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Abstract

While data becomes the world’s most valuable resource, its processing places the
privacy of data subjects in jeopardy. Dealing with highly sensitive data, identity
management systems must provide adequate privacy protection as they lever-
age biometrics technology. Modern privacy-preserving computation techniques
rely on advanced cryptographic primitives including multi-party computation
(MPC), homomorphic encryption (HE) or a combination of both. Wielding
these primitives, as well as Functional Encryption (FE), this thesis tackles the
design and implementation of practical privacy-preserving biometric systems,
from the feature extraction to the matching with enrolled users.

This work is consecrated to the design of secure biometric solutions for multiple
scenarios, putting special care to balance accuracy and performance with the
security guarantees, while improving upon existing works in the domain. We
go beyond privacy preservation against semi-honest adversaries by also ensuring
correctness facing malicious adversaries. Last but just as important, we address
the leakage of biometric data when revealing the output, a privacy concern often
overlooked in the literature. The main contributions of this thesis are:

• A new optimized face identification solution built on FE-based private inner
product matching with countermeasures against input leakage.

• A novel efficient two-party computation protocol, Funshade, to preserve
the privacy of biometric thresholded distance metric operations.

• An innovative method to perform privacy-preserving biometric identifica-
tion based on the notion of group testing named Grote.

• A new distributed decryption protocol with collaborative masking address-
ing the leakage for biometric systems, dubbed Colmade, and grounded on
the Brakerski-Fan-Vercauteren scheme.

• An honest majority three-party computation protocol to perform mali-
ciously secure inference of Binarized Neural Networks, Banners, relevant
for biometric feature extraction.

• A HE library written in Python named Pyfhel, offering a high-level ab-
straction including low-level functionalities, with applications in teaching.
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Résumé

Alors que les données deviennent la ressource la plus précieuse au monde, leur
traitement met en péril la vie privée des personnes concernées. Traitant des
données très sensibles, les systèmes de gestion de l’identité biométriques doivent
assurer une protection adéquate. Les techniques modernes de calcul sécurisé
reposent sur le calcul multipartite (MPC), le chiffrement homomorphe (HE) ou
une combinaison des deux. En utilisant ces primitives, ainsi que le chiffrement
fonctionnel (FE), cette thèse aborde la conception et la mise en œuvre de sys-
tèmes biométriques préservant la confidentialité, couvrant de l’extraction des
caractéristiques biométriques à la reconnaissance des utilisateurs enregistrés.

Ce travail est consacré à la conception de solutions biométriques sécurisées pour
de multiples scénarios pratiques, en mettant un soin particulier à équilibrer la
précision et la performance avec la sécurité, tout en améliorant les travaux exis-
tants dans le domaine. Nous allons au-delà de la préservation de la confidential-
ité contre les adversaires semi-honnêtes en garantissant également la correction
face aux adversaires malveillants. Enfin, nous abordons la fuite des données
biométriques lors de la révélation du résultat, un problème de confidentialité
souvent négligé dans la littérature. Les contributions de cette thèse sont:

• Une nouvelle solution d’identification des visages basée sur la FE pour des
produits scalaires, avec des contre-mesures contre les fuites d’entrée.

• Un nouveau protocole de calcul à deux parties, Funshade, préservant la
confidentialité des opérations biométriques de calcul de distance avec seuil.

• Une méthode innovante d’identification biométrique préservant la confiden-
tialité nommée Grote, basée sur la notion de pooling.

• Un nouveau protocole de déchiffrement homomorphe distribué, Colmade,
avec masquage collaboratif abordant la fuite des systèmes biométriques.

• Un protocole de calcul tripartite à majorité honnête pour l’inférence avec
des réseaux neuronaux binarisés, appelé Banners, sécurisé contre des ad-
versaires malicieux.

• Une libraire Python nommée Pyfhel, offrant une abstraction de haut
niveau des FHE avec une portée pédagogique.

Mots-clés

Confidentialité, Systèmes Biométriques, Identification Faciale, Calcul Multi-
parti, Chiffrement Homomorphe, Chiffrement Fonctionnel, Produit Scalaire.
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Chapter 1

Introduction

Data could be labelled as the 21st century oil. There are numerous modern applications
fueled by data, ranging from Data Analytics & Machine Learning to Biometrics to name
a few, whose impact in society is undeniable. Indeed modern data analytics & Machine
Learning (ML) have disrupted many market sectors, ranging from the entertainment indus-
try and manufacturing (e.g., content prediction algorithms, automatic fault detection), to
more sensitive areas like healthcare or the public administration (e.g., early-stage cancer
detection, fraud prosecution).

Yet, the tremendous potential of data manipulation is coupled with high risks. Data
misuse and theft, specially when dealing with personal data, are ever-present concerns that
can be mitigated by resorting to privacy policies and techniques (as covered in present-day
data protection legislations such as GDPR in Europe or HIPAA for medical records in
United States).

These risks are exacerbated on certain applications. Biometric systems must rely on
secure hardware or trusted parties to hold the personal data vital for their recognition
models, and all the biometric data manipulation must follow strict security rules. Hospitals
and health specialists are deprived of the advantages of training and using models with
a high volume of data from patients, which has proven to be very effective at training
accurate prediction models tackling complex problems, e.g., genome-wide association studies
or image-based early cancer detection [182, 169]. Banks are limited to the locally available
data to prevent fraud and prosecute tax evasion. Child Exploitative Imagery detection
models [238] need training data that is in itself illegal to possess.

Mishandling privacy-sensitive data not only imposes concrete harms on the affected
users, but also threatens the adoption of these new technological innovations. Today, in-
dustry best practices require that service providers protect personal data in-transit and
at-rest using encryption. However, in applications where computation is to be performed
on the data, this data must be decrypted before being used, requiring the service provider
to have access to the keying material. This exposes the data to multiple threats, including
abuse by actors with malicious intent.

Under the field of advanced cryptography, several privacy preserving technologies aim
to deal with these issues. Fully Homomorphic Encryption (FHE) [109] is a costly encryp-
tion scheme that supports certain operations between ciphertexts (typically addition and
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multiplication), yielding the results of these operations when decrypting. Secure Multi-
party Computation (MPC) covers a series of techniques (garbled circuits [244], secret shar-
ing [220]) that split data across multiple distinct parties, so that each individual party
remains ignorant of the global values, and collaborate to jointly compute a given function.
Functional Encryption [34] is a public-key encryption scheme that supports evaluation of
arbitrary functions when decrypting the ciphertexts, where the decryption key holds the
information about the function to be computed, and the original data can only be retrieved
with the original encryption key. FHE and MPC can also coexist in Multi-party Homomor-
phic Encryption [186] (MHE), where distributed versions of the FHE protocols are carried
out by a number of collaborating parties.

Centering our attention in the field of biometrics, the use of biometric solutions for
identification and authentication is becoming increasingly prevalent in a wide range of ap-
plications such as access control, financial transactions [177], and even voting systems [243].
Biometric data (e.g., fingerprint, face, iris) are unique to each individual and can be easily
collected and verified, making them a convenient and secure form of identification. However,
the collection, storage and usage of biometric data also raises significant privacy concerns.
Biometric data is sensitive information that can be used to identify and track individuals,
and if it falls into the wrong hands, it can be misused for nefarious purposes, such as identity
theft or surveillance. Moreover, once compromised, it cannot be changed like a password,
making it a permanent vulnerability. Therefore, it is crucial to develop privacy-preserving
techniques that can protect the privacy of biometric data while maintaining the accuracy
and usability of the underlying system. Such techniques can include the use of FHE, MPC
or FE to perform computations on the biometric data in a secure and privacy-preserving
manner. By applying these techniques, we can ensure that the biometric data is not revealed
in the clear, and only authorized parties can access and use it.

The principal objective of this thesis is to develop and implement privacy-preserving
techniques for biometric systems, from the extraction of biometric features to the identifi-
cation and authentication of individuals. We make use of modern cryptographic techniques
to design secure protocols for a wide range of scenarios, including malicious adversaries.
We also analyze the shortcomings of their security guarantees leading up to practical at-
tacks based on the revealed outputs, and we address with suitable countermeasures. Last
but not least, we implement evaluate the performance of our solutions, demonstrating their
applicability to real use-cases while maintaining high accuracy and usability.

1.1 Main Contributions

This thesis constitutes a comprehensive study of privacy-preserving biometric systems, and
it presents a set of novel contributions that address different aspects on the road to build
secure and practical biometric solutions. These contributions follow the natural structure of
biometric systems, from the biometric features extraction of individuals to the verification
of their identity. The main contributions of this thesis are summarized as follows, in the
order they appear in the thesis:
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I. The design and implementation of Pyfhel, a Python wrapper for the Microsoft
SEAL [219] library, extendable to other C++ libraries, offering (i) one-click install,
including the underlying back-end libraries, (ii) a high-level Python-first abstraction
layer that makes working with FHE significantly easier, including (iii) high-level APIs
for low-level functionalities not generally exposed. We show the usability of Pyfhel
both to explore and to teach FHE.

II. A novel protocol for secure inference of binarized neural networks based on replicated
secret sharing dubbed Banners. This protocol (i) guarantees security with abort
against one malicious adversary in a 3-party setting, (ii) has a performance equivalent
to existing state-of-the-art semi-honest protocols.

III. A new face identification solution built on FE-based private inner product matching.
This solution (i) optimizes the online latency for the same security guarantees by
switching functionalities of encryption and key generation FE algorithms, (ii) con-
ducts a thorough security analysis of the inner product input leakage including coun-
termeasures to thwart attacks based on it, and (iii) is tested and validated in a face
matching scenario, attesting its applicability practical one-use identification use-cases.

IV. A novel two-party computation protocol named Funshade to perform privacy - pre-
serving distance metric computations with a subsequent comparison to θ, built upon
a combination of advanced Secret Sharing [193] and Functional Secret Sharing [38].
This protocol (i) requires just one round of communication in the online phase, low-
ering the communication costs with respect to existing two-round protocols [213, 38],
(ii) sends only two ring elements in the online phase, reducing the communication
size of previous solutions by a factor of 2l (for vectors of length l), (iii) features 100%
correctness in the comparison result, and (iv) is implemented and open-sourced in a
standalone Python library with efficient C++ primitives.

V. An innovative method to perform privacy-preserving 1 : K biometric identification
based on the notion of group testing named Grote. This method (i) replaces the
K element-wise comparisons by group testing to reduce the number of such costly,
non-linear operations in the encrypted computation, (ii) is instantiated and tested
on FHE with the CKKS scheme, showing that it (iii) incurs a small impact in the
accuracy of the system while speeding up its execution 1.5 times.

VI. A new decryption protocol with collaborative masking based on the multiparty vari-
ant [186] of the Brakerski-Fan-Vercauteren (BFV) [100] Homomorphic Encryption
scheme named Colmade. This protocol (i) performs a decryption in a distributed
pool of users, employing them to mask masks a fragment of the ciphertext during de-
cryption while remaining agnostic of the full computation, (ii) guarantees the privacy
of all but one bit of the disclosed output in diverse threat models; (iii) is used to
construct an auditable privacy-preserving biometric identification system; and (iv) is
implemented, thoroughly tested and open-sourced.
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Most of these contributions have been presented in conferences dedicated to the domain
of privacy-preserving computation and published in their proceedings. We list below the
main publications stemming from this thesis, in the order of their publication:

[132] Banners: Binarized neural networks with replicated secret sharing. Alberto Ibar-
rondo, Hervé Chabanne and Melek Önen. Presented at IH&MMSec2021.

[133] Practical Privacy-Preserving Face Identification based on Function-Hiding Functional
Encryption. Alberto Ibarrondo, Hervé Chabanne and Melek Önen. Presented at
CANS2021.

[136] Pyfhel: Python for homomorphic encryption libraries,Alberto Ibarrondo and Alexan-
der Viand. Presented at WAHC2021.

[130] Colmade: Collaborative Masking in Auditable Decryption for BFV-based Homomor-
phic Encryption. Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel and
Melek Önen. Presented at IH&MMSec2022.

[131] Grote: Group Testing for Privacy-Preserving Face Identification. Alberto Ibar-
rondo, Hervé Chabanne and Melek Önen. Accepted at CODASPY2023.

[134] Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance
Evaluation. Alberto Ibarrondo, Hervé Chabanne and Melek Önen. Under sub-
mission.

1.2 Overview

This thesis is organized as follows:

• Chapter 2 describes biometric systems separating the feature extraction from the
verification, and outlines the requirements to impose in privacy-preserving biometric
solutions while highlighting existing challenges.

• Chapter 3 introduces the cryptographic techniques used in the thesis and proposes a
novel library to enhance usability of homomorphic encryption.

• Chapter 4 focuses on the protection of the feature extractor. Chapter 5 deals with
the protection of biometric data and securing biometric verification.

• Chapter 6 is devoted to studying the privacy leaks when revealing the output and
applying suitable mitigation strategies.

• Finally, Chapter 7 summarizes all the contributions of this thesis and discusses future
research directions.
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1.3 Notation

Scalars, vectors and polynomials. We use regular letters to denote scalars (e.g., r, θ)
and bold letters for vectors of scalars (e.g., x,θ). x(i) = x[i] both denote the ith element of
vector x. For convenience we omit the (i) superscripts in lengthy element-wise additions of
the form Σ[a(i) + b(i) + . . . ]. We write ab = c to denote the element-wise multiplication of
two vectors where c(i) = a(i)b(i), and a · b = aTb = z to denote the inner (scalar) product
between two vectors. In the domain of FHE we use regular letters also for polynomials, and
boldface letters for vectors of polynomials. In this context, RL expresses a polynomial ring
with integer coefficients modulo L. p[i] denotes the ith coefficient/element of a polynomial
p.

Sampling and distributions. We note U[S] to the uniform random distribution in the set
S, and write r ∼ U[S] to sampling that distribution and assigning the sample to local variable
r. N (µ, σ) denotes a univariate gaussian distribution with mean µ and standard deviation
σ. Given a sampling of an individual coefficient p[j] from a distribution D (p[j] ∼ D), we
denote the sampling of a polynomial p over a ring RL as p← D[RL].

Operations. We denote [·]q the reduction modulo q, and b·c, b·e, d·e the rounding to the
previous, nearest and next integer respectively. When applied to polynomials or vectors,
these reductions are performed coefficient/element-wise. For a polynomial a, we write its
infinity norm as ‖a‖. For an input integer x ∈ Z we use sign(x) = x/|x|, and define sgb(x)

as the sign bit such that:

sgb(x) =

{
1 if x < 0
0 if x ≥ 0

We employ (·)? to denote the Boolean evaluation of the expression inside the brackets,
e.g., (3 > 2)? = 1. Alternatively, we employ 1x∈A to denote the indicator function (e.g.,
1x>5 = 1 ⇔ x > 5):

1x∈A ≡ 1A(x) ,

{
1 if x ∈ A,
0 if x /∈ A,

As a special case of indicator function, the unit step function is defined as (x ≥ 0)? =

1x∈R∗
+

= 1x>0.

Twos-complement integer encoding. In contexts where numerical precision is defined
in ZM for M = 2m, we implicitly consider a twos-complement encoding to map between
signed and unsigned m-bit integers, a bijective mapping between [−2m−1, 2m−1 − 1] and
[0, 2m−1] by applying mod 2m, where the interval of negative values [−2m−1,−1] is mapped
to the upper half of the unsigned interval [2m−1, 2m − 1]. As such, the unit step function
for m-bit integers corresponds to 1x∈Z2m+

= 106x62m−1−1.
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Parties and MPC. We reserve the notation Pdescr to indicate a party/entity in our
scenario with a certain description (e.g., Psetup for the party in charge of the setup, more
about this in Section 3.1). We Pa :Send r ⇒ Pb for party a sending value r to party b. We
use ← for assignment to local variables, e.g. PA : h← 4 instructs party A to set the value
of h to 4. We leave the notation of the different sharing schemes for Section 3.2 (A brief
summary can be found in Table 3.2).
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Chapter 2

On Challenges in
Privacy-Preserving Biometrics

As the main focus of this thesis, we start-off with an introduction to the field of biometrics,
then cover the requirements for building privacy-preserving biometric systems,to close up
with a discussion on the challenges we address throughout this thesis.

2.1 A Gentle Introduction to Biometric Systems

Reference 
Biometric trait

Reference
Template DB

Matching
(Distance metric)

1:1 or 1:K

≥ 𝜃 < 𝜃

Enrollment

(biggest)   score

Match/
Positive

Reject/
Negative

Feature
Extractor

Live 
Biometric trait

Sensor

Live biometric 
template

Verification

Authentication

Identification

Feature
Extractor

Sensor

Figure 2.1: Diagram of a generic biometric system

Biometric systems are pattern recognition systems which establish the authenticity of a
specific physiological or behavioral user’s characteristic, relying on "who/what you are" to
identify you. These characteristics, broadly named biometric traits, are scanned and com-
pressed into succinct representations called biometric templates. Biometric recognition
systems compare these templates to establish and verify the identity of users. The most
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commonly used biometric traits are face, iris and fingerprint [214]. Biometrics are broadly
used in modern identification systems such as personal (mobile and laptop) authentica-
tion, identification for public administration, access control in restricted facilities, or border
control/passenger identification in the travel industry to name a few.

In essence, biometric systems present two phases, depicted in Figure 2.1:

• The enrollment phase involves registering users by collecting their biometric templates
and storing them in a database to serve as reference.

• The verification phase captures a live biometric template from a user seeking to au-
thenticate/identify himself and matches this template with the reference templates
stored in the database.

As shown in Figure 2.1, both phases share the template extraction process, which con-
sists of a sensor (e.g., camera) capturing a biometric trait (e.g., taking a picture) and running
it through a feature extractor. The feature extractor can be seen as a black box in charge
of mapping the digitalized biometric traits into 1D vectors of fixed length (example of such
length can be found in Table 2.1), the biometric templates. Modern feature extractors are
based on Deep Learning models from the Computer Vision domain [214, 89, 90, 7] (see
section 2.1.4 for an outline of these models). For a chosen distance metric, these models
are trained to minimize the distance among templates belonging to the same identity, while
maximizing the distance with respect to templates from all other identities.

Table 2.1: Typical template sizes for biometric applications
Biometric Trait Typical template

Iris [86, 122] 640-1024 bits
Fingerprint [247] 40-100 minutae, 4 integer each
Face [89] 128|256|512 normalized floating point

Given two biometric templates obtained from the same feature extractor, thematching
consists on evaluating the distance between them using fdist, the metric adopted in the
feature extractor, to assess the similarity between pairs of templates. Immediately after,
the score is compared to a predefined threshold θ (Section 2.1.1 will describe how this
threshold is set). The two most common metrics employed by biometric systems are [214]:

• The hamming distance HD(xb,yb) =
∑

xb[i] ⊕ yb[i] between two binary vectors xb
and yb, where ⊕ is the XOR operation. HD is commonly applied to fingerprint and
iris biometrics.

• The normalized scalar/inner product (a.k.a. cosine similarity) (SP(x,y) = x · y =∑
x[i] ·y[i], where x = x/ ‖x‖ is the L2 normalized template vector). SP is commonly

used in face biometrics.
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In the enrollment (a.k.a. setup) phase, the users being enrolled provide their biometric
templates, which are stored in a database to be used as references in the verification phase.
Then, during the verification phase the freshly extracted ("live") template x from a user
seeking to verify his identity is matched to the reference templates Y in the database for
an established metric. The matching process is generalized in Equation 2.1:

o = fverif (fdist,x,Y , θ) (2.1)

The matching/similarity score is calculated as the pair-wise distance fdist(x,y) between
the live template and each of the reference templates y ≡ Y (k) ∀k ∈ {1, . . . ,K}, and the
system compares these scores with the threshold θ to yield a positive result (a match) if
at least one score is above the threshold and a negative result (a reject) otherwise (other
types of outputs are discussed in Section 2.1.3). Depending on the number of templates in
the enrollment database, we can have two scenarios:

• Authentication, a 1 : 1 matching between the live template and a single reference
template y. It yields a positive result if the matching score is higher than a given
threshold θ, negative otherwise. In a nutshell, it answers "Are you who you claim to
be?".

• Identification, a 1 : K matching between the live template and K stored templates
belonging to up to K registered users. Requiring K distinct matchings, an identifica-
tion request returns a match if the said score is above the threshold θ, and a negative
result if not. Optionally, the ID of the reference template with highest matching score
can be returned in case of a positive result. In short, it provides an answer to "Are
you in the list of enrolled users?", or alternatively to "Who are you?".

2.1.1 Accuracy of Biometric Systems

Given the matching score between a pair of templates, the decision of rejecting or accepting
that score as a match depends on the comparison to the threshold θ. Evidently, the choice
of the value of θ directly impacts the chances of the biometric system to correctly identify
previously enrolled users while rejecting non-registered users. θ is fixed as part of the system
design. A high value of θ will impose a strong requirement in the matching score, meaning
that registered users will have a harder time to be accepted, while non-registered users
(a.k.a. impostors) will be rejected with higher probability. On the other hand, a low value
of θ will make it easier for validly enrolled users to be accepted1, while also increasing the
chances of impostors being accepted.

The selection of θ is based on the formulation of biometric matching as a binary classi-
fication problem: dichotomizing the matching scores into "match" or "reject" groups [31].
Much like in many other practical binary classification problems, the two groups are not
symmetric, and rather than overall accuracy, the relative proportion of different types of
errors is of interest. For example, in medical testing, detecting a disease when it is not

1Accidentally, this can lead to an increase in the robustness of the system to variations in the biometric
trait, such as lighting conditions, pose, partial cover, etc
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Figure 2.2: Histogram of matching scores for all possible template pairs in the Labelled
Faces in the Wild (LFW [127]) dataset, using an Arcface-based feature extractor [89].
The vertical lines represent the values for threshold θ to achieve the fixed FAR rates of
{10−5, 10−4, 10−3}.

present (a false positive) is considered differently from not detecting a disease when it is
present (a false negative).

In the domain of biometrics, we make use of dedicated datasets of biometric traits to
calibrate the system (set θ) and assess its overall precision, composed of samples from many
identities (ideally with abundant diversity in gender/age/race) with one or several samples
per identity. This dataset is similar to the "test" dataset in Deep Learning, hinting that
it must not overlap with the "training" dataset used to train the feature extractor model,
as it would lead to a lack of generalization in the system (overfitting). One of the most
popular datasets for testing/benchmarking biometric systems, is the Labeled Faces in the
Wild (LFW) dataset [127], comprised of 13.233 images of 5.749 people collected from the
web, which we use in our experiments.

Armed with such a dataset, we can measure the accuracy of a biometric system by
running a verification experiment with pairs of templates2, where one template acts as a
reference and the other as the live template transforming the matching score into a binary
decision (match/reject) and contrasting it with the ground truth (genuine user/impostor).
With the matching scores of all the template pairs at hand, we are able to draw a plot like
that of Figure 2.2. The accuracy of a biometric system is given by the false acceptance rate
(FAR), the probability of a biometric system to accept an impostor, and the false rejection
rate (FRR), the probability of a biometric system to reject a genuinely valid user. The FAR
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and FRR are defined as follows:

FAR =
number of impostors accepted

number of users accepted

FRR =
number of genuine users rejected

number of users rejected

(2.2)

The FAR and FRR are inversely related, since increasing the threshold θ will decrease
the FAR and increase the FRR. Typically, biometric systems are designed to yield a fixed
value of FAR (e.g., 10−3), setting up θ accordingly and obtaining a corresponding FRR.
Figure 2.2 depicts an example of this binary classification task, including the FAR-FRR
trade-off for fixed FAR values of 10−3, 10−4 and 10−5. In short, it is at this point that we
set θ to achieve the desired balance between the FAR and the FRR of our biometric system
for a target "test" dataset.

To condense the FAR-FRR balance into a single metric, one can use the Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, a curve defining the
probability that a randomly chosen genuine user will have a higher matching score than a
randomly chosen impostor (refer to section 5.2 of [31] for an in-depth description). Put more
simply, the ROC is the probability of correctly identifying a genuine user (True Acceptance
Rate or TAR = 1 − FRR) for each FAR rate, and the AUC is the area under this curve
(its integral). The higher the AUC, the better the biometric system. As an alternative, the
equal error rate (EER), defined as the point where the FAR and FRR are equal, can also
be used as a single metric to evaluate the accuracy of a biometric system, although it is
not as widely used as the AUC. That being said, modern biometric systems are designed
to yield an AUC of 0.99 or higher, hence biometric benchmarks often rely on the FRR for
fixed FAR to compare different systems [120].

2.1.2 A closer look at Face Identification

CAPTURE FEATURE EXTRACTION IDENTIFICATION

user

live face 

image
live face 

template

reference face 

template DB

MATCHING COMPARE  AGGR.

≥ 𝜃 ?

Match(≥ 1)

Reject (0)

…

…

…
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…

Σ
max
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𝐱 ∈ ℝ𝒍
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𝐳

Figure 2.3: Verification phase in face identification systems.
2For small biometric datasets you can exhaustively run verification with all possible pairs of templates,

and we do just that in all our experiments with LFW. However, larger datasets require a more efficient
approach, leading to an representative selection of template pairs for the experiment.
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Due to the relative importance of face biometrics in industry and in this thesis, we now
take a closer look at the face identification problem, depicting its matching phase in Figure
2.3.

Modern feature extractors for faces such as ArcFace-based Neural Networks [89] generate
large templates (l ∈ 128, 256, 512) with a considerable floating point precision. The numer-
ical precision of the templates can be a requirement to yield low error rates, which must
be taken into account when translating these values into integers as part of the adaptation
required for their use alongside most Privacy Enhancing Technologies.

The enrollment and feature extraction work just like in the generic case. For the match-
ing step, we are given a normalized input live template x ∈ Rl[−1,1] with l elements and
a database of reference templates with K identities Y ∈ Rl×K[−1,1] to compute identification
based on cosine similarity, as described in Equation 2.3. First we obtain the matching scores
z ∈ Rl×K[−1,1] by performing K scalar products, and then obtain k∗ (the index of the identity
yielding a positive matching) by resorting to a composition of element-wise comparisons to
the threshold θ and arg max of an array.

z , z[k] =
l∑

i=1

x[i] ·Y[i, k]

Compare first: zθ = (z ≥ θ)? → k∗ = arg max
k
{zθ[k]}

Max first: k∗z = arg max
k
{z[k]} → k∗ = k∗z · (z[k∗z] ≥ θ)?

(2.3)

The comparison to θ and arg max operations can be swapped, as they incur in a similar
computational overhead. In "Max first" K comparisons in Rl are needed to get the max of
a 1D score vector of K values (one per identity in the database), and one last comparison
to θ. Conversely, "Compare first" requires K elementwise comparisons to θ in Rl, followed
by the arg max in a binary vector with highly sparse values(since typically up to 1 element
is 1 and the rest are 0).

2.1.3 Output of a biometric verification

From the descriptions above, we can see that the output o of a biometric verification can
come in different shapes, depending on the application. In the following, we consider the
most common types of outputs and formalize them:

• A "match"/"reject" binary output corresponds to an output o ∈ Z2 indicating the
outcome of the verification process, with o = 1 for a match and o = 0 for a reject.
This is the most common output type for biometric authentication, and it applies to
both authentication (1 : 1, "are you who you say you are?") and identification (1 : K,
"are you in the list of enrolled users?").

obinary = fverif−binary(fdist,x,Y ) =
{

(fdist(x,Y
(k)) ≥ θ)? ∀k

}
(2.4)
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• A "similarity score" output yields the matching score directly in the result o ∈ ZL.
It applies to a 1 : 1 authentication scenario, and it is extensible to 1 : K with K

independent outputs:

oscore = fverif−score(fdist,x,Y ) =
{
fdist(x,Y

(k)) ∀k
}

(2.5)

• A "similarity score of max" output is an alternative of the above for 1 : K identification
where only the highest matching score is returned:

omax−score = fverif−max−score(fdist,x,Y ) = max
{
fdist(x,Y

(k)) ∀k
}

(2.6)

• An "ID index" output results in the index o ∈ Zlog2K of the positively matching
identity (e.g., k∗ in Equation 2.3) in a 1 : K identification scenario. This is the most
common output type for 1 : K identification:

oindex = fverif−index(fdist,x,Y ) =
(

arg max
{
fdist(x,Y

(k)) ∀k
}
≥ θ
)

?
(2.7)

2.1.4 Examining the feature extractor: Convolutional Neural Networks

As introduced in the previous section, the feature extractor is the component that trans-
forms the input biometric data into a feature vector all across the system. As such, the
feature extractor is at the core of a biometric system’s precision, in charge of maximizing
the distance between the feature vectors of different users, while minimizing the distance
between the feature vectors of the same user.

Riding the wave of Computer Vision models based on Deep Learning (DL), modern
feature extractors are nowadays Convolutional Neural Networks (CNN), a family of Neural
Networks (NN) specialized in dealing with images. Much like all Machine Learning, these
mathematical models go through two distinct phases: Training, where the model is adapted
using vast amounts of data, and Inference, where the model is used to make predictions on
new data. CNNs, and NNs more in general, fall into the category of supervised learning,
where the data used to train the model is labeled. E.g.: a neural network trained to
recognize handwritten digits requires the training dataset to contain both images of the
handwriting samples and the corresponding actual value (from 0 to 9).

For biometrics, the training phase consists of solving a carefully crafted optimization
problem by leveraging on massive amounts of labeled biometric images. The cost/loss func-
tion to minimize is designed with the goal of discerning identities (e.g., sampling template
triplets consisting of two matching templates and a non-matching template [126]; shaping
the template space to be a sphere surface [89] and pulling together same-identity samples
while pushing away the rest). Later on, the available data is iterated multiple times in a
computationally expensive process named backpropagation to steadily adapt the parameters
and the architecture of the DL model. Training these CNN models is a gargantuan chal-
lenge of its own, and as such it is left out of the scope of this thesis, where we concentrate
in its direct application as part of biometric systems.

Broadly speaking, there are two separate sections in a CNN model tailored for classifi-
cation, portrayed in Figure 2.4:
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Figure 2.4: Example of a Deep Convolutional Neural Network

• Feature Extractor: extracts abstract information (features, e.g., detecting edges,
shapes, gradients in a picture) from the input image that will help classify it. It
outputs a vector of features (the template in biometric systems).

• Classifier: categorizes a feature vector into a set of classes (in the case of biometric
systems, the set of identities), e.g., combine the detected edges/shapes/gradients to
predict if the image contains a human face. This is much more personalized.

In the context of biometrics, the classifier obtained in the training phase is dropped,
and the feature extractor is frozen and deployed all across biometric systems to perform
inference on previously unseen biometric data on a continuous basis, as the system is used
to authenticate/identify users.

Generically speaking, a CNN with L layers is composed of:

1. An input layer, the tensor of input data Ain

2. L− 1 hidden layers, mathematical transformations applied somewhat sequentially.

3. An output layer, the tensor of output data Aout.

We denote the output of layer i as a tensor A[i], with A[0] = Ain,and A[L] = Aout. Tensors
can have different sizes and even different number of dimensions.

Selecting a CNN architecture involves choosing the number, types, order, and size of
layers. These choices are crucial for the performance of the CNN, hence a substantial
amount of the research effort in the field of Deep Learning is devoted to the design and
refinement of these architectures to solve specific problems. A comprehensive review of the
state-of-the-art architectures for face and fingerprint recognition can be found in [157] and
[82]. Nevertheless, we now review the most relevant layers used in CNNs.

2.1.4.1 Fully Connected Layer (FC)

Also known as Dense Layer, it is composed ofN parallel elements a.k.a. neurons, performing
the RM → RN transformation presented in Figure 2.5. For the ith layer with N output
neurons and M input neurons (output of previous layer) we define:
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Figure 2.5: Fully Connected layer followed by Activation for neuron k

Neuron k performs a linear combination of the output of the previous layer a[i−1] mul-
tiplied by the weight vector w

[i]
k and shifted with a bias scalar b[i]k , obtaining the linear

combination z[i]
k :

z
[i]
k =

(
M∑
l=1

w
[i]
k [l] · a[i−1]

l

)
+ b

[i]
k =

(
w

[i]
k

)T
∗ a[i−1] + b

[i]
k

z[i] =
(
W[i]

)T
∗ a[i−1] + b[i]

(2.8)

2.1.4.2 Activation Function

Activation functions are the major source of non-linearity in CNNs. They are performed
element-wise (thus easily vectorized), and generally located after the linear combination in
FC layers and after convolution in Convolutional layers (Equation 2.9).

a
[i]
k = fact

(
z

[i]
k

)
(2.9)

The absence of activation function (a[i]
k = z

[i]
k ), is also referred to as "Linear activation"

or fact(x) = x. Four major activation functions can be found in the literature:

• Sigmoid (σ) The classical activation function. It transforms negative values into the
interval (0, 0.5] and positive values into [0.5, 1).

Sigmoid(z) = σ(z) =
1

1 + e−z
(2.10)
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• Rectifier Linear Unit (ReLU) is one
of the most widely used activation functions
for CNN. It outputs 0 for negative values
and z for positive values, thus accumulat-
ing successive activated neurons (z > 0)
while disconnecting the inactivate ones (z 6
0). Several variants such as Leaky ReLU
(LReLU) or Parametrized ReLU (PReLU)
[123] try to avoid dead neurons (neurons
that don’t activate for any input data).
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Figure 2.6: Activation functions

ReLU(z) = z+ = max(0, z) (2.11)

•Hyperbolic Tangent (tanh) is a shifted alternative of sigmoid to (−1, 1). It transforms
negative values into the interval (−1, 0] and positive values into [0, 1).

tanh(z) =
ez − e−z

ez + e−z
(2.12)

• Softmax (Eq. 2.13) is used at the output layer of NNs only because its neurons across
the whole layer sum to 1, allowing them to be considered as probabilities (in the interval
[0,1]). This is very useful for classification, where you obtain the probabilities to belong to
each class (a metric of confidence in the results).

Softmax(zk) =
ezk∑N
k=1 e

zk
(2.13)

2.1.4.3 Convolutional Layers (Conv)
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Figure 2.7: Convolutional Layer, naïve implementation

Convolutional layers (Figure 2.7) constitute an essential improvement for image recogni-
tion and classification using NNs. The linear transformation involved is spatial convolution
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[162], where a 2D F × F kernel (filter) is multiplied element-wise to the 2D input image
in patches at steps of a defined number of pixels (strides), added up and then shifted by
a bias. For input data with several channels (maps, e.g., RGB counts as 3 channels), the
filter is applied to the same patch of each map and then added up into a single value of the
output image (cumulative sum across maps). A map in convolution layers is the equivalent
of a neuron in Fully Connected layers. For the ith layer with N maps we define:

A
[i]
k =

 a
[i]
k [1, 1] . . . a

[i]
k [1,W ]

...
. . .

...
a

[i]
k [H, 1] . . . a

[i]
k [H,W ]


T

as the W ×H kth output map (typ. W=H);

Z
[i]
k =

 z
[i]
k [1, 1] . . . z

[i]
k [1,W ]

...
. . .

...
z

[i]
k [H, 1] . . . z

[i]
k [H,W ]


T

as the W ×H kth linear output;

b[i] =
[
b
[i]
1 . . . b

[i]
k . . . b

[i]
N

]T
as the bias;

W
[i]
k =

w
[i]
k [1, 1] . . . w

[i]
k [1, F ]

...
. . .

...
w

[i]
k [F, 1] . . . w

[i]
k [F, F ]


T

as the F × F filter/kernel generating map k.

The linear operation in the convolution layer, transforming M maps from layer i − 1

(∀m ∈ 1 6 m 6M) into the map k from layer i (∀k ∈ 1 6 k 6 N) is expressed as:

Z
[i]
k =

(
M∑
m=1

A
[i−1]
m ⊕W[i]

k

)
+ b

[i]
k (2.14)

The convolutional layer can be seen as a matrix to matrix multiplication using Toeplitz
matrices that smartly replicate the filter weights, effectively transforming it into a FC layer.

2.1.4.4 Pooling Layer

This layer, depicted in Figure 2.8, reduces the input size by using a packing function. Most
commonly used functions are max and mean. Similarly to convolutional layers, pooling layers
apply their packing function to patches of the image separated by defined strides.

0 0 1 0

0 1 2 3

0 1 2 0

0 0 2 0

1 3

1 2

0 0 1 0

0 4 2 1

0 2 2

0 0 2 2

1 1

0 20

𝒎𝒂𝒙 𝒎𝒆𝒂𝒏

Figure 2.8: 2 : 1 Max and Mean packing example in a Pooling layer

In practice, pooling layers are set after one or several layers and used to reduce dimen-
sionality of the inputs, as depicted in Figure 2.8
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2.1.4.5 Batch Normalization

Batch Normalization [139] (BN) is a layer that is trained over batches (sets) of input data.
The BN layer ’normalizes’ the input corresponding to one data point with respect to the
inputs from the entire batch: subtracting mean of the batch and dividing by its standard
deviation. It is generally applied before activation functions to compact the values in a small
interval around x = 0, obtaining a distribution that makes smarter use of non-linearities.
BN helps preventing the model training from getting stuck in saturated modes (e.g., dead
neurons), also helping to handle gradient explosion.

In a Batch Normalization layer there are two trainable parameters γ and β, optimized
using backpropagation. β is a shifting parameter, while γ is a scaling parameter. Mean µB
and variance σ2

B of each batch are calculated and stored. To avoid zero division, BN also
includes a very small constant ε ≈ 10−9. Once the network has been trained, the values of
the mean and variance are fixed during inference. The BN formula is:

a[i] = BNγ,β,µT ,σ
2
T

(x) = γ ∗ a
[i−1] − µT√
σ2
T + ε

+ β (2.15)

During inference, the operations of a BN layer located right before or after a linear layer
(FC, Conv) can be absorbed3 by that same linear layer [135], thus avoiding the computation
of BN almost entirely.

2.1.4.6 Other CNN operations

• Residual block is an aggregation of layers where the input is added unaltered to
the output of the transformations, thus allowing the transformations just to learn
incremental (residual) modifications to the input. An example is shown in Figure 2.9:

Conv BN + Activ Conv BN + Activ

𝑨 𝒊−𝟏 𝑨 𝒊

Figure 2.9: Residual Block, atomic element of ResNet [248]

• Data preprocessing comprises many techniques relying in prior knowledge of the
input dataset, where you apply handpicked functions to the data in order to extract
meaningful features later injected into the CNN.

2.1.5 Face identification instantiated as a FC layer

Armed with the taxonomy of CNN layers, we can reformulate the face identification op-
erations as a FC layer and an activation function, where the live biometric template x

corresponds to the input of the FC layer a, the reference template database Y acts as
3Also referred to as BN folding, BN fusing or BN reparameterization/reformulation
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the matrix of weights W, the threshold θ as the bias b, and the activation function is
sign(z) = (z ≥ 0)?

4. Starting with Equation 2.3, we obtain the following equation:

x ≡ ain; Y ≡W; θ ≡ b; fact(z
[k]) = (z[k] ≥ 0)?

k∗ = arg max
k
{((xT ∗Y) ≥ θ)?} −→ aout = arg max

k
{fact(aTin ∗W − θ)} (2.16)

While it might seem trivial at first glance, this transformation lets us use tools exposing
FC and fact(z) = sgn(z) to instantiate the face identification process, as it is be the case
with certain secure computation techniques.

2.2 Requirements for Privacy-Preserving Biometric Systems

The information regarding a user’s biometric template or its identity is the target of a
plethora of attacks on biometric systems [222, 6, 190], such as the recovery of the live
biometric template and the reference templates, the traceability of a user across multiple
services, or the deanonymization of the user corresponding to a given template. Given that
biometric traits can be neither easily modified (despite the popularity of plastic surgery)
nor re-issued, designing biometric systems that thwart or even impede these attacks is of
paramount importance. Indeed, regulation bodies such as the European Union’s General
Data Protection Regulation (GDPR) [75] and the California Consumer Privacy Act (CCPA)
[108] have recently introduced new privacy regulations that require the protection of biomet-
ric data. In this context, privacy-preserving biometric systems have emerged as a promising
solution to address the privacy concerns of biometric systems, while seeking to maintaining
their high accuracy and performance.

In line with all this, we are ready to list the requirements we expect our privacy-
preserving biometric solutions to satisfy:

(R1) - Privacy: The system must preserve the privacy of:

• The biometric templates of the enrolled users (Reference DB privacy). The
reference template database constitutes the single most important element to
protect in biometric systems, since it contains the biometric information of all
the enrolled users, and thus its disclosure to an adversary could allow it to
impersonate enrolled users.

• The biometric templates of the users being verified (Live template privacy).
While not as impactful to the overall biometric system, the live template is
also worthy of protection, since it contains the biometric information of the
users being verified. Its disclosure could lead to severe concerns to the privacy
of these users: e.g., user tracking system-wise (or even user tracking across
different systems), or the possibility of impersonating the user being verified.

4Note that this activation function can be written as dReLU(z) = ∂ ∂z(ReLU(z)) = sgn(z)
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• The parameters of the feature extractor used by the system (Feature extractor
privacy). Modern feature extractors are very complex and costly to develop
(computational resources, data required, technical expertise), and as such they
are a valuable asset to protect, as an attempt to preserve the Intellectual Prop-
erty rights held by its owner.

(R2) - Irreversibility: In order to guarantee that when a biometric storage database is
attacked, attackers cannot recover the user’s genuine private biometric information
through the data stored in the database, these transformations must be irreversible.
Thus, given a protected template, an entity holding the said template should not
be able to recover the original biometric template unless it has access to the secret
material.

(R3) - Unlinkability: Making users’ real biological information unconnected from the
outside. It is desirable to use systems employing altered or indirectly generated
data for verification. Since the actual biometric traits are not connected to digital
systems5, there is a much lower probability that it will be compromised by cor-
responding attacks launched from the network. Hence, given a protected/secured
template, an entity holding said template should not be able to link the encrypted
biometric template of a user to his/her identity.

(R4) - Correctness: The system should be resilient to malicious tampering during the
verification phase. It might be possible for an adversary to tamper with the com-
putations of this phase, and thus it is important to understand if the system was
subject of such an attack and provide countermeasures.

(R5) - Accuracy preservation: The protected system must be able to correctly verify
valid users with a high probability (low FRR), while also rejecting impostors with a
high probability (low FAR).

As a fundamental requirement of any biometric system, their privacy-preserving
counterparts must also uphold this requirement. We expect the accuracy of the
system to be reasonably preserved after adapting it with privacy-preserving solutions.
This requirement arises from the fact that the privacy-preserving solutions we are
considering are not perfect, and thus they might introduce calculation errors in the
operations.

(R6) - Performance preservation: The secure version of the biometric system should
not introduce an excessive overhead in terms of computational complexity or storage
requirements. In other words, require an acceptably low verification latency while
being able to handle a sufficiently large number of users.

In short, the system must be able to scale to the needs of the application it would
be deployed in. This is of particular importance in the context of biometric systems,
since they are often deployed in large-scale scenarios, such as airports, where they
must be able to handle a large number of users in a short amount of time.

5That is, unless we place ourselves in some ultra-connected Metaverse-like scenario
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2.3 Challenges

The main objective of this thesis is to study and apply suitable Privacy Enhancing Tech-
nologies (PETs, defined in Chapter 3) for the domain of biometric systems that address the
requirements defined above. In line with this, we now outline the main challenges to face
throughout this thesis,

(CH1): Deal with all the aspects that incur in accuracy losses, designing secure biometric
systems preserve the accuracy (R5) of their non-secure counterparts. E.g., compu-
tation of non-linearities, encoding and fixed-point precision of the input data, etc.

(CH2): Address the tradeoffs between privacy (R1), accuracy (R5) and performance (R6).
Find optimal Solutions for each scenario by leveraging off the available techniques
to reach a compromise between computation costs, communication and accuracy.

(CH3): Going beyond protections against semi-honest adversaries by addressing malicious
adversaries, guaranteeing not only privacy (R1) but also correctness (R4). We seek
stronger security guarantees that are more suitable for deployment in real-world
scenarios, dealing with solutions that entail higher complexity.

(CH4): Address the various template recovery attacks that arise from the information
revealed during the execution and as an output of PETs, ensuring irreversibility (R2)
and unlinkability (R3).

(CH5): Implement ready-to-use solutions in expressive programming languages to facilitate
the adoption of the contributions of this thesis by the community.

2.3.1 On CH1: Accuracy Losses (R5)

The first challenge is a straightforward one: a privacy-preserving biometric system must keep
the accuracy of the original biometric system to a high degree. The use of PETs often forces
us to make approximations and transformations to the original operations while adapting
the system to the constrains imposed by the chosen technique. These modifications have
an unclear impact in the accuracy of the system. Therefore, it is vital to understand how
these transformations affect the accuracy of the system.

While non-secure biometric systems typically use the full floating-point precision, PETs
work in the integer domain (as we will see in Chapter 3). To bridge the two, we will rely on
fixed-point encoding: upscaling floating-point inputs by a scale and rounding to the nearest
integer. We need to study the impact of this fixed-point approximation on the accuracy (in
the biometric sense) of the system.

Additionally, implementing the non-linearities of the biometric systems (e.g., max of
matching scores, comparison to θ) with PETs draws forth many complications, as many
PETs do not natively support linear non-linear functions at the same time. To overcome
this, we are forced to either approximate the non-linearities with linear functions (requiring
a high multiplication depth for polynomial approximations), or switch to different PETs
designed for that purpose. We will study the impact of these approximations on the accuracy
of the system.
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2.3.2 On CH2: Balancing Privacy-Accuracy-Performance (R1)-(R5)-(R6)

Different PETs have different tradeoffs between privacy, accuracy and performance. For in-
stance,Multi-party Computation (MPC) techniques [220, 244, 112] can offer strong simulation-
based information-theoretic privacy guarantees and fairly accurate non-linear functions at
the cost of a considerable amount of communication (both in terms of size and number of
rounds). Conversely, Fully Homomorphic Encryption (FHE) [109] relies on computational
hardness assumptions, only supports linear functions and polynomial evaluation natively,
and entails a relatively high computational cost, but in exchange the operations can be
performed by a single party incurring in low communication costs 6.

These aspects are to be considered when selecting the PETs to be used in a given
scenario. Throughout this thesis we will study a wide variety of PETs, leading to contrasting
trade-offs.

2.3.3 On CH3: Beyond Semi-Honest Adversaries (R4)

The main focus of this thesis is to study and apply PETs to the domain of biometrics.
However, the biometric systems we will be dealing with may not only used in benign sce-
narios whereby all parties are assumed to follow the established protocol, but also in highly
adversarial ones.

Dealing with malicious adversaries is a challenging task, as the adversary is not expected
to deviate from the protocol specifications as it is the case with Semi-Honest adversaries.
Instead, it is allowed to tamper the inputs, the outputs, or even the computations them-
selves. This is a very powerful capability, as it allows the adversary to completely subvert
the biometric system, and thus it is important to design the system in a way that it is
resilient to this behavior up to a certain degree.

2.3.4 On CH4: Addressing Leakage in the Output (R2)-(R3)

The output of a biometric system is usually a binary decision: either the user is verified
(optionally outputting the nonzero ID of the user being verified) or not. Privacy-preserving
biometric solutions are designed to disclose only this information (R2, R3). However, the
revealed result of privacy-preserving solutions often entail much larger output spaces. Ad-
versaries may leverage on this to extract information about the biometric inputs (R2), or to
expose the true identity behind the inputs of the system (R3) while being compliant with
the protocol.

This is a practical privacy concern often overlooked by the literature, and thus it is
important to address it. Thus, studying the impact of the output leakage on the privacy of
the system is of critical importance, and solutions to mitigate this issue are required.

6Accounting for the key distribution and the transmission of inputs and outputs
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2.3.5 On CH5: Implementing Ready-to-Use Solutions

This thesis has a strong focus on the practical aspects of dealing with PETs. Consequently,
we pursue implementations of all the proposed algorithms and protocols.

To promote the adoption of the contributions of this thesis by both the experts and the
non-experts in the field, we aim to implement them in expressive programming languages
of widespread adoption, favoring Python for high level interactions resembling as much
as possible the scientific description of the algorithms/protocols, and resorting to other
languages (e.g., C/C++) for efficient implementations of the cryptographic primitives.

2.4 Summary

This chapter covered a comprehensive description of biometric systems and their accuracy
metrics, illustrating the case of face identification and diving into the feature extractor. Sub-
sequently, we have inferred a set of requirements that privacy-preserving biometric systems
should uphold: privacy, irreversibility, unlinkability, correctness, and accuracy & perfor-
mance preservation. Lastly, we listed the five main challenges we are to face when building
these systems: dealing with accuracy losses, balancing privacy with accuracy and perfor-
mace, tackling malicious adversaries, addressing the leakage in the output and implementing
ready-to-use solutions. We are now set to introduce the main privacy-preserving tools at
our disposal (Chapter 3), to later apply them at several stages in biometric systems: the
feature extraction (Chapter 4), the template verification (Chapter 5) and the output reveal
(Chapter 6).
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Chapter 3

Cryptography for
Privacy-Preserving Operations

To undertake all the challenges and design biometric solutions fulfilling the requirements
of Chapter 2, we have a set of privacy-preserving cryptographic tools at our disposal.
We dedicate this chapter to comprehensively describe Multi-Party Computation (MPC),
Fully Homomorphic Encryption (FHE) and Functional Encryption (FE), the main privacy-
preserving techniques we are to employ in our solutions. We then discuss the strengths and
weaknesses of each technique as well as available implementations, devoting the reminder
of this chapter to our novel FHE library named Pyfhel.

3.1 Defining the Environment and the Adversaries

Prior to the analysis of the various cryptographic tools, we must define the context in
which they operate. In particular, we set our sights to define the environment in which the
interactions take place, the parties and their roles, and the adversaries that we are trying
to protect against.

On the Environment. The environment defines the set of characteristics and assump-
tions that we make about the context in which the privacy-preserving protocols take place
and where adversary operates. As part of this environment we designate a "party" to rep-
resent an actual real-world entity, consisting of a set of one or several Interactive Turing
Machines [49] capable of executing Probabilistic Polynomial Time (PPT) algorithms that
may use randomness to produce non-deterministic results1.

In consonance with this, we assume the following:

• There exist secure bidirectional communication channels between each party and every
other party (one could informally visualize it as a pre-established VPN) such that an
eavesdropper can only observe the messages exchanged, but not modify or drop them.

1We borrow Definition 4 from [49], informally extending a classical Turing Machine with the ability
to interact with other machines that may or may not belong to the same party. This can be seen as a
generalization of the Turing Machine pairs defined in [115] for the case of multiple parties.
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In practice, we instantiate this assumption by using standard cryptography (e.g., TLS)
to secure the communication between the participants.

• These communication channels are authenticated, meaning that the sender of each
message is verified. This can be achieved in practice by resorting to using digital
signatures, a standard cryptographic primitive that allows the sender to sign a message
with a private key, and the receiver to verify the signature with the corresponding
public key.

• In protocols with more than two participants, there exists a secure broadcast channel
for each participant to send a message to all the other participants at once. In practice,
in the absence of a real broadcast channel we can achieve this using multiple secure
and authenticated channels [161].

• Each party can access a secure random number generator (RNG) that produces ran-
dom bits that are indistinguishable from random bits produced by a truly random
source. In practice, this is achieved by employing cryptographically secure pseudo-
random (deterministic) number generators (CS-PRNG, or PRNG to abbreviate).

A quick corollary of these assumptions is that the adversary is unable to tamper with
the communication channels themselves (e.g., execute a man-in-the-middle attack).

On Roles and Parties. Our solutions are set a context of where several distinct entities,
the parties {PA,PB, . . . }, take various roles to carry out their jobs as part of the system.
In total, we distinguish up to five different roles in our privacy-preserving biometric systems
and model them as:

• Rsetup: The setup role is responsible for generating the preprocessing material during
the offline phase, and distribute it to the parties involved in the online phase. As
explained above, the setup party must be trusted due to its critical involvement in
the enrollment phase.

• Rinbmx ,Rinbmy : These are the owners/holders of the input vectors respectively, to be
shared with the computing parties at the beginning of the online phase. By convention,
and following Equation 2.3, we employ bmx for the live template and bmy/bmY for
the reference template(s).

• R0,R1, . . . : These are the computing parties in charge of performing the secure com-
putation. FHE and FE are designed for a single computing party, whereas MPC
covers protocols defined for two or more computing parties.

• Rout: This is the party that will receive the result of the secure biometric verification
process.

We write PID ⊇ Rdescr to denote the party PID identified by a tag ID that takes on the
role Rdescr, and generalize any party taking that role as Pdescr. A role can be performed
by more than one party at the same time, e.g., Psetup0 ,Psetup1 jointly perform the role
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Rsetup. Oppositely, multiple roles can coexist in a single party, e.g., two parties (PA,PB)

in charge of sharing the inputs and performing the computation can be denoted jointly as
(PA,PB) ⊇ (Rin,R{0,1}), or separately as PA ≡ Pinx ≡ P0 and PB ≡ Piny ≡ P1. Lastly, we
refer to the generic computing role as Rj , and the generic computing party as Pj .

On the Adversary. In cryptography, an adversary is a malevolent entity whose aim is
to prevent the users of a cryptosystem from achieving their goals (fulfilling (R1)-(R6) in
our case). An adversary’s efforts might take the form of attempting to discover secret data,
corrupting some of the data in the system, or impersonating a message sender or receiver.
There are several types of adversaries depending on what capabilities they are presumed to
have. Adversaries can be categorized as:

• Computationally bounded or unbounded, according to the computational power of the
adversary (time and memory). Fencing off an adversary with infinite computing power
means he will be unable to break a given requirement (e.g., privacy of a ciphertext)
no matter how much time and computation he uses. Applied to privacy (R1), this
translates into perfect hiding (e.g., even if he were to test all the possible private values
leading to a ciphertext, he cannot decide which one is more probable as all of them
are equally possible).

Conversely, facing an adversary with limited computational power assumes that your
opponent will eventually give up. Applied to privacy, it leads to computational hiding
(e.g., he cannot figure out what you were hiding with a finite amount of computational
power and time, except with negligible probability).

• Static or adaptive [50], depending on whether the adversary is constrained to choose
its set of corruptions in advance (static) or allowed to adapt his choices of who/what
to corrupt during the course of a protocol. This thesis restricts to static adversaries,
as they are easier to analyze while still providing a level of security that is sufficient
for our purposes.

• Semi-honest or malicious, depending on whether the adversary is allowed to interact
with the system. A semi-honest adversary (a.k.a. Honest-but-Curious, passive) de-
fines a type of adversary that will follow the instructions of a given protocol while
trying to extract as much information as possible from the process. It requires passive
security to overcome, making sure that data remains private throughout the protocol
execution, but without the need to verify the result of the operations. In contrast, a
malicious adversary (a.k.a. active) can deviate arbitrarily from the requested compu-
tation, forcing the verification of every step in a protocol to ensure correctness. This
is a more generic security requirement, and it is often coupled with higher complexity.

Since semi-honest adversaries require stronger assumptions (e.g., the adversary does
not deviate from the protocol), protocols providing security against them are often
seen as a stepping stone towards security against malicious adversaries.
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3.2 Multi-Party Computation (MPC)

Secure multi-party computation (or MPC) [112, 58, 244] allows two or more parties to
compute any function on private inputs without revealing anything but the output of the
function. As long as their security assumptions are met, MPC protocols executed by N

computing parties should be equivalent in terms of security to an idealization where all
N parties send their inputs to a Trusted Third Party (TTP), the TTP computes all the
protocol steps locally, and parties receive their corresponding output from the TTP. In this
idealization, the TTP is assumed to be a trusted entity that cannot be corrupted by any
adversary. In practice, the TTP is replaced by the set of N computing parties that are
assumed to be mutually distrusting.

Importantly, those parties cannot learn any information beyond what is already known
and permissible by the computation, meaning that MPC (much like FHE or FE) do not
provide any kind of protection against function inversion (e.g., inferring the inputs of a
function given its outputs). We deal with this fundamental limitation in Chapter 6.

The Pre-processing Model. Sometimes referred to as the offline-online paradigm, it is
a common approach to outsourced secure computation and MPC in particular, where the
protocol is split into two phases:

• Pre-processing (a.k.a. setup/offline) phase: the parties involved in the protocol
perform the input-independent operations, that involve generation of key material,
the generation of randomness with special properties that will be consumed in the
online phase, and the encryption/sharing of data available ahead of time. It covers
Rsetup for every protocol, and Rinv for system inputs v that are known ahead of time.

• Evaluation (a.k.a. online) phase: the parties involved in the protocol perform the
input-dependent operations, including encryption/sharing of data available only at
evaluation time, computation of the secure operations, and the decryption/reveal of
the output of the protocol. It covers Rinx for inputs known only at the beginning, Rj
for the secure computations and Rout for the output of the protocol.

The pre-processing phase is employed to offload computation from the online phase,
seeking to speed up the input-dependent operations in order to obtain solutions with low
latency. In the context of biometric systems, it covers the entire enrollment phase in-
cluding the protection (via encryption/sharing) of the reference biometric database. The
pre-processing phase can be outsourced to a TTP, trusted by all other parties to not deviate
from the protocol and to not leak any information. This is of crucial importance in the
context of biometric systems, since leaking or maliciously modifying the reference template
database automatically breaks biometric-based verification.

27



On the number of parties and majorities in MPC. An honest majority comprises
strictly less than half of the computing parties being corrupted by an adversary, whereas
a dishonest majority involves at least half of the computing parties being potentially cor-
rupted. Generally speaking, the complexity of MPC intensifies with the number of parties
and with the proportion of dishonest parties. Typically the best setup for dishonest ma-
jorities is Two Party Computation (2PC), as there is only one other party to blame when
detecting a failure. In contrast, 3PC is particularly beneficial for an honest majority setting,
since in this setting each honest party can rely on the honesty of at least one other party to
check the correctness of the results. By comparing the results of the other two parties for
a given computation, an honest party in this setting can cheaply detect malicious behavior
and abort the computation [14, 104].

On families of MPC techniques. Historically there are two main approaches to MPC.
In Garbled Circuits(GC) a computing party named the garbler encrypts a Boolean circuit
in the form of truth tables using keys from each of the parties and randomly permutes
the rows. Later on, the evaluator collaborates to sequentially decrypt single rows of the
logic gates’ truth tables while the garbler remains oblivious to the information exchanged
between them by using a primitive named Oblivious Transfer. The second approach, named
Secret Sharing(SS), splits each individual data element into N shares sending one share per
party, so that less than t shares reveal nothing of the input and t or more shares reconstruct
the original secret without error. This approach offers cheap addition operations on local
shares and communication between parties to exchange shares without ever revealing more
than t − 1 shares to any computing party. There are multiple variants of secret sharing,
ranging from Shamir’s polynomial-based sharing [220], to arithmetic and boolean sharing
[112].

This thesis makes extensive use of SS and its variants, leading us to describe them in
detail below. We focus on the two-party (N = 2) and three-party (N = 3) scenarios (2PC
and 3PC respectively), as they are the most relevant for our work due to their simplicity
and efficiency. We follow the notation from Table 3.2, covering three important variants of
SS with distinct properties:

• Replicated Secret Sharing (RSS), protecting against one malicious corruption in a 3PC
setting.

• Π Secret Sharing (ΠSS), greatly reducing the communication cost of a scalar product
with respect to SS in a 2PC setting.

• Functional Secret Sharing (FSS), secret sharing a function description instead of a
secret value, and offering a very competitive comparison protocol for a 2PC setting.

Additionally, we denote the next (respectively previous) party to party j in the set
{P0,P1, . . . ,PN−1} as Pj+1 (respectively Pj−1).
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Table 3.1: Notation for the various secret sharing schemes: SS (Secret Sharing), RSS (Repli-
cated Secret Sharing), ΠSS (Π Secret Sharing) and FSS (Functional Secret Sharing).

Scheme #PC Type Share Notation Properties

SS
N Arithmetic (ZL) Pi : 〈x〉i

∑N−1
i=0 〈x〉i mod L = x ∀x ∈ ZL

N Binary (Z2) Pi : [x]i
⊕N−1

i=0 [x]i mod 2 = x ∀x ∈ Z2

RSS
3 Arithmetic (ZL) Pi : 〈〈x〉〉i ≡ (〈x〉i , 〈x〉i+1) 〈x〉0 + 〈x〉1 + 〈x〉2 mod L = x ∀x ∈ ZL

3 Binary (Z2) Pi : JxKi ≡ ([x]i , [x]i+1) [x]0 ⊕ [x]1 ⊕ [x]2 mod 2 = x ∀x ∈ Z2

ΠSS 2 Arithmetic (ZL) Pi : 〈[x]〉i ≡ (∆x, δxi) ∆x + δx0 + δx1 = x ∀x ∈ ZL

FSS 2 ZL → ZL Pi : 〈f〉i 〈f〉0 (x) + 〈f〉1 (x) = f(x) ∀x ∈ ZL

3.2.1 Secret Sharing (SS)

We define secret sharing in rings ZL, where a secret value x is split into N random shares
xj , j ∈ {0, . . . , N−1} such that x = ΣN−1

j=0 xj mod L. The shares are distributed to the
computing parties P0,P1, . . . ,PN−1 such that party Pj holds the share xj . With this shar-
ing scheme, parties can perform local addition/subtraction of shared values. Additionally,
parties can resort to Beaver’s multiplication triples [22] to perform multiplication at the cost
of one round of communication. At the end of the computation, the shares of the result are
sent to Pout to reveal this result. Equation 3.1 shows the addition and multiplication in a
2PC setting. Note that operations involving Pj apply to all parties Pj∀j ∈ {0, . . . , N − 1}:

SS.share(x)→〈x〉 Pinx : 〈x〉1 ∼ U[ZL]

〈x〉0 ← x− 〈x〉1
Send(〈x〉j)⇒ Pj

SS.reveal(〈x〉)→x Pj : Send(〈x〉j)⇒ Pout
Pout: x = 〈x〉0 + 〈x〉1

SS.add(〈x〉 , 〈y〉)→〈x+ y〉 Pj : 〈x+ y〉j = 〈x〉j + 〈y〉j

SS.mult(〈x〉 , 〈y〉)→〈x · y〉 Psetup: 〈a〉 , 〈b〉 ∼ U[Z2×2
L ]; 〈c〉 ← 〈a · b〉

Send(〈a〉j , 〈b〉j , 〈c〉j)⇒ Pj
Pj : Send(〈x〉j − 〈a〉j , 〈y〉j − 〈b〉j)⇒ P1−j

〈x · y〉j = 〈b〉j (x−a) + 〈a〉j (y−b)
+ 〈c〉j + j · (x−a)(y−b)

(3.1)

The adaptation to N parties is straightforward. In practice we work with L = 2w for
values of w ∈ {8, 16, 32, 64} to benefit from a considerable speed up when dealing with w-bit
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modular arithmetic thanks to native integer types present in modern computers. Of special
interest for this thesis, computing a scalar product SP (x,y) =

∑l
i=1 x

(i) · y(i) with SS
requires sending N terms per multiplication and party (for a total of N2l values sent across
the network), followed by local addition of the results of each element-wise multiplication.

3.2.2 From SS to Replicated Secret Sharing (RSS) in 3PC

Shifting our attention to the the 3PC setting (N = 3), Secret Sharing consists of splitting
a secret integer x ∈ ZL into randomly selected shares so that x = 〈x〉0 + 〈x〉1 + 〈x〉2 and
then sending each share 〈x〉j to Pj∀j ∈ {0, 1, 2}, allowing local addition and multiplication
with one round of communication. Comparatively, the Replicated Secret Sharing technique
coined by [14, 104] builds upon SS, joining two SS shares into an RSS share2:

〈〈x〉〉 ≡ [(〈x〉0 , 〈x〉1), (〈x〉1 , 〈x〉2), (〈x〉2 , 〈x〉0)]

≡ [〈〈x〉〉0, 〈〈x〉〉1, 〈〈x〉〉2]
(3.2)

and sends each RSS share 〈〈x〉〉j to the corresponding party Pj (RSS.share). Given that
only t = 2 shares are needed to reconstruct x, RSS is also designated as 2-out-of-3 secret
sharing. Addition (RSS.add) and multiplication (RSS.mult) are executed independently and
simultaneously for each of the SS shares that compose a RSS share, following the protocols
from Equation 3.1 for each SS share.

The advantage of RSS over SS is that, thanks to the redundancy, parties can exchange
intermediate results in pairs and verify that they both obtained the same result, e.g., after
executing RSS.mult as two instances of SS.mult in parallel, P0 holding 〈〈z〉〉0 ≡ (〈z〉0 , 〈z〉1)
and P1 holding 〈〈z〉〉1 ≡ (〈z〉1 , 〈z〉2) exchange their local copy of 〈z〉1, convincing each other
of the honest behavior if their copies match and stopping (aborting) the protocol execution
otherwise. As a sought-off property, RSS provides security with abort against one mali-
cious corruption in a 3PC honest majority setting, at the cost of one additional round of
communication per multiplication.

Below we describe the use of correlated randomness to share a secret without communi-
cation, as well as the instantiation of SS and RSS for integer (L = 2w for w bits) and binary
shares (L = 2) that will be used in the thesis, following the first four rows of table 3.2.

3.2.2.1 Correlated randomness for cheap 3PC sharing

Following the techniques of [14], after a setup phase where common seeds are exchanged,
all parties can locally compute, correlated randomness αj with the property α0 +α1 +α2 =

0 and uniformly random in ZK using synchronized PRNGs: It suffices for each pair of
computing parties (P0,P1), (P1,P2), (P2,P0) to initialize a PRNG with a random seed agreed
upon by each pair (s(0,1), s(1,2), s(2,0)), and then locally generate αj ← PRNG(s(j,j+1)) −
PRNG(s(j,j−1)).

2Instead of defining 〈〈x〉〉j = (〈x〉j , 〈x〉j+1) as in [240], it might be convenient to define 〈〈x〉〉j = (〈x〉j , 〈x〉j±
〈x〉j+1) as in the original paper [14]. We still resort to the first option for simplicity.
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This randomness can be used by party Pj to secret share a value x without communi-
cation by defining 〈x〉 =

(
〈x〉j = x+ αj , 〈x〉j+1 = αj+1, 〈x〉j−1 = αj−1

)
. RSS.share can

similarly benefit from this technique.

3.2.2.2 Arithmetic sharing in 3PC

Also known as Integer/Additive sharing, sharing a single integer x ∈ Z2l requires first to
split x into random arithmetic shares by using randomness 〈r〉j uniformly random ∈ Z2l so
that r = 0 = 〈r〉0 + 〈r〉1 + 〈r〉2. These values are used to conceal x: 〈x〉j = x − 〈r〉j , as it
naturally holds that x = 〈x〉0 + 〈x〉1 + 〈x〉2. Note that 〈r〉j = 〈x〉j+1 + 〈x〉j−1 also holds
true.

Following an RSS scheme, each party Pj receives 〈〈x〉〉j = (〈x〉j , 〈x〉j + 〈x〉j+1) =

(〈x〉j , 〈r〉j−1) when sharing an integer secret. Addition of two integer shared secrets can be
computed locally on the parties [14], and multiplication between two integer shared secrets
requires one round of communication with 2 integers sent per party [14, 104].

3.2.2.3 Binary sharing in 3PC

Similarly, sharing a single bit b ∈ Z2 requires first to split b into random bit shares by using
some correlated randomness [s]j uniformly random ∈ Z2 so that s = 0 = [s]0 ⊕ [s]1 ⊕ [s]2.
These random values are used to conceal b: [b]j = b ⊕ [b]j , and it naturally holds that
b = [b]0 ⊕ [b]1 ⊕ [b]2. Note that the equation [s]j = [b]j+1 ⊕ [b]j−1 also holds true. Following
an RSS scheme, each party Pj receives JbKj = ([b]j , [b]j−1) when sharing a binary secret.
Analogous to integer sharing, XOR of two binary shared secrets can be computed locally
on the parties [14], whereas AND between two binary shared secrets requires one round of
communication with 2 bits sent per party [14, 104].

3.2.2.4 Share conversion

While arithmetic sharing is the natural choice to perform additions and multiplications,
binary sharing can be much more effective to deal with non-linear functions, such as the
comparison of two integers (e.g., by extracting the sign of the difference in a binary circuit).
Much like ABY [88] for 2PC, ABY3 [185] provides all the necessary tools to convert between
arithmetic and binary shares (as well as garbled circuits) in a 3PC setting, and we will use
these tools in the thesis.

3.2.3 Π-Secret Sharing (ΠSS) for efficient 2PC scalar product

Originally inspired by ASTRA [57] in the 3PC scenario, ABY2.0 [193] introduces a novel way
to perform additive secret sharing in 2PC3, where a secret value x is split into three random
shares (∆x, δx0 , δx1) such that ∆x = x+ δx0 + δx1 mod L. The δ-shares δxj are distributed
to each computing party Pj forming an arithmetic secret sharing 〈δx〉 of δx = δx0 + δx1,
while the ∆-share ∆x is held by both parties at once. We name this sharing scheme
as Π-secret sharing, due to the "horizontally" mutual ∆-share and the two "vertically"
separated δ-shares, and denote the Π-sharing of value x as 〈[x]〉. The Π-sharing scheme allows
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local addition/subtraction, and multiplication at the cost of one round of communication.
The essential difference with respect to the SS scheme is that the δ-shares can be pre-
computed, and thus carry extra correlation4 that wasn’t possible with standard SS. The
main arithmetic operations in ΠSS are defined as in Equation 3.3.

Crucially, the online phase of the Π-sharing multiplication first computes a local arith-
metic sharing of the result 〈x · y〉, and then uses one round of communication to convert the
result back into Π-shares. As promptly explained in [193], this moves the communication
from the multiplication inputs (see SS.mult in Equation 3.1) to the multiplication outputs,
which yields sizeable advantages in terms of communication size for operations such as the
scalar product: computing a scalar product SP (x,y)

∑l
i=1 x

(i) ·y(i) with ΠSS requires only
sending two intermediate values for the entire operation regardless of the length of the
vectors x and y, thus reducing the communication size by a factor of l with respect to SS.

ΠSS.share(x)→〈[x]〉 Psetup: 〈δx〉 ∼ U[Z2
L]

Send(δxj )⇒ Pj ,Pinx
Pinx : ∆x ← x+ δx0 + δx1

Send(∆x)⇒ Pj

ΠSS.reveal(〈[x]〉)→x Pj : Send(〈[x]〉j)⇒ Pout
Pout: x = ∆x − δx0 − δx1

ΠSS.add(〈[x]〉 , 〈[y]〉)→〈[x+ y]〉 Pj : 〈[x+ y]〉j = 〈[x]〉j + 〈[y]〉j

ΠSS.mult(〈[x]〉 , 〈[y]〉)→〈[x · y]〉 Psetup: 〈δx〉 , 〈δy〉 , 〈δz〉 ∼ U[Z3×2
N ]; 〈δxy〉 ← 〈δx · δy〉

Send (δxj , δyj , δxyj , δzj )⇒ Pj
Send (δx)⇒ Pinx ; Send (δy)⇒ Piny

Pinx : ∆x ← x+ δx0 + δx1 ; Send (∆x)⇒ Pj
Piny : ∆y ← y + δy0 + δy1 ; Send (∆y)⇒ Pj
Pj : 〈x · y〉j ← j ·∆x∆y −∆x〈δy〉j −∆y〈δx〉j + 〈δxy〉j

〈∆z〉 ← 〈x · y〉+ 〈δz〉 ; Send (∆zj)⇒ P1−j

〈[z]〉j ≡ (∆z0 + ∆z1, 〈δz〉j)
(3.3)

3.2.4 Functional Secret Sharing (FSS).

A 2PC Functional Secret Sharing (FSS) scheme [39, 40] for a function family F splits a
function f ∈ F into two additive shares (f0, f1), such that each fj hides f and f0(x)+f1(x) =

f(x) for every input x. Beyond trivial solutions such as secret-sharing the truth-table of
4Following [193], we can inject correlation from a Beaver triple in the δ-shares
4Note: ABY2.0 [193] refers to arithmetic secret sharing as [·]-sharing and Π-secret sharing as 〈·〉-sharing.
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f , FSS schemes seek succinct descriptions of fj (function keys k0,k1) with efficient online
execution. Since both function shares must evaluate on the same value x, this value must
be made public to both computing parties Pj . To maintain input data privacy, a random
mask r is added to the secret input x, so that the opened value x̂ = x + r completely
hides x before using it as input to the FSS evaluation. In order to obtain full correctness
on the function evaluation with respect to f(x), the class of functions F is restricted to
fr(x) = f(x+ r), where the mask is known by the dealer and used for the key generation.

For addition and multiplication gates over a ring Z2n , the FSS gates correspond to
Beaver’s protocol [22]. A much more interesting case arises in [41, 38], where non-linear
operations including zero-test, integer comparison or bit decomposition are efficiently con-
structed using a small number of invocations of FSS primitives. Luckily, these FSS gates
make a black-box use of any secure PRNG, which can be instantiated with AES blocks to
yield short keys and fast implementations.

Grounded on the MPC preprocessing model, a FSS gate is composed of two algorithms:

• Gen(1λ, f)→(k0, k1) is a PPT key generation algorithm that, given the security
parameter λ and the description of a function f : Gin 7→ Gout, outputs a pair of
functional keys (k0, k1) containing the descriptions for f0, f1 and the input mask
shares r0, r1 respectively.

• Eval(j, kj , x̂)→ f(x) is a polynomial-time deterministic algorithm that, given the
party index j, the functional key k and the masked input x̂ outputs an additive share
fj(x̂), such that f0(x̂) + f1(x̂) = f(x).

As central building block of many FSS gates, we recall the concept of Distributed Com-
parison Function (DCF) (Section 3 of [38]) to be a comparison function f<α,β outputting β if
x > α and zero otherwise. Built on top of two evaluations of DCF, [38] later proposes a FSS
gate for Interval Containment (IC) computing fp,q(x) = 1x∈[p,q] (Section 4.1 of [38]). To
compute the unit step function of a n-bit signed integer, it suffices to employ their construc-
tion (detailed in Figure 3 if [38]) setting p = 0 and q = 2n−1−1, obtaining 1p6x6q = Hn(x).
For convenience, we detail this FSS gate instantiation in Protocols 1 (key generation) and
2 (evaluation), keeping the DCF calls to the original protocol in [38].

For further information about FSS variants and practical gates we refer the avid reader
to [38].

3.3 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) allows a computing party to perform computations
on encrypted data without learning the inputs or the computation results. In contrast to
partially homomorphic encryption, which supports only one type of arithmetic operation

5The correction terms test three standard overflow cases and one corner case. The standard case terms
test if q+ r overflows (1p+r>q+r), if q+ r+ 1 overflows (1q+r+1>q+1), and if p+ r does not overflow (1p+r>p,
which is always 1 in our instantiation since p = 0 and r < 2n − 1). The corner case term tests whether
p + r = 2n − 1 (1p+r=2n−1, yielding zero except if r = 2n − 1 in our case). Proofs of the need of these
correctness terms are given in [38].
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Protocol 1 FSS.GenIC(λ, n, r) → kIC0 ,kIC1

Players: Psetup carries out the generation.
Input: λ: computational security parameter.

r: Mask for the input to the function.
Output: k0,k1: preprocessing keys, to send to P0, P1 respectively.

〈δx〉 , 〈δy〉: δ-shares of input vectors, to send to Pinx ,Piny (input owners) resp.
Note: All arithmetic operations (+,−,·) are defined in Z2n , thus their results are susceptible

to "overflow" due to modular reduction.

Define the interval [p, q] for sign extraction:
1: p← 0; q ← 2n−1 − 1
Generate a DCF for γ, am arbitrary value above the two interval limits:
2: γ ← (2n − 1)
3: (kγ0,kγ1)← Gen<n (1λ, γ + r, 1,U[Z2n ])
Generate the correction terms5to fix overflows:
4: c← 1p+r>q+r + 1q+r+1>q+1 − 1p+r>p + 1p+r=2n−1

5: c0 ∼ U[Z2n ]; c1 ← c− c0

Compose keys:
6: kIC0 ← (kγ0, c0); kIC1 ← (kγ1, c1)
7: return kIC0 ,kIC1

Protocol 2 FSS.EvalIC(j, kj , x̂) → o0, o1

Players: Pj the selected computing party j.
Input: j: The party number, j ∈ {0, 1}.

kj : The key for Pj , composed of a DCF key for γ and a correction share cj .
x̂: Masked public input, result of reconstructing x+ r.

Output: o0, o1: Additive secret shares of 1x∈[0,2n−1−1].

Define the interval [p, q] for sign extraction:
1: p← 0; q ← 2n−1 − 1
Deserialize key and obtain local overflow term η:
2: (kγj , cj)← kj
3: η ← 1x̂>p − 1x̂>q+1

Evaluate the DCF with two inputs and compute result:
4: oLj ← Eval<n (j,kγj , 1, x̂− 1)

5: oRj ← Eval<n (j,kγj , 1, x̂− q)
6: return oj ← j · η − oLj + oRj + cj

(e.g. only additions or only operations), fully homomorphic encryption allows encrypted
multiplications and additions, theoretically allowing private computation of arbitrary func-
tions. This powerful concept was first conceived by Rivest et al. in the 1970s [210]. How-
ever, it remained unrealized until Craig Gentry presented a first feasible FHE scheme in
2009 [109]. Since then, FHE has gone from theoretical breakthrough to practical deploy-
ment. While implementations of the first FHE schemes required 30 minutes to compute a
multiplication between two encrypted values, this has since dropped down to less than 20
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milliseconds [143]. Even with these significant improvements, FHE multiplications are still
around seven orders of magnitude slower than native CPU integer multiplication instruc-
tions. Therefore, FHE is not a drop-in replacement for existing applications and instead
requires, like other secure computation solutions, that applications be specifically adapted
and optimized.

3.3.1 FHE Preliminaries

A homomorphic encryption scheme allows computation over the ciphertexts that results in
ciphertexts encrypting the result of the equivalent plaintext operation. For example, in an
additively homomorphic scheme we get Dec (Enc(a)⊕ Enc(b)) = Dec (Enc(a+ b)), where
+ is the addition operation over plaintexts, and ⊕ is an operation over the ciphertexts.
Similarly, a multiplicatively homomorphic encryption scheme supports multiplications over
encrypted values: Dec (Enc(a)⊗ Enc(b)) = Dec (Enc(a× b)) where × is the multiplication
operation over the plaintexts and ⊗ is an operation over the ciphertexts. Additively or
multiplicatively homomorphic encryption schemes have been known since the beginning of
public-key cryptography. For example, textbook RSA [209] is multiplicatively homomor-
phic, while the Paillier encryption scheme [191] is additively homomorphic. Fully homo-
morphic encryption, in contrast, is both additively and multiplicatively homomorphic.

Because multiplication and addition can emulate AND and OR gates, respectively, over
binary plaintexts, fully homomorphic encryption allows arbitrary computations to be per-
formed, making it significantly more powerful than the previous partially homomorphic
encryption schemes. In recent years, several breakthroughs and advancements have led to
a leap in general performance and a variety of efficient schemes [42, 100, 43, 60, 65, 67] that
target slightly different settings.

3.3.2 FHE Schemes

Virtually all modern FHE schemes are based on (variants of) the Learning with Errors
(LWE) hardness assumption [204] and rely on a small amount of noise added during encryp-
tion to guarantee security. During homomorphic operations, this noise grows. This effect is
negligible for additions, but very significant for multiplications. Should the noise grow too
large, decryption would no longer produce correct results. Theoretically, a technique known
as bootstrapping can be used to homomorphically reset the noise in a ciphertext. However,
this is computationally very expensive for the FHE schemes we consider in this thesis, and
therefore not frequently used in practice. Instead, some schemes are generally instanti-
ated with carefully selected parameters that are large enough to allow the computation to
complete without requiring bootstrapping6.

We now introduce the Brakerski/Fan-Vercauteren (BFV) [42, 100] and Cheon-Kim-Kim-
Song (CKKS) [62] schemes, foundational to our work, leaving out other schemes such as
TFHE [65]. We also cover a Multi-Party variant of BFV, which will be instrumental in a
decentralized decryption protocol in Chapter 6.

6The TFHE [65] scheme is an exception to this, as it makes extensive use of a fast bootstrapping after
each multiplication.
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3.3.3 The Brakerski/Fan-Vercauteren (BFV) scheme

The Brakerski/Fan-Vercauteren scheme [42, 100] is a ring-learning-with-errors (RLWE) [180]
homomorphic encryption scheme. Messages are encoded in the plaintext space Rt =

Zt[X]/(XN + 1) of polynomials of degree up to N − 1, and then encrypted into the ci-
phertext space Rq = Zq[X]/(XN + 1) with t < q (typically t � q), N a power of 2 and
∆ = bq/tc. Simply encoding each vector element into a coefficient would lead to issues
during homomorphic multiplications, and instead the vectors are mapped to polynomials
using the Chinese Remainder Theorem (CRT).

3.3.3.1 Description

The BFV scheme utilizes secrets sampled from two small-normed distributions: the secret
key distribution S[Rq ] with coefficients sampled from a uniform distribution s[j] ∼ S ,
U({−1, 0, 1}) so that Image(SRq) = Z{−1,0,1}[X]/(XN + 1). (although in some implemen-
tations they are instead sampled from U({0, 1})), and the error distribution X[Rq ] with
coefficients e[j] ∼ X , N[−B,B](0, σ) sampled following a discrete Gaussian with standard
deviation σ truncated into [−B,B] where σ and B are two cryptosystem parameters.

The security of BFV is rooted in the hardness of the decisional-RLWE problem, infor-
mally stated as: given a uniformly random a ← U(Rq) , a secret s ← S[Rq ], and an error
term e← X[Rq ], it is computationally hard for an adversary that does not know s and e to
distinguish between the distribution of (sa + e, a) and that of (b, a) where b ← U(Rq). A
more formal definition can be found in Section 3.1 of [100].

Homomorphic addition and multiplication operate element-wise, giving rise to the SIMD
parallelism. Additionally, rotation operations cyclically rotate the elements inside the vec-
tors, allowing elements originally stored at different indices (also known as “slots") to in-
teract. Since multiplications lead to the most significant noise growth, the number of
subsequent multiplications (the multiplicative depth) should be as small as possible.

While BFV supports bootstrapping in theory, it is slow and thus the scheme is com-
monly instantiated with parameters large enough to handle the noise growth result of a
limited multiplicative depth. Even then, a public relinearization should be used between
multiplications to reshape the ciphertext without changing the underlying message, lowering
noise growth and ciphertext size by employing a specific public key named relinearization
key (rlk).

Scheme 3 outlines the subset of algorithms conforming the BFV scheme that we will be
using in this thesis.

3.3.3.2 Multi-party BFV Scheme

Multiparty Homomorphic Encryption (MHE) provides a natural extension of FHE to an N-
party setting. We will focus on the Distributed BFV scheme or DBFV of [186], summarizing
some of the key protocols in Scheme 4. The secret key generation is now performed by local
generation of shares 〈sk〉i, then the collective public key protocol is based on the underlying
global secret key sk. To preserve practical security, sk is never reconstructed, but parties
can collaborate to generate a collective public key cpk corresponding to sk. Homomorphic
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Scheme 3 BFV(t, n, q, w, σ,B)

BFV.SecKeyGen()→ sk :

Sample s← S[Rq ]

Output sk = s

BFV.PubKeyGen( sk )→ pk:

Let sk = s a secret key

Sample p1 ← U(Rq), and e← X[Rq ]

Output pk = (p0, p1) = (−sp1 + e, p1)

BFV.Encrypt( pk,m )→ cm :

Let pk = (p0, p1) a public key

Sample u← S[Rq ]; e0 ← X[Rq ]; e1 ← X[Rq ]

Output cm = (cm0 , cm1) = (∆m+ up0 + e0, up1 + e1)

BFV.Add( ca, cb )→ cadd :

Let ca = (ca0 , ca1), cb = (cb0 , cb1) two ciphertexts.

Output cadd = ([ca0 + cb0 ]q, [ca1 + cb1 ]q)

BFV.Decrypt( sk, ct )→ mres :

Let sk = s a secret key, ct = (ct0 , ct1) a ciphertext.

Output mres =
[⌊

t
q [ct0 + sct1 ]q

⌉]
t

encryption and evaluation are left untouched from the original BFV scheme (Scheme 3),
whereas relinearization and key switching present specific multi-party protocols (protocols
3 and 4 of [186]).

3.3.3.3 Encoding, Packing and modular operations

Inputs to BFV.Encrypt are first to be encoded into the plaintext space Rt. We consider
two main encoding techniques (see Scheme 5): base encoding, where a single integer fills an
entire plaintext, and packed encoding, where a vector of integers is mapped element-wise to
the coefficients of the plaintext. Figure 3.1 illustrates an example of these encodings.

The packing technique enables Single Instruction Multiple Data (SIMD) parallelism,
making it highly efficient for applications working over larger amounts of data while sup-
porting both additive and multiplicative homomorphic operations. Due to its practicality, it
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Scheme 4 DBFV(t,N, q, σ,B,K)

DBFV.SecKeyGen()→ 〈sk〉1 , . . . 〈sk〉i , . . . 〈sk〉K :

Pi: Sample si ← S[Rq ]

Pi: Output 〈sk〉i = si, where sk =
[∑K

i ski

]
q

DBFV.ColPubKeyGen( 〈sk〉1 , . . . 〈sk〉i , . . . 〈sk〉K )→ cpk :

Let ski = si private key share of Pi.

Any: Sample p1 ← U(Rq). Disclose to all Pi.

Pi: Sample ei ← X[Rq ]

Pi: Compute 〈p0〉i = −p1si + ei

Any: Output cpk = (p0, p1) = (
∑K

i 〈p0〉i , p1).

DBFV.Encrypt( cpk,m )→ cm:

Any: Output cm = BFV.Encrypt(cpk,m).

DBFV.ColDecrypt( c, 〈sk〉1 , . . . 〈sk〉i , . . . 〈sk〉K )→ mres:

Let si = 〈sk〉i private key share of Pi, ct = (ct0 , ct1) a ciphertext.

Pi: Sample ei ← X[Rq ]

Pi: Compute 〈c1s〉i = sic1 + ei

Any: Output mres =

[⌊
t
q

[
c0 +

∑K
i 〈c1s〉i

]
q

⌉]
t

is implemented in most of the current lattice-based cryptographic libraries [219, 121, 196, 96]
and is part of the draft HE standard [16].

Homomorphic addition is naturally performed element-wise when adding two packed
polynomials. To obtain homomorphic multiplication applied element-wise, one needs to
follow the instructions for RLWE-based packing from section 3.2 of [225]. In short, input
integer vectors need to be encoded using the inverse Number Theoretic Transform (InvNTT)
over Rt to turn polynomial multiplications into coefficient-wise multiplications. Addition-
ally, rotation operations cyclically rotate the elements inside the vectors, allowing elements
originally stored at different indices (also known as “slots") to interact.

Furthermore, typical applications of homomorphic encryption deal with operations in the
non-modular domains Z or R. Their coercion to arithmetic modulo t forces the underlying
plaintext operations to not overflow their coefficients modulo t. Hence, the encrypted vector
elements are limited to t when using packing, and the digits of the encrypted value in base-b
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∈ 𝑅𝑡𝑚𝑏𝑎𝑠𝑒 =

∈ ℤ in base 𝑏 = 4

𝑎 = 17710 = 20314

1   0   3   2   0   ...  0   0( )
1 + 0𝑥 + 3𝑥2 + 2𝑥3 + 0𝑥4…+ 0𝑥𝑁−2 + 0𝑥𝑁−1

1   0   3   2   0   ...  0   0( )
𝐑𝐋𝐖𝐄.𝐁𝐚𝐬𝐞𝐄𝐧𝐜𝐨𝐝𝐞 𝑎, 𝑏

∈ 𝑅𝑡𝑚𝑝𝑎𝑐𝑘 =

∈ ℤ𝑁0   2   3  -1  -2 ... 0   1𝒂𝑣𝑒𝑐 =
𝐑𝐋𝐖𝐄. 𝐏𝐚𝐜𝐤𝐄𝐧𝐜𝐨𝐝𝐞 𝒂𝑣𝑒𝑐

[ ]
0   2   3  t-1t-2 …   0   1( )

0 + 2𝑥 + 3𝑥2 + 𝑡 − 1 𝑥3…+ 0𝑥𝑁−2 + 1𝑥𝑁−1

Figure 3.1: Visualization of the BaseEncode (top) and PackEncode (bottom) algorithms for
arbitrary inputs

representation must fall below t when using base encoding. If using signed encoding, the
underlying values/digits are limited to the interval [−t/2, t/2). For deep arithmetic circuits,
this overflow limitation causes t to take higher values, at a non-negligible performance cost.
7

3.3.4 The Cheon-Kim-Kim-Song (CKKS) scheme

The Cheon-Kim-Kim-Song (CKKS) scheme [62] implements approximate homomorphic en-
cryption, i.e., Dec (Enc (m)) ≈ m. In traditional FHE schemes, interactions between the
message and the noise inside a ciphertext are avoided by shifting the message to the most
significant bits. Should the noise grow large enough to affect the message, this is consid-
ered an invalid ciphertext and decryption fails. In CKKS, in contrast, noise that ends up
overlapping the least significant bits of a message is considered to be part of the message,
leading to the approximate nature of the scheme.

CKKS is designed to be used with vectors of messages ~m ∈ Rn, i.e., fractional values,
and encoding applies a scaling factor, i.e. computes bm ∗∆e, where ∆ is a large integer
(e.g., 230). While this type of encoding can be used in other schemes, too, this quickly
leads to issue with subsequent multiplications, as the scale will grow to ∆2, ∆3, etc with
each multiplication. Since ∆ is large, this will quickly lead to the encoded message being
reduced modulo q, producing incorrect results. CKKS introduces a technique to combat
this growth, introducing the ability to rescale a ciphertext, essentially homomorphically
dividing it by ∆.

While the underlying design of CKKS is closer to the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme [43] than to BFV, using CKKS is very similar from a developer perspective:
homomorphic operations offer SIMD parallelism, rotations are available, and relinearization
should be used after ciphertext-ciphertext multiplications.

7CKKS [62] solves this elegantly at the expense of introducing additional noise in the computation result.
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Scheme 5 RLWE Codec(t,N)
RLWE.BaseEncode( a, b )→ m:

Let a ∈ Z an input integer value with up to N digits in base-b representation.
Output: Polynomial m ∈ Rt with

m[j] = (b|a|cb(j+1) − b|a|cbj ) ∀j for unsigned encoding,
m[j] = (b|a|cb(j+1) − b|a|cbj ) ∗ sign(a) + t ∗ sgb(a) ∀j for signed encoding.

RLWE.BaseDecode( m, b )→ ares:

Let m ∈ ZNt the coefficients of an encoded polynomial in Rt.
Output Integer ares ∈ Z with

ares =
∑N

i=1m[i] ∗ b(i−1) for unsigned encoding,
ares =

∑N
i=1m[i] ∗ b(i−1) ∗ (−1) ∗ sign(m[i]− t/2) for signed encoding.

RLWE.PackEncode( a )→ m:

Let a ∈ ZN an input vector with N elements in:
[0, t) for unsigned encoding,
[−t/2, t/2) for signed encoding,

where t must be a prime congruent to 1 mod 2N .
Output Polynomial m ∈ Rt where m = InvNTT(a mod t).

RLWE.PackDecode( m )→ ares:

Let m ∈ ZNt the coefficients of an encoded polynomial of degree N − 1 in Rt.
Compute adec = NTT(m).
Output

ares = adec for unsigned encoding,
ares[i] = (adec[i]− t) if adec[i] > t/2 else(adec[i]) ∀i for signed encoding.

Since the vast majority of DL techniques are designed for floating-point computations,
which also exhibit variable precision and precision losses over time, this makes CKKS es-
pecially well suited for DL applications.

While the approximate nature of CKKS is essential for its practical applications, as
it enables this efficient rescaling/rounding operation, it also introduces subtle security is-
sues [168]. These are easy to mitigate in practice in some setting, e.g. when using CKKS
to evaluate machine learning classifiers on encrypted input, we can release just the name
or index of the top class (or top-k classes) instead of the exact probabilities computed.
However, other settings might require releasing actual values and here, solutions are less
obvious.

Much like in BFV, messages are encoded in the plaintext space R = Z[X]/(Xn + 1)

of polynomials of degree up to n − 1, this time using a different isomorphism of R with
Cn/2 and an approximated mapping, and then encrypted into the ciphertext space Rq =

Zq[X]/(Xn + 1) with n a power of 2 and q the product of a set of carefully chosen primes.
The CKKS scheme can sample secrets from the same distribution as BFV, and its secu-

rity properties stem from the same hardness assumption of the decisional RLWE problem.

40



Scheme 6 CKKS(n, q = [q0 ∗ q1 ∗ · · · ∗ qd+1], w, σ,B)
CKKS.keygen( sk, w )→ (sk,pk):

Sample s← S[Rq ]

Sample p1 ← U(Rq), and e← X[Rq ]

Set pk = (p0, p1) = (−sp1 + e, p1)

Output (sk,pk)

CKKS.encr( pk,m )→ cm :

Let pk = (p0, p1) a public key
Sample u← S[Rq ]; e0 ← X[Rq ]; e1 ← X[Rq ]

Output cm = (cm0 , cm1) = (q0m+ up0 + e0, up1 + e1)

CKKS.add( ca, cb )→ cadd :

Let ca = (ca0 , ca1), cb = (cb0 , cb1) two ciphertexts.
Output cadd = ([ca0 + cb0 ]q, [ca1 + cb1 ]q)

CKKS.decr( sk, ct )→ mres :

Let sk = s a secret key, ct = (ct0 , ct1) a ciphertext.

Output mres =
⌊

1
qd+1

[ct0 + sct1 ]qd+1

⌉
CKKS.encode( a )→ m:

Let a ∈ Rn/2 an input vector with n/s elements.
Output Polynomial m ∈ R where m = InvNTT(a).

CKKS.decode( m )→ ares:

Let m ∈ ZN the coefficients of an encoded polynomial of degree N − 1 in R.
Compute adec = NTT(m).
Output adec

Similarly to BFV, CKKS is commonly instantiated with parameters large enough to handle
the noise growth result of a limited number of multiplications. A reasoning on how to select
these parameters in practice can be followed in Section 3.4 of [186].

Scheme 6 outlines the subset of algorithms conforming the CKKS scheme that are per-
tinent for this thesis.

3.4 Functional Encryption (FE)

First formalized in [34], a Functional Encryption (FE) scheme is an encryption scheme
where the secret key is used to derive "functional" secret keys, allowing decryption for a
certain function evaluation on the previously encrypted inputs without revealing anything
else about these inputs. More concretely, an FE scheme enables evaluation of F (k, x) given
the encryption of x and a secret key skk for k, consisting of four probabilistic polynomial-
time algorithms:
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pk,msk ← FE.setup(1λ) generates a public and master secret key pair
given security parameter λ

skk ← FE.keygen(msk, k) generates functional secret key skk for k
using master secret key msk

c← FE.encr(pk, x) encrypts message x with public key pk into
ciphertext c

z ← FE.decr(skk, c) evaluates z = F (k, x) from c using skk

We can see FE as a generalization of public-key cryptography, since setting F to be the
identity function F (k, x) = x yields the original encrypted message as a result. In addition,
FE also encapsulates several existing encryption schemes like Identity-based encryption
(IBE) [33, 216], defining F (k, x) to be equal to x when k belongs to an identity that is
allowed to decrypt, and ⊥ otherwise; and attribute-based encryption (ABE) [119], defining
F (k, x) to be equal to x if k contains attributes with permission to decrypt and ⊥ otherwise.

Besides IBE and ABE derivatives (both ciphertext policy [25, 9] and key policy [15, 119]),
there are only a handful of functions f for which practical and efficient FE schemes have
been proposed. First studied as inner product predicate [148, 184] (whether the inner
product of two vectors is zero or not), the inner dot product bmx · bmy between two vectors
bmx, bmy ∈ Zn is one of them [4]. The quadratic multi-variate polynomial evaluation
bmx ·Q · bmy is another one [18].

Much like FHE, FE evaluation is designed to be computed in a single computing party.
The key difference, however, is the custom decryption, which takes the form of a function
evaluation evaluating the desired function over private inputs and yielding the result in the
clear.

3.4.1 On FE Security guarantees

The security of FE is generally defined using game-based indistinguishability definitions
(IND, [34, 4]) that prove Indistinguishability against Chosen Plaintext Attacks (IND-CPA
secure), or with simulation-based definitions (SIM, Def. 2.4 of [153]) which also imply
IND-CPA (SIM⇒IND, Remark 2.5 of [153]). We revisit this notion:

Definition 1 (Experiment Exptind−cpa−bFE,λ ). Let b ∈ {0, 1}, F the functionality of FE, a
challenger C and an adversary A that can make indefinite key generation oracle queries,
one challenge oracle query among them, and eventually, one finalize oracle query to end the
experiment. C starts the experiment computing (pk,msk) ← FE.setup(1λ), gives pk to A,
sets Y ← Ø and then responds to oracle queries made by A in the following manner:

• Key generation oracle: On input k ∈ K, C computes and returns skk ← FE.keygen(msk, k),
and stores Y ← Y ∪ {k}.

• Challenge oracle: On input one messages x0, x1 ∈ X, computes and returns c ←
FE .encr(msk, xb).
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• Finalize oracle: On input b′ ∈ 0, 1, C first checks that @k ∈ Y s.t. F (k, x0) 6= F (k, x1).
If the check holds, C outputs (b = b′), otherwise it outputs 0. The experiment ends
either way.

Definition 2 (Indistinguishability-based Security). For functional encryption scheme FE =

(setup, keygen, encr, decr) with functionality F (K,X), we say that FE is secure against
chosen-plaintext attacks (IND-CPA secure) if:∣∣∣Pr[Expind−cpa−1

FE,λ (A) = 1]− Pr[Expind−cpa−0
FE,λ (A) = 1]

∣∣∣ = negl(λ)

Where f : N→ [0, 1] is negl(λ) iff ∀a ∈ N ∃λc ∈ N s.t. f(λ) ≤ λc ∀ λ > λc

There is an important corollary to draw from this definition: There is no restriction
to what the functional secret keys skk reveal about k. In the case of inner products
F (k, bmx) = bmx ·bmyk, this implies that skk can (and indeed does in standard FE schemes
such as [10]) reveal bmyk inside skk.

3.4.2 FE Schemes for Scalar Product

During the last decade a wide corpus of papers have tackled FE schemes for scalar product
encryption. To make them more accessible to non-experts, the FENTEC project’s open
source library CiFEr [197] implements a curated selection of Inner Product Encryption
(IPE) schemes in plain C language. Table 3.2 displays a comparison of these IPE schemes.
The schemes can be characterized based on:

• security guarantees [34]: Selective security (s-IND-CPA, [4]) or strong security (IND-
CPA / SIM-based).

• multi-input [5]: The scheme takes input vectors bmxk and bmyk from k multiple
parties, realizing the multi-input variant of the inner product z =

∑
k bmxk · bmyk,

where the result is an aggregation of several dot products.

• decentralized [69]: Replaces the Trusted Party, in charge of the FE.setup operation
in the standard case, with a MPC protocol over several potentially untrusted parties.

• function-Hiding [153]: Adds a restriction so that the functional secret keys skk do not
disclose the parametrization of the underlying function. For inner product schemes,
this implies that skk hides the underlying vector y.

The wide spectrum of Inner Product schemes of Table 3.2 needs to be narrowed down
in order to select the most appropriate FE scheme to secure biometric systems: Selecting
security guarantees. The s-IND-CPA [4] security guarantee imposes the restriction to
the attacker not to extract any information from calls to FE.encr after submitting the
challenge. However, in the natural setup of our system this restriction does not hold.
Since a biometric system is expected to make several calls to FE.encr, latter calls would
break the security of the previous ones. We thus set a security of IND-CPA so that all the
verification attempts hold the security properties inherited from the FE scheme.
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Table 3.2: Comparison of several Inner Product FE schemes based on their properties

FE scheme M
ul
ti-
in
pu
t

De
ce
nt
ra
liz
ed

Fu
nc
tio
n-
H
id
in
g

Sec. guarantees
ABCP [4] - - - s-IND-CPA
ACFGU [5] X - - s-IND-CPA
ALS [10] - - - IND-CPA
ACFGU [5] X - - IND-CPA
CDSGPP [69] - X - IND-CPA
ABKW [3] X X - IND-CPA
KLMMRW [153] - - X SIM-based
DOT [85] X - X SIM-based

Selecting multi-party features. Our system does not require multi-input, as the inner
product bmx · bmy is computed each time between a single pair of templates. We also
discard the decentralized property. The enrollment phase already involves sensitive data
and requires trust (otherwise the template database could be poisoned, beating the whole
purpose of the system). We thus will be able to rely on the party in charge of the enrollment
to act as a trusted authority.

Choosing function-hinding. Finally, we recall that the standard FE schemes do not provide
privacy of the function f(x, y) in the functional secret keys ski. For biometric matching this
lack of privacy translates into ski yielding full information about one of the two templates
involved in the matching. To address this, we require our system to have the function-
hiding property [153], meaning that the scheme will effectively hide both templates: the
ciphertext c and the functional secret key ski. With all these considerations in mind,
we select the Function-Hiding Inner Product Encryption (FHIPE) scheme of [153] to be
suitable for biometric systems. Contrary to standard non-function-hiding schemes, this
two-input scheme uses the same key (the master secret key msk) for the encryption and for
the function key generation. These are its four algorithms:

pk,msk ← FHIPE.setup(1λ) generate public parameters pp and master
secret key msk given security parameter λ

sky ← FHIPE.keygen(msk, bmy) generates functional secret keys sky for input
y using master secret key msk

cx ← FHIPE.encr(msk, bmx) encrypts message x with master secret
key msk into ciphertext c

z ← FHIPE.decr(pp, sky, cx) evaluates z = bmx · bmy from ciphertext cx and
functional secret key sky using pp
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3.5 Discussion on privacy-preserving techniques

We now discuss the strengths and weaknesses of the privacy-preserving techniques we have
introduced in this chapter. We also discuss the available implementations of these tech-
niques, and hint how they can be used to build privacy-preserving biometric solutions.
Table 3.3 summarizes the main points of this discussion.

On performance and types of operations. The privacy-preserving techniques can be
benchmarked by comparing the amount of computation and communication each technique
requires to perform a given task. We can make a clear distinction between two types of
operations:

• Linear operations, such as addition and multiplication, applicable to all the techniques
we have covered. MPC techniques suffer from a non-negligible communication over-
head during the execution of multiplications, but in exchange the local computation
is very efficient. FHE and FE do not involve intermediate communication, but in ex-
change demand more computation to perform all linear operations due to their inner
mathematical structures (lattices in FHE [101, 62], bilinear pairings in FE [153]), FE
being more costly than FHE.

• Non-linear operations, such as comparison and arg max, which are only applicable to
MPC (using number-theoretical tricks as in [240], conversions between arithmetic and
binary sharing as in [185], or resorting to FSS [40]) and FHE (employing polynomial
approximations). The FE schemes surveyed do not support non-linear operations.

While FHE and FE are computed locally in a machine, the communication cost of
sharing the inputs and outputs (e.g., sending the outputs of FE.encrypt or FHE.encrypt
to the computing party Pj) is not negligible due to the size of their respective ciphertexts. In
contrast, MPC requires communication to execute multiplications, but the communication
cost of sharing the inputs and outputs is negligible.

On security guarantees and the adversary. Following the taxonomy from [73], we
can classify the security guarantees of secure computation protocols into:

• Private computation (R1): parties cannot extract any information from the compu-
tation. It is the weakest security guarantee, addressing a semi-honest adversary.

• Correctness with Abort (R1)-(R4): if a maliciously corrupted party deviates, honest
parties detect it and halt the computation.

• Correctness with Public Verifiability (R1)-(R4): honest parties can identify which
corrupted parties (if any) are deviating from the protocol and abort.

• Correctness with Robustness (R1)-(R4): the computation is ensured to yield the
correct output. Also known as Guaranteed Output Delivery.
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FHE and FE provide only private computation out of the shelf, being naturally vulnerable
to malicious corruptions. In contrast, MPC can provide all levels of security guarantees
depending on the technique used. In this thesis we employ RSS to enhance the security
guarantees of some of our privacy-preserving biometric protocols to cover not only semi-
honest adversaries, but also Abort against malicious adversaries, addressing (R4)/(CH3).

We assume a static adversary throughout the thesis. We bound the computing capa-
bilities of adversary to provide computational hiding for all the techniques relying on the
non-invertibility of some hard problem (e.g., decisional RLWE for CKKS & BFV, bilinear
pairings in the FHIPE of [153]) or the indistinguishability of the shared material from ran-
dom shares (e.g., the FSS keys being indistinguishable from random values), addressing an
unbounded adversary only in the case of some MPC techniques (SS, RSS, ΠSS) to obtain
perfect hiding.

Table 3.3: Strengths and weaknesses of privacy-preserving computation techniques.
Scheme Type Security Strengths Weaknesses Libraries

SS MPC Private computation
(perfect hiding)

Simple math.
For-free local addition

Requires intermediate comm. for multiplications.
Non-linear functions are comm. intensive.

MP-SPDZ [149]
CrypTFlow [158]

RSS 3PC Abort against one malicious
corruption (perfect hiding)

Same as SS.
Tackles a malicious adversary.

Same as SS. Requires duplication w.r.t. SS.
One additional round of communication for Abort.

MP-SPDZ [149]
ABY3 [185]
Falcon [240]

ΠSS 2PC Private computation
(perfect hiding)

Same as SS.
Low intermediate communication
for scalar product.

Same as SS.
Circuit-dependent input sharing. ABY2 [193]

FSS 2PC
Private computation
(computational hiding,
FSS keys

c≡ random)
Local comparison on public input Requires same input for both parties.

Heavy pre-processing material.
Splinter [241]
AriaNN [213]

BFV FHE
Private computation
(computational hiding,
decisional RLWE problem)

SIMD operations.
Local addition and mult.

Limited to integers, limited multiplication depth.
Costly Number-Theoretic comparison [138]
Key management for decryption.

SEAL [219],
Helib [121],
OpenFHE [11],
Lattigo [96]

CKKS FHE
Private computation
(computational hiding,
decisional RLWE problem)

SIMD operations on Reals.
Local addition and mult.

Complex lattice-based math.
Extra error from approximated operations.
Costly approximated comparison [164]
Requires sensitive key management for decryption.

FHIPE FE
Private computation
(computational hiding,
pairing inversion problem)

Local evaluation of SP .
Decryption without sensitive keys.

Complex bilinear pairings math.
Comparatively slow.
No support for non-linear functions.

CiFEr [197]

On strengths and weaknesses. Table 3.3 highlights the most relevant strengths and
weaknesses of the techniques we have covered:

• SS, RSS, ΠSS and FSS are all MPC techniques and thus require at least two computing
parties to operate. Except for FSS, all these techniques employ "simple" operations,
allowing for free local addition, but requiring intermediate communication for multi-
plications and non-linear functions. RSS deals with a malicious adversary in 3PC in
exchange of duplicated computation/communication and an additional round of com-
munication for Abort. ΠSS presents lower intermediate communication requirements
for scalar product by leveraging on circuit-dependent input sharing. FSS allows for lo-
cal non-linear function evaluation on a public input by the use of heavy pre-processing
material.
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• BFV and CKKS are FHE schemes rooted in lattice-based cryptography providing
SIMD operations, local addition and multiplication, but with limited multiplica-
tion depth, costly non-linear functions (e.g., based on Number-Theoretic tricks for
BFV [138] and based on polynomial approximation for CKKS [164]), and they entail
managing secret keys for decryption.

• Finally, the FHIPE scheme is a FE technique based on bilinear mathematics that
permits local evaluation of a scalar product and decryption of the result without the
need of key management. However, it doesn’t support non-linear functions.

On the implementations. The availability of implementations is a key factor to consider
when choosing a privacy-preserving technique, as applied cryptography should avoid re-
inventing the wheel if possible. Below we list available open-source implementations for
these techniques, commenting on their functionalities:

• MPC: MP-SPDZ [149] remains today as the most popular open-source implementa-
tion of MPC. It supports a wide range of protocols, covering an ample set of operations,
including linear and non-linear operations, with syntax close to that of Python and
its own virtual environment generation to translate a protocol specification for one
party into a full program for all parties. It is available for Linux and MacOS, and can
be used to implement biometric protocols in a straightforward way. There are other
implementations of MPC, such as ABY3 [185], Falcon [240], or Cryptflow [158], but
they are not as mature as MP-SPDZ and only cover their own protocols. One small
shortcoming of MP-SPDZ is that it does not support FSS, forcing us to either rely on
implementations such as [241] or [213], or to roll out our own implementation.

• FHE: There are many implementations of FHE, but the most popular ones for BFV
and CKKS schemes are HElib [121], SEAL [219] and PALISADE ( [196], now migrated
to OpenFHE [11]). They are all written in C++, and are widely used in the FHE
literature. We can also highlight lattigo [96] for a distributed version of BFV/CKKS,
and concrete [66] for a variant of TFHE (out of the scope of this thesis). However,
none of them have tackled the approximation of non-linear functions in FHE.

• FE: With more limited coverage than FHE, the main implementation of FE is the
one from [197], written in C and available for Linux. We are particularly interested
on their implementations of Function-Hiding Inner Product Encryption (FHIPE) as
a main building block for our privacy-preserving biometric protocols.

Almost all the privacy-preserving libraries surveyed above require a significant amount of
effort to be used in practice, with implementations based on compiled languages such as C,
C++, Go and Rust. This can be a major drawback to make privacy-preserving techniques
available to the general public. Adopting more gentle (and more popular) programming
languages such as Python would be a step forward in this direction (CH5). It is with this
purpose in mind that we kick-off the first novel contribution of this thesis, the development of
a Python library for FHE named Pyfhel [136] that bridges the gap between technical FHE
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libraries written in C++ and easy-to-use, easy-to-install tools that dominate the Python
ecosystem. We dedicate Section 3.6 to this.

3.6 Pyfhel: Python for Homomorphic Encryption Libraries
[136]

Abstract. Fully Homomorphic Encryption (FHE) allows private computation over en-
crypted data, disclosing neither the inputs, intermediate values nor results. Thanks to
recent advances, FHE has become feasible for a wide range of applications, resulting in
an explosion of interest in the topic and ground-breaking real-world deployments. Given
the increasing presence of FHE beyond the core academic community, there is increasing
demand for easier access to FHE for wider audiences. Efficient implementations of FHE
schemes are mostly written in high-performance languages like C++, posing a high entry
barrier to novice users. We need to bring FHE to the (higher-level) languages and ecosys-
tems non-experts are already familiar with, such as Python, the de-facto standard language
of data science and machine learning. We achieve this through wrapping existing FHE
implementations in Python, providing one-click installation and convenience in addition to
a significantly higher-level API. In this section, we present Pyfhel, introduce its design
and usage and highlight how its unique support for accessing low-level features through
a high-level API makes it an ideal teaching tool for lectures on FHE. In contrast to other
similar works, Pyfhel goes beyond merely exposing the underlying API, adding a carefully
designed abstraction layer that feels at home in Python.

3.6.1 Introduction

FHE is practical for a wide range of applications across multiple domains, and is starting
to be deployed in widely used mainstream software. For example, Microsoft’s Edge browser
uses FHE in its privacy-preserving password monitor [147, 60, 59], which compares users’ lo-
gin information to known leaks without revealing users’ sensitive information to the service.
In the medical domain, there has been significant work on using FHE to enable large-scale
genome-wide association studies (GWAS) [152, 27]. In the domain of machine learning, FHE
has been applied to train, e.g., logistic regression [151, 51] models in addition to a significant
body of work focusing on privacy-preserving inference for neural networks [53, 117, 83, 68].
FHE-based secure computation solutions have generated a significant amount of commer-
cial interest and Gartner projects [91] that “by 2025, at least 20% of companies will have a
budget for projects that include fully homomorphic encryption."

Given the increasing presence of FHE beyond the core academic community, we must
provide easy access to FHE for a wider audience. While there exists a variety of high-quality
open-source implementations of different modern FHE schemes [121, 219, 196, 65, 66], these
are mostly written in C++ or other high-performance systems languages, in a common ap-
proach for cryptographic code seeking maximal performance for heavy-weight operations.
However, languages like C++ are significantly less popular [226], especially outside of the
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core computer science community, than higher-level languages like Python, which has es-
tablished itself as the de-facto standard language of data science and especially machine
learning.

In the interest of promoting FHE, we must bring FHE implementations into the lan-
guages and ecosystems that less technical users are already familiar with. This takes the
form of wrappers which expose interfaces for the underlying cryptographic libraries in differ-
ent languages, e.g., Python. Beyond merely providing a way to access, e.g., functionalities
from a C++ library in a different language, well-written wrappers should try to provide
idiomatic ways to use the code, respecting best practices and conventions of the target lan-
guage. This results in code that feels familiar to developers and allows them to correctly
and efficiently use the library. Additionally, these wrappers should ideally abstract away
the sometimes complex installation process of these libraries. Most existing FHE implemen-
tations require, or strongly benefit from, dependencies which need to be installed through
properly configured toolchains to make the library work properly. Wrappers that handle
this setup and provide an automatic one-click installation greatly improve the practical
accessibility of FHE.

Our Contributions. Pyfhel provides a Python wrapper for the Microsoft SEAL [219]
library, extendable to other C++ libraries, that goes beyond merely exposing the underlying
API by adding a carefully designed abstraction layer that feels at home in Python. Pyfhel
offers (i) one-click install, including of the underlying libraries, (ii) a high-level Python-first
abstraction layer that makes working with FHE significantly easier, including (iii) high-
level APIs for low-level functionalities not generally exposed. We show how Pyfhel can
not only assist developers in exploring FHE, but also how it is particularly well suited to
use in FHE education.

The rest of this work is organized as follows. Section 3.6.2 presents the design principles
and architecture of Pyfhel. Section 3.6.3 demonstrates its usage for common operations,
and Section 3.6.4 describes two examples on how Pyfhel can be used in teaching FHE.
Section 3.6.5 presents related work. Finally, Section 3.6.6 wraps up.

3.6.2 Design

3.6.2.1 Design principles

The design of Pyfhel adheres to several key principles. In terms of programming language
we rely on C++ to preserve the high efficiency of backend libraries, and Cython [23] (a super-
set of C/C++ and Python) to bridge the gap with Python, fusing C/C++ performance with
Python-like expressiveness and dynamic typing. Pyfhel features a one-click setup that
automatically installs all backends with the library, requiring no knowledge on compilation
toolchains:
pip install Pyfhel # Backends inside!

At a high level we opt for a centralized approach (Figure 3.2 (top)), where a single central
class holds most of the functionalities and keeps track of the objects that rarely change after
setup, including contexts and keys. Whereas the functional approach (Figure 3.2 (bottom))
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common in FHE implementations requires the user to manually understand and keep track
of the appropriate context and order of API calls, the centralized design style of Pyfhel
understands and watches the global state of the FHE scheme and can raise informative
errors to guide users towards the proper way to use the library, or even infer the missing
pieces (e.g., generating a rotation key if not present when performing rotation).

Ciphertext

Central object

𝐻𝐸. 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝐻𝐸. 𝑎𝑑𝑑 𝐻𝐸. 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

PublicKeySecretKey

Context 𝐻𝐸. 𝑘𝑒𝑦𝑔𝑒𝑛𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝parameters

valueCiphertext

EvalKey

Ciphertext
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𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝parameters Context𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝
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Figure 3.2: Example of centralized (top, ours) vs functional design (bottom) approaches in
FHE scheme APIs

Pyfhel is also designed to cleanly expose the low-level polynomials that make up keys
and plaintexts/ciphertexts. While possible in the underlying libraries, this is generally not
part of the "porcelain" API intended for developers, but rather low-level "plumbing" that
is documented sparingly (if at all). For example, SEAL uses a combination of custom
iterator and pointer classes to deal with the underlying polynomials, manually tracking
the number and sizes of the individual data elements. Pyfhel instead provides a custom
high-level interface similar to that used for plain- and ciphertexts, abstracting away these
implementation details.

3.6.2.2 Architecture

In order to realize these design principles, Pyfhel uses a layered architecture consisting of
three key layers, as seen in Figure 3.3.

1. Backend libraries: The unmodified, up-to-date FHE libraries generally written in
C++, automatically loaded from their official sources. These expose homomorphic
operations, keys and context parameters, ciphertexts & encoded plaintexts, and se-
rialization features. Using these correctly requires managing significant amounts of
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Figure 3.3: Pyfhel high level layered architecture

state information in the application code. Pyfhel currently supports SEAL [219],
with work on PALISADE [196] under way.

2. Afhel : OurAbstraction forHomomorphic Encryption Libs acts as a safe and uniform
C++ encapsulation of different backend APIs. In addition, it manages memory, offering
memory-safe versions of low-level APIs, and tracks the state required to interact with
the libraries properly. The encapsulation and abstraction offered by Afhel is key in
enabling us to build clean and easy-to-use interfaces.

3. Python Classes: Pyfhel’s python classes expose all FHE functionalities in a pythonic
way, allowing users to work in a familiar setting, writing code that often looks like
pseudo-code. The Pyfhel class centralizes a variety of functionalities, including state
management, tracking keys and context required for operations on ciphertexts/plain-
texts. The PyCtxt and PyPtxt classes wrap ciphertexts and plaintexts respectively, al-
lowing users to express arithmetic expressions simply using operator overloads. These
classes also offer access to the underying polynomials via simple indexing. The poly-
nomials are wrapped by the PyPoly class which offers similar arithmetic operators and
allows seamless conversion to and from arrays/lists of coefficients.
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3.6.3 Using Pyfhel

In this subsection, we demonstrate how to use Pyfhel through a series of examples. Ex-
tended versions and additional examples documenting further features are available in the
Pyfhel repository 8.

3.6.3.1 Setup and Parameters

All computations begin by creating a Pyfhel object, initializing a scheme with chosen
parameters and generating/loading keys.
from Pyfhel import PyCtxt , Pyfhel , PyPtxt
HE = Pyfhel ()
HE.contextGen(scheme=’BFV’, n=16384 , p=65537)
HE.keyGen ()

In terms of parameters, n (polynomial degree) determines the number of slots the plain-
text vectors have (n in BFV and n/2 in CKKS). Meanwhile, p (plaintext modulus) deter-
mines the modulus of the plaintext space in BFV, which determines how large encrypted
values can get before wrap-around occurs (e.g., 65537 = 216 which is equivalent to working
with 16-bit unsigned integers).

One can optionally also provide the ciphertext modulus q, which determines how much
noise can accumulate before decryption fails. Larger q can tolerate more noise, and therefore
more complex computations, but also lead to slower homomorphic operations and weaker
security if n stays fixed. If no q is provided, Pyfhel uses the largest value that still achieves
128-bit security for the given polynomial degree n. Instead of providing q, advanced users
can also provide a modulus chain of qi (e.g., qs=[30,30,30,30,30], which is especially useful
when working with CKKS.

Although not required in normal scenarios, it is possible to set other key generation
parameter, as described in the Pyfhel documentation, for expert users seeking control
over lower-level aspects.

3.6.3.2 Encryption & Decryption

In order to encrypt messages, the values must first be encoded into plaintext objects (
PyPtxt). Similar, after decryption, the resulting plaintext must be decoded. Both BFV and
CKKS internally feature vector-like plaintext spaces. Pyfhel is able to encode a variety of
different datatypes, including single values or lists/numpy arrays that are shorter than the
underlying vector. In these cases, Pyfhel repeats the value until all slots are filled.
integer = 45
int_ptxt = HE.encode(integer) # PyPtxt
int_ctxt = HE.encrypt(int_ptxt) # PyCtxt

list = [1, 2, 3, 4, 5, 6]
list_ptxt = HE.encode(list) # PyPtxt
list_ctxt = HE.encrypt(list_ptxt) # PyCtxt

import numpy as np

8https://github.com/ibarrond/Pyfhel/tree/master/examples
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np_array = np.array([6, 5, 4, 3, 2, 1],dtype=np.int64)
array_ptxt = HE.encode(np_array) # PyPtxt
array_ctxt = HE.encrypt(array_ptxt) # PyCtxt

# Decrypt and Decode
ptxt_dec = HE.decrypt(int_ctxt) # PyPtxt
integer_dec = HE.decode(ptxt_dec) # integer

3.6.3.3 Homomorphic Operations

The core operations of a homomorphic scheme are the addition and multiplication opera-
tion. However, there are a variety of other operations, including ciphertext maintenance
operations like relinearization and rescaling. In addition to ciphertext-ciphertext opera-
tions, FHE schemes also offer ciphertext-plaintext operations that are faster and lead to
noise growth. Pyfhel provides operator overloads for arithmetic operations (+,−, ∗ and
+ =,− =, ∗ = for in-place operations) which automatically select the appropriate type of
operation depending on the operands. One can also use values directly in computations,
with Pyfhel automatically encoding them into suitable plaintext objects.
ptxt_a = HE.encode(12)
ptxt_b = HE.encode(34)
ctxt_a = HE.encrypt(ptxt_a)
ctxt_b = HE.encrypt(ptxt_b)

# ctxt -ctxt operations
ctxt_r = ctxt_a + ctxt_b # or ctxt_a += ctxt_b (in place)
ctxt_r = ctxt_a * ctxt_b

# ctxt -ptxt operations
ctxt_r = ptxt_a + ctxt_b # or 12 + ctxt_b
ctxt_r = ctxt_a * ptxt_b # or ctxt_a * 34

# maintenance operations
HE.relinearize(ctxt_r)
HE.rescale_to_next(ctxt_r)

# rotations
ctxt_c = HE.encrypt(HE.encode([1,2,3,4]))
ctxt_rotated = ctxt_c << 1 # [2,3,4,1]

3.6.3.4 IO & Serialization

Pyfhel has full support for serialization, which is not only useful to store generated keys
but can also be used to realize true client-server computations. In the following example, we
create two independent Pyfhel instances, one representing the client and one representing
the server. Only the client-object has access to the secret keys and can decrypt messages.
For simplicity, we simulate communication using the file system, but this could easily be
exchanged for a real communication channel.
##### CLIENT
HE = Pyfhel ()
HE.contextGen(scheme=’BFV’, n=4096 , p=65537)
HE.keyGen () # Generates public and private key
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# Save context and public key only
HE.savepublicKey("mypk.pk")
HE.saveContext("mycontext.con")
# Encrypt and save inputs
ctxt_a = HE.encrypt(15) # implicit encoding
ctxt_b = HE.encrypt(25)
ctxt_a.to_file("ctxt_a.ctxt")
ctxt_b.to_file("ctxt_b.ctxt")

##### SERVER
HE_server = Pyfhel ()
HE_server.restoreContext("mycontext.con")
HE_server.restorepublicKey("mypk.pk") # no secret key
# Load ciphertexts
ca = PyCtxt(pyfhel=HE_server , fileName="ctxt_a.ctxt")
cb = PyCtxt(pyfhel=HE_server , fileName="ctxt_b.ctxt")
# Compute homomorphically and send result
cr = (ca + cb) * 2
cr.to_file("cr.ctxt")

##### CLIENT
# Load and decrypt result
c_res = PyCtxt(pyfhel=HE , fileName="cr.ctxt")
print(c_res.decrypt ())

3.6.4 Using Pyfhel in Education

In addition to allowing developers to explore FHE on their own, Pyfhel is an excellent
tool for integrating FHE into teaching. Due to its one-click-install and integration into
the Python ecosystem, it is much more feasible to integrate coursework based on Pyfhel
into a curriculum then trying the same with the underlying C++ libraries. By providing
abstractions, syntactic sugar (e.g., operator overloads) and other conveniences, Pyfhel is
considerably more concise and allows students to focus on the task at hand. Beyond pro-
viding this ease and accessibility, Pyfhel includes access to low-level features specifically
tailored to enable teaching. In particular, Pyfhel allows users to easily access the un-
derlying polynomials that actually make up plaintexts and ciphertexts. Working with the
underlying polynomials is not generally necessary to employ FHE, but it can be helpful in
teaching situations to be able to dissect ciphertexts and study elements individually. In
the following, we present two case studies for using Pyfhel in teaching. One focuses on
the challenges of managing scales in CKKS, while the other uses the polynomial API in
Pyfhel to study a key recovery attack on CKKS.

3.6.4.1 Exploring common CKKS pitfalls

Implementing applications in FHE can be challenging for novice users due to a variety of
common pitfalls like failing to properly manage the scaling factors throughout a CKKS-
based computation. While higher-level tools and compilers like EVA [83] increasingly pro-
vide automated solutions for these challenges, asking students to tackle and predict theses
issues reinforces their understanding of the scheme, since it requires transferring theoretical
information about the scheme to practical application. Exploring these issues also helps
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illustrate the gap between FHE’s theoretical power to perform “arbitrary computations"
and the difficulty of developing efficient FHE-based applications in practice.

We show how to use Pyfhel to explore several pitfalls in working with CKKS, using
the computation ((x+ y) ∗ (z ∗ 5)) + 10, where x, y and z are (secret) inputs. First, we set
up context and keys:
from Pyfhel import PyCtxt , Pyfhel , PyPtxt
HE = Pyfhel ()
HE.contextGen(scheme=’CKKS’, n=16384 ,qs=[30,30,30,30 ,30])
HE.keyGen ()

Now we can perform the ciphertext-ciphertext addition x+ y and the ciphertext-plaintext
multiplication z∗5 before performing the ciphertext-ciphertext multiplication between those
two results.
ctxt_x = HE.encrypt(3.1, scale=2 ** 30) # implicit encode
ctxt_y = HE.encrypt(4.1, scale=2 ** 30)
ctxt_z = HE.encrypt(5.9, scale=2 ** 30)

ctxtSum = ctxt_x + ctxt_y
ctxtProd = ctxt_z * 5
ctxt_t = ctxtSum * ctxtProd

Next, we explicitly encode the constant 10 the same as we encoded the inputs x, y and
z. This will lead to an error since the scale of ctxtProd has increased to 260 after the first
multiplication, and multiplying it with ctxtSum which is still at scale 230 (addition does not
change scale) causes ctxt_t to have scale 290. Since, in fixed-point arithmetic, addition can
only performed over numbers represented at the same scale, the addition will fail.
ptxt_ten = HE.encode(10 , scale=2 ** 30)
ctxt_result = ctxt_t + ptxt_ten #error: mismatched scales

Of course, this can be resolved by encoding 10 at the correct scale, i.e., setting ptxt_ten

=HE.encode(10, scale=2**90). Alternatively, we can use ctxt_result=ctxt_t+10 and Pyfhel will
automatically deduce the correct scale. However, if instead of a constant we have an input
d that the user encrypted at the same scale as all other inputs, this solution no longer
applies. Instead, we must use rescaling to homomorphically decrease the scale of ctxt_t

to the initial scale. In CKKS, each rescaling reduces the scale down by one “step" (here
∆ = 230), so we need to perform two consecutive rescaling operations.
ptxt_d = HE.encode(10, 2 ** 30)
ctxt_d = HE.encrypt(ptxt_d)
HE.rescale_to_next(ctxt_t) # 2^90 -> 2^60
HE.rescale_to_next(ctxt_t) # 2^60 -> 2^30

Surprisingly, trying to multiply ctxt_t and ctxt_d will still fail, due to a subtle issue
with how rescaling is implemented in versions of CKKS that improve its efficiency [61].
In essence, rescaling also decreases the ciphertext modulus, and we need to decrease the
ciphertext modulus of ctxt_d to match.
HE.mod_switch_to_next(ctxt_d) # match first rescale
HE.mod_switch_to_next(ctxt_d) # match second rescale
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Now, trying to compute ctxt_t+ctxt_d will no longer produce an error about mismatched
moduli. However, it will still fail with an error about mismatched scales, even though we
rescaled ctxt_t back down. This is, again, due to subtleties in the way rescaling works.
Instead of dividing the scale by exactly the step size (230), it divides the scale by a prime
number very close, but not exactly equal to, the step size. Therefore, ctxt_t is now actually
at a scale of, e.g., 229.86... Since CKKS is inherently approximate to begin with, we can
ignore this difference and simply accumulate it into the overall approximation error. In
order to do this, we manually override the scaling factor used, which finally allows the
addition to complete successfully.
ctxt_t.set_scale(2** 30)
ctxt_result = ctxt_t + ctxt_d # final result

3.6.4.2 Implementing Key-Recovery for CKKS

Allowing low-level access to polynomials enables implementing a variety of advanced tech-
niques or attacks, including the key recovery attack on CKKS by Li and Micciancio [168].
The key insight of this attack is that the noisy decryption reveals information about the
secret key. In a non-approximate scheme, knowing the input x and the function f to be
computed homomorphically allows one to perfectly simulate the computation and derive
f(x). However, in an approximate scheme like CKKS, the decryption will be y ≈ f(x) and,
importantly, the differences between y and f(x) depend on the secret key. Interestingly,
this attack does not contradict the security guarantees proven for CKKS, as the attack
is outside the IND-CPA model, and FHE schemes by definition cannot achieve IND-CCA
security due to their homomorphic nature. We briefly describe the simplest form of the
attack below.

In CKKS, a ciphertext ct has two components, i.e., ct = (a, b) where b = a ∗ s+m+ e,
for secret key s, random mask a and noise term e. The decryption of ct is c := Decs(ct) =

b − a ∗ s = m + e. Here, m = f(x), which we assume is known to the adversary. If the
adversary also gains access to the decryption c, they can solve the linear equation a∗s = b−c
by computing the multiplicative inverse a−1 (which exists with high probability), recovering
the secret key. Note that this ignores the encoding and decoding used in CKKS. Instead
of seeing the plaintext, it is more realistic to assume the attacker only has access to the
decoded message. While the encoding is not actually perfectly reversible, simply re-encoding
the decoded value is frequently sufficient to enable the attack.

As we can see below, implementing this attack takes only a few lines of code, using
Pyfhel’s support for working directly with the underlying polynomials. For comparison, an
equivalent C++ implementation of this example, targeting SEAL directly, uses over a hundred
lines of code and makes calls to a variety of undocumented low-level features inside SEAL.
# Setup: Encrypt , Decrypt , Decode
ctxt = HE.encrypt(0, scale=2** 40)
ptxt_dec = HE.decrypt(ctxt)
values = HE.decodeComplex(ptxt_dec)

# Attack
ptxt_re = HE.encode(values , scale=2** 40)
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a = HE.poly_from_ciphertext(ctxt ,1) # PyPoly
b = HE.poly_from_ciphertext(ctxt ,0) # or b = ctxt[0]
m = HE.poly_from_plaintext(ptxt_re) # PyPoly
s = (m - b) * ~a # ~a = inverse of a

3.6.5 Related Work

There already exists a plethora of Python wrappers for FHE libraries, many of them
no longer maintained and outdated. Most rely on automatic C++ wrapping tools like
pybind11 [233, 24] or Boost.Python [196], which requires large parts of the wrapper logic
to be written in C++ to preserve performance. PySEAL [233] is such a no-longer-maintained
pybind11 wrapper. Many require the user to compile the underlying library themselves,
using a Unix-only toolchain, like the more recent SEAL-Python [129]. TenSEAL [24], which
appeared several years after the initial release of Pyfhel, shows the most promise. It is
pybind11-based and features a one-click setup, but focuses mostly on high level Machine
Learning and tensor operations. Other approaches (e.g., pyFHE [97]) implement schemes
directly in Python, at the cost of significantly slower operations. Finally, FHE libraries
have also experimented with Python interfaces, including PALISADE [196], and the EVA
compiler [83] for SEAL. However, both still require non-python build toolchains. While
TenSEAL and EVA are great for novice users, they do not offer proper access to the under-
lying data structures, which is required to, e.g., properly understand ciphertext maintenance
in teaching settings. We argue that, just as a healthy FHE ecosystem requires different li-
braries implementing the same schemes, it also benefits from different ways to expose this
functionality.

3.6.6 Conclusion

We have presented Pyfhel, explored its design and usage, including how it can be used
as a teaching tool. By providing a python-native abstraction layer on top of existing FHE
implementations, Pyfhel makes working with FHE accessible to a significantly wider au-
dience. However, even experts can benefit from the convenience offered by Pyfhel which
eliminates potential error sources and reduces time to solution.

3.7 Summary

In this chapter, we have presented the main privacy-preserving cryptographic tools we are
to employ in our solutions. We started off with Multi-Party Computation, with a deep dive
on Secret Sharing and some improved variants: Replicated Secret Snaring to tackle one
malicious corruption in 3PC, Π-Secret Sharing for cheaper scalar products, and Functional
Secret Sharing for cheap comparisons. We covered Fully Homomorphic Encryption (FHE)
with the two main schemes we are to use in this thesis, CKKS and BFV, including a
distributed variant of the latter (DBFV). We then surveyed Functional Encryption (FE)
schemes suitable for privacy-preserving inner product operations, settling with Function-
Hiding Inner Product Encryption. We discussed the strengths and weaknesses of each
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technique as well as available implementations, wrapping up the chapter with a presentation
of our novel library named Pyfhel to address (CH5) for FHE.

Armed with these tools, we are now ready to tackle the challenges of Chapter 2:

• We devote Chapter 4 to the privacy of the feature extractor (R1), employing RSS
to protect the feature extractor against one malicious corruption (CH3). We chose
MPC for its relatively high performance (R6), while preserving a proper balance with
privacy and accuracy (CH2).

• Chapter 5 revolves around privacy-preserving biometric verification (R1), where we
examine how FHIPE (FE), CKKS(FHE) and ΠSS-FSS (MPC) can be wielded to
protect the templates (R3) and their matching (R2), achieving solutions that retain
a high level of biometric accuracy (R5). We will deal with the accuracy losses due to
both the encoding of floating-point templates as integers and the non-linear operations
with CKKS and FSS (CH1).

• Lastly, Chapter 6 studies the leakage of the biometric verification result (and how it
can be leveraged to break the irreversibility (R2)), and proposes several countermea-
sures (CH4): limiting the number of requests to a system outputting the full matching
score (e.g., the output of FHIPE), and using distributed decryption (DBFV) to min-
imize the leakage.
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Chapter 4

Protecting the Feature Extractor

This Chapter focuses on protecting the privacy (R1) and the correctness (R4) of generic
feature extractors. As we discussed in Section 2.1.4, the feature extractors employed in
modern biometric systems are based on Deep Learning models with many hidden layers1.
Inspecting our privacy-preserving toolbox from Chapter 3, we an choose among multiple
MPC techniques and two FHE schemes. The use of FHE is heavily discouraged due to
the naturally high multiplicative depth of these models as it would incur in a prohibitively
large latency, and forced to employ bootstrapping to reset the noise level2. This leaves us
with MPC as the only viable option for the protection of the feature extractor. However,
MPC is not a panacea: they are communication-intensive techniques, and it is not trivial
to find a suitable MPC scheme that is both secure and efficient (CH2). Seeking to extend
the security guarantees of our system to abort in case of misbehavior of one party (CH3),
we settle with RSS as our main building block. Henceforth, this chapter delves into the
design and implementation of Banners, a novel maliciously secure inference protocol for
Binarized Neural Networks (BNN), a binary version of the CNNs that make up biometric
feature extractors.

4.1 Banners: Binarized Neural Networks with Replicated
Secret Sharing [132]

Abstract Binarized Neural Networks (BNN) provide efficient implementations of the
Convolutional Neural Networks (CNN) that conform the feature extractor. This makes
them particularly suitable to perform fast and memory-light inference of neural networks
running on resource-constrained devices. Motivated by the growing interest in CNN-based
biometric recognition on potentially insecure devices, or as part of strong multi-factor au-
thentication for sensitive applications, the protection of BNN inference on edge devices
is rendered imperative. We propose a new method to perform secure inference of BNN
relying on secure multi-party computation. While preceding papers offered security in a

1The open-source face recognition models from the popular Insightface repo [13] contain hundreds of
layers (Conv, activations, FC, etc) each.

2E.g., [166] employs close to 3h for the inference of a CNN of smaller size than those found in the face
recognition literature [89, 13]
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semi-honest setting for BNN or malicious security for standard CNN, our work yields secu-
rity with abort against one malicious adversary for BNN by leveraging on Replicated Secret
Sharing (RSS) for an honest majority with three computing parties. Experimentally, we
implement Banners on top of MP-SPDZ and compare it with prior work over binarized
models trained for MNIST and CIFAR10 image classification datasets. Our results attest
the efficiency of Banners as a privacy-preserving inference technique.

4.1.1 Introduction

Requiring orders of magnitude more data than classical Machine Learning, the recent
progress in Deep Learning has attained models with near human capabilities to solve com-
plex tasks like image classification [231], object detection [203] or natural language process-
ing [46], also reaching unheard-of generation capabilities for text [46], audio [194] and image
generation [246].

Making use of the deep learning toolbox comes at a non negligible cost: one needs to
acquire very large amounts of structured data, considerable computational power and vast
technical expertise to define and train the models. Subsequently, the expensively trained
deep learning models can be used to perform inference on data not present during training.
Naturally, risk arises when training or inference computation tasks are outsourced, following
the trends of Cloud Computing (where the model is sent to the cloud) or Edge Computing
(where the trained model is pushed to edge devices such as mobile phones or cars). In a
standard setup, carrying out these processes on an outsourced enclave forces users to keep
the model in plaintext to carry out mathematical operations, leading to potential model
theft and exposing all intermediate computations as well as the input data and the inference
result.

In the specific field of Biometrics there is a growing interest on using face & fingerprint
recognition on potentially insecure devices [105], with applications that range from secure
banking access to government services such as border control, or in general as part of strong
multi-factor authentication. Addressing the protection of the underlying biometric identifi-
cation algorithms on resource-constrained devices is thus rendered imperative for industry
leaders in biometric solutions [137]. Since biometric feature extractors are nowadays based
on modern Convolutional Neural Networks (CNN), this chapter focuses on securing the
inference of a particular flavor of these networks (R1). Furthermore, CNN can be binarized
(constrain weights and intermediate operations to 0 and 1) in order to greatly reduce the
model size and memory usage, making the resulting Binarized Neural Networks (BNN) [128]
suitable to execute in edge devices such as mobile phones. Banners serves as the first step
in this direction, implementing secure BNN execution in a stronger security model (CH3).

MPC is, at the time of this writing, among the most efficient technologies providing
secure outsourced computation. This chapter relies on MPC to carry out secure inference
of BNNs. Going beyond the Honest-But-Curious adversary model present in many of the
MPC-based secure NN inference schemes, this work uses a threat model whereby honest
parties can detect a malicious adversary and abort, ensuring a correct computation if no
errors are detected (R4).
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Main contribution. Leaning on replicated secret sharing (RSS), Banners proposes a
new method to perform secure inference of Binarized Neural Networks, guaranteeing security
with abort against one malicious adversary in a 3-party setting. Throughout the chapter,
this secure method is described mathematically, proven secure, implemented and compared
with existing techniques. This solution is outlined as follows. Section 4.1.2 covers the
preliminaries on BNN. Section 4.1.3 discusses related previous work, covering state of the
art on securing CNN inference. Section 4.1.4 presents our detailed solution, covering each
and every protocol we need. Section 4.1.5 describes our implementation and experiments,
closing up with conclusions and future work on section 4.1.6.

4.1.2 Binarized Neural Networks

BNN [128] are a subtype of Neural Networks whose weights and activations are constrained
to two values {−1, 1} (mapped into binary values 0, 1), taking up one bit per value while sac-
rificing accuracy with respect to their full precision counterparts. Thanks to this limitation,
up to 64 bits can be packed together in a 64-bit register, providing high parallelization on the
operations in a Single Instruction Multiple Data (SIMD) fashion. This packing technique
is named Bit Slicing [14] [47], and it yields savings of up to 64 times in memory and space.
Indeed, this makes BNN particularly suitable for edge devices and resource-constrained
scenarios.

We will focus our attention on BNNs. Albeit less accurate (but recently closing the
accuracy gap w.r.t. full sized models; see [223] for an in-depth comparison), they are good
candidates for deep learning implementations on FPGAs and ASICs due to their bitwise
efficiency. We implement all the layers of a XNOR-Net [201] architecture.

4.1.2.1 First linear layer

Linear combination of the inputs x with some weights w, there are two types of linear
layers: Fully Connected (FC, also known as Dense in popular frameworks) and Convolution
(Conv). FC corresponds to a matrix multiplication, whilst Conv can be turned into a
matrix multiplication by applying a Toeplitz transformation on the inputs and weights.
This transformation is more commonly known as im2col & col2im (more info in section
5.1 of SecureNN [239], and a nice visual explanation in slide 66 of [102]). In the end, both
FC and Conv are computed as a matrix multiplication, which can be decomposed into
Vector Dot Products (VDP). Figure 4.1 represents one VDP in the first layer of our BNN
architecture, with 8-bit inputs and 1-bit weights.

8-bit 8b 8b 8b 8b

1-bit 1-bit 1-bit 1-bit 1-bit
* * * * *

8b 8b 8b 8b 8b+ + + + +…

…

…

𝚺𝑽𝑫𝑷

𝒙

𝒘𝒃

8-bit 8b

Figure 4.1: Diagram of a VDP in the first layer of a BNN
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There is one peculiarity with the first linear layer of a BNN: Binarizing the input of
the first layer would hurt accuracy much more than binarizing other layers in the network.
Besides, the number of weights and operations in these layers tend to be relatively small.
Therefore it has become standard to leave the input of this layer with higher precision (8
bits in our case).

4.1.2.2 Binary Activation and Batch Normalization

A Binary Activation (BA) is equivalent to the sign(x) function [128], and is normally applied
after a linear layer. Given that the result of the VDP in linear layers is a small integer (up
to log2(l) for binary VDP and 8 · log2(l) for the first layer, for vectors of l elements),
it is easier/faster to compute than the standard ReLU in CNNs. This functionality is
implemented by extracting the most significant bit (MSB).

A Batch Normalization (BN) operation normalizes all the inputs by subtracting β and
dividing by γ, two trainable parameters. While the original batch normalization [139]
includes subtracting the mean of the input batch and dividing by its standard deviation,
the binarized version can be implemented by relying solely on β and γ [201] [207]. Binary
BN is most frequently located right before a BA. Together, a BN followed by a BA is
equivalent to sign(x− β/γ), instantiated as a comparison.

1-bit 1b 1b 1b 1b

1𝑏𝑖𝑡 1𝑏 1𝑏 1𝑏 1𝑏

⨁

1b 1b 1b 1b 1b, , , , ,…

…

𝚺𝑽𝑫𝑷

⨁ ⨁ ⨁ ⨁
𝒘𝒃

𝒗𝒃

2 ⋅ 𝑙 - 𝑝𝑜𝑝𝑐𝑛𝑡

Figure 4.2: Diagram of a binary VDP

4.1.2.3 Binary linear layer

Except for the first layer, all the linear layers in a BNN have binary inputs and bi-
nary weights. Likewise, FC and Conv are turned into matrix multiplication and decom-
posed into a series of binary VDP. Following [201], and nicely displayed in figure 2 of
XONN [207], binary VPD is equivalent to XNOR (substitute of binary multiplication)
and 2 · l − popcount(x) (analogous to cumulative addition). Thus effectively transforming
mult&add→ XNOR&popcount. Figure 4.2 displays the structure of an individual binary
VDP.

4.1.2.4 Maxpool layer

A maxpool layer over binary inputs is homologous to the OR operation, as shown in figure
4.3.
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Figure 4.3: Equivalence between Binary max and boolean OR for a Maxpool layer

4.1.3 Previous Work on securing NNs

There are several publications that serve as foundations for Banners. The original defi-
nition of RSS is depicted in [14], with [104] adapting it to the fully malicious case. ABY3
[185] was one of the first to use RSS to secure deep neural network inference, with FALCON
[240] being one of the most recent and most efficient approaches. Banners is inspired by
certain protocols and techniques from them.

XONN [207] is the most notorious prior work addressing the subfield of secure BNN
inference with MPC, relying on Garbled Circuits in a 2PC setting to secure a custom
trained XNOR-Net model [201]. Consequently, we rely on the results of XONN to compare
with the results of our experiments in section 5. SOTERIA [8] generalizes the Neural
Architecture Search of XONN, also addressing BNN inference with GC constructions. Note
that, in both cases, the security model is that of a semi-honest adversary. In contrast, our
work yields security against one malicious adversary. To the best of our knowledge, this is
the first work tackling maliciously secure BNN inference.

In the broader field of privacy preserving Neural Network inference, there has been
a plethora of works in the recent years. A good up-to-date summary can be found in
Table 1 of FALCON [240]. FHE was the foundation for the seminal CryptoNets [110] and
subsequent works improved it like [53] and [125], [37] for discretized networks, [135] covering
BN support for FHE and [66] perfecting programmable bootstrapping. A different line of
works focused on efficient MPC implementations relying on various techniques, such as
Cryptflow [158], Fantastic4 [78] and QuantizedNN [79], or hybrids using both FHE and
MPC such as Gazelle [146] or Chameleon [208].

In the context of Neural Network operations, GC [244] and GMW are historically more
suited for non-linear operations like comparisons, threshold-based activation functions and
MaxPool, while standard (arithmetic) SS shines when used for integer addition and mul-
tiplication, which is why several previous works focused on switching between GC and SS
[146] [208].

4.1.4 The Banners Protocol

Overall, the setting for Banners consists of an honest majority over 3PC, in a threat model
where it provides security with abort against one malicious adversary. The next sections
are tailored to these choices.
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In our setup, we consider a BNN model owner, an input data owner and multiple
parties/servers performing the secure computation.

We propose Banners which makes use of RSS to protect each of the layers described in
section 2.1.4 for secure BNN inference on a 3PC (parties P0, P1, P2) honest majority setting.
We use binary sharing and integer/arithmetic sharing as described in [14] [104], similarly
to [185] and [240].

4.1.4.1 Input data

The input data consists of a vector x = [x0, x1, x2, . . . , xN−1], xi ∈ Z2k of N integers, while
the model data consists of multiple vectors of 1-bit weights w = [w0, w1, w2, . . . , wk−1], wj ∈
Z2 (being k the number of neurons at a given layer, k=N for the first layer), that can also
be represented as y = [y0, y1, y2, . . . , yk−1], yj ∈ {−1, 1} by the bijective mapping yj ↔ wj :

{−1 ↔ 0,+1 ↔ 1}. We define v = [v0, v1, v2, . . . , vk−1], vj ∈ Z2 as the vector of bits used
as input to an arbitrary hidden layer. The model data also includes the BN parameters
γ and β, as well as the entire architecture of the model. Note that Banners requires the
architecture (number of layers, type and configuration of each layer) to be publicly shared
with all the computing parties. We do not protect against model inversion [103] or model
retrieval attacks [235], as it is orthogonal to our purposes.

The protocol makes use of a secure transfer of shares from the data holders to the three
computing parties/servers relying on standard secure communication protocols. Input x
and all the model parameters are shared with the parties using RSS.

On the size/format of xj and yj Typically, the input of a CNN is an image whose values
have been normalized (between 0 and 1), thus requiring float point arithmetic with sufficient
decimals to maintain the accuracy of the first layer. However, the original rectangular image
is made of RGB pixels taking integer values between 0 and 255 (in a 8-bit color map).
Knowing this, we remove the normalization from the data preprocessing, relying on the first
Batch Normalization layer to accomplish such task. The input values are set to 8-bits, and
the shares of the inputs can also be set to 8 bits, minimizing the size of the communication
while preserving security: xj ∈ Z28 . By additionally changing the input domain from [0, 255]

to [−128, 127] we would be centering it on 0 while keeping the input distribution intact. We
can interpret this as a scale shifting, which is translated implementation-wise into changing
from unsigned integers to signed integers without modifying the values, all while using a
fixed-point representation of signed (2s complement) integers in 8-bits. This proves useful
when operating with the first layer weights. The first layer weights yj take the mathematical
values −1,+1 in the operation. While in the Binary layers we would map the yj weights into
bit values wj ∈ 0, 1 as a result of the mult&add → XNOR&popcount transformation (see
4.1.2.3), in the first layer we are interested on keeping their mathematical representation
to operate normally. We format them as 8-bit signed values, compressing them during
communication into single bits yj → wj : −1→ 0,+1→ 1 to reduce 8x the amount of
communication (and reconstructing them upon reception wj → yj). yj is shared among
parties using binary RSS on the bits wj . Thanks to the bijective mapping, we preserve the
same security properties present in binary RSS.
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4.1.4.2 First layer VDP

To be consistent with previous work, we reuse notation from XONN [207]. XONN’s linear
operation in the first layer is defined as:

ρXONN = f(bmx, bmw) =
N∑
j=1

xj ∗ (−1)w̄j =
N∑
j=1

xj ∗ yj (4.1)

This operation is carried out in Banners with local arithmetic multiplication further
reconstruction of the RSS shares, ending with the local cumulative addition.

N∑
j=1

〈〈xj〉〉 ∗ (−1)JwjK local−−−→
mult.

N∑
j=1

〈zj〉
1 round−−−−−→
comm.

N∑
j=1

〈〈zj〉〉

local−−−−−−−→
cumm. add

ΣV DP (ρXONN )

(4.2)

For each individual multiplication zj = xj ∗ yj

z = x ∗ y + 0 = (〈x〉0 + 〈x〉1 + 〈x〉2) + (〈y〉0 + 〈y〉1 + 〈y〉2)

= [(〈x〉0 + 〈x〉1) ∗ 〈y〉0 + 〈x〉0 ∗ 〈y〉1] +

[(〈x〉1 + 〈x〉2) ∗ 〈y〉1 + 〈x〉1 ∗ 〈y〉2]+

[(〈x〉2 + 〈x〉0) ∗ 〈y〉2 + 〈x〉2 ∗ 〈y〉0] =

〈r〉2 ∗ 〈y〉0 + 〈x〉0 ∗ 〈y〉1 ⇒ Locally computed in P0 as 〈z〉0
+ 〈r〉0 ∗ 〈y〉1 + 〈x〉1 ∗ 〈y〉2 ⇒ Locally computed in P1 as 〈z〉1
+ 〈r〉1 ∗ 〈y〉2 + 〈x〉2 ∗ 〈y〉0 ⇒ Locally computed in P2 as 〈z〉2

(4.3)

For the cumulative addition In order to avoid overflow in the cumulative addition we
need log2N extra bits. We cast zj from 8-bit to either 16-bit or 32-bit (depending on the
size of the VDP) and perform local addition including common randomness to hide the
result from other parties:

ρ =
N∑
j=1

〈〈zj〉〉 =
N∑
j=1

〈〈zj〉〉0 +
N∑
j=1

〈〈zj〉〉1 +
N∑
j=1

〈〈zj〉〉2 + α0 + α1 + α2 =

N∑
j=1

〈〈zj〉〉0 + α0 ⇒ Locally computed in P0 as 〈〈ρ〉〉0

N∑
j=1

〈〈zj〉〉1 + α1 ⇒ Locally computed in P1 as 〈〈ρ〉〉1

N∑
j=1

〈〈zj〉〉2 + α2 ⇒ Locally computed in P2 as 〈〈ρ〉〉2

(4.4)

As a result we obtain 2-out-of-3 shares of ρ. We describe the entire computation in
algorithm 7.
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Algorithm 7 Integer-binary VPD:
Players: P0,P1,P2 hold integer shares 〈〈xj〉〉 and 〈〈yj〉〉 in Z2l

Correlated randomness: P0,P1,P2 hold shares of zeroed value 〈〈αj〉〉.
Output: All parties get integer shares of 〈〈ΣV DP 〉〉.
Note: All shares are over Z2l , with l large enough to avoid overflow (upper bound log2(N)+

8, based on layer size).

1: 〈zj〉 = 〈〈xj〉〉 ∗ 〈〈yj〉〉
2: Pi sends: 〈zj〉i → Pi−1, and 〈zj〉i+1 → Pi+1 to verify result (Figure 7 of [185])
3: if 〈zj〉i+1 6= 〈zj〉i−1 then
4: abort
5: else
6: Reconstruct 〈〈zj〉〉
7: 〈〈ΣV DP 〉〉i =

∑N
j=1〈〈zj〉〉i + 〈〈αj〉〉

8: return Shares of 〈〈ΣV DP 〉〉 ∈ Z2l

4.1.4.3 BN + BA as secure comparison

Based on [201], we make use of the transformation of BN + BA into sign(x − ρ − β/γ),
and while the subtraction ρ − β/γ can be performed locally using shares of 〈〈β/γ〉〉 gotten
as part of the input data, we still need a secure way to perform q = sign(n). Following the
mult&add→ XNOR&popcount transformation (and its corresponding mapping yj → wj),
the sign(n) function turns into H(n), the Heaviside3 function a.k.a. step function:

q = Heaviside(n) = H(n) =

{
0 if n < 0

1 if n ≥ 0
(4.5)

As seen in previous work [239], this is equivalent to extract and negate the MSB in our
fixed-point arithmetic representation. Indeed this is a step required to compute ReLU in
FALCON [240] and SecureNN [239], which makes our activation function cheaper than
standard ReLU.

Together, they turn into a comparison between input x and β/γ, implemented by ex-
tracting the MSB (the sign) of x−β/γ. We rely on FALCON’s PrivateCompare (Algorithm
1 in [240]), simplifying it further by setting r = 0, described in algorithm 8. Since this al-
gorithm requires shares of bits of x, we reuse the same constructions used in FALCON to
switch from arithmetic shares 〈〈x〉〉i ∈ Z2l generated by linear layers to shares of bits of x in
Zp, with p = 37.

3The Heaviside function is equivalent to the derivative of ReLU dReLU = ∂max(0,x)
∂x

. The only difference
is that H(t) is defined for Z only, while dReLU is defined for R
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Algorithm 8 Binary BN + BA:
Players: P0,P1,P2 hold binary shares of JxK in Z2.
Correlated randomness: P0,P1,P2 hold shares of a random bit in two rings JβK2 and

JβKp and shares of a random, secret integer m ∈ Z∗p.
Output: All parties get shares of the bit (x ≥ 0) ∈ Z2.
Note: Arithmetic shares are over Zp after conversion.

1: 〈〈z〉〉 = 〈〈x〉〉 − 〈〈β/γ〉〉
2: arith2bitdecomp: (from [240]) 〈〈z〉〉 → shares of bits of z, JziK, i ∈ 1, . . . , l
3: for i = {`− 1, `− 2, . . . , 0} do
4: Compute shares of c[i] = (−1)βz[i] + 1 +

∑`
k=i+1 z[k]

5: Compute and reveal d := JmKp ·
∏`−1
i=0 c[i] (mod p)

6: Let β′ = 1 if (d 6= 0) and 0 otherwise.
7: return Shares of Jβ′ ⊕ βK ∈ Z2

Note that, contrary to FALCON, we can directly benefit from the binary sharing re-
turned by the private compare algorithm, since it will serve as input to subsequent binarized
layers without requiring a reconversion to Z2l .

4.1.4.4 Binary VDP

Vectorized XNOR (bmt = bmv ⊕ bmw̄) in a RSS setting is computed locally based on
local XOR ( [14] section 2.1) and local negation of 1 out of the 3 shares. PopCount is
translated into cumulative addition by converting binary shares into arithmetic shares using
the protocol in section 5.4.2 of ABY3 [185](simplified by setting a = 1):

ρXONN = f(v, w) =

N∑
j=1

vj ∗ (−1)wj
N∑
j=1

vj ⊕ (wj) =

N∑
j=1

tj (4.6)

With the binary input vector v, and the weights vector w, we implement their VDP
using XONN’s mult&add→ XNOR&popcount transformation:

N∑
j=1

JvjK⊕ Jw̄jK
local−−−−−−−→

XOR, NOT

N∑
j=1

JtjK

2 rounds−−−−−→
comm.

N∑
j=1

〈〈tj〉〉
local−−−−−−−→

cumm. add
ΣV DP (ρXONN )

(4.7)

4.1.4.5 XNOR

Starting with 2-out-of-3 shares of a vector of bits JvK, and similar shares of binary weights
JwK, we use local evaluation of XOR from [14] to implement XOR, where r = [r]0⊕ [r]1⊕ [r]2
is the correlated randomness of v and s = [s]0 ⊕ [s]1 ⊕ [s]2 is the correlated randomness
of w; and r = s = 0. Note that, using the binary sharing proposed above, party Pi holds
wi, wi+1, and thus holds si−1 = wi ⊕ wi+1; respectively for vi, vi+1 and ri−1
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JtK = Jv ⊕ w, r ⊕ sK =

[( [v]0 ⊕ [v]1 ⊕ [v]2)⊕ ([w]0 ⊕ [w]1 ⊕ ([w]2)),

( [r]0 ⊕ [r]1 ⊕ [r]2)⊕ ([s]0 ⊕ [s]1 ⊕ ([s]2)]→
[w]0 ⊕ [v]0, [r]2 ⊕ [s]2 ⇒ Locally computed in P0 as JtK0

[w]1 ⊕ [v]1, [r]0 ⊕ [s]0 ⇒ Locally computed in P1 as JtK1

[w]2 ⊕ [v]2, [r]1 ⊕ [s]1 ⇒ Locally computed in P2 as JtK2

(4.8)

4.1.4.6 Popcount

The equivalent of cumulative addition for integers, popcount (or hamming weight) adds all
the bits set to 1. To perform this cumulative addition, standard Garbled Circuits require an
entire tree of ripple carry adders (RCA) [242], as it is the case in XONN [207]. This renders
the computation quite expensive, seeing how each RCA requires at least one AND operation
(1 round of communication each, log2N rounds in total). Instead, based on section 5.4.2 of
ABY3 [185] we convert the binary shares into integer shares at a cost of 2 multiplications
and then perform local cumulative addition over the resulting integer shares, just like in
the first layer.

The conversion happens as follows:

N∑
j=1

JtjK
2 rounds−−−−−→
comm.

N∑
j=1

〈〈tj〉〉
local−−−−−−−→

cumm. add
ΣV DP (ρXONN ) (4.9)

The entire binary linear layer would look like this:

〈〈b〉〉 =2 ∗N −
N∑
j=1

JvjK⊕ Jw̄jK
local−−−−−−−→

XOR, NOT
2 ∗N −

N∑
j=1

JtjK
2 rounds−−−−−→
comm.

2 ∗N −
N∑
j=1

〈〈tj〉〉
local−−−−−−−→

cumm. add
2 ∗N − ΣV DP

(4.10)

The actual output of the binary VDP is 2∗ΣV DP−N , as shown in figure 2 of XONN [207].
The complete Binary VDP is detailed in algorithm 9.
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Algorithm 9 Binary VDP:
Players: P0,P1,P2 hold binary shares of JxjK in a given window spanning (1 . . . j . . . N).
Correlated randomness: P0,P1,P2 hold integer shares of zeroed values
〈〈aj〉〉, 〈〈bj〉〉, 〈〈cj〉〉, 〈〈αj〉〉.

Output: All parties get integer shares of ResV DP .
Note: Shares over Z2l are defined with l large enough to avoid overflow (upper bound

log2(N), based on binary layer size). Arithmetic multiplications in steps 6 and 7 also
include the abort mechanism from algorithm 7.

1: JtjK = JvjK⊕ Jw̄jK
2: bin2arith JtjK→ 〈〈tj〉〉
3: P0: 〈〈tj〉〉b0 = JtjK0 + 〈〈aj〉〉
4: P1: 〈〈tj〉〉b1 = JtjK1 + 〈〈bj〉〉
5: P2: 〈〈tj〉〉b2 = JtjK2 + 〈〈cj〉〉
6: 〈〈dj〉〉 = 〈〈tj〉〉b0 + 〈〈tj〉〉b1 − 2 ∗ 〈〈tj〉〉b0 ∗ 〈〈tj〉〉b1
7: 〈〈tj〉〉 = 〈〈tj〉〉b2 + 〈〈dj〉〉 − 2 ∗ 〈〈tj〉〉b2 ∗ 〈〈dj〉〉
8: 〈〈ΣV DP 〉〉 =

∑N
j=1〈〈tj〉〉+ 〈〈αj〉〉

9: 〈〈ResV DP 〉〉 = 2 ∗N − 〈〈ΣV DP 〉〉
10: return Shares of 〈〈ResV DP 〉〉 ∈ Z2l

4.1.4.7 Max pooling

Max pooling requires computing the OR function over the values in the sliding window.
However, [14] only defines NOT, XOR and AND as operations in the binary sharing domain.
In order to compute OR, we reformulate OR with the available gates using NAND logic
and decomposing: OR(a, b) = NOT (AND(NOT (a), NOT (b))). We can now formulate the
Max operation that composes a Maxpool layer:

m =maxwindow q(x) = xq1 OR xq2 OR · · · =
not(not(xq1) AND not(xq2)AND . . . ) ≡ xq1 & xq2 & . . .

(4.11)

As such, the Binary Maxpool layer requires as many multiplications as the number of el-
ements in the sliding window, with 4 being a typical value. This implies one communication
round per multiplication. The full layer is described in algorithm 10.

Algorithm 10 MaxPool:
Players: P0,P1,P2 hold binary shares JxjK over a window of size 1 . . . j . . . N
Correlated randomness: P0,P1,P2 hold binary shares of zeroed bits JajK.
Output: All parties get binary shares of JmKmaxpool.
Note: &(AND) operation is performed following [14], with abort conditions similar to

those in algorithm 7, but applied in Z2. b(NOT ) is performed locally negating the
binary shares in P0.

1: JmK = Jx0K
2: for i = {2, . . . j, . . . , N} do
3: JmK = JmK & JxjK
4: JmK = JmK
5: return Shares of JmK ∈ Z2
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4.1.5 Experiments with Banners

4.1.5.1 Implementation

We implemented Banners on top of MP-SPDZ [149], with our own data management
functions (im2col [102], col2im, padding, flatten) while relying on existing functionalities
in MP-SPDZ to handle the MPC session and its low level operations. We report the total
communication and the total online processing time, purposely leaving out offline processing.
We used Larq [107], a high level BNN framework extending Tensorflow [1], to define and
train our own BNN models for image classification over the MNIST and CIFAR10 datasets.
We relied on recommendations from [26] to define BNN architectures, and used the Bop
optimizer [124] with notions from [12] for training. To compare with XONN, we applied
early stopping once the accuracy reported in [207] is reached, with a maximum deviation
of 0.2%. Contrary to secure non-binarized NN inference (whose floating point operations
need to be translated into fixed-point [239]), the secure BNN inference performs exactly the
same operations as standard BNN, preserving the model accuracy.

4.1.5.2 Comparison with XONN
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Figure 4.4: Comparison in latency for MNIST BNN models

As the most significant prior work on secure BNN inference, we chose to compare Ban-
ners with XONN [207] 4. In order to do so, we trained the BNNs shown in table 4.1, whose
architectures are directly taken from XONN( [207], Appendix A.2). Since XONN defines a
scaling parameter s that increases the number of feature maps in a given BNN, we trained
models for s in (1, 1.5, 2, 3, 4) to compare ourselves with tables 11 and 12 from [207].

All our experiments were ran in a simplified LAN setting (different TCP ports) on a
single machine Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz with 12 cores, using 4 cores per

4Comparison with other non-binarized works can be inferred from tables 4 and 6 of XONN [207], as well
as table 2 of FALCON [240].
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Table 4.1: BNN architectures trained in Banners for comparison with XONN
Arch. Previous Papers #layers Description Dataset

BM1 XONN [207], MiniONN [172] 3 3FC MNIST
BM2 XONN [207], CryptoNets [110], MiniONN [172] 3 1 CONV, 2 FC MNIST
BM3 XONN [207], MiniONN [172] 6 2CONV,2MP,2FC MNIST
BC1 XONN [207], Chameleon [208], Gazelle [146] 10 7CONV,2MP,1FC CIFAR10
BC2 XONN [207], Fitnet [211] 13 9CONV,3MP,1FC CIFAR10
BC3 XONN [207], Fitnet [211] 13 9CONV,3MP,1FC CIFAR10
BC4 XONN [207], Fitnet [211] 15 11CONV,3MP,1FC CIFAR10
BC5 XONN [207], Fitnet [211] 21 17CONV,3MP,1FC CIFAR10
BC6 XONN [207], VGG16 [224] 19 13CONV,5MP,1FC CIFAR10

party with an enforced communication delay of 20ms on each link. Standard point-to-point
secure channels are set in place using MP-SPDZ codebase.

Observing the results from figures 4.4-4.5 (detailed results in tables 4.1.5.2 for MNIST
models and 4.1.5.2 for CIFAR10 models), we discover that, while the latency is increased in
average 18% for the MNIST models and 27% for the CIFAR models, the communication is
5% (CIFAR10) to 15% (MNIST) lower. We can safely conclude that Banners trades some
speed in exchange for slightly lower communication and a more robust security model: while
XONN offers security against a semi-honest adversary, Banners can detect misbehavior
and stop the computation. Furthermore, if the protocol outputs a value, then parties are
inherently sure of the correctness of the output.
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Figure 4.5: Comparison in communication for MNIST BNNs

We can bring the analysis further by comparing all the BNN models in terms of the
number of Multiply-Accumulate (MAC) operations. A MAC accounts for an individual
VDP operation (element-wise multiplication with cumulative addition), and given that BN
and BA are applied element-wise to the output of a VDP, the number of MACs in a
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model is representative of its complexity5. The latency is higher for all BNN models in
our comparison from figures 4.6 and A.3. Furthermore, while the communication increases
linearly with the model complexity, there seems to be a certain inherent setup latency: note
the almost horizontal slope in figure 4.7 for the smallest models, affecting both XONN and
Banners models. This setup is rendered negligible when the BNN architectures increase
in size, such as with CIFAR10 models in figure A.3.
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Figure 4.6: Tradeoff MACs - Latency for MNIST BNN

Table 4.2: Accuracy, communication, and latency comparisons2 for MNIST dataset, Ban-
ners VS XONN [207].

Arch. s # param (x103) # MACs (x103) Accuracy (%) Communication (MB) Latency (s) Est. RAM (MB)
Banners XONN Banners XONN Banners XONN

BM1

1 31 30 97.10 2.30 2.57 0.14 0.12 0.77 0.86
1.5 58 57 97.56 3.53 4.09 0.16 0.13 1.18 1.36
2 94 93 97.82 5.13 5.87 0.15 0.13 1.71 1.96
3 190 188 98.10 9.00 10.22 0.17 0.14 3.00 3.41
4 320 316 98.34 13.73 15.62 0.18 0.15 4.58 5.21

BM2

1 74 91 97.25 2.54 2.90 0.12 0.10 0.85 0.97
1.50 153 178 97.93 5.03 5.55 0.14 0.12 1.68 1.85
2 291 326 98.28 9.14 10.09 0.16 0.14 3.05 3.36
3 652 705 98.56 18.87 21.90 0.21 0.18 6.29 7.30
4 1160 1230 98.64 33.42 38.30 0.27 0.23 11.14 12.77

BM3

1 34 667 98.54 15.36 17.59 0.20 0.17 2.56 2.93
1.5 75 1330 98.93 32.22 36.72 0.26 0.22 5.37 6.12
2 132 2200 99.13 56.35 62.77 0.36 0.3 9.39 10.46
3 293 4610 99.26 117.11 135.88 0.63 0.52 19.52 22.65
4 519 7890 99.35 207.40 236.78 0.94 0.81 34.57 39.46

5Note that the direct relation between MACs and complexity applies to sequential NN architectures like
the ones described in this chapter. It does not hold for Recurrent Neural Networks and other non-sequential
NN architectures.
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Figure 4.7: Tradeoff MACs - Communication for MNIST BNN

Finally, and crucial for edge devices, since all models are sequential, the RAM memory
usage can be roughly estimated by the communication load divided by the number of layers
(table 9 of [240]). By doing so we observe (last column in tables 4.1.5.2 and 4.1.5.2) that the
memory footprint is small enough (tens to hundreds of MB) for Banners to be applicable
for secure edge computing (e.g., a Raspberri Pi and most modern phones have 1GB+ of
RAM).

4.1.6 Conclusion

With the formulation presented in this work, Banners aims to provide an efficient secure
inference implementation of BNN by relying on Replicated Secret Sharing. All in all, the
memory and space efficiency (R6), coupled with improved security protecting against one
malicious adversary (CH3), provides a suitable candidate to run secure BNN inference on
edge devices.
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Table 4.3: Accuracy, communication, and latency comparisons2 for CIFAR10 dataset, Ban-
ners VS XONN [207].

Arch. s # param (x103) # MACs (x106) Accuracy (%) Communication (GB) Latency (s) Est. RAM (MB)
Banners XONN 3 Banners XONN Banners XONN

BC1

1 200 42 72.0 1.22 1.26 5.02 3.96 122 126
1.5 446 92 77.0 2.60 2.82 10.89 8.59 260 282
2 788 163 80.0 4.79 4.98 18.90 15.07 479 498
3 1760 364 83.0 10.31 11.15 43.16 33.49 1031 1115

BC2

1 92 12 67.0 0.37 0.39 1.77 1.37 28 30
1.5 205 27 73.0 0.83 0.86 3.53 2.78 64 66
2 363 47 78.0 1.48 1.53 6.08 4.75 114 118
3 815 105 82.0 3.18 3.40 13.28 10.35 245 262

BC3

1 368 41 77.0 1.29 1.35 5.39 4.23 99 104
1.5 824 92 81.0 2.84 3.00 11.52 9.17 218 231
2 1460 164 83.0 4.97 5.32 20.72 16.09 382 409
3 3290 369 86.0 11.03 11.89 45.67 35.77 848 915

BC4

1 689 143 82.0 4.36 4.66 17.78 14.12 291 311
1.5 1550 322 85.0 9.88 10.41 39.98 31.33 659 694
2 2750 572 87.0 17.87 18.45 69.36 55.38 1191 1230
3 6170 1290 88.0 38.56 41.37 158.79 123.94 2571 2758

BC5

1 1210 166 81.0 5.26 5.54 21.17 16.78 250 264
1.5 2710 372 85.0 11.68 12.40 46.78 37.29 556 590
2 4810 661 86.0 20.51 21.98 83.75 65.94 977 1047
3 10800 1490 88.0 46.04 49.30 190.14 147.66 2192 2348

BC6

1 1260 23 67.0 0.60 0.65 2.74 2.15 32 34
1.5 2830 50 74.0 1.40 1.46 5.80 4.55 74 77
2 5020 90 78.0 2.48 2.58 10.03 7.91 131 136
3 11300 201 80.0 5.58 5.77 22.44 17.44 294 304
2 The accuracy in Banners models matches the one described in this table by ±0.1%. The

number of parameters and number of Multiply-ACcumulate (MAC) are obtained from Larq. The
communication and latency for XONN are taken from [207], while figures reported for Banners

are yielded by MP-SPDZ.
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Chapter 5

Protecting the Biometric
Verification

The computation of privacy-preserving distance metrics fdist(x,y) between two vectors x,y
followed by a comparison with a threshold θ is an essential block for biometric verification
(both 1:1 authentication [165, 212] and 1:K identification [98]), while being very popular in
many applications in need of privacy protection, including machine learning (e.g., k-nearest
neighbors [250], linear regression [106], matrix multiplication [178]), bioinformatics (e.g.,
genetic relatedness [87]).

The literature counts many solutions based on various cryptographic techniques that
allow distance metrics computation of over sensitive data while preserving its privacy: MPC-
based solutions [88, 55, 99] split the distance computation across multiple entities, solutions
rooted in FHE [60, 20, 27] resort to lattice-based public-key encryption schemes to support
local addition and multiplication between ciphertexts, and solutions grounded on FE [19,
36] utilize public-key encryption schemes that support evaluation of scalar products when
decrypting the ciphertexts.

However, not all operations are born equal. While linear operations are widely covered
by all the privacy-preserving techniques, the protection of non-linear operations including
the comparison to a threshold θ is much harder to attain. Computing this non-linear
operation with most MPC primitives is often communication intensive (e.g., [88, 240]) both
in terms of communication size and in number of rounds. FHE-based techniques must
resort to computation-heavy algorithms [64, 138], and efficient FE-based techniques do not
support non-linear function evaluations1.

We devote this chapter to the study of privacy-preserving biometric verification. We
seek to guarantee unlinkability (R3) for the biometric templates by ensuring their privacy
(R1) throughout the entire process, while allowing the secure evaluation of both the linear
(distance metric computation) and non-linear (comparison and arg max) functions that
compose this phase. Additionally, we aim to maintain a high degree of accuracy (R5) in the

1While FE can, in theory, support arbitrary function evaluations, the instantiation of inner product and
threshold comparison with FE would be extremely computationally intensive and thus completely impractical
for real-world applications. This inefficiency is exacerbated by the comparative performance of MPC and
FHE for the same tasks.
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underlying biometric system, leading us to carefully study the various sources of accuracy
losses (CH1).

This chapter is divided as follows. We present a general survey of the state of the art
in this domain in Section 5.1, and follow-up with three novel contributions of this thesis in
the next sections 5.2-5.4. Our main contributions are:

• BiomFEtrics [133] (Section 5.2), a FE-based protocol optimized for online latency
that allows to securely compute the scalar product between templates ( without com-
parison to a threshold), implemented and applied to real biometric data. We focus on
the latency optimization (R6) and accuracy preservation (R5) on this chapter, leaving
for Chapter 6 the study of the leakage in the output.

• Funshade [134] (Section 5.3), a new MPC protocol based on a smart combination of
ΠSS and FSS to securely compute various distance metrics between templates with
thresholding, intended for a 2PC semi-honest scenario.

• Grote [131] (Section 5.4), a novel CKKS-based algorithm to approximate the max of
a set by applying group testing, a trick that is exploited to perform privacy-preserving
face identification.

5.1 Existing Privacy-Preserving Biometric Solutions

The topic of protecting privacy in biometric verification systems has received a lot of at-
tention, with considerable research focused on the protection of the templates (R3) and the
secure verification (R2). This objective has been attained throughout a myriad of techniques
[200]:

• Fuzzy/robust hashing [228, 218, 144, 229], where the templates are mapped via one-
way functions to seemingly uncorrelated structures that tolerate a certain degree of
noise/error when comparing them.

• Cancellable biometrics [217], where the templates transformed using geometric ap-
proaches (e.g. translations, rotations, affine transformations) to unlink them from
the original biometric data, and operating the biometric matching on the transformed
templates [232, 198, 71, 159]

• General privacy-preserving techniques such asHomomorphic Encryption, Secure Multi-
party Computation and Functional Encryption, where the templates are protected via
encryption/masking and the biometric operations are performed on the encrypted/-
masked domain. A very promising set of solutions due to their flexibility, efficiency,
and their provable security properties, these techniques drive the many of the recent
progresses in the topic of secure biometrics, and thus they constitute the focus of this
chapter.
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In the domain of Homomorphic Encryption (HE), the biometrics use-case has led to a
variety of approaches, including [20, 179] for Hamming distance or [245] for scalar product.
However, these approaches do not include comparison to a threshold, and often rely on costly
cryptographic primitives that make them slow. [28] and other homomorphic encryption
based solutions such as [156] have gone the same way. [155] recently applied HE to iris
recognition, while [118] employed HE for multi-biometric systems. A collection of HE-based
solutions was surveyed in [212].

In a similar line, the Multi-party Computation (MPC) field includes a plethora of works
covering distance metric evaluations. The privacy-preserving evaluation of a wide variety of
distance metrics, resorting to Oblivious Transfer [199] and building on a previous work [45],
was central to [44]. Most of the frameworks for privacy preserving neural networks cover
scalar-products(e.g., [239, 158]). Mixed-mode protocols, using a combination of several
MPC techniques or even HE, have also tackled secure distance evaluations [88, 185]. [99]
covered a wide variety of Two-Party Computation techniques applied to biometrics.

Likewise, techniques based on Functional Encryption such as [4, 153] envisioned privacy-
preserving biometric verification use-cases, employing the Hamming distance as their metric.
There are other works in this line, such as [249] for biometric authentication using threshold
predicate encryption, or [165] with its focus on high throughput.

Lastly, face biometrics has been subject of extensive studies before employing various
privacy-preserving techniques: [215] using HE and MPC, [188] using Oblivious Transfer
(OT), or more recently [189] using a mix of hashing and HE, and [92] employing multiple
HE schemes for face identification.

5.2 BiomFEtrics: Practical Privacy-Preserving Face Iden-
tification with Function-Hiding Functional Encryption
[133]

Abstract. Leveraging on function-hiding Functional Encryption (FE) and inner-product-
based matching, this work presents a practical privacy-preserving face identification system
with two key novelties: switching functionalities of encryption and key generation algorithms
of FE to optimize matching latency (R6) while maintaining its security guarantees (CH2),
and identifying leakage in the output (CH4) to later formalize two new attacks based on
it with appropriate countermeasures2. We validate our scheme in a realistic face matching
scenario, attesting its applicability to pseudo real-time one-use face identification scenarios
like passenger identification.

5.2.1 Introduction

This work is our first iteration in the study on protection of the biometric verification
operations. Introduced in Chapter 3, advanced cryptographic techniques such as Fully
Homomorphic Encryption, Secure Multi-party Computation, and Functional Encryption

2We leave the study of this leakage for Chapter 6
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can be used to address the limitations of standard cryptography (e.g., applicable mainly to
secure storage and communication) and preserve the privacy of biometric data while in use.

To publicly decrypt/open the output of a given private function evaluation, MPC re-
quires one round of communication. FHE requires the private key for its decryption, leading
to extra security constraints required to protect this key. In comparison, FE is well suited
for in-place function evaluation and output disclosure. Accordingly, in order to protect
the biometric verification phase while addressing the need of local output decryption this
work relies on Functional Encryption. FE is costly for arbitrary function evaluations [114],
making it less practical for private evaluation of complex functions like those present in the
live template acquisition step; nonetheless there exist efficient FE schemes to instantiate
the inner product used during the biometric verification phase.

Our Contributions. This work presents a new face identification solution built on FE-
based private inner product matching, with the key novelty of switching functionalities of
encryption and key generation FE algorithms to optimize latency while leaving the strong
security guarantees provided by FE intact. In addition, we perform a thorough a security
analysis of the inner product input leakage, proposing countermeasures to thwart attacks
based on it (Note that we leave this analysis for Chapter 6). We validate our solution in a
face matching scenario, attesting its applicability practical one-use identification use-cases.

BiomFEtrics is outlined as follows. Section 5.2.2 describes the practical scenario and
outlines our security goals for it. Section 5.2.3 details the proposed solution, architecture
and characteristics. Section 5.2.4 comprises implementation and experiments. Section 5.2.5
addresses previous work and positions our contribution, wrapping up with the conclusions
in Section 5.2.6. We leave the study of the inner product leakage (present in the original
publication [133]) for Section 6.1.

5.2.2 A face identification scenario and its security goals

We consider the face identification scenario depicted in Section 2.1.2 and based on the
blueprint of Figure 6.3, where the enrollment phase stores K reference templates in a
privacy-preserving manner, and the verification phase computes similarity scores between
the K reference templates and the live template, while preserving the privacy of all tem-
plates. In this work we employ the FHIPE scheme (Section 3.4.2) to provide the privacy-
preserving property in our system.

This scenario leads to two practical considerations.

1. High numerical precision is paired with low error rates but FHIPE supports only
integer operations (CH1), forcing us to deal with the conversion of floating-point
biometric templates into integers.

2. We expect our end-to-end biometric identification to be performed in pseudo real
time for it to be of practical use, hence we set an upper limit of up to 5s for its
complete online execution. Since there are K identities in the DB, K similarity score
computations are required for each verification, creating a natural bound to K to
obtain an acceptable performance (R6).
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We exemplify the applicability of this work in a use-case of identification for transport
boarding (e.g., boarding a flight in an airport, or a bus/train in a station), requiring one-
time-per-passenger identification of tens to low hundreds of individuals. A sketch of the
system is shown in Fig. 5.1.
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Biometric Identity 
Provider (BIP)

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Users
Gate

Match 

Reject 

Enrollment phase
Verification phase

Figure 5.1: Sketch of the entities involved in a face identification scenario for one-time
passenger access control.

Security goals. At this point we establish the security goals of our solution:

• Privacy of all templates. The enrollment phase should store reference templates
in a privacy preserving manner still allowing inner products. Likewise, extracted live
templates should support the inner product computation while remaining private for
any other use. This is a standard by-design security goal of FE, already covered by
the FHIPE scheme [153] of our solution.

• Protection against inner product leakage. FE schemes do not treat the inherent
leakage of the reference template when computing several inner product operations
with it. We formalize this leakage in Section 6.1, and develop two practical leakage-
based attacks: reference template extraction and brute-force impersonation. Usually
overlooked in the secure computation literature, we stress the importance of this
leakage in our face identification scenario, where multiple inner products are computed
over the same reference template. To protect against them, in Chapter 6 we establish
a limit to the total number of identification requests in our solution.

Threat model. We consider a semi-honest adversary corrupting the similarity score op-
eration and all steps after that, seeking to obtain as much information as possible from the
inputs but preserving their integrity. We consider the adversary to have oracle access to
the matching phase, thus being able to submit chosen live biometric samples. Our system
is built with trust on the enrollment and the capture modules, for they receive the msk
which can decrypt any ciphertext.
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It is worth noting that deep fakes, morphing attacks and other attacks directed towards
the feature extraction are left out of the scope, as they should be conveniently addressed in
the feature extractor implementation.

5.2.3 Our solution

We display our solution in Fig. 5.2. In the enrollment phase, the enrollment module acts
as trusted authority to generate msk & pp and protect N ref. templates by converting
them into functional keys ski. msk is sent to the capture module, and all ski along with
pp are sent to the verification module. The verification phase starts with the access control
step. The capture module then gets a live template x and encrypts it into c using msk.
Afterwards, the verification module takes ski and c, computes their privacy-preserving inner
product zi = bmx ·bmyi, compares the highest score max(zi) to the threshold θ, and returns
a match with the ID/index i of the highest score, or nothing if rejected.
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Figure 5.2: Architecture of our secure face identification system based on FE (FHIPE)

5.2.3.1 Swapping FE.encr with FE.keygen

The original FHIPE scheme (Sec. 5.1 of [153]) and posterior works based on it [142] use the
function-hiding FE.keygen functionality to protect the live template (step 3 in Fig. 5.2),
keeping FE.encr for the stored templates (step 2 in Fig. 5.2). We observe that, given the
dual nature of the FHIPE scheme, the same security properties hold if we were to swap
them. This observation is grounded on remark 3.4.5. of [36]: in the game-based IND-CPA
security definition of FHIPE (Fig. 3.10 of [36] or definition 2.1) the adversary and the
oracle follow a perfectly equivalent game. To optimize the end-to-end biometric verification
latency we employ the fastest functionality for this phase, which happens to be FE.encr
(see Sec. 5.2.4), thereby swapping FE.encr
 FE.keygen with respect to [153, 142].

5.2.3.2 Limiting the number of requests

As we will discuss in Section 6.1, we limit the number N of identification requests of our
solution to prevent several attacks leveraging on the leakage of the output of FE.decrypt
(wait for Section 6.1.1 for a detailed explanation and a careful selection of the limit). We
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enforce this limit via an access control step with open instantiation, which could materialize
as an agent-controlled checkpoint or a one-time token generated in the enrollment.

5.2.3.3 Fixed-point approximation

The feature extractor outputs normalized templates bmt ∈ RK[−1,1], easily projected into
the FHIPE discrete space Z2l by scaling with factor 2l and a truncation to l bits. The
subsequent inner product is naturally up-scaled twice:

f(bmxfix, bmyfix) =
⌊
bmxfloat ∗ 2l

⌋
l
·
⌊
bmyfloat ∗ 2l

⌋
l
≈ 22l ∗ f(bmx, bmy)

To compare against the threshold θ ∈ [0, 1] we upscale θ twice: θfix = θ ∗ 22l, obtaining
an equivalent comparison. This fixed-point translation imposes a minimum ring size of 2l

bits to avoid overflows. The approximation impacts the accuracy (CH1), since more bits
yield more precision, but at the cost of bigger primitives in the FE scheme and thus worse
latency. We study this trade-off in Sec. 5.2.4.

5.2.3.4 Security Analysis

We argue that BiomFEtrics protects the privacy of the underlying biometric system (R1).

Theorem 1. Our system preserves the privacy of the live template and the reference tem-
plates while allowing the inner product similarity computation.

Proof. The security of FE sits upon game-based definitions that prove Indistinguishability
against Chosen Plaintext Attacks a.k.a. IND-CPA (IND [4, 34]). The FHIPE scheme of our
solution is proven to hold strong SIM-based security guarantees as per theorem 3.1 of [153],
which implies IND-CPA secure in Remark 2.5 of [153]. This directly ensures the privacy of
the biometric templates inside ciphertexts and functional secret keys of our solution.

5.2.4 Implementation & Experiments

We implement our Cython-based solution using the CiFEr [197] library, an ArcFace based [89]
feature extractor with templates of size K = 128. The experiments were run in an Intel(R)
Core(TM) i7-7800X CPU and averaged over 10 runs.

Table 5.1: Latency (seconds) for single-core FE.decr with template elements of l bits.
l 2 4 6 8 10 12 14 16

FE.decrypt 0.18 0.18 0.19 0.25 0.40 1.08 3.81 14.86
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Figure 5.3: Comparison of the precision of the entire system for templates with elements
of size l. In the left the Area Under the Curve metric is shown. In the right the False
Rejection Rates for fixed False Acceptance Rates are displayed.

Latency. Optimizing the execution time of the verification phase is essential to make
our system practical. Using a single core, we measure FE.setup (step 1) to take 0.35s,
FE.keygen (step 2) requires 0.19s per key, and FE.encr (step 3) demands 0.082s; thus our
proposed swapping reduces the latency of live template protection by 55%. As the only
FE operation depending on the template element size, FE.decr latency is recorded in table
5.1. The feature extractor clocks 36± 1ms3. We disregard the latency of the access control
step, as its instantiation is left open; and the max, the comparison with θ and the secure
transmission for being negligible compared to the cost of FE operations.

Precision. We measure the accuracy of the system is measured with face identification
benchmarks using the Labeled Faces in the Wild (LFW) dataset [127] consisting of 13233
112x112px real face images of famous people. We employ the FAR-FRR tradeoff as accu-
racy metric (Section 2.1.1). Typically, robust identification systems enforce FAR < 10−3,
obtaining a corresponding FRR. In Figure 5.3, we remark that highly compressed templates
maintain high precision, with little improvement beyond l = 6.

To close up, Figure 5.4 presents the best trade-offs in two scenarios:

• Higher precision: Optimizing for low FRR, setting l = 5 bits per template element
to support up to 70 identities, with slower matching of up to 5s.

• Many identities, optimizing for high N (up to 100 identities) by setting l = 4 bits,
at the cost of +2% FRR but with faster matching (≈ 4s).

3ArcFace-based [89] feature extractors with comparable latency and precision can be obtained from
https://github.com/deepinsight/insightface/wiki/Model-Zoo
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5.2.5 Related Works

The study of IPE started off with selective security in [4], already envisioning biometric
use-cases, and reaching full security with [84, 234]. The function-hiding properties for IPE
were introduced in [153], applied to biometric authentication based on Hamming weight
(l = 1). Further works in function-hiding approaches include [154] and [142]. [19] covers an
overhaul of efficient techniques.

The use of FE for privacy-preserving biometrics has also been subject to intense scrutiny,
from [249] for biometric authentication using threshold predicate encryption, to the extreme
efficiency of [165]. Whereas these works employ Hamming-weight based matchings that do
not require approximations (typical from fingerprint or iris), our work tackles the cosine-
similarity based matching of face biometrics. [7] covers an exhaustive revision of face recog-
nition, which includes the LFW dataset [127] and the foundations of our feature extractor
[89].

Among the most recent works, [142] proposes a useful acceleration trick for the FE
scheme of [153], by caching all the repetitive computation depending only of the stored
templates, obtaining up to 30% speedups. Much like the original [153], their function-hiding
approach uses FE.encr for the stored templates and FE.keygen for the live templates.
Comparatively, our function-hiding solution swaps FE.encr 
 FE.keygen to optimize the
latency of the system, and deals with the FHIPE leakage, often overlooked by the literature.
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5.2.6 Conclusion

BiomFEtrics proposes an efficient, precise and privacy-preserving face identification sys-
tem based on function-hiding functional encryption. We optimize the verification phase
latency by swapping FE.encr and FE.keygen usage, speeding up the live template protec-
tion by 55% while maintaining the FE security guarantees. We also propose a fixed-point
approximation to reduce the precision loss of the inner product, as well as a limit on the
number of identification requests to prevent attacks grounded on the leakage in the output
of our verification system. Finally, we implemented this system, showing that 4/5 bits per
template element are enough to obtain precise setups that compute matchings against a
database of up to 100 identities in pseudo real-time, applicable to passenger identification
use-cases.

5.3 Funshade: Functional Secret Sharing for Two-Party Se-
cure Thresholded Distance Evaluation [134]

Abstract. We propose a novel privacy-preserving, two-party computation of various dis-
tance metrics (e.g., Hamming distance, Scalar Product) followed by a comparison with
a fixed threshold, which is known as one of the most useful and popular building blocks
for many different applications including machine learning, biometric matching, etc. Our
solution builds upon recent advances in Functional Secret Sharing and makes use of an
optimized version of arithmetic secret sharing dubbed ΠSS (Section 3.2.3). Thanks to this
combination, our new solution named Funshade is the first to require only one round of
communication and two ring elements of communication in the online phase, outperform-
ing all prior state-of-the-art schemes while relying on lightweight cryptographic primitives.
Lastly, we implement the solution from scratch in Python using efficient C++ blocks, tes-
tifying its high performance.

5.3.1 Introduction

We shift from FE to MPC, with the objective of also covering the comparison to θ in
the matching. When used to evaluate circuits based on only binary or only arithmetic
interactions, MPC protocols present very fast online execution. However, applications such
as biometrics or machine learning require a combination of linear operations (additions and
multiplications over a large ring) and non-linear operations such as integer comparison or
truncation. The cost of blindly implementing these two types of operations with only one
MPC circuit type can be significantly high. To address this, many works have tackled
mixed-mode MPC to provide efficient conversions between arithmetic and binary domains,
supporting both linear and non-linear operations [55, 88, 185, 193]. Yet, these conversions
often entail a hefty communication overhead in the online phase both in terms of size and
number of rounds.

Inspired by the TinyTable protocol [80] to secret share truth tables in a succinct manner,
Boyle et al. proposed a very promising approach [41, 38] based on FSS [39, 40]. Offering
the same online communication and round complexity for non-linear function evaluations as
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for pure arithmetic computations in arithmetic-only circuits, FSS relies on fast symmetric
cryptography primitives to yield a fast online evaluation.

The present work will benefit from Π − SS (Section 3.2.3), an evolved secret sharing
technique emanating from research in mixed-mode operations [193] and modern FSS-based
comparison protocols [38] to achieve a lightweight and highly efficient biometric matching
protocol.

Our Contributions. We draw inspiration from the family of distance metrics covered in
GSHADE and integrate FSS-based threshold comparison primitives from [38] with an opti-
mized version Secret Sharing [193] in a two-party computation (2PC) protocol to perform
privacy-preserving distance metric computations with a subsequent comparison to θ. To
summarize our contributions, our solution:

• requires just one round of communication in the online phase, lowering the commu-
nication costs with respect to the two-round state-of-the-art solutions from AriaNN
[213] and Boyle et. al. [38],

• sends only two ring elements in the online phase, reducing the communication size of
previous solutions by a factor of 2l (l being the size of the input vectors),

• features 100% correctness in the comparison result,

• is implemented and open-sourced in a standalone Python library with efficient C++
primitives.

Funshade is outlined as follows: Section 5.3.2 describes the distance metrics we consider
in this work and some applications. Section 3 details the proposed solution, including a
succinct security analysis. Section 4 addresses previous work and positions our contribution,
wrapping up with the conclusions and next steps in Section 5.

5.3.2 Distance metrics and applications

We start off by writing the generic function we wish to protect:

f(fdist, θ,x,y) = 1fdist(x,y)>θ =

{
1 if fdist(x,y) > θ,
0 if fdist(x,y) < θ,

(5.1)

Inspired by GSHADE [44], and extending the list of distance metrics from Section 2.1, we
introduce below the distance metrics fdist that we cover in Funshade alongside motivating
real-world applications:

• Scalar Product: fSP (x,y) = xTy =
∑n

i=1 x
(i)y(i) is a common distance metric in

face recognition where x,y ∈ Rn are two vectors of the same dimension.

• Hamming Distance: fHD(x,y) =
∑n

i=1(x(i) ⊕ y(i)) is a distance metric frequently
used in information theory and computer science to measure the distance between
two bit-strings. Besides its interest in iris and fingerprint recognition, it is the base of
the perceptual hashing technique [183] used in image comparison, with applications
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ranging from image watermarking [94] to detection of Child Sexual Abuse Material
(CSAM) [76].

• Squared Euclidean Distance: fSED(x,y) =
∑n

i=1(x(i)−y(i))2 is a distance metric
used in many machine learning applications, such as clustering [181]. It is also used
in the context of face recognition [111].

• Squared Mahalanobis Distance: fMD(x,y) = (x − y)TM (x − y) is a distance
metric used in many machine learning applications, such as clustering [181] and recog-
nition of hand shape/keystrokes/signatures [44].

To adapt to 2PC, we reformulate these distance metrics fdist as

z = fdist(x,y) = flocal(x) + flocal(y) + fcp ·
∑

(x(i) · y(i)) (5.2)

where flocal is a function that can be computed locally by each input data holder, and fcp
is the "cross product" constant factor that applies to the scalar product evaluation present
in all the metrics. Using this blueprint, we rewrite all the distance metrics in Table 5.2.

We remark that the Hamming Distance can be reformulated as the Squared Euclidean
Distance as long as the input vectors are composed of binary values x(i),y(i) ∈ {0, 1}∀i, since
the boolean XOR operation between two binary values can be rewritten in the arithmetic
domain as x(i) ⊕ y(i) = (x(i) − y(i))2, the square of its difference.

Table 5.2: Reformulation of the distance metrics into a composition of local evaluations of
flocal and the cross product fcp · xTy
Distance Metric Formula flocal(x) + flocal(y) + fcp · xTy flocal(v) fcp

Scalar/Inner Product
∑
x(i) · y(i) 0 + 0 + 1

∑
(x(i) · y(i)) 0 1

Hamming Distance
∑
x(i) ⊕ y(i)

∑
(x(i))2 +

∑
(y(i))2 − 2

∑
(x(i) · y(i))

∑
(v)2 -2

Squared Euclidean
∑

(x(i) − y(i))2
∑

(x(i))2 +
∑

(y(i))2 − 2
∑

(x(i) · y(i))
∑

(v)2 -2
Squared Mahalanobis (x−y)TM(x−y) xTMx + yTMy − 2 (xTM) · y (vTMv) -2

5.3.3 Our solution

We now describe our solution for a lightweight and efficient 2PC distance metric with
comparison, with a single round of communication in the online phase. In a nutshell,
we combine Π-sharing to locally compute a scalar product with the FSS gate for interval
containment from [38] with full correctness.

On the threat model and the security guarantees. Funshade focuses on a 2PC
scenario, following the party conventions and roles from 3.2. We cover security against
a semi-honest adversary non-adaptively corrupting at most one computing party. Also
referred to as Honest -but-Curious, the computing parties Pj are to follow the protocol
faithfully, while a party corrupted by the adversary will try to extract as much information
as possible from his computation.
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Employing simulation based security proofs [48, 113], previous works have proven SS
and ΠSS to be perfectly information theoretic secure against computationally unbounded
semi-honest adversaries [88, 193] (perferct hiding). In contrast, FSS schemes FSS schemes
rely on the security of the underlying PRNG to prove computational security against PPT
bounded adversaries [38] (computational hiding).

5.3.3.1 Sketching the protocol

The key insight driving our design stems from the intermediate SS state in the Π-sharing
multiplication (〈∆z〉 in Equation 3.3). By providing Π-shared input vectors to the comput-
ing parties Pj , we can locally obtain the SS shares of the elementwise multiplication, and
perform local cumulative addition to obtain shares of the scalar product result. Compared
to the pure SS approach, we no longer need a round of communication to reconstruct the
intermediate values x−a and y−b masked by beaver triples (SS.mult in Equation 3.1). As
pointed out in ABY2.0 [193], the communication in a ΠSS multiplication gate happens at
the output wires, as opposed to SS multiplication gates where the round of communication
is tied to the input wires.

The subsequent FSS gate for interval containment (FSS.keygen and FSS.eval, Algo-
rithms 1 and 2) requires a publicly reconstructed input held by both parties. To preserve
the input data privacy (R1), this input must be masked prior to its reconstruction (in
line with previous FSS-based works [41, 38, 213]). Crucially, the masking of the private
input via local shares addition followed by its reconstruction (at the cost of one round of
communication) happens at the input wire of the FSS gate.

All we have left is to put together the two pieces of the puzzle. We can skip the Π-sharing
reconstruction and instead add the input mask directly to the scalar product output, and
then reconstruct this masked value to serve as public input for the FSS interval containment
gate. Figure 5.5 depicts our idea applied to the scalar product metric.

To obtain the other metrics we would have each input data holder Pinx ,Piny run flocal
on its inputs and secret share the result with the computing parties to add it to the output
of the scalar product. In addition to that, both parties would multiply the shares of the
scalar product result with the corresponding fcp, resulting in the correct distance metric
evaluation z = fdist(x,y).

To keep the threshold θ hidden from the computing parties (and known only by Psetup),
we subtract the value of θ from the additive random mask r during the offline/setup phase,
employing an IC gate (Protocols 1 and 2) and then compute the of zθ = z − θ.

5.3.3.2 Protocol specification

Embracing this combination of ΠSS for the locally computed scalar product and FSS for the
comparison to θ, we can now outline each of the protocols that compose the full solution.:

1. Funshade.Setup (Protocol 11): Psetup generates the correlated randomness required
for the scalar product multiplications, as well as the keys for the interval containment,
and distributes the preprocessing material to the parties involved in the online phase.
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Figure 5.5: Overview of Funshade primitives

2. Funshade.Share (Protocol 12): Pinx ,Piny , the input holder players, prepare the Π-
shares of their corresponding inputs using the correlated randomness and then send
these shares to the computing parties P0,P1.

3. Funshade.Eval (Protocol 13): P0,P1 engage in an online protocol upon acquiring
the Π-shares of both inputs, using local multiplication and addition to compute the
scalar product, and then evaluate the interval containment FSS scheme to determine
whether the result is below the threshold θ.

4. Funshade.Result (Protocol 14): P0,P1 send the arithmetic shares of the result to
the player designed to receive the output Pres for its reconstruction.

5.3.3.3 Applications and Practical considerations

We display a diagram of our solution applied to biometrics/CSAM detection in Figure
5.6. The Funshade protocol can be easily computed in parallel for different inputs y in
cases where the reference database contains more than one record, such as CSAM detection
against a large database of hashes or biometric identification against multiple subjects.
Additionally, these use-cases normally gather their reference databases ahead of time. To
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Protocol 11 Funshade.Setup(l, n, λ, θ) → k0,k1, 〈δx〉 , 〈δy〉

Players: Psetup carries out all the setup.
Input: l: length of the input vectors.

n: number of bits for the secret sharing ring Z2n .
λ: security parameter.
θ: threshold for the comparison ∈ Z2n .

Output: k0,k1: preprocessing keys, sent to P0, P1 respectively.
〈δx〉 , 〈δy〉: δ-shares of input vectors, sent to Pinx ,Piny (input owners) resp.

Note: All arithmetic operations (+,−,·) are defined in Z2n .

Beaver Triples for Π-sharing scalar product:
1: 〈δx〉 , 〈δy〉 ≡ ((δx0 , δx1), (δy0 , δy1)) ∼ U[Zl×4

2n ]

2: δxy0 ∼ U[Zl2n ]

δxy1 ← (δx0 + δx1) · (δy0 + δy1)− δxy0
〈δxy〉 ≡ (δxy0 , δxy1)

3: 〈r〉 ≡ (r0, r1) ∼ U[Z×2
2n ] r ← r0 + r1

〈rθ〉 ≡ (rθ0, rθ1)← (r0, r1 − θ)
FSS interval containment:
4: kIC0 ,kIC1 ← FSS.GenIC(λ, n, r)
5: kj ≡ (δxj , δyj , δxyj , rθj ,k

IC
j ), j ∈ {0, 1}

Dealing the preprocessing material :
6: Send k0 ⇒ P0, (δx0 , δx1)⇒ Pinx

k1 ⇒ P1, (δy0 , δy1)⇒ Piny

speed up the online phase, the reference database held by party Piny could be Π-shared
as part of the offline phase, leaving only the live input to be shared in the online phase.
In addition, biometric identifications / CSAM detections might output one single bit to
determine whether there is a match in the entire database. In this case the individual
secret shared outputs o(i)

j could be locally summed up to yield a single number as output.
As an alternative to the trusted setup carried by Psetup, the two computing parties P0,P1

could follow an interactive protocol in the offline phase to jointly realize the role of Psetup
(execution of Funshade.Setup and distribution of key material), resorting to distributed
generation via generic 2PC techniques for the FSS gate key generation (Appendix A.2 of
[38]), and either Oblivious Transfer or Homomorphic Encryption for the ΠSS scalar product
preprocessing material (Section 3.1.3 of [193]). 4

5.3.4 Security analysis

We consider security against a Honest-but-Curious adversary A that corrupts up to one of
the two computing parties Pj . We consider a static corruption model where the adversary
must choose which participant to corrupt before the execution of the computations. This is a

4That being said, the trusted setup might be justified in a context of biometrics/CSAM detection. Not
trusting the reference database would immediately defeat the purpose of the system. Hence, the system must
trust the entity in possession of the reference database (e.g., PinY ), and thus this entity could naturally play
the role of Psetup.
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Protocol 12 Funshade.Share(v, δv0, δv1) →∆v, 〈dv〉
Players: Pinv , holding the input vector v (where v ∈ {x,y}).
Input: v: input vector ∈ Zl2n held by Pinv .

δvj : Precomputed δ-shares ∈ Zl2n .
Output: ∆v: ∆-shares of vector v distributed to both P0 & P1.

dvj : Arithmetic shares of the local computation flocal(v).

1: ∆v ← (v + δv0 + δv1)
2: dv ← flocal(v); 〈dv〉 ≡ (dv0, dv1)← (∼ U[Z2n ], dv − dv0)
3: Send (∆v, dv0)⇒ P0, (∆v, dv1)⇒ P1

Protocol 13 Funshade.Eval(j,∆x,∆y, 〈dx〉 , 〈dy〉 ,kj) → 〈o〉
Players: Pj , j ∈ {0, 1} computing parties.
Input: ∆x,∆y: ∆-shares of 〈[x]〉 , 〈[y]〉 (Π-shared inputs x,y) held by both P0 and P1.

〈dx〉 , 〈dy〉: Arithmetic shares of locally computed single-input terms
flocal(x), flocal(y) of fdist(x,y).

kj : preprocessing keys from Funshade.Setup containing:
δxj , δyj : δ-shares of Π-shared input vectors x,y,
δxyj : arith. shares of Beaver triple s.t. 〈δx〉〈δy〉=〈δxy〉,
rθj : arith. shares of FSS input mask r minus threshold θ,
kICj : FSS key for the IC gate of [38].

Output: 〈o〉: arithmetic shares of the result o = f(x,y) ≥ θ.
Note: All steps apply to both computing parties Pj , j∈{0, 1}. All arithmetic operations

(+,−,·) are defined in Z2n .

Π-sharing based scalar product:
1: ẑθj ← rθj + dxj + dyj + fcpf ·

∑l[j ·∆x ·∆y−∆x ·δyj−∆y ·δxj+δxyj ]
Reconstruction of masked input to FSS gate:
2: Pj : Send ẑθj ⇒ P1−j ; ẑθ ← ẑθ0 + ẑθ1
Interval Containment for sign extraction:
3: oj ← FSS.EvalIC(j,kICj , ẑθ)
4: return oj

standard security model in previous MPC frameworks [38, 213, 193, 88, 185, 55]. Under this
threat model, we define and later prove the security and correctness of our constructions.

We employ the standard real world - ideal world paradigm, providing the simulation for
the case of a corrupt Pj . The ideal world simulation contains an additional trusted party
that receives all the inputs from P0,P1, computes the ideal functionality correctly and sends
the corresponding results back to P0,P1. Conversely, the real world simulation executes the
protocol as described in the Funshade algorithms in the presence of A.

Our security proof works in the FFunshade.setup-hybrid model where FFunshade.setup rep-
resents the ideal functionality corresponding to protocol Funshade.setup.

Definition 3 (Security of Funshade). For each j ∈ {0, 1}, there is a PPT algorithm S
(simulator) such that ∀θ ∈ Z∗n+, ∀x,y ∈ Zln and every function fdist(x,y) : Zln → Zn from
Table 5.2, S realizes the ideal functionality Fth−dist, such that its behavior is computationally
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Protocol 14 Funshade.Result(〈o〉) → o

Players: Pj , j ∈ {0, 1} computing parties, Pres result holder.
Input: 〈o〉: secret shares o0, o1 ∈ Z2n of the result o held by P0,P1.
Output: o: Output value.

1: Pj : Send oj ⇒ Pres.
2: Pres: o← (o0 + o1)
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Figure 5.6: Diagram of our Funshade protocol applied to biometrics/CSAM detection

indistinguishable from a real world execution of protocols 12-13-14 in the presence of a semi-
honest adversary A.

Ideal Functionality Fth−dist
Fth−dist interacts with the parties P0,P1 and the adversary S and is parametrized by
a publicly know function fdist(x,y) and a threshold θ.

• Inputs: Fth−dist receives the inputs ∆x,∆y, δxj , δyj from the computing parties
P0,P1.

• Computation : Fth−dist reconstructs x = ∆x − (δx0 + δx1) and y = ∆y − (δy0 +
δy1), computes z = fdist(x,y) and o = 1z>θ.

• Output : Sends oj to Pres.

Theorem 2. In the FFunshade.setup-hybrid model, protocols 12-13-14 (online phase) securely
realize the functionality Fth−dist.

Proof. The semi-honest adversary corrupts Pj during the sequential execution of protocols
12-13-14. For this case, S executes the setup phase honestly on the behalf of P1−j (in case
of interactive setup), and will simulate the entire circuit evaluation, assuming the circuit-
inputs of P1−j to be 0. In the Funshade.Result protocol, S adjusts the shares of 〈o〉 on
behalf of P1−j so that A sees the same transcript as in the real-world protocol.
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• Funshade.Setup: For the offline phase, we consider it as an ideal functionality
FFunshade.setup, which generates the required FSS preprocessing keys and δ-shares.
Since we make only black-box access to Funshade.setup, its simulation follows from
the security of the underlying primitive used to instantiate it (OT or HE for the ΠSS
preprocessing material stemming from setupMULT of [193], generic 2PC for the FSS
keys following Appendix A.2 of [38]), or alternatively a trusted party can be used.

• Funshade.Share: For the instances where Pj is the owner of the values (e.g., Pj ≡
Pinx), S has to do nothing since A is not receiving any messages. S receives ∆v from
A on behalf of P1−j . For the instances where P1−j is the owner, S sets v = 0 and
performs the protocol steps honestly.

• Funshade.Eval: During the online phase, S follows the protocol steps honestly using
the data obtained from the setup phase. The scalar product requires l local additions
(non-interactive and thus they don’t need to be simulated) and a subsequent recon-
struction of 〈ẑθ〉 as ẑθ = ẑθ0 + ẑθ1 that behaves just like Funshade.Result and serves
as input to the FSS IC gate. For the FSS IC gate, we resort to the Simulation-based
security of [38] (Definition 2) to argue computational indistinguishability of the ideal
and real world executions, hiding the information of r contained in k0 and k1 from A.

• Funshade.Result: To reconstruct a value 〈o〉, S is given the output o, which is
the output of A. Using o and the share o1−j corresponding to P1−j , S computes
oj = o− o1−j and sends this to A on behalf of P1−j . S receives oj from A on behalf
of P1−j .

Definition 4 (Correctness of Funshade). For every threshold θ ∈ Z∗n+, every pair of input
vectors x,y ∈ Zln and every function fdist(x,y) : Zln → Zn from Table 5.2,

if (k0,k1, 〈δx〉 , 〈δy〉)← Funshade.Gen(l, n, λ, θ)

and (∆x, 〈dx〉 ← Funshade.Share(x, 〈δx〉),
∆y, 〈dy〉 ←← Funshade.Share(y, 〈δy〉))

then Pr[Funshade.Eval(0,∆x,∆y, dx0 , dy0 ,k0)

+ Funshade.Eval(1,∆x,∆y, dx1 , dy1 ,k1)

= 1fdist(x,y)>θ] = 1.

(5.3)

Theorem 3. Jointly, protocol 11 (offline phase), and protocols 13-12-14 (online phase),
realize the function f(fdist, θ,x,y) = 1fdist(x,y)>θ correctly.

Proof. We first decompose the Π-sharing based scalar product (step 1 of Protocol 13) for
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the joint result of the two computing parties ẑθ in Equation 5.4,

ẑθ = ẑθ0 + ẑθ1 = (rθ0 + rθ1) + (dx0 + dx1) + (dy1 + dy1) + fcp ·
∑l

[∆x∆y−(∆xδy0 +∆xδy1)−(∆yδx0 +∆yδx1)+(δxy0 +δxy1)]

= rθ + dx + dy + fcp ·
∑l[∆x∆y−∆xδy−∆yδx+δxy]

= r − θ + dx + dy + fcp ·
∑l[∆x∆y−∆xδy−∆yδx+δxδy]

= r − θ + dx + dy + fcp ·
∑l(∆x−δx)·(∆y−δy)

= r − θ + flocal(x) + flocal(y) + fcp ·
∑l(x(i) · y(i))

= r − θ + fdist(x,y) = zθ + r

(5.4)

where we group all the SS shares and reconstruct their original values, replace rθ and δxy
by the corresponding values (from definitions in protocol 1), group the Π-shares of x and
y to later reconstruct their values, and finally make use of Equation 5.2.

With the public input ẑ sorted out, we analyze the Interval Containment evaluation
with output reconstruction in Equation 5.5,

o = o1 + o2 = FSS.EvalIC(0,kIC0 , ẑθ) + FSS.EvalIC(1,kIC1 , ẑθ)

= FSS.EvalIC(0,FSS.GenIC(λ, n, r)(0), zθ + r)

+ FSS.EvalIC(1,FSS.GenIC(λ, n, r)(1), zθ + r)

= 1zθ∈Z∗
n+

= 106z−θ = 1fdist(x,y)>θ

(5.5)

where we resort to Theorem 3 of [38] to argue that the two protocols (FSS.GenIC(λ, n, r),
FSS.EvalIC(j,kICj , ẑθ)) constitute an FSS gate5correctly realizing f(zθ) = 1p≤zθ≤q. Then,
following Definition 2 (Correctness) of [38], we can argue that Pr[FSS.EvalIC(0,kIC0 , ẑθ) +

FSS.EvalIC(1,kIC1 , ẑθ) = 10≤zθ≤2n−1−1] = 1, thus equating the output of the FSS gate to
1zθ∈Z∗

n+
, the unit step function.

5.3.5 Experiments

We implement our solution in a standalone Python library with efficient C++ blocks by
virtue of Cython. Our code is available at https://github.com/ibarrond/funshade. We
use a Miyaguchi-Preneel one-way compression function with an AES block cipher for our
PRG construction, an extended variant of Matyas-Meyer-Oseas function used in previous
works [213]. We concatenate several fixed key block ciphers to achieve the desired output
length.

We timed the execution of Funshade.Eval in a single computing party to 900µs with one
single core (Processor AMD Ryzen 5 PRO 3500U, 2100 Mhz, 4 Cores available), and around
550µs when using two cores to speed up the Interval Containment evaluation (one DCF per
core). This indicates that the communication latency (e.g., 10ms for LAN, 70ms for WAN)

5There are several notation elements to adapt in order to align with [38]. Our mask r is written as rin

in Figure 3 of [38] depicting the FSS IC gate. We set the parameters p = 0 and q = 2n−1 − 1 to define the
interval containing all positive integers. 1p≤zθ≤q = gIC,n,p,q(zθ) is a function that belongs (per definition of
IC gate in Section 4 of [38]) to the family of functions GICn,p,q referenced in Theorem 3 of [38].
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Table 5.3: Benchmark of theoretical costs on evaluating a scalar product and comparison
to threshold between two vectors of size l with n-bit integers

Work Type #Rounds of
communication

#ring elements
in communication Correctness Online Computation Blocks

AriaNN [213] 2PC
SS: Arith., FSS 2 (1+1) 4l + 4 N SS scalar product,

FSS Comparison (1 DCF)

Boyle et. al. [38] 2PC
SS: Arith., FSS 2 (1+1) 4l + 4 Y SS scalar product,

FSS IC gate (2 DCF)

ABY [88] 2PC
SS: Boolean&Arith, GC 3 (1+2+0) � 6l Y

SS scalar product,
Arith. to Yao conversion,
GC evaluation

ABY2.0 [193] 2PC
ΠSS: Boolean&Arith. 5 (1+1+3) � 2 Y

ΠSS scalar product,
Arith. to Boolean conversion,
BitExtraction

GSHADE [44]
(only scalar prod.)

2PC
OT 2 > 2l Y correlated OTs.

CryptFlow2 [202] 2PC
SS: Arith., OT 5 > (128 + 14)l Y Linear layer (1-dim weights),

dReLU

Falcon [240] 3PC
Replicated SS: Arith. 8 (1+7) > 6 Y MatMult with 1-dim matrices,

Private Compare

Funshade (ours)
2PC
ΠSS: Arith., FSS 1 2 Y ΠSS scalar product,

FSS IC gate (2 DCF)

would be the main bottleneck in a real-world deployment for 1:1 distance calculations, and
there would be a wide margin to compensate communication with computation in 1:N or
M:N scenarios (e.g., biometric identification). We also vary the vector sizes ranging from
l = 64 to l = 65536, with negligible impact to the Funshade.Eval time, indicating that the
main bottleneck in terms of computation is located in the evaluation of DCFs.

Additionally, we test our solution with randomized input vectors for all distance metrics,
verifying the 100% correctness as long as natural overflows (z > 2n−1 − 1 or z < −2n−1)
are avoided.

5.3.6 Related Work

Distance metric evaluations, specially for Hamming Distance and Scalar Products, range
among the most typical applications of privacy-preserving computation techniques. Conse-
quently, a wide variety of previous work in MPC, FHE and FE have dealt with some form
of it.

The Multi Party Computation field includes a plethora of works covering distance metric
evaluations. All the frameworks for privacy preserving neural networks cover scalar-product-
based matrix multiplications often followed by ReLU activations [158, 29, 208, 78, 240], cov-
ering a mixture of Garbled Circuits, Secret Sharing and their conversions. Secure hamming
distance evaluation has motivated work such as [45] based on Oblivious Transfer, with its
generalization to multiple metrics in [44]. Mixed-mode protocols have also tackled distance
evaluations [88, 185, 193]. However, the majority of these solutions incur in a consider-
able communication cost to perform comparison. More recently, solutions based on FSS
[213, 38, 41] have shown promising results, leading to this work.
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We compare the online phase performance of our solution with that of selected previous
works in Table 5.2. Funshade is the first work in the 2PC setting requiring one single round
of communication to evaluate 1xT y>θ while also presenting the lowest communication size
of 2 ring elements. An additional side-by-side comparison with AriaNN [213] is provided in
Appendix A.3.

5.3.7 Conclusions

In this section we presented Funshade, a novel 2PC privacy-preserving solution of various
distance metrics (e.g., Hamming distance, Scalar Product) followed by threshold compari-
son. We built this protocol upon an optimized version of arithmetic secret sharing for the
secure evaluation of linear operations and functional secret sharing with 100% correctness
for comparison. Thanks to this, Funshade proposes the first solution in the 2PC literature
requiring one single round of communication in the online phase while outperforming all
previous works in online communication size (two ring elements), all while relying only in
lightweight cryptographic primitives. We implement our solution from scratch in Python
with efficient C++ blocks, and test it to record a runtime of less than 1ms per computing
party excluding communication costs.

5.4 Grote: Group Testing for Privacy-Preserving Biometric
Identification [131]

Abstract This section describes Grote, a novel method to perform privacy-preserving
face identification based on the notion of group testing, and applies it to a solution using
the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme. Securely computing
the closest reference template to a given live template requires K comparisons, as many
as there are identities in a biometric database. Grote replaces element-wise testing by
group testing to drastically reduce the number of such costly, non-linear operations in the
encrypted domain from K to up to 2

√
K. More specifically, we approximate the max of

the coordinates of a large vector by raising to the α-th power and cumulative sum in a 2D
layout, incurring a small impact in the accuracy of the system while greatly speeding up its
execution. We implement Grote and evaluate its performance.

5.4.1 Introduction

In client-server scenarios like biometric identification or ML-as-a-service (MLaaS), FHE
shines at offloading heavy computation almost exclusively to one party6. Moreover, by em-
ploying well established schemes like Brakerski-Gentry-Vaikuntanathan (BGV [43]), Brak-
erski / Fan-Vercauteren (BFV [100], described in Section 3.3.3) or Cheon-Kim-Kim-Song
(CKKS [62], covered in Section 3.3.4), we obtain private computation capabilities suited
for biometric operations (R1), protecting the biometric templates (R3) and their matchings
(R2). Standard FHE provides privacy-preserving guarantees following an Honest - But -

6The encryption and decryption of data still needs to be performed by the data owner.
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Curious threat model where parties involved perform the selected protocol without devi-
ation while attempting to obtain as much information from the private data as possible.
However, FHE only offers out-of-the-shelf encrypted addition and multiplication. Non-linear
operations such as comparisons must be either reformulated using ring properties as in BFV
& BGV [138] or approximated with polynomials in a small interval [64, 63, 164], incurring
in a loss of numerical precision (CH1). In both cases, several ciphertext-to-ciphertext mul-
tiplications are required to compute an encrypted comparison, considerably increasing its
computational cost and that of comparison-based operations (e.g., Rectified Linear Units
(ReLU), maximum of an array). Since biometric identification systems require multiple
comparisons (one per record held in the biometric database of reference), reducing the
cost of this operation directly improves the practicality of FHE to protect these systems in
real-world deployments (R6).

Our Contributions. We propose a novel method to perform privacy-preserving biometric
identification based on the notion of group testing, and instantiate it on FHE with the CKKS
scheme. Securely computing the closest reference template to a given live template requires
K comparisons, as many as there are identities in a biometric database. Our solution,
named Grote, replaces element-wise testing by group testing to reduce the number of such
costly, non-linear operations in the encrypted domain. More specifically, we approximate
the max of the coordinates of a large vector (its infinity norm) by raising to the α-th power
and cumulative sum (its α norm) in a 2D layout, incurring a small impact in the accuracy
of the system while greatly speeding up its execution (1.5 times faster). We implement
CKKS-based Grote and show that it outperforms the straightforward alternative based
on batched comparisons.

Grote is arranged as follows. Section 5.4.2 details our design of an FHE-enabled
privacy-preserving group testing solution. Section 5.4.3 instantiates it to the CKKS scheme.
Next we validate this approach with experiments on biometric data in Section 5.4.4. We
conclude the section with a review of previous works in Section 5.4.5 and some takeaways
in Section 5.4.6.

5.4.2 An Idea: use Group Testing for the Threshold Comparison

The notion of group testing emanates from the field of statistics [93], and has been
applied extensively across industries (e.g., in the healthcare sector [116], or in fault detection
[173]). The essence of group testing consists of performing a check in a group of samples
all at once, rather than checking on individual samples. For example, in the biometric
identification domain one must compare each of the similarity scores resulting from 1 : K

matchings to a defined threshold θ, or alternatively compute the max of the vector of scores
and test if this element is above the threshold. Figure 5.7 illustrates our proposal of a
biometric matching algorithm based on group testing, that we name Grote.

The main insight that drives our solution is that, as proposed in [110], for a sufficiently
large exponent α we can approximate the max operation of Eq. 2.3 (also expressed as the
infinity norm ‖bmz‖∞) by the α norm:
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Algorithm 15 Grote(z, h, w, θw,θh, α) → k∗

Players: z, a vector of size K holding the similarity scores of a live template with each of
the K reference templates. ,

h, number of rows (or size of columns) of the group testing 2D matrix.
w, number of columns (or size of rows) of the group testing 2D matrix.
θw, a threshold for row-wise comparison.
θh, a threshold for column-wise comparison.
α, exponent for max approximation.

Output: Index k∗ of the single score above the thresholds in the flattened score vector, set
to zero if zero or several scores above the thresholds.

Assumption: With overwhelming probability there are either zero or one elements in z
above θ.

1: z ∈ RK → Z ∈ Rh×w. Reshape vector z ∈ RK as matrix Z ∈ Rh×w. Fill empty spaces
with zeros.

2: Z→ Zα. Raise each element of Z to the α power.

Cumulative Sum:
3: −→w : w[i] =

∑w
j=1 Zα[i, j]. Compute −→w ∈ Rh, the row-wise sum of Zα.

4:
−→
h : h[j] =

∑h
i=1 Zα[i, j]. Compute

−→
h ∈ Rw, the column-wise sum of Zα.

Comparison:
5: −→wθw : −→wθw [i] = (−→w [i] ≥ θw)?. Compare elements of −→w to threshold θw.
6:
−→
h θh :

−→
h θh [j] = (

−→
h [j] ≥ θh)?. Compare elements of

−→
h to threshold θh.

Validation.
7: Compute sums vw = Σ−→wθw and vh = Σ

−→
h θh .

8: Compute vK = (vh · vw ≤ 1)?, check if up to one non-zero element in 2D matrix layout.

ArgMax.
9: i∗ = Σw

i=1(i ·wθw [i]). Compute i∗, row index of the above-threshold score.
10: j∗ = Σh

j=1(j · hθh [j]). Compute j∗, column index of the above-threshold score.
11: k∗ = (wi∗ + j∗). Compute the index of the above-threshold score.

12: return either k∗ and vK separately or k∗ · vK .
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max(bmz) = ‖bmz‖∞ ≈ ‖bmz‖α = α

√
ΣK
i=1(bmz[i]α) (5.6)

Moreover, we can turn it into a linear operation by removing the root and tweaking the
threshold θ:

(‖bmz‖∞ ≥ θ)? ≈ (ΣK
i=1(bmz[i]α) ≥ θα)? (5.7)

This approximation is more precise the higher the exponent α, and is rendered less
precise the more elements there are in the vector. To balance out, we resort to pooling
(aggregating) parts of the bmz vector inspired by group testing : we reshape bmz ∈ RK

into a 2D matrix7bmZ ∈ Rh×w, obtaining h rows and w columns, and use Eq. 5.8 to
approximate the maximum value row-wise and column-wise:

~bmw , ~bmw[i] =

w∑
j=1

(bmZ[i, j])α ∀i

~bmh , ~bmh[j] =

h∑
i=1

(bmZ[i, j])α ∀j

(5.8)

We then resort to standard comparisons and ArgMax to pin-point the element yielding a
positive score, if any. The threshold θ, tied to the binary classification task arising from the
biometrics scenario, must be tweaked to account for the pooling operation and the exponent
α. For that purpose, we define two new group-wise thresholds θw and θh that must be set
with properly adapted biometric-based experiments (see Section 5.4.4 for an example of such
setting), and we use them to compare the row-wise and column-wise groupings ~bmw ≥ θw
and ~bmh ≥ θh respectively:

7Pooling with higher dimensionality is possible and straightforward to derive from our construction. We
employ 2D pooling in our solution to allow for descriptive visuals.
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~bmwθw , ~bmwθw [i] = ( ~bmw[i] ≥ θw)? ∀i
~bmhθh ,

~bmhθh [j] = ( ~bmh[j] ≥ θh)? ∀j
i∗ , arg max

i

~bmwθw [i]

j∗ , arg max
j

~bmhθh [j]

(5.9)

If the two comparisons yield a positive result at some indices i∗ and j∗ respectively, we
conclude that the element bmZ[i∗, j∗] and the element bmz[w(i∗) + (j∗)] in the unrolled
score vector contain a positive score, yielding the identity w(i∗) + (j∗) as result. Otherwise,
we conclude that no positive score was found, and return a negative result.

Since h · w ≈ K, we achieve a reduction in the number of comparisons from K (max of
K values) to h+ w (max on each dimension). In the most balanced case where h ≈ w, we
need 2

√
K comparisons,

√
K/2 times less comparisons than in the naïve solution.

The second insight we consider is that in the biometrics domain there is a very low
chance of two or more simultaneous hits in a biometric database. This arises from the fact
that the feature extractors are designed to separate (with respect to the similarity metric)
templates belonging to different identities, and the reference database can be designed to
minimize the likelihood of this event 8.

Relying on this fact, we can obtain the index of the non-zero value (arg max) that
represents the positive identity k∗ (if any) by multiplying the results of the elementwise
comparison ~bmwθ and ~bmhθ with non-overlapping indexing vectors and summing up all the
elements:

(HW ( ~bmwθw) ≤ 1) ∧ (HW ( ~bmhθh) ≤ 1)⇒

k∗ = w · i∗ + j∗ =

h∑
i=1

w · i · ~bmwθw [i] +

w∑
j=1

j · ~bmhθh [j]
(5.10)

As an additional precaution, we add an optional validation check to ensure that there is
indeed up to a single non-zero element in each of the results of the elementwise comparison
~bmwθ and ~bmhθ. Since a positive hit requires to have a non-zero element in both ~bmhθ and
~bmwθ, we can reduce the check to:

valid( ~bmwθw ,
~bmhθh) =

(HW ( ~bmwθw) ≤ 1) ∧ (HW ( ~bmhθh) ≤ 1) =(∑
~bmwθw [i]

)
·
(∑

~bmhθh [j]
)
≤ 1

(5.11)

We detail the step-by-step group testing algorithm in Algorithm 15.
8One could measure the distance among reference templates while building the database, and reject/-

modify new reference templates that are too close to existing ones.
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5.4.3 Applying Grote to CKKS

In this section, we detail the steps to instantiate our group testing algorithm to CKKS. To
this end, there are several aspects to take into consideration:

• All encrypted operations (additions, multiplications, comparisons) happen in SIMD
fashion, applied simultaneously to all the elements of the underlying encoded vector.
Given that CKKS ciphertexts encoded in a ring of polynomial degree n can hold n/2
floating-point values, there is room to encode multiple reference templates of length
l per ciphertext (n/2l templates per ciphertext to be precise, where l < n/2). To
perform multiple scalar products at once during the matching phase, we encrypt a
n/2l times repetition of the live template inside the input ciphertext and operate on all
repetitions at once. Similarly, the comparison operation will be applied elementwise
to up to n/2 matching scores.

• A cumulative addition of s slots inside a ciphertext can be performed by iteratively
rotating and adding a ciphertext with himself log2(s) times.

• Ciphertext to ciphertext c × c encrypted multiplications are the costliest linear op-
erations in CKKS both in terms of noise growth and in computational time. Thus,
optimizing the Grote algorithm’s runtime in CKKS involves minimizing the number
of such operations. Some trade-offs to consider are:

– Use of either non-encrypted live templates (sacrificing live template privacy)
or non-encrypted reference templates (sacrificing the privacy of the reference
template database), employing cheaper ciphertext-plaintext c×p multiplications
for the scalar products of the matching step, also saving up in relinearization.

– Keeping a low value of the exponent α, thus incurring in log2(α) multiplications,
at the expense of a less precise approximation of the max operation.

– Using a low number of multiplications (depth in [164]) in the polynomial ap-
proximation of the sgn(x) function, in exchange for noisier results.

• Operating between ciphertexts requires them to have the same scale. To rescale
ciphertexts (by mod-switching or multiplying with a plaintext) we will rely on the
low-error techniques from [150].

5.4.3.1 Threat Model and Security Analysis

We consider a threat model whereby both the users and the Identification Server behave
Semi-honestly, that is, they perform the computations faithfully while trying to obtain as
much information as possible. We assume no collusion between the users, the Identifica-
tion Server (IS) and the Biometric Provider (BP) (see Figure 5.8 or Section 5.4.3.2 for a
description of the IS and BP).

The Biometric Provider must be trusted in the enrollment phase, as he is in charge of
building the reference DB. Therefore, we can rely on the BP to perform the CKKS key
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generation, encrypt the DB and hold the CKKS secret key, decrypting the results sent by
the Identification Server.

While the querying users seek to preserve the privacy of their live templates from the
IS and the BP, the BP seeks to preserve the privacy of the reference DB from the IS and
the querying users. Privacy of the inputs and intermediate computation results is assured
by the use of CKKS thanks to the hardness of the LWE problem.

5.4.3.2 The end-to-end identification protocol
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Figure 5.8: CKKS group testing

Building upon the Grote algorithm, we design a protocol for privacy-preserving bio-
metric identification based on CKKS, depicted in Figure 5.8. As setup for our scenario, the
Biometric Provider (BP) acts as trusted entity and collects the reference templates, gener-
ating a pair of public and secret keys, and encrypting the reference template database with
SIMD for compression (with n/2l ref. templates per ciphertext). This encrypted database
is deployed to an Identification Server (IS), in charge of the full encrypted computation,
while the public key is then distributed to the users.

A user wishing to identify himself extracts his live template, encrypt it with n/2l repe-
titions into a single ciphertext bmcx, and then queries the IS with it. The server performs
the following steps:

1. Similarity : Compute the scalar product between the live template ciphertext 〈bmx〉
and every ciphertext in the encrypted DB of reference templates 〈{bmY [1], . . . , bmY [n/2l]}〉 ,
. . . , 〈{. . . , bmY [K]}〉. Making use of SIMD multiplications followed by cumulative ad-
ditions (log2(l) rotations and additions per DB ciphertext), the server obtains K sim-
ilarity scores (one per record) distributed evenly among d2Kl/ne ciphertexts 〈bmz′〉1 ,
. . . , 〈bmz′〉d2Kl/ne.
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2. Score merge: merge of the score ciphertexts by multiplying with masking plaintexts
(vectors with ones in the slots containing scores, zeros elsewhere), and then adding
all the masked scores into T = d2K/ne ciphertexts 〈bmz〉1 , . . . , 〈bmz〉T .

3. Group testing : as described in Algorithm 15, to approximate the max by a sum of
α-powered values in a 2D matrix layout. This involves, per each of the T score cipher-
texts, log2(α) c× c multiplications, two cumulative additions for the "row-wise" and
"column-wise" vectors (using log2(h) and log2(w) rotations & additions respectively),
the subtraction of their respective thresholds θw and θh and their merging (as in step
2) into a single ciphertext.

4. Comparison: with zero carried out following the procedure described in [163]. This
involves log2(depth) multiplications and additions.

5. Argmax : by multiplying with constant index vectors and a cumulative sum to obtain
the identity (if any) of the live template’s provider.

6. Validation: Since comparisons are too expensive to justify one for validation, we are
left with two alternatives:

• Dropping the Argmax step entirely and decrypting the comparison result directly.

• Performing the cumulative sum of all the elements resulting from the comparison
in each vector (log2(max(h,w)) rotations and additions), multiplying the two
results together and outputting it alongside the Argmax result.

A naïve solution would require K similarity computations and K comparisons (plus the
Argmax and validation steps), whereas adding the group testing step reduces the number
of comparisons to h+w in exchange for log2(α) multiplications and a cumulative addition.
As we discuss in Section 5.4.3.3, the approximated comparison from [164] requires far more
multiplications (≥ 11) than group testing (for α ≤ 32). Crucially, due to the SIMD feature
of CKKS, the Grote save-up kicks in for K > n/2, since otherwise a single comparison
would suffice for the identification and the group testing step would be redundant.

We detail the full CKKS-based computation in Algorithm 16.

5.4.3.3 Choosing Parameters

The Grote related parameters h and w will be set based on performance experiments in
Section 5.4.4, whereas α will be tested for values α ∈ {2, 4, 8, 16, 32}.

The biometric template size l is set by the architecture of biometric feature extrac-
tors. In the face biometrics domain, they often amount to l ∈ {128, 256, 512} to speed up
non-encrypted similarity score calculations (e.g. using AVX instructions for the multiplica-
tion). We will use the smaller l = 128 to maximize the number of reference templates per
ciphertext, and thus the number of comparisons per ciphertext.

The CKKS scheme parameters n (polynomial ring degree) and q (modulus of the poly-
nomial coefficients) are tied to each other and linked to the sought-out security parame-
ter. To obtain an equivalent security of 128 bits, and according to [16], n = 16384 allows
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Protocol 16 CKKS.Grote(〈x〉,{〈Y〉}, h, w, θw,θh, α)→ 〈k∗〉
Players: {〈Y〉} = {〈Y[1 . . . n/2l]〉 , . . . , 〈Y[. . .K]〉 , }, an encrypted database of K refer-

ence templates of length l split among d2Kl/ne ciphertexts.
〈x〉, the encrypted live template of length l repeated n/2l times.
h, number of rows (or size of columns) of the group testing 2D matrix.
w, number of columns (or size of rows) of the group testing 2D matrix.
θw, a threshold for row-wise comparison.
θh, a threshold for column-wise comparison.
α, exponent for max approximation.

Output: Encrypted Index 〈k∗〉 of the single score above the thresholds in the flattened
score vector, set to zero if no match in both dimensions

Assumption: With overwhelming probability there are either zero or one elements in z
above θ.

Similarity :
1: for a in 1 . . . d2Kl/ne do
2: 〈z′〉(a) = 〈Y〉(a) · 〈x〉
3: for i in 1 . . . l do
4: 〈z′〉(a) + = (〈z′〉(a) � i)
Score Merge:
5: for t in 1 . . . d2K/ne(= T ) do
6: for i in 1 . . . l do
7: 〈z〉(t) = 〈z′〉(t·2Kl/n+i) ·maskn/2(2l/n+ i)
Group Testing :
8: for t in 1 . . . T do
9: for _ in 1 . . . log2 α do

10: 〈z〉(t) = 〈z〉(t) · 〈z〉(t)〈−→w〉 = −θw;
〈−→

h
〉

= −θh
11: for t in 1 . . . T do
12:

〈−→w〉+ =
∑n/2w

i=1 ((〈z〉(t) ·maskn/2(wi))� wi).

13:
〈−→

h
〉

+ =
∑n/2h

h=1 ((〈z〉(t) ·maskn/2(j))� j).

14: 〈zGrote〉 = concat(
〈−→w〉 ,〈−→h〉)

Comparison:
15: 〈zθ〉 = OptMinimaxComp(〈zGrote〉 , 0, [. . . ])
ArgMax.
16: 〈k∗〉 =

∑
h+w(〈zθ〉 · {w, 2w, . . . , hw, 1, 2, . . . , w − 1}.

Validation (optional):
17: 〈v〉 =

∑
w 〈zθ〉 · ((

∑
h 〈zθ〉)� w),

18: return either (〈k∗〉 , 〈v〉) or 〈zθ〉.

log2 q ≤ 438 bits and n = 32768 allows log2 q ≤ 881 bits9. Setting q is directly related to the
number of multiplications (depth) of the full arithmetic circuit d, and standard strategies
to set it [27, 167, 164, 166] consist of composing a chain of primes {qi} ∀i ∈ {1, . . . , d} such
that q =

∏d+1
i=1 qi, with q1 = qd+1 ≈ 260 to ensure high precision in encoding/decoding and
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q2, . . . , qd chosen to be close to the CKKS encoding scale ∆ to reduce rounding errors when
performing rescaling/mod-switching. Smaller values of ∆ yield less precise approximations
of the sgn(x) function [164], but also reduce required total size of q to the point where it
might permit the use of lower n (reducing the ciphertext sizes and thus speeding up their
operations). As such, we find a good trade-off in setting ∆ = 230, which drives us to set
q ≈ 2120 · 230d (permitting d ≤ 10 for n = 16384 and d ≤ 25 for n = 32768).

To define d, we need to count the total amount of multiplications. We require one mul-
tiplication for the similarity computation and one for the merging, log2(α) multiplications
for the group testing step plus one for the extra merging. Based on the accuracy of the
approximation of the sgn(x) function in Table V of [164] we employ depth = 11 to get a
wide margin η = 2−26, thus requiring 11 multiplications per comparison. One last multi-
plication is required for the argmax operation (and optionally one more for the validation
step). We thus set d = 1 + 1 + log2(α) + 1 + 11 + 1 = 15 + log2(α), leading us to confidently
set n = 32768 for α ≤ 32.

5.4.3.4 On (not) applying Grote to BFV or TFHE

While other FHE schemes could, on the surface, benefit from the Grote approach, we
argue that the CKKS scheme is the most suitable for this application.

The BGV/BFV schemes [43, 100] operate on integers, thus computing a value zα requires
a lot of space in the ciphertext to avoid the modulo kicking in, forcing costly parameter
selection in detriment of speed. Besides, the state of the art encrypted comparison tech-
niques [138] are not suited for full SIMD computation as they require multi-slot encoding,
thus rendering the scalar product more expensive and complex than in CKKS.

The TFHE scheme [65] deals with bit-level homomorphic operations, thus needing a
lot of ciphertexts to encode elements with high precision from the biometric templates, a
requirement to maintain high accuracy in the system. This makes big integer operations very
costly, thus rendering a zα raising operation prohibitively expensive. Besides, the TFHE
scheme is not optimized for SIMD computation, thus a TFHE-based biometric identification
solution would require a sizeable horizontal scaling in the hardware to achieve the same
performance as CKKS.

5.4.4 Experiments

We implement our solution using the Pyfhel [136] Python library, with the SEAL [219] C++
library acting as backend. We use an ArcFace based [89] feature extractor10with templates
of size l = 128. The experiments were run in an Intel(R) Core(TM) i7-7800X CPU and
averaged over at least 10 runs.

We measure the biometric precision with face identification benchmarks using the La-
beled Faces in the Wild (LFW) dataset [127] consisting of 13233 112x112px real face im-
ages of famous people. We employ the widespread False Acceptance Rate (FAR) and False

9For a secret key ternary distribution, with coefficients sampled from {−1, 0, 1}. Other distributions offer
similar limitations.

10ArcFace-based [89] feature extractors with comparable latency and precision can be obtained from
https://github.com/deepinsight/insightface/wiki/Model-Zoo
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Rejection Rate (FRR) as metrics [141]. Typically, robust identification systems enforce
FAR ≤ 10−3, obtaining a corresponding higher FRR.

Following the same procedure as for the threshold θ in standard biometric solutions,
we set the thresholds θw and θh by calibrating a binary classifier with the outputs of the
aggregated groups/pools used to identify random samplings of the LFW dataset, as well
as their corresponding ground truth values. We train it with 8M negative samples (a live
template with no hit in the DB) and 500k positive samples (a live template with a single
hit in the DB). To benefit from convenient data alignment, and given the fact that both
n/ (the number of slots) and l (the number of elements per template) are powers of 2, we
test pools of the form w, h ∈ 2β ∀β ∈ {1, . . . , 11}. The biometric precision for a given pool
size is applicable both vertically and horizontally. To estimate the combined error rate it
suffices to combine the errors for selected w and h.

Parameter selection. Following the analysis from 5.4.3.3, we pick n = 215 to allow
for a high enough number of multiplications. We set the modulus chain q ≈ 260 ∗ 230∗d ∗ 260

with the maximum number of multiplications d required for the entire face identification
algorithm, yielding smaller q and thus faster operations for lower circuit depth. We use
templates with l = 128 coming out of the unmodified feature extractor.

To select K we highlight that, in order to make the Grote-based face identification
solution more performant than the naïve solution, we need a reference database size K ≥
n/2 + 1 so that a naïve face identification algorithm requires at least T = d2K/ne ≥ 2

ciphertexts to hold all the score results. By employing a synthetic augmentation of the
LFW dataset 11we are able to set T = 2.

5.4.4.1 Results

We first analyze the impact of group testing in the biometric precision of the system by
first analyzing the 1D layout case (setting w = 1 and playing with h or vice-versa). We
run face identification experiments employing 15 and record the FRR (probability of a
registered user to not match with the database) for a fixed FAR = 10−3 (probability of
a non-registered user to match with the DB). As seen in Figure 5.9, and in line with our
expectations, higher α yields a better max approximation, and with it lower errors. We
observe that α ≥ 16 yields FRR < 5% for group sizes of up to 512, a small impact in the
error that allows us to conclude that the Grote approach has a small impact in the system
performance in that range.

We extend the biometric precision analysis to the full 2D layout with the same approach
in Figure 5.10. We can spot balanced configurations (w ≈ h) that preserve the biometric
accuracy of the system with FRR < 5%, and that allow us to confirm that the Grote
preserves the biometric accuracy of the system.

To assess the latency gains of Grote, we also record the time required to compute each
operation in the encrypted domain, as well as the runtime of the entire system, comparing
the runtime of the naïve solution with that of a Grote-based solution. The results are

11We generate 3 randomly perturbed templates per identity that are statistically close to the original
reference templates of such identity, and ensure they follow the same distribution of matching probabilities
from the original LFW. This bumps the number of identities from 5749 to K = 22996, yielding T = 2.
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Figure 5.9: Face identification precision (False Rejection Rate at a fixed False Acceptance
Rate) of 1D group testing based on the group/pool size and the exponent α.
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Figure 5.10: Face identification precision of Grote based on 2D score matrix dimensions
h and w, as well as the exponent α.

shown in Table 5.4. We observe first-hand how the lower multiplication depth d requirements
of Grote allow for noticeably faster CKKS operations. This, linked to the drop in latency
thanks to the reduction in the number of comparisons (from T = 2 to d2(h + w)/ne = 1),
yields a significant speedup in the entire system while yielding low error rates for selected
w = 128, h = 256 and α = 16 (FRR ≤ 5% as per Figure 5.10, center ). We also observe
that the latency of the argmax & validation is more than a third of the latency of the entire
system, thus a performant solution should sacrifice it at the expense of some loss of practical
privacy (due to the increased input leakage). Overall, Grote is able to reduce the latency
of the face identification system by at least 33% (a factor of 1.5), a reduction that would
only become more significant for T > 2, from K to 2

√
K elementwise comparisons.
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Table 5.4: Latency for single-core execution of the listed algorithms. We set K = n = 16384
so that the naïve face identif. algorithm requires T = d2K/ne = 2 comparisons, with
template elements of l = 128 bits, group testing with dimensions w = 256 and h = 128
(FRR ≤ 5% as per Figure 5.10, center) and exponent α = 16, and depth = 11 for the
comparison polynomial approximation.
Algorithm Composed of naïve

Latency
(ms)

Grote
Latency
(ms)

Total #mults
(d)

CKKS.encrypt - 99 122 -
CKKS.add - 1.6 2 -
CKKS.add_plain - 0.7 0.9 -
CKKS.mult - 12.4 23 1
CKKS.mult_plain - 5.7 15.5 1
CKKS.rotate - 290 438 -
CKKS.relinearize - 288 443 -
CKKS.mod_switch 9 11 -

Matching (l = 128) (mult+ relin+modswitch) + log2(l) ∗
(rotate+ add)

2351 3557 1

Grote (α = 16, w =
128, h=256)

log2(α)∗(mult+relin+modswitch)+
log2(max(w, h)) ∗ (rotate+ add)

3570 - 4

optMinimaxComp
(depth = 11)

depth ∗ (mult + relin + modswitch +
add_plain)

3433 5202 11

ArgMax (mult_plain + relin + modswitch) +
log2(max(w, h)) ∗ (rotate+ add)

2636 3990 1

Validation log2(max(w, h)) ∗ (rotate + add) +
(mult+ relin+modswitch)

2642 3997 1

Face Identif. (no
Argmax)

matching + grote? +
optMinimaxComp∗T?

9354 13961 naïve: 23;
Grote: 16

Face Identif.
(Argmax & valid.)

Face Identif. + argmax + valid 14632 21948 naïve: 25;
Grote: 18

5.4.5 Related Works

The core idea of secure face biometrics has been extensively studied before with security
guarantees stemming from various privacy-preserving techniques.

Sadeghi et. al. [215] combined homomorphic encryption with garbled circuits for a 2PC
privacy-preserving face identification solution using eigenfaces [236]. SCiFI [188] employed
additively homomorphic encryption and Oblivious Transfer to protect a semi-deterministic
region-based face identification system. More recently, Osorio et. al. [189] employed a
two-stage face identification consisting of a product quantization-based hashing stage to
shortlist some candidates and a reduced homomorphic matching stage based on BFV. Face
authentication/verification has also been extensively studied, yielding results fast enough
to be used in practice based on the BFV scheme [28] and on other homomorphic encryption
schemes [156]. Secure biometric identification has also been proposed for other types of
biometric data such as iris recognition [155].

In other line of works, FHE has been widely studied as a technique for privacy-preserving
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biometrics, from the HE-based biometric access control system of [179], to the packing
technique of [245], or [230] showing a clever encoding using packing to perform a biometric
matching with one single homomorphic multiplication. [20] used Homomorphic Encryption
for fingerprint biometrics, whereas [92] employed both CKKS and BFV for face identifi-
cation, and [118] proposed the protection of a multi-biometric system. There are other
previous works studying secure biometrics, covered in the MPC-based survey from [99] and
a collection of FHE-based solutions surveyed in [212].

Lastly, the idea of group testing has touched the field of cryptography before, from pure
combinatoric studies [74] to digital fingerprinting and key distribution patterns [227].

5.4.6 Conclusion

This section proposed Grote, a new algorithm to perform privacy-preserving face identi-
fication based on the notion of group testing, and applied it to a solution using the Cheon-
Kim-Kim-Song (CKKS) homomorphic encryption scheme. Securely computing the closest
reference template to a given live template requires K comparisons, as many as there are
identities in a biometric database. Grote replaces element-wise testing for the K elements
of a database by group testing to notably reduce the number of non-linear operations in the
encrypted domain from K to up to 2

√
K. More specifically, we approximate the max of the

coordinates of a large vector by its α-norm (raising to the α-th power and cumulative sum)
in a 2D layout, incurring a small impact in the accuracy of the system (CH1) while greatly
speeding up its execution (CH2). We implemented Grote and showed it to be at least 30%

more performant than its naïve equivalent for sufficiently large databases K > 8192.

5.5 Summary and Concluding Remarks

This chapter dealt with the topic of preserving the privacy of biometric verification, show-
casing three novel contributions:

• BiomFEtrics, a FHIPE solution optimized for online latency that allows for the
secure computation of scalar products between templates.

• Funshade, a new 2PC protocol based on a combination of ΠSS and FSS to securely
compute various distance metrics and perform threshold comparison.

• Grote, a new algorithm for privacy-preserving face identification based on group
testing to reduce the number of non-linear operations in the encrypted domain while
maintaining a high degree of accuracy, applying it to CKKS-based identification.

These works are implemented (CH5) and thoroughly tested with real-world face data, show-
ing that they are efficient (R6), they accurately identify users by their face templates (R5),
and they provide suitable privacy guarantees to protect the biometric templates (R3) while
enabling biometric authentication/identification. Throughout the chapter we have also
studied various sources of accuracy losses (CH1), from the fixed-point encoding in Biom-
FEtrics to the approximation of the max in Grote, and we showed that they can be
mitigated by carefully choosing the parameters of these algorithms/protocols.
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We have covered multiple ways to preserve the privacy of biometric templates throughout
the entire biometric verification process, from the enrollment to the authentication/iden-
tification. However, all the underlying techniques (MPC, FHE, FE) neglect the potential
leaking of information about the biometric templates in the output revealed at the very
end of their operations. In the next chapter we will study the leakage in the output of the
verification phase and how it can lead to an unintended recovery of the biometric templates.
Since this would break the irreversibility (R2) of our system, we will analyze it and propose
strategies to mitigate it as much as possible.
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Chapter 6

Revealing the Verification Result

The security provided by our constructions from Chapter 5, and that of most of the privacy-
preserving techniques in general (MPC, FHE, FE), does not prevent the reconstructed
output o = f(x,y) from revealing information about the inputs x,y. Indeed, Pres, and
more generally any entity with access to the result, can leverage on knowledge about the
function being computed and attempt to extract information about the inputs from the
known outputs by inverting the function being computed Leak(x,y)← Leak(f−1(o)). This
leakage is an open challenge (CH4) often overlooked in the literature, and is particularly
relevant in the context of biometric verification.

We dedicate this chapter to study this input leakage and design suitable countermea-
sures. We formalize input leakage for the context of biometric verification in Section 6.1 and
address its impact on the techniques proposed throughout Chapter 5, dedicating Section
6.2 to design a novel solution aiming to mitigate this leakage for BFV-based schemes.

6.1 On input leakage in privacy-preserving biometrics

The output of a private computation protocol always leaks some information about the
input, as this leakage is inherent to the mathematical function, independently of the chosen
private computation technology. In the domain of Machine Learning, a ML model being
used to perform inference over multiple data points can be subject to a wide array of attacks
by an adversary receiving the inference results. Some examples of this are:

• Model extraction attacks [235, 192] consist of extracting the trained parameters of a
deep learning model from a deployed system. These parameters (the model’s weights)
assemble a new, identical model that can be used for malicious purposes. Alterna-
tively, the attacker can leverage these inference results to train a substitute model in
order to steal the functionality of the target model.

• Model inversion attacks [103] are characterized by an attacker using a deployed model’s
outputs to recreate a close approximation of the input data. For example, an attacker
could use a deployed face recognition model to reconstruct a person’s face from the
model’s output, potentially allowing them to create a synthetic image of the person.
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• Membership inference attacks [221] aim to determine whether a specific individual’s
data was used during the training of a machine learning model, by observing the
model’s output on a set of queries. This type of attack is a privacy concern for machine
learning models that are trained on sensitive personal data, such as medical records,
financial transactions or biometric data. An example of a membership inference attack
is an attacker attempting to determine whether a specific individual’s medical records
were used to train a machine learning model that is used to predict the likelihood
of a disease. The attacker could make queries to the deployed model using different
combinations of the individual’s medical data and observe the model’s output. Based
on the output, the attacker could infer whether the individual’s data was used in the
training of the model.

Model extraction attacks can be mitigated by using techniques such as model com-
pression, obfuscation, and watermarking [145], as well as by implementing proper security
measures in the deployment environment. Mitigating model inversion and membership in-
ference attacks can be achieved by mechanisms such as differential privacy [2], which add
noise to the model’s output to provide a guarantee that the model’s output does not reveal
any information about the input data.

In the case of biometric systems, a CNN-based feature extractor can be subject to
these attacks for which specific mitigation techniques are required (e.g., Adding differential
privacy [54]). More importantly, modelling the Biometric Verification as a shallow DL
model (Section 2.1.5) allows us to find equivalent attacks in our domain: Model extraction
can be seen as an attempt to retrieve the reference templates from the verification results,
model inversion as an attempt to steal the live template, and membership inference as an
attempt to determine whether a live template belongs to the reference template database.
Determining whether a live template belongs to the reference template DB overlaps directly
with the goal of a biometric system, hence these attacks are not applicable to our domain1.
While stealing a live template may raise privacy concerns (as it could break irreversibility
(R2)), their volatile nature makes them less of a concern than the reference templates; after
all, each live template is supposed to be used for a single verification, whereas the reference
templates are fixed and employed for multiple verification attempts. As such, we focus on
the unintended reconstruction of the reference templates given multiple verification results,
which we call reference template extraction attacks.

Model extraction attacks are harder and more costly to execute the more complex the
model is. The biometric verification process is crucially vulnerable to these, composed as it
is of a linear function (a distance metric calculation) and a non-linear function (threshold
comparison, optionally including an arg max), and thus invertible with relative ease. Cen-
tered around biometric verification, and in line with previous works in the topic [56, 170],
we formalize input leakage as:

Definition 5 (Input Leakage). For a biometric verification function fverif (fdist, bmx, bmy) :

ZTL × ZTL 7→ ZQ, a distance metric fdist(bmx, bmy) : ZTL × ZTL 7→ ZL and two vectors
1One can consider Biometric Verification as a legitimate Membership Inference test. Hence, the system

is specifically designed for this task.
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x, y ∈ bmZTL , we define input leakage ι as the inverse of the number of calls Φ required to
unequivocally determine an unknown input bmy from chosen inputs bmxi and known out-
puts oi = fverif (fdist, bmxi, bmy) ∀i ∈ {1, . . . , p}. As an extension, for n inner product
calls we define accumulated input leakage to be ῐ = n · ι. For ῐ ≥ 1, the unknown input bmy
can be correctly reconstructed.

We can use information theory to model this notion of input leakage:

• Entropy of hidden input y. The maximum amount of possible entropy present in the
unknown input bmy ∈ bmZTL is H(y) = T log2 L bits, considering the extreme case
where all of the elements in bmy are independent and identically distributed (i.i.d.)
following a uniformly random distribution UZL2.

• Entropy of known output oi. Similarly to the case above, the maximum possible
entropy of the output oi is H(oi) = log2Q. For n i.i.d. outputs {z1, . . . , zn}, the
maximal possible entropy of the outputs is H(z1, . . . , zn) = n·H(oi). This corresponds
to the case where the chosen inputs xi are carefully chosen to yield n maximally
independent outputs oi.

• Conditional entropy H(y|∀oi). The conditional entropy3of the hidden input bmy
given the output oi is H(y|oi) = H(y) − H(oi). For the optimal choice of n inputs
x1, . . . ,xn yielding n independent outputs, the conditional entropy corresponds to
H(y|z1, . . . , zn) = H(y)− n ·H(oi).

• Number of calls Φ to fverif . In line with the definitions above, Φ corresponds to the
value of n where there is no uncertainty left and the conditional entropy H(y|∀oi)
reaches zero, which yields Φ = H(y)/H(oi).

• Input Leakage ι. Correspondingly, we obtain a formulation of the input leakage as
ι = 1/Φ = H(oi)/H(y) = log2Q/T log2 L = logLQ

T .

Based on this formulation, we draw some corollaries: The bigger the input space (number
of elements per vector T , size of each element L), the lower the leakage, as the attacker
needs to perform more calls to determine the unknown y. Similarly, the more information
given by the output, the higher the leakage:

– A "match"/"reject" binary output (Equation 2.4), with oi ∈ Z2 as output space,
presents an input leakage of ι = 1/(T · log2(L)).

– A "similarity score" output (Equation 2.5) oi = fdist(xi,y), with oi ∈ ZL, leads to an
input leakage of ι = 1/T .

3In reality the elements in bmy are not i.i.d., as there is some inherent correlation given by the feature
extractor to draw templates from the same identity close and push other templates far with respect to
fdist, and this correlation could be known to the entity attempting to retrieve y. A short discussion on the
repercussions of this can be found in Appendix A.4.

3We recall that the conditional entropy quantifies the amount of information needed to describe the
outcome of a random variable Y given that the value of another random variable X is known.
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Consequently, for a fixed size of input space given by the feature extractor, the most
straightforward method to reduce input leakage in biometric systems is to output the least
information possible. For applications like 1:1 biometric authentication, one-bit outputs
suffice to determine whether there is a match or not, and hence performing the comparison
in a privacy-preserving manner reduces the input leakage of the construction considerably.
As such, FHE and FE-based solutions without privacy-preserving comparison to a threshold
are more risky to apply in real-world scenarios than threshold-enabled solutions that MPC
offers out of the shelf.

This formulation can be extended to 1 : K biometric identification for a hidden input
Y ∈ ZK×TL being a set of K templates {y1, . . . ,yK}. Once again, we can study the input
leakage for different types of outputs:

– A "match/reject" binary output (Equation 2.4), yielding an input leakage of ι =

1/(T ·K · log2(L)).

– An "ID index" output (Equation 2.7), with oi ∈ Zlog2K as output space, presents an
input leakage of ι = 1/(T ·K · logK(L)).

– A "similarity score of max" output (Equation 2.6), where oi = max{fdist(xi,Y (k)) ∀k} ∈
ZL, leading to an input leakage of ι = log2(K)/(T ·K).

Equipped with this notion of input leakage, we proceed to analyze its impact on all
three schemes proposed in Chapter 5 (BiomFEtrics, Funshade and Grote), to subse-
quently present a novel protocol named Colmade that minimizes this leakage in a privacy-
preserving manner.

6.1.1 Protecting BiomFEtrics against input leakage

The FHIPE scheme we employ in BiomFEtrics (Section 5.2), and by extension all IPE
and other privacy-preserving schemes outputting the matching scores oi = fdist(xi,y) =

IP (xi,y) directly, suffers from input leakage of ι = 1/T , for input vectors of T elements.
This leakage can be exploited by an attacker in several ways, presented in the following
subsections.

6.1.1.1 Reference template extraction attack

An attacker can make black-box use of the biometric system by submitting T = Φ live
templates chosen4to be linearly independent xi, and observing their corresponding outputs
oi = {fdist(xi,Y (k)) ∀k}. We visualize this attack in Figure 6.1.

The attacker can leverage the input leakage to reconstruct each of the hidden reference
templates Y (k) by solving the system of T linear equations {oi = ΣT−1

j=0 xi[j] · Y (k)[j], ∀i ∈
{1, ..., T}} for known oi and xi. Indeed each of the K systems of T linear equations has

4We consider an attacker capable of either presenting crafted live biometric traits (e.g., fake faces) to the
capture sensor, or controlling the live feature extractor output to be able to submit carefully chosen live
templates.
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Figure 6.1: Sketch of the reference template recovery attack, where the attacker submits
live templates xi, gets the outputs oi and uses them to extract the reference templates Y .

a unique, non-trivial solution for the T unknown variables bmY (k)[j] ∀j of each reference
template bmY (k) when all the equations are linearly independent.

In our BiomFEtrics solution (Defined in Section 5.2.3) we propose the countermeasure
of limiting the number N of calls to fverif for each reference template to N < T , ensuring
ῐ < 1. This way, the above system of equations is underdetermined, with L(T−N) possible
solutions.

6.1.1.2 Extraction-based brute-force impersonation attack

Even with the limit set above, IPE-based biometric systems answering N < T requests from
that same attacker can be subject to brute-force impersonation, where a partially extracted
(ῐ < 1) reference template bmŷ is used to impersonate its owner. The attacker first sets the
remaining T −N unknown values of bmŷ to arbitrary values and launches a final matching
request to attempt a positive matching for a selected identity k∗ with reference template
bmY (k∗), such that the IPE result z = bmŷ · bmY (k∗) might yield o ≥ θ.

To thwart this attack, we set an additional security margin τ to the number N of calls
to fverif in our solution, so that N < (T − τ). Seeking to increase the number of possible
solutions of the above system of equations to 280 (80 bits), we fix τ ≈ 80/ log2(L) for
template values in ZL.

4Or to strategically chosen values relying on existing knowledge, as discussed in Appendix A.4.
4A proper statistical analysis of the probability of success of this attack whit this limitation in place is

left for future work.
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6.1.1.3 Limiting the number of requests

Following the strategies suggested above to counter these attacks, we limit the number N of
identification requests of the BiomFEtrics solution to N < (T − 80/ log2(L)), in order to
keep ῐ < 1. We enforce this limit via an access control step with open instantiation (see the
Capture Module in Figure 5.2), which could materialize as an agent-controlled checkpoint
or a one-time token generated in the enrollment.

Additionally, we enrich the experiments of BiomFEtrics by analyzing the verification
module in Figure 6.2 based on the number K of identities in our system for a one-time
identification scenario. As per all the prior discussion on input leakage, K is limited to
strictly less than the template vector length (K < 128) to avoid full leakage of the stored
templates, and a red area marks the additional 80-bit security margin to thwart brute-force
attacks. We observe that the effect of this limit is greater for smaller template vectors, and
that employing 6 or more bits in the scheme is sufficient to support K = 100 identities5.
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Figure 6.2: Latency (seconds) for the matching module evaluation based on the number
of reference templates K and the number of bits l used in the scheme, for input vector
elements of size l = log2(L) bits.

6.1.2 Input leakage of Funshade and Grote

As concluded above, it is advisable to output the minimal possible amount of informa-
tion in the verification phase of a privacy-preserving biometric system. Fortunately, both
Funshade and Grote are designed to output the final matching decision only, and not

5Note that the practical scenarios proposed in Figure 5.4 already take these limits into account
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the similarity scores: Funshade falls under the category of "match/reject" binary output,
whereas the result revealed in Grote fits the "ID index" type. Thanks to the limited
scope of their outputs, we argue both these solutions to be inherently resilient against input
leakage.

That being said, the single-party nature of FHE-based biometric systems such as Grote
forces us to trust the correct execution of fverif by the Identification Server (recall Figure
5.8) in order to ensure this resiliency to input leakage6. Assuming a semi-honest adversary
is non-trivial in practice, as the server could be compromised and the verification func-
tion replaced with a malicious one (e.g., a function outputting the elements of a selected
reference template). Minimizing the output space size and controlling the decryption of
these operations stand out as our best defenses against this threat. Pursuing this idea, we
dedicate the next section to the proposal of a novel distributed FHE decryption protocol
employing masking to minimize the output space size and thus the risk associated to input
leakage (CH4).

6.2 Colmade: Collaborative Masking in Distributed Decryp-
tion for BFV-based Homomorphic Encryption [130]

Abstract. This section proposes a novel collaborative decryption protocol for the Braker-
ski / Fan-Vercauteren (BFV) homomorphic encryption scheme in a multi-party distributed
setting, and puts it to use in designing a leakage-resilient biometric identification solution.
Allowing the computation of standard homomorphic operations over encrypted data, our
protocol reveals only one least significant bit (LSB) of a scalar/vectorized result resorting
to a pool of N parties. By employing additively shared masking, our solution preserves the
privacy of all the remaining bits in the result as long as one party remains honest. We
formalize the protocol, prove it secure in several adversarial models, implement it on top of
the open-source library Lattigo and showcase its applicability as part of a biometric access
control scenario.

6.2.1 Introduction

Biometric Identification must rely on secure hardware or trusted parties to hold the personal
data vital for their recognition models, and all the biometric data manipulation must follow
strict security rules. Hospitals and health specialists are deprived of the advantages of
training and using models with all the available data from patients. Banks and finance
institutions are limited to the locally available data to prevent fraud and prosecute tax
evasion. Child Exploitative Imagery detection models [238] need training data that is in
itself illegal to possess.

An observant reader might notice that many of the use-cases just described share two
important characteristics: there are multiple parties interested in performing a chosen com-
putation over personal data, and the output of such computation can often be expressed

6Note that, contrarily to FHE, MPC protocols such as Funshade can be updated to cover malicious
adversaries with existing [77]
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with a single bit: Is a user in the database/list of registered users? Does the patient present
indicators of cancer? Is a certain entity committing fraud? These aspects will play a key
role in the present work.

These technologies alone offer private computation capabilities suited for biometric op-
erations, often based on threat models with Honest-But-Curious adversaries, where parties
involved perform the selected protocol faithfully and without deviation while attempting to
obtain as much information from the private data as possible. Indeed FHE & many MPC
techniques fall under this category, whereas some MPC techniques can deal with Malicious
adversaries (CH3). Besides requiring these stronger threat models, industrial instantiations
of these technologies are frequently sought to be auditable, so that an independent auditor
may inspect some of the protocol execution based on the public protocol transcript [21].

Even then, the output of a private computation protocol always leaks some information
about the input, as this leakage is inherent to the function being computed and independent
from the chosen private computation technology (CH4). E.g., model extraction attacks
[235, 192] and membership inference attacks [221] in privacy-preserving machine learning
inference, or reference template extraction and extraction-based brute-force impersonation
attacks covered in Section 6.1. As we discussed before, the most straightforward way to
thwart these attacks is to limit the output to yield strictly minimal information (e.g., one
bit for binary decisions).

In designing a secure biometric identification system, all these properties are clearly
desired: minimal output leakage, auditability and guaranteed data privacy (R1) in stronger
threat models. The main motivation of this work is to combine them all, improving on
previously proposed biometric systems that only tackle a subset of these properties.

Our Contributions. We propose a novel decryption protocol with collaborative mask-
ing based on the multi-party variant [186] of the Brakerski-Fan-Vercauteren (BFV) [100]
Homomorphic Encryption scheme. Our protocol makes use of predefined pools of users to
perform a decryption in a distributed setting, where each user masks a fragment of the ci-
phertext during decryption while remaining agnostic of the full computation. We guarantee
the privacy of all but one bit of the disclosed output in diverse threat models. Colmade
effectively reduces the input leakage to the minimum possible by masking all but the Least
Significant Bit of the encrypted output produced by a HE-based private computation. We
display its relevance by using it to construct an auditable privacy-preserving biometric iden-
tification system. Lastly, we open-source an implementation of this protocol on top of the
Lattigo HE library [96].

A fitting application. We target biometric access control for groups where multiple users
are expected to get together right before identifying themselves to request access. Together
with classic biometric access control scenarios such as airplane boarding or multitudinous
events (popular sport matches or concerts), we consider events such as entering a museum,
a temporary exhibition, a fair or a semi-professional sports competition. In these selected
applications, the computation to perform the biometric identification of the user Alice would
happen in the FHE domain, and a set of users (who may or may not include Alice) would
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collaborate with the gatekeeper to decrypt only the one bit of vital information required to
answer "Is Alice in the list of registered people?".

Colmade is arranged as follows. Section 6.2.2 introduces the single-party & multi-party
BFV decryption algorithms. Section 6.2.3 details our design of a biometric access control
solution, and leans on it to formalize three protocols: a simplified single-party masked de-
cryption, our flagship privacy-preserving multi-party decryption protocol already displayed
in the biometric system, and an extended protocol to provide abort against a malicious
adversary in an honest majority setting. Section 6.2.4 covers an in-depth security analysis
of our protocols. This section wraps up with a succinct mention to the implementation in
Section 6.2.5, related works in Section 6.2.6 and some takeaways in Section 6.2.7.

6.2.2 Preliminaries

This work is grounded on the BFV encryption scheme (Scheme 3) and its distributed coun-
terpart DBFV (Scheme 4). We now focus on the decryption algorithms, as they constitute
the foundation of Colmade. A reasoning on how to select parameters in practice for these
two schemes can be followed in Section 3.4 of [186].

6.2.2.1 Decryption in BFV

The decryption of a ciphertext ct = (ct0 , ct1) can be described as a two-step process. The
first step takes the secret key to compute a noisy upscaled plaintext in Rq as:

[ct0 ,+sct1 ]q = ∆m+ ect (6.1)

where ec is the ciphertext error/noise. In the second step, the message is decoded from this
upscaled noisy term in Rq to a plaintext in Rt, by downscaling and rounding:[⌊

t

q
(∆m+ ect)

⌉]
t

= [bm+ αt+ ve]t (6.2)

where m ∈ Rt, α ∈ ZN , v ∈ QN . The correctness of the decryption is preserved as long
as the noise residue v in the plaintext space be ‖v‖ < 1/2, which translates into an upper
bound to the ciphertext noise term of ect < ∆/2. This is often achieved by choosing a
sufficiently large q.

6.2.2.2 Decryption and Noise in DBFV

The main difference between the single-party BFV.Decrypt protocol summarized in equations
6.1 and 6.2 and its multi-party counterpart DBFV.ColDecrypt is that an additional error is
introduced to preserve the security of the 〈c1s〉i shares based on the decisional RLWE
problem.

The distributed secret-key generation protocol yields a global secret key sk whose coef-
ficients, as a sum of K samples of Rs, add up to a maximum of ‖sk‖ ≤ K. As a result of
DBFV.ColPubKeyGen, the collective public key cpk contains noise ecpk =

∑K
i ei, implying

that ‖ecpk‖ ≤ KB.
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Thus, a freshly encrypted ciphertext cm = (cm0 , cm1) of a message m under a collective
public key cpk will decrypt, following equation 6.1 with the single-party BFV.Decrypt, to
[cm0 ,+scm1 ]q = ∆m + efresh, where ‖efresh‖ ≤ B(2NK + 1). Thus, the worst-case fresh
ciphertext noise is linear in the number K of parties.

Conversely, the freshly encrypted ciphertext cm = (cm0 , cm1) of a message m under a
single-party public key pk will generate, following equation 6.1 and using the multi-party
DBFV.ColDecrypt, a similar error term, which then doubles if both DBFV.ColDecrypt and a
collective public key are used.

6.2.3 Our solution: collaborative masked decryption

6.2.3.1 Towards biometric database protection

Firstly, let us refresh the main entities of a biometric system for access control, depicted in
Figure 6.3:

• A Biometric Identity Provider (BIP), holding a database of reference biometric tem-
plates and executing the identification operations upon reception of a live biometric
template.

• A service provider acting as gatekeeper (Gate), in charge of capturing live biometric
data of an individual requesting access, submitting it to the BIP and authorizing/-
denying him access based on the identification result.

• Users/individuals, seeking to access the premise or service.

Enrollment

Gate

BIP

Reference DB
𝒚𝟏, … , 𝒚𝒖, …𝒚𝑼

Live biometric 
template 𝒙

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Reference
template 𝒚𝒖

Match Reject 
Users

Figure 6.3: Sketch of a biometric system for access control

In biometric systems such as this, the most sensitive asset is the database of stored bio-
metric samples that act as references for identification requests. These reference templates
could lead to successful impersonation attempts were they to fall in the wrong hands, and
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their unintended disclosure can lead to severe privacy breaches: knowing who can enter a
biometric access system may make these individuals subject of targeted attacks.

To protect the privacy of this database, a straightforward solution is to encrypt it.
Enhancing this system with FHE allows the BIP to hold the encrypted database and execute
the identification operations over the encrypted domain. Yet, revealing the identification
result to the Gate poses several non-trivial concerns:

1. The decryption algorithm makes use of the secret key, but this secret key could also
be used to decrypt the database.

2. It is impractical to have one secret key per identity in the database, as individuals
might wish to gain access without a personal device holding his key (e.g., smartphone
ran out of battery). Also, multi-key homomorphic encryption solutions [175] do not
scale well with a high number of keys.

In a real-world instantiation of this biometric system, neither Gate nor the BIP should
hold the secret key, as either could team up with the other to fully decrypt the database.
Moreover, other issues emerge concerning identification requests formulated by Gate and
the responses of BIP:

• The Gate could seek the creation of a False Acceptance (FA) to determine what are
the identities present in the database, or search beforehand if a particular person is
in there.

• The BIP could exploit the fact that his answers are encrypted to leak the identities
present in the base.

One solution to deal with these issues would be to combine Homomorphic Encryption
with Verifiable Computing. However, at the present day this combination is far from being
practical [30].

We propose a different approach: splitting the decryption among the users seeking
access. We thus hypothesize that a certain number of users will accept to cede a bit of CPU
in their smartphones for this task. We could then envision individuals without a phone
benefitting from this distributed decryption service thanks to other users. This way, the
notion of distributing personal secret keys based on the principle of consent is replaced by
a cooperative decryption carried out by those seeking to utilize the identification service.
To entice users to do so, we limit their interactions to be only with the Gate, and not with
other individuals. 7

Under this setting the Gate is forced to communicate with the users to decrypt the
results of the identification, producing a public communication transcript that will render
the service auditable and consequently reduce the risks associated to his requests.

7Foreseeing some unwillingness on the user side to participate in this protocol in the real world, we suggest
to encourage participation using incentives (e.g., discounts, benefits) to overcome their reluctance.
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Figure 6.4: System diagram of a biometric access control using the Colmade protocol for
single-bit masked results.

6.2.3.2 Colmade for group biometric identification

Motivated by the use-case of biometric access control for group events, we display the
Colmade protocol in Figure 6.4, to answer if user Alice is allowed to access the museum.
We distinguish three types of actors in our scenario:

• BIP, holding the encrypted database of reference templates belonging to users allowed
to access.

• Gate, in charge of capturing the live biometric template of the users requesting access,
submitting it to the BIP (possibly encrypted), receiving the encrypted result and
aggregating the decryption shares.

• P1 . . .Pi . . .PK . Pool of users holding shares of the global secret key and global mask-
ing polynomials. They collaborate to perform a masked decryption of the encrypted
identification computation. Alice might or might not be among them. We contem-
plate multiple pools of users, each with their own sharing of the same global secret
key. K needs not be fixed equally for all the pools of users.

This protocol requires a trusted setup to function. Nevertheless, most of these setup
operations could be instantiated with alternative protocols that do not require full trust.

Armed with these distinctions, the system would carry out Alice’s identification following
this steps:

1. Key Generation: The trusted setup generates a global secret and public BFV keys
and secret-shares the secret key in K shares. A distributed alternative would be to
instead employ DBFV.SecKeyGen and DBFV.ColPubKeyGen for key generation, and
then use the Enc2Share protocol from [186].
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2. Reference Database Encryption: During the enrollment process, the users to be
included in the access list would yield biometric templates to act as references once
they arrive at the gate. These reference templates are encrypted with the public key
generated in the previous step, and are then sent to the BIP for safe storing.

3. Randomness generation Following the setup of Protocol 18, the masking polyno-
mial is sampled, encrypted and secret shared.The trusted entity then sends all the
required pieces to each of the parties enrolling. In practice this would typically hap-
pen in a previous "offline" phase, after the enrollment, that could alternatively be
based on correlated randomness [140].

4. Encrypted identification Once Alice approaches the gate, a biometric template
is extracted from her by the Gate and sent to the BIP. This live template could be
encrypted at the cost of slower operations in the BIP, but guaranteeing privacy of the
live template in the BIP. Once received, the BIP would perform the encrypted identi-
fication (e.g., vector-matrix multiplication followed by comparison to threshold [138]
and aggregation) with the encrypted DB, sending the encrypted result back to the
Gate.

5. Collaborative Masked Decryption Upon receiving the encrypted result, the Gate
would request a decryption to a pool of users by sending them all the second polyno-
mial of the encrypted result. Each of the parties answers back with a share of that
decrypted and masked polynomial.

6. Result The Gate aggregates all the decrypted polynomial shares with the first poly-
nomial of the encrypted result, decrypts and decodes the underlying message and
answers, based on the single LSB bit disclosed, if Alice is in the list and can access
the premises/service.

6.2.3.3 Masked Decryption

The goal of the Colmade protocol is to conceal all bits save a single LSB of the underlying
message during BFV decryption. To that end we add a masking term as part of the
decryption protocol. Portrayed in Figure 6.5 as an additive term in the plaintext ring, this
mask will depend on the type of encoding being used:

• Base encoding places one base-b digit per polynomial coefficient. We distinguish two
cases:

– For an even b, the LSB of the underlying integer value depends only of the
polynomial coefficient j = 0, corresponding to the b0 term. The desired masking
term r would have to fully hide all coefficients except j = 0, and this coefficient
ought to have all but the LSB bit masked.

– For odd b, the LSB depends on all the coefficients of the polynomial, and thus
no suitable additive mask can be applied. We disregard this case from this point
onward.
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• Packed encoding places one vector element per polynomial coefficient. The desired
mask r would have to completely conceal all coefficients but one, and that coefficient
should have all its bits obscured except the LSB.

Protocol 17 MaskDecrypt(sk, ct)→ mLSB

Let sk = s a secret key, c = (c0, c1) a ciphertext.

Sample r ← R[Rt]

Compute mLSBq = [c0 + sc1 + ∆r]q

Output mLSB =
[⌊
mLSBq ∗ t/q

⌉]
t

Notice how the mask for packed encoding and the mask for even-based encoding would
look very similar. For our desired masking polynomial r, we draw N − 1 coefficients as
r[j] ∼ U

(
Z[0,t)

)
∀j 6= 0, and one single coefficient from r[0] ∼ 2U

(
Z[0,t/2)

)
to preserve the

LSB.8 We define this mask distribution as R[Rt].
If we introduce this mask r in the right hand side of Equation 6.2, we would achieve our

desired functionality. To balance the equation, we add ∆r in the other side.

r ← R[Rt] mLSB = [m+ (r)]t

LSB = (Decode(mLSB)[0]) mod 2
(6.3)

[⌊
t

q
(∆(m+ r) + ect)

⌉]
t

= [b(m+ r) + at+ ve]t (6.4)

Since ‖∆r‖ < q, we can introduce this mask in Equation 6.1:

[c0 + sc1 + ∆r]q = ∆m+ ect + ∆r (6.5)

We remark that adding masking might cause m[0] + r[0] ≥ t, in which case the modulo
operation would kick off and flip the LSB (recall that t is prime and thus an odd number).
The following limitation is imposed for the coefficient j = 0 containing the LSB9:

m[0] + r[0] < t (6.6)

This limitation effectively imposes m[0] ∈ {0, 1} to avoid the LSB flip and preserve
correctness. To overcome it, the (mod t) operation could be approximated by (mod (t− 1))

with (t− 1) being an even number, ensuring the LSB preservation after applying modular
reduction. Translated into the Rq domain, mod q reductions during and after decryption
would then be approximated by mod q′ with q′ = ∆ ∗ (t− 1) = q −∆.

8In the packed encoding we could chose to preserve the LSB of an arbitrarily chosen coefficient j. We set
j = 0 for convenience.
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Figure 6.5: Visualization of masking in the plaintext domain for the arbitrary encodings of
Fig. 3.1

6.2.3.4 Collaborative Masked Decryption

Extending the masked decryption to a multi-party collaborative setting requires merging
Protocol 17 with DBFV.ColDecrypt. To do so we require the sampling of r ← R[Rt] to
be handed to the different parties in the form of shares 〈r〉i. In addition, we encrypt the
mask shares. For convenience and performance, we swap the order, first encrypting the
global masking polynomial cr = BFV.Encrypt(r, pk) and then splitting it into shares in the
encrypted domain by adding encoded secret shares of zero.

Thanks to the standard properties of arithmetic secret sharing [220], you require the
results of all the K parties to reconstruct the correct masking polynomial r, and any sum
of shares from less than K parties

∑<K
i 〈r〉i is indistinguishable from a uniformly random

sampling r′ ← U(Rq).
The full Colmade decryption is outlined in Protocol 18.

Protocol 18 ColMaskDecr(c, 〈sk〉1 , . . . 〈sk〉K)→ mLSB

Let 〈sk〉i the private share of a global secret key s =
∑K

i 〈sk〉i; c = (c0, c1) a ciphertext;
r ← R[Rt] a masking polynomial encrypted with BFV.Encrypt(r, pk)→ cr = (cr0 , cr1)
and splitting cr0 in K shares 〈cr0〉i

Setup: Pi holds si, 〈cr0〉i and cr1 .

Pi: Sample ei ← X[Rq ]

Pi: Compute 〈c1s〉i = [〈sk〉i (c1 + cr1) + ei + 〈cr0〉i]q

Any: Output mLSB =

[⌊
t
q

[
c0 +

∑K
i 〈c1s〉i

]
q

⌉]
t
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6.2.3.5 Replicated Masked Decryption

We can customize the Colmade protocol under a malicious setting by sending/setting J
shares of the secret key 〈sk〉i and J shares of the first polynomial of the encrypted mask
〈cr0〉i to each party Pi, in a replicated sharing scheme. Protocol 19 details this modification.

In this replicated setting, each party would compute J shares of 〈c1s〉i, whose individual
decryptions should yield uniformly random yet equal results for the same input shares of
sk and cr0 . By comparing these auxiliary decryptions, the party in charge of aggregating
all the results and outputting m can detect up to J − 1 parties deviating from the protocol,
thus allowing the aggregator to detect these malicious adversaries and abort the decryption.
However, this replication technique lowers the number of parties required to reconstruct the
entire mask from K to at least K − J , thus making this technique suitable only for when a
majority of parties is honest. We study the relation between J and the number of malicious
corruptions in the pool |AP | in section 6.2.4.4.

Protocol 19 ReplColMaskDecr( 〈sk〉1 . . . 〈sk〉K , c, J)→ mLSB

Let si = 〈sk〉i private shares of the global secret key s =
∑
si; c = (c0, c1) a ciphertext;

r ← R[Rt] a masking polynomial encrypted with BFV.Encrypt(r, pk)→ cr = (cr0 , cr1)
and secret-sharing cr0 in K shares 〈cr0〉i;
with {iJ} = {(i+ j)%K} for {0 · · · j · · · J − 1}

Setup: Pi holds J shares s{iJ}, cr1 and J shares 〈cr0〉{iJ}.

Pi: Sample J times e{l} ← X[Rq ].

Pi: Compute 〈c1s〉{iJ} =
[
s{iJ}(c1 + cr1) + e{iJ} + 〈cr0〉{iJ}

]
q

Any: Check equality among all bt/q 〈c1s〉{iJ}e ∀i, j.
Abort if non equal.

Output mLSB =

[⌊
t
q

(
c0 +

∑k
i 〈c1s〉i

)
q

⌉]
t

6.2.4 Security Analysis

The Colmade protocol seeks to guarantee the privacy of all bits but a single LSB in a
ciphertext. The underlying real-world motivation in the biometrics domain was mentioned
already: the most precious resource in our system is the database of reference templates,
since they are often tightly linked to the person, and thus non revocable like passwords or
tokens. Hence, in scenarios where the reference templates are used for multiple applica-
tions, its theft could lead not only to a potential impersonation when accessing the desired
service/premise, but to a severe identity theft across applications.

To study the security of our protocol, we generalize that an adversary corrupting the
Gate also corrupts the BIP, which means that this combined corruption would grant the
adversary full access to the encrypted database and can perform chosen ciphertext attacks
(CCA) using the pool of users as decryption oracle. We analyze several threat models:
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1. Gate is semi-honest, and up to K− 1 parties in the pool are semi-honest (at least one
honest user per pool).

2. Gate is malicious, and up to K − 1 parties are semi-honest (at least one honest user
per pool).

3. Gate is semi-honest, a minority of parties in the pool are malicious (at least dK/2e
honest user per pool).

6.2.4.1 On Privacy of Colmade

Privacy in the semi-honest pool We first provide a security proof for the proposed
Colmade protocol in the standalone passive adversary model for the pool of users, that we
base on the decision RLWE assumption [180]. We formulate our proof using the ideal/real
simulation paradigm [171]: We show that, for every possible adversarial subset A of all
the computing parties in the pool P = {P1, . . . ,PK}, there exists a simulator program
S that can simulate A’s view in the protocol, when provided only with A’s input and
output. To achieve semantic security [113], we require A not be able to distinguish the
simulated view from the real one. Note that the view of the adversary after the setup
is the full transcript (public transcript property). For a given value x, we denote x̃ its
simulated equivalent. We consider computational indistinguishability between distributions,
and denote it as x

c≡ x̃. We denote viewColMaskDecr to the transcript of Protocol 18, consisting
of all the shares {〈c1s〉1 , . . . , 〈c1s〉i , . . . , 〈c1s〉K} of c1s in Rq.

Simulator 1 SColMaskDecr

Players: The simulator is given {〈sk〉i , 〈cr0〉i , ei}∀i and cr1 by the trusted setup.
The simulator receives ct1 from the Gate.

Output: for each party Pi in the pool:

〈c̃1s〉i =


[(ct1 + cr1) 〈sk〉i + e′i + 〈cr0〉i]q if Pi ∈ A
← U(Rq) if Pi ∈ H[
c1s −

∑
Pi∈P\Ph

〈c̃1s〉i

]
q

if Pi = Ph

Theorem 4. (ColMaskDecr privacy in the semi-honest pool model) For each possible set of
corrupted parties A ⊂ P by a passive adversary with |A| ≤ K − 1, there exists a simulator
SColMaskDecr such that:

SColMaskDecr c≡ viewColMaskDecr

Proof. First, Theorem 4 forces at least one arbitrarily chosen party Ph to be honest. We
denote H , P\(A ∪ {Ph}) to the set of all other honest parties, so that the tuple (A,H)

represent any partition of P\Ph. We consider the error term ei sampled as a part of the
protocols as private input to the protocol.
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We can now consider the distribution of the simulated and real views. The decision-RLWE
assumption suffices to prove it in the absence of the masking term, as for an adversary that
does not know 〈ski〉 nor e′i, we get that:

(〈ski〉 ct1 + e′i, ct1)
c≡ (a← Rq, ct1)

The addition of the masking terms only increases the randomness of the first element
in the tuple, thus the equation holds true.

Minimum leakage of the output. When considering the threat model #1 (all semi-
honest), we resort to Theorem 4 to show that the protocol itself does not reveal more than
what the output does. Now we seek to prove that the output reveals only one bit.

Theorem 5. (ColMaskDecr 1-bit leakage of output in the semi-honest pool model) For each
possible set of corrupted parties A ⊂ P by a passive adversary with |A| ≤ K−1, the protocol
reveals a maximum of one bit from the encrypted message, the LSB of the first coefficient
in the underlying encoded polynomial.

Proof. Since the output mLSB = [m+ r]t is the result of adding a mask r to the underlying
message m, and this mask contains uniformly random values in Z[0,t) for all j 6= 0, we get
that:

P (m[j] = a | mLSB[j] = b) =

P (m[j] = a) · P (mLSB[j] = b|m[j] = a)

P (r[j] = b)
=

P (m[j] = a)

(6.7)

This is because mLSB[j]
c≡ r[j] ∼ U(Z[0,t)), and thus an adversary receiving mLSB[j]

obtains no information beyond what he already knew about m[j], showing how all slots
j 6= 0 of the message are perfectly masked.

For j = 0 we can proceed in a similar fashion to prove that P (m[0] mod 2 = a |
mLSB[0] mod 2 = a) = 1 with a ∈ {0, 1} if m[0] ∈ {0, 1}, which requires the Gate & BIP
to follow the protocol as specified (honest or semi-honest) and comply with the limitation
from equation 6.6. At the same time, P (m[0]/2 = b | mLSB[0]/2 = c) = P (m[0]/2 = b),
showing that all but the LSB of mLSB[0] are perfectly masked.

In the event of m[0] /∈ 0, 1, arising from a malicious Gate & BIP submitting a chosen ct
(threat model #2), we get thatmLSB yields the correct LSB if (b+r[0]) < t with probability
(t − b)/t, and flips with probability b/t. Interestingly, all the other bits remain perfectly
masked, since P (m[0]/2 = b | mLSB[0]/2 = c) = P (m[0]/2 = b) in this case too. 10

Based on this, we can conclude that, with up to K − 1 semi-honest parties in the pool,
our protocol discloses only one bit if the protocol is followed by the Gate & BIP and less
than one bit otherwise.

10If using the modulo approximation hinted at the end of section 6.2.3.3, the LSB would be retrieved
correctly ∀ m[0] ∈ Z[0,t), covering threat models #1 and #2.
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6.2.4.2 On Correctness of Colmade

To ensure that the message requested by the Gate is correctly decrypted in the presence of a
minority of malicious users in the pool (threat model #3), we employ the ReplColMaskDecr
enhanced protocol described in Section 6.2.3.5. We resort to the replication of shares inside
each pool to effectively overcome a small number of malicious users by detecting misbehavior
and aborting. Following Protocol 19, a semi-honest Gate in charge of aggregating all the
masked shares can detect when two replicas are different in an honest-majority pool (with
some additional limitations studied in Section 6.2.4.4), and abort the decryption, potentially
requesting the decryption again to a different pool.

Beyond this, the correctness of the biometric system depends on Gate & BIP following
the protocol by performing the valid operations for encrypted identification and submitting
the encrypted result to a pool for decryption.

6.2.4.3 On well known FHE attacks

Fully Homomorphic Encryption schemes are known to be secure against Chosen Plaintext
Attacks (CPA) as a direct consequence of the indistinguishability property that is the base of
their security (e.g., the decision RLWE assumption for BFV and CKKS schemes). However,
many of these schemes fail catastrophically against Chosen Ciphertext Attacks (CCA), and
they are all insecure against adaptive CCA (or CCA-2) [174].

Beyond this, an adversary with access to a decryption oracle can, with one single well-
chosen query, reveal the entire secret key in the standard BFV scheme [195],being just as
applicable to DBFV to extract the global secret key. Since our solution provides a sort of
decryption oracle to the Gate, we analyze the impact of this attack on our system.

The attack of [195] is rooted in a malicious adversary corrupting the Gate and performing
one decryption request to a decryption oracle:

1. Craft a fake ciphertext ct = (ct0 , ct1) = (0,∆)11

2. Request decryption of ct to the oracle. Following equation 6.1, he obtains in result
ps = [0 + ∆ ∗ s]q, where s is the secret key and ect = 0.

3. Locally downscale this plaintext using equation 6.2 to obtain an estimation of key:
ŝ = ps/∆.

In the case of Colmade, this attack is much less problematic. Step 2 of the attack would
consist of Gate requesting a pool P to decrypt the result. Using equations 6.3 and 6.4, the
result would be ps = [0 + ∆ ∗ s + ∆r]q, which in step 3 translates into ŝ = ps/∆ + r. The
crucial difference is the mask addition. For all j ∈ [1, N − 1] save the first coefficient j = 0,
this translates into s[j] + r[j], where r[j] ∼ U(Z[0,t)) acts as a perfect one-time pad over the
underlying plaintext space [0, t), completely hiding that secret key coefficient. For j = 0

this leaks one bit of s[0] ∼ U({−1, 0, 1}), thus s[0] would be recoverable with two queries.
Most importantly, the coefficient of s being leaked is always j = 0, as the other coefficients

11All the coefficients in polynomial ct0 set to 0 and in polynomial ct1 set to ∆.
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are perfectly hidden and no rotations are applied as part of the decryption, which would
hypothetically help to extract other coefficients.

While CCA attacks are still feasible, our single-bit output coupled with the auditability
property makes these attacks12 much less practical due to the number of malicious requests
required.

6.2.4.4 On the choice of users, pools and replicas

In principle the choice of pool for each decryption request of the Gate must be a random
choice among all the pools available. We propose the use of a Verifiable Delay Function [32]
with a chosen random beacon [72, 35] to guide the choice of pool for every decryption, as a
way to have an unbiased choice and facilitate auditability.

The number of users per pool K is left open, knowing that in practice bigger pools are
harder to manage (e.g., bigger delay) and more error prone, but also more theoretically
secure, since per Theorem 4 it in the real world it increases the chances of including one
honest user needed to preserve the privacy of the collaborative decryption. The choice of
users for each pool should ideally also be random, and it is included in the trusted setup.

The ReplColMaskDecr protocol can used to address threat model #3. If so, the number
of replicas per user J should be set such that the adversary cannot reconstruct the secret
key. This leads to:

|AP | ∗ J < K (6.8)

To support a maximum number of malicious users in the pool |AP |, J should thus be set
small. However, to ensure that each replica is at least in the hands of one honest user we
require

J ≥ |AP |+ 1 (6.9)

Hence, to ensure security in an honest majority, we limit the maximum number of malicious
corruptions to:

|AP | < b
√
Kc (6.10)

6.2.4.5 On Auditability of Colmade

An external auditor could enroll as a user in the pool to take part in the Colmade de-
cryption protocol, and since the protocol requires communication with all parties, an eaves-
dropping auditor with access to the public transcript of these communications would know
about all decryption requests.

The biometric solution based on Colmade can thus be audited by an external entity
with the following items:

• The public transcript of all the communications between Gate and users testify of
the number of decryption requests performed. Following 5, the auditor could infer an
upper bound on the number of bits extracted from the database if all the decryption
requests contained maliciously crafted ciphertexts.

12An overview of FHE key recovery attacks can be found in [95].
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• Since our solution does contain a trusted setup, an auditor suspecting malfeasance
could request access to the secret key material to open some decryption requests.

• For the choice of the pools, a Verifiable Delay Function with some well chosen random
beacon could serve as an unbiased yet auditable way for the Gate to select what pool
to use for each decryption request.

6.2.5 Implementation

We implement the Colmade protocol on top of the Lattigo [96] homomorphic encryption
library, including examples of usage and correctness checks. Our Golang implementation is
open-sourced in https://github.com/ibarrond/colmade.

Simply encoding each vector element into an upscaled coefficient in Rq would lead to
slower ring operations when q < 264, as it requires arbitrary-precision arithmetic that is
much more computationally expensive than standard integer arithmetic in a 64-bit machine.
In practice [96], vectors are encoded to polynomials using the Chinese Remainder Theorem
(CRT) into a Residue Numeral System (RNS) form [17] by decomposing q = q1 · q2 · . . . · ql
into coprime factors smaller yet close to machine word size of 264.

While all our protocols apply in the RNS variant of BFV, it is worth noting that the
modulo approximation of Section 6.2.3.3 could be applied to a single factor, q′ = q′1·q2· . . . ·ql
with q′1 = (q1 − q1/∆).

6.2.6 Related Work

Preceding work employing masking for RLWE instances has been focused on protecting the
secret key during decryption operations, to upgrade the Chosen-Plaintext-Attack (CPA) se-
curity guarantees of RLWE cryptosystems into Chosen-Ciphertext-Attack (CCA1/CCA2).
In this line, additively homomorphic masking was proposed to output a a secret-shared
result that will later be reconstructed during decoding [205], and an follow-up work pro-
posed a decryption outputting boolean shares suitable for derivation of a symmetric key
to be used during decoding [206]. Further down the line, [187] proposes an adaptation
of RLWE schemes to render them CCA2-Secure based on a post-quantum variant of the
Fujisaki-Okamoto (FO) transform combined with masked binomial sampling to secure a
re-encryption process.

The idea of masking in HE has also been studied previously in the form of slot masking,
a method to collapse multiple unique-repeated-value ciphertexts into a single ciphertext for
encrypted vector-matrix multiplication: multiply each ciphertext with a mask containing a
1 set in a chosen slot and 0 in all the other slots. We saw this technique applied for HE-
based applications in the context of phishing web page classification [70], and in HE-Friendly
privacy-preserving mobile neural network architectures [176].

In other line of works, FHE has been widely studied as a technique for privacy-preserving
biometrics, from the HE-based biometric access control system of [179], to the packing
technique of [245], or [230] showing a clever encoding using packing to perform a biometric
matching with one single homomorphic multiplication. [20] used Homomorphic Encryption
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for fingerprint biometrics, whereas [92] employed both CKKS and BFV for face identifica-
tion, and [118] proposed the protection of a multi-biometric system.

While there are many previous works studying secure biometrics with MPC [99] and
FHE [212], to the best of our knowledge this is the first work to contemplate the intersection
of multi-party homomorphic encryption [81, 186] with biometrics. Lastly, while the vanilla
DBFV decryption of [186] would already provide auditability and data privacy against a
semi-honest adversary, our work extends it to malicious corruptions and yields minimum
input leakage thanks to the collaborative masking embedded in the decryption protocol.

6.2.7 Conclusion

Colmade proposes a novel collaborative masking decryption protocol for the multi-party
BFV scheme guaranteeing data privacy, minimal output leakage (1 bit), and auditability.
Our protocol makes use of predefined pools of users to perform a decryption in a distributed
setting while adding an additively shared encrypted masking term. We showcase its appli-
cability as part of a biometric access control solution where groups of users get together for
orderly individual identification. We prove this protocol secure against K−1 corruptions of
a semi-honest adversary, and show an enhanced version using replicas to be resilient against
b
√
Kc active corruptions of a malicious adversary. We analyze practical security aspects of

the biometric solution, and open-source implementations of these protocols on top of the
Lattigo library.

6.3 Summary

We kicked off this chapter with a formal definition of input leakage (CH4), its modeling
using information theory and an in-depth breakdown of its consequences for biometric sys-
tems. We followed up with an analysis of the input leakage present in the three solutions
proposed in Chapter 5, distinguishing reference template extraction and extraction-based
brute-force attacks applicable to BiomFEtrics and countering them by limiting the num-
ber of identification requests of this system with an additional security margin. We then
identified a weakness of FHE input leakage due to its single-party natures, and subsequently
proposed a novel distributed decryption protocol named Colmade to address it.
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Chapter 7

Conclusion

The use of biometrics, such as fingerprints, facial recognition, or iris scans, has become
popular in applications such as access control and financial transactions, but it also poses
severe privacy concerns. Biometric data constitutes highly sensitive information that can
be used to identify and track individuals, and it can be severely misused if it were to fall
into the wrong hands. The main goal of this thesis is to protect the privacy of biometric
data while still allowing its use for identification and authentication.

7.1 Contributions

This thesis is devoted to the study of privacy-preserving biometric systems, tackling multi-
ple scenarios with varying security requirements and proposing innovative secure solutions
suitable for real-world applications.

We kick-off this thesis providing an overview of generic biometric systems in Chapter 2,
covering their components (reference and live templates, feature extractor based on CNNs,
matching) and phases (enrollment and verification). We formulate the accuracy metrics
used to evaluate biometric systems, while putting a particular focus on face identification.
We then extract a set of requirements that privacy-preserving biometric systems should
uphold: privacy of all the templates and the feature extractor (R1), irreversibility of the
templates to avoid unintended reconstruction (R2), unlinkability of the templates to hide
the identity of their owner (R3), correctness in the secure operations when dealing with
malicious adversaries (R4), and accuracy & performance preservation in order to retain the
characteristics of the original system (R5)-(R6). We then identified the main challenges
that need to be addressed when building these systems, including dealing with accuracy
losses (CH1) derived from the use of privacy-preserving techniques, balancing privacy with
accuracy and performance (CH2), tackling malicious adversaries (CH3) to rely on weaker
assumptions and obtain more robust systems, addressing input leakage in the output (CH4),
and implementing ready-to-use solutions (CH5).

To fulfill these requirements and overcome the challenges we introduce the main privacy-
preserving cryptographic tools at our disposal in Chapter 3, covering several variants of
Multi-party Computation techniques (SS, RSS, ΠSS and FSS), two Fully Homomorphic
Encryption schemes supporting SIMD (BFV and CKKS), and a Functional Encryption
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Table 7.1: Requirements addressed at each chapter/section.
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scheme suitable for biometrics (FHIPE). We continue with a discussion on their relative
strengths and weaknesses centered around the protection of the principal steps in biomet-
ric systems: the feature extraction, the template verification, and the output reveal. We
comment on available implementations and their shortcomings, highlighting an inherent
limitation in FHE libraries. Section 3.6 presents Pyfhel, a novel open-source1 Python
library designed to address these issues (CH5) and facilitate the development of FHE-based
solutions to non-experts.

Chapter 4 addresses the protection of the feature extractor, presenting an original ap-
proach to protect Binarized Neural Networks by relying on Replicated Secret Sharing named
Banners. We leverage RSS to provide privacy for the input data and the model (R1) and
correctness guarantees (R4) against one malicious corruption in a three-party setting (CH3).
We demonstrate how our protocol preserves the accuracy of BNNs while being on a par
with the performance of equivalent state-of-the-art techniques.

Chapter 5 tackles the protection of biometric verification with the privacy-preserving
tools at our disposal. We display three novel methods to protect the privacy of the bio-
metric templates (R1), guaranteeing their unlinkability based on the computational hiding
properties (R3), and making the protected templates (via encrypting or sharing) irreversible
without access to the secret keys or all the computing parties (R2). These methods are:

a. BiomFEtrics (Section 5.2), a novel FHIPE solution optimized for online latency that
allows for the private computation of scalar products between templates. We tune its
latency (R6)-(CH2) to be of practical use in a one-time face identification scenario,
preserving the accuracy of the original system (R5).

1Available in https://github.com/ibarrond/Pyfhel
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b. Funshade (Section 5.3), a new 2PC protocol based on a combination of ΠSS and FSS
to securely compute various distance metrics followed by a comparison to a threshold
against semi-honest adversaries. We evaluate its sub-millisecond latency (R6) to per-
form 1 : 1 biometric authentication with high degree of numerical precision, and we
provide an open-source2 ready-to-use implementation (CH5).

c. Grote (Section 5.4), an innovative FHE-based algorithm for privacy-preserving face
identification that reduces the number of costly non-linear operations in the encrypted
domain based on group testing, later applied to CKKS-based face identification. We
test this solution and ensure it maintains a high degree of biometric accuracy (R5),
while improving the performance of the original system (R6) by a factor of 30% for
reference databases of at least 8,000 identities.

Throughout this chapter, we also deal with various sources of accuracy losses (CH1), from
the fixed-point encoding in BiomFEtrics to the approximation errors in CKKS of Grote.

Lastly, Chapter 6 tackles the problem of input leakage in the output of the biometric
system (CH4). We first provide a formal definition of input leakage and its modeling using
information theory in Section 6.1. As this leakage can compromise the irreversibility of pro-
tected templates (R2), we analyze the input leakage present in the three solutions proposed
in Chapter 5, distinguishing reference template extraction and extraction-based brute-force
attacks applicable to BiomFEtrics and countering them by limiting the number of iden-
tification requests to this system with a carefully chosen security margin. We then identify
a weakness of FHE input leakage due to its single-party nature, and subsequently propose
a novel distributed decryption protocol named Colmade to address it. Colmade (Sec-
tion 6.2) undertakes the minimization of input leakage in the output of privacy-preserving
biometric systems (R1) with a novel solution that distributes the decryption of the cipher-
texts among multiple parties and adds a distributed mask to ensure that only one bit of
information is revealed in the output. This minimal output guarantees a high degree of
irreversibility in the templates (R2). We provide an extension to ensure correctness of the
decryption (R4) and provide an open-source3 implementation of this protocol (CH5).

All in all, this thesis constitutes a comprehensive study of privacy-preserving biometric
systems, and it presents a set of novel contributions that are ready to use as stepping stones
to build secure and practical biometric solutions in a wide variety of scenarios.

7.2 Future Work

In Chapters 3 to 6 we propose multiple protocols to protect different aspects of biometric
systems. As in any proposal, these solutions can be improved and built upon. In line with
these works, future research is envisioned for the following topics:

• Pyfhel is to be enhanced to extend the set of supported libraries (e.g., OpenFHE [11],
Helib [121]) while continuing our work of creating easy-to-use high-level APIs for low-
level features. This project has gained traction in the community, driving several

2Available in https://github.com/ibarrond/funshade
3Available in https://github.com/ibarrond/colmade
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new features such as partial support for distributed keys in both BFV (DBFV) and
CKKS while also opening the door to new applications such as secure data analytics of
sensitive data from the public sector (e.g., health data, tax information). Furthermore,
we envision extending Pyfhel to support other homomorphic encryption schemes
such as TFHE [65].

• Future steps of Banners could aim at Bit Slicing techniques to obtain considerable
parallelization by leveraging on SIMD operations. Additionally, we envision the use
of models trained specifically for biometric identification (e.g., face recognition). Al-
though Banners is still slow for real time face recognition as-is, it can already be
used for non time-constrained biometric applications, as well as to protect a subset
of the layers in the biometric feature extractor. Lastly, we consider extending Ban-
ners to secure BNN training. In a similar line of work, we visualize the use of other
non-binarized MPC-based solutions [149] for the protection of the CNNs that make
up the feature extractor.

• The protections of biometric verification proposed in this thesis have so far focused on
semi-honest adversaries. Future work could extend these protections to malicious ad-
versaries. We contemplate enhancing Funshade with maliciously secure techniques
from SPDZ2k [77] for the linear function evaluations and the extensions to FSS sug-
gested in [38] for the threshold comparison. Similarly, we consider upgrading Grote
with Verifiable FHE [237] to ensure the correctness of all the encrypted operations.

• The evaluation of all these solutions was carried out with face data from the LFW
dataset [127]. We consider extending our experiments to substantially bigger datasets
holding tens of thousands of identities, in an effort to scale up the biometric verification
techniques for more demanding contexts. Likewise, these solutions can be extended
to other biometric modalities such as fingerprint or iris, and even cover multimodal
biometric systems.

• Colmade is designed specifically for the BFV scheme. However, other schemes such as
CKKS are more suitable for biometric applications thanks to the support of variable-
scale encodings (and it is indeed the reason why we chose CKKS for Grote). We
envision extending Colmade to CKKS, and possibly other schemes such as TFHE

• Lastly, we have dealt with each of the blocks in biometric systems separately, from
the feature extraction (Banners) to the verification (BiomFEtrics, Funshade and
Grote) and the controlled output reveal (Colmade). Designing an end-to-end so-
lution for biometric systems that incorporates all these techniques and addresses its
combined intricacies is an open problem and a promising future research direction.
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Appendix A

Appendix

A.1 Security Proofs of Banners Protocols

We apply the ideal VS real world simulation from [112] [48] [49] to prove the security of
our protocols in Chapter 4, instantiating it for the setup of Banners. As mentioned in
Section 3.5, we consider a static corruption model where the adversary must choose which
participant to corrupt before the execution of the computations.

Our protocols preserve security in all contexts that use them as a black box, providing
inputs and fresh randomness and using only the outputs. As such, they achieve universal
composability. To prove that our protocols are secure under general composition, we rely
on the Theorem 1.2 of [160].

The ideal world simulation contains an additional trusted party that receives all the
inputs from all the standard parties, computes the ideal functionality correctly and sends
the corresponding results to the standard parties. Conversely, the real world simulation ex-
ecutes the protocol as described in the Banners algorithms in the presence of adversaries
(one malicious adversary in our case). We then prove our protocols secure by verifying that
for every adversary in the real interaction, there exists a simulator in the ideal interaction
such that the environment cannot distinguish between the two scenarios. In other words,
whatever information the adversary extracts in the real interaction, the simulator can ex-
tract it in the ideal world as well. Thus, the entire blackbox behavior and interactions
(inputs, outputs, communication) of all the parties in the real world scenario is statistically
equivalent to that of the ideal world with the trusted party for the given adversary.

To prove each algorithm being secure, we replace it by their corresponding ideal func-
tionality and then prove that the interactions can be simulated, then showing that the real
and ideal interactions are indistinguishable from each other.

We set party Pk to be corrupt. In the ideal world, the simulator interacts with the
adversary Pk and simulates exact transcripts for interactions between Pk and the other two
honest parties, Pi, Pj . In the real world, Pk interacts with Pi, Pj directly. In all these cases,
the simulator is able to extract the inputs from Pk by using only the values for the inputs
of honest Pi & Pj , since our 2-out-of-3 RSS scheme requires only two shares to reconstruct
a secret. These inputs are fed to the ideal/real functionality to generate correct output
distributions.
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Ideal Functionality 1 Integer-Binary VDP:
Players: Functionality receives integer shares 〈〈xj〉〉 , 〈〈yj〉〉 ∈ Z2l

Output: Compute the element-wise multiplication of 〈〈xj〉〉 ∗ 〈〈yj〉〉, the cumulative addition
of 〈〈ΣV DP 〉〉, and sends resulting shares back to parties.

Theorem 6. The Integer-Binary VDP algorithm (algorithm 7) securely realizes the Integer-
Binary VDP functionality with abort in the presence of one malicious party.

Proof. The simulator S for a malicious adversary corrupting Pk plays the role of the trusted
party. To be able to simulate, we need to show that:

• Real interaction transcripts can be simulated.

• Honest parties Pi, Pj receive their outputs correctly.

Simulation can be easily derived from the standard maliciously secure multiplication of
[104] in the integer case, also treated in theorem 2 of [185], along with theorem 5 of [185]
for the binary to arithmetic conversion. The simulator for this multiplication can simulate
the transcripts from steps 2-7. Note that the distributions of all random values (such as
the first 2 SS shares in a triplet) are all uniform and hence achieve perfect security. Local
steps such as 1 and 8 do not need simulation. If the protocol aborts at any time in the
internal run, then the simulator sends Abort to the functionalities. Otherwise, it inputs the
extracted shares of Pk along with those of Pi, Pj , and the parties receive their outputs.

Ideal Functionality 2 Binary BN + BA:
Players: Functionality receives arithmetic shares 〈〈x〉〉, 〈〈β/γ〉〉 ∈ Z2l .
Output: Computes local subtraction 〈〈x〉〉 − 〈〈β/γ〉〉, followed by reconstruction extraction

of the MSB. Generates and sends binary shares of result.

Theorem 7. The Binary BN+BA algorithm (algorithm 8) securely realizes the Binary
BN+BA ideal functionality with abort in the presence of one malicious party.

Proof. The simulation can be derived from the standard maliciously secure integer addition
(step 1) from [104], along with the theorem 2 of [240] for the binary activation. Abort
conditions and outputs of honest parties apply just like in the previous proof.

Ideal Functionality 3 Binary VDP:
Players: The functionality receives binary shares of JxjK in a given window with N ele-

ments.
Output: Computes element-wise XOR, transforms the resulting binary shares into arith-

metic (with two intermediate AND gates) and performs local cumulative addition. Gen-
erates and sends shares of ResV DP to parties.

Theorem 8. The Binary VDP algorithm (algorithm 9) securely realizes the Binary VDP
ideal functionality with abort in the presence of one malicious party.
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Proof. We apply a similar logic to that of the first functionality. The simulation can be
derived from the standard maliciously secure XOR of [104] in the binary case (step 1) as
well as secure integer addition (step 8), along with theorem 5 of [185] for the binary to
arithmetic conversion (steps 2-7). Local steps such as 1 and 8 do not need simulation.
Abort conditions and outputs of honest parties apply just like in the previous proof.

Ideal Functionality 4 Maxpool:
Players: Functionality receives N binary shares JxjK over a window.
Output: Computes local NOT on all shares followed by cumulative AND (following [104])

and a final NOT . Generates and sends binary shares of JmKmaxpool to parties.

Theorem 9. The Maxpool algorithm (algorithm 10) securely realizes the Maxpool ideal
functionality with abort in the presence of one malicious party.

Proof. We apply composability of maliciously secure AND of [104] in the binary case (steps
3-5). Local negation of steps 1 and 5 does not need simulation.

A.2 Banners experiments with CIFAR-10 dataset
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Figure A.1: Comparison in latency for CIFAR10 BNN models
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Figure A.2: Comparing communication for CIFAR10 BNNs

A.3 Side-by-side comparison of FunShade vs. AriaNN

A.4 Discussion on the realistic entropy of the input space

Beyond this, the attacker could also resort to prior knowledge of the template space (obtain-
able from feature extractors with similar characteristics) and project the partially extracted
template to it, further increasing the chances of a successful impersonation.

The attacker could rely on prior latent space information obtainable from the non-
protected feature extractor to narrow it down to a small subset of candidate templates that
might be close enough to the reference template (in the cosine similarity sense) to serve as
a fairly accurate and valid (allowing impersonation) approximations.
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Sommaire de la thèse

Introduction

Les données pourraient être étiquetées comme le pétrole du 21ème siècle. Il existe de
nombreuses applications modernes alimentées par les données, allant de l’analyse de données
et de l’apprentissage automatique aux algorithmes biométriques pour ne citer que quelques-
unes, dont l’impact sur la société est indéniable. En effet, l’analyse de données moderne et
l’apprentissage automatique (ML) ont bouleversé de nombreux secteurs du marché, allant de
l’industrie du divertissement et de la fabrication (par exemple, des algorithmes de prédiction
de contenu, une détection automatique des défauts), à des domaines plus sensibles tels que la
santé ou l’administration publique (par exemple, la détection précoce du cancer, la poursuite
de la fraude).

Cependant, le potentiel énorme de la manipulation de données est couplé à des risques
élevés. Les abus et les vols de données, en particulier lorsqu’il s’agit de données person-
nelles, sont des préoccupations permanentes qui peuvent être atténuées en recourant à des
politiques et des techniques de confidentialité (comme cela est couvert dans les législations
actuelles de protection des données telles que GDPR [75] en Europe ou HIPAA [52] pour
les dossiers médicaux aux États-Unis).

Ces risques sont exacerbés dans certaines applications. Les systèmes biométriques
doivent s’appuyer sur un matériel sécurisé ou des parties de confiance pour détenir les
données personnelles vitales pour leurs modèles de reconnaissance, et toute la manipulation
de données biométriques doit suivre des règles de sécurité strictes. Les hôpitaux et les spé-
cialistes de la santé sont privés des avantages de la formation et de l’utilisation de modèles
avec un grand volume de données de patients, qui s’est avérée très efficace pour entraîner
des modèles de prédiction précis traitant des problèmes complexes, par exemple, des études
d’association génomique où certains gènes sont associés à des maladies telles que le cancer
pour une détection précoce et une meilleure compréhension [169]. Les banques, les insti-
tutions financières et les gouvernements sont limités aux données disponibles localement
pour prévenir la fraude et poursuivre l’évasion fiscale. Les modèles de détection d’images
exploitatives d’enfants [238] ont besoin de données d’entraînement qui sont en soi illégales
à posséder.

L’utilisation abusive de données privées non seulement impose des dommages concrets
aux utilisateurs touchés, mais menace également l’adoption de ces nouvelles innovations
technologiques. Aujourd’hui, les meilleures pratiques de l’industrie exigent que les four-
nisseurs de services protègent les données personnelles en transit et lorsqu’elles sont au
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repos en utilisant le chiffrement. Cependant, dans les applications où il est nécessaire de
réaliser des calculs sur les données, ces données doivent être déchiffrées avant d’être util-
isées, ce qui nécessite que le fournisseur de services ait accès au matériel de génération de
clés. Cela expose les données à de nombreuses menaces, notamment à l’abus par des acteurs
ayant des intentions malveillantes.

Dans le domaine de la cryptographie avancée, plusieurs technologies de préservation de la
confidentialité visent à traiter ces problèmes. Le chiffrement homomorphe total (FHE)[109]
est un schéma de chiffrement à clé publique coûteux qui prend en charge certaines opérations
entre des chiffrements (généralement l’addition et la multiplication), donnant les résultats
de ces opérations lors du déchiffrement. Le calcul multipartite sécurisé (MPC) couvre une
série de techniques (circuits brouillés[244], partage secret [220]) qui divisent le calcul d’une
fonction donnée entre plusieurs parties distinctes, de sorte que chaque partie individuelle
reste ignorante du calcul global et collabore pour calculer conjointement le résultat. Le
chiffrement fonctionnel (FE)[34] est un schéma de chiffrement à clé publique qui prend
en charge l’évaluation de fonctions arbitraires lors du déchiffrement des chiffrements, où
la clé de déchiffrement contient les informations sur la fonction à calculer et les données
originales ne peuvent être récupérées qu’avec la clé de chiffrement originale. FHE et MPC
peuvent également coexister dans le chiffrement homomorphe multipartite[186] (MHE), où
des versions distribuées des protocoles FHE sont réalisées par un certain nombre de parties
collaboratrices.

En recentrant notre attention sur le domaine de la biométrie, l’utilisation de solutions
biométriques pour l’identification et l’authentification devient de plus en plus répandue
dans une grande variété d’applications telles que le contrôle d’accès, les transactions finan-
cières et même les systèmes de vote. Les données biométriques, telles que les empreintes
digitales, la reconnaissance faciale ou les scans de l’iris, sont uniques à chaque individu
et peuvent être facilement collectées et vérifiées, ce qui en fait un moyen pratique et sûr
d’identification. Cependant, la collecte, le stockage et l’utilisation des données biométriques
soulèvent également des préoccupations importantes en matière de confidentialité. Les don-
nées biométriques sont des informations sensibles qui peuvent être utilisées pour identifier
et suivre les individus, et si elles tombent entre de mauvaises mains, elles peuvent être
utilisées à des fins malveillantes, comme le vol d’identité ou la surveillance. De plus, une
fois compromise, elle ne peut pas être modifiée comme un mot de passe, ce qui en fait une
vulnérabilité permanente. Il est donc crucial de développer des techniques de protection
de la confidentialité qui peuvent protéger la confidentialité des données biométriques tout
en maintenant la précision et l’utilisabilité du système sous-jacent. Ces techniques peu-
vent inclure l’utilisation de FHE, MPC ou FE pour effectuer des calculs sur les données
biométriques de manière sûre et respectueuse de la confidentialité. En appliquant ces tech-
niques, nous pouvons nous assurer que les données biométriques ne sont pas révélées en
clair et que seules les parties autorisées peuvent y accéder et les utiliser.

L’objectif principal de cette thèse est de développer et de mettre en œuvre des techniques
de préservation de la confidentialité pour les systèmes biométriques, de l’extraction des
caractéristiques biométriques à l’identification et à l’authentification des individus. Nous
utilisons des techniques cryptographiques modernes pour concevoir des protocoles sécurisés
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pour une large gamme de scénarios, y compris des adversaires malveillants. Nous analysons
également les lacunes de leurs garanties de sécurité menant à des attaques pratiques basées
sur les sorties révélées et nous y remédions avec des contre-mesures appropriées. Enfin,
nous mettons en œuvre et évaluons les performances de nos solutions, en démontrant leur
applicabilité à des cas d’utilisation réels tout en maintenant une haute précision et une
facilité d’utilisation.

Contributions de la thèse

Cette thèse constitue une étude globale des systèmes biométriques respectueux de la confi-
dentialité et présente un ensemble de contributions novatrices qui abordent différents aspects
de la mise en place de solutions biométriques sécurisées et pratiques :

• Une nouvelle solution d’identification faciale basée sur l’appariement privé de produit
intérieur à base de FE. Cette solution (i) optimise la latence en ligne pour les mêmes
garanties de sécurité en modifiant les fonctionnalités des algorithmes de chiffrement
et de génération de clés FE, (ii) effectue une analyse de sécurité approfondie de la
fuite de donnés d’entrée à la sortie du ‘produit scalaire, y compris des contre-mesures
pour contrer les attaques basées sur celle-ci, et (iii) est testée et validée dans un
scénario d’appariement facial, attestant de son applicabilité pour les cas d’utilisation
d’identification à usage unique.

• Un protocole de calcul à deux parties nommé Funshade pour effectuer des calculs
de distance protégés par la confidentialité avec une comparaison subséquente à θ,
construit à partir d’une combinaison de Secret Sharing avancé [193] et de Functional
Secret Sharing [38]. Ce protocole (i) nécessite seulement une communication en ligne,
réduisant ainsi les coûts de communication par rapport aux protocoles à deux tours
existants [213, 38], (ii) envoie seulement deux éléments de l’anneau en ligne, réduisant
la taille de la communication des solutions précédentes d’un facteur de 2l (pour des
vecteurs de longueur l), (iii) possède une exactitude de 100% dans le résultat de
comparaison, et (iv) est implémenté et open-sourced dans une bibliothèque Python
autonome avec des primitifs C++ efficaces.

• Une méthode innovante pour effectuer une identification biométrique à la fois sécurisée
et respectueuse de la vie privée basée sur la notion de test de groupe nommée Grote.
Cette méthode (i) remplace les comparaisons élémentaires K par des tests de groupe
pour réduire le nombre d’opérations coûteuses et non linéaires dans les calculs chiffrés,
(ii) est instantiée et testée avec FHE et le schéma CKKS, montrant qu’elle (iii) a un
impact minime sur la précision du système tout en accélérant son exécution de 1,5
fois.

• Un nouveau protocole de déchiffrement avec masquage collaboratif basé sur la vari-
ante multipartite [186] du schéma d’homomorphisme de chiffrement Brakerski-Fan-
Vercauteren (BFV) [100] nommé Colmade. Ce protocole (i) effectue un déchiffre-
ment dans un groupe de utilisateurs partagé, en les employant pour masquer un frag-
ment du texte chiffré lors du déchiffrement tout en restant indifférent à la computation
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complète, (ii) garantit la confidentialité de tous sauf un bit de la sortie révélée dans
divers modèles de menace; (iii) est utilisé pour construire un système d’identification
biométrique respectant la vie privée et vérifiable; et (iv) est implémenté, testé en
profondeur et mis à disposition en open-source.

• Un nouveau protocole pour l’inférence sécurisée de réseaux neuronaux binarisés basé
sur le partage de secrets répliqués appelé Banners. Ce protocole (i) garantit la
sécurité avec abandon contre un adversaire malveillant dans un cadre tripartite, (ii) a
une performance équivalente aux protocoles semi-honnêtes existants.

• La conception et l’implémentation de Pyfhel, un wrapper Python pour la biblio-
thèque Microsoft SEAL [219], extensible à d’autres bibliothèques C++, offrant (i) une
installation en un clic, incluant les bibliothèques back-end sous-jacentes, (ii) une
couche d’abstraction de haut niveau axée sur Python qui facilite considérablement
le travail avec FHE, y compris (iii) des API de haut niveau pour les fonctionnalités
de bas niveau généralement non exposées. Nous montrons la convivialité de Pyfhel
à la fois pour explorer et pour enseigner FHE.

La plupart de ces contributions ont été présentées dans des conférences dédiées au do-
maine des calculs protégeant la vie privée et publiées dans leurs actes. Nous listons ci-
dessous les principales publications découlant de cette thèse:

[132] Banners: Binarized neural networks with replicated secret sharing. Alberto Ibar-
rondo, Hervé Chabanne and Melek Önen. Présenté à IH&MMSec2021.

[133] Practical Privacy-Preserving Face Identification based on Function-Hiding Functional
Encryption. Alberto Ibarrondo, Hervé Chabanne and Melek Önen. Présenté à
CANS2021.

[136] Pyfhel: Python for homomorphic encryption libraries,Alberto Ibarrondo and Alexan-
der Viand. Présenté à WAHC2021.

[130] Colmade: Collaborative Masking in Auditable Decryption for BFV-based Homomor-
phic Encryption. Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel and
Melek Önen. Présenté à IH&MMSec2022.

[131] Grote: Group Testing for Privacy-Preserving Face Identification. Alberto Ibar-
rondo, Hervé Chabanne and Melek Önen. Accepté à CODASPY2023.

[134] Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance
Evaluation. Alberto Ibarrondo, Hervé Chabanne and Melek Önen. Soumis à une
conference.
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Description de la thèse

Cette thèse est organisée de la manière suivante.

• Le chapitre 2 décrit les systèmes biométriques en séparant l’extraction des caractéris-
tiques de la vérification, et décrit les exigences à imposer aux solutions biométriques
respectueuses de la vie privée tout en mettant en évidence les défis existants.

• Le chapitre 3 introduit les techniques cryptographiques utilisées dans la thèse et pro-
pose une nouvelle bibliothèque Python pour améliorer l’utilisabilité du chiffrement
homomorphe.

• Le chapitre 4 se concentre sur la protection de l’extracteur de caractéristiques.

• Le chapitre 5 traite de la protection des données biométriques et de la sécurisation de
la vérification biométrique.

• Le chapitre 6 est consacré à l’étude des fuites de confidentialité lors de la révélation
de la sortie et à l’application de stratégies de mitigation appropriées.

• Enfin, le chapitre 7 résume l’ensemble des contributions de cette thèse et discute les
orientations de recherche futures.

Prérequis pour les systèmes biométriques confidentiels

Les informations concernant le modèle biométrique d’un utilisateur ou son identité sont
la cible d’une pléthore d’attaques sur les systèmes biométriques [222, 6, 190], telles que la
récupération du modèle biométrique en direct et des modèles de référence, la traçabilité
d’un utilisateur à travers plusieurs services ou la déanonimisation de l’utilisateur corre-
spondant à un modèle donné. étant donné que les traits biométriques ne peuvent être ni
facilement modifiés (malgré la popularité de la chirurgie esthétique) ni réémis, la conception
de systèmes biométriques qui contrecarrent ou même entravent ces attaques est d’une im-
portance capitale. En effet, les organismes de réglementation tels que le Règlement général
sur la protection des données de l’Union européenne (RGPD) [75] et la loi californienne sur
la protection des données personnelles des consommateurs (CCPA) [108] ont récemment
introduit de nouvelles réglementations de confidentialité qui exigent la protection des don-
nées biométriques. Dans ce contexte, les systèmes biométriques préservant la vie privée ont
émergé comme une solution prometteuse pour aborder les préoccupations de confidential-
ité des systèmes biométriques, tout en cherchant à maintenir leur haute précision et leur
performance.

En accord avec tout cela, nous sommes prêts à énumérer les exigences que nous attendons
de nos solutions de biométrie respectueuses de la vie privée pour satisfaire :

(R1) - Confidentialité : Le système doit préserver la confidentialité de :
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• Les modèles biométriques des utilisateurs inscrits (confidentialité de la base de
données de référence). La base de données de modèles de référence constitue
l’élément le plus important à protéger dans les systèmes biométriques, car elle
contient les informations biométriques de tous les utilisateurs inscrits, et donc
sa divulgation à un adversaire pourrait lui permettre de se faire passer pour des
utilisateurs inscrits.

• Les modèles biométriques des utilisateurs en cours de vérification (confidentialité
du modèle en direct). Bien qu’ils ne soient pas aussi importants pour le système
biométrique dans son ensemble, les modèles en direct méritent également une
protection, car ils contiennent les informations biométriques des utilisateurs en
cours de vérification. Leur divulgation pourrait entraîner de graves préoccupa-
tions pour la vie privée de ces utilisateurs : par exemple, le suivi d’utilisateurs
d’un système à l’autre (ou même d’un système à l’autre), ou la possibilité de se
faire passer pour l’utilisateur.

• La confidentialité des paramètres de l’extracteur de caractéristiques utilisé par le
système (Confidentialité de l’extracteur de caractéristiques). Les extracteurs de
caractéristiques modernes sont très complexes et coûteux à développer (ressources
informatiques, données requises, expertise technique), et en tant que tel, ils con-
stituent un atout précieux à protéger, car une tentative de préserver les droits
de propriété intellectuelle de son propriétaire.

(R2) - Irreversibilité : Afin de garantir qu’en cas d’attaque sur une base de données
de stockage biométrique, les attaquants ne peuvent pas récupérer les informations
biométriques privées réelles de l’utilisateur à travers les données stockées dans la
base de données, ces transformations doivent être irréversibles. Ainsi, étant donné
un modèle protégé, une entité détenant ledit modèle ne devrait pas être en mesure
de récupérer le modèle biométrique original à moins qu’elle n’ait accès au matériel
secret.

(R3) - Unlinkability : Rendre les informations biologiques réelles des utilisateurs non
connectées de l’extérieur. Il est souhaitable d’utiliser des systèmes utilisant des don-
nées modifiées ou générées indirectement pour la vérification. Les caractéristiques
biométriques réelles n’étant pas connectées aux systèmes numériques (à moins de
se placer dans un scénario de type Metaverse ultra-connecté), la probabilité qu’elles
soient compromises par des attaques correspondantes lancées depuis le réseau est
beaucoup plus faible. Par conséquent, étant donné un modèle protégé/sécurisé,
une entité détenant ledit modèle ne devrait pas être en mesure de relier le mod-
èle biométrique crypté d’un utilisateur à son identité.

(R4) - Exactitude : Le système doit être résistant aux manipulations malveillantes pen-
dant la phase de vérification. Il peut être possible pour un adversaire d’altérer les
calculs de cette phase, et il est donc important de comprendre si le système a été
soumis à une telle attaque et de fournir des contre-mesures.
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(R5) - Préservation de la précision : Le système protégé doit être capable de vérifier
correctement les utilisateurs valides avec une forte probabilité (faible FRR), tout en
rejetant les imposteurs avec une forte probabilité (faible FAR).

Comme il s’agit d’une exigence fondamentale de tout système biométrique, leurs
équivalents préservant la confidentialité doivent également respecter cette exigence.
Nous nous attendons à ce que la précision du système soit raisonnablement préservée
après son adaptation avec des solutions préservant la vie privée. Cette exigence dé-
coule du fait que les solutions de préservation de la confidentialité que nous envis-
ageons ne sont pas parfaites et qu’elles peuvent donc introduire des erreurs de calcul
dans les opérations.

(R6) - Préservation des performances : La version sécurisée du système biométrique
ne doit pas introduire une surcharge excessive en termes de complexité de calcul ou
d’exigences de stockage. En d’autres termes, elle doit présenter une latence de véri-
fication suffisamment faible tout en étant capable de gérer un nombre suffisamment
important d’utilisateurs.

En bref, le système doit être capable de s’adapter aux besoins de l’application dans
laquelle il sera déployé. Ceci est particulièrement important dans le contexte des
systèmes biométriques, car ils sont souvent déployés dans des scénarios à grande
échelle, tels que les aéroports, où ils doivent être capables de gérer un grand nombre
d’utilisateurs en peu de temps.

Résumés de chaque publication en Français

Banners: Binarized neural networks with replicated secret sharing

Les réseaux neuronaux binarisés (BNN) sont des implémentations efficaces des réseaux
neuronaux convolutionnels (CNN) qui constituent l’extracteur de caractéristiques. Cela
les rend particulièrement adaptés à l’inférence rapide et peu gourmande en mémoire des
réseaux neuronaux fonctionnant sur des dispositifs à ressources limitées. En raison de
l’intérêt croissant pour la reconnaissance biométrique basée sur les CNN sur des dispositifs
potentiellement non sécurisés, ou dans le cadre d’une authentification multifactorielle forte
pour des applications sensibles, la protection de l’inférence des CNN sur les dispositifs
périphériques est devenue impérative. Nous proposons une nouvelle méthode pour réaliser
une inférence sécurisée de BNN en s’appuyant sur un calcul multipartite sécurisé. Alors
que les articles précédents offraient une sécurité dans un cadre semi-honnête pour BNN ou
une sécurité malveillante pour CNN standard, notre travail offre une sécurité avec abandon
contre un adversaire malveillant pour BNN en s’appuyant sur le partage de secret répliqué
(RSS) pour une majorité honnête avec trois parties de calcul. Expérimentalement, nous
implémentons Banners au-dessus de MP-SPDZ et le comparons avec des travaux antérieurs
sur des modèles binarisés entraînés pour les jeux de données de classification d’images
MNIST et CIFAR10. Nos résultats attestent de l’efficacité de Banners comme technique
d’inférence préservant la vie privée.
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Pyfhel: Python pour les bibliothèques de chiffrement homo-
morphe

Le chiffrement entièrement homomorphe (FHE) permet d’effectuer des calculs privés sur des
données chiffrées, sans divulguer ni les entrées, ni les valeurs intermédiaires, ni les résultats.
Grâce aux progrès récents, le chiffrement totalement homomorphe est devenu réalisable pour
un large éventail d’applications, ce qui a suscité une explosion d’intérêt pour le sujet et des
déploiements révolutionnaires dans le monde réel. Étant donné la présence croissante de la
FHE au-delà de la communauté académique de base, il y a une demande croissante pour
un accès plus facile à la FHE pour un public plus large. Les implémentations efficaces des
schémas FHE sont pour la plupart écrites dans des langages à haute performance comme le
C++, ce qui constitue une barrière d’entrée élevée pour les utilisateurs novices. Nous devons
introduire l’FHE dans les langages (de plus haut niveau) et les écosystèmes avec lesquels
les non-experts sont déjà familiarisés, comme Python, le langage standard de facto de la
science des données et de l’apprentissage automatique. Nous y parvenons en enveloppant les
implémentations existantes de FHE dans Python, en fournissant une installation en un clic et
une commodité en plus d’une API de niveau nettement supérieur. Dans cette section, nous
présentons Pyfhel, nous introduisons sa conception et son utilisation et nous soulignons
comment son support unique pour l’accès aux fonctionnalités de bas niveau par le biais d’une
API de haut niveau en fait un outil d’enseignement idéal pour les conférences sur l’FHE.
Contrairement à d’autres travaux similaires, Pyfhel va au-delà de la simple exposition de
l’API sous-jacente, en ajoutant une couche d’abstraction soigneusement conçue qui se sent
chez elle dans Python.

BiomFEtrics : Identification pratique de visages préservant
la confidentialité grâce à un chiffrement fonctionnel cachant
les fonctions.

En s’appuyant sur le chiffrement fonctionnel (Functional Encryption, FE) et la correspon-
dance basée sur les produits internes, ce travail présente un système pratique d’identification
de visage préservant la vie privée avec deux nouveautés clés : la commutation des fonction-
nalités des algorithmes de chiffrement et de génération de clés du FE pour optimiser la
latence de la correspondance (R6) tout en maintenant ses garanties de sécurité (CH2), et
l’identification d’une fuite dans la sortie (CH4) pour formaliser ultérieurement deux nou-
velles attaques basées sur celle-ci avec des contre-mesures appropriées1. Nous validons notre
schéma dans un scénario réaliste de comparaison de visages, attestant de son applicabilité
à des scénarios d’identification de visages à usage unique en pseudo temps réel, comme
l’identification de passagers.

1Nous laissons l’étude de cette fuite pour le chapitre 6
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Funshade : Partage de secret fonctionnel pour l’évaluation de
distance à seuil sécurisée par deux parties

Nous proposons un nouveau calcul bipartite, préservant la confidentialité, de diverses mesures
de distance (par exemple, la distance de Hamming, le produit scalaire) suivi d’une compara-
ison avec un seuil fixe, qui est connu comme l’un des blocs de construction les plus utiles et
les plus populaires pour de nombreuses applications différentes, y compris l’apprentissage
automatique, la correspondance biométrique, etc. Notre solution s’appuie sur les avancées
récentes en matière de partage de secret fonctionnel et utilise une version optimisée du
partage de secret arithmétique appelée ΠSS (section 3.2.3). Grâce à cette combinaison,
notre nouvelle solution nommée Funshade est la première à ne nécessiter qu’un seul tour
de communication et deux éléments d’anneau de communication dans la phase en ligne,
surpassant tous les schémas antérieurs de pointe tout en s’appuyant sur des primitives
cryptographiques légères. Enfin, nous implémentons la solution à partir de zéro en Python
en utilisant des blocs C++ efficaces, ce qui témoigne de sa haute performance.

Grote : Test de groupe pour une identification biométrique
préservant la confidentialité

Cette section décrit Grote, une nouvelle méthode d’identification des visages préservant la
confidentialité, basée sur la notion de test de groupe, et l’applique à une solution utilisant
le schéma de chiffrement homomorphe Cheon-Kim-Kim-Song (CKKS). Le calcul sécurisé
du modèle de référence le plus proche d’un modèle vivant donné nécessite K comparaisons,
autant qu’il y a d’identités dans une base de données biométriques. Grote remplace les
tests par éléments par des tests par groupes afin de réduire considérablement le nombre
de ces opérations non linéaires et coûteuses dans le domaine crypté, de K à 2

√
K. Plus

précisément, nous approximons le maximum des coordonnées d’un grand vecteur en élevant
à la puissance α-th et en cumulant la somme dans une disposition 2D, ce qui a un faible
impact sur la précision du système tout en accélérant considérablement son exécution. Nous
implémentons Grote et évaluons ses performances.

Colmade : Masquage collaboratif dans le déchiffrement dis-
tribué pour le chiffrement homomorphe basé sur BFV

Cette section propose un nouveau protocole de déchiffrement collaboratif pour le schéma de
chiffrement homomorphe Brakerski / Fan-Vercauteren (BFV) dans un cadre distribué mul-
tipartite, et l’utilise pour concevoir une solution d’identification biométrique résistante aux
fuites. En permettant le calcul d’opérations homomorphes standard sur des données cryp-
tées, notre protocole ne révèle qu’un bit le moins significatif (LSB) d’un résultat scalaire/vec-
torisé en ayant recours à un pool de N parties. En employant le masquage partagé additif,
notre solution préserve la confidentialité de tous les bits restants dans le résultat tant qu’une
partie reste honnête. Nous formalisons le protocole, prouvons sa sécurité dans plusieurs
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modèles adverses, l’implémentons sur la bibliothèque open-source Lattigo et démontrons
son applicabilité dans le cadre d’un scénario de contrôle d’accès biométrique.

Futur travail

Dans les chapitres 3 à 6, nous proposons plusieurs protocoles pour protéger différents as-
pects des systèmes biométriques. Comme dans toute proposition, ces solutions peuvent
être améliorées et développées. Dans la lignée de ces travaux, des recherches futures sont
envisagées pour les sujets suivants :

• Pyfhel doit être amélioré pour étendre l’ensemble des bibliothèques prises en charge
(par exemple, OpenFHE [11], Helib [121]) tout en poursuivant notre travail de création
d’API de haut niveau faciles à utiliser pour les fonctionnalités de bas niveau. Ce projet
a gagné en popularité au sein de la communauté, ce qui a permis de créer plusieurs
nouvelles fonctionnalités telles que le support partiel des clés distribuées dans BFV
(DBFV) et CKKS, tout en ouvrant la porte à de nouvelles applications telles que
l’analyse sécurisée des données sensibles du secteur public (par exemple, les données
de santé, les informations fiscales). De plus, nous envisageons d’étendre Pyfhel pour
supporter d’autres schémas de chiffrement homomorphes tels que TFHE [65].

• Les étapes futures de Banners pourraient viser les techniques de Bit Slicing pour
obtenir une parallélisation considérable en tirant parti des opérations SIMD. De plus,
nous envisageons l’utilisation de modèles formés spécifiquement pour l’identification
biométrique (par exemple, la reconnaissance des visages). Bien que Banners soit
encore lent pour la reconnaissance des visages en temps réel, il peut déjà être utilisé
pour des applications biométriques sans contrainte de temps, ainsi que pour protéger
un sous-ensemble de couches dans l’extracteur de caractéristiques biométriques. En-
fin, nous envisageons d’étendre Banners à la formation sécurisée de BNN. Dans
un même ordre d’idée, nous visualisons l’utilisation d’autres solutions basées sur des
MPC non-binarisées [149] pour la protection des CNN qui composent l’extracteur de
caractéristiques.

• Les protections de la vérification biométrique proposées dans cette thèse se sont jusqu’à
présent concentrées sur les adversaires semi-honnêtes. Des travaux futurs pourraient
étendre ces protections aux adversaires malveillants. Nous envisageons d’améliorer
Funshade avec des techniques malicieusement sécurisées de SPDZ2k [77] pour les
évaluations de fonctions linéaires et les extensions de FSS suggérées dans [38] pour la
comparaison de seuils. De même, nous envisageons de mettre à niveau Grote avec
Verifiable FHE [237] pour garantir l’exactitude de toutes les opérations chiffrées.

• L’évaluation de toutes ces solutions a été réalisée avec des données de visage provenant
du jeu de données LFW [127]. Nous envisageons d’étendre nos expériences à des
ensembles de données beaucoup plus importants contenant des dizaines de milliers
d’identités, dans le but d’adapter les techniques de vérification biométrique à des
contextes plus exigeants. De même, ces solutions peuvent être étendues à d’autres
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modalités biométriques telles que l’empreinte digitale ou l’iris, et même couvrir des
systèmes biométriques multimodaux.

• Colmade est conçu spécifiquement pour le schéma BFV. Cependant, d’autres sché-
mas tels que CKKS sont plus adaptés aux applications biométriques grâce au sup-
port des encodages à échelle variable (et c’est d’ailleurs la raison pour laquelle nous
avons choisi CKKS pour Grote). Nous envisageons d’étendre Colmade à CKKS,
et éventuellement à d’autres schémas tels que TFHE.

• Pour finir, nous avons traité séparément chacun des blocs des systèmes biométriques,
de l’extraction des caractéristiques (Banners) à la vérification (BiomFEtrics, Fun-
shade et Grote) et à la révélation contrôlée de la sortie (Colmade). La conception
d’une solution de bout en bout pour les systèmes biométriques qui intègre toutes ces
techniques et tient compte de leurs subtilités combinées est un problème ouvert et une
direction de recherche future prometteuse.
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