
HAL Id: tel-04060949
https://theses.hal.science/tel-04060949

Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic detection of business data anomalies with
deep learning and application to the ADS-B protocol

Ralph Karam

To cite this version:
Ralph Karam. Automatic detection of business data anomalies with deep learning and application
to the ADS-B protocol. Cryptography and Security [cs.CR]. Université Bourgogne Franche-Comté,
2022. English. �NNT : 2022UBFCD035�. �tel-04060949�

https://theses.hal.science/tel-04060949
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE FRANCHE-COMTÉ

École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

par

RALPH KARAM

Automatic detection of business data anomalies
with deep learning and application to the ADS-B protocol

Détection automatique d’anomalies de données métiers
avec deep learning et application au protocole ADS-B

Thèse présentée et soutenue à Belfort, le 29 Septembre 2022

Composition du Jury :
CONTASSOT-VIVIER SYLVAIN PR à l’Université de Lorraine Président du jury

CHRÉTIEN STÉPHANE PR à l’Université Lumière Lyon 2 Rapporteur

VERNIER FLAVIEN MCF HDR - Université Savoie Mont Blanc Rapporteur

COUTURIER RAPHAËL PR à l’Université Bourgogne Franche-Comté Examinateur

SALOMON MICHEL MCF HDR - Univ. Bourgogne Franche-Comté Directeur de thèse

N◦ X X X

ABSTRACT

Automatic detection of business data anomalies
with deep learning and application to the ADS-B protocol

Ralph Karam
University Bourgogne Franche-Comté, 2022

Supervisor: Michel Salomon

The use of Machine Learning (ML) and Deep Learning (DL) for security anomaly detec-

tion, malware analysis and pattern and signature recognition is an extremely active topic

both at the research level and in the cybersecurity industry. Extraction of weak signals

(rare or deviant element concerning behavioral motives) as well as the demonstration of

correlation on the motives of cyberattack are the first sought-after applications of ML and

DL techniques in this context. Thus, an FDIA attack on a Smart Grid may involve a fine

modification of data from production nodes, while an attack on a defense air control sys-

tem may involve a falsification of airspace runway data. The ADS-B protocol - Automatic

Dependent Surveillance-Broadcast - is an air traffic control data source based on satel-

lite positioning. Each aircraft (and potentially any other flying object, including a drone)

periodically sends via messages its position and other information (identification, status

of the aircraft) to ground stations and other ADS-B equipped aircraft operating within the

reception area. The ADS-B protocol is becoming a mandatory surveillance technology all

around the globe, nevertheless this protocol still lacks security measures such as mes-

sage encryption and authentication mechanisms. One main approach to overcome these

shortcomings is using ADS-B anomaly detection based on machine learning and deep

learning methods. In the majority of applications, supervised anomaly detection is rarely

used due to the lack of labeled anomalous data, despite its superior ability to detect

anomalies compared to unsupervised methods. Supervised anomaly detection of ADS-

B data was the main focus of this thesis due to its performance advantage. In order to

obtain a sufficient amount of labeled anomalies and normal data, a false data generator

based on a domain specific language was used. This generator was designed by col-

leagues at DISC in Besançon who are specialists in the generation of tests. To the best

iii

iv

of our knowledge, this thesis is the only work which used supervised anomaly detection

of ADS-B messages using data obtained from a generator of FDIAs. Our approach gave

very promising results in detecting various types of ADS-B attacks. The best performance

was obtained using the Long Short-Term Memory (LSTM) architecture.

In addition, as a secondary work in the context of this thesis different deep learning and

machine learning approaches were studied in order to forecast noise levels and detect

punctual noise level anomalies. The data were gathered from an IoT system more specif-

ically a network of smart parkmeters. From the results of our study it was deduced that

such techniques, preferably a 1D Convolutional Long Short-Term Memory (CNN-LSTM),

can be successfully used in environmental noise monitoring applications.

KEYWORDS: Deep learning, Cybersecurity, ADS-B protocol, Machine learning

RÉSUMÉ

Détection automatique d’anomalies de données métiers
avec deep learning et application au protocole ADS-B

Ralph Karam
Université Bourgogne Franche-Comté, 2022

Directeur de thèse : Michel Salomon

L’utilisation du Machine Learning (ML) et du Deep Learning (DL) pour la détection

d’anomalies de sécurité, l’analyse des malwares et la reconnaissance de motifs et de sig-

natures est un sujet extrêmement actif tant au niveau de la recherche que dans l’industrie

de la cybersécurité. L’extraction de signaux faibles (élément rare ou déviant concernant

les motifs comportementaux) ainsi que la démonstration de corrélation sur les motifs de

cyberattaque sont les premières applications recherchées des techniques ML et DL dans

ce contexte. Ainsi, une attaque de type injection de fausses données (FDIA - False Data

Injection Attack) sur un Smart Grid peut impliquer une modification fine des données

des noeuds de production, tandis qu’une attaque sur un système de contrôle aérien de

défense peut impliquer une falsification des données relatives aux pistes de l’espace

aérien. Le protocole ADS-B - Automatic Dependent Surveillance-Broadcast - est une

source de données de contrôle du trafic aérien basée sur le positionnement par satellite.

Chaque aéronef (et potentiellement tout autre objet volant, y compris un drone) envoie

périodiquement par messages sa position et d’autres informations (identification, statut

de l’aéronef) aux stations au sol et aux autres aéronefs équipés de l’ADS-B opérant

dans la zone de réception. Le protocole ADS-B est en train de devenir une technologie

de surveillance obligatoire dans le monde entier, néanmoins ce protocole manque en-

core de mesures de sécurité telles que le cryptage des messages et les mécanismes

d’authentification. L’une des principales approches pour surmonter ces lacunes consiste

à utiliser la détection des anomalies ADS-B basée sur des méthodes d’apprentissage

automatique et d’apprentissage profond.

Dans la majorité des applications, la détection supervisée des anomalies est rarement

v

vi

utilisée en raison du manque de données anormales étiquetées, malgré sa capacité

supérieure à détecter les anomalies par rapport aux méthodes non supervisées. La

détection supervisée d’anomalies dans les données ADS-B a été le point central de cette

thèse en raison de son avantage en termes de performance. Afin d’obtenir une quan-

tité suffisante d’anomalies étiquetées et de données normales, un générateur de fausses

données basé sur un langage spécifique au domaine a été utilisé. Ce générateur a été

conçu par des collègues de DISC à Besançon qui sont des spécialistes de la génération

de tests. A notre connaissance, cette thèse est le seul travail qui a utilisé la détection

supervisée d’anomalies de messages ADS-B en utilisant des données obtenues à partir

d’un générateur de FDIAs. Notre approche a donné des résultats très prometteurs dans

la détection de différents types d’attaques ADS-B. Les meilleures performances ont été

obtenues en utilisant l’architecture Long Short-Term Memory (LSTM).

En outre, en tant que travail secondaire dans le cadre de cette thèse, différentes ap-

proches d’apprentissage profond et d’apprentissage automatique ont été étudiées afin

de prévoir les niveaux de bruit et de détecter les anomalies ponctuelles de niveau de

bruit. Les données ont été recueillies à partir d’un système IoT plus précisément un

réseau de parcmètres intelligents. Les résultats de notre étude ont permis de déduire

que de telles techniques, de préférence un hybride 1D combinant réseaux de neurones

convolutionnels et Long Short-Term Memory (CNN-LSTM) peuvent être utilisées avec

succès dans les applications de surveillance du bruit environnemental.

Mots clés: Apprentissage profond, Cybersécurité, Protocole ADS-B, Apprentissage au-

tomatique

ACKNOWLEDGEMENTS

First of all I would like to thank my PhD advisor, Michel Salomon, for his involved super-

vision, his precious advice and the confidence he gave me during these three years. I

would also like to express gratitude to Raphaël Couturier for his valuable and useful ad-

vice he gave me during this journey. I sincerely thank Stéphane Chrétien and Flavien

Vernier for accepting the role of rapporteurs for my thesis and the attention given to my

work. I also thank Sylvain Contassot-Vivier for having done me the honor of chairing my

thesis jury. My thanks also go to my two doctoral colleagues, Aymeric Cretin, and An-

toine Chevrot who willingly accepted to collaborate with me in the context of the GeLead

project which financed my PhD. My sincere appreciation and thanks to the members and

professors of the team AND (Algorithmique Numerique Distribuée) for the positive work

environment and for the pleasant moments that we have shared together. I would also

like to thank my colleagues and friends: Hassan Noura, Joseph Azar, Anthony Nassar,

Bernard Kodjo Agbemadon, and Medane Affo Tchakarom. On a personal level, I want to

thank my father Antoine, my mother May, and my brother Roudy for their unconditional

love and support, which underlies everything I do.

vii

CONTENTS

1 Introduction 3

1.1 Importance of business data . 3

1.2 Data security issues . 5

1.3 Deep learning for detection of anomalies . 6

1.4 Outline . 7

2 Case studies 9

2.1 Automatic Dependent Surveillance-Broadcast 9

2.1.1 Primary radar . 9

2.1.2 Secondary radar . 10

2.1.3 What is ADS-B? . 11

2.1.4 Message format . 11

2.1.5 Benefits of ADS-B . 13

2.1.6 Challenges facing ADS-B . 14

2.1.6.1 Feasibility of attacks . 14

2.1.6.2 Vulnerabilities and attacks 15

2.2 Environmental noise monitoring with parkmeters 16

2.2.1 WASNs using commercial sound level meters 17

2.2.2 WASNs using ad-hoc hardware . 18

2.2.3 WASN false data injections . 18

2.3 Discussion . 20

2.4 Conclusion . 22

3 Related works 23

3.1 Introduction . 23

ix

x CONTENTS

3.2 Anomaly detection . 23

3.2.1 Nearest neighbours based methods 23

3.2.1.1 Anomaly detection with KNN 24

3.2.1.2 LOF: identifying density-based local outliers 24

3.2.2 Clustering-based anomaly detection techniques 24

3.2.2.1 DBSCAN: a density-based algorithm for discovering clus-

ters in large spatial databases with noise 25

3.2.2.2 OPTICS: Ordering points to identify the clustering structure 26

3.2.2.3 HDBSCAN: density-based clustering using hierarchical

density estimates . 26

3.2.3 Ensemble-based models . 26

3.2.4 Domain-based anomaly detection 27

3.2.5 Statistical models . 28

3.2.5.1 Gaussian mixture models 28

3.2.5.2 ARIMA . 29

3.2.5.3 Independent component analysis 29

3.2.5.4 Histogram-based model . 29

3.2.5.5 Kernel function-based model 30

3.2.6 Dimensionality reduction techniques 30

3.3 Prediction and detection of anomalies in time series 31

3.3.1 Convolutional neural network-based anomaly detection 31

3.3.1.1 DeepAnT: a deep learning approach for unsupervised

anomaly detection in time Series 32

3.3.1.2 Time-series anomaly detection service at Microsoft 33

3.3.2 Recurrent neural network-based anomaly detection 33

3.3.2.1 Long short-term memory neural networks for anomaly de-

tection in time series . 33

3.3.2.2 Time series anomaly detection using temporal hierarchical

one-class network . 35

3.3.3 Transformer-based anomaly detection 36

CONTENTS xi

3.3.4 Generic and scalable framework for automated time-series

anomaly detection . 38

3.4 Anomaly detection in ADS-B protocol . 39

3.4.1 ADS-B spoofing attack detection method based on LSTM 39

3.4.2 LSTM encoder-decoder for detecting anomalous messages 40

3.4.3 ADS-B anomaly data detection model based on VAE-SVDD 41

3.4.3.1 Overview . 41

3.4.3.2 Comparison with other techniques 43

3.4.4 CAE: contextual autoencoder for multivariate time-series anomaly

detection in air transportation . 44

3.4.5 VizADS-B: analyzing sequences of ADS-B images using explain-

able convolutional LSTM encoder-decoder to detect cyberattacks . . 45

3.5 Discussion . 46

3.6 Conclusion . 48

4 Contribution 1: a comparative study of deep learning architectures for de-
tection of anomalous ADS-B messages 49

4.1 Introduction . 49

4.2 Studied architectures . 50

4.3 Experimental work . 50

4.3.1 Data acquisition . 51

4.3.2 Data format . 51

4.3.3 Confusion matrix . 51

4.3.4 LSTM architecture evaluation . 53

4.3.5 Bidirectional LSTM Evaluation . 55

4.3.6 CNN Architecture . 55

4.3.7 Using CNN and LSTM Simultaneously 55

4.4 Conclusion . 56

5 Contribution 2: supervised ADS-B anomaly detection using a false data gen-
erator 57

5.1 Introduction . 57

xii CONTENTS

5.2 False data injection framework (FDI-T) . 58

5.2.1 Overview . 58

5.2.2 DSL language . 60

5.3 Detection of false data injection . 62

5.3.1 Generation of labeled attacked ADS-B messages 62

5.3.2 Meta-messages generation and detection 62

5.4 Experimental results . 65

5.5 Impact of the number of flights on the detection performance 68

5.6 Comparison between supervised and unsupervised anomaly detection . . . 69

5.6.1 Detection analysis . 69

5.6.2 Alarm evaluation . 70

5.7 Conclusion . 70

6 Contribution 3: deep learning and gradient boosting for urban environmental
noise monitoring in smart cities 77

6.1 Introduction . 77

6.2 IoT and smart cities . 78

6.3 Noise prediction approaches . 79

6.4 Materials and methods . 81

6.4.1 Urban environmental noise data . 81

6.4.1.1 Monitored area . 82

6.4.1.2 Data acquisition and format 82

6.4.2 Studied machine learning models 84

6.4.2.1 Temporal fusion transformer 84

6.4.2.2 Gradient boosting (LightGBM) 84

6.5 Results . 85

6.5.1 Setup of the deep learning architectures 85

6.5.2 Average noise level prediction with LSTM architectures and LightGBM 86

6.5.3 Optimization of the Stacked-LSTM and CNN-LSTM 88

6.5.4 6 Day Forecasts . 88

CONTENTS xiii

6.5.5 Training on one terminal and testing forecasts on others 89

6.5.6 Training and testing forecasts on different terminals simultaneously . 90

6.5.7 Transformer and Temporal fusion transformer 90

6.5.8 Detection of anomalous sound data 92

6.6 Conclusion . 93

7 Conclusion and perspectives 95

7.1 Conclusion . 95

7.2 Perspectives . 97

LIST OF ABBREVIATIONS

ACAS Airborne Collision Avoidance System

ADS-B Automatic Dependent Surveillance-Broadcast

ADS-C Automatic Dependent Surveillance-Contract

ARIMA Autoregressive Integrated Moving Average

ATC Air Traffic Control

ATCS Air Traffic Control Specialists

CNN Convolutional Neural Network

COTS Commercial-Off-The-Shell

DBSCAN Density-based Spatial Clustering of Applications with Noise

DL Deep Learning

DSL Domain-specific Language

FDIA False Data Injection Attack

FDI-T False Data Injection Test

FPR False Positive Rate

GB Gradient Boosting

GNSS Global Navigation Satellites Systems

GPT Generative Pre-trained Transformer

GRU Gated Recurrent Unit

HDBSCAN . . . Hierarchical DBSCAN

ICA Independent Component Analysis

ICAO International Civil Aviation Organization

IForest Isolation Forest

IoT Internet of Things

IP Internet Protocol

KNN K-Nearest Neighbors

LOF Local Outlier Factor

1

2 List of abbreviations

LSTM Long Short-Term Memory

ML Machine Learning

NM, nmi Nautical Mile

OPTICS Ordering Points To Identify the Clustering Structure

PCA Principal Component Analysis

RA Resolution Advisories

RNN Recurrent Neural Network

SDR Software Defined Radio

SR Spectral Residual

SSR Secondary Surveillance Radar

SVDD Support Vector Data Description

TDOA Time Difference Of Arrival

TFT Temporal Fusion Transformer

VAE Variational AutoEncoder

VANet Vehicular Ad-hoc Network

WASN Wireless Acoustic Sensor Network

1

INTRODUCTION

This thesis focuses on supervised anomaly detection in business data, more specifically

anomalous messages of the Automatic Dependent Surveillance-Broadcast (ADS-B) pro-

tocol, using deep learning techniques. The ADS-B data used in our study are downloaded

from the OpenSky network. To obtain the anomalous data, the downloaded data are in-

troduced into a false data generator called FDI-T - False Data Injection-Testing, which

was developed by the VESONTIO team from the Department of Computer Science and

Complex Systems (DISC in French) of FEMTO-ST Institute in Besançon in the context of

the GeLeaD (Generate Learn and Detect) project. In order to detect anomalies in ADS-B

messages, deep learning time series classification approaches were applied. Also, as

a secondary contribution, IoT noise forecasting was also performed. The presented re-

search was carried out in the AND team from DISC department, and was supported by

the DGA (French defence procurement agency). More precisely it took place and was

funded by the GeLeaD project related to the ANR ASTRID research program.

Note that, as part of the GeLeaD project, the false data generator FDI-T was developed

in the context of Aymeric Cretin’s - a PhD student colleague - PhD thesis. Conversely, in

the context of the same project, Antoine Chevrot - another PhD student colleague - was

working on unsupervised anomaly detection applied to the ADS-B protocol.

1.1/ IMPORTANCE OF BUSINESS DATA

Due to the widespread digitisation in companies, each of their services generates and

uses data on a daily basis. The activity of an entity handling such data is clearly depen-

dent on their quality and trustworthiness. Anomalous data can lead to minor inconve-

niences in the operation of systems, or even prevent them from functioning completely.

For example, in the aviation sector, aircraft communicate their information with each other

and with ground stations using the ADS-B protocol. However, some malicious entities can

eavesdrop on ADS-B messages due to their lack of encryption and inject falsified data

3

4 CHAPTER 1. INTRODUCTION

for multiple purposes such as false aircraft creation or enemy aircraft identity masking.

Such attacks can cause various types of unwanted consequences like denial of service,

the confusion of air traffic controllers or even facilitating the enemy aircraft’s approach of

national territory [66].

Another example where data integrity is crucial to the functioning of the system is the In-

ternet of Things (IoT), a system interconnecting computing devices, digital machines, and

objects through a network [115]. Such systems are typically modeled using graphs whose

nodes correspond to the connected objects which are analogous to normal computers in

the regular internet and the edges are the connections permitting data transfer between

the nodes. Thanks to the IoT many innovative solutions have emerged in order to solve

problems touching a wide range of domains. One of the most important applications of

IoT is smart cities.

A smart city is a city with a technological infrastructure whose purpose is to optimize the

operations of the city, manage the resources and provide the well being of its citizens.

A smart city relies on three layers of abstraction for its operations. First, a perception

layer collects the data using devices connected to the internet of things. Then data are

transported in the network layer which comprises of the city telecommunication infras-

tructure. The third layer, which is the application layer, is responsible for data processing

for decision making [57].

Two other notable IoT applications are smart grids and vehicular Ad-Hoc Networks.

A smart grid is an electrical grid made of smart components like smart meters, smart

distribution boards and circuit breakers. In such grids, small renewable energy producers

supply electrical energy. In addition, individual houses are not just passive consumers,

but they can also contribute and supply power to the electrical grid. In smart grids if smart

counters are directly controlled by hackers or by man-in-the-middle attacks between the

counters and control centers, false data can be injected leading to erroneous estimation

of power bills with intent of electrical energy theft. Also, such attacks can be realised with

the aim of disrupting the power systems, i.e. leading to a decrease in energy production

or even blackouts [93].

The Vehicular Ad-Hoc Network (VANet) is a network connecting vehicles with each other,

using wireless technologies in order to have a safe and comfortable traffic. The VANet

can also be prone to similar attacks as the two previously mentioned applications. For

instance, if vehicles are directly controlled by hackers or through man-in-the-middle at-

tacks, data can be falsified about the state of individual vehicles or their environment.

Such attacks may be targeting specific vehicles to hurt particular passengers or they may

happen on a larger scale to cause accidents, traffic jams and reduce the performance of

the VANet particularly in resource management [79].

1.2. DATA SECURITY ISSUES 5

1.2/ DATA SECURITY ISSUES

Due to the prevalence and the necessity of data in all types of services, data security

issues need to be examined carefully. Data can belong to a defined set of states. It can

be created, stored, used, shared, archived and destroyed. When examining the security

of data, each one of the previously mentioned states should be taken into consideration

individually or in tandem [116]. The data creation stage is mostly susceptible to physical

attacks. For example, sensors in sensor networks such as IoT systems are prone to

different types of physical alterations like circuitry tampering, sensor reprogramming, and

so on [47]. The sensors can also suffer from outages preventing data acquisition and

malfunctioning which can threaten the correctness of the generated data [38].

The stored data is prone to many types of attacks like physical data tampering which

threaten the integrity of the data regardless if it is encrypted or not. Also encrypted stored

data (using full disk encryption schemes) when in use can still be accessed using side

channel attacks such as cold booting. To prevent cold booting attacks one can shutdown

the computer and wait for the random access memory to lose all its content. Another

technique is encrypting the data when the computer is unattended [46].

On the other hand, data sharing is vulnerable to routing attacks like selective forwarding

consisting in a node’s dismissal of data transmission between nodes in IoT systems or

any other type of sensor networks. One way of mitigating such attacks is encrypting the

transferred data and applying traffic analysis [67]. Data sharing is also susceptible to

spoofing attacks like IP address spoofing. Basically, in pursuance of masquerading as

another computer or another connected object in the case of IoT systems, the attacker

generates an IP packet and falsify its source IP address [31]. Traditionally, spoofing

attacks are avoided using authentication mechanisms [40]. However, these mechanisms

might not be feasible due to legacy and practicality reasons, as in the case of the ADS-B

protocol in which messages are sent in the clear. The ADS-B protocol, its challenges

and ways to address its vulnerabilities, mainly anomaly detection, will be detailed in the

remainder of this thesis [58].

Sensor networks in IoT systems are also prone to sinkhole attacks which are a type of

routing attacks in which a compromised node typically attracts the traffic of a special

subset of a the IoT system by advertising a false optimal shortest path. Such attacks can

be easily alleviated when the geographical position of the nodes is well-known [67]. Note

that the sinkhole’s incoming data is prone to alterations and corruption. Also, there exists

many other types of routing attacks like sybil attacks, wormholes attacks and hello flood

attacks [30].

As for the disposal of data, they can be recovered in some cases due to data persis-

tence [11]. To prevent such a vulnerability, one can clear data (to prohibit recovery using

6 CHAPTER 1. INTRODUCTION

software), purge the data (to prohibit recovery using software as well as laboratory proce-

dures) or even destroy the physical medium of storage (to prohibit any kind of recovery)

depending on the level of sensitivity of the data [37].

1.3/ DEEP LEARNING FOR DETECTION OF ANOMALIES

Various techniques exist to prevent data integrity compromise like authentication and en-

cryption mechanisms, validation checks, etc. Their feasibility is not always guaranteed

or they may not be sufficient for total integrity. Therefore other techniques need to be

available to detect potentially flawed data, like anomaly detection techniques.

Machine learning comes as viable approach for anomaly detection. Machine learning is a

set of algorithms which learn to map input data to output data. In other words, a machine

learning model automatically adapts its internal state based on input data and output data

(supervised learning) or even input data solely (unsupervised learning) in order to obtain

an appropriate input-output mapping. Machine learning covers many statistical use-cases

such as regression, clustering, classification and anomaly detection.

Despite the widespread use of conventional machine learning methods, they usually need

to rely on specialised domain knowledge to extract relevant features from the data needed

for the duty at hand [85]. To ease the effects of this constraint, deep learning architec-

tures can be used. They are models composed of multiple layers which automatically

learn increasingly abstract representations depending on the depth of the architecture

hence the name ”deep learning”. Such representations which replace the preprocessing

step of feature extraction in traditional machine learning are required for classification,

regression, anomaly detection and many more tasks.

Deep learning was the catalyst for many breakthroughs such as protein folding and drug

discovery which has the potential to revolutionize the pharmaceutical and health care

industry [153]. It has also been used to train intelligent agents for video games to be able

to defeat world-class champions, such as Google DeepMind’s AlphaStar [124] for the

real-time strategy game StarCraft. The latter application can be thought of as a first step

towards general artificial intelligence. Deep learning gave also rise to big autoregressive

language models which were trained on a giant corpus of text to be able to generate

text in a similar way as humans [135]. In addition, language models were also trained on

huge codebases like github to be able to code programs automatically [164]. Even though

such automatic coding tools are still in their infancy they give very promising results. Deep

learning is also very important for the development of some more specialised tools like

face recognition, stock predictions and anomaly detection for medical imagery, etc.

1.4. OUTLINE 7

This thesis focuses on machine learning and deep learning techniques for anomaly detec-

tion. For several years, anomaly detection was and still is a crucial research subject due

to its multidisciplinary scope which touches various fields like cybersecurity, health care

and finance. It is defined as the act of identifying data points which are remarkably differ-

ent from the bulk of data samples [158]. The performance of deep learning for anomaly

detection models usually surpasses traditional machine learning based techniques espe-

cially for more complex tasks. Deep learning for such use cases learn anomaly scores

without the need for manual feature extraction. Some notable deep learning architectures

are autoencoders and their variants which will be described in more detail in this thesis

while focusing on their application on the ADS-B protocol. Since those anomaly detection

techniques will be applied on sequences of ADS-B messages which are usually modeled

as time series, architectures like recurrent neural networks especially Long Short-Term

Memory networks are usually the basis of time series anomaly detection architectures.

Such architectures contain memory mechanisms to capture time dependencies. Unsu-

pervised and semi-supervised techniques like autoencoders cannot detect small attacks

like small deviations in the trajectories associated to sequences of ADS-B messages.

Therefore, in this thesis we propose the use of supervised deep learning for anomaly

detection to try to remedy this problem. As a first contribution, different architectures

for supervised anomaly detection were compared. As a second contribution, a strat-

egy for supervised ADS-B anomaly detection was proposed which relies on a false data

generator to obtain labeled anomalous data. Labeled anomalies are usually difficult to

come by, hence the use of a false data generator which is based on a domain specific

language. Finally, as a third but secondary contribution in this thesis, machine learning

(gradient boosting methods) and deep learning techniques (recurrent neural networks,

convolutional neural networks, transformers, etc) were applied to forecast the noise level

gathered using IoT devices more specifically smart parkmeters. Also those forecasts

were used to detect injected punctual noise level anomalies.

1.4/ OUTLINE

This thesis is divided into the following chapters:

• Chapter 2 - Case studies. This chapter introduces the Automatic Dependent

Surveillance-Broadcast protocol. The benefits and challenges facing the protocol

will also be described. In addition, a secondary case study, more specifically envi-

ronmental noise monitoring using an acoustic sensor network will be presented.

• Chapter 3 - Related works. This chapter introduces anomaly detection techniques.

First, for the purpose of anomaly detection in a general sense, machine learning

8 CHAPTER 1. INTRODUCTION

techniques will be introduced. Then deep learning anomaly detection techniques

focused on time series data will be presented. Lastly, anomaly detection applied on

the ADS-B protocol will also be examined.

• Chapter 4 - Contribution 1: a comparative study of deep learning architectures for

detection of anomalous ADS-B messages. In this chapter, a performance compari-

son of different machine learning and deep learning architectures for the purpose of

supervised ADS-B anomaly detection is carried out. This study focuses on punctual

altitude anomalies.

• Chapter 5 - Contribution 2: supervised ADS-B anomaly detection using a false data

generator. In this chapter, a new strategy for ADS-B supervised anomaly detection

is devised. The detection of different types of attacks is studied: gradual attacks

and waypoints attacks.

• Chapter 6 - Contribution 3: deep learning and gradient boosting for urban environ-

mental noise monitoring in smart cities. In this chapter, different machine learning

and deep learning architectures are tested for the purpose of noise level forecasting.

Also anomaly detection of punctual noise anomalies was carried out.

• Chapter 7 - Conclusion and perspectives.

2

CASE STUDIES

2.1/ AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST

Airspace surveillance is a critical component of air traffic services. Flight crews as well as

air traffic controllers need to have airspace awareness for the safe aircraft maneuvering

during the various flight stages while avoiding collisions like taking off, cruising, landing,

taxiing and parking the aircraft. Such awareness is obtained using the many existing

surveillance technologies such as primary radars and secondary surveillance technolo-

gies like Mode-A, Mode-C and Mode-S which will be discussed in this section. The ADS-B

protocol, which is part of Mode-S will, be explained more thoroughly, including its mech-

anism, its benefits, the challenges it faces as well as its vulnerabilities and how they can

be exploited.

2.1.1/ PRIMARY RADAR

The idea behind radar (Radio Detection And Ranging) is a radio wave death ray that

was proposed by British military officials worried about being outpaced by the Germans

during the second world war. The fact that this weapon was not feasible at the time, but

that its main approach could be used for aircraft tracking, paved the way for the radar

concept [160]. This technology uses a rotative omnidirectional antenna to send radio

waves which are reflected by targets such as aircraft and recaptured by the antenna as

seen in Figure 2.1. The distance of the target is a function of the duration of the round

trip of the signals, whereas the rotation angle of the radar dictates the azimuth angle of

the aircraft. To distinguish between moving targets as opposed to static ones, physical

phenomena such as the doppler effect can be relied upon. Note that the primary radar

used alone is neither capable to give the heights of the targets nor their identity, implying

the need for a supplementary technology such as secondary radars.

9

10 CHAPTER 2. CASE STUDIES

Figure 2.1: The radar mechanism showing emitted and reflected waves whose round trip
duration is used for distance estimation (illustration from skyradar.com).

2.1.2/ SECONDARY RADAR

The Secondary Surveillance Radar (SSR) is a cooperative technology based on interro-

gation that helps ATCS obtain more detailed flight data relative to radar. The SSR which

can be added on the primary radar or at another placement sends interrogation pulsations

at 1030 MHz to an aircraft and then receives a reply at 1090 MHz as shown in Figure 2.2.

Originally, there were two types of protocols used by SSR: Mode-A which communicates

the squawk code (used for aircraft identification) and Mode-C which communicates the

altitude. When a SSR interrogates for the squawk/altitude using Mode A/Mode C signals,

the reply type is recognised solely on synchronization. This makes the SSR less reli-

able for an airspace with high aircraft density because all reply signals are at the same

frequency of 1090 Hz. In addition, SSR are prone to receiving corrupted replies from

multiple airplanes lying in the same direction relative to the SSR due to interference.

To remedy such problems facing Mode A and Mode C, other protocols were developed

such as Mode S. In this mode, different aircraft can be chosen for interrogation to obtain

different types of information. Uplink signals contain data blocks made of 56 bits in case

of short interrogation, compared to 112 bits in case of long interrogation. Equivalently a

downlink signal’s data block is made of 56 bit (short reply) or 112 bits (long reply). The first

five bits of the data block for uplink/downlink signals, called uplink format/ downlink format,

are used to indicate the structure of the information present in the data block. A downlink

format of 17, 18 or 19 infers the automatic broadcast of messages via extended squitter

mainly used for the ADS-B protocol and which will be detailed in the next subsection.

2.1. AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST 11

Figure 2.2: Secondary surveillance radar relying on interrogation and replies for commu-
nication (illustration from skybrary.aero).

2.1.3/ WHAT IS ADS-B?

ADS-B is a communication protocol governing the exchange of flight information such as

flight speed and location between airplanes and air traffic control (ATC) centers [166].

An Aircraft obtains its own position and speed via global navigation satellites systems

(GNSS) and then broadcasts them along with other information including the emergency

status and flight number in the form of ADS-B out signals. These signals, which are

Mode S extended squitter (1090 MHz), can be received by aircraft and ATC as ADS-B

In signals. The flow of information in the ADS-B protocol is shown in Figure 2.3. ADS-B

stands for Automatic Dependent Surveillance-Broadcast where ”Automatic” implies the

transmission of aircraft information without any human intervention, ”Dependent” infers

that it requires equipment on the sending and receiving end of the ADS-B signals and

”Broadcast” indicates that each aircraft equipped with ADS-B out broadcasts its informa-

tion (identification, position, and so on).

2.1.4/ MESSAGE FORMAT

ADS-B frames shown in Figure 2.4 contain the following fields in order: first the downlink

format made of 5 bits, then the capability made of 3 bits, the ICAO made of 24 bits,

the message extended squitter made of 56 bits, and the parity made of 24 bits. All the

fields add up to 112 bits. Every ADS-B frame has a downlink format of 17 or 18. When

the downlink format is 18, the emitter of the frame is not a transponder. The capability

specifies the Mode S transponder level. A level 1 transponder corresponds to a basic

transponder without any datalink capability and hence cannot be used for international

travel. Conversely, levels 2, 3 and 4 have increasing datalink capabilities and can be

used for international travel [2].

12 CHAPTER 2. CASE STUDIES

Figure 2.3: The ADS-B protocol communication principle (illustration from trig-
avionics.com).

The ICAO is the mode-S transponder code of the emitting aircraft and is designated on

the authority of the International Civil Aviation Organization guidelines (ICAO). The ICAO

helps identifying an aircraft.

The message extended squitter contains the payload whose first 5 bits called type code

is used to specify the content of the ADS-B data frame in the remaining 51 bits. ADS-B

messages can take on many types.

First, an identification message can be used to obtain the callsign of an aircraft. A callsign

specifies the route of the aircraft. Since different aircraft can take the same route, the

callsign does not necessarily identify an aircraft. This type of messages also indicates the

wake vortex category of the aircraft. The wake vortex categorization is a way to classify

moving objects in the air according to the way they disturb the atmosphere around them.

Therefore according to this type of classification an object can be a skydiver, a rotorcraft,

a light aircraft, a medium aircraft, a heavy aircraft, etc.

Second, a position message which takes one of two subtypes, surface or airborne, can

be used to compute the altitude, latitude and longitude of the aircraft. For the airborne

Format

ICAO Parity

Extended

Squitter

MessageDownlink Capability

Figure 2.4: ADS-B frame format.

2.1. AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST 13

position case, the latitude and longitude are computed from their encoded values in two

successive pair of odd and even messages (this parity is determined by the bit 54). An-

other method to obtain the actual latitude and longitude is based on a close reference

position within a 180 NM range. The encoded latitude and longitude of the message,

together with their reference values are used to compute the actual position. In order to

obtain the height, only one message is needed. If the type code is between 20 and 22,

the height can be directly decoded in meters since it is already computed using GNSS.

However, when the type code is between 9 and 18, a barometric height is computed

in feet.

For the surface position case, the position is computed in a similar manner as an airborne

one using pairs of even and odd messages. However, this technique gives multiple sur-

face positions solutions. So to choose the right solution, a reference position (usually a

nearby airport) is required. Note that a surface position can also be computed solely from

a reference position and one message. Also from surface position messages, ground

speed and ground track can be decoded from a movement field and ground track field

respectively.

Third, from a velocity message, vertical rate, ground velocity, ground track, air speed (if

ground velocity is not available), and the magnetic heading can be easily computed as

well as the difference between GNSS height and barometric height.

Fourth, operation status message is used to give miscellaneous information on an aircraft

such as integrity indicators, accuracy and version of the ADS-B messages.

Fifth, aircraft status messages’ role is to report resolution advisories (RAs) produced by

Airborne Collision Avoidance System (ACAS) [5]. Essentially, ACAS is as system whose

purpose is to prevent mid-air collisons. ACAS rely on a secondary radar to interrogate

aircraft with mode C or mode S transponders. The replies are used to obtain the relative

position of the aircraft and then the flight crew is alerted in the case of a collison threat.

That being so, resolution advisories tell the pilot the needed vertical speed to obtain a

satisfactory vertical separation [1].

Target state and state information messages give aircraft state and status information

such as the next intended altitude and track as well as some other complementary infor-

mation [5].

2.1.5/ BENEFITS OF ADS-B

The invention of ADS-B brought many improvements in the aircraft surveillance domain.

First, the information transmission rate has increased significantly. In fact, radar infor-

mation is updated every 6 to 12 seconds which is much slower than the minimum trans-

14 CHAPTER 2. CASE STUDIES

mission rate in ADS-B of 1 message every second. The ADS-B protocol facilitates co-

operation by creating a common airspace picture shared between aircraft and ground

stations. Aircraft surveillance based on this technology can cover remote areas inacces-

sible by radar. For example, all of Australia has aircraft surveillance coverage with ADS-B,

whereas prior to the introduction of this protocol, much of the Australian outback had no

surveillance coverage due to a lack of radars (20 radars across Australia) [165] as seen in

Figure 2.5 . ADS-B is also responsible for monitoring airborne and ground traffic. Hence,

it helps preventing the ill placement of a person, vehicle and aircraft on runways which

can cause serious accidents. The better accuracy of ADS-B data allows for a smaller

separation between aircraft, increasing henceforth the airspace capacity and the flexibil-

ity to take more efficient routes. Essentially, aircraft can be laterally and longitudinally

separated by only a distance of 20 nmi (Nautical mile) and 5 nmi, instead of the respec-

tive separation distances of 90 nmi and 80 nmi required before the introduction of ADS-B

[78]. This can substantially diminish flight costs, pollution and noise.

Figure 2.5: The superior surveillance coverage provided by the ADS-B protocol in Aus-
tralia.

2.1.6/ CHALLENGES FACING ADS-B

2.1.6.1/ FEASIBILITY OF ATTACKS

Even though ADS-B is a practical communication medium it still suffers from many vul-

nerabilities. Basically, each message is neither encrypted nor has any authentication or

challenge-response mechanism and is therefore subject to attacks such as eavesdrop-

ping and alteration by unauthorized ADS-B equipment [58].

The authors in [58] tested the feasibility and practicality of such attacks in a controlled

setting. They used a software defined radio (SDR), specifically a USRP1, to send ADS-B

2.1. AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST 15

messages and relied mainly on a PlaneGadget ADS-B Virtual Radar to receive these

messages. In order to create an alteration attack, more specifically impersonation at-

tacks, they used MatLab to encode and modulate ADS-B messages, while the replay

attacks were produced using GNURadio’s predefined functions. GNU radio is a free

and open source application programming interface used for signal processing and other

functionalities required for SDRs. Note that the PlaneGadget is a commercial-off-the-shelf

(COTS) receiver whose value of money is adequate and can be easily bought by ama-

teurs. The ease in acquiring the material and their deployment showed that in practice,

ADS-B attacks can indeed be easily executed.

In order to assess the probability of those attacks, the motivations for such risks need to

be known. They can range from financial and recognition incentives to terror, spying from

intelligence agencies or even curious individuals [58]. For example, an aviation enthusiast

teen was relying on ADS-B data to track celebrities’ private jets such as Elon Musk’s jet,

Bill Gates, Jeff Bezos and others. Then he used bots to publish those aircraft locations in

real time on Twitter. Elon Musk later proposed the teen 5000 dollars to take down these

bots because he felt that they constitute a security threat to him. The teen refused to do

so and demanded more money or an internship but his counter-offer was declined [6].

Hence one can argue that such motives could help in the evaluation of the legitimacy of

ADS-B messages. Therefore, using exogenous data expressing attack motives might aid

in detecting ADS-B attacks.

2.1.6.2/ VULNERABILITIES AND ATTACKS

In addition to the previously mentioned vulnerabilities, the ADS-B protocol suffers from

message loss. Such omissions can arise naturally from message collision, which is

mostly present in dense airspace. They can also originate from Ground Station Flood-
ing attacks which consist in jamming the 1090 MHz channel causing message loss. Note

that the natural loss is high near receivers (doughnut effect). Also, ADS-B messages are

usually emitted by two alternating antennas on an aircraft, giving them different trans-

mission properties. Thus additional data processing is often needed, more specifically

filtering of ADS-B data. Moreover, messages can be duplicated due to echoes especially

in alpine regions as well as due to some faulty transponders. Such transponders can

send the same message up to 12 times [77].

Furthermore, many types of attacks other than the ones tested in [58] can be applied. For

example, the Ghost Aircraft Flooding attack consists in sending a substantial amount

of ADS-B messages identifying nonexistent aircraft to confuse ATCS and flight crews

as seen in Figure 2.6. Essentially, they will observe a massive amount of fake aircraft

identical to real ones on their instruments. Hence, a denial of service is inflicted. It is not

16 CHAPTER 2. CASE STUDIES

mandatory to flood the 1090 MHz channel with ghost aircraft to confuse ATCS and pilots.

In fact, one or few ghost aircraft can be enough to do so. Basically, one can inject an

ADS-B message inferring the presence of an aircraft at an undesirable position forcing a

specific maneuver from the pilot which can be dangerous. This type of attack is called a

Ghost Aircraft Injection. One can also delete ADS-B messages to hide a certain aircraft

from the receivers. Such an attack is termed Aircraft Disappearance. Virtual Trajectory
Modification is another type of attack in which the position fields in the ADS-B messages

are modified leading to a perception of trajectory modification from the receiver. Note that

it is also possible to alter the emergency field in the ADS-B messages leading to a False
Alarm Attack. The ICAO field in ADS-B messages can also be modified for aircraft

impersonation also known as Aircraft Spoofing [77].

(a) Before the attack (b) After the attack

Figure 2.6: Simulated Ghost Aircraft Flooding attack showing the appearance of multiple
ghost aircraft to confuse air traffic controllers and pilots.

2.2/ ENVIRONMENTAL NOISE MONITORING WITH PARKMETERS

In the last decades, cities and metropolises kept attracting an ever increasing population

looking for job opportunities and services. This kind of urbanization is not without its pit-

falls such as traffic jams, air pollution and environmental noise. Noise pollution is a major

nuisance which can be detrimental to people’s health. It can cause sleep disruptions,

cardiovascular disturbances as well as hearing problems such as hearing loss, hearing

distortion, hearing intolerance (Hyperacusis) and transitory or lasting tinnitus. Such hear-

ing impairments can hamper the patients careers as well as socially isolate them and

contribute to mental illnesses like depression, anxiety and psychosis [101].

Traditionally, to tackle the problem of environmental noise, experts measure noise levels

using sound level meters. Although these measurements are applied at specific sites and

duration, they are based on conventional acoustics models and are usually insufficient

for the escalating urbanization [123]. Nonetheless, wireless acoustic sensor networks

(WASNs) help remedy these shortcomings. Such sensor networks were made possible

2.2. ENVIRONMENTAL NOISE MONITORING WITH PARKMETERS 17

by the progress touching the Internet of Things (IoT). This evolution is linked to the de-

crease in the size and cost of the equipment and its increasing availability. WASNs have

many capabilities like integrating noise levels into maps which are delivered to cloud-

based central servers. This is done in order to dynamically model the noise level distribu-

tion in crowded areas. Note that, typically, such maps were static and obtained every five

years from professionals’ measurements which is substantially longer than the dynamic

update using WASNs (in the order of minutes or even seconds).

2.2.1/ WASNS USING COMMERCIAL SOUND LEVEL METERS

WASNs can rely on commercial acoustic measurement devices like the following projects.

In one of the earliest developments in motes, the authors created a sensor unit that opti-

mizes the energy usage so that it can be used for IoT scientific experiments [34]. While

in [44], the use of WASNs was shown to be a viable option to monitor urban environmen-

tal noise. Also, communication savings were sought by relying on predictions advising

the right times to stop communicating data with the server. In [51], the authors imple-

mented WASNs in housing and industrial settings where global synchronisation of a tree

like network is obtained [56].

In [68], one main use case of noise data is environmental analysis. In fact the authors

measured noise originating from traffic in Xiamen (China) using a WASN. This network

comprises of noise devices and works based on the Zigbee and GPRS protocols. Another

comparable project was accomplished in Barcelona. Essentially, in efforts to remedy the

problem of increasing urban noise, officials decided on devising actionable strategies.

However, the enforcement of such plans require the appraisal of their effects. Thus, a

noise monitoring network was implemented in the city together with a platform for sensor

data handling and interfacing called Sentilo [82]. A somewhat similar initiative was car-

ried out in Paris by the non-profit institution Bruitparif. Basically, it consists in a WASN

built with the purpose of gathering noise data for analysis and assessment. Such inter-

pretations are used to execute informed actions to shrink noise levels. Correspondingly,

a platform called RUMEUR (Urban Network of Measurement of the Sound Environment

of Regional Use) is built to examine the collected data and communicate them with the

general public [87].

FI-Sonic is another initiative concerned with noise related applications like updating noise

maps, locating and isolating sets of sound sources. These capabilities are made available

by the project’s development of the required technology for environmental noise collec-

tion and manipulation [95]. FI-Sonic is powered by FIWARE (https://www.fiware.org/), a

platform of open source solutions, ready to use technologies, support and consultancy

services [88].

18 CHAPTER 2. CASE STUDIES

2.2.2/ WASNS USING AD-HOC HARDWARE

WASNs can also be based on Customized Nodes which are designed exactly for their

needed purpose. In [42], as part of the SensorNet proposal, the authors study the feasi-

bility of WASNs and build an ad-hoc noise measuring device to miminize the computation

and power consumption of motes. In [60] and [109], the SENSEable initiative in Pisa

(Italy) ensured the engagement of cities’ inhabitants in real time noise administration us-

ing sensors at their residences. Similarly, to allow for noise level comparisons before and

after enforcing noise minimizing policies, low cost WASNs with real time tracking capabil-

ities were implemented in Monza (Italy) [99]. In New York as well, a noise sensor network

called SONYC helps conceiving plans for urban noise reduction [104].

In order to devise a technique for creating reasonable noise maps in France, a cheap

sensors’ network was developed in the context of the CENSE project (characterization of

urban sound environments) [36]. In Belgium, noise and air quality characterized by harm-

ful gases concentrations as well as other environmental and meteorological metrics are

monitored in cities via WSNs as part of the IDEA (Intelligent Distributed Environmental

Assessment) initiative [53], [71]. In the same way air, quality and noise levels are also

measured using sensor networks in London and CANADA in the context of The MES-

SAGE [62] and the UrbanSense [96] projects respectively.

Medusa, which is the continuation of RUMEUR, uses special equipment which combines

cameras with multiple noise sensors in order to localize the origin of the noise [117].

In another project, special types of settings like freeways (more specifically the National

Highway of Burdwan) were the sole targets of noise collection and analysis via WASNs.

Bodily ailments (loss of hearing, hypertension, etc) were also diagnosed to study their

correlation with the noise levels [55].

In other works, sounds were categorized in relation to sleep quality. This classification

was based on perception surveys and acquired noise levels and other complementary

sound data from WASNs [70]. Sound events were recognized as well via an identification

process and correlated with the perception surveys [111].

Finally, the DYNAMAP project attempted gauging the noise impact of traffic on indivuals

health [97], [103]. In the context of this initiative, WASNs were implemented in ROME

[90] and MILAN (shown in Figure 2.7) [110] with the intention of having accurate mea-

surements while minimizing expenditures.

2.2.3/ WASN FALSE DATA INJECTIONS

Previously, the security of ADS-B data and ways to compromise the protocol, mainly

via false data injection attacks, have been described. In the same manner IoT systems

2.2. ENVIRONMENTAL NOISE MONITORING WITH PARKMETERS 19

Figure 2.7: Noise monitoring positions in the city of Milan, in the context of the DYNAMAP
project which aims at creating dynamic noise maps of urban areas.

are also prone to false data injection attacks. IoT systems are diverse and are rarely

standardized; they are usually handled on a case-by-case basis. In other words, each

type of IoT system relies on its own data structure. Thus, how to mitigate FDIA attacks

depends on the specific IoT system.

Our colleagues, who are part of the GeLeaD project, tested the ability of IoT systems

to withstand FDIA attacks, regardless of the type of data they rely on [134, 150]. To do

so, they created a FDIA framework and a DSL language to constitute its core. Data is

introduced in the framework in the form of CSV or JSON files. In a similar way as FDI-T,

which is used in the ADS-B domain, the framework generating FDIA on IoT also relies on

attack scenarios. These attack scenarios are creation, alteration, copy and deletion:

• In creation scenarios (using the keyword Create in DSL), new data records are

created depending on the content of the DSL instruction.

• In alteration scenarios (using the keyword Alter in DSL), data records are modified

according to the associated DSL instruction.

• In a copy scenario (using the keyword Copy in DSL), based on a selection condition

data records are chosen to be duplicated and then altered according to an alteration

scenario which is part of the copy scenario.

• In deletion scenarios (using the keyword Delete in DSL), data from records are

conditionally chosen to be deleted.

20 CHAPTER 2. CASE STUDIES

For the sake of simplicity and in order to show the scope of capabality of the framework,

we will discuss a general alteration scenario written in DSL by the authors instead of

detailing the formalism of their DSL language. The alteration scenario is as follows:

scenario ” Incrementa t ionAndAt tenuat ion ”

t i cker 2

geolocation (47.213865 ,5.968195)

a l t e r t h i ngs where l o c a t i o n i s I n s i d e C i r c l e (47.213865 ,

5.968195 ,500) set p a r t i c l e s +=(0.0 −>99999.0 ,10.0)

with a t t enua t i on o f 10.0 from 0 to 999999999;

The scenario is named ”IncrementationAndAttenuation” using the scenario keyword. The

term ticker expresses the time period between two messages sent by the system un-

der test, whereas geolocation represents the latitude and longitude of the attack. The

alteration criteria applied can be briefly described as follows. Particle values should be

gradually incremented with a step of 10 between each message. This attack is applied

inside a circle whose center has a latitude of 47.21 degrees, a longitude of 5.96 degrees

and a radius 500 meters. Then, while moving away, the attack on particles is attenuated

by 10 for each meter of distance.

The DSL is not bound to attacks on particles’ data, it can also be used on any data field

including noise level data which was also available in their acquired sensor data. Those

sensors are part of a network of smart parkmeters recording various types of data. Note

that in our work in chapter 6 we relied on noise level data from these parkmeters. One

can argue that such a FDIA generator could be used to obtain false labeled data to train a

false data injection detector similar to our work in detecting ADS-B anomalies in chapter 5.

Nevertheless, we did not have access to this framework at the time of our contribution.

2.3/ DISCUSSION

Since the ADS-B protocol is mandatory in the majority of countries, many efforts were

made towards ensuring its safety despite its major vulnerabilities such as the lack of

authentication and encryption.

For example, the automatic dependent surveillance contract (ADS-C) can be used to en-

sure the legitimacy of transmitted information between aircraft and ground stations, since

it relies on a contract between the communicating parties. This agreement specifies the

type of information that should be transmitted to the ground stations, as well as the con-

ditions triggering the communication of those information. However aircraft that support

the ADS-C protocol cannot periodically transmit their information, which are rather sent

upon request. Such a protocol contradicts the ADS-B paradigm and therefore airspace

2.3. DISCUSSION 21

systems no longer consider its implementation [76].

Other techniques to verify the correctness of ADS-B messages are secure location verifi-

cation methods that ensure the validity of ADS-B messages by computing position infor-

mation by other means. One such technique is multilateration in which the time difference

of arrival (TDOA) of messages emanating from the same aircaft and received by four or

more ground stations are computed. These TDOAs are used to compute the actual posi-

tion of the aircraft. The geometrical concept behind multilateration is that only four ground

receivers with positions and distances to the aircraft are needed to compute the space-

time position of the aircraft in question. Despite the relative success of multilateration, it is

costly and logistically difficult to implement due to the need of multiple ground receivers.

Also, multilateration can suffer from multi-path propagation effects.

There is also Secure Broadcast Authentication techniques which include fingerprinting

methods. One such technique is radiometric fingerprinting which identify the true emitter

of a radio signal such as ADS-B messages based on their unique fingerprint. For instance

turn-on transients of signals (the transitory portion of a signal right after turning it on)

contain features which define a fingerprint. Note that if the exact hardware generating the

radio signal is replicated, the consequent fingerprint is cloned as a result, rendering the

technique unusable for authentication in such cases [28].

As for cryptography approaches, symmetric encryption is not appropriate for the ADS-B

protocol due to the inherent threat of symmetric key leaks, therefore asymmetric cryptog-

raphy can be more adapted to such a problem [78]. Regardless, cryptography schemes

can overwhelm the 1090 MHz frequency channel used for ADS-B which can potentially

stifle the proper operation of the protocol. More specifically, exchanging keys in a de-

centralized system such as the ADS-B infrastructure may require much more additional

and bigger messages. In addition, encrypting messages contradict the original philoso-

phy behind ADS-B which is open communication. The previously mentioned limitations,

notably key management and the 1090 MHz channel risk of saturation, hindered efforts

to implement cryptography to ADS-B.

In the context of IoT systems, smart cities are increasingly integrating WASNs into their

infrastructure. However, environmental noise monitoring is still not as reliable, dynamic

and prevalent as needed to be. Also, implementing, evaluating and testing WASNs in

particular settings is usually an end in itself rather than to monitor and control smart cities.

Some WASNs depend on a high number of nodes (for instance 112 nodes in [113]) which

implies a wider scope of noise monitoring if the nodes are spaced enough. Other WASNs

rely on a few nodes (for instance 4 nodes [120]). Even though the number of nodes

influence the perception range of the WASNs, the use of a smaller number of nodes does

not eliminate the ability of long-term noise monitoring [120]. Such a capability depends

instead on the nodes capacity to function properly and gather clean reliable noise data

22 CHAPTER 2. CASE STUDIES

without experiencing crashes or power outages. Therefore, special care should be taken

while selecting the sensors as well as the auxiliary hardware. In addition, since the data

acquisition, preprocessing and treatment needs to be realised in a timely manner, the

computational performance of the hardware and algorithms used by the WASNs should

also be taken into consideration. Moreover, the choice of topology of WASNs is important

to minimize the latency of noise data transmission which also depends on the network

technology [64] (4G, 5G, WiFi, ...). Another aspect worth mentioning is the type of noise

data acquired by WASNs. It can originate from different sources or be filtered to originate

from an individual source such as the DYNAMAP project which restrain gathered noise

data to road traffic noise [110].

2.4/ CONCLUSION

In this chapter, the ADS-B protocol was presented including its mode of operation, bene-

fits and challenges, notably its lack of encryption and authentication mechanisms. Such

vulnerabilities make the ADS-B protocol prone to many types of attacks which were also

described in detail. Many techniques were devised to try to remedy this inherent flaw

of ADS-B like multilateration, fingerprinting, and encryption schemes, but they possess

some drawbacks preventing their real life implementation. In order to overcome such lim-

itations, many authors proposed anomaly detection techniques [125] based solely on the

content of the ADS-B messages. Such methods will be described in detail in the following

chapter.

In addition, IoT applications to urban noise monitoring were also presented. They are

divided into two categories: sensor networks which rely on commercial sound meters

and sensor networks which depend on ad-hoc hardware. A false IoT data generation

framework was also examined. It can be used on various types of data including noise

data. Note that a similar false data generator based on a domain specific language used

to generate ADS-B attack scenarios will also be detailed in the chapter 2. Finally, the

factors on which the acoustic sensor networks depend to properly function were also

discussed.

3

RELATED WORKS

3.1/ INTRODUCTION

Anomaly detection is the act of identifying unexpected patterns in the data called anoma-

lies or outliers. Anomaly detection is especially vital for decision-making processes that

must distinguish between normal and abnormal situations. Therefore, many domains rely

on anomaly detection like cybersecurity (intrusion detection), defence (enemy identifica-

tion), services (fraud detection) and health care (medical diagnosis) [45]. Even though

anomaly detection has a widespread range of applications, it still faces many challenges.

Typically outlier detection approaches create a boundary for normal data and when a new

occurrence lies outside this boundary it is considered as an outlier. However, this bound-

ary is often fuzzy, making its identification difficult. Similarly, anomalies that are the result

of malicious attacks are usually readjusted to remain undetected. Finally, it is often very

difficult to acquire labeled anomalies due to the low frequency of anomalies relative to

normal data and the costly process of labeling the data. In this chapter, general anomaly

detection techniques will be discussed followed by anomaly detection approaches used

in time series and ADS-B data.

3.2/ ANOMALY DETECTION

3.2.1/ NEAREST NEIGHBOURS BASED METHODS

Nearest neighbours based methods are a class of distance based anomaly detection

methods in which dense neighbourhoods contain normal data whereas anomalous data

are distant from their most adjacent neighbours [45]. The distance used for identifying

neighbours for continuous features is usually the euclidean distance, but it is not required

to be so. As for features used for classification, they usually rely on simple matching coef-

ficients. On the other hand, multivariate data aggregate similarities used for each features

23

24 CHAPTER 3. RELATED WORKS

into a global similarity. Nearest neighbours based methods rely either on distance mea-

sures of k-Nearest Neighbours (KNN) or density measures like the local outlier factor for

anomaly detection. These techniques will be shortly examined in this subsection

3.2.1.1/ ANOMALY DETECTION WITH KNN

The basic k-Nearest neighbours algorithm is a supervised model used for classification or

regression. Suppose a point is to be classified, the classes of its k nearest neighbours are

counted, the studied point is then classified according to the majority class [9]. Usually,

the euclidean distance is the metric used to identify the k-nearest points, while in the case

of regression, the output associated with the studied point is the mean of the outputs of

the neighbours. The main disadvantage of the KNN algorithm is its high time complexity

for high dimensional data.

The KNN approach can also be used in an unsupervised manner for anomaly detection

[26]. In this case, if n outliers are searched, then these are the n points that have the

greatest nearest neighbour distances.

3.2.1.2/ LOF: IDENTIFYING DENSITY-BASED LOCAL OUTLIERS

The Local Outlier Factor (LOF) is another nearest neighbours method. It is defined as a

metric used to characterize the amount at which a data point is considered as an outlier

[24], as can be seen in Figure 3.1. This definition contradicts with the binary classification

of outliers in previous works and introduces the outlying behavior as a fuzzy property.

Intuitively, the outlying behaviour of a point increases when its local density decreases

whereas the density of its k nearest neighbours (k is a hyperparameter to be fixed) in-

creases. Thus, the LOF is defined as the mean of the sum of the ratios of the two

previous densities. Therefore, given a point P, LOF(P) > 1 implies P is an outlier.

3.2.2/ CLUSTERING-BASED ANOMALY DETECTION TECHNIQUES

In addition to nearest neighbours based methods, clustering based anomaly detection

techniques are a class of distance based methods in which anomalous data do not re-

side in any cluster because clusters are solely composed of normal data as seen in

Figure 3.2. Some notable algorithms relying on the previously mentioned assumption are

DBSCAN, OPTICS and HDBSCAN. Clustering relies on similarity measures whose mag-

nitude increases as distances dwindle. DBSCAN, OPTICS and HDBSCAN will be briefly

explained in this subsection.

3.2. ANOMALY DETECTION 25

Figure 3.1: Example of a decision boundary plot of the Local Outlier factor used to es-
timate the outlying behaviour. The deeper the shade of blue, the higher the LOF and
consequently the higher the outlying behaviour estimation (plot from scikit-learn.org).

Figure 3.2: Clustering-based anomaly detection example showing normal data located in
clusters (green, blue and cyan clusters) and anomalies (red points) not belonging to any
cluster.

3.2.2.1/ DBSCAN: A DENSITY-BASED ALGORITHM FOR DISCOVERING CLUSTERS IN

LARGE SPATIAL DATABASES WITH NOISE

In [16], while relying on a density measure, data points are partitioned into multiple clus-

ters leaving out noise points or outliers. The density around a point P in this context

is conveyed by its number of neighbours which are points located inside a hypersphere

centered in P with a predefined radius ε. When the density around a point is above a

threshold minPts, it is considered as a core point. So, for clustering, each connected

component made of core points and their neighbours are allocated to a cluster. The

remaining non-core points are considered as outliers.

26 CHAPTER 3. RELATED WORKS

3.2.2.2/ OPTICS: ORDERING POINTS TO IDENTIFY THE CLUSTERING STRUCTURE

In [21], the authors try to remedy the problem of clustering with heterogeneous densi-

ties using DBSCAN. The OPTICS algorithm is similar to DBSCAN but it outputs an or-

dered list of points according to their reachability distance. Given two points A and B, the

reachability distance between these two points is defined as the maximum between the

minPts−distance and the ordinary distance as long as the size of B’s neighborhood is big-

ger than minPts. This type of distance gives a smoothing effect that forces small distances

to be bigger than a minimum equal to the minPts − distance. A low reachability distance

between two points P and Q implies P and Q belong to the same cluster, whereas a high

reachability distance indicates outlying behaviour.

3.2.2.3/ HDBSCAN: DENSITY-BASED CLUSTERING USING HIERARCHICAL DENSITY ES-

TIMATES

In [63], hierachical clustering is combined with density based clustering. Basically, this

technique creates a hierachical clustering graph where each level (i.e. ε value) corre-

sponds to a DBSCAN clustering solution. Then, the most eminent clusters in the hier-

archy are chosen. The remaining points are considered as outliers. The prominence

of the extracted clusters is expressed by a variable called stability. This measure rep-

resents how long a cluster survives in the hierarchy before being split into two clusters

whose individual sizes are greater than a specified minimum cluster size. The advan-

tage of HDBSCAN over DBSCAN is that it focuses on clustering high-density data, which

prevents the extraction of small clusters made of outliers.

3.2.3/ ENSEMBLE-BASED MODELS

In addition to clustering techniques, ensemble methods are also used for anomaly de-

tection. Such techniques combine the results (averaging, voting,...) of different anomaly

detection models to obtain one global result.

Clustering techniques can be model centered or data centered. Model centered models

combine the results of different models which learn on the same part of the data whereas

data centered models learn on different parts of the dataset to detect anomalies in differ-

ent regions of the data [61].

Ensemble techniques can also be categorized as sequential models or independent mod-

els. In sequential models such as boosting techniques, the outputs of one model are

considered as the inputs of the following model. Usually sequential models are used to

refine models results instead of being standalone anomaly detection techniques. Another

3.2. ANOMALY DETECTION 27

approach is combining the results of different independent models in a parallel fashion.

One notable independent ensemble technique is the isolation forest and will be briefly

discussed afterwards.

ISOLATION FOREST

In [43], an isolation forest is a recursive partitioning algorithm to identify anomalies which

can be modeled using binary trees. This model requires a training and testing phase. In

the training phase isolation trees are built to create an isolation forest as follows: a feature

is chosen randomly from the set of features and its value is selected randomly between

its maximum and minimum value in the data to split data points. This action is repeated

until a specific limit is reached to obtain an isolation tree as seen in Figure 3.3. In the

testing phase, the earlier a point is isolated as a consequence to splitting, the higher its

anomaly score. This score is averaged across the forest to decrease the variability in

anomaly detection from individual trees.

Figure 3.3: Visual example of an isolation forest showing an isolated outlier (red point).

3.2.4/ DOMAIN-BASED ANOMALY DETECTION

Domain-based anomaly detection techniques rely on a boundary to separate normal data

from anomalous data [74]. Such techniques disregard data densities and rely solely on

a boundary to separate the data. One of the main domain-based anomaly detection

technique is the Support Vector Method (SVM) for novelty detection. Using the technique

in [23], which is a one-class support vector machine, the data points are projected into a

feature space with higher dimensions. They are then separated from the origin using a

hyperplane which is henceforth used for outlier identification as seen in Figure 3.4.

28 CHAPTER 3. RELATED WORKS

(a) Original space
Origin

(b) Feature space

Figure 3.4: SVM for novelty detection in which the outliers (red points) are separated
in the feature space from normal data points (blue points) by a hyperplane passing by
support vectors (green points).

3.2.5/ STATISTICAL MODELS

In statistical anomaly detection models, the normal data probability distribution is esti-

mated using training data. When new data points emerge whose probability of showing

up is low enough, an anomaly is considered as detected [45]. Statistical models can

presume a given known distribution of the data where the parameters are the only un-

knowns to be estimated and in that case it is called a parametric method. Some notable

parametric models to be mentioned are Gaussian mixture models and regression based

models like ARIMA, Independent Component Analysis, etc. In other cases, statistical

models have no knowledge of the distribution whatsoever and in that case it is termed

non-parametric method. Some notable non-parametric statistical methods are histogram

based models and kernel function based models. The previously mentioned parametric

and non parametric statistical methods will be described in this subsection.

3.2.5.1/ GAUSSIAN MIXTURE MODELS

In gaussian mixture models each cluster is associated with a gaussian distribution. The

parameters of these gaussian distributions are learned using expectation maximization

[48]. Thus, a random initialization is first applied on the gaussian distributions. Then for

each data point, the posterior probability of being associated to a given cluster is com-

puted. The two previous steps are alternatively applied until convergence. Data points

can be correctly clustered from now on. If for a given point the likelihood of corresponding

to any given cluster is below a specified threshold, then an outlier is identified. A visual

example of gaussian mixture models is shown in Figure 3.5.

3.2. ANOMALY DETECTION 29

Figure 3.5: Visual example of gaussian mixture models showing the iterative process of
estimating the gaussian distributions till convergence. The outliers correspond to the red
points and normal points correspond to the blue points.

3.2.5.2/ ARIMA

ARIMA is a statistical method for forecasting in time series. It combines a moving average

model, an autoregression model and applies differencing [81]. The moving average and

autoregression models try to fit linear models to predict a present variable from past

errors and values respectively, while differencing is used to remove trends and seasonality

and achieve stationarity of the time series [132]. ARIMA can also be used for anomaly

detection.

3.2.5.3/ INDEPENDENT COMPONENT ANALYSIS

Given a signal made of multiple independent signals with non gaussian distributions, ICA

is a method of obtaining the source signals from the resulting combined signal [12]. Many

approaches can be followed for this purpose such as finding the sources which minimize

the mutual information or the sources that minimize the gaussian behaviour. ICA can also

be used for anomaly detection in multivariate time series [39].

3.2.5.4/ HISTOGRAM-BASED MODEL

In histogram based models the frequencies for intervals of a univariate training dataset is

computed. Then a test sample’s anomaly score which depends on frequency values is

computed and is used for anomaly detection. Histograms can also be used for multivari-

ate data by computing a histogram for each feature and then computing the associated

anomaly scores which are aggregated to obtain a unique anomaly score for all the fea-

tures. Histogram based models can suffer from an excess of false positives and false

negatives due to having narrow and wide intervals respectively [45].

30 CHAPTER 3. RELATED WORKS

Figure 3.6: Visual example of kernel function-based anomaly detection where the outliers
(red points) have a small probability density (below a specified threshold) compared to
normal points (blue points).

3.2.5.5/ KERNEL FUNCTION-BASED MODEL

Using this technique, the distribution used for anomaly detection is estimated using a lin-

ear combination of continuous distributions around individual data points modeled by a

kernel function [7] as seen in Figure 3.6. This gives a smooth approximation of the proba-

bility distribution compared to histograms but may suffer from bias around the boundaries

of the central distributions.

3.2.6/ DIMENSIONALITY REDUCTION TECHNIQUES

Dimensionality reduction techniques are usually applied to avoid the ”dimensionality

curse” [22] such as in the K-nearest neighbors algorithm. Principle component analy-

sis is one such technique that is based on the eigen decomposition of the covariance

matrix of the data points [29]. The vector with the highest eigen value is the first principal

component which is defined as the direction with the highest variability in data points.

As the eigen values are computed in decreasing order of magnitude, their corresponding

eigen vectors: the first, second, third, ..., nth principal components are obtained.

The variability change with respect to change in directions can also be used to detect

anomalies. More precisely, considering the directions with the lowest variability (last prin-

cipal components), the higher values for samples are treated as anomalous as seen in

Figure 3.7. This PCA-based approach was applied on astronomy data acquired from

the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) [41].

Usually data present non-linearities which cannot be treated with vanilla PCA, but rather

using a technique called kernel PCA [19]. The latter technique projects the data into a

higher dimensional feature space which transforms the data’s non-linearities into linear

behaviours. The main difference in the application of the kernel PCA compared to PCA

3.3. PREDICTION AND DETECTION OF ANOMALIES IN TIME SERIES 31

First
principal
component

Second
principal
component

Figure 3.7: Visual example of PCA applied on 2D data, where outliers (red points) are
points with high variability relative to the last principal component (the second principal
component in this case).

is that a kernel matrix is diagonalized instead of the covariance matrix. Another PCA

variant is robust PCA which is tolerant to arbitrarily corrupted observations [54]. Finally,

functional PCA is a PCA variant applied to functional data, more precisely square inte-

grable stochastic processes [35].

3.3/ PREDICTION AND DETECTION OF ANOMALIES IN TIME SERIES

The previous section described anomaly detection techniques in a general sense, while

this section focuses on techniques for time series anomaly detection. Convolutional

neural network (CNN) based methods, recurrent neural network (RNN) based methods,

transformer methods, as well as hybrid frameworks and techniques will be discussed in

this section.

3.3.1/ CONVOLUTIONAL NEURAL NETWORK-BASED ANOMALY DETECTION

Convolutional neural networks are deep learning architectures that rely on the mathemat-

ical operation of convolution to transform tensor data, mainly images, into other tensors

for a specific purpose [14]. More concretely, convolutional neural networks use learnable

filters to transform the data. The most famous type of CNN is the 2D-CNN which relies

on filters that can move in 2 dimensions. This architecture is inspired by the visual cor-

tex in the human brain and is the basis for many types of applications such as image

classification, segmentation, pattern recognition, etc.

32 CHAPTER 3. RELATED WORKS

Feature Map 1

Feature Map 2
Feature Map 3

Feature Map 4

Feature Map 5
Feature Map 6

Feature Map 7

Feature Map 8
Feature Map 9

Feature Map 10Filter 4

Filter 5
Filter 6

Filter 7

Filter 8

Filter 9

Filter 10

Filter 3

Filter 2

Filter 1
Features

Time

Figure 3.8: Visual example of a 1D-CNN layer. A sliding window convolves with learnable
filters to obtain feature maps.

Another type of convolutional neural networks is the 1D-CNN which is mainly used for

sequential and time series data, since it is based on filters that can only move in one

direction. An example of 1D-CNN layer is shown in Figure 3.8. 1D-CNN can be used for

forecasting, classification and other applications like anomaly detection such as Deep-

ANT [118] Microsoft’s time series anomaly detection service [118] which will be described

afterwards.

3.3.1.1/ DEEPANT: A DEEP LEARNING APPROACH FOR UNSUPERVISED ANOMALY DE-

TECTION IN TIME SERIES

The model presented in [118], called DeepANT, is used for unsupervised anomaly de-

tection in univariate as well as multivariate time series. First, a 1D-CNN architecture

(containing 1D-CNN layers as well as 1D Max Pooling layers) is used to extract relevant

features and then predict the next sample based on a window of samples. Then, the

euclidean distance between the real value and the ground truth is evaluated and is used

as an anomaly score. Finally, the anomaly score is compared to a manually defined

threshold in order to decide if a given sample is anomalous.

The deepANT has a wider scope of applications relative to LSTMs since it is suitable

for both small data and big data. The deepANT architecture can also be used for dis-

cord detection which are defined as anomalies in subsequences. When predicting a

subsequence, the anomaly scores of each of their individual samples are aggregated

into a single one anomaly score used for discord detection based on another predefined

threshold.

3.3. PREDICTION AND DETECTION OF ANOMALIES IN TIME SERIES 33

3.3.1.2/ TIME-SERIES ANOMALY DETECTION SERVICE AT MICROSOFT

The authors of [130] combined spectral residuals (SR) with 1D-CNN to detect anomalies

in time series. The SR part of the architecture is based on Fourrier transform and inverse

Fourrier transform to obtain a map which highlights the anomalies in the time series data

and is called saliency map. However, instead of using a threshold to detect anomalies,

normal time series data are transformed using SR into a saliency map. Then synthetic

anomalies are introduced in the map. A 1D-CNN followed by a fully connected layer is

used to classify the salient map data associated with the time series data as normal or

anomalous based on the synthetic anomalies’ labels.

3.3.2/ RECURRENT NEURAL NETWORK-BASED ANOMALY DETECTION

Recurrent neural networks (RNN) are a subtype of neural networks that contain loops

and hidden states in their structure. They cycle the information from the previous output

back to the current input. Such loops can give them memory capabilities and allow the

networks to capture sequence dependencies. There exists many variants of RNNs such

as the vanilla RNN (shown in Figure 3.9) and gated RNNs like Long Short-Term Memory

(LSTM) and Gated Recurrent Units (GRU) which can work on sliding windows with bigger

sizes (lookback). RNNs are mostly used for forecasting and classifying sequential data.

RNNs can also be used for anomaly detection such as LSTMs [86] and RNNs with skip

connections [146] which will be be discussed in what follows.

3.3.2.1/ LONG SHORT-TERM MEMORY NEURAL NETWORKS FOR ANOMALY DETECTION

IN TIME SERIES

The LSTM architecture (shown in Figure 3.10) is a special RNN network especially con-

ceived to remedy the problem of vanishing gradients encountered in regular RNN net-

works [25]. When trying to update the weight of a given connection in a regular RNN the

gradient of the prediction error with respect to this weight used for the update can, in some

cases, become really small. This can prevent the update and is called the vanishing gra-

dient problem. This is due to the fact that the gradient contains repeated multiplications

of tanh derivatives which are positive values smaller than one [167]. A LSTM possess an

internal memory modeled by a cell state and a hidden state. While processing sequential

data, the LSTM learns to forget irrelevant information from the cell state using a forget

gate and to update appropriate information in the cell state using an input gate. The input

gate chooses relevant information from a vector of candidate values to update the cell

state. Finally, an output gate learns to extract suitable content from the cell state to be

output as the new hidden state. Note that the LSTM architecture obligates the gradient

34 CHAPTER 3. RELATED WORKS

Current
input

vector

hidden

state

previous
hidden

state

current

hidden

state

current

hidden

state

current

hidden

state

previous

Concatenation

activations:
tanh

current input vector

lookback
sliding window

tanh

Figure 3.9: Visual example of a regular recurrent neural network layer. A loop connects
the current hidden state with the previous hidden state.

of the error to contain 4 added terms (which include the forget gate activation) instead of

containing repeated multiplications. The additive structure of the gradient and the pres-

ence of the forget gate activation function in this structure help prevent the vanishing of

the gradient. More precisely, the forget gate activation can take on values to specifically

prevent the gradient form vanishing [167].

The hidden state can be used as an input to another LSTM layer in case of a stacked

LSTM, otherwise it gives directly an output without any modification. This mechanism

makes the LSTM especially useful for processing sequential data like time series for a

variety of application namely forcasting and anomaly detection. For instance, in [86],

the authors used a basic LSTM and a multivariate gaussian distribution for time series

anomaly detection. In their technique, an LSTM architecture learns to predict a specified

number of future samples based on a chosen number of input samples. Then the errors,

which are the difference between the predicted samples and their corresponding ground

truths, are fit to a multivariate normal distribution N(µ,Σ). When the likelihood of the error

extracted from N is less than a specific threshold an anomaly is detected.

3.3. PREDICTION AND DETECTION OF ANOMALIES IN TIME SERIES 35

forget

gate

input

gate

output

gate

cell

state

previous

hidden

state

previous

cell

state

current

hidden

state

current

hidden

state

current

neural network layer

pointwise operation

concatenation

Current input vector

Lookback
sliding window

tanh

tanh

candidates

Figure 3.10: Illustration of a LSTM layer.

3.3.2.2/ TIME SERIES ANOMALY DETECTION USING TEMPORAL HIERARCHICAL ONE-

CLASS NETWORK

In order to detect anomalies in time series, the authors in [146] created a model which

combines deep learning, more specifically recurrent neural networks, with one-class clus-

tering. The architecture is made of two parts. The first part is used to extract temporal fea-

tures and is made of multiple layers of RNN cells (regular RNN, LSTM or GRU) with skip

connections which diminish the effects of vanishing gradients. This ensures the possibility

to work with longer time periods. The extracted features are introduced into the second

part in order to be fused and hierarchically clustered. The final output is an anomaly

score used for anomaly detection. The loss function (metric expressing the amount at

which predicted values differ from target values) used to train this model combines three

types of loss functions:

• Temporal hierarchical one-class loss: its use is similar to deep SVDD and relies on

cosine similarities.

• Self supervised loss: In order to learn additional helpful features to improve the

whole process.

• Orthogonal loss: this loss ensures that the clusters are as distinct as possible.

36 CHAPTER 3. RELATED WORKS

3.3.3/ TRANSFORMER-BASED ANOMALY DETECTION

Classically encoder-decoder architectures encode a sequence of input data into a con-

text vector which is then used to decode a sequence of outputs. The encoders and

decoders are often made of RNNs like LSTMs. RNNs usually suffer from vanishing gradi-

ents especially vanilla RNNs. In addition to this limitation, all the inputs are summarized

sequentially into one context vector hence the accumulation of errors which are translated

into the decoded phase. To remedy this problem the attention mechanism was invented.

The attention mechanism is similar to human attention, which selectively focuses on rele-

vant information in order to achieve a specific task. More precisely, the hidden states are

multiplied by weights and added together to obtain the context vector. A slightly more ad-

vanced attention mechanism is self-attention [108], which is a general case for more con-

ventional attention mechanisms. Unlike traditional attention mechanisms, self-attention

requires no RNN to function and its computation can be parallelized.

The transformer architecture whose core is based on the self-attention mechanism was

first introduced to be used for Natural Language Processing. It established state of the art

scores against many benchmarks mainly language translation benchmarks. The trans-

former architecture was a monumental paradigm shift in the deep learning domain and

it gave rise to big powerful language models like GPT3 [135]. The basic mechanism of

self-attention will be explained in the context of natural language processing as follows.

Suppose we have a sequence of inputs usually a sentence. When we focus on a tar-

get word, other relevant input words need to stay in memory to a certain degree. This

memory is essential for the understanding of the sentence and is obtained using self-

attention. First embedding vectors are computed from inputs. Relevant information to a

specific word, which are distributed across a corpus of text need to be queried, hence

the need for a query vector corresponding to the input. Key vectors corresponding to

each word in the corpus represent the address needed to access the information asso-

ciated with those words. Such information is contained in corresponding value vectors.

The query, key and value vectors are computed from embeddings by multiplying them by

trainable query, key and value weight matrices. Then, the similarities between the query

and the keys are computed. This similarity is based on a scaled dot product followed by

a softmax operation. Similarities are multiplied by corresponding value vectors to obtain

attention values which are finally summed to obtain the output of the self-attention. This

is basically what a self-attention layer (shown in Figure 3.11) amount to and it is the most

crucial component of the transformer architecture.

The tremendous success of the transformer architecture in natural language processing

incentivized its use in other applications. One such application is anomaly detection [151]

and will be detailed in what follows.

3.3. PREDICTION AND DETECTION OF ANOMALIES IN TIME SERIES 37

Output

Attention

Query

Key

Value

Embedding

Input Gravity exists

SimilaritySimilarity

Figure 3.11: Diagram of self-attention showing the process of extracting relevant informa-
tion to the word “exists” from all the words contained in the sentence “Gravity exists”.

LEARNING GRAPH STRUCTURES WITH TRANSFORMER FOR MULTIVARIATE TIME SERIES

ANOMALY DETECTION IN IOT

In [151], the underlying graph structure information of an IoT system is integrated with

multivariate time series data for anomaly detection. Before explaining their approach

some key concepts need to be explained, namely the Gumbel-max trick, the Gumbel-

softmax distribution, graph convolutions and dilated graph convolutions. In some deep

learning methods, some samples need to be generated from categorical distributions

with class probabilities π. The Gumbel-max trick can be used for this purpose which is

expressed as follows: z = one hot(argmax[gi + logπi]) where gi denote independent and

identically distributed samples drawn from Gumbel(0, 1). Gumbel(µ, β) is the gumbel distri-

bution expressed by F(x; µ, β) = ee−(x−µ)/β
where µ is called location and β is called scale.

Sampling using the Gumbel-max trick prevent differentiation while training the network.

This is due to the non differentiablity of the argmax operation. Since differentiation is

mandatory, a special distribution approximating the Gumbel-max trick which allows differ-

entiation is needed. One such technique is called the Gumbel-softmax distribution which

approximates the Gumbel-max trick using the softmax operation [92]. As for graph con-

volutions, these correspond to the counterpart of convolutions in images, but applied to

graphs. Given a specific vertex in a graph where each vertex is associated with an em-

bedding vector, a convolution aggregates information from neighbouring nodes and then

38 CHAPTER 3. RELATED WORKS

updates the embedding of the node in question [159], [128]. Finally, when we talk about

a dilated graph convolution, the type of neighborhood used skips every d vertices, where

d is called dilation rate. This neighborhood is called dilated neighborhood [128]. Now

that the needed keywords are defined, the approach used in [151] for anomaly detection

can be explained. First, the graph structure of IoT systems is learned using Gumbel-

softmax sampling. Then, graph convolutions are used to propagate the information inside

the graph, and dilated convolutions are used to represent long-term time dependencies.

Graph convolutions and dilated convolutions are applied alternatively several times. Next,

a modified version of a transformer is used for one step prediction. Finally, an anomaly

score is computed which is based on the sum of the square error of the prediction for

each node of the graph. The anomaly score is compared to a fixed threshold to detect

anomalies.

3.3.4/ GENERIC AND SCALABLE FRAMEWORK FOR AUTOMATED TIME-SERIES

ANOMALY DETECTION

In [84], researchers at Yahoo created a framework for time series anomaly detection. It

combines many approaches for anomaly detection such as forecasting, seasonality and

trends decomposition, residuals distribution estimation and clustering. While analyzing

time series, the researchers divided anomalies into three types: outliers, change points,

and anomalous time series.

Outliers are data points which are remarkably different from their expected values. Plug-

in models (considered as black boxes) are used to predict future samples and absolute or

relative errors or even other metrics can be thresholded to detect outliers. Another way of

detecting outliers relies on the decomposition of time series into their trends, seasonality

and noise in the time or frequency domain. Then the noise is compared to a threshold.

Change points are data points which are markedly different from their context and they

differ from outliers in that they last longer in time. In order to detect these anomalies

residuals are computed and then their probability density function is obtained using a

distribution estimation technique and a statistical distance is also evaluated to express

the variation in the distribution indicating a change points anomaly measure.

A time series is anomalous if it is highly distinct in a set of time series. In order to detect

these anomalies, samples are clustered according to their statistical features such as

seasonality, spectral entropy, trend, etc. Then the distance of each sample from clusters’

centroids is computed for anomaly detection.

3.4. ANOMALY DETECTION IN ADS-B PROTOCOL 39

3.4/ ANOMALY DETECTION IN ADS-B PROTOCOL

3.4.1/ ADS-B SPOOFING ATTACK DETECTION METHOD BASED ON LSTM

In the article [147], the authors relied on forecasting ADS-B vectors based on sliding

windows of ADS-B vectors for ADS-B anomaly detection. The forecasted ADS-B vectors

are compared with real vectors in order to detect ADS-B anomalies. The ADS-B vectors

in this study contain the following features: longitude, latitude, altitude, speed, heading,

and climb rate. The authors used an LSTM architecture made of one layer of 14 units

which is connected to a fully connected output layer made of 7 units which corresponds

to the ADS-B vector to be forecasted.

In order to classify an ADS-B vector as anomalous or normal, a residual between its actual

value and its predicted value as well as a specific threshold are computed. When the

residual exceeds the threshold, an anomaly is considered as detected. More concretely,

the set of ADS-B vectors used in this study is divided into three datasets: a training

dataset termed M1 (containing 80 % of the total set) used to train the forecasting model,

a set named M2 (containing 10 % of the total set) used to compute the anomaly threshold

and an anomaly detection test set M3 (containing 10 % of the total set) which depends on

the type of anomaly whose detection is being tested. In the M2 set, in order to compute

the residual of a predicted feature represented by di, the following expression is used:

di = |pi − vi|, where pi and vi denote respectively the predicted feature value and the

actual feature value. i represents the index of the ADS-B vector in question. The mean

value µ and the standard deviation σ of the di values are computed. The threshold t for a

specific feature is equal to 3σ. In the test phase i.e. in the M3 set, each anomaly score a

for a given feature in a specific ADS-B vector is computed using the following expression:

a = |di − µ|. Nevertheless, usually the totality of a vector needs to be classified as normal

or anomalous. Therefore, the overall anomaly score of a vector is just the mean of the

anomaly scores for each feature of the vector. Likewise, the overall threshold is also the

mean of thresholds associated with each feature of the vector.

Different classes of attacks were considered in the evaluation of the detection method. In

the first class of attacks, random noise was inserted in the data, more specifically ADS-B

vectors were multiplied by a factor between 0 and 2. In the second class of attacks called

injection, there exists two sub-types, namely route replacement and fixed offset. In route

replacement, a sequence of ADS-B vectors is replaced by another real sequence of ADS-

B vectors from another flight. In fixed offset (+/-), the features of a sequence of ADS-B

vectors are increased/decreased by 10 %. The third class of attacks called modification

is divided into three sub types: offset, heading change and climb rate change. In an

offset attack (+/-) of value x, a specific feature in ADS-B vectors in a fragment of a flight

is gradually modified by adding/subtracting x to the first vector, 2x to the second, 3x to the

40 CHAPTER 3. RELATED WORKS

third and so on. In the heading change and climb rate change, the heading and climb rate

values are modified, respectively, by the replacement of these values by their opposites.

The detection performance of their technique is computed in terms of Recall, Precision

and F-score. The Recall also called Sensitivity and True Positive Rate (TPR) represents

the fraction of detected attacked messages relative to the total number of attacked mes-

sages. The Precision denotes the proportion of detected attacked messages that are

correctly identified as real attacks. Finally the F-score is the the harmonic mean of the

precision and recall [145].

The detection approach used by the authors gave the following results (averaged over

all the mentioned attacks): 93.67 % Precision, 61.59 % Recall and 70,76 % F-score. In

order to improve the performance the authors relied on the following technique. They

regarded an ADS-B vector as attacked when at least one of the sliding windows contain-

ing this vector is associated with an anomaly. As a consequence of this consideration,

the previous performance changed to: 93.49 % Precision 98.96 % Recall and 83.46 %

F-score. This corresponds to a huge improvement in recall, while leading to a substantial

improvement in F-score as well.

3.4.2/ LSTM ENCODER-DECODER FOR DETECTING ANOMALOUS MESSAGES

OVERVIEW

In the ADS-B protocol, the value of each message is influenced by its context, making

it harder for predictive models to detect anomalies. For this reason the authors in [114]

decided on using an LSTM encoder-decoder to identify anomalous messages without

relying on any modification of the ADS-B infrastructure. Anomalies are not detected in

individual ADS-B messages, but in windows of messages in which a window is considered

malicious if at least one of its messages is anomalous.

Anomalies are detected based on the messages’ reconstruction errors in the encoder-

decoder architecture shown in Figure 3.12. First, the encoder summarizes a sequence of

ADS-B vectors into a latent space where each vector contains relevant features obtained

from its associated ADS-B message. Then, a decoder tries to reconstruct the sequence

of ADS-B vectors. The anomaly detection model is trained on a normal flight from take off

to landing. Since the encoder-decoder is trained on normal messages only, it will struggle

to reconstruct malicious ADS-B messages indicating the presence of anomalies. Such an

encoder-decoder architecture which relies on reconstruction error for anomaly detection

is called autoencoder.

For the purpose of identifying anomalies, the authors used the following features extract-

ed/computed from the ADS-B messages: speed, latitude, longitude, altitude, heading,

3.4. ANOMALY DETECTION IN ADS-B PROTOCOL 41

four context points, and the distance between the current position and the previous posi-

tion of the aircraft.

In order to assess the ability of the proposed approach to detect anomalies, ADS-B data

were acquired using flightradar24 [4] and were altered using the following attacks:

• Random noise (RND): in this type of attack ADS-B vectors are multiplied by a ran-

dom decimal number between 0 and 2.

• Different route (Route): in this type of attack a fragment of the route is swapped by

another fragment from a different route.

• Gradual drift of 400 feet : in this type of attack the altitude of messages in a frag-

ment of a flight is continuously modified by adding/subtracting 400 feet to the first

message, 2 ∗ 400 feet to the second, 3 ∗ 400 feet to the third and so on. When ad-

dition and subtraction are applied, the attack is called SHIFT Up and SHIFT Down

respectively.

• Velocity drift of 5 knot: this attack is analogous to the gradual drift and is applied to

the velocity in ADS-B messages.

• Message blocking (BLK): this attack tries to mimic the consequences of a denial-of-

service attack. Essentially, the last 4 messages out of every 5 successive messages

are deleted.

Since random noise attacks and different routes attacks touch many features, their detec-

tion is much faster than drift attacks which only modify one feature each.

The authors were able to successfully detect anomalies of types RND, Route, Gradual

drift, Velocity drift and BLK. However they relied on previous records of the same flights for

training which might make it easier for the model to detect anomalies. Other techniques

like the following subsection do not rely on previous recordings making detection a harder

task but potentially more useful especially in detecting anomalies in military flights or small

aircraft flights which do not always take the same route.

3.4.3/ ADS-B ANOMALY DATA DETECTION MODEL BASED ON VAE-SVDD

3.4.3.1/ OVERVIEW

In the article [157], the authors used a Variational Autoencoder (VAE) [65] combined with

Support Vector Data Description (SVDD) [32] to detect anomalies in sequences of ADS-B

messages. First, a VAE (shown in Figure 3.13) is trained to learn the reconstruction of

42 CHAPTER 3. RELATED WORKS

Figure 3.12: LSTM autoencoder for ADS-B anomaly detection where the inputs corre-
spond to vectors containing ADS-B information.

Figure 3.13: LSTM VAE autoencoder for ADS-B anomaly detection where the inputs
correspond to vectors containing normalized ADS-B information.

windows of scaled ADS-B messages representing the following features: latitude, longi-

tude, altitude and velocity. The heading feature was not used in their technique. Each

message is contained in many windows thus it is reconstructed many times. In order

to choose the appropriate reconstructed message, cosine similarities between the origi-

nal scaled message and the reconstructions is applied. Finally, the differences between

the reconstructed messages and their corresponding scaled messages are classified as

normal or anomalous using SVDD which is a one class classification technique.

3.4. ANOMALY DETECTION IN ADS-B PROTOCOL 43

Table 3.1: Average performance of multiple architectures in detecting ADS-B anomalies
of the following attacks: Different route (Route), Velocity drift, Constant/Random position
deviation.

Evaluation index IForest GRU LSTM LSTM encoder-decoder VAE-SVDD
FPR 11.26 6.71 6.92 7.32 5.76
FNR 41.18 29.35 28.24 10.07 7.33
ER 32.59 19.25 18.76 8.85 6.6
F1-score 76.28 82.27 81.81 90.412 92.74

3.4.3.2/ COMPARISON WITH OTHER TECHNIQUES

In order to train and test their models the authors used ADS-B data from 50 and 20

different flights respectively. These datasets are obtained from the OpenSky Network

[75], a community driven open database of flight data. Different types of attacks were

used to evaluate the detection method:

• Different route (Route): this attack was also used in [114].

• Velocity drift: this attack was also tested in [114], but a multiple of 2 m/s was used

instead of 5 knot.

• Constant position deviation attack: the flight is deviated by 1 degree of latitude and

longitude.

• Random position deviation attack: noise of mean 0 and standard deviation 0.5 is

fed into the latitude and longitude values of the flight.

• DOS attack: the flight vanishes relative to the air traffic surveillance system.

The VAE-SVDD’s detection performance was compared with different models: an isola-

tion forest [59], a GRU, an LSTM, and a modified configuration of LSTM encoder-decoder

[114] i.e. they used only latitude, longitude, altitude and velocity as features without the

heading or any Vincenty distance. In the GRU and LSTM techniques, ADS-B messages

are predicted from windows of past messages, then cosine similarities were used to com-

pare these predictions with the actual messages to determine their legitimacy.

It can be noted from Table 3.1 that the VAE-SVDD outperforms the other models in de-

tecting all the previously mentioned attacks. Performance metrics are False Positive Rate

(FPR), False Negative Rate (FNR), Error Rate (ER), and F-score. The isolation forest

had the worse performance due to the fact that it uses the messages without taking into

consideration their existing temporal correlations. The GRU and LSTM did worse than the

encoder-decoder architectures because they could not properly detect constant deviation

attacks. The reason for this defect is the lack of cumulative change in the flight tracks

44 CHAPTER 3. RELATED WORKS

and hence the ADS-B messages position values remain within logical bounds. Since

the VAE-SVDD takes the statistical distribution of ADS-B messages into consideration,

it outperforms the LSTM encoder-decoder. The SVDD’s optimized search of anomaly

threshold improves its detection ability even further.

Nevertheless, the distributions of the input data need to be expressed accurately using

the VAE-SVDD. This architecture is well suited for crude attacks such as velocity drift,

but its performance deteriorates on new data giving a high false positive rate because it

struggles in the reconstruction of the messages [162].

3.4.4/ CAE: CONTEXTUAL AUTOENCODER FOR MULTIVARIATE TIME-SERIES

ANOMALY DETECTION IN AIR TRANSPORTATION

Normal commercial flights are usually divided into three phases: CLIMB, CRUISE and

DESCENT. In some cases, when a false data injection attack is applied, it might look

like the flight is normal. For example, a gradual descending attack might be applied on

the cruising phase. It may seem that a normal descent phase has just begun, when

in fact it was a false data injection which was not detected due to the fact that phases

were not properly identified beforehand. To remedy this problem, the authors in [162]

introduced the contextual autoencoder for multivariate time-series anomaly detection in

air transportation.

Their work was based on an autoencoder architecture [148] that sorts out sounds of

speakers placed in distinct locations. In order to detect ADS-B anomalies, batches of

samples are separated into three mini-batches, one for each phase of flights, using fuzzy

logic [107]. The order of the samples in the original batches is saved for a future process.

Then each type of mini-batches is encoded in a different latent space, one for each phase.

Then mini-batches are reconstructed from the latent spaces and concatenated based on

the saved order of samples to reconstruct the original batch. This model is shown in

Figure 3.14. Their model is trained with purely normal ADS-B data and when it fails to

reconstruct test data an anomaly is detected. The anomaly score used to evaluate the

reconstruction is the following:

Anomaly(window) =

n∑
i=0

1 − (xi − x̂i)2,

where xi is the ith input vector in its associated window of input vectors and x̂i corresponds

to its reconstructed vector, n is the size of the window. A threshold of anomaly score τ is

used for each phase, based on the 3σ rule for its ease of use: τ = µ + 3σ where µ and σ

are the mean and standard deviation of the anomaly score of the training data.

3.4. ANOMALY DETECTION IN ADS-B PROTOCOL 45

Figure 3.14: Diagram of a contextual autoencoder for ADS-B anomaly detection.

This model was tested against different types of attacks such as velocity drift, made up

crashes and constant position offset. Since made up crashes are descents that happen

too early, it was especially apt at detecting these attacks due to the fact that flight stages

were taken into consideration by the anomaly detection model. This model is also very

suitable for speed drift attacks that distort flight stages. However, it may not be appropriate

for flights that do not have well-defined clean flight stages, such as military flights.

3.4.5/ VIZADS-B: ANALYZING SEQUENCES OF ADS-B IMAGES USING EXPLAIN-
ABLE CONVOLUTIONAL LSTM ENCODER-DECODER TO DETECT CYBER-
ATTACKS

In the previous techniques anomalies were detected for ADS-B messages emitted by

individual aircraft. The difficulty of anomaly detection of ADS-B messages of different

origins lies in the fact that the relation between these messages needs to be investigated

in addition to the analysis of messages emanating from the same aircraft. To tackle this

obstacle, the authors in [122] represented the airspace’s ADS-B information using se-

quences of images and used a convolutional LSTM encoder-decoder network to identify

anomalies. The convolutional components of the network catch the spatial dependencies

of the data whereas the LSTM components capture the temporal/sequential relationship.

A basic convolutional LSTM encoder-decoder network is shown in Figure 3.15.

The ADS-B information is expressed as follows in the images. Each aircraft is repre-

sented by an arrow whose size corresponds to the altitude. The direction of the arrow

46 CHAPTER 3. RELATED WORKS

Figure 3.15: Diagram of a Conv-LSTM layer used in the VizADS-B anomaly detection
approach. X represent the inputs, whereas H and C represent the hidden and cell states
respectively.

is computed from the heading. The arrow’s position expresses the longitude and the

latitude, while the ground speed is represented by the arrows length. Like the previous

models, anomalies are detected using reconstruction errors which are expressed by the

color of the arrow. These anomaly scores are not pixel-wise but depend on the structural

similarities, hence the use of the SSIM function [72] to compute these errors. In order to

evaluate the model, ADS-B data were downloaded from the OpenSky Network [75] and

different kinds of anomalies such as flood, ghost and change altitude attacks injected.

The model was able to detect such anomalies, but the performance was lower for attacks

that modify the messages of real aircraft, since they touch smaller areas in the images.

3.5/ DISCUSSION

Many algorithms can be used for anomaly detection for the ADS-B protocol, however

each one of them has its advantages and pitfalls.

Nearest neighbours techniques do not need special assumptions and only rely on a speci-

fied number of nearest neighbors. But they suffer from high computational time, especially

accentuated by high dimensionality and larger datasets due to the need to compute plenty

of distances. They sometimes fail to detect anomalies which have a sufficient amount of

close neighbours, therefore it is crucial to properly specify the threshold which is usually

done by trial and error.

Clustering models constitute unsupervised anomaly detection techniques that can be

quickly tested since the number of clusters is limited and constant. However, anomaly

3.5. DISCUSSION 47

detection is not the original purpose of clustering algorithms, hence they may not be

especially optimal for such goals. Clustering might also slow down anomaly detection

due to high time complexities.

Statistical techniques are also a viable option for anomaly detection, which work well

when the data distributions are accordingly hypothesised, but may require additional hy-

pothesis testing, which is particularly difficult for high-dimensional data. In addition, the

data often do not follow a known distribution, which can lead to poor performance [45].

Domain based anomaly detection are usually suitable for datasets with evident separation

boundaries. However such algorithms are not robust against noisy data and are not suit-

able for training datasets whose number of samples is lower than the number of features.

As for dimensionality reduction techniques, they diminish the time and space complexity

but the consequent information loss may cause anomaly detection techniques to under-

perform. Ensemble techniques are robust, in other words they lessen the variability of

the predictions. However, they may lack the ease of interpretation. Ensemble models

consisting of complex individual models may be time costly since they add their individ-

ual computational time. All these techniques are in theory applicable to ADS-B anomaly

detection but need manual feature extraction.

Deep learning 1D CNN model rely on simple operations (addition and multiplication)

hence they can can be implemented in real-time using cheap hardware. Contrary to

ordinary multilayer perceptrons, 1D CNNs can extract features and perform classifica-

tion using an individual skeleton [155]. RNN networks, especially LSTMs, can capture

long-term dependencies but may suffer from vanishing gradients. Also LSTMs or other

advanced RNN models have high time complexity compared to convolutional networks

because they contain several memory cells [105].

Transformer architectures are not sequential in nature, hence parallel computing can be

applied to such models unlike RNNs. Also vision transformers which are transformer

architectures especially devised for treating image data outperform convolutional neural

networks in terms of accuracy and efficiency [154], [152]. However vision transformers

need much more data than regular CNNs, therefore CNNs and vision transformers are

suitable for small datasets and big datasets respectively.

Autoencoders architectures try to summarize input information into a latent space with as

much information as possible. However the relevance of such information is not necessar-

ily guaranteed. Furthermore, autoencoders may lose some important relevant information

if the bottleneck is too narrow. Therefore, special care need to be taken into consideration

while choosing the size of the bottleneck layer.

As for variational autoencoders, these are special types of autoencoders that encode

normal data into probability distributions [80]. Those distributions are then used for

48 CHAPTER 3. RELATED WORKS

anomaly detection contrary to regular autoencoders which rely on reconstruction errors

for anomaly detection. Therefore, variational autoencoders do not need special thresh-

olds to be set for the purpose of anomaly detection.

3.6/ CONCLUSION

In this chapter, general anomaly detection techniques were described as well as anomaly

detection techniques for time series and sequences of ADS-B messages. Such tech-

niques range from traditional machine learning methods to more recent deep learning

architectures. Autoencoder architectures have been seen as a popular choice for ADS-B

anomaly detection. Nevertheless all the techniques mentioned for ADS-B anomaly de-

tection are unsupervised or semi-supervised and may struggle to detect specially engi-

neered attacks. For this reason supervised anomaly detection was used in our contribu-

tions, which will be examined in detail in the following chapters.

4

CONTRIBUTION 1: A COMPARATIVE

STUDY OF DEEP LEARNING

ARCHITECTURES FOR DETECTION OF

ANOMALOUS ADS-B MESSAGES

4.1/ INTRODUCTION

Since the 1920’s, air traffic is becoming more prevalent by the year which results in a

steady increase of the number of aircraft roaming the airspace. This requires the ex-

pansion of the air surveillance systems in order to be able to manage each one of these

aircraft. Such an accommodation is planned to be implemented using different technolo-

gies and notably the Automatic Dependent Surveillance Broadcast (ADS-B) system. The

ADS-B protocol is based on the idea that aircraft as well as air traffic controllers communi-

cate with each other using messages. However, for practicality reasons, those messages

are not encrypted thus malicious messages can be injected. Hence, these attacks need

to be detected to ensure the safety of the protocol. One approach to detect these attacks

is using machine learning and deep learning architectures [89, 85], which have received

an increasing interest in the cybersecurity field. In this chapter, we will consider a very ba-

sic attack scenario on data vectors containing information from ADS-B messages, namely

a rough change of the altitude value in some vectors. Then we will evaluate various deep

learning architectures for the purpose of detecting those attacks in a supervised fashion,

especially LSTM architectures which appear to be the most promising one. Note that this

contribution was presented at the CODIT 2020 conference [140].

The remainder of this chapter is organized as follows:

• First, the studied machine learning and deep learning architectures are briefly pre-

sented for the case of alteration scenario targeting the altitude value.

49

50 CHAPTER 4. CONTRIB. 1: A COMPARATIVE STUDY OF DL ARCHITECTURES

• Second, the experimental work done with the studied architectures is described.

• Finally, we draw some conclusions for the design of a new architecture for FDIAs

detection.

4.2/ STUDIED ARCHITECTURES

In the ADS-B protocol, aircraft broadcast messages over time during their operations.

Consequently, the data to process to detect a FDIA targeting an aircraft consist in a set

of time series obtained after decoding the received ADS-B messages.

The fact that the data have a temporal evolution indicates that machine learning models

able to keep information from the past should be the most suited, namely neural networks

with a recurrent architecture. Natural candidate deep learning architectures for examina-

tion are therefore the LSTM architecture and its variants which suffer less from vanishing

gradients compared to regular RNNs. Even if CNNs are mainly used for image process-

ing, they can also be used for other kinds of input data like time series. In our case study,

we have also evaluated a CNN, specifically a 1D-CNN, before using a LSTM in order to

extract features from input data. Supervised learning was chosen to be applied using

these architectures because it is rarely studied in the literature for the case of anomaly

detection. This is mainly due to the lack of labeled data.

Apart from neural networks a Gradient Boosting method was investigated, namely XG-

Boost a technique attracting attention for its prediction speed and accuracy. XGBoost,

which stands for eXtreme Gradient Boosting [91], is a recent gradient boosting algorithm

designed for speed and performance. Gradient boosting algorithms constitute machine

learning techniques suited for solving regression and classification problems. This kind

of algorithm produces a prediction model in the form of an ensemble of weak prediction

models, typically decision trees.

4.3/ EXPERIMENTAL WORK

In order to perform a first evaluation of the ability of different deep learning models to de-

tect FDIAs in the ADS-B case study, we have performed some experiments using data in

which the altitude values have been roughly altered. Therefore we took vectors which we

termed meta-messages containing ADS-B information originating from individual aircrafts

and we changed the altitude by adding to the original value a random number equal to +

or −(800 + random(200)) feet. Some altitude values are thus increased by adding a value

between 800 and 1,000 ft, while others are decreased with a value in the same range.

4.3. EXPERIMENTAL WORK 51

Overall, for a given aircraft approximately one out of 30 vectors has an altered altitude

value. The data used for training and testing respectively consist of meta-messages from

10 and 4 aircrafts (66, 172 vectors for training and 19, 827 for testing). Since preexist-

ing deep learning architectures are used for anomaly detection in our experiments, and

there is no need for low level manipulation of neural networks, the Keras python library is

used to build deep learning anomaly detection tools. For more general machine learning

techniques such as gradient boosting the Sklearn python library is used.

This type of coarse punctual attack targeting the altitude value was chosen in a first step

in order to identify the models most capable of detecting FDIAs. Indeed, if a model is

not able to detect a coarse attack, it will not be able to detect finer attacks. Moreover,

this allows to restrict the number of models to be studied in the context of other attack

scenarios with finer alterations targeting other data.

4.3.1/ DATA ACQUISITION

The data used to evaluate the different models are issued from the OpenSky Network [75],

a community-based receiver network which continuously collects air traffic surveillance

data. In order to obtain the data needed for the anomaly detection, a data pipe based

on several python scripts was developed in order to enable the querying of the OpenSky

database. More precisely we downloaded raw ADS-B messages and decoded them using

the traffic and pyModeS python libraries. Currently, to build our dataset we have used air

traffic surveillance data collected on the 13th of January 2019 between 1PM and 2PM

GMT near the swiss border.

4.3.2/ DATA FORMAT

The ADS-B protocol relies mainly on 4 different message types: Aircraft Identification,

Airborne Position, Airborne Velocity, and Surface Position. Each type of message con-

tains its own information and is sent by the aircraft transponder in a fixed period of time

(5 seconds for Identification messages and 0.5 seconds for the others). In this study,

meta-messages were used for anomaly detection. They contain some ADS-B information

more specifically the altitude, the ground speed, the track, the latitude and the longitude.

Such content can be extracted from Airborne Position and Airborne Velocity messages.

4.3.3/ CONFUSION MATRIX

To assess the relevance of the different machine learning models we used confusion

matrices to evaluate their accuracy results. A confusion matrix sums up the prediction

52 CHAPTER 4. CONTRIB. 1: A COMPARATIVE STUDY OF DL ARCHITECTURES

results of a classifier. Such a matrix is constructed as follows: each line corresponds to

a real class and each column corresponds to a predicted class. For example, in our case

where there are two classes (there is an attack / Positive — the altitude value has been

altered — or not / Negative) and the matrix looks like:T N FP

FN T P

 ,
where, in the case of anomalous meta-messages detection,

• TN represents the number of True Negative predictions, in other words the number

of correctly detected meta-messages without attack;

• FN, which stands for False Negative, counts the number of altered meta-messages

which are classified as not attacked;

• TP means True Positive and thus represents the number of attacked meta-

messages which were correctly detected;

• Finally, FP (for False Positive) corresponds to the number of meta-messages without

alterations classified as attacked meta-messages.

The objective is then to find a classifier whose predictions produce a diagonal matrix.

In the context of the classification of meta-messages, we define an input sample as a

sequence of meta-messages and call its size lookback. Each sample is then used to

classify its last meta-message as normal or anomalous as shown in Figure 4.1.

As an illustration of application of the confusion matrix to evaluate the accuracy of a

classifier, we present the evaluation of the XGBoost algorithm for anomaly detection. The

evaluation of this algorithm is straightforward since XGBoost is directly available in python

as a module. Using a lookback value of 50, the obtained confusion matrix is:14, 400 4, 557

17 657

 .
To obtain the number of samples used for testing, the following formula can be used:

S = T − N × (L − 1), where S is the number of test samples effectively used to evaluate a

classifier, T is the total number of meta-messages in the testing set, N is the number of

aircrafts whose meta-messages are used for testing, and L is the lookback value. Using

the previous formula, given the experiment setup (T = 19, 827, L = 50, N = 4), the number

of samples used to evaluate the XGBoost algorithm is equal to 19, 631. Note that the sum

of the elements of the confusion matrix is also equal to the number of samples used for

testing i.e. 19, 631.

4.3. EXPERIMENTAL WORK 53

0 or 1

0 or 1

0 or 1

anomalous

0 1

normal

Classification label

Meta−message 1

Meta−message 2

Meta−message 3

Meta−message 4

Meta−message 5

Meta−message 6

Meta−message 7

Meta−message 1

Meta−message 2

Meta−message 3

Meta−message 4

Meta−message 5

Meta−message 6

Meta−message 7

Meta−message 1

Meta−message 2

Meta−message 3

Meta−message 4

Meta−message 5

Meta−message 6

Meta−message 7

Sample

Figure 4.1: Visual example of the classification of the last meta-message of three suc-
cessive samples, using a lookback (window size) of 4 meta-messages.

According to the confusion matrix, we can observe that the number of FP is very large im-

plying a low precision (12.6 %), which means that XGBoost predictions are quite mitigate.

In addition to XGBoost algorithm, we investigated different deep learning architectures.

4.3.4/ LSTM ARCHITECTURE EVALUATION

A stacked LSTM architecture with two layers has been considered. As we need to start

with a fixed number of units in each layer, we have chosen 256 units in the first layer and

128 units in the second layer. Later we will see the influence of the LSTM architecture by

considering different settings for the sizes of the two layers.

First, different optimizers have been compared: ADAM, ADAMAX, NADAM, RMSPROP,

and the classical SGD. Note that an optimizer consists of an algorithm used to minimize

the loss function. More precisely, it updates the weights of the network in order to mini-

mize the prediction errors during learning. The parameters controlling the training are set

as follows: the maximum number of epochs is set to 3, 000, an early stopping condition

on the training loss error is set to 5e−4, and a lookback value of 15 is chosen. Table 4.1,

which presents the obtained respective Precision and Recall, as well as the F-score and

the number of epochs needed to converge, shows that NADAM is the optimizer providing

the better detection performance. Indeed it has the highest percentages, which means

the best detection ability, and it is the fastest optimizer to converge because it requires

only 312 epochs. Note that in this case the number of meta-messages (or samples) used

54 CHAPTER 4. CONTRIB. 1: A COMPARATIVE STUDY OF DL ARCHITECTURES

for testing is equal to 19, 771 while it was 19, 631 for XGBoost. This increase in the number

of samples is explained by the lower lookback value (15 versus 50).

Table 4.1: Evaluation of different optimizers on a stacked LSTM (layers of 256 and 128
units - lookback value of 15).

Optimizer %Precision %Recall %F-score Number of epochs
for convergence

ADAM 71.6 96.62 82.25 788
RMSPROP 55.1 84.88 66.82 2,223
SGD did not converge
NADAM 82.6 97.65 89.50 312
ADAMAX 71.58 97.65 82.61 536

Focusing on NADAM, we can observe that the size of the lookback influences greatly the

number of epochs to reach the convergence and the quality of the prediction. According

to our experiments, as shown in Table 4.2, a lookback value of 35 allows to obtain the best

results but it requires a larger number of epochs to converge. The sizes of the different

layers appear to have also a great impact on the detection ability of the two-layer LSTM

architecture. Table 4.3, which presents the percentages gained for different layer sizes

configurations, highlights a best setting of 64 units for the first layer and 32 for the second

one.

Table 4.2: Evaluation of different lookback values on a stacked LSTM (layers of 256 and
128 units - NADAM optimizer - *: early stopping loss set to 5e−3).

Lookback %Precision %Recall %F-score Number of epochs
for convergence

5∗ 91.91 96.63 94.21 685
10 76.48 98.38 86.06 1,635
15 80.05 98.38 88.27 314
20 81.67 97.79 89.01 338
25 76.90 97.05 85.81 598
30 83.83 98.53 90.59 288
35 93.04 98.82 95.84 1,871
40 86.57 98.37 92.09 1,477

Table 4.3: Evaluation of different stacked LSTM architectures (two layers - NADAM opti-
mizer - lookback value of 20).

Layer (units) %Precision %Recall %F-score Number of epochs
1 2 for convergence
16 8 did not converge
32 16 did not converge
64 32 91.59 99.41 95.34 1,134
128 64 74.36 98.23 84.64 1,339
256 128 81.67 97.79 89.01 20,598

4.3. EXPERIMENTAL WORK 55

4.3.5/ BIDIRECTIONAL LSTM EVALUATION

Previously we have considered a unidirectional LSTM architecture, but it is possible to

use a bidirectional architecture [33]. In that case, the network consists of two different

hidden layers: one that processes the input sequence forward, like in the unidirectional

architecture, whereas the other one processes it backward. Using a bidirectional LSTM

made of two unidirectional LSTM layers (256 units in first layer and 128 units in second

one) we obtained the following result with NADAM optimizer and lookback set to 20:

77.32 % Precision, 84.54 % Recall, and 79.94 % F-score after 1, 531 epochs. Clearly

this kind of architecture is not interesting.

4.3.6/ CNN ARCHITECTURE

Convolutional neural networks have been used for many years to make very efficient

image classifications. In our case study, considering a lookback value of 20 and the

temporal data of an aircraft consisting of 5 different multivariate data series (altitude,

latitude, etc.), we can see them as a 2D image of size 20 × 5. In practice, a convolutional

layer followed by dense layers can be used. However, such a network converges very

slowly and cannot reach the required precision in 3, 000 epochs. Nevertheless, it provides

the following result: 84.46 % Precision, 89.69 % Recall, and 87 % F-score, which is not

surprising because CNNs are not designed for this kind of classification

4.3.7/ USING CNN AND LSTM SIMULTANEOUSLY

It is possible to make one step of 1D CNN and then to feed its output in a LSTM. This

kind of architecture is sometimes used with time series. As a case study, we evaluated

an architecture made of 16 convolution kernels of size 3 which are entered into a 3-

layer LSTM (256, 128, and 64 units respectively in layer 1, 2, and 3). The results of the

evaluation are summarized in Table 4.4. Choosing a first layer of convolutional neurons

provides good results.

Table 4.4: Evaluation of a 1D CNN connected to a stacked LSTM for different lookback
values (three layers - NADAM optimizer).

Lookback %Precision %Recall %F-score Number of epochs
for convergence

10 77.32 96.62 85.90 565
15 84.38 98.38 90.85 601
20 83.19 97.64 89.84 737

56 CHAPTER 4. CONTRIB. 1: A COMPARATIVE STUDY OF DL ARCHITECTURES

4.4/ CONCLUSION

We have presented a first evaluation of the ability of some machine learning models, and

more particularly deep learning ones, to detect a rough FDIA consisting in the alteration

of the altitude value. The eXtreme Gradient Boosting algorithm, the well-known LSTM

architecture, its bidirectional variant and a combination with a layer of convolutional neu-

rons in order to change the representation of the input data, and finally, a CNN by viewing

the input data as an image, were evaluated. The experiments show that, as expected

due to the temporal evolution of the data, the LSTM architecture appears to be the most

suited for the considered problem.

Different optimizers, lookback values, and settings of the LSTM architecture have been

compared. The best detection results have been obtained with a stacked LSTM of two

layers composed of 64 units in the first one and 32 in the second, a lookback of 20 time

steps, trained with NADAM optimizer. It should be noticed that these results are quite

good considering that only 10 aircrafts have been used for the training.

This chapter allowed to draw lessons about the models by considering an attack scenario

limited to altitude data. The following chapter goes further by considering various attack

scenarios which alter windows of meta-messages instead of individual meta-messages.

Such more advanced attacks are created using a false data generator which relies on a

domain specific language.

5

CONTRIBUTION 2: SUPERVISED

ADS-B ANOMALY DETECTION USING A

FALSE DATA GENERATOR

5.1/ INTRODUCTION

In the previous chapter, in order to remedy the problem of lack of authentication and en-

cryption in the ADS-B protocol, different architectures were evaluated to detect ADS-B

anomalies in a supervised manner. However, only one type of attacks was examined,

namely rough punctual attacks applied on the altitude. In this chapter, a supervised deep

learning strategy is designed to detect various types of attacks that modify components

of ADS-B messages such as altitude, ground speed, trajectory, latitude and longitude.

Therefore a false data generator based on a domain specific language was used to attack

ADS-B data and obtain a dataset containing both normal and anomalous data for super-

vised learning. The detection performance of two types of attacks were evaluated: grad-

ual attacks and waypoints attacks that divert aircraft trajectories to pass through specific

waypoints. The experimental results show that the proposed supervised deep learning

strategy is able to recall on average 99 % of anomalies in ADS-B messages, mainly prop-

erty modification attacks. A large part of this contribution was presented at the ICCCR

2022 conference [163].

This chapter is organized as follows:

• First, the detection of false data injection is discussed. Both data generation and

detection process are detailed, specifically the false data injection framework used

to obtained labeled messages.

• Second, a strategy for the detection of false data injection attacks is proposed.

• Third, the experimental results of the proposed detection strategy are described.

57

58 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

• Fourth, the effect of the number of flights used in training and testing on the detec-

tion performance is also examined.

• Fifth, a comparison between supervised and unsupervised anomaly detection is

also carried out.

• Conclusion.

5.2/ FALSE DATA INJECTION FRAMEWORK (FDI-T)

As highlighted previously, anomaly detection in the literature uses only semi-supervised

and unsupervised learning. In this chapter we propose a technique to detect anomalies

using labeled messages (supervised anomaly detection) to train a deep learning model.

These messages are obtained thanks to a software, called FDI-T (False Data Injection

Test), designed by colleagues in our laboratory, allowing the generation of false air traffic

data [112, 137, 161].

5.2.1/ OVERVIEW

This software was created to obtain testing capabilities of ADS-B attacks to ensure the

additional security procedures envisioned by ATC authorities namely EURO-CONTROL.

More concretely, this software implements an alteration process making it possible to

define various scenario attacks according to alteration directives. Figure 5.1 gives an

overview of the alteration process showing that it consists of 5 items and its mechanism

is described in what follows.

In order to realize attacks on ADS-B data (first item), directives (or instructions) in a

domain specific language (DSL) are used to describe the alterations to be performed on

the original recorded data (second item). Each instruction is then processed by FDI-T

(third item) to call the alteration engine in charge of the specified alteration (fourth item).

Finally, the resulting altered data are recorded (fifth item).

A more extensive classification of FDI-T’s components is comprised of the following ele-

ments: Data acquisition, Scenario Design, Radar sensors network Simulator, Alteration

Engine and Execution Engine. The Internet or SSRs more specifically a Mode-S receiver,

can be used to collect the required ADS-B recordings via the Data acquisition component.

The sequence of ADS-B data in a recording is sorted by reception time. Then Scenar-

ios Designs are created using a domain specific language which specifies the targeted

aircraft as well as the time window for the alterations, and the needed triggering criteria.

The output of the Scenarios Design component is called an alteration directive. Since

each sensor captures ADS-B messages from aircraft located in a particular range, the

5.2. FALSE DATA INJECTION FRAMEWORK (FDI-T) 59

Figure 5.1: Alteration process overview - image drawn from [137].

radar sensors network simulator associates each recording to a sensor. The need for

this module originates from the fact that the sensors are usually the components targeted

by ADS-B attacks. Then, the Alteration Engine generates the designed attacks on the

specified sensors altering subsequently their corresponding recordings. Finally the Exe-

cution Engine supplies the ATC with the modified recordings mimicking the mechanism

of reception of normal ADS-B messages. The graphical user interface of FDI-T is shown

in Figure 5.2.

In order for the authors of [161] to design the DSL language, they relied on ontologies

due to their querying and reasoning capabilities as well as their verifiability as opposed

Figure 5.2: Graphical user interface of FDI-T visualizing many aircraft trajectories in 4D.

60 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

to informal design. An ontology can be defined informally as a set of notions comprising

a set of relationships between them [20]. Note that there are also many rigorous domain

analysis techniques which can potentially help in conceiving a DSL language, namely

Domain Analysis and Reuse Environment [18], Domain Specific Software Architectures

[15], Feature-Oriented Domain Analysis [10], Family-Oriented Abstractions, Specification,

and Translation [17]. These techniques are unfortunately time consuming and complex

and do not possess every kind of functionality needed for DSL conception [52].

The authors also followed some guidelines in the creation of the DSL which should be

able to express all the known attacks. In addition, it needs the ability to implement a filter-

ing mechanism to select the appropriate aircraft whose recordings should be altered. It

should also allow the application of attacks based on specific triggers, such as exceeding

a certain altitude or speed.

5.2.2/ DSL LANGUAGE

The DSL language which is based on ontologies is divided into multiple grammars: Base

expression grammar, Property evaluation grammar, Filter grammar, Trigger grammar,

Schema grammar.

The Base expression grammar is used to apply arithmetic expressions (addition , multi-

plication, division and modulo) on numbers as well as aircraft properties such as altitude.

The Property evaluation grammar uses comparison operators (=, ! =, <, >, <=, >=) to eval-

uate properties conditions e.g.: LAT ITUDE>46.22. The location of aircraft in zones can

also be evaluated. For instance, it can be tested if an aircraft is located in a prismatic zone

delimited by an upper and lower bound altitude planes of 5600 and 8100 feet respectively

and multiple 2D points expressed by pairs of latitudes and longitudes of (43.02°,51.09°),

(42.87°,47.26°), (40.66°,53.11°) respectively. The previous test can be expressed us-

ing the grammar as follows: outside prism with vertices (43.02,51.09), (42.87,47.26),

(40.66,53.11) and altitude from 5600 to 8100.

The filter grammar introduces ”eventually” and ”always” operators (respectively denoted

by F and G). These operators must be applied to specific conditions in order to select

a list of aircraft whose records should be altered. For example, suppose it is required

to select aircraft whose altitude is not always higher then 30000 feet and whose altitude

and longitude eventually go past 34000 feet and go below 2.3° respectively. Then the

previous condition can be expressed as follows: eval not (G(ALT ITUDE>30000)) and

F(ALT ITUDE>34000 and LONGITUDE<2.30).

The trigger grammar resembles the filter grammar, but it does not allow negation and it

returns a schedule specifying when the attack is applied and when it is not. Here are

two examples of writing a trigger in DSL: eval when(ALT ITUDE>32000) and eval as -

5.2. FALSE DATA INJECTION FRAMEWORK (FDI-T) 61

soon as(LONGITUDE>2.30). In the first example an alteration is applied only when the

targeted aircraft’s altitude is above 32000 feet whereas in the second example an attack

is applied when the targeted aircraft’s longitude is more than 2.3 degrees.

Lastly, using the schema grammar one can alter an existing aircraft recording using the al-

ter keyword such as the DSL example alter all planes at 0 seconds with values LATITUDE

++= 0.0005. In this example the messages belonging to the totality of the recordings in a

list of recordings are gradually altered. In other words 0.0005 is added to the first mes-

sage, 2x0.0005 to the second and 3x0.0005 to the third, etc. Such an attack is called

gradual attack. Ghost aircraft can also be created using the create keyword. One can

for example create plane messages of ICAO = ”39AC47” from 12 seconds until 251 sec-

onds while having these recordings correspond to a trajectory passing by two specific

waypoints. Such an attack can be expressed in DSL as follows:

create plane from 12 seconds until 251 seconds with values

ICAO = ”39AC47” and with waypoints

[(24.85,53.23) with altitude 4000 at 12 seconds ,

(24.62,53.94) with altitude 4250 at 251 seconds]

Note that attacks using waypoints are not bound to attacks which create ghost aircraft.

They can also be used to alter the trajectory of existing flights such as the flight shown

in Figure 5.3 which connects two US cities. This type of alteration is called waypoints
attack and it constitutes an alteration in which the trajectory is deviated (using an Akima

interpolation [8]) to pass by specific selected points with known latitude, longitude and

altitude.

(a) Before the attack (b) After a waypoints attack

Figure 5.3: Screenshots of the ADS-B false data injection software showing an example
of a waypoints attack.

The use of a DSL language has many advantages. It mainly facilitates the implementation

of test attacks directly by ATCS instead of relying on developers for every type of attack.

In fact, the DSL syntax is akin to natural language and relies on ATC jargon making it

appropriate for generating FDIAs test scenarios. Also, it helps automating the test attacks

which are often repetitive. This saves ATCS and developers precious time and eliminates

62 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

any need for a previously required recording pre-analysis (namely identifying the right

messages to alter). But more importantly for our case, the significance of this framework

lies in its ability to be an extensive source of labeled normal and anomalous data. Such

labeled data is necessary to train a supervised ADS-B anomaly detector which represents

the contribution of this chapter.

5.3/ DETECTION OF FALSE DATA INJECTION

5.3.1/ GENERATION OF LABELED ATTACKED ADS-B MESSAGES

First, ADS-B messages are downloaded from the OpenSky Network (opensky-

network.org) [75]. For the sake of having balanced datasets (50 % attacked messages,

50 % not attacked messages) and using the FDI-T software, half of the recordings are

totally attacked and the other half is not touched at all. Note that FDI-T has also been

used to acquire ADS-B datasets to test anomaly detection artificial intelligence models

in another work done in our laboratory [136, 162]. In our work two types of attacks were

considered for anomaly detection: gradual attacks and waypoints attacks.

For the case of gradual attacks detection, attacks are separately inflicted on altitude,

ground speed, track, latitude and longitude, i.e.: gradual attack of 75 feet, 1.8 knots,

0.9 degrees, 4.88 × 10−3 degrees, 1.28 × 10−2 degrees for the altitude, ground speed,

track, latitude, longitude respectively. These values are computed by finding the mean

difference of the features in non attacked messages. 4.88 × 10−3 degrees of latitude

correspond to 542.63 meters, while 1.28×10−2 degrees of longitude correspond to 906.10

meters which is the distance average over all latitude values.

The following DSL instruction was used for the gradual attack of ∆x = 75 feet targeting

the altitude:

alter all planes at 0 seconds with values ALTITUDE ++= 75.

The other features were gradually attacked in the same manner. The other type of attack

tested for detection is the waypoints attack. The waypoints attack used in our study is

presented in detail in Figure 5.4.

5.3.2/ META-MESSAGES GENERATION AND DETECTION

In order to detect attacks, the process described in Figure 5.5 is followed. First ADS-B

messages corresponding to 120 randomly chosen flights are downloaded from the Open-

Sky Network. These flights are not restricted to a specific area, they are dispersed all over

5.3. DETECTION OF FALSE DATA INJECTION 63

Altitude
Time

Latitude
Time

Longitude
Time

0.2T 0.2T
Recording Duration: T

0.2T 0.1T

∆
La

tit
ud

e
∆

Lo
ng

itu
de

∆
Al

tit
ud

e

∆
La

tit
ud

e
∆

La
tit

ud
e

∆
Lo

ng
itu

de
∆

Lo
ng

itu
de

∆
Al

tit
ud

e ∆
Al

tit
ud

e

T
40

T
40

T
40

T
40

T
40

T
40

T
40

T
40

T
40

T
40

T
40

T
40

Figure 5.4: Waypoints attack where ∆Latitude = 4.88 × 10−3 degrees, ∆Longitude = 1.28 ×
10−2 degrees, ∆Altitude = 75 feet.

the globe and contain all of the different phases of flight: take off, climb, cruise, descent

and landing. Since the features that will be used for anomaly detection are distributed

among multiple categories of messages (Identification, Position and Velocity messages),

these messages are combined into meta-messages as can be seen in Figure 5.6.

In other terms, messages are vectors with missing data and the process of combining

consecutive different types of messages into meta-messages is just filling missing fea-

tures from previous messages. Then the difference for all the meta-messages between

two consecutive meta-messages is computed as seen in Figure 5.7. This process is ap-

plied to all the flight data gathered in the first step. Among the obtained differences of

meta-messages from the 120 flights of the dataset, the messages of 100 flights are used

to train a model to detect ADS-B anomalies and the remaining 20 flights to test it.

Traffic
Data
Gathering Meta-messages

Messages Into
Combining

Difference
Meta-messages

Model
Training

Model
Testing

ADS-B
Multivariate
Time
Series

Opensky
Impala
DB

Result Detection

Data from 100 aircraft

Data from 20 aircraft

Model

Queries

Figure 5.5: View of the whole detection process.

64 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

Label1

GroundSpeed

Label3

Time

Longitude

Latitude

AircraftID

Altitude

Track

GroundSpeed

Label3

AircraftID

Time

Track

AircraftID

Label2

Time

Longitude

Latitude

AircraftID

Altitude

Time

Message
Position
Airborne

Message

Airborne
Velocity

Meta-message

Identification
And
Category
Message

Figure 5.6: Example of combining messages into a meta-message.

Label1

Label3

Label2 Label3

Label2

∆Altitude

∆GroundS peed

∆Track

∆Latitude

∆Longitude

GroundSpeed

Track

Latitude

AircraftID

Altitude

Time Time Time

Longitude

GroundSpeed

Track

Latitude

AircraftID

Altitude

Longitude

GroundSpeed

Track

Latitude

AircraftID

Altitude

∆Time

∆Aicra f tID

∆Altitude

∆GroundS peed

∆Track

∆Latitude

∆Longitude

∆Time

∆Aircra f tID

Longitude

Meta-message1 Meta-message2 Meta-message3

Figure 5.7: Difference of meta-messages.

5.4. EXPERIMENTAL RESULTS 65

Table 5.1: Evaluation of the stacked LSTM using different numbers of epochs (layers of
64 and 32 units - lookback value of 10).

Epochs %Precision %Recall %F-score
10 99.89 99.70 99.80
50 99.94 99.65 99.79
100 99.94 99.82 99.88

Finally for the detection of anomalies a LSTM is trained. The input of our LSTM is a look

back window of differences of meta-messages, where the number of time steps is defined

by the lookback value. Its output is one dense neuron with a linear activation function

which captures the state of the window, i.e. either a normal or an attacked window.

The choice of the LSTM architecture used in this study is based on the result of chapter 4

which focused only on the detection of random point changes in altitude. Indeed this

work concluded that an LSTM containing intermediate layers of 64 units and 32 units,

trained with a NADAM optimizer, gives the best performance for ADS-B anomaly detection

compared to other architectures such as the Bidirectional LSTM, 1D Convolutional Neural

Network, and so on. Note that in our case, scaling was not applied on the data using our

approach.

5.4/ EXPERIMENTAL RESULTS

In order to train and test the LSTM model on GPUs, the supercomputer facilities of the

“Mésocentre de Franche-Comté” were used. Our code is based on the Keras Python

library. First the architecture is trained for 10 epochs, 50 epochs and 100 epochs in

order to test the effect of the number of epochs on the detection performance as seen in

Table 5.1. The attack used for this assessment is a gradual attack of the longitude equal

to 1.28 × 10−2 degrees.

Since the performance did not increase considerably, 10 epochs can be enough to have

a good detection performance for the following tests while having the shorter training

time. Indeed the training time is proportional to the number of epochs and an epoch

takes 14 seconds to be completed (for example it takes 2.33 minutes for 10 epochs). The

difference between training times is not negligible especially due to the following need

to also train models for the gradual attacks targeting other features. Lookback values of

5, 10 and 20 were tested in the detection of average gradual attacks. The results are

summarized in Table 5.2. It can be noticed that when the lookback value is increased,

most of the time the F-score also increases. However this gain in F-score is minor. For this

reason a lookback value of 10 was used for the following tests balancing in this manner

the training time and the detection performance. To compare the gradual attack detection

66 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

Table 5.2: Evaluation of the stacked LSTM using different lookbacks
for the detection of gradual attacks.

Feature attacked Lookback %Precision %Recall %F-score
5 99.35 99.43 99.39

altitude 10 99.63 99.76 99.69
20 99.93 99.69 99.81
5 98.86 99.48 99.17

ground speed 10 99.23 99.60 99.42
20 99.29 99.68 99.49
5 96.91 99.15 98.02

track 10 97.46 99.45 98.44
20 97.52 99.50 98.49
5 99.90 98.18 99.03

latitude 10 99.67 98.91 99.29
20 99.72 98.97 99.34
5 99.83 99.01 99.41

longitude 10 99.89 99.70 99.80
20 99.60 98.95 99.27

Table 5.3: Detection performance compared to Habler & Shabtai (Moscow Dataset) for
400 feet gradual altitude attacks.

%TPR %FPR
Proposal 99.97 2.95 × 10−2

E. Habler and A. Shabtai 59.04 3.87

with other previous works [114], the altitude was attacked gradually by 400 feet. Our

detection performance in terms of True Positive Rate (TPR) and False Positive Rate (FPR)

compared to the best performance obtained in [114] using one detection window with a

lookback equal to 15 is summarized in Table 5.3. FPR, also called Fallout, represents the

proportion of detected attacked messages that are in reality not attacked [145]. It is clear

that using our technique, a considerable detection performance improvement is obtained

(40.93 increase in %TPR and 3.84 decrease in %FPR).

Now a meta-model is tested. It uses the different models trained separately and detects

the presence of an attack if at least one of the previously mentioned features (altitude,

ground speed, etc.) is attacked. The performance of this meta-model is summarized in

Table 5.4. The F-score obtained is 96.09 % at worse with a Precision of 93.15 % which

is still good but a little worse than individual models as seen in the previous tables. The

reason for the decrease in F-score is the slight loss of Precision which is caused by the

False Positives of the different models adding up. In order to remedy the loss of Precision,

we then considered an attack detected if a certain percentage of windows (and above)

from a sequence of windows is attacked: the obtained performance is summarized in

Table 5.5. Note that it was considered that a given percentage of attacked windows

5.4. EXPERIMENTAL RESULTS 67

Table 5.4: Evaluation of a meta-model for the detection of gradual attacks.

Feature attacked %Precision %Recall %F-score
altitude 93.58 99.80 96.59

ground speed 96.50 99.70 98.07
track 96.49 99.53 97.99

latitude 93.15 99.22 96.09
longitude 93.18 99.77 96.36

all features 96.97 100 98.46

Table 5.5: Evaluation of a meta-model for the detection of gradual attacks using se-
quences of 100 windows, where an attack is detected if at least 95 of them are attacked.

Feature attacked %Precision %Recall %F-score
altitude 99.49 98.85 99.17

ground speed 99.73 98.57 99.15
track 99.72 97.14 98.41

latitude 99.44 95.02 97.18
longitude 99.46 98.73 99.09

all features 99.76 100.0 99.88

(95 % and above) from a sequence of windows need to be attacked instead of the whole

sequence to prevent eventual False Negatives from deteriorating the Recall. Using this

technique, the Precision becomes at worse 99.44 % instead of 93.15 % and the F-score

97.18 % instead of 96.09 %. Although a better Precision was obtained, there was a small

decrease in Recall which highlights a slight trade-off between Recall and Precision.

For the waypoints attack as depicted in Figure 5.4, using the same technique, a good

detection performance was also reached: Precision=98.77 %, Recall=97.39 %, F-

score=98.08 %. An example of a waypoints attack showing the real scale of the attack is

shown in the Figure 5.8. Note that, all the results presented so far were obtained using

one training set and one testing set for each result. This way of obtaining the perfor-

mance is not always enough since deep learning models can give unstable results. For

this reason a stratified 6-fold cross-validation was applied whose results are shown in

Table 5.6. K-fold cross-validation is a method used to evaluate a model’s ability to gener-

alize on new data in a stable fashion. It is applied by dividing a dataset in k groups called

folds. Each combination of k-1 folds and a remaining fold are used to respectively train

and test the model. A cross-validation method is called stratified if each fold contains a

balanced amount of classes and in our case a balanced amount of altered and altered

data. This table shows the mean and standard deviation of the Precision, Recall and

F-score for gradual and waypoints attacks. The mean F-score is in the order of 99 % and

its worst standard deviation is 0.4420 hence our technique is stable enough to detect the

previously mentioned anomalies.

68 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (seconds)

0

5000

10000

15000

20000

25000

30000

35000

Al
tit

ud
e

(fe
et

)

Figure 5.8: A plot showing the actual scale of a waypoints attack (in red) where
∆altitude = 75 feet.

Table 5.6: Evaluation of the stacked LSTM using a stratified 6-fold cross-validation.

Feature attacked %Precision %Recall %F-score
altitude 99.92 ± 0.0130 99.83 ± 0.0294 99.88 ± 0.0114

ground speed 99.77 ± 0.0301 99.74 ± 0.0178 99.76 ± 0.0120
track 99.45 ± 0.0941 99.41 ± 0.1680 99.43 ± 0.0648

latitude 99.41 ± 0.3280 99.26 ± 0.5940 99.34 ± 0.4420
longitude 99.89 ± 0.0482 99.66 ± 0.1320 99.78 ± 0.0728

waypoints - Figure 5.4 98.42 ± 2.23 99.08 ± 0.154 98.73 ± 1.08

5.5/ IMPACT OF THE NUMBER OF FLIGHTS ON THE DETECTION

PERFORMANCE

In order to test the impact of the number of flights on the detection performance, two

training, validation and testing configurations were used. The first configuration contains

120 flights in total, divided into 90 flights for training, 10 for validation and 20 for testing.

The second configuration contains 1000 flights in total, divided into 600 flights for training,

100 for validation and 300 for testing.

Half of the flights of the training and testing sets are not touched and the other half is

attacked using a general alteration. A general alteration can be described as follows: the

half of messages that are attacked is divided into seven equal subsets where each subset

is altered by a different type of attack (gradual altitude attack, gradual ground speed at-

tack, gradual track attack, gradual latitude attack, gradual longitude attack and waypoints

attack). The detection performance for the two configurations is summarized in Table 5.7.

It can be observed that the detection performance as described by the F-score does not

5.6. COMPARISON BETWEEN SUPERVISED AND UNSUPERVISED ANOMALY DETECTION69

Table 5.7: Impact of the number of flights used in training and testing on the detection
performance. The attack used is a general alteration.
-*: the number of flights in the training set
-**: the number of flights in the validation set
-***: the number of flights in the testing set

Number of flights Epochs %Accuracy %Precision %Recall %F-score
90*/10**/20*** 10 86.11 88.11 91.71 89.88

20 87.33 88.98 92.55 90.73
100 85.39 89.33 89.66 89.50

600/100/300 10 90.53 89.54 94.84 92.11
20 93.63 90.43 97.46 93.81

100 94.85 93.79 97.78 95.74

vary that much for the configuration containing less flights. However, as the number of

flights increases, the effect of increasing epochs is more apparent. More concretely, the

F-score increases from 92.11 % for 10 epochs to 95.74 % for 100 epochs. Therefore,

increasing the amount of data used to train supervised ADS-B anomaly detection has the

potential to improve the detection performance.

5.6/ COMPARISON BETWEEN SUPERVISED AND UNSUPERVISED

ANOMALY DETECTION

5.6.1/ DETECTION ANALYSIS

In order to show the benefits of using supervised learning over semi-supervised learning,

a comparison of multiple detection approaches was carried out. For the semi-supervised

approaches, an LSTM autoencoder architecture was tested as well as an LSTM forecast-

ing approach. In the LSTM forecasting approach, a window of meta-messages is used to

forecast the following meta-message. Then, the residual between the prediction and the

real meta-message is used to classify the meta-message as normal or anomalous. The

forecasting approach is based on the work in [147]. The LSTM used for this approach

contains intermediate layers of 64 units and 32 units. Also the training dataset was reused

to compute the threshold of anomaly detection as opposed to [147] whose authors used

a separate dataset to determine the threshold. The autoencoder architecture used the

same approach as [114]. Nevertheless the autoencoder is made of a stacked LSTM with

an intermediate layer of 128 units (from the encoder side), then a bottleneck layer of 64

units followed finally by a layer of 128 units (from the decoder side). In the supervised

approach, the transformer architecture used a minimal configuration that relies on one at-

tention head and is made of one layer. Indeed, changing its configuration did not change

its performance (or only slightly). The supervised LSTM approach contains intermediate

70 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

layers of 64 units and 32 units. The equivalent of 90 and 10 aircrafts was used for training

and validation, respectively, whereas 20 aircrafts were used for testing. Tables 5.8 and

5.10 show that regardless if the difference on successive meta-messages is applied or

not, the supervised approaches give the best performance overall. If the difference on

successive meta-messages is applied, the LSTM beats the transformer by 0.13 % in F-

score, otherwise the transformer beats the LSTM by 1.03 % in F-score. Nevertheless, the

highest F-scores are obtained by applying the difference on successive meta-messages

and using supervised approaches. The LSTM takes the lead in that case. Note that ap-

plying difference deteriorates the semi-supervised approaches’ results totally as shown

in Table 5.10. Also, scaling was required and used for unsupervised approaches as op-

posed to supervised approaches which did not use scaling.

5.6.2/ ALARM EVALUATION

Using a sequence of windows of meta-messages for detecting attacks can improve the

precision as previously shown in Table 5.5. However, in practice, it might be necessary

to launch an alarm after detecting a sufficient number of anomalous meta-messages to

prove that these detections are not accidental. The use of an alarm based on fixed

size meta-messages sequence akin to Table 5.5 might hamper the flexibility of the alarm

mechanism. Therefore, in order to diminish the amount of false positives, we chose to

launch an alarm for a given flight if the number of detected anomalies exceeds a specified

threshold, in our case 100 meta-messages. This alarm mechanism is shown in Figure 5.9

and its performance is shown in Tables 5.9 and 5.11.

The LSTM supervised approach is the most viable option since all of the attacked test

flights for most types of attacks (altitude, latitude, longitude, waypoints) were correctly

classified as attacked. In order to correctly classify the remaining flights the alarm thresh-

old can be increased to 400, 700 for ground speed, track respectively. In the case of a

threshold equal to 700 the lookback value is changed from 10 to 100 and the precision

is thus 100 % but the recall is 90 %. Nevertheless, this performance is identical to a

theoretical perfect alarm which relies on a flawless hypothetical anomaly detector. This

theoretical anomaly detector never fails to properly identify the anomalies in sequences

of meta-messages.

5.7/ CONCLUSION

A supervised deep learning strategy to detect false data injection attacks aiming at al-

tering properties of messages in the ADS-B protocol has been presented. This strategy

was evaluated for the identification of gradual attacks and waypoints attacks created us-

5.7. CONCLUSION 71

meta−messages
containing no
anomalies

Window of

Window of
meta−messages
containing at
least one
anomaly

flights
Complete

alarm not
launched

alarm
launched

Figure 5.9: Illustrated example of the alarm mechanism. In this example the chosen
threshold is 4, therefore since in the flight on the left only 2 anomalous windows are
detected till present (number of detected anomalous windows<threshold), the alarm is
not launched. The flight on the right contains at least 5 anomalous windows (number of
detected anomalous windows>threshold), thus the alarm is launched.

ing a false data generator. The effects of the number of training epochs and the lookback

value on the detection performance were tested. It was found that only a minor improve-

ment of the detection performance results from increasing the number of training epochs

and the lookback value. We were able to detect gradual attacks of the altitude, ground

speed, track, latitude and longitude using individual models trained on each individual

attack, as well as using one meta-model made of these individual models. In addition

to that the strategy was successful in detecting waypoints attacks. Finally the proposed

supervised strategy was compared to other semi-supervised techniques showing a bet-

ter performance in the case of the supervised approach. An alarm mechanism was also

proposed to prevent accidental anomalous flight detections.

72 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

Table 5.8: Evaluation of detection for different types of attacks without applying difference
on successive meta messages.

Model Autoencoder LSTM LSTM Transformer
Attack Metrics Forecasting
Altitude Accuracy 85.00 93.00 98.00 99.00

Recall 75.70 88.62 97.03 97.71
Precision 99.90 99.84 99.98 100.00
F-score 86.13 93.89 98.49 98.84

Ground speed Accuracy 91.00 97.00 99.00 99.00
Recall 88.37 96.59 99.29 99.64
Precision 99.95 99.92 99.15 99.07
F-score 93.81 98.23 99.22 99.36

Latitude Accuracy 39.00 52.00 61.00 63.00
Recall 0.05 22.06 100.00 91.68
Precision 38.75 99.30 61.11 63.60
F-score 0.11 36.09 75.86 75.10

Longitude Accuracy 39.00 41.00 61.00 86.00
Recall 0.08 3.31 100.00 99.96
Precision 47.87 95.53 61.11 81.22
F-score 0.15 6.39 75.86 89.62

Track Accuracy 87.00 96.00 92.00 98.00
Recall 82.66 95.29 89.19 98.76
Precision 99.95 99.92 100.00 99.00
F-score 90.49 97.55 94.29 98.88

Waypoints Accuracy 63.00 63.00 72.00 65.00
Recall 0.34 1.27 83.38 61.71
Precision 64.16 54.28 58.16 52.33
F-score 0.68 2.48 68.52 56.63

Total Accuracy 67.33 73.66 80.50 85.00
Recall 41.20 51.19 94.81 91.57
Precision 75.09 91.46 79.91 82.53
F-score 45.22 55.77 85.37 86.40

5.7. CONCLUSION 73

Table 5.9: Evaluation of alarm for different types of attacks without applying difference on
successive meta messages in the anomaly detection step (threshold for 100 cumulative
detections).

Model Autoencoder LSTM LSTM Transformer
Attack Metrics Forecasting
Altitude Accuracy 90.00 95.00 100.00 95.00

Recall 80.00 90.00 100.00 90.00
Precision 100.00 100.00 100.00 100.00
F-score 88.89 94.74 100.00 94.74

Ground speed Accuracy 95.00 95.00 85.00 85.00
Recall 90.00 90.00 100.00 100.00
Precision 100.00 100.00 76.92 76.92
F-score 94.74 94.74 86.96 86.96

Latitude Accuracy 50.00 60.00 50.00 50.00
Recall 0.00 20.00 100.00 100.00
Precision NaN 100.00 50.00 50.00
F-score NaN 33.33 66.67 66.67

Longitude Accuracy 50.00 55.00 50.00 60.00
Recall 0.00 10.00 100.00 100.00
Precision NaN 100.00 50.00 55.56
F-score NaN 18.18 66.67 71.43

Track Accuracy 90.00 95.00 85.00 85.00
Recall 80.00 90.00 70.00 100.00
Precision 100.00 100.00 100.00 76.92
F-score 88.89 94.74 82.35 86.96

Waypoints Accuracy 60.00 65.00 65.00 55.00
Recall 11.11 22.22 66.67 88.89
Precision 100.00 100.00 60.00 50.00
F-score 20.00 36.36 63.16 64.00

Total Accuracy 72.50 77.50 72.50 71.67
Recall 43.52 53.70 89.44 96.48
Precision 100.00 100.00 72.82 68.23
F-score 73.13 62.01 77.64 78.46

74 CHAPTER 5. CONTRIB. 2: SUPERVISED ADS-B ANOMALY DETECTION

Table 5.10: Evaluation of detection for different types of attacks while applying difference
on successive meta messages.

Model Autoencoder LSTM LSTM Transformer
Attack Metrics Forecasting
Altitude Accuracy 37.0 38.00 100.00 99.00

Recall 0.0 0.35 99.70 99.41
Precision NaN 79.56 99.71 99.54
F-score NaN 0.69 99.71 99.48

Ground speed Accuracy 24.0 24.00 99.00 100.00
Recall 0.0 0.21 99.61 99.76
Precision NaN 81.76 99.41 99.66
F-score NaN 0.42 99.51 99.71

Latitude Accuracy 39.0 39.00 99.00 99.00
Recall 0.0 0.35 98.91 98.97
Precision NaN 78.63 99.91 99.94
F-score NaN 0.70 99.41 99.45

Longitude Accuracy 39.0 39.00 100.00 99.00
Recall 0.0 0.35 99.76 99.08
Precision NaN 78.71 99.91 99.82
F-score NaN 0.70 99.84 99.45

Track Accuracy 24.0 24.00 98.00 97.00
Recall 0.0 0.21 99.21 99.44
Precision NaN 81.33 97.59 96.63
F-score NaN 0.41 98.39 98.01

Waypoints Accuracy 63.0 63.00 98.00 98.00
Recall 0.0 0.48 95.18 95.62
Precision NaN 47.03 98.91 98.43
F-score NaN 0.96 97.01 97.01

Total Accuracy 37.67 37.83 99.00 98.67
Recall 0.00 0.32 98.73 98.71
Precision NaN 74.50 99.24 99.00
F-score NaN 0.65 98.98 98.85

5.7. CONCLUSION 75

Table 5.11: Evaluation of alarm for different types of attacks while applying difference on
successive meta messages in the anomaly detection step (threshold for 100 cumulative
detections).

Model Autoencoder LSTM LSTM Transformer
Attack Metrics Forecasting
Altitude Accuracy 50.0 55.00 100.00 95.00

Recall 0.0 10.00 100.00 100.00
Precision NaN 100.00 100.00 90.91
F-score NaN 18.18 100.00 95.24

Ground speed Accuracy 50.0 55.00 90.00 95.00
Recall 0.0 10.00 100.00 100.00
Precision NaN 100.00 83.33 90.91
F-score NaN 18.18 90.91 95.24

Latitude Accuracy 50.0 55.00 100.00 100.00
Recall 0.0 10.00 100.00 100.00
Precision NaN 100.00 100.00 100.00
F-score NaN 18.18 100.00 100.00

Longitude Accuracy 50.0 55.00 100.00 100.00
Recall 0.0 10.00 100.00 100.00
Precision NaN 100.00 100.00 100.00
F-score NaN 18.18 100.00 100.00

Track Accuracy 50.0 55.00 65.00 60.00
Recall 0.0 10.00 100.00 100.00
Precision NaN 100.00 58.82 55.56
F-score NaN 18.18 74.07 71.43

Waypoints Accuracy 55.0 65.00 100.00 100.00
Recall 0.0 22.22 100.00 100.00
Precision NaN 100.00 100.00 100.00
F-score NaN 36.36 100.00 100.00

Total Accuracy 50.83 56.67 92.50 91.67
Recall 0.00 12.04 100.00 100.00
Precision NaN 100.00 90.36 89.56
F-score NaN 21.21 94.16 93.65

6

CONTRIBUTION 3: DEEP LEARNING

AND GRADIENT BOOSTING FOR URBAN

ENVIRONMENTAL NOISE MONITORING

IN SMART CITIES

6.1/ INTRODUCTION

Every day the innovative IoT technology is expanding further and further in our environ-

ment, with applications deployed in various contexts including cities. Communities can

indeed address problems linked to urbanization thanks to this technology through the

Smart City concept and thus support a sustainable development of their cities. Artificial

intelligence and namely its machine learning branch is expected to reinforce this trend by

making smart cities even smarter. However, smart cities can only be successful if they

can be trusted and, with this in mind, machine learning can potentially be an efficient

tool to mitigate cyberattacks. In order to remedy such problems, more specifically in the

urban noise monitoring context, the ability of Gradient Boosting and Deep Learning to

make long-term predictions of noise level is examined. This study is based on noise data

collected in the suburb of an English city. The noise predictions were then used to eval-

uate the possibility of detecting anomalous data resulting from malicious injections. The

obtained results show the relevance of a deep learning architecture. This contribution has

been submitted to the international journal Expert Systems with Applications (ESWA) and

is currently under review.

This chapter is organized as follows:

• IoT and smart cities. Some IoT applications in smart cites and the role of machine

learning related to those applications are discussed.

77

78 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

• Noise prediction approaches. Some related works concerning noise prediction us-

ing deep learning are described.

• Materials and methods. The materials and methods used are presented.

• Results. The noise level forecasting performance of different machine learning and

deep learning architectures is evaluated. The use of CNN-LSTM architectures for

punctual noise level anomaly detection is investigated as well.

• Conclusion.

6.2/ IOT AND SMART CITIES

Based on the advent of the Internet of Things (IoT), a system interconnecting comput-

ing devices, digital machines, and objects through a network, many innovative solutions

have emerged in order to solve problems touching a wide range of domains. Indeed,

the deployment of such IoT devices can make our environment smarter. The IoT can,

for example, help us in our daily life at home by monitoring the lighting, media or secu-

rity systems and so on. It can also provide better transportation conditions or improve

manufacturing processes.

Among the possible applications of the IoT, the concept of Smart City addresses urban

problems in order to encourage the rise of more citizen-friendly cities [121]. Today, more

than half of the world’s population lives in cities and according to a United Nations forecast

this number will continue to increase greatly in the future, reaching an expected propor-

tion of 68 % by 2050 [131]. Obviously, as the resident population of a city increases, many

aspects of the city are impacted, namely the energy and water distribution, the transporta-

tion system, environment, etc. Therefore municipal governments need a framework to

help them face these urbanization challenges, make the best decisions for a sustainable

development of the city and to improve the quality of life. Fortunately, the combination

of IoT technology and artificial intelligence allows to develop a fully functional Smart City

providing such a framework. On the one hand the IoT infrastructure collects data from

connected objects and machines, while, on the other hand, artificial intelligence extracts

information from a large database.

Many cities throughout the world have already successfully deployed the IoT technology,

giving an open access to data to promote the innovative development of solutions by

public or private parties. For example, regarding urban mobility challenges, a conges-

tion management system called Midtown in Motion [69] was deployed in New York City,

while real-time traffic and transportation data are free of access in several cities like Am-

sterdam or Copenhagen [141]. Artificial intelligence and more particularly the machine

6.3. NOISE PREDICTION APPROACHES 79

learning technology can convert these data into insights and is thus a key to expand ca-

pabilities of smart cities [119, 139]. Typically, machine learning allows to make useful

predictions when making decisions or detecting problems. As an illustration, consider-

ing another urban challenge, air and noise pollution control, long-term predictions can

provide city administrators with the necessary information to choose the best transporta-

tion investments to possibly tackle these problems in the future, while real-time short-term

predictions could enable an immediate action on the motor vehicle traffic congestion. This

work focuses on noise pollution, which according to European Environment Agency is a

growing problem [138], a problem whose impact on people’s health is not fully measured

right now.

6.3/ NOISE PREDICTION APPROACHES

In the literature, many articles broach the subject of noise prediction using deep learning.

In [149] a noise monitoring system was set up to obtain noise data (via a noise sensor)

in specific urban locations. This system is powered by a solar panel and uses a Zigbee

communication module which transfers the data to be stored to the network coordinator.

Basic Long-Short Term Models (LSTM) were also used to forecast noise levels in the

monitored locations. In [142], an LSTM was used to forecast the sound pressure and

loudness levels of periods of 1 min, 5 min, 15 min, 30 min and 60 min. The data used for

training and testing were issued from sensors located in an open office room where the

majority of the noise is produced by human activities and speech.

In [13, 49, 50, 73] vanilla feedforward Artificial Neural Networks (ANN) were used for noise

prediction. In [13], the architecture used is made of a learning vector quantization network

to discard wrong input data and a feedforward network to predict the noise levels. In [49]

the number of features used as inputs is 25 (traffic flow type, average speed of vehicles,

etc.), while 5 features (traffic flow, percentage of heavy vehicles, etc.) are used in [50]. In

[73] an ANN is used to predict the noise level caused by circulating vehicles. This network

has 5 inputs: number of light motor vehicles, number of medium trucks, average speed,

etc. Its prediction performance was compared to classical techniques and it was deduced

that the ANN has the upper hand. In addition to neural networks some techniques use

mathematical models for noise prediction [27].

Ensemble techniques were also tested for noise prediction. In [143], the authors used

two ensemble approaches (linear and nonlinear) to predict noise level by combining the

result of an Adaptive Neuro Fuzzy Inference System (ANFIS), a Feed Forward Neural

Network (FFNN), a support vector regression and a multilinear regression. In the linear

ensemble approach the simple and weighted averages were tested. In the nonlinear

80 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

approach, a FFNN and an ANFIS were trained to average the single models outputs. It

was deduced that the nonlinear ANFIS ensemble gave the best prediction performance.

7 features were used as inputs for the prediction such as the number of cars, number of

van/pickups, average speed, etc. In [144] an Emotional Artificial Neural Network (EANN)

is used to predict noise. An EANN is an augmented neural network containing emotional

units that can secrete hormones able to modify some neuron properties such as the

weights and activation function. Two sets of inputs were tested to predict the noise level:

1. Volume of cars, volume of medium vehicles, volume of heavy vehicles, average

traffic speed (km/h);

2. Traffic volume, percentage of heavy vehicles, average traffic speed (km/h).

Both sets of inputs improved the performance of noise prediction relative to empirical

techniques and conventional multilinear regression models with the second set of inputs

taking the lead.

In [127], the authors proposed an ensemble deep learning approach to detect sound

anomalies for the purpose of machinery and factory monitoring. First, blind dereverbera-

tion as well as sound extraction are applied to extract background noise that can deteri-

orate the anomaly detection procedure. Then, autoencoders are used to reconstruct the

noise for anomaly detection. In [83] dangerous road events such as skidding or crashing

are identified by detecting anomalous sounds. Relevant features are extracted first and

then a bag of words approach is applied to spot the events. In [106], using noise sensors

near roads, the authors detect anomalous sounds unrelated to road traffic by using bi-

nary classification. They tested multiple models such as discriminant analysis, Gaussian

mixture models, support vector machines and also k-nearest neighbors. Subsequently

a Gaussian mixture model was selected for detection since it offers a good trade-off be-

tween detection, F-score and time complexity. In [100] Convolutional Recurrent Neural

Networks (CRNN) were used to classify polyphonic sounds. This technique was tested

on the following benchmark datasets corresponding to every day sound events: TUT-

SED Synthetic 2016, TUT-SED 2009, TUT-SED 2016 CHiME-Home. The CRNN showed

an improvement in the classification performance on the previously mentioned datasets

compared to CNN, RNN and other techniques.

6.4. MATERIALS AND METHODS 81

6.4/ MATERIALS AND METHODS

6.4.1/ URBAN ENVIRONMENTAL NOISE DATA

To obtain noise pollution data, it is necessary to have access to an acoustic sensor net-

work that consists of nodes capturing sound in near real-time. Such nodes can take

measurements over time and preproccess them, in order to send sound pressure lev-

els to a gateway that will transmit these data to a storage platform. Many working smart

cities have already deployed sensor networks allowing to collect and publish data through

a cloud platform. For example, the Smart Santander facility provides access to data cap-

tured by noise sensors [94] thanks to the open source platform called FIWARE [126].

This work benefits from a collaboration with the Flowbird company1, world leader in park-

ing and transport ticketing solutions. The data used in this work was issued from Flow-

bird’s Park&Breathe solution. This latter allows to create a network of noise and pollution

sensors by using existing Strada parking terminals on which multi-sensor kits are inte-

grated. Figure 6.1(a) displays a terminal with an integrated Park&Breathe kit on its top.

Let us notice that this solution is very interesting as it operates on existing urban furniture

and can take advantage of the fine-meshed network built by parking terminals in many

cities. However, not all terminals are usually upgraded with a sensing kit, it depends on

the coverage of the area of interest to be monitored.

1Website: flowbird.group

(a) Park&Breathe kit (b) Measurement points along Stratford Road

Figure 6.1: Multi-sensor kit integration on a terminal (a) and (b) positions of the three
upgraded terminals (red marks) as well as the manual count point (blue mark).

82 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

6.4.1.1/ MONITORED AREA

Practically, the noise data are issued from parking terminals deployed in the city of Soli-

hull, in the county of West Midlands in western-central England, and more precisely in

one of its suburb called Shirley. Many terminals cover this area among which three of

them are fitted with the Park&Breathe solution. Figure 6.1(b) displays the locations of

these terminals, where each of them is spotted by a red mark and a code. As can be

seen on the map they monitor a part of the Stratford Road, with two of them which are

located opposite one another.

An idea of the traffic flow that can be observed on the road in question is given by the data

corresponding to the manual count point 46367 (flagged by the blue mark on the map)

managed by the English Department of Transport. According to the most recent available

data, an average daily flow of about 31,500 motor vehicles uses this road. Moreover, as

this road is also numbered A34, it means that it is a trunk road of the English network. The

monitored area is thus a good representative of urban areas where citizens are exposed

to large noise nuisances.

6.4.1.2/ DATA ACQUISITION AND FORMAT

Noise data are available in the form of a file per terminal. A file in which a line repre-

sents a histogram composed of 77 sound levels as abscissa, while the number of times

a particular sound level occurs during a time period is plotted as ordinate. For this work,

noise levels of a time frame ranging from May 2019 up to end January 2020 were used,

where each line in a data file of a terminal corresponds to sound levels collected during

15 minutes.

However, these data were not used directly. In fact, they were processed in order to rather

work with average values over periods of 1 hour. Therefore, the initial values of the three

files were replaced by average values following two methods. The first method consists in

replacing a set of 77 sound level values obtained at a time step by a single one computed

as follows:

L(t) =

∑76
l=0 (Nl(t) × (l + 35))∑76

l=0 Nl(t)

where L(t) is the average value and Nl(t) the number of times sound level l occurred

during time step t. Notice that one needs to add 35 to l to obtain the true measure in

decibels. This is due to the fact that l is not a sound level but rather a sound level index

such that its starting value (l = 0) corresponds to a sound level of 35 dB. The second

method keeps the histogram, but computes for each sound level its average value over a

period of 1 hour. Since both methods consider a same period duration, they result in a

same data set size of 19, 443 samples (6, 570 samples for each of the terminals 500 and

6.4. MATERIALS AND METHODS 83

0 50 100 150 200 250 300 350
Time (hours)

55

60

65

70

75

80

Av
er

ag
e

no
ise

 le
ve

l (
de

cib
el

s)
500
515
521

Figure 6.2: Average sound levels (dB) observed between May 1st 2019 and mid May -
the x-axis shows the number of elapsed hours since May 1st 00:00:00.

515, 6, 303 for terminal 521). Figure 6.2 shows the curves obtained with the first method

for a time range of two weeks going from May 1st 2019 until mid May. The three curves

present the same evolution, with extreme values reflecting the proximity of the terminals

to the road and the distance between them. Thus, the blue and green curves are the

most similar as they belong to the two terminals almost facing each other. In addition,

the orange one has higher noise levels because the corresponding terminal is closer to

the road. One can see a periodic daily evolution where the lowest average noise level is

captured early in the morning. The days of the weekend and particularly the Sundays are

easily recognizable on the graph (May 5th going from 96 hours to 120 hours and May 12th

going from 264 hours to 288 hours), as well as the first Monday in May corresponding to

the Early May Bank Holiday (May 6th going from 120 hours to 144 hours).

In the following, only data issued from the first method are used. This was done for several

reasons. First, using the second method would have involved the prediction of several

output values and thus probably would have given a more complex model. Second,

among the 77 sound level values, some are more prevalent than others, so preprocessing

should be investigated to limit their number and only keep the most significant ones.

Third, regardless of the method used, both provide a dataset that has the same number

of samples, but since with the second method the predicted output would have given finer

information about the noise, more data certainly would have been needed.

84 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

6.4.2/ STUDIED MACHINE LEARNING MODELS

When dealing with time series data, the most obvious deep learning architecture to in-

vestigate is the Long Short-Term Memory (LSTM). Indeed, for most deep learning prac-

titioners, sequence modeling usually means recurrent networks. An alternative to a pure

recurrent neural network is to combine aspects of recurrent and convolutional architec-

tures, using convolutions to change the representation of the original data. Finally, more

recent deep learning models using attention, namely the Transformer and the Temporal

Fusion Transformer, will also be studied. Deep learning is very powerful, but gradient tree

boosting is also able to model relationships in the data and thus seems worthy of investi-

gation. In this work, an evaluation of a representative of each of these machine learning

models is conducted. But first, the mechanisms of Temporal Fusion Transformer and Gra-

dient Boosting (LightGBM) will be briefly discussed since the mechanisms of LSTMs and

convolutional architectures and their combination as well as the Transfomer architecture

were examined previously.

6.4.2.1/ TEMPORAL FUSION TRANSFORMER

The temporal fusion transformer (TFT) is a deep learning model that integrates self-

attention with multi-horizon forecasting [156]. The TFT can adapt to the complexity of

the predicted time series using gating mechanisms. Short-term dependencies are cap-

tured using a sequence to sequence layer while long term ones are identified by masked

interpretable multi-head attention. At each time step, pertinent input variables are cho-

sen using variable selection networks. For further control of predictions, static metadata

are incorporated into the forecasting system via static covariate encoders. In addition to

static features and observed inputs from the past, known future inputs are also fed into

the network. These future inputs are not predicted, they are known in advance and are

only used to help predicting other features. This network also provides the ability to pre-

dict a range of probable values for each prediction horizon through the use of quantile

forecasts.

6.4.2.2/ GRADIENT BOOSTING (LIGHTGBM)

LightGBM is a popular gradient boosting framework created by Microsoft. It is a tree

based learning algorithm designed to have a faster training speed, a lower memory usage

and a better accuracy [102]. It supports execution with GPU and parallelization, has a

function for testing and keeps the best set of parameters. Traditional gradient boosting

algorithms work by first fitting a weak learner to pairs of sampled inputs and outputs.

Then, repeated estimation of the remaining errors via weak learners is realized, typically

6.5. RESULTS 85

using tree based learners [133]. Compared to other boosting algorithms, LightGBM differs

in the approach used for tree growth that is leaf-wise (best-first) and not level-wise (depth-

first).

6.5/ RESULTS

The deep learning architectures, except the TFT, have been implemented and evaluated

with the easy-to-use Keras Python library. This library is user-friendly and allows to per-

form the computations with different backends such as TensorFlow. It is particularly suited

for the implementation of preexisting deep learning architectures, when there is no need

for low level operations design. In the case of gradient boosting, many models are al-

ready available in the Python Scikit-learn package, namely the LightGBM model. Finally

the temporal fusion transformer was implemented using the Pytorch-forecasting library.

This high level API of deep learning architectures is used to forecast time series for real

world and research scenarios.

6.5.1/ SETUP OF THE DEEP LEARNING ARCHITECTURES

• The Stacked-LSTM architecture that was chosen is composed of a first layer of

150 LSTM units, followed by a second layer of 100 units and a final dense layer

reduced to a single neuron. Both LSTM layers use a ReLU activation function and

the dense layer uses a linear activation function.

• The CNN-LSTM is made up of two parts. The first one is a fully convolutional

network that consists of three layers of 16 neurons where each neuron computes

one-dimensional convolutions. The convolution kernels have a size of 3 and are

initialized using the Glorot uniform initializer available in Keras. The shape of the

data in the input of the convolutional part is a vector whose size corresponds to

the lookback value explained thereafter. The input and output data have the same

shape. The second part is a LSTM similar to the Stacked-LSTM.

• The transformer used is made up of a transformer encoder containing several trans-

former blocks which are then connected to multiple dense layers with ReLU activa-

tion and dropout. The output of the model is a single neuron with linear activation.

Each transformer block contains a layer normalization followed by a multi-head at-

tention and then by a dropout and a feedforward part. The feedforward part starts

with layer normalization followed by two one dimensional convolutional networks

separated by a dropout.

86 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

Figure 6.3: Lookback principle for time series forecasting.

• The temporal fusion transformer architecture used is exactly the same as the one

mentioned in the original paper by [156].

A key parameter when working with time series is the lookback value. It corresponds

to the amount of previous data that will be provided to the neural network so that it can

predict the next value. For example, as can be seen in Figure 6.3, with a lookback of 3

the network will have access to data H0, H1 and H2 to predict H3. Both architectures

with LSTM layers are first trained with Nadam optimizer, the version of Adam that uses

the Nesterov momentum instead of a regular momentum, while the Transformer is trained

with Adam.

6.5.2/ AVERAGE NOISE LEVEL PREDICTION WITH LSTM ARCHITECTURES AND

LIGHTGBM

For these experiments, only the data samples from terminal 515 were used at first, using

90 % of them for training and the remaining 10 % for testing. In practice, it means that

5, 912 samples were used for training and 657 samples for testing. The prediction results

obtained with the two LSTM deep learning architectures (the Stacked one and the CNN-

LSTM), considering different combinations of maximum training epochs and lookback

values, are shown in Table 6.1. To assess the quality of the predictions, the Root Mean

Square Error (RMSE) which is a standard way to measure the error of a model in its

prediction ability, was chosen. As can be seen, for the combinations with a low number

of training epochs, the best prediction performance is always provided by the Stacked-

LSTM, while the CNN-LSTM’s performance is in the same order of magnitude or only

slightly worse for a same lookback value. However, the gap between both architectures

reduces as the number of epochs and the lookback value increase and finally it is the

6.5. RESULTS 87

CNN-LSTM that takes the lead for the configuration with 100 epochs and a lookback

value equal to 36 (the lines in italic in the table). The overall best prediction performance

is obtained with the Stacked-LSTM for the configuration with 100 epochs and a lookback

of 24 (the bold line in the table). It can also be noticed that the CNN-LSTM appears to

be more sensitive to the lookback value than the Stacked-LSTM. A possible explanation

of these observations is that the CNN-LSTM is deeper than the Stacked-LSTM, thus it

needs a larger number of epochs and enough input data to take advantage of the CNN

part (to be trained to extract relevant features).

Table 6.1: Evaluation of the two LSTM-based deep learning architectures for different
values of training epochs and lookback.

Deep architecture Epochs Lookback RMSE on train RMSE on test

Stacked-LSTM

25 12 1.35 1.29
50 3 1.43 1.48
50 12 1.22 1.34
50 24 1.19 1.17
100 24 0.96 1.01
100 36 0.99 1.05

CNN-LSTM

25 12 1.37 1.48
50 3 4.28 4.32
50 12 1.27 1.52
50 24 1.09 1.16
100 24 1.03 1.17
100 36 0.98 1.05

Table 6.2: Evaluation of LightGBM for different configurations of tree growth and learning
rates.

LightGBM
Num leaves Num trees Learning rate RMSE on train RMSE on test
11 500 0.05 0.78 1.00
11 1000 0.04 0.71 0.99

For the LightGBM gradient boosting method, the parameters controlling the learning pro-

cess are different. Num leaves defines the maximum number of leaves in one tree, while

the number of trees is set with the parameter denoted Num trees. The learning rate is the

step size at each iteration to reach the minimum of the loss function. Table 6.2 presents

the prediction errors for two configurations of tree growth and learning rate. When com-

paring them to the errors shown in Table 6.1, LightGBM seems to be a very good com-

petitor for the deep learning architectures, giving lower training and testing errors, even if

in this latter case the improvement is very small. However, LightGBM exhibits large differ-

ences between the training and testing errors that might be a first evidence of overfitting

to which leaf-wise growth is known to be more sensitive than its level-wise counterpart. In

the following we first try to optimize the two deep learning architectures and to investigate

88 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

Table 6.3: Evaluation of deep learning architectures trained with different optimizers.

Deep architecture Optimizer
Epochs to

RMSE on train RMSE on test
converge

Stacked-LSTM
Nadam 134 1.05 1.04
Adam 95 1.09 1.06
RMSprop 259 0.96 0.97

CNN-LSTM
Nadam 223 0.94 0.94
Adam 187 0.99 0.99
RMSprop 265 0.92 0.95

different forecasting case studies.

6.5.3/ OPTIMIZATION OF THE STACKED-LSTM AND CNN-LSTM

To increase the accuracy of the predictions given by the deep networks with LSTM layers,

the data used for training have been shuffled (activation of the shuffle option in time

series generator provided by Keras). This improves a neural network ability to generalize

and prevent overfitting. Moreover, different optimizers have been evaluated with an early

stopping when the validation loss stops decreasing. It was then possible to conduct an

analysis of the convergence for each optimizer. As highlighted by Table 6.3, from the

RMSE values’ point of view, ADAM is slightly outperformed by NADAM, which is itself

overrun by RMSPROP, which is therefore the optimizer providing the lowest loss values.

Besides, the optimizer RMSPROP exhibits the same behavior (almost the same number

of epochs to reach convergence) for both deep learning architectures, while ADAM and

NADAM begin to overfit much earlier in the case of Stacked-LSTM.

6.5.4/ 6 DAY FORECASTS

Up to now the emphasis was put on forecasting the average noise level one hour ahead

(H+1), but this is not enough. Therefore, the two machine learning models that have

achieved the lowest errors (CNN-LSTM and LightGBM) were used to make predictions

for the following 6 days (H+144). One can see on Figure 6.4 that both models learned

the underlying pattern of the average noise level evolution, with a small preference for

the deep neural network as its predictions (the green curve) seem to be closer to the real

measurements (the blue curve which stops when the x-axis value is equal to 350 hours).

Therefore the CNN-LSTM was selected to assess its ability to detect anomalies.

6.5. RESULTS 89

(a)

0 100 200 300 400 500
Time (hours)

60

65

70

75

80
Av

er
ag

e
no

ise
 le

ve
l (

de
cib

el
s)

Real Predicted

(b)

0 100 200 300 400 500
Time (hours)

60

65

70

75

80

Av
er

ag
e

no
ise

 le
ve

l (
de

cib
el

s)

Real Predicted

Figure 6.4: 6 days forecasting with CNN-LSTM (a) and LightGBM (b).

6.5.5/ TRAINING ON ONE TERMINAL AND TESTING FORECASTS ON OTHERS

Since the CNN-LSTM performs better than LightGBM, it is also tested for its ability to do

forecasts on sound levels at different locations (training data from terminal 500 and testing

with data from terminals 515 and 521). The training was realised on the CNN-LSTM which

performed better than Stacked-LSTM and LightGBM. 70 % of the data from terminal 500

were used for training, 15 % for validation and 15 % for testing. The hyperparameters

used are the following: RMSprop optimizer, lookback of 36 and 84 epochs (till validation

loss stops decreasing). The performance of the CNN-LSTM on the terminals 500, 515

and 521 is summarized on the line denoted Training data 500 in Table 6.4. The second

line shows the performance when the training is conducted on terminal 515 (till validation

loss stops decreasing, i.e. 150 epochs) and tested on terminals 500 and 521, while the

third line correspond to last case where the training is completed on terminal 521. When

the model is trained on terminal 500 or 515 (first and second line), the RMSE is the closest

between these 2 terminals because they are the closest to the main road compared to

the terminal 521 so they have relatively close sound levels. But when the model is trained

on terminal 521, the RMSE is the closest between terminals 500 and 521 since they are

the closest to each other in distance compared to the terminal 515.

90 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

Table 6.4: Evaluation of CNN-LSTM on testing sets of the terminals 515, 500 and 521
(training on data from terminal in italic).

CNN-LSTM
Training data 500 Terminal 500 Terminal 515 Terminal 521
RMSE 1.32 1.86 2.24
Training data 515 Terminal 500 Terminal 515 Terminal 521
RMSE 2.18 1.03 3.01
Training data 521 Terminal 500 Terminal 515 Terminal 521
RMSE 1.91 2.52 1.34

6.5.6/ TRAINING AND TESTING FORECASTS ON DIFFERENT TERMINALS SIMUL-
TANEOUSLY

A CNN-LSTM was also trained and tested on terminals 500, 515 and 521 simultaneously

(multivariate time series) for the purpose of sound level forecasting. The CNN-LSTM

has the same structure as the one used for one terminal forecasting. However the output

contains 3 dense neurons one for each terminal. Using the same hyperparameters as be-

fore, and after training for 51 epochs (till validation loss stops decreasing), the forecasting

RMSE is 1.5 on the test set. In Table 6.4, the average of all RMSE values is 1.93 which is

greater than 1.5. Hence training simultaneously on different terminals using a model with

same intermediate layers gives more accurate forecasts for multiple terminals. However,

if forecasting on only one terminal is needed the model with one dense output neuron

and the same intermediate layers is more accurate.

6.5.7/ TRANSFORMER AND TEMPORAL FUSION TRANSFORMER

Finally, the prediction ability of the two deep learning architectures with attention has been

evaluated. First, a transformer was trained and tested on terminal 515 to predict future

sound level for different values of training epochs and lookbacks. Default hyperparame-

ters were chosen i.e. head size: 256, number of heads: 4, feed forward dimension in the

transformer block: 4, number of transformer blocks: 4, MLP units: 128, MLP dropout: 0.4,

dropout: 0.25. The results are shown in Table 6.5. After 500 epochs the lookback of 72

gave the lowest RMSE value (the bold line).

A temporal fusion transformer (TFT) was also trained and tested on terminal 515 to predict

future sound level for different values of training epochs and lookbacks. The results are

shown in Table 6.6 for the default choice of hyperparameters of the TFT i.e. learning rate:

0.03, hidden size: 32, attention head size: 1, dropout: 0.1, hidden continuous size: 16.

After 100 epochs the lookback of 36 gave the lowest RMSE (the bold line).

It can be noticed that the TFT needs much less epochs (100 epochs) to reach maximum

performance compared to the transformer architecture (500 epochs). The reason for this

6.5. RESULTS 91

Table 6.5: Evaluation of the transformer for different values of training epochs and look-
back.

Epochs Lookback RMSE on train RMSE on test
25.0 12.0 2.00 2.01
50.0 3.0 2.02 1.93
50.0 12.0 1.72 1.73
50.0 24.0 1.77 1.88
100.0 24.0 1.40 1.42
100.0 36.0 1.33 1.41
150.0 36.0 1.25 1.27
200.0 36.0 1.19 1.20
200.0 48.0 1.14 1.15
250.0 48.0 1.15 1.20
300.0 48.0 1.12 1.16
350.0 48.0 1.13 1.14
350.0 60.0 1.08 1.13
400.0 60.0 1.07 1.13
450.0 60.0 1.05 1.12
450.0 72.0 1.05 1.12
500.0 72.0 1.04 1.11
700.0 100.0 0.95 1.12

Table 6.6: Evaluation of the temporal fusion transformer for different values of training
epochs and lookback.

Epochs Lookback RMSE on train RMSE on test
25.0 12.0 1.26 1.30
50.0 3.0 1.64 1.51
50.0 12.0 1.24 1.30
50.0 24.0 1.19 1.23
100.0 24.0 1.17 1.23
100.0 36.0 1.06 1.11
150.0 36.0 1.07 1.18
200.0 36.0 1.07 1.18
200.0 48.0 1.12 1.17

discrepancy lies in the fact that the TFT is a much more complex model than the trans-

former architecture. This higher complexity is also translated into a longer duration to train

an epoch which is 17 seconds for the TFT compared to 5 seconds for the transformer.

Since the time series data is not complex and large enough for the use of large deep mod-

els such as transformers and TFT, the best RMSE obtained from these two architectures

is still slightly worse than other simpler models such as LSTM and LightGBM.

92 CHAPTER 6. CONTRIB. 3: DL AND GB FOR URBAN ENVIRONMENTAL NOISE

(a)

0 100 200 300 400 500 600
Time (hours)

0

20

40

60

80

Av
er

ag
e

no
ise

 le
ve

l (
de

cib
el

s)

Noise before attacks
Noise after attacks Real labels

(b)

0 100 200 300 400 500 600
Time (hours)

0

20

40

60

80

Av
er

ag
e

no
ise

 le
ve

l (
de

cib
el

s)

Predicted labels
Real labels

Predicted noise
Real noise

Figure 6.5: Dataset with attacks (a) and detection of anomalies on average noise
curve (b). In the lower part of both graphs, the green peaks indicate false data injec-
tions, while the red peaks highlight those that were detected. Note that the green and red
curves are not sound levels.

6.5.8/ DETECTION OF ANOMALOUS SOUND DATA

Since the CNN-LSTM architecture can successfully forecast sound levels, it is worthwhile

to assess more of its abilities such as detecting potential anomalies in the data collected

by the sensors. If a sample is far from the corresponding forecast, this sample is con-

sidered as an anomaly which might result from a malicious FDIA attack. The first step is

the creation of a dataset with a few anomalies. In order to do that, the input data were

randomly disturbed by adding / subtracting values to some of the original average noise

values. More precisely, values between 1 and 10 dB sampled from a uniform distribution

were added / subtracted to 5% randomly chosen instances of the original values.

As explained above, since the CNN-LSTM neural network makes satisfactory predictions,

a big difference between real measured data and the forecast implies the presence of

an anomaly. In Figure 6.5(a), the blue curve corresponds to the original data, the or-

6.6. CONCLUSION 93

ange curve represents the data obtained after the false data injections. In Figure 6.5(a)

and Figure 6.5(b) the green curves show where data have been attacked (peaks denote

anomalous data otherwise the data is normal). In Figure 6.5(b), the blue curve cor-

responds to the real data which underwent false data injections (it is equivalent to the

orange curve in Figure 6.5(a)), the orange curve represents the prediction of the deep

neural network, and the red curve shows where an anomaly can be detected using the

CNN-LSTM’s predictions (peaks denote detected anomalous data otherwise the data is

considered as normal). In fact, a false data injection attack is detected as soon as the

difference between a real measured data and its counterpart predicted by the neural

network is larger than a given threshold. According to [3], a threshold of 5 dB of noise

change is clearly noticeable by the human ear. Therefore a threshold of 5 dB was cho-

sen for anomaly detection. All the injected anomalies which are higher than 5 dB were

detected. This shows that the detection model is able to identify all clearly noticeable

noise changes. This is considered enough since unnoticeable changes are typically not

disruptive. Note that the detection threshold can be lowered to 4 dB, since the highest

prediction error of the neural network is 4 dB. However, lowering the detection threshold

furthermore results in some false positive cases. To detect smaller noise level attacks,

the prediction model must be improved.

6.6/ CONCLUSION

The ability of deep learning architectures and gradient boosting to predict the real aver-

age urban noise level has been investigated in the context of smart cities. The sensing

platform used to collect the data has been presented, in particular the monitored area

and the way the data were obtained and formatted. The experimental results show that

relevant short-term predictions can be provided with a CNN-LSTM and LightGBM, as well

as 6 day forecasts capturing the daily pattern exhibited in the data. Thanks to these re-

sults the possibility of detecting anomalous data was also evaluated with the CNN-LSTM.

It has been shown that an increase in sound intensity of 5 dB greater can be detected

without any error. Being able to identify such problems is of great interest to make smart

cities more robust against possible false data injection attacks.

7

CONCLUSION AND PERSPECTIVES

7.1/ CONCLUSION

In this thesis, deep learning anomaly detection strategies have been proposed to detect

false data in business data, focusing first on the ADS-B protocol. Such false data may

be injected due to the lack of encryption and authentication of ADS-B messages. The

main approach used for anomaly detection in the context of this thesis is supervised

learning. Another secondary work focuses on the IoT domain, specifically on predicting

noise collected from a network of smart parkmeters.

The two case studies, the ADS-B protocol and environmental noise monitoring with sen-

sor networks, were presented in the second chapter. We first showed the inherent vul-

nerabilities of the ADS-B protocol, mainly its lack of authentication and encryption which

makes it vulnerable to many types of fake data injection attacks. Then, we presented

the types of acoustic sensor networks and discussed the requirements for their proper

operation. In addition, an IoT false data generator was also described.

The third chapter presented various related works regarding anomaly detection. First tra-

ditional anomaly detection techniques are presented followed by machine learning and

deep learning anomaly detection approaches used in time series. Then anomaly detec-

tion techniques applied on ADS-B data are also described. These methods show the

prevalence of semi-supervised approaches for ADS-B anomaly detection, specifically au-

toencoder architectures. To the best of our knowledge, supervised approaches for ADS-B

anomaly detection are absent from the literature due to the lack of attacked data.

Afterwards three contributions on anomaly detection in business data have been pre-

sented. Two in the context of the ADS-B air traffic surveillance protocol and the third in

the context of an acoustic sensor network.

95

96 CHAPTER 7. CONCLUSION AND PERSPECTIVES

A comparative study of deep learning architectures for detection of anomalous
ADS-B messages In the first contribution, a comparative study on anomaly detection

of altered ADS-B data was realised. Only one type of alterations was investigated, mainly

rough altitude alterations. Many models were compared such as XGBoost, 1D-CNN,

LSTM, 1D-CNN connected to LSTM and bidirectional LSTM. XGBoost gave a very low

precision. LSTM was compared against different types of optimizers, lookback values

and structure. Bidirectional LSTM and CNN gave worse results than individual LSTM,

but when CNN is combined with LSTM the performance increases. Nevertheless, the

best architecture obtained for anomaly detection is an LSTM of two layers composed of

64 units in the first one and 32 in the second, a lookback of 20 time steps, trained with

NADAM optimizer.

Supervised ADS-B anomaly detection using a false data generator In the second

contribution, a strategy for supervised ADS-B anomaly detection was devised. It relies on

a false data generator (FDI-T) to obtain labeled normal and anomalous data used to train

the model. This generator is based on a DSL language which gives the needed flexibility

and expressiveness to generate a multitude of distinct ADS-B alteration scenarios. Differ-

ent models were trained to detect different types of attacks individually: gradual attacks

(altitude attack, ground speed attack, track attack, latitude attack and longitude attack)

and waypoints attacks (an attack which deviates a flight to pass by specific points). The

results of testing those models showed that the increase of the lookback and the num-

ber of epochs enhances the detection performance but only slightly. These results also

showed that the previously mentioned attacks can be detected in a supervised fashion

using our strategy. Semi-supervised approaches were also compared to the supervised

approach showing the performance advantage of the supervised approach. In addition,

a meta model made of individual models was also created and it was successful in de-

tecting different types of gradual attacks simultaneously. An alarm mechanism was also

proposed and its performance was evaluated as well.

Deep learning and gradient boosting for urban environmental noise monitoring In

the third contribution, different machine learning and deep learning models were com-

pared in the context of forecasting urban noise levels namely LightGBM, LSTM, CNN-

LSTM, Transformer and Temporal Fusion Transformer. The noise data used for training

those models were gathered from a smart parkmeters’ network. The components of this

network were described as well as the data acquisition process. It was deduced that the

CNN-LSTM was the most suitable for forecasting the noise levels and was also usable to

detect rough punctual noise alterations (5 dB alteration) based on the forecasting task.

Such capabilities can be used to ensure the security and safety of smart city systems.

7.2. PERSPECTIVES 97

7.2/ PERSPECTIVES

Few shots learning for ADS-B anomaly detection There are many perspectives to

consider in the aviation domain which requires ever increasing safety measures. The

key focus of this thesis was to propose a supervised deep learning approach for ADS-

B anomaly detection. ADS-B data are readily available from the OpenSky network and

anomalous labeled data can be obtained using FDI-T. Nevertheless downloading and

attacking entire flights as well as training deep learning models is time consuming espe-

cially if our goal is to train models on substantial number of aircraft. One way to tackle

such a problem is to use few shots learning. This technique relies on only a few samples

belonging to different classes which comprise what we call a support set. The test dataset

is called query dataset. In order to apply the few shots learning technique, a similarity

function is trained to identify if a pair of samples (support sample, query sample) belong

to the same class. In the case of supervised ADS-B anomaly detection the only classes

present in the support and query sets are normal data and anomalies, and the samples

are sequences of ADS-B data. A traditional deep learning architecture used in few shots

learning is the siamese network which is made of a separate pair of neural networks.

Those two networks have the same output which is usually used to obtain a similarity

measure between the inputs.

Ghost aircraft injections and aircraft spoofing anomaly detection Other types of

attacks could also be taken into consideration in anomaly detection using ADS-B data

such as Ghost Aircraft injections and Aircraft Spoofing. Ghost Aircraft injection detection

and aircraft spoofing detection might rely on past flights taking the same route in the case

of commercial flights. For other types of flights, normal flight patterns need to be learned.

However, for the detection to be reliable, much more data is most probably needed since

the attackers might want to create ghost flights imitating normal flights.

Mixed airspace anomaly detection In our contributions, ADS-B anomaly detection

was applied by considering the message flow of a single aircraft. Each aircraft is treated

independently of the others. Therefore a future work worth considering would be to com-

bine the message flow of several aircraft in a given zone and then to detect the abnormal

behavior of an aircraft compared to the others. To be able to do such a task, relations

between different aircraft should be examined. These relations could depend on many

metrics such as the distance between aircraft, their ground speed, etc. One way to model

such relations is the use of graphs. In this case, graph convolutional networks could be

used to classify in a supervised fashion ADS-B data as normal or anomalous. Such net-

works were shown to be successful in processing graph data like social networks data.

98 CHAPTER 7. CONCLUSION AND PERSPECTIVES

Semi-supervised approaches for ADS-B anomaly detection could also be investigated

such as graph convolutional autoencoders akin to the works in [129].

Generative Adversarial Networks to generate mixed airspace attacks In [122], the

authors proposed the use of two dimensional CNN-LSTM autoencoders to detect anoma-

lies in a flow of ADS-B messages originating from different aircraft. In their approach, the

flow of messages is modeled using a sequence of images which are then fed into the

autoencoder for semi-supervised anomaly detection. Each image expresses the state

of multiple aircraft in a visually explainable fashion by using shapes such as arrows.

Therefore, another future work worth examining is using 3D convolutional Generative

Adversarial Networks (GAN) [98] to generate false sequences of mixed airspace images.

Three-dimensional convolutions are used to process sequences of images where two di-

mensions and one dimension correspond to the images’ and time’s/sequence’s dimen-

sions respectively. Nevertheless, in order to ensure the meaningfulness of the generated

images (for instance the necessity that an aircraft is modeled by an arrow), specific con-

ditions need to be enforced into the structure of the network.

PUBLICATIONS

CONFERENCE PAPERS

• Ralph Karam, Michel Salomon, and Raphael Couturier. “A Comparative Study of

Deep Learning Architectures for Detection of Anomalous ADS-B messages”. In

2020 7th International Conference on Control, Decision and Information Tech-
nologies (CoDIT), 2020, pp. 241-246, doi: 10.1109/CoDIT49905.2020.9263880.

• Ralph Karam, Michel Salomon, and Raphael Couturier. “Supervised ADS-B

Anomaly Detection Using a False Data Generator”. In 2022 2nd International
Conference on Computer, Control and Robotics (ICCCR), 2022, pp. 218-223,
doi: 10.1109/ICCCR54399.2022.979014.

SUBMITTED PAPERS

• Jeremy Renaud, Ralph Karam, Michel Salomon, and Raphael Couturier. “Deep

Learning and Gradient Boosting for Urban Environmental Noise Monitoring in Smart

Cities”. In International Journal Expert Systems with Applications. Submission

under revision.

99

BIBLIOGRAPHY

[1] Airborne collision avoidance system (ACAS). https://skybrary.aero/articles/

airborne-collision-avoidance-system-acas.

[2] Concept of operations Mode S in Europe. https://www.eurocontrol.int/sites/

default/files/2019-04/surveillance-mode-s-concept-of-operations-19961128.pdf.

[3] Human perception of sound. https://modularwalls.com.au/wp-content/uploads/

Human-perception-of-sound April2016-WEB.pdf.

[4] Live flight tracker - real-time flight tracker map.

[5] Technical provisions for Mode S services and extended squitter.
http://www.aviationchief.com/uploads/9/2/0/9/92098238/icao doc 9871 -

technical provisions for mode s - advanced edition 1.pdf.

[6] Teen monitoring Elon Musk’s jet ‘tracking Gates, Bezos and
Drake too’. https://www.theguardian.com/technology/2022/feb/02/

teen-tracking-elon-musk-jet-bill-gates-jeff-bezos-drake-jack-sweeney-tesla-flight-tracker-bot.

[7] PARZEN, E. On estimation of a probability density function and mode. The

annals of mathematical statistics 33, 3 (1962), 1065–1076.

[8] AKIMA, H. A new method of interpolation and smooth curve fitting based on
local procedures. Journal of the ACM (JACM) 17, 4 (1970), 589–602.

[9] FIX, E., AND HODGES, J. L. Discriminatory analysis. nonparametric discrimi-
nation: Consistency properties. International Statistical Review/Revue Interna-

tionale de Statistique 57, 3 (1989), 238–247.

[10] KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E., AND PETERSON,

A. S. Feature-oriented domain analysis (FODA) feasibility study. Tech. rep.,

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[11] GALLAGHER, P. R. A guide to understanding data remanence in automated
information systems, 1991.

[12] COMON, P. Independent component analysis, a new concept? Signal process-

ing 36, 3 (1994), 287–314.

101

https://skybrary.aero/articles/airborne-collision-avoidance-system-acas
https://skybrary.aero/articles/airborne-collision-avoidance-system-acas
https://www.eurocontrol.int/sites/default/files/2019-04/surveillance-mode-s-concept-of-operations-19961128.pdf
https://www.eurocontrol.int/sites/default/files/2019-04/surveillance-mode-s-concept-of-operations-19961128.pdf
https://modularwalls.com.au/wp-content/uploads/Human-perception-of-sound_April2016-WEB.pdf
https://modularwalls.com.au/wp-content/uploads/Human-perception-of-sound_April2016-WEB.pdf
http://www.aviationchief.com/uploads/9/2/0/9/92098238/icao_doc_9871_-_technical_provisions_for_mode_s_-_advanced_edition_1.pdf
http://www.aviationchief.com/uploads/9/2/0/9/92098238/icao_doc_9871_-_technical_provisions_for_mode_s_-_advanced_edition_1.pdf
https://www.theguardian.com/technology/2022/feb/02/teen-tracking-elon-musk-jet-bill-gates-jeff-bezos-drake-jack-sweeney-tesla-flight-tracker-bot
https://www.theguardian.com/technology/2022/feb/02/teen-tracking-elon-musk-jet-bill-gates-jeff-bezos-drake-jack-sweeney-tesla-flight-tracker-bot

102 BIBLIOGRAPHY

[13] CAMMARATA, G., CAVALIERI, S., AND FICHERA, A. A neural network architecture
for noise prediction. Neural Networks 8, 6 (1995), 963–973.

[14] LECUN, Y., BENGIO, Y., AND OTHERS. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks

3361, 10 (1995), 1995.

[15] TAYLOR, R. N., TRACZ, W., AND COGLIANESE, L. Software development using
domain-specific software architectures: CDRl A011—a curriculum module in
the SEI style. ACM SIGSOFT Software Engineering Notes 20, 5 (1995), 27–38.

[16] ESTER, M., KRIEGEL, H.-P., SANDER, J., XU, X., AND OTHERS. A density-based
algorithm for discovering clusters in large spatial databases with noise. In

kdd (1996), vol. 96, pp. 226–231.

[17] COPLIEN, J., HOFFMAN, D., AND WEISS, D. Commonality and variability in
software engineering. IEEE software 15, 6 (1998), 37–45.

[18] FRAKES, W., DIAZ, R., FOX, C., AND OTHERS. DARE: Domain analysis and
reuse environment. Annals of software engineering 5, 1 (1998), 125–141.

[19] SCHÖLKOPF, B., SMOLA, A., AND MÜLLER, K.-R. Nonlinear component analysis
as a kernel eigenvalue problem. Neural computation 10, 5 (1998), 1299–1319.

[20] STUDER, R., BENJAMINS, V. R., AND FENSEL, D. Knowledge engineering: prin-
ciples and methods. Data & knowledge engineering 25, 1-2 (1998), 161–197.

[21] ANKERST, M., BREUNIG, M. M., KRIEGEL, H.-P., AND SANDER, J. Optics: Order-
ing points to identify the clustering structure. ACM Sigmod record 28, 2 (1999),

49–60.

[22] BEYER, K., GOLDSTEIN, J., RAMAKRISHNAN, R., AND SHAFT, U. When is ”near-
est neighbor” meaningful? In In Int. Conf. on Database Theory (1999), pp. 217–

235.

[23] SCHÖLKOPF, B., WILLIAMSON, R. C., SMOLA, A., SHAWE-TAYLOR, J., AND PLATT,

J. Support vector method for novelty detection. Advances in neural information

processing systems 12 (1999).

[24] BREUNIG, M. M., KRIEGEL, H.-P., NG, R. T., AND SANDER, J. LOF: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD interna-

tional conference on Management of data (2000), pp. 93–104.

[25] GERS, F. A., SCHMIDHUBER, J., AND CUMMINS, F. Learning to forget: Continual
prediction with LSTM. Neural computation 12, 10 (2000), 2451–2471.

BIBLIOGRAPHY 103

[26] RAMASWAMY, S., RASTOGI, R., AND SHIM, K. Efficient algorithms for mining
outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD interna-

tional conference on Management of data (2000), pp. 427–438.

[27] STEELE, C. A critical review of some traffic noise prediction models. Applied

acoustics 62, 3 (2001), 271–287.

[28] HALL, J., BARBEAU, M., KRANAKIS, E., AND OTHERS. Detection of transient in
radio frequency fingerprinting using signal phase. Wireless and Optical Com-

munications (2003), 13–18.

[29] JOLLIFFE, I. T. Principal component analysis. Technometrics 45, 3 (2003), 276.

[30] KARLOF, C., AND WAGNER, D. Secure routing in wireless sensor networks:
Attacks and countermeasures. Ad hoc networks 1, 2-3 (2003), 293–315.

[31] TANASE, M. IP spoofing: an introduction. Security Focus 11 (2003), 1674–1680.

[32] TAX, D. M., AND DUIN, R. P. Support vector data description. Machine learning

54, 1 (2004), 45–66.

[33] GRAVES, A., AND SCHMIDHUBER, J. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural networks

18, 5-6 (2005), 602–610.

[34] POLASTRE, J., SZEWCZYK, R., AND CULLER, D. Telos: Enabling ultra-low power
wireless research. In IPSN 2005. Fourth International Symposium on Information

Processing in Sensor Networks, 2005. (2005), IEEE, pp. 364–369.

[35] RAMSAY, J. O., AND SILVERMAN, B. W. Fitting differential equations to func-
tional data: Principal differential analysis. Springer, 2005.

[36] KANG, J. Urban sound environment. CRC Press, 2006.

[37] KISSEL, R., SCHOLL, M. A., SKOLOCHENKO, S., AND LI, X. SP 800-88 Rev. 1.
guidelines for media sanitization, 2006.

[38] PATHAN, A.-S. K., LEE, H.-W., AND HONG, C. S. Security in wireless sen-
sor networks: issues and challenges. In 2006 8th International Conference Ad-

vanced Communication Technology (2006), vol. 2, IEEE, pp. 6–pp.

[39] BARAGONA, R., AND BATTAGLIA, F. Outliers detection in multivariate time series
by independent component analysis. Neural computation 19, 7 (2007), 1962–

1984.

104 BIBLIOGRAPHY

[40] CHEN, Y., TRAPPE, W., AND MARTIN, R. P. Detecting and localizing wireless
spoofing attacks. In 2007 4th Annual IEEE Communications Society Conference

on sensor, mesh and ad hoc communications and networks (2007), IEEE, pp. 193–

202.

[41] DUTTA, H., GIANNELLA, C., BORNE, K., AND KARGUPTA, H. Distributed top-k
outlier detection from astronomy catalogs using the demac system. In Pro-

ceedings of the 2007 SIAM International Conference on Data Mining (2007), SIAM,

pp. 473–478.

[42] FILIPPONI, L., SANTINI, S., AND VITALETTI, A. Data collection in wireless sen-
sor networks for noise pollution monitoring. In International Conference on

Distributed Computing in Sensor Systems (2008), Springer, pp. 492–497.

[43] LIU, F. T., TING, K. M., AND ZHOU, Z.-H. Isolation forest. In 2008 eighth ieee

international conference on data mining (2008), IEEE, pp. 413–422.

[44] SANTINI, S., OSTERMAIER, B., AND VITALETTI, A. First experiences using wire-
less sensor networks for noise pollution monitoring. In Proceedings of the

workshop on Real-world wireless sensor networks (2008), pp. 61–65.

[45] CHANDOLA, V., BANERJEE, A., AND KUMAR, V. Anomaly detection: A survey.

ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[46] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARKSON, W., PAUL, W.,

CALANDRINO, J. A., FELDMAN, A. J., APPELBAUM, J., AND FELTEN, E. W. Lest
we remember: cold-boot attacks on encryption keys. Communications of the

ACM 52, 5 (2009), 91–98.

[47] PADMAVATHI, D. G., SHANMUGAPRIYA, M., AND OTHERS. A survey of attacks, se-
curity mechanisms and challenges in wireless sensor networks. arXiv preprint

arXiv:0909.0576 (2009).

[48] REYNOLDS, D. A. Gaussian mixture models. Encyclopedia of biometrics 741,

659-663 (2009).

[49] GENARO, N., TORIJA, A., RAMOS-RIDAO, A., REQUENA, I., RUIZ, D. P., AND

ZAMORANO, M. A neural network based model for urban noise prediction.

The journal of the Acoustical Society of America 128, 4 (2010), 1738–1746.

[50] GIVARGIS, S., AND KARIMI, H. A basic neural traffic noise prediction model for
Tehran’s roads. Journal of Environmental Management 91, 12 (2010), 2529–2534.

[51] HAKALA, I., KIVELÄ, I., IHALAINEN, J., LUOMALA, J., AND GAO, C. Design of
low-cost noise measurement sensor network: Sensor function design. In

BIBLIOGRAPHY 105

2010 First International Conference on Sensor Device Technologies and Applica-

tions (2010), IEEE, pp. 172–179.

[52] LISBOA, L. B., GARCIA, V. C., LUCRÉDIO, D., DE ALMEIDA, E. S.,

DE LEMOS MEIRA, S. R., AND DE MATTOS FORTES, R. P. A systematic review of
domain analysis tools. Information and Software Technology 52, 1 (2010), 1–13.

[53] BOTTELDOOREN, D., DE COENSEL, B., OLDONI, D., VAN RENTERGHEM, T., AND

DAUWE, S. Sound monitoring networks new style. In Acoustics 2011: Break-

ing New Ground: Annual Conference of the Australian Acoustical Society (2011),

Australian Acoustical Society, pp. 1–5.

[54] CANDÈS, E. J., LI, X., MA, Y., AND WRIGHT, J. Robust principal component
analysis? Journal of the ACM (JACM) 58, 3 (2011), 1–37.

[55] GUPTA, S., AND GHATAK, C. Environmental noise assessment and its effect on
human health in an urban area. International Journal of Environmental Sciences

1, 7 (2011), 1954–1964.

[56] KIVELÄ, I., GAO, C., LUOMALA, J., AND HAKALA, I. Design of noise measure-
ment sensor network: Networking and communication part. In Proceedings

of the 5th International Conference on Sensor Technologies and Applications, Côte

d’Azur, France (2011), pp. 21–27.

[57] SU, K., LI, J., AND FU, H. Smart city and the applications. In 2011 inter-

national conference on electronics, communications and control (ICECC) (2011),

IEEE, pp. 1028–1031.

[58] COSTIN, A., AND FRANCILLON, A. Ghost in the air (traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices. black hat USA (2012),

1–12.

[59] LIU, F. T., TING, K. M., AND ZHOU, Z.-H. Isolation-based anomaly detection.

ACM Transactions on Knowledge Discovery from Data (TKDD) 6, 1 (2012), 1–39.

[60] NENCINI, L., DE ROSA, P., ASCARI, E., VINCI, B., AND ALEXEEVA, N. SENSEable
Pisa: A wireless sensor network for real-time noise mapping. Proceedings of

the EURONOISE, Prague, Czech Republic (2012), 10–13.

[61] AGGARWAL, C. C. Outlier ensembles: position paper. ACM SIGKDD Explo-

rations Newsletter 14, 2 (2013), 49–58.

[62] BELL, M. C., AND GALATIOTO, F. Novel wireless pervasive sensor network to
improve the understanding of noise in street canyons. Applied Acoustics 74, 1

(2013), 169–180.

106 BIBLIOGRAPHY

[63] CAMPELLO, R. J., MOULAVI, D., AND SANDER, J. Density-based clustering
based on hierarchical density estimates. In Pacific-Asia conference on knowl-

edge discovery and data mining (2013), Springer, pp. 160–172.

[64] GRIGORIK, I. High Performance Browser Networking: What every web devel-
oper should know about networking and web performance. ” O’Reilly Media,

Inc.”, 2013.

[65] KINGMA, D. P., AND WELLING, M. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114 (2013).

[66] TESO, H. Aircraft hacking: Practical aero series. In 4th Hack in the Box Security

Conference in Europe (2013).

[67] WALLGREN, L., RAZA, S., AND VOIGT, T. Routing attacks and countermeasures
in the RPL-based internet of things. International Journal of Distributed Sensor

Networks 9, 8 (2013), 794326.

[68] WANG, C., CHEN, G., DONG, R., AND WANG, H. Traffic noise monitoring and
simulation research in Xiamen city based on the environmental internet of
things. International Journal of Sustainable Development & World Ecology 20, 3

(2013), 248–253.

[69] XIN, W., CHANG, J., MUTHUSWAMY, S., AND TALAS, M. ”Midtown in Motion”: A
new active traffic management methodology and its implementation in New
York City. In Transportation Research Board 92nd Annual Meeting (2013).

[70] DE COENSEL, B., AND BOTTELDOOREN, D. Smart sound monitoring for sound
event detection and characterization. In 43rd International Congress on Noise

Control Engineering (Inter-Noise 2014) (2014).

[71] DOMINGUEZ, F., DAUWE, S., CUONG, N. T., CARIOLARO, D., TOUHAFI, A.,

DHOEDT, B., BOTTELDOOREN, D., AND STEENHAUT, K. Towards an environ-
mental measurement cloud: Delivering pollution awareness to the public. In-

ternational Journal of Distributed Sensor Networks 10, 3 (2014), 541360.

[72] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

[73] NEDIC, V., DESPOTOVIC, D., CVETANOVIC, S., DESPOTOVIC, M., AND BABIC, S.

Comparison of classical statistical methods and artificial neural network in
traffic noise prediction. Environmental Impact Assessment Review 49 (2014),

24–30.

BIBLIOGRAPHY 107

[74] PIMENTEL, M. A., CLIFTON, D. A., CLIFTON, L., AND TARASSENKO, L. A review
of novelty detection. Signal processing 99 (2014), 215–249.

[75] SCHÄFER, M., STROHMEIER, M., LENDERS, V., MARTINOVIC, I., AND WILHELM,

M. Bringing up OpenSky: A large-scale ADS-B sensor network for research.

In IPSN-14 Proceedings of the 13th International Symposium on Information Pro-

cessing in Sensor Networks (2014), IEEE, pp. 83–94.

[76] STROHMEIER, M., LENDERS, V., AND MARTINOVIC, I. On the security of the
automatic dependent surveillance-broadcast protocol. IEEE Communications

Surveys & Tutorials 17, 2 (2014), 1066–1087.

[77] STROHMEIER, M., SCHÄFER, M., LENDERS, V., AND MARTINOVIC, I. Realities
and challenges of nextgen air traffic management: the case of ADS-B. IEEE

Communications Magazine 52, 5 (2014), 111–118.

[78] WESSON, K. D., HUMPHREYS, T. E., AND EVANS, B. L. Can cryptography secure
next generation air traffic surveillance? IEEE Security and Privacy Magazine

(2014).

[79] AMOOZADEH, M., RAGHURAMU, A., CHUAH, C.-N., GHOSAL, D., ZHANG, H. M.,

ROWE, J., AND LEVITT, K. Security vulnerabilities of connected vehicle
streams and their impact on cooperative driving. IEEE Communications Mag-

azine 53, 6 (2015), 126–132.

[80] AN, J., AND CHO, S. Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE 2, 1 (2015), 1–18.

[81] BOX, G. E., JENKINS, G. M., REINSEL, G. C., AND LJUNG, G. M. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[82] FARRÉS, J. C. Barcelona noise monitoring network. In Proceedings of the

Euronoise (2015), pp. 218–220.

[83] FOGGIA, P., PETKOV, N., SAGGESE, A., STRISCIUGLIO, N., AND VENTO, M. Au-
dio surveillance of roads: A system for detecting anomalous sounds. IEEE

transactions on intelligent transportation systems 17, 1 (2015), 279–288.

[84] LAPTEV, N., AMIZADEH, S., AND FLINT, I. Generic and scalable framework
for automated time-series anomaly detection. In Proceedings of the 21th ACM

SIGKDD international conference on knowledge discovery and data mining (2015),

pp. 1939–1947.

[85] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. nature 521, 7553 (2015),

436–444.

108 BIBLIOGRAPHY

[86] MALHOTRA, P., VIG, L., SHROFF, G., AGARWAL, P., AND OTHERS. Long short
term memory networks for anomaly detection in time series. In Proceedings

(2015), vol. 89, pp. 89–94.

[87] MIETLICKI, F., MIETLICKI, C., AND SINEAU, M. An innovative approach for long
term environmental noise measurement: Rumeur network in the paris region.

In Proceedings of the EuroNoise (2015).

[88] PAULO, J., FAZENDA, P., OLIVEIRA, T., CARVALHO, C., AND FELIX, M. Framework
to monitor sound events in the city supported by the FIWARE platform. In

Proceedings of the 46o Congreso Español de Acústica, Valencia, Spain (2015),

pp. 21–23.

[89] SCHMIDHUBER, J. Deep learning. Scholarpedia 10, 11 (2015), 32832.

[90] BELLUCCI, P., AND CRUCIANI, F. R. Implementing the dynamap system in the
suburban area of rome. In Inter-Noise and Noise-Con Congress and Conference

Proceedings (2016), vol. 253, Institute of Noise Control Engineering, pp. 5518–

5529.

[91] CHEN, T., AND GUESTRIN, C. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge dis-

covery and data mining (2016), pp. 785–794.

[92] JANG, E., GU, S., AND POOLE, B. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144 (2016).

[93] LIANG, G., ZHAO, J., LUO, F., WELLER, S. R., AND DONG, Z. Y. A review of false
data injection attacks against modern power systems. IEEE Transactions on

Smart Grid 8, 4 (2016), 1630–1638.

[94] NAVARRO, J., TOMASGABARRON, J., AND ESCOLANO, J. On the application of
big data techniques to noise monitoring of smart cities. In Euroregio 2016

Oporto (2016), Portuguese Acoustical Society (SPA) and Spanish Acoustics Soci-

ety (SEA).

[95] PAULO, J., FAZENDA, P., OLIVEIRA, T., AND CASALEIRO, J. Continuos sound
analysis in urban environments supported by FIWARE platform. Proceedings

of the EuroRegio2016/TecniAcústica 16 (2016), 1–10.

[96] RAINHAM, D. A wireless sensor network for urban environmental health moni-
toring: Urbansense. In IOP Conference Series: Earth and Environmental Science

(2016), vol. 34, IOP Publishing, p. 012028.

BIBLIOGRAPHY 109

[97] SEVILLANO, X., SOCORÓ, J. C., ALÍAS, F., BELLUCCI, P., PERUZZI, L., RADAELLI,

S., COPPI, P., NENCINI, L., CERNIGLIA, A., BISCEGLIE, A., AND OTHERS.

Dynamap–development of low cost sensors networks for real time noise map-
ping. Noise mapping 3, 1 (2016).

[98] VONDRICK, C., PIRSIAVASH, H., AND TORRALBA, A. Generating videos with
scene dynamics. Advances in neural information processing systems 29 (2016).

[99] BARTALUCCI, C., BORCHI, F., CARFAGNI, M., FURFERI, R., GOVERNI, L., SILVAG-

GIO, R., CURCURUTO, S., AND NENCINI, L. Design of a prototype of a smart
noise monitoring system. In Proceedings of the 24th International Congress on

Sound and Vibration (ICSV24), London, UK (2017), pp. 23–27.

[100] CAKIR, E., PARASCANDOLO, G., HEITTOLA, T., HUTTUNEN, H., AND VIRTANEN, T.

Convolutional recurrent neural networks for polyphonic sound event detec-
tion. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25, 6

(2017), 1291–1303.

[101] JARIWALA, H. J., SYED, H. S., PANDYA, M. J., AND GAJERA, Y. M. Noise pollu-
tion & human health: a review. Noise and Air Pollutions: Challenges and Oppor-

tunities, Ahmedabad: LD College of Eng (2017).

[102] KE, G., MENG, Q., FINLEY, T., WANG, T., CHEN, W., MA, W., YE, Q., AND LIU, T.-

Y. Lightgbm: A highly efficient gradient boosting decision tree. In Advances

in neural information processing systems (2017), pp. 3146–3154.

[103] MUELLER, N., ROJAS-RUEDA, D., BASAGAÑA, X., CIRACH, M., COLE-HUNTER,

T., DADVAND, P., DONAIRE-GONZALEZ, D., FORASTER, M., GASCON, M., MAR-

TINEZ, D., AND OTHERS. Health impacts related to urban and transport plan-
ning: A burden of disease assessment. Environment international 107 (2017),

243–257.

[104] MYDLARZ, C., SALAMON, J., AND BELLO, J. P. The implementation of low-cost
urban acoustic monitoring devices. Applied Acoustics 117 (2017), 207–218.

[105] SALEHINEJAD, H., SANKAR, S., BARFETT, J., COLAK, E., AND VALAEE, S. Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078 (2017).

[106] SOCORÓ, J. C., ALÍAS, F., AND ALSINA-PAGÈS, R. M. An anomalous noise
events detector for dynamic road traffic noise mapping in real-life urban and
suburban environments. Sensors 17, 10 (2017), 2323.

[107] SUN, J., ELLERBROEK, J., AND HOEKSTRA, J. Flight extraction and phase iden-
tification for large automatic dependent surveillance–broadcast datasets.

Journal of Aerospace Information Systems 14, 10 (2017), 566–572.

110 BIBLIOGRAPHY

[108] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ,

A. N., KAISER, Ł., AND POLOSUKHIN, I. Attention is all you need. Advances in

neural information processing systems 30 (2017).

[109] VINCI, B., TONACCI, A., CAUDAI, C., DE ROSA, P., NENCINI, L., AND PRATALI,

L. The senseable pisa project: Citizen-participation in monitoring acoustic
climate of mediterranean city centers. CLEAN–Soil, Air, Water 45, 7 (2017),

1600137.

[110] ZAMBON, G., BENOCCI, R., BISCEGLIE, A., ROMAN, H. E., AND BELLUCCI, P.

The life dynamap project: Towards a procedure for dynamic noise mapping
in urban areas. Applied Acoustics 124 (2017), 52–60.

[111] BROWN, A., AND DE COENSEL, B. A study of the performance of a general-
ized exceedance algorithm for detecting noise events caused by road traffic.

Applied Acoustics 138 (2018), 101–114.

[112] CRETIN, A., LEGEARD, B., PEUREUX, F., AND VERNOTTE, A. Increasing the
resilience of atc systems against false data injection attacks using DSL-based
testing. In International Conference on Research in Air Transportation (2018).

[113] FARRÉS, J. C., AND NOVAS, J. C. Issues and challenges to improve the
barcelona noise monitoring network. In Proceedings of the 11th European

Congress and Exposition on Noise Control Engineering (2018), pp. 27–31.

[114] HABLER, E., AND SHABTAI, A. Using LSTM encoder-decoder algorithm for de-
tecting anomalous ADS-B messages. Computers & Security 78 (2018), 155–

173.

[115] KHAN, M. A., AND SALAH, K. IoT security: Review, blockchain solutions, and
open challenges. Future generation computer systems 82 (2018), 395–411.

[116] KUMAR, P. R., RAJ, P. H., AND JELCIANA, P. Exploring data security issues and
solutions in cloud computing. Procedia Computer Science 125 (2018), 691–697.

[117] MIETLICKI, C., AND MIETLICKI, F. Medusa: A new approach for noise man-
agement and control in urban environment. In Proceedings of the EuroNoise

(2018), pp. 727–730.

[118] MUNIR, M., SIDDIQUI, S. A., DENGEL, A., AND AHMED, S. Deepant: A deep
learning approach for unsupervised anomaly detection in time series. Ieee

Access 7 (2018), 1991–2005.

[119] NAVARATHNA, P. J., AND MALAGI, V. P. Artificial intelligence in smart city analy-
sis. In 2018 International Conference on Smart Systems and Inventive Technology

(ICSSIT) (2018), pp. 44–47.

BIBLIOGRAPHY 111

[120] PECKENS, C., PORTER, C., AND RINK, T. Wireless sensor networks for long-
term monitoring of urban noise. Sensors 18, 9 (2018), 3161.

[121] SILVA, B. N., KHAN, M., AND HAN, K. Towards sustainable smart cities: A
review of trends, architectures, components, and open challenges in smart
cities. Sustainable Cities and Society 38 (2018), 697 – 713.

[122] AKERMAN, S., HABLER, E., AND SHABTAI, A. VizADS-B: Analyzing sequences
of ADS-B images using explainable convolutional LSTM encoder-decoder to
detect cyber attacks. arXiv preprint arXiv:1906.07921 (2019).

[123] ALÍAS, F., AND ALSINA-PAGÈS, R. M. Review of wireless acoustic sensor net-
works for environmental noise monitoring in smart cities. Journal of sensors

2019 (2019).

[124] ARULKUMARAN, K., CULLY, A., AND TOGELIUS, J. Alphastar: An evolutionary
computation perspective. In Proceedings of the genetic and evolutionary compu-

tation conference companion (2019), pp. 314–315.

[125] BASORA, L., OLIVE, X., AND DUBOT, T. Recent advances in anomaly detection
methods applied to aviation. Aerospace 6, 11 (2019), 117.

[126] CIRILLO, F., SOLMAZ, G., BERZ, E. L., BAUER, M., CHENG, B., AND KOVACS, E.

A standard-based open source IoT platform: FIWARE. IEEE Internet of Things

Magazine 2, 3 (2019), 12–18.

[127] KAWAGUCHI, Y., TANABE, R., ENDO, T., ICHIGE, K., AND HAMADA, K. Anomaly
detection based on an ensemble of dereverberation and anomalous sound
extraction. In ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) (2019), IEEE, pp. 865–869.

[128] LI, G., MULLER, M., THABET, A., AND GHANEM, B. Deepgcns: Can gcns go
as deep as cnns? In Proceedings of the IEEE/CVF international conference on

computer vision (2019), pp. 9267–9276.

[129] PARK, J., LEE, M., CHANG, H. J., LEE, K., AND CHOI, J. Y. Symmetric graph
convolutional autoencoder for unsupervised graph representation learning.

In Proceedings of the IEEE/CVF International Conference on Computer Vision

(2019), pp. 6519–6528.

[130] REN, H., XU, B., WANG, Y., YI, C., HUANG, C., KOU, X., XING, T., YANG, M.,

TONG, J., AND ZHANG, Q. Time-series anomaly detection service at Microsoft.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge

discovery & data mining (2019), pp. 3009–3017.

112 BIBLIOGRAPHY

[131] UNITED NATIONS DEPARTMENT OF ECONOMIC AND SOCIAL AFFAIRS. World Ur-
banization Prospects: The 2018 Revision. United Nations, 2019.

[132] WANG, S., LI, C., AND LIM, A. Why are the ARIMA and SARIMA not sufficient.
arXiv preprint arXiv:1904.07632 (2019).

[133] ZHANG, Z., ZHAO, Y., CANES, A., STEINBERG, D., LYASHEVSKA, O., AND WRITTEN

ON BEHALF OF AME BIG-DATA CLINICAL TRIAL COLLABORATIVE GROUP. Predic-
tive analytics with gradient boosting in clinical medicine. Annals of transla-

tional medicine 7, 7 (April 2019), 152.

[134] BRILAND, M., AND BOUQUET, F. An approach for testing false data injection
attack on data dependent industrial devices. Journal of Universal Computer

Science 27, 7 (2020), 774–792.

[135] BROWN, T., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J. D., DHARIWAL, P.,

NEELAKANTAN, A., SHYAM, P., SASTRY, G., ASKELL, A., AND OTHERS. Language
models are few-shot learners. Advances in neural information processing sys-

tems 33 (2020), 1877–1901.

[136] CHEVROT, A., VERNOTTE, A., BERNABE, P., CRETIN, A., PEUREUX, F., AND LEG-

EARD, B. Improved testing of AI-based anomaly detection systems using syn-
thetic surveillance data. In Multidisciplinary Digital Publishing Institute Proceed-

ings (2020), vol. 59, p. 9.

[137] CRETIN, A., VERNOTTE, A., CHEVROT, A., PEUREUX, F., AND LEGEARD, B. Test
data generation for false data injection attack testing in air traffic surveil-
lance. In 2020 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW) (2020), IEEE, pp. 143–152.

[138] EUROPEAN ENVIRONMENT AGENCY. Environmental noise in Europe. Publica-

tions Office of the European Union,, 2020.

[139] GAUTAM, K., PURI, V., TROMP, J. G., NGUYEN, N. G., AND VAN LE, C. Internet of
things (IoT) and deep neural network-based intelligent and conceptual model
for smart city. In Frontiers in Intelligent Computing: Theory and Applications (Sin-

gapore, 2020), S. C. Satapathy, V. Bhateja, B. L. Nguyen, N. G. Nguyen, and D.-N.

Le, Eds., Springer Singapore, pp. 287–300.

[140] KARAM, R., SALOMON, M., AND COUTURIER, R. A comparative study of deep
learning architectures for detection of anomalous ADS-B messages. In 2020

7th International Conference on Control, Decision and Information Technologies

(CoDIT) (2020), vol. 1, IEEE, pp. 241–246.

[141] KOSOWATZ, J. 10 Smart Cities. Mechanical Engineering 142, 02 (02 2020), 32–37.

BIBLIOGRAPHY 113

[142] NAVARRO, J. M., MARTÍNEZ-ESPAÑA, R., BUENO-CRESPO, A., MARTÍNEZ, R.,

AND CECILIA, J. M. Sound levels forecasting in an acoustic sensor network
using a deep neural network. Sensors 20, 3 (2020), 903.

[143] NOURANI, V., GÖKÇEKUŞ, H., AND UMAR, I. K. Artificial intelligence based en-
semble model for prediction of vehicular traffic noise. Environmental research

180 (2020), 108852.

[144] NOURANI, V., GÖKÇEKUŞ, H., UMAR, I. K., AND NAJAFI, H. An emotional arti-
ficial neural network for prediction of vehicular traffic noise. Science of the

Total Environment 707 (2020), 136134.

[145] POWERS, D. M. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. arXiv preprint arXiv:2010.16061

(2020).

[146] SHEN, L., LI, Z., AND KWOK, J. Timeseries anomaly detection using tempo-
ral hierarchical one-class network. Advances in Neural Information Processing

Systems 33 (2020), 13016–13026.

[147] WANG, J., ZOU, Y., AND DING, J. ADS-B spoofing attack detection method
based on LSTM. EURASIP Journal on Wireless Communications and Networking

2020, 1 (2020), 1–12.

[148] YOOK, D., LEEM, S.-G., LEE, K., AND YOO, I.-C. Many-to-many voice conver-
sion using cycle-consistent variational autoencoder with multiple decoders.

In Proc. Odyssey 2020 The Speaker and Language Recognition Workshop (2020),

pp. 215–221.

[149] ZHANG, X., ZHAO, M., AND DONG, R. Time-series prediction of environmen-
tal noise for urban IoT based on long short-term memory recurrent neural
network. Applied Sciences 10, 3 (2020), 1144.

[150] BRILAND, M., AND BOUQUET, F. A language for modelling false data injec-
tion attacks in internet of things. In 2021 IEEE/ACM 3rd International Workshop

on Software Engineering Research and Practices for the IoT (SERP4IoT) (2021),

IEEE, pp. 1–8.

[151] CHEN, Z., CHEN, D., ZHANG, X., YUAN, Z., AND CHENG, X. Learning graph
structures with transformer for multivariate time series anomaly detection in
IoT. IEEE Internet of Things Journal (2021).

[152] D’ASCOLI, S., TOUVRON, H., LEAVITT, M. L., MORCOS, A. S., BIROLI, G., AND

SAGUN, L. ConViT: Improving vision transformers with soft convolutional

114 BIBLIOGRAPHY

inductive biases. In International Conference on Machine Learning (2021), PMLR,

pp. 2286–2296.

[153] JUMPER, J., EVANS, R., PRITZEL, A., GREEN, T., FIGURNOV, M., RONNEBERGER,

O., TUNYASUVUNAKOOL, K., BATES, R., Ž ÍDEK, A., POTAPENKO, A., AND OTHERS.

Highly accurate protein structure prediction with AlphaFold. Nature 596, 7873

(2021), 583–589.

[154] KHAN, S., NASEER, M., HAYAT, M., ZAMIR, S. W., KHAN, F. S., AND SHAH, M.

Transformers in vision: A survey. ACM Computing Surveys (CSUR) (2021).

[155] KIRANYAZ, S., AVCI, O., ABDELJABER, O., INCE, T., GABBOUJ, M., AND INMAN,

D. J. 1D convolutional neural networks and applications: A survey. Mechani-

cal systems and signal processing 151 (2021), 107398.

[156] LIM, B., ARIK, S. Ö., LOEFF, N., AND PFISTER, T. Temporal fusion transformers
for interpretable multi-horizon time series forecasting. International Journal of

Forecasting (2021).

[157] LUO, P., WANG, B., LI, T., AND TIAN, J. ADS-B anomaly data detection model
based on VAE-SVDD. Computers & Security 104 (2021), 102213.

[158] PANG, G., SHEN, C., CAO, L., AND HENGEL, A. V. D. Deep learning for anomaly
detection: A review. ACM Computing Surveys (CSUR) 54, 2 (2021), 1–38.

[159] SANCHEZ-LENGELING, B., REIF, E., PEARCE, A., AND WILTSCHKO, A. B. A gentle
introduction to graph neural networks. Distill 6, 9 (2021), e33.

[160] SUN, J. The 1090 Megahertz Riddle: A Guide to Decoding Mode S and ADS-B
Signals, 2 ed. TU Delft OPEN Publishing, 2021.

[161] VERNOTTE, A., CRETIN, A., LEGEARD, B., AND PEUREUX, F. A domain-specific
language to design false data injection tests for air traffic control systems.

International Journal on Software Tools for Technology Transfer (2021), 1–32.

[162] CHEVROT, A., VERNOTTE, A., AND LEGEARD, B. CAE: Contextual auto-encoder
for multivariate time-series anomaly detection in air transportation. Comput-

ers & Security (2022), 102652.

[163] KARAM, R., SALOMON, M., AND COUTURIER, R. Supervised ADS-B anomaly
detection using a false data generator. In 2022 2nd International Conference on

Computer, Control and Robotics (ICCCR) (2022), pp. 218–223.

[164] LI, Y., CHOI, D., CHUNG, J., KUSHMAN, N., SCHRITTWIESER, J., LEBLOND, R.,

ECCLES, T., KEELING, J., GIMENO, F., LAGO, A. D., AND OTHERS. Competition-
level code generation with alphacode. arXiv preprint arXiv:2203.07814 (2022).

BIBLIOGRAPHY 115

[165] DUNSTONE, G. ADS-B technology the experience in australia. https://www.icao.

int/SAM/Documents/2017-ADSB/10%20Australia.pdf.

[166] RICHARDS, W. R., O’BRIEN, K., AND MILLER, D. C. Aero - new air traf-
fic surveillance technology. https://www.boeing.com/commercial/aeromagazine/

articles/qtr 02 10/2/.

[167] WEBER, N. Why lstms stop your gradients from vanishing: A view from
the backwards pass (weberna’s blog). https://weberna.github.io/blog/2017/11/

15/LSTM-Vanishing-Gradients.html.

https://www.icao.int/SAM/Documents/2017-ADSB/10%20Australia.pdf
https://www.icao.int/SAM/Documents/2017-ADSB/10%20Australia.pdf
https://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/2/
https://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/2/
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html

LIST OF FIGURES

2.1 The radar mechanism showing emitted and reflected waves whose round

trip duration is used for distance estimation (illustration from skyradar.com). 10

2.2 Secondary surveillance radar relying on interrogation and replies for com-

munication (illustration from skybrary.aero). 11

2.3 The ADS-B protocol communication principle (illustration from trig-

avionics.com). 12

2.4 ADS-B frame format. 12

2.5 The superior surveillance coverage provided by the ADS-B protocol in Aus-

tralia. 14

2.6 Simulated Ghost Aircraft Flooding attack showing the appearance of multi-

ple ghost aircraft to confuse air traffic controllers and pilots. 16

2.7 Noise monitoring positions in the city of Milan, in the context of the DY-

NAMAP project which aims at creating dynamic noise maps of urban areas. 19

3.1 Example of a decision boundary plot of the Local Outlier factor used to

estimate the outlying behaviour. The deeper the shade of blue, the higher

the LOF and consequently the higher the outlying behaviour estimation

(plot from scikit-learn.org). 25

3.2 Clustering-based anomaly detection example showing normal data located

in clusters (green, blue and cyan clusters) and anomalies (red points) not

belonging to any cluster. 25

3.3 Visual example of an isolation forest showing an isolated outlier (red point). 27

3.4 SVM for novelty detection in which the outliers (red points) are separated

in the feature space from normal data points (blue points) by a hyperplane

passing by support vectors (green points). 28

3.5 Visual example of gaussian mixture models showing the iterative process

of estimating the gaussian distributions till convergence. The outliers cor-

respond to the red points and normal points correspond to the blue points. . 29

117

118 LIST OF FIGURES

3.6 Visual example of kernel function-based anomaly detection where the out-

liers (red points) have a small probability density (below a specified thresh-

old) compared to normal points (blue points). 30

3.7 Visual example of PCA applied on 2D data, where outliers (red points)

are points with high variability relative to the last principal component (the

second principal component in this case). 31

3.8 Visual example of a 1D-CNN layer. A sliding window convolves with learn-

able filters to obtain feature maps. 32

3.9 Visual example of a regular recurrent neural network layer. A loop connects

the current hidden state with the previous hidden state. 34

3.10 Illustration of a LSTM layer. 35

3.11 Diagram of self-attention showing the process of extracting relevant infor-

mation to the word “exists” from all the words contained in the sentence

“Gravity exists”. 37

3.12 LSTM autoencoder for ADS-B anomaly detection where the inputs corre-

spond to vectors containing ADS-B information. 42

3.13 LSTM VAE autoencoder for ADS-B anomaly detection where the inputs

correspond to vectors containing normalized ADS-B information. 42

3.14 Diagram of a contextual autoencoder for ADS-B anomaly detection. 45

3.15 Diagram of a Conv-LSTM layer used in the VizADS-B anomaly detection

approach. X represent the inputs, whereas H and C represent the hidden

and cell states respectively. 46

4.1 Visual example of the classification of the last meta-message of three suc-

cessive samples, using a lookback (window size) of 4 meta-messages. . . . 53

5.1 Alteration process overview - image drawn from [137]. 59

5.2 Graphical user interface of FDI-T visualizing many aircraft trajectories in 4D. 59

5.3 Screenshots of the ADS-B false data injection software showing an exam-

ple of a waypoints attack. 61

5.4 Waypoints attack where ∆Latitude = 4.88 × 10−3 degrees, ∆Longitude =

1.28 × 10−2 degrees, ∆Altitude = 75 feet. 63

5.5 View of the whole detection process. 63

5.6 Example of combining messages into a meta-message. 64

LIST OF FIGURES 119

5.7 Difference of meta-messages. 64

5.8 A plot showing the actual scale of a waypoints attack (in red) where

∆altitude = 75 feet. 68

5.9 Illustrated example of the alarm mechanism. In this example the cho-

sen threshold is 4, therefore since in the flight on the left only 2 anoma-

lous windows are detected till present (number of detected anomalous

windows<threshold), the alarm is not launched. The flight on the right

contains at least 5 anomalous windows (number of detected anomalous

windows>threshold), thus the alarm is launched. 71

6.1 Multi-sensor kit integration on a terminal (a) and (b) positions of the three

upgraded terminals (red marks) as well as the manual count point (blue

mark). 81

6.2 Average sound levels (dB) observed between May 1st 2019 and mid May -

the x-axis shows the number of elapsed hours since May 1st 00:00:00. . . . 83

6.3 Lookback principle for time series forecasting. 86

6.4 6 days forecasting with CNN-LSTM (a) and LightGBM (b). 89

6.5 Dataset with attacks (a) and detection of anomalies on average noise

curve (b). In the lower part of both graphs, the green peaks indicate false

data injections, while the red peaks highlight those that were detected.

Note that the green and red curves are not sound levels. 92

LIST OF TABLES

3.1 Average performance of multiple architectures in detecting ADS-B anoma-

lies of the following attacks: Different route (Route), Velocity drift, Constan-

t/Random position deviation. 43

4.1 Evaluation of different optimizers on a stacked LSTM (layers of 256 and

128 units - lookback value of 15). 54

4.2 Evaluation of different lookback values on a stacked LSTM (layers of 256

and 128 units - NADAM optimizer - *: early stopping loss set to 5e−3). . . . 54

4.3 Evaluation of different stacked LSTM architectures (two layers - NADAM

optimizer - lookback value of 20). 54

4.4 Evaluation of a 1D CNN connected to a stacked LSTM for different look-

back values (three layers - NADAM optimizer). 55

5.1 Evaluation of the stacked LSTM using different numbers of epochs (layers

of 64 and 32 units - lookback value of 10). 65

5.2 Evaluation of the stacked LSTM using different lookbacks for the detection

of gradual attacks. 66

5.3 Detection performance compared to Habler & Shabtai (Moscow Dataset)

for 400 feet gradual altitude attacks. 66

5.4 Evaluation of a meta-model for the detection of gradual attacks. 67

5.5 Evaluation of a meta-model for the detection of gradual attacks using se-

quences of 100 windows, where an attack is detected if at least 95 of them

are attacked. 67

5.6 Evaluation of the stacked LSTM using a stratified 6-fold cross-validation. . . 68

5.7 Impact of the number of flights used in training and testing on the detection

performance. The attack used is a general alteration. -*: the number of

flights in the training set -**: the number of flights in the validation set -***:

the number of flights in the testing set . 69

121

122 LIST OF TABLES

5.8 Evaluation of detection for different types of attacks without applying differ-

ence on successive meta messages. 72

5.9 Evaluation of alarm for different types of attacks without applying difference

on successive meta messages in the anomaly detection step (threshold for

100 cumulative detections). 73

5.10 Evaluation of detection for different types of attacks while applying differ-

ence on successive meta messages. 74

5.11 Evaluation of alarm for different types of attacks while applying difference

on successive meta messages in the anomaly detection step (threshold for

100 cumulative detections). 75

6.1 Evaluation of the two LSTM-based deep learning architectures for different

values of training epochs and lookback. 87

6.2 Evaluation of LightGBM for different configurations of tree growth and

learning rates. 87

6.3 Evaluation of deep learning architectures trained with different optimizers. . 88

6.4 Evaluation of CNN-LSTM on testing sets of the terminals 515, 500 and 521

(training on data from terminal in italic). 90

6.5 Evaluation of the transformer for different values of training epochs and

lookback. 91

6.6 Evaluation of the temporal fusion transformer for different values of training

epochs and lookback. 91

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

école doctorale sciences pour l ’ingénieur et microtechniques

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon, France

Title: Automatic detection of business data anomalies
with deep learning and application to the ADS-B protocol

Keywords: Deep learning, Cybersecurity, ADS-B protocol, Machine learning

Abstract:

The use of Machine Learning (ML) and Deep
Learning (DL) for security anomaly detection is
an extremely active topic. Anomaly detection
touches many domains, namely air traffic control,
IoT, etc. One main air traffic control technology is the
ADS-B protocol (Automatic Dependent Surveillance-
Broadcast). It constitutes an air traffic control
data source based on satellite positioning. Each
aircraft periodically sends via ADS-B messages its
information to ground stations and other aircraft.
ADS-B is becoming globally mandatory but it
still lacks security measures like encryption and
authentication. One way to tackle this problem
is ML and DL based ADS-B anomaly detection.
Supervised ADS-B anomaly detection was the main
focus of this thesis due to its performance advantage
compared to unsupervised methods. However, it
suffers from the lack of labeled data. In order to

obtain enough labeled anomalies and normal data,
a false data generator was used. To the best of
our knowledge, this thesis is the only work which
used supervised ADS-B anomaly detection. Our
approach gave very promising results in detecting
various types of attacks. The best performance
was obtained using the Long Short-Term Memory
(LSTM) model. In addition, as a secondary
contribution in this thesis, different DL and ML
approaches were studied in order to forecast noise
levels and detect punctual noise level anomalies.
The data were gathered from an IoT system more
specifically a network of smart parkmeters. The
results of our study inferred that such methods,
preferably a 1D Convolutional Long Short-Term
Memory (CNN-LSTM), can be successfully used in
environmental noise monitoring applications.

Titre : Détection automatique d’anomalies de données métiers avec deep learning et application au
protocole ADS-B

Mots-clés : Apprentissage en profondeur, Cybersécurité, Protocole ADS-B, Apprentissage automatique

Résumé :

L’utilisation du Machine Learning (ML) et du Deep
Learning (DL) pour la détection des anomalies de
sécurité est un sujet extrêmement actif. La détection
d’anomalies s’applique à de nombreux domaines, à
savoir le contrôle du trafic aérien, l’IoT, etc. L’une
des principales technologies de contrôle du trafic
aérien est le protocole ADS-B (Automatic Dependent
Surveillance-Broadcast). Il constitue une source de
données de contrôle du trafic aérien basée sur le
positionnement par satellite. Chaque avion envoie
périodiquement via des messages ADS-B ses
informations aux stations au sol et aux autres avions.
L’ADS-B devient obligatoire dans le monde entier,
mais il n’intègre pas des mesures de sécurité comme
le cryptage et l’authentification, ce qui le rend
vulnérable à l’injection de fausses données. Une
façon de s’attaquer à ce problème est la détection
d’anomalies ADS-B basée sur des approaches de
ML et DL. La détection supervisée des anomalies
ADS-B a été le point central de cette thèse en raison
de son avantage en termes de performance par
rapport aux méthodes non supervisées. Cependant,

une approche supervisée suppose d’avoir des
données labellisées. Afin d’obtenir suffisamment
d’anomalies labellisées et de données normales, un
générateur de fausses données a été utilisé. A
notre connaissance, cette thèse est le seul travail
qui a utilisé la détection supervisée d’anomalies
ADS-B. Notre approche a donné des résultats très
prometteurs dans la détection de différents types
d’attaques. Les meilleures performances ont été
obtenues en utilisant un modèle Long Short-Term
Memory (LSTM). Comme contribution secondaire,
différentes approches de ML et DL ont été étudiées
afin de prévoir les niveaux de bruit et de détecter
des anomalies ponctuelles de niveau de bruit. Les
données sont issues d’un système IoT et plus
précisément d’un réseau de parcmètres. Les
résultats obtenus ont permis de déduire que de telles
méthodes, de préférence un hybride 1D combinant
réseau de neurones convolutionnels et Long Short-
Term Memory (CNN-LSTM), peuvent être utilisées
avec succès dans les applications de surveillance du
bruit environnemental.

	1 Introduction
	1.1 Importance of business data
	1.2 Data security issues
	1.3 Deep learning for detection of anomalies
	1.4 Outline

	2 Case studies
	2.1 Automatic Dependent Surveillance-Broadcast
	2.1.1 Primary radar
	2.1.2 Secondary radar
	2.1.3 What is ADS-B?
	2.1.4 Message format
	2.1.5 Benefits of ADS-B
	2.1.6 Challenges facing ADS-B
	2.1.6.1 Feasibility of attacks
	2.1.6.2 Vulnerabilities and attacks

	2.2 Environmental noise monitoring with parkmeters
	2.2.1 WASNs using commercial sound level meters
	2.2.2 WASNs using ad-hoc hardware
	2.2.3 WASN false data injections

	2.3 Discussion
	2.4 Conclusion

	3 Related works
	3.1 Introduction
	3.2 Anomaly detection
	3.2.1 Nearest neighbours based methods
	3.2.1.1 Anomaly detection with KNN
	3.2.1.2 LOF: identifying density-based local outliers

	3.2.2 Clustering-based anomaly detection techniques
	3.2.2.1 DBSCAN: a density-based algorithm for discovering clusters in large spatial databases with noise
	3.2.2.2 OPTICS: Ordering points to identify the clustering structure
	3.2.2.3 HDBSCAN: density-based clustering using hierarchical density estimates

	3.2.3 Ensemble-based models
	3.2.4 Domain-based anomaly detection
	3.2.5 Statistical models
	3.2.5.1 Gaussian mixture models
	3.2.5.2 ARIMA
	3.2.5.3 Independent component analysis
	3.2.5.4 Histogram-based model
	3.2.5.5 Kernel function-based model

	3.2.6 Dimensionality reduction techniques

	3.3 Prediction and detection of anomalies in time series
	3.3.1 Convolutional neural network-based anomaly detection
	3.3.1.1 DeepAnT: a deep learning approach for unsupervised anomaly detection in time Series
	3.3.1.2 Time-series anomaly detection service at Microsoft

	3.3.2 Recurrent neural network-based anomaly detection
	3.3.2.1 Long short-term memory neural networks for anomaly detection in time series
	3.3.2.2 Time series anomaly detection using temporal hierarchical one-class network

	3.3.3 Transformer-based anomaly detection
	3.3.4 Generic and scalable framework for automated time-series anomaly detection

	3.4 Anomaly detection in ADS-B protocol
	3.4.1 ADS-B spoofing attack detection method based on LSTM
	3.4.2 LSTM encoder-decoder for detecting anomalous messages
	3.4.3 ADS-B anomaly data detection model based on VAE-SVDD
	3.4.3.1 Overview
	3.4.3.2 Comparison with other techniques

	3.4.4 CAE: contextual autoencoder for multivariate time-series anomaly detection in air transportation
	3.4.5 VizADS-B: analyzing sequences of ADS-B images using explainable convolutional LSTM encoder-decoder to detect cyberattacks

	3.5 Discussion
	3.6 Conclusion

	4 Contribution 1: a comparative study of deep learning architectures for detection of anomalous ADS-B messages
	4.1 Introduction
	4.2 Studied architectures
	4.3 Experimental work
	4.3.1 Data acquisition
	4.3.2 Data format
	4.3.3 Confusion matrix
	4.3.4 LSTM architecture evaluation
	4.3.5 Bidirectional LSTM Evaluation
	4.3.6 CNN Architecture
	4.3.7 Using CNN and LSTM Simultaneously

	4.4 Conclusion

	5 Contribution 2: supervised ADS-B anomaly detection using a false data generator
	5.1 Introduction
	5.2 False data injection framework (FDI-T)
	5.2.1 Overview
	5.2.2 DSL language

	5.3 Detection of false data injection
	5.3.1 Generation of labeled attacked ADS-B messages
	5.3.2 Meta-messages generation and detection

	5.4 Experimental results
	5.5 Impact of the number of flights on the detection performance
	5.6 Comparison between supervised and unsupervised anomaly detection
	5.6.1 Detection analysis
	5.6.2 Alarm evaluation

	5.7 Conclusion

	6 Contribution 3: deep learning and gradient boosting for urban environmental noise monitoring in smart cities
	6.1 Introduction
	6.2 IoT and smart cities
	6.3 Noise prediction approaches
	6.4 Materials and methods
	6.4.1 Urban environmental noise data
	6.4.1.1 Monitored area
	6.4.1.2 Data acquisition and format

	6.4.2 Studied machine learning models
	6.4.2.1 Temporal fusion transformer
	6.4.2.2 Gradient boosting (LightGBM)

	6.5 Results
	6.5.1 Setup of the deep learning architectures
	6.5.2 Average noise level prediction with LSTM architectures and LightGBM
	6.5.3 Optimization of the Stacked-LSTM and CNN-LSTM
	6.5.4 6 Day Forecasts
	6.5.5 Training on one terminal and testing forecasts on others
	6.5.6 Training and testing forecasts on different terminals simultaneously
	6.5.7 Transformer and Temporal fusion transformer
	6.5.8 Detection of anomalous sound data

	6.6 Conclusion

	7 Conclusion and perspectives
	7.1 Conclusion
	7.2 Perspectives

