
HAL Id: tel-04060144
https://theses.hal.science/tel-04060144v1

Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategies for securing cache memories against software
side-channel attacks

Amine Jaamoum

To cite this version:
Amine Jaamoum. Strategies for securing cache memories against software side-channel attacks. Micro
and nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2022. English. �NNT :
2022GRALT111�. �tel-04060144�

https://theses.hal.science/tel-04060144v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES
Unité de recherche : CEA/LETI

Stratégies de sécurisation des mémoires cache contre les attaques
par canaux auxiliaires logiciels

Strategies for securing cache memories against software side-
channel attacks

Présentée par :

Amine JAAMOUM
Direction de thèse :

Giorgio DI NATALE
Directeur de Recherche, Université Grenoble Alpes

Directeur de thèse

Thomas HISCOCK
 CEA

Co-directeur de thèse

Rapporteurs :

Guy Gogniat
PROFESSEUR DES UNIVERSITES, Université Bretagne Sud
Benoit Pascal
MAITRE DE CONFERENCES, Université Montpellier 2

Thèse soutenue publiquement le 12 décembre 2022, devant le jury composé de :

Giorgio DI NATALE
DIRECTEUR DE RECHERCHE, Université Grenoble Alpes

Directeur de thèse

Frédéric Pétrot
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Président

Clémentine Maurice
CHARGE DE RECHERCHE, Université de Lille

Examinatrice

Guy Gogniat
PROFESSEUR DES UNIVERSITES, Université Bretagne Sud

Rapporteur

Benoit Pascal
MAITRE DE CONFERENCES, Université Montpellier 2

Rapporteur

Invités :

Thomas Hiscock
INGENIEUR DOCTEUR, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)

ABSTRACT

Thanks to an active research and high support from industry, computer systems are

now ubiquitous and have become an essential part of daily life. For many years, micro-

processor designers have optimized architectures to maximize the number of instruc-

tions executed per clock cycle. One important challenge is the large gap between CPU

and main memory speed, known as the "memory wall." Multiple cache levels are placed

between the CPU and the main memory to fill this gap. A cache can be viewed as small

temporary memory storage (from hundreds of kilobytes, for the smallest to a dozen

megabytes, for the largest). The different cache levels are generally organized from the

smallest and fastest to the largest and slowest. The last-level cache is usually shared

between all CPU cores.

Process isolation is the most important security constraint enforced by operating sys-

tems in multitasking systems. One process isolation is memory isolation, to separates

running processes from accessing each other. However, such isolation is not imple-

mented at the hardware level. For example, all processes running on the same CPU

eventually share the same L1 and L2 caches. Furthermore, all processes share the last

level cache. A malicious program can then manipulate the cache state to derive infor-

mation about other processes that share the same cache, thus breaking the isolation the

operating system provides. However, despite all the isolation mechanisms described by

the OS, hardware sharing can lead to information leaks and thus violate the isolation

ensured by these mechanisms. Hence, processor architects must redesign the compo-

nents of processors and address these vulnerabilities to mitigate them effectively in the

new generation of processors.

This thesis first provides a comprehensive study of the most common cache-based side-

channel attacks. These attacks occur when memory accesses depend on sensitive infor-

mation. In particular, these attacks can retrieve the memory access sequence of the vic-

tim program. Although these attacks are easy to understand, their practical implemen-

tation is usually tricky and requires a deep understanding of poorly documented pro-

cessor functions. Therefore, the lack of a set for microarchitectural side-channel attacks

is an obstacle to analyzing the resilience of existing software/hardware countermea-

sures against microarchitectural side-channel attacks. For these reasons, we developed

i

the Micro-Architectural Analysis Toolkit (libMAAT) library to abstract the implementa-

tion of microarchitectural side-channel attacks on various CPU architectures (e.g., x86,

ARMv7, ARMv8, and RISCV). We have used this library to prototype cache-based side-

channel attacks and evaluate the resilience of our secure architectures against realistic

attacks.

Additionally, on real systems, the attacker’s observations using cache-based side-

channel attacks can be disrupted because of the noise added by the optimizations, such

as hardware prefetching, simultaneous multithreading (SMT), TLBs, buses, etc. This

thesis offers a noise-free framework that abstracts the implementation details of inclu-

sive memory hierarchies. We use this framework to analyze the side effects of cache

attacks and evaluate them in randomized caches. In addition, it allows us to introduce

ScrambleCache, a novel cache architecture that leverages randomized set placement

to defeat cache side-channel analysis. A key property of the ScrambleCache is its low

impact on performances and its small area overhead. We demonstrate that this counter-

measure protects the system against known cache side-channel attacks while ensuring

small overheads, making this solution suitable for both embedded and application sys-

tems. In addition, to eliminate conflict-based side-channel attacks, we propose to ran-

domly evict a number of cache lines from the last-level cache each time a precomputed

number of memory accesses are achieved. Our security analysis reveals that even in the

strongest possible attacker model (noise-free), eviction set construction algorithms fail

to find a set of congruent addresses.

Keywords: Cache-based side-channel attacks, Memory hierachy, Randomized caches.

ii

TABLE OF CONTENTS

Abstract i

1 Context and Motivations 1

1.1 Introduction . 2

1.2 Memory Isolation . 3

1.2.1 Software Isolation Approaches . 3

1.2.2 Trusted Execution Environment 4

1.3 Hardware Sharing and Vulnerabilities . 6

1.4 Cache-based Side-Channel Attacks . 7

1.5 Problem Statement . 8

1.6 Contributions . 9

1.7 Thesis Outline . 10

2 Background and State-of-the-art 12

2.1 Modern Micro-architectures . 13

2.2 Memory Paging and Virtual Memory . 16

2.2.1 Paging System . 17

2.2.2 Page Table Lookup . 17

2.2.3 The Table Lookaside Buffer (TLB) 19

2.3 Memory Hierarchy . 20

2.4 Cache Memory . 21

2.4.1 Locality of Reference . 21

2.4.2 Cache Organizations . 22

2.4.3 Virtual and physical tags and indexes 25

2.4.4 Cache Replacement Policy . 26

2.4.5 Multi-core Caches . 27

2.4.6 Caches on Intel x86 CPUs . 29

2.5 Cache-based Side-Channel Attacks . 29

2.5.1 Information Leakage Channels in Cache memories 29

2.5.2 Classification of Cache-based Side-Channels Attacks 31

2.5.3 Cache-based Side-Channel Attacks - General Steps 33

iii

2.5.4 Leakage Exploitation Techniques 33

2.6 Eviction Set Construction . 39

2.6.1 Defining Eviction Sets . 39

2.6.2 Static Approach . 40

2.6.3 Dynamic Approach . 41

2.7 Eviction Set Optimization Algorithms . 42

2.7.1 Single Address Elimination Algorithm 43

2.7.2 Group Testing Algorithm . 43

2.7.3 Prime–Prune–Probe Algorithm . 44

2.8 Defenses against Cache-based Side-Channel Attacks 46

2.8.1 Application level . 46

2.8.2 Operation system or hypervisor level 47

2.8.3 Hardware level . 49

2.9 Summary and Conclusion . 54

3 Practical analysis of cache attacks 56

3.1 Motivations . 57

3.2 LibMAAT: Micro-Architectural Analysis Toolkit Library 58

3.2.1 Targeted Micro-Architectures . 59

3.2.2 Timing Measurements . 59

3.2.3 Cache Eviction . 62

3.2.4 Memory pool allocation . 65

3.3 Evaluation of Eviction Set Construction 65

3.3.1 Target Platforms . 65

3.3.2 Candidate Set Size Evaluation . 66

3.3.3 Evaluation of Cache Eviction Strategies 68

3.4 Attack on T-Table based AES implementation 70

3.4.1 AES implementation . 71

3.4.2 Attack Description . 72

3.4.3 Side-Channel Distinguishers . 73

3.5 Setting and Attack Primitives . 74

3.5.1 Targeted Platforms and Settings 75

3.5.2 Measurement Using Evict+Reload Technique 76

3.6 Conclusion . 78

4 Security Analysis of Randomized Caches 81

4.1 Motivation and Problem Definition . 82

4.2 Threat Model and Attacker Capabilities 82

iv

4.3 Noise-free Cache Simulation Framework 83

4.3.1 Overview . 83

4.3.2 Illustative Example . 84

4.4 Experimental Setup and Methodology . 85

4.5 Complexity of Constructing Eviction Sets in Uprotected Memory Hier-

archy . 86

4.5.1 Single Address Elimination Algorithm 87

4.5.2 Group Testing Algorithm . 87

4.5.3 Prime–Prune–Probe Algorithm . 88

4.6 Randomization in Low-Level Caches . 90

4.6.1 Choice of the Addressing Function 90

4.6.2 Remapping Interval Analysis . 91

4.6.3 Randomization of L1 Cache . 92

4.7 Random Eviction Last-Level Cache . 94

4.7.1 Overview . 94

4.7.2 Results and Discussion . 95

4.8 Conclusion . 96

5 Mitigation of Cache Attacks on lower cache levels 98

5.1 Motivation . 99

5.2 Detailed Architecture . 100

5.2.1 Overview . 100

5.2.2 Hardware Architecture . 101

5.2.3 Address Permutation Properties 101

5.2.4 History Mechanism . 103

5.2.5 Key Management and Re-Keying 105

5.2.6 Integration of ScrambleCache into Existing Microarchitectures . . 106

5.3 Gem5 Simulator . 107

5.4 Security Evaluation and Discussion . 108

5.4.1 Applicability of Cache Attacks . 108

5.4.2 Side-channel Vulnerability Factor Evaluation 109

5.4.3 Complexity of Prime+Probe Attack 111

5.5 Performace Analysis . 111

5.5.1 Experimental Methodology and Configuration 111

5.5.2 Sensitivity to Remapping Period 113

5.5.3 Sensitivity to the History Table Depth 113

5.5.4 Sensitivity to the Cache Capacity 115

5.6 Conclusion . 115

v

6 Conclusion 117

6.1 Summury and Conclusion . 117

6.2 Future Works and Improvements . 119

Foreword 121

vi

LIST OF FIGURES

1.1 TrustZone Technology. 5

2.1 Instruction execution in a processor with a 5-stage pipeline. It takes nine

cycles to execute five instructions. At t = 5, all stages of the pipeline are

called, and all five operations take place at the same time. 13

2.2 Instruction execution in a processor with a 5-stage superscalar pipeline

capable to execute maximum two instructions per pipeline stage. 14

2.3 Muti-tasks physical memory organisation 16

2.4 Translation of a virtual address to a physical address 18

2.5 Address translation for 4KB pages using a two-level page table. Starting

from the PTBR that returns the specified process page table, the pro-

cessor determines the physical address by gradually using parts of the

virtual address. 18

2.6 Address translation using a TLB. On a hit, the corresponding physical

page address can be returned immediately. On a TLB miss, the page ta-

bles are accessed. 19

2.7 Typical memory hierarchy of a computer system, with indicator values

for the access latency and capacity of each memory level. 20

2.8 Cache terminology of a 4-way set-associative cache. 22

2.9 Organization of a direct-mapped cache. 23

2.10 Organization of a full-associative cache. 24

2.11 Organization of a set-associative cache. 25

2.12 Modern memory hierarchy for Intel CPUs. Each CPU core has a private

L1D and L1I caches, and also has private unified L2 cache. The L3 cache

is the LLC cache and is shared among all CPU cores. 27

2.13 Cache architecture of a quad-core Intel processor (sicen Sandy Bridge

micro-architecture). The LLC is divided into slices, and interconnected

with each core by a ring bus. 29

2.14 Cache-based side-channel attack procedure. 32

vii

2.15 Illustration of Flush+Realod technique in a 4-way set-associative cache

(columns) and 6 cache sets (lines). In Figure 2.15a, the attacker flushes

the shared address, and schedule to the victim program, as shown in

Figure 2.15b. In Figure 2.15c, the adversary measures the flushing time

to reveal whether the victim has accessed the shared address. 37

2.16 Illustration of Evict+Reload technique in a 4-way set-associative cache

(columns) and 6 cache sets (lines). In the evict step, the attacker load a

specific cache set, and schedule to the victim program, as shown on Fig-

ure 2.16b. In the reload step, the adversary measures the access time to

reveal if the victim has accessed the target address. 38

2.17 The decomposition of a virtual address into a physical cache location. . . 41

3.1 Overall architecture of libMAAT . 58

3.2 Histogram of cache hits and cache misses measured cross-CPU on the

dual-core Cortex-A9 using CPU counter to measure timing. 61

3.3 Histogram of cache hits and cache misses measured cross-CPU on the

dual-core Cortex-A9 using the clock_gettime() function to measure

timing. 62

3.4 Eviction set accessing sequence using window sliding eviction strategy

ζ − 3− 2− 2− 1. 65

3.5 Evaluation of the candidate set size using virtual and physical addresses

for different platforms. 67

3.6 Sucess rate of creating a candidate set using virtual addresses 68

3.7 A global overview of the AES algorithm [Bri+19]. 71

3.8 Guessing entropy comparison of different distinguishers method for first

round AES attack . 77

3.9 Guessing entropy comparison of different distinguishers method for sec-

ond round AES attack . 78

4.1 (a) The success rate of the single address elimination algorithm with dif-

ferent candidate set sizes. (b) The time required to find an eviction set

using the single address elimination algorithm. 87

4.2 The success rate of the group testing algorithm with different candidate

set sizes. 88

4.3 The success rate of the Prime–Prune–Probe algorithm with different can-

didate set sizes. 89

viii

4.4 An illustration of a Prime–Prune–Probe iteration when the candidate set

contains more than W congruent addresses. Above is the state of the

candidate set at the end of each step. Below is the cached state. 90

4.5 The minimum number of memory accesses as a function of the success

rate for (a) the group testing and (b) the Prime–Prune–Probe algorithms. 92

4.6 (a) The success rate of the group testing algorithm with different can-

didate set sizes. (b) The number of congruent addresses in the reduced

eviction set when using the group testing algorithm with a randomized

L1 cache. 93

4.7 (a) The success rate of the Prime–Prune–Probe algorithm with different

candidate set sizes. (b) The number of congruent addresses in the re-

duced eviction set when using the Prime–Prune–Probe algorithm with a

randomized L1 cache. 93

4.8 The success rate of the Prime–Prune–Probe algorithm with different

eviction frequencies and set sizes. 96

5.1 Example of the ScrambleCache behavior 100

5.2 The ScrambleCache Architecture . 102

5.3 Example of the f permutation for 4-bit wide addresses 103

5.4 Similarity Matrix between the oracle and attacker observations for a 32kB

cache . 110

5.5 Evolution of SVF with the remapping period for different cache sizes . . 110

5.6 Single cache line Prime+Probe attack on both ScrambleCache and unpro-

tected cache . 112

5.7 Impact of remapping frequency on slowdown of ScrambleCache 114

5.8 Impact of history table depth on ScrambleCache performance 114

5.9 Impact of L1 data capacity on ScrambleCache performance 115

ix

LIST OF TABLES

3.1 List of targeted platforms . 66

3.2 Classification of the best ten configurations using sliding window evic-

tion strategy for raspberry Pi4, raspberry Pi3B+, and FPGA Zybo7z20

platforms, respectively. 69

3.3 Classifiaction of the best five configurations using pointer-chasing evic-

tion strategy for raspberry Pi4, raspberry Pi3B+, and FPGA Zybo–7z20

platforms, respectively. 70

3.4 A comparison between various side-channel microarchitectural libraries 80

4.1 The baseline configuration. 86

5.1 Benchmark Sizes . 113

x

1
Context and Motivations

In this chapter, a general introduction of this thesis work. After, the introduction of modern

systems and the associated threat model are presented. The next section presents contributions

to this thesis work. In he last section, we explain the structure of this manuscript.

1.1 Introduction . 2

1.2 Memory Isolation . 3

1.3 Hardware Sharing and Vulnerabilities 6

1.4 Cache-based Side-Channel Attacks . 7

1.5 Problem Statement . 8

1.6 Contributions . 9

1.7 Thesis Outline . 10

1

1.1 Introduction

Digital systems are ubiquitous and have became essential to the functionning of so-

ciety. Over time, they have evolved from large, unwieldy machines that are difficult

to operate and maintain to smaller, more user-friendly and increasingly interconnected

machines. Digital systems are now used in a wide variety of applications, including ad-

ministration, banking, communications, manufacturing, medicine, military, and many

others.

Microprocessors are the core of every digital system, whether it is a cloud server, a

personal computer, a tablet or a smartphone. Their performance and capabilities have

improved rapidly over the years according to what is known as Moore’s Law. This law

was established in 1965 with the prediction by Gordon Moore 1 that the number of tran-

sistors on a chip would double approximately every two years. For the past fifty years,

this law has been followed by the integrated circuit (IC) industry. This means that mi-

croprocessors have become smaller and more densely packed with new generations.

This has allowed manufacturers to develop even more powerful processors without in-

creasing the size or power consumption too much. For example, the first commercially

available microprocessor was the Intel 4004, developed in the early 1970s. It had 2,300

transistors and could only perform about 60,000 operations per second. Today’s micro-

processors are much more powerful and have billions of transistors. They can perform

billions of operations per second and are used in everything from personal computers

to supercomputers. This has led to smaller and more powerful computers that can han-

dle increasingly complex tasks. However, at the Intel Developer Forum in 2007, Gordon

Moore predicted that his law would no longer be valid for ten to fifteen years. In fact,

the industry is reaching the physical limits of microelectronics, where transistors will

consist of only a few atoms that cannot yet be separated to make them more smaller.

Industry will then have to look for completely new methods, which give birth to More

than Moore’s Law.

The advances of microprocessors have led to the development of increasingly complex

operating systems. The operating system (OS) is a set of software that are able to take

advantage of the increased speed and power of microprocessors to provide a better ex-

perience for users. Unlike older operating systems that could only run a single process

at a time, today’s modern operating systems are capable of running hundreds of pro-

cesses simultaneously by efficiently sharing hardware resources. From the operating

system’s perspective, a process represents an instance of an application running on the

1. director of research and development at Fairchild Semiconductor

2

system. The operating system shares the resources of each process in two ways: tempo-

rally (time-sharing) when multiple applications use them at different time and spacially

when multiple applications can use it simultaneously. For example, the memory system

is shared spatially and temporally among all CPU cores because all cores can access the

data simultaneously.

A typical system executes a wide variety of application at the same time. Each applica-

tion is associated to a degree of trust that can be very different. To prevent a malicious

process from manipulating or accessing the resources of other processes, operating sys-

tems has to provide some degree of isolation between the differents processes. To en-

sure the isolation of the resources of each running process, the operating system (OS)

assigns each process a privilege level that corresponds to a trust level granted to that

process. The higher the privilege level of a process, the more access it has to system

resources. Modern processors such as ARM, Intel, AMD, and RISC-V support different

privilege levels. For example, three privilege levels are currently defined in the RISC-V

architecture: User level (U-mode), Supervisor mode (S-mode), and Machine mode (M-

mode). The processor can only operate in one of these modes at a time. Machine mode

is the highest privilege level, and processes running in M-mode are usually inherently

trusted because they have low-level access to the system implementation. The M-mode

can be used to manage secure execution environments on RISC-V. The U-mode and

S-mode are respectively for conventional applications and operating systems.

1.2 Memory Isolation

Modern operating-system kernels allow computer resources to be shared by untrusted

processes. In this context, modern operating systems have introduced memory isolation

for security reasons to prevent accidental or malicious access by a process to an address

outside its own address space.

1.2.1 Software Isolation Approaches

Memory isolation is the basis of modern operating system security. It consists of run-

ning each process in an execution environment isolated from other processes.There ex-

ists different implementations of memory isolation. Virtual memory management is

the most widely used isolation mechanism in most modern processors. Each process

is provided with a virtual address space that differs from the actual physical mem-

3

ory mapping, and that can be much larger than the accessible physical memory. The

translation of virtual addresses into physical addresses is performed by the Memory

Management Unit (MMU). The MMU is a hardware component that maps the virtual

address space seen by the running process into the physical address space. The ad-

dress translation is responsible of translating virtual addresses into physical addresses.

It also returns the attributes access permissions of the associated memory region. On

low power processors, when the hardware cost of MMU is not affordable, the Memory

Protection Unit (MPU) is used as an alternative to support memory isolation.

Virtualization is another isolation mechanism that allows the abstraction of hardware

resources to make high-performance and isolated virtual machines (VMs). The virtu-

alization was previously based on software techniques, but the massive use of virtual

machines, especially for the Cloud, has led manufacturers to build hardware virtual-

ization support mechanisms in their processors to boost performances, such as Intel’s

VT-x and VT-d or Virtualization Extensions in ARM processors. Virtualization can be

used to run one operating system within another, or multiple operating systems in par-

allel (thanks to a hypervisor such as Xen [Bar+03]). In the case of multiple VMs, the

hypervisor runs with the highest privileges. It is responsible for memory allocation, in-

struction execution and translation, and resource isolation of each virtual machine. The

hypervisor should guarantee that a VM is not allowed to access resources allocated to

another machine or to the hypervisor itself. One of the biggest advantages of virtual-

ization is that no hardware changes are required - as long as there is an MMU in the

processor.

1.2.2 Trusted Execution Environment

The ability to execute many tasks concurrently in the same system allow to run a large

amount of software. The more software, the larger the attack surface and the higher the

likelihood of vulnerabilities will be present. To circumvent this problem, the Trusted Ex-

ecution Environment (TEE) was developed to isolate the execution of critical software,

such as the ones that use sensitive information. The TEE is a secure region of the pro-

cessor that ensures sensitive data is stored, processed, and protected in an isolated and

trusted hardware environment. As such, it provides protection against software attacks

generated in the Rich Operating System (Rich OS). In systems that support TEE, only

trusted applications running on TEE have full access to the main processor, peripher-

als and memory resources. To prevent untrusted applications from accessing protected

hardware resources, processor manufactures propose their own hardware implementa-

4

tions of TEE, e.g., ARM’s TrustZone, Intel SGX, RISC-V’s MultiZone, etc. These security

extensions offer hardware mechanisms to process/store sensitive data in an isolated en-

vironment where even the most privileged software is compromised.

ARM TrustZone [Hol09] is a hardware security extension technology that aims to cre-

ate a secure and isolated execution environment allowing the implementation of TEE.

The TrustZone technology consists of dividing all hardware and software resources

of the SoC into two execution worlds, namely the normal world and the secure world.

ARM offers TrustZone technology as an optional hardware extension for its Cortex-A

and Cortex-M processors, as shown in Figure 1.1. To communicate between the two

worlds on Cortex-A processors, a privileged software known as the Secure Monitor (a

lightweight OS running in secure world, such as OP-TEE) is called to ensure a secure

context switching between the two worlds. ARM TrustZone offers memory isolation

at the hardware level, by adding a non-secure bit to the physical addresses to indicate

whether addresses are originating from a secure or insecure world. To make a tradeoff

between performances and security, caches are shared between the two worlds, and the

non-secure bit is added to the cache. For this reason, memory accesses from the normal

world cannot access data in shared hardware if it is tagged as secure.

(a) TrustZone for Cortex-A processors.
(b) TrustZone for Cortex-M proces-
sors

Figure 1.1 – TrustZone Technology.

The ARM TrustZone is mainly used to protect sensitive data, such as banking applica-

tions that use the secure world to process passwords and card numbers; they are not

accessible from the normal ARM world. Obviously, the execution of an entire applica-

tion in the secure world is not recommended. The rationale behind the secure world is

to isolate small, auditable and secure functionalities. However, running entire applica-

tions in the secure world increases the attack user face. An attacker who successfully

exploits a vulnerability in an application could gain access to resources in the secure

5

world. This compromises the security of the whole system, making isolation useless.

For example, a banking application on a smartphone might prompt the user to authen-

ticate via face ID. The banking application runs most of its code in the normal world.

When it wants to authenticate the user, it calls the secure world, which scans the user’s

face and compares it to the one stored in the secure memory. Even if an attacker were

able to read the data from the banking application, he would not have access to ei-

ther the scanned or the stored face ID, because both operations take place in the secure

world. The only feedback from the secure world to the application is whether the user

has been authenticated or not. For example, if we run the entire banking application

in the secure world, an attacker can access the user’s face ID data through a software

vulnerability.

Intel Software Guard Extensions (Intel SGX) [CD16] are extension of the x86 architec-

ture that allow an application to create isolated and encrypted enclaves. Enclaves are

areas in the virtual address space that are protected from being accessed from any other

processes, including the operating system itself and any virtual machine manager. Be-

cause of the ability of a user space application or operating system to define private,

encrypted memory regions, any other user space process or privilege level process can-

not read these private regions. Intel SGX provides similar guarantees to those offered

by ARM Trustzone by including remote attestation, which is very convenient for execu-

tion in remote servers. The issue with this technology is that applications protected by

SGX suffer from the same problems as with ARM’s TrustZone. If the code itself contains

vulnerabilities, Intel SGX cannot prevent their exploitation.

1.3 Hardware Sharing and Vulnerabilities

As processor architectures have evolved over the past decade, various strategies have

been developed to improve the performances. At the hardware level, this relies on com-

plex hierarchical caches, Table Lookaside Buffers (TLBs), instruction pipelining, simul-

taneous multi-threading (SMT), branch prediction, out-of-order execution, speculative

execution, and also the implementation of some specific hardware accelerators to speed

up the execution of critical operations. Researchers have shown many of those optimiza-

tion techniques have the potential risk of information leakage due to hardware sharing.

This work focuses on microarchitectural side-channel attacks that aim to extract critical

information on computer systems. These attacks target components that are shared

data between multiple processes. These attacks that exploit hardware effects can be

exploited remotely, in most cases, rather than requiring physical access. For example,

6

the RowHammer vulnerability [AAA17], can generate fault in a DRAM cell by repeat-

edly accessing memory at the same addresses to introduce bit flips. Another famous

software-based microarchitectural side-channel attack is Spectre [Koc+19]. Spectre at-

tack exploits hardware vulnerabilities linked to speculative execution. It temporarily

overcomes software-defined security policies in order to leak secrets outside of the pro-

gram’s intended code/data flow, and it analyzes the microarchitectural side effects of

the speculative execution to retrieve leaked informations.

In modern virtual memory systems, MMU also plays a crucial role in translating vir-

tual addresses to physical addresses. For performance reasons, these translations are

cached in the TLBs. On modern microarchitectures, they have a two-level hierarchy,

conceptually similar to the cache architecture. The last level TLB is larger and shared for

translations of both code and data addresses for different processes. Like other shared

hardware components, TLBs are vulnerable to microarchitectural attacks as the map-

ping between the virtual address and the TLB set into which it is mapped is known for

the attacker process. Some works have explored TLB-based attacks, including in Intel’s

SGX architecture [Wan+17].

1.4 Cache-based Side-Channel Attacks

By far, cache memories are among the greatest source of microarchitectural leakages.

Modern processors use cache memories to store recently accessed memory. They are

small buffers placed between CPU and DRAM to reduce the memory access latency.

These components manage local copies of data following the principles of temporal and

spatial locality of memory references in programs. Namely, the most recently accessed

memory addresses and nearby addresses are often re-accessed many times. Caches are

organized in multiple levels with different sizes and access speeds. For any cache, access

latency to data present in the cache is relatively short (hit) compared to uncached data

(miss). Cache-based side-channel attacks are a class of microarchitectural attacks that

exploit the fact that the cache is shared among different processes and security domains.

As the attacker shares the cache with the victim, he can observe the victim cache state

and use it to make inferences about the victim. Alternatively, he can indirectly modify

the cache state to affect the victim’s execution time slightly. In all cases, cache-based

side-channel attacks are attacks performed by exploiting time differences.

Cache-based side-channel attacks are particularly powerful because they are not limited

to attacks on cryptosystems [IES15a; YK14; OST06; Ber05]. Several works have shown

7

that cache attacks are possible in all levels and all types of cache memory. For ex-

ample, the Prime+Probe [OST06] cache attack was initially performed to retrieve the

key used by AES on first-level data caches [Per05; NS06; OST06] and in the instruction

caches [Aci07]. The LLC is a more interesting attack target because adversaries and vic-

tims do not need to share the same CPU. Improvements to the Prime+Probe [Zha+12;

Liu+15] technique have allowed it to work on LLCs. Kayaalp et al. [Kay+16] further

relaxed the assumptions of the attacks and achieved a better resolution. Various exten-

sive survey studies have listed the threats at different cache levels [Lou+21; Mus+20].

Attacking the L1 cache, for example, has some advantages because fewer load instruc-

tions are required to fill or evict the L1 cache due to its small size. However, since the

differences in access time between L1 and L2 caches in modern processors are only a

few cycles, performing L1 cache attacks can be complicated due to noise in the timing

measurements.

1.5 Problem Statement

Process isolation is the most important security constraint in multitasking systems.

However, despite all the isolation mechanisms described above, hardware sharing can

lead to information leaks and thus violate the isolation ensured by these mechanisms.

In addition, sharing cache memories between different processes of different security

domains leads to the loss of sensitive information, which makes the memory hierarchy

vulnerable to cache-based side-channel attacks.

Therefore, to protect a memory hierarchy against cache-based side-channel attacks, the

different cache levels should be protected. Extensive research has been conducted on

countermeasures to mitigate CSCAs. However, despite efforts to develop these mitiga-

tion techniques, it remains a lot to explore. This is mainly due to the fact that CSCA

mitigation techniques usually target only some specific cache vulnerabilities in a par-

ticular cache level and do not protect the entire memory hierarchy from cache attacks.

The proposed countermeasures also completely eliminate or significantly reduce the

performance benefits of resource sharing. In addition, new attacks that exploit new

vulnerabilities continue to emerge, and the attack surface continues to grow. Recently,

CSCAs have become more sophisticated and could overcome applied mitigation tech-

niques. This raises the question of how we can assess a secure memory hierarchy against

CSCAs ?

The goal of this research is to develop a feasible approach to mitigate cache-based side-

channel attacks in different cache levels. To develop a useful solution, it must not only

8

provide strong security against cache attacks but also have a low-performance overhead.

This point us to raise the question: which countermeasures should be used at each cache level

to ensure a tradeoff between security and performance ? In line with the previously defined

objective, a deep understanding of cache attacks and different classes of countermea-

sures is required. Addressing this problem will allow us to identify the limitations of

these mitigation techniques and derive a set of quantitative criteria for a secure memory

hierarchy.

1.6 Contributions

This thesis offers three major contributions:

1. Creation of a new modular Micro-Architectural Analysis Toolkit Library.

Microarchitectural side-channel attacks exploit contention in shared processor

components to leak information between processes. Although these attacks are

easy to understand, their practical implementation is usually difficult and re-

quires a deep understanding of poorly documented processor functions. There-

fore, the lack of a set for microarchitectural side-channel attacks is an obstacle

to analyze the resilience of existing software/hardware countermeasures against

microarchitectural side-channel attacks. For this reason, we developed the Micro-

Architectural Analysis Toolkit (libMAAT) library to abstract the implementation

of microarchitectural side-channel attacks on various CPU architectures (e.g., x86,

ARMv7, ARMv8, and RISCV). LibMAAT is a modular library that allows all avail-

able options to be changed at compile time. For example, the timing source can

be specified on each execution without having to recompile libMAAT. We devel-

oped this library to quickly prototype microarchitectural attacks and evaluate the

resilience of our secure architectures against realistic attacks.

2. Free-noise analysis of randomized caches. Modern microarchitectures incor-

porate many optimizations, such as hardware prefetching, simultaneous multi-

threading (SMT), TLBs, busses, etc. These optimizations allow programs to run

faster and more effectively. However, they introduce noise to the attacker obser-

vations, making algorithms evicting addresses form cache memories less reliable.

To make a favorable scenario for the attacker and the reproducibility of attacks,

we developed a noise-free model where there is no source of noise. This cache

framework abstracts the implementation details of the hardware and simulates

only the memory hierarchy behavior. In this study, we also attempted to analyze

9

whether secure randomized caches are worth considering from a security per-

spective. We show that randomizing L1 caches improves security, but is not suf-

ficient to mitigate all known cache-based side-channel attacks. Nonetheless, we

demonstrate that L1 randomization can be combined with a lightweight random

eviction method in higher-level caches (LLC) to mitigate known conflict-based

cache attacks.

3. Scramble Cache Architecture. While working on analysing dynamic random-

ization on first-level cache, we observe that miss rate increase extremely at each

time we change how the cache memory is addressed. There are many solutions

and countermeasures in the literature that protect L1 caches. However, most of

them do not cover all cache-based side-channel attacks. In this work, we present a

novel L1 cache architecture that uses dynamic randomized set placement to pre-

vent cache side-channel analysis. Unlike partitioning techniques, this approach

allows full cache sharing, which benefits performance. The ScrambleCache uses

a lightweight permutation function to randomize the address-to-cache mapping.

The permutation can be renewed at any time to not allow cache side-channel anal-

ysis. Ideally, the ScrambleCache would change the permutation as frequently as

possible to spread memory accesses across the entire cache. A key property of this

architecture is its low impact on performance and its small footprint. We show

that this countermeasure can protect the system from known cache-based side-

channel attacks while guaranteeing low overhead area and performance.

1.7 Thesis Outline

Besides the introduction chapter, this thesis manuscript is composed of five other chap-

ters:

Chapter 2 - Background and state-of-the-art This chapter starts by providing a brief

background on modern micro-architecture features and cache hierarchy designs, spe-

cially for x86 architectures. We then etablish a detailed state-of-the-art of cache-based

side-channel attacks. Finally, we review related work on countermeasures against cache

attacks.

Chapter 3 - LibMAAT In this chapter, we present LibMAAT, a toolkit for experiment-

ing with micro-architectural side-channel attacks. At the beginning, we describe the

10

libMaat overview and the need of a modulare toolkit. At this time LibMaat includes

Flush+Reload, Flush+Flush and Evict+Reload techniques. In another hand, we use this

library to implement the first-round AES attack on various platforms.

Chapter 4 - Noise-free analysis This chapter presents a noise-free security analysis of

random dynamic caches. We begin by describing our framework for the inclusive mem-

ory hierarchy that we used to study the various algorithms for constructing a conflict-

based cache attack. These algorithms are used to construct a set of addresses that target

a particular cache line and therefore observe the behavior of another process. A first

study targets cache memories without countermeasures to understand in detail how

these algorithms work. In a second step, we study the impact of dynamic randomiza-

tion in different levels of caches on the success of the algorithms.

Chapter 5 - ScrambleCache Architecture This chapter presents the first robust hard-

ware defense architecture against cache-based side-channel attacks for L1 caches. It

has been shown that hardware sharing provides a significant attack surface for micro-

architectural side-channel attacks. Unfortunately, defending against cache-based at-

tacks on the L1 cache is difficult and presents several challenges. We begin with a de-

scription of the dynamic randomization supported by the ScrambleCache architecture.

We then present the various modules that have been added to address the coherence

and performance issues. We conclude with a performance and security analysis using

the gem5 simulator.

Chapter 6 - Conclusion This chapter summarizes the results of the thesis and dis-

cusses future works and perspectives.

11

2
Background and State-of-the-art

In this chapter, we present the elements composing modern processors which are necessary to

understand the rest of the manuscript. The objective is to recall the generic principles as well as

the main hardware mechanisms used to optimize the execution of programs. We then provide

more details on the cache-based side-channel attacks that exploit interferences in cache memories

and their implementations. Many works have shown that shared resources can be exploited to

break isolation offered by the OS. We then focus on software and hardware countermeasures

against these attacks and present their limitations. Finally, we compare and discuss these

state-of-the-art solutions.

2.1 Modern Micro-architectures . 13

2.2 Memory Paging and Virtual Memory 16

2.3 Memory Hierarchy . 20

2.4 Cache Memory . 21

2.5 Cache-based Side-Channel Attacks . 29

2.6 Eviction Set Construction . 39

2.7 Eviction Set Optimization Algorithms 42

2.8 Defenses against Cache-based Side-Channel Attacks 46

2.9 Summary and Conclusion . 54

12

2.1 Modern Micro-architectures

The single core micro-architecture is the main responsible for computation. It is a crit-

ical part of CPU design since it is responsible for executing all the instructions of a

program running on the machine. Different mechanisms were introduced to optimize

its execution time. This section briefly describes the most common optimization tech-

niques present in modern micro-architectures needed to understand the rest of this

thesis.

Pipelinning

Pipelining is a mechanism for increasing the instruction execution speed in a micro-

processor. In a microprocessor without a pipeline, instructions are executed one after

another. A new instruction is not started until the previous instruction has been fully

executed. In a pipelined microprocessor, the microprocessor starts a new instruction be-

fore it finishes the previous one. Therefore, multiple instructions are executed simulta-

neously in the CPU core. This does not reduce the execution time of a single instruction.

On the other hand, the throughput of the microprocessor, i.e., the number of instruc-

tions executed per clock cycle, is increased. Standard pipeline support five stages: Fetch,

Decode, Execute, Memory, and Writeback.

Figure 2.1 – Instruction execution in a processor with a 5-stage pipeline. It takes nine cycles to
execute five instructions. At t = 5, all stages of the pipeline are called, and all five
operations take place at the same time.

13

Superscalar

A superscalar processor seeks to exploit parallelism between instructions to speed up

program execution. This approach avoids modifying programs to exploit parallelism:

the processor itself detects which instructions can be executed in parallel. However, this

approach also increases the complexity and power consumption of the hardware, which

limits current processors to a few instructions per cycle. To further exploit the available

parallelism, vector instructions and multithreaded or multicore processors are used.

Figure 2.2 – Instruction execution in a processor with a 5-stage superscalar pipeline capable to
execute maximum two instructions per pipeline stage.

Out-of-Order Execution

The pipelining mechanism is used to increase the throughput of executed instructions.

However, the execution throughput is quickly limited by the dependencies between the

instructions. For example, suppose there is a data dependency between two instruc-

tions. In that case, the pipeline is blocked until the dependencies are resolved, which

slows down the execution of the pipeline. Out-of-order execution is an optimization tech-

nique used in modern processor architectures to maximize the use of computing units.

Instead of executing instructions sequentially, the processor executes them according

to the availability of resources, taking into account the various dependencies between

instructions by using some specific registers, called renaming registers. As a result, mul-

tiple instructions can be executed in parallel and in an order that may differ from that

specified in the assembly code.

14

Branch Prediction

All micro-architectures provide branch instructions in their Instruction Set Architecture

(ISA), where the execution flow can change to execute a different address, instead of

the one stored at the next address. A branch instruction can be either an unconditional

branch, which always results in a branch or a conditional branch, which may or may not

trigger a branch depending on some condition (e.g., comparing values). It also depends

on how the address of the new instruction sequence (the target address) is specified.

They are generally classified as direct if the instruction contains the target address (e.g.,

a register or memory location) and is known when the instruction is decoded, or indirect

if the target address must be computed in the execution phase. In either case, the branch

instruction always jumps to executing a different address. These instructions break the

linearity of the execution flow by jumping to a new address. This type of event can

significantly affect the efficiency of the pipeline if not properly scheduled.

The processor would have to wait until the conditional branch instruction passed

through the execution phase before the next instruction could reach the fetch phase in

the pipeline. The presence of branch predictor attempts to avoid this time loss by guess-

ing whether or not the conditional jump has a high probability of being executed. The

branch assumed to be most likely is then extracted and executed speculatively. If it later

turns out that the guess was wrong, the speculatively executed or partially executed in-

structions are discarded, and the pipeline starts over with the correct branch, causing

a delay. It exists different hardware components used in modern micro-architectures

that are used to predict whether a branch instruction is taken and also specify the tar-

get address speculatively.

Prefetcher

Another phenomenon that affects pipeline performance is the occurrence of a cache

miss during memory access to data or instructions. The system must wait for the target

address to be cached before it can be used. This process may require access to one or

higher levels of the memory hierarchy, and in this way, many cycles will be lost. There-

fore, using hardware prefetchers allows the prediction of future memory accesses. It

aims to cache data and instructions that are likely to be used. As with branching pre-

diction, most of these mechanisms maintain a history of previous accesses to infer the

following executed instruction or data.

15

2.2 Memory Paging and Virtual Memory

In the past, processors executed only a single program that had access to the entire

physical memory of the system. Physical memory refers to the main memory where

programs and data are stored as they are used. Very quickly, the need arose to run mul-

tiple tasks on the same processor. The first multitasking systems worked directly with

physical memory, allocating an area in physical memory to each process. The operating

system was responsible for dividing the processor execution time among the different

processes (see Figure 2.3). However, direct use of physical memory introduces some

performance and security issues.

Figure 2.3 – Muti-tasks physical memory organisation

Excepted small micro-controllers, recent processors all use virtual memory, a technique

that provides an abstraction of physical memory. This can be beneficial for a number of

reasons:

1. It allows a process to address more memory than is physically present in the sys-

tem. This can be important for processes that need to access large amounts of data,

such as databases or scientific applications.

2. It can be used to map physical memory to different address spaces. This can be

useful for sharing data between processes.

3. It can be used to protect a process from accessing unauthorized memory. If a pro-

cess tries to access a memory area that is not allocated to its address space, an

error occurs and the process is prevented from continuing. This can help prevent

security vulnerabilities such as buffer overflows [Fos+05].

4. It can be used to improve the performance of a system by allowing processes to

run in parallel without accessing the same areas of physical memory.

16

2.2.1 Paging System

Segmentation is a memory management scheme. It is used to divide a process’s virtual

address space into variable size segments. Thus, the virtual address space is the collec-

tion of segments of variable size. Paging is another technique of virtual memory that is

the most used in modern processors. The principle is to divide the address space of each

process into fixed-size pages. The size of these pages is 4KiB in most modern systems

and in some cases can vary from 4KB to 64KB or even serval megabytes or gigabytes

for so-called huge pages. The operating system, in cooperation with the hardware, must

maintain a record of the address of each page in physical memory.

Huge pages are large buffers of virtual memory to be mapped

into contiguous physical chunks of 2MB (or 1GB), instead that

of regular 4KB. On one hand, huge pages save page walks when

traversing arrays of more than 4KiB, improving performance. On

the other hand, they increase the risk of memory fragmentation,

what might lead to wasting resources.

Huge Page

For a given virtual address, to find out where the associated data is located in physical

memory, the virtual address is divided into two parts. The most significant bits indicate

the virtual page number, while the least significant bits represent the page offset (as shown

in Figure 2.4). The memory management unit (MMU) is a hardware unit responsible

for translating virtual addresses to physical addresses. When the MMU receives a vir-

tual address, it extracts the most significant bits and then looks for the corresponding

physical page number. If this page translation is not found, a page fault occurs and is re-

ported to the operating system. The operating system is then responsible for updating

the translation of the missing page in the memory. If the page is found, the permissions

are checked, and if they are correct, the physical address is sent to the memory bus.

Otherwise, a page fault is raised (e.g., a write attempt to a read-only page), and the pro-

cessor enters a privileged mode (e.g., kernel mode) and sets some registers indicating

the nature of the fault.

2.2.2 Page Table Lookup

The address translation mechanism is based on the use of a page table that defines

the correspondence between virtual pages and physical pages. The page table is stored

17

Figure 2.4 – Translation of a virtual address to a physical address

in main memory. For each process, the operating system uses a special register that

references the page table base address, called the page table base register (PTBR). This

register value is updated when a context switch occurs, and the operating system is

responsible for this task. This is the basis for process isolation, where each process has

its own virtual address mappings and can only access its own address space.

Figure 2.5 – Address translation for 4KB pages using a two-level page table. Starting from the
PTBR that returns the specified process page table, the processor determines the
physical address by gradually using parts of the virtual address.

However, the physical memory occupied by this page table is a major drawback. For ex-

ample, for a 32-bit address space with 4 KiB pages, a single-block page table would have

220 entries. Since modern micro-architectures run several processes in parallel, and the

page table of each process occupies 4 MiB (= 4∗220), thus a large part of DRAM memory

18

would be occupied by the page tables, which degrades the performance of the system.

To solve this problem, the use of multi-level page tables was introduced. The goal is

to store only the highest level of the page table in memory.Also, all page tables need

to be in main memory only when they are needed. This avoids unnecessary memory

consumption. For example, to translate a virtual address into a physical address using

a two-level page table, the 32-bits virtual address space is divided into 1024 memory

regions, each with 4 MiB page directory (PD) indexed by the most significant bits of

the virtual address. Each PD entry (PDE) is associated with a page table (PT) of 1024

entries, each controlling a 4 KiB page, which is the default page size for most use cases

(as shown in Figure 2.5). This mechanism of translation is called page table walker.

2.2.3 The Table Lookaside Buffer (TLB)

Figure 2.6 – Address translation using a TLB. On a hit, the corresponding physical page address
can be returned immediately. On a TLB miss, the page tables are accessed.

Virtual address translation is a complex operation because it involves traversing the

various levels of the page table to find the corresponding physical address, which slows

down memory access time. To speed up virtual page translation, modern processors use

a cache of recent address translations, called the translation lookaside buffer (TLB). The

TLB (as shown in Figure 2.6) is a fully associative memory that stores the most recently

translated virtual pages and their physical pages, as well as the permissions associated

with each page. To translate a virtual address, the system first looks for the physical

page number in the TLB instead of translating it directly using the page table. In case of

a TLB hit, the physical address associated with the correct TLB entry is used. Otherwise,

a TLB miss is reported and the processor uses the page table walker to translate the

virtual page number. If the appropriate physical address is in main memory, it is used

19

for translation and loaded into the TLB. If not, a page fault is reported to the operating

system.

2.3 Memory Hierarchy

One of the most important bottleneck in modern processors is the access latency to

main memory (DRAM). This is due to the consequences of the frequency gap between

processor and memory, which has been growing steadily over the past decades, this

phenomena is called memory wall. And this implies that the latency and bandwidth of

memory becomes insufficient to provide processors with enough instructions and data

to continue computing, processors will effectively always be stuck waiting for memory.

Today, processors use a memory hierarchy that take advantage spatial and temporal

locality of memory accesses and trade-offs in the cost-performance of memory tech-

nologies. The typical memory hierarchy of a computer system is shown in Figure 2.7.

Figure 2.7 – Typical memory hierarchy of a computer system, with indicator values for the ac-
cess latency and capacity of each memory level.

Because fast memories are expensive, a memory hierarchy is organized into multiple

levels, each smaller, faster and more expensive thant the higher levels, which is farther

from the processor. As illustrated in Figure 2.7, a memory hierarchy is divided into:

primary and secondary storages. Secondary storage is persistent storage for non-critical

data that doesn’t need to be accessed as frequently as data in primary storage or that

doesn’t have the same performance or availability requirements. Primary storage typ-

ically requires expensive, high-performance storage systems, while secondary storage

systems can effectively operate on lower performance devices that are better suited for

20

long-term storage (e.g., disks storage). Primary storage consists of three main storage

components:

Registers The CPU has a few registers which can be directly accessed. The processor

registers are the fastest memory in the system and contain variables and tempo-

rary data which is required for the execution of each program. The data in the

registers can be accessed in a single clock cycle. This is due to the fact that the

registers are part of the CPU.

Cache memory The cache is also a part of the CPU which are much larger than the

registers, but are still relatively fast with access times of a few clock cycles. Cache

memories are based on Static Random Access Memory (SRAM) technology. The

processor’s caches are the next level of the memory hierarchy and are used to store

data that the processor is likely to use in the near future (see section 2.4).

Main memory If a data is not stored in the registers or in the cache, the main mem-

ory is accessed. the main memory is based on Dynamic Random Access Memory

(DRAM) technology. The main memory is considererd as the more larger and

slower memory in the primary storage (as shown in Figure 2.7).

2.4 Cache Memory

The cache memory is one of the most complex and critical subsystem in modern proces-

sors and is characterized by a number of features. In this section, we present the most

important ones. In particular, we present the concept and the interest of the cache mem-

ory in a system, as well as their functioning. We also detail data redundancy between

the different cache levels, writing policy and also the replacement policy.

2.4.1 Locality of Reference

The purpose of cache memories is to provide the processor with instructions and data

as quickly as possible and to have a large capacity to store all available information.

However, the larger the memory is, the slower it is to access it. Cache memories trans-

parently stores data that the processor has used in the near past in hopes of using it

again in the near future. When a computer program accesses a particular memory lo-

cation, there is a high probability that it will also need to access nearby memory loca-

tions - this phenomenon is called locality of reference. There are two types of locality of

reference: temporal and spatial locality.

21

• Temporal locality. Temporal locality refers to the tendency of a program to re-

peatedly access the same instructions or data. When a data item is referenced,

it is likely to be referenced again in the near future. To take advantage of this,

CPUs typically use a cache memory to store recently accessed data. This way, if

the same data is needed again, it can be retrieved directly from the cache memory

much faster than from the main memory.

• Spatial locality. Spatial locality refers to the tendency of a program to access in-

structions or data that are near the data it is currently using. In this case, it makes

sense to cache not only the data that the processor needs, but also the neighboring

data so that it is already available when it is needed.

2.4.2 Cache Organizations

A cache can be represented as a vector of memory lines, also called cache blocks, where

each line can contain a copy of a data block in main memory. A cache line is the smallest

amount of data used to communicate with the higher level of the memory hierarchy, so

that for each data transfer from the cache to main memory, the amount of data trans-

ferred is equal to one cache line. Most modern processors have a cache line size of 64

bytes. A cache line is divided into 32- or 64-bit memory words, depending on the CPU

micro-architecture. A memory word represents the smallest amount of data that can be

transferred between the processor and the cache memory (as shown on Figure 2.8). The

decision to store multiple words in a single cache line is based on the principle of spatial

and temporal locality. Namely, if CPU executes instruction in the address @P C , there is

a high probability that CPU will execute the same instruction in @P C or instruction in

@P C+1.

Figure 2.8 – Cache terminology of a 4-way set-associative cache.

22

Each cache line is associated with a set of metadata, which includes a tag. A tag is com-

puted from the highest bits of the memory address and is used to identify the block

of memory contained in a cache line. The metadata also include some other bits that

indicate the state of each cache line, such the valid bit this is used to indicate whether

the cache line is valid or not.

To access a particular address in the cache, depending on the cache organization, the

cache index is determited and the cache line that contains the data being addressed is

returned. The tag value associated with that cache line is compared to the tag value

of the address. If they are equal and the valid bit of this cache line is set, a cache hit is

triggered and the requested data is sent to the CPU. In this case, the data is returned to

the CPU within a few clock cycles. Otherwise, a cache miss is triggered and the request

is sent to the next cache level until the data is found in one of the cache levels or in

main memory. A cache miss therefore results in a longer access time, which can be

determined with accurate timing measurements (see chapter 3 for more details).

Since cache memory cannot contain all data present in the main memory, an addressing

method must be defined to determine in which cache line the fetched data should be

stored. That is, when information is transferred from main memory to the cache, a deci-

sion must be made about where to place that information. This method is called address-

to-cache mapping. There are three main cache organizations that manage the mapping

between cache lines and main memory blocks in a different way.

Direct-mapped Caches

Figure 2.9 – Organization of a direct-mapped cache.

The simplest one is a direct-mapped cache, as shown in Figure 2.9. With a direct-mapped

cache, each block fetched from main memory is allocated to only one cache line. As

shown in Figure 2.9, the direct mapped cache consists of 2n cache lines. The lowest b

23

bits of the address are used as an offset within the cache line data. To access a particular

address in the cache, the middle n bits of the address are used as the cache index. Conse-

quently, the access time to this cache line is very fast since no cache lookup needs to be

performed. However, since the main memory is much larger than the cache memory,

this means that very likely a large number of data blocks that have the same cache index

will also have to use the same cache entry (called congruent addresses), which increase

the number of conflict addresses and thus generally have a higher miss rate.

Full-associative Caches

Figure 2.10 – Organization of a full-associative cache.

Unlike direct-mapped caches, full-associative caches map memory addresses to any

cache line, as shown in Figure 2.10. The tag is used to compare it to all cache lines at once

and return the valid cache line. This method requires a lot of logic to allow simultane-

ous access to all cache lines, which can result in higher power consumption because the

entire cache must be searched at each memory access. The main disadvantage of this

cache organization is that the cache lookup process is slower and impractical for large

caches because data can be anywhere in the cache. Therefore, fully associative caches

are only suitable for small cache memories such as TLBs.

Set-associative Caches

A set-associative cache is a compromise between the directly mapped cache and the fully

associative cache in terms of power consumption and performance. This type of organi-

zation is used to reduce the congruency problem by storing multiple cache lines in the

same cache index. The cache is then divided into 2n cache sets, and a memory address

24

Figure 2.11 – Organization of a set-associative cache.

is now associated with a set of cache ways (e.g., cache lines) instead of a single cache

line, as shown in Figure 2.11. These caches are commonly used in modern processors

for data and instruction caches, but also for the translation lookaside buffer. They are

usually referred to as w-ways set-associative caches, where w is the number of cache

ways per cache set.

2.4.3 Virtual and physical tags and indexes

A cache can be indexed either virtually, where the index is provided directly by the vir-

tual address, or physically, where the cache memory is accessed via physical addresses.

Virtual addressing reduces cache access time because no address translation mecha-

nism needs to be traversed before indexing the cache. The use of virtual addresses can

lead to coherence problems between different processes. This in turn reduces perfor-

mance. To uniquely identify the actual address cached in a particular line, the address

tag is used. This tag can also be based on the virtual or physical address. The advantages

and disadvantages of the different combinations are listed below:

VIVT - virtually indexed, virtually tagged. The virtual address is used for both the

index and the tag, which improves access time because the CPU address does

not need to be translated for each memory access. However, the cache memory

should be invalidated for each context switch to avoid coherence problems due to

the similar address spaces of different processes. Also, shared memory between

different processes is cached more than once.

PIPT - physically indexed, physically tagged. The physical address is used for both

the index and the tag, which increases access time because the address CPU must

be translated for each memory access. With this addressing technique, the physi-

cal tags are unique. Therefore, the cache is not invalidated with each process con-

text switch.

25

PIVT - physically indexed, virtually tagged. The physical address is used for the in-

dex and the virtual address for the tag. This combination has no advantages be-

cause the address must be translated, the virtual tag is not unique, and shared

memory can still be cached more than once.

VIPT - virtually indexed, physically tagged. The virtual address is used for the index

and the physical address for the tag, which means that the cache set can be read

in parallel with the translation lookup in the TLB. This means that lookup is usu-

ally much faster than with a physically indexed cache, where the cache cannot

be looked up until after translation. This combination is most commonly used in

modern processors.

2.4.4 Cache Replacement Policy

For set-associative caches, the number of ways is not sufficient to store all congruent

addresses mapped to the same cache set. There are a number of techniques that can be

used to improve the hit rate. One of these is to increase the size of the cache, but this can

also increase the access latency. Another technique is to increase the number of ways,

which increases the number of possible cache locations for congruent addresses. How-

ever, increasing the number of ways leads to higher hardware complexity and power

consumption. Another technique is to use a replacement policy that select efficiently

which cache blocks should be replaced when a miss occurs.

The least recently used (LRU) policy [Mat+70] is the most used policy in Intel proces-

sors. On a cache eviction, the LRU policy simply evicts the oldest line among a set of

given cache lines. To find the oldest line, the LRU policy conceptually maintains a stack

to keep the history of accessed cache lines. LRU performs well when there is tempo-

ral locality of reference, that is, when data that was used recently is likely to be reused

in the near future. However, it performs poorly for two types of access patterns. First,

it can be a bottleneck when the application’s working set size exceeds the cache size.

Second, LRU performs poorly in the presence of scans, because it caches more recently

used scans at the expense of older lines that are more likely to be reused.

In modern micro-architectures, the replacement policies are often undocumented.

However, the replacement policy for some micro-architectures has been reverse-

engineered. For example, Sandy Bridge and Ivy Bridge use a pseudo-LRU replacement

policy [Won13]. Moreover, Ivy Bridge, Skylake, and Haswell use adaptive cache replace-

ment policies, which only work as pseudo-LRU in some situations [Jal+10b]. Cache re-

placement policies are regularly updated across processor generations.

26

2.4.5 Multi-core Caches

Cache Levels

In the case of a cache miss, the purpose of using only a single cache will be rendered

useless and the CPU will have to fetch required data from the main memory. However,

with a multi-level cache, if the required data is missing in the closest cache to the pro-

cessor namely first-level cache (or L1 cache), it will then search the higher cache levels

and only access the main memory if all cache levels don’t contain the required data. The

general tendency is to keep the L1 cache small with a latency of some clock cycles (≈

2-5 cycles) from the processor. And using higher cache levels with more capacity than

L1 cache in order to decrease its miss rate.

Most modern micro-architectures use multiple cache levels (as shown in Figure 2.12 for

intel CPUs). The data contained in the caches can be accessed in a few cycles, depending

on the cache level. In x86 micro-architectures, the last-level cache (LLC) is often shared

among all cores to improve performances and simplify cache coherency. The first-level

caches (L1) are dirctely connected to the CPU core and they are usually private to each

core. In a Harvard architecture, each core typically has two separate L1 caches, an in-

struction cache (L1I) and a data cache (L1D).

Figure 2.12 – Modern memory hierarchy for Intel CPUs. Each CPU core has a private L1D and
L1I caches, and also has private unified L2 cache. The L3 cache is the LLC cache
and is shared among all CPU cores.

Inclusion Policy

The inclusion policy is one of the key design decisions in cache hierarchies. The goal

of the inclusion policy is to reduce data traffic between different cache levels. There are

27

three main types of inclusion policies: inclusive, exclusive and non-inclusive.

Inclusive. In an inclusive policy, data is redundantly stored at all levels of the cache

hierarchy. This means that if a block is present in one level, it is also guaranteed to

be present in all higher-level caches. One advantage of having data redundancy

between different cache levels is that it can improve performance by reducing the

number of cache misses.

Exclusive. In contrast, with an exclusive cache policy, data present at a given cache

level is not guaranteed to be present at any other cache levels. This means that the

data is not duplicated between the different levels of cache. The advantage of an

exclusive cache is that reduces data redundancy and offers more cache space than

an inclusive cache.

Non-inclusive. The non-inclusive policy [ZAF07] means that a given block of data can

be present at multiple cache levels, but not all levels. So, if a block is present in

the L1 cache, it might also be present in the L2 cache, but not in the L3 cache.

This policy provides a compromise between inclusive and exclusive policies, al-

lowing for some data redundancy. With this policy, the amount of cache actually

available is close to an exclusive policy [Jal+10a]. However, implementation of a

non-inclusive policy it is more difficult, as the system needs to keep track of what

data is present in each cache level.

Cache Coherence

With the advent of multiprocessor architectures, the use of caches brings additional

problems because data can then be shared between several cores. This led to data repli-

cation within the different caches and therefore the possibility of having different copies

of the same data in memory. Data consistency then became an important problem.

Data coherency in multiprocessor micro-architectures can be managed into different

levels: Software or hardware level. In software level, the programmer is responsible

for data coherency, and therefore must invalidate/forward the cache lines shared by

multiple cores when necessary, such as after a write by one core. Hardware coherency

is completely transparent to the programmer because the hardware system invalidates

the cache lines. Hardware coherency has its price in terms of area and complexity, but it

provides very good performance and simplifies the programmer’s work, which is why

this technique is generally used.

28

2.4.6 Caches on Intel x86 CPUs

In recent Intel processors, the last-level cache is divided into slices that are connected

to the cores through a ring interconnect (see Figure 2.13). Moreover, the last-level cache

is inclusive, which means that it is a superset of the L1 and L2, i.e., it contains all

data present in L1 and L2. As well as the set and way indices, a slice index must also

be determined in order to place a line into this sort of partitioned cache. Although

microprocessor designers do not disclose the mapping that is used between mem-

ory blocks and cache slices, different works have been reverse-engineered the undocu-

mented mapping functions on x86 architecture [Mau+15b].

Figure 2.13 – Cache architecture of a quad-core Intel processor (sicen Sandy Bridge micro-
architecture). The LLC is divided into slices, and interconnected with each core
by a ring bus.

2.5 Cache-based Side-Channel Attacks

2.5.1 Information Leakage Channels in Cache memories

Information leakage can occur when an attacker can gain access to information that

they are unsupposed to have access to. Information leaks can significantly compromise

the security of systems because they can lead to the disclosure of secrets or the circum-

vention of security mechanisms. Side-channel attacks are a type of attack that takes

advantage of the physical characteristics of a system to extract information that would

otherwise be hidden. These attacks exploit the fact that all devices leak information

about their internal state through side effects. Multiple attack vectors have been pro-

posed, exploiting machine features such as power consumption [KJJ99], electromag-

29

netic field [QS01], acoustic emanation [GST14], and execution time variation [TOS10;

GBK11; YK14]. Depending on the side-channel information to exploit, the attacker may

or may not require physical access to the system.

In contrast to physical side-channel attacks, which need physical access to the target

device, they are software-based micro-architectural attack. In a software-based micro-

architectural, malicious applications exploit the timing and behavior differences that

are caused through micro-architectural optimizations. These kind of attacks exploit

the fact that the micro-architectural optimizations are shared among different appli-

cations. The most common example of shared hardware are the CPU, cache memories,

the branche predictor, and the Translation Lookaside Buffer (TLB). This work focuses on

timing side-channel attacks that target cache memories. Other software optimization,

such as, shared libraries, and deduplication techniques offer better memory footprint

for the running processes, but they also allow interference between the running pro-

cesses.

Caches are by far the largest source of micro-architectural leaks. They are inherently

shared between different processes and security domains running on the system, ei-

ther sequentially (i.e., over time) or concurrently. This sharing opens the door for a

large class of attacks, known as cache-based side-channel attacks (CSCAs). The data

from these processes are mapped into different cache lines based on their addresses.

Thus the different processes are in constant conflict with the cache space; the data of

other processes are evicted to make space for other data. CSCAs aim to abuse these

cache interactions to observe other processes’ activities, and therefor extract sensitive

information by exploiting the access time variation. The time variation between a cache

hit and a cache miss can result in information loss. This means that the memory access

time measurement can directly indicate whether the data was fetched from the cache or

the main memory. In a multi-level hierarchy, each cache level has different penalties for

a cache miss, so the level in which the data is found can be measured with some accu-

racy. Thus, the total execution time correlates with the number of cache hits and cache

misses. CSCAs are the most prominent class of software-based micro-architectural at-

tacks, in which, a malicious process retrieve sensitive information of a victim process by

observing its cache activities. They allow to a malicious process to have a partial view

of memory addresses that are being accessed by the other processes.

This ability can be turned into various security exploitations; for example, leaking ker-

nel memory as part of original Spectre [Koc+19] and Meltdown [Lip+18] attacks and

creating keyloggers [GSM15] or covert channels [Mau+15a; Lip+16]. Such attacks have

also been successfully employed to retrieve secret keys from various cryptographic al-

30

gorithms, such as AES [Ber05; OST06], RSA [Aci07; AS08] and ElGamal [Zha+12].

2.5.2 Classification of Cache-based Side-Channels Attacks

Different classification of cache side-channel attacks based on kind of the leaked infor-

mation can be found in the literature [Pag02; HL17; Acı+09]. A common classification,

proposed byAcıçmez et. al [Acı+09], depending on the type of the used information.

They identifie three categories of CSCAs: Timing-driven, Trace-driven, and Trace-driven

attacks.

Time-driven attacks. Time-driven attacks [Tsu+03; Ber05; BM06], also known as cache

timing attacks, exploit the number of cache hits and cache misses, typically

through an indirect measurement of the overall execution time of the victim pro-

cess. This information is useful when the victim’s memory access depends on

security-critical information. Time-driven attacks are referred to as passive attacks

(such as the Bernstein attack [Ber05]) when no changes to the victim’s cache are

required and only address conflicts of the victim algorithm are exploited; or ac-

tive attacks when the attacker influences the execution of the victim process by

forcing the eviction of certain cache lines, as in the Evict+Time attack of Osvik et.

al [OST06].

Access-driven attacks. In access-driven attacks [NS06; GBK11], the attacker observes

the cache conflict with the victim process to learn its memory access pattern. In

this type of attack, the attacker puts the cache memory in a known state (e.g.,

fills the cache memory with its own data) and then performs difference analysis

after the victim has executed. The attacker observes a cache conflict in the victim

process when the cache state changes. Access-driven attacks include Prime+Probe

attacks [OST06; Per05] and its variants, and cache template attacks [GSM15].

Trace-driven attacks. In trace-driven attacks [AK06; GKT10; Ge+18], the attacker ob-

serves the state of some specific cache lines during the victim’s execution. Thus,

the attacker obtains the entire sequence of cache hits and cache misses of the vic-

tim process in real time (e.g.,Flush+Reload [YK14] or Flush+Flush technique).

Trace-driven attacks are very powerful compared to time-driven attacks, where

the sequence of hits and misses by the victim is generally hiden throughout the

execution time rather than the exact sequence. Trace-driven attacks are destruc-

tive in the case of simultaneous multithreading (SMT) or hyperthreading, which

allow hardware to execute multiple threads simultaneously. This can be danger-

ous as the threads use the same processor resources.

31

Another classification of CSCAs, according to which they are categorized into two

types: Sharing-based and Conflict-based attacks. CSCAs work differently if the target ad-

dresses are shared or not.

Figure 2.14 – Cache-based side-channel attack procedure.

Sharing-Based Attacks. Sharing-based attacks rely on unexpected memory sharing

between the attacker and the victim. Such sharing is, for example, introduced by

the operating system (OS) with shared libraries or memory deduplication. There-

fore, the attacker can remove a shared address from any cache level. This can be

achieved with a cache maintenance instruction (e.g., clflush instruction in x86

processors), as in the Flush+Reload [YK14] attack. clflush guarantees that the

addresses are written back to memory and invalidated from the cache. Another

way to remove a shared address from the memory hierarchy is to access a set of

addresses mapped to the same cache set, which forces the replacement policy to

evict the target address. An example of such an attack is Evict+Reload [Lip+16].

In both of these attacks, the attacker reloads the target address. The access latency

of the load reveals whether the victim has accessed that address or not.

Conflict-Based Attacks. Unlike sharing-based attacks, conflict-based attacks do not re-

quire address sharing, which make them more powerful. The idea is that when the

victim’s addresses and the attacker are mapped to the same cache set, they may

evict each other from the cache (this phenomenon is called "cache contention").

The attacker can use such eviction stategy to make the target cache set in a know

state. This is done by construction a number of addresses that are mapped to the

same cache set (called an eviction set). Complex addressing functions and replace-

ment policy of modern systems make construction of eviction sets more difficult.

It exists some algorithms in the literature to construct an efficient eviction set.

Thus, the attacker exploit conflicts in these addresses to know whether the victim

has accessed the targeted cache set.

32

2.5.3 Cache-based Side-Channel Attacks - General Steps

A formal way to describe cache attacks is modeled as in two phases, a profiling phase

and an exploitation phase (see Figure 2.14). In the profiling phase, the attacker identi-

fies probe addresses, whose access patterns may leak information about the victim’s ac-

cess patterns. For example, those probe addresses can be associated with cryptographic

keys [OST06] or keyboard input events [Lip+16]. In the exploitation phase, CSCAs fol-

low a general pattern consisting of three steps [Dis+17]: an initialization step, a waiting

step, and a measurement step.

In the initialization step, the attacker places the cache memory into a defined state so

that the victim’s execution can cause detectable side effects. A common approach is to

remove the target cache lines from the targeted cache level. There are two strategies to

evict a cache line. These strategies work differently depending on whether the probe

addresses are shared (case 2 on Figure 2.14) or not (case 1 on Figure 2.14). The main

difference is that if the addresses are not shared, the attacker must construct an eviction

set to perform his attack, otherwise he can use a cache maintenance instruction if it is

available from the user-level.

In the wait step, the attacker waits a period of time to allow the victim to execute, which

may access some sensitive data and changing the cache state. To increase the accuracy

of the cache attacks, the attacker should carefully configure the wait interval [YK14].

The optimal wait interval is the key to a good tradeoff between accuracy and attack

resolution. If the wait interval is too short, more accurate information about the victim’s

accesses can be collected during this period, but the initialization and measurement

phases are performed more frequently, and all the victim’s accesses are lost while the

attacker is busy with these steps. If the attacker’s waiting step is too long, the number

of accesses by the victim during this time interval could be too large to be accurately

identified [YK14].

In the measurement step, the attacker takes some measurements and infers whether

the cache state was changed by the victim’s execution during the wait step.

2.5.4 Leakage Exploitation Techniques

Bernstein’s attack.

In [Ber05], Bernstein proposes a CSCA that exploits access time variations to recover

the secret key of an AES T-table implementation. The AES T-tables are preprocessed

33

computations used to improve the performance of the AES. Therefore, the AES algo-

rithm can be implemented as a sequence of T-table lookups, and a few computations

between those. Each round of AES accesses some elements of the T-tables, which are

then fetched into cache memory. By observing the execution time, the attacker can de-

duce which T-table entry was accessed and thus retrieve part of the AES key. However,

Bernstein provides no analysis of his methodology and no explanation of why the at-

tack is successful. In [NSW06], Neve et al. fill this gap by presenting a complete analysis

of Bernstein’s attack technique and explaining the correlation model. Later, Aciiçmez et

al. [ASK07] extended the Bernstein attack to also use the information from the second

round of AES encryption to obtain the full AES key. In [WHS12], Weiss et al. bconsider a

virtualization-based system where the trusted environment runs an AES server. Under

this assumption, the authors show that a man-in-the-middle attack using a customised

version of the Bernstein attack can significantly reduce the AES key space, making brute

force attacks feasible.

Evict+Time.

Evict+Time was described by Osvik et al. [OST06] as a generic cache-based timing attack

technique in which the attacker triggers multiple computations of the victim process

and measures the execution time, and is consequently classified as a time-driven attack.

In the Evict+Time technique, the attacker measures the impact of a particular cache set

on execution time. As is illustrated in algorithm 1, the attacker first causes the victim to

run, preloading its working set, and establishing a baseline execution time. Then, the

attacker attempts to manipulate the cache state by evicting the content of a particular

cache set. The victim’s access to memory may cause the eviction of certain cache lines

that were fetched by the the attacker process. In the last phase, the attacker observes

the time difference in the victim’s execution time, which reveals to the attacker if the

targeted cache set was accessed or not.

Algorithm 1: Evict+Time technique

Input: N=Number of samples

1 Tbaseline ←Measure the baseline execution time of victim program.

2 for i← 0 to N by 1 do

3 Evict a specific cache set.

4 T ←Measure execution time of victim program again.

5 if T > Tbaseline then

6 The evicted cache set was accessed.

7 end

34

The Evict+Time technique provides information on cache set granularity. An advan-

tage of this technique is that it doesn’t require shared memory paging between the

attacker and victim. As Evict+Time technique is sensitive to noise, it target only L1

caches. Evict+Time was demonstrated in the L1 data cache to extract AES key from

OpenSSL cryptographic library [OST06]. However, the authors demonstrated that the

Evict+Time technique requires multiple computations of the victim process to extract

sensitive information.

Prime+Probe

The second technique proposed by Osvik et al. [OST06] is more powerful. The idea of

the Prime+Probe technique is to fill a specific cache set with its own data and then let

the victim program run for a while. If the victim’s accesses fall into the attacker’s cache

set during execution, the cache controller must evict the attacker’s data and replace it

with the victim’s data. In the second step, the attacker accesses the data that was previ-

ously filled into the targeted cache set and measures how long this takes. A higher time

means that at least one cache line has been replaced. Otherwise, when a lower time

is measured, the attacker concludes that no cache line has been replaced in the tar-

get cache set. In contrast to the Evict+Time technique, the Prime+Probe method offers

more accuracy because it measures the cache access times directly, whereas Evict+Time

measures them indirectly via the total execution time.

Algorithm 2: Prime+Probe technique

Input: N=Number of samples

1 Tthreshhold ←Measure the threshhold between cache misses and cache hits.

2 for i← 0 to N by 1 do

3 Occupy a specific cache set.

4 Schedule the victim’s program.

5 T ←Measure the access time to the occupied cache set.

6 if T > Tthreshhold then

7 The cache set is likely occupied by the victim program.

8 end

The Prime+Probe technique, unlike most other CSCAs, does not rely on shared mem-

ory. The original form of the Prime+Probe technique was demonstrated in the L1 data

cache by Osvik et al. [OST06] to retrieve the AES key in OpenSSL 0.9.8. In other works,

Aciicmez et al. [Aci07; AS08] exploit cache contention in the L1 instruction cache to

knows the victim’s controle flow. Thus, they retrieve the RSA [Aci07] and the digi-

tal signature algorithm (DSA) keys used by OpenSSL 0.9.8 library [AS08]. Zhang et

35

al. [Zha+12] demonstrated that key-recovery attacks using the L1 instruction cache are

possible between virtual machines. They demonstrated that the Prime+Probe technique

is capable of recovering ElGamal keys [ElG85].

Flush+Reload

The Flush+Reload technique is often considered the strongest cache exploitation tech-

nique because operates at the cache line granularity, which increase the attack resolu-

tion. Unlike the Evict+Time and Prime+Probe techniques, which use a cache set gran-

ularity, this property can tell the attacker whether specific cache line has been cached

or not (as illustrated in algorithm 3). The first generic Flush+Reload technique was

presented by Yoram et al. [YK14]. This technique relies on the existence of shared vir-

tual memory (such as shared libraries or page deduplication) between the attacker

and the victim program. Hence, in scenarios where shared memory is not available,

Flush+Reload cannot be applied and an attacker has to resort to Prime+Probe tech-

nique. It also exploits the presence of the cache maintenance instruction clflush, which

is available from the user-level in x86 micro-architectures. This instruction allows a pro-

cess to write back and invalidate a specific virtual address in the memory hierarchy. Be-

cause the cache operates on physical addresses, shared memory exists only once in the

LLC. The Flush+Reload technique does not require knowledge of virtual-to-physical

address mapping, since clflush directly uses virtual addresses. Therefore, if the shared

virtual address is flushed in one process, it is flushed for all processes. This weakness

exposes the x86 micro-architectures since the LLC it is inclusive and shared by all cores.

Algorithm 3: Flush+Reload technique

Input: N=Number of samples

1 Tthreshhold ←Measure the threshhold between cache misses and cache hits.

2 Map binary (e.g., shared object) into address space.

3 for i← 0 to N by 1 do

4 Flush a specific cache line.

5 Schedule the victim’s program.

6 T ←Measure the access time to the flushed cache line.

7 if T < Tthreshhold then

8 The victim program accessed the flushed cache line.

9 end

Flush+Reload technique enables more fine-grained attacks that have already been

demonstrated against different cryptographic algorithms. Yarom and Falkner [YK14]

demonstrated a Flush+Reload technique on the last-level cache for attacking square

and multiplies RSA implementation in a multi-core platform. Irazoqui et al. [Ira+14] ex-

36

tended this technique to extract the full AES key from another virtual machine. Yarom

and Benger [YB14], Benger et al. [Ben+14] and Van de Pol et al. [PSY15] used simi-

lar technique to recover OpenSSL Elliptic Curve Digital Signature Algorithm (ECDSA)

nonces and thus the secret key. Gulmezoglu et al. [Gul+15] exploit a shared resource

optimization technique called memory deduplication to mount a powerful known ci-

phertext cross virtual machine attack on an OpenSSL implementation of AES.

Flush+Flush

(a) the attacker flush the target address (b) victim program execution

(c) the attacker flush again the target ad-
dress

Figure 2.15 – Illustration of Flush+Realod technique in a 4-way set-associative cache (columns)
and 6 cache sets (lines). In Figure 2.15a, the attacker flushes the shared address,
and schedule to the victim program, as shown in Figure 2.15b. In Figure 2.15c, the
adversary measures the flushing time to reveal whether the victim has accessed
the shared address.

Gruss et al. [Gru+16] developed Flush+Flush technique a new variant of Flush+Reload

that only depends on the execution time of the x86 clflush instruction. In the first step

of this technique, the attacker flush the target address. Then waits the victim’s process

execute. However, instead of the reloading step where the target address is accessed, it is

flushed again causing no cache activity. If the execution time that the flush instruction

takes is fast, the attacker learns that the target address is not present in the memory

hierachy and likely no other process accessed it during the wait interval. Otherwise,

the victim process accessed this address, and the flush instruction needs more time to

37

invalidate it in the memory hierachy. Figure 2.15 illustrates the Flush+Flush steps, in

case when the victim process access the target address during it execution.

The advantages of Flush+Flush technique, over Flush+Reload technique are that it runs

at a higher frequency which makes it faster that any other techniques. It also allows

for a higher resolution, and that it generate less LLC activity which can be used for

detecting CSCAs. lush+Flush technique, is considered noisier than Flush+Reload tech-

nique [DM21], resulting in a slightly higher error rate [Ge+18]. Gruss et al. [Gru+16]

demonstrated that this technique can be used to implement a powerful covert channel

that achieved a bandwidth of 496 KiB/s, almost seven times faster than any previously

published covert channels.

Evict+Reload

(a) the attacker evict a specific cache set (b) victim program execution

(c) the attacker reload the target address.

Figure 2.16 – Illustration of Evict+Reload technique in a 4-way set-associative cache (columns)
and 6 cache sets (lines). In the evict step, the attacker load a specific cache set, and
schedule to the victim program, as shown on Figure 2.16b. In the reload step, the
adversary measures the access time to reveal if the victim has accessed the target
address.

While Flush+Reload and Flush+Flush techniques are only feasible in x86 CPUs, which

due to the presence of the unprivileged clflush instruction. Other processors that do

not provide an unprivileged such instruction (e.g., ARM micro-architecture), these tech-

niques are not practical. Gruss et al. [Lip+16] introduced the Evict+Reload technique

as anothor variant of Flush+Reload technique that uses eviction instead of the flush in-

38

struction. In Evict+Reload technique, the victim and the attacker share the same mem-

ory pages. To evict a shared cache line from a specific cache level, the cache set should

be filled with as many congruent addresses such as the replacement policy decides to

evict the targeted cache line (see Figure 2.16).

2.6 Eviction Set Construction

Many cache-based side-channel attacks require control of a specific cache line, making

it in a known state. When there is no maintenance instruction such as clflush on x86

micro-architecture, the only way to control the activity of a cache line is to remove it

from the cache set. This is done by filling the same cache set with enough data to force

the replacement policy to evict the targeted cache line. Hence, finding small eviction

sets is a fundamental step in many cache-based side-channel attacks. In this section

we describe the existing techniques for constructing a set of addresses mapped to the

same cache set, called an eviction set. To perform a conflict-based cache attack, the size

of the eviction set must be as small as possible. Accessing a large eviction set has more

chances to evict the target access. However, accessing more addresses is slower and can

generate noise. This noise may be due to the number of addresses accessed that are not

mapped to the same cache set and do not participate in the eviction of the target cache

set. In this section, we describe also the different techniques to optimize the eviction set

size.

2.6.1 Defining Eviction Sets

We said that two virtual addresses x and y are congruent when they both fall into the

same cache set and the same cache slice. For example, this is the case when the cache

indexes and the slice bits of their respective addresses xphysical and yphysical are the same.

A set of virtual addresses E is an eviction set for a target address

x when x /∈ E and at least a ≥ W addresses in E are congruent

with x, where W is the number of cache ways, and all of them

should be filled to ensure eviction of cache lines in the target set.

Eviction Set

The goal of an eviction set is the following: if x is initially cached, accessing elements

39

of E by using a specific access strategy can systematically evict x from the cache set.

Depending on the supported replacement policy, accessing the eviction set can evict

the target address with a certain probability δ.

We denote Eδ as an eviction set E that succeeds in evicting the

target x with probability δ. When the number of congruent ad-

dresses a ≤ W , the probability of evicting the target address con-

verges to Eδ = 0. This is because not enough addresses are ac-

cessed; therefore, not all cache lines are accessed to force the re-

placement policy to evict the address x.

Eviction Probability

For example, in systems that support permutation-based replacement policies such as

LRU, FIFO, and PLRU, sequentially accessing W addresses in E ensures that x will

not be maintained in the cache later. However, caches are adopting other replacement

policies, such as pseudo-random policy, requiring a set of addresses that contain more

than W addresses and a specific accessing order to increase the eviction probability.

Several works [Lip+16; VKM19] have proposed different techniques to increase eviction

probability by changing the access pattern to elements in E. Different works identified

dynamic and static approaches for finding efficient eviction sets.

2.6.2 Static Approach

Since the last-level cache (LLC) is physically indexed and tagged, constructing an

eviction set requires knowledge of mapping virtual to physical addresses. For CPUs

without cache slicing (e.g., ARM), eviction sets can be constructed directly using the

page mapping in /proc/self/pagemap. Lipp et al. [Lip+16] demonstrate cross-core

Prime+Probe, Evict+Reload, and other cache attacks on ARM-based Android smart-

phones without any privileges. Fortunately, Google patched Android in March 2016 1,

and now root privileges are required to expose physical addresses, making eviction sets

harder to find.

To complete the conflict-based cache attack from user-space, Irazoqui et al. [IES15a]

used large (2MiB) pages to probe cache sets of the LLC without having to resolve the

mapping from virtual to physical addresses. However, it isn’t easy to fill all LLC cache

sets, and it takes a long time to fill them. Gruss et al. [GMM16] have shown that it

1. Patch CVE-2016-0823: https://source.android.com/docs/security/bulletin/2016-03-01

40

Figure 2.17 – The decomposition of a virtual address into a physical cache location.

possible to construct eviction sets using 2MiB transparent huge pages [Org] to perform

RowHammer attack from on ARM micro-architecture.

Finally, modern CPUs with LLC slicing (e.g., x86) use an undocumented hash function,

complicating the static approach to constructing efficient eviction sets. Several works

have attempted to reverse engineer the supported hash function by 1) allocating and

identifying groups of conflicting addresses [Mau+15b; Sea15] and 2) reconstructing

the slice function using Hamming distance [HWH13] or by solving the system equa-

tions [IES15b]. For example, Maurice et al. [Mau+17] propose reverse engineering of the

LLC slice addressing function of various Intel microarchitectures and use it to speed up

the eviction set construction with large pages when the mapping from virtual to phys-

ical addresses is unknown.

2.6.3 Dynamic Approach

The attacker has no knowledge about the LLC slicing hash function or physical ad-

dresses; whereas the static method uses the reverse engineered hash and (partial) in-

formation about the physical addresses to compute eviction sets. Indeed, as we show

in Figure 2.17, the upper address bits are used to determine the set and the slice are

contolled by the operating system through its page allocation mechanism, and thus

they can be knwon only to priveleged processes. On Linux, it has been shown that the

buddy allocator can be tricked into allocating continuous chunks of memory [Van+16],

but page allocation can usually be viewed as a random oracle. In the dynamic approach,

the attacker starts by collecting an initial set of virtual addresses, which is called candi-

date set.

41

A candidate set is a set of n randomlly collected virtual addresses

that has a good chance to contain enough congruent addresses to

evict the target addresse x.

Candidate Set

Suppose that a process has no control over virtual addresses (e.g., the address mapping

is randomized); in that case, addresses have to be selected randomly. For a candidate

set to be used as an eviction set, the collection of n virtual addresses must satisfy the

eviction set definition. Let suppose X be a random variable representing the number of

congruent addresses found in a set of n virtual addresses. According to [VKM19], with

p = 1
S

(where S is the number of sets), the probability of having at least a congruent

addresses in a candidate set of size n is given by:

Pr(X ≥ a) = 1−
a−1
∑

i=0





n

i



 pi(1− p)n−i (2.1)

To estimate the average latency of finding a candidate set, we assume that adversary

collect a fixed size of for the candidate set. The adversary repeatedly collects a set of ad-

dresses randomly and verifies it until a candidate set is found. In the verification step,

the adversary accesses these addresses after accessing the target address, and then ver-

ifies whether the target address was evicted. The authors in [SL19] estimate the average

latency for finding a candidate set with n addresses by using the number of memory

accesses as a time measure, which can be computed as Tc(n):

Tc(n) =
n

Pr(X ≥ a)
(2.2)

2.7 Eviction Set Optimization Algorithms

Algorithms for constructing eviction sets aim to find the congruent addresses in a can-

didate set and discard all other addresses that do not affect the eviction of the target

address x (non-congruent addresses). In this section, we describe the different state-of-

the-art eviction set construction algorithms.

42

2.7.1 Single Address Elimination Algorithm

The single address elimination algorithm (SAE) was introduced by Yarom et al. in [Liu+15]

to perform Prime+Probe attacks on last-level caches (see Algorithm 4). The algorithm

takes a virtual address x and a candidate set C as input. For each element c ∈ C, the

algorithm tests whether the candidate set is still an eviction set without c (lines 3-4).

When the test succeeds, the address c is removed from C (line 6). When the test does

not succeed, the address c is considered necessary for E to be an eviction set. Then,

the address is added to E and the algorithm keeps iterating. The algorith stops when

enough (at least W) congruent addresses are founded (line 2).

Algorithm 4: The single address elimination algorithm

Input: C=candidate set, x=target address

Output: E=minimal eviction set

1 E ← { } ;

2 while |E| < W do

3 c← pick one address from C;

4 if E ∪ C\{c} does not evict x then

5 E ← E ∪ {c};

6 end

7 C ← C\{c};

8 end

9 return E;

The single address elimination method construct an eviction set in O(n2) memory ac-

cesses for a candidate set size of n elements. This means that the number of memory

accesses grows quadratically with the size of the candidate set.

2.7.2 Group Testing Algorithm

The group testing (GT) algorithm [VKM19] is an optimization of the single address elim-

ination method that reduce the time complexity to line a (see algorithm 5). In the group

testing algorithm, the initial candidate set is split into l groups (line 2). If l > W , it is

guaranteed that l−W groups can be removed in each while iteration. vila et al. [VKM19]

set l to W + 1 to maximize the group size. The algorithm iterates over all groups and

tests whether E without the group still evicts x (lines 3-4). The group is removed from

E (line 5) when this is true. In the other case, the algorithm tests other groups until it

finds one that satisfies this requirement. Then, E is divided into W + 1 groups again,

and the same process starts over. This is repeated until there are W + 1 elements left in

43

E (line 1).

Algorithm 5: The group testing algorithm

Input: E=candidate set, x=target address

Output: E=minimal eviction set

1 while |E| > W do

2 {T0 . . . TW+1} ← split E into W + 1 groups;

3 for i← 1 to W + 1 do

4 if E\{Ti} evict x then

5 E ← E\{Ti};

6 break;

7 end

8 end

9 end

10 return E;

By using the GT algorithm, an entire group of addresses can be eliminated per iteration

instead of just one element, as in the single address elimination algorithm. The group

testing method requires O(W 2n) cache accesses as described in [VKM19].

2.7.3 Prime–Prune–Probe Algorithm

The Prime–Prune–Probe (PPP) [Pur+21] algorithm has shown that faster eviction set con-

struction is possible. As shown in Algorithm 5, the PPP technique begins with the Prime

step, where the attacker generates a set of random addresses and accesses them to fill

in either a subset or the entire cache, i.e., the candidate set. To eliminate false posi-

tives, the attacker accesses the candidate set again in the Prune step and removes any

addresses that result in a high access latency. This process is repeated many times to

remove self-evicted addresses until all remaining addresses in the Prime set are con-

currently cached. Regarding the number of cache accesses, authors in [Pur+21] demon-

strate that the pruning process is generally completed in fewer than two rounds. After

pruning, the PPP returns a set of n′ addresses, where n′ is less than or equal to the initial

size n. The pruning step aims to absorb noise so that congruent addresses can be more

easily identified in the Probe step. In the Probe step, n′ addresses are reaccessed, and

then we check if an eviction has occurred. These three steps are repeated until enough

44

congruent addresses are found and added to E.

Algorithm 6: The Prime–Prune–Probe algorithm

Input: n=candidate set size , x=target address

Output: E=minimal eviction set

1 E ← { } ;

2 while True do

3 C ← generate n random addresses;

4 /* Prime step */

5 Access(C ∪ E);

6 /* Prune process */

7 while They are no self-eviction in C ∪ E do

8 for each c ∈ C do

9 if get access timing of c > threshold then

10 C ← C\{c} ;

11 end

12 end

13 end

14 /* Probe step */

15 for each c ∈ C do

16 if get access timing of c > threshold then

17 E ← E ∪ {c} ;

18 end

19 end

20 /* Test eviction */

21 if E evict x then

22 break ;

23 end

24 return E;

This algorithm can be used to find eviction sets in LLCs using different replacement

policies. The number of cache accesses is estimated as O(SW) when the LLC uses an

LRU as the replacement policy, i.e., the smallest of the three fast algorithms. However,

when using a random replacement policy, the number of cache accesses increases to

O(W ×n). This increase in complexity is due to the candidate set size after the pruning

step being much smaller than the cache size SW . Using a small set of addresses reduces

the chance of finding a congruent address in each PPP iteration.

45

2.8 Defenses against Cache-based Side-Channel Attacks

To defeat cache attacks, extensive research on techniques to identify and mitigate in-

formation leaks through memory access patterns and timing side channels have been

proposed. These techniques can be applied at the different levels: the application level,

the system level (e.g., operating system or hypervisor), and the hardware level. However,

many solutions only protect against a subset of attacks and impose performance over-

head. The ideal countermeasure should provide robust security with minimal perfor-

mance degradation while being scalable and applicable to existing infrastructures. This

section includes an overview of the fundamental approaches, to protect sensitive infor-

mation against CSCAs.

2.8.1 Application level

Disabled Cache

Osvik et al. [OST06] is proposed to disable caching to prevent information leakage

through cache memories. This solution requires modifying the code of sensitive appli-

cations to avoid the attacker process to monitor memory accesses that rely on sensitive

information. This eliminates the timing variation as long as data is loaded from main

memory. Crane et al. [Cra+15] verified the feasibility of this approach by measuring the

performance of AES in libcrypto by marking the lookup tables as uncachables. They

observed that disabling caching a single lookup table, the AES performance degrades

significantly (≈ x75 slower than expected).

Constant Time.

Bernstein [Ber05] proposed manually changing sensitive programs in such a way that

they run in constant time. For example, in a cryptographic context, this countermeasure

consists at ensuring that the memory cache accesses and the execution time of crypto-

graphic algorithm should be independent of program secrets. Barthe et al. [Bar+14]

prove that constant-time execution do not leak sensitive information through cache ac-

cesses. Agosta et al. [Ago+07] claimed that timing side channels could be eliminated

if there are no memory accesses or branches that create side effects through timing

channels. However, developping programs in constant-time is often infeasible and hard

to verify. To that effect, various works [Alm+16; Doy+15; KMO12] proposed differ-

ents tools that verify the timing side effect of a given implementations, which guide

46

constant-time programming. Although constant-time approach eliminates information

leakage through timing side-effets, the technique must be applied to each application

and each hardware platform. Moreover, constant-time applications usually result on

less efficient implementations [BK07].

2.8.2 Operation system or hypervisor level

Cache Flushing

Another solution is to partially or completely flush the cache contents at each context

switch [OST06; Bar+14; ABG10]. This technique degrades performance, but it can elim-

inate timing side channels. Hence, the attacker will not be able to detect temporal vari-

ations since all data is retrieved from main memory and has a long access time. In ad-

dition, the scheduling period between two context switches plays an important role

in the performance of this technique. If the scheduling period is long, the application

can fill the cache and take advantage of it. However, if the scheduling period is short,

the application needs to access the data from the main memory frequently because the

caches are constantly flushed, which increase the performance overhead. Moreover, in

[VRS14], the authors studied the impact of flushing the L1 cache on a 6-core Intel Xeon

E5645 processor. They measured 8.4 µs of direct cost, resulting in an overall 17% in-

crease in latency in the ping benchmark, which issues the ping command in 1 ms inter-

vals. However, for larger higher-level caches (e.g., L2 and LLC), flushing likely results

in significant performance degradation.

Disable Page Sharing

Because sharing-based CSCAs depend on shared memory pages, preventing page shar-

ing can mitigate these attacks. VMware Inc. [Bas14] recommends disabling the trans-

parent page sharing feature [Wal02] to protect caches from cross-VM sharing-based

CSCAs. Zhou et al. [ZRZ16] proposed CacheBar as a software solution to prevent con-

current access to physical shared pages by automatically detecting such access and cre-

ating multiple copies; this technique is called copy-on-access. They showed that allo-

cating a copy of the shared page for each security domain prevents the Flush+Reload

technique and its variants.

47

Noise Injection

A prerequisite for a successful CSCAs, is that the attacker be able to make fine-grained

measurements to observe time variation. If the timing measurements becomes nois-

ier, for example, due to the introduction of dummy instruction or random delays, the

attacker observation become more difficult. In [MDS12], the authors explore this tech-

nique by mask the value returned by a clock counter register so that only the upper

n bits are returned. They demonstrated that adding noise to the timing measurement

can defeat CSCAs. On the other hand, noise can also be generated at an access level. For

example, additional code that performs random accesses to memory or randomly evict-

ing some cache lines can make an attack more difficult [Pag03]. For example, Brickell

et al.[Bri+06] suggested using compressed and randomized lookup tables for the AES

algorithm. In [Muk+20], the authors proposed a generic solution called Flush+Prefetch

technique, which obfuscates the memory access behavior of a secure application us-

ing independent threads that randomly access the secure application’s memory. In this

case, the attacker cannot distinguish between the access due to the victim process or to

the Flush+Prefetch technique.

Process Isoaltion

A common system-level countermeasure is isolating the various processes, so they do

not share the resources that cause information leakage. In this strategy, the operating

system or hypervisor, allocate different parts of hardware resources to isolate sensitive

applications. For example, page coloring [KH92] is a purely software-based solution.

In this technique, the operating system maps virtual page addresses to physical pages

such that they are mapped to different sets in the LLC. This technique was initially pro-

posed to improve the overall system performance [Ber+94], by reducing cache conflicts

between different virtual machines. Shi et al. [Shi+11] proposed a cache coloring solu-

tion for protecting sensitive applications from interference with others in the LLC and

thus protect applications against LLC CSCAs. Other works [ZRZ16; GZ14; KPM12] im-

plemented a similar protection mechanism in different platforms; they benchmarked

only a small performance impact. However, the different work demonstrate that mem-

ory overhead is significant. This is due to the use of colors in physical addresses, and

thus large portions of physical memory have to be assigned to the same virtual machine

or process to provide strict cache coloring without other virtual machines or processes

working in the same cache set.

48

Detection

A detection mechanism can also be used to detect cache-based side-channel attacks at

the system level. They are used to detect malicious behaviour in the system and notify

it to take security action. The detection mechanisms are usually designed to observe

the side effects in the hardware layer during the attack. For example, Hardware Per-

formance Counters (HPC) are commonly used to detect the side effects for each cache

layer, such as the number of cache misses/hits, accesses, etc. For example, Chiappetta et

al. [CSY16] implement a software detection mechanism that uses HPC counters to mea-

sure LLC and L2 side effects. The authors in [Pol+21] propose a machine learning-based

detection mechanism strategy that targets Instruction Per Cycle (IPC) and some other

side effects of the memory hierarchy. Both mechanisms are runtime detection mecha-

nisms. MASCAT [IES16] is an offline detection solution that statically analyses binary

Elf files. In these files, MASCAT searches for features resulting from micro-architectural

attacks. MASCAT can detect cache-based side-channel attacks.

2.8.3 Hardware level

Instruction set

Intel recently introduced a new hardware instruction to mitigate CSCAs on crypto-

graphic implementations. They extended their ISA with a new hardware instruction,

AES-NI [HC12], that can perform encryption and decryption without using cache

memories. Thus, the AES algorithm performs in constant time. However, this exten-

sion is implemented only to support the implementation of AES. Therefore, we still

need defenses to protect other cryptographic algorithms. In addition, the use of some

instructions makes it easier for the attacker to leak sensitive information, such as the

use of the clflush instruction at the user level. Unlike x86 processors, the flush in-

struction is reserved for more privileged software on ARM processors. Therefore, the

Flush+Rload technique is not feasible. This solution is inefficient because the attacker

can still use the Evict+Rload technique to leak the victim’s sensitive information.

Partitionning-based Caches

Intuitively, cache partitioning [DFS20; Kir+18; Gru+17; Wan+16; KPM12; Dom+12;

SK11; Pag05] used to be an effective countermeasure against CSCAs. It aims to avoid

49

sharing critical resources with other processes and prevent them from monitoring crit-

ical resources. This is done by dividing the cache memory into different regions. This

mechanism prevents internal timing, but external timing attacks are still possible since

measuring the execution time of the protected program can reveal some patterns about

the victim’s memory accesses. Also, other applications cannot use the reserved cache

blocks, which reduces the cache size, and thus increase the performance overhead.

The simplest way to achieve cache partitioning is to divide the cache memory statically

into multiple partitions based on the cache ways and assign these partitions to differ-

ent processes, as in Statically-Partitioned Cache [HL17] and SecVerilog Cache [Zha+15;

ZAM12]. However, static partitioning significantly reduces the effective cache capacity

for each running process, resulting in a huge performance degradation. Therefore, a

more promising direction is dynamic partitioning.

To address the drawbacks of static partitioning, Wang et al.[WL07] proposed a

Partitioned-Locked (PL) Cache that uses a fine-grained dynamic cache partition. This

approach aims to lock specific cache lines to avoid interference between different pro-

cesses, allowing sensitive data such as AES lookup tables to selectively and temporarily

locked into the cache. Once a particular cache line is locked, it cannot be removed by

another process. To implement this approach, the authors add a protection bit to each

cache line that indicates whether it needs to be locked. In addition, the authors propose

two solutions to lock a cache line: either by adding user-level lock and unlock instruc-

tions to the ISA or by using more privileged software, such as the operating system.

ARM processors also provide a similar mechanism, called AutoLock [Gre+17], to pre-

vent cache lines from being removed. Unlike the PL cache, when the AutoLock mech-

anism is enabled, the lines in the LLC are protected only if they are in a core-private

cache level. The protection is immediately broken as soon as these lines are removed

from the core-private caches.

DAWG [Kir+18], SecDCP [Wan+16], and Non-Monopolizable (NoMo) Cache [Dom+12]

are dynamic way-partitioning techniques. In non-monopolizable cache, authors modify

the replacement policy to reserve a number of cache lines in each set of an associative

cache for each running thread. As a result, the victim data cannot be removed from

the protected cache lines by the co-executing threads. DAWG [Kir+18] introduces some

modifications to fully isolated side channels via cache line states, coherence states, and

replacement information variations. However, when the number of cache ways is less

than the number of processes or security domains, DAWG is forced to reallocate the

different cache lines from one partition to another. This reallocation can leak informa-

tion about the victim’s memory accesse. Other dynamic partitioning techniques, such

50

as SecDCP, and NoMo caches have similar security issues.

CATalyst [Liu+16a] is another partitioning technique that uses Intel Cache Allocation

Technology (Intel CAT) [Int21] to partition LLC cache between different users. Intel

CAT is a hardware support that implements the cache partitioning mechanism. Intel

CAT was originally intended to improve performances, not to mitigate CSCAs. CATa-

lyst takes advantage of intel CAT and splits the LLC cache into a secure partition and

a non-secure shared partition. The secure partition is reserved for addresses that could

reveal sensitive information. Cache interference within the secure partition is blocked

through page coloring. The non-secure shared region shares normal resources with

other running applications. To secure sensitive data, a user-level program allocates se-

cure pages and preloads the data into the secure cache partition. Lui et al. [Liu+16a]

demonstrate that the CATalyst is effective in protecting square-and-multiply algorithm

present in GnuPG 1.4.13.

Randomization-based Caches

Randomization-based techniques add non-determinism and noise to the behavior of

the cache to obfuscate the observation of side channels and make sensitive information

extraction more difficult for an attacker. Address randomization is a family of random-

ization techniques that randomize the the address-to-cache mapping. The idea of this

approach is prevent an attacker to construct a set of congruent addresses to attack a par-

ticular cache set. Therefore, randomization-based architectures can more efficiently mit-

igate conflict-based CSCAs. Unlike partitioning-based approaches, the randomization

approach also enables cache sharing among different processes, which helps ensure

that performance is not degraded. In a static randomization scheme [Liu+16b; WL07],

the address mapping is fixed, while in a dynamic randomization [Wer+19; Qur18], the

mapping can change over time. Existing address permutation functions rely on lookup

tables [Liu+16b; WL07], hashing schemes [Wer+19], or block ciphers [Qur18].

Wang and Lee [WL07] proposed an RP cache to staticlly randomize cache mapping by

using an indirection table. This table stores the correspondence of the cache sets. The

address set is first used to index the indirection table for each cache access. Then, the

returned cache set is used to access the cache memory. Such a design is linearly scal-

able in terms of cache sets and the number of concurrent applications. Therefore, it is

not suitable for larger caches. Moreover, the effectiveness of table-based randomization

schemes depends on the OS to assign different hardware process identifiers and classify

applications into protected and unprotected applications.

51

Recent studies have proved that static randomization does not defeat conflict-based

cache attacks due to advanced eviction set construction algorithms [VKM19]. For this

reason, dynamic randomization [Qur18; Wer+19] has been introduced in last-level

caches. In the rest of this work, we use the term remapping to refer to a change in the

address mapping. The interval in which the mapping is changed determines the time

window that is available to an attacker to perform the entire attack. However, there is

an overhead associated with changing the mapping; in addition to the misses gener-

ated, multiple write-backs and data moves in the cache may be required. To minimize

the impact on performance, it is important to choose the highest possible remapping

interval that ensures safety.

CEASER [Qur18] was proposed to secure the last-level cache with a keyed indexing

encryption function. It also requires dynamic remapping to its encryption function to

change the mapping and limit the time interval in which an attacker can construct a

efficient eviction set. It has been shown that CEASER can defend against attacks that

use a eviction set construction algorithm with a complexity of O(n2) when the remap-

ping rate is 1% (on average, one line remapped per 100 accesses). However, for eviction

set construction algorithms with a complexity of O(n) [Qur19] (e.g., the group test-

ing algorithm), the remapping rate must increase to 35–100%, which results in high-

performance overheads. To mitigate these algorithms, the same authors have proposed

CEASER-S [Qur19], which uses a skew-associative cache where each cache way uses a

separate function to compute the cache set in this way. In CEASER-S, the cache ways

are divided into multiple partitions and each uses a different encryption key. Thus, a

cache line for each partition is assigned to a different cache set, making the construction

of an efficient eviction set more complicated.

ScatterCache [Wer+19] was also proposed to achieve randomization mapping using

a key-dependent cryptographic function. Moreover, its mapping function depends on

the security domain, where the indexing of the cache set is different and random for

each domain. Therefore, a new key may be required at certain intervals to prevent the

attacker from creating and using an eviction set to collide with the victim’s access. How-

ever, ScatterCache, which claims to tolerate years of attacks, has been broken by more

advanced eviction set construction algorithms [PV19]. Mirage [SQ21] attempts to over-

come the weaknesses of ScatterCache by preventing faster eviction set construction al-

gorithms. Mirage is a fully associative cache that uses pointer-based indirection to as-

sociate tags with data blocks and vice versa (inspired by V-way Cache [QTP05]). The

eviction candidates are randomly selected from all of the lines in the cache that are to

be protected against set conflicts.

52

PhantomCache [Tan+20] relies on address randomization by using an efficient hard-

ware hash function and XOR operations to map an incoming cache block to one of eight

randomly selected cache sets, increasing the associativity to 8 ∗W . Unfortunately, this

requires accessing 8 ∗W memory locations for each cache access to check whether an

address is stored in the cache, resulting in a high-power overhead of 67%. The authors

show that PhantomCache can safely defeat the group testing algorithm; however, its

effectiveness over the fastest eviction set construction algorithm needs further investi-

gation.

Randomization-based defenses, such as CEASER/-S [Qur18; Qur19] and ScatterCache

[Wer+19], claim to thwart conflict-based cache attacks. ScatterCache [Wer+19] even ar-

gues that dynamic remapping is unnecessary due to the complexity of using a skew-

associative cache. Song et al. [Son+20] identified the flawed hypothesis in the imple-

mentations of ScatterCache and CEASER-S [Qur19]. By exploiting these flaws, the

authors succeeded in constructing eviction sets. Both caches are also vulnerable to

cryptanalysis, which can be used to construct eviction sets. For example, Bodduna et

al. [Bod+20] identified invariant bits in the encrypted address that was computed in

CEASER/-S [Qur19]. The authors show that these bits can be managed to construct a

valid eviction set, even when the mapping changes.

Bao and Srivastava [BS15] exploited the lower latency of 3D integration technology to

implement the random eviction strategy to mitigate against cache-based side-channel

attacks. The authors show that such a technique provides inherent security benefits

within a 3D cache integration. They investigated a random eviction component that

evicts one cache line every five cycles. On average, their experimental results show that

such techniques reduce the performance overheads from 10.73% (in a 2D configuration)

to around 0.24% (in a 3D integration). The performance overhead is more negligible in

3D integration since the penalty for a cache miss is smaller.

Hardware vulnerability identification

Several approaches have been developed to assess the security of cache architectures.

One study [ZL14] uses mutual information to measure potential side-channel leaks in

the cache memory. He et al. [DXS19] proposed an approach to quantitatively evalu-

ate the resilience of caches against CSCAs. They construct a probabilistic information

flow graph to model cache interference and calculate the probability of success for dif-

ferent attack’s steps, and also the probability of success of the entire attack. However,

both approaches [DXS19; ZL14] only evaluate the security of caches against a limited

53

set of cache leakage techniques, including Bernstein’s attack, Evict+Time, Prime+Probe,

Flush+Reload, and Cache Collision attack. In a separate work, Demme et al.[Dem+12;

Dem+13] proposed the Side-channel Vulnerability Factor (SVF), a metric to quantita-

tively measure side-channel leakage by measuring the Pearson correlation between the

attacker’s observations and the victim’s execution trace. Meanwhile, CSV [Zha+13] im-

proved the SVF metric and uses a direct correlation between the attacker and victim

traces. Further analysis of secure cache architectures was conducted using computa-

tional tree logic [DXS18], the three-stage model [DXS19], flow graphs [Wan+20], and

neural networks [ZZL18].

Prunal et al. [Pur+21] also attempt to quantitatively analyze the security of random-

ized caches. In another concurrent work [Bou+20], Bourgeat et al. analyze the end-to-

end security of secure caches. The timing-channel toolkit Mastik [Yar16] was presented

to experiment micro-architectural side-channel attacks for x86 processors, including

Prime+Probe, Flush+Reload, and Flush+Flush techniques. Lipp et al. [Lip] developed

the Libflush framework, which implements the nedded primitives to facilitate the de-

velopment of CSCAs on ARM and x86 processors.

2.9 Summary and Conclusion

The micro-architectures of modern processors are the result of several decades of work.

They are complex systems that use many optimization mechanisms. Thus, the execution

of a single instruction leads to several hardware operations. The main goal of most

of these mechanisms is to improve performance, increase the throughput of executed

instructions, and thus increase the clock frequency. For example, cache memories are

used to significantly reduce memory access time. While these optimization mechanisms

focus on the execution of a single program, others such as multithreading or multicore

organizations enable the optimization of cases where multiple independent programs

are to be executed. The micro-architecture is then designed to allow the simultaneous

execution of different programs.

These various optimization mechanisms were developed without consideration of

safety requirements. We have shown in this chapter that basic security mechanisms

such as privileges are no longer sufficient. Since they can be bypassed by software at-

tacks that exploit the micro-architecture through side channels, mainly attacks that tar-

get cache memory, these attacks exploit timing variations during program execution.

Exploiting these variations can lead to a malicious process of obtaining information

about the execution of other processes. This is possible because the victims and the

54

attacking processes share resources. The shared hardware resources thus pose an iso-

lation problem between different users.

This chapter also discusses the strategies that can be used to counter problems with

timing variations and conflicts within caches. The first category of countermeasures is

dedicated to the management of shared resources. The proposed work focused mainly

on recovering the isolation specification at the hardware by submitting new mecha-

nisms for managing shared resources or partitioning hardware resources. While this

strategy is effective, it only partially solves the isolation problem. This is because a ma-

licious process sharing the same SoC with the victim can still exploit the total execu-

tion time or the number of generated misses. In addition, partitioning resources leads

to performance degradation, as each user has less cache memory available to execute

their program.

The second category of countermeasures aims to limit the leakage caused by the caches

by inserting noise to make it harder to exploit the leaks. The idea behind this solution

is to disrupt the attacker’s observations while ensuring resource sharing. The proposed

changes are based on two axes: changing the time perception to disrupt the attacker’s

measurements to collect timing information that is no longer reliable or changing the

hardware architecture of the caches to achieve non-deterministic behavior. Unlike parti-

tioning, randomization preserves the idea of sharing resources among processes to not

degrade system performance. However, the security evaluation of this class of counter-

measures has not been addressed in depth in the literature. In addition, randomization

in LLC has mainly been used, but its implementation at lower levels of the memory

hierarchy has not been evaluated. In this sense, the work in this manuscript should be

understood.

In the remainder of this work, we focus on the issue of cache randomization. It affects

almost all of the cache-based attacks presented above, whether they are attacks that

exploit shared memory or attacks that exploit shared resources based on cache con-

tention. We also aim to develop a memory hierarchy with security mechanisms against

cache attacks. The work done in this thesis is organized on two axes.

The first axis provides a deep understanding of cache attacks. The goal is to define the

limits of secure architectures based on the randomization technique. A choice will then

be made to determine the limitations of using randomization at different cache levels.

The second focus of work is to propose countermeasures at each cache level based on

the studies conducted in the first focus. Finally, the performance of our countermeasure

will be evaluated to make it scalable on different types of processors.

55

3
Practical analysis of cache attacks

In this chapter, we describe the Micro-Architectural Analysis Toolkit (libMAAT), developed as

part of this Ph.D. that contains different primitives needed to implement micro-architectural

side-channel attacks on x86 and ARMv7, ARMv8 as well as RISCV architectureS. It contains

different modules that can be used to build micro-architectural attacks. We developed this

library to quickly prototype micro-architectural attacks and evaluate our secure architectures’

resistance against realistic attacks. As proof of concept, we implemented two rounds of AES

attacks using libMAAT. We target the AES T-Table implementation available in OpenSSL

using the Evict+Reload technique.

3.1 Motivations . 57

3.2 LibMAAT: Micro-Architectural Analysis Toolkit Library 58

3.3 Evaluation of Eviction Set Construction 65

3.4 Attack on T-Table based AES implementation 70

3.5 Setting and Attack Primitives . 74

3.6 Conclusion . 78

56

3.1 Motivations

Timing attacks on micro-architecture via side channels exploit interference between

internal processor components to leak sensitive information through timing variation.

While such attacks are simple in theory, practical implementations are often tricky and

require a deep understanding of poorly documented processor functions.

Two popular libraries implement cache attacks: libflush [Lip] and Mastik [Yar16]. How-

ever, those frameworks do not offer the flexibility required for our experiments. Mas-

tik, for example, can only be used on Intel x86 micro-architectures. On the other hand,

Libflush is a concurrent library that supports primitives for cache-based side-channel

attacks on ARMv7 and ARMv8 micro-architectures. However, Libflush requires privi-

leged access to construct cache attacks, which is more challenging and does not reflect

the attacker model.

For this reason, we have developed Micro-Architectural Analysis Toolkit (libMAAT),

a library that contains several primitives needed to create micro-architecture side-

channel attacks on the x86, ARMv7, ARMv8, and RISCV architectures. This library is in-

tellectual property that belongs to the CEA company Therefore, the sources of libMAAT

will not be released on open source platforms. We developed this library to quickly

prototype attacks and evaluate the resilience of our secure architectures against real-

istic attacks. In doing so, we have found that the characteristics of modern processors

must be considered in order to perform successful cache-based side-channel attacks.

We therefore address the following questions:

• How should we approach the complexity of modern processors and the undocumented

components used?

• Can we map attack and victim process on the same core in a multicore environment?

• How can we measure precise timing from user space when out-of-order execution is sup-

ported?

• What are the possible sources of noise?

LibMAAT contains several modules that can be used to create attacks on micro-

architectures. LibMAAT is a modular library that allows all available options (such as

the eviction strategy, time sources, etc.) to be changed at execution time.

57

3.2 LibMAAT: Micro-Architectural Analysis Toolkit Li-

brary

In this section, we describe the design philosophy and modular architecture of lib-

MAAT. In a nutshell, the framework contains a collection of building blocks for micro-

architectural attacks. In our opinion, this gives security researchers more freedom in

designing the skeleton of the attack models. The organization of libMAAT modules is

show on Figure 3.1.

Figure 3.1 – Overall architecture of libMAAT

• Timing measurements module: This module contains different techniques to

measure the execution time from privileged and unprivileged execution levels.

• Memory pools module: This module offers different techniques to allocate the

memory area needed, for example, to find congruent addresses.

• Cache eviction module: In this module, we implement the different strategies

in the state-of-the-art to construct an efficient eviction set for both root and user

processes.

• Cache configuration module: This module is responsible for finding the memory

hierarchy configuration dynamically.

• Statistical functions module: This module offers some statistical functions that

may be needed to analyze the side effects observations. In addition, it also contains

a specific module to generate pseudo-random numbers.

58

3.2.1 Targeted Micro-Architectures

Micro-architectural attacks are strongly dependent on the instruction set architecture

(ISA). Security researchers must adapt their code to each architecture. However, the

high-level description of the attack is generally the same across all architecture. For ex-

ample, cache-based side-channel attacks can be expressed in terms of memory loads,

flush operations, instruction barriers, and timing measurements. LibMAAT aims to

provide a framework that can be used to write portable micro-architectural timing side-

channel attacks. Thus, the libMAAT framework contains the abstraction layers for sev-

eral ISAs, including x86, ARMv7, ARMv8, and RISC-V.

3.2.2 Timing Measurements

For observing small variations in memory load latency, high-resolution timers are re-

quired. LibMAAT provides different time sources available, either in privileged or

unprivileged execution levels. In this section, we describe the different implemented

time sources. The choice of the time source can be made at the execution time, which

does not require recompiling the codes. This is done by calling the libMAAT function

uint64_t maat_timer_sample(maat_timer_t* timer), where the parameter timer is

the pointer to the timer source. They are three specific time source implemented in lib-

MAAT: cpu_counters, perf, and monotonic.

CPU hardware registers

Processors generally offer high-precision cycle counters that hold the number of CPU

cycles since reset. This is, in most cases, the highest resolution timer available. On x86,

the rdtsc and rdtscp instructions provide access to those cycle counters. Unlike rdtsc,

rdtscp is a serialization call that can be used to prevent the CPU from reordering it.

However, rdtscp call is only avaible in moden CPUs. RISC-V micro-architectures sup-

port also an equivalent user-space instruction rdcycle to retrieve the number of cycles

from the CSR register.

On modern processors, timing measurement using CPU counters is challenging be-

cause of the optimizations that modern processors provide. One of the optimizations

is the presence of superscalar and out-of-order execution, which can be used to opti-

mize the penalties due to the different instruction latencies. Unfortunately, this feature

does not guarantee that the temporal sequence of the single compiled C instructions

59

will respect the sequence of the instruction themselves as written in the source C file.

When we call the rdtsc instruction, we pretend that that instruction will be executed

exactly at the beginning and at the end of the code being measured (e.g., we don’t want

to measure compiled code executed outside of the rdtsc calls). According to the Intel

specification [Pao10], the best way to call serializing instruction befor calling rdtsc. A

serializing instruction is an instruction that forces the CPU to complete every preced-

ing instruction of the C code before continuing the program execution. By doing so, we

guarantee that only the code that is under measurement will be executed in between the

rdtsc calls and that no part of that code will be executed outside the calls. This is done

in the manner summarized in algorithm 7. Accordingly, the natural choice to avoid out-

of-order execution would be to call the cpuid instruction just before both rdtsc calls. As

shown in algorithm 7, the cpuid instruction is executed first to ensure that all previous

instructions have been completed before retrieving the current timestamp. Otherwise,

instruction overlaps may slow down the measured code in a non-deterministic manner,

as more or fewer additional instructions will be measured depending on the execution

state before the measurement begins. Once the code is measured, we use rdtscp in-

stead of rdtsc, since all measured operations must complete before the timestamp is

read a second time instead of being executed in parallel. The rdtscp instruction waits

until all previous instructions have finished before retrieving the value of the times-

tamp counter. In the last line, we again use cpuid to prevent subsequent instructions

from starting their execution while the timestamp is being read, thus slowing down

rdtscp. Even though cpuid has a high variance, this does not affect our timing since we

use it before and after sampling the timestamp.

Algorithm 7: Timing measurement code following Intel benchmarking white pa-
per [Pao10]

1 cpuid
2 start← rdtsc
3 /* Measured function */

4 end← rdtscp
5 cpuid
6 return end - start

In ARM processors, there are no similar unprivileged instructions for timing on either

the ARMv7 or ARMv8 architectures. However, they provide a performance monitoring

register called Performance Monitor Cycle Count Register (PMCCNTR) that counts proces-

sor cycles since reset. For example, Figure 3.2 illustrates the access time to an address

in the cache or main memory of a dual-core Cortex-A9 measured by the PMCCNTR reg-

ister. As a result, cache hits and cache misses are easy to distinguish. Although these

60

measurements are fast and accurate, access to these performance counters is restricted

to kernel space by default. However, the User Enable Register (PMUSERENR), which is

writable only in privileged modes, can be configured to allow access to the PMCCNTR in

user space. Therefore, a kernel module and root privileges are required, making it diffi-

cult to access this timing source. The ARMv8-A architecture provides similar registers.

Figure 3.2 – Histogram of cache hits and cache misses measured cross-CPU on the dual-core
Cortex-A9 using CPU counter to measure timing.

Perf tool timing source

Modern Linux distributions introduce the perf tool in the kernel part. It provides a

powerful interface to instrument CPU performance counters and tracepoints regard-

less of the hardware used. It is also capable of sampling lightweight sampling. It is also

included in the Linux kernel and is frequently updated and extended. In addition, the

perf event system call can access such information from user space and provides accu-

rate timing information like the privileged instructions described earlier (e.g., ARM).

POSIX timing sources

The perf interface described in the previous paragraph is enabled by default on most

devices. However, perf is rarely enabled in production for security reasons. Therefore,

we implement the POSIX function clock_gettime() to retrieve the time as an equiva-

lent time source. It allows the measurement of time with a resolution from microsec-

onds to nanoseconds. Figure 3.3 illustrates the histogram access timing, using the clock

CLOCK MONOTONIC as the timing source. However, we note that small timing differences

are no longer detectable and that cache hits and misses can still be distinguished.

61

Figure 3.3 – Histogram of cache hits and cache misses measured cross-CPU on the dual-core
Cortex-A9 using the clock_gettime() function to measure timing.

3.2.3 Cache Eviction

As discussed above, in some processors (such as ARMv7 and RISC-V), users have no

access permission to cache flush operations, as these operations are privileged. In such

a situation, an attacker can exploit cache eviction in order to exclude a specific cache

line from the memory hierarchy. LibMAAT provides a three-stage eviction strategy for

conducting a conflict-based attack: construction, optimization, and eviction.

Construction Step

The construction step provides different ways to create an eviction set, depending on

the attacker’s privileges. LibMAAT support three techniques to collect addresses: using

a pool of 1 virtual addresses, 2 physical addresses, and 3 virtual addresses with

huge pages.

LibMAAT collects a set of virtual addresses for an attack from user space. LibMAAT

ensures that all collected virtual addresses have similar bits in the page offset field,

such as bits used in the last-level cache to index the set. Thus, even though part of the

set index is unknown from user space, libMAAT can collect many addresses to increase

the probability of finding enough congruent addresses, thus evicting the target address.

If the attacker has root privileges, libMAAT provides the ability to use the physical ad-

dresses directly. LibMAAt consults /prog/pid/pagemap file to get the informations about

the translation of virtual addresses into physical addresses. LibMAAT offers the ability

to use huge pages and transparent huge pages depending on the attacker’s privileges.

62

The ability to use larger pages is to control more bits in physical addresses, thus facili-

tating the construction of eviction.

Eviction Set Optimization

For building an eviction set, the first step is to generate multiple addresses to increase

the probability of finding enough congruent addresses in the candidate set. The set is

then optimized by removing all addresses that do not contribute to the eviction of the

target address. LibMAAT includes different algorithms for optimizing the size of the

eviction set: the baseline [Liu+15] algorithm and the group-testing [VKM19] algorithms

(see section 2.6).

Eviction Strategy

After creating an eviction set and optimizing its size, the final step is to access its ad-

dresses in a specific order to evict the target address. A linear implementation where

the eviction set is accessed linearly leads to poor results due to undocumented used re-

placement policies. Although libMAAT supports several methods: 1 pointer-hunting,

2 pointer-chasing, and 3 sliding window eviction strategies.

•Pointer-hunting strategy. In this eviction strategy, the addresses of the evic-

tion set are placed into a linked list (optionally, randomly permuted); the targeted

cache set is later evicted by traversing this list.

•Pointer-chasing strategy. LibMAAT supports a pointer-chasing eviction strat-

egy to reduce the impact of hardware prefetching. Tromer et al. [OST06] is the

first to acknowledge the impairment of Prime+Probe attacks by CPU prefetching,

where the prefetcher loads some addresses that can add noises to the attacker’s

observations. The authors tried to set up a linked-list structure with random order-

ing and use the pointer-chasing technique when accessing the eviction set mem-

ories to prevent the stream prefetcher from aggressively loading many cache sets

due to the unpredictable access pattern. This technique is used in almost all known

Prime+Probe implementations. Therefore, the eviction set is now represented as

a linked list with two pointers to access their addresses. In the algorithm 8, two

addresses are accessed at each iteration, with an offset O distance between both

addresses.

63

Algorithm 8: Pointer-chasing eviction strategy
Input: C = eviction set

Input: O = offset

1 for i← 0 to |C| do

2 access(C [i]);

3 access(C [(O + i) % |C|]);

4 end

•Sliding window strategy. LibMAAT provides the generalized sliding window

eviction strategy proposed by Gruss et al. [GMM16], and Lipp et al. [Lip+16]. This

eviction strategy yields a sequence of accesses in the form of a window that slides

over all congruent addresses. It accesses the eviction set on a specific order and

repetition, which can increase the probability of eviction under some unknown re-

placement strategies. The authors demonstrate that this strategy can successfully

be applied to ARM processors. This strategy is illustrated in algorithm 9.

Algorithm 9: Sliding window eviction strategy
Input: C = eviction set

1 /* number of windows */

2 for i← 0 to N − 1 by L do

3 /* number of repetitions per window */

4 for j ← 0 to A− 1 do

5 /* number of addresses per window */

6 for k ← 0 to D − 1 do

7 access(C[i+k]);

8 end

9 end

10 end

In the algorithm, N denotes the total number of generated windows, A defines

the repetitions per window, and D denotes the number of addresses per window.

The parameter L denotes the offset between two windows. We define the window

sliding eviction strategy as the triple ζ −N − A−D − L. This strategy requires

an eviction set size of N + D − 1 congruent addresses. For example, the strategy

ζ − 3− 2− 2− 1 uses an eviction set of 4 congruent addresses and accesses them

in a specific order as illustrated in Figure 3.4.

64

Figure 3.4 – Eviction set accessing sequence using window sliding eviction strategy
ζ − 3− 2− 2− 1.

3.2.4 Memory pool allocation

The memory pool module manages allocated memory to create eviction sets. To col-

lect addresses from the address space, libMAAT provides three supported allocation

strategies: static, mmap, and malloc functions.

In the static approach, libMAAT allocate memory pool using static buffers. Other-

wise, in the dynamic approach, LibMAAT provides two approaches mmap and malloc

functions. The mmap system call requests the kernel to find an unused and contiguous

area and is usually called to allocate a large set of addresses. Malloc, on the other hand,

can be used to allocate a small set of addresses.

3.3 Evaluation of Eviction Set Construction

3.3.1 Target Platforms

In the following sections, we propose a practical evaluation of eviction set construction

using the libMAAT. For simplicity, all evaluations will be performed on a single core.

However, we use core 0 to run our tests for a system with several cores, avoiding noise

due to multi-threading or multicore execution. Table 3.1 contains the parameters for

the processors considered in this work.

65

Platform Raspberry Pi3B+ Raspberry Pi4 FPGA Zybo-7z20

CPU
quad-core

ARM Cortex-A53
quad-core

ARM Cortex-A72
dual-core

ARM Cortex-A9
Frequency 1.4GHz 1.5GHz 667MHz

L2 cache
Size 512KiB 1MB 256KiB

Associativity 16 8 8
Replacement policy pseudo-random pseudo-random pseudo-random

Cache line size 64B 64B 32B

Table 3.1 – List of targeted platforms

3.3.2 Candidate Set Size Evaluation

We evaluate the construction of the candidate set on different platforms described in Ta-

ble 3.1. The idea is to evaluate the number of virtual addresses needed to find a can-

didate set that contains enough congruent addresses to evict a given cache line from

each cache level. For each platform, the number of virtual addresses required to evict

a target address T from the last level cache is determined as follows. First, we create a

set of n virtual addresses, then access the target address to cache it. Then, we access the

n virtual addresses and reaccess the target address by measuring the execution time.

We repeat this test 1,000 times for different candidate set sizes. We also use physical

addresses to create a candidate by accessing the pagemap information.

Figure 3.5 illustrates the results of the candidate set size evaluation for each platform.

Each figure shows the reload time of each test and its average for each candidate set

size. In contrast to creating candidate sets with virtual addresses, physical addresses

are more efficient because the candidate set contains only congruent addresses. Thus,

just above the cache associativity, a small number of congruent addresses need to be col-

lected. On the other hand, it is noted that evicting a cache line using virtual addresses

requires the collection of hundreds of addresses. This is due to the presence of non-

congruent addresses that are not participating in the eviction of the target address. We

found that eviction of a cache line on the Raspberry Pi3B and FPGA Zybo-7z20 plat-

forms requires about 100 virtual addresses to create a candidate set. The Raspberry

Pi4 platform, on the other hand, requires about 220 virtual addresses, twice as many

as the other platforms. This increase in the number of virtual addresses is due to the

associativity and the size of the last-level cache. By following the Equation 2.1, we con-

clude that increasing cache size increases the complexity of finding enough congruent

addresses using virtual addresses.

Figure 3.6 illustrates the eviction rate for creating a set of candidates in different plat-

forms. To calculate the eviction rate, we first determine a threshold for each plat-

66

(a) quad-core Cortex-A72

(b) quad-core Cortex-A53

(c) dual-core Cortex-A9

Figure 3.5 – Evaluation of the candidate set size using virtual and physical addresses for differ-
ent platforms.

form.Based on the L1 and L2 miss latencies presented in Figure 3.5, we compute a

threshold for each device based on the latency for an L1 miss and L2 miss for each

platform. The thresholds are 150, 150, and 115 for Raspberry Pi3B, Raspberry Pi4, and

the FPGA board. Based on these thresholds, we count the number of successful evic-

67

tions to compute the eviction rate for each candidate set size. We observe that to evict

an address from the LLC cache of raspberry Pi4, the candidate set requires an initial

candidate set that contains at least 350 addresses to find enough congruent addresses.

Other platforms require only 260 virtual addresses to evict the target address from the

LLC.

Figure 3.6 – Sucess rate of creating a candidate set using virtual addresses

3.3.3 Evaluation of Cache Eviction Strategies

In order to evict a cache line from the LLC, we evaluate the different strategies sup-

ported by libMAAT. This section aim to evaluate the sliding window [Lip+16; GMM16]

and pointer-chasing [OST06] eviction strategies in different plaftorms. We assume that

a target address @T is cached on the line L in the cache set S. In order to evict the line

L from S, we first should construct a set of addresses congruent to the target address

@T . We construct a minimal eviction set using physical addresses and then focus on

how these addresses should be accessed to force the replacement policy to evict the

cache line L. The translation of virtual addresses into physical addresses is retrieved by

consulting /proc/pid/pagemap file.

68

Sliding Window Eviction Strategy

N A D L
Eviction time

(Cycles)

Eviction

rate (%)

18 1 8 2 3063 92.6

13 1 11 2 3475 90.9

20 1 8 2 3482 97.9

19 1 8 2 3497 98.7

18 1 11 3 3522 91.7

17 1 11 3 3525 94.7

16 1 10 2 3650 93.3

15 1 10 2 3692 95.3

18 1 9 2 3959 95.9

19 1 10 3 3981 92.4

N A D L
Eviction time

(Cycles)

Eviction

rate (%)

14 2 3 8 3928 91.4

13 2 8 3 3948 95.3

15 2 8 3 4036 93.8

12 2 11 3 4301 96.6

16 1 8 3 4682 96.4

17 1 8 3 4759 96.5

18 1 8 3 4772 97.0

16 1 8 2 4909 96.5

15 1 8 2 4931 96.8

13 1 10 2 4989 96.2

N A D L
Eviction time

(Cycles)

Eviction

rate (%)

16 1 13 3 2805 90.6

25 1 9 3 2863 90.5

29 1 8 3 2909 93.2

28 1 8 3 2914 92.5

16 1 14 3 3112 92.5

26 1 10 3 3114 92.1

27 1 10 3 3114 91.0

25 1 10 3 3123 91.3

17 1 14 3 3124 92.3

18 1 14 3 3125 92.2

Table 3.2 – Classification of the best
ten configurations using
sliding window eviction
strategy for raspberry
Pi4, raspberry Pi3B+,
and FPGA Zybo7z20
platforms, respectively.

The optimal strategy ζ−N−A−D−L is specific to

each processor and replacement policy. Thus the

parameters N−A−D−L must be determined once

for each processor. This can be done by creating

an eviction set with enough congruent addresses

and exhaustively iterating over multiple choices of

the parameters N , A, D, and L. To find the best

strategy, we calculate each configuration’s success

rate of evicting the target cache line L. Each suc-

cess rate is an average of 1,000 eviction results. For

each strategy, we also measure the eviction time,

assuming that the eviction time of each configura-

tion ζ−N−A−D−L is the median of all samples.

We test and evaluate thousands of different evic-

tion strategies in ARMv7 and ARMv8 micro-

architectures. Table 3.2 shows in order the fastest

ten strategies that are able to evict the cache line

L with a success rate of more than 90% in differ-

ent micro-architectures. By continuously checking

the success of the eviction, the strategy with the

least number of memory accesses (eviction time)

that still provides reliable eviction can be deter-

mined. On the ARMv7 platform (with a dual-core

cortex-A9), we find that evicting a cache line from

the entire memory hierarchy requires about 2805

cycles for an eviction set of 28 addresses with a suc-

cess rate of 90.6%. On raspberry Pi3B with ARMv7

micro-architecture, evicting the target address re-

quires 3928 cycles with an eviction rate of 91.4% for

an eviction set of 16 congruent addresses. On the

ARMv8 platform (with a quad-core Cortex-A72),

the eviction succeeds in about 3063 cycles with a success rate of 92.6%, for an eviction set

of 25 virtual addresses, compared to the privileged instruction, which requires between

150 and 250 cycles depending on whether the target address is cached. In ARMv8, the

flush instruction can be used without any privileges.

69

Pointer-Chasing Eviction Strategy

Size Offset
Eviction time

(Cycles)

Eviction

rate (%)

36 19 221 90.4

35 19 221 90.5

31 20 243 91.4

32 20 243 91.7

27 10 243 92.5

Size Offset
Eviction time

(Cycles)

Eviction

rate (%)

31 2 218 100.0

61 10 218 100.0

61 9 218 100.0

61 8 218 100.0

61 7 218 100.0

Size Offset
Eviction time

(Cycles)

Eviction

rate (%)

23 5 137 100.0

23 5 137 100.0

56 43 137 100.0

56 44 137 100.0

56 45 137 100.0

Table 3.3 – Classifiaction of the best
five configurations using
pointer-chasing eviction
strategy for raspberry
Pi4, raspberry Pi3B+,
and FPGA Zybo–7z20
platforms, respectively.

To evaluate the pointer-chasing eviction strategy,

we test different parameters, including the evic-

tion set size n and the offset O (see algorithm 8).

For each couple (n, O), the evaluation is repeated

1,000 times. Table 3.3 shows the fastest five strate-

gies that are able to evict the cache line L with a

success rate of more than 90% in different micro-

architectures, using the pointer-chasing eviction

strategy. On the raspberry Pi3B platform, we find

that evicting a cache line from the entire memory

hierarchy requires an eviction set of 31 addresses

and an offset of 2, evicts the target cache line in

about 218 cycles with an eviction rate of 100%. On

FPGA Zybo-7z20 that supports an ARMv7 CPU,

evicting the target address requires 137 cycles with

an eviction rate of 100% for an eviction set of

23 congruent addresses. On the ARMv8 platform

(with a quad-core Cortex-A72), the eviction suc-

ceeds in about 221 cycles with a success rate of

90.4% for an eviction set of 36 virtual addresses,

which is close on performance to the flush instruc-

tion. Comparing the sliding window and pointer-

chasing techniques, we observe that the pointer-chasing has the best performance in

evicting a cache line from all cache levels (which is around ten times faster than the

sliding window eviction strategy).

3.4 Attack on T-Table based AES implementation

In this section, we use the libMAAT library to perform a cache-based side-channel at-

tack to retrieve the AES T-table implementation key. First, we demonstrate the possibil-

ity of using an efficient eviction set from user space to observe cache activity in ARM

processors using the Evict+Reload technique. Then, we perform a cross-core attack on a

native environment where the attacker and the victim process share the LLC and are in

different cores. Finally, we have limited our analysis to using a cipher key of 128 bits and

70

a 128-bits plaintext, even though the algorithm also supports different key and block

sizes. It is expected that analysis using other keys and block sizes would give similar

results.

3.4.1 AES implementation

Figure 3.7 – A global overview of the
AES algorithm [Bri+19].

We describe the outline of the Rijndael [DR99]

symmetric encryption algorithm used as the

Advanced Encryption Standard (AES). It was

adopted by NIST (National Institute of Standards

and Technology) in 2001 and was used to replace

DES. Instead, AES allows cipher key sizes of 128,

192, and 256 bits and plaintext of 128-bits blocks.

In this section, we describe only the 128-bit AES

implementation.

The AES algorithm performs computation on a

4x4 byte matrix, which presents the basic data

structure of the algorithm. The algorithm com-

prises several rounds Nr depending on the se-

cret key size. For example, when the used key is

128-bits, the AES performs ten rounds of com-

putations. The first Nr − 1 rounds are composed

of four steps: SubBytes, ShiftRows, MixColumn,

and AddRoundKey. The last round ignores the

MixColumn step (see Figure 3.7). A separate key scheduling function generates all round

cipher keys, which are also represented as 4x4 byte-matrices, from the initial key. De-

cryption is the reverse operation of encryption, and the transformations are performed

in the opposite direction. More details of the algorithm can be found in [DR99] and

[DR20].

In a typical AES encryption algorithm, each round r takes two inputs, a 16-bytes

intermediate state matrix sr = {sr
0, sr

1, . . . , sr
15}, and an expanded cipher key kr =

{kr
0, kr

1, . . . , kr
15}. The initial state s0 is computed by s0

i = pi ⊕ ki(i = 0, . . . , 15), where pi

are bytes of given plaintext p = {p0, p1, . . . , p15}, and ki present bytes of the initial cipher

key k = {k0, k1, . . . , k15}. Then, the intermediate states at each round except the last one

are computed following Rijndael equations [DR99].

An optimized software implementation, called the T-Table implementation is described

71

in [DR20]. Since the elementary operations in AES are done a Galois Field, they are more

expensive than regular arithmetic computations. The T-Tables are precomputed results

of SubBytes, ShiftRows, and MixColumn. For instance, 4 lookup tables T0, T1, T2, and

T3 can implement the first Nr − 1 rounds. Since MixColumn operation is ignored in the

last round, another lookup table T4 is constructed to tackle this last round. Each T-table

contains 256 4-bytes words (1 KB per table).

3.4.2 Attack Description

As explained, the T-tables are precomputed, allowing encryption and decryption by

simple memory accesses and XOR operations. Instead, the initial intermediate state

bytes are computed by s0
i = pi ⊕ ki in the first round. According to the byte index i

and s0
i , the T-table element T(i mod 4)[s

0
i] is accessed to retrieve precomputed element.

Using a shared-based cache attack, it is possible to spy the access patterns of the tar-

geted cache line T(i mod 4)[s
0
i], and thus, possible to retrieve the upper n bits of each byte

ki = pi ⊕ s0
i in case the plaintext pi is known.

Algorithm 10: Known-plaintext AES attack using Flush+Reload technique.

Input: N = Number of encryptions

Input: T = Base addresses of each AES T-table

1 for i← 0 to 4 do

2 for j ← 0 to N do

3 plaintext← generate random plaintext

4 target← T [i]

5 Flush(target)

6 callback_encryption_process(plaintext)

7 latency← load_and_time(target)

8 end

9 end

Let’s assume the adversary monitors the memory line corresponding to the first posi-

tions of each T-table. In addition to the timing information t whether the targeted T-table

element was accessed, the adversary needs to know the corresponding plaintext p. That

is, we assume the adversary is able to perform several encryptions of random plaintexts

and return the tuple < p, t >. A generic pseudo code of the presented AES cache attack

is illustrated in algorithm 10.

However, it is only possible to derive the upper n bits of each byte ki through first-

round cache-based side-channel attacks due to the cache line size that contains multi-

ple T-table elements. For a cache line of 2λ-byte, the attacker can retrieve λ − 2-bit per

72

key-byte, thus for a 64B = 26B cache line size, the attacker is able to recover 64-bit

of a 128-bit key. To recover the remaining key bits, we perform the second AES round

attack [TOS10], exploiting the non-linear mixing in the cipher to reveal additional key

information. Specially, we exploit the equation of the Rijndael specification [DR20] to

compute the different indices s
(1)
i used in four table lookups in the second round. For

both rounds of AES attack, if si is equal to one of the indices of the monitored T-table

entries, then the monitored memory line will have a very high probability of being

present in the cache. We refer these samples to the hypothesis H0. However, we refer to

H1 where si takes different values, and the monitored memory line is not loaded during

encryption. In other words, the H0 contains the samples when a cache hit is observed

in the monitored entries. Otherwise, when the cache hit is observed in other entries, it

will be referred to H1.

3.4.3 Side-Channel Distinguishers

In order to distinguish the two cases H0 and H1, all that is necessary is to measure

the timing for the reload of the targeted memory line. If the AES encryption accesses

the targeted cache line, the reload is fast; otherwise, it takes more time. Based on this

timing information, we describe and compare three distinguishers to process the side-

channel data. First, we split our observations into two sets for each byte according to a

hypothesis. If this hypothesis is correct, the two sets should differ, making two different

distributions that can be distinguishable when there are sufficiently many observations.

Otherwise, the hypotheses will be invalid when the key guess is wrong; both distribu-

tions come from the same distribution, which makes them indistinguishable. For that,

we use the tree most common distinguishers in side-channel analysis to detect whether

samples for hypotheses H0 and H1 are from different distributions.

Hit-counter based distinguisher. This distinguisher measures and compares the

number of cache hits for the two hypotheses H0 and H1. Ideally, hypothesis H0 has

no misses on target addresses because they were accessed during the execution of AES.

To create a hit counter, the reload time is compared to the threshold and assigned 1 if

the data is present in the cache (hit) and 0 if the data is fetched from the main memory

(miss). Based on a threshold value that we will choose empirically from our measure-

ments, we expect to be able to distinguish main memory accesses from LLC cache ac-

cesses. For each guessed value of each key byte, we will count the number of hits, and

the guessed key value with the highest number of hits has a very high probability of

being the correct key byte.

73

Welch’s t-test distinguisher. This distinguisher is common practice in side-channel

analysis, especially in power analysis. However, unlike the hit-counter-based distin-

guisher, the Welch t-test distinguisher does not need to compute the threshold between

a cache hit and a cache miss; thus, it is based on the reload time. Instead, it aims to cal-

culate the t-value between the two hypotheses H0 and H1 with the formula from Equa-

tion 3.1. Thus, the most significant value of the t-test corresponds to the most likely key

hypothesis.

t =
H̄0 − H̄1

√

var(H0)2

n0

+ var(H1)2

n1

(3.1)

Where H̄ , var(H) and n represent the mean, variance and cardinality of each sample.

Pearson’s correlation coefficient. Pearson’s method is widely used in statistical anal-

ysis and aims to measure a linear correlation between two random variables H0 and H1.

Pearson’s correlation coefficient is defined in Equation 3.2 and results in values from –1

to 1.

R =
cov(H0, H1)

√

var(H0) ∗ var(H1)
(3.2)

Where R is null they no linear correlation between two variables. Otherwise, a higher

|R| indicates a higher linear correlation between H0 and H1.

3.5 Setting and Attack Primitives

In this section, we describe the last-level Evict+Reload cache timing attack that we have

implemented and evaluated on ARMv7 architecture, targeting an OpenSSL1.0.1f im-

plementation of AES. This concrete example of constructing cache attacks using the

libMAAT’s modules. In this attack, we assume that the adversary (the spy process) and

victim (the encryption process) are sitting on the same physical machine but on differ-

ent cores, which share the last-level cache.

74

3.5.1 Targeted Platforms and Settings

Targeted platform: Our target platform is FPGA Zybo-Z720, which contains a Cor-

text A9 core, ARMv7 architecture, 2 physical cores, and a 256KiB 8-way set-associative

exclusive shared last-level cache (L2 cache). Each core contains private L1 data and in-

struction caches of 32KiB, 4 ways for each. The size of each cache line is 32 bytes, and

both cache levels use a pseudo-random replacement policy. Thus the last-level cache

has 1024 cache sets. In this setup, the execution programs run on a native Linux Debian

10 version with no virtualization.

Attacker assumptions: In our attack model, the victim program runs AES encryp-

tion using OpenSSL 1.0.1f, on which cache-based side-channel attacks were performed

in the literature. We consider an AES implementation with aligned T-tables, i.e., the

starting memory address of a T-table is mapped to the beginning of a cache line. A

spy program runs a cache monitor simultaneously with the victim application, taking

advantage of commonly available multicore or hyperthreaded environments. We as-

sume that the spy process knows the virtual addresses of T-tables. The spy program is

in user mode and has no direct interaction with the victim, except for sharing micro-

architecture resources, including last-level caches. In addition, the spy can execute arbi-

trary code on the target platform but does not have access to the kernel or any privileged

interfaces such as /proc/self/pagemap that provide address information for the user

space of the victim program.

Attacker challenges: For the attack to be feasible in a cross-core setting, we need to

address two challenges: first, we should be able to evict data in LLC and the L1 caches in

different cores. In ARM micro-architectures, the last-level cache is shared and exclusive,

meaning that each data is present in one cache level; evicting specific data from the

memory hierarchy should be evicted from all cache levels. Thus, the main memory will

serve further requests for access to the evicted data, resulting in distinguishably high

latency. Second, we should be able to evict the targeted cache line in the LLC using

virtual addresses.

75

3.5.2 Measurement Using Evict+Reload Technique

Eviction Set Construction

Since the spy process knows the T-tables virtual addresses, we lunch the spy process to

construct a set of addresses mapped to the same cache sets in the LLC. We start by con-

structing an eviction set for each target T-table entry. As presented before, we perform

a single cache line AES attack, where the attacker spies only one entry per T-table. We

generate a random candidate set for each first T-table entry using 2MB transparent huge

page memory. The reason for using large pages is also to avoid TLB noise, where a large

number of pages accessed by a candidate sets over-stress the comparatively small TLB.

Thus, allocating a set of addresses from large pages significantly reduces the number of

pages visited when traversing an eviction set, reducing false positives. In addition, the

21 offset bits directly translated into the physical address are more than enough to ad-

dress 1024 cache sets. We use libMAAT’s cache eviction module to construct optimized

eviction sets to evict a cache set from the LLC.

So concretely, we allocate a memory pool of 2MB of large transparent pages, then we

randomly collect several addresses that can be used as a candidate set. In the second

step, we call the optimization eviction set function, which reduces the eviction set size

to contain only the congruent addresses, and removes addresses that do not participate

in the eviction of the target address. Finally, we repeat the eviction set construction for

each target address (the first address of each lookup table). We can effectively evict the

targeted cache line from the LLC cache by accessing those selected addresses.

To avoid extra memory accesses induced by hardware prefetchers, we use a pointer-

chasing eviction strategy, where the first pointer of this list is localized at the first ele-

ment, and the second pointer (offset) is localized in the middle of the list. After deter-

mining the targeted cache sets and constructing their eviction sets, which results in 32

virtual addresses eviction sets for each target address. First, the spy process evicts the

target T-table entry, accessing its eviction set; second, the spy process sends one random

16-byte plaintext to the victim process and waits for the encryption to complete; third,

the spy process reloads the target address, and measure the access time. For each AES

encryption, the spy process records the plaintext, and the reload times for the targeted

cache set.

76

Evalution

We collect 1 million traces for each target address in the online phase, as shown in algo-

rithm 10. At compile time, the flush instruction is replaced by the evict procedure pro-

vided by libMAAT. The attacker collects enough data from the online phase, including

the plaintexts used and the time measured at each encryption.

In the offline phase, we recover the secret key using the collected data (the plaintext and

the timing information). This phase is divided into a first-round attack phase, which

exploits the table indices equations used in the first round, and a second-round attack

phase. The attacker starts by making hypotheses H0 and H1 for each key byte ki based on

the timing information, and whether the target address was accessed during encryption

according to the equations of each round. Then, as our attack model monitors the first

entry of each T-table, the attacker can build a model for one corresponding key byte,

which also applies to the other three related bytes. For example, if we monitor the first

cache line of Te0, the related four key bytes are {2, 6, 10, 14}.

Figure 3.8 – Guessing entropy comparison of different distinguishers method for first round
AES attack

To compare the different distinguishing methods presented (subsection 3.4.3), we com-

pute a guessing entropy for each 〈s0
i 〉 for the attack in the first round. To this end, we

perform the attack 100 times on n randomly selected traces from the 1-million set of

traces. The experiment then returns the rank (index) of the class in the probability vec-

tor. Thus, the guessing entropy is the mean rank of the key byte. The result is shown

in Figure 3.8, where the x-axis shows the number of encryptions and the y-axis shows

the variance and mean of the ranks of the different key bytes. We observe that Welch’s

t-test and the Person methods give identical results. Thus, half of the key AES can be

recovered in 1000 traces (if the rank order of all key bytes converges to the correct key

77

at rank 0). Otherwise, key recovery requires more than 2000 traces with a precomputed

threshold of 115 cycles when the hit-based technique is used. The increase in the num-

ber of samples for the hit-based technique is due to noise in the time calibration phase.

Welch’s t-test and Pearson’s techniques directly test the hypothesis on the time distri-

butions without the need to calculate an exact threshold. We use the second round of

equations with the same methodology to recover the entire key AES. As shown in Fig-

ure 3.9, 400 additional samples are needed to recover the full key AES using Welch’s

t-test and Pearson techniques.

Figure 3.9 – Guessing entropy comparison of different distinguishers method for second round
AES attack

3.6 Conclusion

This chapter introduced a new framework that can be used to construct micro-

architectural software side-channel attacks in most processor micro-architectures. We

have implemented all the techniques proposed in the literature in the form of a library

called libMAAT, which allows platform-independent implementation of cache side-

channel attacks for x86, ARM, and RISC-V platforms. We show that by using a more

accurate timer to measure timing, the attacker can observe activities on different cache

levels and not only on the LLC. LibMAAT consists of multiple modules to facilitate the

construction of software attacks that target hardware vulnerabilities without requiring

authorization or privileges. Unlike the two libraries, libMAAT gives attack developers

more freedom to construct unprivileged-level micro-architectural side-channel attacks

using the latest techniques in the literature.

Table 3.4 compares the different modules in Libflush and Mastik with our work. For

78

example, in Mastik and libflush, the eviction set is constructed statically by accessing

the pagemap translation and then directly finding the physical addresses mapped to

the same cache set. Before version 4.0 of the Linux kernel, accessing the pagemap in

/proc/self/pagemap was possible without privileges. However, in newer kernel ver-

sions, the pagemap is accessible only with root privileges [Shu]. Therefore, both li-

braries require privileges to create optimized eviction sets. Nevertheless, to get the

physical from a virtual address in libMAAT, we exploit the use of transparent huge

pages. The Linux kernel allocates 2MB pages as often as possible to processes that map

large memory blocks. By mapping a large memory block with mmap, we get 2MB pages

for our memory when huge pages are available. This could fail if, for example, no con-

tinuous memory area of at least 2MB is available.

To benchmark our framework, we demonstrated an Evict+Reload technique on an ARM

platform to retrieve the secret key AES in a real-world scenario by solving all challenges

using different modules in libMAAT. One of the major challenges in constructing a

cache attack on the ARM platform is to get a cache set into a known state when the

flush instruction is reserved for privileged processes. In this way, we propose several

strategies from the literature to easily construct an efficient eviction set. Moreover, we

show that cache eviction can be performed successfully and quickly, increasing our AES

attack’s performance and accuracy.

79

Library Mastik Libflush Our work

Taget Systems x86 x86 and ARM x86, ARM and RISC-V

Privelges User Root User and Root

Timing Sources CPU counter

CPU counter CPU counter
Perf Perf

Monotonic Monotonic
Thread-based counter -

Eviction Set
Construction

Candidate Set
Finding

Huge Pages Huge Pages
Huge Pages

Transparent large Pages

Eviction Set
Optimization

N/A N/A
Single Address

Elimination
Group Address

Elimination

Eviction Set
Access Strategy

N/A Eviction Strategy

Static and Linear Access
Eviction Strategy

linked List
Double linked List

Configuratiuon N/A
Needs to be configured for

each machine (Eviction
Strategy Evaluator)

Dynamically, when the
evict function is called

Cache configuration Static Static Dynamic

Supported CSCAs

Flush+Reload X X X
Flush+Flush X X X
Evict+Reload - X X
Prime+Probe X - X

Cache template - X -

Table 3.4 – A comparison between various side-channel microarchitectural libraries

80

4
Security Analysis of Randomized

Caches

Eviction set construction is a common step for many such attacks, and algorithms for building

them are evolving rapidly. On the other hand, countermeasures are also being actively researched

and developed. Cache randomization is a well-known mitigation technique against cache attacks

that has a low-performance overhead. In this chapter, we attempted to determine whether address

randomization on L1 caches is worth considering from a security perspective. We present the

implementation of a noise-free cache simulation framework that enables an analysis of eviction

set construction algorithms. We show that randomization at the L1 caches brings improvements

in security but is not sufficient to mitigate all known eviction set algorithms. Nevertheless, we

show that L1 randomization can be combined with a lightweight random eviction technique in

higher-level caches to mitigate known conflict-based cache attacks.

4.1 Motivation and Problem Definition . 82

4.2 Threat Model and Attacker Capabilities 82

4.3 Noise-free Cache Simulation Framework 83

4.4 Experimental Setup and Methodology 85

4.5 Complexity of Constructing Eviction Sets in Uprotected Memory Hi-

erarchy . 86

4.6 Randomization in Low-Level Caches 90

4.7 Random Eviction Last-Level Cache . 94

4.8 Conclusion . 96

81

4.1 Motivation and Problem Definition

Several works have shown that cache attacks are possible in all levels and all types

of cache memory. The Prime+Probe [OST06] attack, for example, was initially per-

formed on first-level data caches to attack AES [Per05; NS06; OST06] or instruction

caches [Aci07]. The LLC is a more interesting attack target because adversaries and vic-

tims do not need to share the same CPU. Various extensive survey studies have listed

the threats at different cache levels [Lou+21; Mus+20].

Unlike sharing-based cache attacks, conflict-based cache attacks can be applied in any

cache level independently [Per05; OST06; Zha+12; Liu+15; Kay+16], even when a secure

last-level cache exists. Attacking the L1 cache has some advantages because fewer load

instructions are required to fill or evict the L1 cache due to its small size. Therefore,

to protect a memory hierarchy against conflict-based cache attacks, the different levels

of the memory hierarchy should be protected. This raises the question of which coun-

termeasures should be deployed at each cache level. To mitigate conflict-based attacks,

it is essential to prevent eviction set construction through the existing single address

elimination [Liu+15], group testing [VKM19] and Prime–Prune–Probe [Pur+21] algo-

rithms. Cache randomization is an effective technique to mitigate against such attacks

(see Section section 2.8), but the existing solutions have been mainly designed for LLCs.

Therefore, an analysis of the effect of low-level cache randomization on existing attacks

would help to determine relevant strategies to secure the entire memory hierarchy.

4.2 Threat Model and Attacker Capabilities

We assume the existence of a victim and a spy process running on the same machine.

They share lower-level caches, and upper-level caches are assumed to be inclusive. The

victim process contains secret information that the spy program attempts to recover

without having direct access to this information.

We ignore sharing-based cache attacks in this chapter because the solution to these

would be to remove address sharing in the first place (e.g., disable memory deduplica-

tion). We focus on conflict-based cache attacks (see subsection 2.5.2), where the attacker

causes set conflicts to monitor the victim’s access patterns. To study the effectiveness

of randomization defense techniques against conflict-based cache attacks, we assume a

scenario that is favorable to the attacker and show that whether randomization are ef-

fective even under weaker assumptions. To enable a strong attacker model, we assume

82

that there are no sources of interferences (e.g., other processes running concurrently)

that could affect the results of the eviction set construction algorithms, which improves

the reproducibility of the attacks.

4.3 Noise-free Cache Simulation Framework

4.3.1 Overview

As described in section 2.1, modern micro-architectures include many optimization

features, like hardware prefetching, TLBs, buses, etc. These optimizations allow pro-

grams to run faster and more effectively. However, they introduce noise into the at-

tacker’s observations, making the construction of eviction sets less reliable. The term

noise refers to the memory operations introduced by other processes or the construc-

tion eviction set algorithm itself. It also can be due to other components such as the

scheduler, Dynamic Voltage and Frequency Scaling (DVFS), etc. In this work, we adopt

a noise-free cache model to analyze the complexity of systematically finding eviction

sets. This cache framework deliberately ignores the implementation details of the hard-

ware and simulates only the behavior of the memory hierarchy. The cache model was

written in Python and had the following features:

Constant access latency. The latency to access a cache block is the same regardless of

its location (set, way, or slice);

Ideal cache hit/miss state. Without latency, a given process could accurately deter-

mine the state of a cache block (hit or miss). This eliminates errors due to the access

latency measurements on the actual processors. For each memory access, our frame-

work returns the address state (i.e., present or not) in all cache levels of the memory

hierarchy and indicates whether it was a cache miss or a cache hit;

Replacement policies. The cache framework supports two replacement policies: the

least recently used (LRU) policy and the random policy. The LRU policy maintains a list

containing the order in which the cache ways were accessed. When the target cache set

is full, the replacement policy chooses the least used cache line in the set to be replaced.

As its name suggests, the random policy randomly selects a cache line from the target

set;

83

No translation lookaside buffer (TLB) noise. Accessing a large candidate set could

trigger false positive errors when the TLB entries were mistakenly removed from the

TLB [Gen+18]. To neglect this effect, we did not model the memory management unit

(MMU) or the TLB component;

No cache prefetching. The hardware prefetchers improve performance by accessing

the following predicted memory addresses. However, they introduce noise into the at-

tacker’s observations by accessing unnecessary memory addresses [Wan+19]. Thus, the

framework did not support model prefetching;

Address randomization of caches. Address randomization can be enabled at any

cache level. The framework supports differents cryptographic functions to distribute

the addresses among all cache sets. It also supported a configurable remapping period

that changed the address-to-set mapping after a certain number of memory accesses or

evictions.

The cache framework also implements performance counters to measure the side effects

of the running application. For example, they provide information about the number

of memory accesses, misses, hits, evictions, writebacks, and all other information mea-

sured in the memory hierarchy. These performance counters are implemented in each

cache level to evaluate and analyze the behavior of the eviction set construction algo-

rithms.

4.3.2 Illustative Example

To simulate the behavior of an application in our cache framework, we first built a

memory hierarchy by specifying the configuration of each cache level, including cache

mapping, cache size, associativity, cache line size, replacement policy, etc. The example

in Listing 4.1 shows the implementation of the single address elimination algorithm us-

ing the cache framework. It takes as inputs the target address and a candidate set. The

algorithm removes a candidate address at each iteration and then calls the test eviction

function (line 20) to check if the candidate set is still evicting the target address.

We use the memory access instructions from the framework to perform the algorithm’s

memory accesses. Both instructions, load and write, can be used to determine the cache

state of the accessed address (hit or miss). For example, in line 9, the load_state instruc-

tion loads the target address and returns the address state (hit or miss) at each cache

level.

84

Listing 4.1 – The implementation of the single address elimination algorithm with our cache

simulation framework
✞ ☎

1 def test_eviction (cache_simulator , target : int , eviction_set : list) -> bool

:

2 # load the target address

3 cache_simulator . load (target)

4 # access the eviction set

5 cache_simulator . load (eviction_set)

6

7 # The target address is reaccessed , and the simulator returns its

8 # cache state (True if it is a Hit, otherwise it returns False).

9 hit = cache_simulator . load_state (target)

10

11 return not hit

12

13 def single_address_eliminaton (cache_simulator , target , candidate_set) ->

list :

14 while len (eviction_set) < self . ways :

15 # remove an address from the candidate_set array

16 candidate_address = candidate_set . pop ()

17

18 # check if the candidate set sitll evicting the targeted address

19 evset = candidate_set + eviction_set

20 miss = test_eviction (cache_simulator , target_address , evset)

21

22 # If the test fails , it means that the "candidate_address" is

23 # congruent to the target address and should be added to the

24 # eviction set array

25 if not miss :

26 eviction_set . append (candidate_address)

27

28 return eviction_set
✝ ✆

4.4 Experimental Setup and Methodology

The baseline configuration. To investigate the eviction set construction algorithms,

we create a two-level memory hierarchy (inspired from raspberry Pi4 platform) where

the last-level cache is inclusive and shared. We call a baseline configuration where the

target memory hierarchy did not contain any defense (as shown in Table 4.1).

We implement the different algorithms to construct an eviction set (see section 2.6) to

85

be executed in a noise-free environment. To evaluate the success rate of each eviction set

construction algorithm in a given setting, we run it 1,000 times with different candidate

sets and records the results for later analysis.

Table 4.1 – The baseline configuration.

Parameters L1 Cache L2 Cache

Cache size 32 kB 1 MB

Associativity 8 ways 16 ways

Cache line size 64 B 64 B

Inclusion policy Inclusive Inclusive

Replacement policy LRU LRU

Methodology. More precisely, in each simulation: 1 We reset the performance coun-

ters and the content of each cache level; 2 We randomly generate a target address and

a candidate set with the given size. For a 32-bit address, the elements of the candidate

set and the target addresses were random addresses between 0 and 232−1; 3 Then, we

perform the eviction set construction algorithm to minimize the size of the generated

candidate set; 4 We check whether the returned eviction set evicts the target address.

The algorithm was considered successful when it could evict the target address from

LLC; 5 We save the performance counters and execution time in a log file. At the end

of all simulations, we computed the success rate. Then, we computed the median for

each performance counter of the 1,000 experiments. The value of 1,000 was the highest

number of repetitions that allowed the simulations to be performed within a few days

on a 48-core machine.

4.5 Complexity of Constructing Eviction Sets in Upro-

tected Memory Hierarchy

In this section, we use the cache simulation framework to study the behavior of the

eviction set construction algorithms. We evaluate the complexity of building an eviction

set in a noise-free environment with an unprotected memory hierarchy.

86

4.5.1 Single Address Elimination Algorithm

Figure 4.1 shows the success rate and the execution time required to construct an evic-

tion set for different sizes of candidate sets using the single address elimination algo-

rithm. For each simulation evaluation, the execution time represents the median of all

1,000 samples. As shown in Figure 4.1a, the success rate increases when the size of the

candidate set contains more than 10,000 addresses.

Figure 4.1 – (a) The success rate of the single address elimination algorithm with different can-
didate set sizes. (b) The time required to find an eviction set using the single address
elimination algorithm.

Due to the quadratic complexity of the algorithm, we stop the simulation due to the

long time to find an minimal eviction set. As shown in Figure 4.1b, the execution time

could grow up to 160 seconds per simulation, which result in more than two days of

simulation when the candidate set is larger than 20,000 addresses.

4.5.2 Group Testing Algorithm

Figure 4.2 depicts the probability of finding an eviction set as a function of the candi-

date set size using the group testing algorithm. As shown by the theoretical curve (see

Equation Equation 2.1), the probability of finding a candidate set with at least W con-

gruent addresses increases with its size. The results show that when the candidate set

has at least W addresses, the group testing algorithm could reduce its size to construct a

minimal eviction set. Furthermore, it can be observed that group testing reduction in a

noise-free environment closely matched the theoretical prediction. Vila et al. [VKM19]

observed similar trends in a real system.

87

Figure 4.2 – The success rate of the group testing algorithm with different candidate set sizes.

4.5.3 Prime–Prune–Probe Algorithm

Figure 4.3 depicts the success rate of the PPP algorithm as a function of the candidate

set size. As shown, the PPP algorithm built an eviction set from smaller candidate sets;

therefore, accessing them can be faster to find an eviction set than using the group

testing algorithm that requires a larger candidate set. The PPP algorithm captures the

interferences in a small filtred candidate set and uses them to construct an eviction set.

Intuitively, we expect the algorithm’s success rate to keep increasing by increasing the

candidate set size n. Our experiments suggest the opposite in the case of PPP, as shown

in Figure 4.3. When the size of the candidate set is greater than 2N (N = SW being

the number of cache lines), we found that the algorithm fails to find an eviction set

despite sufficient congruent addresses in the candidate set. This effect is not studied in

[Pur+21].

By analyzing the memory accesses of the Prime–Prune–Probe algorithm, we observe

that the Prune filter becomes more aggressive when the candidate set contains more

than W congruent addresses among the n elements. It turns out that it removes all

congruent addresses from the candidate set. Consequently, the algorithm cannot detect

collisions within the victim’s accesses.

88

Figure 4.3 – The success rate of the Prime–Prune–Probe algorithm with different candidate set
sizes.

Let us consider a 2-way set-associative cache. We used the Prime–Prune–Probe algo-

rithms to construct a minimal eviction set targeting set one. Figure 4.4 illustrates this

effect using a small cache memory with an LRU replacement policy. As shown in the

first step, the attacker accesses the candidate set containing four congruent addresses.

Since the cache was a two-way set-associative cache, the cache memory only contained

the last congruent addresses (addresses C and D) in set one after the Prime step. In the

Prune step, the attacker access the same candidate set again and removes the missing

addresses from the candidate set to avoid any noise caused by self-eviction. Since the

first two addresses, A and B, were evicted from the cache, the Prune filter found them

missing after accessing them. The other two congruent addresses, C and D, were evicted

from the cache due to access to addresses A and B. The Prune filter considers them as

missing addresses and, therefore, removes them from the candidate set. In this case,

all congruent addresses were removed from the candidate set, which explains why the

Prime–Prune–Probe algorithm failed when the candidate set was large.

89

Figure 4.4 – An illustration of a Prime–Prune–Probe iteration when the candidate set contains
more than W congruent addresses. Above is the state of the candidate set at the
end of each step. Below is the cached state.

4.6 Randomization in Low-Level Caches

In this section, we analyze the security implications of randomizing low-level caches.

This study does not consider the single address elimination algorithm because its exe-

cution takes too long in the relevant parameter range. We target a dynamic randomized

low-level memory hierarchy with the same cache parameters as the baseline configura-

tion (unprotected memory hierarchy). Starting from the baseline configuration, we ap-

ply address randomization to L1 caches in the noise-free simulation framework using

a robust cryptographic scheme. To protect the memory hierarchy from conflict-based

cache attacks, the cache mapping should be changed frequently to prevent eviction set

construction algorithms from finding efficient eviction sets. This section estimates the

remapping period for the group testing algorithm and the Prime–Prune–Probe algo-

rithm in the baseline configuration.

4.6.1 Choice of the Addressing Function

In our experiments, we model ideal address randomization. The motivation is to pre-

vent any “shortcut attacks” [Pur+21] that can break the randomization function and

construct eviction sets statically. In this manner, we use a 128-bit AES cipher with a

128-bit AES key to perform the address randomization. The AES key is updated each

time the remapping period is achieved. When the CPU access the memory, the CPU

address is first randomized using the AES instance and the current AES key. The low

bits of the resulting cipher are selected to index the cache set.

90

We stress that using such a strong randomization function in L1 caches may not be

realistic in practice. Any delays introduced into L1 requests would turn into signifi-

cant slowdowns. The design of a lightweight, secure and optimized hardware address

randomization function is a complex topic that is not covered in this work. As an illus-

tration, the low-latency cipher designed in the CEASER architecture [Qur19; Qur18] is

completely unsafe to use [Bod+20]. Using an AES-128 function to randomize the cache

mapping pushes back the problem of designing a secure and lightweight permutation

function. However, its integration into a hardware cache and the design of a lightweight

alternative with similar properties still open problems for the research community.

4.6.2 Remapping Interval Analysis

To protect cache structures against conflict-based cache attacks, the cache mapping

should ideally be changed just after constructing an eviction set to avoid the attacker

using it. Thus, the remapping period should be smaller than the minimum number of

memory accesses or evictions required to construct an efficient eviction set. This section

estimates the remapping interval to dynamically randomize the L1 cache. To estimate

this interval, we reproduced the experiments performed in Section 4.5 to estimate the

number of accesses required to find a usable eviction set. As described earlier, each ex-

periment was repeated 1000 times to compute the success rate of each algorithm. At the

end of each experiment, we obtain an array containing the number of memory accesses

for each sample. After determining the median of all of the experiments for each can-

didate set size and their success rates, we compute the minimum number of memory

accesses required to achieve a success rate of at most λ, with λ varying from 0 to 1.

In Figure 4.5, we plot the number of memory accesses needed to construct an eviction

set as a function of the success rate for the group testing and Prime–Prune–Probe al-

gorithms. For each success rate λ, we return the median of the different experiments

with success rates lower than λ. Then, we compute the minimum number of memory

accesses.

Since we did not want the attacker to construct an eviction set using the group testing

algorithm, the remapping interval must be at most 260 K memory accesses to ensure

a success rate of less than 1% (see Figure 4.5a). Regarding the number of memory ac-

cesses, we noted that the group testing algorithm requires more memory accesses to

construct a valid eviction set. In contrast, PPP creates an eviction set with a small candi-

date set at each iteration, resulting in fewer memory accesses. As shown in Figure 4.5b,

PPP takes less time to construct an eviction set than the group testing algorithm. The

91

minimum number of memory accesses is consistent for all experiments since the PPP

algorithm constructs its eviction set from small candidate sets, requiring fewer memory

accesses to construct an eviction set with a high eviction rate (success rate). This occurs

because the PPP algorithm requires a small candidate set for each iteration and finds at

least one congruent address for each candidate set. However, using a small candidate

set in each iteration increased the success rate of the PPP algorithm. Consequently, the

remapping interval of the PPP algorithm has to be fewer than 47.6 K memory accesses

to guarantee a success rate of less than 1% for constructing a reliable eviction set.

Figure 4.5 – The minimum number of memory accesses as a function of the success rate for (a)
the group testing and (b) the Prime–Prune–Probe algorithms.

4.6.3 Randomization of L1 Cache

Previously, we showed that the group testing and Prime–Prune–Probe algorithms re-

quire 260 K and 47.6 K memory accesses, respectively, to construct an eviction set with

a success rate of λ ≥ 1% in the unprotected memory hierarchy.

As shown in Figure 4.6a, the group testing algorithm with the baseline configuration

successfully finds an eviction set when the candidate set size contains more than 30

K addresses with a success rate of 100%. When using a dynamically randomized L1

cache with a remapping frequency of 260 K memory accesses, the results show that

the group testing algorithm fails to find a useful eviction set. Indeed, we can observe a

success rate of less than 1% in Figure 4.6 when the candidate set size is less than 30K

addresses. This was because a single candidate set was used throughout the overall

construction process. The randomization in the L1 cache interferes with the operation

of this algorithm and distorts its results.

92

Figure 4.6 – (a) The success rate of the group testing algorithm with different candidate set sizes.
(b) The number of congruent addresses in the reduced eviction set when using the
group testing algorithm with a randomized L1 cache.

On the other hand, randomization in the L1 cache does not affect the success rate of

the Prime–Prune–Probe algorithm (see Figure 4.7a). The PPP algorithm was developed

to bypass randomized caches by generating a new candidate set at each iteration to

increase the probability of finding congruent addresses. As shown in Figure 4.7a), ran-

domizing the mapping of L1 caches using the precomputed mapping, the PPP still finds

congruent addresses, even when the remapping changes serval times.

Figure 4.7 – (a) The success rate of the Prime–Prune–Probe algorithm with different candidate
set sizes. (b) The number of congruent addresses in the reduced eviction set when
using the Prime–Prune–Probe algorithm with a randomized L1 cache.

Note that the primary purpose of both algorithms group testing and Prime–Prune–

Probe is to find at least W congruent addresses in the given candidate sets. To verify

this assumption for the resulting eviction sets in Figure 4.6a and 4.7a, for each exper-

93

iment we compute the number of congruent addresses present in the resulting evic-

tion set. Figure 4.6b and 4.7b show the resulting number of congruent addresses for the

group testing algorithm and the Prime–Prune–Probe algorithm, respectively. Using the

group-testing algorithm, we observe in Figure 4.6b that the resulting eviction sets have

fewer congruent addresses than the associativity (in our case, we targeted a cache with

16 ways). Even for a large candidate set that should contain more congruent addresses,

the resulting eviction sets have a success rate of less than 1 %. This lack of congruent

addresses in the eviction set resulted in the target address not being evicted, which

confirmed our results in Figure 4.6a. For the Prime–Prune–Probe algorithm (see Fig-

ure 4.7b), we observed that for a candidate set of between 10 K and 26 K, the algorithm

could find sufficient congruent addresses to construct a valid eviction set. We also noted

that the inability of this algorithm to find an eviction set when the candidate set size was

greater than 32K was due to the small number of congruent addresses in the resulting

eviction set.

4.7 Random Eviction Last-Level Cache

4.7.1 Overview

As described in section 4.6, the Prime–Prune–Probe bypasses randomized lower-level

caches by observing the last-level cache eviction patterns. The core element of this al-

gorithm is the Prune filter, that is used to remove all addresses that were subject to self-

eviction. At the end of the Prune filter process, the candidate set should not contain any

addresses that collided with each other. In this way, a purely deterministic decision can

be made about which cache set was accessed in the Probe phase. This algorithm con-

structes eviction sets in the shortest possible time by bypassing randomization, even

when the mapping changed more frequently. Thus, it seem natural to add random

evictions in the last-level cache to disturb the Prune filter’s operation. This should have

made it more difficult (ideally impossible) for an attacker to construct an eviction set.

The concept of adding non-deterministic eviction is well known [ZL14; Dem+12]. The

idea is to evict one or more lines randomly from the cache at a given interval of time.

We can use the Prime+Probe attack as an example to understand the intuition behind it.

During the Probe step, the attacker accesses the eviction set and measures the memory

access latency. In this way, the attacker can determine which cache sets the victim has

accessed. However, when the cache eviction is not deterministic, the attacker cannot

know whether the cache line was evicted randomly by the random eviction policy or by

94

the victim’s accesses. This can make the attacker’s observations noisy and thus, mitigate

against conflict-based cache attacks.

We implmenent a random eviction mechanism to the last-level cache model of our

simulation framework. It supports two security parameters: the eviction frequency f

and the number of evicted lines n. Every f memory accesses, n cache lines are ran-

domly evicted. For example, for a cache with the random eviction strategy parameters

(f, n) = (5, 1), a random cache line would be evicted every five memory accesses. In-

tuitively, the lower the eviction frequency, the more robust the cache. Depending on

the two values of f and n, the performance counters are used to count the number of

memory accesses. Every f accesses, a pseudo-random number generator generates n

cache lines indexes.

4.7.2 Results and Discussion

In this section, we only study the PPP algorithm since the group testing is can mitigated

by randomizing the lower cache levels. To evaluate the resilience of the random evic-

tion strategy against the Prime–Prune–Probe algorithm, we assess the success rate of

this algorithm as a function of the two parameters f and n. For this purpose, we model

a two-level cache memory hierarchy. Each cache level’s size, associativity, and replace-

ment policy are the same as in the previous analysis (see section 4.5). In the last cache

level, we enabled the random eviction policy.

We observe that using the random eviction module in the LLC increases the Prune filter

iterations and, therefore, the PPP performances. For this reason, to evaluate the success

rate for each parameter of the random eviction strategy, we perform the Prime–Prune–

Probe algorithm 100 times. According to the analysis results in section 4.6, the size of

the candidate set was fixed at 15K. Thus, the Prime–Prune–Probe algorithm has the best

performance and a probability of 100% of being successful. Figure 4.8 shows the success

rate of this algorithm, varying the eviction frequency and number of the cache lines to

be evicted. As shown in Figure 4.8, the success rate is less than 1% when random cache

lines are frequently evicted. Otherwise, the success rate increase with the increase in the

eviction frequency. However, a small eviction frequency increases the miss rate, which

drastically degrades the cache performance. Therefore, the eviction frequency and the

number of evicted lines should be carefully chosen to not compromise security and per-

formance. For example, suppose we evict 16 cache lines at each 10K memory accesses;

in that case, the success rate of the Prime–Prune–Probe algorithm can be reduced from

100% to 0%.

95

Figure 4.8 – The success rate of the Prime–Prune–Probe algorithm with different eviction fre-
quencies and set sizes.

In the pruning phase, the Prime–Prune–Probe algorithm filter re-accesses the candidate

set in three iterations at most for a cache with no countermeasures [Pur+21] in order to

eliminate the addresses that evicted others. However, when the random eviction strat-

egy is enabled, the pruning filter iterates many times due to unexpected evictions that

are not caused by cache collisions. In this case, the pruning filter became aggressive

and removed congruent addresses from the candidate set. Even when the attacker suc-

ceeded in constructing eviction sets and observing that the cache line had been evicted,

it can not know whether the line was randomly evicted by the random eviction policy

or by the victim’s accesses. This prevented the attacker from creating minimal eviction

sets.

4.8 Conclusion

This work provides an experimental security analysis of randomly mapped low-level

caches using a noise-free cache simulator. Our study tried to determine a suitable

remapping interval. We show that when the mapping changes every 260 K accesses,

the success rate of finding an eviction set using the group testing algorithm is less than

1%, leading to improved security against conflict-based cache timing attacks. However,

randomizing the lower cache levels does not protect against the Prime–Prune–Probe

algorithm. To mitigate against this algorithm, we proposed using a random eviction

96

policy in the last cache level, which disrupts the attacker’s observations and under-

mines the Prune filter. Depending on the tradeoff between security and performance,

randomly evicting cache lines in time mitigate the conflict-based- cache attacks to per-

form the PPP algorithm to construct efficient eviction sets. We observe that using this

solution, the PPP’s success rate decreases from 100% to 0% when the LLC randomly

evicts 16 cache lines for each 10k memory access.

97

5
Mitigation of Cache Attacks on lower

cache levels

In this chapter, we propos the ScrambleCache, a novel dynamic randomized cache architecture

that defeats cache side-channel analysis. Unlike other architectures, the ScrambleCache employs

a lightweight permutation function that requires only a few logic gates, making it ideal to not

increase the hit latency. The permutation function uses a pseudo-random number, which is

changed at least at every context switch. We demonstrate that this countermeasure allows

protecting the system against known cache-based side-channel attacks, while guaranteeing

small performance and area overheads.

5.1 Motivation . 99

5.2 Detailed Architecture . 100

5.3 Gem5 Simulator . 107

5.4 Security Evaluation and Discussion . 108

5.5 Performace Analysis . 111

5.6 Conclusion . 115

98

5.1 Motivation

Cache memories are among the most important sources of microarchitecture leaks, se-

riously threatening many applications. Many solutions and countermeasures exist in

the literature. Nevertheless, most of them target the last-level cache since it is shared

among all CPU cores, allowing cross-core cache attacks. However, lower-level caches

(e.g., L1 caches) are not protected against cache attacks, even if higher-level caches are

unprotected. This chapter aims to develop a feasible approach to mitigate conflict- and

sharing-based attacks on lower-level caches (e.g., L1 data and instruction caches). Due

to limitations in the literature, our research focuses on providing a secure dynamic ran-

domized L1 cache. In order to develop a feasible solution, it must not only provide high

security against cache attacks, but also have the following properties: 1 low perfor-

mance overhead, 2 ease of implementation and low memory overhead, and 3 should

not rely on software or OS support.

Many challenges must be considered when implementing a randomized L1 cache. First,

L1 caches are in the critical path of processors. Therefore, adding a indirection layer

(e.g., permutation function, redirection table, etc.) to randomize the address-to-set map-

ping should not increase the cache hit time. Second, for randomized caches with a write-

back policy, the memory contents are no longer valid when the address-to-set mapping

changes. Therefore, cache lines modified with the old mapping must be written back

to main memory or moved to the correct location to maintain a consistent memory

view.An intuitive solution is to identify the dirty cache lines by scanning the dirty bit

of each cache line. Another solution is to flush the entire cache . Both of these solutions

have a significant impact on performances if the mapping changes frequently and are

therefore not scalable.

In this chapter, we propose ScrambleCache, a new dynamic randomized cache archi-

tecture to defend against attacks on lower-level caches. The ScrambleCache uses a ran-

dom permutation of sets and allows the developer to adjust the security level of the

system through a configurable remapping period. We demostrate that our architecture

mitigates sharing-based cache attacks and conflict-based cache attacks with less perfor-

mance overhead.

99

5.2 Detailed Architecture

5.2.1 Overview

The ScrambleCache implements dynamic randomization of cache sets locations. Unlike

partitioning techniques, this approach allows full cache sharing, which could be bene-

ficial to performance. The ScrambleCache uses a lightweight keyed permutation func-

tion πr to permute the cache indexes. The permutation can be renewed at any time by

changing the secret key r. This can be done either after a fixed number of cycles, a fixed

number of accesses to the cache, interruptions, or context switches. The remapping pe-

riod should be identified depending on the tradeoff between security and performance

to avoid side-channel leaks in caches with less performance overhead.

Ideally, the ScrambleCache would change the remapping as frequently as possible in

order to spread memory accesses across the whole cache sets, as shown in Figure 5.1.

Interestingly, randomization tends to reduce internal cache collisions, or at least makes

them harder to exploit, since addresses are no longer assigned to a fixed set anymore.

Figure 5.1 – Example of the ScrambleCache behavior

However, changing the cache address mapping causes some problems:

1. coherency: When the mapping changes, and thus any modified data (dirty lines)

must be remapped to their new localization or must be written back to the higher

cache level. To avoid this problem, we introduce a new mechanism to track the

dirty lines and thus return their indexes when the mapping changes without the

need to scan the whole cache.

2. aliasing: Due to the remapping change, dynamic randomization does not preserve

unique data positions, and the same data may be valid in different cache sets.

100

ScrambleCache supports aliasing if the data is shared read-only. Otherwise, when

the data is a writable shared memory, the cache mapping must be unique to avoid

coherency problems when another process modifies the same data.

3. performance: Changing the cache mapping frequently leads to several cache

misses. Each time the mapping changes, the whole cache content is invalid, de-

grading the system’s performance. To avoid this issue, we propose a history mech-

anism to keep track of recently used mapping while preserving security proper-

ties.

The next sections will describe how these challenges are tackled to enable successful

cache randomization in lower cache levels.

5.2.2 Hardware Architecture

We describe the ScrambleCache starting from a set-associative cache that is physically

tagged and virtually indexed, using the S bits of the effective address (the set bits) to

locate the cache sets. The cache contains 2S sets, each consisting of N lines, giving a

total size of N × 2S cache words. The ScrambleCache architecture is depicted on Fig-

ure 5.2. Compared to a set associative cache, the ScrambleCache architecture contains

four important elements: 1 the permutation function, 2 the pseudo-random number

generator (PRNG), 3 the history table (HT), and 4 the rekeying management unit

(RMU).

The secret permutation keys come from a cache-internal PRNG that is initially seeded

when the system is reset. The behavior of ScrambleCache is controlled by the finite-

state machine (FSM), which is also used to manage the various hardware components.

The following sections describe in detail the different hardware components of the

ScrambleCache design.

5.2.3 Address Permutation Properties

The ScrambleCache applies a permutation to the accessed CPU address. Any address

transformation (bijective or not) can be applied since the cache continuously checks the

physical tags before delivering the data to the CPU. We represent the permutation as a

function πr(a), where r is a randomization parameter (the secret key), and a is the CPU

address.

101

Figure 5.2 – The ScrambleCache Architecture

A cheap way to implement a permutation in hardware is to use an "eXclusive-OR"

(XOR) function, with πr(a) = a ⊕ r. However, a XOR allows only a limited number

of permutations. For example, if S = 8 (the cache has 256 sets), only 256 out of the 256!

possible permutations can be reached with an XOR-based permutation. Therefore, an

attacker can successfully perform an exhaustive search for the secret permutation key

r. However, if the permutation changes several times between the attacker’s analyzes

(as shown on Figure 5.1), all intermediate random values of r must be recovered, mak-

ing the search more complex. But changing the permutation comes at a cost in terms of

performance.

However, XOR-based permutation is too weak to randomize the cache sets. It was

demonstrated that XOR permutation fails cache side-channel security metrics [Zha+13].

Therefore, we propose an alternative permutation family in ScrambleCache with a

wider permutation key input. The permutation is constructed by adding a layer of bit

shuffling after the XOR operations, which can be viewed as a randomized barrel shifter,

adding non-linearity to the permutation function. Formally, the π function has the form

as in Equation 5.1, where the CPU address a contains only the tag and set fields, and

the result is masked to only contain S-bit.

πr(a) = f(a⊕ r0, r1) (5.1)

The function f is defined recursively by dividing the binary representation of its input

102

into two equal parts. The permutation of a 2-bit wide input is denoted by cswap, which

stands for "conditional swap". Let n = |s| be the bit length of f(a, r). The function f first

computes w of size n bits, where the i-th bit is defined as follows:

w[i] =











cswap(a[i], a[i + n/2], r[i])[0] if i < n/2

cswap(a[i− n/2], a[i], r[i])[1] otherwise
(5.2)

Then the binary w representation is split into two equal parts w0, w1 and the recursive

formula f(a, r) = f(w0, r)||f(w1, r) is applied. Figure 5.3 shows the permutation graph

of f for the 4-bit wide inputs.

Figure 5.3 – Example of the f permutation for 4-bit wide addresses

5.2.4 History Mechanism

The history mechanism is a core element of the ScrambleCache design. It reduces the

miss rate by keeping a history of previously generated permutation keys. For this pur-

pose, R previous permutation key values are stored in a history table (see Figure 5.2).

The history table is searched when the accessed data are not found in the cache with

the current mapping (e.g., with the last permutation key value). Suppose the data are

found with an old mapping. In this case, it will be invalidated in the cache at its old

position and then moved to the new position calculated with the current value of the

permutation key. Otherwise, a cache miss is triggered if the old permutation keys are

scanned unsuccessfully.

To ensure strict process isolation, we assign a process identifier to each entry in the

history table. Our architecture can support dynamic partitioning that provides hard-

ware isolation between different running processes by using process identifiers in the

history table. The goal of adding process identifiers is to protect cache memory from

103

cache side-channel attacks based on page sharing. Each entry in the history table is as-

sociated with a particular process and contains the previous R generated permutation

keys associated with it. We denote N as the number of processes supported by the his-

tory table simultaneously. Unlike other dynamic partitionned caches, our partitioning

is based on the history table which allow all running processes to use all available cache

resources.

Algorithm 11: History table lookup algorithm

Input: key ← permutation key, pid← process identifier
Output: req ← read/write flag

1 if req is read then
2 if pid found in the history table then
3 return keys[pid], hitht

4 else
5 return missht

6 end
7 else
8 if pid found in the history table then
9 index← get_last_key_index(keys[pid])

10 if index > R then
11 victimkey ← keys[pid][0]
12 keys[pid][0]← key

13 return victimkey

14 end
15 keys[pid][index]← key

16 end
17 else
18 index← get_old_pid_index()
19 if index > N then
20 index← 0
21 victimpid ← pids[index]
22 pids[index]← pid

23 keys[pid][0]← key

24 return victimpid, missht

25 end

26 end

Upon a miss, the cache yields control to the FSM, which maintains the mapping history

of the N supported processes. As shown in algorithm 11, both write and read requests

access the history table. In both requests, the process identifier is checked first. If the

history table is accessed in reading, the accessed process pid already exists in the table.

Therefore, the previous R permutation keys are returned to FSM so that they can be

used to compute the cache set of the accessed data one by one. Otherwise, a history

table miss is sent to the FSM to generate a cache miss. When the history table is accessed

in write, and the accessed process pid already exists, the input permutation key key is

stocked to its history table entry. Otherwise, a victim history table entry is allocated

104

when the process identifier pid is not found. In both cases, whether the accessed process

exists, if the history table entries or the permutation keys associated with this process

are full, a victim entry is selected and sent to FSM to write back the addresses fetched

by that process.

5.2.5 Key Management and Re-Keying

When changing the mapping, we still have to write back all the cache lines that the

history mechanism can no longer trace. In other words, every time the history table

is full, a newly generated random permutation key must be written to the table; the

history mechanism first identifies an old victim permutation key to replace. To avoid

coherency problems due to the dirty cache lines mapped with the victim permutation,

the associated process identifier is sent to the FSM to write back the dirty lines asso-

cieted to the couple (PID, key). A naive solution to find modified data in the cache is

to scan all cache sets linearly, and all lines marked as dirty are written back to the next

memory hierarchy level. This solution degrades performance because all cache lines

must be scanned individually. In the best case, when there are no dirty lines, this solu-

tion requires L cycles to scan all cache lines, where L is the number of cache lines.

Algorithm 12: Re-keying management unit algorithm

Input: idxi permuted dirty cache set index,
pidi ← process identifier,
isDirty dirty flag bit
Input: FSMreq ← request command
Output: idxo ← dirty cache set index

1 if FSMreq is read then
2 if is_clean(dirty_traces[pidi]) then
3 return false
4 idxo ← get_index_first_bit_set(dirty_traces[pidi])
5 dirty_traces[pidi][idxo]← 0
6 return idxo

7 end
8 else if FSMreq is write then
9 if !isTracked(pidi) then

10 setCleanEntry(pidi)
11 end
12 /* The isDirty flag is set 0 when the cache set idxi is written back; otherwise is

set 1 when the set is dirty */

13 dirty_traces[pidi][idxi]← isDirty

14 end
15 else if FSMreq is clean then
16 CleanEntry(pidi)
17 end

105

To reduce the rekeying time, we use the Re-keying Management Unit (RMU), an inde-

pendent component that tracks the dirty lines of each process. This way, each time a

victim permutation key in a particular entry in the history table needs to be replaced,

the FSM sends a signal to the rekeying management unit (RMU) to retrieve the indices

of the various dirty cache lines associated with that process. The RMU component con-

sists of R registers with S bits, where S is the number of cache sets and N is the number

of allowed processes in the history table. We denote dirty_traces the matrix of NxS. On

each write memory access, the permuted cache set index idxi and the process ID pidi

are sent to the RMU. The RMU component keeps track of dirty cache sets by setting the

associated bit of the permuted index to one. As illustrated in algorithm 12, each time the

cache mapping of the process is changed, a read request is sent to the RMU component

with its process identifier. The RMU component returns the first dirty cache localiza-

tion index idxo to the FSM and sends a write-back request for this line. This request

should be sent to the RMU until no dirty cache lines associated with the requested pro-

cess is found. If no dirty line is found with the requested process identifier, the RMU

component returns false to indicate to the FSM that this process is clean.

5.2.6 Integration of ScrambleCache into Existing Microarchitectures

The ScrambleCache is a generic solution for building randomized lower caches that mit-

igate conflict- and sharing-based side-channel attacks. Depending on the target proces-

sor, the design of ScrambleCache can isolate different processes and security domains

from each other via the pidi input in the history table. However, this information is only

known in the software, especially in the operating system. Since the ScrambleCache

does not provide software support in order to prevent privileged processes from ex-

ploiting software vulnerabilities and thus bypassing our countermeasure. Depending

on the processor architecture, an alternative to process identifiers may be found in hard-

ware. On modern processors, Page Table Base Register (PTBR) is used to find the page

directory of the running process. The PTBR is unique for each process and can be used

as a process identifier.

ARM and Intel processors already support a similar mechanism for assigning iden-

tifiers to address spaces for each process at the hardware level. The x86 architecture

defines Process Context IDentifiers (PCIDs) to identify running processes defined in

the TLB. Similarly, the ARM architecture defines Address Space Identifiers (ASIDs) for

the same purpose. On all Intel processors that support PCIDs, the size of a PCID is 12

bits. Therefore, they form the bits 11:0 of the CR3 register (PTE). Therefore, the maxi-

106

mum number of PCIDs that can be used simultaneously is 4096. On the other hand, the

processors of ARM suggest an 8-bit ASID to support 256 processes simultaneously.

5.3 Gem5 Simulator

Gem5 [Bin+11; But+12] is a timing-accurate microarchitectural simulator resulting

from the merging of two earlier projects: GEMS [Mar+05], for memory timing, and

M5 [Bin+06], for accurate modeling of CPU. Unlike a trace-driven simulator such as

SimpleScalar [BAK04], Gem5 focuses on timing accuracy. It executes instructions in

its microarchitecture models only after all dependencies have been resolved, called

execute-in-execute modeling. Currently, Gem5 supports all standard commercial ISAs

(ARM, ALPHA, MIPS, Power, SPARC, and x86), and can boot a Linux operating system

on three of them (ARM, ALPHA, and x86).

The Gem5 simulator supports multiple CPU architectures, memory models, system call

emulation, and different modeling granularities (functional or temporal). This flexibil-

ity makes Gem5 a very powerful tool for design exploration.

• CPU Model. The Gem5 simulator currently provides different CPU models: (i)

AtomicSimple, (ii) TimingSimple, (iii) In-Order, and (iv) Out-Of-Order (O3), which dif-

fer in speed/accuracy trade-offs. AtomicSimple is a minimal single CPU model,

TimingSimple is also a non-pipelined model but also simulates the timing of

memory references. In-Order is a pipelined, in-order CPU, and O3 is a pipelined

model used to simulate out-of-order/superscalar, and simultaneous multithread-

ing (SMT) CPU model. Both the O3 and InOrder models execute instructions in its

microarchitecture models only after all dependencies have been resolved, called

execute-in-execute modeling [Bin+06].

• System Mode. Two different modes are supported by Gem5 simulator: (i) system

emulation (SE) and (ii) full system (FS) mode. The SE mode emulates avoids the need

to model devices or an operating system (OS) by emulating most system-level ser-

vices, resulting in a significant simulation speedup at the cost of limited support

for some functionalities such as multithreading. On the other hand, the FS mode

simulates a bare-metal computer. Meanwhile, FS mode executes both user-level

and kernel-level instructions and models a complete system including the OS,

thread scheduler and devices.

• Memory System. The Gem5 simulator includes two different memory system

models: (i) Classic and (2) Ruby. The Classic model (from M5) provides a fast and

107

easily configurable memory system, while the Ruby model (from GEMS) provides

a flexible infrastructure capable of accurately simulating a wide variety of cache

coherent memory systems.

5.4 Security Evaluation and Discussion

In the following, we investigate the security of ScrambleCache in terms of state-of-the-

art side-channel attacks for both conflict and sharing based cache side-channel attacks.

5.4.1 Applicability of Cache Attacks

Unlike conflict-based cache side-channel attacks, sharing-based cache attacks require

that the target cache line be shared between the attacker and the victim. A shared cache

line is the result of a shared memory region. Conflict-based cache attacks do not re-

quire sharing but exploit the shared cache itself. Therefore, the applicability of cache

attacks to ScrambleCache can be analyzed based on whether the target address memory

is shared between the attacker and the victim.

Shared, read-only memory. Read-only memory is often shared between different

processes, for example, in the case of shared libraries. ScrambleCache is secured against

sharing-based cache attacks on read-only memory by adding process identifiers to each

entry in the history table. Since each process uses its own permutation keys, mapping a

shared read-only address is duplicated for each process. In other words, the cache lines

that belong to the same shared memory area are no longer shared in the cache between

different processes and security domains. Therefore, reloading data into the cache or

flushing data from the cache does not provide information about other processes’ access

to the shared memory cache lines. It should be noted that the lack of sharing between

the victim and attacker processes implies the impossibility of sharing-based cache at-

tacks (e.g., Flush+Reload, Flush+Flush, and Evict+Reload).

Shared, writable memory. The exchange of data between processes requires shared

writable memory. To ensure cache consistency, writeable shared memory regions must

always use the same cache line and, thus, the same process identifier for that particular

memory region. For this reason, the ScrambleCache uses a dedicated permutation key

for these addresses without considering the process ID entering the cache. At the same

108

time, cache attacks on these shared memory regions require the use of flush instruc-

tions. For this reason, we recommend that writable shared memory be used only as

an interface for non-secret data transfer rather than for sensitive computations. Cache

attacks that rely on sharing without the need to use a cache maintenance instruction,

such as the Evict+Reload technique, using dynamic randomization caches increase the

difficulty of building efficient eviction sets.

Unshared memory. Unshared memory regions never share the same cache line, mak-

ing attacks such as Flush+Reload, Flush+Flush, and Evict+Reload infeasible. However,

as the cache resources are shared, conflict-based cache attacks such as Prime+Probe are

still possible. However, as we showed in chapter 4, these attacks cannot be avoided as

long as the cache is shared between the attacker and the victim process. Furthermore,

the ScrambleCache dramatically increases the complexity of conflict-based cache at-

tacks by increasing the complexity of constructing an eviction set.

5.4.2 Side-channel Vulnerability Factor Evaluation

Considering the conflict-based attacks, we evaluate the security using the Side-channel

Vulnerability Factor (SVF) [Dem+12]. We stress that we do not treat it as an absolute

security indicator but rather as a tool to discuss the effect of the parameters of the archi-

tecture. The SVF metric compares oracle traces, with the attacker traces (i.e., side-channel

measurements). To model a Prime+Probe attack, the oracle and attacker traces (denoted

~vo, ~va) are both binary vectors that contain 1 if the set was accessed at least once during

a fixed period and 0 otherwise. The trace ~va is usually deduced by measuring the time

of memory accesses and comparing them to a determined threshold between hit and

miss time. By running a program on the system, one obtains k traces for the oracle and

the attacker: (~vo(1), . . . , ~vo(k)) and (~va(1), . . . , ~va(k)). From these observations, the SVF

starts by building a similarity matrix:

Mi, j =











D(~vo(i), ~va(j)) if i < j

0 otherwise
(5.3)

The matrix (Equation 5.3) uses a distance function D(·, ·) to compare two traces. We stick

to the choice of Demme et. al [Dem+12] and use the Euclidean distance for D, which

intuitively quantifies how much two cache probings differ. Then, the SVF is evaluated

by computing Pearson’s correlation between the two matrices element-wise.

109

To compute the SVF, we run a quicksort algorithm that sorts a random array of 32K ele-

ments on the Gem5 system model using system emulation. This program is interesting

since it makes both linear and random memory accesses. The ScrambleCache model in

Gem5 is instrumented to build the oracle and the attacker trace. The cache is probed

on a fixed number of cycles fixed to 5000 in our experiments. The SVF is computed

by grouping 256 consecutive cache probings. As our program contains more than 15k

cache probings, we retain the highest SVF value observed.

Figure 5.4 – Similarity Matrix between the oracle and attacker observations for a 32kB cache

Some similarity matrices are shown in Figure 5.4. It can be observed that the similarity

patterns are drastically reduced with the ScrambleCache when the remapping period

increases. Indeed, the matrices become darker, meaning that all probings become very

distinct.

Figure 5.5 – Evolution of SVF with the remapping period for different cache sizes

The evolution of the SVF with the remapping period is shown in Figure 5.5. As ex-

110

pected, the more frequently the permutation key changes, the higher is the SVF. One

can also see the effect of the cache size on SVF. Namely, bigger caches appear more

secure considering the SVF metric.

5.4.3 Complexity of Prime+Probe Attack

For conflict-based cache side-channel class of attacks (such as the Prime+Probe tech-

nique), the ScrambleCache adds extra noise to the victim memory access patterns to

make them unexploitable, and thus, making the construction of eviction sets harder.

The noise level is directly related to the remapping period. To validate this statement,

we perform a simple Prime+Probe attack on the ScrambleCache (L1 data cache) using

the Gem5 model. The victim and the attacker run in the same process. Between Prime

and Probe, the victim reads two fixed memory locations once.

We traget a system with 4-ways L1 caches sized 32kB, and the L1 data cache use Scram-

bleCache design with a history table of 4 entries and support 16 permutation key per

process. Figure 5.6 shows the average cache access times measured by the attacker

after the victim execution for each cache set. Times are expressed in cycles and ob-

tained by the x86 instruction rdtsc. As measurements are noisy (especially with the

ScrambleCache), we repeat the experiment 100 times on the unprotected cache and

10,000 times on the ScrambleCache with a remapping period of 10,000 memory ac-

cesses. For the latter, we plot the mean (as a circle) and the standard deviation (as a bar)

of the measurement. It can be observed by comparing Figure 5.6a and Figure 5.6b that

the ScrambleCache completely hides the memory access pattern, making Prime+Probe

and address conflicts attacks impractical.

5.5 Performace Analysis

5.5.1 Experimental Methodology and Configuration

The ScrambleCache significantly increases the effort of attackers to perform cache-based

side-channel attacks. However, a countermeasure must not degrade performances to be

practical as well. In this section, we analyze the performances of ScrambleCache using

the Gem5 simulator.

111

(a) Baseline set-associative configuration

(b) ScrambleCache configuration

Figure 5.6 – Single cache line Prime+Probe attack on both ScrambleCache and unprotected
cache

Targeted System

We performed our cache evaluation using the Gem5 full system simulator in 32-bit x86

mode. In particular, we used the CPU model O3 (Out-Of-Order) together with a cache

architecture such as commonly used in enbaded ARM CPUs: the cache line size was

chosen to be 64 bytes, the 4-way L1 data and instruction caches are each sized 32 kB. We

adapted the Gem5 simulator such as to support ScrambleCache for the L1 data cache.

This allows to evaluate the impact of different cache configuration. The main memory

is a timing model of a single channel DDR3-1600 DRAM.

Workloads

The Mibench[Gut+01] benchmark suite, is used for evaluating the performance impact

of the ScrambleCache architecture on general-purpose workloads. It is composed of

applications from different categories and provides two profiles: small and large. The

small data set represents a lightweight version of the benchmark, useful embedded ap-

112

plications. In contrast, the large data set provides a more stressful real-world workload,

which contains more than 750M dynamic instructions (Table 5.1).

Benchmark Instruction Count (Small) Instruction Count (Large)

basicmath 65,459,080 1,000,000,000
bitcount 49,671,043 384,803,644
qsort 43,604,903 595,400,120
susan.corners 1,062,891 586,076,156
susan.edges 1,836,965 732,517,639
susan.smoothing 24,897,492 1,000,000,000
dijkstra 64,927,863 272,657,564
patricia 103,923,656 1,000,000,000
CRC32 52,839,894 61,659,073
FFT 52,625,918 143,263,412

Table 5.1 – Benchmark Sizes

To evalute the performances of our architecture, we first evalute the baseline system

without countermeasures, to obtain a reference time. Then, for different parameters,

we replace the L1 data cache with the Scramble Cache and compare the performance

results against the baseline configuration. Our analysis focuses on the following pa-

rameters: the size of the L1 cache, the depth history table, and the permutation change

interval (expressed in number of cache accesses).

5.5.2 Sensitivity to Remapping Period

The remapping period has a direct impact on the security of the ScrambleCache. The

smallest acceptable value for this parameter should be selected in order to maximize se-

curity. However, changing the permutation key more frequently implies more misses,

which at some point cannot be compensated with a deeper history table. Thus, for the

remapping period selection, a trade-off between security and performance is neces-

sary. It can be seen from Figure 5.7 that when the remapping period is long enough,

the ScrambleCache approaches the performances of the baseline cache without coun-

termeasures. However, if the remapping is changing very frequently, the performances

are decreasing very quickly.

5.5.3 Sensitivity to the History Table Depth

To evaluate the effect of the history table depth, we vary this parameter on a 32 KB 8-way

L1 data cache. Figure 5.8 shows the runtime overhead of the ScrambleCache for differ-

ent history table depths. As expected, the overhead tends to decrease with a deeper

113

Figure 5.7 – Impact of remapping frequency on slowdown of ScrambleCache

history table. Indeed, increasing depth should reduce the number of misses caused by

a permutation change. This is true up to a certain point. As we can observe on Fig-

ure 5.8, when the history table stores more than eight elements, the benefits are not

always visible. At that point, the history table lookup (a linear search) is not a cheap

operation anymore and it is almost as costly as reading directly from memory. In the

case of a single element history table, at each time mapping change all cache content

is considered invalid, so the number of requests to the main memory increases which

impacts significantly the execution time. The use of a larger table can compensate this

degradation.

Figure 5.8 – Impact of history table depth on ScrambleCache performance

114

5.5.4 Sensitivity to the Cache Capacity

Figure 5.9 shows the hit rate change in a 4kB, 8kB, 16kB, and 32kB L1 data cache for

different workloads. A higher hit rate overhead is better and 0% denotes no degra-

dation. In comparison with the baseline cache, the average performance loss by the

ScrambleCache using is 0.49% in the worst case on the patricia benchmark. These re-

sults suggest that as the cache size increases, the ScrambleCache needs more time to

write back all the dirty lines when the history table is full. With the exception of two

workloads, which perform better because of the reduction in conflict misses by chang-

ing the memory-to-cache mapping.

Figure 5.9 – Impact of L1 data capacity on ScrambleCache performance

5.6 Conclusion

In this chapter, we presented ScrambleCache an architecture that implements efficiently

a lightweight set permutation. The core elements of the ScrambleCache are its dirty

cache lines tracking and history mechanisms, both allowing to frequently change the

permutation. Thanks to the ScrambleCache modeling in the Gem5, we observed that

conflict-based cache attacks are made much harder. The benchmarks demonstrated that

the history table depth allows a trade-off between security and performances (under the

assumption that changing the mapping more frequently improves security). Indeed,

with the permutation changing every 8192 accesses, the overhead on the execution

time is below 4%, and we already observed security improvements against conflict-

and sharing-based cache timing attacks. Furthermore, its access latency is drastically

115

reduced thanks to a cheap permutation, making this architecture usable as a first level

cache even in constrained environments such as embedded systems.

116

6
Conclusion

6.1 Summury and Conclusion

In the microarchitecture industry, from embedded systems to high-end systems, the

security of hardware components is fundamental to ensure the confidentiality of the

sensitive data they contain. Indeed, some malicious programs are able to retrieve in-

formation about other running programs by exploiting hardware vulnerabilities at the

memory hierarchy level. This thesis aims to propose protection schemes against cache-

based side-channel attacks. This thesis has made the following contributions, which

hopefully will help the research field gain a better understanding of the threats in cache

memories and develop new secure caches against cache-based side-channel attacks.

We first studied the various cache-based side-channel attacks and proposed a modu-

lar framework, libMAAT, that contains the primitives needed to efficiently implement

cache attacks on different processor architectures. The flexibility of this library is pro-

vided by a modular implementation that can be easily deployed on different target sys-

tems. In particular, this approach allows the primitives for microarchitectural attacks

to be refined and added to over time.

LibMAAT has allowed us to accurately understand the threats present in cache mem-

ories. LibMAAT was also developed as an experimental tool to evaluate the feasibility

of microarchitectural side-channel attacks on microarchitectures with secure caches.

Leakage analysis of different levels of cache memory using libMAAT provided insight

into cache vulnerabilities. We showed that a malicious process can put a cache line into

a known state by using a cache maintenance instruction, such as the clflush instruc-

tion in x86 architectures or an eviction set with a group of congruent addresses. If the

victim process and the malicious process share the same cache, the attacker uses an un-

117

privileged time source to observe the victim process’s activities in the cache. We have

shown that by exploiting those leakages, an attacker is able to retrieve sensitive infor-

mation such as the encryption key AES. This analysis was performed on various ARM

processors. We found that noise caused by various optimization techniques in modern

microarchitectures and noise caused by other processes using the same memory hierar-

chy can complicate the analysis of conflict-based cache attacks. This led us to implement

a noise-free model to explore the various algorithms used in the literature to construct

a conflict-based cache attack.

Our proposed cache simulator fills a gap in the experimental security evaluation of in-

clusive memory hierarchy. It provides a flexible framework that supports secure cache

architectures, particularly randomized caches. We used this framework to perform an

experimental analysis of the resilience of randomized caches at different levels against

algorithms for constructing eviction sets. In a two-level cache system, we show that

by dynamically randomizing cache mapping at the lower level with a carefully pre-

defined remapping period, the success rate of single address elimination and group

testing algorithms drops dramatically to less than 1%. However, randomization of the

lower cache levels does not provide protection against the Prime–Prune–Probe algo-

rithm in other cache levels. In this context, we proposed to randomly evict a number of

cache lines from the LLC to disrupt the attacker’s observations and thus mitigate the

impact of the Prime–Prune–Probe algorithm. We conclude that cache randomization

is an effective defense that is sufficiently secure and has good chances of being used

in the next generations of processors since it introduces less overhead into the existing

cache structure. It should be noted that dynamically randomized caches increase the

performance overhead whenever the remapping is changed. Hence a careful choice of

the remapping period is necessary to achieve a performance security tradeoff.

Designing lower-level randomized caches, especially L1 caches, is challenging because

they are very close to the CPU pipeline and therefore have the greatest requirements

in the access time. In addition, adding a randomization function, such as a hash func-

tion or encryption scheme, can significantly impact cache access time and reduce sys-

tem performance. Another challenge in developing dynamically randomized caches is

managing the dirty cache lines whenever the cache mapping is changed to avoid con-

sistency issues. In this work, we propose ScrambleCache, a new first-level cache archi-

tecture based on a lightweight permutation function. The main feature of the Scram-

bleCache is its history mechanism, which records the previously used mappings for

each process that uses the cache. We have shown that this mechanism can improve

the performance of dynamically randomized caches without compromising security

features. Our security analysis on the Gem5 simulator found that ScrambleCache in a

118

single-processor system precludes cache attacks based on sharing, thanks to the pro-

cess identifiers. It also avoids conflict-based attacks by dynamically randomizing the

cache mapping for each process. Still, those security improvements have a small im-

pact on the performances with the same ScrambleCache configuration. We obtained a

performance degradation of 1.8% on average and 4% in the worst case.

6.2 Future Works and Improvements

The work presented in this thesis offers several perspectives:

Chapter 3 - LibMAAT This work aims to evaluate the resilience of the proposed coun-

termeasures against micro-architectural software side-channel attacks. It aims to bridge

the gap between cache design evaluation and exploitation of actual leaks in experimen-

tal key recoveries. The toolkit focuses on cache-based side-channel attacks. Developing

other micro-architectural side-channel attacks, such as those targeting prefetchers, out-

of-order execution, speculative execution, etc., is possible. For this reason, identifying

and implementing the primitives needed to prototype microarchitectural side-channel

attacks, such as Spectre or Rowhammer techniques, in different CPU microarchitec-

tures.

Chapter 4 - Noise-free analysis In this work, we focus only on analyzing the security

of randomization in lower-level caches and exploring its limitations. An interesting re-

search direction for the future is to design different randomized caches in the literature

to evaluate their security against conflict-based cache attacks. In addition, finding other

metrics to assess the security instead of the success rate of the target algorithms will

also be interesting, e.g., integrating available side-channel metrics such as Side-channel

Vulnerability Factor (SVF) or Signal-to-Noise Ratio (SNR).

Based on current trends and research, it is clear that new software side-channel attacks

on microarchitectures will continue to emerge in the future. An important future re-

search direction could be to systematically discover microarchitectural side channels,

which could help the community anticipate and target their solutions accordingly. For

this reason, investigating the causes of these side channels and their impact on informa-

tion leakage could be helpful for future research in understanding microarchitectural

side-channel attacks. Such an analysis would help to understand whether the informa-

tion leaking through different side channels can add up or whether the side channels

119

interfere with each other.

Chapter 5 - ScrambleCache Architecture There are several directions for further im-

provements of ScrambleCache design. First, they are related to the permutation func-

tion and the remapping period; thus, an increase in the remapping period should be

accompanied by a strong permutation function, as shown in chapter 4. In addition, the

ScrambleCache architecture is inefficient when the cache supports multiple processes,

as is the case with the last-level cache, due to the isolation added in the history table

while does, not allow scalability in the LLC. Another improvement direction is to look

for new strategies to implement randomized caches with process isolation in the LLC.

Note that using both randomization and isolation to develop a secure cache is a promi-

nent solution that should be explored to mitigate known cache-based side-channel at-

tacks.

120

FOREWORD

Patents

•

International Publications

• Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Noise-free security

assessment of eviction set construction algorithms with randomized caches”, in:

Applied Sciences 12.5 (2022), p. 2415

• Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Scramble Cache: An

Efficient Cache Architecture for Randomized Set Permutation”, in: 2021 Design,

Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2021, pp. 621–

626

Oral presentations and Posters

• Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Efficient Cache Archi-

tecture for Randomized Set Permutation in L1 Cache”, in: RISC–V organization,

Paris, France, 2022

• Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Strategies for Secur-

ing a Memory Hierarchy Against Software Side-Channel Attacks”, in: Journées

Codage & Cryptographie JC2 Day, 2022

• Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Cache attacks and

Countermeasures”, in: 2021 Design, Automation & Test in Europe Conference & Ex-

hibition (DATE), CNRS–TIMA, 2020

121

BIBLIOGRAPHY

[AAA17] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin, “When

good protections go bad: Exploiting anti-DoS measures to accelerate

Rowhammer attacks”, in: 2017 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), IEEE, 2017, pp. 8–13.

[ABG10] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher, “New results

on instruction cache attacks”, in: International Workshop on Cryptographic

Hardware and Embedded Systems, Springer, 2010, pp. 110–124.

[Aci07] Onur Aciiçmez, “Yet another microarchitectural attack: exploiting I-

cache”, in: Proceedings of the 2007 ACM workshop on Computer security ar-

chitecture, 2007, pp. 11–18.

[Acı+09] Onur Acıçmez et al., “Microarchitectural attacks and countermeasures”,

in: Cryptographic Engineering, 2009.

[Ago+07] Giovanni Agosta et al., “Countermeasures against branch target buffer at-

tacks”, in: Workshop on fault diagnosis and tolerance in cryptography (FDTC

2007), IEEE, 2007, pp. 75–79.

[AK06] Onur Acıiçmez and Çetin Kaya Koç, “Trace-driven cache attacks on AES

(short paper)”, in: International Conference on Information and Communica-

tions Security, Springer, 2006, pp. 112–121.

[Alm+16] José Bacelar Almeida et al., “Verifying {Constant-Time} Implementa-

tions”, in: 25th USENIX Security Symposium (USENIX Security 16), 2016,

pp. 53–70.

[AS08] Onur Acıiçmez and Werner Schindler, “A vulnerability in RSA imple-

mentations due to instruction cache analysis and its demonstration on

OpenSSL”, in: Cryptographers’ Track at the RSA Conference, Springer, Berlin,

Heidelberg, 2008, pp. 256–273.

[ASK07] Onur Acıiçmez, Werner Schindler, and Çetin K Koç, “Cache based remote

timing attack on the AES”, in: Cryptographers’ track at the RSA conference,

Springer, 2007, pp. 271–286.

[BAK04] Doug Burger, Todd M Austin, and Stephen W Keckler, “Recent extensions

to the simplescalar tool suite”, in: ACM SIGMETRICS Performance Evalua-

tion Review 31.4 (2004), pp. 4–7.

122

[Bar+03] Paul Barham et al., “Xen and the art of virtualization”, in: ACM SIGOPS

operating systems review 37.5 (2003), pp. 164–177.

[Bar+14] Gilles Barthe et al., “System-level non-interference for constant-time cryp-

tography”, in: Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, 2014, pp. 1267–1279.

[Bas14] VMware Knowledge Base, “Security considerations and disallowing

inter-virtual machine transparent page sharing”, in: VMware Knowledge

Base 2080735 (2014).

[Ben+14] Naomi Benger et al., ““Ooh Aah... Just a Little Bit”: a small amount of

side channel can go a long way”, in: International Workshop on Cryptographic

Hardware and Embedded Systems, Springer, 2014, pp. 75–92.

[Ber+94] Brian N Bershad et al., “Avoiding conflict misses dynamically in large

direct-mapped caches”, in: Proceedings of the Sixth International Conference

on Architectural Support for Programming Languages and Operating Systems,

1994, pp. 158–170.

[Ber05] Daniel J Bernstein, “Cache-timing attacks on AES”, in: 2005.

[Bin+06] Nathan L Binkert et al., “The M5 simulator: Modeling networked sys-

tems”, in: Ieee micro 26.4 (2006), pp. 52–60.

[Bin+11] Nathan Binkert et al., “The Gem5 simulator”, in: ACM SIGARCH computer

architecture news (2011).

[BK07] Johannes Blömer and Volker Krummel, “Analysis of countermeasures

against access driven cache attacks on AES”, in: International Workshop on

Selected Areas in Cryptography, Springer, 2007, pp. 96–109.

[BM06] Joseph Bonneau and Ilya Mironov, “Cache-collision timing attacks against

AES”, in: International Workshop on Cryptographic Hardware and Embedded

Systems, Springer, 2006, pp. 201–215.

[Bod+20] Rahul Bodduna et al., “Brutus: Refuting the security claims of the cache

timing randomization countermeasure proposed in ceaser”, in: IEEE Com-

puter Architecture Letters (2020), pp. 9–12.

[Bou+20] Thomas Bourgeat et al., “Casa: End-to-end quantitative security analysis

of randomly mapped caches”, in: 2020 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), IEEE, 2020, pp. 1110–1123.

[Bri+06] Ernie Brickell et al., “Software mitigations to hedge AES against cache-

based software side channel vulnerabilities”, in: Cryptology ePrint Archive

(2006).

[Bri+19] Samira Briongos et al., “Cache misses and the recovery of the full AES 256

key”, in: Applied Sciences 9.5 (2019), p. 944.

123

[BS15] Chongxi Bao and Ankur Srivastava, “3D integration: New opportunities

in defense against cache-timing side-channel attacks”, in: 2015 33rd IEEE

International Conference on Computer Design (ICCD), IEEE, 2015, pp. 273–

280.

[But+12] Anastasiia Butko et al., “Accuracy evaluation of Gem5 simulator system”,

in: Workshop on Reconfigurable and Communication-Centric Systems-on-Chip

(ReCoSoC), 2012.

[CD16] Victor Costan and Srinivas Devadas, “Intel SGX explained”, in: Cryptology

ePrint Archive (2016).

[Cra+15] Stephen Crane et al., “Thwarting cache side-channel attacks through dy-

namic software diversity.”, in: NDSS, 2015, pp. 8–11.

[CSY16] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz, “Real time detection

of cache-based side-channel attacks using hardware performance coun-

ters”, in: Applied Soft Computing 49 (2016), pp. 1162–1174.

[Dem+12] John Demme et al., “Side-channel vulnerability factor: A metric for mea-

suring information leakage”, in: International Symposium on Computer Ar-

chitecture (ISCA), 2012.

[Dem+13] John Demme et al., “A quantitative, experimental approach to measuring

processor side-channel security”, in: IEEE Micro 33.3 (2013), pp. 68–77.

[DFS20] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi, “Hy-

bCache: Hybrid side-channel-resilient caches for trusted execution envi-

ronments”, in: 29th {USENIX} Security Symposium ({USENIX} Security

20), 2020, pp. 451–468.

[Dis+17] Craig Disselkoen et al., “{Prime+ Abort}: A {Timer-Free}{High-

Precision} L3 Cache Attack using Intel {TSX}”, in: 26th USENIX Security

Symposium (USENIX Security 17), 2017, pp. 51–67.

[DM21] Guillaume Didier and Clémentine Maurice, “Calibration Done Right:

Noiseless Flush+ Flush Attacks”, in: International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, Springer, 2021,

pp. 278–298.

[Dom+12] Leonid Domnitser et al., “Non-monopolizable caches: Low-complexity

mitigation of cache side channel attacks”, in: Transactions on Architecture

and Code Optimization (TACO) (2012).

[Doy+15] Goran Doychev et al., “Cacheaudit: A tool for the static analysis of cache

side channels”, in: ACM Transactions on information and system security (TIS-

SEC) 18.1 (2015), pp. 1–32.

124

[DR20] Joan Daemen and Vincent Rijmen, “Specification of Rijndael”, in: The De-

sign of Rijndael, Springer, 2020, pp. 31–51.

[DR99] Joan Daemen and Vincent Rijmen, “AES proposal: Rijndael”, in: (1999).

[DXS18] Shuwen Deng, Wenjie Xiong, and Jakub Szefer, “Cache timing side-

channel vulnerability checking with computation tree logic”, in: Proceed-

ings of the 7th International Workshop on Hardware and Architectural Support

for Security and Privacy, 2018, pp. 1–8.

[DXS19] Shuwen Deng, Wenjie Xiong, and Jakub Szefer, “Analysis of secure caches

using a three-step model for timing-based attacks”, in: Journal of Hardware

and Systems Security 3.4 (2019), pp. 397–425.

[ElG85] Taher ElGamal, “A public key cryptosystem and a signature scheme based

on discrete logarithms”, in: IEEE transactions on information theory 31.4

(1985), pp. 469–472.

[Fos+05] James C Foster et al., “Buffer overflow attacks”, in: Syngress, Rockland, USA

(2005).

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn, “Cache games -

bringing access-based cache attacks on AES to practice”, in: Proceedings of

the 2011 IEEE Symposium on Security and Privacy, Washington, DC, USA:

IEEE Computer Society, 2011, pp. 490–505, url: http://dx.doi.org/10.

1109/SP.2011.22..

[Ge+18] Qian Ge et al., “A survey of microarchitectural timing attacks and coun-

termeasures on contemporary hardware”, in: Journal of Cryptographic En-

gineering 8.1 (2018), pp. 1–27.

[Gen+18] Daniel Genkin et al., “Drive-by key-extraction cache attacks from portable

code”, in: International Conference on Applied Cryptography and Network Se-

curity, Springer, 2018, pp. 83–102.

[GKT10] Jean-François Gallais, Ilya Kizhvatov, and Michael Tunstall, “Improved

trace-driven cache-collision attacks against embedded AES implemen-

tations”, in: International Workshop on Information Security Applications,

Springer, 2010, pp. 243–257.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard, “Rowhammer.js:

A remote software-induced fault attack in javascript”, in: International con-

ference on detection of intrusions and malware, and vulnerability assessment,

Springer, 2016, pp. 300–321.

[Gre+17] Marc Green et al., “{AutoLock}: Why cache attacks on {ARM} are harder

than you think”, in: 26th USENIX Security Symposium (USENIX Security

17), 2017, pp. 1075–1091.

125

[Gru+16] Daniel Gruss et al., “FLUSH+FLUSH: a fast and stealthy cache attack”, in:

International Conference on Detection of Intrusions and Malware, and Vulnera-

bility Assessment, Springer, 2016, pp. 279–299.

[Gru+17] Daniel Gruss et al., “Strong and efficient cache side-channel protection

using hardware transactional memory”, in: 26th {USENIX} Security Sym-

posium ({USENIX} Security 17), 2017, pp. 217–233.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard, “Cache template

attacks: Automating attacks on inclusive last-level caches”, in: Proceedings

of the 24th USENIX Conference on Security Symposium. SEC’15. Washington,

D.C. 2015, url: http://dl.acm.org/citation.cfm?id=2831143.2831200.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer, “RSA key extraction

via low-bandwidth acoustic cryptanalysis”, in: Advances in Cryptology –

CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA,

Springer, 2014, pp. 444–461.

[Gul+15] Berk Gulmezouglu et al., “A faster and more realistic FLUSH+RELOAD

attack on AES”, in: International Workshop on Constructive Side-Channel

Analysis and Secure Design, Springer, 2015, pp. 111–126.

[Gut+01] Matthew R Guthaus et al., “MiBench: A free, commercially representative

embedded benchmark suite”, in: International workshop on workload charac-

terization. WWC-4, 2001.

[GZ14] Michael Godfrey and Mohammad Zulkernine, “Preventing cache-based

side-channel attacks in a cloud environment”, in: IEEE transactions on cloud

computing 2.4 (2014), pp. 395–408.

[HC12] Gael Hofemeier and Robert Chesebrough, “Introduction to intel AES-NI

and intel secure key instructions”, in: Intel, White Paper 62 (2012).

[HL17] Zecheng He and Ruby B Lee, “How secure is your cache against side-

channel attacks?”, in: Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, 2017, pp. 341–353.

[Hol09] ARM Holdings, “ARM security technology: Building a secure system us-

ing trustzone technology”, in: Retrieved on June 10 (2009), p. 2021.

[HWH13] Ralf Hund, Carsten Willems, and Thorsten Holz, “Practical timing side

channel attacks against kernel space ASLR”, in: 2013 IEEE Symposium on

Security and Privacy, IEEE, 2013, pp. 191–205.

[IES15a] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar, “S $A: A shared

cache attack that works across cores and defies VM sandboxing–and its

application to AES”, in: Symposium on Security and Privacy, 2015.

126

[IES15b] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar, “Systematic reverse

engineering of cache slice selection in Intel processors”, in: 2015 Euromicro

Conference on Digital System Design, IEEE, 2015, pp. 629–636.

[IES16] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar, “MASCAT: Stopping

microarchitectural attacks before execution”, in: Cryptology ePrint Archive

(2016).

[Int21] Intel, Intel® 64 and IA-32 Architectures, Software Developer’s Manual, Com-

bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4 (Order Number: 325462-

076US), 2021.

[Ira+14] Gorka Irazoqui et al., “Wait a minute! A fast, Cross-VM attack on AES”, in:

International Workshop on Recent Advances in Intrusion Detection, Springer,

2014, pp. 299–319.

[Jal+10a] Aamer Jaleel et al., “Achieving non-inclusive cache performance with in-

clusive caches: Temporal locality aware (tla) cache management policies”,

in: 2010 43rd Annual IEEE/ACM International Symposium on Microarchitec-

ture, IEEE, 2010, pp. 151–162.

[Jal+10b] Aamer Jaleel et al., “High performance cache replacement using re-

reference interval prediction (RRIP)”, in: ACM SIGARCH Computer Archi-

tecture News (2010), pp. 60–71.

[JHD20] Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Cache attacks

and Countermeasures”, in: 2021 Design, Automation & Test in Europe Con-

ference & Exhibition (DATE), CNRS–TIMA, 2020.

[JHD21] Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Scramble

Cache: An Efficient Cache Architecture for Randomized Set Permutation”,

in: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),

IEEE, 2021, pp. 621–626.

[JHD22a] Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Efficient

Cache Architecture for Randomized Set Permutation in L1 Cache”, in:

RISC–V organization, Paris, France, 2022.

[JHD22b] Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Noise-free

security assessment of eviction set construction algorithms with random-

ized caches”, in: Applied Sciences 12.5 (2022), p. 2415.

[JHD22c] Amine Jaamoum, Thomas Hiscock, and Giorgio Di Natale, “Strategies for

Securing a Memory Hierarchy Against Software Side-Channel Attacks”,

in: Journées Codage & Cryptographie JC2 Day, 2022.

127

[Kay+16] Mehmet Kayaalp et al., “A high-resolution side-channel attack on last-

level cache”, in: Proceedings of the 53rd Annual Design Automation Confer-

ence, 2016, pp. 1–6.

[KH92] Richard E Kessler and Mark D Hill, “Page placement algorithms for large

real-indexed caches”, in: ACM Transactions on Computer Systems (TOCS)

(1992).

[Kir+18] Vladimir Kiriansky et al., “DAWG: A defense against cache timing attacks

in speculative execution processors”, in: 2018 51st Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), IEEE, 2018, pp. 974–

987.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun, “Differential power analy-

sis”, in: Proceedings of the 19th Annual International Cryptology Conference on

Advances in Cryptology. CRYPTO ’99. London: Springer, 1999, pp. 388–397,

url: http://dl.acm.org/citation.cfm?id=646764.703989.

[KMO12] Boris Köpf, Laurent Mauborgne, and Martıén Ochoa, “Automatic quan-

tification of cache side-channels”, in: International Conference on Computer

Aided Verification, Springer, 2012, pp. 564–580.

[Koc+19] Paul Kocher et al., “Spectre attacks: Exploiting speculative execution”, in:

2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 1–19.

[KPM12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz,

“{STEALTHMEM}: System-level protection against cache-based side

channel attacks in the cloud”, in: 21st {USENIX} Security Symposium

({USENIX} Security 12), 2012, pp. 189–204.

[Lip] Moritz Lipp, “libflush, 2016”, in: URL

https://github.com/IAIK/armageddon.(cited on p. 29) ().

[Lip+16] Moritz Lipp et al., “Armageddon: Cache attacks on mobile devices”, in:

2016, pp. 549–564.

[Lip+18] Moritz Lipp et al., “Meltdown”, in: arXiv e-prints 1801.01207 (2018).

[Liu+15] Fangfei Liu et al., “Last-level cache side-channel attacks are practical”, in:

Symposium on Security and Privacy, 2015.

[Liu+16a] Fangfei Liu et al., “Catalyst: Defeating last-level cache side channel attacks

in cloud computing”, in: International symposium on High Performance Com-

puter Architecture (HPCA), 2016.

[Liu+16b] Fangfei Liu et al., “Newcache: Secure cache architecture thwarting cache

side-channel attacks”, in: IEEE Micro (2016).

128

[Lou+21] Xiaoxuan Lou et al., “A survey of microarchitectural side-channel vul-

nerabilities, attacks and defenses in cryptography”, in: arXiv preprint

arXiv:2103.14244 (2021).

[Mar+05] Milo MK Martin et al., “Multifacet’s general execution-driven multipro-

cessor simulator (GEMS) toolset”, in: ACM SIGARCH Computer Architec-

ture News 33.4 (2005), pp. 92–99.

[Mat+70] Richard L. Mattson et al., “Evaluation techniques for storage hierarchies”,

in: IBM Systems journal 9.2 (1970), pp. 78–117.

[Mau+15a] Clémentine Maurice et al., “C5: cross-cores cache covert channel”, in: Inter-

national Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, Springer, 2015, pp. 46–64.

[Mau+15b] Clémentine Maurice et al., “Reverse engineering Intel last-level cache

complex addressing using performance counters”, in: International Sym-

posium on Recent Advances in Intrusion Detection, Springer, 2015, pp. 48–65.

[Mau+17] Clémentine Maurice et al., “Hello from the Other Side: SSH over Robust

Cache Covert Channels in the Cloud.”, in: NDSS, vol. 17, 2017, pp. 8–11.

[MDS12] Robert Martin, John Demme, and Simha Sethumadhavan, “Timewarp: Re-

thinking timekeeping and performance monitoring mechanisms to miti-

gate side-channel attacks”, in: 2012 39th Annual International Symposium on

Computer Architecture (ISCA), IEEE, 2012, pp. 118–129.

[Muk+20] M Asim Mukhtar et al., “Flush+ prefetch: A countermeasure against

access-driven cache-based side-channel attacks”, in: vol. 104, Elsevier,

2020, p. 101698.

[Mus+20] Maria Mushtaq et al., “Winter is here! A decade of cache-based side-

channel attacks, detection & mitigation for RSA”, in: Information Systems

92 (2020), p. 101524.

[NS06] Michael Neve and Jean-Pierre Seifert, “Advances on access-driven cache

attacks on AES”, in: International Workshop on Selected Areas in Cryptogra-

phy, Springer, 2006, pp. 147–162.

[NSW06] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang, “A refined look

at Bernstein’s AES side-channel analysis”, in: Proceedings of the 2006 ACM

Symposium on Information, computer and communications security, 2006,

pp. 369–369.

[Org] Linux Kernel Organization, Transparent Hugepage Support (Linux Kernel),

url: https://www.kernel.org/doc/Documentation/vm/transhuge.txt.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer, “Cache attacks and coun-

termeasures: the case of AES”, in: Proceedings of the 2006 The Cryptogra-

129

phers’ Track at the RSA Conference on Topics in Cryptology. San Jose, CA:

Springer-Verlag, 2006, url: http://dx.doi.org/10.1007/11605805%

5C%5C%5C_1.

[Pag02] Dan Page, “Theoretical use of cache memory as a cryptanalytic side-

channel.”, in: IACR Cryptology ePrint Archive (2002).

[Pag03] Daniel Page, “Defending against cache-based side-channel attacks”, in: In-

formation Security Technical Report 8.1 (2003), pp. 30–44.

[Pag05] Dan Page, “Partitioned Cache Architecture as a Side-Channel Defence

Mechanism.”, in: IACR Cryptology ePrint archive (2005).

[Pao10] Gabriele Paoloni, “How to benchmark code execution times on Intel IA-

32 and IA-64 instruction set architectures”, in: Intel Corporation 123 (2010),

p. 170.

[Per05] Colin Percival, Cache missing for fun and profit, 2005.

[Pol+21] Nikolaos Foivos Polychronou et al., “MaDMAN: Detection of Software At-

tacks Targeting Hardware Vulnerabilities”, in: 2021 24th Euromicro Confer-

ence on Digital System Design (DSD), IEEE, 2021, pp. 355–362.

[PSY15] Joop van de Pol, Nigel P Smart, and Yuval Yarom, “Just a little bit more”,

in: Cryptographers’ Track at the RSA Conference, Springer, 2015, pp. 3–21.

[Pur+21] Antoon Purnal et al., “Systematic analysis of randomization-based pro-

tected cache architectures”, in: 42th IEEE Symposium on Security and Pri-

vacy, 2021.

[PV19] Antoon Purnal and Ingrid Verbauwhede, “Advanced profiling for prob-

abilistic Prime+ Probe attacks and covert channels in ScatterCache”, in:

arXiv preprint arXiv:1908.03383 (2019).

[QS01] Jean-Jacques Quisquater and David Samyde, “Electromagnetic analysis

(EMA): Measures and counter-measures for smart cards”, in: zSmart Card

Programming and Security: International Conference on Research in Smart

Cards, E-smart 2001 Cannes, France, Heidelberg: Springer Berlin Heidel-

berg, 2001, pp. 200–210.

[QTP05] Moinuddin K Qureshi, David Thompson, and Yale N Patt, “The V-

Way cache: demand-based associativity via global replacement”, in: 32nd

International Symposium on Computer Architecture (ISCA’05), IEEE, 2005,

pp. 544–555.

[Qur18] Moinuddin K Qureshi, “CEASER: Mitigating conflict-based cache attacks

via encrypted-address and remapping”, in: 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), IEEE, 2018, pp. 775–

787.

130

[Qur19] Moinuddin K Qureshi, “New attacks and defense for encrypted-address

cache”, in: 2019 ACM/IEEE 46th Annual International Symposium on Com-

puter Architecture (ISCA), IEEE, 2019, pp. 360–371.

[Sea15] Mark Seaborn, L3 cache mapping on Sandy Bridge CPUs, 2015, url: http:

//lackingrhoticity.blogspot.com.es/2015/04/l3-cache-mapping-

on-sandy-bridge-cpus.html.

[Shi+11] Jicheng Shi et al., “Limiting cache-based side-channel in multi-tenant

cloud using dynamic page coloring”, in: 2011 IEEE/IFIP 41st International

Conference on Dependable Systems and Networks Workshops (DSN-W), IEEE,

2011, pp. 194–199.

[Shu] Kirill A Shutemov, “pagemap: do not leak physical addresses to non-

privileged userspace, 2015”, in: URL https://git. kernel. org/cgit/linux/ker-

nel/git/torvalds/linux. git/commit (), pp. 27–38.

[SK11] Daniel Sanchez and Christos Kozyrakis, “Vantage: Scalable and efficient

fine-grain cache partitioning”, in: Proceedings of the 38th annual international

symposium on Computer architecture, 2011, pp. 57–68.

[SL19] Wei Song and Peng Liu, “Dynamically Finding Minimal Eviction Sets

Can Be Quicker Than You Think for {Side-Channel} Attacks against the

{LLC}”, in: 22nd International Symposium on Research in Attacks, Intrusions

and Defenses (RAID 2019), 2019, pp. 427–442.

[Son+20] Wei Song et al., “Randomized Last-Level Caches Are Still Vulnerable

to Cache Side-Channel Attacks! But We Can Fix It”, in: arXiv preprint

arXiv:2008.01957 (2020).

[SQ21] Gururaj Saileshwar and Moinuddin Qureshi, “MIRAGE: Mitigating

Conflict-Based Cache Attacks with a Practical Fully-Associative Design”,

in: 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[Tan+20] Qinhan Tan et al., “PhantomCache: Obfuscating Cache Conflicts with Lo-

calized Randomization.”, in: 2020.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir, “Efficient cache attacks

on AES, and countermeasures”, in: Journal of Cryptology (2010), pp. 37–71,

url: http://dx.doi.org/10.1007/s00145-009-9049-y.

[Tsu+03] Yukiyasu Tsunoo et al., “Cryptanalysis of DES implemented on comput-

ers with cache”, in: International Workshop on Cryptographic Hardware and

Embedded Systems, Springer, 2003.

[Van+16] Victor Van Der Veen et al., “Drammer: Deterministic rowhammer attacks

on mobile platforms”, in: Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security, 2016, pp. 1675–1689.

131

[VKM19] Pepe Vila, Boris Köpf, and José F Morales, “Theory and practice of finding

eviction sets”, in: 2019 IEEE Symposium on Security and Privacy (SP), IEEE,

2019, pp. 39–54.

[VRS14] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift,

“Scheduler-based Defenses against {Cross-VM} Side-channels”, in: 23rd

USENIX security symposium (USENIX security 14), 2014, pp. 687–702.

[Wal02] Carl A Waldspurger, “Memory resource management in VMware ESX

server”, in: ACM SIGOPS Operating Systems Review 36.SI (2002), pp. 181–

194.

[Wan+16] Yao Wang et al., “SecDCP: secure dynamic cache partitioning for efficient

timing channel protection”, in: 2016 53nd ACM/EDAC/IEEE Design Au-

tomation Conference (DAC), IEEE, 2016, pp. 1–6.

[Wan+17] Wenhao Wang et al., “Leaky cauldron on the dark land: Understand-

ing memory side-channel hazards in SGX”, in: Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, 2017,

pp. 2421–2434.

[Wan+19] Daimeng Wang et al., “Papp: Prefetcher-aware prime and probe side-

channel attack”, in: Proceedings of the 56th Annual Design Automation Con-

ference 2019, 2019, pp. 1–6.

[Wan+20] Limin Wang et al., “Analyzing the security of the cache side channel de-

fences with attack graphs”, in: 2020 25th Asia and South Pacific Design Au-

tomation Conference (ASP-DAC), IEEE, 2020, pp. 50–55.

[Wer+19] Mario Werner et al., “Scattercache: Thwarting cache attacks via cache set

randomization”, in: 28th USENIX Security Symposium, 2019.

[WHS12] Michael Weiß, Benedikt Heinz, and Frederic Stumpf, “A cache timing at-

tack on AES in virtualization environments”, in: International Conference

on Financial Cryptography and Data Security, Springer, 2012, pp. 314–328.

[WL07] Zhenghong Wang and Ruby B Lee, “New cache designs for thwarting soft-

ware cache-based side channel attacks”, in: Proceedings of the 34th annual

international symposium on Computer architecture, 2007.

[Won13] Henry Wong, “Intel Ivy Bridge cache replacement policy”, in: Url:

http://blog.stuffedcow.net/2013/01/ivb-cache-replacement (2013).

[Yar16] Yuval Yarom, Mastik: A micro-architectural side-channel toolkit, 2016.

[YB14] Yuval Yarom and Naomi Benger, “Recovering OpenSSL ECDSA nonces

using the FLUSH+ RELOAD cache side-channel attack”, in: Cryptology

ePrint Archive (2014).

132

[YK14] Yuval Yarom and Falkner Katrina, “FLUSH+RELOAD: a high resolu-

tion, low noise, L3 cache side-channel attack”, in: 23rd USENIX Secu-

rity Symposium (USENIX Security 14). San Diego, CA: USENIX Associa-

tion, 2014, pp. 719–732, url: https : / / www . usenix . org / conference /

usenixsecurity14/technical-sessions/presentation/yarom.

[ZAF07] Mohamed Zahran, Kursad Albayraktaroglu, and Manoj Franklin, “Non-

inclusion property in multi-level caches revisited”, in: International Journal

of Computers and Their Applications 14.2 (2007), p. 99.

[ZAM12] Danfeng Zhang, Aslan Askarov, and Andrew C Myers, “Language-based

control and mitigation of timing channels”, in: Proceedings of the 33rd ACM

SIGPLAN conference on Programming Language Design and Implementation,

2012, pp. 99–110.

[Zha+12] Yinqian Zhang et al., “Cross-VM side channels and their use to extract

private keys”, in: Proceedings of the 2012 ACM conference on Computer and

communications security, 2012, pp. 305–316.

[Zha+13] Tianwei Zhang et al., “Side channel vulnerability metrics: the promise and

the pitfalls”, in: International Workshop on Hardware and Architectural Sup-

port for Security and Privacy, 2013.

[Zha+15] Danfeng Zhang et al., “A hardware design language for timing-sensitive

information-flow security”, in: Acm Sigplan Notices 50.4 (2015), pp. 503–

516.

[ZL14] Tianwei Zhang and Ruby B Lee, “New models of cache architectures char-

acterizing information leakage from cache side channels”, in: Proceedings

of the 30th annual computer security applications conference, 2014, pp. 96–105.

[ZRZ16] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang, “A software approach

to defeating side channels in last-level caches”, in: Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, 2016,

pp. 871–882.

[ZZL18] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee, “Analyzing cache side

channels using deep neural networks”, in: Proceedings of the 34th Annual

Computer Security Applications Conference, 2018, pp. 174–186.

133

	Abstract
	Context and Motivations
	Introduction
	Memory Isolation
	Software Isolation Approaches
	Trusted Execution Environment

	Hardware Sharing and Vulnerabilities
	Cache-based Side-Channel Attacks
	Problem Statement
	Contributions
	Thesis Outline

	Background and State-of-the-art
	Modern Micro-architectures
	Memory Paging and Virtual Memory
	Paging System
	Page Table Lookup
	The Table Lookaside Buffer (TLB)

	Memory Hierarchy
	Cache Memory
	Locality of Reference
	Cache Organizations
	Virtual and physical tags and indexes
	Cache Replacement Policy
	Multi-core Caches
	Caches on Intel x86 CPUs

	Cache-based Side-Channel Attacks
	Information Leakage Channels in Cache memories
	Classification of Cache-based Side-Channels Attacks
	Cache-based Side-Channel Attacks - General Steps
	Leakage Exploitation Techniques

	Eviction Set Construction
	Defining Eviction Sets
	Static Approach
	Dynamic Approach

	Eviction Set Optimization Algorithms
	Single Address Elimination Algorithm
	Group Testing Algorithm
	Prime–Prune–Probe Algorithm

	Defenses against Cache-based Side-Channel Attacks
	Application level
	Operation system or hypervisor level
	Hardware level

	Summary and Conclusion

	Practical analysis of cache attacks
	Motivations
	LibMAAT: Micro-Architectural Analysis Toolkit Library
	Targeted Micro-Architectures
	Timing Measurements
	Cache Eviction
	Memory pool allocation

	Evaluation of Eviction Set Construction
	Target Platforms
	Candidate Set Size Evaluation
	Evaluation of Cache Eviction Strategies

	Attack on T-Table based AES implementation
	AES implementation
	Attack Description
	Side-Channel Distinguishers

	Setting and Attack Primitives
	Targeted Platforms and Settings
	Measurement Using Evict+Reload Technique

	Conclusion

	Security Analysis of Randomized Caches
	Motivation and Problem Definition
	Threat Model and Attacker Capabilities
	Noise-free Cache Simulation Framework
	Overview
	Illustative Example

	Experimental Setup and Methodology
	Complexity of Constructing Eviction Sets in Uprotected Memory Hierarchy
	Single Address Elimination Algorithm
	Group Testing Algorithm
	Prime–Prune–Probe Algorithm

	Randomization in Low-Level Caches
	Choice of the Addressing Function
	Remapping Interval Analysis
	Randomization of L1 Cache

	Random Eviction Last-Level Cache
	Overview
	Results and Discussion

	Conclusion

	Mitigation of Cache Attacks on lower cache levels
	Motivation
	Detailed Architecture
	Overview
	Hardware Architecture
	Address Permutation Properties
	History Mechanism
	Key Management and Re-Keying
	Integration of ScrambleCache into Existing Microarchitectures

	Gem5 Simulator
	Security Evaluation and Discussion
	Applicability of Cache Attacks
	Side-channel Vulnerability Factor Evaluation
	Complexity of Prime+Probe Attack

	Performace Analysis
	Experimental Methodology and Configuration
	Sensitivity to Remapping Period
	Sensitivity to the History Table Depth
	Sensitivity to the Cache Capacity

	Conclusion

	Conclusion
	Summury and Conclusion
	Future Works and Improvements

	Foreword

