
HAL Id: tel-04060324
https://theses.hal.science/tel-04060324v1

Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an interpretable model of learners in a learning
environment based on knowledge graphs

Antonia Ettorre

To cite this version:
Antonia Ettorre. Towards an interpretable model of learners in a learning environment based on
knowledge graphs. Artificial Intelligence [cs.AI]. Université Côte d’Azur, 2022. English. �NNT :
2022COAZ4078�. �tel-04060324�

https://theses.hal.science/tel-04060324v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Vers un modèle interprétable pour la prédiction

de la performance des apprenants dans un
environnement d’apprentissage basée sur
l’exploitation de graphes de connaissances

Antonia ETTORRE
Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)

UMR7271 UCA CNRS

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur

Dirigée par : Catherine FARON, Professeure,
Université Côte d’Azur
Co-encadrée par : Franck MICHEL, In-
génieur de recherche, CNRS
Soutenue le : 28-11-2022

Devant le jury, composé de :
Andrea TETTAMANZI, Professeur, Uni-
versité Côte d’Azur
Sandra BRINGAY, Professeure, Univer-
sité Paul Valéry - Montpellier III
Nathalie PERNELLE, Professeure, Uni-
versité Sorbonne Paris Nord
Marie-Christine ROUSSET, Professeure,
Université de Grenoble-Alpes
Harald SACK, Professeur, FIZ Karl-
sruhe - Leibniz
Raphaël TRONCY, Maître de con-
férences, Eurecom

VERS UN MODÈLE INTERPRÉTABLE POUR LA
PRÉDICTION DE LA PERFORMANCE DES APPRENANTS
DANS UN ENVIRONNEMENT D’APPRENTISSAGE BASÉE

SUR L’EXPLOITATION DE GRAPHES DE CONNAISSANCES

Towards an interpretable model of learners in a learning
environment based on Knowledge Graphs

Antonia ETTORRE

▷◁

Jury :

Président du jury
Andrea TETTAMANZI, Professeur, Université Côte d’Azur

Rapporteurs
Nathalie PERNELLE, Professeure, Université Sorbonne Paris Nord
Harald SACK, Professeur, FIZ Karlsruhe - Leibniz

Examinateurs
Sandra BRINGAY, Professeure, Université Paul Valéry - Montpellier III
Marie-Christine ROUSSET, Professeure, Université de Grenoble-Alpes
Raphaël TRONCY, Maître de conférences, Eurecom

Directeur de thèse
Catherine FARON, Professeure, Université Côte d’Azur
Co-encadrant de thèse
Franck MICHEL, Ingénieur de recherche, CNRS

Université Côte d’Azur

Antonia ETTORRE
Vers un modèle interprétable pour la prédiction de la performance des ap-
prenants dans un environnement d’apprentissage basée sur l’exploitation
de graphes de connaissances

xvii+128 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : output.tex – 5/10/2022 – 9:24

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau

Vers un modèle interprétable pour la prédiction de la
performance des apprenants dans un environnement

d’apprentissage basée sur l’exploitation de graphes de
connaissances

Résumé
Ces dernières années, la société a manifesté un besoin croissant de ressources éduca-
tives facilement accessibles et qui rendent l’apprentissage plus efficace et complet. Un
nombre croissant de personnes à travers le monde accède à l’éducation en ligne et de-
mande des outils plus efficaces pour permettre d’apprendre n’importe quoi, n’importe
où et à n’importe quel moment. Cela nécessite le développement de systèmes éducatifs
plus intelligents, qui devraient être capables d’améliorer les courbes d’apprentissage
des utilisateurs et de les assister efficacement dans leur processus d’acquisition de con-
naissances, en ne faisant éventuellement appel à aucun, ou très peu, de soutien humain.
Une étape importante pour concrétiser cette vision consiste à personnaliser le proces-
sus d’apprentissage afin de l’adapter spécifiquement à chaque utilisateur, en tenant
compte de ses antécédents, de son style d’apprentissage, de ses besoins personnels et
de ses objectifs. La création de tels environnements adaptatifs et personnalisés requiert
de suivre l’évolution des connaissances des utilisateurs au fil du temps et d’évaluer s’ils
ont la capacité de faire face à un problème, un exercice ou une question spécifique à
un moment donné de leur apprentissage. Ce problème, connu dans la communauté
de l’éducation sous le nom de Knowledge Tracing, a été largement étudié au cours
des 50 dernières années et plusieurs approches de résolution ont été proposées. Bien
que leurs performances se soient sensiblement améliorées au cours de la dernière dé-
cennie, ces approches présentent plusieurs défauts : de la simplicité excessive dans la
représentation de l’environnement d’apprentissage, qui ne tient pas compte de scénar-
ios complexes tels que l’acquisition de compétences non techniques ou la résolution
de travaux de groupe, à l’impossibilité d’interpréter les prédictions fournies, par exem-
ple d’expliquer pourquoi un étudiant échouera en essayant de répondre à une question
donnée. Dans cette thèse, nous contribuons à la résolution de ces problèmes en explo-
rant et en proposant des approches basées sur l’utilisation de l’IA symbolique, et plus
précisément la représentation de connaissances et le raisonnement à base de graphes
de connaissances. Premièrement, nous proposons une approche de Knowledge Trac-
ing qui étend un modèle existant en introduisant, comme caractéristiques d’entrée sup-
plémentaires, des plongements de graphes de connaissances. Ensuite, nous étudions
l’explicabilité de l’approche proposée en cherchant à interpréter les plongements de
graphes employés. Ceci nous conduit à l’implémentation d’un outil pour l’analyse
visuelle conjointe des graphes de connaissance et des plongements de graphes et au
développement d’une approche pour vérifier l’information capturée par de tels plonge-
ments de graphes. Enfin, nous présentons un modèle de Knowledge Tracing reposant
exclusivement sur la représentation de l’environnement d’apprentissage sous la forme
d’un graphe de connaissances, qui ne nécessite aucun modèle externe supplémentaire
pour la prédiction.

Mots-clés : Web Sémantique, Graphes de Connaissances, Éducation, Knowledge Tracing

Towards an interpretable model of learners in a learning
environment based on Knowledge Graphs

Abstract
In recent years, society has demonstrated increasing need for more effective, com-
prehensive and easily accessible educational resources. A growing number of people
around the world have gained access to online education and demand more efficient
tools to enable learning anything, anywhere, at any moment. This requires the develop-
ment of smarter educational systems, which should be able to improve users’ learning
curves and effectively assist them in their knowledge acquisition process, possibly re-
lying on no, or very little, human support. A major step to concretize this vision lies in
personalizing the learning process to be specifically adapted to every single user, taking
into account their background, learning style, personal needs and objectives. To create
such adaptive and customized environments, a major requirement is represented by the
ability to trace user knowledge over time and assess whether they have the capacity to
face a specific problem, exercise or question. This problem, known in the Education
community as Knowledge Tracing, has been widely investigated in the last 50 years
and several resolution approaches have been proposed. Though their performance im-
proved sensibly over the last decade, such approaches present several shortcomings:
from the excessive simplicity in the representation of the learning environment, which
does not account for complex scenarios such as acquisition of soft skills or solution of
group assignments; to the impossibility of interpreting the provided predictions, e.g.
explaining why a student will fail while trying to answer a given question. In this the-
sis, we try to overcome these issues by exploring and proposing approaches based on
the use of Symbolic AI approaches focusing on Graph based Knowledge Representa-
tion and Reasoning. Firstly, we propose a Knowledge Tracing approach that extends an
existing model by introducing, as additional input features, Knowledge Graph Embed-
dings. Secondly, we investigate the explainability of the proposed approach by seeking
the interpretation of the employed Graph Embeddings. This leads us to the implemen-
tation of a tool for the joint visual analysis of Knowledge Graphs and Graph Embed-
dings and to the development of an approach to verify the information encoded by
such Graph Embeddings. Finally, we present a Knowledge Tracing model exclusively
relying on the representation of the learning environment in the form of a Knowledge
Graph, which does not require any additional external model for the prediction.

Keywords: Semantic Web, Knowledge Graphs, Education, Knowledge Tracing

Acknowledgments

Honestly, it does sound pretty incredible, but I am actually at the end of this journey.
Odyssey, I would even say. Yes, because, I can definitely say that it was more difficult
than what I expected... And it would have been impossible without the help and support
of the people around me, who deserve my deepest gratitude.

Firstly, I would like to thank my advisors Catherine and Franck for their incredible
support, both scientific and mental, in the most challenging times (which, we know, have
been pretty hard on me). Thanks for listening and welcoming every research idea or sug-
gestion I had, and for your sincere and critical scientific feedback. Thanks to Catherine
for prescribing me long daily walks for my mental wellness during the difficult COVID
period, and to Franck for checking on me regularly to be sure that I was OK. This means
a lot to me (and to my mum, who was happy to know that someone was looking after me).

Thanks to all the past and present members of the WIMMICS and SPARKS team,
who shared with me this incredible journey, especially to the ones who were always ready
for a coffee break or a chocolate tasting session. Please, keep enjoying the chocolate in
my name! Among them, a special thank goes to Anna, Thibaut, and Amine, who, for
more than three years, had the patience to keep listening to my complaints about writing,
deadlines, reviews, impostor syndrome, university bureaucracy, job seeking, apartment
searching, gym, food... well, basically everything... I do complain a lot, indeed.

Thanks to Sara, who has been the constant of my four years in France, always there to
support and advise me in every matter. We started this journey together and we are ending
it together. I don’t know what I would have done without you. Well, surely not this Ph.D.
since it was you to convince me to accept. I am not sure yet if I should thank you for that.

The deepest and most sincere gratitude goes to my family, my parents, and my broth-
ers, who supported me in every moment, even from far away, even though they didn’t
fully understand what I was doing exactly (which I am not sure I did either). Thanks for
encouraging me when I wanted to quit everything, for convincing me to hold on, and for
making me see the silver lining of every cloud.

Finally, an immense thank is to Johann, whose presence in my life made most of the
difference between failure and success. Thanks for everything I mentioned above and
more: the mental and scientific support, the coffee breaks, for listening to my complaints,
for convincing me that it was worth going on even when I thought it was over. You have
been my harbor and refuge. You have been my home. Thanks for sharing your life with
me. And, especially, for washing the dishes, you know how much I hate it :P.

Ah, a last very uncommon thank to the coin I tossed when I was 15 which decided that
I would have studied Computer Science. I didn’t know, at that time, that this would have
triggered the unexpected series of events that would have eventually brought me here.

Contents

List of Abbreviations xvii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Questions . 4
1.3 Contributions . 5
1.4 Structure . 7

Background

2 State of the Art 13
2.1 Knowledge Tracing . 15

2.1.1 Classical Knowledge Tracing Models 15
2.1.2 Deep Learning Models for Knowledge Tracing 17

2.2 Knowledge Graphs . 20
2.2.1 RDF Knowledge Graphs . 20
2.2.2 Knowledge Graphs Applications 21
2.2.3 Knowledge Graph Embeddings 22

3 Datasets 27
3.1 OntoSIDES . 29
3.2 ASSISTments . 32

Contributions

4 A Knowledge Graph Enhanced Learner Model to Predict Outcomes to Ques-
tions 37
4.1 Introduction . 39
4.2 Features Selected or Computed from OntoSIDES to Learn a Student Model 40

4.2.1 Basic Features . 40
4.2.2 Calculated Features Conveying a Temporal Dimension 40
4.2.3 Text Embeddings of Questions 41
4.2.4 Knowledge Graph Embeddings of Questions, Answers, and Users 41

4.3 Empirical Determination of a Learner Model 42
4.3.1 Experimental Settings . 42
4.3.2 Results and Discussion . 45

xiii

xiv CONTENTS

4.4 Conclusions . 48

5 Diving into Knowledge Graph Embeddings 49
5.1 Introduction . 51
5.2 Tuning node2vec . 51

5.2.1 Random Walks Length . 52
5.2.2 Embeddings Dimension . 53
5.2.3 Undirected vs. Directed Graph 54

5.3 Further Exploring Graph Embedding Models 56
5.4 Identifying Meaningful Information . 58
5.5 Conclusions . 60

6 Stunning Doodle: a Tool for Joint Visualization and Analysis of Knowledge
Graphs and Graph Embeddings 63
6.1 Introduction . 65
6.2 Stunning Doodle . 66

6.2.1 Knowledge Graphs Visualization 66
6.2.2 Graph Embeddings Visual Analysis 69
6.2.3 Software Design and Limitations 70
6.2.4 Software Availability and Reusability 72

6.3 Our Use Case: the OntoSIDES Scenario 72
6.3.1 Understanding a Knowledge Graph 72
6.3.2 Analyzing and Comparing Knowledge Graph Embeddings 74

6.4 Related Work . 77
6.5 Conclusions and Future Work . 79

7 A Methodology to Identify the Information Captured by Knowledge Graph
Embeddings 81
7.1 Introduction . 83
7.2 Related Work . 84
7.3 Analysing the Information Encoded by Graph Embeddings 85
7.4 Evaluating Graph Embedding Algorithms with Probing Tasks 87

7.4.1 Knowledge Graphs . 87
7.4.2 Classification Model . 89
7.4.3 Graph Embeddings Models . 89
7.4.4 Results and Discussion . 90

7.5 Decoding Graph Embeddings for Students’ Outcomes Prediction 95
7.6 Conclusions . 96

8 Prediction of Learners’ Performance based on Link Prediction in a Knowl-
edge Graph 97
8.1 Introduction . 99
8.2 Link Prediction for Students’ Outcomes 100
8.3 Evaluation . 102

xiv

CONTENTS xv

8.3.1 Datasets . 102
8.3.2 Knowledge Graphs . 103
8.3.3 Knowledge Graph Embedding Models 104
8.3.4 Evaluation Setup . 105
8.3.5 Results and Discussion . 106

8.4 Conclusions . 107

9 Conclusions and Perspectives 109
9.1 Summary of the contributions . 109
9.2 Future works and Perspectives . 111

Bibliography 113

List of Figures 125

List of Tables 127

xv

List of Abbreviations

AFM Additive Factor Model
AIEd Artificial Intelligence in Education
BFS Breadth First Sampling
BKT Bayesian Knowledge Tracing
CBOW Continuous Bag-Of-Words
CMS Content Management System
CTT Classical Test Theory
DFS Depth First Sampling
DKT Deep Knowledge Tracing
EDM Educational Data Mining
FM Factorization Machine
GCN Graph Convolutional Network
GE Graph Embedding
GNN Graph Neural Network
ILE Interactive Learning Environment
IRT Item Response Theory
ITS Intelligent Tutoring System
KC Knowledge Component
KG Knowledge Graph
KGE Knowledge Graph Embedding
KI Knowledge Item
KT Knowledge Tracing
LMS Learning Management System
LP Link Prediction
LSTM Long Short Term Memory
MCQ Multiple Choice Question
mIRT Multiple Item Response Theory
MOOC Massive Open Online Course
OWL Web Ontology Language
PFA Performance Factors Analysis
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RNN Recurrent Neural Network
SPARQL SPARQL Protocol And RDF Query Language

xvii

CHAPTER 1
Introduction

1.1 Context and Motivation
In the last decades, we have witnessed the impressive transition of most humans’ everyday
activities to the online world. Socializing, doing groceries, organizing holidays, and bank-
ing are only some examples of tasks that are increasingly carried out through the Web and,
often, enhanced by the employment of Artificial Intelligence, limiting the requirements
for human-to-human interaction. As our lives are being reshaped by the growing need for
these technologies, industries and services are evolving and adapting to provide us with
increasingly smart online environments. Yet, there are sectors for which the transition to-
wards more intelligent and automated systems is very challenging, and, as clearly shown
by the events of the last couple of years related to the COVID-19 pandemic, education is
one of these.

In recent years, more and more institutions, schools, and training centers around the
world started offering online or hybrid support to their students and a growing number
of mobile applications and web platforms have been developed to meet the necessities of
the thriving users’ community to access high-quality educational resources. Nevertheless,
in most cases, e.g. MOOCs and universities’ CMS, these web resources represent just
catalogs of videos, documents, and simple multiple-choice questions (MCQ) tests, which
struggle to keep users engaged, improve their learning curves, and effectively assist them
in their knowledge acquisition process. In other words, the quality of these services is far
from the one of classical face-to-face education and human interaction is still a fundamen-
tal component of the learning process. To truly improve the users’ knowledge acquisition
journey making it more effective while supporting or reducing human interaction, we need
to create smarter environments, able to adapt to the knowledge level and learning habits
of every single user, to intelligently support and engage them anticipating their needs and
providing them with the right educational resources at the right time. Artificial Intelli-
gence represents the key tool for implementing such flexible, personalized, and adaptive
systems.

The use of Artificial Intelligence in Education (AIEd) has been the focus of intense
research work in the last three decades (Chen et al., 2020, Luckin et al., 2016, Roll and
Wylie, 2016), and several AI tools and techniques have been applied to different scenarios
in education. AI is used not only for implementing adaptive learning environments and
enhancing online education as described beforehand but it is also adopted as a support to
traditional in-class education, for example, to automate grading and evaluation of exams

1

2 CHAPTER 1 — Introduction

or to build "smart schools" (Chen et al., 2020); and it can be employed by teachers, trainers
and pedagogists to gain insights into the learning process itself, for example, to discover
what social factors most affect students’ learning habits and efficiency (Luckin et al.,
2016). Although the scenarios differ for application context (online or in-classroom), and
target subjects (teachers, students, or support staff) they all aim to simplify and improve
the global learning experience. The effectiveness of Artificial Intelligence in Education
has already been proved in several real-world applications where students’ learning is
supported by computer-based systems, also known as Intelligent Tutoring Systems (ITS)
or Interactive Learning Environments (ILE). For example, (VanLehn, 2011) found that
ITS can be almost as effective as human tutoring, while (Cen et al., 2007) proved that
Educational Data Mining (EDM) can help improve learning efficiency.

Despite the progress made by research in AIEd during the last 20 years, computer-
assisted learning still shows limitations. Indeed, while these systems proved to be useful
for the acquisition of simple domain-knowledge concepts, they struggle to provide sup-
port for the development of soft skills, such as critical thinking, problem-solving and col-
laboration, which are of the uttermost importance nowadays (Trilling and Fadel, 2009);
and they fail to account for students’ personal traits, such as background, learning habits
and preferences. In summary, the main challenge for modern AIEd is to create flexible,
complete and effective learning environments able to adapt to every single user provid-
ing personalized learning paths, guiding them through the acquisition of simple domain-
knowledge concepts, but also stimulating the development of soft skills through more
complex exercises requiring a wider and more diverse set of skills.

One of the first fundamental steps to building these systems lies in the ability to model
the human learning process, taking into account all the possible information about stu-
dents, educational resources, testing material, their organization, and their interactions.
Pragmatically, in order to present learners with the most suited pedagogical content, we
need to be able to trace the knowledge they acquire over time and assess their ability
to face a specific question, problem, or exercise. According to the Goldilocks princi-
ple (Koedinger et al., 2013), the optimal solution is to have users confronted with educa-
tional resources that have an intermediate level of difficulty for them. Indeed, presenting
users repeatedly with questions that are above their level of knowledge will cause frustra-
tion, while proposing exercises that are too easy or cover topics that are already mastered
by the users will bore them. In both cases, the learning will not be optimal and the risk is
that users will abandon the process.

The challenge of predicting students’ outcomes when interacting with a given edu-
cational resource, also known as Knowledge Tracing, has been largely investigated and
several approaches, based on diverse mathematical models, have been proposed through-
out the years, e.g. Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1994),
Additive Factors Model (AFM) (Cen et al., 2006), and Performance Factors Analysis
(PFA) (Pavlik et al., 2009). A significant boost to the performance of Knowledge Trac-
ing solutions was given by the employment of Deep Learning techniques (LeCun et al.,
2015), with the development of the first approach, Deep Knowledge Tracing (DKT) (Piech
et al., 2015), which turned out to be a game-changer, substantially outperforming all pre-

1.1 – Context and Motivation 3

vious models. Consequently, most of the following research work focused on the analy-
sis (Gervet et al., 2020, Kevin H. Wilson and Yan Karklin and Bojian Han and Chaitanya
Ekanadham, 2016, Xiong et al., 2016) and extensions of DKT (Sonkar et al., 2020, Wang
et al., 2019) and on the development of new "deep" models for Knowledge Tracing (Nak-
agawa et al., 2019, Vie, 2018, Yang, Yang and Shen, Jian and Qu, Yanru and Liu, Yunfei
and Wang, Kerong and Zhu, Yaoming and Zhang, Weinan and Yu, Yong, 2020). However,
DKT and other deep approaches present several important shortcomings, some of which
are common to previous non-deep models, and some others that are related to the deep
nature of the underlying models.

First and foremost, most of the KT models developed so far rely on a very limited
amount of information, simplifying excessively the description of the learning environ-
ment (Liu et al., 2021). In most cases, the prediction of students’ outcomes is based only
on the knowledge of the past tests taken by each student, with questions and skills identi-
fiers. Notions, such as possible types of questions and exercises, different kinds of skills
required for resolution, i.e. soft or hard, collaborative assignments, and partially correct
answers are very rarely taken into account and most often completely ignored by such
models. Even in the case of models that are explicitly extended to consider this richer
information, additional ad-hoc features need to be handcrafted on a single-case basis by
domain experts to be injected into the original model. It is, therefore, impossible to seam-
lessly model and account for the complexity required by a real-world Interactive Learning
Environment.

Another shortcoming common to all the KT models based on Deep Learning tech-
niques is the need for a large quantity of training data (Liu et al., 2021). As proven by
(Gervet et al., 2020), DKT is susceptible to overfitting and performs poorly in the case
of small datasets. The capacity to work with a limited amount of data is fundamental in
this context because a qualitative Knowledge Tracing model should be able to provide
trustable predictions also for users who are in an early stage of their learning process and,
therefore, who have a short history of previous interactions with the learning material, and
in learning contexts involving a limited number of users.

Finally, one of the main drawbacks of any system based on Deep Learning models
is the lack of explainability and interpretability of the provided solution. While Deep
Knowledge Tracing models can be pretty good in forecasting whether a user will answer
correctly or not a given question, they are not able to generate an explanation for this
prediction (Liu et al., 2021). This represents a major limitation from both a pragmatic and
ethical point of view. Knowing that a student will fail on a given exercise can be useful,
but, in order to actually help students overcome their difficulties, it would certainly be
better to know why they are failing. Moreover, predicting a student’s failure or success
is a very sensitive task, and it is essential to be certain that no external bias is introduced
into the decision process.

All the downsides exposed so far urge the necessity to investigate other research paths
for Knowledge Tracing and to develop more comprehensive models able to (i) exploit a
richer representation of learning environments, (ii) work even with a small quantity of

4 CHAPTER 1 — Introduction

data, (iii) easily generalize over different education contexts without need for additional
handcrafted features, and (iv) produce results that can be more easily interpreted.

The solution for building such a Knowledge Tracing model, able to overcome the
inherited limitations of Deep Learning, i.e. data hunger, limited capacity for transfer, lack
of transparency, and non-integration with prior knowledge (Marcus, 2018), might lie in
the use of hybrid approaches, combining Deep Learning methods with Symbolic AI.

In the last decade, a growing interest has been sparkling around the joint use of Knowl-
edge Representation and Reasoning and Deep Learning, to overcome the main drawbacks
of the latter. Knowledge Graphs have been largely used to integrate prior domain-expert
knowledge into Deep Learning models, enabling, for example, zero-shot learning (Lee
et al., 2018) and transfer learning (Ammanabrolu and Riedl, 2019). At the same time,
an increasing number of scientific contributions have been done to analyze the role that
Knowledge Graphs could play in AI explainability and interpretability (Díaz-Rodríguez
et al., 2022, Futia and Vetrò, 2020, Gaur et al., 2021, Lecue, 2020, Tiddi and Schlobach,
2022). Also, the range and domain of applications that utilize this kind of combined
approaches have been growing steadily: object detection (Fang et al., 2017), art analy-
sis (Castellano et al., 2022) and scientific work classification (Hoppe et al., 2021) are only
some examples of applications relying both on Knowledge Graphs and Deep Learning
models.

Inspired by these recent research trends, the goal of this Ph.D. thesis is to explore if
and how Knowledge Representation and Reasoning can be used and useful for providing
better solutions to the Knowledge Tracing problem. We aim to propose new models to
describe the human learning process. These models should be able to account for more
complex and complete information about both students and learning material, opening
the way for the development of more comprehensive intelligent learning environments.
We also investigate the interpretability of the proposed methods with the final goal of
assessing their usefulness in real-world use cases, optimizing them for different learning
contexts, and providing insights into how the learning process happens.

1.2 Research Questions
As described in Section 1.1, our goal is to assess whether and how symbolic AI and more
specifically Knowledge Representation and Reasoning can be employed for enhancing
online education systems and, in particular, to help solve the task of predicting students’
performance, also known as Knowledge Tracing (KT). To this end, we will explore the
following research questions:

• RQ1: How can we exploit Knowledge Representation for Knowledge Tracing
purposes? This question involves two main steps. Firstly, we need to model the
complex and heterogeneous information normally available in modern computer-
supported learning environments in the form of a Knowledge Graph. Subsequently,
we need to design a model which would be able to exploit this rich representation of
the learning environment for predicting students’ performance. In order to do that,

1.3 – Contributions 5

we will rely on the use of Graph Embeddings, a low dimensional representation of
the elements in the graph, which is able to capture from the graph and summarize
the main features of each node and edge.

• RQ2: Under what conditions and in which context does our Knowledge Graph
based approach to Knowledge Tracing work? Can it be generalized across dif-
ferent learning environments and to other Knowledge Graphs? To assess the
robustness and generalization capabilities of our approach, we need to identify in
which conditions and contexts, our Graph Embeddings enhanced model works. To
do so, it is essential to study the behavior of the predictive model with different
Knowledge Graphs and embedding settings to understand what piece of informa-
tion contained in the Knowledge Graph is interesting for the students’ outcomes
prediction and how to optimally capture it through the embeddings. Therefore, we
analyze how modifications in the content and structure of the input Knowledge
Graph and the parameters of the embedding model affect the quality of our predic-
tion.

• RQ3: How to interpret and explain the prediction produced by our Knowl-
edge Graph based model? The ability to understand why a Knowledge Tracing
model predicted students’ success or failure is of the uttermost importance. Since
our model relies on the use of Graph Embeddings that automatically identify and ex-
tract the most relevant features from the Knowledge Graph, the explanations to our
predictions will be hidden in the embedding process. Therefore, the more general
research question we need to answer is how to unveil the information captured
and encoded by Graph Embeddings?

1.3 Contributions
The main contributions of the present thesis are the following:

Contribution 1 - Proposition of a first method to integrate Knowledge Graphs in
state-of-the-art Knowledge Tracing techniques. To answer RQ1, we start exploring
current state-of-art Knowledge Tracing models and analyzing if and how they can be
extended to take into consideration richer information about a learning system represented
in the form of a Knowledge Graph. After a thorough analysis of the state-of-the-art, we
select DeepFM (Guo et al., 2017) as a base model to be extended for two reasons: its high
performance in the Knowledge Tracing task already demonstrated by (Vie, 2018) and the
simplicity to include further input features extracted or computed from the Knowledge
Graph. In our contribution, we build several models obtained by extending DeepFM with
the addition of one or more input features either handcrafted from information included in
the KG or automatically computed through the Graph Embedding process. We test these
newly proposed models on the SIDES use case, which is a real-world educational platform

6 CHAPTER 1 — Introduction

already relying on a Knowledge Graph to store their data1. We found out that some of the
models including Graph Embeddings among their input features perform better than both
the base model (classic DeepFM) and models including hand-crafted features, meaning
that Graph Embeddings are able to identify relevant information described in the graph
which are usually ignored by standard models. This contribution has been presented in
(Ettorre et al., 2020).

Contribution 2 - Development of a tool which enables a first interpretation of Knowl-
edge Graph Embeddings through visual analysis. Answering RQ2 requires us to test
our approach with multiple input Knowledge Graphs, different in nature and structure
of the represented information, and several Graph Embeddings settings. While trying to
assess the behavior of the proposed model in varying conditions, we determined that the
quality of the prediction was strongly dependent on the characteristics of the employed
Graph Embeddings and, in particular, the information they can capture from the Knowl-
edge Graph. We discovered that Graph Embeddings computed from different Knowledge
Graphs representing slightly different information would produce very diverse Knowl-
edge Tracing results, as well as Graph Embeddings computed from the same KG using
different embedding methods or even hyper-parameters. Indeed, even though the Knowl-
edge Graph contains potentially relevant information for the Knowledge Tracing task, we
are able to exploit it fully only if we rely on the use of an optimal KG structure and specific
Graph Embedding methods, that would allow us to capture and encode such information.
Therefore, being able to identify which KG modeling choices, Graph Embeddings mod-
els and hyper-parameters would produce the most meaningful embeddings for Knowledge
Tracing is fundamental. Pragmatically, we need a way to compare several Graph Embed-
dings computed using different settings, analyze how and why they are different and get
some insights into the information they capture and encode from the KG. To do so, we de-
veloped Stunning Doodle, a tool for the the joint visualization and analysis of Knowledge
Graphs and their Graph Embeddings. This tool proved useful to analyze several Graph
Embeddings computed from the OntoSIDES KG, and helped us discover which model-
ing choices and embedding models were producing more meaningful embeddings for our
task and why. Nevertheless, Stunning Doodle is a general-purpose tool, that can be em-
ployed by anyone to visualize any RDF Knowledge Graph and study its embeddings. This
contribution has been presented in (Ettorre et al., 2022a) and (Ettorre et al., 2022b).

Contribution 3 - Introduction of a systematic approach to help decode the informa-
tion captured by Knowledge Graph Embeddings Even though Stunning Doodle can
help us get an idea of under which settings Graph Embeddings incorporate the most in-
teresting information for our final task, it provides only very high-level insights on what
information is possibly encoded by these Graph Embeddings. To be able to interpret the
Knowledge Tracing results provided by our model and give an answer to RQ3, we need
to decode the information captured by the Graph Embeddings and, consequently, used

1A detailed description of the SIDES data and the related Knowledge Graph is given in Chapter 3

1.4 – Structure 7

to estimate students’ success. In this contribution, we present a systematic approach to
verify whether a specific piece of information about the elements in the KG is captured
and encoded by their Graph Embeddings. We show how this approach can be used to un-
veil the information encoded by Graph Embeddings computed using different embedding
models, hyper-parameters and Knowledge Graphs. With respect to our use case, we rely
on the proposed method to improve the GEs employed in our Knowledge Tracing model
and verify what information is actually meaningful to enhance the quality of the students’
outcome prediction. This contribution has been presented in (Ettorre et al., 2021).

Contribution 4 - Presentation of a Knowledge Tracing model exclusively based on
Knowledge Graphs. Thanks to the contributions made in (Ettorre et al., 2021, 2022a),
we were able to get a first interpretation of the Graph Embeddings employed to solve
Knowledge Tracing task, which highlighted several shortcomings in the model proposed
in (Ettorre et al., 2020). To overcome these shortcomings, we proposed a second Knowl-
edge Tracing method entirely and uniquely based on the use of Knowledge Graphs, which
does not require any additional handcrafted feature. In this contribution, we reformulate
the Knowledge Tracing task as a Link Prediction problem on a Knowledge Graph describ-
ing the learning environment and we predict students’ outcomes to questions by deter-
mining the most probable link between each answer and its correct or wrong realizations.
This way, we are able to take into account all the possible information about the learning
system without the need for external models or hand-crafted input features. We tested
this approach on two different learning contexts: SIDES, which was already employed as
use case in the previous experiments; and ASSISTment, a well-known and largely used
Knowledge Tracing benchmarking dataset. We proved that, despite its simplicity and the
lack of temporal information, this newly proposed approach achieves better results than
Deep Knowledge Tracing. This contribution has been presented in (Ettorre et al., 2022c).

1.4 Structure
This thesis is organized as follows:

Chapter 2 introduces the concepts and background knowledge used throughout the the-
sis. It describes the current state-of-the-art for Knowledge Tracing, as well as the technical
and theoretical limitations of Deep Learning. It explores the existing panorama of hybrid
AI approaches relying on the use of Knowledge Graphs and Knowledge Graph Embed-
dings, and it presents the most widely used Graph Embeddings methods in this context.

Chapter 3 describes the input datasets used for the experiments presented in this the-
sis. It introduces the SIDES project describing the data collected in the context of such
project and their representation in the form of a Knowledge Graph, OntoSIDES. Also, the
ASSISTment dataset, employed for testing and benchmarking the last proposed model, is
illustrated in the same chapter.

8 CHAPTER 1 — Introduction

Chapter 4 presents the first contribution done during this Ph.D. thesis. It describes a
model for Knowledge Tracing, which relies on the use of information extracted from the
OntoSIDES Knowledge Graph. It shows the results obtained when introducing Graph
Embeddings as input features for the existing DeepFM model.

Chapter 5 details further experiments carried out to study the behavior of the model
presented in Chapter 5 with different input data representations and settings for the em-
bedding model. The goal of the experimentation is answering RQ2 by determining in
which conditions our predictive model works and to identify the relevant information to
be included in a KG representing a learning environment and the best settings for its
embedding.

Chapter 6 is about Stunning Doodle, a tool for the joint visualization and analysis of
Knowledge Graphs and Graph Embeddings. It describes the tool with its main features
which enable to display and navigate any RDF Knowledge Graph and to visualize dis-
tances between nodes in the embedding space. These functionalities allow us to compare
Graph Embeddings computed through several embedding models or using different set-
tings and to gain first high-level insights on the meaning of such Graph Embeddings.
This chapter also illustrates the use of Stunning Doodle in the OntoSIDES use case. We
describe how the implemented functionalities are employed to study multiple Graph Em-
beddings computed from the same KG but with various settings. Through the visual anal-
ysis, we can identify the differences in the information encoded when using the same
embedding model with various hyper-parameters and, to some extent, explain the varying
performances obtained by our Knowledge Tracing model.

Chapter 7 describes a method to precisely and systematically identify the information
encoded by Graph Embeddings. The approach, based on a similar technique employed by
the NLP community, is explained and a taxonomy of Knowledge Graph properties which
can be encoded in the embedding process is presented. We show how the approach can
be used to decode information captured by different embedding models from two distinct
Knowledge Graphs: OntoSIDES and YAGO3. Moreover, we describe how the approach
has been useful to identify the information in the OntoSIDES KG that was mainly ex-
ploited by our Knowledge Tracing model to provide its predictions. This analysis helped
us discover an important shortcoming in the proposed method.

Chapter 8 presents a new approach to Knowledge Tracing based exclusively on the
use of the Knowledge Graph describing the learning system. The newly proposed method
overcomes the issues discovered in the previous model. In this chapter, the 4-steps frame-
work which allows us to turn the Knowledge Tracing task into a Link Prediction problem
on a Knowledge Graph is described and the results of the application of such method on
two different use cases, i.e. SIDES and ASSISTment, are shown.

1.4 – Structure 9

Chapter 9 summarizes the content of this thesis: the contributions made, the research
questions that have been answered and the open challenges for the future. Perspectives
for the improvement of the proposed models and developed tools are described, as well
as ideas to address the challenges for the future of e-Education.

My publications
Antonia Ettorre. antoniaettorre/stunning_doodle: First version, December 2021. URL
https://doi.org/10.5281/zenodo.5769192.

Antonia Ettorre, Oscar Rocha Rodríguez, Catherine Faron, Franck Michel, and Fabien
Gandon. A Knowledge Graph Enhanced Learner Model to Predict Outcomes to Ques-
tions in the Medical Field. In International Conference on Knowledge Engineering and
Knowledge Management, pages 237–251. Springer, 2020.

Antonia Ettorre, Anna Bobasheva, Catherine Faron, and Franck Michel. A system-
atic approach to identify the information captured by Knowledge Graph Embeddings.
In IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2021.

Antonia Ettorre, Anna Bobasheva, Franck Michel, and Catherine Faron. Stunning Doo-
dle: a Tool for Joint Visualization and Analysis of Knowledge Graphs and Graph Em-
beddings. In European Semantic Web Conference, pages 370–386. Springer, 2022a.

Antonia Ettorre, Anna Bobasheva, Franck Michel, and Catherine Faron. Stunning Doo-
dle: un outil pour la visualisation et l’analyse conjointe de graphes de connaissances et
leurs plongements. In IC Journées francophones d’Ingénierie des Connaissances - PFIA
2022, pages 99–100, 2022b.

Antonia Ettorre, Franck Michel, and Catherine Faron. Prediction of Students’ Perfor-
mance in E-learning Environments Based on Link Prediction in a Knowledge Graph.
In Maria Mercedes Rodrigo, Noburu Matsuda, Alexandra I. Cristea, and Vania Dim-
itrova, editors, Artificial Intelligence in Education. Posters and Late Breaking Results,
Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral
Consortium, pages 432–435, Cham, 2022c. Springer International Publishing. ISBN
978-3-031-11647-6.

https://doi.org/10.5281/zenodo.5769192

PART I

Background

CHAPTER 2
State of the Art

This chapter provides the reader with the fundamental concepts used throughout
the thesis and it introduces the background knowledge needed for its understand-
ing. Moreover, it describes the current state-of-the-art for Knowledge Tracing,
and it exposes the technical and theoretical limitations of Deep Learning ap-
proaches. It presents the most important notions related to Knowledge Graphs
and their application in real-world scenarios. Finally, it introduces the concept
of Knowledge Graph Embeddings and it explores the existing panorama of em-
bedding methods for Knowledge Graphs.

2.1 Knowledge Tracing . 15

2.1.1 Classical Knowledge Tracing Models 15

2.1.2 Deep Learning Models for Knowledge Tracing . . . 17

2.2 Knowledge Graphs . 20

2.2.1 RDF Knowledge Graphs 20

2.2.2 Knowledge Graphs Applications 21

2.2.3 Knowledge Graph Embeddings 22

13

2.1 – Knowledge Tracing 15

2.1 Knowledge Tracing
As mentioned in Section 1.1, the problem of tracing students’ knowledge levels has been
largely investigated in the past, mainly because of its importance for the implementation
of users’ personalized and adaptive learning programs. The research efforts made so far
produced a rather wide panorama of distinct approaches whose aim is to model the stu-
dents learning process and assess their ability to face specific Knowledge Items (KIs), i.e.
questions, exercises or problems, at any moment in time.

2.1.1 Classical Knowledge Tracing Models
The first attempt to predict the performance of students was formally made by Gulliksen
in his Theory of Mental Tests (Gulliksen, 1950). Gulliksen describes a set of equations to
compute the test score for each student based on the student’s true ability and an estimated
error component for the same student. Several subsequent research works further analyzed
and formalized the problem (Birnbaum, 1969, Lord et al., 1968, Novick, 1966) leading
to the development of the Item Response Theory (IRT) (Hambleton et al., 1991), which
estimates the success probability of a student on a single Knowledge Item, instead of their
score on a complete test.

IRT estimates students’ performance by learning a logistic function whose parameters
describe the student and the item involved in the interaction. The probability of a student
correctly answering an item is a monotonically increasing function of the measured ability
of the student and it is characterized by some factors specific to the knowledge item (e.g.
difficulty). Throughout the years, several IRT models have been developed with increasing
complexity. The first and simplest IRT model, known as Rasch model or 1PL, has been
introduced in (Rasch, 1960). It describes the test items in terms of only one parameter: the
item difficulty. Therefore, the probability of responding correctly to an item is, as shown
in Eq. (2.1), a logistic function defined only by two parameters: the ability of the student
(θi) and the difficulty of the item (βj).

pij = e(θi−βj)

1 + e(θi−βj) (2.1)

The Rasch model has been subsequently extended by the 2PL model to introduce
the discrimination parameter which models how well an item can differentiate stu-
dents. Later, the 3PL model was developed to generalize the 2PL model by adding the
(pseudo)guessing parameter which expresses the property that even very low ability per-
sons have a positive probability of answering an item correctly, simply by randomly
guessing the correct answer. Finally, the last and most complex IRT model is the 4PL
model (Barton and Lord, 1981) which adds a fourth parameter modeling the "inattention"
of high ability students failing to answer an easy item correctly. The formula to compute
the probability according to the 4PL IRT model is the following:

pij = cj + (dj − cj)
eaj(θi−βj)

1 + eaj(θi−bj) (2.2)

16 CHAPTER 2 — State of the Art

where aj represents the discrimination parameter, cj is the guessing parameter and dj

models the "slipping" chance of a prepared student.
These four IRT models were further extended to model richer items parameters. A first

important extension to IRT models is represented by mIRT (Reckase, 1997), which mea-
sures multiple item’s latent traits simultaneously, enabling the description of questions
requiring the use of multiple skills. Lately, (Wilson et al., 2016) proposed the Hierarchi-
cal IRT (HIRT) and Temporal IRT (TIRT). HIRT exploits similarities among questions
based on the skills they involve. This approach assumes that the difficulty parameters of
questions testing similar skills are generated from the same distribution. Intuitively, ques-
tions requiring the use of trivial skills will generally be easy to answer, while questions
involving complex skills will be more difficult. TIRT, instead, models items’ difficulty
parameters as time-varying stochastic processes.

Another well-known Knowledge Tracing model based on logistic regression is the
Additive Factors Model (AFM) (Cen et al., 2006). AFM is built on the assumption that
the probability of a student answering correctly a given item depends on four factors: (i)
the ability of the student (θi), (ii) the difficulty of each skill (βk), also called knowledge
component or KC, required by the knowledge item (j), (iii) the number of times the
student interacted with that same skill before (Tik), and (iv) the amount of learning gained
from each interaction with such a skill (γk). The additive combination of these four factors
represents the argument of the logistic regression, as shown in Eq. (2.3).

pij = logit(θi +
∑

k∈K(j)
(βk + γkTik)) (2.3)

AFM has been extended in (Pavlik et al., 2009), which proposes the Performance
Factor Analysis (PFA). This new model, also based on logistic regression, modifies AFM
by removing the student ability factor and, at the same time, discriminating the students’
attempts between successes and failures (see Eq. (2.4)). The rationale behind the PFA
model is that correct and incorrect attempts to a same skill do not lead to the same learn-
ing.

pij = logit(
∑

k∈K(j)
(βk + γS

k T S
ik + γF

k T F
ik)) (2.4)

Another set of Knowledge Tracing solutions is represented by the Bayesian mod-
els. The pioneers of the use of such models are Corbett and Anderson, who introduce
Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1994). BKT models the
learning process as a Hidden Markov Model based on two types of binary variables: a
latent variable representing the mastery of each skill, i.e. learned or unlearned, and the
observed variable indicating the result of the student’s attempt to a question, i.e. correct or
incorrect. In this model, every skill is characterized by four parameters: (i) the probability
of mastering the skill before learning (p(L0)), (ii) the probability of transitioning from
state unlearned to learned (p(T)), (iii) the probability of slipping (i.e. making a mistake
even though the skill is learned) (p(S)), and (iv) the probability of guessing correctly even
though the skill is not mastered (p(G)). At each time step, the probability that a skill is

2.1 – 2.1.2 Deep Learning Models for Knowledge Tracing 17

mastered is estimated (p(Ln)) and, based on that, the probability that a question involving
that skill is correctly answered can be computed as the sum between the probability of
mastering the skill and not "slipping", and the probability of not mastering the skill but
guessing correctly (see Eq. (2.5)).

p(Ln) ∗ (1 − p(S)) + (1 − p(Ln)) ∗ p(G) (2.5)

BKT presents two main shortcomings which have been addressed by variations of
the standard model. Firstly, BKT does not include any parameters representing the differ-
ent students, meaning that the learning process only depends on the skills to be learned
and not on the learner itself. Several extensions of BKT were proposed throughout the
years (Khajah et al., 2014, Lee and Brunskill, 2012, Yudelson et al., 2013) moving to-
wards an Individualized Bayesian Knowledge Tracing model, which would take into ac-
count the individual characteristics of each student. The second limitation of BKT is that,
in the original implementation, it assumes that each knowledge item requires a single skill
and skills are mutually independent, but in real-world use-cases questions can be much
more complex and involve several skills which, at the same time, can present dependency
relations between each other. Dynamic BKT (Käser et al., 2017) has been developed to
overcome this issue as it allows to jointly model multiple skills and their dependency.

More recently, Vie and Kashima proposed the Knowledge Tracing Machines (KTM)
(Vie and Kashima, 2019) a new approach based on a different mathematical model, Fac-
torization Machines (FM) (Rendle, 2010). The main strength of KTM is the ability to con-
sider as input any available information about students, questions, skills or other factors
possibly affecting the learning experience. Indeed, an input sample for a KTM is repre-
sented by a vector x of dimension N, where N is the number of factors to be considered.
Each strictly positive element in such vector (xk > 0) indicates that the corresponding
factor (k ∈ [1, N]) is involved in the considered sample. Finally, the probability of a stu-
dent giving a correct answer is obtained by applying a logistic regression to an additive
combination of the elements in the vectors (xk) with their weights (wk) and a second term
describing the pairwise interactions between input factors, as shown in Eq. (2.6). Given
its generic formulation, KTM encompasses several existing models, such as IRT, AFM
and PFA, as special cases.

p(x) = logit(
N∑

k=1
wkxk +

∑
1≤k<l≤N

xkxl⟨vk, vl⟩ + µ) (2.6)

An interesting extension of KTM was presented in (Vie, 2018). The proposed ap-
proach relies on Deep Factorization Machines (DeepFM) (Guo et al., 2017), which com-
bines the power of FM for recommendation and Deep Learning for feature learning.

2.1.2 Deep Learning Models for Knowledge Tracing
Recently, approaches based on Deep Learning architectures have gained notable success.
The first method to rely on such techniques was Deep Knowledge Tracing (DKT) (Piech

18 CHAPTER 2 — State of the Art

et al., 2015) which models students’ learning and predicts their outcomes to questions
based on their prior activity. This model is trained using the sequence of skills every stu-
dent faced with the binary result of the interaction, 1 to indicate a correct answer and 0 for
an incorrect one. This approach exploits the ability of Recurrent Neural Networks (RNNs)
and, more specifically, Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) to store a high-dimensional latent state and make predictions based on past in-
formation received as input much earlier. Thanks to these characteristics, DKT sensibly
outperformed other state-of-the-art models and contributed to creating a new research
thread of Knowledge Tracing models based on Deep Learning architectures.

Nevertheless, some subsequent research efforts highlighted several shortcomings in
the DKT method and mitigated its claims (Kevin H. Wilson and Yan Karklin and Bojian
Han and Chaitanya Ekanadham, 2016, Khajah et al., 2016, Xiong et al., 2016). The au-
thors of (Xiong et al., 2016) identified an important issue in the DKT resolution when
questions require multiple skills. In fact, given the formulation of the problem, when a
student answers an item tagged with multiple skills, DKT is fed with a sequence of differ-
ent skills with the same result, therefore, the model learns to predict the same result for all
the skills in such a sequence. Let us imagine that a student faces a question Q1 requiring
the skills S1 and S2 to be solved and that such question is answered correctly. The corre-
sponding input sequence to DKT would be S1, S2 with correctness labels 1, 1. Given this
input, the model will learn that, when skill S2 follows skill S1, S2 will very likely have
the same result than the previous S1. Xiong et al. demonstrated that, when the duplicated
skills sequences are removed from the input data, the performance of DKT significantly
decreases and it can be matched by other non-deep Knowledge Tracing models, such
as PFA. (Kevin H. Wilson and Yan Karklin and Bojian Han and Chaitanya Ekanadham,
2016), instead, directly compared DKT, IRT and its temporal and hierarchical extensions,
i.e. TIRT and HIRT, on three different datasets. The authors found that IRT-based models
were able to equal or outperform DKT on all the datasets, while requiring less effort in
terms of parameters tuning and minor computational resources. Moreover, (Khajah et al.,
2016) carried out a thorough analysis to identify which characteristics of the learning
process were exploited by the DKT model that could not be captured by BKT. They de-
termined that input data presented four types of regularities which could not be handled by
classical BKT: recency effects, contextualized trial sequences, inter-skill similarity and in-
dividual students abilities. To overcome these limitations, they extended BKT to introduce
a forgetting behavior, discover interactions between skills and model the individual stu-
dent abilities. Classical BKT and the implemented variations were then compared against
DKT on several datasets. The results of such comparison show that extensions of BKT
taking into account regularities in the data matched or even outperformed DKT on some
of the tested datasets. Yet, the implementation of such extensions required an important
study of the characteristics of the data and of how to exploit them in BKT, while DKT is a
general purpose framework able to automatically identify and handle such characteristics.
Finally, a few recent research works (Nakagawa et al., 2019, Sonkar et al., 2020, Yang,
Yang and Shen, Jian and Qu, Yanru and Liu, Yunfei and Wang, Kerong and Zhu, Yaoming
and Zhang, Weinan and Yu, Yong, 2020) pointed out an additional non-negligible limi-

2.1 – 2.1.2 Deep Learning Models for Knowledge Tracing 19

tation of DKT: it models students’ performance on questions only based on the previous
interactions of such students with the skills involved in the question. This means that sev-
eral questions involving the same set of skills, but with potentially very different levels of
complexity, will be treated in the same way by this model.

Since DKT was proposed in 2015 (Piech et al., 2015), many other deep models for
Knowledge Tracing were developed to improve the performance of the former and over-
come its limitations. A first set of new deep approaches were presented to improve the
temporal behavior of the model and to better represent the real learning process. On one
side, models such as Dynamic Key-Value Memory Network (DKVMN) (Zhang et al., 2017)
and Sequential Key-Value Memory Network (SKVMN) (Abdelrahman and Wang, 2019)
enable tracing the learning of more complex skills by augmenting LSTM with the addi-
tion of external memory units. On the other side, some approaches (Nagatani et al., 2019)
were proposed to try to capture students’ forgetting behavior to more accurately estimate
their current knowledge state.

At the same time, attention mechanisms started to be introduced into KT models to
capture the different contributions that each previously answered question could bring
to the prediction of the outcome of the current question. Attentive Knowledge Trac-
ing (AKT) (Ghosh et al., 2020), Self-Attentive Knowledge Tracing (SAKT) (Pandey and
Karypis, 2019), and Relation-Aware Self-Attention for Knowledge Tracing (RKT) (Pandey
and Srivastava, 2020) are only few examples of approaches which learn attention weights
associated to every knowledge item. This process allows the model to treat different ques-
tions differently even though they are related to the same set of skills.

Another research direction focuses on extending the existing Deep Knowledge Trac-
ing models, merely relying on the sequences of students’ interactions with learning ma-
terial, to take advantage of more complete and comprehensive information about the
knowledge items and components. Some of the most recent models (Nakagawa et al.,
2019, Tong et al., 2020, Yang, Yang and Shen, Jian and Qu, Yanru and Liu, Yunfei and
Wang, Kerong and Zhu, Yaoming and Zhang, Weinan and Yu, Yong, 2020) are able to
exploit a graph representation of the mutual interactions between skills and questions.
While Graph-based Knowledge Tracing (GKT) (Nakagawa et al., 2019) relies on a Graph
Neural Network (GNN) taking as input a graph representing the dependency relations
between skills, Graph-based Interaction Knowledge Tracing (GIKT) (Yang, Yang and
Shen, Jian and Qu, Yanru and Liu, Yunfei and Wang, Kerong and Zhu, Yaoming and
Zhang, Weinan and Yu, Yong, 2020) exploits a Graph Convolutional Network (GCN) fed
with a graph describing questions-skills relations. Structure-based Knowledge Tracing
(SKT) (Tong et al., 2020), instead, differs from GKT as it models not only the dependency
relations between skills but also similarities and prerequisites. Other deep Knowledge
Tracing models, like Exercise-Enhanced Recurrent Neural Network (EERNN) (Su et al.,
2018) are able to exploit the textual content of knowledge items by building a vector rep-
resentation of questions’ text that is after combined with the student interactions as input
to a LSTM.

Notwithstanding the progress made by Knowledge Tracing approaches based on Deep
Learning and the stunning performance these methods can achieve in specific use-cases,

20 CHAPTER 2 — State of the Art

there are still several open issues that need to be addressed. As reported by (Abdelrahman
et al., 2022, Liu et al., 2021), the impossibility of capturing and exploiting the complexity
of a real learning environment and the difficulty of interpreting the solutions produced by
these models are of major concern. In this Ph.D. thesis, we will try to tackle these issues
by relying on well-known models and techniques based on the use of Knowledge Graphs.

2.2 Knowledge Graphs
Knowledge Graphs have their roots in classical Artificial Intelligence and more pre-
cisely in the field of Knowledge Representation and Reasoning. Although their origin
can be traced back to the 1980s, Knowledge Graphs have raised to fame in 2012, when
Google released its Knowledge Graph1, a graph-structured representation of the informa-
tion that would bring search beyond simple string matching. Nevertheless, before Google
Knowledge Graph, there were already several projects aiming at extracting and publish-
ing graph-structured representation of the information on the Web, e.g. DBpedia (Bizer
et al., 2009) and Freebase (Bollacker et al., 2008), with the goal of building a landscape of
Linked Data (Bizer et al., 2011) and enabling Tim Berners-Lee’s vision of the Semantic
Web (Berners-Lee et al., 2001). Despite the success and widespread utilization, the con-
cept of Knowledge Graph is still blurry and a unanimously accepted definition has not yet
been formulated (Ehrlinger and Wöß, 2016). The most complete and precise definition so
far seems to be the following one, given in (Paulheim, 2017):

Definition 1 (Knowledge Graph). A knowledge graph (i) mainly describes real world
entities and their interrelations, organized in a graph, (ii) defines possible classes and
relations of entities in a schema, (iii) allows for potentially interrelating arbitrary entities
with each other and (iv) covers various topical domains.

In the context of this thesis, we will be concerned with the use of a specific type of
Knowledge Graphs following the RDF standard2, normally employed by the Semantic
Web community, and referred to as RDF Knowledge Graphs.

2.2.1 RDF Knowledge Graphs
The Resource Description Framework (RDF) is a framework for expressing informa-
tion about resources (Schreiber et al., 2014). The term "resource" can refer to anything,
including documents, people, physical objects, and abstract concepts. Every resource can
be described by using statements, also called triples, which consist of the following ele-
ments:

(subject, predicate, object). (2.7)

1https://blog.google/products/search/introducing-knowledge-graph-
things-not/

2https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

2.2 – 2.2.2 Knowledge Graphs Applications 21

Such a statement indicates that the resource subject has a relation of type predicate with
the resource object. From a graphical point of view, a triple can be represented as an edge
between two nodes, i.e. the resources, in a directed graph. Finally, the same resource,
identified through a unique identifier known as International Resource Identifier (IRI),
can be referenced by multiple triples. Figure 2.1 shows the Knowledge Graph corre-
sponding to the triples:

(Bob, is married to, Alice).
(Bob, has brother, Charlie).

Figure 2.1: Example of a RDF KG representation.

RDF Schema (RDFS)3 is a general-purpose language to define RDF vocabularies.
RDFS provides us with primitives to declare classes, i.e. types of resources, and proper-
ties, and to describe their characteristics. For example, with RDFS we can declare a class
human for Alice, Bob and Charlie and state that property is married to relates in-
stances of such a class.

RDFS is a rather simple language which might not be sufficient to define very precise
vocabularies covering a specific domain and requiring the formalization of advanced defi-
nitions for classes and properties. The Ontology Web Language (OWL)4 was developed
to fill this gap. OWL specifies a set of constructs to further describe properties, classes and
related constraints. For example, with OWL we can state that classes Man and Woman are
disjoint, as an instance of Man cannot be, at the same time, an instance of Woman.

Finally, once we have a Knowledge Graph representing our data according to the RDF
data model, we need a way to interrogate such Knowledge Graph. Such interrogations are
carried out by using SPARQL, the query language for RDF.

2.2.2 Knowledge Graphs Applications
Nowadays, KGs are used in a wide range of applications and contexts. The primary goal
of Knowledge Graphs is to enable the representation of heterogeneous information in a
machine understandable way, which allows machines to reason on the known data and in-
fer new knowledge. Thanks to these features, Knowledge Graphs proved to be extremely
efficient in tasks such as search, questions answering and recommendation systems (Ji

3https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
4https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/owl2-overview/

22 CHAPTER 2 — State of the Art

et al., 2021). For example, search engines can rely on Knowledge Graphs to answer
queries like "painter of mona lisa" simply by recognizing the resource "Mona Lisa" and
the relation "painted", whose subject is "Leonardo Da Vinci", instead of retrieving all the
documents on the Web that would match the terms "painter" and "Mona Lisa". More-
over, KGs are being increasingly employed for the representation and exploitation of
domain-specific knowledge (Abu-Salih, 2021): medicine (Huang et al., 2019, Rotmen-
sch et al., 2017), finance (Liu et al., 2019, Ruan et al., 2016), art (Castellano et al., 2022)
and tourism (Dadoun et al., 2019) are only some of the domains that start relying on KGs
for storing their data without compromising their semantics and exploit them for the im-
plementation of knowledge-aware applications, which integrate symbolic knowledge into
external computational models.

A common and fundamental step to be able to implement this kind of applications is
represented by the Knowledge Acquisition process. Knowledge Acquisition aims to con-
struct Knowledge Graphs from unstructured text and other structured or semistructured
sources, complete an existing Knowledge Graph, and discover and recognize entities and
relations (Ji et al., 2021). Knowledge acquisition involves mainly three types of tasks:

1. Knowledge Graph Completion, which aims to identify missing triples to add to
a Knowledge Graph. It includes the subtasks of Link Prediction, Entity Prediction
and Relation Prediction.

2. Entity Discovery, to complete the entity-related knowledge, involving Entity
Recognition, Entity Typing, Entity Disambiguation and Entity Alignment.

3. Relation Extraction, to extract additional relations from external text sources and
add them to the KG.

A significant boost to the use and exploitation of Knowledge Graphs was given by
the introduction of the Graph Embedding concept, that now represents a cornerstone
for both (i) the development of knowledge-aware applications, allowing the injection of
knowledge from the graph into external models; and (ii) the solution of tasks related to
Knowledge Acquisition.

2.2.3 Knowledge Graph Embeddings
The idea behind Knowledge Graph Embeddings, and more generally Graph Embeddings,
is to embed the elements in the graph, i.e. nodes and edges, into a continuous vector
space. The result of the embedding process is a low-dimensional vector that represents
each element in the graph and captures its most important features. In the last decade, a
plethora of graph embedding models have been developed. In the following, we describe
some of the most well-known ones, some of which have been employed in the work for
this thesis.

2.2 – 2.2.3 Knowledge Graph Embeddings 23

(a) TransE (b) TransH (c) TransR

Figure 2.2: Entities and relations embeddings (adapted from (Wang et al., 2017)).

Translational Distance Models. TransE (Bordes et al., 2013) is one of the first trans-
lation distance embedding models. This means that, in this model, relations are seen as
translations in the embedding space. In other words, given a triple (h, r, t) ∈ S where
S is the set of valid triples, h is the head or subject, r is the relation or predicate, and t
is the tail or object of the triple, the embedding of t should be closer to the embedding
of h plus a vector representing the embedding of r, as shown in Figure 2.2a. For each
triple (h, r, t) ∈ S, the embeddings of h, r and t, respectively indicated as h, r and t, are
computed by maximizing the score:

− ∥h + r − t∥ℓ1/ℓ2
(2.8)

At the same time, the model learns to minimize the score for triples that do not exist in the
graph. To do so, a set of corrupted triples S ′ is generated by replacing, for each existing
triple, its head and tail by a random entity, as follows:

S ′
(h,r,t) = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E} (2.9)

where E is the set of entities in the graph.
Despite its simplicity, TransE has proven to be very powerful, nevertheless it presents

important shortcomings. (Lin et al., 2015, Wang et al., 2014a) highlighted the difficulties
of TransE in dealing with 1-to-N, N-to-1 and N-to-N relations, and proposed extensions to
the model to overcome them. Indeed, given the formulation of the problem, all the entities
that appear as tails with the same head entity and relation will end up having very close
embeddings, even though they might be very different based on other relations. A way for
solving this issue would be to have different entity representations for each relation.

TransH (Wang et al., 2014a) implements this idea by embedding each relation r into
a different hyperplane and then enforcing the assumption that the projection of the tail
on such hyperplane (t⊥) must be close to the projection of the head (h⊥) on the same
hyperplane plus the relation vector (r). The scoring function becomes the following:

− ∥h⊥ + r − t⊥∥2
2 (2.10)

TransR (Lin et al., 2015), instead, embeds entities and relations in two different em-
bedding spaces of possibly different dimensions Rd and Rk. The scoring function remains

24 CHAPTER 2 — State of the Art

the same as in Eq. (2.10), but, in this case, (t⊥) and (h⊥) are projections of, respectively,
t and h in the space Rk, instead of on a hyperplane.

Another shortcoming of TransE is the impossibility of modeling symmetric relations.
Indeed, if r is symmetric, both (h, r, t) and (t, r, h) must hold, thus, we have:

h + r = t (2.11)
t + r = h (2.12)

which leads to h = t.
RotatE (Sun et al., 2019) aims to solve this issue by modeling relations as rotations in

the complex space instead of simple translations in the real space. Therefore, h, t, r ∈ Ck,
where the modulus of each element of r is constrained to 1. Finally, the RotatE score
function is:

− ∥h ◦ r − t∥ (2.13)

where ◦ is the element-wise product of two vectors.

Semantic Matching Models. RESCAL (Nickel et al., 2011) is an embedding model
relying on tensor factorization. For each relation r in the graph, a matrix (Mr) is defined
to represent pairwise interactions between the latent representations of all entities in the
graph. Therefore, the score for a triple (h, r, t) is given by:

hT Mrt (2.14)

where h and t are the embeddings of h and t in Rd and Mr ∈ Rd×d. This implies that,
for each relation, d2 parameters need to be learned, making the resolution of the problem
computationally too heavy.

To overcome this issue, DistMult (Yang et al., 2015) was proposed as a simplification
of RESCAL. In DistMult, each relation is modeled as a diagonal matrix Mr, whose di-
agonal is represented by a vector r ∈ Rd. This simplification reduces the parameters per
relation from d2 to d, but, at the same time, it drastically weakens the expressiveness of
the embeddings which can only model symmetric relations.

ComplEx (Trouillon et al., 2016) was developed to conjugate the simplicity of Dist-
Mult with the original expressive power of RESCAL. In ComplEx, embeddings are rep-
resented in the complex space, i.e. h, r, t ∈ Cd. In this case, the scoring function for a
triple (h, r, t) becomes:

Re(hT diag(r)t̄) (2.15)

where t̄ is the conjugate of t. This way, asymmetric relations can be represented since the
score of a triple differs based on the role of the involved entities, i.e. (h, r, t) will have a
different score from (t, r, h).

node2vec (Grover and Leskovec, 2016) is a general framework to learn continuous
feature representations for nodes in networks. This mean that the node2vec algorithm has
not specifically been conceived for Knowledge Graphs, instead it can be applied to any

2.2 – 2.2.3 Knowledge Graph Embeddings 25

kind of graph. Nevertheless, there are several works exploiting this model to compute
Knowledge Graph Embeddings (Palumbo et al., 2018). The algorithm behind this model
is based on the skip-gram architecture (Mikolov et al., 2013) and relies on the concept of
random walks to build flexible neighborhoods for each node in the graph.

Given a graph G = (V, E), where V is the set of vertices and E is the set of edges
of the graph, the goal is to learn a function f : V → Rd, that, for each vertex v ∈ V ,
computes a feature representation of dimension d. The first step to learn the function f is
the computation, for each node v ∈ V , of its neighborhood NS(v) according to a given
strategy S. Once the neighborhood is known, the function f is learned by maximizing
the log-probability of observing neighborhood NS(v) for each node v given its features
representation:

max
f

∑
v∈V

logPr(NS(v)|f(v)). (2.16)

The novelty introduced by node2vec lies in the possibility of personalizing the sampling
strategy S, by using parameterized random walks which enable the use of a mixture of
Breadth-First Sampling (BFS) and Depth-First Sampling (DFS).

RDF2vec (Ristoski and Paulheim, 2016) is an embedding model developed specifically
for RDF graphs. It relies on the use of neural language models to compute embeddings
for each vertex in the graph. Normally, language models exploit the word sequences in
a text to compute features representation for such words, assuming that closer words in
the text should have similar feature representations. To be able to apply this approach
to a Knowledge Graph it is necessary to convert the graph into a sequence of tokens.
Therefore, given a graph G = (V, E), for each vertex v ∈ V , a set of sequences Sv

starting from v needs to be generated. Two strategies are used to compute these sequences:
Graph Walks, which, given a depth d, lists all the possible walks starting from each vertex;
and Weisfeiler-Lehman Subtree RDF Graph Kernels (de Vries, 2013), which relies on
Weisfeiler-Lehman kernel (Shervashidze et al., 2011) to compute sequences of subtrees
for each vertex in the graph. Once the sequence of tokens is generated, the Continuous
Bag-Of-Words (CBOW) or Skip-Gram models of Word2vec (Mikolov et al., 2013) can
be directly applied to compute the feature representation.

Further embedding models with auxiliary information. Recently, several research
efforts are being made to extend embedding models by incorporating additional infor-
mation that is not normally exploited in a Knowledge Graph. Some works focused on
integrating Knowledge Graph Embeddings with textual information by combining graph
and text embeddings (Wang et al., 2014b, Xie et al., 2016), while others tried to introduce
image representations in the entity embedding space (Xie et al., 2017). Another interest-
ing research direction is the development of time-aware embedding models (Jiang et al.,
2016a,b) which are able to represent temporal dependency between triples keeping them
temporally consistent in the embedding space.

CHAPTER 3
Datasets

This chapter presents the datasets used for the experiments presented in this
thesis. It describes the SIDES project and the related OntoSIDES Knowledge
Graph, which has been the first test-bed for the proposed approaches. Addition-
ally, it introduces another well-known and widely used benchmarking dataset for
Knowledge Tracing solutions which will be used in the latest experiments: AS-
SISTments.

3.1 OntoSIDES . 29

3.2 ASSISTments . 32

27

3.1 – OntoSIDES 29

3.1 OntoSIDES
Since 2013, teachers of French medical schools have been using a common national plat-
form to create and give local evaluation tests on different devices. The Web-based plat-
form, named SIDES (Intelligent Health Education System1), allows to share these tests
among medical schools to build a national database for training, and supports the prepa-
ration of medical students for the ECNi (National Computerized Ranking Tests).

The French national project SIDES 3.0 started at the end of 2017 and aims to develop
a new version of the platform meant to offer user-centered intelligent services such as
individual monitoring, enriched dashboards, personalized recommendations, augmented
corrections for self-assessment, and a standardized digital environment for knowledge
sharing. To achieve these goals, the approach taken leverages Semantic Web models and
technologies to enrich and integrate these resources in RDF with OWL ontologies. As
part of the SIDES 3.0 project, existing data from the platform, such as annotated ques-
tions and students’ learning traces, were converted into structured data expressed in RDF
using the OntoSIDES OWL ontology (Palombi et al., 2019), and stored in the OntoSIDES
Knowledge Graph. We decided to rely on OntoSIDES as a first dataset to benchmark
our Knowledge Tracing solutions because it allows us to have an interesting real-world
use-case that is already making use of Knowledge Graph representation.

OntoSIDES (Palombi et al., 2019) is a Knowledge Graph that comprises a domain
ontology represented in OWL and a set of statements about the entities on the SIDES
platform, linking them to the ontology classes and properties. The OntoSIDES Knowledge
Graph was automatically generated from the relational database of the SIDES platform,
in order to populate the developed ontology.

Since its first release, OntoSIDES has been periodically updated to add data about the
newest students, questions and interactions, to fix errors in the automatically extracted
and converted data, and to refine the underlying ontology. Therefore, there exist several
versions of OntoSIDES. In this thesis, we will be using OntoSIDES version 82.

The version of the OntoSIDES ontology employed in this work contains 79 classes
and 45 properties, mainly describing universities, users (students, professors, and admin-
istrative staff), tests, questions and answers. The ontology is organized in a hierarchy of
classes, whose root is class sides:sides_entity. Among its sub-classes, the most
relevant for the description of the learning environment are the following ones:

Content : all the educational resources available in SIDES are instances of sub-classes
of sides:content. Among these, the most interesting class is sides:question
which is further specialized into 4 sub-classes describing the possible types of
questions: sides:QUA, for multiple-choice questions with a single correct an-
swer, sides:QMA for multiple-choice questions with multiple correct answers,
sides:TCS for script concordance test and sides:QSOA for questions with
short open answer. Among the sub-classes of sides:content, there is also

1Système Intelligent d’Enseignement en Santé. http://side-sante.org
2http://ontosides8.ontosides.network/sparql

http://side-sante.org
http://ontosides8.ontosides.network/sparql

30 CHAPTER 3 — Datasets

sides:test to type tests taken by the students, sides:proposal_of_answer
to type the possible choices to a multiple-choice question, sides:answer to
type the answers given by students, and sides:media, further specialized into
sides:picture and sides:video, to type multimedia content possibly present
in questions.

Person : the class sides:person gathers all the human resources involved into the
learning process. It has 3 sub-classes for students (sides:student), teachers
(sides:teacher) and administrative staff sides:administrative_agent.

Referential entity : the class sides:referential_entity is used to type well-
known and commonly established entities in medical education, specialized by
the sub-class of medical specialties sides:speciality, those of learning ob-
jectives and sub-objectives (respectively sides:ECN_learning_objective

and sides:ECN_learning_sub_objective), and cross-specialty topics
sides:cross_knowledge_entity.

Institute : the class sides:institute is used for all the educational in-
stitutes and is specialized in two sub-classes: sides:university and
sides:training_institute.

Figures 3.1 to 3.3 depict how instances of these entities are related to each
other and show the most relevant properties in the ontology. Figure 3.1 depicts
the RDF graph representing an instance of a question (q666472) with multiple
possible answers (QMA). A question is linked to the possible options of answers
by property has_for_proposal_of_answer, to the related medical specialty (in
this case infectious_disease) through is_linked_to_medical_speciality,
and to the topics treated by the question (ECN_learning_objective) through
is_linked_to_ECN_referential_entity. Other useful nodes further de-
scribe questions: has_for_textual_content gives the text of a question, and
has_multimedia relates a question to available multimedia content (in this case
a picture). It is worth pointing out that questions are normally organized in
evaluations that group sets of questions related to similar topics or concerning the
same clinical case. Moreover, the question described in Figure 3.1 is only a simplified
example, as the complete description of a question can involve more predicates and
objects. In particular, questions are very often linked to multiple specialties and learning
objectives, they present more than two answer options and can include multiple multime-
dia contents. Additionally, they are often related to the user and university who created
the question.

Figure 3.2 shows the RDF description of a student in OntoSIDES. The representation
of a student is much more simple than the one of a question. The known personal infor-
mation is limited to the previous and current registrations (enrolment) of the student
in the French medical academic system. The enrollment description in Figure 3.2 con-
cerns the registration of student stu27880 (property correspond_to_student) to the

3.2 – OntoSIDES 31

Figure 3.1: RDF graph describing an instance of a question in OntoSIDES. Blue bubbles
are classes, white bubbles are class instances and rectangles are literal values.

sixth year (training med_A6) of Université de Toulouse (university_toulouse). For
each registration of any student to any training (or year of study) in any university, a new
instance of enrolment is created.

Finally, Figure 3.3 depicts the RDF graph for an answer given by a student.
For each attempt of a student to a question, an instance of class answer is cre-
ated. This answer is directly linked to the student through property done_by and
to the question through correspond_to_question. An answer is linked to mul-
tiple instances of action_to_answer, each one representing the action of se-
lecting a single proposal_of_answer for the question. The answer described
in Figure 3.3 is an attempt of student stu27880 to answer question q666472.
While answering, the student has selected (has_wrongly_ticked) the wrong
option sides:prop3017739. The instances of sides:action_to_answer are
used to compute the number of misticked and non-ticked proposals, indicated
respectively as objects of properties has_for_number_of_wrong_tick and
has_for_number_of_missed_right_tick, and then the level of correctness of
the given answer, object of property has_for_result. Lastly, the information about the
timestamp of the answer is given as the object of property has_for_timestamp.

OntoSIDES version 8 includes the description of 569,762,878 answers to 1,797,180
questions related to 31 medical specialties and given by 173,533 students. In total the
Knowledge Graph contains more than 9.2 billion triples.

32 CHAPTER 3 — Datasets

Figure 3.2: RDF graph describing an instance of a student in OntoSIDES. Blue bubbles
are classes, white bubbles are class instances and rectangles are literal values.

3.2 ASSISTments
ASSISTments 3 is an online platform that supports math learning in primary and middle
schools, by providing feedback assistance to students and assessment data to teachers. The
research work carried out to improve the platform is the subject of numerous scientific
publications and, therefore, datasets extracted from the learning logs of ASSISTments
users are often anonymized and made publicly available4. Given the scarce availability of
public datasets describing educational data, the ASSISTments data became a fundamental
resource for the AIED community and the de facto benchmarking datasets for any new
Knowledge Tracing approach.

The first version of the ASSISTments was published in 2009 (Feng et al., 2009) and
included two separated datasets, skill-builder and non-skill-builder which differ for the
set of problems included in the logs. More precisely, the skill-builder dataset deals with
problems used for skill-mastering tests in which problems involving a same skill are pre-
sented to learners till they achieve to get three correct answers in a row. After that, the
involved skill is considered to be mastered and no problem requiring such skill is further
presented to the learners. Further versions of ASSISTments data have been published in
2013, 2015 and 2017.

To be able to compare our results with state-of-the-art Knowledge Tracing approaches,
we used, for the experiments reported in this thesis, the ASSISTments 2009-2010 skill-
builder dataset, as it is the most widely employed in the literature for testing novel Knowl-
edge Tracing models. This dataset contains the log of the users as tabular data including
information about students’ answers, problems, skills, tests, classes and teachers. Each
record in the dataset corresponds to an attempt of a user to a problem and it is character-
ized by several attributes reporting information about:

3https://new.assistments.org
4https://sites.google.com/site/assistmentsdata/datasets

https://new.assistments.org
https://sites.google.com/site/assistmentsdata/datasets

3.2 – ASSISTments 33

Figure 3.3: RDF graph describing an instance of an answer in OntoSIDES. Blue bubbles
are classes, white bubbles are class instances and rectangles are literal values.

students: id of the user who answered the problem;

problems: including the id of the problem, its type, which can be multiple-choice, fill-in
or algebra problem, names and identifiers of the skills required for the resolution of
the problem;

answers: including the result of the answer, i.e. correct or incorrect, the response time,
the number of hints used to solve the problem, and the text of the answer (for algebra
and fill-in problems) or the id of the selected option (for multiple-choice problems);

previous students’ history: number of previous students’ attempts to problems involv-
ing the same skill;

assignments: including assignment’s id, ids of the teacher who gave the assignment and
of the school and the class to which the assignment was given.

This dataset contains, in total, 346.860 attempts to 26.688 problems made by 4.217 stu-
dents. Additionally, there are 123 different skills required for the resolution of the prob-
lems, a total of 3.521 assignments given by 153 teachers to 250 classes in 75 different
schools. Table 3.1 shows a comparison of the two datasets in terms of number of involved
entities. Please note that, for OntoSIDES, skills correspond to learning objectives and
sub-objectives.

To be used in the present work, the ASSISTments tabular data need to be modeled as a
RDF Knowledge Graph. The design of an optimal and complete RDF graph describing the
whole ASSISTments learning environment requires a deep knowledge of all the elements
involved in the platform and a comprehensive understanding of their interactions, which
can not be easily gained through the public available resources. Therefore, we will limit
our RDF model of the ASSISTments environment to the knowledge useful for solving

34 CHAPTER 3 — Datasets

Table 3.1: Statistics of the datasets.

SIDES ASSISTments
answers 569.762.878 346.860
students 173.533 4.217
questions 1.797.180 26.688
skills 1.283 123

the Knowledge Tracing task, and we will optimize such model to improve the quality of
the results with respect to employed Knowledge Tracing resolution approach. A Knowl-
edge Graph partially representing the ASSISTments data is presented and described in
Chapter 8.

PART II

Contributions

CHAPTER 4
A Knowledge Graph

Enhanced Learner
Model to Predict

Outcomes to Questions
This chapter presents our fist attempt to conjugate Knowledge Graphs and Deep
Learning for solving the Knowledge Tracing task. In this contribution, we fo-
cus on the SIDES use-case and we propose a model to predict the students’
outcomes to medical questions, by exploiting the structured and semantically
annotated knowledge stored by the OntoSIDES Knowledge Graph. We start by
extending the well-know deep Knowledge Tracing model DeepFM by injecting
into such model knowledge extracted from the OntoSIDES Knowledge Graph.
The novelty of the proposed approach lies into the addition, as input features,
of Graph Embeddings representing interesting nodes of the OntoSIDES Knowl-
edge Graph. The analysis carried out to identify the most relevant features for
this model shows that Graph Embeddings of certain nodes bear meaningful in-
formation that can help solve the Knowledge Tracing task. This chapter is based
on the work published at the International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW2020) (Ettorre et al., 2020).

37

38
CHAPTER 4 — A Knowledge Graph Enhanced Learner Model to Predict Outcomes to

Questions

4.1 Introduction . 39

4.2 Features Selected or Computed from OntoSIDES to
Learn a Student Model 40

4.2.1 Basic Features . 40

4.2.2 Calculated Features Conveying a Temporal Dimension 40

4.2.3 Text Embeddings of Questions 41

4.2.4 Knowledge Graph Embeddings of Questions, An-
swers, and Users 41

4.3 Empirical Determination of a Learner Model 42

4.3.1 Experimental Settings 42

4.3.1.1 Training Data. 42

4.3.1.2 Extracted Subgraph. 43

4.3.1.3 Candidate Models. 43

4.3.1.4 Classification Algorithm. 44

4.3.1.5 Hardware Setup. 44

4.3.1.6 Temporality-Aware Cross-Validation. . . . 44

4.3.1.7 Evaluation Metrics. 45

4.3.2 Results and Discussion 45

4.4 Conclusions . 48

4.2 – Introduction 39

4.1 Introduction
As explained in Chapters 1 and 2, the limitations of Deep Learning approaches for Knowl-
edge Tracing call for the necessity to seek new research directions exploiting other forms
of Artificial Intelligence. In the context of this thesis, we explore the use of Knowledge
Graphs to develop better performing, more comprehensive, reusable and explainable mod-
els for Knowledge Tracing. To this end, we start tackling the first research question pre-
sented in Section 1.2:

RQ1 : How can we exploit Knowledge Representation for Knowledge Tracing purposes?

Since a Knowledge Graph representing the learning environment is already available
in the context of the SIDES project, we decided to focus on this use-case as a first test-
bed for our hybrid AI Knowledge Tracing models. Therefore, our goal, in this chapter, is
to develop a model for the prediction of students’ outcomes to questions on the SIDES
platform, which exploits the existing OntoSIDES Knowledge Graph.

More precisely, we seek an answer to the following use-case specific research ques-
tions:

• How to model students’ learning on the SIDES platform to predict their outcomes
to medical questions?

• Which set of features should be extracted from the OntoSIDES Knowledge Graph
and considered for learning the student model?

• Can taking into account the Knowledge Graph structure of OntoSIDES improve the
performance of the prediction of students’ answers to questions?

To answer these questions, we present (1) our model to predict the outcome of stu-
dents’ answers to questions, and (2) an evaluation of our model focused on the pediatrics
and cardiovascular specialties.

After thoroughly reviewing the state-of-the-art of Knowledge Tracing techniques (see
Section 2.1), we decided to rely on a well-known deep learning model for Knowledge
Tracing: Deep Knowledge Tracing Machines (Vie, 2018). This choice is motivated by two
factors: (i) the high performance that this model shows in the resolution of the Knowl-
edge Tracing task and (ii) the simplicity of extending the basic model with additional
customized input features, which allow us to easily inject and exploit the knowledge de-
scribed in the OntoSIDES Knowledge Graph. Through experimentation and evaluation,
we validated a new model that makes the most accurate predictions by considering these
features as input of a Deep Knowledge Tracing Machine.

The remainder of this chapter is organized as follows. The features extracted or com-
puted from the OntoSIDES Knowledge Graph to model students’ learning are detailed in
Section 4.2. In Section 4.3, we present the experiments performed in order to define our
model, and we analyze the results of these experiments. Finally, conclusions are presented
in Section 4.4.

40
CHAPTER 4 — A Knowledge Graph Enhanced Learner Model to Predict Outcomes to

Questions

4.2 Features Selected or Computed from OntoSIDES to
Learn a Student Model

Based on the OntoSIDES Knowledge Graph, whose structure and content have been
previously described in Chapter 3, our aim is to predict the outcome of a student to a
question, that is, the value related to an instance of class sides:answer by property
sides:has_for_result, which is equal to 1 if the student answered the question cor-
rectly, and 0 otherwise. Therefore this amounts to a binary classification.

In this section, we describe the candidate features that we selected or computed from
the OntoSIDES Knowledge Graph to build a student model. We hypothesize that these
features may improve the quality of the binary classification carried out by the algorithm
to predict a student’s outcome to a question. In section 4.3.2, we draw some conclusions
with respect to this hypothesis based on the results of our experiments.

4.2.1 Basic Features
A first set of basic (or raw) features concerns the entities that can be extracted by simply
querying the OntoSIDES Knowledge Graph, without further processing. These features
are as follows:

student: the identifier of a student who answers a question, specifically, the URI of an
instance of class sides:student related to an instance of class sides:answer
by property sides:done_by.

answer: the identifier of an answer given by a student, that is, the URI of an instance of
class sides:answer.

question: the identifier of a question answered by a student, that is, the URI of an instance
of class sides:question.

timestamp: the date and time when a student answered a question, that is, the value re-
lated to an instance of sides:answer by property sides:has_for_timestamp.

4.2.2 Calculated Features Conveying a Temporal Dimension
A set of additional features is computed from the above described raw features. They
are meant to provide insight into students’ level of knowledge over time, difficulty level
of questions and number of prior attempts that a student carried out to answer a ques-
tion. Together, they convey a temporal dimension to the model that is richer than the raw
timestamp. These features are as follows:

wins: given a question and a student, it represents the number of times that this student
has previously answered that question correctly.

4.2 – 4.2.3 Text Embeddings of Questions 41

fails: given a question and a student, it represents the number of times that this student
has previously answered that question incorrectly.

attempts: wins + fails.

question_difficulty: for a given question, it is an estimation of its difficulty and assumes
values between 0 and 1, 1 being the highest difficulty. It is computed by dividing
the number of incorrect answers by the number of answers given to that question
by all the students in the OntoSIDES KG.

static_student_ability: a static estimate of the student’s overall ability, valued between
0 and 1, 1 being the highest ability. It is computed as the student’s total number of
correct answers divided by the student’s total number of answers.

progressive_student_ability: this feature follows the evolution of the student’s ability
over time. It draws her learning curve. For each attempt, it is computed as the ratio
between the number of correct answers and the number of all the answers given by
the student up to that moment. At the beginning of the training, the student’s ratio
of correct answers is likely to be low to medium. Then, in time, this ratio increases,
reflecting the growth of her level of knowledge and expertise.

4.2.3 Text Embeddings of Questions
We hypothesize that the questions’ text may provide valuable information to predict the
answer of a student to a question. To test this hypothesis, we queried the OntoSIDES
Knowledge Graph to extract the text of the questions, i.e. the value of the property
sides:has_for_textual_content, and we computed their vector representation by
using the state-of-the-art word embedding algorithm fastText (Bojanowski et al., 2017).
We used the flair framework (Akbik et al., 2018) implementation which provides embed-
dings pre-trained with the French chapter of Wikipedia. Applying this approach to the
text of each question yields vectors of 300 dimensions. Later on, we refer to this set of
vectors as questions_temb.

4.2.4 Knowledge Graph Embeddings of Questions, Answers, and
Users

Lastly, we hypothesize that the OntoSIDES graph topology may convey valuable knowl-
edge to predict the answer of a student to a question. To test this hypothesis, we used
the state-of-the-art node2vec algorithm (Grover and Leskovec, 2016) to construct vector
representations of the Knowledge Graph nodes. To do this, we used the SNAP project im-
plementation (Leskovec and Sosič, 2016)1 of node2vec to extract vector representations
of dimension 100 for each of the nodes in our training dataset (described in Section 4.3).

1http://snap.stanford.edu/index.html

http://snap.stanford.edu/index.html

42
CHAPTER 4 — A Knowledge Graph Enhanced Learner Model to Predict Outcomes to

Questions

Among these embeddings, we selected and kept only the ones corresponding to nodes
of type answer, question and student. In the following, we refer to these vectors as an-
swers_gemb, questions_gemb and students_gemb respectively.

4.3 Empirical Determination of a Learner Model
This section describes a comparative evaluation of several student models, that we carried
out to determine which of them produces the best prediction of the students’ answers to
questions. Each model relies on a specific set of features selected among those described
in Section 4.2.

4.3.1 Experimental Settings
4.3.1.1 Training Data.

To evaluate the prediction performance of the proposed models we trained and tested them
on two different sub-graphs of the OntoSIDES Knowledge Graph. We decided to apply
our approach for modeling separately the training of students in two medical specialties:
pediatrics and cardiovascular. We chose to model each specialty independently because
it is reasonable to assume that the preparation of a student on a given specialty does not
influence their performance in any other specialty, as the involved topics are generally
very different. For example, a student can be very good in pediatrics and, at the same
time, have very poor performance in cardiology. We selected pediatrics and cardiovascular
as medical specialties because they are the ones with the highest number of recorded
students’ answers, having respectively 10.474.170 and 8.187.346 answers.

Nevertheless, the size of the retrieved subgraphs would be too large to allow the train-
ing of the proposed models within a reasonable amount of time. Therefore, we decided
to train and test our approach on a subset of answers of each specialty including the most
recent attempts made by the most active students, i.e. students who answered at least 100
questions in the selected medical specialty. Finally, we obtained the two datasets described
in Table 4.1.

Pediatrics Cardiovascular

Number of answers 73.080 72.804
Number of questions 669 679
Number of students 1.136 1.034
First answer on 17-03-2019 27-01-2019
Last answer on 23-03-2020 22-03-2020
Percentage of correct answers 57,4% 56,9%
Percentage of incorrect answers 42,6% 43,1%

Table 4.1: Datasets characteristics

4.3 – 4.3.1 Experimental Settings 43

4.3.1.2 Extracted Subgraph.

To be able to compute the Graph Embeddings corresponding to the nodes of answers,
students and questions, we need to extract from OntoSIDES two subgraphs describing
the selected pediatrics and the cardiovascular subsets. To do so, for each answer in the
dataset, we extracted its neighborhood, using the SPARQL query shown in Listing 4.1.

PREFIX sides: <http://www.side-sante.fr/sides#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {
sides:answer1234 ?answerP ?answerO .
?answerO ?answerOP ?answerOO .
?answerOO ?answerOOP ?answerOOO .
?answerOOO ?answerOOOP ?answerOOOO .
?s ?p sides:answer1234 .

}
WHERE {

sides:answer1234 ?answerP ?answerO .
?answerO ?answerOP ?answerOO .
?answerOO ?answerOOP ?answerOOO .
?answerOOO ?answerOOOP ?answerOOOO .
OPTIONAL {?s ?p sides:answer1234} .
filter(!isLiteral(?answerOOOO))

}

Listing 4.1: Query to retrieve the subgraph describing a single answer in OntoSIDES

Then, we merged all the extracted answer subgraphs into a single Knowledge Graph
describing the whole dataset, including nodes representing students, questions, special-
ties, learning objectives and universities. As it can be seen from Listing 4.1, the retrieved
Knowledge Graph does not contain any literal.

4.3.1.3 Candidate Models.

Relying on the benchmarking approach presented in (Vie, 2018), we defined 14 different
models by combining the features described in section 4.2, in order to comparatively
evaluate them and determine which one allows the classification algorithms to obtain the
best prediction scores.

Each model is identified by a label whose letters each denotes a feature: s: students
identifiers; q: questions identifiers; a: number of attempts; w: number of wins; f: number
of fails; d: question_difficulty; b: static_student_ability; p: progressive_student_ability;
T: questions_temb; Q: questions_gemb; S: students_gemb; R: answers_gemb. With this
notation, the candidate models are as follows.

The first three models correspond to state-of-the-art models and will serve as a base-
line for richer models:

sq is equivalent to the 1PL IRT model (Rasch, 1960) when used with the Logistic Regres-
sion algorithm. Used with the FM algorithm configured with a “number of factors

44
CHAPTER 4 — A Knowledge Graph Enhanced Learner Model to Predict Outcomes to

Questions

used for pairwise interactions” greater than 0 (d>20), this model is equivalent to
the mIRT model (Reckase, 1997).

sqa is inspired by the AFM model (Cen et al., 2006) as it takes into account the number
of previous attempts but not the skills which is not among our features.

sqawf is inspired by the AFM and PFA (Pavlik et al., 2009) models as it takes into account
the number of previous attempts and the distinction between correct and incorrect
attempts.

Additionally, we consider the following models that test other possible features com-
binations, notably involving text and graph embeddings: sqawfd, sqawfb, sqawfdbp,
sqawfdbpT, sqawfdbpR, sqawfdbpQ, sqawfdbpS, sqawfdbpRQ, sqawfdbpRS,
sqawfdbpQS, and sqawfdbpRQS.

4.3.1.4 Classification Algorithm.

For the computation of the DeepFM classification algorithm, we used the DeepCTR2

Python library (version 0.6.0). The results reported hereafter are obtained using 2 hidden
layers with 256 units each, L2 regularizers at 0.0001, ReLu as activation function for the
neural network and Adam optimizer for the learning rate.

4.3.1.5 Hardware Setup.

We used a Asus ESC8000G4 GPU node equipped with 8 GTX 1080 Ti GPU cards, 2 Xeon
SP Gold 5115 CPUs and 256 GB of RAM.

4.3.1.6 Temporality-Aware Cross-Validation.

The performance of each model was evaluated by means of the student-based 5-fold
cross-validation technique, in order to take into account the temporal dimension of the
knowledge in the graph. Specifically, the list of students included in our dataset is split
into five folds; four of them are directly used as training data while the remaining one
is split again in two parts following the chronological order of answers: the first half is
included into the training data while the last half is used as test set. The rationale behind
this splitting method is as follows: for each fold, we train the model using the complete
learning path of four fifths of the students, thus learning the entire trend of the students’
knowledge acquisition, and learning information about all the questions. Then, using as
training data the partial learning traces of the remaining students ensures that the training
involves all the students. But by testing on their latest answers, we approach the real use
case, in which we want to forecast future answers based on the training history of the
student.

2https://github.com/shenweichen/DeepCTR

https://github.com/shenweichen/DeepCTR

4.3 – 4.3.2 Results and Discussion 45

4.3.1.7 Evaluation Metrics.

We evaluate the average of the results obtained on each fold in terms of Accuracy (ACC)
which measures the percentage of correct predictions out of the total number of predic-
tions, Area Under the ROC Curve (AUC) which measures the probability of correctness
of each answer, F1-scores and execution time.

4.3.2 Results and Discussion
Table 4.2 shows the results of the evaluation of each model on the pediatrics sub-graph,
using the DeepFM algorithm. Columns “F1-score (pos.)” and “F1-score (neg.)” report
the F1-score for the prediction of positive answers and negative answers respectively. The
best results were obtained with the sqawfdbpRQ model (students, questions, attempts,
wins, fails, question difficulty, student abilities (static and progressive), answers_gemb,
and questions_gemb) (AUC=0.731, ACC=0.739).

Model ACC AUC F1-score (neg.) F1-score (pos.) Time (mm:ss)

sq 0.694 0.694 0.663 0.718 00:48
sqa 0.702 0.697 0.658 0.734 00:53
sqawf 0.703 0.696 0.653 0.740 01:04
sqawfd 0.706 0.688 0.623 0.757 01:00
sqawfdb 0.711 0.698 0.641 0.758 00:50
sqawfdbp 0.713 0.704 0.657 0.753 00:58
sqawfdbpT 0.706 0.695 0.646 0.747 04:55
sqawfdbpR 0.726 0.717 0.673 0.763 02:50
sqawfdbpQ 0.712 0.699 0.644 0.757 02:13
sqawfdbpS 0.712 0.700 0.648 0.755 01:52
sqawfdbpRQ 0.739 0.731 0.688 0.775 03:05
sqawfdbpRS 0.705 0.690 0.633 0.752 02:57
sqawfdbpQS 0.706 0.690 0.629 0.753 02:51
sqawfdbpRQS 0.738 0.730 0.687 0.775 04:52

Table 4.2: Results for the pediatrics sub-graph. Models with the highest AUC are in bold.

Beyond this overall result, comparing the scores obtained with each of the models can
help us point out the contribution (positive, neutral or negative) of some of the features to
the predictions:

question difficulty, student abilities: When comparing the results obtained with mod-
els sqawf and sqawfdbp, we notice that adding the features question_difficulty,
static_student_ability and progressive_student_ability, increases both the ACC and
AUC by approximately 1%.

46
CHAPTER 4 — A Knowledge Graph Enhanced Learner Model to Predict Outcomes to

Questions

questions_temb: By comparing models sqawfdbp and sqawfdbpT, we notice that the
results are slightly worse when including feature questions_temb: ACC and AUC
both decrease by almost 1%. This result is somehow counter-intuitive and may be
related to the specificity and variety of medical vocabulary. To investigate further,
additional experiments shall test the impact on word embeddings of techniques
such as negative sampling, sub-sampling of common words or pre-processing to
rewrite common medical expressions into single tokens. Nevertheless, the focus of
our work is the exploitation of Knowledge Graphs and Graph Embeddings. There-
fore, although potentially interesting, we will not further explore this direction.

Let us also underline that including this feature substantially increases the execution
time of the classification algorithm.

answers_gemb: Comparing the results obtained with models sqawfdbp and sqawfdbpR
shows that this feature yields an improvement of 1.3% in terms of AUC and ACC.
Also, a higher F1-score of 0.673 and 0.763 was obtained for the negative and pos-
itive responses respectively. Execution time remained low at 3 minutes approxi-
mately.

questions_gemb: When comparing the results obtained with models sqawfdbp and
sqawfdbpQ, we observe that this feature has almost no impact on the prediction
results in terms of ACC, AUC, while the F1-score was reduced for the negative
class (-1.3%) and slightly increased for the positive one. Again, this overall neg-
ligible impact can seem counter-intuitive, in particular when considering that the
embeddings of the answers have a significant positive impact.

students_gemb: Similarly, feature students_gemb seems to have no effect on the quality
of the prediction. The values of ACC, AUC and F1-score are very close to those
obtained when using questions_gemb.

Although the contribution of feature questions_gemb may seem negligible when it is
considered alone, and, for some metrics, even negative, the best performance in terms
of ACC, AUC and F1-scores is obtained when this feature is joined with feature an-
swers_gemb. Indeed, the best model sqawfdbpRQ presents an ACC and AUC around
73-74%, with a non-negligible increment (about 4.5%) when compared with the basic
model (sq). This could be explained by the fact that our model captures high-degree inter-
actions between some features, interactions that, in some cases, turn out to be much more
meaningful than the single features themselves.

It is also worth pointing out the constant and consistent difference between the positive
and the negative F1-score, with the first one being always 6-9% higher than the last one.
The reason for this difference can probably be found in the balancing of the dataset with
respect to the target variable. As shown in Table 4.1, the pediatrics subset, as well as the
cardiovascular one, is slightly unbalanced, including a higher number of correct answers
than incorrect ones.

4.4 – 4.3.2 Results and Discussion 47

Finally, we observe that, even with this small dataset, the quality of the prediction
is fairly good. This suggests that, in the production environment of the SIDES platform,
there shall be no need for training the algorithm on a much larger dataset in order to
achieve good performance in the prediction task.

In order to validate our model and assess its flexibility with respect to the considered
medical specialty, we trained and tested the DeepFM learning algorithm on the sub-graph
related to the cardiovascular answers, extracted as described in Section 4.3.1.1.

Model ACC AUC F1-score (neg.) F1-score (pos.) Time (mm:ss)

sq 0.694 0.688 0.650 0.723 00:37
sqa 0.708 0.699 0.657 0.741 00:43
sqawf 0.717 0.708 0.666 0.751 00:55
sqawfd 0.720 0.712 0.671 0.754 00:54
sqawfdb 0.722 0.714 0.672 0.756 00:53
sqawfdbp 0.727 0.718 0.677 0.762 00:52
sqawfdbpT 0.721 0.712 0.672 0.754 04:36
sqawfdbpR 0.727 0.720 0.679 0.761 02:22
sqawfdbpQ 0.722 0.715 0.675 0.756 02:05
sqawfdbpS 0.723 0.715 0.671 0.759 01:58
sqawfdbpRQ 0.770 0.762 0.800 0.770 04:29
sqawfdbpRS 0.718 0.710 0.669 0.753 02:39
sqawfdbpQS 0.717 0.702 0.651 0.758 02:40
sqawfdbpRQS 0.736 0.725 0.677 0.775 04:49

Table 4.3: Results for the cardiovascular sub-graph. Models with the highest AUC are in
bold.

As it can be seen in Table 4.3, the results for this new specialty are consistent and
confirm what we observed earlier for the pediatrics sub-graph. As for the previous exper-
iments, the best model appears to be sqawfdbpRQ, including basic and computed features
and graph embeddings of answers and questions. It produces the highest values of ACC
(0.770), AUC (0.762) and F1-score (0.800 and 0.770 for positive and negative classes re-
spectively). The new results confirm the negative impact of the questions_temb feature, as
can be seen by comparing the models sqawfdbp and sqawfdbpT. They also confirm the im-
portance of the interactions between answers and questions graph embeddings. Indeed, in
line with the previous case, we observe that, when used alone, the feature questions_gemb
has no impact on the accuracy and AUC of the model, while when used together with an-
swers_gemb, the quality of the prediction is improved.

To sum up, our experiments show that the best student model combines a set of ba-
sic features obtained by directly querying the OntoSIDES Knowledge Graph– questions,
attempts, wins, fails –, a set of additional features computed based on the basic ones –
question difficulty, student ability (static and progressive) –, and the vector representa-
tions of the answers and questions nodes in the OntoSIDES Knowledge Graph.

48
CHAPTER 4 — A Knowledge Graph Enhanced Learner Model to Predict Outcomes to

Questions

4.4 Conclusions
In this chapter, we have presented our first step towards developing a hybrid approach for
Knowledge Tracing able to exploit the expressive power of Knowledge Graphs. We eval-
uated and compared several models to predict the outcome of medical students’ answers
to questions in pediatrics and cardiovascular specialties, on the SIDES platform. We have
identified as the best model for our task the one relying on a rich set of features including
state-of-the-art features such as wins, fails, questions’ difficulties and students’ abilities;
and the structural knowledge provided by the OntoSIDES Knowledge Graph. In particu-
lar, we have shown that considering the vector representations of answers and questions
nodes had a positive impact on the prediction results: when these two features are used
in conjunction, the accuracy and AUC measures of the predictions made by the DeepFM
algorithm improved significantly.

CHAPTER 5
Diving into Knowledge

Graph Embeddings
In this chapter, we dive deep into the analysis of Graph Embeddings and we study
their behavior and their influence on the performance of our predictive model to
understand when and why they are useful to improve the quality of the predictions
provided by DeepFM. We investigate how changes in the embedding model, its
hyper-parameters and in the content of the initial Knowledge Graph affect the
final DeepFM results and we identify the best settings for the embedding process
and the most important information represented in the Knowledge Graph which
is exploited for the prediction.

5.1 Introduction . 51

5.2 Tuning node2vec . 51

5.2.1 Random Walks Length 52

5.2.2 Embeddings Dimension 53

5.2.3 Undirected vs. Directed Graph 54

5.3 Further Exploring Graph Embedding Models 56

5.4 Identifying Meaningful Information 58

5.5 Conclusions . 60

49

5.2 – Introduction 51

5.1 Introduction
In the previous chapter, we saw that extending DeepFM with Graph Embeddings of
answers and questions’ nodes improves the quality of the predictive model, meaning
that such vector representations can embed meaningful information from the Knowledge
Graph. Nevertheless, to provide comprehensive answers to our initial research questions,
we need to go deeper with our analysis to be able to evaluate the real impact of the in-
troduction of Knowledge Graphs for the resolution of the Knowledge Tracing task and
discover the reasons behind such an impact. More precisely, to better comprehend the
behavior of our model, explain the predictions it outputs, and assess its generalization
capabilities, it is essential to understand when Graph Embeddings are useful to improve
the performance of our predictive model and why they can bring such an improvement.
In other words, we need to identify what meaningful information they are able to capture
from the Knowledge Graph and how it is encoded during the embedding process to be
further exploited by DeepFM. This requires not only to analyze the content of the original
Knowledge Graph to detect the relevant knowledge it contains, but also to dive deeper into
the study of the Graph Embeddings to examine how changes in the embedding process
affect the performance of the predictive model.

Indeed, the information that embeddings are able to capture is strongly influenced by
several factors including the nature and parameters of the employed embedding model.
As explained in Section 2.2.3, different embedding algorithms tend to capture different
characteristics of the elements in the Knowledge Graph, e.g. TransE cannot model sym-
metries between relations while RotatE can, as explained in Section 2.2.3. At the same
time, many models, such as node2vec, can be parametrized to personalize the learned
representations.

In the following, we first use the node2vec model designed for any kind of graph, and
explore a large variety of hyper-parameters. Then, we move to other embeddings models
more specifically designed for Knowledge Graphs such as TransE, RESCAL, RDF2VEC,
etc. The goal is to identify the settings that produce the most meaningful Graph Embed-
dings. Additionally, we construct and exploit several Knowledge Graphs representing the
same subset of the SIDES learning environment, but differing by the information details
they include, with the final goal of identifying the relevant knowledge included in the
Knowledge Graph. All the experiments in this chapter are executed on the same subset of
students’ answers in pediatrics introduced in Chapter 4 and, when not otherwise specified,
use the same cross-validation technique and hyper-parameters settings.

5.2 Tuning node2vec
In this section, we explore different hyper-parameters settings to identify the ones that
generate the best performing embeddings for our predictive model. To do so, we compute
embeddings using the node2vec algorithm with varying random walks length, embed-
dings dimension, and settings for the orientation of the graph, i.e. directed vs undirected.

52 CHAPTER 5 — Diving into Knowledge Graph Embeddings

0,680

0,690

0,700

0,710

0,720

0,730

0,740

0,750

0,760

10 20 30 40 50 60 70 80 90 100 110 120

AU
C

Random Walk Length

sqawfdbp sqawfdbpR sqawfdbpQ sqawfdbpS sqawfdbpRQ sqawfdbpRS sqawfdbpQS sqawfdbpRQS

Figure 5.1: AUC of DeepFM models including, as input, Graph Embeddings computed
with varying random walk length. Experiments run on the OntoSIDES pediatrics sub-
graph introduced in Chapter 4.

Then, we study how our predictive model behaves with these different Graph Embed-
dings.

5.2.1 Random Walks Length
As explained in Section 2.2.3, node2vec is an embedding model relying on the use of
random walks built through customized sampling strategies. To define the sampling strat-
egy, several hyper-parameters need to be specified, including the length of the random
walks starting in each node. We analyze the behavior of DeepFM when Graph Embed-
dings computed with different random walks lengths are given as input to the model. We
test embeddings computed with random walks of length from 10 to 120 hops. The results,
in terms of AUC, of the execution of DeepFM using as input embeddings with varying
random walks length are illustrated in Fig. 5.1.

The AUC trends depicted in Figure 5.1 show that the best results are achieved by
the model including answers’ and questions’ Graph Embeddings when the random walks
length is 10 hops and 120 hops, with AUC around 0.75. In general, all the models includ-
ing answers’ Graph Embeddings, i.e. sqawfdbpR, sqawfdbpRQ, sqawfdbpRQS, present
higher AUC values, outperforming the model without embeddings, i.e. sqawfdbp. This

5.2 – 5.2.2 Embeddings Dimension 53

confirms that, in general, the most meaningful information is borne by answers’ embed-
dings and that the interaction of answers and questions is relevant. Surprisingly, the perfor-
mance of these models drops significantly with random walk length of 20; and, while for
sqawfdbpRQ it grows almost steadily after that to reach the highest AUC when the random
walk length is 120 hops, it remains low for the other models including answers’ embed-
dings. Additionally, it is interesting to point out that the other models including students
and questions embeddings do not present important variation of AUC with the chang-
ing random walk length. Indeed, for the models sqawfdbpS, sqawfdbpQ, sqawfdbpRS and
sqawfdbpQS, the AUC always fluctuates between 0.690 and 0.700, although the random
walks length changes significantly. In conclusion, Figure 5.1 clearly shows that (i) the
random walk length can have an influence on the performance of the predictive model;
(ii) the best model is, with any random walks length, the one including questions and
answers embeddings, i.e. sqawfdbpRQ; and (iii) the best performance are achieved with
either very short or very long random walks (10 or 120 hops).

5.2.2 Embeddings Dimension
Another fundamental factor that impacts the quality of the embeddings is their dimen-
sion: vectors of different dimension will encode knowledge from the graph differently. In
this section, we analyze the performance of our DeepFM predictive model when Graph
Embeddings with varying dimension are provided in input. We repeated the experiments
with embeddings of dimension 25, 50, 75, 100, 125, 150, 175, and 200. The random
walks length used in the following experiments is 10. The AUC values of all the DeepFM
models relying on embeddings are shown in Figure 5.2.

As for the past experiments, the best DeepFM model, for almost all the values of d,
is the one including embeddings of answers and questions nodes, i.e. sqawfdbpRQ. As
already observed in the previous case, the models including answers Graph Embeddings,
i.e. sqawfdbpR, sqawfdbpRQ, sqawfdbpRS, sqawfdbpRQS, are the only ones outperform-
ing the basic model sqawfdbp. Figure 5.2 shows that the best results, in terms of AUC,
are achieved with embedding dimension of 25. Furthermore, it is worth to highlight that,
while the AUC of models which do not include answers embeddings remains roughly sta-
ble and constant (between 0.69 and 0.70) despite the variation of the vectors dimension,
the performance of the models including answers’ embeddings tends to decrease with
higher d. The only exception to such behavior is given by model sqawfdbpRQ, which
keeps an AUC oscillating between 0.745 and 0.765 over the range of dimensions. In
general, we can confirm that the most meaningful information is encoded in the Graph
Embeddings of the answers nodes and that the interaction with the questions’ nodes is
important. Moreover, the almost constant AUC trends depicted in Figure 5.2 show that
using a longer vector representation does not bring any improvement, suggesting that ei-
ther the relevant knowledge present in the Knowledge Graph is already captured by
low-dimensional embeddings, or DeepFM is not able to exploit the further knowl-
edge encoded by longer embeddings.

54 CHAPTER 5 — Diving into Knowledge Graph Embeddings

0,670

0,680

0,690

0,700

0,710

0,720

0,730

0,740

0,750

0,760

0,770

25 50 75 100 125 150 175 200

AU
C

Embedding dimension

sqawfdbp sqawfdbpR sqawfdbpQ sqawfdbpS sqawfdbpRQ sqawfdbpRS sqawfdbpQS sqawfdbpRQS

Figure 5.2: AUC of DeepFM models including, as input, Graph Embeddings with varying
dimension.Experiments run on the OntoSIDES pediatrics subgraph introduced in Chap-
ter 4.

5.2.3 Undirected vs. Directed Graph
All the experiments illustrated so far have been carried out using Graph Embeddings
computed through node2vec considering the input graph as undirected. The reason behind
this decision lies in the fact that the direction of the properties in the employed Knowledge
Graph are not relevant as their choice is arbitrary, as almost every property could have also
been defined in the inverse direction in a meaningful way. For example, the OntoSIDES
Knowledge Graph links students to their answers by using property sides:done_by,
whose subject and object are respectively the answer and the student, but it would have
been possible as well to define a property sides:has_given, going from students to
answers, to state that a student has given an answer.

We want now to study the behavior of our model when Graph Embeddings computed
from the directed graph are used as input features. In the following, we try to predict the
performance of the students relying on Graph Embeddings computed from the directed
graph, where properties (and their directions) are the ones originally defined in the On-
toSIDES KG. To compute the embeddings, we use vector dimension of 100 and random
walk length of 10. The results are shown in Table 5.2.

Table 5.2 clearly shows that Graph Embeddings computed from the directed graph
are more meaningful for the students’ performance prediction than Graph Embed-
dings computed from the undirected graph. The comparison between the figures in
Table 5.2 and Table 5.1 (which recalls the results in Table 4.2) shows that DeepFM using

5.3 – 5.2.3 Undirected vs. Directed Graph 55

Model ACC AUC F1-score (neg.) F1-score (pos.)

sqawfdbpR 0.726 0.717 0.673 0.763
sqawfdbpQ 0.712 0.699 0.644 0.757
sqawfdbpS 0.712 0.700 0.648 0.755
sqawfdbpRQ 0.739 0.731 0.688 0.775
sqawfdbpRS 0.705 0.690 0.633 0.752
sqawfdbpQS 0.706 0.690 0.629 0.753
sqawfdbpRQS 0.738 0.730 0.687 0.775

Table 5.1: Results of DeepFM when using Graph Embeddings computed from the undi-
rected graph. Experiments run on the OntoSIDES pediatrics subgraph introduced in Chap-
ter 4. The values in bold highlight the best models.

Model ACC AUC F1-score (neg.) F1-score (pos.)

sqawfdbpR 0.867 0.858 0.837 0.887
sqawfdbpQ 0.710 0.701 0.655 0.749
sqawfdbpS 0.710 0.698 0.645 0.754
sqawfdbpRQ 0.864 0.851 0.828 0.887
sqawfdbpRS 0.864 0.855 0.833 0.885
sqawfdbpQS 0.705 0.691 0.635 0.750
sqawfdbpRQS 0.866 0.859 0.839 0.886

Table 5.2: Results of DeepFM when using Graph Embeddings computed from the directed
graph. Experiments run on the OntoSIDES pediatrics subgraph introduced in Chapter 4.
The values in bold highlight the best models.

Graph Embeddings of answers’ nodes computed from the directed graph largely outper-
forms all the other models. Indeed, adding the Graph Embeddings of answers’ nodes as
input features brings an improvement of around 15% in terms of AUC and ACC compared
with the model without embeddings. It is also interesting to point out that in the previous
experiments (relying on the undirected graph) the best model was always the one com-
bining answers and questions embeddings, showing that the interactions between these
features were important; while with the directed graph, the answers embeddings bear
all the meaningful information, as the combined models sqawfdbpRQ and sqawfdbpRQS
bring no improvement over sqawfdbpR. In conclusion, we discovered that the Graph Em-
beddings of answers nodes computed from the directed graph bear more meaningful in-
formation than the ones computed from the undirected one. Nevertheless, we are not able
yet to identify the reason behind this behavior or to understand how the information
encoded in the two cases differs and why.

56 CHAPTER 5 — Diving into Knowledge Graph Embeddings

5.3 Further Exploring Graph Embedding Models
We found out that the node2vec embedding model used in the directed or undirected
setting generates Graph Embeddings which produce very different results once fed into
our predictive model. Indeed, the results in Table 5.2 show that Graph Embeddings which
exploit properties’ directions are better suited as input for predicting students’ outcomes
to questions through DeepFM. It is reasonable to think that, not only the direction of
the properties, but also the semantics stored in the OntoSIDES KG should be taken into
account to build more meaningful embeddings. To test this hypothesis, we analyzed the
behavior of DeepFM when relying on Graph Embeddings computed through KG-specific
embedding models, which are inherently able to account for semantic information. We
tested most of the KGE models introduced in Section 2.2.3: RDF2Vec, TransE, TransR,
ComplEx, RESCAL and DistMult. For the computation of embedding through RDF2vec
we used Python library pyRDF2vec 1, while for all the other KGE models, we relied
on the use of the AWS DGL-KGE library (Zheng et al., 2020). Please note that all the
employed Graph Embeddings have dimension 100.

Tables 5.3 to 5.5 show the performance, in terms of AUC, of all the DeepFM models
relying on embeddings computed through the different models.

node2vec (und) node2vec (dir) RDF2vec

sqawfdbpR 0.742 0.858 0.694
sqawfdbpQ 0.699 0.701 0.695
sqawfdbpS 0.704 0.698 0.701
sqawfdbpRQ 0.751 0.851 0.720
sqawfdbpRS 0.701 0.855 0.698
sqawfdbpQS 0.692 0.691 0.690
sqawfdbpRQS 0.723 0.859 0.697

Table 5.3: AUC of DeepFM when using Graph Embeddings computed through GE model
based on random walks. The results highlighted in bold are the ones outperforming the
basic model without embeddings sqawfdbp. Experiments run on the OntoSIDES pedi-
atrics subgraph introduced in Chapter 4.

Table 5.3 compares the results obtained through node2vec, both with directed and
undirected graph, with the ones of another embedding model based on random walks:
RDF2vec. The figures clearly show that the embeddings computed through RDF2vec
do not bear any meaningful information which can be exploited for the prediction
task, as the performance achieved by DeepFM when using these embeddings is constantly
lower than the ones obtained with node2vec, and, for all the models but sqawfdbpRQ,
lower than the basic model sqawfdbp, which does not rely on embeddings.

Table 5.4 illustrates, instead, the AUC values achieved by DeepFM on the same pre-
diction task when using RESCAL and its extensions DistMult and ComplEx. We can

1https://github.com/IBCNServices/pyRDF2Vec

https://github.com/IBCNServices/pyRDF2Vec

5.4 – Further Exploring Graph Embedding Models 57

RESCAL DistMult ComplEx

sqawfdbpR 0.696 0.694 0.689
sqawfdbpQ 0.701 0.702 0.696
sqawfdbpS 0.699 0.695 0.703
sqawfdbpRQ 0.687 0.687 0.688
sqawfdbpRS 0.694 0.694 0.690
sqawfdbpQS 0.697 0.696 0.696
sqawfdbpRQS 0.680 0.690 0.692

Table 5.4: AUC of DeepFM when using Graph Embeddings computed through RESCAL
and its extensions. Experiments run on the OntoSIDES pediatrics subgraph introduced in
Chapter 4.

notice that, as with RDF2vec, none of the tested DeepFM models including embeddings
is able to outperform sqawfdbp. Therefore, also in this case, no information exploitable
for the prediction is captured from the Knowledge Graph through RESCAL and its
extensions.

TransE TransR

sqawfdbpR 0.828 0.697
sqawfdbpQ 0.700 0.699
sqawfdbpS 0.701 0.700
sqawfdbpRQ 0.836 0.682
sqawfdbpRS 0.693 0.692
sqawfdbpQS 0.692 0.697
sqawfdbpRQS 0.823 0.686

Table 5.5: AUC of DeepFM when using Graph Embeddings computed through TransE
and its extension TransR. Experiments run on the OntoSIDES pediatrics subgraph intro-
duced in Chapter 4. The results highlighted in bold are the ones outperforming the basic
model without embeddings sqawfdbp.

Lastly, Table 5.5 depicts the results, in terms of AUC, obtained when using TransE and
TransR Graph Embeddings. Surprisingly, we detect that the "simpler" TransE model is
able to encode meaningful knowledge from the Knowledge Graph, which cannot be
equally encoded by TransE extension, TransR. Indeed, Table 5.5 shows that DeepFM
using TransE embeddings achieves AUC values comparable with the ones achieved by
node2vec on the same directed graph. Also, it confirms that the most relevant information
is borne by answers nodes embeddings, as the only models bringing improvement are the
ones including those embeddings, i.e. sqawfdbpR, sqawfdbpRQ and sqawfdbpRQS.

58 CHAPTER 5 — Diving into Knowledge Graph Embeddings

Figure 5.3: Neighborhood of each answer included in the subgraph used for the computa-
tion of the Graph Embeddings.

5.4 Identifying Meaningful Information
Until now our experiments helped us understanding which embedding models and param-
eters settings are the best one to capture meaningful information from the OntoSIDES
Knowledge Graph, that could be efficiently exploited by DeepFM for the prediction of
students’ outcomes to questions. Nevertheless, we do not know yet what this meaningful
information is and how to represent it in the Knowledge Graph so that it can be more
easily captured by the chosen embedding model. In other words, we aim to answer the
questions:

• What are the elements of the graph (nodes and edges) that influence the most the
performance of DeepFM when embeddings are injected as input features?

• And how to improve the structure of the Knowledge Graph so that the characteris-
tics of such elements can be more easily encoded in the embeddings?

To answers these questions, we executed several experiments relying on slightly dif-
ferent graph models representing the same pediatrics subset used so far. Starting from the
initial subgraph extracted through the query illustrated in Listing 4.1, we add and remove
nodes to study the impact that each entity has on the final prediction performance.

Figure 5.3 depicts the neighborhood of each answer initially extracted through the
query in Listing 4.1. We can see that the available information for each answer to
be predicted includes two main elements: the question to be answered and the stu-
dent answering such question. Moreover, the subgraph contains details about every
question, such as answers’ proposals, involved topics (learning objectives and sub-
objectives), related medical specialties and included multimedia content. Additionally,
we can notice the presence of a third type of element in the close neighborhood of

5.4 – Identifying Meaningful Information 59

the answer, adr10000029430177397 in Fig. 5.3, which is an instance of class
sides:action_to_answer, even though this information is not included in the ex-
tracted subgraph. It is worth to remind that a node of type action_to_answer is cre-
ated each time a proposal of answer is selected by students when they answer a question.
The presence of this type of entities in the extracted subgraph represents an important is-
sue for the soundness of our model. Indeed, even though the node itself does not bear any
direct knowledge about the answers’ correctness, it injects in the input data knowledge
about the answer which should not be known before its realization. Pragmatically, when
predicting the outcome of a new attempt of a student to a question, we know the identity
of the involved student and question, represented by the links from the answer to student’s
and question’s nodes, but we have no information about the actions made by the student
while answering the question, nodes of type action_to_answer.

To evaluate the impact of this type of nodes, our first experiment consists in removing
the instances of sides:action_to_answer from the Knowledge Graph and verify-
ing whether the performances of DeepFM are still improved when using answers’ Graph
Embeddings.

node2vec (und) node2vec (dir)

sqawfdbpR 0.694 0.694
sqawfdbpQ 0.702 0.695
sqawfdbpS 0.700 0.697
sqawfdbpRQ 0.688 0.685
sqawfdbpRS 0.687 0.688
sqawfdbpQS 0.684 0.695
sqawfdbpRQS 0.679 0.686

Table 5.6: AUC of DeepFM when using Graph Embeddings computed from the subgraph
not including instances of sides:action_to_answer.

Table 5.6 shows the results of DeepFM, in terms of AUC, when using node2vec em-
beddings computed from the Knowledge Graph without the nodes representing instances
of sides:action_to_answer. The employed embeddings are computed with di-
mension 100 and random walks length of 10. Surprisingly, the figures illustrated in Ta-
ble 5.6 clearly show that no improvement is brought by the Graph Embeddings computed
from the newly obtained Knowledge Graph. This result leads us to conclude that the
information exploited by DeepFM when including answers’ and questions’ Graph
Embeddings as input features concerns some characteristics of the nodes of type
action_to_answer. Nevertheless, as explained beforehand, these nodes bear no di-
rect information about the correctness of the answer to be predicted. As we can see from
Fig. 5.3, the employed subgraph does not include information about which proposal of
answer was selected during the student’s action or whether such selection is correct or
not. Nevertheless, there is a meaningful piece of information that is introduced in the
Knowledge Graph when instances of action_to_answer are included: the number of pro-

60 CHAPTER 5 — Diving into Knowledge Graph Embeddings

posal of answers selected by the student when answering the question which corresponds
to the number of instances of action_to_answer linked to an answer. Therefore, we
hypothesize that introducing Graph Embeddings, and in particular answers’ Graph
Embeddings, as input of DeepFM improves the quality of the prediction because
such embeddings, when computed through node2vec and TransE models, are able
to capture from the Knowledge Graph and encode the number of selected proposals
for each answer. This surely represents a meaningful information for the prediction as it
allows the classification model to easily identify most of wrong answers, i.e. the ones for
which the number of selected proposals is too low or too high.

Further experiments were run using different graph models without instances of
action_to_answer but including additional information, e.g. students’ year of study
and university or organization of questions in tests, or modifying the structure of the
Knowledge Graph, e.g. adding or removing classes and properties, but in none of them
Graph Embeddings resulted to be useful for improving the performance of the predictive
model. Surprisingly, we found out that not even the addition or removal of the links be-
tween questions and their related topics had any relevant impact on the quality of the final
predictive model.

Yet, it is worth pointing out that, through these experiments, we discovered that
Graph Embeddings are able to encode meaningful information from the Knowl-
edge Graph, which, in the case of OntoSIDES, is represented by the instances of
action_to_answer. Nevertheless, this result is valid only for the OntoSIDES use
case, and it is possible that, in other educational contexts and with different Knowledge
Graphs, relevant knowledge could be borne by diverse elements in the graph and, there-
fore, it could be captured through embeddings to be possibly exploited by the DeepFM
model.

5.5 Conclusions
In this chapter, we went deeper into the analysis of the behavior of our predictive model
when relying on different Graph Embeddings. We studied the influence of different
node2vec embedding parameters, tested different embedding models and verified the be-
havior of Graph Embeddings computed from different Knowledge Graphs to try to iden-
tify which factors affected the most the predictions made by our DeepFM model through
the embeddings and how. Our ultimate goal was to find an explanation for the behavior of
our predictive model when using Graph Embeddings and to provide an answer to the fol-
lowing question: under what conditions and in which context are Graph Embeddings
useful to predict students’ outcomes?

Through our experimentation, we found out that the most meaningful embeddings
for the prediction of students’ outcomes are the ones of the answers’ nodes, which have
a more important effect when combined with the questions’ Graph Embeddings. After-
wards, we identified as best embeddings for our task the ones computed through the
node2vec model considering the input graph as directed. We discovered that, when the

5.5 – Conclusions 61

input graph is undirected, the best embeddings are obtained with either very short or very
long random walks, and that even short Graph Embeddings, with d = 25, are able to en-
code meaningful information from the Knowledge Graph. Additionally, we benchmarked
several Knowledge Graph Embedding models and determined that the only one able to
capture exploitable knowledge for the students’ outcomes prediction is TransE.

Finally, we found out that the main factor of improvement in prediction quality
was the presence of the nodes representing instances of action_to_answer. We
hypothesized that this is mainly due to the unexpected available knowledge about the
number of selected proposals for each answer which can be inferred through the answers’
Graph Embeddings. Yet, this hypothesis needs to be confirmed through a more thorough
analysis of the answers’ Graph Embeddings.

This analysis surely shed a light on the important divergences among Graph Embed-
dings computed through different models and with diverse parameters and it exposed a
significant issue with the input data fed to the DeepFM predictive model. At the same
time, it highlighted several open issues which need to be tackled to be able to create a
highly-performant model for Knowledge Tracing based on Knowledge Graphs, whose
predictions can be easily interpreted.

Firstly, even though we are now aware of the importance of the embedding model and
its parameters for capturing meaningful information from the Knowledge Graph, we do
not know yet how these embeddings models differ and what information they are able
to encode. In other words, why Graph Embeddings computed from the directed graph
perform better than the ones computed from the undirected graph? Or why node2vec
embeddings outperform all the other Knowledge Graph Embeddings? To answer these
questions, we need a method to decode the knowledge captured by Graph Embed-
dings or, at least, to get some insights into it. Such a technique could also allow us to
verify the hypothesis on the encoded number of selected options by answers’ embeddings.

Nevertheless, being able to interpret the information encoded by the Graph Embed-
dings could not be enough to get meaningful explanations for our predictions. Indeed,
even if we were able to perfectly decode the content of the Graph Embeddings, to fully
explain our predictions we would need to understand whether this information is un-
derstood and how it is exploited by our deep predictive model, DeepFM. Moreover, the
approach proposed in Chapter 4 makes use of only a part of the knowledge available in
the OntoSIDES Knowledge Graph, as exclusively answers, questions and students Graph
Embeddings are employed as input features. Yet, through our experiments we saw that in-
teractions between different embeddings can be very meaningful, e.g. answers and ques-
tions’ nodes; and that other types of nodes can bear important information, e.g. instances
of action_to_answer. A research direction to solve these issues could be to de-
velop an approach which relies solely and entirely on the Knowledge Graph and its
embeddings to provide more accurate predictions and explanations.

CHAPTER 6
Stunning Doodle: a Tool

for Joint Visualization
and Analysis of

Knowledge Graphs and
Graph Embeddings

In this chapter, we introduce a method to gain insights into the meaning
of Knowledge Graph Embeddings, which exploits the joint visual analysis of
Knowledge Graphs and their Graph Embeddings. We present Stunning Doodle,
a tool that enriches the classical visualization of Knowledge Graphs with ad-
ditional information meant to enable the visual analysis and comprehension of
Graph Embeddings. The idea is to help the user figure out the logical connec-
tion between (1) the information captured by the Graph Embeddings and (2)
the structure and semantics of the Knowledge Graph from which they are gen-
erated. We describe the main functionalities of Stunning Doodle and we detail
how they have been used in our scenario to interpret the information captured
by the Graph Embeddings used for the prediction of students’ outcomes and,
to some extent, explain their different behavior and performance. This chap-
ter is based on the work published at the Extended Semantic Web Conference
(ESWC2022) (Ettorre et al., 2022a) and at the French conference on Knowledge
Engineering, Ingénierie des Connaissances (IC 2022) (Ettorre et al., 2022b).

63

64
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

6.1 Introduction . 65

6.2 Stunning Doodle . 66

6.2.1 Knowledge Graphs Visualization 66

6.2.1.1 Graph Exploration Interface. 67

6.2.1.2 Filtering and Customizing Nodes and Edges. 68

6.2.2 Graph Embeddings Visual Analysis 69

6.2.3 Software Design and Limitations 70

6.2.4 Software Availability and Reusability 72

6.3 Our Use Case: the OntoSIDES Scenario 72

6.3.1 Understanding a Knowledge Graph 72

6.3.2 Analyzing and Comparing Knowledge Graph Em-
beddings . 74

6.4 Related Work . 77

6.5 Conclusions and Future Work 79

6.1 – Introduction 65

6.1 Introduction
The previous chapter highlighted the potential impact that Graph Embeddings can have
in the prediction of the students’ performance, but it also underlined the importance of
using the right embedding model and tuning it correctly. We saw how different embedding
models and settings can generate very diverse low dimensional representations for the
same elements in the graph. Nevertheless, we are not aware yet of how and why these
vectors deeply differ from each other and which kind of information they represent.

Understanding the knowledge captured and encoded by Knowledge Graph Embed-
dings is not only essential in our use case for the development of an explainable Knowl-
edge Graph based model for Knowledge Tracing, but it is also one of the most important
open challenges for the whole AI community. As explained in Chapter 1, the adoption
of Knowledge Graphs in multiple domains has increased steadily during the last decade
and one of the reasons for this success is the possibility to easily employ them as input
features for several Machine Learning methods thanks to the graph embedding process.
In this context, the need arises for users to be able to analyze and interpret the knowledge
encoded in the Graph Embeddings.

Nevertheless, the comprehension of the information captured by GEs is a very chal-
lenging process. Indeed, GEs are computed using “black-box” Machine Learning (ML)
techniques that translate each element in the graph into a low-dimensional vector. Even
though the algorithmic process to compute embeddings is well understood, a relation be-
tween the characteristics and role of an element in the graph and its vector representation
in the embedding space cannot be established with certainty. In other words, multiple
questions cannot be answered easily, such as:

• What do my embeddings represent?

• How are they related to the structure and semantics of my KG?

• How can I improve my embeddings to be better suited to my downstream applica-
tion?

Recently, several research efforts have been made in this direction to start making sense
of the information captured by GEs. Some approaches propose explainable models for
computing GEs (Kazemi and Poole, 2018) while others implement explanation strategies
for specific embedding models (Ying et al., 2019).

In this chapter, we aim to tackle this issue from a different point of view. We think that
the information borne by GEs could be explored and unveiled through the use of visual-
ization techniques that would favor the discovery of the logical connection between the
graph and its embeddings. Our goal is therefore to provide a visualization tool supporting
the analysis and decoding of the information captured by KGEs by unveiling the relation-
ship between, on one hand the structure and semantics of the KG, and on the other hand
the KGEs generated from it.

To achieve this goal, we present Stunning Doodle, a tool designed for the visualization
of RDF-based KGs and GEs. Stunning Doodle first provides a visualization of the graph to

66
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

be analyzed, offering a rich overview of both the structure and the semantics of the data.
We believe that this visualization should allow users to gain a general and immediate
understanding of the displayed KG while presenting a complete and detailed view of
each of its components. More interestingly, this visualization is enriched by connecting
the nodes in the graph with the corresponding GEs to be analyzed. It enables to select a
node in a KG and visualize its neighborhood in the embedding space, and conversely to
pick any of its neighbors in the embedding space and visualize their links in the KG. We
argue that the joint visualization of GEs and the KG from which they are generated, with
its structure and semantics, will help users, may they be non-expert users, RDF experts
or Machine Learning experts, to gain interesting insights into the information captured
during the embedding process.

The remainder of this chapter is organized as follows. In Section 6.2 we present our
KGEs analysis tool, while in Section 6.3 we demonstrate how our tool has been used and
useful to get insights into the information encoded by Graph Embeddings in the Onto-
SIDES use case. In Section 6.4 we review related work. Finally, conclusions and future
work are discussed in Section 6.5.

6.2 Stunning Doodle
Stunning Doodle has been developed to fill the gap in the field of visual analysis of KGEs.
Its main goal is to provide users with an advanced visualization of RDF graphs, enriched
with information extracted from the GEs generated from those graphs. To achieve this
goal, Stunning Doodle offers two main functionalities: (1) the visualization and naviga-
tion of RDF graphs and, (2) for each node, the enrichment of such visualization with
the addition of its neighborhood in the embedding space, w.r.t. a chosen similarity mea-
sure. Additionally, Stunning Doodle presents semantic-based filtering and customization
functionalities for nodes and links which make the visualization clearly understandable
even for users with no familiarity with RDF and SPARQL concepts. To improve the read-
ability and comprehension of the displayed KG, Stunning Doodle implements a partial
visualization of the graph and allows users to navigate and explore it incrementally.

6.2.1 Knowledge Graphs Visualization
The first function of Stunning Doodle is the dynamic visualization of a KG using a regular
graph layout. The process starts with the upload of the RDF graph file in Turtle syntax.
Once the file is uploaded, the graph will be displayed as shown in Fig. 6.1. On the left
side of the page, under the “Upload Graph” menu, three menus provide relevant informa-
tion about the graph: the list of the declared namespaces with their prefixes (1), and the
legend, and advanced customization options for nodes (2) and links (3) that will be de-
tailed later in this section. The visualization is interactive: nodes can be moved and zoom
and spanning functionalities are available. Nodes can be selected by clicking on them,
and the triples associated with the currently selected node are listed in the component

6.2 – 6.2.1 Knowledge Graphs Visualization 67

Figure 6.1: Screenshot of the partial visualization of YAGO3 illustrating Stunning Doodle’
exploration capabilities.

“Node in focus” (4) on the right. In the example of Figure 6.1, which shows an extract of
YAGO3 (Mahdisoltani et al., 2014), the selected node is the largest one at the bottom of
the graph (ns1:Giacomo_Modica) and the triples for which this node is a subject are
listed on the right. Each object in this list can be clicked to select the corresponding node
in the graph.

6.2.1.1 Graph Exploration Interface.

One of the main characteristics of Stunning Doodle is the ability to display nodes incre-
mentally, thanks to the graph exploration system.

To deal with the large number of nodes possibly described in a KG, existing visualiza-
tion tools employ different strategies: (i) relying on clusterized views which group similar
(or close) nodes together (Po and Malvezzi, 2018), (ii) visualizing nodes incrementally
based on the displayed area (Bikakis et al., 2015, 2016), or (iii) showing only the nodes
that are considered the most relevant based on diverse statistical metrics (Santana-Pérez,
2018). In Stunning Doodle we opted for a different approach: a user-guided incremental
exploration. Indeed, through our tool, the user decides which nodes to visualize accord-
ing to their interests and needs. This choice is motivated by the fact that different users
can have different, possibly very specific requirements, e.g. analyzing only the facts re-
lated to individuals of a given type while disregarding all the other possible predicates;
and these requirements do not always correspond to the standard clusterization criteria or
relevance metrics. As Figure 6.1 shows it, after the upload of an RDF graph, only one
node, randomly selected among all the nodes in the graph, is displayed alongside its close

68
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

Figure 6.2: Stunning Doodle interface with the available customization options.

neighborhood, i.e. nodes at one-hop distance from the main node. Users can change the
displayed node by typing the URI of the node they want to visualize in the component
“Upload Graph” and setting it as a new center (5). Users can also navigate the graph start-
ing from a node of interest by using the buttons in the “Node in focus” component (6).
Indeed, once a node is selected, users can decide to either (a) center the graph on that
node, causing only the selected node and its neighborhood to be visualized, while hiding
the other nodes and links; (b) hide the node, producing the removal of that node together
with the nodes that are connected only to it; (c) expand the node, i.e. adding the direct
neighbors of the node to the visualization; and (d) collapse the node, i.e. removing all the
nodes that are only connected to that node while keeping the node itself. For example, the
visualization in Figure 6.1 has been obtained by centering the graph on node ns1:male
at first, and then expanding the selected node (ns1:Giacomo_Modica) to display its
neighborhood.

6.2.1.2 Filtering and Customizing Nodes and Edges.

Another helpful feature of Stunning Doodle is the possibility of filtering nodes based
on their types (values of property rdf:type) and customizing nodes and links colors.
These features help the user to easily recognize the nodes and links they want to ana-
lyze and to focus only on them while removing information that is irrelevant for their
exploration needs.

In Figure 6.2 we show an example customized visualization of an RDF graph and the
settings of the visualization modes. These are optional and can be activated by selecting
the corresponding options in the “Nodes’ overview” and “Links’ overview” menus. In

6.2 – 6.2.2 Graph Embeddings Visual Analysis 69

Figure 6.3: Screenshot of Stunning Doodle showing closest nodes in the embedding space.
Closest nodes to selected one are shown with a gradient of color representing the distance:
darker nodes are closer in the embedding space, while lighter nodes are more distant.

the “Links’ overview” menu (1), all the possible predicates are listed, each one with the
number of edges of that type currently displayed on the graph and the corresponding
colors which can be customized by the user (2). Similarly, in the “Nodes’ overview” menu
(3), the types of all the displayed nodes are listed with the count of occurrences of every
type (4). For each type, a filter is added to hide/show the corresponding nodes (5). In the
same component, we find two additional options that allow the user to enable and disable
labels and literals visualization (6). Once activated, the former will display labels, i.e.
values of properties rdfs:label and skos:prefLabel, next to the nodes subject
of these properties; while the latter will add literals as leaves in the graph.

6.2.2 Graph Embeddings Visual Analysis
In addition to the dynamic visualization of a KG, the key functionality provided by Stun-
ning Doodle which represents a major step forward when compared with the state-of-the-
art tools described in Section 6.4 is the possibility of having a first, simple visual analysis
of the GEs computed from the visualized KG.

As explained in Chapter 1, the recent success of KGs is mainly due to the growing
number of AI applications relying on KGs through the use of KGEs. Unfortunately, the
main stumbling block to extensive utilization of such representation is its difficult inter-
pretability.

With Stunning Doodle, we take a first step in the understanding of KGEs through
the joint visualization of both KGEs and the KG from which they are generated. More

70
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

precisely, Stunning Doodle enables to visualize, for each node, its closest nodes in the
embedding space, according to either Euclidean distance or cosine similarity. Figure 6.3
shows an example of KGEs analysis. The “Upload Embeddings” menu allows the user
to upload a CSV file containing the GEs computed from the visualized KG (1). Then,
the user can select a node of interest and visualize its closest neighbors in the embedding
space. The closest nodes are displayed with a gradient of color that represents their dis-
tance from the node whose embedding is analyzed, i.e. darker nodes are closer (in the
embedding space) to the selected node while lighter nodes are more distant. If a relation
between any couple of visualized nodes exists in the KG, then the corresponding link is
directly displayed in the graph according to the selected customization settings.

The list of the closest nodes with their distance is shown in the “Graph Embeddings
Information” menu on the right side of the page (2). Together with this list, additional
options allow the user to choose the desired distance metric (Euclidean or cosine in the
current implementation), and to customize the number of closest nodes to be displayed.
The example in Figure 6.3 shows the 100 closest nodes in the embedding space to the
node ns1:answer536324943, according to cosine distance. The node currently se-
lected (biggest node) is the node that we are analyzing and from which the distances are
computed. This is obvious from the fact that its URI is the first item in the list of nodes
and it is also the darkest node in the graph, as the distance from itself is 0. The different
shades of green of each node clearly highlight which nodes among the 100 visualized are
closer, while the links show how they are connected in the KG.

While visualizing a node’s neighbors in the embedding space, it is still possible to
access the functionalities for navigating in the KG through the buttons in “Node in focus”.
Therefore, any displayed node can be expanded to show additional nodes linked to it in
the KG even if they are not close in the embedding space. Naturally, any new node can be
further expanded to visualize the desired portion of the KG. All the links and the displayed
nodes whose embeddings are not close to the initial node will be visualized according
to the selected customization options in “Nodes’ overview” and “Links’ overview”. To
switch back to the simple view of the KG the user simply has to recenter the graph on any
of the displayed nodes.

To sum up, Stunning Doodle enables the user to understand in a glance which nodes
of a KG are considered to be similar in the embedding space, while keeping track of
their connections in the KG. This permits to gain immediate insights on the information
captured by KGEs, e.g. which predicates have the highest impact or what connectivity
patterns are more taken into account during the embedding process.

6.2.3 Software Design and Limitations
For the sake of simplicity and flexibility of use, Stunning Doodle has been implemented
as a lightweight web application relying on Python and Javascript, respectively for back-
end and front-end. Its setup is fairly simple as it requires only to create a Python virtual
environment and it allows the easy deployment on a server to be accessed remotely by
multiple users through a web browser. Stunning Doodle uses as input for the graph visu-

6.2 – 6.2.3 Software Design and Limitations 71

Store, convert,
annotate

Graph Navigation

Search nodes
to visualize

Customization
and filtering CSV

Store

CSV

GEs analysis
of a node

Compute
distances

User
actions

Back-end

Upload KG Upload GEs

KG visualization GEs
visualization

Figure 6.4: Schema of the processing pipeline implemented in Stunning Doodle.

alization an RDF Knowledge Graph stored in a Turtle file. For the analysis of the GEs,
a CSV file containing the nodes’ URIs associated with the corresponding embeddings is
required. Figure 6.4 illustrates the processing pipeline of Stunning Doodle and shows how
the interactions with the user are handled. Firstly, the user needs to upload the RDF graph
she wants to visualize. This graph is parsed and converted into JSON, enriching each node
description with information about its types and labels to enable on-the-fly customization
of the visualization based on this information. When the user navigates the graph by re-
centering it or expanding new nodes, a remote request to the back-end is performed to
compute and retrieve the new list of nodes to visualize. Since the actions of customization
and filtering concern only the nodes and edges currently visualized, they do not require
any remote request to the server. To enable the functionalities of analysis of GEs, a CSV
file storing such embeddings must be uploaded by the user and stored on the server. At
this point, the user can analyze the embeddings of any displayed node, by visualizing
its closest nodes in the embedding space. When this action is executed, the back-end is
queried to compute the list of the closest nodes with their distances. After mapping the
closest embeddings with their corresponding nodes and computing the edges connecting
them, the results are returned to the front-end that displays the obtained subgraph.

The main limitation of Stunning Doodle lies in the size of the KG to be analyzed.
Indeed, the larger the KG and, consequently, the embeddings file are, the longer is the
time needed to upload such files, to search for the nodes to be displayed and to compute
the distances between embeddings. Table 6.1 reports the time needed to execute the main
actions provided by Stunning Doodle on the graph shown in Figure 6.1 and Figure 6.2,
which contains 920.435 triples describing 124.982 nodes. These timings were obtained

72
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

Table 6.1: Execution time with number of displayed nodes when performing actions for
the analysis of a subset of YAGO3.

Load graph Set center Expand node Closest nodes
(ns1:male) (ns1:AC_Sparta_Prague)

Time 120s 21,7s 12,03s 5,4s
nodes - 502 271 100

running Stunning Doodle on a MacBook Pro with 2,8 GHz Quad-Core Intel Core i7 and
16GB RAM.

6.2.4 Software Availability and Reusability
Stunning Doodle is made available as an open-source software under the MIT License.
The tool is identified by means of a DOI provided through Zenodo (Ettorre, 2021) to
improve its accessibility and citability. Moreover, Stunning Doodle source code is publicly
accessible on the GitHub repository1, which also includes extensive documentation and
examples to guide the users. We plan on keeping improving Stunning Doodle with new
functionalities and offering best-effort support to future users in case of bugs or issues of
any kind. Furthermore, we welcome any feedback, idea or contribution by the community.

6.3 Our Use Case: the OntoSIDES Scenario
We describe hereafter the main use case that motivated the development of Stunning Doo-
dle and how this tool, with the functionalities it implements, has been useful for helping
us understand the different Knowledge Graph Embeddings generated from OntoSIDES
and the knowledge they encode. Before demonstrating the usefulness of the Graph Em-
beddings analysis provided by Stunning Doodle, we show how this tool can be used for
visualizing and understanding the content and the structure of the original OntoSIDES
subgraph from which the analyzed Graph Embeddings are computed. The subgraph de-
scribed in the following sections slightly differs from the one used for the experimentation
in Chapter 5, as it includes further information about the students, i.e. their university, and,
in general, a higher number of triples (around 650.000).

6.3.1 Understanding a Knowledge Graph
In this section we explain how Stunning Doodle can be used for the visualization and
comprehension of the KG in the SIDES scenario. In this use-case, we assume users are
only aware of the high-level concepts that are supposedly defined in OntoSIDES and
they need to understand what the described entities are, how they are modeled in the KG

1https://github.com/antoniaettorre/stunning_doodle

https://github.com/antoniaettorre/stunning_doodle

6.3 – 6.3.1 Understanding a Knowledge Graph 73

Figure 6.5: Screenshot of Stunning Doodle showing the basic entities and relations in the
OntoSIDES graph.

and how they are linked to each other through predicates. Expert users are normally able
to gain this knowledge by running several prototypical SPARQL queries, but the use of
Stunning Doodle facilitates this task by retrieving and displaying the same information
only through a few clicks, and, at the same time, makes the KG accessible also to users
with no expertise in SPARQL.

Once the graph file is uploaded, users can choose a node from which to start the graph
exploration. This allows users to expand only the nodes that are relevant for them, display-
ing only the needed information. After expanding a few nodes, users should be able to vi-
sualize a small graph containing all the main elements of interest, i.e questions, students,
answers, institutes, and their links. Thanks to the “Nodes’ overview” menu, users are able
to distinguish the main entities in a glance, based on their colors. Considering the visu-
alization (Figure 6.5), it is evident that instances of answers (orange nodes) are directly
linked to questions (spring green) and students (in gray). Moreover, it is possible to see
that questions are associated with specialties (navy blue nodes) and learning_objectives
(yellow). Taking a look at the “Links’ overview” menu, predicates can also be easily
discriminated in the graph thanks to their colors. Moreover, connections between distant
nodes can be quickly identified to be possibly used as property paths in SPARQL queries.
For example, to analyze which topics a student worked on, the user only needs to fol-
low the path going from a gray node (student) to a yellow node (learning_objectives),
therefore, chaining the properties done_by (fuchsia line), correspond_to_question (pink),
is_linked_to_ECN_referential_entity (brown). Additionally, few statistical observations
on the number and types of entities can be done from the menus “Nodes’ overview” and
“Links’ overview”. In the example in Figure 6.5, the “expanded" student gave 174 an-

74
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

swers, the displayed university has 44 students, all the questions are linked to the same
medical specialty. Finally, each node can be analyzed in detail, by selecting the node and
looking at the menu “Node in focus” which displays the triples associated with that node.

Thanks to its characteristics, Stunning Doodle proved that it can be useful to gain a
first, global understanding of the content and organization of the OntoSIDES KG. Its nav-
igation systems, filtering functionalities, and customization capabilities allow the user to
explore the graph step by step, focusing at each moment only on the pieces of information
of interest for them. We claim that those features are very helpful for the understanding
of Knowledge Graphs in any context.

6.3.2 Analyzing and Comparing Knowledge Graph Embeddings
The GEs analysis provided by Stunning Doodle allows to gain insights into the informa-
tion encoded in the GEs and, therefore, to assess their meaningfulness for their final use.
In particular, Stunning Doodle can be used for comparing GEs computed through different
embedding models with several hyper-parameters settings, with the final goal of identi-
fying and tuning the model generating the most meaningful embeddings. In our use case,
(1) interpreting the information captured by GEs, (2) identifying the best model for their
computation, and (3) tuning the hyper-parameters to obtain a meaningful representation
of the nodes are crucial tasks.

In the following, we show how Stunning Doodle has been used to carry out these
tasks, by analyzing the GEs generated from the OntoSIDES subgraph described in Sec-
tion 6.3.1. We inspect and compare two sets of GEs, both computed using the node2vec
model (Grover and Leskovec, 2016). In the first case, the embeddings have been com-
puted considering the graph as directed (i.e. it can be traversed only going from subjects
of triples to objects), while in the second case embeddings are obtained considering the
graph as undirected (i.e. links are bidirectional, it is possible to go from objects to sub-
jects). In both cases, we study the embeddings of a student node (stu81235) to figure
out which nodes are considered to be similar from the embeddings point of view and,
therefore, what information embeddings can capture from the KG. After uploading the
graph and embeddings’ files, we select the node corresponding to ns2:stu81235 and
we choose to visualize its closest nodes in the embedding space.

GEs from a Directed Graph. Figure 6.6 shows the result of visualizing the 100
nodes with the shortest Euclidean distance (in the embedding space) from node
ns2:stu81235. The darkest node is node ns2:stu81235 itself since its distance
from itself is 0. Immediately, it occurs from the visualization that its closest nodes are
not directly linked between each other and, based on the gradient color, some of them
are much closer than others. Looking at the nodes’ list in the menu “Graph Embeddings
Information”, we can see that all the closest nodes are other instances of the student class.
Therefore, we can assume that during the embedding process, nodes with the same type
are recognized as similar, ending up close in the embedding space.

6.3 – 6.3.2 Analyzing and Comparing Knowledge Graph Embeddings 75

Figure 6.6: Closest nodes in the embedding space to the node ns2:stu81235 with GEs
computed from a directed graph.

To investigate why some students are closer to ns2:stu81235 than others, we
can “expand” a few nodes to find connections among them. Figure 6.7 shows that the
closest nodes (darkest color) are connected to the same university (fuchsia node) as
ns2:stu81235. This highlights the fact that the link with the university has a high
impact during the computation of the embeddings of a student’s node. Nevertheless, we
can notice that not all the students registered at the same university as ns2:stu81235
are among its closest nodes (gray nodes in Figure 6.7), meaning that there are other factors
affecting the similarity between embeddings. Repeating the same analysis for other nodes
of type ns2:student led to the discovery of similar patterns, i.e. all the analyzed nodes
resulted to be similar to other students attending the same university. Thanks to these ob-
servations, we can conclude that, in this case, GEs are able to encode the information
about the node type and the university for students’ nodes.

GEs from an Undirected Graph. Figure 6.8 shows the closest nodes to
ns2:stu81235 for the embeddings computed from the undirected graph. The dif-
ference with the Graph Embeddings computed in the previous case is immediately
visible. Firstly, by looking at the list of the closest nodes we discover that for undirected
embeddings the type of the node does not play an important role in the embedding
process. Indeed, the closest nodes are of various types, including ns2:answer and
ns2:action_to_answer. From the visualization, it is obvious that the connections
between nodes assume a much more important role, as the closest nodes in the embedding
space result to be the ones that are close in the Knowledge Graph as well (at 1-hop or
2-hops distance). On the other side, we notice that the opposite implication does not

76
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

Figure 6.7: Links between ns2:stu81235 and its closest nodes in the embedding
space.

hold. Indeed, when we expand node stu81235 to display all its direct neighbors in
the Knowledge Graph as done in Figure 6.9, we can see that there are additional nodes
which were not displayed before as they are not close in the embedding space (answers
in orange). Therefore, we can assume that the distance in the Knowledge Graph, though
important, is not the only parameter taken into account during the embedding process.
Same observations can be done for other nodes of type ns2:student.

Finally, uniquely through the joint visualization of the distances in the embedding
space and the Knowledge Graph structure, we can draw interesting conclusions on the
meaning of Graph Embeddings and, thus, identify the best settings to be used for the em-
bedding computation. In our case, we discovered that Graph Embeddings computed from
directed graphs can capture semantic information from the Knowledge Graph, such as the
nodes’ type and the university associated with each student; while Graph Embeddings ob-
tained from undirected graphs tend to summarize the graph structure. As a consequence,
we were able to confirm and partially explain the results obtained through the experimen-
tation in Section 5.2.3. Indeed, we confirm that the most meaningful embeddings are the
ones computed from the directed Knowledge Graph as they are able to better encode se-
mantics, which is more relevant for the prediction of students’ performance, such as the
university attended by the students.

6.4 – Related Work 77

Figure 6.8: Closest nodes in the embedding space to the node ns2:stu81235 with GEs
computed from an undirected graph.

6.4 Related Work
Despite the growing attention dedicated to the issues of interpretability and understand-
ability of Knowledge Graph Embeddings, to the best of our knowledge, no work has been
done towards the visual analysis and comprehension of such representations. Yet, some
solutions have been developed for the similar task of sentences and words embeddings
visualization. TensorFlow Projector2 allows users to upload and visualize their embed-
dings to help the comprehension of the information they summarize. Through this tool,
it is possible to visualize the uploaded embeddings in a 3D space by using dimensional-
ity reduction techniques. Moreover, the tool enables, for each element, to list its closest
neighbors in the embedding space with the final goal of providing insights on the meaning
of the computed embeddings. Although TensorFlow Projector is general enough to visu-
alize any kind of embedding, i.e. word, sentence or graph, its usefulness in understanding
Knowledge Graph Embeddings is limited by the absence of KG-specific functionalities,
such as displaying the graph structure or considering semantics.

Concerning the visual analysis of Knowledge Graphs, multiple tools have been devel-
oped throughout the years. Recent research efforts (Antoniazzi and Viola, 2018, Desimoni
and Po, 2020) focused on listing, analyzing, and comparing existing Linked Data (LD)
visualization tools able to deal with both KG schema and data. The majority of the avail-
able tools rely on a graph-based visualization and present several commonalities with
respect to the provided functionalities and input mode. Many of these applications enable

2https://projector.tensorflow.org

https://projector.tensorflow.org

78
CHAPTER 6 — Stunning Doodle: a Tool for Joint Visualization and Analysis of

Knowledge Graphs and Graph Embeddings

Figure 6.9: ns2:stu81235 expanded to show its neighbors in the KG that are not close
in the embedding space.

to visualize resources accessible through a public SPARQL endpoint (Nuzzolese et al.,
2017, Po and Malvezzi, 2018), while only a few of them allow users to upload local RDF
graphs (Troullinou et al., 2018). Some of the tools complement graph visualization with
advanced features, such as augmenting graph content with external information (Nuz-
zolese et al., 2017) and collecting statistics about the Knowledge Graph (Santana-Pérez,
2018). Different strategies are used to deal with large-scale Knowledge Graphs, e.g. (Po
and Malvezzi, 2018) aggregates nodes in clusters, (Asprino et al., 2021, Troullinou et al.,
2018) try to identify and show firstly the most important concepts, while others, such
as (Camarda et al., 2012, Micsik et al., 2014), rely on incremental exploration by the
user. The conclusion drawn by (Desimoni and Po, 2020) highlights the impossibility of
identifying the best tool in the absolute and states that the research in this field is far
from conclusion. Moreover, most of the existing applications are developed as proofs of
concept or research tools, therefore they are often conceived for a very specific task and
dataset and they can hardly be generalized, or they are rather cumbersome to set up. These
limitations make them not suitable for widespread use by non-expert users.

Inspired by the Graph Embeddings visualization implemented by Tensorflow, Stun-
ning Doodle builds upon the functionalities offered by recent Knowledge Graphs visual-
ization tools and extends them to enable a simple and straightforward visual analysis of
the Knowledge Graph Embeddings.

6.5 – Conclusions and Future Work 79

6.5 Conclusions and Future Work
Stunning Doodle is a first step to fill the gap in the field of visual analysis of Knowledge
Graph Embeddings. This visualization tool enables to build a link between the content and
structure of any Knowledge Graph and its corresponding embeddings. We implemented
a set of functionalities to facilitate the exploration and understanding of any Knowledge
Graph and to analyze Knowledge Graph Embeddings, connecting the two, and making
sense of the information captured by the Knowledge Graph Embeddings. We used Stun-
ning Doodle to answer the questions exposed at the beginning of the chapter for the pre-
diction of students’ performance through the OntoSIDES Knowledge Graph Embeddings.
We discovered that the Graph Embeddings computed from the undirected graph encode
structural information, while the ones computed from the directed graph better capture
semantics; and, therefore, that the latter are better suited for our final prediction task.

Stunning Doodle proved to be useful for gathering first insights into the information
captured through embeddings and it can surely be improved for several aspects. As fu-
ture work, we plan to implement new functionalities particularly useful for more expert
users, such as the visualization of the result of SPARQL queries and the direct access to
well-known SPARQL endpoints. Moreover, we aim to provide a deeper analysis of the
uploaded Graph Embeddings including advanced statistics on the closest nodes and addi-
tional similarity metrics. We also want to optimize the pre-processing pipeline to be able
to display and analyze larger Knowledge Graphs. Our hope is that Stunning Doodle could
build a large community of users and keep improving and growing throughout the years
to satisfy their needs.

CHAPTER 7
A Methodology to

Identify the Information
Captured by Knowledge

Graph Embeddings
In this chapter, we aim to tackle the issue of Graph Embeddings interpretability
by providing a systematic approach to decode and make sense of the knowledge
captured by Graph Embeddings. We propose a technique for verifying whether
Graph Embeddings are able to encode certain properties of the graph elements
and we present a categorization for such properties. We test our approach by
evaluating the embeddings computed from the same Knowledge Graph through
several embedding techniques. We analyze the results on the level of encoding of
each property by all the benchmarked algorithms with the final goal of provid-
ing insights into the choice of the most suitable technique for each context and
encouraging a more conscious use of such approaches. This chapter is based
on the work published at the International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT2021) (Ettorre et al., 2021).

81

82
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

7.1 Introduction . 83

7.2 Related Work . 84

7.3 Analysing the Information Encoded by Graph Embeddings 85

7.4 Evaluating Graph Embedding Algorithms with Probing
Tasks . 87

7.4.1 Knowledge Graphs 87

7.4.1.1 YAGO3 88

7.4.1.2 OntoSIDES 88

7.4.2 Classification Model 89

7.4.3 Graph Embeddings Models 89

7.4.4 Results and Discussion 90

7.4.4.1 Evaluation on YAGO3 90

7.4.4.2 Evaluation on OntoSIDES 93

7.5 Decoding Graph Embeddings for Students’ Outcomes
Prediction . 95

7.6 Conclusions . 96

7.1 – Introduction 83

7.1 Introduction
In the previous chapter, we saw how Stunning Doodle can help us get an idea of under
which settings Graph Embeddings incorporate the most interesting information for our fi-
nal task. Nevertheless, this tool provides only very high-level insights on what information
is possibly encoded by these Graph Embeddings. To be able to interpret the Knowledge
Tracing results provided by our KG-based model, we need a more analytic method to pre-
cisely identify the information captured by the Graph Embeddings and, therefore, used
for the prediction of the student’s success.

As explained in Chapter 6, unveiling the information encoded by Knowledge Graph
Embeddings is a task of general interest for the whole AI community. Thus, several re-
search efforts have been made in the last years to move towards more explainable GEs.
These include proposing interpretable embedding methods (Kazemi and Poole, 2018),
studying the impact of graph modifications on link prediction (Pezeshkpour et al., 2019)
and offering explainer approaches for specific embedding models (Ying et al., 2019).
Nevertheless, a methodology to effectively explain the predictions enabled by KGEs is
still missing (Palmonari and Minervini, 2020). Moreover, although several evaluations of
the performance of different GE techniques have been conducted with respect to their ef-
fectiveness in terms of quality of link prediction (Dai et al., 2020, Rossi et al., 2021), to
the best of our knowledge no work has been made to systematically analyze the meaning-
fulness of the information they encode.

A similar challenge has been addressed in the context of text embeddings, for which
the final goal is to understand which characteristics of the language are actually encoded
in the embeddings of words and sentences. A first attempt of investigating this research
question is based on the use of "probing tasks", presented in (Adi et al., 2016). A probing
task is an auxiliary classification task that, taking as input the embedding of an element, i.e
word, sentence, or node in our case, is trained to predict the value of a given property for
this element. For example, (Adi et al., 2016) tested sentences embeddings for properties
such as sentences length and word ordering. The general idea behind this approach is that,
if some information about a given element is encoded through the embedding process
in its vector representation, it should be possible to recover such information from the
embedding alone.

Inspired by (Adi et al., 2016), we propose to make use of such auxiliary tasks to
verify the hypothesis according to which GEs encode certain properties. We provide a
methodology independent from the type, context and final use of the GEs, that allows to
systematically analyze the information captured from the KG. We do so by establishing a
catalog of probing tasks that can be easily generalized and reused. We focus specifically
on RDF Knowledge Graphs, however the presented approach can be applied to other kinds
of graphs, such as property graphs, by defining different probing tasks. We rely on this cat-
alog to evaluate the information encoded by several GE algorithms, both general-purpose
(node2vec) and specifically designed for KGs (TransE, ComplEx, etc.), in two different
contexts: a general-purpose KG describing a large variety of real-world facts and a sub-
set of OntoSIDES KG. Conducting this evaluation on two real-world KGs that describe

84
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

very different kinds of data allows us to avoid the bias introduced by inverse triples, data
redundancy, and cartesian product relationships, normally present in the benchmarking
datasets frequently used to evaluate GE algorithms, i.e. FB15k and WN18 (Akrami et al.,
2020). We compare the results achieved by all the algorithms on each task to determine
what information is mainly captured by every one of them.

The remainder of this chapter is organized as follows. In Section 7.2 we review exist-
ing related works. In Section 7.3 we categorize the information that can be encoded by
GEs and we propose a corollary organization of probing tasks, while in Section 7.4 we
compare and discuss the results of state-of-the-art GE algorithms on the identified prob-
ing tasks. Additionally, in Section 7.5 we show how the probing task approach has been
used to verify the hypothesis, exposed in Chapter 5, about the encoding of the number
of selected proposals of answers by the Graph Embeddings of answers’ nodes. Finally,
conclusions are presented in Section 7.6.

7.2 Related Work
Lately, several efforts have been made to investigate the interpretability of GE techniques.
(Ying et al., 2019) present GNNExplainer, a tool to provide possible explanations for the
results of link prediction through GEs. GNNExplainer is able to identify the subgraph
and the node features that are the most relevant for any link prediction made by GNN
models. Such identification is achieved by solving an optimization problem to maximize
the mutual information between a GNN’s prediction and distribution of possible sub-
graph structures. Other approaches towards explainable link prediction have been pro-
posed in (Bhowmik and de Melo, 2020, Kang et al., 2019). Also, the work proposed in
(Pezeshkpour et al., 2019) focuses on the interpretability (and robustness) of link predic-
tion by trying to identify the fact whose addition or removal from the KG causes changes
in the prediction for a targeted fact. While these works aim for the explanation of link
predictions through embeddings, few attempts have been made to understand the content
of the embedded representation independently of the downstream application. In (Sharma
et al., 2018) the authors study the geometric characteristics of the computed vectors with
respect to the type of embedding model, i.e. additive or multiplicative, and its hyper-
parameters. (Sharma et al., 2018) show that the nature and the settings of the embedding
method can affect the distribution of the vectors in the embedded space.

(Jain et al., 2021) raised doubts on the effective capacity of KGEs of capturing the
semantics borne by the KG. The authors define a classification and clustering task to
predict entity type and compare several well-known KGE algorithms on these tasks, i.e.
TransE(Bordes et al., 2013), RESCAL(Nickel et al., 2011), ComplEx(Trouillon et al.,
2016), DistMult(Yang et al., 2015) and ConvE(Dettmers et al., 2018). This work con-
cludes that none of these approaches is able to properly encode semantics, as they can
only identify macro classes and not fine-grain ones, e.g. they can distinguish a person
from a body_of_water but not a scientist from an artist. This approach presents some
similarities with the technique used to decode information captured by text embedding

7.3 – Analysing the Information Encoded by Graph Embeddings 85

introduced by (Adi et al., 2016), which defines some “probing tasks” to evaluate the in-
formation captured by word and sentence embeddings. They provide a set of structural,
low-level information properties that can be encoded by the vector representation, i.e.
sentence length, word content, and word order. For each one of these properties, they de-
fine a classification task that takes as input the word (or sentence) embedding and outputs
the value of the property. Through this approach, they evaluate the information encoded
by LSTM auto-encoder and CBOW techniques. They also study the changes in the en-
coded information with the variation of the embeddings’ size. In (Conneau et al., 2018),
the authors improve the approach proposed by (Adi et al., 2016), providing a proper clas-
sification of 10 probing tasks for the properties possibly encoded by text embeddings,
hierarchically organized into surface, syntactic and semantic tasks. Moreover, they rede-
fine the probing tasks to be more general, interpretable, and easily re-usable. To this end,
they use as input a single sentence embedding, while (Adi et al., 2016) used multiple em-
beddings of both words and sentences. Finally, they benchmark a much wider selection
of text embedding algorithms. The categorization defined by (Conneau et al., 2018) has
also been used to uncover the information encoded by BERT, with the specific goal of un-
derstanding to which extent this model can capture the structure of the language (Jawahar
et al., 2019).

Relying on the idea of probing tasks introduced by (Adi et al., 2016), we present a
methodology that allows testing the capacity of KGEs to encode not only entities’ type
like in (Jain et al., 2021) but also a vast range of properties and characteristics of graph
elements that could possibly be encoded in their vector representations. While the work
presented in (Bhowmik and de Melo, 2020, Kang et al., 2019, Pezeshkpour et al., 2019,
Ying et al., 2019) focuses uniquely on link prediction, the approach we propose can be
used to evaluate the meaning of GEs independently of the downstream application.

7.3 Analysing the Information Encoded by Graph Em-
beddings

Following the footsteps of the previously presented works, we introduce a list of auxiliary
tasks that could be used to decode the information captured by GEs. An auxiliary task,
or probing task, is a simple classification task that takes as input the embedding of an
element and outputs the value of a given property for that same element. If it is possible
to train a classifier to solve such a task, we can conclude that the set of input features, i.e.
the embeddings of the elements, encode the initial property or characteristic. Throughout
this process, one would be able to determine whether GEs capture a given characteristic
of the elements in the KG, e.g. entities’ types or predicates’ constraints. Although this is
not a direct translation process from the embeddings to the set of encoded properties, it
would nevertheless represent a first important step towards GEs explainability if we could
define a reasonable set of common properties against which to evaluate our GEs.

To do so, we need to identify which kind of information is more commonly contained
in a KG and could possibly be captured by the vector representation. Keeping in mind that

86
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

GE techniques can create a vector for each element in the graph, we need to determine
which are the properties of nodes or edges that could be transposed in the vector space.
To keep our approach and properties’ categories as general as possible and, therefore,
adaptable to the large variety of embedding algorithms, our analysis will be limited to the
properties of nodes, i.e. Classes and Individuals in the case of RDF graphs, and we will
not take into consideration Predicates and Literals. Nevertheless, we are aware that the
vector representation of a node is computed based on the interactions between such node
and all the others. Therefore, we will also introduce some properties that define these
interactions and that can be captured by GEs, e.g. presence of a direct link, distance in
number of hops, and type of link between two nodes. To evaluate the ability of GE models
to catch such information, we will define probing tasks that use as input the embeddings
of two nodes, instead of one. We describe hereafter the list of probing tasks, defined on
three levels of increasing abstraction, as depicted in Figure 7.1.

Structural properties. With the awareness that a Knowledge Graph is, first of all, a
data structure that organizes facts in the form of a graph, we define a first, lowest and
most general level of our probing tasks’ pyramid: the structural layer. We argue that
the simplest and most straightforward information that GEs can learn from the graph is
its structure. This is a direct consequence of the fact that embedding techniques rely on
the presence of direct relations between nodes and, for the approaches based on random
walks, on the paths built through those relations. The properties in this category are the
ones that every node has, independently of its type or role, and whose definition does not
require any additional information other than the list of edges. Examples of properties in
this category are in-degree (i.e. number of incoming connections) and out-degree (number
of outgoing connections) for each node. These properties are inherently independent of
the context and can be reapplied to any graph.

Semantic properties. At a higher level of abstraction, we find properties whose def-
inition makes use of additional information other than the graph structure itself as they
require capturing the heterogeneity of the content of the graph. Probing tasks in this class
will allow us to test the capacity of GEs to encode semantic information, such as type
of nodes and edges. Here again, these properties are inherently independent of the KG
and can be reapplied to any KG. Techniques specifically designed for computing GEs
from Knowledge Graphs, such as TransE, ComplEx, DistMult, etc. claim to be able to
encapsulate this kind of information.

Context-specific properties. This group includes properties that present the highest
level of abstraction as they disregard any information about the structure and organization
of the data and are uniquely based on the human understanding of the context. In other
words, those are the characteristics of the elements described in the graph that any indi-
vidual would intuitively consider relevant for a given task and that would be meaningful
for the final use of the embedded representation. For example, let us suppose that we want

7.4 – Evaluating Graph Embedding Algorithms with Probing Tasks 87

to rely on GEs to develop a recommender system to suggest restaurants to users based on
their tastes. In this case, we would imagine the embeddings of restaurants’ nodes to en-
code the information about the “cuisine” prepared by each restaurant (e.g. Italian, French,
etc.), since, based on our personal experience, this is relevant information when choosing
where to eat. While the two previous categories of tasks are generic and easily reusable
to analyze GEs over KGs in different contexts, the properties in this last class need to be
defined for each specific use case, based on the knowledge represented in the graph and
on the final goal to be achieved through the use of embeddings.

Figure 7.1: Categories of probing tasks.

7.4 Evaluating Graph Embedding Algorithms with
Probing Tasks

In this section, we present the results of the application of probing tasks to two KGs
described below. We rely on the presented probing tasks’ categories to evaluate the in-
formation captured from the two graphs by several GE models. We compare them and
suggest possible explanations for their behavior with the final goal of gathering meaning-
ful insights to help a more informed use of such techniques in different contexts.1

7.4.1 Knowledge Graphs
We demonstrate the use and utility of the previously defined categorization of probing
tasks in decoding the information captured from GEs in two very different contexts.
Firstly, we assess the information encoded by several GE models on a general-use KG

1The code and data for reproducing the experiments can be found at https://github.com/
antoniaettorre/probing_tasks_yago.

https://github.com/antoniaettorre/probing_tasks_yago
https://github.com/antoniaettorre/probing_tasks_yago

88
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

frequently employed for benchmarking purposes, YAGO3 (Mahdisoltani et al., 2014).
Additionally, we test the same GE techniques on the domain-specific OntoSIDES KG.

7.4.1.1 YAGO3

YAGO3 is a multilingual KG containing almost 150 million facts automatically extracted
from Wikipedia and combined with WordNet. It describes about 17 million entities, from
person to location and organization, making it an important and heterogeneous source
of structured information. Considering the size of YAGO3, we decided to limit our ex-
periments to the subgraph containing only the entities having at least 10 relations. Our
subgraph consists of 123.189 entities and 37 relations2. To simplify the analysis of the
encoded information and to keep our dataset of a reasonable size, we consider for ev-
ery entity only the most common (frequently used) type. Given the generic nature of the
knowledge represented in this graph and the lack of a precise final goal to be achieved
through the use of GEs (other than the evaluation of the embeddings themselves), we
did not instantiate any context-specific property to be probed. Therefore, for this dataset,
we limit our analysis of the information captured by GEs to the first two levels of our
hierarchy. More precisely, we evaluate the GEs on the following probing tasks:

• Structural properties: in-degree and out-degree for each node and presence of
direct link between two nodes;

• Semantic properties: rdf:type for each entity and relation linking two entities.

7.4.1.2 OntoSIDES

In the following experiments, we aim to assess what knowledge in OntoSIDES is actu-
ally captured and summarized by GEs. Therefore, we rely on the defined probing tasks
to analyze the GEs computed on OntoSIDES. To be able to compare the results with
the ones obtained for YAGO3, we test the embeddings for the same properties as those
used in the previous case, i.e. in-degree, out-degree and presence of direct link as struc-
tural properties, and rdf:type and relation for semantic properties. Additionally, since
OntoSIDES represents very specialized knowledge, we extend the experiments to the fol-
lowing context-specific probing tasks:

• student’s university: given the GE of a student node, identify the university the
student attends;

• question’s topic: given the GE of a question node, identify the topic (i.e. learn-
ing_objective) related to that question.

We tested these newly defined probing tasks on a subgraph of OntoSIDES describing
the students’ learning activity in the pediatrics medical specialty. We picked this specialty

2extracted from the YagoFacts theme and extended, for each entity, with the triples stating the
rdf:type from the the YagoTypes theme.

7.4 – 7.4.2 Classification Model 89

Table 7.1: List of the probing tasks defined for YAGO3 and OntoSIDES.

KG Structural properties Semantic properties Context-specific properties
in-degree out-degree direct link entity type relation student’s university question’s topic

YAGO3 ✓ ✓ ✓ ✓ ✓

OntoSIDES ✓ ✓ ✓ ✓ ✓ ✓ ✓

because it is the one presenting the largest number of attempts by students to answer ques-
tions. This choice allows us to obtain a dataset large and heterogeneous enough to train
and test all the needed classifiers. Indeed, the size and distribution of the training set are
essential to building a high-quality classifier. For example, to be able to associate students
to their university, we need a reasonable number of students approximately uniformly dis-
tributed among the different universities. Similar considerations hold for all the properties
to be probed. Of course, given the nature of the represented information, these constraints
are very difficult to meet. It is evident, for instance, that the nodes ot type (rdf:type)
sides:answer will be more numerous than the nodes of type sides:student.
Keeping in mind these limitations, we extracted a subgraph containing 568.792 entities
and 16 types of relations.
The probing tasks defined for both KGs are summarized in Table 7.1.

7.4.2 Classification Model
If our hypothesis is valid and the information we aim to retrieve is indeed available in
the input features, even a very simple classifier will likely be able to decode it. For this
reason, we decided to rely on Logistic Regression as a classification model. Hence, we
trained a logistic regression model for each one of the probing tasks to be tested. One
of the main issues encountered during the training of such classifiers is the presence of
strongly unbalanced classes. As described in Section 7.4.1, extracting a subset of data that
would be balanced w.r.t. all the properties to be tested is not straightforward. Therefore we
had to consider, for each property, only the subset of its possible values having a number
of occurrences above a threshold. At the same time, we needed to undersample the most
frequent classes to avoid a highly skewed distribution.

All the classifiers have been trained with a 5-folds cross-validation on 80% of the data
and tested on the remaining 20%.

7.4.3 Graph Embeddings Models
We tested and compared some of the most widely used GE algorithms to analyze the
differences in their capacity of capturing information from the graph. We evaluated one of
the first GE algorithms conceived for generic graphs, i.e. node2vec; and several algorithms
specifically designed for KGs: TransE, ComplEx, DistMult, RESCAL, and RotatE. For
the computation of the node2vec embeddings we used the implementation provided by

90
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

Table 7.2: Weighted F1-scores on the probing tasks with YAGO3 KGEs.

GE algorithm
Structural properties Semantic properties

in-degree out-degree direct link entity type relation

node2vec 0.12 0.17 0.87 0.79 0.65
ComplEx 0.08 0.15 0.86 0.94 0.75
TransE 0.11 0.18 0.87 0.96 0.90
DistMult 0.11 0.16 0.85 1.00 0.82
RESCAL 0.09 0.16 0.84 0.94 0.80
RotatE 0.09 0.14 0.76 0.98 0.82

the SNAP framework3 (Leskovec and Sosič, 2016), while for the other KGEs, we relied
on the AWS DGL-KGE library4 (Zheng et al., 2020). For all the models the dimension of
the computed vectors was 100.

7.4.4 Results and Discussion
7.4.4.1 Evaluation on YAGO3

Table 7.2 reports the results in terms of weighted F1-score obtained for the GEs computed
from YAGO3 on all the probed properties described in Section 7.4.1. The GE models
with the highest F1-score are highlighted in bold. Overall, Table 7.2 shows that all the GE
models present similar results w.r.t the captured structural information, with a maximum
difference of 9% among them, while major differences can be noticed when analyzing the
semantic properties, e.g. with values ranging from 0.6 to 0.9 for the relation encoding.
Moreover, contrary to what could be expected, all the models seem to encode much better
semantic properties than structural properties. A deeper analysis of the results for each
property is provided hereafter.

In-degree Table 7.2 shows that no GE model is able to capture the information about the
number of incoming links for each node. Indeed, all the tested algorithms present com-
parable but very poor F1-scores. This unexpected result may be justified by the highly
skewed distribution of this property for the nodes in the graph. Indeed, the evaluated em-
beddings have been computed from the subgraph described in Section 7.4.1 that contains
a very large number of nodes with an in-degree of zero (i.e. without incoming links), even
though the classifier has been trained with fairly balanced classes by undersampling the
nodes with the most frequent degrees. By taking a closer look at the confusion matrices
obtained for each algorithm, we notice that all the GE models expose a common behav-
ior: they are very good in identifying nodes with in-degree 0, as it can be observed for

3http://snap.stanford.edu/index.html
4https://aws-dglke.readthedocs.io/en/latest/index.html

http://snap.stanford.edu/index.html
https://aws-dglke.readthedocs.io/en/latest/index.html

7.4 – 7.4.4 Results and Discussion 91

(a) Predicting the in-degree of a node. (b) Predicting the out-degree of a node.

Figure 7.2: Confusion matrices for the YAGO3 in-degree and out-degree classifiers with
TransE GEs.

TransE in Fig. 7.2a. This last result could confirm that the information about the num-
ber of incoming links can be encoded in the vector representation for the most common
in-degrees.

Out-degree As for the previous property, the figures in Table 7.2 highlight that the num-
ber of outgoing links is not encoded in the vector representation of the node by any of the
GE models. Also in this case, the different algorithms seem to behave similarly by
being able to identify the nodes with low out-degrees, especially for values 0 and 1
(see Fig. 7.2b). Nevertheless, this time, such behavior cannot be explained by the distri-
bution of the property over the nodes in the graph. Indeed, by analyzing the structure of
the graph we notice that the majority of the nodes are of out-degree 2, while the number
of nodes having no outgoing links is rather small. To verify whether the distribution of
the values of a property in the graph affects the capacity of a GE model to encode this
property, we compare the F1-scores obtained for each class by every GE model with the
distribution of the in-degree and out-degree classes. Fig. 7.3 shows that there is no clear
correlation between the number of nodes in each class and the model’s ability to encode
the corresponding value, as all the models can identify nodes with no incoming or outgo-
ing links. Nevertheless, we can conclude that, even though GEs do not encode the number
of incoming/outgoing links per node, they can still recognize leaves and roots nodes.
Moreover, we establish TransE to be the best model for such a task with F1-scores of 1
for out-degree and 0.63 for in-degree on class 0, as it can be determined by looking at
F1-score trends in Fig. 7.3.

Direct link Table 7.2 shows that all the tested models are fairly good in encoding the
information about the presence of a direct link between two nodes, with F1-scores
above 0.75 for every one of them. Being able to train a classifier for such property con-

92
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33

Number of nodes node2vec ComplEx TransE DistMult RESCAL RotatE

(a) In-degree distribution.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Number of nodes node2vec ComplEx TransE DistMult RESCAL RotatE

(b) Out-degree distribution.

Figure 7.3: Distribution of classes and F1-scores per class for all GE models on YAGO3.

7.4 – 7.4.4 Results and Discussion 93

firms that embeddings of linked nodes present some common patterns that enable to de-
termine the existence of a connection between the two nodes.

Entity type The F1-scores reported in Table 7.2 reveal the ability of GEs to encode
semantic information. These results show that all the models specifically designed for
KGs are capable of identifying the correct type for the majority of nodes in the
graph, with the worst models (RESCAL and ComplEx) achieving a F1-score of 0.94.
Although the performances of all these models are comparable, DistMult appeared to be
the best in this task with almost perfect identification of the type for the tested entities.
Surprisingly enough, also node2vec obtained fairly good results (F1 = 0.79) in this task,
although it does not rely on any semantic information, such as the type of relation. A
possible explanation for this behavior could lie in the fact that instances of the same class
possibly present the same connectivity patterns (similar links, common nodes, etc.) that
can be captured by the node2vec algorithm and transposed into the vector representation
of such nodes. For example, several nodes representing people will always be connected
to the class Person and very likely to a node representing their birthplace that will be
linked to the class Place. Therefore, an instance of a person can be identified by the direct
link to Person and the 2-hops path to Place.

Relation The results for this property are the most heterogeneous among the differ-
ent models. All the tested KGE algorithms, despite some differences in the F1-score,
seem able to encode the relation between two entities in the nodes’ embeddings. This
conclusion does not come unexpectedly. In fact, KGE models take into account the pres-
ence of different types of relations and compute a vector representation for each of them.
Therefore, it is reasonable to assume that part of this information is reported in the con-
nected nodes’ embeddings as well, and, consequently, the type of relationship can be
recovered by jointly studying the embeddings of two nodes. As for node2vec, similar
considerations as the ones made for the entity type hold in this case. If by relying on
structural information we are able to identify the type of two nodes, we will, at the same
time, limit the set of possible relations existing between these nodes. For example, a Per-
son and a Place might be linked with a limited set of predicates like diedIn, livesIn and
wasBornIn, but not through hasWonPrize.

7.4.4.2 Evaluation on OntoSIDES

Structural and semantic properties As shown by Table 7.3, the results for structural
and semantic properties obtained on OntoSIDES are compatible and mainly aligned with
the ones achieved for YAGO3. The experiments on this KG underline the difficulty of
capturing the number of incoming and outgoing links for each node. At the same time, the
analysis of the confusion matrices confirms the ability of all the GE models to distinguish
nodes without incoming/outgoing connections. The better results in identifying the out-
degree could be due to the higher homogeneity and smaller number of classes: for YAGO3
the maximum number of outgoing links was 36, while for SIDES it is 20. Similarly to

94
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

Table 7.3: Weighted F1-scores on the different probing tasks testing structural and seman-
tic properties for KGE computed on OntoSIDES.

GE algorithm
Structural properties Semantic properties

in-degree out-degree direct link entity type relation

node2vec 0.22 0.51 0.87 0.98 1.00
ComplEx 0.11 0.37 0.74 0.90 0.99
TransE 0.13 0.41 0.80 0.96 1.00
DistMult 0.12 0.41 0.83 0.94 1.00
RESCAL 0.13 0.37 0.83 0.87 0.99
RotatE 0.11 0.37 0.67 0.95 1.00

Table 7.4: Weighted F1-scores on the different probing tasks testing context-specific prop-
erties for KGE computed on OntoSIDES.

GE algorithm
Context-specific properties

student’s university question’s topic

node2vec 1.00 0.69
ComplEx 0.51 0.18
TransE 0.05 0.03
DistMult 0.34 0.10
RESCAL 0.08 0.06
RotatE 0.57 0.37

the experiments on YAGO3, all the models showed good F1-scores when encoding the
presence of a direct link between two nodes.

Table 7.3 shows that the patterns discovered in YAGO3 for semantic properties also
hold for OntoSIDES. All the GE models perform very well when encoding the informa-
tion about entity type and relation. The global improvement in the values of F1-score is
very likely due to the lower heterogeneity of the knowledge represented in this graph. In
such a specific context, i.e. higher education for medical studies in France, the information
to be described is sensibly less diverse (e.g. smaller number of classes and properties to be
encoded) and more clearly separated (e.g. a student and a question have less in common
than a singer and an actor). It is worth pointing out that node2vec seems to encode much
more meaningful information than in the previous case. This might be explained by the
higher importance of the graph structure in such a simple context. For example, answers
can be identified only relying on their structural role as nodes: an answer is always a node
linking a single student to a single question.

Context-specific properties On the one hand, Table 7.4 shows that context-specific
properties are on average hardly captured by GE methods specifically designed for KGs.
While for a human being it is straightforward to understand that the attended university

7.5 – Decoding Graph Embeddings for Students’ Outcomes Prediction 95

is a relevant concept when summarising information about students, it is much more dif-
ficult for the GEs to grasp such a correlation uniquely from the graph. If no additional
information (e.g. edge weights) is provided, it is not possible to recognize that, for a stu-
dent node, the link towards the university is more meaningful than the connection with a
given answer. The poor results in terms of F1-score shown by most of the models in Ta-
ble 7.4 confirm that this kind of knowledge presents a much higher level of abstraction
(complexity) than mere semantic and, therefore, cannot be easily interpreted by such
techniques. Possibly considering longer embeddings could facilitate the incorporation of
this kind of knowledge.

On the other hand, we can observe that node2vec achieves good performance also in
this task. This could be motivated by the fact that this algorithm strongly relies on the
structure of the graph by creating fixed-length paths starting in each node, hence it can
recognize the more important role of universities’ nodes under a structural point of view.
Universities nodes behave as hubs for students, i.e. several students are directly linked to
a single university, therefore all the embeddings of students attending the same university
will share similar patterns as they are connected in the graph through the university node.
The same considerations hold for questions and their corresponding topics, with the dif-
ference that encoding topics information is a more challenging task as questions can be
linked to several topics and the number of different topics is much larger than the num-
ber of universities (more than 500 topics vs. 33 universities). This result highlights the
crucial role of the graph structure for the meaningfulness of the final GEs and suggests
that careful ontology modeling choices are of the uttermost importance. It is interesting to
point out that RotatE and ComplEx perform much better on this task when compared to
the other KGE methods. This could be related to their ability to represent entities through
Complex numbers, but further experiments would be needed to confirm this intuition.

7.5 Decoding Graph Embeddings for Students’ Out-
comes Prediction

So far, we have introduced our approach for decoding the knowledge captured by Graph
Embeddings relying on probing tasks in Section 7.3 and showed how such an approach
can be applied to benchmark and compare the information borne by different Knowledge
Graph Embeddings in Section 7.4.1.

The analysis of the behavior of our DeepFM model with different Graph Embed-
dings, carried out in Chapter 5, led us to the conclusion that the quality of the students’
outcome prediction was improved when using answers’ Graph Embeddings computed
through node2vec and TransE because they encode the information about the number of
selected proposals of answers. In the following, we illustrate the use of probing tasks for
verifying this hypothesis. We define, therefore, a new classification task whose aim is to
predict the number of selected proposals for each answer uniquely relying on the Graph
Embeddings of such answers’ nodes. Table 7.5 shows the results, in terms of F1-score,
obtained on this probing task by all the Graph Embeddings computed and employed for

96
CHAPTER 7 — A Methodology to Identify the Information Captured by Knowledge

Graph Embeddings

GE model node2vec RDF2vec RESCAL DistMult ComplEx TransE TransR
F1-score 0.94 0.71 0.33 0.39 0.33 0.92 0.31

Table 7.5: F1-score obtained by all the tested Graph Embedding model on probing task
for the encoding of the number of selected proposals of answers.

the prediction of students’ outcomes in Section 5.3. The results confirm that the number
of selected proposals of answer is captured and encoded in the answers’ embeddings
computed through node2vec (using the directed graph) and TransE, as these models
achieve very high F1-scores (0.94 and 0.92 respectively). As expected, RESCAL, Dist-
Mult, ComplEx and TransR exhibit very low values of F1-score on this task (around 0.30),
validating our claim according to which they do not encode such a property. Surprisingly
enough, the F1-score achieved by RDF2vec is significantly higher that the other models
that bring no contribution to the DeepFM prediction. This could mean that this property
is partially encoded by RDF2vec but it cannot be exploited by DeepFM. In general, we
can affirm that our hypothesis is validated and the DeepFM model exploits the informa-
tion about the number of selected proposals, inferred through the Graph Embeddings of
answers’ nodes, to predict the correctness of a given answer.

7.6 Conclusions
In this chapter, we presented a methodology based on probing tasks to verify whether
GEs are able to encode certain properties of the graph elements and we introduced a cat-
egorization of such properties. To test our approach we proposed a first set of properties
that could be encoded by GEs and we relied on them to analyze the knowledge captured
by GEs on two different graphs: YAGO3 and OntoSIDES. We found out that, in our use
cases, GEs can encode information about characteristics of graph elements at any level
of abstraction: structural, semantic, and context-specific. We have shown that, even with
some differences, all the tested GE models are able to capture the type of a given node,
the presence of a direct link between two nodes, and the type of relationship between
two nodes. Moreover, we discovered that some models, e.g. TransE, are very good at
identifying roots and leaves nodes, although no model can encode the in and out-degree.
Additionally, we observed that context-specific properties are better captured by node2vec
embeddings. We hypothesized that this is because, in many cases, properties that are con-
sidered relevant from a human perspective are represented in the graph by nodes with a
common structural pattern. This conclusion highlights the importance of the graph struc-
ture and ontology design. Finally, we used the presented methodology based on probing
tasks to probe the hypothesis explaining the behavior of Graph Embeddings formulated
in Chapter 5. More precisely, we could confirm that, among all the Graph Embeddings
employed for the students’ outcomes prediction in Chapter 5, the answers’ nodes embed-
dings computed through node2vec and TransE encoded the number of selected proposals
for each answer.

CHAPTER 8
Prediction of Learners’
Performance based on

Link Prediction in a
Knowledge Graph

In this chapter, we present a new model for Knowledge Tracing based on Knowl-
edge Graphs, which tries to overcome the issues discovered during the analysis
of our first KG-based Knowledge Tracing model. To do so, we reformulate the
Knowledge Tracing task as a Link Prediction problem on a Knowledge Graph
and we predict students’ outcome to questions by determining the most probable
link between each answer and its correct or wrong realizations. Our first ex-
periments on three real-world datasets show that the proposed approach yields
promising results comparable with state-of-the-art models. This chapter is based
on the work published at the International Conference on Artificial Intelligence
in Education (AIED2022) (Ettorre et al., 2022c).

8.1 Introduction . 99

8.2 Link Prediction for Students’ Outcomes 100

8.3 Evaluation . 102

8.3.1 Datasets . 102

8.3.2 Knowledge Graphs 103

8.3.3 Knowledge Graph Embedding Models 104

8.3.4 Evaluation Setup 105

8.3.5 Results and Discussion 106

8.4 Conclusions . 107

97

8.1 – Introduction 99

8.1 Introduction
In the previous chapters of this thesis, we proposed a method to exploit Knowledge Graphs
through their embeddings to predict students’ outcomes to questions and we focused,
afterwards, on analyzing whether, when and why Knowledge Graph Embeddings could
actually be useful to improve such prediction and provide meaningful explanations for it.

This analysis helped us highlight several shortcomings in the proposed method. First
and foremost, we discovered that adding Graph Embeddings as input features of our ex-
ternal deep predictive model, DeepFM, was beneficial for the prediction only because
of data leakage. Indeed, Graph Embeddings injected into the model information about
the number of selected proposals of answers, which should not be available at prediction
time. Secondly, throughout the proposed method, we are not able to exploit all the infor-
mation available in the Knowledge Graph, as only embeddings of few types of nodes, i.e.
students, questions and answers, are employed as input features. Instead, other elements
in the Knowledge Graph can bear meaningful knowledge which is not embedded in the
vector representation of the selected nodes, e.g. topics involved in the questions or orga-
nization in tests. Additionally, since the input of the DeepFM model is a combination of
basic and extracted features, our approach still requires an important work of features en-
gineering, which must be carried out based on the application context and on the available
information. Finally, relying on an external deep model for the prediction increases the
overall complexity of the approach, as it introduces an additional element which needs
to be properly tuned and trained. At the same time, it makes the explanation of the pro-
duced results difficult, since it requires not only to decode the information captured by the
Graph Embeddings used as input, but also to verify whether and how such information is
exploited by the predictive model.

In this chapter, we try to overcome these issues by proposing a new approach for
Knowledge Tracing entirely and uniquely based on the exploitation of Knowledge Graphs
through their embeddings. As a first step, we exploit Semantic Web technologies by mod-
eling the complete learning ecosystem as an RDF Knowledge Graph. Thanks to the ex-
pressiveness of this representation, we can define and describe concepts such as students,
questions’ types, institutions, etc. Secondly, we translate the Knowledge Tracing task into
a Link Prediction (LP) problem on the newly generated KG. Finally, by solving this prob-
lem, we identify the most probable links between the answers whose outcomes need to be
predicted and their correct or wrong results, which corresponds to the solution of the bi-
nary classification task for answers’ correctness. We think that reformulating the problem
of predicting students’ outcomes to questions in such a way allows us to take advantage
of a much wider amount and variety of information about the learning environment while
reusing widely-known and well-established Deep Learning methods for KGs and avoid-
ing features engineering. Indeed, thanks to the use of such techniques, we do not need to
explore the data to find possible relevant features to use as input for the model, because
the factors affecting students’ outcomes will be inherently identified during the embed-
ding process. Furthermore, this new formulation for the Knowledge Tracing task does
not require us to train and tune an additional external model. This will further simplify

100
CHAPTER 8 — Prediction of Learners’ Performance based on Link Prediction in a

Knowledge Graph

Figure 8.1: Example of a KG representing the answer of a student to a question. The
dashed lines represent the links we aim to predict.

the predictions’ explanation process as we can possibly rely on well-known explanation
methods for Link Prediction. To the best of our knowledge, the approach we present here-
after is the first attempt to make predictions of students’ outcomes uniquely based on a
Knowledge Graph representing and exploiting a 360-degrees description of the learning
ecosystem. To empirically confirm the validity of the proposed approach, we apply it on
three real-world datasets and compare its performance with state-of-the-art Knowledge
Tracing models.

The remainder of this chapter is organized as follows. In Section 8.2 we detail our
approach, while in Section 8.3 we evaluate it by presenting and discussing the results of
our experiments. Finally, conclusions are discussed in Section 8.4.

8.2 Link Prediction for Students’ Outcomes
The approach presented in this chapter is mainly based on the hypothesis that it is pos-
sible to turn the Knowledge Tracing task into a Link Prediction problem, after modeling
the learning environment as a KG. In other words, instead of predicting the probability
that a given student correctly answers a specific question, we evaluate the plausibility
that an implicit link (i.e. a triple) exists (in the KG) between the expected student’s an-
swer and its correct or incorrect result. Finally, an answer is labeled as “1” (correct) if
the link towards the correct result has a higher score than the link towards the incorrect
one, while it is labeled as “0” (incorrect) in the opposite case. For example, to predict
the positive or negative outcome of the answer given by student A to question 1 (Fig-
ure 8.1), we compute the score of the two triples ⟨answer1, has_result, correct⟩ and
⟨answer1, has_result, incorrect⟩, and we predict that A’s answer will be correct if the
first triple has a higher score than the second one. To empirically validate our hypothesis,
we designed and developed an end-to-end pipeline depicted in Figure 8.2, which takes as
input the traces of the students’ learning history possibly enriched with contextual knowl-
edge and the list of the students-questions interactions whose outcomes must be predicted.
The framework implements four steps further described below.

1. Graph Building. The first step of our approach is the creation of a KG describing
the students’ activity, enriched with all possible relevant side information. This step is

8.2 – Link Prediction for Students’ Outcomes 101

Students’ traces
+ side info

e.g. Universities,
Classes, Tests, etc

1. Graph building 2. Graph augmentation 3. KGE computation and LP

SCORE: -12.56

SCORE: -17.94

INCORRECT

4. LP output
transformation

Figure 8.2: Depiction of the different steps for the proposed Link Prediction-based ap-
proach.

crucial for achieving high quality of the final prediction as the graph content and struc-
ture chosen for the representation of the learning environment will strongly influence the
elements’ interactions that KGE models are able to capture, and therefore the quality of
the link prediction. The modeling choices are strongly dependent on the context, system,
and data to be represented, i.e. a higher education learning system involves concepts and
actors which are not present in a platform for vocational training. Nevertheless, a gen-
eral model for the definition of the most common learning elements, such as students,
questions, and answers can be provided. For example, although the datasets used for the
experiments presented in this chapter describe two very different educational contexts
(see Section 8.3.1), our approach achieved similar performance, when using the same KG
structure for student-question interactions in the two cases.

2. Graph Augmentation for Prediction. The computation of KGEs, necessary for car-
rying out the Link Prediction task, is typically a non-inductive operation, meaning that, to
be able to evaluate the presence of a link between two nodes, the corresponding elements
must be originally present in the KG. This implies that, in order to predict the outcome
of any future interaction between a student and a question, a fictitious node representing
such interaction must be added to the Knowledge Graph (i.e. blue node A and links in
Figure 8.2). This step takes as input the list of answers to be predicted and the original
KG representing the previous students activities, and outputs the final graph to be used
for the KGEs computation in the next step.

3. Knowledge Graph Embeddings Computation and Link Prediction. In this phase,
KGEs are computed for each entity and relation in the KG. Then, for each answer to be
predicted, the scores of the two triples representing a correct and a wrong realization are
evaluated based on the computed embeddings. The output of this step is the list of the
2n possible triples, where n is the number of answers to be predicted, ranked according
to their score. This phase is the most time-consuming in the whole pipeline because of
the KGEs computation. Also, in the current implementation the embeddings cannot be
simply updated when the KG is modified, but they need to be recomputed from scratch.
Therefore, this step needs to be repeated, together with the previous and the next one, for

102
CHAPTER 8 — Prediction of Learners’ Performance based on Link Prediction in a

Knowledge Graph

Table 8.1: Statistics of the datasets.

Dataset # records # students # questions # skills
SIDES DS1 354.109 1.099 2.381 414
SIDES DS2 295.529 1.098 2.493 332
ASSIST09 283.105 4.163 17.751 123

every batch of answers to predict. However, the computational overhead introduced by
this operation can be reduced by predicting large batches of answers at once. Moreover,
having to periodically recompute the KGEs allows us to update the KG with the most
recent students’ traces to keep the prediction as reliable as possible.

4. Link Prediction Output Transformation. Once the Link Prediction task is solved,
we need to turn its results into the corresponding solution for the binary classification of
students’ answers (correct or incorrect). This process is simply carried out by identifying,
for each answer, the triple with the highest score computed in the previous step, i.e. link
towards correct or wrong option, and labeling the answer accordingly. This produces the
final prediction of students’ outcomes according to our model.

8.3 Evaluation

8.3.1 Datasets
To empirically validate our approach, we evaluated it on two different datasets extracted
from the OntoSIDES KG and on an additional dataset obtained from the ASSISTments
data described in Chapter 3.

For the SIDES data, we chose two subsets that contain the learning traces of the med-
ical students in the last year of studies at the University of Lyon in a.y. 2018/2019 and
2019/2020. We limited our experiments to their activities on questions related to the med-
ical specialties of pediatrics for the first dataset, and infectious diseases for the second
one, respectively named SIDES DS1 and SIDES DS2. These two specialties have been
chosen because they are the ones with the highest number of answers for the selected
subset of students.

To assess the generalization capabilities of the proposed approach and to be able to
compare it with state-of-the-art Knowledge Tracing models, we decided to additionally
test our method on the ASSISTments data, previously described in Section 3.2. More
precisely, we used the ASSITments 2009-2010 skill builder dataset (Feng et al., 2009),
which is one of the best known and most widely used benchmarking datasets.

The main statistics for the above-described datasets are shown in Table 8.1.

8.3 – 8.3.2 Knowledge Graphs 103

8.3.2 Knowledge Graphs
The first step to apply our approach is to model all the available information related to the
learning ecosystem in the form of a KG. Hereafter, we detail how the KGs representing
the data in SIDES and ASSISTment have been designed.

SIDES. As described in Section 3.1, the SIDES dataset includes information about the
attempts of students to questions, but also rich additional details further describing such
questions and students. Nevertheless, part of the information stored in OntoSIDES is
very specific (e.g. links to external sources defining medical concepts) and the modeling
choices are sometimes unsuitable for our final goal. For example, OntoSIDES includes
nodes representing selected options for multiple-choice questions, that are not necessary
in our use case, and it uses Literals to indicate the level of correctness of each answer,
which can not be directly exploited by the employed embedding models. Therefore, we
slightly modified the structure and content of the KG describing the extracted SIDES
datasets to obtain a representation better suited for our approach. The KG representing
our SIDES subsets is illustrated in Fig. 8.3. Concerning the questions, this new KG dif-
fers from the original one for the absence of the nodes representing the proposals of
answer, while it still links questions to their medical specialties, learning objectives and
sub-objectives, universities, and possible multimedia resources. Another difference is in
the modeling of the students who are now linked directly to the university they attend
through the property registered_in. The most interesting and impactful part of the
modeling concerns the interactions between students and questions and their outcomes.
As in the original graph, each attempt of a student to a question is represented by a node of
type answer in the KG, which is connected to the corresponding student and question,
through properties done_by and correspond_to. Additionally, we connect every
answer to its outcome, i.e. correct or incorrect, which is represented by the two nodes for
the correct and the incorrect options for each question. Therefore, the goal of our Link
Prediction task is to find the most probable object of the triple ⟨A1, has_selected, ?⟩ .
Let us highlight that we are considering answers as either correct or incorrect. There-
fore, partially correct answers will be treated as incorrect. The described KG designing
choices have been identified, through a first experimentation, as the most effective ones
to optimize the quality of the students’ outcomes prediction.

ASSISTment 2009-2010. We designed the KG describing the ASSISTment data
similarly to the SIDES one. In this case, the side information is represented by
different types of problems, i.e. either main or scaffolding problems on one side,
and algebra, single choice, multiple choice or fill-in problems on the other side;
organization of such problems in assistments and assignments; division of stu-
dents in classes; and teachers scheduling. We defined one class for describing each
one of the following concepts: answers, students, skills, teachers, assignments, as-
sistments, and students classes; and 7 additional classes to represent the different
types of problems: MainProblem, ScaffoldingProblem, AlgebraProblem,

104
CHAPTER 8 — Prediction of Learners’ Performance based on Link Prediction in a

Knowledge Graph

Figure 8.3: KG representing the SIDES learning environment. Blue bubbles are OWL
classes, while white bubbles are instances of such classes. Blue links are property
rdf:type. Dashed edges are property has_selected whose object we aim to pre-
dict.

SingleChoiceProblem, MultiChoiceProblem, FillInProblem, and the
parent class Problem. We reused some of the properties previously defined for SIDES
to describe relations between students, answers, problems and skills. Additionally, we
linked each problem to the related assistments and those to the corresponding assign-
ments. Each assignment is then connected both to the teacher who gave it, through
property assigned_by, and to the students’ class solving the assignment through
assigned_to. Finally, a major difference with the KG built for SIDES lies in the
modeling of the outcomes of students’ attempts. Indeed, we noticed that, when link-
ing correct and wrong outcomes to both the question and the answer by using sepa-
rate properties, respectively has_correct_option, has_incorrect_option,
has_correctly_selected and has_incorrectly_selected, the pre-
diction performance was significantly better than when using only two prop-
erties that do not distinguish between correct and incorrect outcomes, i.e.
has_option and has_selected. Therefore, the task we solve through Link
Prediction is, in this case, the identification of the most probable triple between
⟨A1, has_correctly_selected, CO1⟩ and ⟨A1, has_incorrectly_selected, WO1⟩.

8.3.3 Knowledge Graph Embedding Models
For the resolution of the Link Prediction task for the prediction of students’ outcomes, we
tested several KGE models, implemented by the AWS DGL-KGE library (Zheng et al.,
2020): DistMult (Yang et al., 2015), TransE (Bordes et al., 2013), ComplEx (Trouillon
et al., 2017) and RotatE (Sun et al., 2019). We empirically identified TransE as the best
one in recognizing the real links in all the KGs. Therefore, we chose to rely on this model
for the following experiments. All the KGEs employed for the experiments presented in
this chapter have been computed using hidden dimension 100 and 100.000 max iterations.

8.3 – 8.3.4 Evaluation Setup 105

Figure 8.4: KG representing the ASSISTment learning environment. Blue bubbles
are OWL classes, while white bubbles are instances of such classes. Blue links are
property rdf:type. The solid green and red edges represent respectively prop-
erties has_correct_option and has_incorrect_option, while the dashed
green and red ones indicate the two properties has_correctly_selected and
has_incorrectly_selected to be predicted.

8.3.4 Evaluation Setup
To validate our approach, we decided to compare the performance of our model with
the original DKT model. This choice is motivated by the fact that DKT has been widely
used as a baseline by recent research works in the area and that several implementations
are available online. For the experiments presented in Section 8.3.5, we relied on the
DKT TensorFlow implementation1 provided by (Xiong et al., 2016). For the evaluation,
we split the three datasets into a train set, including the learning traces of 70% of the
students, and a test set, containing the remaining 30%. We used exactly the same splits
for training and testing the two approaches. For the experiments with DKT, we had to
perform an additional preprocessing step. Since DKT makes predictions relying on the
input couples (student, skill), when a student answers a question tagged with multiple
skills, the corresponding record would be duplicated as many times as the number of
involved skills. To avoid this issue, we created fictitious joint skills for the questions
associated with multiple skills as in the solution proposed by (Xiong et al., 2016).

Finally, to evaluate the two approaches we used several metrics commonly employed
in classification problems: AUC, F1 scores, and balanced Accuracy (Brodersen et al.,
2010) which is invariant w.r.t. the distribution of the target values in the dataset. In order
to properly compute the AUC for the Link Prediction task, we had to convert the scores
of each link into a probability estimator for the correctness of the corresponding answer,

1https://github.com/siyuanzhao/2016-EDM

https://github.com/siyuanzhao/2016-EDM

106
CHAPTER 8 — Prediction of Learners’ Performance based on Link Prediction in a

Knowledge Graph

Table 8.2: Results of Link Prediction and DKT approach.

Dataset Link Prediction DKT
AUC F1 (0) F1 (1) bACC AUC F1 (0) F1 (1) bACC

SIDES DS1 0.759 0.724 0.656 0.692 0.706 0.690 0.609 0.650
SIDES DS2 0.759 0.691 0.683 0.687 0.680 0.646 0.607 0.627
ASSIST09 0.717 0.544 0.734 0.657 0.691 0.512 0.755 0.640

valued between 0 and 1. To do so, we normalized the scores of each complementary cou-
ple of triples (indicating the correct and incorrect outcome of the same student’s attempt)
by dividing the score of the link towards the correct outcome by the sum of the scores of
the two possible links (correct and incorrect outcomes). Equation (8.1) shows the formula
used for the probability computation, where pc indicates the probability of correctness of
each answer, SI is the score of the link towards the incorrect outcome, while SC is the
score of the link towards the correct outcome. Let us highlight that we consider, as esti-
mator for the probability, the complement of the normalized score for the correct answer
because, being the scores negative, the highest score, and, thus, more probable link is the
one with the lowest normalized score.

pc = 1 − SC

SI + SC

(8.1)

Moreover, to be able to fairly compare the results obtained by Link Prediction and
DKT over the other selected metrics, i.e. F1-scores and bACC, we chose, for the DKT
method, the threshold that maximizes the balanced accuracy.

8.3.5 Results and Discussion
Table 8.2 shows the results in terms of AUC, F1-scores and balanced Accuracy of both
Link Prediction and DKT on the three datasets described in Section 8.3.12.

As it can be seen from Table 8.2, the newly proposed Link Prediction approach consis-
tently outperforms DKT on almost all the metrics for the three datasets. In particular, the
Link Prediction approach achieves an improvement of 4-6% in terms of bACC on the two
SIDES datasets, while it does almost 2% better on the ASSISTment dataset. Concerning
AUC, the improvement is slightly more important as Link Prediction outperforms DKT
by 6-8% on the SIDES datasets and by 2.5% on ASSISTment. We believe that the main
reason for this improvement is the ability of our method to take into account a greater
variety of knowledge about the learning ecosystem. Indeed, we are able to exploit, for
the students’ outcome prediction, relations between skills, students, tests, questions, and
institutions.

It is important to also note that, while the results of the Link Prediction approach are
very close for the two SIDES datasets (bACC = 0.692 and 0.687) they are importantly

2The code and the data for reproducing the following experiments can be found at https://github.
com/antoniaettorre/kt_link_prediction.

https://github.com/antoniaettorre/kt_link_prediction
https://github.com/antoniaettorre/kt_link_prediction

8.4 – Conclusions 107

lower for the ASSISTment09 dataset, bACC = 0.657. This behavior can be explained
by the different characteristics of the datasets. Taking a closer look at the statistics in
Section 8.3.1, we can notice that the number of students and questions included in the
SIDES datasets are sensibly lower than the ones in ASSISTment data. This is a direct
consequence of the context described by these data. The SIDES datasets include traces of
two small groups of students over 6 years of highly specialized training, therefore all the
students must face a very specific, although relatively small, set of questions. While the
ASSISTment dataset reports the training of many students on a wider and more general
set of questions. This difference results in a higher density of answers per question in the
SIDES datasets (148 answers/question and 118 answer/question respectively for DS1 and
DS2), when compared to ASSISTment (16 answers/question), which directly corresponds
to a larger number of links towards the positive and negative outcomes of questions in
the KG. Therefore, it is reasonable to think that the Link Prediction algorithm performs
better on the SIDES datasets because the corresponding KGs include more examples of
links similar to the ones we aim to predict. Another important difference between the
SIDES and the ASSISTment data lies in the balance of the dataset with respect to the
distribution of the target values. Indeed, while the SIDES datasets resulted to be almost
balanced in the number of correct and incorrect answers (respectively around 47% and
49% of correct answers for DS1 and DS2), the ASSISTment dataset contains almost two
times more correct answers than incorrect ones (around 65% of correct answers). This
explains the strong difference between the negative and positive F1 scores achieved by
both DKT and our model based on Link Prediction (see Table 8.2).

A last interesting remark regards the execution time since, as explained in Section 8.2,
our method is based on 4 steps and could present a bottleneck in the embedding compu-
tation phase. Nevertheless, we observed that, with the same evaluation setup and similar
hardware settings, both DKT and Link Prediction methods exhibit comparable total exe-
cution time (around 30 minutes on a machine equipped with 4 Nvidia Quadro RTX 8000
GPU cards).

8.4 Conclusions
In this chapter, we presented a novel approach to predict students’ outcomes to questions
uniquely and entirely relying on the use of Knowledge Graphs and Knowledge Graph
Embeddings. More specifically, we reformulated the Knowledge Tracing task as a Link
Prediction problem on a KG describing such system. We developed an end-to-end frame-
work implementing all the steps to execute our approach: from KG building to the final
prediction. We tested our approach on two very different use cases and compared its per-
formance with the state-of-the-art DKT Knowledge Tracing model. We showed that Link
Prediction achieves competitive results in terms of prediction accuracy, but also that its
performance is partially dependent on the characteristics of the dataset: the more exam-
ples of answers per question are present in the data, the better the quality of the prediction
will be. In conclusion, we proposed a method to predict students’ outcomes that allows

108
CHAPTER 8 — Prediction of Learners’ Performance based on Link Prediction in a

Knowledge Graph

us to account for all the possible knowledge about a learning environment, even if highly
complex, while avoiding features engineering. Moreover, thanks to the KG representation,
the Link Prediction based approach offers a homogeneous interface independent from a
specific educational system.

CHAPTER 9
Conclusions and

Perspectives
9.1 Summary of the contributions
The work done during this thesis is a first effort at investigating whether and how Sym-
bolic AI, in the form of Knowledge Representation and Reasoning, and, more precisely,
Knowledge Graphs can help optimize the resolution of the Knowledge Tracing task, over-
coming the limitations of state-of-the-art Deep Learning approaches. These limitations,
already illustrated in Chapter 1, include, as two major shortcomings, the impossibility of
modeling and exploiting complete information about learning environments, which can
be highly complex and very diverse depending on the described educational context, and
the difficulty of providing meaningful explanations for the generated Knowledge Tracing
predictions.

In our fist contribution, we tried to overcome these issues by proposing a new model
for tracing students’ learning based on the well-known DeepFM architecture, extended
to include, as input features, Graph Embeddings computed from a Knowledge Graph de-
scribing the learning environment. In this contribution, we proved that Knowledge Graph
Embeddings can capture meaningful information from the Knowledge Graph represent-
ing the learning environment which can subsequently be exploited by DeepFM to provide
better predictions for students’ outcomes to questions. Through further extensive experi-
mentation, we realized that our approach led to the problem of data leakage. Nevertheless,
the identification and resolution of such issue brought us to the realization of two impor-
tant contributions useful for the general interpretation and understanding of Knowledge
Graph Embeddings.

Firstly, we developed Stunning Doodle, a tool for the visual analysis of Knowledge
Graph Embeddings based on the joint visualization of the Graph Embeddings and the
Knowledge Graph from which they are generated. The idea is that by visualizing, at the
same time, the structure and the semantic of the Knowledge Graph, and the distances
between the graph elements in the embedding space, we can help the user get insights
into the information encoded by the embeddings. Secondly, inspired by the work in the
NLP community, we proposed an approach to systematically analyze Knowledge Graph
Embeddings and decode the information they capture from the Knowledge Graph. This
approach consists of testing hypothesis on the encoding of specific features by the latent

109

110 CHAPTER 9 — Conclusions and Perspectives

representation of each graph element, through the use of classification tasks, known as
probing tasks. Both, the developed visualization tool and the probing task methodology,
helped us analyze different Graph Embeddings and identify the data leakage issue in our
Knowledge Tracing approach, allowing us to confirm the hypothesis on the information
encoded by the embeddings, and, thus, better understand their behavior. Furthermore,
these two contributions have a more general aim, as they can be exploited by the global
Semantic Web community to gain a better understanding of the information captured
by Graph Embeddings in any application, which can lead to a more aware use of such
embedding models.

Finally, we presented a Knowledge Tracing method which relies entirely and uniquely
on the exploitation of Knowledge Graphs and their embeddings. This method consists of
treating the Knowledge Tracing task as a Link Prediction problem on a Knowledge Graph
representing the whole learning environment. Such formulation allows us to represent
and exploit all the available information about any learning environment while keeping
a uniform interface for the students’ outcome prediction. Indeed, no feature engineering
or any adaptation of the Link Prediction based method is necessary to apply it to a new
Knowledge Graph in a different educational context.

This last contribution represents a good first lead for the exploitation of Knowledge
Graphs for the Knowledge Tracing task resolution, as, even in its basic settings, it shows
good prediction performance, while accounting for the complexity and variety of any
learning environment and application context. For example, concepts such as soft and hard
skills can be defined in a Knowledge Graph, hierarchical organization of questions, topics
and skills can also be described, as well as students personal traits and information about
their learning history and habits. And such complex knowledge can be further exploited
through the Knowledge Graph Embeddings. Additionally, it is possible to easily obtain
a first explanation of the generated predictions by reusing explanatory methods for Link
Prediction.

In conclusion, with respect to the research questions formulated at the beginning of
this thesis (Section 1.2), we provided the following answers:

• RQ1: How can we exploit Knowledge Representation for Knowledge Tracing
purposes? We explored, analyzed and tested the use of Graph Embedding tech-
niques to take advantage of the knowledge represented in a Knowledge Graph. We
proposed two approaches relying on the use of such embedding models to predict
students’ outcome to questions in different educational contexts. Additionally, we
showed how such Knowledge Graph based approaches allow us to represent and
exploit all the possible information about any learning system providing a simple
and homogeneous interface.

• RQ2: Under what conditions and in which context does our Knowledge Graph
based approach to Knowledge Tracing work? Can it be generalized across dif-
ferent learning environments and to other Knowledge Graphs? Through exten-
sive experimentation, we discovered which Knowledge Graph Embedding settings
and Knowledge Graph content and structure were optimal for the resolution of the

9.2 – Future works and Perspectives 111

Knowledge Tracing task in the OntoSIDES use case and we formulated hypothesis
on the reasons behind their behavior. At the same time, we found out that sev-
eral factors can heavily affect the quality of Knowledge Graph Embeddings and,
therefore, impact the performance on the resolution of the final task. Moreover, to
optimize the quality of the students’ outcome prediction, KG-based approaches re-
quire extreme care in the design of Knowledge Graphs describing diverse learning
environments. Indeed, although general guidelines can be provided for the model-
ing of such Knowledge Graphs, design choices need to be fine-tuned based on the
represented educational context.

• RQ3: How to interpret and explain the prediction produced by our Knowl-
edge Graph based model? A major part of the work carried out for this thesis was
dedicated to the analysis and interpretation of the information encoded by Graph
Embeddings. To this end, we first developed Stunning Doodle, a tool for the vi-
sual analysis of Knowledge Graph Embeddings, and subsequently we proposed an
approach to verify hypothesis on the the properties encoded by Graph Embeddings.

9.2 Future works and Perspectives
In this thesis, we took a significant first step towards the exploitation of Knowledge Graph
Embeddings for supporting e-education, and pushed further the interpretation of the in-
formation encoded by such embeddings. Nevertheless, all the proposed solutions present
several limitations and much work is still to be done for their improvement and extension
to be able to fully exploit them.

Concerning the visual analysis of Knowledge Graph Embeddings, Stunning Doodle
could be enhanced and extended to include better and more comprehensive visualization
options and advanced functionalities for the analysis of Graph Embeddings. For example,
we could implement the possibility of visualizing a Knowledge Graph by querying a
SPARQL endpoint, and we could provide high-quality statistics on the neighboring nodes
in the embedding space, e.g. identifying commonalities among close nodes. Moreover,
one major weakness of Stunning Doodle is its performance on large Knowledge Graphs,
thus the optimization of the back-end pipeline is necessary to more easily and seamlessly
use this tool in real-world scenarios.

Also our approach for the prediction of students’ outcomes to questions based on
Link prediction needs to be further analyzed, improved and extended. Firstly, our experi-
ments on two different use cases highlighted how much the Knowledge Graph designing
choices impact the quality of the link prediction. Indeed, we saw that best Knowledge
Graph structure found for the SIDES scenario was not optimal for the students’ perfor-
mance prediction on the ASSISTments data. Therefore, for a more aware utilization of
our Link Prediction based approach, it is necessary to further analyze these differences,
and try to provide guidelines for the representation of learning environments with diverse
characteristics and in different contexts. Moreover, we pointed out the possibility of ap-
plying explanatory methods for Link Prediction to interpret the solutions provided by our

112 CHAPTER 9 — Conclusions and Perspectives

model, but we did not test such methods and analyze whether the generated explanations
would actually be meaningful. This would surely be an essential study to be carried out
in the close future. Furthermore, one of the most important limitations of the proposed
approach is the impossibility of taking into consideration the time dimension and, there-
fore, account for the temporal evolution of students’ knowledge. Indeed, even though the
outcomes prediction is done based on the previous activities of the students, such activ-
ities are not temporally ordered. Thus, an important research direction for the future is
the introduction in the Knowledge Graph and exploitation, through the embeddings, of
temporal information.

Finally, to confirm the results presented in this thesis and provide a deeper analysis
and further meaningful insights into the representation of diverse learning environments,
we plan to extend our experimentation to a different educational domain. In the context of
an ongoing collaboration with the TeachOnMars 1 company, we are currently working on
the implementation and test of the proposed models on data obtained from professional
training of employees in various activity sectors.

In conclusion, we showed how Knowledge Graphs and Knowledge Graph Embed-
dings can be used and useful in the field of e-education for the resolution of the Knowl-
edge Tracing task. We can move forward in this direction trying to exploit these tech-
nologies for other tasks to support global education, both online and offline. For example,
we can think about employing Knowledge Graphs for extending the scope of the learn-
ing environment description, representing additional information such as social interac-
tions among students and cognitive or emotional characteristics of learners. We can also
use Knowledge Graphs to relate different educational resources among several learning
systems. Lastly, we can exploit all this knowledge for tasks such as recommendation of
educational resources, learning partners and careers but also to enable smarter automatic
correction systems and provide more fine-grained statistics and advanced learning analyt-
ics to teachers.

1https://www.teachonmars.com/fr/

https://www.teachonmars.com/fr/

Bibliography

Ghodai Abdelrahman and Qing Wang. Knowledge tracing with sequential key-value
memory networks. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 175–184, 2019.

Ghodai Abdelrahman, Qing Wang, and Bernardo Pereira Nunes. Knowledge Tracing: A
Survey. arXiv preprint arXiv:2201.06953, 2022.

Bilal Abu-Salih. Domain-specific knowledge graphs: A survey. Journal of Network and
Computer Applications, 185:103076, 2021.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-
grained analysis of sentence embeddings using auxiliary prediction tasks. 2016.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual String Embeddings for
Sequence Labeling. In Proceedings of the 27th International Conference on Computa-
tional Linguistics (COLING 2018), pages 1638–1649, 2018.

Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai
Li. Realistic re-evaluation of knowledge graph completion methods: An experimental
study. In Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, pages 1995–2010, 2020.

Prithviraj Ammanabrolu and Mark O Riedl. Transfer in deep reinforcement learning
using knowledge graphs. arXiv preprint arXiv:1908.06556, 2019.

Francesco Antoniazzi and Fabio Viola. RDF Graph Visualization Tools: a Survey. 11
2018. doi: 10.23919/FRUCT.2018.8588069.

Luigi Asprino, Christian Colonna, Misael Mongiovì, Margherita Porena, and Valentina
Presutti. Pattern-based Visualization of Knowledge Graphs. arXiv preprint
arXiv:2106.12857, 2021.

Mark A Barton and Frederic M Lord. An upper asymptote for the three-parameter lo-
gistic item-response model. ETS Research Report Series, 1981(1):i–8, 1981.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific ameri-
can, 284(5):34–43, 2001.

Rajarshi Bhowmik and Gerard de Melo. Explainable link prediction for emerging en-
tities in knowledge graphs. In International Semantic Web Conference, pages 39–55.
Springer, 2020.

113

114 BIBLIOGRAPHY

Nikos Bikakis, John Liagouris, Maria Kromida, George Papastefanatos, and Timos Sel-
lis. Towards scalable visual exploration of very large RDF graphs. In European Semantic
Web Conference, pages 9–13. Springer, 2015.

Nikos Bikakis, John Liagouris, Maria Krommyda, George Papastefanatos, and Timos
Sellis. GraphVizdb: A scalable platform for interactive large graph visualization. In
2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages 1342–
1345. IEEE, 2016.

Allan Birnbaum. Statistical theory for logistic mental test models with a prior distribu-
tion of ability. Journal of Mathematical Psychology, 6(2):258–276, 1969.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. Dbpedia-a crystallization point for the web of data.
Journal of web semantics, 7(3):154–165, 2009.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The story so far. In Se-
mantic services, interoperability and web applications: emerging concepts, pages 205–
227. IGI global, 2011.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching Word
Vectors with Subword Information. Transactions of the Association for Computational
Linguistics, 5:135–146, December 2017. ISSN 2307-387X.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
a collaboratively created graph database for structuring human knowledge. In Proceed-
ings of the 2008 ACM SIGMOD international conference on Management of data, pages
1247–1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. Advances in
neural information processing systems, 26:2787–2795, 2013.

Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M. Buh-
mann. The Balanced Accuracy and Its Posterior Distribution. In 2010 20th International
Conference on Pattern Recognition, pages 3121–3124, 2010.

Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio. LodLive, explor-
ing the web of data. In Proceedings of the 8th International Conference on Semantic
Systems, pages 197–200, 2012.

Giovanna Castellano, Vincenzo Digeno, Giovanni Sansaro, and Gennaro Vessio. Lever-
aging Knowledge Graphs and Deep Learning for automatic art analysis. Knowledge-
Based Systems, 248:108859, 2022.

BIBLIOGRAPHY 115

Hao Cen, Kenneth Koedinger, and Brian Junker. Learning Factors Analysis – A Gen-
eral Method for Cognitive Model Evaluation and Improvement. In Intelligent Tutoring
Systems, pages 164–175, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-35160-3.

Hao Cen, Kenneth R Koedinger, and Brian Junker. Is Over Practice Necessary?-
Improving Learning Efficiency with the Cognitive Tutor through Educational Data Min-
ing. Frontiers in artificial intelligence and applications, 158:511, 2007.

Lijia Chen, Pingping Chen, and Zhijian Lin. Artificial Intelligence in Education: A
review. IEEE Access, 8:75264–75278, 2020.

Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Ba-
roni. What you can cram into a single vector: Probing sentence embeddings for linguistic
properties. arXiv preprint arXiv:1805.01070, 2018.

Albert T. Corbett and John R. Anderson. Knowledge tracing: Modeling the acquisition
of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4):253–278,
Dec 1994. ISSN 1573-1391. doi: 10.1007/BF01099821.

Amine Dadoun, Raphaël Troncy, Olivier Ratier, and Riccardo Petitti. Location Embed-
dings for Next Trip Recommendation. In Companion Proceedings of The 2019 World
Wide Web Conference, WWW ’19, page 896–903, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450366755.

Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wenzhong Guo. A Survey on Knowl-
edge Graph Embedding: Approaches, Applications and Benchmarks. Electronics, 9(5),
2020. ISSN 2079-9292. doi: 10.3390/electronics9050750.

Gerben KD de Vries. A fast approximation of the Weisfeiler-Lehman graph kernel
for RDF data. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 606–621. Springer, 2013.

Federico Desimoni and Laura Po. Empirical evaluation of Linked Data visualization
tools. Future Generation Computer Systems, 112:258–282, 2020.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolu-
tional 2D Knowledge Graph Embeddings. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (AAAI-18), 2018.

Natalia Díaz-Rodríguez, Alberto Lamas, Jules Sanchez, Gianni Franchi, Ivan Donadello,
Siham Tabik, David Filliat, Policarpo Cruz, Rosana Montes, and Francisco Herrera. EX-
plainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning rep-
resentations with expert knowledge graphs: The MonuMAI cultural heritage use case.
Information Fusion, 79:58–83, 2022.

Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SEMAN-
TiCS (Posters, Demos, SuCCESS), 48(1-4):2, 2016.

116 BIBLIOGRAPHY

Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, and Vijay Chandrasekhar. Object
detection meets knowledge graphs. International Joint Conferences on Artificial Intelli-
gence, 2017.

Mingyu Feng, Neil Heffernan, and Kenneth Koedinger. Addressing the assessment chal-
lenge with an online system that tutors as it assesses. User modeling and user-adapted
interaction, 19(3):243–266, 2009.

Giuseppe Futia and Antonio Vetrò. On the integration of knowledge graphs into deep
learning models for a more comprehensible AI—Three challenges for future research.
Information, 11(2):122, 2020.

Manas Gaur, Keyur Faldu, and Amit Sheth. Semantics of the black-box: Can knowledge
graphs help make deep learning systems more interpretable and explainable? IEEE
Internet Computing, 25(1):51–59, 2021.

Theophile Gervet, Ken Koedinger, Jeff Schneider, Tom Mitchell, et al. When is deep
learning the best approach to knowledge tracing? Journal of Educational Data Mining,
12(3):31–54, 2020.

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. Context-aware attentive knowledge
tracing. In Proceedings of the 26th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 2330–2339, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 855–864, 2016.

Harold Gulliksen. Theory of mental tests. 1950.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. DeepFM:
A Factorization-Machine based Neural Network for CTR Prediction. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence, pages 1725–1731,
Melbourne, Australia, August 2017. ISBN 978-0-9992411-0-3. doi: 10.24963/ijcai.
2017/239.

R.K. Hambleton, H. Swaminathan, and H.J. Rogers. Fundamentals of Item Response
Theory. Measurement Methods for the Social Science. SAGE Publications, 1991. ISBN
9780803936478.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

Fabian Hoppe, Danilo Dessì, and Harald Sack. Deep learning meets knowledge graphs
for scholarly data classification. In Companion proceedings of the web conference 2021,
pages 417–421, 2021.

BIBLIOGRAPHY 117

Lan Huang, Congcong Yu, Yang Chi, Xiaohui Qi, and Hao Xu. Towards smart health-
care management based on knowledge graph technology. In Proceedings of the 2019
8th International Conference on Software and Computer Applications, pages 330–337,
2019.

Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, and Ralf Krestel. Do Embeddings
Actually Capture Knowledge Graph Semantics? In European Semantic Web Conference,
pages 143–159. Springer, 2021.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT learn about the
structure of language? In ACL 2019-57th Annual Meeting of the Association for Com-
putational Linguistics, 2019.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on
knowledge graphs: Representation, acquisition, and applications. IEEE Transactions on
Neural Networks and Learning Systems, 33(2):494–514, 2021.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li, and Zhifang Sui.
Towards time-aware knowledge graph completion. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers, pages
1715–1724, 2016a.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang, and Zhifang
Sui. Encoding temporal information for time-aware link prediction. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
2350–2354, 2016b.

Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Explaine: An approach for explaining network
embedding-based link predictions. 2019.

Tanja Käser, Severin Klingler, Alexander G Schwing, and Markus Gross. Dynamic
Bayesian networks for student modeling. IEEE Transactions on Learning Technologies,
10(4):450–462, 2017.

Seyed Mehran Kazemi and David Poole. SimplE embedding for link prediction in
knowledge graphs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 4289–4300, 2018.

Kevin H. Wilson and Yan Karklin and Bojian Han and Chaitanya Ekanadham. Back to
the Basics: Bayesian extensions of IRT outperform neural networks for proficiency esti-
mation. In Proceedings of the 9th International Conference on Educational Data Mining
(EDM 2016), Raleigh, NC, USA, 2016. Association for Computational Linguistics.

Mohammad Khajah, Rowan Wing, Robert Lindsey, and Michael Mozer. Integrating
latent-factor and knowledge-tracing models to predict individual differences in learning.
In Educational Data Mining 2014, 2014.

118 BIBLIOGRAPHY

Mohammad Khajah, Robert V Lindsey, and Michael C Mozer. How deep is knowledge
tracing? arXiv preprint arXiv:1604.02416, 2016.

Kenneth R Koedinger, Julie L Booth, and David Klahr. Instructional complexity and the
science to constrain it. Science, 342(6161):935–937, 2013.

Freddy Lecue. On the role of knowledge graphs in explainable AI. Semantic Web, 11
(1):41–51, 2020.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521
(7553):436–444, 2015. doi: 10.1038/nature14539.

Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. Multi-label
zero-shot learning with structured knowledge graphs. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1576–1585, 2018.

Jung In Lee and Emma Brunskill. The Impact on Individualizing Student Models
on Necessary Practice Opportunities. International Educational Data Mining Society,
2012.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):
1–20, 2016.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Twenty-ninth AAAI conference
on artificial intelligence, 2015.

Qi Liu, Shuanghong Shen, Zhenya Huang, Enhong Chen, and Yonghe Zheng. A survey
of knowledge tracing. arXiv preprint arXiv:2105.15106, 2021.

Yang Liu, Qingguo Zeng, Joaquín Ordieres Meré, and Huanrui Yang. Anticipating stock
market of the renowned companies: a knowledge graph approach. Complexity, 2019,
2019.

FM Lord, MR Novick, and Allan Birnbaum. Statistical theories of mental test scores.
1968.

Rose Luckin, Wayne Holmes, Mark Griffiths, and Laurie B Forcier. Intelligence un-
leashed: An argument for AI in education. 2016.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In 7th biennial conference on innovative data systems
research. CIDR Conference, 2014.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631,
2018.

BIBLIOGRAPHY 119

András Micsik, Sándor Turbucz, and Attila Györök. Lodmilla: a linked data browser for
all. 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Koki Nagatani, Qian Zhang, Masahiro Sato, Yan-Ying Chen, Francine Chen, and
Tomoko Ohkuma. Augmenting knowledge tracing by considering forgetting behavior.
In The world wide web conference, pages 3101–3107, 2019.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge trac-
ing: modeling student proficiency using graph neural network. In 2019 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), pages 156–163. IEEE, 2019.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A Three-Way Model for
Collective Learning on Multi-Relational Data. pages 809–816, 01 2011.

Melvin R. Novick. The axioms and principal results of classical test theory. Journal
of Mathematical Psychology, 3(1):1 – 18, 1966. ISSN 0022-2496. doi: 10.1016/0022-
2496(66)90002-2.

Andrea Giovanni Nuzzolese, Valentina Presutti, Aldo Gangemi, Silvio Peroni, and Paolo
Ciancarini. Aemoo: Linked data exploration based on knowledge patterns. Semantic
Web, 8(1):87–112, 2017.

Matteo Palmonari and Pasquale Minervini. Knowledge graph embeddings and explain-
able AI. Knowledge Graphs for Explainable Artificial Intelligence: Foundations, Appli-
cations and Challenges, 47:49, 2020.

Olivier Palombi, Fabrice Jouanot, Nafissetou Nziengam, Behrooz Omidvar-Tehrani,
Marie-Christine Rousset, and Adam Sanchez. OntoSIDES: Ontology-based student
progress monitoring on the national evaluation system of French Medical Schools. Arti-
ficial Intelligence in Medicine, 96:59–67, 2019.

Enrico Palumbo, Giuseppe Rizzo, Raphaël Troncy, Elena Baralis, Michele Osella, and
Enrico Ferro. Knowledge Graph Embeddings with node2vec for Item Recommendation.
In The Semantic Web: ESWC 2018 Satellite Events - ESWC 2018 Satellite Events, Her-
aklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers, pages 117–120, 2018.
doi: 10.1007/978-3-319-98192-5_22. URL https://doi.org/10.1007/978-
3-319-98192-5_22.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. arXiv
preprint arXiv:1907.06837, 2019.

Shalini Pandey and Jaideep Srivastava. RKT: relation-aware self-attention for knowledge
tracing. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pages 1205–1214, 2020.

https://doi.org/10.1007/978-3-319-98192-5_22
https://doi.org/10.1007/978-3-319-98192-5_22

120 BIBLIOGRAPHY

Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web, 8(3):489–508, 2017.

Philip I. Pavlik, Hao Cen, and Kenneth R. Koedinger. Performance Factors Analysis –A
New Alternative to Knowledge Tracing. In Proceedings of the 2009 Conference on Arti-
ficial Intelligence in Education: Building Learning Systems That Care: From Knowledge
Representation to Affective Modelling, pages 531–538, Amsterdam, The Netherlands,
2009. IOS Press. ISBN 978-1-60750-028-5.

Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. Investigating robustness and inter-
pretability of link prediction via adversarial modifications. 2019.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas J Guibas, and Jascha Sohl-Dickstein. Deep Knowledge Tracing. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 505–513. Curran Associates, Inc., 2015.

Laura Po and Davide Malvezzi. High-level Visualization Over Big Linked Data. In
International Semantic Web Conference, 2018.

G. Rasch. Probabilistic Models for Some Intelligence and Attainment Tests. Stud-
ies in mathematical psychology. Danmarks Paedagogiske Institut, 1960. ISBN
9780598554512.

Mark D. Reckase. The Past and Future of Multidimensional Item Response
Theory. Applied Psychological Measurement, 21(1):25–36, 1997. doi: 10.1177/
0146621697211002.

Steffen Rendle. Factorization Machines. In Proceedings of the 2010 IEEE International
Conference on Data Mining, ICDM ’10, pages 995–1000, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-0-7695-4256-0. doi: 10.1109/ICDM.2010.127.

Petar Ristoski and Heiko Paulheim. Rdf2vec: RDF graph embeddings for data min-
ing. In The Semantic Web - ISWC 2016 - 15th International Semantic Web Confer-
ence, Kobe, Japan, October 17-21, 2016, Proceedings, Part I, pages 498–514, 2016.
doi: 10.1007/978-3-319-46523-4_30. URL https://doi.org/10.1007/978-
3-319-46523-4_30.

Ido Roll and Ruth Wylie. Evolution and revolution in artificial intelligence in education.
International Journal of Artificial Intelligence in Education, 26(2):582–599, 2016.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Meri-
aldo. Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. ACM
Trans. Knowl. Discov. Data, 15(2), January 2021. ISSN 1556-4681.

https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-46523-4_30

BIBLIOGRAPHY 121

Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David Sontag.
Learning a health knowledge graph from electronic medical records. Scientific reports,
7(1):1–11, 2017.

Tong Ruan, Lijuan Xue, Haofen Wang, Fanghuai Hu, Liang Zhao, and Jun Ding. Build-
ing and exploring an enterprise knowledge graph for investment analysis. In Interna-
tional semantic web conference, pages 418–436. Springer, 2016.

Idafen Santana-Pérez. Graphless: Using Statistical Analysis and Heuristics for Visualiz-
ing Large Datasets. VOILA@ ISWC, 2187:1–12, 2018.

Guus Schreiber, Yves Raimond, Frank Manola, Eric Miller, and Brian McBride. RDF
1.1 Primer, W3C Working Group Note. World Wide Web Consortium (W3C), 2014.

Aditya Sharma, Partha Talukdar, et al. Towards understanding the geometry of knowl-
edge graph embeddings. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 122–131, 2018.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learn-
ing Research, 12(9), 2011.

Shashank Sonkar, Andrew E Waters, Andrew S Lan, Phillip J Grimaldi, and Richard G
Baraniuk. qdkt: Question-centric deep knowledge tracing. 2020.

Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Chris Ding, Si Wei,
and Guoping Hu. Exercise-enhanced sequential modeling for student performance pre-
diction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. 2019.

Ilaria Tiddi and Stefan Schlobach. Knowledge graphs as tools for explainable machine
learning: A survey. Artificial Intelligence, 302:103627, 2022.

Shiwei Tong, Qi Liu, Wei Huang, Zhenya Hunag, Enhong Chen, Chuanren Liu, Haiping
Ma, and Shijin Wang. Structure-based knowledge tracing: an influence propagation
view. In 2020 IEEE International Conference on Data Mining (ICDM), pages 541–550.
IEEE, 2020.

Bernie Trilling and Charles Fadel. 21st century skills: Learning for life in our times.
John Wiley & Sons, 2009.

Théo Trouillon, Christopher R. Dance, Johannes Welbl, Sebastian Riedel, Éric Gaussier,
and Guillaume Bouchard. Knowledge Graph Completion via Complex Tensor Factor-
ization. The Journal of Machine Learning Research, abs/1702.06879, 2017.

122 BIBLIOGRAPHY

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex Embeddings for Simple Link Prediction, 2016.

Georgia Troullinou, Haridimos Kondylakis, Kostas Stefanidis, and Dimitris Plexousakis.
RDFDigest+: A Summary-driven System for KBs Exploration. In International Seman-
tic Web Conference (P&D/Industry/BlueSky), 2018.

Kurt VanLehn. The relative effectiveness of human tutoring, intelligent tutoring systems,
and other tutoring systems. Educational psychologist, 46(4):197–221, 2011.

Jill-Jênn Vie. Deep Factorization Machines for Knowledge Tracing. In Proceedings of
the 13th Workshop on Innovative Use of NLP for Building Educational Applications,
New Orleans, Louisiana (USA), 2018.

Jill-Jênn Vie and Hisashi Kashima. Knowledge Tracing Machines: Factorization Ma-
chines for Knowledge Tracing. In Proceedings of the 33th AAAI Conference on Artificial
Intelligence (AAAI-19), Honolulu, Hawai (USA), 2019.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embed-
ding by translating on hyperplanes. In Proceedings of the AAAI conference on artificial
intelligence, volume 28, 2014a.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph and text
jointly embedding. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1591–1601, 2014b.

Zhiwei Wang, Xiaoqin Feng, Jiliang Tang, Gale Yan Huang, and Zitao Liu. Deep knowl-
edge tracing with side information. In International conference on artificial intelligence
in education, pages 303–308. Springer, 2019.

Kevin H Wilson, Yan Karklin, Bojian Han, and Chaitanya Ekanadham. Back to the
Basics: Bayesian Extensions of IRT Outperform Neural Networks for Proficiency Esti-
mation. International Educational Data Mining Society, 2016.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representation
learning of knowledge graphs with entity descriptions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30, 2016.

Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Image-embodied Knowl-
edge Representation Learning. In IJCAI, pages 3140–3146, 2017. URL https:
//doi.org/10.24963/ijcai.2017/438.

https://doi.org/10.24963/ijcai.2017/438
https://doi.org/10.24963/ijcai.2017/438

9.2 – Future works and Perspectives 123

Xiaolu Xiong, Siyuan Zhao, Eric G Van Inwegen, and Joseph E Beck. Going deeper
with deep knowledge tracing. International Educational Data Mining Society, 2016.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
Entities and Relations for Learning and Inference in Knowledge Bases, 2015.

Yang, Yang and Shen, Jian and Qu, Yanru and Liu, Yunfei and Wang, Kerong and Zhu,
Yaoming and Zhang, Weinan and Yu, Yong. GIKT: a graph-based interaction model for
knowledge tracing. arXiv preprint arXiv:2009.05991, 2020.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
plainer: Generating explanations for graph neural networks. Advances in neural infor-
mation processing systems, 32:9240, 2019.

Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. Individualized
bayesian knowledge tracing models. In International conference on artificial intelli-
gence in education, pages 171–180. Springer, 2013.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory
networks for knowledge tracing. In Proceedings of the 26th international conference on
World Wide Web, pages 765–774, 2017.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng
Zhang, and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 739–748, 2020.

List of Figures

2.1 Example of a RDF KG representation. 21
2.2 Entities and relations embeddings (adapted from (Wang et al., 2017)). . . 23

3.1 RDF graph describing an instance of a question in OntoSIDES. Blue bub-
bles are classes, white bubbles are class instances and rectangles are literal
values. 31

3.2 RDF graph describing an instance of a student in OntoSIDES. Blue bub-
bles are classes, white bubbles are class instances and rectangles are literal
values. 32

3.3 RDF graph describing an instance of an answer in OntoSIDES. Blue bub-
bles are classes, white bubbles are class instances and rectangles are literal
values. 33

5.1 AUC of DeepFM models including, as input, Graph Embeddings com-
puted with varying random walk length. Experiments run on the Onto-
SIDES pediatrics subgraph introduced in Chapter 4. 52

5.2 AUC of DeepFM models including, as input, Graph Embeddings with
varying dimension.Experiments run on the OntoSIDES pediatrics sub-
graph introduced in Chapter 4. 54

5.3 Neighborhood of each answer included in the subgraph used for the com-
putation of the Graph Embeddings. 58

6.1 Screenshot of the partial visualization of YAGO3 illustrating Stunning
Doodle’ exploration capabilities. 67

6.2 Stunning Doodle interface with the available customization options. . . . 68
6.3 Screenshot of Stunning Doodle showing closest nodes in the embedding

space. Closest nodes to selected one are shown with a gradient of color
representing the distance: darker nodes are closer in the embedding space,
while lighter nodes are more distant. 69

6.4 Schema of the processing pipeline implemented in Stunning Doodle. . . . 71
6.5 Screenshot of Stunning Doodle showing the basic entities and relations in

the OntoSIDES graph. 73
6.6 Closest nodes in the embedding space to the node ns2:stu81235 with

GEs computed from a directed graph. 75
6.7 Links between ns2:stu81235 and its closest nodes in the embedding

space. 76
6.8 Closest nodes in the embedding space to the node ns2:stu81235 with

GEs computed from an undirected graph. 77

125

126 LIST OF FIGURES

6.9 ns2:stu81235 expanded to show its neighbors in the KG that are not
close in the embedding space. 78

7.1 Categories of probing tasks. 87
7.2 Confusion matrices for the YAGO3 in-degree and out-degree classifiers

with TransE GEs. 91
7.3 Distribution of classes and F1-scores per class for all GE models on YAGO3. 92

8.1 Example of a KG representing the answer of a student to a question. The
dashed lines represent the links we aim to predict. 100

8.2 Depiction of the different steps for the proposed Link Prediction-based
approach. 101

8.3 KG representing the SIDES learning environment. Blue bubbles are OWL
classes, while white bubbles are instances of such classes. Blue links
are property rdf:type. Dashed edges are property has_selected
whose object we aim to predict. 104

8.4 KG representing the ASSISTment learning environment. Blue bub-
bles are OWL classes, while white bubbles are instances of such
classes. Blue links are property rdf:type. The solid green and
red edges represent respectively properties has_correct_option
and has_incorrect_option, while the dashed green and red
ones indicate the two properties has_correctly_selected and
has_incorrectly_selected to be predicted. 105

List of Tables

3.1 Statistics of the datasets. 34

4.1 Datasets characteristics . 42
4.2 Results for the pediatrics sub-graph. Models with the highest AUC are in

bold. 45
4.3 Results for the cardiovascular sub-graph. Models with the highest AUC

are in bold. 47

5.1 Results of DeepFM when using Graph Embeddings computed from the
undirected graph. Experiments run on the OntoSIDES pediatrics subgraph
introduced in Chapter 4. The values in bold highlight the best models. . . 55

5.2 Results of DeepFM when using Graph Embeddings computed from the
directed graph. Experiments run on the OntoSIDES pediatrics subgraph
introduced in Chapter 4. The values in bold highlight the best models. . . 55

5.3 AUC of DeepFM when using Graph Embeddings computed through GE
model based on random walks. The results highlighted in bold are the
ones outperforming the basic model without embeddings sqawfdbp. Ex-
periments run on the OntoSIDES pediatrics subgraph introduced in Chap-
ter 4. 56

5.4 AUC of DeepFM when using Graph Embeddings computed through
RESCAL and its extensions. Experiments run on the OntoSIDES pedi-
atrics subgraph introduced in Chapter 4. 57

5.5 AUC of DeepFM when using Graph Embeddings computed through
TransE and its extension TransR. Experiments run on the OntoSIDES pe-
diatrics subgraph introduced in Chapter 4. The results highlighted in bold
are the ones outperforming the basic model without embeddings sqawfdbp. 57

5.6 AUC of DeepFM when using Graph Embeddings computed from the sub-
graph not including instances of sides:action_to_answer. 59

6.1 Execution time with number of displayed nodes when performing actions
for the analysis of a subset of YAGO3. 72

7.1 List of the probing tasks defined for YAGO3 and OntoSIDES. 89
7.2 Weighted F1-scores on the probing tasks with YAGO3 KGEs. 90
7.3 Weighted F1-scores on the different probing tasks testing structural and

semantic properties for KGE computed on OntoSIDES. 94
7.4 Weighted F1-scores on the different probing tasks testing context-specific

properties for KGE computed on OntoSIDES. 94

127

128 LIST OF TABLES

7.5 F1-score obtained by all the tested Graph Embedding model on probing
task for the encoding of the number of selected proposals of answers. . . 96

8.1 Statistics of the datasets. 102
8.2 Results of Link Prediction and DKT approach. 106

Towards an interpretable model of learners in a learning
environment based on Knowledge Graphs

Antonia ETTORRE

Abstract
In recent years, society has demonstrated increasing need for more effective, com-
prehensive and easily accessible educational resources. A growing number of people
around the world have gained access to online education and demand more efficient
tools to enable learning anything, anywhere, at any moment. This requires the develop-
ment of smarter educational systems, which should be able to improve users’ learning
curves and effectively assist them in their knowledge acquisition process, possibly re-
lying on no, or very little, human support. A major step to concretize this vision lies in
personalizing the learning process to be specifically adapted to every single user, taking
into account their background, learning style, personal needs and objectives. To create
such adaptive and customized environments, a major requirement is represented by the
ability to trace user knowledge over time and assess whether they have the capacity to
face a specific problem, exercise or question. This problem, known in the Education
community as Knowledge Tracing, has been widely investigated in the last 50 years
and several resolution approaches have been proposed. Though their performance im-
proved sensibly over the last decade, such approaches present several shortcomings:
from the excessive simplicity in the representation of the learning environment, which
does not account for complex scenarios such as acquisition of soft skills or solution of
group assignments; to the impossibility of interpreting the provided predictions, e.g.
explaining why a student will fail while trying to answer a given question. In this the-
sis, we try to overcome these issues by exploring and proposing approaches based on
the use of Symbolic AI approaches focusing on Graph based Knowledge Representa-
tion and Reasoning. Firstly, we propose a Knowledge Tracing approach that extends an
existing model by introducing, as additional input features, Knowledge Graph Embed-
dings. Secondly, we investigate the explainability of the proposed approach by seeking
the interpretation of the employed Graph Embeddings. This leads us to the implemen-
tation of a tool for the joint visual analysis of Knowledge Graphs and Graph Embed-
dings and to the development of an approach to verify the information encoded by
such Graph Embeddings. Finally, we present a Knowledge Tracing model exclusively
relying on the representation of the learning environment in the form of a Knowledge
Graph, which does not require any additional external model for the prediction.

Keywords: Semantic Web, Knowledge Graphs, Education, Knowledge Tracing

	List of Abbreviations
	1 Introduction
	1.1 Context and Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Structure

	2 State of the Art
	2.1 Knowledge Tracing
	2.1.1 Classical Knowledge Tracing Models
	2.1.2 Deep Learning Models for Knowledge Tracing

	2.2 Knowledge Graphs
	2.2.1 RDF Knowledge Graphs
	2.2.2 Knowledge Graphs Applications
	2.2.3 Knowledge Graph Embeddings

	3 Datasets
	3.1 OntoSIDES
	3.2 ASSISTments

	4 A Knowledge Graph Enhanced Learner Model to Predict Outcomes to Questions
	4.1 Introduction
	4.2 Features Selected or Computed from OntoSIDES to Learn a Student Model
	4.2.1 Basic Features
	4.2.2 Calculated Features Conveying a Temporal Dimension
	4.2.3 Text Embeddings of Questions
	4.2.4 Knowledge Graph Embeddings of Questions, Answers, and Users

	4.3 Empirical Determination of a Learner Model
	4.3.1 Experimental Settings
	4.3.2 Results and Discussion

	4.4 Conclusions

	5 Diving into Knowledge Graph Embeddings
	5.1 Introduction
	5.2 Tuning node2vec
	5.2.1 Random Walks Length
	5.2.2 Embeddings Dimension
	5.2.3 Undirected vs. Directed Graph

	5.3 Further Exploring Graph Embedding Models
	5.4 Identifying Meaningful Information
	5.5 Conclusions

	6 Stunning Doodle: a Tool for Joint Visualization and Analysis of Knowledge Graphs and Graph Embeddings
	6.1 Introduction
	6.2 Stunning Doodle
	6.2.1 Knowledge Graphs Visualization
	6.2.2 Graph Embeddings Visual Analysis
	6.2.3 Software Design and Limitations
	6.2.4 Software Availability and Reusability

	6.3 Our Use Case: the OntoSIDES Scenario
	6.3.1 Understanding a Knowledge Graph
	6.3.2 Analyzing and Comparing Knowledge Graph Embeddings

	6.4 Related Work
	6.5 Conclusions and Future Work

	7 A Methodology to Identify the Information Captured by Knowledge Graph Embeddings
	7.1 Introduction
	7.2 Related Work
	7.3 Analysing the Information Encoded by Graph Embeddings
	7.4 Evaluating Graph Embedding Algorithms with Probing Tasks
	7.4.1 Knowledge Graphs
	7.4.2 Classification Model
	7.4.3 Graph Embeddings Models
	7.4.4 Results and Discussion

	7.5 Decoding Graph Embeddings for Students' Outcomes Prediction
	7.6 Conclusions

	8 Prediction of Learners' Performance based on Link Prediction in a Knowledge Graph
	8.1 Introduction
	8.2 Link Prediction for Students' Outcomes
	8.3 Evaluation
	8.3.1 Datasets
	8.3.2 Knowledge Graphs
	8.3.3 Knowledge Graph Embedding Models
	8.3.4 Evaluation Setup
	8.3.5 Results and Discussion

	8.4 Conclusions

	9 Conclusions and Perspectives
	9.1 Summary of the contributions
	9.2 Future works and Perspectives

	Bibliography
	List of Figures
	List of Tables

