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ABSTRACT

This thesis is concernedwith time-series analysis. The present growth
of interest in sensor networks and our ability to simultaneously record
time series representing the fluctuations of numerous physical quan-
tities, naturally leads to consider d-dimensional processes. Adapted
tools for the extraction of knowledge from the ever increasing amount
of recorded time-series are very much solicited. An equally exploding
number of new models is developed as a response to the demand and
considerable effort is put to developing efficient methods from theo-
retical and practical viewpoints.

Change detection is a longstanding and interdisciplinary problem
at the frontier of statistics and Machine Learning (ML) practices. In
particular, we are interested in the detection of rare, brief and oscillat-
ing events that appear as non-Gaussian in data recorded simultane-
ously on sensors. This work describes a sequential detector for non-
Gaussian colored time-series embedded in Gaussian noise. To this end,
we explore tools at the frontier of estimation and detection and ML
practices relevant to time-series analysis.

Our major contributions consist of deriving the challenging (but
relevant) limiting distribution of Mardia’s Kurtosis for bivariate time-
series, then extending the findings to the general multivariate case
by means of random projections. The proposed results are translated
to an operational sequential detector. Its performances are tested on
colored copula, synthetic and real data. The good detection power of
the bivariate detector is confirmed by computer experiments.

Our work is also adjacent to applications in seismology, therefore
our detector is merged with this framework and applied to seismo-
grams recorded on three-axis sensors, and arrays of sensors.
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RÉSUMÉ

La présente thèse porte sur l’analyse des séries temporelles. La crois-
sance actuelle de l’intérêt pour les réseaux de capteurs et notre capac-
ité à enregistrer simultanément des séries temporelles représentant
les fluctuations de nombreuses quantités physiques, conduit naturelle-
ment à considérer des processus d-dimensionnels. Des outils adaptés
sont très sollicités pour extraire des connaissances à partir de la quan-
tité en forte croissance des données. Un nombre tout aussi explosif de
nouveaux modèles est développé pour répondre à ce besoin. Des ef-
forts considérables sont constamment déployés pour développer des
méthodes efficaces d’un point de vue théorique et pratique.

La détection des changements est un problème interdisciplinaire
de longue date, à la frontière des statistiques et des pratiques de ML.
Nous nous intéressons à la détection d’événements rares, brefs et oscil-
lants qui apparaissent comme non-gaussiens dans des données enreg-
istrées simultanément sur un réseau de capteurs. Ce travail décrit un
détecteur séquentiel pour des séries temporelles colorées non gaussi-
ennes noyées dans un bruit gaussien. À cette fin, nous explorons des
outils à la frontière des méthodes de détection et estimation et des
pratiques ML pertinentes pour l’analyse des séries temporelles.

Nos principales contributions consistent à dériver la difficile (mais
pertinente) distribution limite du Kurtosis de Mardia pour les séries
temporelles bivariées, puis à étendre les résultats au cas général mul-
tivarié au moyen de projections aléatoires bivariées. Les résultats pro-
posés sont traduits en un détecteur séquentiel opérationnel. Ses per-
formances sont testées sur des copules colorées, des données synthé-
tiques et réelles. Le bon pouvoir de détection du détecteur bivarié est
confirmé par des expériences numériques.

Notre travail est également ancré dans une application en sismolo-
gie, ainsi notre détecteur est fusionné avec ce cadre et appliqué aux
sismogrammes enregistrés sur des capteurs à trois axes, et des réseaux
de capteurs.
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GENERAL IN TRODUCT ION

IN TRODUCT ION

The work in this manuscript is rooted in a discipline: Signal process-
ing at the border of applied mathematics, physics and computer sci-
ence. This discipline has long been solicited for solving various prob-
lems from pretty much any field working with a signal; how to extract
information from a noisy signal? How to exploit a priori knowledge
to make the extraction more statistically significant? The answers to
these questions have naturally introduced tools with an inferential
flavour by attempting to construct a (parametric or non-parametric)
model governing the observations. The ever increasing amount of
data and the advances made in the field of computer science are caus-
ing the proliferation of unprecedented amount of models. Their aim is
to skim through loads of data and extract useful information bypass-
ing human intervention. This exercise is wrapped up under the cloak
of ML. The signal processing and ML practices have the same goals New prominent

paradigmand are usually combined in a favourable way to efficiently extract
information from data.

The question at the core of this manuscript is "How to detect a low-
magnitude time-series embedded in noise?". The difficulties of the prob- Detection and

estimationlem to hand is the presence of large noise bursts that successfully
mask the weak signals, and the absence of a priori information about
the source generating them.

This is essentially an interdisciplinary problem to which answers
have long been provided by a myriad of signal processing methods,
and recently more and more ML practices. It seemed therefore natu-
ral for us to start with some pillars in signal processing and present
the context in which it operated the most, governed by three prop-
erties: Linearity, stationnarity and Gaussianity, and then gradually
transition to proper tools when at least one of these properties is dis-
carded.

Before attempting to answer the question above, we add more con-
straints on the suggested solution: The detectormust be efficient, from
theoretical and computational viewpoints. It must be accompanied
with guarantees on the false alarm rate. The computational burden
should be low to allow the processing of large datasets. Detector with low

computational
burden

The quest for satisfying the first constraint i. e. theoretical guaran-
tees on the false alarm rate has lead us to the realm of statistics. In

1



2 introduction

order to provide statistically significant outputs, we must rigorously
choose a test statistic and define its limiting distribution under a set of
hypothesis. Surprisingly, there was a lack of computationally efficient
procedures for testing that a multivariate time-series is Gaussian, and
our quest has turned into a contribution.Fixed false alarm

rate The main concern was and still providing an operational detector,
to that end, we translate the main results of our contributions into a
sequential change detector. We conclude on the performances of the
detector on a set of numerical experiments. We gradually transition
from synthetically generated data to real-world data.

As a matter of fact, the work in this manuscript is also rooted at
the border of physical applications in seismology. We focus on an ap-An application to

seismology plication that has a long and rich history in this field: the detection
of seismic tremors. The Gutenberg-Richter law [61] dictates that the
cumulative number of earthquakes increases exponentially with de-
creasing magnitude. These events are severely drowned by seismic
hum, detecting them is not an easy task but a rewarding one as it will
lead to unveiling unseen patterns, and by extension to more under-
standing of the dynamics of Earthquakes.

In this framework, the need for large labeled datasets of past events
is unmet and incompatible with detecting new waveforms; we pro-
pose to integrate the detector proposed in our work in some seismo-
logical applications. The latter will be tested on real data and com-
pared to some earthquake detectors. However, evaluating different
methods in this context becomes difficult. How to compare models
on rare instances? How to compare different catalogs with a strong
judgmental component?

The various facets of this work can perhaps be misleading at first. It
will be a back and forth between signal processingmethods, statistical
hypothesis testing and probing events with ML. Then the practical
applicability of the main contribution will be put to test on real-world
data. The articulations of this manuscript can be resumed as follows:

Pillars of time-series analysis (including ML practices) ⇐⇒ Normal-
ity test for multivariate time series ⇐⇒ Operational detector on
synthetic and real data (exclusively on applications in seismology).

To help the reader, we detail in the following the outline and our
main contributions.

OUTL INE AND CONTRIBUT IONS

Chapter 1 introduces definitions and theorems of time-series anal-
ysis to provide the reader with necessary tools to best understand
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our framework and contributions. The problems in signal process-
ing are usually solved by assuming an underlying probabilistic model.
We elaborate more on this inferential flavour in the following Chap-
ter 2. Part i serves at laying the framework of our work, and at the
same time introduces the building blocks of our contributions. We
were torn between presenting as many tools as possible, and focus-
ing on the ones that will reappear in the remainder. Due to the con-
tinuous proliferation of models for different types of data, we solely
focus on methods relevant to time-series, and if possible multivariate
time-series. Part ii is dedicated to our original contributions, in which
we propose a procedure for assessing the Gaussianity of multivariate
time-series. We open it by Chapter 3 that provides a bird’s eye-view
on pre-existing normality tests and motivates the need to derive a
novel one in our framework. For computational purposes, we focus
on Higher-order statistics, more precisely on Mardia’s Kurtosis and
fully define the limiting distribution of this test statistic (under Gaus-
sianity) for colored time-series. The theoretical background and the
steps of the calculus are our earliest work [43]:

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, A normality test for
multivariate dependent samples in Signal Processing, Elsevier 2022

inwhich the necessary tools, theorems andmain results were detailed.
Chapter 4 reproduces many paragraphs and equations of [43]. The
main concern of Chapter 5 is to now translate the theoretical findings
to an operational real-time detector. A preliminary study first exam-
ined the generalization of our findings on bivariate processes to the
general d-variate case with our second contribution: [44]

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, Joint Normality test
Via Two-Dimensional Projections in ICASSP IEEE International Con-
ference on Acoustics, Speech and Signal Processing, Singapore, Mai
2022

in which we have conducted a comparative study between the joint
normality test applied on 2D random projections and its scalar coun-
terpart on one-dimensional projections. The results are discussed in
the end of Chapter 4. Having now a practical tool to assess normal-
ity, we carry on with our interest in testing the performance of the
test with or without pre-whitening; we are interested in testing the
normality of regression residuals instead of raw data. Based on the
findings of [46], we propose
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Sara El Bouch, Olivier J.J. Michel, Pierre Comon, Multivariate Nor-
mality test for colored data in EUSIPCO European Signal processing
community, Belgrade, Serbia, Août 2022

a two-stage operational sequential detector. Prior to applying our test,
incoming data is pre-whitened using amultidimensional auto-regressive
model. Numerical experiments were conducted to assess the power of
the test when taking into account both the spatial and temporal de-
pendency of the process. Encouraged by the results on synthetic data,
we continued simulations on small portions of real-world data in [47]:

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, Un Test de Normal-
ité pour les Processus Colorés Multivariés in GRETSI, Nancy, France,
Septembre 2022

These results are reported in Chapter 5. The final and third part of
this work is Part ??wherein Chapter 6 treats themerging of ourworks
with the seismological experiments. The field is historically rich with
detection methods, and recently it has attracted ML practices. It is
then necessary to first review some of methods relevant to our detec-
tion task. We then carry on with simulation on real-data.



Part I

SOME P I L LARS OF T IME - S ER I E S
ANALYS I S

This first part concerns what is in one sense a small detail
in the context of the vast amount of work done on time-
series analysis. But in another sense, we are concerned
with the three dominant properties underlying all scien-
tific inference in signal processing: Stationarity, linearity
and Gaussianity. There are a myriad of methods, depend-
ing of course, upon the end use of the analysis. As for-
mulated eloquently in [76] "Before passing judgement on
the merits of any method, one must clearly specify for what
kind of problems is a particular method intended to be used".
Our aim in this first part is to introduce proper methods
for when the aforementioned properties are verified but
also, and especially, when one or more are discarded.





1
STOCHAST IC PROCESSES AND

T IME - SER IE S

ABSTRACT

In this first chapter, we will recall some generalities about stochastic
processes. The reader will find elementary tools for the analysis of
time-series both in time and spectral domains. In one sense, this odds
and ends of tools and theorems constitutes the building blocks of the
methods we will introduce in the remainder. More precisely, we show
how Gaussianity occupies a premier place in signal processing and how
it interacts with the other properties governing this realm. We
introduce the Higher Order Statistics that are ubiquitous in our attempt
to characterize the violation of this assumption by many real-world
phenomena. In another sense, these tools naturally introduce an
inferential flavour by attempting to construct a (parametric or
non-parametric) model governing the observations. This point will be
discussed in the second chapter under the cloak of statistical learning.
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8 stochastic processes and time-series

1.1 STAT IONARY STOCHAST IC PROCESS

1.1.1 definitions and notations

The data to hand consists of a real-valued time-series, that is, a series
of available observations xj(n); j = 1, . . . ,d; n = 1, . . . ,N, made
sequentially through time. Subscript j indexes the different measure-
ments at each time point n. Although, we usually think of n as mea-
suring the passage of time, it could also be a space variable (or even
both).

We use x(n) for the vector with components xj(n), and is to be
thought of as an observation on a real vector-valued random variable.
We arrange them in:

X
def
= [x(1), x(2), . . . , x(N)]T ∈ RN×d (1)

The joint probability distribution fX of any finite subset of {x(n)}n∈{1,...,N}

is prescribed. The family of all realizations together with their proba-
bility is called a stochastic process.

The main feature of the situations we have in mind for this work is
the fact that ∀j, xj(n) and xj(m) will not be independent, form ̸= n.

moments and cumulants

A stochastic process is thoroughly characterized by its higher order
moments. The scalar moment of order r noted µt1,...,tr

a1,a2,...,ar reads:

E{

r∏
k=1

(
xak

(tk) − µak
(tk)

)
}

is called a central
moment

µt1,...,tr
a1,a2,...,ar = E{

r∏
k=1

xak(tk)} (2)

The first order moment vector µn1 = E{x(n)} ∈ Rd is the mean.
Similarily, the rth order moment vector µt1,...,tr

r can be defined as the
dr vector:

µt1,...,tr
r = [µt1,...,tr

a1,a2,...,ar]
T

where the subscripts a1,a2, . . . ,ar indicate the column positions of
the scalar rth order moments. Let v = [va1(t1), . . . , var(tr)]

T be a
fixed deterministic real vector, and x = [xa1(t1), . . . , xar(tr)]

T a finite
set of realizations of the process X. Φx(v) = E{expjv

Tx} is the joint
characteristic function that uniquely specifies the joint distribution of
x. On expanding expjv

Tx as a power series around v = 0, we have:Here j2 = −1 not to
be confused with an

index.
µt1,t2,...,tr
a1,a2,...,ar = (−j)r

( ∂rΦx(v)

∂va1(t1) . . . ∂var(tr)

)
v=0

(3)
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When at least one
index ar is different
from the rest, they
are termed cross-(.)
and termed auto-(.)
otherwise.

We can define Ψx(v) = logΦx(v), usually called the (joint) second
characteristic function. It allows the definition of scalar cumulants of
order r:

Cuma1,a2,...,ar(t1, . . . , tr) = (−j)r
( ∂rΨx(v)

∂va1(t1) . . . ∂var(tr)

)
v=0

(4)

The rth order cumulant vector κr(t1, . . . , tr) can be defined as the dr
vector:

κr(t1, . . . , tr) = Cum(x(t1), . . . , x(tr)) = [Cuma1,a2,...,ar(t1, . . . , tr)]
T

where the subscripts a1,a2, . . . ,ar indicate the column positions of
the scalar rth order cumulant. On expanding log and exp around
v = 0, we can identify a relationship between moments and cumu-
lants. They are tied with the general formula of Leonov and Shiryayev
[81]. Before giving some examples, we introduce some important no-
tations.

notations

In this work, we shall replace (2) with the less cumbersome notation:

µ
nij...
abc... = E{xa(n)xb(i)xc(j) . . .} (5)

The superscripts
n, i, j . . . take values
in {1, . . . ,N}, and
the subscripts
a,b, c, . . . in
{1, . . . ,d}

bracket notation

The bracket notation was initially proposed by McCullagh [101] as a
convenience to list the relationship between cumulants and moments
without listing all the partitions of the indices. Perhaps, an example is
more explanatory thanwords, the third order cumulant can bewritten
in terms of moments as:

Cuma,b,c(n, i, j) = µnijabc − [3]µnaµ
ij
bc + 2µ

n
aµ

i
bµ
j
c (6)

Wherein [3] µnaµ
ij
bc = µnaµ

ij
bc + µ

i
bµ
nj
ac + µ

j
cµ
ni
ab is the sum over the

three 3 partitions of three indices. If the process is zero-mean, which
we will assume from now on, all partitions having a unit part µna =

0 will be forced to zero and the formulae are simplified. The third-
order cumulant in (6) is equal to the third order moment. However to
generate the fourth-order cumulant, we need the knowledge of the
fourth and second order moments i. e.

Cuma,b,c,d(n,m, i, j) = µnmijabcd − [3]µnmab µ
ij
cd (7)
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Important. From
now on, we will

assume throughout
this work that the

random process X is
zero-mean.

In particular, for the second order cumulant we use the following
notation:

Cuma,b(n,m)
def
= Sab(n,m) (8)

for a,b ∈ {1, . . . ,d}. We arrange the d2 quantities of κ2(n,m) in
a symmetric matrix, referred to as the covariance matrix S(n,m) =

E{x(n)x(m)T }.

S(n,m) =

S11(n,m) . . . S1d(n,m)
... . . .

...
Sd1(n,m) . . . Sdd(n,m)

 (9)

1.1.2 stationary processes

A special case of stochastic processes is based on the assumption that:

Definition 1.1.1 (Strict stationarity [62]) If for all n and m, the
probability distribution associated with x(1), x(2), . . . , x(n) and x(1+
m), x(2+m), . . . , x(n+m) remains invariant. Then the process is is
said to be strictly stationary.

This means that the statistical properties of the process are unaffected
by a change of time origin, and in particular at order 2:

S(n,m) = E{x(n)x(m)T } = S(0,n−m) (10)

We shall denote by S(τ) the covariance matrix at lag τ = n−m, and
for τ = 0, S(0) def= S. Evidently we have:

S(−τ) = ST (τ) (11)

It is often convenient toworkwith the scale free (dimensionless) quan-
tities:

ρab(τ) =
Sab(τ)

{SaaSbb}1/2
(12)

They are assembled in the correlation matrix

ρ = V−1/2S(τ)V−1/2 (13)

where V = diag([S11(τ),S22(τ), . . . ,Sdd(τ)]T ). In practice, most of
statistical analysis is based solely on the second order properties and
a weaker condition than strict stationarity is assumed, where only the
mean function and variance S are supposed constant and the second
order S(n,m) cumulant depends on the lag |n−m|. It’s termed weak
stationarity or Wide Sense Stationary (WSS) and customarily weak is
omitted.
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stationary processes: ergodic theory

In theory, for a spectral density to exist and to be well defined, the
dynamics generating the time-series has to be ergodic and allow the
definition of an invariant measure.

Let (Ω,F,P) denote a probability space. Let’s define a measure-
preserving operator T , on the space of random variables over Ω via
Tf(ω

′
) = f(T−1ω ′)1. If Tf = f then we say that f is invariant.

Definition 1.1.2 (Ergodicity[17]) Let T be a measure-preserving op-
erator of the probability space (Ω,F,P). T is ergodic if and only if:

lim
n→∞

n−1∑
j=0

P(A∩ T−jB) = P(A)P(B), A,B ∈ F (14)

Definition 1.1.3 (Ergodic process [62]) If x(n) is strictly stationary
with E{|xj(n)|} < ∞, j = 1, . . . ,d then there is a vector, x̂, invariant
such that E{|x̂j|} <∞, and

lim
n→∞ 1n

n∑
j=1

x(j) = x̂ a.s, (15)

E{x(n)} = E{x̂} (16)

If the condition holds, then the process X is said to be ergodic.

Property 1.1.1 [62] IfX is strictly stationary and ergodic andE{|xj(n)|} <∞, then:

lim
N→∞ 1N

N∑
n=1

x(n) = E{x(n)} a.s, (17)

If E{xj(n)
2} <∞ then:

lim
N→∞ 1N

N∑
m=1

x(m)x(n+m)T = S(n) a.s, (18)

A weaker condition than ergodicity is the weak-mixing condition:

lim
n→∞

n∑
j=1

|P(A∩ T−jB) − P(A)P(B)| = 0, A,B ∈ F (19)

A stronger condition is the strong mixing condition introduced by M.
Rosenblatt [121]. T is strong mixing if and only lim

n→∞P(A∩ T−nB) =
P(A)P(B) for A,B ∈ F.

Remark. See how strong mixing implies weak mixing, and that
weak-mixing implies ergodicity.

1 ω ′ ∈ Ω, the prime avoids confusion with angular frequencies defined later.
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Definition 1.1.4 (strong or α-mixing process [121]) Consider the
measure of dependence α(A,B) def= sup

A,B∈F
|P(A∩B) − P(A)P(B)|, and

let:

αn
def
= sup

i∈Z

α(Fi−∞,F∞
i+n). (20)

where F
j
i denotes the σ-field generated by x(k) for i ⩽ k ⩽ j. The

sequence {x(n)} is said to be strongly mixing or α-mixing if αn → 0 as
n→∞.

Loosely said, we now imply that events separated in time by a lag
n approach independence. This condition implies the ergodicity of
the signal. Introduced as a mathematical convenience for now, it is
an appealing condition from a practical point of view, since we want
to believe that, let’s say, seismic waves that occurred in a sufficiently
distant past, are independent from the ones occuring now, and that is
true for all waves.

We have introduced this condition to exhibit its link with ergodic-
ity. We will not make use of it immediately but rather in the second
part of this manuscript. Instead, we introduce a particular family of
stochastic processes.

We now briefly define and recall some properties of an overwhelm-
ingly popular class of processes: The Gaussian process that shares
close links with the stationarity property introduced above.

1.1.3 gaussian processes

The grail of signal
processing A zero-mean (d-variate) random variable x is called Gaussian and de-

noted by x ∼ Nd(0,S) if its characteristic function has the form:

Φx(v) = exp
(
−
1

2
vTS−1v

)
(21)

Its probability density function reads:

fx =
1

(2π)d/2|S|1/2
exp

(
−
1

2
xTS−1x

)
(22)

Definition 1.1.5 (Gaussian process) A stochastic process X is said
to be Gaussian if for every finite collection {i, j, . . . ,n} ⊂ {1, . . . ,N},
the joint distribution of {x(i), . . . , x(n)} is distributed according to a
multivariate Gaussian.
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Figure 1: Illustration of the probability density function of a bivariate Gaus-
sian variable. Image from [128].

some properties[81]

• The Gaussian variable is fully described by its first and second
order cumulants.

• If x ∼ Nd1(0,S) then y = Ax + c ∼ Nd2(c,ASAT ). (A is
d2 × d1 matrix and c ∈ Rd2). Gaussianity is stable by linear
transformation.

• When approximate normality is involved, higher-order cumu-
lants can be ignored (but not higher-order moments).

• For a zero-mean Gaussian variable, if r = 2k+ 1, the rth order
moment is null. If r = 2k, then

µa1,...,ar =
[(2k)!
k!2k

]
µa1a2µa3a4 . . . µar−1ar (23)

• As a matter of fact, we can see that that for r = 3, 4: Third and Fourth
order cumulants
measure the extent
of departure from
Gaussianity.

Cuma1,...,ar(n1, . . . ,nr) = µ
n1...nr
a1...ar

− µn1...nrG,a1...ar
(24)

where µn1...nrG,a1...ar
is the rth order moment of a Gaussian signal

that has the same second-order moment as x.

• The cumulants of order ⩾ 3 of a Gaussian random variable are
null. (as the second characteristic function of a Gaussian vari-
able is a second order polynomial).

• Putting once again the Gaussianity in a premier place: Combin-
ing weak stationarity and Gaussianity ensures strict stationar-
ity.
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beyond second-order moments

But of course, if the process generating x(n) is stationary, say to the
rth order then:

κt1...trr = κ
τ1,τ2,...,τr−1
r (25)

By putting τ0 = 0 and τi−1 = ti − ti−1 for i ⩾ 2. Moreover at zero-
lag for τ1 = . . . = τr = 0, popular higher order statistics for scalar
variables are the standardized third order and fourth order cumulants
termed Skewness and Kurtosis respectively.

K3 = E{x(n)3}/(E{x(n)2}3/2 (26)
K4 = E{x(n)4}/(E{x(n)2})2 − 3 (27)

The skewness is zero if the distribution posesses a symmetry axe. A
distribution with positive K4 > 0 is called leptokurtic, and termed
platykurtic, or platykurtotic. if K4 < 0.

Multivariate generalizations of Skewness and Kurtosis

Mardia [98] proposed the following measures of Skewness and Kur-
tosis for d-variate random variables:

β1,d = E{(xT1S
−1x2)

3}

β2,d = E{(xTS−1x)2} (28)

Where x1 and x2 are independent and identically distributed copies
of x. We cannot assign a sign on

√
β1,d, thus β1,d cannot be seen as

a generalization of K3. Note also that β2,d is a fourth order moment
and not a cumulant as K4.

Up to now, we have only considered the theoretical covariance
functions. In practice, we have access to a finite set of observations
x(1), . . . , x(N) from which we can obtain consistent estimates of the
second order moments.

ρ̂ab(τ) =
Ŝab(τ)

{ŜaaŜbb}1/2
(29)

Ŝab(τ) =
1

N

N−τ∑
i=1

xa(i)xb(i+ τ) (30)
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The sample counterparts of the Skewness and Kurtosis of a multi-
variate population are:

B̂1,d =
1

N2

N∑
i=1

N∑
j=1

(x(i)T Ŝ
−1
x(j))3

B̂2,d =
1

N

N∑
n=1

(
x(n)T Ŝ

−1
x(n)

)2 (31)

1.2 L INEAR T IME INVARIANT SYSTEMS ( LT I ) : A

QU ICK REV IEW

At first, we present the linear context in which the physical science
has operated for most of the last two centuries. We introduce the Lin-
ear Time-invariant systems, that have the property of preserving the
stationarity: If an input is stationary, the output will also inherit this
property.

Each linear system is described by a functionH(.) such that for any
input discrete-time signal x, the output is given by the superposition
sum:

y(n) =

+∞∑
τ=−∞H(n, τ)x(τ) (32)

When the system is also time-invariant, that is ∀n0 ∈ Z,H(n, τ) = * denotes the
convolution product
y(n)

def
=

(H ∗ x)(n)

H(n+n0, τ+n0), we can rewrite (32) as a discrete convolution:

y(n) =

+∞∑
−∞ H(n− τ)x(τ) (33)

H(k) is a d× d matrix called the impulse response. The filter is said The impulse
response is allowed
of course to be
rectangular of some
size d1 × d2.

to be causal when H(k) = 0 for k < 0 allowing the expression of
the output as a function of present and past values of the input. It is
said to be stable if

∑+∞
k=−∞ Tr(H(k)TH(k)) < ∞ where Tr is trace

operator.
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The covariance functions of the output can be thoroughly defined
from that of the input along with the impulse response of the LTI sys-
tem

Sy(n)
def
= E{y(i)y(n+ i)T } (34)

=

+∞∑
j=−∞

+∞∑
k=−∞H(j)Sx(n+ j− k)H(k)T (35)

Sxy(n)
def
= E{x(i)y(n+ i}T (36)

=

∞∑
j=∞H(j)Sx(j+n) (37)

1.2.1 a general linear process

Theorem 1 (Wold Decomposition Theorem [62]) Any zero-mean
stationary process admits the following representation:This theorem does

not imply that (38)
is the true

representation of the
process. The latter

could be non-linear
or non-invertible

x(n) = u(n) + v(n) (38)
Where

• v(n) is a purely deterministic process, predictable by its own past
values and E{v(n)ϵ(m)T } = 0. The definition of ϵ(n) will ap-
pear on the proof.

• u(n) =
∑∞
0 A(j)ϵ(n− j) is a weighted sum of the ϵ(n).

Proof. [From [62]] We introduce H, the Hilbert space spanned by
xj(n), j = 1, . . . ,d, n = 0,±1, . . ., which is a real Hilbert space with
inner product ⟨x(n),y(n)⟩ = E{x(n)y(n)T }; we call Mn the closed
subspace spanned by xj(m),m ⩽ n. We obtain the best, in the the
sense of minimizing the mean square error, h-step linear predictor of
x(n+h) by projecting the components of that vector onMn. We call
the error of prediction ϵ(n). They are uncorrelated by construction
i. e. we have E{ϵ(n)ϵ(m)T } = δnmΣ. Choosing

A(j) = E{x(n)ϵ(n− j)T }Σ−1

such that
∑∞
0 A(j)Σ−1AT (j) <∞. We may form

u(n) =

∞∑
0

A(j)ϵ(n− j)

we put v(n) = x(n) −u(n), we have the previous theorem. 2

Loosely said, any stationary stochastic process can be seen as the out-
put of a causal linear filter with a white noise input. In practice, this
representation is not very useful as it contains an infinite number of
parameters. Thus, we introduce a special class of models.
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1.2.2 some special models

auto-regressive moving average

Consider the backshift operator B such that Bjx(i) = x(i− j). And
consider that the matrix A(j) can be approximated as β(B)−1α(B)
where2β(B) = Id−β1B− . . .−βpB

p andα(B) = Id+α1B+ . . .+

αqB
q, then we are led to consider an important class of stochastic

time-series models, generated by this linear mechanism:
p∑
j=0

βjx(n− j) =

q∑
k=0

αkϵ(n− k), β0 = α0 = Id, (39)

Wherein βj and αk are d× d matrices. ϵ(n) satisfy:

E{ϵ(n)ϵ(n)T } = Σ (40)
E{ϵ(n)ϵ(m)T } = 0 (41)

Loosely said, x(n) is determined by immediate past values of itself
together with past disturbances. When q = 0, the process is said to
be (vector) autoregressive, when q > 0 the terminology (vector) Auto-
regressive moving average is used. When p = 0, the process is said to
be (vector) moving average.

two sides of the same coin

If all the roots of detβ(B) = 0 lie outside the unit circle, i. e.

det(Id −β1z− . . .−βpz
p) ̸= 0 for |z| ⩽ 1

then x is said to be stable and possesses the infinite causalMA(∞)

representation. The stability condition ensures weak stationarity of
the auto-regressive part of ARMA. If all the roots of detα(B) are
greater than one in absolute value then x(n) is invertible and pos-
sesses an infinite autoregressive representation AR(∞)[93].

auto-regressive integrated moving average

A basic idea to extend ARMA models to non-stationary processes is
presented in [22]; if the eigenvalues of the characteristic polynomial
β(B) lie on the unit circle, a variant of ARMA tackles this type of
non-stationarity by an intergration or differencing operatorD.

β(B)D(B)x(n) = α(B)ϵ(n) (42)

2 β(B) is known as the reverse characteristic polynomial of the process
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whereD(B) = diag([(1−B)k1 , . . . , (1−B)kd]T ). Thismodel, termed
(vector) Auto-regressive IntegratedMovingAverage states that after each
time-series is differenced ki times to reduce it to a stationary process,
the resulting time-seriesD(B)x(n) is an Auto-regressive Moving Av-
erage (ARMA).

ARMA processes are ubiquitous in parametric spectral analysis in
the sense that they reformulate the problem of spectrum estimation
asWhat are the coefficients of α and β that fit best the observations?
For completeness, we also discuss in the following some spectral

analysis methods.

1.3 SOME SPECTRAL TOOLS

In the history of development of time-series analysis, time-domain
methods occupy a premier place in prediction problems. By time-domain
is meant the use of autoregressive modeling, and in general means
that we use initial data and not its Fourier transform. The spectral
analysis methods are very appealing especially when the size of ob-
servations N is large. However, no emphasis will be put on " time
domain VS. frequency domain" as these classes are complementary.
Emphasis will be rather put on whether the class of proposed meth-
ods is intended for stationary or non-stationary processes.

The main aim of this section is to introduce the scattering trans-
form that will subsequently be the basis of a learning model in Chap-
ter 6. The definition of this transform and the understanding of its ad-
vantages require introducing the spectrogram, in particular the mel-
frequency spectrogram and the wavelet transform.

1.3.1 elementary tools and definitions

the (discrete) fourier transform

By assuming stationarity, we are confining the covariance function
in a restricted class that has a symmetry of the group of translations
of the real line, i. e. Sab(n,m) = Sab(n+ τ,m+ τ). Now given this
information about the covariance matrix, can we replace x(n) with
a linear function that has a a diagonal covariance function? In some
sense, the Fourier transform accomplishes just that, as exp(2πitf)
is an eigenfunction of the operator U(τ) which acts as: U(τ)f(t) =

f(t+ τ)[62].
The Discrete Time Fourier transform reads:In practice, the finite

Discrete Fourier
Transform is used

x̂(ωk) =∑N
n=1 x(n) exp−j(n−1)ωk

with
ωk = 2π(k− 1)/N.
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x̂(ω) =

+∞∑
n=−∞ x(n) exp−jωn (43)

Since the kernel of complex exponentials is separable, the Fourier
transform generalizes from a one-dimensional setting to ad-dimensional
one in a straightforward manner. We can view the multidimensional
Fourier transform as an operator that works successively on each di-
mension.

the power spectrum

For each frequency, the squared amplitude of the Fourier transform
of x(n) is proportional to the power contributed by that component
and a plot of squared amplitudes against frequencies is called a power
spectrum.
A celebrated result, known as theWiener-Khitchine theorem states

that the autocovariane function and the power spectrum are Fourier
pairs, i. e.

Px(ω) =

+∞∑
k=−∞S(k) exp−jωk (44)

for angular frequencies ω ∈ [−π,π]. Px(ω) is a d× d matrix, it is Spectra (or
correlation) are
phase-blind

composed of the real-values auto-spectra Paa,a ∈ {1, . . . ,d}. Recall
that the auto-covariance function Saa(τ) is symmetric about τ = 0

which means that all phase information about xa(k) is lost in Saa(τ).
The cross-spectra Pab,a,b ∈ {1, . . . ,d},a ̸= b on its off-diagonals are
complex functions. The spectral density matrix is 2π−periodic and
hermitian (complex conjugate symmetric around the zero-frequency).

The information contained in the power spectrum is essentially
that which is present in the auto-correlation sequence; this would suf-
fice for the complete statistical description of a Gaussian signal, other-
wise we need to look beyond the power spectrum (auto-correlation).

higher order spectra

Simply stated, higher-order spectra aremulti-dimensional Fourier trans-
forms of higher-order cumulants. The particular third and fourth or-
der spectra are termed the bispectrum and the tri-spectrum.

The use of higher order spectra can be used for the suppression
of Gaussian noise, to reconstruct the phase of a system and finally
to characterize and detect non-linearities in the data [30, 113]. A 1-D
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slice of the rth order cumulant is obtained by freezing (r− 2) of its
r− 1 indices.

pr(ω1, . . . ,ωr−1) =
+∞∑

τ=−∞κr(τ1, τ2, . . . , τr−1) exp−j(
∑r−1

i=1 ωiτi) (45)

where 3 |ωi| ⩽ π,
∑r−1
i=1 |ωi| ⩽ π

properties of higher order spectra

• Rigorous introduction to the r-th order spectra, symmetries and
properties is given by Brillinger and Rosenblatt [23, 25].

• The previous equation (45)will be the basis of Hinich’s bi-coherence
measure for linearity and nonskewness (in particular Gaussian-
ity) tests[68] detailed in Chapter 3, subsections 3.2.3 and 3.2.4.

1.3.2 spectral tools for stationary processes

maximum entropy spectral estimation

The normal
distribution

maximizes entropy
against any other

distribution with the
same variance

The premise of Maximum Entropy Methods (MEM) is: "When we
make inferences based on incomplete information, we should draw
them from that probability distribution that has the maximum en-
tropy permitted by the information we do have"4. The basis of this
premise was stated in many intuitive forms: that distributions with
higher entropy represent more "disorder" and they assume "less" ac-
cording to Shannon’s definition of Entropy as an information mea-
sure[76].

Consider the covariance sequence

S(k) =
1

N

N−k∑
i=1

x(i)x(i+ k) for 0 ⩽ k ⩽ p (46)

The MEM problem is to find the probability density function fx
which has the maximum entropy subject to constraints (46) usually
referred to as the matching correlation constraints.
Attacking this constrained optimization problem using Lagrange

multipliers, see [76] for more details, the solution is of the form:

fx(x(1), . . . , x(N)) ∝ exp(−
1

2
(xTΛ−1x)) (47)

3
∑

τ to be understood as
∑

τ1
. . .

∑
τr−1

4 from [76]
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where Λ = {λj−i}i,j∈{1,...,N} is the Toeplitz matrix in which the λk
(Lagrange multiplies) are assembled.

The Maximum Entropy distribution is thus the multivariate Gaus-
sian distribution.

the burg mem formulation and ar

In Burg’s
formulation the
process is supposed
to be Gaussian.
Whereas the MEM
constructed it.

Given a Gaussian band-limited process x and a covariance sequence
S(0), . . . ,S(p), the problem suggested by Burg was to extend the co-
variance elements so that the covariance characterization would cor-
respond to themost random time-series. The solution to this optimiza-
tion problem yields this expression of the power spectrum [34]:

p̂(ω) =
σ2

|
∑p
k=0−βk expjωk |2

(48)

which is the power spectrum of an Auto-regressive process AR(p):∑p
k=0 βkx(n − k) = ϵ(n), where β0 = 1 and ϵ ∼ N(0,σ2). The

computation of the one-dimensional maximum entropy spectrum is
efficient because it can be obtained from the linear equations of au-
toregressive (AR) signal modeling. In the multivariate case, this rela-
tionship betweenmaximum entropy spectrum andmulti-dimensional
auto-regressive modeling is no longer valid. The multidimensional
maximum entropy spectrum requires the use of non-linear optimiza-
tion techniques [2].

1.3.3 for non-stationary processes

When dealing with non-stationary signals, generally speaking the
Fourier analysis is no longer valid. Consider that the phenomenon
is stationary in certain intervals but its statistical properties change
from one interval to the other. The obvious next step is to apply the
previously presented tools on each interval separately. Now the gen-
eralization of this idea leads to the definition of a time-varying power
spectrum. This is the idea underlying the instantaneous power spec-
trum proposed by Page[114], or local Fourier analysis using the Short
time Fourier transform[51].
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spectrogram

The Short time Fourier transform (STFT) reads in its univariate ver-
sion:

x̂s(m,ω) =

+∞∑
n=−∞ x(n)ϕ(n−m) exp−jωn (49)

Whereϕ is a window of duration T . The STFT is equivalent to shifting
the input signal to zero-frequency (using exp−jωn) and applying the
low-pass filter ϕ̂(ω).

The squared magnitude of the STFT |x̂s(m,ω)|2 yields the spectro-
gram representation of the power spectral density[24].

Naturally, arise the questions about the choice of the window, the
number of time and frequency samples needed to represent x̂s(m,ω).
The answer to the first is left to the practitioner, and the other two
questions are answered by applying twice the Nyquist theorem. These
lengths are bounded by the uncertainty principle.

Definition 1.3.1 (The uncertainty principle) Given the time-spread
∆2t =

∑∞
−∞ n2|x(n)|2, and ∆2ω =

∑π
−πω

2x̂(ω)x̂(ω)∗, assuming for
simplicity, but with no loss of generality, that the energy of the signal is
equal to 1, it readily follows that:

∆t∆ω ⩾
1

2

Quadratic time-frequency distributions unconstrained by the uncer-
tainty principle were proposed, such as the Wigner-Ville distribution
(or its smoothed variant). This is out of the scope of this work and we
refer the reader to [51].

1.3.4 beyond fourier analysis

Wewant to introduce the notion of frequency in a non-stationary con-
text, we are led to seek a family of coordinates, replacing the Fourier
analysis with something similar in spirit, that has an oscillatory form
in which the notion of frequency is dominant. An example of such
family is the family of wavelets.

wavelet transform

The reader familiar with wavelets will find here a brief reminder of
the main definitions and notations. The reader discovering wavelets
will find more details in the book of Mallat [97].
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The Wavelet transform is transformation of the signal on the basis
of a family of wavelets. More formally the wavelets are obtained from
a mother wavelet by translation and hometheties:

∀t ∈ R ψτ,s =
1√
s
ψ(
t− τ

s
) (50)

where τ, s are respectively the translation and scale parameters. The
mother wavelet must have finite energy and its choice fully specifies
the new representation of the time-series.

An interesting interpretation of the wavelets stems from the fol-
lowing equations in the Fourier domain:

1√
s
ψ̂s,τ(ω) =

∫+∞
−∞

1

s
Ψs,τ(

t− τ

s
) exp−iωt dt (51)

= exp−iωτ

∫+∞
−∞ ψ(t ′) exp−iωt ′s dt ′ (52)

= δ̂τΨ̂(sω) , δτ = δ(t− τ) (53)

Thus each wavelet is obtained by translating the dilated filter Ψ̂(sω)

using a Dirac centered at τ. Moreover, the mother wavelet has finite
energy and is therefore a band-pass filter.

In the discrete case, the scale and shift parameters are discretized
as s = sk0 and τ = nτ0 and Ψk,n(t) = s

−k/2
0 ψ( t−nτ0

sk0
) and hence

ψ̂k(ω) = s
k/2
0 ψ̂(sk0ω). It is customary to choose s0 = 21/Q (dyadic

scale).Q is the number of wavelets per octave. Similarily to the spec-
trogram, the absolute value of the wavelet transform as a function of
time and scale is called a scalogram . It also obeys the uncertainty prin-
ciple. In the following paragraphs, we follow the notations of [27].

mel-freqency spectrogram

Extensively used in speech processing, to mimic the human hearing,
a mel-frequency spectrogram averages the spectrogram energy with
mel-scale filterbank ψ̂λ(ω) obtained by dilating a complex mother
wavelet with a factor λ = 2k/Q:

Mx(m, λ) =
1

2π

∫
|x̂s(m,ω)|2|ψ̂λ(ω)|2dω (54)

Recall that x̂s(t,ω) is the STFT of the signal using a window ϕ of
duration T . ψ̂λ(ω) have a constant-Q bandwidth at high frequencies
[26]. Their frequency support is centered at λwith a bandwidth of the
order of λQ .
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Unlike the spectrogram, mel-frequency spectrogram is stable to to
time-warping deformation, proof of this statement can be found in
[27]. Authors in [27] have also stated that the mel-spectrogram can
be approximated by time-averaging the absolute values squared of a
wavelet transform, that is:

Mx(t, λ) =

∫
|x(t)ϕ(t− τ) ∗ψλ(v)|2dv (55)

=

∫
|

∫
x(τ)ϕ(τ− t)ψk(v− τ)dτ|

2dv (56)

≈ |x ∗ψλ|2 ∗ |ϕ|2(t) (57)

Note that this formulation makes the time-shift invariance of the mel-
spectrogram explicit. Indeed, the amount of invariance is directly con-
trolled by the duration T of the spectrogram’s window ϕ(t).
To reduce information loss, windows of small duration are used

for averaging. However, we lose information about long-scale struc-
tures. In [27], Mallat et al. proposed a hierarchical scattering trans-
form, that inherits the properties of the mel-spectrogram: invariance
to time shifts and time-warping deformations while recovering infor-
mation lost by time-averaging.

scattering transform

Let {ψλ(t)} = {λψ(λt), ∀k ∈ Z, λ = 2
k
Q } be a family of wavelets

obtained by dilating the mother wavelet ψ.Q is the number of filters
per octave.

The zero-th order scattering coefficient denoted by S0x is the local
averaging given by x ∗ϕ(t), where ϕ(t) is the window of duration T.
It acts as a low-pass filter thus removing the high-frequencies of the
signal.

We denote by Λi the grid of central frequencies of ψ̂λi
The first-order scattering coefficients are obtained by convolving x

with the first set of filterbanks, applying a non-linear transformation
ρ(t), and low-pass filtering using ϕ(t):

S1(x(n, λ1)) = ρ(x ∗ψ
(1)
λ1

) ∗ϕ(n), λ1 ∈ Λ1 (58)

The non-linearity ρ(t) = |t|, for t ∈ C is the complex modulus, and
acts as a demodulation of the signal, shifting its energy to low fre-
quencies. The other frequencies are recovered by using the second
filterbank, yielding the second order coefficients:

S2(x(n, λ1, λ2)) = ρ(ρ(x∗ψ
(1)
λ1

)∗ψ(2)
λ2

)∗ϕ(n), λ1 ∈ Λ1, λ2 ∈ Λ2
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(59)

Averaging the iterated (up to order m) modulus convolution opera-
tions gives scattering coefficients of order m. However, in practice
m = 2 is what is usually done in works, since the energy of higher-
order coefficients is usually small while being computationally expen-
sive. We thus concentrate on second order scattering representation:

Sx =
(
S0x,S1(x(n, λ1)),S2(x(n, λ1, λ2))

)
(60)

The scattering cascade of convolutions and averaging can be inter-

Figure 2: Illustration of scattering transform, taken from [27].

preted as a convolutional network, with important desirable proper-
ties for classification problems: statibility to time shifts, time-warping
deformations and additive noise [27]. It has been used in many appli-
cations [91, 129], extended to 2D applications in [132] and as we will
see in the third part of thismanuscript in unsupervised seismic signals
classification.

1.4 CONCLUS ION

To conclude, this chapter’s aim is to present the necessary tools for
the remainder. More precisely, we will match the presented tools here
with the chapters in which they will reappear.

Higher order statistics, with a focus onMardia’s multivariate kurto-
sis, will be extensively exploited in Part ii. We will shed more light on
themultidimensional linear auto-regressive process VAR(p) and its es-
timationmethods in the following chapter. Wewill also propose other
statistical methods when the assumption of linearity is discarded in
Chapter 2. The spectrogram and wavelet transformwill also be on the
scene, either as a pre-processing tool to convert time-series to images,
or as a feature-extractor using the (deep) scattering transform.
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With the advent of computers and the information age, similar to a Cam-
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Due to the continuous proliferation of the learning methods and
algorithms, we only focus on introducing the elements of statistical
learning that will be used in the remainder. We focus on the prob-
lem of time-series forecasting because the data to hand consists of
multivariate time-series (we choose to work in the time-domain), and
the prediction problem will be later on related to our primary task
i. e. detection of signals. We choose to elaborate on the Vector Auto-
regressive model VAR(p) and its estimation methods as it is a building
block of the sequential detector we introduce in Chapter 5 and apply
later on real data. Aware that the linearity assumption may be too
simplistic for complex real-data, we present some non-linear statisti-
cal models. There is a great deal of hype surrounding Artificial Neural
Network (ANN), this terminology encompasses a myriad of architec-
tures that go beyond the scope of this work, here we review rapidly
some relevant theory to ANN and describe the architectures relevant
to time-series analysis.

2.1 BAS IC IDEAS IN MODEL BU ILD ING

If an observed phenomenon is completely understood, it might be pos-
sible to derive mathematical expressions that thoroughly describe it.
However, when the complete knowledge is not available or incom-
plete, we need to resort to a an empirical model. These two extremes
of pure theory and practice interact; and a model from a class of con-
venient mathematical functions is considered.

Recently, we are drowning in information that comes in the form
of increasing amounts of data; and models are solicited more than
ever to extract knowledge. This has led to an explosion of statistical
models, and the new developments were brought up by researchers
from various fields: computer science, engineering, statistics and sig-
nal processing with one common exercise: learning from data. The
main purpose of this chapter is to explain learning ideas from ML in
a statistical framework. One should distinguish between supervised
and unsupervised learning. In this work, we focus on the supervised
paradigm summarized as:

• We use incomplete knowledge about the phenomenon to pos-
tulate a suitable class of models, and choose one of them. For
example, suppose this model is reasonable y = f(x) + ϵ.

• The model is then fitted to data and the parameters are esti-
mated. We attempt to learn f from a training set {xi,yi} fed to
a learning algorithm.Fitting means that

the number and
numerical values of
the parameters will
be estimated from

observations



2.1 basic ideas in model building 29

• The adequacy of the model is put to test to uncover a possible
lack of fit.

• Upon completion of the learning process, if the model is judged
adequate, it is used to infer knowledge on the rest of the avail-
able data i. e. in response to a new input xi, the learning algo-
rithm outputs an estimation f̂(xi).

This exercise is called supervised learning. The approach taken in statis-
tics has been from the perspective of estimation theory and function
approximation. Thus, we start this chapter by laying down the esti-
mation framework, fundamental to define a criteria of learning and
assessing the best model according to some metric that matches the
observations.

2.1.1 the mathematical estimation problem

The first step is to describe the stochastic process by its probability
density function fX(β). The PDF is parameterized, thus affected, by
the unknown parameter β. The goal of estimation is to infer the value
of β from the set of observations. The estimator may be thought of
as a rule that assigns, for each realization of X, a value to β. This
estimator is itself a random variable and thus its performance can only
be described statistically.

In search of an optimal estimator, one must define a criterion. Usu-
ally by minimizing the mean square error (MSE):

MSE(β̂)
def
= E{(β̂−β)2} = Var(β̂) + (E{β̂}−β)2︸ ︷︷ ︸

b(β̂)

(61)

From a practical viewpoint, because of the trade-off between the Bias-variance
trade-offfirst and second-hand term (referred to as the bias b(β̂)), one often

searches for a realizable estimator on the restricted class of unbiased
estimators, which minimizes Var(β̂), termed the Minimum Variance
Unbiased Estimator (MVU).

There is no turn-the-crank procedure to find the MVU, but several
approaches were proposed, in which the names of Cramér-Rao, and
Rao-Blackwell occupy a premier place [80]. Another procedure is to
restrict the class of estimators by using a mathematical convenience,
for example linearity.
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2.1.2 linear model

The linear model has been a mainstay of statistics over the last two
decades. Given a vector of inputs x = [x1, . . . , xp]T , we predict the
output y via the model:

y = β0 +

p∑
i=1

βixi (62)

The term β̂0 is the intercept, also known as the bias inML terminology.
The linear model can be written in vector format as a inner product
between x = [1, x1, . . . , xp]T and β = [β0, . . . ,βp]:

y = xTβ (63)

Given a set of training data of size N that is a set of measurementsIn general, to model
d outputs, y can be

a d-dimensional
vector, in which case

β would a be a
p× d matrix.

{(xi,yi)}i∈1,...,N. The most popular approach is to pick the coefficients
β that minimize the Residual Sum of Squares (RSS).

RSS(β) =

N∑
i=1

(
yi − xTi β

)2 (64)

The solution is easiest to characterize in matrix notation:

RSS(β) = (y−Zβ)T (y−Zβ) (65)

where Z is an N× p matrix with each row an input vector xi ∈ Rp.
Differentiating w.r.t β, we get the normal equations:

ZT (y−Zβ) = 0 (66)

If Γ = ZTZ is non-singular, then the unique solution is given by:

β̂ = Γ−1ZTy (67)

maximum likelihood estimation

A more general principle for estimation than minimizing the residual
sum of squares, is the maximum likelihood estimation principle. This
intuitive method is overwhelmingly the most popular approach to ob-
tain practical estimators. The Maximum Likelihood Estimator (MLE)
is defined as the parameter for which the observed data have the high-
est joint probability for x fixed:

L(β, x) = fx(β)
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.
If we make two assumptions on the linear problem with additive

error y = f(x) + ϵ: (i) the observations are independent and drawn
from the same probability distribution (i.i.d.) and (ii) the target vari-
abley has statistical noisewith aGaussian distribution i. e. ϵ ∼ N(0,σ2);
then it is equivalent to maximum likelihood estimation using the neg-
ative log-likelihood expressed as:

− logL(β, x) =
N

2
log(2πσ2) +

1

2σ2

N∑
i=1

(yi − xi
Tβ)2 (68)

β̂ = argmin
β

− logL(β, x). (69)

The last term involvingβ is RSS(β) defined in Equation 64 up to amul-
tiplier. Differentiating (68) w.r.t β and equating the result to 0 yields
the normal equation ZT (y−Zβ) = 0. and the maximum likelihood
estimator β̂ is similar to the one obtained by Least Squares (LS) for
the additive error model in Equation 67.

As stated in Theorem 7.1 in [80], the MLE β̂ is asymptotically (for
large enough data) optimal: It is unbiased, achieves the Cramér-Rao
lower bound and have a Gaussian probability density function.

The outputs yi vary in nature. This distinction has led to a naming
convention:

• Regression when we predict quantitative outputs (yi ∈ R).

• Classification when we predict qualitative outputs (yi discrete).

Let’s first look at an example of the linear model in a regression
problem for time-series, when this dimension of time is added, this
task is often referred to as time-series prediction or forecasting.

2.2 T IME - SER IE S FORECAST ING

Let x(i) ∈ Rd be a random realization of the process X at time i.
Formally, the approach to forecasting time-series, up to a horizon h,
is expressed as follows

x̂(t+ h) = f(x(t), x(t− 1), . . .) (70)

Naturally arise two questions about the choice of f(.) and how many
past observations should be accounted for in the forecast. We first
start by restricting f(.) to the class of linear functions, namely, the
Vector Autoregressive model VAR(p). We relax this assumption using
the Kernel trick as proposed by [77]. Finally, we introduce some neu-
ral network architectures relevant to time-series forecasting.
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2.2.1 linear approach: focus on var(p)

There exists a large literature on linear models, in which the Vector
Auto-regressive Model VAR(p) is one of the most successful and easy
to use model for the analysis of multivariate time-series. In the fol-
lowing, we extend the discussion on paramerter estimation of VAR(p)
model because it will be used extensively in numerical simulations in
Chapter 5,Chapter 6.

The VAR(p) model is a simple case of the vector ARMA models
presented earlier in subsection 1.2.2 in Chapter 1. Recall the Wold De-
composition theorem stated in Theorem 1 which ensures that under
general conditions, any system can be expressed as anMA(∞) process
(if we assume that the only deterministic component in Equation 38
of the system is the mean). We have also seen that MA(∞) and AR(∞)
are two sides of the same coin, and that under invertibility conditions,
MA(∞) can be expressed as a VAR(∞) which can be expressed well
by a finite VAR(p). This result is powerful and demonstrates the gen-
erality of the processes under study.

We recall here the definition of a VAR(p) process:

x(i) = b+

p∑
i=1

βix(n− i) + ϵ(i) (71)

where x(i) a d-dimensional random variable, βi are fixed d× d ma-
trices, ϵ(i) is a realization of a WSS process, whose second order cu-
mulant is denote Σ. Finally, b is the intercept.

multivariate least sqares

Assuming for now that the number of past values p is known, finding
the coefficients βi that minimize RSS is easiest using the matrix form:

Y = Zβ+ ϵ, (72)

or using the column stacking operator vec:

vec(YT ) = vec(βTZT ) + vec(ϵT ), (73)
= (ZT ⊗ Id)vec(β

T ) + vec(ϵT ) (74)
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where, ∀i ∈ {p, . . . ,N− 1}:

β =
[
b,β1,β2, . . . ,βp

]T ∈ R(dp+1)×d

Y =
[
x(p+ 1), . . . , x(N)

]T ∈ R(N−p)×d

Z =
[
z(p), z(p+ 1), . . . , z(N− 1)

]T ∈ R(N−p)×(dp+1)

z(i) =
[
1; x(i); x(i− 1); . . . ; x(i− p+ 1)

]
∈ R(dp+1)×1

ϵ =
[
ϵ(p+ 1),ϵ(p+ 2), . . . ,ϵ(N)

]T ∈ R(N−p)×d

Recall that Σ = E{ϵ(n)ϵ(n)T }. We can perform a Generalized
Least Squares (GLS) to obtain the estimator β̂ that minimizes the cost
function J(β):

J(β) = Tr
(
(Y −Zβ)Σ−1(Y −Zβ)T

)
(75)

Hence by differentiation with respect to β and equating to zero, we
obtain the estimator [94]:

β̂ = Γ−1ZTY (76)

assuming of course that Γ = ZTZ is non-singular.
It is worth noting that the GLS is equivalent to minimizing the RSS

on each equation of the following linear system:
y1(n) = β11,1x1(n− 1) +β11,2x2(n− 1) + . . .++βp1,dxd(n− p) + ϵ1(n)

y2(n) = β12,1x1(n− 1) + aβ12,2x2(n− 1) + . . .+βp2,dxd(n− p) + ϵ2(n)
...

yd(n) = β1d,1x1(n− 1) +β1d,2x2(n− 1) + . . .+βpd,dxd(n− p) + ϵd(n)

where βki,j denotes the scalar coefficients of the d by d parameter ma-
trix βk.
This result is due to [144] who showed that GLS and LS estima-

tion in a multiple equation model are identical if the regressors in all
equations are the same.

recursive least sqares

To allow the model to track potential non-stationarities in the obser-
vations, while keeping the computational complexity (resulting from
the inversion of the matrix Γ at each time-step) low, we recall here the
well-known Recursive Least Squares algorithm: Let β̂k be the kth col-
umn of β̂ defined in (76), and yk(t− 1) =

[
xk(1), xk(2), . . . , xk(t−

1)
]T .

yk(t− 1) = Zβ̂k(t− 1) + ϵk(t− 1) (77)
β̂k(t− 1) = Γ−1(t− 1)ZTyk(t− 1) (78)
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Suppose we want to update the model with new observations x(t); a
new row z(t)T is appended to Z in (75), and a new observation xk(t)
is appended to yk. In the Recursive Least Squares (RLS) algorithm,
Γ−1(t) and β̂k(t) are recursively expressed for t > N as:

Γ−1(t) =
(
λ1Γ(t− 1) + z(t)z(t)T

)−1
(79)

= λ−11 Γ−1(t− 1) − buuT (80)

ŵk(t) = Γ−1(t)Z̃
T
ỹk (81)

= ŵk(t− 1) − b(z
T (ŵk(t− 1) + xk(t)u))u+ xk(t)u,

u = λ−11 Γ−1(t− 1)z(t) and b = (1+ z(t)Tu)−1. Note that Z̃ is Z in
(75) augmented with the row z(t)T , and ỹk =

[
yk(t− 1); xk(t)

]
. The

fading factor λ1 allows more flexibility in the model by discounting
exponentially past information. Other variants allow more flexibility
by updating the value of the fading factor and the orderp of themodel,
see e. g. [57], [28].

properties of estimator

Proposition 2.2.1 (Asymptotic properties of the LS estimator[93])

Let x(n) be a stable, stationary VAR(p) process with standard WSS
noise, and β̂ = Γ−1ZTY is the LS estimator of the parameters β. Then
β̂ converges in probability to β. Additionally:

plim
N→∞β̂ = β (82)

√
N(β̂−β) → N(0, Id ⊗ Γ−1) (83)

Here plim denotes convergence in probability and Γ
def
= plim

N→∞ZTZ/N

is supposed non-singular.

If ϵ ∼ N(0,Σ), consistency and asymptotic normality of the LS esti-
mator are ensured for Gaussian (stable) VAR(p) processes [94].

In practice, Γ andΣ are estimated. An obvious consistent estimator
of Γ is Γ̂ = ZTZ

N and a consistent estimator of the covariance matrix
of the white noise is:

Σ̂ =
1

N
YT (IN −ZΓ−1ZT )Y (84)
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the maximum likelihood estimation

Similarly to subsection , we can assume that ϵ ∼
i.i.d

N(0,Σ, and es-
timate the parameters of VAR(p) using the maximum likelihood ap-
proach. The (multivariate) negative log-likelihood function reads:

− logL(β,X) =
dN

2
ln(2π) +

N

2
log |Σ|

+
1

2
Tr
(
(Y −Zβ)Σ−1(Y −Zβ

)T
) (85)

Hence under the Gaussian assumption, we can see that maximizing
the likelihood is equivalent to minimizing J(β) in equation (75).

the yule-walker estimation

By multiplying x(i) in the first equation, with x(i− j), and taking the
mathematical expectation, we have :
For all j ∈ {0, . . . ,p}:

E{x(i)x(i− j)T } =

p∑
k=1

βk E{x(i−k)x(i− j)T }+E{ϵ(i)x(i− j)T }

(86)

Recall that S(j) = E{x(t)x(t − j)T } is the co-variance function de-
fined in 9 of a stationary process x. After some manipulation, (86)
becomes :

S(j) =

p∑
k=1

βkS(j− k) if j > 0 (87)

S(0) =

p∑
k=1

βkS(−k) +Σ (88)

where S(−k) = ST (k). If we write equation (87) in large matrix for-
mat :

Γβ = e1 ⊗ Σ (89)

where β = [Id,−βT1 ,−βT2 , . . . ,−βTp], Γ is a Block-Toeplitz matrix
where each block Γij = S(i− j)T and e1 ⊗Σ = [Σ, 0d, . . . , 0d].

In the univariate case (d = 1), the Levinson-Durbin Recursion [39]
is usually used to solve this linear equation. The advantage of this re-
cursion is that it ensures the stability of the model AR(p), and runs in
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O(p2). The generalization of Levinson-Durbin algorithm to the multi-
variate was proposed byWhittle [140] which requires the inversion of
d×dmatrices only. The algorithm solves this Block-Toeplitz system,
called the Modified Yule-Walker Equation (in O(d2p2)).

2.2.2 non-linear models

"La caractéristique
première d’une

non-propriété est de
ne pas être

caractérisée !" [1]

The hypothesis of linearity has occupied a premier place in signal
processing between 1930 and 1940 due to its inherent simplicity from
conceptual and implementational points of view. However, there are
many practical situations where non-linear processing of signals is
needed [55]. Unlike linear systems where a unique impulse response
fully characterizes the system, there exist different ways to character-
ize non-linearity. We have already defined one way by using higher
order statistics and higher-order spectra defined in Chapter 1, and we
refer the reader to [87] for more details. We define three other promi-
nent models to tackle non-linear signals. In the sixties, started the
emergence of work concerning non-linear systems, with publication
of the monograph "Nonlinear problems in random theory" by Nor-
bert Wiener. His students [127] have developed popular polynomial
models known as Volterra filters. Another possible way to extend the
scope of linear models to nonlinear processing is by using the ker-
nel trick. Finally, we introduce the state-of-the-art methods based on
neural networks.

kernel machines

An elegant way to extend linear models to non-linear ones is by using
the concept of kernel machines in ML terminology. A kernel k is a
symmetric and continuous function defined onh : X×X 7→ Rwhere
X is an input space.

Definition 2.2.1 (From [7]) If ∀ai,aj ∈ R,
∑
i,j aiajh(xi, xj) ⩾ 0,

the kernel corresponds to a unique inner product in an arbitrary feature
space H. The feature map is constructed using a kernel function h :

X 7→ H:

k(xi, xj) = ⟨h(xi),h(xj)⟩ (90)

The main idea is to map the input space to a feature space using a
non-linear function h, usually of a higher-dimension. This principle
has shown its efficiency initially with Vapnik’s Support Vector Ma-
chines (considered also for time-series). Using this property, authors
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[78] propose straightforward approach to define a non-linear auto-
regressive model:

h(x(n)) −µ =

p∑
k=1

βk(h(x(n− k)) −µ) + ϵ(n) − (1−

p∑
k=1

βk)µ

(91)

where µ = E{h(x(n))}. Provided no guarantee that the process is
still zero-mean in the feature space, the AR model is written in its
mean adjusted form. The authors derive the Yule-Walker equation
of the model (91) and take use of its structure by using the concept
of expected (lagged) kernels to estimate efficiently the coefficients of
AR(p). However, one should return interpret-able predictions in the
initial input space X, the problem is this is not always guaranteed as
the pre-image could be nonexistent or not unique. pre-image problem

The kernel trick is powerful for two reasons. First, the feature map-
ping usually admits an implementation that is computationally effi-
cient. Second, the parameter estimation of the non-linear model with
respect to x is done using convex optimization techniques that are
guaranteed to converge efficiently. As for the pre-image problem, it
is solved using non-linear optimization techniques[78].

volterra models

Another prominent class of non-linear model is based on Volterra fil-
ters. Let x(n) and y(n) be two signals connected by a function F such
that y(n) = F(x(n)). The application of F to x(n) involves its past
and future values. Volterra model is a polynomial (with the respect to
the input) with memory and anticipation.

y(n) = h0 +

+∞∑
i=1

fi(x(n)) (92)

fi(x(n)) =

+∞∑
k=∞hi(k1, . . . ,ki)x(n− k1) . . . x(n− ki) (93)

whererin hi(k1, . . . ,ki) is termed the ith order kernel of the develop-
ment. fi(x(n)) is said homogeneous because it only comprises terms
of the same order. It is termed homogeneous filter of order i. These
definitions being presented, they involve infinite sums and thus unfea-
sible in practice. The pth order, degreeM order Volterra filter uses a fi-
nite summation

∑p
i=1 fi(x(n)),

∑M−1
ki=0

hi(k1, . . . ,ki)x(n−k1) . . . x(n−
ki).
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Volterra filters have the remarkable property that they are linear
with respect to fi(x(n))which simplifies the design of gradient-based
and recursive least squares adaptive algorithms. Like any kernel-based
method, it requires the careful selection of the kernels.

Finally, a widely used class for non-linear modeling is based on
ANN. Since this class is currently state-of-the-art, we elaborate on it
in more detail. For that, introducing a new terminology and relevant
theory is necessary. In the following, we only introduce the build-
ing blocks necessary for understanding architectures relevant to our
framework of time-series forecasting.

artificial neural networks: relevant theory and

terminology

ANNwere once popular for a short time between 1940 and 1970, took
a two-decade hiatus, and have been popular ever since. Their success
is due tomany factors, namely the Back Propagation (BP) and the com-
putational advances. They are called artificial because the idea was to
imitate the functioning of the biological brain. The types of networks
described here are by no means the only kinds of ANN architectures
found in the literature.

They comprise units, also called neurons or nodes. In each unit, the
input undergoes a succession of multiplications by the weights of
edges followed by a non-linear activation function to finally provide
an output. Mathematically, this can be represented by the equation
(94) where a, f, x,w def

= [w1, . . . ,wn]T ,b are respectively the output,
non-linear function, the input vector, the weights vector and the neu-
ron bias.

z = xTw+ b (94)
a = f(z) (95)

Typical activation functions are the identity function I, rectified linearsee from (94) how
linear regression can

be thought of as a
neural network with

one output and a
linear activation

function.

units (ReLU), the sigmoid (σ) and the hyperbolic tangent (tanh).

I(z) = z (96)
ReLU(z) = max(0, z) (97)

σ(z) =
1

1+ e−z
(98)

tanh(z) =
ez − e−z

ez + e−z
(99)

The feed-forward neural networks comprise several units, organized
in layers. The first layer that receives the input is termed the input
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Figure 3: Illustration from [126] of a feed-forward neural network with one
hidden layer. The weighted sum (z nodes) and the activations (a
nodes) are split for clarity only, they are customarily considered
one node.

layer, the last layer that produces the output is termed the output layer.
The layers in between are called collectively hidden layers. The overall
length of the chain L is termed the depth of the model. For l ⩽ L:

a(l) is the
activation at the
hidden layer l, w(l)

ij

is the edge weight
between neuron i
and its predecessor j.

z(l) = W(l)a(l−1) +b(l)

a(l) = f(z(l))

where W(l),b(l) are respectively the weight matrix and bias vector
of layer l. Finally, the output layer is obtained from the final layer:

o = f(W(o)a(L) +b(o))

training ann

The optimization algorithm that minimizes the error between the in-
put and the output is usually the Gradient descent algorithm. This al-
gorithm goes down to the minimum of the objective function J(β),
where β = ({W(l)},b(l)), after each pass on the data. Each pass on
the whole training data (xi,yi)1⩽i⩽N is termed an epoch. A gradient
descent update at the (t+ 1)st iteration has the form:

β(t+1) ← β(t) − η
1

N

N∑
n=1

∇
β(t)J(β

(t), xi,yi) (100)

where η is the learning rate. If the gradient descent is performed on
the whole data, then it is called batch gradient descent, this is the most
accurate way to estimate the parameters, however the operations in-
volved scale linearly with the number of observations making them
very costly for large data. An efficient alternative is to use Stochastic
Gradient Descent (SGD), where mini-batches of fixed sizeM (usually
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small) are sampled from the training data to yield an unbiased estima-
tor of the gradient of the loss w.r.t parameters.

Gradient descent involves calculating∇βJ(β, xi,yi). The gradients
are computed using the BP that allows the cost to flow backward
through the network by using calculus chain rules. We first calcu-
late ∂J

∂W(o) = ∂J
∂o

∂o

∂W(o) , and then ∂J

∂W(L) ,. . ., ∂J

∂W(1) working backward
through the network:

∂J

∂W(l)
=
∂J

∂o

∂o

∂a(L)

∂a(L)

∂a(L−1)
. . .

∂a(l)

∂W(l)

Some terms in the chain rule expression for the layers are shared with
each other. Computationally, this means that the common terms are
stored and reused rather than re-calculating the entire expression and
only the terms that are particular to the current layer are calculated.

Some training issues

Note that when using tanh or sigmoid activation functions in hidden
layers, these functions saturate for very small of very large values of
the node zi, i. e. σ saturates at 0 or 1, and the hyperbolic tangent at−1
or 1. Either way, their derivative is close to 0, causing the gradient to
collapse to 0 (by chain rule of calculus). This is the vanishing gradient
problem.

As amatter of fact, the rectified linear unit was proposed to alleviate
this problem, since its derivative is constant at 1 for z > 0 and 0 oth-
erwise. Loosely said, the gradient travels unchanged to the first layers
or it becomes exactly 0 on the way. Other training issues of ANN in-
clude the influence of the initialization on the Gradient descent, the
presence of local minima, overfitting due to over-parameterized net-
works and lack of guidelines for avoiding this problem and choosing
the appropriate architecture. We shall first shed more light on this
vanishing gradient problem in the context of Recurrent Neural Net-
work (RNN). We are interested in the class of RNN because they are a
subset of ANN with loops, that are suitable for dealing with sequen-
tial data i. e. time-series.

need for recurrent neural networks for time-series

Most of the neural networks are designed for i.i.d samples, and again
this assumption does not hold for time-series. RNN are a type of ANNs
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designed to handle sequential data. They accomplish that bymaintain-
ing a hidden state ht that acts as a memory of past information.

ht = Whxx(t) +Whhht−1 (101)
ot = Whoht (102)

For simplicity, we omit the additive bias and consider the linear acti-
vation function. Whx, Whh and Who are respectively the input-to-
hidden, hidden-to-hidden and hidden-to-output weight matrices. Var-
ious design patterns exist for recurrent neural network, for example
we can read the entire sequence of some length T with connections
between recurrent hidden units and produce a single output. Or we
can produce an output at each time-step t ⩽ T as expressed in (101).
Denote j(ot,yt) the cost function at time-step t, and the objective
function J(ot,yt) = 1

T

∑T
t=1 j(ot,yt) the loss over T times-steps.

back propagation through time

The unfolded recurrent neural networks can bee seen as a multi-layer
neural network, of which all layers contain the same parameters, and
an algorithm termed Back Propagation Through Time (BPTT) similar
to BP can be used to update the internal weights. First of all, differen-
tiating J(ot,yt) w.r.t to the output at any time-step t reads:

∂J(ot,yt)
∂ot

=
∂j(ot,yt)
T∂ot

(103)

∂J(ot,yt)
∂Who

=

T∑
t=1

∂J(ot,yt)
∂ot

hTt (104)

The computation of the gradients of the objective function with
respect to the last hidden state hT is straightforward. However for
t < T :

∂J(ot,yt)
∂ht

=

T∑
i=1

(Whh)
T−iWT

qh

∂J(ot,yt)
∂oT+t−i

(105)

∂J(ot)

∂Whh
=

T∑
t=1

∂J(ot,yt)
∂ht

hTt−1 (106)

Finally, the gradient with respect to input weights reads:

∂J(ot,yt)
∂Whx

=

T∑
t=1

∂J(ot,yt)
∂ht

x(t)T (107)

In practice, ∂J(ot,yt)
∂ht

is stored to avoid duplicate calculations.
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the vanishing or exploding gradient problem

Note how equation (105) involves a potentially very large power of
WT

hh for long time-steps T . Hence, numerical instabilities occur man-
ifesting themselves as exploding or vanishing gradient problems, de-
pending on whether the weight is big or small. One way to address
this is to truncate the time steps at a computationally convenient size.
In practice, this truncation can also be effected by detaching the gra-
dient after a given number of time steps [58]. In the following, we
will see how more sophisticated sequence models such as LSTMs can
alleviate this.

long short term memory

In the LSTM architecture, each unit in simple ANNs is replaced by a
far more complex architecture called the LSTM unit or block. Math-
ematically, consider that we have h hidden units, the batch size is n,
and the input Xt ∈ Rn×d. An LSTM block contains three gates com-
puted as follows:

Figure 4: Image adapted from [60]

It = σ(XtWxi +Ht−1Whi +bi) (108)
Ft = σ(XtWxf +Ht−1Whf +bf) (109)
Ot = σ(XtWxo +Ht−1Who +bo) (110)

• Input gate It ∈ Rn×h : This gate controls the connection be-
tween the input (flowing from other adjacent blocks) and the
memory cell. It outputs a value of 0 or 1.
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• Forget gate Ft ∈ Rn×h : Note that when the forget takes as
value 1, then the memory cell remembers and does not dis-
count past information.

• Output gateOt ∈ Rn×h: The output gate has the same form of
the forget and the input gate.

The input gate governs how much we take new data into account via
the input nodeZt ∈ Rn×h and the forget gate Ft addresses howmuch
of the old cell St−1 we retain.

Last, we need to define the output of the memory cell, i. e. the hid-
den state Ht:

Zt = tanh(XtWxc +Ht−1Whc +bc) (111)
St = Ft ⊙St−1 + It ⊙Zt (112)
Ht = Ot ⊙ tanh(St) (113)

Loosely said, the input and forget gates give the model the flexibil-
ity to decide when to change the value of the cell St as a response to
subsequent inputs. When back-propapagating the gradient at various
times-steps t ⩾ 1 (BPTT), the derivative of the cell state ∂st

∂st−1
solves

the vanishing gradient problem. Its additive properties and changing
values make the gradient less likely to be degenerate, unlike RNN
where the sameweights are back-propagated through long time-steps.

other architectures

deep lstms

Deep learning consists of stackingmultiple neural networks. The premise
is that each layer will receive the previous output, and then performs
a learning on it, to construct more and more complex features. This
is a new pipeline to construct features, completely different from tra-
ditional machine learning where the features were handcrafted. Deep
learning methods are now state-of-the-art in many fields from com-
puter vision, image processing to language translation. This success
is owed to availability of large labeled datasets and advances made
in computer engineering However, despite the intuition that deeper
architectures would yield better results than "shallow" ones, empiri-
cal tests with deep networks had found similar or even worse results
when compared to networks with only one or two layers [137].

RNNs can be thought of as Deep neural network that comprise T
hidden layers. The aim of this depth is not however to extract abstract
features, but simply to keep in memory the long-range dependencies.
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Therefore, one can think of cascading LSTMs, the first layer will han-
dle the dynamic evolution of the raw data, and the next layer will
receive as output Ht of each sequences, and re-perform the learning
on the hidden states, and so on for each stacked LSTM to provide hier-
archical abstract features of the evolution of data. A two-layer archi-
tecture of stacked LSTMs has been used in [95] for anomaly detection
in time-series.

echo-state networks

Echo-State Network (ESN) were originally proposed by [74] for time-
series forecasting in wireless communication. They were designed to
mitigate the numerical instabilities of RNNs by eliminating the need
to compute the gradient with respect to the hidden layers. The core
of ESN is a sparsely connected random RNN called a reservoir. The
weights of the reservoir are not learned via gradient descent but rather
fixed. The reservoir must satisfy the Echo state property[143]. Only the
hidden to output weights are tuned via least squares for prediction
tasks.

hybrid architectures

Recently, "traditional" time-series analysismethods andmachine learn-
ing are starting to merge through the use of hybrid architectures.
For example [82] presented a model for time-series forecasting us-
ing Auto-Regressive Integrated Moving Average (ARIMA) and ANN.
Such models are generally constructed in a sequential manner, with
the ARIMA model first applied to the original time series to capture
the linear component, and then its residuals (containing non-linear
relationships) are modeled using neural networks. An example of a
real-world application of this hybrid modeling can be found in [49].
This holds the promise of a best-of-wo-worlds scenario where the sta-
tistical learning methods and the newly data-driven architectures are
merged in a favourable way.

convolutional networks for time-series

Motivated by their success for classification tasks for images, researchers
have started adopting Convolutional Neural Network (CNN) for time
series analysis. A convolution can be seen as applying and sliding a
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filter over the time series of sizeN. For a convolution centered around
t, we have:

ct = f(w⊙ x(t− l/2 : t+ l/2) + b) ∀t ∈ [1,N] (114)

Where ct denotes the output of a convolution applied on a univari-
ate1 time-series x of size N with a filter w of length l. Cascading the
same filter on ct will result in a multivariate time-series whose dimen-
sion is equal to the number of filters used. The promise of using mul-
tiple filters is that of deep learning, to learn abstract discriminative
features. The convolutions are usually followed by average or max
pooling layers to reduce the size N of the time-series by aggregat-
ing over a sliding window. This technique allows for achieving some
translation invariance of the learned features. Finally, when the lay-
ers become small enough, it is common to have fully connected layers
before the output layer.

The scattering transform discussed in Chapter 1,1.3.4 can bee seen
as a CNN with two main distinctions:

• The filters are fixed from a family of wavelets and not learned
as in traditional CNNs

• Each hidden layer provides an output

In light of the success of CNN on image classification, they are typi-
cally used on two-dimensional data for image recognition by means
of 2D filters. In [27], authors have extended the scattering transform
to images using a suitable family of directional wavelet family. As a
matter of fact, we have been directly dealing with available observa-
tions in the time-domain. Another paradigm would be to "transform"
time-series to images; two of the most widely used transformations or
mappings are recurrence plots [64], and time-frequency transforma-
tion by means of the spectrogram for example, in 1.3.3. For example,
authors in [129] leverage the theoretical guarantees of the scattering
transform introduced in Chapter 1,1.3.4, and the flexibility of CNN to
perform unsupervised classification on time-series. More deep learn-
ing methods designed for time-series classification can be found in
[73].

a word on detection

In this chapter, we have mainly focused on the problem of time-series
forecasting because it relates to the applicationwe have inmind, namely

1 For a d-variate time-series the filter will also be d-dimensional.
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the detection problem (or anomaly detection) that will be the core of
Chapter 5 and Chapter 6. The detection problem could be considered
the same as finding regions in the time-series for which the forecasted
values are too different from the actual ones. How to quantify too dif-
ferent while providing theoretical guarantees on the detection rates
is the core subject of Chapter 4.

In the final section, we discuss important questions that naturally
arise in any learning framework. For example, the ever-increasing
amount of challenging real-data promotes the use of equally complex
models, when in fact it should not; growing the complexity of the
model will not necessarily lead to the adequate model, this search of
the optimal model is ruled by the principle of parsimony discussed in
the following.

2.3 PARS IMONY : ADEQUACY VS . COMPLEX I T Y

In deciding which model is the best, criteria that allow model com-
parisons are necessary. A major tenet to follow is parsimony, mostly
known now asOccam’s razor, that is themodel with the smallest possi-
ble number of parameters is preferred. First, let’s consider the VAR(p)The generalization

error vs. fit error is
reminiscent of the

bias-variance
trade-off in the

estimation
framework

where p has been supposed known. In practice, this is not the case.
If we oversimplify the model by choosing p̂ < p, the approximations
made by least squares will perform poorly, even on the training data.
An unnecessarily complex model with p̂ > p parameters will per-
form well (overfit) on training data but will have poor performance
on unseen data (generalization error). This search for p̂ can be for-
mulated mathematically by minimizing an objective function of the
model’s complexity subject to the constraint of model adequacy. Par-
simony is usually described as a function of degrees of freedom such
that fewer parameters (thus higher degrees of freedom) correspond
to more parsimony.

The Minimum Description Length (MDL) proposed by [120] is con-
nected to Occam’s rasor in ML. It quantifies the complexity of the
model by the length of the code obtained when that model is used to
compress the data. Loosely said, if the model was successful at learn-
ing the data, then it can compress it using a short code. For further
details on this theory, we refer the reader to Chapter 14 of [34].

If the fitting is carried out by maximization of log-likelihood logL

(ensuring thatmaximum likelihood estimators are asymptotically Gau-
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sian). Themost prominent Akaike, Bayesian andHannan-Quinn Information
Criteria (IC) can be used:

p̂ = argmin
p

IC(p) (115)

AIC(p)
def
= −2 logL+ 2(# parameters) (116)

BIC(p)
def
= −2 logL+ log(N)(# parameters) (117)

HQIC(p)
def
= −2 logL+ 2 log log(N)(# parameters) (118)

For a Gaussian d-dimensional VAR(p) process, we can write them
as [94]:

AIC(p) = log(|Σ̂|) + 2
d2p

N
(119)

BIC(p) = log(|Σ̂|) +
log(N)d2p

N
(120)

HQIC(p) = log(|Σ̂|) + 2
log log(N)d2p

N
(121)

Unlike AIC(p), BIC(p) and HQIC(p) have the advantage of being
consistent estimators, meaning that the probability of selecting the
true lag length approaches 1 as the sample size goes to infinity. The
MDL approach gives a selection criterion formally identical to the BIC,
however recall that it is motivated from an optimal coding viewpoint.

In general, there exists amyriad of procedures for choosing amodel
via other selection criteria or statistical hypothesis testing such as the
Likelihood Ratio test [115].

There also exists a class of these procedures that does not rely on
any probabilistic assumptions. It is based instead on data resampling,
the most popular is cross-validation (with its many variants such as
k-fold or leave out one cross-validation)[135]. These procedures are
based on the idea of repeating the training and testing computation
on different randomly chosen splits of the original training dataset to
have an estimate of the generalization error of the learner.

necessity to rethink generalization for neural

networks

Which network size is more appropriate for a given problem? Unlike
linear models, the answer to this question is not straightforward.

There is a number of theoretical results concerning the number of
hidden layers in a network, for example Hornik [72] has shown that a
single hidden layer feed-forward network with as few as one hidden
layer and arbitrary (bounded and non-constant) activation functions
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can approximate any function of interest to any desired degree of ac-
curacy. Provided enough hidden units are available of course. But how
to choose the number of hidden units? Despite neural networks being
complex in nature, following the principle of parsimony has both the-
oretical and practical advantages: Smaller networks require less hard-
ware implementation costs, training a smaller network require less ex-
pensive computations and produce fast propagation delays from the
input to the prediction. Most importantly, they have good expected
generalization capabilities.

The usual approaches pursued to impose parsimony are heuristics
such as regularization, stopped training and pruning methods. The un-
derlying idea of these approaches is that we allow the learner to be
over-parameterized but we force the parameters to be sparse either by
adding a penalty term to the cost function (for example, L1 regulariza-
tion to enforce sparsity or L2 to favour low magnitude solutions, or
both as in ElasticNet [146]); or stopping the learning when the error
on the validation set starts to grow, or removing the less significant
weights by pruning. A survey of the latter is provided in [119]. The
main disadvantage of regularization, pruning and stopped training is
that these methods comprise of a strong judgemental component[5]
(choice of the penalty term, the stopping criterion, the significance cri-
terion in pruning), which makes the model building process difficult
to reconstruct. Therefore, attempts have been made to apply hypoth-
esis statistical testing to ANNs [5], or derive Information criteria for a
feedforward ANNs [109]. Research on model selection in neural net-
works is still an open problem; the Probably Approximately Correct
(PAC) learning has drawn together statistics and ML in an attempt of
deriving mathematical foundation for the applied practice of ML[65].

Beyond enhancing generalization capabilities, imposing parsimony
in neural networks is of crucial importance as larger networks trans-
late to greater computer demands, and by extension to greedy en-
ergy costs. Over-parameterized ANNs are also culprit of their lack
of explain-ability. Rethinking how we do deep learning in the context
of climate change and making it user-friendly are a necessity. Some
paradigms promise to evade computational burden by transfer learn-
ing and fine-tuning where trained labels are re-used rather than start-
ing the training from scratch or knowledge distillation techniques [59].

2.4 CONCLUS ION

We started the introduction of Part i with an important question: "For
what class of problems is a method intended to be used?". The confusion
about this question is a result of failing to define the problem explicitly
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enough. Any available a priori knowledge must be exploited and may
lead to the preference of a particular model. If suitable to the problem
at hand (given that all underlying hypotheses are met by the data),
choosing a linear model comes with its advantages: Guarantees of
convergence to optimal weights, consistent estimates of the number
of parameters and various statistical procedures to test the model’s
adequacy. If judged too simplistic and biased for the problem, resort-
ing to non-linear models allows for learning more complex mappings,
provided that large labeled datasets are available but at the expense of
losing convergence guarantees, expensive computational complexity
and lack of explainability.

Time (T)/
Frequency (F)

Linear (L)/
Non-linear (NL)

Stationary (S)/
Non-stationary (NS)

(V)ARMA T L S
(V)ARIMA T L NS
Fourier Transform F L S
Spectrogram F L NS
Scattering Transform F L NS
Kernal AR T NL S
Volterra models T NL S
RNNs-LSTMs T NL S

Table 1: Synoptic of the presented tools in Part i. Parametric and non-
parametric models presented are grouped, the columns intend to
classify the different tools in time or frequency procedures, for
linear or non-linear systems, procedures for stationary or non-
stationary processes.

This discussion closes Part i which was dedicated to the introduc-
tion of the main technical tools related to the main contributions of
this manuscript. Hopefully, this part has shown how Gaussianity oc-
cupies a premier place in signal processing and statistical learning.
Hence, validating this assumption is necessary. In the following chap-
ter, we proceed with the first contribution focused on a statistical
procedure to assess the departure from Gaussianity. Subsequently, in
Chapter 5, Chapter 6 this contribution will be translated to an opera-
tional detector tested on both synthetic and real data.





Part II

J O IN T NORMAL I T Y TE ST FOR
T IME - S ER I E S

This part is devoted to the presentation of our contribu-
tions to testing Gaussianity of multivariate time-series.
First, Chapter 4 provides a bird’s eye view on existing pro-
cedures and explains the necessity of deriving a new test
in our framework. Chapter 4 details the theoretical back-
ground and calculation steps necessary for deriving the
test, our main contribution will be stated as a theorem
which then will be implemented and tested on colored
copula. Successively, Chapter 5 efficiently translates our
theoretical results into a practical sequential algorithm
for the detection of non-Gaussian signals embedded in
Gaussian noise.





3
B IRD ’ S EYE V IEW ON NORMAL I T Y

TESTS

«Amends might be made in the interest of
the new generation of students by printing in
leaded type in future editions of existing text-
books and in all new text-books:
Normality is amyth; there never was, and never
will be, a normal distribution.»

Geary, 1947

Geary’s over-statement is meant to point out situations where Gaus-
sianity is assumed without any foundation. When assigned to a popu-
lation, it gives birth to many desirable properties, but as important as
the assumption of Gaussianity is, it is equally important to verify its
actual validity. There is a large literature on normality tests that we
cannot cover due to the continuous proliferation of the procedures. How-
ever we propose instead a taxonomy based on two criteria, along with
some selected examples. The first aim is to highlight the imbalance be-
tween classes of normality tests, and motivate the necessity of deriving
a novel normality test in our framework.
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3.1 PROBLEM STATEMENT

Normality tests are a subset of binary hypothesis testing procedures:

Problem P1: Given a finite sample of sizeN of d-variate
random variables x(n), X def

= {x(1), . . . , x(N)}:

H0 : X is Gaussian versus H̄0 (122)

where variables x(n) ∈ Rd are identically distributed. We do not
oppose any alternative to the null hypothesis H0. This is important
since it implies two things, first that the test statistic needs to be fully
described under the null hypothesis only. Second, there cannot be an
optimal test for the null hypothesis, the type II error remains unde-
fined and only one parameter controls the level of the test, that is the
significance level α, false alarm rate or the type I error in statistics:

α = P(choose H̄0|H0 is true) (123)

If the test does not lead to the rejection of the null hypothesis, the
latter is by no means confirmed or validated. Myriad of test proce-
dures have been derived and in the following we propose a taxonomy
based on whether they were designed for scalar processes (d = 1)
or d > 1, and whether they assume that x(n) is a white process ,i. e.
E{x(n)x(m)T } = 0 for n ̸= m or a colored (as opposed to white)
process ,i. e. identically distributed but non-independent.

Before starting the taxonomy of normality tests, let’s define some
desirable properties a normality test should satisfy:

Some desirable properties of the test statistic

• Affine invariance: Any test statistic t(X) should satisfy i. e.

t(
∑
n

Anx(n) + c) = t(
∑
n

x(n))

for any d by d matrixAn and c ∈ Rd. Otherwise, the test could
have conflicting conclusions on the same data.

• Fully defined limiting distribution under the null hypothesis

• In his critical review, Henze [67] points out the fact that skew-
ness is inconsistent against non-normal elliptically symmetric
distributions and Kurtosis-based tests are only consistent if the
population kurtosis of the alternative is different than that of
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normal distribution. Consistency is unarguably a desirable prop-
erty of a test statistic, we will be less strict in demanding this
property from the tests we choose to elaborate upon. Most of
the normality tests fail to be consistent against all alternatives.
Any a priori knowledge about the data should be used to choose
an adequate descriptive measure.

• Feasibility with respect to the number of samples and their di-
mension. We will only deal with the case d < N. The reader
interested in high-dimensional settings d > N is referred to
[90] where authors propose a projection-based test for high di-
mensional setting when N is small and in the recent work of
[142] a test statistic based on Mardia’s Skewness is defined in
the asymptotic framework N,d→∞.

3.2 A TAXONOMY OF NORMAL I T Y TESTS

some graphical tools

A good preliminary approach to assess the normality of observations
is to use graphical tools.

the histogram

For simplicity consider x1, . . . , xN ∈ [0, 1] i.i.d observations. The his-
togram splits the set [0, 1] into bins and uses the count of values in the
bin as a density estimate. If we have k bins, this yields the partition:

B1 = [0,
1

k
),B2 = [

1

k
,
2

k
) . . . ,Bk = [

k− 1

k
, 1]

Many rules dictate the choice of the number of bins, such as the square
root choice k = ⌊

√
N⌋ or Rice rule k = ⌊2N3/2⌋ to name a few. ⌊.⌋ denotes integer

partFollowing the arguments in [53], it is desirable that the number of
bins is proportional to the cube root of the sample size. For x ∈ Bk:

f̂(x) =
k

N

N∑
i=1

#(xi ∈ Bk)

The histogram is a popular density estimator as it is easy to draw. It In blue histogram of
a standard normal
variable. In red, the
kernel density
estimator.

is usually smoothed using a Kernel density estimator defined as

f̂(x) =
1

Nh

N∑
i=1

k(
xi − x

h
)

where h controls the "bandwidth" of the smoothing.
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qantile-qantile plots

TheQ-Q plot of sample x is a plot of the order statistics x(1) ⩽ x(2) ⩽
. . . x(N) from a distribution F against y(1) ⩽ y(2) ⩽ . . . y(N) of a
specifiedmatching distributionG. If FmatchesG then for some t ∈ R

and s > 0, F(x) = G(x−ts ), translating to (E{x(i)}− t)/s = E{y(i)}

which means that the order statistics will be centered on the line y =
x−t
s .

(a) Normal distribution (b) Lepokurtic distribution

Figure 5: QQ-plot of observations against N(0, 1)

Detailing two graphical approaches is by no means exhaustive, we
refer the reader to the survey by Fisher [50]. The extension of uni-
variate graphical tools to multivariate settings has been suggested by
many researchers e. g.[41],[102].

For the sake of simplifying some of the presented test statistics,
consider yi = xi−µ

σ in the scalar case, and yi = S−1/2(xi − µ) for
xi ∈ Rd.

3.2.1 for scalar i.i.d processes

A class of normality tests, of which we cite 2, relies on measuring the
distance between the empirical cumulative distribution of the i.i.d
observations and F the cumulative distribution function of a standard
normal.
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kolmogorov-smirnov test

K = sup|F̂(y) − F(y)|

K = max(D+,D−)

D+ = max
i∈{1,...,N}

(
i

N
− F(yi)

)
D− = max

i∈{1,...,N}

(
F(yi) −

i− 1

N

)
Kolmogorov derived the asymptotic distribution of K, and Smirnov
gave percentage points of this statistic in 1948, and only then started
the practical use of this statistic. A practical problem is that usually
the mean and variance are unknown and estimated from the obser-
vations, in this case the asymptotic distributions of K and K̂ differ
substantially.

Another test that’s based on the distance between the empirical
function is Anderson-Darling [6] test statistic:

AD = −N−

N∑
i=1

(2i− 1)

N
(log F(yi) − log F(yN+i−1)) (124)

Using a bootstrap technique, this test has been extended to colored
processes by [118] as we will see in the subsection 3.2.3.

the shapiro-wilk test

The test statistic is the ratio between the linear estimation of σ2 based
on order statistics and the empirical variance [131]:

W =

(∑N
i=1 aix(i)

)2∑
i(xi − µ)

2
(125)

such that x(1) ⩽ x(2) ⩽ . . . ⩽ x(N) are order statistics and the co-
efficients aT = mTV−1

mTV−2m
, m = [m1,m2, . . . ,mN] are the means of

order statistics of a Gaussian i.i.d random variables.1
This test is suitable for small sample size (N ⩽ 100). Another test

of the same kind as Shapiro is proposed by D’Agostino et al (1971)
[36]. Shapiro and Francia [131] propose a statistic for large samples.

skewness-kurtosis test

This test is based on two descriptive measures: Skewness and Kurto-
sis. The omnibus test initially proposed by D’Agostino-Pearson [37]

1 The vector of order statistics for N(0,σ2) is E{x(1) . . . x(N)} = µ+mσ
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combines the standardized skewness and kurtosis, however this test
assumes independence between the two moments, which is not the
case and thus is not recommended in practice. Bowman and Shenton
[21] proposed an improvement of the test statistic by comparing:

SK =
N

6

( µ̂3
σ̂3/2

)2
+
N

24

( µ̂4
σ̂2

− 3
)2

(126)

to the upper critical values of the asymptotic chi-distribution with 2
degrees of freedom χ22. This statistic is justified by this limiting result
for independent data under the null hypothesis:

√
N

(
µ̂3
σ̂3/2
µ̂4
σ̂2

)
→d N(

(
0

3

)
,

(
6 0

0 24

)
) (127)

This test statistic was subsequently derived by Jarque and Bera [75]
as the Lagrangian Multiplier (LM) test against the Pearson family dis-
tributions. It’s also called the Jarque-bera test2. Additionally, [21] pro-
posed another statistic:

SK ′ = X2s(
µ̂3

σ̂3/2
) +X2s(

µ̂4
σ̂2

)

where X2s() is the normal variable obtained by Johnson’s Su transfor-
mation. Since Xs( µ̂3

σ̂3/2
) and Xs( µ̂4σ̂2 ) are normal and nearly indepen-

dent, this statistic has also a Chi-squared limiting distribution.
The rationale behind using an omnibus test is to overcome the short-

comings of inconsistency when deriving a test based on only onemea-
sure. The list of normality tests for scalar i.i.d process can go on and
on. For completeness, see excellent survey of [99] where at least 50
univariate tests were listed.

3.2.2 for d-dimensional white processes

Many generalizations of the univariate test procedures presented in
the previous section for testing multinormality can be found in the
literature. See the survey of Henze [67], and more recently by Henze
& Ebner [42]. The latter focuses on affine invariant and consistent test
procedures. A complementary survey relaxing theses properties can
be found in [102].

2 Its implementation in Python statistical package goes under the name of Jarque-
bera.
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mardia’s skewness-kurtosis test

Recall the multivariate generalizations of the Skewness β1,dand Kur-
tosisβ2,d defined in Equation 28, defined in Chapter 1, and their scalar
counterparts Equation 31:

B̂1,d =
1

N

N∑
i,j=1

(
x(i)T Ŝ

−1
x(j)

)3
and

B̂2,d =
1

N

N∑
n=1

(
x(n)T Ŝ

−1
x(n)

)2
Theorem 2 (Asymptotic distribution of B̂1,d) Under the assumption
that x ∼

i.i.d
Nd(0,S), N6 B̂1,d has a Chi-squared χ2 distribution with

d(d+1)(d+2)/6 degrees of freedom. Additionally,E{B̂1,d} =
d(d+1)(d+2)

2

and Var{B̂1,d} =
12(d+1)(d+2)

N2 .

Note that in testing univariate normality, more emphasis has been
placed on the use of

√
B̂1,d rather than B̂1,d. Since

√
B̂1,d is always

positive, it cannot be seen as a generalization of K1.

Theorem 3 (Asymptotic distribution of B̂2,d) Under the assumption
that x ∼

i.i.d
Nd(0,S), B̂2,d(N) is asymptotically normal, with mean

d(d+ 2)N−1
N+1 and variance

8d(d+2)
N + o( 1N).

Hence to test multinormality, one could separately test that popula-
tion skewness β1,d = 0 and population kurtosis β2,d = d(d+ 2) by
means of the theorems 2,3. Their full proofs are derived in Sections
2 and 3 of [98]. An alternative demonstration of the limiting distribu-
tion of B̂2,d can be found in [86].

In [100], Mardia & Foster derived 6 omnibus normality tests com-
bining the skewness and kurtosis. In their attempt to derive a similar
omnibus test to the univariate case. Mardia and Foster [100] proposed
three transformations of B̂1,d, and in total 6 different omnibus tests of
which three account for the non-negligible correlation between B̂1,d
and B̂2,d that is not negligible even for large N.

3.2.3 for scalar colored processes

There are no guarantees ensuring that the above tests are still consis-
tent when the assumption of independence between samples (white-
ness) is violated. Gasser [54] and Moore [103] both studied the effect
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of dependence of time-series on the Chi-squared test and concluded
that dependence yields a loss of apparent normality.

epps test

Epps [48] proposed a test for stationary time-series that tests whether
the characteristic function coincides with the Gaussian’s characteris-
tic function at certain points on the real line. More formally, letN > 0
and

Λ = {λ1, λ2, . . . , λN, 0 < λi ⩽ λi+1}

. As pointed out by many authors, the implementation of the pro-
cedure is rather difficult [92, 111, 118]. But in principle, given that
the process verifies a set of conditions [48], the procedure consists of
defining a sensing functions:

ĝ(x(t), λ) = [cos(λ1x(t)), sin(λ2x(t)) . . . sin(λNx(t))]
T

Additionally define:

ĝ(λ) =
1

n

n∑
t=1

[cos(λ1x(t)), sin(λ2x(t)) . . . sin(λNx(t))]
T

gθ(λ) = [Re(Φθ)(λ1), Im(Φθ)(λ1) . . .]
T

where Re(Φθ)(λ1) and Im(Φθ)(λ1) denote respectively the real and
imaginary parts of the characteristic function of a normal variableΦθ
with θ = (µ,σ2).

The joint spectral function of the sensing functions {g(x(t), λ)} is
estimated at frequencyω = 0. Then its inverseG−1 is calculated. The
test statstic proposed by Epps is then defined as the minimum of the
quadratic form:

Qn(λ) = argmin
θ

(ĝ(λ) − gθ(λ))
T G−1 (ĝ(λ) − gθ(λ))

Theorem 4 (Epps Test) If x is a stationaryGaussian process thennQn(λ)
has a χ2 limiting distribution with (2N− 2) degrees of freedom ∀λi ∈
Λ.

As pointed out by [111], The Epps test is not consistent if the real
line coincides with that of a Gaussian distribution. They alleviate this
by selecting the set of λ randomly. Then they incorporate this up-
graded Epps test in their random projections based Gaussianity test
[111] that will be discussed in subsection 3.2.3.
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correction of skewness-kurtosis test by gasser

Let S(j) = E{x(n)x(n+ j)} and F(k) =
∑+∞
j=−∞ S(j)k. The stationary

process should satisfy the weak-dependent condition

+∞∑
j=−∞S(j) <∞

Gasser [54] proposed the following limiting distribution of the Skew-
ness and kurtosis for colored processes:

√
N

(
µ̂3
Ŝ3/2
µ̂4
Ŝ2

)
→d N(

(
0

3

)
,

(
6F(3) 0

0 24F(4)

)
) (128)

However, he did not provide any formal analysis or any recommen-
dation about the selection of the truncation number of the infinite
sums.

correction of skewness-kurtosis test by lobato-

velasco

In the same spirit, Lobato & Velasco [92] propose the following test
statistic: Let

F̂(k) =

N−1∑
τ=1

2Ŝ(τ)(Ŝ(τ) + Ŝ(N− τ))k−1 + Sk (129)

Ĝk = N
(µ̂3)

2

6F(3)
+N

(µ̂4 − 3Ŝ
2)2

24F̂(4)
(130)

Theorem 5 (Lobato and Velasco SK test, 2004) Let x = [x(1), . . . , x(N)]T

be an ergodic stationary process. If x is Gaussian, then

Ĝk →
N→∞ χ22

Ĝk diverges to ∞ whenever µ3 ̸= 0 and µ4 ̸= 3S2 if E{x(n)16} < ∞
and a set of conditions defined in [92].

random projections

First we need to introduce the following definition and theorem: Let
H denote a separable Hilbert space.
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Definition 3.2.1 (Dissipative distribution) Adissipative distribution
η generalizes an absolutely continuous distribution to the infinite dimen-
sional space.

Theorem 6 (Cuesta-Albertos et al.[111]) Let η be a dissipative dis-
tribution onH andh andH-valued random element, then x is Gaussian
if and only if:

η(h ∈ H : ⟨x,h⟩ has a Gaussian distribution) > 0 (131)

Since η is a dissipative distribution, the 0− 1 law holds [111] and x is
not Gaussian if and only if:

η(h ∈ H : ⟨x,h⟩has a Gaussian distribution) = 0 (132)

and x is Gaussian if and only if:

η(h ∈ H : ⟨x,h⟩has a Gaussian distribution) = 1 (133)

Loosely said, to test the Gaussianity of x, we have to sample at ran-
dom h ∈ H using a dissipative distribution, and test whether the
projection ⟨x,h⟩ is Gaussian. If the latter is Gaussian, then Gaussian-
ity of x is ensured with probability 1. In practice, h is drawn with a
stick-breaking process that makes use of beta distributions [111].

Once h has been fixed, the new process yh can be constructed:

yh(t) =

∞∑
i=1

h(i)x(t− i) (134)

In practice, testing for the normality of yh is of course left to the prac-
titioner, but the authors have used the Lobato-Velasco and Epps test.
Even though, Theorem 6 implies that it one projection suffices to con-
clude, the authors advise to take more than one-projection, applying
the test and then mixing the p-values using the False Discovery rate
as proposed in Benjamini-Yuketieli.

bootstrap approximation of the anderson-darling

test

Arguing that making use of classical asymptotic inference for the An-
derson darling statistic is problematic and involved for time-series,
authors of [118] use an auto-regressive sieve bootstrap to estimate its
distribution for time-series. x(t) is a stable invertible auto-regressive
process expressed by:

x(t) =

∞∑
i=0

βix(t− i) + ϵ(t)
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The main idea is to generate bootstrap sample ϵ(t)B to approximate
the residuals with a finite order auto-regressive model AR(p) by least
squares estimation. From which a bootstrap sample of x(t)B is de-
duced using xB(t) =

∑p
i=0 β̂ix(t− i) + σ̂ϵ(t)

B . They are plugged
in the test statistic, and this second step is repeatedM times yielding
ADB1 , . . . ,ADBM. They serve as an estimate of the distribution ofAD
under the null hypothesis.

hinich’s bispectrum test

The rth order Higher-order spectrum vector defined in Equation 45
reduces in the scalar case to:

p2 =

+∞∑
τ1=−∞

+∞∑
τ2=−∞ κ3(τ1, τ2) exp−jω1τ1−jω2τ2

Given the symmetries of P2 its principle domain is the triangular set
W = {0 ⩽ ω1 ⩽ π, 0 ⩽ ω2 ⩽ min(ω1, 2(π−ω1))}.

If x(n) is linear therefore it admitsMA(∞) representation with re-
spect to awhite process ϵ(n)with varianceσ2 andp(ω) = |H(ω)|2σ2.
The following equality is the backbone of Hinich’s bispectrum test:

p2
H(ω1)H(ω2)H∗(ω1 +ω2)

=
E{ϵ(t)3}

(σ2)3/2
= K3 (135)

For a non-Gaussian linear process, the normalized bispectrum is con-
stant, and zero for all frequency pairs if the process is linear Gaus-
sian. A non-linear time series, on the other hand, exhibits a skewness
function with bifrequency dependent magnitude. In Hinich’s original
test, the bispectrum is estimated by averaging the two-variable peri-
odogram using a rectangular window:

B̂2(m,n) =M−2
mM−1∑

j=(m−1)M

nM−1∑
k=(n−1)M

F(j,k)

such that F(j,k) = N−1x̂(ωj)x̂(ωk)x̂(ωj+k). The arbitrariness of the
choice ofM was elegantly addressed in [124] by maximizing the test
statistic over the feasible values ofM. A kernel-smoothing version of
Hinich’s test was also proposed in [15]:

Hk =
2πN

δB2

k∑
i=1

|P̂2(ω1,i,ω2,i)|2

P̂1(ω1,i)P̂1(ω2,i)P̂2(ω1,i +ω2,i)
(136)

where p̂ and p̂2 are kernel-smoothed estimators of the spectral and
bispectral density that are shown to converge faster, but the smooth-
ing will inevitably induce bias and lead to higher false alarms.
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{(ω1,i,ω2,i)}i=1...k are frequency pairs contained in the set W. B
is a bandwidth parameter associated with the bispectrum estimation,
and δ is a normalizing constant associated with p̂. Under H0, Hk is
distributed as χ22k.

3.2.4 for d-dimensional colored processes

generalization of hinich’s bispectrum

Hinich’s bi-spectrum generalizes to multivariate series as proposed in
[141]. The rth order spectral vector for linear multivariate time-series
is expressed as:

pr(ω1, . . . ,ωr−1)(G(ω1)⊗ . . .⊗G(ωr−1))
−1p∗r(ω1, . . . ,ωr−1) =

κTr
(
Σ⊗ . . .⊗Σ︸ ︷︷ ︸

r times

)
κr (137)

Wherein x(t) =
∑∞
i=0Aiϵ(t− i),E{ϵ(n)ϵ(m)T } = δmn Σ andG(ω) =

H(ω)ΣH∗(ω), H(ω) =
∑∞
n=−∞An exp−jωn.

In particular for r = 3:

Hij = p̂∗2(ωi,ωj)(G(ωi)⊗G(ωj)⊗G∗(ωi +ωj))
−1p̂2(ωi,ωj)

can be approximated by a χ2 distribution. This forms the basis for hy-
pothesis testing of departures from multivariate Gaussianity and lin-
earity. However, in practice, this procedure suffers from severe draw-
backs. The spectral estimators require not only the careful choice of
the smoothing window and its width, but also very large number of
samples to converge (of the order of 100 of thousands) rendering their
application for real-time responses very slow; moreover [18] have put
Hinich’s test under scrutiny and showed that it suffers from severe
statistical problems. They propose the use of surrogate data to ensure
the correct false alarm rate.

non-linear time-embedding

Back to a class of time-domain procedures where we consider a fi-
nite set N of observations x(t). Authors in [106] apply a non-linear
transformation to x(t), for example if we are interested in third order
moments, then a possible embedding is:

z(t) = [x(t), x(t)x(t+ 1),2 x(t+ 1), x(t)3, . . .]T ∈ Rd

Their test statistic is based on the deviation of the sample z(t) from
its statistical mean:
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Theorem 7 ([106]) Let µ̂i = 1
N

∑N
t=1 zi(t), and µi = E{zi} for i ∈

{1, . . . ,d}. For a strong-mixing 4.2.1 Gaussian process (under the null
hypothesis): √

NΣ−1 (µ̂− µ) −→
N→∞ N(0, Id)

Therefore the limiting distribution of the quadratic form L:

L = N (µ̂− µ)T Σ−1 (µ̂− µ)

is χ2 with d degrees of freedom.

Our work can be seen as a subset of this class of procedures, where
we focus on Mardia’s kurtosis (therefore fourth order moments) in
the general multivariate case X ∈ RN×d and derive its limiting dis-
tribution. For that end, certain non-linear transformations of the type
xa(n)

rxb(j)
mxc(i) appear in our computation up to order 16.

Chemistry between Gaussianity, linearity and stationarity tests

We mainly focused on tests aimed at characterizing Gaussianity, be-
sides Hinich’s procedure that tests both Gaussianity and linearity. As
a matter of fact, there are not only procedures for testing linearity
[15, 63, 69] but also for testing stationarity [4, 20] and serial depen-
dence (whiteness) [38, 134]. Since these properties are closely related,
as pointed out in the first chapter, the tests are naturally related in the
sense that as explained in [33]:

• As pointed out by [54, 104], a test designed for white processes
applied to dependent data overrejects the null hypothesis of nor-
mality.

• All theGaussianity procedures assume stationarity. A non-stationary
Gaussian process can therefore bemisspecified as non-Gaussian.

• All Gaussian processes are linear, but there exists linear non-
Gaussian processes. Non-linear processes are all non-Gaussian.

3.3 DI SCUSS ION AND CONCLUS IONS

On one hand, we show how testing normality for (scalar or multi-
variate) white processes has the lion’s share of the proposed proce-
dures. When the time-dependence enters the scene, test procedures
become scarce for univariate time-series and even scarcer for multi-
variate time-series. Despite the efforts made on testing Gaussianity
for univariate time-series, both in time and frequency domains, their
shortcomings hinder their generalization to multivariate time-series.
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Epps test’s implementation is already difficult in the scalar case and re-
quires many steps that cannot be efficiently translated in a real-time
framework. The random projections method is powerful but it still
depends on Epps test or Lobato-velasco for testing the univariate nor-
mality of the time-series. A possible solution in the same spirit as
[118] would be to use auto-regressive seive bootstrap methods to ap-
proximate the limiting distribution of multivariate generalizations of
Anderson-darling or Cramér-von-mises for time-series. For real-time
procedures, this would require repeating the bootstrap steps multiple
times.

In our work, the candidate that seems to fit best our computational
constraints would be based on one of the descriptive measures: Skew-
ness or Kurtosis. we carry on the work of Mardia, and the corrections
of Gasser and Lobato-Velasco, by deriving the limiting distributions
of Mardia’s Kurtosis for multivariate time-series. If the calculations
are rather involved, the computational burden is very low.

We are also aware of the shortcomings of this choice, and we do
not claim that our proposed test fully characterizes normality against
all alternatives i. e. as pointed out by Henze [67], the test procedure
is only consistent for alternatives that satisfy β2,d ̸= d(d+ 2). In the
same spirit as [111] [96], the final testing procedure will be based on
random bivariate projections, hence it is unlikely that all projections
satisfy β2,2 = 8. Additionally, we use the a priori knowledge we have
about the transients we want to detect: when a seismic signals arrives,
the signals are very peaked in the beginning which translates as a
heavy-tailed distribution.
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ABSTRACT

The following theoretical derivation of the test statistic were published
in the European journal Signal processing. We reproduce in the
following many of the equations and paragraphs that are present in
[43]. Initially, Pierre & Laurent [31] were the first to formalize this
problem and they have provided the limiting distribution of Mardia’s
test for a particular case of time-embedding time-series. They show
that their test is applicable and exhibits a good power on both synthetic
and real data. This has encouraged us to carry on their work, and
derive the limiting distribution of Mardia’s kurtosis in the general
multivariate case.

Contents

4.1 Reintroducing the test statistic . . . . . . . . . . 69

4.2 Assumptions and Lemmas . . . . . . . . . . . . . 71

4.2.1 calculus issues . . . . . . . . . . . . . . . 73
4.3 Expression of the mean of B̂d(N) . . . . . . . . . 74

4.4 Expression of the variance of B̂d(N) . . . . . . . 75

4.5 Main Result . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Asymptotic distribution of B̂d(N) . . . . 77
4.5.2 Mean and variance of B̂1(N) in the scalar

case (d = 1) . . . . . . . . . . . . . . . . 80
4.5.3 Mean and variance of B̂2(N) in the bi-

variate case (d = 2) . . . . . . . . . . . . 81
4.6 Particular case: multidimensional embedding of

a scalar process . . . . . . . . . . . . . . . . . . . 82

4.6.1 Bivariate embedding . . . . . . . . . . . 83
4.7 The test in practice . . . . . . . . . . . . . . . . . 83

4.8 Performance comparison on Colored Copula . . . 85

4.8.1 Colored copula . . . . . . . . . . . . . . 85
4.8.2 The multi-variate case . . . . . . . . . . 88

4.9 Contributions . . . . . . . . . . . . . . . . . . . . 91

67



68 deriving the normality test

The interest in techniques involving higher order statistics has grown
considerably during the past decades [29, 32, 66, 112]. Actually, as we
have seen in Chapter 1, first and second order statistics allow an ex-
haustive characterization of Gaussian processes and linear systems.
Despite the practical importance of the Gaussian distribution, thanks
to the central limit theorem, and the prevalence of linear dynamical
systems in small fluctuations models, many situations do not resort to
these assumptions. As a consequence, detecting departure from Gaus-
sianity arose as a means to detect and characterize non linear behav-
ior, detection of changes in dynamical regimes [11], etc. Higher-Order
Statistics (HOS) were also shown to carry valuable information for
blind identification problems, source separation and in measuring in-
formation theoretic quantities [32], to name a few applications.

The present growth of interest in sensor networks and our ability to
simultaneously record time series representing the fluctuations of nu-
merous physical quantities, naturally leads to consider d-dimensional
processes. Surprisingly enough as we have seen in the previous chap-
ter, normality tests for such d-dimensional stochastic processes were
not so much investigated. Therefore, the purpose of this chapter is to
propose a normality test that is simple to implement, even for colored
(time correlated) d-dimensional processes, eventually at the expense
of quite complicated and lengthy calculus to derive the exact form
of the test. For this reason, we shall focus on the multivariate kurto-
sis proposed by Mardia in [98] for i.i.d. d-dimensional samples, and
partially extended for colored samples in [31].

contributions. In a first contribution, we extend the results
of [31] and the nature of the d-dimensional samples is no longer re-
stricted to be obtained by time delay embedding. We give the exact
formulas for the general case of a bivariate process, for instance a
source observed by two sensors or the bivariate projection of the ob-
servations of a d-axis sensor. The latter results lead to the second con-
tribution, generalizing the tests proposed in [96, 98] based on 1D pro-
jections and i.i.d samples, or in [111] for scalar n.i.d. samples. The ben-
efits of using 2D is clear, as the resulting tests are subsequently shown
to outperform 1D projection-based tests, via computer experiments.
The importance of joint normality and the performance of our test is
illustrated on n.i.d. copulas, i. e. with colored Gaussian marginals.
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4.1 RE IN TRODUCING THE TEST STAT I ST IC

The population kurtosis measure of a d-variate processX as proposed
by Mardia [98]:

β2,d = E{(x(n)TS−1x(n))2}. (138)

Other definitions were suggested, for instance Mori et al. [105] de-
fined the kurtosis as a d× d matrix:

B = E{y(n)y(n)Ty(n)y(n)T }− (d+ 2)Id

wherein y(n) = S−1/2x(n). Mardia’s test can be seen as:1

β2,d = Tr(B+ (d+ 2)Id)

Malkovich and afifi [96] suggested using the definition of univariate
definition of the kurtosis on linear combinations of x(n).

Lemma 4.1.1 For normally distributed samples i. e.X ∼ Nd(0,S), one
can easily show that βd = d(d+ 2).

Proof.

β2,d = E{
∑
a,b

xa(n)xb(n)xc(n)xd(n)GabGcd}

=
∑
a,b,c,d

([3]SabScd)GabGcd

=
∑
a,b

SabGab
∑
c,d

ScdGcd + 2
∑
abcd

SacGcdSbdGba

= Tr2(SG) + 2Tr(SGSG) = d2 + 2d

2

properties and shortcomings

Its sample counterpart for a sample of size N is:

Bd(N) =
1

N

N∑
n=1

(x(n)TS−1x(n))2 (139)

It is worth noticing that S being the exact covariance matrix, all
random realizations involved in the latter equation are standardized

1 or alternatively as β2,d = Tr(y(n)y(n)T ⊗y(n)y(n)T )
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(recall that we assume zero-mean processes). Thus, the advantage of
this test variable is that it is invariant with respect to linear trans-
formations, i.e., y = Ax. In practice, the covariance matrix S is un-
known and is replaced by its sample estimate, Ŝ, so that we end up
with the following test variable:

B̂d(N) =
1

N

N∑
n=1

(
x(n)T Ŝ

−1
x(n)

)2 (140)

with

Ŝ =
1

N

N∑
k=1

x(k)x(k)T . (141)

One obvious advantage is that it characterizes d-variate random vari-
ables while being scalar. This is important from computational view-
point. Perhaps the easiest way to give intuition to this measure is
to see it as the the arithemtic mean of Mahalanobis distance dnn =√

x(n)T Ŝ
−1
x(n) raised to the fourth power i. e. B̂d(N) = 1

N

∑N
n=1 d

4
nn.

A disadvantage was pointed out by Koziol [86] who noticed that
in Mardia’s definition only some entries of κ4 are taken into account,
namely:

β2,d = E{
∑
a=b

y4a +
∑
a̸=b

y2ay
2
b}

They suggested the alternative

B ′2,d =
1

N2

N∑
i=1

N∑
j=1

(y(i)Ty(j))4

Hence, Mardia’s Kurtosis can have the same numerical values for dis-
tributions with different shapes as stated and illustrated in [83]:

Figure 6: Two different bivariate asymetric Laplace distributions having the
same value of Mardia’s Kurtosis β2,2 = 20. Image taken from [83]



4.2 assumptions and lemmas 71

However, Mardia’s measure is still suitable for hypothesis testing,
since under the null hypothesis of a Gaussian distribution, (and in gen-
eral for all elliptically symmetric distributions), rth order moments
which are odd are null andMardia’s kurtosis contains all the elements
of cumulant vector κ4.

Mardia has derived the limiting distribution of this measure for i.i.d
d-dimensional processes, and we have stated the theorem in Chap-
ter 3, in 3.2.2. Based on his findings, he proposes to test normality by
testing β2,2 = d(d+ 2).

Another formulation of Theorem 2 is:

z
def
= (B̂d−d(d+ 2)

N− 1

N+ 1
)/
√
8d(d+ 2)/N −−−−→

N→∞ N(0, 1) (142)

This shows that the quantities z and
√
N(B̂d − β2,d)/

√
8d(d+ 2)

are asymptotically equivalent as N → ∞. The rejection of the null
hypothesis is for large or small values of B̂d; it is interpreted as a
departure from normality, in the sense that the multivariate kurtosis
of x, β2,d, is sufficiently far from d(d+ 2).

In practice, for large values ofN, we can test the multinormality of
x by comparing z to the critical values ±1, 96 of a standard normal
(for a test level of 5% ). If |z| ⩽ 1, 96 then the gap is not significant
and we cannot reject the assumption of normality.

The objective of this chapter is to derive the limiting distribution
of Mardia’s measure, for n.i.d d-dimensional processes. Since this in-
volves heavy calculations, we need to introduce some preliminary
tools.

4.2 ASSUMPT IONS AND LEMMAS

In this section, partial useful results are established. Each is associ-
ated with a lemma, and represents a step towards the derivation of
the exact expression of the statistics of B̂d(N) defined in (140) for
multivariate colored processes:

• Lemma 4.2.1 proves that ∆ = Ŝ−S varies as O(1/
√
N).

• Lemma 4.2.2 uses the preceding result in order to express the
sample precision matrix Ĝ = (S+∆)−1 as a function of the
exact precision matrix G and of the approximation matrix ∆,
up to order O(∥∆∥3).

• Finally, lemma 4.2.3 allows to derive the approximate expres-
sion of B̂p(N) in o(1/N).
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From now on, we assume a mixing condition upon x(n), necessary
to relax the i.i.d. property while maintaining convergence of various
terms. Recall that we have met this property in Chapter 1 and estab-
lished it link with ergodicity. We nowmake use of it in order to derive
the limiting distribution of our test statistic.

Assumption 4.2.1 (α-mixing) UnderH0, x(n) is a stationary Gaus-
sian linear process and |S(τ)| ∼ O(ρ|τ|) with ρ ∈ (0, 1) for large
|τ|. Hence the sequence x(1), . . . , x(N) is α-mixing with αn = ρn

(also called strongly mixing since αn → 0). One consequence is that∑∞
τ=0 |Sab(τ)|

2 converges to a finite limit Ωab, ∀(a,b) ∈ {1, . . . ,p}2,
where Sab denote the entries of matrix S.

Remark 4.2.1 Assumption 4.2.1 is not restrictive in our framework. In
fact, theorems 1 and 2 in [84] imply that a Gaussian process is strongly
mixing if and only if the maximal correlation Sab(τ) → 0 when τ →∞. This condition is satisfied here since x can be represented as an auto-
regressive process AR(m). Note that the ordermmay be very large but
will in practice remain finite for finite time series modeling. Hence, the
correlation function |S(τ)| decays exponentially as ρ|τ|, where 0 < ρ <
1 is the modulus of the largest pole of the linear AR-filter modeling the
series.

lemmas

The estimated multivariate kurtosis (140) is a rational function of de-
gree 4 in x. Since we wish to calculate its asymptotic first and second
order moments, when N tends to infinity, we may expand this ratio-
nal function about its mean. The first step is to expand the estimated
covariance Ŝ. Let Ŝ = S+∆, where ∆ is small compared to S; we
have the following lemmas :the proofs are

deferred to Appendix
A.1.1, for sake of

readability

Lemma 4.2.1 The entries of matrix ∆ are of order O(1/
√
N).

Lemma 4.2.2 The inverse Ĝ of Ŝ can be approximated by

Ĝ = G−G∆G+G∆G∆G+ o(1/N). (143)

In order to express Ĝ as a function of Ŝ, we replace ∆ by Ŝ− S in
(143), and obtain:

Ĝ = 3G− 3GŜG+GŜGŜG+ o(1/N). (144)

With this approximation, Ĝ is now a polynomial function of Ŝ of
degree 2, and hence of degree 4 in x. We shall show that the mean
of B̂p(N) involves moments of x up to order 8, whereas its variance
involves moments up to order 16.
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Lemma 4.2.3 Denote Aij = x(i)TS−1x(j). Then:

B̂d(N) =
6

N

N∑
n=1

A2nn −
8

N2

N∑
n=1

Ann

N∑
i=1

A2ni +
1

N3

∑
n=1

(

N∑
i=1

A2ni)(

N∑
j=1

A2nj)

+
2

N3

N∑
n=1

N∑
j=1

N∑
k=1

AnnAnjAjkAkn + o(1/N)

(145)

The objective of this lemma is to derive an expression of B̂p involving
the exact covariance S and not its sample counterpart Ŝ.

Proof. First inject (143) in the expression, and keep terms up to
order O(∥∆∥2); this yields:

B̂d(N) =
1

N

∑
n

[
A2nn − 2Ann x(n)

TG∆Gx(n) +
(
x(n)TG∆Gx(n)

)2
+2Ann x(n)

TG∆G∆Gx(n)
]
+ o(∥∆∥2).

Then replace ∆ by Ŝ−S. This leads to

B̂d(N) =
1

N

∑
n

[
6A2nn − 8Ann

(
x(n)TGŜGx(n)

)
+
(
x(n)TGŜGx(n)

)2
+ 2Ann

(
x(n)TGŜGŜGx(n)

)]
+ o(∥∆∥2).

Equation (145) is eventually obtained after replacing Ŝ by 1
N

∑
k x(k)x(k)

T

and all terms of the form x(q)TGx(r) by Aqr. 2

4.2.1 calculus issues

When computing the mean and variance of B̂d(N) given in (145),
higher ordermoments of themultivariate random variable xwill arise.
Under the normal (null) hypothesis, these moments are expressed as
functions of second order moments only. To keep notations reason-
ably concise, it is proposed to use McCullagh’s bracket notation [101],
briefly reminded in Appendix A.1.2. Furthermore, for all moments of
order higher than d, some components appear multiple times; count-
ing the number of identical terms in the expansion of the higher mo-
ments is a tedious task. All the moment expansions that are necessary
for the derivations presented in this paper are developed in Appendix
A.1.4.

In order to keep notations as explicit and concise as possible, while
keeping explicit the role of both coordinate (or space) indices and time
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indices, let the moments of x(t), whose d components are xa(t), 1 ⩽
a ⩽ d be noted

µtuab = E{xa(t)xb(u)}, µtuvabc = E{xa(t)xb(u)xc(v)} (146)

and so forth for higher orders. It shall be emphasized that different
time and coordinate indices appear here as the components are as-
sumed to be colored (time correlated) and dependent to each others
(spatially correlated).

Computation of the mean and variance of B̂p defined by equation
(145) involves the computation of moments of order noted 2L whose
generic expression is

E{

L∏
l=1

Aαlβl} =

d∑
r1...rL,c1...cL=1

(
L∏
i=1

Gri,ci

)
µα1...αLβ1...βLr1...rLc1...cL

(147)

In the above equation, the 2L-order moment µα1...αLβ1...βLr1...rLc1...cL has su-
perscripts indicating the time indices involved, whereas the subscripts
indicate the coordinate (or space) indices.

While being general, the above formulation may take simpler, or
more explicit forms in practice. The detailed methodology for com-
puting the expressions of the mean and variance of B̂d as functions
of second order moments is deferred to Appendix A.1.3. The result-
ing expressions of Mardia’s statistics are given and discussed in the
sections to come.

4.3 EXPRESS ION OF THE MEAN OF B̂ d (N )

According to Equation (145), we have four types of terms. The goal
of this section is to provide the expectation of each of these terms.
In the propositions below, all terms are developed as being sums and
products of second ordermoments, as it is reminded that underH0 the
process is Gaussian. Notice also that under the latter assumption, all
higher-order moments of any order are finite. For sake of simplicity,
Landau’s approximation orderO(h(n)) is omitted in most equations.
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Lemma 4.3.1 With the definition ofAij given in Lemma 4.2.3, we have:

E{A2nn} =
∑

a,b,c,d=1

GabGcd µ
nnnn
abcd (148)

E{AnnA
2
ni} =

∑
a,b,c,d=1

∑
e,f=1

GabGcdGef µ
nnnnii
abcedf (149)

E{A2niA
2
nj} =

∑
a,b,c,d=1

∑
e,f,g,h=1

GabGcdGefGgh

µ
nnnniijj
acegbdfh (150)

E{AnnAnjAjkAkn} =
∑

a,b,c,d=1

∑
e,f,g,h=1

GabGcdGefGgh

µ
nnnnjjkk
abchdefg (151)

Proposition 4.3.1 Using expressions of moments given in Appendix
A.1.4,the expectations of the four terms defined in Lemma 4.3.1 take the
form below

E{A2nn} =
∑
kℓqr=1

GkℓGrq

{
[3]µnnkℓ µ

nn
qr

}
E{AnnA

2
ni} =

∑
kℓqrst=1

GkℓGqrGst

{
[12]µnikrµ

ni
ℓt µ

nn
qs + [3]µnnkℓ µ

nn
qs µ

ii
rt

}
E{A2niA

2
nj} =

∑
k,ℓ,q,r

∑
s,t,u,v

GkℓGqrGstGuv

{
[3]µnnkqµ

nn
su µ

ii
ℓrµ

jj
tv

+[6]µnnkqµ
nn
su µ

ij
ℓtµ

ij
rv + [12]µnnkqµ

ni
sℓµ

ni
urµ

jj
tv + [24]µnjktµ

nj
qvµ

in
ℓsµ

ni
ur

+[48]µnikℓµ
ij
rtµ

nj
qvµ

nn
su + [12]µnnkqµ

jn
tsµ

nj
uvµ

ii
rℓ

}

E{AnnAnjAjkAkn} =
∑
m,ℓ,q,r

∑
s,t,u,v

GmℓGqrGstGuv

{
[3]µnnmℓµ

nn
qv µ

jj
srµ

kk
tu

+[6]µnnmℓµ
nn
qv µ

jk
rtµ

jk
su + [12]µnnmℓµ

nj
qrµ

nj
vsµ

kk
tu

+[24]µnkmvµ
nk
ℓuµ

nj
qrµ

nj
vs + [48]µnjmrµ

jk
stµ

nk
ℓuµ

nn
qv

+[12]µnnkℓ µ
nk
qt µ

nk
vuµ

jj
rs

}
The mean of B̂d(N) then follows from (145).

4.4 EXPRESS ION OF THE VARIANCE OF B̂ d (N )

From Lemma 4.2.3, we can also state what moments of Aij will be
required in the expression of the variance of Bp(N).
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Lemma 4.4.1 By raising (145) to the second power and using the def-
inition of Aij given in Lemma 4.2.3, we can check that the following
moments are required:
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∑
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Then, as in Proposition 4.3.1, by using the results of Appendix A.1.4,
the moments µ∗∗ could be in turn expressed as a function of second or-
der moments. For readability, we do not substitute here these values.
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Proposition 4.4.1
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4.5 MAIN RESULT

4.5.1 asymptotic distribution of B̂d(N)

(i) we first prove that B̂d(N) converges towards Bd(N) as N tends
to infinity. Expressions (153), (155) imply

E{B̂d −Bd} = O(
1

N
)

since S2ab(τ) is bounded (cf. Assumption 4.2.1), and since q1(τ), a lin-
ear combination of Sab(τ)Scd(τ),a,b, c,d ∈ {1, . . . ,d}, is bounded.
Next, expressions (154), (156) ensure that Var{B̂d} −→

N→+∞ 0; in fact,
Q2(τ) involve fourth order moments, which under H0 can be ex-
panded as a function of cross-correlations of the type of Sab(τ). By
similar arguments as before, the convergence in themean square sense
B̂d −→

N→+∞ Bd is eventually obtained.

It remains thus to establish the convergence of Bd (instead of B̂d)
towards a normal distribution. With this goal, introduce the centered
random variable

w(n)
def
= (x(n)TS−1x(n))2−E{(x(n)TS−1x(n))2}

def
= A2nn−E{A2nn}.
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The remainder of the proof goes in two stages: (ii) prove thatw(n)
is mixing as soon as x(n) is mixing, and (iii) prove that Bd(N) is
asymptotically normal.

(ii) For now, we assume for simplicity that x(n) ∼ N(0, 1) is a
scalar process. This simplifies significantly the writing of the proof,
but does not restrict its generality since the steps remain the same in
the multivariate case – up to more cumbersome notation.

Its probability density function is denoted Px(n). Recall that x is
mixing (Assumption 4.2.1) thus the joint density function Px(n),x(i) ≈
Px(n) × Px(i) for sufficiently large time intervals. Now, consider the
new variable w(n) = x4(n) whose probability density function can
be expressed as:

Pw(n) =
1

2
√
2πw(n)

3
4

exp (−
1

2

√
w)1w(n)>0

Pw(n),w(i) = Px(n),x(i) × (det J)−1

=
1

16w(n)
3
4w(p)

3
4

√
2πdetS

1
2

exp{−
1

2
(x(n)2 + x(p)2}

+E{x(n)x(p)}))1w(n)>01w(p)>0

≈ Pz(n)Pz(i)
1√

1− ρ2|n−i|
exp(−x(n)x(i)ρ|n−i|)

where det J denotes the determinant of the Jacobian of the transfor-
mation x(n), x(p) → w(n),w(p). S is the covariance matrix of the
jointly Gaussian process (x(n), x(p)). We recall that, from Assump-
tion 4.2.1, |E{x(n)x(p)}|

def
= |S(n− p)| = O(ρ|n−p|).

Hence, x being α-mixing implies that w(n) is α-mixing.
(iii) We have now established that the sequence w(1), . . . ,w(N)

is stationary and strongly mixing. Moreover:

N−1Var{

N∑
n=1

w(n)} = E{w(0)2}+ 2

N−1∑
τ=1

E{w(1)w(τ+ 1)}

Letn, i ∈ {1, . . . ,N}, we haveE{Ann} = d sinceAnn isχ2d-distributed
and:

E{A2nn} = d(d+ 2)
def
= c

E{w(n)w(i)} = E{A2nnA
2
ii}− c

2

=
∑

a,b,c,d=1

d∑
e,f,g,h=1

GabGcdGefGghµ
nnnniiii
abcdefgh − c

2
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E{w(n)w(i)} =
∑

a,b,c,d=1

d∑
e,f,g,h=1

GabGcdGefGgh

(
[9]µnnabµ

nn
cd µ

ii
efµ

ii
gh

+[72]µnnabµ
ni
ceµ

ni
dfµ

ii
gh + [24]µniaeµ

ni
bfµ

ni
cgµ

ni
dh

)
− c2

FromAssumption 4.2.1, we have underH0 that µniab ∼ ρ|n−i|, where
ρ is the decay rate of the covariance function.

In the sum above, addition of all terms involving factors of typeµnnab
only will be cancelled by the term c2. Thus, E{w(n)w(i)} is bounded
when n, i→∞ and converges absolutely.

To sumup, the sequencew(1), . . . ,w(N) is stationary and strongly
mixing. Moreover, N−1Var{

∑N
n=1w(n)} → σ2 when N → ∞. The

mixing rate decays exponentially, and following a similar reasoning
as before (decomposition of higher order moments in terms of cross-
covariances of x underH0) E{w12} <∞.
All necessary conditions of Theorem [17, Thm 27.4] are verified,

so that we can deduce that Bd =
∑N
n=1w(n) converges to a Normal

distribution. Hence, it remains only to calculate the expressions of the
mean and variance of B̂d(N).

Empirical investigation of the limiting distribution of B̂2

Additionally, we conduct Monte Carlo simulation to verify empiri-
cally the limiting distribution of B̂2 on a colored process obtained by
auto-regressive filtering. The kernel estimate of the probability den-
sity function of B̂2 is shown in Figure 7.

Figure 7: Histogram of 10000 realizations of B̂2 estimated on a VAR(1) time-
series with N = 1000 observations.
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4.5.2 mean and variance of B̂1(N) in the scalar case

(d = 1)

The complicated expressions obtained in the previous sections sim-
plify drastically in the scalar case, and we get this expression for the
mean:

E{B̂1} = 3−
6

N
−
12

N2

N−1∑
τ=1

(N− τ)
S(τ)2

S2
+ o(

1

N
) (153)

Var{B̂1} =
24

N

[
1+

2

N

N−1∑
τ=1

(N− τ)
S(τ)4

S4

]
+ o(

1

N
) (154)

Here are some intermediate steps for deriving E{B̂1}:

E{A2nn} = 3

E{AnnA
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The exact computation of E{B̂1} yields the following result:

E{B̂1} = 3−
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Based on the results in [35, p. 346-347], it can be shown that 1
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will contribute quantities of order lower
than N−1. Thus, we obtain the result in Equation 153 for the mean:

The second-order moment of B̂1 reads:
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36

N2

∑
n,k

S(n− k)2

S2
+
24

N2

∑
n,k

S(n− k)4

S4
+ o(

1

N
)



4.5 main result 81

and by raising to the second order the result of Equation 153, we have
Var{B̂1} = E{B̂21}− 9+

36
N2

∑
n,k

S(n−k)2

S2
+o( 1N). In particular in the

i.i.d. case, S(τ) = 0 for τ ̸= 0, and we get the well-known result:

E{B̂1} ≈ 3−
6

N
, and Var{B̂1} ≈

24

N
.

The expressions of mean and variance above are identical to those
given in Theorem 2, the difference being that here the ratio N−1

N+1 is re-
placed by its approximation of orderN−1, i.e. N−1

N+1 = 1−
2
N +o(1/N).

The intermediate steps for calculating the expression of the vari-
ance (Equation 154) can be found in [45].

4.5.3 mean and variance of B̂2(N) in the bivariate

case (d = 2)

In the bivariate case, expressions become immediately more compli-
cated as more moments are involved, but following the same pattern
as before, we can still write them explicitly, as reported below. We
remind that µijab = Sab(i− j).
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where

Q1(τ) = S11S22
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and
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.

Note that the latter expressions are complicated, but easy to imple-
ment as demonstrated in the remaining sections. Again for this case
where p = 2, the approximation N−1

N+1 = 1− 2
N + o(1/N) was used

in the expressions of the mean and variance of B̂2.

4.6 PART ICULAR CASE : MULT ID IMENS IONAL EM-

BEDDING OF A SCALAR PROCESS

In this section, we consider the particular case where the multivariate
process consists of the embedding of a scalar process. More precisely,
we assume that

x(n) =

 x1(n)

. . .

xp(n)

 =

 y(nδ+ 1)

. . .

y(nδ+ p)

 .

where y(k) is a scalar wide-sense stationary process of correlation
function C(τ) = E{y(k)y(k − τ)} = S11(τ/δ). Note that now, be-
cause of the particular form of x(n), we can exploit the translation
invariance by remarking that Sab(τ) = E{xa(nδ)xb(nδ − τδ)} im-
plies Sab(τ) = C(τδ+ a− b), for 1 ⩽ a,b ⩽ p.
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To keep results as concise as possible, we assume the notationγi(τ) =
C(τδ + i), and the shortcut Cj = C(j). The main goal targeted by
defining these multiple notations is to obtain more compact expres-
sions.

4.6.1 bivariate embedding

The bivariate case is more difficult but the expressions still have a
simple form:

E{B̂2} ≈ 8−
16
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(C20 −C
2
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Var{B̂2} ≈
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2
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4

(158)

with q1(τ) and q2(τ) defined below, where γi stands for γi(τ):

q1(τ) =
[
(γ1 + γ−1)

2 + 8γ20

]
C20 − 12C0C1 γ0(γ1 + γ−1)

+
[
2(γ1 + γ−1)

2 + 4γ20

]
C21,

(159)

q2(τ) =
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2 + 3(γ21 − γ
2
−1)

2 + 12γ20(γ1 + γ−1)
2
]
C40

+ 4
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2
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2
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]
C20C

2
1+

8
[
γ40 + 4γ

2
0γ1γ−1 + γ

2
1γ
2
−1

]
C41 − 24C0C1 γ0(γ1 + γ−1)

[
(2γ20 + γ

2
1 + γ

2
−1)C

2
0

+2(γ20 + γ1γ−1)C
2
1

]
.

(160)

The results we obtain match the expressions derived in [31]. We
have also noticed an error in the expression of the variance reported
in the first line of the formula (16) of [31]. The exact computation for
the trivariate embedding case have also been conducted; but because
of their lengthy expressions (especially that of the variance), they are
not detailed here. They can be found in [45].

4.7 THE TEST IN PRACT ICE

This section is devoted to the practical implementation of the normal-
ity test. Given a dataset from a process X, we detail how the test is
applied from start to finish.
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Remark 4.7.1 If X has a dimension d > 2, apply the methodology
detailed in sub-section 4.8.2. Henceforth, we suppose that d ⩽ 2.

• Given the realizations {x(1), . . . , x(N)} of X, estimate as fol-
lows the quantities:

B̂d =
1

N

N∑
n=1

(
x(n)T Ŝ

−1
x(n)

)2
Ŝ =

1

N

N∑
k=1

x(k)x(k)T

Ŝab(τ) =
1

N

N−τ∑
k=1

xa(k)xb(k+ τ), a,b ∈ {1, . . . ,d}

Then, let us apply:

1. First, we choose the nominal level of the test , that is [139]:

α = P(choose H̄0|H0 is true) (161)

2. Define the ratio z = B̂(.)−E{B̂(.)}/
√

Var{B̂(.)} forE{B̂(.)} either
equal to Equation (153) for a scalar colored process or (155) for
a bivariate colored process. Similarly, Var{B̂(.)} is either equal
to (154) or (156) according to d. To compare with Mardia’s Test,
henceforth denoted B̂1,i.i.d, we use the results of Theorem 2.

3. Knowing the limiting distribution of z gives us access to the
p-values computed as:

pz = 2(1− F(z)) (162)

Where Φ denotes the cumulative distribution function (cdf) of
a standard normal.

4. We rejectH0 at a significance level α if pz < α.

Remark 4.7.2 Note that Equations (153), (155), (154) and (156) involve
the exact covariance functions. However, the covariance function Sab(τ)
is replaced in practice by its sample counterpart.
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(a) Rejection rejection in blue of the normality testα = 5%

4.8 PERFORMANCE COMPARI SON ON COLORED

COPULA

4.8.1 colored copula

The aim of this section is to generate a colored and bivariate non-
Gaussian process, whose twomarginals are Gaussian. For this aim, we
briefly introduce a classical framework called Copula, which is simple
to implement for defining multivariate distributions with controlled
joint distribution function.

For their ease to generate in dimension d ⩾ 2, we choose in this
work to use Archimedean copula:

Definition 4.8.1 A d-dimensional copula Cθ is called Archimedean if
it allows the representation [110]:

Cθ(u) = ψθ(ψ
−1
θ (u1) +ψ

−1
θ (u2) + . . .+ψ

−1
θ (ud)),u ∈ [0, 1]d

(163)

where ψθ : [0,∞) → (0, 1] is called an Archimedean generator, and
the parameter θ controls the spatial dependence between variables.

Theorem 8 (Sklar’s theorem 1959)

FX1,X2(x1, x2) = Pr(X1 ⩽ x1,X2 ⩽ x2) = C(F(x1),G(x2)) (164)

where FX1,X2 is the joint cumulative distribution function (cdf) of (X1,X2),
and F (resp. G) is the cdf of X1 (resp. X2). If F, G are continuous, then C

is unique, and is defined by:

C(u1,u2) = FX1,X2(F
−1(u1),G−1(u2)). (165)
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This theorem guarantees that there is a unique copula – called the
Gaussian copula CR – that produces the bivariate Gaussian distribu-
tion, fully specified by the correlation matrix R:

CR(u, v) =
∫F−1(u)

−∞
∫F−1(v)

−∞
1

2π(1− R212)
1/2
exp

{s2 − 2R12st+ t2
2(1− R212)

}
dsdt

where F−1 is the inverse of the cumulative distribution function of
the standard normal distribution. Hence, non Gaussian distributions
with Gaussian marginals can easily be sampled by using other types
of copulas. Namely here, Clayton and Gumbel bivariate copulas are
used as examples:

Clayton: Cθ(u, v) = max{u−θ + v−θ − 1; 0}, θ ∈ [−1,∞)\{0}

Gumbel: Cθ(u, v) = exp
{
− (−log(u)θ +−log(v)θ)

1
θ

}
, θ ∈ [1,∞)

Moreover we are interested in colored processes, since Sklar theo-
rem does not impose independence of any variable u or v of Cθ(u, v),
we introduce time-dependency between samples by applying an auto-
regressive filter on eachmarginal before constructing the copula. Note
that the normal distribution is stable by linear transformation, thus
the normality of marginals is preserved. This leads to the following
algorithm:

sampling an archimedean copula.

1. Sample i.i.d ηi ∼ N(0, 1), i ∈ {1, . . . ,d}

2. Correlate ηi’s using a first order auto-regressive filter:

yi(n) = 0.8yi(n− 1) + ηi(n)

Note that the first ndrop = 1000 samples are dropped to allevi-
ate start-up effects (yi(0) = ηi(0)).

3. Transform ui = F(yi) for i ∈ {1, . . . ,d}, where F denotes the
cumulative distribution of the Gaussian distribution. Note that
ui’s are uniform on [0, 1].

4. SampleV ∼ LS−1(ψθ)whereLS−1 denotes the inverse Laplace-
Stieltjes transform of ψθ.

5. Return (u ′1,u ′2, . . . ,u ′d), where u ′i = ψ(− log(ui)/V)

6. Transform u′i to obtain Gaussian standard marginals as the fol-
lowing:

xi(n) = F
−1(u′i(n)) (166)
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The above algorithm is a slight modification to the one due toMashall,
Olkin (1988)[70]. The produceddmarginals are now colored andGaus-
sian, but their joint distribution is not. In the remainder of this paper,
we precisely use Gumbel (θ = 5) and Clayton (θ = 2) copula.

(a) Gumbel
H̄0

(b) Clayton
H̄0

(c) Frank
H̄0

Figure 8: Examples of Archimedean Copula with Gaussian Marginals

simulation study

For a given copula C, we performM = 2000 realizations of x(n) =
(x1(n), x2(n))T of total length N = 1000. We seek to compare the
performance of the normality test when applied on a one-dimensional
marginal (we choose arbitrarily x1) with the joint normality test ap-
plied on the bivariate variable x. First, the p-values of the two-sided
tests are computed using the limiting distribution of the ratio:

z =
B̂(.) − E{B̂(.)}√

Var{B̂(.)}

Recall that this statistic is standard normal for large N. This gives
us access to the the p-values computed as p = 2(1− F(z)). The sig-
nificance rate (or level of the test) is fixed at α = 5% or α = 10%. For
any pz smaller than α, it is considered heuristically that the test re-
jected H0. The empirical rejection rates, defined by Number of rejections

M

for each statistic B̂1,i.i.d, B̂1 and B̂2 are reported in Table 2.
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Test
statistic

Gaussian R12 = 0.8 Clayton θ = 2 Gumbel θ = 5

α = 5% α = 10% α = 5% α = 10% α = 5% α = 10%

B̂1,i.i.d

B̂1

B̂2

0.1660
0.0450
0.0480

0.2460
0.0730
0.0801

0.1011
0.1060
0.9890

0.1651
0.1701
0.9920

0.1189
0.0390
0.9920

0.1930
0.0860
0.9960

Table 2: Empirical Rejection rate at two significance levels : α = 5%, 10%

• Mardia’s test B̂1,i.i.d: The one-dimensionalmarginal beingGaus-
sian (under H0), the empirical rejection rate is expected to be
around the pre-specified nominal level (either 5% or 10%). The
rejection rate surpasses the nominal level. That B̂1,i.i.d over-
rejects H0 is due to the one-dimensional marginal being time-
correlated (not independently distributed). Such observationwas
already formulated by [104] and [54] who showed that the cor-
relation among samples is confounded with lack of Normality.

• B̂1 has an empirical rejection rate around the nominal level be-
cause the expressions involved take into account the serial de-
pendence between samples x1(1), . . . , x1(N).

• B̂1,i.i.d and B̂1 can only test a one-dimensional marginal, which
is Gaussian (under H0) therefore they are always conservative
and mis-detect the non-Gaussianity of the bivariate process x.

• B̂2: The rejection rates do not differ substantially from the nom-
inal level when data is distributed according to bivariate Gaus-
sian. For the Gumbel and Clayton copulas (under H̄0), this test
has very high rejection rates, which confirms the necessity of
taking into account the full dimension to design a powerful test.

4.8.2 the multi-variate case

We propose the following methodology to deal with the general d-
variate case.

In the same spirit as [111], using the property that Gaussianity is
stable by linear transformation, we can randomly project the initial
d-variate observations on a bivariate subspace (plane), and test the
joint normality of this two-dimensional representation.

low-dimensional projection. We study the performance of the
proposed test statistic on a low-dimensional (either 1 or 2) projection
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of the initial p-variate data. For a given copula Cθ, we carried out the
following simulations:

• Given one set of bivariate observations (x1(n), x2(n)) of total
length N = 1000, they are projected M = 5000 times onto
the arbitrary vector u with coordinates (sin(φ), cos(φ)). φ is
sampled from a uniform distribution on [0,π] denoted U(0,π).
Fig.9 shows an illustrative example with two copulas.

• Given one set of trivariate observations of total length N =

1000, the points are projected arbitrarilyM = 5000 times onto
the plane defined by two angles θ ∼ U(−π

2 , π2 ) (the angle be-
tween the z axis and the new plane) andφ ∼ U(0,π) (measured
between the x axis and the vector u inside the plane). Fig. 10
gives two illustrative examples of this procedure.

(a) Gumbel Copula (b) Clayton Copula

Figure 9: Two examples of projecting bivariate realizations (in blue) onto
the direction in red defined by the angle φ. Realizations are gener-
ated using Clayton copula (on the left), and Gumbel copula (on the
right). The distribution of canonical marginals are both Gaussian
as illustrated by histograms but the bivariate distribution is clearly
not Gaussian.

scalar projection

• B̂1 and B̂1,i.i.d perform very poorly when used on arbitrary one-
dimensional projections of the Gumbel copula. The test power
does not surpass 25%.

• For the Clayton copula, whose tails are asymmetric, the test
has a better power than the Gumbel copula. Although this ob-
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Time
correlated

B̂1 B̂1,i.i.d

α = 5% α = 10% α = 5% α = 10%

Gumbel 0.1250 0.1328 0.1242 0.1316
Clayton 0.661 0.72 0.652 0.713

Table 3: Empirical rejection rates of the test applied to a one-dimensional
projection of a bivariate process with time-correlated Gaussian
marginals.

Time
independent

B̂1 B̂1,i.i.d

α = 5% α = 10% α = 5% α = 10%

Gumbel 0.2134 0.2510 0.2082 0.2406
Clayton 0.717 0.76 0.701 0.752

Table 4: Empirical rejection rates of the test applied to a one-dimensional
projection of a bivariate process with independent (in time) stan-
dard normal marginals.

servation is less demonstrative, we keep those results to further
compare them with the bivariate test statistic.

• Since we only use first-order auto-regressive filters, there is no
substantial difference in the performance of B̂1 compared to
B̂1,i.i.d; this comparison is not of interest to us, because the bias
induced by using tests assuming independence on colored pro-
cesses has already been observed and studied in the literature
[54] and [104].
However, it is interesting to compare Tables 3 and 4; we see that
the overall performance of the test statistics tends to decrease
when marginals are time-correlated.

Arbitrary 2-D
projections

B̂2

α = 5% α = 10%

Gumbel 0.9516 0.9574
Clayton 0.9701 0.9882

Table 5: Empirical rejection rates of the test applied jointly to arbitrary 2-D
projections.

bivariate projection

• Table 5 shows performances obtained with B̂2 when applied
to colored processes. Contrary to B̂1, performances do not de-
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(a) Gumbel Copula (b) Clayton Copula

Figure 10: Two examples of projecting trivariate realizations onto the plane
(in light grey). Realizations are generated using Clayton copula
(on the left), and Gumbel copula (on the right). The distribution
of the two-dimensional projection is clearly not Gaussian.

Time-correlated
marginals

B̂2

α = 5% α = 10%

Gumbel 0.9492 0.9556
Clayton 0.8540 0.87

Table 6: Empirical rejection rates of the test applied to the two-dimensional
projection of a trivariate process with time-correlated marginals.

crease with time-correlation. Furthermore, the power of the 2-D
test based on B̂2 is not affected by a rotation in the plane (im-
plemented by two scalar projections onto two orthogonal axes).
This is illustrated by Table 5, which reports the results aver-
aged over 5000 random rotations.

• One would expect the same problem of misdetections to occur
when projecting trivariate observations sampled from Gumbel
copula. Yet, in Table 6 we show that the joint normality, even
on a low representation of the data, is able to detect the non-
Gaussianity of the process.

4.9 CONTRIBUT IONS

We derived the limiting distribution of the bivariate kurtosis under
H0. This kurtosis test is intended to test the joint normality when
multivariate time-series are observed. The complexity of the calcula-
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tion increases with d very fast, therefore exact expressions were only
conducted and reported up to d ⩽ 2. However, we propose and imple-
ment a strategy based on random projections. For trivariate processes,
we have confronted the performances of a strategy based on 1D vs.
2D projections and concluded that the latter is more robust to mis-
detections. We will carry on this exercise of testing the performances
of the proposed results as a practical online detector. In Chapter 5, we
propose an operational detector and evaluate it on synthetic data. Fu-
ture studies were then conducted in 6 for high-dimensional real data.



5
THE NORMAL I T Y TEST AS A

SEQUENT IAL DETECTOR

ABSTRACT

We anticipate that real-data will be very complex in nature, in the sense
that it will be non-stationary, and composed of both linear and non-
linear components. The workaround to handle non-stationarity is to use
the idea of local stationarity by means of an exponential averaging
mechanism. As for the second point, for now, we conduct numerical ex-
periments on data generated by a linear filter (the multi-dimensional
VAR). The aim is to put to test the performances of the normality test
as sequential detector with and without a first stage of recursive pre-
whitening. Its robustness to mis-specifications in the linearmodel is stud-
ied. We also propose an extension for the general multivariate case by
means of bivariate random projections.
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5.1 SEQUENT IAL CHANGE DETECT ION

Detecting changes in the distribution of a stochastic process is a long-
standing problem and a myriad of methods has been proposed; see
e.g [10]. Our concern is the detection of non-Gaussian signals in a
Gaussian background, i.e. Normality tests. The framework considered
here is one in which time-series are recorded on d sensors (typically
d = 2 or 3 in many applications). Moreover, we are interested in the
online problem of reacting to a change as quickly as possible after it
occurs, also known as sequential detection problem [12, 117]. A pop-
ular sequential detector is based on the Likelihood Ratio and termed
the CUSUM test [69, 115]. In this work, we focus on translating the
results of Chapter 4 into an operational detector. As we have seen in
Chapter 3, The case of i.i.d (scalar or d-variate) processes has received
significant attention. On the other hand, few tests concern the case of
dealing with time-series from multiple sensors that in practical appli-
cations cannot be considered to be i.i.d, a case we will refer to as n.i.d
or colored.

Additionally, we are interested in testing the normality of unob-
served regression residuals.More precisely, define theMulti-dimensional
Auto-Regressive [93] (or Vector AR of order p denoted VAR(p)) model
to describe the statistical behavior of the d× 1 vector of observation
x(i) for i = 1, . . . ,N:

x(i) =

p∑
k=1

βkx(i− k) + ϵ(i) (167)

whereβk is a d×dmatrix of unknown parameters and ϵ(i) is the ith
unobservable residual assumed zero-mean and i.i.d. An additional as-
sumption is that residuals are drawn from a normal distribution. The
drawbacks of violating the latter assumption has been studied, for in-
stance [71] showed that the ordinary least squares method, which is
usually used to estimate {βk}1⩽k⩽p, is sub-optimal for heavy-tailed
distributions. Thus, it is important to validate this assumption of nor-
mality in this linear model.

Moreover, since the residuals are estimated in practice, we expect
that errors in the model specification and estimation will impact the
whitening performance of the filter and the estimated innovation pro-
cess ϵ̂ could no longer be considered i.i.d. In this case, the normality
tests designed for i.i.d processes become biased as shown in [104],
highlighting the importance of deriving our joint normality test for
variables that are not statistically independent.

Within this framework, we concentrate on the Multivariate Kurto-
sis (MK) defined in (140). In Chapter 4, we calculated the power of
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this test variable in the colored case, we also studied its performances
when the observed multivariate process was projected onto an arbi-
trary subspace of low dimension (typically 1-D or 2-D), in particular
for time series generated by colored copulas.

The main contributions of this chapter are the following:

• We compare the performances of the normality test with and
without linear prewhitening, i.e. using x(n) or ϵ(n).

• We observe the impact of projecting 3-D observations and their
regression residuals onto an arbitrary plane (2-D projection) or
direction (1-D projection).

• For sake of time and memory effectiveness, the test statistics
and the regression function are estimated recursively, by us-
ing both exponential averaging and the Recursive Least Squares
(RLS) algorithm.

5.2 ALGORI THMIC IMPLEMENTAT ION

The proposed test statistic is computationally efficient i.e it can be
easily computed over a sliding window or by using the exponential
weighting technique to test the normality of the estimated regres-
sion residuals available at time t and assumed to follow a Gaussian
distribution N(0,Σ(t)). The residuals are estimated using the recur-
sive least squares estimation method detailed in Equation 2.2.1. Let
0 < λ2 < 1:

Σ(t) = λ1Σ(t− 1) + (1− λ1)ϵ̂(t)ϵ̂(t)
T (168)

B̂d(t) = λ2B̂d(t− 1) + (1− λ2)(ϵ̂(t)
T Σ̂

−1
(t)ϵ̂(t))2. (169)

a word on the choice of λ1 , λ2 Forgetting factors λ1 and
λ2 (for 2nd and 4th order statistics respectively) are usually chosen
by a rule of thumb, depending on the time-scale of the change. To
give a better intuition of this factor, one can calculate the length N
of a uniform sliding window that would yield the same estimator’s
variance. Let a,b ∈ R, for ϵ ∼

i.i.d
N(0,Σ), the following estimator is

unbiased when a+ b = 1.

Σ(t) = bΣ(t− 1) + aϵ̂(t)ϵ̂(t)T
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E{Σ(t)} = a

∞∑
k=0

bk E{ϵ(t− k)ϵ(t− k)T } (170)

E{Σ(t)} =
a

1− b
Σ (171)

Cov(Σab,Σcd) =
2a

2− a
ΣabΣcd (172)

Additionally, for a Gaussian process, the variance of this estimator on
N samples is of order N−1:

Cov(Σab,Σcd) =
1

N2

N∑
m,n=1

[2]µnmac µ
nm
bd (173)

We recall thatµijab = E{ϵa(i)ϵb(j)}, For Gaussian i.i.dCov(Σab,Σcd) ∝
2
N , to get a rough estimate about the number of samples included in
the estimate of the exponential averaging, we have: N ∝ 2

a = 2
1−λ1

.
Concerning the choice of λ2 for the recursive estimation of B̂2, we
show by means of numerical simulation, that we also obtain: N ∝
2
a = 2

1−λ2
.

Figure 11: 300Monte-Carlo simulations to verify that the empirical variance
of the sliding window estimator and exponential averaging esti-
mator of B̂2 are equal for N ∝ 2

1−λ2

The algorithm for sequentially detecting changes reads:
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Figure 12: Illustration of the detection workflow

Algorithm 1 Sequential Change detector
Require: p ⩾ 1, 0 < λ1, λ2 < 1, α

Initialization: Γ(p)← Idp, B̂d(p)← 0, Σ(p)← Id
for p+ 1 ⩽ t ⩽ N do

Update Γ−1(t) ▷ using (79)
Update {β̂k(t)}1⩽k⩽p ▷ using (81)

Compute ϵ̂(t) = x(t) −

p∑
k=1

β̂kx(t− k)

Compute z = (B̂d(t) − E{B̂d(t)})/
√

Var(B̂d(t))

if 2(1− F(z)) < α then

Change is detected
else

No change
end if

end for

5.3 COMPUTER RESULTS

A set of ofMonte Carlo simulations is presented to compare the power
of the proposed normality test when applied directly on data or on re-
gression residuals. Then, we study the performance of the test statistic
on a low-dimensional (2-D or 1-D) projection of the initial multivari-
ate data. As a final illustration of the effectiveness of our method, we
apply the change detection Algorithm presented in subsection 5.2 on
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synthetic colored data undergoing an abrupt change in its distribu-
tion.

5.3.1 applying the test on colored data

5.3.1.1 Directly on data

M = 2000 simulations are considered, each being based on a se-
quence ofN = 1000 samples. First, we simulate 1-D AR(p) processes
(for p ∈ {4, 14, 20}). The AR coefficients are computed such that the
equivalent filter is low-pass, with band pass equal to .25 (normalized
freq).

For each simulation a 2-D Gaussian (or Uniform) AR(p) process is
constructed by time embedding : x(t) = {x(2t), x(2t + 1)}T . Then,
both Mardia’s test derived for i.i.d. samples (denoted B̂1,i.i.d) and the
test for colored samples, whose statistics are defined by equations
(153, 154) for colored samples (denoted B̂1) are applied on themarginals
of the 2-D process, and compared. Finally, the statistics derived for
n.i.d. bi-variate data B̂2, described by equations (155, 156) is also ap-
plied to the 2-D process. The obtained empirical rejection rates of hy-
pothesis H0 are computed as #Rejections

M , for a test level α = 5%. The
results are summarized in Tables 7 and 8.

AR(4) AR(14)

Test Statistic Gaussian Uniform Gaussian Uniform

B̂1,iid 0.067 1. 0.123 0.512

B̂1 0.052 0.99 0.045 0.456

B̂2 0.06 1. 0.065 0.88

Table 7: Empirical Rejection Rates for 2000 simulations for α = 5% signif-
icance level with the B̂1,i.i.d, B̂1, B̂2 test applied directly on AR(p)
data with p = 4, 14

• It seems that B̂1,i.i.d has a better detection power than B̂1. As
a matter of fact, by comparing the formulas of their variance
in (Theorem 2) and 154), we can see that that the variance of
B̂1,i.i.d is underestimated for colored processes, consequently,
the latter over-rejects the hypothesis of Gaussianity. This is no-
ticeable even for Gaussian AR(p) process (Under H0), with re-
jection rates that surpass the nominal level 5%.
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• Both scalar tests B̂1,i.i.d and B̂1 perform poorly compared to the
joint normality test statistic B̂2.

• When the correlation tails last longer (Table 8), the overall per-
formance of the test statistics tends to decrease.

AR(20)
Test Statistic Gaussian Uniform
B̂1,iid 0.228 0.430

B̂1 0.047 0.399

B̂2 0.06 0.688

Table 8: Empirical Rejection Rates for 2000 simulations for α = 5% signifi-
cance level with the B̂1,i.i.d, B̂1, B̂2 test applied directly on AR(20)
process

5.3.2 on regression residuals

We now study the power of the normality tests on estimated regres-
sion residuals. We utilize the Least Squares method to obtain ϵ̂. The
simulation procedure and the tests are the same as those described in
the previous paragraph 5.3.1.1. We study the case where the order p
of the generated AR(p) process is known (we choose p = 20), and the
case where the order is misspecified (p̂ = 9). The empirical rejection
rates are summarized in Table 9.

On Residuals of AR(20) On Residuals of AR(20)

p = 20 p̂ = 9

Test Statistic Gaussian Uniform Gaussian Uniform

B̂1,iid 0.06 1. 0.064 0.582

B̂1 0.05 1. 0.051 0.429

B̂2 0.055 1. 0.06 0.850

Table 9: Empirical Rejection Rates for 2000 simulations for α = 5% signif-
icance level with the test statistics B̂1,i.i.d, B̂1, B̂2 applied on esti-
mated regression residuals using OLS method, with known and mis-
specified order
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3-D
VAR(5)

2-D
projection

Gaussian Uniform

B̂2 0.051 0.986

3-D
VAR(5)

1-D
projection

Gaussian Uniform

B̂1 0.056 0.529

Table 10: Empirical rejection rates of the test statistics applied to a low rep-
resentation of 3-D VAR(p) process

• If the model is perfectly known, then all test statistics perform
well on the well estimated regression residuals. However, if the
model order is under estimated, some important time correla-
tion remain, and scalar tests perform poorly compared to the
joint normality test, as expected.

5.3.3 random projections

We simulate a 3-D process VAR(p), p ∈ {5, 20}, of length N = 1000

following equation (167), where the inputs ϵ(t) are i.i.d with distri-
butions either multivariate standard normal N(0, 1) or multivariate
U(−2, 2).

ThenM = 2000 different projections on an arbitrary plane (2-D
projection) going through the origin of the 3-D space are computed,
corresponding to as many 2-D time series. For comparison, the same
set of observations is also projected M times on an arbitrary direc-
tion (1-D projection). Eventually, we run the same set of experiments
on estimated regression residuals estimated by ordinary least squares
method (OLS). The results are reported below.

3-D On residuals
VAR(20) p̂ = 10

1-D proj., B̂1 0.250 0.41

2-D proj., B̂2 0.580 0.9

Table 11: Empirical rejection rates of the test statistics applied to a low rep-
resentation of 3-D VAR(20) process with uniform inputs and its
estimated regression residuals with a VAR(10) model

• The test B̂1 applied directly on 1-D projections of either the
observations or its residuals computed by OLS, performs poorly.
This is in accordance with our observations from the preceding
experiments.
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• Even with a misspecified order, the joint test statistic performs
best (empirical power of 90%) on the 2-D low representation of
regression residuals, as it is able to account for both temporal
and spatial (between coordinates) dependences.

Consider the case where a process ϵ is constituted of i.i.d sam-
ples following a standard normal distribution. The process undergoes
a change at nc = 5000 in its distribution: samples in the interval
[5000, 10000] are now following a uniform distribution U(−

√
3,
√
3).

The change ends at n = 10000 and the samples are again normally
distributed. The process ϵ is then (low pass) filtered using an AR(5)
model and is now denoted x.

One realization of this process is given in Fig. 13. It is clear from
this figure that the change in the distribution is unbeknownst to the
human eye.

The change detection algorithm presented in subsection 5.2 is ap-
plied to this realization by setting p = 5, λ1 = 0.99, λ2 = 0.998,
α = 5% and δ = 1. A 2-D process is obtained by taking x(t) =

{x(2t), x(2t+ 1)}.
For comparison, the CUSUM algorithm [12] is applied on the re-

gression residuals by using its recursive form. The instantaneous log-
likelihood ratio is computed as:

L(t) = − ln(2
√
3) +

1

2
ln(2π) +

1

2
ϵ̂2(t) (174)

Figure 13: One realization of a Gaussian AR(5) process that undergoes an
abrupt change in the distribution of its excitation ϵ (fromN(0, 1)
to U(−

√
3,
√
3)). Affected samples are between red dashed lines.
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Figure 14: Evolution of the normalized test statistics B̂1 (in blue) and B̂2

(in orange). In red, the evolution of the cumulative sum s(n) =∑n
t=1 L(t). Black horizontal dashed lines are the critical values

±1.96 corresponding to a test power of 95%. Red vertical dashed
lines are the beginning and end of an abrupt change in the excita-
tion statistics of an AR(5) process.

• Our proposed test statistics B̂1,2 stay in between±1.96; in other
words they do not reject the null hypothesis of Gaussianity with
a false alarm rate of 5%. They grow continuously in absolute
value after the change time nc = 5000 and keep rejecting H0
until the end of the change at n = 10000.

• There is no clear-cut in the cumulative sum algorithm that in-
dicates a change in the distribution of the residuals. In fact, the
likelihood ratio in (174) is derived under the hypothesis that the
process ϵ is i.i.d. As the latter’s values are estimated recursively,
they are more likely to have residual correlations between them
and the hypothesis of independence no longer holds, explaining
why the cumulative sum of L(t) keeps increasing.

5.4 VAL IDAT ION ON REAL DATA

Finally, our concern is to propose an operational detector in a real
environment, we perform two simulations on the response of a sin-
gle three-axis measuring instrument, and a network of three-axis net-
works. The real observations are filtered by a vector auto-regression
filter of order 15. The residuals are then projected on an arbitraryorder is estimated

using BIC see Figure
15b

plane. Finally, we recursively estimate the test statistic and its thresh-
old. Results appear in Figure 15a.

Consider now, that we have a network of three-axis sensors:



5.4 validation on real data 103

(a) Top: (horizontal) component of a seismic signal; Mid-
dle: observation of the noise added to the seismic signal
(SNR= −5dB); Bottom: detection function obtained af-
ter two-dimensional projection of the VAR filter resid-
uals

(b) IC w.r.t 1 ⩽ p ⩽ 50

Figure 15: The arrival of a seismic wave is translated by a peak in the test
statistic (a) bottom.

x(n, i) ≈
p∑
k=1

Ak,ix(n− k, i) + ϵ(k, i) (175)

where {x(n, i) ∈ Rd, n = 1, . . . ,N} is the set of observations carried
out on the sensor or the sub-group of sensors indexed by i. The prob-
lem can be summarized as the form of multiple binary tests for all
1 ⩽ i ⩽ Nc whereNc is the total number of sensors in the network.

H
(i)
0 : ϵ(i) ∼

n.i.d
N(0,Σ(i)) versus H̄

(i)
0 (176)

We randomly projectNp times the residuals of each sensor on a plane
(d = 2) or on a direction (d = 1).
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We have m = Np ×Nc hypotheses H(i)
0 , i = 1, . . . ,m to test. If

all the tests are thresholded with α, the false alarm level is controlled
at mα and leads to a large number of false alarms, or false discover-
ies. A first solution consists in thresholding each test by α/m, this
correction is due to Bonferroni.

We choose the procedure proposed by Benjamini and Hocheborg
(BH) [14] to control the false discovery rate (FDR): the rate of true
H

(i)
0 wrongly rejected among all rejected hypotheses. Let 0 < δ ⩽ 1

be a control parameter for the FDR:

1. Let p(1) ⩽ p(2) ⩽ · · · ⩽ p(m) be the ordered p-values.

2. Let k = argmin
i

(
p(i) ⩽

i
mδ
)

3. We reject the k null hypothesisH(1)
0 ,H(2)

0 , . . . ,H(k)
0

The observation is modeled by an additive contamination:

x(n, i) = Diag{a} s(n, i) +b(n, i) (177)

s(n, i) ∈ R3 est real seismic signal recorded by sensor i fromNc = 8
sensors; a ∈ R3 adjusts the Signal to Noise Ratio (SNR); the process
b is:

• Synthetic colored noise: zero-mean Gaussian signal filtered by a
low-pass VAR(5). This synthetic noise can correspond in real
applications to measurement noise.

• We study the impact of the recursive pre-whitening filter’s or-
der on the performances of the test for p = 5 (correct order, cf.
Fig. 16a) and p = 2 (mis-specified order cf. Fig. 16b)

• The control parameter of the FDR is δ = 5%.

• The sample size isN = 1000. The number of three axis sensors
is Nc = 8.

• The residuals obtained by whitening each sensor response are
randomly projectedNp = 5 times on a plane that passes through
the origin of the initial (three-dimensional) space. To compare
with the performance of B̂1, the same residuals are projected
Np = 5 times onto an arbitrary (random) direction.
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(a) Detection power of the univariate and bivariate kurtosis
test in the case where the order of the additive Gaussian
noise is set to 5 and whitened by a VAR(5)

(b) Detection power of the univariate and bivariate kurtosis
test in the case where the order of the additive Gaussian
noise is set to 5 and whitened by a mis-specified VAR(2)

simulation results

• For all simulations, the detector that takes into account the spa-
tial and temporal correlation B̂2 has a better detection power
than its scalar equivalent B̂1. And this, for very low SNR.

• When the order of the pre-whitening filter is mis-specified, the
performance of the B̂1 based detector degrades. The results of
the B̂2 detector are good for an SNR ⩾ −15dB.

5.5 CONTRIBUT IONS

This study demonstrates, on one hand, that testing the joint normal-
ity of a two-dimensional projection yields a noticeable increase in the
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power of the test to detect departure from joint normality. On the
other hand, when data are additionally time-correlated, the overall
power of the scalar test tends to decrease. By assuming both spatial
and temporal dependence, the bivariate test has better power proper-
ties than its univariate counterpart. We have also conducted experi-
ments to assess the impact of the pre-whitening stage on the power
of the test. They have evidenced the fact that the test is robust to mis-
specifications in the model. Hence, we proposed a two-step detection
algorithm, in a first stage, data are whitened recursively. Then the MK
test is applied in a second stage on available regression residuals in
an online manner.



Part III

A P P L I CAT IONS IN SE I SMOLOGY

The field of seismology is rich with techniques developed
for earthquake detection, phase picking, seismic tomog-
raphy and many other worthy applications in Geodesy.
Available seismic data is dramatically increasing both in
volume and variety. Hence, reliableMachine learningmeth-
ods can be a complementary set of tools to extract valu-
able information from these loads of data. Chapter 6 re-
views some applications of Machine Learning in seismol-
ogy, with a focus on the automated detection problem.
We then proceed with reviewing the tools presented in
the previous Chapters: the VAR(p), the LSTM model met
in Chapter 2, a variant of the scattering transform met in
Chapter 1. Finally, and most importantly, the workflow
presented in Chapter 5 is put to test on high-dimensional
(d ⩾ 3) real-data.





6
APPL ICAT IONS IN SE I SMOLOGY

ABSTRACT

ML methods have seen widespread adoption in seismology in recent
years. This is due to the fact that seismology is a rich-intensive field
with a variety of data i. e. seismograms, GPS, Radar/LiDar images.
The spectrum of applications in seismology is also wide, in this
work, we focus on two important tasks: detection of unseen seismic
waves and phase picking. The detection can be related to both
classification or prediction tasks. We review some selected methods
that illustrate this. We also tackle the case of detection from multiple
stations by using the beamforming technique proposed in [13].
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6.1 APPL ICAT IONS OF ML IN SE I SMOLOGY

One of the first uses of Machine Learning in seismology was to the
problem of discrimination of seismic waves from mining explosions
and their classification using ANN in [40]. There have been a lot of
advances of ML in seismology ever since, see the survey of [85]. We
focus on an application that has a long and rich history in geophysics:
the detection of seismic tremors. The Gutenberg-Richter law [61] dic-
tates that the cumulative number of earthquakes increases exponen-
tially with decreasing magnitude. These events are severely contam-
inated by background noise. The background noise can include for
example weather effects or large bursts from a nearby human activ-
ity.Weak signals are drowned by this ambient noise, detecting them is
not an easy task, but accomplishing it will greatly contribute in under-
standing of the dynamics of Earthquakes. Recent studies are starting
to reveal more and more newly detected patterns such as Slow slip
events and their associated tremors [123], creep-slip events [116], or
Low Frequency Earthquakes[52].

The field of seismology has always been rich with techniques de-
veloped for detection and we choose to review the ones relevant to
our detection task.

6.1.1 detectors based on statistics

power detector sta/lta

In seismology, the most commonly used event detection algorithm is
the Short-term average/Long-term average (STA/LTA) detector pro-
posed by [3]: It computes the local Signal to Noise Ratio (SNR) by
keeping track of the long-term and short term energy of the signal.

STA(i) =
1

Ns

i∑
j=i−Ns

x(j)2 (178)

LTA(i) =
1

Nl

i∑
j=i−Nl

x(j)2 (179)

Rather than using the complex raw signals, authors in [8] proposed to
run the STA/LTA on the envelope function and even proposed the use
of an adaptive threshold. This algorithm has the advantage of being
rapid and it requires no learning, but it requires the choice of Ns,Nl
and a threshold to compare the ratio. The performance of the method
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degrades in situations where the SNR is low, and works best if the
bandwidth of the desired signal is known.

automated detection based on ar

One of the earliest applications of multi-dimensional auto-regressive
modeling, met in Chapter 2 as VAR(p), to seismograms dates to 1993;
The proposed approaches in [89, 136] were to fit stationary multiple
VARs on different segments of the data, and AIC is used to compare
the models and detect the onsets of a seismic signal. As discussed in
[9], this methodology was not applied to many datasets because the
computational complexity is expensive on large data.

detectors based on higher-order statistics

Authors in [125] were first to introduce higher order statistics, the
skewness and kurtosis to seismic traces. Subsequently, [9] proposed
an automatic phase-picking characteristic function based on the kur-
tosis, followed by a polarization analysis to detect both the onset of
P and S waves. Numerical experiments conducted in [9] evidenced

Figure 16: Illustration of the kurtosis based detection on a seismic
trace.Image taken from [9].

that the number of picked events and accuracy of the picking are sig-
nificantly higher than using the STA/LTA detector. The approach we
will adopt is very similar in spirit, the main novelties are the use of
the bivariate joint normality test, and the results we obtained on its
limiting distribution, thus allowing us to control the threshold using
a pre-specified false alarm rate.



112 applications in seismology

6.1.2 probing events with deep learning

There have been a lot of advances in a subset of Machine Learning:
Deep learning in seismology, the reader is referred to [85] for exam-
ples consolidating this statement. The fact that seismology is a data-
rich field has attracted the use of deep learning methods. With no
intention of being exhaustive, we review in the following some se-
lected methods that show promising results in automated detection
and/or phase picking.

zoom on scattering network

The following architecture is proposed in [129] for the task of unsu-
pervised classification of seismic signals. At each layer (i), the mother
wavelet is used to derive a number of J(i)Q(i) wavelets of the filter-
bankψ(i)

j with dilating themotherwavelet bymeans of scaling factors
λj = 2

j/Q such as:

ψ
(i)
j (t) = λjψ(λjt), j ∈ {0, . . . , J(i)Q(i) − 1}

For any signal x(t), the first convolutional layer (conv 1 in Figure 17)
and the first order scattering coefficients are respectively:

U
(1)
j (t) = |x ∗ψ(1)

j | (180)

S
(1)
j (t) = U

(1)
j ∗ϕ(t) (181)

whereϕ is the average pooling operator (pool 1 in Figure 17), it can be
interpreted as low pass filteringwith down-sampling to avoid aliasing.
This allows for observing larger and larger timescales in the structure
of the input signal. The scattering coefficients, obtained at each chan-
nel c ⩽ d and at each layer (i) are concatenated yielding the feature
array S = {S

(i)
j }i⩽m,0⩽j⩽J(i)Q(i)−1.

These features are used for unsupervised seismic classification of
signals, in this work [129], Principal Component Analysis (PCA) was
used to reduce the dimensionality of the scattering coefficients, and a
Gaussian Mixture Model was used for clustering them in the latent
space. The main novelties of this methodology, is that the mother
wavelet is retrained to jointly minimize the negative log-likelihood
of the clustering and a reconstruction loss of the input signal. Instead
of learning all the coefficients of the filterbank of each layer (i), they
are obtained by interpolating the mother wavelet in the temporal do-
main with Hermite cubic splines, and dilating it over the total number
of filters J(i)Q(i).
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Figure 17: Image taken from [129]

In [133], Maximum pooling was used instead of average pooling
ϕ(t) and Independent Component Analysis (ICA) [32] was used on
the high-dimensional scattering coefficients, followed by a hierarchi-
cal clustering formore explainability. Bothmethodologies were tested
on real data and were able to detect precursory signal of Greenland’s
landslide [129], and seismic signals in a two-day-long seismogram col-
lected in the North Anatolian Fault, Turkey[133].

other applications

In the detection, the primary goal is tominimize the false negative and
false positive rates; a similar problem but with a different objective is
phase picking, here the focus is on increasing the temporal accuracy
of arrival-time picks. This is due to the extreme sensitivity of earth-
quake location to earthquake arrival time estimates. Authors in [145]
propose an architecture based on convolutional networks, that takes
as input a three-channel signal x(n) ∈ Rd, and outputs two probabil-
ities Pp, Ps of picking respectively a P, and S wave. In [107], authors
have proposed a complex architecture that performs simultaneous de-
tection and phase picking.

6.1.3 beamforming or migration techniqes

Due to the deployment of densely sampled local seismograph arrays,
the backprojection or migration technique has become a practical
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method for detection of low-magnitude earthquakes [13]. Because of
the complex nature of real-data, i. e. low signal to noise ratio, large
noise bursts and varying signals polarity, prior to stacking the wave-
forms are pre-processed.

Consider now we have a network of three seismic sensors (orange
triangles in Figure 18). One could directly work on the raw data from
these stations, however in practice, data undergoes pre-processing in
order to avoid the problem of polarity by producing a positive signal
f(x) e. g. envelope was used in [13], and in [88], authors use the kur-
tosis gradient; prior to aligning and stacking the traces. [88].We then
discretize the volume beneath the study region into a grid of k points,
each of which representing a possible location of the seismic source.
A velocity model associates each potential source k with a collection
of P and S wave travel times to each station τks,c.

The characteristic functions applied on each seismic traces of the
stations are migrated and stacked according to the velocity model
(green trace in Figure18.B).

NRk(t) =
∑
s,c
f(xc(t− τ

k
s,c)) (182)

s, c are the station and channel indexes. In the third and final step, we
detect and simultaneously locate the seismic events by analyzing the
local maxima of the migration stacks:

CNRk∗(t) = max
k

{NRk(t)} = NRk∗(t) (183)

Our concern being low-magnitude earthquake detection, the peaks of
CNRk∗(t) that surpass a user-defined threshold are events detection
located at the source k∗.

The first limitation of this methodology is the need for a velocity
model. Then the need to constrain the area underneath the sensors,
otherwise the computational complexity gets expensive. The function
f should also be smooth enough to allow for seismic traces to stack
constructively. Luckily, based on the findings of [88], the kurtosis has
two advantages: It disables destructive interference by the misaligned
negative phase of the waveform [16] and reduces sensitivity to the
velocity model, and compared to the envelope or STA/LTA, backpro-
jection of kurtosis waveforms was the most robust at detecting the
smallest-magnitude events [16]. Therefore, we propose a methodol-
ogy where the sequential detector workflow and this beamforming
strategy can be combined in a favourable way.

For evaluation of the different methodologies, we will each time
introduce the data on which they were examined, detail the imple-
mentation strategies and summarize the detection results.
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Figure 18: Image taken from [13]

6.2 EVALUAT ION ON REAL DATA

6.2.1 precursors to the nuugaatsiaq landslide

On June 17 2017, a landslide occurred in the village of Nuugaatsiaq
(northwest of Greenland). This mass slipped into a fjord and gener-
ated a destructive tsunami responsible for four fatalities. The landslide
and the tsunami were recorded by many stations around the world,
we choose to inspect the seismic measurement station in Nuugaatsiaq
since it is 30km away from the landslide’s location.

Figure 19: Landslide and tsunami (recorded on the vertical component) oc-
cur at 23 : 39.

We will use seismic data from the station NUUG, sampled origi-
nally at 30Hz, to detect other precursory signals hidden in the back-
ground noise. We select the daylong three-component seismograms
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Figure 20: Precursory’s signals prior to the mainshock put to evidence by
filtering between 2 and 9Hz at t close to the mainshock

from June 17, 2017 00:00 to June 17, 2017 23:38 in order to disregard
the mainshock signal (at 23:39) and focus on seismic data recorded
before.

catalog by template matching

Templatematching exploits the idea of similarity between eventswhen
the corresponding events occurred within very close proximity of
each other. The most effective method of detecting a known signal in
a potentially noisy time-series is to cross-correlate a waveform tem-
plate with successive time segments of incoming data. The segments
sharing similarity with the template will result in a high value of the
correlationmatrix. Consider the reference x = [x(1), x(2), . . . , x(N)]T

and an arbitrary segment of the incoming datay = [y(1),y(2), . . . ,y(N)]T .
The cross-correlation is measured as:

ρ =

∑N
i=1 x(i)y(i)(∑N

i=1 x(i)
2
)1/2(∑N

i=1 y(i)
2
)1/2

it lies in the interval [−1, 1] with the extreme values occurring only
when the two time-series are co-linear.

However, this method evidently requires the knowledge or selec-
tion of the reference. To that end, authors in [116] have selected an
arbitrary template from the signals very close in time to the main-
shock as illustrated in Figure 20.

They correlate it against the day-long seismic data. The resulting
correlation trace is compared to a manually-chosen threshold and
a potentially precursory signal is detected when it exceeds it. This
methodology has yielded 83 newly detected events; there is a clear
exponential-like growth of the temporally accumulated event count
up to the time of the main shock. The amplitude evolution also fol-
lows this exponential-like growth. This behavior agrees with the nu-
cleation model and the results from numerical and laboratory experi-
ments[116].
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Figure 21: Time evolution of precursory signals. From [116]

Still in practice, rare are the events for which a template reference
is known a priori. The template matching method is very sensitive
to the quality, the frequency band and time duration of the reference;
limiting its use in a "blind" detection problem where few a priori, if
not none, information is available about the source. In the following,
we explore the use of statistical methods to detect precursory events
in a less supervised fashion than the matched detector.

We propose to relate the detection task with the time-series fore-
casting framework introduced in Chapter 2; we will see how we can
recover the precursory signals bymeans of modeling the ambient seis-
mic noise, the first attempt uses a linear regression model, namely the
VAR(p) model, see Figure 23, and in a second stage, our kurtosis test is
applied on the residuals of the linear regression, see Figure 24. Aware
that the constraint of linearity can be prohibitive, we also implement
a recurrent neural network to model the ambient noise. The choice
of the LSTM units is justified by their capacity of learning both long
and short term dependencies, and from a practical viewpoint, for its
robustness against the numerical instabilities of the simple RNN as
discussed in Chapter 2.

revealing precursory signals

The idea is rather intuitive, since we have no a priori on events, we try
to model instead the ambient noise for which we have more instances
than the rare precursory signals. We split the raw time-series such
that we have a training data of noise-only instances on which the
model tries to learn the regularities in the ambient noise. In the testing
phase, we monitor the forecasting errors of the model; if they exceed
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a certain threshold then a potential precursory signal is detected. We
split the day-long data into a training set from 00:00am to 03:32am
(15% of the data), and a test set (03:32am to 23:38pm) stopping exactly
before the occurrence of the main shock.

6.2.1.1 Training a linear VAR(p)

As a matter of fact, this splitting strategy underlies a very important
assumption about the signals: It implies that the ambient seismic noise
is a stationary process which is a very optimistic assumption in seis-
mological data. But for now, we assume for now that the ambient
seismic noise is a stationarymultidimensional auto-regressive VAR(p)
process; i. e. satisfying the equation 175. Loosely said, this model es-
timates the output x̂j(t) for a channel j, from its own p past values
and also the values of the other channels nearby. This is important be-
cause we fully exploit the information recorded on multidimensional
sensors.

First, the order of the model p was chosen using the Bayesian in-
formation criterion (BIC) introduced in Chapter 2, its minimization
yielded a value of p̂ = 25; see Figure 22. The linear auto-regressive

Figure 22: BIC(p) for 1 ⩽ p ⩽ 100

model’s parametersVAR(25) are then estimated from the first 15% of
the three-channel daylong data using the least squares method. In the
testing phase, we predict the one-step ahead forecast x̂(t) from the p
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previous observations preceding it in the test set. For each time-step,
we compute the error

e(t) = (x̂(t) − x(t))T Σ̂
−1

(x̂(t) − x(t))

. Wherein Σ̂ = 1
N

∑
t (x̂(t) − x(t)) (x̂(t) − x(t))T was estimated on

the training data.
The evolution of e(t) w.r.t to the number of samples in the test set,

is shown in Figure 23. We can see that the error function is peaked

Figure 23: A detector based on second order moments (RSS): High value sig-
nals a possible detection of a precursory signal to Greenland’s
landslide. Acceleration before the mainshock matches the physi-
cal model in [116].

at certain times, signaling a big departure of the signal from the ex-
pected value of the model. Also, there is an exponential-like growth
of detected events right before the mainshock agreeing with the nu-
cleation model discussed in the previous section.

Now remains the important problem of choosing a threshold. In-
deed, we canmanually choose a threshold by visualizing the evolution
of errors, however this empirical approach lacks theoretical guaran-
tees about the false negatives and the false positives of the detection.
For this reason, we go beyond simply monitoring the second-order
moment of errors in a linear regression problem, and we take ad-
vantage of the theoretical guarantees provided by using a stationary
VAR(p) model, to frame the detection task in a more robust statistical
framework:
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Instead of computing e(t), we arbitrarily project the three-channel
residuals on a plane, and we compute recursively B̂2(t) on the now
2D residuals as follows:

B̂2(t) = λ2B̂2(t) + (1− λ2)
(
ϵ(t)T Σ̂

−1
ϵ(t)T

)2
where ϵ(t) = x̂(t) − x(t) and λ2 = 0.998 is a fading factor that
smooths out the detection characteristic function. To give more intu-
ition, as explained in Chapter 5, this is equivalent to choosing a sliding
window of duration 33.3 seconds. The detection characteristic func-
tion is shown in Figure 24. Compared to the first strategy based on

Figure 24: A detector based on the bivariate kurtosis applied to the residu-
als: High value signals a possible detection of a precursory sig-
nal to Greenland’s landslide. Acceleration before the mainshock
matches the physical model in [116].

the quadratic error vector, the obtained characteristic function has
a smoother background and more visible peaks for the onset of pre-
cursory signals. The accelerating behavior of the repetitive seismic
signals is also visible before the mainshock. By using the results from
chapter 4, if the residuals are drawn from aGaussian distribution, then
the standardized B̂2(t) follows asymptotically a standard normal. We
fix the false alarm rate at 5% by using a threshold of ±1.96.
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Results

We obtain 141 newly detected events (four arbitrary examples are
plotted on the right). We compare the results of detection obtained
by our strategy with the catalog obtained by template matching. To
summarize the results, we create an array of all the obtained events
and compute a similarity matrix, where each value is the pairwise
correlation coefficient between two given seismic signals.

We stress the fact that the goal is not to conclude that we outper-
form or not the template matching detector. If the reference is known,
the latter is optimal for detecting co-located seismic events. The goal
is to simply synthesize our results, measuring the overlap with the
template matching technique. Just by inspecting 25, we can see that

Figure 25: Similarity matrix between all the events. The first 141 rows and
columns of the matrix are the events detected by our kurtosis-
based strategy, and the last 83 rows and columns correspond to
the signals obtained by template matching. The similarity mea-
sure is cross-correlation.

we have two distinct classes of signals. The events that were detected
long before the main shock starting 01:00am and until 15:00pm are
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characterized by a sharp small-duration envelope. These events do
not show a strong similarity in time between each other, and they also
differ from the events in the catalog provided by template matching.
On the other hand, the events detected after 15:00pm, and especially
the ones preceding the main shock starting 20:32pm share similarities
in time between each other, and also with the other events revealed
by template matching.

The fact that the temporal similarity of all these events is particu-
larly visible for later events is probably due to the fact that the signal-
to-noise ratio of these events increases toward the landslide. And
perhaps, this is what hinders the visibility of similarity between the
events occurring before 15:00pm.

To sum up, we have been able to detect 141 of the precursory sig-
nals to Greenland’s landslidewithout the need to a reference template;
we were able to recover 70 of the events already present in the tem-
plate matching catalog (84% overlap) and 71 newly detected events.
Indeed, tuning the detection threshold by allowing higher or lower
false alarm rates will yield a different count of detection. Themain fea-
ture to keep in mind is that this strategy has theoretical guarantees
and allows to fix the false alarm rate. Aware that real-data is com-
plex in nature, with both linear and non-linear components, we study
the impact of replacing the VAR(p) model with a Recurrent neural ar-
chitecture (LSTM) as a candidate model for the ambient noise. These
models promise the flexibility to learn both long-term and short-term
relationships in the incoming data; but we loose theoretical guaran-
tees about the distribution of the residuals. Thus, there is no justifi-
cation for using the kurtosis-based normality test. We simply review
the training procedure of these complex architectures and monitor
the error of the model’s forecasts. This study was directed during a
6-month internship of student Louis Closson.

Training LSTM network

When dealing with Neural networks, the first task is is to choose an
appropriate architecture: How many layers? How many hidden units
per layer? As there is not turn-the-crank procedure and very few the-
oretical studies, we have adopted the trial-and-error exercise.

Similar to the training procedure of the linear model, the model’s
parameters (weights and biases) are estimated on the first 15% of the
three-channel daylong data using the stochastic gradient descent; the
batch size is M = 256. The final adopted architecture consists of a
two-layer LSTM with 18 hidden units on each layer. Finally, a fully
connected layer whose choice is dictated by the dimension of the out-
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put (d = 3) provides the output. The model learns to predict the out-
put x̂(t) from 16 previous time-steps x(t−16), . . . , x(t−1).Wemon-
itor the evolution of e(t) = (x̂(t) − x(t))T (x̂(t) − x(t))w.r.t samples
in the test set.

Figure 26: Forecast error e(t) w.r.t to time. Acceleration before themainshock
matches the physical model in [116].

We manually choose a threshold equal to two times the standard
deviation of e, we obtain 71 newly detected events of which 40 over-
lap with the template matching catalog (51% overlap) and 31 newly
detected events occurring between 3am and 13pm. The similarity ma-
trix summarizing the detection results is in Figure 27.

To conclude this series of simulations, the two-stage detection strat-
egy based on pre-whitening and using the kurtosis-based normality
test on the residuals yields encouraging results. For this dataset, in-
creasing the complexity of the model by using LSTM blocks also re-
vealed similar events to the ones recovered by the first strategy, but
at the cost of losing the theoreticial guarantees about the false alarm
rate. Motivated by these results, we will now put in practice the se-
quential detector strategy presented in Chapter 5 on a more complex
dataset. We will first validate it on one station, and then extend it to
a network of stations.

the north anatolian fault, turkey

We also dispose of continuous three-component seismic data from 8
stations of the DANA experiment in Turkey. We choose the data set
for mainly two reasons. First of all, the data set contains both seismic
and anthropogenic activity, which is a typical situation in most seis-
mological studies[133]. Second of all, an existing template matching
catalog provides labels for the seismicity in this area. The catalog was
built following the methodology in [13], and for comparison we con-
duct the same pre-processing steps: The recodings on all stations are
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Figure 27: Similarity matrix between all the events. The first 141 rows and
columns of the matrix are the events detected by LSTM forecast
errors, and the last 83 rows and columns correspond to the signals
obtained by template matching. The similarity measure is cross-
correlation.

down-sampled to 25Hz and filtered in the band 2− 12Hz using a But-
terworth band-pass filter. Prior to down-sampling a type 2Chebyshev
low pass filter of order 10 is applied to alleviate aliasing. We choose
to analyze the seismic data from the 7th to the 8th of July 2012.

6.2.2 validation on one station of the dana array

We first start with validating the proposed methodology in Chapter
5, that is pre-whitening, arbitrary bivariate projection and recursive
computation of the bivariate kurtosis B̂2(t), on one station of the
DANA array called SAUV. For comparison with a power-based de-
tector, we run a recursive STA/LTA algorithm on one channel of the
long-day incoming data, the results are in Figures 29, 30.

The sequential detector has a smoother background than STA/LTA
for ambient noise and pronounced peaks signaling the onset of poten-
tial seismic events. The power detector STA/LTA on the other hand
has many large bursts. This is normal as it is sensitive to the low SNR
of the data to hand.
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Figure 28: East component of one station SAUV from the DANA array. In
red vertical lines, the detected seismic events present in the cat-
alog provided by a similar methodology to [13] used on multiple
stations of the DANA array.

Figure 29: B̂2 w.r.t time time

6.2.3 validation on multiple stations of the dana

array

Even greater improvement in detecting low-magnitude signals can be
achieved using a network of stations. The delay-and-sum (beamform-
ing) of traces from closely spaced sensors increases the SNR through a
simultaneous summation of coherent signal and cancellation of inco-
herent noise.We propose the standardized bivariate kurtosis obtained
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Figure 30: Recursive STA/LTA wherein Ns = 100, Nl = 2000 (in number
of samples)

by recursive pre-whitening as a candidate for the summation. 8 sta-
tions
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next to SAUVwere selected to test the kurtosis as a candidate function
for the beamformingmethod. The data from all stations are downsam-
pled to 25 Hz and filtered in the band 2–12 Hz.

We have discretized the area underneath 8 stations, yielding k po-
tential sources, andwe recall that each network’s response is obtained
by:

NRk(t) =
∑
s,c
f(t− τks,c) (184)

CNRk∗(t) = max
k
NRk(t) (185)

Where the moveouts τks,c were computed using the ray-tracing soft-
ware Pykonal in the 1D velocity model due to [79]. The goal is to
compare three choices of f(.): the envelope of the traces, the univari-
ate kurtosis on one arbitrary axe and finally the workflow proposed
in Chapter 5, that is for each station, seismograms are pre-whitened
using multidimensional autoregressive filtering. The obtained residu-
als will then be arbitrarily projected on a plane on which the bivariate
kurtosis is estimated B̂2. In Figures 31, 32, 33, the Composite Network
response of the envelope, the univariate kurtosis and the bivariate
kurtosis obtained by our sequential detector are shown w.r.t time. Re-
mains the important question of choosing the threshold. We can no
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Figure 31: CNRk∗(t) computed usingNRk(t) =
∑

s,c env(t− τ
s,c
k ) where

f is the envelope of the seismic trace. Red peak corresponds to a
possible detection.

Figure 32: CNRk∗(t) computed using one channel NRk(t) =
∑

s B̂1(t −

τsk) computed after pre-whitening using multi-dimensional auto-
regressive filtering

Figure 33: CNRk∗(t) computed using the NRk(t) =
∑

s B̂2(t − τsk)

computed after pre-whitening using multi-dimensional auto-
regressive filtering

longer use the critical values of a standard normal because the com-
posite network response is the maximum of the sum of B̂d (d = 1, 2).
Under the hypothesis of Gaussianity, we know that asymptotically∑
B̂d(t) is also Gaussian with mean and variance detailed in Chapter

4. Hence, we can use the results on the maximum of randomGaussian
variables to derive the distribution of the CNR. For now, we manually
pick the threshold by visualizing the histogram of the CNR.
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The composite network response obtained by the envelope detec-
tor favors signals with great energy, hence we observe a dominant
peak corresponding to the event with the highest magnitude, drown-
ing all the rest of the events. Therefore authors in [13] propose the
use of an adaptive threshold to find maxima locally in a sliding win-
dow. Using our sequential detector with univariate kurtosis already
yields better results compared to stacking the energy but the count
of events is smaller compared to using the bivariate kurtosis on an
arbitrary projection. The scalar kurtosis revealed 23 seismic events,
whereas the bivariate kurtosis revealed 98.

6.3 CONCLUS ION AND CONTRIBUT IONS

The ever increasing amount of geophysical data at our disposal gives
us unprecedented possibilities to devise sophisticated models; but it
also requires careful efforts in designing statistically significant and
efficient methods from theoretical and implementation viewpoints.
For this reason, we have proposed an operational sequential detec-
tor to skim through the incoming data and reveal the onset of seismic
events. The two-stage workflow consists of filtering the data using a
linear vector auto-regressive model to capture the linear component
of the data. If the sequence contains mostly noise, the residuals are
expected to be Gaussian justifying the use in a second stage of the
kurtosis-based normality test to detect the onset of seismic events.
These events are expected to be sharp peaked, which translates as a
heavy-tailed distribution with a high kurtosis. We also propose to re-
duce the dimension of the initial residuals by projecting them on a
plane, in order to use the limiting distribution derived in Chapter 4.

In the proposed workflow, only few parameters are to be tuned:
The fading factors in the recursive least squares estimation and the
recursive estimation of the standardized kurtosis and finally the false
alarm rate. The choice of the first two is constrained by the time-scale
of changes relative to each data and the last one depends on the de-
sired trade-off between false alarm rate and power of detection. The
theoretical guarantees free us from the manual selection of an empir-
ical threshold. This workflow has also the advantage of not requiring
large labeled data to train the model on, it adapatively learns the pa-
rameters of VAR(p) using an efficient implementation of the RLS al-
gorithm. It also allows the model to be more flexible to changes in the
background noise and generalizes well to different datasets.

Our strategy was able to recover events detected by the template
matching strategy without requiring a reference waveform and also
reveal newly detected events. It has also been extended to seismic
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arrays and the beamforming based on the bivariate kurtosis yielded
better results than energy-based beamforming techniques. Our ex-
ploratory detection task using LSTM on the Greenland’s landslide has
demonstrated that increasing the complexity of the model does not
necessarily lead to better detection results. With no intention of be-
ing conclusive based on one set of data, but this finding demonstrates
that the ever increasing amount of data should not always imply the
implementation of an equally complex model. On the contrary, scal-
able methods with theoretical guarantees should be preferred to allow
for more generalization, explainability and efficiency.





CONCLUS ION

In this manuscript, we investigated detection techniques adapted to d-
dimensional time-series, with an application to seismology.We gave a
great deal of attention for designing an efficient detector that can run
with low computational burden on large datasets, andwith theoretical
guarantees on the false alarm rate.

How to derive a detector with theoretical guarantees on the false alarm
rate?

In this work, we tackled the detection task in a statistical frame-
work, where detecting changes in the distribution of the time-series
amounts to the departure of a test statistic fromGaussianity. Themain
result of our work presented in Chapter 4 derived the limiting distri-
bution of Mardia’s measure of Kurtosis on bivariate time-series. Sub-
sequently, we generalized these findings tod-variate data bymeans of
random projections. Supported by numerical results on colored cop-
ula, we have shown that testing normality with bivariate kurtosis on
2D-projections outperforms its scalar counterpart on 1D-projections.
Our work strongly motivates taking into account both the spatial and
temporal dependence when testing the Gaussianity of time-series. Rather than deriving

the calculations
manually, a natural
continuation of this
work would be to
implement the
calculation steps in
a symbolic
computing tool; or
perhaps derive
bounds on the mean
and variance of the
test statistic for
higher-dimensional
data.

How to translate the theoretical findings to an operational detector?
The testing procedure should now run with low computation bur-

den on large datasets and reveal non-Gaussien signals embedded in
Gaussian noise. To that end, we proposed in Chapter 5 a two-stage
sequential detector prior to computing the test statistic recursively,
time-series are pre-whitened using VAR(p) model, or even randomly
projected if their dimension d ⩾ 3; in which case the false discovery
rate is controlled using a Benjamini-Hocheberg procedure. In the ab-
sence of events, the null hypothesis is that residuals are a realization
of a Gaussian process. This workflow yields good detection power
results on both synthetic and real-word data. This is supported by nu-
merical experiments in Chapter 5 and comparisonswith energy-based
detectors, and an anomaly detector based on ANN in Chapter 6.

We were tempted to believe that increasing the complexity of the
model by using LSTM in Chapter 6 on large data would increase the
detection power, but it yielded similar performances to our sequential
detector. Whywere we tempted to believe that in first place is the first
open question we raise in the following.

131
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OPEN QUEST IONS

The hype around ANN and the unprecedented results they obtain
on complex tasks has made them an ubiquitous tool. It seems that
for a learning method to be admissible, it should contain a flavour
of ANN. We have chosen to introduce ANN in the statistical frame-
work of Chapter 2. This is coherent because they are in the end simply
non-linear statistical models. We have also raised concerns related to
the choice of their architecture, training issues and lack of generaliza-
tion and explainability. Another important issue is that training over-
parameterized networks requires significant computing costs, and by
extension energy costs. These important issues are, if addressed, sup-
posedly alleviated by empirical methods (with a strong judgmental
component) such as pruning or early stopping.

This a heavy list of heavy disadvantages somehow goes
unbeknownst to the unaware practitioner, who with trial-and-error,
obtains the desired performance. We do not attempt to pass judgment
on the merits of these methods, on the contrary, we encourage their
use when that is necessary and appropriate to the problem at hand.
In deciding that, one should not be disconnected from the global cost
and implications of this necessity.

Recently, these questions are more addressed in research works, for
example considerable attention is put on formulating a mathematical
framework for ML practices, elaborating on approaches like the Prob-
ably Approximately Correct learning [138] and related approaches
The introduction of PAC has done an admirable job of drawing to-
gether ML practitioners with computer scientists to seek answers to
How likely is a learner to output an approximately correct model?

The intent of PAC learning is that successful learning of unknown
targets entails obtaining, with high probability, a hypothesis that is
a good approximation of the the target. Formally, the basic model as-
sumes that instances are in {0, 1}n, but it can easily be extended to
non-Boolean based attribute instance spaces. A concept is PAC learn-
able by a set of hypotheses (or models) H if there is a polynomial
time learning algorithm and a polynomial p(n) such that for n ⩾ 1

and ϵ > 0, 0 < δ < 1, if the algorithm A is given at least p(n) inde-
pendent samples of the concept targets, then with probability at least
1− δ, A returns a hypothesis h such that error(h) ⩽ ϵ. p(n) is the
sample complexity of the learning algorithm A.

How much data one must see to satisfy a specific pair (δ, ϵ) de-
pends on how complex the given class of hypotheses are. By increas-
ing the size of the hypothesis space, it may become easier to find a
good approximation, but that requires passing through more train-
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ing samples.. The bias induced by restricting the hypothesis space H Computational
complexity vs.
sample complexity

is quantified by using the Vapnik-Chervonenkis dimension denoted
dimVC(H) [19]. It can be shown that the sample complexity of a learn-
ing algorithm by H is bounded by [65]: However in practice,

this bound is
considered a loose
overestimate.

1
√
ϵ
√
1− ϵ

(
2dimVC(H) ln(

6

ϵ
) + ln(

2

δ
)

)
An active area of reasearch is to extend the PAC theory to neural

networks. The goal is to develop analytic tools to help understand
the problem of generalization and overfitting in these more complex
decision rule spaces. Further details about the theory of PAC can be
found in [56, 130]. Another active area of research is concerned with
the choice of architecture of ANN. To circumvent the judgemental
component of the commonly used methods such as: regularization,
early stopping and pruning, attempts have been made to derive sta-
tistical hypothesis testing in [5], or derive Information criteria for a
feedforward ANNs [109].

We have also discussed the use of hybrid architectures in Chapter 2
and gave an example of merging ARMAwith ANN. Another example
is the scattering network that combines the favours of the theoretical
guarantees of the scattering transform with the learning flexibility of
CNN. This combination of expert knowledge with the ANN perfor-
mance holds the promise of a best-of-both world scenario, in which
fair, accessible and almost explainable outputs are given to the practi-
tioner.

In our work, we could make the results obtained by the sequen-
tial detector more reliable and conclusive by clustering. This exer-
cise of categorization, where the events are grouped based on a sim-
ilarity measure summarizes information about the multiple detected
events. This is a proposal of a hybrid architecture, where our kurtosis-
based detector reveals non-Gaussian processes, and then a clustering
method, such as spectral clustering, takes the "torch" to reveal the
different communities of these complex events.

F U TURE D IRECT IONS APPL ICAT ION DIRECT IONS

Turning real-data into insights is an exciting aspect that holds promises
of understanding the dynamics that rule Earth, and perhaps contribute
in earlywarning systemswhere seismic events are predicted and there-
fore prevented. forecasting

Earthquakes or
volcanic eruptions is
still in its infancy
[122]

The application of detecting unseen patterns in data has naturally
excluded the use of supervised deep learning practices, because of
the lack of a large training dataset, and also due to their inability to
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provide guarantees on the false alarm rate. This is why we favoured
a methodology with more theoretical guarantees based on Mardia’s
kurtosis estimated on the linear regression model residuals. This is
a valid approach (and very common in signal processing), where we
supposed that in the absence of a peaked seismic signal, the sensors
record small fluctuations of multiple noise source and multiple scat-
tering noises (and thus Gaussian by the Central Limit theorem). In-
stead of modeling the complex signals of interest, we model what is
recorded in their absence to reveal them. We also note that the use of
higher order statistics in seismology is not new; the kurtosis is com-
monly used in phase-picking applications; What is new in our work is
choosing a threshold of the bivariate kurtosis with a fixed false alarm
rate, which is suitable for multivariate time-series.

Phase-picking

If the problem at hand is now phase picking discussed in Chapter 6
where onset times should be chosen carefully to enable the location
of the sources, the proposed sequential detector should be run twice,
first on the time-series, and subsequently on its time-reversed coun-
terpart. It is important to note that our test statistic is computed recur-
sively with a fading factor. This causes a lag in the detection of the
onset of seismic events. We could re-estimate the test statistic, this
time on its time-reversed to yield better estimates of the onset of the
events.

A Clustering point of view

Alternatively, the problem at hand could have been framed as clus-
tering this plethora of complex events, in which case turning to more
complexmodels would be required. See for example the work of [108],
[129, 133] to name a few. In a similar spirit, exploring architectures
such as Autoencoders for where the values of the reduced latent space
form an interest set of features for clustering seismic events. This
would be an interesting complementary approach to our work.

Kurtosis-based beamforming

More effort should be made on generalizing the kurtosis based beam-
forming to more periods of data or different regions to derive more
general conclusions on this procedure. Additionally, the threshold
chosen empirically for now for the composite network response (which
is the maximum at each time-step t of the values of B̂2 from multiple
stations), should be replaced with a more robust choice. If we can
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assume that the network responses of each station are independent
Gaussian random variables, then the asymptotic distribution of the
maximum (the composite network response) is the standard Gumbel
distribution. This reiterates the advantage of using a scalar test statis-
tic B̂2 on a multivariate problem, for which deriving such limiting
distributions is possible analytically.
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a.1 APPENDICES

a.1.1 proofs of lemmas 4.2.1 and 4.2.2

Proof. of Lemma 4.2.1. Under HypothesisH0, the covariance of entries
∆ab take the form below :

Cov(∆ab,∆cd) =
1

N2

N∑
n=1

N∑
m=1

E{xa(n)xb(n)xc(m)xd(m)}−SabScd

and letting τ = n−m, andΩabcd = SacSbd + SadSbc we have after
some manipulation:

Cov(∆ab,∆cd) =
1

N
Ωabcd +

2

N

N−1∑
τ=1

(1−
τ

N
) {Sac(τ)Sbd(τ) + Sad(τ)Sbc(τ)}

⩽
1

N
Ωabcd +

2

N

∑
τ

{|Sac(τ)| |Sbd(τ)|+ |Sad(τ)| |Sbc(τ)|} .

Next, using the inequalities |
∑
i uivi| ⩽

∑
i |ui||vi| ⩽

1
2

∑
i(u

2
i + v

2
i ),

we have:

|Cov(∆ab,∆cd)| ⩽
|Ωabcd|

N
+
1

N

∑
τ

|Sac(τ)|
2+ |Sbd(τ)|

2+ |Sad(τ)|
2+ |Sbc(τ)|

2.

Now using the mixing condition stated in page 72,
∑∞
τ=0 |Sij(τ)|

2 ⩽
Ωij, we eventually obtain:

|Cov(∆ab,∆cd)| ⩽
|Ωabcd|

N
+
1

N
(Ωac+Ωbd+Ωad+Ωbc) (186)

which shows that Cov(∆ab,∆cd) = O(1/N). 2

Proof. of Lemma 4.2.2. Notice that positive definite sample covari-
ance matrix may be reexpressed as

Ŝ = S+∆ = S1/2IS1/2 +S1/2S−1/2∆S−1/2S1/2

Let E be the symmetric matrix E = −S−1/2∆S−1/2. Then with this
definition,

Ĝ = S−1/2(I+ E)−1S−1/2

139
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As for any matrix E with spectral radius smaller than 1, the series∑∞
k=0 E

k converges to (I− E)−1. If we plug this series in the expres-
sion of Ĝ, forN large enough to warrant that the spectral radius of E
is less than 1, we get Ĝ = S−1/2 ∑K

k=0 E
k S−1/2 + o(∥E∥K). Replac-

ing E by its definition and taking K = 3 eventually yields (143). Note
that the precise approximation order is O(N−3/2), but only o(1/N)

will be useful in what follows. 2

a.1.2 mccullagh’s bracket notation and expression

of the higher moments under the null hy-

pothesis

McCullagh’s bracket notation [101] allows to write into a compact
form a sum of terms that can be deduced from each other by generat-
ing all possible partitions of the same type. For instance, we have the
following expression for fourth order momentsMabcd of a zero-mean
multivariate normal variable with covariance S:

Mabcd = SabScd + SacSbd + SadSbc = [3]SabScd (187)

Moments of higher order can be found easily:

order 6: Mabcdef = [15]SabScdSef (188)
order 8: Mabcdefgh = [105]SabScdSefSgh (189)
order 10: Mabcdefghij = [945]SabScdSefSghSij (190)
order 12: Mabcdefghijkℓ = [10395]SabScdSefSghSijSkℓ(191)
order 14: Mabcdefghijkℓmn = [135135]SabScdSefSghSijSkℓ

Smn (192)
order 16: Mabcdefghijkℓmnpq = [2027025]SabScdSefSghSijSkℓ

SmnSpq (193)

since it is well known that there are [ 2r!2r r! ] terms in the moment of
order 2r.

a.1.3 calculation methodology

Remind that, as introduced in Lemma 4.2.3, Aαlβl = x(αl)
TGx(βl),

where G stands for the true precision matrix of the process whose
terms are Gr,c, and where (r, c) ∈ {1, . . . ,d}2.

Referring to the expression of B̂p or B̂2p as derived from equation
(145), it appears that the indices (αl,βl) take values on a restricted
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set S = {i, j,k, . . .}, and |S| ≪ N. The following compact notation is
therefore introduced

µα1...αLβ1...βLr1...rLc1...cL
=Miηi j

ηjkηk .... (194)

where

ηi =

L∑
l=1

(
I[αl=i] + I[βl=i]

)
,∀i ∈ S

Note that the subscripts r1, ...c1... are skipped here for sake of read-
ability, though any permutation of the superscripts in equation (146)
requests the corresponding permutation of the subscripts. It is easier
to describe the general methodology by the typical example below.

Example

Consider themomentE{AnnAnjAjkAkn}. According to equation (147)
it will be expanded as a sum of moments of order 8 (i.e. L = 4); using
the compact notation from equation (194), we get

E{AnnAnjAjkAkn} =

d∑
((ri,ci)i=1...4)=1

Gr1c1Gr2c2Gr3c3Gr4c4µ
nnnjjkkn
r1c1r2c2r3c3r4c4

=

d∑
((ri,ci)i=1...4)=1

Gr1c1Gr2c2Gr3c3Gr4c4Mn4j2k2 (195)

The sum involves 22L = 64 terms. It is reminded that the coeffi-
cients ri or ci indicate the coordinate of the vector process (or space
coordinate, thus taking values on {1, . . . ,p}) , whereas time indices
n, j,k tale values on{1, . . . ,N}. Following McCullagh’s notations, un-
der the assumption (H0) that the d-dimensional process is centered
and jointly Gaussian, for this particular 8-th order moment

Mabcdefgh = [105]SabScdSefSgh

which expresses that under H0, higher even order moments (odd-
order moments are zero) may be expanded as sums of products of sec-
ond order moments. It must be reminded that here, a,b, c,d, e, f,g,h
stand for ’meta-indices’ defined in the present example by

(n, r1), (n, c1), (n, r2), (n, c4), (j, c2), (j, r3), (k, c3), (k, r4)

respectively, as it appears in equation (195). Plugging the above expan-
sion in equation (195) leads to summing over 64× 105 terms! How-
ever, in most cases of interest many terms may be grouped together
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and highlight the behavior of equation (147). The case d = 1 is briefly
sketched below as an illustration.

The case d = 1 implies that ri = ci = 1 ∀i ∈ {1, . . . , (L = 4)};
the particular 8-th order moment in equation (195) may be simply
written asMn4j2k2 , whose expansion into sum of products of second
order moments will involve the following products : (as there is no
ambiguity in this case, we setMij

nota.
= Sij),

SnnSnnSjjSkk appearing 3 times
SnnSnnSjkSjk appearing 6 times
SnnSnjSnjSkk appearing 12 times
SnkSnkSnjSnj appearing 24 times
SnjSjkSnkSnn appearing 48 times
SnnSnkSnkSjj appearing 12 times

For example the number of occurences of the term of typeSnkSnkSnjSnj
is given by

(4× 2× 3× 1)/2× (2× 2× 1× 1)/2 = 24

where 4× 2 stand for the number of possible choices for index i (one
out of 4) times the number of possible choices for index k (one out of
2); then 3× 1 stand for the number of remaining possibilities to select
index i times the remaining choices for k; Division by 2 accounts for
the fact that permutations of terms Sik were counted twice. All other
occurence calculations follow the same guidelines. Finally, one gets
for the case d = 1

Mn4jjkk = 3S
2
nnSjjSkk + 6S

2
nnSjkSjk + 12SnnS

2
ijSkk + 24S

2
nkS

2
nj + ....

48SnjSjkSnkSnn + 12SnnS
2
nkSjj

which can be directly plugged into equation (195). Note that the sum
of all coefficient is actually 105, as expected for an 8-th order moment.

The cases d ⩾ 2 turns out to be a bit more complicated, as one
has to deal with the ’meta-indices’ directly. However counting the
number of configurations involving the same time indices follows the
same lines as in the case d = 1. Going back to the example introduced
above for d = 2, one gets

E{AnnAnjAjkAkn} =

d∑
((ri,ci)i=1...4)=1

Gr1c1Gr2c2Gr3c3Gr4c4 { [3]µ
nn
r1c1

µnnr2c4µ
jj
c2r3

µkkc3r4

+ [6]µnnr1c1µ
nn
r2c4

µjkc2c3µ
jk
r3r4

+ [12]µnnr1c1µ
nj
r2c2

µnjc4r3µ
kk
c3r4

+ [24]µnkr1c3µ
nk
c1r4

µnjr2c2µ
nj
c4r3

+ [48]µnjr1c2µ
jk
r3c3

µnkc1r4µ
nn
r2c4

+ [12]µnnr1c1µ
nk
r2c3

µnkc4r4µ
jj
c2r3

}
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where we have used notations µαβrc to emphasize that the permuta-
tions (whose number is indicated using McCullagh’s brakets) are ap-
plied on the ’meta-indices’ and grouped such that they share the same
’time structure’; This allow to get the same values as in the case d = 1,
though replacing the scalar coefficients by McCullagh’s brakets.

a.1.4 multivariate moments up to order 12

In this section, we give all moments of a zero-mean multivariate nor-
mal variable of even order. Most of these expressions have not been
reported in the literature. In addition, for the sake of readability, when
an index is repeated more than three times, we assume an alternative
notation, for instance at order 10:

Miiiiijjjjk =Mi5j4k

Furthermore, we use notation introduced in (194) involvingmeta-indices;
more precisely, since each subscript is always associated with a su-
perscript, we may omit the subscript. In order to lighten notation, es-
pecially when terms need to be raised to a power, we put the latter
superscript in subscript. For instance in (196),Miiij

abcd is replaced by
Miiij. In the list below, moments are sorted by increasing D, where
D denotes the number of distinct indices.
Order 4, D=2.

Miiij = [3]µiiabµ
ij
cd

Miijj = [2]µijabµ
ij
cd + µ

ii
abµ

jj
cd

Order 4, D=3.

Miijk = µiiabµ
jk
cd + [2]µijabµ

ik
cd

Order 6, D=2.

Mi5j = [15]µiiabµ
ii
cdµ

ij
ef

Mi4jj = [12]µijaeµ
ij
bfµ

ii
cd + [3]µiiabµ

ii
cdµ

jj
ef

Miiijjj = [6]µijadµ
ij
beµ

ij
df + [9]µiiabµ

ij
cdµ

jj
ef

Order 6, D=3.

Mi4jk = [3]µiiabµ
ii
cdµ

jk
ef + [12]µijaeµ

ik
bfµ

ii
cd

Miiijjk = [6]µijadµ
ij
beµ

ik
cf + [6]µijadµ

ii
bcµ

jk
ef + [3]µiiabµ

jj
deµ

ik
cf

Miijjkk = µiiabµ
jj
cdµ

kk
ef + [2]µiiabµ

jk
ceµ

jk
bf + [2]µjjcdµ

ik
aeµ

ik
bf + [2]µkkef µ

ij
acµ

ij
bd

+[8]µijacµ
jk
deµ

ik
bf
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Order 8, D=2.

Mi7j = [105]µiiabµ
ii
cdµ

ii
efµ

ij
gh

Mi6jj = [90]µijagµ
ij
bhµ

ii
cdµ

ii
ef + [15]µiiabµ

ii
cdµ

ii
efµ

jj
gh

Mi5jjj = [60]µijafµ
ij
bgµ

ij
chµ

ii
de + [45]µiiabµ

ii
cdµ

ij
efµ

jj
gh

Mi4j4 = [9]µiiabµ
ii
cdµ

jj
efµ

jj
gh + [72]µiiabµ

ij
ceµ

ij
dfµ

jj
gh + [24]µijaeµ

ij
bfµ

ij
cgµ

ij
dh

Order 8, D=3.

Mi6jk = [15]µiiabµ
ii
cdµ

ii
efµ

jk
gh + [90]µiiabµ

ii
cdµ

ij
egµ

ik
fg

Mi5jjk = [30]µiiabµ
ii
cdµ

ij
efµ

jk
gh + [60]µijafµ

ii
bcµ

ik
dh + [15]µiiabµ

ii
cdµ

jj
fgµ

ik
eh

Mi4jjjk = [9]µiiabµ
ii
cdµ

jj
efµ

jk
gh + [36]µjjefµ

ij
agµ

ik
bhµ

ii
cd

+[24]µijaeµ
ij
bfµ

ij
cgµ

ik
dh + [36]µiiabµ

ij
ceµ

ij
dfµ

jk
gh

Mi4jjkk = [3]µiiabµ
ii
cdµ

jj
efµ

kk
gh + [6]µiiabµ

ii
cdµ

jk
egµ

jk
fh + [12]µiiabµ

ij
ceµ

ij
dfµ

kk
gh

+[24]µikagµ
ik
bgµ

ij
ceµ

ij
df + [48]µijaeµ

jk
fgµ

ik
bhµ

ii
cd

+[12]µiiabµ
ik
bgµ

ik
chµ

jj
ef

Miiijjjkk = [9]µiiabµ
ij
cdµ

jj
efµ

kk
gh + [18]µiiabµ

ij
cdµ

jk
egµ

jk
fh + [6]µijadµ

ij
beµ

ij
cfµ

kk
gh

+[18]µikagµ
ik
bhµ

ij
cdµ

jj
ef + [36]µijadµ

ij
beµ

ik
cgµ

jk
fh

+[18]µikagµ
jk
dhµ

ii
bcµ

jj
ef

Order 10, D=2.

Mi9j = [945]µiiabµ
ii
cdµ

ii
efµ

ii
ghµ

ij
mℓ

Mi8jj = [105]µiiabµ
ii
cdµ

ii
efµ

ii
ghµ

jj
mℓ + [840]µiiabµ

ii
cdµ

ii
efµ

ij
gmµ

ij
hℓ

Mi7jjj = [315]µiiabµ
ii
cdµ

ii
efµ

ij
ghµ

jj
mℓ + [630]µijahµ

ij
bmµ

ij
cℓµ

ii
deµ

ii
fg

Mi6j4 = [45]µiiabµ
ii
cdµ

ii
efµ

jj
ghµ

jj
mℓ + [360]µijagµ

ij
bhµ

ij
cmµ

ij
dℓµ

ii
ef

+[540]µiiabµ
ii
cdµ

ij
egµ

ij
fhµ

jj
ml

Mi5j5 = [120]µijafµ
ij
bgµ

ij
chµ

ij
dmµ

ij
eℓ

+[225]µiiabµ
ii
cdµ

ij
efµ

jj
ghµ

jj
mℓ + [600]µjjfgµ

ij
ahµ

ij
bmµ

ij
cℓµ

ii
de
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Order 10, D=3.

Mi8jk = [105]µiiabµ
ii
cdµ

ii
efµ

ii
ghµ

jk
mℓ + [840]µiiabµ

ii
cdµ

ii
efµ

ij
gmµ

ik
hℓ

Mi7jjk = [210]µiiabµ
ii
cdµ

ii
efµ

ij
ghµ

jk
mℓ + [630]µiiabµ

ii
cdµ

ij
ehµ

ij
fmµ

ik
hℓ

+[105]µiiabµ
ii
cdµ

ii
efµ

jj
hmµ

ik
gℓ

Mi6jjjk = [45]µiiabµ
ii
cdµ

ii
efµ

jj
ghµ

jk
mℓ + [270]µiiabµ

ii
cdµ

ij
egµ

ij
fhµ

jk
mℓ

+[360]µijagµ
ij
bhµ

ij
cmµ

ik
dℓµ

ii
ef + [270]µikaℓµ

jj
ghµ

ij
bℓµ

ii
cdµ

ii
ef

Mi6jjkk = [15]µiiabµ
ii
cdµ

ii
efµghjjµ

kk
mℓ + [30]µiiabµ

ii
cdµ

ii
efµ

jk
gmµ

jk
hℓ

+[90]µiiabµ
ii
cdµ

ij
egµ

ij
fhµ

kk
mℓ + [90]µiiabµ

ii
cdµ

ik
emµ

ik
fℓµ

jj
gh

+[360]µiiabµ
ij
cgµ

ij
dhµ

ik
emµ

ik
fℓ + [360]µiiabµ

ii
cdµ

ij
egµ

ik
fmµ

jk
hℓ

Mi5j4k = [45]µiiabµ
ii
cdµ

jj
fgµ

jj
hmµ

ik
eℓ + [360]µiiabµ

ij
cfµdgµ

jj
hmµ

ik
eℓ

+[120]µijagµ
ij
bfµ

ij
cgµ

ij
dhµ

ik
eℓ + [180]µiiabµ

ii
cdµ

ij
efµ

jj
ghµ

jk
mℓ

+[240]µiiabµ
ij
cfµ

ij
dgµ

ij
ehµ

jk
mℓ

Mi5jjjkk = [45]µiiabµ
ii
cdµ

ij
efµ

jj
ghµmℓkk+ [60]µiiabµ

ij
cfµ

ij
dgµ

ij
ehµ

kk
mℓ

+[90]µiiabµ
ii
cdµ

ij
efµ

jk
gmµ

jk
hℓ + 360µ

ii
abµ

ij
cfµ

ij
dgµ

ik
emµ

jk
hℓ

+[90]µiiabµ
jj
fgµ

ik
cmµ

jk
hℓ + [180]µiiabµ

ij
cfµ

jj
ghµ

ik
dmµ

ik
eℓ

+[120]µijafµ
ij
bgµ

ij
chµ

ik
dmµ

ik
eℓ

Mi4jjjkkk = [27]µiiabµ
ii
cdµ

jj
efµ

jk
ghµ

kk
mℓ + [18]µiiabµ

ii
cdµ

jk
ehµ

jk
fmµ

ij
gℓ

+[108]µiiabµ
ij
ceµ

ij
dfµ

jk
ghµ

kk
mℓ + [108]µiiabµ

jj
efµ

jk
ghµ

ik
cmµ

ik
dℓ

+[108]µiiabµ
jj
efµ

ij
cgµ

ik
dhµ

kk
mℓ + [216]µiiabµ

ij
ceµ

ik
dhµ

jk
fmµ

jk
gℓ

+[72]µijaeµ
ij
bfµ

ij
cgµ

ik
dhµ

kk
mℓ + [216]µikahµ

ik
bmµ

ij
ceµ

ij
dfµ

jk
gℓ

+[72]µikahµ
ik
bmµ

ik
cℓµ

ij
deµ

jj
fg

Mi4j4kk = [9]µiiabµ
ii
cdµ

jj
efµ

jj
ghµ

kk
mℓ + [72]µiiabµ

ij
ceµ

ij
dfµ

jj
ghµ

kk
mℓ

+[24]µijaeµ
ij
bfµ

ij
cgµ

ij
dhµ

kk
mℓ + [36]µiiabµ

jj
efµ

jk
gmµ

jk
hℓ

+[144]µiiabµ
ij
ceµ

ij
dfµ

jk
gmµ

jk
hℓ + [36]µiiabµ

jj
efµ

jj
ghµ

ik
cmµ

ik
dℓ

+[144]µijaeµ
ij
bfµ

jj
ghµ

ik
cmµ

ik
dℓ + [288]µiiabµ

jj
efµ

ij
cgµ

ik
dmµ

jk
hℓ

+[192]µijaeµ
ij
bfµ

ij
cgµ

ik
dmµ

jk
hℓ

a.1.5 particular results when d = 1

Here we remind that µij11 = Sij.
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Order 12, d=1, D=2.

Mi11j = 10395S5iiSij + 9450S
4
iiS

2
ij

Mi9jjj = 2835S4iiSijSjj + 7560S
3
iiS

3
ij

Mi8j4 = 5040S4ijS
2
ii + 315S

4
iiS

2
jj + 5040S

3
iiS

2
ijSjj

Mi7j5 = 1575S3iiSijS
2
jj + 6300S

2
iiS

3
ijSjj + 2520SiiS

5
ij

Mi6j6 = 720S6ij + 225S
3
iiS

3
jj + 5400SiiS

4
ijSjj + 4050S

2
iiS

2
ijS
2
jj

Order 12, d=1, D=3.

Mi10jk = 945S5iiSjk + 9450SikSijS
4
ii

Mijjk = 945S4iiSjjSik + 7560S
3
iiS

2
ijSik + 1890S

4
iiSijSjk

Mi8jjjk = 315S4iiSjjSjk + 2520S
3
iiSijSjjSik + 2520S

3
iiS

2
ijSjk

+5040S2iiS
3
ijSik

Mi7j4k = 315S3iiS
2
jjSik + 3780S

2
iiS

2
ijSik + 1260SiiS

4
ijSik + 1260S

3
iiSijSjjSjk

+3780S2iiS
3
ijSjk

Mi8jjkk = 105S4iiSjjSkk + 210S
4
iiS

2
jk + 840S

3
iiS

2
ijSkk + 840S

3
iiS

2
ikSjj

+5040S2iiS
2
ijS
2
ik + 3360S

3
iiSikSijSjk

Order 12, d=1, D=4.

Mi4j4kkℓℓ = 3S2ii[3S
2
jjSkkSℓℓ + 6S

2
jjS
2
kℓ + 12SjjS

2
jkSℓℓ + 24S

2
jℓS

2
jk

+48SjkSkℓSjℓSjj + 12SjjS
2
jℓSkk] + 3S

2
jj[12SiiS

2
ikSℓℓ

+24S2ilS
2
ik + 48SikSkℓSiℓSii + 12SiiS

2
iℓSkk]

+24S4ijSkkSℓℓ + 48S
4
ijS
2
kℓ + 96S

3
ij[2SikSjkSℓℓ + 2SiℓSjℓSkk

+4SikSjℓSkℓ + 4SiℓSjkSℓk] + 72S
2
ij[4S

2
ikS

2
jℓ + 4S

2
jkS

2
iℓ

+16SikSiℓSjkSjℓ + SiiSjjSkkSℓℓ + 2SiiSjjS
2
kℓ] + 12S

2
ik[12S

2
ji

×SjjSℓℓ + 48SijSiℓSjℓSjj + 12SjjS2jℓSii + 12S2iℓ[12S2jiSjjSkk
+48SijSikSjkSjj + 12SjjS

2
jkSii] + 12S

2
jℓ[12S

2
ijSiiSkk

+48SijSjkSikSii] + 12S
2
jk[12S

2
ijSiiSℓℓ + 48SijSjℓSiℓSii]

+576Sii[SikSiℓSjjSjkSjℓ + SikSijSjjSjℓSkℓ

+SikSijSjjSjkSℓℓ + SilSijSjjSjkSℓk

+SiℓSijSjjSjℓSkk + SikSijSjjSℓkSjℓ]

Following the same pattern as the mean, but with more moments
involved, the computation of the variance is also conducted.
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RÉSUMÉ SUBSTANT IEL

IN TRODUCT ION

Le travail présenté dans ce manuscrit est ancré dans une discipline: Le
traitement du signal à la frontière des mathématiques appliquées, de
la physique et de l’informatique. Cette discipline est depuis longtemps
sollicitée pour résoudre divers problèmes dans à peu près tous les do-
maines générant un signal; comment extraire des informations d’un
signal bruité ? Comment exploiter des connaissances a priori pour
rendre l’extraction plus fine ? Les réponses à ces questions ont na-
turellement introduit des outils à saveur inférentielle en tentant de
construire un modèle (paramétrique ou non-paramétrique) régissant
les observations. La quantité en forte croissance des données et les
progrès réalisés dans le domaine de l’informatique entraînent la pro-
lifération d’une quantité sans précédent de modèles. Leur objectif est
de parcourir des tonnes de données et d’en extraire des informations
utiles en contournant l’intervention humaine. Cet exercice se déroule
sous le couvert du ML. Les pratiques du traitement du signal et du ML Nouveau paradigme

proéminentont les mêmes objectifs et sont généralement combinées de manière
favorable pour extraire efficacement des informations des données.

La question au cóeur de ce manuscrit est : "Comment détecter une
série temporelle de faible amplitude noyée dans le bruit ?".. La première Détection et

estimationdifficulté du problème à résoudre réside dans la présence de bruit
ambient qui réussit à masquer les séries de faible amplitude, et en
deuxième lieu, dans l’absence d’informations a priori sur la source
qui génère les signaux à détecter.

Il s’agit essentiellement d’un problème interdisciplinaire auquel des
outils adaptés ont été développées dans le domaine du traitement du
signal, et récemment de plus en plus en utilisant des pratiques de ML.
Il nous a donc semblé naturel de commencer par quelques piliers du
traitement du signal et de présenter le contexte dans lequel il a le plus
fonctionné, régi par trois propriétés : Linéarité, stationnarité et Gaus-
sianité, puis de passer progressivement aux outils adéquats lorsqu’au
moins une de ces propriétés est écartée.

Avant de tenter de répondre à la question ci-dessus, nous ajoutons
d’autres contraintes à la solution proposée : Le détecteur doit être
efficace, d’un point de vue théorique et computationnel. Il doit être
accompagné de garanties sur le taux de fausses alarmes. La charge de
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calcul doit être faible pour permettre le traitement de grands ensem-
bles de données.Détecteur à faible

charge de calcul Satisfaire la première contrainte (garanties théoriques sur le taux
de fausses alarmes) nous a conduit dans le domaine des statistiques.
Afin de fournir des résultats statistiquement significatifs, nous devons
choisir rigoureusement une statistique de test et définir sa distribu-
tion asymptotique sous un ensemble d’hypothèses. Étonnamment, il
n’existait pas de procédures efficaces en termes de calcul pour tester
qu’une série temporelle multivariée est Gaussienne, et notre quête
s’est transformée en une contribution.Taux de fausse

alarme fixe La principale préoccupation était et reste de fournir un détecteur
opérationnel, à cette fin, nous traduisons les principaux résultats de
nos contributions en un détecteur de changement séquentiel. Nous
concluons sur les performances du détecteur sur un ensemble d’expériences
numériques. Nous passons progressivement des données générées syn-
thétiquement aux données du monde réel.

En fait, le travail dans ce manuscrit est également ancré dans les ap-
plications physiques en sismologie. Nous nous concentrons sur une
application qui a une longue et riche histoire dans ce domaine : la
détection des secousses sismiques. La loi de Gutenberg-Richter [61]
stipule que le nombre cumulé de tremblements de terre augmente ex-
ponentiellement avec une magnitude décroissante. Ces événements
sont sévèrement noyés par le bourdonnement sismique, les détecter
n’est pas une tâche facile mais une tâche gratifiante car elle conduira
à dévoiler de nouvelles formes d’ondes sismique, et par extension à
une meilleure compréhension de la dynamique des tremblements de
terre.

Dans ce cadre, le but étant de détecter avec un minimum d’a priori,
on ne peut pas avoir recours à de larges données étiquetées. Nous pro-
posons d’utiliser notre détecteur afin de fournir des événements nou-
vellement détectés. Cependant, ceci soulève d’importantes questions
sur l’évaluation de différentes méthodes dans ce contexte. Comment
comparer des modèles sur des instances rares ? Comment comparer
différents catalogues subjectivement construits ?

Les différentes facettes de ce travail peuvent peut-être être déroutantes
au premier abord. Il s’agira d’un va-et-vient entre les méthodes de
traitement du signal, les tests d’hypothèses statistiques et le sondage
d’événements avec ML. Ensuite, l’applicabilité pratique de la princi-
pale contribution seramise à l’épreuve sur des données dumonde réel.
Les articulations de ce manuscrit peuvent être résumées comme suit :
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Piliers de l’analyse des séries temporelles (y compris les pratiques de
ML) ⇐⇒ Test de normalité pour les séries temporelles multivariées
⇐⇒ Détecteur opérationnel sur données synthétiques et réelles (ex-
clusivement sur des applications en sismologie).

Pour aider le lecteur, nous détaillons dans ce qui suit le plan et nos
principales contributions.

OUTL INE ET CONTRIBUT IONS

Le chapitre 1 introduit les définitions et les théorèmes de l’analyse
des séries temporelles afin de fournir au lecteur les outils nécessaires
pour mieux comprendre notre cadre et nos contributions. Les prob-
lèmes de traitement du signal sont généralement résolus en supposant
un modèle probabiliste sous-jacent. Nous développons plus en détail
cette saveur inférentielle dans le chapitre suivant 2. La partie ?? sert
à poser le cadre de notre travail, et introduit en même temps les élé-
ments constitutifs de nos contributions. Nous étions partagés entre
présenter autant d’outils que possible et nous concentrer sur ceux qui
réapparaîtront dans la suite. En raison de la prolifération continue
de modèles pour différents types de données, nous nous concentrons
uniquement sur les méthodes pertinentes pour les séries temporelles,
et si possible les séries temporelles multivariées. La partie ii est con-
sacrée à nos contributions originales, dans lesquelles nous proposons
une méthode pertinente pour évaluer la gaussianité des séries tem-
porelles multivariées. Nous l’ouvrons par le chapitre 3 qui fournit une
vue d’ensemble des tests de normalité préexistants et motive la néces-
sité d’en dériver un nouveau dans notre cadre. À des fins de calcul,
nous nous concentrons sur les statistiques d’ordre supérieur, plus pré-
cisément le Kurtosis de Mardia, et nous définissons complètement la
distribution limite de cette statistique de test (sous gaussianité) pour
les séries temporelles colorées. Le contexte théorique et les étapes du
calcul sont nos premiers travaux [43] :

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, A normality test for
multivariate dependent samples in Signal Processing, Elsevier 2022

dans lequel les outils nécessaires, les théorèmes et les principaux ré-
sultats ont été détaillés. Le chapitre 4 reproduit de nombreux para-
graphes et équations du [43]. La principale préoccupation du chapitre
5 est maintenant de traduire les résultats théoriques en un détecteur
opérationnel en temps réel. Une étude préliminaire a d’abord exam-
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iné la généralisation de nos résultats sur les processus bivariés au cas
général d-varié avec notre deuxième contribution : [44].

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, Joint Normality Test
Via Two-dimensional projections in ICASSP IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, Singapour 2022

dans lequel nous avons mené une étude comparative entre le test de
normalité conjoint appliqué sur des projections aléatoires 2D et son
homologue scalaire sur une projection unidimensionnelle. Les résul-
tats sont discutés à la fin du chapitre 4. Disposant désormais d’un
outil pratique pour évaluer la normalité, nous continuons à tester les
performances du test avec ou sans préblanchiment ; nous souhaitons
tester la normalité des résidus de régression plutôt que des données
brutes. Sur la base des résultats de [46] :, nous proposons en

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, Multivariate Nor-
mality Test for Colored data in EUSIPCO European Signal processing
community, Belgrade, Serbia 2022

un détecteur séquentiel opérationnel en deux étapes. Avant d’appliquer
notre test, les données entrantes sont préblanchies à l’aide d’un mod-
èle auto-régressifmultidimensionnel. Des expériences numériques ont
été menées pour évaluer la puissance du test en tenant compte de la
dépendance spatiale et temporelle du processus. Encouragés par les
résultats sur les données synthétiques, nous avons poursuivi les sim-
ulations sur de petites portions de données du monde réel dans [47]
:

Sara El Bouch, Olivier J.J. Michel, Pierre Comon, Un Test de Normalité
pour les Processus Colorés Multivariés au GRETSI, Nancy, France 2022

Ces résultats sont présentés dans le chapitre 5. La dernière et troisième
partie de ce travail est la partie iii dans laquelle le chapitre 6 traite de la
fusion de nos travaux avec les expériences sismologiques. Le domaine
est historiquement riche en méthodes de détection, et récemment il a
attiré les pratiques ML. Il est donc nécessaire de passer en revue cer-
taines des méthodes pertinentes pour notre tâche de détection. Nous
poursuivons ensuite avec la simulation sur des données réelles.
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