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Abstract

Across a breadth of research areas, whether in Bayesian inference, reinforcement learning
or variational inference, the need for accurate and efficient computation of integrals and
parameters minimizing risk functions arises, making stochastic optimization and Monte
Carlo methods one of the fundamental problems of statistical and machine learning
research. This thesis focuses on Monte Carlo integration and stochastic optimization
methods, both from a theoretical and practical perspectives, where the core idea is to
use randomness to solve deterministic numerical problems. From a technical standpoint,
the study is mainly based on two standard concepts: variance reduction and adaptive
sampling techniques.

The first part of the thesis focuses on various control variates techniques for Monte
Carlo integration. The study is based on mathematical tools coming from probability
theory and statistics aiming to understand the behavior of certain existing algorithms
and to design new ones with thorough analysis of the integration error. First, we
present a LASSO-type procedure to allow the use of high-dimensional control variates.
Then, a weighted least-squares estimate, called AISCV, is proposed to incorporate con-
trol variates within the adaptive importance sampling framework. Finally, a Monte
Carlo method with control variates based on nearest neighbors estimates, called Con-
trol Neighbors, is provided.

The second part of the thesis deals with stochastic optimization algorithms. First,
we investigate a general class of stochastic gradient descent (SGD) algorithms, called
conditioned SGD, based on a preconditioning of the gradient direction. Using a discrete-
time approach with martingale tools, we establish the weak convergence of the rescaled
sequence of iterates for a broad class of conditioning matrices including stochastic first-
order and second-order methods. Then we present a general framework to perform
coordinate sampling for SGD algorithms. While classical forms of SGD algorithms
treat the different coordinates in the same way, a framework allowing for adaptive (non
uniform) coordinate sampling is developed to leverage structure in data. In a non-convex
setting and including zeroth order gradient estimate, almost sure convergence as well as
non-asymptotic bounds are provided. Within this framework, we develop an algorithm,
MUSKETEER, based on a reinforcement strategy: after collecting information on the
noisy gradients, it samples the most promising coordinate (all for one); then it moves
along the one direction yielding an important decrease of the objective (one for all).

To emphazise the practical applications of the proposed methods, all algorithms are
implemented and tested against state-of-the-art procedures and extensive numerical
experiments are provided to allow reproducibility. All algorithms developed in this
thesis are open-sourced and available online.



Résumé

Dans de nombreux domaines de recherche, que ce soit l’inférence variationnelle, l’inférence
Bayésienne ou l’apprentissage par renforcement, le besoin d’un calcul précis et efficace
d’intégrales et de paramètres minimisant des fonctions de risque apparaît, faisant des
méthodes d’optimisation stochastiques et de Monte Carlo l’un des problèmes fondamen-
taux de la recherche en statistique et en apprentissage automatique. Cette thèse se con-
centre sur des méthodes d’intégration par Monte Carlo et d’optimisation stochastique,
tant d’un point de vue théorique que pratique, où l’idée centrale est d’utiliser l’aléatoire
pour résoudre des problèmes numériques déterministes. D’un point de vue technique,
l’étude se concentre sur la réduction de la variance et des techniques d’échantillonnage
adaptatif.

La première partie de la thèse se concentre sur diverses techniques de variables de con-
trôle pour l’intégration de Monte Carlo. L’étude est basée sur des outils mathématiques
issus de la théorie des probabilités et des statistiques visant à comprendre le comporte-
ment de certains algorithmes existants et à en concevoir de nouveaux avec une analyse
approfondie de l’erreur d’intégration. Tout d’abord, nous présentons une procédure de
type LASSO pour permettre l’utilisation de variables de contrôle en grande dimension.
Ensuite, une estimation pondérée des moindres carrés, appelée AISCV, est proposée
pour incorporer les variables de contrôle dans le cadre de l’échantillonnage adaptatif
par importance. Enfin, une méthode de Monte Carlo avec des variables de contrôle
basée sur des estimateurs des plus proches voisins, appelée Control Neighbors, est pro-
posée.

La deuxième partie de la thèse traite des algorithmes d’optimisation stochastique.
Tout d’abord, nous étudions une classe générale d’algorithmes de descente de gradi-
ent stochastique (SGD), appelée SGD conditionnée, basée sur un préconditionnement
de la direction du gradient. En utilisant une approche en temps discret avec des outils
de martingale, nous établissons la convergence faible de la séquence rééchelonnée des
itérés pour une large classe de matrices de conditionnement, y compris les méthodes
stochastiques du premier et du second ordre. Nous présentons ensuite un cadre général
pour effectuer l’échantillonnage des coordonnées pour les algorithmes SGD. Alors que
les formes classiques d’algorithmes SGD traitent les différentes coordonnées de la même
manière, un cadre permettant l’échantillonnage adaptatif (non uniforme) des coordon-
nées est développé pour exploiter la structure des données. Dans un cadre non convexe
et en incluant une estimation du gradient d’ordre zéro, une convergence presque certaine
ainsi que des limites non asymptotiques sont fournies. Dans ce cadre, nous développons
un algorithme, MUSKETEER, basé sur une stratégie de renforcement : après avoir
collecté des informations sur les gradients bruités, il échantillonne la coordonnée la
plus prometteuse (tous pour un) ; puis il se déplace dans la direction qui entraîne une
diminution importante de l’objectif (un pour tous).

Pour souligner les applications pratiques des méthodes proposées, tous les algorithmes
sont implémentés et testés par rapport aux méthodes de l’état de l’art et des expériences
numériques approfondies sont fournies pour permettre la reproductibilité. Tous les
algorithmes développés dans cette thèse sont libres de droits et disponibles en ligne.



Thesis outline and reading guide
Outline
This thesis contains an introductory part (Part I) and is then divided into two main
parts. The first main part (Part II) is composed of three chapters and tackles different
variance reduction techniques based on control variates in the framework of Monte Carlo
methods. The second main part (Part III) is composed of two chapters and investigates
the use of conditioning matrices for stochastic approximation algorithms.

Part I contains one introductory Chapter.

• Chapter 1 is a general introduction about the theory and applications of Monte
Carlo methods and stochastic approximation. It introduces the high level context
of these research topics needed to read this thesis. It presents the main results of
each chapter and provides a detailed outline of the rest of the thesis.

Part II focuses on control variates techniques for Monte Carlo integration.

• Chapter 2 deals with the use of high-dimensional control variates with the help
of a LASSO-type procedure. Monte Carlo integration with variance reduction
by means of control variates can be implemented by the ordinary least squares
estimator for the intercept in a multiple linear regression model with the integrand
as response and the control variates as covariates. Regularizing the ordinary least
squares estimator by preselecting appropriate control variates via the LASSO
turns out to increase the accuracy without additional computational cost. The
findings in the numerical experiment are confirmed by concentration inequalities
for the integration error.
This Chapter is based on the journal paper Leluc et al. (2021).

• Chapter 3 combines control variates with adaptive importance sampling. Standard
control variates methods do not allow the distribution of the particles to evolve
during the algorithm, as is the case in sequential simulation methods. Within
the standard adaptive importance sampling framework, a simple weighted least
squares approach is proposed to improve the procedure with control variates. The
procedure takes the form of a quadrature rule with adapted quadrature weights
to reflect the information brought in by the control variates. The quadrature
points and weights do not depend on the integrand, a computational advantage
in case of multiple integrands. Our main result is a non-asymptotic bound on the
probabilistic error of the procedure. The bound proves that for improving the
estimate’s accuracy, the benefits from adaptive importance sampling and control
variates can be combined. The good behavior of the method is illustrated empir-
ically on synthetic examples and real-world data for Bayesian linear regression.
This Chapter is based on the conference paper Leluc et al. (2022)

• Chapter 4 has a more theoretical flavor by focusing on optimal convergence rates
for the iteration error. Monte Carlo integration is a widespread technique to solve
numerical integration problems with applications ranging from computational bio-
logy and engineering to finance and machine learning. While the standard Monte
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Carlo estimate is easy and fast to compute, its O(n−1/2) error rate may not be
optimal for particular applications. This chapter provides a novel integration rule
called control neighbors based on nearest neighbor estimates acting as control vari-
ates to speed up the convergence rate of the Monte Carlo procedure. The main
result is the O(n−1/2n−1/d) convergence rate of this new estimate for Lipchitz
functions, which is, in some sense, the best rate possible. Several numerical ex-
periments validate the complexity bound and highlight the good performance of
the proposed estimator.
This Chapter is related to a preprint version at the time of submission.

Part III deals with stochastic optimization algorithms.

• Chapter 5 investigates a general class of stochastic gradient descent (SGD) al-
gorithms, called conditioned SGD, based on a preconditioning of the gradient
direction. Using a discrete-time approach with martingale tools, we establish the
weak convergence of the rescaled sequence of iterates for a broad class of condition-
ing matrices including stochastic first-order and second-order methods. Almost
sure convergence results, which may be of independent interest, are also presented.
When the conditioning matrix is an estimate of the inverse Hessian, the algorithm
is proved to be asymptotically optimal. For the sake of completeness, a practical
procedure to achieve this minimum variance is provided.
This Chapter is based on the preprint version Leluc and Portier (2020).

• Chapter 6 presents the framework of stochastic gradient descent with coordinate
sampling. While classical forms of stochastic gradient descent algorithm treat the
different coordinates in the same way, a framework allowing for adaptive (non
uniform) coordinate sampling is developed to leverage structure in data. In a
non-convex setting and including zeroth order gradient estimate, almost sure con-
vergence as well as non-asymptotic bounds are established. Within the proposed
framework, we develop an algorithm, MUSKETEER, based on a reinforcement
strategy: after collecting information on the noisy gradients, it samples the most
promising coordinate (all for one); then it moves along the one direction yielding
an important decrease of the objective (one for all). Numerical experiments on
both synthetic and real data examples confirm the effectiveness of MUSKETEER
in large scale problems.
This Chapter is based on the journal paper Leluc and Portier (2022).

The final Chapter 7 is a conclusion and highlights the different research directions
opened up to us by this thesis.

Reading guide
Each chapter of the main parts contains a small introduction which describes the neces-
sary elements of context. It is then followed by a verbatim of the article related to the
chapter, where all the precise results and proofs can be found. Note that full articles
and appendices are gathered for this thesis to be self-contained. For each chapter, the
verbatim articles are divided into main sections, which give context and results, and
auxiliary sections, where most of the technical proofs may be found. Note that each
chapter can be read independently.

For a quick overview of the different contributions presented in this thesis, the reader
is invited to focus on the summary of contributions in Section 1.4 of Chapter 1.
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Notation

:= Equal by definition

N,R Sets of natural and real numbers

Rd Set of d-dimensional real-valued vectors

〈x, y〉 Inner product of vectors x, y ∈ Rd

‖x‖p `p-norm of vector x ∈ Rd

‖A‖ Matrix norm induced
∥∥A∥∥ = sup{

∥∥Au∥∥ : u ∈ Rp, ‖u‖ = 1}

Rn×d Set of real matrices of size n× d

Sd(R) Set of real symmetric matrices of size d× d

S+
d (R),S++

d (R) Set of real symmetric positive (semi)-definite matrices of size d× d

Id Identity matrix of size d× d

A> Transpose of matrix A

Tr(A), det(A) Trace and Determinant of matrix A

λmin(A), λmax(A) Smallest and Largest eigenvalue of matrix A

A⊗B Kronecker product of A and B

vec(A) Vectorization of matrix A by stacking its columns

supp(·) Support of a function or a vector

B(X ) Borel σ-field on X

1E Characteristic function of set E

Ac Complementary set of set A

P(·) Probability of an event

E[·] Expectation of a random variable

i.i.d.∼ Independent and Identically Distributed

L2(π) Set of square integrable functions with respect to measure π

X ∼ π Random variable X has distribution π

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

∇f Gradient function of f : Rd → R

∇2f Hessian matrix of f : Rd → R





Part I

Introduction & Preliminaries

"Good and evil, reward and punishment, are the only motives to a rational creature:
these are the spur and reins whereby all mankind are set on work, and guided."

(John Locke, Some Thoughts Concerning Education, 1693)
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This Chapter provides a high-level exposition of the main tools of this thesis, namely
Monte Carlo methods and stochastic optimization. First, Section 1.1 motivates the use
of random methods in statistical and machine learning applications. Then, the key
concepts of Monte Carlo methods and stochastic optimization algorithms are presented
in Sections 1.2 and 1.3 with a focus on research questions. Finally, Section 1.4 gives a
summary of the main contributions of this thesis.

1.1 Numerical Integration and Gradient Estimation

1.1.1 Motivations for a stochastic approach

For the last fifty years, the computations of integrals and gradients of an expectation
have been a key factor in the development of the computational sciences. This calcula-
tion lies at the heart of modern machine learning algorithms and can be found in a wide
variety of applications ranging from object detection (Carion et al., 2020) and natural
language processing (Hirschberg and Manning, 2015) to pricing of financial derivatives
(Glasserman, 2004) and complex biological tasks (Jumper et al., 2021). However, solv-
ing a numerical integration problem or computing a gradient is not without complexity
as it can involve (i) theoretical problems, when one faces analytical intractability and
(ii) practical difficulties, when one encounters computational issues.
In this context, the need for accurate and efficient computation of integrals appears,
making the numerical integration problem one of the fundamental problems of statist-
ical and machine learning research. This main question may be written through the
lens of a generic probabilistic function F of the following form

F(θ) = Eπθ(x)[f(x)] =

∫
X
f(x)πθ(x)dx. (1.1)

This objective function consists in evaluating the expectation of a cost function f with
respect to an input distribution πθ(x) parameterized by a distributional parameter θ.
The underlying numerical integration problem in Eq.(1.1) naturally appears in many
machine learning applications such as Bayesian inference where one is interested in
integrating particular cost functions f against the posterior distribution to measure
the uncertainty of a model parameter or in variational inference where the goal is to
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approximate complex unknown distributions (see details below). Furthermore, observe
that in the precise framework of variational inference, one is interested in optimizing the
objective F with respect to the distributional parameter θ. Thus, in the perspective of
sequential algorithms, many integrals – one for each new value of the parameter θ – are
actually needed for particular applications. This calls for the construction of efficient
estimators that can handle many integrands with potentially complex target densities.

In order to learn the optimal distributional parameter θ defined as the arg min of F ,
one may compute the gradient of Eq.(1.1). When the measure πθ is differentiable with
respect to θ then the gradient is equal to

G = ∇θF(θ) = ∇θEπθ(x)[f(x)]. (1.2)

This last equation is the sensitivity analysis of F (Mohamed et al., 2020) and refers
to the impact of changes in expected performance upon changes of some of the input
parameter θ. The computation of this gradient is of great importance not only to
study how various sources of uncertainty contribute to the model’s overall uncertainty
but also for optimization purposes. Indeed, efficient gradient estimators combined with
fast optimization methods are the key ingredients for training today’s machine learning
models. However, the gradient estimation problem in Eq.(1.2) can be difficult to solve
in general. The main issues come from (i) theoretical intractability since there is not
necessarily a closed expression of the gradient and from (ii) computational expense as
the integrals over x can be high-dimensional.

All these challenges may be tackled by using both Monte Carlo estimates1 of the gradi-
ents and efficient stochastic optimization procedures. These methods have become more
and more popular as their inherent randomness provides several advantages compared
to deterministic methods:

(a) Easy and Practical. Monte Carlo standard approach requires only three steps
– sampling, evaluating, averaging – or equivalently three lines of code from an al-
gorithmic point of view, making it one of the most spread technique to approximate
unknown quantities. This ease of implementation makes Monte Carlo methods simple
and practical to solve intractable problems, especially for black-box models.

(b) Randomness as a Strength. The inherent randomness of Monte Carlo methods is
of great benefit for deterministic numerical computation. For example, when employed
for optimization, the randomness permits stochastic algorithms to naturally escape local
optima (Gadat et al., 2018). When computing an integral, a fine tuning of the sampling
mechanism enables a complete exploration of the search space, a feature which is not
usually shared by their deterministic counterparts.

(c) Scalable. Monte Carlo algorithms tend to be simple, flexible, and scalable. Monte
Carlo algorithms are eminently parallelizable, in particular when various parts can be
run independently. This allows the parts to be run on different computers or processors,
therefore significantly reducing the computation time. Similarly in stochastic optimiza-
tion, the use of gradient estimates is the key to treat large-scale learning problems with
a very large number of training samples. For instance, in supervised learning with n
samples in dimension d, the computation of a deterministic gradient scales as O(nd)
while its stochastic version reduces this cost to O(d) operations.

1Monte Carlo methods are a large class of computational algorithms that rely on repeated random
sampling to obtain numerical results. The core idea is to use randomness to solve problems that are
deterministic in principle. For a detailed introduction and overview of Monte Carlo methods, one may
refer to the textbook of Robert and Casella (1999).
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(d) Theoretical justifications. There is a vast body of mathematical and statistical
knowledge underpinning Monte Carlo techniques, e.g. unbiasedness and consistency,
allowing precise statements on the accuracy of a given Monte Carlo estimator or the
efficiency of Monte Carlo algorithms. As detailed in Novak (2016), stochastic integra-
tion rules offer some advantages in terms of complexity rates. Consider a d-dimensional
integrand with bounded s first derivatives and an integration procedure based on n
particles. Compared to deterministic methods with complexity rates in O(n−s/d), the
optimal convergence rate of a random procedure is O(n−1/2n−s/d). This complexity
rate is informative as it advocates the use of random methods over deterministic integ-
ration rules since random methods have some O(n−1/2) gain compared to deterministic
counterparts.

1.1.2 Key examples

To highlight the question of numerical integration and gradient computation, we provide
details in four key examples: reinforcement learning, bayesian inference, variational
inference and computational finance. For each one of them, the explicit form of the
objective function F is given.

Reinforcement Learning. In model-free reinforcement learning (Sutton and Barto,
2018), one learns a policy π – a distribution over actions – which maximises, on average,
the accumulation of long-term rewards. Consider a Markov Decision Process with finite
horizon T . Denote by τ = (s0, a0, s1, a1, . . . , sT−1, aT−1) a trajectory, i.e., a sequence
of states and actions of length T such that s0 ∼ µ, at ∼ π(·|st), st ∼ p(·|st−1, at−1) for
t = 1, . . . , T − 1 and some policy π. The probability density πθ(τ) of the trajectory τ
that is generated by following policy πθ, is given by

πθ(τ) = µ(s0)πθ(a0|s0)
T−1∏
t=1

p(st|st−1, at−1)πθ(at|st).

Introduce R(τ) =
∑T−1

t=0 γtr(st, at) the discounted cumulative return of the path τ . It
is a random variable both because the path τ itself is a random variable and because
even for a given path, each of the rewards sampled in it may be stochastic. Denote by
Tθ the set of all trajectories than can be generated using a policy πθ. In this context,
the performance of the policy πθ can be written as

F(θ) = Eπθ(τ)[R(τ)] =

∫
Tθ
R(τ)πθ(τ)dτ.

The computation of the gradient relies on the well-known policy gradient theorem.
Combined with gradient-based optimization methods, it has been the root of many
successful applications such as playing board games (Mnih et al., 2015; Silver et al.,
2018; Vinyals et al., 2019), robotics (Kober et al., 2013), autonomous driving (Okuda
et al., 2014; Sallab et al., 2017) or biological tasks (Jumper et al., 2021). The gradient
is given by

G = ∇θF(θ) = Epθ(τ)[R(τ)∇θ log pθ(τ)].

For the gradient estimate, the frequentist approach is to use a Monte Carlo approxima-
tion to compute the expectation, which leads to the algorithm REINFORCE (Williams,
1992). After collecting many trajectories τ1, . . . , τn ∼ pθ according to the current distri-
bution pθ, the Monte Carlo gradient estimate is simply an average over the evaluations
R(τi)∇θ log pθ(τi).
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Bayesian Inference. Statistical inference is the process of modelling a phenomenon
given some data. Bayesian inference is a type of statistical inference that takes into
account prior knowledge about the model parameters when fitting a probability model to
observed data. Assume that we have access to some observed variables D generated from
a dominated probabilistic model with density p(D|θ) parameterized by a hidden random
variable θ ∈ Θ that is drawn from a certain prior with density p0. The cornerstone of
Bayesian inference is Bayes’rule which gives the posterior density of the latent variable
θ given the data D

p(θ|D) =
p(D|θ)p0(θ)

p(D)
,

where p(D) =
∫

Θ p(D|θ)p0(θ)dθ is the marginal likelihood or model evidence. The
posterior density allows to quantify the uncertainty of the parameter θ after observing
the data D through quantities of interest such as the posterior mean

∫
Θ θp(θ|D)dθ. More

generally, given a function f defined on Θ, the succes of Bayesian inference methods
relies on the ability to compute integrals of the form∫

Θ
f(θ)p(θ|D)dθ.

Typically, this integral is analytically intractable. It is also difficult to approximate
numerically, especially when the dimension d of the parameter space Θ is large or
when the model is complex. Therefore, it is essential to discover approaches that make
Bayesian inference computationally efficient and able to handle large amounts of data.

Since exact Bayesian inference is often impossible, one may rely on approximate Bayesian
Inference methods, which mainly fall into two broad categories: (i) Monte Carlo meth-
ods (e.g. Adaptive Importance Sampling (Oh and Berger, 1992), Markov Chain Monte
Carlo (Neal, 1993), Sequential Monte Carlo (Del Moral et al., 2006)), that are sampling
methods; (ii) Variational Inference methods (e.g. Variational Bayes (Jordan et al.,
1999), Expectation Propagation (Minka, 2001)), that rely on optimization techniques.
In Bayesian inference, we find yet another thriving area of research where numerical
integration and gradient estimation play a fundamental role.

Variational Inference. Variational inference methods (Jordan et al., 1999) are a set of
techniques for approximating a complex posterior distribution by a simpler variational
density q belonging to some tractable density family Q. These methods can be used in
various problems arising from Bayesian inference and machine learning situations where
there is a need to approximate a difficult distribution.

In variational inference, one has access to some observed variables x = (x1, . . . , xn)
which depend on a set of unobserved or latent variables z = (z1, . . . , zm). The underly-
ing generative process is p(x, z) = p(x|z)p(z) and involves the data distribution p(x|z)
and a prior distribution p(z). The associated posterior distribution p(z|x) is typically
unknown, and is approximated by a variational distribution qθ(z|x) ∈ Q over the latent
space. Here Q denotes a parameterized family of distributions with variational para-
meters θ. For instance, one may think of θ = (µ,Σ) corresponding to the mean µ and
covariance Σ of a Gaussian distribution N (µ,Σ).

Variational inference methods consider the approximation problem as an optimization
problem involving a measure of dissimilarity D between the target posterior distribution
p(z|x) and the variational distribution qθ(z|x)

inf
q∈Q

D(qθ(z|x)||p(z|x)).
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A classical choice is to take D equal to the Kullback-Leibler divergence (Kullback and
Leibler, 1951) between the target and candidate distributions

KL(qθ(z|x)||p(z|x)) =

∫
qθ(z|x) log

qθ(z|x)

p(z|x)
dx = Eqθ(z|x)

[
log

qθ(z|x)

p(z|x)

]
.

This particular choice combined with Bayes’rule yields an objective F , called the vari-
ational free-energy. This function F optimises the log-likelihood log p(x|z) under a
regularization constraint which promotes closeness between the density q and the prior
distribution p(z) (Blei et al., 2017). Instead of minimizing the objective F , one may
equivalently maximise its opposite, known as the Evidence Lower BOund (ELBO) and
defined by

ELBO = −F(θ) = Eqθ(z|x)[log p(x|z)]−KL(qθ(z|x)||p(z)).

The first term describes the probability p(x|z) of the data given the latent variable.
When one maximizes the ELBO then it translates in picking those models qθ(z|x)
in the variational family Q that better predict the data x. The second term, is the
negative KL divergence between our variational model qθ(z|x) and the prior over the
latent variables p(z). When one maximizes the ELBO this term is pushed towards zero
meaning that the two distributions are forced to be close. The optimization procedure
requires the gradient of the free energy with respect to the variational parameters θ :

G = ∇θEqθ(z|x)

[
log p(x|z)− log

qθ(z|x)

p(z)

]
.

Computational Finance. Financial engineering (Glasserman, 2004) is a branch of
applied mathematics and computer science where expectations and gradient estimation
problems are commonly faced. Whether it be for the pricing of derivatives or a risk
analysis, the goal is to evaluate the various potential future outcomes of different invest-
ments based on various pricing and return assumptions, in order to select the strategy
which offers the highest potential yield. In the standard setting of Black-Scholes option
pricing model (Black and Scholes, 1973), the price of an option may be expressed as the
expectation EQ, under the so-called risk-neutral measure, of the payoff discounted to
the present value. Consider a contract of European type, which specifies a payoff f(ST ),
depending on the level of the underlying asset St at maturity t = T with discount factor
γ. The value F of the contract at time t = 0, conditional on an underlying value S0 is
given by

F = EQ[e−γT f(ST )].

Following the sensitivity analysis of Eq.(1.2), one may look for insights on the gradient
value. This gives information to comprehend how future yields could be affected by
different pricing suppositions, and creates a precise measure of the financial hazard
that an investment strategy will have to face. The gradient with respect to S0 is the
Black-Scholes Delta (Chriss and Chriss, 1997)

G = ∇S0EQ[e−γT f(ST )].

Note that, in the Black-Scholes model, the gradient above can be computed in closed
form. However, in more complex settings, e.g. when the payoff function is path-
dependent or when the measure is not log-normal, one faces theoretical intractability
and there is a need for accurate integral estimation (see Chapter 4 for more details).
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1.2 Monte Carlo Integration and Variance Reduction

Motivated by the central question of computing integrals in the form of Eq.(1.1), this
section presents Monte Carlo methods2 for numerical integration with a focus on the
control variates technique. This flagship problem is at the heart of Part II of this thesis
where the goal is to understand the behavior of certain existing algorithms and to design
new ones with thorough analysis of the integration error.

1.2.1 Mathematical background

Let (X ,A, π) be a probability space and let X be a random variable with distribution
π. Let f ∈ L2(π) be a square integrable, real-valued function on X of which one would
like to calculate the integral

π(f) :=

∫
X
f(x)π(dx) = Eπ[f(X)].

When the function f is unknown or no approximation is sufficiently accurate, one may
rely on the following Monte Carlo types of procedures:

• Choose random points, called nodes or particles, X1, . . . , Xn in X , n ∈ N?.

• Evaluate the function at nodes f(X1), . . . , f(Xn).

• Compute an approximation of π(f) based on ((X1, f(X1)), . . . , (Xn, f(Xn))).

Here the integrand f is evaluated exactly, i.e., without any noise. Moreover, the methods
are concerned by stochastic integration methods where the particles are random, in
contrast to deterministic methods where point grids are fixed by the user.

Running any Monte Carlo algorithm is associated to some computational time. In some
cases, for each x ∈ X , the evaluation f(x) can be given by a single elementary operation.
In some other cases, the evaluation of f is heavy. The same can be stated concerning
the generation of random variables. Therefore, for any Monte Carlo method, one shall
have a particular interest in the following aspects: (i) the analysis of the integration
error regarding the number of nodes and (ii) the computation time of the Monte Carlo
estimators.

Let X1, ..., Xn
i.i.d.∼ π be an independent and identically distributed (i.i.d.) random

sample from π. The naive Monte Carlo estimator α̂mc
n (f) of π(f) is given by the

empirical mean

α̂mc
n (f) = πn(f) :=

1

n

n∑
i=1

f(Xi). (1.3)

Using the strong law of large numbers and relying on the central limit theorem, the
asymptotics of the standard Monte Carlo estimate can be easily stated.

2From a historical point of view, an early variant of the Monte Carlo method can be seen in
the Buffon’s needle experiment (1733), in which the mathematical constant π can be estimated by
dropping needles on a floor made of parallel and equidistant strips. Later on, in the 1930s, Enrico
Fermi experimented with the Monte Carlo method while studying neutron diffusion but did not publish
anything on it. The modern version of the Monte Carlo method was first introduced in Metropolis and
Ulam (1949) by John von Neuman, Nicholas Metropolis and Stanislaw Ulam while working on nuclear
weapons projects at the Los Alamos National Laboratory.



CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND
CONTRIBUTIONS 24

Proposition 1.1. Assume π(|f |) <∞, π(|f |2) <∞ and define σ2(f) = π[(f −π(f))2].
The Monte Carlo estimator α̂mc

n (f) of π(f) is unbiased, strongly consistent and has
variance σ2(f)/n. By the central limit theorem, we have the convergence in distribution:

√
n(α̂mc

n (f)− π(f))
d−→

n→+∞
N (0, σ2(f)).

The classical estimator σ̂2
n(f) of σ2(f) is σ̂2

n(f) = n−1
∑n

i=1(f(Xi) − πn(f))2. Using
Slutsky’s Lemma, one can extend the previous proposition to the analysis of σ̂2

n(f) and
obtain the convergence in distribution of (

√
n/σ̂n(f))(α̂mc

n (f)−π(f)) towards the stand-
ard normal law. This last point if useful to build asymptotically consistent confidence
intervals.

Monte Carlo integration typically has an error variance of the form σ2/n. One way to
reduce the error is by sampling with a larger value of n, but the computing time grows
with n. Sometimes it is possible to find a way to reduce σ instead. To do this, a new
Monte Carlo problem is constructed with the same expected value as the original one
but with a lower σ. Methods to do this are known as variance reduction techniques and
are developed in Chapters 2 to 4 where the focus is on control variates and adaptive
importance sampling. The next section presents the general concepts behind these two
variance reduction techniques. First, the method and key questions of control variates
are provided. Then the framework of (adaptive) importance sampling is presented.
Finally, some remarks about the complexity rates of control variates are provided as
these methods not only allow to perform variance reduction but also to accelerate the
convergence speed of standard Monte Carlo estimates.

1.2.2 Variance reduction techniques

Variance reduction with Control Variates. Control variates is based on the follow-
ing one-sentence principle: "if you wish to evaluate the (unknown) integral of a certain
function you better use functions of which you know the integral". The control vari-
ates method consists in incorporating this new piece of information, the known integral
value of some control functions, in the basic Monte Carlo framework. The aim is to
perform variance reduction. The basic ideas of control variates are now introduced.
These techniques are developed with more details in the next Chapters 2 to 4.

Let ((X1, Z1), . . . , (Xn, Zn)) be an independent and identically distributed sequence of
random variables in X × R and assume that f : X → R is such that E[|f(X1)|] < ∞
and that E[Z1] is known. The aim of the control variate method is to estimate π(f) =
E[f(X1)] using the knowledge of E[Z1]. Since the latter is known, one can assume
without any loss of generality that E[Z1] = 0. The control variates class of estimator is

α̂(cv)
n (f) =

1

n

n∑
i=1

(f(Xi)− Zi). (1.4)

The control variates is an extension of Monte Carlo, as taking Z1 = 0 recovers the
Monte Carlo estimate. It also includes antithetic variates methods, when taking Z1 =
(f(X1)−(f ◦ϕ)(X1))/2 where ϕ : X → X is such that ϕ(X) has the same distribution as
X. So far one cannot be sure that the introduction of control variates (Zi) reduces the
variance over Monte Carlo as it is not guaranteed that Var(f(X1)−Z1) ≤ Var(f(X1)).
Hence it makes sense to parameterize the control variate estimate in order to play
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on the influence of the control variates of the estimation. In many examples, one
should deal with the observation of several control variates Z1, . . . , Zn where for each
i = 1, . . . , n, Zi ∈ Rm. This leads to the following control variates estimate

α̂(cv)
n (f, β) =

1

n

n∑
i=1

(f(Xi)− β>Zi) (1.5)

where β ∈ Rm. Note that the special choice β = 0 recovers the standard Monte Carlo
estimate. According to the variance, the best possible choice of β is the one associated
to the variance term σ2

m(f) = arg minβ∈Rm var(f(X)− β>Z).

By Hilbert projection theorem, the optimal coefficient β? is the solution of the normal
equation E[Z1Z

T
1 ]β? = E[Z1f(X1)]. Intuitively, one shall see that the integration error

depends on the accuracy of the approximation in L2(π) of (f − π(f)) by elements of
the form β>Z. For visual interpretation, this is illustrated in Figure 1.1 below which
depicts the orthogonal projection of (f −π(f)) onto the linear space of control variates.

Figure 1.1 – Visualization of L2-orthogonal projection.

In practice, one may define β̂n as the solution of an Ordinary Least Squares (OLS)
problem through the empirical normal equations

(Zn,mZ
>
n,m)β̂n = Z>n,mfn,

where Zn,m = (Z1− Z̄, . . . , Zn− Z̄)>, fn = (f(X1), . . . , f(Xn))> and Z̄ = n−1
∑n

i=1 Zi.
Among the solutions of the previous equations, we define β̂n as

β̂n = (Z>n,mZn,m)+Z>n,mfn. (1.6)

The resulting control variate estimate is obtained by injecting β̂n in Eq.(1.5). The
asymptotics of this Monte Carlo estimate are given in the next Proposition. Interest-
ingly, the estimation of β̂n has no effect on the asymptotics.

Proposition 1.2. Suppose that E[|f(X1)|] <∞, E[|f(X1)Zk,1|] <∞ for k = 1, . . . ,m

and E[Z1Z
>
1 ] is invertible. The Monte Carlo estimator α̂(cv)

n (f, β̂n) of π(f) is biased
and strongly consistent. If moreover E[|f(X1)|2] < ∞ then we have the convergence in
distribution √

n(α̂(cv)
n (f, β̂n)− π(f))

d−→
n→+∞

N (0, σ2
m(f)).

The associated variance estimate is σ̂2
n(f) = n−1

∑n
i=1(f(Xi) − β̂>n Zi − α̂(cv)

n (f, β̂n))2.
Similarly to the standard Monte Carlo estimate, one may apply the strong law of large
numbers to obtain the almost sure convergence of σ̂2

n(f) towards σ2
m(f) and derive
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asymptotically consistent confidence intervals using the asymptotic normality of the
rescaled process (

√
n/σ̂n)(α̂

(cv)
n (f, β̂n)− π(f)).

Interestingly, when using only the first ` out of n control variates, where ` ∈ {0, 1, . . . , n},
it holds σ2

n(f) ≤ σ2
` (f). In terms of asymptotic variance, it therefore never harms to add

more control variates. However, in practice, the coefficient β of Eq.(1.6) may become
numerically unstable as a growing number of control variates is used.

Asymptotically, the OLS error is bounded by the MC error and is proportional to the
L2 approximation error of the integrand in the linear span of control variates (Glynn
and Szechtman, 2002). In combination with well-known approximation results in Lp-
spaces (Rudin, 2006), this representation of the OLS error suggests to use an increasing
number of control variates. Indeed, in Portier and Segers (2019) it is shown that when
m grows with n, the OLS error rate can be faster than 1/

√
n.

However, when based on a large number of control variates, the OLS suffers from
two classical problems common for least squares methods: (i) numerical instabilities
when the control variates are nearly collinear, and (ii) a computational complexity in
m3 + nm2, which might be prohibitive. These difficulties raise the following research
questions.

Research Question #1

How to solve the numerical instability and computational complexity problems
when using OLS-based Monte Carlo methods with a large number of control
variates ? To what extent can one quantify regularization techniques to address
the underlying ill-conditioned regression problems ?

Importance sampling. Importance sampling (IS) refers to a collection of Monte
Carlo methods where a mathematical expectation with respect to a target distribution is
approximated by a weighted average of random draws from another distribution. Recall
that the problem is to find the expectation π(f) = Eπ[f(X)] where X is drawn from a
probability density function π. Then for any probability density q that satisfies q(x) > 0
whenever f(x)π(x) 6= 0, one can make a multiplicative adjustement to compensate
sampling from q instead of π,

Eπ[f(X)] =

∫
X
f(x)π(x)dx =

∫
X

π(x)

q(x)
f(x)q(x)dx = Eq[w(X)f(X)].

The distribution q is called the importance distribution and the adjustement factor
w(x) = π(x)/q(x) is called the likelihood ratio. A particular interest should be dedicated
to the optimal choice of q.

Let X1, ..., Xn
i.i.d∼ q, then the importance sampling estimate is given by

α̂(is)
n (f) =

1

n

n∑
i=1

w(Xi)f(Xi). (1.7)

In many applications, the density π is known only up to a normalizing constant. In
that case, one may rely on the normalized importance sampling estimate given by

α̃(is)
n (f) =

∑n
i=1w(Xi)f(Xi)∑n

i=1w(Xi)
. (1.8)
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Define -whenever these quantities are finite - the variances v2(f, π) and ṽ2(f, π) associ-
ated to the importance sampling estimates α̂(is)

n (f) and α̃(is)
n (f) respectively, i.e.

v2(f, π) = Eq[(w(X)f(X)− πf )2] and ṽ2(f, π) = Eq[w(X)2(f(X)− πf )2].

Similarly to the previous Monte Carlo estimates, the asymptotics of the importance
sampling estimates are described by the strong law of large numbers and a central limit
theorem.

Proposition 1.3. Suppose that π(|f |) < ∞. The Monte Carlo estimator α̂(is)
n (f) of

π(f) is unbiased and strongly consistent. The Monte Carlo estimator α̃(is)
n (f) of π(f)

is biased and strongly consistent. If π(|f |2) <∞ then we have

√
n(α̂(is)

n (f)− π(f))
d−→

n→+∞
N (0, v2(f, π)),

√
n(α̃(is)

n (f)− π(f))
d−→

n→+∞
N (0, ṽ2(f, π)).

Adaptive Importance Sampling (AIS). In adaptive importance sampling, Eπ[f ] is
again estimated by a weighted mean over a sample of random particlesX1, . . . , Xn in Rd.
Since appropriate sampling densities naturally depend on f and π, one generally cannot
simulate from them. They are then approximated in an adaptive manner by a family of
tractable densities (qi)i≥0 that often evolve towards a density qopt that optimizes some
criterion. The adaptive choice of a sampling policy lies at the heart of many fields of
machine learning where former Monte Carlo experiments guide the forthcoming ones.
A classical approach is to look for sampling densities that converge towards the target
density π. This is illustrated in the one dimensional example of Figure 1.2 below which
shows the evolution of the samplers q1, q2, . . . , qT and a target density π.

(x)
q1(x)

(x)
q2(x)

(x)
qT(x)

Figure 1.2 – Evolution of sampling policy in Adaptive Importance Sampling.

While the starting density q0 is fixed, the density qi for i ≥ 1 is determined in function
of the particles X1, . . . , Xi already sampled; think for instance of a parametric family,
where the parameter of qi is a function of X1, . . . , Xi. Given the particles X1, . . . , Xi,
the next particle, Xi+1, is then drawn from qi. Formally, let (Xi)i≥1 be a sequence of
random vectors on Rd defined on some probability space (Ω,F ,P). The distribution of
the sequence (Xi)i≥1 is specified by its policy as defined below.

Definition 1.4 (Policy). A policy is a random sequence of probability density func-
tions (qi)i≥0 on Rd adapted to the σ-field (Fi)i≥0 defined by F0 = {∅,Ω} and Fi =
σ(X1, . . . , Xi) for i ≥ 1. The sequence (qi)i≥0 is the policy of (Xi)i≥1 whenever Xi has
density qi−1 conditionally on Fi−1.
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The (normalized) adaptive importance sampling estimate of Eπ[f ] is then defined as

α̂(ais)
n (f) =

∑n
i=1wif(Xi)∑n

i=1wi
where wi =

π(Xi)

qi−1(Xi)
for i = 1, . . . , n. (1.9)

The sampling weights wi reflect the fact that Xi has been sampled from qi−1 rather
than from π. The division by

∑n
i=1wi rather than by n has two benefits: first, the

integration is exact for constant integrands, and second, π needs to be known only up
to a proportionality constant, an advantage for Bayesian inference.

Since updating the density qi at each iteration may be computationally expensive, it
is customary to hold it fixed over a pre-determined number of iterations. Writing
n = n1 + · · · + nT in terms of positive integers (nt)

T
t=1 called the allocation policy, the

AIS estimate then becomes

α̂
(ais)
T (f) =

∑T
t=1

∑nt
i=1wt,if(Xt,i)∑T

t=1

∑nt
i=1wt,i

where wt,i =
π(Xt,i)

qt(Xt,i)
(1.10)

for t = 1, . . . , T and i = 1, . . . , nt. At stage t, the particles Xt,1, . . . , Xt,nt are sampled
independently from qt−1, while all particles sampled up to and including stage t are
used to determine the sampling density qt for stage t + 1. It is easy to see that the
two formulations of the AIS estimate are equivalent: (1.9) arises from (1.10) by setting
nt = 1 for all t, while (1.10) can be obtained from (1.9) by constructing the policy
in such a way that the densities qi do not change within integer intervals of the form
{0, . . . , n1 − 1}, {n1, . . . , n1 + n2 − 1}, and so on. While the shorter representation
(1.9) is more convenient for theoretical purposes, formulation (1.10) is the one used in
practice (see Section 3.6 in Chapter 3).

Interestingly, the AIS estimate (1.9) may be seen as a weighted least-squares estimate
minimizing the loss function a 7→∑n

i=1wi(f(Xi)− a)2. This property is key to under-
stand the links between control variates and adaptive importance sampling. To the best
of found knowledge, the existing control variates methods do not account for sequential
changes in the particle distribution as is the case in adaptive importance sampling.

Research Question #2

While the design of algorithms with adaptive policies has been of major interest
recently, only a few studies have focused on using control variates to reduce
the variance. How can the benefits of control variates technique and adaptive
importance sampling be combined ?

Complexity Rates. The control variates technique not only allows to perform vari-
ance reduction but also to accelerate the convergence speed of standard Monte Carlo
estimators. As detailed in Novak (2016), the complexity of integration algorithms may
be analyzed through the convergence rate of the error. Any randomized procedure
based on n particles yields an estimate α̂n(f) of the integral π(f). In this context, the
error of the procedure is defined as E[|α̂n(f) − π(f)|2]1/2. For the specific problem of
integration with respect to the uniform measure over the unit cube [0, 1]d with d ≥ 1,
the complexity rate of randomized methods for Lipschitz integrands is known to be
O(n−1/2n−1/d) (see Novak (2016)). Furthermore, when the integrand has bounded s
first derivatives, the convergence rate becomes O(n−1/2n−s/d).
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In Portier and Segers (2019), when using m control variates, the convergence rate is
O(n−1/2m−s/d) where s is the regularity of f . The associated computation of optimal
control variates relies on ordinary least squares regression. To avoid ill-conditioning and
for numerical stability, it requires that m should be of a smaller order than n and thus,
it prevents from achieving the optimal rate. Relying on some control function construc-
ted in a reproducing kernel Hilbert space, Oates et al. (2017) derived an acceleration
compared to the naive

√
n-convergence rate and obtained O(n−7/12) for a specific class

of functions.

Another reliable technique to improve the rate of convergence of standard Monte Carlo
is stratification. This technique consists in partitioning the space and sampling over
each element of the partition. It has allowed to improve the convergence rate of Monte
Carlo estimates (Haber, 1966, 1967) and to derive a general framework called stochastic
quadrature rules (Haber, 1969). Recently, Haber’s work has been extended to take
advantage of higher smoothness in the integrand (Chopin and Gerber, 2022). To the
best of found knowledge, the works of Haber (1966) and Chopin and Gerber (2022)
are the only ones achieving the best rate of convergence for Lipschitz function and for
general regularity space. Observe that the methods in Haber (1966) and in Chopin and
Gerber (2022), even though they achieve the optimal convergence rate, are only valid
for integration over the unit cube. In addition they involve a geometric number (`d)
of evaluations of the integrand f which is problematic in practice for applications with
small computational budget as in complex bayesian models. All these remarks motivate
the following research question.

Research Question #3

Relying on control variates techniques, how to build an efficient Monte Carlo
estimate that reaches the optimal complexity rate of randomized methods for
Lipschitz integrands ?

All the Monte Carlo estimates presented in this section are now summarized in the
Table below. Note that the sampling process of control variates methods is the same as
the one of standard Monte Carlo whereas importance sampling estimates heavily rely
on particular sampling densities.

Method Particles Estimate
Standard Monte Carlo Xi ∼ π α̂

(mc)
n (f) = 1

n

∑
i f(Xi)

Control Variate Monte Carlo Xi ∼ π α̂
(cv)
n (f) = 1

n

∑
i(f(Xi)− β̂>Zi)

Importance Sampling Xi ∼ q α̂
(is)
n (f) =

∑
iwif(Xi)/

∑
iwi

Adaptive Importance Sampling Xt,i ∼ qt−1 α̂
(ais)
n (f) =

∑
t,iwt,if(Xt,i)/

∑
t,iwt,i

Table 1.1 – Summary of Monte Carlo estimates α̂n(f).
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1.3 Machine Learning and Stochastic Optimization

In order to learn the optimal parameter of the objective F defined in Eq.(1.1), one needs
to rely on powerful optimization algorithms. The success of certain optimization meth-
ods for machine learning has inspired great numbers in various research communities
to design new methods that are more widely applicable. In that perspective, it is the
goal of Part III to study general stochastic optimization methods (Chapter 5) and to
provide new frameworks to leverage structure in data (Chapter 6).

1.3.1 Mathematical foundations
From a general perspective, the goal of machine learning is to learn a function f : X → Y
from an input space X to an output space Y. The specificity of machine learning is that
the learning comes from data: one has access to a finite set of samples (zi)1≤i≤n ∈ Zn
which are used to learn the function f . Roughly speaking, the complexity of machine
learning problems is summarized through two main quantities:
• dimension d: the dimension of the input space X .
• sample size n: the number of available data points to learn the function f .

In modern machine learning tasks, the scale is large, meaning that the number n of
samples is large, and the dimension d of the data points is also large. One may think for
instance at a dataset of images composed of thousands or millions of images (n ∼ 106),
each one of them being represented as a vector of pixels which are all RGB-encoded in
dimension d = 256× 256× 256 = 224.

For simplicity, the focus is on problems that arise in the context of supervised learning
(Hastie et al., 2009); i.e. where the data takes the form of input-output pairs zi = (xi, yi)
and the goal is to predict an output y = f(x) ∈ Y from an observation x ∈ X . For
example, one may want to predict whether a patient will survive (binary classification
with Y = {−1; +1}) given its medical record and treatment or predict the price of an
asset given customer data (regression with Y = R). The complexity of the underlying
problem is encapsulated into a probability distribution π to which we have limited access
through the data: this is the statistical learning framework.

In this setting, the data samples z1, . . . , zn are assumed to be realisations of a random
variable Z on Z with the associated probability measure π on Z. A very standard
assumption – which may not be satisfied in practice – is that the data points z1, . . . , zn
are independent and identically distributed from Z. In the case of supervised learning,
the samples (xi, yi) are assumed to be drawn from a joint distribution Z = (X,Y ).

Generalization error. The goal is to find a good predictor f : X → Y such that
f(X) is a good approximation of Y . For that matter, denote by M(X ,Y) the set of
measureable functions from X to Y. The quality of the approximation of a prediction
f(x) compared to y ∈ Y is defined through the notion of loss function. A loss function
is a map ` : (X × Y) ×M(X ,Y) → R+ such that `((x, y), f) quantifies the error of
approximating y by f(x). The risk or generalization error of a predictor f is then

∀f ∈M(X ,Y), R(f) := Eπ[`((X,Y ), f)], (1.11)

where π is the joint distribution of Z = (X,Y ). With this quantity of risk, one is
interested in finding the optimal predictor f? ∈ M(X ,Y) which gives the smallest
possible risk

R(f?) = inf
f∈M(X ,Y)

R(f). (1.12)
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Losses. The choice of the loss ` in Eq.(1.11) defines what one considers to be a good
inference from data and depends on the problem we are considering. Two classical su-
pervised learning problems and their associated losses are now highlighted. Both are
considered in numerical experiments of Part III:

(i) Regression and square loss. In this case, the output Y takes value in Y = R or more
generally a subset of Rk and the loss is `x,y(f) = ‖y−f(x)‖2. This is the most standard
loss for regression and solving Eq.(1.12) is called the least squares regression problem.
Observe that as soon as Y ∈ L2 there exists a solution given by the projection of Y onto
L2(X , πX ) seen as a closed linear subspace of L2(X × Y, π), also called the conditional
expectation of Y given X, i.e., f?(X) = E[Y |X].

(ii) Binary classification. In this case, Y takes value in Y = {−1,+1} and the natural
loss is the 0/1 penalization `x,y(f) = 1f(x) 6=y = 1yf(x)<0. However this loss is neither
smooth nor convex and can be hard to optimize. Instead, it is easier to allow f to
be real-valued and predict the output according to the sign of f(x). If f is linearly
parameterized, the predictor f is called a separating hyperplane as {f(x) = 0} defines
the boundary between the two classes. More generally, classical losses are of the form
ϕ(yf(x)) where ϕ is a surrogate for 1u<0. This include the Hinge loss defined by ϕ(u) =
max{1−u; 0} which is convex but not smooth and the logistic loss ϕ(u) = log(1 + e−u)
which is smooth and convex.

Empirical Risk. The expression of the expected risk in Eq.(1.11) relies on an ex-
pectation which is in general analytically intractable. Thus, in practice, one seeks the
solution of a problem that involves an estimate R̂ of the true risk R. One has access to
the distribution of Z only through the samples z1, . . . , zn. Therefore, one may replace
the data distribution π by its empirical counterpart π̂ := (1/n)

∑n
i=1 δzi and define the

so-called empirical risk as

R̂n(f) := Eπ̂[`Z(f)] =
1

n

n∑
i=1

`zi(f). (1.13)

Starting from the ideal problem of expected risk minimization (1.12), we have come
to the empirical risk problem (1.13) which is still to be solved. This is the role of
optimization algorithms. We adopt the standard notation from optimization where f
is no longer the predictor but denotes the objective function to optimize and d is the
dimension of the set on which we perform the optimization procedures.

1.3.2 (Stochastic) Optimization Methods

From a general standpoint, an optimization algorithm aims at solving infθ∈Θ f(θ) where
Θ ⊂ Rd. In view of the empirical risk minimization paradigm of Eq.(1.13), the objective
function usually takes the form of a finite-sum f(θ) =

∑n
i=1 fi(θ) where the cost in time

and memory of computing a gradient of fi is O(d). Optimization algorithms may
vary according to the way we access the function f , the structure, the regularity and
convexity properties, the time and space complexity and the means of computations.
We first present (stochastic) first-order methods and their adaptive variants which are
the optimization workhorse in machine learning. Then we discuss the use of second
order methods in machine learning.



CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND
CONTRIBUTIONS 32

First-order methods. The most well-known method in optimization is gradient des-
cent (GD). Starting from θ0 ∈ Θ, the idea is simply, at each iteration t, to evaluate the
gradient ∇f(θt) and to go in the direction −γt+1∇f(θt) with a stepsize γt > 0. This is
illustrated in Figure 1.3 below which depicts the trajectory followed by a gradient-based
optimization algorithm. The update rule is

θt+1 = θt − γt+1∇f(θt). (1.14)

The cost of each iteration here is a priori O(nd) in time and O(d) in memory. Since in
large scale learning both n and d may be large, the computation of the full gradient may
be prohibitive. Whereas traditional gradient-based methods may be effective for solving
small-scale learning problems in which a batch approach may be used, in the context of
large-scale machine learning it has been a stochastic algorithm—namely, the stochastic
gradient descent (SGD) method proposed by Robbins and Monro (1951) — that has
been the core strategy of interest. This algorithm uses a single stochastic gradient at
each iteration and is defined by the update rule

θt+1 = θt − γt+1∇fj(θt), (1.15)

where j is selected uniformly at random in {1, . . . , n} at each iteration. The cost of
an iteration is thus reduced to only O(d) compared to previous O(nd) since we access
only one gradient of the fi. Another stochastic approach, referred to as mini-batching
(Gower et al., 2019), consists in generating uniformly a set of k indices B = {i1, . . . , ik}
and computing the gradient as the average over this batch

∑
i∈B∇fi(θt)/|B|.

In view of performing noise reduction, one may consider gradient aggregation by storing
gradient estimates corresponding to samples employed in previous iterations, updating
one (or some) of these estimates in each iteration, and defining the search direction as
a weighted average of these estimates. Other noise reduction methods include dynamic
sampling which gradually increases the minibatch size used in the gradient computation,
and iterate averaging which maintains an average not of the gradient but of the iterates
computed during the optimization process.

Figure 1.3 – A visualization of the ‘route’ followed by a gradient optimization algorithm
across a loss surface as it is trained (Amini et al., 2018). At each iteration t, one
evaluates ∇f(θt) and follows the direction −γt+1∇f(θt) with a stepsize γt > 0.
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The paper by Robbins and Monro represents a landmark in the history of numerical
optimization methods. Together with the invention of back propagation (Rumelhart
et al., 1986), it also represents one of the most notable developments in the field of
machine learning. Although widely used in practice, the standard SGD algorithm has
at least two limitations:

(i) The choice of the learning rate is generally difficult; large learning rates result in
large fluctuations of the estimate, whereas small learning rates induce slow convergence.
(ii) A common learning rate is used for every coordinate despite the possible discrep-
ancies in the values of the gradient vector’s coordinates.

To address these limitations, one may look at second-order methods which make use of
the information brought in by the curvature of the objective function f and can solve
ill-conditioning. Furtheremore, the learning rate sequence may be replaced by diagonal
rescaling methods which adjust the learning rate coordinate-wise, as functions of the
past values of the gradient evaluations.

Second-order methods. The canonical second order algorithm is the Newton method
and follows the update rule

θt+1 = θt − γt+1∆t, ∆t = ∇2f(θt)
−1∇f(θt), (1.16)

where γt > 0 is still the learning rate and ∆t is a renormalized gradient step called
Newton step. Intuitively, when the gradient g is stable, g>∇2f(θ)g is small and the
newton method renormalizes the direction as if multiplying by large stepsize. On the
contrary, in directions where the gradient changes quickly, the Newton method renor-
malizes the direction as if multiplying by a small stepsize. Computing one Newton step
is computationally expensive : computing the Hessian at a given point usually takes
time of order O(nd2), and computing its inverse takes time O(d3). This is prohibitive
both in terms of storage capacity and of time complexity. To overcome this issue, there
exists a wide variety of stochastic second-order methods that are Hessian-free or that
attempt to mimic the behavior of a Newton algorithm through first-order information
computed over sequences of iterates. These include natural gradient, Quasi-Newton,
Gauss-Newton, Hessian-free Newton and related algorithms that employ only diagonal
rescalings. A schematic overview of all the mentioned optimization methods is presented
in Figure 1.4 and further details can be found in Bottou et al. (2018).

Diagonal rescaling methods. This modification can be seen as a diagonal precon-
ditioning of the stochastic gradient in SGD based on past observed gradients. The
independent works of Duchi et al. (2011) and McMahan and Streeter (2010) in the
context of online convex optimization led the way to a new class of algorithms that are
referred to as adaptive gradient methods. As proposed by Duchi et al. (2011), AdaGrad
consists of dividing the learning rate by the square root of the sum of previous gradients
squared componentwise. The idea is to give larger learning rates to highly informative
but infrequent features instead of using a fixed predetermined schedule. This is particu-
larly relevant in applications such as click through rate prediction for online advertising
and text classification where many features only occur rarely with only a few number
of non-zero features while few occur very often.

Both (stochastic) second-order methods and adaptive methods can be written in a
general form as Conditioned SGD, which consists in multiplying the gradient estimate
by some random conditioning matrix Ct at each iteration leading to the update rule

θt+1 = θt − γt+1Ct∇fj(θt), Ct ∈ Rd×d. (1.17)
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Figure 1.4 – Schematic of a two-dimensional spectrum of optimization methods for
machine learning. The horizontal axis represents methods designed to control stochastic
noise; the second axis, methods that deal with ill conditioning (Bottou et al., 2018).

Observe that randomness is introduced by both the gradient estimate and the condi-
tioning matrix. This general framework can lead to better performance as shown in
several recent studies ranging from natural gradient (Amari, 1998; Kakade, 2002) and
stochastic second-order methods with quasi-Newton (Byrd et al., 2016) and (L)-BFGS
methods (Liu and Nocedal, 1989) to diagonal scalings and adaptive methods such as
AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), Adam (Kingma and
Ba, 2014) and AMSGrad (Reddi et al., 2018).

Interestingly, the optimal choice according to the asymptotic variance is the inverse of
the Hessian matrix at optimal point, i.e., Ck = ∇2f(θ?)−1; see (Benveniste et al., 2012,
Chapter 3) or Section 5.2.3 in Chapter 5. With this matrix, the rate of convergence
remains the same and only the asymptotic variance can be reduced; e.g., Agarwal et al.
(2009). Important questions which are still open to the best of found knowledge, are
the following.

Research Question #4

What is the asymptotic behavior of general Conditioned -SGD methods and can
the optimal variance be achieved by such an algorithm for non-convex f ?

Coordinate Descent methods. The idea of coordinate descent is to decompose a
large optimization problem into a sequence of one-dimensional optimization problems.
The algorithm was first described for the minimization of quadratic functions by Gauss
and Seidel in Seidel (1873). At each iteration, the algorithm determines a coordinate or
coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over
the corresponding coordinate hyperplane while fixing all other coordinates or coordinate
blocks.

Coordinate Descent (CD) algorithms have become unavoidable in modern machine
learning because they are tractable (Nesterov, 2012) and competitive to other methods
when dealing with key problems such as support vector machines, logistic regression,
LASSO regression and other `1-regularized learning problems (Wu et al., 2008; Fried-
man et al., 2010). Moreover, the decomposition into small subproblems means that
only a small part of the data is processed at each iteration and this makes coordinate
descent easily scalable to high dimensions. Starting from the conditioned SGD update
rule in Eq.(1.17), one may look at particular instances of the conditioning matrix Ct
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and restrict the study to sparse diagonal matrices. Such a choice will produce a co-
ordinatewise version of the standard SGD algorithm and allows to select the coordinate
of the gradient estimates in an adaptive manner.

On the one hand, efficient forms of CD methods rely on a deterministic procedure (Nu-
tini et al., 2015) which adapts to the underlying structure in data at the expense of
higher calculation and thus, may be costly. On the other hand, stochastic gradient des-
cent (SGD) methods are computationally efficient but often treat all coordinates equally
and thus, may be sub-optimal. In the spirit of adaptive schemes and by combining the
best of both worlds, we are interested in the following research question.

Research Question #5

Can we derive, within a noisy gradient framework, a general stochastic coordinate
descent method with a particular selection strategy ?

1.4 Summary of Contributions

Motivated by the different research questions (RQ) mentioned in the previous sections,
we now provide a detailed overview of the contributions of this thesis where each chapter
is dedicated to one of the research direction.

Part II: Monte Carlo methods and Variance Reduction

• Chapter 2: Control Variate Selection for Monte Carlo Integration(RQ#1)

To deal with the computational issues of using a large number of control variates, it
has been proposed in South et al. (2022) to regularize the OLS estimate by adding
a `1-penalty term in the minimization problem, just as in the LASSO (Tibshirani,
1996). Simulation results in South et al. (2022) show that this approach, referred to
as LASSO, provides great improvements in practice. However, those practical findings
are not supported by an asymptotic error rate nor by a non-asymptotic error bound.
The main objective of this chapter is to provide a non-asymptotic theory for the use of
control variates in Monte Carlo simulations.

Contributions. The main contributions are as follows.

(1) A new method called LSLASSO is proposed. In the spirit of the procedure of
Belloni and Chernozhukov (2013), it consists in selecting the best control variates
via the LASSO, using subsampling to decrease the computation time, and then
to apply OLS with the selected controls.

(2) Support recovery : the LASSO procedure is shown to select the correct control
variates with large probability.

(3) Concentration inequalities are derived for the OLS, LASSO and LSLASSO in-
tegration errors. The one for the OLS highlights a compromise between the ap-
proximation error of the integrand in the linear span of control variates and the
multicollinearities between the control variates. The ones for (LS)LASSO show
significant improvements regarding the effects of multicollinearity.
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The approach for the proofs combines well known sub-Gaussian concentration inequal-
ities (Boucheron et al., 2013a) along with a lower bound for the smallest eigenvalue of
an empirical Gram matrix, based on a Chernoff inequality for matrices (Tropp, 2015,
Theorem 5.1.1).

• Chapter 3: A Quadrature Rule combining Control Variates and Adaptive Im-
portance Sampling(RQ#2)

The use of control variates is a well studied variance-reduction technique (Glynn and
Szechtman, 2002; Owen and Zhou, 2000). The benefits can be established theoretically
in terms of error bounds (see Oates et al. (2017) and chapter 2), weak convergence
(Portier and Segers, 2019), the excess risk (Belomestny et al., 2022) and even uniform
error bounds over large classes of integrands (Plassier et al., 2020). Importance sampling
and control variates in case of a Gaussian target density is explored in Jourdain (2009).
Recently, the procedure in Kawai (2020) incorporates control variates and is said to
involve adaptive importance sampling, but in fact the particles are always sampled
from the uniform distribution on the unit cube. To the best of found knowledge, the
existing control variate methods do not account for sequential changes in the particle
distribution as is the case in AIS. The main goal of this chapter is to develop a framework
to combine control variates and adaptive importance sampling.

Contributions. The contributions may be summarized as follows:

(1) A simple weighted least squares approach is proposed to improve the procedure
of sequential algorithms with control variates. The proposed AISCV estimate
significantly improves the accuracy of the initial algorithm, both theoretically
and in practice.

(2) Several theoretical properties of the AISCV estimate are provided. In particular,
we derive a probabilistic, non-asymptotic bound on the integration error.

(3) Practical considerations and implementations of the control variates are presented
along with convincing numerical experiments.

The proposed approach to use control variates within the sequential AIS framework
relies on the ordinary least squares expression of control variates (see for instance Portier
and Segers (2019)). To take care of the policy changes, some re-weighting must be
applied. The AISCV estimate of the integral

∫
fπ dλ is defined as the first coordinate

of the solution to the weighted least squares problem

(α̂n, β̂n) = arg min
a∈R,b∈Rm

n∑
i=1

wi

(
f(Xi)− a− b>h(Xi)

)2
,

with wi the importance weights from before. The AISCV estimate has several interesting
properties:
(a) Whenever g is of the form α+β>h for some α ∈ R and β ∈ Rm, the error is zero,

i.e., α̂n = α =
∫
fπ dλ.

(b) The estimate takes the form of a quadrature rule α̂n =
∑n

i=1 vn,if(Xi), for quad-
rature weights vn,i that do not depend on the function f and that can be computed
by a single weighted least squares procedure.

(c) It can be computed even when π is known only up to a multiplicative constant.
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Point (a) suggests that when the linear combinations of the functions hk span a rich
function class, the integration error is likely to be small. Point (b) implies that multiple
integrals can be computed just as easily as a single one. Point (c) shows that the
approach is applicable for Bayesian computations. In addition, the control variates
can be brought into play in a post-hoc scheme, after generation of the particles and
importance weights, and this for any AIS algorithm.

The main theoretical result of the chapter is a probabilistic, non-asymptotic bound on
α̂n−α. Under appropriate conditions, the bound scales as τ/

√
n, where τ2 is the scale

constant in a sub-Gaussian tail condition on the error variable ε = f − α − β>h for
(α, β) = arg mina,b

∫
(f − a− b>h)2π dλ. Note that ε has the smallest possible variance

one could get using control variates h. As a consequence, when the space of control
variates is well suited for approximating g, the AISCV estimate will be highly accurate.
Also, our bound depends only on the linear function space spanned by the control
variates h1, . . . , hm, not on the particular basis chosen in that space.

The results rely on martingale theory, in particular on a concentration inequality for
norm-subGaussian martingales in Jin et al. (2019). In the course of the proof, we
develop a novel bound on the smallest eigenvalue of certain random matrices, extending
an inequality from (Tropp, 2015) to the martingale case.

• Chapter 4: Speeding up Monte Carlo Integration: Nearest Neighbors Estimates
as Control Variates(RQ#3)

This chapter deals with the use of control variates from complexity rates point of view.
As mentioned in section 1.2, the methods in Haber (1966) and in Chopin and Ger-
ber (2022), even though they achieve the optimal convergence rate, are only valid for
integration over the unit cube. In addition they involve a geometric number (kd) of eval-
uations of the integrand f which is problematic in practice for applications with small
computational budget as in complex bayesian models. Interestingly, as mentioned in
Chopin and Gerber (2022), their stratification method is related to a specific control
variates construction relying on a piecewise constant control function which has a very
low bias compared to traditional regression estimate.

This precise idea of using an estimate with small bias is the starting point of this chapter.
It is relevant to the considered framework because the function f is accessible without
noise. Note that this kind of estimates – with small bias – has also been successfully
used in the related topic of adaptive rejection sampling (Achddou et al., 2019) allowing
to reach optimal rate. The main goal of this chapter is to develop the framework of
control neighbors which use nearest neighbors as control variates to achieve optimal
convergence rate for the integration error.

Contributions. The contributions may be summarized as follows:

(1) A new Monte Carlo method called control neighbors is introduced. This method
constructs an estimate α̂n(f) to approximate the integral π(f) for general probab-
ility measure π and the core idea follows from using 1-Nearest Neighbor estimates
as control variates.

(2) This estimate is shown to achieve the optimal convergence rate in O(n−1/2n−1/d)
for Lipschitz functions. To the best of found knowledge, obtaining the optimal
convergence rate for general probability measure makes this method the first of
its kind.
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(3) Several practical considerations of the control neighbors are presented along with
promising numerical experiments.

The most remarkable properties of the control neighbors estimate are:

(a) The control neighbors estimate can be obtained under the same framework as
standard Monte Carlo, i.e., as soon as one can both (i) draw random particles
from π and (ii) evaluate the integrand f . Contrary to the classical control variates
framework (Portier and Segers, 2019), the proposed estimate does not require the
existence of control variates with known integrals.

(b) control neighbors takes the form of a linear integration rule
∑n

i=1wi,nf(Xi) where
the weights wi,n do not depend on the integrand f but only on the sampled
particles X1, . . . , Xn. This key property allows computational benefits when sev-
eral integrals are to be computed with respect to the same measure π.

(c) The convergence rate is shown to be optimal for Lipschitz functions, i.e., the in-
tegration error decreases as O(n−1/2n−1/d) whenever f is Lipschitz (Novak, 2016).
Other approaches (for general measure µ) that have been developed recently, e.g.,
(Oates et al., 2017; Portier and Segers, 2019) do not achieve this rate.

(d) Since the weights wn,i are built using nearest neighbor estimates, complete prac-
tical tools are already available, including effective nearest neighbor search with
k-dimensional tree (Bentley, 1975) and efficient compression and parallelization
(Pedregosa et al., 2011; Johnson et al., 2019).

(e) The proposed approach is post-hoc in the sense that it can be run after sampling
the particles and independently from the sampling mechanism. In particular, it
can be implemented for other sampling design including MCMC or AIS.

Part III: Stochastic Approximation: Conditioning & Adaptive Sampling

• Chapter 5: Asymptotic Analysis of Conditioned SGD (RQ#4)

In light of research question (RQ#4), this chapter concerns optimization problems of
the following form: minθ∈Rd{f(θ) = Eξ[f(θ, ξ)]}, where f is a loss function and ξ is a
random variable. Conditioned SGD generalizes standard SGD by adding a conditioning
step to refine the descent direction. Starting from θ0 ∈ Rd, the algorithm of interest is
defined by the following iteration

θt+1 = θt − γt+1Ctg(θt, ξt+1), t ≥ 0,

where g(θt, ξt+1) is some unbiased gradient valued in Rd, Ct ∈ Rd×d is called conditioning
matrix and (γt)t≥1 is a decreasing learning rate sequence.

Related work. Seminal works around standard SGD (Ct = Id) were initiated by
Robbins and Monro (1951) and Kiefer et al. (1952). Since then, a large literature
known as stochastic approximation, has developed. The almost sure convergence is
studied in Robbins and Siegmund (1971) and Bertsekas and Tsitsiklis (2000); rates of
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convergence are investigated in Kushner and Huang (1979) and Pelletier (1998a); non-
asymptotic bounds are given in Moulines and Bach (2011). The asymptotic normality
can be obtained using two different approaches: a diffusion-based method is employed
in Pelletier (1998b) and Benaïm (1999) whereas martingale tools are used in Sacks
(1958) and Kushner and Clark (1978). We refer to Nevelson and Khas’minskĭı (1976);
Delyon (1996); Benveniste et al. (2012); Duflo (2013) for general textbooks on stochastic
approximation.

The aforementioned results do not apply directly to conditioned SGD because of the
presence of the matrix sequence (Ct)t≥0 involving an additional source of randomness
in the algorithm. Seminal papers dealing with the weak convergence of conditioned
SGD are Venter (1967) and Fabian (1968). Within a restrictive framework (univariate
case d = 1 and strong assumptions on the function f), their results are encouraging
because the limiting variance of the procedure is shown to be smaller than the limiting
variance of standard SGD. Venter’s and Fabian’s results have then been extended to
more general situations (Fabian, 1973; Nevelson and Khas’minskĭı, 1976; Wei, 1987).
In Wei (1987), the framework is still restrictive not only because the random errors are
assumed to be independent and identically distributed but also because the objective
f must satisfy their assumption (4.10) which hardly extends to objectives other than
quadratic.

More recently, Bercu et al. (2020) have obtained the asymptotic normality as well as
the efficiency of certain conditioned SGD estimates in the particular case of logistic
regression. The previous approach has been generalized not long ago in Boyer and
Godichon-Baggioni (2020) where the use of the Woodbury matrix identity is promoted
to compute the Hessian inverse in the online setting. Several theoretical results, in-
cluding the weak convergence of conditioned SGD, are obtained for convex objective
functions. The main objective of this chapter is to derive an asymptotic theory for
conditioned SGD for general non-convex objectives.

Contributions. The main results of this chapter are as follows:

(1) A high-level result dealing with the weak convergence of the rescaled sequence of
iterates (θt − θ?)/√γt is provided for general conditioned SGD methods.

(2) Another result of independent interest dealing with the almost sure convergence
of the gradients ∇f(θt)→ 0 is also presented.

(3) For the sake of completeness, we present practical ways to compute the condi-
tioning matrix Ct and show that the resulting procedure satisfies the high-level
conditions of our main Theorem. This yields a feasible algorithm which achieves
minimum variance.

Interestingly, our asymptotic normality result consists of the following continuity prop-
erty: whenever the matrix sequence (Ct)t≥0 converges to a matrix C and the iterates
(θt)t≥0 converges to a minimizer θ?, the algorithm behaves in the same way as an oracle
version in which C would be used instead of Ct. We stress that contrary to Boyer and
Godichon-Baggioni (2020), no convexity assumption is needed on the objective func-
tion and no rate of convergence is required on the sequence (Ct)t≥0. This is important
because, in most cases, deriving a convergence rate on (Ct)t≥0 requires a specific con-
vergence rate on the iterates (θt)t≥0 which, in general, is unknown at this stage of the
analysis.
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To obtain these results, instead of approximating the rescaled sequence of iterates by
a continuous diffusion (as for instance in Pelletier (1998b)), we rely on a discrete-time
approach where the recursion scheme is directly analyzed (as for instance in Delyon
(1996)). More precisely, the sequence of iterates is studied with the help of an auxili-
ary linear algorithm whose limiting distribution can be deduced from the central limit
theorem for martingale increments (Hall and Heyde, 1980). The limiting variance is
derived from a discrete time matrix-valued dynamical system algorithm. It corresponds
to the solution of a Lyapunov equation involving the matrix C. It allows a special choice
for C which guarantees an optimal variance. Finally, in order to examine the remaining
part, a particular recursion is identified. By studying it on a particular event, we show
that this remaining part is negligible.

• Chapter 6: SGD with Coordinate Sampling: Theory and Practice(RQ#5)

Recall that the SGD algorithm is defined by the update rule

∀t ≥ 0, θt+1 = θt − γt+1gt

where gt ∈ Rd is a gradient estimate at θt (possibly biased) and (γt)t≥1 is some learning
rate sequence that should decrease throughout the algorithm. While the computation
of gt may be cheap, it still requires the computation of a vector of size d which may
be a critical issue in high-dimensional problems. To address this difficulty, we rely on
sampling well-chosen coordinates of the gradient estimate at each iteration.

In this chapter, we develop the framework of stochastic coordinate gradient descent
(SCGD) which modifies standard stochastic gradient descent methods by adding a se-
lection step to perform random coordinate descent. The SCGD algorithm is defined by
the following iteration  θ

(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

where ζt+1 is a random variable valued in J1, dK which selects a coordinate of the gradient
estimate. The distribution of ζt is called the coordinate sampling policy. Note that the
SCGD framework is very general as it contains as many methods as there are ways to
generate both the gradient estimate gt and the random variables ζt.

Related work. The authors of (Nutini et al., 2015) investigate the deterministic
Gauss-Southwell rule which consists of picking the coordinate with maximum gradient
value. In trusting large gradients, this rule looks like the one of our proposed algorithm
MUSKETEER except that no stochastic noise -neither in the gradient evaluation nor
in the coordinate selection- is present in their algorithm. In that aspect, our method
differs from all the previous CD studies (Loshchilov et al., 2011; Richtárik and Takáč,
2016a; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016;
Namkoong et al., 2017) which rely on ∇f . Among the SGD literature, compression and
sparsification methods (Alistarh et al., 2017; Wangni et al., 2018) were developed for
communication efficiency. The former use compression operators to select a few com-
ponents of the gradient estimates at the cost of full gradient computation and coordinate
sorting. The latter use a gradient estimate g which is sparsified using probability weights
to reach an unbiased estimate of the gradient. In contrast, the SCGD framework allows
the gradient to be biased as no importance re-weighting is performed. Note also that,
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to cover zeroth-order methods, the gradient estimate itself gt is allowed to be biased as
for instance in the recent study of Ajalloeian and Stich (2020).

The objective of this chapter is twofold: from a theoretical point of view, the goal is to
develop and study a general framework to enable coordinate sampling within the SGD
framework; from a practical standpoint, the aim is to provide an efficient algorithm to
perform stochastic optimization.

Contributions. The contributions are as follows:

(1) (Theory) We show the almost-sure convergence of the SCGD iterates (θt)t∈N to-
wards stationary points in the sense that ∇f(θt) → 0 almost surely as well as
non-asymptotic bounds on the optimality gap E[f(θt) − f?] where f? is a lower
bound of f . The working conditions are relatively weak as the function f is only
required to be L-smooth (classical in non-convex problems) and the stochastic
gradients are possibly biased with unbounded variance, using a growth condition
related to expected smoothness (Gower et al., 2019).

(2) (Practice) We develop a new algorithm, called MUSKETEER, for MUltivari-
ate Stochastic Knowledge Extraction Through Exploration Exploitation Reinforce-
ment. In the image of the motto ’all for one and one for all’, this procedure be-
longs to the SCGD framework with a particular design for the coordinate sampling
policy. It compares the value of all past gradient estimates gt to select a descent
direction (all for one) and then moves the current iterate according to the chosen
direction (one for all). The heuristic is the one of reinforcement learning in the
sense that large gradient coordinates represent large decrease of the objective and
can be seen as high rewards. The resulting directions should be favored compared
to the path associated to small gradient coordinates. By updating the coordin-
ate sampling policy, the algorithm is able to detect when a direction becomes
rewarding and when another one stops being engaging.

The proofs of the asymptotic convergence results are based on ideas from Bertsekas
and Tsitsiklis (2000) with particular extensions in the framework of biased gradient
estimates. Finally, the non-asymptotic bounds are inspired from Moulines and Bach
(2011) where the authors provide a non-asymptotic analysis for standard SGD.







Part II

Monte Carlo Methods & Variance
Reduction

"Mathematics has a threefold purpose. They must provide an instrument for the study
of nature. But that is not all: they have a philosophical purpose and, I dare say, an
aesthetic purpose."

(Henri Poincaré, La valeur de la Science, 1908)
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Monte Carlo integration with variance reduction by means of control variates can be
implemented by the ordinary least squares estimator for the intercept in a multiple linear
regression model with the integrand as response and the control variates as covariates.
Even without special knowledge on the integrand, significant efficiency gains can be
obtained if the control variate space is sufficiently large. Incorporating a large number
of control variates in the ordinary least squares procedure may however result in (i) a
certain instability of the ordinary least squares estimator and (ii) a possibly prohibitive
computation time. Regularizing the ordinary least squares estimator by preselecting
appropriate control variates via the Lasso turns out to increase the accuracy without
additional computational cost. The findings in the numerical experiment are confirmed
by concentration inequalities for the integration error.

2.1 Introduction

Whereas the basic Monte Carlo (MC) estimate of an integral or expectation is given
by (1/n)

∑
i fi, for independent and identically distributed random variables fi, the

control variates method is based on (1/n)
∑

i(fi + hi), where the variables hi, called
control variates, are constructed to have zero expectation. When the controls hi have
been selected or estimated properly (based on the samples fi), the use of control variates
might reduce the variance of the basic MC estimate significantly. The method of control
variates, already used frequently to compute prices of financial derivatives (Glasserman,
2004; Gobet and Labart, 2010), has been employed recently in many different fields of
Machine Learning and Statistics. Examples include (i) reinforcement learning and more
particularly policy gradient methods (Jie and Abbeel, 2010; Liu et al., 2018) where the
score function permits to define many control variates; (ii) inference in complex probab-
ilistic models (Ranganath et al., 2014) where the Stein method allows to define accurate
control variates (see e.g., (Oates et al., 2017; Brosse et al., 2018; Belomestny et al., 2020)
and the references therein); (iii) gradient based optimization (Wang et al., 2013; Gower
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et al., 2018), (iv) time series analysis when approximating the characteristic function
(Davis et al., 2021), and (v) semi-supervised inference (Zhang et al., 2019).

Suppose that m ≥ 1 control variates are available and n ≥ 1 samples have been gen-
erated. Any linear combination of control variates can be used as a particular control
variate. In terms of the variance of the estimation error, the optimal linear combina-
tion can be estimated based on the empirical risk minimization principle applied to an
ordinary least squares (OLS) regression problem [see Eq. (2.3) below]. This approach,
referred to as OLS, is the most common implementation of the control variates method
as detailed for instance in (Owen, 2013, Section 8.3) or (Portier and Segers, 2019; South
et al., 2022), although other implementations are possible, see Remark 2.2 below.

Asymptotically, the OLS error is bounded by the MC error and is proportional to the
L2 approximation error of the integrand in the linear span of control variates (Glynn
and Szechtman, 2002). In combination with well-known approximation results in Lp-
spaces (Rudin, 2006), this representation of the OLS error suggests to use an increasing
number of control variates. Indeed, in Portier and Segers (2019) it is shown that when
m grows with n, the OLS error rate can be faster than 1/

√
n.

However, when based on a large number of control variates, the OLS suffers from two
classical problems common for least squares methods: (i) numerical instabilities when
the control variates are nearly collinear, and (ii) a computational complexity in m3 +
nm2, which might be prohibitive.

To deal with these two issues, it has been proposed in South et al. (2022) to regularize
the OLS estimate by adding a `1-penalty term in the minimization problem, just as in
the LASSO (Tibshirani, 1996). Simulation results in South et al. (2022) show that this
approach, referred to as LASSO, provides great improvements in practice. However,
those practical findings are not supported by an asymptotic error rate nor by a non-
asymptotic error bound.

The main objective of the chapter is to provide a non-asymptotic theory for the use of
control variates in Monte Carlo simulations. The contributions are as follows.

1. A new method called LSLASSO is proposed. In the spirit of (Belloni and Chernozhukov,
2013), it consists in selecting the best control variates via the LASSO, using sub-
sampling to decrease the computation time, and then to apply OLS with the selected
controls.

2. Support recovery : the LASSO is shown to select the correct control variates with
large probability.

3. Concentration inequalities are derived for the OLS, LASSO and LSLASSO integration
errors. The one for the OLS highlights a compromise between the approximation
error of the integrand in the linear span of control variates and the multicollinearities
between the control variates. The ones for (LS)LASSO show significant improvements
regarding the effects of multicollinearity.

The approach for the proofs combines well known sub-Gaussian concentration inequal-
ities (Boucheron et al., 2013a) along with a lower bound for the smallest eigenvalue of
an empirical Gram matrix, based on a Chernoff inequality for matrices (Tropp, 2015,
Theorem 5.1.1).
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The outline of the chapter is as follows. Section 2.2 introduces the theoretical back-
ground and the different MC estimates and provides some comments about their prac-
tical implementation and some possible alternative approaches. Section 2.3 contains the
statements of the theoretical results. Sections 2.4 and 2.5 describe numerical experi-
ments on artificial and real data to illustrate the finite-sample behavior of the methods.
Section 2.6 concludes the main part of the chapter with a discussion of avenues for
further research. Section 2.A.1 contains some auxiliary results, whereas the proofs of
the four theorems stated in Section 2.3 are given in Sections 2.A.2 to 2.A.5.

2.2 Monte Carlo integration and control variates

Background. Let f ∈ L2(π) be a square integrable, real-valued function on a prob-
ability space (X ,A, π) of which we would like to calculate the integral

π(f) =

∫
X
f(x)π(dx).

The MC estimator of π(f) based on independent random variables X1, . . . , Xn taking
values in X and with common distribution π is

α̂mc
n (f) = πn(f) =

1

n

n∑
i=1

f(Xi).

This estimator is unbiased and has variance n−1σ2
0(f), where σ2

0(f) = π[(f − π(f))2].

The control variates are functions h1, . . . , hm ∈ L2(π) with known expectations. Without
loss of generality, assume that π(hk) = 0 for all k ∈ {1, . . . ,m}. Let h = (h1, . . . , hm)>

denote the Rm-valued function with the m control variates as elements. Let Fm =
Span{h1, . . . , hm} = {β>h : β ∈ Rm} denote the closed linear subspace of L2(π) gener-
ated by the control variates.

For any coefficient vector β = (β1, . . . , βm)> ∈ Rm, we have π(f −β>h) = π(f), so that
πn(f − β>h) is an unbiased estimator of π(f), with variance n−1π[(f − π(f)− β>h)2].
Any oracle coefficient

β?(f) ∈ arg min
β∈Rm

π[(f − π(f)− β>h)2]

minimizes the variance. If such a β?(f) would be known, the resulting oracle estimator
would be

α̂or
n (f) = πn[f − β?(f)>h]. (2.1)

By definition, the oracle estimator achieves the minimal variance n−1σ2
m(f) where σ2

m(f)
is the minimum value of the variance term π[(f − π(f)− β>h)2] with respect to β. For
any m′ ∈ {0, 1, . . . ,m}, if we use only the first m′ control variates h1, . . . , hm′ , or even
none at all in case m′ = 0, we have σ2

m(f) ≤ σ2
m′(f). In particular, if β?(f) would be

known, the use of control variates would always reduce the variance of the basic Monte
Carlo estimator.

As β?(f)>h is the L2(π)-projection of f −π(f) on the linear vector space Fm and since
the control variates are centered, β?(f) satisfies the normal equations π(hh>)β?(f) =
π(hf). The integral π(f) thus appears as the intercept of a linear regression model with
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response f and explanatory variables h1, . . . , hm, and it can be expressed as

(π(f), β?(f)) ∈ arg min
(α,β)∈R×Rm

π[(f − α− βTh)2]. (2.2)

The empirical risk minimization paradigm applied to the risk function on the right-
hand side of (2.2) will lead to the OLS and LASSO estimates, to be defined further in
this section. The same paradigm suggests the use of other regression methods for MC
integration such as Principal Component Regression (PCR) or Ridge Regression, which
will not be considered in this chapter.

Remark 2.1 (Choice of control variates). Which control variates work well depends
on the problem. In the Black–Scholes model, for instance, an effective control variate
for the price of an option is the geometric average of the price series (Glasserman,
2004, Example 4.1.2)). Two generic ways to construct control variates are to be noted.
Whenever π(dx) = w(x)Q(dx), where w : X → [0,∞) and Q is a probability measure on
(X ,A), the quantity of interest is π(f) = Q(wf), so that we can use control variates for
wf with respect to Q. This trick can be useful in combination with importance sampling
(Owen and Zhou, 2000). If π has density p with respect to the Lebesgue measure and if
we have access to the derivatives of p, Stein’s method might be used to build infinitely
many control functions (Oates et al., 2017).

Ordinary Least Squares Monte Carlo. Replacing the distribution π by the sample
measure πn in (2.2), we obtain the OLS estimator α̂ols

n (f) of P (f) as a minimizer of the
empirical risk

(
α̂ols
n (f), β̂ols

n (f)
)
∈ arg min

(α,β)∈R×Rm

{
Rn(α, β) =

∥∥∥f (n) − α1n −Hβ
∥∥∥2

2

}
(2.3)

where ‖ · ‖2 denotes the Euclidean norm, 1n = (1, . . . , 1)> ∈ Rn is a vector of ones,
f (n) = (f(X1), . . . , f(Xn))> ∈ Rn is the vector of evaluations and H is the random
n×m matrix defined by

H =
(
hj(Xi)

)
i=1,...,n
j=1,...,m

=


h1(X1) . . . hm(X1)

...
. . .

...
h1(Xn) . . . hm(Xn)

 .

The minimization problem in (2.3) can be expressed using an OLS estimate with
centered variables as 

α̂ols
n (f) = πn[f − β̂ols

n (f)>h],

β̂ols
n (f) ∈ arg min

β∈Rm
||f (n)

c −Hcβ||22, (2.4)

where f (n)
c = f (n)−1n(1>n f

(n))/n and Hc = H−1n(1>nH)/n. Indeed, for fixed β ∈ Rm,
the minimizer over α ∈ R of the objective function in (2.3) is just πn(f − β>h) =
πn(f)−β>πn(h), and since πn(f) = (1>n f

(n))/n and πn(h) = (1>nH)/n, the equivalence
of (2.3) and (2.4) follows.
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Remark 2.2 (Variations). The solution of the linear regression problem (2.4) involves
the empirical covariance matrix defined by n−1H>c Hc = πn(hh>)−πn(h)πn(h>). Using
different estimates of the Gram matrix π(hh>) leads to alternative control variate MC
estimates for π(f) (Glynn and Szechtman, 2002; Portier and Segers, 2019). For fixed
m and as n → ∞, all these estimators are consistent and asymptotically normal. The
OLS estimator, however, is the only one that can integrate both the constant functions
and the control functions without error.

Remark 2.3 (Invariance). The OLS estimator does not change if we replace the control
variate vector h by Ah, where A is an arbitrary invertible m×m matrix. Provided the
control functions are linearly independent, the property of isotropy, i.e., π(hh>) = Im,
can therefore always be enforced by an appropriate linear transformation of the vector
of control variates.

Remark 2.4 (Computation time). The computation time of the OLS method is of
the order nm2 + m3 + nt, where nm2 and m3 operations are needed for computing
and inverting H>c Hc respectively and where t stands for the time needed to evaluate f .
Computational benefits occur when there are multiple integrands, since the OLS estimate
can be represented as w>f (n), where the weight vector w ∈ Rn does not depend on the
integrands Portier and Segers (2019). If q integrals need to be evaluated, the computing
time becomes nm2 + m3 + qnt, since the matrix H>c Hc only depends on the control
variates but not on the integrand.

Remark 2.5 (Variance reduction). The advantage of using a given set of m control
variates over standard MC can be assessed through the value of the residual standard
deviation σm(f). In Portier and Segers (2019), bounds for σm(f) are computed in
specific examples. For instance, if X = [−1, 1]d and the hk are tensor products of
Legendre polynomials, then for any k-times continuously differentiable function f it
holds that σm(f) = O(m−k/d) as m→∞. This bound emphasizes the benefits of using
polynomials when the integrand is regular.

LASSO Monte Carlo. The LASSO, introduced in Tibshirani (1996), is a regression
technique that consists in minimizing the usual least squares loss plus an `1-penalty
term on the vector of regression coefficients. In contrast with OLS, the LASSO usually
produces a vector with many zero coefficients, meaning that the corresponding variables
are no longer included in the predictive model. The LASSO thus achieves estimation
and variable selection at the same time. As the use of control variates in MC integration
is linked with regression, the LASSO can take advantage from situations where many
control variates are present but not all of them are useful.

The LASSO estimator α̂lasso
n (f) of π(f) follows from adding a `1-penalization to the

objective function in (2.3). It is formally defined as

(
α̂lasso
n (f), β̂lasso

n (f)
)
∈ arg min

(α,β)∈R×Rm

1

2n
Rn(α, β) + λ

∥∥β∥∥
1

where ‖ · ‖1 denotes the `1-norm on Euclidean space. By the same argument used to
justify the equivalence of (2.3) and (2.4), the LASSO can be based on centered variables
via
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α̂lasso
n (f) = πn[f − β̂lasso

n (f)>h],

β̂lasso
n (f) ∈ arg min

β∈Rm

1

2n
||f (n)

c −Hcβ||22 + λ
∥∥β∥∥

1
.

(2.5)

Remark 2.6 (Computation). For the practical implementation of the LASSO, it is
commonly recommended to first center and rescale the explanatory variables empirically
(Tibshirani et al., 2015, section 2.2). The centering by the sample mean is taken care of
in (2.5). However, for ease of presentation, no empirical rescaling of the control variates
is considered in the theoretical analysis. This is in line with the approach proposed in
(Tibshirani et al., 2015, Chapter 11). Still, such rescaling is done in the simulation
experiments reported in Section 2.4.

Remark 2.7 (Computation time). The LASSO solution is usually computed approx-
imately by cyclical coordinate descent. At each iteration, this algorithm minimizes
(2.5) with respect to a single coordinate, say βk, while considering other coordinates,
β(−k) ∈ Rm−1, as constant. This one-dimensional optimization problem has an ex-
plicit argmin. Let Hc,k be the k-th column of Hc that has been normalized such that
‖Hc,k‖2 = 1 (as indicated in the previous remark). The argmin is then simply given
by ηλ(〈zk, Hc,k〉) where zk = f

(n)
c −Hc,(−k)β(−k), Hc,(−k) is obtained by removing Hc,k

from Hc and η is the soft-thresholding function (Tibshirani et al., 2015, Section 2.4,
Eq. (2.14)). Since n operations are needed to update zk and the same number is needed
to compute the scalar product, the LASSO requires only nD + nt operations, where D
stands for the number of iterations conducted in the cyclical coordinate descent and t
represents the time needed to evaluate f . The value of D is often imposed by a stopping
rule within the algorithm but it could also be fixed by the user in order to control the
computing time. The selection of the next coordinate k to update can be done cyclically
or at random.

LSLASSO Monte Carlo. The application of ordinary least squares after model
selection by the LASSO has been recently studied in Belloni and Chernozhukov (2013).
They show, in the setting of nonparametric regression, that OLS post-LASSO, which
is also known under the name LSLASSO, performs better than the LASSO in terms
of rate of convergence. Motivated by this result we propose to first use the LASSO to
select the active variables among a large number of control variates and then to compute
the OLS estimate using only the variables selected at the previous stage. We refer to
this approach as the LSLASSO. To decrease the computation time when the dimensions
involved in the problem, either n or m, are large, we recommend to use sub-sampling
of size N smaller than n when conducting the first step.

The active set associated to the coefficient β ∈ Rm is supp(β) = {j = 1, . . . ,m : βj 6=
0}. Let ŜN = supp(β̂lasso

N (f)) denote the active set of control variates based on the
LASSO coefficient vector defined as in (2.5) but using only the first N random variables
X1, . . . , XN generated. The LSLASSO estimate α̂lslasso

n (f) of π(f) is then defined as the
OLS estimate in (2.3) based on the full sample X1, . . . , Xn but using only the control
variates hj restricted to j ∈ ŜN , that is,

(
α̂lslasso
n (f), β̂lslasso

n (f)
)
∈ arg min

(α,β)∈R×Rˆ̀

∥∥∥∥f (n) − α1n −H(n)

ŜN
β

∥∥∥∥2

2
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where H(n)

ŜN
is the n× ˆ̀matrix (hj(Xi))i=1,...,n, j∈ŜN and ˆ̀ is the cardinality of ŜN .

Remark 2.8 (Computation time). The number of operations needed for the LSLASSO
is of the order ND+nˆ̀2 + ˆ̀3 +nt, combining the cost of selecting the control variates on
the subsample of size N via cyclical coordinate descent as in Remark 2.7 and running
the OLS estimate based on the selected control variates for the full sample of size n as
in Remark 2.4.

2.3 Non-asymptotic bounds

To derive concentration inequalities for the errors of the estimators proposed in Sec-
tion 2.2, we use the notion of sub-Gaussianity as defined for instance in (Boucheron
et al., 2013a, Section 2.3). Recall that the moment generating function of a centered
Gaussian random variable with variance σ2 is equal to λ 7→ exp(λ2σ2/2).

Definition 2.9. A centered random variable Y is sub-Gaussian with variance factor
τ2 > 0, notation Y ∈ G(τ2), if and only if logE[exp(λY )] ≤ λ2τ2/2 for all λ ∈ R.

If Y ∈ G(τ2), then necessarily Var(Y ) ≤ τ2 (Boucheron et al., 2013a, Exercise 2.16).
Chernoff’s inequality provides exponential bounds on the tails of sub-Gaussian ran-
dom variables. Moreover, the sum of independent sub-Gaussian variables is again
sub-Gaussian. Centered, bounded random variables taking values in an interval [a, b]
are sub-Gaussian with variance factor at most (b − a)2/4 (Boucheron et al., 2013a,
Lemma 2.2).

The concentration inequalities for the various Monte Carlo methods with control variates
will be largely due to the following assumption that requires the residuals to be sub-
Gaussian.

Assumption 2.10 (Sub-Gaussian residuals). The residual function ε = f − π(f) −
β?(f)>h satisfies ε ∈ G(τ2) for some τ > 0, that is,

∫
X exp{λε(x)}π(dx) ≤ exp(λ2τ2/2)

for all λ ∈ R.

The estimation error of the oracle estimator in (2.1) is just α̂or
n (f) − π(f) = πn(ε) =

n−1
∑n

i=1 ε(Xi). Under Assumption 2.10, this is a sub-Gaussian variable with variance
factor τ2/n. Chernoff’s inequality (Boucheron et al., 2013a, p. 25) then implies that for
all δ ∈ (0, 1) and all integer n ≥ 1, with probability at least 1− δ,∣∣∣α̂or

n (f)− π(f)
∣∣∣ ≤√2 log(2/δ)

τ√
n
. (2.6)

This concentration inequality provides a baseline when the best possible control variate
in the space Fm is selected. The case m = 0 also covers the basic MC method: in that
case, τ2 is the variance factor of the sub-Gaussian variable f − π(f) on (X ,A, P ).

Assumption 2.11 (Bounded control variates). The control variates h1, . . . , hm ∈ L2(π)

are uniformly bounded. Put Uh := maxj=1,...,m supx∈X

∣∣∣hj(x)
∣∣∣.

For a symmetric real matrix A, let λmin(A) and λmax(A) denote its smallest and largest
eigenvalues, respectively.
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Assumption 2.12 (Linear independence of control variates). The control variates h1,
. . ., hm ∈ L2(π) are linearly independent. As a consequence, the m ×m Gram matrix
G := π(hh>) is positive definite and its smallest eigenvalue γ := λmin(G) is positive.

Consider the ortho-normalized vector of control variates ~ = (~1, . . . , ~m)> = G−1/2h
and put

B = sup
x∈X

h(x)>G−1h(x) = sup
x∈X

~(x)>~(x), (2.7)

a finite quantity by Assumptions 2.11 and 2.12. The error OLS estimation error is
subject to the following concentration bound.

Theorem 2.13 (Concentration inequality for OLS). Suppose Assumptions 2.10, 2.11
and 2.12 hold. Then for all δ ∈ (0, 1) and all integer n such that

n ≥ max
(

18B log(4m/δ), 75m log(4/δ)
)

we have, with probability at least 1− δ,∣∣∣α̂ols
n (f)− π(f)

∣∣∣ ≤√2 log(8/δ)
τ√
n

+ 58
√
Bm log(8m/δ) log(4/δ)

τ

n
. (2.8)

Compared to the bound (2.6) for the oracle estimator, the bound (2.8) for the OLS
estimator has an additional term. This term is due to the additional learning step that
is needed to estimate the optimal control variate.

Remark 2.14 (On the factor B). Defined as the supremum of the leverage function
qn in (Portier and Segers, 2019, Eq. (14)), the quantity B plays an important role in
our analysis as well as in other regression studies (Hsu et al., 2012; Newey, 1997). Just
as the OLS estimate (see Remark 2.3), the quantity B remains invariant by invertible
linear transformation of the control variates. We have

m ≤ B ≤ sup
x∈X

h>(x)h(x)/γ ≤ mU2
h/γ.

Remark 2.15 (On the parameters τ and γ). The parameter τ in Assumption 2.10 is by
definition an upper bound of the residual variance σ2

m(f). In many situations, its value
is not too far from σ2

m(f). Hence, τ should capture the adequacy between the control
variate space and the integrand f and should decrease with m. The full rank condition
expressed in Assumption 2.12 is not crucial as one could work with the Moore–Penrose
inverse when solving (2.4). More importantly, a large value of the minimal eigenvalue
γ of the Gram matrix G reflects that the OLS problem is well-conditioned, enhancing
numerical stability. As control functions are added, rows and columns are added to G
and so γ cannot increase. For the Fourier basis in Example 2.28, we have γ = 1, while
for the Legendre polynomials in Example 2.29, we have γ ' 1/m.

Remark 2.16 (Link with OLS prediction risk analysis). The approach taken in the
proof of Theorem 2.13 requires to bound what is called the prediction risk, defined as
‖G1/2(β̂ols

n (f)−β?(f))‖2. With probability greater than 1− δ, we obtain an upper bound
of order

√
Bτ2 log(m/δ)/n on the prediction risk. This makes our approach comparable

to the one of the recent study (Hsu et al., 2012) where concentration bounds for the
OLS prediction risk (and ridge) with random design are established. In contrast to their
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bound, our bound involves the quantity B which shares the same invariant property as
the OLS estimate and we don’t require the noise to be sub-Gaussian conditionally on the
covariate but just sub-Gaussian which is weaker.

Remark 2.17 (Rates). Consider an asymptotic set-up where the number of control
variates m tends to infinity with the Monte Carlo sample size n. The OLS method
improves upon the basic MC method (m = 0), which has rate 1/

√
n, as soon as τ +

τ
√
mB log(m)/n → 0. To recover the same order as the one of the oracle estimator

α̂or
n (f), which has rate τ/

√
n, one must have mB log(m) = O(n) as n→∞, that is, m

must not be too large compared to n.

Remark 2.18 (Leverage condition). Theorem 2.13 may be seen as a non-asymptotic
version of the asymptotic results provided in Portier and Segers (2019) in which the
leverage condition, sup{h(x)>G−1h(x) : x ∈ X} = o(n/m), is required to obtain a
similar (asymptotic) bound (see Theorem 1 therein) as the one of Theorem 2.13. In the
present non-asymptotic version, the leverage condition is expressed through mB when
requiring that 18B log(4m/δ) ≤ n.

LASSO takes advantage of sparse regression models. A regression model is sparse
whenever many of the coefficients of the parameter vector β are equal to zero, i.e., many
of the covariates are useless to predict the output in the presence of the other covariates.
The number of elements in the active set of the vector of regression coefficients β?(f),

S? := supp(β?(f)),

is denoted by `? :=
∣∣S?∣∣ and quantifies the level of sparsity associated to the regression

model. To avoid trivialities, we tacitly assume that S? is non-empty, so `? ≥ 1. The
factor `? represents the level of sparsity of f with respect to the control functions and
plays an important role in describing the benefits of the LASSO over the OLS. No
assumption is made on `?, which could be any integer in {1, . . . ,m}.
We follow the approach presented in (Tibshirani et al., 2015, Section 11.4.1) (see also
Bickel et al. (2009); van de Geer and Bühlmann (2009)), in which the analysis of the
LASSO is carried out using a restricted eigenvalue condition. For a vector β ∈ Rm and
for a non-empty set S ⊂ {1, . . . ,m}, write βS = (βk)k∈S , seen as a (column) vector in
R|S|. Define a collection of cones of interest. For α > 0 and S ⊂ {1, . . . ,m}, we set
S = {1, . . . ,m} \ S and

C(S;α) = {u ∈ Rm :
∥∥∥uS∥∥∥

1
≤ α

∥∥uS∥∥1
}.

Assumption 2.19 (Restricted eigenvalue condition). There exists γ? > 0 such that
u>Gu ≥ γ? ‖u‖22 for all u ∈ C(S?; 3).

In practice, we do not know the active set S?, so the only way to ensure Assumption 2.19
is to make sure all control variates h1, . . . , hm are linearly independent. The practical
value of the assumption is that γ? ≥ γ, yielding sharper bounds below.

Recall that the `1-penalty of the LASSO is weighted by a regularization parameter
λ > 0.
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Theorem 2.20 (Concentration inequality for LASSO). Suppose Assumptions 2.10, 2.11
and 2.19 hold. Introduce ξ = `?(U2

h/γ
?). Then for all δ ∈ (0, 1) and all integer n such

that

n ≥ max
(

8ξ2 log(8m2/δ); 128ξ log(8m/δ)
)
,

λ ≥ 7Uh
√

log(8m/δ)τ/
√
n

we have, with probability at least 1− δ,∣∣∣α̂lasso
n (f)− π(f)

∣∣∣ ≤√2 log(8/δ)
τ√
n

+ 68λ`?
√

log(8m/δ)
Uh/γ

?

√
n

. (2.9)

For λ equal to the lower bound, we have on the same event∣∣∣α̂lasso
n (f)− π(f)

∣∣∣ ≤√2 log(8/δ)
τ√
n

+ 476`? log(8m/δ)(U2
h/γ

?)
τ

n
. (2.10)

Remark 2.21 (LASSO vs OLS). The benefits of LASSO over OLS can be observed by
comparing the bounds in (2.8) and (2.10). The total number m, of control functions has
been replaced by the active number `? of such functions. Further, because ΓS? = {u ∈
Rp : ‖u‖2 = 1, u ∈ C(S?; 3)} is included in the unit sphere, γ? = infu∈ΓS? u

>Gu in
Assumption 2.12 is at least as large as the smallest eigenvalue of G, γ = inf‖u‖2=1 u

>Gu
in Assumption 2.19.

The theoretical analysis of the LSLASSO estimator depends on the success of the
LASSO-based model selection, i.e., the LASSO needs to correctly recover all the com-
ponents of the true model. To ensure this selection step, the restricted eigenvalue
condition is replaced by the two following ones.

Assumption 2.22 (Linear independence of active functions). The active control vari-
ates hk, k ∈ S?, are linearly independent. As a consequence, the `? × `? Gram matrix
GS? = P (hS?h

>
S?) is positive definite and its smallest eigenvalue γ?? := λmin(GS?) is

strictly positive.

Note that because {u ∈ Rp : ‖u‖2 = 1, ∀k /∈ S, uk = 0} ⊂ ΓS (introduced in remark
2.21), we have that γ?? ≥ γ?. Finally, it is required that that the active control functions
are orthogonal, in L2(π), to the inactive ones.

Assumption 2.23 (Orthogonality). We have π(hjhk) = 0 for all j ∈ {1, . . . ,m} \ S?
and all k ∈ S?.

Since we do not know S? in practice, the way to ensure Assumption 2.23 is by making all
control variates orthogonal: π(hjhk) = 0 for all j, k ∈ {1, . . . ,m}. The Gram matrices
G and G? are then diagonal. In the absence of zero control variates, Assumptions 2.12
and 2.19 are then satisfied as well, with γ?? = mink∈S? π(h2

k) ≥ mink=1,...,m π(h2
k) =

γ > 0.

Theorem 2.24 (Support recovery of LASSO). Suppose Assumptions 2.10, 2.11, 2.22
and 2.23 hold. Then for all δ ∈ (0, 1), all integer n such that

n ≥ 70(`?U2
h/γ

??)2 log(10`?m/δ),
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and all λ such that

13Uh
√

log(10m/δ)
τ√
n
≤ λ ≤ γ??

3
√
`?

min
k∈S?
|β?k(f)|, (2.11)

it holds that, with probability at least 1−δ, the LASSO based solution β̂lasso
n (f) is unique

and the true active set is recovered, supp(β̂lasso
n (f)) = S?.

The upper and lower bounds on λ in (2.11) must not contradict each other, and this ef-
fectively implies an additional lower bound on n. Define B? = supx∈X h

>
S?(x)G−1

S? hS?(x)
and note that

B? ≤ λmax(G−1
S? ) sup

x∈X
h>S?(x)hS?(x) ≤ `?U2

h/γ
??. (2.12)

Theorem 2.25 (Concentration inequality for LSLASSO). Suppose Assumptions 2.10,
2.11, 2.22 and 2.23 hold. Write ξ? = `?(U2

h/γ
??). Then for all δ ∈ (0, 1) and all integer

N ∈ {1, . . . , n} such that

N ≥ 75ξ?2 log(20`?m/δ),

and all λ such that

13Uh
√

log(20m/δ)
τ√
N
≤ λ ≤ γ??

3
√
`?

min
k∈S?
|β?k(f)|,

we have, with probability at least 1− δ,∣∣∣α̂lslasso
n (f)− π(f)

∣∣∣ ≤√2 log(16/δ)
τ√
n

+ 58
√
B?`? log(16`?/δ) log(8/δ)

τ

n
. (2.13)

The logic behind Theorem 2.25 is that, by Theorem 2.24, the active set ŜN = supp(β̂lasso
N (f))

identified by means of the subsample of size N is equal to the true active set S? =
supp(β?(f)) with large probability. On the event that the two sets coincide, the
LSLASSO estimator is then the same as the OLS estimator based on the active control
variates only, and the error bound follows from Theorem 2.13. In practice, it turns
out that LSLASSO works well even when the true active set is not identified perfectly.
However, to show this formally remains an open problem.

The assumptions and concentration inequalities in our theorems feature explicit rather
than generic constants. Although we have worked hard to keep these constants under
control [see in particular the proof of Lemma 2.34 as well as Step 6(ii) in the proof of
Theorem 2.24], it is likely that, at the cost of lengthier computations, sharper constants
can still be found.

Remark 2.26 (Bounded control variates). In Assumption 2.11, the control variates
were assumed to be bounded. Even if this assumption is valid for the two classic families
in Examples 2.28 and 2.29 below, it might fail when control variates are produced with
the Stein’s method as suggested in Remark 2.1. The boundedness assumption is needed
to keep the same variance factor τ2 in the sub-Gaussian property of both variables ε(X1)
and ε(X1)h(X1); see, e.g., Step 3.2 in the proof of Theorem 2.13 or Equation (2.35) in
the proof of Theorem 2.20. Avoiding this assumption is thus possible at the price of more
specific assumptions on the sub-Gaussianity of ε(X1)h(X1). Note finally that (different)
asymptotic results are valid for unbounded control variates (Portier and Segers, 2019).
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Remark 2.27 (Overfitting). Theorems 2.20 and 2.25 advocate the use of the LASSO in
favor of the OLS in scenarios where `∗ is smaller than m or in the presence of collinear-
ities in the design matrix making the parameter γ close to zero; see also Remark 2.21.
Another notable advantage of the (LS)LASSO and more generally of penalization meth-
ods, is the ability to prevent over-fitting. This occurs when the number of control variates
m is large compared to the Monte Carlo sample size n or, more generally, when the ap-
proximation space is large compared to the sample size. While the theory developed here
is unable to address such phenomena, one of the objectives of the numerical experiments
conducted in the next section is to empirically demonstrate the superior performance of
the LASSO-based methods even in the absence of sparsity.

To illustrate the application of our results in a standard framework, we consider two
classic families of control functions, the Fourier basis and the Legendre polynomials.

Example 2.28 (Fourier basis). On X = [0, 1] equipped with the uniform distribution
P , let hj(x) be equal to

√
2 cos((j + 1)πx) is j is odd and to

√
2 sin(jπx) is j is even.

The Fourier basis is orthonormal so that the Gram matrix is the identity, G = Im, and
γ = γ? = γ?? = 1. The cosine and sine functions being bounded by 1, a uniform bound
is Uh =

√
2, which implies B ≤ 2m,B? ≤ 2`?. Under the proper assumptions, we get

from Theorems 2.13 and 2.25 that with probability at least 1− δ, since 58
√

2 < 83,∣∣∣α̂ols
n (f)− π(f)

∣∣∣ ≤√2 log(8/δ)
τ√
n

+ 83m
√

log(8m/δ) log(4/δ)
τ

n

and ∣∣∣α̂lslasso
n (f)− π(f)

∣∣∣ ≤√2 log(16/δ)
τ√
n

+ 83`?
√

log(16`?/δ) log(8/δ)
τ

n
.

Example 2.29 (Legendre polynomials). Suppose that hj = Lj is the Legendre polyno-
mial of degree j ∈ {1, . . . ,m}. The Legendre polynomials are orthogonal on X = [−1, 1]
with respect to the uniform distribution π and satisfy |Lj(x)| ≤ 1 for x ∈ [−1, 1] with
Lj(1) = 1 and ∫ 1

−1
Li(x)Lj(x) dx =

2

2j + 1
δij .

The Gram matrix G = π(hh>) is diagonal with entries 1/(2j + 1), so the minimum
eigenvalue is γ = 1/(2m+1) and a uniform bound is Uh = 1. Consequently, B ≤ 2m+1.
Similarly, considering only active control variates, we have U?h = 1, while the smallest
eigenvalue, γ??, of GS? satisfies 1/(2m + 1) ≤ γ?? ≤ 1/(2`? + 1). Under suitable
assumptions, we get from Theorems 2.13 and 2.25 that with probability at least 1− δ,∣∣∣α̂ols

n (f)− π(f)
∣∣∣ ≤√2 log(8/δ)

τ√
n

+ 58
√

(2m+ 1)m log(8m/δ) log(4/δ)
τ

n
,

∣∣∣α̂lslasso
n (f)− π(f)

∣∣∣ ≤√2 log(16/δ)
τ√
n

+ 58
√

(2`? + 1)`? log(16`?/δ) log(8/δ)
τ

n
.

Compared to the Fourier basis, the improvement of LSLASSO over the OLS estimator
is not only related to the number of active varables `∗ compared to m but also to the
place of the active variables within the set of Legendre polynomials.
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2.4 Numerical illustration

To compare the finite-sample performance of the various control variate methods, we
consider synthetic data examples involving the standard integration problem over the
unit cube [0, 1]d. The goal is to compute

∫
[0,1]d f(x) dx. We shall consider various

dimensions d ≥ 1, different integrands f : [0, 1]d → R, and several choices for the Monte
Carlo sample size, n, and the number of control variates, m. We shall focus on difficult
situations where d is relatively large compared to n. In Section 2.5, we turn to real data
examples in the context of Bayesian inference. For the sake of reproducibility, the data
and Python code are available online1.

Methods in competition. We consider all the methods presented in Section 2.2 with
two different strategies regarding the sub-sample size used to compute the active set
in LSLASSO. The methods in competition are OLS, LASSO, LSLASSO (sub-sample
size N = n) and LSLASSOX (sub-sample size N = b15

√
nc). The latter choice ac-

celerates the computation in a substantial manner without deteriorating too much the
support recovery property of the LASSO. For synthetic data, because the integration
domain is the unit cube [0, 1]d, Quasi-Monte Carlo (QMC) methods (Caflisch, 1998) are
suitable for comparison. We run such methods in the experiments with two classical
low-discrepancy sets of particles, namely Halton and Sobol sequences.

On the choice of λ. In the LASSO-step of LSLASSO(X), the choice of the regular-
ization parameter λ is essential since it controls the number of active variables. It is
common to tune this parameter using K-fold cross-validation at the price of additional
computations. This method, presented in general form in Algorithm 2.1, uses the pre-
diction error of the underlying regression problem as a proxy to calibrate the control
variates estimate. In Algorithm 2.1, the “data” X correspond to the matrix H of ob-
served control variables and the “labels” y to the vector f (n) of observed function values.
The method is computationally expensive, partitioning the training set in several folds
and solving many regression problems for every value of λ in a given grid.

Algorithm 2.1 K-fold cross-validation
Require: data X, labels y, grid search λgrid, n, K.
1. Divide {1, . . . , n} into K folds F1, . . . , FK .
2. For k = 1, . . . ,K

3. Set training folds F−k = {F1, . . . , Fk−1, Fk+1, . . . , FK}.
4. For λ ∈ λgrid

5. Compute estimate β̂−kλ on training set.
6. Compute test error ek(λ) =

∑
i∈Fk(yi − x>i β̂−kλ )2.

7. For λ ∈ λgrid

8. Compute average error CV (λ) = 1
n

∑K
k=1 ek(λ).

9. Return β̂λ? with λ? ∈ arg minλ∈λgrid
CV (λ).

1https://github.com/RemiLELUC/ControlVariateSelection.git
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To accelerate the computations, we suggest a new method based on a dichotomic search.
Motivated by Eq. (2.8) and Remark 2.17, the value of λ is tuned such that the number
of selected control variates is of the order

√
n, which is the order obtained for m when

equating the two terms in (2.8) with B = m. Specifically, we enforce the number of
activated control functions to lie in the range [c1

√
n, c2
√
n] for constants 0 < c1 < c2

to be chosen (see below). This choice offers two advantages. On the one hand, the
upper bound c2

√
n ensures that the number of selected control variates is relatively

small compared to the sample size n, promoting stability and fast computation in the
final OLS step. On the other hand, the lower bound c1

√
n reduces the risk of excluding

relevant control variates.

The full procedure for the selection of the regularization parameter using a dichotomic
search is described below in Algorithm 2.2. In all experiments, we set c1 = 3 and
c2 = 12. We initialize λ = λ∞ to be the smallest value of λ for which β̂lasso = 0,
that is, λ∞ = maxk=1,...,m |H(N)T

c,k f
(N)
c |/N , where H(N)

c,k stands for the k-th column of

H
(N)
c , which is the same as the matrix Hc but then based on the first N Monte Carlo

draws (Tibshirani et al., 2015, Exercise 2.1). Next, we decrease the value of λ, e.g.,
by dividing it by two, such as to incorporate more and more control variates. If too
many control functions are selected, i.e., more than c2

√
n, we increase the value of λ

again, e.g., by multiplying it by two, to finally reach the desired range for the number
of active variables. In the end, this procedure ensures a straightforward computation of
the LSLASSO(X) because the size of the associated linear system remains reasonable.
Contrary to K-fold cross-validation, it is not necessary to split the data into multiple
folds, leading to a reduced computation time.

Algorithm 2.2 Dichotomic Search

Require: f (n)
c , Hc, n, N ≤ n, (c1, c2).

1. Initialize λ = λ∞ and ˆ̀= 0.
2. While ˆ̀ /∈ [c1

√
n, c2
√
n]

3. β̂λN (f) ∈ arg minβ∈Rm
1

2N ‖f
(N)
c −H(N)

c β‖22 + λ
∥∥β∥∥

1
.

4. ŜN = supp(β̂λN (f)) and ˆ̀=
∣∣∣ŜN ∣∣∣.

5. if ˆ̀< c1
√
n then decrease λ.

6. if ˆ̀> c2
√
n then increase λ.

7. Return β̂λN (f).

The pseudo-code of the corresponding LSLASSO(X) method is provided in Algorithm 2.3.
The regression coefficients β̂ols

n and β̂lasso
n for OLS and LASSO are computed using the

Scikit-Learn library (Pedregosa et al., 2011), employing coordinate descent to solve the
LASSO problem.
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Algorithm 2.3 Least-Squares Lasso Monte-Carlo (LSLASSO)
Require: f : X → R, hj : X → R, 1 ≤ j ≤ m, π, n, N ≤ n.
1. Generate (Xi)i=1,...,n independently according to π.

2. f (n) = (f(X1), . . . , f(Xn)) and H =
(
hj(Xi)

)j=1,...,m

i=1,...,n
.

3. f
(n)
c = f (n) − 1n(1>n f

(n))/n and Hc = H − 1n(1>nH)/n.
4. Solve β̂λN (f) by cross-validation or dichotomic search.
5. ŜN = supp(β̂λN (f)) and ˆ̀=

∣∣∣ŜN ∣∣∣.
6. Slice n× ˆ̀matrix H(n)

c,ŜN
= (H

(n)
c ij )i=1,...,n, j∈ŜN

7. β̂lslasso(f) ∈ arg minβ∈Rm ‖f (n)
c −H(n)

c,ŜN
β‖22.

8. MC estimate α̂lslasso
n,N (f) = Pn[f − β̂lslasso(f)>h].

Integrands. We consider several integrands f on [0, 1]d:

ϕ(x1, . . . , xd) = 1 + sin

π
2

d

d∑
i=1

xi − 1


 , (2.14)

and for all j = 1, . . . , d,

fj(x1, . . . , xd) =

j∏
i=1

(2/π)1/2x−1
i e− log(xi)

2/2, (2.15)

gj(x1, . . . , xd) =

j∏
i=1

log(2)

2xi−1
= log(2)j2

∑j
i=1(1−xi). (2.16)

All these functions integrate to 1 on [0, 1]d. The functions fj and gj are built using tensor
products of log-normal and exponential density functions, respectively, and depend on
the first j coordinates only. This construction ensures that for small j, the integrands
fj and gj lend themselves to Monte Carlo integration based on selected control variates.
In contrast, the functions ϕ, fd and gd represent more difficult situations where all the
coordinates are involved and the symmetry of their role makes it harder to select some
meaningful control functions. None of the integrands belongs to the linear span of the
control variates constructed in the next paragraph.

Control variates. Multidimensional control functions with respect to the uniform
distribution over [0, 1]d are easy to construct based on univariate ones. Let (h1, . . . , hk)
be a vector of one-dimensional control functions, i.e.,

∫ 1
0 hj(x) dx = 0 for each j =

1, . . . , k. Let h0 = 1 denote the constant function equal to one. Without further
information on the integrand, the usual way to construct multivariate controls is by
forming tensor products of the form

h`(x1, . . . , xd) =
d∏
j=1

h`j (xj)

for a multi-index ` = (`1, . . . , `d) in {0, . . . , k}d \ {(0, . . . , 0)}, yielding a total number
of (k + 1)d − 1 control functions.
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A drawback of such a construction is that the number of control functions grows quickly
with k. Alternative approaches yielding smaller control spaces consist of imposing `j = 0
for all but a small number (one or two, say) of coordinates j = 1, . . . , d or simply picking
at random a desired number, say m, of indices ` = (`1, . . . , `d).

In this study, the set of control variates at our disposal is constructed as follows. We
consider different settings of dimension d with k univariate control functions in each
dimension. For j ∈ {1, . . . , k}, let hj(x) = Lj(2x − 1) for x ∈ [0, 1], with Lj the
univariate Legendre polynomial (Legendre function of the first kind) of degree j; see
Example 2.29. We have

∫ 1
0 hj(x) dx = 0 for all j = 1, . . . ,m. Because the Legendre

polynomials are orthogonal, they provide some numerical stability when inverting the
Gram matrix. The multivariate control functions are sorted in ascending order according
to the total degree

∑d
j=1 `j ∈ {1, . . . , , kd} of the polynomial. In the experiments, the

number of control functions m is increased by progressively including all polynomials
whose total degree is lower than or equal to a fixed threshold deg .

Settings. For the triple (d, k, n) we consider the dimension d ∈ {3, 5, 8} with k ∈
{12, 10, 3} and n ∈ {2 000, 5 000, 10 000}. For each choice of (d, k), the number of
control variates m with a total degree lower than or equal to a fixed threshold deg are
given in Table 2.1. The case d = 8 represents a difficult situation as the number of
points n is relatively small compared to the dimension. For instance, a grid made of
only four points in each direction would already comprise 65 536 points.

d k
Degree threshold (deg)

1 3 5 10 12

3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Table 2.1 – Number of control variates m by degree threshold deg in dimension d
constructed out of tensor products of k univariate polynomials.

The sub-sample sizes N along with the bounds c1
√
n and c2

√
n are given in Table 2.2.

n N b3√nc b12
√
nc

2 000 700 134 536
5 000 1 000 212 848
10 000 2 000 300 1 200

Table 2.2 – Sample sizes n and sub-sample sizes N together with the range [c1
√
n, c2
√
n]

corresponding to the imposed number of selected control variates in LSLASSO.

Results. The different Monte Carlo estimates are compared on the basis of their mean
squared error (MSE). Figure 2.1 presents the boxplots obtained over 100 replications of
the values returned by each of the methods. In Tables 2.3 to 2.6, we provide the ratio
MSE(vanilla)/MSE(·), the MSE of the vanilla Monte Carlo estimate divided by the
MSE for the current method, as a measure of statistical efficiency of the method relative
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to naive Monte Carlo integration. The four tables correspond to the four panels (a) to
(d) in Figure 2.1. For a given number of control variates m, the most efficient method is
indicated in bold. For the Lasso-based methods, the results for the λ selection based on
cross-validation (Algorithm 2.1) and dichotomic search (Algorithm 2.2) did not differ
much; for the sake of brevity, the figures and the tables report the results associated to
the dichotomic search.

Figures 2.1a and 2.1b highlight the success or failure of the OLS estimator depending
on the size of m compared to n. In Figures 2.1c and 2.1d, we consider larger values of m
and only compare the Lasso-based methods as it takes too much time to solve the OLS.
In all our experiments, the LSLASSOX is the clear winner as it has the highest accuracy
in almost all configurations. Moreover, the LSLASSOX can be computed much faster
than the LSLASSO: in our implementation, preselecting the control variates based on
a smaller subsample led to a reduction op the computation time by a factor between
three and twenty.

In Figure 2.1a, boxplots of the values returned by each of the methods are provided for
ϕ in (2.14) when d = 3 and n = 10 000. In this situation, where m is small compared to
n, the OLS performs very well and the LSLASSO procedure selects almost all control
variates so it performs as well as OLS. In Figure 2.1b, boxplots of the values returned
by each of the methods are provided for g3 in (2.16) when d = 5, n = 2 000, and
N = 700. In this case, the OLS estimator starts to break down as soon as the number,
m, of control variates is of the same order as n. It is then necessary to perform some
control variate selection, which is succesfully carried out by the LASSO and LSLASSO.
Both of these estimators give the best results. Although the number of sample points
used in the selection step of LSLASSOX has been reduced compared to the LSLASSO,
the stability of the active set is barely affected. Accordingly, the error distributions for
LSLASSO and LSLASSOX are quite similar.

Figures 2.1c and 2.1d reveal the benefits of selecting appropriate control variates before
applying the OLS estimator. Figure 2.1c covers the function f1 in (2.15) when d = 5
and n = 5 000, while Figure 2.1d deals with the function g4 in (2.16) when d = 8 and
n = 2 000. In the latter case, the number of control variates, m = 36 813, is huge
compared to the sample size n = 2 000. However, the Lasso-based methods perform
remarkably well in those settings. More precisely, in dimension d = 5 with the function
f1, the mean square error of the naive Monte Carlo estimator is of the order 10−5

whereas the one of the LSLASSOX is of the order 10−10. Similarly, in dimension d = 8
with the function g4, the mean square error goes down from 10−4 to 10−8. Table 2.6
highlights the benefits of the LSLASSO over the LASSO in difficult situations.

In the recent study South et al. (2022), the authors investigate the use of regularization
in computing control variates estimates. They focus on the LASSO and ridge regression
and they show, based on several examples, that the LASSO generally outperforms the
ridge. In the applications they consider, they found that polynomials with relatively
small degrees in each direction (k equal to 2 and 3) give the best performance. The
examples considered here show a similar pattern as the results do not generally improve
beyond degree k = 3.



CHAPTER 2. CONTROL VARIATE SELECTION FOR MONTE CARLO
INTEGRATION 63

m=0
(Vanilla)

deg 1
m=3

deg 3
m=19

deg 5
m=55

deg 10
m=285

deg 12
m=454

0.985

0.990

0.995

1.000

1.005

1.010

1.015
OLS
Lasso
LSLasso
LSLassoX

0.999
1.000
1.001

(a) Boxplots for ϕ in (2.14) with d = 3, n =
10 000, N = 2 000.
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(b) Boxplots for g3 in (2.16) with d = 5, n =
2 000, N = 700.
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(c) Boxplots for f1 in (2.15) with d = 5, n =
5 000, N = 1 000.
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(d) Boxplots for g4 in (2.16) with d = 8, n =
2 000, N = 700.

Figure 2.1 – Boxplots (based on 100 runs) of the values returned by each of the methods
for functions ϕ, g3, f1, g4 in (2.14)–(2.16).

2.5 Bayesian inference

In this section, we compare the different Monte Carlo estimates on Bayesian inference
examples. Given some observed data x, the goal is to infer the parameter θ of a
statistical model. We have some information through the prior distribution π(θ) and
observe the model likelihood `(x|θ). Bayes’ rule gives the posterior distribution as

p(θ|x) =
`(x|θ)π(θ)∫

Θ `(x|θ)π(θ)dθ
·

The normalizing constant in the denominator is called evidence and is of interest for
Bayesian model selection:

Z =

∫
Θ
`(x|θ)π(θ)dθ.

Typically, this integral is analytically intractable. It is also difficult to compute numer-
ically if the dimension d of the parameter space Θ is large.

We consider the same datasets as in (South et al., 2022): the European dipper capture-
recapture data from (Marzolin, 1988) in Section 2.5.1 and the sonar data from (Gorman
and Sejnowski, 1988) in Section 2.5.2. The dimensions of the integration domains are



CHAPTER 2. CONTROL VARIATE SELECTION FOR MONTE CARLO
INTEGRATION 64

m = 3 19 55 285 454

OLS 8.42e00 8.56e02 2.12e05 2.49e11 5.27e14
LASSO 8.42e00 8.53e02 6.72e04 7.71e04 7.71e04
LSL 8.42e00 8.58e02 2.10e05 6.26e05 1.37e06
LSLX 8.42e00 8.51e02 2.09e05 2.49e11 2.91e05
QMC Halton: 8.76e01 Sobol: 3.29e02

Table 2.3 – Statistical efficiency for ϕ; see
also Figure 2.1a.

m = 5 55 251 3002 6157

OLS 2.45e01 5.75e04 7.48e08 1.42e00 4.94e-1
LASSO 2.45e01 5.75e04 4.19e06 4.83e05 4.31e05
LSL 2.45e01 5.75e04 7.79e08 4.83e06 4.54e06
LSLX 2.45e01 5.75e04 1.87e08 1.71e06 5.54e05
QMC Halton: 3.75e00 Sobol: 1.57e01

Table 2.4 – Statistical efficiency for g3; see
also Figure 2.1b.

m = 5 55 251 3002 6157

LASSO 1.11e00 6.60e01 1.79e02 8.17e04 8.56e04
LSL 1.11e00 6.59e01 1.76e02 6.77e04 6.83e04
LSLX 1.11e00 6.59e01 1.78e02 8.97e04 9.24e04
QMC Halton: 4.60e00 Sobol: 7.21e01

Table 2.5 – Statistical efficiency for f1; see
also Figure 2.1c.

m = 8 164 1214 20993 36813

LASSO 1.98e01 1.52e04 7.94e05 7.94e04 6.05e04
LSL 1.97e01 1.53e04 1.32e06 1.49e05 1.28e05
LSLX 1.98e01 1.54e04 1.38e06 1.98e04 1.55e04
QMC Halton: 3.80e00 Sobol: 2.60e01

Table 2.6 – Statistical efficiency for g4; see
also Figure 2.1d.

d = 12 and d = 61, respectively.

As in Section 2.4, we consider multivariate control functions based on univariate ortho-
gonal polynomials by forming tensor products of the form h`(x1, . . . , xd) =

∏d
j=1 h`j (xj),

for a multi-index ` = (`1, . . . , `d) in {0, . . . , k}d \ {(0, . . . , 0)}. In both examples, the
dimension d is so large that considering all tensor products is infeasible. Instead, we
focus on combinations where `j equals 0 for all but one or two coordinates, leading to
a total number of m = kd and m = kd+ k2d(d− 1)/2 control variates, respectively.

The different Monte Carlo estimates are compared on the basis of their mean squared
errors (MSE). In contrast to Section 2.4, the true value of the integral is unknown.
An estimate of this value, referred to as the gold standard Z?, is obtained by naive
Monte Carlo with sample size n = 108. The variance of this estimate, computed on 20
independent runs, is smaller than the variance of all the other considered methods. The
different boxplots of Figure 2.2 show the results obtained over 100 independent runs of
Ẑ/Z? where Ẑ is the estimate of the evidence. Tables 2.8 to 2.11 provide numerical
values for the statistical efficiency M̂SE(vanilla)/M̂SE(·). We consider various settings
and the parameter configuration is n ∈ {2 000; 5 000} for the Monte Carlo sample size
with N ∈ {700; 1 000} for the Monte Carlo subsample size for the LSLASSO. The
regularization parameter λ is chosen via dichotomic search (Algorithm 2.2).

2.5.1 European dipper capture-recapture data

The data-set given in Table 2.7 was collected by (Marzolin, 1988) and describes the
annual capture and recapture counts of the bird species Cinclus cinclus, also known as
the European dipper, in eastern France from 1981 to 1987. We observe count data xi,j
with i ∈ {1, . . . , I} and j ∈ {i+1, . . . , J}, where xi,j denotes the number of birds released
in year i and subsequently recaptured for the first time in year j. In the example, we
have I = 6 and J = 7, where 1981 corresponds to year i = 1. Also observed is Ri, the
number of marked birds released into the population in year i.
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Release
year

Birds
released

Year of recapture: 1981 + · · ·
1 2 3 4 5 6

1981 22 11 2 0 0 0 0
1982 60 24 1 0 0 0
1983 78 34 2 0 0
1984 80 45 1 2
1985 88 51 0
1986 98 52

Table 2.7 – European dipper capture-recapture data (Marzolin, 1988). The counts in
the triangle refer to the number of birds released in a given year and recaptured for the
first time in a later year.

Following (Brooks et al., 2000; Nott et al., 2018; South et al., 2022), we consider a
Bayesian approach for the Cormack–Jolly–Seber model (Lebreton et al., 1992). The
model parameters are φi, a bird’s survival probability from year i to (i + 1) for i ∈
{1, . . . , I}, together with pj , the probability of a bird being recaptured in year j ∈
{2, . . . , J}. Let νi,j denote the probability that a bird captured and released in year i
gets recaptured for the first time in year j. Since the bird must survive from year i to
year j, not be recaptured in years i+ 1 to j − 1 and then finally be recaptured in year
j, the probability is modelled as

νi,j = φipj

j−1∏
k=i+1

[φk(1− pk)].

The number of birds released at year i that are never recaptured at all is equal to
ri = Ri −

∑J
j=i+1 xi,j while the probability that a bird released in year i is never

recaptured is χi = 1−∑J
j=i+1 νi,j . The resulting likelihood is equal to

`(x|θ) =
I∏
i=1

χrii
J∏

j=i+1

ν
xi,j
i,j

 ,

where θ = (φ1, . . . , φ6, p2, . . . , p7) ∈ [0, 1]12. The uniform distribution is chosen as prior
and we use tensor products of Legendre polynomials with k = 10 (Example 2.29) as
controls.

The results for the various integration methos are reported in the same way as in
Section 2.4. The boxplots and statistical efficiencies are given in Figures 2.2a and 2.2b
and Tables 2.8 and 2.9 respectively. Similarly to the synthetic data, Figures 2.2a
and 2.2b reveal the success or failure of the OLS on the capture-recapture data when
the number of control variates m is larger than the Monte Carlo sample size n. The
variance goes down as m increases. Tables 2.8 and 2.9 show that for n = 2 000, the OLS
estimate gives the best performance whereas for n = 5 000, the LASSO-based methods
profit from the large number of available control variates. In this case, the LASSO
is most efficient while the LSLASSOX performs similarly but at a reduced computing
time.
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(a) Boxplots for Capture dataset (n =
2000, N = 700)
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(b) Boxplots for Capture dataset (n =
5000, N = 1000)
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(c) Boxplots for Sonar dataset (n = 2000, N =
700)
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(d) Boxplots for Sonar dataset (n = 5000, N =
1000)

Figure 2.2 – Boxplots (based on 100 runs) of Ẑ/Z? returned by each of the methods for
Capture-Recapture and Sonar examples.

2.5.2 Sonar data

The data were collected by (Gorman and Sejnowski, 1988) and are available from the
UCI Machine Learning Repository (Asuncion and Newman, 2007). The data matrix
X represents 208 sonar signals, each one composed of 60 attributes within the binary
classification framework. A column of 1’s is added to the matrix X to represent the
intercept so that X ∈ R208×61. The goal is to assess whether the sonar signal bounces
off a metal cylinder (label y = 1) or a roughly cylindrical rock (label y = −1). The
different covariates represent the energy within particular frequency bands, integrated
over a certain period of time. Using the encoding y ∈ {−1,+1} and following a logistic
regression model, the resulting log-likelihood is

log `(X, y|θ) = −
208∑
i=1

log

1 + exp

−yi 61∑
j=1

Xijθj


 ,

where the model coefficient θ ∈ [−1, 1]61 has a uniform prior distribution. We use the
family of Legendre polynomials as control functions with k = 20. The boxplots and
statistical efficiencies are presented in Figures 2.2c and 2.2d and Tables 2.10 and 2.11,
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m = 90 444 1 062 3 090 5 730

OLS 9.33 20.7 14.7 0.14 0.06
LASSO 9.34 20.3 16.7 14.4 8.57
LSL 9.33 20.4 12.8 8.43 4.60
LSLX 9.33 19.4 19.8 12.9 7.86

Table 2.8 – Capture data: statistical effi-
ciency (n = 2000)

m = 90 444 1 062 3 090 5 730

OLS 7.67 18.1 22.1 15.2 0.15
LASSO 7.67 18.4 22.3 22.8 12.8
LSL 7.67 18.0 21.3 13.3 5.24
LSLX 7.67 17.8 21.4 21.6 13.2

Table 2.9 – Capture data: statistical effi-
ciency (n = 5000)

m = 61 183 305 610 1220

OLS 3.39 13.3 246 548 330
LASSO 3.39 13.6 250 673 680
LSL 3.39 13.3 246 564 499
LSLX 3.39 13.9 244 558 680

Table 2.10 – Sonar data: statistical effi-
ciency (n = 2000)

m = 61 183 305 610 1220

OLS 4.48 17.0 235 801 601
LASSO 4.49 17.0 240 821 721
LSL 4.48 17.0 235 804 629
LSLX 4.48 17.0 241 833 734

Table 2.11 – Sonar data: statistical effi-
ciency (n = 5000)

respectively. Once again, the Lasso-based methods, with their selection strategy, are
able to benefit from a larger control variates space. The winner of this competition
is LSLASSOX as it offers the best performance combined with a smaller computation
time compared to the LSLASSO.

2.6 Conclusion and perspective

The use of high-dimensional control variates with the help of a LASSO-type proced-
ure has been shown to be efficient in order to reduce the variance of the basic Monte
Carlo estimate. The method, called LSLASSO(X), that first selects appropriate con-
trol variates by the LASSO, possibly on a smaller subsample, and then estimates the
control variate coefficients by least squares performs excellently considering the modest
computing time required. Several avenues for further research are now discussed.

The construction of control variates by a change of measure (Remark 2.1) presupposes
some knowledge on the underlying integration measure in order to choose an appropri-
ate sampling distribution. For instance, if the support of the sampling measure does
not cover the whole integration domain then the method will certainly fail. Adaptive
importance sampling (see, e.g., (Owen and Zhou, 2000; Portier and Delyon, 2018)) offers
a possible solution, involving online estimates of the appropriate sampling policy and
the optimal linear combination of control variates.

Assumption 2.10 on the sub-Gaussianity of the residuals is key to obtain concentration
inequalities. For certain applications, it might be too restrictive, however. In the
absence of such an assumption or more generally of suitable bounds on the tails of the
residual distribution, other types of results such as almost sure convergence rates might
still be pursued.
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In the random design setting, the estimators of coefficient vector β?(f) are all biased,
even the OLS estimator. The bias may be removed by sample splitting (Avramidis
and Wilson, 1993), but at the cost of an increased variance, especially if the number of
control variates is large. For the Lasso-based methods, debiasing methods are studied
in (Javanmard and Montanari, 2018) and the references therein. The merits of these
techniques for Monte Carlo control variate methods remain to be investigated.

We have presented different control variate methods from the point of view of estimation
only. Equally important questions are that of model evaluation and Monte Carlo sample
size calculation, assessing the accuracy of the estimate. Several ways can be imagined
such as sample splitting (e.g., cross-validation) and plug-in estimation of the residual
variance σ2(f), using for instance the estimated residuals.

2.A Proofs

2.A.1 Auxiliary results

Lemma 2.30. (Sub-Gaussian) Let X1, . . . , Xn be independent and identically distrib-
uted random variables in (X ,A) with distribution π. Let ϕ1, . . . , ϕp be real-valued func-
tions on X such that π(ϕk) = 0 and ϕk ∈ G(τ2) for all k = 1, . . . , p. Then for all δ > 0,
we have with probability at least 1− δ,

max
k=1,...,p

∣∣∣∣∣∣
n∑
i=1

ϕk(Xi)

∣∣∣∣∣∣ ≤√2nτ2 log(2p/δ).

Proof For each k = 1, . . . , p, the centered random variable
∑n

i=1 ϕk(Xi) is sub-
Gaussian with variance factor nτ2. By the union bound and by Chernoff’s inequality,
we have, for each t > 0,

P

 max
k=1,...,p

∣∣∣∣∣∣
n∑
i=1

ϕk(Xi)

∣∣∣∣∣∣ > t

 ≤ p∑
k=1

P


∣∣∣∣∣∣
n∑
i=1

ϕk(Xi)

∣∣∣∣∣∣ > t


≤ 2p exp

(
−t2
2nτ2

)
.

Set t =
√

2nτ2 log(2p/δ) to find the result.

Lemma 2.31. (Smallest eigenvalue lower bound) Let X1, . . . , Xn be independent and
identically distributed random variables in (X ,A) with distribution π. Let g = (g1, . . . , gp)

>

in L2(P )p be such that the p×p Gram matrix G = π(gg>) satisfies λmin(G) > 0. Define

the transformation g̃ = G−1/2g and put Bg̃ := supx∈X

∥∥∥g̃(x)
∥∥∥2

2
. Let δ, η ∈ (0, 1). For

δ ∈ (0, 1), the empirical Gram matrix Ĝn = πn(gg>) satisfies, with probability at least
1− δ,

λmin(Ĝn) >

(
1−

√
2Bg̃n−1 log(p/δ)

)
λmin(G).
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Proof Suppose that the result is true in the special case that G is the identity matrix.
In case of a general Gram matrix G, we could then apply the result for the special case
to the vector of functions g̃ = G−1/2g, whose Gram matrix is the identity matrix. We
would get that λmin(πn(g̃g̃>)) > 1− η with probability at least 1− δ. Since πn(g̃g̃>) =
G−1/2ĜnG

−1/2 and since u>G−1u ≤ 1/λmin(G) for every unit vector u ∈ Rp, we would
have

λmin

(
πn(g̃g̃>)

)
= min

u>u=1

{
u>πn(g̃g̃>)u

}
= min

u>u=1

(G−1/2u)>ĜnG
−1/2u

(G−1/2u)>G−1/2u
u>G−1u


≤ λmin(Ĝn)/λmin(G).

It would then follow that

λmin(Ĝn) ≥ λmin(πn(g̃g̃>))λmin(G) ≥ (1− η)λmin(G),

as required. Hence we only need to show the result for G = I, in which case g̃ = g.

We apply the matrix Chernoff inequality in (Tropp, 2015, Theorem 5.1.1) to the random
matrices n−1g(Xi)g(Xi)

>. These matrices are independent and symmetric with dimen-
sion p×p. Their minimum and maximum eigenvalues are between 0 and L = Bg/n, with
Bg = supx∈X λmax(g(x)g(x)>) = supx∈X ||g(x)||22. Their sum is equal to πn(gg>) = Ĝn,
whose expectation is G = I by assumption. In the notation of the cited theorem, we
have µmin = λmin(G) = 1, and thus, by Eq. (5.1.5) in that theorem, we have, for
η ∈ [0, 1),

P{λmin(Ĝn) ≤ 1− η} ≤ p
[

exp(−η)

(1− η)1−η

]n/Bg
.

The term in square brackets is bounded above by exp(−η2/2). Indeed, we have, for
η ∈ [0, 1),

e−η

(1− η)1−η = exp{−η − (1− η) log(1− η)}

and

η + (1− η) log(1− η) = η − (1− η)

∫ η

0

dt

1− t

=

∫ η

0

(
1− 1− η

1− t

)
dt

=

∫ η

0

η − t
1− t dt

≥
∫ η

0
(η − t) dt =

η2

2
.

It follows that

P{λmin(Ĝn) ≤ 1− η} ≤ p exp

(
− η

2n

2Bg

)
.
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Solving p exp

(
− η2n

2Bg

)
= δ in η, we find that, with probability at least 1− δ,

λmin(Ĝn) > 1−
√

2Bgn−1 log(p/δ).

Lemma 2.32 (Upper bound of moments). Let X be a random variable such that
E(|X|2p) ≤ 2p+1p! for every integer p ≥ 1. Then

∀λ ∈ R, 1 +

∞∑
k=2

λk

k!
E(|X|k) ≤ exp(9λ2/4), (2.17)

in which it is implicitly understood that the series on the left-hand side converges.

Proof

Let λ ∈ R. We split the series in terms with even and odd indices k, leading to

1 +
∞∑
k=2

λk

k!
E(|X|k) = 1 +

∞∑
p=1

λ2p

(2p)!
E(|X|2p) +

∞∑
p=1

λ2p+1

(2p+ 1)!
E(|X|2p+1).

We will bound the series on the odd indices in terms of the series on the even indices.

Since the geometric mean of two nonnegative numbers is bounded by their arithmetic
mean, we have, for all x ≥ 0 and all a > 0,

|x| =
√

1

a
· ax2 ≤ 1

2

(
1

a
+ ax2

)
.

Applying the previous inequality to x = λX and scalars ap > 0 to be chosen later,

∞∑
p=1

λ2p+1

(2p+ 1)!
E(|X|2p+1) ≤

∞∑
p=1

λ2p

(2p+ 1)!
E

|X|2p 1

2

(
1

ap
+ ap(λX)2

)
=

∞∑
p=1

λ2p

2ap

E(|X|2p)
(2p+ 1)!

+

∞∑
p=1

ap
2

λ2p+2

(2p+ 1)!
E(|X|2p+2)

=

∞∑
p=1

λ2p

2ap

E(|X|2p)
(2p+ 1)!

+

∞∑
p=2

ap−1

2

λ2p

(2p− 1)!
E(|X|2p)

=
∞∑
p=1

(
1

2ap(2p+ 1)
+ pap−11{p≥2}

)
λ2p

(2p)!
E(|X|2p).

Here, 1 denotes an indicator function. We obtain

∞∑
k=2

λk

k!
E(|X|k) ≤

∞∑
p=1

(
1 +

1

2ap(2p+ 1)
+ pap−11{p≥2}

)
λ2p

(2p)!
E(|X|2p).
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Define bp = ap(2p+1) and use the hypothesis on E(|X|2p) to see that, for any constants
bp > 0,

1 +

∞∑
k=2

λk

k!
E(|X|k) ≤ 1 +

∞∑
p=1

(
1 +

1

2bp
+

p

2p− 1
bp−11{p≥2}

)
λ2p

(2p)!
2p+1p!.

The objective is to find a constant c > 0 as small as possible and such that the right-
hand side is bounded by exp(cλ2) = 1 +

∑∞
p=1 c

pλ2p/p!. Comparing coefficients, this
means that we need to determine scalars bp > 0 and c > 0 in such a way that for all
p = 1, 2, . . . (

1 +
1

2bp
+

p

2p− 1
bp−11{p≥2}

)
2p+1p!

(2p)!
≤ cp

p!
,

or, equivalently, (
2 +

1

bp
+

2p

2p− 1
bp−11{p≥2}

)
p∏
j=1

j

p+ j
≤ (c/2)p.

The case p = 1 gives

2 +
1

b1
≤ c, (2.18)

showing that, with this proof technique, we will always find c > 2. Setting bp ≡ b > 0
for all integer p ≥ 1 and c = 2 + 1/b, inequality (2.18) is automatically satisfied, so it
remains to find b > 0 such that forall p = 2, 3, . . .(

2 +
1

b
+

2p

2p− 1
b

)
p∏
j=1

j

p+ j
≤ (c/2)p with c = 2 +

1

b
.

The left-hand side is decreasing in p whereas the right-hand side is increasing in p. It
is thus sufficient to have the inequality satisfied for p = 2, i.e.,

(
2 +

1

b
+

4b

3

)
1

6
≤
(

1 +
1

2b

)2

. (2.19)

Equating both sides leads to a nonlinear equation in b that can be solved numerically,
giving the root b ≈ 4.006156. With b = 4, inequality (2.19) is satisfied, as can be
checked directly (91/72 ≤ 81/64). We conclude that c = 2+1/4 = 9/4 is a valid choice.

Note that the series in (2.17) starts at k = 2. If also E(X) = 0, the left-hand side in
(2.17) is an upper bound for E(exp(λX)), and we obtain the following corollary.

Corollary 2.33. Let Z be a centered random variable such that

∀p ∈ N?, E(|Z|2p) ≤ 2p+1p!

Then logE(exp(λZ)) ≤ 9λ2/4 for all λ ∈ R, i.e., Z ∈ G(9/2).

Lemma 2.34. Let (X,Y ) be a pair of uncorrelated random variables. If X ∈ G(ν) and
|Y | ≤ κ for some ν > 0 and κ > 0, then XY ∈ G((9/2)κ2ν).
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Proof The random variable X/
√
ν is sub-Gaussian with variance factor 1. As on

page 25 in Boucheron et al. (2013a), this implies that P(|X/√ν| > t) ≤ 2 exp(−t2/2)
for all t ≥ 0 and thus E[|X/√ν|2p] ≤ 2p+1p! for all integer p ≥ 1 (see (Boucheron et al.,
2013a, Theorem 2.1)).

Let Z = XY/(
√
νκ). Since X is centered and X and Y are uncorrelated, XY is

centred too, and therefore also Z. From the previous paragraph, we have E(|Z|2p) ≤
E(|X/√ν|2p) ≤ 2p+1p! for all integer p ≥ 1. Corollary 2.33 gives for all λ ∈ R that
logE(exp(λZ)) ≤ 9λ2/4, from which

logE(exp(λXY )) = logE(exp(λ
√
νκZ)) ≤ 9

4
λ2νκ2.

Lemma 2.35 (Upper bound for norm-subGaussian random vector). Let X be a d-
dimensional random vector with zero-mean and such that P(

∥∥X∥∥
2
≥ t) ≤ 2 exp

(
−t2/(2σ2)

)
for all t ≥ 0. Then the random matrix Y defined by

Y =

[
0 X>

X 0

]
∈ R(d+1)×(d+1) (2.20)

satisfies E(exp(θY )) � exp(cθ2σ2)I for any θ ∈ R, with c = 9/4, where I denotes the
identity matrix.

Proof The non-zero eigenvalues of Y are
∥∥X∥∥ and −∥∥X∥∥. The non-zero eigenvalues of

Y k are thus
∥∥X∥∥k and (−

∥∥X∥∥)k for integer k ≥ 1. It follows that Y k �
∥∥X∥∥k I for all

integer k ≥ 1, and therefore also E(Y k) � E(
∥∥X∥∥k)I for all integer k ≥ 1. Furthermore,

the operator norm of Y k is bounded by
∥∥∥Y k

∥∥∥ ≤ ∥∥X∥∥k.
Since E(Y ) = 0, we get, for any θ ∈ R,

E(exp(θY )) = I +
∞∑
k=2

θk

k!
E(Y k) �

1 +
∞∑
k=2

θk

k!
E(
∥∥X∥∥k)

 I =

1 +
∞∑
k=2

(θσ)k

k!
E(ξk)

 I,

where ξ =
∥∥X∥∥ /σ. The first series converges in operator norm since

∥∥∥E(Y k)
∥∥∥ ≤

E(
∥∥∥Y k

∥∥∥) ≤ E(
∥∥X∥∥k).

By assumption, P(ξ > t) = P(
∥∥X∥∥ ≥ σt) ≤ 2e−t

2/2 for all t ≥ 0 and thus E(|ξ|2p) ≤
2p+1p! for all integer p ≥ 1 But then we can apply Lemma 2.32 with λ = θσ and X = ξ,
completing the proof.

The following result is a special case of Jin et al. (2019, Corollary 7). Our contribution is
to make the constant c in the cited result explicit. In passing, we correct an inaccuracy
in the proof of Jin et al. (2019, Lemma 4), in which it was incorrectly claimed that the
odd moments of a certain random matrix Y as in our Lemma 2.35 are all zero.
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Lemma 2.36 (Hoeffding inequality for norm-subGaussian random vectors). Let the
d-dimensional random vectors Z1, . . . , Zn be independent, have mean zero, and satisfy

∀t ≥ 0,∀i = 1, . . . , n, P(
∥∥Zi∥∥2

≥ t) ≤ 2 exp
(
− t2

2σ2

)
(2.21)

for some σ > 0. Then for any δ > 0, with probability at least 1− δ, we have∥∥∥∑n
i=1 Zi

∥∥∥
2
≤ 3
√
nσ2 log(2d/δ).

Proof Given Corollary 7 in Jin et al. (2019), the only thing to prove is that their
constant can be set equal to 3. Their Corollary 7 follows from their Lemma 6 in which
it is shown that when the matrix Y defined in (2.20) satisfies

∀θ ∈ R, E[exp(θY )] � exp(cθ2σ2)I,

then we have for any θ > 0, with probability at least (1− δ),∥∥∥∑n
i=1 Zi

∥∥∥
2
≤ c · θnσ2 +

1

θ
log(2d/δ).

Taking θ =
√

log(2d/δ)/(cnσ2) yields∥∥∥∑n
i=1 Zi

∥∥∥
2
≤ 2
√
c
√
nσ2 log(2d/δ),

and we conclude with Lemma 2.35 (c = 9/4, 2
√
c = 3).

2.A.2 Proof of Theorem 2.13

The proof is organized as follows. We first provide an upper bound on the error (Step 1).
This bound involves the norm of the error made on the rescaled coefficients and is
controlled in Step 2. Then (Step 3), we construct an event that has probability at least
1 − δ on which we can control the terms that appear in the upper bound of Step 2.
Collecting all the inequalities, we will arrive at the stated bound (Step 4).

Step 1. — Since f = π(f) + β?(f)>h + ε, the oracle estimate of π(f), which uses the
unknown, optimal coefficient vector β?(f), is

α̂or
n (f) = πn[f − β?(f)>h] = π(f) + πn(ε).

The difference between the OLS and oracle estimates is

α̂ols
n (f)− α̂or

n (f) =
(
β?(f)− β̂ols

n (f)
)>

πn(h).

Let G = π(hh>) be the m ×m Gram matrix. By assumption, G is positive definite.
Write

η? = G1/2β?(f), η̂ = G1/2β̂ols
n (f), ~ = G−1/2h.
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The estimation error of the OLS estimator can thus be decomposed as

n
(
α̂ols
n (f)− π(f)

)
= n

(
α̂or
n (f)− π(f)

)
+
(
β?(f)− β̂ols

n (f)
)>

nπn(h)

=

n∑
i=1

ε(Xi) +
(
β∗(f)− β̂ols

n (f)
)> n∑

i=1

h(Xi)

=

n∑
i=1

ε(Xi) + (η? − η̂)>
n∑
i=1

~(Xi).

By the triangle and Cauchy–Schwarz inequalities,

n
∣∣∣α̂ols
n (f)− P (f)

∣∣∣ ≤
∣∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣∣+
∥∥η? − η̂∥∥

2

∥∥∥∑n
i=1 ~(Xi)

∥∥∥
2
. (2.22)

Step 2. — We will show that, if λmin(πn(~~>)) >
∥∥∥πn(~)

∥∥∥2

2
, then

∥∥η̂ − η?∥∥
2
≤

∥∥∥πn(~ε)
∥∥∥

2
+
∥∥∥πn(~)

∥∥∥
2

∣∣∣πn(ε)
∣∣∣

λmin(πn(~~>))−
∥∥∥πn(~)

∥∥∥2

2

. (2.23)

and thus, by (2.22),

∣∣∣α̂ols
n (f)− π(f)

∣∣∣ ≤ ∣∣∣πn(ε)
∣∣∣+

∥∥∥πn(~ε)
∥∥∥

2
+
∥∥∥πn(~)

∥∥∥
2

∣∣∣πn(ε)
∣∣∣

λmin(πn(~~>))−
∥∥∥πn(~)

∥∥∥2

2

∥∥∥πn(~)
∥∥∥

2
(2.24)

Step 2.1 — Considered the column-centered n×m design matrices

Hc = H − 1nπn(h)> =
(
hj(Xi)− πn(hj)

)
i,j
,

H̄c = HcG
−1/2 = H̄ − 1nπn(~)> =

(
~j(Xi)− πn(~j)

)
i,j
.

Since H̄>1n = nπn(~), we have

H̄>c H̄c = H̄>H̄ − nπn(~)πn(~)>

= n
(
πn(~~>)− πn(~)πn(~)>

)
.

As a consequence, for u ∈ Rm,

u>H̄>c H̄cu = n
(
u>πn(~~>)u− (πn(~)>u)2

)
≥ n

(
λmin(πn(~~>))−

∥∥∥πn(~)
∥∥∥2

2

)
‖u‖22 .

by the Cauchy–Schwarz inequality. In particular, u>H̄>c H̄cu is non-zero for non-zero
u ∈ Rm, so that H̄>c H̄c is invertible, and so is the matrix

H>c Hc = G1/2H̄cH̄cG
1/2.
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Also, the smallest eigenvalue of H̄>c H̄c is bounded from below by

λmin(H̄>c H̄c) ≥ n
(
λmin(πn(~~>))−

∥∥∥πn(~)
∥∥∥2

2

)
> 0.

The largest eigenvalue of the inverse matrix (H̄>c H̄c)
−1 is then bounded from above by

λmax

(
(H̄>c H̄c)

−1
)
≤ 1

n

(
λmin(πn(~~>))−

∥∥∥πn(~)
∥∥∥2

2

) . (2.25)

Step 2.2. — Write ε(n)
c = (ε(Xi) − πn(ε))ni=1 for the centered vector of error terms.

Recall f (n)
c = (f(Xi) − πn(f))ni=1, the centered vector of samples from the integrand.

As f = π(f) + h>β∗(f) + ε, we have

f (n)
c = Hcβ

?(f) + ε(n)
c .

From the characterization (2.4) of the OLS estimate of the coefficient vector and since
H>c Hc is invertible,

β̂ols
n (f) = (H>c Hc)

−1H>c f
(n)
c

= (H>c Hc)
−1H>c

(
Hcβ

?(f) + ε(n)
c

)
= β?(f) + (H>c Hc)

−1H>c ε
(n)
c .

We obtain

η̂ − η? = G1/2
(
β̂ols
n (f)− β?(f)

)
= G1/2(H>c Hc)

−1H>c ε
(n)
c

= (H̄>c H̄c)
−1H̄>c ε

(n)
c . (2.26)

Step 2.3. — We combine the results from Steps 2.1 and 2.2. From the upper bound
(2.25) and the identity (2.26), we obtain

∥∥η̂ − η?∥∥
2
≤

∥∥∥∥H̄>c ε(n)
c

∥∥∥∥
2

n

(
λmin(πn(~~>))−

∥∥∥πn(~)
∥∥∥2

2

)

Finally, as H̄c = (~j(Xi)− πn(~j))i,j , we find

n−1

∥∥∥∥H̄>c ε(n)
c

∥∥∥∥
2

= n−1
∥∥∥∑n

i=1 ~(Xi)ε(Xi)− πn(~)
∑n

i=1 ε(Xi)
∥∥∥

2

=
∥∥∥πn(~ε)− πn(~)πn(ε)

∥∥∥
2

≤
∥∥∥πn(~ε)

∥∥∥
2

+
∥∥∥πn(~)

∥∥∥
2

∣∣∣πn(ε)
∣∣∣ .

Equation (2.23) follows.
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Step 3. — In view of (2.24), we need to ensure that |πn(ε)|, ||πn(~)||2 and ||πn(~ε)||2
are small and that λmin(πn(~~>)) is large. Let δ > 0. We construct an event with
probability at least 1 − δ on which four inequalities hold simultaneously. Recall B =

supx∈X

∥∥∥~(x)
∥∥∥2

2
, defined in (2.7).

Step 3.1. — Because ε ∈ G(τ2), Chernoff’s inequality (or Lemma 2.30 with p = 1)
implies that with probability at least 1− δ/4,∣∣∣∣∣∣

n∑
i=1

ε(Xi)

∣∣∣∣∣∣ ≤√2nτ2 log(8/δ). (2.27)

Step 3.2. — For the term
∥∥∥∑n

i=1 ~(Xi)
∥∥∥

2
, we apply the vector Bernstein bound in (Hsu

et al., 2012, Lemma 31). On the one hand supx∈X

∥∥∥~(x)
∥∥∥

2
≤
√
B and on the other

hand
n∑
i=1

E[||~(Xi)||22] =
n∑
i=1

m∑
j=1

π(~2
j ) = nm.

The cited vector Bernstein bound gives

∀t ≥ 0,P
[∥∥∥∑n

i=1 ~(Xi)
∥∥∥

2
>
√
nm

(
1 +
√

8t
)

+ 4
3 t
√
B

]
≤ e−t.

Setting t = log(4/δ), we find that, with probability at least 1− δ/4, we have∥∥∥∑n
i=1 ~(Xi)

∥∥∥
2
≤ √nm

(
1 +

√
8 log(4/δ)

)
+ 4

3 log(4/δ)
√
B.

Since log(4/δ) ≥ log(4), we have

1 +
√

8 log(4/δ) ≤ 4
√

log(4/δ)

and thus ∥∥∥∑n
i=1 ~(Xi)

∥∥∥
2
≤ 4
√
nm log(4/δ) + 4

3 log(4/δ)
√
B

= 4
√

log(4/δ)
(√

nm+ 1
3

√
B log(4/δ)

)
.

The condition on n easily implies that

1
3

√
B log(4/δ) ≤ 1

4

√
nm

and thus ∥∥∥∑n
i=1 ~(Xi)

∥∥∥
2
≤ 5
√
nm log(4/δ). (2.28)

Step 3.3. — To control
∥∥∥∑n

i=1 ~(Xi)ε(Xi)
∥∥∥

2
, we apply Lemma 3.18 with Zi = ~(Xi)ε(Xi).

The random vectors ~(Xi)ε(Xi) for i = 1, . . . , n are independent and identically dis-
tributed and have mean zero. Since

∥∥∥~(Xi)
∥∥∥

2
≤
√
B by (2.7) and since ε ∈ G(τ2) by

Assumption 2.10, we have, for all t > 0,
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P[
∥∥∥~(Xi)ε(Xi)

∥∥∥
2
> t] ≤ P[

√
B
∣∣∣ε(Xi)

∣∣∣ > t]

≤ 2 exp
(
− t2

2Bτ2

)
,

and (3.10) holds with σ2 = Bτ2. Lemma 3.18 then implies that, with probability at
least 1− δ/4 and c = 3 that∥∥∥∑n

i=1 ~(Xi)ε(Xi)
∥∥∥

2
≤ c
√
nBτ2 log(8m/δ). (2.29)

Step 3.4. — Recall the n×m matrix H = (hj(Xi))i,j and put

H̄ = HG−1/2 = (~j(Xi))i,j .

The empirical Gram matrix of the vector ~ = (~1, . . . , ~m)> ∈ L2(π)m based on the
sample X1, . . . , Xn is

Pn(~~>) = n−1H̄>H̄.

We apply Lemma 2.31 with g = g̃ = ~, p = m, and δ replaced by δ/4. We find that,
with probability at least 1− δ/4,

∀u ∈ Rm,
∥∥∥H̄u∥∥∥2

2
= nu>Pn(~~>)u

≥ n
(

1−
√

2Bn−1 log(4m/δ)
)
‖u‖22 . (2.30)

Since Pn(~~>) = n−1H̄>H̄, it follows that

λmin(πn(~~>)) ≥ 1−
√

2Bn−1 log(4m/δ) ≥ 2
3 (2.31)

as the assumption on n implies that 2Bn−1 log(4m/δ) ≤ 1/9.

By the union bound, the inequalities (2.27), (2.28), (2.29), and (2.30) hold simultan-
eously on an event with probability at least 1 − δ. For the remainder of the proof, we
work on this event, denoted by E.

Step 4. — We combine the bound (2.24) on the estimation error with the bounds valid
on the event E constructed in Step 3. By (2.31), we have

λmin(πn(~~>))−
∥∥∥πn(~)

∥∥∥2

2
≥ 2

3 − 25mn−1 log(4/δ) ≥ 1
3

since the assumption on n implies that 25mn−1 log(4/δ) ≤ 1/3. As B ≥ m ≥ 1, we
have

∥∥∥πn(~ε)
∥∥∥

2
+
∥∥∥πn(~)

∥∥∥
2

∣∣∣πn(ε)
∣∣∣ ≤ c√n−1Bτ2 log(8m/δ) + 5

√
n−1m log(4/δ) ·

√
2n−1τ2 log(8/δ)

≤
√
n−1Bτ2 log(8m/δ)

(
c+ 5

√
2n−1 log(4/δ)

)
≤ (c+

√
2/3)

√
n−1Bτ2 log(8m/δ),
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since, by assumption, n ≥ 75m log(4/δ) which implies that
√
n−1 log(4/δ) ≤ 1/(5

√
3).

We find∣∣∣α̂ols
n (f)− π(f)

∣∣∣
≤
√

2τ2n−1 log(8/δ) +
1

1/3
· (c+

√
2/3)

√
n−1Bτ2 log(8m/δ) · 5

√
mn−1 log(4/δ)

=
√

2τ2n−1 log(8/δ) + 15(c+
√

2/3)n−1
√
Bτ2m log(8m/δ) log(4/δ),

and the value c = 3 gives 15(c +
√

2/3) ≈ 57.2 < 58 which is the bound stated in
Theorem 2.13.

2.A.3 Proof of Theorem 2.20

For a vector β ∈ Rm and for a non-empty set S ⊂ {1, . . . ,m}, write βS = (βk)k∈S .
For any matrix A ∈ Rn×m and k ∈ {1, . . . ,m}, let Ak denote its k-th column and if
S = {k1, . . . , k`} ⊂ {1, . . . ,m} with k1 < . . . < k`, write AS = (Ak1 , . . . , Ak`) ∈ Rn×`.

The proof is organized in a similar way as the one of Theorem 2.13. We first provide
an initial upper bound on the error (Step 1). Then we construct an event that (Step 2)
has probability at least 1 − δ and (Steps 3, 4, 5) on which we can control each of the
terms of the previous upper bound. The combination of all steps to deduce the final
statement is made clear in Step 6.

Step 1. — As in the proof of Theorem 2.13, with β̂ols
n (f) replaced by β̂lasso

n (f), the
estimation error of the LASSO estimator can be decomposed as

n
(
α̂lasso
n (f)− π(f)

)
=

n∑
i=1

ε(Xi) +
(
β∗(f)− β̂lasso

n (f)
)> n∑

i=1

h(Xi).

Writing û = β̂lasso
n (f)− β?(f), we get, by the triangle and Hölder inequalities,

n
∣∣∣α̂lasso
n (f)− π(f)

∣∣∣ ≤
∣∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣∣+
∥∥û∥∥

1
max

k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣∣ . (2.32)

Step 2. — Let δ > 0. We construct an event, E, with probability at least 1 − δ on
which four inequalities, namely (2.33), (2.34), (2.35) and (2.36), hold simultaneously.

• Since ε ∈ G(τ2), we can apply Lemma 2.30 with p = 1 to get that, with probability
at least 1− δ/4, ∣∣∣∣∣∣

n∑
i=1

ε(Xi)

∣∣∣∣∣∣ ≤√2nτ2 log(8/δ). (2.33)

• In view of (Boucheron et al., 2013a, Lemma 2.2) and Assumption 2.11, we have
hk ∈ G(U2

h) for all k = 1, . . . ,m. Hence we can apply Lemma 2.30 with p = m to get
that, with probability at least 1− δ/4,

max
k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣∣ ≤
√

2nU2
h log(8m/δ). (2.34)
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• By virtue of Assumptions 2.10 and 2.11, we can apply Lemma 2.34 to find hkε ∈
G(Cτ2U2

h) with C = 9/2. Hence we can apply Lemma 2.30 to get that, with prob-
ability at least 1− δ/4,

max
k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)ε(Xi)

∣∣∣∣∣∣ ≤
√

2nCτ2U2
h log(8m/δ)). (2.35)

• In view of (Boucheron et al., 2013a, Lemma 2.2) and Assumptions 2.11 and 2.23,
we have hkhl − P (hkhl) ∈ G(U4

h) for all k, l ∈ {1, . . . ,m}. Hence we can apply
Lemma 2.30 with p = m2 to get that, with probability at least 1− δ/4,

max
1≤k≤m
1≤l≤m

∣∣∣∣∣∣
n∑
i=1

{hk(Xi)hl(Xi)− P (hkhl)}

∣∣∣∣∣∣ ≤
√

2nU4
h log(8m2/δ).

Denote by ∆ = (Pn−P ){hh>}. Because by assumption 2(`?/γ?)
√

2U4
h log(8m2/δ) ≤

√
n, we have that

(`?/γ?) max
1≤k,l≤m

|∆k,l| ≤ 1/2.

Remark that

∀u ∈ Rm, n−1
∥∥Hu∥∥2

2
− u>Gu = u>∆u.

Then, following (Bickel et al., 2009, equation (3.3)), use the inequality |u>∆u| ≤
‖u‖21 max1≤k,l≤m |∆k,l|, to obtain that, with probability 1− δ/4, for all u ∈ C(S?; 3),∥∥Hu∥∥2

2
/n ≥ u>Gu− ‖u‖21 max

1≤k,l≤m
|∆k,l|

≥ u>Gu− ‖u‖22 `? max
1≤k,l≤m

|∆k,l|

≥ u>Gu− (u>Gu)(`?/γ?) max
1≤k,l≤m

|∆k,l|

≥ (u>Gu)/2.

It follows that with probability at least 1− δ/4,∥∥Hu∥∥2

2
≥ (nγ?/2) ‖u‖22 . (2.36)

Step 3. — We claim that, on the event E, we have

∀u ∈ C(S?; 3),
∥∥Hcu

∥∥2

2
≥ (nγ?/4) ‖u‖22 (2.37)

We have
H>c Hc = H>H − nπn(h)πn(h)>

and thus, ∥∥Hcu
∥∥2

2
≥
∥∥Hu∥∥2

2
− n max

k=1,...,m
|πn(hk)|2 ‖u‖21 .
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We treat both terms on the right-hand side. On the one hand, we just have obtained
a lower bound for the first term. On the other hand, in view of (2.34) and because
‖u‖21 ≤ 16

∥∥uS?∥∥2

1
≤ 16`? ‖u‖22, we have

‖u‖21 max
k=1,...,m

|πn(hk)|2 = ‖u‖21 n−2 ·max
k∈S?

∣∣∣∣ n∑
i=1

hk(Xi)

∣∣∣∣2
≤ 16`? ‖u‖22 · n−2 · 2nU2

h log(8m/δ)

≤ ‖u‖22 γ?/4

as n ≥ (16 × 8)`?(U2
h/γ

?) log(8m/δ) by assumption. In combination with (2.36), we
find ∥∥Hcu

∥∥2

2
≥ n(γ?/2) ‖u‖22 − n(γ?/4) ‖u‖22 = n(γ?/4) ‖u‖22 .

Step 4. — We claim that, on the event E, we have∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞
≤ (3 +

√
2/8)

√
log(8m/δ)Uhτ

√
n. (2.38)

Indeed, on the left-hand side in (2.38) we have in virtue of (2.33), (2.34) and (2.35),∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞

= max
k=1,...,m

∣∣∣∣∣∣
n∑
i=1

(hk(Xi)− πn(hk))(ε(Xi)− πn(ε))

∣∣∣∣∣∣
= max

k=1,...,m

∣∣∣∣∣∣∣
 n∑
i=1

hk(Xi)ε(Xi)

− nπn(hk)πn(ε)

∣∣∣∣∣∣∣
≤ max

k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)ε(Xi)

∣∣∣∣∣∣+ n−1

∣∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣∣ max
k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣∣
≤
√

2nCτ2U2
h log(8m/δ) + n−1

√
2nτ2 log(8/δ)

√
2nU2

h log(8m/δ)

=
√

2nCτ2U2
h log(8m/δ)

(
1 +

√
2 log(8/δ)/(Cn)

)
.

Since `? ≥ 1 and `?U2
h ≥

∑
k∈S? P (h2

k) ≥ γ?, the assumed lower bound on n implies
that n ≥ 128 log(8/δ). As C = 9/2, the factor

√
2C(1 +

√
2 log(8/δ)/(Cn)) is bounded

by 3 +
√

2/8 and we get (2.38).

Step 5. — Recall û = β̂lasso
n (f)− β?(f). We claim that, on the event E, we have∥∥û∥∥

1
≤ 48λ`?/γ?. (2.39)

To prove this result, we shall rely on the following lemma.

Lemma 2.37. If nλ ≥ 2

∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞

then, writing û = β̂lasso
n (f) − β?(f), we have

û ∈ C(S?; 3) and ∥∥Hcû
∥∥2

2
≤ 3nλ

∥∥ûS?∥∥1
. (2.40)

Proof This is just a reformulation of the reasoning on p. 298 in (Tibshirani et al.,
2015) with a slightly sharper upper bound. The vector ν̂ at the right-hand side of
their Eq. (11.23) can be replaced by ν̂S . For the sake of completeness, we provide the
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details. In the proof we use the shortcuts β? = β?(f) and β̂lasso
n = β̂lasso

n (f). Recall
ε
(n)
c = f

(n)
c −Hcβ

?(f) and define

G(u) = ‖f (n)
c −Hc(β

? + u)‖22/(2n) + λ‖β? + u‖1
= ‖ε(n)

c −Hcu‖22/(2n) + λ‖β? + u‖1.
Because G(û) ≤ G(0), we have

‖Hcû‖22/(2n) ≤ û>H>c ε(n)
c /n+ λ(‖β?‖1 − ‖β? + û‖1)

From the triangle inequality

‖(β? − (−û))S?‖1 ≥ |‖β?S?‖1 − ‖ûS?‖1| ≥ ‖β?S?‖1 − ‖ûS?‖1,
implying that

‖β?‖1 − ‖β? + û‖1
= ‖β?‖1 − ‖(β? + û)S?‖1 − ‖(β? + û)S?‖1
≤ ‖β?‖1 − ‖β?S?‖1 + ‖ûS?‖1 − ‖(β? + û)S?‖1
= ‖ûS?‖1 − ‖ûS?‖1.

From Hölder’s inequality, we get∣∣∣û>H>c ε(n)
c

∣∣∣ ≤ ∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞
·
∥∥û∥∥

1
,

which leads to∥∥Hcû
∥∥2

2
/(2n) ≤ ‖H>c ε(n)

c ‖∞‖û‖1/n+ λ(
∥∥ûS?∥∥1

−
∥∥∥ûS?∥∥∥

1
).

Consequently, because
∥∥∥∥H>c ε(n)

c

∥∥∥∥
∞
/n ≤ λ/2 by assumption, we obtain

0 ≤ ‖Hcû‖22/(2n) ≤ λ(‖û‖1/2 + ‖ûS?‖1 − ‖ûS?‖1)

= (λ/2)(3‖ûS?‖1 − ‖ûS?‖1).

The right-hand side must be nonnegative, whence
∥∥∥ûS?∥∥∥

1
≤ 3

∥∥ûS?∥∥1
, i.e., û ∈ C(S; 3).

The bound in (2.40) follows as well.

On the event E, the conclusion of Lemma 2.37 is valid because the bound on
∥∥∥∥H>c ε(n)

c

∥∥∥∥
∞

in (2.38) and the assumption on λ in Theorem 2.20 together imply that λ ≥ 2

∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞
/n.

The cone property of Lemma 2.37 yields û ∈ C(S?; 3) so that∥∥û∥∥
1

=
∥∥ûS?∥∥1

+
∥∥∥ûS?∥∥∥

1
≤ 4

∥∥ûS?∥∥1
. (2.41)

Thanks to (2.37) and Lemma 2.37, and since
∣∣S?∣∣ = `?, we get∥∥ûS?∥∥2

1
≤ `?

∥∥ûS?∥∥2

2

≤ `?
∥∥û∥∥2

2

≤ `? · n−1(4/γ?)
∥∥Hcû

∥∥2

2

≤ `? · n−1(4/γ?) · 3nλ
∥∥ûS?∥∥1

= 12`?(λ/γ?)
∥∥ûS?∥∥1

.
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It follows that
∥∥ûS?∥∥1

≤ 12`?λ/γ?. In combination with (2.41), we find (2.39).

Step 6. — Equation (2.32) gave a bound on the estimation error involving three terms.
On the event E, these terms were shown to be bounded in (2.33), (2.34), and (2.39). It
follows that, on E, we finally have

n
∣∣∣α̂lasso
n (f)− π(f)

∣∣∣ ≤√2nτ2 log(8/δ) + 48λ`?/γ? ·
√

2nU2
h log(8m/δ).

Divide by n and use 48
√

2 < 68 to obtain (2.9).

2.A.4 Proof of Theorem 2.24

Recall that S? = {j = 1, . . . ,m : β?j (f) 6= 0} with `? =
∣∣S?∣∣ and that S? = {1, . . . ,m} \

S?. Further, Hc,S? is the n × `? matrix having columns Hc,k for k ∈ S?, where Hc,k is
the k-th column of Hc.

Step 1. — We first establish some (non-probabilistic) properties of β̂lasso
n (f). To this

end, we consider the linear regression of the non-active control variates on the active
ones: for k ∈ S? = {j = 1, . . . ,m : β?j (f) = 0}, this produces the coefficient vector

θ̂(k)
n ∈ arg min

θ∈R`?

∥∥∥Hc,k −Hc,S?θ
∥∥∥

2
.

Further, we consider the OLS oracle estimate β̂?n, which is the OLS estimator based
upon the active control variables only, i.e.,

β̂?n ∈ arg min
β∈R`?

‖f (n)
c −Hc,S?β‖2.

Our assumptions will imply that, with large probability, Hc,S? has rank `∗, in which
case

θ̂(k)
n = (H>c,S?Hc,S?)

−1H>c,S?Hc,k,

β̂?n = (H>c,S?Hc,S?)
−1H>c,S?f

(n)
c .

The following lemma provides a number of (non-probabilistic) properties of β̂lasso
n (f),

given certain conditions on Hc and ε
(n)
c . Recall that a norm ‖ · ‖ on Rp induces a matrix

norm on Rp×p via
∥∥A∥∥ = sup{

∥∥Au∥∥ : u ∈ Rp, ‖u‖ = 1} for A ∈ Rp×p.

Lemma 2.38. If Hc,S? has rank `? and if there exists κ ∈ (0, 1] such that

max
k∈S?

∥∥∥∥θ̂(k)
n

∥∥∥∥
1

≤ 1− κ, (2.42)

max
k∈S?

∣∣∣(Hc,k −Hc,S? θ̂
(k)
n )>ε(n)

c

∣∣∣ ≤ κλn, (2.43)

then the minimizer β̂lasso
n (f) in (2.5) is unique, with support supp(β̂lasso

n (f)) ⊂ S?, and
it satisfies

max
k∈S?

∣∣∣β̂lasso
n,k (f)− β?k(f)

∣∣∣ ≤ max
k∈S?

∣∣∣β̂?n,k − β?k(f)
∣∣∣+ nλ

∥∥∥(H>c,S?Hc,S?)
−1
∥∥∥
∞
. (2.44)
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Proof The proof of the previous result is actually contained in Tibshirani et al. (2015).
The uniqueness of the LASSO solution and the property that it does not select inactive
covariates follows directly from the proof of their Theorem 11.3. The only difference
is that, in our case, the inequality (2.43) is an assumption whereas in Tibshirani et al.
(2015) it is a property of the Gaussian fixed design model. The approach in Tib-
shirani et al. (2015) is based upon checking the strict dual feasibility condition. The
bound (2.44) is Eq. (11.37) in Tibshirani et al. (2015).

We slightly modify Lemma 2.38 to make the conditions (2.42) and (2.43) easier to check
and to make the bound (2.44) easier to use.

Lemma 2.39. If there exists ν > 0 such that

∀u ∈ R`
?
,

∥∥∥Hc,S?u
∥∥∥2

2
≥ nν ‖u‖22 , (2.45)

and if there exists κ ∈ (0, 1] such that

`?

νn
max
k∈S?

max
j∈S?

∣∣∣H>c,jHc,k

∣∣∣ ≤ 1− κ, (2.46)

max
k=1,...,m

∣∣∣H>c,kε(n)
c

∣∣∣ ≤ 1

2
κλn, (2.47)

then the minimizer β̂lasso
n (f) in (2.5) is unique, with support satisfying supp(β̂lasso

n (f)) ⊂
S?, and it holds that

max
k∈S?

∣∣∣β̂lasso
n,k (f)− β?k(f)

∣∣∣ ≤ (1 + κ/2)
√
`?λ/ν. (2.48)

Proof

By (2.45), the smallest eigenvalue of the `? × `? matrix H>c,S?Hc,S? is positive, so that
it is invertible and Hc,S? has rank `?.

We show that (2.46) implies (2.42). For each k ∈ S?, the vector θ̂(k)
n has length `?, so

that ∥∥∥∥θ̂(k)
n

∥∥∥∥
1

≤
√
`?
∥∥∥∥θ̂(k)

n

∥∥∥∥
2

.

Because θ̂(k)
n is an OLS estimate, using that the largest eigenvalue of (H>c,S?Hc,S?)

−1

being bounded from above by (nν)−1, we obtain∥∥∥∥θ̂(k)
n

∥∥∥∥
2

=
∥∥∥(H>c,S?Hc,S?)

−1H>c,S?Hc,k

∥∥∥
2
≤ 1

nν

∥∥∥H>c,S?Hc,k

∥∥∥
2

Since ‖x‖2 ≤
√
m ‖x‖∞ for x ∈ Rm, we can conclude that

∥∥∥∥θ̂(k)
n

∥∥∥∥
2

≤
√
`?

νn
max
j∈S?

∣∣∣H>c,jHc,k

∣∣∣ .
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Combining the two bounds, we find that (2.46) indeed implies (2.42).

Next we show that (2.47) implies (2.43). For k ∈ S?, we have

∣∣∣(Hc,k −Hc,S? θ̂
(k)
n )>ε(n)

c

∣∣∣
≤
∣∣∣H>c,kε(n)

c

∣∣∣+
∣∣∣(θ̂(k)

n )>H>c,S?ε
(n)
c

∣∣∣
≤
∣∣∣H>c,kε(n)

c

∣∣∣+

∥∥∥∥θ̂(k)
n

∥∥∥∥
1

max
j∈S?

∣∣∣H>c,jε(n)
c

∣∣∣ .
Using (2.42) and (2.47) we deduce (2.43).

The conditions of Lemma 2.38 have been verified, and so its conclusion holds. We
simplify the two terms in the upper bound (2.44). First, we use that

∥∥∥β̂?n − β?(f)
∥∥∥

2
=

∥∥∥∥(H>c,S?Hc,S?)
−1H>c,S?ε

(n)
c

∥∥∥∥
2

≤
√
`?

νn

∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞
.

Second, for any matrix A ∈ Rp×p, we have
∥∥A∥∥∞ ≤ √p ∥∥A∥∥2

(e.g., (Horn and Johnson,
2012, page 365)), and this we apply to (H>c,S?Hc,S?)

−1. In this way, the upper bound
in (2.44) is dominated by

∥∥∥β̂?n − β?(f)
∥∥∥

2
+ nλ

√
`?
∥∥∥(H>c,S?Hc,S?)

−1
∥∥∥

2
≤
√
`?

nν
max
k∈S?

∣∣∣H>c,kε(n)
c

∣∣∣ + nλ
√
`?

1

nν
,

since the largest eigenvalue of (H>c,S?Hc,S?)
−1 is at most (nν)−1. Use (2.47) to further

simplify the right-hand side, yielding (2.48).

Step 2. — Let δ ∈ (0, 1) and n = 1, 2, . . .. In a similar way as in the proof of The-
orem 2.13, we construct an event of probability at least 1− δ. This time, we need five
inequalities to hold simultaneously.

• Because ε ∈ G(τ2), with probability at least 1− δ/5,∣∣∣∣∣∣
n∑
i=1

ε(Xi)

∣∣∣∣∣∣ ≤√2nτ2 log(10/δ). (2.49)

• In view of (Boucheron et al., 2013a, Lemma 2.2) and Assumption 2.11, we have
hk ∈ G(U2

h) for all k = 1, . . . ,m. Hence we can apply Lemma 2.30 with p = m to get
that, with probability at least 1− δ/5,

max
k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣∣ ≤
√

2nU2
h log(10m/δ). (2.50)
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• By virtue of Assumptions 2.10 and 2.11, we can apply Lemma 2.34 to have hkε ∈
G(CU2

hτ
2), where C = 9/2. Hence we can apply Lemma 2.30 to get that, with

probability at least 1− δ/5,

max
k=1,...,m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)ε(Xi)

∣∣∣∣∣∣ ≤
√

2Cnτ2U2
h log(10m/δ)). (2.51)

• Recall that B? = supx∈X h
>
S?(x)G−1

S? hS?(x) with

B? ≤ λmax(G−1
S? ) sup

x∈X
h>S?(x)hS?(x) ≤ `?U2

h/γ
??,

The assumption on n easily implies that n ≥ 8B? log(5`?/δ). Applying Lemma 2.31
with p = `?, g = hS? , and δ replaced by δ/5, we find that, with probability at least
1− δ/5, ∥∥HS?u

∥∥2

2
≥ nγ?? ‖u‖22 /2, ∀u ∈ R`

∗
. (2.52)

• Finally, because
∣∣∣hj(x)

∣∣∣ ≤ Uh for all x ∈ X and j ∈ {1, . . . ,m} and because

P (hkhj) = 0 for all (k, j) ∈ S? × S?, we have hkhj ∈ G(U4
h) for such k and j,

and thus, with probability at least 1− δ/5,

max
k∈S?

max
j∈S?

∣∣∣∣∣∣
n∑
i=1

hk(Xi)hj(Xi)

∣∣∣∣∣∣ ≤
√

2nU4
h log(10`?m/δ). (2.53)

By the union bound, the event, say E, on which (2.49), (2.50), (2.51), (2.52) and (2.53)
are satisfied simultaneously has probability at least 1− δ. We work on the event E for
the rest of the proof.

Step 3. — On the event E, we have

∀u ∈ R`
?
,

∥∥∥Hc,S?u
∥∥∥2

2
≥ nαγ?? ‖u‖22 , (2.54)

where α ∈ (0, 1/2) is an absolute constant whose value will be fixed in Step 6(ii). We
have

H>c,S?Hc,S? = H>S?HS? − nπn(hS?)πn(hS?)
>

and thus, by the Cauchy–Schwarz inequality and by (2.52),

∥∥∥Hc,S?u
∥∥∥2

2
≥
∥∥HS?u

∥∥2

2
− n

∥∥∥πn(hS?)
∥∥∥2

2
‖u‖22

≥ n
(
γ??/2−

∥∥∥πn(hS?)
∥∥∥2

2

)
‖u‖22 .

In view of (2.50), we have∥∥∥πn(hS?)
∥∥∥2

2
≤ `?

n2
2nU2

h log(10m/δ) = 2`? log(10m/δ)U2
h/n.
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We thus get ∥∥∥Hc,S?u
∥∥∥2

2
≥ nγ??

[
1

2
− 2`? log(10m/δ)U2

h/γ
??

n

]
‖u‖22

A sufficient condition for (2.54) is thus that the term in square brackets is at least α,
i.e.,

n ≥ 2

1/2− α`
? log(10m/δ)U2

h/γ
??

Since `? ≥ 1 and U2
h ≥ γ??, a condition of the form

n ≥ ρ log(10`?m/δ)[`?(U2
h/γ

??)]2 (2.55)

is thus sufficient, with much to spare, provided ρ > 2/(1/2− α). In Step 6(ii), we will
choose α in such a way that the constant ρ = 70 appearing in the statement of the
theorem is sufficient.

Step 4. — On the event E, we have

max
k∈S?

max
j∈S?
|H>c,jHc,k| ≤

√
2nU4

h log(10`?m/δ) + 2U2
h log(10m/δ). (2.56)

Indeed, denote A = S?×S?, in virtue of (2.50) and (2.53), the left-hand side is bounded
by

max
(k,j)∈A

∣∣∣∣∣∣∣
 n∑
i=1

hk(Xi)hj(Xi)

− nπn(hk)πn(hj)

∣∣∣∣∣∣∣
≤ max

(k,j)∈A

∣∣∣∣∣∣
n∑
i=1

hk(Xi)hj(Xi)

∣∣∣∣∣∣+
1

n
max
k∈S?

∣∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣∣max
j∈S?

∣∣∣∣∣∣
n∑
i=1

hj(Xi)

∣∣∣∣∣∣
≤ max

(k,j)∈A

∣∣∣∣∣∣
n∑
i=1

hk(Xi)hj(Xi)

∣∣∣∣∣∣+
1

n
max

k=1,...m

∣∣∣∣∣∣
n∑
i=1

hk(Xi)

∣∣∣∣∣∣
2

≤
√

2nU4
h log(10`?m/δ) +

1

n
2nU2

h log(10m/δ),

which is (2.56).

Step 5. — On the event E, we have∥∥∥∥H>c ε(n)
c

∥∥∥∥
∞
≤
√

2nCτ2U2
h log(10m/δ)

(
1 +

√
2 log(10/δ)/(Cn)

)
. (2.57)

The proof is the same as the first part of the one (2.38).

Step 6. — We will verify that on the event E, the three assumptions of Lemma 2.39
are satisfied with κ = 1/2 and ν = αγ??, with α as in Step 3.

(i) Eq. (2.45) with ν = αγ?? is just (2.54).
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(ii) Eq. (2.46) with ν = αγ?? and κ = 1/2 follows from (2.56) provided we have

`?

αγ??n

(√
2nU4

h log(10`?m/δ) + 2U2
h log(10m/δ)

)
≤ 1− 1

2
.

To check whether this is satisfied, we will make use of the elementary inequality2

∀(a, b, c) ∈ (0,∞)3, ∀x ≥
√
b2 + 4ac/a, ax2 ≥ bx+ c.

with x =
√
n and

a = αγ??/(2`?), b =
√

2U4
h log(10`?m/δ), c = 2U2

h log(10m/δ).

Sufficient is that n = x2 is bounded from below by (b2 + 4ac)/a2 = (b/a)2 + 4c/a,
which is

2U4
h log(10`?m/δ)

(αγ??/(2`?))2
+ 4

2U2
h log(10m/δ)

αγ??/(2`?)
=

8

α2
log(10`?m/δ)

(
`?U2

h

γ??

)2

+
16

α
log(10m/δ)

(
`?U2

h

γ??

)
.

But `? ≥ 1 and γ?? ≤ (1/`?)
∑

j∈S? π(h2
j ) ≤ U2

h , so that a sufficient condition is
that

n ≥
(

8

α2
+

16

α

)
log(10`?m/δ)[`?(U2

h/γ
??)]2.

The constant ρ in (2.55) must thus be such that

ρ ≥ max

(
2

1/2− α,
8

α2
+

16

α

)
.

The minimum of the right-hand side as a function of α ∈ (0, 1/2) occurs at
α =

√
2/3 and is equal to 2/(1/2 −

√
2/3) ≈ 69.9. Taking ρ = 70 as in the

assumption on n is thus sufficient.

(iii) Eq. (2.47) with κ = 1/2 follows from (2.57), since√
nτ2U2

h log(10m/δ)
(√

2C + 2
√

log(10/δ)/n
)
≤ λn/4

by the assumed lower bound on λ. Indeed, since `? ≥ 1 and U2
h ≥ γ??, the

assumed lower bounds on n imply that n ≥ 70 log(10/δ), so that 2
√

log(10/δ)/n
is bounded by 2/

√
70; recall C = 9/2. Since 4 · (3 + 2/

√
70) ≈ 12.9, the assumed

lower bound for λ suffices.

Step 7. — By the previous step, the conclusions of Lemma 2.39 with κ = 1/2 and
ν = αγ?? hold on the event E, where α =

√
2/3 was specified in Step 6(ii). The

minimizer β̂lasso
n in (2.5) is thus unique and we have supp(β̂lasso

n (f)) ⊂ S?.
2The convex parabola x 7→ ax2 − bx − c has zeroes at x± = (b ±

√
b2 + 4ac)/(2a), and x− < 0 <

x+ <
√
b2 + 4ac/a.
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To show the reverse inclusion, we need to verify that
∣∣∣β̂lasso
n,k (f)

∣∣∣ > 0 for all k ∈ S?. To
this end, we apply (2.48) with κ = 1/2 and ν = αγ??, which becomes

max
k∈S?

∣∣∣β̂lasso
n,k (f)− β?k(f)

∣∣∣ ≤ (5/4)
√
`?λ/(αγ??).

For any k ∈ S?, we thus have∣∣∣β̂lasso
n,k (f)

∣∣∣ ≥ min
j∈S?

∣∣∣β?j (f)
∣∣∣− (5/(4α))

√
`?λ/γ??.

But for α =
√

2/3, we have approximately 5/(4α) ≈ 2.65. Since minj∈S?
∣∣∣β?j (f)

∣∣∣ >
3
√
`?λ/γ?? by the assumed upper bound for λ, we find

∣∣∣β̂lasso
n,k (f)

∣∣∣ > 0, as required.

2.A.5 Proof of Theorem 2.25

Recall that the LSLASSO estimator is defined as an OLS estimate computed on the
active variables selected by the LASSO based on a subsample of size N ∈ {1, . . . , n}.
Let β̂lasso

N (f) denote the LASSO coefficient vector in (2.5) based on the subsample
X1, . . . , XN and let

ŜN = supp(β̂lasso
N (f)) = {k ∈ {1, . . . ,m} : β̂lasso

N,k (f) 6= 0}

denote the estimated active set of ˆ̀ = |ŜN | control variates. The LSLASSO estimate
α̂lslasso
n (f) based on the full sample X1, . . . , Xn is defined as the OLS estimator based

on the control variates hk for k ∈ ŜN : writing HŜN
for the n× ˆ̀matrix with columns

(hk(Xi))
n
i=1 with k ∈ ŜN , we have(

α̂lslasso
n (f), β̂lslasso

n (f)
)
∈ arg min

(α,β)∈R×Rˆ̀

∥∥∥f (n) − α1n −HŜN
β
∥∥∥2

2
,

Therefore, we can derive a concentration inequality by combining the support recovery
property (Theorem 2.24) along with the concentration inequality for the OLS estimate
(Theorem 2.13) using only the active control variates.

Let δ > 0 and n ≥ 1. We construct an event with probability at least 1 − δ on which
the support recovery property and the concentration inequality for the OLS estimate
hold simultaneously. Recall that S? = supp(β?(f)) is the true set of `? =

∣∣S?∣∣ active
control variables.

• Thanks to Theorem 2.24, with probability at least 1− δ/2,

ŜN = S?. (2.58)

Indeed, the conditions on N and λ in Theorem 2.25 are such that we can apply
Theorem 2.24 with n and δ replaced by N and δ/2, respectively.

• Thanks to Theorem 2.13, with probability at least 1− δ/2,∣∣∣α̂ols
n (f, hS?)− π(f)

∣∣∣ ≤√2 log(16/δ)
τ√
n

+ 58
√
B?`? log(16`?/δ) log(8/δ)

τ

n
. (2.59)
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where for any S ⊂ {1, . . . ,m}, α̂ols
n (f, hS) is the OLS estimate of P (f) based on the

control variates hS . Indeed, we apply Theorem 2.13 with h and δ replaced by hS?
and δ/2, respectively. The required lower bound on n is now

n ≥ max
(

18B? log(8`?/δ), 75`? log(8/δ)
)
.

By assumption we have N ≥ 75[`?(U2
h/γ

??)]2 log(20`?/δ). The required lower bound
is already satisfied for N , and thus certainly by n.

By the union bound, the event on which (2.58) and (2.59) are satisfied simultaneously
has probability at least 1− δ. On this event, we can, by definition of α̂lslasso

n (f) and by
(2.58), write the integration error as∣∣∣α̂lslasso

n (f)− π(f)
∣∣∣ =

∣∣∣α̂ols
n (f, hŜN )− π(f)

∣∣∣ =
∣∣∣α̂ols
n (f, hS?)− π(f)

∣∣∣ .
But the right-hand side is bounded by (2.59), yielding (2.13), as required.
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3.1 Introduction

In recent years, sequential simulation has emerged as a leading approach to compute
multidimensional integrals. A key object in sequential simulation is the sequence of
distributions, called the policy, from which to generate the random variables, called
particles, used to approximate the integrals of interest. The policy is designed to evolve
in the course of the algorithm to mimic the target density, which may itself be known
only up to a proportionality constant. While the design of algorithms with adaptive
policies has been of major interest recently, only a few studies have focused on using
control variates to reduce the variance. This chapter provides a new method to incor-
porate control variates within standard sequential algorithms. The proposed approach
significantly improves the accuracy of the initial algorithm, both theoretically and in
practice.

The sequential framework. Consider the problem of approximating the integral∫
fπ dλ =

∫
Rd f(x)π(x) dx, where λ is the d-dimensional Lebesgue measure, π is a prob-

ability density on Rd and the integrand f is a real-valued function on Rd. For instance,
one may think of π as the posterior density in Bayesian inference. Let (qi)i≥0 be the
policy of the algorithm, i.e., a sequence of probability densities which evolves adaptively
depending on previous outcomes. The particles (Xi)i≥1 are generated sequentially—at
iteration i, particle Xi is drawn from qi−1. The integral

∫
fπ dλ is estimated by the

normalized sum
(∑n

i=1wif(Xi)
)
/
(∑n

i=1wi

)
, where wi = π(Xi)/qi−1(Xi) are the im-

portance weights. The normalization
∑n

i=1wi allows to deal with situations where the
target density π is known only up to a proportionality constant.
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Such an algorithm is part of the adaptive importance sampling (AIS) framework. Many
different ways have been investigated to update the densities qi adaptively. Early works
that inspired such sequential schemes include Geweke (1989); Kloek and Van Dijk
(1978); Oh and Berger (1992) where the sampling policy is chosen out of a parametric
family. The parametric approach has been further extended by the Population Monte
Carlo framework (Cappé et al., 2008, 2004; Martino et al., 2017). Various asymptotic
results have been obtained in Chopin (2004); Douc and Moulines (2008); Portier and
Delyon (2018). In Dai et al. (2016); Delyon and Portier (2021); Korba and Portier
(2022); Zhang (1996), nonparametric importance sampling based on kernel smoothing
is studied. The latter bears resemblance to sequential Monte Carlo methods (Del Moral
et al., 2006; Chopin, 2004), in which the target distribution π changes in the course of
the algorithm.

Let h = (h1, . . . , hm)> be a vector of real-valued functions on Rd such that for each k,
the integral

∫
hkπ dλ is known. Without loss of generality, suppose that

∫
hπ dλ = 0.

The functions hk are called control variates and can be obtained in different ways. In
Bayesian statistics, Stein control variates (Oates et al., 2017) are constructed by apply-
ing the second-order Stein operator to functions satisfying certain regularity conditions
(Mira et al., 2013). Other control variates might be created by re-weighting a function
h∗ that satisfies

∫
h∗ dλ = 0 via h = h∗/π. The use of control variates is a well stud-

ied variance-reduction technique (Glynn and Szechtman, 2002; Owen and Zhou, 2000).
The benefits can be established theoretically in terms of error bounds (see Oates et al.
(2017) and chapter 2), weak convergence (Portier and Segers, 2019), the excess risk (Be-
lomestny et al., 2022) and even uniform error bounds over large classes of integrands
(Plassier et al., 2020). In practice, the control variates framework has led to efficient
procedures in reinforcement learning Jie and Abbeel (2010); Liu et al. (2018) and op-
timization Wang et al. (2013), to name a few. Importance sampling and control variates
in case of a Gaussian target density is explored in Jourdain (2009). The procedure in
Kawai (2020) incorporates control variates and is said to involve adaptive importance
sampling, but in fact the particles are always sampled from the uniform distribution on
the unit cube. To the best of our knowledge, the existing control variate methods do
not account for sequential changes in the particle distribution as is the case in AIS.

AISCV estimate. The proposed approach to use control variates within the sequential
AIS framework relies on the ordinary least squares expression of control variates (see
for instance Portier and Segers (2019)). To take care of the policy changes, some re-
weighting must be applied. The AISCV estimate of the integral

∫
gf dλ is defined as

the first coordinate of the solution to the weighted least squares problem

(α̂n, β̂n) = arg min
a∈R,b∈Rm

n∑
i=1

wi

(
f(Xi)− a− b>h(Xi)

)2
,

with wi the importance weights from before. The AISCV estimate α̂n has several
interesting properties: (a) whenever f is of the form α + β>h for some α ∈ R and
β ∈ Rm, the error is zero, i.e., α̂n = α =

∫
fπ dλ; (b) the estimate takes the form

of a quadrature rule α̂n =
∑n

i=1 vn,if(Xi), for quadrature weights vn,i that do not
depend on the function g and that can be computed by a single weighted least squares
procedure; and (c) it can be computed even when f is known only up to a multiplicative
constant. Point (a) suggests that when the linear combinations of the functions hk span
a rich function class, the integration error is likely to be small. Point (b) implies that
multiple integrals can be computed just as easily as a single one. Point (c) shows that
the approach is applicable for Bayesian computations. In addition, the control variates
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can be brought into play in a post-hoc scheme, after generation of the particles and
importance weights, and this for any AIS algorithm.

Main result. The main theoretical result of the chapter is a probabilistic, non-
asymptotic bound on α̂n−α. Under appropriate conditions, the bound scales as τ/

√
n,

where τ2 is the scale constant in a sub-Gaussian tail condition on the error variable
ε = f − α − β>h for (α, β) = arg mina,b

∫
(f − a − b>h)2π dλ. Note that ε has the

smallest possible variance one could get using control variates h. As a consequence,
when the space of control variates is well suited for approximating f , the AISCV estim-
ate will be highly accurate. Also, our bound depends only on the linear function space
spanned by the control variates h1, . . . , hm, not on the particular basis chosen in that
space. The results rely on martingale theory, in particular on a concentration inequality
for norm-subGaussian martingales in Jin et al. (2019). In the course of the proof, we
develop a novel bound on the smallest eigenvalue of certain random matrices, extending
an inequality from (Tropp, 2015) to the martingale case.

Outline. Section 3.2 introduces the general framework of adaptive importance sampling
and control variates. Next, Section 3.3 presents the AISCV estimate and the associated
quadrature rule. Section 3.4 contains the statements of the theoretical results while
Section 3.5 gathers practical considerations, including the construction of control vari-
ates. Numerical experiments are presented in Section 3.6 and Section 3.7 concludes the
main part of the chapter with a discussion for further research.

3.2 Preliminaries on Monte Carlo integration

The aim of this section is to present the required mathematical framework for Monte
Carlo integration and the variance reduction methods of interest, namely adaptive im-
portance sampling and the control variate technique. Recall that f : Rd → R is an
integrand and π a probability density on Rd. The aim is to compute Eπ[f ] =

∫
fπ dλ.

Adaptive importance sampling. In adaptive importance sampling (AIS), Eπ[f ] is
estimated by a weighted mean over a sample of random particles X1, . . . , Xn in Rd.
Since appropriate sampling densities naturally depend on f and π, we generally cannot
simulate from them. They are then approximated in an adaptive manner by a family of
tractable densities (qi)i≥0 that often evolve towards a density qopt that optimizes some
criterion. While the starting density q0 is fixed, the density qi for i ≥ 1 is determined in
function of the particles X1, . . . , Xi already sampled; think for instance of a parametric
family, where the parameter of qi is a function of X1, . . . , Xi. Given the particles
X1, . . . , Xi, the next particle, Xi+1, is then drawn from qi. Formally, let (Xi)i≥1 be
a sequence of random vectors on Rd defined on some probability space (Ω,F ,P). The
distribution of the sequence (Xi)i≥1 is specified by its policy as defined below.

Definition 3.1 (Policy). A policy is a random sequence of probability density func-
tions (qi)i≥0 on Rd adapted to the σ-field (Fi)i≥0 defined by F0 = {∅,Ω} and Fi =
σ(X1, . . . , Xi) for i ≥ 1. The sequence (qi)i≥0 is the policy of (Xi)i≥1 whenever Xi has
density qi−1 conditionally on Fi−1.

The (normalized) adaptive importance sampling estimate of Eπ[f ] is then defined as

α̂(ais)
n (f) =

∑n
i=1wif(Xi)∑n

i=1wi
where wi =

π(Xi)

qi−1(Xi)
for i = 1, . . . , n. (3.1)
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The sampling weights wi reflect the fact that Xi has been sampled from qi−1 rather
than from π. The division by

∑n
i=1wi rather than by n has two benefits: first, the

integration is exact for constant integrands, and second, π needs to be known only up
to a proportionality constant, an advantage for Bayesian inference.

Since updating the density qi at each iteration may be computationally expensive, it
is customary to hold it fixed over a pre-determined number of iterations. Writing
n = n1 + · · · + nT in terms of positive integers (nt)

T
t=1 called the allocation policy, the

AIS estimate then becomes

α̂
(ais)
T (g) =

∑T
t=1

∑nt
i=1wt,if(Xt,i)∑T

t=1

∑nt
i=1wt,i

where wt,i =
π(Xt,i)

qt(Xt,i)
(3.2)

for t = 1, . . . , T and i = 1, . . . , nt. At stage t, the particles Xt,1, . . . , Xt,nt are sampled
independently from qt−1, while all particles sampled up to and including stage t are
used to determine the sampling density qt for stage t + 1. It is easy to see that the
two formulations of the AIS estimate are equivalent: (3.1) arises from (3.2) by setting
nt = 1 for all t, while (3.2) can be obtained from (3.1) by constructing the policy in
such a way that the densities qi do not change within integer intervals of the form
{0, . . . , n1−1}, {n1, . . . , n1 +n2−1}, and so on. While the shorter representation (3.1)
is more convenient for theoretical purposes, formulation (3.2) is the one used in practice
(see Section 3.6).

Interestingly, the AIS estimate (3.1) may be seen as a weighted least-squares estimate
minimizing the loss function a 7→ ∑n

i=1wi(f(Xi) − a)2. This perspective is key to
understand control variates.

Control variates. The control variates method is a variance reduction technique that
consists in incorporating a new piece of information—the known values of the integrals of
some control functions—in a basic Monte Carlo framework. Control variates are simply
functions h1, . . . , hm ∈ L2(π) with known integrals. Without loss of generality, assume
that Eπ[hj ] = 0 for all j = 1, . . . ,m. Let h = (h1, . . . , hm)> denote the Rm-valued
function with the m control variates as elements. For any coefficient vector β ∈ Rm, we
have Eπ[f − β>h] = Eπ[f ]. Given an independent random sample X1, . . . , Xn from π,
any β ∈ Rm therefore results in an unbiased estimator of Eπ[f ] by

α(cv)
n (f, β) =

1

n

n∑
i=1

{f(Xi)− β>h(Xi)}. (3.3)

Provided the m × m covariance matrix G = Eπ[hh>] is invertible, there is a unique
coefficient vector β∗ ∈ Rm for which the variance of α(cv)

n (f) is minimal and it is given
by

β∗ =
(
Eπ[hh>]

)−1
Eπ[hf ]. (3.4)

This vector being generally unknown, it needs to be estimated from the particles
X1, . . . , Xn. Casting the problem in an ordinary least squares framework leads to the
control variate estimate

α(cv)
n (f) = α(cv)

n

(
f, β̂(cv)

n

)
= α̂(cv)

n where(
α̂(cv)
n , β̂(cv)

n

)
∈ arg min

(a,b)∈R×Rm

1

n

n∑
i=1

(
f(Xi)− a− b>h(Xi)

)2
.

(3.5)
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The estimator α(cv)
n (f) is well-defined provided the minimizer α̂(cv)

n to (3.5) is unique.
This is the case if and only if there does not exist b ∈ Rm such that b>h(Xi) = 1 for all
i = 1, . . . , n.

The asymptotic distribution of α(cv)
n (f) as n → ∞ is the same as if the variance-

minimizing vector β∗ were used in (3.3). In particular, the asymptotic variance of
α

(cv)
n (f) is σ2

m(f)/n where

σ2
m(g) = min

β∈Rm
Ef
[
(f − Eπ[f ]− β>h)2

]
.

Interestingly, when using only the first ` out ofm control variates, where ` ∈ {0, 1, . . . ,m},
we have σ2

m(f) ≤ σ2
` (f). In terms of asymptotic variance, it therefore never harms to

add more control variates. Their construction will be addressed in Section 3.5.1.

3.3 Combining adaptive importance sampling with
control variates

AISCV estimator. Consider the same integration problem Eπ[f ] =
∫
fπ dλ as in

Section 3.2. With the idea of performing variance reduction when calculating integrals
with respect to the posterior density in Bayesian inference, we incorporate control vari-
ates into the AIS estimate. Let the particles (Xi)i≥1 be generated according to a policy
(qi)i≥0 as in Definition 3.1. Let h = (h1, . . . , hm)> be a vector of control variates, i.e.,
hj ∈ L2(π) and Eπ[hj ] = 0 for every j = 1, . . . ,m. Combining (3.1) and (3.3), the
proposed estimate takes the form

α(aiscv)
n (f, β) =

∑n
i=1wi

(
f(Xi)− β>h(Xi)

)
∑n

i=1wi
, (3.6)

where β ∈ Rm remains to be determined. To do so, the ordinary least-squares problem
in (3.5) is replaced by a weighted one, yielding the novel AISCV estimator

α(aiscv)
n (f) = α(aiscv)

n

(
f, β̂n

)
= α̂n where(

α̂n, β̂n

)
∈ arg min

(a,b)∈R×Rm

n∑
i=1

wi

(
f(Xi)− a− b>h(Xi)

)2
.

(3.7)

The estimator is well-defined only if the minimizer α̂n is unique—the minimizer β̂n need
not be. We will come back to this in the next paragraph.

As in (3.2), the policy may be divided into T stages in order to reduce the number
of times the sampler needs to be updated. Stage t = 1, . . . , T has length nt, with∑T

t=1 nt = n. Within each stage, the sampling density remains constant. In practice,
this leads to the AISCV estimate in Algorithm 3.4.

Quadrature rule. The AIS estimate (3.1) is a quadrature rule with quadrature points
Xi and quadrature weights proportional to the sampling weights wi. The AISCV
estimate (3.7) has the same property, but with adapted quadrature weights. Let
en = (en,i)i=1,...,n be the vector of residuals resulting from the weighted least-squares
regression of the constant vector 1n = (1, . . . , 1)> ∈ Rn on the control variates but
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Algorithm 3.4 Adaptive Importance Sampling with Control Variates (AISCV)

Require: integrand f , target density π (up to a proportionality constant), number
of stages T ∈ N∗, allocation policy (nt)

T
t=1, initial density q0, update rule for the

sampling policy
1: for t = 1, . . . , T do
2: Generate an independent random sample Xt,1, . . . , Xt,nt from qt−1

3: Compute the vector of weights (wt,i)
nt
i=1 where wt,i = π(Xt,i)/qt−1(Xt,i)

4: Construct the matrix of control variates Ht =
(
hj(Xt,i)

)j=1,...,m

i=1,...,nt
5: Evaluate the integrand in the particles: (f(Xt,i))

nt
i=1

6: Update the sampler qt based on all previous particles (Xs,i : s = 1, . . . , t; i =

1, . . . , ns)

7: end for
8: Compute (α̂T , β̂T ) = arg min

(a,b)∈R×Rm

∑T
t=1

∑nt
i=1wt,i

(
f(Xt,i)− a− b>h(Xt,i)

)2

9: return α
(aiscv)
n (f) = α̂T .

without intercept:

en,i = 1− β̂n(1n)>h(Xi) where

β̂n(1n) ∈ arg min
b∈Rm

n∑
i=1

wi

(
1− b>h(Xi)

)2
.

(3.8)

Even though the vector β̂n(1n) is not necessarily unique, the weighted least squares
fit (β̂n(1n)>h(Xi))i=1,...,n always is. According to the next proposition, the quadrature
weights are proportional to (wien,i)i=1,...,n.

Proposition 3.2 (AISCV quadrature rule). The minimizer α̂n in (3.7) is unique if
and only if en 6= 0 in (3.8). In that case, the AISCV estimate is

α(aiscv)
n (f) = α̂n =

∑n
i=1wien,if(Xi)∑n

i=1wien,i
. (3.9)

If en = 0, then there exists b ∈ Rm such that b>h(Xi) = 1 for all i = 1, . . . , n. In
that case, the minimizer α̂n in (3.7) is not unique and the AISCV estimate is not well-
defined. To remedy this, one can for instance reduce the number of control variates.
This issue already occurs with the ordinary control variate estimator in (3.3).

Rather than requiring a different weighted least squares problem for every integrand f as
in (3.7), the quadrature rule in (3.9) only involves a single weighted least squares problem
(3.8), whatever f . Given the quadrature weights, calculating the AISCV estimate for a
novel integrand only requires the evaluations of that function on the sampled particles,
making the whole procedure a post-hoc scheme. The steps in case the sampling policy
is divided into T stages are given in Algorithm 3.5, which gives the same result as
Algorithm 3.4, but with less effort if multiple integrands f are into play.
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Algorithm 3.5 Quadrature Rule – AISCV post-hoc scheme

Require: integrand f , T ∈ N∗, allocation policy (nt)
T
t=1, weights (wt)

T
t=1 with wt =

(wt,i)
nt
i=1, matrices (Ht)

T
t=1 with Ht =

(
hj(Xt,i)

)j=1,...,m

i=1,...,nt
, particles (Xt,i : t =

1, . . . , T ; i = 1, . . . , nt)

1: Compute β̂n(1n) = arg minb∈Rm
∑T

t=1

∑nt
i=1wt,i

(
1− b>h(Xt,i)

)2

2: Compute ut = diag(wt)[1nt −Htβ̂n(1n)] for t = 1, . . . , T

3: Compute s =
∑T

t=1

∑nt
i=1 ut,i

4: Compute weights vt,i = ut,i/s for t = 1, . . . , T and i = 1, . . . , nt

5: return α
(aiscv)
T (f) =

∑T
t=1

∑nt
i=1 vt,if(Xt,i)

3.4 Theoretical properties of the AISCV estimate

Here we point out several theoretical properties of the novel AISCV estimate. A first
point is that the integration rule is exact on the linear span of the control variates and
the constant function.

Proposition 3.3 (Exact integration). For integrands of the form f = α + β>h for
α ∈ R and β ∈ Rm, the AISCV estimate is exact: α(aiscv)

n (f) = α = Eπ[f ].

A second property is that we may apply arbitrary invertible linear transformations to
the control variates without changing the AISCV estimate. This can be advantageous
computationally, to make the underlying weighted least squares problem more stable
numerically. Also, it means that without loss of generality, we may assume that the
control variates are uncorrelated and have unit variance, which simplifies the theoretical
performance analysis.

Proposition 3.4 (Invariance). If the matrix A ∈ Rm×m is invertible, then the AISCV
estimate based on the control variates Ah is the same as the one based on h.

Our main result is a non-asymptotic bound on the error of the AISCV estimate for∫
fπ dλ when

∫
f2π dλ is finite. First, we introduce some assumptions and definitions.

The first condition that is required concerns the policy given by the AIS part of the
algorithm. It is supposed that any element from the policy should dominate the function
π.

Assumption 3.5 (Dominated measures). There exists c ≥ 1 such that, for all x ∈ Rd
and for any i = 1, . . . , n, we have π(x) ≤ c · qi(x).

This assumption represents a safe approach to importance sampling, as the policy will
always allow to sample in places where π is positive. A well-known and well-spread
(Hesterberg, 1995; Owen and Zhou, 2000; Delyon and Portier, 2021) technique to achieve
such a defensive strategy is to a use mixture density qi = (1−η)πi+ηq0 where η ∈ (0, 1)
and where q0 has sufficiently heavy tails to dominate π. Such a mixture allows to choose
the densities fi with some flexibility using in principle any AIS algorithm. Second, the
control variates shall be linearly independent and bounded.
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Assumption 3.6 (Control variates). We have supx:π(x)>0 |hj(x)| < ∞ for all j =

1, . . . ,m. The matrix G =
∫
hh>π dλ is invertible.

The previous condition allows to define the standardized vector of control variates as
~ = G−1/2h. By Proposition 3.4, this change does not affect the AISCV estimate. The
orthonormal control variates ~ will play a key role through the following quantity

B = sup
x:π(x)>0

‖~(x)‖22.

The quadratic form ‖~(x)‖22 = h(x)>G−1h(x) is referred to as the leverage function
in ordinary linear regression as it quantifies the influence of a training point x on the
prediction of the observed response. It is invariant with respect to invertible linear
transformations of the control variate vector.

Assumption 3.6 and the fact that the integrand g is square integrable with respect to
π allows to define the residual function ε = f −

∫
fπ dλ − h>β∗ where β∗ has been

introduced in (3.4) as a minimizer of the residual variance. Since we work in the space
L2(π), we assume without loss of generality that f and h vanish outside {x : π(x) > 0}
and we put ε(x) = 0 for x ∈ Rd such that π(x) = 0. The residual function ε should
satisfy the following tail condition.

Assumption 3.7 (Residual tail). There exists τ > 0 such that, for all t > 0 and all
integer i ≥ 1, we have P[|wiε(Xi)| > t | Fi−1] ≤ 2 exp(−t2/(2τ2)).

The previous assumption concerns both the function ε and the policy sequence (qi)i≥0.
Since E[wiε(Xi) | Fi−1] = 0, it is implied by the so-called sub-Gaussian condition
(Boucheron et al., 2013b) that E[exp(λwiε(Xi)) | Fi−1] ≤ exp(−λ2τ2/2) for any λ ∈ R.
In the proof of Theorem 3.8, Assumption 3.7 allows to derive concentration bounds on
residual-based sums using recent results from Jin et al. (2019); Leluc et al. (2021). We
are now in position to state our main result on the error of the AISCV estimate.

Theorem 3.8 (Concentration inequality for AISCV estimate). If Assumptions 3.5, 3.6
and 3.7 hold, then, for any δ ∈ (0, 1) and for all n ≥ C1c

2B log(10m/δ), we have, with
probability at least 1− δ, that∣∣∣α(aiscv)

n (f)− π(f) dx
∣∣∣ ≤ C2τ

√
log(10/δ)

n
+ C3cBτ

log(10m/δ)

n
,

where C1, C2, C3 are universal constants specified in the proof.

Remark 3.9 (Understanding τ). The quantity τ in Assumption 3.7 is related to the
conditional variance E[w2

i ε
2(Xi) | Fi−1]. They actually coincide when wiε(Xi) is Gaus-

sian. For a policy satisfying Assumption 3.5, E[w2
i ε

2(Xi) | Fi−1] ≤ cσ2
m which for

certain combinations of integrands and control functions scales as m−s/d (Portier and
Segers, 2019) where the parameter s represents the degree of smoothness of f .

Remark 3.10 (Convergence rates). Consider an asymptotic regime where the num-
ber of control variates m tends to infinity with the sample size n. The AISCV es-
timate improves upon the AIS method (m = 0), which has rate 1/

√
n, as soon as

τ + τB log(m)/
√
n → 0. To recover the same order of an oracle estimate with rate

τ/
√
n, one must have B log(m) = O(

√
n) as n→∞.
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3.5 Practical considerations

This section presents several ways to build control variates from a practical point of
view using either families of polynomials or general functions based on Stein’s method.
Next, some computations are highlighted in the framework of Bayesian inference.

3.5.1 Control variate constructions

Orthogonal polynomials. When the target density π can be decomposed as a product
of univariate densities π = p1 ⊗ · · · ⊗ pd, multidimensional control functions may be
constructed based on univariate ones. This happens for instance for the uniform dis-
tribution over the unit cube [0, 1]d or with uncorrelated Gaussian distributions on Rd.
Such univariate control variates may be easily constructed using families of polynomials
(Gautschi, 2004), such as Legendre polynomials for the uniform distribution on [0, 1]
and Hermite polynomials for the Gaussian distribution on R. This technique can also
be used when π is dominated by another density π∗ having the said product form by
transforming zero-mean control variates h∗ with respect to π∗ via h = h∗π∗/π.

Let (h1, . . . , hk) be a vector of univariate control functions with respect to a density p,
i.e., Ep[hj ] = 0 for all j = 1, . . . , k. Let h0 = 1 denote the constant function equal to
one. For a multi-index ` = (`1, . . . , `d) in {0, . . . , k}d\{(0, . . . , 0)}, multivariate controls
with respect to p⊗d are built by forming tensor products of the form h`(x1, . . . , xd) =
h`1(x1) · · ·h`d(xd) , yielding a total number of m = (k + 1)d − 1 control functions.
Alternative approaches yielding smaller control spaces consist of imposing `j = 0 for all
but a small number of coordinates j = 1, . . . , d or by the constraint `1 + · · · + `d ≤ Q
for some Q ≥ 1.

Stein control variates. In the general case where one has only access to the evalu-
ations of π, control variates may be constructed using Stein’s method. The technique
relies on the gradient∇x log π(x) which can either be directly computed (see the example
of Bayesian regression below) or which may be available through automatic differenti-
ation provided in popular API’s such as Tensorflow and PyTorch (Abadi et al., 2016;
Paszke et al., 2017). Let ∆x = ∇>x∇x denote the Laplace operator. By definition, the
second-order Stein operator L (Stein, 1972; Gorham and Mackey, 2015) associated to
the density π is defined by:

∀ϕ ∈ C2(Rd,R), (Lϕ)(x) = ∆xϕ(x) +∇xϕ(x)>∇x log π(x).

The transformation guarantees that Eπ[Lϕ] = 0 for all ϕ with weak regularity conditions
(Mira et al., 2013). Therefore, we can build infinitely many control variates hϕ = Lϕ
from given functions ϕ. One simple way is to let ϕ be a polynomial with bounded
total degree: for a degree vector α = (α1, . . . , αd) ∈ Nd with α1 + · · ·+ αd ≤ Q, define
ϕα(x) = xα1

1 · · ·xαdd . Given the dimension d and the total degree Q, there are m =(
d+Q
d

)
− 1 such degree vectors, yielding the associated control variates hα = hϕα . For

fast computation, note that, writing φα(x) = ϕα(x)1d,D1(x) = diag(α1/x1, . . . , αd/xd)
and D2(x) = diag(α1(α1− 1)/x2

1, . . . , αd(αd− 1)/x2
d), we have ∇xϕα(x) = D1(x)φα(x)

and ∆xϕα(x) = 1>d (D2(x)φα(x)). In practice, all combinations of α are stored in a
matrix A ∈ Nm×d.
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3.5.2 Bayesian inference

Given data D and a parameter of interest θ ∈ Θ ⊂ Rd, posterior integrals take the form∫
Rd f(θ)p(θ|D) dθ, where p(θ|D) ∝ `(D|θ)p(θ) is the posterior distribution, proportional
to a prior p(θ) and a likelihood function `(D|θ). For instance, when f(θ) = θ, the integral
above recovers the posterior mean. Stein control variates involve the computation of the
gradient of the log-posterior ∇θ log p(θ|D), which implicitly relies on the score function
∇θ log `(D|θ). We point out two common examples—linear and logistic regression—
where these functions are easy to compute.

Bayesian linear regression. Consider a linear regression problem comprised of ob-
servations X ∈ RN×d with labels y ∈ RN . In the Gaussian fixed design setting, the
predictor xi produces the response yi = x>i θ + εi where ε1, . . . , εN ∼ N (0, σ2) are
centered Gaussian noises. The likelihood `(X, y|θ) is proportional to (σ2)−N/2 exp(−(y−
Xθ)>(y−Xθ)/(2σ2)), yielding the score function ∇θ log `(X, y|θ) = X>(y−Xθ)/(2σ2).

Bayesian logistic regression. Next, consider the logistic regression problem com-
prised of observations X ∈ RN×d with associated binary labels y ∈ {0, 1}N . Letting
σ(s) = 1/(1 + e−s) denote the sigmoid function, the likelihood function is `(X, y|θ) =∏N
i=1 σ(θ>xi)

yi(1−σ(θ>xi))
1−yi . The score function is simply∇θ log `(X, y|θ) = X>(y−

σ(Xθ)).

3.6 Numerical illustration

To compare the finite-sample performance of the AIS and AISCV estimators, we first
present in Section 3.6.1 synthetic data examples involving the integration problem over
the unit cube [0, 1]d and then with respect to some Gaussian mixtures as in Cappé et al.
(2008). The goal is to compute

∫
fπ dλ for vectors of integrands f : Rd → Rp. We

consider various dimensions d > 1 and several choices for the number of control variates
m. Section 3.6.2 deals with real-world datasets in the context of Bayesian inference.
For ease of reproducibility, the code is available online1 and numerical details with
additional results are available in Section 3.D.

Parameters. In all simulations, the sampling policy is taken within the family of
multivariate Student t distributions of degree ν denoted by {qµ,Σ0 : µ ∈ Rd} with
Σ0 = σ0Id(ν − 2)/ν and ν > 2, σ0 > 0. Similarly to Portier and Delyon (2018), the
mean µt is updated at each stage t = 1, . . . , T by the generalized method of moments
(GMM), leading to µt = (

∑t
s=1

∑ns
i=1ws,iXs,i)/(

∑t
s=1

∑ns
i=1ws,i). The allocation policy

is fixed to nt = 1000 and the number of stages is T ∈ {5; 10; 20; 30; 50}. The different
Monte Carlo estimates are compared by their mean squared error (MSE) obtained over
100 independent replications.

3.6.1 Synthetic examples

Integration on [0, 1]d. We seek to integrate functions f with respect to the uniform
density π(x) = 1 for x ∈ [0, 1]d in dimensions d ∈ {4; 8}. We rely on Legendre polynomi-
als for the control variates. Consider the integrands f1(x) = 1+sin(π(2d−1

∑d
i=1 xi−1)),

1https://github.com/RemiLELUC/AISCV
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f2(x) =
∏d
i=1(2/π)1/2x−1

i e− log(xi)
2/2 and f3(x) =

∏d
i=1 log(2)21−xi , all of which integ-

rate to 1 on [0, 1]d. None of the integrands is a linear combination of the control variates.
The policy parameters are µ0 = (0.5, . . . , 0.5) ∈ Rd, ν = 8, and σ0 = 0.1. The control
variates are built out of tensor products of Legendre polynomials where the degree `j
equals 0 for all but two coordinates, leading to a total number of m = kd+k2d(d−1)/2
control variates. The maximum degree in each variable is k = 6, yielding m = 240
and m = 1056 control variates in dimensions d = 4 and d = 8 respectively. Figure 3.1
presents the boxplots of the AIS and AISCV estimates. The error reduction obtained
thanks to the control variates is huge: the AISCV estimate has a mean squared error
smaller than the one of the AIS estimate by a factor at least 10 and up to 100 (see
Table 3.1 in the Section 3.D).
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Figure 3.1 – Integration on [0, 1]d: boxplots of estimates α(ais)
n (f) and α(aiscv)

n (f) with
integrands f1, f2, f3 in dimensions d ∈ {4; 8} obtained over 100 replications. The true
integral equals 1.

Gaussian mixture f and Stein control variates. In this setting we assume we only
have access to the evaluations of the target density f . We consider the classical example
introduced in Cappé et al. (2008) where f is a mixture of two Gaussian distributions.
The control variates are built using Stein’s method (Section 3.5.1) out of polynomials
of total degree at most Q ∈ {2; 3}, leading to a number of control variates m ∈ {14; 34}
in dimension d = 4 and m ∈ {44; 164} in dimension d = 8 respectively. We consider
two cases: an isotropic and an anisotropic one.

Isotropic case. Let πΣ(x) = 0.5ΦΣ(x−µ)+0.5ΦΣ(x+µ) where µ = (1, . . . , 1)>/2
√
d,Σ =

Id/d and ΦΣ is the multivariate normal density function with zero mean and covariance
matrix Σ. The Euclidean distance between the two mixture centers is 1, independ-
ently of d. The initial density q0 is the multivariate Student t distribution with mean
(1,−1, 0, . . . , 0)/

√
d and variance (5/d)Id. The initial mean value differs from the null

vector to prevent the naive algorithm using the initial density from having good results
due to the symmetrical set-up.
Anisotropic case. In this case, the mixture is unbalanced and each Gaussian is an-
isotropic. The target density is πV (x) = 0.75ΦV (x − µ) + 0.25ΦV (x + µ) where
µ = (1, . . . , 1)>/2

√
d and V = diag(10, 1, . . . , 1)/d. The initial density q0 is the same

as for the isotropic case.

Figure 3.2 presents the evolution of the logarithm of the mean squared error ‖α̂n(f)−
π(f)‖22. Once again, the AISCV estimators are the clear winners with a mean squared
error smaller by a factor up to 1000 for the anisotropic case (see Table 3.2 in Section
3.D).
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(c) πV (d = 4)
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Figure 3.2 – Gaussian mixture density: Logarithm of ‖α̂n(f) − π(f)‖22 for f(x) = x
with target isotropic πΣ and anisotropic πV in dimensions d ∈ {4; 8} obtained over 100
replications.

3.6.2 Real-world examples

We place ourselves in the framework of Bayesian linear regression (Section 3.5.2) with
features X ∈ RN×d and continuous responses y ∈ RN . The posterior distribution
p(θ|D) involves a Gaussian prior p(θ) ∼ N (µa,Σa) and a likelihood function `(D|θ)
proportional to (σ2)−N/2 exp(−(y − Xθ)>(y − Xθ)/(2σ2)). The noise level is fixed
and taken sufficiently large at σ = 50 to account for general priors. The posterior
distribution is Gaussian too: N (µb,Σb) with µb = Σb(σ

−2X>y + Σ−1
a µa) and Σb =

(σ−2X>X+Σ−1
a )−1. The integrand is f(θ) =

∑d
i=1 θ

2
i and the control variates are built

with the Stein operator (Section 3.5.1) out of monomials with total degree Q ∈ {1; 2},
leading to the AISCV1 and AISCV2 estimators respectively.

Datasets and parameters. Classical datasets from Dua and Graff (2019) are con-
sidered : housing (N = 506; d = 13;m ∈ {12; 104}); abalone (N = 4177; d = 8;m ∈
{7; 44}); red wine (N = 1599; d = 11;m ∈ {10; 77}); and white wine (N = 4898; d =
11;m ∈ {10; 77}). The initial density is the multivariate Student t distribution with
ν = 10 degrees of freedom, zero mean and covariance matrix Σb.
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Figure 3.3 – Bayesian linear regression: boxplots of (α̂n(f) − π(f))/π(f) for f(θ) =∑d
j=1 θ

2
j .

Results. Figure 3.3 presents the boxplots of the relative error (α̂n(f) − π(f))/π(f),
revealing the benefits of control variates even with polynomials of degree Q = 1. When
Q = 2, the error of the AISCV2 estimate is virtually zero (see Table 3.3 in the supple-
ment), in line with Proposition 3.3. The mean squared error of the AISCV1 estimate
is smaller than that of the AIS estimate by a factor ranging between 2 and 10.
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3.7 Discussion

While control variates are a well-known tool for Monte Carlo integration, standard meth-
ods do not allow the distribution of particles to evolve throughout the algorithm, as is
the case for sequential methods. Within the standard adaptive importance sampling
framework, we have developed a weighted least-squares procedure to improve numerical
integration by incorporating control variates. The underlying adapted weights of this
quadrature rule do not depend on the integrand and our non-asymptotic bound high-
lights the benefits of combining adaptive importance sampling with control variates.
Different ways for constructing control variates are proposed. The method is fit for
computing integrals with respect to the posterior density in Bayesian analysis, as the
target density only needs to be known up to a multiplicative constant.

A limitation of the combined AISCV approach is that it requires the user to make
quite some design choices, notably the sampling policy for the AIS part and the control
variates for the CV part. These culminate into the factor τ in Assumption 3.7, which
appears prominently in the error bound in Theorem 3.8 and which can be interpreted
roughly as the standard deviation of wε, where w is the importance weight – well
behaved when the policy is well-chosen in relation to the target density – and where ε
is some residual function – well behaved when the control variates are well-chosen with
respect to the integrand. Further, choosing too many control variates may result in
an ill-conditioned empirical Gram matrix or in overfitting. The least-squares solution
could become unstable, requiring some kind of regularization, such as the LASSO (Leluc
et al., 2021).

Technical Lemmas and auxiliary results are provided in Appendix 3.A. Section 3.B
collects additional theoretical properties of the AISCV estimator while the technical
proofs of the Propositions and main theorem are presented in Section 3.C. Finally, Sec-
tion 3.D presents additional numerical values associated to the numerical experiments
on synthetic examples and real-world datasets for Bayesian linear regression.

3.A Auxiliary results

3.A.1 Lemmas on (Random) Matrices inequalities

Definition 3.11. Let A and Ψ be Hermitian matrices of the same dimension. We say
that A � Ψ if and only if Ψ−A is positive semidefinite.

Definition 3.12 (Tropp (2015), Definition 2.1.2). Let f : I → R where I is an interval
of the real line. Consider a d× d Hermitian matrix A whose eigenvalues are contained
in I. Define a d× d Hermitian matrix f(A), called the standard matrix function, using
an eigenvalue decomposition of A, by

f(A) = Q


f(λ1)

. . .
f(λd)

Q∗ where A = Q


λ1

. . .
λd

Q∗.
Remark 3.13. The matrix exponential eA and the matrix logarithm log(A) are the
standard matrix functions.



CHAPTER 3. COMBINING CONTROL VARIATES AND ADAPTIVE
IMPORTANCE SAMPLING 103

Lemma 3.14 (Tropp (2015), Example 8.3.4). The trace exponential map is monotone:

A � Ψ implies Tr eA ≤ Tr eΨ

for all Hermitian matrices A and Ψ.

Lemma 3.15 (Tropp (2015), Proposition 3.2.1). For any random Hermitian matrix Y ,
for all t ∈ R, we have

P
(
λmin(Y ) ≤ t

)
≤ inf

θ<0
e−θtE[Tr(eθY )].

Lemma 3.16 (Tropp (2015), Lemma 5.4.1). Assume that A is a random matrix with
0 ≤ λmin(A) and, for some constant L > 0, λmax(A) ≤ L. Then, for all θ ∈ R,

log(E[eθA]) � η(θ)E[A], η(θ) = L−1(eθL − 1).

Lemma 3.17 (Tropp (2015), Corollary 3.4.2). Let Ψ be a fixed Hermitian matrix and
A a random Hermitian matrix of the same dimension. Then

E
[
Tr{exp(Ψ +A)}

]
≤ Tr

[
exp{Ψ + log(E[eA])}

]
.

3.A.2 Inequalities for martingales increments and empirical Gram
matrices

Lemma 3.18 (Hoeffding inequality for norm-subGaussian martingale increments). Let
the d-dimensional random vectors Z1, . . . , Zn and the natural filtration Fn = σ(Z1, . . . , Zn),
F0 = {Ω, ∅}, be such that, for all i = 1, . . . n, E[Zi|Fi−1] = 0 and

∀t ≥ 0,∀i = 1, . . . , n, P(
∥∥Zi∥∥2

≥ t|Fi−1) ≤ 2 exp
(
− t2

2σ2

)
(3.10)

for some σ > 0. Then for any δ > 0, with probability at least 1− δ, we have∥∥∥∑n
i=1 Zi

∥∥∥
2
≤ Kσ

√
n log(2d/δ),

where K = 3.

Proof The proof follows from adapting the proof of Lemma 6 in Leluc et al. (2021)
working out their Lemma 5 and Corollary 7 from Jin et al. (2019).

Lemma 3.19. Define hk = h(Xk), Qk = wkhkh
>
k , Yn =

∑n
k=1Qk. Let the constant

L > 0 be such that λmax(Qk) ≤ L with probability 1. Then, for all ζ ∈ (0, 1), we have

P
(
λmin(Yn) ≤ (1− ζ)nλmin(G)

)
≤ m

[
e−ζ

(1− ζ)(1−ζ)

]nλmin(G)/L

.

Remark 3.20. The term in square brackets in Proposition 3.19 is bounded above by
e−ζ

2/2 (Leluc et al. (2021), Lemma 2).
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Proof Let En denote the expectation with respect to Fn−1 = σ(X1, . . . , Xn−1) and
define Zn = log(En[eνQn ]). Using Lemma 3.17 with the measurable w.r.t. Fn−1 matrix
Ψ = νYn−1, we have

E
[
Tr(eνYn)

]
= E

[
En
[
Tr(eνYn−1+νQn)

]]
≤ E

[
Tr(eνYn−1+log(En[eνQn ]))

]
= E

[
Tr(eνYn−1+Zn)

]
.

Using again Lemma 3.17 with the matrix Ψ = νYn−2 + Zn, the last term is upper
bounded as

E
[
Tr(eνYn−1+Zn)

]
= E

[
En−1

[
Tr(eνYn−2+νQn−1+Zn)

]]
≤ E

[
Tr(eνYn−2+Zn−1+Zn)

]
Applying this inequality several times yields

E[Tr(eνYn)] ≤ E[Tr(e
∑n
k=1 Zk)].

Applying Lemma 3.16 gives Zk � η(ν)Ek[Qk], η(ν) = L−1(eνL − 1) for k = 1, . . . , n.
By Lemma 3.14, we get

E[Tr(eνYn)] ≤ E[Tr(e
∑n
k=1 Zk)] ≤ E[Tr(e

∑
k η(ν)Ek[Qk])] = Tr(enη(ν)G).

Now applying Lemma 3.15 and taking into account the fact that η(ν) < 0 for ν < 0, we
have

P
(
λmin(Yn) ≤ t

)
≤ inf

ν<0
e−νtE[Tr(eνYn)]

≤ inf
ν<0

e−νt Tr(enη(ν)G)

≤ inf
ν<0

e−νt Tr(enη(ν)λmin(G)Im)

≤ inf
ν<0

e−νtmenη(ν)λmin(G).

We make the change of variables t = (1 − ζ)nλmin(G) and minimize over ν < 0 the
following expression

−nν(1− ζ)λmin(G) + nη(ν)λmin(G).

The infimum is attained at ν = L−1 log(1 − ζ) with η(ν) = −ζ/L which gives the in-
equality of the Lemma.

3.B Additional properties of AISCV estimator

3.B.1 Orthogonal projections

Some geometric considerations help to better understand certain properties of the
AISCV estimate (3.7). Let 1n = (1, . . . , 1)> ∈ Rn be a vector of ones and write

f (n) = (f(X1), . . . , f(Xn))>, H = (hj(Xi)) i=1,...,n
j=1,...,m

, and W = diag(w1, . . . , wn).

In matrix form, the weighted least-squares problem (3.7) is

(α̂n, β̂n) ∈ arg min
(a,b)∈R×Rm

‖W 1/2(f (n) − a1n −Hb)‖22. (3.11)
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For any function ϕ : Rd → Rp, let the operator Pn,w return the weighted average of the
sequence ϕ(X1), . . . , ϕ(Xn) with the weights w1, . . . , wn, i.e.,

Pn,w(ϕ) =

∑n
i=1wiϕ(Xi)∑n

i=1wi
.

The empirically centred integrand and control variates are f (n)
W = f (n)−1nPn,w(f) and

HW = H−1nPn,w(h>). Put W 1/2 = diag(w
1/2
1 , . . . , w

1/2
n ). The solution to (3.11) takes

the form  α̂n = Pn,w(f − β̂>n h),

β̂n ∈ arg minb∈Rm ‖W 1/2(f
(n)
W −HW b)‖22,

(3.12)

If the matrix H>WWHW is invertible, the optimal vector β̂n is unique and is given by

β̂n = (H>WWHW )−1H>WWf
(n)
W . (3.13)

3.B.2 Matrix representation

Let us rewrite (3.11) in terms of two nested minimization problems:

α̂n ∈ arg min
a∈R

min
b∈Rm

∥∥∥∥W 1/2
(
f (n) − a1n −Hb

)∥∥∥∥2

2

 . (3.14)

Let Π ∈ Rn×n be the orthogonal projection matrix onto the column space of H, when
Rn is endowed with the scalar product 〈x, y〉W = x>Wy for x, y ∈ Rn. For v ∈ Rn, we
have

Πv = Hβ̂n(v) where β̂n(v) ∈ arg min
b∈Rm

∥∥∥W 1/2(v −Hb)
∥∥∥2

2
.

If H has rank m, then the solution to the above minimization problem is unique and
Π = H(H>WH)−1H>W ; otherwise, the matrix Π is still uniquely defined, even though
there are then multiple solutions β̂n(v). Given a ∈ R, the minimum in (3.14) over b ∈ Rm
is attained as soon as Hb = Π(f (n) − a1n). Therefore

α̂n ∈ arg min
a∈R

∥∥∥W 1/2(In −Π)(f (n) − a1n)
∥∥∥2

2
, (3.15)

where In is the n × n identity matrix. Recall the vector en in (3.8). In our present
notation, we have

en = (In −Π)1n.

Proposition 3.21 (Matrix representation). The minimizer α̂n in (3.15) is unique if
and only if en 6= 0, in which case the normalized AISCV estimate is

I(aiscv)
n (f) = α̂n =

1>n (In −Π)>W (In −Π)f (n)

1>n (In −Π)>W (In −Π)1n
=

1>n (In −Π)>Wf (n)

1>n (In −Π)>W1n
. (3.16)

Proof The objective function on the right-hand side of (3.16) is

a21>n (In −Π)>W (In −Π)1n − 2a1>n (In −Π)>W (In −Π)f (n) + constant,
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where the unspecified constant does not depend on a. The coefficient of a2 is equal to
e>nWen, which is positive if and only if en 6= 0. The latter is thus a necessary and suffi-
cient for the minimizer α̂n to exist and be unique. In that case, the objective function
is a convex quadratic function in a, whose minimizer is easily seen to be equal to the
stated expression.

3.C Proofs of the main results

3.C.1 Proof of Proposition 3.2

Proof We start from Proposition 3.21. Recall that en = (In−Π)1n. Since Π>W = WΠ
and Π2 = Π, we find (In −Π)>W (In −Π) = (In −Π)>W . We obtain

1>n (In −Π)>W (In −Π)f (n) = 1>n (In −Π)>Wg(n) = e>nWg(n) =
n∑
i=1

wien,if(Xi),

and similarly 1>n (In −Π)>W (In −Π)f (n) =
∑n

i=1wien,i.

3.C.2 Proof of Proposition 3.3

Proof If f = α + β>h for some α ∈ R and β ∈ Rm, then the minimum in (3.7) is
clearly attained for α̂n = α and β̂n = β.

3.C.3 Proof of Proposition 3.4

Proof In (3.7), if b ranges over Rm, then A>b ranges over Rm too, since A is invert-
ible. It follows that the solutions α̂n in (3.7) do not change if we replace h by Ah, since
b>Ah = (A>b)>h.

3.C.4 Proof of Theorem 3.8

Proof

Step 1: Working out the probability of several bounds. In Step 1, we gather
several elementary bounds that will be useful to establish more advanced bounds in
Step 2.

Bound 1. To control
∣∣∣∑n

i=1wiε(Xi)
∣∣∣, we apply Lemma 3.18 with Zi equal to wiε(Xi).

We have E[wiε(Xi)|Fi−1] = 0 and by Assumption 3.7,

P[|wiε(Xi)| > t|Fi−1] ≤ 2 exp(−t2/(2τ2))
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holds, and the sub-Gaussian variance factor is simply τ2. Therefore, with probability
at least 1− δ/5, we have ∣∣∣∣∣∣

n∑
i=1

wiε(Xi)

∣∣∣∣∣∣ ≤ Kτ√n log(10/δ).

Bound 2. For the term
∥∥∥∑n

i=1wi~(Xi)
∥∥∥

2
, we apply Lemma 3.18 with Zi equal to

wi~(Xi). By Assumptions 3.6 and 3.5, we have ‖wi~(Xi)‖2 ≤ c‖~(Xi)‖2 ≤ c
√
B, which

implies that wi~(Xi) is sub-Gaussian (conditionally on Fi−1) with variance factor c2B
(Boucheron et al., 2013b, Lemma 2.2). Hence (3.10) is satisfied with σ2 = c2B. Thus,
with probability at least 1− δ/5, the inequality∥∥∥∥∥∥

n∑
i=1

wi~(Xi)

∥∥∥∥∥∥
2

≤ Kc
√
nB log(10m/δ)

holds.

Bound 3. Now we treat the term
∥∥∥∑n

i=1wi~(Xi)ε(Xi)
∥∥∥

2
applying again Lemma 3.18

but this time with Zi equal to wi~(Xi)ε(Xi). We have that ‖wi~(Xi)εi‖2 ≤
√
B|wiεi|.

By Assumption 3.7, we have, for all t > 0,

P[
∥∥∥wi~(Xi)ε(Xi)

∥∥∥
2
> t|Fi] ≤ P[

√
B
∣∣∣wiε(Xi)

∣∣∣ > t|Fi]

≤ 2 exp

(
− t2

2Bτ2

)
,

and (3.10) holds with σ2 = Bτ2. Lemma 3.18 then implies that, with probability at
least 1− δ/5, ∥∥∥∑n

i=1wi~(Xi)ε(Xi)
∥∥∥

2
≤ K

√
nBτ2 log(10m/δ).

Bound 4. By Lemma 3.19 and Remark 3.20, we have, with probability at least 1−δ/5,

λmin

 n∑
i=1

wi~(Xi)~>(Xi)

 > (1− ζ)nλmin(G) = (1− ζ)n,

where, by Assumption 3.6, G =
∫
f~~> dλ = I, ζ satisfies the equation

m exp(
−ζ2n

2L
) = δ/5.

with L = cB according to Assumptions 3.6 and 3.5. Solving the last equation, we obtain

ζ =

√
2L log(5m/δ)

n
.

We choose ζ ≤ 1/2 which gives the condition n ≥ 8cB log(5m/δ) and, with probability
at least 1− δ/5,

λmin

 n∑
i=1

wi~(Xi)~>(Xi)

 >
(
1− ζ

)
n ≥ n/2. (3.17)
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Bound 5. Now we consider the term
∑n

i=1wi. Since −1 ≤ wi − 1 ≤ c, |wi − 1| is
bounded by c, and wi − 1 is sub-Gaussian with variance factor c2. This makes the
inequality required in Lemma 3.18 valid and henceforth∣∣∣∣∣∣

n∑
i=1

(wi − 1)

∣∣∣∣∣∣ ≤ Kc√n log(10/δ)

or

−Kc
√
n log(10/δ) + n ≤

n∑
i=1

wi ≤ Kc
√
n log(10/δ) + n.

We want to have Kc
√
n log(10/δ) ≤ n/2. It holds if

√
n ≥ 2Kc

√
log(10/δ). Then we

get that n/2 = n− n/2 ≤ n−Kc
√
n log(10/δ) ≤∑n

i=1wi. Therefore, with probability
at least 1− δ/5, it holds that

n∑
i=1

wi ≥ n/2.

Step 2: Extending the previous elementary bounds on appropriate quant-
ities. The work in this step consists in showing that under the five previous bounds,
and therefore with probability at least 1− δ, we have that

λmin

 n∑
i=1

wi~W (Xi)~W (Xi)
>

 ≥ n/4, (3.18)

∥∥∥∥∥∥
n∑
i=1

wi~W (Xi)εW (Xi)

∥∥∥∥∥∥
2

≤ 2Kτ
√
nB log(10m/δ). (3.19)

We start by proving (3.18). Recognizing a covariance, we get

Pn,w{~W~>W } = Pn,w(~~>)− Pn,w(~)Pn,w(~)>,

and then, using Cauchy-Schwarz inequality, we have

λmin(Pn,w{~W~>W }) ≥ λmin(Pn,w(~~>))− ‖Pn,w(~)‖22
or, equivalently,

λmin

 n∑
i=1

wi~W (Xi)~W (Xi)
>

 ≥ λmin

 n∑
i=1

wi~(Xi)~(Xi)
>

− ∥∥∥∥ n∑
i=1

wi~(Xi)

∥∥∥∥2

2

/ n∑
i=1

wi,

From Bound 2 and Bound 5,∥∥∥∥ n∑
i=1

wi~(Xi)

∥∥∥∥2

2

/ n∑
i=1

wi ≤
K2c2Bn log(10m/δ)

n/2
= 2K2c2B log(10m/δ)

Using Bound 4 and the previous inequality, it follows that

λmin

 n∑
i=1

wi~W (Xi)~W (Xi)
>

 ≥ n/2− 2K2c2B log(10m/δ).
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If n ≥ 8K2c2B log(10m/δ),

λmin

 n∑
i=1

wi~W (Xi)~W (Xi)
>

 ≥ n/4.
We have just obtained (3.18).

Let us now establish (3.19). Recognizing a covariance, we find

Pn,w{~W εW } = Pn,w(~ε)− Pn,w(~)Pn,w(ε),

and it follows that∥∥∥Pn,w{~W εW }∥∥∥
2
≤ ‖Pn,w(~ε)‖2 + ‖Pn,w(~)‖2|Pn,w(ε)|,

or, equivalently,∥∥∥∥∥∥
n∑
i=1

wi~W (Xi)εW (Xi)

∥∥∥∥∥∥
2

≤
∥∥∥∥ n∑
i=1

wi~(Xi)ε(Xi)

∥∥∥∥
2

+ ‖Pn,w(~)‖2
∣∣∣∣ n∑
i=1

wiε(Xi)

∣∣∣∣.
Now using Bound 2 and 5, we find

‖Pn,w(~)‖2 ≤ 2Kc

√
B log(10m/δ)

n
, (3.20)

which combined with Bound 1 leads to

‖Pn,w(~)‖2
∣∣∣∣ n∑
i=1

wiε(Xi)

∣∣∣∣ ≤ 2K2cτ
√
B log(10m/δ) log(10/δ)

≤ 2K2cτ
√
B log(10m/δ).

The previous inequality and Bound 3 gives∥∥∥∥∥∥
n∑
i=1

wi~W (Xi)εW (Xi)

∥∥∥∥∥∥
2

≤ Kτ
√
nB log(10m/δ) + 2K2cτ

√
B log(10m/δ)

= Kτ
√
nB log(10m/δ)

1 + 2Kc

√
log(10m/δ)

n


≤ 2Kτ

√
nB log(10m/δ)

if n ≥ 4K2c2 log(10m/δ).

The condition n ≥ 8K2c2B log(10m/δ) (used in establishing (3.18)) implies n ≥ 4K2c2 log(10m/δ)
(used in proving (3.19)), n ≥ 8cB log(5m/δ) (used in Bound 4) and n ≥ 4K2c2 log(10/δ)
(used in Bound 5) since m ≥ 1, B ≥ m and c ≥ 1. Therefore, the constant C1 from the
statement of the theorem equals 8K2.
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Step 3. End of the proof. The quantity to be bounded can be written as a sum of
two terms as follows

α(aiscv)
n (f, β̂n)− π(f) dx = Pn,w{ε}+ Pn,w{h}>(β∗ − β̂n).

Using Bounds 1 and 5, the first term in the right-hand side satisfies

|Pn,w{ε}| ≤ 2Kτ

√
log(10/δ)

n
.

This corresponds to the first term in the bound of the theorem with the constant C2

equals 2K. Hence, it remains to show that

|Pn,w{h}>(β∗ − β̂n)| ≤ C3cBτ log(10m/δ)/n.

Introducing G−1/2G1/2, we obtain

Pn,w{h}>(β∗ − β̂n) = Pn,w{~}>G1/2(β∗ − β̂n).

Then, using the identity

(β̂n − β∗) = (H>WWHW )−1H>WWε
(n)
W

and Cauchy-Schwarz inequality yields∣∣∣Pn,w{h}>(β∗ − β̂n)
∣∣∣ ≤ ∥∥∥Pn,w{~}∥∥∥

2
‖G1/2(β∗ − β̂n)‖2

≤
∥∥∥Pn,w{~}∥∥∥

2

∥∥∥∥G1/2(H>WWHW )−1H>WWε
(n)
W

∥∥∥∥
2

≤
∥∥∥Pn,w{~}∥∥∥

2

∥∥∥G1/2(H>WWHW )−1G1/2
∥∥∥

2

∥∥∥∥G−1/2H>WWε
(n)
W

∥∥∥∥
2

=
∥∥∥Pn,w{~}∥∥∥

2

∥∥∥G1/2(H>WWHW )−1G1/2
∥∥∥

2

∥∥∥∥G−1/2H>WWε
(n)
W

∥∥∥∥
2

.

By (3.18), we have

∥∥∥G1/2(H>WWHW )−1G1/2
∥∥∥

2
=

∥∥∥∥∥∥∥∥
 n∑
i=1

wi~W (Xi)~W (Xi)
>

−1
∥∥∥∥∥∥∥∥

2

=

[
λmin

 n∑
i=1

wi~W (Xi)~W (Xi)
>

]−1

≤ 4/n.

From (3.19) and (3.20), it follows that

∣∣∣Pn,w{h}>(β∗ − β̂n)
∣∣∣ ≤ 2K

√
B log(10m/δ)

n

8Kcτ
√
nB log(10m/δ)

n

= 16K2cBτ
log(10m/δ)

n
.

Therefore, the constant C3 from the statement of the theorem equals 16K2.
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3.D Additional numerical results

Parameters. In all simulations, the sampling policy is taken within the family of
multivariate Student t distributions of degree ν denoted by {qµ,Σ0 : µ ∈ Rd} with
Σ0 = σ0Id(ν − 2)/ν and ν > 2, σ0 > 0. Similarly to Portier and Delyon (2018), the
mean µt is updated at each stage t = 1, . . . , T by the generalized method of moments
(GMM), leading to

µt =

∑t
s=1

∑ns
i=1ws,iXs,i∑t

s=1

∑ns
i=1ws,i

.

The allocation policy is fixed to nt = 1000 and the number of stages is T ∈ {5; 10; 20; 30; 50}.
The different Monte Carlo estimates are compared by their mean squared error (MSE)
obtained over 100 independent replications. In other words, for each method that re-
turns Î(g), the mean square error is computed as the average of ‖Î(f)−π(f)‖22 computed
over 100 replicates of Î(f). When the integrand is real-valued, this quantity is scaled
as ([Î(f)− π(f)]/π(f))2.

The experiments were performed on a laptop Intel Core i7-10510U CPU 1.80GHz × 8.

3.D.1 Synthetic examples: integration on [0, 1]d

We seek to integrate functions f with respect to the uniform density π(x) = 1 for
x ∈ [0, 1]d in dimensions d ∈ {4; 8}. We rely on Legendre polynomials for the con-
trol variates. Consider the integrands f1(x) = 1 + sin(π(2d−1

∑d
i=1 xi − 1)), f2(x) =∏d

i=1(2/π)1/2x−1
i e− log(xi)

2/2 and f3(x) =
∏d
i=1 log(2)21−xi , all of which integrate to 1

on [0, 1]d. None of the integrands is a linear combination of the control variates. The
policy parameters are µ0 = (0.5, . . . , 0.5) ∈ Rd, ν = 8, and σ0 = 0.1. The control
variates are built out of tensor products of Legendre polynomials where the degree `j
equals 0 for all but two coordinates, leading to a total number of m = kd+k2d(d−1)/2
control variates. The maximum degree in each variable is k = 6, yielding m = 240
and m = 1056 control variates in dimensions d = 4 and d = 8 respectively. Figure 3.1
presents the boxplots of the AIS and AISCV estimates.

Figure 3.4 presents the boxplots of the different estimates and Table 3.1 gathers the
numerical values of the mean squared errors. As a natural competitor to our AISCV
estimator, we also implemented the weighted version of standard AIS called w-AIS
introduced in Portier and Delyon (2018). Interestingly, such a method presents similar
or even worse performance than the standard AIS estimate for dimension d = 4 but
better results for dimension d = 8. This good behavior is illustrated in Figure 3.4b and
Figure 3.4d. Accordingly, the values of the MSE for w-AIS are smaller than the one of
AIS in dimension d = 8 but still greater than the ones of AISCV.

3.D.2 Synthetic examples: gaussian mixtures

General target π and Stein method. In this setting we only assume acces to the
evaluations of the target density π. We consider the classical example introduced in
Cappé et al. (2008) where π is a mixture of two gaussian distributions. The control
variates are built using Stein’s method with polynomial maps of degree Q ∈ {2; 3}
leading to a number of control variates m ∈ {14; 34} in dimension d = 4 and m ∈
{44; 164} in dimension d = 8 respectively.
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Figure 3.4 – Integration on [0, 1]d: boxplots of estimates α(ais)
n (f) and α(aiscv)

n (f) with
integrands f1, f2, f3 in dimensions d ∈ {4; 8} obtained over 100 replications. The true
integral equals 1.

Sample Size n
5, 000 10, 000 20, 000 30, 000 50, 000Integrand Method

f1

(d = 4)

AIS 2.9e-4 1.5e-4 7.8e-5 5.8e-5 3.7e-5
wAIS 3.0e-4 1.6e-4 8.3e-5 6.5e-5 4.1e-5
AISCV 9.7e-5 1.9e-5 1.0e-5 7.5e-6 4.3e-6

f1

(d = 8)

AIS 8.7e-4 4.6e-4 2.3e-4 1.9e-4 1.0e-4
wAIS 9.2e-4 4.6e-4 2.2e-4 1.6e-4 9.0e-5
AISCV 3.2e-4 3.2e-5 1.1e-5 6.0e-6 2.5e-6

f2

(d = 4)

AIS 3.4e-4 1.3e-4 7.6e-5 5.9e-5 3.1e-5
wAIS 3.7e-4 1.6e-4 1.2e-4 1.1e-4 7.9e-5
AISCV 3.1e-5 1.0e-5 4.9e-6 2.6e-6 1.5e-6

f3

(d = 8)

AIS 1.6e-3 7.8e-4 4.0e-4 3.3e-4 1.9e-4
wAIS 1.5e-3 7.3e-4 3.6e-4 2.7e-4 1.5e-4
AISCV 1.7e-4 2.1e-5 7.8e-6 4.3e-6 1.8e-6

Table 3.1 – Mean Square Errors for f1, f2, f3 with AIS, wAIS (Portier and Delyon, 2018)
and AISCV in dimensions d ∈ {4; 8} obtained over 100 replications.

Isotropic case. Let πΣ(x) = 0.5ΦΣ(x−µ)+0.5ΦΣ(x+µ) where µ = (1, . . . , 1)>/2
√
d,Σ =

Id/d and ΦΣ is the multivariate normal density function with zero mean and covari-
ance matrix Σ. Note that the Euclidean distance between the two mixture centers is
independent of the dimension as it equals 1. The initial density q0 is the multivariate
student distribution with mean (1,−1, 0, . . . , 0)/

√
d and variance (5/d)Id. The initial

mean value differs from the null vector to prevent the naive algorithm using the initial
density from having good results (due to the symmetry).

Anisotropic case. In this case, the mixture is unbalanced and each gaussian is an-
isotropic. The target density is πV (x) = 0.75ΦV (x − µ) + 0.25ΦV (x + µ) where
µ = (1, . . . , 1)>/2

√
d and V = Diag(10, 1, . . . , 1)/d. The initial density q0 is the same

as for the isotropic case.

Figure 3.5 presents the boxplots of the mean square error ‖Î(f)− I(f)‖22 and Table 3.2
gathers the associated numerical values.
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Figure 3.5 – Boxplots for ‖Î(f) − π(f)‖22 for g(x) = x with target isotropic πΣ and
anisotropic πV in dimensions d ∈ {4; 8} obtained over 100 replications.

Sample Size n
5, 000 10, 000 20, 000 30, 000 50, 000Target Method

πΣ

(d = 4)

AIS 6.9e-4 2.9e-4 1.5e-4 1.1e-4 7.2e-5
wAIS 6.8e-4 2.9e-4 1.5e-4 1.1e-4 7.3e-5

AISCV-2 4.1e-5 2.2e-5 9.1e-6 5.6e-6 3.7e-6
AISCV-3 1.5e-5 8.4e-6 3.7e-6 2.3e-6 1.3e-6

πΣ

(d = 8)

AIS 2.7e-3 1.2e-3 6.6e-4 4.1e-4 2.7e-4
wAIS 2.7e-3 1.2e-3 6.9e-4 4.3e-4 2.8e-4

AISCV-2 3.7e-4 1.7e-4 1.0e-4 6.8e-5 4.7e-5
AISCV-3 2.8e-4 1.2e-4 6.3e-5 4.2e-5 2.6e-5

πV
(d = 4)

AIS 1.1e-2 5.5e-3 2.2e-3 1.6e-3 9.5e-4
wAIS 1.1e-2 5.3e-3 2.0e-3 1.3e-3 8.0e-4

AISCV-2 1.3e-5 7.2e-6 2.9e-6 1.9e-6 1.2e-6
AISCV-3 1.1e-5 6.6e-6 2.2e-6 1.5e-6 9.6e-7

πV
(d = 8)

AIS 4.5e-2 3.2e-2 2.2e-2 1.5e-2 6.8e-3
wAIS 2.6e-2 1.3e-2 7.8e-3 5.9e-3 3.8e-3

AISCV-2 4.6e-4 2.8e-4 1.3e-4 9.7e-5 6.0e-5
AISCV-3 1.4e-3 4.8e-4 1.5e-4 1.1e-4 5.7e-5

Table 3.2 – Mean Square Errors ‖Î(f) − π(f)‖22 for f(x) = x with target isotropic πΣ

and anisotropic πV in dimensions d ∈ {4; 8} obtained over 100 replications.

3.D.3 Real-world data: Bayesian linear regression

We place ourselves in the framework of Bayesian linear regression with observations
X ∈ RN×d and labels y ∈ RN . The posterior distribution p(θ|D) depends on a gaussian
prior p ∼ N (µa,Σa) and a likelihood function `(D|θ) ∝ (σ2)−N/2 exp(−(y −Xθ)>(y −
Xθ)/(2σ2)) where the noise level is fixed and taken sufficiently large σ = 50 to account
general priors. Observe that the posterior distribution is also gaussian N (µb,Σb) with
µb = Σb(σ

−2X>y+Σ−1
a µa) and Σb = (σ−2X>X+Σ−1

a )−1. The integrand is f(θ) = ‖θ‖22
and the control variates are built using Stein method described in Section 3.5.1 with
degree Q ∈ {1; 2}, leading to the AISCV1 and AISCV2 estimators respectively. Observe
that when Q = 2, the integrand belongs to the linear span of the control variates so the
integration should be exact in light of Proposition 3.3.

Datasets and parameters. Some classical datasets from UCI Machine Learning
repository Dua and Graff (2019) are considered : housing (N = 506; d = 13;m ∈
{12; 104}); abalone (N = 4, 177; d = 8;m ∈ {7; 44}); red wine (N = 1, 599; d = 11;m ∈
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Figure 3.6 – Boxplots of (Î(f)−I(f))/I(f), f(θ) = ‖θ‖22, obtained over 100 replications.

{10; 77}) and white wine (N = 4, 898; d = 11;m ∈ {10; 77}). The initial density is
the multivariate student distribution with ν = 10 degrees of freedom, zero mean and
covariance matrix Σb.

Results. Figure 3.6 presents the boxplots of the error (Î(f)−π(f))/π(f) and Table 3.3
gathers the associated numerical values. Observe the benefits of using control variates
even with polynomials of degree Q = 1. Observe that when Q = 2, the error of
the AISCV2 estimator is almost equal to zero which is in line with Proposition 3.3.
Accordingly when looking at the MSE, the AISCV1 error is smaller than the AIS one
by a factor ranging between 2 and 10 and the MSE of AISCV2 is of order 10−9.

Sample Size n
5, 000 10, 000 20, 000 30, 000 50, 000Dataset Method

Housing
AIS 2.2e-2 4.4e-3 3.1e-4 2.7e-4 2.5e-4

AISCV1 2.9e-3 7.0e-4 1.7e-4 1.6e-4 5.2e-5
AISCV2 5.6e-9 5.6e-9 5.6e-9 5.6e-9 5.6e-9

Abalone
AIS 6.2e-2 2.6e-2 1.1e-2 6.5e-3 3.1e-3

AISCV1 6.3e-3 1.2e-3 4.7e-4 3.1e-4 1.8e-4
AISCV2 5.1e-9 6.1e-9 6.1e-9 6.1e-9 6.1e-9

Red
Wine

AIS 3.0e-2 1.3e-2 7.0e-3 4.7e-3 2.8e-3
AISCV1 3.7e-3 1.5e-3 8.7e-4 6.4e-4 4.2e-4
AISCV2 5.1e-10 5.1e-10 5.1e-10 5.1e-10 5.1e-10

White
Wine

AIS 1.1e-2 2.6e-3 8.1e-4 4.2e-4 1.8e-4
AISCV1 7.1e-3 1.5e-3 4.0e-4 2.1e-4 9.2e-5
AISCV2 2.4e-9 2.4e-9 2.4e-9 2.4e-9 2.4e-9

Table 3.3 – Mean Square Errors for different datasets with f(θ) = ‖θ‖22 obtained over
100 replications.

Sample Size n 5, 000 10, 000 20, 000 30, 000

Housing 5.5e-5 2.7e-5 1.9e-5 1.2e-5
Abalone 1.8e-4 8.6e-5 6.7e-5 5.6e-5
Red Wine 2.7e-4 1.8e-4 9.5e-5 5.2e-5
White Wine 3.8e-4 1.6e-4 8.5e-5 7.3e-5

Table 3.4 – MSE with f(θ) = ‖θ‖22 obtained over 30 chains of NUTS sampler.

Monte Carlo Markov Chain. We run a state-of-the-art MCMC method called NUTS
Hoffman et al. (2014), which is a self-tuning variant of Hamiltonian Monte Carlo. It
may be hard to compare precisely this method against the AIS based methods since
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they are different in nature. Indeed, the goal of MCMC methods is to sample from a
target distribution whereas AISCV methods are meant for variance reduction. In both
cases there are hyperparameters to tune. For AIS-based methods, there is the choice
of the policy (qi)i≥0, the choice of the control variates and the number of particles
nt to draw at each step. For the NUTS sampler, there is among others, the number
of samples used for the tuning phase and the initialization of the Markov kernel. A
reasonable comparison is obtained based on the overall number of sampled particles.
Table 3.4 above presents the mean squared errors obtained over 30 chains of NUTS
sampler with default configuration of the parameters from the Python library pymc3
Patil et al. (2010).
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4.1 Introduction

Consider the numerical integration problem to approximate the value of an integral
π(f) =

∫
f(x)π(x)dx where π is a probability density on Rd and the integrand f :

Rd → R is a real-valued function defined on the support of π. Suppose that random
draws from the density π are available and calls to the function f are possible. The
standard Monte Carlo estimate consists in averaging f(Xi) over i = 1, . . . , n, where the
particles Xi are identically and independently drawn from π. While easy to implement
and fast to compute, a recognized drawback of the Monte Carlo estimate is its slow
convergence rate in O(n−1/2). In some applications, one may only have access to a very
limited number of evaluations f(Xi) due to expensive calls of the integrand, e.g. in
complex Bayesian inference models (Higdon et al., 2015). The

√
n-convergence of the

standard Monte Carlo estimate becomes too slow and leads to high-variance estimation.

As detailed in Novak (2016), the complexity of integration algorithms may be ana-
lyzed through the convergence rate of the error. Any randomized procedure based on n
particles yields an estimate π̂n(f) of the integral π(f). In this context, the error of the
procedure is defined as E[|π̂n(f) − π(f)|2]1/2. For the specific problem of integration
with respect to the uniform measure over the unit cube [0, 1]d with d ≥ 1, the complex-
ity rate of randomized methods for Lipschitz integrands is known to be O(n−1/2n−1/d)
(see Novak (2016)). Furthermore, when the integrand has bounded s first derivatives,
the convergence rate becomes O(n−1/2n−s/d). These complexity rates are informat-
ive as they advocate the use of random methods over deterministic integration rules.
The convergence rates indicate that random methods have some O(n−1/2) gain com-
pared to deterministic methods with complexity rates in O(n−s/d). In addition, they
show that the naive Monte Carlo estimate is suboptimal from the convergence rate
perspective. This supports the idea that there is room for improvement by relying in
particular on the regularity of the integrand. Several approaches are already known for
improving upon the Monte Carlo benchmark in terms of convergence rate. They can be
classified according to their convergence rates while keeping in mind the lower bound
O(n−1/2n−s/d).
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The control variate method (Glasserman, 2004) is a powerful technique that allows
to reduce the variance of the Monte Carlo estimate using some approximation of the
integrand function. Relying on some nonparametric statistical approximation of f , the
Monte Carlo rate of convergence can be improved using control variates as demonstrated
in Oates et al. (2017); Portier and Segers (2019); Leluc et al. (2021); South et al.
(2022). In Portier and Segers (2019), when using m control variates, the convergence
rate is O(n−1/2m−s/d) where s is the regularity of f and the measure π is arbitrary.
The associated computation of optimal control variates relies on ordinary least squares
regression. To avoid ill-conditioning and for numerical stability, it requires that m
should be of a smaller order than n and thus, it prevents from achieving the optimal
rate. Relying on some control function constructed in a reproducing kernel Hilbert
space, Oates et al. (2017) derived an acceleration compared to the naive

√
n-convergence

rate and obtained O(n−7/12) for a specific class of functions.

Determinantal sampling has been used for Monte Carlo integration in Bardenet and
Hardy (2020) in which a stochastic quadrature rule is proposed. It allows to reduce the
error to O(n−1/2n−1/2d) when the function f is differentiable with continuous derivat-
ives. This interesting acceleration still remains slower than the optimal lower bound.

Another reliable technique to improve the rate of convergence of standard Monte Carlo
is stratification. This technique consists in partitioning the space and sampling over
each element of the partition. It has allowed to improve the convergence rate of Monte
Carlo estimates (Haber, 1966, 1967) and to derive a general framework called stochastic
quadrature rules (Haber, 1969). Recently, Haber’s work has been extended to take
advantage of higher smoothness in the integrand (Chopin and Gerber, 2022). To the
best of found knowledge, the works of Haber (1966) and Chopin and Gerber (2022)
are the only ones achieving the best rate of convergence for Lipschitz function and for
general regularity space.

Still concerned about the integration problem with respect to the uniform measure on
[0, 1]d, other methods such as Quasi-Monte Carlo and Randomized Quasi-Monte Carlo
have been studied (Caflisch, 1998; Dick and Pillichshammer, 2010) . These methods
are fitted for specific functions having finite Hardy–Krause variation and can attain an
error bound of order O(log(n)d/n). This type of methods is therefore associated to
other complexity rates (Novak, 2016).

Observe that the methods in Haber (1966) and in Chopin and Gerber (2022), even
though they achieve the optimal convergence rate, are only valid for integration over
the unit cube. In addition they involve a geometric number (`d) of evaluations of
the integrand f which is problematic in practice for applications with small computa-
tional budget as in complex bayesian models. Interestingly, as mentioned in Chopin
and Gerber (2022), their stratification method is related to a specific control variates
construction relying on a piecewise constant control function which has a very low bias
compared to traditional regression estimate. This precise idea of using an estimate with
small bias is the starting point of this chapter. It is relevant to the considered framework
because the function f is accessible without noise. Note that this kind of estimates -
with small bias - has also been successfully used in the related topic of adaptive rejec-
tion sampling (Achddou et al., 2019) allowing to reach optimal rate. All the different
properties of the mentioned Monte Carlo estimates are summarized in Table below.
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Monte Carlo method Super-
√
n

convergence
Optimal
rate

General
π

Vanilla Monte Carlo × X X

Quasi Monte Carlo (QMC and RQMC)
(Caflisch, 1998; Dick and Pillichshammer, 2010) X X ×
OLS-based Control Functionals
(Oates et al., 2017; Portier and Segers, 2019) X × X

Cubic Stratification
(Haber, 1966; Chopin and Gerber, 2022) X X ×

Control neighbors X X X

In this chapter, a new Monte Carlo method called control neighbors is introduced.
This method constructs an estimate π̂n(f) to approximate the integral π(f) for general
probability measure π and the core idea follows from using 1-Nearest Neighbor estimates
as control variates. This novel estimate is shown to achieve the optimal convergence rate
in O(n−1/2n−1/d) for Lipschitz functions. To the best of found knowledge, obtaining
the optimal convergence rate for general probability measure makes this method the
first of its kind. The most remarkable properties of the control neighbors estimate are:

(a) The control neighbors estimate can be obtained under the same framework as
standard Monte Carlo, i.e., as soon as one can both (i) draw random particles
from π and (ii) evaluate the integrand f . Contrary to the classical control variates
framework (Portier and Segers, 2019), the proposed estimate does not require the
existence of control variates with known integrals.

(b) control neighbors takes the form of a linear integration rule
∑n

i=1wi,nf(Xi) where
the weights wi,n do not depend on the integrand f but only on the sampled
particles X1, . . . , Xn. This key property allows computational benefits when sev-
eral integrals are to be computed with respect to the same density π.

(c) The convergence rate is shown to be optimal for Lipschitz functions, i.e., the in-
tegration error decreases as O(n−1/2n−1/d) whenever f is Lipschitz (Novak, 2016).
Other approaches (for general measure π) that have been developed recently, e.g.,
(Oates et al., 2017; Portier and Segers, 2019) do not achieve this rate.

(d) Since the weights wn,i are built using nearest neighbor estimates, complete prac-
tical tools are already available, including effective nearest neighbor search with
k-dimensional tree (Bentley, 1975) and efficient compression and parallelization
(Pedregosa et al., 2011; Johnson et al., 2019).

(e) The proposed approach is post-hoc in the sense that it can be run after sampling
the particles and independently from the sampling mechanism. In particular, it
implies that the approach can be implemented for other sampling design including
MCMC or adaptive importance sampling.

Section 4.2 presents a unified view of the control functionals framework and motivates
the use of nearest neighbor estimates acting as control variates. Then, the mathematical
foundations of nearest neighbor estimates are gathered in Section 4.3. The theoretical
properties of the proposed control neighbors estimates are stated in Section 4.4. Finally,
Section 4.5 contains several convincing numerical experiments.
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4.2 From control functionals to the method of Control
Neighbors

4.2.1 General view of control functionals

The goal of this section is to introduce the framework and the main ideas of control
functionals. By considering several examples, we present the key ingredients of the
proposed approach of control neighbors.

Consider the classical numerical integration problem where given a target density func-
tion π on Rd and a squared-integrable function f ∈ L2(π), the goal is to compute

π(f) = Eπ[f(X)] =

∫
Rd
f(x)π(x)dx.

The standard Monte Carlo estimate approximates this value by using independent
samples X1, . . . , Xn drawn from π and takes the average as

π̂(MC)
n (f) =

1

n

n∑
i=1

f(Xi).

This unbiased estimate is consistent and provided that f(X1) has finite variance, it sat-
isfies the central limit theorem. In particular, it converges to π(f) at the rate O(n−1/2)
which may be prohibitive for complex statistical methods where the integrand f is ex-
pensive to evaluate. While the use of control variates has been recognized as a useful
variance reduction tool in many situations (Glasserman, 2004; Owen, 2013), it is only
recently that control variates have been cast into a general functional approximation
problem (Oates et al., 2017; Portier and Segers, 2019). This method of control variates
or control functionals consists of two steps as indicated below.

Control functionals main steps.

1. Build a surrogate function f̂ with known integral π(f̂).

2. Use the centered variables f̂(Xi) − π(f̂) to derive the following enhanced Monte
Carlo estimate with control variates

π̂(CV )
n (f) =

1

n

n∑
i=1

{
f(Xi)−

(
f̂(Xi)− π(f̂)

)}
.

Whenever the function f̂ is constructed from another surrogate sample X̃1, . . . , X̃N be-
ing either deterministic or independent from X1, . . . Xn, the error analysis is simple and
can be conducted using the mean squared error conditionally to X̃1, . . . , X̃N . It gives
the following proposition in which the integrated mean squared error of f̂ estimating f ,∫
E[(f − f̂)2]dπ plays an important role.

Proposition 4.1. Let (X1, . . . Xn) be an independent and identically distributed collec-
tion of random variables with distribution π. Suppose that f̂ depends only on a surrogate
sample X̃1, . . . , X̃N which is independent from (X1, . . . Xn), then

E
[
|π̂(CV )
n (f)− π(f)|2

]
≤ n−1E

[ ∫
(f − f̂)2dπ

]
.



CHAPTER 4. SPEEDING UP MONTE CARLO: NEAREST NEIGHBORS AS
CONTROL VARIATES 120

Clearly, the success of the approach depends on the size of the (random) squared L2-
error

∫
(f − f̂)2 dπ. This promotes the use of the most accurate estimate f̂ of f in the

functional space L2(π). To address this function approximation problem, many different
control functional estimates have been investigated in the literature.

The use of reproducing kernel Hilbert spaces (RKHS) is considered in Oates et al. (2017).
Ordinary least squares control variates based on different function bases are promoted
in Portier and Segers (2019), Leluc et al. (2021) and South et al. (2022). Observe that
these methods are based on regression models and may be suboptimal by not exploiting
the noiseless nature of the integrand. Indeed, note that in the Monte Carlo framework,
the integrand f is accessible without noise. As a consequence, expected convergence
rates of the L2-error is then n−1/d (Kohler and Krzyżak, 2013) rather than n−1/(d+2)

as in standard regression (Stone, 1982). Reaching the optimal convergence rate when
estimating f by the control variate is the cornerstone to speed up the convergence rate
of Monte Carlo integration.

Consider now the control variate approach described in Chopin and Gerber (2022)
which is related to the stratification method of Haber (1966) (see their section 2.1).
Suppose that the support of π is [0, 1]d and let {X̃1, . . . , X̃N} be the (1/`)-equidistant
grid of [0, 1]d with N = `d, ` ≥ 1. The control variate estimate is then given by
f̂(x) =

∑N
i=1 f(X̃i)1Ri(x) where (Ri)i=1,...,N is the partition of [0, 1]d made of the

rectangles induced by the elements of the grid. Standard results give
∫

(f − f̂)2 =
O(N−2/d) and, from Proposition 4.1, one obtains that the associated integration method
has convergence rate O(n−1/2N−1/d). Minimizing the previous upper bound under a
fixed budget (n + N) implies choosing N and n of a similar order. This leads to the
convergence rate O(n−1/2n−1/d).

Though the optimal convergence rate is achieved by the previous rectangle control
variate method, there are several important issues coming from the basic nature of the
implied partitioning. These restrictive conditions may be prohibitive in many practical
situations. First the support of π needs to be the unit cube so that that the equidistant
grid forms a reasonable partitioning. Second, the equidistant grid requires the number
of evaluations to be of the form n = `d which turns out to be quite restrictive in terms
of computational efficiency in high-dimensional settings.

The proposed method, called control neighbors, is based on the following idea: use
a nearest neighbor estimate for f̂ instead of a regular grid-based estimate. Given a
surrogate sample {X̃1, . . . , X̃N}, let f̂ be the 1-NN estimate of f , that is, f̂(x) =∑N

i=1 f(X̃i)1SN,i(x) where (SN,i)i=1,...,N are the Voronoï cells associated to the sample
{X̃1, . . . , X̃N}, i.e., each cell SN,i contains all the points that are closer to X̃i than any
other point within the surrogate sample. The resulting method is similar to the rectangle
approach described before as a partitioning estimate is also employed. However, note
that with this approach, the surrogate sample {X̃1, . . . , X̃N} can be any set of points
within the support of π. Hence, neither a strong assumption on the support of π is
needed, nor a restriction on the computational budget n.

Finally, by following a “leave-one-out” strategy, the control variate estimate is built
directly from the initial sample {X1, . . . , Xn} which allows to ultimately reduce the
number of evaluations of f from (n+N) to only n.
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4.2.2 Control Neighbors estimates

For any i = 1, . . . , n, denote by f̂ (i)
n the 1-NN estimate of f constructed without the i-th

sample point and X (i)
n = {X1, . . . , Xn} \Xi. Introduce the following control neighbors

Monte Carlo estimate

π̂(NN−loo)
n (f) =

1

n

n∑
i=1

{
f(Xi)−

(
f̂ (i)
n (Xi)− π(f̂ (i)

n )
)}

, (4.1)

in which the function f̂ (i)
n (Xi) − π(f̂

(i)
n ) acts as control variate. A simple conditioning

argument implies that E[f̂
(i)
n (Xi) − π(f̂

(i)
n )] = E[E[f̂

(i)
n (Xi) − π(f̂

(i)
n ) | X (i)

n ]] = 0 which
is sufficient to get

E
[
π̂(NN−loo)
n (f)

]
= π(f).

Note that the n additional evaluations f̂ (i)
n (Xi) are not computationally difficult as no

additional evaluations of f are necessary. However, computing the terms π(f̂
(i)
n )), for

i = 1, . . . , n requires the evaluation of n additional integrals. Intuitively, since f̂ (i)
n is

similar to f̂n then their integral values should be close. This is stated in the Appendix
and one consequence is that

1

n

n∑
i=1

π(f̂ (i)
n ) = π(f̂n) + OP(n−1/2n−1/d).

Based on this remark, one may replace the n integral evaluations π(f̂
(i)
n ) by only a

single integral π(f̂n) to compute. This gives the following control neighbors Monte
Carlo estimate

π̂(NN)
n (f) =

1

n

n∑
i=1

{
f(Xi)−

(
f̂ (i)
n (Xi)− π(f̂n)

)}
. (4.2)

Both estimates (4.1) and (4.2) may be written as linear integration rules with weights
that do not depend on the integrand (see Section 4.4 below). In practice, the working
estimate is the control neighbor estimate (4.2) as it involves less integrals computations.

4.2.3 Control Neighbors implementation

We end this section by specifying the algorithm for computing the control neighbors
estimate (4.2). This estimate is based on the evaluations f(Xi) of the integrand and the
evaluations f̂ (i)

n (Xi) of the leave-one-out nearest neighbors estimates. It also requires to
compute the integral π(f̂) of the 1-NN estimate f̂n. Several practical remarks regarding
the computations of all these quantities are given right after Algorithm 4.6.

Remark 4.2 (Tree search). The naive neighbor search implementation involves the
brute-force computation of distances between all pairs of points in the training samples
and may be computationally prohibitive. To address such practical inefficiencies, a vari-
ety of tree-based data structures have been invented so the cost of a nearest neighbors
search can be reduced. The KD-Tree (Bentley, 1975) is a binary tree structure which
recursively partitions the parameter space along the data axes, dividing it into nested
orthotropic regions into which data points are filed. Once constructed, the query of a
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Algorithm 4.6 Control Neighbors for Monte Carlo integration
Require: integrand f , density π, number of samples n.
1. Generate an independent random sample X1, . . . , Xn from π.
2. Compute evaluations f(X1), . . . , f(Xn).
3. Compute nearest neighbors evaluations f̂ (1)

n (X1), . . . , f̂
(n)
n (Xn).

4. Compute integral of nearest neighbor estimate π(f̂n).
5. Return π̂(NN)

n (f) = 1
n

∑n
i=1

{
f(Xi)− (f̂

(i)
n (Xi)− π(f̂n))

}
.

nearest neighbor in a KD-Tree can be done in logarithmic time. However,in high di-
mension, the query cost increases and the structure of Ball-Tree (Omohundro, 1989) is
favored. Where KD trees partition data along Cartesian axes, Ball trees partition data
in a series of nesting hyper-spheres, making tree construction more costly than KD tree,
but results in a efficient data structure even in very high dimensions. In practice, there
exists many software libraries containing implementations of KD-tree and Ball-Tree with
efficient compression and parallelization (Pedregosa et al., 2011; Johnson et al., 2019).

Remark 4.3 (Evaluation of f̂ (i)
n (Xi)). The evaluations of the leave-one-out nearest

neighbors estimates can be efficiently computed with nearest neighbor search and masks
evaluations. More precisely, denote by F = [f(X1), . . . , f(Xn)] the vector of evaluations
of the integrand. Any query of a nearest neighbor algorithm produces a vector containing
the indices of neighbors of the corresponding query points. After fitting a KD-Tree on
the particles X1, . . . , Xn, one can query the 2-nearest neighbor of each Xi to produce the
vector of indices I such that Ii is the index of the nearest neighbor of Xi among X (i)

n .
The leave-one-out evaluations [f̂

(1)
n (X1), . . . , f̂

(n)
n (Xn)] are then simply obtained using

the slicing operation on array F [I].

Remark 4.4 (Evaluation of π(f̂n)). In the case of a complex probability measure π, the
Voronoi volumes may be hard to compute but can always be approximated. The integ-
ral of the nearest neighbor estimate π(f̂n) may be replaced by a Monte Carlo estimate
that uses M particles. That is π(f̂n) ' M−1

∑M
i=1 f̂n(X̃i) where the variables X̃i are

drawn independently from π. Observe that such an approach does not involve additional
evaluations of f . The error of this naive Monte Carlo approximation is in O(M−1/2)
meaning that large values of the form M = n2 and M = n3 can be taken to compare
with the optimal convergence rate in O(n−1/2n−1/d) of the control neighbors estimate.

Remark 4.5 (Voronoi volume when π is uniform). The quantity π(f̂) may be written as
a sum of the evaluations f(Xi) weighted by the value of the Voronoi volumes associated
to the corresponding sample point Xi (see Definition 4.9 in the next section). In case the
measure π is the uniform measure on [0, 1]d, one may be able to explicitly compute those
volumes. Starting from the pioneer work of Richards (1974) in the context of protein
structures, there has been advances to perform efficient Voronoi volume computations
using Delaunay triangulations and taking advantage of graphic hardware (Hoff III et al.,
1999). For 2d and 3d Voronoi diagrams, one can refer to the software Voro++ (Rycroft,
2009): a software library for carrying out computations of the Voronoi tessellation. Note
however that this type of algorithm are subjected to the curse of dimensionality and might
be inefficient when d is large.
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Remark 4.6 (k-NN estimates). A natural variant of the proposed method is obtained
by replacing the 1-NN estimate f̂n in Eq.(4.2) by a k-NN estimate f̂ (k)

n which averages
the evaluations of the k nearest neighbors of a given point. This estimate is defined by
f̂

(k)
n (x) = k−1

∑k
j=1 f(N̂n,j(x)) where N̂n,j(x) is the j-nearest neighbor of x. Note that

it involves both the tuning of the hyper-parameter k ≥ 1 and some extra computation due
to the associated nearest neighbors search. In regression or classification, high values of
k can reduce the variance of the estimate by averaging the model noise at the cost of
added computations. In contrast, the control neighbors estimate (k = 1) is free of these
additional costs and it takes advantage of the noiseless evaluations (see Chapter 15 in
Biau and Devroye (2015)) of the integrand mentioned in Section 4.2.1.

4.3 Nearest Neighbor estimation

This section presents the mathematical framework of nearest neighbor estimates with
reminders on Voronoi cells and central quantities for the analysis, namely the degree of
a point and the average cell volume. Throughout this section, we consider the following
assumptions which are related to the strong density assumption of Audibert and Tsy-
bakov (2007). This condition ensures that the density π has a regular support and that
it is bounded away from zero and infinity.

(A1) X,X1, X2, . . . are independent and identically distributed random vectors in Rd
drawn from the density π having support X = {x : π(x) > 0}.

(A2) There exists 0 < b,U < +∞ and c, r0 > 0 such that:

• ∀x ∈ X , b ≤ π(x) ≤ U .

• ∀0 < r ≤ r0, ∀x ∈ X , λ(X ∩B(x, r)) ≥ cλ(B(x, r)).

The existence of a density function π facilitates the introduction of nearest neighbor
estimates and related quantities. Let ‖·‖ be a norm on Rd and x be a given point in Rd.
As the sample ‖x − X1‖, . . . , ‖x − Xn‖ is independently generated from a continuous
distribution defined on R, we have, with probability one, the existence of a unique
minimum value among the previous collection of positive numbers and therefore a unique
nearest neighbor to x. However to establish formulas valid for any given sample points in
Rd and any x ∈ Rd, it is convenient to take care of the presence of ties when introducing
nearest neighbor and associated distance. This is done in the next definition using, when
a tie occurs, the indexes of the concerned points to select the one nearest neighbor.
Though convenient to obtain some formulas in the proofs, this arbitrary choice does
not affect the results of the chapter.

Definition 4.7 (Nearest neighbors and distances). Given any point x ∈ Rd and any
collection X1, . . . , Xn in Rd, define N̂n(x) as the nearest neighbor of x among X1, . . . , Xn

and τ̂n(x) the associated distance, i.e.,

N̂n(x) ∈ arg min
Y ∈{X1,...,Xn}

‖x− Y ‖, τ̂n(x) = ‖N̂n(x)− x‖.

When the above arg min is not unique, then N̂n(x) is defined as the one point among
the arg min having smallest index.
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The next Lemma follows from standard considerations in the k-NN literature (Biau and
Devroye, 2015) and relies on the uniform lower bounds required in (A2). Observe that
this condition plays an important role in the analysis of nearest neighbors estimates as
it allows a uniform control on the radius of the Voronoï cells. Such a uniform bound
on the radius is the key to study the convergence of general k-NN estimates. When
dealing with densities having general supports, one can also consider some minimal mass
assumption (Gadat et al., 2016) to guarantee that no region has no point. Futhermore,
note that this question of necessary conditions for general uniform bounds remains an
active field of research with recent progress for unbounded data (Kohler et al., 2006)
and relaxations through tail assumptions (Gadat et al., 2016). Extending the present
analysis to such general measure is beyond the scope of the present chapter and left for
further research.

Let Γ denote the standard gamma function and Vd be the volume of the unit ball, i.e.,
Vd =

∫
B(0,1) dx with B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}.

Lemma 4.8 (Upper bound of distance moments). Under (A1) and (A2), we have, for
any q ≥ 1,

∀x ∈ X , E[τ̂n(x)q] ≤
(
nVdbc

)−q/d
Γ(q/d+ 1).

The sample Xn = {X1, . . . , Xn} defines a natural (random) partition of the integration
domain when considering the associated Voronoi cells. Any such cell is associated to
a given sample point, say Xi, and contains all the points x such that their nearest
neighbor is Xi, as detailed below.

Definition 4.9 (Voronoi cells and volumes). The Voronoi cells are given by

∀i = 1, . . . , n, Sn,i = {x ∈ Rd : N̂n(x) = Xi},

and its associated Voronoi volume is Vn,i = π(Sn,i).

Voronoi cells are strongly related to the 1-nearest neighbor predictor. The 1-NN estim-
ate of f is simply defined as f̂n(x) = f(N̂n(x)) for all x ∈ Rd. As a consequence, it
is piece-wise constant on the Voronoi cells, i.e., f̂n(x) =

∑n
i=1 f(Xi)1Sn,i(x). A useful

property for the analysis is the following regularity condition on f .

(A3) The function f : Rd → R is L-Lipschitz with respect to ‖ · ‖, i.e. there is L > 0
such that

∀x, y ∈ Rd, |f(x)− f(y)| ≤ L‖x− y‖.

When the function f is Lipschitz, the distance τ̂n is key in the analysis of the functional
approximation problem of f by the estimate f̂n. This is stated in the next Lemma
whose proof is in the Appendix.

Lemma 4.10 (1-NN estimation of f). Under (A1), (A2) and (A3), we have almost
surely |f̂n(x)− f(x)| ≤ Lτ̂n(x).

The leave-one-out rule is a general technique to introduce independence between the
prediction and the evaluation point. It is used as a cross-validation strategy in order
to tune hyper-parameters of certain procedure (Stone, 1974; Craven and Wahba, 1978).
The leave-one-out version of f̂n without the i-th sample is denoted f̂ (i)

n and is obtained
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in the exact same way as f̂n except that a slightly different sample - in which the
i-th observation has been removed - is used. It is therefore useful to introduce the
leave-one-out nearest neighbor and the leave-one-out Voronoi cells.

Definition 4.11 (Leave-one-out neighbors, Voronoi cells and volumes).
Let X (i)

n = {X1, . . . , Xn}\Xi. The leave-one-out neighbor of x is given by

N̂ (i)
n (x) ∈ arg min

Y ∈X (i)
n

‖x− Y ‖.

When the above arg min is not unique, then N̂ (i)
n (x) is defined as the one point among

the arg min having smallest index. The leave-one-out Voronoi cell S(i)
n,j denotes the j-th

Voronoi cell in X (i)
n , i.e.

∀i 6= j ∈ {1, . . . , n} S
(i)
n,j = {x ∈ Rd : N̂ (i)

n (x) = Xj}.

The leave-one-out Voronoi volume is defined as V (i)
n,j = π(S

(i)
n,j).

Now that we have at hand the previous definition, we can introduce formally the leave-
one-out 1-NN predictor f̂ (i)

n (x) = f(N̂
(i)
n (x)) (which was already used in previous section

to define the proposed integral estimate). A key property is that f̂ (i)
n and f̂n coincide on

Sn,j for j 6= i. On the cell Sn,i, when the function f is Lipschitz, their difference is of the
same order as the nearest neighbor distance. In terms of the L1-norm, their difference is
even smaller as the cell Sn,i has a small volume. Relevant for our numerical integration
problem is that the average of the integrals π(f̂

(i)
n ) is close to π(f̂n), as stated in the

following proposition.

Lemma 4.12. Let f̄n(x) =
∑n

i=1 f̂
(i)
n (x)1Sn,i(x). Under (A1) and (A2), we have

n∑
i=1

{π(f̂ (i)
n )− π(f̂n)} = π(f̄n − f̂n).

A central quantity that reflects how much a point is surrounded within the sample is
given by enumerating how many times a point, say Xi, is the nearest neighbor of points
from the sample X (i)

n . Another important quantity that qualifies the isolation of a point
is obtained by summing the Voronoi volumes. These two notions are formally stated in
the next definition.

Definition 4.13 (Degree and cumulative volume). For all j = 1, . . . , n, the degree d̂n,j
represents the number of times Xj is a nearest neighbor of a point Xi for i 6= j. The
associated j-th cumulative Voronoi volume is denoted by ĉn,j, that is

d̂n,j =
∑
i:i 6=j

1
S
(i)
n,j

(Xi), ĉn,j =
∑
i:i 6=j

V
(i)
n,j .

Interestingly, the degree of a point and its cumulative Voronoi volume have the same
expectation.

Lemma 4.14. Under (A1) and (A2), it holds that E[d̂n,j ] = E[ĉn,j ] = 1.
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The two quantities d̂n,j and ĉn,j will be useful in the next section to express the control
neighbors estimate as a linear integration rule. For now, one can compute weighted sum
of f(Xj) using d̂n,j and ĉn,j as weights and notice that these weighted sum are related
to the leave-one-out estimate.

Lemma 4.15. Under (A1) and (A2), it holds that

n∑
i=1

f(Xi) d̂n,i =
n∑
i=1

f̂ (i)
n (Xi) and

n∑
i=1

f(Xi) ĉn,i =
n∑
i=1

π(f̂ (i)
n ).

4.4 Main results

This section gathers the main theoretical properties of the control neighbors estimates
(4.1) and (4.2) presented in Section 4.2.3. First, these estimates can be written as
simple linear integration rules with weights that only depend on the nearest neighbor
estimates and may be efficiently computed in practice. Then the convergence rate of
the error E[|π̂n(f)− π(f)|2]1/2 is derived for the proposed estimates.

4.4.1 Linear integration rules

The control neighbors estimates π̂(NN)
n (f) and π̂(NN−loo)

n (f) can be expressed as linear
integration rules of the form

∑n
i=1wi,nf(Xi) where the weights wi,n do not depend

on the integrand g. The integration weights involve the degrees d̂n,i, the (cumulative)
volumes Vn,i and ĉn,i in Definition 4.13.

Proposition 4.16 (Quadrature rules). The estimates π̂(NN)
n (f) and π̂(NN−loo)

n (f) can
be expressed as linear estimates of the form

π̂(NN)
n (f) =

n∑
i=1

w
(NN)
i,n f(Xi) and π̂(NN−loo)

n (f) =

n∑
i=1

w
(NN−loo)
i,n f(Xi)

where w(NN)
i,n = (1 + nVn,i − d̂n,i)/n and w(NN−loo)

i,n = (1 + ĉn,i − d̂n,i)/n.

In light of the previous proposition, the proposed approach consists in a simple modi-
fication of π̂(NN−loo)

n (f) as we can recover π̂(NN)
n (f) from π̂

(NN−loo)
n (f) by replacing ĉn,j ,

which requires to compute n − 1 Voronoï volumes, by nVn,i. The difference between
both is in fact of order n−1/2−1/d as shown in the next section.

4.4.2 Convergence rate of the leave-one-out version

The first result provides a finite-sample bound on the mean-squared error of the leave-
one-out control neighbors estimate.

Proposition 4.17. Under (A1), (A2) and (A3), if n ≥ 4, then

E
[∣∣∣π̂(NN−loo)

n (f)− π(f)
∣∣∣2]1/2

≤ CNN−loon
−1/2n−1/d,

where CNN−loo = 16L
(
Vdbc

)−1/d
(U/bc)−1/2.
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Interestingly, the rate obtained before matches the complexity rate described in Novak
(2016). Note that the results in the aforementioned paper are concerned about a slightly
more precise context as they assert that no random integration rule (see the paper for
more details) can reach a better accuracy – measured in terms of mean-squared error
– than O(n−1−2/d) when the integration measure is the uniform measure over the unit
cube and the function f is Lipschitz. Proposition 4.17 states that the optimal rate is
in fact achieved by some integration rule in situations where the integration measure’s
density is not necessarily uniform but only lower and upper bounded.

4.4.3 Back to the proposed estimate

The leave-one-out version, though its rate of convergence matches the optimal rate,
suffers from the difficulty of computing n integrals value which might represent a com-
putational burden. The proposed estimate π̂(NN)

n is actually a mild modification of the
leave-one-out estimate as

π̂(NN)
n (f)− π̂(NN−loo)

n (f) = π(f̂n)− 1

n

n∑
i=1

π(f̂ (i)
n )

that benefits from computational advantages (as detailed in Section 4.2 in the remarks
stated after the algorithm). Based on the previous property and using Lemma 4.12 from
previous section, we can obtain that the mean-squared distance between the leave-one-
out version and the proposed estimate is of order O(n−1/2−1/d) as n → ∞ (a precise
statement is given in the Appendix, Lemma 4.7). Therefore, one obtains that π̂(NN)

n has
the same convergence rate as π̂(NN−loo)

n .

Proposition 4.18. Under (A1), (A2) and (A3), we have

E

[∣∣∣π̂(NN)
n (f)− π(f)

∣∣∣2]1/2

≤ CNNn
−1/2n−1/d,

where CNN = 39L(Vdbc)
−1/d(U/bc)−1/2.

4.5 Numerical experiments

To illustrate the finite-sample performance of the proposed estimator, we first present
in Section 4.5.1 synthetic data examples involving two standard integration problems
with uniform and Gaussian measures. Then Section 4.5.2 presents an application
of the method in finance for Monte Carlo exotic option pricing under the standard
Black-Scholes model with constant volatility and the more difficult Heston model with
stochastic volatility. Finally Section 4.5.3 deals with marginalising hyper-parameters
in Bayesian models. This is the same case study used in Oates et al. (2017) where
the evaluations of the integrand f are very costly. This framework is particularly well
suited for the nearest neighbor control variates estimate. In all the experiments, the
method MC represents the naive Monte Carlo estimate and CVNN returns the value of
π̂

(NN)
n (f) for which the integral

∫
f̂ndπ is replaced by a Monte Carlo estimate that uses

M = n2 particles.
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4.5.1 Simulated data

The aim of this section is to empirically validate the O(n−1/2n−1/d) convergence rate of
the control neighbors estimate. Similarly to Oates et al. (2017), consider the integrands

f1(x1, . . . , xd) = sin
(
π
(2

d

d∑
i=1

xi − 1
))
, f2(x1, . . . , xd) = sin

(π
d

d∑
i=1

xi

)
.

The goal is to compute
∫
f1(x)1[0,1]d(x)dx and

∫
f2(x)ϕ(x)dx where ϕ(·) denotes the

probability density function of the multivariate Gaussian distribution N (0, Id). Differ-
ent dimensions d ∈ {2; 4; 6} are considered and the sample size evolves from n = 250
to n = 5 000. Figures 4.1 and 4.2 display the evolution of the root mean squared
error n 7→ E[|π̂(NN)

n (f) − π(f)|2]1/2 for integrands f1 and f2 respectively, where the
expectation is computed over 100 independent replications.
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Figure 4.1 – Root mean squared errors obtained over 100 replications for functions f1

in dimension d ∈ {2; 4; 6} (left to right).
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Figure 4.2 – Root mean squared errors obtained over 100 replications for function f2 in
dimension d ∈ {2; 4; 6} (left to right).

Interestingly, the different error curves validate the optimal convergence rate in O(n−1/2n−1/d)
for the control neighbors estimate. For small dimensions (d = 2 and d = 4), the root
mean squared error of the CVNN estimate can be reduced by a factor ten compared to
the standard Monte Carlo approach.
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4.5.2 Monte Carlo Option Pricing

Finance background. Options are financial derivatives based on the value of underly-
ing securities. They give the buyer the right to buy (call option) or sell (put option) the
underlying asset at a pre-determined price within a specific time frame. The price of an
option may be expressed as the expectation, under the so-called risk-neutral measure, of
the payoff discounted to the present value. Consider a contract of European type, which
specifies a payoff V (ST ), depending on the level of the underlying asset St at maturity
t = T . The value V of the contract at time t = 0, conditional on an underlying value
S0 is given by

V (S0) = EQ[e−rTV (ST )], (4.3)

where EQ denotes the expectation under the risk-neutral measure and r is the risk-
free interest rate. Such a representation suggests a straightforward Monte Carlo based
method for its calculation by simulating random paths of the underlying asset, calculat-
ing each time the resulting payoff and taking the average of the result. This approach
is particularly useful when dealing with exotic options which present no closed-form
expression as is the case for barrier options.

Barrier options (Merton, 1973) are considered exotic options because they are more
complex than basic American or European options. Barrier options are also considered
a type of path-dependent option because their value fluctuates as the underlying’s value
changes during the option’s contract term. In other words, a barrier option’s payoff is
based on the underlying asset’s price path. The option becomes worthless or may be
activated upon the crossing of a price point barrier denoted H. More precisely, Knock-
Out (KO) options are options that expire worthless when the underlying’s spot crosses
the prespecified barrier level whereas Knock-In (KI) options only come into existence if
the prespecified barrier level is crossed by the underlying asset’s price.

The payoff of a European call option with strike price K is given by V (ST ) = (ST −K)+

and depends only on the level of the underlying asset St at maturity time t = T . In
contrast, the payoff a of barrier option depends on the path (St)t∈[0,T ]. The payoffs of
up-in (UI) and up-out (UO) barrier options with barrier price K are given by

V(UI)(S) = (ST −K)+1{ max
t∈[0,T ]

St ≥ H}, (4.4)

V(UO)(S) = (ST −K)+1{ max
t∈[0,T ]

St < H}. (4.5)

Market Dynamics. The Black–Scholes model (Black and Scholes, 1973) is a math-
ematical model for pricing option contracts. It is based on geometric Brownian motion
with constant drift and volatility so that the underlying stock St satisfies the following
stochastic differential equation:

dSt = µStdt+ σStdWt,

where µ represents the drift rate of growth of the underlying stock, σ is the volatility
and W denotes a Wiener process. Although simple and widely used in practice, the
Black-Scholes model has some limitations. In particular, it assumes constant values for
the risk-free rate of return and volatility over the option duration. Neither of those
necessarily remains constant in the real world. The Heston Model (Heston, 1993) is
a type of stochastic volatility model that can be used for pricing options on various
securities. For the Heston model, the previous constant volatility σ is replaced by a
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stochastic volatility vt which follows an Ornstein-Uhlenbeck process. The underlying
stock St satisfies the following equations{

dSt = µStdt+
√
vtStdW

S
t ,

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t , dWS

t dW
v
t = ρ dt.

with stochastic volatility vt, drift term µ, long run average variance θ, rate of mean
reversion κ and volatility of volatility ξ. Essentially the Heston model is obtained by
just simulating a standard geometric Brownian motion with non-constant volatility,
where the change in S has relationship ρ with the change in volatility.

Monte Carlo procedures. The application of standard Monte Carlo methods to
option pricing takes the following form:

(1) Simulate a large number n of price paths for the underlying asset: (S(1), . . . , S(n)).

(2) Compute the associated payoff using Eq.(4.4) for the option of each path: (V1, . . . , Vn).

(3) Average the payoffs and discount them to today: V̂n = (e−rT /n)
∑n

i=1 Vi.

In practice the price paths are simulated using a Euler scheme with a discretization
of the time period [0, T ] comprised of m times t1 = 0 < t2 < . . . < tm = T . Each
price path Si for i = 1, . . . , n is actually a vector (S

(1)
(i) , . . . , S

(m)
(i) ) so that the indicator

function of the barrier options is computed on the discretized prices. Common values
for m are the number of trading days per year which is m = 252 for T = 1 year.

Parameters. Several numerical experiments are performed for the pricing of European
Barrier call options ”up-in” and ”up-out”. The number of sampled paths evolves as
n ∈ {500; 1, 000; 2, 000; 3, 000; 5, 000} and the granularity of the grid is equal to m =
240. Two different mathematical models are considered when simulating the underlying
assets:

(1) Black-Scholes model with constant volatility σ = 0.30.

(2) Heston model with initial volatility v0 = 0.1, long-run average variance θ = 0.02,
rate of mean reversion κ = 4, instanteneous correlation ρ = 0.8 and volatility of
volatility ξ = 0.9.

In both cases the fixed parameters are: spot price S0 = 100, interest rate r = 0.10,
maturity T = 2 months, strike price K = S0 = 100 and barrier price H = 130.

Figure 4.3 below shows the error distribution of the different Monte Carlo estimates
(naive MC and CVNN) for the pricing of Barrier call options "up-in" and "up-out" in
the Black-Scholes model. The boxplots are computed over 100 independent replications.
Accordingly Figure 4.4 gathers the results in the Heston model. The gain in terms of
variance reduction is huge when using the control neighbors estimate compared to the
standard Monte Carlo approach.
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Figure 4.3 – Barrier option pricing under Black-Scholes model with spot price S0 = 100,
strikeK = S0, maturity T = 2 months, risk-free rate r = 0.1, constant volatility σ = 0.3,
barrier price H = 130. The boxplots are obtained over 100 replications.
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Figure 4.4 – Barrier option pricing with Heston Model with spot ptice S0 = 100, strike
K = S0, barrier price H = 130, maturity T = 2 months, risk-free rate r = 0.1, initial
volatility v0 = 0.1, long-run average variance θ = 0.02, rate of mean reversion κ = 4,
instanteneous correlation ρ = 0.8 and volatility of volatility ξ = 0.9. The boxplots are
obtained over 100 replications.

4.5.3 Sarcos Robot Arm

Hierarchical model. Similarly to Oates et al. (2017), we consider the problem of mar-
ginalising over hyper-parameters in a fully Bayesian treatment of hierarchical models.
In this case study, the underlying model is a D-dimensional regression with Gaussian
Process (GP) prior (Rasmussen, 2003). The dataset is comprised of state/response pairs
(yi, zi)

N
i=1 with zi ∈ RD and yi ∈ R. Using a fixed and known variance parameter σ > 0

and a transformation T : RD → R, the regression model is given by

∀i = 1, . . . , N, yi = T (zi) + εi with εi
i.i.d.∼ N (0, σ2).

The transformation T is taken as a GP prior T ∼ GP(0, c(z1, z2; θ)) where the cost
function c depends on a parameter vector θ = (θ1, θ2) that controls how the training
data are used for prediction on a test point z?. The cost function is defined as

c(z1, z2; θ) = θ1 exp(−‖z1 − z2‖22
2θ2

2

).

In the Bayesian framework, the parameters θ1 and θ2 are hyper-priors with Gamma
distributions θ1 ∼ Γ(α, β) and θ2 ∼ Γ(γ, δ) in the shape/scale parameterization, which
joint density is written as π(θ). Given an unseen state vector z?, the goal is to predict
the value of the response y? using the posterior mean ŷ? := E[y?|y] =

∫
E[y?|y, θ]π(θ)dθ
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which is implicitly conditioned on the covariates z1, . . . , zN , z
?. Since this integral is in-

tractable, one may rely on Monte Carlo estimates by sampling θ1, . . . , θn independently
from the prior π(θ) and evaluating the following integrand

E[y?|y, θ] = C∗,N (CN + σ2IN×N )−1y

where the cost matrices are (CN )i,j = c(zi, zj ; θ) and (C∗,N )1,j = c(z∗, zj ; θ). Note that
each evaluation of the integrand requires O(N3) operations due to the matrix inversion.
This computational issue is addressed by using a subset of regressors comprised of
N ′ < N samples (see Sec. 8.3.1 of Williams and Rasmussen, 2006, for full details)

f(θ) = C∗,N ′(CN ′,NCN,N ′ + σ2CN ′)
−1CN ′,Ny (4.6)
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Figure 4.5 – Sampling standard deviation of Monte Carlo estimates for the posterior
predictive mean E[y?|y], computed over 100 independent realisations.

Dataset and parameters. The goal is to estimate the inverse dynamics of a seven
degrees-of-freedom SARCOS anthropomorphic robot arm. The task, as described in
Williams and Rasmussen (2006, Sec. 8.3.1), is to map from a 21-dimensional input
space (7 positions, 7 velocities, 7 accelerations) to the corresponding 7 joint torques using
the hierarchical GP model mentioned above. Following Oates et al. (2017) we present
results below on just one of the mappings, from the 21 input variables to the first of the
seven torques. Similarly to the experiment of Oates et al. (2017) which investigates the
sampling distribution of estimators, we take a random subset of N = 1, 000 training
points and a subset of regressors approximation with N ′ = 100. The inputs were
translated and scaled to have mean zero and unit variance on the training set. The
outputs were centered so as to have mean zero on the training set. Here σ = 0.1,
α = γ = 25, β = δ = 0.04, so that each hyper-parameter θi has a prior mean of 1 and
a prior standard deviation of 0.2.



CHAPTER 4. SPEEDING UP MONTE CARLO: NEAREST NEIGHBORS AS
CONTROL VARIATES 133

For randomly selected test points z∗ we estimated the sampling standard deviation of ŷ∗

over 100 independent realisations of the Monte Carlo sampling procedure. Along with
the naive Monte Carlo estimate and the control neighbor estimate, we implemented
the control functionals (CF) estimate from Oates et al. (2017) with default hyper-
parameters α1 = 0.1, α2 = 1, the latter reflecting the fact that the training data were
standardised. The estimator standard deviations were estimated in this way for 300
randomly selected test samples and the full results are shown in Fig. 4.5. Note that
each test sample corresponds to a different integrand f and thus these results are quite
objective, encompassing hundreds of different Monte Carlo integration problems.

4.A Proofs

Section 4.A.1 is concerned with the radius of k-NN estimate. Section 4.A.2 gathers the
technical proofs of all the lemmas while Section 4.A.3 is concerned with the proofs of
the different propositions.

4.A.1 k-Nearest Neighbor distance

Definition 4.19 (Nearest neighbors and distances). Given any point x ∈ Rd and any
collection X1, . . . , Xn in Rd, for k = 1, . . . , n define N̂n,k(x) as the k-nearest neighbor of
x among X1, . . . , Xn and τ̂n,k(x) the associated distance, i.e., τ̂n,k(x) = ‖N̂n,k(x)− x‖.
As before, when some ties are observed we use the lexicographic order.

Lemma 4.20 (Upper bound of distance moments). Under (A1) and (A2), if 2k ≤ n,
we have, for any q ≥ 1,

∀x ∈ X , E[τ̂n,k(x)q] ≤ 22q/d+1Γ(q/d+ 1)(nVdbc/k)−q/d.

4.A.2 Proofs of Lemmas

Proof of Lemma 4.8 and Lemma 4.20

First, concerning the moments of 1-NN distance, the proof bears resemblance with the
proof of Theorem 2.3 in Biau and Devroye (2015). Let x ∈ X and start with

P(|τ̂n(x)| > t) = P

(
min

i=1,...,n
‖Xi − x‖ > t

)
= [P(‖X1 − x‖ > t)]n

= [1− P(B(x, t))]n

≤ exp[−nP(B(x, t))]

≤ exp(−ntdVdbc).



CHAPTER 4. SPEEDING UP MONTE CARLO: NEAREST NEIGHBORS AS
CONTROL VARIATES 134

Then

E
[
τ̂n(x)q

]
=

∫ ∞
0

P
(
|τ̂n(x)| > t1/q

)
dt

≤
∫ ∞

0
exp(−ntd/qVdbc) dt

=
(
nVdbc

)−q/d
(q/d)

∫ ∞
0

exp(−u)uq/d−1 du

=
(
nVdbc

)−q/d
Γ(q/d+ 1).

Then, concerning the moments of k-NN distance, the proof is based on the one of
Theorem 2.4 in Biau and Devroye (2015). Partition the set X1, . . . , Xn into 2k sets of
sizes n1, . . . , n2k, with

2k∑
j=1

nj = n and
⌊
n

2k

⌋
≤ nj ≤

⌊
n

2k

⌋
+ 1.

Let N̂nj (x, j) be the nearest neighbor of x among all Xi’s in the j-th group. Observe
that, deterministically,

‖N̂n,k(x)− x‖ ≤ 1

k

2k∑
j=1

‖N̂nj (x, j)− x‖

and, similarly,

‖N̂n,k(x)− x‖q ≤ 1

k

2k∑
j=1

‖N̂nj (x, j)− x‖q,

because at least k of these nearest neighbors have values that are at least ‖N̂n,k(x)−x‖.
This last inequality may be written as

‖N̂n,k(x)− x‖q ≤ 1

k

2k∑
j=1

τ̂nj (x)q.

Applying the previous upper bound for 1-NN moment gives

E
[
‖N̂n,k(x)− x‖q

]
≤ 1

k

2k∑
j=1

(
njVdbc

)−q/d
Γ(q/d+ 1)

=
(Vdbc)

−q/dΓ(q/d+ 1)

k

2k∑
j=1

(
1

nj

)q/d

=
2q/d(Vdbc)

−q/dΓ(q/d+ 1)

k

2k∑
j=1

(
1

2nj

)q/d

≤ 2q/d(Vdbc)
−q/dΓ(q/d+ 1)

k

2k∑
j=1

(
2k

n

)q/d
= 22q/d+1Γ(q/d+ 1)(nVdbc/k)−q/d.
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Proof of Lemma 4.10

We have, by (A3),

|f̂n(x)− f(x)| = |f̂(N̂n(x))− f(x)| ≤ L|N̂n(x)− x| = Lτ̂n(x).

Proof of Lemma 4.12

Given any collection X1, . . . , Xn of distant points, if j 6= i, f̂ (i)
n and ĝn are the same on

Sn,j . It holds that

f̂ (i)
n (x)− f̂n(x) = (f̂ (i)

n (x)− f̂n(x))1Sn,i(x).

Now using that f̄n and f̂ (i)
n are the same on Sn,i, it follows that

f̂ (i)
n (x)− f̂n(x) = (f̄n(x)− f̂n(x))1Sn,i(x).

Taking the sum and using that
∑n

i=1 1Sn,i(x) = 1 gives

n∑
i=1

{f̂ (i)
n (x)− f̂n(x)} = (f̄n(x)− f̂n(x)),

and the result follows by integrating with respect to π.

Proof of Lemma 4.14

First observe that

E[d̂n,j ] =
∑
i:i 6=j

E[V
(i)
n,j ] = E[ĉn,j ]

and the first equality comes. Since
∑

j:j 6=i E[V
(i)
n,j ] = 1 and the variables V (i)

n,j for distinct

i and j are identically distributed, we get E[V
(i)
n,j ] = 1/(n− 1) and thus E[d̂n,j ] = 1.

Proof of Lemma 4.15

Because the Voronoi cells define a partition of Rd, we have for any x ∈ Rd,

f̂ (i)
n (x) =

∑
j:j 6=i

f(Xj)1S(i)
n,j

(x)

and in particular
f̂ (i)
n (Xi) =

∑
j:j 6=i

f(Xj)1S(i)
n,j

(Xi)

from which we deduce
n∑
i=1

f̂ (i)
n (Xi) =

n∑
j=1

f(Xj)
∑
i:i 6=j

1
S
(i)
n,j

(Xi) =

n∑
j=1

f(Xj) d̂n,j .

Further, we have

π(f̂n) =

n∑
i=1

π
(
f(Xi)1Sn,i

)
=

n∑
i=1

f(Xi)π(Sn,i) =

n∑
i=1

f(Xi)Vn,i

and
n∑
i=1

π(f̂ (i)
n ) =

n∑
i=1

∑
j:j 6=i

π

(
f(Xj)1S(i)

n,j

)
=

n∑
j=1

f(Xj)
∑
i:i 6=j

V
(i)
n,j =

n∑
j=1

f(Xj) ĉn,j .
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4.A.3 Proofs of Propositions

Proof of Proposition 4.1

By conditioning on X̃1, . . . , X̃N , we obtain that

E
[
|π̂(CV )
n (f)− π(f)|2|X̃1, . . . , X̃N

]
= n−1 Var[(f(X1)− f̂(X1))|X̃1, . . . , X̃N ]

≤ n−1E[(f(X1)− f̂(X1))2|X̃]

= n−1

∫
(f − f̂)2dπ.

and taking the expectation with respect to the X̃1, . . . , X̃N leads to the result.

Proof of Proposition 4.16 Using Lemma 4.15, we find

π̂(NN)
n (f) =

1

n

n∑
i=1

[f(Xi)− {f̂ (i)
n (Xi)− π(f̂n)}]

=
1

n

n∑
i=1

f(Xi)−
1

n

n∑
j=1

f(Xj) d̂n,j +

n∑
i=1

f(Xi)Vn,i

=
1

n

n∑
i=1

(
1− d̂n,i + nVn,i

)
f(Xi)

and, similarly,

π̂(NN−loo)
n =

1

n

n∑
i=1

[f(Xi)− {f̂ (i)
n (Xi)− π(f̂ (i)

n )}]

=
1

n

n∑
i=1

f(Xi)−
1

n

n∑
j=1

f(Xj)d̂n,j +
1

n

n∑
j=1

f(Xj)ĉn,j

=
1

n

n∑
i=1

(
1− d̂n,i + ĉn,i

)
f(Xi),

as required.

Proof of Proposition 4.17

Let Yn,i = f̂
(i)
n (Xi)− π(f̂

(i)
n ) and write

π̂(NN−loo)
n (f)− π(f) =

1

n

n∑
i=1

{Yi − Yn,i}

with Yi = f(Xi)− π(f). Then write

n2E[(π̂(NN−loo)
n (f)− π(f))2] =

n∑
i=1

E[{Yi − Yn,i}2] +
∑
i 6=j

E[{Yi − Yn,i}{Yj − Yn,j}]

= nE[{Y1 − Yn,1}2] + n(n− 1)E[{Y1 − Yn,1}{Y2 − Yn,2}]

Now it is suitable to decompose Yn,1 into two terms, one of which does not depend
on X2. We also use the fact that the Voronoi partition made with (n − 1) element
is more detailed than the one constructed with (n − 2) points, i.e. S

(1)
n−1,i ⊂ S

(1,2)
n−2,i
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for i = 3, . . . , n. Define the map N (1,2) : Rd → Rd such that N (1,2)(x) is the nearest
neighbor to x among the sample {X1, . . . , Xn} without X1 and X2. We write (using
that N (1,2)(x) = Xi whenever x ∈ S(1)

n−1,i for i ≥ 3),

f̂ (1,2)
n (x) = g(N (1,2)(x))

= f(N (1,2)(x))

 n∑
i=2

1
S
(1)
n−1,i

(x)


= f(N (1,2)(x))1

S
(1)
n−1,2

(x) +
n∑
i=3

f(Xi)1S(1)
n−1,i

(x)

= (f(N (1,2)(x))− f(X2))1
S
(1)
n−1,2

(x) +
n∑
i=2

f(Xi)1S(1)
n−1,i

(x).

It follows that

ĝ(1)
n (x) = L̂(1)(x) + f̂ (1,2)

n (x)

with L̂(1)(x) = (f(X2)− f(N (1,2)(x)))1
S
(1)
n−1,2

(x). Therefore,

Y1 − Yn,1 = Y1 − (L̂(1)(X1)− π(L̂(1)))− (f̂ (1,2)
n (X1)− π(f̂ (1,2)

n )).

Denote

A1 = Y1,

A2 = Y2,

B1 = L̂(1)(X1)− π(L̂(1)),

B2 = L̂(2)(X2)− π(L̂(2)),

C1 = f̂ (1,2)
n (X1)− π(f̂ (1,2)

n ),

C2 = f̂ (1,2)
n (X2)− π(f̂ (1,2)

n ),

where L̂(2)(x) = (f(X1)− f(N (1,2)(x)))1
S
(2)
n−1,1

(x). Then

E[{Y1 − Yn,1}{Y2 − Yn,2}] = E[A1A2] + E[A1B2] + E[A1C2]

+ E[B1A2] + E[B1B2] + E[B1C2]

+ E[C1A2] + E[C1B2] + E[C1C2].

Since A1 and A2 are independent, E[A1A2] = 0. This also applies to E[A1C2] and
E[A2C1]. Considering E[A1B2] gives

E[A1B2] = E
[
Y1(L̂(2)(X2)− π(L̂(2)))

]
= E

[
E
[
Y1(L̂(2)(X2)− π(L̂(2))) | X1, X3, . . . , Xn

]]
= E

[
Y1E

[
(L̂(2)(X2)− π(L̂(2))) | X1, X3, . . . , Xn

]]
= 0.

Due to similar reasoning, E[B1A2] = 0, E[B1C2] = 0 and E[C1B2] = 0. For E[C1C2],
we have

E[C1C2] = E
[
(f̂ (1,2)
n (X1)− π(f̂ (1,2)

n ))(f̂ (1,2)
n (X2)− π(f̂ (1,2)

n ))
]

= E
[
E
[
(f̂ (1,2)
n (X1)− π(f̂ (1,2)

n ))(f̂ (1,2)
n (X2)− π(f̂ (1,2)

n )) | X3, . . . , Xn

]]
= 0.
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Therefore, we get

E[{Y1 − Yn,1}{Y2 − Yn,2}] = E[{L̂(1)(X1)− π(L̂(1))}{L̂(2)(X2)− π(L̂(2))}].
The use of Cauchy-Schwarz inequality gives ‖(A−B)(C −D)‖1 ≤ ‖A−B‖2‖C −D‖2
and the fact that B and D are conditional expectation of A and C, respectively, leads
to ‖(A−B)(C −D)‖1 ≤ ‖A‖2‖C‖2 = ‖A‖22. As a result,

E[{Y1 − Yn,1}{Y2 − Yn,2}] ≤ E
[
L̂(1)(X1)2

]
.

Using the Lipschitz property, we obtain

|L̂(1)(x)| = |f(X2)− f(N (1,2)(x))|1
S
(1)
n−1,2

(x)

= |f(N (1)(x))− f(N (1,2)(x))|1
S
(1)
n−1,2

(x)

≤ L‖N (1)(x)−N (1,2)(x)‖1
S
(1)
n−1,2

(x)

≤ 2L‖x−N (1,2)(x)‖1
S
(1)
n−1,2

(x)

= 2L‖x−N (1,2)(x)‖1B(x,τ̂ (1)(x))(X2)

≤ 2L‖x−N (1,2)(x)‖1B(x,τ̂ (1,2)(x))(X2)

Hence

E
[
|L̂(1)(x)|2 | X3, . . . , Xn

]
≤ 4L2‖x−N (1,2)(x)‖2π{B(x, τ̂ (1,2)(x))}.

Moreover,

π{B(x, τ̂ (1,2)(x))} =

∫
B(x,τ̂ (1,2)(x))

π(z)dz

≤ U
∫
B(x,τ̂ (1,2)(x))∩X

dz

≤ Uτ̂ (1,2)(x)dVd

Using that τ̂ (1,2)(x) = ‖x−N (1,2)(x)‖, we obtain that

E
[
|L̂(1)(x)|2 | X3, . . . , Xn

]
≤ 4UVdL

2‖x−N (1,2)(x)‖2+d.

Applying to the term

{Y1 − Yn,1}2 =
{
f(X1)− f̂ (1)

n (X1)− (π(f)− π(f̂ (1)
n ))

}2

the same reasoning as above with A = C = f(X1) − f̂ (1)
n (X1) and B = D = π(f) −

π(f̂
(1)
n ), we get

E[{Y1 − Yn,1}2] ≤ E
[{
f(X1)− f̂ (1)

n (X1)
}2]

.

All this together gives

E
[
|π̂(NN−loo)
n (f)− π(f)|2

]
≤ n−1E

[
|f(X1)− f̂ (1)(X1)|2

]
+ 4UVdL

2E
[
‖X1 −N (1,2)(X1)‖2+d

]
= n−1E

[
|f(X1)− f(N (1)(X1))|2

]
+ 4UVdL

2E
[
‖X1 −N (1,2)(X1)‖2+d

]
≤ L2n−1E

[
‖X1 −N (1)(X1)‖2

]
+ 4UVdL

2E
[
‖X1 −N (1,2)(X1)‖2+d

]
= L2n−1E[τ̂n−1(X1)2] + 4UVdL

2E[τ̂n−2(X1)2+d].
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Applying Lemma 4.8 to E[τ̂n−1(X1)2] and to E[τ̂n−2(X1)2+d], we get

E[τ̂n−1(X1)2] ≤
(

(n− 1)Vdbc
)−2/d

Γ(2/d+ 1)

and
E[τ̂n−2(X1)2+d] ≤

(
(n− 2)Vdbc

)−2/d−1
Γ(2/d+ 2).

Therefore,

E
[
|π̂(NN−loo)
n (f)− π(f)|2

]
≤ L2n−1

(
(n− 1)Vdbc

)−2/d
Γ(2/d+ 1)

+ 4UVdL
2
(

(n− 2)Vdbc
)−2/d−1

Γ(2/d+ 2).

Rearranging the terms gives

E
[∣∣∣π̂(NN−loo)

n (f)− π(f)
∣∣∣2]

≤ L2n−1
(

(n− 1)Vdbc
)−2/d

Γ(2/d+ 1) + 4UVdL
2
(

(n− 2)Vdbc
)−2/d−1

Γ(2/d+ 2)

≤ L2n−1
(

(n− 1)Vdbc
)−2/d

Γ(2/d+ 1) + 4(U/bc)L2
(

(n− 2)Vdbc
)−2/d

(n− 2)−1Γ(2/d+ 2)

≤ L2(n− 2)−1
(

(n− 2)Vdbc
)−2/d [

Γ(2/d+ 1) + 4(U/bc)Γ(2/d+ 2)
]

Since d ≥ 1, it holds that both (2/d + 1) and (2/d + 2) are in [1, 4]. Using that
1 ≤ Γ(x) ≤ 6 whenever 1 ≤ x ≤ 4 we first get

E
[∣∣∣π̂(NN−loo)

n (f)− π(f)
∣∣∣2] ≤ L2(n− 2)−1

(
(n− 2)Vdbc

)−2/d
6(1 + 4(U/bc)).

Then, since n ≥ 4 we have n− 2 ≥ n/2 and obtain

E
[∣∣∣π̂(NN−loo)

n (f)− π(f)
∣∣∣2] ≤ 48L2n−1

(
nVdbc

)−2/d
(U/bc)

[
(bc/U) + 4

]
.

Using (bc/U) ≤ 1 finally gives the stated bound.

Proof of Proposition 4.18

The proof follows from combining Proposition 4.17 and the next inequality: for n ≥ 4,
we have

E


∣∣∣∣∣∣ 1n

n∑
i=1

π(f̂ (i)
n )− π(f̂n)

∣∣∣∣∣∣
2
 ≤ 516L2(Vdbc)

−2/dn−1−2/d, (4.7)

whcih is established below. By Minkowski’s inequality, we have(
E
[∣∣∣π̂(NN)

n (f)− π(f)
∣∣∣2])1/2

≤
(
E
[∣∣∣π̂(NN)

n (f)− π̂(NN−loo)
n (f)

∣∣∣2])1/2

+

(
E
[∣∣∣π̂(NN−loo)

n (f)− π(f)
∣∣∣2])1/2

.
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Conclude by using the bounds of Proposition 4.17 and (4.7) along with
√

240 ≤ 16;
√

516 ≤
23.

Proof of (4.7). Using the fact that, for f̂ (i)
n and f̂n(x) coincides outside Sn,i and that

f̂n(x) = g(Xi) for x ∈ S◦n,i, we have

π(f̂ (i)
n )− π(f̂n) = π(f̂ (i)

n − f̂n)

= π((f̂ (i)
n − f̂n)1S◦n,i)

= π((f̂ (i)
n − f(Xi))1S◦n,i).

Denote Rn =

∣∣∣∣ 1
n

∑n
i=1

[
π(f̂

(i)
n )− π(f̂n)

]∣∣∣∣. Then using the triangle inequality and the

definition of f̂ gives

Rn ≤
1

n

n∑
i=1

∣∣∣π(f̂ (i)
n )− π(f̂n)

∣∣∣
=

1

n

n∑
i=1

∣∣∣π((f̂ (i)
n − f(Xi))1S◦n,i)

∣∣∣
≤ 1

n

n∑
i=1

∫
S◦n,i

∣∣∣f̂ (i)
n (x)− f(Xi)

∣∣∣dπ(x)

=
1

n

n∑
i=1

∫
S◦n,i

∣∣∣f(N̂ (i)
n (x))− f(Xi)

∣∣∣dπ(x).

And because g is L-Lipschitz, one has

Rn ≤
L

n

n∑
i=1

∫
S◦n,i

‖N̂ (i)
n (x)−Xi‖dπ(x)

≤ L

n

n∑
i=1

∫
S◦n,i

(
‖N̂ (i)

n (x)− x‖+ ‖x−Xi‖
)

dπ(x)

=
L

n

n∑
i=1

∫
S◦n,i

[
τ̂ (i)
n (x) + τ̂n(x)

]
dπ(x).

Concerning R2
n, one can use Jensen’s inequality to obtain

R2
n =

∣∣∣∣∣∣ 1n
n∑
i=1

[
π(f̂ (i)

n )− π(f̂n)
]∣∣∣∣∣∣

2

≤ 1

n

n∑
i=1

∣∣∣π(f̂ (i)
n )− π(f̂n)

∣∣∣2
≤ L2

n

n∑
i=1

∫
S◦n,i

(
‖N̂ (i)

n (x)− x‖+ ‖x−Xi‖
)2

dπ(x)

≤ 2L2

n

n∑
i=1

∫
S◦n,i

(
‖N̂ (i)

n (x)− x‖2 + ‖x−Xi‖2
)

dπ(x).
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For x ∈ S◦n,i, the nearest neighbor in {X1, . . . , Xn} is Xi. Hence, for x ∈ S◦n,i,

τ̂ (i)
n (x) = τ̂n,2(x)

is the distance to the second nearest neighbor in {X1, . . . , Xn}. We get

Rn ≤
L

n

n∑
i=1

∫
Sn,i

[
τ̂n,2(x) + τ̂n(x)

]
dπ(x)

=
L

n

∫
X

[
τ̂n,2(x) + τ̂n(x)

]
dπ(x)

and

R2
n ≤

2L2

n

n∑
i=1

∫
Sn,i

[
τ̂n,2(x)2 + τ̂n(x)2

]
dπ(x)

=
2L2

n

∫
X

[
τ̂n,2(x)2 + τ̂n(x)2

]
dπ(x).

Consequently, by Lemma 4.8,

E[Rn] ≤ L

n

∫
X
E
[
τ̂n,2(x) + τ̂n(x)

]
dπ(x)

≤ L

n

(
sup
x∈X

E
[
τ̂n,2(x)

]
+ sup
x∈X

E
[
τ̂n(x)

])

≤ L

n

(
22/d+1Γ(1/d+ 1)(nVdbc/2)−1/d + (nVdbc)

−1/dΓ(1/d+ 1)
)

= (23/d+1 + 1)L(Vdbc)
−1/dΓ(1/d+ 1)n−1−1/d

and

E[R2
n] ≤ 2L2

n

∫
X
E
[
τ̂n,2(x)2 + τ̂n(x)2

]
dπ(x)

≤ 2L2

n

(
sup
x∈X

E
[
τ̂n,2(x)2

]
+ sup
x∈X

E
[
τ̂n(x)2

])

≤ 2L2

n

(
24/d+1Γ(2/d+ 1)(nVdbc/2)−2/d + (nVdbc)

−2/dΓ(2/d+ 1)
)

= 2(26/d+1 + 1)L2(Vdbc)
−2/dΓ(2/d+ 1)n−1−2/d

Now use that 1 ≤ Γ(x) ≤ 2 for 1 ≤ x ≤ 3 and (26/d+1 + 1) ≤ 27 + 1 = 129 to obtain
the stated bound.







Part III

Stochastic Approximation:
Conditioning, Adaptive Sampling

"If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is."

(John von Neumann, 1st meeting of the Association for Computing Machinery, 1947)
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In this chapter, we investigate a general class of stochastic gradient descent (SGD) al-
gorithms, called conditioned SGD, based on a preconditioning of the gradient direction.
Using a discrete-time approach with martingale tools, we establish the weak convergence
of the rescaled sequence of iterates for a broad class of conditioning matrices including
stochastic first-order and second-order methods. Almost sure convergence results, which
may be of independent interest, are also presented. When the conditioning matrix is an
estimate of the inverse Hessian, the algorithm is asymptotically optimal. For the sake
of completeness, we provide a practical procedure to achieve this minimum variance.

5.1 Introduction

Consider some classical unconstrained optimization problem of the following form:
minθ∈Rd{F (θ) = Eξ[f(θ, ξ)]}, where f is a loss function and ξ is a random variable. This
key methodological problem, known under the name of stochastic programming (Shapiro
et al., 2014), includes many flagship machine learning applications such as empirical risk
minimization (Bottou et al., 2018), adaptive importance sampling (Delyon and Portier,
2018) and reinforcement learning (Sutton and Barto, 2018). When F is differentiable,
a common appproach is to rely on first-order methods. However, in many scenarios
and particularly in large-scale learning, the gradient of F may be hard to evaluate or
even intractable. Instead, a random unbiased estimate of the gradient is available at
a cheap computing cost and the state-of-the-art algorithm, stochastic gradient descent
(SGD), just moves along this estimate at each iteration. It is an iterative algorithm,
simple and computationally fast, but its convergence towards the optimum is gener-
ally slow. Conditioned SGD, which consists in multiplying the gradient estimate by
some conditioning matrix at each iteration, can lead to better performance as shown in
several recent studies ranging from natural gradient (Amari, 1998; Kakade, 2002) and
stochastic second-order methods with quasi-Newton (Byrd et al., 2016) and (L)-BFGS
methods (Liu and Nocedal, 1989) to diagonal scalings and adaptive methods such as
AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), Adam (Kingma and
Ba, 2014) and AMSGrad (Reddi et al., 2018).
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Conditioned SGD generalizes standard SGD by adding a conditioning step to refine the
descent direction. Starting from θ0 ∈ Rd, the algorithm of interest is defined by the
following iteration

θk+1 = θk − γk+1Ckg(θk, ξk+1), k ≥ 0,

where g(θk, ξk+1) is some unbiased gradient valued in Rd, Ck ∈ Rd×d is called condi-
tioning matrix and (γk)k≥1 is a decreasing learning rate sequence. Interestingly, the
optimal choice according to the asymptotic variance is the inverse of the Hessian mat-
rix at optimal point, i.e., Ck = ∇2F (θ?)−1; see (Benveniste et al., 2012, Chapter 3)
or Section 5.2.3 in this paper. With this matrix, the rate of convergence remains the
same and only the asymptotic variance can be reduced; e.g., Agarwal et al. (2009). An
important question, which is still open to the best of our knowledge, is whether the
optimal variance can be achieved by such an algorithm for non-convex objective F . We
show that the answer is positive under mild conditions on the matrix Ck.

Related work. Seminal works around standard SGD (Ck = Id) were initiated by
Robbins and Monro (1951) and Kiefer et al. (1952). Since then, a large literature
known as stochastic approximation, has developed. The almost sure convergence is
studied in Robbins and Siegmund (1971) and Bertsekas and Tsitsiklis (2000); rates of
convergence are investigated in Kushner and Huang (1979) and Pelletier (1998a); non-
asymptotic bounds are given in Moulines and Bach (2011). The asymptotic normality
can be obtained using two different approaches: a diffusion-based method is employed
in Pelletier (1998b) and Benaïm (1999) whereas martingale tools are used in Sacks
(1958) and Kushner and Clark (1978). We refer to Nevelson and Khas’minskĭı (1976);
Delyon (1996); Benveniste et al. (2012); Duflo (2013) for general textbooks on stochastic
approximation.

The aforementioned results do not apply directly to conditioned SGD because of the
presence of the matrix sequence (Ck)k≥0 involving an additional source of randomness
in the algorithm. Seminal papers dealing with the weak convergence of conditioned
SGD are Venter (1967) and Fabian (1968). Within a restrictive framework (univariate
case d = 1 and strong assumptions on the function F ), their results are encouraging
because the limiting variance of the procedure is shown to be smaller than the limiting
variance of standard SGD. Venter’s and Fabian’s results have then been extended to
more general situations (Fabian, 1973; Nevelson and Khas’minskĭı, 1976; Wei, 1987).
In Wei (1987), the framework is still restrictive not only because the random errors are
assumed to be independent and identically distributed but also because the objective
F must satisfy their assumption (4.10) which hardly extends to objectives other than
quadratic.

More recently, Bercu et al. (2020) have obtained the asymptotic normality as well as
the efficiency of certain conditioned SGD estimates in the particular case of logistic
regression. The previous approach has been generalized not long ago in Boyer and
Godichon-Baggioni (2020) where the use of the Woodbury matrix identity is promoted
to compute the Hessian inverse in the online setting. Several theoretical results, in-
cluding the weak convergence of conditioned SGD, are obtained for convex objective
functions. An alternative to conditioning, called averaging, developed by Polyak (1990)
and Polyak and Juditsky (1992), allows to recover the same asymptotic variance as con-
ditioned SGD. When dealing with convex objectives, the theory behind this averaging
technique is a well-studied topic (Moulines and Bach, 2011; Gadat and Panloup, 2017;
Dieuleveut et al., 2020; Zhu et al., 2021). However, it is inevitably associated with a
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large bias caused by poor initialization. Furthermore, conditioned SGD methods proved
to be the current state-of-the-art for training machine learning models (Zhang, 2004;
LeCun et al., 2012) and are implemented in widely used programming tools (Pedregosa
et al., 2011; Abadi et al., 2016).

Contributions. The main result of this chapter deals with the weak convergence of the
rescaled sequence of iterates. Interestingly, our asymptotic normality result consists of
the following continuity property: whenever the matrix sequence (Ck)k≥0 converges to
a matrix C and the iterates (θk)k≥0 converges to a minimizer θ?, the algorithm behaves
in the same way as an oracle version in which C would be used instead of Ck. We
stress that contrary to Boyer and Godichon-Baggioni (2020), no convexity assumption is
needed on the objective function and no rate of convergence is required on the sequence
(Ck)k≥0. This is important because, in most cases, deriving a convergence rate on
(Ck)k≥0 requires a specific convergence rate on the iterates (θk)k≥0 which, in general,
is unknown at this stage of the analysis. Another result of independent interest dealing
with the almost sure convergence of the gradients is also provided. Finally, for the
sake of completeness, we present practical ways to compute the conditioning matrix Ck
and show that the resulting procedure satisfies the high-level conditions of our main
Theorem. This yields a feasible algorithm which achieves minimum variance.

To obtain these results, instead of approximating the rescaled sequence of iterates by
a continuous diffusion (as for instance in Pelletier (1998b)), we rely on a discrete-time
approach where the recursion scheme is directly analyzed (as for instance in Delyon
(1996)). More precisely, the sequence of iterates is studied with the help of an auxili-
ary linear algorithm whose limiting distribution can be deduced from the central limit
theorem for martingale increments (Hall and Heyde, 1980). The limiting variance is
derived from a discrete time matrix-valued dynamical system algorithm. It corresponds
to the solution of a Lyapunov equation involving the matrix C. It allows a special choice
for C which guarantees an optimal variance. Finally, in order to examine the remaining
part, a particular recursion is identified. By studying it on a particular event, we show
that this remaining part is negligible.

Outline. Section 5.2 introduces the framework of standard SGD with asymptotic res-
ults. Section 5.3 is dedicated to conditioned SGD: it first presents popular optimization
methods that fall in the considered framework and then presents our main results,
namely the weak convergence and asymptotic optimality. Section 5.4 gathers practical
tools to meet the developed theoretical framework and Section 5.5 concludes the chapter
with a discussion of avenues for further research.

5.2 Mathematical background
In this section, the mathematical background of stochastic gradient descent (SGD)
methods is presented and illustrated with the help of some examples. Then, to motivate
the use of conditioning matrices, we present a known result from Pelletier (1998b) about
the weak convergence of SGD given the almost sure convergence of the iterates.

5.2.1 Problem setup
Consider the problem of finding a minimizer θ? ∈ Rd of a function F : Rd → R, that is,

θ? ∈ arg min
θ∈Rd

F (θ).
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In many scenarios and particularly in large scale learning, the gradient of F cannot
be fully computed and only a stochastic unbiased version of it is available. The SGD
algorithm moves the iterate along this direction. To increase the efficiency, the random
generators used to derive the unbiased gradients might evolve during the algorithm,
e.g., using the past iterations. To analyse such algorithms, we consider the following
probabilistic setting.

Definition 5.1. A stochastic algorithm is a sequence (θk)k≥0 of random variables
defined on a probability space (Ω,F ,P) and valued in Rd. Define (Fk)k≥0 as the nat-
ural σ-field associated to the stochastic algorithm (θk)k≥0, i.e., Fk = σ(θ0, θ1, . . . , θk),
k ≥ 0. A policy is a sequence of random probability measures (Pk)k≥0, each defined on
a measurable space (S,S) that are adapted to Fk.

Given a policy (Pk)k≥0 and a learning rates sequence (γk)k≥1 of positive numbers, the
SGD algorithm (Robbins and Monro, 1951) is defined by the update rule

θk+1 = θk − γk+1g(θk, ξk+1) with ξk+1 ∼ Pk, (5.1)

where g : Rd×S → Rd is called the gradient generator. Hence the policy (Pk)k≥0 is used
at each iteration to produce random gradients through the function g. Those gradients
are assumed to be unbiased.

Assumption 5.2 (Unbiased gradient). The gradient generator g : Rd×S → Rd is such
that for all θ ∈ Rd, g(θ, ·) is measurable, and we have:

∀k ≥ 0, E
[
g(θk, ξk+1)|Fk

]
= ∇F (θk).

We emphasize three important examples covered by the developed approach. In each
case, explicit ways to generate the stochastic gradient are provided.

Example 1. (Empirical Risk Minimization) Given some observed data z1, . . . , zn ∈ Rp
and a differentiable loss function ` : Rd × Rp → R, the objective function F ap-
proximates the true expected risk Ez[`(θ, z)] using its empirical counterpart F (θ) =
n−1

∑n
i=1 `(θ, zi). Classically, the gradient estimates at θk are given by the policy

g(θk, ξk+1) = ∇θ`(θk, ξk+1) with ξk+1 ∼
n∑
i=1

δzi/n.

Another one, more subtle, referred to as mini-batching (Gower et al., 2019), consists
in generating uniformly a set of nk samples (z1, . . . , znk) and computing the gradient
as the average n−1

k

∑nk
j=1∇θ`(θk, zj). Note that interestingly, we allow changes of the

minibatch size throughout the algorithm. Our framework also includes adaptive non-
uniform sampling (Papa et al., 2015) and survey sampling (Clémençon et al., 2019),
which use Pk =

∑n
i=1w

(k)
i δzi with Fk-adapted weights satisfying

∑n
i=1w

(k)
i = 1 for

each k ≥ 0.

Example 2. (Adaptive importance sampling) Given a target function f , which might
result from the likelihood of some data, and a parametric family of sampler {qθ : θ ∈ Θ},
the objective function is F (θ) = −

∫
log(qθ(y))f(y)dy. Other losses can be considered
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and we refer to Delyon and Portier (2018) for some details and further references about
adaptive importance sampling. A common choice in practice for the policy is given by

g(θk, ξk+1) = −∇θ log(qθk(ξk+1))
f(ξk+1)

qθk(ξk+1)
, ξk+1 ∼ qθk .

Example 3. (Policy-gradient methods) In reinforcement learning (Sutton and Barto,
2018), the goal of the agent is to find the best action-selection policy to maximize the
expected reward. Policy-gradient methods (Baxter and Bartlett, 2001; Williams, 1992)
use a parameterized policy {πθ : θ ∈ Θ} to optimize an expected reward function F
given by F (θ) = Eξ∼πθ [R(ξ)] where ξ is a trajectory including nature states and selected
actions. Using the policy gradient theorem, one has ∇F (θ) = Eξ∼πθ

[
R(ξ)∇θ log πθ(ξ)

]
,

leading to the REINFORCE algorithm (Williams, 1992) given by

g(θk, ξk+1) = R(ξk+1)∇θ log πθk(ξk+1), ξk+1 ∼ πθk .

5.2.2 Weak convergence of SGD

This section is related to the weak convergence property of the normalized sequence of
iterates (θk − θ?)/

√
γk. The working assumptions include the almost sure convergence

of the sequence of iterates (θk)k≥0 towards a stationary point θ?. Note that, given
Assumptions 5.2 and 5.3, there exist many criteria on the objective function that give
such almost sure convergence. For these results, we refer to Bertsekas and Tsitsiklis
(2000); Benveniste et al. (2012); Duflo (2013). In addition to this high-level assumption
of almost sure convergence, we require the following classical assumptions. Let S++

d (R)
denote the space of real symmetric positive definite matrices and define for all k ≥ 0,

wk+1 = ∇F (θk)− g(θk, ξk+1)

Γk = E
[
wk+1w

>
k+1|Fk

]
.

Assumption 5.3 (Learning rates). The sequence of step-size is γk = αk−β with β ∈
(1/2, 1].

Assumption 5.4 (Hessian). The Hessian matrix at stationary point is positive definite,
i.e., H = ∇2F (θ?) ∈ S++

d (R) and the mapping θ 7→ ∇2F (θ) is continuous at θ?.

Assumption 5.5 (Covariance matrix). There exists Γ ∈ S++
d (R) such that almost

surely Γk
k→+∞−→ Γ.

Assumption 5.6 (Lyapunov bound). There exist δ, ε > 0 such that:

sup
k≥0

E[‖wk+1‖2+δ
2 |Fk]1{‖θk−θ?‖≤ε} <∞ a.s.

Assumption 5.5 is needed to identify the limiting distribution while Assumption 5.6 is a
stability condition, often referred to as the Lyapunov condition, required for tightness.
The following result can be either derived from (Pelletier, 1998b, Theorem 1) or as a
direct corollary of our main result, Theorem 5.10, given in Section 5.3.2.
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Theorem 5.7 (Weak convergence of SGD). Let (θk)k≥0 be obtained by the SGD rule
(5.1). Suppose that Assumptions 5.2, 5.3, 5.4, 5.5, 5.6 are fulfilled and that θk → θ?

almost surely. If moreover, (H − ζI) is positive definite with ζ = 1{β=1}/2α, it holds
that

1√
γk

(θk − θ?) N (0,Σ), as k →∞,

where the covariance matrix Σ satisfies the following Lyapunov equation

(H − ζId)Σ + Σ(H − ζId)> = Γ.

Several remarks are to be explored. Since Γ and (H− ζI) are positive definite matrices,
there exists a unique solution Σ to the Lyapunov equation (H−ζId)Σ+Σ(H−ζId)> = Γ
given by Σ =

∫ +∞
0 exp[−t(H − ζId)]Γ exp[−t(H − ζId)>]dt. Second, the previous result

can be expressed as kβ/2(θk − θ?)  N (0, αΣ). Hence, the fastest rate of convergence
is obtained when β = 1 for which we recover the classical 1/

√
k-rate of a Monte-Carlo

estimate. In this case, the coefficient α should be chosen large enough to ensure the
convergence through the condition H − Id/(2α) � 0, but also such that the covariance
matrix αΣ is small. The choice of α is discussed in the next section and should be
replaced with a matrix gain.

5.2.3 Minimum variance with deterministic conditioning

To motivate the use of conditioning matrices in SGD, we raise the question of variance
optimality when γk decreases as 1/k, so the rate of convergence in Theorem 5.7 is
optimal, and the scalar gain α is replaced by a conditioning matrix C ∈ S++

d (R). That
is, we consider the iteration scheme, for k ≥ 1,

θk+1 = θk −
(

C

k + 1

)
g(θk, ξk+1). (5.2)

As a corollary of Theorem 5.10 (given below) or inferring from the results in Pelletier
(1998b), we can derive the following result. Define CH as the set of real symmetric
positive definite matrices C ∈ S++

d (R) such that all the eigenvalues of the matrix
CH − (I/2) are positive.

Proposition 5.8. Let (θk)k≥0 be obtained by (5.2) with C ∈ CH . Suppose that As-
sumptions 5.2, 5.4, 5.5, 5.6 are fulfilled and that θk → θ? almost surely. Then we
have

√
k(θk − θ?) N (0,ΣC), as k →∞,

where ΣC satisfies:

(CH − Id/2)ΣC + ΣC(CH − Id/2)> = CΓC>.

The best conditioning matrix C that could be chosen regarding the asymptotic variance
is specified in the next proposition whose proof is given in Section 5.A.2.

Proposition 5.9 (Optimal choice). The choice C? = H−1 is optimal in the sense that
ΣC∗ � ΣC for all C ∈ CH . Moreover, we have ΣC? = H−1ΓH−1.



CHAPTER 5. ASYMPTOTIC ANALYSIS OF CONDITIONED STOCHASTIC
GRADIENT DESCENT 152

In deterministic gradient descent, it is well-known that the rate of convergence is im-
proved when the gradient is multiplied by the inverse of the Hessian matrix, referred
to as the Newton algorithm, whose convergence rate is quadratic, instead of linear for
gradient descent. Due to Proposition 5.9 where we see that the smallest limiting vari-
ance is nonzero, a faster rate of convergence cannot be expected with conditioned SGD.
However, an improvement in the limiting variance is still possible.

5.3 The asymptotics of conditioned stochastic gradient
descent

This Section first presents practical optimization schemes that fall in the framework of
conditioned SGD. Then it contains our main results, namely the weak convergence and
asymptotic optimality. Another result of independent interest dealing with the almost
sure convergence of the gradients and the iterates is also provided.

5.3.1 Framework and Examples

We introduce the general framework of conditioned SGD as an extension of the standard
SGD presented in Section 6.2. It is defined by the following update rule, for k ≥ 0,

θk+1 = θk − γk+1Ckg(θk, ξk+1), (5.3)

where the matrix Ck ∈ S++
d (R), the conditioning matrix, is a Fk-measurable real sym-

metric positive definite matrix so that the search direction always points to a descent
direction. In convex optimization, inverse of the Hessian is a popular choice but (1) it
may be hard to compute, (2) it is not always positive definite and (3) it may increase
the noise of SGD especially when the Hessian is ill-conditioned.

Quasi-Newton. These methods build approximations of the Hessian Ck ≈ ∇2f(θk)
−1

with gradient-only information, and are applicable for convex and nonconvex problems.
For scalability issue, variants with limited memory are the most used in practice. Fol-
lowing Newton’s method idea with the secant equation, the update rule is based on pairs
(sk, yk) tracking the differences of iterates and stochastic gradients, i.e., sk = θk+1− θk
and yk = g(θk+1, ξk+1)− g(θk, ξk+1). Let ρk = 1/(s>k yk) then the Hessian updates are

Ck+1 = (I − ρkyks>k )>Ck(I − ρkyks>k ) + ρksks
>
k .

In the deterministic setting, the BFGS update formula above is well-defined as long
as s>k yk > 0. Such condition preserves positive definite approximations and may be
obtained in the stochastic setting by replacing the Hessian matrix with a Gauss-Newton
approximation and using regularization.

Adaptive methods and Diagonal scalings. These methods adapt locally to the
structure of the optimization problem by setting Ck as a function of past stochastic
gradients. General adaptive methods differ in the construction of the conditioning mat-
rix and whether or not they add a momentum term. Using different representations
such as dense or sparse conditioners also modify the properties of the underlying al-
gorithm. For instance, the optimizers Adam and RMSProp maintain an exponential
moving average of past stochastic gradients with a factor τ ∈ (0, 1) but fail to guaran-
tee Ck+1 � Ck. Such behaviour can lead to large fluctuations and prevent convergence
of the iterates. Instead, AdaGrad and AMSGrad ensure the monotonicity Ck+1 � Ck.
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Denote by gk = g(θk, ξk+1) a gradient estimate and m ∈ [0, 1) a momentum parameter.
General adaptive gradient methods are defined by

θk+1 = θk − γk+1Ckĝk, ĝk = mĝk−1 + (1−m)gk.

Different optimizers are summarized in Table 5.1 below. They all rely on a gradient
matrix Gk which accumulates the information of stochastic gradients. The conditioning
matrix is equal to Ck = G

−1/2
k except for AMSGrad which uses Ck = max{Ck−1;G

−1/2
k }.

Starting from G0 = δI with δ > 0, Gk+1 is updated either in a dense or sparse (diagonal)
manner or using an exponential moving average.

Optimizer Gradient matrix Gk+1 m

AdaFull Gk + gkg
>
k 0

AdaNorm Gk + ‖gk‖22 0

AdaDiag Gk + diag(gkg
>
k ) 0

RMSProp τGk + (1− τ)diag(gkg
>
k ) 0

Adam [τGk + (1− τ)diag(gkg
>
k )]/(1− τk) m

AMSGrad [τGk + (1− τ)diag(gkg
>
k )]/(1− τk) m

Table 5.1 – Adaptive Gradient Methods.

A common assumption made in the literature of adaptive methods is that conditioning
matrices are well-behaved in the sense that their eigenvalues are bounded in a fixed
interval. This property is easy to check for diagonal matrices and can always be imple-
mented in practice using projection.

5.3.2 Main result

Similarly to the weak convergence of the SGD iterates, it is interesting to search for an
appropriate rescaled process to obtain some convergence rate and asymptotic normality
results. In fact the only additional assumption needed, compared to SGD, is the almost
sure convergence of the sequence (Ck)k≥0. This makes Theorem 5.7 a particular case of
the following Theorem which is the main result of the paper.

Theorem 5.10 (Weak convergence of conditioned SGD). Let (θk)k≥0 be obtained by
conditioned SGD (6.3). Suppose that Assumptions 5.2, 5.3, 5.4, 5.5, 5.6 are fulfilled
and that θk → θ? almost surely. If moreover, Ck → C ∈ S++

d (R) almost surely and all
the eigenvalues of (CH − ζI) are positive with ζ = 1{β=1}/2α, it holds that

1√
γk

(θk − θ?) N (0,ΣC), as k →∞,

where ΣC satisfies: (
CH − ζId

)
ΣC + ΣC

(
CH − ζId

)>
= CΓC>.

Sketch of the proof. In a similar spirit as in Delyon (1996), the proof is based on the
Taylor approximation ∇F (θk) = ∇F (θ?) + H(θk − θ?) + o(θk − θ?) ' H(θk − θ?) and
relies on the introduction of a linear stochastic algorithm. Avoiding some technicalities
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related to the introduction of some event, we introduce the matrix K = CH along with
the iteration

∆̃k+1 = ∆̃k − γk+1K∆̃k + γk+1Ckwk+1, k ≥ 1,

and prove that the difference (θk − θ?)− ∆̃k is negligible. The analysis of ∆̃k is carried
out with martingale tools where the limiting covariance is derived from a discrete time
matrix-valued dynamical system algorithm.

Comparison with previous works. Theorem 5.10 stated above is comparable to
Theorem 1 given in Pelletier (1998b). However, our result on the weak convergence
cannot be recovered from the one of Pelletier (1998b) due to their Assumption (A1.2)
about convergence rates. Indeed, this assumption would require that the sequence
(Ck)k≥0 converges towards C faster than √γk. This condition is either hardly meet in
practice or difficult to check. Unlike this prior work, our result only requires the almost
sure convergence of the sequence (Ck)k≥0.

In a more restrictive setting of convex objective and online learning framework, i.e. in
which data becomes available in a sequential order, another way to obtain the weak
convergence of the rescaled sequence of iterates (θk − θ?)/

√
γk is to rely on the results

of Boyer and Godichon-Baggioni (2020). However, once again, their work rely on a
particular convergence rate for the matrix sequence (Ck)k≥0. This implies the derivation
of an additional result on the almost sure convergence rate of the iterates. To overcome
all these issues, we show in Section 5.4 that our conditions on the matrices Ck are easily
satisfied in common situations.

5.3.3 Asymptotic optimality of Conditioned SGD

Another remarkable result, which directly follows from the Theorem 5.10 is now stated
as a corollary.

Corollary 5.11 (Asymptotic optimality). Under the assumptions of Theorem 5.10, if
γk = 1/k and C = H−1, then

√
k(θk − θ?) N (0, H−1ΓH−1), as k →∞.

Moreover, let (Z1, . . . , Zd) ∼ N (0, Id) and (λk)k=1,...,d be the eigenvalues of the matrix
H−1/2ΓH−1/2, we have the convergence in distribution

k(F (θk)− F (θ?)) 
d∑

k=1

λkZ
2
k , as k →∞.

The previous result shows the success of the proposed approach as the asymptotic
variance obtained is the optimal one. It provides the user a practical choice for the
sequence of rate, γk = 1/k and also removes the assumption that 2αH � Id which is
usually needed in SGD (see Theorem 5.7). Concerning the almost sure convergence
of the conditioning matrices, we provide in Section 5.4 an explicit way to ensure that
Ck → H−1. The above statement also provides insights about the convergence speed.
It first claims that the convergence rate of F (θk) towards the optimum F (θ?), in 1/k,
is faster than the convergence rate of the iterates, in 1/

√
k. Another important feature,

which is a consequence of Proposition 5.9, is that the eigenvalues (λk)k=1,...,d that appear
in the limiting distribution are the smallest ones among all the other possible version
of conditioned SGD (defined by the conditioning matrix C).
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5.3.4 Convergence of iterates (θk) of Conditioned SGD

In order to apply both Theorem 5.10 and Corollary 5.11, it remains to check the almost
sure convergence of the iterates (θk)k≥0 of conditioned SGD. Note that, in a general
non-convex setting, the iterates of stochastic first-order methods can only reach local
optima in the sense of stationary points, i.e. the iterates are expected to converge
to the following set S = {θ ∈ Rd : ∇F (θ) = 0}. Going in this direction, we first
prove the almost sure convergence of the gradients towards zero for general conditioned
SGD methods under mild assumptions. This theoretical result may be of independent
interest. Then, under an identifiability condition on S, one may uniquely identify a limit
point θ? and consider the event {θk → θ?} which is needed for the weak convergence
results. The following analysis is based on classical assumptions which are used in the
literature to obtain the convergence of standard SGD.

Assumption 5.12 (L-smooth). The objective function F : Rd → R is continuously
differentiable and the gradient function ∇F : Rd → Rd is Lipschitz continuous with
Lipschitz constant L > 0,

∀θ, η ∈ Rd, ‖∇F (θ)−∇F (η)‖2 ≤ L‖θ − η‖2.

Assumption 5.13 (Lower bound). There exists F ? ∈ R such that: ∀θ ∈ Rd, F ? ≤ F (θ).

To handle the stochastic noise associated to the gradient estimates, we consider a relat-
ively weak growth condition, related to the notion of expected smoothness as introduced
in Gower et al. (2019) (see also Gazagnadou et al. (2019); Gower et al. (2021)). In
particular, we extend the condition of Gower et al. (2019) to our general context in
which the sampling distributions are allowed to change along the algorithm.

Assumption 5.14 (Growth condition). With probability 1, there exist 0 ≤ L, σ2 <∞
such that for all θ ∈ Rd, k ∈ N,

E
[
‖g(θ, ξk+1)‖22|Fk

]
≤ 2L(F (θ)− F ?) + σ2.

This almost-sure bound on the stochastic noise E
[
‖g(θ, ξk)‖22|Fk−1

]
is the key to prove

the almost sure convergence of the conditioned SGD algorithm. This weak growth
condition on the stochastic noise is general and can be achieved in practice with a
general Lemma available in Section 5.A.3.

Note that Assumption 6.13, often referred to as a growth condition, is mild since it
allows the noise to be large when the iterate is far away from the optimal point. In that
aspect, it contrasts with uniform bounds of the form E

[
‖g(θk, ξk+1)‖22|Fk

]
≤ σ2 for some

deterministic σ2 > 0 (see Nemirovski et al. (2009); Nemirovski and Yudin (1983); Shalev-
Shwartz et al. (2011)). Observe that such uniform bound is recovered by taking L = 0
in Assumption 6.13 but cannot hold when the objective function F is strongly convex
(Nguyen et al., 2018). Besides, fast convergence rates have been derived in Schmidt and
Roux (2013) under the strong-growth condition: E[‖g(θ, ξk+1)‖22|Fk] ≤M‖∇F (θ)‖22 for
some M > 0. Similarly to our growth condition, Bertsekas and Tsitsiklis (2000) and
Bottou et al. (2018) performed an analysis under the condition E[‖g(θ, ξk+1)‖22|Fk] ≤
M‖∇F (θ)‖22+σ2 forM,σ2 > 0. Under Assumptions 6.11 and 5.13, we have ‖∇F (θ)‖22 ≤
2L
(
F (θ)− F (θ?)

)
(Gower et al., 2019, Proposition A.1) so our growth condition is less



CHAPTER 5. ASYMPTOTIC ANALYSIS OF CONDITIONED STOCHASTIC
GRADIENT DESCENT 156

restrictive. If F satisfies the Polyak-Lojasiewicz condition (Karimi et al., 2016), then
our growth condition becomes a bit stronger. Another weak growth condition has been
used for a non-asymptotic study in Moulines and Bach (2011).

The success of the proposed approach relies on the following condition which may be
seen as an extended Robbins-Monro condition. Such condition guarantees a suitable
control on the eigenvalues of the conditioning matrices.

Assumption 5.15 (Eigenvalues and learning rates). Let (µk)k≥1 and (νk)k≥1 be such
that:

∀k ≥ 1, µkId � Ck−1 � νkId.

The sequences (γk)k≥1, (µk)k≥1, (νk)k≥1 are positive and satisfy
∑

k≥1 γkνk = +∞,∑
k≥1(γkνk)

2 < +∞ and lim supk νk/µk <∞ a.s.

Observe that the last condition deals with the ratio (νk/µk) which may be seen as
a conditioned number and ensures that the matrices Ck are well-conditioned. The
following Theorem reveals that all these assumptions are sufficient to ensure the almost
sure convergence of the gradients of conditioned SGD.

Theorem 5.16 (Almost sure convergence). Suppose that Assumptions 5.2, 6.11, 5.13,
6.13, 5.15 are fulfilled. Then the sequence of iterates (θk)k≥0 obtained by the conditioned
SGD (6.3) satisfies ∇F (θk)→ 0 as k →∞ almost surely.

Other convergence results concerning the sequence of iterates towards global minimizers
may be obtained by considering stronger assumptions such as convexity or that F is
coercive and the level sets of stationary point S∩{θ, F (θ) = y} are locally finite for every
y ∈ Rd (see Gadat et al. (2018)). In our analysis, the proof of Theorem 5.16 reveals
that θk+1− θk → 0 in L2 and almost surely. Therefore, as soon as the stationary points
are isolated, i.e. the objective function does not present any plateau, the sequence of
iterates will converge towards a unique stationary point θ? ∈ Rd. This result is stated
in the next Corollary.

Corollary 5.17 (Almost sure convergence). Under the assumptions of Theorem 5.16,
assume that F is coercive and let (θk)k≥0 be the sequence of iterates obtained by the
conditioned SGD (6.3), then d(θk,S)→ 0 as k →∞. In particular, if S is a finite set,
(θk) converges to some θ? ∈ S.

5.4 Practical procedure

For the sake of completeness, the aim of this Section is to derive a feasible procedure
that achieves the optimal asymptotic variance described in Corollary 5.11. First, we
present a practical way to compute the conditioning matrix Ck and then we show that
the resulting algorithm satisfies the high-level conditions of Theorem 5.10, namely the
almost sure convergence of the iterates (θk)k≥0 to θ? and of the conditioning matrices
(Ck)k≥0 to H−1. This method is considered in a numerical illustration along with a
novel variant of AdaGrad.

Construction of the conditioning matrix Ck. Similarly to the unavailability of
exact gradients, one may not have access to values of the Hessian matrix but only
stochastic versions of it (see details in numerical experiments below). As a consequence,
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we consider the following framework which involves random Hessian matrices. As for
gradients, a policy (P ′k)k≥0 is used at each iteration to produce random Hessians through
H(θk, ξ

′
k+1) with ξ′k+1 ∼ P ′k. We work under the following property.

Assumption 5.18 (Unbiased and bounded Hessians). The Hessian generator H : Rd×
S → Rd×d is uniformly bounded around the minimizer and is such that for all θ ∈ Rd,
H(θ, ·) is measurable and

∀k ≥ 0, E
[
H(θk, ξ

′
k+1)|Fk

]
= ∇2F (θk).

An estimate of the Hessian matrix H = ∇2F (θ?) is now introduced as the weighted
average

Φk =
k∑
j=0

ωj,kH(θj , ξ
′
j+1) with

k∑
j=0

ωj,k = 1. (5.4)

The previous estimate has two advantages. First, thanks to averaging, the noise associ-
ated to each evaluationH(θj , ξ

′
j+1) will eventually vanished due to the sum of martingale

increments. Second, the weights ωj,k may help to give more importance to most recent
iterates. In the idea that θk lies near θ? eventually, it might be helpful to reduce the
bias when estimating H = ∇2F (θ?).

Proposition 5.19. Let (Φk)k≥0 be obtained by (5.4). Suppose that Assumptions 5.4
and 5.18 are fulfilled and that θk → θ? almost surely . If sup0≤j≤k ωj,k = O(1/k), then
we have Φk → H = ∇2F (θ?) almost surely.

A common choice is to take equal weights ωj,k = (k+1)−1. However, since the last iter-
ates are more likely to bring more relevant information through their Hessian estimates,
we advocate the use of adaptive weights of the form ωj,k ∝ exp(−η‖θj − θk‖1) with a
parameter η ≥ 0 that recovers equal weights with η = 0. These two weights sequences
satisfy the assumption of Proposition 5.19. They are considered in the numerical il-
lustration of the next Section. While inverting Φk would produce a simple estimate
of H−1, such an approach might result in a certain instability in practice caused by
large jumps towards wrong directions (large eigenvalues) or a too restrictive visit along
other components (vanishing eigenvalues). To overcome this issue, we rely on the fol-
lowing filter which clamps the eigenvalues of a symmetric matrix. For any symmetric
matrix S and two positive numbers 0 < a < b, denote by S[a, b] the associated matrix
where all the eigenvalues are clamped to [a, b], i.e., any eigenvalue λ of S is modified as
λ← max{a,min{λ, b}}.
Let (λ

(m)
k )k≥1 and (λ

(M)
k )k≥1 be two sequence of positive numbers such that λ(m)

k ≤ λ(M)
k

for all k ≥ 1. Define the matrices

∀k ∈ N, Ck =

(
Φk[(λ

(M)
k+1)−1, (λ

(m)
k+1)−1]

)−1

. (5.5)

Observe that such a definition guarantees two important properties. First, Ck is a real
symmetric positive definite matrix which satisfies the matrix inequality

λ
(m)
k+1Id � Ck � λ

(M)
k+1Id.
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Second, in virtue of Proposition 5.19, the matrix Φk converges almost surely to H so
that, as soon as the sequences (λ

(m)
k )k≥1 and (λ

(M)
k )k≥1 go to 0 and +∞ respectively,

the matrix Ck converges almost surely to H−1 (as recommended by Corollary 5.11).
Therefore, we obtain a feasible procedure leading to asymptotic optimality.

Theorem 5.20 (Asymptotic optimality of the iterates). Let (θk)k≥0 be obtained by
conditioned SGD (6.3) with γk = 1/k, Φk defined by (5.4), λ(m)

k → 0, λ
(M)
k → +∞ and

Ck given by (5.5). Suppose that Assumptions 5.2 to 5.15 are fulfilled and sup0≤j≤k ωj,k =
O(1/k). We have

√
k(θk − θ?) N (0, H−1ΓH−1), as k →∞.

This algorithm is theoretically asymptotically optimal. However in practice, adapt-
ive gradient methods described in Table 5.1 have become the workhorse for training
deep learning models as they take advantage of low rank-approximations and diag-
onal scalings. Interestingly, the conditioned matrices involved in these methods are
linked to gradient estimates and thus to covariance matrices Γk (see Assumption 5.5)
rather than the Hessian H. Indeed, since θ? ∈ S, we have for the limiting covariance
Γ = Eξ[g(θ?, ξ)g(θ?, ξ)>]. Consider a variant of AdaGrad which accumulates the aver-
age gradients Gk = δI + (1/k)

∑k
i=1 gig

>
i and Ck = G

−1/2
k . Averaging allows to anneal

the stochastic noise of the gradient estimate. By the law of large numbers, the limiting
matrix in our Theorem 5.10 will be C = (Γ + δI)−1/2. For illustrative purposes, this
novel method is considered in experiments with futher details in Appendix.

Numerical illustration. Consider the empirical risk minimization framework applied
to Generalized Linear Models. Given a data matrix X = (xi,j) ∈ Rn×d with labels
y ∈ Rn and a regularization parameter λ > 0, we are interested in minθ∈Rd{F (θ) =
(1/n)

∑n
i=1 fi(θ)}, fi(θ) = L(x>i θ, yi) + λΩ(θ), L : R × R → R is smooth loss function

and Ω : Rd → R+ is a smooth convex regularizer chosen as Tikhonov regularization
Ω(θ) = 1

2‖θ‖22. The gradient and Hessian of each component fi are given for all i =
1, . . . , n by

∇fi(θ) = L′(x>i θ, yi)xi + λθ

∇2fi(θ) = L′′(x>i θ, yi)xix>i + λId,

where L′(·, ·) and L′′(·, ·) are the first and second derivative of L(·, ·) with respect to
the first argument. As stated in Example 1 of Section 6.2, stochastic versions of both
the gradient and the Hessian of the objective F can be easily computed using only
a batch B ⊂ {1, . . . , n} of data and ∇BF (θ) =

∑
i∈B∇fi(θ)/|B| (resp. ∇2

BF (θ) =∑
i∈B∇2fi(θ)/|B|) for the gradient (resp. Hessian) estimate. Note that these random

generators meet Assumptions 5.2 and 5.18 as they produce unbiased estimates of the
gradient and the Hessian matrix respectively.

We focus on Ridge regression on simulated data with n = 10, 000 samples in dimensions
d ∈ {20; 100} with |B| = 16. Starting from the null vector θ0 = (0, . . . , 0) ∈ Rd,
we use optimal learning rate of the form γk = α/(k + k0) (Bottou et al., 2018) and
set λ(m)

k ≡ 0, λ
(M)
k = Λ

√
k where α, k0 and Λ are tuned using a grid search. The

means of the optimality ratio k 7→ [F (θk)− F (θ?)]/[F (θ0)− F (θ?)], obtained over 100
independent runs, are presented in Figure 5.1. The methods in competition are sgd :
standard stochastic gradient descent; sgd_avg : Polyak-averaging variant with a burn-in
period; csgd(η = 0) and csgd(η > 0): conditioned sgd methods with equal and adaptive
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weights where the matrix Φk is given by Equation (5.4); adafull_avg : The variant of
Adagrad presented above with an average for Gk instead of the cumulative sum provided
in the literature of Adagrad.
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Figure 5.1 – Ratio k 7→ [F (θk)−F (θ?)]/[F (θ0)−F (θ?)] for Ridge regression in dimension
d ∈ {20; 100}.

5.5 Conclusion and Discussion

We derived an asymptotic theory for conditioned stochastic gradient descent methods in
a general non-convex setting. We showed that, compared to standard SGD methods, the
only additional assumption required to obtain the weak convergence is the almost sure
convergence of the conditioning matrices. The use of appropriate conditioning matrices
with the help of Hessian estimates is the key to achieve asymptotic optimality in the
sense of minimal variance. While our study focuses on the weak convergence of the
rescaled sequence of iterates - an appropriate tool to deal with efficiency issues because
algorithms can be easily compared through their asymptotic variances - it would be
interesting to complement our asymptotic results with concentration inequalities and
non-asymptotic bounds. This research direction, left for future work, may be done at
the expense of additional assumptions, e.g., strong convexity of the objectve function
combined with bounded gradients.

From a practical standpoint, the approach of Section 5.4 may not be computationally
optimal as it requires eigenvalue decomposition. However, conditioned SGD methods
and especially stochastic second-order methods do not actually require the full com-
putation of a matrix decomposition but rely on matrix-vector products which may be
performed in O(d2) operations. Futhermore, using low-rank approximation with BFGS
algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) and its vari-
ant L-BFGS (Liu and Nocedal, 1989), those algorithms approximately invert Hessian
matrices in O(d) operations. More recently, this technique was extended to the online
learning framework (Schraudolph et al., 2007) and a purely stochastic setting (Moritz
et al., 2016). Similarly, the different adaptive optimizers presented in Section 5.3.1 are
concerned with both fast computations and high precision. Designing an efficient con-
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ditioned SGD algorithm involves a careful trade-off between the low-memory storage of
the scaling matrix representation Ck and the quality of its approximation of either the
inverse Hessian ∇2F (θ?)−1 or the information brought in by the underlying geometry
of the problem.

5.A Proofs

Appendix 5.A.1 presents the proof of the weak convergence of conditioned SGD. Ap-
pendix 5.A.2 gives additional propositions, namely the optimality of the inverse of the
Hessian matrix and the almost sure convergence of the matrix Φk built in Equation
(5.4). Appendix 5.A.3 deals with auxiliary results on the expected smoothness condi-
tion and its links with our growth condition. Appendix 5.A.4 is concerned about the
almost sure convergence (Theorem 5.16). Appendix 5.B gathers Robbins-Siegmund the-
orem and technical Lemmas that are useful for the analysis. For illustrative purposes,
Appendix 5.B.3 gathers numerical experiments.

5.A.1 Proof of the weak convergence (Theorem 5.10)

For any matrix A ∈ Rd×d, we denote by ‖A‖ = max‖u‖2=1 ‖Au‖2 the operator norm
associated to the Euclidian norm and by ρ(A) the spectral radius of A, i.e., ρ(A) =
max{|λ1|, . . . , |λn|} where λ1, . . . , λn are the eigenvalues ofA. We also introduce λmin(A) =
min{|λ1|, . . . , |λn|}. Note that when A is symmetric ‖A‖ = ρ(A) and recall that the
spectral radius is a (submultiplicative) norm on the real linear space of symmetric
matrices.

Structure of the proof.

In virtue of Assumption 5.6, there exist δ, ε > 0 such that almost surely

sup
k≥0

E[‖wk+1‖2+δ
2 |Fk]1{‖θk−θ?‖2≤ε} <∞. (5.6)

An important event in the following is

Ak = {‖θk − θ?‖2 ≤ ε, ‖Ck‖ < 2‖C‖, ‖Γk‖ ≤ 2‖Γ‖}.

By assumption, this event has probability going to 1.

Introduce the difference

∆k = θk − θ?,

and remark that ∆k is subjected to the iteration:

∆0 = θ0 − θ?,
∆k+1 = ∆k − γk+1Ck∇F (θk) + γk+1Ckwk+1, k ≥ 0,

with wk+1 = ∇F (θk)− g(θk, ξk+1). We have by assumption that Ck → C almost surely
and we can define K = limk→∞CkH = CH. The proof relies on the introduction of an
auxiliary stochastic algorithm which follows the iteration:

∆̃0 = θ0 − θ?

∆̃k+1 = ∆̃k − γk+1K∆̃k + γk+1Ckwk+11Ak , k ≥ 0
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The previous algorithm is a linear approximation of the algorithm that defines ∆k in
the sense that ∇F (θk) = ∇F (θ?) + H(θk − θ?) + o(θk − θ?) ' H(θk − θ?) has been
linearly expanded around θ?. Writing

∆k = ∆̃k + (∆k − ∆̃k),

and invoking the Slutsky lemma, the proof will be complete as soon as we obtain that

γ
−1/2
k ∆̃k  N (0,Σ), (5.7)

(∆k − ∆̃k) = oP(γ
1/2
k ). (5.8)

Denote by
√
H the positive square root of the real symmetric positive definite matrix

H and consider the transformation Θk =
√
H∆̃k which satisfies

Θ0 =
√
H∆̃0

Θk+1 = Θk − γk+1K̃Θk + γk+1

√
HCkwk+11Ak , k ≥ 1,

where K̃ =
√
HC
√
H ∈ S++

d (R) is a real symmetric positive definite matrix. The
sequence (Θk)k≥0 is easier to study than ∆̃k because contrary to K̃, the matrixK = CH
is not symmetric in general unless C and H commute. In view of Assumption 5.4, the
eigenvalues of K̃ are real and positive. Denote by λm (resp. λM ) the smallest (resp.
the largest) eigenvalue of K̃, i.e.,

λm = λmin(K̃), λM = λmax(K̃).

Because CH is similar to K̃, they share the same eigenvalues. Since by assumption,
the eigenvalues of (CH − ζId) are positive, we have 2αλm > 1{β=1}. For all k ≥ 1,
introduce the real symmetric matrix Ak = I − γkK̃. Observe that all these matrices
commute, i.e., for any i, j ≥ 0, we have AiAj = AjAi. For any k, n ≥ 0, denote the
matrices product {

Πn,k = An . . . Ak+1 if k < n
Πn,k = Id if k ≥ n,Πn = Πn,0

Since the matrices Ak commute, we have Π>n,k = Πn,k is also real symmetric.

Step 1. Proof of Equation (5.7).
The random process (Θk)k≥0 follows the recursion equation

Θk = AkΘk−1 + γk
√
HCk−1wk1Ak−1

.

We have by induction

Θn = ΠnΘ0 +
n∑
k=1

γkΠn,k

√
HCk−1wk1Ak−1

,

and the rescaled process is equal to

Θn√
γn

=
Πn√
γn

Θ0︸ ︷︷ ︸
initial error Yn

+

n∑
k=1

γk√
γn

Πn,k

√
HCk−1wk1Ak−1︸ ︷︷ ︸

sampling error Mn

.
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Bound on the initial error.
Define τn =

∑n
k=1 γk the partial sum of the learning rates. Since Πn is symmetric, we

have ρ(ΠnΘ0) ≤ ρ(Πn)‖Θ0‖2. In view of Lemma 5.29, since γk → 0, there exists j ≥ 1
such that

ρ(Πn) ≤ ρ(Πj) exp(−λm(τn − τj)).

Therefore, the initial error is bounded by

ρ(Yn) ≤ ρ(Πj) exp(λmτj)‖Θ0‖2 exp(dn) with dn = −λmτn − log(
√
γn).

Using Lemma 5.30, we can treat the two cases β < 1 and β = 1. On the one hand,
if β < 1 then we always have dn → −∞. On the other hand, if β = 1, we have
dn ∼

(
1
2 − γλm

)
log(n) and the condition 2αλm − 1 > 0 ensures dn → −∞. In both

cases we get exp(dn)→ 0 and the initial error vanishes to 0.

Weak convergence of the sampling error.
Consider the random process

Mn = γ−1/2
n

n∑
k=1

γkΠn,k

√
HCk−1wk1Ak−1

.

Note that θk, Ak and Ck are Fk-measurable. As a consequence, Mn is a sum of martin-
gale increments and we may rely on the following central limit theorem for martingale
arrays.

Theorem 5.21. (Hall and Heyde, 1980, Corollary 3.1) Let (Wn,i)1≤i≤n, n≥1 be a tri-
angular array of random vectors such that

E[Wn,i | Fi−1] = 0, for all 1 ≤ i ≤ n, (5.9)
n∑
i=1

E[Wn,iW
>
n,i | Fi−1]→ V ∗ ≥ 0, in probability, (5.10)

n∑
i=1

E[‖Wn,i‖21{‖Wn,i‖>ε} | Fi−1]→ 0, in probability, (5.11)

then,
∑n

i=1Wn,i  N (0, V ∗), as n→∞.

We start by verifying (5.10). Let Dk =
√
HCk−1Γk−1C

T
k−1

√
H1Ak−1

∈ Sd(R). The
quadratic variation of Mn is given by

Σn = γ−1
n

n∑
k=1

γ2
kΠn,kDkΠ

>
n,k.

First we can check that Σn is bounded. Using the triangle inequality and since the
operator norm is submultiplicative, we have

‖Σn‖ ≤ γ−1
n

n∑
k=1

γ2
k‖Πn,kDkΠ

T
n,k‖ ≤ γ−1

n

n∑
k=1

γ2
k‖Dk‖‖Πn,k‖2 = γ−1

n

n∑
k=1

γ2
k‖Dk‖ρ(Πn,k)

2,
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where we use in the last equality that Πn,k is real symmetric so ‖Πn,k‖ = ρ(Πn,k).
On the event Ak−1, the matrices Ck−1 and Γk−1 are bounded as ‖Ck−1‖ ≤ 2‖C‖ and
‖Γk−1‖ ≤ 2‖Γ‖ leading to the following bound for the matrix Dk,

‖Dk‖ = ‖
√
HCk−1Γk−1C

T
k−1

√
H1Ak−1

‖
≤ ‖H‖‖Γk−1‖‖Ck−1‖21Ak−1

≤ 8‖H‖‖Γ‖‖C‖2 = UD.

It follows that

‖Σn‖ ≤ UDγ−1
n

n∑
k=1

γ2
kρ(Πn,k)

2.

In view of Lemma 5.29, we shall split the summation from k = 1, . . . , j and k =
j + 1, . . . , n as

γ−1
n

n∑
k=1

γ2
kρ
(

Πn,k

)2
= γ−1

n

j∑
k=1

γ2
kρ
(

Πn,k

)2
+ γ−1

n

n∑
k=j+1

γ2
kρ
(

Πn,k

)2

≤ γ−1
n

j∑
k=1

γ2
kρ
(

Πn,k

)2

︸ ︷︷ ︸
an

+ γ−1
n

n∑
k=j+1

γ2
k

n∏
i=k+1

(1− λmγi)2

︸ ︷︷ ︸
bn

.

For the first term an, we have for all k = 1, . . . , j

ρ(Πn,k) ≤ ρ(Πn,j) ≤
n∏

i=j+1

(1− λmγi) ≤ exp(−λm(τn − τj)),

which implies since (γk) is decreasing with γ1 = α that

j∑
k=1

γ2
kρ
(

Πn,k

)2
≤ ατj exp(−2λm(τn − τj)).

Therefore, similarly to the initial error term, we get

an ≤ ατj exp(2λmτj)) exp(dn) with dn = −2λmτn − log(γn),

and the condition 2αλm − 1 > 0 ensures dn → −∞ so that an goes to 0 and is almost
surely bounded by Ua.

For the second term bn, we can apply Lemma 5.27 and need to distinguish between the
two cases:

• (β = 1) If γn = α/n, since 2αλm > 1, we can apply Lemma 5.27 (p = 1,m = 2, λ =
λmα, xj = 0, εk = α2) and obtain

bn ≤
α2

2αλm − 1
= Ub.

• (β < 1) If γn = γ/nβ , we deduce the same as before because λm > 0.
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Finally in both cases, we get

‖Σn‖ ≤ UD
(
Ua + Ub

)
. (5.12)

We now derive the limit of Σn. We shall use a recursion equation to recover a stochastic
approximation scheme. Note that

γnΣn =

n∑
k=1

γ2
kΠn,kDkΠ

T
n,k (5.13)

= γ2
nDn +An

n−1∑
k=1

γ2
kΠn−1,kDkΠ

T
n−1,k

A>n , (5.14)

and recognize

γnΣn = γ2
nDn + γn−1AnΣn−1A

>
n .

Replacing the symmetric matrix An = I − γnK̃, we get (because Σn is bounded almost
surely)

γnΣn = γ2
nDn + γn−1(I − γnK̃)Σn−1(I − γnK̃)

= γ2
nDn + γn−1

[
Σn−1 − γnΣn−1K̃ − γnK̃Σn−1 +O(γ2

n)
]
.

Divide by γn to obtain

Σn = γnDn +
γn−1

γn

[
Σn−1 − γn(K̃Σn−1 + Σn−1K̃) +O(γ2

n)
]
,

and we recognize a stochastic approximation scheme

Σn = Σn−1 − γn
[
K̃Σn−1 + Σn−1K̃ −Dn

]
+
γn−1 − γn

γn
Σn−1 +O(γn−1γn + |γn−1 − γn|)

Recall that when β < 1 we have

1

γn
− 1

γn−1
→ 0, i.e.,

γn−1 − γn
γn

= o(γn).

• (β = 1) If γn = α/n we get

Σn = Σn−1 −
α

n

[
K̃Σn−1 + Σn−1K̃ −

1

α
Σn−1 −Dn

]
+O(n−2)

Σn = Σn−1 −
α

n

(K̃ − I

2α

)
Σn−1 + Σn−1

(
K̃ − I

2α

)
−Dn

+O(n−2).

• (β < 1) If γn = α/nβ we get

Σn = Σn−1 − γn
[
K̃Σn−1 + Σn−1K̃ −Dn

]
+ o(γn).

Recall that ζ = 1{β=1}/(2α) and define K̃ζ = K̃−ζI, so that in both cases, the recursion
equation becomes

Σn = Σn−1 − γn
[
K̃ζΣn−1 + Σn−1K̃

>
ζ −Dn

]
+ o(γn).
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We can vectorize this equation. The vectorization of an m × n matrix A = (ai,j),
denoted vec(A), is the mn × 1 column vector obtained by stacking the columns of the
matrix A on top of one another:

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]T .

Applying this operator to our stochastic approximation scheme gives

vec(Σn) = vec(Σn−1)− γn
[
vec
(
K̃ζΣn−1 + Σn−1K̃

>
ζ

)
− vec(Dn)

]
+ o(γn).

Denote by ⊗ the Kronecker product, we have the following property

vec
(
KζΣn−1 + Σn−1K

>
ζ

)
=
(
Id ⊗Kζ +K>ζ ⊗ Id

)
vec(Σn−1).

Define D as the almost sure limit of Dn, i.e.

D = lim
n→∞

Dn =
√
HCΓC

√
H.

Introduce vn = vec(Σn) and Q =
(
Id ⊗ K̃ζ + K̃ζ ⊗ Id

)
. We have almost surely

vn = vn−1 − γn
(
Qvn−1 − vec(D)

)
+ γnvec(Dn −D) + o(γn)

= vn−1 − γn
(
Qvn−1 − vec(D)

)
+ εnγn

where εn → 0 almost surely. This is a stochastic approximation scheme with the affine
function h(v) = Qv − vec(D) for v ∈ Rd2 . Let v? be the solution of h(v) = 0 which
is well defined since Q =

(
Id ⊗ K̃ζ + K̃>ζ ⊗ Id

)
is invertible. Indeed, the eigenvalues

of Q are µi + µj , 1 ≤ i, j ≤ d, where the µi, i = 1, . . . , d are the eigenvalues of K̃ζ .
Equivalently, the eigenvalues of Q are of the form (λi − ζ) + (λj − ζ) where the λi,
i = 1, . . . , d are the eigenvalues of K̃. Because λm > ζ, we have that Q � 0. As a
consequence (

vn − v?
)

=
(
vn−1 − v?

)
− γn

(
h(vn−1)− h(v?)

)
+ εnγn

=
(
vn−1 − v?

)
− γnQ

(
vn−1 − v?

)
+ εnγn

= Bn

(
vn−1 − v?

)
+ εnγn,

with Bn = (Id2 − γnQ). By induction, we obtain

(
vn − v?

)
=
(
Bn . . . B1

) (
v0 − v?

)
+

n∑
k=1

γk

(
Bn . . . Bk+1

)
εk,

Define λQ = λmin(Q) > 0 and remark that

‖Bn . . . Bk+1‖ ≤
n∏

j=k+1

‖Bj‖ =
n∏

j=k+1

(1− γjλQ).



CHAPTER 5. ASYMPTOTIC ANALYSIS OF CONDITIONED STOCHASTIC
GRADIENT DESCENT 166

It follows that

‖vn − v?‖2 ≤ ‖Bn . . . B1‖‖v0 − v?‖2 +

n∑
k=1

γk‖Bn . . . Bk+1‖‖εk‖2

≤
n∏
j=1

(1− γjλQ)‖v0 − v?‖2 +

n∑
k=1

γk

n∏
j=k+1

(1− γjλQ)‖εk‖2

Applying Lemma 5.27 we obtain that the right-hand side term goes to 0. The left-hand
side term goes to 0 under the effect of the product by definition of (γk)k≥1. We therefore
conclude that vn → v? almost surely. From easy manipulation involving vec(·) and ⊗,
this is equivalent to Σn → Σ, where Σ is the solution of the Lyapunov equation

(K̃ − ζI)Σ + Σ(K̃ − ζI) = D.

Now we turn our attention to (5.11). We need to show that almost surely,

γ−1
n

n∑
k=1

γ2
kE[‖Πn,k

√
HCk−1wk‖221{γk‖Πn,k√HCk−1wk‖2>εγ

1/2
n } | Fk−1]1Ak−1

→ 0.

We have

E[γ−1
n γ2

k‖Πn,k

√
HCk−1wk‖221{γk‖Πn,k√HCk−1wk‖2>εγ

1/2
n } | Fk−1]

≤ ε−δE[(γ−1/2
n γk‖Πn,k

√
HCk−1wk‖2)2+δ | Fk−1]

≤ ε−δ(γ−1/2
n γk‖Πn,k

√
HCk−1‖2+δE[‖wk‖2+δ

2 | Fk−1].

Let U(ω) = supk≥1 E[‖wk‖2+δ
2 | Fk−1]1Ak−1

which is almost surely finite by Assumption
5.6. We get

E[γ−1
n γ2

k‖Πn,k

√
HCk−1wk‖221{γk‖Πn,k√HCk−1wk‖2>εγ

1/2
n } | Fk−1]1Ak−1

≤ ε−δ
(

2‖
√
H‖‖C‖

)2+δ
U(ω)(γ−1/2

n γkρ(Πn,k))
2+δ

Hence by showing that

n∑
k=1

(γ−1/2
n γkρ(Πn,k))

2+δ → 0,

we will obtain (5.11). The previous convergence can be deduced from Lemma 5.27 with
p = 1 + δ/2, m = 2 + δ, εk = γ

δ/2
k , checking that (2 + δ)αλm > 1 + δ/2.

Step 2. Proof of Equation (5.8).

A preliminary step to the derivation of Equation (5.8) is to obtain that ∆̃k → 0 almost
surely. For any θ and η in Rd, we have

‖θ‖2 = ‖η‖2 + 2η>(θ − η) + ‖θ − η‖2

implying that for all k ≥ 0

E[‖Θk+1‖2|Fk] = ‖Θ̃k‖2 − 2γk+1Θ>k K̃Θk + γ2
k+1E[‖K̃Θk − Ckwk+11Ak‖2|Fk].
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Since (wk) is a martingale increment and because on Ak, ρ(Ck) ≤ 2ρ(C), we get

E[‖K̃Θk − Ckwk+11Ak‖2|Fk] = E[‖K̃Θk‖2|Fk] + E[‖Ckwk+11Ak‖2|Fk]
≤ λ2

M‖Θk‖2 + ρ(Ck)
2E[‖wk+11Ak‖2|Fk]

≤ λ2
M‖Θk‖2 + 4ρ(C)2E[‖wk+11Ak‖2|Fk],

Injecting this bound in the previous equality yields

E[‖Θk+1‖2|Fk] ≤ ‖Θk‖2(1 + γ2
k+1λ

2
M )− 2γk+1Θ>k K̃Θk + 4ρ(C)2γ2

k+1E[‖wk+1‖2|Fk]1Ak .

Since, using (5.6),

∑
k≥0

γ2
k+1E[‖wk+1‖2|Fk]1Ak ≤

(
sup
k≥0

E[‖wk+1‖2|Fk]1Ak

)∑
k≥0

γ2
k+1

 <∞,

we are in position to apply the Robbins-Siegmund Theorem 6.33 and we obtain the
almost sure convergence of

∑
k γk+1Θ>k K̃Θk and ‖Θk‖22 → V∞. Because K̃ is posit-

ive definite, it gives that, with probability 1,
∑

k≥0 γk+1‖Θk‖2 < +∞, from which,
we deduce lim infk ‖Θk‖2 = 0. Therefore one can extract a subsequence Θk such that
‖Θk‖2 → 0. Using the above second condition yields V∞ = 0 and we conclude that
∆̃k = H−1/2Θk → 0.

Define the difference

Ek = ∆k − ∆̃k.

Since θ 7→ ∇2F (θ) is continous at θ?, we can apply a coordinate-wise mean value the-
orem. Indeed, for any θ ∈ Rd, we have ∇F (θ) = (∂1F (θ), . . . , ∂dF (θ)) where for all
j = 1, . . . , d, the partial derivatives functions ∂jF : Rd → R are Lipschitz continu-
ous. Denote by ∇(∂jF ) : Rd → Rd the gradient of the partial derivative ∂jF , i.e.,
∇(∂jF )(θ) = (∂2

1,jF (θ), . . . , ∂2
d,jF (θ)). For any θ, η ∈ B(θ?, ε), there exists ξj ∈ Rd such

that

∂jF (θ)− ∂jF (η) = ∇(∂jF )(ξj)(θ − η).

We construct a Hessian matrix by rows H(ξ) = H(ξ1, . . . , ξd) where the j-th row is
equal to ∇(∂jF )(ξj) = (∂2

1,jF (ξj), . . . , ∂
2
d,jF (ξj))

H(ξ) =


∂2

1,1F (ξ1) . . . ∂2
1,dF (ξ1)

...
. . .

...
∂2
d,1F (ξd) . . . ∂2

d,dF (ξd)


and we can write

∇F (θ)−∇F (η) = H(ξ)(θ − η).

There exists ξk = (ξ
(1)
k , . . . , ξ

(d)
k ) with ξ(j)

k ∈ [θ? +Ek, θk] and ξ′k = (ξ
′(1)
k , . . . , ξ

′(d)
k ) with

ξ
′(j)
k ∈ [θ? + Ek, θ

?] such that

∇F (θ? + Ek)−∇F (θk) = −H(ξk)∆̃k (5.15)
∇F (θ? + Ek) = H(ξ′k)Ek. (5.16)
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Let η > 0 such that 2αλm(1 − 3η) > 1. This choice will come clear at the end of
the reasoning. On the one hand, we have Ck → C. On the other hand, using Lemma
5.28, the spectrum of CkH is real and positive. Hence, we have the convergence of
the eigenvalues of CkH towards the eigenvalues of K = CH. This follows from the
definition of eigenvalues as roots of the characteristic polynomial and the fact that the
roots of any polynomial P ∈ C[X] are continuous functions of the coefficients (Zedek,
1965). Consequently, there exists n1(ω) such that for all k ≥ n1(ω),

(1− η)λm ≤ λmin(CkH) ≤ λmax(CkH) ≤ (1 + η)λM . (5.17)

We can define n2(ω) such that for all k ≥ n2(ω)

Ak is realized. (5.18)

Since ‖
√
H−1H(ξ′k)

√
H−1 − Id‖ → 0 as k →∞, there is n3(ω) and n4(ω) such that for

all k ≥ n3(ω)

‖
√
H−1H(ξ′k)

√
H−1 − Id‖ ≤

η

1 + η

λm
λM

, (5.19)

and for all k ≥ n4(ω),

‖
√
H−1H(ξ′k)

√
H−1‖ ≤ 1. (5.20)

Since γk → 0, there is n5 such that for all k ≥ n5

γk+1 ≤
2ηλm

(1 + η)2λ2
M

. (5.21)

To use the previous local properties, define n0(ω) = n1(ω)∨n2(ω)∨n3(ω)∨n4(ω)∨n5

and introduce the set Ej along with its complement Ecj , defined by

Ej = {ω : j ≥ n0(ω)}.

Let δ > 0 and take j ≥ 1 large enough such that P(Ecj ) ≤ δ. Invoking the Markov
inequality, we have for all a > 0

P(γ
−1/2
k ‖Ek‖ > a) = P(γ

−1/2
k ‖Ek‖ > a, Ej) + P(γ

−1/2
k ‖Ek‖ > a, Ecj )

≤ P(γ
−1/2
k ‖Ek‖ > a, Ej) + δ

≤ γ−1/2
k a−1E[‖Ek‖1Ej ] + δ

Because δ is arbitrary, we only need to show that for any value of j ≥ 1,

ek := E[‖Ek‖1Ej ] = o(γ
1/2
k ).

To prove this fact, we shall recognize a stochastic algorithm for the sequence ek.

Let k ≥ j and assume further that Ej is realized. We have, because of (5.18),

Ek+1 = ∆k − ∆̃k − γk+1Ck∇F (θk) + γk+1K∆̃k.

Introducing Ẽk =
√
HEk, we find

Ẽk+1 = Ẽk − γk+1

√
HCk∇F (θk) + γk+1

√
HK∆̃k,
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and using (5.15), it comes that

Ẽk+1 = Ẽk − γk+1

√
HCk∇F (θ? + Ek)− γk+1

√
HCkH(ξk)∆̃k + γk+1

√
HK∆̃k

= Ẽk − γk+1

√
HCk∇F (θ? + Ek) + γk+1

√
H(K − CkH(ξk))∆̃k.

Using Minkowski inequality, we have

‖Ẽk+1‖ ≤ ‖Ẽk − γk+1

√
HCk∇F (θ? + Ek)‖+ ‖γk+1

√
H(K − CkH(ξk))∆̃k‖.

We shall now focus on the first term. Still on the set Ej , we have

‖Ẽk − γk+1

√
HCk∇F (θ? + Ek)‖2

= ‖Ẽk‖2 − 2γk+1〈Ẽk,
√
HCk∇F (θ? + Ek)〉+ γ2

k+1‖
√
HCk∇F (θ? + Ek)‖2 (5.22)

We have on the one hand using (5.16)

〈Ẽk,
√
HCk∇F (θ? + Ek)〉 = 〈Ẽk,

√
HCkH(ξ′k)Ek〉

= 〈Ẽk,
√
HCkHEk〉+ 〈Ẽk,

√
HCk(H(ξ′k)−H)Ek〉

Due to (5.17), the first term satisfies

〈Ẽk,
√
HCkHEk〉 = 〈Ẽk,

√
HCk

√
HẼk〉

≥ λmin(CkH)‖Ẽk‖2

≥ (1− η)λm‖Ẽk‖2

The second term satisfies

〈Ẽk,
√
HCk(H(ξ′k)−H)Ek〉 = 〈Ẽk,

√
HCk

√
H(
√
H−1H(ξ′k)

√
H−1 − Id)Ẽk〉

≥ −
∣∣∣∣〈Ẽk,√HCk√H(

√
H−1H(ξ′k)

√
H−1 − Id)Ẽk〉

∣∣∣∣
Using Cauchy-Schwarz inequality, the submultiplicativity of the norm, (5.17) and (5.19),
we have ∣∣∣∣〈Ẽk,√HCk√H(

√
H−1H(ξ′k)

√
H−1 − Id)Ẽk〉

∣∣∣∣
≤ ‖
√
HCk

√
H‖‖
√
H−1H(ξ′k)

√
H−1 − Id‖‖Ẽk‖2

≤ ηλm‖Ẽk‖2.

Finally, it follows that

〈Ẽk,
√
HCk∇F (θ? + Ek)〉 ≥ (1− 2η)λm‖Ẽk‖2 (5.23)

On the other hand using (5.16), (5.17) and (5.20),

‖
√
HCk∇F (θ? + Ek)‖2 = ‖

√
HCkH(ξ′k)Ek‖2

= ‖
√
HCk

√
H(
√
H−1H(ξ′k)

√
H−1)Ẽk‖2

≤ λmax(CkH)2‖
√
H−1H(ξ′k)

√
H−1‖2‖Ẽk‖2

≤ (1 + η)2λ2
M‖Ẽk‖2 (5.24)
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Putting together (5.22), (5.23), (5.24) and using (5.21) gives that, on Ej ,
‖Ẽk − γk+1

√
HCk∇F (θ? + Ek)‖2

≤ ‖Ẽk‖2(1− 2γk+1(1− 2η)λm + γ2
k+1(1 + η)2λ2

M )

≤ ‖Ẽk‖2(1− 2γk+1(1− 3η)λm).

By the Minkowski inequality and the fact that (1− x)1/2 ≤ 1− x/2, on Ej , it holds
‖Ẽk+1‖ ≤ ‖Ẽk‖(1− 2γk+1(1− 3η)λm)1/2 + γk+1‖

√
H(K − CkH(ξk))∆̃k‖

≤ ‖Ẽk‖(1− γk+1(1− 3η)λm) + γk+1‖
√
H‖‖(K − CkH(ξk))∆̃k‖

Hence, we have shown that for any k ≥ j,
‖Ẽk‖1Ej ≤ ‖Ẽk‖1Ej (1− γk+1(1− 3η)λm) + γk+1‖

√
H‖‖(K − CkH(ξk))1Ej∆̃k‖.

It follows that, for any k ≥ j,
ek+1 ≤ ek(1− γk+1(1− 3η)λm) + γk+1‖

√
H‖E[‖Uk∆̃k‖],

with Uk = (K − CkH(ξk))1Ej . Because with probability 1, ‖Uk‖ is bounded, we can
apply the Lebesgue dominated convergence theorem to obtain that εk = E[‖Uk‖2]→ 0.
From the Cauchy-Schwarz inequality, we get

E[‖Uk∆̃k‖] ≤
√
εk

√
E[‖∆̃k‖22].

On the other hand, we have already shown in (5.12) that ρ(Σk) = ‖Σk‖ ≤ UD
(
Ua + Ub

)
.

Since ∆̃k =
√
H−1Θk =

√
H−1√γk(Yk +Mk), we have

E[‖∆̃k‖22] ≤ 2(γk/λm)(‖Yk‖22 + E[‖Mk‖22]),

where the last term is the leading term and satisfies

E[‖Mk‖22]] = E[Tr(Σk)] ≤ dE[ρ(Σk)].

Therefore, we have

E[‖∆̃k‖22] ≤ γkA
for some A > 0. Consequently, for all k ≥ j,

ek+1 ≤ ek(1− γk+1(1− 3η)λm) + γ
3/2
k+1A

′‖
√
H‖ε1/2

k .

The condition 2αλm(1 − 3η) > 1 ensures that we can apply Lemma 5.27 with (mλ >
p),m = 1, p = 1/2, λ = α(1− 3η)λm. we finally get

lim sup
k

(ek/γ
1/2
k ) = 0.

As a consequence, ek = o(
√
γk), which concludes the proof.

Since γ−1/2
k

√
H∆̃k → N (0,Σ), we have γ−1/2

k ∆̃k → N (0, Σ̃) where Σ̃ =
√
H−1Σ

√
H−1.

Recall that Σ satisfies the Lyapunov equation

(
√
HC
√
H − ζId)Σ + Σ(

√
HC
√
H − ζId) =

√
HCΓC

√
H.

Multiplying on the left and right sides by
√
H−1, we get

C
√
HΣ
√
H−1 − ζ

√
H−1Σ

√
H−1 +

√
H−1Σ

√
HC − ζ

√
H−1Σ

√
H−1 = CΓC,

where we recognize the following Lyapunov equation

(CH − ζId)Σ̃ + Σ̃(CH − ζId)> = CΓC.



CHAPTER 5. ASYMPTOTIC ANALYSIS OF CONDITIONED STOCHASTIC
GRADIENT DESCENT 171

5.A.2 Additional propositions

This section gathers the proofs of Proposition 5.9 about the optimal choice for the
conditioning matrix and of Proposition 5.19 about the almost sure convergence of the
conditioning matrices.

Proposition 5.9. The choice C? = H−1 is optimal in the sense that ΣC∗ � ΣC ,
∀C ∈ CH . Moreover, ΣC? = H−1ΓH−1.

Proof Define ∆C = ΣC −H−1ΓH−1 and check that ∆C satisfies(
CH − Id/2

)
∆C + ∆C

(
CH − Id/2

)>
= (C −H−1)Γ(C −H−1).

Because Γ is symmetric positive semi-definite, we have using Lemma 5.32 that the
term on the right side is symmetric positive semi-definite. Therefore, in view of Pro-
position 5.33, we get that ∆C is symmetric positive semi-definite ∆C � 0 which im-
plies ΣC � H−1ΓH−1 for all C ∈ CH . The equality is reached for C? = H−1 with
∆C = 0,ΣC? = H−1ΓH−1.

Proposition 5.19. Let (Φk)k≥0 be obtained by (5.4). Suppose that Assumptions 5.4
and 5.18 are fulfilled and that θk → θ? almost surely . If sup0≤j≤k ωj,k = O(1/k), then
we have Φk → H = ∇2F (θ?) almost surely.

Proof We use the decomposition

Φk −H =

k∑
j=0

ωj,k

(
∇2F (θj)−H

)
+

k∑
j=0

ωj,k

(
H(θj , ξ

′
j+1)−∇2F (θj)

)
.

The continuity of∇2F at θ? and the fact that θj → θ? a.s. implie that
∥∥∥∇2F (θj)−H

∥∥∥→
0 a.s. Since sup0≤j≤k ωj,k = O(1/k), there exists a > 0 such that∥∥∥∥∥∥∥

k∑
j=0

ωj,k

(
∇2F (θj)−H

)∥∥∥∥∥∥∥ ≤
a

k + 1

k∑
j=0

∥∥∥∇2F (θj)−H
∥∥∥ ,

which goes to 0 in virtue of Cesaro’s Lemma, therefore limk→∞
∑k

j=0 ωj,k

(
∇2F (θj)−H

)
=

0. The second term is a sum of martingale increments and shall be treated with Freed-
man inequality and Borel-Cantelli Lemma. Introduce the martingale increments

∀0 ≤ j ≤ k, Xj+1,k = ωj,k

(
H(θj , ξ

′
j+1)−∇2F (θj)

)
.

For a fixed k, we have Xj+1,k =

(
x

(i,l)
j+1

)
1≤i,l≤d

where we remove the index k for the

sake of clarity. Because the Hessian generator is unbiased, we have for all coordinates

E
[
x

(i,l)
j+1|Fj

]
= 0 for all 0 ≤ j ≤ k.
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By definition of the Hessian generator and using that (∇2F (θj)) is bounded, we get that∥∥∥H(θj , ξ
′
j+1)−∇2F (θj)

∥∥∥ = O(1) for all j ≥ 0. For any b > 0, consider the following
event

Ωb =

{
sup
k≥0

max
j=0,...,k

(k + 1)

∣∣∣∣x(i,l)
j+1

∣∣∣∣ ≤ b
}
,

and note that since ωj,k = O(1/k) we have P(Ωb) → 1 as b → ∞. On this event, the
martingale increments and the variance term are bounded as

max
j=0,...,k

∣∣∣∣x(i,l)
j+1

∣∣∣∣ ≤ b(k + 1)−1,
k∑
j=0

E

(x(i,l)
j+1

)2

| Fj

 ≤ b2(k + 1)−1.

Using Freedman inequality (Theorem 5.31), we have for all coordinates i, l = 1, . . . , d,

P


∣∣∣∣∣∣∣
k∑
j=0

x
(i,l)
j+1

∣∣∣∣∣∣∣ > ε,Ωb

 ≤ 2 exp

(
−ε

2(k + 1)

2b(b+ ε)

)
.

The last term is the general term of a convergent series. Apply Borel-Cantelli Lemma
(Borel, 1909) to finally get almost surely on Ωb that limk→∞

∑k
j=0 x

(i,l)
j+1 = 0. Since b > 0

is arbitrary and P(Ωb)→ 1 when b→∞, we have almost surely limk→∞
∑k

j=0 x
(i,l)
j+1 = 0.

This is true for all the coordinates of the martingale increments and therefore

lim
k→∞

k∑
j=0

ωj,k

(
H(θj , ξ

′
j+1)−∇2F (θj)

)
= 0 a.s.

5.A.3 Auxiliary results on expected smoothness

The following Lemma gives sufficient conditions to meet the weak growth condition on
the stochastic noise as stated in Assumption 6.13.

Lemma 5.22. Suppose that for all k ≥ 1, θ ∈ Rd, F (θ) = E
[
f(θ, ξk)|Fk−1

]
with ξk ∼

Pk−1. Assume that for all ξk ∼ Pk−1, the function θ 7→ f(θ, ξk) is L-smooth almost
surely and there exists m ∈ R such that for all θ ∈ Rd, f(θ, ξk) ≥ m. Then a gradient
estimate is given by g(θ, ξ) = ∇f(θ, ξ) and the growth condition of Assumption 6.13 is
satisfied with σ2 = 2L(F ? −m) and

∀θ ∈ Rd,∀k ∈ N, E
[
‖g(θ, ξk)‖22|Fk−1

]
≤ 2L

(
F (θ)− F ?

)
+ σ2.

Proof For all ξk ∼ Pk−1, Lipschitz continuity of the gradient θ 7→ ∇f(θ, ξk) implies
(see Nesterov (2013))

f(y, ξk) ≤ f(θ, ξk) + 〈∇f(θ, ξk), y − θ〉+ (L/2)‖y − θ‖22.
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Plug y = θ − (1/L)∇f(θ, ξk) and use the lower bound f(y, ξk) ≥ m to obtain
1

2L
‖∇f(θ, ξk)‖22 ≤ f(θ, ξk)− f(y, ξk) ≤ f(θ, ξk)−m,

which gives,

‖g(θ, ξk)‖22 ≤ 2L
(
f(θ, ξk)− f(θ?, ξk)

)
+ 2L

(
f(θ?, ξk)−m

)
and conclude by taking the conditional expectation with respect to Fk−1.

The next Lemma links our weak growth condition with the notion of expected smooth-
ness as introduced in Gower et al. (2019). In particular, this notion can be extended to
our general context where the sampling distribution can evolve through the stochastic
algorithm.

Lemma 5.23. (Expected smoothness) Assume that with probability one,

sup
k≥1

sup
x 6=x?

E
[
‖g(θ, ξk)− g(θ?, ξk)‖22|Fk−1

]
F (θ)− F ? <∞ and sup

k≥1
E
[
‖g(θ?, ξk)‖22|Fk−1

]
<∞.

Then there exist 0 ≤ L, σ2 <∞ such that

∀θ ∈ Rd, ∀k ∈ N, E
[
‖g(θ, ξk)‖22|Fk−1

]
≤ 2L

(
F (θ)− F ?

)
+ 2σ2.

Proof For all θ ∈ Rd and all k ∈ N, we have

‖g(θ, ξk)‖22 = ‖g(θ, ξk)− g(θ?, ξk) + g(θ?, ξk)‖22
≤ 2‖g(θ, ξk)− g(θ?, ξk)‖22 + 2‖g(θ?, ξk)‖22.

Using the expected smoothness, with probability one, there exists 0 ≤ L <∞ such that

E
[
‖g(θ, ξk)− g(θ?, ξk)‖22|Fk−1

]
≤ L

(
F (θ)− F ?

)
.

Since the noise at optimal point is almost surely finite there exists 0 ≤ σ2 < ∞ such
that

E
[
‖g(θ?, ξk)‖22|Fk−1

]
≤ σ2,

which allows to conclude by taking the conditional expectation.

5.A.4 Proof of the almost sure convergence (Theorem 5.16)

The idea behind the proof of the almost sure convergence is to apply the Robbins-
Siegmund Theorem (Theorem 6.33) (which can be found in Section 5.B) in combination
with the following key deterministic result.

Lemma 5.24 (Deterministic result). Let F : Rd → R be a L-smooth function and (θt)
a random sequence obtained by the SGD update rule θt+1 = θt − γt+1Ctgt where (γ)t≥1

a positive sequence of learning rates and Ct−1 � νtId are such that
∑

t γtνt = ∞. Let
ω ∈ Ω such that the following limits exist:

(i)
∑
t≥0

γt+1νt+1‖∇F (θt(ω))‖22 <∞ (ii)
∑
t≥1

γtCt−1(gt−1(ω)−∇F (θt−1(ω))) <∞

then ∇F (θt(ω))→ 0 as t→∞.
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Proof. The proof (and in particular the reasoning by contradiction) is inspired from
the proof of Proposition 1 in Bertsekas and Tsitsiklis (2000). For ease of notation we
omit the ω in the proof. Note that condition (i) along with

∑
t γtνt = ∞ implie that

lim inft ‖∇F (θt)‖ = 0. Now, by contradiction, let ε > 0 and assume that

lim sup
t
‖∇F (θt)‖ > ε

We have that there is infinitely many t such that ‖∇F (θt)‖ < ε/2 and also infinitely
many t such that ‖∇F (θt)‖ > ε. It follows that there is infinitely many crossings
between the sets {t ∈ N : ‖∇F (θt)‖ < ε/2} and {t ∈ N : ‖∇F (θt)‖ > ε}. A crossing
is a collection of indexes Ik = {Lk, Lk + 1, . . . , Uk − 1} with Lk ≤ Uk (Ik = ∅ when
Lk = Uk) such that for all t ∈ Ik,

‖∇F (θLk−1)‖ < ε/2 ≤ ‖∇F (θt)‖ ≤ ε < ‖∇F (θUk)‖.

Define the following partial Cauchy sequence Rk =
∑Uk

t=Lk
γt(gt−1−∇F (θt−1)) and note

that condition (ii) implies that Rk → 0 as k →∞. For all k ≥ 1,

ε/2 ≤ ‖∇F (θUk)‖2 − ‖∇F (θLk−1)‖2
≤ ‖∇F (θUk)−∇F (θLk−1)‖2
≤ L‖θUk − θLk−1‖2,

where we use that∇F is L-Lipschitz. Then using the update rule θt−θt−1 = −γtCt−1gt−1,
we have by sum

ε/2 ≤ L‖
Uk∑
t=Lk

θt − θt−1‖2 = L‖
Uk∑
t=Lk

γtCt−1gt−1‖2

≤ L‖
Uk∑
t=Lk

γtCt−1∇F (θt−1)‖2 + L‖
Uk∑
t=Lk

γtCt−1(gt−1 −∇F (θt−1))‖2

≤ L
Uk∑
t=Lk

γtνt‖∇F (θt−1)‖2 + L‖Rk‖2

Since in the previous equation ‖∇F (θt−1)‖2 > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γtνt‖∇F (θt−1)‖22 + (ε/2)L‖Rk‖2

But since
∑

t≥0 γt+1νt+1‖∇F (θt)‖2 is finite and limk Rk = 0, the previous upper bound
goes to 0 and implies a contradiction.

It remains to show that points (i) and (ii) in Lemma 5.24 are valid with probability
one. Since θ 7→ F (θ) is L-smooth, we have the quadratic bound (see Nesterov (2013))

∀θ, η ∈ Rd F (η) ≤ F (θ) + 〈∇F (θ), η − θ〉+
L

2
‖η − θ‖22.

Using the update rule θk+1 = θk − γk+1Ckg(θk, ξk+1), we get

F (θk+1) ≤ F (θk) + 〈∇F (θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖22

= F (θk)− γk+1〈∇F (θk), Ckg(θk, ξk+1)〉+
L

2
γ2
k+1‖Ckg(θk, ξk+1)‖22.
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The last term can be upper bounded using the matrix norm and Assumption 5.15 as

‖Ckg(θk, ξk+1)‖22 ≤ ‖Ck‖2‖g(θk, ξk+1)‖22 ≤ ν2
k+1‖g(θk, ξk+1)‖22,

and we have the inequality

F (θk+1) ≤ F (θk)− γk+1〈∇F (θk), Ckg(θk, ξk+1)〉+
L

2
(γk+1νk+1)2‖g(θk, ξk+1)‖22.

Introduce uk = γkνk and vk = γkµk, we have
∑

k≥1 vk = +∞ and
∑

k≥1 u
2
k < +∞ a.s.

in virtue of Assumption 5.15. The random variables F (θk), Ck are Fk-measurable and
the gradient estimate is unbiased with respect to Fk. Taking the conditional expectation
denoted by Ek leads to

Ek
[
F (θk+1)

]
− F (θk) ≤ −γk+1〈∇F (θk),Ek

[
Ckg(θk, ξk+1)

]
〉+

L

2
u2
k+1Ek

[
‖g(θk, ξk+1)‖22

]
= −γk+1∇F (θk)

>Ck∇F (θk) +
L

2
u2
k+1Ek

[
‖g(θk, ξk+1)‖22

]
.

On the one hand for the first term, using Assumption 5.15 ,

∇F (θk)
>Ck∇F (θk) ≥ λmin(Ck)‖∇F (θk)‖22 ≥ µk+1‖∇F (θk)‖22.

On the other hand, using Assumption 6.13, there exist 0 ≤ L, σ2 <∞ such that almost
surely

∀k ∈ N, Ek
[
‖g(θk, ξk+1)‖22

]
≤ 2L

(
F (θk)− F ?

)
+ σ2.

Inject these bounds in the previous inequality and substract F (θ?) on both sides to have

Ek
[
F (θk+1)− F ?

]
≤ (1 + LLu2

k+1)(F (θk)− F ?)− vk+1‖∇F (θk)‖22 + (L/2)u2
k+1σ

2.

Introduce Vk = F (θk)−F ?,Wk = vk+1‖∇F (θk)‖22, ak = LLu2
k+1 and bk = (L/2)u2

k+1σ
2.

These four random sequences are non-negative Fk-measurable sequences with
∑

k ak <
∞ and

∑
k bk <∞ almost surely. Moreover we have

∀k ∈ N, E
[
Vk+1|Fk

]
≤ (1 + ak)Vk −Wk + bk.

We can apply Robbins-Siegmund Theorem 6.33 to have

(a)
∑
k≥0

Wk <∞ a.s. (b) Vk
a.s.−→ V∞,E

[
V∞
]
<∞. (c) sup

k≥0
E
[
Vk
]
<∞.

Therefore we have the almost sure convergence of the series
∑
vk+1‖∇F (θk)‖22 which,

given that lim supk νk/µk exists, implies that
∑
uk+1‖∇F (θk)‖22 is finite. Hence we

obtain (i) in Lemma 5.24. We now show that (ii) in Lemma 5.24 is also valid. The term
of interest is a sum of martingale increments. The quadratic variation is given by∑
t≥1

γ2
t Et[‖Ct−1(gt−1(ω)−∇f(θt−1(ω)))‖22] ≤

∑
t≥1

γ2
t ν

2
t Et[‖(gt−1(ω)−∇F (θt−1(ω)))‖22]

≤
∑
t≥1

γ2
t ν

2
t Et[‖gt−1(ω)‖22]

≤
∑
t≥1

γ2
t ν

2
t (2L(F (θt−1)− F ?) + σ2).
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Now we can use that Vk = F (θk) − F ?
a.s.−→ V∞ (which was deduced from Robbins-

Siegmund Theorem) to obtain that the previous series converges. Invoking Theorem
2.17 in Hall and Heyde (1980), we obtain (ii) in Lemma 5.24. Furthermore we can prove
that θk+1 − θk → 0 almost surely and in L2. Indeed, we have

E
[
‖θk+1 − θk‖22

]
= E

[
‖γk+1Ckg(θk, ξk+1‖22

]
≤ u2

k+1

(
2L
(
F (θk)− F ?

)
+ σ2

)
.

In virtue of the almost sure convergence of Vk = F (θk)−F ?, the last term in parenthesis
is upper bounded by a constant so that in view of the convergence of

∑
u2
k+1, we have the

convergence of the series
∑

E
[
‖θk+1 − θk‖22

]
. We then deduce that E

[
‖θk+1 − θk‖22

]
→

0 and
∑[
‖θk+1 − θk‖22

]
< +∞ almost surely. In particular, θk+1 − θk → 0 in L2 and

almost surely. The last point follows from the fact that, for every δ > 0,

lim
n→∞

P

(
sup
k≥n
‖θk+1 − θk‖ ≥ δ

)
≤ δ−2 lim

n→∞

∑
k≥n

E
[
‖θk+1 − θk‖22

]
= 0.

5.A.5 Proof of Corollary 5.17

First observe that since F is coercive, the convergence of (F (θk)) obtained by Robbins-
Siegmund theorem implies that the sequence of iterates (θk)k≥0 remains in a compact
subset K ⊂ Rd. Let ε > 0. Since θ 7→ d(θ,S) is continuous, the set D(ε) = {θ ∈
Rd : d(θ,S) ≥ ε} is closed and the set K(ε) = K ∩ D(ε) is compact. On this set,
the map θ 7→ ‖∇F (θ)‖2 is stricly positive and there exists ηε > 0 such that: θ ∈
K(ε) ⇒ ‖∇F (θ)‖2 > ηε. Thus, P(θ ∈ K(ε)) ≤ P(‖∇F (θ)‖2 > ηε) and this last
quantity goes to zero which proves the convergence in probability d(θk,S)→ 0. Actually
the almost sure convergence ∇F (θk) → 0 implies the convergence of the distances.
Define Ak(ε) = {ω : θk(ω) ∈ K(ε)} and Bk(ε) = {ω : ‖∇F (θk(ω))‖2 > ηε}. We have
Ak(ε) ⊂ Bk(ε) then ∪n≥1∩k≥nAk(ε) ⊂ ∪n≥1∩k≥nBk(ε). Conclude by using the almost
sure convergence P(∪n≥1∩k≥nBk(ε)) = 0 for each ε > 0. If S is finite, it is in particular
a compact set so the distance is attained for every k ≥ 0, d(θk,S) = mins∈S d(θk, s)→ 0.
Since θk+1 − θk → 0, the sequence of iterates can only converge to a single point of S.

5.B Auxiliary results

5.B.1 Robbins-Siegmund Theorem

Theorem 5.25. (Robbins and Siegmund (1971)) Consider a filtration
(
Fn
)
n≥0

and
four sequences of random variables

(
Vn
)
n≥0

,
(
Wn

)
n≥0

,
(
an
)
n≥0

and
(
bn
)
n≥0

that are
adapted and non-negative. Assume that almost surely

∑
k ak < ∞ and

∑
k bk < ∞.

Assume moreover that E
[
V0

]
< ∞ and for all n ∈ N, E[Vn+1|Fn] ≤ (1 + an)Vn −

Wn + bn. Then it holds

(a)
∑
k

Wk <∞ a.s. (b) Vn
a.s.−→ V∞,E

[
V∞
]
<∞. (c) sup

n≥0
E
[
Vn
]
<∞.
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5.B.2 Auxiliary lemmas

Lemma 5.26. Let (un)n≥1, (vn)n≥1 and (γn)n≥1 be non-negative sequences such that
γn → 0 and

∑
n γn = +∞. Assume that there exists a real number m ≥ 1 and j ≥ 1

such that for all n ≥ j, un ≤ (1 − γn)mun−1 + γnvn. Then it holds that lim sup
n→+∞

un ≤
lim sup
n→+∞

vn.

Proof Denote x+ = max(x, 0). One has (x + y)+ ≤ x+ + y+. Set ε > 0 and
v = lim supn vn + ε. Then there exists an integer N ≥ 1 such that (1− γn)m ≤ (1− γn)
and vn < v, i.e., (vn − v)+ = 0 for n ≥ N . We have for large enough n ≥ N ∨ j,

un − v ≤ (1− γn)(un−1 − v) + γn(vn − v),

and taking the positive part gives

(un − v)+ ≤ (1− γn)(un−1 − v)+ + γn(vn − v)+ = (1− γn)(un−1 − v)+.

Since
∑

n γn = +∞, this inequality implies that (un − v)+ tends to zero, but this is
true for all ε > 0 so v is arbitrarily close to lim supn vn and the result follows.

Lemma 5.27. Let (γn)n≥1 be a non-negative sequence converging to zero, and λ,m and
p three real numbers with λ > 0,m ≥ 1, p ≥ 0. Consider two non-negative sequences
(xn), (εn) and an integer j ≥ 1 such that

∀n ≥ j, xn = (1− λγn)mxn−1 + γp+1
n εn,

i.e., xn =

n∏
i=j

(1− λγi)mxj−1 +

n∑
k=j

γp+1
k

 n∏
i=k+1

(1− λγi)m
 εk.

The following holds
• if γn = n−β, β ∈ (1/2, 1), then for any p

lim sup
n→+∞

xn
γpn
≤ 1

mλ
lim sup
n→+∞

εn.

• if γn = 1/n, then for any p < mλ

lim sup
n→+∞

xn
γpn
≤ 1

mλ− p lim sup
n→+∞

εn.

In particular, when εn → 0 with j = 1 and x0 = 0,

lim
n→+∞

n∑
k=1

γk

n∏
i=k+1

(1− λγi)mεk = 0,

(mλ > 1) lim
n→+∞

1

γn

n∑
k=1

γ2
k

n∏
i=k+1

(1− λγi)mεk = 0.

Before proving this result, note that if we consider γn = γ/nβ then we can write

xn = (1− λγn)mxn−1 + γp+1
n εn = (1− (λγ)n−β)mxn−1 + (n−β)p+1(γp+1εn)
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and apply the result with λ̃ = γλ and ε̃n = γp+1εn.

Proof We apply Lemma 5.26 to the sequence un = xn
γpn

. We have for all n ≥ j,

un =
1

γpn

(
(1− λγn)mxn−1 + γp+1

n εn

)
=

(
γn−1

γn

)p
(1− λγn)mun−1 + γnεn

= exp

p log

(
γn−1

γn

)
+m log(1− λγn)

un−1 + γnεn.

Define

λn =
1

γn

1− exp

p log

(
γn−1

γn

)
+m log(1− λγn)


 ,

so we get the recursion equation

∀n ≥ j, un = (1− λnγn)un−1 + λnγn
εn
λn
.

• if γn = n−β, β ∈ (1/2, 1) then 1/γn − 1/γn−1 → 0 and the ratio γn−1/γn tends to 1
with

log

(
γn−1

γn

)
=

(
γn−1

γn
− 1

)(
1 + o(1)

)
= γn−1

(
1

γn
− 1

γn−1

)(
1 + o(1)

)
= o(γn).

Besides, m log(1− λγn) = −mλγn + o(γn) when n→ +∞ and we get

λn =
1

γn

[
1− exp

(
−mλγn + o(γn)

)]
,

which implies that λn converges to mλ. We conclude with Lemma 5.26.
• if γn = 1/n then the ratio γn−1/γn tends to 1 with

log

(
γn−1

γn

)
= log

(
1 +

1

n− 1

)
= γn + o(γn).

We still have m log(1− λγn) = −mλγn + o(γn) when n→ +∞ and therefore

λn =
1

γn

[
1− exp

(
(p−mλ)γn + o(γn)

)]
,

which implies λn converges to (mλ− p) and we conclude in the same way.

Lemma 5.28. Let A,B ∈ S++
d (R) then the eigenvalues of AB are real and positive

with Sp(AB) ⊂ [λmin(A)λmin(B);λmax(A)λmax(B)].
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Proof Denote by
√
B the unique positive square root of B. The matrix AB is similar

to the real symmetric positive definite matrix
√
BA
√
B. Therefore its eigenvalues are

real and positive. Since A 7→ λmax(A) is a sub-multiplicative matrix norm on S++
d (R),

λmax(AB) ≤ λmax(A)λmax(B) which gives λmax(
(
AB
)−1

) ≤ λmax(A−1)λmax(B−1), i.e.,
λmin

(
AB
)−1 ≤ λmin(A)−1λmin(B)−1, and finally λmin(A)λmin(B) ≤ λmin

(
AB
)
.

Lemma 5.29. Let S ∈ S++
d (R) be a real symmetric positive definite matrix. Let (γk)k≥1

be a positive decreasing sequence converging to 0 such that
∑

k γk = +∞. Denote by λm
the smallest eigenvalue of S. It holds that there exists j ≥ 1 such that for any k > j,
all the eigenvalues of the real symmetric matrix Ak = I − γkS are positive and we have

ρ(Πn) = ρ(An . . . A1)
n→+∞−→ 0,

∀k > j, ρ(Πn,k) = ρ(An . . . Ak+1) ≤
n∏

i=k+1

(1− γiλm).

Proof For any k ∈ N, the eigenvalues of the real symmetric matrix Ak = I − γkS
are given by Sp(Ak) = {(1 − γkλ), λ ∈ Sp(S)}. Since γk → 0, there exists j ≥ 1 such
that γkλm < 1 for all k > j. Therefore for any k > j, we have Sp(Ak) ⊂ R?+ and the
largest eigenvalue is ρ(Ak) = 1 − γkλm. Since ρ is a sub-multiplicative norm for real
symmetric matrices, we get ρ(Πn) ≤ ∏n

k=1 ρ(Ak) =
∏j
k=1 ρ(Ak)

∏n
k=j+1 ρ(Ak). The

second product can be upper bounded with the convexity of exponential,

n∏
k=j+1

ρ(Ak) =
n∏

k=j+1

(1− γkλm) ≤
n∏

k=j+1

exp
(
−γkλm

)
= exp

(
−λm(τn − τj)

)
n→+∞−→ 0.

Similarly we have for all k > j, ρ(Πn,k) ≤
∏n
i=k+1 ρ(Ai) ≤

∏n
i=k+1(1− γiλm).

Lemma 5.30. Let γn = αn−β with β ∈ (1/2, 1] then it holds

(β < 1)
n∑
k=1

γk ∼
nγn

1− β =
α

1− βn
1−β, (β = 1)

n∑
k=1

γk ∼ α log(n).

Proof By series-integral comprison,
∫ n+1

1 t−βdt ≤∑n
k=1 k

−β ≤ 1 +
∫ n

1 t−βdt.

Theorem 5.31. (Delyon and Portier, 2021, Theorem 17)(Freedman inequality) Let
(Xj)1≤j≤n be random variables such that E[Xj |Fj−1] = 0 for all 1 ≤ j ≤ n then, for all
t ≥ 0 and v,m > 0,

P

∣∣∣∣ n∑
j=1

Xj

∣∣∣∣ ≥ t, max
j=1,...,n

|Xj | ≤ m,
n∑
j=1

E
[
X2
j | Fj−1

]
≤ v

 ≤ 2 exp

(
− t2/2

v + tm/3

)
.

Lemma 5.32. Let A ∈ Rn×n be a symmetric positive semi-definite matrix. Then for
any B ∈ Rm×n, the matrix BAB> ∈ Rm×m is symmetric positive semi-definite.
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Proof First note that (BAB>)> = (B>)>A>B> = BAB> because A is symmetric.
Then for any vector x ∈ R, we have x>(BAB>)x = (B>x)>A(B>x) ≥ 0 since A is
positive semi-definite.

Proposition 5.33. (Khalil, 2002, Theorem 4.6) Let H be a positive definite matrix
and Γ a symmetric positive definite matrix of same dimension. Then there exists a
symmetric positive definite matrix Σ, unique solution of the Lyapunov equation HΣ +
ΣH> = Γ, which is given by Σ =

∫ +∞
0 e−tHΓe−tH

>
dt.

The results remains true if the matrix Γ is only symmetric positive semi-definite: in
that case the matrix Σ is also symmetric positive semi-definite and is the solution of
the Lyapunov equation.

5.B.3 Numerical illustration details

Consider the empirical risk minimization framework applied to Generalized Linear Mod-
els. Given a data matrix X = (xi,j) ∈ Rn×d with labels y ∈ Rn and a regularization
parameter λ > 0, we are interested in solving minθ∈Rd F (θ) with

F (θ) =
1

n

n∑
i=1

fi(θ), fi(θ) = L(x>i θ, yi) + λΩ(θ),

L : R×R→ R is smooth loss function and Ω : Rd → R+ is a smooth convex regularizer
chosen as Tikhonov regularization Ω(θ) = 1

2‖θ‖22. The gradient and Hessian of each
component fi are given for all i = 1, . . . , n by

∇fi(θ) = L′(x>i θ, yi)xi + λθ

∇2fi(θ) = L′′(x>i θ, yi)xix>i + λId,

where L′(·, ·) and L′′(·, ·) are the first and second derivative of L(·, ·) with respect to
the first argument. Consider two well-known losses, namely least-squares and logistic.
These losses are respectively associated to the Ridge regression problem with y ∈ Rn
and the binary classication task with y ∈ {−1,+1}n. The regularization parameter is
set to the classical value λ = 1/n. Denote by σ(z) = 1/(1 + exp(−z)) the sigmoid
function, we have the following closed-form equations

(Ridge Regression)
L(x>i θ, yi) = 1

2(yi − x>i θ)2

L′(x>i θ, yi) = x>i θ − yi
L′′(x>i θ, yi) = 1

(Logistic Regression)
L(x>i θ, yi) = log(1 + exp(−yix>i θ))
L′(x>i θ, yi) = σ(x>i θ)− yi
L′′(x>i θ, yi) = σ(x>i θ)(1− σ(x>i θ))

For the sake of completeness and illustrative purposes, we compare the performance of
classical stochastic gradient descent (sgd) and the conditionned variant (csgd) presented
in Section 5.4 where the matrix Φk is an averaging of past Hessian estimates as given
in Equation (5.4). We shall compare equal weights ωj,k = (k + 1)−1 and adaptive
weights ωj,k ∝ exp(−η‖θj − θk‖1) with η > 0 to give more importance to Hessian
estimates associated to iterates which are closed to the current point. Furthermore, for
computational reason, we consider a novel adaptive stochastic first-order method which
is a variant of Adagrad.
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Starting from the null vector θ0 = (0, . . . , 0) ∈ Rd, we use optimal learning rate of
the form γk = α/(k + k0) (Bottou et al., 2018) and set λ(m)

k ≡ 0, λ
(M)
k = Λ

√
k in

the experiments where γ, k0 and Λ are tuned using a grid search. The means of the
optimality ratio k 7→ [F (θk) − F (θ?)]/[F (θ0) − F (θ?)], obtained over 100 independent
runs, are presented in Figures below.

Methods in competition. The different methods in the experiments are:

• sgd : standard stochastic gradient descent.

• sgd_avg : Polyak-averaging stochastic gradient descent , with a burn-in period to
avoid the poor performance of bad initialization.

• csgd(η = 0) and csgd(η > 0): conditioned stochastic gradient descent methods
with equal and adaptive weights where the matrix Φk is an averaging of past
Hessian estimates as given in Equation (5.4).

• adafull_avg : The variant of Adagrad presented in Section 5.4 where the gradient
matrix Gk is updated as an average Gk = δI + (1/k)

∑k
i=1 gig

>
i and Ck = G

−1/2
k

instead of the cumulative sum provided in the literature of Adagrad. Note that
averaging here allows to anneal the stochastic noise whereas classical versions
of Adagrad often rely on true gradients and may use cumulative sums. The
parameter δ is also tuned using a grid search.

We focus on Ridge regression on simulated data with n = 10, 000 samples in dimensions
d ∈ {20; 100}. Stochastic gradient methods are known to greatly benefit from mini-
batch instead of picking a single random sample when computing the gradient estimate.
We use a batch-size equal to |B| = 16. In Figure 5.2, we can see that conditioned SGD
outperforms standard SGD. Furthermore, adaptive weights (η > 0) improve the conver-
gence speed of conditioned SGD methods. Interestingly, the novel approach adafull_avg
offers great performance at a cheap computing cost. Indeed, the update of Ck+1 relies
on the inverse of an average. This operation can be carried out in an efficient way
thanks to Woodbury matrix identity.

Real-world data. We now turn our attention to real-world data and consider again
the Ridge regression problem on the following datasets: Boston Housing dataset (Har-
rison Jr and Rubinfeld, 1978) (n = 506; d = 14) and Diabetes dataset (Dua and Graff,
2017) (n = 442; d = 10).
• Boston Housing dataset (Harrison Jr and Rubinfeld, 1978): This dataset contains in-
formation collected by the U.S Census Service concerning housing in the area of Boston
Mass. It contains n = 506 samples in dimension d = 14.
• Diabetes dataset (Dua and Graff, 2017): Ten baseline variables, age, sex, body mass
index, average blood pressure, and six blood serum measurements were obtained for
each of n = 442 diabetes patients, as well as the response of interest, a quantitative
measure of disease progression one year after baseline.

The means of the optimality ratio k 7→ [F (θk) − F (θ?)]/[F (θ0) − F (θ?)], obtained
over 100 independent runs, are presented in Figure 5.3. Once again, the conditioned
SGD methods offer better performance than plain SGD. For these datasets, it is the
conditioning matrix with adaptive weights as given in Equation (5.4) which presents
the best results.
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(b) Ridge d = 100

Figure 5.2 – Ratio k 7→ [F (θk)−F (θ?)]/[F (θ0)−F (θ?)] for Ridge regression in dimension
d ∈ {20; 100}.
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(a) Boston Dataset
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(b) Diabetes dataset

Figure 5.3 – Ratio k 7→ [F (θk)−F (θ?)]/[F (θ0)−F (θ?)] for Ridge regression on datasets
Boston and Diabetes.
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While classical forms of stochastic gradient descent algorithm treat the different co-
ordinates in the same way, a framework allowing for adaptive (non uniform) coordinate
sampling is developed to leverage structure in data. In a non-convex setting and includ-
ing zeroth-order gradient estimate, almost sure convergence as well as non-asymptotic
bounds are established. Within the proposed framework, we develop an algorithm,
MUSKETEER, based on a reinforcement strategy: after collecting information on the
noisy gradients, it samples the most promising coordinate (all for one); then it moves
along the one direction yielding an important decrease of the objective (one for all). Nu-
merical experiments on both synthetic and real data examples confirm the effectiveness
of MUSKETEER in large scale problems.

6.1 Introduction

Coordinate Descent (CD) algorithms have become unavoidable in modern machine
learning because they are tractable (Nesterov, 2012) and competitive to other methods
when dealing with key problems such as support vector machines, logistic regression,
LASSO regression and other `1-regularized learning problems (Wu et al., 2008; Fried-
man et al., 2010). They are applied in a wide variety of problems ranging from linear
systems (Lee and Sidford, 2013; Beck and Tetruashvili, 2013) to finite sum optimiza-
tion (Necoara et al., 2014; Lu and Xiao, 2015) and composite functions (Richtárik and
Takáč, 2014) with parallel (Fercoq and Richtárik, 2015; Richtárik and Takáč, 2016b),
distributed (Fercoq et al., 2014; Qu et al., 2015) and dual (Shalev-Shwartz and Zhang,
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2013; Csiba et al., 2015; Perekrestenko et al., 2017) variants. In many contributions
(Loshchilov et al., 2011; Richtárik and Takáč, 2016a; Glasmachers and Dogan, 2013;
Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017), the choice of
the coordinate sampling policy is conducted through some optimality criterion estim-
ated along the algorithm. On the one hand, efficient forms of CD methods rely on a
deterministic procedure (Nutini et al., 2015) which adapts to the underlying structure
in data at the expense of higher calculation and thus, may be costly. On the other hand,
stochastic gradient descent (SGD) methods are computationally efficient but often treat
all coordinates equally and thus, may be sub-optimal. In the spirit of adaptive schemes,
we tend to bridge the gap between the best of both worlds by developing, within a noisy
gradient framework, a general stochastic coordinate descent method with a particular
selection strategy.

We are interested in solving unconstrained optimization problems of the following form
minθ∈Rd f(θ), where the objective function f may be either known exactly or accessed
through noisy observations. When f is differentiable, a common appproach is to rely on
the gradient of f . However, in many scenarios and particularly in large-scale learning,
the gradient may be hard to evaluate or even intractable. Hence, one usually approx-
imates the gradient using zeroth or first order estimates (Ghadimi and Lan, 2013; Lian
et al., 2016). The former constructs pseudo-gradients by sampling some perturbed
points or using finite differences (Flaxman et al., 2005; Duchi et al., 2012; Nesterov and
Spokoiny, 2017; Shamir, 2017) (see Liu et al. (2020) for a recent survey and numer-
ous references) leading to biased gradient estimates while the latter often relies on data
sampling techniques (Needell et al., 2014; Papa et al., 2015) to obtain unbiased gradient
estimates. In both cases, a random gradient estimate is available at a cheap computing
cost and the method consists in moving along this estimate at each iteration. Early
seminal works on such stochastic algorithms include Robbins and Monro (1951); Kiefer
et al. (1952) and a recent review dealing with large scale learning problems is given in
Bottou et al. (2018).

Starting from an initial point θ0 ∈ Rd, the SGD algorithm is defined by the update rule

∀t ≥ 0, θt+1 = θt − γt+1gt

where gt ∈ Rd is a gradient estimate at θt (possibly biased) and (γt)t≥1 is some learning
rate sequence that should decrease throughout the algorithm. While the computation
of gt may be cheap, it still requires the computation of a vector of size d which may
be a critical issue in high-dimensional problems. To address this difficulty, we rely on
sampling well-chosen coordinates of the gradient estimate at each iteration.

We consider the framework of stochastic coordinate gradient descent (SCGD) which
modifies standard stochastic gradient descent methods by adding a selection step to
perform random coordinate descent. The SCGD algorithm is defined by the following
iteration  θ

(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

where ζt+1 is a random variable valued in J1, dK which selects a coordinate of the gradient
estimate. The distribution of ζt is called the coordinate sampling policy. Note that the
SCGD framework is very general as it contains as many methods as there are ways to
generate both the gradient estimate gt and the random variables ζt.
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Contributions. The main contributions are as follows

(i)(Theory) We show the almost-sure convergence of the SCGD iterates (θt)t∈N towards
stationary points in the sense that ∇f(θt)→ 0 almost surely as well as non-asymptotic
bounds on the optimality gap E[f(θt) − f?] where f? is a lower bound of f . The
working conditions are relatively weak as the function f is only required to be L-smooth
(classical in non-convex problems) and the stochastic gradients are possibly biased with
unbounded variance, using a growth condition related to expected smoothness (Gower
et al., 2019).

(ii)(Practice) We develop a new algorithm, called MUSKETEER, for MUltivariate
Stochastic Knowledge Extraction Through Exploration Exploitation Reinforcement. In
the image of the motto ’all for one and one for all’, this procedure belongs to the SCGD
framework with a particular design for the coordinate sampling policy. It compares the
value of all past gradient estimates gt to select a descent direction (all for one) and then
moves the current iterate according to the chosen direction (one for all). The heuristic
is the one of reinforcement learning in the sense that large gradient coordinates rep-
resent large decrease of the objective and can be seen as high rewards. The resulting
directions should be favored compared to the path associated to small gradient coordin-
ates. By updating the coordinate sampling policy, the algorithm is able to detect when
a direction becomes rewarding and when another one stops being engaging.

Related work. The authors of (Nutini et al., 2015) investigate the deterministic Gauss-
Southwell rule which consists of picking the coordinate with maximum gradient value.
In trusting large gradients, this rule looks like the one of MUSKETEER except that no
stochastic noise -neither in the gradient evaluation nor in the coordinate selection- is
present in their algorithm. In that aspect, our method differs from all the previous CD
studies (Loshchilov et al., 2011; Richtárik and Takáč, 2016a; Glasmachers and Dogan,
2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017) which rely
on ∇f . Among the SGD literature, compression and sparsification methods (Alistarh
et al., 2017; Wangni et al., 2018) were developed for communication efficiency. The
former use compression operators to select a few components of the gradient estimates
at the cost of full gradient computation and coordinate sorting. The latter use a gradient
estimate g which is sparsified using probability weights to reach an unbiased estimate of
the gradient. In contrast, the SCGD framework allows the gradient to be biased as no
importance re-weighting is performed. Note also that, to cover zeroth-order methods,
the gradient estimate itself gt is allowed to be biased as for instance in the recent study
of Ajalloeian and Stich (2020). The proofs of the asymptotic convergence results are
based on ideas from Bertsekas and Tsitsiklis (2000) with particular extensions in the
framework of biased gradient estimates. Finally, the non-asymptotic bounds are inspired
from Moulines and Bach (2011) where the authors provide a non-asymptotic analysis
for standard SGD.

Outline. Section 6.2 introduces the mathematical framework with the different sampling
strategies and Section 6.3 contains our main theoretical results. Section 6.4 is dedic-
ated to MUSKETEER algorithm and a numerical analysis is performed in Section 6.5.
Proofs, technical details and additional experiments may be found in auxiliary sections.
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6.2 Mathematical Background

6.2.1 Notation and problem set-up

Notation. Denote by (e1, . . . , ed) the canonical basis of Rd and for k ∈ J1, dK, C(k) =
eke

T
k ∈ {0, 1}d×d is a diagonal matrix with a 1 in position k. ‖ · ‖2 and ‖ · ‖∞ are

respectively the Euclidian and infinity norm. For any u ∈ Rd, u(k) is the k-th coordinate
of u; 1A is the indicator function of the event A, i.e., 1A = 1 is A is true and 1A =
0 otherwise. Denote by U(J1, dK) the uniform distribution over J1, dK. For a vector
of probability weights p = (p(1), . . . , p(d)) with

∑d
k=1 p

(k) = 1, denote by Q(p) the
associated categorical distribution.

Problem set-up. Consider the classical stochastic optimization problem

min
θ∈Rd

{
f(θ) = Eξ[f(θ, ξ)]

}
,

where ξ is a random variable. In many scenarios, e.g. empirical risk minimization
or reinforcement learning, the gradient ∇f cannot be computed in a reasonable time
and only a stochastic version, possibly biased, is available. The distribution of ξ is
called the data sampling policy as it refers to the sampling mechanism in the empirical
risk minimization (ERM) framework. This running example is presented below and
shall be considered throughout the paper. Other classical optimization problems where
stochastic gradients are available include adaptive importance sampling (Delyon and
Portier, 2018), policy gradient methods (Hanna et al., 2019) and optimal transport
(Genevay et al., 2016).

Running Example (ERM). Given some observed data z1, . . . , zn ⊂ Z and a loss
function ` : Rd × Z → R, the objective function f approximates the risk Ez[`(θ, z)] by
the so-called empirical risk defined as

∀θ ∈ Rd, f(θ) =
1

n

n∑
i=1

`(θ, zi).

Evaluating f or its gradient is prohibitive in large scale machine learning as it requires
seeing all the samples in the dataset. Instead, after picking at random an index j = ξ,
uniformly distributed over J1, nK, the k-th coordinate of the gradient estimate may
be computed as (`(θ + hek, zj) − `(θ, zj))/h. When differentiation is possible, another
gradient estimate is offered by∇θ`(θ, zj). These two gradient estimates are of a different
nature: the first one, often referred to as zeroth-order estimate, is biased whereas the
second one, often referred to as first order estimate, is unbiased.

6.2.2 Gradient estimates

Throughout the paper, the gradient generator is denoted by gh(·, ξ) where the para-
meter h ≥ 0 represents the underlying bias as claimed in the next assumption. This
level of generality allows to include zeroth-order estimate as discussed right after the
assumption.

Assumption 6.1 (Biased gradient). There exists a constant c ≥ 0 such that:

∀h > 0, ∀θ ∈ Rd, ‖Eξ[gh(θ, ξ)]−∇f(θ)‖2 ≤ ch.
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This general assumption enables to work with classical unbiased gradient in the frame-
work of first order estimates by taking c = 0. Furthermore, Assumption 6.1 is satisfied
for the following well-spread zeroth-order estimates.

Example 1 (smoothing). The smoothed gradient estimate (Nesterov and Spokoiny,
2017) is given for all θ ∈ Rd by gh(θ, ξ) = h−1[f(θ + hU, ξ) − f(θ, ξ)]U where U is
a standard Gaussian vector (independent from ξ). An alternative version consists in
taking U uniformly distributed over the unit sphere.

Example 2 (finite differences). The finite differences gradient estimate is given for
all θ ∈ Rd by gh(θ, ξ) =

∑d
k=1 gh(θ, ξ)(k)ek where for all k = 1, . . . , p the coordinates

are gh(θ, ξ)(k) = h−1[f(θ + hek, ξ)− f(θ, ξ)].

Both previous examples share the following general property. There exists a probability
measure ν satisfying

∫
Rd xx

>ν(dx) = Id such that,

∀h > 0, θ ∈ Rd, Eξ[gh(θ, ξ)] =

∫
Rd
x

{
f(θ + hx)− f(θ)

h

}
ν(dx). (6.1)

The smoothed gradient estimate is recovered when ν is the standard Gaussian measure
and taking ν =

∑d
k=1 δek/d covers the finite differences estimate. As detailed in the

next subsection, an interesting framework is to use a measure ν that evolves through
time and put different weights on the different directions. As stated in the following
proposition, when the function f is L-smooth, i.e., ∇f is L-Lipschitz, the bias of the
gradient estimate (6.1) is of order h and thus satisfies Assumption 6.1.

Proposition 6.2. Under Eq. (6.1), if f is L-smooth, then Assumption 6.1 holds true
with c =

√
CL/2 where C =

∫
Rd ‖x‖62ν(dx) <∞.

The previous proposition allows us to cover the two methods: smoothing and finite
difference. Note that for the latter, the constant C is equal to 1.

6.2.3 Coordinate Sampling Policy

Let (ξt)t≥1 be a sequence of independent and identically distributed random variables.
Let (γt)t≥1 be a sequence of positive numbers called learning rates. Let (ht)t≥1 be a se-
quence of positive numbers called smoothing parameters. Denote by gt = ght+1(θt, ξt+1)
the gradient estimate at time t. The classical SGD update rule is given by

θt+1 = θt − γt+1gt, t ≥ 0, (6.2)

For any t ∈ N,Ft = σ(θ0, θ1, . . . , θt) is the σ-field associated to the sequence of iterates
(θt)t∈N.

The framework of SCGD is introduced thanks to random coordinate sampling. At
each step, only one coordinate of the parameter of interest is updated. This coordinate
is selected at random according to a distribution valued in J1, dK which is allowed to
evolve during the algorithm. The iteration of the coordinate sampling algorithm is given
coordinate-wise by  θ

(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

(6.3)
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where ζt+1 is a random variable valued in J1, dK. Hence ζt+1 selects the coordinate along
which the t-th descent shall proceed. The distribution of ζt+1 is called the coordinate
sampling policy as opposed to the data sampling policy governed by the random variable
ξt+1. The distribution of ζt+1 is characterized by the probability weights vector pt =

(p
(1)
t , . . . , p

(d)
t ) defined by

p
(k)
t = P(ζt+1 = k|Ft), k ∈ J1, dK.

The categorical distribution on J1, dK associated to pt is denoted by Q(pt), i.e., condi-
tionally to Ft, we have:

∀t ≥ 0, ζt+1 ∼ Q(pt) with pt = (p
(1)
t , . . . , p

(d)
t ).

Running Example (ERM). The CD algorithm defined by Equation (6.3) can easily
be applied in the ERM framework. The coordinate sampling strategy ζ ∼ Q(pt) com-
bined with the uniform data sampling ξ ∼ U(J1, nK) leads to θ(ζ)

t+1 = θ
(ζ)
t −(γt+1/ht+1)(`(θt+

ht+1eζ , zξ)− `(θt, zξ)) (zeroth-order) and θ(ζ)
t+1 = θ

(ζ)
t − γt+1∂θζ`(θt, zξ) (first order).

Given the past, the data sampling and coordinate sampling draws should not be related.

Assumption 6.3 (Conditional Independence). ζt+1 is independent from ξt+1 condi-
tionally on Ft.

This assumption is natural in the ERM context as in most cases there is no particular
link between the sample indexes and the coordinates. Futhermore, the independence
property plays an important role in our proofs. The SCGD algorithm defined in (6.3)
is simply written with matrix notation as

θt+1 = θt − γt+1C(ζt+1)gt,

where C(k) = eke
>
k ∈ Rd×d has its entries equal to 0 except the (k, k) which is 1.

Observe that the distribution of the random matrix C(ζt+1) is fully characterized by
the matrix

Ct = E[C(ζt+1)|Ft] = Diag(p
(1)
t , . . . , p

(d)
t ).

Note that under Assumptions 6.1 and 6.3, the average move of SCGD follows a biased
gradient direction. For instance, when c = 0 the average move of SCGD is given by
E[θt+1 − θt|Ft] = −γt+1Ct∇f(θt) which bears resemblance to the Conditioned-SGD
iteration (Bottou et al., 2018, Section 6.2). Such preprocessing is meant to refine the
gradient direction through a matrix mulitplication for a better understanding of the
underlying structure of the data. A natural question rises on the choice of the matrix
Ct among all the possible coordinate sampling distributions.

The SCGD framework is efficient as soon as one can compute each coordinate of the
gradient estimate. This is the case for zeroth-order (ZO) optimization with finite differ-
ences where the full gradient estimate uses d partial derivatives, each of them requiring
two queries of the objective function. SCGD reduces this cost to a single coordinate
update.

Remark 6.4 (Batch coordinates). A natural extension is to consider subsets of co-
ordinates, a.k.a. block-coordinate descent. Note that this framework is covered by our
approach as the proofs can be extended by summing different matrices C(ζ). Similarly
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to mini-batching (Gower et al., 2019), one can consider multiple draws for the coordin-
ates that are to be updated. The selecting random matrix C(ζt+1) may be replaced by
a diagonal matrix with m(< d) non-zero coefficients. For that matter, it is enough to
have multiple draws from the categorical distribution Q(pt).

Remark 6.5 (Parallelization). Several families of communication-reduction methods
such as quantization (Alistarh et al., 2017), gradient sparsification (Wangni et al., 2018;
Alistarh et al., 2018) or local-SGD (Patel and Dieuleveut, 2019) have been proposed
to reduce the overheads of distribution. The SCGD framework can benefit from such
data parallelization techniques. When a fixed number m of machines is available, it
is then possible to gain computational acceleration by drawing m times the coordinate
distribution Q(pt) on the different machines and then transmit the batch of selected
coordinates to the workers.

6.2.4 Adaptive and Unbiased Policies

To understand more clearly the differences between SGD and SCGD, we shall rely
on a more general iteration scheme. This framework is useful to compare different
algorithms in terms of adaptive policies and unbiased estimates. Consider the following
general update rule

θt+1 = θt − γt+1h(θt, ωt+1), t ≥ 0 (6.4)

where h is a gradient generator and (ωt)t≥1 is a sequence of random variables which are
not necessarily independent nor identically distributed. Observe that both frameworks,
SGD and SCGD, are instances of (6.4). For example, the randomness of SCGD can be
expressed through ωt = (ξt, ζt).

Definition 6.6 (Policy). Denote by Pt the distribution of ωt+1 given Ft. The sequence
(Pt)t≥0 is called the policy of the stochastic algorithm.

The policy of a stochastic algorithm is an important tool as it determines the randomness
introduced over time. On the one hand, it provides insights on the expected behavior
of the algorithm. On the other hand, it measures the ability to adapt through the
iterations.

Definition 6.7 (Unbiased and Adaptive). A policy (Pt)t≥0 is called "unbiased" if:
∀θ ∈ Rd, t ≥ 0,

∫
h(θ, ω)Pt(dω) ∝ ∇f(θ). It is called "naive" if Pt does not change with

t, otherwise it is adaptive.

With these definitions in mind, it is clear that the SGD policy (6.2) under Assumption
6.1 with c = 0 is unbiased and naive, and so does the policy induced by first order
gradient in ERM.

Within the framework of SCGD, a policy cannot be unbiased and adaptive as claimed
in the next proposition.

Proposition 6.8 (Unbiased coordinate policy). Suppose that Assumption 6.1 is fulfilled
with c = 0 and that Span{∇f(θ) : θ ∈ Rd} is dense in Rd, then the only unbiased
coordinate sampling policy is Ct = Id/d. It corresponds to uniform coordinate sampling.
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When working under Assumption 6.1 with c = 0, SCGD with uniform coordinate
sampling is unbiased and hence similar to SGD. This is confirmed in the numerical
experiments (Appendix 6.E and 6.G). However, a uniform sampling does not use any
available information to favor coordinates among others. Thus, the approach promoted
in the paper is different: past gradient values are used to update the probability weights
of Ct. The resulting method is an adaptive algorithm which is biased.

Remark 6.9 (Importance Coordinate Sampling). Note that the general framework
defined above includes the particular case where the coordinates are selected according to
ζ then reweighted as proposed in (Wangni et al., 2018). This corresponds to the choice
h(θ, ωt+1) = C−1

t C(ζt+1)g(θ, ξt+1). Even though such a policy is adaptive and unbiased,
it turns out -from our numerical experiments (Appendix 6.F)- that it behaves similarly
to the uniform version and is therefore sub-optimal.

6.3 Main Theoretical Results

In a general non-convex setting, we investigate the almost sure convergence of SCGD al-
gorithms as well as non-asymptotic bounds. The following assumptions on the objective
function f are classical among the SGD literature.

Assumption 6.10 (Lower bound). There exists f? ∈ R such that: ∀θ ∈ Rd, f(θ) ≥ f?.

Assumption 6.11 (Smoothness). The objective f : Rd → R is twicely continuously
differentiable and L-smooth: ∀θ, η ∈ Rd, ‖∇f(θ)−∇f(η)‖2 ≤ L‖θ − η‖2.

Remark 6.12 (Coordinate smoothness). Note that this assumption may be refined
using the notion of coordinate smoothness with parameters (L1, . . . , Lp) where for all
k = 1, . . . , d, ∂kf(·) is Lk-Lipschitz, i.e., for all θ ∈ Rd, δ ∈ R, |∂kf(θ+δek)−∂kf(θ)| ≤
Lk|δ|. Within this framework, small values of Lk are associated to a high degree of
smoothness in the k-th direction. Conversely, large values of Lk are associated to more
difficult minimization problems along that direction. Intuitively, it requires more energy
to minimize f along these directions and one should assign more sampling probability
on coordinates with larger Lk (see Proposition 6.32 in the appendix).

When dealing with stochastic algorithms, the stochastic noise associated to the gradient
estimates is the keystone for the theoretical analysis. To treat this term, we consider a
weak growth condition, related to the notion of expected smoothness as introduced in
Gower et al. (2019) (see also Gazagnadou et al. (2019); Gower et al. (2021)).

Assumption 6.13 (Growth condition). With probability 1, there exist 0 ≤ L, σ2 <∞
such that for all θ ∈ Rd and h > 0, we have: E

[
‖gh(θ, ξ)‖22

]
≤ 2L

(
f(θ)− f?

)
+ σ2.

This bound on the stochastic noise E
[
‖g(θ, ξ)‖22

]
is the key to prove the almost sure

convergence of the algorithm. Note that Assumption 6.13 is weak as it allows the noise
to be large when the iterate is far away from the optimal point. In that aspect, it
contrasts with uniform bounds of the form E

[
‖g(θ, ξ)‖22

]
≤ σ2 for some deterministic

σ2 > 0 (Nemirovski and Yudin, 1983; Nemirovski et al., 2009; Shalev-Shwartz et al.,
2011). Observe that such uniform bound is recovered by taking L = 0 in Assumption
6.13 but cannot hold when the objective function f is strongly convex (Nguyen et al.,
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2018). The standard Robbins-Monro condition,
∑

t≥1 γt = +∞ and
∑

t≥1 γ
2
t < +∞ is

required in the next theorem which serves as a starting point for a comparison between
SGD and SCGD methods.

Theorem 6.14 (Almost sure convergence of biased SGD). Suppose that Assumptions
6.1 to 6.13 are fulfilled and let (θt)t∈N be the sequence of iterates defined by (6.2). If the
learning rates satisfy the Robbins-Monro condition and h2

t = O(γt) then ∇f(θt) → 0
a.s. when t→ +∞.

The SCGD framework is very general in the sense that it covers as many algorithms
as there are ways to generate both the gradient estimate gt and the random variables
ζt that select the coordinates. The next theorem provides the almost sure convergence
of particular instances of SCGD algorithms where the true gradient is known and used
to define the coordinate sampling policy. It recovers the deterministic Gauss-Southwell
rule (Nutini et al., 2015) and extends it to the case where the coordinate weights are
proportional to any norm of the current gradient ∇f(θt).

Theorem 6.15 (Almost sure convergence of particular SCGD). Suppose that Assump-
tions 6.1 to 6.13 are fulfilled and let (θt)t∈N be the sequence of iterates defined by (6.3),
i.e., θt+1 = θt−γt+1C(ζt+1)gt. If the learning rates satisfy the standard Robbins-Monro
and h2

t = O(γt), then the two following results hold:

• (a) (maximum gradient) if the selected coordinate follows the maximum coordinate
of the gradient ζt+1 = arg maxk=1,...,d |∂kf(θt)| then ∇f(θt) → 0 almost surely as
t→ +∞.

• (b) (gradient weights) if the selection weights are proportional to the gradient norm
Ct ∝ (|∇kf(θt)|q)1≤k≤d with q > 0 then ∇f(θt)→ 0 almost surely as t→ +∞.

Remark 6.16 (Sparse Gradient). In light of the sparsity assumption used in Wang
et al. (2018)(Assumption A5), note that SCGD methods with weights proportional to
the gradient coordinates can outperform uniform coordinate sampling as they only select
the relevant directions throughout the procedure. Such sparsity framework happens for
instance in hyper-parameter tuning problems of learning systems: usually the perform-
ance of the system is insensitive to some hyper-parameters which implies the sparsity of
the gradients.

In the general case, one may not have access to the true gradient and can only rely
on the estimate gt. Another assumption is therefore needed on the weights of the
coordinate sampling policy to ensure that all the coordinates of interest are selected
throughout the algorithm. The success of the proposed approach relies on the following
restrictions between the learning rates sequence (γt)t∈N and the weights of the coordinate
policy. This is formally stated in the following assumption, referred to as the extended
Robbins-Monro condition. Denote by βt+1 the smallest probability weight at time t,
i.e., βt+1 = min1≤k≤p p

(k)
t .

Assumption 6.17 (Extended Robbins-Monro condition). (γt)t≥1, (βt)t≥1 are positive
sequences such that

∑
t≥1 γtβt = +∞ and

∑
t≥1 γ

2
t < +∞.

From a practical point of view, those are not restrictive as they can always be imple-
mented by the user. In the case Ct = Id, this is simply the standard Robbins-Monro
condition.
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Theorem 6.18 (Almost sure convergence of general SCGD). Suppose that Assumptions
6.1 to 6.13 are fulfilled and let (θt)t∈N be the sequence of iterates defined by (6.3).
Assume moreover that the learning rates satisfy Assumption 6.17, h2

t = O(γt) and that
(βt) has a positive lower bound, then ∇f(θt)→ 0 almost surely as t→ +∞.

Remark 6.19 (Global convergence). Other convergence results concerning the sequence
of iterates towards global minimizers may be obtained by considering stronger assump-
tions including that f is coercive and the level sets of stationary points {θ,∇f(θ) =
0} ∩ {θ, f(θ) = y} are locally finite for every y ∈ Rd (see Gadat et al. (2018) or Ap-
pendix 6.B.1).

For a non-asymptotic analysis, we place ourselves under the Polyak–Łojasiewicz (PL)
condition (Polyak, 1963) which does not assume convexity of f but retains many prop-
erties of strong convexity, e.g. the fact that every stationary point is a global minimum.

Assumption 6.20 (PL inequality). There exists a constant µ > 0 such that:

∀θ ∈ Rd, ‖∇f(θ)‖22 ≥ 2µ
(
f(θ)− f?

)
.

Similarly to (Moulines and Bach, 2011), we introduce ϕα : R?+ → R, ϕα(t) = α−1(tα−1)
if α 6= 0 and ϕα(t) = log(t) if α = 0. Denoting δt = E[f(θt) − f?] and assuming that
βt+1 ≥ β > 0, one can obtain the recursion equation: δt ≤

(
1− 2µβγt + LLγ2

t

)
δt−1 +

γ2
t (σ2L+ c2)/2, leading to the following theorem on non-asymptotic bounds for SCGD

methods.

Theorem 6.21 (Non-asymptotic bounds). Suppose that Assumptions 6.1 to 6.20 are
fulfilled and let (θt)t∈N defined in (6.3) with γt = γt−α and ht =

√
γt. Denote by

δt = E[f(θt)− f?] and assume that there exists β > 0 such that βt+1 ≥ β > 0. We have
for α ∈ [0, 1]:
• If 0 ≤ α < 1 then

δt ≤ 2 exp
(

2LLγ2ϕ1−2α(t)
)

exp

(
−µβγ

4
t1−α

)(
δ0 +

σ2 + 2c2

2L

)
+
γ(σ2L+ 2c2)

µβ
t−α

• If α = 1 then

δt ≤ 2 exp
(
LLγ2

)(
δ0 +

σ2 + 2c2

2L

)
t−µβγ +

(
σ2L

2
+ c2

)
γ2ϕµβγ/2−1(t)t−µβγ/2

Remark 6.22 (Importance weights). The conclusion of Theorem 6.18 remains valid
for the update rule θt+1 = θt − γt+1WtC(ζt+1)gt where Wt is a diagonal matrix with
coefficients (w

(1)
t , . . . , w

(d)
t ) such that βt+1 = min1≤k≤dw

(k)
t p

(k)
t .

Remark 6.23 (Norms and constants). A quick inspection of the proof reveals that As-
sumptions 6.1 and 6.13 may be replaced respectively by: ∀θ ∈ Rd, h > 0, ‖Eξ[gh(θ, ξ)]−
∇f(θ)‖∞ ≤ ch and maxk=1,...,d E[g

(k)
h (θ, ξ)2] ≤ 2L(f(θ) − f(θ?)) + σ2. Since ‖ · ‖∞ ≤

‖ · ‖2 ≤
√
d‖ · ‖∞, the above constant scales more efficiently with the dimension.

Remark 6.24 (Rates). The optimal convergence rate in Theorem 6.21 is of order
O(1/t), obtained with α = 1 under the condition µβγ > 2. Such rate matches op-
timal asymptotic minimax rate for stochastic approximation (Agarwal et al., 2012) and
recovers the rate of (Ajalloeian and Stich, 2020) for SGD with biased gradients.
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6.4 MUSKETEER Algorithm

This section is dedicated to the algorithm MUSKETEER which performs an adaptive
reweighting of the coordinate sampling probabilities to leverage the data structure. Note
that this procedure is general and may be applied on top of any stochastic optimization
algorithm as soon as one has acces to coordinates of a gradient estimate. In view of
Theorem 6.15 and Remark 6.16, the main idea is to rely on a stochastic version of the
Gauss-southwell rule where the coordinates of the gradients are only available through
random estimates. The algorithm of interest alternates between two elementary blocks:
one for the exploration phase and another one for the exploitation phase.

Exploration phase. The goal of this phase is twofold: perform stochastic coordinate
gradient descent and collect information about the noisy directions of the gradient. The
former task is done using the current coordinate sampling distribution Q(pn) which is
fixed during this phase whereas the latter is computed through cumulative gains.

Exploitation phase. This phase is the cornerstone of the probability updates since
it exploits the knowledge of the cumulative gains to update the coordinate sampling
probability vector pn in order to sample more often the relevant directions of the op-
timization problem.

Algorithm 6.7 MUSKETEER

Require: θ0 ∈ Rd, N,T ∈ N, (γt)t≥0, (λn)n≥0, η > 0.
1. Initialize probability weights p0 = (1/d, . . . , 1/d) // start with uniform sampling
2. Initialize cumulative gains G0 = (0, . . . , 0)
3. for n = 0, . . . , N − 1 do
4. Initialize current gain G̃0 = (0, . . . , 0)
5. Run Explore(T, pn) // to compute current gain G̃T
6. Run Exploit(Gn, G̃T , λn, η) // to update weights pn+1

7. end for
8. Return final point θN

Consider a fixed iteration n ∈ N of MUSKETEER’s main loop. The exploration phase
may be seen as a multi-armed bandit problem (Auer et al., 2002a) where the arms are
the gradient coordinates for k ∈ J1, dK. At each time step t ∈ J1, T K, a coordinate ζ is
drawn according to Q(pn) and the relative gradient g(ζ)

t /p
(ζ)
n , representing the reward,

is observed. Note that an importance sampling strategy is used to produce an unbiased
estimate of the gradient when dealing with first order methods. The rewards are then
used to build cumulative gains G̃T which can be written in a vectorized form as an
empirical sum of the visited gradients during the exploration phase

∀k ∈ J1, dK, G̃
(k)
T =

1

T

T∑
t=1

g
(k)
t

p
(k)
n

1{ζt+1=k}, i.e. G̃T =
1

T

T∑
t=1

C−1
n C(ζt+1)g(θt, ξt+1).

(6.5)
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This average reduces the noise induced by the gradient estimates but may be sign-
dependent. Thus, one may rely on the following cumulative gains which are also con-
sidered in the experiments,

G̃T =
1

T

T∑
t=1

C−1
n C(ζt+1)|g(θt, ξt+1)| or G̃T =

1

T

T∑
t=1

C−1
n C(ζt+1)g(θt, ξt+1)2. (6.6)

Starting from G0 = (0, . . . , 0), the total gain Gn is updated in a online manner dur-
ing the exploitation phase using the update rule Gn+1 = Gn + (G̃T − Gn)/(n + 1).
Once the average cumulative gains are computed, one needs to normalize them to ob-
tain probability weights. Such normalization can be done by a natural `1-reweighting
or a softmax operator with a parameter η > 0. To cover both cases, consider the
normalizing function ϕ : Rd → Rd defined by ϕ(x)(k) = |x(k)|/∑p

j=1 |x(j)| or ϕ(x)(k) =

exp(η|x(k)|)/∑p
j=1 exp(η|x(j)|). Following the sequential approach of the EXP3 algorithm

(Auer et al., 2002a,b), the probability weights are updated through a mixture between
the normalized average cumulative gains ϕ(Gn) and a uniform distribution. The former
term takes into account the knowledge of the gains by exploiting the rewards while the
latter ensures exploration. Given a sequence (λn) ∈ [0, 1]N, we have for all k ∈ J1, dK,

p
(k)
n+1 = (1− λn)ϕ(Gn)(k) + λn

1

d
· (6.7)

Algorithm Explore(T, pn)

1. for t = 1, . . . , T do
2. Sample ζ ∼ Q(pn) and data ξ
3. Update θ(ζ)

t+1 = θ
(ζ)
t − γt+1g

(ζ)
h (θt, ξ)

4. Update gain G̃(ζ)
t+1 using (6.5) or (6.6)

5. end for
6. Return vector of gains G̃T

Algorithm Exploit(Gn, G̃T , λn, η)

1. Update total average gain Gn in an
online manner

2. Compute normalized gains ϕ(Gn)
with `1-weights or softmax

3. Update probability weights pn+1

with the mixture of Eq.(6.7)

In view of Theorem 6.18, the convergence of the sequence of iterates (θt)t∈N obtained
by MUSKETEER relies on the extended Robbins-Monro condition

∑
t≥1 βtγt = +∞

which is implied by the weaker condition
∑

t≥1 λtγt = +∞ for both `1 and softmax
weights. Observe that such a constraint is easily verified with either a fixed value
λt ≡ λ in the mixture update or more generally a slowly decreasing sequence, e.g.
λt = 1/ log(t). Since the gradients ∇f(θt) get smaller through the iterations, the
softmax weights get closer to 1/d. Thus, in the asymptotic regime, there is no favorable
directions among all the possible gradient directions. Hence, near the optimum, the
coordinate sampling policy of MUSKETEER with softmax weights is likely to treat all
the coordinates equally.

Theorem 6.25. (Weak convergence) Suppose that Assumptions 6.1 to 6.13 are fulfilled
and that the learning rates satisfy the standard Robbins-Monro condition. Then MUS-
KETEER’s coordinate policy (Q(pn))n∈N with softmax normalization converges weakly
to the uniform distribution, i.e., Q(pn) U(J1, dK) as n→ +∞.

Remark 6.26. (On the choice of λn and η) The uniform term in Equation (6.7) ensures
that all coordinates are eventually visited. Taking λn → 0 at a specific rate (which can be
derived from the proof) gives more importance to the cumulative gains. The parameter
η is fixed during the algorithm and may be tuned through an analysis of the regret (Auer
et al., 2002a).
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Remark 6.27. (Choice of Exploration Size T ) Choosing the value of T is a central
question known as the exploration-exploitation dilemma in reinforcement learning. As
T gets large, the exploration phase gathers more information leading to fewer but more
accurate updates. Conversely, with a small value of T , the probabilities get updated more
often, at the price of less collected information. Setting T = d ensures that, in average,
all the coordinates are visited once during the exploration phase. Nevertheless, a smaller
value T = b

√
dc is taken in the experiments and lead to great performance.

Remark 6.28. (Asymptotic behavior) The previous results highlight two main features
of MUSKETEER: the sequence of iterates converges almost surely and the coordinate
policy converges weakly. The latter point suggests that, in the long run, MUSKETEER
is similar to the uniform coordinate version of SCGD. However, the weak convergence
of the rescaled process (θt − θ?)/

√
γt remains an open question. In light of the link

between SCGD and Conditioned-SGD, discussed in Section 6.2.3, we conjecture that the
behavior of MUSKETEER with softmax weights is asymptotically equivalent to SCGD
with uniform policy. This is in line with the continuity property obtained in Leluc and
Portier (2020) within the Conditioned-SGD framework and relates to the convergence
of stochastic Newton algorithms (Boyer and Godichon-Baggioni, 2020).

6.5 Numerical Experiments

In this section, we empirically validate the SCGD framework by running MUSKET-
EER and competitors on synthetic and real datasets. First, we focus on regularized
regression problems adopting the data generation process of (Namkoong et al., 2017)ch
the covariates exhibit a certain block structure. Second, MUSKETEER is employed
to train different neural networks models on real datasets for multi-label classification
task. For ease of reproducibility, the code is available online1. Technical details and
additional results (with different data settings, normalization and hyperparameters) are
available in the appendix.

Methods in competition. The set of methods is restricted to zeroth-order methods.
This choice leads to an honest comparison based on the number of function queries.
MUSKETEER is implemented according to Section 6.4 with T = b

√
dc, softmax and

`1 normalization for the simulated and real data respectively. The different cumulat-
ive gains of Eq. (6.6) are considered, namely AVG, SQR and ABS for the gradients,
their squares or their absolute value respectively. The method FULL is the finite dif-
ference gradient estimate computed over all coordinates and UNIFORM stands for the
uniform coordinate sampling policy. NESTEROV implements the gaussian smooth-
ing of (Nesterov and Spokoiny, 2017). In all cases, the initial parameter is set to
θ0 = (0, . . . , 0)> ∈ Rd and the optimal SGD learning rate of the form γk = γ/(k + k0)
is used.

Regularized linear models. We apply the Empirical Risk Minimization paradigm
to regularized linear problems. Given a data matrix X = (xi,j) ∈ Rn×d, labels y ∈ Rn
or {−1,+1}n and a regularization parameter µ > 0, the Ridge regression objective is

1https://github.com/RemiLELUC/SCGD-Musketeer
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defined by

f(θ) =
1

2n

n∑
i=1

(yi −
d∑
j=1

xi,jθj)
2 +

µ

2
‖θ‖22

and the `2-regularized logistic regression is given by

f(θ) =
1

n

n∑
i=1

log(1 + exp(−yi
d∑
j=1

xi,jθj)) + µ‖θ‖22.

Similarly to (Namkoong et al., 2017), we endow the data matrix X with a block struc-
ture. The columns are drawn as X[:, k] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J1, dK.

The parameters are set to n = 10, 000 samples in dimension d = 250 with an explora-
tion size equal to T = b

√
dc = 15. The regularization parameter is set to the classical

value µ = 1/n. Figure 6.1 provides the graphs of the optimaliy gap t 7→ f(θt) − f(θ?)
averaged over 20 independent simulations for different values of α ∈ {2; 5; 10}. First,
note that the uniform sampling strategy shows similar performance to the classical full
gradient estimate. Besides, MUSKETEER with average or absolute gains shows the
best performance in all configurations. Greater values of α, i.e. stronger block struc-
ture, improve our relative performance with respect to the other methods as shown by
Figures 6.1b and 6.1d.
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(a) Ridge α = 5
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(b) Ridge α = 5
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(c) Logistic α = 2
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(d) Logistic α = 5

Figure 6.1 – [f(θt)−f(θ?)] for Ridge and Logistic on Synthetic data with different block
structures.

Neural Networks. We focus on the training of neural networks within the framework
of multi-label classification. The datasets in the experiments are popular publicly avail-
able deep learning datasets: MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al.,
2017). Given an image, the goal is to predict its label among ten classes. The neural
architecture is based on linear layers in dimension d = 55, 050 with T = 234. Figure
6.2 shows the means and standard deviations of the training losses of the different ZO
methods averaged over 10 independent runs. Interestingly, the performance of MUS-
KETEER also benefit from the adaptive structure in terms on accuracy of the test set
(see Figures 6.2c and 6.2d). This allows to quantify the statistical gain brought by
MUSKETEER over standard ZO methods.
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(a) Mnist
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(b) Fashion
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(c) Mnist
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(d) Fashion

Figure 6.2 – Evolution of Training Loss (a),(b) and Test Accuracy (c),(d).

6.A Technical Proofs

6.A.1 Proof of Proposition 6.2

Under Eq.(6.1), using Jensen inequality, we find

‖Eξ[gµ(θ, ξ)]−∇f(θ)‖22 =

∥∥∥∥∥∥
∫
Rd
x

(
f(θ + µx)− f(θ)

µ
− x>∇f(θ)

)
ν(dx)

∥∥∥∥∥∥
2

2

≤
∫
Rd
‖x‖22

(
f(θ + µx)− f(θ)

µ
− x>∇f(θ)

)2

ν(dx)

= µ−2

∫
Rp
‖x‖22

(
f(θ + µx)− f(θ)− µx>∇f(θ)

)2
ν(dx)

Using the quadratic bound of L-smooth functions, we obtain

‖Eξ[gµ(θ, ξ)]−∇f(θ)‖22 ≤ µ−2L
2

4

∫
‖x‖22‖µx‖42ν(dx) = µ2L

2

4

∫
‖x‖62ν(dx).

6.A.2 Deterministic results for convergence of gradients

In this section we provide results ensuring the convergence to 0 of several gradient
descent algorithms. They are meant to be high-level as they may be applied in different
situations and deterministic because no randomness is measured but only an inclusion
of events is considered. The results are key in the proofs.

Lemma 6.29 (Deterministic result 1). Let f : Rd → R be a L-smooth function, (γt)t≥1

a positive sequence of learning rates such that
∑

t γt = ∞. Let (θt) a random sequence
obtained by the SGD update rule θt+1 = θt − γt+1gt. Let ω ∈ Ω such that the following
limits exist:

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥1

γt(gt−1(ω)−∇f(θt−1(ω))) <∞

then ∇f(θt(ω))→ 0 as t→∞.

The next Lemma is the equivalent of Lemma 6.29 for a specific procedure which, at
each iteration, moves only one well-chosen coordinate: the one with highest gradient
value.
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Lemma 6.30 (Deterministic result 2). Let f : Rd → R be a L-smooth function (with
respect to | · |∞), (γt)t≥1 a positive sequence of learning rates such that

∑
t γt =∞. Let

(θt) a random sequence obtained by the SCGD update rule θt+1 = θt − γt+1C(ζt+1)gt
with ζt+1 = arg maxk=1,...,d |∂kf(θt)|. Let ω ∈ Ω such that the following limits exist:

(i)
∑
t≥0

γt+1|∇f(θt(ω)|2∞ <∞ (ii)
∑
t≥1

γtC(ζt)(gt−1(ω)−∇f(θt−1(ω))) <∞,

then ∇f(θt(ω))→ 0 as t→∞.

We conclude with one last result which is valid for procedure where only one coordinate
(chosen randomly) is moved at each iteration.

Lemma 6.31 (Deterministic result 3). Let f : Rd → R be a L-smooth function, (γt)t≥1

a positive sequence of learning rates such that
∑

t γt = ∞. Let (θt) a random sequence
obtained by the SCGD update rule θt+1 = θt − γt+1C(ζt+1)gt where ζt+1 ∼ Q(pt). Let
ω ∈ Ω such that the following limits exist:

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥1

γt(C(ζt(ω))gt−1(ω)− Ct−1∇f(θt−1(ω))) <∞

then ∇f(θt(ω))→ 0 as t→∞.

Proof of Lemma 6.29. The proof (and in particular the reasoning by contradiction)
is inspired from the proof of Proposition 1 in Bertsekas and Tsitsiklis (2000). For ease
of notation we omit the ω in the proof. Note that condition (i) along with

∑
t γt = ∞

implie that lim inft ‖∇f(θt)‖ = 0. Now, by contradiction, let ε > 0 and assume that

lim sup
t
‖∇f(θt)‖ > ε

We have that there is infinitely many t such that ‖∇f(θt)‖ < ε/2 and also infinitely
many t such that ‖∇f(θt)‖ > ε. It follows that there is infinitely many crossings
between the sets {t ∈ N : ‖∇f(θt)‖ < ε/2} and {t ∈ N : ‖∇f(θt)‖ > ε}. A crossing is a
collection of indexes Ik = {Lk, Lk+1, . . . , Uk−1} with Lk ≤ Uk (Ik = ∅ when Lk = Uk)
such that for all t ∈ Ik,

‖∇f(θLk−1)‖ < ε/2 ≤ ‖∇f(θt)‖ ≤ ε < ‖∇f(θUk)‖.

Define the following partial Cauchy sequence Rk =
∑Uk

t=Lk
γt(gt−1−∇f(θt−1)) and note

that condition (ii) implies that Rk → 0 as k →∞. For all k ≥ 1,

ε/2 ≤ ‖∇f(θUk)‖2 − ‖∇f(θLk−1)‖2
≤ ‖∇f(θUk)−∇f(θLk−1)‖2
≤ L‖θUk − θLk−1‖2,
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where we use that ∇f is L-Lipschitz. Then using the update rule θt − θt−1 = −γtgt−1,
we have by sum

ε/2 ≤ L‖
Uk∑
t=Lk

θt − θt−1‖2 = L‖
Uk∑
t=Lk

γtgt−1‖2

≤ L‖
Uk∑
t=Lk

γt∇f(θt−1)‖2 + L‖
Uk∑
t=Lk

γt(gt−1 −∇f(θt−1))‖2

≤ L
Uk∑
t=Lk

γt‖∇f(θt−1)‖2 + L‖Rk‖2

Since in the previous equation ‖∇f(θt−1)‖2 > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γt‖∇f(θt−1)‖22 + (ε/2)L‖Rk‖2

But since
∑

t≥0 γt+1‖∇f(θt)‖2 is finite and limk Rk = 0, the previous upper bound goes
to 0 and implies a contradiction.

Proof of Lemma 6.30. For ease of readability, the variable ω is removed dur-
ing the proof. By assumption, |∇ζt+1f(θt)| = |∇f(θt)|∞. Hence, (i) yields that
lim inft |∇f(θt)|∞ = 0. The proof is by contradiction. Suppose that lim supt |∇f(θt)|∞ >
ε. There exists a sequence of crossings between the sets {t ∈ N : |∇f(θt)|∞ < ε/2}
and {t ∈ N : |∇f(θt)|∞ > ε}. Formally, there is a collection of indexes Ik = {Lk, Lk +
1, . . . , Uk − 1} with Lk ≤ Uk (Ik = ∅ when Lk = Uk) such that for all t ∈ Ik,

|∇f(θLk−1)|∞ < ε/2 ≤ |∇f(θt)|∞ ≤ ε < |∇f(θUk)|∞.

Define

Rk =

Uk∑
t=Lk

γtCζt(gt−1 −∇f(θt−1))

and use that ∇f is L-smooth to get

(ε/2) ≤ |∇f(θUk)|∞ − |∇f(θLk−1)|∞
≤ L|θUk − θLk−1|∞

≤ L|
Uk∑
t=Lk

γtCζt∇f(θt−1)|∞ + L

∣∣∣∣∣∣∣
Uk∑
t=Lk

γtCζt(gt−1 −∇f(θt−1))

∣∣∣∣∣∣∣
∞

= L|
Uk∑
t=Lk

γtCζt∇f(θt−1)|∞ + L|Rk|∞

≤ L
Uk∑
t=Lk

γt|Cζt∇f(θt−1)|∞ + L|Rk|∞

Noting that |Cζt∇f(θt−1)|∞ = |∇f(θt−1)|∞ > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γt|∇f(θt−1)|2∞ + (ε/2)L|Rk|∞.
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As the previous upper bound converges to 0 by assumption we reach a contradiction.

Proof of Lemma 6.31. Following the proof of Lemma 6.29, we assume that lim supt ‖∇f(θt)‖2 >
ε and consider the same collection of crossing indexes (Lk, Uk) to obtain that

ε/2 ≤ L
Uk∑
t=Lk

γt‖Ct−1∇f(θt−1)‖2 + L‖Rk‖2

where Rk =
∑Uk

t=Lk
γt(C(ζt)gt−1−Ct−1∇f(θt−1)) is a sequence that goes to 0. Since in

the previous equation Ct−1 � Id and ‖∇f(θt−1)‖2 > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γt‖∇f(θt−1)‖22 + (ε/2)L‖Rk‖2

and a contradiction follows as the above term goes to 0.

6.A.3 Proof of Theorem 6.14

The proof follows from applying Lemma 6.29 in which two conditions are required:

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥1

γt(gt−1(ω)−∇f(θt−1(ω))) <∞.

Proof of condition (i). We classically rely on the Robbins-Siegmund Theorem (The-

orem 6.33 in Section 6.B.4). Since θ 7→ f(θ) is L-smooth, we have the quadratic bound
f(η) ≤ f(θ) + 〈∇f(θ), η− θ〉+ L

2 ‖η− θ‖22. Using the update rule θt+1 = θt− γt+1gt, we
get

f(θt+1) ≤ f(θt) + 〈∇f(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖22

= f(θt)− γt+1〈∇f(θt), gt〉+
L

2
γ2
t+1‖gt‖22.

Using that

2〈a, b〉 = ‖a‖22 + ‖b‖22 − ‖a− b‖22 ≥ ‖a‖22 − ‖a− b‖22
and taking the conditional expectation, we get

Et
[
f(θt+1)

]
≤ f(θt)− γt+1〈∇f(θt),Et[gt]〉+

L

2
γ2
t+1Et[‖gt‖22]

≤ f(θt)−
γt+1

2
‖∇f(θt)‖22 +

γt+1

2
‖∇f(θt)− Et[gt]‖22 +

L

2
γ2
t+1Et[‖gt‖22]

On the one hand, using Assumption 6.1, we obtain

‖∇f(θt)− Et[gt]‖22 ≤ h2
t+1c

2

On the other hand, using Assumption 6.13, there exist 0 ≤ L, σ2 <∞ such that almost
surely

∀t ∈ N, Et
[
‖gt‖22

]
= Eξ

[
‖g(θt, ξ)‖22

]
≤ 2L

(
f(θt)− f?

)
+ σ2.
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Injecting −f? on both sides, it follows that

Et
[
f(θt+1)− f?

]
≤ (1 + LLγ2

t+1)(f(θt)− f?)−
γt+1

2
‖∇f(θt)‖22 + γt+1h

2
t+1c

2 +
L

2
γ2
t+1σ

2

Introduce Vt = f(θt)− f?,Wt = γt+1‖∇f(θt)‖22/2, at = LLγ2
t+1 and bt = c2h2

t+1γt+1 +
(L/2)γ2

t+1σ
2. These four random sequences are non-negative Ft-measurable sequences

with
∑

t at < ∞ and
∑

t bt < ∞ almost surely. We have: ∀t ∈ N,E
[
Vt+1|Ft

]
≤

(1 + at)Vt −Wt + bt. We can apply Robbins-Siegmund Theorem to have

(a)
∑
t≥0

Wt <∞ a.s. (b) Vt
a.s.−→ V∞,E

[
V∞
]
<∞. (c) sup

t≥0
E
[
Vt
]
<∞.

Therefore we have a.s. that (f(θt)) converges to a finite value f∞ ∈ L1 and
∑

t≥0 γt+1‖∇f(θt)‖22 <
+∞. There exists an event Ω0 ⊂ Ω such that, P(Ω0) = 1 and for every ω ∈ Ω0,
limt f(θt(ω)) <∞ and

∑
t≥0 γt+1‖∇f(θt(ω))‖22 <∞.

Proof of condition (ii). We place ourselves on the event Ω0 and omit the ω in
notation for ease of clarity. First, since lim supt f(θt) < ∞, we have that (f(θt))

is bounded almost surely. It yields, in virtue of Assumption 6.13 that Et
[
‖gt‖22

]
≤

2L
(
f(θt)− f?

)
+σ2 ≤ C where C is a some finite random variable and the latter holds

almost surely. It then follows that, almost surely
∑

t≥1 γ
2
t Et[‖gt‖2] ≤ C

∑
t≥1 γ

2
t < ∞.

Now, observe that condition (ii) is satisfied as soon as

(a) ‖
∑
t≥0

γt+1(gt − Et[gt])‖2 <∞ and (b) ‖
∑
t≥0

γt+1(Et[gt]−∇f(θt))‖2 <∞.

Equation (a) involves martingale increments whose quadratic variation satisfies∑
t≥0

γ2
t+1Et[‖gt − Et[gt]‖2] ≤

∑
t≥0

γ2
t+1Et[‖gt‖2] <∞,

which ensures that
∑

t≥0 γt+1(gt−Et[gt]) <∞ a.s. in virtue of Theorem 2.17 in ?. The
term in equation (b) is bounded using assumption 6.1 and we have∑

t≥0

γ2
t+1‖Et[gt]−∇f(θt)‖22 ≤ c2

∑
t≥0

γ2
t+1h

2
t <∞,

which finally proves

(ii)
∑
t≥0

γt+1(gt(ω)−∇f(θt(ω))) <∞

and gives, in virtue of Lemma 6.29 the conclusion ∇f(θt)→ 0 almost surely as t→ +∞.

6.A.4 Proof of Theorem 6.15

Part (a) Maximum gradient. The proof follows from applying Lemma 6.30 in which two
conditions are required:

(i)
∑
t≥0

γt+1|∇f(θt(ω)|2∞ <∞ (ii)
∑
t≥0

γt+1C(ζt+1)(gt(ω)−∇f(θt(ω))) <∞.
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Proof of condition (i). Again, we rely on the quadratic bound

f(θt+1) ≤ f(θt)− γt+1〈∇f(θt), C(ζt+1)gt〉+
L

2
γ2
t+1‖C(ζt+1)gt‖22

= f(θt)− γt+1∇ζt+1f(θt)g
(ζt+1)
t +

L

2
γ2
t+1g

(ζt+1)2
t

Taking the expectation with respect to ξt+1 and using Assumption 6.3, we find

Eξt+1 [f(θt+1)− f?] ≤ f(θt)− f? − γt+1∇ζt+1f(θt)g̃
(ζt+1)
t +

L

2
γ2
t+1Eξt+1 [g

(ζt+1)2
t ]

where g̃t = Eξ[ght+1(θt, ξ)]. We use the inequality 2ab ≥ a2 − (a− b)2 and Assumption
6.1 to get

2∇ζt+1f(θt)g̃
(ζt+1)
t ≥ ∇ζt+1f(θt)

2 − (∇ζt+1f(θt)− g̃(ζt+1)
t )2

≥ ∇ζt+1f(θt)
2 − max

k=1,...,d
(∂kf(θt)− g̃(k)

t )2

≥ ∇ζt+1f(θt)
2 − c2h2

t+1

We also have, invoking Assumption 6.13, that

Eξt+1 [g
(ζt+1)2
t ] ≤ max

k=1,...,d
Eξt+1 [g

(k)2
t ] ≤ 2L(f(θt)− f?) + σ2.

We finally obtain that

Eξt+1 [f(θt+1)− f?]

≤ (1 + LLγ2
t+1)(f(θt)− f?)− γt+1∇ζt+1f(θt)

2/2 + c2γt+1h
2
t+1/2 +

L

2
γ2
t+1σ

2.

Apply Robbins-Siegmund Theorem to obtain that almost surely∑
t≥0

γt+1∇ζt+1f(θt)
2 =

∑
t≥0

γt+1‖∇f(θt)‖2∞ <∞.

Proof of condition (ii). Note that from the proof of Theorem 1, we already have∑
t≥0 γt+1(gt(ω)−∇f(θt(ω))) <∞, so using that

‖C(ζt+1)(gt(ω)−∇f(θt(ω)))‖2 ≤ ‖(gt(ω)−∇f(θt(ω)))‖2,

we deduce the convergence
∑

t≥0 γt+1C(ζt+1)(gt(ω) −∇f(θt(ω))) < ∞ which gives, in
virtue of Lemma 6.30 the result ∇f(θt)→ 0 almost surely as t→ +∞.

Part (b) gradient weights. Here we assume that the weights of the coordinate sampling
policy are proportional to any norm of the current gradient: Ct ∝ (|∂kf(θt)|q)1≤k≤d
with q > 0. As before, the proof follows from applying Lemma 6.30. The proof of
condition (i) relies on the equivalence of the norms in finite dimension.

Proof of condition (i). From the proof of Theorem 6.15, we get

Eξt+1 [f(θt+1)− f?]

≤ (1 + LLγ2
t+1)(f(θt)− f?)− γt+1∇ζt+1f(θt)

2/2 + c2γt+1h
2
t+1/2 +

L

2
γ2
t+1σ

2.
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Taking the expectation with respect to ζt+1, we get

Et[f(θt+1)− f?]

≤ (1 + LLγ2
t+1)(f(θt)− f?)− γt+1

d∑
k=1

pt,k∂kf(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2
t+1σ

2.

Apply Robbins-Siegmund Theorem to obtain
∑

t≥0 γt+1∇f(θt)
>Ct∇f(θt) < ∞ almost

surely. Now observe that since Ct ∝ (|∂kf(θt)|q)1≤k≤d, it means that for all k = 1, . . . , d
we have pt,k ∝ |∂kf(θt)|q/‖∇f(θt)‖qq and

∇f(θt)
>Ct∇f(θt) =

d∑
k=1

pt,k∂kf(θt)
2 ∝

d∑
k=1

|∂kf(θt)|q
‖∇f(θt)‖qq

∂kf(θt)
2 ∝
‖∇f(θt)‖q+2

q+2

‖∇f(θt)‖qq
.

All norms are equivalent on Rd and using Hölder’s inequality we have for 0 < p < q
that ‖ · ‖l ≤ d1/p−1/q‖ · ‖q so the last term is lower bounded as

‖∇f(θt)‖q+2
q+2

‖∇f(θt)‖qq
≥ C‖∇f(θt)‖2q+2 with C = d−2/(q+2),

and again using the equivalence of the norms we get the square of the infinity norm
∇f(θt)

>Ct∇f(θt) ∝ ‖∇f(θt)‖2∞ which finally proves

(i)
∑
t≥0

γt+1‖∇f(θt)‖2∞ <∞.

Proof of condition (ii). It is the same as for Part (a) maximum gradient. We deduce
the convergence

∑
t≥0 γt+1C(ζt+1)(gt(ω) − ∇f(θt(ω))) < ∞ which gives, in virtue of

Lemma 6.30 the result ∇f(θt)→ 0 almost surely as t→ +∞.

6.A.5 Proof of Theorem 6.18

Similarly to the proof of Theorem 6.14, we rely on Lemma 6.31 where gt−1 is replaced
by C(ζt)gt−1. Therefore we need to check that, with probability 1, it holds that

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥0

γt+1(C(ζt)gt(ω)− Ct∇f(θt(ω))) <∞.

Proof of condition (i). From the proof of Theorem 6.15, we get

Eξt+1 [f(θt+1)− f?]

≤ (1 + LLγ2
t+1)(f(θt)− f?)− γt+1∇ζt+1f(θt)

2/2 + c2γt+1h
2
t+1/2 +

L

2
γ2
t+1σ

2.

Taking the expectation with respect to ζt+1 and using that mink=1,...,d pt,k ≥ β gives

Et[f(θt+1)− f?]

≤ (1 + LLγ2
t+1)(f(θt)− f?)− γt+1

d∑
k=1

pt,k∂kf(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2
t+1σ

2

≤ (1 + LLγ2
t+1)(f(θt)− f?)− γt+1β‖∇f(θt)‖22/2 + c2γt+1h

2
t+1/2 +

L

2
γ2
t+1σ

2,
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and Robbins-Siegmund Theorem allows to conclude
∑

t≥0 γt+1‖∇f(θt)‖22 < +∞.

Proof of condition (ii). Again, we place ourselves on the event Ω0 and omit the ω in
notation for ease of clarity. First, note that ‖gt‖22 ≤ g

(ζt+1)2
t ≤ ‖gt‖22. As a consequence,∑

t≥0 γ
2
t+1Et[‖C(ζt+1)gt‖22] ≤∑t≥0 γ

2
t+1Et[‖gt‖22] and this last series converges as shown

in the proof of Theorem 6.14. Now observe that condition (ii) is satisfied as soon as

(a) ‖
∑
t≥0

γt+1(C(ζt+1)gt − Et[C(ζt+1)gt])‖2 <∞

(b) ‖
∑
t≥0

γt+1(Et[C(ζt+1)gt]− Ct∇f(θt))‖2 <∞

Note that equation (a) involves martingale increments whose quadratic variation satis-
fies ∑

t≥0

γ2
t+1Et[‖C(ζt+1)gt − Et[C(ζt+1)gt]‖22] ≤

∑
t≥0

γ2
t+1Et[‖C(ζt+1)gt‖2] <∞,

which proves Equation (a). Finally the term in equation (b) is bounded using as-
sumption 6.1 and ‖Ct‖2 ≤ 1. We have

∑
t≥0 γ

2
t+1‖Et[C(ζt+1)gt] − Ct∇f(θt)‖22 ≤

c2
∑

t≥0 γ
2
t+1h

2
t < ∞ which finally proves condition (ii) and gives, in virtue of Lemma

6.31 that ∇f(θt)→ 0 almost surely as t→ +∞.

6.A.6 Proof of Theorem 6.21

From the proof of Theorem 6.18 and using β as a uniform lower bound on βt+1, we have

Et
[
f(θt+1)− f?

]
≤
(

1 + LLγ2
t+1

) [
f(θt)− f?

]
− γt+1β‖∇f(θt)‖22 +

σ2L+ c2

2
γ2
t+1.

Inject the PL inequality ‖∇f(θt)‖22 ≥ 2µ(f(θt)− f(θ∗)) from Assumption 6.20 to have

Et
[
f(θt+1)− f?

]
≤
(

1− 2µβγt+1 + LLγ2
t+1

) [
f(θt)− f?

]
+
σ2L+ c2

2
γ2
t+1.

Define δt = E
[
f(θt)− f?

]
to finally obtain the recursion equation

δt ≤
(

1− 2µβγt + LLγ2
t

)
δt−1 +

σ2L+ c2

2
γ2
t

Applying the same result from (Moulines and Bach, 2011) with the family of functions
ϕα defined by ϕα(t) = α−1(tα − 1) if α 6= 0 and ϕα(t) = log(t) if α = 0 along with the
learning rates γt = γt−α.

δt ≤

 2 exp
(

2LLγ2ϕ1−2α(t)
)

exp
(
−µβγ

4 t1−α
)(

δ0 + σ2+2c2

2L

)
+ γ(σ2L+2c2)

µβ t−α if α < 1

2 exp
(
LLγ2

)(
δ0 + σ2+2c2

2L

)
t−µβγ +

(
σ2L

2 + c2
)
γ2ϕµβγ/2−1(t)t−µβγ/2 if α = 1
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6.A.7 Proof of Theorem 6.25

Starting from G0 = (0, . . . , 0), the total average gain Gn is updated in a online manner
during the exploitation phase and collects all the empirical sums of the gradient gradient
estimates as

Gn =
1

nT

nT∑
t=1

C−1
t C(ζt+1)g(θt, ξt+1), E

[
Gn
]

=
1

nT

nT∑
t=1

∇f(θt).

The goal is to show that Gn → 0 using martingale properties. Thanks to Theorem 6.18,
we have the almost sure convergence θt → θ∗ which gives, since θ 7→ ∇f(θ) is continuous,
that ∇f(θt)→ 0 almost surely. Applying Cesaro’s Lemma, it holds that E

[
Gn
]
→ 0. It

is enough to consider the difference

(
G

(k)
n − E

[
G

(k)
n

])
for each k ∈ J1, dK. Introducing

the martingale increments

∆
(k)
t+1 =

g(θt, ξt+1)(k)

p
(k)
t

1{ζt+1=k} − ∂kf(θt), E
[
∆

(k)
t+1|Ft

]
= 0.

It remains to show that, with probability 1,

G(k)
n − E

[
G(k)
n

]
=

1

nT

nT∑
t=1

∆
(k)
t+1 → 0.

Or equivalently, that, for each coordinate k ∈ J1, dK

nT∑
t=1

∆
(k)
t+1 = o(n). (6.8)

The latter being a sum of martingale increments, we are in position to apply the strong
law of large numbers for martingales which can be find as Assertion 2 of Theorem 1.18
in (Bercu et al., 2015). Using Assumption 6.13, there exist 0 ≤ L, σ2 < ∞ such that
almost surely

∀t ∈ N, E
[
(g(θt, ξt+1)(k))2|Ft

]
≤ 2L

(
f(θt)− f?

)
+ σ2.

Using the almost sure convergence θt → θ?, we deduce that there is exist a compact set
K which contains the sequence of iterates (θt)t∈N and using that f is continuous gives
the upper bound

∀k ∈ J1, dK E
[
(g(θt, ξt+1)(k))2|Ft

]
≤M = 2L sup

θ∈K
(f(θ)− f(θ∗)) + σ2.

Hence, the quadratic variation is bounded as follows

nT∑
t=1

E
[
(∆

(k)
t+1)2|Ft

]
≤

nT∑
t=1

E


g(θt, ξt+1)(k)

p
(k)
t

2

|Ft


≤ (d/λ)2

nT∑
t=1

E[(g(θt, ξt+1)(k))2|Ft]

≤ (d/λ)2nTM.

Equation (6.8) follows from applying the previously mentioned law of large number.
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6.B Additional Results

6.B.1 Almost sure convergence under stronger assumptions

Similary to Gadat et al. (2018), we consider some stronger assumptions where the
function f is coercive and there exists a unique stationary point θ?. In such framework,
the sequences of iterates (θt)t≥0 obtained by both SGD and SCGD satisfy θt → θ?

almost surely as t→ +∞.

f is coercive and {θ ∈ Rd : ∇f(θ) = 0} = {θ?}. Following the proofs of Theorems 6.14
and 6.18, we may apply Robbins-Siegmund Theorem. There exists an event Ω0 ⊂ Ω
such that, P(Ω0) = 1 and for every ω ∈ Ω0, lim supt f(θt(ω)) < ∞ and the series∑

t ηt+1‖∇f(θt(ω))‖22 converges (where ηt = γt for SGD and ηt = γtβt for SCGD).
Since lim‖θ‖→∞ f(θ) = ∞, we deduce that for every ω ∈ Ω0, the sequence (θt(ω))t≥0

is bounded in Rp. Therefore the limit set χ∞(ω) (set of accumulation points) of the
sequence (θt(ω)) is non-empty. The convergence of the series

∑
t ηt+1‖∇f(θt(ω))‖22 <∞

along with the condition
∑

t ηt+1 = +∞ only implie that : lim inft→∞ ‖∇f(θt(ω))‖22 =
0, P−a.s.
Hence, since θ 7→ ∇f(θ) is continuous, there exits a limit point θ∞(ω) ∈ χ∞(ω) such
that ‖∇f(θ∞(ω))‖22 = 0, i.e., ∇f(θ∞(ω)) = 0. Because the set of solutions {θ ∈
Rp,∇f(θ) = 0} is reduced to the singleton {θ?}, we have θ∞(ω) = θ?. Since (f(θt(ω)))
converges, it implies that limt f(θt(ω)) = f? and for every limit point θ ∈ χ∞(ω), we
have f(θ) = f?. Since the set {θ ∈ Rd, f(θ) = f?} is equal to {θ?}, the limit set χ∞(ω)
is also reduced to {θ?}.

6.B.2 Almost sure convergence of MUSKETEER

By definition, we have for all k ∈ J1, dK,

p
(k)
t+1 = (1− λt)ϕ(Gt)

(k) + λt
1

d

implying that βt+1 = mink∈J1,dK p
(k)
t ≥ λt/d. As a consequence, as soon as

∑
t≥1 λtγt =

+∞, the assumption
∑

t≥1 βtγt = +∞ is satisfied. Applying Theorem 6.18 we obtain
the almost sure convergence of MUSKETEER. The condition

∑
t≥1 λtγt = +∞ is easily

satisfied with a fixed value λt ≡ λ in the mixture update and one can also use a slowly
decreasing sequence, e.g. λt = 1/ log(t).

6.B.3 Regret analysis in the convex case

In order to better understand the benefits of the adaptive sampling strategies over
standard uniform sampling, let us consider a particular setting where the objective
function f is convex. The following proposition available in Namkoong et al. (2017)
presents a regret analysis which is useful for interpretability.
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Proposition 6.32 (Regret analysis for convex f and unbiased estimates). Assume that
f is convex and consider the sequence of iterates obtained by θt+1 = θt−γC−1

t C(ζt+1)gt
with constant step size γ > 0. We have

E

f
 1

T

T∑
t=1

θt

− f(θ?)

 ≤ ‖θ?‖2
2γT

+
γ

2T

T∑
t=1

E

 d∑
k=1

|∂kf(θt)|2

p
(k)
t

 .
Proof Assume that the objective f is convex and consider the average estimate θ̄T =
1
T

∑T
t=1 θt. along with the following quantity: S(f, θ̂) = E[f(θ̂)]− f?. Using convexity

we have on the one hand f(θt)− f? ≤ 〈θt − θ?,∇f(θt)〉 and on the other hand

f(θ̄T )− f? ≤ 1

T

T∑
t=1

(
f(θt)− f?

)
which give together the following upper bound

f(θ̄T )− f? ≤ 1

T

T∑
t=1

〈θt − θ?,∇f(θt)〉.

Using an unbiased gradient estimate vt, i.e. Et[vt] = ∇f(θt), we can write

E[f(θ̄T )]− f? ≤ E

 1

T

T∑
t=1

〈θt − θ?,Et[vt])〉

 .
The term in the expectation is bounded using Lemma 6.34 with vt = C−1

t C(ζt+1)gt as

1

T

T∑
t=1

〈θt − θ?, vt〉 ≤
‖θ?‖2
2γT

+
γ

2T

T∑
t=1

‖C−1
t C(ζt+1)gt‖2.

Take the expectation on both side to control the regret as

S(f, θ̄T ) ≤ ‖θ
?‖2

2γT
+

γ

2T

T∑
t=1

E

 d∑
k=1

|∂kf(θt)|2

p
(k)
t

 .

The term in expectation should be minimized with respect to the probability weights
p

(k)
t . Intuitively, in order to maintain the overall sum as small as possible, the large

gradient coordinates should be sampled more often, i.e. we would like to have p(k)
t

large whenever |∂kf(θt)|2 is large. This is in line with the framework of coordinate
smoothness discussed in Remark 6.12 and the work of Allen-Zhu et al. (2016).

(Uniform Coordinate Sampling) For all k ∈ J1, dK, we have p(k)
t = 1/d so that

1

T

T∑
t=1

E

 d∑
k=1

|∂kf(θt)|2

p
(k)
t

 =
d

T

T∑
t=1

E

 d∑
k=1

|∂kf(θt)|2
 =

d

T

T∑
t=1

E
[
‖∇f(θt)‖2

]
.
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(MUSKETEER) For all k ∈ J1, dK, we have p(k)
t = (1 − λt−1)ϕ(Gt−1)(k) + λt−1/d so

that

1

T

T∑
t=1

E

 d∑
k=1

|∂kf(θt)|2

p
(k)
t

 =
d

T

T∑
t=1

E

 d∑
k=1

|∂kf(θt)|2
(1− λt−1)dϕ(Gt−1)(k) + λt−1

 ,
where the denominator is stricly larger than 1 for all the coordinates associated to large
gains. Indeed, let k ∈ J1, dK the index of such coordinate. Since it is a rewarding coordin-
ate, the normalizing step implies that ϕ(Gt−1)(k) > 1/p and (1 − λt−1)dϕ(Gt−1)(k) +
λt−1 > 1. This property translates the adaptive nature of the probability weights used
in the MUSKETEER strategy.

6.B.4 Auxiliary Results

Theorem 6.33. (Robbins and Siegmund, 1971) Consider a filtration
(
Fn
)
n≥0

and four
sequences of random variables

(
Vn
)
n≥0

,
(
Wn

)
n≥0

,
(
an
)
n≥0

and
(
bn
)
n≥0

that are adapted
and non-negative. Assume that almost surely

∑
k ak < ∞ and

∑
k bk < ∞. Assume

moreover that E
[
V0

]
< ∞ and ∀n ∈ N : E[Vn+1|Fn] ≤ (1 + an)Vn −Wn + bn. Then it

holds

(a)
∑
k

Wk <∞ a.s. (b) Vn
a.s.−→ V∞,E

[
V∞
]
<∞. (c) sup

n≥0
E
[
Vn
]
<∞.

Lemma 6.34. Let θ1, . . . , θT be an arbitrary sequence of vectors. Any algorithm with
initialization θ1 = 0 and update rule θt+1 = θt − γvt satisfies

T∑
t=1

〈θt − θ?, vt〉 ≤
‖θ?‖2

2γ
+
γ

2

T∑
t=1

‖vt‖2.

In particular, for B, ρ > 0, if we have ‖vt‖ ≤ ρ and we set γ =
√
B2/(ρ2T ) then for

every θ? with ‖θ?‖ ≤ B, we have T−1
∑T

t=1〈θt − θ?, vt〉 ≤ Bρ/
√
T .
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6.C Illustrative Example (stochastic first order)

We perform a comparison on a simple example in dimension d = 2 with the functions
f(x, y) = (x2 +y2)/2 and h(x, y) = x2/2. Note that the function h only depends on the
first coordinate and an adaptive coordinate descent method should favor this direction.
Figure 6.3 presents the optimization paths of the different methods: SGD, Uniform
and MUKSTEER. With the function f which does not present any particular design
or favorable descent direction, the Uniform and Musketeer policies perform as good
as classical SGD. More interestingly, when dealing with the function h, our method
MUSKETEER (red) finds that the horizontal direction associated to axis (Ox) is the
relevant one for optimization. After collecting some information during the exploration
phase, the probability weights got updated to favor the horizontal direction, leading to
a faster convergence. For a visual demonstration of these optimization paths, please
refer to the mp4-files optimize_f.mp4 and optimize_h.mp4 available online2.
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Figure 6.3 – Comparison of SGD/Uniform/Musketeer on simple 2D-examples

6.D Numerical Experiments Details

6.D.1 Regularized linear models

We consider the ERM paradigm with linear models, namely regularized regression
problems with objectives of the form f(θ) = (1/n)

∑n
i=1 fi(θ) + µ‖θ‖2. Similarly to

(Namkoong et al., 2017), we endow the data matrix X with a block structure. The
columns are drawn as X[:, k] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J1, dK. The

parameters are set to n = 10, 000 samples in dimension d = 250 with an exploration
size equal to T = b

√
dc = 15. The regularization parameter is set to the classical value

µ = 1/n. We update the parameter vector with the optimal learning rate γk = γ/(k+k0)
in the experiments. Other learning rates in the framework of stochastic first order meth-

2https://github.com/RemiLELUC/SCGD-Musketeer
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ods are considered in Appendix 6.G.
• (zeroth-order) For the Ridge regression, we set γ = 3, k0 = 10 and for the logistic re-
gession γ = 10, k0 = 5. The gradient estimate g is computed using queries of a function
fi where i ∼ U(J1, nK). We use the `1-reweighting with λt = 1/ log(t) or softmax with
λn ≡ 0.5, which both satisfy Assumption 6.17.
• (first order) The learning rate is equal to γk = 1/k (γ = 1, k0 = 0). The gradient
estimate g is computed using mini-batches of size 8. The weighting parameter η > 0
in the softmax part of the probability weights is set to η = 1 and the parameter λ in
Equation (6.7) is chosen as λt = 1/ log(t) which satisfies the extended Robbins-Monro
condition 6.17.

6.D.2 Neural Networks

Dataset description and parameter configuration. The three datasets in the
experiments are popular publicly available deep learning datasets. The underlying ma-
chine learning task is the one of multi-label classification.

•MNIST (Deng, 2012): a database of handwritten digits with a training set of 60,000
examples and a test set of 10,000 examples. The digits have been size-normalized and
centered in a fixed-size image. The original black and white (bilevel) images from NIST
were size normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The
resulting images contain grey levels as a result of the anti-aliasing technique used by
the normalization algorithm. The images were centered in a 28x28 image by computing
the center of mass of the pixels, and translating the image so as to position this point
at the center of the 28x28 field. Each training and test example is assigned to the
corresponding handwritten digit between 0 and 9.

• Fashion-MNIST (Xiao et al., 2017): a dataset of Zalando’s article images, composed
of a training set of 60,000 examples and a test set of 10,000 examples. Each example
is a 28x28 grayscale image, associated with a label from 10 classes. It shares the same
image size and structure of training and testing splits as the MNIST database. Each
training and test example is assigned to one of the following labels: T-shirt/top (0);
Trouser (1); Pullover (2); Dress (3); Coat (4); Sandal (5); Shirt (6); Sneaker (7); Bag
(8); Ankle boot (9).

• Kuzushiji-MNIST: This dataset is a drop-in replacement for the MNIST dataset
(28x28 grayscale, 70,000 images), provided in the original MNIST format as well as a
NumPy format. Since MNIST is restricted to 10 classes, one character here represents
each of the 10 rows of Hiragana when creating Kuzushiji-MNIST.

• CIFAR10 (Krizhevsky et al., 2009): The CIFAR-10 dataset consists of 60, 000 32×32
colour images in 10 classes, with 6, 000 images per class. There are 50, 000 training
images and 10, 000 test images. The dataset is divided into five training batches and one
test batch, each with 10, 000 images. The test batch contains exactly 1, 000 randomly-
selected images from each class. The training batches contain the remaining images in
random order, but some training batches may contain more images from one class than
another. Between them, the training batches contain exactly 5, 000 images from each
class. Each training and test example is assigned to one of the following labels: airplane
(0); automobile (1); bird (2); cat (3); deer (4); dog (5); frog (6); horse (7); ship (8);
truck (9).



CHAPTER 6. SGD WITH COORDINATE SAMPLING: THEORY AND
PRACTICE 212

(a) MNIST (b) Fashion-MNIST

(c) CIFAR10 (d) MNIST

Figure 6.4 – Samples for Mnist, Fashion-Mnist, K-Mnist and CIFAR-10.

Two different neural networks are used in the experiments: one with linear layers
for MNIST, Fashion-MNIST, K-MNIST another one with convolutional layers for CI-
FAR10. For the first network, the total number of parameters is d = 55, 050. For the
second network,the dimension is d = 64, 862. In both cases, the exploration size is
T = b

√
dc. In the experiments with stochastic first order methods, we use batches of

coordinates with m = d/10.

6.D.3 Hyperparameters and Hardware.

Hyperparameters.

When training neural networks with linear layers, we use:

batch_size = 32; input_size = 28*28; hidden_size = 32; output_size = 64

• (zeroth-order) γ = 10 (Mnist and Fashion-Mnist) γ=15 (Kmnist); h = 0.01; `1 nor-
malization with λn = 1/ log(n); softmax normalization with λn ≡ 0.2 and η = 5 .

• (first order) γ = 0.01 (Mnist,Fashion-Mnist,Cifar10); normalization = softmax with
η ∈ {1, 2, 10}; λt = 0 (only exponential weights).

Hardware.

The experiments of linear models are run using a processor Intel Core i7-10510U CPU
1.80GHz × 8.

The neural networks are trained using GPU from Google Colab (GPU: Nvidia K80 / T4;
GPU Memory: 12GB/16GB; GPU Memory Clock: 0.82GHz/1.59GHz; Performance:
4.1 TFLOPS / 8.1 TFLOPS)



CHAPTER 6. SGD WITH COORDINATE SAMPLING: THEORY AND
PRACTICE 213

ZO Neural Networks with `1 normalization.
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(a) MNIST
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(b) Fashion-MNIST
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(c) KMNIST

Figure 6.5 – Training Loss ZO Neural Networks with `1 normalization.

ZO Neural Networks, Comparison of `1 and Softmax normalizations.
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(a) MNIST-`1
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(b) MNIST-Exp
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(c) Fash-`1
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(d) Fashion-Exp

Figure 6.6 – Training Loss ZO Neural Networks with `1 and Softmax normalizations.



CHAPTER 6. SGD WITH COORDINATE SAMPLING: THEORY AND
PRACTICE 214

6.E Numerical Experiments with stochastic first order
methods

In this section, we empirically validate the SCGD framework by running MUSKETEER
and competitors on synthetic and real datasets problems with stochastic first order
methods. First, we focus on ridge regression and regularized logistic regression problems
adopting the data generation process of (Namkoong et al., 2017) in which the covariates
exhibit a certain block structure. Second, MUSKETEER is employed to train different
neural networks models on real datasets for multi-label classification task. From a
practical point of view, the optimization procedure is implemented through a PyTorch
optimizer which allows an easy deployment and integration.

Methods in competition. The set of methods in competition is restricted to stochastic
coordinate-based methods along with standard SGD playing the role of the baseline.
This choice allows an honest comparison as the parameter tuning can be the same for all
methods. MUSKETEER is implemented according to Section 6.4 with an exploration
size T = b

√
dc and different values of η are used to feed the discussion on the adapt-

iveness. The method UNIFORM stands for the uniform coordinate sampling policy in
SCGD. The method ADAPTIVE is the importance sampling based method described
in Remark 6.9. This method is no longer part of the SCGD framework and corres-
ponds to the one developed in (Wangni et al., 2018). Among the different methods,
MUSKETEER is the only one exhibiting a bias when generating gradients. In all cases,
θ0 = (0, . . . , 0)> ∈ Rd and the optimal SGD learning rate γk = 1/k is used. For a
fair comparison of SGD against SCGD, we normalize the number of passes over the
coordinates: one SGD step updates the p coordinates of θ so we allow to take d steps
for the coordinate-based methods in the mean time.
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Figure 6.7 – [f(θt) − f(θ?)] for Linear Models on Synthetic data with different block
structures.

Linear models. We apply ERM to regularized regression and classification problems.
Similarly to (Namkoong et al., 2017), we endow the data matrix X with a block struc-
ture. The columns are drawn as X[:, k] ∼ N (0, σ2

kIn) with σ2
k = k−α for k ∈ J1, dK. The

parameters are set to n = 10, 000 samples in dimension d = 250 and T = 15. Figure 6.7
provides the graphs of the optimaliy gap t 7→ f(θt)− f? averaged over 20 independent
simulations for different values of α ∈ {2; 5; 10}. First, note that the uniform sampling
strategy shows similar performance to the classical SGD and that the (unbiased) im-
portance sampling version ADAPTIVE is also of the same order. Besides, the clear
winner is MUSKETEER as it offers the best performance in all configurations. Greater
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values of α (stronger block structure) improve our relative performance with respect to
the other methods as shown by Figures 6.7b and 6.7d.

Neural Networks. To asses the practical performance of MUSKETEER, we focus
on the training of neural networks within the framework of multi-label classification.
The datasets in the experiments are popular publicly available deep learning datasets:
MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky
et al., 2009). Given an image, the goal is to predict its label among ten classes. Two
different neural networks are used in the experiments: one with linear layers for MNIST
and Fashion-MNIST (d = 55, 050 and T = 234) , another one with convolutional layers
for CIFAR10 (d = 64, 862 and T = 254).

0 1 2 3 4 5 6 7
Normalized passes over data (x1e3)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Tr
ai

ni
ng

 L
os

s

sgd
=1
=2
=10

(a) MNIST

0 1 2 3 4 5 6 7
Normalized passes over data (x1e3)

1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

Tr
ai

ni
ng

 L
os

s
sgd
=1
=2
=10

(b) Fashion-MNIST

0 1 2 3 4 5 6 7
Normalized passes over data (x1e3)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Tr
ai

ni
ng

 L
os

s

sgd
=1
=2
=10

(c) CIFAR-10

Figure 6.8 – Training Loss of SGD vs. MUSKETEER on real-world datasets.

Figure 6.8 compares the evolution of the training loss of SGD against MUSKETEER
averaged over 10 independent simulations with different values of η. A great value of this
parameter strengthens the adaptive scheme as it gives more importance to the weights
in Equation (6.7), leading to stronger decrease of the objective function. Interestingly,
the performance of MUSKETEER also benefit from such adaptive structure in terms
on accuracy of the test set (see Table 6.1). This allows to quantify the statistical gain
brought by MUSKETEER over SGD.

SGD η = 1 η = 2 η = 10

MNIST 84.7±1.0 86.7±0.5 88.9±0.4 91.3±0.2
FASHION 64.7±1.2 68.5±1.0 71.2±0.7 77.1±0.8
CIFAR10 51.4±1.4 57.7±0.8 59.7±1.0 62.7±0.8

Table 6.1 – Test Accuracy (in %).
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6.F Further Numerical Experiments with zeroth-order
methods

6.F.1 Ridge Regression (`1-reweighting) with different (n, d)

We consider the Ridge regression problem with the classical regularization parameter
value µ = 1/n and run several experiments in various settings of (n, d). We endow
the data matrix X with a block structure. The columns are drawn as X[:, kB + 1 :
kB+B] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J0, (d/B)−1K. The parameter B is the

block-size and is set to B = 10 for the Ridge regression. The parameter α represents the
block structure and is set to α = 5. The different Figures below present the evolution
of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs. The learning
rates is the same for all methods, fixed to γk = 1/(k + 10). The different settings are:
number of samples n ∈ {1, 000; 2, 000; 5, 000} and dimension d ∈ {20; 50; 100; 200}. We
use the `1 normalization in Equation (6.7) with λn = 1/ log(n).
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Figure 6.9 – [f(θt)− f?] for Ridge Regression with n = 1000 and d = 20, 50, 100, 200
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Figure 6.10 – [f(θt)− f?] for Ridge Regression with n = 2000 and d = 20, 50, 100, 200
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Figure 6.11 – [f(θt)− f?] for Ridge Regression with n = 5000 and d = 20, 50, 100, 200
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6.F.2 Ridge Regression (softmax reweighting) with different (n, d)

We consider the Ridge regression problem with the classical regularization parameter
value µ = 1/n and run several experiments in various settings of (n, d). We endow
the data matrix X with a block structure. The columns are drawn as X[:, kB + 1 :
kB+B] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J0, (d/B)−1K. The parameter B is the

block-size and is set to B = 10 for the Ridge regression. The parameter α represents the
block structure and is set to α = 5. The different Figures below present the evolution
of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs. The learning
rates is the same for all methods, fixed to γk = 1/(k + 10). The different settings are:
number of samples n ∈ {1, 000; 2, 000; 5, 000} and dimension d ∈ {20; 50; 100; 200}. We
use the softmax normalization in Equation (6.7) with λn ≡ 0.5 and η = 1.
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Figure 6.12 – [f(θt)− f?] for Ridge Regression with n = 1000 and d = 20, 50, 100, 200
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Figure 6.13 – [f(θt)− f?] for Ridge Regression with n = 2000 and d = 20, 50, 100, 200
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Figure 6.14 – [f(θt)− f?] for Ridge Regression with n = 5000 and d = 20, 50, 100, 200
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6.F.3 Logistic Regression (`1-reweighting) with different (n, d)

We consider the `2-Logistic regression problem with the classical regularization para-
meter value µ = 1/n and run several experiments in various settings of (n, d). We en-
dow the data matrix X with a block structure. The columns are drawn as X[:, kB+ 1 :
kB+B] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J1, (d/B)−1K. The parameter B is the

block-size and is set to B = 5 for the Logistic regression. The parameter α represents the
block structure and is set to α = 5. The different Figures below present the evolution
of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs. The learning
rates is the same for all methods, fixed to γk = 10/(k + 5). The different settings are:
number of samples n ∈ {1, 000; 2, 000; 5, 000} and dimension d ∈ {20; 50; 100; 200}. We
use the `1 normalization in Equation (6.7) with λn = 1/ log(n).
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Figure 6.15 – [f(θt)−f?] for Logistic Regression with n = 1000 and d = 20, 50, 100, 200
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Figure 6.16 – [f(θt)−f?] for Logistic Regression with n = 2000 and d = 20, 50, 100, 200
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Figure 6.17 – [f(θt)−f?] for Logistic Regression with n = 5000 and d = 20, 50, 100, 200



CHAPTER 6. SGD WITH COORDINATE SAMPLING: THEORY AND
PRACTICE 219

6.F.4 Logistic Regression (softmax reweighting) with different (n, d)

We consider the `2-Logistic regression problem with the classical regularization para-
meter value µ = 1/n and run several experiments in various settings of (n, d). We en-
dow the data matrix X with a block structure. The columns are drawn as X[:, kB+ 1 :
kB+B] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J1, (d/B)−1K. The parameter B is the

block-size and is set to B = 5 for the Logistic regression. The parameter α represents the
block structure and is set to α = 5. The different Figures below present the evolution
of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs. The learning
rates is the same for all methods, fixed to γk = 10/(k + 5). The different settings are:
number of samples n ∈ {1, 000; 2, 000; 5, 000} and dimension d ∈ {20; 50; 100; 200}. We
use the softmax normalization in Equation (6.7) with λn ≡ 0.5 and η = 1.
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Figure 6.18 – [f(θt)−f?] for Logistic Regression with n = 1000 and d = 20, 50, 100, 200
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Figure 6.19 – [f(θt)−f?] for Logistic Regression with n = 2000 and d = 20, 50, 100, 200

0 2000 4000 6000 8000
#Queries of loss f_i

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr
mus_avg
mus_abs

(a) n = 5000, d = 20

0 5000 10000 15000 20000
#Queries of loss f_i

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr
mus_avg
mus_abs

(b) n = 5000, d = 50

0 10000 20000 30000 40000
#Queries of loss f_i

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr
mus_avg
mus_abs

(c) n = 5000, d = 100

0 20000 40000 60000 80000
#Queries of loss f_i

10 2

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr
mus_avg
mus_abs

(d) n = 5000, d = 200

Figure 6.20 – [f(θt)−f?] for Logistic Regression with n = 5000 and d = 20, 50, 100, 200
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6.F.5 Effect of Importance Sampling (IS) on Ridge Regression

We consider the same setting as in Subsection 6.F.1 and study the effect of using import-
ance sampling weights in the update rule of MUSKETEER. Indeed, MUSKETEER up-
date rule is defined with the following biased gradient estimate θt+1 = θt−γt+1C(ζt+1)gt
and the importance sampling (IS) strategy consists in adding C−1

t to reach an unbiased
estimate

θt+1 = θt − γt+1C
−1
t C(ζt+1)gt.

For the different configurations, we compare the MUSKETEER methods with their im-
portance sampling counterparts. The Figures below show that the importance sampling
methods perform similarly to the uniform coordinate sampling strategy and are there-
fore sub-optimal.
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Figure 6.21 – [f(θt)− f?] for Ridge Regression with n = 1000 and d = 50, 200

0 5000 10000 15000 20000
#Queries of loss f_i

10 3

10 2

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr
mus_avg
mus_abs

0 5000 10000 15000 20000
#Queries of loss f_i

10 2

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr_is
mus_avg_is
mus_abs_is

(a) n = 2000, d = 50

0 20000 40000 60000 80000
#Queries of loss f_i

10 2

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr
mus_avg
mus_abs

0 20000 40000 60000 80000
#Queries of loss f_i

10 2

10 1

100

Op
tim

al
ity

 G
ap

 f(
t)

f(
)

full
uniform
nesterov
mus_sqr_is
mus_avg_is
mus_abs_is

(b) n = 2000, d = 200

Figure 6.22 – [f(θt)− f?] for Ridge Regression with n = 2000 and d = 50, 200
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(b) n = 5000, d = 200

Figure 6.23 – [f(θt)− f?] for Ridge Regression with n = 5000 and d = 50, 200
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6.F.6 Effect of Importance Sampling (IS) on Logistic Regression

We consider the same setting as in Subsection 6.F.3 and study the effect of using import-
ance sampling weights in the update rule of MUSKETEER. Indeed, MUSKETEER up-
date rule is defined with the following biased gradient estimate θt+1 = θt−γt+1C(ζt+1)gt
and the importance sampling (IS) strategy consists in adding C−1

t to reach an unbiased
estimate

θt+1 = θt − γt+1C
−1
t C(ζt+1)gt.

For the different configurations, we compare the MUSKETEER methods with their im-
portance sampling counterparts. The Figures below show that the importance sampling
methods perform similarly to the uniform coordinate sampling strategy and are there-
fore sub-optimal.
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Figure 6.24 – [f(θt)− f?] for Logistic Regression with n = 1000 and d = 50, 200
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(a) n = 2000, d = 50
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(b) n = 2000, d = 200

Figure 6.25 – [f(θt)− f?] for Logistic Regression with n = 2000 and d = 50, 200
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(b) n = 5000, d = 200

Figure 6.26 – [f(θt)− f?] for Logistic Regression with n = 5000 and d = 50, 200
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6.G Further Experiments with stochastic first order
methods

6.G.1 Comparing learning rates

This section investigates the effect of different learning rates γk = γ/k with γ ∈
{0.5; 1; 1.5; 2}. It reveals a safe behavior of MUSKETEER as it performs better than
the other methods in all configurations with a stronger difference when dealing with
small values of γ. We consider the Ridge regression problem with regularization para-
meter µ = 1/n and run several experiments in the setting n = 5, 000 samples and
dimension d ∈ {20; 100; 200}. We endow the data matrix X with a block structure.
The columns are drawn as X[:, k] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J1, dK. The

parameter α of block structure is α = 8. The gradient estimate g is computed using
mini-batches of size 4. The different Figures below present the evolution of the optim-
ality gap t 7→ [f(θt) − f?] averaged over 20 independent runs for N = 100 iterations
with normalized passes over coordinates.
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Figure 6.27 – [f(θt)− f?] for Ridge Regression with d = 20 and γ ∈ {0.5; 1; 1.5; 2}
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(a) d = 100, γ = 0.5
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Figure 6.28 – [f(θt)− f?] for Ridge Regression with d = 100 and γ ∈ {0.5; 1; 1.5; 2}
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(a) d = 200, γ = 0.5
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Figure 6.29 – [f(θt)− f?] for Ridge Regression with d = 200 and γ ∈ {0.5; 1; 1.5; 2}
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6.G.2 Ridge Regression with different settings of (n, d)

We consider the Ridge regression problem with the classical regularization parameter
value µ = 1/n and run several experiments in various settings of (n, d). We endow
the data matrix X with a block structure. The columns are drawn as X[:, kB + 1 :
kB+B] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J0, (d/B)−1K. The parameter B is the

block-size and is set to B = 5 for the Ridge regression. The parameter α represents the
block structure and is set to α = 10. The data sampling process ξ of gradient estimate
g is computed using mini-batches of size 8. The different Figures below present the
evolution of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs for
N = 1000 iterations with normalized passes over coordinates. The learning rates is the
same for all methods, fixed to γk = 1/k. The different settings are: number of samples
n ∈ {1, 000; 2, 000; 5, 000} and dimension d ∈ {20; 50; 100; 200}.
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(d) n = 1000, d = 200

Figure 6.30 – [f(θt)− f?] for Ridge Regression with n = 1000 and d = 20, 50, 100, 200
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(a) n = 2000, d = 20
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(d) n = 2000, d = 200

Figure 6.31 – [f(θt)− f?] for Ridge Regression with n = 2000 and d = 20, 50, 100, 200
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(a) n = 5000, d = 20
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Figure 6.32 – [f(θt)− f?] for Ridge Regression with n = 5000 and d = 20, 50, 100, 200
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6.G.3 Logistic Regression with different settings of (n, d)

We consider the `2-Logistic regression problem with the classical regularization para-
meter value µ = 1/n and run several experiments in various settings of (n, d). We en-
dow the data matrix X with a block structure. The columns are drawn as X[:, kB+ 1 :
kB+B] ∼ N (0, σ2

kIn) with σ2
k = k−α for all k ∈ J1, (d/B)−1K. The parameter B is the

block-size and is set to B = 2 for the Logistic regression. The parameter α represents
the block structure and is set to α = 5. The data sampling process ξ of gradient estim-
ate g is computed using mini-batches of size 32. The different Figures below present the
evolution of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs for
N = 1000 iterations with normalized passes over coordinates. The learning rates is the
same for all methods, fixed to γk = 1/k. The different settings are: number of samples
n ∈ {1, 000; 2, 000; 5, 000} and dimension d ∈ {20; 50; 100; 200}.
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(d) n = 1000, d = 200

Figure 6.33 – [f(θt)−f?] for Logistic Regression with n = 1000 and d = 20, 50, 100, 200
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(d) n = 2000, d = 200

Figure 6.34 – [f(θt)−f?] for Logistic Regression with n = 2000 and d = 20, 50, 100, 200
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Figure 6.35 – [f(θt)−f?] for Logistic Regression with n = 5000 and d = 20, 50, 100, 200





Chapter 7
Conclusion and Perspectives

We conclude this dissertation with a short summary of the thesis and some perspectives
and open questions related to the different areas and problems we have worked with.

7.1 Conclusion

Monte Carlo methods continue to be one of the most useful approaches to solve numer-
ical integration and gradient estimation due to their simplicity and general applicability.
On the one hand, the particular variance reduction technique of control variates offers
many advantages as it relies on a simple and intuitive paradigm that is to take into ac-
count the more information we have in order to solve complex problems. On the other
hand, the use of conditioning matrices for stochastic optimization algorithms is key
to achieve optimal variance and leverage structure in data. Based on various research
directions, we have developed new theoretical and practical tools.

Through the different chapters of Part II, we have developed new Monte Carlo estim-
ators that present interesting properties: we first derived the (LS)LASSOMC estimate
which allows the use of high-dimensional control variates; then we developed a weighted
least-squares estimate, called AISCV, to incorporate control variates within the adapt-
ive importance sampling framework; finally, we proposed a Monte Carlo method with
control variates based on nearest neighbors estimates to achieve optimal convergence
rate for Lipschitz functions.

In the second Part of this thesis, we focused on stochastic optimization algorithms
through the lens of conditioning and adaptive sampling: we first derived a general
asymptotic theory for conditioned SGD methods in a general non-convex setting, then
we presented a general framework to perform coordinate sampling for SGD algorithms.
Within this particular framework which leverages structure in data, we developed an
algorithm, called MUSKETEER, based on a reinforcement strategy.

7.2 Perspectives and Future work

Some avenues for further research are presented for all the different chapter and associ-
ated research questions of this thesis.

On Chapter 2. The construction of control variates by a change of measure (Re-
mark 2.1) presupposes some knowledge on the underlying integration measure in order
to choose an appropriate sampling distribution. For instance, if the support of the
sampling measure does not cover the whole integration domain then the method will
certainly fail. Adaptive importance sampling offers a possible solution, involving online
estimates of the appropriate sampling policy and the optimal linear combination of con-
trol variates. Assumption 2.10 on the sub-Gaussianity of the residuals is key to obtain
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concentration inequalities. For certain applications, it might be too restrictive, however.
In the absence of such an assumption or more generally of suitable bounds on the tails
of the residual distribution, other types of results such as almost sure convergence rates
might still be pursued. In the random design setting, the estimators of coefficient vector
β?(f) are all biased, even the OLS estimator. The bias may be removed by sample split-
ting (Avramidis and Wilson, 1993), but at the cost of an increased variance, especially
if the number of control variates is large. For the LASSO-based methods, debiasing
methods are studied in (Javanmard and Montanari, 2018) and the references therein.
The merits of these techniques for control variate methods remain to be investigated.

On Chapter 3. The combined AISCV approach has certain design choices that the user
must make, such as the sampling policy for the AIS part and the control variates for the
CV part. These choices are reflected in the factor τ of Theorem 3.8 (Chapter 3), which
is related to the standard deviation of the importance weight and the residual function.
If too many control variates are chosen, it can lead to an ill-conditioned empirical Gram
matrix or overfitting, which could cause the least-squares solution to become unstable.
To prevent this, regularization techniques based on LASSO-type procedures such as the
one presented in Chapter 2 can be used.

On Chapter 4. The use of nearest neighbors estimates acting as control variates with
the help of a leave-one-out procedure has been shown to be efficient in order to speed up
the convergence rate of Monte Carlo integration and achieve the optimal O(n−1/2n−1/d)
rate for Lipschitz functions. The method, called control neighbors, that first builds a
surrogate function using 1-nearest neighbor estimates and then estimates the integral of
interest by using centered variables as control variates performs very-well considering the
modest computing time required. For future work, it would be interesting to continue
the analysis in order to establish concentration bounds with high probability by using
tools such as Mac Diarmid’s inequality to treat the leave-one-out estimates.

On Chapter 5. By deriving an asymptotic theory for conditioned stochastic gradient
descent methods in a general non-convex setting, we have revealed in Chapter 5 that
the only additional assumption required to attain weak convergence is the almost sure
convergence of the conditioning matrices. Utilizing appropriate conditioning matrices
with the help of Hessian estimates is crucial for achieving asymptotic optimality in the
sense of minimal variance. Our study focuses primarily on the weak convergence of
the rescaled sequence of iterates, which is a useful tool for handling efficiency issues as
algorithms can easily be compared through their asymptotic variances. It would also
be beneficial to complement our asymptotic results with concentration inequalities and
non-asymptotic bounds. This research direction may require additional assumptions
such as strong convexity of the objective function combined with bounded gradients.

The approach described in Section 5.4 may not be computationally optimal, as it
requires eigenvalue decomposition. However, conditioned SGD methods and espe-
cially stochastic second-order methods can be used, as they only require matrix-vector
products which can be computed in O(d2) operations. Low-rank approximation with
BFGS algorithm and its variant L-BFGS can help approximate the inversion of Hessian
matrices in O(d) operations. Furthermore, this technique has been extended to the
online learning framework as well as a purely stochastic setting. The adaptive optim-
izers discussed in Section 5.3.1 aim to create a balance between low-memory storage
of the scaling matrix representation Ck and the quality of its approximation of either
the inverse Hessian ∇2f(θ?)−1 or the information obtained through the geometry of the
problem.
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On Chapter 6. In light of Chapter 5 and the derived asymptotic theory for condi-
tioned -SGD methods, a future direction of research concerns the behavior of the res-
caled sequence of iterates (θt−θ?)/√γt towards a Gaussian distribution. The associated
asymptotic covariance matrix should reflect the information brought in by the adapt-
ive selection matrix Ct. In particular, for the algorithm MUSKETEER, following the
continuity property established for conditioned SGD, it is expected to have asymptotic
normality with a limiting conditioning matrix C proportional to the identity matrix
Ip since the coordinate sampling policy has a uniform behavior in the asymptotic re-
gime. Furthermore, when the objective function f is s-sparse – in the sense that it
only depends on s < d coordinates – the associated coordinate selection matrix Ct
should become degenerated with non-negative weights only for the coordinates in the
support of f . Finally, in the perspective of accelerated coordinate descent methods, one
may be interested in pursuing the analysis of the SCGD framework with acceleration
techniques such as adding a momentum term or using particular stochastic variance
reduction techniques (Johnson and Zhang, 2013).





Appendix: Additional results on
Monte Carlo estimates
This appendix provides additional numerical results for the different Monte Carlo es-
timates of Part II. In particular, while the different Chapters 2, 3 and 4 present the
numerical results in the form of mean squared errors and statistical efficiency, it is im-
portant to also take into account the computation times. For that matter, two different
metrics are used in the following to evaluate the performance of the different Monte
Carlo procedures: the standard efficiency and the global efficiency.

As mentioned in Chapter 2, the standard efficiency is defined as the ratio between the
mean squared error of the naive Monte Carlo estimate and the mean squared error of
the candidate procedure. Since the proposed control variate techniques rely on heavy
computations through the matrix of control variates, they are most valuable when the
sampling algorithm is expensive or when evaluations of the integrands are costly.

Similarly to (South et al., 2022), we consider the metric of global efficiency which
reweights the standard efficiency by the computing times of the different methods.
More precisely, for any methodM, the two different metrics are

standard efficiency(M) =
MSE(vanilla)

MSE(M)
,

global efficiency(M) =
MSE(vanilla)

MSE(M)
× Time(vanilla)

Time(M)
.

The standard efficiency is a relevant criterion when one is only interested in obtaining
the best accuracy whatever the cost in computing time. In some situations, the final
precision is the only thing that matters. In other scenarios, it may be interesting to
consider the computation time, because if a method is for example four times more
accurate that the vanilla estimate but requires two times more computation, then reas-
onably we can only say that it presents a gain of two. Of course, one needs to keep in
mind that it is hard to precisely evaluate the general computing time of a particular
method because the run time is subject to the programming language and efficiency of
the code. In the considered examples, all the code is written in Python (version 3) and
the run time are computed with the method time().
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A.1 Capture and Sonar datasets (Chapter 2)

m = 90 444 1 062 3 090 5 730

OLS 9.33 20.7 14.7 0.14 0.06
LASSO 9.34 20.3 16.7 14.4 8.57
LSL 9.33 20.4 12.8 8.43 4.60
LSLX 9.33 19.4 19.8 12.9 7.86

Table 7.1 – Capture data:
standard efficiency (n = 2000)

m = 90 444 1 062 3 090 5 730

OLS 7.67 18.1 22.1 15.2 0.15
LASSO 7.67 18.4 22.3 22.8 12.8
LSL 7.67 18.0 21.3 13.3 5.24
LSLX 7.67 17.8 21.4 21.6 13.2

Table 7.2 – Capture data:
standard efficiency (n = 5000)

m = 61 183 305 610 1220

OLS 3.39 13.3 246 548 330
LASSO 3.39 13.6 250 673 680
LSL 3.39 13.3 246 564 499
LSLX 3.39 13.9 244 558 680

Table 7.3 – Sonar data:
standard efficiency (n = 2000)

m = 61 183 305 610 1220

OLS 4.48 17.0 235 801 601
LASSO 4.49 17.0 240 821 721
LSL 4.48 17.0 235 804 629
LSLX 4.48 17.0 241 833 734

Table 7.4 – Sonar data:
standard efficiency (n = 5000)

m = 90 444 1 062 3 090 5 730

OLS 8.23 10.3 5.21 0.01 5e-3
LASSO 7.84 10.5 5.88 2.80 0.85
LSL 7.70 10.4 4.54 1.42 0.43
LSLX 7.59 9.77 7.58 2.73 1.04

Table 7.5 – Capture data:
global efficiency (n = 2000)

m = 90 444 1 062 3 090 5 730

OLS 5.21 9.56 8.31 1.28 3e-3
LASSO 5.16 9.69 8.59 4.87 1.72
LSL 5.16 9.59 7.88 2.49 0.59
LSLX 5.15 9.55 8.15 4.51 1.72

Table 7.6 – Capture data:
global efficiency (n = 5000)

m = 61 183 305 610 1220

OLS 0.27 0.33 3.87 4.68 1.47
LASSO 0.27 0.35 3.96 5.55 3.00
LSL 0.26 0.33 3.85 4.90 2.19
LSLX 0.26 0.35 3.80 4.81 3.17

Table 7.7 – Sonar data:
global efficiency (n = 2000)

m = 61 183 305 610 1220

OLS 0.29 0.41 3.66 6.70 2.57
LASSO 0.28 0.41 3.73 6.85 3.10
LSL 0.28 0.41 3.56 6.66 2.68
LSLX 0.28 0.41 3.70 6.95 3.17

Table 7.8 – Sonar data:
global efficiency (n = 5000)
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A.2 AISCV synthetic data and real data (Chapter 3)

Sample Size n
5, 000 10, 000 20, 000 30, 000 50, 000Integrand Efficiency

f1

(d = 4)
standard 2.97 7.87 7.56 7.81 9.64
global 0.76 1.88 1.63 1.53 1.47

f1

(d = 8)
standard 2.70 14.3 20.7 30.7 41.8
global 0.12 0.63 0.96 1.65 2.10

f2

(d = 4)
standard 11.0 12.6 15.5 22.7 20.7
global 9.90 10.7 12.6 18.0 15.9

f3

(d = 8)
standard 9.12 37.1 51.8 78.4 102
global 2.52 10.6 14.3 21.3 26.2

Table 7.9 – Standard and global efficiencies for AISCV compared to AIS for f1, f2, f3

in dimensions d ∈ {4; 8} obtained over 100 replications.

Sample Size n
5, 000 10, 000 20, 000 30, 000 50, 000Dataset Efficiency

Housing standard 7.60 6.77 19.3 17.2 53.0
global 3.24 3.26 9.39 8.38 26.0

Abalone standard 10.4 21.3 23.6 21.1 17.3
global 5.63 12.2 13.5 12.0 9.85

Red
Wine

standard 8.25 9.25 8.03 7.33 6.49
global 3.84 4.66 4.01 3.66 3.24

White
Wine

standard 1.60 1.74 2.06 2.03 1.96
global 0.77 0.88 1.05 1.04 1.01

Table 7.10 – Standard and global efficiencies for AISCV1 compared to AIS for Bayesian
Linear Regression on real-world datasets obtained over 100 replications.

Sample Size n
5, 000 10, 000 20, 000 30, 000Dataset Efficiency

Housing standard 376 155 157 228
global 50.4 15.6 17.0 24.7

Abalone standard 342 300 162 114
global 10.0 12.9 9.70 5.48

Red
Wine

standard 111 77.9 83.3 95.0
global 9.58 9.39 9.40 12.4

White
Wine

standard 29.1 15.9 9.65 5.73
global 2.48 1.45 0.92 0.56

Table 7.11 – Standard and global efficiencies for NUTS sampler compared to AIS for
Bayesian Linear Regression on real-world datasets obtained over 100 replications.
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A.3 Control Neighbors for Barrier option (Chapter 4)

Sample Size n
500 1, 000 2, 000 3, 000 5, 000Options Efficiency

(Black-Scholes)
Up-In

standard 65 260 297 317 130
global 0.27 1.30 2.02 2.34 1.20

(Black-Scholes)
Up-Out

standard 1518 1019 725 461 189
global 9.0 9.6 12.7 12.3 8.0

(Heston)
Up-In

standard 44.3 54.2 57.8 60.5 36.0
global 0.21 0.42 0.60 0.75 0.60

(Heston)
Up-Out

standard 215 159 76.3 54.5 31.7
global 1.67 1.36 1.20 1.23 1.16

Table 7.12 – Standard and global efficiencies for CVNN compared to naive MC for
Barrier option ”Up-In” and ”Up-Out” with Black-Scholes or Heston models, obtained
over 100 replications.



Résumé des contributions

Motivés par les différentes questions de recherche (RQ) mentionnées dans les sections
1.2 et 1.3, nous fournissons maintenant un aperçu détaillé des contributions de cette
thèse où chaque chapitre est dédié à l’une des directions de recherche.

Partie II : Monte Carlo methods and Variance Reduction

• Chapitre 2 : Control Variate Selection for Monte Carlo Integration (QR#1)

Pour faire face aux problèmes de calcul liés à l’utilisation d’un grand nombre de variables
de contrôle, il a été proposé dans South et al. (2022) de régulariser l’estimation OLS
en ajoutant un terme de pénalité `1 dans le problème de minimisation, tout comme
dans le LASSO (Tibshirani, 1996). Les résultats de simulation dans South et al. (2022)
montrent que cette approche, appelée LASSO, apporte de grandes améliorations en
pratique. Toutefois, ces résultats pratiques ne sont pas étayés par un taux d’erreur
asymptotique ni par une borne d’erreur non asymptotique. L’objectif principal de ce
chapitre est de fournir une théorie non asymptotique pour l’utilisation des variables de
contrôle dans les simulations de Monte Carlo.

Contributions. Les contributions sont les suivantes.

(1) Une nouvelle méthode appelée LSLASSO est proposée. Dans l’esprit de (Bel-
loni and Chernozhukov, 2013), elle consiste à sélectionner les meilleures variables
de contrôle via le LASSO, en utilisant le sous-échantillonnage pour diminuer le
temps de calcul, puis à appliquer une régression OLS avec les variables de contrôle
sélectionnées.

(2) Recouvrement de support : on montre que la procédure LASSO permet de sélec-
tionner les bonnes variables de contrôle avec une grande probabilité.

(3) Inégalités de concentration sont dérivées pour les erreurs d’intégration des régres-
sions OLS, LASSO et LSLASSO. Celle pour OLS met en évidence un compromis
entre l’erreur d’approximation de l’intégrande dans le sous-espace vectoriel des
variables de contrôle et les multicollinéarités entre les variables de contrôle. Celles
pour (LS)LASSO montrent des améliorations significatives concernant les effets
de la multicollinéarité.

L’approche pour les preuves combine des inégalités de concentration sous-gaussiennes
bien connues (Boucheron et al., 2013a), ainsi qu’une borne inférieure pour la plus petite
valeur propre d’une matrice de Gram empirique, basée sur une inégalité de Chernoff
pour les matrices (Tropp, 2015, Theorem 5.1.1).

• Chapitre 3 : A Quadrature Rule Combining Control Variates and Adaptive
Importance Sampling (QR#2)

L’utilisation des variables de contrôle est une technique de réduction de variance bien
étudiée (Glynn and Szechtman, 2002; Owen and Zhou, 2000). Les avantages peuvent
être établis théoriquement en termes de bornes d’erreur (voir Oates et al. (2017) et
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Chapitre 2), de convergence faible (Portier and Segers, 2019), d’excès de risque (Be-
lomestny et al., 2022) et même de bornes d’erreur uniformes sur de grandes classes
d’intégrandes (Plassier et al., 2020). En pratique, le cadre des variables de contrôle a
conduit à des procédures efficaces en apprentissage par renforcement Jie and Abbeel
(2010); Liu et al. (2018) et en optimisation Wang et al. (2013), pour n’en citer que
quelques-unes. L’échantillonnage par importance et les variables de contrôle dans le
cas d’une densité cible gaussienne sont explorés dans Jourdain (2009). Récemment, la
procédure de Kawai (2020) incorpore des variables de contrôle et prétend impliquer un
échantillonnage adaptatif d’importance, mais en fait les particules sont toujours échan-
tillonnées à partir de la distribution uniforme sur le cube unitaire. À notre connaissance,
les méthodes de variables de contrôle existantes ne tiennent pas compte des changements
séquentiels dans la distribution des particules, comme c’est le cas dans l’échantillonnage
adaptatif d’importance. L’objectif principal de ce Chapitre est de développer un cadre
permettant de combiner les variables de contrôle et l’échantillonnage par importance
adaptatif.

Contributions. Les contributions peuvent être résumées comme suit:

(1) Une approche simple des moindres carrés pondérés est proposée pour améliorer la
procédure des algorithmes séquentiels avec des variables de contrôle. L’estimation
proposée, appelée AISCV, améliore considérablement la précision de l’algorithme
initial, à la fois en théorie et en pratique.

(2) Plusieurs propriétés théoriques de l’estimation AISCV sont fournies. En par-
ticulier, nous dérivons une limite probabiliste et non asymptotique sur l’erreur
d’intégration.

(3) Des considérations pratiques et des implémentations des variables de contrôle sont
présentées, ainsi que des expériences numériques convaincantes.

L’approche proposée pour utiliser les variables de contrôle dans le cadre séquentiel
repose sur l’expression des moindres carrés ordinaires des variables de contrôle (voir
par exemple Portier and Segers (2019)). Pour prendre en compte les changements
de politique, une certaine repondération doit être appliquée. L’estimation AISCV de
l’intégrale

∫
fπ dλ est définie comme la première coordonnée de la solution au problème

des moindres carrés pondérés

(α̂n, β̂n) = arg min
a∈R,b∈Rm

n∑
i=1

wi

(
f(Xi)− a− b>h(Xi)

)2
,

avec wi les poids d’importance précédents. L’estimation AISCV α̂n possède plusieurs
propriétés intéressantes :

(a) A chaque fois que g est de la forme α+ β>h pour tous α ∈ R et β ∈ Rm, l’erreur
est nulle, c’est-à-dire, α̂n = α =

∫
fπ dλ.

(b) L’estimation prend la forme d’une règle de quadrature α̂n =
∑n

i=1 vn,if(Xi), pour
des poids de quadrature vn,i qui ne dépendent pas de la fonction f et qui peuvent
être calculés par une simple procédure de moindres carrés pondérés.

(c) Elle peut être calculée même lorsque π n’est connu qu’à une constante multiplic-
ative près.
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Le point (a) suggère que lorsque les combinaisons linéaires des fonctions hk couvrent
une riche classe de fonctions, l’erreur d’intégration est susceptible d’être faible. Le
point (b) implique que plusieurs intégrales peuvent être calculées aussi facilement qu’une
seule. Le point (c) montre que l’approche est applicable aux calculs bayésiens. De plus,
les variables de contrôle peuvent être mises en jeu dans un schéma post-hoc, après la
génération des particules et des poids d’importance, et ce pour tout algorithme AIS.

Le principal résultat théorique de ce Chapitre est une majoration probabiliste non
asymptotique sur α̂n − α. Dans des conditions appropriées, cette limite est égale à
τ/
√
n, où τ2 est la constante d’échelle d’une condition de queue sous-gaussienne sur la

variable d’erreur ε = f − α− β>h pour (α, β) = arg mina,b
∫

(f − a− b>h)2π dλ. Notez
que ε a la plus petite variance possible que l’on pourrait obtenir en utilisant les variables
de contrôle h. Par conséquent, lorsque l’espace des variables de contrôle est bien adapté
à l’approximation de g, l’estimation AISCV sera très précise. De plus, notre limite
ne dépend que de l’espace des fonctions linéaires couvert par les variables de contrôle
h1, . . . , hm, et non de la base particulière choisie dans cet espace. Les résultats reposent
sur la théorie des martingales, en particulier sur une inégalité de concentration pour
les martingales sous-gaussiennes dans Jin et al. (2019). Au cours de la preuve, nous
développons une nouvelle borne sur la plus petite valeur propre de certaines matrices
aléatoires, en étendant une inégalité de (Tropp, 2015) au cas des martingales.

• Chapitre 4: Speeding up Monte Carlo Integration: Nearest Neighbors Estimates
as Control Variates(QR#3)

Ce chapitre traite de l’utilisation de variables de contrôle du point de vue des taux de
complexité. Comme mentionné dans la section 1.2, les méthodes de Haber (1966) et
de Chopin and Gerber (2022), même si elles atteignent le taux de convergence optimal,
ne sont valables que pour l’intégration sur le cube unitaire. De plus, elles impliquent
un nombre géométrique (`d) d’évaluations de l’intégrande f , ce qui est problématique
en pratique pour les applications à petit budget de calcul comme dans les modèles
bayésiens complexes. Il est intéressant de noter que, comme mentionné dans Chopin
and Gerber (2022), leur méthode de stratification est liée à une construction spécifique
des variables de contrôle reposant sur une fonction de contrôle constante par morceaux
qui présente un biais très faible par rapport à l’estimation par régression traditionnelle.

Cette idée précise d’utiliser une estimation avec un faible biais est le point de départ de
cet article. Elle est pertinente dans le cadre considéré car la fonction f est accessible
sans bruit. Il est à noter que ce type d’estimation - avec un faible biais - a également
été utilisé avec succès dans le domaine connexe de l’échantillonnage par rejet adaptatif
(Achddou et al., 2019) permettant d’atteindre un taux optimal. L’objectif principal de
ce chapitre est de développer le cadre de control neighbors qui utilise les plus proches
voisins comme variables de contrôle pour atteindre un taux de convergence optimal pour
l’erreur d’intégration.

Contributions. Les contributions peuvent être résumées comme suit :

(1) Une nouvelle méthode de Monte Carlo appelée Control Neighbors est présentée.
Cette méthode construit une estimation α̂n(f) pour approcher l’intégrale π(f)
pour une mesure de probabilité générale π et l’idée centrale découle de l’utilisation
d’estimations de 1-Plus Proches Voisins comme variables de contrôle.
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(2) Cette estimation permet d’atteindre le taux de convergence optimal en O(n−1/2n−1/d)
pour les fonctions Lipschitz. À notre connaissance, l’obtention du taux de con-
vergence optimal pour une mesure de probabilité générale fait de cette méthode
la première de son genre.

(3) Plusieurs considérations pratiques sur les voisins de contrôle sont présentées ainsi
que des expériences numériques prometteuses.

Les propriétés les plus remarquables de l’estimation control neighbors sont :

(a) L’estimation par les voisins de contrôle peut être obtenue dans le même cadre que
le Monte Carlo standard, i., dès lors que l’on peut à la fois (i) tirer des particules
aléatoires de π et (ii) évaluer l’intégrande f . Contrairement au cadre classique des
variables de contrôle (Portier and Segers, 2019), l’estimation proposée ne nécessite
pas l’existence de variables de contrôle dont les intégrales sont connues.

(b) control neighbors prend la forme d’une règle d’intégration linéaire
∑n

i=1wi,nf(Xi)
où les poids wi,n ne dépendent pas de l’intégrande f mais seulement des particules
échantillonnées X1, . . . , Xn. Cette propriété clé permet de bénéficier d’avantages
informatiques lorsque plusieurs intégrales doivent être calculées par rapport à la
même mesure µ. cette propriété permet de réduire le temps de calcul des poids
par rapport au temps de calcul pour évaluer les intégrandes.

(c) On montre que le taux de convergence est optimal pour les fonctions de Lipschitz,
c’est-à-dire que l’erreur d’intégration diminue comme O(n−1/2n−1/d) chaque fois
que f est de Lipschitz (Novak, 2016). D’autres approches (pour la mesure générale
π) qui ont été développées récemment, par exemple (Oates et al., 2017; Portier
and Segers, 2019) n’atteignent pas ce taux.

(d) Puisque les poids wn,i sont construits en utilisant les estimations du plus proche
voisin, des outils pratiques complets sont déjà disponibles, notamment une recher-
che efficace du plus proche voisin avec un arbre à k dimensions (Bentley, 1975) et
une compression et une parallélisation efficaces (Pedregosa et al., 2011; Johnson
et al., 2019).

(e) L’approche proposée est post-hoc dans le sens où elle peut être exécutée après
l’échantillonnage des particules et indépendamment du mécanisme d’échantillonnage.
En particulier, elle peut être mise en œuvre pour d’autres plans d’échantillonnage,
notamment MCMC ou AIS.
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Part III : Stochastic Approximation: Conditioning, Sampling

• Chapitre 5 : Asymptotic Analysis of Conditioned Stochastic Gradient Descent
(QR#4)

À la lumière de la question de recherche (QR#4), ce chapitre concerne les problèmes
d’optimisation de la forme suivante : minθ∈Rd{f(θ) = Eξ[f(θ, ξ)]}, où f est une fonction
de perte et ξ une variable aléatoire. Conditioned SGD généralise SGD standard en
ajoutant une étape de conditionnement pour affiner la direction de descente. En partant
de θ0 ∈ Rd, l’algorithme d’intérêt est défini par l’itération suivante

θt+1 = θt − γt+1Ctg(θt, ξt+1), t ≥ 0,

où g(θt, ξt+1) est un gradient sans biais évalué dans Rd, Ct ∈ Rd×d est appelée matrice
de conditionnement et (γt)t≥1 est une séquence de taux d’apprentissage décroissant.

Travaux connexes. Les travaux fondateurs autour de SGD standard (Ck = Id) ont été
initiés par Robbins and Monro (1951) et Kiefer et al. (1952). Depuis lors, une import-
ante littérature connue sous le nom de approximation stochastique, s’est développée. La
convergence presque certaine est étudiée dans Robbins and Siegmund (1971) et Bertse-
kas and Tsitsiklis (2000) ; les taux de convergence sont étudiés dans Kushner and Huang
(1979) et Pelletier (1998a) ; des bornes non asymptotiques sont données dans Moulines
and Bach (2011). La normalité asymptotique peut être obtenue par deux approches
différentes : une méthode basée sur la diffusion est employée dans Pelletier (1998b)
et Benaïm (1999) alors que les outils de martingale sont utilisés dans Sacks (1958)
et Kushner and Clark (1978). Nous renvoyons à Nevelson and Khas’minskĭı (1976);
Delyon (1996); Benveniste et al. (2012); Duflo (2013) pour les manuels de réference sur
l’approximation stochastique.

Les résultats susmentionnés ne s’appliquent pas directement au conditioned SGD en
raison de la présence de la séquence de matrices (Ck)k≥0 impliquant une source supplé-
mentaire d’aléa dans l’algorithme. Les articles précurseurs traitant de la convergence
faible de conditioned -SGD sont Venter (1967) et Fabian (1968). Dans un cadre restrictif
(cas univarié d = 1 et hypothèses fortes sur la fonction f), leurs résultats sont encour-
ageants car ils montrent que la variance limite de la procédure est plus petite que la
variance limite de SGD standard. Les résultats de Venter et Fabian ont ensuite été
étendus à des situations plus générales : (Fabian, 1973; Nevelson and Khas’minskĭı,
1976; Wei, 1987). Dans Wei (1987), le cadre reste restrictif non seulement parce que
les erreurs aléatoires sont supposées indépendantes et identiquement distribuées mais
aussi parce que l’objectif f doit satisfaire leur hypothèse (4.10) qui ne s’étend guère aux
objectifs autres que quadratiques.

Plus récemment, Bercu et al. (2020) ont obtenu la normalité asymptotique ainsi que
l’efficacité de certaines procédures conditioned SGD dans le cas particulier de la régres-
sion logistique. L’approche précédente a été généralisée il n’y a pas longtemps dans
Boyer and Godichon-Baggioni (2020) où l’utilisation de l’identité matricielle de Wood-
bury est promue pour calculer l’inverse de la Hessienne dans le cadre en ligne. Plusieurs
résultats théoriques, dont la faible convergence de conditioned SGD, sont obtenus pour
les fonctions objectives convexes.

Contributions. Les principaux résultats de ce Chapitre sont les suivants :
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(1) Un résultat de haut niveau traitant de la convergence faible de la séquence ré-
échelonnée des itérés (θt − θ?)/

√
γt est fourni pour les méthodes générales de

conditioned SGD.

(2) Un autre résultat d’intérêt indépendant traitant de la convergence presque sûre
des gradients ∇f(θt)→ 0 est également présenté.

(3) Nous présentons des méthodes de calcul de la matrice de conditionnement Ct et
montrons que la procédure résultante satisfait les conditions de notre théorème
principal. Cela donne un algorithme réalisable qui atteint une variance minimale.

Il est intéressant de noter que notre résultat de normalité asymptotique consiste en
la propriété de continuité suivante : chaque fois que la séquence de matrices (Ct)t≥0

converge vers une matrice C et que les itérés (θt)t≥0 convergent vers un minimiseur
θ?, l’algorithme se comporte de la même manière qu’une version oracle dans laquelle C
serait utilisé au lieu de Ct. Nous soulignons que contrairement à Boyer and Godichon-
Baggioni (2020), aucune hypothèse de convexité n’est nécessaire sur la fonction objectif
et aucun taux de convergence n’est requis sur la séquence (Ct)t≥0. Ceci est important
car, dans la plupart des cas, la dérivation d’un taux de convergence sur (Ct)t≥0 nécessite
un taux de convergence spécifique sur les itérations (θt)t≥0 qui, en général, est inconnu
à ce stade de l’analyse.

Pour obtenir ces résultats, au lieu d’approximer la séquence des itérés redimensionnés
par une diffusion continue (comme par exemple dans Pelletier (1998b)), nous nous
basons sur une approche en temps discret où le schéma de récursion est directement
analysé (comme par exemple dans Delyon (1996)). Plus précisément, la séquence des
itérés est étudiée à l’aide d’un algorithme linéaire auxiliaire dont la distribution limite
peut être déduite du théorème central limite pour les incréments de martingale (Hall
and Heyde, 1980). La variance limite est dérivée d’un algorithme de système dynamique
à valeurs matricielles en temps discret. Elle correspond à la solution d’une équation de
Lyapunov impliquant la matrice C. Elle permet un choix spécial pour C qui garantit une
variance optimale. Enfin, afin d’examiner la partie restante, une récursion particulière
est identifiée. En l’étudiant sur un événement particulier, on montre que cette partie
restante est négligeable.

• Chapitre 6 : SGD with Coordinate Sampling: Theory and Practice (QR#5)

Pour rappel, l’algorithme SGD est défini par la règle de mise à jour suivante

∀t ≥ 0, θt+1 = θt − γt+1gt

où gt ∈ Rd est une estimation du gradient à θt (éventuellement biaisée) et (γt)t≥1 est
une séquence de pas d’apprentissage qui diminue tout au long de l’algorithme. Bien
que le calcul de gt puisse être bon marché, il nécessite toujours le calcul d’un vecteur de
taille d, ce qui peut être un problème critique dans les problèmes de haute dimension.
Pour résoudre cette difficulté, nous nous appuyons sur l’échantillonnage de coordonnées
bien choisies de l’estimation du gradient à chaque itération.

Dance ce chapitre, nous développons le cadre de la descente de gradient par coordonnées
stochastique (SCGD) qui modifie les méthodes de descente de gradient stochastique
standard en ajoutant une étape de sélection pour effectuer une descente de coordonnées
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aléatoire. L’algorithme SCGD est défini par l’itération suivante θ
(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

où ζt+1 est une variable aléatoire évaluée dans J1, dK qui sélectionne une coordonnée de
l’estimation du gradient. La distribution de ζt est appelée politique d’échantillonnage
des coordonnées. Notons que le cadre SCGD est très général puisqu’il contient autant
de méthodes qu’il existe de façons de générer à la fois l’estimation du gradient gt et les
variables aléatoires ζt.

Travaux connexes. Les auteurs de (Nutini et al., 2015) étudient la règle déterministe
de Gauss-Southwell qui consiste à choisir la coordonnée dont la valeur du gradient est
maximale. En faisant confiance à de grands gradients, cette règle ressemble à celle de
MUSKETEER, sauf qu’aucun bruit stochastique - ni dans l’évaluation du gradient ni
dans la sélection des coordonnées - n’est présent dans leur algorithme. Sous cet aspect,
notre méthode diffère de toutes les études CD précédentes (Loshchilov et al., 2011;
Richtárik and Takáč, 2016a; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016;
Allen-Zhu et al., 2016; Namkoong et al., 2017) qui reposent sur ∇f .
Parmi la littérature SGD, des méthodes de compression et de sparsification (Alistarh
et al., 2017; Wangni et al., 2018) ont été développées pour l’efficacité de la communica-
tion. Les premières utilisent des opérateurs de compression pour sélectionner quelques
composantes des estimations du gradient au prix du calcul complet du gradient et du tri
des coordonnées. Les seconds utilisent une estimation du gradient g qui est sparsifiée en
utilisant des poids de probabilité pour atteindre une estimation non biaisée du gradient.
En revanche, le cadre SCGD permet au gradient d’être biaisé car aucune repondération
d’importance n’est effectuée. Notons également que, pour couvrir les méthodes d’ordre
zéro, l’estimation du gradient lui-même gt peut être biaisée, comme par exemple dans
l’étude récente de Ajalloeian and Stich (2020).

Contributions. L’objectif de ce Chapitre est double : d’un point de vue théorique,
il s’agit de développer et d’étudier un cadre général permettant l’échantillonnage de
coordonnées dans le cadre de SGD ; d’un point de vue pratique, il s’agit de fournir un
algorithme efficace pour réaliser une optimisation stochastique. Les contributions sont
les suivantes :

(1) (Théorie) Nous étudions en détail les méthodes SCGD avec échantillonnage ad-
aptatif. Ce cadre général couvre une grande classe d’algorithmes et est bien adapté
à l’optimisation d’ordre zéro. Nous montrons la convergence presque certaine des
itérés SCGD (θt)t∈N vers des points stationnaires dans le sens où ∇f(θt) → 0
presque sûrement ainsi que des bornes non-asymptotiques sur l’écart d’optimalité
E[f(θt)−f?] où f? est une borne inférieure de f . Les conditions de travail sont re-
lativement faibles puisque la fonction f doit seulement être L lisse (classique dans
les problèmes non convexes) et les gradients stochastiques sont éventuellement
biaisés avec une variance non bornée, en utilisant une condition de croissance liée
à la growth condition de Gower et al. (2019).

(2) (Pratique) Nous développons un nouvel algorithme, appelé MUSKETEER, pour
MUltivariate Stochastic Knowledge Extraction Through Exploration Exploitation
Reinforcement. À l’image de la devise "tous pour un et un pour tous", cette
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procédure appartient au cadre SCGD avec une conception particulière pour le
politique d’échantillonnage des coordonnées. Elle compare la valeur de toutes les
estimations passées du gradient gt pour sélectionner une direction de descente
(tous pour un) et déplace ensuite l’itération courante selon la direction choisie
(un pour tous). L’heuristique est celle de l’apprentissage par renforcement dans le
sens où les grandes coordonnées de gradient représentent une grande diminution
de l’objectif et peuvent être considérées comme des récompenses élevées. Les
directions résultantes doivent être favorisées par rapport au chemin associé aux
coordonnées de gradient faibles. En mettant à jour le politique d’échantillonnage
des coordonnées, l’algorithme est capable de détecter quand une direction devient
gratifiante et quand une autre cesse d’être engageante.

Les preuves des résultats de convergence asymptotique sont basées sur les idées de
Bertsekas and Tsitsiklis (2000) avec des extensions particulières dans le cadre des es-
timations de gradient biaisées. Enfin, les bornes non-asymptotiques sont inspirées de
Moulines and Bach (2011) où les auteurs fournissent une analyse non-asymptotique
pour l’algorithme SGD standard.
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Résumé : Dans de nombreux domaines de re-
cherche, que ce soit l’inférence variationnelle,
l’inférence Bayésienne ou l’apprentissage par ren-
forcement, le besoin d’un calcul précis et efficace
d’intégrales et de paramètres minimisant des fonc-
tions de risque apparaı̂t, faisant des méthodes d’op-
timisation stochastiques et de Monte Carlo l’un des
problèmes fondamentaux de la recherche en statis-
tique et en apprentissage automatique. Cette thèse se
concentre sur des méthodes d’intégration par Monte
Carlo et d’optimisation stochastique, tant d’un point
de vue théorique que pratique, où l’idée centrale
est d’utiliser l’aléatoire pour résoudre des problèmes
numériques déterministes. D’un point de vue tech-
nique, l’étude se concentre sur la réduction de la
variance et des techniques d’échantillonnage adap-
tatif. La première partie de la thèse se concentre
sur diverses techniques de variables de contrôle
pour l’intégration de Monte Carlo. L’étude est basée
sur des outils mathématiques issus de la théorie
des probabilités et des statistiques visant à com-
prendre le comportement de certains algorithmes
existants et à en concevoir de nouveaux avec une
analyse approfondie de l’erreur d’intégration. Nous

présentons une procédure LASSO pour utiliser les
variables de contrôle en grande dimension. Une es-
timation pondérée des moindres carrés est ensuite
proposée pour incorporer les variables de contrôle
dans le cadre de l’échantillonnage adaptatif par im-
portance. Enfin, une méthode de Monte Carlo basée
sur des estimateurs des plus proches voisins est pro-
posée. La deuxième partie traite d’ algorithmes d’op-
timisation stochastique. Nous étudions d’abord une
classe d’algorithmes de descente de gradient sto-
chastique (SGD) basée sur un préconditionnement
de la direction du gradient. Nous présentons ensuite
un cadre général pour effectuer un échantillonnage
adaptatif des coordonnées. Alors que les formes clas-
siques d’algorithmes SGD traitent les différentes co-
ordonnées de la même manière, un cadre permettant
l’échantillonnage adaptatif (non uniforme) des coor-
données est développé pour exploiter la structure des
données. Tous les algorithmes sont implémentés et
testés par rapport aux méthodes de l’état de l’art et
des expériences numériques approfondies sont four-
nies pour permettre la reproductibilité. Tous les algo-
rithmes développés dans cette thèse sont libres de
droits et disponibles en ligne.
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Abstract : Across a breadth of research areas, whe-
ther in Bayesian inference, reinforcement learning or
variational inference, the need for accurate and effi-
cient computation of integrals and parameters minimi-
zing risk functions arises, making stochastic optimiza-
tion and Monte Carlo methods one of the fundamental
problems of statistical and machine learning research.
This thesis focuses on Monte Carlo integration and
stochastic optimization methods, both from a theore-
tical and practical perspectives, where the core idea
is to use randomness to solve deterministic numeri-
cal problems. From a technical standpoint, the study
is mainly based on two standard concepts: variance
reduction and adaptive sampling techniques. The first
part of the thesis focuses on various control variates
techniques for Monte Carlo integration. The study is
based on mathematical tools coming from probability
theory and statistics aiming to understand the beha-
vior of certain existing algorithms and to design new
ones with thorough analysis of the integration error.
First, we present a LASSO-type procedure to allow
the use of high-dimensional control variates. Then,

a weighted least-squares estimate, called AISCV, is
proposed to incorporate control variates within the
adaptive importance sampling framework. Finally, a
Monte Carlo method with control variates based on
nearest neighbors estimates, called Control Neigh-
bors, is provided. The second part of the thesis deals
with stochastic optimization algorithms. First, we in-
vestigate a general class of stochastic gradient des-
cent (SGD) algorithms, called conditioned SGD, ba-
sed on a preconditioning of the gradient direction.
Then we present a general framework to perform co-
ordinate sampling for SGD algorithms. While classi-
cal forms of SGD algorithms treat the different coordi-
nates in the same way, a framework allowing for adap-
tive (non uniform) coordinate sampling is developed to
leverage structure in data. To emphazise the practical
applications of the proposed methods, all algorithms
are implemented and tested against state-of-the-art
procedures and extensive numerical experiments are
provided to allow reproducibility. All algorithms deve-
loped in this thesis are open-sourced and available
online.
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