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face, and Ãfor, represent the forward pre-exponential factors, and ∆S̃0
r rep-

resent single-event surface reaction entropies, respectively. The surface re-

action enthalpies is a function of catalyst descriptors. The calculations of

enthalpies and entropies are reported by Lozano-Blanco et al. [34, 36]. . . 41

2.2 Catalyst descriptors, i.e atomic chemisorption enthalpies for Fe, FeBi/CNT

and FePb/CNT catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xv



xvi LIST OF TABLES

2.3 Relative surface coverage of species MH, MMCH2 and MCH3 for the three

virtual points low-QH, mid-QH and high-QH calculated as reported in [39].

The points are located in the QH −QC plane containing FePb/CNT catalyst.

The atomic chemisorption enthalpies of carbon and oxygen are kept at a

constant value of QC= 642 kJ/mol and QO= 577.1 kJ/mol. The points low-

QH (QH= 240 kJ/mol), mid-QH (QH= 248 kJ/mol) and high-QH (QH= 252

kJ/mol) have different atomic chemisorption enthalpy of hydrogen. The

simulations are reported at operating condition of 623 K, 10 bar, GHSV =3.4

Lg−1h−1, W=0.2 g and H2/CO molar inlet ratio of 1. . . . . . . . . . . . . . . 53

2.4 Relative selectivity of alkanes to alkenes and 1-alkane (methane) to 2-alkane

(ethane) at three virtual points low-QH, mid-QH and high-QH. The points

are located in the QH −QC plane containing FePb/CNT catalyst. The atomic

chemisorption enthalpies of carbon and oxygen are kept at a constant value

of QC= 642 kJ/mol and QO= 577.1 kJ/mol. The points low-QH (QH= 240

kJ/mol), mid-QH (QH= 248 kJ/mol) and high-QH (QH= 252 kJ/mol) have

different atomic chemisorption enthalpy of hydrogen. The simulations are

reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2

g and H2/CO molar inlet ratio of 1. . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Elementary reactions and reaction families in the reaction network [56],

where Efor
a represents the kinetic descriptors and M represents the metal

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Root mean squared error of conversion and light olefin selectivity obtained

with different ML models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.1 R square values of conversion and selectivity obtained using different ML

models for train and test data. . . . . . . . . . . . . . . . . . . . . . . . . . . 157



NOMENCLATURE

Acronyms

∆S̃0
r Single-event surface reaction entropy, J(Kmol)−1

∆ The difference between experimental and simulation results in percentage

FCO,in, FCO Carbon monoxide molar flow rate at the reactor inlet, mol/s

FCO,out Carbon monoxide molar flow rate at the reactor outlet, mol/s

nC,i The number of carbon atoms in component i

Si The selectivity toward a gas-phase component i

Si =
nC,iFi

FCO,in −FCO,out

XCO Carbon monoxide conversion at the reactor outlet

XCO =
FCO,in −FCO,out

FCO,in

Efor
a Forward activation energy, kJ/mol

Ai Affinity for elementary reaction i , Jmol−1

H2/CO Syngas molar inlet ratio, mol.mol−1

Keq Thermodynamic equilibrium coefficient, [−]

rp Pearson correlation coefficient

W/FCO Space time, (kgcats)mol−1
CO

YCH4 methane yield
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SUMMARY

The increased level of plastic usage and disposal rate over the last decades, has recently

turned into a major concern. Due to their non-(bio)degradable properties, plastics tend

to accumulate as debris in natural habitats worldwide. Their production accounts for

around 4% of the usage of non-renewable resources such as oil and gas feedstock and

3 to 4% of the global energy consumption. It is also estimated that the production of

plastics will double in the next 20 years. This demands addressing the management of

plastic waste on an immediate basis. Among the plastic waste management strategies,

landfill inherently induces a long-term contamination risk of soil and groundwater and,

hence, is not sustainable. The mechanical recycling of plastic suffers from the inabil-

ity to fully recover its potential. An important method to fully recover its value is by

thermo-chemical conversion. Particularly in the last decade, there has been an increase

in research in the area of chemical recycling of plastics.

Within the plastic chemical recycling scheme, Fischer-Tropsch synthesis (FTS) could

play a key role as the syngas feedstock that is converted in it, can be generated via the

gasification of the considered plastics. This syngas is then chemo-catalytically converted

into hydrocarbons such as paraffins and light olefins. Typical FTS catalysts are based on

supported cobalt or iron species. Many experimental and mechanistic studies have been

reported in the literature to assess their selectivity towards methane, paraffins, olefins,

etc. and to determine the key catalyst properties which steer that selectivity. Higher

activity, light olefin selectivity, favorable to lower syngas ratio (due to water gas shift re-

activity), and lower cost make iron-based catalysts a better candidate in Fischer-Tropsch

xix
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synthesis even though they also lead to proportionally more oxygenates. The improve-

ment in catalyst performance with addition of promoters to iron-based catalysts has at-

tracted recent research interest. The study of the promoter effect is rather complex as it

is done with different supports and at different reaction conditions. In order to provide

fundamental insights on such catalyst developments, extensive computational studies

using different mechanistic models are being carried out.

Among the mechanistic kinetic models, the comprehensive variant based on the Sin-

gle Event MicroKinetics (SEMK) concept has been widely applied in the field of oligomer-

ization, autoxidative curing, etc. and has proven to be a versatile tool to simulate Fischer-

Tropsch synthesis. However, developing mechanistic models for every chemical engi-

neering challenge is not always feasible due to their complexity and the in-depth knowl-

edge required to build such models. This is especially true in the field of catalysis where

the reaction complexity is more pronounced and the use of simpler kinetic models is not

able to capture the detailed chemistry of the process. This presents an opportunity for

the development of machine learning models which are easier to develop as compared

to a detailed mechanistic model, which is also investigated in this thesis. The capabil-

ities of both these approaches are used to identify an optimal catalyst with enhanced

light olefin selectivity and corresponding suitable range of operating conditions.

In the first instance, this thesis deals with a virtual Single-Event MicroKinetic (SEMK)

based screening of potential catalysts targeting enhanced light olefin formation via Fischer-

Tropsch synthesis. The catalyst properties were quantified by means of catalyst descrip-

tors such as the atomic chemisorption enthalpy of hydrogen, carbon, oxygen. The de-

scriptor space is explored by simulating the experimental performances of promoted

iron-based catalysts and searching for descriptors leading to a high light olefin selectiv-

ity. Single-Event MicroKinetic simulations using different combinations of the descrip-

tors are carried to visually (human intervention) identify the catalyst properties of an

optimal virtual catalyst with enhanced light olefin selectivity.
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The methodology was subsequently generalized through an unsupervised machine

learning approach which allows it to go beyond three dimensions with less human in-

tervention. The descriptor space generated by microkinetic data (virtual catalysts) is

explored using a systematic unsupervised clustering (machine learning) and labelling

approach. The performance space is grouped into clusters and the minimum number of

clusters is identified. Each virtual catalyst (represented by a combination of catalyst de-

scriptors) is then identified in terms of its cluster. The range of catalyst descriptor values
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within the cluster with the highest yield of light olefins is then obtained. The descriptor

values are observed to be in line with that of the optimal virtual catalyst identified ear-

lier using visual inspection. Thus, a coupled micro-kinetic-machine learning” approach

for catalyst design and examining in detail the catalyst properties, reducing the human

intervention, has been proposed.

Subsequently, a detailed evaluation on the potential of using machine learning ap-

proaches to match the performance of results obtained using the Single-Event MicroKi-

netic model was carried out. Initially, the focus was on a single dominant output sce-

nario (methane selective catalyst). A machine learning model based on Artificial Neural

Network for cobalt catalysed Fischer-Tropsch Synthesis with single dominant output,

methane, is developed using a synthetic dataset generated via a Single-Event MicroKi-

netic model. The relative importance (or ranking) of the process variables (or predictors)

in the decision-making process of the employed machine learning model were found us-

ing interpretation techniques such as permutation importance, the Shap value and par-

tial dependence plots. The current work thus shows that more widely applied techniques

in data science can now be applied for systematic analysis and interpretation of kinetic

data. Similar analysis using experimental data can also help experimenters in their pre-

liminary analysis, to detect hidden trends in the data, and thus to identify importance



SUMMARY xxiii

features. After gaining confidence on the investigated interpretation techniques, for the

FTS reaction with single dominant output, a similar investigation on the potential of iron

based catalysts with enhanced light olefin selectivity is carried out next.

Finally, the machine learning approach is extended to a multi-output response pre-

diction with primary focus on light olefin production at different operating conditions.

4 alternative machine learning models were employed in this respect, i.e., Lasso regres-

sion, k nearest neighbor (KNN) regression, support vector machine regression (SVR),

and Artificial Neural Network (ANN) regression. The capabilities of these techniques

in reproducing the (pronounced) non-linear behavior of conversion /selectivities as a

function of process variables as simulated by the Single-Event MicroKinetic model is

assessed. It is found that ANN predictions are best able to match the benchmark Single-

Event MicroKinetic results. The best-performing Artificial Neural Network based model

is then further analyzed using the Shap interpretation technique for increased explain-

ability.

The overall study yielded key insights such as optimal catalyst descriptors: atomic

chemisorption enthalpies of hydrogen (QH ≈ 234kJ/mol), carbon (QC ≈ 622kJ/mol) and

oxygen, (QO ≈ 575kJ/mol) for light olefin selective catalyst design using a mechanistic

Single-Event MicroKinetic model. Further the range of operating conditions for en-
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hanced light olefin selectivity with major process impacting variables being temperature

(580-620K), and pressure (1-2 bar) were determined using different modeling strategies

(Single-Event MicroKinetics and machine learning). The extent to which different ma-

chine learning models can match the Single-Event MicroKinetic results are then investi-

gated. The non-linearity in the kinetic data is best captured with a neural network model

with an rmse value of approximately 10−2. The performed work aimed at unravelling the

opportunities of using machine learning models along with mechanistic models, to ef-

fectively reduce the computational and manual effort. For instance, for data obtained

through high-throughput experimentation, a preliminary analysis could be carried out

using a machine learning model and an in-depth chemical understanding could be sub-

sequently obtained using a mechanistic model.



SAMENVATTING

Het streven naar een circulaire economie heeft geleid tot het heronderzoeken van ver-

schillende bestaande chemische processen, met als doel hun duurzaamheid te verho-

gen. Kunststoffen zijn alomtegenwoordig in onze samenleving en vormen een belang-

rijk onderdeel van de huidige economie. Door hun corrosieresistentie, laag soortelijk ge-

wicht en interessante prijs kennen deze materialen hun toepassing in een brede waaier

van applicaties wat geresulteerd heeft in een steeds toenemende productiecapaciteit tot

367 miljoen ton in 2020.

Het sterk toegenomen verbruik van plastics en in het bijzonder het daarbij horende

afvalbeleid vormt een grote uitdaging; de wereldwijde accumulatie van kunststoffen in

de natuur is een direct gevolg van hun niet-(bio)degradeerbare eigenschappen. Hun

productie is goed voor zowel 4% van de niet-hernieuwbare grondstoffen (zoals olie en

gas), als 3 tot 4% van het wereldwijd energieverbruik. Bovendien wordt geschat dat de

productie van kunststoffen de komende 20 jaar zal verdubbelen. Dit vraagt om een on-

middellijke aanpak van het afvalbeheer waarin het storten zoveel mogelijk vermeden

moet worden omwille van het inherente risico op verontreiniging van zowel bodem als

grondwater. Het mechanisch recyclen van plastics is een belangrijke pijler in dit afval-

beheer. Echter, de technologie laat momenteel niet toe het volledige potensteel van de

plastics te recupereren. Hiervoor is de thermochemische conversie van plastics een in-

teressant alternatief, getuige de sterk toegenomen interesse vanuit de onderzoekswereld

in dit domein.

Binnen het gebied van de chemische recyclage kan de Fischer-Tropsch Synthese (FTS)

xxv
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een sleutelrol spelen aangezien de grondstof voor het proces, i.e., syngas, verkregen kan

worden uit de vergassing van plastics. Dit syngas wordt vervolgens chemo-katalytisch

omgezet in koolwaterstoffen zoals paraffines en lichte olefinen met behulp van een ij-

zer of kobalt katalysator. Verschillende experimentele en mechanistische studies wer-

den reeds gerapporteerd waarin onderzocht werd welke katalysatoreigenschappen een

rol spelen in de selectiviteit naar methaan, paraffines, olefinen, etc. Naast hun lagere

kostprijs en hun activiteit in de water-gas shift reactie vertonen ijzer-gebaseerde kata-

lysatoren een hogere activiteit en selectiviteit naar lichte olefinen. Deze eigenschappen

maken dit type katalysatoren uitermate geschikt voor de FTS reactie, ook al zal de ver-

hoogde vorming van zuurstof bevattende species een belangrijke uitdaging zijn bij tij-

dens ontwikkeling. Hiervoor werd het toevoegen van promotoren recent onderzocht.

Echter, het zogenaamde promotor-effect is een complex gegeven aangezien dit afhan-

kelijk is van het dragermateriaal en de onderzochte reactiecondities. Om fundamenteel

inzicht te verkrijgen in deze fenomenen worden uitvoerige computationele studies uit-

gevoerd, gebaseerd op verschillende mechanistische modellen.

Een uitgebreide variant van deze mechanistische modellen is het Single-Event Mi-

croKinetisch (SEMK) model en dit model werd reeds uitvoerig toegepast in het domein

van de oligomerisatie, de oxidatieve uitharding en de Fischer-Tropsch synthese. Het ont-

wikkelen van dit soort modellen voor iedere chemische reactie is echter niet werkbaar

omwille van hun complexiteit en, daaruit volgend, de vereiste expertise om zo een mo-

del te bouwen. Dit geldt in het bijzonder voor katalytische reacties waarvoor eenvoudige

machtswetten niet in staat om de onderliggende chemische fenomenen in detail te be-

schrijven. Dit creëert een opportuniteit voor de eenvoudiger te ontwikkelen machine

learning (ML). Het potentieel van zowel de microkinetische als ML methodes wordt on-

derzocht in deze thesis met als doelstelling een optimale katalysator te identificeren voor

een verhoogde lichte olefine selectiviteit met de daarbij horende werkcondities.
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In deze thesis werd in eerste instantie een virtuele katalysator-screening uitgevoerd

waarin gebruik werd gemaakt van een SEMK model met als doel een katalysator te iden-

tificeren met een verhoogde selectiviteit naar lichte olefinen in de Fischer-Tropsch Syn-

these. De daarbij horende katalysatoreigenschappen werden gekwantificeerd met be-

hulp van katalysatordescriptoren zoals de atomaire chemisorptie-enthalpie van water-

stof, zuurstof en koolstof. De descriptorruimte werd vervolgens verkend door experi-

mentele performanties van gepromoveerde ijzer-gebaseerde katalysatoren te simuleren

waaruit optimale descriptorwaarden werden geïdentificeerd. Vervolgens werd gebruik

gemaakt van het SEMK model om verschillende descriptor combinaties (i.e., virtuele ka-

talysatoren) te evalueren waaruit de meest geschikte katalysatoreigenschappen visueel

werden gedetecteerd (“human intervention”).



xxviii SAMENVATTING

De methodologie werd vervolgens gegeneraliseerd via een niet-gesuperviseerde ML

methode die toelaat om de driedimensionale beperkingen van de visuele detectieme-

thode te overstijgen. De descriptorruimte die gegenereerd werd met behulp van micro-

kinetische data (virtuele katalysatoren) werd geanalyseerd met behulp van een syste-

matische niet-gesuperviseerde clustering (ML) en labeling methode. De data werd ge-

groepeerd in clusters en het minimum aantal clusters werd geïdentificeerd. Elke virtuele

katalysator (voorgesteld door een combinatie van descriptorwaarden) werd vervolgens

geanalyseerd in termen van clusters. Het spanwijdte van de katalysator descriptorwaar-

den binnen de cluster met het hoogte lichte olefinen rendement wordt dan vervolgens

geïdentificeerd. Deze descriptorwaarden waren in overeenstemming met de optimale

virtuele katalysator zoals bepaald met de visuele methode. Het succes van deze gekop-

pelde microkinetische en ML aanpak voor katalysatorontwerp vermindert de manuale

werklast aanzienlijk.

Vervolgens werd onderzocht of ML methoden in staat zijn om de resultaten van het

microkinetisch model te evenaren en hierbij werd initieel gefocust op een enkelvou-

dig dominant output scenario (single dominant output scenario), namelijk de methaan

selectiviteit. Een ML model gebaseerd op een artificieel neuraal netwerk (ANN) voor

de kobalt-gekatalyseerde FTS met een enkelvoudige dominante output (methaan) werd

ontwikkeld met behulp van een synthetische dataset die gegenereerd werd door het

SEMK model. Het relatief belang (“ranking”) van de procesvariabelen (“predictors”) in

het beslissingsproces van het gebruikte ML model werd onderzocht met behulp van
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interpretatietechnieken zoals permutatie belang (“permuation importance”), de Shap

waarde en partieel-afhankelijkheidsplots (“partial dependence plots”, PDP). Dit werk

toont aan dat data science technieken nu gebruikt kunnen worden voor de systemati-

sche analyse en interpretatie van kinetische data. Bovendien kan een analoge (preli-

minaire) analyse op experimentele data onderzoekers helpen om verborgen trends en

belangrijke invloeden te ontdekken in een proces. Op basis van het behaalde succes

voor een enkelvoudige dominante output werd de methodologie verder onderzocht in

de ijzer-gekatalyseerde FTS van lichte olefinen.

De ML methode werd finaal veralgemeend tot een multi-output respons systeem

waarin de primaire focus gericht was op de synthese van lichte olefinen bij verschil-

lende werkcondities. Voor vier ML modellen (i.e., Lasso regressie, k-nearest neighbour

(KNN) regressie, support vector machine regressie (SVR) en een artificieel neuraal net-

werk (ANN)) werd onderzocht in welke mate het uitgesprokene non-lineair gedrag van

conversie en selectiviteit als functie van de procesvariabelen kon gereproduceerd wor-

den, zoals weergegeven door het SEMK model. Hieruit bleek dat een ANN model hier-

voor het meest geschikt is. Bijkomende informatie werd vervolgens uit het meest perfor-

mante ANN model gehaald door middel van de Shap interpretatietechniek.

Met behulp van een SEMK model kon in deze thesis optimale katalysator- descriptor-
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waarden voor de synthese van lichte olefinen bepaald worden: de atomaire chemisorptie-

enthalpie van waterstof (QH ≈ 234kJ/mol), koolstof (QC ≈ 622kJ/mol) en zuurstof

(QO ≈ 575kJ/mol). Met behulp van zowel het SEMK model als de ML modellen kon ook

het optimale temperatuursinterval (580-620K) en drukinterval (1-2 bar) bepaald worden.

Er werd aangetoond dat de non-lineaire trends in de kinetische data het best beschreven

konden worden met behulp van een neuraal netwerk met een root-mean-square-error

(rmse) van 10−2. Het onderzoek dat verricht werd doelde op het gebruik van ML mo-

dellen in combinatie met mechanistische modellen om zowel de computationele als de

manuele werklast te verminderen. Zo kan, bijvoorbeeld, een preliminaire analyse van

high-throughput data uitgevoerd worden met een ML model om potentieel interessante

zones van de parameterruimte te identificeren om dan vervolgens een gerichte en diep-

gaande analyse uit te voeren met een mechanistisch model.



RÉSUMÉ

En vue de promouvoir l’économie circulaire, de nombreux procédés chimiques sont ac-

tuellement réexaminés afin de développer des variantes plus durables. Dans l’économie

actuelle et dans la vie quotidienne, les matières plastiques sont des matières importantes

et omniprésentes. Elles sont peu coûteuses, durables, résistantes à la corrosion et lé-

gères, ce qui les rend propices à l’emploi dans de nombreuses applications. Cela a mené

à une forte augmentation de production au cours des 60 dernières années, entraînant

une production totale de 367 millions de tonnes en 2020.

L’utilisation croissante des matières plastiques et la formation de déchets qui en pro-

vient sont devenues une source de préoccupation majeure. À cause de leurs propriétés

non biodégradables, les matières plastiques ont tendance à s’accumuler dans les habi-

tats naturels à l’échelle mondiale. Leur production compte pour environ 4% de l’emploi

des ressources non renouvelables, comme le pétrole et le gaz naturel, et 3 à 4% de la

consommation mondiale d’énergie. Il est également prévu que la production des ma-

tières plastiques va doubler au cours des 20 prochaines années. Cela exige de remé-

dier rapidement au problème de la gestion des déchets plastiques. Parmi les stratégies

de gestion de déchets plastiques, la décharge de déchets entraîne intrinsèquement un

risque de contamination du sol et des eaux souterraines à long terme et n’est donc pas

durable. D’autre part, le recyclage mécanique n’est pas capable de récupérer entière-

ment la valeur potentielle des déchets. Une méthode importante pour la récupération

complète de la valeur est la conversion thermochimique. Notamment au cours de la

dernière décennie, le nombre de recherches sur le recyclage chimique des matières plas-
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tiques a fort augmenté.

Dans le processus du recyclage chimique des matières plastiques, la synthèse de

Fischer-Tropsch (SFT) pourrait jouer un rôle important, puisque le gaz de synthèse qui

est converti dans le procédé peut être produit par la gazéification des matières plastiques

considérées. Le gaz de synthèse est ensuite converti de façon chimiocatalytique en hy-

drocarbures comme les alcanes ou les alcènes légers. Les catalyseurs de SFT typiques

sont composés de cobalt ou de fer appliqué sur un support. De nombreuses études ex-

périmentales et mécanistes ont été rapportées dans la littérature scientifique dans le but

d’évaluer la sélectivité en méthane, en alcanes, en alcènes, etc. et afin de déterminer les

principales propriétés du catalyseur qui dirige la sélectivité. L’activité élevée du cataly-

seur, la sélectivité en alcènes légers qui est favorisée à un rapport H2/CO inférieur (grâce

à la réaction du gaz à l’eau) et le coût inférieur font des catalyseurs à base de fer un

meilleur choix pour la synthèse de Fischer-Tropsch, malgré le fait qu’ils produisent da-

vantage de composés oxygénés proportionnellement. L’amélioration de la performance

du catalyseur en ajoutant des promoteurs aux catalyseurs à base de fer a suscité l’intérêt

de beaucoup de chercheurs. L’investigation de l’effet des promoteurs est plutôt com-

plexe car de nombreux supports sont investigués à différentes températures de réaction.

Afin d’atteindre une compréhension fondamentale des phénomènes catalytiques de ce

genre, beaucoup d’études computationnelles ont été effectuées utilisant divers modèles

mécanistes.

Parmi les modèles mécanistes, le modèle cinétique complet à base du concept des

Single Event MicroKinetics (SEMK) a été appliqué dans le domaine de l’oligomérisa-

tion, de la réticulation par auto-oxydation (autoxidative curing), etc. et s’est avéré utile

comme outil polyvalent pour la modélisation de la synthèse de Fischer-Tropsch. Ce-

pendant, le développement de modèles mécanistes pour chaque problème d’ingénierie

chimique n’est pas toujours faisable vu la complexité des procédés et les connaissances

approfondies nécessaires pour la construction d’un modèle de ce genre. Cela est parti-
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culièrement le cas dans le domaine de la catalyse, puisque la complexité des procédés

est plus importante et les modèles cinétiques plus simples ne sont pas capables de saisir

les détails de la chimie du procédé. L’opportunité se présente dans ce cas pour le dé-

veloppement de modèles à base d’apprentissage automatique (machine learning), car

ils sont plus faciles à développer par rapport aux modèles mécanistes détaillés, et sont

donc également examinés dans cette thèse. Les capacités des deux méthodes sont uti-

lisées pour l’identification du catalyseur optimal menant à une meilleure sélectivité en

alcènes légers et pour l’identification des conditions opérationnelles correspondantes

appropriées au catalyseur.

En premier lieu, la thèse concerne un screening virtuel de catalyseurs potentiels à

base d’un modèle SEMK, visant une formation d’alcènes légers améliorée dans la syn-

thèse de Fischer-Tropsch. Les propriétés du catalyseur ont été quantifiées à l’aide de

descripteurs de catalyseur tels que les enthalpies de chimisorption atomique de l’hydro-
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gène, du carbone et de l’oxygène. L’espace des descripteurs est exploré en simulant la

performance expérimentale des catalyseurs à base de fer promu, tout en recherchant les

descripteurs qui mènent à une sélectivité en alcènes légers supérieure. Les simulations

du modèle SEMK ont été réalisées en utilisant plusieurs combinaisons de descripteurs

afin d’identifier visuellement (à l’aide d’intervention humaine) les propriétés du cataly-

seur optimal menant à une meilleure sélectivité en alcènes légers.

La méthodologie a ensuite été généralisée à l’aide d’apprentissage automatique non

supervisé, ce qui a permis de dépasser les trois dimensions et de réduire le besoin d’in-

tervention humaine. L’espace des descripteurs généré à partir de données microciné-

tiques (catalyseurs virtuels) est exploré en utilisant la méthode systématique du regrou-

pement (clustering) et du classement (labelling) non supervisés. L’espace de la perfor-

mance du catalyseur est regroupé en clusters et le nombre minimale de clusters est iden-

tifié. Chaque catalyseur virtuel (représenté par une certaine combinaison de descrip-

teurs) est identifié du point de vue du cluster auquel il appartient. Il est ainsi possible

d’obtenir l’étendue des valeurs des descripteurs dans le cluster ayant le meilleur rende-

ment d’alcènes légers. Il est observé que les valeurs obtenues sont conformes à celles du

catalyseur virtuel optimal identifié dans l’inspection visuelle précédente. On peut donc

conclure qu’une méthode combinant la microcinétique et l’apprentissage automatique

a été présentée pour le développement des catalyseurs et pour l’investigation détaillée

de leurs propriétés, tout en diminuant le besoin d’intervention humaine.

Ensuite, une évaluation détaillée a été réalisée sur l’apprentissage automatique afin
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d’évaluer la possibilité d’obtenir une performance similaire aux modèles SEMK. En pre-

mière instance, la priorité a été accordée à la recherche d’un catalyseur ayant une sélec-

tivité en méthane supérieure, donc seulement la sélectivité en méthane est considérée

dans ce cas-ci. Un modèle d’apprentissage automatique à base d’un réseau de neurones

artificiels (Artificial Neural Network) est développé pour la synthèse de Fischer-Tropsch

catalysée par le cobalt. Le modèle est basé sur la sélectivité en méthane et est conçu en

utilisant un ensemble de données générées par un modèle SEMK. L’importance relative

(ou le classement) des variables du procédé (ou les prédicteurs) dans le processus de

prise de décisions du modèle d’apprentissage automatique a été trouvée en utilisant des

techniques d’interprétation comme l’importance de la permutation (permutation im-

portance), la valeur SHAP (SHAP value) et les graphiques de dépendance partielle (par-

tial dependence plots). Il est donc démontré dans ce travail que les techniques courantes

dans le domaine de la science des données peuvent également être utilisées pour l’ana-

lyse systématique et l’interprétation des données cinétiques. Une analyse similaire en

conjonction avec des données expérimentales pourrait aussi aider les chercheurs dans

l’analyse préliminaire des données en trouvant les tendances masquées au sein des don-

nées. Une investigation similaire a ensuite été effectuée sur le potentiel des catalyseurs à

base de fer, visant une sélectivité en alcènes légers améliorée, donc plusieurs sélectivités
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sont désormais considérées.

Finalement, la méthode d’apprentissage automatique a été étendue dans l’intention

de pouvoir réaliser des prédictions de plusieurs sélectivités en se concentrant sur la pro-

duction des alcènes légers à différentes conditions opérationnelles. Afin d’atteindre cet

objectif, 4 modèles d’apprentissage automatique alternatifs ont été employés, i.e. la mé-

thode lasso (lasso regression), la méthode des k plus proches voisins (k nearest neighbor

regression ou KNN), la méthode de la machine à vecteurs de support (support vector ma-

chine regression ou SVR) et le réseau de neurones artificiels (Artificial Neural Network

ou ANN). Les capacités de ces techniques sont évaluées par rapport à la reproduction

du comportement linéaire de la conversion et la sélectivité en fonction des variables du

procédé comme cela a été simulé par le modèle SEMK. Il est constaté que les modèles à

base d’un réseau de neurones artificiels correspondent le plus aux résultats de référence

du modèle SEMK. Une analyse supplémentaire utilisant la technique d’interprétation

de la valeur SHAP a été appliquée aux modèles à base d’un réseau de neurones artifi-

ciels ayant la meilleure performance, en vue de mieux expliquer le fonctionnement des

modèles.

L’ensemble de l’étude a rapporté des connaissances essentielles, telles que les des-

cripteurs de catalyseur optimales: les enthalpies de chimisorption atomique de l’hydrogène
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(QH ≈ 234kJ/mol), du carbone (QC ≈ 622kJ/mol) et de l’oxygène (QO ≈ 575kJ/mol), pour

la conception de catalyseurs ayant une sélectivité en alcènes légers élevée en utilisant un

modèle SEMK mécaniste. De plus, l’étendue des conditions opérationnelles menant à la

meilleure sélectivité en alcènes légers a été déterminée en adoptant plusieurs stratégies

de modélisation (le concept des SEMK et l’apprentissage automatique). Il a été constaté

que les effets de la température (580-620K) et la pression (1-2 bar) étaient les plus impor-

tants. Ensuite, une investigation est réalisée dans le but d’évaluer à quel point les résul-

tats des modèles d’apprentissage automatique correspondent à ceux du modèle SEMK.

La meilleure reproduction du comportement non linéaire des données cinétiques est

produite en utilisant un modèle à base d’un réseau de neurones artificiels ayant une va-

leur de REQM (RMSE en anglais) d’environ 10−2. Le travail a été effectué dans l’intention

de découvrir les possibilités d’employer des modèles d’apprentissage automatique en

conjonction avec des modèles mécanistes afin de réduire véritablement l’effort manuel

et computationnel. Par exemple, une analyse préliminaire a pu être réalisée en utilisant

un modèle d’apprentissage automatique pour l’analyse des données obtenues à l’aide

d’expérimentation à haut débit. Ensuite, le modèle mécaniste a permis d’acquérir une

compréhension chimique approfondie du procédé.





1
INTRODUCTION

The circular economy model in the 21st century facilitates overcoming the drawbacks

associated with the current system of linear economy, where the take, make, and dispose

principle is employed. Circular economy aims at maintaining the value of raw materials,

components and material products with minimum waste production and polluting ele-

ments. It is based on achieving environmental and social sustainability targets using a

closed loop system by employing a system-level thinking. It imposes sustainability at the

core of economic activities. Taking into account its relevance, the European Commission

has adopted many action plans like circular economy action plan (CEAP-2020), in this

direction (Fig.1.1). The action plans aims at reducing pressure on natural resources and

creating sustainable growth which will act as a prerequisite for EU’s climate neutrality

target 2050 [1].

Striving towards a circular economy target has led to the re-investigation of many ex-

isting processes, with the demand for developing sustainable chemical production pro-

cesses as one its key drivers. The life cycle management of plastics is one of the impor-

1
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Figure 1.1: Vision for circular economy adapter from [2]

tant topics currently investigated, due to the role of plastics in environmental pollution.

A circular economy for plastics demands employing new and sustainable approaches

involving eco-design, reuse, recycle, and use of chemical conversion strategies. Due

to the limitation of value reduction associated with mechanical recycling of plastics,

technologies based on thermo-chemical conversion, are investigated as an alternative

through the EU Interreg project PSYCHE [3].

1.1. PLASTIC WASTE AND ITS RECYCLING

In our economy, plastics form an important and omnipresent material affecting our daily

lives. They are inexpensive, durable, corrosion resistant, and light weight leading to their

use in a wide variety of applications. This has resulted into an enormous increase in the

production of plastics in the last 60 years reaching a global production of 367 million

tons in 2020 [4]. The increased level of usage and disposal rate has also increased alarm-

ingly, in the last decades. Due to its non-degradable properties, they accumulate as de-

bris in natural habitats worldwide. Its production accounts for around 4 percent usage

of non-renewable resource like oil and gas feedstock and 3-4 percent of global energy
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Figure 1.2: Plastic accumulation in a landfill. Image obtained from United Nations Development Programme
in Europe and CIS photo-stream.

consumption. It is also estimated that the production of plastics will double in the next

20 years [5]. This demands addressing the management of plastic waste at an immediate

basis.

Figure 1.3: Number of publications in the area of plastic chemical recycling [6].
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Among the plastic waste management the landfill Fig.1.2 strategies possess long-

term contamination risk of soil and groundwater and hence makes it non-feasible. The

mechanical recycling of plastic suffers from the inability to fully recover its potential. An

important method to fully recover its value is by thermo-chemical conversion strategy.

Thus, in this decade, there has been an increase in research [7] in this area (Fig.1.3).

1.2. GASIFICATION AND SYNGAS PURIFICATION

Figure 1.4: Vortex reactor technology developed in Ghent university used for pyrolysis step in gasification [8].

An important step towards chemical recycling of plastics involve a preliminary ther-

mal gasification process at a temperature (800 to 1000◦ C) where plastics are converted

into gases such as CO, CO2, CH4, H2 and halogens [9]. An important advantage of gasifi-

cation is the flexibility to valorize plastics of varied composition as well as with different

feed stocks. The main challenges in the gasification process are the suitability of reac-

tors and the optimal operating conditions for the targeted syngas formation. The differ-

ent reactors types [9, 10] used are based on fixed bed, fluidized bed and vortex reactor

technologies (Fig.1.4).
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Figure 1.5: Schema: syngas purification after gasification.

The purification methods generally involve using physical methods (for e.g. wet

scrubbing, filtration, electrostatic precipitation), thermal and/or catalytic processes [11,

12]. With such purification (Fig.1.5) methods, impurities such as HCl, NH3, H2S, NOx,

alkali metals, and condensable tars are reduced to their maximum allowable level in syn-

gas for the Fischer-Tropsch process.

1.3. FISCHER–TROPSCH SYNTHESIS, AN OVERVIEW

Fischer-Tropsch synthesis (FTS) is one of the most promising catalytic approaches [14]

to convert the syngas (CO and H2) obtained via gasification of coal, biomass, plastics etc.

into non-petroleum-based hydrocarbons (Fig.1.6).

(2n +1)H2 + nCO →Cn H2n+2 + nH2O Alkane production (1.1)

(2n)H2 + nCO →Cn H2n + nH2O Alkene production (1.2)

CO + H2O ⇋CO2 + H2 Water-gas shift reaction (1.3)
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Figure 1.6: Schematics of the Fischer Tropsch catalytic reactor set up in SusCat, Université Lille [13].

This can be subsequently transformed into value added products like transportation fu-

els and base chemicals. There are two main categories in FTS technologies based on the

operating temperature: High Temperature Fischer Tropsch (HTFT) (Fig.1.7 (a-b)) and

Low Temperature Fischer-Tropsch (LTFT) (Fig.1.7 (c)) with operating modes between

300◦ C to 350◦ C and 180◦ C to 250◦ C, respectively [14–16].

The hydrocarbon mixture formed by LTFT mainly consists of long-chain hydrocar-

bons whereas the HTFT reaction conditions yield shorter hydrocarbons, especially lower

olefins. The targeted reaction products and the difference in operating temperature de-

termine the applied reactor technologies such as fixed fluidized bed reactor, tubular

trickle bed reactor etc. Apart from these conventional reactor technologies for FTS, other

investigated reactor technologies are micro-structured and membrane reactor based tech-

nologies.
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Figure 1.7: Circulating Fluidized Bed Reactor (CFBR) (a), Fixed Fluidized Bed Reactor (FFBR) (b), Slurry Bub-
ble Column Reactor (SBCR) (c). The CFBR and FFBR are High Temperature Fischer-Tropsch (HTFT) reactor
technologies. The SBCR is a Low Temperature Fischer-Tropsch (LTFT) reactor technology. The schematics are
adopted from [15, 17].
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1.4. FTS CHEMISTRY

In FTS, catalytic conversion of syngas (CO + H2) can synthesize a wide variety of prod-

ucts. This includes paraffins, olefins, and oxygenates (alcohols, ketones, aldehydes). The

need to steer the selectivity towards these hydrocarbons has led to increased research

interest into the FTS. A variety of mechanisms have been proposed to understand this

complex hydrocarbon formation. Some of the widely accepted classes of mechanisms

are carbide-based mechanisms, CO-insertion mechanisms, and hydroxy-carbene mech-

anisms.

Figure 1.8: The carbene mechanism as proposed by Brady and Pettit [18, 19].

1.4.1. CARBIDE-BASED MECHANISM

The mechanistic proposals (originally proposed by Brady and Pettit [19]) in this class has

a CO dissociation step to form carbon (C) and oxygen (O). Then, carbon is hydrogenated
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to form methylene (CH2) and metal methyl (CH3) surface species which then couples

leading to chain growth initiation step. Further chain growth takes place by consecutive

insertions of the CH2 species into growing metal alkyl chains. (Fig.1.8). Hydrogenation

of the metal- alkyl species leads to alkane formation, and beta-hydride elimination of

the corresponding metal alkyl species leads to alkene formation.

1.4.2. CO INSERTION MECHANISM

Figure 1.9: The CO insertion mechanism as proposed by Pichler and Schulz [20].

The formation of typical FTS products including oxygenates were explained via the

CO insertion mechanism by Pichler and Schulz [20]. Here the surface species undergoes

hydrogenation before the C-O bond dissociates. Instead of CH2 coupling (as in case

of carbene mechanism), here, chain growth takes place by step-wise insertion of CO in

to an RCH2 group and thus inherently accounts the formation of alcohols in the FTS

product mixture through hydrogenation of the O atom of an aldehyde surface species

(Fig.1.9).
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1.4.3. HYDROXY-CARBENE MECHANISM

Figure 1.10: The hydroxycarbene mechanism as proposed by Anderson et al. [21].

The mechanism represented in Fig.1.10 was proposed by Anderson et al. [21]. In

this mechanism a hydroxy-carbene surface species is formed by H addition to both the

C and the O. Here the chain growth occurs by a condensation reaction of the hydroxy-

carbene species. Thus it explains the formation of oxygenates in the FTS product mix-

ture. Regardless of the mechanisms, Fischer Tropsch being a polymerization process,

the product spectrum follows the Anderson-Schulz-Flory (ASF) distribution [22], and is

characterized by means of a single chain growth probability, α, defined by:

α=
rp

rp + rt
(1.4)

Where rp the propagation rate and rt the termination rate. The hydrocarbons mass frac-
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tion with n carbon atoms, wn, being a function of the carbon number is related as fol-

lows:

wn = n(1−α)2
×α(n−1) (1.5)

The strategies to steer the reaction to a specific range of hydrocarbons remain one of the

key challenges of Fischer Tropsch synthesis where chain growth probability (alpha) can

be changed by varying the catalyst composition, reaction temperature, space-time, and

H2/CO ratio.

1.5. FTS CATALYSTS

Fischer Tropsch synthesis is a catalyzed process which, is typically carried out with Group

VIII metals as catalysts. In particular, (Fe), (Co), (Ni), (Ru) are the most important active

catalysts for FTS. At present, the FTS process mostly uses iron-based (LT- and HTFT)

catalysts due to their high activity and low cost (Table 1.1) compared to other metals.

Both cobalt iron catalysts yield higher hydrocarbons. Cobalt catalysts typically have bet-

ter yields and stability in production of linear saturated hydrocarbons. The high price

and high sensitivity to sulfur contamination are disadvantages for their use. Ni, leads

to methane synthesis as the main FTS product in practical operating conditions. Ru, a

highly active metal for FTS, due to its exceptionally high cost compared to Co and Fe

makes it less suitable for practical use [23].

Table 1.1: Relative cost of catalysts [14].

Metal Price ratio

Fe 1 (base)
Ni 250
Co 1000
Ru 35000
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Higher activity, light olefin selectivity, and lower costs make iron-based catalysts a

better candidate in FTS even though they lead to more oxygenates. Due to their water-

gas shift (WGS) activity, syngas with varying H2/CO ratio, could be used for the process.

The improvement in catalyst performance with addition of promoters in iron-based cat-

alysts [24–26] has attracted recent research interests. The study of the promoter effect is

rather complex as it is done with different supports and at different reaction conditions.

Recent studies investigate the effect of iron-promoted catalysts on performance. This is

due to the fact that the catalytic is affected by metallic iron, different iron oxide presence

in addition to the iron carbide phase.

Figure 1.11: The influence of promoter.

The extent of iron carbidization, and increase in iron dispersion, light olefin selec-

tivity and Fischer-Tropsch reaction rates are also reported by using electronic and struc-

tural promoters. The active site intrinsic activity is enhanced by the electronic promoters

(Fig.1.11). They impact the intrinsic rate of the reaction elementary steps and helps in
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shifting the reaction selectivity to the target product. The structural promoters helps in

increasing the dispersion of active phase, by improving the mechanical strength, and

also by stabilizing the catalyst surface. The overall impact on catalytic performance by

promotion is affected by the interplay of structural and electronic promoters, promoter

concentration, their surface coverage and the active phase interaction. Gu et al. [27] re-

port a higher light olefin selectivity, specifically on promotion by Bi and Pb on carbon

nanotube support, over unpromoted Fe catalyst.

The performance of a Fischer Tropsch process could thus be related to the catalyst

design, and finding the operating conditions. Modelling tools based on kinetic (power

law, Langmuir Hinshelwood, Microkinetic) and data-driven models can provide funda-

mental insight in this direction. The modelling approaches used in this thesis are based

on Microkinetic and machine learning methodology.

1.6. MICROKINETIC MODELING

Figure 1.12: The steps in single event Microkinetics for FTS.

In order to provide fundamental insights on catalyst development and relate experi-

mentally observed conversions and selectivities for varied operating conditions, kinetic

models are employed. There are kinetic models with different levels of complexity. The

commonly encountered simpler kinetic models are based on power law rate expressions.
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The kinetic models which are comprehensive with detailed reaction mechanism in terms

of elementary steps are the Microkinetic models.

Microkinetic models, which represent the occurring chemistry at the elementary

step level [28–30] help to study the reaction kinetics of complex reactions such as the

Fischer–Tropsch reaction [31], oligomerization [32], autoxidative curing [33], etc. To

model reaction systems with a large number of elementary steps using a microkinetic

approach, the single event concept can be employed.

In the Single-Event MicroKinetic (SEMK) methodology for FTS, the reactive moieties

are considered to determine the reactivity of individual molecules. Accordingly, the ele-

mentary reactions are classified into reaction families to reduce the number of parame-

ters [36]. The single-event kinetic coefficient is unique for a reaction family and the ad-

sorption enthalpies of surface species are calculated via the UBI-QEP method [37, 38]. In

the SEMK framework, the catalysts properties could be differentiated in terms of model

parameters referred to as catalyst descriptors.

Figure 1.13: Schematics representing multiscale modelling capabilities of the micro kinetic model.
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Table 1.2: Elementary reactions and reaction families in the reaction network [34], where Efor
a represent the kinetic descriptors, M represents the metal surface,

and Ãfor, represent the forward pre-exponential factors, and ∆S̃0
r represent single-event surface reaction entropies, respectively. The surface reaction enthalpies is a

function of catalyst descriptors. The calculations of enthalpies and entropies are reported by Lozano-Blanco et al. [34, 35].

Reaction family/

elementary reaction
Efor

a
(kJ/mol)

Ãfor

(s−1 or (MPas)−1)
∆S̃0

r
(J(Kmol)−1)

1. H2+ 2M ⇋ 2MH 0 3.1×108 −63.5
2. CO + 2M ⇋ MMCO 0 2.2×107 −165.7
3. MMCO + 3M ⇋ MMMC + MMO 56.81 ± 0.53 1.3×1013 −17.34
4. MMMC + MH ⇋ MMMCH + M 77.66 ± 0.70 8.8×1014 +35.08
5. MMMCH + MH ⇋ MMCH2+ 2M 11.94 ± 0.10 5.9×1011 −25.6
6. MMCH2 + MH ⇋ MCH3 + 2M 61.88 ± 0.50 2.2×1011 −33.5
7. MCnH2n+1 + MMCH2 ⇋ MCn+1H2n+3 + 2M 44.79 ± 0.43 8.3×109 −60.69
8. MCnH2n+1 + MH ⇋ CnH2n+2 + 2M 117.75 ± 0.67 3.3×1010 (n=2) +64.3

2.0×1010 (n=3-10)
9. MCnH2n+1 + M ⇋ MCnH2n + MH 96.27 ± 0.50 1.0×1010 +12.32
10. MCnH2n ⇋ CnH2n + M 63(n=2) 1.3×1013 +118.6

61(n=3-10)
11. O−CHO−M + M−OH +O ⇋ O−COOH−M

+ O−H + M 138.95 ± 1.15 1.7×1014 +53.2
12. MMO + MH ⇋ MOH + 2M 103.80 ± 0.96 1.3×1012 +33.92
13. MOH + MH ⇋ H2O + 2M 86.22 ± 0.62 2.4×1011 +73.7
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The forward activation energies along with the standard surface reaction enthalpies,

are used to calculate the reverse activation energies for the elementary steps by applying

the principle of microscopic reversibility (Fig.1.12). The surface reaction enthalpies are

calculated starting from those of the corresponding gas phase reactions and by account-

ing for the enthalpy change induced by chemisorption [39]. Chemisorption enthalpies

of various surface species are calculated as a function of the atomic chemisorption en-

thalpies using the UBI-QEP method. The single-event forward pre-exponential factors

as reported in Table 1.2 are determined via statistical thermodynamics calculations. The

calculation involves gas phase entropies of the components and the single-event stan-

dard entropy change related to chemisorption [40]. The gas phase entropies are obtained

either from databases [41] or using group additivity methods [42]. The calculation of the

entropy change related to the chemisorption step is based on the loss of translational

entropy of a gas phase component, which is inturn calculated with the Sackur-Tetrode

equation [43]. The reverse pre-exponential factors are calculated using the forward pre-

exponential factors (Ãfor) and single event surface reaction entropies (∆S̃0
r ) as:

Ã j
r ev

=
Ã j

f or

exp

(

∆S̃0
r, j

R

) (1.6)

The pre-exponential factors are used for determining the rate coefficients of the reaction

families in Table 1.2. All the above calculations are explained in detail by Lozano-Blanco

et al. [34, 35]. The SEMK embedded in to reactor enables the multiscale modelling capa-

bilities as represented in Fig.1.13.

The major advantage of this Microkinetic model includes extrapolation capabilities

of the model on a varied dataset. But this comes at the expense of the effort required to

construct the model, and expert-level knowledge required when compared to building a

simpler power law or Langmuir kinetic model. Further details on microkinetic model is

discussed in Chapter 2.
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An alternate approach in predictive modelling is data-driven methods. With devel-

opments in increased computational capacity and the ability to handle large volumes of

data, high throughput experimental trials, etc., there has been an increased interest in

applying data driven, machine learning approaches to chemical engineering problems.

1.7. MACHINE LEARNING BASED MODELS

Machine Learning (ML) methods are rapidly becoming popular for modelling and de-

cision support of complex nonlinear process phenomena in the field of chemical en-

gineering [44], owing to faster (cheaper) computational capabilities when compared to

full-fledged mechanistic models. Depending on the process data complexity, the spe-

cific type of machine learning method suited to model the phenomena of interest varies.

The current studies for modeling the chemical engineering research problems are mostly

based on mechanistic models [45–47] which rely on imposing the physico-chemically

meaningful relations in the data. However, developing mechanistic models for processes

such as FTS is not always feasible due to their complexity and the in-depth knowledge

required to build such models. This is especially true in the field of catalysis where the

reaction complexity is more pronounced and the use of simpler kinetic models is not

able to capture the detailed chemistry of the process. This presents an opportunity for

the development of machine learning based models which are easier [48] to develop as

compared to a detailed mechanistic model. The machine learning methods are typi-

cally subcategorized as either unsupervised (e.g. clustering, dimensionality reduction)

or supervised (classification, regression) learning.

1.7.1. UNSUPERVISED MACHINE LEARNING

Unsupervised learning is the subcategory of machine using data without any label or

target attribute. It involves exploring the unlabeled data to find intrinsic structures or

hidden pattern with minimum of human supervision [49]. The major unsupervised ML
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methods used are:

• Dimensionality reduction, where high dimensional dataset is reduced in dimen-

sion

• Cluster analysis, where data points that show similarity are made in to groups.

In this thesis, the investigation based on unsupervised methods is limited to the use of

clustering.

Clustering:

Clustering is a technique for identifying similar groups in data, called clusters. i.e., a

grouping of data instances which are similar into one cluster and instances that are

very different into different clusters. It works on the principle of maximization of inter-

clusters distance and minimization of intra-clusters distance to ensure the quality of

clustering. The clustering technique used in the thesis is K-means clusters based on

partition based clustering [50].

Figure 1.14: llustration of cluster obtained via K- means clustering. The data is separated into k [k=8] clusters
in the feature space (yield of light olefins and carbon monoxide conversion).

In the algorithm k data points (see Fig.1.14) are chosen to be the initial centroids or
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cluster centers and each data point is assigned to the closest centroid. The is followed

by reassigning the centroid of each group formed with the corresponding mean of the

data and iteratively repeated until it converges. With the advances in computational ca-

pacity, the investigations of different chemical engineering problems such as automated

Phase Identification [51], identifying key features in reactive flows [52], fault diagnosis in

chemical process [53], electrocatalysis [54], etc. have recently grown.

1.7.2. SUPERVISED MACHINE LEARNING

Figure 1.15: Different machine learning models investigated to analyse multi-output FTS reaction.



1

20 1. INTRODUCTION

Supervised learning is the training of a machine using data with a label or target at-

tribute. The main type of supervised machine learning for continuous value prediction

is the regression method. The aim is to approximate the mapping function (f) such that

when a new input data (x) is provided the output variables (Y) for that data can be pre-

dicted.

In chemical engineering, supervised learning methods (mainly regression-based meth-

ods) are the widely used, for applications such as absorption [55], sludge treatment [56],

reactor modelling [57], etc. ML regression methods reported in literature include the use

of Lasso regression [58], decision tree [59], K-Nearest Neighbor (KNN) regression [60],

Support Vector Regression (SVR) [61], Artificial Neural Network (ANN) [62] etc. The wide

application of these techniques in catalysis has recently been reported by Takahashi et al.

[63]. In this thesis the investigation based on supervised regression methods are limited

to use of Lasso, KNN, SVM and ANN regression.

LASSO REGRESSION

The most general supervised ML model is linear regression. It calculates the dependent

(output) variables, (yi) based on the relationship with the independent (input) variables

(xi) through the parameters also denoted as weights βi. In the model fitting, linear re-

gression can suffer from model over-fitting where the model fits the training data but

does not give a good test data prediction. This is due to the learning of noises in the

test data and manifests itself via large parameter estimates associated to independent

variables of lesser impact. This issue is addressed by Lasso regression [64], where regu-

larization or shrinkage of the parameters is done to reduce over-fitting. It penalizes the

less important inputs in the dataset and thus creates a simple model by reducing their

respective weights. Here the L1 norm 1 is used for regularization. The cost function con-

taining the sum of mean square error (MSE) of the actual and predicted output, and the

1L1 norm is defined as the sum of the absolute values of the weights,βi
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penalty as shown in Eq.5.1, is minimized to find the parameters in the Lasso regression.

J = MSE +α
n
∑

i=1
|βi | (1.7)

where α is the hyperparameter that controls the intensity of regularization.

K NEAREST NEIGHBORS (KNN) REGRESSION

KNN is a memory-based model [65] that makes predictions for new observations based

on its “similarity” to the data used for training. It identifies k observations that are near-

est or similar to a newly considered observation, and then assigns the average response

of these k observations as the prediction for the new one. The performance of the KNN

model is sensitive to the parameter k, which determines the smoothness of the estima-

tion. For low values of k, less neighbors are considered potentially leading to over-fitting,

while using large values of k considers more neighbors may result in not capturing suffi-

cient variation. The similarity between observations (to identify the neighbors) is quan-

tified using the Euclidean distance metric, where the distance between observations xa

and xb for all input variables is calculated as:

d =

√

n
∑

i=1
(xa −xb)2 (1.8)

Here xa, denotes a new point, xb, an existing point and n, the number of data points.The

main parameters associated with the KNN regression include the number of neighbors

to be used and the metric used to compute the nearest neighbors.

SUPPORT VECTOR REGRESSION

Support Vector Machine (SVM) [66] is an algorithm widely used for solving machine

learning problems. Support Vector Regression (SVR) is the most common application

form of SVM for regression purposes when the dataset is non-separable. SVR uses e-
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insensitive loss as the loss metric. The e-insensitive loss is given as:

Le = max(0, |r (x, y)|−ǫ) (1.9)

where r(x,y) is the residual, i.e. the difference between the actual and the predicted

output. A margin of width, ǫ, as set by the modeller, is created around the regression

curve (known as hyperplane in higher dimensional space) within which the exact mag-

nitude of the discrepancy between observation and model prediction does not con-

tribute to the loss function and, hence, does not influence the regression curve. Thus, in

essence, the aim is to contain maximum data pints within the margin, with a minimal

number of violations. When the data points exhibit a non-linear relationship, the data is

analyzed in an enlarged feature space. Special functions called kernel functions are used

to construct the enlarged feature space. 2

ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN) is a machine learning algorithm [68] inspired by bi-

ological neural networks. It is a data-driven model which reveals the hidden patterns

or non-linear relationships in the data. A neural network model is composed of its ba-

sic units called neurons, which are then stacked to form layers. An ANN will contain an

input layer, hidden layers, and an output layer. Each neuron is connected to the adja-

cent layer neuron through the weight assigned to it, which does the linear transforma-

tion of the input signal in the forward feed propagation step. The activation function

assigned to it does the corresponding non-linear transformation. The most commonly

used activation functions are Rectified Linear Unit (ReLU), sigmoid, and tanh. In the

network training process, recalculation and assigning the new weights happen through

backpropagation [68]. This process continues until the difference between the predic-

2The popular kernel functions used are dth degree polynomial, radial basis function (RBF), and hyperbolic
tangent. A penalty coefficient C that controls the strength of the penalty term (loss function) is obtained
by hyperparameter optimization. Each kernel function mentioned above has a set of hyperparameters (e.g
’spread’ of the kernel and therefore the decision region, γ for RBF) that also needs to be optimized [67].
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tion and the actual target is within the tolerance limit. If the number of neurons/layers

is too limited, it reduces the analysis capability of the network and gives less accuracy in

prediction. On the contrary, if the number is high, it results in over-fitting (memorizing)

of the data. The optimal number of neurons and layers is found by hyperparameter opti-

mization, or by trial and error, which results in a network that yields a perfect prediction

with minimization of a loss function.

INTERPRETABILITY OF ML MODELS

With the increase in complexity of ML models ranging from the simplest Lasso regres-

sion to the most complex ANN the "black box" character of the model increases, and the

interpretation of the models becomes more challenging. For a "simple" model such as

linear regression, the weights or coefficients of the independent variables give an indi-

cation of the importance of each variable. As the model complexity increases such as in

ANN, though the accuracy of prediction increases, the models become practically unin-

terpretable [69]. To this purpose different interpretation techniques such as permutation

importance [70] and Shap values [71–73] are now being developed and used.

In the pursuit for discovery of catalysts and optimization of performance, these ma-

chine learning methods are an alternative for traditional catalyst optimization as it is

based on generalization and summarization. However, due to the complexity involved in

the reactions like FTS, factors affecting the catalyst performance are diverse and, hence

need to be further understood at a fundamental level. Unfortunately, the contemporary

studies mainly focus at either a mechanistic approach that demands expert-level knowl-

edge on the topic, or ML-based data-driven methods that are used as black box models.

Most of these studies do not exploit the advances made in data interpretation and anal-

ysis techniques in ML (see section ) to systematically analyze the kinetic data. These

techniques can also be used to understand the predictions from black box models at a

detailed level, thus building confidence in the ML models.
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1.8. SCOPE AND OUTLINE OF THE THESIS

In this thesis, it is investigated how data-driven computational methods could be use-

ful for the re-investigation of many existing chemical processes, especially with the in-

creasing demand towards sustainability. Owing to the role of sustainable production

of plastics in circular economy, chemical recycling of plastics and consequently Fischer-

Tropsch synthesis (FTS) play a key role in it. In this thesis, a systematic analysis of kinetic

data obtained from mechanistic SEMK model for FTS is carried out using interpretation

techniques developed for ML models. This thesis aims at automated identification of op-

timal catalyst properties for enhanced light olefin production, from SEMK kinetic simu-

lations. The capability of different ML models to identify optimum operating conditions

for enhanced light olefin production is also investigated. Each chapter in the thesis has

been accepted for publication in peer- reviewed journal. In this introductory chapter,

the general concepts of the employed methodology has been briefly discussed and in

the coming chapters the detailed methodology/applications of this will be discussed.

In Chapter 2, the application of microkinetics for FTS catalyst design is illustrated.

The impact of promoters in iron based catalyst on the process (at a single set of operating

condition) performance is analyzed with the SEMK model. The model consist of kinetic

and catalyst parameters, referred to as kinetic and catalyst descriptors respectively. Here,

an extension of the capabilities of the SEMK modelling approach to investigate the in-

fluence of variation in catalyst properties i.e. catalyst descriptors, on the yield of desired

component, light olefins (C2 −C4 =) is carried out. A virtual catalyst screening combined

with 3D graphical visualization approach is used to determine the catalyst descriptors,

i.e. atomic chemisorption enthalpies of hydrogen , carbon and oxygen. The impact of

the catalyst descriptors on conversion and selectively is rationalized in terms of relative

surface coverages of different species, leading to different dominant reaction pathways,

and thus resulting in product yield variations. Using this approach, a "promising poten-

tial catalyst" with catalyst descriptors, QH, QC and QO resulting in enhanced light olefins
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yield with lower methanation and long-chain hydrocarbon formation, is identified.

In Chapter 3, the exploration of the synergies between microkinetic and data-driven

machine learning models to provide fundamental insights on catalyst development is

carried out. In this work, a clustering approach (unsupervised machine learning) cou-

pled with microkinetic simulations is employed to determine the catalyst properties for

achieving the desired target output such as light olefins. The application of the proposed

methodology is demonstrated for Fischer-Tropsch Synthesis (FTS) on an iron-based cat-

alyst, with the yield of light olefins as the desired target product. The approach demon-

strated, automates the process of finding desired catalyst parameters (descriptors) irre-

spective of their dimensions and thus constitute an integral part in catalyst design and,

hence, in chemical recycling technologies.

Chapter 4 tries to unravel the black box nature of the machine learning model based

on Artificial Neural Network in its prediction, simultaneously with the verification of ab-

sence of any bias as compared to the micro-kinetic generated data for a single dominant

output (methane) Fischer Tropsch process. Interpretation techniques such as permuta-

tion importance, Shap values and partial dependence plots is used for a more systematic

(model agnostic) analysis of these data. For the purpose of this case study, the dataset

required for training the ANN model is synthetically generated using a Single-Event Mi-

croKinetic (SEMK) model. The work demonstrates how an ANN model with a simpler

network is able to adequately reproduce the SEMK results. The relative ranking of the

process variables, as learnt by the ANN model, is then identified using the interpreta-

tion techniques, and consistency with the physico-chemical understanding from SEMK

is verified.

Chapter 5 showcases, how well the non-linearity in the kinetic data can be captured

by different ML models. Multi-output Fischer-Tropsch Synthesis data, generated (at dif-

ferent operating conditions) via mechanistic SEMK model is analyzed with different ma-

chine learning models (ML) such as Lasso, K Nearest Neighbors (KNN), Support Vector
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Regression (SVR), and Artificial Neural Network (ANN) regression. The interpretation

technique based on Shap values is then applied on the best performing ML model and

consequently ranked the input variables according to their process impact.

Finally in Chapter 6, the general conclusions concerning the insights gained from

Microkinetic and machine learning models are presented along with the future perspec-

tives for modelling applications in chemical processes.
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The first goal of this thesis is to identify a potential catalyst with enhanced light olefin

selectivity. To achieve this, we extend the capabilities of the SEMK modelling approach

to investigate the influence of variation in catalyst properties i.e. catalyst descriptors, on

the yield of desired component, light olefins (C2 −C4 =). We explore the catalyst descriptor

space around three literature-reported Bi and Pb promoted and non-promoted Fe cata-

lysts. These are used as a benchmark to explore the parametric catalyst descriptor space.

The three catalyst descriptors, i.e. atomic chemisorption enthalpies of hydrogen (QH),carbon

(QC), and oxygen (QO) in the SEMK modelling approach have a combined effect on the

conversion, whereas the selectivity to light olefins is found to be less sensitive to QO. These

effects can be rationalized in terms of relative surface coverages of different species, lead-

ing to different dominant reaction pathways, and thus resulting in product yield varia-

tions. Using this approach, a "promising catalyst" with catalyst descriptors, QH ≈ 234

kJ/mol, QC ≈ 622 kJ/mol and QO ≈ 575 kJ/mol resulting in 55% light olefins yield with

lower methanation and long-chain hydrocarbon formation, is identified 1 .

1This work is published in Chemical Engineering Journal with doi: https://doi.org/10.1016/j.cej.

2021.129633
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2.1. INTRODUCTION

Fischer-Tropsch synthesis (FTS) is one of the most promising approaches to obtain non-

petroleum-based hydrocarbons. While, most of the current plants rely on coal [1] or nat-

ural gas [2, 3] to produce syngas, the feedstock for FTS, various chemical recycling tech-

niques can be used as an alternative to produce syngas with non-conventional H2/CO

(e.g. from plastic waste via gasification) [4]. With the current urge for circular economy

[5, 6] and, hence, the need to reduce plastic waste and associated pollution, save primary

resources and preserve our natural ecosystem, the use of syngas with non-conventional

H2/CO has gained popularity. Technological developments with emphasis on better cat-

alysts can help to increase the competitiveness of the FTS process [7] to produce value-

added chemicals such as light olefins from plastic waste. The light olefins so produced

could in turn be used for plastic production [8], thus leading to a true circular economy.

Therefore, high-temperature FTS has been of interest in the last decades due to the op-

portunity to convert plastics and organic waste into value-added chemicals such as light

olefins rather than other hydrocarbon products such as methane, paraffins, and other

long-chain hydrocarbons [9, 10]. Studies also concentrate on the influence of different

catalysts in enhancing the activity and selectivity. A comprehensive review of early cata-

lyst development is reported by Vannice et al. [11] and Anderson et al. [12].

At present, the FTS process mostly uses iron-based (low- and high- temperature op-

eration modes) and cobalt-based (low-temperature operation mode) catalysts. Both

cobalt [13–15] and iron [16, 17] catalysts yield higher hydrocarbons. Higher activity, light

olefin selectivity, and lower costs make iron-based catalysts a better candidate in FTS

even though they also lead to proportionally more oxygenates. Due to their potential

water gas shift (WGS) activity, iron-based catalysts find merit in processing syngas with

varying H2/CO ratio, more particularly hydrogen deficient syngas [12, 18, 19].

The investigations on iron-based catalysts have focused mainly on operating condi-

tions such as temperature, gas flow rate, pressure, gas type, as well as on the promoters.
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The improvement in catalyst performance with addition of promoters in iron-based cat-

alysts [16, 17] has attracted recent research interests. The study of the promoter effect is

rather complex as it is done with different supports and at different reaction conditions.

Recent studies investigate the effect of iron-promoted catalysts [9, 10] on performance.

Gu et.al [9] report a higher light olefin selectivity, specifically on promotion by Bi and Pb

on carbon nanotube support, over unpromoted Fe catalyst.

In order to provide fundamental insights on catalyst development, kinetic models

can be recurred to account for properties in the modelling procedure [20]. Microkinetic

models, which represent the occuring chemistry at the elementary step level [21–23]

help to study the reaction kinetics of complex reactions such as Fischer Tropsch reac-

tion [24], oligomerization [25], autoxidative curing [26], etc. To model reaction systems

with a large number of elementary steps using a microkinetic approach, the single event

concept can be employed. In the Single-Event MicroKinetic (SEMK) methodology the

reactive moieties are considered to determine the reactivity of individual molecules. Ac-

cordingly, the elementary reactions are classified into reaction families to reduce the

number of parameters [27]. The single-event kinetic coefficient is unique for a reaction

family and the adsorption enthalpies of surface species are calculated via the UBI-QEP

method [28, 29]. In the SEMK framework, the catalysts are differentiated in terms of

model parameters referred to as catalyst descriptors. Single-Event MicroKinetic models

have been developed for alkylation [30], hydrocracking [31], catalytic cracking [32] and

reforming [33]. Specifically for FTS, studies using the SEMK modelling approach concen-

trate mostly on identifying the descriptors values corresponding to the catalysts used in

a particular experimental investigation [34–39]. However less attention was dedicated

to explain how a change in the catalyst properties and, hence, in the descriptor values,

would influence the performances. Screening of the descriptor space could help us in

identifying the surface reactions that mostly impact the selectivity towards the desired

products.
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The scope of the current chapter is, hence, to identify the catalyst descriptor val-

ues that enhance the yield of light olefins, within a broad, yet realistic descriptor space.

For our study, the descriptor space is identified by taking into account the experimen-

tal performances of three iron-based catalysts. We carry out SEMK simulations using

different combinations of descriptors, also denoted as virtual catalysts [40]. The SEMK

simulations with virtual catalysts aim at assessing how the model explains the difference

in the behaviour of catalysts in terms of the microkinetic phenomena and identifying a

"promising catalyst" within the descriptor space.

2.2. SINGLE EVENT MICROKINETIC MODELLING APPROACH

The SEMK methodology as applied to FTS of iron based catalysts is briefly explained.

The elementary steps and reaction families considered in the SEMK reaction network,

are summarized in Table 5.1. The forward activation energies listed in Table 5.1 con-

stitute the kinetic descriptors of the model, which are independent of the catalyst de-

scriptors. The forward activation energies reported in the table, along with the stan-

dard surface reaction enthalpies, are used to calculate the reverse activation energies for

the elementary steps by applying the principle of microscopic reversibility. The surface

reaction enthalpies are calculated starting from those of the corresponding gas phase

reactions and by accounting for the enthalpy change induced by chemisorption [37].

Chemisorption enthalpies of various surface species are calculated as a function the

atomic chemisorption enthalpies using the UBI-QEP method [29, 41]. The single-event

forward pre-exponential factors reported in Table 5.1 are determined via statistical ther-

modynamics calculations. The calculation involves gas phase entropies of the compo-

nents and the single-event standard entropy change related to chemisorption [42]. The

gas phase entropies are obtained either from databases [43] or using group additivity

methods [44]. The calculation of the entropy change related to the chemisorption step

is based on the loss of translational entropy of a gas phase component, which is inturn
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calculated with the Sackur-Tetrode equation [45]. The reverse pre-exponential factors

are calculated using the forward pre-exponential factors (Ãfor) and single event surface

reaction entropies (∆S̃0
r ) as:

Ã j
r ev

=
Ã j

f or

exp

(

∆S̃0
r, j

R

) (2.1)

The pre-exponential factors are used for determining the rate coefficients of the reaction

families in Table 5.1. All the above calculations are explained in detail by Lozano-Blanco

et al. [34, 36].

In the SEMK model, the considered catalyst and corresponding reaction mechanism

are quantified in terms of both catalyst and kinetic [27] descriptors. Kinetic descriptors

are model parameters that are specific to the reaction families considered and are in-

dependent of the catalyst properties. While catalyst descriptors are model parameters

that specifically account for the impact of the catalyst on the kinetics. In the case of

Fischer-Tropsch synthesis, atomic chemisorption enthalpies of carbon (QC in carbide

phase), hydrogen (QH and QFe3O4 −H corresponding to carbide and oxide phase re-

spectively), and oxygen (QO in carbide phase) are the catalyst descriptors [36] 2. The

atomic chemisorption enthalpies are reported in absolute value, with an increase cor-

responding to more pronounced exothermicity. The atomic chemisorption enthalpies

of the iron catalyst discussed by Lozano-Blanco et al. [36] i.e. QC, QH, QFe3O4 −H and

QO are 630.03 ± 2.47 kJ/mol, 252.40 ± 0.63 kJ/mol, 233.83 ± 1.28 kJ/mol and 579.19 ±

1.77 kJ/mol, respectively. In our discussion below, a "virtual catalyst" corresponds with a

specific combinations of these catalyst descriptors, while the ones actually synthesised

2It is however to be noted that the number of catalyst descriptors potentially depends on the specificities of
the reaction. For e.g. in case of CO2 hydrogenation where we expect the reverse water gas shift reaction to be
dominant and the oxide phase of iron catalyst will play a dominant role in this respect. This will be accounted
for in the model through the parameter QFe3O4 −H. When CO2 hydrogenation would be carried out using a
cobalt catalyst, there will be minimal WGS reaction. The values of QH are then expected to be higher than in
case of iron to have good activity and those of the other catalyst descriptors to be low. Methane is expected to
be the dominant product.
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Table 2.1: Elementary reactions and reaction families in the reaction network [36], where Efor
a represent the kinetic descriptors, M represents the metal surface,

and Ãfor, represent the forward pre-exponential factors, and ∆S̃0
r represent single-event surface reaction entropies, respectively. The surface reaction enthalpies is a

function of catalyst descriptors. The calculations of enthalpies and entropies are reported by Lozano-Blanco et al. [34, 36].

Reaction family/

elementary reaction
Efor

a
(kJ/mol)

Ãfor

(s−1 or (MPas)−1)
∆S̃0

r
(J(Kmol)−1)

1. H2+ 2M ⇋ 2MH 0 3.1×108 −63.5
2. CO + 2M ⇋ MMCO 0 2.2×107 −165.7
3. MMCO + 3M ⇋ MMMC + MMO 56.81 ± 0.53 1.3×1013 −17.34
4. MMMC + MH ⇋ MMMCH + M 77.66 ± 0.70 8.8×1014 +35.08
5. MMMCH + MH ⇋ MMCH2+ 2M 11.94 ± 0.10 5.9×1011 −25.6
6. MMCH2 + MH ⇋ MCH3 + 2M 61.88 ± 0.50 2.2×1011 −33.5
7. MCnH2n+1 + MMCH2 ⇋ MCn+1H2n+3 + 2M 44.79 ± 0.43 8.3×109 −60.69
8. MCnH2n+1 + MH ⇋ CnH2n+2 + 2M 117.75 ± 0.67 3.3×1010 (n=2) +64.3

2.0×1010 (n=3-10)
9. MCnH2n+1 + M ⇋ MCnH2n + MH 96.27 ± 0.50 1.0×1010 +12.32
10. MCnH2n ⇋ CnH2n + M 63(n=2) 1.3×1013 +118.6

61(n=3-10)
11. O−CHO−M + M−OH +O ⇋ O−COOH−M

+ O−H + M 138.95 ± 1.15 1.7×1014 +53.2
12. MMO + MH ⇋ MOH + 2M 103.80 ± 0.96 1.3×1012 +33.92
13. MOH + MH ⇋ H2O + 2M 86.22 ± 0.62 2.4×1011 +73.7
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and experimentally tested are referred to as real catalysts.

2.3. METHODOLOGY

The current study on FTS using SEMK simulations aims at identifying a "promising cat-

alyst" (catalyst descriptors) that leads to enhanced yield of light olefins. The kinetic de-

scriptor values listed in Table 5.1 based on previous work [36]. The catalyst descriptors

are identified as discussed later in this section. The experimental results reported by

Gu et al.[9] are used to determine the catalyst descriptor values corresponding to Bi and

Pb promoted and non-promoted Fe catalysts. These are used as a benchmark to ex-

plore the parametric catalyst descriptor space. The comparison between the numerical

simulation results and the experimental data serves to identify the relevant part of the

space within which the real catalysts are situated. A "promising catalyst" that leads to

enhanced yield of light olefins, is then identified within the catalyst descriptor space en-

closing the three literature-reported iron-based catalysts. Thus our methodology is split

into two subsections.

2.3.1. IDENTIFICATION OF REALISTIC DESCRIPTOR SPACE

To identify and analyse the catalyst descriptors space corresponding to Fe/CNT, FeBi/CNT,

and FePb/CNT catalysts used by Gu et al.[9], we follow the steps discussed below:

• Step 1: Generation of virtual catalyst library:

A library with a large number of virtual catalysts is generated by varying the cata-

lyst descriptors (Fig.2.1). The investigated range of catalyst descriptors is chosen

around the descriptor values for an Fe catalyst, as previously investigated [36]. To

generate a diverse virtual catalyst library, the virtual space is sampled via an ex-

perimental design. In order to account for this deterministic system with various

factors (descriptors), we make use of space-filling design 3 [40, 46]. The combina-

3The space-filling design was used to ensure that within the randomness that is applied, all relevant combina-
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Figure 2.1: Identification of descriptors in SEMK simulations that explain the performance behaviour of real
experimental catalysts. SEMK simulations are carried out at different combinations of descriptors and the
resulting performance is compared with experimental results. The descriptor combinations explaining the
performance obtained with experiments using different catalysts are identified.

tion of descriptors generated by this procedure forms a virtual catalyst library. The

virtual catalysts are used to carry out numerical simulations.

• Step 2: Numerical simulations with a virtual catalyst library:

In the second step of the proposed methodology numerical simulations are per-

formed with FTS Single-Event MicroKinetic model incorporated in a plug flow re-

actor model for all virtual catalysts generated in Step 1. The set of ordinary differ-

ential equations (mass balances for the molecules) and nonlinear algebraic equa-

tions (pseudo-steady state approximation for the surface species) in the reactor

tions that are effectively tried out in the analysis. It guarantee an optimal coverage of the experimental space.
These designs allow for a spread of points encompassing the entire design space leading to more accurate
predictions at out-of-sample testing locations
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model is solved with the DASPK [47] from the Netlib [48] software library as dis-

cussed by Lozano-Blanco et al. [36]. In order to ensure convergence, the numer-

ical subroutine DNSQE within Netlib library is used to initialize the variables as-

sociated with the algebraic equations (solved using DASPK). Here, DASPK is used

with variable-stepsize backward differentiation formulas applying a direct linear

method.

The simulations are performed at the following operating conditions 623 K, 10 bar,

GHSV =3.4 Lg−1h−1, W=0.2 g, and H2/CO molar inlet ratio of 1, as reported in [9].

• Step 3: Comparison and screening to identify realistic catalyst descriptors:

From the simulation results, we find a pool of virtual catalysts with different com-

binations of catalyst descriptors resulting in comparable conversion (∆< 5%) and

light olefin selectivity (∆< 10%) with respect to the experimentally observed ones.

This reduces the number of virtual catalyst candidates by ≈ 90%. This is followed

by a screening of the selectivities towards other components namely, CO2, CH4,

and long-chain hydrocarbons (on a carbon-dioxide-free basis), to identify the range

of realistic catalyst descriptors.This screening process in the order mentioned above

leaves us with less than 5%, 2% and 0.5% virtual catalysts initially generated, re-

spectively. We identify the range of catalyst descriptors that represent the above

0.5% of virtual catalysts. More virtual catalysts are generated in this confined range,

and the Step 1-Step 3 are carried out iteratively, until there is no difference be-

tween consecutive iterations. The catalyst descriptors which result in a match of

conversion and selectivity between experiments and simulations are thus identi-

fied. The process discussed above is carried out to identify the catalyst descriptors

of the three real catalysts, Fe/CNT, FePb/CNT, and FeBi/CNT.
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2.3.2. IDENTIFICATION OF A "PROMISING CATALYST"

To identify a "promising catalyst" with maximum light olefins yield, the descriptor space

around the catalyst descriptors of the three literature-reported real catalysts is analysed.

The descriptor space is analysed using 2D parametric planes and 3D iso-surfaces of con-

version, selectivity, and yield. We also compare reaction pathways as simulated for vari-

ous virtual catalyst to understand how the corresponding descriptor values determine

the selectivities/yields. Reaction pathway analysis (RPA) serves as an important tool

to analyze the occurring phenomena, e.g., elementary steps, both in a qualitative and

quantitative manner, and identify the prevailing reaction routes [39]. here, the reaction

pathway analysis is performed by determining the affinities of elementary reactions.

For an elementary reaction, a A+bB ⇋ cC +dD , we define affinity of the elementary

reaction as,

Ai = RT × ln

(

Keq
AaB b

C c Dd

)

, (2.2)

where, R, T and Keq are universal gas constant, temperature and thermodynamic equi-

librium coefficient, respectively. If the affinity is close to zero, the elementary reaction

occurs very fast and can be assumed to be in quasi-equilibrium. In the reaction pathway

analysis carried out, an elementary reaction is considered to be in quasi-equilibrium

when the affinity, |Ai | < 1000 Jmol−1 [39]. Kinetically relevant reactions will have an

affinity exceeding this value. The corresponding reaction rate will then allow determin-

ing what fraction of the reactant is consumed via this elementary reaction. In the current

study, the reactions in quasi-equilibrium are represented with solid black arrows, while

the thickness of the kinetically relevant steps (colored arrows) are scaled logarithmi-

cally. Thickness of the colored arrows are chosen such that, T hi ckness, t = k×|l og x|−1,

where, x= forward or backward reaction rate and k= multiplication factor. The value of k

is chosen to be 11.5 for discrimination of arrows. Each reaction family is given a separate
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color.

From our analysis above, we then identify a "promising catalyst" with maximum light

olefins yield, within the investigated descriptor space.

2.4. RESULTS AND DISCUSSION

2.4.1. IDENTIFICATION OF REALISTIC CATALYST DESCRIPTORS

To find the catalyst descriptor range corresponding to the catalysts Fe/CNT, FePb/CNT,

and FeBi/CNT reported in [9], we compare the simulated performance of virtual cata-

lysts with the experimental ones. In Fig.2.2(a) each blue dot corresponds to the conver-

sion and light olefin selectivity obtained with a virtual catalyst. As seen from the scat-

ter plot (Fig.2.2(a)), different virtual catalysts, result in a wide conversion and selectivity

range. However, only a few virtual catalysts result in conversion and light olefins selec-

tivity comparable to that with the real catalysts (experiments) namely, Fe/CNT (brown),

FePb/CNT (green) and FeBi/CNT (red).

Table 2.2: Catalyst descriptors, i.e atomic chemisorption enthalpies for Fe, FeBi/CNT and FePb/CNT catalysts.

Atomic Chemisorption
enthalpies

Fe/CNT
(kJ/mol)

FeBi/CNT
(kJ/mol)

FePb/CNT
(kJ/mol)

QH (FexC−H) 249.5 247.7 248.4
QC (FexC−C) 644.1 632.1 641.5
QO (FexC−O) 601.0 589.1 577.1

As discussed in Step 3 of our methodology, the catalyst descriptors which best re-

produced the experimental performances (see Fig.2.2(b), Fig.2.2(c)-(e)) are identified for

both non-promoted and promoted catalysts. The descriptor values for the three real cat-

alysts are reported in Table 2.2. The atomic chemisorption enthalpy of oxygen (Table 2.2)

is lower for the promoted Fe based catalysts compared to the non-promoted Fe catalyst.

It leads to an enhanced CO dissociation and, hence, higher conversion, in line with the
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Figure 2.2: (a) CO Conversion vs light olefin selectivity (C2 −C4 =) obtained with different virtual catalysts (blue dots). The experimental results obtained with real cat-
alysts Fe/CNT, FePb/CNT and FeBi/CNT are represented with brown, green and red square dots respectively. The light coloured boxes around real catalysts represent
the virtual catalysts with comparable conversion and light olefin selectivity. The screening of the virtual catalysts within the light coloured boxes are carried out to
obtain the virtual catalyst matching real catalyst. (b) Conversion obtained with experiments (real catalyst) are compared with simulated conversion obtained with the
best matching virtual catalyst after screening. Selectivity of CH4 (Methane), C2 −C4 = (light olefin), C5+ (long-chain hydrocarbons) and CO2 (Carbon dioxide) with (c)
Fe/CNT catalyst (conversion 57%), (d) FeBi/CNT catalyst(conversion 79%), (e) FePb/CNT catalyst (conversion 96%)obtained with experiments are matched with that
of simulations using the best matching virtual catalyst. The experiments and simulations are reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1,
W=0.2 g and H2/CO molar inlet ratio of 1. The values in the figure are reported in a scale between 0 and 1.
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experimental observations. This has been denoted in the literature as an increase in

the scavenging of oxygen atoms [9]. It is ensured from Fig.2.2(c)-(e) that the simulated

selectivity towards the other hydrocarbons and CO2 (Fig.2.2(c)-(e)) using the catalyst de-

scriptor values in Table 2.2 is also comparable with experimental results of Gu et.al. [9].

From Table 2.2 we could see that, in addition to the difference in atomic chemisorp-

tion enthalpy of oxygenQO, the non-promoted and two promoted catalysts also exhibit

differences in atomic chemisorption enthalpies of hydrogen QH and carbon QC. It was

observed in some preliminary simulations that the atomic chemisorption enthalpy of

hydrogen in oxide phase (Fe3O4 −H = 220 kJ/mol), affecting the WGS reaction did not

lead to major differences in the targeting results. Hence, this value was fixed throughout

the procedure. As expected, from the above discussion, we see that the catalyst perfor-

mance is well captured by the catalyst descriptors without the adjustment of any of the

kinetic descriptors discussed in Table 5.1. To assess the effect of the differences in cat-

alyst properties on their performance, we thus examine the catalyst descriptor space of

QH, QC, and QO.

2.4.2. ANALYSIS OF CATALYST PERFORMANCE

In this section we analyse the catalyst performance as a function of catalyst descriptors

to understand their influence on conversion and light olefins selectivity.

CONVERSION

To analyse the catalyst descriptor effect on the CO conversion, we investigate QH −QC

descriptor planes at three different QO (Fig.2.3). The planes are considered at atomic

chemisorption enthalpies of oxygen, QO = (601,589.1,577.1) kJ/mol, corresponding to

the three real catalysts (Fe/CNT, FeBi/CNT, and FePb/CNT) reported in Table 2.2. The

ranges of QH and QC are chosen such that the plane encloses the three real catalysts,

Fe/CNT, FeBi/CNT, and FePb/CNT. From Fig.2.3 (a)-(c), we see a combined influence of

the catalyst descriptors on the simulated conversions. In the descriptor planes (Fig.2.3
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Figure 2.3: Conversion as a function of atomic chemisorption enthalpy of hydrogen (QH) and carbon (QC)
for atomic chemisorption enthalpy of oxygen (QO) at 601 kJ/mol (a), 589.1 kJ/mol (b) and 577.1 kJ/mol (c).
The intersection of dotted red lines corresponds to Fe/CNT (a), FeBi/CNT(b) FePB/CNT (c) respectively. The
simulations are reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2 g and H2/CO
molar inlet ratio of 1. The values in the figure are reported in a scale between 0 and 1.

(a)-(c)), the intersection of dotted lines (red) indicate the location of the real catalysts,

namely Fe/CNT, FeBi/CNT, FePb/CNT. As we traverse along the horizontal dotted line

with fixed atomic chemisorption enthalpies of carbon and oxygen, respectively we ob-

serve an increase in conversion followed by a decrease. As expected, this observation

follows Sabatier’s principle also referred to as a volcano-curve [39]. It is also seen from
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the parametric plots of conversion (Fig.2.3) that the effect of the atomic chemisorption

enthalpy of hydrogen (QH) is more pronounced (especially at QH > 260 kJ/mol) than that

of the atomic chemisorption enthalpy of carbon (QC). A too high value of QH results in

higher hydrogen surface coverages, which causes the coverage of CO to decrease and,

hence, results in a decrease in CO conversion, while a too low value of QH leads to lower

surface coverage of hydrogen thus adversely affecting the initiation and chain growth re-

actions discussed in Table 5.1. On the other hand, too high values of atomic chemisorp-

tion enthalpy of carbon (QC > 660 kJ/mol, not shown in Fig.2.3) lead to lower availability

of surface hydrogen (due to higher CO coverage), whereas, too low values lead to lower

availability of surface carbon. Both these situations result in a decrease in conversion.

However, the conversion is less sensitive to a change in QC as compared to QH. Along

different QH −QC planes (Fig.2.3 (a)-(c)) with the decrease in atomic chemisorption en-

thalpy of oxygen, we obtain a higher conversion for a fixed QH and QC. Thus, a decrease

in QO with the addition of Bi and Pb as promoters, means that oxygen is more loosely

bound to the surface. This reduces the concentration of metal sites being blocked by

oxygenates 4, permitting adequate coverages of surface carbon/hydrogen, in turn in-

creasing the conversion.

SELECTIVITY

In Fig.2.4 we look at the light olefin selectivity along the QH −QC planes, for different

values of atomic chemisorption enthalpy of oxygen corresponding to non promoted and

promoted Fe catalysts, as discussed earlier in Section 2.4.2. As in the case of conversion,

catalyst descriptors have a combined role in the selectivity values (Fig.2.4), but the effect

of QO on the light olefin selectivity is limited, i.e. Fig.2.4(a)-(c) are quite comparable. It

is observed that higher selectivity for light olefins is observed with QH in the range of

230-245 kJ and QC in range of 625-630 kJ. However, this not necessarily ensures a higher

yield of light olefins (C2 −C4 =) as the CO conversion should also be considered when

4For QH=248.4 kJ/mol and QC=641.5 kJ/mol, with decrease in QO from 601 kJ/mol to 577.1 kJ/mol the free
metal sites increases by a factor of 2.6.
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Figure 2.4: Selectivity of light olefins as a function of atomic chemisorption enthalpy of hydrogen (QH) and
carbon (QC) for atomic chemisorption enthalpy of oxygen (QO) at 601 kJ/mol (a), 589.1 kJ/mol (b) and 577.1
kJ/mol (c). The intersection of dotted red lines corresponds to Fe/CNT (a), FeBi/CNT(b) and FePb/CNT (c)
respectively. The simulations are reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2
g and H2/CO molar inlet ratio of 1. The values in the figure are reported in a scale between 0 and 1.

determining the latter. This trade-off between light olefin selectivity and CO conversion

should also be taken into account when engineering promoted catalysts.
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2.4.3. UNDERSTANDING THE DIFFERENCES IN PERFORMANCES USING SUR-

FACE LEVEL PHENOMENA

In this section, we first compare the change in performance between selected virtual cat-

alysts. It is then followed by discussions at an in-depth level, explaining the differences

in their performance in terms of surface coverages and reaction pathways.

COMPARISON OF PERFORMANCE

Figure 2.5: Conversion and selectivity as a function of atomic chemisorption enthalpy of hydrogen QH for
points low-QH (QH= 240 kJ/mol), mid-QH (QH= 248 kJ/mol) and high-QH (QH=252 kJ/mol) at a constant
value of QC = 642 kJ/mol and QO = 577.1 kJ/mol. The contour plane to the left of the histogram corresponds
to the QH −QC plane of selectivity containing FePb/CNT catalyst. The FePb/CNT catalyst is represented by
mid-QH. The simulations are reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2 g
and H2/CO molar inlet ratio of 1. The values in the figure are reported in a scale between 0 and 1.

To better understand the impact of descriptors at iso-conversion, in Fig.2.5 we more

deeply analyze the simulation results at three points in the QH −QC descriptor plane

containing the catalyst with higher conversion, i.e. FePb/CNT. The FePb/CNT catalyst

is indicated by mid-QH. The points low-QH, mid-QH and high-QH are chosen such that

the conversion obtained with the virtual catalysts represented by these three points is

comparable (Fig.2.5). Thus the variation in the selectivity of these three points directly

indicates the variation in light olefins yield because of the change in QH at a constant

value of QC = 642 kJ/mol and QO = 577.1 kJ/mol. The QH values corresponding to points
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low-QH, mid-QH and high-QH are 240 kJ/mol, 248 kJ/mol, and 252 kJ/mol, respectively.

The selectivity of light olefins (C2 −C4 =) and the most common product of FTS reaction,

methane (CH4) is compared at these three points, to understand the competing effects

among these two products. From the selectivity contour and histogram in Fig.2.5, for

the three points considered, we observe that the light olefin selectivity is highest at low-

QH (left) and lowest at high-QH (right) when compared to the selectivity with FePb/CNT

catalyst (mid-QH). The simulations with these three set of catalyst descriptors in the

QH −QC plane containing FePb/CNT catalyst (Fig.2.5), shows that the lower light olefin

selectivity at high-QH occurs at the expense of more pronounced methanation. To bet-

ter understand the differences at these three points, we look at the surface coverage of

different species.

INFLUENCE OF CATALYSIS DESCRIPTORS ON SURFACE COVERAGE

Table 2.3: Relative surface coverage of species MH, MMCH2 and MCH3 for the three virtual points low-QH,
mid-QH and high-QH calculated as reported in [39]. The points are located in the QH −QC plane containing
FePb/CNT catalyst. The atomic chemisorption enthalpies of carbon and oxygen are kept at a constant value
of QC= 642 kJ/mol and QO= 577.1 kJ/mol. The points low-QH (QH= 240 kJ/mol), mid-QH (QH= 248 kJ/mol)
and high-QH (QH= 252 kJ/mol) have different atomic chemisorption enthalpy of hydrogen. The simulations
are reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2 g and H2/CO molar inlet ratio
of 1.

Relative surface coverage [-]

Surface
species

low-QH
-

mid-QH
-

high-QH
-

MH 0.18 0.54 1.0
MMCH2 1.0 0.40 0.21
MCH3 1.0 0.47 0.25

An analysis on the relation between surface coverages and catalyst performance at

different operating conditions is discussed by Van Belleghem et al [39]. Here we carry out

a similar analysis for different (virtual) catalysts at the same operating conditions. The

difference in selectivity can be interpreted in terms of evolutions in the relative surface

coverage of the dominant species (Table 2.3) among different surface species reported
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in Table 5.1. The relative surface coverage is obtained by dividing the surface coverage of

surface species i at a particular QH by the maximum surface coverage of surface species

i found among the points low-QH, mid-QH and high-QH. The maximum surface cov-

erage of the surface species MH, MMCH2 and MCH3 are of order 10−2, 10−9 and 10−4

respectively. It can be observed that relative surface coverage of MH, i.e hydrogen on

the metal surface follows the trend, high-QH > mid-QH> low-QH. Thus, the relative sur-

face coverage of the surface species MH increases with an increase in QH. The higher

MH relative surface coverage for high-QH results in increased hydrogenation for high-

QH followed by mid-QH and low-QH. The surface coverages of MMCH2 and MCH3 show

a reverse trend, i.e. low-QH > mid-QH > high-QH. Thus, the relative surface coverage

of metal alkyls (see Table 5.1) decreases with an increase in QH. This trend can result in

higher alkanes or alkenes production depending on MH surface coverage. From Table

2.4 we see that the relative selectivity of total alkenes to total alkanes is higher for low-

QH followed by mid-QH and high-QH. Thus, alkene production is higher if MH surface

coverage is lower and vice-versa. Higher surface coverage of MH leads to lower surface

coverage of MCH2 and lower availability of free sites for beta hydride elimination (Ta-

ble 2.2, Eq.9) and thus results in increased hydrogenation [39]. It is also observed that

the 1-alkane (methane) to 2-alkane (ethane) selectivity ratio follows a reverse trend, i.e.

high-QH has higher methane to ethane production, followed by mid-QH and low-QH.

This indicates that for a fixed value of Qc, the tendency for increase in chain length de-

crease with increasing QH.

A similar analysis on performance at two different atomic chemisorption enthalpies

of carbon QC (QC=630 kJ/mol and 665 kJ/mol) at constant values of QH (240 kJ/mol) and

QO (570 kJ/mol) is carried out. It is observed that the yield of light olefins increases with

decreasing QC, whereas it follows a reverse trend for the yield of long-chain hydrocar-

bons. This is attributed to the increased relative surface coverage of MMCH2 at higher

values of QC. For the two QC values investigated the relative surface coverage of MMCH2
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Table 2.4: Relative selectivity of alkanes to alkenes and 1-alkane (methane) to 2-alkane (ethane) at three virtual
points low-QH, mid-QH and high-QH. The points are located in the QH −QC plane containing FePb/CNT
catalyst. The atomic chemisorption enthalpies of carbon and oxygen are kept at a constant value of QC= 642
kJ/mol and QO= 577.1 kJ/mol. The points low-QH (QH= 240 kJ/mol), mid-QH (QH= 248 kJ/mol) and high-QH
(QH= 252 kJ/mol) have different atomic chemisorption enthalpy of hydrogen. The simulations are reported at
operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2 g and H2/CO molar inlet ratio of 1.

Relative selectivity [-]

low-QH
-

mid-QH
-

high-QH
-

∑

alkenes
∑

alkanes
4.0 0.88 0.31

1−alkane

2−alkane
2.41 3.08 4.39

is 0.61 and 1 respectively where maximum surface coverage is of order of 10−9.

Thus, the yield of light olefins becomes lower due to increased methanation at high

values of QH and due to long chain hydrocarbon formation at high values of QC. At very

low values of QC, unavailability of surface carbon also leads to lower conversion and thus

lower light olefins yield.

COMPARISON OF REACTION PATHWAYS

A reaction pathway analysis is carried out at virtual catalyst points low-QH and high-QH,

to indicate the difference in trend in hydrocarbon selectivity as we traverse from lower

to higher hydrogenative catalysts with respect to the FePb/CNT catalyst. The affinity

calculations are used in Fig.2.6 to differentiate the elementary surface reactions which

are at quasi-equilibrium (black arrows) and those that are kinetically relevant (colored

arrows). The reactions :

• chemisorption of CO, H2 and alkenes

• CO dissociation

• hydrogenation of surface oxygen and carbide
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Figure 2.6: Reaction pathway analysis at low-QH (QH= 240 kJ/mol) and high-QH (QH=252 kJ/mol) is carried
out at temperature of 623 K, pressure of 10 bar, GHSV of 3.4 Lg−1h−1,Wcat of 0.2 g and H2/CO molar inlet
ratio of 1. The colored arrows with a thickness of less than 1 unit are represented with dotted arrows. The rate
corresponding to oxidative addition of MCH3 (in the case of high-QH), is used as the base (with lines thickness
of 1 unit) for the scaling of colored arrows. The reaction between hydrogen attached to the metal surface and
other surface species are not shown, for better visualization.

were found to be in quasi-equilibrium for both the virtual catalysts, low-QH and high-

QH.

At low-QH (Fig.2.6), it could be noted that MCH hydrogenation is kinetically relevant
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when compared at high-QH, where the reaction is in quasi-equilibrium. This leads to

a reduced surface coverage of MH at low-QH (Table 2.3) and, hence, lower hydrogena-

tion of metal alkyls. Since the MMCH2 insertion reaction is more prominent at low-

QH along with lower hydrogenation, an enhanced production of chain growth products,

more particularly olefins, is observed. However, at high-QH (Fig.2.6), since the MCH hy-

drogenation is in quasi-equilibrium, the surface coverage of MH is higher, leading to an

increased alkane production, particularly methane. Thus, it is explained how a change in

catalyst descriptor values can influence the surface coverages (Table 2.3) of key interme-

diates, thus altering the prevailing reaction pathways (Fig.2.6) and ultimately impacting

the product selectivities (Fig.2.5).

2.5. IDENTIFICATION OF OPTIMUM CATALYST

From our discussion above, we observe that the effects of each catalyst descriptor on

conversion and selectivity are inter connected to each other. To identify the trends in

conversion and selectivity due to the simultaneous variation of the three catalyst de-

scriptors and, hence, to identify the best catalyst leading to maximum yield of light

olefins, iso-performance surfaces are presented in Fig.2.7. Each sub-figure in Fig.2.7

contains two iso-surfaces, one corresponding to a higher value and another to a lower

value of the analyzed performance indicator. The values of iso-surfaces are chosen such

that a clear distinction in trend can be observed. The three catalysts, Fe/CNT, FeBi/CNT,

and FePb/CNT are represented with black dots. Depending on the relative location of

catalysts w.r.t . the iso-surface the black dots representing the catalysts, appear dark (not

enclosed by the surface) or light (enclosed by the iso-surface).

As was already evident from Fig.2.4(a)-(c) and Fig.2.7(b), the light olefins selectivity

weakly depends on QO with other descriptors being kept constant. However, the con-

version significantly increases with decreasing QO, for the range of catalyst descriptors

investigated (see also Fig.2.3(a)-(c) and Fig.2.7(a)). This leads to an increased light olefins
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Figure 2.7: Iso-surfaces of conversion (a), selectivity- C2 −C4 = (b) and yield- C2 −C4 = (c) as a function of
atomic chemisorption enthalpy of QH, QC and QO. Each figure has 2 iso-surfaces corresponding to high and
low values respectively. The catalysts Fe/CNT, FBi/CNT and FePb/CNT are represented by black dots. The
simulations are reported at operating condition of 623 K, 10 bar, GHSV =3.4 Lg−1h−1, W=0.2 g and H2/CO
molar inlet ratio of 1. The iso-surface values are reported in a scale between 0 and 1.

yield at lower QO. As discussed in Section 2.4.3, the lower light olefins yield at very low

values of QH and QC is attributed to lower surface coverage of hydrogen and carbon, re-

spectively. Increased production of methane at high values of QH, and that of long-chain

hydrocarbons at high values of QC also adversely affect the light olefins yield.

The combined effect of the descriptors mentioned above is evident from the iso-

surface of higher yield (yield=0.5) being enclosed within the iso-surface of lower yield
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(yield=0.28). We observe that the FePb/CNT and FeBi/CNT catalysts are close to the iso-

surface corresponding to yield=0.28, while the non-promoted Fe catalyst is situated high

above from this iso-surface. From Fig.2.7(c) we could infer that the yield of light olefins

(C2 −C4 =) for the given operation conditions, may be increased to a value exceeding

0.5, by engineering the catalyst in such a way that QH ≈ 234 kJ/mol, QC ≈ 622 kJ/mol

and QO ≈ 575 kJ/mol. A catalyst with the above descriptors would result in an increased

yield of light olefins close to 55% when compared to Fe/CNT (20%), FeBi/CNT (27%),

and FePb/CNT (30%) catalysts.

2.6. CONCLUSIONS

The single-event methodology developed for Fe catalyzed Fischer Tropsch synthesis is

used to differentiate the performance of different catalysts from a micro-kinetic per-

spective, using catalyst descriptors. The experimental results reported in literature are

used to determine the catalyst descriptor values corresponding to Bi and Pb promoted

and non-promoted Fe catalysts. These are used as a benchmark to explore the para-

metric catalyst descriptor space. The atomic chemisorption enthalpy of hydrogen, QH

effects the formation of methane vs longer hydrocarbons, and olefins vs paraffins. A

very high value of QH leads to higher hydrogenation and thus, higher methanation and

lower olefin production. The atomic chemisorption enthalpy of carbon, QC relates to

carbon species on the surface and, hence, to chain growth by increased methylene in-

sertion at higher values. Whereas, atomic chemisorption enthalpy of oxygen, QO in the

investigated range plays an important role in the availability of free metal sites. A lower

QO, reduces the metal sites being blocked by oxygenates and thus permitting adequate

coverage of metal- carbon and hydrogen, resulting in increased CO conversion. With

the decrease in QH (w.r.t. the real catalysts), the availability of free sites increases, that

can provoke enhanced beta hydride elimination. This leads to an increased light olefins

yield. At lower value of QC (w.r.t. the real catalysts), the yield of long-chain hydrocarbons



2

60 2. INFLUENCE OF CATALYST PROPERTIES ON LIGHT OLEFIN PRODUCTION

is reduced. In the investigated range of catalyst descriptors, an enhanced light olefin

production is observed at lower values of QO, QH and QC (w.r.t the real catalysts). For the

given operating conditions, we identify that a "promising catalyst" with catalyst descrip-

tors, QH ≈ 234 kJ/mol, QC ≈ 622 kJ/mol and QO ≈ 575 kJ/mol which would result in an

increased yield of light olefins (55%) compared to the catalysts Fe/CNT (20%), FePb/CNT

(27%), and FeBi/CNT (30%).

The further identification of promoters that modify the catalyst descriptor values

close to the values mentioned above can help us to attain enhanced yield of light olefins.

The above study thus represents a first step to unravel the causes behind the relative per-

formances of catalysts, and thus act as a guideline to engineer promoted catalysts with

desired performance traits.
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Kinetic and data-driven machine learning models are useful tools to provide fundamen-

tal insights on catalyst development. However, there has been a limited interest to explore

the synergies between both modelling approaches. In Chapter 2 we identified the catalyst

properties of a potential catalyst with enhanced light olefin selectivity, using a visual iden-

tification approach. In this chapter, a clustering approach (unsupervised machine learn-

ing) coupled with microkinetic simulations is employed for automated identification of

catalyst properties for achieving the desired target output, light olefins. This approach en-

ables to overcome the limitation of existing visualization-based approaches (discussed in

Chapter 2) limited to 3 dimensions, for identification of optimal catalysts. The approach

demonstrated here automates the process of finding desired catalyst parameters (descrip-

tors) irrespective of their dimensions and thus constitute an integral part in catalyst design

and, hence, in chemical recycling technologies 1.

1This work is published in Chemical Technology Symposium
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3.1. INTRODUCTION

Plastics are used in our daily life and engineering applications such as packaging, elec-

tronic devices, engineering constructions, etc.[1]. More than 6% of the total oil produced

globally is used for plastic production, a figure which is steadily growing [2]. Most of the

resulting plastic waste at the “end-of-life” of the above products ends up as landfill. Vari-

ous waste management techniques such as incineration or composting (bio-degradable

plastics) are also utilized and further developed to reduce the plastic waste ending in

our natural environment [3]. However, these waste management present certain limita-

tions, e.g., due to the presence of contaminants or additives in the plastic waste leading

to water contamination, slower degradation, etc. With the current urge for a circular

economy [1] to reduce plastic waste and associated pollution, retain our resources and

preserve our natural ecosystem; various alternatives such as mechanical recycling and

chemical recycling are being adopted. Chemical recycling, utilizing various chemical

processes such as pyrolysis and catalysis, has specific advantages over mechanical recy-

cling owing to the preservation of material properties, lower material downgrading, etc.

[4]. The use of a gasification process followed by a catalytic one involves the produc-

tion of syngas which have different ratios of H2 and CO, which are then utilized for the

production of liquid hydrocarbons using Fischer-Tropsch synthesis [5]. Technological

developments with emphasis on better catalyst design to produce value-added chemi-

cals such as light olefins via the FTS process [6] and, hence, to produce plastics will lead

to a truly circular economy. To provide fundamental insights on catalyst development,

kinetic models can be recurred to when properly accounting for the catalyst properties

in the modelling procedure [7]. A detailed microkinetic analysis of the properties of iron-

based catalysts to synthesize light olefins has previously been reported by Chakkingal et

al [6]. Alternative techniques such as using machine learning, with a focus on the data,

for catalyst design and predicting catalyst performances are also being investigated. Cur-

rently, there are a limited number of studies that combine the benefits of the mechanistic
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Figure 3.1: Steps involved in the identification of catalyst descriptor space with high performance using unsu-
pervised machine learning approach, K- means clustering.

model along with the usage of machine learning techniques to address the catalyst de-

sign [8]. In our previous work, performance relations to obtain enhanced light olefin

production via FTS were investigated using microkinetic simulations. The role played by

catalyst descriptors, (i.e, atomic chemisorption enthalpy of hydrogen, carbon, and oxy-

gen) were investigated. The identification of the best catalyst was aided with the help of

three-dimensional graphical visualization of the catalyst descriptor space. However, this

approach relying on data visualization becomes impractical when the number of catalyst

descriptors exceeds 3. In the current work, we extend our previous studies on the Single

event Microkinetic (SEMK) [6] framework by coupling it with a clustering-based unsu-

pervised machine learning model to analyze catalyst performance. Here we propose a

generalized clustering-based unsupervised machine learning approach suitable for any

n-dimensional space, to identify catalyst descriptor space with higher performances.

3.2. METHODOLOGY

The current work on FTS coupling SEMK and unsupervised machine learning method-

ology aims at identifying the regime of catalyst descriptors (i.e a promising catalyst) that

enhance light olefin production. The kinetic descriptor values used are based on the

work by Lozano-Blanco et al. [9] for an iron-based catalyst. The methodology can be

divided into 4 steps as shown in Fig. 3.1 :

• Step 1: Generation of virtual catalyst library:
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A virtual library of catalysts is generated by varying the catalyst descriptors and fed

to the SEMK model integrated into a PFR reactor model. The simulations are per-

formed at the following operating conditions: 623 K, 10 bar, GHSV = 3.4 Lg−1h−1,

W = 0.2 g, and H2/CO molar inlet ratio of 1, as reported in [10]. A detailed expla-

nation of the simulations is reported by Chakkingal et. al [6].

• Step 2: Identifying clusters in the performanace space:

The performance space of desired products, i.e., CO conversion and light olefin

yield is divided into groups or clusters using a k-means clustering algorithm. K-

means is an unsupervised machine learning technique designed to partition un-

labelled data into distinct k groupings and, hence, identify hidden patterns in the

data. Here each cluster is represented by its centroid which corresponds to the

mean of the points assigned to the cluster. The clusters are designed so that to-

tal intra-cluster variation is minimized. After the random selection of k centre of

clusters, an iteration step is followed to update the centroid until convergence is

achieved. One of the prominant methods to determine the optimal k-value is the

elbow method. In the elbow method plot variance within clusters is plotted as a

function of k. The optimal number of clusters is indicated by the location of a bend

(knee) in the plot.

• Step 3: Labelling of virtual points to the corresponding cluster:

Once the virtual points/catalysts (represented by a combination of catalyst de-

scriptors) in the performance space are grouped into clusters, the label or clus-

ter identity is attached or tagged to the corresponding virtual point in the perfor-

mance space. Thus, each virtual catalyst is identified in terms of its cluster identity.

• Step 3: Identifying virtual catalyst space with highest performances:

After labelling virtual catalysts with their respective cluster identities, the cluster

with the highest performance is selected. The range of catalyst descriptor values
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for this cluster is then identified.

3.3. RESULTS AND DISCUSSION

Figure 3.2: Elbow plot of within cluster sum of squares vs number of clusters in the conversion-yield perfor-
mance plane, to identify the clusters required.

To find the optimal catalyst descriptor space for enhanced light olefin selectivity,

the cluster groups of “Conversion-Yield of light olefins space” are identified. The elbow

method is used to find the optimum number of clusters. Here, the within-cluster sum

of squares, which is a measure of the variability of the observations within each cluster,

is plotted as a function of the number of clusters. The minimum number of clusters is

thus identified as 8 (see Fig.3.2), after which the variability decrease is minimal. With

the obtained minimal number of clusters, the performance plane with light olefin yield

on the y-axis and conversion on the x-axis is plotted in Fig.3.3. From the figure, it can

be observed that cluster 1 has the highest light olefin yield with the highest conversion.

The conversion and selectivity towards light olefins observed in this cluster are shown in

Fig.3.4.

The upper and lower limits of each catalyst descriptor corresponding to the virtual

catalysts in this cluster are compared with the descriptor space corresponding to the
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Figure 3.3: CO Conversion vs light olefin yield ( YC2−C4= ) obtained with different virtual catalysts grouped into
clusters (indicated by the colors) using K means clustering.

higher yield as reported in Chakkingal et al. (see Fig.3.5). The range of catalyst descrip-

tor values within the cluster with the highest yield of light olefins is obtained to be QH

(225-246 kJ/mol), QC (620-645kJ/mol) and QO (575-590 kJ/mol). This is in line with the

optimal catalyst descriptors reported in our previous work. A too high value of QH re-

sults in higher hydrogen surface coverages, which causes the CO coverage to decrease

and, hence, results in a decrease in CO conversion. while a too low value of QH leads

to a lower surface coverage of hydrogen thus adversely affecting the initiation and chain

growth. On the other hand, too high values of atomic chemisorption enthalpy of car-

bon (QC > 650 kJ/mol ) lead to lower availability of surface hydrogen (due to higher CO

coverage), whereas, too low values lead to lower availability of surface carbon. The cat-

alyst descriptor space values with the highest yield obtained with the automated unsu-

pervised clustering approach are very close to that obtained using the visualization ap-

proach. Thus, compared to the current standard approaches, automated clustering with

less manual intervention is a promising approach for identification of optimal catalyst
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Figure 3.4: Conversion and selectivity as a function of catalyst descriptors obtained for the highest yield cluster.
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Figure 3.5: The iso-surfaces of light olefin yield obtained as a function of catalyst descriptors using visualisation
approach with manual intervention, as reported by Chakkingal et al. [6].

space

3.4. CONCLUSIONS

A coupled “micro-kinetic-machine learning” approach for catalyst design and examin-

ing in detail the catalyst properties, reducing the human intervention, has been pro-

posed. It has been used to assess the impact of catalyst properties (descriptors) on

light olefin production via Fischer Tropsch synthesis, and thus to achieve optimal cat-

alyst performance. This hybrid approach could help in understanding and realization of

properties relevant to catalyst design and thus help in improving the chemical recycling

technologies for plastic waste. The descriptor space generated by microkinetic data (vir-

tual catalysts) is explored using a systematic unsupervised clustering (ML) and labelling

approach. The performance space is grouped into clusters and the minimum number

of clusters is identified to be 8. Each virtual catalyst (represented by the combination

of catalyst descriptors) is then identified in terms of its cluster. The range of catalyst
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descriptor values within the cluster with the highest yield of light olefins is obtained to

be QH (225-246 kJ/mol), QC (620-645kJ/mol), and QO (575-590 kJ/mol). This is in line

with the optimal catalyst descriptors for enhanced light olefin production reported in

our previous work [6]. The approach automates the process of finding the optimal cata-

lyst descriptors irrespective of the dimension of the descriptor space and hence enabling

to overcome the limitation of the manual visual inspection approach.



REFERENCES

3

77

REFERENCES

[1] PlasticsEurope, Plastics – the Facts 2018, An analysis of European plastics produc-

tion, demand and waste data, (2018).

[2] R. C. Thompson, S. H. Swan, C. J. Moore, and F. S. vom Saal, Our plastic age, Philo-

sophical Transactions of the Royal Society B: Biological Sciences 364, 1973 (2009).

[3] K. S. Rebeiz and A. P. Craft, Plastic waste management in construction: technological

and institutional issues, Resources Conservation and Recycling 15, 245 (1995).

[4] J. Hopewell, R. Dvorak, and E. Kosior, Plastics recycling: challenges and opportu-

nities, Philosophical Transactions of the Royal Society B: Biological Sciences 364,

2115 (2009).

[5] Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, and W. Pan, Synthesis Gas

Production with an Adjustable H2/CO Ratio through the Coal Gasification Process:

Effects of Coal Ranks And Methane Addition, Energy & Fuels 22, 1720 (2008).

[6] A. Chakkingal, L. Pirro, A. C. da Cruz, A. J. Barrios, M. Virginie, A. Y. Khodakov, and

J. W. Thybaut, Unravelling the influence of catalyst properties on light olefin produc-

tion via fischer–tropsch synthesis: A descriptor space investigation using single-event

MicroKinetics, Chemical Engineering Journal 419, 129633 (2021).

[7] J. Thybaut and G. Marin, Single-Event MicroKinetics: Catalyst design for complex

reaction networks, Journal of Catalysis 308, 352 (2013).

[8] J. R. Kitchin, Machine learning in catalysis, Nature Catalysis 1, 230 (2018).

[9] G. Lozano-Blanco, J. W. Thybaut, K. Surla, P. Galtier, and G. B. Marin, Single-Event

Microkinetic Model for Fischer-Tropsch Synthesis on Iron-Based Catalysts, Industrial

& Engineering Chemistry Research 47, 5879 (2008).



3

78 REFERENCES

[10] B. Gu, V. V. Ordomsky, M. Bahri, O. Ersen, P. A. Chernavskii, D. Filimonov, and A. Y.

Khodakov, Effects of the promotion with bismuth and lead on direct synthesis of light

olefins from syngas over carbon nanotube supported iron catalysts, Applied Catalysis

B: Environmental 234, 153 (2018).



4
MACHINE LEARNING BASED

INTERPRETATION OF FTS

MICROKINETIC DATA

79



4

80 4. MACHINE LEARNING BASED INTERPRETATION OF FTS MICROKINETIC DATA

Machine-Learning (ML) methods, such as Artificial Neural Networks (ANN) bring the data-

driven design of chemical reactions within reach. Simultaneously with the verification of

the absence of any bias in the machine learning model as compared to the micro-kinetic

data, interpretation techniques such as permutation importance, Shap values and par-

tial dependence plots allow for a more systematic (model agnostic) analysis of these data.

To achieve this aim, an investigation is carried out with FTS kinetic data generated using

cobalt catalyst, with only single dominant output, methane yield. After gaining confi-

dence on the investigated interpretation techniques, for an FTS reaction with single dom-

inant output, a similar investigation on the potential iron based catalyst with enhanced

light olefin selectivity is carried out in the next chapter.

For the purpose of the study in this chapter, the dataset required for training an ANN based

ML model is synthetically generated using a Single-Event MicroKinetic (SEMK) model.

With a number of 3 hidden layers with 20 nodes, the ANN model is able to adequately

reproduce the SEMK results. The relative ranking of the process variables, as learnt by

the ANN model, is identified using the interpretation techniques, the methane yield being

most dependent on the temperature, followed by the space-time and syngas molar inlet

ratio, in the investigated range of operating conditions. This is in line with the physico-

chemical understanding from SEMK. A systematic approach for analysing micro-kinetic

data, generally analysed on a case-specific basis, is thus developed by combining more

widely used interpretation techniques in data science with the ANN 1.

1This work is published in Reaction Chemistry & Engineering with doi: DOIhttps://doi.org/10.1039/

D1RE00351H
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4.1. INTRODUCTION

With increase in computational capacity and the ability to handle large volumes of data,

high throughput experimental trials, etc., there has been an increased interest in ap-

plying machine learning models to chemical engineering problems. Machine Learning

(ML) methods are rapidly gaining popularity for modelling complex nonlinear process

phenomena in the field of chemical engineering [1–4]. ML is a sub-field of artificial in-

telligence, where information from the data is learnt using algorithms. Usage of different

ML methods such as support vector machine (SVM), random forest and neural networks,

etc. for classification and regression are being extensively investigated in different areas

of chemical engineering such as electro-synthesis[5], biomass gasification [6], cataly-

sis [7, 8], molecular drug discovery [9, 10], etc. The data required for developing ML

based models are obtained from experiments [4, 11] or from synthetically generated us-

ing computational models [12]. These studies point at the increasing interest on ML

based models in different sub-fields in chemical engineering.

Among different techniques in machine learning mentioned above, Artificial Neural

Network (ANN) is one of the powerful predictive tools, which works on the principle

based on the Universal Approximation Theorem [13]. ANN is used for both regression

and classification. ANN relies on the collective working of the building units, i.e. the

neurons [14]. The functioning of these neurons is inspired by that of biological ones.

Here, relationships or patterns are established from the dataset between the input and

output in the training stage, and the ANN model uses this information in the prediction

stage. A neural network is considered a "black box" model, as it is difficult to interpret it

in a fundamental manner when compared to models such as linear regression (Fig.4.1).

A machine learning algorithm such as ANN predicts the outcome based on the infor-

mation learnt from the training set. The applicability and validity of such a model for a

process are currently based on accuracy measurements such as the mean square error,

mean absolute error, etc. However, relying on these metrics alone can make them biased
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✁

✁

✁

✁

!

Figure 4.1: Graphical representation of variation in interpretability of a model with change in accuracy as
reported in literature [15]. Interpretability of a model decreases with increase in accuracy and complexity of a
model.

towards certain input features. Any bias in the dataset will be reflected in the model ob-

tained from the algorithm. Thus, trusting the model also demands understanding why a

certain decision is made by the model.

The identification of input features which exhibit the most pronounced contribu-

tion towards the target output prediction in the learning process of ANN is not straight-

forward. There is always a trade-off between prediction accuracy and interpretability

of a model, see Fig.4.1. For a "simple" model such as linear regression, the weights

or coefficients associated with the independent features provide a direct quantitative

measure for their importance in the model. As the model complexity increases from

linear/logistic regression to neural networks, the prediction accuracy increases, but the

interpretability decreases [15]. To address this issue, with the recent advances in inter-

pretation techniques [16], the interpretability of complex models such as ANN is being

extensively investigated.

The most prominent interpretation techniques reported in literature are permuta-
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tion importance [17], Shap values [18–20] and partial dependence plots [21]. The valid-

ity and explanation quality of these techniques depend on the situations in which they

are used. Insights gained from different interpretation techniques allow revealing the

relative impact of each input feature on the output. The combined effects and correla-

tion of different input features may also be identified. The contribution of a particular

feature in a multidimensional dataset can then be evaluated based on process expertise

[22]. At present, these interpretation techniques, which are model agnostic in nature, are

mostly used in medicine [23–26], finance [27, 28], etc. However, the application of these

techniques in the field of chemical modelling is currently under-explored [22]. These

techniques along with ML models can help in unravelling the hidden trends in kinetic

data obtained from different chemical reactions, and for their systematic analysis.

Fischer-Tropsch Synthesis (FTS) is one such interesting chemical reaction where these

techniques can be useful. FTS is widely investigated from synthesis gas that can be ob-

tained from a wide variety of origins to synthesize hydrocarbons [29, 30]. The composi-

tion of non-petroleum-based hydrocarbons obtained via FTS depends upon a number

of process features, such as the feed-stock (syngas ratios obtained after gasification) na-

ture, the catalyst used, and the process operating conditions. The FTS reaction has been

widely investigates experimentally [29, 30], via density functional theory [31], and by dif-

ferent kinetic models [32, 33]. A Single-Event MicroKinetic model is one such versatile,

comprehensive kinetic model developed to deal with complex mixtures [34] in reactions

such as hydrocracking [35], catalytic cracking [36], Fischer-Tropsch Synthesis [37, 38],

etc. The analysis of the kinetic data obtained with such models is usually carried out

on a case-specific basis, demanding expertise working with these models. In the recent

decade, literature has also been reported on the use of ANN based models for modelling

the FTS [39–41]. However, these studies are limited to the building of the neural network

to predict the output components with limited focus on how each input feature plays a

role in the prediction process.
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In this chapter, a case study on interpretation of a "black-box" ANN regression model

developed from the micro-kinetic data corresponding to Fischer-Tropsch Synthesis (FTS)

is assessed with the help of different interpretation techniques mentioned above. This

opens up the possibility of more systematic analysis and interpretation of kinetic data

with the help of methods currently used widely in data science. Interpretability of ML

models such as ANN can also build confidence in them to accurately predict results

and draw chemical trends/insights. We could thus use them as an alternative to (mi-

cro)kinetic modeling and even to analyse the behavior of existing (micro)kinetic models

using ’non-classical’ contribution analysis techniques.

4.2. PROCEDURES

4.2.1. THEORETICAL BACKGROUND

An ANN is an efficient data-driven model which can learn the hidden patterns in a dataset,

and transform input data into output [14].

✁ ✁ ✁

Figure 4.2: Schematic representation of an ANN consisting of 3 input features in the input layer, 3 hidden layers
with 10 neurons in each layer and 1 output feature in the output layer. The input features in the representation
are temperature, space-time (W/FCO) and syngas molar inlet ratio (H2/CO) and the output is methane yield
(YCH4 ).

As shown in Fig.4.2, an ANN is composed of components called neurons (colored



4.2. PROCEDURES

4

85

circles). A set of neurons is subsequently stacked to form layers, which are classified as:

• Input layer: contains the input features, i.e., for the FTS process: temperature,

space-time and syngas molar inlet ratio.

• Hidden layer(s): The layer(s) of neurons between the input and output layers.

• Output layer: The layer of neurons that corresponds to the (predicted) output of

the model, i.e. methane yield for the current FTS process.

The output is generated by assigning weights to the neurons, and applying activation

functions to the input, output and hidden layers. The connections between the neurons

have a weight that does a linear transformation on the input value, while the activation

function does a non-linear transformation. Although there are different types of activa-

tion functions, the most conventional ones are the sigmoid and the Rectified Linear Unit

(ReLU) for input (and output), and hidden layers, respectively [14]. The sigmoid acti-

vation function ensures that the network captures the non-linearity of the input-output

relation, while the ReLU activation function in the hidden layers effectively avoids the

vanishing gradient problem [42].

The output values at each iteration, also denoted as epoch in the field, are obtained

after the input information is fed via a feed-forward propagation. A back-propagation

algorithm is used to train the neural network by recalculating the revised weights based

on the error obtained from the output value.

4.2.2. ARTIFICIAL NEURAL NETWORK CONSTRUCTION AND ANALYSIS

An experimentally validated, Single-Event MicroKinetic model developed for the cobalt

catalyst based FTS process [37] with single dominant output, methane, is incorporated

into a 1-D pseudo homogeneous plug flow reactor model, and is used to in-silico gener-

ate kinetic data, to develop an ANN model. Insights on the decision-making process of

the ANN model are obtained with the help of different interpretation techniques such as
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permutation importance, Shap value and partial dependence plots. The steps involved

in the development of the ANN model, and the explanation (interpretation) of results are

shown in Fig.4.3. The important steps involved in the process are:

Figure 4.3: Schematic representation of the different steps involved in ANN model development and interpre-
tation of the model. Data from SEMK simulations (green box) are used for training the ANN model (grey box)
which is then analysed using different interpretation techniques (yellow box).

• Step 1: Generation of datasets:

A dataset comprising 120 data points is generated at the following operating condi-

tions: space-time 9 - 22 (kgcats)mol−1
CO , syngas molar inlet ratios 3 - 10 mol.mol−1,

temperature 483 - 503 K, and a total pressure of 1.85 bar, as reported by Van Bel-

leghem et al.[37]2. The catalyst and operating conditions in the cited work [37] are

such that, a single dominant output, i.e. methane is produced. Detailed physico-

chemical insights of this data, from a kinetic model’s perspective is discussed in

the cited work [37].

The dataset is split into training and validation datasets with 75 and 45 data points,

respectively. The input features used for training the network are space-time (W/FCO),

syngas molar inlet ratio (H2/CO) and temperature, with methane yield (YCH4 ) as

2The experiments were reported at a single operating pressure condition of 1.85 bar which was fixed for the
cited work.To ensure the repeatability of the experimental conditions reported, the effect of pressure is not
accounted.
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output. As the dataset is composed of input features with different units, a stan-

dardization is performed, where each feature is centered and scaled before train-

ing the ANN:

z =
i −µ

σ
(4.1)

where i is the input feature, µ and σ are the mean and standard deviation of the

input feature, respectively, in the training dataset, and z is the transformed input

feature.

The validation dataset is then also transformed using µ and σ obtained for the

training dataset. Once the scaled datasets have been created, the ANN is trained

in the next step.

• Step 2: Training and prediction:

The scaled input features of the training dataset are fed into the neural network

and the model is trained as follows:

1. The weights associated with the neurons are initialized [43].

2. Information is shared from one layer to the other to calculate a prediction ŷi

via a feed-forward propagation.

3. After the feed-forward propagation step, a loss function is calculated which,

in this study, equals the mean square error, MSE (see Eq.4.2) based on the

methane yield.

MSE =

n
∑

j=1

(ŷ j − y j )2

n
(4.2)

where n represents the total number of observations, ŷ j is the ANN predicted

output and y j is the observed output.
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4. The loss function, MSE, is minimised via a back-propagation step. In this

step the gradients of the loss function are calculated, and the error is used to

update the new weights associated with the neurons.

5. The feed-forward propagation and the back-propagation steps are repeated

iteratively (epochs) until the global minimum of the loss function is obtained.

Here, an Adam optimizer [44] is used for reaching the global minimum.

6. The final weights associated with the neurons in the network are then used

for making predictions using the ANN model.

Once the model is trained, the predictions are made on the so-called validation

dataset.

• Step 3: Interpretability of the learning process of ANN:

The interpretation of the performance of the ANN model developed for FTS is

analysed using model agnostic interpretation techniques. The analysis is carried

out by investigating the training set using different interpretation techniques such

as permutation importance, Shap value and partial dependence plots (PD plots).

With the help of permutation importance, the importance of each feature across

the entire dataset is obtained. Next, with the help of Shap values the relevance of

each feature in each set of operating conditions is obtained. The combined im-

pact of different input features as interpreted by the developed ANN model is then

discussed with the help of partial dependence plots. The steps involved in the cal-

culation of each of these interpretation techniques is further explained in detail

below.

PERMUTATION IMPORTANCE

The features which the ANN algorithm has assigned higher weighting or prominence

to in its prediction are identified via determining the permutation importance [17, 45].

The importance of each input feature can be different for the yield of each output com-
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Figure 4.4: Graphical representation of the permutation importance principle. The model error is calculated
using the ANN prediction without permutation (left) and ANN prediction with permutation (right) of input
features such as W/FCO.

ponent. Thus identifying the input feature importance can assist in achieving the tar-

geted enhancement of desired output products. The permutation importance of the

ANN model for FTS is calculated as follows:

1. A neural network model is made using the training dataset containing different

input features, and the model error 3 for the training dataset is calculated.

2. To calculate the permutation importance of an input feature (for example space-

time, W/FCO), a new dataset is created by shuffling the rows of that feature in the

training dataset (Fig.4.4).

3. A prediction for this new dataset is made using the model developed in step 1

above, and the model error is calculated.

4. The permutation importance of the feature is then calculated as the difference of

model errors obtained in step 3 and step 1, above.

5. The above steps are repeated for the other input features (i.e for temperature and

3The model error is the difference between the actual output and the prediction.
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syngas molar inlet ratio- H2/CO) to obtain their permutation importance.

The feature resulting in the biggest difference in model error contributes the most to the

model prediction, while the feature with smallest difference contributes the least.

SHAP VALUES

Unlike permutation importance, which represents the feature importance across the en-

tire dataset, Shap values (Shapley values) are meant for a more local interpretation by

pinpointing the contribution of each feature in each set of operating conditions. These

values are used to explain the complex decision making of an ANN model with the help

of simplified linear models. A complex ANN model that identifies non-linear patterns

in the data is developed using the training dataset. Multiple linear, more easily inter-

pretable models, also see Fig.5.3, which describe individual data points are then built to

interpret the complex ANN model.

Figure 4.5: Graphical representation of how a Shap model assists in the interpretation of complex ANN models,
with the help of linear models.

Instead of trying to explain the model in all its complexity, Shap values focus on how

a complex model such as ANN behaves around a single data point. By considering the

impact of features on individual data points, and then aggregating them, the interplay

of combinations of features can be revealed. The Shap value gives the importance of

a feature by comparing the model output obtained with and without that feature. The
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Shap value for each feature is calculated as follows:

1. To calculate the Shap value of a feature i , create all possible subsets of features

(SS), from features F . i.e. SS ⊂ F , the feature i being excluded from F . After creat-

ing the subsets:

(a) Train a model M(SS1 ∪ i ) including the feature i , and another model M(SS1)

without it, where SS1 is one of the subsets of input features.

(b) Predict the output, YM(SS1∪i ) with the model M(SS1 ∪ i ), using input features

in SS1 and the feature i .

(c) Predict the output, YM(SS1) with the model M(SS1), using input features SS1,

and calculate the difference from the model prediction including the feature

i obtained in step 3.

2. Step 1 is repeated for all possible subsets of input features (without the feature i ),

i.e. SS1, SS2, SS3, etc. as the effect of excluding the feature i also depends on other

input features.

3. Shap value (Shapley score) for feature i , φi is then calculated as:

φi =
∑

SSi⊂F

|SSn |!(|Fn |− |SSn |−1)!

|Fn |!

[

YM(SS1∪i ) −YM(SS1)
]

(4.3)

where, SSn represents the number of features in the subset, Fn represents the total

number of features.

4. Repeat the above steps for all other features to calculate their Shap values.

The above calculation can be carried out using the Shap library [46], which calculates

Shap values significantly faster than calculating them via all possible combination of

features.
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PARTIAL DEPENDENCE PLOT

Partial dependence plots (PD plot) represent the marginal effect of (a combination of)selected

input features on the output of a machine learning model, such as ANN. Visualizing the

impact of higher-dimensional feature space on output prediction is difficult, when com-

pared to 1D and 2D visualizations. This is overcome by visualizing the partial depen-

dence of the output on selected small subsets of the input features. Though, a collection

of these plots for different input features can be made, it does not provide a compre-

hensive depiction. However, PD plots are extremely useful for preliminary identification

of trends, especially when the input features have lower order interactions, and when

the features not included in the plot have less impact on output. The steps involved

in the calculations for visualizing using PD plots are mathematically intensive and are

discussed in detail in the cited work [47].

4.3. RESULTS AND DISCUSSION

4.3.1. NEURAL NETWORK IDENTIFICATION AND COMPARISON WITH SEMK

To identify the best performing network, multiple ANN configurations with a different

number of neurons and hidden layers were trained using the dataset generated via SEMK

simulations. As typically done, sigmoid activation functions are used in the input and

output layer, whereas ReLU activation functions are used in the hidden layers, owing to

their better performance compared to the other activation function combinations [14].

The number of hidden layers and neurons in each hidden layer are systematically

varied to obtain the best performing model. This is assessed via the parity plot and R2

value. In Fig.4.6(a), the variation in the R2 value of the methane yield for the validation

dataset is presented as a function of the number of hidden layers and the number of

neurons within a hidden layer. A maximum R2 value of 0.99 is obtained using a neural

network composed of 3 hidden layers with 20 neurons in each layer. With an increase
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Figure 4.6: R2 value (a) and parity diagrams (b) of methane yield obtained with SEMK simulations and ANN predictions, when using the validation dataset. Different
ANN models with 1-3 hidden layers and 10-30 neurons in each layer are shown.
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in the number of neurons, for a fixed number of hidden layers, the R2 value initially

increases and attains an optimum value, depending on the number of hidden layers.

With a further increase in the number of neurons, the R2 value as calculated against the

validation dataset decreases, indicating an over-fitting.

Figure 4.7: Convergence of the mean square error (MSE) of the methane yield, YCH4 obtained with the ANN
model consisting of 3 hidden layers with 20 neurons in each layer. The MSE for the ANN model converges after
80 epochs (iterations).

The neural network configuration that yields the highest R2 value is chosen as the

optimal one. Thus, all the analyses reported here are carried out using a neural network

with 3 hidden layers containing each 20 neurons. This information is more explicit from

the parity diagram, Fig.4.6(b). From Fig.4.7 it is observed that for the optimal neural net-

work configuration, the mean square value of output yield (MSE), for both training and

validation dataset converges to a stable value (indicating best learning) after 80 epochs.

To show the predictive capability of the ANN, the methane yield (YCH4 ) obtained with

ANN and SEMK simulations are compared in Fig.4.8, in which the methane yield is plot-

ted as a function of space-time, at a syngas molar inlet ratio of 10 mol.mol−1. It is ob-

served that the methane yield increases with both space-time and temperature. As in-

dicated by the slope of the lines (constant temperature) in Fig.4.8, the influence of the
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Figure 4.8: Comparison of the methane yield, YCH4 obtained by SEMK simulations (•) and that with ANN model
(−) as a function of space-time (W/FCO) for varying temperatures at a syngas molar inlet ratio (H2/CO) of 10
mol.mol−1. The ANN model consists of 3 hidden layers with 20 neurons in each layer. The 95% confidence
limit for the yield obtained with different intializations of the ANN model is represented by the shaded region
around the mean ANN prediction (represented by solid line).

space-time on the methane yield increases with temperature. The methane yield ob-

tained at the highest temperature and space-time for a syngas molar inlet ratio of 10

mol.mol−1, is about the triple of that at the lowest temperature and space-time. As the

results obtained from SEMK simulations and ANN predictions show a similar trend, it is

concluded that the developed ANN model accurately predicts the output generated by

the SEMK model in terms of the methane yield.

4.3.2. INTERPRETATION OF THE ANN MODEL

GLOBAL INTERPRETATION USING PERMUTATION IMPORTANCE

The feature resulting in the biggest difference in model error contributes overall the most

to the model predictions, while the feature with smallest difference contributes the least.

Within the investigated range of operating conditions, it can be observed from Fig.4.9

that the most prominent feature in the ANN model is the temperature. However, no
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Figure 4.9: Relative importance of each input feature on a global level (i.e. averaged over the entire range of
operating conditions in the training dataset). The relative importance is obtained by scaling the results with
that of temperature. The relative importance is calculated using the Python package, Eli5 [48].

confirmation on the prominence of space-time over syngas molar inlet ratio or vice-

versa, is obtained. The relative feature importance of temperature in the investigated

training dataset is approximately 5 times that of both the space-time and the syngas

molar inlet ratio. As discussed in Section 4.2.2 and 4.2.2, though the information on

the global influence of a feature is obtained, the permutation importance analysis does

not yield any information on the impact of the value of each feature with respect to the

other features, for a specific set of inputs (i.e. locally). For example, no information can

be extracted on whether the temperature has the same importance at a different space-

time and a syngas molar inlet ratio.

LOCAL INTERPRETATION OF THE MODEL USING SHAP VALUE

The Shap values obtained for each input feature considered in the ANN model of the

FTS process are shown in Fig.5.12. These values represent the local contribution of each

feature in each set of operating conditions. The features are arranged in the order of

their importance in the FTS process, for the range of operating conditions in the training

dataset. The feature with the highest importance is the one with the widest range of Shap
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Figure 4.10: Local interpretation of importance of each input on the training dataset. The local feature impor-
tance is quantified in terms of contribution towards yield with respect to the average methane yield obtained
from the entire training dataset is generated using the Python package, Shap [46].

values obtained for that feature. Also based on the Shap values the temperature is identi-

fied as the most influential feature, followed by space-time and syngas molar inlet ratio.

The average yield in the training dataset, indicated by a Shap value of zero, serves as the

base value for the analysis. The relative contribution is calculated with respect to this

base value. Each dot (•) indicates the contribution of that feature towards the methane

yield. The coloring used for the dots are indicative for the value of the respective feature,

with blue representing lower values, while red represents higher values. From Fig.5.12,

it is observed that the impact of each feature is monotonous in nature and, thus, an

increase in each feature-value leads to an increase in yield. As the temperature, space-

time or syngas molar inlet ratio increase from a low value (blue dots) to a high value (red

dots), the contribution of that input feature to the methane yield which is initially low

with respect to the base value (represented by a negative Shap value) increases. Thus, an

increase in the input feature results in a positive contribution (represented by a positive

Shap value) to the methane yield. The dispersion of the data points with comparable

feature values (indicated by the spread of same coloured dots), also indicates a strong

combined influence of features on the methane yield. These are inline with the results

obtained with experimentally validated SEMK simulations [37].
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INTERPRETATION OF THE MODEL USING PARTIAL DEPENDENCE PLOT

Figure 4.11: Marginal effect of 2 input features simultaneously considered, towards the methane yield. The ef-
fect of the 3rd feature is averaged out in each subplot, i.e. the results are plane-averaged along the 3rd feature.
Effect of space-time (W/FCO) and temperature (a), temperature and syngas molar inlet ratio (H2/CO) (b), and
space-time and syngas molar inlet ratio (c), in the range of investigated operating conditions. The input fea-
tures are standardized for better visualization using mean and standard deviation of each input feature in the
training dataset: temperature (492.8 ± 7.07 K), W/FCO (17 ± 3.5 (kgcats)mol−1

CO), H2/CO (7.4 ± 1.8 mol.mol−1).
The PD plots are visualized using the Python package, pdpbox [49].

After the preliminary identification of the most important features, their combined

impact is analysed with the help of partial dependence (PD) plots, thus targeting the

most relevant features. From the analysis on permutation importance and Shap values,

it is evident that the importance of the features in the ANN model prediction (methane

yield) follows the order: temperature, space-time and syngas molar inlet ratio.

The combined impact of two input features on the methane yield is shown in Fig.4.11.
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The effect of the 3rd feature is averaged out (by plane averaging the results along the

3rd feature). The combined influence of space-time and temperature is considered in

Fig.4.11(a). The methane yield increases with both an increase of temperature and space-

time. The increase in yield with temperature is more prominent at a higher space-time.

The maximum methane yield averaged along the syngas molar inlet ratio (0.11 mol.mol−1)

is obtained at the highest temperature and the highest space-time. Though the yield in-

creases with space-time at a fixed temperature, the change in yield is less prominent

when compared to the change in methane yield with the change in temperature. These

observations are in line with the SEMK simulation results reported in Fig.4.8. The com-

bined influence of syngas molar inlet ratio and temperature in Fig.4.11(b) also indicates

the monotonous increase in methane yield with temperature. It is observed that at a

lower temperature, the yield is almost unaffected by the syngas molar inlet ratio while

at a higher temperature, the effect of the syngas molar inlet ratio becomes pronounced.

From Fig.4.11(c), it is observed that at lower space-time the yield is almost unaffected by

the syngas molar inlet ratio. However, with an increase in space-time, the dependence of

the methane yield on syngas molar inlet ratio increases. From the PD plot analysis it is,

however, observed that the maximum yield observed in Fig.4.11(a), (b) and (c) varies, de-

pending on the feature importance of the features, whose effect is averaged out in each

plot. Although the influence of each feature on the methane yield is determined using

the PD plots, it however remains important to check the impact of the averaged feature,

to confirm the results. This observation is consistent with the nature of these plots, as

discussed in Section 4.2.2.

4.4. CONCLUSIONS AND PERSPECTIVES

A machine learning model based on ANN for cobalt catalysed Fischer-Tropsch Synthesis

with single dominant output, methane, is developed using a synthetic dataset generated

via a Single-Event MicroKinetic (SEMK) model. The optimal ANN model for the FTS
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process in the investigated range of operating conditions consists of 3 hidden layers with

20 neurons in each layer. This optimal network has a R2 value of 0.99. After confirming

that the methane yield obtained with the ANN model represents the one obtained with

SEMK simulations, a systematic analysis of the kinetic data is carried out using different

interpretation techniques.

For the Fischer-Tropsch process, in the range of investigated operating conditions,

analysis of the ANN model using interpretation techniques shows that the prominent

features follow the order: temperature > space-time > syngas molar inlet ratio. The

global importance of temperature is roughly 5 times that of space-time and syngas mo-

lar inlet ratio. The investigation of the local contribution of each feature (Shap value)

shows a monotonous increase in methane yield with increasing feature values. The cou-

pled impact of input features on the methane yield is observed in the partial depen-

dence plots, with the maximum yield (averaged along syngas molar inlet ratio) of 0.11

mol.mol−1 obtained at the highest temperature and space-time. It is confirmed that a

analysis of kinetic data can be carried out with the help of an interpretable ANN model.

A deeper understanding of the FTS reaction mechanism, with the help of these tech-

niques can be achieved by a multi-stage ANN, with process variables as the initial input

to predict intermediate outputs such as surface coverages. These coverages can then be

fed as an input into next stage of ANN to predict the performances.

The current study thus shows that more widely applied techniques in data science

can now be applied for systematic analysis and interpretation of kinetic data. Similar

analysis using experimental data can also help experimenters in their preliminary anal-

ysis, to detect hidden trends in the data, and thus to identify importance features. Ex-

tensive studies using the different techniques used in this study, for different chemical

processes, will also help to identify the most important features. The understanding

gained on the decision making by "black-box" ML models such as ANN, also enhances

the confidence in using these techniques for FTS reaction with multiple outputs.
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Predicting the impact of input process variables on chemical processes is key to assess

their performance of the latter. Models explaining this impact through a mechanistic ap-

proach are rarely readily available, complex in nature and/or require long development

time. With increased automation in industries and the availability of high-throughput

experimental data, data-driven machine learning models are gaining popularity due to

their simplicity and reduced computational effort. In Chapter 4 a discussion on machine

learning based technique to interpret kinetic data of an FTS reaction with single dominant

output was carried out. With the confidence gained on different interpretation techniques

used for analysing the kinetic data in Chapter 4, an extended investigation on the optimal

light olefin selective catalyst identified in Chapter 2 is carried out using different machine

learning models. In this chapter, multi-output Fischer-Tropsch Synthesis data generated

via mechanistic SEMK model is analyzed with different machine learning models (ML)

such as Lasso, K Nearest Neighbors (KNN), Support Vector Regression (SVR), and Arti-

ficial Neural Network (ANN) regression. Temperature and pressure are identified as the

dominant input variables. Among the considered ML models, ANN emerged as the supe-

rior performing one with respect to benchmark SEMK results. In addition, the validity of

neural network predictions is verified using the so-called Shap-value interpretation tech-

nique. The relative impact of input variables obtained using Shap values, on conversion

follow the order of temperature (1x) > pressure (0.22x) > space-time (0.1x) > syngas ra-

tio (0.03x). Temperature (1x) and pressure (0.26x) remain the dominant input variables

for light olefin selectivity, but that of space-time (0.03x) and syngas ratio (0.03x) becomes

comparable. This study provides a reference method for the identification of suitable ML

models for multi-output prediction in chemical processes 1.

1This work is is published in Chemical Engineering Journal with doi: DOIhttps://doi.org/10.1016/j.

cej.2022.137186



5.1. INTRODUCTION

5

109

5.1. INTRODUCTION

With the increased volume of data obtained via automation and high-throughput exper-

imentation, data-driven models are becoming increasingly popular [1, 2]. As a result,

machine learning (ML) methods are extensively investigated to assess chemical engi-

neering problems [3–5] where the impact of input variables is highly non-linear in nature

[6]. Depending on the process data complexity, the specific type of machine learning

model suited to model the phenomena of interest varies.

At present, from the modeling perspectives, chemical engineering research chal-

lenges are mostly addressed via mechanistic models [7–9] which rely on physico-chemically

meaningful relations in the data. However, not all features (mechanistic aspects) con-

tribute equally and, hence, some particular features are challenging to probe. Also, de-

veloping mechanistic models for every chemical engineering problem is not always fea-

sible due to their complexity and the in-depth knowledge required to build such mod-

els. This is especially true in the field of catalysis where the reaction complexity is more

pronounced and the use of simpler kinetic models is not able to capture the detailed

chemistry of the process. E.g. microkinetic modelling of Fischer- Tropsch Synthesis,

accounting for a maximum hydrocarbon chain length of 8 carbon atoms, there are 131

number of metal-alkyl species, 36 alkanes, and 94 alkenes. All these are generated via 922

elementary steps. If the investigation is carried out by setting a higher value for the max-

imum hydrocarbon chain length, the number of species also increases, correspondingly

[10]. Alternative ML models, when properly trained, allow for a faster and more efficient

calculation of the (complex) reaction performance. This presents an opportunity for the

development of ML models which are easier [11] to develop as compared to a detailed

mechanistic model.

Machine learning models can be classified as :

• unsupervised learning models: Patterns are inferred from unlabeled input data,

i.e. without output variables. Unsupervised ML models identify structure and pat-
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terns from the input data by themselves, e.g. for clustering [12] or dimensionality

reduction [13].

• supervised learning models: Models are trained using labeled data. Supervised

ML models determine a mapping function between the input variables and the

output variables, e.g., classification [14] or regression [15].

In chemical engineering, supervised learning methods (mainly regression-based meth-

ods) are widely used, for applications such as absorption [16], sludge treatment [17], re-

actor modelling [18], etc. ML regression methods reported in literature include the use

of Lasso regression [19], decision tree [20], K-Nearest Neighbor (KNN) regression [21],

Support Vector Regression (SVR) [22], Artificial Neural Network (ANN) [23] etc. The wide

application of these techniques in catalysis has recently been reported by Takahashi et

al. [24]. As the model complexity increases from Lasso to ANN, the interpretability of the

model becomes less straightforward [25]. To mitigate this, aiming at a systematic analy-

sis and interpretation of kinetic data, a model agnostic interpretation technique denoted

as Shap has been developed [26]. This helps in building confidence in the model’s ability

to accurately draw chemical insights.

Data-driven modeling in catalysis is becoming an alternative modeling approach

[24, 27] and has led to the re-investigation of many existing reactions, with the demand

for developing a sustainable chemical production process as one of the key drivers. Mod-

eling the recycling of plastics is one of the important topics currently investigated, due

to the role in environmental pollution [28]. Within the plastic chemical recycling pro-

cesses, the Fischer-Tropsch Synthesis (FTS) may play an important role. In FTS [29], the

syngas generated via the gasification of plastic waste is catalytically converted into hy-

drocarbons such as paraffins and light olefins with the aid of a catalyst. An important

step in the optimization of the FTS process involves the screening of potential catalysts

[30]. There are different types of catalysts, e.g. cobalt, iron, etc. reported in the FTS lit-

erature that selectively favor the formation of methane, paraffin or olefins [31]. Several
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experimental [32–34] and mechanistic/kinetic studies [8, 35] that aim at identifying the

properties which steer these selectivities in FTS have been reported. Among the mech-

anistic models, kinetic models based on Single Event MicroKinetics (SEMK) have been

widely applied in the field of oligomerization [36], cracking [37], alkylation [38] etc. and

have emerged as a versatile tool to model the FTS [39, 40]. A Single Event MicroKinetic

evaluation of the key catalyst properties for enhanced light olefin synthesis via FTS was

reported in our previous work [41].

Studies using machine learning models such as neural network (NN) [42, 43] and

Support Vector Regression (SVR) [44] to predict a single response FTS process have been

reported in literature, as an alternative to detailed kinetic models. Although the vast ma-

jority of the reported ML studies relate to single response scenarios, it should be pointed

out that these methodologies can also be applied to multi-response scenarios. A de-

tailed review on multi-output machine learning is reported by Xu et. al [45]. It discusses

challenges to multi-output learning by taking inspiration from big data.

Compared to single response scenarios, only a limited number publications on ML

models for multi-response scenarios, such as conversion and selectivities in the FTS

process, have been reported [46, 47]. Investigating the extent to which these models

can match the results obtained with mechanistic models like SEMK, especially in the

scenarios with multiple outputs can help us to select a suitable and easy-to-implement

ML model. In this study, machine-learning algorithms such as Lasso algorithms [48], K-

Nearest Neighbor (KNN) [49], Support Vector Regression (SVR) [50], and Artificial Neural

Network (ANN) [51, 52] regression are evaluated with respect to in-silico SEMK data.

This data is obtained at different operating conditions by varying temperature, pressure,

space-time (W/FCO), and syngas ratio (H2/CO) on the promising FTS catalyst exhibiting

higher light olefin selectivity as identified in our previous work [41]. This benchmark

dataset is then used to investigate the potential of these machine learning models to

reproduce and / or predict multiple outputs such as conversion (XCO) and the selec-
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tivity towards methane (SCH4 ), paraffins (SC2−C4 ) and light olefins (SC2−C4=). A suitable

multi-output ML model that matches SEMK results was subsequently identified and the

interpretability of the ML model-predictions is confirmed by using Shap values-based

interpretation technique [53, 54].

5.2. THEORY

5.2.1. SINGLE EVENT MICROKINETIC MODEL

To quantify the contributions of competing reaction pathways in a complex mixture pro-

cess, the Single Event MicroKinetic methodology serves as a versatile fundamental mod-

elling tool to unravel the complex kinetics of a process [55]. In the Single-Event MicroKi-

netic (SEMK) methodology the reactive moieties are considered to determine the reac-

tivity of individual molecules. Accordingly, the elementary reactions are classified into

reaction families to reduce the number of parameters [55]. The model-parameters of a

SEMK model are classified as kinetic and catalyst descriptors. The kinetic descriptors re-

late to the kinetic parameters [56] of the chemical reactions such as activation energies

and rate coefficients, and are catalyst invariant. To quantify the effect of catalyst prop-

erties on the chemical reaction, catalyst descriptors such as atomic chemisorption en-

thalpies are utilized [39]. The parameters governing the microkinetic model are generally

obtained from multi-response model regression to experimental data. In particular for

FTS, the Single Event MicroKinetic methodology has been reported by Lozano-Blanco et

al.[10, 39, 56]. The elementary steps and reaction families considered in the SEMK re-

action network for FTS and the associated kinetic parameters, are summarized in Table

5.1.

In the case of FTS, atomic chemisorption enthalpies of carbon (QC in carbide phase),

hydrogen (QH and Fe3O4 −H corresponding to carbide and oxide phase respectively),

and oxygen (QO in carbide phase) are the catalyst descriptors [56]. The atomic chemisorp-
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Table 5.1: Elementary reactions and reaction families in the reaction network [56], where Efor
a represents the

kinetic descriptors and M represents the metal surface.

Reaction family/elementary reaction Efor
a (kJ/mol)

1. H2+ 2M ⇋ 2MH 0
2. CO + 2M ⇋ MMCO 0
3. MMCO + 3M ⇋ MMMC + MMO 56.81 ± 0.53
4. MMMC + MH ⇋ MMMCH + M 77.66 ± 0.70
5. MMMCH + MH ⇋ MMCH2+ 2M 11.94 ± 0.10
6. MMCH2 + MH ⇋ MCH3 + 2M 61.88 ± 0.50
7. MCnH2n+1 + MMCH2 ⇋ MCn+1H2n+3 + 2M 44.79 ± 0.43
8. MCnH2n+1 + MH ⇋ CnH2n+2 + 2M 117.75 ± 0.67
9. MCnH2n+1 + M ⇋ MCnH2n + MH 96.27 ± 0.50
10. MCnH2n ⇋ CnH2n + M 62.09 (n=2), 59.08 (n=3-10)
11. O−CHO−M + M−OH +O ⇋ O−COOH−M

+ O−H + M 138.95 ± 1.15
12. MMO + MH ⇋ MOH + 2M 103.80 ± 0.96
13. MOH + MH ⇋ H2O + 2M 86.22 ± 0.62

tion enthalpies of the virtual catalyst with enhanced light olefin selectivity i.e. QC, QH,

Fe3O4 −H and QO are 622 kJ/mol, 234 kJ/mol, 220 kJ/mol and 575 kJ/mol, respectively

[41]. The SEMK simulations are carried out after setting these parameters. For carrying

out the SEMK simulations the input process variables are: temperature, total pressure,

weight of catalyst, flow-rate of carbon monoxide and flow-rate of hydrogen. The out-

put components include methane, paraffins (C2-C5), olefins (C2-C5) and longer chain

hydrocarbons.

5.2.2. MACHINE LEARNING MODELS

The increase in the available volume of data and the urge for less complex models has

also led to an increased interest in machine learning based models. Most of the ML stud-

ies in modelling a chemical reaction such as FTS, with single and multiple outputs are

based on neural network models [46, 47, 57]. No extensive studies on the suitability of

different machine learning models for multi-output FTS reaction are reported in the lit-
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erature. However, different machine learning models could be utilized for multi-output

predictions in general. The most popular ML methods for regression are Lasso regres-

sion, decision trees, random forests, artificial neural networks (ANN), support vector re-

gression (SVR), and k-nearest neighbor regression(KNN) [58].

In the current work, a selection of the above mentioned machine learning models,

see (Fig.5.1) are compared to determine the requirements of a model to be suitable for

predicting the impact of operating conditions in FTS for multiple outputs. Decision trees

are highly sensitive to dataset being used to train and can easily become unstable with

small changes in the dataset [58] and have, therefore, not be considered further. Al-

though, random forests are considered good for regression, they are highly conservative

with unknown data [58]. Hence, for the above reasons, the ML methods based on tree

algorithms i.e., decision trees and random forest, are not considered in this thesis. It

is also to be noted that the different machine learning models considered in this thesis

are of varying complexity to interpret [25]. The simplest ML regression technique for a

non-classification problem is linear regression, owing to its easy interpretability. One of

the most complex models to interpret is ANN. The information exchange between dif-

ferent layers of neurons makes it a "black box" [26]. In the current work, we consider

these two as the extreme models and also investigate the capabilities of two other ML-

based regression models, namely KNN and SVR. The complexity of the machine learning

models considered in this thesis, as reported in the literature, follows the order ANN >

SVR > KNN > Lasso. ML methods such as Lasso regression, KNN regression, and ANN

support multi-output regression directly and the implementation is similar to that with

single output [58]. However, SVR does not support multiple output regression directly

and needs a workaround. The multi-output problem is split into multiple single out-

put sub-problems, and then the regression is carried out using SVR [58]. The details of

these ML regression models: Lasso, KNN, SVR, and ANN are introduced in more detail

in this section. The predictions made by each of these models are then compared with
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the microkinetic model predictions and physico-chemical understanding in Section 5.4.

Figure 5.1: Different machine learning models investigated to analyse multi-output FTS reaction.

LASSO REGRESSION

The most general supervised ML model is linear regression. It calculates the dependent

(output) variables, (yi) based on the relationship with the independent (input) variables

(xi) through the parameters also denoted as weights βi. In the model fitting, linear re-

gression can suffer from model over-fitting where the model fits the training data but

does not give a good test data prediction. This is due to the learning of noises in the

test data and manifests itself via large parameter estimates associated with independent

variables of lesser impact. This issue is addressed by Lasso regression [48], where regu-

larization or shrinkage of the parameters is done to reduce over-fitting. It penalizes the
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less important inputs in the dataset and thus creates a simple model by reducing their

respective weights. Here the L1 norm 2 is used for regularization. The cost function con-

taining the sum of mean square error (MSE) of the actual and predicted output, and the

penalty as shown in Eq.5.1, is minimized to find the parameters in the Lasso regression.

J = MSE +α
n
∑

i=1
|βi | (5.1)

where α is the hyperparameter that controls the intensity of regularization.

K NEAREST NEIGHBORS (KNN) REGRESSION

KNN is a memory-based model [49] that makes predictions for new observations based

on its “similarity” to the data used for training. Though KNN is mostly used for classifi-

cation [59], it is also suited for regression [21]. It identifies k observations that are nearest

or similar to a newly considered observation, and then assigns the average response of

these k observations as the prediction for the new one. The performance of the KNN

model is sensitive to the parameter k, which determines the smoothness of the estima-

tion. For low values of k, less neighbors are considered potentially leading to over-fitting,

while using large values of k considers more neighbors may result in not capturing suffi-

cient variation. The similarity between observations (to identify the neighbors) is quan-

tified using the Euclidean distance metric, where the distance between observations xa

and xb for all input variables is calculated as:

d =

√

n
∑

i=1
(xa −xb)2 (5.2)

The main parameters associated with the KNN regression include the number of neigh-

bors to be used and the metric used to compute the nearest neighbors.

2L1 norm is defined as the sum of the absolute values of the weights, βi



5.2. THEORY

5

117

SUPPORT VECTOR REGRESSION

Support Vector Machine (SVM) [50] is an algorithm widely used for solving machine

learning problems. Support Vector Regression (SVR) is the most common application

form of SVM for regression purposes when the dataset is non-separable. SVR uses e-

insensitive loss as the loss metric. The e-insensitive loss is given as:

Le = max(0, |r (x, y)|−ǫ) (5.3)

where r (x, y) is the residual, i.e. the difference between the actual and the predicted

output. A margin of width, ǫ, as set by the modeller, is created around the regression

curve (known as hyperplane in higher dimensional space) within which the exact mag-

nitude of the discrepancy between observation and model prediction does not con-

tribute to the loss function and, hence, does not influence the regression curve. Thus, in

essence, the aim is to contain maximum data points within the margin, with a minimal

number of violations. When the data points exhibit a non-linear relationship, the data is

analyzed in an enlarged feature space. Special functions called kernel functions are used

to construct the enlarged feature space. 3

For multi-response regression, the SVR model requires a wrapper function (Fig.5.2)

to combine the separate regression prediction of target outputs, i.e. the interactions

among outputs are not considered and thus multi-response prediction is not inherent

to this model.

ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN) is a machine learning algorithm [51] inspired by bi-

ological neural networks. It is a data-driven model which reveals the hidden patterns

or non-linear relationships in the data. A neural network model is composed of its ba-

3The popular kernel functions used are dth degree polynomial, radial basis function (RBF), and hyperbolic
tangent. A penalty coefficient C that controls the strength of the penalty term (loss function) is obtained
by hyperparameter optimization. Each kernel function mentioned above has a set of hyperparameters (e.g
’spread’ of the kernel and therefore the decision region, γ for RBF) that also needs to be optimized [60].
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Figure 5.2: Wrapper function in multi-response Support Vector Regression. Separate regression results for each
output are wrapped together by this model.

sic units called neurons, which are then stacked to form layers. An ANN will contain an

input layer, hidden layers, and an output layer. Each neuron is connected to the adja-

cent layer neuron through the weight assigned to it, which does the linear transforma-

tion of the input signal in the forward feed propagation step. The activation function

assigned to it does the corresponding non-linear transformation. The most commonly

used activation functions are Rectified Linear Unit (ReLU), sigmoid, and tanh. In the

network training process, recalculation and assigning the new weights happen through

backpropagation [51]. This process continues until the difference between the predic-

tion and the actual target is within the tolerance limit. If the number of neurons/layers

is too limited, it reduces the analysis capability of the network and gives less accuracy in

prediction. On the contrary, if the number is high, it results in over-fitting (memorizing)

of the data. The optimal number of neurons and layers is found by hyperparameter opti-

mization, or by trial and error, which results in a network that yields a perfect prediction

with minimization of a loss function such as RMSE.
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INTERPRETABILITY OF ML MODELS

With the increase in complexity of ML models ranging from the simplest Lasso regres-

sion to the most complex ANN the "black box" character of the model increases, and the

interpretation of the models becomes more challenging. For a "simple" model such as

linear regression, the weights or coefficients of the independent variables give an indi-

cation of the importance of each variable. As the model complexity increases such as in

ANN, though the accuracy of prediction increases, the models become practically unin-

terpretable [25]. To this purpose different interpretation techniques such as permutation

importance [61] and Shap values [53, 54, 62] are now being developed and used. In the

current study, the interpretation technique based on Shap values is used. Shap values

help in local interpretation by pinpointing the contribution of input variables (features)

in each set of operating conditions. This technique builds multiple linear, more easily in-

terpretable models, see Fig.5.3, which describe the individual data points and thus helps

to interpret a complex ML model.

Figure 5.3: Graphical representation of how a Shap model assists in the interpretation of a complex model with
the help of linear models. An ANN model is chosen as an example to represent a complex model.

The Shap value gives the importance of a feature by comparing the model output

obtained with and without that feature. These calculations are carried out using the

Shap library [63], which calculates Shap values significantly faster than calculating them

via all possible combinations of features. A simplified interpretation of the algorithm is
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reported in our previous work [43].

5.3. METHODS AND DATA

In the current study, a dataset is generated using a Single Event MicroKinetic model,

validated for Fischer-Tropsch Synthesis experiments [56]. In our previous work [41], the

catalyst descriptors were obtained for an optimally performing virtual catalyst for light

olefin production. The focus in that work was on catalyst screening at a single set of

operating conditions. Here, we extend our analysis to obtain a multi-response output

within a wide range of operating conditions 4.

• temperature: 480-650 K

• total pressure: 1-15 bar(a)

• space-time, W/FCO: 24-68 kg.s/mol

• syngas molar inlet ratio, H2/CO: 1-5 mol/mol

The data is uniformly distributed within this range i.e., there is no concentration

of data at a particular condition, which could lead to a biased prediction. A total of

2450 synthetic experiment responses were generated and a train to test split ratio of

80:20 (non-stratified) is used in the analysis. Apart from the 4 input variables (tem-

perature, pressure, space-time, syngas ratio), 4 output variables (conversion, selectivity

of methane, paraffins, and light olefins) are considered in the dataset. The generated

dataset is scaled and centered using standardization [60] to facilitate the learning by the

machine learning models. In the training phase, actual model parameters are learned

4The kinetic and catalyst descriptors of the catalyst are fixed in the current study. The data thus generated
does not include any uncertainty on kinetics or characteristic model parameters or catalyst descriptors. The
investigation of the capabilities of the investigated ML models taking into account the uncertainty in data,
due to sensitivity of output towards model parameters and operating conditions, is out of scope of the cur-
rent study. The ML models are developed using the Python package sklearn [64]. The codes are provided as
supplementary material in the corresponding published manuscript.
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from the data. The hyperparameters control the learning process and critically influ-

ences the model parameters the algorithm ends up learning 5, is used as the re-sampling

procedure to evaluate ML models on the data sample and thus prevent over-fitting [58].

The parameters obtained after hyperparameter tuning for the model are as follows:

• Lasso regression: alpha = 0.1

• KNN regression: number of neighbors = 6, weight function = distance

• SVR: ǫ=0.01, C = 10, γ for the radial basis function kernel = 0.1

• ANN: number of hidden layers = 1, number of neurons in the hidden layer = 20,

activation function = sigmoid (input/output layer) and Relu (hidden layer), loss =

MSE.

For the ANN, the number of nodes and layers for the ANN is selected by looking at the

corresponding performance metric (R-square and RMSE values) for different combina-

tions of neurons/ layers. Different combinations of layers (1 and 2 layers) and neurons

(5, 10, 20, 30) in each layer were considered. The number of neurons and layers were

increased in order to find the best values of performance metric. The R-square values

were comparable for different combinations of neurons and layers, hence the RMSE val-

ues were compared, for the simplest scenario, 1 layer with different neurons. An RMSE

threshold of 10−2 was chosen to determine the number of neurons. With 1 layer and 20

neurons in the hidden layer, the RMSE of the test dataset was less than 10−2 and is thus

chosen as the optimal number of neurons. Higher values of neurons and layers which

gave the same performance were disregarded to avoid over-fitting of the model. It is also

to be noted that the computational time (which can become important when the vol-

ume of data is very high as in high-throughput experiments) decreases with decrease in

5Hyperparameters are tuned to get the best fit for the ML models. In the current analysis, the simplest strategy
based on Grid search which involves forming a grid of the search space for evaluating the hyperparameter is
used. K-fold cross-validation, where K = 5.
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number of hidden layers, as the computations are more parallelised with less number of

layers.

5.4. RESULTS AND DISCUSSION

5.4.1. ANALYSIS OF SEMK DATA

The Pearson correlation coefficient (rp) between a pair of variables (the input variables

and the targeted FTS outputs) calculated as in Eq.5.4 is shown in Fig.5.4.

rp =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

(5.4)

where the absolute value of indicates the degree of correlation between variables x and

y. If rp >0, there exists a positive correlation between two variables x and y, and if rp <0,

there exists a negative correlation.

The correlation plot (Fig.5.4) shows that the temperature is the most important in-

put variable as indicated by the magnitude of the Pearson correlation coefficient (dark

red color). The positive correlation indicates that an increase in temperature results in

an enhanced formation of FTS products. For this highly active and light olefin selective

catalyst, the effect of space-time and syngas ratio on the conversion and selectivities is

limited within the investigated range of operating conditions. The impact of total pres-

sure on the FTS reaction varies according to the targeted output variable. There is a

slight increase in conversion and paraffin selectivity upon a pressure increase, whereas

the light olefin selectivity increases upon a decrease in pressure (blue) 6.

The above relation is also visible from the joint plot (Fig.5.5) drawn for the most sen-

sitive input variable, i.e. temperature. Each joint plot in Fig.5.5 consists of 3 separate

plots, 1 relationship plot, and 2 marginal distribution plots. For e.g. Fig.5.5(a), the grey-

6A similar Pearson correlation matrix with yield of the different hydrocarbons is available in Appendix A.
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Figure 5.4: Heatmap of Pearson correlation between input variables: temperature, pressure, space-time and
syngas ratio with output variables: conversion and selectivity of methane, paraffins and light olefins.

colored contours show the relationship between conversion and temperature (relation-

ship plot). A darker contour indicates a higher concentration of data points in this re-

gion. The two distributions at the top and right side of Fig.5.5(a) give us the marginal

distribution of temperature and conversion. The marginal distribution of temperature

is obtained by projecting the relationship plot to a new horizontal axis. Similarly, the

marginal distribution of conversion is obtained by projecting the data to a new vertical

axis.

In Fig.5.5(a), darker contours are observed at a lower temperature, indicating that

the impact of other input variables on conversion is minimal. As the temperature in-

creases the spread of the contour increases, indicating a higher impact of other input

variables on conversion. Similar behavior is also observed for the selectivity of light

olefins (Fig.5.5(b)). Higher conversion and light olefin selectivity are obtained in the

temperature range 600-650 K. It is also observed that the conversion and light olefin se-

lectivity do not further increase in this temperature range. This behavior is in line with

that observed by Garona et.al [47].

From Fig.5.5 it is observed that the general trend of change in conversion and light
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Figure 5.5: Conversion (a) and selectivity (b) behaviour as a function of temperature for the entire dataset. It is
to be noted that the highest conversion and light olefin selectivity are not obtained at the same set of operating
condition.

olefin selectivity with temperature is similar. Thus, to understand the combined impact

of other input variables, the yield of light olefins is visualized with the help of pairwise

box plots (Fig.5.6). The variation of light olefin yield with the temperature at different

syngas ratios (H2/CO- 2 and 5) is shown in Fig.5.6(a). It is observed that light olefin yield

increases with temperature. The influence of syngas ratio on the mean yield of light

olefins is limited, thus indicating a weak influence of the syngas ratio on the total yield

of light olefins. The variation of light olefin yield with the temperature at different space-

time (W/FCO - 24 and 64) is shown in Fig.5.6(b). It is observed that the yield changes with

temperature. The influence of space-time is only observed close to a temperature of 570

K, with higher mean yield at a higher space-time. The change in yield of light olefins

with temperature and pressure is shown in Fig.5.6(c). As in the previous cases, the yield

increases with an increase in temperature. There is a considerable shift in the mean of

box plots (due to influence of change in pressure) at the highest temperature (630K).

This clearly indicates that temperature, followed by pressure has an important role in

the yield of light olefins and the syngas ratio and space-time have minimal impact.
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Figure 5.6: Yield as a function of temperature and syngas ratio (a),temperature and space time (b), temperature and pressure (c) for the entire range of operating
conditions in the dataset.
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5.4.2. PARITY PLOT COMPARISON OF THE ML MODELS

From the analysis above on the SEMK benchmark dataset, the most important input

variables and their impact on conversion and selectivity have been determined. This

information is compared against the results from different multi-output ML models to

find out the extent to which these models can match the benchmark SEMK results. First

the output parity diagrams from different ML models, for both train and test data are

assessed.

The parity diagrams of the conversion and light olefin selectivity behavior for the four

machine learning models are presented in Fig.5.7-5.8. The training dataset is indicated

by the green colored dots in the parity diagrams whereas the blue dots correspond to the

testing or prediction dataset. The parity diagram with reference to the training dataset

shows how adequate the model is fitted to the data. The parity diagram for the testing

dataset shows how well the model can predict a new dataset.

It is observed from the conversion behavior in Fig.5.7(a) that the Lasso regression

model exhibits a significant spread in the dataset with respect to the parity line and the

resulting root mean squared (RMSE) values are higher compared to other ML models

(Table 5.2). The R-square values of all the models (both for training and testing dataset)

are in the range of 0.87-0.99. From Fig.5.7(b-d), it is observed that the KNN, SVR, and

ANN better fit the data than the Lasso regression. In addition to the R-square plots, stan-

dardised residuals are also compared (see Appendix A). It is observed that though the

R-square values obtained with different ML models are comparable, the residual at low

conversion is higher with Lasso regression and KNN regression.

It is observed from Fig.5.8(a-d), that the light olefin selectivity prediction better matches

with the parity lines for KNN, SVR, and ANN than for the Lasso regression model. The

R-square values for the selectivity of light olefins (ranging between 0.89 and 0.99) are

comparable for all the ML models. The test root mean squared (RMSE) value of light
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Figure 5.7: Parity plot of conversion for the machine learning models: Lasso regression (a), KNN regression (b),
Support Vector Regression (c), and ANN regression (d).

Table 5.2: Root mean squared error of conversion and light olefin selectivity obtained with different ML models.

RMSE, XCO RMSE, SC2−C4=

Train Test Train Test
Lasso 8.9×10−2 9.7×10−2 8.0×10−2 8.6×10−2

KNN 0 3.7×10−2 0 2.7×10−2

SVR 8.9×10−3 9.5×10−3 8.7×10−3 9.0×10−3

ANN 8.5×10−3 9.2×10−3 4.9×10−3 5.0×10−3

olefin selectivity of SVR and ANN are slightly lower than that of KNN7 (Table 5.2). Fur-

ther comparison of parity plots of methane and paraffin selectivity, obtained with these

7KNN memorizes the data (no function is fitted to the data) during training, and uses this data to make pre-
dictions for a new data point depending on its neighbours. Thus, a zero train RMSE is obtained with KNN.
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Figure 5.8: Parity plot of light olefin selectivity obtained for the machine learning models: Lasso regression (a),
KNN regression (b), Support Vector Regression (c), and ANN regression (d).

ML models are carried out to obtain the best candidate among the four models (see Ap-

pendix A). A comparison of residuals for the selectivity of methane, olefins, and paraffins

is also reported in Appendix A, which shows that though the RMSE values are lower with

all ML models, significant differences are observed while predicting lower values of out-

put. The performance of these models is further assessed with the help of contour plot

analysis discussed in the section below.

5.4.3. ANALYSIS OF CONVERSION USING MACHINE LEARNING MODELS

The feature analysis on the data reveals that the most important input variables impact-

ing the light olefin selective FTS catalyst are temperature and pressure. Thus, a more
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Figure 5.9: Contours of conversion obtained with SEMK (a) and with the machine learning models: Lasso regression (b), KNN regression (c), Support Vector Regression
(d), and ANN regression (e) for the entire range of operating conditions.
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detailed analysis of variation in conversion with the input variables, temperature and

pressure is carried out on the testing dataset with the ML models. The CO conversion ob-

tained at different temperatures and pressure using the microkinetic model (Fig.5.9(a))

is compared with the predictions using different machine learning models Fig.5.9(b-e)

at the same operating conditions.

From Fig.5.9(a), it can be observed that the actual variation of conversion with tem-

perature and pressure is non-linear in nature, especially at higher temperatures. There

is an increase in the conversion as we traverse the plot with increasing temperature and

with increasing pressure. The highest conversion zone (dark green, XCO > 0.8) is ob-

tained in the temperature range 600-650K and pressure range varying from 4 to 15 bar.

From Fig.5.9(b), it can be observed that the prediction contours obtained with Lasso re-

gression are linear in nature and the non-linear behavior of the conversion (as evident

from the evolution of curvature of contours) as observed with the microkinetic model is

not captured. The KNN model (Fig.5.9(c)) performs slightly better than Lasso regression,

but the evolution of curvature of contours is still less pronounced than in the contours

obtained by SEMK simulation. Conversely, the non-linear trend is captured well by SVR

(Fig.5.9(d)), and ANN (Fig.5.9(e)), with ANN matching the SEMK results very closely.

5.4.4. ANALYSIS OF LIGHT OLEFIN SELECTIVITY USING MACHINE LEARNING

MODELS

Similar to Fig.5.9 for the conversion, the light olefin selectivity at different temperatures

and pressures obtained using the microkinetic model (Fig.5.10(a)) is compared to the

predictions using different ML models Fig.5.10(b-e). Similar to the conversion plots dis-

cussed in the previous section, Fig.5.10(a) (benchmark SEMK results), shows that the

actual variation of light olefin selectivity with temperature and pressure is non-linear in

nature. This is evident from the curvature of the selectivity contours. There is an increase

in the selectivity values as we traverse the plot with increasing temperature and with de-
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Figure 5.10: Contours of light olefin selectivity obtained with SEMK (a) and with the machine learning models: Lasso regression (b), KNN regression (c), Support Vector
Regression (d), and ANN regression (e) for the entire range of operating conditions.
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creasing pressure. Unlike in Fig.5.9, where conversion increases with pressure, here in

Fig.5.10, the selectivity mostly decreases with an increase in pressure. The highest light

olefin selectivity is obtained in a confined zone, in the temperature range 580-635K, and

at a pressure below 2 bar.

In Fig.5.10(b), the light olefin selectivity contour prediction obtained by Lasso re-

gression is linear in nature. The non-linearity as observed from the benchmark SEMK

results is, however, better captured by KNN (Fig.5.10(c)), SVR (Fig.5.10(d)), and ANN

(Fig.5.10(e)) although significant differences between these models are noticeable. For

instance, the zone of enhanced light olefin selectivity (temperature: 580-635K and pres-

sure: 1-2 bar) is not captured as adequately by KNN, as compared to SVR and ANN,

which hence out-perform the Lasso and KNN models. Thus, SVR and ANN models seem

promising to make multi-output prediction, and match closely with SEMK results. ANN

and SVR perform superior to the other methods owing to their inherent capability to

handle non-linearity. In ANN, neurons have a weight that does a linear transformation

on the input value, while the activation function does a non-linear transformation of the

data. Similar to the ANN models, In SVR similarity functions (kernels) are used to trans-

form input vectors into higher dimensional spaces. This enables solving a non-separable

problem by converting it into a separable mathematical problem [65]. However it is to

be noted that the SVR model requires a work-around using a wrapper function, as dis-

cussed in Section 5.2.2, to make multi-output predictions. It is also observed from Table

5.2 that the ANN model slightly outperforms the SVR model.

5.4.5. INTERPRETABILITY OF THE ANN MODEL

As discussed above, the model complexity increases from Lasso regression to ANN, mean-

ing that the accuracy of prediction increases at the expense of interpretability. As a result,

potentially a trade-off is to be made between the accuracy and interpretability of ma-

chine learning models. To mitigate this issue, model agnostic interpretation techniques
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have been developed which explain the prediction results of complex models, and allow

systemic analysis and ranking of the important contributing input variables [54]. The

Shap values technique contributes to a large extent in the interpretability of the model

at a global and local level. Here the global and local interpretability or importance of in-

put variables on the FTS process aimed at selective light olefin production are discussed

for the best performing ML model, i.e ANN by using Shap values.

Figure 5.11: Shap bar plot indicating the global feature importance of the input variables on ANN prediction.
The global feature importance is quantified in terms of contribution towards conversion and light olefin selec-
tivity, from the entire training dataset, using the Python package, Shap [63].

From the Shap bar plot (Fig.5.11), the importance of each input variable on a global

level could be observed. The input variables in Fig.5.11 are ordered according to their

relative contribution towards the respective output. For conversion, the most important

contributing input variable is the temperature, followed by pressure, space-time, and the

syngas ratio. The relative contribution of the input variables towards conversion follow

the order: temperature (1x) > pressure (0.22x) > space-time (0.1x) > syngas ratio (0.03x).

For the selectivity towards light olefins, the temperature remains the most contributing

input variable followed by pressure. However, with respect to light olefin selectivity, the

order of importance of space-time and syngas ratio becomes comparable. In the case of

light olefin selectivity it follows the order: temperature (1x) > pressure (0.26x) > syngas

ratio (0.03x) ≈ space time (0.03x). The order of importance obtained with Shap bar plot
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is in line with the Pearson correlation matrix, Fig.5.4.

Figure 5.12: Shap tree plot indicating the local feature importance of the input variables on ANN prediction,
conversion (a) and light olefin selectivity (b). The local feature importance is quantified, from the entire train-
ing dataset, using the Python package, Shap [63].

In addition to the information on the global relative importance of each input vari-

able towards conversion/selectivity from Fig.5.11, the relative importance at the local

level is shown in Fig.5.12. The order of input variables in Fig.5.12, from the top to the bot-

tom follow the order of their relative contribution towards conversion/selectivity, with

the most contributing input variable at the top. The Shap values on the horizontal axis
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represent conversion(Fig.5.12(a)) and light olefin selectivity (Fig.5.12(b)). The average

conversion/light olefin selectivity in the training dataset, indicated by a Shap value of

zero (in Fig.5.12(a)-(b)), serves as the base value for the analysis. Each colored dot indi-

cates the contribution of the input variable (shown at the left side of the figure) towards

the conversion/selectivity. From Fig.5.12 it can be observed that the input variable with

the highest importance has the widest range of Shap values(temperature), while the in-

put variable with the lowest importance has a narrow range of Shap values (space time

and syngas ratio). For all the input variables apart from pressure, it can be observed

that a low value of the variable results in lower contribution towards conversion and

selectivity compared to the average contribution as indicated by negative Shap values.

With an increase in the value of each input variable (blue dots to red dots) apart from

pressure, their contribution towards conversion/selectivity increases as indicated by the

increase in Shap values. This shows that conversion and selectivity are positively corre-

lated to temperature, space-time, and syngas ratio. However, the relative importance of

pressure on conversion and selectivity differs. While the increase in pressure favors the

conversion (increase in Shap value when pressure changes from blue to red dots), it has

an opposite effect on light olefin selectivity. The dispersion in y axis in Fig.5.12(a)-(b),

corresponding to a particular input feature is related to the less impact of other input

features. For e.g. at higher temperature the influence of the input features like pressure,

space time and syngas ratio is minimal. So, different combinations of these input fea-

tures along with a fixed value of temperature leads to the same Shap value, thus leading

to multiple dots of same colour (indicating same temperature) arranged vertically. These

observations are in line with the results reported in Section 5.4.1, 5.4.3 and 5.4.4.

5.5. CONCLUSIONS

Multi-response machine learning models based on Lasso, K-Nearest Neighbors, Sup-

port Vector, and Artificial Neural Network regression were developed for Fischer-Tropsch
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Synthesis using a synthetic dataset generated with a Single Event MicroKinetic model

within a wide range of operating conditions. The non-linearity in the kinetic data could

not be properly captured with the Lasso regression. As the model complexity increases

from KNN to SVR and ANN, such non-linear prediction capabilities dramatically im-

prove. In capturing the non-linearity in light olefin selectivity data, SVR and ANN were

found to be superior to KNN. Though the SVR and ANN models are promising, from

the RMSE, ANN model slightly outperforms SVR, making it the preferred model for the

current investigation as it matches closely with the results from the SEMK model.

The widely used interpretation technique based on Shap values on the (best pre-

ferred model) ANN prediction allows to rank the considered input variables according to

their impact on the process. For the ANN model, the relative impact of input variables,

obtained using Shap values, on conversion follows the order of temperature (1x) > pres-

sure (0.22x) > space-time (0.1x) > syngas ratio (0.03x). On the other hand, the influence

of temperature (1x) and pressure (0.26x) remain the same for light olefin selectivity, but

that of space-time (0.03x) and syngas ratio (0.03x) becomes comparable. The obtained

results reproduce the insights obtained from the physico-chemical point of view with

the SEMK methodology.

The present study opens up perspectives for kinetics data analysis with ML models.

Indeed, ML models allow reproducing the insights gained based on fundamental mod-

els, such as the Single-Event MicroKinetic one. Hence, provided that the ML model can

be trained against a sufficiently extended data set8, it will allow acquiring essential in-

sights directly on these data, i.e., without the need for fundamental modeling. In this

respect, the definition of "sufficiently extended" will need to be evaluated in detail.

8The data set employed in chapter 5 (multi-response) is more than 10 times more extended compared toas
that of the number of data points discussed in chapter 4 (single response). This has guaranteed to achieve
a good accuracy of the models developed as part of chapter 5. The impact of the number of data points to
achieve a reasonably accurate result (especially for multi-response catalysis problems) needs to be further
evaluated in detail.
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6
CONCLUSION AND OUTLOOK

Fischer Tropsch synthesis (FTS) represents a compelling reaction for syngas valorization

generated from plastic waste gasification. Despite having been investigated for decades,

several challenges remain of which the steering the catalyst’s selectivity are of primary in-

terest. The present work aims at model-based catalyst design and process optimization,

specifically for the synthesis of light olefins via the FTS reaction. These components are

of interest for the production of plastics and would, hence, contribute to the implemen-

tation of a circular economy via chemical recycling. However, the current mechanistic

studies on catalytic processes marginally focus on the catalyst properties affecting their

performance.

In Chapter 2, with screening and identification of relevant catalyst descriptors (i.e.

atomic chemisorption enthalpies), a guideline for light olefin synthesis is proposed. The

descriptor space for the analysis was identified using the experimental results, reported

by Gu et al.[1], for Bi and Pb promoted and non-promoted Fe catalysts. These are used as

a benchmark to explore the parametric catalyst descriptor space. To better understand
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the impact of the catalyst descriptors on the catalyst performance, relative surface cov-

erages were computed and a reaction pathway analysis was performed and the catalyst

properties that are responsible for the it’s selectivity could be identified using graphical

visualizations (limited to 3-D domain). This enabled the identification of the preferential

direction in the descriptor space to enhance light olefin production on a fundamental

(microkinetic) level, and thus setting the path towards more promising FT catalysts. In

a more general perspective, Chapter 2 showcases the possibilities and the value arising

from the application of microkinetics to heterogeneous catalysis, by providing guidance

for improved catalyst design based on the insights obtained through the modelling ef-

forts.

In Chapter 3, the parameter-space limitations of visualization-based methods (i.e.,

3D) are dealt with by applying a clustering approach (unsupervised machine learning)

to the microkinetic simulations for the identification of optimal catalyst properties in

an N-dimensional parameter space. The presented methodology effectively automates

the aforementioned 3D process and thereby offers valuable insights in the, potentially

correlated, non-linear behavior of the catalyst descriptors.

Due to the ever-increasing computational capacity and, in particular, the amount of

available data, has popularized the use of Machine Learning (ML) techniques (such as

Artificial Neural Network (ANN)) for modelling complex non-linear process phenomena

in the field of chemical engineering, as well as to explore kinetic data. The contemporary

used methods for kinetic experimental data are based on detailed (micro-)kinetic mod-

els which demands expert-level knowledge and a vast amount of manual effort. Also,

these kinetic models are reaction-specific and the interpretation of their outcome has to

be done in a case-specific manner. The studies using ML models have their own chal-

lenges. For instance, some of these ML models are hard to interpret and, hence, are

denoted as “black-box” models. To fully relying on such models requires an understand-

ing of why and how decisions are made using a non-classical contribution analysis. The
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analysis of kinetic data based on ML models and interpretation techniques provide a

more systematic approach to obtain more insight into the kinetic process. Chapter 4

aims at understanding the decision-making process of such a “black-box” model based

on ANN, using model-agnostic interpretation techniques that are widely used in data

science. A case study is put forward involving kinetic data of the FTS. The methane yield

was targeted in a single dominant output scenario and was the therefore the focus when

evaluating the interpretability of the ANN model. The kinetic data was generated using

experimentally validated microkinetic simulations by varying the operating conditions:

space-time, temperature and molar inlet ratio of CO and hydrogen. These inputs were

then used to explore the possibility of systematically interpreting the kinetic data, using

the interpretation techniques such as permutation importance, Shap-values and partial

dependence plots. The input features could then be ranked according to their impact on

the output (i.e., methane yield) and as such shed light on the complex decision-making

process made by the multi-layer ANN model. The presented ML-based analysis can

therefore act as an intermediate step to reduce the barrier to perform a full-scale and

systematic data analysis.

The study was extended to multi-output response prediction in Chapter 5 with pri-

mary focus on light olefin production at different operating conditions in the FTS. The

non-linear behavior of conversion and selectivity profiles as a function of the process

variables as generated by an SEMK model is compared to the output of four machine

learning models: Lasso regression, K-nearest neighbor regression, Support vector re-

gression and ANN regression. It was found that the ANN prediction was closely matched

the SEMK benchmark. The ANN-based model was then further analyzed using the Shap

interpretation technique to investigate the feature importance on the multi-response

outcome. This dual SEMK and ML approach yielded key insights which can guide cata-

lyst design strategies as well as elucidate optimal FTS operating conditions aimed at light

olefin production. It was also shown that (high-throughput) experimental data could
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be analyzed with machine learning models and this significantly reduces the computa-

tional and manual effort due to their simplicity as compared to a detailed mechanistic

model. In conclusion, for large volumes of data, a preliminary analysis could be carried

out using ML followed by an in-depth analysis using a mechanistic model.

It is clear that the full potential of the presented modelling methodology has not yet

been explored. In the search for optimal catalyst and process performance, several op-

portunities for optimizing the prediction process remain. For instance:

• The comparative study between various ML models was carried out within the

framework of a synthetic (in-silico) SEMK-generated dataset. However, real ex-

perimentation often results in a higher variability within the obtained data. An

extensive investigation of the applicability of ML models could be carried out on

such data to evaluate the impact of such variability in the ultimate performance of

these ML models.

Figure 6.1: Schematics of a hybrid model.

• A hybrid approach (Fig.6.1) comprising a mechanistic and a ML model could bring

together the best of both worlds. Thus, we can realize a trade off between the ben-

efit of prior knowledge (mechanistic aspects) when training data is scarce and with

the flexibility of ML model approaches when training data is abundant. This would

benefit result in achieving improved prediction-extrapolation capabilities, in par-

ticular for scenarios where the reaction mechanism is not yet fully understood, e.g.

in catalyst deactivation, the loss in number of active sites could be modelled using
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data driven model discovery (Python Pysindy package) method and consequently

coupled with a mechanistic model.
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A
SUPPLEMENTARY MATERIAL, ML

MODELS WITH MULTIPLE OUTPUT

A.1. PEARSON CORRELATION MATRIX

The figure and discussion below relate to the Pearson correlation matrix with conversion

and yield of the different hydrocarbons.

The correlation plot (Fig.A.1) shows that the temperature is the most important input

variable as indicated by the magnitude of the Pearson correlation coefficient (dark red

color). The positive correlation indicates that an increase in temperature results in an

enhanced formation of FTS products. For this highly active and light olefin selective

catalyst, the effect of space-time and syngas ratio on the conversion and yields is limited

within the investigated range of operating conditions. The impact of total pressure on

the FTS reaction varies according to the targeted output variable.
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Figure A.1: Heatmap of Pearson correlation between input variables: temperature, pressure, space-time and
syngas ratio with output variables: conversion and yield of methane, paraffins and light olefins.

A.2. MULTI-OUTPUT PREDICTION USING DIFFERENT ML MOD-

ELS: METHANE SELECTIVITY

The figure and discussion below relate to the parity plot of methane selectivity for train

and test data. The training dataset is indicated by the green colored dots in the parity

diagrams whereas the blue dots correspond to the testing or prediction dataset. It is

observed from Fig.A.2(a) , that lasso model deviates from the parity line for both the

training dataset and the testing dataset. This indicates, simpler ml model like lasso is

not sufficient for the analysis of multi response data. It is observed from Fig.A.2(b-d), as

the model complexity increase, the model is able to fit the data.

A.3. MULTI-OUTPUT PREDICTION USING DIFFERENT ML MOD-

ELS : PARAFFIN SELECTIVITY

The training dataset is indicated by the green colored dots in the parity diagrams whereas

the blue dots correspond to the testing or prediction dataset. It is observed from Fig.A.3(a),

that lasso model deviates from the parity line for both the training dataset and the test-
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Figure A.2: Parity plot of methane selectivity for the machine learning models: Lasso regression (a), KNN re-
gression (b), Support Vector Regression (c), and ANN regression (d).

ing dataset. This indicates, simpler ml model like lasso is not sufficient for the analysis of

multi response data. It is observed from Fig.A.3(b-d), as the model complexity increase,

the model is able to fit the data.

A.4. RESIDUAL PLOTS

The residual plots for conversion and selectivity of methane, paraffins and light olefins

obtained with different ML models are plotted. The residual along y axis is standardized.

The standardized residuals are calculated as:

Resi dual =
yactual − ypr edi cted

yactual
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Figure A.3: Parity plot of paraffin selectivity for the machine learning models: Lasso regression (a), KNN re-
gression (b), Support Vector Regression (c), and ANN regression (d).

A.5. R SQUARE VALUES

The R-squared values for conversion and selectivities obtained via different ML models

are listed above. Since the values are high for obtaining the best model, the residual

plots and contour plots are referred to. The nonlinearity in output is best captured by

the contour plots.
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Figure A.4: Standardized residual plot of Conversion for the machine learning models: Lasso regression (a),
KNN regression (b), Support Vector Regression (c), and ANN regression(d).

Figure A.5: Standardized residual plot of methane selectivity for the machine learning models: Lasso regression
(a), KNN regression (b), Support Vector Regression (c), and ANN regression(d).
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Figure A.6: Standardized residual plot of paraffin selectivity for the machine learning models: Lasso regression
(a), KNN regression (b), Support Vector Regression (c), and ANN regression(d).

Figure A.7: Standardized residual plot of light olefin selectivity for the machine learning models: Lasso regres-
sion (a), KNN regression (b), Support Vector Regression (c), and ANN regression(d).
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Table A.1: R square values of conversion and selectivity obtained using different ML models for train and test
data.

R square values Lasso KNN SVR ANN

Conversion
Train 0.90 1 0.99 0.99
Test 0.87 0.98 0.99 0.99
Selectivity methane
Train 0.75 1 0.99 0.99
Test 0.73 0.96 0.99 0.99
Selectivity paraffins
Train 0.70 1 0.87 0.99
Test 0.67 0.97 0.87 0.99
Selectivity light olefins
Train 0.91 1 0.99 0.99
Test 0.89 0.99 0.99 0.99





B
DERIVATION OF UBI/QEP

CHEMISORPTION ENTHALPIES

The detailed derivation of the UBI/QEP chemisorption enthalpy for a weakly chemisorbed

AB molecule is given here as example. Assuming that the molecule is bonded to a metal

via the A atom, the M −B interactions can be neglected. Hence, the UBI/QEP potential

energy expression is

Epot (n) =Q0A

n
∑

i=1

(

x2
A,i −2xA,i

)

+D AB
(

x2
AB −2xAB

)

(B.1)

Where n is the coordination site, Q0A is the chemisorption enthalpy of an atom A on an

on-top site (n=1), x is the bond order and D AB is the required enthalpy to break the AB

bond. Assuming that the contact atom A is situated in the center of the binding site,

i.e.,xA,1 = xA,2 = xA,3 = ... etc, the previous expression remains as:
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Epot (n) = nQ0A
(

x2
A,1 −2xA,1

)

+D AB
(

x2
AB −2xAB

)

(B.2)

The optimization is carried out accounting for the UBI/QEP constraint, i.e.:

nxA,1 +xAB = 1 (B.3)

Substituting now xAB from equation B.3 into equation B.2 and setting the derivative of

the potential energy with respect to the bond order xA,1 equal to zero, the result is the

bond order xA,1 at the potential minimum:

xA,1 =
Q0A

(nD AB +Q0A)
(B.4)

Substituting this value into the potential energy expression, equation B.2 and sub-

tracting the enthalpy of formation of AB in the gas phase D AB , results in the chemisorp-

tion enthalpy of AB on a coordination site n:

Q AB ,n =
Q2

0A

( Q0A
n +D AB )

(B.5)
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ABSTRACT 

TAILORING FISCHER TROPSCH SYNTHESIS PRODUCT SELEC- 

TIVITIES: INSIGHTS FROM MICROKINETIC MODELLING AND MA- 

CHINE LEARNING 

Kinetic and data-driven machine learning models are useful tools to provide fundamen- tal 

insights on catalyst and process development. Fischer Tropsch synthesis (FTS) pro- cess 

constitute an important strategic process in chemical recycling of plastics. There has been 

attempts to model via kinetic and data driven approaches. In this work, the synergy between 

detailed Single event Microkinetic model (to guide catalyst design) and machine learning 

models are used to explore the FTS process, and achieve targeted light olefin synthesis. 

Keywords: Fischer-Tropsch, Process, Alkenes Synthesis (Chemistry), Waste plastics, ma- 

chine learning, Artificial intelligence 

 

 

RÉGLAGE DE LA SÉLECTIVITÉ DE LA SYNTHÈSE FISCHER-TROPSCH 

: APERÇU DE LA MODÉLISATION MICROCINÉTIQUE ET DE L’AP- 

PRENTISSAGE AUTOMATIQUE 

Les modèles d’apprentissage automatique cinétiques et basés sur les données sont des  outils utiles 

pour fournir des informations fondamentales sur le développement de ca- talyseurs et de 

processus. Le procédé de synthèse Fischer Tropsch (FTS) constitue un procédé stratégique 

important dans le recyclage chimique des plastiques. Il y a eu des tentatives de modélisation via 

des approches cinétiques et axées sur les données. Dans ce travail, la synergie entre le modèle 

microcinétique détaillé à événement unique (pour guider la conception du catalyseur) et les 

modèles d’apprentissage automatique est uti- lisée pour explorer le processus FTS et réaliser une 

synthèse ciblée d’oléfines légères. 

mots clés: Fischer-Tropsch, Procédé, Alcènes Synthèse (Chimie), Matières plastiques 

Déchets, Apprentissage automatique, Intelligence artificielle 
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