic time of the variations of the control parameter C, that we call tact, will be
of the order of the physical characteristic time tc of Eq. (4.14) associated with the instabilities of
the equation. The step for the time integration dt, instead, will be smaller than this characteristic
time, in order to correctly resolve the dynamics. For our simulations, we used dt = 1/8.

On the other hand, the characteristic spatial scale xc of Eq. (4.13) gives us the guidelines for
choosing a size L of the simulation box that is much larger than tc, so that we have enough space
to observe the emergence of features in the profiles. Instead, the space bins need to be smaller than
xc, to have sufficient spacial resolution. In the rest of this work, we used L = 26 and dx = 1/2.

In order to explore various dynamic trajectories during learning, we choose to study the
dynamics starting from initial conditions composed of a small number of periodic sinusoidal
modes of random amplitude and phase shift

ψ(x) =
1

nmax − nmin + 1

nmax∑
j=nmin

Aj cos (qjx+ ϕj) , (4.15)

with qj = j2π/L. We discard the mode j = 0 in the decomposition, which is associated to a
constant, to preserve the ψ → −ψ invariance of the dynamics. We choose nmin = 1, so the first
mode has a wavelength equal to the dimension of the box L, and the last mode L/nmax. To
restrict the number of modes and ensure that the last mode is sufficiently resolved, we choose
L/nmax > xc. In the following, we will use nmax = 5, i.e. a minimal wavelength of about 2xc.

Depending on the type of physical system studied, constraints may impose relations between
the initial amplitudes Aj (for example, equipartition implies that |Aj |2(q2j + 1) ∼ kBT/2 from
Eq. (4.2) if the system is prepared at equilibrium in the high-temperature phase). In order not to
lose generality, we choose instead random values of the amplitudes Aj and phase shifts ϕj , taken
uniformly in the respective intervals 0 ≤ Aj ≤ 1 and 0 ≤ ϕj ≤ 2π.

4.2.5 Attractor and dynamics in the intermediate-time regime

The typical dynamics of the critically-controlled Allen-Cahn equation for the three possible values
of the control parameter C and in the intermediate time regime, i.e. when the maximum duration
of the dynamics does not exceed a few tens of times the characteristic time tc, is shown in Fig. 4.9.
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Figure 4.9: Typical dynamics associated with the three allowed values of the control parameter
C, starting from the same random initial condition (in red). The value C = 1 leads to the growth
of the profile amplitude and the appearance of positive and negative phase domains. The values
C = 0 and C = −1 lead to a decrease of the profile amplitude, since they stabilize the solution
ψ = 0. The final time is tf = 8tc.
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Using the random initial condition defined in Eq. (4.15), the value C = 1 leads to the growth
of the profile amplitude and the appearance of domains of varying size, represented by plateaus
at ψ = ±C1/2 = ±1 values, corresponding to the minima of the potential (see Fig. 4.5). The
domains are continuously separated by structures called kinks when they are increasing, and
anti-kinks when they are decreasing. The width of these structures is of the order of xc.

Once the kinks and anti-kinks have been formed, the dynamics become slower. For a set
of n pairs of kink/anti-kink centred on the positions

[
(xk1, x

ak
1 ), . . . (xkn, x

ak
n )

]
, the profile can be

approximated by Kawasaki and Otha’s multi-kink ansatz [182]

ψ(x) ≈ C1/2

[
−1 +

n∑
i=1

tanh

((
C

2

)1/2

(x− xki )
)
− tanh

((
C

2

)1/2

(x− xaki )

)]
. (4.16)

However, from time to time, a kink and an anti-kink coalesce and annihilate, leading to a slow
increase of the average domain size. The phase domains grow until all the kinks and anti-kinks
disappear and give rise to a single domain, i.e. a flat profile either at ψ = 1 or ψ = −1, depending
on the initial condition.

In contrast, the values C = 0 and C = −1 lead to a decrease of the profile amplitude, which is
faster for the case C = −1, until converging asymptotically to a flat profile at ψ = 0, as expected
from the linear stability analysis that we performed earlier (see Fig. 4.8).

The set of solutions of Eq. (4.16) defines a powerful attractor of the dynamics of the Allen-Cahn
equation. Even for controlled dynamics, where the value of parameter C can be varied several
times during evolution, we observe that the shape of the profile tends rapidly toward one of
the morphologies based on kinks and plateaus given by Eq. (4.16). This strong morphological
constraint greatly limits the control of the Allen-Cahn equation. We will now focus on tasks
that consist of reaching specific target solutions belonging to the attractor, starting from random
initial conditions.

Note however that, during the transient relaxation between C = 1 and C = 0 or −1, we
can also reach shapes that exhibit a kink and plateau profile with intermediate values of the
amplitude between 0 and C1/2, as shown in Fig. 4.10. Since they can generically be reached
during the dynamics when C is varied, we consider these profiles with an intermediate plateau
height as being part of the attractor of the controlled Allen-Cahn equation. Moreover, due to
their non-stationary character, and to the fact that they do not exist as solution of the standard
Allen-Cahn equation, these profiles are interesting candidates for target states.

4.3 Control of the 1d Allen-Cahn equation

For our control task, we have used the double DQN algorithm described in Section 1.4.3. Our
environment is given by the evolving critically-controlled 1d Allen-Cahn equation (4.6), integrated
using the ETDRK2 scheme and with the space and time discretisation parameters dx and dt
discussed in Section 4.2.4. The agent can change the control parameter C(t) at regular time
intervals tact, by choosing among the three discrete actions A = {−1, 0, 1}.

Since we are using a DQN, only the state representation is an input to the neural network.
In this way, the agent only receives information about the current shape of the profile, while it
receives nothing about the value of C(t). Following the approach of Ref. [66], we then represent
the state of the environment at time t by a set of nprof stacked profiles of the Allen-Cahn equation
at successive times, separated by a sampling interval tsamp. The result is an augmented state
containing the information of the last nprof profiles and, in a sense, is analogous to adding the
information about temporal derivatives [62].
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Figure 4.10: Starting from an initial profile (in red) with plateaus at amplitudes ±C1/2 = ±1, it
is possible to reach shapes with plateaus at intermediate amplitudes by setting C = 0 or C = −1
and letting the profile relax towards ψ = 0. Here, we have set C = 0 and a final time tf = 8tc.

All the temporal parameters of the integration and of the learning algorithm depend on the
characteristic time of the instability tc. In particular, we want dt � tc (to resolve the dynamics),
tact � tc (for the instability to have time to develop), tsamp � tc (so that the state contains enough
information about the development of the instability). In practice, during the time interval tact
separating two actions, the equation of the dynamics is integrated tact/dt times, and tact/tsamp

uniformly spaced profiles are taken to constitute a state. This splitting is illustrated in Fig. 4.11
in the case dt = tc/2, tact = 2 tc, and when the state is composed of nprof = 2 profiles separated
by tsamp = 2 dt. To reduce the size of a state, we also choose to coarsen its representation by
skipping one spatial value of the profile every two when forming a state.

Figure 4.11: Illustration of the relations linking the different characteristic times involved in a
learning episode and in the definition of the state of the environment. For this diagram, we show
the case tc = 2 dt, tact = 2 tc. The state is composed of 2 profiles separated by tsamp = 2 dt.
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For the architecture of the DQN used to approximate the Q-function, we took inspiration
from Ref. [62]. This architecture is depicted in Fig. 4.12. The neural network takes as input the
data array representing a state, with dimensions L/(2 dx)× nprof, where the factor 2 comes from
the fact that we skip one point every two in the profile, and the second dimension (analogous to
the RGB channel of an image) is the dimension along which the profiles are stacked. Then, there
are three hidden layers.

Figure 4.12: Architecture of the DQN used to approximate the Q-function. The neural network
is composed of two successive convolution layers followed by a dense layer. Image modified from
Patel et al. [183].

The first hidden layer is a convolutional layer. A convolutional layer contains a set of filters,
called kernels, the parameters of which are to be learned throughout the training. The size of
the kernels is usually smaller than the actual input. Each kernel convolves with the input and
creates an activation map, as illustrated in Fig. 4.13. The kernel is slid across the height and
width of the input and the scalar product between every element of the kernel and the input
is calculated at every spatial position. The stride of a kernel defines the step size of the kernel
when sliding through the input array. The output of the convolutional layer is generated by
stacking the activation maps of each kernel in an array. Each activation map corresponds to a
so-called channel of the output. This type of layer is common in the field of image processing,
where convolutions are used, for example, for edge detection or image segmentation. The use
of convolutional layers greatly reduces the number of trainable parameters and thus facilitates
learning [184].

For our application, we have used a convolutional layer with a kernel of dimension 5×1×nprof

and stride 1. We have used a circular padding at the boundaries due to the periodicity of the
simulation box. The output of this layer has 8 output channels, thus, the weights of 8 different
kernels are trained to produce this output (one for each output channel). The second one is
another convolutional layer with 8 output channels and a kernel of dimension 5× 1× 8 and stride
1. Between these layers there are nonlinear ReLU activation functions. The last one is a fully
connected (or dense) layer, which gives as output the estimates of the Q-values associated with
the available actions, i.e. the three values of C.
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Figure 4.13: Illustration of the convolution process. The first item of the activation map is
calculated by convolving the kernel with the portion in the input array marked with the red
dashed outline. The full activation map is generated by repeating this process for each portion of
the input data. The ⊗ symbol denotes the scalar product.

4.3.1 Definition of reward

For the discrete control problem of clusters discussed in Chapters 2 and 3, we have defined a
reward that assigns, at every transition from a state to another, the opposite of the expected
physical time of the transition (i.e. the residence time on the starting state). We did this choice
because our aim was to minimise the time to reach a target configuration. For the continuous
control problem of the Allen-Cahn equation that we are treating in this chapter, instead, we
choose a different approach. We have seen in Section 4.2.5 that the dynamics of this equation
are strongly attracted towards the kinks-and-plateaus morphologies given by Eq. (4.16). Trying
to minimize the time to reach a target, then, would be too constraining. What we plan to do
for this problem is instead to set a maximum time for the duration of an episode and let the
algorithm learn how to reach the target at anytime before the episode is over.

To enforce such a learning task, the most naive form of a reward function assigns an arbitrary
positive value to the target state, and assigns 0 to other states. From this simple definition, the
algorithm must learn that, to maximize its rewards, it has to reach the target state before the
end of the episode. Since all intermediate states give the same zero reward, the time it takes
the algorithm to reach the target does not matter, as long as it is less than the duration of the
episode. This type of reward function formulation has the advantage of letting the algorithm
freely explore intermediate states without negatively affecting its reward sum. However, it also
means that the algorithm has no direct feedback on the relevance of its choices leading to these
intermediate states, since their values are all identical (i.e. zero). This is particularly problematic
when it is difficult to reach the target state from most of the initial conditions. One way to solve
this problem is to provide small intermediate rewards when the system is not far from the target
state, in order to guide learning towards it. But what does “far” mean, in this context?

In the control of problem of clusters addressed in the previous chapters, we had a discrete
space of states. In that case, the notion of “distance” from the target could also be seen in a
discrete fashion. For example, one way to define the distance of a cluster shape from the target
is to use the concept of rings, introduced in Section 2.3.3. Another possibility is to consider
an overlap function, that outputs the number of particles that are in the “wrong” place with
respect to the target. However, when the space of states is continuous, we need to think about
the distance from the target as a continuous function.

Inspired by the approach of Ref. [185], we define the reward associated to state s with the
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empirical deterministic function

�(s) =

⎧⎨
⎩
100 if minψ∈s d(ψ) ≤ δ ,

exp

(
− 4

δ2
minψ∈s d(ψ)2

)
otherwise ,

(4.17)

where the notation minψ∈s means that we are taking the minimum over the profiles ψ belonging
to the state s, δ is a parameter, and d(ψ) is a continuous function representing the distance of
the profile ψ from the target, and that will be defined later. Note that, since we are using a DQN
to approximate the Q-function, we only feed to the learning agent a representation of the state of
the environment, and not a state-action pair, like in tabular Q-learning (see Fig. 1.10). For this
reason, we dropped the dependence on the action in the definition of the reward.

Figure 4.14: Schematic illustration of the reward function defined in Eq. (4.17). The blue part
corresponds to a “sparse” reward, in the sense that it is reached only by the successful episodes,
while the orange part is a decreasing exponential that guides the algorithm towards the target.

The idea behind Eq. (4.17) is to assign a positive reward r = 100 for states that satisfy the
condition minψ∈s d(ψ) ≤ δ, and hence are close to the target, within a treshold δ. The episodes
that visit such a state are considered as successful episodes. All the other episodes that do not
directly lead to the target, will still generate a certain amount of reward due to the exponential
“tail” of the reward function, as illustrated in in Fig. 4.14.

We now investigate the learning capabilities of the double DQN algorithm for three different
tasks, associated with different formulations of the target itself via the distance function. A
scheme of the complete algorithm that we have used for the control of the Allen-Cahn equation is
reported in pseudocode in Appendix A.3.

4.3.2 Results

We have considered three different types of targets. The first one is a “fixed” target, and it is
the most restrictive one. It is defined by the exact correspondence between the profile ψ and the
target profile ψ̄, within the threshold δ. This definition of target is illustrated in Fig. 4.15(a) and
can be seen as a zero-parameter family of profiles, in the sense that it corresponds to a single
point in the configurational space of the Allen-Cahn equation.

The second one is a “translated” target and it is given by the set of spatial translations of a
given profile ψ̄. In this case, we are imposing an exact match of the relative positions of the kinks
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and anti-kinks, as well as the amplitude of the plateaus. In other words, what matters is that
the target morphology is reached, but it does not matter at what absolute position within the
simulation box. This target is depicted in Fig. 4.15(b) and corresponds to a 1-parameter family
of profiles, where the parameter is the horizontal shift of the whole profile.

Finally, we have considered a third target, that we have called “energy-based”, because its
definition involves the use of an energy functional, as we will see later. This target, illustrated in
Fig. 4.15(c), is the least restrictive one. In order to reach this target, the algorithm only needs to
match a desired number nk of kink/anti-kink pairs, as well as the amplitude of the plateaus. It
can be seen as a 2nk-parameter family of profiles, where the 2nk parameters correspond to the
horizontal shifts of the kinks and anti-kinks.
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0 L
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0

(b)

0 L
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0

(c)

Figure 4.15: Schematic representation of the different definitions of targets. The three cases show
a perfect match (within the tolerance δ) between a profile ψ (in red) and a target ψ̄ (in black,
dashed) for the three targets: (a) fixed, (b) translated, (c) energy-based. Red arrows represent
the degrees of freedom.

Before addressing the problem of achieving a target morphology based on kinks and antikinks,
let us begin with a test of the algorithm’s validity on a trivial problem: taking an initially flat
profile of arbitrary amplitude between 0 and 1 to a flat target profile ψ̄(x) = 0.8. In this case, the
gradient ∇2ψ disappears from Eq. (4.6), and an initially flat profile remains flat. The solution
can then be represented by scalar functions without spatial dependence.

For this test, we use the fixed target, defined by the distance function

dfixed(ψ, ψ̄) =

[∫ L
0

(
ψ(x, t)− ψ̄(x))2 dx∫ L

0
ψ̄(x)2dx

]1/2

. (4.18)

With this definition of target and the initial and target profile defined above, it is possible to reach
a success rate of 100%, where the success rate is defined as the percentage of initial conditions
that reach the target.

We impose the initial condition to be a flat profile at a random amplitude chosen uniformly
between 0 and 1. The amplitude of the target profile ψ̄(x) = 0.8 is chosen so that it does not
match the amplitude of the stationary solution associated with any of the values of C available to
the algorithm (C = 0 and C = −1 lead to a zero stationary solution, and C = 1 leads to a solution
of amplitude ±1). For this specific analysis, we use the values tact = tc = 1 and tf = 32 tc = 32.
The tolerance of the reward function is set to δ = 0.04.

In Fig. 4.16 we report the evolution of the success rate during the learning process on 1000
episodes. Since the convergence of the algorithm varies from one training to another, this quantity
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is averaged over 20 independent trainings. In the plot, we also add the success rates of two
untrained random policies: in red, one that chooses C from the complete set of actions {−1, 0, 1},
and in blue, one that chooses only between the two values {0, 1}. The rate obtained with the
first policy is ∼ 76%, and this confirms that the algorithm is indeed learning to control the
environment, since it reaches an average of ∼ 99%, after about 800 episodes. The random policy
choosing between 0 and 1 obtains a success rate close to 100%. This result is not trivial because
the time tact is here equal to the characteristic time of the dynamics tc, so that the height of
the plateau has time for partial relaxation towards the stationary values ψ = 0 or ψ = 1. If tact
was much smaller than tc, then the effect of the random policy would be an average value of
C = 0.5 for the {0, 1} random policy and C = 0 for the {−1, 0, 1} random policy, leading to an
effective stationary plateau height at 0.51/2 ≈ 0.7 or close to zero respectively. Since the value
ψ = 0.51/2 ≈ 0.7 is closer to the target value ψ̄ = 0.8, this suggests that the {0, 1} policy is more
efficient.

Figure 4.16: Evolution of the success rate over the course of learning. The average values over 20
learnings are represented by solid lines, and the standard deviations by the coloured surfaces.

Unlike the case of clusters, here we cannot resort to a simple graph representation of the
states of the system to visualize the learned policy. To have an idea of which actions are chosen
by the algorithm we have to resort to other ways. In Fig. 4.17 we plot what is the first action
chosen, on average, by the agent for different amplitudes of the initial flat profile. An intuitive
interpretation of this plot is as follows.

For amplitudes that are much lower than the final value ψ̄ = 0.8, the 20 policies always chose
C = 1 as first action, which has the effect of increasing the amplitude of the profile. Around
the value 0.8, we are in a special case: we are setting the initial condition on the target itself
(within the threshold of the distance function) and we want the algorithm to find a way back to
it, somewhat like in the case of clusters when looking at the mean return time to target. Since no
value of C allows the profile to remain stationary, the algorithm must first move the profile out of
the target morphology and then come back to it with a subsequent action. This leads policies
to propose different values of C as a first action in the neighbourhood of 0.8. Finally, for initial
amplitudes close to 1, most policies try to decrease the amplitude with the value C = 0, and
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Figure 4.17: First action chosen by the algorithm, averaged over the policies obtained after 20
learnings, depending on the amplitude ψ0 of the initial flat profile. The vertical dashed line
corresponds to the amplitude of the target profile ψ̄.

some even use the value C = −1, to decrease it more quickly.
Having confirmed that the learning algorithm works correctly, we now proceed to present the

results for the three different families of targets.

1. Fixed target

For this task, we train the algorithm to bring an initial profile randomly chosen among the family
defined by Eq. (4.15) towards a fixed target profile typical of the attractor of the Allen-Cahn
equation, for episodes of length tf = 32. We use the distance function defined above in Eq. (4.18),
with a tolerance on the reward which is set again to δ = 0.04. We choose for simplicity a target
profile composed of one centred kink/anti-kink pair, separating plateaus of amplitudes equal to
± 0.8. We use Eq. (4.16) to design the target profile

ψ̄(x) = 0.8

[
−1 + tanh

((
0.8

2

)1/2 (
x− L

4

))
− tanh

((
0.8

2

)1/2 (
x− 3L

4

))]
. (4.19)

The evolution of the success rate during learning is shown in Fig. 4.18, averaged over 10
independent learning tasks. Here, the success rates of both the two random policies and the
trained one are extremely low, between 0.15% and 0.25%. We believe that these poor results are
due to the fact that very few random initial conditions are intrinsically able to reach the fixed
target. In an attempt to understand the reasons leading to this phenomenon and the resulting
low performance of the learning algorithm on this task, we develop here a qualitative argument.

In Fig. 4.19 we show the evolution of an initial profile (in red) composed of periodic sinusoidal
modes, as given by Eq. (4.15), toward the symmetric single-period target of Eq. (4.19) (in dashed
black line). When the initial condition contains only one centred mode, with a wavelength
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Figure 4.18: Evolution of the success rate over the course of learning for the fixed target, with
tact = 1. The average values over 10 learnings are represented by solid lines, and the standard
deviations by the coloured area.

corresponding to the size L of the simulation box

ψ(x, 0) = −A cos

(
2π

L
x+ ϕ1

)
, (4.20)

with A > 0 and ϕ1 = 0, then the dynamics tends naturally towards a final morphology that has
one kink and one anti-kink aligned with the target profile ψ̄(x), when the value C = 1 is kept
constant, as shown in Fig. 4.19a. This final profile is then easily brought by the algorithm to
the desired target amplitude 0.8 by switching C to 0 or −1, as shown in Fig. 4.10. When the
phase shift of the first mode ϕ1 is non-zero, then the initial profile is shifted relative to the target,
and this leads to a similarly shifted final profile (this case is not shown in Fig. 4.19). Therefore,
we expect the value of the phase shift to have a significant impact on the success rate of the
algorithm.

When more than one mode is included in the initial condition, then the final morphology can
vary greatly, depending on the relative amplitude of the modes, as shown in Figs. 4.19b and 4.19c.

In order to investigate these effects on the trained policies, we have performed a systematic
analysis of the influence of the phase shift of the first mode of the initial condition on the success
rate. The results of this analysis are shown in Fig. 4.20. The black line corresponds to the case
where the algorithm is trained with initial conditions that have only one mode, as in Eq. (4.20).
For a centred initial condition (i.e. ϕ1 = 0), the algorithm reaches a success rate of 100%, as
expected. This is also the case for values of of the phase shift ϕ1 higher than 0, up to an offset of
about 1% of the size L of the domain. This is a consequence of the tolerance threshold δ in the
definition of the reward. For values of ϕ1 higher than this threshold, the success rate drops to
0%, which suggests that the algorithm is not able to learn to shift the profiles by varying the C
parameter.

The blue and orange lines correspond instead to the success rates obtained when the initial
conditions are respectively composed of the first 2 modes and all 5 modes, for which the phase
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Figure 4.19: Illustration of the phenomenon of interaction of modes and the impact of the
dominant mode in the morphology, for C = 1 and tf = 5tc. (a) The dynamics of the largest
mode, alone, leads to a symmetrical final profile with the same period of the initial condition. (b)
Disruptive addition of the second mode. By interaction, the final profile is no longer symmetric
and is slightly shifted with respect to the initial position of the first mode. (c) As the amplitude
of the second mode increases, its contribution to the dynamics of the system becomes more
important, and the final profile can have the same period as the initial condition (the legend has
been omitted for visualization purposes).

Figure 4.20: Evolution of the success rate of trained policies with different types of initial
conditions as a function of the phase shift of the first mode ϕ1. The black, blue and orange curves
correspond respectively to initial conditions with only the first mode, the first two modes, and all
modes. Each point is averaged over 10 trainings.

shifts of the modes with indices greater than 1 are chosen randomly, while the amplitude of the
first mode is kept at 1/2. In this case, a success rate of 100% is never achieved, even when the
first mode is aligned with the target (ϕ1 = 0). However, non-zero success rates are obtained
for some shifts beyond the tolerance threshold. We think that this phenomenon is due to the
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interactions between the modes, as illustrated in Fig. 4.19b, which shows that when a second
mode of small amplitude is added to the initial condition, the final profile can have a single
wider, shifted plateau. The exact width and the shift of this plateau depend on the values of the
amplitude and phase shift of the second mode. This can lead an initial condition to reach the
desired target even if the first mode is shifted from the target beyond the distance threshold δ.

The success rates obtained when the initial condition is composed of all 5 modes are lower
than ones for the first 2 modes, but are non-zero for larger values of the initial offset. This can
be interpreted, in light of the previous considerations, as the fact that when the number of modes
that can interact is large, these interactions greatly influence the dynamics, and the position of
the first mode is no longer as important as when fewer modes are present in the initial condition.

In conclusion, the analysis presented here, and in particular the results shown in Fig. 4.20,
suggests that it is difficult to shift an initial condition with a dominant mode that is not aligned
with the target profile just by acting on the control parameter C. Although the target is part of
the attractor of the Allen-Cahn equation, in practice only a restricted number of initial conditions
are intrinsically able to reach a desired fixed morphology, and it seems that the learning algorithm
is not able to increase significantly this number. Hence, imposing a fixed target is perhaps too
restrictive for the DQN agent, which cannot access a large enough statistical sample to learn an
optimal policy that is better than a random one, assuming such a policy exists.

2. Translated target

We now consider the case of a translated target. This target can be defined by extending the
definition of Eq. (4.18) for a fixed target to the set of spatial translations {ψ̄} of a given target
profile ψ̄.

We use the reward function defined in Eq. (4.17), but this time we define the following distance
function

dtransl
(
ψ, {ψ̄}) = min

Δx
dfixed

(
ψ, ψ̄(x−Δx)

)
= min

Δx

[∫ L
0

(
ψ(x, t)− ψ̄(x−Δx)

)2
dx∫ L

0
ψ̄(x)2dx

]1/2

, (4.21)

with 0 ≤ Δx ≤ L. In this case, for a target profile in the form of Eq. (4.16), this formulation
imposes an exact match (within the tolerance threshold δ) of the relative positions of the kinks
and anti-kinks, and of the amplitude of the plateaus.

For the learning task, we set a random initial condition, including all 5 modes of Eq. (4.15),
and consider the same target profile ψ̄ given by Eq. (4.19) that we have used for the fixed target,
consisting in a single kink/anti-kink pair (see Fig. 4.19).

In Fig. 4.21 we show the evolution of the success rate, again averaged over 10 independent
tasks, for episodes of length tf = 32. Changing the target to a set of shifted profiles rather than
considering a fixed one effectively improves the number of initial conditions potentially leading to
success. Indeed, we can see that the success rate of the completely random policy (red line) is
close to 5%. In this case, the optimal policy learned by the algorithm approaches 15% success
rate, and also outperforms the random policy that can choose only the actions {0, 1} (blue line),
contrary to the case of the fixed target.

The performance shown in Fig. 4.21 was obtained with a time interval between two actions
tact equal to the timescale associated to the development of the kinks and anti-kinks tc, i.e.
tact = tc = 1. We have conducted an analysis of the effect of the value of tact on the success rate
of the algorithm. The results of this analysis are reported in Fig. 4.22. Between tact = 1 and
tact = 4, the success rate varies weakly, and shows a small peak for tact = 4. For values tact > 4,
the success rate drops, suggesting that, in this range, the number of actions during an episode
(which has maximum duration tf = 32) is not sufficient to achieve an effective control.
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Figure 4.21: Evolution of the success rate over the course of learning for the translated target,
with tact = 1. The average values over 10 learnings are represented by solid lines, and the standard
deviations by the green area.

Figure 4.22: Success rate as a function of the ratio tact/tc, for the trained policy and the two
considered random policies.

To try to visualize and interpret the learned optimal policies, we show in Fig. 4.23 two
histograms, obtained with the value tact = 4 at which the algorithm performs better. Figure 4.23a
shows at what time, on average, the algorithm achieves a success during an episode, while
Fig. 4.23b shows in what proportions each action is chosen, on average, at different timesteps
during an episode. We can see that the algorithm primarily uses the value C = −1 as the first
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action until t ≈ 4, and then switches to using mostly C = 1 until t ≈ 12, before finally using
C = 1 and C = 0 in similar proportions, almost without using C = −1.

We can give a heuristic interpretation of this behaviour in the following way. Since the
action C = −1 has the effect of reducing the amplitude of the profile and rapidly decreasing the
small-wavelength modes (see Fig. 4.9), we can imagine that an efficient sequence of actions could
be to use the value C = −1 at the beginning, when the first mode of the initial condition (which
is morphologically close to the target) is not dominant, in order to reduce the relative amplitudes
of the other modes. Then, once the mode n = 1 has become dominant, use the value C = 1 to
restore the amplitude of the profile, and finally oscillate C between 0 and 1 to make the profile
reach the desired amplitude of the target.

(a) (b)

Figure 4.23: Histograms (a) of average occurrences of successes and (b) proportions of choices of
different actions during an episode. The interval between actions is tact = 4. Averages are taken
over 105 episodes.

To complete this analysis, we now test to what extent the optimal policies based on a closed-
loop approach (i.e. depending on the current state of the system) can be approximated by
stochastic open-loop policies, whose behaviour depends only on time and no longer on states.

We start considering an open-loop policy that chooses the actions as a function of time based
on the average probabilities extracted from the histogram in Fig. 4.23b. The performance of this
policy is reported in Fig. 4.24a. The final success rate is about 12%, compared to the 16.5% of
the closed-loop trained policy (Fig. 4.23a). This result seems to suggest that the state of the
system contains indeed important information that the agent is able to exploit and that does not
allow a simple open-loop policy to reach the same performance of the closed-loop one. But what
if we try to add our human intuition to design an efficient open-loop policy?

We define an ad hoc policy, that varies C(t) as a function of time in the following manner

C(t) =

{
0 if 0 ≤ t ≤ 16 or 20 ≤ t ≤ 24 or 28 ≤ t ≤ 32 ,

1 otherwise .
(4.22)

Such a policy corresponds to keeping C = 0 constant during the first half of the episode, until
t = 16, to make the first mode of the profile dominant over the other modes, since it is the
one with the lowest decay rate. Then, it alternates between C = 1 and C = 0, to restore the
amplitude of the profile and oscillate it close to the desired target value. We choose to keep
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C = 0 at the beginning, rather than −1, because both have the effect of reducing the amplitude
of high-frequency modes, but C = −1 leads more quickly to a profile very close to 0, for which it
is harder to restore the amplitude to a value of order 1.

The performance of this policy is shown in Fig. 4.24b. We can see that it achieves a total
success rate of ∼ 20%, higher than the 16.5% success rate obtained under the same conditions by
the trained closed-loop policy (see Fig. 4.23a). The histogram shows a peak responsible for the
majority of successes which appears immediately after t = 16, when the C value is reset to 1,
showing that the C = 0 value effectively increases the relative amplitude of the first mode and
thus smoothes the profiles enough to match the target morphology.

(a) (b)

Figure 4.24: Histograms of the average occurrences of successes during an episode for (a) the
stochastic policy based on the histogram of Fig. 4.23b and (b) the ad hoc policy of Eq. (4.22).

Despite its simplicity, the policy of Eq. (4.22) provides better performance than the policy
learned by the algorithm. It is possible that by extending the training time and carefully adjusting
various parameters of the neural network and the learning algorithm, the agent could achieve a
better or at least equal performance to that of this policy. However, we have not investigated in
this direction further.

The conclusions we can draw from the analysis performed in this part are as follows. By
extending the control task to achieving a morphology defined only by the number and relative
position of kinks and anti-kinks (and not their absolute position), the control algorithm based
on the double DQN succeeds in controlling the critically-controlled Allen-Cahn equation, with a
success rate of ∼ 15%, which is significantly higher than the ∼ 5% achieved by the untrained
random policy. Furthermore, by inspecting the probabilities of choosing actions as a function of
time, it is possible to manually design an open-loop policy that obtains performances even higher
than those of the DQN agent.

3. Energy-based target

Finally, we report here the results for the least restrictive definition of target, out of the three
we considered. This definition corresponds to imposing the number of kink/anti-kink pairs to
be reached (and the amplitude of the plateaus). In order to define the corresponding distance
function, we proceed as follows.
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We have seen in Section 4.2 that, for a constant control parameter C, the 1d Allen-Cahn
equation is associated to an energy functional of expression

F(ψ,C) =
∫ L

0

{
1

2
(∇ψ)2 − C

2
ψ2 +

1

4
ψ4

}
dx . (4.23)

If the profile ψ comes from the attractor of Eq. (4.16), the only contribution of ψ to F(ψ,C)
comes from the kinks and the anti-kinks, since the plateaus do not bring energy. We call the
contribution of a single kink or anti-kink Fk(C). Note that the energy contribution of a kink and
and that of an anti-kink are the same.

Let nk be the number of kink/anti-kink pairs targeted and C1/2 the desired amplitude of the
plateaus. We then define the distance function

denergy(ψ, nk, C) =

[
(F(ψ,C)− 2nkFk(C))

2
+ γ(2nk − n0)

2

Fk(C)2

]1/2

. (4.24)

The first term of the numerator acts as a quadratic distance between the energy of the current
profile and the energy of the desired profile, of approximate value 2nkFk(C). Alone, this
contribution is not a strong enough constraint on the energy to impose the desired morphology.
The second term adds an additional constraint on the number of zeros in the ψ profile, denoted
n0, which must be equal to the number of kink/anti-kink pairs of the desired morphology. The
prefactor γ is used to adjust the magnitude of this second term. We wish to use this target for
an arbitrary height of the plateaus in the target profile, as in the previous cases discussed above.

We start again by a random initial condition, including all 5 modes of Eq. (4.15). As a target,
we have decided to impose the number of kink/anti-kink pairs nk = 2, with an amplitude 0.8,
and a tolerance threshold in the reward function δ = 0.01. We show in Fig. 4.25 the evolution of
the success rate as a function of the episodes for this learning task.

Figure 4.25: Evolution of the success rate over the course of learning for the energy-based target,
with tact = 2. The average values over 10 learnings are represented by solid lines, and the standard
deviations by the green area.
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The final time of the episodes is again equal to tf = 32, and we set, following an empirical
analysis, the time interval between actions to tact = 2tc = 2. We can see that he performance
of the algorithm here far exceeds that of the random policies and presents particularly tight
standard deviations, showing stability of the learning process.

We now present a qualitative analysis of the policy learned by the algorithm. In Figs. 4.26a
and 4.26b we report the histograms of the success rate and the average action chosen to reach the
nk = 2 target defined above. The histogram of success rates is particularly peaked between t = 12
and t = 14, and shows periodic peaks of decreasing amplitude at later times. The histogram of
the action choices shows that the value C = 1 is systematically chosen as the first action, and
then the histogram has a rather periodic structure of period 8, which is higher than the period 4
of the peaks in the histogram of success rates. The fact that we can observe a structured temporal
pattern in the policy is a surprising feature, since physical time is not part of the state definition
and thus not observable by the the agent.

(a) (b)

(c) (d)

Figure 4.26: Histograms of average occurrences of successes (left) and proportions of choices of
different actions during an episode (right), for tact = 2. (a, b) Optimal policy to reach a nk = 2
target. (c, d) Optimal policy to reach a nk = 1 target. Averages are taken over 105 episodes.
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Finally, in Figs. 4.26c and 4.26d we report the results for the policy trained to reach a target
with only one pair of kink/anti-kink, i.e. nk = 1. It is interesting to see that the structure of the
histogram in Fig. 4.26d for the average choice of action has some similarities with the histogram
in Fig. 4.23b that was obtained for a translated target with one pair of kink/anti-kink. In the first
action, the value C = −1 is again chosen with high probability, followed by the subsequent action
C = 1. At later times, the values C = 1 and C = 0 are also chosen here with similar probabilities,
which corresponds qualitatively to an adjustment of the amplitude of the plateaus.

4.3.3 Discussion and perspectives

In this section, we have investigated the morphological control of the Allen-Cahn equation, a
universal differential equation that can model a spatially extended physical system close to an
instability threshold. We have developed ways to obtain closed-loop and open-loop control policies
that can dynamically change the value of a control parameter associated with the distance from
the critical point of the instability. To our knowledge, no approach has been developed for
controlling this type of system in the literature.

We noticed that the morphologies of the Allen-Cahn equation are strongly restricted to a
particular set of functions, that we call the attractor. We then studied the learning capabilities of
a double DQN-based algorithm on tasks of different complexity. By imposing target morphologies
based on sufficiently large families of the attractor functions, we showed that the control algorithm
is able to learn non-trivial strategies by exploiting the intrinsic dynamics of the system. We also
proposed ways to interpret the strategies found by the algorithm, which is not an easy task since
we are dealing with a continuous system and using an agent that relies on neural networks, which
are notoriously difficult to interpret. In some simple cases, these policies can be used to design
open-loop policies with performance that can exceed that of the learning algorithm.

Various research directions could be explored with the methods developed in this work. For
example, one could consider extending the model to the 2d case, which would allow the study
of more complex shapes, or the inclusion of stochastic noise in the Allen-Cahn equation, which
might help the dynamics break out of the restrictive morphologies of the attractor. An interesting
perspective would be to apply the learning algorithm developed here to the control of the discrete
model described in Chapters 2 and 3, for particle clusters of area greater than 12. These clusters
correspond to a space of states that is too large to be treated with a tabular approach, and thus
require an approximation method.

4.4 Model C

In the first part of this chapter, we derived a model for phase separation in an isothermal system,
and then added to this model a control parameter associated with small changes in temperature
near the critical point of phase separation. In many cases of practical interest, however, treating
temperature isothermally—or even uniformly—is not a good approximation. The Allen-Cahn
dynamics of Eq. (4.5) can be augmented to consider non-isothermal evolution by allowing the
constant temperature θ to be replaced by a field θ(x, t).

We will now outline the main ideas for deriving the model C, that can describe growth
phenomena. Note that we will consider the case of growth of a solid phase in an undercooled melt
(see Fig. 4.1a), so we will refer to θ(x, t) as the temperature field [170, 159]. However, this is a
very versatile model that can be adapted to a wide variety of growth processes driven by very
different fields, such as the supersaturation-driven growth of a precipitate, and in this case the
driving field would represent material concentration [160], or the growth of a bubble against a
viscous fluid in a Hele-Shaw cell (see Fig. 4.1c), where the field would represent pressure [186, 187].
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Similar models have also been used to describe the growth of bacterial colonies (see Fig. 4.1b).
The driving field, in this case, would be associated to nutrient concentration [188, 189].

The basic equations of model C can be derived from a single phenomenological free-energy
functional, when expressed in the so-called “variational form”, introduced by Langer [167]. In
this formulation, the model describes the evolution of two independent fields: the phase field ψ
and the dimensionless enthalpy U , defined as

U(θ, ψ) = θ − θeq − h(ψ)

2
, (4.25)

where θeq is the temperature at which the two phases are at equilibrium (i.e. the melting
temperature), and h(ψ) is a function that describes the generation of excess heat produced by
the formation of the solid phase. The free-energy functional reads

FVF =

∫
Ω

{
1

2
(∇ψ)2 + f(ψ) + λb

(θ − θeq)2
2

}
dx , (4.26)

where f(ψ) is the usual symmetric double-well function, and b and λ are constants. Then, the
equations of motion for ψ and U , in dimensionless units, are

∂ψ

∂t
= −δFVF

δψ
,

∂U

∂t
=

1

bλ
∇2 δFVF

δU
.

(4.27)

We will use here another formulation, proposed by Karma and Rappel in Ref. [159], called
the “isothermal variational formulation” and defined by the equations

∂ψ

∂t
= −δFIVF

δψ
,

∂θ

∂t
= ∇2θ − 1

2

∂h(ψ)

∂t
,

(4.28)

where

FIVF =

∫
Ω

{
1

2
(∇ψ)2 + f(ψ) + λg(ψ)(θ − θeq)

}
dx . (4.29)

The function g(ψ) is defined in such a way that the first and second derivative of g both vanish
at the minima of f(ψ). In this case, the model equations (4.28) are not derived from a single
free-energy potential. This formulation has the advantage that it allows one to choose the
functions g(ψ) and h(ψ) independently.

Note that Eq. (4.29) can be seen as a modification of the simple free-energy functional of
Eq. (4.2) that we have used to derive the Allen-Cahn equation, with the free energy f(ψ) that
has been replaced by the temperature-dependent function

f̃(ψ, θ) = f(ψ) + λg(ψ)(θ − θeq) . (4.30)

The free-energy potential defined in Eq. (4.30) has the form of a double-well, with the relative
height of the minima associated to the two phases that now depends on the temperature, as we
can see from Fig. 4.27.

In the following, we will use the definitions of the functions f , g and h given by Karma and
Rappel in Ref. [159] for the crystallization of an undercooled melt

f(ψ) = −1

2
ψ2 +

1

4
ψ4, g(ψ) = ψ − 2

3
ψ3 +

1

5
ψ5, h(ψ) = ψ . (4.31)
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Figure 4.27: Sketch of the free energy in Eq. (4.30) above, below and at the melting temperature
θeq. The relative height of the two minima is temperature-dependent.

Inserting these functions in Eqs. (4.28) and (4.29), we obtain

∂ψ

∂t
= ∇2ψ + ψ − ψ3 + λ(θ − θeq)(1− ψ2)2 ,

∂θ

∂t
= ∇2θ − 1

2

∂ψ

∂t
.

(4.32)

Note that there are two parameters in this model that we can change to modify (and potentially
control) the evolving morphology of the system: the coupling parameter λ and the equilibrium
temperature θeq. What we will do with this model is to consider different values of these
parameters in order to explore the diverse morphologies of the growing system. We will then
apply a geometric analysis tool to classify patterns.

4.4.1 Morphological instabilities and pattern formation

We will now present a simplified explanation of the interfacial instability which drives the pattern-
forming process during solidification. The understanding of this mechanism is due largely to
Mullins and Sekerka [190] who were the first, in 1963, to perform systematic linear-stability
analyses and to point out the underlying kinetic nature of the process. We will propose a
hand-waving argument, the reader interested in a formal analysis of this phenomenon can find
the corresponding equations in Ref. [191], for example.

Consider a flat advancing interface of a solid growing in an undercooled melt and assume
that a weak perturbation is present. If the perturbation has a wavelength that is above a certain
critical value, then it will be self-amplifying, so that small bulges that form randomly on the
solidification front will grow rapidly into thin fingers.

Intuitively, the process works as follows. When a liquid freezes, it releases latent heat. For
example, ice and water can both exist at 0◦C, but the water can freeze into ice only after it has
given up latent heat. The rate of freezing depends on how quickly heat can be conducted away
from the advancing edge of the solid. This in turn depends on how steeply the temperature
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drops from that in the liquid close to the solidification front to that in the liquid further away, as
expressed by Fourier’s law

q = −k∇T, (4.33)

where q is the heat flux density and k is the material’s thermal conductivity. In other words, the
steeper the temperature gradient ∇T , the higher the rate of heat transfer.

If a small bulge is formed at random on an otherwise flat solidification front, the temperature
gradient becomes steeper around the bulge than elsewhere, because the temperature drops over a
shorter distance, as depicted in Fig. 4.28. As a consequence, latent heat is carried away from the
bulge more rapidly than it is to either side, and the bulge grows faster. This in turn sharpens the
tip and speeds up its growth even more.

Figure 4.28: The Mullins-Sekerka instability
makes protrusions at the surface of a solidifying
material unstable. Because the temperature
gradient (shown here as dashed contours of
equal temperature) is steeper at the tip of the
protrusion, heat is conducted away faster and
so solidification proceeds more rapidly here.
Image from Ref. [192].

Figure 4.29: The Saffman-Taylor instability is
clearly visible in the pattern which occurs after
the injection of air into a Hele-Shaw cell filled
with glycerine. Image from Ref. [193].

This instability tends to amplify any irregularity on the solid front into a growing finger, no
matter how small it is. But there is another factor that sets a minimum limit to the width of
the fingers. The interface between the solid and the liquid has a surface tension. The existence
of surface tension means that an interface costs energy: the bigger the surface area, the higher
the energetic cost. Surface tension is therefore a driving force that tends to reduce surface area.
Hence, it tends to “pull” the solidification front back to its flat configuration. This stabilizing
effect is similar to that of motion by curvature discussed in Section 4.1. Thanks to this smoothing
effect, surface tension suppresses bulges smaller than a certain size. This means that the Mullins-
Sekerka instability produces a characteristic branch-tip width, set by the competition between
the narrowing of tips caused by positive feedback and their cost in surface energy. In other words,
the front develops fingers with a typical wavelength, determined by a balance of opposing factors.
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This process is entirely analogous to the morphological instability that occurs when a low-
viscosity fluid, such as air, forces its way under pressure into a viscous medium, such as glycerine,
as a branching bubble (see Figs. 4.1c and 4.29). The origin of this kind of branching instability,
called viscous fingering, was identified in 1958 by Saffman and Taylor [194]. The edge of the air
bubble moves forward into the glycerine because the pressure in the air just behind the interface
is greater than that in the glycerine just in front of it. The speed at which the interface advances
depends on how steep this pressure gradient is. This is analogous to the role of the temperature
gradient in the Mullins-Sekerka instability.

This kind of interfacial instabilities can be reproduced by the model C defined in Eq. (4.32).
The typical lengthscale of the features emerging from the instability will depend on the value of
the parameters λ and θeq of the model. We have simulated the dynamics using the implicit Euler
(IE) integration scheme [195], which we implemented with the C programming language for high
computational efficiency. In Fig. 4.30 we show some of the different patterns that the model C
can produce, starting from an initial condition of a circular domain in the center of a periodic
simulation box, with low-amplitude random noise added on the interface in order to trigger the
instability.

0.15

1

2

3

0.2 0.25

Figure 4.30: Some of the different morphologies that the model C of Eq. (4.32) can produce, for
different values of the parameters λ and θeq. Yellow and purple domains correspond to ψ = 1
and ψ = −1, respectively.

The initial conditions correspond to a constant temperature larger than θeq. Periodic boundary
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conditions are used in the simulation box. Such finite-size systems are analogous to closed systems
(e.g. a cryostat for temperature or a closed cavity inside a porous material for solution growth).
Due to this finite size, growth is not permanent and stops at some point. Morphological diagrams
like the one shown in Fig. 4.30 are well known and have been studied thoroughly in the literature,
see, for example, Ref. [196].

4.5 Matching of similar 2d patterns

In the previous section where we studied the morphologies emerging from the 1d Allen-Cahn
equation, we made use of approximation methods based on artificial neural networks. Here, we
are once again dealing with a continuous interface with an infinite number of degrees of freedom
and an approximation strategy is needed. Instead of following the same lines as in the previous
section, we choose to explore a different route for approximation based on dimensional reduction.
In order to do so, we have used the curvature scale-space (CSS) method which allows one to
represent a one-dimensional interface by a set of a few points on a square. Here, we leave the
coupling of this approximation to a control algorithm as a perspective, and we focus only on the
validation of the CSS, which is proved via the ability of identifying similarities between different
shapes.

We produce a dataset of 200 different shapes obtained by independent simulations of the
dynamics of model C, with a space discretization bin dx = 1, timestep dt = 1, a square simulation
box of side L = 400, and a total simulation time tf = 3000. The parameters θeq and λ are
fixed respectively to 0.4 and 3.5, but each simulation has a slightly different initial condition. In
particular, we change the seed to produce the random noise added to the interface of the initial
condition, a circular domain of radius 10 in the center of a square simulation box. Some examples
of shapes obtained by this procedure are given in Fig. 4.31, where we show only the interface
identified by the level set ψ = 0, obtained through a post-simulation analysis done with Python.

Shape matching methods usually rely on a reduced representation of the original shape, so
that the important characteristics of the morphology are preserved. The word “important” has
different meanings for different applications. In our case, we are interested in matching shapes
that exhibit similar local features, rather than global similarities. For example, the structure of
the most pronounced protruding fingers, rather than their exact position along the interface.

The first step in doing shape classification is shape description, in which a descriptor vector
(also called a feature vector) is generated from a given shape. The goal of description is to
characterize the shape using its feature vector. The required properties of a shape description
scheme are invariance to translation, homothetic scaling, and rotation. This is required because
these three transformations, by definition, do not change the shape of the object.

4.5.1 Curvature scale-space (CSS) representation

The reader interested in a complete survey of existing approaches for shape-based feature extraction
can refer to Ref. [197]. For our purpose, we use a method called curvature scale-space (CSS)
representation, originally proposed in 1986 by Mokhtarian [198, 199]. We choose this method
because, in addition to being robust with respect to scale, position and orientation changes of the
objects, it is also robust with respect to noise and local shape deformations.

The CSS representation is a reduced description of a planar curve that is invariant under
dilatations and rotations and is well-adapted to the description of fingers and invaginations. The
method is explained in detail in Refs. [198, 200], here we briefly summarize the main ideas to
obtain a CSS representation and to use it to classify similar shapes.
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Figure 4.31: Six examples of shapes extracted from the dataset of 200 shapes that we have used
for shape matching. Every shape corresponds to a different seed of the random number generator
used to add a noise on the interface of the initial circular domain. Only the level set ψ = 0 is
shown and not the full phase field.

This method is based on computing the curvature of the shape at varying levels of detail,
that is, for varying degrees of smoothing of the curve. The first step, hence, consists in obtaining
a parametrization of the curve which makes it possible to calculate the curvature. Such a
parametrization is made possible by considering an arclength variable u along the curve Γ and
expressing the curve in terms of two functions x(u) and y(u):

Γ(u) = {x(u), y(u)} , (4.34)

where u is the normalised arclength, ranging over the interval [0, 1]. For a closed curve, x(u) and
y(u) are periodic functions.

Then, in order to obtain versions of the the curve at varying levels of detail, functions x(t)
and y(t) are convolved with a one-dimensional Gaussian kernel g(u, σ) of width σ:

g(u, σ) =
1

σ
√
2π

exp

(
u2

2σ2

)
. (4.35)

A smoothed version Γσ(u) of Γ is defined by

Γσ(u) = {x(u) ∗ g(u, σ), y(u) ∗ g(u, σ)} , (4.36)
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where the symbol ∗ denotes the convolution operation

x(u) ∗ g(u, σ) =
∫ ∞

−∞
x(z) g(u− z, σ) dz . (4.37)

The locations of the points of zero curvature κ along the curve are determined, as shown in
Fig. 4.32, at different levels of smoothing (or scale).

Figure 4.32: The curvature of the contour on the left is plotted on the right, as a function of the
arclength parameter. The red dots correspond to the zero-curvature points.

As σ increases, the curve Γσ(u) shrinks and becomes smoother, and the number of zero-
curvature points on it decreases. Finally, when σ is sufficiently high, Γσ(u) will be a convex curve
with no curvature zero-crossings, as shown in Fig. 4.33.

Figure 4.33: Shrinkage and smoothing of the curve and decreasing of the number of curvature
zero-crossings during the evolution, from left: σ = 1, 4, 7, 10, 12, 14. Image from Ref. [201].

If the locations of the zero-curvature points of every Γσ(u) during the smoothing procedure
are determined, then the resulting points can be displayed in the (u, σ) plane. The result of
this process is the CSS representation of the curve (see Fig. 4.34). More precisely, the CSS
representation is the set of zero-curvature points {(u, σ) | κ(u, σ) = 0}.

As seen in Fig. 4.33, there are two curvature zero-crossings on every concave or convex part of
the shape, and as the curve becomes smoother, these points approach each other and create a
curve in the CSS representation of the shape, reported in Fig. 4.34.

When the protrusion or concavity disappears because of the smoothing process, the two points
join and give rise to the maximum of the curve. The height of this curve then reflects the depth
and size of a convex or a concave part of the initial shape. In other words, a curve maximum in
the CSS representation corresponds to a local feature of the shape.
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Figure 4.34: (a) A boundary and its CSS diagram. (b) Change in orientation causes a shift in
the diagram. (c) Noise creates small curves at small σ. Image from Ref. [201].

To do shape matching, only the maxima of the CSS representation are retained. Small
contours of the representation are related to noise or small ripples of the curve, hence, in order to
simplify and speed up matching, small maxima are usually not included. This representation has
the advantage of being compact, in the sense that a shape is represented by a relatively small
number of points in the (u, σ) plane, and this allows to use a matching algorithm to compare two
representations which is simple and fast.

We have used the algorithm described in Ref. [202], which compares two CSS representations
and assigns a matching value as the measure of similarity between the shapes. The comparison
procedure is based on superimposing the two representations, trying to match first the CSS
maxima at higher sigma values, and then the others, and then calculating a matching value
related to the distances between corresponding maxima in the two representations. The results of
this analysis on the dataset of 200 shapes produced with model C are reported in the following
section.

4.5.2 Results

In Fig. 4.35 we show the two best matches out of the dataset of 200 shapes (similar to those of
Fig. 4.31), as found by the matching algorithm, together with their corresponding CSS maxima
(on the left). As we can see, the similarity of the two shapes is reflected in the structure of their
CSS maxima, especially at high values of σ, which correspond to the most prominent features.

A physical law for smoothing

The smoothing process used to obtain the CSS representation is based on the convolution with a
Gaussian kernel, as explained above. However, we saw at the beginning of Section 4.1 a physical
law that naturally leads to the smoothing of the interface, the mean curvature flow Eq. (4.1).
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Figure 4.35: The two most similar shapes (on the right) and their CSS diagram (on the left) out
of the dataset of 200 shapes, as found by the CSS matching algorithm.

Thus, we tried to use this evolution law to replace the convolution with a Gaussian kernel and
obtain a CSS representation.

We have seen that the Allen-Cahn equation (4.5) converges to the sharp-interface model of
mean curvature flow when the interface width is much smaller than the radius of curvature. Hence,
it is sufficient to decouple the two fields ψ and θ in model C by setting the coupling parameter λ
to zero in order to obtain dynamics governed by the mean curvature flow model, as shown in
Fig. 4.36. In this case, the smoothing parameter is replaced by the physical integration time.

Figure 4.36: Simulation of model C with the coupling parameter λ = 0. The initial condition (on
the left) corresponds to a typical shape obtained with λ > 0. The interface smooths out according
to motion by curvature dynamics. The other parameters are: dx = 0.6, dt = 0.01, L = 250.
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In Fig. 4.37 we show a comparison between the CSS representation obtained with mean
curvature flow (left) and with the usual Gaussian smoothing (right), for the same shape, which is
shown to the side. We can see that, in fact, smoothing done with the mean curvature flow produces
a CSS representation that is complete and could potentially be used to do shape matching. In
addition, this representation is very different from the one obtained with Gaussian smoothing, in
terms of the relative heights of the maxima and the topology of the contours.

Figure 4.37: Comparison of the CSS representation obtained with motion by curvature and with
the standard Gaussian convolution, for the contour on the right. The red dot corresponds to the
starting point of the arclength parameter u = 0.

Although the mean curvature flow can be used to obtain a CSS representation of a shape, this
method is much more computationally demanding than the classic Gaussian smoothing, because
it requires the temporal integration of an equation in two dimensions and because the interface
corresponding to the level set ψ = 0 must be extracted at each smoothing step. This also has the
disadvantage that we have to keep track of the reference point u = 0, which is not the case with
the smoothing with the Gaussian kernel.

4.5.3 Discussion and perspectives

We have seen how model C dynamics can reproduce the morphological instabilities typical of
the growth of a crystal from a melt (Mullins-Sekerka instability) or the expansion of a bubble
in a Hele-Shaw cell (Saffman-Taylor instability). By randomizing the initial conditions of the
model, we have constructed a dataset of 200 different shapes, and we have then used a well-known
method of shape analysis called CSS representation to match the two most similar shapes in the
whole dataset.

The CSS representation could also be seen as a reduced and approximate representation of a
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state resulting from the dynamics of model C. An interesting perspective of this work, then, would
be to couple this type of representation to a learning algorithm similar to the one presented in the
previous section for the 1d Allen-Cahn equation and attempt to control model C morphologies.

We also tried to use the mean curvature flow equation 4.1 as a smoothing process to obtain a
CSS representation, and found that, although this technique can indeed be used, it cannot replace
the Gaussian smoothing provided by the classical CSS method due to its low computational
efficiency. However, an advantage of motion by curvature is that it could be implemented
directly in an experiment. For example, an experiment could be switched from a diffusion-limited
growth regime described by model C which produces fingers, to an equilibrium interface-kinetics
regime described by the Allen-Cahn equation which leads to motion by curvature. The CSS
representation could then be obtained from image analysis. Furthermore, the analogy between
convolutional smoothing and motion by curvature raised some interesting questions about how
these two reduced representations differ for the same a interface shape.
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CHAPTER 5

Conclusion

In this thesis, we presented a theoretical study of shape control in low-dimensional physical
systems involving stochastic or deterministic dynamics. We studied the problem of achieving
an arbitrary morphology in finite time by varying a global (macroscopic) control parameter
during the evolution of the system. The control approach that we have considered relies on the
observation of the system during the dynamics. Changes to the global parameter are made as a
function of the state of the system. This approach is called closed-loop.

The first case study we addressed is the control of small two-dimensional clusters evolving
by thermally-activated edge diffusion, with or without the presence of an external macroscopic
field. Resorting on a well-established lattice model, we have shown that, in the absence of an
external field, there is an optimal temperature for which the time to reach a specific cluster shape
is minimum. We studied which factors most influence this behaviour and predicted that the
presence of an optimal temperature depends on the compactness of the cluster.

In the presence of an external field that biases edge diffusion, we computed the optimal
closed-loop strategy to set the field as a function of the observed state of the system and found
that the time to reach the target shape can be significantly decreased, with a gain that grows
when increasing cluster size or decreasing temperature.

Using this discrete model, we also performed a computational analysis of an experimental
situation, in which we used model-free (i.e. reinforcement learning) control algorithms, which
do not require any knowledge of the governing laws of the system. Based on the results of this
and the previous analysis, we identified and proposed a number of physical systems in which our
findings could be tested. These systems correspond primarily to colloidal clusters under the effect
of an external field, e.g. an electric or magnetic field or a temperature gradient.

The second model we considered is a one-dimensional continuous model based on a gener-
alisation of the Allen-Cahn equation, typically used to describe phase transitions. In this case,
we chose to use as a control variable the parameter of the model that is associated with the
distance from the critical point of the phase transition, e.g. the temperature when the system is
close to the critical temperature. Within this framework, we have investigated the capabilities
of an advanced model-free control method based on deep neural networks, and found that this
technique is able to learn non-trivial strategies to control the number of phase domains in the
system.
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We have also considered another continuous model, in two dimensions, that can describe a wide
variety of growth phenomena. With this model we have generated a dataset of two-dimensional
closed shapes and successfully tested the capabilities of a shape-matching algorithm based on the
analysis of the curvature of the boundary. The promising results obtained with this analysis are
preparatory to the morphological control of growth phenomena.

During the course of this thesis project, several internship students collaborated with us,
making important contributions to our research. In particular:

• Baptiste Filoche worked on motion by curvature as a smoothing dynamics to obtain a
curvature scale space (CSS) representation of a 2d shape. He developed and implemented
in C a method for the contour extraction of an interface described by a 2d phase field, and
wrote a Python script to obtain the CSS representation based on motion by curvature.
Parts of his results are reported and commented in Section 4.5.2.

• Alexandre Mass studied a technique to discretise a continuous state of spaces called tile
coding. He implemented this method in Python and tested it on a famous reinforcement
learning task, known as the “mountain car problem”. His contribution was important
to better understand this approximation technique, which we initially considered for our
control problem in continuous systems.

• Christopher Greenberg Bonilla worked on the extension of the discrete lattice model
described in Section 2.1 to cluster breaking, a topic which is briefly discussed in Section 2.5.
He used a modified version of the Python implementation of the model that also allows for
the breaking of the cluster, and obtained some interesting preliminary results about the
frequency of breaking as a function of the temperature.

• Jingyu Wang and Qianlong He focused on an analytical problem which is closely related to
the control of the Allen-Cahn equation presented in Section 4.2.1. This problem consists in
controlling a nonlinear equation of the form ∂ψ/∂t = C(t)ψ − ψ3, which is the universal
amplitude equation for a pitchfork bifurcation. Differently from what we did in this thesis,
where we used a model-free approach, they explored the possibility of using model-based
control on this equation.

• Jules Vanaret worked on the control of the Allen-Cahn equation using a DQN agent. All
the results reported in Section 4.3 were obtained with Python codes written by him. His
contribution was crucial, as without his knowledge related to deep neural networks we would
not have been able to deal with such a problem. Jules wrote all the codes to implement the
DQN agent, the one to integrate the dynamics of the Allen-Cahn equation, and a series of
scripts to analyse the data obtained.

We report now a list of the main Python and C codes that have been written for the simulations
and the data analysis that have been performed during this work (when not specified, the language
used is Python):

• Implementation of the discrete lattice model for fluctuating clusters
• Implementation of value iteration
• Implementation of iterative policy evaluation
• Implementation of Monte Carlo control
• Implementation of Q-learning
• KMC code to simulate the dynamics of fluctuating clusters
• Code to generate all possible configurations of a polyomino and classify them by symmetry
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• Code to plot a dynamical graph of a cluster
• Code to count number of degenerate states
• Code to count temperature transitions of a policy
• Code to check approximations of M0 and Mφ

• Implementation of Implicit Euler scheme (in C) to simulate the dynamics of model C
• Implementation of ETDRK2 scheme (in C and Python) to simulate the dynamics of the
Allen-Cahn equation

• Implementation of the CSS extraction and matching algorithm (in C and Python)
• Implementation of a DQN-based learning algorithm (written by Jules Vanaret)
• Code to extract the profile from a 2d phase field and obtain a CSS representation based on

motion by curvature (written in C and Python by Baptiste Filoche)

In all these codes an extensive use of the Python libraries numpy and matplotlib has been made.
The DQN-based algorithm has been implemented using the GPU-accelerated deep learning library
pytorch. To plot dynamical graphs of the clusters we have used the pygraphviz library.

The analysis on model-based control and equilibrium dynamics of particle clusters presented
in Chapter 2 has been reported in a paper, which is currently under review. During the course of
this PhD thesis we also spent some time finalising another paper, which reports the results of my
master internship on the influence of elastic strain on solid-state dewetting. This paper has been
published in Physical Review Letters in January 2022:

F. Boccardo, F. Rovaris, A. Tripathi, F. Montalenti, and O. Pierre-Louis. “Stress-Induced
Acceleration and Ordering in Solid-State Dewetting”. Physical Review Letters 128, 026101 (2022).

This work has been a pioneering experience in a hybrid and strongly emerging field of research,
namely that of the application of control theory techniques to physical models. As physicists, we
had to roll up our sleeves and learn the basics of model-free and model-based control methods,
techniques that belong mainly to the fields of computer science and applied mathematics, and for
which we were not well prepared at first. This initial effort, however, paid off, as it allowed us to
see well-known models (in particular the lattice model of clusters and the Allen-Cahn equation)
from new perspectives, and to ask questions that had not yet been asked about these models.

There are many exciting perspectives that lie ahead. Some can be readily explored with the
methods and tools we have developed during this thesis project. For example, the problem of the
breaking in particle clusters and its effect on the dynamics of the system and on the performance
of control methods. The codes to implement the lattice model and the related model-based and
model-free learning algorithms are already set up to account for breaking of the cluster. Others,
however, require some modifications, such as controlling lattice models that describe the physics
of vacancy clusters, or clusters of particles that interact with more complex rules than the simple
bond-breaking model that we have considered (e.g. magnetic or electrostatic interactions).

Another short-term perspective is to identify the right system in which we can experimentally
test our findings on cluster control. For this task, we hope that the strong expertise accumulated
in colloid science on the fine-tuning of particle-particle interactions and visualisation techniques
will allow one to design a suitable experimental system to achieve control of the shape of monolayer
clusters.

There are also long-term perspectives, such as considering clusters larger than 12 particles,
a limitation that has been imposed by the use of tabular methods. To tackle this problem,
one possible option is to use a model-free DQN agent, such as the one we used to control the
Allen-Cahn equation, and to couple it to KMC simulations.

Furthermore, our results also opens novel theoretical questions. A first direction is the
analytical investigation of the first passage times in the graph of states of cluster configurations.
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The large body of literature that has been developed for the analysis of first passage times
on random graphs could be useful for this analysis. Another question is to understand more
rigorously the properties of the optimal policies to control cluster shapes such as degeneracies
and temperature transitions. In addition, very little is known about the mathematical properties
of the models discussed in Chapter 4 in the presence of control.

To conclude, we hope that this work will foster new experimental and theoretical directions in
the study of shape control in low-dimensional physical systems.
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Appendix

A.1 Detailed derivation of Bellman equation

In this appendix we report a detailed derivation of Eq. (1.9). We start from the definition of the
value function Eq. (1.8):

vπ(s) = Eπ [Gt | St = s] = Eπ [Rt+1 +Gt+1 | St = s]

= Eπ [Rt+1 | St = s] + Eπ [Gt+1 | St = s] .
(A. 1)

The first term on the right hand side is simply the expectation value of the reward received when
being in state s and following policy π, which we can write explicitly as

Eπ [Rt+1 | St = s] =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) r . (A. 2)

We can then use the law of total (or iterated) expectation to rewrite the second term. The law of
total expectation states that, if X is a random variable whose expected value E [X] is defined,
and Y and Z are random variables on the same probability space, then

E [X | Z] = E

[
E [X | Y, Z] | Z

]
. (A. 3)

Applying this rule with X = Gt+1, Y = St+1, and Z = St, we obtain

Eπ [Gt+1 | St] = Eπ

[
Eπ [Gt+1 | St+1, St] | St

]
. (A. 4)

Since we are assuming that the process is Markovian, Gt+1, which is the sum of all the future
rewards that the agent receives starting from state St+1, is independent from the previous state
St, hence

Eπ

[
Eπ [Gt+1 | St+1, St] | St

]
= Eπ

[
Eπ [Gt+1 | St+1] | St

]
. (A. 5)
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Finally, Eq. (A. 1) can be rewritten as

vπ(s) = Eπ

[
Rt+1 + Eπ [Gt+1 | St+1] | St = s

]
=

∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + Eπ [Gt+1 | St+1 = s′ ]

]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + vπ(s
′)] ,

(A. 6)

which is identical to Eq. (1.9).

A.2 Tabular algorithms

Here we report, in pseudocode, the tabular algorithms for estimating value functions and learning
optimal policies that we have used throughout this thesis:

• Iterative policy evaluation in Fig. A.1,
• Value iteration in Fig. A.2,
• Monte Carlo control (with exploring starts and decaying ε) in Fig. A.3,
• Q-learning (with exploring starts and decaying ε) in Fig. A.4.

Note that, in Monte Carlo and Q-learning, the episodes are obtained from KMC simulations, and
terminated when reaching the target state or when reaching a maximum number of steps (which
has been set to 1000 for the results reported in Chapter 3).

Figure A.1: Iterative policy evaluation

Input: π, the policy to be evaluated
Parameters: Small threshold θ > 0 determining estimation accuracy, discount factor β
Initialize: V (s), for all s ∈ S, arbitrary except that V (s̄) = 0, where s̄ is the target state

While Δ > θ :
Δ← 0
Loop for each s ∈ S :

v ← V (s)
V (s)←∑

a π(a | s)
∑
s′,r p(s

′, r | s, a) [r + βV (s′)]
Δ← max(Δ, |v − V (s)|)

Output: V ≈ vπ

Figure A.2: Value iteration

Parameters: Small threshold θ > 0 determining estimation accuracy, discount factor β
Initialize: V (s) arbitrarily, for all s ∈ S, arbitrary except that V (s̄) = 0, where s̄ is the
target state

While Δ > θ :
Δ← 0
Loop for each s ∈ S :

v ← V (s)
V (s)← maxa

∑
s′,r p(s

′, r | s, a) [r + βV (s′)]
Δ← max(Δ, |v − V (s)|)

Loop for each s ∈ S :
A∗ ← argmaxa

∑
s′,r p(s

′, r | s, a) [r + βV (s′)]
π(a | s)← IA∗(a)

Output: π ≈ π∗, V ≈ v∗
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Figure A.3: Monte Carlo with exploring starts and decaying ε

Parameters:
Initial value εi and final value εf for ε
Number of learning episodes nepi
Discount factor β

Initialize:
π ← an arbitrary stochastic policy
Q(s, a) arbitrarily, for all s ∈ S, a ∈ A

Returns(s, a)← empty list, for all s ∈ S, a ∈ A

Decay factor δε = (εf − εi)/nepi

Loop for each episode :
Choose S0 ∈ S, A0 ∈ A randomly such that all pairs have probability > 0
Generate an episode starting from S0, A0 following π: S0, A0, R1, ... , Stf−1, Atf−1, Rtf
G← 0
Decay ε linearly: ε← ε− δε
Loop for each step of episode, t = tf−1, tf−2, ... , 0 :

G← βG+Rt+1

Unless the pair St, At appears in S0, A0, S1, A1, ... , St−1, At−1:
Append G to Returns(St, At)
Q(St, At)← average(Returns(St, At))
A∗ ← argmaxaQ(St, a)

For all a ∈ A : π(a |St)←
{
1− ε+ ε/|A| if a = A∗

ε/|A| otherwise

Output: π ≈ π∗

Figure A.4: Q-learning with exploring starts and decaying ε

Parameters:
Initial value εi and final value εf for ε
Number of learning episodes nepi
Learning rate α
Discount factor β

Initialize:
πexp ← an arbitrary stochastic policy (used for exploration)
Q(s, a) arbitrarily, for all s ∈ S, a ∈ A

Decay factor δε = (εf − εi)/nepi

Loop for each episode :
Choose initial state S randomly such that all states have probability > 0
Loop for each step of episode, up to termination :

Choose action A using exploration policy πexp derived from Q (e.g. ε-greedy)
Take action A, observe R, S′

Q(S,A)← Q(S,A) + α [R+ βmaxaQ(S′, a)−Q(S,A)]
S ← S′

Decay ε linearly: ε← ε− δε
Loop for each s ∈ S :

A∗ ← argmaxaQ(s, a)
π(a | s)← IA∗(a)

Output: π ≈ π∗
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A.3 Double DQN algorithm

In Fig. A.5 we report, in pseudocode, the double deep Q-learning algorithm that we have used
for the control of the Allen-Cahn equation. The value of the parameter tact and the reward
function �(s) have been changed depending on the three different targets considered (see main
text). The other parameters, instead, have been fixed to the following values for all the three
targets: nepi = 105, nbatch = 64, nnet = 3000, εi = 1, εf = 0.1, α = 10−3, β = 0.9 .

The Mask variable is used to differentiate the successful episodes from the unsuccessful ones.
The update rule for the exponential decay of ε has been established empirically. The episodes are
terminated when reaching the target state or when reaching a maximum number of steps.

Figure A.5: Double deep Q-learning applied to the control of the Allen-Cahn equation

Parameters:
Time between two actions tact
Reward function �(s)
Number of learning episodes nepi
Size nbatch of the learning mini-batch
Number of episodes between setting the two DQNs alike nnet
Initial value εi and final value εf for ε
Learning rate α
Discount factor β

Initialize:
Memory for experience replay M

Online DQN Q(s, a,w) and target DQN Q̂(s, aw−), with w = w−

n← 0
Loop for each episode :

t← 0
ε← εi
Choose a random initial condition and initialize state S0

Loop for each step of episode, up to termination :
Choose action At using exploration policy derived from Q(s, a,w) (e.g. ε-greedy)
Set C = At in Allen-Cahn equation and integrate the dynamics during tact
Observe new state St+tact and calculate reward: Rt+tact ← �(St+tact)
If Rt+tact is 100 : Mask ← 0
Else: Mask ← 1
Store transition (St, At, Rt+tact , At+tact ,Mask) in memory buffer M
Sample random mini-batch of transitions (Sj , Aj , Rj+tact , Sj+tact ,Mask) of size
nbatch from M

Y Qj ← Rj +Mask β Q̂
[
Sj+tact , argmaxaQ(Sj+tact , a,wt),w

−
t

]
Perform gradient descent on

[
Y Qj −Q(Sj , Aj ,wt)

]2
with respect to wt

Decay ε exponentially: ε← εf + (εi − εf ) exp(−3n/nepi)
Every nnet episodes, update target network: w−

t ← wt

t← t+ tact
n← n+ 1

Output: Trained DQN Q(s, a,w)
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A.4 Detailed derivation of Mφ

In this appendix we show in detail how to manipulate and rewrite Eq. (2.28) in order to obtain
Eq. (2.29). Equation (2.28) reads

Mφ(s̄) =
1

ds̄

∑
s∈Bs̄

(ns̄s − ϕ(s̄)us̄s) + 1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(nss′ − ns′s)

+
1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(ϕ(s′)us′s−ϕ(s)uss′) .
(A. 7)

The first term can be rewritten as

1

ds̄

∑
s∈Bs̄

(ns̄s − ϕ(s̄)us̄s) = 〈ns̄s〉s∈Bs̄
− ϕ(s̄)〈us̄s〉s∈Bs̄

. (A. 8)

Then, since when summing over all states s ∈ S and all states s′ ∈ Bs the indexes s and s′ can be
exchanged, we can rewrite the second and third term as

1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(nss′ − ns′s) + 1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(ϕ(s′)us′s−ϕ(s)uss′) =

=
1

SN − 1

∑
s

∑
s′∈Bs

τ∞(s, s̄) [nss′ − ns′s + ϕ(s′)us′s − ϕ(s)uss′ ]

=
1

SN − 1

∑
s

∑
s′∈Bs

[τ∞(s, s̄)nss′ − τ∞(s′, s̄)nss′ + τ∞(s′, s̄)ϕ(s)uss′ − τ∞(s, s̄)ϕ(s)uss′ ]

=
1

SN − 1

{∑
s

∑
s′∈Bs

nss′ [τ∞(s, s̄)− τ∞(s′, s̄)] +
∑
s

ϕ(s)
∑
s′∈Bs

uss′ [τ∞(s′, s̄)− τ∞(s, s̄)]

}
.

(A. 9)

For any quantity qs, the two following formulas hold∑
s′∈Bs

qs = ds〈qs〉s′∈Bs
,

1

SN − 1

∑
s

qs =
1

SN − 1

[
qs̄ +

∑̄
s
qs

]
=

1

SN − 1
qs̄ + 〈qs〉s∈S̄ ,

(A. 10)

where we have defined S̄ = S \ {s̄} for convenience. Hence, we can regroup the three terms and
rewrite them as

Mφ(s̄) = 〈ns̄s〉s∈Bs̄
− ϕ(s̄)〈us̄s〉s∈Bs̄

− ds̄
SN − 1

〈ns̄sτ∞(s, s̄)〉s∈Bs̄
+ 〈ds〈nss′ (τ∞(s, s̄)− τ∞(s′, s̄))〉s′∈Bs

〉s∈S̄

+
ds̄

SN − 1
ϕ(s̄)〈us̄sτ∞(s, s̄)〉s∈Bs̄ − 〈ϕ(s)ds〈uss′ (τ∞(s, s̄)− τ∞(s′, s̄))〉s′∈Bs〉s∈S̄ ,

(A. 11)

where we have used the boundary condition τ∞(s̄, s̄) = 0.
Since

SN − 1

ds̄
= τ r∞(s̄) =

∑
s∈Bs̄

p∞(s̄, s)τ∞(s, s̄) =
1

ds̄

∑
s∈Bs̄

τ∞(s, s̄) = 〈τ∞(s, s̄)〉s∈Bs̄
, (A. 12)
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where p∞(s̄, s) = γ∞(s̄, s)t∞(s̄) = 1/ds is the infinite-temperature limit of pφ(s̄, s), we can rewrite
the first and third term of Eq. (A. 11) as

〈ns̄s〉s∈Bs̄ −
ds̄

SN − 1
〈ns̄sτ∞(s, s̄)〉s∈Bs̄ =

=
1

τ r∞(s̄)
〈ns̄s (τ r∞(s̄)− τ∞(s, s̄))〉s∈Bs̄

=
1

τ r∞(s̄)
〈ns̄s (〈τ∞(s′, s̄)〉s′∈Bs̄

− τ∞(s, s̄))〉s′∈Bs̄

=
1

τ r∞(s̄)
〈(ns̄s − 〈ns̄s′〉s′∈Bs̄) (〈τ∞(s′, s̄)〉s′∈Bs̄ − τ∞(s, s̄))〉s′∈Bs̄

= − 1

τ r∞(s̄)
gn(s̄, s̄) ,

(A. 13)

where in the last line we have used the definition of gn(s, s̄) of Eq. (2.31). The same manipulation
can be used for the second and fifth term of Eq. (A. 11), to obtain

−ϕ(s̄)〈us̄s〉s∈Bs̄
+

ds̄
SN − 1

ϕ(s̄)〈us̄sτ∞(s, s̄)〉s∈Bs̄
=

= − ϕ(s̄)

τ r(s̄)
〈(us̄s − 〈us̄s′〉s′∈Bs̄

) (〈τ∞(s′, s̄)〉s′∈Bs̄
− τ∞(s, s̄))〉s′∈Bs̄

=
ϕ(s̄)

τ r∞(s̄)
gu(s̄, s̄) ,

(A. 14)

where in the last line we have used the definition of gu(s, s̄) of Eq. (2.32).
Using the high-temperature recursion relation Eq. (2.22), we can obtain an alternative writing

for τ∞(s, s̄):

〈τ∞(s′, s̄)〉s′∈Bs
=

1

ds

∑
s′∈Bs

τ∞(s′, s̄)− 1

ds

∑
s′∈Bs

τ∞(s, s̄) + τ∞(s, s̄)

= τ∞(s, s̄)− 1

ds

∑
s′∈Bs

(τ∞(s, s̄)− τ∞(s′, s̄))

= τ∞(s, s̄)− 1

ds
⇒ τ∞(s, s̄) =

1

ds
+ 〈τ∞(s′, s̄)〉s′∈Bs

,

(A. 15)

and use this expression to manipulate the remaining fourth and sixth term of Eq. (A. 11). Let us
start from the fourth one

〈ds〈nss′ (τ∞(s, s̄)− τ∞(s′, s̄))〉s′∈Bs
〉s∈S̄ =

=
〈
ds

〈
nss′

(
1

ds
+ 〈τ∞(s′′, s̄)〉s′′∈Bs − τ∞(s′, s̄)

)〉
s′∈Bs

〉
s∈S̄

= 〈〈nss′〉s′∈Bs
〉s∈S̄ + 〈ds〈nss′ (〈τ∞(s′′, s̄)〉s′′∈Bs

− τ∞(s′, s̄))〉s′∈Bs
〉s∈S̄

= 〈〈nss′〉s′∈Bs
〉s∈S̄ + 〈ds〈(nss′ − 〈nss′′〉s′′∈Bs

) (〈τ∞(s′′, s̄)〉s′′∈Bs
− τ∞(s′, s̄))〉s′∈Bs

〉s∈S̄

= 〈〈nss′〉s′∈Bs
〉s∈S̄ − 〈dsgn(s, s̄)〉s∈S̄ ,

(A. 16)

where in the last line we have used the definition of gn(s, s̄) of Eq. (2.31). Then, we can apply
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the same manipulation to the sixth term, to obtain

− 〈ϕ(s)ds〈uss′ (τ∞(s, s̄)− τ∞(s′, s̄))〉s′∈Bs
〉s∈S̄ =

= −〈ϕ(s)〈uss′〉s′∈Bs
〉s∈S̄ − 〈ϕ(s)ds〈(uss′ − 〈uss′′〉s′′∈Bs

) (〈τ∞(s′′, s̄)〉s′′∈Bs
− τ∞(s′, s̄))〉s′∈Bs

〉s∈S̄

= −〈ϕ(s)〈uss′〉s′∈Bs
〉s∈S̄ + 〈ϕ(s)dsgu(s, s̄)〉s∈S̄ ,

(A. 17)

where in the last line we have used the definition of gu(s, s̄) of Eq. (2.32).
Regrouping all six terms, we finally obtain

Mφ(s̄) =− 1

τ r∞(s̄)
gn(s̄, s̄) +

ϕ(s̄)

τ r∞(s̄)
gu(s̄, s̄)

+ 〈〈nss′〉s′∈Bs〉s∈S̄ − 〈dsgn(s, s̄)〉s∈S̄

− 〈ϕ(s)〈uss′〉s′∈Bs〉s∈S̄ + 〈ϕ(s)dsgu(s, s̄)〉s∈S̄

=− ds̄
SN − 1

gn(s̄, s̄) + 〈〈nss′〉s′∈Bs − dsgn(s, s̄)〉s∈S̄

+
ds̄

SN − 1
ϕ(s̄)gu(s̄, s̄)− 〈ϕ(s) (〈uss′〉s′∈Bs

− dsgu(s, s̄))〉s∈S̄

=
SN

SN − 1
〈(1− δss̄)〈nss′〉s′∈Bs

− dsgn(s, s̄)〉s∈S

− SN
SN − 1

〈ϕ(s) ((1− δss̄)〈uss′〉s′∈Bs
− dsgu(s, s̄))〉s∈S ,

(A. 18)

which is identical to Eq. (2.29).

A.5 Convergence analysis of value iteration

We have performed a study of the accuracy of the value iteration algorithm (reported in pseudocode
in Fig. A.2) as a function of the convergence threshold θ. We have used a small threshold
θref = 10−5 as a reference. We then ran the value iteration algorithm to obtain the optimal return
time to target for various targets with N ≤ 9, at the temperatures T = 0.1, T = 0.3, T = 0.6,
and T = 1, for increasing values of the convergence threshold θ. We were not able to perform
this analysis on larger clusters because the algorithm required too much computational time
to converge with the reference threshold θref = 10−5. We then calculated, for each θ, the error
relative to the reference threshold as

Relative error =
|τ rθ(s̄)− τ rref(s̄)|

τ rref(s̄)
, (A. 19)

where here τ rθ(s̄) indicates the optimal return time to target obtained with threshold θ, and τ rref(s̄)
the optimal return time obtained with θref.

The results of this analysis are reported in Fig. A.6. First, we can see that the relative error
grows linearly with the convergence threshold with a slope ∼ 1, and that the error is higher when
the temperature is higher. Next, we note that there is little variation with respect to cluster
size, while target compactness has a greater influence on the error, with higher compactness
corresponding to lower error. However, at higher temperatures, the effect of the compactness
is greatly reduced. Overall, we can see that the trend of the relative error with the threshold θ
behaves very similarly for the highest temperature considered T = 1, for all the cluster sizes and
shapes.
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Figure A.6: Relative error of the accuracy of the value iteration algorithm as a function of the
convergence threshold θ, for some targets with N ≤ 9.
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Based on these results, we decided to set the convergence threshold as a function of the cluster
size N , in order to obtain a relative error at worse equal to ∼ 10−2 for T = 1. With an empirical
study, we have set the following thresholds, that are a compromise between computational time
and accuracy:

• θ = θref = 10−5 for N ≤ 5,

• θ = 10−4 for N = 6,

• θ = 10−3 for 7 ≤ N ≤ 11,

• θ = 10−2 for N = 12.

These thresholds should ensure a relative error � 10−2 for the majority of targets and temperature
ranges that we considered in this work.

A.6 State encoding

To encode a state into a numerical identifier, we use a simple method based on binary numbers.
This approach was inspired by the “light reflection” method proposed in Ref. [203].

The first step is to determine the bounding box of the cluster. Then, lattice sites within the
box are filled with a 1 if they contain an atom, or with a 0 if they are empty, as shown in Fig. A.7.
The 1’s and 0’s are then read as single binary number, from top to bottom. In the example in the
figure, this number is 110111110. Finally, the identifier of the state is composed of two numbers:
the horizontal length of the bounding box and the base-10 conversion of the binary number. In
the example, the identifier is (3, 446).

Note that it is necessary to include the length of the bounding box, otherwise the identifier
would not be unique. A simple case to show this is to consider the two states of a dimer, both of
which correspond to the binary number 11, or 3 in base 10, and which would be indistinguishable
without specifying their horizontal (or, alternatively, their vertical) length.

1 1 0

1 1 1 = (3, 446)

1 1

3

0

Figure A.7: Schematic representation of the method we have used to encode polyominoes into
numerical identifiers.

A.7 Parabolic fit to obtain M0 and M∗ from simulations

In Fig. A.8 we show the procedure that we used to extract the values of the high-temperature
slopes M sim

0 (s̄) and M sim
∗ (s̄) from simulations. In this figure, we show an example for the zero-

force case. We have followed the same procedure for the optimal-policy case. The square markers
in blue correspond to the expected return time to target τ r0(s̄) obtained from iterative numerical
methods. The three points at T = 5, 10, 20 have been fitted with a parabola. Then, the slope
M sim

0 (s̄) is obtained from the tangent of this parabola calculated at 1/T = 0.
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Figure A.8: Example of the procedure to obtain M sim
0 (s̄) from simulation data. The high-

temperature points (T = 5, 10, 20) of τ r0(s̄) are fitted with a parabola (in red). The black line
corresponds to the tangent of the parabola at 1/T = 0. The slope of this line corresponds to
M sim

0 (s̄). In this example, the target is the 9-atom, 3× 3 square target.

A.8 Procedure to check degeneracy of the actions

In the pseudocode of the value iteration algorithm reported in Fig. A.2 we can see that, to obtain
an optimal policy from the estimated optimal value function, we need to evaluate the expression
argmaxa

∑
s′,r p(s

′, r | s, a) [r + βV (s′)]. The argmaxa operator outputs the set of optimal actions
in state s. If this set contains more than one action, then these actions are degenerate.

Computationally, to evaluate the argmaxa operator, one needs to compare the values of the
three possible actions in A and check if there are values that are equal. However, due to numerical
error, this check needs to be done within a certain “tolerance” threshold, in the sense that, if the
absolute difference of the values of two actions is smaller than this threshold, than we consider
these actions as both optimal and therefore degenerate. If the tolerance threshold is too close to
zero, we risk to undercount degenerate states, while if it is too high we risk to overcount.

In Fig. A.9 we can see the effect of the tolerance threshold on the fraction of degenerate states
DN (s̄)/SN , for three different targets with N = 5, 7, 9. We have checked several combinations
of the tolerance threshold and the convergence threshold θ of the value iteration algorithm, for
different values of the temperature: T = 0.1, 0.3, 0.6, 1. We can see that there are several factors
that are affecting the value of DN (s̄)/SN . First, we notice that, for values of the convergence
threshold θ ≤ 10−2, the results are essentially unchanged for all the three targets considered. This
further supports our choice of θ = 10−2 as the maximum threshold value for N = 12 reported in
Appendix A.5.

Second, we can see that, for higher temperatures, the variation of DN (s̄)/SN as a function of
the tolerance threshold is larger. In all the three cases, however, when the value of the tolerance
threshold is smaller than 10−4 ∼ 10−5, then the value of DN (s̄)/SN reaches a constant value for
all the temperatures considered.

Based on this analysis, and on the analysis of other targets with N ≤ 9 whose results are
analogous to those reported in Fig. A.9, we have decided to set the tolerance threshold for the
check of degenerate actions to 10−5.
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Figure A.9: Variation of the fraction of degenerate states DN (s̄)/SN as a function of the tolerance
threshold, at T = 0.1, 0.3, 0.6, 1 and for increasing values of the convergence threshold θ, for
three different targets with N = 5, 7, 9.
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A.9 Variation of the fraction of degenerate states with tem-
perature

In Fig. A.10 we plot the fraction of degenerate states DN (s̄)/SN as a function of inverse
temperature, for several targets with 4 ≤ N ≤ 12. The color of the lines and the markers
corresponds to the symmetry group of the target, while the thickness of the lines is proportional to
the size of the target. We can see that the the fraction DN (s̄)/SN varies weakly with temperature.

Note that we have checked all possible targets with 4 ≤ N ≤ 7 (as in Fig. 2.27 of the main text)
only for T = 0.24, while for all the other temperatures we have checked only some selected targets.
We did not investigate the reason of the appearance of degenerate states at high temperature for
some targets belonging to the H and V symmetry classes, but one possible reason is the tolerance
threshold being too high for these particular targets in this temperature range, as discussed in
Appendix A.9.

2 3 4 5 6
1/T

10−4

10−3

10−2

10−1

D
N
(s̄
)/
S
N

V
I
A
H
N

Figure A.10: Fraction of degenerate states DN (s̄)/SN as a function of 1/T , for several targets
with 4 ≤ N ≤ 12. The thickness of the lines is proportional to the size of the cluster. For the
H and V symmetry classes, we show scatter points because in this two cases DN (s̄)/SN = 0 for
most of the temperatures.

A.10 Temperature transitions for the trimer

In Fig. A.11 we plot the first derivative of the optimal time to reach the target shown in Fig. 2.28
τ∗(s̄) with respect to inverse temperature, starting from the target itself (in orange), and from all
the other states of the system (in blue). We can see that the derivative has a discontinuity at the
transition temperature Tc (vertical dashed line) for all the states of the system.

A.11 Effect of an additional bond on the mean return time
to target

In Fig. A.12 we show the effect on the mean return time to target of including one extra bond
with energy J to all the hopping barriers in the system. We can see that this procedure, which
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Figure A.11: Derivative of the expected optimal time to reach the target starting from the target
and from the other 5 states in the system for the trimer target of Fig. 2.28.

simply corresponds to a rescaling of all the timescales by exp(J/kBT ), leads to results that are
qualitatively identical to those discussed in Chapter 2, but with a decrease of the depth of the
minimum in the mean return time to target.
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Figure A.12: Comparison of the mean return time to target as a function of inverse temperature
with (dashed lines) and without (solid lines) the inclusion of an extra particle-substrate bond of
energy J in the hopping energy barriers.
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