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Résumé

Le domaine de l’Intelligence Artificielle (IA) a un large impact sur la société d’aujourd’hui,
ayant conduit notamment à une interaction passionnante entre plusieurs disciplines scientifiques.
À cet égard, un double intérêt émerge dans la littérature.

D’une part, une tendance croissante dans les réseaux de télécommunication consiste à revisiter
les problèmes d’optimisation classiques en utilisant des techniques d’apprentissage automatique
afin d’exploiter leurs avantages potentiels. Nous nous focaliserons sur certains défis posés par la
détection d’anomalies dans les réseaux ainsi que l’allocation des ressources dans le cadre des ré-
seaux logiciels (SDN) et de la virtualisation des fonctions réseau (NFV).

D’autre part, un effort substantiel a été consacré dans le but d’apporter une compréhension théo-
rique au comportement collectif des réseaux. Nous nous focaliserons sur certains défis posés par
l’étude de la dynamique majoritaire au sein des systèmes multi-agents ainsi qu’à la compression
des réseaux de neurones artificiels dans le but d’augmenter leur efficacité.
Dans cette étude, nous contextualisons les points focaux ci-dessus dans le cadre de l’étude de
certains fondements de réseaux ; vus sous l’angle des réseaux de télécommunications et des ré-
seaux neuronaux. Nous nous concentrons d’abord sur le développement de mesures de similarité
de graphes pour la détection d’anomalies dans les réseaux. Ensuite, nous étudions la dynamique
majoritaire déterministe et stochastique dans les systèmes multi-agents. Ensuite, nous discutons
du problème de la somme de sous-ensembles aléatoires dans le contexte de la compression des
réseaux neuronaux. Enfin, nous passons en revue quelques problèmes généraux divers.

Mots-clés : Apprentissage automatique, Optimisation des réseaux, Algorithmique, Théorie des
graphes, Optimisation combinatoire.





Abstract

The field of Artificial Intelligence (AI) has brought a broad impact on today’s society, leading to
a gripping interaction between several scientific disciplines. In this respect, there has been a strong
twofold interest across the literature.

On the one hand, a growing trend in telecommunication networks consists in revisiting classic
optimization problems using machine learning techniques in order to exploit their potential be-
nefits. We focus on some challenges brought by the detection of anomalies in networks, and the
allocation of resources within software-defined networking (SDN) and network function virtuali-
zation (NFV).

On the other hand, a substantial effort has been devoted towards the theoretical understanding of
the collective behavior of networks. We focus on some challenges brought by the study of majority
dynamics within multi-agent systems, and the compression of artificial neural networks with the
aim at increasing their efficiency.

In this study, we contextualize the above focal points in the framework of investigating some
foundations of networks ; viewed through the lens of telecommunications networks and neural net-
works. We first focus our attention on developing graph similarity measures for network anomaly
detection. Next, we study deterministic and stochastic majority dynamics in multi-agent systems.
Then, we discuss the random subset sum problem in the context of neural network compression.
Finally, we walk through some other miscellaneous problems.

Keywords : Machine learning, Network optimization, Algorithmics, Graph theory, Combinatorial
optimization.
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CHAPTER 1
Introduction

In this chapter, we first introduce the background context in which this thesis takes place and
the research problems that inspired our work. We then highlight our contributions and conclude
this chapter with an outline of the remainder of this thesis.

1.1 Graph Learning

Learning on graph-structured data has gained a notable momentum with recent advances [Wu
et al., 2020, Zhang et al., 2020] in Artificial Intelligence (AI). While graphs provide an ubiqui-
tous data structure to represent complex structures and interactions, readily blending them with
standard machine learning algorithms brings several challenges [Cai et al., 2018]. Of particular
relevance is the progress in designing flexible and expressive methods [Hamilton et al., 2017b] for
quantifying similarities between graphs. These methods fall broadly into two approaches.

Structure-based. We distinguish between four categories.

— Exact matching methods [McKay, 1990] aim at assessing how similar two graphs are by
determining if they are isomorphic. This is known as the Graph Isomorphism (GI) problem
[Babai and Luks, 1983, Babai, 2016], under which two graphs are said to be isomorphic if
there exists a rearrangement of the nodes, keeping the edges untouched, such that the two
graphs are identical. Formally, two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if
there exists a bijection f : V1 → V2 such that for all u, v ∈ V1 :

(u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

However, while GI is proven to be NP, determining if it is P or NP-complete remains a major
open problem [Read and Corneil, 1977, Hartmanis, 1982] in theoretical computer science.
Furthermore, if an edge is missing or has been mistakenly deleted, isomorphism search
would attribute to almost similar graphs a similarity score of zero.

— Inexact matching methods, on the other hand, are more flexible and allow for noise in the
nodes, edges, and their labels. For instance, graph edit distance (GED) [Neuhaus and Bunke,
2007b,Sanfeliu and Fu, 1983] aims to define a distance between graphs based on a measure
of distortion [Wagner and Fischer, 1974] required to transform one graph into another. Du-
ring this transformation, a cost is assigned to different types of operations including node
or edge insertions, removals, and substitutions. Afterwards, the distance is encoded by the
minimal cost associated to an edit path in the optimal alignments, which transforms one
graph to the other. The GED is often implemented using an A* search algorithm [Hart et al.,

1



2 CHAPITRE 1 — Introduction

G1

G2

Figure 1.1 – Input graphs.

ℓ = 0 ℓ = 1 ℓ = 0 ℓ = 1

Figure 1.2 – Features induced by the 1-step random
walk kernel for G1 and G2, respectively.

Figure 1.3 – The 1-step random walk kernel attributes a similarity score of k1-RWK(G1, G2) = 64 to the
input graphs, based on their feature embeddings ϕ(G1) = [4, 6]T and ϕ(G2) = [4, 8]T .

1968]. Unfortunately, the computational complexity induced by this technique is prohibi-
tive and computing the GED, even for uniform edit costs [Neuhaus and Bunke, 2007a], is
NP-complete [Lewis, 1983] and APX-hard to approximate.
Moreover, the GED does not correspond to a distance in an Euclidean space [Dattorro,
2010]. Such limitation implies that the metric space defined by the edit distance on the
set of graphs cannot be isometrically embedded into an Hilbert space. Thereby, the set of
machine learning algorithms which may be used in conjunction with the GED [Neuhaus and
Bunke, 2007b] are drastically restricted.

— Descriptor methods build similarity vectors by extracting several topological indicators [To-
deschini and Consonni, 2008] from graphs. However, the transformation often induces a
major loss of topological information and the most discriminant set of features rely heavily
on the substantial domain knowledge. We note that such descriptors [Randic, 1975, Randic,
1975] have been mostly used in bio or chemoinformatics for comparing between molecular
graphs, in order to correlate and predict biological activities from molecular structures [Gut-
man and Trinajstić, 1972, Wiener, 1947, Chung and Graham, 1997].

— Frequent subgraph methods [Maimon and Rokach, 2005, Agrawal et al., 1994, Yan and
Han, 2002, Saigo et al., 2009] aim at detecting the most discriminant subgraphs that are
frequent among a family of graphs. The core operation behind these techniques is based
on computing the Maximum Common Subgraph [Bunke and Shearer, 1998, Neuhaus and
Bunke, 2007b] which contains the Subgraph Isomorphism (SI) problem as an intermediate
step. SI is analogue of GI checking in a setting in which two graphs have different sizes and,
has been proven to be NP-complete [Garey and Johnson, 1979a].

Kernel-based. Graphs kernels emerged as an attractive tool for graph similarity. They retain
concepts from previous traditional branches of graph comparison by capturing characteristics in
terms of isomorphic structures, allowing for inexact matchings and, vectorizing graphs in a space
of graph features. A graph kernel is a kernel function k : G × G → R [Schölkopf, 2000] defined
over a set of graphs G, and enables to compare between them. It is equivalent to an inner product
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of the embeddings of a pair of graphs into a possibly high-dimensional Hilbert space [Berlinet and
Thomas-Agnan, 2011]. Specifically, given a kernel k, there exists a map ϕ : G → H into a Hilbert
spaceH such that k(G1, G2) = ⟨ϕ(G1), ϕ(G2)⟩ for all G1, G2 ∈ G.

Most of graph kernels have been defined as part of the R-convolutional framework [Vishwa-
nathan et al., 2010] where graphs are decomposed into small substructures, then compared by
counting the frequency of their matching substructures such as graphlets, shortest paths, trees,
among others. The family of random walk kernels [Kashima et al., 2003, Gärtner et al., 2003]
is perhaps one of the first successful efforts to design kernels between graphs that can be com-
puted in polynomial time. For example, the ℓ-step Random Walk Kernel (ℓ-RWK) quantifies the
similarity between a pair of input graphs based on the number of common walks up to length ℓ
in the two graphs. An example of the 1-RWK over two toy graphs (see Figure 1.1) is illustrated
in Figure 1.3. First, each input graph Gi is associated with a feature vector (also known as em-
bedding) ϕ(Gi) ∈ R2 whose j-th coordinate corresponds to the number of walks of length j in
Gi (see Figure 1.2). Then, the final similarity score is computed by taking the dot product of the
embeddings.

An important benefit of the embeddings generated by graph kernels is to allow efficient machine
learning methods to be directly applied on graphs by extending the applicability of the whole ar-
senal of kernel methods [Hofmann et al., 2008] to graphs (e.g., for feature selection, classification,
clustering, two-sample tests).

U V

ϕ

Figure 1.4 – U contains data not linearly
separable ; the mapping function ϕ remaps it into
the space V , making the data linearly separable.

Such benefit blends well with the ability of ker-
nels to operate on a feature space of arbitrary di-
mensionality without major computational diffi-
culties, as long as the machine learning algorithms
implementing the linear model of choice are re-
written exclusively in terms of inner products. To
this end, one can evaluate the inner products in the
feature space without explicitly having to describe
each representation in that space. Therefore, the
wealth of existing statistical approaches based on
linear models for vectorial data is lifted to the non-
linear case. This observation is frequently referred
to as the kernel trick by the machine learning com-
munity [Schölkopf, 2000]. The concept is illustrated in Figure 1.4: given a kernel function K
defined on a vector space U , there is a vector space V and a function ϕ mapping U onto V such
that: K(x, y) = ϕ(x) · ϕ(y) for each x, y in U . The value of the kernel calculated over two points
x, y in the original space U can be therefore used as a substitute of the inner product of the corres-
ponding points ϕ(x), ϕ(y) in the transformed space V .

In addition, graph kernels offer provable theoretical guarantees and are easy to train thanks to
the convexity of their optimization problem [Du et al., 2019] and thereby, provide a nice mathema-
tical framework with effective insights over the underlying formalism. Another major advantage
of measures which are defined directly on structured data is the merit of relieving the practitio-
ner from the tedious operation of defining a vectorial representation of the data. From this point
of view, graph kernels provide a natural and rich connection between graph space and machine
learning. They have therefore known a wide success in several fields, especially in bioinformatics,
computer vision and, natural language processing [Vishwanathan et al., 2008, Borgwardt et al.,
2020, Kriege et al., 2020, Nikolentzos et al., 2021].
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1.2 Graph Dynamics

Simple interaction rules have been a fundamental object of study in many sciences. In physics,
the investigation of interacting particle systems contributed substantially in establishing statistical
mechanics as a fundamental theory connecting the atomistic viewpoint to macroscopic pheno-
mena [Liggett and Liggett, 1985]. In mathematics and theoretical computer science, the study of
basic algorithmic processes on very simple distributed systems can be traced back to the study
of cellular automata [Wolfram, 1984] and Conway’s Game of Life [Gardner, 1970] formulated in
the 70’s. Since then, there has been a surge of interest in analyzing simple interaction rules from
a computational point of view [Karp, 2011] as demonstrated by the application of the theory of
distributed computing to the investigation of the algorithmic principles underlying the collective
behavior of biological systems [Feinerman and Korman, 2013], such as insect colonies [Musco
et al., 2017], flocks of birds [Chazelle, 2009], school of fish [Sumpter et al., 2008] and networks
of neurons [Afek et al., 2011].

In the recent past, Multi-Agent Systems (for short, MAS) have gained a widespread recognition
as a subfield of distributed AI. These are systems made up of multiple computing elements, known
as agents, that interact with each other within an environment. Several real-life phenomena can be
modeled by a MAS as discrete dynamical systems in the following manner: there is a set of agents
with a neighborhood relation, and at each time step, the state of every agent is updated according to
the states of its neighboring agents. Agents (i.e., nodes) interact by exchanging messages over an
underlying communication graph. In this setting, dynamics are mathematical models which aim at
investigating the long-term behavior of the MAS, and in particular, its ability to reach some form
of consensus. The term dynamics refers to simple and lightweight protocols on graphs. We report
below a definition that tries to formalize such concept that appeared in [Natale, 2017, Becchetti
et al., 2020b, Becchetti et al., 2020a].

Definition 1.2.1. (Dynamics.) A dynamics is a distributed algorithm characterized by a very
simple structure in which the state of a node at round t depends only on its state and on a symmetric
function of the multi-set of states of its neighbors at round t− 1, while the update rule is the same
for every graph and for every node and it does not change over time.

A direct consequence of this definition is that nodes are identical between each other (i.e.,
anonymous) and they may not have a complete knowledge of the network, such as its topology
and the total number of involved nodes.

Some instances of problems for which dynamics have been successfully employed range from
opinion formation, epidemic spreading, innovation diffusion, to rumor spreading in social net-
works, to name a few. Famous examples of dynamics are Voter dynamics [Liggett and Liggett,
1985], 2-Median [Doerr et al., 2011], 2-Choice [Cooper et al., 2014], 3-Majority [Becchetti et al.,
2017, Becchetti et al., 2016], Undecided-State [Becchetti et al., 2014] and Averaging [Becchetti
et al., 2020b]. An important and natural class of non-linear dynamics are those based on majority
rule. In the following, we focus on these dynamics which are object of analysis in this thesis.

Majority dynamics.

Consider a set of agents interacting by exchanging messages over a connected graph G, accor-
ding to some communication modelM which defines rules and constraints that agents follow in
the communication, such as the synchronicity, the presence of possibly faulty links, the size of the
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Algorithm 1 Synchronous Majority dynamics

Input: A connected graph G = (V,E), a set of states Σ = {0, 1} and a reversibility mode
rev ∈ {True,False}.

Initialization: At round t = 0, every node v ∈ V has a value x(0) ∈ Σ. Denote the set of nodes
in state 0 at time t by Z(t) = {v ∈ V,x(t)(v) = 0}.

Update rule: If rev then A(t) = V , else A(t) = Z(t). At each subsequent round t ≥ 1, every
node v ∈ A(t) sets  x(t)(v) = 0 if

∑
u∈Γ(v) x(t−1)(u) <

∣∣Γ(v)
∣∣ /2,

x(t)(v) = 1 if
∑

u∈Γ(v) x(t−1)(u) >
∣∣Γ(v)

∣∣ /2,
where Γ(v) is the neighborhood of v, and ties are broken according to some fixed rule.

Figure 1.5 – Initial configuration
at t = 0.

Figure 1.6 – Configuration at
t = 1 for the reversible process.

Figure 1.7 – Configuration at
t = 1 for the irreversible process.

Figure 1.8 – One time step execution of the Synchronous Majority dynamics on the Tutte graph starting
from an initial configuration of agents for both reversible and irreversible processes.

messages, among others. We summarize below some of the features described by the communica-
tion modelM which are relevant in this study:

— Activation. If agents have a global clock, the communication is synchronous and, at each
time step, every agent is active, that is, every agent is allowed to communicate.
On the other hand, when no global clock is available, the communication is asynchronous
and, agents remain idle until one of them is activated by a random scheduler, in discrete
time steps. After the communication has taken place, the active agent goes idle again. For
example, an agent might become active at the arrival of an independent Poisson clock with
rate 1 [Boyd et al., 2006].

— Execution. In this model, the exchanged messages are the states of the agents.

• Update rule. Initially, every node has a binary state: either 0 or 1. At each round, every
active node pulls the states of its neighbors then updates its state to the most frequent
one in its neighborhood. Ties, if any, are broken according to some fixed rule (e.g., the
node keeps its current state).
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• Reversibility. If one of the states (e.g., state 1, without loss of generality) is required to be
permanent, i.e., every agent which is in state 1 (initially or at some subsequent round)
keeps its state forever, then the dynamics is said irreversible. Otherwise, if agents with
state 1 are allowed to update back to 0, then the dynamics is said reversible.

A majority dynamics under a synchronous activation is given in Algorithm 1.

Within such framework, the task of Consensus has attracted a lot of attention within different
application domains. Consensus (also known as agreement) is a fundamental algorithmic problem
where the system is required to converge to a stable configuration where all agents support the
same state and this state must be valid, i.e., it must be supported by at least one agent in the initial
configuration [Dijkstra, 1982]. In its most general formulation, we say that a protocol solves the
consensus problem if it meets the following properties [Lynch, 1996]:

— Agreement: all nodes have the same state.

— Validity: the consensus state must be a valid one, i.e., a state which was initially supported
by at least one node.

— Termination: every node eventually determine a final state.

If we allow the presence of adversaries (i.e., corrupted agents), the corresponding consensus
problem goes under the name of Byzantine agreement [Rabin, 1983]. A protocol that solves the
Byzantine agreement problem meets the previous property for every non-corrupted node.

In order to understand the long-term behavior of a MAS, some fundamental questions in the
literature fall under the lenses of consensus. They typically concern determining the minimum
size of an initial configuration of states that leads to consensus, as well as analyzing the amount
of time steps required to reach it. This is motivated by the desire to understand for example under
which conditions a video becomes viral, a new product or technology gets adopted by customers,
an infection spreads to the population or a specific opinion becomes dominant, to name a few.
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Figure 1.9 – A biological neuron. Figure 1.10 – An artificial neuron.

Figure 1.11 – A human neuron vs an artificial neuron.

1.3 Neural Network Compression

Artificial Neural Networks (ANNs, for short) are learning algorithms which were originally ins-
pired by the nervous system of the human brain and modeled after it to perform specific computa-
tional tasks [Mitchell, 1997]. As illustrated schematically in Figure 1.11, similarly to a biological
neuron which has dendrites to receive signals, a cell body to process them, and an axon to transmit
them to other neurons through axon branches, an artifical neuron has a number of input channels,
a processing unit, and an output that can fan out to multiple other neurons.

ANNs are made up of stacks of layers, with each layer comprising a collection of artificial neu-
rons which are connected by edges (or connections) to other neurons, and where each connection
is associated with a numerical value (or weight). A typical neural network contains an input layer
representing the input data for the network, one or more hidden layers performing the computa-
tions necessary to produce the output, and an output layer representing the results of the neural
network (see Figure 1.12). ANNs have led to a flurry of breakthroughs across a wide range of
applications, and are typically classified into different architectures based on how the neurons are
assembled and connected, in addition to their functionality (see Figure 1.13).

Many notable successes in machine learning have been achieved using neural network architec-
tures with a massive number of trainable parameters. For example, the largest deep neural network
ever created (GPT-3 [Brown et al., 2020]) shows impressive SOTA performance in various Na-
tural Language Processing (NLP) tasks (e.g, translation, question-answering, cloze tests) and has
175 billion parameters. Therefore, such models come up with serious costs, requiring millions of
dollars, as well as high amounts of energy and carbon emissions. As a result, much research in the
field is aimed towards lowering the size of such networks while retaining good accuracy.

A substantial and extensive body of research [Deng et al., 2020, Han et al., 2015, Blalock et al.,
2020] shows that one can compress a large network to a tiny fraction of its size by performing pru-
ning (i.e., deleting some edges) while maintaining, sometimes even improving, its original accu-
racy. Pruning methods trace back to the 80’s [LeCun et al., 1989,Mozer and Smolensky, 1988] and
appear to be a mature and effective way of accomplishing large compression of neural networks
as demonstrated by the several recent results that introduce sophisticated pruning, sparsification,
and quantization techniques that result in significantly compressed model representations achie-
ving SOTA accuracy [Deng et al., 2020, Cheng et al., 2020, Blalock et al., 2020]. Many of these
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Figure 1.12 – An ANN with two hidden layers. Figure 1.13 – Some architectures of an
ANN [Leijnen and Veen, 2020].

Figure 1.14 – Artificial Neural Networks (ANNs) come in a varierty of architectures.

pruning techniques require several rounds of pruning and retraining, leading to a time-consuming
and cumbersome to tune algorithms.

The Lottery Ticket Hypothesis (LTH, for short) [Frankle and Carbin, 2018] states that any ran-
domly initialized neural network contains lottery tickets ; that is, sparse subnetworks that can be
trained just once and achieve the performance of the fully-trained original network. The existence
of lottery tickets was supported experimentally based on a series of works using pruning me-
thods [Frankle and Carbin, 2018, Lee et al., 2018]. If these lottery tickets can be found efficiently,
then the computational burden of the pruning and retraining cycle can be avoided.

A striking finding was later on reported by Ramanujan et al. [Ramanujan et al., 2020]. It turns
out that one does not even need to train the lottery tickets to obtain high accuracy: sparse mo-
dels simply reside within larger random networks, and appropriate mere pruning can reveal them.
This phenomenon goes by the name of the Strong Lottery Ticket Hypothesis (SLTH, for short).
It states that any sufficiently large randomly initialized network contains, with high probability,
subnetworks that can approximate any given sufficiently smaller neural network. In other terms,
a sufficiently large randomly initialized network that can be successfully trained for a task, could
instead be suitably pruned to obtain a network that achieves good accuracy, without any training.
In particular, such hypothesis poses the deletion of connections (pruning) as a theoretically solid
alternative to careful calibration of their weights (training).

Over the last few years, the SLTH was first proved for fully connected networks with ReLU
activations by [Malach et al., 2020]. Specifically, they proved that one can approximate any target
neural network of width d and depth ℓ, by pruning a sufficiently over-parameterized random net-
work of widthO(d5ℓ2/ϵ2) and depth 2ℓ such that the gap between the pruned and target networks
is bounded by ϵ. [Pensia et al., 2020a] and [Orseau et al., 2020] concurrently and independently
improved this result by offering an exponential improvement on the over-parameterization (i.e.,
how much larger the random network has to be) required for the strong LTH to be true. Speci-
fically, they reduced the width of the random initialized network to O(poly(d) log(dℓ/ϵ)) and in
addition, showed that this logarithmic over-parameterization is essentially optimal for constant
depth networks.
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Subset Sum Problem.

The theoretical analyses in the recent years [Pensia et al., 2020a,da Cunha et al., 2022b,Ferbach
et al., 2022] behind the proofs of the SLTH, relied heavily on connecting pruning random neural
networks to random instances of the Subset Sum Problem (SSP, for short). In the following, we
explain the idea behind this connection by studying the case of approximating a single edge weight
via pruning a random linear neural network.

Figure 1.15 – Approximation of the weight
w by pruning an over-parameterized

two-layered network [Pensia et al., 2020a].

Consider a simple target neural network (see (a) in
Figure 1.15) whose output is given by f(x) = w · x.
We aim at approximating it by pruning an overparame-
terized network with random weights. We consider an
overparameterized two-layered linear network (see (b)
in Figure 1.15) ; for ease of illustration, we will further
assume that the second layer is deterministic with all
weights equal to 1. Hence, the network that we will
prune, has the following linear architecture:

g(x) =
n∑

i=1
aixi,

where the weights ai are drawn i.i.d. from U([−1, 1]).
Then, we ask: how large does the width n of the

random network need to be in order to approximate
wx (up to error ϵ) by pruning weights {ai}1≤i≤n ?

If n = O(1/ϵ) then there exists a ai that is ϵ-close to w [Malach et al., 2020]. In fact, we can
also achieve the same approximation but with an exponentially smaller number of samples by not
relying on just a single ai but instead, a subset of {a1, . . . , an} whose sum approximates the target
weight. This is precisely the setting of the random SSP where [Lueker, 1998a] proved the existence
of a subset S ⊆ {1, . . . , n} such that |w −

∑
i∈S ai| ≤ ϵ for n = O(log(1/ϵ)). Therefore, we can

prune the network by simply setting ai to 0 for i /∈ S or equivalently, by pruning the output layer
at indices that are not in S, as shown in red in Figure 1.15 (b).



10 CHAPITRE 1 — Introduction

1.4 Research Challenges and Contributions

In this section, we summarize our contributions and put them into context. We first present the
contributions made in the context of graph learning for networks, for then summarizing the ones
made in the context of dynamics within multi-agent systems. Next, we discuss the random subset
sum problem in the context of neural network compression. Finally, we close by describing other
miscellaneous contributions.

1.4.1 Learning on Networks

1.4.1.1 Network Kernels

With the continuous growing level of dynamicity, heterogeneity, and complexity of traffic data,
anomaly detection remains one of the most critical tasks to ensure an efficient and flexible mana-
gement of a network. Recently, driven by their empirical success in many domains, especially bio-
informatics and computer vision, graph kernels [Kriege et al., 2020,Nikolentzos et al., 2021,Borg-
wardt et al., 2020] have attracted increasing attention. Our work aims at investigating their discri-
mination power for detecting vulnerabilities and distilling traffic in the field of networking.

In [Lesfari and Giroire, 2022], we propose Nadege, a new graph-based learning framework
which aims at preventing anomalies from disrupting the network while providing assistance for
traffic monitoring. Specifically, we design a graph kernel tailored for network profiling by leve-
raging propagation schemes which regularly adapt to contextual patterns. Moreover, we provide
provably efficient algorithms and consider both offline and online detection policies. Finally, we
demonstrate the potential of kernel-based models by conducting experiments on a wide variety of
network environments.

1.4.2 Majority Dynamics

1.4.2.1 (Reversible) Biased Opinion Dynamics

We study opinion dynamics in multi-agent networks where agents hold binary opinions and
are influenced by their neighbors while being biased towards one of the two opinions, called the
superior opinion. The dynamics is modeled by the following process: at each round, a randomly
selected agent chooses the superior opinion with some probability α, and with probability 1 − α
it conforms to the opinion manifested by the majority of its neighbors.

In [Lesfari et al., 2022], we exhibit classes of network topologies for which we prove that the
expected time for consensus on the superior opinion can be exponential. This answers an open
conjecture in the literature. In contrast, we show that in all cubic graphs, convergence occurs after
a polynomial number of rounds for every α.

We rely on new structural graph properties by characterizing the opinion formation in terms of
multiple domination, stable and decreasing structures in graphs, providing an interplay between
bias, consensus and network structure. Finally, we provide both theoretical and experimental evi-
dence for the existence of decreasing structures and relate it to the rich behavior observed on the
expected convergence time of the opinion diffusion model.
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1.4.2.2 (Irreversible) Deterministic Boostrap Percolation

Let r ≥ 1 be any non negative integer and let G = (V,E) be any undirected graph in which a
subset D ⊆ V of vertices are initially infected. We consider the process in which, at every step,
each non-infected vertex with at least r infected neighbours becomes infected and an infected
vertex never becomes non-infected. The problem consists in determining the minimum size sr(G)
of an initially infected vertices set D that eventually infects the whole graph G. This problem is
closely related to cellular automata, to percolation problems and to the Game of Life studied by
John Conway. Note that s1(G) = 1 for any connected graph G. The case when G is the n × n
grid, Gn×n, and r = 2 is well known and appears in many puzzle books, in particular due to the
elegant proof that shows that s2(Gn×n) = n for all n ∈ N.

In [Benevides et al., 2021], we study the cases of square grids, Gn×n, and tori, Tn×n, when
r ∈ {3, 4}. We show that s3(Gn×n) = ⌈n2+2n+4

3 ⌉ for every n even and that ⌈n2+2n
3 ⌉ ≤

s3(Gn×n) ≤ ⌈n2+2n
3 ⌉ + 1 for any n odd. When n is odd, we show that both bounds are rea-

ched, namely s3(Gn×n) = ⌈n2+2n
3 ⌉ if n ≡ 5 (mod 6) or n = 2p − 1 for any p ∈ N∗, and

s3(Gn×n) = ⌈n2+2n
3 ⌉ + 1 if n ∈ {9, 13}. Finally, for all n ∈ N, we give the exact expression of

s3(Tn×n).

1.4.3 Neural Network Compression

1.4.3.1 Random Subset Sum Problem

The average properties of the well-known Subset Sum Problem can be studied by the means of
its randomised version, where we are given a target value z, random variables X1, . . . , Xn, and an
error parameter ε > 0, and we seek a subset of the Xi’s whose sum approximates z up to error ε.
In this setup, it has been shown that, under mild assumptions on the distribution of the random
variables, a sample of size O

(
log(1/ε)

)
suffices to obtain, with high probability, approximations

for all values in [−1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms
community, enabling meaningful progress in other fields. In [da Cunha et al., 2022a], we present an
alternative proof for this theorem, with a more direct approach and resourcing to more elementary
tools, in the hope of disseminating it even further.

1.4.3.2 Multidimensional Random Subset Sum Problem

In the Random Subset Sum Problem, given n i.i.d. random variables X1, ..., Xn, we wish to
approximate any point z ∈ [−1, 1] as the sum of a suitable subset Xi1(z), ..., Xis(z) of them, up
to error ε. Despite its simple statement, this problem is of fundamental interest to both theoreti-
cal computer science and statistical mechanics. More recently, it gained renewed attention for its
implications in the theory of Artificial Neural Networks. An obvious multidimensional generali-
sation of the problem is to consider n i.i.d. d-dimensional random vectors, with the objective of
approximating every point z ∈ [−1, 1]d. Rather surprisingly, after Lueker’s 1998 proof that, in the
one-dimensional setting, n = O(log 1

ε ) samples guarantee the approximation property with high
probability, little progress has been made on achieving the above generalisation.

In [Becchetti et al., 2022], we prove that, in d dimensions, n = O(d3 log 1
ε · (log 1

ε + log d))
samples suffice for the approximation property to hold with high probability. As an application
highlighting the potential interest of this result, we prove that a recently proposed neural network
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model exhibits universality: with high probability, the model can approximate any neural network
within a polynomial overhead in the number of parameters.

1.4.4 Other Works

1.4.4.1 NFV & SDN Protection in Network Slicing

Network Function Virtualization (NFV) enables the virtualization of core-business network
functions on top of a NFV infrastructure. NFV has gained an increasing attention in the tele-
communication field these last few years. Virtual network functions (VNFs) can be represented by
a set of virtual network function components (VNFCs). These VNFCs are typically designed with
a redundancy scheme and need to be deployed against failures of, e.g., compute servers. However,
such deployment must respect a particular resiliency mechanism for protection purposes. There-
fore, choosing an efficient mapping of VNFCs to the compute servers is a challenging problem in
the optimization of the software-defined, virtualization-based next generation of networks.

In [Lesfari et al., 2021], we model the problem of reliable VNFCs placement under anti-affinity
constraints using several optimization techniques. A novel approach based on an extension of bin
packing is proposed. We perform a comprehensive evaluation in terms of performance under real-
world ISP networks along with synthetic traces. We show that our methods can calculate rapidly
efficient solutions for large instances.

1.4.4.2 Resource Allocation with Deep RL

The emerging 5G induces a great diversity of use cases, a multiplication of the number of
connections, an increase in throughput as well as stronger constraints in terms of quality of service
such as low latency and isolation of requests. To support these new constraints, Network Function
Virtualization (NFV) and Software Defined Network (SDN) technologies have been coupled to
introduce the network slicing paradigm. Due to the high dynamicity of the demands, it is crucial
to regularly reconfigure the network slices in order to maintain an efficient provisioning of the
network. A major concern is to find the best frequency to carry out these reconfigurations, as
there is a trade-off between a reduced network congestion and the additional costs induced by the
reconfiguration.

In [Gausseran et al., 2022], we tackle the problem of deciding the best moment to reconfigure
by taking into account this trade-off. By coupling Deep Reinforcement Learning for decision and
a Column Generation algorithm to compute the reconfiguration, we propose Deep-REC and show
that choosing the best time during the day to reconfigure allows to maximize the profit of the net-
work operator while minimizing the use of network resources and the congestion of the network.
Moreover, by selecting the best moment to reconfigure, our approach allows to decrease the num-
ber of needed reconfigurations compared to an algorithm doing periodic reconfigurations during
the day.
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1.5 Plan of the Thesis

Table 1.1 illustrates the organization and structure of the contributions in the Thesis.

Topic Chapter
Graph Kernels for Network Anomaly Detection 2
Opinion Dynamics using Graph k-domination 3
Deterministic Boostrap Percolation 4
Random Subset Sum Problem 5
Multidimensional Random Subset Sum Problem 6
NFV & SDN Protection in Network Slicing 7
Resource Allocation with Deep Reinforcement Learning 8

TABLE 1.1 – Topic organization within the Thesis.
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2.1 Introduction

Learning on graph-structured data has gained a notable momentum with recent advances [Wu
et al., 2020] in Artificial Intelligence (AI). While graphs provide an ubiquitous data structure to
represent complex structures and interactions, readily blending them with standard machine lear-
ning algorithms brings several challenges [Cai et al., 2018]. Of particular relevance is the progress
in designing flexible and expressive methods [Hamilton et al., 2017b] for quantifying similarities
between graphs.

A graph kernel is a kernel function [Schölkopf, 2000] defined directly on pairs of graphs, and
enables to compare between them. It corresponds to an inner product that is equivalent to an em-
bedding of the set of graphs into a possibly high-dimensional Hilbert space [Berlinet and Thomas-
Agnan, 2011]. An important benefit of such embedding is to allow efficient machine learning
methods to be directly applied on graphs by extending the applicability of the whole arsenal of
kernel methods [Hofmann et al., 2008] to graphs (e.g., for feature selection, classification, cluste-
ring, two-sample tests).

Furthermore, graph kernels offer provable theoretical guarantees and are easy to train thanks
to the convexity of their optimization problem [Du et al., 2019]. Thereby, they provide a rich
connection between graph space and machine learning. However, despite their wide success in
other domains, especially in bioinformatics, computer vision and, natural language processing
(NLP) [Kriege et al., 2020], they have received little attention in the networking field.

Among the prominent networking problems, anomaly detection is a crucial task in network
security. According to recent studies, cybercrime damage costs are predicted to reach 10.5 tril-
lion dollars annually by 2025 [magazine, 2021]. This alarming situation is further demonstrated
by the adoption of recent cybersecurity regulations [Srinivas et al., 2019]. However, efficiently
identifying the increasingly complex malicious activities from network traffic brings some major
challenges.

Most traditional methods consider the statistical variations of traffic volume in order to detect
anomalous traffic. Such approach is convenient for high-rate attacks where, for instance, a host is
deemed as performing a port scan if a sudden increase in the volume of destination port numbers
is noticed. However, low-rate attacks such as link-flooding [Liaskos et al., 2016] are not visible
in a large network and thus, are very difficult to discover. Moreover, volume-based techniques are
inadequate to capture the correlations in communications between hosts and the impact of cross-
host anomalous activities since they focus on the statistics of traffic sent by individual hosts.

In this chapter, we present Nadege, a graph-based learning framework which aims at detecting
anomalous hosts in networks and classifying traffic. First, we model the communication patterns
of each host by a graph structure of multiple network flows that provides a compact representation
of its network activity. Then, we develop a new graph kernel to measure the similarities between
these activity graphs by leveraging correlations between flows of all the hosts in a network, such
that it is possible to detect stealthy anomalies.

While considering the local structural information of each host is important, neglecting the
context is insufficient to distinguish whether a network flow is triggered with or without other
anomalous flows. Therefore, we increment our graph kernel with the ability to learn representa-
tive latent features from activity graphs with the aid of both local and contextual views. The key
observation behind Nadege is the collective integration of the graph structure and node attributes
information in our graph kernel at different network layers. Such integration enables us to charac-
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terize each change of anomalies by specific patterns of a particular feature set.
Our contributions can be summarized as follows.

— We advocate a general end-to-end learning framework to detect traffic anomalies and clas-
sify network traffic using a graph-based kernel approach.

— We prototype our framework by providing efficient algorithms, with theoretical approxima-
tion guarantees, to ensure a fast and accurate feature extraction. To the best of our know-
ledge, this is the first work to formulate a graph kernel crafted from a networking perspective
and that is tailored to the analysis of network flows.

— Finally, we perform extensive experiments using real-word traces from different providers
(e.g., ISP, University). In our evaluation based on a variety of network environments, both
our graph kernel and Nadege achieve significant improvements over the popular baselines.

The rest of this chapter is organized as follows. In Section 2.2, we review the related works. In
Section 2.3, we present details and analysis of each component of our framework. In Section 2.4.2,
we describe the learning design choices. Then, we evaluate Nadege on several traces and discuss
the obtained results. Finally, we draw our conclusions in Section 2.5.

2.2 Related work

Graph kernels. Most of graph kernels have been defined as part of the R-convolutional framework
[Vishwanathan et al., 2010] where graphs are decomposed into small substructures, then compared
by counting the frequency of their matching substructures such as graphlets, shortest paths, trees,
among others. However, it is worth noting that an increase in the size of substructures leads to
a decrease in the probability of two graphs sharing common substructures, which results in the
so called diagonal dominance issue [Kriege et al., 2020], leading to models prone to overfitting.
Our fingerprint kernel differs significantly from the R-convolution based graph kernels. We capture
similarity between graphs by an implicit extraction of structural nodes and pairs of nodes, avoiding
consequently a direct decomposition into substructures.
Another family of works derives kernels based on spectral, propagation or geometric approaches.
For example, optimal assignment kernels [Kriege et al., 2016] represent a departure from the R-
convolution framework by computing a matching between substructures of objects such that the
overall object pairwise similarity is maximized. Unlike our proposed kernel, they are unfortunately
not guaranteed to be positive semi-definite for all choices of base kernels [Vert, 2008]. For a further
review of graph kernels, we refer the reader to the surveys [Borgwardt et al., 2020, Kriege et al.,
2020, Nikolentzos et al., 2021].

Graph-based anomaly detection. Much interest has been generated for anomaly detection me-
thods using graphs. The first family of techniques explores probabilistic or graph similarity mea-
sures [Le Bars and Kalogeratos, 2019]. The second family is based on machine learning and comes
in supervised or unsupervised branches [Khatuya et al., 2018]. Our hybrid framework combines
techniques from both families by devising a learning-flavored similarity kernel from a networking
perspective. The closest works to ours are [Yao et al., 2019] and [Harshaw et al., 2016].
In [Yao et al., 2019], the authors combine the standard shortest-path graph kernel [Borgwardt and
Kriegel, 2005] with a deep convolutional neural network to analyze network attacks. However,
since shortest-paths do not consider neighborhood structures, the graph similarity is only captured
at fine granularities [Ye et al., 2019]. Moreover, the shortest-path kernel requires a quartic time
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Symbol Description
A Activity graph
S Source set of size s
T Destination set of size t
li The i-th layer of A
J Weighted adjacency matrix
J̃ Normalized adjacency
D Weighted degree matrix
P Transition probability matrix
L̃ Normalized Laplacian
S Set of activity graphs
MS Merge graph

TABLE 2.1 – Glossary of notations.

complexity in the size of the graphs and thus, is expensive to compute for very large graphs. In
addition, deep neural networks require a large amount of training data and are computationally
expensive, especially when considering the entire network flows.
[Harshaw et al., 2016] introduces a graph-mining technique to detect network anomalies. In their
model, they consider a single host-based reduced graph representation built from self-harvested
network flow data. To detect anomalies at the host level, they first count the automorphism orbits
of graphlets—small induced subgraphs that describe local topology. Then, a robust algorithm fits
the gaussian distribution using the Minimum Covariance Determinant method of [Rousseeuw and
Driessen, 1999] on the sequence of graphlets for outlier detection. While the traffic flows collec-
ted have similar attributes, our per-host graph model uses a clear-cut representation of all network
flow information. We compare the performance of Nadege to the ones of existing methods in
Section 2.4.

2.3 Framework description

In this section, we define the notation used in the rest of the chapter. Then, we introduce each
component of Nadege (which stands for Network Anomaly DEtection with Graph kErnels).

2.3.1 Preliminaries and Notation

Consider an undirected labeled graph G = (V,E, l, w) where V is a set of graph vertices of
size n = |V | and E is a set of graph edges of size m = |E|, while l : V → N and w : E → N
are functions that assign labels from a set of positive integers to nodes and edges, respectively.
The weighted adjacency matrix J of G is an n × n symmetric matrix such that J [i, j] = wij .
The weighted degree matrix D of G is a diagonal matrix such that D[i, i] =

∑
(i,j)∈E wij . The

first and last i rows of D are denoted by D:i and Di:, respectively. Moreover, we denote a set
by {a, b, ..., c}, an ordered set (tuple) by (a, b, ..., c) and a multiset by {[a, b, ..., c]}. N i

v is the i-th
neighborhood of vertex v. Finally, ⊙,⊕,∧, ∨̇ denote the Hadamard product, the concatenation,
logical conjunction and exclusive disjunction operators, respectively.
A walk of arbitrary size k initiated from node v0 is defined as a sequence of vertices {[v0, . . ., vk]}
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such that {vi, vi+1} ∈ E for 0 ≤ i ≤ k − 1. A path is a walk that consists of all distinct vertices
and edges. A random walk on G is a discrete-time Markov chain (X0, X1, X2...) endowed with
the Markov property [Levin and Peres, 2017], which induces the transition matrix P = JD−1.
We summarize the notation in Table 2.1.

2.3.2 Activity Graphs

Due to privacy, legal, and technological constraints [Yi et al., 2015], it is important to consider a
profiling mechanism that does not expose private or personally identifiable information (PII) and,
a fortiori, does not access the packet payload. In addition, computing behavioral statistics over
databases of network streams is incomprehensive due to the existence of redundant features and
the difficulty in interpretation without further processing. Thus, our aim is to use the flow records
gathered by each host in order to build a compact graph structure to track its profile activity, while
limiting the redundancy. We model a network flow by a path graph (see Fig. 2.1(a)) which acts as
a summarized indicator.

Definition 2.3.1. A bag of network flows associated with a host is a set of flows, i.e., of labelled
chains such that each chain P = (u0, ..., uf ) is made up of a sequence of identifiers which i-th
node is tagged by l(ui) and, where u0, uf correspond to the end-points of the flow.

Observing all the incoming and outgoing flows of a host during a given time window, gives rise
to a set B of network flows. Clearly, in a bag of flows, the source IP is always unique (as depicted
by the black circles in Fig. 2.1(b)). This collection is then used to build the profile activity of a host
according to a two-step procedure: we start by arranging a graph in layers l0, ..., lf corresponding
to the tagged identifiers in the flows. To make the layers intuitively tractable, we will refer by
source (resp. destination) layers those located at an index position which is even (resp. odd). Next,
we merge the network flows while counting the frequency of appearance of each edge across the
bag B. Thus, each flow creates a path starting from the host IP address on the first layer and
traversing entities in each subsequent layer in the graph (see Fig. 2.1(c)).

Definition 2.3.2. (Activity graph): Let B be a bag of network flows associated with a host. An
activity graph of a host is a weighted connected graph defined by A = (B, E, w) where w : E →
N is the count of flows contributing to each edge.

Such representation served useful when it comes to identify application patterns [Karagiannis
et al., 2007] in a rather straightforward and intuitive manner, without accessing the packet payload.
We further incorporate weights in order to track more latent temporal features, such as the number
of packets or bytes for all flows transiting a given path. The main key advantages of handling
activity graphs are: (i) they offer a succint representation of all flow information while operating
in a single structure, (ii) they evolve in a way that reflects evolutionary changes over time, and (iii)
they allow intuitive interpretable information through the pairwise interaction between layers. We
note that activity graphs can be used in conjunction with several protocols running over TCP/IP in
a wide variety of environments such as the MQTT protocol [Lin et al., 2017] in Internet of Things
(IoT), augmenting thereby their diameter while remaining expressive.
We notice that any given activity graph has a bipartite structure, represented by a partition (S, T )
such that S =

⋃
i≡0[2] li+1 collects nodes ∗ from source layers, while T =

⋃
i≡1[2] li+1 collects

∗. The term node indicates the component of an activity graph, while the term host indicates a communicating
device.
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Node Tag l(ui) Value
u0 srcIP 192.168.10.17

u1 dstIP 171.66.97.126

u2 protocol 17

u3 dstPort 53

u4 srcPort 25

u0 u1 u2 u3 u4

(a) A network flow. (b) Bag of network
flows.

l0

srcIP

l1

dstIP

l2

protocol

l3

dstPort

l4

srcPort

2

3
3 33 2

3

2

(c) An activity graph reflecting communication pat-
terns.

Figure 2.1 – Generation instance of an activity graph (f = 4).

nodes from destination layers. The next proposition shows that the biadjacency matrix, denoted
by Lst, suffices to uniquely represent an activity graph from its partition (S, T ) with source (resp.
destination) set S (resp. T ) of size denoted by s (resp. t). The proof follows directly from the
bipartitness of an activity graph.

Proposition 1. Let k ∈ N. The weighted adjacency matrix J for an activity graph and its powers
can be expressed as

J =
S T

S
 0 Lst


T LT

st 0
, J2k =

 (LstLT
st)k 0

0 (LT
stLst)k

and

J2k+1 =

 0 (LstLT
st)kLst

(LT
stLst)kLT

st 0

2.3.3 Intrinsic Fingerprint

In order to capture the local-global characterization of an activity graph, we need a processing
mechanism with the ability to zoom in and out the topological environment of each node. To
this end, we capitalize on random-walk based methods for their relationship to multiple graph
properties. For instance, [Zhang et al., 2018] derived features based on the isomorphism-invariance
property of the return probabilities of random walks. The efficiency of these features lies on their
convergence to a certain value (denoted by π) known as the stationary probability in Markov chain
theory [Levin and Peres, 2017]. However, such a stable distribution does not exist for activity
graphs due to their bipartiteness. To circumvent this limitation, we explore the graph using an
ergodic random walk variant Ŵ where at each time step, with probability 1/2, the walk remains
at its current node, otherwise it jumps to one of its neighbors.

Proposition 2. LetA be an activity graph. LetRA denote the transition probability matrix induced
by Ŵ on A. Then RA = 1

2(IA + JAD
−1
A ).

Proof.
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6 80

(a) Benign host.

17

6

(b) Attack host.

Figure 2.2 – Structural roles for some intrinsic components.

The proof follows by noting that RA = 1
2(IA + PA) where

[PA]ij =


1

D[j,j] if {i, j} ∈ E
0 otherwise

is the probability of going from node j to i.

□

Definition 1. (Intrinsic Fingerprint)
Let τ > 0. The intrinsic fingerprint of an activity graph A is the set of vectors

iA = {iv, v ∈ VA} , (2.1)

where iv =
[
R1

A[v, v], ..., Rτ+1
A [v, v]

]T
and τ are referred to by the intrinsic component and

range, respectively.

The intrinsic fingerprint provides a rich information on the graph structure and can be seen as
a subgraph centrality measure. By focusing on closed walks, it captures the interaction of a node
with the subgraphs involving it. Moreover, such structural role characterization blends well with
the interpretation in terms of the host profile activity. Fig. 2.2(a) displays an instance of a benign
host in our traces corresponding to an HTTP web server. Fig. 2.2(b) displays an attack where the
host is attempting to connect through TCP to potential vulnerable ports at the same destination
host.
At the first layer, the intrinsic fingerprint captures the popularity of a host in terms of the number
of other hosts it communicates with. At the third level, as illustrated by the dashed lines, the star
and cycle subgraphs involving the TCP node reflect functional role patterns where the last layer
benefits from the knowledge acquired in the previous layers. In the former subgraph, portrayed by
a knot at the destination port layer, the host is providing a service which translates into the use of
a single port for the majority of its interactions. In the latter subgraph, closed walks of order four
unveil in this case a port scan where the host identifies vulnerabilities at specific destination ports.

A straightforward computation of iA takesO(τ(s+ t)3) by successively computing the powers
of R. Since only the diagonals of the transition matrices are required, we use Proposition 3, based
on SVD, which leads to Algo. 2 and shows that we can do better. We note that SVD can be
approximated in time linear to the number of non-zero entries [Halko et al., 2011], which makes
the practical computation fast due to the sparsity of the biadjacency matrix.

Proposition 3. Let A be an activity graph. iA can be computed in O(stmin(s, t) + (τ + 1)(s2 +
t2) + τ(τ + 1)(s+ t)).
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Proof.

For clarity of notation, we omit the graph subscript A. Let us fix k > 0. We write

Rk = 1
2k

k∑
i=0

(
k

i

)
(JD−1)i = 1

2k

k∑
i=0

(
k

i

)
D

1
2 J̃ iD− 1

2 (2.2)

where J̃ = D− 1
2JD− 1

2 is symmetric. We have

J̃ =

 0 D
− 1

2
s LstD

− 1
2

t

D
− 1

2
t LT

stD
− 1

2
s 0

 ≜

[
0 N
NT 0

]

Using Proposition 1, we note that

J̃2i =
[
U(ΣΣT )iUT 0

0 V (ΣT Σ)iV T

]

and J̃2i+1[v, v] = 0, where we use a singular value decomposition on N = UΣV T with U, V
real orthogonal matrices and Σ a diagonal with non-negative real values σ1 ≥ ... ≥ σf :=min(s,t).
Hence, Eq. (2.2) yields

i(k) ≜
[
Rk[v1, v1], ..., Rk[vn, vn]

]T
= 1

2k

k∑
j≡0[2]

(
k

j

)
Y j (2.3)

where Y j =
(
(U ⊙ U)W 2j

)
⊕
(
(V ⊙ V )W 2j

)
with W j = (σj

1, ..., σ
j
f )T .

Decomposing N via SVD takes O(stmin(s, t)) while computing Y j for a given j requires
O(s2 + t2). By performing O(τ(τ + 1)(s+ t)) additions, using Eq. (2.3), the result follows.

□

Clearly, the intrinsic fingerprints are sensitive to the choice of the intrinsic range which intui-
tively, corresponds to the depth of the graph explorations initiated from the nodes. Therefore, we
need a provable guarantee which bridges the exploration intensity with the informativeness of the
extracted features. To this end, Theorem 2.3.1 tells us how far we need to explore, while ensuring
a controlled view on the scope towards the stationary distribution.

Theorem 2.3.1. Let A be an activity graph and δ in (0, 1]. If

τδ ≥
2

1 + 1√
st

log(n
δ

), (2.4)

then ν(pt, π) ≤ δ, where ν(p, q) = ∥p− q∥1 denotes the total variational distance and pt the
probability distribution of the position of the random walk at time t.

Proof.

Let pt denotes the probability distribution of the position of the random walk at time t. First, we
express a lower bound on t(δ) where

t(δ) = max
p0

arg min
t
{ν(pt, π) ≤ δ}.
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Algorithm 2 Intrinsic Fingerprint

Input: An activity graph A, depth parameter δ in (0,1]
Output: iA

1: Compute N = D
− 1

2:s LstD
− 1

2
t:

2: N = UΣV T ▷ SVD Reduction
3: Compute τδ according to Eq. (2.4)
4: parallel for k = 1, ..., τδ + 1 do
5: Compute i(k)

A according to Eq. (2.3)
6: parallel for v in VA do
7: Add i(k)

A [v] to iv ▷ Intrinsic Component

8: Collect iA according to Eq. (2.1)
9: return iA

Observe that pt = Rtp0 and π(v) = d(v)
2|E| where

R = 1
2(I + JD−1) = I − 1

2D
1
2 L̃D− 1

2 ,

with L̃ = I − D− 1
2JD− 1

2 the normalized Laplacian. Let λ1 = 0 ≤ ... ≤ λn = 2 denote the
spectrum of L̃ associated with the eigenvectors {ri}1≤i≤n. Since

∀i ∈ {1, ...n} : RD
1
2 ri = αiD

1
2 ri,

where αi = 1− λi
2 , then {(αi, D

1
2 ri)}1≤i≤n are the eigenpairs of R and {D

1
2 ri}i forms a basis

of Rn as D
1
2 has rank n. Hence, for a set of {µi ≜ rT

i D
− 1

2 p0}1≤i≤n and an arbitrary starting
distribution p0, as α1 = 1 and µ1D

1
2 r1 = π, it holds

ν(pt, π) =
∥∥∥Rtp0 − π

∥∥∥
1
≤
√
n

∥∥∥∥∥ n∑
i=2

µiα
t
iD

1
2 ri

∥∥∥∥∥
2
,

using Cauchy-Schwarz inequality. Also∥∥∥∥∥ n∑
i=2

µiα
t
iD

1
2 ri

∥∥∥∥∥
2

2
≤ α2t

2 ∥p0∥22 ≤ α
2t
2 .

Consequently, ν(pt, π) ≤ δ for t(δ) ≥ 2
λ2

log(n
δ ) using the inequality (1− x) ≤ e−x for x ≥ 0.

The characterization of λ2 has been studied in [Sun and Das, 2019]. In particular, it was proved
that if G is connected bipartite such that G ̸= Ks,t then λ2 ≥ 1 + 1√

st
. Since A is a valid

candidate, we set τδ ≜ 2
1+ 1√

st

log(n
δ ) ≥ t(δ) which only depends on the size of the graph for δ

fixed.

□

When δ = 1
4 , the depth is equivalent to the mixing time [Levin and Peres, 2017].
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2.3.4 Contextual Fingerprint

Besides identifying the notable structural attributes of activity graphs, it is crucial to consider the
context in which they emerge. Different hosts exhibiting different behaviors may induce activity
graphs with similar shapes, resulting in limited identification as collective information about the
current state of the network is not exploited. In such cases, relying solely on the intrinsic feature
is optimistic since two isomorphic graphs have the same intrinsic fingerprints. Thus, analyzing the
activity of a host among group of hosts provides more insight about the prospective state of the
network.

As an example, let us consider three hosts a, b and c. Fig. 2.3 presents a merge graph constructed
by merging their corresponding activity graphs Aa, Ab and Ac (depicted by the double circles)
into a unified representation. While Ab and Ac are isomorphic, they correspond to different mali-
cious hosts, a UDP-based port scanner and an IP address space scanner, respectively. On the other
hand, Aa corresponds to a bot used to perform a Distributed Denial-of-Service (DDoS) attack
while acting as a DNS and mail server (indicated by the SMTP source port identifier). Since the
layers of activity graphs encode relationships between the hosts at several levels, considering pairs
of nodes over a unified graph enables us to take into consideration the temporal nature of host
group behaviors and understand complex attacks. For instance, a pair from layers l0, l1 enables us
to track the host a (as depicted in red in Fig. 2.3) across the activity graphs of hosts which fall
into the same temporal traffic window. In this scenario, both hosts b, c act as C&C channels for the
botmaster a.
We thus devise in this section a method (see Algo. 3) based on a set of merged activity graphs
where pairs of nodes provide latent collective representations according to a variant of the
Weisfeiler-Lehman isomorphism test. We further equip it with an efficient approximation calcu-
lation technique (see Algo. 4).

Message passing models are currently the core element of the recent attention in the use of deep
learning on graphs. [Morris et al., 2019, Xu et al., 2018] proved somewhat remarkably that graph
neural networks (GNNs) [Wu et al., 2020], which are based on these models, are less expressive
than the k-Weisfeiler-Lehman (WL) isomorphism tests hierarchy (k ∈ N∗) [Grohe, 2017]. The
popular 1-WL kernel [Shervashidze et al., 2011] can only support a measure of similarity based
on the occurrences of subtree patterns [Shervashidze and Borgwardt, 2009,Bach, 2008] over each
independent node in the graph, as a byproduct. Meanwhile, going for higher dimensions in the WL
hierarchy is computationally expensive as k-WL runs in O(nk) where n is the graph size [Arvind
et al., 2020]. Thus, we leverage the 2-WL which offers an effective middle ground framework
to reason collectively over pairs of nodes. For a review of 2-WL with its different neighborhood
rules, we refer the reader to [Maron et al., 2019, Morris et al., 2017].

Our method differs from the standard 2-WL procedure in two important ways. First, 2-WL is
typically executed over each graph g independently, then g is associated with a feature vector ψ(g)
where, for each σ in Σ, its coordinate ψσ(g) counts the frequency of the color σ of the procedure
in g. Instead, we operate over a single merge graph (see Def. 2 and Fig. 2.3) to capture the contex-
tual interactions between activity graphs so that each frequency ψσ(g) depends on all the graphs
in S and not only g. Second, we consider a novel adaptive neighborhood policy which adapts the
exploration based on a node centrality measure that we compute efficiently.

Definition 2. (Merge graph) Let S be a family of activity graphs. Let su and tu be two universal
nodes acting as source and sink, respectively. The merge graphMS is unweighted undirected, cha-
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racterized by VM =
⋃

g∈S Vg ∪ {su, tu} and EM =
⋃

g∈S Eg ∪ {(su, v), (w, tu), v ∈ l0(g), w ∈
l4(g)}.
Node centrality. The centrality measure that we consider comes from Lemma 2.3.2 which tells
us that the eigenpairs, namely the eigenvectors, can be easily retrieved while executing Algo. 2
when computing the intrinsic fingerprints ; therefore avoiding a separate centrality computation.
Specifically, we associate with each node v its component (denoted by f(v)) in the eigenvector
corresponding to the largest eigenvalue (which always equals 1) of J̃ . Note that f(v) > 0 from
the Perron-Frobenius theorem [Levin and Peres, 2017]. The use of f(v) as a centrality measure is
motivated by the following observation:

f(v) = [J̃f ][v] =
∑

u∈VA

j̃vuf(u) =
∑

u∈N (v)

1√
dvdu

jvuf(u). (2.5)

Eq. (2.5) tells us that assigning f(v) to v is equivalent to implicitly averaging over its neighbors
according to their interaction intensity (dictated by the degree function d). Thus, f(v) corresponds
to an eigenvector centrality measure that considers that a node v with a neighbor u solely connected
to it, provides more information that a same node v for which u is connected to many others at the
same time.

Lemma 2.3.2. From the SVD of N = UΣV T , the eigendecomposition of J̃ can be retrieved by
writing

J̃ =
[

0 N
NT 0

]
= B

[
Σ 0
0 −Σ

]
BT where B =

[
Ũ Ũ

Ṽ −Ṽ

]
and Ũ = U√

2 , Ṽ = V√
2 .

Adaptive neighborhood. As seen in Section 2.3.2, end-nodes in a pair of the activity graph play
different roles depending on the layer they fall into. Thus, instead of treating both end-nodes in the
same way, we define a new neighborhood rule where the neighborhood of a pair (u, v) is dynamic
and based on the previous node centrality measure:

Nuv = {uw,w ∈ N ∗
v } ∪ {wv,w ∈ N ∗

v }, (2.6)

where f̃(v) = f(v)∑
v∈VA

f(v) ∈ (0, 1] and N ∗
v = N 1

v ∪ N 2
v if f̃(v) < 0.5, otherwise N ∗

v = N 1
v .

Intuitively, a low-central node needs to cover a larger portion of its neighborhood compared to a
high-central node which is already connected to high-central nodes according to Eq. (2.5).

Approximation speedup. Since the propagation procedure of 2-WL runs in O(n2), to make sure
that Nadege is able to operate with high velocity data-streams, we propose an algorithm (see
Algo. 4) which provably (see Theorem 2.3.5) approximates the exact features in Algo. 3.

In order to formulate concentration bounds and prove Theorem 2.3.5, we first derive an exten-
sion of the Hoeffding’s inequality [Hoeffding, 1994] to the multivariate case by applying it over
several dimensions.

Lemma 2.3.3. (Hoeffding’s inequality [Hoeffding, 1994])
Let X1, ..., Xn be independent random variables such that |Xi| ≤ C, for each i = 1, ..., n.
Set µX = 1

n

∑n
i=1Xi. Then, for any ε > 0, we have

P
(
|µX − E[µX ]| ≥ ε

)
≤ 2 exp

(
− nε

2

2C2

)
.
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Figure 2.3 – Instance of a merge graph with hosts a, b and c.

Algorithm 3 Contextual Fingerprint

Input: A set S of activity graphs, θ an iteration parameter
Output: A set of features cS

1: Construct the merge graphMS
2: Color each pair p = (u, v) ofMS per isomorphism type
3: parallel for g ∈ S do
4: for all r = 1, ..., θ do
5: Compute standard 2-WL overMS using Eq. (2.6)
6: for all σ ∈ Σr do
7: pin

σ ← |{(u, v), u ∧ v ∈ V 2
g with color σ}|

8: pout
σ ← |{(u, v), u ∨̇ v ∈ V 2

g with color σ}|
9: ψr,σ(g)← (pin, pout)T

10: ψr(g)← (ψr,σ1(g) . . . ψr,σ|Σr |(g))
11: cS [g]← ⊕r vec(ψr(g))
12: return cS

Lemma 2.3.4. (Multivariate Hoeffding’s inequality)
Let Z1, ...,Zn be independent r-dimensional random variables such that ∥Zi∥2 ≤ C, for each
i = 1, ..., n. Set µZ = 1

n

∑n
i=1Zi. Then, for any ε > 0, we have

P
(∥∥µZ − E[µZ ]

∥∥
2 ≥ ε

)
≤ 2r exp

(
− nε2

2C2r

)
.

Proof.
For each i = 1, ..., n, let Zi,l denote the l-th component of Zi where l = 1, ..., r.
Let us fix i in {1, ..., n}. Since ∥Zi∥2 ≤ C, then |Zi,l| < C. Hence, we can apply Hoeffding’s
inequality over each dimension l of Zi, which yields

P

(
|µZl
− E[µZ ]l| ≥

ε√
r

)
≤ 2 exp

(
− nε2

2C2r

)
, (2.7)

where µZ l = 1
n

∑n
i=1Zi,l, for each l = 1, ..., r.

Suppose for each l = 1, ..., r that |µZl
− E[µZ ]l| <

ε√
r
. Then it holds that

∥∥µZ − E[µZ ]
∥∥

2 =
√

r∑
l=1

(µZl
− E[µZ ]l)2 < ε.
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Algorithm 4 Speedy Contextual Fingerprint

Input: A set S of activity graphs, θ a refinement parameter, ν confidence probability, ε error
tolerance

Output: c̃S
1: Construct the merge graphMS
2: Populate ΓS

ν,ε,θ according to (2.9) ▷ Uniform sampling
3: parallel for p = (u, v) ∈ ΓS

ν,ε,θ do
4: Hp ← {g ∈ S|u ∈ Vg ∨ v ∈ Vg} ▷ Involved hosts
5: Build Gp the induced subgraph over N (p)
6: Color each node of Gp per isomorphism type
7: for all r = 1, ..., θ do
8: Determine σ(p) over Gp ▷ Run diffusion process
9: parallel for g ∈ Hp do

10: i← 1|Hp|=1
11: ψ̃r,σ(g)[i]← ψ̃r,σ(g)[i] + 1

|ΓS
ν,ε,θ

|

12: c̃S [g]← ⊕r vec(ψ̃r(g))
13: return c̃S

Consequently, using Eq. (2.7)

P
(∥∥µZ − E[µZ ]

∥∥
2 ≥ ε

)
≤ P

(
∃l ∈ {1, ..., r}, |µZl

− E[µZ ]l| ≥
ε√
r

)

≤ 2r exp
(
− nε2

2C2r

)
.

□

Theorem 2.3.5. Let S be a set of activity graphs andM its associated merge graph. Let us fix r
in {1, ..., θ}, ε in (0, 1] and ν > 0. Then, there exists ΓS

ν,ε,θ in V 2
M such that with probability ν, it

holds that
∀g ∈ S :

∥∥∥ψr(g)− ψ̃r(g)
∥∥∥

F
≤ ε,

where ∥.∥F denotes the Frobenius norm.

Proof.

Let g in S. First, note that

∥ψr(g)− ψ̃r(g)∥2F =
∑

σ∈Σr

∥ψr,σ(g)− ψ̃r,σ(g)∥22.
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Using Boole’s inequality

P (
⋃

g∈S
∥ψr(g)− ψ̃r(g)∥F ≥ ε)

≤
∑

g∈S
P (

∑
σ∈Σr

∥ψr,σ(g)− ψ̃r,σ(g)∥22 ≥ ε2)

≤
∑

g∈S

∑
σ∈Σr

P (∥ψr,σ(g)− ψ̃r,σ(g)∥2 ≥
ε√
|Σr|

).

For clarity of notation, we denote pin
σ , p

out
σ by p1

σ, p
2
σ and let P i

σ be the set of σ-colored pairs
of type i with pi

σ = |P i
σ|. We set γi

g =
∑

σ p
i
σ and γM =

(VM
2
)
. Let Zr,σ(g) = (z1, z2)T be a

2-dimensional random variable such that

zi = αi1P i
σ
, (2.8)

where αi = γi
g/γM and 1E is 1 if at round r of Algo. 3, we sample p such that p is in E ,

otherwise 0.

Let µZr,σ (g) := 1
|Γ|

|Γ|∑
r=1
Zr,σ(g) = ψ̃r,σ(g). Since for each i, E[zi] = αip

i
σ

γi
g

, then E[µZr,σ (g)] =

ψr,σ(g). Note that
∥∥∥Zr,σ(g)

∥∥∥
2
≤
√

2. By Lemma 2.3.4, we have

P (∥ψr,σ(g)− ψ̃r,σ(g)∥2 ≥
ε√
|Σr|

) ≤ 4 exp
(
− Γε2

8|Σr|

)
.

Therefore, by setting

Γ := ΓS
ν,ε,θ = 8|Σθ|

ε2 log
(

4|S||Σθ|
1− ν

)
, (2.9)

where Σθ is an upper bound on the maximum number of different colors, we obtain

P (
⋃

g∈S
∥ψr(g)− ψ̃r(g)∥F ≥ ε) ≤ 1− ν.

□

2.3.5 Fingerprint Graph Kernel

Let S be a set of activity graphs. Each g in S is represented by its fingerprint set rg =
{(iv, cg)}v∈Vg in a real feature space denoted Ω. Let k be a kernel on Ω such that for (g, h) in
S2:

k[(iv, cg), (iu, ch)] =
(
∥iv − iu∥2

2σ2

)
exp

(
−∥cg − ch∥2

2σ2

)
, (2.10)

with bandwidth σ > 0. Let ϕ and H be the feature map and the reproducing kernel Hilbert space
(RKHS) associated with k ; whose existence is derived from Moore–Aronszajn theorem. We view
rg as a sample following a distribution denoted by Dg that we embed into a mean map µDg in H
by kernel mean embedding (KME), as it suffers less from the curse of dimensionality compared
to density estimation methods [Muandet et al., 2016]:

µDg := EX∼Dg [k(X, .)] = EX∼Dg [ϕ(X)] =
∫

Ω
ϕ(x)dDg(x).
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We choose Gaussian kernels in Eq. (2.10) as they belong to the kernel class of radial basis
functions (RBFs) which enjoy nice properties [Szabó and Sriperumbudur, 2017]. In particular,
their universality property implies that KME retains all information, namely moments, about the
distribution Dg. Further details on the properties of the RKHS and different classes of kernel
functions can be found in [Szabó and Sriperumbudur, 2017, Muandet et al., 2016].
Since access to the true distribution Dg is lacking, we use the empirical mean estimator µ̂Dg =
1

ng

∑
v∈Vg

ϕ(iv, cg), by treating the data as a probability mass distribution associated with rg,
i.e., Dg = 1

ng

∑
v δ(rv ,cg) with δx the Dirac measure defined for x in Ω. We note that µ̂Dg is a

good proxy for µDg as it is is unbiased and consistent [Smola et al., 2007], with convergence rate
O(Rng (H) + 1√

ng
) whereR(H) denotes the Rademacher complexity ofH.

Thereby, we define the valid (see Proposition 4) fingerprint graph kernel K (denoted by FGK) as
follows

K(g, h) = ⟨µ̃Dg , µ̃Dh
⟩H = 1

ngnh

∑
v,u
k[(iv, cg), (iu, ch)].

Proposition 4. The fingerprint graph kernel K is symmetric positive definite.

Proof.

Let g and h be two activity graphs. Then

K(g, h) = 1
2ngnhσ2

∑
v,u
f1(v, u)f2(g, h),,

where f1(v, u) = ∥iv − iu∥2 and f2(g, h) = exp
(

−∥cg−ch∥2

2σ2

)
.

Observe that f1 is clearly positive definite, while the positive definiteness of f2 is obtained
from Corollary 3 in [Schoenberg, 1938]. Since the sum and multiplication of positive definite
kernels are still positive definite, we conclude that K is positive definite. Moreover, it is clearly
symmetric.

□

Computing K takesO(|S|2n2) (we assume for simplicity that all graphs have the same size n).
Since S could be potentially large, we use an approximate kernel transformation known as Fast-
Food [Le et al., 2014]. For each fingerprint x in Rd, the latter provides a randomized explicit feature
representation ϕ̃(x) in Rp (with p < d), running in O(d log p) while ensuring that ⟨ϕ̃(xi), ϕ̃(xj)⟩
converges to ⟨ϕ(xi), ϕ(xj)⟩ with a rate of O( log( 2

δ
)√

d
) where δ is a failure probability.

2.4 Experimental evaluation

In this section, we provide a broader evaluation assessment of Nadege in terms of its detection
and runtime performance. We open by describing the evaluation setup, followed by the learning
models, and finally, close by presenting our results.

2.4.1 Evaluation setup

Datasets. We conducted experiments on six widely-used and recent datasets covering different
types of network environments. Detailed descriptions of these traces can be found in [Hindy et al.,
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2020]. We provide some relevant summary statistics in Table 2.3. All traces labeled the network
anomaly hosts, which means we have ground truth of the traffic. Moreover, they vary in volumes
and forms of anomalies mixing both high and low-intensity attacks. Thus, overall these traces offer
a good diversity for evaluating Nadege robustness across different real-word situations.

Baselines. We compared Nadge with two categories of state-of-the-art approaches. Graph kernel-
based methods include the Shortest-Path kernel (SP) [Borgwardt and Kriegel, 2005], the Random-
Walk kernel (RW) [Vishwanathan et al., 2010], the Graphlet kernel (GR) [Shervashidze et al.,
2009], and the Weisfeiler-Lehman subtree kernel (WL) [Shervashidze et al., 2011]. We also pi-
cked GraphSAGE (GS) [Hamilton et al., 2017a], a representative inductive learning-based me-
thod which fit into the graph neural network framework proposed by [Gilmer et al., 2017]. In
particular, these methods serve also at assessing the performance of the Fingerprint kernel. The
second category comprises anomaly-based methods, namely AnoNG (ANG) [Yao et al., 2019]
and Graphprints (GP) [Harshaw et al., 2016] (described in Section 2.2).

2.4.2 Learning

Metrics. The detection performance of an algorithm, on a particular trace, can be measured in
terms of its true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).
In our evaluations, we consider for each approach three metrics: precision (P= T P

T P +F P ), recall
(R= T P

T P +F N ), and F1-score (F=2×P×R
P+R ). In network intrusion detection, it is important to obtain

a minimal number of false alarms since it is time consuming and expensive for an analyst to
investigate each alarm.

Sliding window principle. We monitor the flow traffic of each trace using overlapping sequential
observation windows to mimic a sliding time window model. Each window gives rise to a set S
of labeled (benign or anomalous) activity graphs which are characterized by a similarity matrix
KS resulting from the fingerprint graph kernel. We then feed KS into a kernelized Support Vector
Machine (SVM) learning model, while considering both offline and online execution modes.

Models. As a state-of-the-art kernel method, SVM classifiers [Boser et al., 1992, Cortes and Vap-
nik, 1995] find an optimal separating hyperplane specified by a subset of the training data points,
known as support vectors (SVs). Their success comes from a statistical learning theory viewpoint
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where they operate under the principle of risk minimization, providing theoretical guarantees on
the generalization error. For further details on kernel methods, we refer the reader to [Hofmann
et al., 2008]. We consider several learning models which all support class-weighting which is de-
signed to deal with class imbalance:
− Offline models. We consider four models: OS-SVM (C1), Multi-SVM (C2), W-OS-SVM (C3),
W-Multi-SVM (C4) where OS stands for One Shot and W for Wide. For OS-SVM, the model is
trained only once on the first batch of windows. For Multi-SVM, the model is retrained every day
by using, however, only samples from the previous day. W-OS-SVM mimics OS-SVM and W-
Multi-SVM mimics Multi-SVM, however, the batch size for training and retraining covers several
batches instead of one.
− Online models. We consider a popular incremental version of SVM, denoted by ON-SVM (C5),
which processes data on the fly and modifies its hyperplane, if necessary, as new training samples
arrive [Bordes et al., 2005]. Moreover, it introduces a SV removal step and supports active selec-
tion.

Settings. In all our experiments, we followed common practices of performance evaluation by
repeating each 10-fold internal cross validation. Within each fold, we selected the trade-off C of
SVM from {10−3, ..., 103} and the depth θ from {0, . . ., 7}. We set the parameters δ and ε to 0.1
and 0.05 respectively, ν to 0.95, and σ in the FGK to 1/datt with datt the attribute dimension [Fe-
ragen et al., 2013]. Instead of using random folds for the validation of the approach, we preserved
the temporal order of the network data. Indeed, it is essential for measuring the performance of
intrusion detection systems that the training and test data are temporal disjunct and future attacks
are not available during learning to avoid experimental bias [Pendlebury et al., 2019].
Moreover, we made use of the GraKel library [Siglidis et al., 2020] for graph kernel implementa-
tions and normalized all kernel matrices. We note that GraKel was entirely developed in Python,
is compatible with scikit-learn, and exploits the Cython extension to benefit from a fast implemen-
tation in C.

2.4.3 Results and Discussions

We first discuss the strengths of our fingerprints, then, we evaluate the detection performance of
Nadege.

Intrinsic fingerprint. We start by a sensitivity analysis over the intrinsic range τ which captures
the depth of the closed walks explorations. Fig. 2.4 shows the maximum range τδ across all datasets
per window size ω. We note the existence of an optimal region [rmin, rmax] where the detection
for Nadege is always high (i.e., F-score > 0.9 on average, across all datasets). When ω < rmin,
features are under-representative since graphs are mostly chains and very sparse trees and, when
ω > rmax, the SVM decision problem becomes coarser. As the time step goes to infinity, the
intrinsic components will not change much, converging to the stationary probability. Hence, we
gain little new information from the intrinsic fingerprint by increasing τ (see Fig. 2.5).

Contextual fingerprint. In Table. 2.2, we report the average F-score across all datasets along
with the node utilization (defined as the normalized average value of

∑
p∈Γ |Np| across merge

graphs, with Γ the sample size of Algo. 4), which captures the intensity of exploration. We com-
pare our centrality-based neighborhood rule with three others, namely 2-WL, 2-FWL (Folklore)
and 2-LWL (Local) [Maron et al., 2019, Morris et al., 2017]. We observe that centrality-based ex-
plorations offer a nice trade-off between contextual informativeness and the size of the exploration
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Method Policy Score Utilization

2-WL Global 0.8941 49.7%

2-FWL Folklore 0.9157 49.7%

2-LWL Local 0.8840 23.8%

Nadege Centrality 0.9716 25.0%

TABLE 2.2 – Exploration strategies.

space as they adapt their strategy according to the current topology of the merge graph. In Fig 2.3,
we performed a Kernel PCA [Schölkopf et al., 1998] projection to the hosts in D-1 based on the
FGK. We observe that while the intrinsic features provide an already strong discrimination against
most attacks, adding the contextual features improves the classification performance of the FGK
in discriminating some collaborative attacks such as Botnets and DDos.

Learning models. In Fig. 2.6, we report over time, the ratio of misclassifications over the number
of classified graphs so far of the SVM models for D-1. C3 and C4 surpassing C1 and C2 respec-
tively, reveals the necessity of frequently updating models over time to mitigate concept drift. C3
and C4 surpassing both C1 and C2 indicates the importance of training on more data. We obtained
similar error curves on the other datasets where only C4, C5 yielded low generalization errors,
demonstrating the effectiveness of Nadege in both offline and online execution modes.

Detection performance. In Table 2.3, we observe that Nadege significantly outperforms all ba-
seline methods in six datasets, while producing the lowest false alarm rates. In addition, Nadege
yielded the most stable variances (i.e., gaps between maximum and minimum) among all methods.
We report the good performance of AnoNG for low frequency attacks at the expense of, however,
high memory and time costs (see Fig 2.6). Even though Graphprints and the Graphlet kernel
produce similar features, the former performs better mainly due to the robust MCD [Rousseeuw
and Driessen, 1999] removal procedure of outliers. The Fingerprint kernel is adapted for network
discrimination against anomalies as demonstrated by its superiority over the kernel-based me-
thods. It is worth noting that WL and GraphSAGE exhibit close average scores as the latter can
be seen as a continuous approximation to the WL test [Hamilton et al., 2017a]. Overall, these
observations enable us to advocate Nadege as an accurate, fast, and versatile learning framework.
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Trace Approach Precision Recall F1-Score

D-1 Nadege 0.9991 0.9987 0.9989
Name: CSE-CIC-IDS-18 Shortest-Path 0.6740 0.7290 0.7290
#Total: 16,232,943 Random-Walk 0.6706 0.7174 0.6932
Benign: 82% Graphlet 0.9724 0.9423 0.9571
Attacks: 17% WL-Subtree 0.9905 0.9372 0.9631
> Brute force, Dos, DDoS GraphSAGE 0.9962 0.9827 0.9894
PortScan, Web, Infiltration AnoNG 0.9799 0.9960 0.9879

Graphprints 0.9679 0.9631 0.9679

D-2 Nadege 0.8184 0.9842 0.8937
Name: UGR’16 Shortest-Path 0.6793 0.6187 0.6476
#Total: 12,517,654 Random-Walk 0.5275 0.6392 0.5780
Benign: 64% Graphlet 0.8265 0.7392 0.7804
Attacks: 36% WL-Subtree 0.8739 0.8283 0.8505
> Botnet, Blacklist, Dos, GraphSAGE 0.7776 0.7329 0.7546
Scan, Spam AnoNG 0.8591 0.9021 0.8801

Graphprints 0.7973 0.8590 0.7973

D-3 Nadege 0.9987 0.9985 0.9986
Name: Bot-IoT Shortest-Path 0.8134 0.7593 0.7854
#Total: 3,668,522 Random-Walk 0.5168 0.5789 0.5461
Benign: 42% Graphlet 0.6372 0.6719 0.7789
Attacks: 58% WL-Subtree 0.8095 0.8480 0.8283
> Scan, Dos, DDos, Theft GraphSAGE 0.8612 0.7180 0.7831

AnoNG 0.8612 0.7180 0.9870
Graphprints 0.6635 0.7370 0.7402

D-4 Nadege 0.9523 0.9892 0.9704
Name: N-BaIoT Shortest-Path 0.6537 0.9892 0.7872
#Total: 5,256,390 Random-Walk 0.4567 0.8820 0.6018
Benign: 67% Graphlet 0.7137 0.8196 0.7630
Attacks: 33% WL-Subtree 0.8272 0.8741 0.8500
> Botnets (Mirai & Bashlite) GraphSAGE 0.8984 0.8120 0.8530

AnoNG 0.9736 0.9548 0.9641
Graphprints 0.6394 0.8548 0.7316

D-5 Nadege 0.9780 0.9941 0.9860
Name: Tor-nonTor Shortest-Path 0.7347 0.6492 0.6893
#Total: 67,834 Random-Walk 0.7283 0.7239 0.7261
Benign: 78% Graphlet 0.8074 0.7032 0.7517
Anomalies: 22% WL-Subtree 0.8552 0.9290 0.8906

GraphSAGE 0.9791 0.8410 0.9048
AnoNG 0.8903 0.9300 0.8903

Graphprints 0.7526 0.8320 0.7903

D-6 Nadege 0.9757 0.9890 0.9823
Name: VPN-nonVPN Shortest-Path 0.5530 0.7930 0.6516
#Total: 125,634 Random-Walk 0.7012 0.7153 0.7082
Benign: 87% Graphlet 0.6887 0.6136 0.6490
Anomalies: 13% WL-Subtree 0.8109 0.8693 0.8391

GraphSAGE 0.9853 0.9382 0.9382
AnoNG 0.9085 0.8039 0.8530

Graphprints 0.9332 0.8790 0.9053

TABLE 2.3 – Statistics and evaluation results on 6 traces.
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2.5 Conclusion and Future Work

In this chapter, we proposed Nadege, a new framework for anomaly detection and traffic clas-
sification in networks. In particular, we developed a graph kernel tailored for networking, based
on random walks and the Weisfeiler-Lehman hierarchy of isomorphism tests. The advantages of
the kernel lie on its effectiveness in capturing rich local and global information on the host pro-
file activity, while incorporating context awareness. The framework was made fast and scalable
by using special purpose graphs along with an approximation algorithm for which we derived
some theoretical guarantees. In our evaluation using a variety of traces from heterogeneous envi-
ronments, Nadege achieved high F1-scores, significantly outperforming existing state-of-the-art
approaches. An interesting future work is assessing the performance of Nadege in the context of
adversarial attacks and within next generation networks (SDN and NFV).
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3.1 Introduction

In everyday life, when sharing or forming an opinion about a set of issues of interest, individuals
often consult with their friends, relatives, acquaintances, or others, in their close social group.
Furthermore, with the widespread use of online social networks, social influence comes to play a
prominent role in several phenomena such as the diffusion of technological innovations, the rise
of political movements, and the intensification of fears during outbreaks. Consequently, there has
been a growing interest in understanding the opinion-forming processes that drive the formation
of consensus and opinion clustering in social systems.

Opinion dynamics are mathematical models that enable to investigate how a group of agents
change their beliefs under the influence of other agents. While various models considered in the
literature confer the same intrinsic value to all opinions [Coates et al., 2018], an agent may be
biased towards a “preferred” opinion ; for instance, reflecting intrinsic superiority of one alternative
(e.g., a technological innovation) over the status quo. We represent a multi-agent network by a
graph made up of n agents that are modeled as nodes, and an edge between two nodes corresponds
to a relation between the respective agents such as friendship, common interests, or advice. We
focus on the scenario where each agent must choose between two alternatives by exhibiting a bias
toward one of the opinions. In the remainder, we use labels 0 and 1 for the two opinions and we
assume 1 is the superior opinion.

Starting from an initial state in which all agents share opinion 0, the system evolves in rounds. In
each round, one agent is selected uniformly at random. With some probability α (called bias), the
agent adopts 1, while with probability 1−α, the agent adopts to the majority opinion on the basis
of those held by its neighbors in the underlying network. When α > 0 the process always converge
to global adoption of the opinion 1. Since dynamics are aimed at modeling the spread of opinions,
an important issue is to determine how fast the superior opinion takes over the network [Mossel
and Tamuz, 2017]. In [Anagnostopoulos et al., 2020], the authors show that under the linear voter
rule, where agents copy the opinion of a randomly selected neighbor, consensus is reached quickly
withinO( 1

αn logn) rounds regardless of the underlying topology. In contrast, under the non-linear
majority rule where agents update their opinion to the majority opinion in their neighborhood, it
turns out that the convergence time is super-polynomial in expectation whenever the network is
dense (i.e., when the minimum degree is ω(logn) ∗).

One might wonder if the converse occurs, namely, whether the biased majority dynamics al-
ways affords (expected) polynomial convergence to the absorbing state when the network is not
dense. While this is indeed the case for cycles, trees, and disconnected cliques of size O(logn),
understanding the behavior of the dynamics remains open for bounded degree topologies, inducing
challenging open problems formulated in [Anagnostopoulos et al., 2020, Cruciani et al., 2021].

In this work, we aim at contributing to the general understanding of the evolution of biased
opinion dynamics under the non-linear majority rule by studying their behavior theoretically and
empirically. We make the following contributions:

— We show a polynomial time convergence for new classes of topologies (namely, cubic
graphs) and characterize them in terms of stable structures.

— We provide a threshold value on the bias α, above which the expected time for consensus
on the superior opinion is polynomial for random regular graphs.

∗. The notation ω is defined as f(n) = ω(g(n)) iff ∀k > 0, ∃n0, ∀n > n0 : |f(n)| > k · g(n). Hence, f(n) =
ω(g(n)) is equivalent to g(n) = o(f(n)).
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— We answer negatively to the open problem in [Anagnostopoulos et al., 2020] by exhibiting
classes of network topologies (namely, random ∆-regular graphs with ∆ ≥ 5) for which we
prove that the expected time for consensus on the superior opinion is exponential for small
values of α.

— We provide insights into the dynamical properties of network structures that are implicitly
responsible for the dichotomy between the slow and fast consensus behavior, in light of
a generalized notion of domination in graphs. To the best of our knowledge, this is the
first work on biased opinion dynamics that characterizes consensus in terms of multiple
domination.

— Finally, we support our theoretical findings by consistent experiments, relating the speed of
consensus with properties of the network structures.

The rest of this chapter is organized as follows. In Section 3.2, we review the related works. In
Section 3.3, we formally describe the biased opinion dynamics under the non-linear majority rule.
In Section 3.4, we present an extension of standard domination in graphs and leverage it to analyze
the expected time to reach consensus for random regular graphs in Section 3.6 and Section 3.7.
Then we validate our theoretical results through experiments and discuss the obtained results in
Section 3.8. Finally, we draw our conclusions in Section 3.10.

3.2 Related Work

The problem we consider lies at the intersection of several areas for which there is a vast amount
of existing literature. In what follows, we discuss contributions that most closely relate to the topics
of this work.

Opinion diffusion and consensus. A substantial line of research has been devoted to the study of
opinion dynamics, mostly motivated by phenomena that arise from social sciences, to physics and
biology. Some recent contributions analyzed the spread of opinion formation in social influence
[Out and N. Zehmakan, 2021, Zehmakan, 2021]. For a more detailed survey on opinion dynamics
in multi-agent systems, we refer the reader to [Coates et al., 2018, Becchetti et al., 2020a].

In this chapter, we study the non-linear majority rule which originates from the study of agree-
ment phenomena in spin systems [Krapivsky and Redner, 2003]. It has lately received renewed
attention, mostly around the investigation of the time and conditions that cause agents to reach
consensus.

Consensus and biased majority. Some forms of bias have been considered in the literature.
In [Mukhopadhyay et al., 2020], each agent updates each of its opinions at points of different
independent Poisson point processes, which introduces a bias towards the opinion with the lowest
firing rate frequency. The works closest to ours are [Anagnostopoulos et al., 2020, Cruciani et al.,
2021].

In [Anagnostopoulos et al., 2020], the speed of convergence under the majority rule is shown
to be affected by the underlying topology, namely, is superpolynomial for dense networks. The
synchronous setting has been considered in [Cruciani et al., 2021] with qualitatively consistent
findings, albeit under a different model where agents sample k neighbors uniformly at random
with replacement and update their state to the most frequent state among those in the sample. Yet,
these results only apply to very dense networks with minimum degree ω(n).



42 CHAPITRE 3 — Biased Opinion Dynamics

We show that the expected convergence time can be exponential even in sparse networks, sug-
gesting a more complicated dependence of the convergence time on the degree distribution. Our
overall approach is different since it characterizes the majority opinion formation in terms of mul-
tiple domination in graphs, providing an interplay between bias, consensus and network structure.

Majority and graph domination. Network structure plays a crucial rule in opinion diffusion un-
der several models [Donnelly and Welsh, 1983,Hassin and Peleg, 1999,Cooper et al., 2013,Morris,
2000]. [Auletta et al., 2015] showed that initial majority can be subverted for all but some topo-
logies, including cliques and quasi-cliques. Moreover, while there exist always an initial opinion
distribution, such that the final majority will reflect the initial one, regardless of the topology, com-
puting an initial opinion configuration that will subvert an initial majority is topology-dependent
and NP-hard in general [Auletta et al., 2018].

Dominating sets can be useful to reach all the nodes efficiently in the network. The books
[Haynes et al., 2013, Haynes, 2017] supply a comprehensive introduction to theoretical and ap-
plied facets of domination in graphs.

3.3 Majority Dynamics

In this section, we define the terminology used throughout the chapter. Then, we describe the
Majority Dynamics.

Notation and Preliminaries. We model the multi-agent network by an undirected graph G =
(V,E) with |V | = n nodes, each node v ∈ V representing an agent. The system evolves in
discrete time steps and, at any given time t ∈ N, each node v holds an opinion x(t)

v ∈ {0, 1} (see
Definition 3.3.1). We denote byXt = (x(t)

1 , . . . , x
(t)
n ) the corresponding state of the system at time

t. For each v ∈ V , we denote the open neighborhood of v with Γ(v) := {u ∈ V : {u, v} ∈ E}
and the degree of v with d(v) := |Γ(v)|. For any X ⊆ V , let G[X] denote the subgraph of G
induced by X . Finally, for a family of events {En}n∈N we say that En occurs with high probability
(w.h.p, for short) if a constant k > 0 exists such that P(En) = 1−O(n−k), for every sufficiently
large n.

Definition 3.3.1. For every t > 0, a node v is said to be active if x(t)
v is 1. Otherwise, it is idle.

Moreover, we say that a subset S of V is active if every node in S is active.

M-Dynamics. We study the random process {Xt}t∈N defined on G as follows: starting from the
initial state X0 = (0, . . . , 0), in each round t, every node v ∈ At updates its value according to
the non-linear rule:

x(t)
v =

1 with probability α,
MG(v,Xt−1) with probability 1− α,

where At ⊆ V is the set of nodes that update their opinion, α ∈ (0, 1] (modeling the bias) is the
probability to transition to the superior opinion, and MG(v,Xt−1) is the value held in configura-
tion Xt−1 by the majority of the neighbors of node v in G:

MG(v,Xt−1) =

1 if
∑

w∈Γ(v) x
(t−1)
w > Γ(v)

2 ,

0 if
∑

w∈Γ(v) x
(t−1)
w < Γ(v)

2 ,
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and ties are broken uniformly at random, that is, if
∑

w∈Γ(v) x
(t−1)
w = Γ(v)

2 then MG(v,Xt−1) = 0
or 1 with probability 1/2.

Stabilization. The M-Dynamics is a discrete-time Markov chain with a very large state space of
size 2n and has 1 = (1, . . . , 1)⊤ as the only absorbing state. This implies that, since the graphs are
finite, such an absorbing state will be reached in finite time with probability 1. We use τα(G) to
denote the stabilization time, which is the number of rounds for the process to reach the absorbing
state 1:

τα(G) = inf
{
t ∈ N,∀v ∈ V : x(t)

v = 1
}
.

Models. We distinguish between two main models of the M-dynamics, which differ according to
the choice of At:

- Asynchronous (Async). In each round t, some agent vt, chosen randomly, updates its opinion,
At = {vt}.

- Synchronous (Sync). In each round t, all agents update their opinion concurrently, that is,
At = V .

Our results and proof techniques are similar between the Async and Sync models. Therefore, for
the sake of presentation, we will focus in this chapter on the Async setting and defer discussions
of the Sync model to Section 3.9.

3.4 Decreasing Structures and k-domination

In this section, we relate the notion of domination to the M-Dynamics and introduce the concept
of decreasing sets.

3.4.1 Multiple Domination

We present a generalized notion of domination in graphs.

Definition 3.4.1. (k-domination) Let S ⊆ V and k ∈ {1, . . . , n}.
- We say that a vertex v is k-dominated by S (equivalently, S k-dominates v) if |Γ(v)∩S| ≥ k.

We denote by Dk(S) the set of all nodes k-dominated by S.

- Let U ⊆ V . U is said to be k-dominated by S if S k-dominates all vertices u ∈ U , that is,
if U ⊆ Dk(S).

When k = 1, a 1-dominating set S of smallest size such that D1(S) = n is called a minimum
dominating set and its size is known as the domination number, denoted by γ(n). The problem
of determining γ(n) is one of the core NP-complete optimization problems in graph theory and
remainsNP-complete even for planar graphs of maximum degree 3 [Garey and Johnson, 1979a].
In the following, we focus on the case of majority domination.

Definition 3.4.2. (M -domination) Let S ⊆ V . We say that a vertex v is M -dominated by S

(equivalently, S M -dominates v) if v is k-dominated by S with k =
⌊

N (v)
2

⌋
+ 1. We denote by

DM (S) the set of all nodes M -dominated by S.
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3.4.2 Complexity analysis of M -domination

The decision problem of finding a set S of size s such that |DM (S)| = l for arbitrary non-
negative integers s, l is NP-hard. In order to prove this result, we first introduce the following
auxiliary function.

Definition 3.4.3. Let k ∈ {1, ..., n}. For every s in {1, ..., n}, we define the function
ϕk : {1, ..., n} → {1, ..., n} as

ϕk(s) = max
U⊆V
{|U |, ∃S ⊆ V, |S| = s, S k-dominates U},

= max
S⊆V,|S|=s

|Dk(S)|.

Moreover, we denote ϕk by ϕM when k =
⌊

N (v)
2

⌋
+ 1.

It corresponds to the size of the largest set k-dominated by a set of size s among the
(n

s

)
candi-

dates. Note that ϕk(s) = 0 for every s < k and ϕk(n) = n.

We characterize the complexity of the M -dominating set problem which decision problem is as
follows.

Instance : A graph G, non-negative integers s, l.

Question : Is there a set S of size s such that |DM (S)| = l?

Theorem 3.4.1. The M -dominating set problem is NP-hard.

Proof.
We consider the following decision problem corresponding to the standard dominating set pro-
blem:

Instance : A graph G and a non-negative integer s.

Question : Is there a dominating set of size at most s?
Our aim is to exhibit a polynomial-time reduction from the dominating set problem (denoted by
DS), which is known beNP-complete (see [Garey and Johnson, 1979a]), to theM -dominating
set problem (denoted byMD). We note in particular, that DS isNP-complete in cubic graphs
(see [Alimonti and Kann, 2000]). Given a cubic graph G = (V,E), we build an auxiliary graph
H = (VH , EH) such that VH = V ∪ U and EH = E ∪ EU whereU = {si, i ∈ [2]},

EU = {u.v,∀u ∈ U,∀v ∈ V }.

Let γ(G) be the size of the minimum dominating set of G. Observe thatϕ(s) = n if γ(G) ≤ s− 2,
ϕ(s) < n otherwise.

Thus, checking the existence of a set of size s such that ϕM (s) = n in H is equivalent to
checking the existence of a dominating set of size at most s in G. We conclude that MD ≤P

DS, and thus the M -dominating set problem is NP-hard.
□

Note that for ∆-regular graphs where ∆ = 2k − 1, the notions of M -domination and k-
domination become identical.
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3.4.3 Stable and Decreasing Structures

In order to analyze the stabilization time of the M-dynamics, we first introduce the notions of
stability and decrease.

Definition 3.4.4. Let S ⊆ V . S is stable if S ⊆ DM (S).

Definition 3.4.5. Let S ⊆ V . S is decreasing if |DM (S)| < |S|.

Once stable structures become active under the M-dynamics at some round t, they remain active
forever (i.e., for all rounds t′ ≥ t). Hence, we introduce the following definition.

Definition 3.4.6. A subset S of V is stabilized if S is active and stable. Its induced subgraphG[S]
is also said to be stabilized.

Note that, informally, a simple condition for polynomial time stabilization is the existence of a
covering of G by small stable structures as we illustrate in Section 3.6 for cubic graphs.

Large bias. For large values of α, [Anagnostopoulos et al., 2020] shows that the stabilization time
is polynomial for dense networks, but leaves as open the case for sparse networks. In the following
theorem, whose proof is omitted for the sake of space, we show that the stabilization time is also
fast for ∆-regular graphs whenever the bias α is greater than some threshold value that depends
on the degree.

Theorem 3.4.2. Let G be a ∆-random regular graph on n nodes. Whenever α ≥ k−1
∆ where

k = ⌈∆+1
2 ⌉, then the expected stabilization time for the Async M-Dynamics is polynomial.

3.5 Fast stabilization for large α in random regular graphs

For large values of α, [Anagnostopoulos et al., 2020] shows that the stabilization time is po-
lynomial for dense networks but leaves as open the case for sparse networks. In this section, we
show that the stabilization time is also fast for ∆-regular (with ∆ = 2k − 1 and ∆ = 2k) graphs
whenever α ≥ k−1

∆ .

3.5.1 Odd degree case

Theorem 3.5.1. LetG be a random regular graph with odd degree ∆ = 2k−1 of size n. Whenever
α ≥ k−1

∆ , the expected stabilization time for the Async M-Dynamics is polynomial.

Proof.

Let St be a random variable indicating the set of active nodes at round t and let st = |St|.
Observe that the number of active nodes at time t increases by one with probability α if a node
outside St is selected and with probability 1−α if a node inDM (St)\St is selected. Therefore,
we get

E[st+1 | St] = st + 1
n

(
α(|V | − st) + (1− α)(|DM (St)| − st)

)
, (3.1)

Next, we prove a lower bound for DM (St) that simply relies on the fact that S is incident to
∆|S| edges. The argument is that we have to pack those ∆|S| edges on the vertices: vertices
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in DM (S) can receive up to ∆ edges while in contrast vertices in V \DM (S) receive at most
k − 1 edges since they are not M -dominated. It follows that

∆|DM (St)|+ (k − 1)(n− |DM (St)|) ≥ ∆st.

Since ∆ = 2k − 1, we get

|DM (St)| ≥
∆st − (k − 1)n

k
.

Using the bound in (3.1), we obtain

E[st+1 | St] ≥ st + 1
n

(αn− αst

+ (1− α)
(

∆st − (k − 1)n
k

− st

) ,
When regrouping terms, we get

E[st+1 | St] ≥ st + 1
n

(
n

k
(kα− (1− α)(k − 1))

− st

k
(kα− (1− α)∆ + (1− α)k)

)
,

E[st+1 | St] ≥ st + 1
n

(
n

k
(2kα− k − α+ 1)

− st

k
(2kα− k − α+ 1)

)
E[st+1 | St] ≥ st + 1

n

(
n− st

k

)
((2k − 1)α− (k − 1))

E[st+1 | St] ≥ st + 1
n

(
n− st

k

)
(∆α− (k − 1)).

Now, since n− st is always positive, we find out that, whenever ∆α− (k− 1) > 0, the cardinal
of St grows in expectation. Moreover, the drift (E[st+1 | St]− st) decreases with st, but always
stays larger than C

n , with C = ∆α−(k−1)
k .

Let Zt be the random variable defined as Zt = st+1− st ∈ {−1, 0, 1}. Let τ be the stabilization
time and T > 0. We have that

P [τ ≥ T ] = P [
T∑

t=1
Zt < n].

Since st < n when t < T , we know that

E[
T∑

t=1
Zt] ≥

TC

n
.

As −1 ≤ Zt ≤ 1, we can use Hoeffding concentration inequality (see Lemma 2.3.3) to bound
the probability to observe a deviation from the mean. We get

P [
T∑

t=1
Zt < n] = P [E[

T∑
t=1

Zt]−
T∑

t=1
Zt >

TC

n
− n],

≤ exp

−2(T C−n2

n )2

4T

 .
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We now set T such that 2( T C−n2
n

)2

4T = 1
n , that is T =

(
n
√

2C+ 1
n

+
√

n
√

2C

)2

, giving

P [τ ≥ T ] ≤ exp
(
− 1
n

)
.

Now, let us prove that the expected stabilization time is polynomial. We have that

E[τ ] ≤
T∑

t=1
iP [τ = i] +

∞∑
t=T

iP [τ ≥ i].

A classic result is that
∑∞

i=0 i exp(−i) = 1
e(1−1/e) . Thus,

E[τ ] ≤ T + 1
e(1− 1/e) = O(n2),

giving the desired result.

□

3.5.2 Even degree case

We show here that the stabilization time is also fast for ∆-regular graphs of even degree ∆ = 2k
when α ≥ k−1

∆ .
We note T (St) the set of nodes with have k neighbors in St at time t.

Theorem 3.5.2. Let G be a random regular graph with even degree ∆ = 2k of size n. Whenever
α ≥ k−1

∆ , the expected stabilization time for the Async M-Dynamics is polynomial.

Proof.

Let St be a random variable indicating the set of active nodes at round t and let st = |St|.
Observe that the number of active nodes at time t increases by one with probability α if a node
outside St is selected and with probability 1− α if a node in DM (St) \ St is selected.

— +1 if the selected node is in DM (St) \ St

— - 1 if the selected node is in St \ (DM (St) ∪ T (St))
— 0 if DM (St) ∩ St

— -1 or 0 with proba 1/2 or 0 if T (St) ∩ St

— +1 or 0 with proba 1/2 if in T (St) \ St

Therefore, we get

E[st+1 | St] = st + 1
n

(
α(|V | − st)

+ (1− α)(|DM (St)| − st + 1
2T (st))

)
,

(3.2)

Next, we prove a lower bound for DM (St) that simply relies on the fact that S is incident to
∆|S| edges. The argument is that we have to pack those ∆|S| edges on the vertices: vertices
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in DM (S) can receive up to ∆ edges while in contrast vertices in V \DM (S) receive at most
k − 1 edges since they are not M -dominated. It follows that

∆|DM (St)|+ kT (St) + (k − 1)(n− |DM (St)| − |T (St)|) ≥ ∆st.

Since ∆ = 2k, we get

|DM (St)| ≥
2kst − (k − 1)n− |T (St)|

k + 1 .

Using the bound in (3.2), we obtain

E[st+1 | St] = st + 1
n

(
α(|V | − st)

+ (1− α)(2kst − (k − 1)n− |T (St)|
k + 1 − st + 1

2T (st))
)
,

When regrouping terms, we get

E[st+1 | St] ≥ st + 1
n(k + 1)

(
(n− st)(α∆− k + 1)

+1− α
2 (k − 1)T (St)

)
.

We observe that the worst case is when we do not have vertices with ties (T (St) = 0). We thus
obtain the bound

E[st+1 | St]− st ≥
(n− st)(α∆− k + 1)

n(k + 1) .

Now, since n− st is always positive, we find out that, whenever ∆α− (k− 1) > 0, the cardinal
of St grows in expectation. Moreover, the drift (E[st+1 | St]− st) decreases with st, but always
stays larger than C

n , with C = ∆α−(k−1)
k+1 . Note that the condition for α is the same as in the odd

case and that the constant is almost the same. The end of the proof thus is similar to the one for
the odd case.

□

3.6 Fast Stabilization for Cubic Graphs

In this section, we show that cubic graphs stabilize in expected polynomial time.

Theorem 3.6.1. Let G be a cubic graph of size n. The expected absorption time for the Async
M-Dynamics in G is

E
[
τα(G)

]
= O(n3−O(log α) log2 n).

The result is derived by observing that cubic graphs have a small girth (see Lemma 3.6.2) and
by making use of properties that cycles are stable structures and that a path linking two stable
substructures is itself stable (see Lemma 3.6.3). Indeed, cubic graphs are covered by logarithmic
stable structures which ensures expected polynomial time stabilization. Note that Theorem 3.6.1
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implies that E
[
τα(G)

]
= O(nf(α)) where f is an increasing function of the bias α. There exist

families of graphs with finite stable structures such as planar cubic graphs for which the expected
stabilization time is at most g(α)nc (for some function g sensitive to the bias) where c does not
depend on α.

Lemma 3.6.2. [Bollobás, 2004]
Let G be a ∆-regular graph on n nodes with ∆ ≥ 3. Let g(G) denote the girth of G. Then

g(G) ≤ 2 log∆−1 n+ 1.

Lemma 3.6.3. Let G be a cubic graph on n nodes. Suppose that G has a subgraph S which is
either a cycle of size l or a path of length l between two stabilized structures. Let τ̄S denote the
number of rounds for S to become active. Then, we have

E [τ̄S ] = O
(

1
αl
n logn

)
.

We note that Lemma 3.6.3 implies that E [τ̄S ] is still O(n1+r logn) when α = Θ( 1
nr ) for any

r > 0, hence polynomial as long as r is constant.
We prove the first lemma about the substructure of a cycle.

Lemma 3.6.4. Let G be a cubic graph of order n. Suppose that G has a cycle C of size c and let
τ̄C denote the number of rounds for C to become active. Then, we have

E[τ̄C ] = O
(

1
αc
n logn

)
.

Proof.

Let C be a cycle in G and let T0 denote the number of time steps such that all nodes in G
update their opinion at least once. We note that T0 = O(n logn), w.h.p., by coupon collector
argument. Furthermore, we look at the state of the system within the time intervals {Ii}i≥0
where I0 = [0, T0] and Ii =]iT0, (i + 1)T0] for i ≥ 1. We refer to each time interval Ii by the
i-th master round.
Let tC denote the number of master rounds needed forC to become active and let F be a number
indicating whether C succeeded in becoming active during the first master round, that is F = 1
if τ̄C ∈ I0 and 0 otherwise. We note that: τ̄C ≤ T0tC .
We denote by pα = P (τ̄C ∈ I0) the probability for C to become active after at most T0 rounds.
Observe that since E[tC |F = 1] = 1 and E[tC |F = 0] = 1 + E[tC ], we have:

E[tC |F ] =

1 with probability pα,

1 + E[tC ] with probability 1− pα.

Therefore, by the law of iterated expectation, we have

E[tC ] = E[E[tC |F ]] = pα + (1− pα)(1 + E[tC ]).
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Solving this equation, we get

E[τ̄C ] ≤ E[T0]E[tC ] ≤ E[T0]
pα

. (3.3)

Moreover, every time a node updates its opinion the node chooses opinion 1 with probabi-
lity at least α. Therefore: pα ≥ α|C|. and by Equation (3.3), the cycle C becomes active in
O( 1

α|c|n logn) rounds, in expectation.

□

We have a similar lemma for another substructure.

Lemma 3.6.5. Let G be a cubic graph of order n. Suppose thatG has a path P of length l between
two stabilized structures and let τ̄P denote the number of rounds for P to become active. Then, we
have

E[τ̄P ] = O
(

1
αl
n logn

)
.

Proof.

The proof is similar to the one of Lemma 3.6.4. The time for the path to become active is
O( 1

αln logn). Then, the path stays active as every node is connected to 2 active nodes.

□

We now prove the main theorem.

Theorem 3.6.1. Let G be a cubic graph of size n. The expected absorption time for the Async
M-Dynamics in G is

E
[
τα(G)

]
= O(n3−O(log α) log2 n).

Proof.

At the initial step of the process, all nodes of the graph are idle. Since G is cubic, by
Lemma 3.6.2, there exists a cycle C of size c at most 2 log2 n + 1 in G. Therefore, by
Lemma 3.6.4, C becomes active after E[τ̄C ] time steps where

E[τ̄C ] = O
(

1
αO(log n)n logn

)
= O

(
1
α
n1−O(log α) logn

)
.

Furthermore, since δ(G[C]) = 2 ≥ ⌈3
2⌉, C is stable. Hence, after E[τ̄C ] rounds, nodes in G are

either stabilized (namely, those in C) or idle. Note that some nodes may be active, but the worst
case is to consider that they are none of them.
Let us consider an idle node v in at a time step t ≥ E[τ̄C ]. Let Eidle denote the expected number
of rounds for v to become active inG given thatC is stabilized. Conducting a breadth first search
(BFS) of G starting from v produces a BFS tree formed by three subtrees S1, S2, S3 rooted at
the three children of v. Moreover, let r1 and r2 be two stabilized nodes in C.

- If r1 and r2 both belong to different subtrees, then, there exists a path between r1 and r2
with at least an idle node (the node v) of length O(log3 n).
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- Otherwise, r1 and r2 are all located in a single subtree, say S1 without loss of generality.
Consider another subtree, say S2. When nodes at distance log3 n from its root have been
explored, n nodes have been visited, thus, including some of another subtree. This shows
the existence of a cycle of length O(log3 n) with idle vertices (at least the ones in S2).

Therefore, every idle node v belongs to either a path of lengthO(log3 n) between two stabilized
nodes or to a cycle of length O(log3 n). By Lemma 3.6.4 and Lemma 3.6.5, we thus obtain

Eidle = O
(

1
αO(log n)n logn

)
.

Note that there are at most n− c idles nodes. Hence, we get

E[τ ] ≤ E[τ̄C ] + (n− c)Eidle T0,

where T0 denote the number of time steps such that all nodes in G update their opinion at least
once. We note that T0 = O(n logn), w.h.p., by coupon collector argument. We therefore get

E[τ ] = O
(

1
αO(log n)n

3 log2 n

)
= O(n3−O(log α) log2 n).

□

3.7 Slow Stabilization for Random Regular Bipartite Graphs With
Odd Degree

In this section, we show that there exist graphs (namely, random ∆-regular bipartite graphs with
odd degree † ∆ ≥ 5) for which every linear substructure (of size smaller than Cn, with C a
non-negative constant) is decreasing for small values of α. This leads to an exponential expected
stabilization time.

3.7.1 Model Discussion

We consider random ∆-regular balanced bipartite graphs G of the form G = (A ∪ B,E) with
|A| = |B| and E ⊂ (A,B). We first study the case of an odd degree ∆ = 2k − 1(k ≥ 3) for
which there cannot be ties under the majority update rule. Let |A| = n and note that |E| = ∆n.
The random regular graph model ‡ that we use is analogous to the configuration model proposed
by [Bollobás, 1980].

We shall prove that there exists an α0 > 0 such that for every ∆ ≥ 5 the expected stabilization
time is exponential whenever α ≤ α0. This phenomena is mainly due to the random structure
which fosters the existence of small decreasing structures.

Construction. The random ∆-regular § bipartite graph is built as follows: each edge will be made
of two ends (or half edges), one attached to a node in A and the other to a node in B. Then,

†. Similar results hold when the degree is even and G is non bipartite. See brief discussion in Section 3.8.
‡. The bipartite version was introduced by [Margulis, 1973], [Pippenger, 1977], and [Valiant, 1975] to prove that

expanders exist.
§. Note that since G is regular and ∆ is odd, it implies that the size n of the network is even.
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edges are created by associating to each of the ∆n half-edges adjacent to A one of the ∆n half-
edges adjacent to B in a one-to-one manner. We note that the injective mapping that we use
can be identified with a random permutation of S∆n. To this end, we first identify both A,B
with {1, . . . , n}. Then, since each node is adjacent to ∆ edges, by Hall’s theorem, we can select
randomly and independently ∆ random elements π1, . . . π∆ from Sn and build G as the union of
the ∆ random matchings formed by the edges

{
(a, πi(a)), a ∈ A, πi(a) ∈ B, i ∈ {1, . . . , n}

}
.

3.7.2 Existence of Decreasing Sets

In the following, we prove (see Proposition 3.7.3) that there exist ∆-regular graphs for which
all sufficiently small linear sets S M -dominate a strictly smaller set (with an actual linear gap).

To obtain this result, we employ Lemma 3.7.1 corresponding to the case for which sets S are
contained in only one side of the bipartition of G (without loss of generality, we assume that
S ⊆ A). To make the proof more comprehensive, we introduce first some auxiliary functions.

Definition 3.7.1. (Decrease functions For (σ, τ) ∈ [0, 1]2, we let N(σ, τ) be the expected number
of pairs of subsets (S, T ) with S ⊆ A, T ⊆ B of respective sizes σn, τn such that S k-dominates
T .

We define F̂ : (0, 1]2 → R as

F̂ (σ, τ) = log2(N(σn, τn))
n

.

Moreover, for every β in (0, 1), we define Ĝβ : (0, 1)→ R as

Ĝβ(σ) = F̂ (σ, βσ).

and we refer to β by the decrease intensity.

Observe that if Ĝβ(σ) < 0 then N(σ, βσ) < 1, which implies that all subsets S of size σn are
decreasing (with a gap β). Therefore, we refer to F̂ and Ĝ as decrease functions as they define
regions of existence of decrease, namely when Ĝβ is negative.

Lemma 3.7.1. Let G = (A∪B,E) be a random ∆-regular bipartite graph with 2n nodes. Then,
there exist 1

k−1 < β < 1 and γ∆(β) > 0 such that for any 0 < λ < γ∆(β) we have

∀S ⊂ A, λn ≤ |S| ≤ γ∆(β)n : |DM (S)| ≤ β|S|.

Proof.

Let N(s, t) be the expected number of pairs of subsets S ⊂ A, T ⊆ B of respective sizes s, t
such that S k-dominates T . Since we are studying sets of linear sizes we let s = σn and t = τn
with σ, τ ∈ (0, 1]. We first count the configurations that fulfill the k-domination constraints in
order to get an upperbound on N(s, t):

Claim 3.7.2. It holds that

N(σn, τn) ≤
(
n

σn

)(
n

τn

)(∆σn
kτn

)(∆n
kτn

) (∆
k

)τn

.
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Proof.
Observe that

N(s, t) =
(
n

s

)(
n

t

)
Pst, (3.4)

where Pst is the probability that S k-dominates T .
We start by counting such configurations. For any vertex t0 ∈ T , we select which of its ad-
jacent half-edges are used to dominate it. There are

(∆
k

)
ways of selecting these k half-edges

among the ∆ half-edges adjacent to t0. Since we do it for each node in T , this introduces a
factor of

(∆
k

)t
. Remark too, that if t0 is dominated by more than k vertices there are several

choices for the k edges, so such configurations are counted several times and we do ove-
restimate Pst. Then these selected kt half edges used to dominated T are constrained to be
matched with some of the ∆s half-edges incident to S. The number of possibilities to select
their other is henceforth

Πi∈[0,kt−1](∆s− i) = (∆s)!
(∆s− kt)! .

To complete the process we must match the remaining ∆n− kt half-edges on both sides. To
this end, we use a permutation of {1, . . . ,∆n−kt}. Again note that this step may increase the
domination since new extra edges may be created between S and T . Since there are (∆n−kt)!
such permutations, the final number of configurations is lesser than(

∆
k

)t (∆s)!
(∆s− kt)! (∆n− kt)!

And as there are (∆n)! matchings between the two sets it follows that

Pst ≤
1

(∆n)!

(
∆
k

)t (∆s)!
(∆s− kt)! (∆n− kt)!

Reorganizing, we get

Pst ≤
(∆n− kt)!(kt)!

(∆n)!
(∆s)!

(∆s− kt)!(kt)!

(
∆
k

)t

=
(∆s

kt

)(∆n
kt

) × (∆
k

)t

.

Thus, the thesis follows by Equation (3.4).
□

Using Stirling’s approximation, we get
( n

pn

)
≤ 2nH(p) for every 1

n ≤ p ≤ 1
2 . Hence, by

Claim 3.7.2, we obtain the following property which provides upperbounds on the decrease
functions (see Definition 3.7.1).

Property 1. Let σ, τ be positive reals in [ 1
n ,

1
2 ]. We have

F̂ (σ, τ) ≤ F (σ, τ),

where

F (σ, τ) = H(σ) +H(τ) +H

(
kτ

∆σ

)
∆σ −H

(
kτ

∆

)
∆ + τ log2

(
∆
k

)
,
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and H is the binary entropy function ¶. Moreover, let

Gβ(σ) = F (σ, βσ).

We want to show that there exist σ and τ such that F̂ (σ, τ) < 0. This implies that N(σn, τn) <
1 and therefore, that there exist random regular graphs with no subsets S of size σn that k-
dominate a subset T of size τn.
Note that if there exists τ ′ such that τ ′ ≤ τ and N(σn, τ ′n) < 1 then N(σn, τn) < 1. There-
fore, it is sufficient to let τ = βσ for a positive real β ∈ (0, 1) and prove that Ĝβ(σ) < 0, or
alternatively, by Definition 3.7.1 and Property 1 that Gβ(σ) < 0. We have

Gβ(σ) = H(σ) +H(βσ)−H
(
kβσ

∆

)
∆ +

H (
kβ

∆

)
∆ + β log2

(
∆
k

)σ.
Observe that for every 0 ≤ x ≤ 1

2 , we have

−x log2(x) ≤ H(x) ≤ −x log2(x)− x

2 .

Therefore

Gβ(σ) ≤ −σ log2(σ)− βσ log2(βσ) + kβσ log2

(
kβσ

∆

)

+ σ

2 (1 + β) +

H (
kβ

∆

)
∆ + β log2

(
∆
k

)σ.
That is

Gβ(σ)
σ

≤
(
kβ − (1 + β)

)
log2(σ) + Cβ(k,∆), (3.5)

where Cβ(k,∆) = H
(

kβ
∆

)
∆ + β log2

(∆
k

)
− β log2(β) + kβ log2(kβ

∆ ) + (1+β)
2 is a constant.

Since log2(σ) diverges to −∞ when σ → 0, then Gβ(σ)/σ < 0 implies that kβ− (1 +β) > 0,
that is β > 1

k−1 . Furthermore, by setting

σ∆(β) = log 2
β(k − 1)− 1e

−Cβ(k,∆) > 0,

then for every 0 < σ < σ∆(β), we have Gβ(σ)/σ < 0. Hence, there exists γ∆(β) ≥ σ∆(β)
such that all linear sets |S| of size σn with 0 < σ < γ∆(β) satisfy |DM (S)| ≤ β|S| with
β ∈ ( 1

k−1 , 1) and the thesis follows.

□

Existence of decrease. Let us consider regions defined byRβ
∆ = (λ, γ∆(β)] where λ > 0 and

γ∆(β) = max{σ ∈ (0, 1], Gβ(σ) < 0}.

By Lemma 3.7.1, all linear sets S of size σn with σ ∈ Rβ
∆ are decreasing (with a gap of β)

and will define a regime where the process is slow, leading to consensus on the superior opinion
taking place after an exponential number of rounds. By plotting the variation ofGβ(σ) with σ (see
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Figure 3.1 – Existence of regionsRβ
∆ for β = 0.99 in which all linear sets S of size σn satisfy

|DM (S)| ≤ β|S| (see Property 1).

Property 3.7.3), in Figure 3.1, we illustrate the regionsR0.99
∆ for different values of ∆. For ∆ = 5,

a red vertical line indicates the value of γ5(β) ∼ 0.043. Furthermore, we note that the highest is
the degree ∆, the largest is the number |Rβ

∆| of linear sets which are all decreasing in the network.
We now state the general case ∥ for which sets S can be in A ∪B and not only in A.

Proposition 3.7.3. Let G = (A ∪ B,E) be a random ∆-regular bipartite graph with n nodes.
Then, there exist 1

k−1 < β+ < 1 and γ∆(β+) > 0 such that for any 0 < λ < γ∆(β+) we have

∀S ⊂ A ∪B, λn ≤ |S| ≤ γ∆(β+)n : |DM (S)| ≤ β+|S|.

Proof.

Let SA = S ∩ A,SB = S ∩ B, then S = SA ∪ SB and |S| = |SA| + |SB|. Similarly, let
|DM (S)| = |DM (SA)| ∪ |DM (SB)| and |DM (S)| = |DM (SA)|+ |DM (SB)|.
Assume that |S| = σn with 0 < σ ≤ 1 and let r be a positive integer.

— If both |SA|, |SB| ≥ σn/r, we can apply Lemma 3.7.1 twice, giving |DM (SA)| ≤ β|SA|
and |DM (SB)| ≤ β|SB|. We get the result |DM (S)| ≤ β|S|.

— If one side is small, assume without loss of generality that |SA| ≤ σn/r. Lemma 3.7.1
applies to SB and we have |DM (SB)| ≤ β|SB|. For SA, as the graph is ∆-regular, a set
of size s cannot k-dominate a set of size larger than ∆s/k. Thus, |DM (SA)| ≤ ∆

k |SA| ≤
∆
k

σn
r and we get DM (S) ≤ β|SB| + ∆

k
σn
r ≤ (β + ∆

kr )|S|. We set β+ = β + ∆
kr . By

picking r such that r > ∆
k(1−β) , we have β+ < 1 and the thesis follows.

□

3.7.3 Exponential Stabilization

Theorem 3.7.4. Let G be a random regular graph with odd degree ∆ of size n. There exists
α∆ > 0 such that for every α < α∆,E

[
τα(G)]

]
is exponential for the Async M-Dynamics.

¶. H(x) = −(x log2(x) + (1 − x) log2(1 − x)).
∥. In the case of ∆-regular graphs (∆ = 2k − 1), a k-domination corresponds to an M -domination. However,

Proposition 3.7.3 can be made general without any relationship presumed with the degree ∆.
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Figure 3.2 – γ∆ tends to zero when β tends to 1
k−1 . Moreover, γ∆ is an increasing function of ∆.

Proof.

Let St be a random variable indicating the set of active nodes at round t and let st = |St|. We
first show that st has a negative drift inside a linear time interval. We then use this fact to prove
that the expected stabilization time is exponential.

Negative drift. Observe that the number of active nodes at time t increases by one with proba-
bility α if a node outside St is selected and with probability 1 − α if a node in DM (St) \ St is
selected. Therefore, we get

E
[
st+1 | St

]
= st + 1

n

(
α(|V | − st) + (1− α)(|DM (St)| − st)

)

E
[
st+1 | St

]
− st ≤ α+ 1

n
(1− α)(|DM (St)| − st) (3.6)

By Proposition 3.7.3, there exist 1
k−1 < β+ < 1 and γ∆(β+) > 0 such that for any 0 < λ <

γ∆(β+), each subset S of V with λn ≤ |S| ≤ γ∆(β+)n, satisfies |DM (S)| ≤ β+|S|. We set
λ = γ∆(β+)

r n where r is a positive integer.

It follows that if st ∈ [γ∆(β+)
r n, γ∆(β+)n], then since β+ − 1 < 0 we get from Inequality (3.6)

that

E
[
st+1|St

]
− st ≤ α+ (β+ − 1)γ∆(β+)

r

Therefore, by picking any α < (1 − β+)γ∆(β+)
r , we get that the sequence {st}t≥0 has a fixed

negative drift δ.
E
[
st+1 | St

]
− st ≤ δ < 0, (3.7)

Exponential stabilization. We study the process when it is in the critical region for which
the drift is negative. The following property is derived by noting that the time to exit a linear
interval by a variant of a biased random walk on {st}t≥0 with a fixed negative bias is exponential
in expectation.



3.7 – 3.7.3 Exponential Stabilization 57

Property 2. Let β+ ∈ [ 1
k−1 , 1[. Then E

[
τα(G)

]
is exponential when α < (1− β+)γ∆(β+).

Proof.
Let T > 0. We introduce two random variables T1 = min{t < T, st = ⌈γ∆(β+)n⌉} and
T0 = max{t ≤ T1, st = ⌈γ∆(β+)

2 n⌉}. As the number of active nodes can increase by at most

one per time step, i.e., |St| can vary by the values in {1,−1}, then t̄ ≥ γ∆(β+)
2 n. Therefore,

[T0, T1] has a size linear in n. In the following, the main idea is to complete the argument by
using concentration inequalities to show that due to the negative drift, traversing the interval
[γ∆(β+)

2 n, γ∆(β+)n] takes ∼ eΘ(n) time.
We want to bound the probability P [τα(G) < T ] for any time T . Note first that if the process
stabilizes before a time T , it means that there exist times t1 < T and t0 < t1 < T such that
T0 = t0 and T1 = t1. The reverse clearly is not true. So, summing on all possible values, we
get

P [τα(G) < T ] ≤
T∑

t1=0

t1∑
t0=0

P [T1 = t1 ∩ T0 = t0].

As P [T1 = t1∩T0 = t0] ≤ P [T1 = t1|T0 = t0], we are interested by bounding the right-hand
side term.
Let Xt be the random variable defined as Zt = st+1 − st ∈ {−1, 0, 1}. Note that

P [T1 = t1|T0 = t0] = P [
t1∑

t=t0
Zt = γ∆(β+)

2 n]

≤ P [
t1∑

t=t0
Zt ≥

γ∆(β+)
2 n].

Since between T0 and T1, st ∈ [γ∆(β+)
2 n, γ∆β

+n] then by Inequality 3.7, we have for every

α < (1− β+)γ∆(β+)
r that E[Zt] ≤ δ. Thus

E[
t1∑

t=t0
Zt] ≤ δt̄.

Remark that the sum deviates from its mean by γ∆(β+)
2 n − δt̄. Since −1 ≤ Zt ≤ 1, we can

use Hoeffding concentration inequality (see Lemma 2.3.3) to bound the probability to observe
such a deviation. We get

P [
t1∑

t=t0
Zt ≥

γ∆(β+)
2 n] ≤ exp

−2(γ∆(β+)
2 n− δt̄)2

4t̄

 .
The above function decreases with t̄ and since t̄ ≥ γ∆(β+)

2 n, we get

P [
t1∑

t=t0
Zt ≥

γ∆(β+)
2 n] ≤ exp

(
−(1− δ)2γ∆(β+)

4 n

)
.

It thus gives

P [τα(G) < T ] ≤ T 2 exp
(
−(1− δ)2γ∆(β+)

4 n

)
,

with λ = (1−δ)2γ∆(β+)
4 > 0. Hence, for every exponential growth T (n) ∼ eθn with θ < λ

2 ,
we have that P [τα(G) ≥ T (n)] = 1 with high probability, and the thesis follows.
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Figure 3.3 – Effect of the bias α on the stabilization time τα(G) in a random ∆-regular network made up
of 1000 agents.

□

Let αβ+ = (1 − β+)γ∆(β+). Note that Property 2 provides various bounds for the bias αβ+

depending on the decrease intensity β+. The limiting cases yielding αβ+ → 0 occur when
β+ → 1 or β+ → 1

k−1 (in such case γ∆(β+) → 0). In Figure 3.2, we observe that γ∆ is an
increasing function of ∆ and confirm that 1

k−1 is a limiting value for β as per Proposition 3.7.3.
We get the best bound for α by maximizing over β+. We obtain

Property 3. Let α∆ = max
1

k−1 <β+<1
(1 − β+)γ∆(β+). Then, E[τα(G)] is exponential for every

α < α∆.

□

3.8 Experiments and Outlook

In this section, we present and discuss experiments on the stabilization time and the existence
of decreasing structures.

Bias and stabilization. We first study the effect of the bias α on the stabilization time τα(G).
In Figure 3.3, we plot τα(G) in a random ∆-regular network of size n = 1000 as a function of
1
α . Each experiment over G is averaged over 10 iterations and terminated if τα(G) bypasses 1010

iterations (which requires a prohibitive computation time of 71 hours). When the bias is large (e.g.
α ≥ 0.15), stabilization occurs very quickly and bears no significant dependence of the degree.
The picture changes when the bias gets smaller where we observe a fast stabilization for ∆ = 3
(even for arbitrary small values of α) and a very clear explosion for ∆ ≥ 4. Moreover, the higher
the degree, the sooner the explosion occurs. We also see that on a network with only 1000 agents,
the convergence for α = 0.08 and ∆ = 4 takes at least 1010 iterations.

In Figure 3.4, we visualize the impact of the size n on stabilization in a random 5-regular
network. We note the presence of two regimes (values of α) RF and RS depicted respectively in
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Figure 3.4 – Slow-fast dichotomy behavior of the stabilization time τα(G) induced by α in random
5-regular networks of size n.

Figure 3.5 – Variation of α∆ with ∆ in a random
∆-regular bipartite graph.

Figure 3.6 – log τ/ logn is almost constant.
Stabilization time τα(G) induced by α in random

cubic networks of size n.

gray and red. Each experiment over G is averaged over 500 (resp. 5) iterations for every α in RF

(resp.RS).
The first regime RF corresponds to a large bias (α ≥ 0.13) for which we observe that the

network stabilizes in polynomial time (log τ/ logn is almost constant). We also conducted expe-
riments on large cubic networks with α small, confirming what we proved in Theorem 3.6.1, that
is E

[
τα(G)

]
≤ nf(α) (see Figure 3.6).

In the second regime RS , stabilization takes an exponential (note that τ is observed on a loga-
rithmic scale) number of rounds (log τ/ logn increases with n) and this occurs as soon as we start
from α ∼ 0.09.

Outlook. This chapter leaves a number of open questions. A first one concerns closing the gap
g∆ = αe−α∆ between the empirical and the theoretical values for the bias below which (expected)
exponential stabilization occurs due to the existence of decreasing structures. When ∆ = 5, the
best bound α∆ is attained with a decrease intensity of β ∼ 0.9 for which we get g5 ∼ 0.08903.
Note that for an arbitrary large degree ∆, we get α∆ ∼ 0.3 (see Figure 3.5). Furthermore, when
∆ ≥ 5, the evolution of the stabilization time during the intermediate regime (depicted in blue in
Figure 3.4) is not completely clear and might suggest an intermediate stabilization growth (i.e.,
superpolynomial and subexponential) or a sharp transition betweenRF andRS .
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We also point a rather surprising result: in the course of the proof of Proposition 3.7.3, we
showed that it is impossible for any sufficiently small linear set S to k-dominate more that |S|

k−1
nodes (note that this bound is tight), which implies that for some a0 > 0 depending only on α
and ∆, we get that min|S|≤a0nDk(S) ∼ |S|

k−1 . Thus, maximizing almost exactly Dk(S) is trivial
for small linear sets, but for larger sets, the question remains open. Unlike in the Erdős–Rényi
model, domination problems have not yet been solved in random regular graphs even if some
works [Duckworth and Wormald, 2006, Hoppen and Mansan, 2021]) have been done. We remark
that the lack of accurate results in this field somewhat preludes the gaps in our bounds since the
dynamics relate to some already complex domination based questions. Finally, we believe that the
techniques we have exposed can be used to prove many other results. For instance, we proved
similar results in the general case of random regular graphs and planar cubic graphs. While the
arguments are similar, the analysis is slightly more complicated to expose due to ties in the even
degree case and the fact that S ∩Dk(S) ̸= ∅ in the non bipartite case.

3.9 Synchronous model

We presented our results for the Asynchronous model, but they all also hold in the Synchronous
case. Moreover, the proofs are almost exactly identical, with only cosmetic changes. This is a
consequence of the following key observation. Let St be a random variable indicating the set of
active nodes at round t and let st = |St|. We have

E[st+1 | St]
Sync= α|V |+ (1− α)|DM (St)|

E[st+1 | St]
Async= st + 1

n

(
α(|V | − st) + (1− α)(|DM (St)| − st)

)
,

We observe that, since all the n nodes play simultaneously, the variation of st for the Sync
model is exactly n times the one for the Async model.

As an example, we prove that the result of Theorem 3.5.1 for Async, translates to an equivalent
result for Sync.

Theorem 3.9.1. LetG be a random regular graph with odd degree ∆ = 2k−1 of size n. Whenever
α ≥ k−1

∆ . . . , the expected stabilization time for the Sync M-Dynamics is polynomial.

Proof.

Let St be a random variable indicating the set of active nodes at round t and let st = |St|.
Observe that:

E[st+1 | St] = st + α(|V | − st) + (1− α)(|DM (St)| − st),
= α|V |+ (1− α)|DM (St)|. (3.8)

Recall the following lower bound for DM (St) which holds independently of the model

|DM (St)| ≥
∆st − (k − 1)n

k
.

Using the bound in (3.8), we obtain

E[st+1 | St] ≥
(α∆− k + 1)n+ (1− α)∆st

k
.
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We observe that , whenever ∆α−(k−1) > 0, the cardinal of St grows in expectation. Moreover,
we have

E[st+1 | St]− st ≥
(α∆− k + 1)n+ ((1− α)∆− k)st

k
,

≥ C(n− st),

where C = α∆−k+1
k .

Thus, the drift (E[st+1 | St] − st) decreases with st and always stays larger than C(n − st)
when t < τ .
Let Zt be the random variable defined as Zt = st+1− st ∈ {−1, 0, 1}. Let τ be the stabilization
time and T > 0. We have that

P [τ ≥ T ] = P [
T∑

t=1
Zt < n].

Since st < n when t < T , we know that

E[
T∑

t=1
Zt] ≥ TC

As −1 ≤ Zt ≤ 1, we can use Hoeffding concentration inequality (see Lemma 2.3.3) to bound
the probability to observe a deviation from the mean. We get

P [
T∑

t=1
Zt < n] = P [E[

T∑
t=1

Zt]−
T∑

t=1
Zt > TC − n],

≤ exp
(
−2(TC − n)2

4T

)
.

We now set T such that 2(T C−n)2

4T = 1
n , that is T = n

C +
√

2cn2+1+1
c2n

, giving

P [τ ≥ T ] ≤ exp
(
− 1
n

)
.

Now, let us prove that the expected stabilization time is polynomial. We have that

E[τ ] ≤
T∑

t=1
iP [τ = i] +

∞∑
t=T

iP [τ ≥ i].

A classic result is that
∑∞

i=0 i exp(−i) = 1
e(1−1/e) . Thus,

E[τ ] ≤ T + 1
e(1− 1/e) = O(n),

giving the desired result.

□
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3.10 Conclusion and Future Work

In this chapter, we studied a biased opinion dynamics where agents are influenced by the majo-
rity of their neighbors. We have shown that consensus on the preferred opinion exhibits a dicho-
tomy by proving that convergence time is always polynomial for cubic graphs, whereas it becomes
exponential (for a small enough bias) in random ∆-regular graphs (∆ ≥ 4), answering an open
conjecture in the literature. Moreover, we analyzed this dichotomy by exploiting structural pro-
perties of graphs in light of majority domination. An interesting avenue for further research is to
to extend our results to the case of multiple opinions.
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4.1 Introduction

Originally developed by von Neumann after a suggestion of Ulam, cellular automata are a dy-
namical system defined over graphs endowed with some homogeneous and local update rules. The
notion of bootstrap percolation is an example of a cellular automaton which has been extensively
investigated by mathematicians, physicists, computer scientists and sociologists, among others.
For further applications to several other areas, we refer the reader to the survey article by Adler
and Lev [Adler and Lev, 2003], and the references therein.

Several variants of classical bootstrap percolation on graphs have been considered. The particu-
lar model we are studying belongs to the class of r-neighbour bootstrap processes (r ≥ 1). It was
first introduced by Chalupa, Leath, and Reich [Chalupa et al., 1979] as a monotone version of the
Glauber dynamics in ferromagnetism.

Let r ≥ 1 be a given integer and G a finite graph whose vertices (usually called sites in the
context of percolation) can be in one of two states: healthy or infected. An initial set of infected
nodes is given. At any step, any healthy vertex with at least r infected neighbours becomes infec-
ted, while infected vertices remain infected forever. The parameter r reflects at which extent sites
resist to the infection spread. Note that the term bootstrap percolation is sometimes used with the
implicit assumption that the initial set of vertices infected is random. In this chapter we consider
the same model but use a deterministic initial set.

An initial set of infected vertices is called lethal if at the end of the process all the vertices are
infected. A problem widely considered in the literature consists in determining the minimum size
of a lethal set denoted by sr(G). The determination of this value provides a starting role in the
study of the probability for a random initial set to be lethal.

Related work. Lethal sets have been considered in the literature under various names according
to the domain of applications. In [Centeno et al., 2011, Dreyer Jr and Roberts, 2009], they are
called irreversible r-conversion sets and infected vertices are called vertices in state 1. In the area
of viral marketing [Chiang et al., 2013b, Chiang et al., 2013a], a lethal set is called a perfect
target set and infected vertices are called active. In [Flocchini et al., 2004], lethal sets are called
irreversible dynamic monopolies (dynamos, for short) and infected vertices are called black or
faulty, stemming from the distributed computing field. Note that reversible dynamos [Peleg, 2002]
have been widely investigated.

Computing exactly sr(G) is NP-hard [Centeno et al., 2011, Chen, 2009, Dreyer Jr and Roberts,
2009] and the hardness result holds even when r = 2 and G has maximal degree ∆, where ∆ is a
constant not depending on the size of G [Chen, 2009].

The parameter sr(G) has been studied for several families of graphs including trees [Centeno
et al., 2011,Dreyer Jr and Roberts, 2009,Riedl, 2012], d-dimensional grids [Balogh and Bollobás,
2006, Balogh and Pete, 1998, Przykucki and Shelton, 2020], chordal graphs [Bessy et al., 2019,
Centeno et al., 2011, Chiang et al., 2013a], hexagonal grids [Adams et al., 2011], honeycombs
graphs [Chiang et al., 2013b], hypercubes [Balogh and Bollobás, 2006,Morrison and Noel, 2018],
expanders [Coja-Oghlan et al., 2014], and random regular graphs [Guggiola and Semerjian, 2015].

Cases of grids and tori. In particular, the most known case is the square grids Gn×n with
r = 2 as it is referenced in puzzles books [Winkler, 2003, Bollobás, 2006, Levitin and Levitin,
2011] and appears as a popular puzzle regularly in newspapers. According to [Winkler, 2003],
the problem appeared for the first time in the Soviet magazine Kvant around 1986. The value
s2(Gn×n) = n can be proved with the elegant perimeter argument. Our interest to the problem
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(a) n = 3 (b) n = 4 (c) n = 5 (d) n = 6 (e) n = 7 (f) n = 8

Figure 4.1 – Some instances of minimum lethal sets in Gn×n when r = 3. The vertices are depicted as
small squares. Initially infected (resp., not infected) vertices are red (resp., white).

was revived, in fact, due to a problem proposed in the french newspaper “Le Monde” (Problem
1141, entitled "Le jeu de la viralité”, April 2020) in honor to John Conway. This led us to study
the open problem of determining the value s3(Gn×n). Some examples of minimul lethal sets for
small grids when r = 3 are illustrated in Figure 4.1.To the best of our knowledge, this pro-
blem was first considered in [Pete, 1997, Balogh and Pete, 1998]. In [Pete, 1997] it is proven that⌈
(n2 + 2n)/3

⌉
≤ s3(Gn×n) ≤ (n2 + 4n)/3 + O(1). The lower bound uses also the perimeter

argument. In [Bollobás, 2006], Bollobás gave the same lower bound for n odd, but a slightly better
one for n even. He also proves that for n ≡ 2 (mod 6) the lower bound is attained and in that case
s3(Gn×n) = (n2 + 2n+ 4)/3 (see Figure 4.1(f) for n = 8). The case of the grid was also consi-
dered in [Dreyer Jr and Roberts, 2009] where they claim that s3(Gn×n) ≤ n2/3 + (7n+ 55)/12,
but the known lower bound of (n2 − 2n + 2)/3 [Bollobás, 2006, Pete, 1997] is larger than than
their upper bound for n large enough.

The problem for tori Tm×n was considered and solved in [Bollobás, 2006, Flocchini et al.,
2004,Pete, 1997,Winkler, 2003] for r = 2, where s2(Tm×n) = ⌈n+m

2 ⌉ − 1. For the case r = 3, it
has been proved that ⌈(mn+1)+1)/3⌉ ≤ s3(Tm×n) ≤ max{⌈m/3⌉(n+1), ⌈n/3⌉(m+1)} [Floc-
chini et al., 2004]. Finally, in [Dreyer Jr and Roberts, 2009], exact expressions of s4(Gm×n) and
s4(Tm×n) are given.

Other related problems have been considered in the literature such as finding the size of a largest
inclusion-minimal lethal set [Morris, 2009,Riedl, 2010] and determining the speed of convergence
in the square grid [Benevides and Przykucki, 2013, Benevides and Przykucki, 2015].

Our contributions. In this chapter, we study the contamination process in square grids Gn×n and
square tori Tn×n. The tools developed here can be used to get results for non square grids and tori.
In Section 4.2, we formally define the problem and recall the results obtained for r = 2, 4 and
some known results for r = 3 that we use throughout the chapter. Our main result is the following
theorem that deals with an almost tight bound of s3(Gn×n).

Theorem 4.1.1. Let n ∈ N∗. Let LBn = ⌈n2+2n
3 ⌉ if n is odd and LBn = ⌈n2+2n+4

3 ⌉ if n is even.

— s3(Gn×n) = LBn if n is even or if n ≡ 5 mod 6 or if n = 2p − 1 ;

— LBn ≤ s3(Gn×n) ≤ LBn + 1 if n is odd ;

— s3(Gn×n) = LBn + 1 if n ∈ {9, 13}.

Section 4.3 is devoted to the proof of the first two items of Theorem 4.1.1. In Section 4.4, we prove
the last item of Theorem 4.1.1. For the values n = 9 and 13, we prove that the lower bound is not
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tight using a Linear Program. For n = 9, we also give a combinatorial proof. Then, Section 4.5 is
devoted to settle the problem when r = 3 in tori:

Theorem 4.1.2. For every n ≥ 3, s3(Tn×n) = ⌈n2+1
3 ⌉.

We conclude in Section 4.6 by describing several open questions.

4.2 Preliminaries

4.2.1 Notations and Problem statement

Let G = (V,E) be a graph. For a vertex v ∈ V , N(v) = {u ∈ V | {u, v} ∈ E} is the
neighbourhood of v and d(v) = |N(v)| is the degree of v.

The 2-dimensional (square) grid graph with n rows and n columns is denoted by Gn×n. Its
vertex set is defined by V (Gn×n) = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}. Two vertices (i, j) and
(i′, j′) are adjacent if and only if |i − i′| + |j − j′| = 1. If 1 < i, j < n, vertex (i, j) has degree
4. The corners are the vertices with degree at most 2, that is, the vertices (1, 1), (1, n), (n, 1) and
(n, n). The border B is the set of vertices with degree at most 3.

For n ≥ 3, let also Tn×n be the torus with vertex-set {(i, j) | i ∈ Zn and j ∈ Zn}, where
Zn denotes the set of integers modulo n denoted 0, 1, . . . , n− 1. Vertex (i, j) is adjacent to the 4
vertices (i− 1, j), (i+ 1, j) (i, j − 1) and (i, j + 1).

Given a graph G and a natural number r ∈ N∗, we consider the following deterministic process
(known as r-neighbour bootstrap percolation) that models the spread of an infection in G. Let
D0 = D be a subset of initially infected vertices and for each step t ≥ 1, let

Dt = Dt−1 ∪ {v ∈ V : |N(v) ∩Dt−1| ≥ r}.

For a set D ⊂ V (G), let ⟨D⟩ =
⋃∞

t=0Dt be the closure of D, i.e., the set of eventually infected
vertices in the process that was started from D. A configuration is a pair (G,D) that consists of a
graph G together with the subset D of its vertices that are initially infected. Abusing the notation,
we call the size of the configuration as the size |D| of the set D.

Any set D ⊆ V is said lethal if ⟨D⟩ = V . Similarly, a configuration (G,D) is lethal if D is a
lethal set. Let sr(G) be the minimum size of a lethal set in G. Since ⟨V ⟩ = V , sr(G) is always
well defined. A lethal set (resp. a lethal configuration) is optimal if it is of size sr(G). Note that
s1(G) = 1 for every connected graph G.

The main goal of this chapter is to investigate s3(Gn×n) and s3(Tn×n), i.e., focusing on square
grids and tori for r = 3. Let us first deal with the cases r ∈ {2, 4}.

4.2.2 Cases r ∈ {2, 4}

For completeness, we first precisely recall the known results when r = 2 and give exact results
in the case when r = 4.

The following result for the grid Gn×n and r = 2 can be considered as folklore and appeared in
many books with puzzles [Bollobás, 2006, Levitin and Levitin, 2011, Winkler, 2003]. The lower-
bound is proved using an elegant perimeter argument and an optimal lethal set is obtained by
taking the n vertices of the diagonal.

Theorem 4.2.1. [Bollobás, 2006, Levitin and Levitin, 2011, Winkler, 2003] Let n ≥ 1, then
s2(Gn×n) = n.
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The result for the torus can be found in [Bollobás, 2006, Flocchini et al., 2004, Winkler, 2003].

Theorem 4.2.2. [Bollobás, 2006, Flocchini et al., 2004, Winkler, 2003]
Let n ≥ 1, then s2(Tn×n) = n− 1.

The case r = 4 was considered in [Balogh and Pete, 1998] where it is only stated that
s4(Gn×n) ∼ n2/2, and has been completely solved in [Dreyer Jr and Roberts, 2009].

Proposition 4.2.3. [Dreyer Jr and Roberts, 2009]
For every n ≥ 3, we have

— s4(Gn×n) = ⌊n2+4n−4
2 ⌋.

— s4(Tn×n) = n⌊n+1
2 ⌋.

4.2.3 Preliminaries on s3(Gn×n)

We first present two properties that we will use afterwards.

Property 4. When r = 3, every lethal set in Gn×n contains every corner.

Proof.

Let u be a corner of Gn×n and let D be a lethal set. Since u has degree at most 2 and requires
at least 3 neighbours to be infected, then u ∈ D.

□

The next property states that, for every two adjacent vertices on the border, at least one must be
initially infected in order to eventually infect the whole grid.

Property 5. Let u, v be two adjacent vertices in B of Gn×n and let D be a lethal set for r = 3,
then D ∩ {u, v} ≠ ∅.

Proof.

Let D be a lethal set of Gn×n. For purpose of contradiction, let us assume that there are two
adjacent vertices u and v of the border (so they have degree at most 3) that are not in D. Then,
the first vertex to be contaminated in {u, v} would have at most two contaminated neighbours
before being infected, a contradiction.

□

The following lower bound has been proved in [Bollobás, 2006] using the perimeter argument
and noting that, for n even, there are four pairs of adjacent infected vertices in B. In particular, the
notation LBn defined below will be used throughout the chapter. We provide for completeness a
sketch of the proof.

Theorem 4.2.4. Problem 65, pages 171-172 in [Bollobás, 2006] Let n ∈ N∗. It holds that:

s3(Gn×n) ≥ LBn =


⌈

n2+2n
3

⌉
if n is odd,⌈

n2+2n+4
3

⌉
if n is even.

Proof.



68 CHAPITRE 4 — Deterministic Bootstrap Percolation

We rephrase the elegant perimeter’s argument used in [Bollobás, 2006]. Each vertex has a
perimeter 4 and so the initial perimeter of a lethal set is at most 4|D|. In the process of infection,
each time a new vertex is infected, the perimeter decreases by at least 2 and the final perimeter
is 4n. Hence, we get 4|D|−2(n2−|D|) ≥ 4n and so |D| ≥ n2+2n

3 . If n is even, by Properties 4
and 5, there are on each side of the border B a pair of adjacent infected vertices. Therefore, the
initial perimeter is at most 4|D| − 8 and so we get |D| ≥ n2+2n+4

3 .

□

This allows to prove the following corollary that we extensively use later.

Corollary 4.2.5. Let n ∈ N.

LBn+3 − LBn =


2n+ 3 when n ≡ 0, 4 (mod 6)
2n+ 4 when n ≡ 2 (mod 6)
2n+ 6 when n ≡ 5 (mod 6)
2n+ 7 when n ≡ 1, 3 (mod 6)

LBn+6 − LBn = 4n+ 16.

In [Bollobás, 2006], Bollobás proved that the lower bound LBn is indeed reached in the case
n ≡ 2 (mod 6) (see Figure 4.1(f) for n = 8). We rephrase his result as follows by specifying an
extra of some optimal lethal sets.

Theorem 4.2.6. [Bollobás, 2006] Let n ≡ 2 (mod 6), then s3(Gn×n) = LBn = n2+2n+4
3 . Fur-

thermore, there exists an optimal lethal set ofGn×n containing the vertices (1, n−1), (2, n), (n−
1, 1), and (n, 2).

4.3 Various constructions and optimal results

In this section, we present several ways to use (lethal or not) configurations for smaller grids
in order to obtain new lethal configurations for larger grids. Each of the different tools that we
propose allows us to prove Theorem 4.1.1.

4.3.1 From n even to n + 3 odd and optimality for n ≡ 5 (mod 6)

Proposition 4.3.1. Let n be even. If D is a lethal set in Gn×n containing the vertices (1, n −
1), (2, n), (n − 1, 1), and (n, 2), then there exists a lethal configuration (G(n+3)×(n+3), D

′) with
size |D′| = |D|+ 2n+ 4.

Proof.

From the configuration (Gn×n, D), let (G(n+3)×(n+3), D
′) be the configuration defined as fol-

lows. The restriction of D′ to the subgrid Gn×n consisting of the first (topmost) n rows and
first (leftmost) n columns of G(n+3)×(n+3) will be the set D minus the vertices (1, n) and (n, 1)
(which belong toD sinceD is a lethal set inGn×n and they are corners). Moreover,D′ contains
the following infected vertices: (1, n + 1) and (n + 1, 1), plus the vertices (n + 2, 2j + 2) for
every 0 ≤ j ≤ n/2 and (n + 3, 2j + 1) for every 0 ≤ j ≤ n/2 + 1. Symmetrically, D′

contains the vertices (2j + 2, n+ 2) for every 0 ≤ j ≤ n/2− 1 and (2j + 1, n+ 3) for every
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Figure 4.2 – Illustration of Proposition 4.3.1. The vertices are depicted as small squares (with most
vertices inside Gn×n as well as their status omitted). Initially infected (resp., not infected) vertices of D′

are red (resp., white). Orange vertices are the ones that are initially infected in D but not in D′.

0 ≤ j ≤ n/2. See Figure 4.2 for an illustration. Hence, we have 2n+ 6 infected vertices in the
last (bottommost) 3 rows and last (rightmost) 3 columns. Overall, |D′| = |D|+ 2n+ 4.
Now let us prove that D′ is a lethal set. The vertices (1, n) and (n, 1) will become infected at
the first step because they have 3 infected neighbours initially. Therefore, every vertex of the
subgrid Gn×n will become infected (as D is a lethal set). At the first step, all the vertices of
rows and columns n+ 2 and n+ 3 are also infected plus the vertices (n+ 1, 2) and (2, n+ 1).
From these last two vertices the infection propagates along row n + 1 and column n + 1, until
it reaches the vertex (n+ 1, n+ 1).

□

By Corollary 4.2.5, we get:

Corollary 4.3.2. Let D be a lethal set for Gn×n such that {(1, n−1), (2, n), (n−1, 1), (n, 2)} ⊆
D. If n ≡ 0 or 4 (mod 6), then s3(G(n+3)×(n+3))−LBn+3 ≤ |D|−LBn +1. If n ≡ 2 (mod 6),
then s3(G(n+3)×(n+3))− LBn+3 ≤ |D| − LBn.

Theorem 4.3.3. Let n ≡ 5 (mod 6). Then, s3(Gn×n) = LBn = n2+2n+1
3 .

Proof.

By Theorem 4.2.6, since n − 3 ≡ 2 (mod 6), s3(G(n−3)×(n−3)) = LBn−3. Moreover,
there exists an optimal lethal configuration of G(n−3)×(n−3) containing the vertices (n −
1, 1), (n, 2), (1, n− 1), (2, n). The result follows from the Corollary 4.3.2.

□

4.3.2 From n even to n + 6 (even) and optimality for every n even

Proposition 4.3.4. Let n be even. If D is a lethal set in Gn×n such that {(1, n − 1), (2, n), (n −
1, 1), (n, 2)} ⊆ D, then there exists a lethal configuration (G(n+6)×(n+6), D

′′) with size |D′′| =
|D|+ 4n+ 16 and such that {(1, n+ 5), (2, n+ 6), (n+ 5, 1), (n+ 6, 2)} ⊆ D′′.

Proof.

From the configuration (Gn×n, D), we first construct the configuration (G(n+3)×(n+3), D
′) as

in Proposition 4.3.1 and then the configuration (G(n+6)×(n+6), D
′′) as follows. The restriction

of D′′ to the subgrid Gn+3×n+3 consisting of the first (topmost) n+ 3 rows and first (leftmost)
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Figure 4.3 – Illustration of Proposition 4.3.4. The vertices are depicted as small squares (with most
vertices inside Gn×n as well as their status omitted). Initially infected (resp., not infected) vertices of D′′

are red (resp., white). Orange vertices are the ones that are initially infected in D but not in D′′.

n+3 columns ofG(n+6)×(n+6) will be the setD′ minus the vertex (n+3, 3). Then,D′′ contains
the following vertices: (n+ 4, 2) and (n+ 4, 4), (n+ 5, 1) plus the vertices (n+ 5, 2j + 1) for
every 2 ≤ j ≤ n/2 + 2 (note that (n+ 5, 3) is not infected) and the vertices (n+ 6, 2j + 2) for
every 0 ≤ j ≤ n/2+2. In addition, D′′ contains the vertices (2j+1, n+5) and (2j+2, n+6)
for every 0 ≤ j ≤ n/2 + 1. Finally, D′′ contains the two corners (n+ 6, 1) and (1, n+ 6). See
Figures 4.3 for an illustration. Overall, |D′′| = |D′|+ 2n+ 12 = D + 4n+ 16.
Now let us prove that D′′ is a lethal set. The vertices (1, n) and (n, 1) will become infected at
the first step because they have 3 infected neighbours initially. Then, every vertex of the subgrid
Gn×n will become infected (as D is a lethal set). At the first step, all the vertices of columns
n+ 2, n+ 3, n+ 5 and n+ 6 become infected except (n+ 4, n+ 2), (n+ 4, n+ 3) and all the
vertices of rows n+2, n+3, n+5 and n+6 except (n+2, 3), (n+3, 3), (n+5, 3), (n+6, 3).
Vertices (n+1, 2), (2, n+1),(n+1, 2) and (n+4, 5) are also infected at step 1. From the vertex
(2, n+ 1) the infection propagates along column n+ 1 until it reaches the vertex (n+ 1, n+ 1)
and then along row n + 1 until it reaches vertex (n + 1, 4). Then vertices (n + 1, 3), (n +
2, 3), (n + 3, 3), (n + 4, 3), (n + 5, 3), (n + 6, 3) become infected. From the vertex (n + 4, 5)
the infection propagates along row n+4 until it reaches the vertex (n+4, n+4) and then along
column n+ 4 until it reaches vertex (1, n+ 4). See an example in Figure 4.4.

□

Remark: We can do the proof by deleting from D′ instead of vertex (n + 3, 3) any vertex (n +
3, 2j0 + 1) with 1 ≤ j0 ≤ n/2. Then D′′ should contain in row n + 4 the infected vertices:
(n + 4, 2j0) and (n + 4, 2j0 + 2) and in row n + 5 all the vertices (n + 5, 2j + 1) for every
0 ≤ j ≤ n/2 + 2 except vertex (n+ 5, 2j0 + 1). That might be useful to diminish the propagation
time.

Theorem 4.3.5. Let n be even. Then, s3(Gn×n) = LBn. Moreover, there exists an optimal lethal
set which contains the vertex (2, 2).

Proof.

The theorem is true for n = 2, 4, 6, in which cases, optimal grids can be constructed directly
(for n = 4 and 6, see Figure 4.1). Then, the theorem follows by induction on n (even) using
Proposition 4.3.4 and Corollary 4.2.5. The fact that all the grids contain the vertex (2, 2) will be
useful for the proof of the existence of optimal tori (s3(Tn×n) = ⌈n2+1

3 ⌉).
□
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(a) Infection process at t = 0. (b) Infection process at t = 1.

Figure 4.4 – Construction for n = 30. Here we start from the optimal grid G6×6 (depicted by a blue
frame) obtained from the grid G3×3 (Theorem 21) and apply the construction recursively. In the left part,
initially infected (resp., not infected) vertices are red (resp., white). In the right part, vertices infected at
step 1 are in orange and those not infected at the end of step 1 are in white. To get optimal lethal sets for

the grids with n even we should also have the corners infected and to get almost optimal for the grids with
n odd we should also have the vertex (n, 3) infected.

Theorem 4.3.6. Let n ≡ 1 or 3 (mod 6). Then, s3(Gn×n) ≤ LBn + 1. Moreover, there exists a
lethal set of size LBn + 1 which contains the vertex (2, 2).

Proof.

The theorem follows from Theorem 4.3.5 and Corollary 4.3.2.

□

4.3.3 From n to 2n + 1 and optimality for n = 2p − 1

We give now another tool which, while rather simple, allows us to identify a new class of grids
(namely, n = 2p − 1) with odd side where the lower bound is tight.

For any configuration (Gn×n, D), let (G(2n+1)×(2n+1), D
′) = H(Gn×n, D) be the configura-

tion defined as follows. The restriction of D′ to each of the four connected components obtained
from G(2n+1)×(2n+1) by removing its central row and central column (i.e., the (n+ 1)th row and
(n+ 1)th column) is equal to D. Finally, D′ also contains the vertex (n+ 1, n+ 1). See Fig. 4.5
for an illustration.

Lemma 4.3.7. If (Gn×n, D) is a lethal configuration, thenH(Gn×n, D) is a lethal configuration.

Proof.

Since D is a lethal set for Gn×n, each of the component of G(2n+1)×(2n+1) obtained by remo-
ving the central row and the central column will be infected independently. Finally, the central
row and central column will be infected using the fact that every other vertex and the central
one (n+ 1, n+ 1) are infected.

□
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Figure 4.5 – Illustration of the configurationH(Gn×n, D).

Definition 4.3.1. Let H1 be the configuration that consists of the grid G1×1 whose single vertex
is infected. For every p > 1, let Hp = H(Hp−1).

Proposition 4.3.8. For every p ≥ 1,Hp is an optimal lethal configuration for the gridG2p−1×2p−1
with 4p−1

3 vertices initially infected.

Proof.

SinceH1 is clearly lethal, by induction on p and Lemma 4.3.7, thenHp is lethal for all p. LetDp

be the lethal set of Hp, then |Dp| = 4|Dp−1|+1 and as |D1|= 1, we get Dp = 4p−1
3 . Finally, the

optimality comes from Theorem 4.2.4 that states that for n = 2p − 1, LBn = n(n+2)
3 = 4p−1

3 .

□

Theorem 4.3.9. For every p ∈ N∗, let n = 2p − 1. Then, s3(Gn×n) = LBn = n(n+2)
3 .

4.4 The lower bound is not always tight

In the case when n is odd such that n ≡ 1, 3 (mod 6) and n ̸= 2p − 1, it remains to decide
whether s3(Gn×n) equals LBn or LBn + 1. The first two values which are undetermined yet are
n = 9 and n = 13. For these values, we prove that the lower bound is not tight using a Linear
Program. Finally, for n = 9, we also provide a combinatorial proof.

4.4.1 Useful properties of lethal sets

First, let us present some useful properties that must be satisfied by any lethal set (or more
precisely by the complement of any lethal set) of a grid.

Property 6. Let D be a lethal set of the grid Gn×n. Let H = V \D. Then, H induces an acyclic
subgraph whose every connected component has at most one vertex on the border.

Proof.

For purpose of contradiction, let us first assume that H induces a subgraph containing a cycle
C and let u be the first vertex of C contaminated by D. Then, when u becomes infected, it has
at most two infected neighbours, a contradiction.
Similarly, ifH induces a subgraph that contains a path P (with at least two vertices) whose ends
are in the border, then the first vertex to be infected in P would have at most 2 already infected
neighbours, a contradiction.
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□

4.4.2 Linear Program

We present a Mixed-Integer Linear Program (MILP) for computing sr(G) in any graph G. As
initially described in section 4.2, we consider a step of the contamination process. That is, at every
step, all non-infected vertices with at least r infected neighbours become infected. The question
addressed in this section is as follows.

Instance : A graph G = (V,E), non-negative integers r and T .

Question : What is the minimum number sT
r (G) of initially infected vertices

such that the whole graph is contaminated in at most T steps?

Note that, for every k ∈ N: sr(G) ≤ k if and only if s|V |−k
r (G) ≤ k.

We formulate the problem as the MILP below, which computes an optimal solution for sT
r (G).

The main variables are the binary variables cv,t for v ∈ V and t ∈ {1, ..., T}, defined as follows:
cv,t = 1 if the vertex v is infected after the tth step of the contamination process and 0 otherwise.

We describe hereafter the different constraints (1-6) of the MILP, starting by the objective func-
tion:

(1) Minimize the number of initially infected vertices.

(2) After T steps, all the vertices are infected.

(3) An infected vertex remains infected.

(4) A non infected vertex with less than r infected neighbors cannot become infected.

(5) Every vertex with a degree strictly smaller than r must be initially infected (case for instance
of the corners of a grid Gn×n when r = 3 (Property 4)).

(6) If two adjacent vertices have degree r, then at least one must be initially infected (case for
instance of two adjacent vertices of the border of a grid Gn×n when r = 3, (Property 5)).

(7) If D is a lethal set and v ∈ D such that |N(v) ∩D| ≥ r, then D \ {v} is a lethal set.
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Minimize
∑

v∈V
cv,0 (4.1)

Subject to
∑

v∈V
cv,T = |V | (4.2)

cv,t−1 ≤ cv,t ∀v ∈ V, t ∈ {1, ..., T} (4.3)

cv,t ≤ cv,t−1 + 1
r

∑
w∈N(v)

cw,t−1 ∀v ∈ V, t ∈ {1, ..., T} (4.4)

cv,0 = 1 ∀v ∈ V, d(v) < r (4.5)

cu,0 + cv,0 ≥ 1 ∀{u, v} ∈ E, d(u) = d(v) = r (4.6)

cv,0 +
∑

w∈S
cw,0 ≤ r ∀v ∈ V, d(v) ≥ r, ∀S ⊆ N(v), |S| = r (4.7)

cv,t ∈ {0, 1} ∀v ∈ V, t ∈ {1, ..., T} (4.8)

We note that the above cuts were not sufficient to make the MILP terminate (in sufficiently
reasonable time) for G = Gn×n except for some small values of n. Therefore, to speedup the
search, we propose further optimization cuts which hold under certain conditions on G.

Further cuts if r ≥ 3 and and G = Gn×n.
Let r ≥ 3. Consider the graph G′ obtained from G by adding a new vertex x adjacent to every
vertex of the border of G. Let H ′ be the subgraph induced by H and x. By Property 6, if D is a
lethal set, then H = V \D is acyclic, and moreover, every connected component of H has at most
one vertex on the border. Note that H satisfies both these properties if and only if H ′ is acyclic.

We introduce the next constraints (9-14) to express this property.
First, let cx,0 = 0 be a new variable expressing that we consider the new vertex x as non

infected. Then, we consider the binary variables ye for e = {u, v} ∈ E(G′), defined as follows:
ye = 1 if and only if cu,0 = 0 and cv,0 = 0 (i.e., ye = 1 if and only if e is an edge of H ′).

ye + cu,0 + cv,0 ≥ 1 ∀e = {u, v} ∈ E(G′) (4.9)

2ye + cu,0 + cv,0 ≤ 2 ∀e = {u, v} ∈ E(G′) (4.10)

ye ∈ {0, 1} ∀e = {u, v} ∈ E(G′) (4.11)

Then, to ensure that H ′ is acyclic, we leverage upon an efficient formulation usually used to
design a Linear Program for computing the Maximum Average Degree of a graph in polynomial
time. To this end, we consider the real non-negative variables ze,u and ze,v for every e = {u, v} ∈
E(G′). Intuitively, each edge induced by H ′ distributes a potential of one from each of its end-
vertices, and H ′ is acyclic if and only if no vertex receives a potential of at least one.

ze,u + ze,v = ye ∀e = {u, v} ∈ E(G′) (4.12)∑
e′={w,v}
w∈N(v)

ze′,v < 1 ∀v ∈ V (G′) (4.13)

ze,u, ze,v ≥ 0 ∀e = {u, v} ∈ E(G′) (4.14)

Further optimizations. We also provided the MILP with lower and upper bounds on the expec-
ted solution. That is, we add constraints of the following form LB ≤

∑
v∈V cv,0 ≤ UB for some
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given integers LB and UB. We note that the main purpose of the previous MILP is to determine
whether the lower bound LBn is tight for the cases not covered by Theorem 4.1.1. Therefore,
we added some specific constraints which reflect the properties of lethal sets of size LBn. For
instance, when n ≡ 1 or 3 (mod 6), by Property 7, every such lethal set D does not contain two
adjacent vertices and a vertex in V \ D cannot be surrounded by four vertices in D. In some
cases, we also imposed some further restrictions (such as, in the case when n is odd, that the ver-
tices in the border of the grids are precisely characterized if we expect a lethal set of size LBn)
or explicitly implemented branch and bound algorithms where we specified the values of some
vertices.

Overall, these LPs allowed us to obtain best known solutions for every n up to 20 (but 19). So
far, the case n = 19 is the smallest size that still resists to the MILP as it provided a solution with
LB19 + 1 vertices initially contaminated, but was not able to terminate when requiring a solution
with LB19 vertices. This is in contrast with the case when n = 13, where the MILP terminates
certifying that there are no solutions using LB13 vertices initially contaminated. In summary,
our experiments based on the MILP allowed us as such to show that s3(Gn×n) = LBn + 1 for
n ∈ {9, 13} (Proposition 4.4.1) ; but the MILP does not terminate for n = 19.

Proposition 4.4.1. s3(Gn×n) = LBn + 1 if n ∈ {9, 13}.

Proof.
The upper bounds comes from Theorem 4.3.6. The fact that this is optimal results from the exe-
cution of the LP described in this section and that certified that no solutions with LBn vertices
exist.

□

4.5 Tori

In this section, we focus on the square tori. We note that Property 6 proved for the grids holds
for any graph. This property was used for tori in [Flocchini et al., 2004] to prove the following
lower bound.

Proposition 4.5.1. [Flocchini et al., 2004] s3(Tn×n) ≥ LBTn = ⌈n2+1
3 ⌉.

An upper-bound of ⌈n/3⌉(n+1) for s3(Tn×n) is also given in [Flocchini et al., 2004]. Note that
it differs from the lower bound by a factor of order n (more precisely, n/3− 1 if n ≡ 0 (mod 3),
(2n − 1)/3 if n ≡ 2 (mod 3) and n if n ≡ 1 (mod 3)). Here, we determine the exact value of
s3(Tn×n) for every n ≥ 3, as given in Theorem 4.1.2.

Theorem 4.5.2. If n is odd, then s3(Tn×n) = LBTn.

Proof.
As n is odd, n − 1 is even. By Theorem 4.3.5, there exists a lethal configuration
(G(n−1)×(n−1), D) of size LBn−1 and such that (2, 2),⊆ D. We build a lethal configura-
tion (Tn×n, D

′) as follows.

— Let n ≡ 3 (mod 6). The restriction ofD′ to the subgridG(n−1)×(n−1) consisting of the last
(bottommost) n− 1 rows and last (rightmost) n− 1 columns of G(n−1)×(n−1) will be the
setD minus the corners (1, n). Moreover,D′ contains the vertex (0, 0) (see Figure 4.6(a)).
So, |D′| = |D|. We have |D| = LBn−1 = (n−1)2+2(n−1)+4

3 = n2+3
3 = LBTn.
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(a) n ≡ 3 [6] (b) n ≡ 1, 5 [6] (c) n ≡ 0 [6] (d) n ≡ 2, 4 [6]

Figure 4.6 – Illustration of Theorem 4.5.2 and Theorem 4.5.3 for the torus Tn×n. The vertices are depicted
as small squares. Red squares are those of a lethal set D of G(n−1)×(n−1). Orange squares are deleted

from D and not infected in the torus. Blue vertices are extra infected vertices in the torus. In Figure 4.6(b)
(resp. 4.6(d)), we start from the optimal grid G4×4 (resp. G6×6) and apply recursively the construction of

proposition 4.3.4 (resp. plus proposition 4.3.1).

— Let n ≡ 1, 5 (mod 6). The restriction of D′ to the subgrid G(n−1)×(n−1) consisting of the
last (bottommost) n − 1 rows and last (rightmost) n − 1 columns of G(n−1)×(n−1) will
be the set D minus the three corners (1, n), (n, 1), (1, 1) and vertex (2, 2). Moreover, D′

contains the three vertices (0, 1), (1, 0) and (2, 1) (see Figure 4.6(b)). So, |D′| = |D| − 1.
We have |D| = LBn−1 = (n−1)2+2(n−1)+6

3 = n2+5
3 . So, |D′| = n2+2

3 = LBTn.

We claim thatD′ is lethal in both cases. For the first case, the infection reaches all the vertices of
the subgrid G(n−1)×(n−1) except (1, n) as D is a lethal set. Then, it propagates along line 0 till
(0, n) and so (1, n) becomes infected and then the infection propagates along column 0. For the
second case, the infection reaches all the vertices of the subgrid G(n−1)×(n−1) ; indeed vertices
(1, 1), (1, n), (2, 2), (2, 3), (n, 1) are infected thanks to (0, 1), (1, 0), (2, 1) and then vertex (1, 2)
becomes infected. Then the infection propagates along column 0 till (n, 0) and so (0, 0) becomes
infected. Finally the infection propagates along line 0 till (0, n).

□

Theorem 4.5.3. If n is even, then s3(Tn×n) = LBTn.

Proof.

— Let n ≡ 0 (mod 6). So n− 1 ≡ 5 (mod 6). By Theorem 4.3.6, there exists a lethal set D
in the grid G(n−1)×(n−1) of size LBn−1. We construct a lethal configuration (Tn×n, D

′)
as follows. The restriction of D′ to the subgrid G(n−1)×(n−1) consisting of the last (bot-
tommost) n − 1 rows and last (rightmost) n − 1 columns of G(n−1)×(n−1) will be the set
D. Moreover, D′ contains the vertex (0, 0). (see Figure 4.6(c)). So, |D′| = |D| + 1. We
have |D| = LBn−1 = (n−1)2+2(n−1)+1

3 = n2

3 . So, |D′| = n2+3
3 = LBTn.

— Let n ≡ 2, 4 (mod 6). So n − 1 ≡ 1, 3 (mod 6). By Theorem 4.3.6, there exists
a lethal set D in the grid G(n−1)×(n−1) of size LBn−1 + 1 containing vertex (2, 2).
We construct a lethal configuration (Tn×n, D

′) as follows. The restriction of D′ to the
subgrid G(n−1)×(n−1) consisting of the last (bottommost) n − 1 rows and last (right-
most) n − 1 columns of G(n−1)×(n−1) will be the set D minus the vertex (2, 2). Mo-
reover, D′ contains the vertex (0, 0) (see Figure 4.6(d)). So, |D′| = |D|. We have
|D| = LBn−1 + 1 = (n−1)2+2(n−1)

3 + 1 = n2+2
3 . So, |D′| = |D| = n2+2

3 = LBTn.
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Similarly to the case where n is odd, we can check that D′ is lethal in both cases.

□

4.6 Further Work

The first open problem would be to completely settle the question of determining s3(Gn×n)
(either LBn or LBn+1) for any undetermined n, i.e., for every odd n > 13 such that n ̸≡ 5
(mod 6) and n ̸= 2p − 1. Note that the first undetermined value is n = 19 for which our Linear
Program did not terminate. The next graph class to be considered would be d-dimensional grids
for d > 2. Last but not least, it would be interesting to investigate further the question of the speed
of the infection, i.e., determining optimal (in terms of size) lethal sets that infect the whole graph
as fast (resp., as slow) as possible.
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5.1 Introduction

In the Subset Sum Problem (SSP), one is given as input a set of n integersX = {x1, x2, . . . , xn}
and a target value z, and wishes to decide if there exists a subset of X that sums to z. That is, one
is to reason about a subset S ⊆ [n] such that∑

i∈S
xi = z.

The special case where z is half of the sum ofX is known as the Number Partition Problem (NPP).
The converse reduction is also rather immediate. ∗

Be it in either of these forms, the SSP finds applications in a variety of fields, ranging from
combinatorial number theory [Sun, 2003] to cryptography [Gemmell and Johnston, 2001, Kate
and Goldberg, 2011]. In complexity theory, the SSP is a well-known NP-complete problem, being
a common base for NP-completeness proofs. In fact, the NPP version figures among Garey and
Johnson’s six basic NP-hard problems [Garey and Johnson, 1979b]. Under certain circumstances,
the SSP can be challenging even for heuristics that perform well for many other NP-hard problems
[Johnson et al., 1991,Ruml et al., 1996], and a variety of dedicated algorithms have been proposed
to solve it [Helm and May, 2018, Bringmann and Wellnitz, 2021, Jin and Wu, 2018, Jin et al.,
2021, Esser and May, 2019], including some that employ quantum computing [Bernstein et al.,
2013, Helm and May, 2018, Li and Li, 2019]. Nonetheless, it is not hard to solve it in polynomial
time if we restrict the input integers to a fixed range [Bellman, 1966]. It suffices to recursively
list all achievable sums using the first i integers: we start with A0 = {0} and compute Ai+1 as
Ai ∪ {a+ xi+1 | a ∈ Ai}. For integers in the range [0, R], the search space has size O(nR).

Studying how the problem becomes hard as we consider larger ranges of integers (relative to
n) requires a randomised version of the problem, the Random Subset Sum Problem (RSSP), where
the input values are taken as independently and identically distributed random variables. In this
setup, the work [Borgs et al., 2001] proved that the problem experiences a phase transition in its
average complexity as the range of integers increases.

The result we approach in this work comes from related studies on the typical properties of
the problem. In [Lueker, 1998b] the author proves that, under fairly general conditions, the ex-
pected minimal distance between a subset sum and the target value is exponentially small. More
specifically, they show the following result.

Theorem 5.1.1 Lueker, 1998. Let X1, . . . , Xn be independent uniform random variables over
[−1, 1], and let ε ∈ (0, 1/3). There exists a universal constantC > 0 such that, if n ≥ C log(1/ε),
then, with probability at least 1− ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n] for which∣∣∣∣z − ∑

i∈Sz

Xi

∣∣∣∣ ≤ ε.
That is, a rather small number (of the order of log 1

ε ) of random variables suffices to have a high
probability of approximating not only a single target z, but all values in an interval.

Even though theorem 5.1.1 is stated and proved for uniform random variables over [−1, 1], it
is not hard to extend the result to a wide class of distributions. † With this added generality, the

∗. To find a subset of X summing to z, one only needs to solve the NPP for the set X ∪ {2z,
∑

i∈[n] xi}. By doing
so, one of the parts must consist of the element

∑
i∈[n] xi alongside the desired subset.

†. Distributions whose probability density function f satisfies f(x) ≥ b for all x ∈ [−a, a], for some constants
a, b > 0 (see Corollary 3.3 from [Lueker, 1998b]).
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theorem becomes a powerful tool for the analysis of random structures, and has recently proven
to be particularly useful in the field of Machine Learning, taking part in a proof of the Strong
Lottery Ticket Hypothesis [Pensia et al., 2020b] and in subsequent related works [da Cunha et al.,
2022b,Fischer and Burkholz, 2021,Burkholz et al., 2022], and in Federated Learning [Wang et al.,
2021].

The simplicity and ubiquity of the SSP has granted the related results a special didactic place.
Be it as a first example of NP-complete problem [Garey and Johnson, 1979b], a path to science
communication [Hayes, 2002], or simply as a frame for the demonstration of advanced techniques
[Mertens, 2001], it has been a tool to make important, but sometimes complicated, ideas easier
to communicate. We try to recover some of this essence in the proof we present, which not only
attains itself to more accessible tools, but also preserves much of the intuitions behind the theorem.

5.1.1 Comparison to former work

The work [Lueker, 1998b] approaches theorem 5.1.1 by considering the random variable asso-
ciated to the proportion of the values in the interval [−1, 1] that can be approximated up to error ε
by the sum of some subset of the first t variables, X1, . . . , Xt.

After restricting to some specific types of subsets, they proceed to evaluate the expected per-
round growth of this proportion, conditioned on the outcomes of X1, . . . , Xt. Their strategy is
to analyse this expected increase by martingale theory, which only becomes possible after a non-
linear transformation of the variables of interest. Those operations hinder any intuition for the ob-
tained martingale. Nonetheless, a subsequent application of the Azuma-Hoeffding bound [Azuma,
1967] followed by a case analysis leads to the result.

The argument presented here starts in the same direction as the original one, tracking the mass
of values with suitable approximations as we reveal the values of the random variablesX1, . . . , Xn

one by one. However, we quickly diverge from [Lueker, 1998b], managing to obtain an estimation
of the expected growth of this mass without discarding any subset-sum. We eventually restrict the
argument to some types of subsets, but we do so at a point where the need for such restriction is
clear.

We proceed to directly analyse the estimation obtained, without any transformations. This es-
timation reveals two expected behaviours: (i) as we consider the first variables, the proportion of
approximated values is expected to grow very fast ; (ii) then, after a certain point, this expected
growth quickly slows down.

We find that the fast growth portion of the process, (i), can be analysed with elementary tech-
niques from the field of randomised algorithms. Then, to tackle (ii), we redirect our focus from the
proportion of values that posses suitable approximations to that of values that do not. This allows
us to leverage the results obtained for (i), vastly simplifying the rest of the analysis.

Altogether, we believe our work offers a substantially simpler alternative to the original proof.
Moreover, while tools from martingale theory such as Azuma-Hoeffding’s inequality are not part
of standard Computer Science curricula, our argument makes use of much more elementary re-
sults ‡ which should make it accessible enough for an undergraduate course on randomised algo-
rithms.

Finally, a very recent paper [Chen et al., 2022a] on a generalisation of the random subset sum
problem contains a proof whose structure bears some resemblance to ours. They define a similar
stochastic process and also show that it enjoys exponential growth in expectation up to a certain

‡. Namely, the Intermediate Value Theorem, Markov’s inequality, and standard Hoeffding bounds.
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threshold. However, they use a different approach to translate this expected behaviour into a pro-
bability of fast convergence and, while the second part of their process is analogous to (ii), their
treatment of it does not resemble our strategy. Still, we remark that while conceiving our proof we
were unaware of the existence of [Chen et al., 2022a].

5.2 Our argument

In this section, we provide an alternative argument for proving theorem 5.1.1. It takes shape
much like the pseudo-polynomial algorithm we described in the introduction. Leveraging the re-
cursive nature of the problem, we construct a process which, at time t, describes the proportion of
the interval [−1, 1] that can be approximated by some subset of the first t variables.

We will show that with a suitable number of uniform variables (proportional to log(1/ε)) a
factor of 1− ε/2 of the values in [−1, 1] can be approximated up to error ε. This implies that any
z ∈ [−1, 1] which cannot be approximated within error ε is at most ε away from a value that can.
Therefore it is possible to approximate z up to error 2ε.

5.2.1 Preliminaries

Let X1, . . . , Xn be realisations of random variables as in theorem 5.1.1, and, without loss of
generality, fix ε > 0. We say a value z ∈ R is ε-approximated at time t if and only if there exists
S ⊆ [t] such that ∣∣∣∣z − ∑

i∈S
Xi

∣∣∣∣ < ε.

For 0 ≤ t ≤ n, let ft : R → {0, 1} be the indicator function for the event “z is ε-approximated
at time t”. Therefore, we have f0 = 1(−ε,ε), since only the interval (−ε, ε) can be approximated
by an empty set of values. From there, we can exploit the recurrent nature of the problem: a
value z can be ε-approximated at time t + 1 if and only if either z or z −Xt+1 could already be
approximated at time t. This implies that for all z ∈ R we have

ft+1(z) = ft(z) +
(
1− ft(z)

)
ft(z −Xt+1). (5.1)

To keep track of the proportion of values in [−1, 1] that can be ε-approximated at each step, we
define, for each 0 ≤ t ≤ n, the random variable

vt = 1
2

∫ 1

−1
ft(z)dz.

For better readability, throughout the text we will refer to vt simply as “the volume.”
As we mentioned, it suffices to show that, with high probability, at time n, enough of the interval

is ε-approximated (more precisely, that vn ≥ 1 − ε/2) to conclude that the entire interval is 2ε-
approximated.

5.2.1.1 Expected behaviour

Our first lemma provides a lower bound on the expected value of vt.
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Lemma 5.2.1. For all 0 ≤ t < n, it holds that

E
[
vt+1

∣∣X1, . . . , Xt
]
≥ vt

[
1 + 1

4 (1− vt)
]
.

Proof.
The definition of vt and the recurrence in eq. (5.1) give us that

E
[
vt+1

∣∣X1, . . . , Xt
]

= E

1
2

∫ 1

−1
ft+1(z)dz

∣∣∣∣∣X1, . . . , Xt


=
∫ 1

−1

1
2

(
1
2

∫ 1

−1
ft(z) +

(
1− ft(z)

)
ft(z − x)dz

)
dx

= 1
2

∫ 1

−1
ft(z)dz

∫ 1

−1

1
2dx+ 1

2

∫ 1

−1

1
2

∫ 1

−1

(
1− ft(z)

)
ft(z − x)dzdx

= vt + 1
4

∫ 1

−1

(
1− ft(z)

) ∫ 1

−1
ft(z − x)dxdz

= vt + 1
4

∫ 1

−1

(
1− ft(z)

) ∫ z+1

z−1
ft(y)dydz,

where the last equality holds by substituting y = z − x. For the previous ones we apply basic
properties of integrals and Fubini’s theorem to change the order of integration.
We now look for a lower bound for the last integral in terms of vt. To this end, we exploit that,
since all integrands are non-negative, for all u ∈ [−1/2, 1/2] we have∫ 1

−1

(
1− ft(z)

) ∫ z+1

z−1
ft(y)dydz ≥

∫ u+ 1
2

u− 1
2

(
1− ft(z)

) ∫ z+1

z−1
ft(y)dydz

≥
∫ u+ 1

2

u− 1
2

(
1− ft(z)

) ∫ u+ 1
2

u− 1
2

ft(y)dydz.

Both inequalities come from range restrictions: in the first we use that u ∈ [−1/2, 1/2] implies
[u− 1/2, u+ 1/2] ⊆ [−1, 1] ; for the second, we have that [u− 1/2, u+ 1/2] ⊆ [z − 1, z + 1]
for all z ∈ [u− 1/2, u+ 1/2].
To relate the expression to vt explicitly, we choose u in a way that the window [u−1/2, u+1/2]
entails exactly half of vt. The existence of such u may become clear by recalling the definition
of vt. To make it formal, consider the function given by

h(u) = 1
2

∫ u+ 1
2

u− 1
2

ft(y)dy,

and observe that

min {h(−1/2), h(1/2)} ≤ vt

2 , and max {h(−1/2), h(1/2)} ≥ vt

2 .

Thus, by the intermediate value theorem (theorem 5.3.1), there exists u∗ ∈ [−1/2, 1/2] for
which h(u∗) = vt/2, that is, for which

1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y)dy = vt

2 .



86 CHAPITRE 5 — Random Subset Sum Problem

Altogether, we can conclude that

E
[
vt+1

∣∣X1, . . . , Xt
]

= vt + 1
4

∫ 1

−1

(
1− ft(z)

) ∫ z+1

z−1
ft(y)dydz

≥ vt + 1
2

∫ u∗+ 1
2

u∗− 1
2

(
1− ft(z)

)1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y)dy

dz

= vt +
(

1
2 −

vt

2

)
vt

2

= vt

[
1 + 1

4 (1− vt)
]
.

□

lemma 5.2.1 tells us that, if vt were to behave as expected, it should grow exponentially up to
1/2, at which point 1− vt starts to decrease exponentially. The rest of the proof follows accordin-
gly, with section 5.2.2 analysing the progress of vt up to one half, and section 5.2.3 analogously
following the complementary value, 1 − vt, starting from one half. By building on the results
from section 5.2.2, we obtain fairly straightforward proofs in section 5.2.3. Thus, the following
subsection comprises the core of our argument.

5.2.2 Growth of the volume up to 1/2

Arguably, the main challenge in analysing the RSSP is the existence of over-time dependencies
and deciding how to overcome it sets much of the course the proof will take. Our strategy consists
in constructing another process which dominates the original one while being free of dependen-
cies.

Let τ1 be the first time at which the volume exceeds 1/2, that is, let

τ1 = min{t ≥ 0 : vt > 1/2}.

We just proved that up to time τ1 the process vt enjoys exponential growth in expectation. In
the following lemma we apply a basic concentration inequality to translate this property into a
constant probability of exponential growth for vt itself.

Lemma 5.2.2. Given β ∈ (0, 1/8), let pβ = 1− 7
8(1−β) . For all integers 0 ≤ t < τ1 it holds that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]
≥ pβ.

Proof.

The result shall follow easily from reverse Markov’s inequality (lemma 5.3.3) and the bound
from lemma 5.2.1. However, doing so requires a suitable upper bound on vt+1 and, while 2vt

would serve the purpose, such bound does not hold in general.
We overcome this limitation by fixing t and considering how much vt would grow in the next
step if we were to consider only values ε-approximated at time t that happen to lie in [−1, 1]
after being translated by Xt+1. Making it precise by the means of the recurrence in eq. (5.1), we
define

ṽ = 1
2

∫ 1

−1

[
ft(z) +

(
1− ft(z)

)
ft(z −Xt+1) · 1[−1,1](z −Xt+1)

]
dz.
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This expression differs from the one for vt+1 only by the inclusion of the characteristic function
of [−1, 1]. This not only implies that ṽ ≤ vt+1, but also that ṽ can replace vt+1 in the bound
from lemma 5.2.1, since the argument provided there eventually restricts itself to integrals wi-
thin [−1, 1], trivialising 1[−1,1]. Moreover, as we obtain ṽ without the influence of values from
outside [−1, 1], we must have ṽ ≤ 2vt. Finally, using that t < τ1 implies vt < 1/2 and chaining
the previous conclusions in respective order, we conclude that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]
≥ Pr

[
ṽ ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ E [ṽ |X1, . . . , Xt, t < τ1]− vt(1 + β)
2vt − vt(1 + β)

≥
9
8vt − vt(1 + β)
2vt − vt(1 + β)

= 1− 7
8(1− β) ,

where we applied the reverse Markov’s inequality in the second step.

□

The previous lemma naturally leads us to look for bounds on τ1, that is, to estimate the time
needed for the process to reach volume 1/2. As expected, the exponential nature of the process
yields a logarithmic bound.

Lemma 5.2.3. Let t be an integer and given β ∈ (0, 1/8), let pβ = 1− 7
8(1−β) and

i∗ =

 log 1
2ε

log(1 + β)

 .
If t ≥ i∗

pβ
, then

Pr [τ1 ≤ t] ≥ 1− exp

−2p2
β

t

(
t− i∗

pβ

)2
 .

Proof.

The main idea behind the proof is to define a new random variable which stochastically domi-
nates τ1 while being simpler to analyse. We begin by discretising the domain (0, 1/2] of the
volume into sub-intervals {Ii}1≤i≤i∗ as follows:

I1 = (0, ε],

Ii =
(
ε (1 + β)i−1 , ε (1 + β)i

]
for 2 ≤ i < i∗,

Ii∗ =
(
ε (1 + β)i∗−1 ,

1
2

]
,

where i∗ is the smallest integer for which ε (1 + β)i∗
≥ 1

2 , that is,

i∗ =

 log 1
2ε

log(1 + β)

 .
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Now, for each i ≥ 0, we direct our interest to the number of steps required for vt to exit the sub-
interval Ii after first entering it. By lemma 5.2.2, this number is majorised by a geometric random
variable Yi ∼ Geom(pβ). Therefore, we can conclude that τ1 is stochastically dominated by the
sum of such variables, that is, for t ∈ N, we have

Pr [τ1 ≥ t] ≤ Pr
[

i∗∑
i=1

Yi ≥ t
]
. (5.2)

LetBt ∼ Bin(t, pβ) be a binomial random variable. For the sum of geometric random variables,
it holds that

Pr
[

i∗∑
i=1

Yi ≤ t
]

= Pr
[
Bt ≥ i∗

]
.

Since E [Bt] = tpβ , the Hoeffding bound for binomial random variables (lemma 5.3.4) implies
that, for all λ ≥ 0, we have

Pr
[
Bt ≤ tpβ − λ

]
≤ exp

(
−2λ2

t

)
.

Setting t such that tpβ − λ = i∗, we get

Pr
[

i∗∑
i=1

Yi ≥ t
]
≤ Pr

[
Bt ≤ i∗

]

≤ exp

−2
(
tpβ − i∗

)2

t



= exp

−
2p2

β

(
t− i∗

pβ

)2

t

 ,

which holds as long as λ = tpβ − i∗ ≥ 0, that is, for all

t ≥ 1
pβ

 log 1
2ε

log(1 + β)

 .
Finally, applying this to eq. (5.2) and passing to complementary events, we obtain that

Pr [τ1 ≤ t] ≥ 1− exp

−
2p2

β

(
t− i∗

pβ

)2

t

 .

□
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5.2.3 Growth of the volume from 1/2

Here we study the second half of the process: from the moment the volume reaches 1/2 up to
the time it gets to 1 − ε/2. We do so by analysing the complementary stochastic process, i.e.,
by tracking, from time τ1 onwards, the proportion of the interval [−1, 1] that does not admit an
ε-approximation. More precisely, we consider the process {wt}t≥0, defined by wt = 1− vτ1+t.

We shall obtain results for wt similar to those we have proved for vt. Fortunately, building
on the previous results makes those proofs quite straightforward. We start with an analogous of
lemma 5.2.1.

Lemma 5.2.4. For all t ≥ 0, it holds that

E
[
wt+1

∣∣X1, . . . , Xτ1+t
]
≤ wt

[
1− 1

4 (1− wt)
]
.

Proof.
From the definition of wt+1 and lemma 5.2.1, it follows that

E
[
wt+1

∣∣X1, . . . , Xτ1+t
]

= 1− E
[
vτ1+t+1

∣∣X1, . . . , Xτ1+t
]

≤ 1− vτ1+t

[
1 + 1

4
(
1− vτ1+t

)]

= wt −
1
4wt(1− wt)

= wt

[
1− 1

4 (1− wt)
]
.

□

Let τ2 the first time that wt gets smaller than or equal to ε, that is, let

τ2 = min
{
t ≥ 0 : wt ≤

ε

2

}
.

The following lemma bounds this quantity, in analogy to lemma 5.2.3.

Lemma 5.2.5. For every t > 0, it holds that

Pr [τ2 ≤ t] ≥ 1− 1
ε

(
7
8

)t

.

Proof.
Applying that 1− wt = vτ1+t >

1
2 to lemma 5.2.4 gives the bound

E
[
wt+1

∣∣X1, . . . , Xτ1+t
]
≤ 7

8wt. (5.3)

Moreover, from the conditional expectation theory, for any two random variables X and Y , we
have E

[
E [X |Y ]

]
= E [X]. From this and eq. (5.3), we can conclude that

E [wt] = E
[
E
[
wt

∣∣X1, . . . , Xτ1+t−1
]]

≤ 7
8E
[
wt−1

]
,
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which, by recursion, yields

E [wt] ≤
(

7
8

)t

E [w0]

≤ 1
2

(
7
8

)t

.

Finally, by Markov’s inequality (lemma 5.3.2),

Pr [τ2 ≥ t] ≤ Pr
[
wt ≥

ε

2

]
≤ 2E [wt]

ε

≤ 1
ε

(
7
8

)t

,

and the thesis follows from considering the complementary event.
□

5.2.4 Putting everything together

In this section we conclude our argument, finally proving theorem 5.1.1. We first prove a more
general statement and then detail how it implies the theorem.

Let τ = τ1 + τ2, the first time at which the process {vt}t≥0 reaches at least 1− ε/2.

Lemma 5.2.6. Let ε ∈ (0, 1/3). There exist constants C ′ > 0 and κ > 0 such that for every
t ≥ C ′ log 1

ε , it holds that

Pr [τ ≤ t] ≥ 1− 2 exp

− 1
κt

(
t− C ′ log 1

ε

)2
 .

Proof.
Let β = 1

16 and pβ = 1 − 7
8(1−β) = 1

15 . The definition of τ allows us to apply lemmas 5.2.3

and 5.2.5 quite directly. Indeed if, for the sake of lemma 5.2.3, we assume t ≥ 2
pβ

⌈ log 1
2ε

log(1+β)

⌉
,

we have that

Pr [τ ≤ t] = Pr [τ1 + τ2 ≤ t]
≥ Pr

[
τ1 ≤ t/2, τ2 ≤ t/2

]
≥ Pr

[
τ1 ≤ t/2

]
+ Pr

[
τ2 ≤ t/2

]
− 1

≥ 1− exp

−p2
β

t

t− 2
pβ

 log 1
2ε

log(1 + β)




2
− 1

ε

(
7
8

)t/2

= 1− exp

− 1
152t

t− 30

 log 1
2ε

log 17
16




2
− 1

ε

(
7
8

)t/2

, (5.4)
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where the second inequality holds by the union bound. The remaining of the proof consists in
computations to connect this expression to the one in the statement.
Consider the first exponential term in eq. (5.4). Taking t ≥ 60

log 17
16
· log 1

ε , since ε < 1/3, it

follows that

exp

− 1
152t

t− 30

 log 1
2ε

log 17
16




2
 ≤ exp

− 1
152t

t− 60
log 17

16
· log 1

ε

2
 .

Now, consider the second exponential term in eq. (5.4). It holds that

1
ε

(
7
8

) t
2

= exp
[
log 1

ε
− t

2 log 8
7

]

≤ exp
[
log 1

ε
− t

15

]

= exp

− 1
15 ·

(
t− 15 · log 1

ε

)2

t− 15 · log 1
ε

 .
Moreover, for t ≥ 15 · log 1

ε ,

exp

− 1
15 ·

(
t− 15 · log 1

ε

)2

t− 15 · log 1
ε

 ≤ exp

− 1
15t

(
t− 15 · log 1

ε

)2


≤ exp

− 1
152t

t− 60
log 17

16
· log 1

ε

2
 .

Altogether, we have that

exp

−p2
β

t

t− 2
pβ

 log 1
2ε

log(1 + β)




2
+ 1

ε
·
(

7
8

)t/2

≤ 2 exp

− 1
152t

t− 60
log 17

16
· log 1

ε

2
 ,

and the thesis follows by setting κ = 152 and C ′ = 60
log 17

16
.

□

The expression in the claim of lemma 5.2.6 can be reformulated as

Pr
[
vt ≥ 1− ε

2

]
≥ 1− 2 exp

− 1
κt

(
t− C ′ log 1

ε

)2
 ;

hence, theorem 5.1.1 follows by taking C ≥ 3C ′ and observing that once we can approximate all
but an ε/2 proportion of the interval [−1, 1], any z ∈ [−1, 1] either is ε-approximated itself, or is
at most ε away from a value that is, which implies that z is 2ε-approximated.
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5.3 Tools

Theorem 5.3.1 Intermediate Value Theorem. Let g : [a, b]→ R be a continuous real-valued func-
tion such that λ = min{g(a), g(b)} < max{g(a), g(b)} = Λ. Then, for any value δ ∈ [λ,Λ],
there exists a point a < cδ < b such that g(cδ) = δ.

Lemma 5.3.2 Markov’s inequality. Let X be a non-negative random variable. Then for all c > 0,
we have

Pr [X ≥ c] ≤ E [X]
c

.

Lemma 5.3.3 Reverse Markov’s inequality. Let X be a random variable such that X ≤ u for
some constant u ∈ R. Then for all c < u, we have

Pr [X > c] ≥ E [X]− c
u− c

.

Proof.

We apply Markov’s inequality (Lemma 5.3.2) to the random variable Y = u−X . Note that Y
is non-negative, since X ≤ u. We get

Pr [X ≤ c] = Pr [Y ≥ u− c] ≤ E [Y ]
u− c

= u− E [X]
u− c

,

and the thesis follows.

□

Lemma 5.3.4. Hoeffding bounds [Dubhashi and Panconesi, 2009] Let X1, . . . , Xn be inde-
pendent random variables such that Pr [0 ≤ Xi ≤ 1] = 1 for all i ∈ [n]. Let X =

∑n
i=1Xi

and E [X] = µ. Then

(i) for any λ ≥ 0 and µ ≤ µ+, it holds that

Pr
[
X ≥ µ+ + λ

]
≤ exp

(
−2λ2

n

)
;

(ii) for any λ ≥ 0 and 0 ≤ µ− ≤ µ, it holds that

Pr
[
X ≤ µ− − λ

]
≤ exp

(
−2λ2

n

)
.
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6.1 Introduction

In the Random Subset Sum Problem (RSSP), given a target value z, an error parameter ε ∈ R>0
and n independent random variables X1,X2, . . . ,Xn, one is interested in estimating the probability
that there exists a subset S ⊆ [n] for which∣∣∣z − ∑

i∈S
Xi

∣∣∣ ≤ ε.
Historically, the analysis of this problem was mainly motivated by research on the average

case of its deterministic counterpart, the classic Subset Sum Problem, and the equivalent Number
Partition Problem. These investigations lead to a number of insightful results, mostly in the 80s
and 90s [Lueker, 1982, Karmarkar et al., 1986, Lueker, 1998a]. In addition, research on the phase
transition of the problem extended to the early 2000s, with interesting applications in statistical
physics [Mezard and Montanari, 2009, Borgs et al., 2001, Borgs et al., 2004].

More recently, one of the results on the RSSP has attracted quite some attention. A simplified
statement for it would be

Theorem 6.1.1. Lueker, [Lueker, 1998a] Let X1, . . . ,Xn be i.i.d. uniform random variables over
[−1, 1], and let ε ∈ (0, 1). There exists a universal constant C > 0 such that, if n ≥ C log2

1
ε ,

then, with high probability, for all z ∈ [−1, 1] there exists a subset Sz ⊆ [n] for which∣∣∣z − ∑
i∈Sz

Xi

∣∣∣ ≤ 2ε.

That is, a rather small number (of the order of log 1
ε ) of random variables suffices to have a high

probability of approximating not only a single target z, but all values in an interval. In fact, this
result is asymptotically optimal, since each of the 2n subsets can cover at most one of two values
more than 2ε apart and, hence, we must have n = Ω(log 1

ε ). Also, the original work generalises
the result to a wide class of distributions.

Those features allowed Theorem 6.1.1 to be quite successful in applications. In the field of
Machine Learning, particularly, many recent works, such as [Pensia et al., 2020a, da Cunha et al.,
2021, Fischer and Burkholz, 2021, Burkholz et al., 2022, Ferbach et al., 2022, Wang et al., 2021],
leverage this result. We discuss those contributions in more detail in Section 6.2.

In this chapter, we investigate a natural multidimensional generalisation of Theorem 6.1.1.
Mainly, we prove

Theorem 6.1.2 Main Theorem. Given ε ∈ (0, 1) and d, n ∈ N, consider n independent d-
dimensional standard normal random vectors X1, . . . ,Xn. There exists a universal constant
C > 0 for which, if

n ≥ Cd3 log2
1
ε
·
(

log2
1
ε

+ log2 d

)
,

then, with high probability, for all z ∈ [−1, 1]d there exists a subset Sz ⊆ [n] for which∥∥∥z − ∑
i∈Sz

Xi

∥∥∥
∞
≤ 2ε.

Moreover, the approximations can be achieved with subsets of size n
6
√

d
.
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We believe many promising applications of the RSSP can become feasible with this extension
of Theorem 6.1.1 to multiple dimensions. To illustrate this, we consider the Neural Network Evo-
lution (NNE) model recently introduced by [Gorantla et al., 2019]. It is natural to wonder whether
their model is universal, in the sense that, with high probability, it can approximate any dense
feed-forward neural network. While applying Theorem 6.1.1 to this end would yield exponential
bounds on the required overparameterization, in Section 6.6 we prove the universality of the mo-
del within polynomial bounds. To broaden the scope of our result, we additionally provide some
useful generalisations in Appendix B. In particular, we extend it to a wide class of distributions,
proving an analogous extension to the one [Lueker, 1998a] given for Theorem 6.1.1. Finally, in
Sections 6.8 and 6.9 we discuss a discretization of our result and potential applications in the
context of nondeterministic random walks.

Organisation of the chapter. After discussing related works in Section 6.2, we present a high level
overview of the difficulties posed by the problem and of our proof of Theorem 6.1.2 (Section 6.3).
We then introduce our notation in Section 6.4 in preparation for the presentation of our analysis
in Section 6.5. We follow up with an application of our result to the NNE model ( [Gorantla
et al., 2019]) and conclude with some notes on the tightness of our analysis in Section 6.7. Finally,
generalisations of our results, further extensions, as well as all omitted proofs can be found in the
Appendix.

6.2 Related work

As remarked in the Introduction, the first studies of the RSSP were mainly motivated by
average-case analyses of the classic Subset Sum and Number Partition problems [Karmarkar et al.,
1986, Lueker, 1982, Lueker, 1998a]. Both can be efficiently solved if the precision of the values
considered is sufficiently low relative to the size of the input set. In particular, [Mertens, 1998]
applies methods from statistical physics to indicate that this is a fundamental property of the pro-
blem: the amount of exact solutions for the randomised version exhibits a phase transition when
the precision increases relative to the sample size. The work [Borgs et al., 2001] later confirmed
formally the existence of a phase transition. [Lueker, 1982] shows that the median of the mini-
mum error in the RSSP is exponentially small when the target is near the expected sum of the
random variables. This work was followed by [Lueker, 1998a], which proves Theorem 6.1.1. Re-
cently, [da Cunha et al., 2022a] provided a simpler alternative to the original proof. The discrete
setting of a variant of RSSP has also been recently studied in [Chen et al., 2022b] which proves
that an integral linear combination (with coefficients in {−1, 0, 1}) of the sample variables can
approximate a range of target values.

In the last few years, Theorem 6.1.1 has been very useful in studying the Strong Lottery Ticket
Hypothesis, which states that Artificial Neural Networks (ANN) with random weights are likely
to contain an approximation of any sufficiently smaller ANN as a subnetwork. In particular, such
claim poses the deletion of connections (pruning) as a theoretically solid alternative to careful
calibration of their weights (training). [Pensia et al., 2020a] uses Theorem 6.1.1 to prove the hy-
pothesis under optimal overparameterization for dense ReLU neural networks. [da Cunha et al.,
2021] extends this result to convolutional networks and [Ferbach et al., 2022] further extends the
latter to the class of equivariant networks. Also, [Burkholz et al., 2022] applies Theorem 6.1.1 to
construct neural networks that can be adapted to a variety of tasks with minimal retraining.
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6.3 Overview of our analysis

6.3.1 Insights on the difficulty of the problem

In d dimensions, since we need 2Θ(d log 1
ε

) hypercubes of radius ε to cover the set [−1, 1]d, we
need a sample of Ω(d log 1

ε ) vectors to be able to approximate (up to error ε) every vector in
[−1, 1]d.

On the other hand, having n = O(d log 1
ε ) vectors is enough in expectation. To see it, it is

sufficient to consider subsets of the sample with n
2 vectors. There are

( n
n/2
)
≈ 2n−o(n) such subsets,

each summing to a random vector distributed asN (0, n
2 ·Id). Thus, given any z ∈ [−1, 1]d, each of

those sums has probability approximately εd(n
2 )− d

2 = 2−d log 1
ε

− d
2 log n

2 of being at most ε far from

z. We can then conclude that the expected number of approximations is 2n−o(n) ·2−d log 1
ε

− d
2 log n

2 ,
which is still of order 2n−o(n) provided that n ≥ Cd log 1

ε for a sufficiently large constant C.
It would thus suffice to prove concentration bounds on the expectation. The technical challenge

is handling the stochastic dependency between subsets of the sample, as pairs of those typically in-
tersect, with many random variables thus appearing for both resulting sums. The original proof of
Theorem 6.1.1 [Lueker, 1998a] and the simplified one [da Cunha et al., 2022a] address dependen-
cies in similar ways. Both keep track of the fraction of values in [−1, 1] that can be approximated
by a sum of a subset of the first i random variables, X1, . . . ,Xi. Their core goal is to bound the
proportional increase in this fraction when an additional random variable Xi+1 is considered. As
it turns out, the conditional expectation of this increment can be bounded by a constant factor, re-
gardless of the values of X1, . . . ,Xi. Unfortunately, naively extending those ideas to d dimensions
leads to an estimation of this increment that is exponentially small in d. It is not clear to the authors
how to make the estimation depend polynomially on d without leveraging some knowledge of the
actual values of X1, . . . ,Xi. In fact, even which kind of assumption on the previous samples could
work in this sense is not totally clear.

As for other classical concentration techniques that might appear suitable at first, we remark our
failed attempts to leverage an average bounded differences argument [Warnke, 2016]. Specifically,
we could not identify any natural function related to the fraction of values that can be approxima-
ted, which was also Lipschitz relative to the sample vectors. Moreover, both Janson’s variant of
Chernoff bound [Janson, 2004] and a recent refinement of it [Wang et al., 2017] seem to capture
the stochastic dependence of the subset sums too loosely for our needs.

6.3.2 Our approach

Our strategy to overcome the difficulties highlighted in the previous subsection consists in a
second-moment approach.

Unlike the proofs for the single dimensional case, our argument, at first, analyses the proba-
bility of approximating a single target value z ∈ [−1, 1]d. To this end, consider a sample of n
independent random vectors X1, . . . ,Xn and a family C of subsets of the sample. Let Y be the
number of subsets in C whose sum approximates z up to error ε.

For a single subset, it is not hard to estimate the probability with which a subset-sum
∑

i∈S Xi

lies close to z. This allows us to easily obtain good bounds on E [Y].
We, then, proceed to estimate the variance of Y, circumventing the obstacles mentioned in the

previous section by restricting the analysis to families of subsets with sufficiently small pairwise
intersections. While this restriction limits the maximum amount of subsets that are available, a
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standard probabilistic argument allows us to prove the existence of large families of subsets with
the desired property, ensuring that E [Y] can be large enough for our purposes.

For each pair of subsets, S and T , we leverage the hypothesis on the size of intersections to
consider partitions S = SA ∪ SB and T = TC ∪ TB, with SA and TC being large, stochastically
independent parts, and the smaller parts SB and TB containing S∩T . The bulk of our analysis then
consists in deriving careful bounds on their reciprocal dependencies and consequent contributions
to the second moment of Y.

The resulting estimate allows us to apply Chebyshev’s inequality to Y, obtaining a constant
lower bound on Pr [Y ≥ 1]. That is, with conclude that with at least some constant probability at
least one of the subsets yields a suitable approximation of z. Finally, we employ a probability-
amplification argument in order to apply a union bound over all possible target values in [−1, 1]d.

6.4 Preliminaries

Notation. Throughout the text we identify the different types of objects by writing their symbols
in different styles. This applies to scalars (e.g. x), real random variables (e.g. X), vectors (e.g.
x), random vectors (e.g. X), matrices (e.g. X). and tensors (e.g. X). In particular, for d ∈ N,
the symbol Id represents the d-dimensional identity matrix, where N refers to the set of positive
integers. Let n ∈ N. We denote the set {1, . . . , n} by [n], and given a set S employ the notation(S

n

)
to refer to the family of all subsets of S containing exactly n elements of S. Let x ∈ Rd.

The notation ∥x∥2 represents the euclidean norm of x while ∥x∥∞ denotes its maximum-norm.
Moreover, given r ∈ R>0 we denote the set {y ∈ Rd : ∥y−x∥∞ ≤ r} by Bd

∞(x, r). We represent
the variance of an arbitrary random variable X by σ2

X and its density function by φX. Finally, the
notation log(·) refers to the binary logarithm. Let d, n ∈ N and ε ∈ R>0, and consider z ∈ [−1, 1]d
and n independent standard normal d-dimensional random vectors X1, . . . ,Xn. Given S ⊆ [n]
we define the random variable

YS,ε,z,X1,...,Xn =

1 if ∥z −
∑

i∈S Xi∥∞ ≤ ε,
0 otherwise,

that we represent simply by YS when the other parameters are clear from context. Since we are
interested in studying families of subsets, we also define, for C contained in the power set of [n],
the random variable

YC,ε,z,X1,...,Xn =
∑

S∈C
YS ,

which we represent simply as Y.
We control the stochastic dependency among subsets by restricting to families of subsets with

small pairwise intersection. While this reduces how many subsets we can be considered, we can
use the probabilistic method to prove that large families are still available.

Lemma 6.4.1. For all n ∈ N and α ∈ (0, 1
2), there exists C ⊆

([n]
αn

)
with |C| ≥ 2

α2n
6 such that for

all S, T ∈ C, if S ̸= T , then

|S ∩ T | ≤ 2α2n.

Proof.
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If α ≥ 1
2 , then 2α2n ≥ αn, and the result holds trivially. So we assume α < 1

2 .
Let k be any integer, and let C = {C1, C2, . . . , Ck}, with each Ci drawn uniformly from the
collection of subsets of [n] with size αn. Given i, j ∈ [k], if i ̸= j, then

E
[
|Ci ∩ Cj |

]
=

∑
a∈[n]

Pr
[
a ∈ Ci ∩ Cj

]
=

∑
a∈[n]

Pr [a ∈ Ci] · Pr
[
a ∈ Cj

]
= α2n.

By the multiplicative form of Chernoff bounds (see Lemma 6.10.2), it holds that

Pr
[
|Ci ∩ Cj | > 2α2n

]
≤ exp

(
−α

2n

3

)
.

Finally, for the event of interest, we have that

Pr

 ⋂
i ̸=j∈[k]

{
|Ci ∩ Cj | ≤ 2α2n

} = 1− Pr

 ⋃
i ̸=j∈[k]

{
|Ci ∩ Cj | > 2α2n

}
≥ 1−

(
k

2

)
exp

(
−α

2n

3

)

≥ 1− 2
α2t

3 · exp
(
−α

2n

3

)
(6.1)

> 0,

where in Equation (6.1) we have chosen k = 2
α2n

6 .

□

Notice that, while this amount is still exponential, it already imposes n = O( d
α2 log 1

ε ) if we are
to approximate all points in [−1, 1]d up to error ε.

6.5 Proof of the main result

As we frequently consider values relatively close to the origin, approximation of the normal
distribution by a uniform one is sufficient for many of our estimations.

Lemma 6.5.1. Let d ∈ N, ε ∈ (0, 1), σ ∈ R>0, and z ∈ [−1, 1]d. If X ∼ N (0, σ2 · Id), then

e− 2d
σ2 · (2ε)d(

2πσ2
) d

2
≤ Pr

[
X ∈ Bd

∞(z, ε)
]
≤ (2ε)d(

2πσ2
) d

2
.

As a corollary, we bound the first moment of the random variable Y.
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Corollary 6.5.2. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2), let X1, . . . ,Xn be independent

standard normal d-dimensional random vectors. Then, for all z ∈ [−1, 1]d and C ⊆
([n]

αn

)
, it holds

that

e− 2d
αn

(2ε)d |C|
(2παn)

d
2
≤ E [Y] ≤ (2ε)d |C|

(2παn)
d
2
.

Proof.

Let S ∈ C and, hence, |S| = αn. Since Xi ∼ N (0, Id) for all i ∈ [n], we have that
∑

i∈S Xi ∼
N (0, αn · Id). Therefore, as Pr [YS = 1] = Pr

[∑
i∈S Xi ∈ Bd

∞(z, ε)
]
, by Lemma 6.5.1, we

have that

e− 2d
αn

(2ε)d

(2παn)
d
2
≤ Pr [YS = 1] ≤ (2ε)d

(2παn)
d
2
,

and we can conclude the thesis by noting that E [Y] =
∑

S∈C Pr [YS = 1].
□

We proceed by estimating the second moment of Y.

Lemma 6.5.3. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . ,Xn be independent d-

dimensional standard normal random vectors, z ∈ [−1, 1]d, and C ⊆
([n]

αn

)
. If n ≥ 81

α(1−2α) and
any two subsets in C intersect in at most 2α2n elements, then

Var [Y] ≤ (2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)− d

2 − e− 4d
αn

]
+ (2ε)d |C|

(2παn)
d
2
.

Proof.

We have

Var [Y] =
∑

S,T ∈C
Cov [YS ,YT ]

=
∑

S,T ∈C

(
E [YS · YT ]− E [YS ] E [YT ]

)
=

∑
S,T ∈C

(
Pr [YS = 1,YT = 1]− Pr [YS = 1] Pr [YT = 1]

)
=

∑
S ̸=T ∈C

(
Pr [YS = 1,YT = 1]− Pr [YS = 1]2

)
+
∑

S∈C
Pr [YS = 1]

(
1− Pr [YS = 1]

)
.

We shall use Lemma 6.5.1 to estimate Pr [YS = 1], thus, the core of our argument is to bound the
joint probability Pr [YS = 1,YT = 1]. To this end, since Cov [YS ,YT ] increases monotonically
with |S ∩ T |, we fix S, T ∈ C with |S ∩ T | = 2α2n. Moreover, since YS is defined in terms of
the max-norm, we can analyse the associated event for each coordinate independently. So, we
let X1, · · · ,Xn ∼ N (0, 1) and z ∈ [−1, 1].
Consider the partitions S = SA ∪ SB and T = TC ∪ TB, with SB = TB = S ∩ T, and let

A =
∑

i∈SA

Xi, C =
∑

i∈TC

Xi, B =
∑

i∈S∩T
Xi.
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In this way, we have
∑

i∈S Xi = A + B and
∑

i∈T Xi = C + B, with A,C independent random
variables distributed asN (0, σ2

A) and B ∼ N (0, σ2
B), where σ2

A = αn(1− 2α) and σ2
b = 2α2n.

With this setup, we have,

Pr [YS = 1,YT = 1] =
(
Pr
[
A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)

])d
.

From the law of total probability, it holds that

Pr
[
A + B ∈ (z − ε, z + ε), C + B ∈ (z − ε, z + ε)

]
=
∫

R
φB(x) · Pr

[
A + x ∈ (z − ε, z + ε), C + x ∈ (z − ε, z + ε)

]
dx

=
∫

R
φB(x) · Pr

[
A ∈ (z − x− ε, z − x+ ε), C ∈ (z − x− ε, z − x+ ε)

]
dx

=
∫

R
φB(x) ·

(
Pr
[
A ∈ (z − x− ε, z − x+ ε)

])2
dx, (6.2)

where the last equality follows from the independence of A and C.
Since A is a normal random variable with 0 average, by Claim B.3, we have that∫

R
φB(x) ·

(
Pr
[
A ∈ (z − x− ε, z − x+ ε)

])2
dx ≤

∫
R
φB(x) ·

(
Pr
[
A ∈ (x− ε, x+ ε)

])2
dx

=
∫

R
φB(x) ·

(∫ x+ε

x−ε
φA(y) dy

)2

dx.

The hypothesis on n implies that 2σ2
a ≥ 162, so, by Claim B.4,

(∫ x+ε

x−ε
φA(y) dy

)2

≤
[∫ x+ε

x−ε

exp
(
− (x+ε)2

2σ2
A

)
+ exp

(
− (x−ε)2

2σ2
A

)
2
√

2πσ2
A

· exp
(
ε2

2σ2
A

)
dy
]2

= (2ε)2

2πσ2
A
·

exp
(
− (x+ε)2

σ2
A

)
+ exp

(
− (x−ε)2

σ2
A

)
+ 2 exp

(
−x2+ε2

σ2
A

)
4 · exp

(
ε2

σ2
A

)

= eε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

·
φA/

√
2(x+ ε) + φA/

√
2(x− ε) + 2e−ε2/σ2

A · φA/
√

2(x)
4 .

Moreover, it holds that∫
R
φB(x) ·

[
φA/

√
2(x+ ε) + φA/

√
2(x− ε) + 2e−ε2/σ2

A · φA/
√

2(x)
]

dx

= (φB ∗ φA/
√

2)(ε) + (φB ∗ φA/
√

2)(−ε) + 2e−ε2/σ2
A · (φB ∗ φA/

√
2)(0)

= φB+A/
√

2(ε) + φB+A/
√

2(−ε) + 2e−ε2/σ2
A · φB+A/

√
2(0)

= 2e−ε2/σ2
B+A/

√
2 + 2e−ε2/σ2

A√
2πσ2

B+A/
√

2

≤ 4 · e−ε2/σ2
A√

2πσ2
B+A/

√
2

,
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here ∗ denotes the convolution operation, and the last inequality comes from the hypothesis
α ≤ 1

6 , which implies that σ2
B+A/

√
2 ≤ σ

2
A.

Altogether, we have

Pr [YS = 1,YT = 1] ≤

eε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· e−ε2/σ2
A√

2πσ2
B+A/

√
2


d

(6.3)

=

(2ε)2

2π · 1√
2σ2

Aσ
2
B+A/

√
2


d

= (2ε)2d

(2παn)d
· (1− 4α2)− d

2 ,

where the last equality follows from recalling that σ2
B = 2α2n and σ2

A = αn (1− 2α), and,
thus, σ2

B+A/
√

2 = 2α2n+ αt
2 (1− 2α).

Finally, from this bound and from Lemma 6.5.1 we can conclude that

Var [Y] =
∑

S ̸=T ∈C

(
Pr [YS = 1,YT = 1]− Pr [YS = 1]2

)
+
∑

S∈C
Pr [YS = 1]

(
1− Pr [YS = 1]

)
≤

∑
S ̸=T ∈C

[ (2ε)2d

(2παn)d
· (1− 4α2)− d

2 − (2ε)2d

(2παn)d
· e− 4d

αn

]
+
∑

S∈C

(2ε)d

(2παn)
d
2

[
1− e− 2d

αn · (2ε)d

(2παn)
d
2

]

≤ (2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)− d

2 − e− 4d
αn

]
+ (2ε)d |C|

(2παn)
d
2
.

□

Remark 6.5.1 – In the proof of Lemma 6.5.3, after applying the law of total probability it is
possible to employ Lemma 6.5.1 to estimate the joint probability. While this simplifies the argu-
ment, doing so would ultimately weaken the bound in Theorem 6.5.5 by a factor of d. In fact, in
Section 6.7 we argue that the estimation we provide is essentially optimal.

For our next result, recall that the existence of a suitable family of subsets is ensured by
Lemma 6.4.1.

Lemma 6.5.4. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . ,Xn be independent d-

dimensional standard normal random vectors, z ∈ [−1, 1]d, and C ⊆
([n]

αn

)
with |C| ≥ 2

α2n
6 . If

any two subsets in C intersect in at most 2α2n elements, α ≤ 1
6
√

d
, and

n ≥ 144d
α2

(
log 1

ε
+ log d+ log 1

α

)
,

then

Pr [Y ≥ 1] ≥ 1
3 .



102 CHAPITRE 6 — Multidimensional Random Subset Sum Problem

Proof.

By Chebyshev’s inequality, it holds that

Pr [Y ≥ 1] ≥ Pr
[∣∣Y− E [Y]

∣∣ < E [Y]
2

]

≥ 1− 4 ·Var [Y]
E [Y]2

.

Applying Corollary 6.5.2 and Lemma 6.5.3, we get that

4 ·Var [Y]
E [Y]2

≤ 4 · e
4d
αn · (2παn)d

(2ε)2d |C|2
·

(2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)− d

2 − e− 4d
αn

]
+ (2ε)d |C|

(2παn)
d
2


= 4 ·

 e
4d
αn

(1− 4α2)
d
2
− 1

+ 4e
4d
αn · (2παn)

d
2

(2ε)d |C|
.

Since n ≥ 68d
α and α ≤ 1

6
√

d
, by Claim B.1

4 ·

 e
4d
αn

(1− 4α2)
d
2
− 1

 ≤ 1
2 .

Furthermore, as n ≥ 144d
α2

(
log 1

ε + log d+ log 1
α

)
, |C| ≥ 2

α2n
6 , and α ≤ 1

6 , by Claim B.2,

4e
4d
αn · (2παn)

d
2

(2ε)d |C|
≤ ε.

□

Applying an union bound, this we amplify the last lemma to get out main result.

Theorem 6.5.5. Let ε ∈ (0, 1) and given d, n ∈ N let X1, . . . ,Xn be independent standard
normal d-dimensional random vectors and let α ∈

(
0, 1

6
√

d

]
. There exists a universal constant

C > 0 such that, if

n ≥ C d
2

α2 log 1
ε
·
(

log 1
ε

+ log d+ log 1
α

)
,

then, with probability

1− exp

− ln 2 ·

 n

C d
α2

(
log 1

ε + log d+ log 1
α

) − d log 1
ε


 ,

for all z ∈ [−1, 1]d there exists a subset Sz ⊆ [n] for which∥∥∥z − ∑
i∈Sz

Xi

∥∥∥
∞
≤ 2ε.

Moreover, this remains true even when restricted to subsets of size αn.

Theorem 6.1.2 follows from Theorem 6.5.5 by setting α = 1
6
√

d
.
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6.6 Application to Neural Net Evolution

In this section, we present an application of our main result on the multidimensional RSSP (see
Theorem 6.1.2) to a neural network model recently introduced in [Gorantla et al., 2019].

We first provide a description of their model in a setting relevant to our application. Then, we
prove that their model exhibits universality ; namely, with high probability, it can approximate any
neural network within a polynomial overhead in the number of parameters.

6.6.1 The NNE model

The Neural Net Evolution (NNE) model [Gorantla et al., 2019] has been recently introduced as
an alternative approach to train neural networks based on evolutionary methods. The aim is to pro-
vide a biologically inspired alternative to the backpropagation process behind ANNs [Rumelhart
et al., 1986, Goodfellow et al., 2016], which happens in evolutionary time, instead of lifetime.

The NNE model is inspired by a standard update rule in population genetics and, in [Gorantla
et al., 2019], it is shown to succeed in creating neural networks that can learn linear classification
problems reasonably well with no explicit backpropagation.

To define the NNE model, we first need to define random genotypes. Given a vector p ∈ [0, 1]n,
a random genotype x ∈ {0, 1}n is sampled by setting xi = 1 with probability pi, independently
for each i. Each entry xi indicates whether or not a gene is active.

Then, for each i, a random tensor Θ(i) ∈ Rℓ×d×d is sampled. In the original version of the
model [Gorantla et al., 2019], each entry of the tensor is chosen independently and uniformly at
random from [−1, 1] with probability β, while is set to 0, otherwise. For the sake of our application,
we here consider a natural variant of the model where the entries of the tensor are independently
drawn from a standard normal distribution.

Now, given a genotype x ∈ {0, 1}n, we define

Θx =
∑

i : xi=1
Θ(i). (6.4)

Each genotype is then associated with a feed-forward neural network, represented by a weighted
complete multipartite directed graph. The graph is formed by layers {Li}ℓi=0 of d nodes and two
consecutive layers are fully connected via a biclique whose edge weights are determined by the
tensor Θx in the following manner: for every i ∈ [ℓ], the edge between the j-th node of layer Li−1
and the k-th node of layer Li has weight (Θx)ijk.

Equation (6.4) tells us that if a gene is active then it will give a random contribution to each
weight of the genotype network.

The learning process in the NNE model works by updating the genotype probabilities p accor-
ding to some standard population genetics equations [Bürger, 2000,Chastain et al., 2014]. In [Go-
rantla et al., 2019], it is proved that the adopted update rule indirectly performs backpropagation
and enables to decrease the loss function of the networks.

6.6.2 Universality and RSSP

Let f : Rd → Rd be a feed-forward neural network of the form

f(y) = Wℓ σ(Wℓ−1 . . . σ(W1 y)), (6.5)
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where Wi ∈ Rd×d is a weight matrix and σ : Rd → Rd is the ReLU (Rectified Linear Unit)
activation function that converts each coordinate yi of a given vector y ∈ Rd to yi · 1yi≥0.

The restrictions on the weight matrix sizes d × d aim only to ease presentation and can be
adapted to any arbitrary dimensions.

Let us construct a third-order tensor Θf ∈ Rℓ×d×d by stacking the weight matrices W1, . . . ,Wℓ.
We correspondingly denote f by fΘ. Conversely, every tensor Θ ∈ Rℓ×d×d is associated with a
neural network fΘ in the form of Equation (6.5) whose corresponding weight matrices are the
tensor slices, that is, Wm = (Θ) i=m

j,k∈[d]
for every m ∈ [ℓ].

We can use Theorem 6.1.2 to prove a notion of universality for the NNE model.

Theorem 6.6.1. Let ε > 0 and n, d, ℓ ∈ N. Let F be the class of neural networks f : Rd → Rd of
the form given in Equation (6.5) such that their corresponding tensor satisfies maxijk|(Θf )ijk| <
1. A constant C > 0 exists such that, if n ≥ C(ℓ · d · d)3 log 1

ε ·
(
log 1

ε + log(ℓ · d · d)
)

, then

w.h.p. the tensors Θ(1), . . . ,Θ(n) associated to each gene are such that, for any f ∈ F , there is a
genotype x ∈ {0, 1}n which satisfies

max
i∈[ℓ]

j,k∈[d]

∣∣∣(Θf )ijk − (Θx)ijk

∣∣∣ < 2ε.

We note that standard techniques (e.g., [Pensia et al., 2020a,da Cunha et al., 2021]) can be used
to provide bounds on the approximation of the output of neural networks, as well as translating
Theorem 6.6.1 for general network architectures (e.g., convolutional neural networks).

6.7 Tightness of analysis

In Lemma 6.4.1 we prove the existence of a suitable family of subsets via a probabilistic ar-
gument, sampling their elements uniformly at random. The same argument also implies that the
pairwise intersections of almost all subsets is at least α2n

2 . In the next result, we assume such lower
bound and prove that our estimation of the joint probability Pr [YS = 1,YT = 1] in Lemma 6.5.3
(specifically, in Eq. 6.3), is essentially tight. Namely, the next lemma implies that it is not possible
to obtain a high-probability bound on Y in Lemma 6.5.4.

Lemma 6.7.1. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
2), let X1, . . . ,Xn be independent

standard normal d-dimensional random vectors and z ∈ [−1, 1]d. If any two subsets in C intersect
in at least α2n

2 elements and n ≥ 10
α(2−α) , then

Pr [YS = 1,YT = 1] ≥ (2ε)2d

(2παn)d
·
(

1− α2

4

)− d
2

· exp
(
− 3d
αn

)
.

We can extend the above result by letting z lie in a wider range. This will be useful for the
generalisation section Appendix B.

Remark 6.7.1 – If λ > 1 and z ∈ [−λ
√
n, λ
√
n]d, then we have

Pr [YS = 1,YT = 1] ≥ (2ε)2d

(2παn)d
·
(

1− α2

4

)− d
2

· exp
(
−3λ2d

α

)
.
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6.8 Discrete setting

We believe that it should not be hard to adapt our proof to several discrete distributions, in
order to obtain results similar to those discussed in the Related Work section. We also note that
our Theorem 6.1.2 already implies an analogous discrete result. Suppose that we quantise our
random vectors by truncating them to the ⌊log 1

δ ⌋-th binary place, obtaining vectors X̂i such that
∥X̂i −Xi∥∞ < δ. For any z ∈ [−1, 1]d, Theorem 6.1.2 guarantees that w.h.p. there is a subset
of indices I ⊆ [n] such that ∥z −

∑
i∈I Xi∥∞ < ε and, hence, by the triangular inequality,

∥z −
∑

i∈I X̂i∥∞ < nδ + 2ε. As a special case (δ = 2ε), we have the following:

Corollary 6.8.1 Discretization of Theorem 6.1.2. Given d ∈ N, ε, δ ∈ (0, 1), let X̂1, . . . , X̂n

be independent standard normal d-dimensional vectors truncated to the ⌊log 1
δ ⌋-th binary place.

There exists a universal constant C > 0 such that, if n ≥ Cd3 log2 1
ε , then, with high probability,

for all vectors ẑ with entries in {kδ}⌈− 1
δ

⌉≤k≤⌊ 1
δ

⌋ there exists a subset Sz ⊆ [n] for which∥∥∥ẑ − ∑
i∈Sz

X̂i

∥∥∥
∞
≤ 2ε(n+ 1).

Moreover, the approximation can be achieved with subsets of size n
6
√

d
.

6.9 Connection with non-deterministic random walks

Consider a discrete-time stochastic process whose state space is Rd which starts at the origin.
At the first step, the process “branches” in two processes, one of which keeps still, while the other
moves by the vector X1. Recursively, given any time i and any process, at the next time step the
process branches in two other processes, one of which keeps still, while the other moves by the
vector Xi+1. In this setting, when Xi+1 are sampled from a standard multivariate normal dis-
tribution, our results imply that the resulting process is space filling: the process eventually gets
arbitrarily close to each point in Rd. This should be contrasted with the fact that a Brownian motion
is transient in dimension d ≥ 3 [Mörters and Peres, 2010]. The above process can also be inter-
preted as a multi-dimensional version of nondeterministic walks as introduced in [Panafieu et al.,
2019] in the context of the analysis of encapsulations and decapsulations of network protocols,
where the i-th N -step is {Xi, 0⃗}.

6.10 Tools

Theorem 6.10.1 Chebyshev’s inequality. Let X be a random variable with finite expected value µ
and finite non-zero variance σ2. Then for any real number k > 0, it holds that

Pr
[
|X− µ| ≥ k

]
≤ σ2

k2 .

Lemma 6.10.2. Chernoff-Hoeffding bounds [Dubhashi and Panconesi, 2009] Let X1,X2, . . . ,Xn

be independent random variables such that

Pr [0 ≤ Xi ≤ 1] = 1

for all i ∈ [n]. Let X =
∑n

i=1 Xi and E [X] = µ. Then, for any δ ∈ (0, 1) the following holds:
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1. if µ ≤ µ+, then Pr
[
X ≥ (1 + δ)µ+

]
≤ exp

(
− δ2µ+

3

)
;

2. if 0 ≤ µ− ≤ µ, then Pr
[
X ≤ (1− δ)µ−

]
≤ exp

(
− δ2µ+

2

)
.
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7.1 Introduction

A technology which has gained an important momentum in the networking arena is the Net-
work Function Virtualization (NFV) paradigm. The main idea is to dissociate the dependency
on dedicated hardware, such as proprietary software appliances, by allowing network functions
such as load balancing, firewall, content filtering and deep packet inspection, to be virtualized and
executed on generic servers. As such, Virtual Network Functions (VNFs) can be instantiated and
scaled on demand without the need to install new equipment, increasing flexibility to accompany
user demands [NFV ISG, 2013]. Another fundamental and arising technology is Software-Defined
Networking (SDN) that simplifies network monitoring and management. It enables to decouple the
control plane from the data plane, and provides global vision and control of the network [Kim and
Feamster, 2013]. The synergy of SDN and NFV gives rise to highly dynamic, programmable and
flexible networks where both network infrastructures and resources are shared between the various
network services.

Network slices are usually provided in the form of an end-to-end logical network provisioned
with a set of isolated virtual resources on a shared physical infrastructure. Specifically, a network
slice is composed of a set of VNFs, and each VNF is made up of several Virtual Network Function
Components (VNFCs). Some of these components are anticipated to host services which usually
operate at high velocity. Therefore, a short-lived network outage can disrupt significantly these
slices. Reliable placement of these VNFCs is a vital part of the virtual resources allocation and
remains one of the key challenges of network slicing. A viable solution for the placement of
VNFCs with respect of network slicing consists in having a dedicated backup instance for each
component such that some instances handle the service traffic, while others are used as a protection
mechanism against failures of compute servers. Indeed, for resiliency purposes, some VNFCs have
to be run in parallel such that different replicas of a same VNFC are concurrently deployed as a
dedicated protection mechanism. Such resiliency constraints belong to the class of anti-affinity
rules and are often related to the hosts that are anticipated to provision them. In particular, the
network infrastructure across Internet Service Providers consists of compute servers made up of
different capacity constraints zones as part of the horizontal scaling. An example of such zones
are the NUMA zones [Gureya et al., 2020] which are used as a protection mechanism for the host
and are practically being deployed as such on physical motherboards.

Our work consists in finding an efficient placement strategy to map the network slices with the
infrastructure, while ensuring a dedicated protection. Such protection usually follows some design
models according to the pre-provisioning, along with deployment models according to the type
of traffic regulating the slice demands. Such slices are, for instance, handled in the OpenStack
cloud computing infrastructure in an online fashion without any sorting mechanism. However,
giving priority to resolving capacity constraints and ignoring the conflicting aspects of the problem
addressed may lead to an overestimation of the necessary number of compute servers.

In this chapter, we propose different algorithms for the reliable allocation of resources for net-
work slicing, and compare them with the placement algorithm used by the main computing engine
behind the OpenStack infrastructure. Moreover, we propose a coloring based algorithm which
extends over multiple dimensions, while satisfying the dedicated protection mechanism for the
components. We also take into consideration the distribution of free resources across the compute
servers after the provisioning while devising our algorithms. In particular, we consider the effect
of the sorting criteria of the network slice over the total performance.
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Symbol Description
S Set of compute servers
Z Set of zones for each compute
Γ Total number of VNFC instances
C Set of all VNFCs
c A component in C
Tc Number of available replicas of c
Ck

c The k-th replica of c
fk

c Network vector for Ck
c

Rc||Ac Design resiliency scheme for c

TABLE 7.1 – Glossary of notations

The rest of this chapter is organized as follows. We first discuss the relevant research literature
in Section 7.2. We then formulate in Section 7.3 the problem statement and describe different algo-
rithms. In Section 7.4, we evaluate our approach over synthetic and real-world network slices and
discuss the obtained results. Conclusions are drawn in Section 7.5, together with open questions
for future work.

7.2 Related Work

A large number of works has been devoted to the deployment and management of network
services. We refer the reader to the surveys in [Herrera and Botero, 2016] and [Mijumbi et al.,
2015].

Failure protection. The problem of providing network protection against failures has been studied
for different use cases such as bandwidth-optimal recovery placement [Tomassilli et al., 2021] and
reliable service function chaining [Tomassilli et al., 2018b]. In [Kong et al., 2017], the problem
of distributing VNF replicas between both primary and backup paths while maximizing the avai-
lability has been considered, based on a heuristic algorithm. The setting where slicing placement
requires multiple network functions, which require a different amount of each resource to process
a unit of flow has been studied in [Sallam et al., 2019]. Different from previous studies on failure
recovery, we present a resilience mechanism for VNFCs placement to protect against compute
server failures where the network slicing is deployed over an infrastructure of NUMA zones.

Vector Bin packing. The classical bin packing (BP) problem has been extensively studied. While
for its one dimensional setting, [De La Vega and Lueker, 1981] showed an asymptotic polynomial
time approximation scheme (APTAS) which was later improved by [Karmarkar and Karp, 1982],
it turned out that there is no APTAS for square packing [Woeginger, 1997]. The approximability of
the multidimensional setting of BP has been studied in [Chekuri and Khanna, 2004] and [Bansal
et al., 2006], where improved approximation algorithms were designed. Some variants of BP [Jan-
sen, 1999], [Epstein and Levin, 2008], [Epstein et al., 2008] have been studied ever since, where
some pair of items are in conflict, i.e. not allowed to be packed together in the same bin. Howe-
ver, a setting under conflicts over an arbitrary number of dimensions has not been considered in
previous works.
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To the best of our knowledge, a general multidimensional setting under conflict constraints for
reliable network slicing has not been explored. We combine both the multidimensional aspect with
the capacity and resiliency constraints, and provide fast and efficient combinatorial algorithms.

7.3 Problem statement

7.3.1 Problem definition

In order to deploy a network service, Internet Service Providers (ISPs), Content Delivery Pro-
viders (CDPs) and other Telco operators usually buy or rent a technical solution from a vendor.
Such solution is composed of a set of VNFs, each VNF being itself a set of VNFCs. Each VNFC
requires for its operations a certain amount of virtual CPU and memory. To run the solution, the
customer uses an infrastructure composed of compute servers, networking resources, and storage
assets. Compute servers, used for illustration in this study, are made up of several zones, each of
these zones being characterized by a maximum amount of CPU and memory.

The deployment of VNFs/VNFCs must respect a set of rules. First, since the capacity of a
compute server is limited, only a subset of VNFCs can be hosted in any compute. Moreover, each
single VNFC cannot be split across different zones. Last, for resiliency purposes, each VNFC is
usually subject to an anti-affinity rule which is defined by a design redundancy model. Let us
suppose that a certain VNFC has some design scheme denoted by R||A. Such a scheme implies
that the vendor has decided that R replicas (replica and instance are used interchangeably in this
chapter) of the VNFC are needed to handle the traffic, but A additional ones have to be deployed
for protection purposes. Alternatively, everyR instances must be protected byA backups such that
if a single compute server fails, at least R instances of the VNFC always run. Such redundancy
protection is therefore designed against single failures of the compute servers.

The main aim is to find the minimal number of compute servers needed to host the VNFs of
the network service, by piling up the VNFC instances in these computes, while respecting the
anti-affinity rule for the redundant instances. We refer to this problem by VNFC-PROTEC.

We use the notations in Table 7.1 in the rest of this chapter, to make it self-contained.

Network vector. We represent a network service by a set C of VNFCs, such that an instance Ck
c

from C denotes the k-th replica of the VNFC c. Moreover, for each component c, let α(c) =
{Ck

c , 1 ≤ k ≤ Tc} denote the set of its available replicas. We associate with c a network vector fk
c

which acts as a summary indicator for the network characteristics required by the VNFC. Since
all replicas of a same VNFC are similar, then for each component c fixed, it holds that

∀k, k′ ∈ α(c) : fk
c = fk′

c .

Therefore, we can drop the subscript k for ease of notation and assimilate fc = fk
c for each

copy k ∈ α(c) of c.
For the VNFC-PROTEC problem, we consider a three-dimensional network vector fc =

(f cpu
c , f ram

c , f res
c ) ∈ R3 such that, for each VNFC c, f cpu

c ∈ (0, 1] is its normalized amount
of needed CPU, f ram

c ∈ (0, 1] is its normalized amount of needed memory and f res
c ∈ N is its

deployment resiliency factor as described hereafter.

Deployment resiliency factor. Let us consider a VNFC c with a design scheme Rc||Ac = 3||1
decided by the vendor. Thus, every three instances of c needed to manage the traffic, must be
protected by one additional instance. Moreover, let us assume that there are a total of Tc = 7
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replicas of the VNFC. It implies that the compute servers in the infrastructure must host seven
instances of c such that: 3 instances are protected by one backup and 2 instances are protected
by one backup. Therefore, the deployment scheme induced by (Rc||Ac, Tc) would be: 5||2. The
deployment resiliency factor associated with the aforementioned VNFC c is defined as f res

c = 2
from the deployment scheme.

More generally, the deployment resiliency factor for a component c under the design scheme
Nc||Rc is defined as

f res
c =

⌈
Tc

Rc +Ac

⌉
.

The factor corresponds therefore to the maximum number of replicas for the VNFC c allocable
to a single compute server. It captures the anti-affinity rule induced by the traffic for a given VNFC.
Note that the deployment scheme for a VNFC c can be thus expressed as Tc − f res

c ||f res
c .

7.3.2 Exact ILP

We describe an exact Integer Linear Program which computes the optimal solution by mini-
mizing the number of hosts needed. The main variables are the boolean variables xs and zkcsz

defined as follows

- xs = 1 if there is a VNFC instance assigned to the compute server s ∈ S and 0 otherwise.

- zkcsz = 1 if the copy k of the VNFC c ∈ C is assigned to the host s ∈ S in the zone z ∈ Z
and 0 otherwise.

The objective is to minimize the number of compute servers, i.e.,

min
∑

s∈S
xs (7.1)

The maximum capacity for each zone is then∑
c∈C,k∈α(c)

zkcsz · f cpu
c ≤ zC ∀s ∈ S, z ∈ Z (7.2)

∑
c∈C,k∈α(c)

zkcsz · f ram
c ≤ zR ∀s ∈ S, z ∈ Z (7.3)

All instances of each VNFC must be assigned∑
s∈S,z∈Z,k∈α(c)

zkcsz = Tc ∀c ∈ C (7.4)

The anti-affinity rule for each VNFC is expressed as∑
z∈Z,k∈α(c)

zkcsz ≤ f res
c ∀c ∈ C, s ∈ S (7.5)

A compute is used if at least one instance is assigned to

zkcsz ≤ xs ∀s ∈ S, z ∈ Z, c ∈ C, k ∈ α(c) (7.6)
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The binary constraints are as follows

zkcsz ∈ {1, 0} ∀s ∈ S, z ∈ Z, c ∈ C, k ∈ α(c) (7.7)

xs ∈ {1, 0} ∀s ∈ S (7.8)

For small sized instances of the VNFC-PROTEC problem, the ILP provides good solutions (see
Section 7.4). However, finding an optimal solution requires a prohibitive computation time as the
problem is NP-complete. For large size instances, it is even impossible to find feasible solutions
using the ILP. We thus propose, in the following, efficient heuristics and a coloring algorithm to
solve the VNFC-PROTEC problem.

7.3.3 Lower bounds

In order to boost the subsequent algorithms, we provide a lower bound denoted byLB on the mi-
nimum number of needed compute servers. Let zC (respectively zR) denote the maximum amount
of virtual CPU cores (respectively memory units) available in a single zone. Since a feasible de-
ployment must satisfy a set of constraints, then it holds that

LB = max

∑c Tcf
cpu
c

|Z| · zC
,

∑
c Tcf

ram
c

|Z| · zR
,max

c

⌈
Tc

f res
c

⌉ . (7.9)

While the first two quantities are derived from the resource allocation of the VNFCs under
the capacity constraints of the computes nodes, the third quantity stems from the anti-affinity
deployment constraint.

7.3.4 Heuristics

Slice sorting. Since the network vector is multidimensional, we study the effect of sorting the
set of VNFCs that occur within a slice over the placement allocation. A widely used approach
in one-dimensional placement algorithms consists in sorting the instances in decreasing order by
their size. We thus consider a descending lexicographical ordering rule denoted byR based on the
network vector dimensions: f cpu, f ram and f res. Each of the six possible rules alternates between
giving priority to capacity constraints satisfaction and anti-affinity resolving. Let FR denote the
first dimension over which the instances are sorted within the slice according toR.

Compute scheduling. In addition to minimizing the number of compute servers, it is also of
relevant importance to allocate the VNFCs evenly across the infrastructure with respect to the re-
sources. We propose different algorithms which determine differently how to dispatch the VNFCs
across the computes.

— The ORDERED-VECTOR greedy algorithm extends the First Fit Decreasing approach which
was shown to be an efficient fast heuristic for one-dimensional resource placement. It
operates by first sorting the slice according to a rule R. Then, at each step, a VNFC is
always placed over the first compute server which satisfies both the capacity and resi-
liency constraints. Furthermore, we increment this algorithm with a swap procedure which
first finds the set Pmin of compute nodes with the minimum number of assigned set
Creallocate of VNFCs. Then, it attempts to reallocate randomly each instance c in Creallocate

across the computes in S \ Pmin by swapping c with a random feasible instance among
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the already placed instances in C \ Creallocate. We obtain a new algorithm denoted by
ORDERED-VECTOR-SWAP.

— The LEAST-LOAD algorithm considers a sorted slice according to R. Then, it sorts the
compute servers in the decreasing order based on the free amount of available load along
FR where the load of a compute is defined as the total sum of the resource FR across
the instances that it currently hosts. For every VNFC, the instance is placed at the least
loaded compute which doesn’t break the resiliency constraint after sorting the computes.
While the algorithm starts with the predetermined lowerbound in Eq. (7.9), the SLIDING-
LEAST-LOAD algorithm (see Algorithm 5) increases the LB every time LB computes are
not enough to host the network slice.

— We consider the default placement algorithm used by the Nova scheduler, which is the main
computing engine behind the OpenStack cloud computing infrastructure, denoted by OS-
NOVA. The algorithm is similar to LEAST-LOAD with the following differences. First, the
network slice is not sorted. Second, the load of the computes is defined as the average
sum of the CPU and RAM resources. We increment OS-NOVA with two variants. While
ORDERED-OS-NOVA sorts according to the rule R, HEURISTIC-RANDOM does the same
but also chooses randomly a compute from a subset of the least loaded computes by uni-
formly shuffling a fraction γ of the first sorted computes.

7.3.5 Colored Bin Packing

We model the VNFC-PROTECT problem by a generalized version of bin packing that we denote
by COLORED-BIN-PACKING. We consider an undirected graphG = (V,E) where V = {1, ..., n}
represents the set of items of respective sizes s1, ..., sn such that si ∈ [0, 1]d (for d > 0) and E
the set of links between the items. The goal is to find a minimum-size partition of the items into
independent sets (or bins) B1, ..., Bm of G such that ∥

∑
i∈Bk

si∥∞ ≤ 1, where ∥.∥∞ denotes the
standard l∞ norm.

When E = ∅, COLORED-BIN-PACKING reduces to the standard bin packing problem (d = 1).
Therefore, the problem is NP-complete, APX-hard and no algorithm can achieve a better approxi-
mation ratio than 3

2 (unless P=NP). It comes from the approximation hardness of standard bin
packing through a reduction from the partition problem [Garey and Johnson, 1979a]. Moreover,
if
∑

i∈V si ≤ 1, we obtain the special case of the graph coloring problem, i.e., determining the
chromatic number χ(G), which cannot be approximated within factor N1−ε for an input of N
items, for all ε > 0 (unless P=NP) [Zuckerman, 2006].

Equivalence. For each VNFC c with a given deployment scheme Tc − f res
c ||f res

c , we dispatch
its replicas in α(c) into f res

c partitions where each partition is represented by a clique graph de-
noted by Kc

i , for i = 1, ..., f res
c . The resiliency graph G is therefore a disjoint union of graphs

K1, ...,KΓ where K1 =
⋃fres

c
i=1 K

c
i . By making the set of edges E depend on the deployment resi-

liency factor, we thus directly represent the anti-affinity rules of the VNFCs. In order to solve the
COLORED-BIN-PACKING, we leverage upon efficient algorithms for the bin packing tailored for a
certain class of graphs. Since the resiliency graph is clearly a perfect graph, it belongs to the class
of graphs for which one can find in polynomial time a coloring that uses a minimum number of
colors. Therefore, we propose COLORED-APPROX (see Algorithm 6) which operates over multi-
dimensional network vectors by using different weighting systems. The main idea is to carefully
remove small subgraphs of items which induce problematic instances due to the anti-affinity rule.
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Algorithm 5 SLIDING-LEAST-LOAD

Input: VNFC set C, Ordering ruleR
Output: A set of compute nodes S and a mapping of VNFC nodes to compute nodesmR : C → S

1: Set LB according to Eq. (7.9) ▷ Lower bound
2: CR ← sort C decreasingly usingR
3: unfeasible = True
4: while unfeasible do
5: Add LB compute nodes to S
6: for each VNFC c in CR do
7: Mapped[c]← False
8: for each compute node s in S do
9: for each zone z(s) do

10: βcpu
z ← Free available CPU in z

11: βram
z ← Free available RAM in z

12: A(s)← (maxz(s) β
cpu
z ,maxz(s) β

ram
z )

13: S ← sort S decreasingly per (A, FR)
14: for each compute node s in S do
15: if s can host c then ▷ Assignment constraints
16: Assign c to s
17: Mapped[c]← True
18: Break
19: if not Mapped[c] then
20: Lb ← Lb + 1 ▷ Slide
21: Break
22: if Mapped[c] then
23: unfeasible = False
24: return S

Weighting. The technique of weights has been used for one-dimensional bin packing problems
and produces efficient algorithms [Jansen and Öhring, 1997, man Jr et al., 1996]. Each item i is
assigned a weight wi based on its size si and its packing in some fixed solution, such that the
number of bins of the algorithm is close to the total sum of weights. We denote by D the set of
network characteristics such as CPU, memory, disk usage.

The COLORED-APPROX algorithm operates in several steps. First, an item i is said to be large
(resp. small) if the quantity max{fd

i , d ∈ D} in [0, 1] is larger (resp. smaller or equal) than 1/2.
The set of items V of the resiliency graph G is then partitioned into (H1, H2) such that H1 (resp.
H2) collects the large (resp. small) items. Next, an edge (i, j) between two items i, j with i in H1
and j in H2 is added if the following conditions are satisfied:

∀ ∈ D, fd
i + fd

j ≤ 1 and (i, j) /∈ E (7.10)

Eq. (7.10) captures both the capacity and resiliency constraints characterizing the situation where
two items can be jointly placed in a bin. The edge (i, j) is associated with a weight wij defined as:

wi,j = F(fi, fj) + bj (7.11)
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Algorithm 6 COLORED-APPROX

Input: Resiliency graph G = (V,E), Ordering ruleR
Output: A set of compute nodes S and a mapping of VNFC nodes to compute nodes mR : V →
S

1: Partition V into PH = (H1, H2) (See Sec. 7.3.5)
2: Set the pairs EH with wH according to Eq. (7.10) and (7.11)
3: Create a weighted bipartite graph B = (PH , EH , wH)
4: Find a maximum weight matchingM in B
5: for each (c1, c2) inM do
6: S ← S ∪ {c1, c2} ▷ Joint placement
7: Collect in M the nodes fromM
8: N = V \M ▷ Components not yet placed
9: Compute a feasible coloring with χR(G[N ]) colors

10: Kχ ← classes from the obtained coloring
11: for each class κ in K do
12: Run ORDERED-VECTOR over the items in κ
13: Add the obtained computes to S
14: return S

where fi, fj are the network vectors, F is an aggregator function (e.g., maximum, mean, weighted
sum) such that it outputs a value in [0, 1], and bj is a bias term associated with the small item.
Several values of bj were proposed in such a way to classify the items into intervals, then a weight
is associated by either giving the same weight to all items in the same interval, or scaling them
by a multiplicative factor [Seiden, 2002, Baker and Coffman, 1981]. We adopt the special weight
function in [Epstein and Levin, 2008] which has the benefit of not rounding up the size (along
each dimension) of an item to the next unit fraction. For each d in D, let pd be the integer such
that fd

j ∈ ( 1
pd(pd+1) ,

1
pd

]. The term bj is set to 1
ρ(ρ+1) where ρ = max(pd, d ∈ D). Note that as a

special case, when |D| = 1, the network vector is one-dimensional and COLORED-APPROX is a
5
2 -approximation algorithm [Epstein and Levin, 2008].

7.4 Performance Evaluation

In this section, we first present our evaluation setup. Then, we provide a broader assessment of
the various solutions proposed under different scenarios.

7.4.1 Evaluation setup

Slide demands. We consider the design and deployment of several slices in the network. Each
slice has to implement a set of VNFs where each VNF is composed of a given number VNFCs.
Each VNFC requires a specific amount of CPU, memory, and has anti-affinity constraints. Our
aim is to evaluate the performance of the different placement algorithms (see Section 7.3) over
the resource allocation of a given slice across an infrastructure. The latter is made up of a given
number of compute servers where each compute is composed of a set of zones with a given CPU
and memory capacities.
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Figure 7.1 – Performance in terms of bins.

Metrics. We compare the different algorithms in terms of the expected number of bins obtained,
the running time, and the distribution of free resources (referred to by wastage) across the different
bins. Since the number of bins varies across the algorithms under the same slice, to analyze the
wastage, we consider the variation coefficient Cv which is the ratio of the standard deviation to
the mean and captures the level of dispersion around the mean of free resources of the compute
servers after the placement.

7.4.2 Evaluation scenario

Generation. We run our experiments over a synthetic scenario based on a random generator of
network slices. For a fixed number of zones (between 1 and 5), the generator provides a network
slice made up from a random number of VNFCs. A VNFC has a given cost determined by its
network vector where f cpu, f ram are selected uniformly at random between 0 and 1, the number of
replicas Tc (which comprises the backup instances) randomly between 1 and 10, and the resiliency
factor f res randomly between 1 and Tc. Therefore, a given slice is made up of σ instances where
σ =

∑Γ
c=1 Tc.

We also validate our results over a real scenario based on traces from a real ISP network.
Settings. We set γ = 0.25 and the time limit for the ILP solver to 10 hours. Moreover, we

chose among two families of aggregators: Fd
mean(fi, fj) = fd

i +fd
j

2 for each dimension d and

Fmean(fi, fj) =
∑

d
fd

i +fd
j

4 , in addition to Fd
max(fi, fj) = max(fd

i + fd
j ) for each dimension d

and Fmax(fi, fj) = max({fd
i , f

d
j , d ∈ D}).

Results. As shown in Fig. 7.1 and Fig. 7.2, only a limited subset of our instances have been
submitted to the ILP solver, which turned out to need a generous time-limit of 9 hours to be able
to solve optimally a mere subset of 34 instances (the starting point of the red straight lines indicate
the moments where we stopped taking into account the ILP algorithm). Therefore, the ILP does
not scale and becomes quickly irrelevant as the size of the slice increases. Fig. 7.2 shows that,
unlike the ILP, all the various algorithms remain very fast as the difficulty of the network slices
increases.

We note that the quality of OS-NOVA regularly deteriorates in terms of bins. Moreover,
ORDERED-OS-NOVA being relatively better than OS-NOVA shows the importance of sorting the
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Figure 7.2 – Performance in terms of running time.
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Figure 7.3 – Performance in terms of CPU wastage.

slice before the placement. On top of the VNFCs sorting, shuffling the top least loaded com-
pute nodes provides an apparent improvement as demonstrated by HEURISTIC-RANDOM. This
is explained by the fact that in the default version of OS-NOVA, the compute servers are sorted
evenly by f cpu and f ram. However, the pre-sorting of the slice implies that sorting the computes
by F (R) of the ordering rule is more beneficial as SLIDING-LEAST-LOAD unveils. The latter
records quite honorable results and, as expected, spreads the components evenly across the com-
pute nodes (Fig. 7.3 considers the CPU as in the given slice F (R) = CPU). While the algorithm
remains fast, it is outperformed by the others (aside the ILP). This shows that even an overestima-
tion LB of the necessary number of compute notes does not affect the minimization problem of
the least load paradigm.

As expected, the swap procedure improves over ORDERED-VECTOR while remaining fast. On
the other hand, while COLORED-APPROX and ORDERED-VECTOR-SWAP obtain the best perfor-
mances in bins, the coloring approach spreads the wastage evenly in contrast with the ORDERED-
VECTOR-SWAP which obtains the worst performance with a relatively high Cv. We recall that
in the one-dimensional case, the latter provides a guaranteed theoretical approximation perfor-
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mance. The benefit of the weighting techniques lies in not giving the priority to resolving capacity
constraints, but also taking into account in a joint manner the anti-affinity rule. We observed that
the scenario studied under the real ISP traces provided a similar assessment with, in particular,
the scalability and efficiency of the COLORED-APPROX as the number of zones increases. Last,
we note that when the matching is empty, COLORED-APPROX becomes equivalent to ORDERED-
VECTOR with the major difference that making the feasible coloring over the resiliency graph
depend onR ensures that the distribution of wastage remains reasonable.

7.5 Conclusion and Future work

In this chapter, we presented a coloring based approach to carry out an efficient placement
of network slices under a general protection mechanism which preserves failure tolerance of the
virtual components. Our experiments over synthetic and real traces show that the proposed al-
gorithms outperform the default placement algorithm in OpenStack while remaining very fast.
A future work will investigate the asymptotic approximation performance of our algorithms and
adapt them under an online provisioning of network slices.
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8.1 Introduction

To meet the growing and increasingly diverse demands of users and companies, networks have
evolved, adopting new technologies to make their management more efficient and more respon-
sive to dynamic changes in traffic. The first fundamental evolution to the management of modern
networks is Software Defined Networking (SDN). SDN is a network paradigm that decouples the
control plane from the data plane and enables centralized control of the network. The network
becomes programmable and routing rules can be adjusted in real time leading to a better responsi-
veness of network management in case of traffic changes.

Network Function Virtualization (NFV) comes with SDN as a paradigm allowing the decou-
pling of network functions from the hardware. Functions can be virtualized on generic servers
located in data centers dispersed all over the network. NFV allows first of all the reduction of ca-
pital expenditure (Capex) by avoiding the purchase of a dedicated equipment for each function. It
also allows a reduction of operational costs (Opex) since a function can be easily stopped when not
used. Finally, NFV allows a more flexible network management since functions can be instantiated
on demand anywhere in the network when needed due to traffic dynamics.

By combining SDN and NFV technologies, network management thus is greatly enhanced by
making the network programmable, dynamic, and flexible, and by allowing for controlled sharing
of resources between different services and users. The increasing importance of wireless networks
and the emergence of 5G bring out new needs such as massive device connectivity, high mobi-
lity and a great diversity in the quality of service (QoS) requirements. Network slicing has been
proposed to meet this challenge and to satisfy these diversified service needs. By dividing the
network infrastructure into multiple logical isolated networks, network slicing allows the support
of a wide range of communication scenarios with a diversified set of service demands, require-
ments, and performance. To meet a demand, a slice needs to fulfill an end-to-end service which
requires joint allocation of different types of resources. A slice must be deployed in real time and,
thus, the corresponding provisioning of network, computing, and storage resources has to be done
dynamically.

In 5G networks, traffic is considered to be highly dynamic and network requests may be subject
to frequent changes such as arrivals and departures. This dynamicity may fragment the slice re-
source usage and make the use of network resources less efficient. To counter this effect, network
operators need to regularly reconfigure the network slices. Indeed, thanks to SDN and NFV, the
routing of flows and the allocation of the network functions can be easily modified. The slice allo-
cation can thus be adjusted in order to reduce the resource utilization with the goal of minimizing
operational costs.

In this work, we propose a method to efficiently reconfigure the network without breaking the
flows in order to avoid the interruptions of traffic. We use a make-before-break mechanism in
which we first allocate the resources for a secondary route while keeping the first one intact (i.e.,
two redundant routes are reserved in parallel). Then, we migrate the flow to the new route and
release the resources of the old one. There is no disruption of the traffic and, therefore, no impact
on the Quality of Service (QoS) of the slices. The computations of the new routes is done by using
a scalable optimization decomposition method making use of a column generation approach.

Even when using such a mechanism to avoid degrading the QoS, network operators do not want
to reconfigure their network too frequently, as it may lead to additional management costs. On
the opposite, reconfiguring too rarely during the day may lead to a sub-optimal network usage.
A simple policy with low computational cost is to regularly reconfigure after a fixed number
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of minutes. However, reconfiguring in response to variation of traffic can reduce the number of
reconfigurations required each day without impacting the overall improvement obtained.

In this chapter, we propose a reconfiguration management agent that chooses when to initiate
reconfiguration as a function of different parameters such as the traffic dynamics and the level of
network congestion. We use a Deep Reinforcement Learning technique (DRL) by implementing
it with Tensorflow [Abadi et al., 2015] and their Deep Q-learning Network (DQN) agent. We then
show that our agent improves the efficiency of reconfigurations by performing less reconfigura-
tions while still minimizing the network operational costs compared to doing periodic and frequent
reconfigurations.

The rest of this chapter is organized as follows. In Section 8.2, we discuss related work. Sec-
tion 8.3 presents the formal definition of our problem, Section 8.4 the column generation model,
and Section 8.5 the optimization model Deep-REC based on reinforcement learning. In Sec-
tion 8.7, we validate Deep-REC by various numerical results. Finally, we draw our conclusion in
Section 8.8.

8.2 Related Work

Routing and provisioning of slices. The VNF allocation and SFC provisioning problems have
been widely studied in recent years. Some works focus on static scenarios such as [Huin et al.,
2018, Tomassilli et al., 2018a] in which the authors develop efficient methods coupling chained
allocation of VNFs and traffic routing within SFCs. The dynamic nature of network traffic raises
a range of problems concerning the acceptance of incoming slices, resource management, and
Service Level Agreement compliance. Cheng et al. [Cheng et al., 2020] use a method to deploy and
manage slice provisioning using deep learning and Lyapunov stability theories. In [Harutyunyan
et al., 2019], the authors present a Mixed Integer Linear Program and a heuristic to add new
slices by minimizing the bandwidth consumption and the slice provisioning cost while taking
into account the VNF migrations. In [Sharma et al., 2020], a method is presented to manage the
creation, modification or deletion of slices by adapting to the traffic. Their goal is to minimize the
number of slices while having enough bandwidth available to serve the traffic.

Reconfiguration using standard techniques. The reconfiguration of SFCs and/or slices aims to
maintain a near-optimal state of the network over time in order to optimize the network usage and
the acceptance of demands. Wang et al. [Wang et al., 2019] develop an algorithm that manages
two types of reconfiguration to maximize the operator’s profits. First, a reconfiguration to adapt
the slices to the current traffic. Second, a reconfiguration modifying the flows traversing the slices.
The algorithm then schedules the reconfigurations and reserves resources for future traffic to re-
duce the number of potential future reconfigurations. Each reconfiguration includes the service
interruption and resource usage as costs. In [Pozza et al., 2020] authors proposed a slice reconfi-
guration technique in which the new state of the network is pre-computed. The reconfiguration is
done in several steps in which the VNFs and routes are modified while taking into account capa-
cities and delays. In [Gausseran et al., 2021], authors proposed an integer linear program and an
heuristic to efficiently reconfigure Service Function Chains using a make-before-break strategy.
In [Gausseran et al., 2021], column generation techniques are used to optimize the reconfiguration
of hundreds of network slices in only few seconds.

Learning-based reconfiguration Some recent works use reconfiguration techniques based on
reinforcement learning and try to predict the dynamicity of the network. Liu et al. [Liu et al.,
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2020] propose a VNF migration strategy based on Double-Deep Q-Network. Their goal is to
equally place VNFs between Mobile Edge clusters and core clouds in order to avoid conges-
tion at the Edge. The migration takes into account future traffic and tries to reduce the number
of migrations while minimizing the number of congested links. In [Troia et al., 2019] the authors
use reinforcement learning to perform dynamic SFC resource allocation in optical networks. They
define an agent that decides for each SFC when and which reconfiguration to perform (migration,
scaling-up, scaling-down) in order to meet the QoS criteria. Each SFC has a bound on the maxi-
mum number of authorized reconfigurations and the optimization objective is the total number of
reconfigurations. Each reconfiguration has a penalty for service interruption.

In [Wei et al., 2020] the authors use DRL to predict when to reconfigure in order to minimize
the resources consumed. Unlike our work, the authors focus on intra-slice reconfigurations with
a fixed number of requests throughout the experiment and with unchanging service sources and
destinations. Their algorithm optimises slices only locally and uses a pre-computed set of paths
using Depth-first search algorithm. Guan et al. [Guan et al., 2020] use a Markov Renewal Process
to predict changes in the resource occupancy of slices and reserve resources for slices that obtain
higher revenues at lower cost. They use Deep dueling neural network combined with Q-Learning
to choose for each slice whether to reconfigure it or not. Their goal is to maximize long term
revenue: the increased user utility minus a cost for the resource utilization and the service inter-
ruptions. Similar to the last two works mentioned, we establish an agent based on DRL to choose
when to reconfigure the slices.

To the best of our knowledge, we are the first to propose a methodology to reconfigure a dy-
namic network with incoming and outgoing slices and not being dependent on a fixed number of
slices throughout the day. Our deep reconfiguration learning algorithm adapts its behavior based
on the variations of the whole network traffic and not to a fixed set of flows within a slice. Moreo-
ver, we do not fix a limit of the reconfigurations per slice or per day. The agent determines the best
time to reconfigure and performs the needed number of reconfigurations depending on the traffic
variations. The reconfiguration is computed independently using a column generation algorithm
based on a make-before-break reconfiguration that chooses which slices to reconfigure. This al-
lows our method to deal with a large number of slices, taking only a few seconds to compute the
reconfiguration.

8.3 System Model and Problem Formulation

We consider the network as a directed capacitated graph G = (V,L) where V represents the
node set and L the link set. Using the resources available in this network, we must allocate a set
of slices requests D.

A network slice request d ∈ D is modeled as a Service Function Chain (SFC) (as in [Zhang
et al., 2017]) with a quintuplet: (i) the source vSRC, (ii) the destination vDST, (iii) the required
bandwidth BWd in traffic units, (iv) the delay requirement γd, and, (v) the ordered sequence of
network functions cd that need to be performed, where f cd

i is the i− th function of chain cd. Each
network function instance f ∈ F has a installation cost cf accounting for all the VNF usage costs
(licenses, energy consumption, etc). Each slice d ∈ D provides a revenue u per bandwidth unit.

We aim to find an allocation of the slice requests such that the network operator profit ac-
cumulated over a certain time window is maximized. This cumulative profit is the sum of the
instantaneous profits pt at each observation time (i.e. minute). The profits pt are computed as the
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difference between the overall revenue of the allocated slices and the overall cost of the deployed
VNFs at time t:

pt =
∑

d∈Dt

u · BWd −
∑

f∈Ft

cf (8.1)

where Dt and Ft is the set of slices and function instances allocated at observation time t, respec-
tively.

In a dynamic scenario with no information on future traffic, the impact of recently arrived re-
quests onto the cumulative profit (at the operator time horizon) is still not known: slices routed
using long paths will consume too many resources preventing the allocation of future requests. To
take into account that, at each time, we target to place new requests on paths such that resources
(i.e. bandwidth at each link and network functions at each node) are minimized.

As a consequence of this lack of information about the future, the trivial mechanics of requests
coming and leaving over time will bring the network in a global sub-optimal state, since optimal
allocations previously computed are not optimal anymore. Hence, we are forced to periodically
reconfigure the network. To do that, we use the make-before-break mechanism [Gausseran et al.,
2020] that avoids network service disruption due to traffic rerouting. We detail the process of the
reconfiguration of a request in the following example of Figure 8.1.

8.3.1 Example

Two requests, B to C and F to E are routed during step (b). Four VNFs have been installed in B,
C, E and F to satisfy the needs of these requests. To avoid the usage cost of new VNFs, the route
from A to F with minimum cost is a long 5–hops route and the VNF already installed in node B is
shared by the two slices (step (c)). When requests from B to C and from F to E leave, the request
is routed on a non-optimal path (step (d)), which uses more resources than necessary. We compute
one optimal 3-hop path and reroute the request on it (step (f)) with an intermediate make-before-
break step (step (e)) in which both routes co-exist. During this intermediate step, traffic can follow
both paths, resources are accordingly reserved. The old path is removed when all the allocation
and provisioning are ready to be used. In doing so, no packet losses occur and the traffic is not
interrupted. In this example, the reconfiguration can be done in only one step of reconfiguration,
but we will consider in the following up to 3 steps of reconfiguration.
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Figure 8.1 – An example of the reconfiguration of a request using a make-before-break approach with one
step.

8.4 Column Generation Optimization models

In this section, we first describe the main principles of the column generation algorithm to solve
the problem of reconfiguration of network slices, and then we show how we will leverage this for
our deep reinforcement learning algorithm.

Using an Integer Linear Programming formulation to find the optimal solution for each make-
before-break reconfiguration is impossible in an acceptable time for a dynamic scenario given
the number of slices that we reconfigure. Column generation (CG) [Desaulniers et al., 2005] is
a model allowing to solve an optimization model without explicitly introducing all variables, see
Figure 8.2 for an explanation. It thus often allows to solve larger instances of the problem than a
compact model, in particular, with an exponential number of variables. In this work, the master
problem (MP) seeks a possible global reconfiguration for all slices with a path-formulation. This
means that the problem decision variables (columns) correspond to paths on the layered graph.
In the restricted master problem (RMP), only a subset of potential paths is used for each slice.
At the initialization, the set of paths is the one used before reconfiguration. Each pricing problem
(PP) then generates a new path for a request, together with the placement of the VNFs. During a
reconfiguration, slices are migrated from one path to another. Note that, as the execution of each
pricing problem is independent of the others, their solutions can be obtained in parallel. Table 8.1
summarizes the notations used for the column generation model.
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Figure 8.2 – CG is a decomposition method dividing an optimization model into two parts: a master
problem and a (set of) pricing problem(s) (PP). The restricted master problem (RMP) solves a fractional
relaxation of the problem with a restricted set of columns (i.e. paths on the layered graph). Then the PPs
compute the best columns to be added, based on prices given by the dual variables of the RMP. The RMP
and PP are then iteratively solved until no more columns can improve the solution of the RMP. Last, the

original problem is solved with the integrality constraint using the columns of the RMP.
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Figure 8.3 – The layered network GL(d) associated with a demand d such that vs = u1, vd = u3, and
cd = f1, f2, within a triangle network. f1 is allowed be installed on u1 and f2 on u1 and u3. Source and
destination nodes of GL(d) are u1,0 and u3,2. Two possible slices that satisfy d are drawn in red (f1 is in

u1, f2 in u3) and blue (f1 and f2 are in u1).

8.4.1 Layered graph

We make use of the concept of layered graph presented in Figure 8.3 with an example of a
graph with three layers. In order to model the chaining constraint of a demand, we associate to
each demand d a layered graph GL(d) with |cd| layers where |cd| denotes the number of VNFs in
the chain of the demand. Each layer is a duplicate of the original graph and the capacities of both
nodes and links are shared among layers. A path on the layered graph starts at layer 0 and ends
at layer cd and corresponds to an assignment of both a path and the locations where functions are
being run (the links between layers).

Representing the original graph as a layered graph is a modeling trick first proposed in [Dwaraki
and Wolf, 2016]. It allows to simplify the problem by reducing it to a routing problem with shared
capacities. This allows a drastic reduction of computation time compared to usual strategies using
a large number of binary variables due to the ordering constraints of VNFs in the slice.

8.4.2 Master Problem

The Master Problem of the column generation algorithm is described in this section.
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Symbol Description
G = (V,L) Network: V represents the node set and L the link set.
Cℓ Bandwidth link capacity of ℓ ∈ E.
Γℓ Link delay of ℓ ∈ L.
Cv Resource node capacity (e.g., CPU, memory, and disk) of node v ∈ V .
∆f Number of compute units required by function f ∈ F per unit of band-

width processed.
cu,f Usage cost of function f ∈ F , which also depends on node u.
T The number of reconfiguration steps.
V VNF Set of nodes where VNFs can be hosted
D Set of slices requests
Pd Set of paths for a demand d
Each demand d ∈ D is modeled by a quintuplet:
(vSRC, vDST) Source and destination nodes,
cd Ordered network function sequence for demand d,
f cd

i i− th function of chain cd,
BWd Required bandwidth units,
γd Maximum required delay for the slice.

TABLE 8.1 – Notations.

Parameters:
• δp

l is the number of times the link ℓ appears on path p.
• θp

i,u = 1 if node u is used as a VNF on path p on layer i.

Variables:
• φd,t

p ∈ [0, 1] is the amount of flow of demand d on path p at time step t.
• yd,t

p ∈ [0, 1] is the maximum amount of flow of demand d on path p between time step t− 1 and
t.
• zu,f ∈ [0, 1], is equal to 1 if function f is activated on Node u at time step T in the final routing.

We assume an initial configuration is provided with fixed values for φd,0
p . The optimization

model is written as follows.

Objective: minimize the amount of network resources consumed during the last reconfiguration
time step T , which is the sum of the bandwidth used (BW) added to the sum of the costs of the
deployed VNFs multiplied by a factor β.

min
∑

d∈D

∑
p∈Pd

∑
ℓ∈E

BWd φ
d,T
p δp

ℓ + β
∑

u∈V VNF

∑
f∈F

cu,f zu,f (8.2)

Note that maximizing the accepted bandwidth in equation (8.1) implies minimizing the link band-
width used by the paths (first term in equation (8.2)) ; whereas the second term in equation (8.2)
represents the cost of the VNFs deployed at time t in equation (8.1).

We considered a value of β for which the bandwidth and the VNFs have the same weight in the
objective: using 100% of the available bandwidth has the same cost as using 100% of the available
VNFs.
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Constraints:
One path constraint. For d ∈ D, time step t ∈ {0, ..., T}.∑

p∈Pd

φd,t
p = 1 (8.3)

Path usage over two consecutive time periods. For d ∈ D, p ∈ Pd, t ∈ {1, ..., T}.

φd,t
p ≤ yd,t

p and φd,t
p ≤ yd,t−1

p (8.4)

Make Before Break - Node capacity constraints. The capacity of a node u in V is shared between
each layer and cannot exceed Cu considering the resources used over two consecutive time per-
iods. ∆ is the amount of computational units required by function f ∈ F per unit of bandwidth
processed. For u ∈ V VNF, t ∈ {1, ..., T}.

∑
d∈D

∑
p∈Pd

|cd|−1∑
i=0

yd,t
p · θ

p
i,u · BWd ·∆f

cd
i
≤ Cu (8.5)

Make Before Break - Link capacity constraints. The capacity of a link ℓ ∈ E is shared between
each layer and cannot exceedCℓ considering the resources used over two consecutive time periods.
For ℓ ∈ E, t ∈ {1, ..., T}, ∑

d∈D

∑
p∈Pd

BWd y
d,t
p δp

ℓ ≤ Cℓ. (8.6)

Function activation. To know which functions are activated on which nodes in the final routing.
For u ∈ V , f ∈ F , d ∈ D, i ∈ {0, ..., |cd| − 1},

yd,T
p θp

i,u ≤ zu,f
cd
i
. (8.7)

8.4.3 Pricing Problem

The pricing problem searches for a possible placement for the slice. Since a reconfiguration
can be done in several steps, a pricing problem is launched for each demand, at each time step.
The objective of the pricing problem for each demand d at time t is called the reduced cost and is
expressed using the equation in [Desaulniers et al., 2005].

Parameters:
• µ are the dual values of the master’s constraints. The number written in upperscript is the

reference of the master’s constraints.

Variables:
• φℓ,i ∈ {0, 1} is the amount of flow on link ℓ in layer i.
• αu,i ∈ {0, 1} is the amount of flow on node u in layer i.
Objective: minimize the amount of network resources consumed for the demand d at time t.

min
∑

ℓ∈E

|cd|∑
i=0

φℓ,i BW(1 + µ
(8.6)
l,t ) + BW

∑
u∈V VNF

µ
(8.5)
u,t

|cd|−1∑
i=0

∆f
cd
i
αu,i

− µ(8.3)
d,t + β

∑
u∈V VNF

∑
f∈F

cu,f zu,f µ
(8.7)
d,u,f (8.8)
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where µ(8.7)
d,u,f = 0 when t ̸= T , see constraints (8.7).

Constraints:
Flow conservation constraints for the demand d. For u ∈ V VNF.

∑
ℓ∈ω+(u)

φℓ,0 −
∑

ℓ∈ω−(u)
φℓ,0 + αu,0 =

1 if u = vs

0 else
(8.9)

∑
ℓ∈ω+(u)

φℓ,|cd| −
∑

ℓ∈ω−(u)
φℓ,|cd| − αu,|cd|−1 =

−1 if u = vd

0 else
(8.10)

∑
ℓ∈ω+(u)

φℓ,i −
∑

ℓ∈ω−(u)
φℓ,i + αu,i−1 − αu,i−1 = 0

0 < i < |cd| (8.11)

Delay constraints. The sum of the link delays of the flow must not exceed the delay requirement
of demand d.

|cd|∑
i=0

φℓ,i Γℓ ≤ γd (8.12)

Function activation. To know which functions are activated on which nodes. For u ∈ V VNF, f ∈ F ,
layer i ∈ {0, ..., |cd| − 1}

αu,i ≤ zu,f
cd
i

(8.13)

Location constraints. A node may be enabled to run only a subset of the virtual network functions.
For u ∈ V VNF, i ∈ {0, ..., |cd|−1}, if the (i+1)th function of cd cannot be installed on u, we have

αu,i = 0. (8.14)

8.4.4 Motivation for Deep-REC

Our algorithm reconfigures a given set of network slices from an initial routing and placement
of network functions to another solution that improves the usage of the network resources (both
in terms of link bandwidth and VNFs). This reconfiguration is done with a make-before-break
approach to avoid interruptions of the flows.

In a dynamic scenario, due to the frequent arrival and departure of slices, the network is regularly
in a sub-optimal state. Nevertheless, the frequency to run this reconfiguration algorithm was found
on a empirical manner. Indeed, previous works [Gausseran et al., 2020, Gausseran et al., 2021]
showed that reconfiguring every 15 minutes allowed a good ratio between cost reduction, quality
of reconfigurations, acceptance rate and computation time.

A fixed frequency is easy to set up but in practice, at some specific time of a day, reconfiguration
may not be needed as traffic remains stable and the network is already in an optimal state. A new
reconfiguration at this time won’t bring any gain. On the opposite, during high-dynamic traffic
period, more frequent reconfigurations may be suitable to maintain an acceptable state of the
network with efficient network resource usage. Therefore, a network operator might be interested
to adapt the reconfiguration frequencies depending on the congestion of the network, and the
nature of the traffic. This is the main goal of this work.

Indeed, even if we use a make-before-break reconfiguration model which allows to reconfigure
without degrading the quality of service, reconfiguring generates network management costs to
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migrate VNFs, and to compute and instantiate the intermediate and the new paths [Noghani et al.,
2019].

We present in the new section our DRL model named Deep-REC to choose when to reconfi-
gure in order to optimally adapt to the evolving network state. Our objective is to maximize the
cumulative profit as presented before: the sum of the instantaneous profits pt (See (8.1)).

8.5 Deep Reinforcement Learning (DRL) Algorithm: Deep-REC

The reinforcement learning paradigm formalises a discrete time stochastic control process (as
our networking problem) where an agent interacts with an environment (in our case, the network).
At each time step t, the agent interacts with its environment by (i) observing from the environment
the current state s, (ii) accordingly, taking a decision (an action) a, (iii) receiving a reward r(s, a),
and, (iv) observing a new state s′ (the network has transitioned from s to s′). The agent can repeat
this process for a potential infinite number of time steps, giving rise to a trajectory. The sum of
the discounted rewards over a trajectory from time t, or discounted return, is calculated as:

Gt =
∞∑

k=0
γkrt+k+1

where γ ≤ 1. The expectation of Gt over all possible trajectories initiated at a state s after taking
an action a is the so-called Q-value function Q(s, a). We aim to take, at each state s, the action a
maximizing the Q-value function. Then, we need to estimate Q(s, a).

In [Watkins and Dayan, 1992], authors proposed the Q-learning algorithm to learnQ(s, a) from
a sequence of agent interactions with the environment. Unfortunately, when the state and action
spaces are huge, Q-learning needs a prohibitive computation time. To overcome that, Deep Q-
learning Network (DQN) [Mnih et al., 2015] makes use of a deep neural network to approximate
the Q-value function for high-dimensional state-space problems, as our case. Finally, we also opt
for DQN since, conversely to other reinforcement learning algorithms, it can learn efficiently from
past experiences without introducing bias.

Description. For the implementation we use the DQN agent from tf_agents.agents.dqn.dqn_agent,
and the neural network from tf_agents.networks.q_network [Abadi et al., 2015]. The network is
composed of a pre-processing layer from keras [Chollet et al., 2015] used for batch normalization
and 2 layers of 64 neurons each. The batch size is 288, which is large enough to properly nor-
malize. We use Adam optimizer with a learning rate of 1e-3 and we update the network every 16
states.
The discount factor γ is set to 0.9, a value large enough to show the importance of future actions.
We use an epsilon-greedy policy, where ϵ is set to 0.99 and decay to 0 in 200 instances. The replay
buffer has a size of 50 instances and we train the agent on 250 instances.

Context. A 24-hour day consists of 1440 minutes. We decided to discretize it into 288 periods of
5 minutes in order to optimize the training of our agent. It is recalled that the objective is to maxi-
mize the profit, while reconfiguring as efficiently as possible. The agent can potentially choose to
reconfigure 288 times. To make the agent aware of the implicit trade-off between reconfiguring
now or later, an artificial cost per reconfiguration vR is introduced. Reconfiguring a network will
never decrease the profit, but the agent has to learn when a reconfiguration is really worth it.

The agent will then learn the optimal number of reconfigurations to maximize the profit with
this artificial cost. This cost can be real (management cost) or it can be fixed to get a given number
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of reconfigurations per day. The advantage of this technique compared to having a maximum
number of reconfigurations allowed is that allows the agent to make more or less reconfigurations,
adapting its behavior to the current period of the day.

State and Action Spaces. The network state can be described based on the next five quantities:
(i) the number of minutes since the last reconfiguration ∆T , (ii) the number of slices added since
the last reconfiguration λ, (iii) the number of slices released since the last reconfiguration µ, (iv)
the current profit pt (8.1) and, (v) the current time t. ∆T represent the current allocation oldness,
λ and µ estimate the current network load.

The action space consists of two actions: to perform or not a reconfiguration at current time
based on the decision of our agent.

Reward Function. If the agent has chosen not to perform a reconfiguration, the reward is 0.
Otherwise, the agent selects the reconfiguration, and two scenarios are possible:

1. The reconfiguration was worth it. A reconfiguration at time t is computed. To have a long-
term vision, we simulate the network behaviour (slices arrivals and departures) with the new
network configuration for the next three time slots (in training, we can simulate the future
requests). Finally, we estimate the accumulated profit gained with the reconfiguration as:

∆pR = {
t+3∑
k=t

pk|reconf at t}

2. The reconfiguration was actually not worth it. The reward is estimated differently. We sup-
pose that no reconfiguration was performed at t and we also simulate the network behaviour
(slices arrivals and departures) for the next three time slots. Again, we estimate the accumu-
lated profit gained, this case, without the reconfiguration as:

∆pNR = {
t+3∑
k=t

pk|no reconf at t}

Finally, we compute the reward as:

r = ∆pR −∆pNR − vR.

We therefore have a positive reward when the profit increase ∆pR (if reconfiguring was the good
decision) compensates both the profit increase ∆pNR (if not reconfiguring was the good decision)
and the reconfiguration cost.

Training. We are now studying the efficiency of the learning of our agent trained on 250 ins-
tances. In the Figure 8.4(a), the return of the agent on the training environment increases during
the 250 trained instances, which implies that it learns to maximize the accumulated rewards on
each instance.

We should not reconfigure too often during a day, so in Figure 8.4(b), we study the variation
of the number of reconfigurations made by the agent on each instance. The agent starts by re-
configuring randomly: 1 time out of 2 and thus about 144 times per instance, and it learns that it
must reduce the number of reconfigurations to maximize the accumulated reward. When the agent
has trained on around 200 instances, the epsilon reaches 0 and the number of reconfigurations
converges to around 70 reconfigurations per instance.
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Figure 8.4 – Learning Curves

8.6 Data Set

Topology. We conduct simulations on a real-world topology from SNDlib [Orlowski et al., 2010],
ta1 (24 nodes, 55 links), which includes 6 datacenters on which all VNFs can be instantiated.
The cost of VNF cf is equal to the revenue of 2000 times the revenue u of a megabyte served.

Slice demands Each slice is composed of a chain of up to 5 VNFs, requires a specific amount of
bandwidth, and has latency constraints. We consider four different types of demands correspon-
ding to four services: Video Streaming, Web Service, VoIP, and online gaming. The characteristics
of each service are reported in Table 8.2 and have been already used by [Savi et al., 2015]. The
bandwidth usage was chosen according to the distribution of Internet traffic described in [Cisco,
2015]. The latency requirements are expressed in milliseconds and represent the maximum delay
between the source and destination.

Each minute, 1 to 5 slice requests arrive (uniform random distribution) and slices that have
reached the end of their life are removed from the network. By varying the lifetime of the slices,
we can vary the maximum number of slices present at the same time on the network and so that
the load on the network follows the curve in Figure 8.5. This figure represents a real distribution of
traffic measured on a dedicated network operator. We divided this traffic in five different periods,
where D1 is a low-traffic period, and in D5, the network is highly congested. There are between
30 and 180 slices present at each moment on the network and in 24 hours, there are about 4320
arrivals of slices.

Reconfiguration Cost. To train Deep-REC, we define a fixed and artificial cost to the reconfi-
guration vR. This cost can be adapted to reconfigure more or less. In our study, it is equal to the
cost of deploying a VNF for 15 minutes, which implies that a reconfiguration is useful if it al-
lows to shut down a VNF for at least 15 minutes. To be usable in practice, a reconfiguration must
be done quickly. Thanks to the column generation, we can limit the computation time of each
reconfiguration to 15 seconds without affecting its efficiency.
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Slice Types VNF chain Latency bw (Mbps)

Web Service NAT-FW-TM-WOC-IDPS 10ms 100
Video Strea-
ming

NAT-FW-TM-VOC-IDPS 5ms 256

VoIP NAT-FW-TM-FW-NAT 3.5ms 64
Online Gaming NAT-FW-VOC-WOC-IDPS 2.5ms 50

TABLE 8.2 – Characteristics of network slices

Figure 8.5 – Distribution of traffic

8.7 Numerical Results

We compare the results obtained with three solutions in this section:

— No-REC: the slices are added in and removed from the network over time, and no reconfi-
guration is performed,

— REC-15: the reconfiguration is carried out every 15 minutes using a make-before-break
strategy,

— Deep-REC: our deep-learning make-before-break reconfiguration proposal.

We first show that reconfiguring the network leads to significant gains in terms of profit. We then
discuss the importance of selecting the best moments to carry out the reconfigurations, allowing
to perform fewer reconfigurations while achieving similar gains.

8.7.1 Improved network operational Cost

Figure 8.6 presents the network cost ((second term in equation (8.2))) per megabyte of data
sent over the network throughout the day. We observe that the costs achieved by REC-15 and
Deep-REC are very similar with a clear improvement compared to No-REC: REC-15 allows an
improvement of 36.82% when Deep-REC performs a little better with 38.05%. We also see that
the cost is rather stable throughout the day while with No-REC the cost increases strongly during
low-congestion period (periods D1 and D2, between 2am and 7am). The global cost improvement
through a day of REC-15 is 34.18% versus 35.55% with Deep-REC.

Figure 8.7 presents the network operational cost for the three strategies in terms of VNF costs
(second term in equation (8.2)). This shows that both Deep-REC and REC-15 reduce the network
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operational cost compared to No-REC. This justifies the necessity of reconfiguring. Moreover, the
two reconfiguring strategies are comparable for this parameter.

8.7.2 Improved Profit and link utilisation

Figure 8.8 shows the achieved profit, whose maximization is the objective of the reconfiguration:
Deep-REC and REC-15 have similar performance and improve the profit compared to No-REC.
Indeed, the profit improvement of REC-15 is 32.75% versus 32.53% for Deep-REC.

Finally, Figure 8.9 shows that even when minimizing VNF costs, reconfiguring the network
does not lead to an increase of congestion: we observe a slightly higher utilization of links during
periods D1-D2, but when the network is heavily loaded (periods D4-D5), there is a reduction of
the congestion of the network.

As a conclusion, reconfiguring the network reduces congestion while reducing costs. Moreover,
we validate with these results the performance of Deep-REC as it leads to similar profit as a
periodic reconfiguration strategy such as REC-15. We show in the following that Deep-REC, by
performing reconfigurations at the ideal moment, achieves this efficiency while reducing the total
number of reconfigurations through a day compared to a regular and fixed reconfiguration strategy
such as REC-15.

8.7.3 Number of reconfigurations

Figure 8.10 presents the cost improvement divided by the number of reconfigurations over
periods of two hours. This shows that Deep-REC performs more efficient reconfigurations than
REC-15. Each reconfiguration leads to a better improvement in terms of the network costs.
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Figure 8.12 – Reconfiguration distribution for Deep-REC compared to REC-15.

Figure 8.11 presents the number of slices modified during the reconfiguration. Our algorithm
Deep-REC modified approximately 20% less slices than REC-15, and thus there is less impact
on the network (less modifications, less computation).

Finally, Figure 8.12 shows the distribution of the number of reconfigurations during a day over
two-hour periods. The green line on the figure represents REC-15 which does a constant number
of reconfiguration, namely 8 (a reconfiguration every 15-minutes). In contrast, Deep-REC adapts
its actions to the network load and does not carry out reconfigurations when they are not necessary,
leading to a reduction of their number during the majority of the day, see the period between
10am and 4pm. Moreover, Deep-REC performs more reconfigurations than REC-15 during the
ascending phase (between D1 and D5) in order to react to the rapid change of the network and,
thus, to maintain a good profit. With 96 reconfigurations during a day (against 73.2 in average for
Deep-REC), REC-15 has 31.15% more reconfigurations, for only 0.22% profit improvement.

8.8 Conclusion and Future Work

We presented in this chapter a DRL strategy to carry out an efficient reconfiguration of network
slices with dynamic network demands. Our proposal, Deep-REC, chooses adequately the best
time to reconfigure, it reconfigures few times during low-congestion periods compared to a fixed-
frequency reconfiguration strategy. Moreover, when the network is highly congested, Deep-REC
adapts his behavior, and reconfigures more in order to maximize the network profit. Finally,
Deep-REC reduces by almost a quarter the number of reconfigurations needed over a day, while
achieving similar performances in terms of network operational costs, achieved profit, and conges-
tion of the network. As a future work we plan to extend the simulations of Deep-REC for several
networks and to study the efficiency of our proposal by experimentation on a real platform.



CHAPTER 9
Conclusion and Future

Work
Artificial Intelligence (AI) is a fast-growing research and development discipline which is ra-

pidly changing and shaping several areas of society. However, together with opportunities, the
field has also brought new challenges across different domains that need to be explored.

One of these challenges deals with finding efficient graph similarity measures to optimize the
process of learning on graphs. In Chapter 2, we investigated the potential of graphs kernels in
the field of networking by studying the problem of anomaly detection and traffic classification.
We proposed a graph-based learning framework which aims at preventing anomalies from disrup-
ting the network while providing assistance for traffic monitoring. At the core of the framework
lies a graph kernel tailored for networking that was developed based on random walks and the
Weisfeiler-Lehman hierarchy of isomorphism tests. The framework was made fast and scalable by
using special purpose graphs along with an approximation algorithm for which we derived some
theoretical guarantees. An interesting future research direction concerns the theoretical investiga-
tion of the interaction between graph kernels and graph neural networks towards graph learning.

Then, we studied the long-term behavior of multi-agent systems under deterministic and sto-
chastic majority dynamics around the consensus task. We considered two different flavors of the
problem, that have been widely studied in the literature.

The first, in Chapter 3, is a reversible majority dynamics. We studied a biased opinion dynamics
where agents are influenced by the majority of their neighbors. We have shown that consensus
on the preferred opinion exhibits a dichotomy by proving that convergence time is always po-
lynomial for cubic graphs, whereas it becomes exponential (for a sufficiently small bias) in ran-
dom ∆-regular graphs (∆ ≥ 4), answering an open conjecture in the literature. Our analysis of
this dichotomy was based on a new approach to study the time of adoption of a new opinion or
technology by exploiting structural properties of graphs in light of a generalized notion of graph
domination. An interesting avenue for future research is to analyze the case of multiple opinions
and the relationship with potential opinion diffusion models which reproduce complex properties
observed in real-world networks such as social networks.

The second, in Chapter 4, is an irreversible majority dynamics. We studied a bootstrap per-
colation process in which, at every step, infected vertices with a majority of infected neighbors
becomes infected and remain so forever. We determined almost tight bounds on the minimum size
required by an initially infected vertices set in order to eventually lead to a full infection of the
population in the cases of square grids and tori. Extensions for future work may cover the study of
multidimensional grids and the speed of the infection.

Another challenge in the field of AI concerns overcoming the shortcomings induced by the
complex and massive neural network architectures. Indeed, although neural networks have de-
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monstrated impressive capabilities across several complicated tasks, such successes come at the
cost of significant computational complexity. A fundamental line of research in this direction is
aimed towards lowering the size of such networks while retaining good accuracy through com-
pression techniques.

In Chapter 5, we first presented a simplified proof, with a more direct approach and resourcing to
more elementary tools, for a fundamental result on the random subset sum problem that has gained
renewed attention for its implications in the theory of compressing artificial neural networks with
the aim of increasing their efficiency. Then, in Chapter 6, we studied a multidimensional generali-
zation of the problem and demonstrated as an application that a recently proposed neural network
model can, with high probability, approximate any neural network within a polynomial overhead
in the number of parameters. Interesting future directions consist in investigating the real-world
implications of these results and studying pruning approaches from an algorithmic perspective.

Finally, we looked at some other miscellaneous problems. In Chapter 7, we presented a multi-
dimensional colored packing approach to carry out an efficient placement of network slices while
protecting against failures of, e.g., compute servers, within an infrastructure that benefits from
NFV and SDN technologies. We validated the performance of our algorithms on real-world ISP
networks. Furthermore, in Chapter 8, we presented a deep reinforcement learning strategy to carry
out an efficient reconfiguration of network slices with dynamic network demands, in the context
of the 5G network slicing paradigm. Our aim is to determine the best time to reconfigure in order
to maintain an efficient provisioning of the network.

In this thesis, we only addressed some of the challenges emerging within the AI field in its
broad perspective, with a particular focus on investigating some foundations of networks span-
ning telecommunications networks, multi-agent systems and neural networks. While many of the
challenges still need to be addressed, we believe there is tremendous potential of this field in this
endeavor towards supporting efficient, effective and sustainable services.
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(a)

(b) Impossibility :
(2,4) in D, (4,2) 

not in D

(d) Case 2;
(2,4)  in D

(2,6) not in D

(e), first subcase of 
Case 2: (6,2) in D

(f), second subcase of 
Case 2: (6,2) not in D

(c) Case 1:
(2,4),(2,6),(4,2),(6,2),
(4,8),(6,8), (8,4) and 

(8,6) in D

Figure A.1 – Illustrations of Proposition A.1 (n = 9). Red vertices are the one that are assumed to belong
to the lethal set D of size 33, yellow vertices are assumed to belong to V \D and white vertices are

undetermined yet. Vertices (squares) surrounded by blue correspond to the hypotheses done in the different
cases of the proof. Figure (a) is a configuration that is certain if |D| = 33. Figure (b) is the configuration
obtained if (2, 4) ∈ D and (4, 2) /∈ D and leads to a contradiction (Claim A.3). Figure (c) corresponds to

the first case and leads to a contradiction. Figure (d) corresponds to the second case. Figure (e) (resp., (f))
to the subcase (6, 2) ∈ D (resp. (6, 2) /∈ D) leading to a contradiction in both subcases.

A Chapter 4

We provide hereafter an ad-hoc combinatorial proof that s3(G9×9) = LB9 + 1. We first state a
proposition which gives more properties of the vertices ofD and V \D when n ≡ 1 or 3 (mod 6).

Property 7. Let n ≡ 1 or 3 (mod 6) and let D be a lethal set of size LBn = (n2 + 2n)/3 ; then
a) there are no two adjacent vertices in D, and
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b) a vertex in V \D cannot have 4 neighbours in D.

Proof.

We reconsider the proof of Theorem 4.2.4 with a more careful analysis. If two vertices of D are
adjacent, their perimeter is 6 and not 8 and so the initial perimeter is at most 4|D| − 2. So we
get 4|D| − 2 − 2(n2 − |D|) ≥ 4n and so |D| ≥ (n2 + 2n + 1)/3 > LBn and that proves
property a). If a vertex in V \ D has 4 neighbours in D, then when this vertex is infected the
perimeter decreases by 4 and not 2. So in that case we get 4|D| − 2(n2 − |D|)− 2 ≥ 4n and so
|D| ≥ (n2 + 2n+ 1)/3 > LBn and that proves property b).

□

Proposition A.1. We have s3(G9×9) = LB9 + 1 = 34.

Proof.

The upper bounds come from Theorem 4.3.6. To prove the proposition, by Theorem 4.2.4, it is
sufficient to show that there is no lethal set for G9×9 with 33 vertices.
Hence, for purpose of contradiction, let us assume that there exists a lethal set D of size 33 in
the grid G9×9. The basic idea of the proof is mainly to use Properties 5, 6 and 7 in order to
progressively show that some vertices are forced to belong to D (vertices in red in Figure A.1)
or to V \D (vertices in yellow in Figure A.1). There are few cases to be considered.
By Property 5 and 7, D ∩ B = {(1, 1), (1, 3), (1, 5), (1, 7), (1, 9), (3, 9), (5, 9),
(7, 9), (9, 9), (9, 7), (9, 5), (9, 3), (9, 1), (7, 1), (5, 1), (3, 1)}. Then by Property 7(a),
(2, 3), (2, 5), (2, 7), (3, 8), (5, 8), (7, 8), (8, 7), (8, 5), (8, 3), (7, 2), (5, 2), (3, 2) are not in D.
Then, Property 6 implies that (2, 2) ∈ D (otherwise there will the path (1, 2), (2, 2), (2, 1) in
V \D) ; similarly (2, 8), (8, 2), (8, 8) ∈ D. So far, we may assume that D contains the vertices
described in red and does not contain the ones in yellow as shown in Figure A.1(a).
Let us now prove two claims very useful for the proof.

Claim A.2. At least one vertex in each of the pairs {(2, 4), (2, 6)} {(4, 2), (6, 2)},
{(4, 8), (6, 8)} and {(8, 4), (8, 6)} belongs to D.

Proof.

Suppose it is not true and that for example (2, 4) and (2, 6) are in V \D. Then there will be
the path (1, 4), (2, 4), (2, 5), (2, 6), (1, 6) in V \D, contradicting Property 6.

□

Claim A.3. For each pair {(2, 4), (4, 2)} {(6, 2), (8, 4)}, {(2, 6), (4, 8)} and {(6, 8), (8, 6)},
the two vertices of this pair have the same status (either both in D or both in V \D).

Proof.

For purpose of contradiction, let us assume by symmetry that (2, 4) ∈ D and (4, 2) /∈ D
(see Figure A.1(b)). By Property 7(b), vertex (3, 3) /∈ D (otherwise the vertex (3, 2) which
belongs to V \D will have 4 neighbours in D). Then, Property 6 implies that vertex (4, 3) ∈
D (otherwise V \ D would contain a 4-cycle). Moreover, by Claim A.2, as (4, 2) /∈ D,
then (6, 2) ∈ D. Now, by Property 7(a), vertices (3, 4), (4, 4), (5, 3) and (6, 3) are not in
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D. Then, Property 6 implies (5, 4) ∈ D (since otherwise we will have in V \ D the 8-
cycle (3, 2), (3, 3), (3, 4), (4, 4), (5, 4), (5, 3), (5, 2), (4, 2)). Then, by Property 7(a), we have
(5, 5), (6, 4) /∈ D. Then, by Property 7(b) (7, 3) /∈ D (since otherwise (7, 2) would be a
vertex in V \D with four neighbours in D). Finally, Property 6 implies (7, 4) ∈ D (otherwise
V \ D contains the 4-cycle ((7, 4), (7, 3), (6, 3), (6, 4))) and (8, 4) ∈ D otherwise V \ D
contains a path from (4, 1) to (9, 4). But then, there are two adjacent vertices in D namely
(7, 4) and (8, 4), contradicting Property 7(a) (see Figure A.1(b)).

□

Now, let us come back to the partial configuration described in Figure A.1(a). Recall that, red
vertices are known to belong to D and yellow vertices do not belong to D.
By Claim A.2, at least one vertex in each of the pairs {(2, 4), (2, 6)} {(4, 2), (6, 2)},
{(4, 8), (6, 8)} and {(8, 4), (8, 6)} belongs to D. We consider two cases

— Case 1: all vertices (2, 4), (2, 6), (4, 2), (6, 2), (4, 8), (6, 8), (8, 4), (8, 6) belong to D (see
Figure A.1(c)).
By Property 7(a), this implies that vertices (3, 4), (3, 6), (4, 7), (6, 7), (7, 6), (7, 4),
(6, 3), (4, 3) are not inD. Then, vertices (3, 3), (3, 5), (3, 7), (5, 3), (5, 7), (7, 3), (7, 5), (7, 7)
are not inD by Property 7(b). But, then there exists a 16-cycle (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (4, 7),
(5, 7), (6, 7), (7, 7), (7, 6), (7, 5), (7, 4), (7, 3), (6, 3), (5, 3), (4, 3) in V \ D, a contradic-
tion.

— case 2 : In at least one of the pairs {(2, 4), (2, 6)} {(4, 2), (6, 2)}, {(4, 8), (6, 8)}
{(8, 4), (8, 6)} one vertex belongs to D and the other not. By symmetry suppose (2, 4) ∈ D
and (2, 6) /∈ D.
By Claim A.3, as (2, 4) ∈ D, then (4, 2) ∈ D. By Property 7(a) (3, 4) /∈ D and (4, 3) /∈ D.
By Claim A.3, as (2, 6) /∈ D, then (4, 8) /∈ D. Hence, by Claim A.2, (6, 8) ∈ D and again
by Claim A.3, (8, 6) ∈ D. Moreover, by Property 7(a) (6, 7) and (7, 6) are not in D. Now,
Property 6 implies (3, 7) ∈ D, since otherwise there would be a path from (1, 6) to (4, 9)
in V \ D. Then, Property 7(a) implies that (3, 6) and (4, 7) /∈ D. Then, by Property 6,
(4, 6) ∈ D again to avoid a path from (1, 6) to (4, 9) in V \D and then, by Property 7(a)
(4, 5) and (5, 6) /∈ D. Then, vertices (3, 5) and (5, 7) need to be in D to avoid 4-cycle in
V \D. See Figure A.1(d) for the configuration reached so far. There are two subcases to
be considered.

— Case (6, 2) ∈ D (see Figure A.1(e)). By Claim A.3, (8, 4) ∈ D and so by Pro-
perty 7(a), (6, 3) and (7, 4) /∈ D. Then, Property 7(b), (7, 3) /∈ D (otherwise (8, 3)
would have 4 neighbours in D). Then (6, 4) must be in D to avoid a 4-cycle in
V \ D and so, by Property 7(a), (5, 4), (6, 5) /∈ D to avoid adjacent vertices in D.
At this point, D already contains 31 vertices. Then to avoid 4-cycles in V \ D ei-
ther (4, 4) ∈ D or both (3, 3) and (5, 3) ∈ D ; similarly either (6, 6) ∈ D or both
(5, 5) and (7, 5) ∈ D. Therefore, to get |D| = 33 we need to have (4, 4) ∈ D and
(6, 6) ∈ D and the other vertices (5, 3), (5, 5), (7, 5) /∈ D. But, then there is a 8-cycle
in V \D ((5, 3), (5, 4), (5, 5), (6, 5), (7, 5), (7, 4), (7, 3), (6, 3)), a contradiction.

— Case (6, 2) /∈ D (See Figure A.1(f)). By Claim A.3, (8, 4) /∈ D. Hence (7, 3) ∈ D
to avoid a path from (6, 1) to (9, 4) in V \ D. Then, by Property 7(a), (6, 3) and
(7, 4) /∈ D. Hence, (5, 3), (7, 5) ∈ D to avoid 4-cycles in V \ D, and (6, 4) ∈ D
to avoid a path from (6, 1) to (9, 4) in V \D. Moreover, by Property 7(a), (5, 4) and
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(6, 5) /∈ D to avoid adjacent vertices in D. There are already 32 vertices in D and the
single remaining (undetermined yet) vertex of D is not sufficient to break all 4-cycles
in V \D, a contradiction.

□

B Chapter 6

Tools

Below we prove some inequalities we use and some omitted proofs.

Claim B.1. Let d, n ∈ N and α ∈ R>0. If n ≥ 68d
α and α ≤ 1

6
√

d
, then

e
4d
αn · 1(

1− 4α2
) d

2
≤ 1 + 1

8 .

Proof.

Since ex ≤ (1− x)−1 for x ≤ 1, for n ≥ 4d
α , it holds that

e
4d
αn ≤ 1

1− 4d
αn

= 1 + 4d
αn− 4d.

Thus, having n ≥ 68d
α implies that

e
4d
αn ≤ 1 + 1

16 .

Moreover, by Bernoulli’s inequality, since α < 1
2 , it holds that,

1(
1− 4α2

) d
2
≤ 1

1− 2dα2 .

Altogether, we need that

1 + 1
16

1− 2dα2 ≤ 1 + 1
8 ,

which holds for α ≤ 1
6
√

d
.

□

Claim B.2. Let d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6). If n ≥ 144d

α2

(
log 1

ε + log d+ log 1
α

)
, then

4e
4d
αn

2
α2n

6

·
(
παn

2ε2

) d
2
≤ ε.

Proof.
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Consider the function

f(n) = nd

2
α2n

6

.

We have that

f ′(n) =
dnd−12

α2n
6 − α2 ln 2

6 · nd2
α2n

6

2
α2n

3

= nd−12
α2n

6

2
α2n

3

·
(
d− α2n ln 2

6

)
,

and, hence, f is non-increasing for n ≥ 6d
α2 ln 2 . Thus, since f

(
6d

α2 ln 2

)
=
(

6d
eα2 ln 2

)d
, it holds

that

4e
4d
αn

2
α2n

6

·
(
παn

2ε2

) d
2

= 4e
4d
αn

2
α2n
12

·
(
πα

2ε2

) d
2
√

nd

2
α2n

6

≤ 4e
4d
αn

2
α2n
12

·
(
πα

2ε2

) d
2

√√√√( 6d
eα2 ln 2

)d

= 4e
4d
αn

2
α2n
12

·
(

3πd
ε2eα ln 2

) d
2

<
8

2
α2n
12

·
(

6d
ε2α

) d
2

where the last inequality comes from noting that 6 > 3π
e ln 2 and that n ≥ 8d

α implies e
4d
αn < 2.

This is at most ε if

8
εd+1 ·

(
6d
α

) d
2

≤ 2
α2n
12 ,

or, equivalently,

n ≥ 12
α2

(
log 8 + (d+ 1) log 1

ε
+ d

2 log 1
α

+ d

2 log 6d
)
.

The thesis follows from the bounds d, n ≥ 1, ε ∈ (0, 1), and α < 1
6 .

□

Claim B.3. Let A,B be two centred normal random variables, and let φB(x) be the density func-
tion of b. Then, for any z ∈ R, for any ε > 0, it holds that∫

R
φB(x)

[
Pr
[
A ∈ (z − x− ε, z − x+ ε)

]]2
dx ≤

∫
R
φB(x)

[
Pr
[
A ∈ (−x− ε,−x+ ε)

]]2
dx.

Proof.
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For any x, z ∈ R, let

h(x, z) = φB(x)
[
Pr
[
A ∈ (z − x− ε, z − x+ ε)

]]2
dx,

and let
H(z) =

∫
R
h(x, z) dx.

Let φA(x) be the density function of a. Since∣∣∣∣∣∂h(x, z)
∂z

∣∣∣∣∣ = 2
∣∣∣φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)∣∣∣
≤ 2φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε) + φA(z − x− ε)

)
,

h(x, z) meets the hypothesis of the Leibniz integral rule and we can write

dH(z)
dz =

∫
R

∂h(x, z)
∂z

dx

= 2
∫

R
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

If we prove that such a function is zero in z = 0, positive for z < 0 and negative for z > 0, then
we have that the maximum of H is reached in z = 0.
First case: z = 0. Then

dH(0)
dz = 2

∫
R
φB(x)Pr

[
A ∈ (x− ε, x+ ε)

] (
φA(x− ε)− φA(x+ ε)

)
dx (B.1)

= 2
∫

R
φB(x)Pr

[
A ∈ (x− ε, x+ ε)

]
φA(x− ε) dx

− 2
∫

R
φB(x)Pr

[
A ∈ (x− ε, x+ ε)

]
φA(x+ ε) dx

= 2
∫

R
φB(x)Pr

[
A ∈ (x− ε, x+ ε)

]
φA(x− ε) dx

− 2
∫

R
φB(y)Pr

[
A ∈ (y − ε, y + ε)

]
φA(y − ε) dx (B.2)

= 0,

where in Equation (B.1) we exploited the symmetry of the integrand functions, Equation (B.2)
we substituted in the second integral y = −x and used again symmetry.
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Second case: z > 0. Then

dH(z)
dz

= 2
∫

R
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

= 2
∫ −z

−∞
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

+ 2
∫ +z

−z
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

+ 2
∫ +∞

+z
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

= 2
∫ +∞

+z
φB(x)Pr

[
A ∈ (z + x− ε, z + x+ ε)

] (
φA(z + x+ ε)− φA(z + x− ε)

)
dx

(B.3)

+ 2
∫ +∞

+3z
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

+ 2
∫ +3z

+z
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

+ 2
∫ +z

−z
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

= 2
∫ +∞

+z
φB(x)Pr

[
A ∈ (z + x− ε, z + x+ ε)

] (
φA(z + x+ ε)− φA(z + x− ε)

)
dx

− 2
∫ +∞

+z
φB(2z + x)Pr

[
A ∈ (z + x− ε, z + x+ ε)

] (
φA(z + x+ ε)− φA(z + x− ε)

)
dx

(B.4)

− 2
∫ +z

−z
φB(x− 2z)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

(B.5)

+ 2
∫ +z

−z
φB(x)Pr

[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx

= 2
∫ +∞

+z

(
φB(x)− φB(2z + x)

)
Pr
[
A ∈ (z + x− ε, z + x+ ε)

] (
φA(z + x+ ε)− φA(z + x− ε)

)
dx

(B.6)

+ 2
∫ +z

−z

(
φB(x)− φB(x− 2z)

)
Pr
[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx,

(B.7)

where in Equation (B.3) we substituted x′ = −x and used the symmetry of the integrand func-
tions, in Equations (B.4) and (B.5) we substituted x′ = x−2z and x′ = 2z−x, respectively, and
used again the symmetry. The expression in Equation (B.6) is negative as φB(x) > φB(2z + x)
and φA(z + x+ ε) < φA(z + x− ε) for x ≥ z ; the expression in Equation (B.7) is negative as
φB(x) > φB(x− 2z) and φA(z − x+ ε) < φA(z − x− ε) for x ∈ (−z, z).
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Third case: z < 0. This case is similar to the previous one: with the same arguments, we obtain

dH(z)
dz

= 2
∫ +z

−∞

(
φB(x)− φB(2z + x)

)
Pr
[
A ∈ (z + x− ε, z + x+ ε)

] (
φA(z + x+ ε)− φA(z + x− ε)

)
dx

(B.8)

+ 2
∫ −z

+z

(
φB(x)− φB(x− 2z)

)
Pr
[
A ∈ (z − x− ε, z − x+ ε)

] (
φA(z − x+ ε)− φA(z − x− ε)

)
dx.

(B.9)

The expression in Equation (B.8) is positive as φB(x) > φB(2z + x) and φA(z + x + ε) >
φA(z + x− ε) for x ≤ z ; the expression in Equation (B.9) is positive as φB(x) > φB(x− 2z)
and φA(z − x+ ε) < φA(z − x− ε) for x ∈ (z,−z).

□

Claim B.4. For all x ∈ R, c ∈
(
0, 1

162

)
, and ε ∈ (0, 1), it holds that

(∫ ε

−ε
e−c(x+s)2 ds

)2

≤

∫ ε

−ε

e−c(x+ε)2 + e−c(x−ε)2

2 ecε2 ds

2

.

Proof.
Let

fx(s) = e−c(x+s)2
.

Since ∫ ε

−ε

e−c(x+ε)2 + e−c(x−ε)2

2 ecε2 ds =
∫ ε

−ε
ms+ e−c(x+ε)2 + e−c(x−ε)2

2 ecε2 ds

for any m ∈ R, we choose it to be the angular coefficient of the line passing through fx(−ε)
and fx(ε), and prove the stronger result

e−c(x+s)2 ≤ e−c(x+ε)2 − e−c(x−ε)2

2ε s+ e−c(x+ε)2 + e−c(x−ε)2

2 ecε2
(B.10)

for all s ∈ (−ε, ε). In fact, the right hand side of Equation (B.10) is the equation for the line
passing by the extrema of fx in (−ε, ε) lifted by a factor of ecε2

. Therefore, the results holds
trivially if fx is convex in the entire range (−ε, ε), which is true when |x| > 1+ 1√

2c
. Moreover,

the factor ecε2
ensures the result for x = 0, so, we follow with the analysis of the case x ∈(

0, 1 + 1√
2c

]
and the remaining case x ∈

[
−1− 1√

2c
, 0
)

follows by symmetry.

Dividing both side of Equation (B.10) by e−c(x+s)2
, we obtain

1 ≤ e2csx+cs2

e−cε2
s

ε
· e

−2cεx − e2cεx

2 + e−2cεx + e2cεx

2

 (B.11)

= e2csx+cs2

−e−cε2
s

ε
sinh(2cεx) + cosh(2cεx)

 .
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Let g(x) be the right hand side of this inequality. Then

g′(x) = 2csg(x) + 2cεe2csx+cs2

−e−cε2
s

ε
cosh(2cεx) + sinh(2cεx)


= 2ce2csx+cs2

cosh(2cεx)
(
s− se−cε2)+ sinh(2cεx)

(
ε− s2

ε
e−cε2

) .
If s ∈ [0, ε), then s ≥ se−cε2

and ε ≥ ε2

ε e
−cε2 ≥ s2

ε e
−cε2

, hence g′(x) ≥ 0. Since g(0) ≥ 1,
this ensures Equation (B.11).
The sub-case s ∈ (−ε, 0) offers much more resistance. To analyse it we exploit that x ∈(

0, 1 + 1√
2c

)
implies that cx ≤

√
2c for c < 1

2 and make extensive use of Taylor’s theorem to

approximate the exponential functions.
We start by rewriting Equation (B.11) as

εe−2csx−cs2 ≤ e2cεx
(
ε

2 −
s

2e
−cε2

)
+ e−2cεx

(
ε

2 + s

2e
−cε2

)
. (B.12)

By Taylor’s theorem, there exist λ1, λ2 ∈ [0, 2cεx] ⊆ [0, 2
√

2cε], λ3 ∈ [0,−2csx] ⊆
[0, 2
√

2cε], λ4 ∈ [0, cs2], λ5 ∈ [0, cε2] such that

e+2cεx = 1 + 2cεx+ 2c2ε2x2 + 4
3c

3ε3x3eλ1 ,

e−2cεx = 1− 2cεx+ 2c2ε2x2 − 4
3c

3ε3x3eλ2 ,

e−2csx = 1− 2csx+ 2c2s2x2 − 4
3c

3s3x3eλ3 ,

e−cs2 = 1− cs2 + c2s4

2 e−λ4 , (B.13)

e−cε2 = 1− cε2 + c2ε4

2 e−λ5 , (B.14)

where we used second order approximations for the first three terms and first order approxima-
tions for the last two. Plugging those in Equation (B.12) we obtain

εe−cs2
(

1− 2csx+ 2c2s2x2 − 4
3c

3s3x3eλ3

)

≤
(

1 + 2cεx+ 2c2ε2x2 + 4
3c

3ε3x3eλ1

)(
ε

2 −
s

2e
−cε2

)

+
(

1− 2cεx+ 2c2ε2x2 − 4
3c

3ε3x3eλ2

)(
ε

2 + s

2e
−cε2

)
.

The latter becomes

ε
(
1− e−cs2)+ 2csεx

(
e−cs2 − e−cε2)+ 2c2εx2

(
ε2 − s2e−cs2)

+ 4
3c

3εx3
(
ε2eλ1

(
ε

2 −
s

2e
−cε2

)
− ε2e−λ2

(
ε

2 + s

2e
−cε2

)
+ s3eλ3−cs2

)
≥ 0
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Now, notice that

ε2eλ1

(
ε

2 −
s

2e
−cε2

)
− ε2e−λ2

(
ε

2 + s

2e
−cε2

)
≥ 0,

as ε
2 −

s
2e

−cε2 ≥ ε
2 + s

2e
−cε2

since −ε ≤ s < 0, and ε2eλ1 ≥ ε2 ≥ ε2e−λ2 . Furthermore,
observe that s3eλ3−cs2 ≥ 2s3 as s < 0 and λ3 ≤ 2

√
2cε ≤ 1

2 if c ≤ 1
32 . Thus, the inequality is

true if

ε
(
1− e−cs2)+ 2csεx

(
e−cs2 − e−cε2)+ 2c2εx2

(
ε2 − s2e−cs2)+ 8

3c
3s3εx3 ≥ 0.

Applying Equations (B.13) and (B.14), the latter inequality yields that

ε

(
cs2 − c2s4

2 e−λ4

)
+ 2csεx

(
cε2 − cs2 − c2ε4

2 e−λ5 + c2s4

2 e−λ4

)

+ 2c2εx2
(
ε2 − s2 + cs4 − c2s6

2 e−λ4

)
+ 8

3c
3s3εx3

= εcs2 − c2s4ε

2 e−λ4 − c3sε5xe−λ5 + c3s5εxe−λ4 +
(
2c3s4εx2 − c4s6εx2e−λ4

)
+ 8

3c
3s3εx3

+ 2c2εx
(
ε2 − s2

)
(x+ s) .

Now observe that (
2c3s4εx2 − c4s6εx2e−λ4

)
≥ 0

as c < 1, s ≤ ε ≤ 1, e−λ4 < 1 ; −c3sε5xe−λ5 > 0 as s < 0 ;

εcs2 − c2s4ε

2 e−λ4 + c3s5εxe−λ4 + 8
3c

3s3εx3

≥ cs2ε− c2s2ε3

2 − c2√2cs2ε4 − 8
3c

3s2ε2x3

> cs2ε− c2s2ε3

2 − c2√2cs2ε4 − 6c
√

2cs2ε2

= cs2ε

(
1− cε2

2 − c
2√2cε3 − 6

√
2cε
)

(B.15)

≥ cs2ε

(
1− c

2 − c
2√2c− 6

√
2c
)

(B.16)

≥ cs2ε

5 , (B.17)

where in Equation (B.15) we used that cx ≤
√

2c, in Equation (B.16) that ε ≤ 1, and in
Equation (B.17) we used i) c2√2c ≤ c

2 when c ≤ 1
3√2

, ii) c <
√

2c since c < 1 and iii)

1− 7
√

2c ≥ 1
5 , whenever c ≤ 1

162 .
Going back to the inequality, we now have

cs2ε

5 + 2c2εx
(
ε2 − s2

)
(x+ s) .
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If x ≥ |s| the latter is positive, otherwise it becomes

cs2ε

5 + 2c2εx
(
ε2 − s2

)
(x+ s)

≥ cs2ε

5 + 2c2εx2
(
ε2 − s2

)
− 2c2εs2

(
ε2 − s2

)
≥ cs2ε

5 − 2c2εs2 + 2c2εx2
(
ε2 − s2

)
≥ cs2ε

(
1
5 − 2c

)

which is positive for c < 1
10 .

To sum-up, the thesis always holds for c ≤ 1
162 .

□

Claim B.5. For all x ∈ R, c ∈
(
0, 1

10

)
, and ε ∈ (0, 1), it holds that

(∫ x+ε

x−ε
exp

(
−cy2

)
dy
)2

≥
∫ x+ε

x−ε
exp

(
−c(x− ε)2

)
dy ·

∫ x+ε

x−ε
exp

(
−c(x+ ε)2

)
dy.

(B.18)

Proof.

We can express Equation (B.18) as[∫ x+ε

x−ε
exp

(
−cy2

)
dy
]2

−
[∫ x+ε

x−ε
exp

(
−c(x2 + ε2)

)
dy
]2

=
[∫ x+ε

x−ε
exp

(
−cy2

)
− exp

(
−c(x2 + ε2)

)
dy
]
·
[∫ x+ε

x−ε
exp

(
−cy2

)
+ exp

(
−c(x2 + ε2)

)
dy
]

≥ 0,

which holds if and only if∫ +ε

−ε
exp

(
−c(x+ s)2

)
ds ≥

∫ +ε

−ε
exp

(
−c(x2 + ε2)

)
ds. (B.19)

The result is immediate for x = 0, so we assume x > 0 and the claim follows by symmetry. Let

fx(s) = exp(−c(x+ s)2).

We provide distinct arguments depending on whether x is small or large.
Case x ∈ (0, 1). Since we assume c < 1

8 and ε < 1, we have for any x ≤ 1 that fx is concave
in (−ε, ε). That is,

fx(s) ≥ fx(ε)− fx(−ε)
2ε s+ fx(ε) + fx(ε)

2 ,
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for all s ∈ (−ε, ε). Thus,∫ ε

−ε
fx(s) ds ≥

∫ ε

−ε

fx(ε)− fx(−ε)
2ε s+ fx(ε) + fx(−ε)

2 ds

=
∫ ε

−ε

fx(ε) + fx(−ε)
2 ds

=
∫ ε

−ε
exp

(
−c(x2 + ε2)

)
· exp (−2cxε) + exp (2cxε)

2 ds

≥
∫ ε

−ε
exp

(
−c(x2 + ε2)

)
ds.

Case x ≥ 1. The integral on the right hand side of Equation (B.19) has the same value for any
affine integrand rx for which rx(0) = exp

(
−c(x2 + ε2)

)
. Thus, proving that fx(s) ≥ rx(s),

for all s ∈ (−ε, ε), concludes the proof.
In particular, we can choose

rx(s) = f ′
x(0) · s+ exp

(
−c(x2 + ε2)

)
.

Since

f ′
x(s) = −2c(x+ s) exp

(
−c(x+ s)2

)
,

we aim to show that

exp
(
−c(x+ s)2

)
≥ −2csx exp

(
−cx2

)
+ exp

(
−c(x2 + ε2)

)
for s ∈ (−ε, ε). Dividing by exp(−c(x2 + s2)) and rearranging, we obtain

exp(−2csx) + 2csx exp
(
cs2
)
− exp

(
−c
(
ε2 − s2

))
≥ 0. (B.20)

Now, if s ≥ 0, we have that

exp(−2csx) + 2csx exp
(
cs2
)
− exp

(
−c
(
ε2 − s2

))
≥ 1− 2csx+ 2csx(1 + cs2)− exp

(
−cε2

)
(B.21)

= 1 + 2c2s3x− exp
(
−cε2

)
≥ 2c2s3x

≥ 0,

where in Equation (B.21) we used that ey ≥ 1 + y.
Now consider the sub-case s < 0. By Taylor’s theorem,

exp(y) = 1 + y + y2

2 + exp(ξ1) · y3

6
and

exp(y) = 1 + y + exp(ξ2) · y2

2 ,
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for some ξ1, ξ2 ∈ [0, y]. Letting ℓ = −s ∈ (0, 1), we have

exp(2cℓx) ≥ 1 + 2cℓx+ (2cℓx)2

2 + (2cℓx)3

6

and

exp(cℓ2) ≤ 1 + cℓ2 + exp(cℓ2)(cℓ2)2

2

≤ 1 + cℓ2 +

(
1 + 3(cℓ2)

)
(cℓ2)2

2 .

since ey ≤ 1 + 3y for 0 ≤ y ≤ 1. Finally, applying this to Equation (B.20), we have

exp(−2csx) + 2csx exp
(
cs2
)
− exp

(
−c
(
ε2 − s2

))
≥ exp(2cℓx)− 2cℓx exp

(
cℓ2
)
− 1

≥ 1 + 2cℓx+ (2cℓx)2

2 + (2cℓx)3

6 − 2cℓx
(

1 + cℓ2 + c2ℓ4(1 + 3cℓ2)
2

)
− 1

= 2c2ℓ2x2 + 4
3c

3ℓ3x3 − 2cℓx
(
cℓ2 + c2ℓ4(1 + 3cℓ2)

2

)

= 2c2ℓ2x(x− ℓ) + c3ℓ3x

(
4
3x

2 − ℓ2(1 + 3cℓ2)
)
.

The latter is non negative for x ≥ 1 and c ≤ 1
9 , since ℓ = −s ≤ ε < 1, so that 4

3x
2 − ℓ2(1 +

3cℓ2) ≥ 4
3 − 1− 1

3 = 0.

□

We provide hereafter the omitted proofs.

Proof of Lemma 6.5.1

By the distribution of X,

Pr
[
X ∈ Bd

∞(z, ε)
]

=
∫

Bd
∞(z,ε)

1(
2πσ2

) d
2
· exp

−∥x∥222σ2

dx.

Since Bd
∞(z, ε) ⊆ Bd

∞(0, 2) and for all x ∈ Rd it holds that ∥x∥2 ≤
√
d · ∥x∥∞, and, thus,

exp
(
−2d
σ2

)
≤ exp

−∥x∥222σ2

 ≤ 1.

The thesis follows by noting that the hypercube Bd
∞(z, ε) has measure (2ε)d.
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Proof of Lemma 6.7.1

Inheriting the setup from the proof of Lemma 6.5.3 and proceeding analogously we obtain that
σ2

A = αn
(
1− α

2

)
and σ2

B = α2n
2 . We diverge from that argument after Equation (6.2). Preserving

equality for a bit longer, we have that

(
Pr [YS = 1,YT = 1]

) 1
d =

∫
R
φB(x) ·

(
Pr
[
A ∈ (z − x− ε, z − x+ ε)

])2
dx

=
∫

R
φB(x) ·

(∫ z−x+ε

z−x−ε
φA(y) dy

)2

dx.

The hypothesis on n implies that 2σ2
a ≥ 10, so, by Claim B.5,(∫ z−x+ε

z−x−ε
φA(y) dy

)2

≥ (2ε)2 · φA(z − x− ε) · φA(z − x+ ε)

= (2ε)2

2πσ2
A
· exp

(
−(z − x− ε)2

2σ2
A

)
· exp

(
−(z − x+ ε)2

2σ2
A

)

= e−ε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· 1√
πσ2

A

· exp
(
−(z − x)2

σ2
A

)

= e−ε2/σ2
A · 1√

2
· (2ε)2√

2πσ2
A

· φA/
√

2(z − x).

Then, as before, we can reduce the main integral to a convolution. Namely, it holds that∫
R
φB(x) · φA/

√
2(z − x) dx = φB+A/

√
2(z)

= 1√
2πσ2

B+A/
√

2

· exp

− z2

2σ2
B+A/

√
2

 .
Altogether, we have that

(
Pr [YS = 1,YT = 1]

) 1
d ≥ (2ε)2

2π · 1√
2σ2

Aσ
2
B+A/

√
2

· exp

− ε2

σ2
A
− z2

2σ2
B+A/

√
2


= (2ε)2

2παn ·
1√

1− α2

4

· exp

− 1
αn
·
(

2ε2

2− α + 2z2

2 + α

) .
where the last equality follows from recalling that σ2

B = α2n
2 and σ2

A = αn
(
1− α

2

)
, which

implies that σ2
B+A/

√
2 = α2n

2 + αn
2

(
1− α

2

)
. Finally, the hypotheses z ∈ [−1, 1], ε ∈ (0, 1), and

α ∈
(
0, 1

2

)
imply that 2ε2

2−α + 2z2

2+α < 3.
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Proof of Theorem 6.5.5

Let n = k · 144d
α2

(
log 1

ε + log d+ log 1
α

)
with k ∈ N. By Lemma 6.5.4, for any z ∈ [−1, 1]d,

the probability than no subset-sum is sufficiently close to z is at most
(

2
3

)k
. Leveraging the fact

that it is possible to cover [−1, 1]d by 1
εd hypercubes of radius ε, we can ensure that the probability

of failing to 2ε-approximate any z is, by the union bound, at most

1
εd
·
(

2
3

)k

= 2−k log 3
2 +d log 1

ε

= exp

− ln 2 ·
n− 144d2

α2 log 3
2

log 1
ε

(
log 1

ε + log d+ log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)


Thus, we can conclude the result for

n ≥ 144
log 3

2
· d

2

α2 log 1
ε
·
(

log 1
ε

+ log d+ log 1
α

)
.

Generalisation of our result.

If the target value z lies in the hypercube [−λ
√
n, λ
√
n]d, for some λ > 1√

n
, we have slightly

different bounds for the expectation and for the variance of Y. In particular, corollary 6.5.2 would
give

e− 2λ2d
α

(2ε)d |C|
(2παn)

d
2
≤ E [Y] ≤ (2ε)d |C|

(2παn)
d
2
. (B.22)

On the other hand, as the proof of lemma 6.5.3 never uses that z ∈ [−1, 1]d but only exploits
the bound on the expectation, it would yield

Var [Y] ≤ (2ε)2d |C|2

(2παn)d

[
(1− 4α2)− d

2 −e− 4λ2d
α

]
+ (2ε)d |C|

(2παn)
d
2
. (B.23)

We focus on the case λ = 1
2

√
α

17d when n > 68d
α (which implies λ

√
n > 1). Thus, we have a

new estimation for the probability to hit a single value.

Lemma B.6. Given d, n ∈ N, ε ∈ (0, 1), and α ∈ (0, 1
6 ], let X1, . . . ,Xn i.d.d. following

N (0, Id), z ∈ [−λ
√
n, λ
√
n]d, with λ = 1

2

√
α

17d , and C ⊆
([n]

αn

)
. If any two subsets in C in-

tersect in at most 2α2n elements, α ≤ 1
6
√

d
, and

n ≥ 144d
α2

(
log 1

ε
+ log d+ log 1

α

)
,

then

Pr [Y ≥ 1] ≥ 1
3 .
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Proof.

By Chebyshev’s inequality, it holds that

Pr [Y ≥ 1] ≥ Pr
[∣∣Y− E [Y]

∣∣ < E [Y]
2

]

≥ 1− 4 ·Var [Y]
E [Y]2

.

Notice that 4λ2d
α = 1

17 . Hence, using eqs. (B.22) and (B.23), we get that

4 ·Var [Y]
E [Y]2

≤ 4 · e
1

17 · (2παn)d

(2ε)2d |C|2
·

(2ε)2d |C|2

(2παn)d
·
[
(1− 4α2)− d

2 − e− 1
17

]
+ (2ε)d |C|

(2παn)
d
2


= 4 ·

 e
1

17

(1− 4α2)
d
2
− 1

+ 4e
1

17 · (2παn)
d
2

(2ε)d |C|
.

Note that Claim B.1 holds exactly as it is for the ratio

e
1

17

(1− 4α2)
d
2

obtaining the same bound for n ≥ 68d
α and α ≤ 1

6
√

d
, which yields

4 ·

 e
1

17

(1− 4α2)
d
2
− 1

 ≤ 1
2 .

Furthermore, also Claim B.2 is true replacing e
4d
αn by e

1
17 . Thus, as n ≥ 144d

α2

(
log 1

ε + log d+ log 1
α

)
and α ≤ 1

6 , Claim B.2 implies that

4e
1

17 · (2παn)
d
2

(2ε)d |C|
≤ ε.

□

We remark that we cannot let λ be asymptotically greater than
√

α
d otherwise our method fails.

Indeed, by remark 6.7.1, the term 4Var[Y]
E[Y]2 is at least

4 ·

e
4λ2d

α
− 3λ2d

α(
1− α2

4

) d
2
− 1

 .

The latter is greater than or equal to 1 if λ ≥
√

α
d since e

λ2d
α ≥ 1 + λ2d

α .
We are ready to state our first generalised version of theorem 6.5.5.
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Theorem B.7. For given d and ε ∈ (0, 1), let X1, . . . ,Xn be n independent standard normal d-
dimensional random vectors and let α ∈ (0, 1

6
√

d
]. There exist two universal constants C > δ > 0

such that, if

n ≥ C d
2

α2

(
log 1

ε
+ log d+ log 1

α

)2

,

the following holds with probability at least

1− exp

− ln 2 ·

 n

δ d
α2

(
log 1

ε + log d+ log 1
α

) − d log 1
ε


 :

for all z ∈
[
−λ
√
n, λ
√
n
]d

, with λ = 1
2

√
α

17d , there exists a subset Sz ⊆ [n], such that∥∥∥z − ∑
i∈Sz

Xi

∥∥∥
∞
≤ 2ε.

Moreover, the property above remains true even if we restrict to subsets of size αn.

Proof.

Let n
144d
α2
(

log 1
ε

+log d+log 1
α

) = k ≥ 1 with k ∈ N. By lemma B.6, for any z ∈ [−λ
√
n, λ
√
n]d,

the probability than no subset-sum is sufficiently close to z is at most
(

2
3

)k
. Leveraging the fact

that it is possible to cover [−λ
√
n, λ
√
n]d by

(
λ

√
n

ε

)d

hypercubes of radius ε, we can ensure

that the probability of failing to 2ε-approximate any z is, by the union bound, at most(
λ
√
n

ε

)d

·
(

2
3

)k

= 2−k log 3
2 +d

(
log 1

ε
+ 1

2 log n+log λ
)

= exp

− ln 2 ·
n− 144d2

α2 log 3
2

(
log 1

ε + 1
2 logn+ log λ

) (
log 1

ε + log d+ log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)


≤ exp

− ln 2 ·
n− 144d2

α2 log 3
2

(
log 1

ε + 1
2 logn

) (
log 1

ε + log d+ log 1
α

)
144d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)


(B.24)
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since λ < 1. Consider n
2−

144d2

2α2 log 3
2

logn
(
log 1

ε + log d+ log 1
α

)
. Let k = k′

(
log 1

ε + log d+ log 1
α

)
,

which means that n = 144k′d
α2

(
log 1

ε + log d+ log 1
α

)2
. Then

n

2 −
144d2

2α2 log 3
2

logn
(

log 1
ε

+ log d+ log 1
α

)

= 144d
2α2

(
log 1

ε
+ log d+ log 1

α

)k′
(

log 1
ε

+ log d+ log 1
α

)

− d

log 3
2

log 144
log 3

2
+ log k′ + log d+ 2 log 1

α
+ 2 log

(
log 1

ε
+ log d+ log 1

α

)


≥ 144d
2α2

(
log 1

ε
+ log d+ log 1

α

)k′
(

log 1
ε

+ log d+ log 1
α

)

−2d

8 + log k′ + log d+ 2 log 1
α

+ 2 log
(

log 1
ε

+ log d+ log 1
α

)


If k′ = 17d, we have that

k′
(

log 1
ε

+ log d+ log 1
α

)
− 2d

8 + log k′ + log d+ 2 log 1
α

+ 2 log
(

log 1
ε

+ log d+ log 1
α

)
≥ 4d

log 1
ε

+ log d+ log 1
α
− log

(
log 1

ε
+ log d+ log 1

α

)+ 13d log d+ 13d log 1
α

− 16d− 2d log c− 3d log d− 4d log 1
α

= 10d log d+ 9d log 1
α
− 16d− 2d log 17 ≥ 0,

as α ≤ 1
6 . Thus, for n ≥ 17·144d2

α2

(
log 1

ε + log d+ log 1
α

)2
, we have that the expression in

eq. (B.24) is at most

exp

− ln 2 ·
n− 288d2

α2 log 3
2

log 1
ε

(
log 1

ε + log d+ log 1
α

)
288d

α2 log 3
2

(
log 1

ε + log d+ log 1
α

)
 .

We have the thesis by setting δ = 288
log 3

2
and C = 17 · 144.

□

Our analysis, that relies on fixed subset sizes, easily extends theorem B.7 for non-centred and
non-unitary normal random vectors.
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Corollary B.8. Let σ > 0 and ε ∈ (0, σ). Given d, n ∈ N let X1, . . . ,Xn be independent normal
d-dimensional random vectors with Xi ∼ N (v, σ2 · Id), for any vector v ∈ Rd. Furthermore, let
α ∈

(
0, 1

6
√

d

)
. There exist two universal constants C > δ > 0 such that, if

n ≥ C d
2

α2

(
log σ

ε
+ log d+ log 1

α

)2

,

then, with probability

1− exp

− ln 2 ·

 n

δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


 ,

for all z ∈ [−σλ
√
n, σλ

√
n]d + αnv, with λ = 1

2

√
α

17d , there exists a subset Sz ⊆ [n] for which∥∥∥z − ∑
i∈Sz

Xi

∥∥∥
∞
≤ 2ε.

Moreover, this remains true even when restricted to subsets of size αn.

Proof.

Simply apply theorem B.7 to the random vectors Xi−v
σ with error ε

σ .

□

Following the line of [Lueker, 1998a], we also observe that our results extend to a wider class
of probability distributions.

Definition B.1. Consider any two random variables X and Y having the same codomain, and let
φX(x), φY(x) be their probability density functions. We say that X contains Y with probability p
if a constant p ∈ (0, 1] exists such that φX(x) = p · φY(x) + (1− p)f(x) for any function f(x).

If X contains Y with probability p, we can describe the behaviour of X as follows: with proba-
bility p, draw Y; with probability 1 − p, draw something else. An adapted version of our result
holds for random variables containing Gaussian distributions.

Corollary B.9. Let σ > 0, ε ∈ (0, σ), and let p ∈ (0, 1] be a constant. Given d, n ∈ N let
Y1, . . . ,Yn be independent d-dimensional random vectors containing d-dimensional normal ran-
dom vectors X ∼ N (v, σ2 · Id) with probability p, where v is any vector in Rd . Furthermore, let
α ∈

(
0, 1

6
√

d

)
. There exist two universal constants C > δ > 0 such that, if

n ≥ 2C d2

pα2

(
log σ

ε
+ log d+ log 1

α

)2

,

then, with probability

1− 2 exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


 ,
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for all z ∈
[
−σλ

√
pn
2 , σλ

√
pn
2

]d
+ αpn

2 v, with λ = 1
2

√
α

17d , there exists a subset Sz ⊆ [n] for
which ∥∥∥z − ∑

i∈Sz

Xi

∥∥∥
∞
≤ 2ε.

Moreover, this remains true even when restricted to subsets of size αpn
2 .

Proof.

With a simple application of the Chernoff bound, we have that at least pn
2 random vectors are

normal random vectors with probability 1 − e− pn
8 . Conditional on this event, we can apply

corollary B.8 to the pn
2 normal random vectors. Since Pr [A,B] ≥ Pr [A |B] Pr [B] for any two

events A,B, and 2δ d
α2

(
log σ

ε + log d+ log 1
α

)
≥ 8, the thesis holds with probability at least

1− exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


− exp

[
−pn8

]

≥ 1− 2 exp

− ln 2 ·

 pn

2δ d
α2

(
log σ

ε + log d+ log 1
α

) − d log σ
ε


 .

□

C Chapter 7

We describe hereafter in detail the pseudocodes described in Sec. 7.3.4.

Algorithm 7 ORDERED-VECTOR

Input: VNFC set C, Ordering ruleR
Output: A set of compute nodes S and a mapping of VNFC nodes to compute nodesmR : C → S

1: Set LB according to (7.9) ▷ Lower bound
2: Add LB compute nodes to S
3: CR ← sort C decreasingly usingR
4: for each VNFC c in CR do
5: Mapped[c]← False
6: for each compute node s in S do
7: if s can host c then ▷ Assignment constraints
8: Assign c to s
9: Mapped[c]← True

10: Break
11: if not Mapped[c] then
12: S ← S ∪ {t} ▷ Activate a new compute node
13: Assign c to t
14: return S
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Algorithm 8 LEAST-LOAD

Input: VNFC set C, Ordering ruleR
Output: A set of compute nodes S and a mapping of VNFC nodes to compute nodesmR : C → S

1: Set LB according to (7.9) ▷ Lower bound
2: Add LB compute nodes to S
3: CR ← sort C decreasingly usingR
4: for each VNFC c in CR do
5: Mapped[c]← False
6: for each compute node s in S do
7: for each zone z(s) do
8: βcpu

z ← Free available CPU in z
9: βram

z ← Free available RAM in z
10: A(s)← (maxz(s) β

cpu
z ,maxz(s) β

ram
z )

11: S ← sort S decreasingly per (A, FR) ▷ Availability
12: for each compute node s in S do
13: if s can host c then
14: Assign c to s
15: Mapped[c]← True
16: Break
17: if not Mapped[c] then
18: S ← S ∪ {t}
19: Assign c to t
20: return S
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Procedure 1 SWAP

Input: A placement solution given by a mapping of VNFC nodes to compute nodes m : C → S
Output: A set of compute nodes S and a new mapping of VNFC nodes to compute nodes m :
C → S

1: (Pmin,S)← partition S (See Sec. 7.3.4)
2: Creallocate ← collect the VNFCs assigned within Pmin

3: for each VNFC c1 in Creallocate do
4: for i in {1, ..., |S|} do
5: Choose at random a compute node s in S
6: for each VNFC c2 assigned to s do
7: if c1 can be swapped with c2 then
8: Creallocate ← Creallocate \ {c1}
9: Assign c1 to s

10: Creallocate ← Creallocate ∪ {c2}
11: Break
12: for each VNFC c in Creallocate do
13: Mapped[c]← False
14: for each compute node s in S do
15: if s can host c then
16: Assign c to s
17: Mapped[c]← True
18: Break
19: if not Mapped[c] then
20: S ← S ∪ {t}
21: Assign c to t
22: return S
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